plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
lcnbeapp/beapp-master
|
eegplugin_firfilt.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/firfilt1.6.2/eegplugin_firfilt.m
| 2,667 |
utf_8
|
681ba5e0933cafd6bb95672f910816cd
|
% eegplugin_firfilt() - EEGLAB plugin for filtering data using linear-
% phase FIR filters
%
% Usage:
% >> eegplugin_firfilt(fig, trystrs, catchstrs);
%
% Inputs:
% fig - [integer] EEGLAB figure
% trystrs - [struct] "try" strings for menu callbacks.
% catchstrs - [struct] "catch" strings for menu callbacks.
%
% Author: Andreas Widmann, University of Leipzig, Germany, 2005
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function vers = eegplugin_firfilt(fig, trystrs, catchstrs)
vers = 'firfilt1.6.1';
if nargin < 3
error('eegplugin_firfilt requires 3 arguments');
end
% add folder to path
% -----------------------
if ~exist('pop_firws')
p = which('eegplugin_firfilt');
p = p(1:findstr(p,'eegplugin_firfilt.m')-1);
addpath([p vers]);
end
% find import data menu
% ---------------------
menu = findobj(fig, 'tag', 'filter');
% menu callbacks
% --------------
comfirfiltnew = [trystrs.no_check '[EEG LASTCOM] = pop_eegfiltnew(EEG);' catchstrs.new_and_hist];
comfirws = [trystrs.no_check '[EEG LASTCOM] = pop_firws(EEG);' catchstrs.new_and_hist];
comfirpm = [trystrs.no_check '[EEG LASTCOM] = pop_firpm(EEG);' catchstrs.new_and_hist];
comfirma = [trystrs.no_check '[EEG LASTCOM] = pop_firma(EEG);' catchstrs.new_and_hist];
% create menus if necessary
% -------------------------
uimenu( menu, 'Label', 'Basic FIR filter (new, default)', 'CallBack', comfirfiltnew, 'Separator', 'on', 'position', 1);
uimenu( menu, 'Label', 'Windowed sinc FIR filter', 'CallBack', comfirws, 'position', 2);
uimenu( menu, 'Label', 'Parks-McClellan (equiripple) FIR filter', 'CallBack', comfirpm, 'position', 3);
uimenu( menu, 'Label', 'Moving average FIR filter', 'CallBack', comfirma, 'position', 4);
|
github
|
lcnbeapp/beapp-master
|
windows.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/firfilt1.6.2/windows.m
| 2,876 |
utf_8
|
581c2f660f641935667a234f9b024f3a
|
% windows() - Returns handle to window function or window
%
% Usage:
% >> h = windows(t);
% >> h = windows(t, m);
% >> h = windows(t, m, a);
%
% Inputs:
% t - char array 'rectangular', 'bartlett', 'hann', 'hamming',
% 'blackman', 'blackmanharris', or 'kaiser'
%
% Optional inputs:
% m - scalar window length
% a - scalar or vector with window parameter(s)
%
% Output:
% h - function handle or column vector window
%
% Author: Andreas Widmann, University of Leipzig, 2005
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function h = windows(t, m, a)
if nargin < 1
error('Not enough input arguments.');
end
h = str2func(t);
switch nargin
case 2
h = h(m);
case 3
h = h(m, a);
end
end
function w = rectangular(m)
w = ones(m, 1);
end
function w = bartlett(m)
w = 1 - abs(-1:2 / (m - 1):1)';
end
% von Hann
function w = hann(m);
w = hamming(m, 0.5);
end
% Hamming
function w = hamming(m, a)
if nargin < 2 || isempty(a)
a = 25 / 46;
end
m = [0:1 / (m - 1):1]';
w = a - (1 - a) * cos(2 * pi * m);
end
% Blackman
function w = blackman(m, a)
if nargin < 2 || isempty(a)
a = [0.42 0.5 0.08 0];
end
m = [0:1 / (m - 1):1]';
w = a(1) - a(2) * cos (2 * pi * m) + a(3) * cos(4 * pi * m) - a(4) * cos(6 * pi * m);
end
% Blackman-Harris
function w = blackmanharris(m)
w = blackman(m, [0.35875 0.48829 0.14128 0.01168]);
end
% Kaiser
function w = kaiser(m, a)
if nargin < 2 || isempty(a)
a = 0.5;
end
m = [-1:2 / (m - 1):1]';
w = besseli(0, a * sqrt(1 - m.^2)) / besseli(0, a);
end
% Tukey
function w = tukey(m, a)
if nargin < 2 || isempty(a)
a = 0.5;
end
if a <= 0
w = ones(m, 1);
elseif a >= 1
w = hann(m);
else
a = (m - 1) / 2 * a;
tapArray = (0:a)' / a;
w = [0.5 - 0.5 * cos(pi * tapArray); ...
ones(m - 2 * length(tapArray), 1); ...
0.5 - 0.5 * cos(pi * tapArray(end:-1:1))];
end
end
|
github
|
lcnbeapp/beapp-master
|
pop_firpmord.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/firfilt1.6.2/pop_firpmord.m
| 3,145 |
utf_8
|
f4dae3b8e73f8ab3d73c2d207506ddd8
|
% pop_firpmord() - Estimate Parks-McClellan filter order and weights
%
% Usage:
% >> [m, wtpass, wtstop] = pop_firpmord(f, a); % pop-up window mode
% >> [m, wtpass, wtstop] = pop_firpmord(f, a, dev);
% >> [m, wtpass, wtstop] = pop_firpmord(f, a, dev, fs);
%
% Inputs:
% f - vector frequency band edges
% a - vector desired amplitudes on bands defined by f
% dev - vector allowable deviations on bands defined by f
%
% Optional inputs:
% fs - scalar sampling frequency {default 2}
%
% Output:
% m - scalar estimated filter order
% wtpass - scalar passband weight
% wtstop - scalar stopband weight
%
% Note:
% Requires the signal processing toolbox. Convert passband ripple from
% dev to peak-to-peak dB: rp = 20 * log10((1 + dev) / (1 - dev)).
% Convert stopband attenuation from dev to dB: rs = 20 * log10(dev).
%
% Author: Andreas Widmann, University of Leipzig, 2005
%
% See also:
% pop_firpm, firpm, firpmord
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [m, wtpass, wtstop] = pop_firpmord(f, a, dev, fs)
m = [];
wtpass = [];
wtstop = [];
if exist('firpmord') ~= 2
error('Requires the signal processing toolbox.');
end
if nargin < 2 || isempty(f) || isempty(a)
error('Not enough input arguments');
end
% Sampling frequency
if nargin < 4 || isempty(fs)
fs = 2;
end
% GUI
if nargin < 3 || isempty(dev)
drawnow;
uigeom = {[1 1] [1 1]};
uilist = {{'style' 'text' 'string' 'Peak-to-peak passband ripple (dB):'} ...
{'style' 'edit'} ...
{'style' 'text' 'string' 'Stopband attenuation (dB):'} ...
{'style' 'edit'}};
result = inputgui(uigeom, uilist, 'pophelp(''pop_firpmord'')', 'Estimate filter order and weights -- pop_firpmord()');
if length(result) == 0, return, end
if ~isempty(result{1})
rp = str2num(result{1});
rp = (10^(rp / 20) - 1) / (10^(rp / 20) + 1);
dev(find(a == 1)) = rp;
else
error('Not enough input arguments.');
end
if ~isempty(result{2})
rs = str2num(result{2});
rs = 10^(-abs(rs) / 20);
dev(find(a == 0)) = rs;
else
error('Not enough input arguments.');
end
end
[m, fo, ao, w] = firpmord(f, a, dev, fs);
wtpass = w(find(a == 1, 1));
wtstop = w(find(a == 0, 1));
|
github
|
lcnbeapp/beapp-master
|
firfilt.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/firfilt1.6.2/firfilt.m
| 4,262 |
utf_8
|
d5703bbd52180bfb0661e6db5e649967
|
% firfilt() - Pad data with DC constant, filter data with FIR filter,
% and shift data by the filter's group delay
%
% Usage:
% >> EEG = firfilt(EEG, b, nFrames);
%
% Inputs:
% EEG - EEGLAB EEG structure
% b - vector of filter coefficients
%
% Optional inputs:
% nFrames - number of frames to filter per block {default 1000}
%
% Outputs:
% EEG - EEGLAB EEG structure
%
% Note:
% Higher values for nFrames increase speed and working memory
% requirements.
%
% Author: Andreas Widmann, University of Leipzig, 2005
%
% See also:
% filter, findboundaries
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function EEG = firfilt(EEG, b, nFrames)
if nargin < 2
error('Not enough input arguments.');
end
if nargin < 3 || isempty(nFrames)
nFrames = 1000;
end
% Filter's group delay
if mod(length(b), 2) ~= 1
error('Filter order is not even.');
end
groupDelay = (length(b) - 1) / 2;
% Find data discontinuities and reshape epoched data
if EEG.trials > 1 % Epoched data
EEG.data = reshape(EEG.data, [EEG.nbchan EEG.pnts * EEG.trials]);
dcArray = 1 : EEG.pnts : EEG.pnts * (EEG.trials + 1);
else % Continuous data
dcArray = [findboundaries(EEG.event) EEG.pnts + 1];
end
% Initialize progress indicator
nSteps = 20;
step = 0;
fprintf(1, 'firfilt(): |');
strLength = fprintf(1, [repmat(' ', 1, nSteps - step) '| 0%%']);
tic
for iDc = 1:(length(dcArray) - 1)
% Pad beginning of data with DC constant and get initial conditions
ziDataDur = min(groupDelay, dcArray(iDc + 1) - dcArray(iDc));
[temp, zi] = filter(b, 1, double([EEG.data(:, ones(1, groupDelay) * dcArray(iDc)) ...
EEG.data(:, dcArray(iDc):(dcArray(iDc) + ziDataDur - 1))]), [], 2);
blockArray = [(dcArray(iDc) + groupDelay):nFrames:(dcArray(iDc + 1) - 1) dcArray(iDc + 1)];
for iBlock = 1:(length(blockArray) - 1)
% Filter the data
[EEG.data(:, (blockArray(iBlock) - groupDelay):(blockArray(iBlock + 1) - groupDelay - 1)), zi] = ...
filter(b, 1, double(EEG.data(:, blockArray(iBlock):(blockArray(iBlock + 1) - 1))), zi, 2);
% Update progress indicator
[step, strLength] = mywaitbar((blockArray(iBlock + 1) - groupDelay - 1), size(EEG.data, 2), step, nSteps, strLength);
end
% Pad end of data with DC constant
temp = filter(b, 1, double(EEG.data(:, ones(1, groupDelay) * (dcArray(iDc + 1) - 1))), zi, 2);
EEG.data(:, (dcArray(iDc + 1) - ziDataDur):(dcArray(iDc + 1) - 1)) = ...
temp(:, (end - ziDataDur + 1):end);
% Update progress indicator
[step, strLength] = mywaitbar((dcArray(iDc + 1) - 1), size(EEG.data, 2), step, nSteps, strLength);
end
% Reshape epoched data
if EEG.trials > 1
EEG.data = reshape(EEG.data, [EEG.nbchan EEG.pnts EEG.trials]);
end
% Deinitialize progress indicator
fprintf(1, '\n')
end
function [step, strLength] = mywaitbar(compl, total, step, nSteps, strLength)
progStrArray = '/-\|';
tmp = floor(compl / total * nSteps);
if tmp > step
fprintf(1, [repmat('\b', 1, strLength) '%s'], repmat('=', 1, tmp - step))
step = tmp;
ete = ceil(toc / step * (nSteps - step));
strLength = fprintf(1, [repmat(' ', 1, nSteps - step) '%s %3d%%, ETE %02d:%02d'], progStrArray(mod(step - 1, 4) + 1), floor(step * 100 / nSteps), floor(ete / 60), mod(ete, 60));
end
end
|
github
|
lcnbeapp/beapp-master
|
pop_firws.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/firfilt1.6.2/pop_firws.m
| 10,634 |
utf_8
|
830347cf85c318140462a11e9257b53b
|
% pop_firws() - Filter data using windowed sinc FIR filter
%
% Usage:
% >> [EEG, com, b] = pop_firws(EEG); % pop-up window mode
% >> [EEG, com, b] = pop_firws(EEG, 'key1', value1, 'key2', ...
% value2, 'keyn', valuen);
%
% Inputs:
% EEG - EEGLAB EEG structure
% 'fcutoff' - vector or scalar of cutoff frequency/ies (-6 dB; Hz)
% 'forder' - scalar filter order. Mandatory even
%
% Optional inputs:
% 'ftype' - char array filter type. 'bandpass', 'highpass',
% 'lowpass', or 'bandstop' {default 'bandpass' or
% 'lowpass', depending on number of cutoff frequencies}
% 'wtype' - char array window type. 'rectangular', 'bartlett',
% 'hann', 'hamming', 'blackman', or 'kaiser' {default
% 'blackman'}
% 'warg' - scalar kaiser beta
% 'minphase' - scalar boolean minimum-phase converted causal filter
% {default false}
%
% Outputs:
% EEG - filtered EEGLAB EEG structure
% com - history string
% b - filter coefficients
%
% Note:
% Window based filters' transition band width is defined by filter
% order and window type/parameters. Stopband attenuation equals
% passband ripple and is defined by the window type/parameters. Refer
% to table below for typical parameters. (Windowed sinc) symmetric FIR
% filters have linear phase and can be made zero phase (non-causal) by
% shifting the data by the filters group delay (what firfilt does by
% default). Pi phase jumps noticable in the phase reponse reflect a
% negative frequency response and only occur in the stopband. pop_firws
% also allows causal filtering with minimum-phase (non-linear!) converted
% filter coefficients with similar properties. Non-linear causal
% filtering is NOT recommended for most use cases.
%
% Beta Max stopband Max passband Max passband Transition width Mainlobe width
% attenuation deviation ripple (dB) (normalized freq) (normalized rad freq)
% (dB)
% Rectangular -21 0.0891 1.552 0.9 / m* 4 * pi / m
% Bartlett -25 0.0562 0.977 8 * pi / m
% Hann -44 0.0063 0.109 3.1 / m 8 * pi / m
% Hamming -53 0.0022 0.038 3.3 / m 8 * pi / m
% Blackman -74 0.0002 0.003 5.5 / m 12 * pi / m
% Kaiser 5.653 -60 0.001 0.017 3.6 / m
% Kaiser 7.857 -80 0.0001 0.002 5.0 / m
% * m = filter order
%
% Author: Andreas Widmann, University of Leipzig, 2005
%
% See also:
% firfilt, firws, pop_firwsord, pop_kaiserbeta, plotfresp, windows
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [EEG, com, b] = pop_firws(EEG, varargin)
com = '';
if nargin < 1
help pop_firws;
return;
end
if isempty(EEG.data)
error('Cannot process empty dataset');
end
if nargin < 2
drawnow;
ftypes = {'bandpass', 'highpass', 'lowpass', 'bandstop'};
ftypesStr = {'Bandpass', 'Highpass', 'Lowpass', 'Bandstop'};
wtypes = {'rectangular', 'bartlett', 'hann', 'hamming', 'blackman', 'kaiser'};
wtypesStr = {'Rectangular (PB dev=0.089, SB att=-21dB)', 'Bartlett (PB dev=0.056, SB att=-25dB)', 'Hann (PB dev=0.006, SB att=-44dB)', 'Hamming (PB dev=0.002, SB att=-53dB)', 'Blackman (PB dev=0.0002, SB att=-74dB)', 'Kaiser'};
uigeom = {[1 0.75 0.75] [1 0.75 0.75] 1 [1 0.75 0.75] [1 0.75 0.75] [1 0.75 0.75] [1 1.5] 1 [1 0.75 0.75]};
uilist = {{'Style' 'text' 'String' 'Cutoff frequency(ies) [hp lp] (-6 dB; Hz):'} ...
{'Style' 'edit' 'String' '' 'Tag' 'fcutoffedit'} {} ...
{'Style' 'text' 'String' 'Filter type:'} ...
{'Style' 'popupmenu' 'String' ftypesStr 'Tag' 'ftypepop'} {} ...
{} ...
{'Style' 'text' 'String' 'Window type:'} ...
{'Style' 'popupmenu' 'String' wtypesStr 'Tag' 'wtypepop' 'Value' 5 'Callback' 'temp = {''off'', ''on''}; set(findobj(gcbf, ''-regexp'', ''Tag'', ''^warg''), ''Enable'', temp{double(get(gcbo, ''Value'') == 6) + 1}), set(findobj(gcbf, ''Tag'', ''wargedit''), ''String'', '''')'} {} ...
{'Style' 'text' 'String' 'Kaiser window beta:' 'Tag' 'wargtext' 'Enable' 'off'} ...
{'Style' 'edit' 'String' '' 'Tag' 'wargedit' 'Enable' 'off'} ...
{'Style' 'pushbutton' 'String' 'Estimate' 'Tag' 'wargpush' 'Enable' 'off' 'Callback' @comwarg} ...
{'Style' 'text' 'String' 'Filter order (mandatory even):'} ...
{'Style' 'edit' 'String' '' 'Tag' 'forderedit'} ...
{'Style' 'pushbutton' 'String' 'Estimate' 'Callback' {@comforder, wtypes, EEG.srate}} ...
{} {'Style' 'checkbox', 'String', 'Use minimum-phase converted causal filter (non-linear!; beta)', 'Tag' 'minphase', 'Value', 0} ...
{'Style' 'edit' 'Tag' 'devedit' 'Visible' 'off'} ...
{} {} {'Style' 'pushbutton' 'String', 'Plot filter responses' 'Callback' {@comfresp, wtypes, ftypes, EEG.srate}}};
result = inputgui(uigeom, uilist, 'pophelp(''pop_firws'')', 'Filter the data -- pop_firws()');
if isempty(result), return; end
args = {};
if ~isempty(result{1})
args = [args {'fcutoff'} {str2num(result{1})}];
end
args = [args {'ftype'} ftypes(result{2})];
args = [args {'wtype'} wtypes(result{3})];
if ~isempty(result{4})
args = [args {'warg'} {str2double(result{4})}];
end
if ~isempty(result{5})
args = [args {'forder'} {str2double(result{5})}];
end
args = [args {'minphase'} result{6}];
else
args = varargin;
end
% Convert args to structure
args = struct(args{:});
c = parseargs(args, EEG.srate);
b = firws(c{:});
% Check arguments
if ~isfield(args, 'minphase') || isempty(args.minphase)
args.minphase = 0;
end
% Filter
disp('pop_firws() - filtering the data');
if args.minphase
b = minphaserceps(b);
EEG = firfiltsplit(EEG, b, 1);
else
EEG = firfilt(EEG, b);
end
% History string
com = sprintf('%s = pop_firws(%s', inputname(1), inputname(1));
for c = fieldnames(args)'
if ischar(args.(c{:}))
com = [com sprintf(', ''%s'', ''%s''', c{:}, args.(c{:}))];
else
com = [com sprintf(', ''%s'', %s', c{:}, mat2str(args.(c{:})))];
end
end
com = [com ');'];
% Convert structure args to cell array firws parameters
function c = parseargs(args, srate)
% Filter order and cutoff frequencies
if ~isfield(args, 'fcutoff') || ~isfield(args, 'forder') || isempty(args.fcutoff) || isempty(args.forder)
error('Not enough input arguments.');
end
c = [{args.forder} {sort(args.fcutoff / (srate / 2))}]; % Sorting and normalization
% Filter type
if isfield(args, 'ftype') && ~isempty(args.ftype)
if (strcmpi(args.ftype, 'bandpass') || strcmpi(args.ftype, 'bandstop')) && length(args.fcutoff) ~= 2
error('Not enough input arguments.');
elseif (strcmpi(args.ftype, 'highpass') || strcmpi(args.ftype, 'lowpass')) && length(args.fcutoff) ~= 1
error('Too many input arguments.');
end
switch args.ftype
case 'bandstop'
c = [c {'stop'}];
case 'highpass'
c = [c {'high'}];
end
end
% Window type
if isfield(args, 'wtype') && ~isempty(args.wtype)
if strcmpi(args.wtype, 'kaiser')
if isfield(args, 'warg') && ~isempty(args.warg)
c = [c {windows(args.wtype, args.forder + 1, args.warg)'}];
else
error('Not enough input arguments.');
end
else
c = [c {windows(args.wtype, args.forder + 1)'}];
end
end
% Callback estimate Kaiser beta
function comwarg(varargin)
[warg, dev] = pop_kaiserbeta;
set(findobj(gcbf, 'Tag', 'wargedit'), 'String', warg);
set(findobj(gcbf, 'Tag', 'devedit'), 'String', dev);
% Callback estimate filter order
function comforder(obj, evt, wtypes, srate)
wtype = wtypes{get(findobj(gcbf, 'Tag', 'wtypepop'), 'Value')};
dev = get(findobj(gcbf, 'Tag', 'devedit'), 'String');
[forder, dev] = pop_firwsord(wtype, srate, [], dev);
set(findobj(gcbf, 'Tag', 'forderedit'), 'String', forder);
set(findobj(gcbf, 'Tag', 'devedit'), 'String', dev);
% Callback plot filter responses
function comfresp(obj, evt, wtypes, ftypes, srate)
args.fcutoff = str2num(get(findobj(gcbf, 'Tag', 'fcutoffedit'), 'String'));
args.ftype = ftypes{get(findobj(gcbf, 'Tag', 'ftypepop'), 'Value')};
args.wtype = wtypes{get(findobj(gcbf, 'Tag', 'wtypepop'), 'Value')};
args.warg = str2num(get(findobj(gcbf, 'Tag', 'wargedit'), 'String'));
args.forder = str2double(get(findobj(gcbf, 'Tag', 'forderedit'), 'String'));
args.minphase = get(findobj(gcbf, 'Tag', 'minphase'), 'Value');
causal = args.minphase;
c = parseargs(args, srate);
b = firws(c{:});
if args.minphase
b = minphaserceps(b);
end
H = findobj('Tag', 'filter responses', 'type', 'figure');
if ~isempty(H)
figure(H);
else
H = figure;
set(H, 'color', [.93 .96 1], 'Tag', 'filter responses');
end
plotfresp(b, 1, [], srate, causal);
|
github
|
lcnbeapp/beapp-master
|
plotfresp.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/firfilt1.6.2/plotfresp.m
| 3,898 |
utf_8
|
71a74a912328b37353e1523b662840fa
|
% plotfresp() - Plot FIR filter's impulse, step, frequency, magnitude,
% and phase response
%
% Usage:
% >> plotfresp(b, a, n, fs);
%
% Inputs:
% b - vector filter coefficients
%
% Optional inputs:
% a - currently unused, reserved for future compatibility with IIR
% filters {default 1}
% n - scalar number of points
% fs - scalar sampling frequency
%
% Author: Andreas Widmann, University of Leipzig, 2005
%
% See also:
% pop_firws, pop_firpm, pop_firma
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function plotfresp(b, a, nfft, fs, causal)
if nargin < 5 || isempty(causal)
causal = 0;
end
if nargin < 4 || isempty(fs)
fs = 1;
end
if nargin < 3 || isempty(nfft)
nfft = 2^fix(log2(length(b)));
if nfft < 512
nfft = 512;
end
end
if nargin < 1
error('Not enough input arguments.');
end
n = length(b);
f = (0:1 / nfft:1) * fs / 2;
% Impulse resonse
if causal, xval = 0:n-1; else xval = -(n - 1) / 2:(n - 1) / 2; end
ax(1) = subplot(2, 3, 1);
stem(xval, b, 'fill')
title('Impulse response');
ylabel('Amplitude');
% Step response
ax(4) = subplot(2, 3, 4);
stem(xval, cumsum(b), 'fill');
title('Step response');
foo = ylim;
if foo(2) < -foo(1) + 1;
foo(2) = -foo(1) + 1;
ylim(foo);
end
xMin = []; xMax = [];
children = get(ax(4), 'Children');
for child =1:length(children)
xData = get(children(child), 'XData');
xMin = min([xMin min(xData)]);
xMax = max([xMax max(xData)]);
end
set(ax([1 4]), 'xlim', [xMin xMax]);
ylabel('Amplitude');
% Frequency response
ax(2) = subplot(2, 3, 2);
m = fix((length(b) - 1) / 2); % Filter order
z = fft(b, nfft * 2);
z = z(1:fix(length(z) / 2) + 1);
% foo = real(abs(z) .* exp(-i * (angle(z) + [0:1 / nfft:1] * m * pi))); % needs further testing
plot(f, abs(z));
title('Frequency response');
ylabel('Amplitude');
% Magnitude response
ax(5) = subplot(2, 3, 5);
db = abs(z);
db(db < eps^(2 / 3)) = eps^(2 / 3); % Log of zero warning
plot(f, 20 * log10(db));
title('Magnitude response');
foo = ylim;
if foo(1) < 20 * log10(eps^(2 / 3))
foo(1) = 20 * log10(eps^(2 / 3));
end
ylabel('Magnitude (dB)');
ylim(foo);
% Phase response
ax(3) = subplot(2, 3, 3);
z(abs(z) < eps^(2 / 3)) = NaN; % Phase is undefined for magnitude zero
phi = angle(z);
if causal
phi = unwrap(phi);
else
delay = -mod((0:1 / nfft:1) * m * pi + pi, 2 * pi) + pi; % Zero-phase
phi = phi - delay;
phi = phi + 2 * pi * (phi <= -pi + eps ^ (1/3)); % Unwrap
end
plot(f, phi);
title('Phase response');
ylabel('Phase (rad)');
% ylim([-pi / 2 1.5 * pi]);
set(ax(1:5), 'ygrid', 'on', 'xgrid', 'on', 'box', 'on');
titles = get(ax(1:5), 'title');
set([titles{:}], 'fontweight', 'bold');
xlabels = get(ax(1:5), 'xlabel');
if fs == 1
set([xlabels{[2 3 5]}], 'String', 'Normalized frequency (2 pi rad / sample)');
else
set([xlabels{[2 3 5]}], 'String', 'Frequency (Hz)');
end
set([xlabels{[1 4]}], 'String', 'Sample');
set(ax([2 3 5]), 'xlim', [0 fs / 2]);
set(ax(1:5), 'colororder', circshift(get(ax(1), 'colororder'), -1));
set(ax(1:5), 'nextplot', 'add');
|
github
|
lcnbeapp/beapp-master
|
pop_firwsord.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/firfilt1.6.2/pop_firwsord.m
| 5,354 |
utf_8
|
5150d668b377feb0d9e95b49486978ca
|
% pop_firwsord() - Estimate windowed sinc filter order depending on
% window type and requested transition band width
%
% Usage:
% >> [m, dev] = pop_firwsord; % pop-up window mode
% >> m = pop_firwsord(wtype, fs, df);
% >> m = pop_firwsord('kaiser', fs, df, dev);
%
% Inputs:
% wtype - char array window type. 'rectangular', 'bartlett', 'hann',
% 'hamming', {'blackman'}, or 'kaiser'
% fs - scalar sampling frequency {default 2}
% df - scalar requested transition band width
% dev - scalar maximum passband deviation/ripple (Kaiser window
% only)
%
% Output:
% m - scalar estimated filter order
% dev - scalar maximum passband deviation/ripple
%
% References:
% [1] Smith, S. W. (1999). The scientist and engineer's guide to
% digital signal processing (2nd ed.). San Diego, CA: California
% Technical Publishing.
% [2] Proakis, J. G., & Manolakis, D. G. (1996). Digital Signal
% Processing: Principles, Algorithms, and Applications (3rd ed.).
% Englewood Cliffs, NJ: Prentice-Hall
% [3] Ifeachor E. C., & Jervis B. W. (1993). Digital Signal
% Processing: A Practical Approach. Wokingham, UK: Addison-Wesley
%
% Author: Andreas Widmann, University of Leipzig, 2005
%
% See also:
% pop_firws, firws, pop_kaiserbeta, windows
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [m, dev] = pop_firwsord(wtype, fs, df, dev)
m = [];
wtypes = {'rectangular' 'bartlett' 'hann' 'hamming' 'blackman' 'kaiser'};
% Window type
if nargin < 1 || isempty(wtype)
wtype = 5;
elseif ~ischar(wtype) || isempty(strmatch(wtype, wtypes))
error('Unknown window type');
else
wtype = strmatch(wtype, wtypes);
end
% Sampling frequency
if nargin < 2 || isempty(fs)
fs = 2;
end
% Transition band width
if nargin < 3
df = [];
end
% Maximum passband deviation/ripple
if nargin < 4 || isempty(dev)
devs = {0.089 0.056 0.0063 0.0022 0.0002 []};
dev = devs{wtype};
end
% GUI
if nargin < 3 || isempty(df) || (wtype == 6 && isempty(dev))
drawnow;
uigeom = {[1 1] [1 1] [1 1] [1 1]};
uilist = {{'style' 'text' 'string' 'Sampling frequency:'} ...
{'style' 'edit' 'string' fs} ...
{'style' 'text' 'string' 'Window type:'} ...
{'style' 'popupmenu' 'string' wtypes 'tag' 'wtypepop' 'value' wtype 'callback' {@comwtype, dev}} ...
{'style' 'text' 'string' 'Transition bandwidth (Hz):'} ...
{'style' 'edit' 'string' df} ...
{'style' 'text' 'string' 'Max passband deviation/ripple:' 'tag' 'devtext'} ...
{'style' 'edit' 'tag' 'devedit' 'createfcn' {@comwtype, dev}}};
result = inputgui(uigeom, uilist, 'pophelp(''pop_firwsord'')', 'Estimate filter order -- pop_firwsord()');
if length(result) == 0, return, end
if ~isempty(result{1})
fs = str2num(result{1});
else
fs = 2;
end
wtype = result{2};
if ~isempty(result{3})
df = str2num(result{3});
else
error('Not enough input arguments.');
end
if ~isempty(result{4})
dev = str2num(result{4});
elseif wtype == 6
error('Not enough input arguments.');
end
end
if length(fs) > 1 || ~isnumeric(fs) || ~isreal(fs) || fs <= 0
error('Sampling frequency must be a positive real scalar.');
end
if length(df) > 1 || ~isnumeric(df) || ~isreal(df) || fs <= 0
error('Transition bandwidth must be a positive real scalar.');
end
df = df / fs; % Normalize transition band width
if wtype == 6
if length(dev) > 1 || ~isnumeric(dev) || ~isreal(dev) || dev <= 0
error('Passband deviation/ripple must be a positive real scalar.');
end
devdb = -20 * log10(dev);
m = 1 + (devdb - 8) / (2.285 * 2 * pi * df);
else
dfs = [0.9 2.9 3.1 3.3 5.5];
m = dfs(wtype) / df;
end
m = ceil(m / 2) * 2; % Make filter order even (type 1)
function comwtype(obj, evt, dev)
enable = {'off' 'off' 'off' 'off' 'off' 'on'};
devs = {0.089 0.056 0.0063 0.0022 0.0002 dev};
wtype = get(findobj(gcbf, 'tag', 'wtypepop'), 'value');
set(findobj(gcbf, 'tag', 'devtext'), 'enable', enable{wtype});
set(findobj(gcbf, 'tag', 'devedit'), 'enable', enable{wtype}, 'string', devs{wtype});
|
github
|
lcnbeapp/beapp-master
|
pop_kaiserbeta.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/firfilt1.6.2/pop_kaiserbeta.m
| 2,315 |
utf_8
|
9a8a6636653865493068a0e901deeda6
|
% pop_kaiserbeta() - Estimate Kaiser window beta
%
% Usage:
% >> [beta, dev] = pop_kaiserbeta; % pop-up window mode
% >> beta = pop_kaiserbeta(dev);
%
% Inputs:
% dev - scalar maximum passband deviation/ripple
%
% Output:
% beta - scalar Kaiser window beta
% dev - scalar maximum passband deviation/ripple
%
% References:
% [1] Proakis, J. G., & Manolakis, D. G. (1996). Digital Signal
% Processing: Principles, Algorithms, and Applications (3rd ed.).
% Englewood Cliffs, NJ: Prentice-Hall
%
% Author: Andreas Widmann, University of Leipzig, 2005
%
% See also:
% pop_firws, firws, pop_firwsord, windows
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [beta, dev] = pop_kaiserbeta(dev)
beta = [];
if nargin < 1 || isempty(dev)
drawnow;
uigeom = {[1 1]};
uilist = {{'style' 'text' 'string' 'Max passband deviation/ripple:'} ...
{'style' 'edit' 'string' ''}};
result = inputgui(uigeom, uilist, 'pophelp(''pop_kaiserbeta'')', 'Estimate Kaiser window beta -- pop_kaiserbeta()');
if length(result) == 0, return, end
if ~isempty(result{1})
dev = str2num(result{1});
else
error('Not enough input arguments.');
end
end
devdb = -20 * log10(dev);
if devdb > 50
beta = 0.1102 * (devdb - 8.7);
elseif devdb >= 21
beta = 0.5842 * (devdb - 21)^0.4 + 0.07886 * (devdb - 21);
else
beta = 0;
end
end
|
github
|
lcnbeapp/beapp-master
|
findboundaries.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/firfilt1.6.2/findboundaries.m
| 1,867 |
utf_8
|
b4b28dadb5f28c802c41266f791d942c
|
% findboundaries() - Find boundaries (data discontinuities) in event
% structure of continuous EEG dataset
%
% Usage:
% >> boundaries = findboundaries(EEG.event);
%
% Inputs:
% EEG.event - EEGLAB EEG event structure
%
% Outputs:
% boundaries - scalar or vector of boundary event latencies
%
% Author: Andreas Widmann, University of Leipzig, 2005
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function boundaries = findboundaries(event)
if isfield(event, 'type') & isfield(event, 'latency') & cellfun('isclass', {event.type}, 'char')
% Boundary event indices
boundaries = strmatch('boundary', {event.type});
% Boundary event latencies
boundaries = [event(boundaries).latency];
% Shift boundary events to epoch onset
boundaries = fix(boundaries + 0.5);
% Remove duplicate boundary events
boundaries = unique(boundaries);
% Epoch onset at first sample?
if isempty(boundaries) || boundaries(1) ~= 1
boundaries = [1 boundaries];
end
else
boundaries = 1;
end
|
github
|
lcnbeapp/beapp-master
|
publishPrepReport.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/PrepPipeline/publishPrepReport.m
| 4,425 |
utf_8
|
9f98d6c9dcde40a27e2900462a4d1e07
|
function [] = publishPrepReport(EEG, summaryFilePath, sessionFilePath, ...
consoleFID, publishOn)
% Create a published report from the PREP pipeline.
%
% Note: In addition to creating a report for the EEG, it appends a
% summary of the file to an existing summary file. This enables the
% function to be called successfully on a collection and creates a summary
% of the collection.
%
% Parameters:
% EEG EEGLAB structure with the EEG.etc.noiseDetection
% structure created by the PREP pipeline
% summaryFilePath File name including path of the summary file
% sessionFilePath File name including path of the individual report
% consoleID Open file descriptor for echoing output (usually 1
% indication the Command Window).
% publishOn If true (default), report is published and
% figures are closed. If false, output and figures
% are displayed in the normal way. The figures
% are not closed. This option is useful when
% you want to manipulate the figures in some way.
%
% Output:
% If the publish option is on, this function will create a report
% for the EEG and will append a summary to a specified summary file.
% If the publish option is off, the function will just run the
% prepReport script.
%
% Author: Kay Robbins, UTSA, March 2015.
%
%
%% Handle the parameters
if (nargin < 5)
error('publishPrepReport:NotEnoughParameters', ...
['Usage: publishPrepReport(EEG, summaryFilePath, ' ...
'sessionFilePath, consoleId, publishOn)']);
elseif nargin < 5 || isempty(publishOn)
publishOn = true;
end
%% Setup up files and assign variables needed for publish in base workspace
% Session folder is relative to the summary report location
[summaryFolder, summaryName, summaryExt] = fileparts(summaryFilePath);
[sessionFolder, sessionName, sessionExt] = fileparts(sessionFilePath);
summaryReportLocation = [summaryFolder filesep summaryName summaryExt];
sessionReportLocation = [sessionFolder filesep sessionName sessionExt];
tempReportLocation = [sessionFolder filesep 'prepReport.pdf'];
relativeReportLocation = getRelativePath(summaryFolder, sessionFolder, ...
sessionName, sessionExt);
fprintf('Summary: %s session: %s\n', summaryFolder, sessionFolder);
fprintf('Relative report location %s \n', relativeReportLocation);
summaryFile = fopen(summaryReportLocation, 'a+', 'n', 'UTF-8');
if summaryFile == -1;
error('publishPrepReport:BadSummaryFile', ...
'Failed to open summary file %s', summaryReportLocation);
end
assignin('base', 'EEGReporting', EEG);
assignin('base', 'summaryFile', summaryFile);
assignin('base', 'consoleFID', consoleFID);
assignin('base', 'relativeReportLocation', relativeReportLocation);
script_name = 'prepReport.m';
if publishOn
publish_options.outputDir = sessionFolder;
publish_options.maxWidth = 800;
publish_options.format = 'pdf';
publish_options.showCode = false;
publish(script_name, publish_options);
else
prepReport;
end
writeSummaryItem(summaryFile, '', 'last');
fclose('all');
if publishOn
fprintf('temp report location %s\n', tempReportLocation);
fprintf('session report location %s\n', sessionReportLocation);
movefile(tempReportLocation, sessionReportLocation);
close all
end
end
function relativePath = getRelativePath(summaryFolder, sessionFolder, ...
sessionName, sessionExt)
relativePath = relativize(getCanonicalPath(summaryFolder), ...
getCanonicalPath(sessionFolder));
relativePath = getCanonicalPath(relativePath);
while(true)
relativePathNew = strrep(relativePath, '\\', '\');
if length(relativePathNew) == length(relativePath)
break;
end
relativePath = relativePathNew;
end
relativePath = strrep(relativePath, '\', '/');
relativePath = [relativePath sessionName sessionExt];
end
function canonicalPath = getCanonicalPath(canonicalPath)
if canonicalPath(end) ~= filesep
canonicalPath = [canonicalPath, filesep];
end
end
|
github
|
lcnbeapp/beapp-master
|
pop_prepPipeline.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/PrepPipeline/pop_prepPipeline.m
| 3,412 |
utf_8
|
e1766caf90a400f64abf54ba1dcad5ce
|
% pop_prepPipeline() - runs the early stage pipeline to reference and to
% detect bad channels
%
% Usage:
% >> [OUTEEG, com] = pop_prepPipeline(INEEG, params);
%
% Inputs:
% INEEG - input EEG dataset
% params - structure with parameters to override defaults
%
% Outputs:
% OUTEEG - output dataset
%
% See also:
% prepPipeline, prepPipelineReport, EEGLAB
% Copyright (C) 2015 Kay Robbins with contributions from Nima
% Bigdely-Shamlo, Christian Kothe, Tim Mullen, and Cassidy Matousek
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [EEG, com] = pop_prepPipeline(EEG, params)
com = ''; % Return something if user presses the cancel button
okay = true;
if nargin < 1 %% display help if not enough arguments
help pop_prepPipeline;
return;
elseif nargin < 2
params = struct();
end
%% Add path to prepPipeline subdirectories if not in the list
tmp = which('getPipelineDefaults');
if isempty(tmp)
myPath = fileparts(which('prepPipeline'));
addpath(genpath(myPath));
end;
%% pop up window
if nargin < 2
userData = getUserData();
[params, okay] = MasterGUI([],[],userData, EEG);
end
userData = getUserData();
com = sprintf('pop_prepPipeline(%s, %s);', inputname(1), ...
struct2str(params));
reportMode = userData.report.reportMode.value;
consoleFID = userData.report.consoleFID.value;
publishOn = userData.report.publishOn.value;
summaryFilePath = userData.report.summaryFilePath.value;
sessionFilePath = userData.report.sessionFilePath.value;
if okay
if strcmpi(reportMode, 'normal') || strcmpi(reportMode, 'skipReport')
EEG = prepPipeline(EEG, params);
end
if (strcmpi(reportMode, 'normal') || ...
strcmpi(reportMode, 'reportOnly')) && publishOn
publishPrepReport(EEG, summaryFilePath, sessionFilePath, ...
consoleFID, publishOn);
end
if strcmpi(reportMode, 'normal') || strcmpi(reportMode, 'skipReport')
EEG = prepPostProcess(EEG, params);
end
end
function userData = getUserData()
%% Gets the userData defaults and merges it with the parameters
userData = struct('boundary', [], 'detrend', [], ...
'lineNoise', [], 'reference', [], ...
'report', [], 'postProcess', []);
stepNames = fieldnames(userData);
for k = 1:length(stepNames)
defaults = getPipelineDefaults(EEG, stepNames{k});
[theseValues, errors] = checkStructureDefaults(params, ...
defaults);
if ~isempty(errors)
error('pop_prepPipeline:BadParameters', ['|' ...
sprintf('%s|', errors{:})]);
end
userData.(stepNames{k}) = theseValues;
end
end % getUserData
end % pop_prepPipeline
|
github
|
lcnbeapp/beapp-master
|
eegplugin_prepPipeline.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/PrepPipeline/eegplugin_prepPipeline.m
| 1,689 |
utf_8
|
06dc5f28bddeffcf9c683c28e7f4c4ff
|
% eegplugin_prepPipeline() - a wrapper to the prepPipeline, which does early stage
%
% Usage:
% >> eegplugin_prepPipeline(fig, try_strings, catch_strings);
%
% see also: prepPipeline
% Author: Kay Robbins, with contributions from Nima Bigdely-Shamlo, Tim Mullen, Christian Kothe, and Cassidy Matousek.
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%function eegplugin_clean_rawdata(fig,try_strings,catch_strings)
% create menu
% toolsmenu = findobj(fig, 'tag', 'tools');
% uimenu( toolsmenu, 'label', 'Clean continuous data using ASR', 'separator','on',...
% 'callback', 'EEG = pop_clean_rawdata(EEG); [ALLEEG EEG CURRENTSET] = eeg_store(ALLEEG, EEG); eeglab redraw');
% eegplugin_prepPipeline() - the PREP pipeline plugin
function eegplugin_prepPipeline(fig, trystrs, catchstrs)
% create menu
comprep = [trystrs.no_check '[EEG LASTCOM] = pop_prepPipeline(EEG);' catchstrs.new_and_hist];
menu = findobj(fig, 'tag', 'tools');
uimenu( menu, 'Label', 'Run PREP pipeline', 'callback', comprep, ...
'separator', 'on');
|
github
|
lcnbeapp/beapp-master
|
changeType.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/PrepPipeline/interface/changeType.m
| 1,591 |
utf_8
|
bad5e083eb85339d29a5c24752076bd8
|
%% *****************************changeType*********************************
%Purpose:
% This function changes the data type of the parameters returned by
% the inputgui function. It allows the parameters to be used as the
% correct default type.
%Parameters:
% I params Structure of parameters to change data type.
% I signal Structure of data in the EEGlab format.
% I defaults Structure of the default parameters with
% attributes.
% O outParams Structure of parameters with correct type.
%Notes:
%
%**************************************************************************
function [outParams, errors, errorNames] = changeType(params, defaults)
%tests each string to make sure it is correct numeric type
%splits the strings at whitespace and converts each cell to an int
fNames = fieldnames(defaults);
errors = cell(0);
errorNames = cell(0);
outParams = params;
for k = 1:length(fNames)
if strcmpi(defaults.(fNames{k}).classes, 'numeric') == 1
outParams.(fNames{k}) = str2num(params.(fNames{k}));
if isempty(outParams.(fNames{k}))
errors{end + 1} =[fNames{k} ...
': contains at least one character of the incorrect type']; %#ok<AGROW>
errorNames{end + 1} = fNames{k}; %#ok<AGROW>
end
elseif strcmpi(defaults.(fNames{k}).classes, 'logical') == 1
outParams.(fNames{k}) = logical(params.(fNames{k}));
end
end
end
|
github
|
lcnbeapp/beapp-master
|
displayErrors.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/PrepPipeline/interface/displayErrors.m
| 1,092 |
utf_8
|
4a6169558283702bcb7068f0320f3497
|
%% *****************************displayErrors******************************
%Purpose:
% This returns the errors (if any) that are found when a user enters
% data that does not correspond with the type found by the default
% function. It displays the errors in a pop-up GUI.
%Parameters:
% I errors Cell array of strings; errors found by the
% checkDefaults function
% O loop Integer that either continues the while loop found
% above or exits the loop
%Notes:
%
%Return Value:
% 0 No errors
% 1 Displays errors and continues loop
%**************************************************************************
function displayErrors(errors)
geometry={};
geomvert=[];
uilist={};
for k=1:length(errors)
geometry={geometry{:},1};
uilist={uilist{:},{'style', 'text', 'string', errors(k)}};
end
result=inputgui('geometry', geometry, 'geomvert', geomvert, 'uilist', uilist, 'title', 'Reference Errors', 'helpcom', 'pophelp(''pop_eegfiltnew'')');
end
|
github
|
lcnbeapp/beapp-master
|
loadDefaults.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/PrepPipeline/interface/loadDefaults.m
| 1,266 |
utf_8
|
9284af1e1bf7539c9327797a6483466e
|
%% *****************************loadDefaults*******************************
%Purpose:
% Loads the default values from the signal to put into the GUI.
%Parameters:
% I signal Structure from the EEG data set signal.
% I tags Cell array listing the names of the parameters.
% O defaultParams Return structure of defaults to place into GUI.
%Notes:
%
% *************************************************************************
function [defaultParams,defaultValues]=loadDefaults(signal,type)
defaultValues=struct;
defaultParams=getPipelineDefaults(signal,type);
fNames=fieldnames(defaultParams);
for k=1:length(fNames)
if(strcmp(defaultParams.(fNames{k}).classes,'struct')==0)
changeStr=num2str(defaultParams.(fNames{k}).default);
defaultParams.(fNames{k}).default=changeStr;
sFind=strfind(defaultParams.(fNames{k}).default,'[');
defaultParams.(fNames{k}).default(sFind)=[];
sFind=strfind(defaultParams.(fNames{k}).default,']');
defaultParams.(fNames{k}).default(sFind)=[];
end
end
for k=1:length(fNames)
setVal=defaultParams.(fNames{k}).default;
defaultValues.(fNames{k})=setVal;
end
end
|
github
|
lcnbeapp/beapp-master
|
findNoisyChannels.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/PrepPipeline/utilities/findNoisyChannels.m
| 18,209 |
utf_8
|
959269765651c0faf04e2fe5e5970cc0
|
function noisyOut = findNoisyChannels(signal, noisyIn)
% Identify bad channels in EEG using a two-stage approach
%
% reference = findNoisyChannels(signal)
% reference = findNoisyChannels(signal, reference)
%
% First remove bad channels by amplitude, noise level, and correlation
% Apply ransac after these channels have been removed.
%
% Input parameters:
% signal - structure with srate, chanlocs, chaninfo, and data fields
% noisyIn - structure with input parameters
%
% Notes: the signal is assumed to be high-passed. Removing line noise
% is a good idea too.
%
% noisyIn: (fields are filled in on input if not present and propagated to output)
% name - name of the input file
% srate - sample rate in HZ
% samples - number of samples in the data
% evaluationChannels - a vector of channels to use
% channelLocations - a structure of EEG channel locations
% chaninfo - standard EEGLAB chaninfo (nose direction is relevant)
% chanlocs - standard EEGLAB chanlocs structure
% robustDeviationThreshold - z score cutoff for robust channel deviation
% highFrequencyNoiseThreshold - z score cutoff for SNR (signal above 50 Hz)
% correlationWindowSeconds - correlation window size in seconds (default = 1 sec)
% correlationThreshold - correlation below which window is bad (default = 0.4)
% badTimeThreshold - cutoff fraction of bad corr windows (default = 0.01)
% ransacSampleSize - samples for computing ransac (default = 50)
% ransacChannelFraction - fraction of channels for robust reconstruction (default = 0.25)
% ransacCorrelationThreshold - cutoff correlation for abnormal wrt neighbors(default = 0.75)
% ransacUnbrokenTime - cutoff fraction of time channel can have poor ransac predictability (default = 0.4)
% ransacWindowSeconds - correlation window for ransac (default = 5 sec)
%
% Output parameters (c channels, w windows):
% ransacPerformed - true if there were enough good channels to do ransac
% noisyChannels - list of identified bad channel numbers
% badChannelsFromCorrelation - list of bad channels identified by correlation
% badChannelsFromDeviation - list of bad channels identified by amplitude
% badChannelsFromHFNoise - list of bad channels identified by SNR
% badChannelsFromRansac - list of channels identified by ransac
% fractionBadCorrelationWindows - c x 1 vector with fraction of bad correlation windows
% robustChannelDeviation - c x 1 vector with robust measure of average channel deviation
% zscoreHFNoise - c x 1 vector with measure of channel noise level
% maximumCorrelations - w x c array with max window correlation
% ransacCorrelations = c x wr array with ransac correlations
%
% This function uses 4 methods for detecting bad channels after removing
% from consideration channels that have NaN data or channels that are
% identically constant.
%
% Method 1: too low or high amplitude. If the z score of robust
% channel deviation falls below robustDeviationThreshold, the channel is
% considered to be bad.
% Method 2: too low an SNR. If the z score of estimate of signal above
% 50 Hz to that below 50 Hz above highFrequencyNoiseThreshold, the channel
% is considered to be bad.
%
% Method 3: low correlation with other channels. Here correlationWindowSize is the window
% size over which the correlation is computed. If the maximum
% correlation of the channel to the other channels falls below
% correlationThreshold, the channel is considered bad in that window.
% If the fraction of bad correlation windows for a channel
% exceeds badTimeThreshold, the channel is marked as bad.
%
% After the channels from methods 2 and 3 are removed, method 4 is
% computed on the remaining signals
%
% Method 4: each channel is predicted using ransac interpolation based
% on a ransac fraction of the channels. If the correlation of
% the prediction to the actual behavior is too low for too
% long, the channel is marked as bad.
%
% Assumptions:
% - The signal is a structure of continuous data with data, srate, chanlocs,
% and chaninfo fields.
% - The signal.data has been high pass filtered.
% - No segments of the EEG data have been removed
% Methods 1 and 4 are adapted from code by Christian Kothe and Methods 2
% and 3 are adapted from code by Nima Bigdely-Shamlo
%
%% Check the incoming parameters
if nargin < 1
error('findNoisyChannels:NotEnoughArguments', 'requires at least 1 argument');
elseif isstruct(signal) && ~isfield(signal, 'data')
error('findNoisyChannels:NoDataField', 'requires a structure data field');
elseif size(signal.data, 3) ~= 1
error('findNoisyChannels:DataNotContinuous', 'data must be a 2D array');
elseif nargin < 2 || ~exist('noisyIn', 'var') || isempty(noisyIn)
noisyIn = struct();
end
%% Set the defaults and initialize as needed
noisyOut = getNoisyStructure();
defaults = getPipelineDefaults(signal, 'reference');
[noisyOut, errors] = checkDefaults(noisyIn, noisyOut, defaults);
if ~isempty(errors)
error('findNoisyChannels:BadParameters', ['|' sprintf('%s|', errors{:})]);
end
%% Fix the channel locations
channelLocations = noisyOut.channelLocations;
evaluationChannels = sort(noisyOut.evaluationChannels); % Make sure channels are sorted
evaluationChannels = evaluationChannels(:)'; % Make sure row vector
noisyOut.evaluationChannels = evaluationChannels;
originalChannels = 1:size(signal.data, 1);
%% Extract the data required
data = signal.data;
originalNumberChannels = size(data, 1); % Save the original channels
data = double(data(evaluationChannels, :))'; % Remove the unneeded channels
signalSize = size(data, 1);
correlationFrames = noisyOut.correlationWindowSeconds * signal.srate;
correlationWindow = 0:(correlationFrames - 1);
correlationOffsets = 1:correlationFrames:(signalSize-correlationFrames);
WCorrelation = length(correlationOffsets);
ransacFrames = noisyOut.ransacWindowSeconds*noisyOut.srate;
ransacWindow = 0:(ransacFrames - 1);
ransacOffsets = 1:ransacFrames:(signalSize-ransacFrames);
WRansac = length(ransacOffsets);
noisyOut.zscoreHFNoise = zeros(originalNumberChannels, 1);
noisyOut.noiseLevels = zeros(originalNumberChannels, WCorrelation);
noisyOut.maximumCorrelations = ones(originalNumberChannels, WCorrelation);
noisyOut.dropOuts = zeros(originalNumberChannels, WCorrelation);
noisyOut.correlationOffsets = correlationOffsets;
noisyOut.channelDeviations = zeros(originalNumberChannels, WCorrelation);
noisyOut.robustChannelDeviation = zeros(originalNumberChannels, 1);
noisyOut.ransacCorrelations = ones(originalNumberChannels, WRansac);
noisyOut.ransacOffsets = ransacOffsets;
%% Detect constant or NaN channels and remove from consideration
nanChannelMask = sum(isnan(data), 1) > 0;
noSignalChannelMask = mad(data, 1, 1) < 10e-10 | std(data, 1, 1) < 10e-10;
noisyOut.noisyChannels.badChannelsFromNaNs = evaluationChannels(nanChannelMask);
noisyOut.noisyChannels.badChannelsFromNoData = evaluationChannels(noSignalChannelMask);
evaluationChannels = setdiff(evaluationChannels, ...
union(noisyOut.noisyChannels.badChannelsFromNaNs, ...
noisyOut.noisyChannels.badChannelsFromNoData));
data = signal.data;
data = double(data(evaluationChannels, :))';
[signalSize, numberChannels] = size(data);
%% Method 1: Unusually high or low amplitude (using robust std)
channelDeviation = 0.7413 *iqr(data); % Robust estimate of SD
channelDeviationSD = 0.7413 * iqr(channelDeviation);
channelDeviationMedian = nanmedian(channelDeviation);
noisyOut.robustChannelDeviation(evaluationChannels) = ...
(channelDeviation - channelDeviationMedian) / channelDeviationSD;
% Find channels with unusually high deviation
badChannelsFromDeviation = ...
abs(noisyOut.robustChannelDeviation) > ...
noisyOut.robustDeviationThreshold | ...
isnan(noisyOut.robustChannelDeviation);
badChannelsFromDeviation = originalChannels(badChannelsFromDeviation);
noisyOut.noisyChannels.badChannelsFromDeviation = badChannelsFromDeviation(:)';
noisyOut.channelDeviationMedian = channelDeviationMedian;
noisyOut.channelDeviationSD = channelDeviationSD;
%% Method 2: Compute the SNR (based on Christian Kothe's clean_channels)
% Note: RANSAC uses the filtered values X of the data
if noisyOut.srate > 100
% Remove signal content above 50Hz and below 1 Hz
B = design_fir(100,[2*[0 45 50]/noisyOut.srate 1],[1 1 0 0]);
X = zeros(signalSize, numberChannels);
parfor k = 1:numberChannels % Could be changed to parfor
X(:,k) = filtfilt_fast(B, 1, data(:, k)); end
% Determine z-scored level of EM noise-to-signal ratio for each channel
noisiness = mad(data- X, 1)./mad(X, 1);
noisinessMedian = nanmedian(noisiness);
noisinessSD = mad(noisiness, 1)*1.4826;
zscoreHFNoiseTemp = (noisiness - noisinessMedian) ./ noisinessSD;
noiseMask = (zscoreHFNoiseTemp > noisyOut.highFrequencyNoiseThreshold) | ...
isnan(zscoreHFNoiseTemp);
% Remap channels to original numbering
badChannelsFromHFNoise = evaluationChannels(noiseMask);
noisyOut.noisyChannels.badChannelsFromHFNoise = badChannelsFromHFNoise(:)';
else
X = data;
noisinessMedian = 0;
noisinessSD = 1;
zscoreHFNoiseTemp = zeros(numberChannels, 1);
noisyOut.noisyChannels.badChannelsFromHFNoise = [];
end
% Remap the channels to original numbering for the zscoreHFNoise
noisyOut.zscoreHFNoise(evaluationChannels) = zscoreHFNoiseTemp;
noisyOut.noisinessMedian = noisinessMedian;
noisyOut.noisinessSD = noisinessSD;
%% Method 3: Global correlation criteria (from Nima Bigdely-Shamlo)
channelCorrelations = ones(WCorrelation, numberChannels);
noiseLevels = zeros(WCorrelation, numberChannels);
channelDeviations = zeros(WCorrelation, numberChannels);
n = length(correlationWindow);
xWin = reshape(X(1:n*WCorrelation, :)', numberChannels, n, WCorrelation);
dataWin = reshape(data(1:n*WCorrelation, :)', numberChannels, n, WCorrelation);
parfor k = 1:WCorrelation
eegPortion = squeeze(xWin(:, :, k))';
dataPortion = squeeze(dataWin(:, :, k))';
windowCorrelation = corrcoef(eegPortion);
abs_corr = abs(windowCorrelation - diag(diag(windowCorrelation)));
channelCorrelations(k, :) = quantile(abs_corr, 0.98);
noiseLevels(k, :) = mad(dataPortion - eegPortion, 1)./mad(eegPortion, 1);
channelDeviations(k, :) = 0.7413 *iqr(dataPortion);
end;
dropOuts = isnan(channelCorrelations) | isnan(noiseLevels);
channelCorrelations(dropOuts) = 0.0;
noiseLevels(dropOuts) = 0.0;
clear xWin;
clear dataWin;
noisyOut.maximumCorrelations(evaluationChannels, :) = channelCorrelations';
noisyOut.noiseLevels(evaluationChannels, :) = noiseLevels';
noisyOut.channelDeviations(evaluationChannels, :) = channelDeviations';
noisyOut.dropOuts(evaluationChannels, :) = dropOuts';
thresholdedCorrelations = ...
noisyOut.maximumCorrelations < noisyOut.correlationThreshold;
fractionBadCorrelationWindows = mean(thresholdedCorrelations, 2);
fractionBadDropOutWindows = mean(noisyOut.dropOuts, 2);
% Remap channels to their original numbers
badChannelsFromCorrelation = find(fractionBadCorrelationWindows > noisyOut.badTimeThreshold);
noisyOut.noisyChannels.badChannelsFromCorrelation = badChannelsFromCorrelation(:)';
badChannelsFromDropOuts = find(fractionBadDropOutWindows > noisyOut.badTimeThreshold);
noisyOut.noisyChannels.badChannelsFromDropOuts = badChannelsFromDropOuts(:)';
noisyOut.medianMaxCorrelation = median(noisyOut.maximumCorrelations, 2);
%% Bad so far by amplitude and correlation (take these out before doing ransac)
noisyChannels = union(noisyOut.noisyChannels.badChannelsFromDeviation, ...
union(noisyOut.noisyChannels.badChannelsFromCorrelation, ...
noisyOut.noisyChannels.badChannelsFromDropOuts));
%% Method 4: Ransac corelation (may not be performed)
% Setup for ransac (if a 2-stage algorithm, remove other bad channels first)
if noisyOut.ransacOff
noisyOut.ransacBadWindowFraction = 0;
noisyOut.ransacPerformed = false;
elseif isempty(channelLocations)
warning('findNoisyChannels:noChannelLocation', ...
'ransac could not be computed because there were no channel locations');
noisyOut.ransacBadWindowFraction = 0;
noisyOut.ransacPerformed = false;
else % Set up parameters and make sure enough good channels to proceed
[ransacChannels, idiff] = setdiff(evaluationChannels, noisyChannels);
X = X(:, idiff);
% Calculate the parameters for ransac
ransacSubset = round(noisyOut.ransacChannelFraction*size(data, 2));
if noisyOut.ransacUnbrokenTime < 0
error('find_noisyChannels:BadUnbrokenParameter', ...
'ransacUnbrokenTime must be greater than 0');
elseif noisyOut.ransacUnbrokenTime < 1
ransacUnbrokenFrames = signalSize*noisyOut.ransacUnbrokenTime;
else
ransacUnbrokenFrames = srate*noisyOut.ransacUnbrokenTime;
end
nchanlocs = channelLocations(ransacChannels);
if length(nchanlocs) ~= size(nchanlocs, 2)
nchanlocs = nchanlocs';
end
if length(nchanlocs) < ransacSubset + 1 || length(nchanlocs) < 3 || ...
ransacSubset < 2
warning('find_noisyChannels:NotEnoughGoodChannels', ...
'Too many channels have failed quality tests to perform ransac');
noisyOut.ransacBadWindowFraction = 0;
noisyOut.ransacPerformed = false;
end
end
if noisyOut.ransacPerformed
try
% Calculate all-channel reconstruction matrices from random channel subsets
locs = [cell2mat({nchanlocs.X}); cell2mat({nchanlocs.Y});cell2mat({nchanlocs.Z})];
catch err
error('findNoisyChannels:NoXYZChannelLocations', ...
'Must provide valid channel locations');
end
if isempty(locs) || size(locs, 2) ~= length(ransacChannels) ...
|| any(isnan(locs(:)))
error('find_noisyChannels:EmptyChannelLocations', ...
'The signal chanlocs must have valid X, Y, and Z components');
end
P = hlp_microcache('cleanchans', @calc_projector, locs, ...
noisyOut.ransacSampleSize, ransacSubset);
ransacCorrelationsT = zeros(length(locs), WRansac);
% Calculate each channel's correlation to its RANSAC reconstruction for each window
n = length(ransacWindow);
m = length(ransacChannels);
p = noisyOut.ransacSampleSize;
Xwin = reshape(X(1:n*WRansac, :)', m, n, WRansac);
parfor k = 1:WRansac
ransacCorrelationsT(:, k) = ...
calculateRansacWindow(squeeze(Xwin(:, :, k))', P, n, m, p);
end
clear Xwin;
noisyOut.ransacCorrelations(ransacChannels, :) = ransacCorrelationsT;
flagged = noisyOut.ransacCorrelations < noisyOut.ransacCorrelationThreshold;
badChannelsFromRansac = find(sum(flagged, 2)*ransacFrames > ransacUnbrokenFrames)';
noisyOut.noisyChannels.badChannelsFromRansac = badChannelsFromRansac(:)';
noisyOut.ransacBadWindowFraction = sum(flagged, 2)/size(flagged, 2);
end
% Combine bad channels detected from all methods
noisy = noisyOut.noisyChannels;
noisyOut.noisyChannels.badChannelsFromLowSNR = ...
intersect(noisy.badChannelsFromHFNoise, noisy.badChannelsFromCorrelation);
noisyChannels = union(noisyChannels, ...
union(union(noisy.badChannelsFromRansac, ...
noisy.badChannelsFromHFNoise), ...
union(noisy.badChannelsFromNaNs, ...
noisy.badChannelsFromNoData)));
noisyOut.noisyChannels.all = noisyChannels(:)';
noisyOut.medianMaxCorrelation = median(noisyOut.maximumCorrelations, 2);
%% Helper functions for findNoisyChannels
function P = calc_projector(locs, numberSamples, subsetSize)
% Calculate a bag of reconstruction matrices from random channel subsets
[permutedLocations, subsets] = getRandomSubsets(locs, subsetSize, numberSamples);
randomSamples = cell(1, numberSamples);
parfor k = 1:numberSamples
tmp = zeros(size(locs, 2));
slice = subsets(k, :);
tmp(slice, :) = real(spherical_interpolate(permutedLocations(:, :, k), locs))';
randomSamples{k} = tmp;
end
P = horzcat(randomSamples{:});
function [permutedLocations, subsets] = getRandomSubsets(locs, subsetSize, numberSamples)
stream = RandStream('mt19937ar', 'Seed', 435656);
numberChannels = size(locs, 2);
permutedLocations = zeros(3, subsetSize, numberSamples);
subsets = zeros(numberSamples, subsetSize);
for k = 1:numberSamples
subset = randsample(1:numberChannels, subsetSize, stream);
subsets(k, :) = subset;
permutedLocations(:, :, k) = locs(:, subset);
end
function Y = randsample(X, num, stream)
Y = zeros(1, num);
for k = 1:num
pick = round(1 + (length(X)-1).*rand(stream));
Y(k) = X(pick);
X(pick) = [];
end
function rX = calculateRansacWindow(XX, P, n, m, p)
YY = sort(reshape(XX*P, n, m, p),3);
YY = YY(:, :, round(end/2));
rX = sum(XX.*YY)./(sqrt(sum(XX.^2)).*sqrt(sum(YY.^2)));
function noisyOut = getNoisyStructure()
noisyOut = struct('srate', [], ...
'samples', [], ...
'evaluationChannels', [], ...
'channelLocations', [], ...
'robustDeviationThreshold', [], ...
'highFrequencyNoiseThreshold', [], ...
'correlationWindowSeconds', [], ...
'correlationThreshold', [], ...
'badTimeThreshold', [], ...
'ransacSampleSize', [], ...
'ransacChannelFraction', [], ...
'ransacCorrelationThreshold', [], ...
'ransacUnbrokenTime', [], ...
'ransacWindowSeconds', [], ...
'noisyChannels', getBadChannelStructure(), ...
'ransacPerformed', true, ...
'channelDeviationMedian', [], ...
'channelDeviationSD', [], ...
'channelDeviations', [], ...
'robustChannelDeviation', [], ...
'noisinessMedian', [], ...
'noisinessSD', [], ...
'zscoreHFNoise', [], ...
'noiseLevels', [], ...
'maximumCorrelations', [], ...
'dropOuts', [], ...
'medianMaxCorrelation', [], ...
'correlationOffsets', [], ...
'ransacCorrelations', [], ...
'ransacOffsets', [], ...
'ransacBadWindowFraction', []);
|
github
|
lcnbeapp/beapp-master
|
getPipelineDefaults.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/PrepPipeline/utilities/getPipelineDefaults.m
| 13,856 |
utf_8
|
e5ca669768d51d81aa1c2c1fc75f2890
|
function defaults = getPipelineDefaults(signal, type)
% Returns the defaults for a given step in the standard level 2 pipeline
%
% Parameters:
% signal a structure compatible with EEGLAB EEG structure
% (must have .data and .srate fields
% type a string indicating type of defaults to return:
% boundary, resample, detrend, globaltrend, linenoise
% reference
%
% Output:
% defaults a structure with the parameters for the default types
% in the form of a structure that has fields
% value: default value
% classes: classes that the parameter belongs to
% attributes: attributes of the parameter
% description: description of parameter
%
nyquist = round(signal.srate/2);
topMultiple = floor(nyquist/60);
lineFrequencies = (1:topMultiple)*60;
switch lower(type)
case 'boundary'
defaults = struct('ignoreBoundaryEvents', ...
getRules(false, {'logical'}, {}, ...
['If false and the signal has boundary events, PREP will abort. ' ...
'If true, PREP will temporarily remove boundary events to process ' ...
' and then put boundary events back at the end. This should be ' ...
' done with great care as some EEGLAB ' ...
' functions such as resample, respect boundaries, ' ...
'leading to spurious discontinuities.']));
case 'resample'
defaults = struct( ...
'resampleOff', ...
getRules(true, {'logical'}, {}, ...
'If true, resampling is not used.'), ...
'resampleFrequency', ...
getRules(512, {'numeric'}, {'scalar', 'positive'}, ...
['Frequency to resample at. If signal already has a ' ...
'lower sampling rate, no resampling is done.']), ...
'lowPassFrequency', ...
getRules(0, {'numeric'}, {'scalar', 'nonnegative'}, ...
['Frequency to low pass or 0 if not performed. '...
'The purpose of this low pass is to remove resampling ' ...
'artifacts.']));
case 'globaltrend'
defaults = struct( ...
'globalTrendChannels', ...
getRules(1:size(signal.data, 1), {'numeric'}, ...
{'row', 'positive', 'integer', '<=', size(signal.data, 1)}, ...
'Vector of channel numbers of the channels for global detrending.'), ...
'doGlobal', ...
getRules(false, {'logical'}, {}, ...
'If true, do a global detrending operation at before other processing.'), ...
'doLocal', ...
getRules(true, {'logical'}, {}, ...
'If true, do a local linear trend before the global.'), ...
'localCutoff', ...
getRules(1/200, {'numeric'}, ...
{'positive', 'scalar', '<', signal.srate/2}, ...
'Frequency cutoff for long term local detrending.'), ...
'localStepSize', ...
getRules(40, ...
{'numeric'}, {'positive', 'scalar'}, ...
'Seconds for detrend window slide.'));
case 'detrend'
defaults = struct( ...
'detrendChannels', ...
getRules(1:size(signal.data, 1), {'numeric'}, ...
{'row', 'positive', 'integer', '<=', size(signal.data, 1)}, ...
'Vector of channel numbers of the channels to detrend.'), ...
'detrendType', ...
getRules('high pass', {'char'}, {}, ...
['One of {''high pass'', ''linear'', ''none''}' ...
' indicating detrending type.']), ...
'detrendCutoff', ...
getRules(1, {'numeric'}, ...
{'positive', 'scalar', '<', signal.srate/2}, ...
'Frequency cutoff for detrending or high pass filtering.'), ...
'detrendStepSize', ...
getRules(0.02, ...
{'numeric'}, {'positive', 'scalar'}, ...
'Seconds for detrend window slide.') ...
);
case 'linenoise'
defaults = struct( ...
'lineNoiseChannels', ...
getRules(1:size(signal.data, 1), {'numeric'}, ...
{'row', 'positive', 'integer', '<=', size(signal.data, 1)}, ...
'Vector of channel numbers of the channels to remove line noise from.'), ...
'Fs', ...
getRules(signal.srate, {'numeric'}, ...
{'positive', 'scalar'}, ...
'Sampling rate of the signal in Hz.'), ...
'lineFrequencies', ...
getRules(lineFrequencies, {'numeric'}, ...
{'row', 'positive'}, ...
'Vector of frequencies in Hz of the line noise peaks to remove.'), ...
'p', ...
getRules(0.01, ...
{'numeric'}, {'positive', 'scalar', '<', 1}, ...
'Significance cutoff level for removing a spectral peak.'), ...
'fScanBandWidth', ...
getRules(2, ...
{'numeric'}, {'positive', 'scalar'}, ...
['Half of the width of the frequency band centered ' ...
'on each line frequency.']), ...
'taperBandWidth', ...
getRules(2, ...
{'numeric'}, {'positive', 'scalar'}, ...
'Bandwidth in Hz for the tapers.'), ...
'taperWindowSize', ...
getRules(4, ...
{'numeric'}, {'positive', 'scalar'}, ...
'Taper sliding window length in seconds.'), ...
'taperWindowStep', ...
getRules(1, ...
{'numeric'}, {'positive', 'scalar'}, ...
'Taper sliding window step size in seconds. '), ...
'tau', ...
getRules(100, ...
{'numeric'}, {'positive', 'scalar'}, ...
'Window overlap smoothing factor.'), ...
'pad', ...
getRules(0, ...
{'numeric'}, {'integer', 'scalar'}, ...
['Padding factor for FFTs (-1= no padding, 0 = pad ' ...
'to next power of 2, 1 = pad to power of two after, etc.).']), ...
'fPassBand', ...
getRules([0 signal.srate/2], {'numeric'}, ...
{'nonnegative', 'row', 'size', [1, 2], '<=', signal.srate/2}, ...
'Frequency band used (default [0, Fs/2])'), ...
'maximumIterations', ...
getRules(10, ...
{'numeric'}, {'positive', 'scalar'}, ...
['Maximum number of times the cleaning process ' ...
'applied to remove line noise.']) ...
);
case 'reference'
defaults = struct( ...
'srate', ...
getRules(signal.srate, {'numeric'}, ...
{'positive', 'scalar'}, ...
'Sampling rate of the signal in Hz.'), ...
'samples', ...
getRules(size(signal.data, 2), {'numeric'}, ...
{'positive', 'scalar'}, ...
'Number of frames to use for computation.'), ...
'robustDeviationThreshold', ...
getRules(5, {'numeric'}, ...
{'positive', 'scalar'}, ...
'Z-score cutoff for robust channel deviation.'), ...
'highFrequencyNoiseThreshold', ...
getRules(5, {'numeric'}, ...
{'positive', 'scalar'}, ...
'Z-score cutoff for SNR (signal above 50 Hz).'), ...
'correlationWindowSeconds', ...
getRules(1, {'numeric'}, ...
{'positive', 'scalar'}, ...
'Correlation window size in seconds.'), ...
'correlationThreshold', ...
getRules(0.4, {'numeric'}, ...
{'positive', 'scalar', '<=', 1}, ...
'Max correlation threshold for channel being bad in a window.'), ...
'badTimeThreshold', ...
getRules(0.01, {'numeric'}, ...
{'positive', 'scalar'}, ...
['Threshold fraction of bad correlation windows '...
'for designating channel to be bad.']), ...
'ransacOff', ...
getRules(false, {'logical'}, {}, ...
['If true, RANSAC is not used for bad channel ' ...
'(useful for small headsets).']), ...
'ransacSampleSize', ...
getRules(50, {'numeric'}, ...
{'positive', 'scalar', 'integer'}, ...
'Number of sample matrices for computing ransac.'), ...
'ransacChannelFraction', ...
getRules(0.25, {'numeric'}, ...
{'positive', 'scalar', '<=', 1}, ...
'Fraction of evaluation channels RANSAC uses to predict a channel.'), ...
'ransacCorrelationThreshold', ...
getRules(0.75, {'numeric'}, ...
{'positive', 'scalar', '<=', 1}, ...
'Cutoff correlation for unpredictability by neighbors.'), ...
'ransacUnbrokenTime', ...
getRules(0.4, {'numeric'}, ...
{'positive', 'scalar', '<=', 1}, ...
'Cutoff fraction of time channel can have poor ransac predictability.'), ...
'ransacWindowSeconds', ...
getRules(5, {'numeric'}, ...
{'positive', 'scalar'}, ...
'Size of windows in seconds over which to compute RANSAC predictions.'), ...
'referenceType', ...
getRules('robust', {'char'}, {}, ...
['Type of reference to be performed: ' ...
'robust (default), average, specific, or none.']), ...
'interpolationOrder', ...
getRules('post-reference', {'char'}, {}, ...
['Specifies when interpolation is performed during referencing: ' ...
'post-reference: bad channels are detected again and interpolated after referencing, ' ...
'pre-reference: bad channels detected before referencing and interpolated, ' ...
'none: no interpolation is performed.']), ...
'meanEstimateType', ...
getRules('median', {'char'}, {}, ...
['Method for initial estimate of the robust mean: ' ...
'median (default), huber, mean, or none']), ...
'referenceChannels', ...
getRules(1:size(signal.data, 1), {'numeric'}, ...
{'row', 'positive', 'integer', '<=', size(signal.data, 1)}, ...
'Vector of channel numbers of the channels used for reference.'), ...
'evaluationChannels', ...
getRules(1:size(signal.data, 1), {'numeric'}, ...
{'row', 'positive', 'integer', '<=', size(signal.data, 1)}, ...
'Vector of channel numbers of the channels to test for noisiness.'), ...
'rereferencedChannels', ...
getRules(1:size(signal.data, 1), {'numeric'}, ...
{'row', 'positive', 'integer', '<=', size(signal.data, 1)}, ...
'Vector of channel numbers of the channels to rereference.'), ...
'channelLocations', ...
getRules(getFieldIfExists(signal, 'chanlocs'), {'struct'}, ...
{'nonempty'}, ...
'Structure containing channel locations in EEGLAB chanlocs format.'), ...
'channelInformation', ...
getRules(getFieldIfExists(signal, 'chaninfo'), ...
{'struct'}, {}, ...
'Channel information --- particularly nose direction.'), ...
'maxReferenceIterations', ...
getRules(4, ...
{'numeric'}, {'positive', 'scalar'}, ...
'Maximum number of referencing interations.'), ...
'reportingLevel', ...
getRules('verbose', ...
{'char'}, {}, ...
'Set how much information to store about referencing.') ...
);
case 'report'
[~, EEGbase] = fileparts(signal.filename);
defaults = struct( ...
'reportMode', ...
getRules('normal', {'char'}, {}, ...
['Select whether or how report should be generated: ' ...
'normal (default) means report generated after PREP, ' ...
'skip means report not generated at all, ' ...
'reportOnly means PREP is skipped and report generated.']), ...
'summaryFilePath', ...
getRules(['.' filesep EEGbase 'Summary.html'], {'char'}, {}, ...
'File name (including necessary path) for html summary file.'), ...
'sessionFilePath', ...
getRules(['.' filesep EEGbase 'Report.pdf'], {'char'}, {}, ...
'File name (including necessary path) pdf detail report.'), ...
'consoleFID', ...
getRules(1, {'numeric'}, {'positive', 'integer'}, ...
'Open file desriptor for displaying report messages.'), ...
'publishOn', ...
getRules(true, {'logical'}, {}, ...
'If true, use MATLAB publish to publish the results.') ...
);
case 'postprocess'
defaults = struct(...
'keepFiltered', ...
getRules(false, {'logical'}, {}, ...
'If true, apply a final filter to remove low frequency trend.'), ...
'removeInterpolatedChannels', ...
getRules(false, {'logical'}, {}, ...
'If true, remove channels interpolated by Prep.'), ...
'cleanupReference', ...
getRules(false, {'logical'}, {}, ...
['If true, remove many fields in .etc.noiseDetection.reference '...
'resulting in smaller dataset. ' ...
'The Prep report cannot be generated in this case.']));
otherwise
end
end
function s = getRules(value, classes, attributes, description)
% Construct the default structure
s = struct('value', [], 'classes', [], ...
'attributes', [], 'description', []);
s.value = value;
s.classes = classes;
s.attributes = attributes;
s.description = description;
end
|
github
|
lcnbeapp/beapp-master
|
spherical_interpolate.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/PrepPipeline/utilities/private/spherical_interpolate.m
| 4,083 |
utf_8
|
fb9968c02ce1ce52a721e5a69a0679ae
|
function [W, Gss, Gds, Hds] = ...
spherical_interpolate(src, dest, lambda, order, type, tol)
% Caclulate an interpolation matrix for spherical interpolation
%
% W = sphericalSplineInterpolate(src, dest, lambda, order, type, tol)
%
% Inputs:
% src - [3 x N] old electrode positions
% dest - [3 x M] new electrode positions
% lambda - [float] regularisation parameter for smoothing the estimates (1e-5)
% order - [float] order of the polynomial interpolation to use (4)
% type - [str] one of; ('spline')
% 'spline' - spherical Spline
% 'slap' - surface Laplacian (aka. CSD)
% tol - [float] tolerance for the legendre poly approx (1e-7)
%
% Outputs:
% W - [M x N] linear mapping matrix between old and new co-ords
%
% Based upon the paper: Perrin89
% Copyright 2009- by Jason D.R. Farquhar ([email protected])
% Permission is granted for anyone to copy, use, or modify this
% software and accompanying documents, provided this copyright
% notice is retained, and note is made of any changes that have been
% made. This software and documents are distributed without any
% warranty, express or implied.
%
% Modified by Kay Robbins 8/24/2014: Minor cleanup and simplification
% Warning --- still in progress
if ( nargin < 3 || isempty(lambda) ) lambda = 1e-5; end; %#ok<SEPEX>
if ( nargin < 4 || isempty(order) ) order = 4; end; %#ok<SEPEX>
if ( nargin < 5 || isempty(type)) type = 'spline'; end; %#ok<SEPEX>
if ( nargin < 6 || isempty(tol) ) tol = eps; end; %#ok<SEPEX>
% Map the positions onto the sphere (not using repop, by JMH)
src = src./repmat(sqrt(sum(src.^2)), size(src, 1), 1);
dest = dest./repmat(sqrt(sum(dest.^2)), size(dest, 1), 1);
% Calculate the cosine of the angle between the new and old electrodes. If
% the vectors are on top of each other, the result is 1, if they are
% pointing the other way, the result is -1
cosSS = src'*src; % angles between source positions
cosDS = dest'*src; % angles between destination positions
% Compute the interpolation matrix to tolerance tol
[Gss] = interpMx(cosSS, order, tol); % [nSrc x nSrc]
[Gds, Hds] = interpMx(cosDS, order, tol); % [nDest x nSrc]
% Include the regularisation
if lambda > 0
Gss = Gss + lambda*eye(size(Gss));
end
% Compute the mapping to the polynomial coefficients space % [nSrc+1 x nSrc+1]
% N.B. this can be numerically unstable so use the PINV to solve..
muGss = 1; % Used to improve condition number when inverting. Probably unnecessary
C = [Gss muGss*ones(size(Gss, 1),1); muGss*ones(1, size(Gss,2)) 0];
iC = pinv(C);
% Compute the mapping from source measurements and positions to destination positions
if ( strcmpi(type, 'spline') )
W = [Gds ones(size(Gds, 1), 1).*muGss]*iC(:, 1:end-1); % [nDest x nSrc]
elseif (strcmpi(type, 'slap'))
W = Hds*iC(1:end-1, 1:end-1); % [nDest x nSrc]
end
return;
%--------------------------------------------------------------------------
function [G, H]=interpMx(cosEE, order, tol)
% compute the interpolation matrix for this set of point pairs
if ( nargin < 3 || isempty(tol) )
tol = 1e-10;
end
G = zeros(size(cosEE)); H = zeros(size(cosEE));
for i = 1:numel(cosEE);
x = cosEE(i);
n = 1; Pns1 = 1; Pn = x; % seeds for the legendre ploy recurrence
tmp = ( (2*n + 1) * Pn ) / ((n*n + n).^order);
G(i) = tmp ; % 1st element in the sum
H(i) = (n*n + n)*tmp; % 1st element in the sum
dG = abs(G(i)); dH = abs(H(i));
for n = 2:500; % do the sum
Pns2 = Pns1; Pns1 = Pn;
Pn=((2*n - 1)*x*Pns1 - (n - 1)*Pns2)./n; % legendre poly recurrence
oGi = G(i); oHi = H(i);
tmp = ((2*n+1) * Pn) / ((n*n+n).^order);
G(i) = G(i) + tmp; % update function estimate, spline interp
H(i) = H(i) + (n*n + n)*tmp; % update function estimate, SLAP
dG = (abs(oGi - G(i)) + dG)/2;
dH = (abs(oHi - H(i)) + dH)/2; % moving ave gradient est for convergence
if (dG < tol && dH < tol)
break;
end; % stop when tol reached
end
end
G = G./(4*pi);
H = H./(4*pi);
return;
|
github
|
lcnbeapp/beapp-master
|
filter_fast.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/PrepPipeline/utilities/private/filter_fast.m
| 5,932 |
utf_8
|
7bd0d7a6eb2f56ea6ba352a602ddba6b
|
function [X,Zf] = filter_fast(B,A,X,Zi,dim)
% Like filter(), but faster when both the filter and the signal are long.
% [Y,Zf] = filter_fast(B,A,X,Zi,Dim)
%
% Uses FFT convolution. The function is faster than filter when approx. length(B)>256 and
% size(X,Dim)>1024, otherwise slower (due size-testing overhead).
%
% See also:
% filter, fftfilt
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-07-09
%
% contains fftfilt.m from Octave:
% Copyright (C) 1996-1997 John W. Eaton
% Copyright (C) Christian Kothe, SCCN, 2010, [email protected]
%
% This program is free software; you can redistribute it and/or modify it under the terms of the GNU
% General Public License as published by the Free Software Foundation; either version 2 of the
% License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
% even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License along with this program; if not,
% write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
% USA
if nargin <= 4
dim = find(size(X)~=1,1); end
if nargin <= 3
Zi = []; end
lenx = size(X,dim);
lenb = length(B);
if lenx == 0
% empty X
Zf = Zi;
elseif lenb < 256 || lenx<1024 || lenx <= lenb || lenx*lenb < 4000000 || ~isequal(A,1)
% use the regular filter
if nargout > 1
[X,Zf] = filter(B,A,X,Zi,dim);
else
X = filter(B,A,X,Zi,dim);
end
else
was_single = strcmp(class(X),'single');
% fftfilt can be used
if isempty(Zi)
% no initial conditions to take care of
if nargout < 2
% and no final ones
X = unflip(oct_fftfilt(B,flip(double(X),dim)),dim);
else
% final conditions needed
X = flip(X,dim);
[dummy,Zf] = filter(B,1,X(end-length(B)+1:end,:),Zi,1); %#ok<ASGLU>
X = oct_fftfilt(B,double(X));
X = unflip(X,dim);
end
else
% initial conditions available
X = flip(X,dim);
% get a Zi-informed piece
tmp = filter(B,1,X(1:length(B),:),Zi,1);
if nargout > 1
% also need final conditions
[dummy,Zf] = filter(B,1,X(end-length(B)+1:end,:),Zi,1); %#ok<ASGLU>
end
X = oct_fftfilt(B,double(X));
% incorporate the piece
X(1:length(B),:) = tmp;
X = unflip(X,dim);
end
if was_single
X = single(X); end
end
function X = flip(X,dim)
if dim ~= 1
order = 1:ndims(X);
order = order([dim 1]);
X = permute(X,order);
end
function X = unflip(X,dim)
if dim ~= 1
order = 1:ndims(X);
order = order([dim 1]);
X = ipermute(X,order);
end
function y = oct_fftfilt(b, x, N)
% Copyright (C) 1996, 1997 John W. Eaton
%
% This file is part of Octave.
%
% Octave is free software; you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% Octave is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Octave; see the file COPYING. If not, write to the Free
% Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA.
%
% -*- texinfo -*-
% @deftypefn {Function File} {} fftfilt (@var{b}, @var{x}, @var{n})
%
% With two arguments, @code{fftfilt} filters @var{x} with the FIR filter
% @var{b} using the FFT.
%
% Given the optional third argument, @var{n}, @code{fftfilt} uses the
% overlap-add method to filter @var{x} with @var{b} using an N-point FFT.
%
% If @var{x} is a matrix, filter each column of the matrix.
% @end deftypefn
%
% Author: Kurt Hornik <[email protected]>
% Created: 3 September 1994
% Adapted-By: jwe
% If N is not specified explicitly, we do not use the overlap-add
% method at all because loops are really slow. Otherwise, we only
% ensure that the number of points in the FFT is the smallest power
% of two larger than N and length(b). This could result in length
% one blocks, but if the user knows better ...
transpose = (size(x,1) == 1);
if transpose
x = x.'; end
[r_x,c_x] = size(x);
[r_b,c_b] = size(b);
if min([r_b, c_b]) ~= 1
error('octave:fftfilt','fftfilt: b should be a vector'); end
l_b = r_b*c_b;
b = reshape(b,l_b,1);
if nargin == 2
% Use FFT with the smallest power of 2 which is >= length (x) +
% length (b) - 1 as number of points ...
N = 2^(ceil(log(r_x+l_b-1)/log(2)));
B = fft(b,N);
y = ifft(fft(x,N).*B(:,ones(1,c_x)));
else
% Use overlap-add method ...
if ~isscalar(N)
error ('octave:fftfilt','fftfilt: N has to be a scalar'); end
N = 2^(ceil(log(max([N,l_b]))/log(2)));
L = N - l_b + 1;
B = fft(b, N);
B = B(:,ones(c_x,1));
R = ceil(r_x / L);
y = zeros(r_x, c_x);
for r = 1:R
lo = (r - 1) * L + 1;
hi = min(r * L, r_x);
tmp = zeros(N, c_x);
tmp(1:(hi-lo+1),:) = x(lo:hi,:);
tmp = ifft(fft(tmp).*B);
hi = min(lo+N-1, r_x);
y(lo:hi,:) = y(lo:hi,:) + tmp(1:(hi-lo+1),:);
end
end
y = y(1:r_x,:);
if transpose
y = y.'; end
% Final cleanups: if both x and b are real respectively integer, y
% should also be
if isreal(b) && isreal(x)
y = real(y); end
if ~any(b - round(b))
idx = ~any(x - round(x));
y(:,idx) = round(y(:,idx));
end
|
github
|
lcnbeapp/beapp-master
|
calculateSpectrum.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/PrepPipeline/reporting/calculateSpectrum.m
| 18,986 |
utf_8
|
c31339bc182ac61b1e7ba1e5a90429f2
|
% spectopo() - Plot the mean log spectrum of a set of data epochs at all channels
% as a bundle of traces. At specified frequencies, plot the relative
% topographic distribution of power. If available, uses pwelch() from
% the Matlab signal processing toolbox, else the EEGLAB spec() function.
% Plots the mean spectrum for all of the supplied data, not just
% the pre-stimulus baseline.
% Usage:
% >> spectopo(data, frames, srate);
% >> [spectra,freqs,speccomp,contrib,specstd] = ...
% spectopo(data, frames, srate, 'key1','val1', 'key2','val2' ...);
% Inputs:
% data = If 2-D (nchans,time_points); % may be a continuous single epoch,
% else a set of concatenated data epochs, else a 3-D set of data
% epochs (nchans,frames,epochs)
% frames = frames per epoch {default|0 -> data length}
% srate = sampling rate per channel (Hz)
%
% Optional 'keyword',[argument] input pairs:
% 'freq' = [float vector (Hz)] vector of frequencies at which to plot power
% scalp maps, or else a single frequency at which to plot component
% contributions at a single channel (see also 'plotchan').
% 'chanlocs' = [electrode locations filename or EEG.chanlocs structure].
% For format, see >> topoplot example
% 'limits' = [xmin xmax ymin ymax cmin cmax] axis limits. Sets x, y, and color
% axis limits. May omit final values or use NaNs.
% Ex: [0 60 NaN NaN -10 10], [0 60], ...
% Default color limits are symmetric around 0 and are different
% for each scalp map {default|all NaN's: from the data limits}
% 'freqfac' = [integer] ntimes to oversample -> frequency resolution {default: 2}
% 'nfft' = [integer] length to zero-pad data to. Overwrites 'freqfac' above.
% 'winsize' = [integer] window size in data points {default: from data}
% 'overlap' = [integer] window overlap in data points {default: 0}
% 'percent' = [float 0 to 100] percent of the data to sample for computing the
% spectra. Values < 100 speed up the computation. {default: 100}.
% 'freqrange' = [min max] frequency range to plot. Changes x-axis limits {default:
% 1 Hz for the min and Nyquist (srate/2) for the max. If specified
% power distribution maps are plotted, the highest mapped frequency
% determines the max freq}.
% 'reref' = ['averef'|'off'] convert data to average reference {default: 'off'}
% 'mapnorm' = [float vector] If 'data' contain the activity of an independant
% component, this parameter should contain its scalp map. In this case
% the spectrum amplitude will be scaled to component RMS scalp power.
% Useful for comparing component strengths {default: none}
% 'boundaries' = data point indices of discontinuities in the signal {default: none}
% 'plot' = ['on'|'off'] 'off' -> disable plotting {default: 'on'}
% 'rmdc' = ['on'|'off'] 'on' -> remove DC {default: 'off'}
% 'plotmean' = ['on'|'off'] 'on' -> plot the mean channel spectrum {default: 'off'}
% 'plotchans' = [integer array] plot only specific channels {default: all}
%
% Optionally plot component contributions:
% 'weights' = ICA unmixing matrix. Here, 'freq' (above) must be a single frequency.
% ICA maps of the N ('nicamaps') components that account for the most
% power at the selected frequency ('freq') are plotted along with
% the spectra of the selected channel ('plotchan') and components
% ('icacomps').
% 'plotchan' = [integer] channel at which to compute independent conmponent
% contributions at the selected frequency ('freq'). If 0, plot RMS
% power at all channels. {defatul|[] -> channel with highest power
% at specified 'freq' (above)). Do not confuse with
% 'plotchans' which select channels for plotting.
% 'mapchans' = [int vector] channels to plot in topoplots {default: all}
% 'mapframes'= [int vector] frames to plot {default: all}
% 'nicamaps' = [integer] number of ICA component maps to plot {default: 4}.
% 'icacomps' = [integer array] indices of ICA component spectra to plot ([] -> all).
% 'icamode' = ['normal'|'sub'] in 'sub' mode, instead of computing the spectra of
% individual ICA components, the function computes the spectrum of
% the data minus their contributions {default: 'normal'}
% 'icamaps' = [integer array] force plotting of selected ICA compoment maps
% {default: [] = the 'nicamaps' largest contributing components}.
% 'icawinv' = [float array] inverse component weight or mixing matrix. Normally,
% this is computed by inverting the ICA unmixing matrix 'weights' (above).
% However, if any components were removed from the supplied 'weights'mapchans
% then the component maps will not be correctly drawn and the 'icawinv'
% matrix should be supplied here {default: from component 'weights'}
% 'memory' = ['low'|'high'] a 'low' setting will use less memory for computing
% component activities, will take longer {default: 'high'}
%
% Replotting options:
% 'specdata' = [freq x chan array ] spectral data
% 'freqdata' = [freq] array of frequencies
%
% Topoplot options:
% other 'key','val' options are propagated to topoplot() for map display
% (See >> help topoplot)
%
% Outputs:
% spectra = (nchans,nfreqs) power spectra (mean power over epochs), in dB
% freqs = frequencies of spectra (Hz)
%
% Notes: The original input format is still functional for backward compatibility.
% psd() has been replaced by pwelch() (see Matlab note 24750 on their web site)
%
% Authors: Scott Makeig, Arnaud Delorme & Marissa Westerfield,
% SCCN/INC/UCSD, La Jolla, 3/01
%
% See also: timtopo(), envtopo(), tftopo(), topoplot()
% Copyright (C) 3/01 Scott Makeig & Arnaud Delorme & Marissa Westerfield, SCCN/INC/UCSD,
% [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% 3-20-01 added limits arg -sm
% 01-25-02 reformated help & license -ad
% 02-15-02 scaling by epoch number line 108 - ad, sm & lf
% 03-15-02 add all topoplot options -ad
% 03-18-02 downsampling factor to speed up computation -ad
% 03-27-02 downsampling factor exact calculation -ad
% 04-03-02 added axcopy -sm
% Uses: MATLAB pwelch(), changeunits(), topoplot(), textsc()
function [eegspecdB,freqs] = calculateSpectrum(data,frames,srate,varargin)
% formerly: ... headfreqs,chanlocs,limits,titl,freqfac, percent, varargin)
FREQFAC = 2;
if nargin<3
help spectopo
return
end
if nargin <= 3 || ischar(varargin{1})
% 'key' 'val' sequence
fieldlist = { 'freq' 'real' [] [] ;
'specdata' 'real' [] [] ;
'freqdata' 'real' [] [] ;
'chanlocs' '' [] [] ;
'freqrange' 'real' [0 srate/2] [] ;
'memory' 'string' {'low','high'} 'high' ;
'plotmean' 'string' {'on','off'} 'off' ;
'limits' 'real' [] [nan nan nan nan nan nan];
'freqfac' 'integer' [] FREQFAC;
'percent' 'real' [0 100] 100 ;
'reref' 'string' { 'averef','off','no' } 'off' ;
'boundaries' 'integer' [] [] ;
'nfft' 'integer' [1 Inf] [] ;
'winsize' 'integer' [1 Inf] [] ;
'overlap' 'integer' [1 Inf] 0 ;
'icamode' 'string' { 'normal','sub' } 'normal' ;
'weights' 'real' [] [] ;
'mapnorm' 'real' [] [] ;
'plotchan' 'integer' 1:size(data,1) [] ;
'plotchans' 'integer' 1:size(data,1) [] ;
'nicamaps' 'integer' [] 4 ;
'icawinv' 'real' [] [] ;
'icacomps' 'integer' [] [] ;
'icachansind' 'integer' [] 1:size(data,1) ; % deprecated
'icamaps' 'integer' [] [] ;
'rmdc' 'string' {'on','off'} 'off';
'mapchans' 'integer' 1:size(data,1) []
'mapframes' 'integer' 1:size(data,2) []};
[g, varargin] = finputcheck(varargin, fieldlist, 'spectopo', 'ignore');
if ischar(g), error(g); end;
if ~isempty(g.freqrange), g.limits(1:2) = g.freqrange; end;
if ~isempty(g.weights)
if isempty(g.freq) || length(g.freq) > 2
if ~isempty(get(0,'currentfigure')) && strcmp(get(gcf, 'tag'), 'spectopo'), close(gcf); end;
error('spectopo(): for computing component contribution, one must specify a (single) frequency');
end;
end;
else
if ~isnumeric(data)
error('spectopo(): Incorrect call format (see >> help spectopo).')
end
if ~isnumeric(frames) || round(frames) ~= frames
error('spectopo(): Incorrect call format (see >> help spectopo).')
end
if ~isnumeric(srate) % 3rd arg must be the sampling rate in Hz
error('spectopo(): Incorrect call format (see >> help spectopo).')
end
if nargin > 3, g.freq = varargin{1};
else g.freq = [];
end;
if nargin > 4, g.chanlocs = varargin{2};
else g.chanlocs = [];
end;
if nargin > 5, g.limits = varargin{3};
else g.limits = [nan nan nan nan nan nan];
end;
if nargin > 6, g.freqfac = varargin{4};
else g.freqfac = FREQFAC;
end;
if nargin > 7, g.percent = varargin{5};
else g.percent = 100;
end;
if nargin > 9, g.reref = 'averef';
else g.reref = 'off';
end;
g.weights = [];
g.icamaps = [];
end;
if g.percent > 1
g.percent = g.percent/100; % make it from 0 to 1
end;
if ~isempty(g.freq) && isempty(g.chanlocs)
error('spectopo(): needs channel location information');
end;
if isempty(g.weights) && ~isempty(g.plotchans)
data = data(g.plotchans,:);
if ~isempty(g.chanlocs)
g.chanlocs = g.chanlocs(g.plotchans);
end;
end;
if strcmpi(g.rmdc, 'on')
data = data - repmat(mean(data,2), [ 1 size(data,2) 1]);
end
data = reshape(data, size(data,1), size(data,2)*size(data,3));
if frames == 0
frames = size(data,2); % assume one epoch
end
if ~isempty(g.freq) && min(g.freq)<0
if ~isempty(get(0,'currentfigure')) && strcmp(get(gcf, 'tag'), 'spectopo'), close(gcf); end;
return
end
g.chanlocs2 = g.chanlocs;
if ~isempty(g.specdata)
eegspecdB = g.specdata;
freqs = g.freqdata;
else
epochs = round(size(data,2)/frames);
if frames*epochs ~= size(data,2)
error('Spectopo: non-integer number of epochs');
end
if ~isempty(g.weights)
if isempty(g.icawinv)
g.icawinv = pinv(g.weights); % maps
end;
if ~isempty(g.icacomps)
g.weights = g.weights(g.icacomps, :);
g.icawinv = g.icawinv(:,g.icacomps);
else
g.icacomps = 1:size(g.weights,1);
end;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute channel spectra using pwelch()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
epoch_subset = ones(1,epochs);
if g.percent ~= 1 && epochs == 1
frames = round(size(data,2)*g.percent);
data = data(:, 1:frames);
g.boundaries(g.boundaries > frames) = [];
if ~isempty(g.boundaries)
g.boundaries(end+1) = frames;
end;
end;
if g.percent ~= 1 && epochs > 1
epoch_subset = zeros(1,epochs);
nb = ceil( g.percent*epochs);
while nb>0
index = ceil(rand*epochs);
if ~epoch_subset(index)
epoch_subset(index) = 1;
nb = nb-1;
end;
end;
epoch_subset = find(epoch_subset == 1);
else
epoch_subset = find(epoch_subset == 1);
end;
if isempty(g.weights)
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute data spectra
%%%%%%%%%%%%%%%%%%%%%%%%%%%
[eegspecdB, freqs] = spectcomp( data, frames, srate, epoch_subset, g);
if ~isempty(g.mapnorm) % normalize by component map RMS power (if data contain 1 component
%disp('Scaling spectrum by component RMS of scalp map power');
eegspecdB = sqrt(mean(g.mapnorm.^4)) * eegspecdB;
% the idea is to take the RMS of the component activity (compact) projected at each channel
% spec = sqrt( power(g.mapnorm(1)*compact).^2 + power(g.mapnorm(2)*compact).^2 + ...)
% spec = sqrt( g.mapnorm(1)^4*power(compact).^2 + g.mapnorm(1)^4*power(compact).^2 + ...)
% spec = sqrt( g.mapnorm(1)^4 + g.mapnorm(1)^4 + ... )*power(compact)
end;
tmpc = find(eegspecdB(:,1)); % > 0 power chans
if length(tmpc) ~= size(eegspecdB,1)
eegspecdB = eegspecdB(tmpc,:);
if ~isempty(g.chanlocs)
g.chanlocs2 = g.chanlocs(tmpc);
end
end;
eegspecdB = 10*log10(eegspecdB);
else
% compute data spectrum
if isempty(g.plotchan) || g.plotchan == 0
[eegspecdB, freqs] = spectcomp( data, frames, srate, epoch_subset, g);
else
g.reref = 'off';
[eegspecdB, freqs] = spectcomp( data(g.plotchan,:), frames, srate, epoch_subset, g);
end;
g.reref = 'off';
tmpc = find(eegspecdB(:,1)); % > 0 power chans
if length(tmpc) ~= size(eegspecdB,1)
eegspecdB = eegspecdB(tmpc,:);
if ~isempty(g.chanlocs)
g.chanlocs2 = g.chanlocs(tmpc);
end
end;
eegspecdB = 10*log10(eegspecdB);
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute component spectra
%%%%%%%%%%%%%%%%%%%%%%%%%%%
newweights = g.weights;
if strcmp(g.memory, 'high') && strcmp(g.icamode, 'normal')
[~, freqs] = spectcomp( newweights*data(:,:), frames, srate, epoch_subset, g);
else % in case out of memory error, multiply conmponent sequencially
if strcmp(g.icamode, 'sub') && ~isempty(g.plotchan) && g.plotchan == 0
% scan all electrodes
for index = 1:size(data,1)
g.plotchan = index;
[~, freqs] = spectcomp( data, frames, srate, epoch_subset, g, newweights);
end;
g.plotchan = 0;
else
[~, freqs] = spectcomp( data, frames, srate, epoch_subset, g, newweights);
end;
end;
end;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function computing spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [eegspecdB, freqs] = spectcomp( data, frames, srate, epoch_subset, g, newweights)
if exist('newweights', 'var') == 1
nchans = size(newweights,1);
else
nchans = size(data,1);
end;
%fftlength = 2^round(log(srate)/log(2))*g.freqfac;
if isempty(g.winsize)
winlength = max(pow2(nextpow2(frames)-3),4); %*2 since diveded by 2 later
winlength = min(winlength, 512);
winlength = max(winlength, 256);
winlength = min(winlength, frames);
else
winlength = g.winsize;
end;
if isempty(g.nfft)
fftlength = 2^(nextpow2(winlength))*g.freqfac;
else
fftlength = g.nfft;
end;
% usepwelch = 1;
usepwelch = license('checkout','Signal_Toolbox'); % 5/22/2014 Ramon
% if ~license('checkout','Signal_Toolbox'),
% if ~usepwelch,
% end;
for c=1:nchans % scan channels or components
if exist('newweights', 'var') == 1
if strcmp(g.icamode, 'normal')
tmpdata = newweights(c,:)*data; % component activity
else % data - component contribution
tmpdata = data(g.plotchan,:) - (g.icawinv(g.plotchan,c)*newweights(c,:))*data;
end;
else
tmpdata = data(c,:); % channel activity
end;
if strcmp(g.reref, 'averef')
tmpdata = averef(tmpdata);
end;
for e=epoch_subset
if isempty(g.boundaries)
if usepwelch
[tmpspec,freqs] = pwelch(matsel(tmpdata,frames,0,1,e),...
winlength,g.overlap,fftlength,srate);
else
[tmpspec,freqs] = spec(matsel(tmpdata,frames,0,1,e),fftlength,srate,...
winlength,g.overlap);
end;
%[tmpspec,freqs] = psd(matsel(tmpdata,frames,0,1,e),fftlength,srate,...
% winlength,g.overlap);
if c==1 && e==epoch_subset(1)
eegspec = zeros(nchans,length(freqs));
end
eegspec(c,:) = eegspec(c,:) + tmpspec';
else
g.boundaries = round(g.boundaries);
for n=1:length(g.boundaries)-1
if g.boundaries(n+1) - g.boundaries(n) >= winlength % ignore segments of less than winlength
if usepwelch
[tmpspec,freqs] = pwelch(tmpdata(e,g.boundaries(n)+1:g.boundaries(n+1)),...
winlength,g.overlap,fftlength,srate);
else
[tmpspec,freqs] = spec(tmpdata(e,g.boundaries(n)+1:g.boundaries(n+1)),...
fftlength,srate,winlength,g.overlap);
end;
if exist('eegspec', 'var') ~= 1
eegspec = zeros(nchans,length(freqs));
end
eegspec(c,:) = eegspec(c,:) + tmpspec'* ...
((g.boundaries(n+1)-g.boundaries(n)+1)/g.boundaries(end));
end;
end
end;
end
end
n = length(epoch_subset);
eegspecdB = eegspec/n; % normalize by the number of sections
return;
|
github
|
lcnbeapp/beapp-master
|
matsel.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/PrepPipeline/reporting/helpers/matsel.m
| 3,756 |
utf_8
|
3779008d46e2601576fba59179f48a0c
|
% matsel() - select rows, columns, and epochs from given multi-epoch data matrix
%
% Usage:
% >> [dataout] = matsel(data,frames,framelist);
% >> [dataout] = matsel(data,frames,framelist,chanlist);
% >> [dataout] = matsel(data,frames,framelist,chanlist,epochlist);
%
% Inputs:
% data - input data matrix (chans,frames*epochs)
% frames - frames (data columns) per epoch (0 -> frames*epochs)
% framelist - list of frames per epoch to select (0 -> 1:frames)
% chanlist - list of chans to select (0 -> 1:chans)
% epochlist - list of epochs to select (0 -> 1:epochs)
%
% Note: The size of dataout is (length(chanlist), length(framelist)*length(epochlist))
%
% Author: Scott Makeig, SCCN/INC/UCSD, La Jolla, 5-21-96
% Copyright (C) 5-21-96 Scott Makeig, SCCN/INC/UCSD, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% 5-25-96 added chanlist, epochlist -sm
% 10-05-97 added out of bounds tests for chanlist and framelist -sm
% 02-04-00 truncate to epochs*frames if necessary -sm
% 01-25-02 reformated help & license -ad
function [dataout] = matsel(data,frames,framelist,chanlist,epochlist)
if nargin<1
help matsel
return
end
[chans framestot] = size(data);
if isempty(data)
fprintf('matsel(): empty data matrix!?\n')
help matsel
return
end
if nargin < 5,
epochlist = 0;
end
if nargin < 4,
chanlist = 0;
end
if nargin < 3,
fprintf('matsel(): needs at least 3 arguments.\n\n');
return
end
if frames == 0,
frames = framestot;
end
if framelist == 0,
framelist = [1:frames];
end
framesout = length(framelist);
if isempty(chanlist) | chanlist == 0,
chanlist = [1:chans];
end
chansout = length(chanlist);
epochs = floor(framestot/frames);
if epochs*frames ~= framestot
fprintf('matsel(): data length %d was not a multiple of %d frames.\n',...
framestot,frames);
data = data(:,1:epochs*frames);
end
if isempty(epochlist) | epochlist == 0,
epochlist = [1:epochs];
end
epochsout = length(epochlist);
if max(epochlist)>epochs
fprintf('matsel() error: max index in epochlist (%d) > epochs in data (%d)\n',...
max(epochlist),epochs);
return
end
if max(framelist)>frames
fprintf('matsel() error: max index in framelist (%d) > frames per epoch (%d)\n',...
max(framelist),frames);
return
end
if min(framelist)<1
fprintf('matsel() error: framelist min (%d) < 1\n', min(framelist));
return
end
if min(epochlist)<1
fprintf('matsel() error: epochlist min (%d) < 1\n', min(epochlist));
return
end
if max(chanlist)>chans
fprintf('matsel() error: chanlist max (%d) > chans (%d)\n',...
max(chanlist),chans);
return
end
if min(chanlist)<1
fprintf('matsel() error: chanlist min (%d) <1\n',...
min(chanlist));
return
end
dataout = zeros(chansout,framesout*epochsout);
for e=1:epochsout
dataout(:,framesout*(e-1)+1:framesout*e) = ...
data(chanlist,framelist+(epochlist(e)-1)*frames);
end
|
github
|
lcnbeapp/beapp-master
|
finputcheck.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/PrepPipeline/reporting/helpers/finputcheck.m
| 9,133 |
utf_8
|
8e445ff93b185f97308409ce1e4300d4
|
% finputcheck() - check Matlab function {'key','value'} input argument pairs
%
% Usage: >> result = finputcheck( varargin, fieldlist );
% >> [result varargin] = finputcheck( varargin, fieldlist, ...
% callingfunc, mode, verbose );
% Input:
% varargin - Cell array 'varargin' argument from a function call using 'key',
% 'value' argument pairs. See Matlab function 'varargin'.
% May also be a structure such as struct(varargin{:})
% fieldlist - A 4-column cell array, one row per 'key'. The first
% column contains the key string, the second its type(s),
% the third the accepted value range, and the fourth the
% default value. Allowed types are 'boolean', 'integer',
% 'real', 'string', 'cell' or 'struct'. For example,
% {'key1' 'string' { 'string1' 'string2' } 'defaultval_key1'}
% {'key2' {'real' 'integer'} { minint maxint } 'defaultval_key2'}
% callingfunc - Calling function name for error messages. {default: none}.
% mode - ['ignore'|'error'] ignore keywords that are either not specified
% in the fieldlist cell array or generate an error.
% {default: 'error'}.
% verbose - ['verbose', 'quiet'] print information. Default: 'verbose'.
%
% Outputs:
% result - If no error, structure with 'key' as fields and 'value' as
% content. If error this output contain the string error.
% varargin - residual varagin containing unrecognized input arguments.
% Requires mode 'ignore' above.
%
% Note: In case of error, a string is returned containing the error message
% instead of a structure.
%
% Example (insert the following at the beginning of your function):
% result = finputcheck(varargin, ...
% { 'title' 'string' [] ''; ...
% 'percent' 'real' [0 1] 1 ; ...
% 'elecamp' 'integer' [1:10] [] });
% if isstr(result)
% error(result);
% end
%
% Note:
% The 'title' argument should be a string. {no default value}
% The 'percent' argument should be a real number between 0 and 1. {default: 1}
% The 'elecamp' argument should be an integer between 1 and 10 (inclusive).
%
% Now 'g.title' will contain the title arg (if any, else the default ''), etc.
%
% Author: Arnaud Delorme, CNL / Salk Institute, 10 July 2002
% Copyright (C) Arnaud Delorme, CNL / Salk Institute, 10 July 2002, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [g, varargnew] = finputcheck( vararg, fieldlist, callfunc, mode, verbose )
if nargin < 2
help finputcheck;
return;
end;
if nargin < 3
callfunc = '';
else
callfunc = [callfunc ' ' ];
end;
if nargin < 4
mode = 'do not ignore';
end;
if nargin < 5
verbose = 'verbose';
end;
NAME = 1;
TYPE = 2;
VALS = 3;
DEF = 4;
SIZE = 5;
varargnew = {};
% create structure
% ----------------
if ~isempty(vararg)
if isstruct(vararg)
g = vararg;
else
for index=1:length(vararg)
if iscell(vararg{index})
vararg{index} = {vararg{index}};
end;
end;
try
g = struct(vararg{:});
catch
vararg = removedup(vararg, verbose);
try
g = struct(vararg{:});
catch
g = [ callfunc 'error: bad ''key'', ''val'' sequence' ]; return;
end;
end;
end;
else
g = [];
end;
for index = 1:size(fieldlist,NAME)
% check if present
% ----------------
if ~isfield(g, fieldlist{index, NAME})
g = setfield( g, fieldlist{index, NAME}, fieldlist{index, DEF});
end;
tmpval = getfield( g, {1}, fieldlist{index, NAME});
% check type
% ----------
if ~iscell( fieldlist{index, TYPE} )
res = fieldtest( fieldlist{index, NAME}, fieldlist{index, TYPE}, ...
fieldlist{index, VALS}, tmpval, callfunc );
if isstr(res), g = res; return; end;
else
testres = 0;
tmplist = fieldlist;
for it = 1:length( fieldlist{index, TYPE} )
if ~iscell(fieldlist{index, VALS})
res{it} = fieldtest( fieldlist{index, NAME}, fieldlist{index, TYPE}{it}, ...
fieldlist{index, VALS}, tmpval, callfunc );
else res{it} = fieldtest( fieldlist{index, NAME}, fieldlist{index, TYPE}{it}, ...
fieldlist{index, VALS}{it}, tmpval, callfunc );
end;
if ~isstr(res{it}), testres = 1; end;
end;
if testres == 0,
g = res{1};
for tmpi = 2:length(res)
g = [ g 10 'or ' res{tmpi} ];
end;
return;
end;
end;
end;
% check if fields are defined
% ---------------------------
allfields = fieldnames(g);
for index=1:length(allfields)
if isempty(strmatch(allfields{index}, fieldlist(:, 1)', 'exact'))
if ~strcmpi(mode, 'ignore')
g = [ callfunc 'error: undefined argument ''' allfields{index} '''']; return;
end;
varargnew{end+1} = allfields{index};
varargnew{end+1} = getfield(g, {1}, allfields{index});
end;
end;
function g = fieldtest( fieldname, fieldtype, fieldval, tmpval, callfunc )
NAME = 1;
TYPE = 2;
VALS = 3;
DEF = 4;
SIZE = 5;
g = [];
switch fieldtype
case { 'integer' 'real' 'boolean' 'float' },
if ~isnumeric(tmpval) && ~islogical(tmpval)
g = [ callfunc 'error: argument ''' fieldname ''' must be numeric' ]; return;
end;
if strcmpi(fieldtype, 'boolean')
if tmpval ~=0 && tmpval ~= 1
g = [ callfunc 'error: argument ''' fieldname ''' must be 0 or 1' ]; return;
end;
else
if strcmpi(fieldtype, 'integer')
if ~isempty(fieldval)
if (any(isnan(tmpval(:))) && ~any(isnan(fieldval))) ...
&& (~ismember(tmpval, fieldval))
g = [ callfunc 'error: wrong value for argument ''' fieldname '''' ]; return;
end;
end;
else % real or float
if ~isempty(fieldval) && ~isempty(tmpval)
if any(tmpval < fieldval(1)) || any(tmpval > fieldval(2))
g = [ callfunc 'error: value out of range for argument ''' fieldname '''' ]; return;
end;
end;
end;
end;
case 'string'
if ~isstr(tmpval)
g = [ callfunc 'error: argument ''' fieldname ''' must be a string' ]; return;
end;
if ~isempty(fieldval)
if isempty(strmatch(lower(tmpval), lower(fieldval), 'exact'))
g = [ callfunc 'error: wrong value for argument ''' fieldname '''' ]; return;
end;
end;
case 'cell'
if ~iscell(tmpval)
g = [ callfunc 'error: argument ''' fieldname ''' must be a cell array' ]; return;
end;
case 'struct'
if ~isstruct(tmpval)
g = [ callfunc 'error: argument ''' fieldname ''' must be a structure' ]; return;
end;
case 'function_handle'
if ~isa(tmpval, 'function_handle')
g = [ callfunc 'error: argument ''' fieldname ''' must be a function handle' ]; return;
end;
case '';
otherwise, error([ 'finputcheck error: unrecognized type ''' fieldname '''' ]);
end;
% remove duplicates in the list of parameters
% -------------------------------------------
function cella = removedup(cella, verbose)
% make sure if all the values passed to unique() are strings, if not, exist
%try
[tmp, indices] = unique_bc(cella(1:2:end));
if length(tmp) ~= length(cella)/2
myfprintf(verbose,'Note: duplicate ''key'', ''val'' parameter(s), keeping the last one(s)\n');
end;
cella = cella(sort(union(indices*2-1, indices*2)));
%catch
% some elements of cella were not string
% error('some ''key'' values are not string.');
%end;
function myfprintf(verbose, varargin)
if strcmpi(verbose, 'verbose')
fprintf(varargin{:});
end;
|
github
|
lcnbeapp/beapp-master
|
pop_dipfit_manual.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/pop_dipfit_manual.m
| 1,755 |
utf_8
|
eba5714bbc90a749dad3cbbf6d51a4d7
|
% pop_dipfit_manual() - interactively do dipole fit of selected ICA components
% Function deprecated. Use pop_dipfit_nonlinear()
% instead
% Usage:
% >> OUTEEG = pop_dipfit_manual( INEEG )
%
% Inputs:
% INEEG input dataset
%
% Outputs:
% OUTEEG output dataset
%
% Author: Robert Oostenveld, SMI/FCDC, Nijmegen 2003
% Arnaud Delorme, SCCN, La Jolla 2003
% SMI, University Aalborg, Denmark http://www.smi.auc.dk/
% FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl/
% Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [OUTEEG, com] = pop_dipfit_manual( varargin )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin<1
help pop_dipfit_manual;
return
else
disp('Warning: pop_dipfit_manual is outdated. Use pop_dipfit_nonlinear instead');
[OUTEEG, com] = pop_dipfit_nonlinear( varargin{:} );
end;
|
github
|
lcnbeapp/beapp-master
|
eeglab2fieldtrip.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/eeglab2fieldtrip.m
| 5,812 |
utf_8
|
2191a7e220db8b7bb5ad4e1bfe5a929d
|
% eeglab2fieldtrip() - do this ...
%
% Usage: >> data = eeglab2fieldtrip( EEG, fieldbox, transform );
%
% Inputs:
% EEG - [struct] EEGLAB structure
% fieldbox - ['preprocessing'|'freqanalysis'|'timelockanalysis'|'companalysis']
% transform - ['none'|'dipfit'] transform channel locations for DIPFIT
% using the transformation matrix in the field
% 'coord_transform' of the dipfit substructure of the EEG
% structure.
% Outputs:
% data - FIELDTRIP structure
%
% Author: Robert Oostenveld, F.C. Donders Centre, May, 2004.
% Arnaud Delorme, SCCN, INC, UCSD
%
% See also:
% Copyright (C) 2004 Robert Oostenveld, F.C. Donders Centre, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function data = eeglab2fieldtrip(EEG, fieldbox, transform)
if nargin < 2
help eeglab2fieldtrip
return;
end;
% start with an empty data object
data = [];
% add the objects that are common to all fieldboxes
tmpchanlocs = EEG.chanlocs;
%data.label = { tmpchanlocs(EEG.icachansind).labels };
data.fsample = EEG.srate;
% get the electrode positions from the EEG structure: in principle, the number of
% channels can be more or less than the number of channel locations, i.e. not
% every channel has a position, or the potential was not measured on every
% position. This is not supported by EEGLAB, but it is supported by FIELDTRIP.
if strcmpi(fieldbox, 'chanloc_withfid')
% insert "no data channels" in channel structure
% ----------------------------------------------
if isfield(EEG.chaninfo, 'nodatchans') && ~isempty( EEG.chaninfo.nodatchans )
chanlen = length(EEG.chanlocs);
fields = fieldnames( EEG.chaninfo.nodatchans );
for index = 1:length(EEG.chaninfo.nodatchans)
ind = chanlen+index;
for f = 1:length( fields )
EEG.chanlocs = setfield(EEG.chanlocs, { ind }, fields{f}, ...
getfield( EEG.chaninfo.nodatchans, { index }, fields{f}));
end;
end;
end;
end;
data.elec.pnt = zeros(length( EEG.chanlocs ), 3);
for ind = 1:length( EEG.chanlocs )
data.elec.label{ind} = EEG.chanlocs(ind).labels;
if ~isempty(EEG.chanlocs(ind).X)
data.elec.pnt(ind,1) = EEG.chanlocs(ind).X;
data.elec.pnt(ind,2) = EEG.chanlocs(ind).Y;
data.elec.pnt(ind,3) = EEG.chanlocs(ind).Z;
else
data.elec.pnt(ind,:) = [0 0 0];
end;
end;
if nargin > 2
if strcmpi(transform, 'dipfit')
if ~isempty(EEG.dipfit.coord_transform)
disp('Transforming electrode coordinates to match head model');
transfmat = traditionaldipfit(EEG.dipfit.coord_transform);
data.elec.pnt = transfmat * [ data.elec.pnt ones(size(data.elec.pnt,1),1) ]';
data.elec.pnt = data.elec.pnt(1:3,:)';
else
disp('Warning: no transformation of electrode coordinates to match head model');
end;
end;
end;
switch fieldbox
case 'preprocessing'
for index = 1:EEG.trials
data.trial{index} = EEG.data(:,:,index);
data.time{index} = linspace(EEG.xmin, EEG.xmax, EEG.pnts); % should be checked in FIELDTRIP
end;
% data.label = { tmpchanlocs(1:EEG.nbchan).labels };
case 'timelockanalysis'
data.avg = mean(EEG.data, 3);
data.var = std(EEG.data, [], 3).^2;
data.time = linspace(EEG.xmin, EEG.xmax, EEG.pnts); % should be checked in FIELDTRIP
data.label = { tmpchanlocs(1:EEG.nbchan).labels };
case 'componentanalysis'
if isempty(EEG.icaact)
icaacttmp = eeg_getica(EEG);
end
for index = 1:EEG.trials
% the trials correspond to the raw data trials, except that they
% contain the component activations
try
if isempty(EEG.icaact)
data.trial{index} = icaacttmp(:,:,index); % Using icaacttmp to not change EEG structure
else
data.trial{index} = EEG.icaact(:,:,index);
end
catch
end;
data.time{index} = linspace(EEG.xmin, EEG.xmax, EEG.pnts); % should be checked in FIELDTRIP
end;
data.label = [];
for comp = 1:size(EEG.icawinv,2)
% the labels correspond to the component activations that are stored in data.trial
data.label{comp} = sprintf('ica_%03d', comp);
end
% get the spatial distribution and electrode positions
tmpchanlocs = EEG.chanlocs;
data.topolabel = { tmpchanlocs(EEG.icachansind).labels };
data.topo = EEG.icawinv;
case { 'chanloc' 'chanloc_withfid' }
case 'freqanalysis'
error('freqanalysis fieldbox not implemented yet')
otherwise
error('unsupported fieldbox')
end
try
% get the full name of the function
data.cfg.version.name = mfilename('fullpath');
catch
% required for compatibility with Matlab versions prior to release 13 (6.5)
[st, i] = dbstack;
data.cfg.version.name = st(i);
end
% add the version details of this function call to the configuration
data.cfg.version.id = '$Id: eeglab2fieldtrip.m,v 1.6 2009-07-02 23:39:29 arno Exp $';
return
|
github
|
lcnbeapp/beapp-master
|
dipfit_reject.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/dipfit_reject.m
| 1,823 |
utf_8
|
7d157ab7d3da320a78bb851d5d3b5669
|
% dipfit_reject() - remove dipole models with a poor fit
%
% Usage:
% >> dipout = dipfit_reject( model, reject )
%
% Inputs:
% model struct array with a dipole model for each component
%
% Outputs:
% dipout struct array with a dipole model for each component
%
% Author: Robert Oostenveld, SMI/FCDC, Nijmegen 2003
% SMI, University Aalborg, Denmark http://www.smi.auc.dk/
% FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl/
% Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dipout] = dipfit_reject(model, reject)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin < 1
help dipfit_reject;
return;
end;
for i=1:length(model)
if model(i).rv>reject
% reject this dipole model by replacing it by an empty model
dipout(i).posxyz = [];
dipout(i).momxyz = [];
dipout(i).rv = 1;
else
dipout(i).posxyz = model(i).posxyz;
dipout(i).momxyz = model(i).momxyz;
dipout(i).rv = model(i).rv;
end
end
|
github
|
lcnbeapp/beapp-master
|
pop_dipplot.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/pop_dipplot.m
| 8,649 |
utf_8
|
f0e67d40c3bd34a95443673ebb76b95b
|
% pop_dipplot() - plot dipoles.
%
% Usage:
% >> pop_dipplot( EEG ); % pop up interactive window
% >> pop_dipplot( EEG, comps, 'key1', 'val1', 'key2', 'val2', ...);
%
% Graphic interface:
% "Components" - [edit box] enter component number to plot. By
% all the localized components are plotted. Command
% line equivalent: components.
% "Background image" - [edit box] MRI background image. This image
% has to be normalized to the MNI brain using SPM2 for
% instance. Dipplot() command line equivalent: 'image'.
% "Summary mode" - [Checkbox] when checked, plot the 3 views of the
% head model and dipole locations. Dipplot() equivalent
% is 'summary' and 'num'.
% "Plot edges" - [Checkbox] plot edges at the intersection between
% MRI slices. Diplot() equivalent is 'drawedges'.
% "Plot closest MRI slide" - [Checkbox] plot closest MRI slice to
% dipoles although not using the 'tight' view mode.
% Dipplot() equivalent is 'cornermri' and 'axistight'.
% "Plot dipole's 2-D projections" - [Checkbox] plot a dimed dipole
% projection on each 2-D MRI slice. Dipplot() equivalent
% is 'projimg'.
% "Plot projection lines" - [Checkbox] plot lines originating from
% dipoles and perpendicular to each 2-D MRI slice.
% Dipplot() equivalent is 'projline'.
% "Make all dipole point out" - [Checkbox] make all dipole point
% toward outside the brain. Dipplot() equivalent is
% 'pointout'.
% "Normalized dipole length" - [Checkbox] normalize the length of
% all dipoles. Dipplot() command line equivalent: 'normlen'.
% "Additionnal dipfit() options" - [checkbox] enter additionnal
% sequence of 'key', 'val' argument in this edit box.
%
% Inputs:
% EEG - Input dataset
% comps - [integer array] plot component indices. If empty
% all the localized components are plotted.
%
% Optional inputs:
% 'key','val' - same as dipplot()
%
% Author: Arnaud Delorme, CNL / Salk Institute, 26 Feb 2003-
%
% See also: dipplot()
% "Use dipoles from" - [list box] use dipoles from BESA or from the
% DIPFIT toolbox. Command line equivalent: type.
% Copyright (C) 2003 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [com] = pop_dipplot( EEG, comps, varargin);
com ='';
if nargin < 1
help pop_dipplot;
return;
end;
% check input structure
% ---------------------
if ~isfield(EEG, 'dipfit') & ~isfield(EEG, 'sources')
if ~isfield(EEG.dipfit.hdmfile) & ~isfield(EEG, 'sources')
error('No dipole information in dataset');
end;
error('No dipole information in dataset');
end;
if ~isfield(EEG.dipfit, 'model')
error('No dipole information in dataset');
end;
typedip = 'nonbesa';
if nargin < 2
% popup window parameters
% -----------------------
commandload = [ '[filename, filepath] = uigetfile(''*'', ''Select a text file'');' ...
'if filename ~=0,' ...
' set(findobj(''parent'', gcbf, ''tag'', ''mrifile''), ''string'', [ filepath filename ]);' ...
'end;' ...
'clear filename filepath tagtest;' ];
geometry = { [2 1] [2 1] [0.8 0.3 1.5] [2.05 0.26 .75] [2.05 0.26 .75] [2.05 0.26 .75] ...
[2.05 0.26 .75] [2.05 0.26 .75] [2.05 0.26 .75] [2.05 0.26 .75] [2 1] };
uilist = { { 'style' 'text' 'string' 'Components indices ([]=all avaliable)' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'text' 'string' 'Plot dipoles within RV (%) range ([min max])' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'text' 'string' 'Background image' } ...
{ 'style' 'pushbutton' 'string' '...' 'callback' commandload } ...
{ 'style' 'edit' 'string' EEG.dipfit.mrifile 'tag' 'mrifile' } ...
{ 'style' 'text' 'string' 'Plot summary mode' } ...
{ 'style' 'checkbox' 'string' '' } {} ...
{ 'style' 'text' 'string' 'Plot edges' } ...
{ 'style' 'checkbox' 'string' '' } {} ...
{ 'style' 'text' 'string' 'Plot closest MRI slide' } ...
{ 'style' 'checkbox' 'string' '' } {} ...
{ 'style' 'text' 'string' 'Plot dipole''s 2-D projections' } ...
{ 'style' 'checkbox' 'string' '' } {} ...
{ 'style' 'text' 'string' 'Plot projection lines' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Make all dipoles point out' } ...
{ 'style' 'checkbox' 'string' '' } {} ...
{ 'style' 'text' 'string' 'Normalized dipole length' } ...
{ 'style' 'checkbox' 'string' '' 'value' 1 } {} ...
{ 'style' 'text' 'string' 'Additionnal dipplot() options' } ...
{ 'style' 'edit' 'string' '' } };
result = inputgui( geometry, uilist, 'pophelp(''pop_dipplot'')', 'Plot dipoles - pop_dipplot');
if length(result) == 0 return; end;
% decode parameters
% -----------------
options = {};
if ~isempty(result{1}), comps = eval( [ '[' result{1} ']' ] ); else comps = []; end;
if ~isempty(result{2}), options = { options{:} 'rvrange' eval( [ '[' result{2} ']' ] ) }; end;
options = { options{:} 'mri' result{3} };
if result{4} == 1, options = { options{:} 'summary' 'on' 'num' 'on' }; end;
if result{5} == 1, options = { options{:} 'drawedges' 'on' }; end;
if result{6} == 1, options = { options{:} 'cornermri' 'on' 'axistight' 'on' }; end;
if result{7} == 1, options = { options{:} 'projimg' 'on' }; end;
if result{8} == 1, options = { options{:} 'projlines' 'on' }; end;
if result{9} == 1, options = { options{:} 'pointout' 'on' }; end;
if result{10} == 1, options = { options{:} 'normlen' 'on' }; end;
if ~isempty( result{11} ), tmpopt = eval( [ '{' result{11} '}' ] ); options = { options{:} tmpopt{:} }; end;
else
if isstr(comps)
typedip = comps;
options = varargin(2:end);
comps = varargin{1};
else
options = varargin;
end;
end;
if strcmpi(typedip, 'besa')
if ~isfield(EEG, 'sources'), error('No BESA dipole information in dataset');end;
if ~isempty(comps)
[tmp1 int] = intersect( [ EEG.sources.component ], comps);
if isempty(int), error ('Localization not found for selected components'); end;
dipplot(EEG.sources(int), 'sphere', 1, options{:});
else
dipplot(EEG.sources, options{:});
end;
else
if ~isfield(EEG, 'dipfit'), error('No DIPFIT dipole information in dataset');end;
% components to plot
% ------------------
if ~isempty(comps)
if ~isfield(EEG.dipfit.model, 'component')
for index = double(comps(:)')
EEG.dipfit.model(index).component = index;
end;
end;
else
% find localized dipoles
comps = [];
for index2 = 1:length(EEG.dipfit.model)
if ~isempty(EEG.dipfit.model(index2).posxyz) ~= 0
comps = [ comps index2 ];
EEG.dipfit.model(index2).component = index2;
end;
end;
end;
% plotting
% --------
tmpoptions = { options{:} 'coordformat', EEG.dipfit.coordformat };
if strcmpi(EEG.dipfit.coordformat, 'spherical')
dipplot(EEG.dipfit.model(comps), tmpoptions{:});
elseif strcmpi(EEG.dipfit.coordformat, 'CTF')
dipplot(EEG.dipfit.model(comps), tmpoptions{:});
else
dipplot(EEG.dipfit.model(comps), 'meshdata', EEG.dipfit.hdmfile, tmpoptions{:});
end;
end;
if nargin < 3
com = sprintf('pop_dipplot( %s,%s);', inputname(1), vararg2str({ comps options{:}}));
end;
return;
|
github
|
lcnbeapp/beapp-master
|
dipplot.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/dipplot.m
| 61,455 |
utf_8
|
1bc351e760494d6b9df714acf3a089ed
|
% dipplot() - Visualize EEG equivalent-dipole locations and orientations
% in the MNI average MRI head or in the BESA spherical head model.
% Usage:
% >> dipplot( sources, 'key', 'val', ...);
% >> [sources X Y Z XE YE ZE] = dipplot( sources, 'key', 'val', ...);
%
% Inputs:
% sources - structure array of dipole information: can contain
% either BESA or DIPFIT dipole information. BESA dipole
% information are still supported but may disapear in the
% future. For DIPFIT
% sources.posxyz: contains 3-D location of dipole in each
% column. 2 rows indicate 2 dipoles.
% sources.momxyz: contains 3-D moments for dipoles above.
% sources.rv : residual variance from 0 to 1.
% other fields : used for graphic interface.
%
% Optional input:
% 'rvrange' - [min max] or [max] Only plot dipoles with residual variace
% within the given range. Default: plot all dipoles.
% 'summary' - ['on'|'off'|'3d'] Build a summary plot with three views (top,
% back, side). {default: 'off'}
% 'mri' - Matlab file containing an MRI volume and a 4-D transformation
% matrix to go from voxel space to electrode space:
% mri.anatomy contains a 3-D anatomical data array
% mri.transfrom contains a 4-D homogenous transformation matrix.
% 'coordformat' - ['MNI'|'spherical'] Consider that dipole coordinates are in
% MNI or spherical coordinates (for spherical, the radius of the
% head is assumed to be 85 (mm)). See also function sph2spm().
% 'transform' - [real array] traditional transformation matrix to convert
% dipole coordinates to MNI space. Default is assumed from
% 'coordformat' input above. Type help traditional for more
% information.
% 'image' - ['besa'|'mri'] Background image.
% 'mri' (or 'fullmri') uses mean-MRI brain images from the Montreal
% Neurological Institute. This option can also contain a 3-D MRI
% volume (dim 1: left to right; dim 2: anterior-posterior; dim 3:
% superior-inferior). Use 'coregist' to coregister electrodes
% with the MRI. {default: 'mri'}
% 'verbose' - ['on'|'off'] comment on operations on command line {default:
% 'on'}.
% 'plot' - ['on'|'off'] only return outputs {default: 'off'}.
%
% Plotting options:
% 'color' - [cell array of color strings or (1,3) color arrays]. For
% exemple { 'b' 'g' [1 0 0] } gives blue, green and red.
% Dipole colors will rotate through the given colors if
% the number given is less than the number of dipoles to plot.
% A single number will be used as color index in the jet colormap.
% 'view' - 3-D viewing angle in cartesian coords.,
% [0 0 1] gives a sagittal view, [0 -1 0] a view from the rear;
% [1 0 0] gives a view from the side of the head.
% 'mesh' - ['on'|'off'] Display spherical mesh. {Default is 'on'}
% 'meshdata' - [cell array|'file_name'] Mesh data in a cell array { 'vertices'
% data 'faces' data } or a boundary element model filename (the
% function will plot the 3rd mesh in the 'bnd' sub-structure).
% 'axistight' - ['on'|'off'] For MRI only, display the closest MRI
% slide. {Default is 'off'}
% 'gui' - ['on'|'off'] Display controls. {Default is 'on'} If gui 'off',
% a new figure is not created. Useful for incomporating a dipplot
% into a complex figure.
% 'num' - ['on'|'off'] Display component number. Take into account
% dipole size. {Default: 'off'}
% 'cornermri' - ['on'|'off'] force MRI images to the corner of the MRI volume
% (usefull when background is not black). Default: 'off'.
% 'drawedges' - ['on'|'off'] draw edges of the 3-D MRI (black in axistight,
% white otherwise.) Default is 'off'.
% 'projimg' - ['on'|'off'] Project dipole(s) onto the 2-D images, for use
% in making 3-D plots {Default 'off'}
% 'projlines' - ['on'|'off'] Plot lines connecting dipole with 2-D projection.
% Color is dashed black for BESA head and dashed black for the
% MNI brain {Default 'off'}
% 'projcol' - [color] color for the projected line {Default is same as dipole}
% 'dipolesize' - Size of the dipole sphere(s). This option may also contain one
% value per dipole {Default: 30}
% 'dipolelength' - Length of the dipole bar(s) {Default: 1}
% 'pointout' - ['on'|'off'] Point the dipoles outward. {Default: 'off'}
% 'sphere' - [float] radius of sphere corresponding to the skin. Default is 1.
% 'spheres' - ['on'|'off'] {default: 'off'} plot dipole markers as 3-D spheres.
% Does not yet interact with gui buttons, produces non-gui mode.
% 'spheresize' - [real>0] size of spheres (if 'on'). {default: 5}
% 'normlen' - ['on'|'off'] Normalize length of all dipoles. {Default: 'off'}
% 'dipnames' - [cell array] cell array of string with a name for each dipole (or
% pair of dipole).
% 'holdon' - ['on'|'off'] create a new dipplot figure or plot dipoles within an
% an existing figure. Default is 'off'.
% 'camera' - ['auto'|'set'] camera position. 'auto' is the default and
% an option using camera zoom. 'set' is a fixed view that
% does not depend on the content being plotted.
%
% Outputs:
% sources - EEG.source structure with two extra fiels 'mnicoord' and 'talcoord'
% containing the MNI and talairach coordinates of the dipoles. Note
% that for the BEM model, dipoles are already in MNI coordinates.
% X,Y,Z - Locations of dipole heads (Cartesian coordinates in MNI space).
% If there is more than one dipole per components, the last dipole
% is returned.
% XE,YE,ZE - Locations of dipole ends (Cartesian coordinates). The same
% remark as above applies.
%
% Author: Arnaud Delorme, CNL / Salk Institute, 1st July 2002
%
% Notes: See DIPFIT web tutorial at sccn.ucsd.edu/eeglab/dipfittut/dipfit.html
% for more details about MRI co-registration etc...
%
% Example:
% % define dipoles
% sources(1).posxyz = [-59 48 -28]; % position for the first dipole
% sources(1).momxyz = [ 0 58 -69]; % orientation for the first dipole
% sources(1).rv = 0.036; % residual variance for the first dipole
% sources(2).posxyz = [74 -4 -38]; % position for the second dipole
% sources(2).momxyz = [43 -38 -16]; % orientation for the second dipole
% sources(2).rv = 0.027; % residual variance for the second dipole
%
% % plot of the two dipoles (first in green, second in blue)
% dipplot( sources, 'color', { 'g' 'b' });
%
% % To make a stereographic plot
% figure( 'position', [153 553 1067 421];
% subplot(1,3,1); dipplot( sources, 'view', [43 10], 'gui', 'off');
% subplot(1,3,3); dipplot( sources, 'view', [37 10], 'gui', 'off');
%
% % To make a summary plot
% dipplot( sources, 'summary', 'on', 'num', 'on');
%
% See also: eeglab(), dipfit()
% old options
% -----------
% 'std' - [cell array] plot standard deviation of dipoles. i.e.
% { [1:6] [7:12] } plot two elipsoids that best fit all the dipoles
% from 1 to 6 and 7 to 12 with radius 1 standard deviation.
% { { [1:6] 2 'linewidth' 2 } [7:12] } do the same but now the
% first elipsoid is 2 standard-dev and the lines are thicker.
% Copyright (C) 2002 Arnaud Delorme
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% README -- Plotting strategy:
% - All buttons have a tag 'tmp' so they can be removed
% - The component-number buttons have 'userdata' equal to 'editor' and
% can be found easily by other buttons find('userdata', 'editor')
% - All dipoles have a tag 'dipoleX' (X=their number) and can be made
% visible/invisible
% - The gcf object 'userdat' field stores the handle of the dipole that
% is currently being modified
% - Gca 'userdata' stores imqge names and position
function [outsources, XX, YY, ZZ, XO, YO, ZO] = dipplot( sourcesori, varargin )
DEFAULTVIEW = [0 0 1];
if nargin < 1
help dipplot;
return;
end;
% reading and testing arguments
% -----------------------------
sources = sourcesori;
if ~isstruct(sources)
updatedipplot(sources(1));
% sources countain the figure handler
return
end;
% key type range default
g = finputcheck( varargin, { 'color' '' [] [];
'axistight' 'string' { 'on' 'off' } 'off';
'camera' 'string' { 'auto' 'set' } 'auto';
'coordformat' 'string' { 'MNI' 'spherical' 'CTF' 'auto' } 'auto';
'drawedges' 'string' { 'on' 'off' } 'off';
'mesh' 'string' { 'on' 'off' } 'off';
'gui' 'string' { 'on' 'off' } 'on';
'summary' 'string' { 'on2' 'on' 'off' '3d' } 'off';
'verbose' 'string' { 'on' 'off' } 'on';
'view' 'real' [] [0 0 1];
'rvrange' 'real' [0 Inf] [];
'transform' 'real' [0 Inf] [];
'normlen' 'string' { 'on' 'off' } 'off';
'num' 'string' { 'on' 'off' } 'off';
'cornermri' 'string' { 'on' 'off' } 'off';
'mri' { 'string' 'struct' } [] '';
'dipnames' 'cell' [] {};
'projimg' 'string' { 'on' 'off' } 'off';
'projcol' '' [] [];
'projlines' 'string' { 'on' 'off' } 'off';
'pointout' 'string' { 'on' 'off' } 'off';
'holdon' 'string' { 'on' 'off' } 'off';
'dipolesize' 'real' [0 Inf] 30;
'dipolelength' 'real' [0 Inf] 1;
'sphere' 'real' [0 Inf] 1;
'spheres' 'string' {'on' 'off'} 'off';
'links' 'real' [] [];
'image' { 'string' 'real' } [] 'mri';
'plot' 'string' { 'on' 'off' } 'on';
'meshdata' { 'string' 'cell' } [] '' }, 'dipplot');
% 'std' 'cell' [] {};
% 'coreg' 'real' [] [];
if isstr(g), error(g); end;
if strcmpi(g.holdon, 'on'), g.gui = 'off'; end;
if length(g.dipolesize) == 1, g.dipolesize = repmat(g.dipolesize, [1 length(sourcesori)]); end;
g.zoom = 1500;
if strcmpi(g.image, 'besa')
error('BESA image not supported any more. Use EEGLAB version 4.512 or earlier. (BESA dipoles can still be plotted in MNI brain.)');
end;
% trying to determine coordformat
% -------------------------------
if ~isfield(sources, 'momxyz')
g.coordformat = 'spherical';
end;
if strcmpi(g.coordformat, 'auto')
if ~isempty(g.meshdata)
g.coordformat = 'MNI';
if strcmpi(g.verbose, 'on'),
disp('Coordinate format unknown: using ''MNI'' since mesh data was provided as input');
end
else
maxdiplen = 0;
for ind = 1:length(sourcesori)
maxdiplen = max(maxdiplen, max(abs(sourcesori(ind).momxyz(:))));
end;
if maxdiplen>2000
if strcmpi(g.verbose, 'on'),
disp('Coordinate format unknown: using ''MNI'' because of large dipole moments');
end
else
g.coordformat = 'spherical';
if strcmpi(g.verbose, 'on'),
disp('Coordinate format unknown: using ''spherical'' since no mesh data was provided as input');
end
end;
end;
end;
% axis image and limits
% ---------------------
dat.axistight = strcmpi(g.axistight, 'on');
dat.drawedges = g.drawedges;
dat.cornermri = strcmpi(g.cornermri, 'on');
radius = 85;
% look up an MRI file if necessary
% --------------------------------
if isempty(g.mri)
if strcmpi(g.verbose, 'on'),
disp('No MRI file given as input. Looking up one.');
end
dipfitdefs;
g.mri = template_models(1).mrifile;
end;
% read anatomical MRI using Fieldtrip and SPM2 functons
% -----------------------------------------------------
if isstr(g.mri);
try,
g.mri = load('-mat', g.mri);
g.mri = g.mri.mri;
catch,
disp('Failed to read Matlab file. Attempt to read MRI file using function ft_read_mri');
try,
warning off;
g.mri = ft_read_mri(g.mri);
%g.mri.anatomy(find(g.mri.anatomy > 255)) = 255;
%g.mri.anatomy = uint8(g.mri.anatomy);
g.mri.anatomy = round(gammacorrection( g.mri.anatomy, 0.8));
g.mri.anatomy = uint8(round(g.mri.anatomy/max(reshape(g.mri.anatomy, prod(g.mri.dim),1))*255));
% WARNING: if using double instead of int8, the scaling is different
% [-128 to 128 and 0 is not good]
% WARNING: the transform matrix is not 1, 1, 1 on the diagonal, some slices may be
% misplaced
warning on;
catch,
error('Cannot load file using ft_read_mri');
end;
end;
end;
if strcmpi(g.coordformat, 'spherical')
dat.sph2spm = sph2spm;
elseif strcmpi(g.coordformat, 'CTF')
dat.sph2spm = traditionaldipfit([0 0 0 0 0 0 10 -10 10]);
else
dat.sph2spm = []; %traditional([0 0 0 0 0 pi 1 1 1]);
end;
if ~isempty(g.transform), dat.sph2spm = traditionaldipfit(g.transform);
end;
if isfield(g.mri, 'anatomycol')
dat.imgs = g.mri.anatomycol;
else
dat.imgs = g.mri.anatomy;
end;
dat.transform = g.mri.transform;
% MRI coordinates for slices
% --------------------------
if ~isfield(g.mri, 'xgrid')
g.mri.xgrid = [1:size(dat.imgs,1)];
g.mri.ygrid = [1:size(dat.imgs,2)];
g.mri.zgrid = [1:size(dat.imgs,3)];
end;
if strcmpi(g.coordformat, 'CTF')
g.mri.zgrid = g.mri.zgrid(end:-1:1);
end;
dat.imgcoords = { g.mri.xgrid g.mri.ygrid g.mri.zgrid };
dat.maxcoord = [max(dat.imgcoords{1}) max(dat.imgcoords{2}) max(dat.imgcoords{3})];
COLORMESH = 'w';
BACKCOLOR = 'k';
% point 0
% -------
[xx yy zz] = transform(0, 0, 0, dat.sph2spm); % nothing happens for BEM since dat.sph2spm is empty
dat.zeroloc = [ xx yy zz ];
% conversion
% ----------
if strcmpi(g.normlen, 'on')
if isfield(sources, 'besaextori')
sources = rmfield(sources, 'besaextori');
end;
end;
if ~isfield(sources, 'besathloc') & strcmpi(g.image, 'besa') & ~is_sccn
error(['For copyright reasons, it is not possible to use the BESA ' ...
'head model to plot non-BESA dipoles']);
end;
if isfield(sources, 'besathloc')
sources = convertbesaoldformat(sources);
end;
if ~isfield(sources, 'posxyz')
sources = computexyzforbesa(sources);
end;
if ~isfield(sources, 'component')
if strcmpi(g.verbose, 'on'),
disp('No component indices, making incremental ones...');
end
for index = 1:length(sources)
sources(index).component = index;
end;
end;
% find non-empty sources
% ----------------------
noempt = cellfun('isempty', { sources.posxyz } );
sources = sources( find(~noempt) );
% transform coordinates
% ---------------------
outsources = sources;
for index = 1:length(sources)
sources(index).momxyz = sources(index).momxyz/1000;
end;
% remove 0 second dipoles if any
% ------------------------------
for index = 1:length(sources)
if size(sources(index).momxyz,1) == 2
if all(sources(index).momxyz(2,:) == 0)
sources(index).momxyz = sources(index).momxyz(1,:);
sources(index).posxyz = sources(index).posxyz(1,:);
end;
end;
end;
% remove sources with out of bound Residual variance
% --------------------------------------------------
if isfield(sources, 'rv') & ~isempty(g.rvrange)
if length(g.rvrange) == 1, g.rvrange = [ 0 g.rvrange ]; end;
for index = length(sources):-1:1
if sources(index).rv < g.rvrange(1)/100 | sources(index).rv > g.rvrange(2)/100
sources(index) = [];
end;
end;
end;
% color array
% -----------
if isempty(g.color)
g.color = { 'g' 'b' 'r' 'm' 'c' 'y' };
if strcmp(BACKCOLOR, 'w'), g.color = { g.color{:} 'k' }; end;
end;
g.color = g.color(mod(0:length(sources)-1, length(g.color)) +1);
if ~isempty(g.color)
g.color = strcol2real( g.color, jet(64) );
end;
if ~isempty(g.projcol)
g.projcol = strcol2real( g.projcol, jet(64) );
g.projcol = g.projcol(mod(0:length(sources)-1, length(g.projcol)) +1);
else
g.projcol = g.color;
for index = 1:length(g.color)
g.projcol{index} = g.projcol{index}/2;
end;
end;
% build summarized figure
% -----------------------
if strcmpi(g.summary, 'on') | strcmpi(g.summary, 'on2')
figure;
options = { 'gui', 'off', 'dipolesize', g.dipolesize/1.5,'dipolelength', g.dipolelength, 'sphere', g.sphere ...
'color', g.color, 'mesh', g.mesh, 'num', g.num, 'image', g.image 'normlen' g.normlen ...
'coordformat' g.coordformat 'mri' g.mri 'meshdata' g.meshdata 'axistight' g.axistight };
pos1 = [0 0 0.5 0.5];
pos2 = [0 0.5 0.5 .5];
pos3 = [.5 .5 0.5 .5]; if strcmp(g.summary, 'on2'), tmp = pos1; pos1 =pos3; pos3 = tmp; end;
axes('position', pos1); newsources = dipplot(sourcesori, 'view', [1 0 0] , options{:}); axis off;
axes('position', pos2); newsources = dipplot(sourcesori, 'view', [0 0 1] , options{:}); axis off;
axes('position', pos3); newsources = dipplot(sourcesori, 'view', [0 -1 0], options{:}); axis off;
axes('position', [0.5 0 0.5 0.5]);
colorcount = 1;
if isfield(newsources, 'component')
for index = 1:length(newsources)
if isempty(g.dipnames), tmpname = sprintf( 'Comp. %d', newsources(index).component);
else tmpname = char(g.dipnames{index});
end;
talpos = newsources(index).talcoord;
if strcmpi(g.coordformat, 'CTF')
textforgui(colorcount) = { sprintf( [ tmpname ' (RV:%3.2f%%)' ], 100*newsources(index).rv) };
elseif size(talpos,1) == 1
textforgui(colorcount) = { sprintf( [ tmpname ' (RV:%3.2f%%; Tal:%d,%d,%d)' ], ...
100*newsources(index).rv, ...
round(talpos(1,1)), round(talpos(1,2)), round(talpos(1,3))) };
else
textforgui(colorcount) = { sprintf( [ tmpname ' (RV:%3.2f%%; Tal:%d,%d,%d & %d,%d,%d)' ], ...
100*newsources(index).rv, ...
round(talpos(1,1)), round(talpos(1,2)), round(talpos(1,3)), ...
round(talpos(2,1)), round(talpos(2,2)), round(talpos(2,3))) };
end;
colorcount = colorcount+1;
end;
colorcount = colorcount-1;
allstr = strvcat(textforgui{:});
h = text(0,0.45, allstr);
if colorcount >= 15, set(h, 'fontsize', 8);end;
if colorcount >= 20, set(h, 'fontsize', 6);end;
if strcmp(BACKCOLOR, 'k'), set(h, 'color', 'w'); end;
end;
axis off;
return;
elseif strcmpi(g.summary, '3d')
options = { 'gui', 'off', 'dipolesize', g.dipolesize/1.5,'dipolelength', g.dipolelength, 'sphere', g.sphere, 'spheres', g.spheres ...
'color', g.color, 'mesh', g.mesh, 'num', g.num, 'image', g.image 'normlen' g.normlen ...
'coordformat' g.coordformat 'mri' g.mri 'meshdata' g.meshdata 'axistight' g.axistight };
figure('position', [ 100 600 600 200 ]);
axes('position', [-0.1 -0.1 1.2 1.2], 'color', 'k'); axis off; blackimg = zeros(10,10,3); image(blackimg);
axes('position', [0 0 1/3 1], 'tag', 'rear'); dipplot(sourcesori, options{:}, 'holdon', 'on'); view([0 -1 0]);
axes('position', [1/3 0 1/3 1], 'tag', 'top' ); dipplot(sourcesori, options{:}, 'holdon', 'on'); view([0 0 1]);
axes('position', [2/3 0 1/3 1], 'tag', 'side'); dipplot(sourcesori, options{:}, 'holdon', 'on'); view([1 -0.01 0]);
set(gcf, 'paperpositionmode', 'auto');
return;
end;
% plot head graph in 3D
% ---------------------
if strcmp(g.gui, 'on')
fig = figure('visible', g.plot);
pos = get(gca, 'position');
set(gca, 'position', [pos(1)+0.05 pos(2:end)]);
end;
indx = ceil(dat.imgcoords{1}(end)/2);
indy = ceil(dat.imgcoords{2}(end)/2);
indz = ceil(dat.imgcoords{3}(end)/2);
if strcmpi(g.holdon, 'off')
plotimgs( dat, [indx indy indz], dat.transform);
set(gca, 'color', BACKCOLOR);
%warning off; a = imread('besaside.pcx'); warning on;
% BECAUSE OF A BUG IN THE WARP FUNCTION, THIS DOES NOT WORK (11/02)
%hold on; warp([], wy, wz, a);
% set camera target
% -----------------
% format axis (BESA or MRI)
axis equal;
set(gca, 'cameraviewanglemode', 'manual'); % disable change size
camzoom(1.2^2);
if strcmpi(g.coordformat, 'CTF'), g.view(2:3) = -g.view(2:3); end;
view(g.view);
%set(gca, 'cameratarget', dat.zeroloc); % disable change size
%set(gca, 'cameraposition', dat.zeroloc+g.view*g.zoom); % disable change size
axis off;
end;
% plot sphere mesh and nose
% -------------------------
if strcmpi(g.holdon, 'off')
if isempty(g.meshdata)
SPHEREGRAIN = 20; % 20 is also Matlab default
[x y z] = sphere(SPHEREGRAIN);
hold on;
[xx yy zz] = transform(x*0.085, y*0.085, z*0.085, dat.sph2spm);
[xx yy zz] = transform(x*85 , y*85 , z*85 , dat.sph2spm);
%xx = x*100;
%yy = y*100;
%zz = z*100;
if strcmpi(COLORMESH, 'w')
hh = mesh(xx, yy, zz, 'cdata', ones(21,21,3), 'tag', 'mesh'); hidden off;
else
hh = mesh(xx, yy, zz, 'cdata', zeros(21,21,3), 'tag', 'mesh'); hidden off;
end;
else
try,
if isstr(g.meshdata)
tmp = load('-mat', g.meshdata);
g.meshdata = { 'vertices' tmp.vol.bnd(1).pnt 'faces' tmp.vol.bnd(1).tri };
end;
hh = patch(g.meshdata{:}, 'facecolor', 'none', 'edgecolor', COLORMESH, 'tag', 'mesh');
catch, disp('Unrecognize model file (probably CTF)'); end;
end;
end;
%x = x*100*scaling; y = y*100*scaling; z=z*100*scaling;
%h = line(xx,yy,zz); set(h, 'color', COLORMESH, 'linestyle', '--', 'tag', 'mesh');
%h = line(xx,zz,yy); set(h, 'color', COLORMESH, 'linestyle', '--', 'tag', 'mesh');
%h = line([0 0;0 0],[-1 -1.2; -1.2 -1], [-0.3 -0.7; -0.7 -0.7]);
%set(h, 'color', COLORMESH, 'linewidth', 3, 'tag', 'noze');
% determine max length if besatextori exist
% -----------------------------------------
sizedip = [];
for index = 1:length(sources)
sizedip = [ sizedip sources(index).momxyz(3) ];
end;
maxlength = max(sizedip);
% diph = gca; % DEBUG
% colormap('jet');
% cbar
% axes(diph);
for index = 1:length(sources)
nbdip = 1;
if size(sources(index).posxyz, 1) > 1 & any(sources(index).posxyz(2,:)) nbdip = 2; end;
% reorder dipoles for plotting
if nbdip == 2
if sources(index).posxyz(1,1) > sources(index).posxyz(2,1)
tmp = sources(index).posxyz(2,:);
sources(index).posxyz(2,:) = sources(index).posxyz(1,:);
sources(index).posxyz(1,:) = tmp;
tmp = sources(index).momxyz(2,:);
sources(index).momxyz(2,:) = sources(index).momxyz(1,:);
sources(index).momxyz(1,:) = tmp;
end;
if isfield(sources, 'active'),
nbdip = length(sources(index).active);
end;
end;
% dipole length
% -------------
multfactor = 1;
if strcmpi(g.normlen, 'on')
if nbdip == 1
len = sqrt(sum(sources(index).momxyz(1,:).^2));
else
len1 = sqrt(sum(sources(index).momxyz(1,:).^2));
len2 = sqrt(sum(sources(index).momxyz(2,:).^2));
len = mean([len1 len2]);
end;
if strcmpi(g.coordformat, 'CTF'), len = len*10; end;
if len ~= 0, multfactor = 15/len; end;
else
if strcmpi(g.coordformat, 'spherical')
multfactor = 100;
else multfactor = 1.5;
end;
end;
for dip = 1:nbdip
x = sources(index).posxyz(dip,1);
y = sources(index).posxyz(dip,2);
z = sources(index).posxyz(dip,3);
xo = sources(index).momxyz(dip,1)*g.dipolelength*multfactor;
yo = sources(index).momxyz(dip,2)*g.dipolelength*multfactor;
zo = sources(index).momxyz(dip,3)*g.dipolelength*multfactor;
xc = 0;
yc = 0;
zc = 0;
centvec = [xo-xc yo-yc zo-zc]; % vector pointing into center
dipole_orient = [x+xo y+yo z+zo]/norm([x+xo y+yo z+zo]);
c = dot(centvec, dipole_orient);
if strcmpi(g.pointout,'on')
if (c < 0) | (abs([x+xo,y+yo,z+zo]) < abs([x,y,z]))
xo1 = x-xo; % make dipole point outward from head center
yo1 = y-yo;
zo1 = z-zo;
%fprintf('invert because: %e \n', c);
else
xo1 = x+xo;
yo1 = y+yo;
zo1 = z+zo;
%fprintf('NO invert because: %e \n', c);
end
else
xo1 = x+xo;
yo1 = y+yo;
zo1 = z+zo;
%fprintf('NO invert because: %e \n', c);
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% draw dipole bar %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
tag = [ 'dipole' num2str(index) ];
% from spherical to electrode space
% ---------------------------------
[xx yy zz] = transform(x, y, z, dat.sph2spm); % nothing happens for BEM
[xxo1 yyo1 zzo1] = transform(xo1, yo1, zo1, dat.sph2spm); % because dat.sph2spm = []
if ~strcmpi(g.spheres,'on') % plot dipole direction lines
h1 = line( [xx xxo1]', [yy yyo1]', [zz zzo1]');
elseif g.dipolelength>0 % plot dipole direction cylinders with end cap patch
[xc yc zc] = cylinder( 2, 10);
[xs ys zs] = sphere(10);
xc = [ xc; -xs(7:11,:)*2 ];
yc = [ yc; -ys(7:11,:)*2 ];
zc = [ zc; zs(7:11,:)/5+1 ];
colorarray = repmat(reshape(g.color{index}, 1,1,3), [size(zc,1) size(zc,2) 1]);
handles = surf(xc, yc, zc, colorarray, 'tag', tag, 'edgecolor', 'none', ...
'backfacelighting', 'lit', 'facecolor', 'interp', 'facelighting', ...
'phong', 'ambientstrength', 0.3);
[xc yc zc] = adjustcylinder2( handles, [xx yy zz], [xxo1 yyo1 zzo1] );
cx = mean(xc,2); %cx = [(3*cx(1)+cx(2))/4; (cx(1)+3*cx(2))/4];
cy = mean(yc,2); %cy = [(3*cy(1)+cy(2))/4; (cy(1)+3*cy(2))/4];
cz = mean(zc,2); %cz = [(3*cz(1)+cz(2))/4; (cz(1)+3*cz(2))/4];
tmpx = xc - repmat(cx, [1 size(xc, 2)]);
tmpy = yc - repmat(cy, [1 size(xc, 2)]);
tmpz = zc - repmat(cz, [1 size(xc, 2)]);
l=sqrt(tmpx.^2+tmpy.^2+tmpz.^2);
warning('off', 'MATLAB:divideByZero'); % this is due to a Matlab 2008b (or later)
normals = reshape([tmpx./l tmpy./l tmpz./l],[size(tmpx) 3]); % in the rotate function in adjustcylinder2
warning('off', 'MATLAB:divideByZero'); % one of the z (the last row is not rotated)
set( handles, 'vertexnormals', normals);
end
[xxmri yymri zzmri ] = transform(xx, yy, zz, pinv(dat.transform));
[xxmrio1 yymrio1 zzmrio1] = transform(xxo1, yyo1, zzo1, pinv(dat.transform));
dipstruct.mricoord = [xxmri yymri zzmri]; % Coordinates in MRI space
dipstruct.eleccoord = [ xx yy zz ]; % Coordinates in elec space
dipstruct.posxyz = sources(index).posxyz; % Coordinates in spherical space
outsources(index).eleccoord(dip,:) = [xx yy zz];
outsources(index).mnicoord(dip,:) = [xx yy zz];
outsources(index).mricoord(dip,:) = [xxmri yymri zzmri];
outsources(index).talcoord(dip,:) = mni2tal([xx yy zz]')';
dipstruct.talcoord = mni2tal([xx yy zz]')';
% copy for output
% ---------------
XX(index) = xxmri;
YY(index) = yymri;
ZZ(index) = zzmri;
XO(index) = xxmrio1;
YO(index) = yymrio1;
ZO(index) = zzmrio1;
if isempty(g.dipnames)
dipstruct.rv = sprintf('%3.2f', sources(index).rv*100);
dipstruct.name = sources(index).component;
else
dipstruct.rv = sprintf('%3.2f', sources(index).rv*100);
dipstruct.name = g.dipnames{index};
end;
if ~strcmpi(g.spheres,'on') % plot disk markers
set(h1,'userdata',dipstruct,'tag',tag,'color','k','linewidth',g.dipolesize(index)/7.5);
if strcmp(BACKCOLOR, 'k'), set(h1, 'color', g.color{index}); end;
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% draw sphere or disk marker %%%%%%%%%%%%%%%%%%%%%%%%%
%
hold on;
if strcmpi(g.spheres,'on') % plot spheres
if strcmpi(g.projimg, 'on')
if strcmpi(g.verbose, 'on'),
disp('Warning: projections cannot be plotted for 3-D sphere');
end
%tmpcolor = g.color{index} / 2;
%h = plotsphere([xx yy zz], g.dipolesize/6, 'color', g.color{index}, 'proj', ...
% [dat.imgcoords{1}(1) dat.imgcoords{2}(end) dat.imgcoords{3}(1)]*97/100, 'projcol', tmpcolor);
%set(h(2:end), 'userdata', 'proj', 'tag', tag);
else
%h = plotsphere([xx yy zz], g.dipolesize/6, 'color', g.color{index});
end;
h = plotsphere([xx yy zz], g.dipolesize(index)/6, 'color', g.color{index});
set(h(1), 'userdata', dipstruct, 'tag', tag);
else % plot dipole markers
h = plot3(xx, yy, zz);
set(h, 'userdata', dipstruct, 'tag', tag, ...
'marker', '.', 'markersize', g.dipolesize(index), 'color', g.color{index});
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% project onto images %%%%%%%%%%%%%%%%%%%%%%%%%
%
[tmp1xx tmp1yy tmp1zz ] = transform( xxmri , yymri , dat.imgcoords{3}(1), dat.transform);
[tmp1xxo1 tmp1yyo1 tmp1zzo1] = transform( xxmrio1, yymrio1, dat.imgcoords{3}(1), dat.transform);
[tmp2xx tmp2yy tmp2zz ] = transform( xxmri , dat.imgcoords{2}(end), zzmri , dat.transform);
[tmp2xxo1 tmp2yyo1 tmp2zzo1] = transform( xxmrio1, dat.imgcoords{2}(end), zzmrio1, dat.transform);
[tmp3xx tmp3yy tmp3zz ] = transform( dat.imgcoords{1}(1), yymri , zzmri , dat.transform);
[tmp3xxo1 tmp3yyo1 tmp3zzo1] = transform( dat.imgcoords{1}(1), yymrio1, zzmrio1, dat.transform);
if strcmpi(g.projimg, 'on') & strcmpi(g.spheres, 'off')
tmpcolor = g.projcol{index};
% project onto z axis
tag = [ 'dipole' num2str(index) ];
if ~strcmpi(g.image, 'besa')
h = line( [tmp1xx tmp1xxo1]', [tmp1yy tmp1yyo1]', [tmp1zz tmp1zzo1]');
set(h, 'userdata', 'proj', 'tag', tag, 'color','k', 'linewidth', g.dipolesize(index)/7.5);
end;
if strcmp(BACKCOLOR, 'k'), set(h, 'color', tmpcolor); end;
h = plot3(tmp1xx, tmp1yy, tmp1zz);
set(h, 'userdata', 'proj', 'tag', tag, ...
'marker', '.', 'markersize', g.dipolesize(index), 'color', tmpcolor);
% project onto y axis
tag = [ 'dipole' num2str(index) ];
if ~strcmpi(g.image, 'besa')
h = line( [tmp2xx tmp2xxo1]', [tmp2yy tmp2yyo1]', [tmp2zz tmp2zzo1]');
set(h, 'userdata', 'proj', 'tag', tag, 'color','k', 'linewidth', g.dipolesize(index)/7.5);
end;
if strcmp(BACKCOLOR, 'k'), set(h, 'color', tmpcolor); end;
h = plot3(tmp2xx, tmp2yy, tmp2zz);
set(h, 'userdata', 'proj', 'tag', tag, ...
'marker', '.', 'markersize', g.dipolesize(index), 'color', tmpcolor);
% project onto x axis
tag = [ 'dipole' num2str(index) ];
if ~strcmpi(g.image, 'besa')
h = line( [tmp3xx tmp3xxo1]', [tmp3yy tmp3yyo1]', [tmp3zz tmp3zzo1]');
set(h, 'userdata', 'proj', 'tag', tag, 'color','k', 'linewidth', g.dipolesize(index)/7.5);
end;
if strcmp(BACKCOLOR, 'k'), set(h, 'color', tmpcolor); end;
h = plot3(tmp3xx, tmp3yy, tmp3zz);
set(h, 'userdata', 'proj', 'tag', tag, ...
'marker', '.', 'markersize', g.dipolesize(index), 'color', tmpcolor);
end;
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% project onto axes %%%%%%%%%%%%%%%%%%%%%%%%%
%
if strcmpi(g.projlines, 'on')
clear h;
% project onto z axis
tag = [ 'dipole' num2str(index) ];
h(1) = line( [xx tmp1xx]', [yy tmp1yy]', [zz tmp1zz]);
set(h(1), 'userdata', 'proj', 'linestyle', '--', ...
'tag', tag, 'color', g.color{index}, 'linewidth', g.dipolesize(index)/7.5/5);
% project onto x axis
tag = [ 'dipole' num2str(index) ];
h(2) = line( [xx tmp2xx]', [yy tmp2yy]', [zz tmp2zz]);
set(h(2), 'userdata', 'proj', 'linestyle', '--', ...
'tag', tag, 'color', g.color{index}, 'linewidth', g.dipolesize(index)/7.5/5);
% project onto y axis
tag = [ 'dipole' num2str(index) ];
h(3) = line( [xx tmp3xx]', [yy tmp3yy]', [zz tmp3zz]);
set(h(3), 'userdata', 'proj', 'linestyle', '--', ...
'tag', tag, 'color', g.color{index}, 'linewidth', g.dipolesize(index)/7.5/5);
if ~isempty(g.projcol)
set(h, 'color', g.projcol{index});
end;
end;
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% draw text %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
if isfield(sources, 'component')
if strcmp(g.num, 'on')
h = text(xx, yy, zz, [ ' ' int2str(sources(index).component)]);
set(h, 'userdata', dipstruct, 'tag', tag, 'fontsize', g.dipolesize(index)/2 );
if ~strcmpi(g.image, 'besa'), set(h, 'color', 'w'); end;
end;
end;
end;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3-D settings
if strcmpi(g.spheres, 'on')
lighting phong;
material shiny;
camlight left;
camlight right;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% draw elipse for group of dipoles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% does not work because of new scheme, have to be reprogrammed
%if ~isempty(g.std)
% for index = 1:length(g.std)
% if ~iscell(g.std{index})
% plotellipse(sources, g.std{index}, 1, dat.tcparams, dat.coreg);
% else
% sc = plotellipse(sources, g.std{index}{1}, g.std{index}{2}, dat.tcparams, dat.coreg);
% if length( g.std{index} ) > 2
% set(sc, g.std{index}{3:end});
% end;
% end;
% end;
% end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% buttons %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nbsrc = int2str(length(sources));
cbmesh = [ 'if get(gcbo, ''userdata''), ' ...
' set(findobj(''parent'', gca, ''tag'', ''mesh''), ''visible'', ''off'');' ...
' set(gcbo, ''string'', ''Mesh on'');' ...
' set(gcbo, ''userdata'', 0);' ...
'else,' ...
' set(findobj(''parent'', gca, ''tag'', ''mesh''), ''visible'', ''on'');' ...
' set(gcbo, ''string'', ''Mesh off'');' ...
' set(gcbo, ''userdata'', 1);' ...
'end;' ];
cbplot = [ 'if strcmpi(get(gcbo, ''string''), ''plot one''),' ...
' for tmpi = 1:' nbsrc ',' ...
' set(findobj(''parent'', gca, ''tag'', [ ''dipole'' int2str(tmpi) ]), ''visible'', ''off'');' ...
' end; clear tmpi;' ...
' dipplot(gcbf);' ...
' set(gcbo, ''string'', ''Plot all'');' ...
'else,' ...
' for tmpi = 1:' nbsrc ',' ...
' set(findobj(''parent'', gca, ''tag'', [ ''dipole'' int2str(tmpi) ]), ''visible'', ''on'');' ...
' end; clear tmpi;' ...
' set(gcbo, ''string'', ''Plot one'');' ...
'end;' ];
cbview = [ 'tmpuserdat = get(gca, ''userdata'');' ...
'if tmpuserdat.axistight, ' ...
' set(gcbo, ''string'', ''Tight view'');' ...
'else,' ...
' set(gcbo, ''string'', ''Loose view'');' ...
'end;' ...
'tmpuserdat.axistight = ~tmpuserdat.axistight;' ...
'set(gca, ''userdata'', tmpuserdat);' ...
'clear tmpuserdat;' ...
'dipplot(gcbf);' ];
viewstring = fastif(dat.axistight, 'Loose view', 'Tight view');
enmesh = fastif(isempty(g.meshdata) & strcmpi(g.coordformat, 'MNI'), 'off', 'on');
if strcmpi(g.coordformat, 'CTF'), viewcor = 'view([0 1 0]);'; viewtop = 'view([0 0 -1]);'; vis = 'off';
else viewcor = 'view([0 -1 0]);'; viewtop = 'view([0 0 1]);'; vis = 'on';
end;
h = uicontrol( 'unit', 'normalized', 'position', [0 0 .15 1], 'tag', 'tmp', ...
'style', 'text', 'string',' ');
h = uicontrol( 'unit', 'normalized', 'position', [0 0 .15 .05], 'tag', 'tmp', ...
'style', 'pushbutton', 'fontweight', 'bold', 'string', 'No controls', 'callback', ...
'set(findobj(''parent'', gcbf, ''tag'', ''tmp''), ''visible'', ''off'');');
h = uicontrol( 'unit', 'normalized', 'position', [0 0.05 .15 .05], 'tag', 'tmp', ...
'style', 'pushbutton', 'string', 'Top view', 'callback', viewtop);
h = uicontrol( 'unit', 'normalized', 'position', [0 0.1 .15 .05], 'tag', 'tmp', ...
'style', 'pushbutton', 'string', 'Coronal view', 'callback', viewcor);
h = uicontrol( 'unit', 'normalized', 'position', [0 0.15 .15 .05], 'tag', 'tmp', ...
'style', 'pushbutton', 'string', 'Sagittal view', 'callback', 'view([1 0 0]);');
h = uicontrol( 'unit', 'normalized', 'position', [0 0.2 .15 .05], 'tag', 'tmp', ...
'style', 'pushbutton', 'string', viewstring, 'callback', cbview);
h = uicontrol( 'unit', 'normalized', 'position', [0 0.25 .15 .05], 'tag', 'tmp', ...
'style', 'pushbutton', 'string', 'Mesh on', 'userdata', 0, 'callback', ...
cbmesh, 'enable', enmesh, 'visible', vis );
h = uicontrol( 'unit', 'normalized', 'position', [0 0.3 .15 .05], 'tag', 'tmp', ...
'style', 'text', 'string', 'Display:','fontweight', 'bold' );
h = uicontrol( 'unit', 'normalized', 'position', [0 0.35 .15 .02], 'tag', 'tmp',...
'style', 'text', 'string', '');
h = uicontrol( 'unit', 'normalized', 'position', [0 0.37 .15 .05], 'tag', 'tmp','userdata', 'z',...
'style', 'text', 'string', 'Z:', 'visible', vis );
h = uicontrol( 'unit', 'normalized', 'position', [0 0.42 .15 .05], 'tag', 'tmp','userdata', 'y', ...
'style', 'text', 'string', 'Y:', 'visible', vis );
h = uicontrol( 'unit', 'normalized', 'position', [0 0.47 .15 .05], 'tag', 'tmp', 'userdata', 'x',...
'style', 'text', 'string', 'X:', 'visible', vis );
h = uicontrol( 'unit', 'normalized', 'position', [0 0.52 .15 .05], 'tag', 'tmp', 'userdata', 'rv',...
'style', 'text', 'string', 'RV:' );
h = uicontrol( 'unit', 'normalized', 'position', [0 0.57 .15 .05], 'tag', 'tmp', 'userdata', 'comp', ...
'style', 'text', 'string', '');
h = uicontrol( 'unit', 'normalized', 'position', [0 0.62 .15 .05], 'tag', 'tmp', 'userdata', 'editor', ...
'style', 'edit', 'string', '1', 'callback', ...
[ 'dipplot(gcbf);' ] );
h = uicontrol( 'unit', 'normalized', 'position', [0 0.67 .15 .05], 'tag', 'tmp', ...
'style', 'pushbutton', 'string', 'Keep|Prev', 'callback', ...
[ 'editobj = findobj(''parent'', gcf, ''userdata'', ''editor'');' ...
'set(editobj, ''string'', num2str(str2num(get(editobj, ''string''))-1));' ...
'tmpobj = get(gcf, ''userdata'');' ...
'eval(get(editobj, ''callback''));' ...
'set(tmpobj, ''visible'', ''on'');' ...
'clear editobj tmpobj;' ]);
h = uicontrol( 'unit', 'normalized', 'position', [0 0.72 .15 .05], 'tag', 'tmp', ...
'style', 'pushbutton', 'string', 'Prev', 'callback', ...
[ 'editobj = findobj(''parent'', gcf, ''userdata'', ''editor'');' ...
'set(editobj, ''string'', num2str(str2num(get(editobj, ''string''))-1));' ...
'eval(get(editobj, ''callback''));' ...
'clear editobj;' ]);
h = uicontrol( 'unit', 'normalized', 'position', [0 0.77 .15 .05], 'tag', 'tmp', ...
'style', 'pushbutton', 'string', 'Next', 'callback', ...
[ 'editobj = findobj(''parent'', gcf, ''userdata'', ''editor'');' ...
'set(editobj, ''string'', num2str(str2num(get(editobj, ''string''))+1));' ...
'dipplot(gcbf);' ...
'clear editobj;' ]);
h = uicontrol( 'unit', 'normalized', 'position', [0 0.82 .15 .05], 'tag', 'tmp', ...
'style', 'pushbutton', 'string', 'Keep|Next', 'callback', ...
[ 'editobj = findobj(''parent'', gcf, ''userdata'', ''editor'');' ...
'set(editobj, ''string'', num2str(str2num(get(editobj, ''string''))+1));' ...
'tmpobj = get(gcf, ''userdata'');' ...
'dipplot(gcbf);' ...
'set(tmpobj, ''visible'', ''on'');' ...
'clear editobj tmpobj;' ]);
h = uicontrol( 'unit', 'normalized', 'position', [0 0.87 .15 .05], 'tag', 'tmp', ...
'style', 'pushbutton', 'string', 'Plot one', 'callback', cbplot);
h = uicontrol( 'unit', 'normalized', 'position', [0 0.92 .15 .05], 'tag', 'tmp', ...
'style', 'text', 'string', [num2str(length(sources)) ' dipoles:'], 'fontweight', 'bold' );
h = uicontrol( 'unit', 'normalized', 'position', [0 0.97 .15 .05], 'tag', 'tmp', ...
'style', 'text', 'string', '');
set(gcf, 'userdata', findobj('parent', gca, 'tag', 'dipole1'));
dat.nbsources = length(sources);
set(gca, 'userdata', dat ); % last param=1 for MRI view tight/loose
set(gcf, 'color', BACKCOLOR);
if strcmp(g.gui, 'off') | strcmpi(g.holdon, 'on')
set(findobj('parent', gcf, 'tag', 'tmp'), 'visible', 'off');
end;
if strcmp(g.mesh, 'off')
set(findobj('parent', gca, 'tag', 'mesh'), 'visible', 'off');
end;
updatedipplot(gcf);
rotate3d on;
% close figure if necessary
if strcmpi(g.plot, 'off')
try, close(fig); catch, end;
end;
if strcmpi(g.holdon, 'on')
box off;
axis equal;
axis off;
end;
% set camera positon
if strcmpi(g.camera, 'set')
set(gca, 'CameraPosition', [2546.94 -894.981 689.613], ...
'CameraPositionMode', 'manual', ...
'CameraTarget', [0 -18 18], ...
'CameraTargetMode', 'manual', ...
'CameraUpVector', [0 0 1], ...
'CameraUpVectorMode', 'manual', ...
'CameraViewAngle', [3.8815], ...
'CameraViewAngleMode', 'manual');
end;
return;
% electrode space to MRI space
% ============================
function [x,y,z] = transform(x, y, z, transmat);
if isempty(transmat), return; end;
for i = 1:size(x,1)
for j = 1:size(x,2)
tmparray = transmat * [ x(i,j) y(i,j) z(i,j) 1 ]';
x(i,j) = tmparray(1);
y(i,j) = tmparray(2);
z(i,j) = tmparray(3);
end;
end;
% does not work any more
% ----------------------
function sc = plotellipse(sources, ind, nstd, TCPARAMS, coreg);
for i = 1:length(ind)
tmpval(1,i) = -sources(ind(i)).posxyz(1);
tmpval(2,i) = -sources(ind(i)).posxyz(2);
tmpval(3,i) = sources(ind(i)).posxyz(3);
[tmpval(1,i) tmpval(2,i) tmpval(3,i)] = transform(tmpval(1,i), tmpval(2,i), tmpval(3,i), TCPARAMS);
end;
% mean and covariance
C = cov(tmpval');
M = mean(tmpval,2);
[U,L] = eig(C);
% For N standard deviations spread of data, the radii of the eliipsoid will
% be given by N*SQRT(eigenvalues).
radii = nstd*sqrt(diag(L));
% generate data for "unrotated" ellipsoid
[xc,yc,zc] = ellipsoid(0,0,0,radii(1),radii(2),radii(3), 10);
% rotate data with orientation matrix U and center M
a = kron(U(:,1),xc); b = kron(U(:,2),yc); c = kron(U(:,3),zc);
data = a+b+c; n = size(data,2);
x = data(1:n,:)+M(1); y = data(n+1:2*n,:)+M(2); z = data(2*n+1:end,:)+M(3);
% now plot the rotated ellipse
c = ones(size(z));
sc = mesh(x,y,z);
alpha(0.5)
function newsrc = convertbesaoldformat(src);
newsrc = [];
count = 1;
countdip = 1;
if ~isfield(src, 'besaextori'), src(1).besaextori = []; end;
for index = 1:length(src)
% convert format
% --------------
if isempty(src(index).besaextori), src(index).besaextori = 300; end; % 20 mm
newsrc(count).possph(countdip,:) = [ src(index).besathloc src(index).besaphloc src(index).besaexent];
newsrc(count).momsph(countdip,:) = [ src(index).besathori src(index).besaphori src(index).besaextori/300];
% copy other fields
% -----------------
if isfield(src, 'stdX')
newsrc(count).stdX = -src(index).stdY;
newsrc(count).stdY = src(index).stdX;
newsrc(count).stdZ = src(index).stdZ;
end;
if isfield(src, 'rv')
newsrc(count).rv = src(index).rv;
end;
if isfield(src, 'elecrv')
newsrc(count).rvelec = src(index).elecrv;
end;
if isfield(src, 'component')
newsrc(count).component = src(index).component;
if index ~= length(src) & src(index).component == src(index+1).component
countdip = countdip + 1;
else
count = count + 1; countdip = 1;
end;
else
count = count + 1; countdip = 1;
end;
end;
function src = computexyzforbesa(src);
for index = 1:length( src )
for index2 = 1:size( src(index).possph, 1 )
% compute coordinates
% -------------------
postmp = src(index).possph(index2,:);
momtmp = src(index).momsph(index2,:);
phi = postmp(1)+90; %% %%%%%%%%%%%%%%% USE BESA COORDINATES %%%%%
theta = postmp(2); %% %%%%%%%%%%%%%%% USE BESA COORDINATES %%%%%
phiori = momtmp(1)+90; %% %%%%%%%%%%%% USE BESA COORDINATES %%%%%
thetaori = momtmp(2); %% %%%%%%%%%%%% USE BESA COORDINATES %%%%%
% exentricities are in % of the radius of the head sphere
[x y z] = sph2cart(theta/180*pi, phi/180*pi, postmp(3)/1.2);
[xo yo zo] = sph2cart(thetaori/180*pi, phiori/180*pi, momtmp(3)*5); % exentricity scaled for compatibility with DIPFIT
src(index).posxyz(index2,:) = [-y x z];
src(index).momxyz(index2,:) = [-yo xo zo];
end;
end;
% update dipplot (callback call)
% ------------------------------
function updatedipplot(fig)
% find current dipole index and test for authorized range
% -------------------------------------------------------
dat = get(gca, 'userdata');
editobj = findobj('parent', fig, 'userdata', 'editor');
tmpnum = str2num(get(editobj(end), 'string'));
if tmpnum < 1, tmpnum = 1; end;
if tmpnum > dat.nbsources, tmpnum = dat.nbsources; end;
set(editobj(end), 'string', num2str(tmpnum));
% hide current dipole, find next dipole and show it
% -------------------------------------------------
set(get(gcf, 'userdata'), 'visible', 'off');
newdip = findobj('parent', gca, 'tag', [ 'dipole' get(editobj(end), 'string')]);
set(newdip, 'visible', 'on');
set(gcf, 'userdata', newdip);
% find all dipolar structures
% ---------------------------
index = 1;
count = 1;
for index = 1:length(newdip)
if isstruct( get(newdip(index), 'userdata') )
dip_mricoord(count,:) = getfield(get(newdip(index), 'userdata'), 'mricoord');
count = count+1;
foundind = index;
end;
end;
% get residual variance
% ---------------------
if exist('foundind')
tmp = get(newdip(foundind), 'userdata');
tal = tmp.talcoord;
if ~isstr( tmp.name )
tmprvobj = findobj('parent', fig, 'userdata', 'comp'); set( tmprvobj(end), 'string', [ 'Comp: ' int2str(tmp.name) ] );
else tmprvobj = findobj('parent', fig, 'userdata', 'comp'); set( tmprvobj(end), 'string', tmp.name );
end;
tmprvobj = findobj('parent', fig, 'userdata', 'rv'); set( tmprvobj(end), 'string', [ 'RV: ' tmp.rv '%' ] );
tmprvobj = findobj('parent', fig, 'userdata', 'x'); set( tmprvobj(end), 'string', [ 'X tal: ' int2str(round(tal(1))) ]);
tmprvobj = findobj('parent', fig, 'userdata', 'y'); set( tmprvobj(end), 'string', [ 'Y tal: ' int2str(round(tal(2))) ]);
tmprvobj = findobj('parent', fig, 'userdata', 'z'); set( tmprvobj(end), 'string', [ 'Z tal: ' int2str(round(tal(3))) ]);
end
% adapt the MRI to the dipole depth
% ---------------------------------
delete(findobj('parent', gca, 'tag', 'img'));
tmpdiv1 = dat.imgcoords{1}(2)-dat.imgcoords{1}(1);
tmpdiv2 = dat.imgcoords{2}(2)-dat.imgcoords{2}(1);
tmpdiv3 = dat.imgcoords{3}(2)-dat.imgcoords{3}(1);
if ~dat.axistight
[xx yy zz] = transform(0,0,0, pinv(dat.transform)); % elec -> MRI space
indx = minpos(dat.imgcoords{1}-zz);
indy = minpos(dat.imgcoords{2}-yy);
indz = minpos(dat.imgcoords{3}-xx);
else
if ~dat.cornermri
indx = minpos(dat.imgcoords{1} - mean(dip_mricoord(:,1))) - 3*tmpdiv1;
indy = minpos(dat.imgcoords{2} - mean(dip_mricoord(:,2))) + 3*tmpdiv2;
indz = minpos(dat.imgcoords{3} - mean(dip_mricoord(:,3))) - 3*tmpdiv3;
else % no need to shift slice if not ploted close to the dipole
indx = minpos(dat.imgcoords{1} - mean(dip_mricoord(:,1)));
indy = minpos(dat.imgcoords{2} - mean(dip_mricoord(:,2)));
indz = minpos(dat.imgcoords{3} - mean(dip_mricoord(:,3)));
end;
end;
% middle of the brain
% -------------------
plotimgs( dat,min(max([indx indy indz],1),size(dat.imgs)), dat.transform);
%end;
% plot images (transmat is the uniform matrix MRI coords -> elec coords)
% ----------------------------------------------------------------------
function plotimgs(dat, mricoord, transmat);
% loading images
% --------------
if ndims(dat.imgs) == 4 % true color data
img1(:,:,3) = rot90(squeeze(dat.imgs(mricoord(1),:,:,3)));
img2(:,:,3) = rot90(squeeze(dat.imgs(:,mricoord(2),:,3)));
img3(:,:,3) = rot90(squeeze(dat.imgs(:,:,mricoord(3),3)));
img1(:,:,2) = rot90(squeeze(dat.imgs(mricoord(1),:,:,2)));
img2(:,:,2) = rot90(squeeze(dat.imgs(:,mricoord(2),:,2)));
img3(:,:,2) = rot90(squeeze(dat.imgs(:,:,mricoord(3),2)));
img1(:,:,1) = rot90(squeeze(dat.imgs(mricoord(1),:,:,1)));
img2(:,:,1) = rot90(squeeze(dat.imgs(:,mricoord(2),:,1)));
img3(:,:,1) = rot90(squeeze(dat.imgs(:,:,mricoord(3),1)));
else
img1 = rot90(squeeze(dat.imgs(mricoord(1),:,:)));
img2 = rot90(squeeze(dat.imgs(:,mricoord(2),:)));
img3 = rot90(squeeze(dat.imgs(:,:,mricoord(3))));
if ndims(img1) == 2, img1(:,:,3) = img1; img1(:,:,2) = img1(:,:,1); end;
if ndims(img2) == 2, img2(:,:,3) = img2; img2(:,:,2) = img2(:,:,1); end;
if ndims(img3) == 2, img3(:,:,3) = img3; img3(:,:,2) = img3(:,:,1); end;
end;
% computing coordinates for planes
% --------------------------------
wy1 = [min(dat.imgcoords{2}) max(dat.imgcoords{2}); min(dat.imgcoords{2}) max(dat.imgcoords{2})];
wz1 = [min(dat.imgcoords{3}) min(dat.imgcoords{3}); max(dat.imgcoords{3}) max(dat.imgcoords{3})];
wx2 = [min(dat.imgcoords{1}) max(dat.imgcoords{1}); min(dat.imgcoords{1}) max(dat.imgcoords{1})];
wz2 = [min(dat.imgcoords{3}) min(dat.imgcoords{3}); max(dat.imgcoords{3}) max(dat.imgcoords{3})];
wx3 = [min(dat.imgcoords{1}) max(dat.imgcoords{1}); min(dat.imgcoords{1}) max(dat.imgcoords{1})];
wy3 = [min(dat.imgcoords{2}) min(dat.imgcoords{2}); max(dat.imgcoords{2}) max(dat.imgcoords{2})];
if dat.axistight & ~dat.cornermri
wx1 = [ 1 1; 1 1]*dat.imgcoords{1}(mricoord(1));
wy2 = [ 1 1; 1 1]*dat.imgcoords{2}(mricoord(2));
wz3 = [ 1 1; 1 1]*dat.imgcoords{3}(mricoord(3));
else
wx1 = [ 1 1; 1 1]*dat.imgcoords{1}(1);
wy2 = [ 1 1; 1 1]*dat.imgcoords{2}(end);
wz3 = [ 1 1; 1 1]*dat.imgcoords{3}(1);
end;
% transform MRI coordinates to electrode space
% --------------------------------------------
[ elecwx1 elecwy1 elecwz1 ] = transform( wx1, wy1, wz1, transmat);
[ elecwx2 elecwy2 elecwz2 ] = transform( wx2, wy2, wz2, transmat);
[ elecwx3 elecwy3 elecwz3 ] = transform( wx3, wy3, wz3, transmat);
% ploting surfaces
% ----------------
options = { 'FaceColor','texturemap', 'EdgeColor','none', 'CDataMapping', ...
'direct','tag','img', 'facelighting', 'none' };
hold on;
surface(elecwx1, elecwy1, elecwz1, img1(end:-1:1,:,:), options{:});
surface(elecwx2, elecwy2, elecwz2, img2(end:-1:1,:,:), options{:});
surface(elecwx3, elecwy3, elecwz3, img3(end:-1:1,:,:), options{:});
%xlabel('x'); ylabel('y'); zlabel('z'); axis equal; dsaffd
if strcmpi(dat.drawedges, 'on')
% removing old edges if any
delete(findobj( gcf, 'tag', 'edges'));
if dat.axistight & ~dat.cornermri, col = 'k'; else col = [0.5 0.5 0.5]; end;
h(1) = line([elecwx3(1) elecwx3(2)]', [elecwy3(1) elecwy2(1)]', [elecwz1(1) elecwz1(2)]'); % sagittal-transverse
h(2) = line([elecwx3(1) elecwx2(3)]', [elecwy2(1) elecwy2(2)]', [elecwz1(1) elecwz1(2)]'); % coronal-tranverse
h(3) = line([elecwx3(1) elecwx3(2)]', [elecwy2(1) elecwy2(2)]', [elecwz3(1) elecwz1(1)]'); % sagittal-coronal
set(h, 'color', col, 'linewidth', 2, 'tag', 'edges');
end;
%%fill3([-2 -2 2 2], [-2 2 2 -2], wz(:)-1, BACKCOLOR);
%%fill3([-2 -2 2 2], wy(:)-1, [-2 2 2 -2], BACKCOLOR);
rotate3d on
function index = minpos(vals);
vals(find(vals < 0)) = inf;
[tmp index] = min(vals);
function scalegca(multfactor)
xl = xlim; xf = ( xl(2) - xl(1) ) * multfactor;
yl = ylim; yf = ( yl(2) - yl(1) ) * multfactor;
zl = zlim; zf = ( zl(2) - zl(1) ) * multfactor;
xlim( [ xl(1)-xf xl(2)+xf ]);
ylim( [ yl(1)-yf yl(2)+yf ]);
zlim( [ zl(1)-zf zl(2)+zf ]);
function color = strcol2real(colorin, colmap)
if ~iscell(colorin)
for index = 1:length(colorin)
color{index} = colmap(colorin(index),:);
end;
else
color = colorin;
for index = 1:length(colorin)
if isstr(colorin{index})
switch colorin{index}
case 'r', color{index} = [1 0 0];
case 'g', color{index} = [0 1 0];
case 'b', color{index} = [0 0 1];
case 'c', color{index} = [0 1 1];
case 'm', color{index} = [1 0 1];
case 'y', color{index} = [1 1 0];
case 'k', color{index} = [0 0 0];
case 'w', color{index} = [1 1 1];
otherwise, error('Unknown color');
end;
end;
end;
end;
function x = gammacorrection(x, gammaval);
x = 255 * (double(x)/255).^ gammaval;
% image is supposed to be scaled from 0 to 255
% gammaval = 1 is identity of course
|
github
|
lcnbeapp/beapp-master
|
fieldtripchan2eeglab.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/fieldtripchan2eeglab.m
| 1,612 |
utf_8
|
0328813bbaaba65a3bcfde10ecb26e8b
|
% fieldtripchan2eeglab() - convert Fieldtrip channel location structure
% to EEGLAB channel location structure
%
% Usage:
% >> chanlocs = fieldtripchan2eeglab( fieldlocs );
%
% Inputs:
% fieldlocs - Fieldtrip channel structure. See help readlocs()
%
% Outputs:
% chanlocs - EEGLAB channel location structure.
%
% Author: Arnaud Delorme, SCCN, INC, UCSD, 2006-
%
% See also: readlocs()
% Copyright (C) 2003 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function chanlocs = fieldtripchan2eeglab( loc );
if nargin < 1
help fieldtripchan2eeglab;
return;
end;
chanlocs = struct('labels', loc.label(:)', 'X', mattocell(loc.pnt(:,1)'), ...
'Y', mattocell(loc.pnt(:,2)'), ...
'Z', mattocell(loc.pnt(:,3)'));
chanlocs = convertlocs(chanlocs, 'cart2all');
|
github
|
lcnbeapp/beapp-master
|
sph2spm.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/sph2spm.m
| 3,331 |
utf_8
|
67c8de53ef88fdbaa69eea504e17997b
|
% sph2spm() - compute homogenous transformation matrix from
% BESA spherical coordinates to SPM 3-D coordinate
%
% Usage:
% >> trans = sph2spm;
%
% Outputs:
% trans - homogenous transformation matrix
%
% Note: head radius for spherical model is assumed to be 85 mm.
%
% Author: Robert Oostenveld, SMI/FCDC, Nijmegen 2005
% Arnaud Delorme, SCCN, La Jolla 2005
% SMI, University Aalborg, Denmark http://www.smi.auc.dk/
% FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl/
% Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function besa2SPM_result = besa2SPM;
if 0
% original transformation: problem occipital part of the haed did not
% fit
% NAS, Left EAR, Right EAR coordinates in BESA
besa_NAS = [0.0000 0.0913 -0.0407];
besa_LPA = [-0.0865 0.0000 -0.0500];
besa_RPA = [0.0865 0.0000 -0.0500];
% NAS, Left EAR, Right EAR coordinates in SPM average
SPM_NAS = [0 84 -48];
SPM_LPA = [-82 -32 -54];
SPM_RPA = [82 -32 -54];
% transformation to CTF coordinate system
% ---------------------------------------
SPM2common = headcoordinates(SPM_NAS , SPM_LPA , SPM_RPA, 0);
besa2common = headcoordinates(besa_NAS, besa_LPA, besa_RPA, 0);
nazcommon1 = besa2common * [ besa_NAS 1]';
nazcommon2 = SPM2common * [ SPM_NAS 1]';
ratiox = nazcommon1(1)/nazcommon2(1);
lpacommon1 = besa2common * [ besa_LPA 1]';
lpacommon2 = SPM2common * [ SPM_LPA 1]';
ratioy = lpacommon1(2)/lpacommon2(2);
scaling = eye(4);
scaling(1,1) = 1/ratiox;
scaling(2,2) = 1/ratioy;
scaling(3,3) = mean([ 1/ratioy 1/ratiox]);
besa2SPM_result = inv(SPM2common) * scaling * besa2common;
end;
if 0
% using electrodenormalize to fit standard BESA electrode (haed radius
% has to be 85) to BEM electrodes
% problem: fit not optimal for temporal electrodes
% traditional takes as input the .m field returned in the output from
% electrodenormalize
besa2SPM_result = traditionaldipfit([0.5588 -14.5541 1.8045 0.0004 0.0000 -1.5623 1.1889 1.0736 132.6198])
end;
% adapted manualy from above for temporal electrodes (see factor 0.94
% instead of 1.1889 and x shift of -18.0041 instead of -14.5541)
%traditionaldipfit([0.5588 -18.0041 1.8045 0.0004 0.0000 -1.5623 1.1889 0.94 132.6198])
besa2SPM_result = [
0.0101 -0.9400 0 0.5588
1.1889 0.0080 0.0530 -18.0041
-0.0005 -0.0000 1.1268 1.8045
0 0 0 1.0000
];
|
github
|
lcnbeapp/beapp-master
|
homogenous2traditional.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/homogenous2traditional.m
| 5,576 |
utf_8
|
1cd0a7b795501f24b35360ecec62e420
|
function f = homogenous2traditional(H)
% HOMOGENOUS2TRADITIONAL estimates the traditional translation, rotation
% and scaling parameters from a homogenous transformation matrix. It will
% give an error if the homogenous matrix also describes a perspective
% transformation.
%
% Use as
% f = homogenous2traditional(H)
% where H is a 4x4 homogenous transformation matrix and f is a vector with
% nine elements describing
% x-shift
% y-shift
% z-shift
% followed by the
% pitch (rotation around x-axis)
% roll (rotation around y-axis)
% yaw (rotation around z-axis)
% followed by the
% x-rescaling factor
% y-rescaling factor
% z-rescaling factor
%
% The order in which the transformations would be done is exactly opposite
% as the list above, i.e. first z-rescale ... and finally x-shift.
% Copyright (C) 2005, Robert Oostenveld
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% remember the input homogenous transformation matrix
Horg = H;
% The homogenous transformation matrix is built up according to
% H = T * R * S
% where
% R = Rx * Ry * Rz
% estimate the translation
tx = H(1,4);
ty = H(2,4);
tz = H(3,4);
T = [
1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1
];
% recompute the homogenous matrix excluding the translation
H = inv(T) * H;
% estimate the scaling
sx = norm(H(1:3,1));
sy = norm(H(1:3,2));
sz = norm(H(1:3,3));
S = [
sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1
];
% recompute the homogenous matrix excluding the scaling
H = H * inv(S);
% the difficult part is to determine the rotations
% the order of the rotations matters
% compute the rotation using a probe point on the z-axis
p = H * [0 0 1 0]';
% the rotation around the y-axis is resulting in an offset in the positive x-direction
ry = asin(p(1));
% the rotation around the x-axis can be estimated by the projection on the yz-plane
if abs(p(2))<eps && abs(p(2))<eps
% the rotation around y was pi/2 or -pi/2, therefore I cannot estimate the rotation around x any more
error('need another estimate, not implemented yet');
elseif abs(p(3))<eps
% this is an unstable situation for using atan, but the rotation around x is either pi/2 or -pi/2
if p(2)<0
rx = pi/2
else
rx = -pi/2;
end
else
% this is the default equation for determining the rotation
rx = -atan(p(2)/p(3));
end
% recompute the individual rotation matrices
Rx = rotate([rx 0 0]);
Ry = rotate([0 ry 0]);
Rz = inv(Ry) * inv(Rx) * H; % use left side multiplication
% compute the remaining rotation using a probe point on the x-axis
p = Rz * [1 0 0 0]';
rz = asin(p(2));
% the complete rotation matrix was
R = rotate([rx ry rz]);
% compare the original translation with the one that was estimated
H = T * R * S;
%fprintf('remaining difference\n');
%disp(Horg - H);
f = [tx ty tz rx ry rz sx sy sz];
function [output] = rotate(R, input);
% ROTATE performs a 3D rotation on the input coordinates
% around the x, y and z-axis. The direction of the rotation
% is according to the right-hand rule. The rotation is first
% done around the x-, then the y- and finally the z-axis.
%
% Use as
% [output] = rotate(R, input)
% where
% R [rx, ry, rz] rotations around each of the axes in degrees
% input Nx3 matrix with the points before rotation
% output Nx3 matrix with the points after rotation
%
% Or as
% [Tr] = rotate(R)
% where
% R [rx, ry, rz] in degrees
% Tr corresponding homogenous transformation matrix
% Copyright (C) 2000-2004, Robert Oostenveld
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
rotx = eye(3);
roty = eye(3);
rotz = eye(3);
rx = pi*R(1) / 180;
ry = pi*R(2) / 180;
rz = pi*R(3) / 180;
if rx~=0
% rotation around x-axis
rotx(2,:) = [ 0 cos(rx) -sin(rx) ];
rotx(3,:) = [ 0 sin(rx) cos(rx) ];
end
if ry~=0
% rotation around y-axis
roty(1,:) = [ cos(ry) 0 sin(ry) ];
roty(3,:) = [ -sin(ry) 0 cos(ry) ];
end
if rz~=0
% rotation around z-axis
rotz(1,:) = [ cos(rz) -sin(rz) 0 ];
rotz(2,:) = [ sin(rz) cos(rz) 0 ];
end
if nargin==1
% compute and return the homogenous transformation matrix
rotx(4,4) = 1;
roty(4,4) = 1;
rotz(4,4) = 1;
output = rotz * roty * rotx;
else
% apply the transformation on the input points
output = ((rotz * roty * rotx) * input')';
end
|
github
|
lcnbeapp/beapp-master
|
electroderealign.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/electroderealign.m
| 26,943 |
utf_8
|
c09b21089e582b6d28a1fc065011b317
|
function [norm] = electroderealign(cfg);
% ELECTRODEREALIGN rotates and translates electrode positions to
% template electrode positions or towards the head surface. It can
% either perform a rigid body transformation, in which only the
% coordinate system is changed, or it can apply additional deformations
% to the input electrodes.
%
% Use as
% [elec] = electroderealign(cfg)
%
% Three different methods for aligning the input electrodes are implemented:
% based on a warping method, based on the fiducials or interactive with a
% graphical user interface. Each of these approaches is described below.
%
% 1) You can apply a spatial deformation method (i.e. 'warp') that
% automatically minimizes the distance between the electrodes and the
% averaged standard. The warping methods use a non-linear search to
% optimize the error between input and template electrodes or the
% head surface.
%
% 2) You can apply a rigid body realignment based on three fiducial locations.
% Realigning using the fiducials only ensures that the fiducials (typically
% nose, left and right ear) are along the same axes in the input electrode
% set as in the template electrode set.
%
% 3) You can display the electrode positions together with the skin surface,
% and manually (using the graphical user interface) adjust the rotation,
% translation and scaling parameters, so that the two match.
%
% The configuration can contain the following options
% cfg.method = different methods for aligning the electrodes
% 'rigidbody' apply a rigid-body warp
% 'globalrescale' apply a rigid-body warp with global rescaling
% 'traditional' apply a rigid-body warp with individual axes rescaling
% 'nonlin1' apply a 1st order non-linear warp
% 'nonlin2' apply a 2nd order non-linear warp
% 'nonlin3' apply a 3rd order non-linear warp
% 'nonlin4' apply a 4th order non-linear warp
% 'nonlin5' apply a 5th order non-linear warp
% 'realignfiducial' realign the fiducials
% 'interactive' manually using graphical user interface
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'),
% see CHANNELSELECTION for details
% cfg.fiducial = cell-array with the name of three fiducials used for
% realigning (default = {'nasion', 'lpa', 'rpa'})
% cfg.casesensitive = 'yes' or 'no', determines whether string comparisons
% between electrode labels are case sensitive (default = 'yes')
% cfg.feedback = 'yes' or 'no' (default = 'no')
%
% The electrode set that will be realigned is specified as
% cfg.elecfile = string with filename, or alternatively
% cfg.elec = structure with electrode definition
%
% If you want to align the electrodes to a single template electrode set
% or to multiple electrode sets (which will be averaged), you should
% specify the template electrode sets as
% cfg.template = single electrode set that serves as standard
% or
% cfg.template{1..N} = list of electrode sets that are averaged into the standard
% The template electrode sets can be specified either as electrode
% structures (i.e. when they are already read in memory) or as electrode
% files.
%
% If you want to align the electrodes to the head surface as obtained from
% an anatomical MRI (using one of the warping methods), you should specify
% the head surface
% cfg.headshape = a filename containing headshape, a structure containing a
% single triangulated boundary, or a Nx3 matrix with surface
% points
%
% In case you only want to realign the fiducials, the template electrode
% set only has to contain the three fiducials, e.g.
% cfg.template.pnt(1,:) = [110 0 0] % location of the nose
% cfg.template.pnt(2,:) = [0 90 0] % left ear
% cfg.template.pnt(3,:) = [0 -90 0] % right ear
% cfg.template.label = {''nasion', 'lpa', 'rpa'}
%
% See also READ_FCDC_ELEC, VOLUMEREALIGN
% Copyright (C) 2005-2006, Robert Oostenveld
%
% $Log: electroderealign.m,v $
% Revision 1.1 2009/01/30 04:02:02 arno
% *** empty log message ***
%
% Revision 1.6 2007/08/06 09:20:14 roboos
% added support for bti_hs
%
% Revision 1.5 2007/07/26 08:00:09 roboos
% also deal with cfg.headshape if specified as surface, set of points or ctf_hs file.
% the construction of the tri is now done consistently for all headshapes if tri is missing
%
% Revision 1.4 2007/02/13 15:12:51 roboos
% removed cfg.plot3d option
%
% Revision 1.3 2006/12/12 11:28:33 roboos
% moved projecttri subfunction into seperate function
%
% Revision 1.2 2006/10/04 07:10:07 roboos
% updated documentation
%
% Revision 1.1 2006/09/13 07:20:06 roboos
% renamed electrodenormalize to electroderealign, added "deprecated"-warning to the old function
%
% Revision 1.10 2006/09/13 07:09:24 roboos
% Implemented support for cfg.method=interactive, using GUI for specifying and showing transformations. Sofar only for electrodes+headsurface.
%
% Revision 1.9 2006/09/12 15:26:06 roboos
% implemented support for aligning electrodes to the skin surface, extended and improved documentation
%
% Revision 1.8 2006/04/20 09:58:34 roboos
% updated documentation
%
% Revision 1.7 2006/04/19 15:42:53 roboos
% replaced call to warp_pnt with new function name warp_optim
%
% Revision 1.6 2006/03/14 08:16:00 roboos
% changed function call to warp3d into warp_apply (thanks to Arno)
%
% Revision 1.5 2005/05/17 17:50:37 roboos
% changed all "if" occurences of & and | into && and ||
% this makes the code more compatible with Octave and also seems to be in closer correspondence with Matlab documentation on shortcircuited evaluation of sequential boolean constructs
%
% Revision 1.4 2005/03/21 15:49:43 roboos
% added cfg.casesensitive for string comparison of electrode labels
% added cfg.feedback and cfg.plot3d option for debugging
% changed output: now ALL electrodes of the input are rerurned, after applying the specified transformation
% fixed small bug in feedback regarding distarnce prior/after realignfiducials)
% added support for various warping strategies, a.o. traditional, rigidbody, nonlin1-5, etc.
%
% Revision 1.3 2005/03/16 09:18:56 roboos
% fixed bug in fprintf feedback, instead of giving mean squared distance it should give mean distance before and after normalization
%
% Revision 1.2 2005/01/18 12:04:39 roboos
% improved error handling of missing fiducials
% added other default fiducials
% changed debugging output
%
% Revision 1.1 2005/01/17 14:56:06 roboos
% new implementation
%
% set the defaults
if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end
if ~isfield(cfg, 'feedback'), cfg.feedback = 'no'; end
if ~isfield(cfg, 'casesensitive'), cfg.casesensitive = 'yes'; end
if ~isfield(cfg, 'headshape'), cfg.headshape = []; end
if ~isfield(cfg, 'template'), cfg.template = []; end
% this is a common mistake which can be accepted
if strcmp(cfg.method, 'realignfiducials')
cfg.method = 'realignfiducial';
end
if strcmp(cfg.method, 'warp')
% rename the default warp to one of the method recognized by the warping toolbox
cfg.method = 'traditional';
end
if strcmp(cfg.feedback, 'yes')
% use the global fb field to tell the warping toolbox to print feedback
global fb
fb = 1;
else
global fb
fb = 0;
end
usetemplate = isfield(cfg, 'template') && ~isempty(cfg.template);
useheadshape = isfield(cfg, 'headshape') && ~isempty(cfg.headshape);
if usetemplate
% get the template electrode definitions
if ~iscell(cfg.template)
cfg.template = {cfg.template};
end
Ntemplate = length(cfg.template);
for i=1:Ntemplate
if isstruct(cfg.template{i})
template(i) = cfg.template{i};
else
template(i) = read_fcdc_elec(cfg.template{i});
end
end
elseif useheadshape
% get the surface describing the head shape
if isstruct(cfg.headshape) && isfield(cfg.headshape, 'pnt')
% use the headshape surface specified in the configuration
headshape = cfg.headshape;
elseif isnumeric(cfg.headshape) && size(cfg.headshape,2)==3
% use the headshape points specified in the configuration
headshape.pnt = cfg.headshape;
elseif ischar(cfg.headshape) && filetype(cfg.headshape, 'ctf_shape')
% read the headshape from file
headshape = read_ctf_shape(cfg.headshape);
elseif ischar(cfg.headshape) && filetype(cfg.headshape, '4d_hs')
% read the headshape from file
headshape = [];
headshape.pnt = read_bti_hs(cfg.headshape);
else
error('cfg.headshape is not specified correctly')
end
if ~isfield(headshape, 'tri')
% generate a closed triangulation from the surface points
headshape.tri = projecttri(headshape.pnt);
end
else
error('you should either specify template electrode positions, template fiducials or a head shape');
end
% get the electrode definition that should be warped
if isfield(cfg, 'elec')
elec = cfg.elec;
else
elec = read_fcdc_elec(cfg.elecfile);
end
% remember the original electrode locations and labels
orig = elec;
% convert all labels to lower case for string comparisons
% this has to be done AFTER keeping the original labels and positions
if strcmp(cfg.casesensitive, 'no')
for i=1:length(elec.label)
elec.label{i} = lower(elec.label{i});
end
for j=1:length(template)
for i=1:length(template(j).label)
template(j).label{i} = lower(template(j).label{i});
end
end
end
if strcmp(cfg.feedback, 'yes')
% create an empty figure, continued below...
figure
axis equal
axis vis3d
hold on
xlabel('x')
ylabel('y')
zlabel('z')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if usetemplate && any(strcmp(cfg.method, {'rigidbody', 'globalrescale', 'traditional', 'nonlin1', 'nonlin2', 'nonlin3', 'nonlin4', 'nonlin5'}))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% determine electrode selection and overlapping subset for warping
cfg.channel = channelselection(cfg.channel, elec.label);
for i=1:Ntemplate
cfg.channel = channelselection(cfg.channel, template(i).label);
end
% make subselection of electrodes
[cfgsel, datsel] = match_str(cfg.channel, elec.label);
elec.label = elec.label(datsel);
elec.pnt = elec.pnt(datsel,:);
for i=1:Ntemplate
[cfgsel, datsel] = match_str(cfg.channel, template(i).label);
template(i).label = template(i).label(datsel);
template(i).pnt = template(i).pnt(datsel,:);
end
% compute the average of the template electrode positions
all = [];
for i=1:Ntemplate
all = cat(3, all, template(i).pnt);
end
avg = mean(all,3);
stderr = std(all, [], 3);
fprintf('warping electrodes to template... '); % the newline comes later
[norm.pnt, norm.m] = warp_optim(elec.pnt, avg, cfg.method);
norm.label = elec.label;
dpre = mean(sqrt(sum((avg - elec.pnt).^2, 2)));
dpost = mean(sqrt(sum((avg - norm.pnt).^2, 2)));
fprintf('mean distance prior to warping %f, after warping %f\n', dpre, dpost);
if strcmp(cfg.feedback, 'yes')
% plot all electrodes before warping
my_plot3(elec.pnt, 'r.');
my_plot3(elec.pnt(1,:), 'r*');
my_plot3(elec.pnt(2,:), 'r*');
my_plot3(elec.pnt(3,:), 'r*');
my_text3(elec.pnt(1,:), elec.label{1}, 'color', 'r');
my_text3(elec.pnt(2,:), elec.label{2}, 'color', 'r');
my_text3(elec.pnt(3,:), elec.label{3}, 'color', 'r');
% plot all electrodes after warping
my_plot3(norm.pnt, 'm.');
my_plot3(norm.pnt(1,:), 'm*');
my_plot3(norm.pnt(2,:), 'm*');
my_plot3(norm.pnt(3,:), 'm*');
my_text3(norm.pnt(1,:), norm.label{1}, 'color', 'm');
my_text3(norm.pnt(2,:), norm.label{2}, 'color', 'm');
my_text3(norm.pnt(3,:), norm.label{3}, 'color', 'm');
% plot the template electrode locations
my_plot3(avg, 'b.');
my_plot3(avg(1,:), 'b*');
my_plot3(avg(2,:), 'b*');
my_plot3(avg(3,:), 'b*');
my_text3(avg(1,:), norm.label{1}, 'color', 'b');
my_text3(avg(2,:), norm.label{2}, 'color', 'b');
my_text3(avg(3,:), norm.label{3}, 'color', 'b');
% plot lines connecting the input/warped electrode locations with the template locations
my_line3(elec.pnt, avg, 'color', 'r');
my_line3(norm.pnt, avg, 'color', 'm');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif useheadshape && any(strcmp(cfg.method, {'rigidbody', 'globalrescale', 'traditional', 'nonlin1', 'nonlin2', 'nonlin3', 'nonlin4', 'nonlin5'}))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% determine electrode selection and overlapping subset for warping
cfg.channel = channelselection(cfg.channel, elec.label);
% make subselection of electrodes
[cfgsel, datsel] = match_str(cfg.channel, elec.label);
elec.label = elec.label(datsel);
elec.pnt = elec.pnt(datsel,:);
fprintf('warping electrodes to head shape... '); % the newline comes later
[norm.pnt, norm.m] = warp_optim(elec.pnt, headshape, cfg.method);
norm.label = elec.label;
dpre = warp_error([], elec.pnt, headshape, cfg.method);
dpost = warp_error(norm.m, elec.pnt, headshape, cfg.method);
fprintf('mean distance prior to warping %f, after warping %f\n', dpre, dpost);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(cfg.method, 'realignfiducial')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% try to determine the fiducials automatically if not specified
option1 = {'nasion' 'left' 'right'};
option2 = {'nasion' 'lpa' 'rpa'};
option3 = {'nz' 'lpa' 'rpa'};
if ~isfield(cfg, 'fiducial')
if length(match_str(elec.label, option1))==3
cfg.fiducial = option1;
elseif length(match_str(elec.label, option2))==3
cfg.fiducial = option2;
elseif length(match_str(elec.label, option3))==3
cfg.fiducial = option3;
else
error('could not determine three fiducials, please specify cfg.fiducial')
end
end
fprintf('using fiducials {''%s'', ''%s'', ''%s''}\n', cfg.fiducial{1}, cfg.fiducial{2}, cfg.fiducial{3});
% determine electrode selection
cfg.channel = channelselection(cfg.channel, elec.label);
[cfgsel, datsel] = match_str(cfg.channel, elec.label);
elec.label = elec.label(datsel);
elec.pnt = elec.pnt(datsel,:);
if length(cfg.fiducial)~=3
error('you must specify three fiducials');
end
% do case-insensitive search for fiducial locations
nas_indx = match_str(lower(elec.label), lower(cfg.fiducial{1}));
lpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{2}));
rpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{3}));
if length(nas_indx)~=1 || length(lpa_indx)~=1 || length(rpa_indx)~=1
error('not all fiducials were found in the electrode set');
end
elec_nas = elec.pnt(nas_indx,:);
elec_lpa = elec.pnt(lpa_indx,:);
elec_rpa = elec.pnt(rpa_indx,:);
% find the matching fiducials in the template and average them
templ_nas = [];
templ_lpa = [];
templ_rpa = [];
for i=1:Ntemplate
nas_indx = match_str(lower(template(i).label), lower(cfg.fiducial{1}));
lpa_indx = match_str(lower(template(i).label), lower(cfg.fiducial{2}));
rpa_indx = match_str(lower(template(i).label), lower(cfg.fiducial{3}));
if length(nas_indx)~=1 || length(lpa_indx)~=1 || length(rpa_indx)~=1
error(sprintf('not all fiducials were found in template %d', i));
end
templ_nas(end+1,:) = template(i).pnt(nas_indx,:);
templ_lpa(end+1,:) = template(i).pnt(lpa_indx,:);
templ_rpa(end+1,:) = template(i).pnt(rpa_indx,:);
end
templ_nas = mean(templ_nas,1);
templ_lpa = mean(templ_lpa,1);
templ_rpa = mean(templ_rpa,1);
% realign both to a common coordinate system
elec2common = headcoordinates(elec_nas, elec_lpa, elec_rpa);
templ2common = headcoordinates(templ_nas, templ_lpa, templ_rpa);
% compute the combined transform and realign the electrodes to the template
norm = [];
norm.m = elec2common * inv(templ2common);
norm.pnt = warp_apply(norm.m, elec.pnt, 'homogeneous');
norm.label = elec.label;
nas_indx = match_str(lower(elec.label), lower(cfg.fiducial{1}));
lpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{2}));
rpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{3}));
dpre = mean(sqrt(sum((elec.pnt([nas_indx lpa_indx rpa_indx],:) - [templ_nas; templ_lpa; templ_rpa]).^2, 2)));
nas_indx = match_str(lower(norm.label), lower(cfg.fiducial{1}));
lpa_indx = match_str(lower(norm.label), lower(cfg.fiducial{2}));
rpa_indx = match_str(lower(norm.label), lower(cfg.fiducial{3}));
dpost = mean(sqrt(sum((norm.pnt([nas_indx lpa_indx rpa_indx],:) - [templ_nas; templ_lpa; templ_rpa]).^2, 2)));
fprintf('mean distance between fiducials prior to realignment %f, after realignment %f\n', dpre, dpost);
if strcmp(cfg.feedback, 'yes')
% plot the first three electrodes before transformation
my_plot3(elec.pnt(1,:), 'r*');
my_plot3(elec.pnt(2,:), 'r*');
my_plot3(elec.pnt(3,:), 'r*');
my_text3(elec.pnt(1,:), elec.label{1}, 'color', 'r');
my_text3(elec.pnt(2,:), elec.label{2}, 'color', 'r');
my_text3(elec.pnt(3,:), elec.label{3}, 'color', 'r');
% plot the template fiducials
my_plot3(templ_nas, 'b*');
my_plot3(templ_lpa, 'b*');
my_plot3(templ_rpa, 'b*');
my_text3(templ_nas, ' nas', 'color', 'b');
my_text3(templ_lpa, ' lpa', 'color', 'b');
my_text3(templ_rpa, ' rpa', 'color', 'b');
% plot all electrodes after transformation
my_plot3(norm.pnt, 'm.');
my_plot3(norm.pnt(1,:), 'm*');
my_plot3(norm.pnt(2,:), 'm*');
my_plot3(norm.pnt(3,:), 'm*');
my_text3(norm.pnt(1,:), norm.label{1}, 'color', 'm');
my_text3(norm.pnt(2,:), norm.label{2}, 'color', 'm');
my_text3(norm.pnt(3,:), norm.label{3}, 'color', 'm');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(cfg.method, 'interactive')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% open a figure
fig = figure;
% add the data to the figure
set(fig, 'CloseRequestFcn', @cb_close);
setappdata(fig, 'elec', elec);
setappdata(fig, 'transform', eye(4));
if useheadshape
setappdata(fig, 'surf', headshape);
end
if usetemplate
% FIXME interactive realigning to template electrodes is not yet supported
% this requires a consistent handling of channel selection etc.
setappdata(fig, 'template', template);
end
% add the GUI elements
cb_creategui(gca);
cb_redraw(gca);
rotate3d on
waitfor(fig);
% get the data from the figure that was left behind as global variable
global norm
tmp = norm;
clear global norm
norm = tmp;
clear tmp
else
error('unknown method');
end
% apply the spatial transformation to all electrodes, and replace the
% electrode labels by their case-sensitive original values
if any(strcmp(cfg.method, {'rigidbody', 'globalrescale', 'traditional', 'nonlin1', 'nonlin2', 'nonlin3', 'nonlin4', 'nonlin5'}))
norm.pnt = warp_apply(norm.m, orig.pnt, cfg.method);
else
norm.pnt = warp_apply(norm.m, orig.pnt, 'homogenous');
end
norm.label = orig.label;
% add version information to the configuration
try
% get the full name of the function
cfg.version.name = mfilename('fullpath');
catch
% required for compatibility with Matlab versions prior to release 13 (6.5)
[st, i] = dbstack;
cfg.version.name = st(i);
end
cfg.version.id = '$Id: electroderealign.m,v 1.1 2009/01/30 04:02:02 arno Exp $';
% remember the configuration
norm.cfg = cfg;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% some simple SUBFUNCTIONs that facilitate 3D plotting
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = my_plot3(xyz, varargin)
h = plot3(xyz(:,1), xyz(:,2), xyz(:,3), varargin{:});
function h = my_text3(xyz, varargin)
h = text(xyz(:,1), xyz(:,2), xyz(:,3), varargin{:});
function my_line3(xyzB, xyzE, varargin)
for i=1:size(xyzB,1)
line([xyzB(i,1) xyzE(i,1)], [xyzB(i,2) xyzE(i,2)], [xyzB(i,3) xyzE(i,3)], varargin{:})
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to layout a moderately complex graphical user interface
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = layoutgui(fig, geometry, position, style, string, value, tag, callback);
horipos = geometry(1); % lower left corner of the GUI part in the figure
vertpos = geometry(2); % lower left corner of the GUI part in the figure
width = geometry(3); % width of the GUI part in the figure
height = geometry(4); % height of the GUI part in the figure
horidist = 0.05;
vertdist = 0.05;
options = {'units', 'normalized', 'HorizontalAlignment', 'center'}; % 'VerticalAlignment', 'middle'
Nrow = size(position,1);
h = cell(Nrow,1);
for i=1:Nrow
if isempty(position{i})
continue;
end
position{i} = position{i} ./ sum(position{i});
Ncol = size(position{i},2);
ybeg = (Nrow-i )/Nrow + vertdist/2;
yend = (Nrow-i+1)/Nrow - vertdist/2;
for j=1:Ncol
xbeg = sum(position{i}(1:(j-1))) + horidist/2;
xend = sum(position{i}(1:(j ))) - horidist/2;
pos(1) = xbeg*width + horipos;
pos(2) = ybeg*height + vertpos;
pos(3) = (xend-xbeg)*width;
pos(4) = (yend-ybeg)*height;
h{i}{j} = uicontrol(fig, ...
options{:}, ...
'position', pos, ...
'style', style{i}{j}, ...
'string', string{i}{j}, ...
'tag', tag{i}{j}, ...
'value', value{i}{j}, ...
'callback', callback{i}{j} ...
);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_creategui(hObject, eventdata, handles);
% define the position of each GUI element
position = {
[2 1 1 1]
[2 1 1 1]
[2 1 1 1]
[1]
[1]
[1]
[1]
[1 1]
};
% define the style of each GUI element
style = {
{'text' 'edit' 'edit' 'edit'}
{'text' 'edit' 'edit' 'edit'}
{'text' 'edit' 'edit' 'edit'}
{'pushbutton'}
{'pushbutton'}
{'toggle'}
{'toggle'}
{'text' 'edit'}
};
% define the descriptive string of each GUI element
string = {
{'rotate' 0 0 0}
{'translate' 0 0 0}
{'scale' 1 1 1}
{'redisplay'}
{'apply'}
{'toggle grid'}
{'toggle axes'}
{'alpha' 0.7}
};
% define the value of each GUI element
value = {
{[] [] [] []}
{[] [] [] []}
{[] [] [] []}
{[]}
{[]}
{0}
{0}
{[] []}
};
% define a tag for each GUI element
tag = {
{'' 'rx' 'ry' 'rz'}
{'' 'tx' 'ty' 'tz'}
{'' 'sx' 'sy' 'sz'}
{''}
{''}
{'toggle grid'}
{'toggle axes'}
{'' 'alpha'}
};
% define the callback function of each GUI element
callback = {
{[] @cb_redraw @cb_redraw @cb_redraw}
{[] @cb_redraw @cb_redraw @cb_redraw}
{[] @cb_redraw @cb_redraw @cb_redraw}
{@cb_redraw}
{@cb_apply}
{@cb_redraw}
{@cb_redraw}
{[] @cb_redraw}
};
fig = get(hObject, 'parent');
layoutgui(fig, [0.7 0.05 0.25 0.50], position, style, string, value, tag, callback);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_redraw(hObject, eventdata, handles);
fig = get(hObject, 'parent');
surf = getappdata(fig, 'surf');
elec = getappdata(fig, 'elec');
template = getappdata(fig, 'template');
% get the transformation details
rx = str2num(get(findobj(fig, 'tag', 'rx'), 'string'));
ry = str2num(get(findobj(fig, 'tag', 'ry'), 'string'));
rz = str2num(get(findobj(fig, 'tag', 'rz'), 'string'));
tx = str2num(get(findobj(fig, 'tag', 'tx'), 'string'));
ty = str2num(get(findobj(fig, 'tag', 'ty'), 'string'));
tz = str2num(get(findobj(fig, 'tag', 'tz'), 'string'));
sx = str2num(get(findobj(fig, 'tag', 'sx'), 'string'));
sy = str2num(get(findobj(fig, 'tag', 'sy'), 'string'));
sz = str2num(get(findobj(fig, 'tag', 'sz'), 'string'));
R = rotate ([rx ry rz]);
T = translate([tx ty tz]);
S = scale ([sx sy sz]);
H = S * T * R;
elec.pnt = warp_apply(H, elec.pnt);
axis vis3d; cla
xlabel('x')
ylabel('y')
zlabel('z')
if ~isempty(surf)
triplot(surf.pnt, surf.tri, [], 'faces_skin');
alpha(str2num(get(findobj(fig, 'tag', 'alpha'), 'string')));
end
if ~isempty(template)
triplot(template.pnt, [], [], 'nodes_blue')
end
triplot(elec.pnt, [], [], 'nodes');
if isfield(elec, 'line')
triplot(elec.pnt, elec.line, [], 'edges');
end
if get(findobj(fig, 'tag', 'toggle axes'), 'value')
axis on
else
axis off
end
if get(findobj(fig, 'tag', 'toggle grid'), 'value')
grid on
else
grid off
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_apply(hObject, eventdata, handles);
fig = get(hObject, 'parent');
elec = getappdata(fig, 'elec');
transform = getappdata(fig, 'transform');
% get the transformation details
rx = str2num(get(findobj(fig, 'tag', 'rx'), 'string'));
ry = str2num(get(findobj(fig, 'tag', 'ry'), 'string'));
rz = str2num(get(findobj(fig, 'tag', 'rz'), 'string'));
tx = str2num(get(findobj(fig, 'tag', 'tx'), 'string'));
ty = str2num(get(findobj(fig, 'tag', 'ty'), 'string'));
tz = str2num(get(findobj(fig, 'tag', 'tz'), 'string'));
sx = str2num(get(findobj(fig, 'tag', 'sx'), 'string'));
sy = str2num(get(findobj(fig, 'tag', 'sy'), 'string'));
sz = str2num(get(findobj(fig, 'tag', 'sz'), 'string'));
R = rotate ([rx ry rz]);
T = translate([tx ty tz]);
S = scale ([sx sy sz]);
H = S * T * R;
elec.pnt = warp_apply(H, elec.pnt);
transform = H * transform;
set(findobj(fig, 'tag', 'rx'), 'string', 0);
set(findobj(fig, 'tag', 'ry'), 'string', 0);
set(findobj(fig, 'tag', 'rz'), 'string', 0);
set(findobj(fig, 'tag', 'tx'), 'string', 0);
set(findobj(fig, 'tag', 'ty'), 'string', 0);
set(findobj(fig, 'tag', 'tz'), 'string', 0);
set(findobj(fig, 'tag', 'sx'), 'string', 1);
set(findobj(fig, 'tag', 'sy'), 'string', 1);
set(findobj(fig, 'tag', 'sz'), 'string', 1);
setappdata(fig, 'elec', elec);
setappdata(fig, 'transform', transform);
cb_redraw(hObject);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_close(hObject, eventdata, handles);
% make the current transformation permanent and subsequently allow deleting the figure
cb_apply(gca);
% get the updated electrode from the figure
fig = hObject;
% hmmm, this is ugly
global norm
norm = getappdata(fig, 'elec');
norm.m = getappdata(fig, 'transform');
set(fig, 'CloseRequestFcn', @delete);
delete(fig);
|
github
|
lcnbeapp/beapp-master
|
pop_dipfit_nonlinear.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/pop_dipfit_nonlinear.m
| 19,264 |
utf_8
|
38b5b9d5f0129b1a4aaf3230c2578eac
|
% pop_dipfit_nonlinear() - interactively do dipole fit of selected ICA components
%
% Usage:
% >> EEGOUT = pop_dipfit_nonlinear( EEGIN )
%
% Inputs:
% EEGIN input dataset
%
% Outputs:
% EEGOUT output dataset
%
% Author: Robert Oostenveld, SMI/FCDC, Nijmegen 2003
% Arnaud Delorme, SCCN, La Jolla 2003
% Thanks to Nicolas Robitaille for his help on the CTF MEG
% implementation
% SMI, University Aalborg, Denmark http://www.smi.auc.dk/
% FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl/
% Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [EEGOUT, com] = pop_dipfit_nonlinear( EEG, subfunction, parent, dipnum )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the code for this interactive dialog has 4 major parts
% - draw the graphical user interface
% - synchronize the gui with the data
% - synchronize the data with the gui
% - execute the actual dipole analysis
% the subfunctions that perform handling of the gui are
% - dialog_selectcomponent
% - dialog_checkinput
% - dialog_setvalue
% - dialog_getvalue
% - dialog_plotmap
% - dialog_plotcomponent
% - dialog_flip
% the subfunctions that perform the fitting are
% - dipfit_position
% - dipfit_moment
if ~plugin_askinstall('Fieldtrip-lite', 'ft_sourceanalysis'), return; end;
if nargin<1
help pop_dipfit_nonlinear;
return
elseif nargin==1
EEGOUT = EEG;
com = '';
if ~isfield(EEG, 'chanlocs')
error('No electrodes present');
end
if ~isfield(EEG, 'icawinv')
error('No ICA components to fit');
end
if ~isfield(EEG, 'dipfit')
error('General dipolefit settings not specified');
end
if ~isfield(EEG.dipfit, 'vol') & ~isfield(EEG.dipfit, 'hdmfile')
error('Dipolefit volume conductor model not specified');
end
% select all ICA components as 'fitable'
select = 1:size(EEG.icawinv,2);
if ~isfield(EEG.dipfit, 'current')
% select the first component as the current component
EEG.dipfit.current = 1;
end
% verify the presence of a dipole model
if ~isfield(EEG.dipfit, 'model')
% create empty dipole model for each component
for i=select
EEG.dipfit.model(i).posxyz = zeros(2,3);
EEG.dipfit.model(i).momxyz = zeros(2,3);
EEG.dipfit.model(i).rv = 1;
EEG.dipfit.model(i).select = [1];
end
end
% verify the size of each dipole model
for i=select
if ~isfield(EEG.dipfit.model, 'posxyz') | length(EEG.dipfit.model) < i | isempty(EEG.dipfit.model(i).posxyz)
% replace all empty dipole models with a two dipole model, of which one is active
EEG.dipfit.model(i).select = [1];
EEG.dipfit.model(i).rv = 1;
EEG.dipfit.model(i).posxyz = zeros(2,3);
EEG.dipfit.model(i).momxyz = zeros(2,3);
elseif size(EEG.dipfit.model(i).posxyz,1)==1
% replace all one dipole models with a two dipole model
EEG.dipfit.model(i).select = [1];
EEG.dipfit.model(i).posxyz = [EEG.dipfit.model(i).posxyz; [0 0 0]];
EEG.dipfit.model(i).momxyz = [EEG.dipfit.model(i).momxyz; [0 0 0]];
elseif size(EEG.dipfit.model(i).posxyz,1)>2
% replace all more-than-two dipole models with a two dipole model
warning('pruning dipole model to two dipoles');
EEG.dipfit.model(i).select = [1];
EEG.dipfit.model(i).posxyz = EEG.dipfit.model(i).posxyz(1:2,:);
EEG.dipfit.model(i).momxyz = EEG.dipfit.model(i).momxyz(1:2,:);
end
end
% default is not to use symmetry constraint
constr = [];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% construct the graphical user interface
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% define the callback functions for the interface elements
cb_plotmap = 'pop_dipfit_nonlinear(EEG, ''dialog_plotmap'', gcbf);';
cb_selectcomponent = 'pop_dipfit_nonlinear(EEG, ''dialog_selectcomponent'', gcbf);';
cb_checkinput = 'pop_dipfit_nonlinear(EEG, ''dialog_checkinput'', gcbf);';
cb_fitposition = 'pop_dipfit_nonlinear(EEG, ''dialog_getvalue'', gcbf); pop_dipfit_nonlinear(EEG, ''dipfit_position'', gcbf); pop_dipfit_nonlinear(EEG, ''dialog_setvalue'', gcbf);';
cb_fitmoment = 'pop_dipfit_nonlinear(EEG, ''dialog_getvalue'', gcbf); pop_dipfit_nonlinear(EEG, ''dipfit_moment'' , gcbf); pop_dipfit_nonlinear(EEG, ''dialog_setvalue'', gcbf);';
cb_close = 'close(gcbf)';
cb_help = 'pophelp(''pop_dipfit_nonlinear'');';
cb_ok = 'uiresume(gcbf);';
cb_plotdip = 'pop_dipfit_nonlinear(EEG, ''dialog_plotcomponent'', gcbf);';
cb_flip1 = 'pop_dipfit_nonlinear(EEG, ''dialog_flip'', gcbf, 1);';
cb_flip2 = 'pop_dipfit_nonlinear(EEG, ''dialog_flip'', gcbf, 2);';
cb_sym = [ 'set(findobj(gcbf, ''tag'', ''dip2sel''), ''value'', 1);' cb_checkinput ];
% vertical layout for each line
geomvert = [1 1 1 1 1 1 1 1 1];
% horizontal layout for each line
geomhoriz = {
[0.8 0.5 0.8 1 1]
[1]
[0.7 0.7 2 2 1]
[0.7 0.5 0.2 2 2 1]
[0.7 0.5 0.2 2 2 1]
[1]
[1 1 1]
[1]
[1 1 1]
};
% define each individual graphical user element
elements = { ...
{ 'style' 'text' 'string' 'Component to fit' } ...
{ 'style' 'edit' 'string' 'dummy' 'tag' 'component' 'callback' cb_selectcomponent } ...
{ 'style' 'pushbutton' 'string' 'Plot map' 'callback' cb_plotmap } ...
{ 'style' 'text' 'string' 'Residual variance = ' } ...
{ 'style' 'text' 'string' 'dummy' 'tag' 'relvar' } ...
{ } ...
{ 'style' 'text' 'string' 'dipole' } ...
{ 'style' 'text' 'string' 'fit' } ...
{ 'style' 'text' 'string' 'position' } ...
{ 'style' 'text' 'string' 'moment' } ...
{ } ...
...
{ 'style' 'text' 'string' '#1' 'tag' 'dip1' } ...
{ 'style' 'checkbox' 'string' '' 'tag' 'dip1sel' 'callback' cb_checkinput } { } ...
{ 'style' 'edit' 'string' '' 'tag' 'dip1pos' 'callback' cb_checkinput } ...
{ 'style' 'edit' 'string' '' 'tag' 'dip1mom' 'callback' cb_checkinput } ...
{ 'style' 'pushbutton' 'string' 'Flip (in|out)' 'callback' cb_flip1 } ...
...
{ 'style' 'text' 'string' '#2' 'tag' 'dip2' } ...
{ 'style' 'checkbox' 'string' '' 'tag' 'dip2sel' 'callback' cb_checkinput } { } ...
{ 'style' 'edit' 'string' '' 'tag' 'dip2pos' 'callback' cb_checkinput } ...
{ 'style' 'edit' 'string' '' 'tag' 'dip2mom' 'callback' cb_checkinput } ...
{ 'style' 'pushbutton' 'string' 'Flip (in|out)' 'callback' cb_flip2 } ...
...
{ } { 'style' 'checkbox' 'string' 'Symmetry constrain for dipole #2' 'tag' 'dip2sym' 'callback' cb_sym 'value' 1 } ...
{ } { } { } ...
{ 'style' 'pushbutton' 'string' 'Fit dipole(s)'' position & moment' 'callback' cb_fitposition } ...
{ 'style' 'pushbutton' 'string' 'OR fit only dipole(s)'' moment' 'callback' cb_fitmoment } ...
{ 'style' 'pushbutton' 'string' 'Plot dipole(s)' 'callback' cb_plotdip } ...
};
% add the cancel, help and ok buttons at the bottom
geomvert = [geomvert 1 1];
geomhoriz = {geomhoriz{:} [1] [1 1 1]};
elements = { elements{:} ...
{ } ...
{ 'Style', 'pushbutton', 'string', 'Cancel', 'callback', cb_close } ...
{ 'Style', 'pushbutton', 'string', 'Help', 'callback', cb_help } ...
{ 'Style', 'pushbutton', 'string', 'OK', 'callback', cb_ok } ...
};
% activate the graphical interface
supergui(0, geomhoriz, geomvert, elements{:});
dlg = gcf;
set(gcf, 'name', 'Manual dipole fit -- pop_dipfit_nonlinear()');
set(gcf, 'userdata', EEG);
pop_dipfit_nonlinear(EEG, 'dialog_setvalue', dlg);
uiwait(dlg);
if ishandle(dlg)
pop_dipfit_nonlinear(EEG, 'dialog_getvalue', dlg);
% FIXME, rv is undefined since the user may have changed dipole parameters
% FIXME, see also dialog_getvalue subfucntion
EEGOUT = get(dlg, 'userdata');
close(dlg);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% implement all subfunctions through a switch-yard
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif nargin>=3
%disp(subfunction)
EEG = get(parent, 'userdata');
switch subfunction
case 'dialog_selectcomponent'
current = get(findobj(parent, 'tag', 'component'), 'string');
current = str2num(current);
current = current(1);
current = min(current, size(EEG.icaweights,1));
current = max(current, 1);
set(findobj(parent, 'tag', 'component'), 'string', int2str(current));
EEG.dipfit.current = current;
% reassign the global EEG object back to the dialogs userdata
set(parent, 'userdata', EEG);
% redraw the dialog with the current model
pop_dipfit_nonlinear(EEG, 'dialog_setvalue', parent);
case 'dialog_plotmap'
current = str2num(get(findobj(parent, 'tag', 'component'), 'string'));
figure; pop_topoplot(EEG, 0, current, [ 'IC ' num2str(current) ], [1 1], 1);
title([ 'IC ' int2str(current) ]);
case 'dialog_plotcomponent'
current = get(findobj(parent, 'tag', 'component'), 'string');
EEG.dipfit.current = str2num(current);
if ~isempty( EEG.dipfit.current )
pop_dipplot(EEG, 'DIPFIT', EEG.dipfit.current, 'normlen', 'on', 'projlines', 'on', 'mri', EEG.dipfit.mrifile);
end;
case 'dialog_checkinput'
if get(findobj(parent, 'tag', 'dip1sel'), 'value') & ~get(findobj(parent, 'tag', 'dip1act'), 'value')
set(findobj(parent, 'tag', 'dip1act'), 'value', 1);
end
if get(findobj(parent, 'tag', 'dip2sel'), 'value') & ~get(findobj(parent, 'tag', 'dip2act'), 'value')
set(findobj(parent, 'tag', 'dip2act'), 'value', 1);
end
if ~all(size(str2num(get(findobj(parent, 'tag', 'dip1pos'), 'string')))==[1 3])
set(findobj(parent, 'tag', 'dip1pos'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).posxyz(1,:)));
else
EEG.dipfit.model(EEG.dipfit.current).posxyz(1,:) = str2num(get(findobj(parent, 'tag', 'dip1pos'), 'string'));
end
if ~all(size(str2num(get(findobj(parent, 'tag', 'dip2pos'), 'string')))==[1 3])
set(findobj(parent, 'tag', 'dip2pos'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).posxyz(2,:)));
else
EEG.dipfit.model(EEG.dipfit.current).posxyz(2,:) = str2num(get(findobj(parent, 'tag', 'dip2pos'), 'string'));
end
if ~all(size(str2num(get(findobj(parent, 'tag', 'dip1mom'), 'string')))==[1 3])
set(findobj(parent, 'tag', 'dip1mom'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).momxyz(1,:)));
else
EEG.dipfit.model(EEG.dipfit.current).momxyz(1,:) = str2num(get(findobj(parent, 'tag', 'dip1mom'), 'string'));
end
if ~all(size(str2num(get(findobj(parent, 'tag', 'dip2mom'), 'string')))==[1 3])
set(findobj(parent, 'tag', 'dip2mom'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).momxyz(2,:)));
else
EEG.dipfit.model(EEG.dipfit.current).momxyz(2,:) = str2num(get(findobj(parent, 'tag', 'dip2mom'), 'string'));
end
if get(findobj(parent, 'tag', 'dip2sel'), 'value') & get(findobj(parent, 'tag', 'dip2sym'), 'value') & ~get(findobj(parent, 'tag', 'dip1sel'), 'value')
set(findobj(parent, 'tag', 'dip2sel'), 'value', 0);
end
set(parent, 'userdata', EEG);
case 'dialog_setvalue'
% synchronize the gui with the data
set(findobj(parent, 'tag', 'component'), 'string', EEG.dipfit.current);
set(findobj(parent, 'tag', 'relvar' ), 'string', sprintf('%0.2f%%', EEG.dipfit.model(EEG.dipfit.current).rv * 100));
set(findobj(parent, 'tag', 'dip1sel'), 'value', ismember(1, EEG.dipfit.model(EEG.dipfit.current).select));
set(findobj(parent, 'tag', 'dip2sel'), 'value', ismember(2, EEG.dipfit.model(EEG.dipfit.current).select));
set(findobj(parent, 'tag', 'dip1pos'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).posxyz(1,:)));
if strcmpi(EEG.dipfit.coordformat, 'CTF')
set(findobj(parent, 'tag', 'dip1mom'), 'string', sprintf('%f %f %f', EEG.dipfit.model(EEG.dipfit.current).momxyz(1,:)));
else set(findobj(parent, 'tag', 'dip1mom'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).momxyz(1,:)));
end;
Ndipoles = size(EEG.dipfit.model(EEG.dipfit.current).posxyz, 1);
if Ndipoles>=2
set(findobj(parent, 'tag', 'dip2pos'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).posxyz(2,:)));
if strcmpi(EEG.dipfit.coordformat, 'CTF')
set(findobj(parent, 'tag', 'dip2mom'), 'string', sprintf('%f %f %f', EEG.dipfit.model(EEG.dipfit.current).momxyz(2,:)));
else set(findobj(parent, 'tag', 'dip2mom'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).momxyz(2,:)));
end;
end
case 'dialog_getvalue'
% synchronize the data with the gui
if get(findobj(parent, 'tag', 'dip1sel'), 'value'); select = [1]; else select = []; end;
if get(findobj(parent, 'tag', 'dip2sel'), 'value'); select = [select 2]; end;
posxyz(1,:) = str2num(get(findobj(parent, 'tag', 'dip1pos'), 'string'));
posxyz(2,:) = str2num(get(findobj(parent, 'tag', 'dip2pos'), 'string'));
momxyz(1,:) = str2num(get(findobj(parent, 'tag', 'dip1mom'), 'string'));
momxyz(2,:) = str2num(get(findobj(parent, 'tag', 'dip2mom'), 'string'));
% assign the local values to the global EEG object
EEG.dipfit.model(EEG.dipfit.current).posxyz = posxyz;
EEG.dipfit.model(EEG.dipfit.current).momxyz = momxyz;
EEG.dipfit.model(EEG.dipfit.current).select = select;
% FIXME, rv is undefined after a manual change of parameters
% FIXME, this should either be undated continuously or upon OK buttonpress
% EEG.dipfit.model(EEG.dipfit.current).rv = nan;
% reassign the global EEG object back to the dialogs userdata
set(parent, 'userdata', EEG);
case 'dialog_flip'
% flip the orientation of the dipole
current = EEG.dipfit.current;
moment = EEG.dipfit.model(current).momxyz;
EEG.dipfit.model(current).momxyz(dipnum,:) = [ -moment(dipnum,1) -moment(dipnum,2) -moment(dipnum,3)];
set(findobj(parent, 'tag', ['dip' int2str(dipnum) 'mom']), 'string', ...
sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(current).momxyz(dipnum,:)));
set(parent, 'userdata', EEG);
case {'dipfit_moment', 'dipfit_position'}
% determine the selected dipoles and components
current = EEG.dipfit.current;
select = find([get(findobj(parent, 'tag', 'dip1sel'), 'value') get(findobj(parent, 'tag', 'dip2sel'), 'value')]);
if isempty(select)
warning('no dipoles selected for fitting');
return
end
% remove the dipoles from the model that are not selected, but keep
% the original dipole model (to keep the GUI consistent)
model_before_fitting = EEG.dipfit.model(current);
EEG.dipfit.model(current).posxyz = EEG.dipfit.model(current).posxyz(select,:);
EEG.dipfit.model(current).momxyz = EEG.dipfit.model(current).momxyz(select,:);
if strcmp(subfunction, 'dipfit_moment')
% the default is 'yes' which should only be overruled for fitting dipole moment
cfg.nonlinear = 'no';
end
dipfitdefs;
if get(findobj(parent, 'tag', 'dip2sym'), 'value') & get(findobj(parent, 'tag', 'dip2sel'), 'value')
if strcmpi(EEG.dipfit.coordformat,'MNI')
cfg.symmetry = 'x';
else
cfg.symmetry = 'y';
end;
else
cfg.symmetry = [];
end
cfg.component = current;
% convert structure into list of input arguments
arg = [fieldnames(cfg)' ; struct2cell(cfg)'];
arg = arg(:)';
% make a dialog to interrupt the fitting procedure
fig = figure('visible', 'off');
supergui( fig, {1 1}, [], ...
{'style' 'text' 'string' 'Press button below to stop fitting' }, ...
{'style' 'pushbutton' 'string' 'Interupt' 'callback' 'figure(gcbf); set(gcbf, ''tag'', ''stop'');' } );
drawnow;
% start the dipole fitting
try
warning backtrace off;
EEG = dipfit_nonlinear(EEG, arg{:});
warning backtrace on;
catch,
disp('Dipole localization failed');
end;
% should the following string be put into com? ->NOT SUPPORTED
% --------------------------------------------------------
com = sprintf('%s = dipfit_nonlinear(%s,%s)\n', inputname(1), inputname(1), vararg2str(arg));
% this GUI always requires two sources in the dipole model
% first put the original model back in and then replace the dipole parameters that have been fitted
model_after_fitting = EEG.dipfit.model(current);
newfields = fieldnames( EEG.dipfit.model );
for index = 1:length(newfields)
eval( ['EEG.dipfit.model(' int2str(current) ').' newfields{index} ' = model_after_fitting.' newfields{index} ';' ]);
end;
EEG.dipfit.model(current).posxyz(select,:) = model_after_fitting.posxyz;
EEG.dipfit.model(current).momxyz(select,:) = model_after_fitting.momxyz;
EEG.dipfit.model(current).rv = model_after_fitting.rv;
%EEG.dipfit.model(current).diffmap = model_after_fitting.diffmap;
% reassign the global EEG object back to the dialogs userdata
set(parent, 'userdata', EEG);
% close the interrupt dialog
if ishandle(fig)
close(fig);
end
otherwise
error('unknown subfunction for pop_dipfit_nonlinear');
end % switch subfunction
end % if nargin
|
github
|
lcnbeapp/beapp-master
|
dipfit_1_to_2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/dipfit_1_to_2.m
| 2,252 |
utf_8
|
1a1a49c9adb0d94ff59b4a2206a3f2f4
|
% dipfit_1_to_2() - convert dipfit 1 structure to dipfit 2 structure.
%
% Usage:
% >> EEG.dipfit = dipfit_1_to_2(EEG.dipfit);
%
% Note:
% For non-standard BESA models (where the radii or the conductances
% have been modified, users must create a new model in Dipfit2 from
% the default BESA model.
%
% Author: Arnaud Delorme, SCCN, La Jolla 2005
% Copyright (C) Arnaud Delorme, SCCN, La Jolla 2005
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function newdipfit = dipfit_1_to_2( dipfit );
if isfield( dipfit, 'model')
newdipfit.model = dipfit.model;
end;
if isfield( dipfit, 'chansel')
newdipfit.chansel = dipfit.chansel;
end;
ind = 1; % use first template (BESA)
newdipfit.coordformat = template_models(ind).coordformat;
newdipfit.mrifile = template_models(ind).mrifile;
newdipfit.chanfile = template_models(ind).chanfile;
if ~isfield(dipfit, 'vol')
newdipfit.hdmfile = template_models(ind).hdmfile;
else
newdipfit.vol = dipfit.vol;
%if length(dipfit.vol) == 4
%if ~all(dipfit.vol == [85-6-7-1 85-6-7 85-6 85]) | ...
% ~all(dipfit.c == [0.33 1.00 0.0042 0.33]) | ...
% ~all(dipfit.o = [0 0 0])
% disp('Warning: Conversion from dipfit 1 to dipfit 2 can only deal');
% disp(' with standard (not modified) BESA model');
% disp(' See "help dipfit_1_to_2" to convert this model');
% newdipfit = [];
%end;
%end;
end;
|
github
|
lcnbeapp/beapp-master
|
dipfit_gridsearch.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/dipfit_gridsearch.m
| 4,519 |
utf_8
|
cc77806c9d0a7de350e540a72dc1c033
|
% dipfit_gridsearch() - do initial batch-like dipole scan and fit to all
% data components and return a dipole model with a
% single dipole for each component.
%
% Usage:
% >> EEGOUT = dipfit_gridsearch( EEGIN, varargin)
%
% Inputs:
% ...
%
% Optional inputs:
% 'component' - vector with integers, ICA components to scan
% 'xgrid' - vector with floats, grid positions along x-axis
% 'ygrid' - vector with floats, grid positions along y-axis
% 'zgrid' - vector with floats, grid positions along z-axis
%
% Output:
% ...
%
% Author: Robert Oostenveld, SMI/FCDC, Nijmegen 2003, load/save by
% Arnaud Delorme
% Thanks to Nicolas Robitaille for his help on the CTF MEG
% implementation
% SMI, University Aalborg, Denmark http://www.smi.auc.dk/
% FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl
% Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [EEGOUT] = dipfit_gridsearch(EEG, varargin)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert the optional arguments into a configuration structure that can be
% understood by FIELDTRIPs dipolefitting function
if nargin>2
cfg = struct(varargin{:});
else
help dipfit_gridsearch
return
end
% specify the FieldTrip DIPOLEFITTING configuration
cfg.model = 'moving';
cfg.gridsearch = 'yes';
cfg.nonlinear = 'no';
% add some additional settings from EEGLAB to the configuration
tmpchanlocs = EEG.chanlocs;
cfg.channel = { tmpchanlocs(EEG.dipfit.chansel).labels };
if isfield(EEG.dipfit, 'vol')
cfg.vol = EEG.dipfit.vol;
elseif isfield(EEG.dipfit, 'hdmfile')
cfg.hdmfile = EEG.dipfit.hdmfile;
else
error('no head model in EEG.dipfit')
end
if isfield(EEG.dipfit, 'elecfile') & ~isempty(EEG.dipfit.elecfile)
cfg.elecfile = EEG.dipfit.elecfile;
end
if isfield(EEG.dipfit, 'gradfile') & ~isempty(EEG.dipfit.gradfile)
cfg.gradfile = EEG.dipfit.gradfile;
end
% convert the EEGLAB data structure into a structure that looks as if it
% was computed using FIELDTRIPs componentanalysis function
comp = eeglab2fieldtrip(EEG, 'componentanalysis', 'dipfit');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Added code to handle CTF data with multipleSphere head model %
% This code is copy-pasted in dipfit_gridSearch, dipfit_nonlinear %
% The flag .isMultiSphere is used by dipplot %
% Nicolas Robitaille, January 2007. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Do some trick to force fieldtrip to use the multiple sphere model
if strcmpi(EEG.dipfit.coordformat, 'CTF')
cfg = rmfield(cfg, 'channel');
comp = rmfield(comp, 'elec');
cfg.gradfile = EEG.dipfit.chanfile;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% END %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isfield(cfg, 'component')
% default is to scan all components
cfg.component = 1:size(comp.topo,2);
end
% for each component scan the whole brain with dipoles using FIELDTRIPs
% dipolefitting function
source = ft_dipolefitting(cfg, comp);
% reformat the output dipole sources into EEGLABs data structure
for i=1:length(cfg.component)
EEG.dipfit.model(cfg.component(i)).posxyz = source.dip(i).pos;
EEG.dipfit.model(cfg.component(i)).momxyz = reshape(source.dip(i).mom, 3, length(source.dip(i).mom)/3)';
EEG.dipfit.model(cfg.component(i)).rv = source.dip(i).rv;
end
EEGOUT = EEG;
|
github
|
lcnbeapp/beapp-master
|
eegplugin_dipfit.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/eegplugin_dipfit.m
| 4,444 |
utf_8
|
2bcef6898d8184014480e6ed4f2e170b
|
% eegplugin_dipfit() - DIPFIT plugin version 2.0 for EEGLAB menu.
% DIPFIT is the dipole fitting Matlab Toolbox of
% Robert Oostenveld (in collaboration with A. Delorme).
%
% Usage:
% >> eegplugin_dipfit(fig, trystrs, catchstrs);
%
% Inputs:
% fig - [integer] eeglab figure.
% trystrs - [struct] "try" strings for menu callbacks.
% catchstrs - [struct] "catch" strings for menu callbacks.
%
% Notes:
% To create a new plugin, simply create a file beginning with "eegplugin_"
% and place it in your eeglab folder. It will then be automatically
% detected by eeglab. See also this source code internal comments.
% For eeglab to return errors and add the function's results to
% the eeglab history, menu callback must be nested into "try" and
% a "catch" strings. For more information on how to create eeglab
% plugins, see http://www.sccn.ucsd.edu/eeglab/contrib.html
%
% Author: Arnaud Delorme, CNL / Salk Institute, 22 February 2003
%
% See also: eeglab()
% Copyright (C) 2003 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1.07 USA
function vers = eegplugin_dipfit(fig, trystrs, catchstrs)
vers = 'dipfit2.2';
if nargin < 3
error('eegplugin_dipfit requires 3 arguments');
end;
% find tools menu
% ---------------
menu = findobj(fig, 'tag', 'tools');
% tag can be
% 'import data' -> File > import data menu
% 'import epoch' -> File > import epoch menu
% 'import event' -> File > import event menu
% 'export' -> File > export
% 'tools' -> tools menu
% 'plot' -> plot menu
% command to check that the '.source' is present in the EEG structure
% -------------------------------------------------------------------
check_dipfit = [trystrs.no_check 'if ~isfield(EEG, ''dipfit''), error(''Run the dipole setting first''); end;' ...
'if isempty(EEG.dipfit), error(''Run the dipole setting first''); end;' ];
check_dipfitnocheck = [ trystrs.no_check 'if ~isfield(EEG, ''dipfit''), error(''Run the dipole setting first''); end; ' ];
check_chans = [ '[EEG tmpres] = eeg_checkset(EEG, ''chanlocs_homogeneous'');' ...
'if ~isempty(tmpres), eegh(tmpres), end; clear tmpres;' ];
% menu callback commands
% ----------------------
comsetting = [ trystrs.check_ica check_chans '[EEG LASTCOM]=pop_dipfit_settings(EEG);' catchstrs.store_and_hist ];
combatch = [ check_dipfit check_chans '[EEG LASTCOM] = pop_dipfit_gridsearch(EEG);' catchstrs.store_and_hist ];
comfit = [ check_dipfitnocheck check_chans [ 'EEG = pop_dipfit_nonlinear(EEG); ' ...
'LASTCOM = ''% === History not supported for manual dipole fitting ==='';' ] catchstrs.store_and_hist ];
comauto = [ check_dipfit check_chans '[EEG LASTCOM] = pop_multifit(EEG);' catchstrs.store_and_hist ];
% preserve the '=" sign in the comment above: it is used by EEGLAB to detect appropriate LASTCOM
complot = [ check_dipfit check_chans 'LASTCOM = pop_dipplot(EEG);' catchstrs.add_to_hist ];
% create menus
% ------------
submenu = uimenu( menu, 'Label', 'Locate dipoles using DIPFIT 2.x', 'separator', 'on');
uimenu( submenu, 'Label', 'Head model and settings' , 'CallBack', comsetting);
uimenu( submenu, 'Label', 'Coarse fit (grid scan)' , 'CallBack', combatch);
uimenu( submenu, 'Label', 'Fine fit (iterative)' , 'CallBack', comfit);
uimenu( submenu, 'Label', 'Autofit (coarse fit, fine fit & plot)', 'CallBack', comauto);
uimenu( submenu, 'Label', 'Plot component dipoles' , 'CallBack', complot, 'separator', 'on');
|
github
|
lcnbeapp/beapp-master
|
pop_multifit.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/pop_multifit.m
| 10,370 |
utf_8
|
dd98129d0df98fcdfc6532ff87983696
|
% pop_multifit() - fit multiple component dipoles using DIPFIT
%
% Usage:
% >> EEG = pop_multifit(EEG); % pop-up graphical interface
% >> EEG = pop_multifit(EEG, comps, 'key', 'val', ...);
%
% Inputs:
% EEG - input EEGLAB dataset.
% comps - indices component to fit. Empty is all components.
%
% Optional inputs:
% 'dipoles' - [1|2] use either 1 dipole or 2 dipoles contrain in
% symmetry. Default is 1.
% 'dipplot' - ['on'|'off'] plot dipoles. Default is 'off'.
% 'plotopt' - [cell array] dipplot() 'key', 'val' options. Default is
% 'normlen', 'on', 'image', 'fullmri'
% 'rmout' - ['on'|'off'] remove dipoles outside the head. Artifactual
% component often localize outside the head. Default is 'off'.
% 'threshold' - [float] rejection threshold during component scan.
% Default is 40 (residual variance above 40%).
%
% Outputs:
% EEG - output dataset with updated "EEG.dipfit" field
%
% Note: residual variance is set to NaN if DIPFIT does not converge
%
% Author: Arnaud Delorme, SCCN/INC/UCSD, La Jolla, Oct. 2003
% Copyright (C) 9/2003 Arnaud Delorme, SCCN/INC/UCSD, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [EEG, com] = pop_multifit(EEG, comps, varargin);
if nargin < 1
help pop_multifit;
return;
end;
com = [];
ncomps = size(EEG.icaweights,1);
if ncomps == 0, error('you must run ICA first'); end;
if nargin<2
cb_chans = 'tmplocs = EEG.chanlocs; set(findobj(gcbf, ''tag'', ''chans''), ''string'', int2str(pop_chansel({tmplocs.labels}))); clear tmplocs;';
uilist = { { 'style' 'text' 'string' 'Component indices' } ...
{ 'style' 'edit' 'string' [ '1:' int2str(ncomps) ] } ...
{ 'style' 'text' 'string' 'Rejection threshold RV (%)' } ...
{ 'style' 'edit' 'string' '100' } ...
{ 'style' 'text' 'string' 'Remove dipoles outside the head' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Fit bilateral dipoles (check)' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Plot resulting dipoles (check)' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'dipplot() plotting options' } ...
{ 'style' 'edit' 'string' '''normlen'' ''on''' } ...
{ 'style' 'pushbutton' 'string' 'Help' 'callback' 'pophelp(''dipplot'')' } };
results = inputgui( { [1.91 2.8] [1.91 2.8] [3.1 0.8 1.6] [3.1 0.8 1.6] [3.1 0.8 1.6] [2.12 2.2 0.8]}, ...
uilist, 'pophelp(''pop_multifit'')', ...
'Fit multiple ICA components -- pop_multifit()');
if length(results) == 0 return; end;
comps = eval( [ '[' results{1} ']' ] );
% selecting model
% ---------------
options = {};
if ~isempty(results{2})
options = { options{:} 'threshold' eval( results{2} ) };
end;
if results{3}, options = { options{:} 'rmout' 'on' }; end;
if results{4}, options = { options{:} 'dipoles' 2 }; end;
if results{5}, options = { options{:} 'dipplot' 'on' }; end;
options = { options{:} 'plotopt' eval( [ '{ ' results{6} ' }' ]) };
else
options = varargin;
end;
% checking parameters
% -------------------
if isempty(comps), comps = [1:size(EEG.icaweights,1)]; end;
g = finputcheck(options, { 'settings' { 'cell' 'struct' } [] {}; % deprecated
'dipoles' 'integer' [1 2] 1;
'threshold' 'float' [0 100] 40;
'dipplot' 'string' { 'on' 'off' } 'off';
'rmout' 'string' { 'on' 'off' } 'off';
'plotopt' 'cell' {} {'normlen' 'on' }});
if isstr(g), error(g); end;
EEG = eeg_checkset(EEG, 'chanlocs_homogeneous');
% dipfit settings
% ---------------
if isstruct(g.settings)
EEG.dipfit = g.settings;
elseif ~isempty(g.settings)
EEG = pop_dipfit_settings( EEG, g.settings{:}); % will probably not work but who knows
end;
% Scanning dipole locations
% -------------------------
dipfitdefs;
skipscan = 0;
try
alls = cellfun('size', { EEG.dipfit.model.posxyz }, 2);
if length(alls) == ncomps
if all(alls == 3)
skipscan = 1;
end;
end;
catch, end;
if skipscan
disp('Skipping scanning since all dipoles have non-null starting positions.');
else
disp('Scanning dipolar grid to find acceptable starting positions...');
xg = linspace(-floor(meanradius), floor(meanradius),11);
yg = linspace(-floor(meanradius), floor(meanradius),11);
zg = linspace(0 , floor(meanradius), 6);
EEG = pop_dipfit_gridsearch( EEG, [1:ncomps], ...
eval(xgridstr), eval(ygridstr), eval(zgridstr), 100);
disp('Scanning terminated. Refining dipole locations...');
end;
% set symmetry constraint
% ----------------------
if strcmpi(EEG.dipfit.coordformat,'MNI')
defaultconstraint = 'x';
else
defaultconstraint = 'y';
end;
% Searching dipole localization
% -----------------------------
disp('Searching dipoles locations...');
chansel = EEG.dipfit.chansel;
%elc = getelecpos(EEG.chanlocs, EEG.dipfit);
plotcomps = [];
for i = comps(:)'
if i <= length(EEG.dipfit.model) & ~isempty(EEG.dipfit.model(i).posxyz)
if g.dipoles == 2,
% try to find a good origin for automatic dipole localization
EEG.dipfit.model(i).active = [1 2];
EEG.dipfit.model(i).select = [1 2];
if isempty(EEG.dipfit.model(i).posxyz)
EEG.dipfit.model(i).posxyz = zeros(1,3);
EEG.dipfit.model(i).momxyz = zeros(2,3);
else
EEG.dipfit.model(i).posxyz(2,:) = EEG.dipfit.model(i).posxyz;
if strcmpi(EEG.dipfit.coordformat, 'MNI')
EEG.dipfit.model(i).posxyz(:,1) = [-40;40];
else EEG.dipfit.model(i).posxyz(:,2) = [-40;40];
end;
EEG.dipfit.model(i).momxyz(2,:) = EEG.dipfit.model(i).momxyz;
end;
else
EEG.dipfit.model(i).active = [1];
EEG.dipfit.model(i).select = [1];
end;
warning backtrace off;
try,
if g.dipoles == 2,
EEG = dipfit_nonlinear(EEG, 'component', i, 'symmetry', defaultconstraint);
else
EEG = dipfit_nonlinear(EEG, 'component', i, 'symmetry', []);
end;
catch, EEG.dipfit.model(i).rv = NaN; disp('Maximum number of iterations reached. Fitting failed');
end;
warning backtrace on;
plotcomps = [ plotcomps i ];
end;
end;
% set RV to 1 for dipole with higher than 40% residual variance
% -------------------------------------------------------------
EEG.dipfit.model = dipfit_reject(EEG.dipfit.model, g.threshold/100);
% removing dipoles outside the head
% ---------------------------------
if strcmpi(g.rmout, 'on') & strcmpi(EEG.dipfit.coordformat, 'spherical')
rmdip = [];
for index = plotcomps
if ~isempty(EEG.dipfit.model(index).posxyz)
if any(sqrt(sum(EEG.dipfit.model(index).posxyz.^2,2)) > 85)
rmdip = [ rmdip index];
EEG.dipfit.model(index).posxyz = [];
EEG.dipfit.model(index).momxyz = [];
EEG.dipfit.model(index).rv = 1;
end;
end;
end;
plotcomps = setdiff(plotcomps, rmdip);
if length(rmdip) > 0
fprintf('%d out of cortex dipoles removed (usually artifacts)\n', length(rmdip));
end;
end;
% plotting dipoles
% ----------------
if strcmpi(g.dipplot, 'on')
pop_dipplot(EEG, 'DIPFIT', plotcomps, g.plotopt{:});
end;
com = sprintf('%s = pop_multifit(%s, %s);', inputname(1), inputname(1), vararg2str({ comps options{:}}));
return;
% get electrode positions from eeglag
% -----------------------------------
function elc = getelecpos(chanlocs, dipfitstruct);
try,
elc = [ [chanlocs.X]' [chanlocs.Y]' [chanlocs.Z]' ];
catch
disp('No 3-D carthesian coordinates; re-computing them from 2-D polar coordinates');
EEG.chanlocs = convertlocs(EEG.chanlocs, 'topo2all');
elc = [ [chanlocs.X]' [chanlocs.Y]' [chanlocs.Z]' ];
end;
% constrain electrode to sphere
% -----------------------------
disp('Constraining electrodes to sphere');
elc = elc - repmat( dipfitstruct.vol.o, [size(elc,1) 1]); % recenter
% (note the step above is not needed since the origin should always be 0)
elc = elc ./ repmat( sqrt(sum(elc.*elc,2)), [1 3]); % normalize
elc = elc * max(dipfitstruct.vol.r); % head size
%for index= 1:size(elc,1)
% elc(index,:) = max(dipfitstruct.vol.r) * elc(index,:) /norm(elc(index,:));
%end;
|
github
|
lcnbeapp/beapp-master
|
pop_dipfit_gridsearch.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/pop_dipfit_gridsearch.m
| 4,833 |
utf_8
|
39566131e1f04827a5eaf4dd7994f07f
|
% pop_dipfit_gridsearch() - scan all ICA components with a single dipole
% on a regular grid spanning the whole brain. Any dipoles that explains
% a component with a too large relative residual variance is removed.
%
% Usage:
% >> EEGOUT = pop_dipfit_gridsearch( EEGIN ); % pop up interactive window
% >> EEGOUT = pop_dipfit_gridsearch( EEGIN, comps );
% >> EEGOUT = pop_dipfit_gridsearch( EEGIN, comps, xgrid, ygrid, zgrid, thresh )
%
% Inputs:
% EEGIN - input dataset
% comps - [integer array] component indices
% xgrid - [float array] x-grid. Default is 10 elements between
% -1 and 1.
% ygrid - [float array] y-grid. Default is 10 elements between
% -1 and 1.
% zgrid - [float array] z-grid. Default is 10 elements between
% -1 and 1.
% thresh - [float] threshold in percent. Default 40.
%
% Outputs:
% EEGOUT output dataset
%
% Authors: Robert Oostenveld, SMI/FCDC, Nijmegen 2003
% Arnaud Delorme, SCCN, La Jolla 2003
% Thanks to Nicolas Robitaille for his help on the CTF MEG
% implementation
% SMI, University Aalborg, Denmark http://www.smi.auc.dk/
% FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl/
% Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [EEGOUT, com] = pop_dipfit_gridsearch(EEG, select, xgrid, ygrid, zgrid, reject );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin < 1
help pop_dipfit_gridsearch;
return;
end;
if ~plugin_askinstall('Fieldtrip-lite', 'ft_sourceanalysis'), return; end;
EEGOUT = EEG;
com = '';
if ~isfield(EEG, 'chanlocs')
error('No electrodes present');
end
if ~isfield(EEG, 'icawinv')
error('No ICA components to fit');
end
if ~isfield(EEG, 'dipfit')
error('General dipolefit settings not specified');
end
if ~isfield(EEG.dipfit, 'vol') & ~isfield(EEG.dipfit, 'hdmfile')
error('Dipolefit volume conductor model not specified');
end
dipfitdefs
if strcmpi(EEG.dipfit.coordformat, 'CTF')
maxrad = 8.5;
xgridstr = sprintf('linspace(-%2.1f,%2.1f,11)', maxrad, maxrad);
ygridstr = sprintf('linspace(-%2.1f,%2.1f,11)', maxrad, maxrad);
zgridstr = sprintf('linspace(0,%2.1f,6)', maxrad);
end;
if nargin < 2
% get the default values and filenames
promptstr = { 'Component(s) (not faster if few comp.)', ...
'Grid in X-direction', ...
'Grid in Y-direction', ...
'Grid in Z-direction', ...
'Rejection threshold RV(%)' };
inistr = {
[ '1:' int2str(size(EEG.icawinv,2)) ], ...
xgridstr, ...
ygridstr, ...
zgridstr, ...
rejectstr };
result = inputdlg2( promptstr, 'Batch dipole fit -- pop_dipfit_gridsearch()', 1, inistr, 'pop_dipfit_gridsearch');
if length(result)==0
% user pressed cancel
return
end
select = eval( [ '[' result{1} ']' ]);
xgrid = eval( result{2} );
ygrid = eval( result{3} );
zgrid = eval( result{4} );
reject = eval( result{5} ) / 100; % string is in percent
options = { };
else
if nargin < 2
select = [1:size(EEG.icawinv,2)];
end;
if nargin < 3
xgrid = eval( xgridstr );
end;
if nargin < 4
ygrid = eval( ygridstr );
end;
if nargin < 5
zgrid = eval( zgridstr );
end;
if nargin < 6
reject = eval( rejectstr );
end;
options = { 'waitbar' 'none' };
end;
% perform batch fit with single dipole for all selected channels and components
% warning off;
warning backtrace off;
EEGOUT = dipfit_gridsearch(EEG, 'component', select, 'xgrid', xgrid, 'ygrid', ygrid, 'zgrid', zgrid, options{:});
warning backtrace on;
EEGOUT.dipfit.model = dipfit_reject(EEGOUT.dipfit.model, reject);
% FIXME reject is not being used at the moment
disp('Done');
com = sprintf('%s = pop_dipfit_gridsearch(%s, %s);', ...
inputname(1), inputname(1), vararg2str( { select xgrid, ygrid, zgrid reject }));
|
github
|
lcnbeapp/beapp-master
|
dipfit_erpeeg.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/dipfit_erpeeg.m
| 3,634 |
utf_8
|
c387b5b84e9f4ee03b832f289837c1a2
|
% dipfit_erpeeg - fit multiple component dipoles using DIPFIT
%
% Usage:
% >> [ dipole model EEG] = dipfit_erpeeg(data, chanlocs, 'key', 'val', ...);
%
% Inputs:
% data - input data [channel x point]. One dipole per point is
% returned.
% chanlocs - channel location structure (returned by readlocs()).
%
% Optional inputs:
% 'settings' - [cell array] dipfit settings (arguments to the
% pop_dipfit_settings() function). Default is none.
% 'dipoles' - [1|2] use either 1 dipole or 2 dipoles contrain in
% symetry. Default is 1.
% 'dipplot' - ['on'|'off'] plot dipoles. Default is 'off'.
% 'plotopt' - [cell array] dipplot() 'key', 'val' options. Default is
% 'normlen', 'on', 'image', 'fullmri'
%
% Outputs:
% dipole - dipole structure ('posxyz' field is the position; 'momxyz'
% field is the moment and 'rv' the residual variance)
% model - structure containing model information ('vol.r' field is
% radius, 'vol.c' conductances, 'vol.o' the 3-D origin and
% 'chansel', the selected channels).
% EEG - faked EEG structure containing erp activation at the place
% of ICA components but allowing to plot ERP dipoles.
%
% Note: residual variance is set to NaN if Dipfit does not converge
%
% Author: Arnaud Delorme, SCCN/INC/UCSD, La Jolla, Nov. 2003
% Copyright (C) 10/2003 Arnaud Delorme, SCCN/INC/UCSD, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [dipoles, model, EEG] = dipfit_erpeeg(DATA, chanlocs, varargin);
if nargin < 1
help dipfit_erpeeg;
return;
end;
ncomps = size(DATA,2);
if size(DATA,1) ~= length(chanlocs)
error('# of row in ''DATA'' must equal # of channels in ''chanlocs''');
end;
% faking an EEG dataset
% ---------------------
EEG = eeg_emptyset;
EEG.data = rand(size(DATA,1), 1000);
EEG.nbchan = size(DATA,1);
EEG.pnts = 1000;
EEG.trials = 1;
EEG.chanlocs = chanlocs;
EEG.icawinv = [ DATA DATA ];
EEG.icaweights = zeros(size([ DATA DATA ]))';
EEG.icasphere = zeros(size(DATA,1), size(DATA,1));
%EEG = eeg_checkset(EEG);
EEG.icaact = EEG.icaweights*EEG.icasphere*EEG.data(:,:);
EEG.icaact = reshape( EEG.icaact, size(EEG.icaact,1), size(EEG.data,2), size(EEG.data,3));
% uses mutlifit to fit dipoles
% ----------------------------
EEG = pop_multifit(EEG, [1:ncomps], varargin{:});
% process outputs
% ---------------
dipoles = EEG.dipfit.model;
if isfield(dipoles, 'active')
dipoles = rmfield(dipoles, 'active');
end;
if isfield(dipoles, 'select')
dipoles = rmfield(dipoles, 'select');
end;
model = EEG.dipfit;
if isfield(model, 'model')
model = rmfield(model, 'model');
end;
return;
|
github
|
lcnbeapp/beapp-master
|
pop_dipfit_batch.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/pop_dipfit_batch.m
| 2,342 |
utf_8
|
349fbd140a3ba8c11fce24b8db9fa20c
|
% pop_dipfit_batch() - interactively do batch scan of all ICA components
% with a single dipole
% Function deprecated. Use pop_dipfit_gridsearch()
% instead
%
% Usage:
% >> OUTEEG = pop_dipfit_batch( INEEG ); % pop up interactive window
% >> OUTEEG = pop_dipfit_batch( INEEG, comps );
% >> OUTEEG = pop_dipfit_batch( INEEG, comps, xgrid, ygrid, zgrid, thresh )
%
% Inputs:
% INEEG - input dataset
% comps - [integer array] component indices
% xgrid - [float array] x-grid. Default is 10 elements between
% -1 and 1.
% ygrid - [float array] y-grid. Default is 10 elements between
% -1 and 1.
% zgrid - [float array] z-grid. Default is 10 elements between
% -1 and 1.
% threshold - [float] threshold in percent. Default 40.
%
% Outputs:
% OUTEEG output dataset
%
% Authors: Robert Oostenveld, SMI/FCDC, Nijmegen 2003
% Arnaud Delorme, SCCN, La Jolla 2003
% SMI, University Aalborg, Denmark http://www.smi.auc.dk/
% FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl/
% Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [OUTEEG, com] = pop_dipfit_batch( varargin )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin<1
help pop_dipfit_batch;
return
else
disp('Warning: pop_dipfit_manual is outdated. Use pop_dipfit_nonlinear instead');
[OUTEEG, com] = pop_dipfit_gridsearch( varargin{:} );
end;
|
github
|
lcnbeapp/beapp-master
|
dipfit_nonlinear.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/dipfit_nonlinear.m
| 4,979 |
utf_8
|
74c08245e5fcd0c004b5c7b3357238cf
|
% dipfit_nonlinear() - perform nonlinear dipole fit on one of the components
% to improve the initial dipole model. Only selected dipoles
% will be fitted.
%
% Usage:
% >> EEGOUT = dipfit_nonlinear( EEGIN, optarg)
%
% Inputs:
% ...
%
% Optional inputs are specified in key/value pairs and can be:
% ...
%
% Output:
% ...
%
% Author: Robert Oostenveld, SMI/FCDC, Nijmegen 2003
% Thanks to Nicolas Robitaille for his help on the CTF MEG
% implementation
% SMI, University Aalborg, Denmark http://www.smi.auc.dk/
% FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl
% Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [EEGOUT] = dipfit_nonlinear( EEG, varargin )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert the optional arguments into a configuration structure that can be
% understood by FIELDTRIPs dipolefitting function
if nargin>2
cfg = struct(varargin{:});
else
help dipfit_nonlinear
return
end
% specify the FieldTrip DIPOLEFITTING configuration
cfg.model = 'moving';
cfg.gridsearch = 'no';
if ~isfield(cfg, 'nonlinear')
% if this flag is set to 'no', only the dipole moment will be fitted
cfg.nonlinear = 'yes';
end
% add some additional settings from EEGLAB to the configuration
tmpchanlocs = EEG.chanlocs;
cfg.channel = { tmpchanlocs(EEG.dipfit.chansel).labels };
if isfield(EEG.dipfit, 'vol')
cfg.vol = EEG.dipfit.vol;
elseif isfield(EEG.dipfit, 'hdmfile')
cfg.hdmfile = EEG.dipfit.hdmfile;
else
error('no head model in EEG.dipfit')
end
if isfield(EEG.dipfit, 'elecfile') & ~isempty(EEG.dipfit.elecfile)
cfg.elecfile = EEG.dipfit.elecfile;
end
if isfield(EEG.dipfit, 'gradfile') & ~isempty(EEG.dipfit.gradfile)
cfg.gradfile = EEG.dipfit.gradfile;
end
% set up the initial dipole model based on the one in the EEG structure
cfg.dip.pos = EEG.dipfit.model(cfg.component).posxyz;
cfg.dip.mom = EEG.dipfit.model(cfg.component).momxyz';
cfg.dip.mom = cfg.dip.mom(:);
% convert the EEGLAB data structure into a structure that looks as if it
% was computed using FIELDTRIPs componentanalysis function
comp = eeglab2fieldtrip(EEG, 'componentanalysis', 'dipfit');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Added code to handle CTF data with multipleSphere head model %
% This code is copy-pasted in dipfit_gridSearch, dipfit_nonlinear %
% The flag .isMultiSphere is used by dipplot %
% Nicolas Robitaille, January 2007. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Do some trick to force fieldtrip to use the multiple sphere model
if strcmpi(EEG.dipfit.coordformat, 'CTF')
cfg = rmfield(cfg, 'channel');
comp = rmfield(comp, 'elec');
cfg.gradfile = EEG.dipfit.chanfile;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% END %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% fit the dipoles to the ICA component(s) of interest using FIELDTRIPs
% dipolefitting function
currentPath = pwd;
ptmp = which('ft_prepare_vol_sens');
ptmp = fileparts(ptmp);
if isempty(ptmp), error('Path to "forward" folder of Fieldtrip missing'); end;
cd(fullfile(ptmp, 'private'));
try,
source = ft_dipolefitting(cfg, comp);
catch,
cd(currentPath);
lasterr
error(lasterr);
end;
cd(currentPath);
% reformat the output dipole sources into EEGLABs data structure
EEG.dipfit.model(cfg.component).posxyz = source.dip.pos;
EEG.dipfit.model(cfg.component).momxyz = reshape(source.dip.mom, 3, length(source.dip.mom)/3)';
EEG.dipfit.model(cfg.component).diffmap = source.Vmodel - source.Vdata;
EEG.dipfit.model(cfg.component).sourcepot = source.Vmodel;
EEG.dipfit.model(cfg.component).datapot = source.Vdata;
EEG.dipfit.model(cfg.component).rv = source.dip.rv;
%EEG.dipfit.model(cfg.component).rv = sum((source.Vdata - source.Vmodel).^2) / sum( source.Vdata.^2 );
EEGOUT = EEG;
|
github
|
lcnbeapp/beapp-master
|
adjustcylinder2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/adjustcylinder2.m
| 2,197 |
utf_8
|
34ff5cb12c3fc11a2456e7d82aedd980
|
% adjustcylinder() - Adjust 3d object coordinates to match a pair of points
%
% Usage:
% >> [x y z] = adjustcylinder( x, y, z, pos1, pos2);
%
% Inputs:
% x,y,z - 3-D point coordinates
% pos1 - position of first point [x y z]
% pos2 - position of second point [x y z]
%
% Outputs:
% x,y,z - updated 3-D point coordinates
%
% Author: Arnaud Delorme, CNL / Salk Institute, 30 Mai 2003
% Copyright (C) 2003 Arnaud Delorme
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [x, y, z] = adjustcylinder2( h, pos1, pos2);
% figure; plot3(x(2,:),y(2,:),z(2,:)); [ x(2,:)' y(2,:)' z(2,:)']
% stretch z coordinates to match for vector length
% ------------------------------------------------
dist = sqrt(sum((pos1-pos2).^2));
z = get(h, 'zdata');
zrange = max(z(:)) - min(z(:));
set(h, 'zdata', get(h, 'zdata') /zrange*dist);
% rotate in 3-D to match vector angle [0 0 1] -> vector angle)
% only have to rotate in the x-z and y-z plane
% --------------------------------------------
vectrot = [ pos2(1)-pos1(1) pos2(2)-pos1(2) pos2(3)-pos1(3)];
[thvect phivect] = cart2sph( vectrot(1), vectrot(2), vectrot(3) );
rotatematlab(h, [0 0 1], thvect/pi*180, [0 0 0]);
rotatematlab(h, [thvect+pi/2 0]/pi*180, (pi/2-phivect)/pi*180, [0 0 0]);
x = get(h, 'xdata') + pos1(1);
y = get(h, 'ydata') + pos1(2);
z = get(h, 'zdata') + pos1(3);
set(h, 'xdata', x);
set(h, 'ydata', y);
set(h, 'zdata', z);
return;
|
github
|
lcnbeapp/beapp-master
|
pop_dipfit_settings.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/dipfit2.3/pop_dipfit_settings.m
| 20,001 |
utf_8
|
7ef22305183621c09beb2691d0250fd9
|
% pop_dipfit_settings() - select global settings for dipole fitting through a pop up window
%
% Usage:
% >> OUTEEG = pop_dipfit_settings ( INEEG ); % pop up window
% >> OUTEEG = pop_dipfit_settings ( INEEG, 'key1', 'val1', 'key2', 'val2' ... )
%
% Inputs:
% INEEG input dataset
%
% Optional inputs:
% 'hdmfile' - [string] file containing a head model compatible with
% the Fieldtrip dipolefitting() function ("vol" entry)
% 'mrifile' - [string] file containing an anatomical MR head image.
% The MRI must be normalized to the MNI brain. See the .mat
% files used by the sphere and boundary element models
% (For instance, select the sphere model and study 'EEG.dipfit').
% If SPM2 software is installed, dipfit will be able to read
% most MRI file formats for plotting purposes (.mnc files, etc...).
% To plot dipoles in a subject MRI, first normalize the MRI
% to the MNI brain using SPM2.
% 'coordformat' - ['MNI'|'Spherical'] Coordinates returned by the selected
% head model. May be MNI coordinates or spherical coordinates
% (For spherical coordinates, the head radius is assumed to be 85 mm.
% 'chanfile' - [string] template channel locations file. (This function will
% check whether your channel locations file is compatible with
% your selected head model).
% 'chansel' - [integer vector] indices of channels to use for dipole fitting.
% {default: all}
% 'coord_transform' - [float array] Talairach transformation matrix for
% aligning the dataset channel locations to the selected
% head model.
% 'electrodes' - [integer array] indices of channels to include
% in the dipole model. {default: all}
% Outputs:
% OUTEEG output dataset
%
% Author: Arnaud Delorme, SCCN, La Jolla 2003-
% Robert Oostenveld, SMI/FCDC, Nijmegen 2003
% MEG flag:
% 'gradfile' - [string] file containing gradiometer locations
% ("gradfile" parameter in Fieldtrip dipolefitting() function)
% SMI, University Aalborg, Denmark http://www.smi.auc.dk/
% FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl
% Copyright (C) 2003 [email protected], Arnaud Delorme, SCCN, La Jolla 2003-2005
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [OUTEEG, com] = pop_dipfit_settings ( EEG, varargin )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin < 1
help pop_dipfit_settings;
return;
end;
if ~plugin_askinstall('Fieldtrip-lite', 'ft_sourceanalysis'), return; end;
OUTEEG = EEG;
com = '';
% get the default values and filenames
dipfitdefs;
if nargin < 2
if isstr(EEG) % setmodel
tmpdat = get(gcf, 'userdata');
chanfile = tmpdat.chanfile;
tmpdat = tmpdat.template_models;
tmpval = get(findobj(gcf, 'tag', 'listmodels'), 'value');
set(findobj(gcf, 'tag', 'model'), 'string', char(tmpdat(tmpval).hdmfile));
set(findobj(gcf, 'tag', 'coord'), 'value' , fastif(strcmpi(tmpdat(tmpval).coordformat,'MNI'),2, ...
fastif(strcmpi(tmpdat(tmpval).coordformat,'CTF'),3,1)));
set(findobj(gcf, 'tag', 'mri' ), 'string', char(tmpdat(tmpval).mrifile));
set(findobj(gcf, 'tag', 'meg'), 'string', char(tmpdat(tmpval).chanfile));
set(findobj(gcf, 'tag', 'coregcheckbox'), 'value', 0);
if tmpval < 3,
set(findobj(gcf, 'userdata', 'editable'), 'enable', 'off');
else,
set(findobj(gcf, 'userdata', 'editable'), 'enable', 'on');
end;
if tmpval == 3,
set(findobj(gcf, 'tag', 'headstr'), 'string', 'Subject CTF head model file (default.htm)');
set(findobj(gcf, 'tag', 'mristr'), 'string', 'Subject MRI (coregistered with CTF head)');
set(findobj(gcf, 'tag', 'chanstr'), 'string', 'CTF Res4 file');
set(findobj(gcf, 'tag', 'manualcoreg'), 'enable', 'off');
set(findobj(gcf, 'userdata', 'coreg'), 'enable', 'off');
else,
set(findobj(gcf, 'tag', 'headstr'), 'string', 'Head model file');
set(findobj(gcf, 'tag', 'mristr'), 'string', 'MRI file');
set(findobj(gcf, 'tag', 'chanstr'), 'string', 'Model template channel locations file');
set(findobj(gcf, 'tag', 'manualcoreg'), 'enable', 'on');
set(findobj(gcf, 'userdata', 'coreg'), 'enable', 'on');
end;
tmpl = tmpdat(tmpval).coord_transform;
set(findobj(gcf, 'tag', 'coregtext'), 'string', '');
set(findobj(gcf, 'tag', 'coregcheckbox'), 'value', 0);
[allkeywordstrue transform] = lookupchantemplate(chanfile, tmpl);
if allkeywordstrue,
set(findobj(gcf, 'tag', 'coregtext'), 'string', char(vararg2str({ transform })));
if isempty(transform)
set(findobj(gcf, 'tag', 'coregcheckbox'), 'value', 1);
else set(findobj(gcf, 'tag', 'coregcheckbox'), 'value', 0);
end;
end;
return;
end;
% detect DIPFIT1.0x structure
% ---------------------------
if isfield(EEG.dipfit, 'vol')
str = [ 'Dipole information structure from DIPFIT v1.02 detected.' ...
'Keep or erase the old dipole information including dipole locations? ' ...
'In either case, a new dipole model can be constructed.' ];
tmpButtonName=questdlg2( strmultiline(str, 60), 'Old DIPFIT structure', 'Keep', 'Erase', 'Keep');
if strcmpi(tmpButtonName, 'Keep'), return; end;
elseif isfield(EEG.dipfit, 'hdmfile')
% detect previous DIPFIT structure
% --------------------------------
str = [ 'Dipole information and settings are present in the dataset. ' ...
'Keep or erase this information?' ];
tmpButtonName=questdlg2( strmultiline(str, 60), 'Old DIPFIT structure', 'Keep', 'Erase', 'Keep');
if strcmpi(tmpButtonName, 'Keep'), return; end;
end;
% define the callbacks for the buttons
% -------------------------------------
cb_selectelectrodes = [ 'tmplocs = EEG.chanlocs; tmp = select_channel_list({tmplocs.label}, ' ...
'eval(get(findobj(gcbf, ''tag'', ''elec''), ''string'')));' ...
'set(findobj(gcbf, ''tag'', ''elec''), ''string'',[''['' num2str(tmp) '']'']); clear tmplocs;' ]; % did not work
cb_selectelectrodes = 'tmplocs = EEG.chanlocs; set(findobj(gcbf, ''tag'', ''elec''), ''string'', int2str(pop_chansel({tmplocs.labels}))); clear tmplocs;';
cb_volmodel = [ 'tmpdat = get(gcbf, ''userdata'');' ...
'tmpind = get(gcbo, ''value'');' ...
'set(findobj(gcbf, ''tag'', ''radii''), ''string'', num2str(tmpdat{tmpind}.r,3));' ...
'set(findobj(gcbf, ''tag'', ''conduct''), ''string'', num2str(tmpdat{tmpind}.c,3));' ...
'clear tmpdat tmpind;' ];
cb_changeradii = [ 'tmpdat = get(gcbf, ''userdata'');' ...
'tmpdat.vol.r = str2num(get(gcbo, ''string''));' ...
'set(gcf, ''userdata'', tmpdat)' ];
cb_changeconduct = [ 'tmpdat = get(gcbf, ''userdata'');' ...
'tmpdat.vol.c = str2num(get(gcbo, ''string''));' ...
'set(gcf, ''userdata'', tmpdat)' ];
cb_changeorigin = [ 'tmpdat = get(gcbf, ''userdata'');' ...
'tmpdat.vol.o = str2num(get(gcbo, ''string''));' ...
'set(gcf, ''userdata'', tmpdat)' ];
% cb_fitelec = [ 'if get(gcbo, ''value''),' ...
% ' set(findobj(gcbf, ''tag'', ''origin''), ''enable'', ''off'');' ...
% 'else' ...
% ' set(findobj(gcbf, ''tag'', ''origin''), ''enable'', ''on'');' ...
% 'end;' ];
valmodel = 1;
userdata = [];
if isfield(EEG.chaninfo, 'filename')
if ~isempty(findstr(lower(EEG.chaninfo.filename), 'standard-10-5-cap385')), valmodel = 1; end;
if ~isempty(findstr(lower(EEG.chaninfo.filename), 'standard_1005')), valmodel = 2; end;
end;
geomvert = [3 1 1 1 1 1 1 1 1 1 1];
geomhorz = {
[1 2]
[1]
[1 1.3 0.5 0.5 ]
[1 1.3 0.9 0.1 ]
[1 1.3 0.5 0.5 ]
[1 1.3 0.5 0.5 ]
[1 1.3 0.5 0.5 ]
[1 1.3 0.5 0.5 ]
[1]
[1]
[1] };
% define each individual graphical user element
comhelp1 = [ 'warndlg2(strvcat(''The two default head models are in ''standard_BEM'' and ''standard_BESA'''',' ...
''' sub-folders in the DIPFIT2 plugin folder, and may be modified there.''), ''Model type'');' ];
comhelp3 = [ 'warndlg2(strvcat(''Any MR image normalized to the MNI brain model may be used for plotting'',' ...
'''(see the DIPFIT 2.0 tutorial for more information)''), ''Model type'');' ];
comhelp2 = [ 'warndlg2(strvcat(''The template location file associated with the head model'',' ...
'''you are using must be entered (see tutorial).''), ''Template location file'');' ];
commandload1 = [ '[filename, filepath] = uigetfile(''*'', ''Select a text file'');' ...
'if filename ~=0,' ...
' set(findobj(''parent'', gcbf, ''tag'', ''model''), ''string'', [ filepath filename ]);' ...
'end;' ...
'clear filename filepath tagtest;' ];
commandload2 = [ '[filename, filepath] = uigetfile(''*'', ''Select a text file'');' ...
'if filename ~=0,' ...
' set(findobj(''parent'', gcbf, ''tag'', ''meg''), ''string'', [ filepath filename ]);' ...
'end;' ...
'clear filename filepath tagtest;' ];
commandload3 = [ '[filename, filepath] = uigetfile(''*'', ''Select a text file'');' ...
'if filename ~=0,' ...
' set(findobj(''parent'', gcbf, ''tag'', ''mri''), ''string'', [ filepath filename ]);' ...
'end;' ...
'clear filename filepath tagtest;' ];
cb_selectcoreg = [ 'tmpmodel = get( findobj(gcbf, ''tag'', ''model''), ''string'');' ...
'tmploc2 = get( findobj(gcbf, ''tag'', ''meg'') , ''string'');' ...
'tmploc1 = get( gcbo, ''userdata'');' ...
'tmptransf = get( findobj(gcbf, ''tag'', ''coregtext''), ''string'');' ...
'[tmp tmptransf] = coregister(tmploc1{1}, tmploc2, ''mesh'', tmpmodel,' ...
' ''transform'', str2num(tmptransf), ''chaninfo1'', tmploc1{2}, ''helpmsg'', ''on'');' ...
'if ~isempty(tmptransf), set( findobj(gcbf, ''tag'', ''coregtext''), ''string'', num2str(tmptransf)); end;' ...
'clear tmpmodel tmploc2 tmploc1 tmp tmptransf;' ];
setmodel = [ 'pop_dipfit_settings(''setmodel'');' ];
dipfitdefs; % contains template_model
templatenames = { template_models.name };
elements = { ...
{ 'style' 'text' 'string' [ 'Head model (click to select)' 10 '' ] } ...
{ 'style' 'listbox' 'string' strvcat(templatenames{:}) ...
'callback' setmodel 'value' valmodel 'tag' 'listmodels' } { } ...
{ 'style' 'text' 'string' '________' 'tag' 'headstr' } ...
{ 'style' 'edit' 'string' '' 'tag' 'model' 'userdata' 'editable' 'enable' 'off'} ...
{ 'style' 'pushbutton' 'string' 'Browse' 'callback' commandload1 'userdata' 'editable' 'enable' 'off' } ...
{ 'style' 'pushbutton' 'string' 'Help' 'callback' comhelp1 } ...
{ 'style' 'text' 'string' 'Output coordinates' } ...
{ 'style' 'popupmenu' 'string' 'spherical (head radius 85 mm)|MNI|CTF' 'tag' 'coord' ...
'value' 1 'userdata' 'editable' 'enable' 'off'} ...
{ 'style' 'text' 'string' 'Click to select' } { } ...
{ 'style' 'text' 'string' '________' 'tag' 'mristr' } ...
{ 'style' 'edit' 'string' '' 'tag' 'mri' } ...
{ 'style' 'pushbutton' 'string' 'Browse' 'callback' commandload3 } ...
{ 'style' 'pushbutton' 'string' 'Help' 'callback' comhelp3 } ...
{ 'style' 'text' 'string' '________', 'tag', 'chanstr' } ...
{ 'style' 'edit' 'string' '' 'tag' 'meg' 'userdata' 'editable' 'enable' 'off'} ...
{ 'style' 'pushbutton' 'string' 'Browse' 'callback' commandload2 'userdata' 'editable' 'enable' 'off'} ...
{ 'style' 'pushbutton' 'string' 'Help' 'callback' comhelp2 } ...
{ 'style' 'text' 'string' 'Co-register chan. locs. with head model' 'userdata' 'coreg' } ...
{ 'style' 'edit' 'string' '' 'tag' 'coregtext' 'userdata' 'coreg' } ...
{ 'style' 'pushbutton' 'string' 'Manual Co-Reg.' 'tag' 'manualcoreg' 'callback' cb_selectcoreg 'userdata' { EEG.chanlocs,EEG.chaninfo } } ...
{ 'style' 'checkbox' 'string' 'No Co-Reg.' 'tag' 'coregcheckbox' 'value' 0 'userdata' 'coreg' } ...
{ 'style' 'text' 'string' 'Channels to omit from dipole fitting' } ...
{ 'style' 'edit' 'string' '' 'tag' 'elec' } ...
{ 'style' 'pushbutton' 'string' 'List' 'callback' cb_selectelectrodes } { } ...
{ } ...
{ 'style' 'text' 'string' 'Note: For EEG, check that the channel locations are on the surface of the head model' } ...
{ 'style' 'text' 'string' '(To do this: ''Set head radius'' to about 85 in the channel editor).' } ...
};
% plot GUI and protect parameters
% -------------------------------
userdata.template_models = template_models;
if isfield(EEG.chaninfo, 'filename')
userdata.chanfile = lower(EEG.chaninfo.filename);
else userdata.chanfile = '';
end;
optiongui = { 'geometry', geomhorz, 'uilist', elements, 'helpcom', 'pophelp(''pop_dipfit_settings'')', ...
'title', 'Dipole fit settings - pop_dipfit_settings()', ...
'userdata', userdata, 'geomvert', geomvert 'eval' 'pop_dipfit_settings(''setmodel'');' };
[result, userdat2, strhalt, outstruct] = inputgui( 'mode', 'noclose', optiongui{:});
if isempty(result), return; end;
if ~isempty(get(0, 'currentfigure')) currentfig = gcf; else return; end;
while test_wrong_parameters(currentfig)
[result, userdat2, strhalt, outstruct] = inputgui( 'mode', currentfig, optiongui{:});
if isempty(result), return; end;
end;
close(currentfig);
% decode GUI inputs
% -----------------
options = {};
options = { options{:} 'hdmfile' result{2} };
options = { options{:} 'coordformat' fastif(result{3} == 2, 'MNI', fastif(result{3} == 1, 'Spherical', 'CTF')) };
options = { options{:} 'mrifile' result{4} };
options = { options{:} 'chanfile' result{5} };
if ~result{7}, options = { options{:} 'coord_transform' str2num(result{6}) }; end;
options = { options{:} 'chansel' setdiff(1:EEG.nbchan, str2num(result{8})) };
else
options = varargin;
end
g = finputcheck(options, { 'hdmfile' 'string' [] '';
'mrifile' 'string' [] '';
'chanfile' 'string' [] '';
'chansel' 'integer' [] [1:EEG.nbchan];
'electrodes' 'integer' [] [];
'coord_transform' 'real' [] [];
'coordformat' 'string' { 'MNI','spherical','CTF' } 'MNI' });
if isstr(g), error(g); end;
OUTEEG = rmfield(OUTEEG, 'dipfit');
OUTEEG.dipfit.hdmfile = g.hdmfile;
OUTEEG.dipfit.mrifile = g.mrifile;
OUTEEG.dipfit.chanfile = g.chanfile;
OUTEEG.dipfit.chansel = g.chansel;
OUTEEG.dipfit.coordformat = g.coordformat;
OUTEEG.dipfit.coord_transform = g.coord_transform;
if ~isempty(g.electrodes), OUTEEG.dipfit.chansel = g.electrodes; end;
% removing channels with no coordinates
% -------------------------------------
[tmpeloc labels Th Rd indices] = readlocs(EEG.chanlocs);
if length(indices) < length(EEG.chanlocs)
disp('Warning: Channels removed from dipole fitting no longer have location coordinates!');
OUTEEG.dipfit.chansel = intersect( OUTEEG.dipfit.chansel, indices);
end;
% checking electrode configuration
% --------------------------------
if 0
disp('Checking the electrode configuration');
tmpchan = readlocs(OUTEEG.dipfit.chanfile);
[tmp1 ind1 ind2] = intersect( lower({ tmpchan.labels }), lower({ OUTEEG.chanlocs.labels }));
if isempty(tmp1)
disp('No channel labels in common found between template and dataset channels');
if ~isempty(findstr(OUTEEG.dipfit.hdmfile, 'BESA'))
disp('Use the channel editor to fit a head sphere to your channel locations.');
disp('Check for inconsistency in dipole info.');
else
disp('Results using standard BEM model are INACCURATE when the chan locations are not on the head surface!');
end;
else % common channels: performing best transformation
TMP = OUTEEG;
elec1 = eeglab2fieldtrip(TMP, 'elec');
elec1 = elec1.elec;
TMP.chanlocs = tmpchan;
elec2 = eeglab2fieldtrip(TMP, 'elec');
elec2 = elec2.elec;
cfg.elec = elec1;
cfg.template = elec2;
cfg.method = 'warp';
elec3 = electrodenormalize(cfg);
% convert back to EEGLAB format
OUTEEG.chanlocs = struct( 'labels', elec3.label, ...
'X' , mat2cell(elec3.pnt(:,1)'), ...
'Y' , mat2cell(elec3.pnt(:,2)'), ...
'Z' , mat2cell(elec3.pnt(:,3)') );
OUTEEG.chanlocs = convertlocs(OUTEEG.chanlocs, 'cart2all');
end;
end;
com = sprintf('%s = pop_dipfit_settings( %s, %s);', inputname(1), inputname(1), vararg2str(options));
% test for wrong parameters
% -------------------------
function bool = test_wrong_parameters(hdl)
coreg1 = get( findobj( hdl, 'tag', 'coregtext') , 'string' );
coreg2 = get( findobj( hdl, 'tag', 'coregcheckbox'), 'value' );
meg = get( findobj( hdl, 'tag', 'coord'), 'value' );
bool = 0;
if meg == 3, return; end;
if coreg2 == 0 & isempty(coreg1)
bool = 1; warndlg2(strvcat('You must co-register your channel locations', ...
'with the head model (Press buttun, "Manual Co-Reg".', ...
'and follow instructions); To bypass co-registration,', ...
'check the checkbox " No Co-Reg".'), 'Error');
end;
|
github
|
lcnbeapp/beapp-master
|
eegplugin_cleanline.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/eegplugin_cleanline.m
| 2,154 |
utf_8
|
00012f272d3f6c21e4885de250f6e0ef
|
% eegplugin_cleanline() - EEGLAB plugin for removing line noise
%
% Usage:
% >> eegplugin_cleanline(fig, trystrs, catchstrs);
%
% Inputs:
% fig - [integer] EEGLAB figure
% trystrs - [struct] "try" strings for menu callbacks.
% catchstrs - [struct] "catch" strings for menu callbacks.
%
% Notes:
% This plugins consist of the following Matlab files:
%
% Create a plugin:
% For more information on how to create an EEGLAB plugin see the
% help message of eegplugin_besa() or visit http://www.sccn.ucsd.edu/eeglab/contrib.html
%
%
% See also: pop_cleanline(), cleanline()
% Copyright (C) 2011 Tim Mullen, SCCN/INC/UCSD
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function vers = eegplugin_cleanline(fig, trystrs, catchstrs)
vers = 'cleanline';
if nargin < 3
error('eegplugin_cleanline requires 3 arguments');
end;
% add folder to path
% ------------------
if exist('cleanline', 'file')
p = which('eegplugin_cleanline.m');
p = p(1:findstr(p,'eegplugin_cleanline.m')-1);
addpath(genpath(p));
end;
% find import data menu
% ---------------------
menu = findobj(fig, 'tag', 'tools');
% menu callbacks
% --------------
comcnt = [ trystrs.no_check '[EEG LASTCOM] = pop_cleanline(EEG);' catchstrs.new_and_hist ];
% create menus
% ------------
uimenu( menu, 'label', 'CleanLine', 'callback', comcnt,'separator', 'on', 'position',length(get(menu,'children'))+1);
|
github
|
lcnbeapp/beapp-master
|
cleanline.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/cleanline.m
| 27,439 |
utf_8
|
db2d5fa2e56fb92bf9e5165018650537
|
function [EEG, Sorig, Sclean, f, amps, freqs, g] = cleanline(varargin)
% Mandatory Information
% --------------------------------------------------------------------------------------------------
% EEG EEGLAB data structure
% --------------------------------------------------------------------------------------------------
%
% Optional Information
% --------------------------------------------------------------------------------------------------
% LineFrequencies: Line noise frequencies to remove
% Input Range : Unrestricted
% Default value: 60 120
% Input Data Type: real number (double)
%
% ScanForLines: Scan for line noise
% This will scan for the exact line frequency in a narrow range around the specified LineFrequencies
% Input Range : Unrestricted
% Default value: 1
% Input Data Type: boolean
%
% LineAlpha: p-value for detection of significant sinusoid
% Input Range : [0 1]
% Default value: 0.01
% Input Data Type: real number (double)
%
% Bandwidth: Bandwidth (Hz)
% This is the width of a spectral peak for a sinusoid at fixed frequency. As such, this defines the
% multi-taper frequency resolution.
% Input Range : Unrestricted
% Default value: 1
% Input Data Type: real number (double)
%
% SignalType: Type of signal to clean
% Cleaned ICA components will be backprojected to channels. If channels are cleaned, ICA activations
% are reconstructed based on clean channels.
% Possible values: 'Components','Channels'
% Default value : 'Components'
% Input Data Type: string
%
% ChanCompIndices: IDs of Chans/Comps to clean
% Input Range : Unrestricted
% Default value: 1:152
% Input Data Type: any evaluable Matlab expression.
%
% SlidingWinLength: Sliding window length (sec)
% Default is the epoch length.
% Input Range : [0 4]
% Default value: 4
% Input Data Type: real number (double)
%
% SlidingWinStep: Sliding window step size (sec)
% This determines the amount of overlap between sliding windows. Default is window length (no
% overlap).
% Input Range : [0 4]
% Default value: 4
% Input Data Type: real number (double)
%
% SmoothingFactor: Window overlap smoothing factor
% A value of 1 means (nearly) linear smoothing between adjacent sliding windows. A value of Inf means
% no smoothing. Intermediate values produce sigmoidal smoothing between adjacent windows.
% Input Range : [1 Inf]
% Default value: 100
% Input Data Type: real number (double)
%
% PaddingFactor: FFT padding factor
% Signal will be zero-padded to the desired power of two greater than the sliding window length. The
% formula is NFFT = 2^nextpow2(SlidingWinLen*(PadFactor+1)). e.g. For SlidingWinLen = 500, if PadFactor = -1, we
% do not pad; if PadFactor = 0, we pad the FFT to 512 points, if PadFactor=1, we pad to 1024 points etc.
% Input Range : [-1 Inf]
% Default value: 2
% Input Data Type: real number (double)
%
% ComputeSpectralPower: Visualize Original and Cleaned Spectra
% Original and clean spectral power will be computed and visualized at end
% Input Range : Unrestricted
% Default value: true
% Input Data Type: boolean
%
% NormalizeSpectrum: Normalize log spectrum by detrending (not generally recommended)
% Input Range : Unrestricted
% Default value: 0
% Input Data Type: boolean
%
% VerboseOutput: Produce verbose output
% Input Range : [true false]
% Default value: true
% Input Data Type: boolean
%
% PlotFigures: Plot Individual Figures
% This will generate figures of F-statistic, spectrum, etc for each channel/comp while processing
% Input Range : Unrestricted
% Default value: 0
% Input Data Type: boolean
%
% --------------------------------------------------------------------------------------------------
% Output Information
% --------------------------------------------------------------------------------------------------
% EEG Cleaned EEG dataset
% Sorig Original multitaper spectrum for each component/channel
% Sclean Cleaned multitaper spectrum for each component/channel
% f Frequencies at which spectrum is estimated in Sorig, Sclean
% amps Complex amplitudes of sinusoidal lines for each
% window (line time-series for window i can be
% reconstructed by creating a sinudoid with frequency f{i} and complex
% amplitude amps{i})
% freqs Exact frequencies at which lines were removed for
% each window (cell array)
% g Parameter structure. Function call can be
% replicated exactly by calling >> cleanline(EEG,g);
%
% Usage Example:
% EEG = pop_cleanline(EEG, 'Bandwidth',2,'ChanCompIndices',[1:EEG.nbchan], ...
% 'SignalType','Channels','ComputeSpectralPower',true, ...
% 'LineFrequencies',[60 120] ,'NormalizeSpectrum',false, ...
% 'LineAlpha',0.01,'PaddingFactor',2,'PlotFigures',false, ...
% 'ScanForLines',true,'SmoothingFactor',100,'VerboseOutput',1, ...
% 'SlidingWinLength',EEG.pnts/EEG.srate,'SlidingWinStep',EEG.pnts/EEG.srate);
%
% See Also:
% pop_cleanline()
% Author: Tim Mullen, SCCN/INC/UCSD Copyright (C) 2011
% Date: Nov 20, 2011
%
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
EEG = arg_extract(varargin,'EEG',[],[]);
if isempty(EEG)
EEG = eeg_emptyset;
end
if ~isempty(EEG.icawinv);
defSigType = {'Components','Channels'};
else
defSigType = {'Channels'};
end
g = arg_define([0 1], varargin, ...
arg_norep('EEG',mandatory), ...
arg({'linefreqs','LineFrequencies'},[60 120],[],'Line noise frequencies to remove.'),...
arg({'scanforlines','ScanForLines'},true,[],'Scan for line noise. This will scan for the exact line frequency in a narrow range around the specified LineFrequencies'),...
arg({'p','LineAlpha','alpha'},0.01,[0 1],'p-value for detection of significant sinusoid'), ...
arg({'bandwidth','Bandwidth'},2,[],'Bandwidth (Hz). This is the width of a spectral peak for a sinusoid at fixed frequency. As such, this defines the multi-taper frequency resolution.'), ...
arg({'sigtype','SignalType','chantype'},defSigType{1},defSigType,'Type of signal to clean. Cleaned ICA components will be backprojected to channels. If channels are cleaned, ICA activations are reconstructed based on clean channels.'), ...
arg({'chanlist','ChanCompIndices','ChanComps'},sprintf('1:%d',EEG.nbchan),[1 EEG.nbchan],'Indices of Channels/Components to clean.','type','expression'),...
arg({'winsize','SlidingWinLength'},fastif(EEG.trials==1,4,EEG.pnts/EEG.srate),[0 EEG.pnts/EEG.srate],'Sliding window length (sec). Default for epoched data is the epoch length. Default for continuous data is 4 seconds'), ...
arg({'winstep','SlidingWinStep'},fastif(EEG.trials==1,1,EEG.pnts/EEG.srate),[0 EEG.pnts/EEG.srate],'Sliding window step size (sec). This determines the amount of overlap between sliding windows. Default for epoched data is window length (no overlap). Default for continuous data is 1 second.'), ...
arg({'tau','SmoothingFactor'},100,[1 Inf],'Window overlap smoothing factor. A value of 1 means (nearly) linear smoothing between adjacent sliding windows. A value of Inf means no smoothing. Intermediate values produce sigmoidal smoothing between adjacent windows.'), ...
arg({'pad','PaddingFactor'},2,[-1 Inf],'FFT padding factor. Signal will be zero-padded to the desired power of two greater than the sliding window length. The formula is NFFT = 2^nextpow2(SlidingWinLen*(PadFactor+1)). e.g. For N = 500, if PadFactor = -1, we do not pad; if PadFactor = 0, we pad the FFT to 512 points, if PadFactor=1, we pad to 1024 points etc.'), ...
arg({'computepower','ComputeSpectralPower'},true,[],'Visualize Original and Cleaned Spectra. Original and clean spectral power will be computed and visualized at end'), ...
arg({'normSpectrum','NormalizeSpectrum'},false,[],'Normalize log spectrum by detrending. Not generally recommended.'), ...
arg({'verb','VerboseOutput','VerbosityLevel'},true,[],'Produce verbose output.'), ...
arg({'plotfigures','PlotFigures'},false,[],'Plot Individual Figures. This will generate figures of F-statistic, spectrum, etc for each channel/comp while processing') ...
);
if any(g.chanlist > fastif(strcmpi(g.sigtype,'channels'),EEG.nbchan,size(EEG.icawinv,1)))
error('''ChanCompIndices'' contains indices of channels or components that are not present in the dataset!');
end
arg_toworkspace(g);
% defaults
[Sorig, Sclean, f, amps, freqs] = deal([]);
hasica = ~isempty(EEG.icawinv);
% set up multi-taper parameters
hbw = g.bandwidth/2; % half-bandwidth
params.tapers = [hbw, g.winsize, 1];
params.Fs = EEG.srate;
params.g.pad = g.pad;
movingwin = [g.winsize g.winstep];
% NOTE: params.tapers = [W, T, p] where:
% T==frequency range in Hz over which the spectrum is maximally concentrated
% on either side of a center frequency (half of the spectral bandwidth)
% W==time resolution (seconds)
% p is used for num_tapers = 2TW-p (usually p=1).
SlidingWinLen = movingwin(1)*params.Fs;
if params.g.pad>=0
NFFT = 2^nextpow2(SlidingWinLen*(params.g.pad+1));
else
NFFT = SlidingWinLen;
end
if isempty(EEG.data) && isempty(EEG.icaact)
fprintf('Hey! Where''s your EEG data?\n');
return;
end
if g.verb
fprintf('\n\nWelcome to the CleanLine line noise removal toolbox!\n');
fprintf('CleanLine is written by Tim Mullen ([email protected]) and uses multi-taper routines modified from the Chronux toolbox (www.chronux.org)\n');
fprintf('\nTsk Tsk, you''ve allowed your data to get very dirty!\n');
fprintf('Let''s roll up our sleeves and do some cleaning!\n');
fprintf('Today we''re going to be cleaning your %s\n',g.sigtype);
if EEG.trials>1
if g.winsize~=g.winstep
fprintf('\n[!] Yikes! I noticed you have multiple trials, but you''ve selected overlapping windows.\n');
fprintf(' This probably means one or more of your windows will span two trials, which can be bad news (discontinuities)!\n');
resp = input('\n Are you sure you want to continue? (''y'',''n''): ','s');
if ~strcmpi(resp,'y')
return;
end
end
if g.winsize > EEG.pnts/EEG.srate
fprintf('\n[!] Yikes! I noticed you have multiple trials, but your window length (%0.4g sec) is greater than the epoch length (%0.4g sec).\n',g.winsize,EEG.pnts/EEG.srate);
fprintf(' This means each window will span multiple trials, which can be bad news!\n');
fprintf(' Ideally, your windows should be less than or equal to the epoch length\n');
resp = input('\n Are you sure you want to continue? (''y'',''n''): ','s');
if ~strcmpi(resp,'y')
return;
end
end
if g.winsize~=g.winstep || g.winsize > EEG.pnts/EEG.srate
fprintf('\nFine, have it your way, but if results are sub-optimal try selecting window length and step size so your windows don''t span multiple trials.\n\n');
pause(2);
end
end
ndiff = rem(EEG.pnts,(g.winsize*EEG.srate));
if ndiff>0
fprintf('\n[!] Please note that because the selected window length does not divide the data length, \n');
fprintf(' %0.4g seconds of data at the end of the record will not be cleaned.\n\n',ndiff/EEG.srate);
end
fprintf('Multi-taper parameters follow:\n');
fprintf('\tTime-bandwidth product:\t %0.4g\n',hbw*g.winsize);
fprintf('\tNumber of tapers:\t %0.4g\n',2*hbw*g.winsize-1);
fprintf('\tNumber of FFT points:\t %d\n',NFFT);
if ~isempty(g.linefreqs)
fprintf('I''m going try to remove lines at these frequencies: [%s] Hz\n',strtrim(num2str(g.linefreqs)));
if g.scanforlines
fprintf('I''m going to scan the range +/-%0.4g Hz around each of the above frequencies for the exact line frequency.\n',params.tapers(1));
fprintf('I''ll do this by selecting the frequency that maximizes Thompson''s F-statistic above a threshold of p=%0.4g.\n',g.p);
end
else
fprintf('You didn''t specify any lines (Hz) to remove, so I''ll try to find them using Thompson''s F-statistic.\n');
fprintf('I''ll use a p-value threshold of %0.4g.\n',g.p)
end
fprintf('\nOK, now stand back and let The Maid show you how it''s done!\n\n');
end
EEGLAB_backcolor = getbackcolor;
if g.plotfigures
% plot the overlap smoothing function
overlap = g.winsize-g.winstep;
toverlap = -overlap/2:(1/EEG.srate):overlap/2;
% specify the smoothing function
foverlap = 1-1./(1+exp(-g.tau.*toverlap/overlap));
% define some colours
yellow = [255, 255, 25]/255;
red = [255 0 0]/255;
% plot the figure
figure('color',EEGLAB_backcolor);
axis([-g.winsize+overlap/2 g.winsize-overlap/2 0 1]); set(gca,'ColorOrder',[0 0 0; 0.7 0 0.8; 0 0 1],'fontsize',11);
hold on
h(1)=hlp_vrect([-g.winsize+overlap/2 -overlap/2], 'yscale',[0 1],'patchProperties',{'FaceColor',yellow, 'FaceAlpha',1,'EdgeColor','none','EdgeAlpha',0.5});
h(2)=hlp_vrect([overlap/2 g.winsize-overlap/2], 'yscale',[0 1],'patchProperties',{'FaceColor',red, 'FaceAlpha',1,'EdgeColor','none','EdgeAlpha',0.5});
h(3)=hlp_vrect([-overlap/2 overlap/2], 'yscale',[0 1],'patchProperties',{'FaceColor',(yellow+red)/2,'FaceAlpha',1,'EdgeColor','none','EdgeAlpha',0.5});
plot(toverlap,foverlap,'linewidth',2);
plot(toverlap,1-foverlap,'linewidth',1,'linestyle','--');
hold off;
xlabel('Time (sec)'); ylabel('Smoothing weight');
title({'Plot of window overlap smoothing function vs. time',['Smoothing factor is \g.tau = ' num2str(g.tau)]});
legend(h,{'Window 1','Window 2','Overlap'});
end
if hasica && isempty(EEG.icaact)
EEG = eeg_checkset(EEG,'ica');
end
k=0;
for ch=g.chanlist
if g.verb,
fprintf('Cleaning %s %d...\n',fastif(strcmpi(g.sigtype,'Components'),'IC','Chan'),ch);
end
% extract data as [chans x frames*trials]
if strcmpi(g.sigtype,'components')
data = squeeze(EEG.icaact(ch,:));
else
data = squeeze(EEG.data(ch,:));
end
if g.plotfigures
% estimate the sinusoidal lines
[Fval sig f] = ftestmovingwinc(data,movingwin,params,g.p);
% plot the F-statistics
[F T] = meshgrid(f,1:size(Fval,1));
figure('color',EEGLAB_backcolor);
subplot(311);
surf(F,T,Fval); shading interp; caxis([0 prctile(Fval(:),99)]); axis tight
sigplane = ones(size(Fval))*sig;
hold on; surf(F,T,sigplane,'FaceColor','b','FaceAlpha',0.5);
xlabel('Frequency'); ylabel('Window'); zlabel('F-value');
title({[sprintf('%s %d: ',fastif(strcmpi(g.sigtype,'components'),'IC ','Chan '), ch) 'Thompson F-statistic for sinusoid'],sprintf('Black plane is p<%0.4g thresh',g.p)});
shadowplot x
shadowplot y
axcopy(gca);
subplot(312);
plot(F,mean(Fval,1),'k');
axis tight
hold on
plot(get(gca,'xlim'),[sig sig],'r:','linewidth',2);
xlabel('Frequency');
ylabel('Thompson F-stat');
title('F-statistic averaged over windows');
legend('F-val',sprintf('p=%0.4g',g.p));
hold off
axcopy(gca);
end
if g.plotfigures
subplot(313)
end
% DO THE MAGIC!
[datac,datafit,amps,freqs]=rmlinesmovingwinc(data,movingwin,g.tau,params,g.p,fastif(g.plotfigures,'y','n'),g.linefreqs,fastif(g.scanforlines,params.tapers(1),[]));
% append to clean dataset any remaining samples that were not cleaned
% due to sliding window and step size not dividing the data length
ndiff = length(data)-length(datac);
if ndiff>0
datac(end:end+ndiff) = data(end-ndiff:end);
end
if g.plotfigures
axis tight
legend('original','cleaned');
xlabel('Frequency (Hz)');
ylabel('Power (dB)');
title(sprintf('Power spectrum for %s %d',fastif(strcmpi(g.sigtype,'components'),'IC','Chan'),ch));
axcopy(gca);
end
if g.computepower
k = k+1;
if g.verb, fprintf('Computing spectral power...\n'); end
[Sorig(k,:) f] = mtspectrumsegc(data,movingwin(1),params);
[Sclean(k,:) f] = mtspectrumsegc(datac,movingwin(1),params);
if g.verb && ~isempty(g.linefreqs)
fprintf('Average noise reduction: ');
for fk=1:length(g.linefreqs)
[dummy fidx] = min(abs(f-g.linefreqs(fk)));
fprintf('%0.4g Hz: %0.4g dB %s ',f(fidx),10*log10(Sorig(k,fidx))-10*log10(Sclean(k,fidx)),fastif(fk<length(g.linefreqs),'|',''));
end
fprintf('\n');
end
if ch==g.chanlist(1)
% First run, so allocate memory for remaining spectra in
% Nchans x Nfreqs spectral matrix
Sorig = cat(1,Sorig,zeros(length(g.chanlist)-1,length(f)));
Sclean = cat(1,Sclean,zeros(length(g.chanlist)-1,length(f)));
end
end
if strcmpi(g.sigtype,'components')
EEG.icaact(ch,:) = datac';
else
EEG.data(ch,:) = datac';
end
end
if g.computepower
if g.verb, fprintf('Converting spectra to dB...\n'); end
% convert to log spectrum
Sorig = 10*log10(Sorig);
Sclean = 10*log10(Sclean);
if g.normSpectrum
if g.verb, fprintf('Normalizing log spectra...\n'); end
% normalize spectrum by standarization
% Sorig = (Sorig-repmat(mean(Sorig,2),1,size(Sorig,2)))./repmat(std(Sorig,[],2),1,size(Sorig,2));
% Sclean = (Sclean-repmat(mean(Sclean,2),1,size(Sclean,2)))./repmat(std(Sclean,[],2),1,size(Sclean,2));
% normalize the spectrum by detrending
Sorig = detrend(Sorig')';
Sclean = detrend(Sclean')';
end
end
if strcmpi(g.sigtype,'components')
if g.verb, fprintf('Backprojecting cleaned components to channels...\n'); end
try
EEG.data = EEG.icawinv*EEG.icaact(1:end,:);
catch e
% low memory, so back-project channels one by one
if g.verb, fprintf('Insufficient memory for fast back-projection. Back-projecting each channel individually...\n'); end
EEG.data = zeros(size(EEG.icaact));
for k=1:size(EEG.icaact,1)
EEG.data(k,:) = EEG.icawinv(:,k)*EEG.icaact(k,:);
end
end
EEG.data = reshape(EEG.data,EEG.nbchan,EEG.pnts*EEG.trials);
elseif hasica
if g.verb, fprintf('Recomputing component activations from cleaned channel data...\n'); end
EEG.icaact = [];
EEG = eeg_checkset(EEG,'ica');
end
function BACKCOLOR = getbackcolor
BACKCOLOR = 'w';
try, icadefs; catch, end;
|
github
|
lcnbeapp/beapp-master
|
para_dataflow.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/para_dataflow.m
| 15,079 |
utf_8
|
bdf197e6b019efdde172f215e4e5933b
|
function result = para_dataflow(varargin)
% Generic Signal Processing -> Feature Extraction -> Machine Learning BCI framework.
% Result = para_dataflow(FilterSetup, FeatureExtractionArguments, FeatureExtractionSetup, MachineLearningSetup, DialogSetup, ForwardedParameters...)
%
% Most BCI paradigms are implemented as a sequence of three major stages: Signal Processing, Feature Extraction and Machine Learning (see also bci_train).
% The Signal Processing stage operates on time series (plus meta-data), represented as EEGLAB datasets, and may contain multiple sub-stages, which together
% form a filter graph. The data passed from node to node in this graph is either continuous or epoched EEGLAB datasets, and may contain rich annotations, such as
% channel locations, ICA decompositions, DIPFIT models, etc. The nodes are filter components which are shared among many paradigms, and most of them
% are found in filters/flt_* and dataset_ops/set_*. For almost all paradigms, a default order of these stages can be defined, because several filters
% can be arbitrarily ordered w.r.t. each other (linear operators), and most other filters make sense only when executed before or after certain other stages.
% The default signal processing pipeline is implemented in flt_pipeline; its parameters allow to selectively enable processing stages. Paradims derived from
% para_dataflow usually set their own defaults for flt_pipeline (i.e., enable and configure various stages by default), which can be further modified by the user.
%
% The simplest filter components are stateless (such as a surface laplacian filter) and operate on each sample individually, while other filters are
% stateful (and have a certain "memory" of past data), such as FIR and IIR filters. Some of the stateful filters are time-variant (such as signal
% standardization) and some of those are adaptive (such as ICA). Some adaptive filters may be unsupervised, and others may depend on the target variable.
% The majority of filters is causal (i.e. does not need data from future samples to compute the transformed version of some sample) and can therefore be
% applied online, while some filters are non-causal (e.g., the signal envelope and zero-phase FIR filter), and can only be used for offline analyses
% (e.g. for neuroscience). Finally, most filters operate on continuous data, while some filters operate on epoched/segmented data (such as time window
% selection or fourier transform). All of these filter components are written against a unified framework.
%
% Following the Signal Processing stage, most paradigms implement the Feature Extraction stage (especially those paradigms which do not implement
% adaptive statistical signal processing), in which signals are transformed into sets of feature vectors. At this stage, signal meta-data is
% largely stripped off. The feature extraction performed by some paradigms is non-adaptive (such as windowed means or log-variance), while it is
% adaptive (and usually supervised) for others (e.g., CSP). Feature vectors can be viewed as (labeled) points in a high-dimensional space, the
% feature space, which serves as the representation on which the last stage, the machine learning, operates.
%
% The machine learning stage defines a standardized computational framework: it is practically always adaptive, and thus involves a 'learn' case
% and a 'predict' case. In the learning case, labeled sets of feature vectors are received, processed & analyzed, their distribution w.r.t. the
% target variables (labels) is estimated, and a predictive model (or prediction function) incorporating these relations is generated. In the prediction case,
% the previously computed predictive model is applied to individual feature vectors to predict their label/target value (or a probability distribution
% over possible label/target values).
%
% Likewise, a paradigm can be applied to data in a 'learn' mode, in which data is received, feature-extraction is possibly adapted, and a predictive model
% is computed (which is an arbitrary data structure that incorporates the state of all adaptive stages), and a 'predict' mode, in which a previously
% computed predictive model is used to map data to a prediction by sending it through all of the paradigm's stages. Finally, a paradigm has a 'preprocess'
% mode, in which all the signal processing steps take place. Separating the preprocessing from the other two stages leaves more control to the framework
% (bci_train, onl_predict), for example to control the granularity (block size) of data that is fed through the processing stages, buffering,
% caching of intermediate results, partitioning of datasets (for cross-validation, nested cross-validation and other resampling techniques) and
% various optimizations (such as common subexpression elimination and lazy evaluation). This functionality is invisible to the paradigms.
%
% The function para_dataflow represents a small sub-framework for the convenient implementation of paradigms that adhere to this overall three-stage system.
% Paradigms may implement their functionality by calling into para_dataflow, setting some of its parameters in order to customize its standard system.
% Therefore, para_dataflow exposes a set of named parameters for each of the three stages. For signal processing, it exposes all the parameters of
% flt_pipeline, the default signal processing pipeline, allowing paradims to enable various pipeline stages without having to care about their relative
% order or efficient execution. For feature extraction, it exposes the 'featureextract' and 'featureadapt' parameters, which are function handles which
% implement the feature extraction and feature adaption (if any) step of this processing phase; the 'featurevote' parameter specifies whether the 'featureadapt'
% stages requires a voting procedure in cases where more than two classes are present in the data. Very few constraints are imposed on the type of
% inputs, outputs and internal processing of these functions, or on the type of data that is passed through it (EEGLAB datasets or STUDY sets, for example).
% For the machine learning stage, the 'learner' parameter of ml_train is exposed, allowing to specify one of the ml_train*** / ml_predict*** functions
% for learning and prediction, respectively. See ml_train for more explanations of the options.
%
% Paradigms making use of para_dataflow typically pass all user-specified parameters down to para_dataflow (so that the user has maximum control with no
% interference from the paradigm), and set up their own characteristic parameterization of para_dataflow as defaults for these user parameters.
%
% In:
% Parameters... : parameters of the paradigm:
% * 'op' : one of the modes in which the paradigm can be applied to data:
% * 'preprocess', to pre-process the InputSet according to the paradigm (and parameters)
% * 'learn', to learn a predictive model from a pre-processed InputSet (and parameters)
% * 'predict', to make predictions given a pre-processed InputSet and a predictive model
%
% * 'data' : some data (usually an EEGLAB dataset)
%
% if op == 'preprocess':
% * all parameters of flt_pipeline can be supplied for preprocessing; (defaults: no defaults are imposed by para_dataflow itself)
%
% if op == 'learn'
% * 'featureadapt': the adaption stage of the feature extraction; function_handle,
% receives the preprocessed data and returns a model of feature-extraction parameters (default: returns [])
% * 'featureextract': the feature extraction stage; function_handle, receives the preprocessed data and
% the model from the featureadapt stage, and returns a NxF array of N feature vectors (for F features)
% (default: vectorizes each data epoch)
% * 'featurevote': true if the 'featureadapt' function supports only two classes, so that voting is necessary when three
% or more classes are in the data (default: false)
% * 'learner': parameter of ml_train; defines the machine-learning step that is applied to the features (default: 'lda')
%
% if op == 'predict'
% * 'model': the predictive model (as produced during the learning)
%
% Out:
% Result : depends on the op;
% * if 'preprocess', this is the preprocessed dataset
% * if 'learn', this is the learned model
% * if 'predict', this is the predictions produced by the model, given the data
%
% Notes:
% Pre-processing is usually a purely symbolic operation (i.e. symbolic data processing steps are added to the data expression); the framework
% evaluates this expression (and potentially transforms it prior to that, for example for cross-validation) and passes the evaluated expression
% back to the paradigm for 'learning' and/or 'prediction' modes.
%
% Name:
% Data-Flow Framework
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-04-29
if length(varargin) > 1 && iscell(varargin{1})
% the paradigm is being invoked via a user function (which sets flt_defaults, etc.)
[flt_defaults,fex_declaration,fex_defaults,ml_defaults,dialog_default] = deal(varargin{1:5});
varargin = varargin(6:end);
else
% the paradigm is being invoked directly
[flt_defaults,fex_declaration,fex_defaults,ml_defaults,dialog_default] = deal({});
end
cfg = arg_define(varargin, ...
... % core arguments for the paradigm framework (passed by the framework)
arg_norep('op',[],{'preprocess','learn','predict'},'Operation to execute on the data. Preprocess the raw data, learn a predictive model, or predict outputs given a model.'), ...
arg_norep('data',[],[],'Data to be processed by the paradigm.'), ...
arg_norep('model',[],[],'Model according to which to predict.'), ...
... % signal processing arguments (sourced from flt_pipeline)
arg_sub({'flt','SignalProcessing'},flt_defaults,@flt_pipeline,'Signal processing stages. These can be enabled, disabled and configured for the given paradigm. The result of this stage flows into the feature extraction stage','cat','Signal Processing'), ...
... % arguments for the feature-extraction plugins (passed by the user paradigms)
arg_sub({'fex','FeatureExtraction'},{},fex_declaration,'Parameters for the feature-extraction stage.','cat','Feature Extraction'), ...
... % feature-extraction plugin definitions (passed by the user paradigms)
arg_sub({'plugs','PluginFunctions'},fex_defaults,{ ...
arg({'adapt','FeatureAdaptor'},@default_feature_adapt,[],'The adaption function of the feature extraction. Function_handle, receives the preprocessed data, an options struct (with feature-extraction), and returns a model (which may just re-represent options).'),...
arg({'extract','FeatureExtractor'},@default_feature_extract,[],'The feature extraction function. Function_handle, receives the preprocessed data and the model from the featureadapt stage, and returns a NxF array of N feature vectors (for F features).'), ...
arg({'vote','FeatureAdaptorNeedsVoting'},false,[],'Feature-adaption function requires voting. Only relevant if the data contains three or more classes.') ...
},'The feature-extraction functions','cat','Feature Extraction'), ...
... % machine learning arguments (sourced from ml_train)
arg_sub({'ml','MachineLearning'},ml_defaults,@ml_train,'Machine learning stage of the paradigm. Operates on the feature vectors that are produced by the feature-extraction stage.','cat','Machine Learning'), ...
... % configuration dialog layout
arg({'arg_dialogsel','ConfigLayout'},dialog_default,[],'Parameters displayed in the config dialog. Cell array of parameter names to display (dot-notation allowed); blanks are translated into empty rows in the dialog. Referring to a structure argument lists all parameters of that struture, except if it is a switchable structure - in this case, a pulldown menu with switch options is displayed.','type','cellstr','shape','row'));
% map all of cfg's fields into the function's workspace, for convenience
arg_toworkspace(cfg,true);
switch op
case 'preprocess'
% apply default signal processing
result = flt_pipeline('signal',data,flt);
case 'learn'
classes = unique(set_gettarget(data));
if ~(plugs.vote && numel(classes) > 2)
% learn a model
[result.featuremodel,result.predictivemodel] = learn_model(data,cfg);
else
% binary stage and more than two classes: learn 1-vs-1 models for voting
result.classes = classes;
for i=1:length(classes)
for j=i+1:length(classes)
[result.voting{i,j}.featuremodel,result.voting{i,j}.predictivemodel] = learn_model(exp_eval(set_picktrials(data,'rank',{i,j})),cfg); end
end
end
result.plugs = plugs;
case 'predict'
if ~isfield(model,'voting')
% predict given the extracted features and the model
result = ml_predict(model.plugs.extract(data,model.featuremodel), model.predictivemodel);
else
% 1-vs-1 voting is necessary, construct the aggregate result
trialcount = exp_eval(set_partition(data,[]));
result = {'disc' , zeros(trialcount,length(model.classes)), model.classes};
% vote, adding up the probabilities from each vote
for i=1:length(model.classes)
for j=i+1:length(model.classes)
outcome = ml_predict(model.plugs.extract(data,model.voting{i,j}.featuremodel), model.voting{i,j}.predictivemodel);
result{2}(:,[i j]) = result{2}(:,[i j]) + outcome{2};
end
end
% renormalize probabilities
result{2} = result{2} ./ repmat(sum(result{2},2),1,size(result{2},2));
end
end
function [featuremodel,predictivemodel] = learn_model(data,cfg)
% adapt the feature extractor
switch nargin(cfg.plugs.adapt)
case 1
featuremodel = cfg.plugs.adapt(data);
case 2
featuremodel = cfg.plugs.adapt(data,cfg.fex);
otherwise
featuremodel = cfg.plugs.adapt(data,cfg.fex,cfg);
end
% extract features & learn a predictive model
predictivemodel = ml_train('data',{cfg.plugs.extract(data,featuremodel),set_gettarget(data)},'learner',cfg.ml.learner);
function mdl = default_feature_adapt(data,args)
mdl = args;
function data = default_feature_extract(data,mdl)
data = squeeze(reshape(data.data,[],1,size(data.data,3)))';
|
github
|
lcnbeapp/beapp-master
|
env_showmenu.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/environment/env_showmenu.m
| 16,401 |
utf_8
|
e922dbf8b0926a434e2012cc7cf148ee
|
function env_showmenu(varargin)
% Links the BCILAB menu into another menu, or creates a new root menu if necessary.
% env_showmenu(Options...)
%
% In:
% Options... : optional name-value pairs; names are:
% 'parent': parent menu to link into
%
% 'shortcuts': whether to enable keyboard shortcuts
%
% 'forcenew': whether to force creation of a new menu
%
% Example:
% % bring up the BCILAB main menu if it had been closed
% env_showmenu;
%
% See also:
% env_startup
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-10-29
% parse options...
hlp_varargin2struct(varargin,'parent',[], 'shortcuts',true,'forcenew',false);
% check if we're an EEGLAB plugin
folders = hlp_split(fileparts(mfilename('fullpath')),filesep);
within_eeglab = length(folders) >= 5 && strcmp(folders{end-3},'plugins') && ~isempty(strfind(folders{end-4},'eeglab'));
% don't open the menu twice
if ~isempty(findobj('Tag','bcilab_menu')) && ~forcenew
return; end
if isempty(parent) %#ok<NODEF>
if within_eeglab && ~forcenew
% try to link into the EEGLAB main menu
try
toolsmenu = findobj(0,'tag','tools');
if ~isempty(toolsmenu)
parent = uimenu(toolsmenu, 'Label','BCILAB');
set(toolsmenu,'Enable','on');
end
catch
disp('Unable to link BCILAB menu into EEGLAB menu.');
end
end
if isempty(parent)
% create new root menu, if no parent
from_left = 100;
from_top = 150;
width = 500;
height = 1;
% determine position on primary monitor
import java.awt.GraphicsEnvironment
ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
gd = ge.getDefaultScreenDevice();
scrheight = gd.getDisplayMode().getHeight();
pos = [from_left, scrheight-from_top, width, height];
% create figure
figtitle = ['BCILAB ' env_version ' (on ' hlp_hostname ')'];
parent = figure('DockControls','off','NumberTitle','off','Name',figtitle,'Resize','off','MenuBar','none','Position',pos,'Tag','bcilab_toolwnd');
end
end
% Data Source menu
source = uimenu(parent, 'Label','Data Source','Tag','bcilab_menu');
uimenu(source,'Label','Load recording(s)...','Accelerator',char(shortcuts*'l'),'Callback','gui_loadset');
wspace = uimenu(source,'Label','Workspace','Separator','on');
uimenu(wspace,'Label','Load...','Callback','io_loadworkspace');
uimenu(wspace,'Label','Save...','Callback','io_saveworkspace');
uimenu(wspace,'Label','Clear...','Callback','clear');
uimenu(source,'Label','Run script...','Separator','on','Callback',@invoke_script);
if isdeployed
uimenu(source,'Label','Quit','Separator','on','Callback','exit'); end
% Offline Analysis menu
offline = uimenu(parent, 'Label','Offline Analysis');
uimenu(offline,'Label','New approach...','Accelerator',char(shortcuts*'n'),'Callback','gui_newapproach');
uimenu(offline,'Label','Modify approach...','Accelerator',char(shortcuts*'m'),'Callback','gui_configapproach([],true);');
uimenu(offline,'Label','Review/edit approach...','Accelerator',char(shortcuts*'r'),'Callback','gui_reviewapproach([],true);');
uimenu(offline,'Label','Save approach...','Accelerator',char(shortcuts*'s'),'Callback','gui_saveapproach');
uimenu(offline,'Label','Train new model...','Accelerator',char(shortcuts*'t'),'Callback','gui_calibratemodel','Separator','on');
uimenu(offline,'Label','Apply model to data...','Accelerator',char(shortcuts*'a'),'Callback','gui_applymodel');
uimenu(offline,'Label','Visualize model...','Accelerator',char(shortcuts*'v'),'Callback','gui_visualizemodel');
uimenu(offline,'Label','Run batch analysis...','Accelerator',char(shortcuts*'b'),'Callback','gui_batchanalysis','Separator','on');
uimenu(offline,'Label','Review results...','Accelerator',char(shortcuts*'i'),'Callback','gui_selectresults','Separator','on');
% Online Analysis menu
online = uimenu(parent,'Label','Online Analysis');
pipe = uimenu(online,'Label','Process data within...');
read = uimenu(online,'Label','Read input from...');
write = uimenu(online,'Label','Write output to...');
cm_read = uicontextmenu('Tag','bcilab_cm_read');
cm_write = uicontextmenu('Tag','bcilab_cm_write');
% for each plugin sub-directory...
dirs = dir(env_translatepath('functions:/online_plugins'));
for d={dirs(3:end).name}
% find all files, their names, identifiers, and function handles
files = dir(env_translatepath(['functions:/online_plugins/' d{1} '/run_*.m']));
names = {files.name};
idents = cellfun(@(n)n(1:end-2),names,'UniformOutput',false);
% for each entry...
for f=1:length(idents)
try
if ~exist(idents{f},'file') && ~isdeployed
addpath(env_translatepath(['functions:/online_plugins/' d{1}])); end
% get properties...
props = arg_report('properties',str2func(idents{f}));
% get category
if strncmp(idents{f},'run_read',8);
cats = [read,cm_read];
elseif strncmp(idents{f},'run_write',9);
cats = [write,cm_write];
elseif strncmp(idents{f},'run_pipe',8);
cats = pipe;
end
if isfield(props,'name')
% add menu entry
for cat=cats
uimenu(cat,'Label',[props.name '...'],'Callback',['arg_guidialog(@' idents{f} ');'],'Enable','on'); end
else
warning('env_showmenu:missing_guiname','The online plugin %s does not declare a GUI name; ignoring...',idents{f});
end
catch
disp(['Could not integrate the online plugin ' idents{f} '.']);
end
end
end
uimenu(online,'Label','Clear all online processing','Callback','onl_clear','Separator','on');
% Settings menu
settings = uimenu(parent, 'Label','Settings');
uimenu(settings,'Label','Directory settings...','Callback','gui_configpaths');
uimenu(settings,'Label','Cache settings...','Callback','gui_configcache');
uimenu(settings,'Label','Cluster settings...','Callback','gui_configcluster');
uimenu(settings,'Label','Clear memory cache','Callback','env_clear_memcaches','Separator','on');
% Help menu
helping = uimenu(parent,'Label','Help');
uimenu(helping,'Label','BCI Paradigms...','Callback','env_doc code/paradigms');
uimenu(helping,'Label','Filters...','Callback','env_doc code/filters');
uimenu(helping,'Label','Machine Learning...','Callback','env_doc code/machine_learning');
scripting = uimenu(helping,'Label','Scripting');
uimenu(scripting,'Label','File input/output...','Callback','env_doc code/io');
uimenu(scripting,'Label','Dataset editing...','Callback','env_doc code/dataset_editing');
uimenu(scripting,'Label','Offline scripting...','Callback','env_doc code/offline_analysis');
uimenu(scripting,'Label','Online scripting...','Callback','env_doc code/online_analysis');
uimenu(scripting,'Label','BCILAB environment...','Callback','env_doc code/environment');
uimenu(scripting,'Label','Cluster handling...','Callback','env_doc code/parallel');
uimenu(scripting,'Label','Keywords...','Separator','on','Callback','env_doc code/keywords');
uimenu(scripting,'Label','Helpers...','Callback','env_doc code/helpers');
uimenu(scripting,'Label','Internals...','Callback','env_doc code/utils');
authoring = uimenu(helping,'Label','Plugin authoring');
uimenu(authoring,'Label','Argument declaration...','Callback','env_doc code/arguments');
uimenu(authoring,'Label','Expression functions...','Callback','env_doc code/expressions');
uimenu(authoring,'Label','Online processing...','Callback','env_doc code/online_analysis');
uimenu(helping,'Label','About...','Separator','on','Callback',@about);
uimenu(helping,'Label','Save bug report...','Separator','on','Callback','io_saveworkspace([],true)');
uimenu(helping,'Label','File bug report...','Callback','arg_guidialog(@env_bugreport);');
% toolbar (if not linked into the EEGLAB menu)
if ~(within_eeglab && ~forcenew)
global tracking;
cluster_requested = isfield(tracking,'cluster_requested') && ~isempty(tracking.cluster_requested);
cluster_requested = hlp_rewrite(cluster_requested,false,'off',true,'on');
ht = uitoolbar(parent,'HandleVisibility','callback');
uipushtool(ht,'TooltipString','Load recording(s)',...
'CData',load_icon('bcilab:/resources/icons/file_open.png'),...
'HandleVisibility','callback','ClickedCallback','gui_loadset');
uipushtool(ht,'TooltipString','New approach',...
'CData',load_icon('bcilab:/resources/icons/approach_new.png'),...
'HandleVisibility','callback','ClickedCallback','gui_newapproach','Separator','on');
uipushtool(ht,'TooltipString','Load Approach',...
'CData',load_icon('bcilab:/resources/icons/approach_load.png'),...
'HandleVisibility','callback','ClickedCallback',@load_approach);
uipushtool(ht,'TooltipString','Save approach',...
'CData',load_icon('bcilab:/resources/icons/approach_save.png'),...
'HandleVisibility','callback','ClickedCallback','gui_saveapproach');
uipushtool(ht,'TooltipString','Modify approach',...
'CData',load_icon('bcilab:/resources/icons/approach_edit.png'),...
'HandleVisibility','callback','ClickedCallback','gui_configapproach([],true);');
uipushtool(ht,'TooltipString','Review/edit approach',...
'CData',load_icon('bcilab:/resources/icons/approach_review.png'),...
'HandleVisibility','callback','ClickedCallback','gui_reviewapproach([],true);');
uipushtool(ht,'TooltipString','Train new model',...
'CData',load_icon('bcilab:/resources/icons/model_new.png'),...
'HandleVisibility','callback','ClickedCallback','gui_calibratemodel','Separator','on');
uipushtool(ht,'TooltipString','Load Model',...
'CData',load_icon('bcilab:/resources/icons/model_load.png'),...
'HandleVisibility','callback','ClickedCallback',@load_model);
uipushtool(ht,'TooltipString','Save Model',...
'CData',load_icon('bcilab:/resources/icons/model_save.png'),...
'HandleVisibility','callback','ClickedCallback','gui_savemodel');
uipushtool(ht,'TooltipString','Apply model to data',...
'CData',load_icon('bcilab:/resources/icons/model_apply.png'),...
'HandleVisibility','callback','ClickedCallback','gui_applymodel');
uipushtool(ht,'TooltipString','Visualize model',...
'CData',load_icon('bcilab:/resources/icons/model_visualize.png'),...
'HandleVisibility','callback','ClickedCallback','gui_visualizemodel');
uipushtool(ht,'TooltipString','Run batch analysis',...
'CData',load_icon('bcilab:/resources/icons/batch_analysis.png'),...
'HandleVisibility','callback','ClickedCallback','gui_batchanalysis');
uipushtool(ht,'TooltipString','Read input from (online)',...
'CData',load_icon('bcilab:/resources/icons/online_in.png'),...
'HandleVisibility','callback','Separator','on','ClickedCallback',@click_read);
uipushtool(ht,'TooltipString','Write output to (online)',...
'CData',load_icon('bcilab:/resources/icons/online_out.png'),...
'HandleVisibility','callback','ClickedCallback',@click_write);
uipushtool(ht,'TooltipString','Clear online processing',...
'CData',load_icon('bcilab:/resources/icons/online_clear.png'),...
'HandleVisibility','callback','ClickedCallback','onl_clear');
uitoggletool(ht,'TooltipString','Request cluster availability',...
'CData',load_icon('bcilab:/resources/icons/acquire_cluster.png'),'HandleVisibility','callback','Separator','on','State',cluster_requested,'OnCallback','env_acquire_cluster','OffCallback','env_release_cluster');
uipushtool(ht,'TooltipString','About BCILAB',...
'CData',load_icon('bcilab:/resources/icons/help.png'),'HandleVisibility','callback','Separator','on','ClickedCallback',@about);
end
if within_eeglab && forcenew
mainmenu = findobj('Tag','EEGLAB');
% make the EEGLAB menu current again
if ~isempty(mainmenu)
figure(mainmenu); end
end
function about(varargin)
infotext = strvcat(...
'BCILAB is an open-source toolbox for Brain-Computer Interfacing research.', ...
'It is being developed by Christian Kothe at the Swartz Center for Computational Neuroscience,',...
'Institute for Neural Computation (University of California San Diego).', ...
' ',...
'Development of this software was supported by the Army Research Laboratories under', ...
'Cooperative Agreement Number W911NF-10-2-0022, as well as by a gift from the Swartz Foundation.', ...
' ',...
'The design was inspired by the preceding PhyPA toolbox, written by C. Kothe and T. Zander', ...
'at the Berlin Institute of Technology, Chair Human-Machine Systems.', ...
' ',...
'BCILAB connects to the following toolboxes/libraries:', ...
'* AWS SDK (Amazon)', ...
'* Amica (SCCN/UCSD)', ...
'* Chronux (Mitra Lab, Cold Spring Harbor)', ...
'* CVX (Stanford)', ...
'* DAL (U. Tokyo)', ...
'* DataSuite (SCCN/UCSD)', ...
'* EEGLAB (SCCN/UCSD)', ...
'* BCI2000import (www.bci2000.org)', ...
'* Logreg (Jan Drugowitsch)', ...
'* FastICA (Helsinki UT)', ...
'* glm-ie (Max Planck Institute for Biological Cybernetics, Tuebingen)', ...
'* glmnet (Stanford)', ...
'* GMMBayes (Helsinki UT)', ...
'* HKL (Francis Bach, INRIA)', ...
'* KernelICA (Francis Bach, Berkeley)', ...
'* LIBLINEAR (National Taiwan University)', ...
'* matlabcontrol (Joshua Kaplan)', ...
'* mlUnit (Thomas Dohmke)', ...
'* NESTA (Caltech)', ...
'* OSC (Andy Schmeder) and LibLO (Steve Harris)', ...
'* PROPACK (Stanford)', ...
'* PropertyGrid (Levente Hunyadi)', ...
'* SparseBayes (Vector Anomaly)', ...
'* SVMlight (Thorsten Joachims)', ...
'* SVMperf (Thorsten Joachims)', ...
'* Talairach (UTHSCSA)', ...
'* Time-frequency toolbox (CRNS / Rice University)', ...
'* t-SNE (TU Delft)', ...
'* VDPGM (Kenichi Kurihara)'); %#ok<REMFF1>
warndlg2(infotext,'About');
function click_read(varargin)
% pop up a menu when clicking the "read input from" toolbar button
tw = findobj('tag','bcilab_toolwnd');
cm = findobj('tag','bcilab_cm_read');
tpos = get(tw,'Position');
ppos = get(0,'PointerLocation');
set(cm,'Position',ppos - tpos(1:2), 'Visible', 'on');
set(cm,'Position',ppos - tpos(1:2), 'Visible', 'on');
function click_write(varargin)
% pop up a menu when clicking the "write output to" toolbar button
tw = findobj('tag','bcilab_toolwnd');
cm = findobj('tag','bcilab_cm_write');
tpos = get(tw,'Position');
ppos = get(0,'PointerLocation');
set(cm,'Position',ppos - tpos(1:2), 'Visible', 'on');
set(cm,'Position',ppos - tpos(1:2), 'Visible', 'on');
% run a script
function invoke_script(varargin)
[filename,filepath] = uigetfile({'*.m', 'MATLAB file'},'Select script to run',env_translatepath('bcilab:/'));
if ~isnumeric(filename)
run_script([filepath filename],true); end
% load a toolbar icon
function cols = load_icon(filename)
[cols,palette,alpha] = imread(env_translatepath(filename));
if ~isempty(palette)
error('This function does not handle palettized icons.'); end
cls = class(cols);
cols = double(cols);
cols = cols/double(intmax(cls));
cols([alpha,alpha,alpha]==0) = NaN;
% load a BCI model from disk
function load_model(varargin)
[filename,filepath] = uigetfile({'*.mdl', 'BCI Model'},'Select BCI model to load',env_translatepath('home:/.bcilab/models'));
if ~isnumeric(filename)
contents = io_load([filepath filename],'-mat');
for fld=fieldnames(contents)'
tmp = contents.(fld{1});
if isstruct(tmp) && isfield(tmp,'timestamp')
tmp.timestamp = now;
assignin('base',fld{1},tmp);
end
end
end
% load a BCI approach from disk
function load_approach(varargin)
[filename,filepath] = uigetfile({'*.apr', 'BCI Approach'},'Select BCI approach to load',env_translatepath('home:/.bcilab/approaches'));
if ~isnumeric(filename)
contents = io_load([filepath filename],'-mat');
for fld=fieldnames(contents)'
tmp = contents.(fld{1});
if isstruct(tmp) && isfield(tmp,'paradigm')
tmp.timestamp = now;
assignin('base',fld{1},tmp);
end
end
end
|
github
|
lcnbeapp/beapp-master
|
env_startup.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/environment/env_startup.m
| 21,807 |
utf_8
|
100127e2a96b4156d68b8af7fec6c1ef
|
function env_startup(varargin)
% Start the BCILAB toolbox, i.e. set up global data structures and load dependency toolboxes.
% env_startup(Options...)
%
% Does all steps necessary for loading the toolbox -- the functions bcilab.m and eegplugin_bcilab.m
% are wrappers around this function which provide a higher level of convenience (configuration files
% in particular). Directly calling this function is not recommended.
%
% In:
% Options... : optional name-value pairs; allowed names are:
%
% --- directory settings ---
%
% 'data': Path where data sets are stored, used by data loading/saving routines.
% (default: path/to/bcilab/userdata)
% Note: this may also be a cell array of directories, in which case references
% to data:/ are looked up in all of the specified directories, and the
% best match is taken.
%
% 'store': Path in which data shall be stored. Write permissions necessary (by default
% identical to the data path)
%
% 'temp': temp directory (for misc outputs, e.g., AMICA models and dipole fits)
% (default: path/to/bcilab-temp, or path/to/cache/bcilab_temp if a cache
% directory was specified)
%
% --- caching settings ---
%
% 'cache': Path where intermediate data sets are cached. Should be located on a fast
% (local) drive with sufficient free capacity.
% * if this is left unspecified or empty, the cache is disabled
% * if this is a directory, it is used as the default cache location
% * a fine-grained cache setup can be defined by specifying a cell array of
% cache locations, where each cache location is a cell array of name-value
% pairs, with possible names:
% 'dir': directory of the cache location (e.g. '/tmp/bcilab_tmp/'), mandatory
% 'time': only computations taking more than this many seconds may be stored
% in this location, but if a computation takes so long that another
% cache location with a higher time applies, that other location is
% preferred. For example, the /tmp directory may take computations
% that take at least a minute, the home directory may take
% computations that take at least an hour, the shared /data/results
% location of the lab may take computations that take at least 12
% hours (default: 30 seconds)
% 'free': minimum amount of space to keep free on the given location, in GiB,
% or, if smaller than 1, free is taken as the fraction of total
% space to keep free (default: 0.1)
% 'tag': arbitrary identifier for the cache location (default: 'location_i',
% for the i'th location) must be a valid MATLAB struct field name,
% only for display purposes
%
% 'mem_capacity': capacity of the memory cache (default: 2)
% if this is smaller than 1, it is taken as a fraction of the total
% free physical memory at startup time, otherwise it is in GB
%
% 'data_reuses' : estimated number of reuses of a data set being computed (default: 3)
% ... depending on disk access speeds, this determines whether it makes
% sense to cache the data set
%
% --- parallel computing settings ---
%
% 'parallel' : parallelization options; cell array of name-value pairs, with names:
% 'engine': parallelization engine to use, can be 'local',
% 'ParallelComputingToolbox', or 'BLS' (BCILAB Scheduler)
% (default: 'local')
% 'pool': node pool, cell array of 'host:port' strings; necessary for the
% BLS scheduler (default: {'localhost:23547','localhost:23548',
% ..., 'localhost:23554'})
% 'policy': scheduling policy function; necessary for the BLS scheduler
% (default: 'par_reschedule_policy')
%
% note: Parallel processing has so far received only relatively little
% testing. Please use this facility at your own risk and report
% any issues (e.g., starving jobs) that you may encounter.
%
% 'aquire_options' : Cell array of arguments as expected by par_getworkers_ssh
% (with bcilab-specific defaults for unspecified arguments)
% (default: {})
%
% 'worker' : whether this toolbox instance is started as a worker process or not; if
% false, diary logging and GUI menus and popups are enabled. If given as a
% cell array, the cell contents are passed on to the function par_worker,
% which lets the toolbox act as a commandline-less worker (waiting to
% receive jobs over the network) (default: false)
%
% --- misc settings ---
%
% 'menu' : create a menu bar (default: true) -- if this is set to 'separate', the BCILAB
% menu will be detached from the EEGLAB menu, even if run as a plugin.
%
% 'autocompile' : whether to try to auto-compile mex/java files (default: true)
%
% Examples:
% Note that env_startup is usually not being called directly; instead the bcilab.m function in the
% bcilab root directory forwards its arguments (and variables declared in a config script) to this
% function.
%
% % start BCILAB with a custom data directory, and a custom cache directory
% env_startup('data','C:\Data', 'cache','C:\Data\Temp');
%
% % as before, but specify multiple data paths that are being fused into a common directory view
% % where possible (in case of ambiguities, the earlier directories take precedence)
% env_startup('data',{'C:\Data','F:\Data2'}, 'cache','C:\Data\Temp');
%
% % start BCILAB with a custom data and storage directory, and specify a cache location with some
% % additional meta-data (namely: only cache there if a computation takes at least 60 seconds, and
% % reserve 15GB free space
% env_startup('data','/media/data', 'store','/media/data/results', 'cache',{{'dir','/tmp/tracking','time',60,'free',15}});
%
% % as before, but make sure that the free space does not fall below 20% of the disk
% env_startup('data','/media/data', 'store','/media/data/results', 'cache',{{'dir','/tmp/tracking','time',60,'free',0.2}});
%
% % start BCILAB and set up a very big in-memory cache for working with large data sets (of 16GB)
% env_startup('mem_capacity',16)
%
% % start BCILAB but prevent the main menu from popping up
% env_startup('menu',false)
%
% % start BCILAB and specify which parallel computation resources to use; this assumes that the
% % respective hostnames are reachable from this computer, and are running MATLAB sessions which
% % execute a command similar to: cd /your/path/to/bcilab; bcilab('worker',true); par_worker;
% env_startup('parallel',{'engine','BLS', 'pool',{'computer1','computer2','computer3'}}
%
%
% % start the toolbox as a worker
% env_startup('worker',true)
%
% % start the toolbox as worker, and pass some arguments to par_worker (making it listen on port
% % 15456, using a portrange of 0, and using some custom update-checking arguments
% env_startup('worker',{15456,0,'update_check',{'/data/bcilab-0.9-beta2b/build/bcilab','/mnt/remote/bcilab-build/bcilab'}})
%
% See also:
% env_load_dependencies, env_translatepath
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-03-28
% determine the BCILAB core directories
if ~isdeployed
tmpdir = path_normalize(fileparts(mfilename('fullpath')));
delims = strfind(tmpdir,filesep);
base_dir = tmpdir(1:delims(end-1));
else
% in deployed mode, we walk up until we find the BCILAB base directory
tmpdir = pwd;
delims = strfind(tmpdir,filesep);
disp(['Launching from directory ' tmpdir ' ...']);
for k=length(delims):-1:1
base_dir = tmpdir(1:delims(k));
if exist([base_dir filesep 'code'],'dir')
success = true; %#ok<NASGU>
break;
end
end
if ~exist('success','var')
error('Could not find the ''code'' directory; make sure that the binary is in a sub-directory of a full BCILAB distribution.'); end
end
function_dir = [base_dir 'code'];
dependency_dir = [base_dir 'dependencies'];
resource_dir = [base_dir 'resources'];
script_dir = [base_dir 'userscripts'];
build_dir = [base_dir 'build'];
% add them all to the MATLAB path (except for dependencies, which are loaded separately)
if ~isdeployed
% remove existing BCILAB path references
ea = which('env_add');
if ~isempty(ea)
% get the bcilab root directory that's currently in the path
bad_path = ea(1:strfind(ea,'dependencies')-2);
% remove all references
paths = strsplit(path,pathsep);
retain = cellfun('isempty',strfind(paths,bad_path));
path(sprintf(['%s' pathsep],paths{retain}));
if ~all(retain)
disp(' BCILAB sub-directories have been detected in the MATLAB path, removing them.'); end
end
% add core function paths
addpath(genpath(function_dir));
if exist(build_dir,'dir')
addpath(build_dir); end
evalc('addpath(genpath(script_dir))');
evalc('addpath([base_dir ''userdata''])');
% remove existing eeglab path references, if BCILAB is not itself contained as a plugin in this
% EEGLAB distribution
ep = which('eeglab');
if ~isempty(ep) && isempty(strfind(mfilename('fullpath'),fileparts(which('eeglab'))))
paths = strsplit(path,pathsep);
ep = strsplit(ep,filesep);
retain = cellfun('isempty',strfind(paths,ep{end-1}));
path(sprintf(['%s' pathsep],paths{retain}));
if ~all(retain)
disp(' The previously loaded EEGLAB path has been replaced.'); end
end
end
if hlp_matlab_version < 706
disp('Note: Your version of MATLAB is not supported by BCILAB any more. You may try BCILAB version 0.9, which supports old MATLAB''s back to version 2006a.'); end
% get options
opts = hlp_varargin2struct(varargin,'data',[],'store',[],'cache',[],'temp',[],'mem_capacity',2,'data_reuses',3,'parallel',{'use','local'}, 'menu',true, 'configscript','', 'worker',false, 'autocompile',true, 'acquire_options',{});
% load all dependencies, recursively...
disp('Loading BCILAB dependencies...');
env_load_dependencies(dependency_dir,opts.autocompile);
if ischar(opts.worker)
try
disp(['Evaluating worker argument: ' opts.worker]);
opts.worker = eval(opts.worker);
catch
disp('Failed to evaluate worker; setting it to false.');
opts.worker = false;
end
elseif ~isequal(opts.worker,false)
fprintf('Worker was given as a %s with value %s\n',class(opts.worker),hlp_tostring(opts.worker));
end
if ischar(opts.parallel)
try
disp(['Evaluating parallel argument: ' opts.parallel]);
opts.parallel = eval(opts.parallel);
catch
disp('Failed to evaluate worker; setting it to empty.');
opts.parallel = {};
end
end
% process data directories
if isempty(opts.data)
opts.data = {}; end
if ~iscell(opts.data)
opts.data = {opts.data}; end
for d = 1:length(opts.data)
opts.data{d} = path_normalize(opts.data{d}); end
if isempty(opts.data) || ~any(cellfun(@exist,opts.data))
opts.data = {[base_dir 'userdata']}; end
% process store directory
if isempty(opts.store)
opts.store = opts.data{1}; end
opts.store = path_normalize(opts.store);
% process cache directories
if isempty(opts.cache)
opts.cache = {}; end
if ischar(opts.cache)
opts.cache = {{'dir',opts.cache}}; end
if iscell(opts.cache) && ~isempty(opts.cache) && ~iscell(opts.cache{1})
opts.cache = {opts.cache}; end
for d=1:length(opts.cache)
opts.cache{d} = hlp_varargin2struct(opts.cache{d},'dir','','tag',['location_' num2str(d)],'time',30,'free',0.1); end
% remove entries with empty dir
opts.cache = opts.cache(cellfun(@(e)~isempty(e.dir),opts.cache));
for d=1:length(opts.cache)
% make sure that the BCILAB cache is in its own proper sub-directory
opts.cache{d}.dir = [path_normalize(opts.cache{d}.dir) filesep 'bcilab_cache'];
% create the directory if necessary
if ~isempty(opts.cache{d}.dir) && ~exist(opts.cache{d}.dir,'dir')
try
io_mkdirs([opts.cache{d}.dir filesep],{'+w','a'});
catch
disp(['cache directory ' opts.cache{d}.dir ' does not exist and could not be created']);
end
end
end
% process temp directory
if isempty(opts.temp)
if ~isempty(opts.cache)
opts.temp = [fileparts(opts.cache{1}.dir) filesep 'bcilab_temp'];
else
opts.temp = [base_dir(1:end-1) '-temp'];
end
end
opts.temp = path_normalize(opts.temp);
try
io_mkdirs([opts.temp filesep],{'+w','a'});
catch
disp(['temp directory ' opts.temp ' does not exist and could not be created.']);
end
% set global variables
global tracking
tracking.paths = struct('bcilab_path',{base_dir(1:end-1)}, 'function_path',{function_dir}, 'data_paths',{opts.data}, 'store_path',{opts.store}, 'dependency_path',{dependency_dir},'resource_path',{resource_dir},'temp_path',{opts.temp});
for d=1:length(opts.cache)
location = rmfield(opts.cache{d},'tag');
% convert GiB to bytes
if location.free >= 1
location.free = location.free*1024*1024*1024; end
try
warning off MATLAB:DELETE:Permission;
% probe the cache locations...
import java.io.*;
% try to add a free space checker (Java File object), which we use to check the quota, etc.
location.space_checker = File(opts.cache{d}.dir);
filename = [opts.cache{d}.dir filesep '__probe_cache_ ' num2str(round(rand*2^32)) '__.mat'];
if exist(filename,'file')
delete(filename); end
oldvalue = location.space_checker.getFreeSpace;
testdata = double(rand(1024)); %#ok<NASGU>
objinfo = whos('testdata');
% do a quick read/write test
t0=tic; save(filename,'testdata'); location.writestats = struct('size',{0 objinfo.bytes},'time',{0 toc(t0)});
t0=tic; load(filename); location.readstats = struct('size',{0 objinfo.bytes},'time',{0 toc(t0)});
newvalue = location.space_checker.getFreeSpace;
if exist(filename,'file')
delete(filename); end
% test if the space checker works, and also get some quick measurements of disk read/write speeds
if newvalue >= oldvalue
location = rmfield(location,'space_checker'); end
% and turn the free space ratio into an absolute value
if location.free < 1
location.free = location.free*location.space_checker.getTotalSpace; end
catch e
disp(['Could not probe cache file system speed; reason: ' e.message]);
end
tracking.cache.disk_paths.(opts.cache{d}.tag) = location;
end
if opts.mem_capacity < 1
free_mem = hlp_memavail();
tracking.cache.capacity = round(opts.mem_capacity * free_mem);
if free_mem < 1024*1024*1024
sprintf('Warning: You have less than 1 GB of free memory (reserving %.0f%% = %.0fMB for data caches).\n',100*opts.mem_capacity,tracking.cache.capacity/(1024*1024));
sprintf(' This will severely impact the offline processing speed of BCILAB.\n');
sprintf(' You may force a fixed amount of cache cacpacity by assinging a value greater than 1 (in GB) to the ''mem_capacity'' variable in your bcilab_config.m.');
end
else
tracking.cache.capacity = opts.mem_capacity*1024*1024*1024;
end
tracking.cache.reuses = opts.data_reuses;
tracking.cache.data = struct();
tracking.cache.sizes = struct();
tracking.cache.times = struct();
if ~isfield(tracking.cache,'disk_paths')
tracking.cache.disk_paths = struct(); end
% initialize stack mechanisms
tracking.stack.base = struct('disable_expressions',false);
% set parallelization settings
tracking.parallel = hlp_varargin2struct(opts.parallel, ...
'engine','local', ...
'pool',{'localhost:23547','localhost:23548','localhost:23549','localhost:23550','localhost:23551','localhost:23552','localhost:23553','localhost:23554'}, ...
'policy','par_reschedule_policy');
tracking.acquire_options = opts.acquire_options;
tracking.configscript = opts.configscript;
try
cd(script_dir);
catch
end
% set up some microcache properties
hlp_microcache('arg','lambda_equality','proper');
hlp_microcache('spec','group_size',5);
hlp_microcache('findfunction','lambda_equality','fast','group_size',5);
% show toolbox status
fprintf('\n');
disp(['code is in ' function_dir]);
datalocs = [];
for d = opts.data
datalocs = [datalocs d{1} ', ']; end %#ok<AGROW>
disp(['data is in ' datalocs(1:end-2)]);
disp(['results are in ' opts.store]);
if ~isempty(opts.cache)
fnames = fieldnames(tracking.cache.disk_paths);
for f = 1:length(fnames)
if f == 1
disp(['cache is in ' tracking.cache.disk_paths.(fnames{f}).dir ' (' fnames{f} ')']);
else
disp([' ' tracking.cache.disk_paths.(fnames{f}).dir ' (' fnames{f} ')']);
end
end
else
disp('cache is disabled');
end
disp(['temp is in ' opts.temp]);
fprintf('\n');
% turn off a few nasty warnings
warning off MATLAB:log:logOfZero
warning off MATLAB:divideByZero %#ok<RMWRN>
warning off MATLAB:RandStream:ReadingInactiveLegacyGeneratorState % for GMMs....
if isequal(opts.worker,false) || isequal(opts.worker,0)
% --- regular mode ---
% set up logfile
if ~exist([hlp_homedir filesep '.bcilab'],'dir')
if ~mkdir(hlp_homedir,'.bcilab');
disp('Cannot create directory .bcilab in your home folder.'); end
end
tracking.logfile = env_translatepath('home:/.bcilab/logs/bcilab_console.log');
try
if ~exist([hlp_homedir filesep '.bcilab' filesep 'logs'],'dir')
mkdir([hlp_homedir filesep '.bcilab' filesep 'logs']); end
if exist(tracking.logfile,'file')
warning off MATLAB:DELETE:Permission
delete(tracking.logfile);
warning on MATLAB:DELETE:Permission
end
catch,end
try diary(tracking.logfile); catch,end
if ~exist([hlp_homedir filesep '.bcilab' filesep 'models'],'dir')
mkdir([hlp_homedir filesep '.bcilab' filesep 'models']); end
if ~exist([hlp_homedir filesep '.bcilab' filesep 'approaches'],'dir')
mkdir([hlp_homedir filesep '.bcilab' filesep 'approaches']); end
% create a menu
if ~(isequal(opts.menu,false) || isequal(opts.menu,0))
try
env_showmenu('forcenew',strcmp(opts.menu,'separate'));
catch e
disp('Could not open the BCILAB menu; traceback: ');
env_handleerror(e);
end
end
% display a version reminder
bpath = hlp_split(env_translatepath('bcilab:/'),filesep);
if ~isempty(strfind(bpath{end},'-stable'))
if isdeployed
disp(' This is the stable version.');
else
disp(' This is the stable version - please keep this in mind when editing.');
end
elseif ~isempty(strfind(bpath{end},'-devel'))
if isdeployed
disp(' This is the DEVELOPER version.');
else
try
cprintf([0 0.4 1],'This is the DEVELOPER version.\n');
catch
disp(' This is the DEVELOPER version.');
end
end
end
disp([' Welcome to the BCILAB toolbox on ' hlp_hostname '!'])
fprintf('\n');
else
disp('Now entering worker mode...');
% -- worker mode ---
if ~isdeployed
% disable standard dialogs in the workers
addpath(env_translatepath('dependencies:/disabled_dialogs')); end
% close EEGLAB main menu
mainmenu = findobj('Tag','EEGLAB');
if ~isempty(mainmenu)
close(mainmenu); end
drawnow;
% translate the options
if isequal(opts.worker,true)
opts.worker = {}; end
if ~iscell(opts.worker)
opts.worker = {opts.worker}; end
% start!
par_worker(opts.worker{:});
end
try
% pretend to invoke the dependency list so that the compiler finds it...
dependency_list;
catch
end
% normalize a directory path
function dir = path_normalize(dir)
dir = strrep(strrep(dir,'\',filesep),'/',filesep);
if dir(end) == filesep
dir = dir(1:end-1); end
% Split a string according to some delimiter(s). % Not as fast as hlp_split (and doesn't fuse
% delimiters), but works without bsxfun.
function strings = strsplit(string, splitter)
ix = strfind(string, splitter);
strings = cell(1,numel(ix)+1);
ix = [0 ix numel(string)+1];
for k = 2 : numel(ix)
strings{k-1} = string(ix(k-1)+1:ix(k)-1); end
|
github
|
lcnbeapp/beapp-master
|
strsetmatch.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/strsetmatch.m
| 928 |
utf_8
|
73f5541ad337bbbc7179cf71004b7062
|
% Indicator of which elements of a universal set are in a particular set.
%
% Input arguments:
% strset:
% the particular set as a cell array of strings
% struniversal:
% the universal set as a cell array of strings, all elements in the
% particular set are expected to be in the universal set
%
% Output arguments:
% ind:
% a logical vector of which elements of the universal set are found in
% the particular set
% Copyright 2010 Levente Hunyadi
function ind = strsetmatch(strset, struniversal)
assert(iscellstr(strset), 'strsetmatch:ArgumentTypeMismatch', ...
'The particular set is expected to be a cell array of strings.');
assert(iscellstr(struniversal), 'strsetmatch:ArgumentTypeMismatch', ...
'The particular set is expected to be a cell array of strings.');
ind = false(size(struniversal));
for k = 1 : numel(struniversal)
ind(k) = ~isempty(strmatch(struniversal{k}, strset, 'exact'));
end
|
github
|
lcnbeapp/beapp-master
|
helptext.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/helptext.m
| 1,593 |
utf_8
|
bd49205fc50aeae5a909c8b58a47be6d
|
% Help text associated with a function, class, property or method.
% Spaces are removed as necessary.
%
% See also: helpdialog
% Copyright 2008-2010 Levente Hunyadi
function text = helptext(obj)
if ischar(obj)
text = gethelptext(obj);
else
text = gethelptext(class(obj));
end
text = texttrim(text);
function text = gethelptext(key)
persistent dict;
if isempty(dict) && usejava('jvm')
dict = java.util.Properties();
end
if ~isempty(dict)
text = char(dict.getProperty(key)); % look up key in cache
if ~isempty(text) % help text found in cache
return;
end
text = help(key);
if ~isempty(text) % help text returned by help call, save it into cache
dict.setProperty(key, text);
end
else
text = help(key);
end
function lines = texttrim(text)
% Trims leading and trailing whitespace characters from lines of text.
% The number of leading whitespace characters to trim is determined by
% inspecting all lines of text.
loc = strfind(text, sprintf('\n'));
n = numel(loc);
loc = [ 0 loc ];
lines = cell(n,1);
if ~isempty(loc)
for k = 1 : n
lines{k} = text(loc(k)+1 : loc(k+1));
end
end
lines = deblank(lines);
% determine maximum leading whitespace count
f = ~cellfun(@isempty, lines); % filter for non-empty lines
firstchar = cellfun(@(line) find(~isspace(line), 1), lines(f)); % index of first non-whitespace character
if isempty(firstchar)
indent = 1;
else
indent = min(firstchar);
end
% trim leading whitespace
lines(f) = cellfun(@(line) line(min(indent,numel(line)):end), lines(f), 'UniformOutput', false);
|
github
|
lcnbeapp/beapp-master
|
javaclass.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/javaclass.m
| 3,635 |
utf_8
|
7165e1fd27bd4f5898132023dc04662b
|
% Return java.lang.Class instance for MatLab type.
%
% Input arguments:
% mtype:
% the MatLab name of the type for which to return the java.lang.Class
% instance
% ndims:
% the number of dimensions of the MatLab data type
%
% See also: class
% Copyright 2009-2010 Levente Hunyadi
function jclass = javaclass(mtype, ndims)
validateattributes(mtype, {'char'}, {'nonempty','row'});
if nargin < 2
ndims = 0;
else
validateattributes(ndims, {'numeric'}, {'nonnegative','integer','scalar'});
end
if ndims == 1 && strcmp(mtype, 'char'); % a character vector converts into a string
jclassname = 'java.lang.String';
elseif ndims > 0
jclassname = javaarrayclass(mtype, ndims);
else
% The static property .class applied to a Java type returns a string in
% MatLab rather than an instance of java.lang.Class. For this reason,
% use a string and java.lang.Class.forName to instantiate a
% java.lang.Class object; the syntax java.lang.Boolean.class will not
% do so.
switch mtype
case 'logical' % logical vaule (true or false)
jclassname = 'java.lang.Boolean';
case 'char' % a singe character
jclassname = 'java.lang.Character';
case {'int8','uint8'} % 8-bit signed and unsigned integer
jclassname = 'java.lang.Byte';
case {'int16','uint16'} % 16-bit signed and unsigned integer
jclassname = 'java.lang.Short';
case {'int32','uint32'} % 32-bit signed and unsigned integer
jclassname = 'java.lang.Integer';
case {'int64','uint64'} % 64-bit signed and unsigned integer
jclassname = 'java.lang.Long';
case 'single' % single-precision floating-point number
jclassname = 'java.lang.Float';
case 'double' % double-precision floating-point number
jclassname = 'java.lang.Double';
case 'cellstr' % a single cell or a character array
jclassname = 'java.lang.String';
otherwise
error('java:javaclass:InvalidArgumentValue', ...
'MatLab type "%s" is not recognized or supported in Java.', mtype);
end
end
% Note: When querying a java.lang.Class object by name with the method
% jclass = java.lang.Class.forName(jclassname);
% MatLab generates an error. For the Class.forName method to work, MatLab
% requires class loader to be specified explicitly.
jclass = java.lang.Class.forName(jclassname, true, java.lang.Thread.currentThread().getContextClassLoader());
function jclassname = javaarrayclass(mtype, ndims)
% Returns the type qualifier for a multidimensional Java array.
switch mtype
case 'logical' % logical array of true and false values
jclassid = 'Z';
case 'char' % character array
jclassid = 'C';
case {'int8','uint8'} % 8-bit signed and unsigned integer array
jclassid = 'B';
case {'int16','uint16'} % 16-bit signed and unsigned integer array
jclassid = 'S';
case {'int32','uint32'} % 32-bit signed and unsigned integer array
jclassid = 'I';
case {'int64','uint64'} % 64-bit signed and unsigned integer array
jclassid = 'J';
case 'single' % single-precision floating-point number array
jclassid = 'F';
case 'double' % double-precision floating-point number array
jclassid = 'D';
case 'cellstr' % cell array of strings
jclassid = 'Ljava.lang.String;';
otherwise
error('java:javaclass:InvalidArgumentValue', ...
'MatLab type "%s" is not recognized or supported in Java.', mtype);
end
jclassname = [repmat('[',1,ndims), jclassid];
|
github
|
lcnbeapp/beapp-master
|
helpdialog.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/helpdialog.m
| 3,397 |
utf_8
|
f16f23c1b608a247bc5298f5ebc6d321
|
% Displays a dialog to give help information on an object.
%
% Examples:
% helpdialog char
% gives information of character arrays
% helpdialog plot
% gives help on the plot command
% helpdialog(obj)
% gives help on the MatLab object obj
%
% See also: helptext, msgbox
% Copyright 2008-2010 Levente Hunyadi
function helpdialog(obj)
if nargin < 1
obj = 'helpdialog';
end
if ischar(obj)
key = obj;
else
key = class(obj);
end
title = [key ' - Quick help'];
text = helptext(key);
if isempty(text)
text = {'No help available.'};
end
if 0 % standard MatLab message dialog box
createmode = struct( ...
'WindowStyle', 'replace', ...
'Interpreter', 'none');
msgbox(text, title, 'help', createmode);
else
fig = figure( ...
'MenuBar', 'none', ...
'Name', title, ...
'NumberTitle', 'off', ...
'Position', [0 0 480 160], ...
'Toolbar', 'none', ...
'Visible', 'off', ...
'ResizeFcn', @helpdialog_resize);
% information icon
icons = load('dialogicons.mat');
icons.helpIconMap(256,:) = get(fig, 'Color');
iconaxes = axes( ...
'Parent', fig, ...
'Units', 'pixels', ...
'Tag', 'IconAxes');
try
iconimg = image('CData', icons.helpIconData, 'Parent', iconaxes);
set(fig, 'Colormap', icons.helpIconMap);
catch me
delete(fig);
rethrow(me)
end
if ~isempty(get(iconimg,'XData')) && ~isempty(get(iconimg,'YData'))
set(iconaxes, ...
'XLim', get(iconimg,'XData')+[-0.5 0.5], ...
'YLim', get(iconimg,'YData')+[-0.5 0.5]);
end
set(iconaxes, ...
'Visible', 'off', ...
'YDir', 'reverse');
% help text
rgb = get(fig, 'Color');
text = cellfun(@(line) helpdialog_html(line), text, 'UniformOutput', false);
html = ['<html>' strjoin(sprintf('\n'), text) '</html>'];
jtext = javax.swing.JLabel(html);
jcolor = java.awt.Color(rgb(1), rgb(2), rgb(3));
jtext.setBackground(jcolor);
jtext.setVerticalAlignment(1);
jscrollpane = javax.swing.JScrollPane(jtext, javax.swing.JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED, javax.swing.JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED);
jscrollpane.getViewport().setBackground(jcolor);
jscrollpane.setBorder(javax.swing.border.EmptyBorder(0,0,0,0));
[jcontrol,jcontainer] = javacomponent(jscrollpane, [0 0 100 100]);
set(jcontainer, 'Tag', 'HelpText');
movegui(fig, 'center'); % center figure on screen
set(fig, 'Visible', 'on');
end
function helpdialog_resize(fig, event) %#ok<INUSD>
position = getpixelposition(fig);
width = position(3);
height = position(4);
iconaxes = findobj(fig, 'Tag', 'IconAxes');
helptext = findobj(fig, 'Tag', 'HelpText');
bottom = 7*height/12;
set(iconaxes, 'Position', [12 bottom 51 51]);
set(helptext, 'Position', [75 12 width-75-12 height-24]);
function html = helpdialog_html(line)
preline = deblank(line); % trailing spaces removed
line = strtrim(preline); % leading spaces removed
leadingspace = repmat(' ', 1, numel(preline)-numel(line)); % add leading spaces as non-breaking space
ix = strfind(line, 'See also');
if ~isempty(ix)
ix = ix(1) + numel('See also');
line = [ line(1:ix-1) regexprep(line(ix:end), '(\w[\d\w]+)', '<a href="matlab:helpdialog $1">$1</a>') ];
end
html = ['<p>' leadingspace line '</p>'];
|
github
|
lcnbeapp/beapp-master
|
getdependentproperties.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/getdependentproperties.m
| 907 |
utf_8
|
5f87bb7115d9bcacd8556d89a4492c44
|
% Publicly accessible dependent properties of an object.
%
% See also: meta.property
% Copyright 2010 Levente Hunyadi
function dependent = getdependentproperties(obj)
dependent = {};
if isstruct(obj) % structures have no dependent properties
return;
end
try
clazz = metaclass(obj);
catch %#ok<CTCH>
return; % old-style class (i.e. not defined with the classdef keyword) have no dependent properties
end
k = 0; % number of dependent properties found
n = numel(clazz.Properties); % maximum number of properties
dependent = cell(n, 1);
for i = 1 : n
property = clazz.Properties{i};
if property.Abstract || property.Hidden || ~strcmp(property.GetAccess, 'public') || ~property.Dependent
continue; % skip abstract, hidden, inaccessible and independent properties
end
k = k + 1;
dependent{k} = property.Name;
end
dependent(k+1:end) = []; % drop unused cells
|
github
|
lcnbeapp/beapp-master
|
example_matrixeditor.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/example_matrixeditor.m
| 471 |
utf_8
|
637b619421d215e7270f8502574e4ff7
|
% Demonstrates how to use the matrix editor.
%
% See also: MatrixEditor
% Copyright 2010 Levente Hunyadi
function example_matrixeditor
fig = figure( ...
'MenuBar', 'none', ...
'Name', 'Matrix editor demo - Copyright 2010 Levente Hunyadi', ...
'NumberTitle', 'off', ...
'Toolbar', 'none');
editor = MatrixEditor(fig, ...
'Item', [1,2,3,4;5,6,7,8;9,10,11,12], ...
'Type', PropertyType('denserealdouble','matrix'));
uiwait(fig);
disp(editor.Item);
|
github
|
lcnbeapp/beapp-master
|
example_propertyeditor.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/example_propertyeditor.m
| 473 |
utf_8
|
49faa2989b2f9c32c26f366e77eaf0b2
|
% Demonstrates how to use the property editor.
%
% See also: PropertyEditor
% Copyright 2010 Levente Hunyadi
function example_propertyeditor
% create figure
f = figure( ...
'MenuBar', 'none', ...
'Name', 'Property editor demo - Copyright 2010 Levente Hunyadi', ...
'NumberTitle', 'off', ...
'Toolbar', 'none');
items = { SampleObject SampleObject };
editor = PropertyEditor(f, 'Items', items);
editor.AddItem(SampleNestedObject, 1);
editor.RemoveItem(1);
|
github
|
lcnbeapp/beapp-master
|
nestedfetch.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/nestedfetch.m
| 1,000 |
utf_8
|
1f3b58597c8ee6879bc2650defb0799d
|
% Fetches the value of the named property of an object or structure.
% This function can deal with nested properties.
%
% Input arguments:
% obj:
% the handle or value object the value should be assigned to
% name:
% a property name with dot (.) separating property names at
% different hierarchy levels
% value:
% the value to assign to the property at the deepest hierarchy
% level
%
% Example:
% obj = struct('surface', struct('nested', 23));
% value = nestedfetch(obj, 'surface.nested');
% disp(value); % prints 23
%
% See also: nestedassign
% Copyright 2010 Levente Hunyadi
function value = nestedfetch(obj, name)
if ~iscell(name)
nameparts = strsplit(name, '.');
else
nameparts = name;
end
value = nestedfetch_recurse(obj, nameparts);
end
function value = nestedfetch_recurse(obj, name)
if numel(name) > 1
value = nestedfetch_recurse(obj.(name{1}), name(2:end));
else
value = obj.(name{1});
end
end
|
github
|
lcnbeapp/beapp-master
|
findobjuser.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/findobjuser.m
| 1,391 |
utf_8
|
3275be54ee6c453c85fd950bb6ac56b5
|
% Find handle graphics object with user data check.
% Retrieves those handle graphics objects (HGOs) that have the specified
% Tag property and whose UserData property satisfies the given predicate.
%
% Input arguments:
% fcn:
% a predicate (a function that returns a logical value) to test against
% the HGO's UserData property
% tag (optional):
% a string tag to restrict the set of controls to investigate
%
% See also: findobj
% Copyright 2010 Levente Hunyadi
function h = findobjuser(fcn, tag)
validateattributes(fcn, {'function_handle'}, {'scalar'});
if nargin < 2 || isempty(tag)
tag = '';
else
validateattributes(tag, {'char'}, {'row'});
end
%hh = get(0, 'ShowHiddenHandles');
%cleanup = onCleanup(@() set(0, 'ShowHiddenHandles', hh)); % restore visibility on exit or exception
if ~isempty(tag)
% look among all handles (incl. hidden handles) to help findobj locate the object it seeks
h = findobj(findall(0), '-property', 'UserData', '-and', 'Tag', tag); % more results if multiple matching HGOs exist
else
h = findobj(findall(0), '-property', 'UserData');
end
h = unique(h);
try
for k=1:length(h)
pred = fcn(get(h(k), 'UserData'));
if isempty(pred)
pred = false; end
f(k) = pred;
end
%f = arrayfun(@(handle) fcn(get(handle, 'UserData')), h, 'UniformOutput',false);
catch
1
end
h = h(f);
|
github
|
lcnbeapp/beapp-master
|
javaStringArray.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/javaStringArray.m
| 628 |
utf_8
|
fe0389e3b0d1933d49c1a78c416a279c
|
% Converts a MatLab cell array of strings into a java.lang.String array.
%
% Input arguments:
% str:
% a cell array of strings (i.e. a cell array of char row vectors)
%
% Output arguments:
% arr:
% a java.lang.String array instance (i.e. java.lang.String[])
%
% See also: javaArray
% Copyright 2009-2010 Levente Hunyadi
function arr = javaStringArray(str)
assert(iscellstr(str) && isvector(str), ...
'java:StringArray:InvalidArgumentType', ...
'Cell row or column vector of strings expected.');
arr = javaArray('java.lang.String', length(str));
for k = 1 : numel(str);
arr(k) = java.lang.String(str{k});
end
|
github
|
lcnbeapp/beapp-master
|
var2str.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/var2str.m
| 441 |
utf_8
|
5588acb0d18dcfac8183caf10a3b5675
|
% Textual representation of any MatLab value.
% Copyright 2009 Levente Hunyadi
function s = var2str(value)
if islogical(value) || isnumeric(value)
s = num2str(value);
elseif ischar(value) && isvector(value)
s = reshape(value, 1, numel(value));
elseif isjava(value)
s = char(value); % calls java.lang.Object.toString()
else
try
s = char(value);
catch %#ok<CTCH>
s = '[no preview available]';
end
end
|
github
|
lcnbeapp/beapp-master
|
getclassfield.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/getclassfield.m
| 376 |
utf_8
|
e3b87866af8da4dd40243e750a7e53f6
|
% Field value of each object in an array or cell array.
%
% See also: getfield
% Copyright 2010 Levente Hunyadi
function values = getclassfield(objects, field)
values = cell(size(objects));
if iscell(objects)
for k = 1 : numel(values)
values{k} = objects{k}.(field);
end
else
for k = 1 : numel(values)
values{k} = objects(k).(field);
end
end
|
github
|
lcnbeapp/beapp-master
|
arrayfilter.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/arrayfilter.m
| 488 |
utf_8
|
a2649b876169e3d850372917e57a8b68
|
% Filter elements of array that meet a condition.
% Copyright 2010 Levente Hunyadi
function array = arrayfilter(fun, array)
validateattributes(fun, {'function_handle'}, {'scalar'});
if isobject(array)
filter = false(size(array));
for k = 1 : numel(filter)
filter(k) = fun(array(k));
end
else
filter = arrayfun(fun, array); % logical indicator array of elements that satisfy condition
end
array = array(filter); % array of elements that meet condition
|
github
|
lcnbeapp/beapp-master
|
example_propertygrid.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/example_propertygrid.m
| 4,929 |
utf_8
|
f1e5d6dc7fc518cdb070956ff714353c
|
% Demonstrates how to use the property pane.
%
% See also: PropertyGrid
% Copyright 2010 Levente Hunyadi
function example_propertygrid
properties = [ ...
PropertyGridField('double', pi, ...
'Category', 'Primitive types', ...
'DisplayName', 'real double', ...
'Description', 'Standard MatLab type.') ...
PropertyGridField('single', pi, ...
'Category', 'Primitive types', ...
'DisplayName', 'real single', ...
'Description', 'Single-precision floating point number.') ...
PropertyGridField('integer', int32(23), ...
'Category', 'Primitive types', ...
'DisplayName', 'int32', ...
'Description', 'A 32-bit integer value.') ...
PropertyGridField('interval', int32(2), ...
'Type', PropertyType('int32', 'scalar', [0 6]), ...
'Category', 'Primitive types', ...
'DisplayName', 'int32', ...
'Description', 'A 32-bit integer value with an interval domain.') ...
PropertyGridField('enumerated', int32(-1), ...
'Type', PropertyType('int32', 'scalar', {int32(-1), int32(0), int32(1)}), ...
'Category', 'Primitive types', ...
'DisplayName', 'int32', ...
'Description', 'A 32-bit integer value with an enumerated domain.') ...
PropertyGridField('logical', true, ...
'Category', 'Primitive types', ...
'DisplayName', 'logical', ...
'Description', 'A Boolean value that takes either true or false.') ...
PropertyGridField('doublematrix', [], ...
'Type', PropertyType('denserealdouble', 'matrix'), ...
'Category', 'Compound types', ...
'DisplayName', 'real double matrix', ...
'Description', 'Matrix of standard MatLab type with empty initial value.') ...
PropertyGridField('string', 'a sample string', ...
'Category', 'Compound types', ...
'DisplayName', 'string', ...
'Description', 'A row vector of characters.') ...
PropertyGridField('rowcellstr', {'a sample string','spanning multiple','lines'}, ...
'Category', 'Compound types', ...
'DisplayName', 'cell row of strings', ...
'Description', 'A row cell array whose every element is a string (char array).') ...
PropertyGridField('colcellstr', {'a sample string';'spanning multiple';'lines'}, ...
'Category', 'Compound types', ...
'DisplayName', 'cell column of strings', ...
'Description', 'A column cell array whose every element is a string (char array).') ...
PropertyGridField('season', 'spring', ...
'Type', PropertyType('char', 'row', {'spring','summer','fall','winter'}), ...
'Category', 'Compound types', ...
'DisplayName', 'string', ...
'Description', 'A row vector of characters that can take any of the predefined set of values.') ...
PropertyGridField('set', [true false true], ...
'Type', PropertyType('logical', 'row', {'A','B','C'}), ...
'Category', 'Compound types', ...
'DisplayName', 'set', ...
'Description', 'A logical vector that serves an indicator of which elements from a universe are included in the set.') ...
PropertyGridField('root', [], ... % [] (and no type explicitly set) indicates that value is not editable
'Category', 'Compound types', ...
'DisplayName', 'root node') ...
PropertyGridField('root.parent', int32(23), ...
'Category', 'Compound types', ...
'DisplayName', 'parent node') ...
PropertyGridField('root.parent.child', int32(2007), ...
'Category', 'Compound types', ...
'DisplayName', 'child node') ...
];
% arrange flat list into a hierarchy based on qualified names
properties = properties.GetHierarchy();
% create figure
f = figure( ...
'MenuBar', 'none', ...
'Name', 'Property grid demo - Copyright 2010 Levente Hunyadi', ...
'NumberTitle', 'off', ...
'Toolbar', 'none');
% procedural usage
g = PropertyGrid(f, ... % add property pane to figure
'Properties', properties, ... % set properties explicitly
'Position', [0 0 0.5 1]);
h = PropertyGrid(f, ...
'Position', [0.5 0 0.5 1]);
% declarative usage, bind object to grid
obj = SampleObject; % a value object
h.Item = obj; % bind object, discards any previously set properties
% update the type of a property assigned with type autodiscovery
userproperties = PropertyGridField.GenerateFrom(obj);
userproperties.FindByName('IntegerMatrix').Type = PropertyType('denserealdouble', 'matrix');
disp(userproperties.FindByName('IntegerMatrix').Type);
h.Bind(obj, userproperties);
% wait for figure to close
uiwait(f);
% display all properties and their values on screen
disp('Left-hand property grid');
disp(g.GetPropertyValues());
disp('Right-hand property grid');
disp(h.GetPropertyValues());
disp('SampleObject (modified)');
disp(h.Item);
disp('SampleNestedObject (modified)');
disp(h.Item.NestedObject);
|
github
|
lcnbeapp/beapp-master
|
constructor.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/constructor.m
| 2,078 |
utf_8
|
c67e647ec8055710896666c9e83b45e0
|
% Sets public properties of a MatLab object using a name-value list.
% Properties are traversed in the order they occur in the class definition.
% Copyright 2008-2009 Levente Hunyadi
function obj = constructor(obj, varargin)
assert(isobject(obj), ...
'Function operates on MatLab new-style objects only.');
if nargin <= 1
return;
end
if isa(obj, 'hgsetget')
set(obj, varargin{:});
return;
end
assert(is_name_value_list(varargin), ...
'constructor:ArgumentTypeMismatch', ...
'A list of property name--value pairs is expected.');
% instantiate input parser object
parser = inputParser;
% query class properties using meta-class facility
metaobj = metaclass(obj);
properties = metaobj.Properties;
for i = 1 : numel(properties)
property = properties{i};
if is_public_property(property)
parser.addParamValue(property.Name, obj.(property.Name));
end
end
% set property values according to name-value list
parser.parse(varargin{:});
for i = 1 : numel(properties)
property = properties{i};
if is_public_property(property) && ~is_string_in_vector(property.Name, parser.UsingDefaults) % do not set defaults
obj.(property.Name) = parser.Results.(property.Name);
end
end
function tf = is_name_value_list(list)
% True if the specified list is a name-value list.
%
% Input arguments:
% list:
% a name-value list as a cell array.
validateattributes(list, {'cell'}, {'vector'});
n = numel(list);
if mod(n, 2) ~= 0
% a name-value list has an even number of elements
tf = false;
else
for i = 1 : 2 : n
if ~ischar(list{i})
% each odd element in a name-value list must be a char array
tf = false;
return;
end
end
tf = true;
end
function tf = is_string_in_vector(str, vector)
tf = any(strcmp(str, vector));
function tf = is_public_property(property)
% True if the property designates a public, accessible property.
tf = ~property.Abstract && ~property.Hidden && strcmp(property.GetAccess, 'public') && strcmp(property.SetAccess, 'public');
|
github
|
lcnbeapp/beapp-master
|
nestedassign.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/nestedassign.m
| 1,457 |
utf_8
|
12d661bb4df3c64a0707a06f7e3e6afc
|
% Assigns the given value to the named property of an object or structure.
% This function can deal with nested properties.
%
% Input arguments:
% obj:
% the structure, handle or value object the value should be assigned to
% name:
% a property name with dot (.) separating property names at
% different hierarchy levels
% value:
% the value to assign to the property at the deepest hierarchy
% level
%
% Output arguments:
% obj:
% the updated object or structure, optional for handle objects
%
% Example:
% obj = struct('surface', struct('nested', 10));
% obj = nestedassign(obj, 'surface.nested', 23);
% disp(obj.surface.nested); % prints 23
%
% See also: nestedfetch
% Copyright 2010 Levente Hunyadi
function obj = nestedassign(obj, name, value)
if ~iscell(name)
nameparts = strsplit(name, '.');
else
nameparts = name;
end
obj = nestedassign_recurse(obj, nameparts, value);
end
function obj = nestedassign_recurse(obj, name, value)
% Assigns the given value to the named property of an object.
%
% Input arguments:
% obj:
% the handle or value object the value should be assigned to
% name:
% a cell array of the composite property name
% value:
% the value to assign to the property at the deepest hierarchy
% level
if numel(name) > 1
obj.(name{1}) = nestedassign_recurse(obj.(name{1}), name(2:end), value);
else
obj.(name{1}) = value;
end
end
|
github
|
lcnbeapp/beapp-master
|
javaArrayList.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/javaArrayList.m
| 740 |
utf_8
|
cb4ad03c4e0fc536bc1ae024bfb8920a
|
% Converts a MatLab array into a java.util.ArrayList.
%
% Input arguments:
% array:
% a MatLab row or column vector (with elements of any type)
%
% Output arguments:
% list:
% a java.util.ArrayList instance
%
% See also: javaArray
% Copyright 2010 Levente Hunyadi
function list = javaArrayList(array)
list = java.util.ArrayList;
if ~isempty(array)
assert(isvector(array), 'javaArrayList:DimensionMismatch', ...
'Row or column vector expected.');
if iscell(array) % convert cell array into ArrayList
for k = 1 : numel(array)
list.add(array{k});
end
else % convert (numeric) array into ArrayList
for k = 1 : numel(array)
list.add(array(k));
end
end
end
|
github
|
lcnbeapp/beapp-master
|
hlp_scope.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_scope.m
| 3,366 |
utf_8
|
4544c2a11f66464cc00f860f36646304
|
function varargout = hlp_scope(assignments, f, varargin)
% Execute a function within a dynamic scope of values assigned to symbols.
% Results... = hlp_scope(Assignments, Function, Arguments...)
%
% This is the only completely reliable way in MATLAB to ensure that symbols that should be assigned
% while a function is running get cleared after the function returns orderly, crashes, segfaults,
% the user slams Ctrl+C, and so on. Symbols can be looked up via hlp_resolve().
%
% In:
% Assignments : Cell array of name-value pairs or a struct. Values are associated with symbols of
% the given names. The names should be valid MATLAB identifiers. These assigments
% form a dynamic scope for the execution of the function; scopes can also be
% nested, and assignments in inner scopes override those of outer scopes.
%
% Function : a function handle to invoke
%
% Arguments... : arguments to pass to the function
%
% Out:
% Results... : return value(s) of the function
%
% See also:
% hlp_resolve
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-05-03
% add a new stack frame with the evaluated assignments & get its unique id
id = make_stackframe(assignments);
% also take care that it gets reclaimed after we're done
reclaimer = onCleanup(@()return_stackframe(id));
% make a function that is tagged by id
func = make_func(id);
% evaluate the function with the id introduced into MATLAB's own stack
[varargout{1:nargout}] = func(f,varargin);
function func = make_func(id)
persistent funccache; % (cached, since the eval() below is a bit slow)
try
func = funccache.(id);
catch
func = eval(['@(f,a,frame__' id ')feval(f,a{:})']);
funccache.(id) = func;
end
function id = make_stackframe(assignments)
% put the assignments into a struct
if iscell(assignments)
assignments = cell2struct(assignments(2:2:end),assignments(1:2:end),2); end
% get a fresh frame id
global tracking;
try
id = tracking.stack.frameids.removeLast();
catch
if ~isfield(tracking,'stack') || ~isfield(tracking.stack,'frameids')
% need to create the id repository first
tracking.stack.frameids = java.util.concurrent.LinkedBlockingDeque();
for k=50000:-1:1
tracking.stack.frameids.addLast(sprintf('f%d',k)); end
else
if tracking.stack.frameids.size() == 0
% if this happens then either you have 10.000s of parallel executions of hlp_scope(),
% or you have a very deep recursion level (the MATLAB default is 500), or your function
% has crashed 10.000s of times in a way that keeps onCleanup from doing its job, or you have
% substituted onCleanup by a dummy class or function that doesn't actually work (e.g. on
% pre-2008a systems).
error('We ran out of stack frame ids. This should not happen under normal conditions. Please make sure that your onCleanup implementation is not consistently failing to execute.');
end
end
id = tracking.stack.frameids.removeLast();
end
% and store the assignments under it
tracking.stack.frames.(id) = assignments;
function return_stackframe(id)
% finally return the frame id again...
global tracking;
tracking.stack.frameids.addLast(id);
|
github
|
lcnbeapp/beapp-master
|
hlp_fingerprint.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_fingerprint.m
| 7,085 |
utf_8
|
ebeb87c5f5aa958473e853a153d261f9
|
function fp = hlp_fingerprint(data)
% Make a fingerprint (hash) of the given data structure.
% Fingerprint = hlp_fingerprint(Data)
%
% This includes all contents; however, large arrays (such as EEG.data) are only spot-checked. For
% thorough checking, use hlp_cryptohash.
%
% In:
% Data : some data structure
%
% Out:
% Fingerprint : an integer that identifies the data
%
% Notes:
% The fingerprint is not unique and identifies the data set only with a certain (albeit high)
% probability.
%
% On MATLAB versions prior to 2008b, hlp_fingerprint cannot be used concurrently from timers,
% and also may alter the random generator's state if cancelled via Ctrl+C.
%
% Examples:
% % calculate the hash of a large data structure
% hash = hlp_fingerprint(data);
%
% See also:
% hlp_cryptohash
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-04-02
warning off MATLAB:structOnObject
if hlp_matlab_version >= 707
fp = fingerprint(data,RandStream('swb2712','Seed',5183));
else
try
% save & override random state
randstate = rand('state'); %#ok<*RAND>
rand('state',5183);
% make the fingerprint
fp = fingerprint(data,0);
% restore random state
rand('state',randstate);
catch e
% restore random state in case of an error...
rand('state',randstate);
rethrow(e);
end
end
% make a fingerprint of the given data structure
function fp = fingerprint(data,rs)
% convert data into a string representation
data = summarize(data,rs);
% make sure that it does not contain 0's
data(data==0) = 'x';
% obtain a hash code via Java (MATLAB does not support proper integer arithmetic...)
str = java.lang.String(data);
fp = str.hashCode()+2^31;
% get a recursive string summary of arbitrary data
function x = summarize(x,rs)
if isnumeric(x)
% numeric array
if ~isreal(x)
x = [real(x) imag(x)]; end
if issparse(x)
x = [find(x) nonzeros(x)]; end
if numel(x) <= 4096
% small matrices are hashed completely
try
x = ['n' typecast([size(x) x(:)'],'uint8')];
catch
if hlp_matlab_version <= 702
x = ['n' typecast([size(x) double(x(:))'],'uint8')]; end
end
else
% large matrices are spot-checked
ne = numel(x);
count = floor(256 + (ne-256)/1000);
if hlp_matlab_version < 707
indices = 1+floor((ne-1)*rand(1,count));
else
indices = 1+floor((ne-1)*rand(rs,1,count));
end
if size(x,2) == 1
% x is a column vector: reindexed expression needs to be transposed
x = ['n' typecast([size(x) x(indices)'],'uint8')];
else
% x is a matrix or row vector: shape follows that of indices
x = ['n' typecast([size(x) x(indices)],'uint8')];
end
end
elseif iscell(x)
% cell array
sizeprod = cellfun('prodofsize',x(:));
if all(sizeprod <= 1) && any(sizeprod)
% all scalar elements (some empty, but not all)
if all(cellfun('isclass',x(:),'double')) || all(cellfun('isclass',x(:),'single'))
% standard floating-point scalars
if cellfun('isreal',x)
% all real
x = ['cdr' typecast([size(x) x{:}],'uint8')];
else
% some complex
x = ['cdc' typecast([size(x) real([x{:}]) imag([x{:}])],'uint8')];
end
elseif cellfun('isclass',x(:),'logical')
% all logical
x = ['cl' typecast(uint32(size(x)),'uint8') uint8([x{:}])];
elseif cellfun('isclass',x(:),'char')
% all single chars
x = ['ccs' typecast(uint32(size(x)),'uint8') x{:}];
else
% generic types (structs, cells, integers, handles, ...)
tmp = cellfun(@summarize,x,repmat({rs},size(x)),'UniformOutput',false);
x = ['cg' typecast(uint32(size(x)),'uint8') tmp{:}];
end
elseif isempty(x)
% empty cell array
x = ['ce' typecast(uint32(size(x)),'uint8')];
else
% some non-scalar elements
dims = cellfun('ndims',x(:));
size1 = cellfun('size',x(:),1);
size2 = cellfun('size',x(:),2);
if all((size1+size2 == 0) & (dims == 2))
% all empty and nondegenerate elements
if all(cellfun('isclass',x(:),'double'))
% []'s
x = ['ced' typecast(uint32(size(x)),'uint8')];
elseif all(cellfun('isclass',x(:),'cell'))
% {}'s
x = ['cec' typecast(uint32(size(x)),'uint8')];
elseif all(cellfun('isclass',x(:),'struct'))
% struct()'s
x = ['ces' typecast(uint32(size(x)),'uint8')];
elseif length(unique(cellfun(@class,x(:),'UniformOutput',false))) == 1
% same class
x = ['cex' class(x{1}) typecast(uint32(size(x)),'uint8')];
else
% arbitrary class...
tmp = cellfun(@summarize,x,repmat({rs},size(x)),'UniformOutput',false);
x = ['cg' typecast(uint32(size(x)),'uint8') tmp{:}];
end
elseif all((cellfun('isclass',x(:),'char') & size1 <= 1) | (sizeprod==0 & cellfun('isclass',x(:),'double')))
% all horizontal strings or proper empty strings, possibly some []'s
x = ['cch' [x{:}] typecast(uint32(size2'),'uint8')];
else
% arbitrary sizes...
if all(cellfun('isclass',x(:),'double')) || all(cellfun('isclass',x(:),'single'))
% all standard floating-point types...
tmp = cellfun(@vectorize,x,'UniformOutput',false);
% treat as a big vector...
x = ['cn' typecast(uint32(size(x)),'uint8') summarize([tmp{:}],rs)];
else
tmp = cellfun(@summarize,x,repmat({rs},size(x)),'UniformOutput',false);
x = ['cg' typecast(uint32(size(x)),'uint8') tmp{:}];
end
end
end
elseif ischar(x)
% char array
x = ['c' x(:)'];
elseif isstruct(x)
% struct
fn = fieldnames(x)';
if numel(x) > length(fn)
% summarize over struct fields to expose homogeneity
x = cellfun(@(f)summarize({x.(f)},rs),fn,'UniformOutput',false);
x = ['s' [fn{:}] ':' [x{:}]];
else
% summarize over struct elements
x = ['s' [fn{:}] ':' summarize(struct2cell(x),rs)];
end
elseif islogical(x)
% logical array
x = ['l' typecast(uint32(size(x)),'uint8') uint8(x(:)')];
elseif isa(x,'function_handle')
x = ['f ' char(x)];
elseif isobject(x)
x = ['o' class(x) ':' summarize(struct(x),rs)];
else
try
x = ['u' class(x) ':' summarize(struct(x),rs)];
catch
warning('BCILAB:hlp_fingerprint:unsupported_type','Unsupported type: %s',class(x));
error; %#ok<LTARG>
end
end
function x = vectorize(x)
x = x(:)';
|
github
|
lcnbeapp/beapp-master
|
hlp_flattensearch.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_flattensearch.m
| 4,217 |
utf_8
|
9f21976c4c355a8c0ac9432e74a4d31d
|
function x = hlp_flattensearch(x,form)
% Flatten search() clauses in a nested data structure into a flat search() clause.
% Result = hlp_flattensearch(Expression, Output-Form)
%
% Internal tool used by utl_gridsearch to enable the specification of search parameters using
% search() clauses.
%
% In:
% Expression : some data structure, usually an argument to utl_gridsearch, may or may not contain
% nested search clauses.
%
% Output-Form : form of the output (default: 'search')
% * 'search': the output shall be a flattened search clause (or a plain value if no
% search)
% * 'cell': the output shall be a cell array of elements to search over
%
% Out:
% Result : a flattened search clause (or plain value), or a cell array of search possibilities.
%
% See also:
% search, utl_gridsearch
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-06-29
x = flatten(x);
if ~exist('form','var') || isempty(form) || strcmp(form,'search')
% turn from cell format into search format
if isscalar(x)
% just one option: return the plain value
x = x{1};
else
% multiple options: return a search expression
x = struct('head',{@search},'parts',{x});
end
elseif ~strcmp(form,'cell')
error(['Unsupported output form: ' form]);
end
% recursively factor search expressions out of a data structure, to give an overall search
% expression (output format is cell array of search options)
function parts = flatten(x)
if isstruct(x)
if isfield(x,{'data','srate','chanlocs','event','epoch'})
% data set? do not descend further
parts = {x};
elseif all(isfield(x,{'head','parts'})) && numel(x)==1 && strcmp(char(x.head),'search')
% search expression: flatten any nested searches...
parts = cellfun(@flatten,x.parts,'UniformOutput',false);
% ... and splice their parts in
parts = [parts{:}];
else
% generic structure: create a cartesian product over field-wise searches
if isscalar(x)
parts = {x};
% flatten per-field contents
fields = cellfun(@flatten,struct2cell(x),'UniformOutput',false);
lengths = cellfun('length',fields);
% was any one a search?
if any(lengths>1)
fnames = fieldnames(x);
% for each field that is a search...
for k=find(lengths>1)'
% replicate all parts once for each search item in the current field
partnum = length(parts);
parts = repmat(parts,1,lengths(k));
% and fill each item into the appropriate place
for j=1:length(parts)
parts{j}.(fnames{k}) = fields{k}{ceil(j/partnum)}; end
end
end
elseif ~isempty(x)
% struct array (either with nested searches or a concatenation of search() expressions):
% handle as a cell array of structs
parts = flatten(arrayfun(@(s){s},x));
% got a search?
if ~isscalar(parts)
% re-concatenate the cell contents of each part of the search expression into
% struct arrays
for i=1:length(parts)
parts{i} = reshape([parts{i}{:}],size(parts{i})); end
else
parts = {x};
end
else
parts = {x};
end
end
elseif iscell(x)
% cell array: create a cartesian product over cell-wise searches
parts = {x};
x = cellfun(@flatten,x,'UniformOutput',false);
% for each cell that is a search...
for c=find(cellfun('length',x(:)')>1)
% replicate all parts once for each search item in the current cell
partnum = length(parts);
parts = repmat(parts,1,length(x{c}));
% and fill in the new item in the appropriate place
for j=1:length(parts)
parts{j}{c} = x{c}{ceil(j/partnum)}; end
end
else
% anything else: wrap
parts = {x};
end
|
github
|
lcnbeapp/beapp-master
|
hlp_tostring.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_tostring.m
| 6,536 |
utf_8
|
7c374a9f8a1954f5289b4e446ea1a30d
|
function str = hlp_tostring(v)
% Get an human-readable string representation of a data structure.
% String = hlp_tostring(Data)
%
% The resulting string representations are usually executable, but there are corner cases (e.g.,
% certain anonymous function handles and large data sets), which are not supported. For
% general-purpose serialization, see hlp_serialize/hlp_deserialize.
%
% In:
% Data : a data structure
%
% Out:
% String : string form of the data structure
%
% Notes:
% hlp_tostring has builtin support for displaying expression data structures.
%
% Examples:
% % get a string representation of a data structure
% hlp_tostring({'test',[1 2 3], struct('field','value')})
%
% See also:
% hlp_serialize
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-04-15
%
% adapted from serialize.m
% (C) 2006 Joger Hansegord ([email protected])
n = 15;
str = serializevalue(v,n);
%
% Main hub for serializing values
%
function val = serializevalue(v, n)
if isnumeric(v) || islogical(v)
val = serializematrix(v, n);
elseif ischar(v)
val = serializestring(v, n);
elseif isa(v,'function_handle')
val = serializefunction(v, n);
elseif is_impure_expression(v)
val = serializevalue(v.tracking.expression, n);
elseif has_canonical_representation(v)
val = serializeexpression(v, n);
elseif is_dataset(v)
val = serializedataset(v, n);
elseif isstruct(v)
val = serializestruct(v, n);
elseif iscell(v)
val = serializecell(v, n);
elseif isobject(v)
val = serializeobject(v, n);
else
try
val = serializeobject(v, n);
catch
error('Unhandled type %s', class(v));
end
end
%
% Serialize a string
%
function val = serializestring(v,n)
if any(v == '''')
val = ['''' strrep(v,'''','''''') ''''];
try
if ~isequal(eval(val),v)
val = ['char(' serializevalue(uint8(v), n) ')']; end
catch
val = ['char(' serializevalue(uint8(v), n) ')'];
end
else
val = ['''' v ''''];
end
%
% Serialize a matrix and apply correct class and reshape if required
%
function val = serializematrix(v, n)
if ndims(v) < 3
if isa(v, 'double')
if size(v,1) == 1 && length(v) > 3 && isequal(v,v(1):v(2)-v(1):v(end))
% special case: colon sequence
if v(2)-v(1) == 1
val = ['[' num2str(v(1)) ':' num2str(v(end)) ']'];
else
val = ['[' num2str(v(1)) ':' num2str(v(2)-v(1)) ':' num2str(v(end)) ']'];
end
elseif size(v,2) == 1 && length(v) > 3 && isequal(v',v(1):v(2)-v(1):v(end))
% special case: colon sequence
if v(2)-v(1) == 1
val = ['[' num2str(v(1)) ':' num2str(v(end)) ']'''];
else
val = ['[' num2str(v(1)) ':' num2str(v(2)-v(1)) ':' num2str(v(end)) ']'''];
end
else
val = mat2str(v, n);
end
else
val = mat2str(v, n, 'class');
end
else
if isa(v, 'double')
val = mat2str(v(:), n);
else
val = mat2str(v(:), n, 'class');
end
val = sprintf('reshape(%s, %s)', val, mat2str(size(v)));
end
%
% Serialize a cell
%
function val = serializecell(v, n)
if isempty(v)
val = '{}';
return
end
cellSep = ', ';
if isvector(v) && size(v,1) > 1
cellSep = '; ';
end
% Serialize each value in the cell array, and pad the string with a cell
% separator.
vstr = cellfun(@(val) [serializevalue(val, n) cellSep], v, 'UniformOutput', false);
vstr{end} = vstr{end}(1:end-2);
% Concatenate the elements and add a reshape if requied
val = [ '{' vstr{:} '}'];
if ~isvector(v)
val = ['reshape(' val sprintf(', %s)', mat2str(size(v)))];
end
%
% Serialize an expression
%
function val = serializeexpression(v, n)
if numel(v) > 1
val = ['['];
for k = 1:numel(v)
val = [val serializevalue(v(k), n), ', ']; end
val = [val(1:end-2) ']'];
else
if numel(v.parts) > 0
val = [char(v.head) '('];
for fieldNo = 1:numel(v.parts)
val = [val serializevalue(v.parts{fieldNo}, n), ', ']; end
val = [val(1:end-2) ')'];
else
val = char(v.head);
end
end
%
% Serialize a data set
%
function val = serializedataset(v, n) %#ok<INUSD>
val = '<EEGLAB data set>';
%
% Serialize a struct by converting the field values using struct2cell
%
function val = serializestruct(v, n)
fieldNames = fieldnames(v);
fieldValues = struct2cell(v);
if ndims(fieldValues) > 6
error('Structures with more than six dimensions are not supported');
end
val = 'struct(';
for fieldNo = 1:numel(fieldNames)
val = [val serializevalue( fieldNames{fieldNo}, n) ', '];
val = [val serializevalue( permute(fieldValues(fieldNo, :,:,:,:,:,:), [2:ndims(fieldValues) 1]) , n) ];
val = [val ', '];
end
if numel(fieldNames)==0
val = [val ')'];
else
val = [val(1:end-2) ')'];
end
if ~isvector(v)
val = sprintf('reshape(%s, %s)', val, mat2str(size(v)));
end
%
% Serialize an object by converting to struct and add a call to the copy
% contstructor
%
function val = serializeobject(v, n)
val = sprintf('%s(%s)', class(v), serializevalue(struct(v), n));
function val = serializefunction(v, n) %#ok<INUSD>
try
val = ['@' char(get_function_symbol(v))];
catch
val = char(v);
end
function result___ = get_function_symbol(expression___)
% internal: some function_handle expressions have a function symbol (an @name expression), and this function obtains it
% note: we are using funny names here to bypass potential name conflicts within the eval() clause further below
if ~isa(expression___,'function_handle')
error('the expression has no associated function symbol.'); end
string___ = char(expression___);
if string___(1) == '@'
% we are dealing with a lambda function
if is_symbolic_lambda(expression___)
result___ = eval(string___(27:end-21));
else
error('cannot derive a function symbol from a non-symbolic lambda function.');
end
else
% we are dealing with a regular function handle
result___ = expression___;
end
function res = is_symbolic_lambda(x)
% internal: a symbolic lambda function is one which generates expressions when invoked with arguments (this is what exp_symbol generates)
res = isa(x,'function_handle') && ~isempty(regexp(char(x),'@\(varargin\)struct\(''head'',\{.*\},''parts'',\{varargin\}\)','once'));
|
github
|
lcnbeapp/beapp-master
|
hlp_config.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_config.m
| 12,881 |
utf_8
|
7b49f69371781d0161c3a842064a43d0
|
function result = hlp_config(configname, operation, varargin)
% helper function to process human-readable config scripts.
% Result = hlp_config(FileName,Operation,VariableName,Value,NVPs...)
%
% Config scripts consist of assignments of the form name = value; to set configuration options. In
% addition, there may be any type of comments, conditional control flow, etc - e.g., setting certain
% values on some platforms and others on others. This function allows to get or set the value
% assigned to a variable in the place of the script where it is actually assigned on the current
% platform. Note that the respective variable has to be already in the config file for this function
% to work.
%
% In:
% FileName : name of the configuration file to process
%
% Operation : operation to perform on the config file
% 'get' : get the currently defined value of a given variable
% 'set' : replace the current defintion of a given variable
%
% VariableName : name of the variable to be affected (must be a MATLAB identifier)
%
% Value : the new value to be assigned, if the operation is 'set', as a string
% note that most data structures can be converted into a string via hlp_tostring
%
% NVPs... : list of further name-value pairs, where each name denotes a config variables and the subsequent
% value is the string expression that should be written into the config file. It is
% generally a good idea to use hlp_tostring() to turn a data structure into such a string
% representation.
%
% Out:
% Result : the current value of the variable of interest, when using the 'get'
% operation
%
% Notes:
% There can be multiple successive variable name / value pairs for the set mode.
% If an error occurs during a set operation, any changes will be rolled back.
%
% Examples:
% % read out the value of the 'data' config variable from a config file
% data = hlp_config('/home/christian/myconfig.m','get','data')
%
% % override the values of the 'files' and 'capacity' config variables in the given config script
% hlp_config('/home/christian/myconfig.m', 'set', 'files',myfiles, 'capacity',1000)
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-11-19
if ~exist(configname,'file')
error('hlp_config:file_not_found','The specified config file was not found.'); end
switch operation
case 'get'
varname = varargin{1};
if ~isvarname(varname)
error('hlp_config:bad_varname','The variable name must be a valid MATLAB identifier.'); end
% get the currently defined value of a variable...
result = get_value(configname,varname);
case 'set'
backupfile = [];
try
% apply first assignment
backupfile = set_value(configname,varargin{1},varargin{2},true);
for k = 4:2:length(varargin)
% apply all other assignments
set_value(configname,varargin{k-1},varargin{k},false); end
catch e
% got an error; roll back changes if necessary
if ~isempty(backupfile)
try
movefile(backupfile,configname);
catch
disp(['Could not roll back changes. You can manually revert changes by replacing ' configname ' by ' backupfile '.']);
end
end
rethrow(e);
end
otherwise
error('hlp_config:unsupported_option','Unsupported config operation.');
end
% run the given config script and obtain the current value of the given variable...
function res = get_value(filename__,varname__)
try
run_script(filename__);
catch e
error('hlp_config:erroneous_file',['The config file is erroneous; Error message: ' e.message]);
end
if ~exist(varname__,'var')
error('hlp_config:var_not_found','The variable is not being defined in the config file.'); end
res = eval(varname__);
function backup_name = set_value(filename,varname,newvalue,makebackup)
backup_name = [];
if ~exist(filename,'file')
error('hlp_config:file_not_found','The config file was not found.'); end
if ~isvarname(varname)
error('hlp_config:incorrect_value','The variable name must be a valid MATLAB identifier.'); end
if ~ischar(newvalue)
error('hlp_config:incorrect_value','The value to be assigned must be given as a string.'); end
try
% read the config file contents
contents = {};
f = fopen(filename,'r');
while 1
l = fgetl(f);
if ~ischar(l)
break; end
contents{end+1} = [l 10];
end
fclose(f);
% turn it into one str
contents = [contents{:}];
catch e
try fclose(f); catch,end
error('hlp_config:cannot_read_config',['Cannot read the config file; Error message: ' e.message]);
end
% now check if the file is actually writable
try
f = fopen(filename,'r+');
if f ~= -1
fclose(f);
else
error('hlp_config:permissions_error','Could not update the config file %s. Please check file permissions and try again.',filename);
end
catch
error('hlp_config:permissions_error','Could not update the config file %s. Please check file permissions and try again.',filename);
end
% temporarily replace stray semicolons by a special character and contract ellipses,
% so that the subsequent assignment regex matching will not get derailed)
evalstr = contents;
comment_flag = false;
string_flag = false;
bracket_level = 0;
ellipsis_flag = false;
substitute = false(1,length(evalstr)); % this mask indicates where we have to subsitute reversibly by special characters
spaceout = false(1,length(evalstr)); % this mask indicates where we can substitute irreversibly by whitespace characters...
for k=1:length(evalstr)
if ellipsis_flag
% everything that follows an ellipsis will be spaced out (including the subsequent newline that resets it)
spaceout(k) = true; end
switch evalstr(k)
case ';' % semicolon
% in strs, brackets or comments: indicate need for substitution
if string_flag || bracket_level>0 || comment_flag
substitute(k) = true; end
case '''' % quotes
% flip str flag, unless in comment
if ~comment_flag
string_flag = ~string_flag; end
case 10 % newline
% reset bracket level, unless in ellipsis
if ~ellipsis_flag
bracket_level = 0; end
% reset comment flag, str flag and ellipsis flag
comment_flag = false;
string_flag = false;
ellipsis_flag = false;
case {'[','{'} % opening array bracket
% if not in str nor comment, increase bracket level
if ~string_flag && ~comment_flag
bracket_level = bracket_level+1; end
case {']','}'} % closing array bracket
% if not in str nor comment, decrease bracket level
if ~string_flag && ~comment_flag
bracket_level = bracket_level-1; end
case '%' % comment character
% if not in str, switch on comment flag
if ~string_flag
comment_flag = true; end
case '.' % potential ellipsis character
% if not in comment nor in str, turn on ellipsis and comment
if ~string_flag && ~comment_flag && k>2 && strcmp(evalstr(k-2:k),'...')
ellipsis_flag = true;
comment_flag = true;
% we want to replace the ellipsis and everything that follows up to and including the next newline
spaceout(k-2:k) = true;
end
end
end
% replace the characters that need to be substituted (by the bell character)
evalstr(substitute) = 7;
evalstr(spaceout) = ' ';
% replace all assignments of the form "varname = *;" by "varname{end+1} = num;"
[starts,ends] = regexp(evalstr,[varname '\s*=[^;\n]*;']);
for k=length(starts):-1:1
evalstr = [evalstr(1:starts(k)-1) varname '{end+1} = struct(''assignment'',' num2str(k) ');' evalstr(ends(k)+1:end)]; end
% add initial assignment
evalstr = [sprintf('%s = {};\n',varname) evalstr];
% back-substitute the special character by semicolons
evalstr(evalstr==7) = ';';
% evaluate contents and get the matching assignment id's
ids = run_protected(evalstr,varname);
% check validity of the updated value, and of the updated config file
try
% check if the value str can in fact be evaluated
newvalue_eval = eval(newvalue);
catch
error('hlp_config:incorrect_value','The value "%s" (to be assigned to variable "%s") cannot be evaluated properly. Note that, for example, string values need to be quoted.',newvalue,varname);
end
% evaluate the original config script and record the full variable assignment
[dummy,wspace_old] = run_protected(contents); %#ok<ASGLU>
% splice the new value into the config file contents, for the last assignment in ids
id = ids{end}.assignment;
contents = [contents(1:starts(id)-1) varname ' = ' newvalue ';' contents(ends(id)+1:end)];
% evaluate the new config script and record the full variable assignment
[dummy,wspace_new] = run_protected(contents); %#ok<ASGLU>
% make sure that the only thing that has changed is the assignment to the variable of interest
wspace_old.(varname) = newvalue_eval;
if ~isequalwithequalnans(wspace_old,wspace_new)
error('hlp_config:update_failed','The config file can not be properly updated.'); end
% apparently, everything went well, except for the following possibilities
% * the newly assigned value makes no sense (--> usage error)
% * the settings were changed for unanticipated platforms (--> this needs to be documented properly)
if makebackup
try
% make a backup of the original config file using a fresh name (.bak00X)
[p,n,x] = fileparts(filename);
files = dir([p filesep n '*.bak*']);
backup_numbers = cellfun(@(n)str2num(n(end-2:end)),{files.name},'UniformOutput',false);
backup_numbers = [backup_numbers{:}];
if ~isempty(backup_numbers)
new_number = 1 + max(backup_numbers);
else
new_number = 1;
end
backup_name = [p filesep n '.bak' sprintf('%03i',new_number)];
copyfile(filename,backup_name);
% set read permissions
warning off MATLAB:FILEATTRIB:SyntaxWarning
fileattrib(backup_name,'+w','a');
catch
error('hlp_config:permissions_error','Could not create a backup of the original config file %s. Please check file permissions and try again.',filename);
end
end
% split the contents into lines again
contents = strsplit(contents,10);
try
% re-create the file, line by line
f = fopen(filename,'w+');
for k=1:length(contents)
fwrite(f,contents{k});
fprintf(f,'\n');
end
fclose(f);
% set file attributes
warning off MATLAB:FILEATTRIB:SyntaxWarning
fileattrib(filename,'+w','a');
catch
try fclose(f); catch,end
error('hlp_config:permissions_error','Could not override the config file %s. Please check file permissions and try again.',filename);
end
% run the given config script and obtain the current value of the given variable...
function [res,wspace] = run_protected(code__,varname__)
try
eval(code__);
% collect all variables into a workspace struct
infos = whos();
for n = {infos.name}
if ~any(strcmp(n{1},{'code__','varname__'}))
wspace.(n{1}) = eval(n{1}); end
end
if exist('varname__','var')
% if a specific variable was to be inspected...
res = eval(varname__);
if ~iscell(res) || length(res) < 1 || ~all(cellfun('isclass',res,'struct')) || ~all(cellfun(@(x)isfield(x,'assignment'),res))
error('Not all assignments to the variable were correctly identified.'); end
else
res = [];
end
catch e
error('hlp_config:update_error',['The config file could not be parsed (probably it is ill-formed); Debug message: ' e.message]);
end
% split a string without fusing delimiters (unlike hlp_split)
function strs = strsplit(str, delim)
idx = strfind(str, delim);
strs = cell(numel(idx)+1, 1);
idx = [0 idx numel(str)+1];
for k = 2:numel(idx)
strs{k-1} = str(idx(k-1)+1:idx(k)-1); end
% for old MATLABs that can't properly move files...
function movefile(src,dst)
try
builtin('movefile',src,dst);
catch e
if any([src dst]=='$') && hlp_matlab_version <= 705
if ispc
[errcode,text] = system(sprintf('move ''%s'' ''%s''',src,dst)); %#ok<NASGU>
else
[errcode,text] = system(sprintf('mv ''%s'' ''%s''',src,dst)); %#ok<NASGU>
end
if errcode
error('Failed to move %s to %s.',src,dst); end
else
rethrow(e);
end
end
|
github
|
lcnbeapp/beapp-master
|
hlp_deserialize.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_deserialize.m
| 12,045 |
utf_8
|
5973cf16c3a0b718e9f334724d312870
|
function v = hlp_deserialize(m)
% Convert a serialized byte vector back into the corresponding MATLAB data structure.
% Data = hlp_deserialize(Bytes)
%
% In:
% Bytes : a representation of the original data as a byte stream
%
% Out:
% Data : some MATLAB data structure
%
%
% See also:
% hlp_serialize
%
% Examples:
% bytes = hlp_serialize(mydata);
% ... e.g. transfer the 'bytes' array over the network ...
% mydata = hlp_deserialize(bytes);
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-04-02
%
% adapted from deserialize.m
% (C) 2010 Tim Hutt
% wrap dispatcher
v = deserialize_value(uint8(m(:)),1);
end
% dispatch
function [v,pos] = deserialize_value(m,pos)
switch m(pos)
case {0,200}
[v,pos] = deserialize_string(m,pos);
case 128
[v,pos] = deserialize_struct(m,pos);
case {33,34,35,36,37,38,39}
[v,pos] = deserialize_cell(m,pos);
case {1,2,3,4,5,6,7,8,9,10}
[v,pos] = deserialize_scalar(m,pos);
case 133
[v,pos] = deserialize_logical(m,pos);
case {151,152,153}
[v,pos] = deserialize_handle(m,pos);
case {17,18,19,20,21,22,23,24,25,26}
[v,pos] = deserialize_numeric_simple(m,pos);
case 130
[v,pos] = deserialize_sparse(m,pos);
case 131
[v,pos] = deserialize_complex(m,pos);
case 132
[v,pos] = deserialize_char(m,pos);
case 134
[v,pos] = deserialize_object(m,pos);
otherwise
error('Unknown class');
end
end
% individual scalar
function [v,pos] = deserialize_scalar(m,pos)
classes = {'double','single','int8','uint8','int16','uint16','int32','uint32','int64','uint64'};
sizes = [8,4,1,1,2,2,4,4,8,8];
sz = sizes(m(pos));
% Data.
v = typecast(m(pos+1:pos+sz),classes{m(pos)});
pos = pos + 1 + sz;
end
% standard string
function [v,pos] = deserialize_string(m,pos)
if m(pos) == 0
% horizontal string: tag
pos = pos + 1;
% length (uint32)
nbytes = double(typecast(m(pos:pos+3),'uint32'));
pos = pos + 4;
% data (chars)
v = char(m(pos:pos+nbytes-1))';
pos = pos + nbytes;
else
% proper empty string: tag
[v,pos] = deal('',pos+1);
end
end
% general char array
function [v,pos] = deserialize_char(m,pos)
pos = pos + 1;
% Number of dims
ndms = double(m(pos));
pos = pos + 1;
% Dimensions
dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')');
pos = pos + ndms*4;
nbytes = prod(dms);
% Data.
v = char(m(pos:pos+nbytes-1));
pos = pos + nbytes;
v = reshape(v,[dms 1 1]);
end
% general logical array
function [v,pos] = deserialize_logical(m,pos)
pos = pos + 1;
% Number of dims
ndms = double(m(pos));
pos = pos + 1;
% Dimensions
dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')');
pos = pos + ndms*4;
nbytes = prod(dms);
% Data.
v = logical(m(pos:pos+nbytes-1));
pos = pos + nbytes;
v = reshape(v,[dms 1 1]);
end
% simple numerical matrix
function [v,pos] = deserialize_numeric_simple(m,pos)
classes = {'double','single','int8','uint8','int16','uint16','int32','uint32','int64','uint64'};
sizes = [8,4,1,1,2,2,4,4,8,8];
cls = classes{m(pos)-16};
sz = sizes(m(pos)-16);
pos = pos + 1;
% Number of dims
ndms = double(m(pos));
pos = pos + 1;
% Dimensions
dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')');
pos = pos + ndms*4;
nbytes = prod(dms) * sz;
% Data.
v = typecast(m(pos:pos+nbytes-1),cls);
pos = pos + nbytes;
v = reshape(v,[dms 1 1]);
end
% complex matrix
function [v,pos] = deserialize_complex(m,pos)
pos = pos + 1;
[re,pos] = deserialize_numeric_simple(m,pos);
[im,pos] = deserialize_numeric_simple(m,pos);
v = complex(re,im);
end
% sparse matrix
function [v,pos] = deserialize_sparse(m,pos)
pos = pos + 1;
% matrix dims
u = double(typecast(m(pos:pos+7),'uint64'));
pos = pos + 8;
v = double(typecast(m(pos:pos+7),'uint64'));
pos = pos + 8;
% index vectors
[i,pos] = deserialize_numeric_simple(m,pos);
[j,pos] = deserialize_numeric_simple(m,pos);
if m(pos)
% real
pos = pos+1;
[s,pos] = deserialize_numeric_simple(m,pos);
else
% complex
pos = pos+1;
[re,pos] = deserialize_numeric_simple(m,pos);
[im,pos] = deserialize_numeric_simple(m,pos);
s = complex(re,im);
end
v = sparse(i,j,s,u,v);
end
% struct array
function [v,pos] = deserialize_struct(m,pos)
pos = pos + 1;
% Number of field names.
nfields = double(typecast(m(pos:pos+3),'uint32'));
pos = pos + 4;
% Field name lengths
fnLengths = double(typecast(m(pos:pos+nfields*4-1),'uint32'));
pos = pos + nfields*4;
% Field name char data
fnChars = char(m(pos:pos+sum(fnLengths)-1)).';
pos = pos + length(fnChars);
% Number of dims
ndms = double(typecast(m(pos:pos+3),'uint32'));
pos = pos + 4;
% Dimensions
dms = typecast(m(pos:pos+ndms*4-1),'uint32')';
pos = pos + ndms*4;
% Field names.
fieldNames = cell(length(fnLengths),1);
splits = [0; cumsum(double(fnLengths))];
for k=1:length(splits)-1
fieldNames{k} = fnChars(splits(k)+1:splits(k+1)); end
% Content.
v = reshape(struct(),[dms 1 1]);
if m(pos)
% using struct2cell
pos = pos + 1;
[contents,pos] = deserialize_cell(m,pos);
v = cell2struct(contents,fieldNames,1);
else
% using per-field cell arrays
pos = pos + 1;
for ff = 1:nfields
[contents,pos] = deserialize_cell(m,pos);
[v.(fieldNames{ff})] = deal(contents{:});
end
end
end
% cell array
function [v,pos] = deserialize_cell(m,pos)
kind = m(pos);
pos = pos + 1;
switch kind
case 33 % arbitrary/heterogenous cell array
% Number of dims
ndms = double(m(pos));
pos = pos + 1;
% Dimensions
dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')');
pos = pos + ndms*4;
% Contents
v = cell([dms,1,1]);
for ii = 1:numel(v)
[v{ii},pos] = deserialize_value(m,pos); end
case 34 % cell scalars
[content,pos] = deserialize_value(m,pos);
v = cell(size(content));
for k=1:numel(v)
v{k} = content(k); end
case 35 % mixed-real cell scalars
[content,pos] = deserialize_value(m,pos);
v = cell(size(content));
for k=1:numel(v)
v{k} = content(k); end
[reality,pos] = deserialize_value(m,pos);
v(reality) = real(v(reality));
case 36 % cell array with horizontal or empty strings
[chars,pos] = deserialize_string(m,pos);
[lengths,pos] = deserialize_numeric_simple(m,pos);
[empty,pos] = deserialize_logical(m,pos);
v = cell(size(lengths));
splits = [0 cumsum(double(lengths(:)))'];
for k=1:length(lengths)
v{k} = chars(splits(k)+1:splits(k+1)); end
[v{empty}] = deal('');
case 37 % empty,known type
tag = m(pos);
pos = pos + 1;
switch tag
case 1 % double - []
prot = [];
case 33 % cell - {}
prot = {};
case 128 % struct - struct()
prot = struct();
otherwise
error('Unsupported type tag.');
end
% Number of dims
ndms = double(m(pos));
pos = pos + 1;
% Dimensions
dms = typecast(m(pos:pos+ndms*4-1),'uint32')';
pos = pos + ndms*4;
% Create content
v = repmat({prot},dms);
case 38 % empty, prototype available
% Prototype.
[prot,pos] = deserialize_value(m,pos);
% Number of dims
ndms = double(m(pos));
pos = pos + 1;
% Dimensions
dms = typecast(m(pos:pos+ndms*4-1),'uint32')';
pos = pos + ndms*4;
% Create content
v = repmat({prot},dms);
case 39 % boolean flags
[content,pos] = deserialize_logical(m,pos);
v = cell(size(content));
for k=1:numel(v)
v{k} = content(k); end
otherwise
error('Unsupported cell array type.');
end
end
% object
function [v,pos] = deserialize_object(m,pos)
pos = pos + 1;
% Get class name.
[cls,pos] = deserialize_string(m,pos);
% Get contents
[conts,pos] = deserialize_value(m,pos);
% construct object
try
% try to use the loadobj function
v = eval([cls '.loadobj(conts)']);
catch
try
% pass the struct directly to the constructor
v = eval([cls '(conts)']);
catch
try
% try to set the fields manually
v = feval(cls);
for fn=fieldnames(conts)'
try
set(v,fn{1},conts.(fn{1}));
catch
% Note: if this happens, your deserialized object might not be fully identical
% to the original (if you are lucky, it didn't matter, through). Consider
% relaxing the access rights to this property or add support for loadobj from
% a struct.
warn_once('hlp_deserialize:restricted_access','No permission to set property %s in object of type %s.',fn{1},cls);
end
end
catch
v = conts;
v.hlp_deserialize_failed = ['could not construct class: ' cls];
end
end
end
end
% function handle
function [v,pos] = deserialize_handle(m,pos)
% Tag
kind = m(pos);
pos = pos + 1;
switch kind
case 151 % simple function
persistent db_simple; %#ok<TLEV> % database of simple functions (indexed by name)
% Name
[name,pos] = deserialize_string(m,pos);
try
% look up from table
v = db_simple.(name);
catch
% otherwise generate & fill table
v = str2func(name);
db_simple.(name) = v;
end
case 152 % anonymous function
% Function code
[code,pos] = deserialize_string(m,pos);
% Workspace
[wspace,pos] = deserialize_struct(m,pos);
% Construct
v = restore_function(code,wspace);
case 153 % scoped or nested function
persistent db_nested; %#ok<TLEV> % database of nested functions (indexed by name)
% Parents
[parentage,pos] = deserialize_cell(m,pos);
try
key = sprintf('%s_',parentage{:});
% look up from table
v = db_nested.(key);
catch
% recursively look up from parents, assuming that these support the arg system
v = parentage{end};
for k=length(parentage)-1:-1:1
% Note: if you get an error here, you are trying to deserialize a function handle
% to a nested function. This is not natively supported by MATLAB and can only be made
% to work if your function's parent implements some mechanism to return such a handle.
% The below call assumes that your function uses the BCILAB arg system to do this.
v = arg_report('handle',v,parentage{k});
end
db_nested.(key) = v;
end
end
end
% helper for deserialize_handle
function f = restore_function(decl__,workspace__)
% create workspace
for fn__=fieldnames(workspace__)'
% we use underscore names here to not run into conflicts with names defined in the workspace
eval([fn__{1} ' = workspace__.(fn__{1}) ;']);
end
clear workspace__ fn__;
% evaluate declaration
f = eval(decl__);
end
% emit a specific warning only once (per MATLAB session)
function warn_once(varargin)
persistent displayed_warnings;
% determine the message content
if length(varargin) > 1 && any(varargin{1}==':') && ~any(varargin{1}==' ') && ischar(varargin{2})
message_content = [varargin{1} sprintf(varargin{2:end})];
else
message_content = sprintf(varargin{1:end});
end
% generate a hash of of the message content
str = java.lang.String(message_content);
message_id = sprintf('x%.0f',str.hashCode()+2^31);
% and check if it had been displayed before
if ~isfield(displayed_warnings,message_id)
% emit the warning
warning(varargin{:});
% remember to not display the warning again
displayed_warnings.(message_id) = true;
end
end
|
github
|
lcnbeapp/beapp-master
|
hlp_aggregatestructs.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_aggregatestructs.m
| 7,805 |
utf_8
|
bab3d7ea8549fc71419a8fa5cb42447f
|
function res = hlp_aggregatestructs(structs,defaultop,varargin)
% Aggregate structs (recursively), using the given combiner operations.
% Result = hlp_aggregatestructs(Structs,Default-Op,Field-Ops...)
%
% This results in a single 1x1 struct which has aggregated values in its fields (e.g., arrays,
% averages, etc.). For a different use case, see hlp_superimposedata.
%
% In:
% Structs : cell array of structs to be aggregated (recursively) into a single struct
%
% Default-Op : optional default combiner operation to execute for every field that is not itself a
% struct; see notes for the format.
%
% Field-Ops : name-value pairs of field-specific ops; names can have dots to denote operations
% that apply to subfields. field-specific ops that apply to fields that are
% themselves structures become the default op for that sub-structure
%
% Out:
% recursively merged structure.
%
% Notes:
% If an operation cannot be applied, a sequence of fall-backs is silently applied. First,
% concatenation is tried, then, replacement is tried (which never fails). Therefore,
% function_handles are being concatenated up to 2008a, and replaced starting with 2008b.
% Operations are specified in one of the following formats:
% * 'cat': concatenate values horizontally using []
% * 'replace': replace values by those of later structs (noncommutative)
% * 'sum': sum up values
% * 'mean': compute the mean value
% * 'std': compute the standard deviation
% * 'median': compute the median value
% * 'random': pick a random value
% * 'fillblanks': replace [] by values of later structs
% * binary function: apply the function to aggregate pairs of values; applied in this order
% f(f(f(first,second),third),fourth)...
% * cell array of binary and unary function: apply the binary function to aggregate pairs of
% values, then apply the unary function to finalize the result: functions {b,u} are applied in
% the following order: u(b(b(b(first,second),third),fourth))
%
% Examples:
% % calc the average of the respective field values, across structs
% hlp_aggregatestructs({result1,result2,result3},'mean')
%
% % calc the std deviation of the respective field values, across structs
% hlp_aggregatestructs({result1,result2,result3},'std')
%
% % concatenate the field values across structs
% hlp_aggregatestructs({result1,result2,result3},'cat')
%
% % as before, but use different operations for a few fields
% hlp_aggregatestructs({result1,result2,result3},'cat','myfield1','mean','myfield2.subfield','median')
%
% % use a custom combiner operation (here: product)
% hlp_aggregatestructs({result1,result2,result3},@times)
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-05-04
warning off MATLAB:warn_r14_function_handle_transition
if ~exist('defaultop','var')
defaultop = 'cat'; end
if ~iscell(structs)
structs = {structs}; end
fieldops = hlp_varargin2struct(varargin);
% translate all ops (if they are specified as strings)
defaultop = translateop(defaultop);
fieldops = translateop(fieldops);
% aggregate, then finalize
res = finalize(aggregate(structs,defaultop,fieldops),defaultop,fieldops);
function res = aggregate(structs,defaultop,fieldops)
% we skip empty records
structs = structs(~cellfun('isempty',structs));
% for any struct array in the input, we first merge it recursively as if it were a cell array
for k=find(cellfun('length',structs)>1)
structs{k} = hlp_aggregatestructs(structarray2cellarray(structs{k}),defaultop,fieldops); end
% at this point, we should have a cell array of structs
if ~isempty(structs)
% we begin with the first struct
res = structs{1};
% and aggregate the remaining ones onto it
for i=2:length(structs)
si = structs{i};
% proceeding field by field...
for fn=fieldnames(si)'
f = fn{1};
% figure out which operation applies
if isfield(fieldops,f)
% a field-specific op applies
if isstruct(fieldops.(f))
% ... which is itself a struct
fop = fieldops.(f);
else
op = fieldops.(f);
end
else
% the default op applies
op = defaultop;
fop = fieldops;
end
% now process the field
if ~isfield(res,f)
% field is not yet in the aggregate: just assign
res.(f) = si.(f);
else
% need to aggregate it
if isstruct(res.(f)) && isstruct(si.(f))
% both are a struct: recursively aggregate
res.(f) = aggregate({res.(f),si.(f)},op,fop);
else
% they are not both structus
try
% try to apply the combiner op
res.(f) = op{1}(res.(f),si.(f));
catch
% didn't work: try to concatenate as fallback
try
res.(f) = [res.(f),si.(f)];
catch
% didn't work: try to assign as fallback (dropping previous field)
res.(f) = si.(f);
end
end
end
end
end
end
else
% nothing to aggregate
res = [];
end
function x = finalize(x,defaultop,fieldops)
% proceed field by field...
for fn=fieldnames(x)'
f = fn{1};
% figure out which operation applies
if ~isempty(fieldops) && isfield(fieldops,f)
% a field-specific op applies
if isstruct(fieldops.(f))
% ... which is itself a struct
fop = fieldops.(f);
else
op = fieldops.(f);
end
else
% the default op applies
op = defaultop;
fop = fieldops;
end
try
% now apply the finalizer
if isstruct(x.(f))
% we have a sub-struct: recurse
x.(f) = finalize(x.(f),op,fop);
else
% we have a regular element: apply finalizer
x.(f) = op{2}(x.(f));
end
catch
% for empty structs, x.(f) produces no output
end
end
% translate string ops into actual ops, add the default finalizer if missing
function op = translateop(op)
if isstruct(op)
% recurse
op = structfun(@translateop,op,'UniformOutput',false);
else
% remap strings
if ischar(op)
switch op
case 'cat'
op = @(a,b)[a b];
case 'replace'
op = @(a,b)b;
case 'sum'
op = @(a,b)a+b;
case 'mean'
op = {@(a,b)[a b], @(x)mean(x)};
case 'median'
op = {@(a,b)[a b], @(x)median(x)};
case 'std'
op = {@(a,b)[a b], @(x)std(x)};
case 'random'
op = {@(a,b)[a b], @(x) x(min(length(x),ceil(eps+rand(1)*length(x))))};
case 'fillblanks'
op = @(a,b)fastif(isempty(a),b,a);
otherwise
error('unsupported combiner op specified');
end
end
% add finalizer if missing
if ~iscell(op)
op = {op,@(x)x}; end
end
% inefficiently turn a struct array into a cell array of structs
function res = structarray2cellarray(arg)
res = {};
for k=1:numel(arg)
res = [res {arg(k)}]; end
% for the 'fillblanks' translate op
function val = fastif(cond,trueval,falseval)
if cond
val = trueval;
else
val = falseval;
end
|
github
|
lcnbeapp/beapp-master
|
hlp_matlab_version.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_matlab_version.m
| 642 |
utf_8
|
56356c36dd8e15038caa4dc7b15b62b5
|
function v = hlp_matlab_version()
% Get the MATLAB version in a numeric format that can be compared with <, >, etc.
persistent vers;
try
v = vers(1);
catch
v = strsplit(version,'.'); v = str2num(v{1})*100 + str2num(v{2});
vers = v;
end
% Split a string according to some delimiter(s). Not as fast as hlp_split (and doesn't fuse
% delimiters), but doesn't need bsxfun().
function strings = strsplit(string, splitter)
ix = strfind(string, splitter);
strings = cell(1,numel(ix)+1);
ix = [0 ix numel(string)+1];
for k = 2 : numel(ix)
strings{k-1} = string(ix(k-1)+1:ix(k)-1); end
strings = strings(~cellfun('isempty',strings));
|
github
|
lcnbeapp/beapp-master
|
hlp_trycompile.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_trycompile.m
| 50,690 |
utf_8
|
cef0c2f78d5b912954b1826f6352d9e1
|
function ok = hlp_trycompile(varargin)
% Try to auto-compile a set of binary files in a folder, and return the status.
% OK = hlp_trycompile(Options...)
%
% This function tries to ensure that a given set of functions or classes (specified by their
% MATLAB identifier), whose source files are assumed to be located in a given directory, are
% properly compiled.
%
% The Style parameter determines how the function proceeds: Either compilation is always done
% ('force'), or only if necessary ('eager', e.g. if invalid file or changed source code). The check
% for re-compilation may be done on every call ('eager'), or once per MATLAB session ('lazy').
%
% The most common use case is specifying a given directory (and omitting the identifiers). In this
% case, all source files that have a mexFunction declaration are compiled, and all other source
% files are also supplied to the compiler as additional files. In case of compilation errors,
% hlp_trycompile also tries to omit all additional files during compilation. Both the list of
% additional files (or their file name patterns) or the considered file types can be specified. The
% list of identifiers to consider can also be specified.
%
% Another possible use case is to omit both the identifiers and the directory. In this case,
% hlp_trycompile assumes that a mex file with the same identifier (and path) as the calling function
% shall be compiled. This is would be used in .m files which directly implement some fallback code
% in case that the compilation fails (or which are just stubs to trigger the on-demand compilation).
%
%
% Since there can be many different versions of a mex binary under Linux (even with the same name),
% .mex files are by default moved into a sub-directory (named according to the hostname) after
% compilation. This does not apply to .class files, which are not platform-specific.
%
% The function supports nearly all features of the underlying MEX compiler, and can thus be used
% to compile a large variety of mex packages found in the wild (in some cases with custom defines,
% libraries, or include directories).
%
% If you are debugging code with it, it is best to set Verbose to true, so that you get compilation
% output.
%
% Additional features of this function include:
% * Figures out whether the -largeArrayDims switch should be used.
% * Repeated calls of this function are very fast if used in 'lazy' mode (so that it can be used in
% an inner loop).
% * Automatically rebuilds if the mex source has changed (does not apply to misc dependency files),
% if used in 'eager' mode.
% * By default uses the Mathworks versions of BLAS and LAPACK (if these libraries are pulled in).
% * Supports both '/' and '\' in directory names.
% * Behaves reasonably in deployed mode (i.e. gives warnings if files are missing).
% * Also compiles .java files where appropriate.
% * Supports test code.
%
% If this function produces errors for some mex package, the most common causes are:
% * If the platform has never been used to compile code, an appropriate compiler may have to be
% selected using "mex -setup". If no supported compiler is installed (e.g. on Win64), it must
% first be doenloaded and installed (there is a free standard compiler for every platform).
% * Some unused source files are in the directory which produce errors when they are automatically
% pulled in.
% --> turn on verbose output and identify & remove these (or check the supplied make file for
% what files are actually needed)
% * The functions require a custom define switch to work.
% --> Check the make file, and add the switch(es) using the 'Defines' parameter.
% * The functions use non-standard C code (e.g. // comments).
% --> Tentatively rename the offending .c files into .cpp.
% * The functions require a specific library to work.
% --> Check the make file, and add the libraries using the 'Libaries' parameter.
% * The functions require specific include directories to work.
% --> Check the make file, and add the directories using the 'IncludeDirectories' parameter.
% * The functions require additional files that are in a different directory.
% --> Check the make file, and add these files using the 'SupportFiles' parameter. Wildcards are
% allowed (in particular the special '*' string, which translates into all source files in
% the Directory).
% * The package assumes that mex is used with the -output option to use a custom identifier name
% --> This type of make acrobatic is not supported by hlp_trycompile; instead, rename the source
% file which has the mexFunction definition such that it matches the target identifier.
% * The functions require specific library directories to work.
% --> Check the make file, and add the directories using the 'LibraryDirectories' parameter.
%
%
% In:
% Style : execution style, can be one of the following (default: 'lazy')
% 'force' : force compilation (regardless of whether the binaries are already there)
% 'eager' : compile only if necessary, check every time that this function is called
% 'lazy' : compile only if necessary, and don't check again during this MATLAB session
%
% --- target files ---
%
% Directory : directory in which the source files are located
% (default: directory of the calling function)
%
% Identifiers : identifier of the target function/class, or cell array of identifiers that should
% be compiled (default: Calling function, if no directory given, or names of all
% compilable source files in the directory, if a directory is given.)
%
% FileTypes : file type patterns to consider as sources files for the Identifiers
% (default: {'*.f','*.c','*.cpp','*.java'})
%
%
% --- testing conditions ---
%
% TestCode : MATLAB code (string) which evaluates to true if the compiled code is behaving
% correctly (and false otherwise), or alternatively a function handle which does the
% same
%
%
% --- additional compiler inputs ---
%
% SupportFiles : cell array of additional / supporting source filenames to include in the compilation of all
% Identifiers (default: '*')
% Note: Any file listed here will not be considered part of the Identifiers, when
% all contents of a directory are to be compiled.
% Note: If there are support source files in sub-directories, include the full path
% to them.
% Note: If this is '*', all source files that are not mex files in the given
% directory are used as support files.
%
% Libraries : names of libraries to include in the compilation
% (default: {})
%
% IncludeDirectories : additional directories in which to search for included source files.
% (default: {})
%
% LibraryDirectories : additional directories in which to search for referenced library files.
% (default: {})
%
% Defines : list of defined symbols (either 'name' or 'name=value' strings)
% (default: {})
%
% Renaming : cell array of {sourcefile,identifier,sourcefile,identifier, ...} indicating that
% the MEX functions generated from the respective source files should be renamed to
% the given identifiers. Corresponds to MEX's -output option; does not apply to Java files.
% (default: {})
%
% Arguments : miscellaneous compiler arguments (default: {})
% For possible arguments, type "help mex" in the command line
%
% DebugBuild : whether to build binaries in debug mode (default: false)
%
%
% --- user messages ---
%
% ErrorMessage : the detail error message to display which describes what type of functionality
% will not be available (if any).
% Note: If you have a MATLAB fallback, mention this in the error message.
%
% PreparationMessage : the message that will be displayed before compilation begins.
% (default: {})
%
% Verbose : whether to display verbose compiler outputs (default: false)
%
%
% --- misc options ---
%
% MathworksLibs : whether to use the Mathworks versions of std. libraries instead of OS-supplied
% ones, if present (applies to blas and lapack) (default: true)
%
% DebugCompile : debug the compilation process; halts in the directory prior to invoking mex
% (default: false)
%
%
% Examples:
% % try to compile all mex / Java files in a given directory:
% hlp_trycompile('Directory','/Extern/MySources');
%
% % as before, but restrict the set of identifiers to compile to a given set
% hlp_trycompile('Directory','/Extern/MySources','Identifiers',{'svmtrain','svmpredict'});
%
% % try to compile mex / Java files in a given directory, and include 2 libraries in the compilation
% hlp_trycompile('Directory','/Extern/MySources','Libraries',{'blas','lapack'});
%
% % like before, but this time include additional source files from two other directories
% % (the single '*' means: include non-mex sources in the specified directory)
% hlp_trycompile('Directory','/Extern/MySources','SupportFiles',{'*','../blas/*.c','../*.cpp'});
%
% % like before, but this time add an include directory, a library directory, and some library
% hlp_trycompile('Directory','/Extern/MySources', 'IncludeDirectories','/boost/include','LibraryDirectories','/boost/lib','Libraries','boost_date_time-1.44');
%
% % like before, this time specifying some custom #define's
% hlp_trycompile('Directory','/Extern/MySources','Defines',{'DEBUG','MAX=((a)>(b)?(a):(b))'});
%
%
% Use cases:
% 1) In addition to a source file mysvd.c (compiling into mysvd.mex*), a stub .m file of the same
% name can be placed in the same directory, which contains code to compile the binary when needed.
%
% function [U,S,V] = mysvd(X)
% if hlp_trycompile
% [U,S,V] = mysvd(X);
% else
% % either display an error message or implement some fallback code.
% end
%
% 2) In a MATLAB function which makes use of a few mex files, ensure compilation of these files.
% function myprocessing(X,y)
% if ~hlp_trycompile('Identifiers',{'svmtrain.c','svmpredict.c'})
% error('Your binary files could not be compiled.');
% else
% m = svmtrain(X,y);
% l = svmpredict(X,m);
% ...
% end
%
% 3) In a startup script.
% hlp_trycompile('Directory','/Extern/MySources');
%
% See also:
% mex
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2011-03-09
persistent results; % a map of result-tag to OK value
persistent compiler_selected; % whether a compiler has been selected (true/false, or [] if uncertain)
% read options
o = hlp_varargin2struct(varargin, ...
... % overall behavior
{'style','Style'}, 'lazy', ...
... % target files
{'dir','Directory'}, [], ...
{'idents','Identifiers'}, [], ...
{'types','FileTypes'}, {'*.c','*.C','*.cpp','*.CPP','*.f','*.F','*.java','*.Java'}, ...
... % test condition
{'test','TestCode'},'', ...
... % additional compiler inputs
{'support','SupportFiles'}, {'*'}, ...
{'libs','Libraries'}, {}, ...
{'includedirs','IncludeDirectories'}, {}, ...
{'libdirs','LibraryDirectories'}, {}, ...
{'defines','Defines'}, {}, ...
{'args','Arguments'}, '', ...
{'renaming','Renaming'}, {}, ...
{'debug','DebugBuild'}, false, ...
... % messages
{'errmsg','ErrorMessage'}, {'Some BCILAB functionality will likely not be available.'}, ...
{'prepmsg','PreparationMessage'}, {}, ...
{'verbose','Verbose'}, false, ...
... % misc
{'mwlibs','MathworksLibs'}, true, ...
{'debugcompile','DebugCompile'}, false ...
);
% support for parameterless calls
if isempty(o.dir)
% if no dir given, use the calling function's directory
[name,file] = hlp_getcaller();
o.dir = fileparts(file);
if isempty(file)
error('If hlp_trycompile is called without a directory, it must be called from within a file.'); end
% if neither idents nor dir given, use the calling function's identifier
if isempty(o.idents)
o.idents = name; end
end
% uniformize ident format
if isa(o.idents,'function_handle')
o.idents = char(o.idents); end
if ischar(o.idents)
o.idents = {o.idents}; end
if isempty(o.idents)
o.idents = {}; end
% decide whether a re-check can be skipped based on identifiers and directory
if strcmp(o.style,'lazy') || isdeployed
str = java.lang.String(sprintf('%s:',o.dir,o.idents{:}));
tag = sprintf('x%.0f',str.hashCode()+3^31);
if isfield(results,tag)
ok = results.(tag);
return;
end
end
% uniformize directory format
o.dir = path_normalize(o.dir);
% verify style
if ~any(strcmp(o.style,{'force','eager','lazy'}))
error('Unsupported style: %s',o.style); end
% uniformize test condition
if isa(o.test,'function_handle')
o.test = char(o.test); end
% uniformize user messages
if ischar(o.errmsg)
o.errmsg = {o.errmsg}; end
if ischar(o.prepmsg)
o.prepmsg = {o.prepmsg}; end
% uniformize types
if ischar(o.types)
o.types = {o.types}; end
for t=1:length(o.types)
if o.types{t}(1) ~= '*'
o.types{t} = ['*' o.types{t}]; end
end
% uniformize compiler inputs
if ischar(o.support)
o.support = {o.support}; end
if ischar(o.includedirs)
o.includedirs = {o.includedirs}; end
if ischar(o.libdirs)
o.libdirs = {o.libdirs}; end
if ischar(o.libs)
o.libs = {o.libs}; end
if ischar(o.defines)
o.defines = {o.defines}; end
if ischar(o.args)
o.args = {o.args}; end
for i=1:length(o.support)
o.support{i} = path_normalize(o.support{i}); end
for i=1:length(o.includedirs)
o.includedirs{i} = path_normalize(o.includedirs{i}); end
for i=1:length(o.libdirs)
o.libdirs{i} = path_normalize(o.libdirs{i}); end
% if a support is given as '*'
starred = strcmp('*',o.support);
if any(starred)
% list all in the given directory that are not mex files
infos = [];
for t = 1:length(o.types)
if ~isempty(infos)
infos = [infos; dir([o.dir filesep o.types{t}])];
else
infos = dir([o.dir filesep o.types{t}]);
end
end
fnames = {infos.name};
supportfiles = ~cellfun(@(n)is_primary([o.dir filesep n]),fnames);
o.support = [fnames(supportfiles) o.support(~starred)];
end
% infer directory, if not given (take it from the calling function)
if isempty(o.idents) && ~isempty(o.dir)
% get all the source files in the given direcctory
infos = [];
for t = 1:length(o.types)
if ~isempty(infos)
infos = [infos; dir([o.dir filesep o.types{t}])];
else
infos = dir([o.dir filesep o.types{t}]);
end
end
fnames = {infos.name};
% ... but exclude the support files
fnames = setdiff(fnames,o.support);
% and apply any renamings to get the corresponding identifiers
if ~isempty(o.renaming)
for n=1:length(fnames)
fnames{n} = hlp_rewrite(fnames{n},o.renaming{:}); end
end
% ... and strip off the extensions
for n=1:length(fnames)
fnames{n} = hlp_getresult(2,@fileparts,fnames{n}); end
o.idents = fnames;
end
ok = false;
missingid = []; % indices of missing identifiers (for dont-retry-next-time beacon files)
if isdeployed
% --- deployed mode ---
% Can not compile, but figure out whether everything needed is present. A special consideration
% is that both the mex files calling functions are in a mounted .ctf archive.
% check if all identifiers are present (either as mex or class)
for i=1:length(o.idents)
if ~any(exist(o.idents{i}) == [2 3 8])
missingid(end+1) = i; end
end
ok = isempty(missingid);
if ~isempty(missingid)
% not all identifiers are compiled for this platform
disp(['Note: The MEX functions/identifiers ' format_cellstr(o.idents(missingid)) ' are not included for your platform.']);
elseif strcmp(o.style,'force')
% in force mode, we remark that everything is already compiled
disp_once(['The functions ' format_cellstr(o.idents) ' are properly compiled.']);
end
else
% --- regular mode ---
% here, we *do* compile what needs to be compiled
% find out a key configuration settings
is64bit = ~isempty(strfind(computer,'64'));
has_largearrays = is64bit && hlp_matlab_version >= 703;
if ispc
warning off MATLAB:FILEATTRIB:SyntaxWarning; end
% add a few missing defines
if hlp_matlab_version < 703
o.defines = [o.defines {'mwIndex=int','mwSize=int','mwSignedIndex=int'}]; end
% rewrite blas & lapack libs....
if o.mwlibs
% for each type of library
for l={'blas','lapack'}
lib = l{1};
% note: this code is based on SeDuMi's compile script (by Michael C. Grant)
in_use = strcmp(o.libs,lib);
if any(in_use)
if ispc
if is64bit
osdir = 'win64';
else
osdir = 'win32';
end
libpath = [matlabroot '\extern\lib\' osdir '\microsoft\libmw' lib '.lib'];
if ~exist(libpath,'file')
libpath = [matlabroot '\extern\lib\' osdir '\microsoft\msvc60\libmw' lib '.lib']; end
if exist(libpath,'file')
o.libs{in_use} = libpath;
else
disp_once('Note: The Mathworks library %s was assumed to be in %s, but not found.',lib,libpath);
end
else
o.libs{in_use} = ['mw' lib];
end
end
end
end
try
% remember the current directory & enter the target directory
olddir = pwd;
if hlp_matlab_version >= 706
go_back = onCleanup(@()cd(olddir)); end
if ~exist(o.dir,'dir')
error(['The target directory ' o.dir ' does not exist.']); end
cd(o.dir);
% expand regex patterns in o.support
for i=length(o.support):-1:1
if any(o.support{i} == '*')
found = dir(o.support{i});
if ~isempty(found)
% ... and splice the results in
basepath = fileparts(o.support{i});
items = cellfun(@(x)[basepath filesep x],{found.name},'UniformOutput',false);
o.support = [o.support(1:i-1) items o.support(i+1:end)];
end
end
end
% find all source & target files for the respective identifiers...
% (note that there might be multiple source files for each one)
sources = cell(1,length(o.idents)); % list of all source file names for the corresponding identifiers (indexed like idents)
targets = cell(1,length(o.idents)); % list of all target file names for the corresponding identifiers (indexed like idents)
for i=1:length(o.idents)
if ~isempty(o.renaming)
% the renaming may yield additional source file names for the given identifiers
idx = strcmp(o.idents{i},o.renaming(2:2:end));
if any(idx)
% the identifier is a renaming target: add the corresponding source file name
filename = o.renaming{find(idx)*2-1};
% if a source file with this ident & type is present
if exist([o.dir filesep filename],'file')
% remember it & derive its respective target file name
sources{i}{end+1} = filename;
targets{i}{end+1} = [o.idents{i} '.' mexext];
end
end
end
for t=1:length(o.types)
filename = [o.idents{i} o.types{t}(2:end)];
% if a source file with this ident & type is present
if exist([o.dir filesep filename],'file')
% remember it
sources{i}{end+1} = filename;
% and also derive its respective target file name
if strcmp(o.types{t},'*.java')
targets{i}{end+1} = [o.idents{i} '.class'];
else
targets{i}{end+1} = [o.idents{i} '.' mexext];
end
end
end
% check whether we have all necessary source files
if isempty(sources{i})
error('Did not find source file for %s',o.idents{i}); end
if isempty(targets{i})
error('Could not determine target file for %s',o.idents{i}); end
end
% check for existence (either .mex* or class) of all identifiers
% and make a list of missing & present binary files; do this in a different directory,
% to not shadow the mex files of interest with whatever .m files live in this directory
cd ..
binaries = {}; % table of existing binary file paths (indexed like idents)
for i=1:length(o.idents)
% get current file reference to this identifier
binaries{i} = which(o.idents{i});
% if it doesn't point to a .mex or .class file, ignore it
if ~any(exist(o.idents{i}) == [3 8])
binaries{i} = []; end
if ~isempty(binaries{i})
% check whether it is correct file path
if ~any(binaries{i} == filesep)
error(['Could not determine the location of the mex file for: ' o.idents{i}]); end
% check whether the referenced file actually exists in the file system
if isempty(dir(binaries{i}))
binaries{i} = []; end
end
% if no binary found, record it as missing
if isempty(binaries{i})
missingid(end+1) = i; end
end
cd(o.dir);
% check which of the existing binaries need to be re-compiled (if out of date)
outdatedid = []; % indices of identifiers (in o.idents) that need to be recompiled
for i=1:length(binaries)
if ~isempty(binaries{i})
% get the date of the binary file
bininfo = dir(binaries{i});
% find all corresponding source files
srcinfo = [];
for s=1:length(sources{i})
srcinfo = [srcinfo; dir([o.dir filesep sources{i}{s}])]; end
if ~isfield(bininfo,'datenum')
[bininfo.datenum] = celldeal(cellfun(@datenum,{bininfo.date},'UniformOutput',false)); end
if ~isfield(srcinfo,'datenum')
[srcinfo.datenum] = celldeal(cellfun(@datenum,{srcinfo.date},'UniformOutput',false)); end
% if any of the source files has been changed
if bininfo.datenum < max([srcinfo.datenum])
% check if their md5 hash is still the same...
if exist([binaries{i} '.md5'],'file')
try
contents = load([binaries{i} '.md5'],'-mat','srchash');
% need to do that over all source files...
srchash = [];
sorted_sources = sort(sources{i});
for s=1:length(sorted_sources)
srchash = [srchash hlp_cryptohash([o.dir filesep sorted_sources{s}],true)]; end
if ~isequal(srchash,contents.srchash)
% hash is different: mark binary as outdated
outdatedid(end+1) = i;
end
catch
% there was a probblem: mark as outdated
outdatedid(end+1) = i;
end
else
% no md5 present: mark as outdated
outdatedid(end+1) = i;
end
end
end
end
% we try to recompile both what's missing and what's outdated
recompileid = [missingid outdatedid];
javainvolved = false; % for final error/help message generation
mexinvolved = false; % same
if ~isempty(recompileid)
% need to recompile something -- display a few preparatory messages...
for l=1:length(o.prepmsg)
disp(o.prepmsg{l}); end
failedid = []; % list of indices of identifier that failed the build
% for each identifier, try to compile it
% and record whether it failed
for i=recompileid
success = false;
fprintf(['Compiling the function/class ' o.idents{i} '...']);
% for each source file mapping to that identifier
for s=1:length(sources{i})
% check type of source
if ~isempty(strfind(sources{i}{s},'.java'))
% we have a Java source file: compile
[errcode,result] = system(['javac ' javac_options(o) sources{i}{s}]);
if errcode
javainvolved = true;
% problem: show display output
fprintf('\n');
disp(result);
else
success = true;
break;
end
else
% generate MEX options
opts = mex_options(o);
supp = sprintf(' %s',o.support{:});
if isempty(compiler_selected)
% not clear whether a compiler has been selected yet
if hlp_matlab_version >= 708
% we can find it out programmatically
try
cconf = mex.getCompilerConfigurations; %#ok<NASGU>
compiler_selected = true;
catch
% no compiler has been selected yet...
try
% display a few useful hints to the user
disp(' to compile this feature, you first need to select');
disp('which compiler should be used on your platform.');
if ispc
if is64bit
disp_once('As you are on 64-bit windows, you may find that no compiler is installed.');
else
disp_once('On 32-bit Windows, MATLAB supplies a built-in compiler (LLC), which should');
disp_once('faithfully compile most C code. For broader support across C dialects (as well as C++), ');
disp_once('you should make sure that a better compiler is installed on your system and selected in the following.');
end
disp_once('A good choice is the free Microsoft Visual Studio 2005/2008/2010 Express compiler suite');
disp_once('together with the Microsoft Platform SDK (6.1 for 2008, 7.1 for 2010) for your Windows Version.');
disp_once('See also: http://argus-home.coas.oregonstate.edu/forums/development/core-software-development/compiling-64-bit-mex-files');
disp_once(' http://www.mathworks.com/support/compilers/R2010b/win64.html');
disp_once('The installation is easier if a professional Intel or Microsoft compiler is used.');
elseif isunix
disp_once('On Linux/UNIX, the best choice is usually a supported version of the GCC compiler suite.');
else
disp_once('On Mac OS, you need to have a supported version of Xcode/GCC installed.');
end
% start the compiler selection tool
mex -setup
% verify that a compiler has been selected
cconf = mex.getCompilerConfigurations; %#ok<NASGU>
compiler_selected = true;
catch
compiler_selected = false;
end
end
else
disp(' you may be prompted to select a compiler in the following');
disp('(as BCILAB cannot auto-determine whether one is selected on your platform).');
end
end
if ~compiler_selected
fprintf('skipped (no compiler selected).\n');
else
if o.verbose || isempty(compiler_selected)
% this variant will also be brought up if not sure whether a compiler
% has already been selected...
doeval = @eval;
else
doeval = @evalc;
end
% try to build the file
try
mexinvolved = true;
% check if a renaming applies...
idx = strcmp(sources{i}{s},o.renaming);
if any(idx)
rename = [' -output ' o.renaming{find(idx,1)+1} ' '];
else
rename = '';
end
if o.debugcompile
% display a debug console to allow the user to debug how their file compiles
fprintf('\nExecution has been paused immediately before running mex.\n');
disp(['You are in the directory "' pwd '".']);
disp('The mex command that will be invoked in the following is:');
if has_largearrays
disp([' mex ' opts ' -largeArrayDims ' rename sources{i}{s} supp]);
else
disp([' mex ' opts rename sources{i}{s} supp]);
end
fprintf('\n\nTo proceed normally, type "dbcont".\n');
keyboard;
end
if has_largearrays
try
% -largeArrayDims enabled
try
doeval(['mex ' opts ' -largeArrayDims ' rename sources{i}{s} supp]); % with supporting libaries
catch
doeval(['mex ' opts ' -largeArrayDims ' rename sources{i}{s}]); % without supporting libraries
end
catch
% -largeArrayDims disabled
try
doeval(['mex ' opts rename sources{i}{s} supp]); % with supporting libaries
catch
doeval(['mex ' opts rename sources{i}{s}]); % without supporting libraries
end
end
else
% -largeArrayDims disabled
try
doeval(['mex ' opts rename sources{i}{s} supp]); % with supporting libaries
catch
doeval(['mex ' opts rename sources{i}{s}]); % without supporting libraries
end
end
% compilation succeeded...
if any(i==outdatedid)
% there is an outdated binary, which needs to be deleted
try
delete(binaries{i});
catch
disp(['Could not delete outdated binary ' binaries{i}]);
end
end
% check whether the file is being found now
if exist(o.idents{i}) == 3
success = true;
compiler_selected = true;
break;
end
catch
% build failed
end
end
end
end
% check if compilation of this identifier was successful
if success
% if so, we sign off the binary with an md5 hash of the sources...
newbinary = which(o.idents{i});
try
srchash = [];
sorted_sources = sort(sources{i});
for s=1:length(sorted_sources)
srchash = [srchash hlp_cryptohash([o.dir filesep sorted_sources{s}],true)]; end
save([newbinary '.md5'],'srchash','-mat');
fprintf('success.\n');
catch
disp('could not create md5 hash for the source files; other than that, successful.');
end
else
fprintf('failed.\n');
failedid(end+1) = i;
end
end
embed_test = false;
if isempty(failedid)
% all worked: now run the test code - if any - to verify the correctness of the build
if length(recompileid) > 1
if ~isempty(o.test)
fprintf('All files in %s compiled successfully; now testing the build outputs...',o.dir);
else
fprintf('All files in %s compiled successfully.\n',o.dir);
end
elseif ~isempty(o.test)
fprintf('Now testing the build outputs...');
end
% test the output
try
ans = true; %#ok<NOANS>
eval(o.test);
catch
ans = false; %#ok<NOANS>
end
if ans %#ok<NOANS>
% the test was successful; now copy the files into a platform-specific directory
if ~isempty(o.test)
% only if we have a succeeding non-empty test
embed_test = true;
fprintf('success.\n');
end
retainid = recompileid;
eraseid = [];
ok = true;
else
% the test was unsuccessful: remove all newly-compiled files...
if ~isempty(o.test)
fprintf('failed.\n'); end
disp('The code compiled correctly but failed the build tests. Reverting the build...');
disp('If this is unmodified BCILAB code, please consider reporting this issue.');
retainid = [];
eraseid = recompileid;
end
else
if length(recompileid) > 1
if isempty(setdiff(recompileid,failedid))
fprintf('All files in %s failed to build; this indicates a problem in your build environment/settings.\n',o.dir);
else
fprintf('Some files in %s failed to build. Please make sure that you have a supported compiler; otherwise, please report this issue.\n',o.dir);
end
else
disp('Please make sure that you have a supported compiler and that your build environment is set up correctly.');
disp('Also, please consider reporting this issue.');
end
% compilation failed; only a part of the binaries may be available...
retainid = setdiff(recompileid,failedid);
eraseid = [];
end
% move the mex files into their own directory
moveid = retainid(cellfun(@exist,o.idents(retainid)) == 3);
if ~isempty(moveid)
% some files to be moved
dest_path = [o.dir filesep 'build-' hlp_hostname filesep];
% create a new directory
if ~exist(dest_path,'dir')
if ~mkdir(o.dir,['build-' hlp_hostname])
error(['unable to create directory ' dest_path]); end
% set permissions
try
fileattrib(dest_path,'+w','a');
catch
disp(['Note: There are permission problems for the directory ' dest_path]);
end
end
% create a new env_add.m there
try
filename = [dest_path 'env_add.m'];
fid = fopen(filename,'w+');
if embed_test
% if we had a successful test, we use this to control inclusion of the mex files
fprintf(fid,o.test);
else
% otherwise we check whether any one of the identifiers is recognized by
% MATLAB as a mex function
fprintf(fid,'any(cellfun(@exist,%s)==3)',hlp_tostring(o.idents(moveid)));
end
fclose(fid);
fileattrib(filename,'+w','a');
catch
disp(['Note: There were write permission problems for the file ' filename]);
end
% move the targets over there...
movefiles = unique(o.idents(moveid));
for t = 1:length(movefiles)
[d,n,x] = fileparts(which(movefiles{t}));
movefile([d filesep n x],[dest_path n x]);
try
movefile([d filesep n x '.md5'],[dest_path n x '.md5']);
catch
end
end
% add the destination path
addpath(dest_path);
% and to be entirely sure, CD into that directory to verify that the files are being recognized...
% (and don't get shadowed by whatever is in the directory below)
cd(dest_path);
all_ok = all(strncmp(dest_path,cellfun(@which,o.idents(moveid),'UniformOutput',false),length(dest_path)));
cd(o.dir);
% make sure that they are still being found...
if ~all_ok
error('It could not be verified that the MEX file records in %s were successfully updated to their new sub-directories.',o.dir); end
end
% move the java class files into their own directory
infos = dir([o.dir filesep '*.class']);
movefiles = {infos.name};
moveid = retainid(cellfun(@exist,o.idents(retainid)) ~= 3);
if ~isempty(movefiles)
% some files to be moved
dest_path = [o.dir filesep 'build-javaclasses' filesep];
% create a new directory
if ~exist(dest_path,'dir')
if ~mkdir(o.dir,'build-javaclasses')
error(['unable to create directory ' dest_path]); end
% set permissions
try
fileattrib(dest_path,'+w','a');
catch
disp(['Note: There are permission problems for the directory ' dest_path]);
end
end
% create a new env_add.m there
try
filename = [dest_path 'env_add.m'];
fid = fopen(filename,'w+'); fclose(fid);
fileattrib(filename,'+w','a');
catch
disp(['Note: There were write permission problems for the file ' filename]);
end
% move the targets over there...
for t = 1:length(movefiles)
movefile([o.dir filesep movefiles{t}],[dest_path movefiles{t}]);
try
movefile([o.dir filesep movefiles{t} '.md5'],[dest_path movefiles{t} '.md5']);
catch
end
end
% add the destination path
if isdeployed
warning off MATLAB:javaclasspath:jarAlreadySpecified; end
javaaddpath(dest_path);
% check whether the class is found
if ~all(cellfun(@exist,o.idents(moveid)) == 8)
disp_once('Not all Java binaries in %s could be recognized by MATLAB.',dest_path); end
end
if ~isempty(eraseid)
% some files need to be erased...
for k=eraseid
for t=1:length(targets{k})
if exist([o.dir filesep targets{k}{t}])
try
delete(targets{k}{t});
catch
disp(['Could not delete broken binary ' binaries{i}{s}]);
end
end
end
end
end
else
% nothing to recompile
ok = true;
if strcmp(o.style,'eager') && ~isempty(o.idents) && o.verbose
disp_once(['The functions ' format_cellstr(o.idents) ' are already compiled.']); end
end
% go back to the old directory
if hlp_matlab_version < 706
cd(olddir); end
catch e
ok = false; %#ok<NASGU>
% go back to the old path in case of an error
if hlp_matlab_version < 706
cd(olddir); end
rethrow(e);
end
end
% store the OK flag in the results
if strcmp(o.style,'lazy') || isdeployed
results.(tag) = ok; end
if ~ok
if ~isdeployed
% regular error summary
if mexinvolved
disp_once('\nIn case you need to use a better / fully supported compiler, please have a look at:');
try
v=version;
releasename = v(find(v=='(')+1 : find(v==')')-1);
if length(releasename) > 3 && releasename(1) == 'R'
releasename = releasename(2:end); end
site = ['http://www.google.com/search?q=matlab+supported+compilers+' releasename];
catch
site = 'http://www.google.com/search?q=matlab+supported+compilers';
end
disp_once(' <a href="%s">%s</a>\n',site,site);
if ispc
if is64bit
disp_once('On 64-bit Windows, MATLAB comes with no built-in compiler, so you need to have one installed.');
else
disp_once('On 32-bit Windows, MATLAB supplies a built-in compiler (LLC), which is, however, not very good.');
end
disp_once('A good choice is the free Microsoft Visual Studio 2005/2008/2010 Express compiler suite');
disp_once('together with the Microsoft Platform SDK (6.1 for 2008, 7.1 for 2010) for your Windows Version.');
disp_once('See also: http://argus-home.coas.oregonstate.edu/forums/development/core-software-development/compiling-64-bit-mex-files');
disp_once(' http://www.mathworks.com/support/compilers/R2010b/win64.html');
disp_once('The installation is easier if a professional Intel or Microsoft compiler is used.');
elseif isunix
disp_once('On Linux/UNIX, the best choice is usually a supported version of the GCC compiler suite.');
else
disp_once('On Mac OS, you need to have a supported version of Xcode/GCC installed.');
end
end
if javainvolved
disp_once('Please make sure that your system''s java configuration matches the one used by MATLAB (see "ver" command).');
end
end
end
% create javac options string from options struct
function opts = javac_options(o)
verbosity = hlp_rewrite(o.verbose,true,'-verbose',false,'');
if ~isempty(o.libdirs)
cpath = ['-classpath ' sprintf('%s;',o.libdirs{:})];
cpath(end) = [];
else
cpath = '';
end
if ~isempty(o.includedirs)
ipath = ['-sourcepath ' sprintf('%s;',o.includedirs{:})];
ipath(end) = [];
else
ipath = '';
end
debugness = hlp_rewrite(o.debug,true,'-g',false,'-g:none');
targetsource = '-target 1.6 -source 1.6';
opts = [sprintf(' %s',verbosity,cpath,ipath,debugness,targetsource) ' '];
% create mex options string from options struct
function opts = mex_options(o)
if ~isempty(o.defines)
defs = sprintf(' -D%s',o.defines{:});
else
defs = '';
end
debugness = hlp_rewrite(o.debug,true,'-g',false,'');
if ~isempty(o.includedirs)
incdirs = sprintf(' -I"%s"',o.includedirs{:});
else
incdirs = '';
end
if ~isempty(o.libs)
if ispc
libs = sprintf(' -l"%s"',o.libs{:});
else
libs = sprintf(' -l%s',o.libs{:});
end
else
libs = '';
end
if ~isempty(o.libdirs)
libdirs = sprintf(' -L"%s"',o.libdirs{:});
else
libdirs = '';
end
verbosity = hlp_rewrite(o.verbose,true,'-v',false,'');
opts = [sprintf(' %s',defs,debugness,incdirs,libs,libdirs,verbosity) ' '];
% format a non-empty cell-string array into a string
function x = format_cellstr(x)
if isempty(x)
x = '';
else
x = ['{' sprintf('%s, ',x{1:end-1}) x{end} '}'];
end
% check whether a given identifier is frozen in a ctf archive
function tf = in_ctf(ident) %#ok<DEFNU>
tf = isdeployed && strncmp(ctfroot,which(ident),length(ctfroot));
% normalize a directory path
function dir = path_normalize(dir)
if filesep == '\';
dir(dir == '/') = filesep;
else
dir(dir == '\') = filesep;
end
if dir(end) == filesep
dir = dir(1:end-1); end
% determine if a given file is a mex source file or a java source file
% (and compiles into an identifier that is seen by MATLAB)
function tf = is_primary(filename)
if length(filename)>5 && strcmp(filename(end-4:end),'.java')
tf = true;
return;
else
tf = false;
end
fid = fopen(filename);
if fid ~= -1
try
contents = fread(fid);
tf = ~isempty(strfind(char(contents)','mexFunction')); %#ok<FREAD>
fclose(fid);
catch
fclose(fid);
end
end
% act like deal, but with a single cell array as input
function varargout = celldeal(argin)
varargout = argin;
% for old MATLABs that can't properly move files...
function movefile(src,dst)
try
builtin('movefile',src,dst);
catch e
if any([src dst]=='$') && hlp_matlab_version <= 705
if ispc
[errcode,text] = system(sprintf('move ''%s'' ''%s''',src,dst)); %#ok<NASGU>
else
[errcode,text] = system(sprintf('mv ''%s'' ''%s''',src,dst)); %#ok<NASGU>
end
if errcode
error('Failed to move %s to %s.',src,dst); end
else
rethrow(e);
end
end
% for old MATLABs that don't handle Java classes on the dynamic path...
function res = exist(obj,type)
if nargin > 1
res = builtin('exist',obj,type);
if ~res && (hlp_matlab_version <= 704) && strcmp(type,'class') && builtin('exist',[obj '.class'],'file')
res = 8; end
else
res = builtin('exist',obj);
if ~res && (hlp_matlab_version <= 704) && builtin('exist',[obj '.class'])
res = 8; end
end
% for old MATLABs that don't handle Java classes on the dynamic path...
function res = which(ident)
res = builtin('which',ident);
if ~any(res == filesep)
if hlp_matlab_version <= 704
if isempty(res) || ~isempty(strfind(res,'not found'))
res = builtin('which',[ident '.class']); end
else
if ~isempty(strfind(res,'Java'))
res = builtin('which',[ident '.class']); end
end
end
|
github
|
lcnbeapp/beapp-master
|
hlp_serialize.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_serialize.m
| 15,821 |
utf_8
|
90ee89875e34a4a84c3e58d9657c04f1
|
function m = hlp_serialize(v)
% Convert a MATLAB data structure into a compact byte vector.
% Bytes = hlp_serialize(Data)
%
% The original data structure can be recovered from the byte vector via hlp_deserialize.
%
% In:
% Data : some MATLAB data structure
%
% Out:
% Bytes : a representation of the original data as a byte stream
%
% Notes:
% The code is a rewrite of Tim Hutt's serialization code. Support has been added for correct
% recovery of sparse, complex, single, (u)intX, function handles, anonymous functions, objects,
% and structures with unlimited field count. Serialize/deserialize performance is ~10x higher.
%
% Limitations:
% * Java objects cannot be serialized
% * Arrays with more than 255 dimensions have their last dimensions clamped
% * Handles to nested/scoped functions can only be deserialized when their parent functions
% support the BCILAB argument reporting protocol (e.g., by using arg_define).
% * New MATLAB objects need to be reasonably friendly to serialization; either they support
% construction from a struct, or they support saveobj/loadobj(struct), or all their important
% properties can be set via set(obj,'name',value)
% * In anonymous functions, accessing unreferenced variables in the workspace of the original
% declaration via eval(in) works only if manually enabled via the global variable
% tracking.serialize_anonymous_fully (possibly at a significant performance hit).
% note: this feature is currently not rock solid and can be broken either by Ctrl+C'ing
% in the wrong moment or by concurrently serializing from MATLAB timers.
%
% See also:
% hlp_deserialize
%
% Examples:
% bytes = hlp_serialize(mydata);
% ... e.g. transfer the 'bytes' array over the network ...
% mydata = hlp_deserialize(bytes);
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-04-02
%
% adapted from serialize.m
% (C) 2010 Tim Hutt
% dispatch according to type
if isnumeric(v)
m = serialize_numeric(v);
elseif ischar(v)
m = serialize_string(v);
elseif iscell(v)
m = serialize_cell(v);
elseif isstruct(v)
m = serialize_struct(v);
elseif isa(v,'function_handle')
m = serialize_handle(v);
elseif islogical(v)
m = serialize_logical(v);
elseif isobject(v)
m = serialize_object(v);
elseif isjava(v)
warn_once('hlp_serialize:cannot_serialize_java','Cannot properly serialize Java class %s; using a placeholder instead.',class(v));
m = serialize_string(['<<hlp_serialize: ' class(v) ' unsupported>>']);
else
try
m = serialize_object(v);
catch
warn_once('hlp_serialize:unknown_type','Cannot properly serialize object of unknown type "%s"; using a placeholder instead.',class(v));
m = serialize_string(['<<hlp_serialize: ' class(v) ' unsupported>>']);
end
end
end
% single scalar
function m = serialize_scalar(v)
% Data type & data
m = [class2tag(class(v)); typecast(v,'uint8').'];
end
% char arrays
function m = serialize_string(v)
if size(v,1) == 1
% horizontal string: Type, Length, and Data
m = [uint8(0); typecast(uint32(length(v)),'uint8').'; uint8(v(:))];
elseif sum(size(v)) == 0
% '': special encoding
m = uint8(200);
else
% general char array: Tag & Number of dimensions, Dimensions, Data
m = [uint8(132); ndims(v); typecast(uint32(size(v)),'uint8').'; uint8(v(:))];
end
end
% logical arrays
function m = serialize_logical(v)
% Tag & Number of dimensions, Dimensions, Data
m = [uint8(133); ndims(v); typecast(uint32(size(v)),'uint8').'; uint8(v(:))];
end
% non-complex and non-sparse numerical matrix
function m = serialize_numeric_simple(v)
% Tag & Number of dimensions, Dimensions, Data
m = [16+class2tag(class(v)); ndims(v); typecast(uint32(size(v)),'uint8').'; typecast(v(:).','uint8').'];
end
% Numeric Matrix: can be real/complex, sparse/full, scalar
function m = serialize_numeric(v)
if issparse(v)
% Data Type & Dimensions
m = [uint8(130); typecast(uint64(size(v,1)), 'uint8').'; typecast(uint64(size(v,2)), 'uint8').']; % vectorize
% Index vectors
[i,j,s] = find(v);
% Real/Complex
if isreal(v)
m = [m; serialize_numeric_simple(i); serialize_numeric_simple(j); 1; serialize_numeric_simple(s)];
else
m = [m; serialize_numeric_simple(i); serialize_numeric_simple(j); 0; serialize_numeric_simple(real(s)); serialize_numeric_simple(imag(s))];
end
elseif ~isreal(v)
% Data type & contents
m = [uint8(131); serialize_numeric_simple(real(v)); serialize_numeric_simple(imag(v))];
elseif isscalar(v)
% Scalar
m = serialize_scalar(v);
else
% Simple matrix
m = serialize_numeric_simple(v);
end
end
% Struct array.
function m = serialize_struct(v)
% Tag, Field Count, Field name lengths, Field name char data, #dimensions, dimensions
fieldNames = fieldnames(v);
fnLengths = [length(fieldNames); cellfun('length',fieldNames)];
fnChars = [fieldNames{:}];
dims = [ndims(v) size(v)];
m = [uint8(128); typecast(uint32(fnLengths(:)).','uint8').'; uint8(fnChars(:)); typecast(uint32(dims), 'uint8').'];
% Content.
if numel(v) > length(fieldNames)
% more records than field names; serialize each field as a cell array to expose homogenous content
tmp = cellfun(@(f)serialize_cell({v.(f)}),fieldNames,'UniformOutput',false);
m = [m; 0; vertcat(tmp{:})];
else
% more field names than records; use struct2cell
m = [m; 1; serialize_cell(struct2cell(v))];
end
end
% Cell array of heterogenous contents
function m = serialize_cell_heterogenous(v)
contents = cellfun(@hlp_serialize,v,'UniformOutput',false);
m = [uint8(33); ndims(v); typecast(uint32(size(v)),'uint8').'; vertcat(contents{:})];
end
% Cell array of homogenously-typed contents
function m = serialize_cell_typed(v,serializer)
contents = cellfun(serializer,v,'UniformOutput',false);
m = [uint8(33); ndims(v); typecast(uint32(size(v)),'uint8').'; vertcat(contents{:})];
end
% Cell array
function m = serialize_cell(v)
sizeprod = cellfun('prodofsize',v);
if sizeprod == 1
% all scalar elements
if (all(cellfun('isclass',v(:),'double')) || all(cellfun('isclass',v(:),'single'))) && all(~cellfun(@issparse,v(:)))
% uniformly typed floating-point scalars (and non-sparse)
reality = cellfun('isreal',v);
if reality
% all real
m = [uint8(34); serialize_numeric_simple(reshape([v{:}],size(v)))];
elseif ~reality
% all complex
m = [uint8(34); serialize_numeric(reshape([v{:}],size(v)))];
else
% mixed reality
m = [uint8(35); serialize_numeric(reshape([v{:}],size(v))); serialize_logical(reality(:))];
end
else
% non-float types
if cellfun('isclass',v,'struct')
% structs
m = serialize_cell_typed(v,@serialize_struct);
elseif cellfun('isclass',v,'cell')
% cells
m = serialize_cell_typed(v,@serialize_cell);
elseif cellfun('isclass',v,'logical')
% bool flags
m = [uint8(39); serialize_logical(reshape([v{:}],size(v)))];
elseif cellfun('isclass',v,'function_handle')
% function handles
m = serialize_cell_typed(v,@serialize_handle);
else
% arbitrary / mixed types
m = serialize_cell_heterogenous(v);
end
end
elseif isempty(v)
% empty cell array
m = [uint8(33); ndims(v); typecast(uint32(size(v)),'uint8').'];
else
% some non-scalar elements
dims = cellfun('ndims',v);
size1 = cellfun('size',v,1);
size2 = cellfun('size',v,2);
if cellfun('isclass',v,'char') & size1 <= 1 %#ok<AND2>
% all horizontal strings or proper empty strings
m = [uint8(36); serialize_string([v{:}]); serialize_numeric_simple(uint32(size2)); serialize_logical(size1(:)==0)];
elseif (size1+size2 == 0) & (dims == 2) %#ok<AND2>
% all empty and non-degenerate elements
if all(cellfun('isclass',v(:),'double')) || all(cellfun('isclass',v(:),'cell')) || all(cellfun('isclass',v(:),'struct'))
% of standard data types: Tag, Type Tag, #Dims, Dims
m = [uint8(37); class2tag(class(v{1})); ndims(v); typecast(uint32(size(v)),'uint8').'];
elseif length(unique(cellfun(@class,v(:),'UniformOutput',false))) == 1
% of uniform class with prototype
m = [uint8(38); hlp_serialize(class(v{1})); ndims(v); typecast(uint32(size(v)),'uint8').'];
else
% of arbitrary classes
m = serialize_cell_heterogenous(v);
end
else
% arbitrary sizes (and types, etc.)
m = serialize_cell_heterogenous(v);
end
end
end
% Object / class
function m = serialize_object(v)
try
% try to use the saveobj method first to get the contents
conts = saveobj(v);
if isstruct(conts) || iscell(conts) || isnumeric(conts) || ischar(conts) || islogical(conts) || isa(conts,'function_handle')
% contents is something that we can readily serialize
conts = hlp_serialize(conts);
else
% contents is still an object: turn into a struct now
conts = serialize_struct(struct(conts));
end
catch
% saveobj failed for this object: turn into a struct
conts = serialize_struct(struct(v));
end
% Tag, Class name and Contents
m = [uint8(134); serialize_string(class(v)); conts];
end
% Function handle
function m = serialize_handle(v)
% get the representation
rep = functions(v);
switch rep.type
case 'simple'
% simple function: Tag & name
m = [uint8(151); serialize_string(rep.function)];
case 'anonymous'
global tracking; %#ok<TLEV>
if isfield(tracking,'serialize_anonymous_fully') && tracking.serialize_anonymous_fully
% serialize anonymous function with their entire variable environment (for complete
% eval and evalin support). Requires a stack of function id's, as function handles
% can reference themselves in their full workspace.
persistent handle_stack; %#ok<TLEV>
% Tag and Code
m = [uint8(152); serialize_string(char(v))];
% take care of self-references
str = java.lang.String(rep.function);
func_id = str.hashCode();
if ~any(handle_stack == func_id)
try
% push the function id
handle_stack(end+1) = func_id;
% now serialize workspace
m = [m; serialize_struct(rep.workspace{end})];
% pop the ID again
handle_stack(end) = [];
catch e
% note: Ctrl-C can mess up the handle stack
handle_stack(end) = []; %#ok<NASGU>
rethrow(e);
end
else
% serialize the empty workspace
m = [m; serialize_struct(struct())];
end
if length(m) > 2^18
% If you are getting this warning, it is likely that one of your anonymous functions
% was created in a scope that contained large variables; MATLAB will implicitly keep
% these variables around (referenced by the function) just in case you refer to them.
% To avoid this, you can create the anonymous function instead in a sub-function
% to which you only pass the variables that you actually need.
warn_once('hlp_serialize:large_handle','The function handle with code %s references variables of more than 256k bytes; this is likely very slow.',rep.function);
end
else
% anonymous function: Tag, Code, and reduced workspace
if ~isempty(rep.workspace)
m = [uint8(152); serialize_string(char(v)); serialize_struct(rep.workspace{1})];
else
m = [uint8(152); serialize_string(char(v)); serialize_struct(struct())];
end
end
case {'scopedfunction','nested'}
% scoped function: Tag and Parentage
m = [uint8(153); serialize_cell(rep.parentage)];
otherwise
warn_once('hlp_serialize:unknown_handle_type','A function handle with unsupported type "%s" was encountered; using a placeholder instead.',rep.type);
m = serialize_string(['<<hlp_serialize: function handle of type ' rep.type ' unsupported>>']);
end
end
% *container* class to byte
function b = class2tag(cls)
switch cls
case 'string'
b = uint8(0);
case 'double'
b = uint8(1);
case 'single'
b = uint8(2);
case 'int8'
b = uint8(3);
case 'uint8'
b = uint8(4);
case 'int16'
b = uint8(5);
case 'uint16'
b = uint8(6);
case 'int32'
b = uint8(7);
case 'uint32'
b = uint8(8);
case 'int64'
b = uint8(9);
case 'uint64'
b = uint8(10);
% other tags are as follows:
% % offset by +16: scalar variants of these...
% case 'cell'
% b = uint8(33);
% case 'cellscalars'
% b = uint8(34);
% case 'cellscalarsmixed'
% b = uint8(35);
% case 'cellstrings'
% b = uint8(36);
% case 'cellempty'
% b = uint8(37);
% case 'cellemptyprot'
% b = uint8(38);
% case 'cellbools'
% b = uint8(39);
% case 'struct'
% b = uint8(128);
% case 'sparse'
% b = uint8(130);
% case 'complex'
% b = uint8(131);
% case 'char'
% b = uint8(132);
% case 'logical'
% b = uint8(133);
% case 'object'
% b = uint8(134);
% case 'function_handle'
% b = uint8(150);
% case 'function_simple'
% b = uint8(151);
% case 'function_anon'
% b = uint8(152);
% case 'function_scoped'
% b = uint8(153);
% case 'emptystring'
% b = uint8(200);
otherwise
error('Unknown class');
end
end
% emit a specific warning only once (per MATLAB session)
function warn_once(varargin)
persistent displayed_warnings;
% determine the message content
if length(varargin) > 1 && any(varargin{1}==':') && ~any(varargin{1}==' ') && ischar(varargin{2})
message_content = [varargin{1} sprintf(varargin{2:end})];
else
message_content = sprintf(varargin{1:end});
end
% generate a hash of of the message content
str = java.lang.String(message_content);
message_id = sprintf('x%.0f',str.hashCode()+2^31);
% and check if it had been displayed before
if ~isfield(displayed_warnings,message_id)
% emit the warning
warning(varargin{:});
% remember to not display the warning again
displayed_warnings.(message_id) = true;
end
end
|
github
|
lcnbeapp/beapp-master
|
hlp_varargin2struct.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_varargin2struct.m
| 6,267 |
utf_8
|
a185d699c488adb84cda30f6db5facda
|
function res = hlp_varargin2struct(args, varargin)
% Convert a list of name-value pairs into a struct with values assigned to names.
% struct = hlp_varargin2struct(Varargin, Defaults)
%
% In:
% Varargin : cell array of name-value pairs and/or structs (with values assigned to names)
%
% Defaults : optional list of name-value pairs, encoding defaults; multiple alternative names may
% be specified in a cell array
%
% Example:
% function myfunc(x,y,z,varargin)
% % parse options, and give defaults for some of them:
% options = hlp_varargin2struct(varargin, 'somearg',10, 'anotherarg',{1 2 3});
%
% Notes:
% * mandatory args can be expressed by specifying them as ..., 'myparam',mandatory, ... in the defaults
% an error is raised when any of those is left unspecified
%
% * the following two parameter lists are equivalent (note that the struct is specified where a name would be expected,
% and that it replaces the entire name-value pair):
% ..., 'xyz',5, 'a',[], 'test','toast', 'xxx',{1}. ...
% ..., 'xyz',5, struct( 'a',{[]},'test',{'toast'} ), 'xxx',{1}, ...
%
% * names with dots are allowed, i.e.: ..., 'abc',5, 'xxx.a',10, 'xxx.yyy',20, ...
%
% * some parameters may have multiple alternative names, which shall be remapped to the
% standard name within opts; alternative names are given together with the defaults,
% by specifying a cell array of names instead of the name in the defaults, as in the following example:
% ... ,{'standard_name','alt_name_x','alt_name_y'}, 20, ...
%
% Out:
% Result : a struct with fields corresponding to the passed arguments (plus the defaults that were
% not overridden); if the caller function does not retrieve the struct, the variables are
% instead copied into the caller's workspace.
%
% Examples:
% % define a function which takes some of its arguments as name-value pairs
% function myfunction(myarg1,myarg2,varargin)
% opts = hlp_varargin2struct(varargin, 'myarg3',10, 'myarg4',1001, 'myarg5','test');
%
% % as before, but this time allow an alternative name for myarg3
% function myfunction(myarg1,myarg2,varargin)
% opts = hlp_varargin2struct(varargin, {'myarg3','legacyargXY'},10, 'myarg4',1001, 'myarg5','test');
%
% % as before, but this time do not return arguments in a struct, but assign them directly to the
% % function's workspace
% function myfunction(myarg1,myarg2,varargin)
% hlp_varargin2struct(varargin, {'myarg3','legacyargXY'},10, 'myarg4',1001, 'myarg5','test');
%
% See also:
% hlp_struct2varargin, arg_define
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-04-05
% a struct was specified as first argument
if isstruct(args)
args = {args}; end
% --- handle defaults ---
if ~isempty(varargin)
% splice substructs into the name-value list
if any(cellfun('isclass',varargin(1:2:end),'struct'))
varargin = flatten_structs(varargin); end
defnames = varargin(1:2:end);
defvalues = varargin(2:2:end);
% make a remapping table for alternative default names...
for k=find(cellfun('isclass',defnames,'cell'))
for l=2:length(defnames{k})
name_for_alternative.(defnames{k}{l}) = defnames{k}{1}; end
defnames{k} = defnames{k}{1};
end
% create default struct
if [defnames{:}]~='.'
% use only the last assignment for each name
[s,indices] = sort(defnames(:));
indices( strcmp(s((1:end-1)'),s((2:end)'))) = [];
% and make the struct
res = cell2struct(defvalues(indices),defnames(indices),2);
else
% some dot-assignments are contained in the defaults
try
res = struct();
for k=1:length(defnames)
if any(defnames{k}=='.')
eval(['res.' defnames{k} ' = defvalues{k};']);
else
res.(defnames{k}) = defvalues{k};
end
end
catch
error(['invalid field name specified in defaults: ' defnames{k}]);
end
end
else
res = struct();
end
% --- handle overrides ---
if ~isempty(args)
% splice substructs into the name-value list
if any(cellfun('isclass',args(1:2:end),'struct'))
args = flatten_structs(args); end
% rewrite alternative names into their standard form...
if exist('name_for_alternative','var')
for k=1:2:length(args)
if isfield(name_for_alternative,args{k})
args{k} = name_for_alternative.(args{k}); end
end
end
% override defaults with arguments...
try
if [args{1:2:end}]~='.'
for k=1:2:length(args)
res.(args{k}) = args{k+1}; end
else
% some dot-assignments are contained in the overrides
for k=1:2:length(args)
if any(args{k}=='.')
eval(['res.' args{k} ' = args{k+1};']);
else
res.(args{k}) = args{k+1};
end
end
end
catch
if ischar(args{k})
error(['invalid field name specified in arguments: ' args{k}]);
else
error(['invalid field name specified for the argument at position ' num2str(k)]);
end
end
end
% check for missing but mandatory args
% note: the used string needs to match mandatory.m
missing_entries = strcmp('__arg_mandatory__',struct2cell(res));
if any(missing_entries)
fn = fieldnames(res)';
fn = fn(missing_entries);
error(['The parameters {' sprintf('%s, ',fn{1:end-1}) fn{end} '} were unspecified but are mandatory.']);
end
% copy to the caller's workspace if no output requested
if nargout == 0
for fn=fieldnames(res)'
assignin('caller',fn{1},res.(fn{1})); end
end
% substitute any structs in place of a name-value pair into the name-value list
function args = flatten_structs(args)
k = 1;
while k <= length(args)
if isstruct(args{k})
tmp = [fieldnames(args{k}) struct2cell(args{k})]';
args = [args(1:k-1) tmp(:)' args(k+1:end)];
k = k+numel(tmp);
else
k = k+2;
end
end
|
github
|
lcnbeapp/beapp-master
|
hlp_worker.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_worker.m
| 5,701 |
utf_8
|
912f4bd9ba397e3e40f05b77f7bf1fb5
|
function hlp_worker(varargin)
% Act as a lightweight worker process for use with hlp_schedule.
% hlp_worker(Options...)
%
% Receives commands (string expressions) from the network, evaluate them, and send off the result to
% some collector (again as a string). Processing is done in a single thread.
%
% In:
% Options... : optional name-value pairs, with possible names:
% 'port': port number on which to listen for requests (default: 23547)
% if the port is already in use, the next free one will be chosen,
% until port+portrange is exceeded; then, a free one will be chosen
% if specified as 0, a free one is chosen directly
%
% 'portrange': number of ports to try following the default/supplied port (default: 16)
%
% 'backlog': backlog of queued incoming connections (default: 0)
%
% 'timeout_accept': timeout for accepting connections, in seconds (default: 3)
%
% 'timeout_send': timeout for sending results, in seconds (default: 10)
%
% 'timeout_recv': timeout for receiving data, in seconds (default: 5)
%
% Notes:
% * use multiple workers to make use of multiple cores
% * use only ports that are not accessible from the internet
% * request format: <task_id><collectoraddress_length><collectoraddress><body_length><body>
% <task_id>: identifier of the task (needs to be forwarded, with the result,
% to a some data collector upon task completion) (int)
% <collectoraddress_length>: length, in bytes, of the data collector's address (int)
% <collectoraddress>: where to send the result for collection (string, formatted as host:port)
% <body_length>: length, in bytes, of the message body (int)
% <body>: a MATLAB command that yields, when evaluated, some result in ans (string, as MATLAB expression)
% if an exception occurs, the exception struct (as from lasterror) replaces ans
% * response format: <task_id><body_length><body>
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-08-26
import java.io.*
import java.net.*
% read options
opts = hlp_varargin2struct(varargin, 'port',23547, 'portrange',16, 'backlog',1, 'timeout_accept',3, ...
'timeout_send',10, 'timeout_recv',5, 'receive_buffer',64000);
% open a new server socket (first trying the specified portrange, then falling back to 0)
for port = [opts.port:opts.port+opts.portrange 0]
try
serv = ServerSocket(port, opts.backlog);
break;
catch,end
end
disp(['This is ' hlp_hostname ' (' hlp_hostip '). Listening on port ' num2str(serv.getLocalPort())]);
% set socket properties (e.g., making the function interruptible)
serv.setReceiveBufferSize(opts.receive_buffer);
serv.setSoTimeout(round(1000*opts.timeout_accept));
% make sure that the server socket will be closed when this function is terminated
cleaner = onCleanup(@()serv.close());
tasknum = 1;
disp('waiting for connections...');
while 1
try
% wait for an incoming request
conn = serv.accept();
conn.setSoTimeout(round(1000*opts.timeout_recv));
conn.setTcpNoDelay(1);
disp('connected.');
try
% parse request
in = DataInputStream(conn.getInputStream());
cr = ChunkReader(in);
taskid = in.readInt();
collector = char(cr.readFully(in.readInt())');
task = char(cr.readFully(in.readInt())');
disp('received data; replying.');
out = DataOutputStream(conn.getOutputStream());
out.writeInt(taskid+length(collector)+length(task));
out.flush();
conn.close();
% evaluate task & serialize result
disp(['running task ' num2str(taskid) ' (' num2str(tasknum) ') ...']); tasknum = tasknum+1;
result = hlp_serialize(evaluate(task));
disp('done with task; opening back link...');
try
% send off the result
idx = find(collector==':',1);
outconn = Socket(collector(1:idx-1), str2num(collector(idx+1:end)));
disp('connected; now sending...');
outconn.setTcpNoDelay(1);
outconn.setSoTimeout(round(1000*opts.timeout_recv));
out = DataOutputStream(outconn.getOutputStream());
out.writeInt(taskid);
out.writeInt(length(result));
out.writeBytes(result);
out.flush();
outconn.close();
disp('done.');
disp('waiting for connections...');
catch
e = lasterror; %#ok<LERR>
if isempty(strfind(e.message,'timed out'))
disp(['Exception during result forwarding: ' e.message]); end
end
catch
conn.close();
e = lasterror; %#ok<LERR>
if ~isempty(strfind(e.message,'EOFException'))
disp(['cancelled.']);
elseif isempty(strfind(e.message,'timed out'))
disp(['Exception during task receive: ' e.message]);
end
end
catch
e = lasterror; %#ok<LERR>
if isempty(strfind(e.message,'timed out'))
disp(['Exception during accept: ' e.message]); end
end
end
function result = evaluate(task)
% evaluate a task
try
ans = []; %#ok<NOANS>
eval([task ';']);
result = ans; %#ok<NOANS>
catch
result = lasterror; %#ok<LERR>
end
|
github
|
lcnbeapp/beapp-master
|
hlp_superimposedata.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_superimposedata.m
| 5,438 |
utf_8
|
512675e236e6e374f99cf433a05bb974
|
function res = hlp_superimposedata(varargin)
% Merge multiple partially populated data structures into one fully populated one.
% Result = hlp_superimposedata(Data1, Data2, Data3, ...)
%
% The function is applicable when you have cell arrays or structs/struct arrays with non-overlapping
% patterns of non-empty entries, where all entries should be merged into a single data structure
% which retains their original positions. If entries exist in multiple data structures at the same
% location, entries of later items will be ignored (i.e. earlier data structures take precedence).
%
% In:
% DataK : a data structure that should be super-imposed with the others to form a single data
% structure
%
% Out:
% Result : the resulting data structure
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2011-08-19
% first, compactify the data by removing the empty items
compact = varargin(~cellfun('isempty',varargin));
% start with the last data structure, then merge the remaining data structures into it (in reverse
% order as this avoids having to grow arrays incrementally in typical cases)
res = compact{end};
for k=length(compact)-1:-1:1
res = merge(res,compact{k}); end
% merge data structures A and B
function A = merge(A,B)
if iscell(A) && iscell(B)
% make sure that both have the same number of dimensions
if ndims(A) > ndims(B)
B = grow_cell(B,size(A));
elseif ndims(A) < ndims(B)
A = grow_cell(A,size(B));
end
% make sure that both have the same size
if all(size(B)==size(A))
% we're fine
elseif all(size(B)>=size(A))
% A is a minor of B: grow A
A = grow_cell(A,size(B));
elseif all(size(A)>=size(B))
% B is a minor of A: grow B
B = grow_cell(B,size(A));
else
% A and B have mixed sizes... grow both as necessary
M = max(size(A),size(B));
A = grow_cell(A,M);
B = grow_cell(B,M);
end
% find all non-empty elements in B
idx = find(~cellfun(@(x)isequal(x,[]),B));
if ~isempty(idx)
% check if any of these is occupied in A
clean = cellfun('isempty',A(idx));
if ~all(clean)
% merge all conflicting items recursively
conflicts = idx(~clean);
for k=conflicts(:)'
A{k} = merge(A{k},B{k}); end
% and transfer the rest
if any(clean)
A(idx(clean)) = B(idx(clean)); end
else
% transfer all to A
A(idx) = B(idx);
end
end
elseif isstruct(A) && isstruct(B)
% first make sure that both have the same fields
fnA = fieldnames(A);
fnB = fieldnames(B);
if isequal(fnA,fnB)
% we're fine
elseif isequal(sort(fnA),sort(fnB))
% order doesn't match -- impose A's order on B
B = orderfields(B,fnA);
elseif isempty(setdiff(fnA,fnB))
% B has a superset of A's fields: add the remaining fields to A, and order them according to B
remaining = setdiff(fnB,fnA);
for fn = remaining'
A(1).(fn{1}) = []; end
A = orderfields(A,fnB);
elseif isempty(setdiff(fnB,fnA))
% A has a superset of B's fields: add the remaining fields to B, and order them according to A
remaining = setdiff(fnA,fnB);
for fn = remaining'
B(1).(fn{1}) = []; end
B = orderfields(B,fnA);
else
% A and B have incommensurable fields; add B's fields to A's fields, add A's fields to B's
% and order according to A's fields
remainingB = setdiff(fnB,fnA);
for fn = remainingB'
A(1).(fn{1}) = []; end
remainingA = setdiff(fnA,fnB);
for fn = remainingA'
B(1).(fn{1}) = []; end
B = orderfields(B,A);
end
% that being established, convert them to cell arrays, merge their cell arrays, and convert back to structs
merged = merge(struct2cell(A),struct2cell(B));
A = cell2struct(merged,fieldnames(A),1);
elseif isstruct(A) && ~isstruct(B)
if ~isempty(B)
error('One of the sub-items is a struct, and the other one is of a non-struct type.');
else
% we retain A
end
elseif isstruct(B) && ~isstruct(A)
if ~isempty(A)
error('One of the sub-items is a struct, and the other one is of a non-struct type.');
else
% we retain B
A = B;
end
elseif iscell(A) && ~iscell(B)
if ~isempty(B)
error('One of the sub-items is a cell array, and the other one is of a non-cell type.');
else
% we retain A
end
elseif iscell(B) && ~iscell(A)
if ~isempty(A)
error('One of the sub-items is a cell array, and the other one is of a non-cell type.');
else
% we retain B
A = B;
end
elseif isempty(A) && ~isempty(B)
% we retain B
A = B;
elseif isempty(B) && ~isempty(A)
% we retain A
elseif ~isequal_weak(A,B)
% we retain A and warn about dropping B
warn_once('Two non-empty (and non-identical) sub-elements occupied the same index; one was dropped. This warning will only be displayed once.');
end
% grow a cell array to accomodate a particular index
% (assuming that this index is not contained in the cell array yet)
function C = grow_cell(C,idx)
tmp = sprintf('%i,',idx);
eval(['C{' tmp(1:end-1) '} = [];']);
|
github
|
lcnbeapp/beapp-master
|
arg_guidialog.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_guidialog.m
| 10,844 |
utf_8
|
9a3feeb49fd1fa36ac5971ebb38d1ab9
|
function varargout = arg_guidialog(func,varargin)
% Create an input dialog that displays input fields for a Function and Parameters.
% Parameters = arg_guidialog(Function, Options...)
%
% The Parameters that are passed to the function can be used to override some of its defaults. The
% function must declare its arguments via arg_define. In addition, only a Subset of the function's
% specified arguments can be displayed.
%
% In:
% Function : the function for which to display arguments
%
% Options... : optional name-value pairs; possible names are:
% 'Parameters' : cell array of parameters to the Function to override some of its
% defaults.
%
% 'Subset' : Cell array of argument names to which the dialog shall be restricted;
% these arguments may contain . notation to index into arg_sub and the
% selected branch(es) of arg_subswitch/arg_subtoggle specifiers. Empty
% cells show up in the dialog as empty rows.
%
% 'Title' : title of the dialog (by default: functionname())
%
% 'Invoke' : whether to invoke the function directly; in this case, the output
% arguments are those of the function (default: true, unless called in
% the form g = arg_guidialog; e.g., from within some function)
%
% Out:
% Parameters : a struct that is a valid input to the Function.
%
% Examples:
% % bring up a configuration dialog for the given function
% settings = arg_guidialog(@myfunction)
%
% % bring up a config dialog with some pre-specified defaults
% settings = arg_guidialog(@myfunction,'Parameters',{4,20,'test'})
%
% % bring up a config dialog which displays only a subset of the function's arguments (in a particular order)
% settings = arg_guidialog(@myfunction,'Subset',{'blah','xyz',[],'flag'})
%
% % bring up a dialog, and invoke the function with the selected settings after the user clicks OK
% settings = arg_guidialog(@myfunction,'Invoke',true)
%
% See also:
% arg_guidialog_ex, arg_guipanel, arg_define
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-10-24
if ~exist('func','var')
% called with no arguments, from inside a function: open function dialog
func = hlp_getcaller;
varargin = {'Parameters',evalin('caller','varargin'),'Invoke',nargout==0};
end
% parse arguments...
hlp_varargin2struct(varargin,{'params','Parameters','parameters'},{}, {'subset','Subset'},{}, {'dialogtitle','title','Title'}, [char(func) '()'], {'buttons','Buttons'},[],{'invoke','Invoke'},true);
oldparams = params;
% obtain the argument specification for the function
rawspec = arg_report('rich', func, params); %#ok<*NODEF>
% extract a list of sub arguments...
if ~isempty(subset) && subset{1}==-1
% user specified a set of items to *exclude*
% convert subset to setdiff(all-arguments,subset)
allnames = fieldnames(arg_tovals(rawspec));
subset(1) = [];
subset = allnames(~ismember(allnames,[subset 'arg_direct']));
end
[spec,subset] = obtain_items(rawspec,subset);
% create an inputgui() dialog...
geometry = repmat({[0.6 0.35]},1,length(spec)+length(buttons)/2);
geomvert = ones(1,length(spec)+length(buttons)/2);
% turn the spec into a UI list...
uilist = {};
for k = 1:length(spec)
s = spec{k};
if isempty(s)
uilist(end+1:end+2) = {{} {}};
else
if isempty(s.help)
error(['Cannot display the argument ' subset{k} ' because it contains no description.']);
else
tag = subset{k};
uilist{end+1} = {'Style','text', 'string',s.help{1}, 'fontweight','bold'};
% depending on the type, we introduce different types of input widgets here...
if iscell(s.range) && strcmp(s.type,'char')
% string popup menu
uilist{end+1} = {'Style','popupmenu', 'string',s.range,'value',find(strcmp(s.value,s.range)),'tag',tag};
elseif strcmp(s.type,'logical')
if length(s.range)>1
% multiselect
uilist{end+1} = {'Style','listbox', 'string',s.range, 'value',find(ismember(s.range,s.value)),'tag',tag,'min',1,'max',100000};
geomvert(k) = min(3.5,length(s.range));
else
% checkbox
uilist{end+1} = {'Style','checkbox', 'string','(set)', 'value',double(s.value),'tag',tag};
end
elseif strcmp(s.type,'char')
% string edit
uilist{end+1} = {'Style','edit', 'string', s.value,'tag',tag};
else
% expression edit
if isinteger(s.value)
s.value = double(s.value); end
uilist{end+1} = {'Style','edit', 'string', hlp_tostring(s.value),'tag',tag};
end
% append the tooltip string
if length(s.help) > 1
uilist{end} = [uilist{end} 'tooltipstring', regexprep(s.help{2},'\.\s+(?=[A-Z])','.\n')]; end
end
end
if ~isempty(buttons) && k==buttons{1}
% render a command button
uilist(end+1:end+2) = {{} buttons{2}};
buttons(1:2) = [];
end
end
% invoke the GUI, obtaining a list of output values...
helptopic = char(func);
try
if helptopic(1) == '@'
fn = functions(func);
tmp = struct2cell(fn.workspace{1});
helptopic = class(tmp{1});
end
catch
disp('Cannot deduce help topic.');
end
[outs,dummy,okpressed] = inputgui('geometry',geometry, 'uilist',uilist,'helpcom',['env_doc ' helptopic], 'title',dialogtitle,'geomvert',geomvert); %#ok<ASGLU>
if ~isempty(okpressed)
% remove blanks from the spec
spec = spec(~cellfun('isempty',spec));
subset = subset(~cellfun('isempty',subset));
% turn the raw specification into a parameter struct (a non-direct one, since we will mess with
% it)
params = arg_tovals(rawspec,false);
% for each parameter produced by the GUI...
for k = 1:length(outs)
s = spec{k}; % current specifier
v = outs{k}; % current raw value
% do type conversion according to spec
if iscell(s.range) && strcmp(s.type,'char')
v = s.range{v};
elseif strcmp(s.type,'expression')
v = eval(v);
elseif strcmp(s.type,'logical')
if length(s.range)>1
v = s.range(v);
else
v = logical(v);
end
elseif strcmp(s.type,'char')
% noting to do
else
if ~isempty(v)
v = eval(v); % convert back to numeric (or object, or cell) value
end
end
% assign the converted value to params struct...
params = assign(params,subset{k},v);
end
% now send the result through the function to check for errors and obtain a values structure...
params = arg_report('rich',func,{params});
params = arg_tovals(params,false);
% invoke the function, if so desired
if ischar(func)
func = str2func(func); end
if invoke
[varargout{1:nargout(func)}] = func(oldparams{:},params);
else
varargout = {params};
end
else
varargout = {[]};
end
% obtain a cell array of spec entries by name from the given specification
function [items,ids] = obtain_items(rawspec,requested,prefix)
if ~exist('prefix','var')
prefix = ''; end
items = {};
ids = {};
% determine what subset of (possibly nested) items is requested
if isempty(requested)
% look for a special argument/property arg_dialogsel, which defines the standard dialog
% representation for the given specification
dialog_sel = find(cellfun(@(x)any(strcmp(x,'arg_dialogsel')),{rawspec.names}));
if ~isempty(dialog_sel)
requested = rawspec(dialog_sel).value; end
end
if isempty(requested)
% empty means that all items are requested
for k=1:length(rawspec)
items{k} = rawspec(k);
ids{k} = [prefix rawspec(k).names{1}];
end
else
% otherwise we need to obtain those items
for k=1:length(requested)
if ~isempty(requested{k})
try
[items{k},subid] = obtain(rawspec,requested{k});
catch
error(['The specified identifier (' prefix requested{k} ') could not be found in the function''s declared arguments.']);
end
ids{k} = [prefix subid];
end
end
end
% splice items that have children (recursively) into this list
for k = length(items):-1:1
% special case: switch arguments are not spliced, but instead the argument that defines the
% option popupmenu will be retained
if ~isempty(items{k}) && ~isempty(items{k}.children) && (~iscellstr(items{k}.range) || isempty(requested))
[subitems, subids] = obtain_items(items{k}.children,{},[ids{k} '.']);
if ~isempty(subitems)
% and introduce blank rows around them
items = [items(1:k-1) {{}} subitems {{}} items(k+1:end)];
ids = [ids(1:k-1) {{}} subids {{}} ids(k+1:end)];
end
end
end
% remove items that cannot be displayed
retain = cellfun(@(x)isempty(x)||x.displayable,items);
items = items(retain);
ids = ids(retain);
% remove double blank rows
empties = cellfun('isempty',ids);
items(empties(1:end-1) & empties(2:end)) = [];
ids(empties(1:end-1) & empties(2:end)) = [];
% obtain a spec entry by name from the given specification
function [item,id] = obtain(rawspec,identifier,prefix)
if ~exist('prefix','var')
prefix = ''; end
% parse the . notation
dot = find(identifier=='.',1);
if ~isempty(dot)
[head,rest] = deal(identifier(1:dot-1), identifier(dot+1:end));
else
head = identifier;
rest = [];
end
% search for the identifier at this level
names = {rawspec.names};
for k=1:length(names)
if any(strcmp(names{k},head))
% found a match!
if isempty(rest)
% return it
item = rawspec(k);
id = [prefix names{k}{1}];
else
% obtain the rest of the identifier
[item,id] = obtain(rawspec(k).children,rest,[prefix names{k}{1} '.']);
end
return;
end
end
error(['The given identifier (' head ') was not found among the function''s declared arguments.']);
% assign a field with dot notation in a struct
function s = assign(s,id,v)
% parse the . notation
dot = find(id=='.',1);
if ~isempty(dot)
[head,rest] = deal(id(1:dot-1), id(dot+1:end));
if ~isfield(s,head)
s.(head) = struct(); end
s.(head) = assign(s.(head),rest,v);
else
s.(id) = v;
end
|
github
|
lcnbeapp/beapp-master
|
arg_define.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_define.m
| 28,888 |
utf_8
|
79e413010787b04cc5fec2c1d1aa0d04
|
function res = arg_define(vals,varargin)
% Declare function arguments with optional defaults and built-in GUI support.
% Struct = arg_define(Values, Specification...)
% Struct = arg_define(Format, Values, Specification...)
%
% This is essentially an improved replacement for the parameter declaration line of a function.
% Assigns Values (a cell array of values, typically the "varargin" of the calling function,
% henceforth named the "Function") to fields in the output Struct, with parsing implemented
% according to a Specification of argument names and their order (optionally with a custom argument
% Format description).
%
% By default, values can be a list of a fixed number of positional arguments (i.e., the typical
% MATLAB calling format), optionally followed by a list of name-value pairs (NVPs, e.g., as the
% format accepted by figure()), in which, as well, instead of any given NVP, a struct may be
% passed (thus, one may pass a mix of 'name',value,struct,'name',value,'name',value, ...
% parameters). Alternatively, by default the entire list of positional arguments can instead be be
% specified as a list of NVPs/structs. Only names that are allowed by the Specification may be used,
% if positional syntax is allowed by the Format (which is the default).
%
% The special feature over hlp_varargin2struct()-like functionality is that arguments defined via
% arg_define can be reported to outside functions (if triggered by arg_report()). The resulting
% specification can be rendered in a GUI or be processed otherwise.
%
% In:
% Format : Optional format description (default: [0 Inf]):
% * If this is a number (say, k), it indicates that the first k arguments are specified
% in a positional manner, and the following arguments are specified as list of
% name-value pairs and/or structs.
% * If this is a vector of two numbers [0 k], it indicates that the first k arguments MAY
% be specified in a positional manner (the following arguments must be be specified as
% NVPs/structs) OR alternatively, all arguments can be specified as NVPs / structs.
% Only names that are listed in the specification may be used as names (in NVPs and
% structs) in this case.
% * If this is a function handle, the function is used to transform the Values prior to
% any other processing into a new Values cell array. The function may specify a new
% (numeric) Format as its second output argument (if not specified, this is 0).
%
% Values : A cell array of values passed to the function (usually the calling function's
% "varargin"). Interpreted according to the Format and the Specification.
%
% Specification... : The specification of the calling function's arguments; this is a sequence of
% arg(), arg_norep(), arg_nogui(), arg_sub(), arg_subswitch(), arg_subtoggle()
% specifiers. The special keywords mandatory and unassigned can be used in the
% declaration of default values, where "mandatory" declares that this argument
% must be assigned some value via Values (otherwise, an error is raised before
% the arg is passed to the Function) and "unassigned" declares that the
% variable will not be assigned unless passed as an argument (akin to the
% default behavior of regular MATLAB function arguments).
%
% Out:
% Struct : A struct with values assigned to fields, according to the Specification and Format.
%
% If this is not captured by the Function in a variable, the contents of Struct are
% instead assigned to the Function's workspace (default practice) -- but note that this
% only works for variable names are *not& also names of functions in the path (due to a
% flaw in MATLAB's treatment of identifiers). Thus, it is good advice to use long/expressive
% variable names to avoid this situation, or possibly CamelCase names.
%
% See also:
% arg, arg_nogui, arg_norep, arg_sub, arg_subswitch, arg_subtoggle
%
% Notes:
% 1) If the Struct output argument is omitted by the user, the arguments are not returned as a
% struct but instead directly copied into the Function's workspace.
%
% 2) Someone may call the user's Function with the request to deliver the parameter specification,
% instead of following the normal execution flow. arg_define() automatically handles this task
% by throwing an exception of the type 'BCILAB:arg:report_args' using arg_issuereport(), which
% is to be caught by the requesting function.
%
% Performance Tips:
% 1) If a struct with a field named 'arg_direct' is passed (and is set to true), or a name-value
% pair 'arg_direct',true is passed, then all type checking, specification parsing, fallback to
% default values and reporting functionality are skipped. This is a fast path to call a function,
% and it usually requires that all of its arguments are passed. The function arg_report allows
% to get a struct of all function arguments that can be used subsequently as part of a direct
% call.
%
% Please make sure not to pass multiple occurrences of 'arg_direct' with conflicting values to
% arg_define, as the behavior will then be undefined.
%
% 2) The function is about 2x as fast (in direct mode) if arguments are returned as a struct instead
% of being written into the caller's workspace.
%
% Examples:
% function myfunction(varargin)
%
% % begin a default argument declaration and declare a few arguments; The arguments can be passed either:
% % - by position: myfunction(4,20); including the option to leave some values at their defaults, e.g. myfunction(4) or myfunction()
% % - by name: myfunction('test',4,'blah',20); myfunction('blah',21,'test',4); myfunction('blah',22);
% % - as a struct: myfunction(struct('test',4,'blah',20))
% % - as a sequence of either name-value pairs or structs: myfunction('test',4,struct('blah',20)) (note that this is not ambiguous, as the struct would come in a place where only a name could show up otherwise
% arg_define(varargin, ...
% arg('test',3,[],'A test.'), ...
% arg('blah',25,[],'Blah.'));
%
% % a special syntax that is allowed is passing a particular parameter multiple times - in which case only the last specification is effective
% % myfunction('test',11, 'blah',21, 'test',3, struct('blah',15,'test',5), 'test',10) --> test will be 10, blah will be 15
%
% % begin an argument declaration which allows 0 positional arguments (i.e. everything must be passed by name
% arg_define(0,varargin, ...
%
% % begin an argument declaration which allows exactly 1 positional arguments, i.e. the first one must be passed by position and the other one by name (or struct)
% % valid calls would be: myfunction(3,'blah',25); myfunction(3); myfunction(); (the last one assumes the default for both)
% arg_define(1,varargin, ...
% arg('test',3,[],'A test.'), ...
% arg('blah',25,[],'Blah.'));
%
% % begin an argument decalration which allows either 2 positional arguments or 0 positional arguments (i.e. either the first two are passed by position, or all are passed by name)
% % some valid calls are: myfunction(4,20,'flag',true); myfunction(4,20); myfunction(4,20,'xyz','test','flag',true); myfunction(4); myfunction('flag',true,'test',4,'blah',21); myfunction('flag',true)
% arg_define([0 2],varargin, ...
% arg('test',3,[],'A test.'), ...
% arg('blah',25,[],'Blah.'), ...
% arg('xyz','defaultstr',[],'XYZ.'), ...
% arg('flag',false,[],'Some flag.'));
%
% % begin an argument declaration in which the formatting of arguments is completely arbitrary, and a custom function takes care of bringing them into a form understood by
% % the arg_define implementation. This function takes a cell array of arguments (in any formatting), and returns a cell array of a standard formatting (e.g. name-value pairs, or structs)
% arg_define(@myparser,varargin, ...
% arg('test',3,[],'A test.'), ...
% arg('blah',25,[],'Blah.'));
%
% % return the arguments as fields in a struct (here: opts), instead of directly in the workspace
% opts = arg_define(varargin, ...
% arg('test',3,[],'A test.'), ...
% arg('blah',25,[],'Blah.'));
%
% % note: in the current implementation, the only combinations of allowed argument numbers are: arg_define(...); arg_define(0, ...); arg_define(X, ...); arg_define([0 X], ...); arg_define(@somefunc, ...);
% % the implicit default is arg_define([0 Inf], ...)
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-09-24
% --- get Format, Values and Specification ---
if iscell(vals)
% no Format specifier was given: use default
fmt = [0 Inf];
spec = varargin;
try
% quick checks for direct (fast) mode
if isfield(vals{end},'arg_direct')
direct_mode = vals{end}.arg_direct;
elseif strcmp(vals{1},'arg_direct')
direct_mode = vals{2};
else
% figure it out later
direct_mode = false;
end
structs = cellfun('isclass',vals,'struct');
catch
% vals was empty: default behavior
direct_mode = false;
end
else
% a Format specifier was given as the first argument (instead of vals as the first argument) ...
if isempty(vals)
% ... but it was empty: use default behavior
fmt = [0 Inf];
else
% ... and was nonempty: use it
fmt = vals;
end
% shift the remaining two args
vals = varargin{1};
spec = varargin(2:end);
if isa(fmt,'function_handle')
% Format was a function: run it
if nargout(fmt) == 1
vals = fmt(vals);
fmt = 0;
else
[vals,fmt] = feval(fmt,vals);
end
end
direct_mode = false;
end
% --- if not yet known, determine conclusively if we are in direct mode (specificationless and therefore fast) ---
% this mode is only applicable when all arguments can be passed as NVPs/structs
if ~direct_mode && any(fmt == 0)
% search for an arg_direct argument
structs = cellfun('isclass',vals,'struct');
indices = find(structs | strcmp(vals,'arg_direct'));
for k = indices(end:-1:1)
if ischar(vals{k}) && k<length(vals)
% found it in the NVPs
direct_mode = vals{k+1};
break;
elseif isfield(vals{k},'arg_direct')
% found it in a struct
direct_mode = vals{k}.arg_direct;
break;
end
end
end
if direct_mode
% --- direct mode: quickly collect NVPs from the arguments and produce a result ---
% obtain flat NVP list
if any(structs(1:2:end))
vals = flatten_structs(vals); end
if nargout
% get names & values
names = vals(1:2:end);
values = vals(2:2:end);
% use only the last assignment for each name
[s,indices] = sort(names);
indices(strcmp(s(1:end-1),s(2:end))) = [];
% build & return a struct
res = cell2struct(values(indices),names(indices),2);
else
% place the arguments in the caller's workspace
for k=1:2:length(vals)
assignin('caller',vals{k},vals{k+1}); end
end
try
% also return the arguments in NVP form
assignin('caller','arg_nvps',vals);
catch
% this operation might be disallowed under some circumstances
end
else
% --- full parsing mode: determine the reporting type ---
% usually, the reporting type is 'none', except if called (possibly indirectly) by
% arg_report('type', ...): in this case, the reporting type is 'type' reporting is a special way to
% call arg_define, which requests the argument specification, so that it can be displayed by GUIs,
% etc.
%
% * 'none' normal execution: arg_define returns a Struct of Values to the Function or assigns the
% Struct's fields to the Function's workspace
% * 'rich' arg_define yields a rich specifier list to arg_report(), basically an array of specifier
% structs (see arg_specifier for the field names)
% * 'lean' arg_define yields a lean specifier list to arg_report(), basically an array of specifier
% structs but without alternatives for multi-option specifiers
% * 'vals' arg_define yields a struct of values to arg_report(), wich can subsequently be used as
% the full specification of arguments to pass to the Function
try
throw; %#ok<LTARG> % faster than error()
catch context
names = {context.stack(3:min(6,end)).name}; % function names at the considered levels of indirection...
matches = find(strncmp(names,'arg_report_',11)); % ... which start with 'arg_report_'
if isempty(matches)
reporting_type = 'none'; % no report requested (default case)
else
% the reporting type is the suffix of the deepest arg_report_* function in the call stack
reporting_type = names{matches(end)}(11+1:end);
end
end
% --- deal with 'handle' and 'properties' reports ---
if strcmp(reporting_type,'handle')
% very special report type: 'handle'--> this asks for function handles to nested / scoped
% functions. unfortunately, these cannot be obtained using standard MATLAB functionality.
if ~iscellstr(vals)
error('The arguments passed for handle report must denote function names.'); end
unresolved = {};
for f=1:length(vals)
% resolve each function name in the caller scope
funcs{f} = evalin('caller',['@' vals{f}]);
% check if the function could be retrieved
tmp = functions(funcs{f});
if isempty(tmp.file)
unresolved{f} = vals{f}; end
end
if ~isempty(unresolved)
% search the remaining ones in the specification
for f=find(~cellfun('isempty',unresolved))
funcs{f} = hlp_microcache('findfunction',@find_function_cached,spec,vals{f}); end
end
% report it
if length(funcs) == 1
funcs = funcs{1}; end
arg_issuereport(funcs);
elseif strcmp(reporting_type,'properties')
% 'properties' report, but no properties were declared
arg_issuereport(struct());
end
% --- one-time evaluation of the Specification list into a struct array ---
% evaluate the specification or retrieve it from cache
[spec,all_names,joint_names,remap] = hlp_microcache('spec',@evaluate_spec,spec,reporting_type,nargout==0);
% --- transform vals to a pure list of name-value pairs (NVPs) ---
if length(fmt) == 2
if fmt(1) ~= 0 || fmt(2) <= 0
% This error is thrown when the first parameter to arg_define() was not a cell array (i.e., not varargin),
% so that it is taken to denote the optional Format parameter.
% Format is usually a numeric array that specifies the number of positional arguments that are
% accepted by the function, and if numeric, it can only be either a number or a two-element array
% that contains 0 and a non-zero number.
error('For two-element formats, the first entry must be 0 and the second entry must be > 0.');
end
% there are two possible options: either 0 arguments are positional, or k arguments are
% positional; assuming at first that 0 arguments are positional, splice substructs into one
% uniform NVP list (this is because structs are allowed instead of individual NVPs)
if any(cellfun('isclass',vals(1:2:end),'struct'))
nvps = flatten_structs(vals);
else
nvps = vals;
end
% check if all the resulting names are in the set of allowed names (a disambiguation
% condition in this case)
if iscellstr(nvps(1:2:end))
try
disallowed_nvp = fast_setdiff(nvps(1:2:end),[joint_names {'arg_selection','arg_direct'}]);
catch
disallowed_nvp = setdiff(nvps(1:2:end),[joint_names {'arg_selection','arg_direct'}]);
end
else
disallowed_nvp = {'or the sequence of names and values was confused'};
end
if isempty(disallowed_nvp)
% the assumption was correct: 0 arguments are positional
fmt = 0;
else
% the assumption was violated: k arguments are positional, and we enfore strict naming
% for the remaining ones (i.e. names must be in the Specification).
strict_names = true;
fmt = fmt(2);
end
elseif fmt == 0
% 0 arguments are positional
nvps = flatten_structs(vals);
elseif fmt > 0
% k arguments are positional, the rest are NVPs (no need to enforce strict naming here)
strict_names = false;
else
% This error refers to the optional Format argument.
error('Negative or NaN formats are not allowed.');
end
% (from now on fmt holds the determined # of positional arguments)
if fmt > 0
% the first k arguments are positional
% Find out if we are being called by another arg_define; in this case, this definition
% appears inside an arg_sub/arg_*, and the values passed to the arg_define are part of the
% defaults declaration of one of these. If these defaults are specified positionally, the
% first k arg_norep() arguments in Specification are implicitly skipped.
if ~strcmp(reporting_type,'none') && any(strcmp('arg_define',{context.stack(2:end).name}));
% we implicitly skip the leading non-reportable arguments in the case of positional
% assignment (assuming that these are supplied by the outer function), by shifting the
% name/value assignment by the appropriate number of places
shift_positionals = min(fmt,find([spec.reportable],1)-1);
else
shift_positionals = 0;
end
% get the effective number of positional arguments
fmt = min(fmt,length(vals)+shift_positionals);
% the NVPs begin only after the k'th argument (defined by the Format)
nvps = vals(fmt+1-shift_positionals:end);
% splice in any structs
if any(cellfun('isclass',nvps(1:2:end),'struct'))
nvps = flatten_structs(nvps); end
% do minimal error checking...
if ~iscellstr(nvps(1:2:end))
% If you are getting this error, the order of names and values passed as name-value pairs
% to the function in question was likely mixed up. The error mentions structs because it
% is also allowed to pass in a struct in place of any 'name',value pair.
error('Some of the specified arguments that should be names or structs, are not.');
end
if strict_names
% enforce strict names
try
disallowed_pos = fast_setdiff(nvps(1:2:end),[joint_names {'arg_selection','arg_direct'}]);
catch
disallowed_pos = setdiff(nvps(1:2:end),[joint_names {'arg_selection','arg_direct'}]);
end
if ~isempty(disallowed_pos)
% If you are getting this error, it is most likely due to a mis-typed argument name
% in the list of name-value pairs passed to the function in question.
%
% Because some functions may support also positional arguments, it is also possible
% that something that was supposed to be the value for one of the positional
% arguments was interpreted as part of the name-value pairs lit that may follow the
% positional arguments of the function. This error is likely because the wrong number
% of positional arguments was passed (a safer alternative is to instead pass everything
% by name).
error(['Some of the specified arguments do not appear in the argument specification; ' format_cellstr(disallowed_pos) '.']);
end
end
try
% remap the positionals (everything up to the k'th argument) into an NVP list, using the
% code names
poss = [cellfun(@(x)x{1},all_names(shift_positionals+1:fmt),'UniformOutput',false); vals(1:fmt-shift_positionals)];
catch
if strict_names
% maybe the user intended to pass 0 positionals, but used some disallowed names
error(['Apparently, some of the used argument names are not known to the function: ' format_cellstr(disallowed_nvp) '.']);
else
error(['The first ' fmt ' arguments must be passed by position, and the remaining ones must be passed by name (either in name-value pairs or structs).']);
end
end
% ... and concatenate them with the remaining NVPs into one big NVP list
nvps = [poss(:)' nvps];
end
% --- assign values to names using the assigner functions of the spec ---
for k=1:2:length(nvps)
if isfield(remap,nvps{k})
idx = remap.(nvps{k});
spec(idx) = spec(idx).assigner(spec(idx),nvps{k+1});
else
% append it to the spec (note: this might need some optimization... it would be better
% if the spec automatically contained the arg_selection field)
tmp = arg_nogui(nvps{k},nvps{k+1});
spec(end+1) = tmp{1}([],tmp{2}{:});
end
end
% --- if requested, yield a 'vals', 'lean' or 'rich' report ---
if ~strcmp(reporting_type,'none')
% but deliver only the reportable arguments, and only if the values are not unassigned
tmp = spec([spec.reportable] & ~strcmp(unassigned,{spec.value}));
if strcmp(reporting_type,'vals')
tmp = arg_tovals(tmp); end
arg_issuereport(tmp);
end
% --- otherwise post-process the outputs and create a result struct to pass to the Function ---
% generate errors for mandatory arguments that were not assigned
missing_entries = strcmp(mandatory,{spec.value});
if any(missing_entries)
missing_names = cellfun(@(x)x{1},{spec(missing_entries).names},'UniformOutput',false);
error(['The arguments ' format_cellstr(missing_names) ' were unspecified but are mandatory.']);
end
% strip non-returned arguments, and convert it all to a struct of values
res = arg_tovals(spec);
% also emit a final NVPs list
tmp = [fieldnames(res) struct2cell(res)]';
try
assignin('caller','arg_nvps',tmp(:)');
catch
% this operation might be disallowed under some circumstances
end
% if requested, place the arguments in the caller's workspace
if nargout==0
for fn=fieldnames(res)'
assignin('caller',fn{1},res.(fn{1})); end
end
end
% substitute any structs in place of a name-value pair into the name-value list
function args = flatten_structs(args)
k = 1;
while k <= length(args)
if isstruct(args{k})
tmp = [fieldnames(args{k}) struct2cell(args{k})]';
args = [args(1:k-1) tmp(:)' args(k+1:end)];
k = k+numel(tmp);
else
k = k+2;
end
end
% evaluate a specification into a struct array
function [spec,all_names,joint_names,remap] = evaluate_spec(spec,reporting_type,require_namecheck)
if strcmp(reporting_type,'rich')
subreport_type = 'rich';
else
subreport_type = 'lean';
end
% evaluate the functions to get (possibly arrays of) specifier structs
for k=1:length(spec)
spec{k} = spec{k}{1}(subreport_type,spec{k}{2}{:}); end
% concatenate the structs to one big struct array
spec = [spec{:}];
% make sure that spec has the correct fields, even if empty
if isempty(spec)
spec = arg_specifier;
spec = spec([]);
end
% obtain the argument names and the joined names
all_names = {spec.names};
joint_names = [all_names{:}];
% create a name/index remapping table
remap = struct();
for n=1:length(all_names)
for k=1:length(all_names{n})
remap.(all_names{n}{k}) = n; end
end
% check for duplicate argument names in the Specification
sorted_names = sort(joint_names);
duplicates = joint_names(strcmp(sorted_names(1:end-1),sorted_names(2:end)));
if ~isempty(duplicates)
error(['The names ' format_cellstr(duplicates) ' refer to multiple arguments.']); end
% if required, check for name clashes with functions on the path
% (this is due to a glitch in MATLAB's handling of variables that were assigned to a function's scope
% from the outside, which are prone to clashes with functions on the path...)
if require_namecheck && strcmp(reporting_type,'none')
try
check_names(cellfun(@(x)x{1},all_names,'UniformOutput',false));
catch e
disp_once('The function check_names failed; reason: %s',e.message);
end
end
% check for name clashes (once)
function check_names(code_names)
persistent name_table;
if ~isstruct(name_table)
name_table = struct(); end
for name_cell = fast_setdiff(code_names,fieldnames(name_table))
current_name = name_cell{1};
existing_func = which(current_name);
if ~isempty(existing_func)
if ~exist('function_caller','var')
function_caller = hlp_getcaller(4);
if function_caller(1) == '@'
function_caller = hlp_getcaller(14); end
end
if isempty(strfind(existing_func,'Java method'))
[path_part,file_part,ext_part] = fileparts(existing_func);
if ~any(strncmp('@',hlp_split(path_part,filesep),1))
% If this happens, it means that there is a function in one of the directories in
% MATLAB's path which has the same name as an argument of the specification. If this
% argument variable is copied into the function's workspace by arg_define, most MATLAB
% versions will (incorrectly) try to call that function instead of accessing the
% variable. I hope that they handle this issue at some point. One workaround is to use
% a longer argument name (that is less likely to clash) and, if it should still be
% usable for parameter passing, to retain the old name as a secondary or ternary
% argument name (using a cell array of names in arg()). The only really good
% solution at this point is to generally assign the output of arg_define to a
% struct.
disp([function_caller ': The argument name "' current_name '" clashes with the function "' [file_part ext_part] '" in directory "' path_part '"; it is strongly recommended that you either rename the function or remove it from the path.']);
end
else
% these Java methods are probably spurious "false positives" of the which() function
disp([function_caller ': There is a Java method named "' current_name '" on your path; if you experience any name clash with it, please report this issue.']);
end
end
name_table.(current_name) = existing_func;
end
% recursively find a function handle by name in a specification
% the first occurrence of a handle to a function with the given name is returned
function r = find_function(spec,name)
r = [];
for k=1:length(spec)
if isa(spec(k).value,'function_handle') && strcmp(char(spec(k).value),name)
r = spec(k).value;
return;
elseif ~isempty(spec(k).alternatives)
for n = 1:length(spec(k).alternatives)
r = find_function(spec(k).alternatives{n},name);
if ~isempty(r)
return; end
end
elseif ~isempty(spec(k).children)
r = find_function(spec(k).children,name);
if ~isempty(r)
return; end
end
end
% find a function handle by name in a specification
function f = find_function_cached(spec,name)
% evaluate the functions to get (possibly arrays of) specifier structs
for k=1:length(spec)
spec{k} = spec{k}{1}('rich',spec{k}{2}{:}); end
% concatenate the structs to one big struct array
spec = [spec{:}];
% now search the function in it
f = find_function(spec,name);
% format a non-empty cell-string array into a string
function x = format_cellstr(x)
x = ['{' sprintf('%s, ',x{1:end-1}) x{end} '}'];
|
github
|
lcnbeapp/beapp-master
|
arg_guidialog_old.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_guidialog_old.m
| 8,955 |
utf_8
|
4da1a90f92312aea4043460655d5f6aa
|
function params = arg_guidialog(func,varargin)
% Create an input dialog that displays input fields for a Function and Parameters.
% Parameters = arg_guidialog(Function, Options...)
%
% The Parameters that are passed to the function can be used to override some of its defaults.
% The function must declare its arguments via arg_define. In addition, only a Subset of the function's specified arguments can be displayed.
%
% In:
% Function : the function for which to display arguments
%
% Options... : optional name-value pairs; possible names are:
% 'Parameters' : cell array of parameters to the Function to override some of its defaults.
%
% 'Subset' : Cell array of argument names to which the dialog shall be restricted; these arguments may contain . notation to index
% into arg_sub and the selected branch(es) of arg_subswitch/arg_subtoggle specifiers.
% Empty cells show up in the dialog as empty rows.
%
% 'Title' : title of the dialog (by default: functionname())
%
% Out:
% Parameters : a struct that is a valid input to the Function.
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-10-24
% parse arguments...
hlp_varargin2struct(varargin,{'params','Parameters'},{}, {'subset','Subset'},{}, {'dialogtitle','title','Title'}, [char(func) '()'], {'buttons','Buttons'},[]);
% obtain the argument specification for the function
rawspec = arg_report('rich', func, params); %#ok<*NODEF>
% extract a list of sub arguments...
if ~isempty(subset) && subset{1}==-1
% user specified a set of items to *exclude*
% convert subset to setdiff(all-arguments,subset)
allnames = fieldnames(arg_tovals(rawspec));
subset(1) = [];
subset = allnames(~ismember(allnames,[subset 'arg_direct']));
end
[spec,subset] = obtain_items(rawspec,subset);
% create an inputgui() dialog...
geometry = repmat({[0.6 0.35]},1,length(spec)+length(buttons)/2);
geomvert = ones(1,length(spec)+length(buttons)/2);
% turn the spec into a UI list...
uilist = {};
for k = 1:length(spec)
s = spec{k};
if isempty(s)
uilist(end+1:end+2) = {{} {}};
else
if isempty(s.help)
error(['Cannot display the argument ' subset{k} ' because it contains no description.']);
else
tag = subset{k};
uilist{end+1} = {'Style','text', 'string',s.help{1}, 'fontweight','bold'};
% depending on the type, we introduce different types of input widgets here...
if iscell(s.range) && strcmp(s.type,'char')
% string popup menu
uilist{end+1} = {'Style','popupmenu', 'string',s.range,'value',find(strcmp(s.value,s.range)),'tag',tag};
elseif strcmp(s.type,'logical')
if length(s.range)>1
% multiselect
uilist{end+1} = {'Style','listbox', 'string',s.range, 'value',find(ismember(s.range,s.value)),'tag',tag,'min',1,'max',100000};
geomvert(k) = min(3.5,length(s.range));
else
% checkbox
uilist{end+1} = {'Style','checkbox', 'string','(set)', 'value',double(s.value),'tag',tag};
end
elseif strcmp(s.type,'char')
% string edit
uilist{end+1} = {'Style','edit', 'string', s.value,'tag',tag};
else
% expression edit
if isinteger(s.value)
s.value = double(s.value); end
uilist{end+1} = {'Style','edit', 'string', hlp_tostring(s.value),'tag',tag};
end
% append the tooltip string
if length(s.help) > 1
uilist{end} = [uilist{end} 'tooltipstring', regexprep(s.help{2},'\.\s+(?=[A-Z])','.\n')]; end
end
end
if ~isempty(buttons) && k==buttons{1}
% render a command button
uilist(end+1:end+2) = {{} buttons{2}};
buttons(1:2) = [];
end
end
% invoke the GUI, obtaining a list of output values...
[outs,dummy,okpressed] = inputgui('geometry',geometry, 'uilist',uilist,'helpcom','disp(''coming soon...'')', 'title',dialogtitle,'geomvert',geomvert);
if ~isempty(okpressed)
% remove blanks from the spec
spec = spec(~cellfun('isempty',spec));
subset = subset(~cellfun('isempty',subset));
% turn the raw specification into a parameter struct (a non-direct one, since we will mess with it)
params = arg_tovals(rawspec,false);
% for each parameter produced by the GUI...
for k = 1:length(outs)
s = spec{k}; % current specifier
v = outs{k}; % current raw value
% do type conversion according to spec
if iscell(s.range) && strcmp(s.type,'char')
v = s.range{v};
elseif strcmp(s.type,'expression')
v = eval(v);
elseif strcmp(s.type,'logical')
if length(s.range)>1
v = s.range(v);
else
v = logical(v);
end
elseif strcmp(s.type,'char')
% noting to do
else
if ~isempty(v)
v = eval(v); % convert back to numeric (or object, or cell) value
end
end
% assign the converted value to params struct...
params = assign(params,subset{k},v);
end
% now send the result through the function to check for errors and obtain a values structure...
params = arg_report('rich',func,{params});
params = arg_tovals(params,false);
else
params = [];
end
% obtain a cell array of spec entries by name from the given specification
function [items,ids] = obtain_items(rawspec,requested,prefix)
if ~exist('prefix','var')
prefix = ''; end
items = {};
ids = {};
% determine what subset of (possibly nested) items is requested
if isempty(requested)
% look for a special argument/property arg_dialogsel, which defines the standard dialog representation for the given specification
dialog_sel = find(cellfun(@(x)any(strcmp(x,'arg_dialogsel')),{rawspec.names}));
if ~isempty(dialog_sel)
requested = rawspec(dialog_sel).value; end
end
if isempty(requested)
% empty means that all items are requested
for k=1:length(rawspec)
items{k} = rawspec(k);
ids{k} = [prefix rawspec(k).names{1}];
end
else
% otherwise we need to obtain those items
for k=1:length(requested)
if ~isempty(requested{k})
try
items{k} = obtain(rawspec,requested{k});
catch
error(['The specified identifier (' prefix requested{k} ') could not be found in the function''s declared arguments.']);
end
ids{k} = [prefix requested{k}];
end
end
end
% splice items that have children (recursively) into this list
for k = length(items):-1:1
% special case: switch arguments are not spliced, but instead the argument that defines the option popupmenu will be retained
if ~isempty(items{k}) && ~isempty(items{k}.children) && (~iscellstr(items{k}.range) || isempty(requested))
[subitems, subids] = obtain_items(items{k}.children,{},[ids{k} '.']);
if ~isempty(subitems)
% and introduce blank rows around them
items = [items(1:k-1) {{}} subitems {{}} items(k+1:end)];
ids = [ids(1:k-1) {{}} subids {{}} ids(k+1:end)];
end
end
end
% remove items that cannot be displayed
retain = cellfun(@(x)isempty(x)||x.displayable,items);
items = items(retain);
ids = ids(retain);
% remove double blank rows
empties = cellfun('isempty',ids);
items(empties(1:end-1) & empties(2:end)) = [];
ids(empties(1:end-1) & empties(2:end)) = [];
% obtain a spec entry by name from the given specification
function item = obtain(rawspec,identifier)
% parse the . notation
dot = find(identifier=='.',1);
if ~isempty(dot)
[head,rest] = deal(identifier(1:dot-1), identifier(dot+1:end));
else
head = identifier;
rest = [];
end
% search for the identifier at this level
names = {rawspec.names};
for k=1:length(names)
if any(strcmp(names{k},head))
% found a match!
if isempty(rest)
% return it
item = rawspec(k);
else
% obtain the rest of the identifier
item = obtain(rawspec(k).children,rest);
end
return;
end
end
error(['The given identifier (' head ') was not found among the function''s declared arguments.']);
% assign a field with dot notation in a struct
function s = assign(s,id,v)
% parse the . notation
dot = find(id=='.',1);
if ~isempty(dot)
[head,rest] = deal(id(1:dot-1), id(dot+1:end));
if ~isfield(s,head)
s.(head) = struct(); end
s.(head) = assign(s.(head),rest,v);
else
s.(id) = v;
end
|
github
|
lcnbeapp/beapp-master
|
arg_guidialog_ex.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_guidialog_ex.m
| 8,675 |
utf_8
|
82a7c00e1dfc74a921a596040b742fd9
|
function params = arg_guidialog(func,varargin)
% Create an input dialog that displays input fields for a Function and Parameters.
% Parameters = arg_guidialog(Function, Options...)
%
% The Parameters that are passed to the function can be used to override some of its defaults.
% The function must declare its arguments via arg_define. In addition, only a Subset of the function's specified arguments can be displayed.
%
% In:
% Function : the function for which to display arguments
%
% Options... : optional name-value pairs; possible names are:
% 'Parameters' : cell array of parameters to the Function to override some of its defaults.
%
% 'Subset' : Cell array of argument names to which the dialog shall be restricted; these arguments may contain . notation to index
% into arg_sub and the selected branch(es) of arg_subswitch/arg_subtoggle specifiers.
% Empty cells show up in the dialog as empty rows.
%
% 'Title' : title of the dialog (by default: functionname())
%
% Out:
% Parameters : a struct that is a valid input to the Function.
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-10-24
% parse arguments...
hlp_varargin2struct(varargin,{'params','Parameters'},{}, {'subset','Subset'},{}, {'dialogtitle','title','Title'}, [char(func) '()'], {'buttons','Buttons'},[]);
% obtain the argument specification for the function
rawspec = arg_report('rich', func, params); %#ok<*NODEF>
% extract a list of sub arguments...
[spec,subset] = obtain_items(rawspec,subset);
% create an inputgui() dialog...
geometry = repmat({[0.6 0.35]},1,length(spec)+length(buttons)/2);
geomvert = ones(1,length(spec)+length(buttons)/2);
% turn the spec into a UI list...
uilist = {};
for k = 1:length(spec)
s = spec{k};
if isempty(s)
uilist(end+1:end+2) = {{} {}};
else
if isempty(s.help)
error(['Cannot display the argument ' subset{k} ' because it contains no description.']);
else
tag = subset{k};
uilist{end+1} = {'Style','text', 'string',s.help{1}, 'fontweight','bold'};
% depending on the type, we introduce different types of input widgets here...
if iscell(s.range) && strcmp(s.type,'char')
% string popup menu
uilist{end+1} = {'Style','popupmenu', 'string',s.range,'value',find(strcmp(s.value,s.range)),'tag',tag};
elseif strcmp(s.type,'logical')
if length(s.range)>1
% multiselect
uilist{end+1} = {'Style','listbox', 'string',s.range, 'value',find(strcmp(s.value,s.range)),'tag',tag,'min',1,'max',100000};
geomvert(k) = min(3.5,length(s.range));
else
% checkbox
uilist{end+1} = {'Style','checkbox', 'string','(set)', 'value',double(s.value),'tag',tag};
end
elseif strcmp(s.type,'char')
% string edit
uilist{end+1} = {'Style','edit', 'string', s.value,'tag',tag};
else
% expression edit
if isinteger(s.value)
s.value = double(s.value); end
uilist{end+1} = {'Style','edit', 'string', hlp_tostring(s.value),'tag',tag};
end
% append the tooltip string
if length(s.help) > 1
uilist{end} = [uilist{end} 'tooltipstring', regexprep(s.help{2},'\.\s+(?=[A-Z])','.\n')]; end
end
end
if ~isempty(buttons) && k==buttons{1}
% render a command button
uilist(end+1:end+2) = {{} buttons{2}};
buttons(1:2) = [];
end
end
% invoke the GUI, obtaining a list of output values...
[outs,dummy,okpressed] = inputgui('geometry',geometry, 'uilist',uilist,'helpcom','disp(''coming soon...'')', 'title',dialogtitle,'geomvert',geomvert);
if ~isempty(okpressed)
% remove blanks from the spec
spec = spec(~cellfun('isempty',spec));
subset = subset(~cellfun('isempty',subset));
% turn the raw specification into a parameter struct (a non-direct one, since we will mess with it)
params = arg_tovals(rawspec,false);
% for each parameter produced by the GUI...
for k = 1:length(outs)
s = spec{k}; % current specifier
v = outs{k}; % current raw value
% do type conversion according to spec
if iscell(s.range) && strcmp(s.type,'char')
v = s.range{v};
elseif strcmp(s.type,'expression')
v = eval(v);
elseif strcmp(s.type,'logical')
if length(s.range)>1
v = s.range(v);
else
v = logical(v);
end
elseif strcmp(s.type,'char')
% noting to do
else
if ~isempty(v)
v = eval(v); % convert back to numeric (or object, or cell) value
end
end
% assign the converted value to params struct...
params = assign(params,subset{k},v);
end
% now send the result through the function to check for errors and obtain a values structure...
params = arg_report('rich',func,{params});
params = arg_tovals(params,false);
else
params = [];
end
% obtain a cell array of spec entries by name from the given specification
function [items,ids] = obtain_items(rawspec,requested,prefix)
if ~exist('prefix','var')
prefix = ''; end
items = {};
ids = {};
% determine what subset of (possibly nested) items is requested
if isempty(requested)
% look for a special argument/property arg_dialogsel, which defines the standard dialog representation for the given specification
dialog_sel = find(cellfun(@(x)any(strcmp(x,'arg_dialogsel')),{rawspec.names}));
if ~isempty(dialog_sel)
requested = rawspec(dialog_sel).value; end
end
if isempty(requested)
% empty means that all items are requested
for k=1:length(rawspec)
items{k} = rawspec(k);
ids{k} = [prefix rawspec(k).names{1}];
end
else
% otherwise we need to obtain those items
for k=1:length(requested)
if ~isempty(requested{k})
try
items{k} = obtain(rawspec,requested{k});
catch
error(['The specified identifier (' prefix requested{k} ') could not be found in the function''s declared arguments.']);
end
ids{k} = [prefix requested{k}];
end
end
end
% splice items that have children (recursively) into this list
for k = length(items):-1:1
% special case: switch arguments are not spliced, but instead the argument that defines the option popupmenu will be retained
if ~isempty(items{k}) && ~isempty(items{k}.children) && (~iscellstr(items{k}.range) || isempty(requested))
[subitems, subids] = obtain_items(items{k}.children,{},[ids{k} '.']);
if ~isempty(subitems)
% and introduce blank rows around them
items = [items(1:k-1) {{}} subitems {{}} items(k+1:end)];
ids = [ids(1:k-1) {{}} subids {{}} ids(k+1:end)];
end
end
end
% remove items that cannot be displayed
retain = cellfun(@(x)isempty(x)||x.displayable,items);
items = items(retain);
ids = ids(retain);
% remove double blank rows
empties = cellfun('isempty',ids);
items(empties(1:end-1) & empties(2:end)) = [];
ids(empties(1:end-1) & empties(2:end)) = [];
% obtain a spec entry by name from the given specification
function item = obtain(rawspec,identifier)
% parse the . notation
dot = find(identifier=='.',1);
if ~isempty(dot)
[head,rest] = deal(identifier(1:dot-1), identifier(dot+1:end));
else
head = identifier;
rest = [];
end
% search for the identifier at this level
names = {rawspec.names};
for k=1:length(names)
if any(strcmp(names{k},head))
% found a match!
if isempty(rest)
% return it
item = rawspec(k);
else
% obtain the rest of the identifier
item = obtain(rawspec(k).children,rest);
end
return;
end
end
error(['The given identifier (' head ') was not found among the function''s declared arguments.']);
% assign a field with dot notation in a struct
function s = assign(s,id,v)
% parse the . notation
dot = find(id=='.',1);
if ~isempty(dot)
[head,rest] = deal(id(1:dot-1), id(dot+1:end));
if ~isfield(s,head)
s.(head) = struct(); end
s.(head) = assign(s.(head),rest,v);
else
s.(id) = v;
end
|
github
|
lcnbeapp/beapp-master
|
invoke_arg_internal.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/invoke_arg_internal.m
| 4,456 |
utf_8
|
cde8b4f57b2bc16a8b03c45c255fe35d
|
function spec = invoke_arg_internal(reptype,varargin) %#ok<INUSL>
% same type of invoke function as in arg_sub, arg_subswitch, etc. - but shared between
% arg, arg_norep, and arg_nogui
spec = hlp_microcache('arg',@invoke_arg,varargin{:});
% the function that does the actual work of building the argument specifier
function spec = invoke_arg(names,default,range,help,varargin)
% start with a base specification
spec = arg_specifier('head',@arg);
% override properties
if exist('names','var')
spec.names = names; end
if exist('default','var')
spec.value = default; end
if exist('range','var')
spec.range = range; end
if exist('help','var')
spec.help = help; end
for k=1:2:length(varargin)
if isfield(spec,varargin{k})
spec.(varargin{k}) = varargin{k+1};
else
error('BCILAB:arg:no_new_fields','It is not allowed to introduce fields into a specifier that are not declared in arg_specifier.');
end
end
% do fixups & checking
if ~iscell(spec.names)
spec.names = {spec.names}; end
if isempty(spec.names) || ~iscellstr(spec.names)
error('The argument must have a name or cell array of names.'); end
% parse the help
if ~isempty(spec.help)
try
spec.help = parse_help(spec.help);
catch e
disp(['Problem with the help text for argument ' spec.names{1} ': ' e.message]);
spec.help = {};
end
elseif spec.reportable && spec.displayable
disp(['Please specify a description for argument ' spec.names{1} ', or specify it via arg_nogui() instead.']);
end
% do type inference
[spec.type,spec.shape,spec.range,spec.value] = infer_type(spec.type,spec.shape,spec.range,spec.value);
% infer the type & range of the argument, based on provided info (note: somewhat messy)
function [type,shape,range,value] = infer_type(type,shape,range,value)
try
if isempty(type)
% try to auto-discover the type (or leave empty, if impossible)
if ~isempty(value)
type = PropertyType.AutoDiscoverType(value);
elseif ~isempty(range)
if isnumeric(range)
type = PropertyType.AutoDiscoverType(range);
elseif iscell(range)
types = cellfun(@PropertyType.AutoDiscoverType,range,'UniformOutput',false);
if length(unique(types)) == 1
type = types{1}; end
end
end
end
if isempty(shape)
% try to auto-discover the shape
if ~isempty(value)
shape = PropertyType.AutoDiscoverShape(value);
elseif ~isempty(range)
if isnumeric(range)
shape = 'scalar';
elseif iscell(range)
shapes = cellfun(@PropertyType.AutoDiscoverShape,range,'UniformOutput',false);
if length(unique(shapes)) == 1
shape = shapes{1}; end
end
end
end
catch
end
% rule: if in doubt, fall back to denserealdouble and/or matrix
if isempty(type)
type = 'denserealdouble'; end
if isempty(shape)
shape = 'matrix'; end
% rule: if both the value and the range are cell-string arrays, the type is 'logical';
% this means that the value is a subset of the range
if iscellstr(value) && iscellstr(range)
type = 'logical'; end
% rule: if the value is empty, but the range is a cell-string array and the type is not 'logical',
% the value is the first range element; here, the value is exactly one out of the possible
% strings in range (and cannot be empty)
if isempty(value) && iscellstr(range) && ~strcmp(type,'logical')
value = range{1}; end
% rule: if the value is an empty char array, the shape is by default 'row'
if isequal(value,'') && ischar(value)
shape = 'row'; end
% rule: if the value is []; convert to the appropriate MATLAB type (e.g., int, etc.)
if isequal(value,[])
if strcmp(type,'cellstr')
value = {};
else
try
pt = PropertyType(type,shape,range);
value = pt.ConvertFromMatLab(value);
catch
end
end
end
% rule: if the value is a logical scalar and the type is logical, and the range is a cell-string
% array (i.e. a set of strings), the value is mapped to either the entire set or the empty set
% (i.e. either all elements are in, or none)
if isscalar(value) && islogical(value) && strcmp(type,'logical') && iscell(range)
if value
value = range;
else
value = {};
end
end
|
github
|
lcnbeapp/beapp-master
|
arg_report.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_report.m
| 6,925 |
utf_8
|
eb8f94b9fd0693dbde5cbfa2824b7e8d
|
function res = arg_report(type,func,args)
% Report information of a certain Type from the given Function.
% Result = arg_report(Type,Function,Arguments)
%
% Functions that declare their arguments via arg_define() make their parameter specification
% accessible to outside functions. This can be used to display auto-generated settings dialogs, to
% record function calls, and so on.
%
% Varying amounts of meta-data can be obtained in addition to the raw parameter values, including
% just the bare-bones value struct ('vals'), the meta-data associated with the passed arguments,
% and the full set of meta-data for all possible options (for multi-option parameters), even if these
% options were not actually prompted by the Arguments.
%
% In:
% Type : Type of information to report, can be one of the following:
% 'rich' : Report a rich declaration of the function's arguments as a struct array, with
% fields as in arg_specifier.
% 'lean' : Report a lean declaration of the function's arguments as a struct array, with
% fields as in arg_specifier, like rich, but excluding the alternatives field.
% 'vals' : Report the values of the function's arguments as a struct, possibly with
% sub-structs.
%
% 'properties' : Report properties of the function, if any (these can be declared via
% declare_properties)
%
% 'handle': Report function handles to scoped functions within the Function (i.e.,
% subfunctions). The named of those functions are listed as a cell string array
% in place of Arguments, unless there is exactly one returned function. Then,
% this function is returned as-is. This functionality is a nice-to-have feature
% for some use cases but not essential to the operation of the argument system.
%
% Function : a function handle to a function which defines some arguments (via arg_define)
%
% Arguments : cell array of parameters to be passed to the function; depending on the function's
% implementation, this can affect the current value assignment (or structure) of the
% parameters being returned If this is not a cell, it is automatically wrapped inside
% one (note: to specify the first positional argument as [] to the function, always
% pass it as {[]}; this is only relevant if the first argument's default is non-[]).
%
% Out:
% Result : the reported data.
%
% Notes:
% In all cases except 'properties', the Function must use arg_define() to define its arguments.
%
% Examples:
% % for a function call with some arguments assigned, obtain a struct with all parameter
% % names and values, including defaults
% params = arg_report('vals',@myfunction,{4,10,true,'option1','xxx','option5',10})
%
% % obtain a specification of all function arguments, with defaults, help text, type, shape, and other
% % meta-data (with a subset of settings customized according to arguments)
% spec = arg_report('rich',@myfunction,myarguments)
%
% % obtain a report of properties of the function (declared via declared_properties() within the
% % function)
% props = arg_report('properties',@myfunction)
%
% See also:
% arg_define, declare_properties
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-09-24
% uniformize arguments
if ~exist('args','var')
args = {}; end
if isequal(args,[])
args = {}; end
if ~iscell(args)
args = {args}; end
if ischar(func)
func = str2func(func); end
% make sure that the direct mode is disabled for the function being called (because in direct mode
% it doesn't report)
indices = find(cellfun('isclass',args,'struct') | strcmp(args,'arg_direct'));
for k = indices(end:-1:1)
if ischar(args{k}) && k<length(args)
% found it in the NVPs
args{k+1} = false;
break;
elseif isfield(args{k},'arg_direct')
% found it in a struct
args{k}.arg_direct = false;
break;
end
end
if any(strcmpi(type,{'rich','lean','vals','handle'}))
% issue the report
res = do_report(type,func,args);
elseif strcmpi(type,'properties')
if isempty(args)
% without arguments we can do a quick hash map lookup
% (based on the MD5 hash of the file in question)
info = functions(func);
hash = ['h' utl_fileinfo(info.file,char(func))];
try
% try lookup
persistent cached_properties; %#ok<TLEV>
res = cached_properties.(hash);
catch
% fall back to actually reporting it
res = do_report('properties',func,args);
% and store it for the next time
cached_properties.(hash) = res;
end
else
% with arguments we don't try to cache (as the properties might be argument-dependent)
res = do_report('properties',func,args);
end
end
function res = do_report(type,func,args)
global tracking;
persistent have_expeval;
if isempty(have_expeval)
have_expeval = exist('exp_eval','file'); end
try
% the presence of one of the arg_report_*** functions in the stack communicates to the receiver
% that a report is requested and what type of report...
feval(['arg_report_' lower(type)],func,args,have_expeval);
catch report
if strcmp(report.identifier,'BCILAB:arg:report_args')
% get the ticket of the report
ticket = sscanf(report.message((find(report.message=='=',1,'last')+1):end),'%f');
% read out the payload
res = tracking.arg_sys.reports{ticket};
% and return the ticket
tracking.arg_sys.tickets.addLast(ticket);
else
% other error:
if strcmp(type,'properties')
% almost certainly no properties clause defined
res = {};
else
% genuine error: pass it on
rethrow(report);
end
end
end
% --- a bit of boilerplate below (as the caller's name is relevant here) ---
function arg_report_rich(func,args,have_expeval) %#ok<DEFNU>
if have_expeval && nargout(func) > 0
exp_eval(func(args{:}));
else
func(args{:});
end
function arg_report_lean(func,args,have_expeval) %#ok<DEFNU>
if have_expeval && nargout(func) > 0
exp_eval(func(args{:}));
else
func(args{:});
end
function arg_report_vals(func,args,have_expeval) %#ok<DEFNU>
if have_expeval && nargout(func) > 0
exp_eval(func(args{:}));
else
func(args{:});
end
function arg_report_handle(func,args,have_expeval) %#ok<DEFNU>
if have_expeval && nargout(func) > 0
exp_eval(func(args{:}));
else
func(args{:});
end
function arg_report_properties(func,args,have_expeval) %#ok<DEFNU>
if have_expeval && nargout(func) > 0
exp_eval(func(args{:}));
else
func(args{:});
end
|
github
|
lcnbeapp/beapp-master
|
arg_subswitch.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_subswitch.m
| 17,047 |
utf_8
|
f8e71db07aba22fedb0dce863f122c40
|
function res = arg_subswitch(varargin)
% Specify a function argument that can be one of several alternative structs.
% Spec = arg_subswitch(Names,Defaults,Alternatives,Help,Options...)
%
% The correct struct is chosen according to a selection rule (the mapper). Accessible to the
% function as a struct, and visible in the GUI as an expandable sub-list of arguments (with a
% drop-down list of alternative options). The chosen option (usually one out of a set of strings) is
% delivered to the Function as the special struct field 'arg_selection'.
%
% In:
% Names : The name(s) of the argument. At least one must be specified, and if multiple are
% specified, they must be passed in a cell array.
% * The first name specified is the argument's "code" name, as it should appear in the
% function's code (= the name under which arg_define() returns it to the function).
% * The second name, if specified, is the "Human-readable" name, which is exposed in the
% GUIs (if omitted, the code name is displayed).
% * Further specified names are alternative names for the argument (e.g., for backwards
% compatibility with older function syntaxes/parameter names).
%
% Defaults : A cell array of arguments to override defaults for the Source (sources declared as
% part of Alternatives); all syntax accepted by the (selected) Source is allowed here,
% whereas in the case of positional arguments, the leading arg_norep() arguments of the
% source are implicitly skipped. Note: Which one out of the several alternatives should
% be selected is determined via the 'mapper' (which can be overridden in form of an
% optional parameter). By default, the mapper maps the first argument to the Selector,
% and assigns the rest to the matching Source.
%
% Alternatives : Definition of the switchable option groups. This is a cell array of the form:
% {{'selector', Source}, {'selector', Source}, {'selector', Source}, ...} Each
% Source is either a function handle (referring to a function that exposes
% arguments via an arg_define() clause), or an in-line cell array of argument
% specifications, analogously to the more detailed explanation in arg_sub(). In the
% latter case (Source is a cell array), the option group may also be a 3-element
% cell array of the form {'selector',Source,Format} ... where Format is a format
% specifier as explained in arg_define().
%
% Help : The help text for this argument (displayed inside GUIs), optional. (default: []).
% (Developers: Please do *not* omit this, as it is the key bridge between ease of use and
% advanced functionality.)
%
% The first sentence should be the executive summary (max. 60 chars), any further sentences
% are a detailed explanation (examples, units, considerations). The end of the first
% sentence is indicated by a '. ' followed by a capital letter (beginning of the next
% sentence). If ambiguous, the help can also be specified as a cell array of 2 cells.
%
% Options... : Optional name-value pairs to denote additional properties:
% 'cat' : The human-readable category of this argument, helpful to present a list
% of many parameters in a categorized list, and to separate "Core
% Parameters" from "Miscellaneous" arguments. Developers: When choosing
% names, every bit of consistency with other function in the toolbox helps
% the uses find their way (default: []).
%
% 'mapper' : A function that maps the value (cell array of arguments like Defaults)
% to a value in the domain of selectors (first output), and a potentially
% updated argument list (second output). The mapper is applied to the
% argument list prior to any parsing (i.e. it faces the raw argument
% list) to determine the current selection, and its second output (the
% potentially updated argument list) is forwarded to the Source that was
% selected, for further parsing.
%
% The default mapper takes the first argument in the argument list as the
% Selector and passes the remaining list entries to the Source. If there
% is only a single argument that is a struct with a field
% 'arg_selection', this field's value is taken as the Selector, and the
% struct is passed as-is to the Source.
%
% 'merge': Whether a value (cell array of arguments) assigned to this argument
% should completely replace all arguments of the default, or whether it
% should instead the two cell arrays should be concatenated ('merged'), so
% that defaults are only selectively overridden. Note that for
% concatenation to make sense, the cell array of Defaults cannot be some
% subset of all allowed positional arguments, but must instead either be
% the full set of positional arguments (and possibly some NVPs) or be
% specified as NVPs in the first place.
%
% Out:
% Spec : A cell array, that, when called as spec{1}(reptype,spec{2}{:}), yields a specification of
% the argument, for use by arg_define. Technical note: Upon assignment with a value (via
% the assigner field), the 'children' field of the specifier struct is populated according
% to how the selected (by the mapper) Source (from Alternatives) parses the value into
% arguments. The additional struct field 'arg_selection 'is introduced at this point.
%
% Examples:
% % define a function with a multiple-choice argument, with different sub-arguments for each choice
% % (where the default is 'kmeans'; some valid calls are:
% % myfunction('method','em','flagXY',true)
% % myfunction('flagXY',true, 'method',{'em', 'myarg',1001})
% % myfunction({'vb', 'myarg1',1001, 'myarg2','test'},false)
% % myfunction({'kmeans', struct('arg2','test')})
% function myfunction(varargin)
% arg_define(varargin, ...
% arg_subswitch('method','kmeans',{ ...
% {'kmeans', {arg('arg1',10,[],'argument for kmeans.'), arg('arg2','test',[],'another argument for it.')}, ...
% {'em', {arg('myarg',1000,[],'argument for the EM method.')}, ...
% {'vb', {arg('myarg1',test',[],'argument for the VB method.'), arg('myarg2','xyz',[],'another argument for VB.')} ...
% }, 'Method to use. Three methods are supported: k-means, EM and VB, and each method has optional parameters that can be specified if chosen.'), ...
% arg('flagXY',false,[],'And some flag.'));
%
% % define a function with a multiple-choice argument, where the arguments for the choices come
% % from a different function each
% function myfunction(varargin)
% arg_define(varargin, ...
% arg_subswitch('method','kmeans',{{'kmeans', @kmeans},{'em', @expectation_maximization},{'vb',@variational_bayes}}, 'Method to use. Each has optional parameters that can be specified if chosen.'), ...
% arg('flagXY',false,[],'And some flag.'));
%
% % as before, but specify a different default and override some of the arguments for that default
% function myfunction(varargin)
% arg_define(varargin, ...
% arg_subswitch('method',{'vb','myarg1','toast'},{{'kmeans', @kmeans},{'em', @expectation_maximization},{'vb',@variational_bayes}}, 'Method to use. Each has optional parameters that can be specified if chosen.'), ...
% arg('flagXY',false,[],'And some flag.'));
%
% % specify a custom function to determine the format of the argument (and in particular the
% % mapping of assigned value to chosen selection
% arg_subswitch('method','kmeans',{{'kmeans', @kmeans},{'em',@expectation_maximization},{'vb',@variational_bayes}}, ...
% 'Method to use. Each has optional parameters that can be specified if chosen.', 'mapper',@mymapper), ...
%
% See also:
% arg, arg_nogui, arg_norep, arg_sub, arg_subtoggle, arg_define
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-09-24
% we return a function that an be invoked to yield a specification (its output is cached for
% efficiency) packed in a cell array together with the remaining arguments
res = {@invoke_argsubswitch_cached,varargin};
function spec = invoke_argsubswitch_cached(varargin)
spec = hlp_microcache('arg',@invoke_argsubswitch,varargin{:});
% the function that does the actual work of building the argument specifier
function spec = invoke_argsubswitch(reptype,names,defaults,alternatives,help,varargin)
suppressNames = {};
% start with a base specification
spec = arg_specifier('head',@arg_subswitch, 'type','char', 'shape','row', 'mapper',@map_argsubswitch);
% override properties
if exist('names','var')
spec.names = names; end
if exist('help','var')
spec.help = help; end
for k=1:2:length(varargin)
if isfield(spec,varargin{k})
spec.(varargin{k}) = varargin{k+1};
elseif strcmpi(varargin{k},'suppress')
suppressNames = varargin{k+1};
else
error(['BCILAB:arg:no_new_fields','It is not allowed to introduce fields (here: ' varargin{k} ') into a specifier that are not declared in arg_specifier.']);
end
end
% do checking
if ~iscell(spec.names)
spec.names = {spec.names}; end
if isempty(spec.names) || ~iscellstr(spec.names)
error('The argument must have a name or cell array of names.'); end
if isempty(alternatives)
error('BCILAB:args:no_options','The Alternatives argument for arg_subswitch() may not be omitted.'); end %#ok<*NODEF>
if nargin(spec.mapper) == 1
spec.mapper = @(x,y,z) spec.mapper(x); end
% parse the help
if ~isempty(spec.help)
try
spec.help = parse_help(spec.help,100);
catch e
disp(['Problem with the help text for argument ' spec.names{1} ': ' e.message]);
spec.help = {};
end
elseif spec.reportable && spec.displayable
disp(['Please specify a description for argument ' spec.names{1} ', or specify it via arg_nogui() instead.']);
end
% uniformize Alternatives syntax into {{'selector1',@function1, ...}, {'selector2',@function2, ...}, ...}
if iscellstr(alternatives(1:2:end)) && all(cellfun(@(x)iscell(x)||isa(x,'function_handle'),alternatives(2:2:end)))
alternatives = mat2cell(alternatives,1,repmat(2,length(alternatives)/2,1)); end
% derive range
spec.range = cellfun(@(c)c{1},alternatives,'UniformOutput',false);
% turn Alternatives into a cell array of Source functions
for k=1:length(alternatives)
sel = alternatives{k};
selector = sel{1};
source = sel{2};
if ~ischar(selector)
error('In arg_subswitch, each selector must be a string.'); end
if length(sel) > 2
fmt = sel{3};
else
fmt = [];
end
% uniformize Source syntax...
if iscell(source)
% args is a cell array instead of a function: we effectively turn this into a regular
% arg_define-using function (taking & parsing values)
source = @(varargin) arg_define(fmt,varargin,source{:});
else
% args is a function: was a custom format specified?
if isa(fmt,'function_handle')
source = @(varargin) source(fmt(varargin));
elseif ~isempty(fmt)
error('The only allowed form in which the Format of a Source that is a function may be overridden is as a pre-parser (given as a function handle)'); end
end
alternatives{k} = source;
end
sources = alternatives;
% wrap the defaults into a cell if necessary (note: this is convenience syntax)
if ~iscell(defaults)
if ~(isstruct(defaults) || ischar(defaults))
error(['It is not allowed to use anything other than a cell, a struct, or a (selector) string as default for an arg_subswitch argument (here:' spec.names{1} ')']); end
defaults = {defaults};
end
% find out what index and value set the default configuration maps to; this is relevant for the
% merging option: in this case, we need to pull up the correct default and merge it with the passed
% value
[default_sel,default_val] = spec.mapper(defaults,spec.range,spec.names);
default_idx = find(strcmp(default_sel,spec.range));
% create the regular assigner...
spec.assigner = @(spec,value) assign_argsubswitch(spec,value,reptype,sources,default_idx,default_val,suppressNames);
% and assign the default itself
if strcmp(reptype,'rich')
spec = assign_argsubswitch(spec,defaults,'build',sources,0,{},suppressNames);
else
spec = assign_argsubswitch(spec,defaults,'lean',sources,0,{},suppressNames);
end
function spec = assign_argsubswitch(spec,value,reptype,sources,default_idx,default_val,suppressNames)
% for convenience (in scripts calling the function), also support values that are not cell arrays
if ~iscell(value)
if ~(isstruct(value) || ischar(value))
error(['It is not allowed to assign anything other than a cell, a struct, or a (selector) string to an arg_subswitch argument (here:' spec.names{1} ')']); end
value = {value};
end
% run the mapper to get the selection according to the value (selectors is here for error checking);
% also update the value
[selection,value] = spec.mapper(value,spec.range,spec.names);
% find the appropriate index in the selections...
idx = find(strcmp(selection,spec.range));
% if we should build the set of alternatives, do so now....
if strcmp(reptype,'build')
for n=setdiff(1:length(sources),idx)
arg_sel = arg_nogui('arg_selection',spec.range{n});
spec.alternatives{n} = [arg_report('rich',sources{n}) arg_sel{1}([],arg_sel{2}{:})];
end
reptype = 'rich';
end
% build children and override the appropriate item in the aternatives
arg_sel = arg_nogui('arg_selection',spec.range{idx});
if spec.merge && idx == default_idx
spec.children = [arg_report(reptype,sources{idx},[default_val value]) arg_sel{1}([],arg_sel{2}{:})];
else
spec.children = [arg_report(reptype,sources{idx},value) arg_sel{1}([],arg_sel{2}{:})];
end
% toggle the displayable option for children which should be suppressed
if ~isempty(suppressNames)
% identify which children we want to suppress display
hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.children.names},'UniformOutput',false)));
% set display flag to false
for k=hidden(:)'
spec.children(k).displayable = false;
end
% identify which alternatives we want to suppress display
for alt_idx = 1:length(spec.alternatives)
if isempty(spec.alternatives{alt_idx})
continue; end
hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.alternatives{alt_idx}.names},'UniformOutput',false)));
% set display flag to false
for k=hidden(:)'
spec.alternatives{alt_idx}(k).displayable = false;
end
end
end
spec.alternatives{idx} = spec.children;
% and set the value of the selector field itself to the current selection
spec.value = selection;
function [selection,args] = map_argsubswitch(args,selectors,names)
if isempty(args)
selection = selectors{1};
elseif isfield(args{1},'arg_selection')
selection = args{1}.arg_selection;
elseif any(strcmp(args{1},selectors))
[selection,args] = deal(args{1},args(2:end));
else
% find the arg_selection in the cell array
pos = find(strcmp('arg_selection',args(1:end-1)),1,'last');
[selection,args] = deal(args{pos+1},args([1:pos-1 pos+2:end]));
end
% Note: If this error is triggered, an value was passed for an argument which has a flexible structure (chosen out of a set of possibilities), but the possibility
% which was chosen according to the passed value does not match any of the specified ones. For a value that is a cell array of arguments, the choice is
% made based on the first element in the cell. For a value that is a structure of arguments, the choice is made based on the 'arg_selection' field.
% The error is usually resolved by reviewing the argument specification of the offending function carefully, and comparing the passed value to the Alternatives
% declared in the arg_subswitch() clause in which the offending argument is declared.
if ~any(strcmpi(selection,selectors))
error(['The chosen selector argument (' selection ') does not match any of the possible options (' sprintf('%s, ',selectors{1:end-1}) selectors{end} ') in the function argument ' names{1} '.']); end
|
github
|
lcnbeapp/beapp-master
|
arg_sub.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_sub.m
| 12,136 |
utf_8
|
579d06548d7bb9eba5580ea1d6d33322
|
function res = arg_sub(varargin)
% Specify an argument of a function which is a structure of sub-arguments.
% Spec = arg_sub(Names,Defaults,Source,Help,Options...)
%
% Delivered to the function as a struct, and visible in the GUI as a an expandable sub-list of
% arguments. A function may have an argument which itself consists of several arguments. For
% example, a function may be passing the contents of this struct as arguments to another function,
% or may just collect several arguments into sub-fields of a single struct. Differs from the default
% arg() function by allowing, instead of the Range, either a Source function which exposes a list of
% arguments (itself using arg_define), or a cell array with argument specifications, identical in
% format to the Specification part of an arg_define() clause.
%
% In:
% Names : The name(s) of the argument. At least one must be specified, and if multiple are
% specified, they must be passed in a cell array.
% * The first name specified is the argument's "code" name, as it should appear in the
% function's code (= the name under which arg_define() returns it to the function).
% * The second name, if specified, is the "Human-readable" name, which is exposed in the
% GUIs (if omitted, the code name is displayed).
% * Further specified names are alternative names for the argument (e.g., for backwards
% compatibility with older function syntaxes/parameter names).
%
% Defaults : A cell array of arguments to override defaults for the Source; all syntax accepted by
% the Source is allowed here, whereas in the case of positional arguments, the leading
% arg_norep() arguments of the source are implicitly skipped. If empty, the defaults of
% the Source are unaffected.
%
% Source : A source of argument specifications, usually a function handle (referring to a function
% which defines arguments via arg_define()).
%
% For convenience, a cell array with a list of argument declarations, formatted like the
% Specification part of an arg_define() clause can be given, instead. In this case, the
% effect is the same as specifying @some_function, for a function implemented as:
%
% function some_function(varargin) arg_define(Format,varargin,Source{:});
%
% Help : The help text for this argument (displayed inside GUIs), optional. (default: []).
% (Developers: Please do *not* omit this, as it is the key bridge between ease of use and
% advanced functionality.)
%
% The first sentence should be the executive summary (max. 60 chars), any further sentences
% are a detailed explanation (examples, units, considerations). The end of the first
% sentence is indicated by a '. ' followed by a capital letter (beginning of the next
% sentence). If ambiguous, the help can also be specified as a cell array of 2 cells.
%
% Options... : Optional name-value pairs to denote additional properties:
% 'cat' : The human-readable category of this argument, helpful to present a list
% of many parameters in a categorized list, and to separate "Core
% Parameters" from "Miscellaneous" arguments. Developers: When choosing
% names, every bit of consistency with other function in the toolbox helps
% the uses find their way (default: []).
%
% 'fmt' : Optional format specification for the Source (if it is a cell array)
% (default: []). See arg_define() for a detailed explanation.
%
% 'merge': Whether a value (cell array of arguments) assigned to this argument
% should completely replace all arguments of the default, or whether
% instead the two cell arrays should be concatenated ('merged'), so that
% defaults are only selectively overridden. Note that for concatenation to
% make sense, the cell array of Defaults cannot be some subset of all
% allowed positional arguments, but must instead either be the full set of
% positional arguments (and possibly some NVPs) or be specified as NVPs in
% the first place. (default: true)
%
% Out:
% Spec : A cell array, that, when called as spec{1}(reptype,spec{2}{:}), yields a specification of
% the argument, for use by arg_define. Technical note: Upon assignment with a value (via
% the assigner field), the 'children' field of the specifier struct is populated according
% to how the Source parses the value into arguments.
%
% Notes:
% for MATLAB versions older than 2008a, type and shape checking is not necessarily enforced.
%
% Examples:
% % define 3 arguments for a function, including one which is a struct of two other arguments.
% % some valid calls to the function are:
% % myfunction('somearg',false, 'anotherarg',10, 'structarg',{'myarg1',5,'myarg2','xyz'})
% % myfunction(false, 10, {'myarg1',5,'myarg2','xyz'})
% % myfunction('structarg',{'myarg2','xyz'}, 'somearg',false)
% % myfunction('structarg',struct('myarg2','xyz','myarg1',10), 'somearg',false)
% function myfunction(varargin)
% arg_define(varargin, ...
% arg('somearg',true,[],'Some argument.'),...
% arg_sub('structarg',{},{ ...
% arg('myarg1',4,[],'Some sub-argument. This is a sub-argument of the argument named structarg in the function'), ...
% arg('myarg2','test',[],'Another sub-argument. This, too, is a sub-argument of structarg.')
% }, 'Struct argument. This argument has sub-structure. It can generally be assigned a cell array of name-value pairs, or a struct.'), ...
% arg('anotherarg',5,[],'Another argument. This is a regular numeric argument of myfunction again.));
%
% % define a struct argument with some overridden defaults
% arg_sub('structarg',{'myarg2','toast'},{ ...
% arg('myarg1',4,[],'Some sub-argument. This is a sub-argument of the argument named structarg in the function'), ...
% arg('myarg2','test',[],'Another sub-argument. This, too, is a sub-argument of structarg.')
% }, 'Struct argument. This argument has sub-structure. It can generally be assigned a cell array of name-value pairs, or a struct.'), ...
%
% % define an arguments including one whose sub-parameters match those that are declared in some
% % other function (@myotherfunction), which uses arg_define itself
% function myfunction(varargin)
% arg_define(varargin, ...
% arg('somearg',[],[],'Some help text.'), ...
% arg_sub('structarg',{},@myotherfunction, 'A struct argument. Arguments are as in myotherfunction(), can be assigned as a cell array of name-value pairs or structs.'));
%
% % define an argument with sub-parameters sourced from some other function, but with partially overridden defaults
% arg_sub('structarg',{'myarg1',1001},@myotherfunction, 'A struct argument. Arguments are as in myotherfunction(), can be assigned as a cell array of name-value pairs or structs.'));
%
% % define an argument with sub-parameters sourced from some other function, with a particular set of custom defaults
% % which are jointly replaced when a value is assigned to structarg (including an empty cell array)
% arg_sub('structarg',{'myarg1',1001},@myotherfunction, 'A struct argument. Arguments are as in myotherfunction().', 'merge',false));
%
% % define a struct argument with a custom formatting function (analogously to the optional Format function in arg_define)
% % myparser shall be a function that takes a string and returns a cell array of name-value pairs (names compatible to the sub-argument names)
% arg_sub('structarg',{},{ ...
% arg('myarg1',4,[],'Some sub-argument. This is a sub-argument of the argument named structarg in the function'), ...
% arg('myarg2','test',[],'Another sub-argument. This, too, is a sub-argument of structarg.')
% }, 'Struct argument. This argument has sub-structure. Assign it as a string of the form ''name=value; name=value;''.', 'fmt',@myparser), ...
%
% See also:
% arg, arg_nogui, arg_norep, arg_subswitch, arg_subtoggle, arg_define
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-09-24
% we return a function that an be invoked to yield a specification (its output is cached for
% efficiency) packed in a cell array together with the remaining arguments
res = {@invoke_argsub_cached,varargin};
function spec = invoke_argsub_cached(varargin)
spec = hlp_microcache('arg',@invoke_argsub,varargin{:});
% the function that does the actual work of building the argument specifier
function spec = invoke_argsub(reptype,names,defaults,source,help,varargin)
% start with a base specification
spec = arg_specifier('head',@arg_sub,'fmt',[], 'value','', 'type','char', 'shape','row');
suppressNames = {};
% override properties
if exist('names','var')
spec.names = names; end
if exist('help','var')
spec.help = help; end
for k=1:2:length(varargin)
if isfield(spec,varargin{k})
spec.(varargin{k}) = varargin{k+1};
elseif strcmpi(varargin{k},'suppress')
suppressNames = varargin{k+1};
else
error('BCILAB:arg:no_new_fields','It is not allowed to introduce fields into a specifier that are not declared in arg_specifier.');
end
end
% do checking
if ~iscell(spec.names)
spec.names = {spec.names}; end
if isempty(spec.names) || ~iscellstr(spec.names)
error('The argument must have a name or cell array of names.'); end
if ~exist('source','var') || isequal(source,[])
error('BCILAB:args:no_source','The Source argument for arg_sub() may not be omitted.'); end %#ok<*NODEF>
% parse the help
if ~isempty(spec.help)
try
spec.help = parse_help(spec.help,100);
catch e
disp(['Problem with the help text for argument ' spec.names{1} ': ' e.message]);
spec.help = {};
end
elseif spec.reportable && spec.displayable
disp(['Please specify a description for argument ' spec.names{1} ', or specify it via arg_nogui() instead.']);
end
if ~isempty(source)
% uniformize Source syntax
if iscell(source)
% args is a cell array instead of a function: we effectively turn this into a regular
% arg_define-using function (taking & parsing values)
source = @(varargin) arg_define(spec.fmt,varargin,source{:});
else
% args is a function: was a custom format specified?
if isa(spec.fmt,'function_handle')
source = @(varargin) source(spec.fmt(varargin));
elseif ~isempty(spec.fmt)
error('The only allowed form in which the Format of a Source that is a function may be overridden is as a pre-parser (given as a function handle)');
end
end
end
spec = rmfield(spec,'fmt');
% assignment to this object does not touch the value, but instead creates a new children structure
spec.assigner = @(spec,value) assign_argsub(spec,value,reptype,source,defaults,suppressNames);
% assign the default
spec = assign_argsub(spec,defaults,reptype,source,[],suppressNames);
% function to do the value assignment
function spec = assign_argsub(spec,value,reptype,source,default,suppressNames)
if ~isempty(source)
if spec.merge
spec.children = arg_report(reptype,source,[default,value]);
else
spec.children = arg_report(reptype,source,value);
end
end
% toggle the displayable option for children which should be suppressed
if ~isempty(suppressNames)
% identify which children we want to suppress display
hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.children.names},'UniformOutput',false)));
% set display flag to false
for k=hidden(:)'
spec.children(k).displayable = false;
end
end
|
github
|
lcnbeapp/beapp-master
|
arg_subtoggle.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_subtoggle.m
| 15,337 |
utf_8
|
6bfc9dc025de4ebf873f2152b77f7ee4
|
function res = arg_subtoggle(varargin)
% Specify an argument of a function which is a struct of sub-arguments that can be disabled.
% Spec = arg_subtoggle(Names,Default,Source,Help,Options...)
%
% Accessible to the function as a struct, and visible in the GUI as a an expandable sub-list of
% arguments (with a checkbox to toggle). The special field 'arg_selection' (true/false) indicates
% whether the argument is enabled or not. The value assigned to the argument determines whether it
% is turned on or off, as determined by the mapper option.
%
% In:
% Names : The name(s) of the argument. At least one must be specified, and if multiple are
% specified, they must be passed in a cell array.
% * The first name specified is the argument's "code" name, as it should appear in the
% function's code (= the name under which arg_define() returns it to the function).
% * The second name, if specified, is the "Human-readable" name, which is exposed in the
% GUIs (if omitted, the code name is displayed).
% * Further specified names are alternative names for the argument (e.g., for backwards
% compatibility with older function syntaxes/parameter names).
%
% Defaults : A cell array of arguments to override defaults for the Source; all syntax accepted by
% the (selected) Source is allowed here, whereas in the case of positional arguments,
% the leading arg_norep() arguments of the source are implicitly skipped. Note: Whether
% the argument is turned on or off is determined via the 'mapper' option. By default,
% [] and 'off' are mapped to off, whereas {}, non-empty cell arrays and structs are
% mapped to on.
%
% Source : A source of argument specifications, usually a function handle (referring to a function
% which defines arguments via arg_define()).
%
% For convenience, a cell array with a list of argument declarations, formatted like the
% Specification part of an arg_define() clause can be given, instead. In this case, the
% effect is the same as specifying @some_function, for a function implemented as:
%
% function some_function(varargin) arg_define(Format,varargin,Source{:});
%
% Help : The help text for this argument (displayed inside GUIs), optional. (default: []).
% (Developers: Please do *not* omit this, as it is the key bridge between ease of use and
% advanced functionality.)
%
% The first sentence should be the executive summary (max. 60 chars), any further sentences
% are a detailed explanation (examples, units, considerations). The end of the first
% sentence is indicated by a '. ' followed by a capital letter (beginning of the next
% sentence). If ambiguous, the help can also be specified as a cell array of 2 cells.
%
% Options... : Optional name-value pairs to denote additional properties:
% 'cat' : The human-readable category of this argument, helpful to present a list
% of many parameters in a categorized list, and to separate
% "Core Parameters" from "Miscellaneous" arguments. Developers: When
% choosing names, every bit of consistency with other function in the
% toolbox helps the uses find their way (default: []).
%
% 'fmt' : Optional format specification for the Source (if it is a cell array)
% (default: []). See arg_define() for a detailed explanation.
%
% 'mapper' : A function that maps the argument list (e.g., Defaults) to a value in
% the domain of selectors, and a potentially updated argument list. The
% mapper is applied to the argument list prior to any parsing (i.e. it
% faces the raw argument list) to determine the current selection, and
% its its second output (the potentially updated argument list) is
% forwarded to the Source that was selected, for further parsing.
%
% The default mapper maps [] and 'off' to off, whereas 'on', empty or
% non-empty cell arrays and structs are mapped to on.
%
% 'merge': Whether a value (cell array of arguments) assigned to this argument
% should completely replace all arguments of the default, or whether it
% should instead the two cell arrays should be concatenated ('merged'), so
% that defaults are only selectively overridden. Note that for
% concatenation to make sense, the cell array of Defaults cannot be some
% subset of all allowed positional arguments, but must instead either be
% the full set of positional arguments (and possibly some NVPs) or be
% specified as NVPs in the first place.
%
%
% Out:
% Spec : A cell array, that, when called as spec{1}(reptype,spec{2}{:}), yields a specification of
% the argument, for use by arg_define. Technical note: Upon assignment with a value (via
% the assigner field), the 'children' field of the specifier struct is populated according
% to how the selected (by the mapper) Source parses the value into arguments. The
% additional struct field 'arg_selection 'is introduced at this point.
%
% Examples:
% % define a function with an argument that can be turned on or off, and which has sub-arguments
% % that are effective if the argument is turned on (default: on); some valid calls are:
% % myfunction('somearg','testtest', 'myoption','off')
% % myfunction('somearg','testtest', 'myoption',[]) % alternative for: off
% % myfunction('somearg','testtest', 'myoption','on')
% % myfunction('somearg','testtest', 'myoption',{}) % alternatie for: on
% % myfunction('somearg','testtest', 'myoption',{'param1','test','param2',10})
% % myfunction('somearg','testtest', 'myoption',{'param2',10})
% % myfunction('testtest', {'param2',10})
% % myfunction('myoption', {'param2',10})
% function myfunction(varargin)
% arg_define(varargin, ...
% arg('somearg','test',[],'Some help.'), ...
% arg_subtoggle('myoption',},{},{ ...
% arg('param1',[],[],'Parameter 1.'), ...
% arg('param2',5,[],'Parameter 2.') ...
% }, 'Optional processing step. If selected, several sub-argument can be specified.'));
%
% % define a function with an argument that can be turned on or off, and whose sub-arguments match
% % those of some other function (there declared via arg_define)
% function myfunction(varargin)
% arg_define(varargin, ...
% arg_subtoggle('myoption',},{},@someotherfunction, 'Optional processing step. If selected, several sub-argument can be specified.'));
%
% % as before, but override some of the defaults of someotherfunction
% function myfunction(varargin)
% arg_define(varargin, ...
% arg_subtoggle('myoption',},{'param1',10},@someotherfunction, 'Optional processing step. If selected, several sub-argument can be specified.'));
%
% % as before, but specify a custom mapper function that determines how myoption is passed, and
% % what forms map to 'on' and 'off'
% function myfunction(varargin)
% arg_define(varargin, ...
% arg_subtoggle('myoption',},{},@someotherfunction, 'Optional processing step. If selected, several sub-argument can be specified.'.'mapper',@mymapper));
%
% % as before, but specify a custom formatting function that determines the arguments in myoption
% % may be passed (keeping the defaults regarding what forms map to 'on' and 'off')
% function myfunction(varargin)
% arg_define(varargin, ...
% arg_subtoggle('myoption',},{},@someotherfunction, 'Optional processing step. If selected, several sub-argument can be specified.'.'fmt',@myparser));
%
% See also:
% arg, arg_nogui, arg_norep, arg_sub, arg_subswitch, arg_define
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-09-24
% we return a function that an be invoked to yield a specification (its output is cached for
% efficiency) packed in a cell array together with the remaining arguments
res = {@invoke_argsubtoggle_cached,varargin};
function spec = invoke_argsubtoggle_cached(varargin)
spec = hlp_microcache('arg',@invoke_argsubtoggle,varargin{:});
% the function that does the actual work of building the argument specifier
function spec = invoke_argsubtoggle(reptype,names,defaults,source,help,varargin)
% start with a base specification
spec = arg_specifier('head',@arg_subtoggle, 'fmt',[], 'type','logical', 'shape','scalar', 'mapper',@map_argsubtoggle);
suppressNames = {};
% override properties
if exist('names','var')
spec.names = names; end
if exist('help','var')
spec.help = help; end
for k=1:2:length(varargin)
if isfield(spec,varargin{k})
spec.(varargin{k}) = varargin{k+1};
elseif strcmpi(varargin{k},'suppress')
suppressNames = varargin{k+1};
else
error('BCILAB:arg:no_new_fields','It is not allowed to introduce fields into a specifier that are not declared in arg_specifier.');
end
end
% do checking
if ~iscell(spec.names)
spec.names = {spec.names}; end
if isempty(spec.names) || ~iscellstr(spec.names)
error('The argument must have a name or cell array of names.'); end
if ~exist('source','var') || isempty(source)
error('BCILAB:args:no_options','The Source argument for arg_subtoggle() may not be omitted.'); end %#ok<*NODEF>
if nargin(spec.mapper) == 1
spec.mapper = @(x,y,z) spec.mapper(x); end
% parse the help
if ~isempty(spec.help)
try
spec.help = parse_help(spec.help,100);
catch e
disp(['Problem with the help text for argument ' spec.names{1} ': ' e.message]);
spec.help = {};
end
elseif spec.reportable && spec.displayable
disp(['Please specify a description for argument ' spec.names{1} ', or specify it via arg_nogui() instead.']);
end
% uniformize Source syntax
if iscell(source)
% args is a cell array instead of a function: we effectively turn this into a regular
% arg_define-using function (taking & parsing values)
source = @(varargin) arg_define(spec.fmt,varargin,source{:});
else
% args is a function: was a custom format specified?
if isa(spec.fmt,'function_handle')
source = @(varargin) source(spec.fmt(varargin));
elseif ~isempty(spec.fmt)
error('The only allowed form in which the Format of a Source that is a function may be overridden is as a pre-parser (given as a function handle)');
end
end
spec = rmfield(spec,'fmt');
% wrap the default into a cell if necessary (note: this is convenience syntax)
if isstruct(defaults)
defaults = {defaults};
elseif strcmp(defaults,'off')
defaults = [];
elseif strcmp(defaults,'on')
defaults = {};
elseif ~iscell(defaults) && ~isequal(defaults,[])
error(['It is not allowed to use anything other than a cell array, a struct, [] or ''off'' and ''on'' as defaults of an arg_subtoggle argument (here:' spec.names{1} ')']);
end
% resolve the default configuration into the boolean flag and value set; this is relevant for
% the merging option: in this case, we need to pull up the currect default and merge it with the
% passed value
[default_sel,default_val] = spec.mapper(defaults);
% set up the regular assigner
spec.assigner = @(spec,value) assign_argsubtoggle(spec,value,reptype,source,default_sel,default_val,suppressNames);
% assign the default
if strcmp(reptype,'rich')
spec = assign_argsubtoggle(spec,defaults,'build',source,NaN,{},suppressNames);
else
spec = assign_argsubtoggle(spec,defaults,'lean',source,NaN,{},suppressNames);
end
function spec = assign_argsubtoggle(spec,value,reptype,source,default_sel,default_val,suppressNames)
% precompute things that we might need later
persistent arg_sel arg_desel;
if isempty(arg_sel) || isempty(arg_sel)
arg_sel = arg_nogui('arg_selection',true); arg_sel = arg_sel{1}([],arg_sel{2}{:});
arg_desel = arg_nogui('arg_selection',false); arg_desel = arg_desel{1}([],arg_desel{2}{:});
end
% wrap the value into a cell if necessary (note: this is convenience syntax)
if isstruct(value)
value = {value};
elseif ~iscell(value) && ~isequal(value,[]) && ~isempty(default_val)
error(['For an arg_subtoggle argument that has non-empty defaults (here:' spec.names{1} '), it is not allowed to assign anything other than a cell array, a struct, or [] to it.']);
end
% retrieve the values for the realized switch option...
[selected,value] = spec.mapper(value);
% build the complementary alternative, if requested
if strcmp(reptype,'build')
if selected
spec.alternatives{1} = arg_desel;
else
spec.alternatives{2} = [arg_report('rich',source,{}) arg_sel];
end
reptype = 'rich';
end
% obtain the children
if ~selected
spec.children = arg_desel;
elseif spec.merge && (default_sel==true)
spec.children = [arg_report(reptype,source,[default_val value]) arg_sel];
else
spec.children = [arg_report(reptype,source,value) arg_sel];
end
% toggle the displayable option for children which should be suppressed
if ~isempty(suppressNames)
% identify which children we want to suppress display
hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.children.names},'UniformOutput',false)));
% set display flag to false
for k=hidden(:)'
spec.children(k).displayable = false;
end
% identify which alternatives we want to suppress display
for alt_idx = 1:length(spec.alternatives)
if isempty(spec.alternatives{alt_idx})
continue; end
hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.alternatives{alt_idx}.names},'UniformOutput',false)));
% set display flag to false
for k=hidden(:)'
spec.alternatives{alt_idx}(k).displayable = false;
end
end
end
spec.alternatives{selected+1} = spec.children;
% and set the cell's value
spec.value = selected;
% this function maps an argument list onto a binary flag (enabled status) plus value set to assign
function [selected,args] = map_argsubtoggle(args)
if isequal(args,'on')
selected = true;
args = {};
elseif isequal(args,'off') || isequal(args,[])
selected = false;
args = [];
elseif length(args) == 1 && isfield(args,'arg_selection')
selected = args.arg_selection;
elseif length(args) == 1 && iscell(args) && isstruct(args{1}) && isfield(args{1},'arg_selection')
selected = args{1}.arg_selection;
elseif isequal(args,{'arg_selection',0})
selected = false;
args = {};
elseif isequal(args,{'arg_selection',1})
selected = true;
args = {};
elseif iscell(args)
% find the arg_selection in the cell array
pos = find(strcmp('arg_selection',args(1:end-1)),1,'last');
if isempty(pos)
selected = true;
else
[selected,args] = deal(args{pos+1},args([1:pos-1 pos+2:end]));
end
else
selected = true;
end
|
github
|
lcnbeapp/beapp-master
|
arg_tovals.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_tovals.m
| 2,531 |
utf_8
|
d6b62007b294e20f330fd415633ef2ad
|
function res = arg_tovals(spec,direct)
% Convert a 'rich' argument report into a 'vals' report.
% Vals = arg_tovals(Rich)
%
% In:
% Rich : a 'rich' argument report, as obtained via arg_report('rich',some_function)
%
% Direct : whether to endow the result with an 'arg_direct' flag set to true, which indicates to
% the function taking the Vals struct that the contents of the struct directly correspond
% to workspace variables of the function. If enabled, contents of Vals must be changed
% with care - for example, removing/renaming fields will likely lead to errors in the
% function. (default: true)
%
% Out:
% Vals : a 'vals' argument report, as obtained via arg_report('vals',some_function) this data
% structure can be used as a valid argument to some_function.
%
% Examples:
% % report arguments of myfunction
% report = arg_report('rich',@myfunction)
% % convert the report to a valid argument to the function
% values = arg_tovals(report);
%
% See also:
% arg_define
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-10-18
if ~exist('direct','var')
direct = false; end
% remove unassigned specifiers
spec = spec(~strcmp(unassigned,{spec.value}));
% evaluate expressions
expressions = strcmp('expression',{spec.type}) & cellfun('isclass',{spec.value},'char');
if any(expressions)
try
[spec(expressions).value] = dealout(evalin('base',format_cellstr({spec(expressions).value})));
catch
for e=find(expressions)
try
spec(e).value = evalin('base',spec(e).value);
catch
end
end
end
end
% and replace by structs
res = struct('arg_direct',{direct});
for k=1:length(spec)
if isstruct(spec(k).children)
% has children: replace by struct
val = arg_tovals(spec(k).children,direct);
else
% no children: take value (and possibly convert to double)
val = spec(k).value;
if spec(k).to_double && isinteger(val)
val = double(val); end
end
% and assign the value
res.(spec(k).names{1}) = val;
end
res.arg_direct = direct;
% like deal(), except that the inputs are given as a cell array instead of a comma-separated list
function varargout = dealout(argin)
varargout = argin;
% format a non-empty cell-string array into a string
function x = format_cellstr(x)
x = ['{' sprintf('%s, ',x{1:end-1}) x{end} '}'];
|
github
|
lcnbeapp/beapp-master
|
arg_specifier.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_specifier.m
| 2,714 |
utf_8
|
45a0f0bbe159b1d73d533fcbbf4c2576
|
function spec = arg_specifier(varargin)
% Internal: create a base specifier struct for an argument.
% Specifier = arg_specifier(Overrides...)
%
% In:
% Overrides... : name-value pairs of fields that should be overridden
%
% Out:
% A specifier that is recognized by arg_define.
%
% See also:
% arg_define
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-09-25
spec = struct(...
... % core properties
'head',{@arg_specifier},...% the expression type that generated this specifier (@arg, @arg_sub, ...)
'names',{{}}, ... % cell array of argument names; first is the "code" name (reported to the function), second (if present) is the human-readable name (reported to the GUI)
'value',{[]}, ... % the assigned value of the argument; can be any data structure
'assigner',{@assign},...% function to be invoked in order to assign a new value the specifier
... % properties for (possibly dependent) child arguments
'children',{{}}, ... % cell array of child arguments (returned to the function in a struct, and made available to the GUI in a subgroup)
'mapper',@(x)x, ... % mapping function: maps a value into the index space of alternatives (possibly via range)
'alternatives',{{}}, ...% cell array of alternative children structures; only used for arg_subtoggle, arg_subswitch
'merge',{true},... % whether the value (a cell array of arguments) should completely replace the default, or be merged with it, such that sub-arguments are only selectively overridden
... % type-related properties
'range',{[]}, ... % the allowed range of the argument (for type checking in GUI and elsewhere); can be [], [lo hi], {'option1','option2','option3',...}
'type',{[]}, ... % the type of the argument: string, only touches the type-checking system & GUI
'shape',{[]}, ... % the shape of the argument: empty. scalar, row, column, matrix
... % user interface properties
'help',{''}, ... % the help text / description for the argument
'cat',{''}, ... % the human-readable category of the argument
... % misc attributes
'to_double',{true}, ... % convert numeric values to double before returning them to the function
'reportable',{true},... % whether the argument can be reported to outer function (given that it is assigned), or not (true/false)
'displayable',{true}... % whether the argument may be displayed by GUIs (true/false)
);
% selectively override fields
for k=1:2:length(varargin)
spec.(varargin{k}) = varargin{k+1}; end
function spec = assign(spec,value)
spec.value = value;
|
github
|
lcnbeapp/beapp-master
|
is_needing_search.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/queries/is_needing_search.m
| 808 |
utf_8
|
b4e0ea02b09d80b71d7e2970b648578f
|
function res = is_needing_search(argform,args)
% test whether some argument pack requires a search or not (according to the specified argument format)
if strcmp(argform,'direct')
% a search is specified by multielement arguments
res = prod(max(1,cellfun(@length,args))) > 1;
elseif strcmp(argform,'clauses')
% a search is specified by (possibly nested) search clauses
res = contains_search(args);
else
error('unsupported argument form.');
end
% test whether the given data structure contains a search clause
function res = contains_search(x)
if has_canonical_representation(x) && isequal(x.head,@search)
res = true;
elseif iscell(x)
res = any(cellfun(@contains_search,x));
elseif isstruct(x) && numel(x) == 1
res = contains_search(struct2cell(x));
else
res = false;
end
|
github
|
lcnbeapp/beapp-master
|
is_raw_dataset.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/queries/is_raw_dataset.m
| 184 |
utf_8
|
6bcaef74ea534a299898aa10b68af85a
|
% determine whether some object is a raw EEGLAB data set with no BCILAB constituents
function res = is_raw_dataset(x)
res = all(isfield(x,{'data','srate'})) && ~isfield(x,'tracking');
|
github
|
lcnbeapp/beapp-master
|
shadowplot.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/tmullen-cleanline-696a7181b7d0/external/shadowplot/shadowplot.m
| 7,604 |
utf_8
|
ae6097ee1343157565bb24e6a5f27a32
|
function varargout = shadowplot(varargin)
% SHADOWPLOT Add a shadow to an existing surface or patch plot
%
% For some surface plots, it can be helpful to visualize the shadow (2D
% projection) of the surface. This can give a quick perspective on the
% data's variance.
%
% SHADOWPLOT PLANE Adds a shadow plot on the PLANE boundary
% PLANE can be:
% x, y, or z: Plots on back/top wall of x, y or z
% 1 .. 6 : Plots on Nth wall, numbered as in AXIS:
% [xmin xmax ymin ymax zmin zmax]
%
% SHADOWPLOT(HAX,PLANE) Adds a shadow plot on the Nth wall on axes HAX
% HS = SHADOWPLOT(...) Returns a handle to the shadow (a patch)
%
% Examples:
% figure
% surf(peaks)
% shading interp
% shadowplot x % Back X Wall
% shadowplot y % Back Y Wall
%
% figure
% surf(peaks);hold on
% surf(peaks+10)
% shading interp
% hs = shadowplot(1);
% set(hs,'FaceColor','r'); % Red shadow
% alpha(hs,.1) % More transparent
% set(hs(1),'XData',get(hs(1),'XData')*.9) % Move farther away
%
% UPDATE (9/07): Now includes limited support for data encapsulated in
% HGTRANSFORMS, thanks to Patrick Barney ([email protected]).
% Scott Hirsch
% [email protected]
% Copyright 2004-2007 The MathWorks, Inc
%% We define three dimensions. 1=x, 2=y, 3=z
% dimplane - dimension that's constant in the projection plane (user-specified)
% dimvar - dimension in which data varies (typically 3)
% dimother - the other dimension (couldn't come up with a good name!).
%% Parse input arguments.
if nargin==1
hAx = gca;
plane = lower(varargin{1});
elseif nargin==2
hAx = varargin{1};
plane = lower(varargin{2});
end;
%% Convert plane to numeric dimension
% plane can be specified as a string (x,y,z) or as a number (1..6)
if ~isstr(plane)
dimplane = ceil(plane/2);
axind = plane; % Index into AXIS to get boundary plane
else % string
switch plane
case 'x'
dimplane = 1;
axind = 2; % Index into AXIS to get boundary plane
case 'y'
dimplane = 2;
axind = 4;
case 'z'
dimplane = 3;
axind = 6;
otherwise
error('Plane must be one of: ''x'', ''y'', or ''z'' or a number between 1 and 6');
end;
end;
%% Get coordinates for placing surface from axis limits
ax = axis;
% ============ force axis into 3d mode =============
if length(axis==4)
% axis problem. get the current view, rotate it, then
% redo the axis and return to the original view.
[az,el] = view;
view(45,45)
ax = axis;
view(az,el)
end
planecoord = ax(axind); % Plane Coordinate - back wall
%% Turn hold on
hold_current = ishold(hAx);
if hold_current == 0
hold_current = 'off';
else
hold_current = 'on';
end;
hold(hAx,'on')
%% Get handles to all surfaces
kids = findobj(hAx,'Type','surface');
h = [];
% Also get handles to all patch objects
kidsp = findobj(hAx,'Type','patch');
hp = [];
for ii=1:length(kids) % Do separately for each surface
hSurf = kids(ii); % Current surface
% We do everything with the X, Y, and ZData of the surface
surfdata = get(hSurf,{'XData','YData','ZData'});
% XData and YData might be vectors or matrices. Force them to be
% matrices (a la griddata)
[Ny,Nx] = size(surfdata{3});
if isvector(surfdata{1})
surfdata{1} = repmat(surfdata{1},Ny,1);
end;
if isvector(surfdata{2})
surfdata{2} = repmat(surfdata{2},1,Nx);
end;
% Figure out which two axes are independent (i.e., monotonic)
grids = [ismeshgrid(surfdata{1}) ismeshgrid(surfdata{2}) ismeshgrid(surfdata{3})];
if sum(grids)<2, error('Surface must have at least 2 monotonically increasing dimensions');end
% The remaining dimension is the one along which data varies
dimvar = find(~grids); % Dimension where data varies
if isempty(dimvar) % All 3 dimensions are monotonic. not sure what to do
dimvar = max(setdiff(1:3,dimplane));% pick largest value that isn't dimplane
end;
if dimvar==dimplane
error('Can not project data in the dimension that varies. Try another plane')
end;
%dimdiff: dimension for taking difference (figure out through trial and error)
% dimplane=1, dimvar=3: 2
% dimplane=1, dimvar=2: 2
% dimplane=2, dimvar=1: 2
% dimplane=2, dimvar=3: 1
% dimplane=3, dimvar=2: 1
% dimplane=3, dimvar=1: 1
dimdiff = 2; % Most cases
if (dimplane==2&&dimvar==3) | (dimplane==3)
dimdiff = 1;
end;
% Compute projection
dmin = min(surfdata{dimvar},[],dimdiff); % Min of data projected onto this plane
dmax = max(surfdata{dimvar},[],dimdiff); % Max of data projected onto this plane
dmin = dmin(:); % Force into row vector
dmax = dmax(:);
nval = length(dmin)*2 + 1; % Total number of values we'll use for shadow
% Compute shadow coordinates
% Pull out independent variable
dimother = setxor([dimvar dimplane],1:3); % Remaining dimension
d1 = surfdata{dimother}(:,1); % Not sure if should take row or col. find the dimension that varies
d2 = surfdata{dimother}(1,:);
if d1(1) ~= d1(end)
dind = d1;
else
dind = d2';
end;
shadow{dimplane} = repmat(planecoord,nval,1); % In the plane
shadow{dimother} = [dind;flipud(dind);dind(1)]; % Independent variable
shadow{dimvar} = [dmin;flipud(dmax);dmin(1)]; % the varying data
h(ii) = patch(shadow{1},shadow{2},shadow{3},[.3 .3 .3]);
alpha(h(ii),.3)
set(h(ii),'LineStyle','none')
% set a tag, so that a shadow will not try to cast a shadow
set(h(ii),'Tag','Shadow')
end;
%% Shadow any patches, unless they are already shadows.
hp = [];
for ii=1:length(kidsp) % Do separately for each patch object
hPat = kidsp(ii); % Current patch
% Is this patch already tagged as a Shadow?
if ~strcmpi(get(hPat,'Tag'),'Shadow')
% We do everything with the X, Y, and ZData of the surface
patdata = get(hPat,{'XData','YData','ZData'});
switch get(get(hPat,'par'),'Type')
case 'hgtransform'
M=get(get(hPat,'par'),'Matrix');
try
switch get(get(get(hPat,'par'),'par'),'type')
case 'hgtransform'
M2=get(get(get(hPat,'par'),'par'),'Matrix');
M=M2*M;
end
end
M=M(1:3,1:3);
xyz=[patdata{1}(:),patdata{2}(:),patdata{3}(:)]*M';
[n,m]=size(patdata{1});
patdata{1}=reshape(xyz(:,1),n,m);
patdata{2}=reshape(xyz(:,2),n,m);
patdata{3}=reshape(xyz(:,3),n,m);
otherwise
end
% Just replace the x, y, or z coordinate as indicated by dimplane
patdata{dimplane} = repmat(planecoord,size(patdata{dimplane}));
% then its just a call to patch
hp(ii) = patch(patdata{1},patdata{2},patdata{3},[.3 .3 .3]);
alpha(hp(ii),.3)
set(hp(ii),'LineStyle','none')
% set a tag, so that a shadow will not try to cast a shadow
set(hp(ii),'Tag','Shadow')
end
end;
h=[h,hp];
hold(hAx,hold_current) % Return to original state
if nargout
varargout{1} = h;
end;
function isgrid = ismeshgrid(d)
% Check if d looks like it came from griddata
dd = diff(d);
ddt = diff(d');
if all(~dd(:)) | all(~ddt(:))
isgrid = 1;
else
isgrid = 0;
end;
% if ~any(d(:,1) - d(:,end)) | ~any(d(1,:) - d(end,:))
% isgrid = 1;
% else
% isgrid = 0;
% end;
|
github
|
lcnbeapp/beapp-master
|
readbvconf.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/bvaio1.57/readbvconf.m
| 2,844 |
utf_8
|
4eb0324e1e56dd1240dfaf9a3437c489
|
% readbvconf() - read Brain Vision Data Exchange format configuration
% file
%
% Usage:
% >> CONF = readbvconf(pathname, filename);
%
% Inputs:
% pathname - path to file
% filename - filename
%
% Outputs:
% CONF - structure configuration
%
% Author: Andreas Widmann, University of Leipzig, 2007
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2007 Andreas Widmann, University of Leipzig, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% $Id: readbvconf.m 44 2009-11-12 02:00:56Z arnodelorme $
function CONF = readbvconf(pathname, filename)
if nargin < 2
error('Not enough input arguments');
end
% Open and read file
[IN, message] = fopen(fullfile(pathname, filename));
if IN == -1
[IN, message] = fopen(fullfile(pathname, lower(filename)));
if IN == -1
error(message)
end;
end
raw={};
while ~feof(IN)
raw = [raw; {fgetl(IN)}];
end
fclose(IN);
% Remove comments and empty lines
raw(strmatch(';', raw)) = [];
raw(cellfun('isempty', raw) == true) = [];
% Find sections
sectionArray = [strmatch('[', raw)' length(raw) + 1];
for iSection = 1:length(sectionArray) - 1
% Convert section name
fieldName = lower(char(strread(raw{sectionArray(iSection)}, '[%s', 'delimiter', ']')));
fieldName(isspace(fieldName) == true) = [];
% Fill structure with parameter value pairs
switch fieldName
case {'commoninfos' 'binaryinfos'}
for line = sectionArray(iSection) + 1:sectionArray(iSection + 1) - 1
splitArray = strfind(raw{line}, '=');
CONF.(fieldName).(lower(raw{line}(1:splitArray(1) - 1))) = raw{line}(splitArray(1) + 1:end);
end
case {'channelinfos' 'coordinates' 'markerinfos'}
for line = sectionArray(iSection) + 1:sectionArray(iSection + 1) - 1
splitArray = strfind(raw{line}, '=');
CONF.(fieldName)(str2double(raw{line}(3:splitArray(1) - 1))) = {raw{line}(splitArray(1) + 1:end)};
end
case 'comment'
CONF.(fieldName) = raw(sectionArray(iSection) + 1:sectionArray(iSection + 1) - 1);
end
end
|
github
|
lcnbeapp/beapp-master
|
pop_loadbv.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/bvaio1.57/pop_loadbv.m
| 12,215 |
utf_8
|
87d1ce71415fbd8735ab37c7e88fa227
|
% pop_loadbv() - load Brain Vision Data Exchange format dataset and
% return EEGLAB EEG structure
%
% Usage:
% >> [EEG, com] = pop_loadbv; % pop-up window mode
% >> [EEG, com] = pop_loadbv(path, hdrfile);
% >> [EEG, com] = pop_loadbv(path, hdrfile, srange);
% >> [EEG, com] = pop_loadbv(path, hdrfile, [], chans);
% >> [EEG, com] = pop_loadbv(path, hdrfile, srange, chans);
%
% Optional inputs:
% path - path to files
% hdrfile - name of Brain Vision vhdr-file (incl. extension)
% srange - scalar first sample to read (up to end of file) or
% vector first and last sample to read (e.g., [7 42];
% default: all)
% chans - vector channels channels to read (e.g., [1:2 4];
% default: all)
%
% Outputs:
% EEG - EEGLAB EEG structure
% com - history string
%
% Author: Andreas Widmann & Arnaud Delorme, 2004-
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Andreas Widmann, University of Leipzig, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% $Id: pop_loadbv.m 42 2009-11-12 01:45:54Z arnodelorme $
function [EEG, com] = pop_loadbv(path, hdrfile, srange, chans)
com = '';
EEG = [];
if nargin < 2
[hdrfile path] = uigetfile2('*.vhdr', 'Select Brain Vision vhdr-file - pop_loadbv()');
if hdrfile(1) == 0, return; end
drawnow;
uigeom = {[1 0.5] [1 0.5]};
uilist = {{ 'style' 'text' 'string' 'Interval (samples; e.g., [7 42]; default: all):'} ...
{ 'style' 'edit' 'string' ''} ...
{ 'style' 'text' 'string' 'Channels (e.g., [1:2 4]; default: all):'} ...
{ 'style' 'edit' 'string' ''}};
result = inputgui(uigeom, uilist, 'pophelp(''pop_loadbv'')', 'Load a Brain Vision Data Exchange format dataset');
if isempty(result), return, end
if ~isempty(result{1}),
srange = str2num(result{1});
end
if ~isempty(result{2}),
chans = str2num(result{2});
end
end
% Header file
disp('pop_loadbv(): reading header file');
hdr = readbvconf(path, hdrfile);
% Common Infos
try
EEG = eeg_emptyset;
catch
end
EEG.comments = ['Original file: ' hdr.commoninfos.datafile];
hdr.commoninfos.numberofchannels = str2double(hdr.commoninfos.numberofchannels);
EEG.srate = 1000000 / str2double(hdr.commoninfos.samplinginterval);
% Binary Infos
if strcmpi(hdr.commoninfos.dataformat, 'binary')
switch lower(hdr.binaryinfos.binaryformat)
case 'int_16', binformat = 'int16'; bps = 2;
case 'uint_16', binformat = 'uint16'; bps = 2;
case 'ieee_float_32', binformat = 'float32'; bps = 4;
otherwise, error('Unsupported binary format');
end
end
% Channel Infos
if ~exist('chans', 'var')
chans = 1:hdr.commoninfos.numberofchannels;
EEG.nbchan = hdr.commoninfos.numberofchannels;
elseif isempty(chans)
chans = 1:hdr.commoninfos.numberofchannels;
EEG.nbchan = hdr.commoninfos.numberofchannels;
else
EEG.nbchan = length(chans);
end
if any(chans < 1) || any(chans > hdr.commoninfos.numberofchannels)
error('chans out of available channel range');
end
if isfield(hdr, 'channelinfos')
for chan = 1:length(chans)
[EEG.chanlocs(chan).labels, chanlocs(chan).ref, chanlocs(chan).scale, chanlocs(chan).unit] = strread(hdr.channelinfos{chans(chan)}, '%s%s%s%s', 1, 'delimiter', ',');
EEG.chanlocs(chan).labels = char(EEG.chanlocs(chan).labels);
chanlocs(chan).scale = str2double(char(chanlocs(chan).scale));
% chanlocs(chan).unit = native2unicode(double(char(chanlocs(chan).scale)), 'UTF-8');
% EEG.chanlocs(chan).datachan = chans(chan);
end
if isempty([chanlocs.scale])
chanlocs = rmfield(chanlocs, 'scale');
end
end;
% [EEG.chanlocs.type] = deal([]);
% Coordinates
if isfield(hdr, 'coordinates')
hdr.coordinates(end+1:length(chans)) = { [] };
for chan = 1:length(chans)
if ~isempty(hdr.coordinates{chans(chan)})
[EEG.chanlocs(chan).sph_radius, theta, phi] = strread(hdr.coordinates{chans(chan)}, '%f%f%f', 'delimiter', ',');
if EEG.chanlocs(chan).sph_radius == 0 && theta == 0 && phi == 0
EEG.chanlocs(chan).sph_radius = [];
EEG.chanlocs(chan).sph_theta = [];
EEG.chanlocs(chan).sph_phi = [];
else
EEG.chanlocs(chan).sph_theta = phi - 90 * sign(theta);
EEG.chanlocs(chan).sph_phi = -abs(theta) + 90;
end
end;
end
try,
[EEG.chanlocs, EEG.chaninfo] = pop_chanedit(EEG.chanlocs, 'convert', 'sph2topo');
[EEG.chanlocs, EEG.chaninfo] = pop_chanedit(EEG.chanlocs, 'convert', 'sph2cart');
catch, end
end
% Open data file and find the number of data points
% -------------------------------------------------
disp('pop_loadbv(): reading EEG data');
[IN, message] = fopen(fullfile(path, hdr.commoninfos.datafile));
if IN == -1
[IN, message] = fopen(fullfile(path, lower(hdr.commoninfos.datafile)));
if IN == -1
error(message)
end;
end
if isfield(hdr.commoninfos, 'datapoints')
hdr.commoninfos.datapoints = str2double(hdr.commoninfos.datapoints);
elseif strcmpi(hdr.commoninfos.dataformat, 'binary')
fseek(IN, 0, 'eof');
hdr.commoninfos.datapoints = ftell(IN) / (hdr.commoninfos.numberofchannels * bps);
fseek(IN, 0, 'bof');
else
hdr.commoninfos.datapoints = NaN;
end
if ~strcmpi(hdr.commoninfos.dataformat, 'binary') % ASCII
tmppoint = hdr.commoninfos.datapoints;
tmpchan = fscanf(IN, '%s', 1);
tmpdata = fscanf(IN, '%f', inf);
hdr.commoninfos.datapoints = length(tmpdata);
chanlabels = 1;
if str2double(tmpchan) == 0,
hdr.commoninfos.datapoints = hdr.commoninfos.datapoints+1;
chanlabels = 0;
end;
if ~isnan(tmppoint)
if tmppoint ~= hdr.commoninfos.datapoints
error('Error in computing number of data points; try exporting in a different format');
end;
end;
end;
% Sample range
if ~exist('srange', 'var') || isempty(srange)
srange = [ 1 hdr.commoninfos.datapoints];
EEG.pnts = hdr.commoninfos.datapoints;
elseif length(srange) == 1
EEG.pnts = hdr.commoninfos.datapoints - srange(1) + 1;
else
EEG.pnts = srange(2) - srange(1) + 1;
end
if any(srange < 1) || any(srange > hdr.commoninfos.datapoints)
error('srange out of available data range');
end
% Read data
if strcmpi(hdr.commoninfos.dataformat, 'binary')
switch lower(hdr.commoninfos.dataorientation)
case 'multiplexed'
if EEG.nbchan == hdr.commoninfos.numberofchannels % Read all channels
fseek(IN, (srange(1) - 1) * EEG.nbchan * bps, 'bof');
EEG.data = fread(IN, [EEG.nbchan, EEG.pnts], [binformat '=>float32']);
else % Read channel subset
EEG.data = repmat(single(0), [EEG.nbchan, EEG.pnts]); % Preallocate memory
for chan = 1:length(chans)
fseek(IN, (srange(1) - 1) * hdr.commoninfos.numberofchannels * bps + (chans(chan) - 1) * bps, 'bof');
EEG.data(chan, :) = fread(IN, [1, EEG.pnts], [binformat '=>float32'], (hdr.commoninfos.numberofchannels - 1) * bps);
end
end
case 'vectorized'
if isequal(EEG.pnts, hdr.commoninfos.datapoints) && EEG.nbchan == hdr.commoninfos.numberofchannels % Read entire file
EEG.data = fread(IN, [EEG.pnts, EEG.nbchan], [binformat '=>float32']).';
else % Read fraction of file
EEG.data = repmat(single(0), [EEG.nbchan, EEG.pnts]); % Preallocate memory
for chan = 1:length(chans)
fseek(IN, ((chans(chan) - 1) * hdr.commoninfos.datapoints + srange(1) - 1) * bps, 'bof');
EEG.data(chan, :) = fread(IN, [1, EEG.pnts], [binformat '=>float32']);
end
end
otherwise
error('Unsupported data orientation')
end
else % ASCII data
disp('If this function does not work, export your data in binary format');
EEG.data = repmat(single(0), [EEG.nbchan, EEG.pnts]);
if strcmpi(lower(hdr.commoninfos.dataorientation), 'vectorized')
count = 1;
fseek(IN, 0, 'bof');
len = inf;
for chan = 1:hdr.commoninfos.numberofchannels
if chanlabels, tmpchan = fscanf(IN, '%s', 1); end;
tmpdata = fscanf(IN, '%f', len); len = length(tmpdata);
if ismember(chan, chans)
EEG.data(count, :) = tmpdata(srange(1):srange(2))';
count = count + 1;
end;
end;
elseif strcmpi(lower(hdr.commoninfos.dataorientation), 'multiplexed')
fclose(IN);
error('ASCII multiplexed reading not implemeted yet; export as a different format');
end;
end;
fclose(IN);
EEG.trials = 1;
EEG.xmin = 0;
EEG.xmax = (EEG.pnts - 1) / EEG.srate;
% Convert to EEG.data to double for MATLAB < R14
if str2double(version('-release')) < 14
EEG.data = double(EEG.data);
end
% Scale data
if exist('chanlocs', 'var') && isfield(chanlocs, 'scale')
disp('pop_loadbv(): scaling EEG data');
for chan = 1:EEG.nbchan
if ~isnan(chanlocs(chan).scale)
EEG.data(chan, :) = EEG.data(chan, :) * chanlocs(chan).scale;
end;
end
end
% Marker file
if isfield(hdr.commoninfos, 'markerfile')
disp('pop_loadbv(): reading marker file');
MRK = readbvconf(path, hdr.commoninfos.markerfile);
if hdr.commoninfos.datafile ~= MRK.commoninfos.datafile
disp('pop_loadbv() warning: data files in header and marker files inconsistent.');
end
% Marker infos
if isfield(MRK, 'markerinfos')
EEG.event = parsebvmrk(MRK);
% Correct event latencies by first sample offset
latency = num2cell([EEG.event(:).latency] - srange(1) + 1);
[EEG.event(:).latency] = deal(latency{:});
% Remove unreferenced events
EEG.event = EEG.event([EEG.event.latency] >= 1 & [EEG.event.latency] <= EEG.pnts);
% Copy event structure to urevent structure
EEG.urevent = rmfield(EEG.event, 'urevent');
% find if boundaries at homogenous intervals
% ------------------------------------------
boundaries = strmatch('boundary', {EEG.event.type});
boundlats = unique([EEG.event(boundaries).latency]);
if (isfield(hdr.commoninfos, 'segmentationtype') && (strcmpi(hdr.commoninfos.segmentationtype, 'markerbased') || strcmpi(hdr.commoninfos.segmentationtype, 'fixtime'))) && length(boundaries) > 1 && length(unique(diff([boundlats EEG.pnts + 1]))) == 1
EEG.trials = length(boundlats);
EEG.pnts = EEG.pnts / EEG.trials;
EEG.event(boundaries) = [];
% adding epoch field
% ------------------
for index = 1:length(EEG.event)
EEG.event(index).epoch = ceil(EEG.event(index).latency / EEG.pnts);
end
% finding minimum time
% --------------------
tles = strmatch('time 0', lower({EEG.event.code}))';
if ~isempty(tles)
[EEG.event(tles).type] = deal('TLE');
EEG.xmin = -(EEG.event(tles(1)).latency - 1) / EEG.srate;
end
end
end
end
EEG.ref = 'common';
try
EEG = eeg_checkset(EEG);
catch
end
if nargout == 2
com = sprintf('EEG = pop_loadbv(''%s'', ''%s'', %s, %s);', path, hdrfile, mat2str(srange), mat2str(chans));
end
|
github
|
lcnbeapp/beapp-master
|
eegplugin_bva_io.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/bvaio1.57/eegplugin_bva_io.m
| 2,999 |
utf_8
|
e0ed0e164c42929edc9d2ebaac2fa2b0
|
% eegplugin_bva_io() - EEGLAB plugin for importing Brainvision
% .vhdr data files.
%
% Usage:
% >> eegplugin_bva_io(fig, trystrs, catchstrs);
%
% Inputs:
% fig - [integer] EEGLAB figure
% trystrs - [struct] "try" strings for menu callbacks.
% catchstrs - [struct] "catch" strings for menu callbacks.
%
% Author: Andreas Widmann for binary import, 2004
% Arnaud Delorme for Matlab import and EEGLAB interface
%
% See also: pop_loadbv()
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Andreas Widmann & Arnaud Delorme
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% $Id: eegplugin_bva_io.m 48 2009-12-22 12:23:09Z andreaswidmann $
function vers = eegplugin_bva_io(fig, trystrs, catchstrs)
vers = 'bva_io1.57';
if nargin < 3
error('eegplugin_bva_io requires 3 arguments');
end;
% add folder to path
% ------------------
if ~exist('eegplugin_bva_io')
p = which('eegplugin_bva_io.m');
p = p(1:findstr(p,'eegplugin_bva_io.m')-1);
addpath( p );
end;
% find import data menu
% ---------------------
menui = findobj(fig, 'tag', 'import data');
menuo = findobj(fig, 'tag', 'export');
% menu callbacks
% --------------
icadefs;
versiontype = 1;
if exist('EEGLAB_VERSION')
if EEGLAB_VERSION(1) == '4'
versiontype = 0;
end;
end;
if versiontype == 0
comcnt1 = [ trystrs.no_check '[EEGTMP LASTCOM] = pop_loadbv;' catchstrs.new_non_empty ];
comcnt2 = [ trystrs.no_check '[EEGTMP LASTCOM] = pop_loadbva;' catchstrs.new_non_empty ];
else
comcnt1 = [ trystrs.no_check '[EEG LASTCOM] = pop_loadbv;' catchstrs.new_non_empty ];
comcnt2 = [ trystrs.no_check '[EEG LASTCOM] = pop_loadbva;' catchstrs.new_non_empty ];
end;
comcnt3 = [ trystrs.no_check 'LASTCOM = pop_writebva(EEG);' catchstrs.add_to_hist ];
% create menus
% ------------
uimenu( menui, 'label', 'From Brain Vis. Rec. .vhdr file', 'callback', comcnt1, 'separator', 'on' );
uimenu( menui, 'label', 'From Brain Vis. Anal. Matlab file', 'callback', comcnt2 );
uimenu( menuo, 'label', 'Write Brain Vis. exchange format file', 'callback', comcnt3, 'separator', 'on' );
|
github
|
lcnbeapp/beapp-master
|
parsebvmrk.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/bvaio1.57/parsebvmrk.m
| 1,754 |
utf_8
|
5913b2393594c4821248cf06b3001af7
|
% parsebvmrk() - convert Brain Vision Data Exchange format marker
% configuration structure to EEGLAB event structure
%
% Usage:
% >> EVENT = parsebvmrk(MRK);
%
% Inputs:
% MRK - marker configuration structure
%
% Outputs:
% EVENT - EEGLAB event structure
%
% Author: Andreas Widmann, University of Leipzig, 2007
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2007 Andreas Widmann, University of Leipzig, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% $Id: parsebvmrk.m 37 2007-06-26 12:56:17Z andreaswidmann $
function EVENT = parsebvmrk(MRK)
for idx = 1:length(MRK.markerinfos)
[mrkType mrkDesc EVENT(idx).latency EVENT(idx).duration EVENT(idx).channel EVENT(idx).bvtime] = ...
strread(MRK.markerinfos{idx}, '%s%s%f%d%d%d', 'delimiter', ',');
if strcmpi(mrkType, 'New Segment') || strcmpi(mrkType, 'DC Correction')
EVENT(idx).type = 'boundary';
else
EVENT(idx).type = char(mrkDesc);
end
EVENT(idx).code = char(mrkType);
EVENT(idx).urevent = idx;
end
|
github
|
lcnbeapp/beapp-master
|
pop_writebva.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/bvaio1.57/pop_writebva.m
| 7,792 |
utf_8
|
594e34cc5c304928f68fe095cab80d4a
|
% pop_writebva() - export EEG dataset
%
% Usage:
% >> EEG = pop_writebva(EEG); % a window pops up
% >> EEG = pop_writebva(EEG, filename);
%
% Inputs:
% EEG - eeglab dataset
% filename - file name
%
% Author: Arnaud Delorme, SCCN, INC, UCSD, 2005-
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2005, Arnaud Delorme, SCCN, INC, UCSD, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% $Log$
% Revision 1.6 2005/12/01 19:39:53 arnodelorme
% double labeling
%
% Revision 1.5 2005/12/01 19:20:13 arnodelorme
% Nothing
%
% Revision 1.4 2005/12/01 19:15:33 arnodelorme
% Nothing
%
% Revision 1.3 2005/12/01 18:49:31 arnodelorme
% Time 0 and stimulus
%
% Revision 1.2 2005/11/22 18:59:57 arnodelorme
% Updating pop_loadbv & pop_writebva
%
% Revision 1.1.1.1 2005/11/03 22:57:36 arnodelorme
% initial import into CVS
%
% Revision 1.5 2005/09/27 22:20:57 arno
% fix event labels and colors (and channel coordinate)
%
% Revision 1.4 2005/08/04 20:23:24 arno
% segmentationtype & marker file error for continous data
%
% Revision 1.3 2005/07/22 18:17:46 arno
% same
%
% Revision 1.2 2005/07/22 18:16:11 arno
% convert type to string
%
% Revision 1.1 2005/07/22 18:06:55 arno
% Initial revision
%
function com = pop_writebva(EEG, filename);
com = '';
if nargin < 1
help pop_writebva;
return;
end;
if nargin < 2
[filename, filepath] = uiputfile('*', 'Output file');
if length( filepath ) == 0 return; end;
filename = [ filepath filename ];
end;
% remove extension if any
% -----------------------
posdot = find(filename == '.');
if ~isempty(posdot), filename = filename(1:posdot(end)-1); end;
% open output file
% ----------------
fid1 = fopen( [ filename '.vhdr' ], 'w' );
fid2 = fopen( [ filename '.vmrk' ], 'w' );
fid3 = fopen( [ filename '.dat' ], 'wb', 'ieee-le');
[ tmppath basename ] = fileparts( filename );
% write data
% ----------
for index = 1:EEG.nbchan
fwrite(fid3, EEG.data(index,:), 'float' );
end;
% write header
% ------------
fprintf(fid1, 'Brain Vision Data Exchange Header File Version 1.0\n');
fprintf(fid1, '; Data created from the EEGLAB software\n');
fprintf(fid1, '\n');
fprintf(fid1, '[Common Infos]\n');
fprintf(fid1, 'DataFile=%s\n', [ basename '.dat' ]);
if ~isempty(EEG.event)
fprintf(fid1, 'MarkerFile=%s\n', [ basename '.vmrk' ]);
end;
fprintf(fid1, 'DataFormat=BINARY\n');
fprintf(fid1, '; Data orientation: VECTORIZED=ch1,pt1, ch1,pt2..., MULTIPLEXED=ch1,pt1, ch2,pt1 ...\n');
fprintf(fid1, 'DataOrientation=VECTORIZED\n');
fprintf(fid1, 'DataType=TIMEDOMAIN\n');
fprintf(fid1, 'NumberOfChannels=%d\n', EEG.nbchan);
fprintf(fid1, 'DataPoints=%d\n', EEG.pnts*EEG.trials);
fprintf(fid1, '; Sampling interval in microseconds if time domain (convert to Hertz:\n');
fprintf(fid1, '; 1000000 / SamplingInterval) or in Hertz if frequency domain:\n');
fprintf(fid1, 'SamplingInterval=%d\n', 1000000/EEG.srate);
if EEG.trials > 1
fprintf(fid1, 'SegmentationType=MARKERBASED\n');
end;
fprintf(fid1, '\n');
fprintf(fid1, '[Binary Infos]\n');
fprintf(fid1, 'BinaryFormat=IEEE_FLOAT_32\n');
fprintf(fid1, '\n');
if ~isempty(EEG.chanlocs)
fprintf(fid1, '[Channel Infos]\n');
fprintf(fid1, '; Each entry: Ch<Channel number>=<Name>,<Reference channel name>,\n');
fprintf(fid1, '; <Resolution in microvolts>,<Future extensions..\n');
fprintf(fid1, '; Fields are delimited by commas, some fields might be omited (empty).\n');
fprintf(fid1, '; Commas in channel names are coded as "\1".\n');
for index = 1:EEG.nbchan
fprintf(fid1, 'Ch%d=%s,, \n', index, EEG.chanlocs(index).labels);
end;
fprintf(fid1, '\n');
disp('Warning: channel location were not exported to BVA (it will use default');
disp(' 10-20 BESA locations based on channel names)');
%if isfield(EEG.chanlocs, 'sph_radius')
% fprintf(fid1, '[Coordinates]\n');
% fprintf(fid1, '; Each entry: Ch<Channel number>=<Radius>,<Theta>,<Phi>\n');
% loc = convertlocs(EEG.chanlocs, 'sph2sphbesa');
% for index = 1:EEG.nbchan
% fprintf(fid1, 'Ch%d=%d,%d,%d\n', index, round(loc(index).sph_theta_besa), ...
% round(loc(index).sph_phi_besa), 0);
% end;
%end;
end;
% export event information
% ------------------------
if ~isempty(EEG.event)
fprintf(fid2, 'Brain Vision Data Exchange Marker File, Version 1.0\n');
fprintf(fid2, '; Data created from the EEGLAB software\n');
fprintf(fid2, '; The channel numbers are related to the channels in the exported file.\n');
fprintf(fid2, '\n');
fprintf(fid2, '[Common Infos]\n');
fprintf(fid2, 'DataFile=%s\n', [ basename '.dat' ]);
fprintf(fid2, '\n');
fprintf(fid2, '[Marker Infos]\n');
fprintf(fid2, '; Each entry: Mk<Marker number>=<Type>,<Description>,<Position in data points>,\n');
fprintf(fid2, '; <Size in data points>, <Channel number (0 = marker is related to all channels)>,\n');
fprintf(fid2, '; <Date (YYYYMMDDhhmmssuuuuuu)>\n');
fprintf(fid2, '; Fields are delimited by commas, some fields might be omited (empty).\n');
fprintf(fid2, '; Commas in type or description text are coded as "\1".\n');
% rename type and comments
% ------------------------
for index = 1:length(EEG.event)
EEG.event(index).comment = EEG.event(index).type;
EEG.event(index).type = 'Stimulus';
end;
% make event cell array
% ---------------------
for index = 1:EEG.trials
EEG.event(end ).latency = (index-1)*EEG.pnts+1;
EEG.event(end+1).type = 'New Segment';
end;
[tmp latorder ] = sort( [ EEG.event.latency ] );
EEG.event = EEG.event(latorder);
% rename latency events
% ---------------------
time0ind = [];
for index = 1:length(EEG.event)
if mod( EEG.event(index).latency, EEG.pnts) == -EEG.xmin*EEG.srate+1
time0ind = [ time0ind index ];
end;
end;
for index = length(time0ind):-1:1
EEG.event(time0ind(index)+1:end+1) = EEG.event(time0ind(index):end);
EEG.event(time0ind(index)).type = 'Time 0';
EEG.event(time0ind(index)).comment = '';
end;
% write events
% ------------
e = EEG.event;
for index = 1:length(e)
% duration field
% --------------
if isfield(e, 'duration')
if ~isempty(e(index).duration)
tmpdur = e(index).duration;
else tmpdur = 0;
end;
else tmpdur = 0;
end;
% comment field
% -------------
if isfield(e, 'comment')
if ~isempty(e(index).comment)
tmpcom = e(index).comment;
else tmpcom = '';
end;
else tmpcom = num2str(e(index).type);
end;
fprintf(fid2, 'Mk1=%s,%s,%d,%d,0,0\n', num2str(e(index).type), num2str(tmpcom), e(index).latency, tmpdur);
end;
end
fclose(fid1);
fclose(fid2);
fclose(fid3);
com = sprintf('pop_writebva(%s,''%s'');', inputname(1), filename);
return;
|
github
|
lcnbeapp/beapp-master
|
pop_loadbva.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/bvaio1.57/pop_loadbva.m
| 6,637 |
utf_8
|
699ce4104ad5d376f6c610f5d5f26252
|
% pop_loadbva() - import a Matlab file from brain vision analyser
% software.
%
% Usage:
% >> OUTEEG = pop_loadbva( filename );
%
% Inputs:
% filename - file name
%
% Outputs:
% OUTEEG - EEGLAB data structure
%
% Author: Arnaud Delorme, SCCN/INC/UCSD, Dec 2003
%
% See also: eeglab()
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2003 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% $Log$
% Revision 1.1 2005/11/03 22:57:36 arnodelorme
% Initial revision
%
% Revision 1.11 2005/10/27 05:27:07 arno
% filename
%
% Revision 1.10 2005/10/26 02:00:41 arno
% filename
%
% Revision 1.9 2005/03/21 22:44:47 arno
% making ur events
%
% Revision 1.8 2004/03/11 17:41:30 arno
% remove dbug msg
%
% Revision 1.7 2004/03/11 17:41:10 arno
% dbug msg
%
% Revision 1.6 2004/03/11 17:39:38 arno
% debug channel name
%
% Revision 1.5 2004/01/22 16:32:59 arno
% debuging channel names
%
% Revision 1.4 2004/01/22 08:31:01 arno
% suppressing fields while loading data
%
% Revision 1.3 2003/12/17 00:44:23 arno
% creating empty channels
%
% Revision 1.2 2003/12/17 00:17:06 arno
% remove besa fields
%
% Revision 1.1 2003/12/16 23:29:13 arno
% Initial revision
%
function [EEG, com] = pop_loadbva(filename)
EEG = [];
com = '';
if nargin < 1
[tmpfilename, filepath] = uigetfile('*.mat;*.MAT', 'Choose a Matlab file from Brain Vision Analyser -- pop_loadbva');
if tmpfilename == 0 return; end;
filename = [ filepath tmpfilename ];
end;
disp('Importing data');
EEG = eeg_emptyset;
bva = load(filename, '-mat');
allfields = fieldnames(bva);
chanstruct = bva.Channels;
channames = lower({ chanstruct.Name });
for index = 1:length(allfields)
switch lower(allfields{index})
case { 't' 'markercount' 'markers' 'samplerate' 'segmentcount' 'channelcount' 'channels' },
otherwise
count1 = strmatch(lower(allfields{index}), channames, 'exact');
count2 = strmatch(lower(allfields{index}(2:end)), channames, 'exact');
if ~isempty(count1) | ~isempty(count2)
count = [ count1 count2 ];
count = count(1);
else
disp(['Warning: channel ''' lower(allfields{index}) ''' not in channel location structure']);
count = length(chanstruct)+1;
chanstruct(end+1).Name = allfields{index};
chanstruct(end+1).Phi = [];
chanstruct(end+1).Theta = [];
chanstruct(end+1).Radius = [];
end;
if bva.SegmentCount > 1
EEG.data(count,:,:) = getfield(bva, allfields{index})';
bva = rmfield(bva, allfields{index});
else
EEG.data(count,:) = getfield(bva, allfields{index});
bva = rmfield(bva, allfields{index});
end;
end;
end;
EEG.nbchan = size(EEG.data,1);
EEG.srate = bva.SampleRate;
EEG.xmin = bva.t(1)/1000;
EEG.xmax = bva.t(end)/1000;
EEG.pnts = size(EEG.data,2);
EEG.trials = size(EEG.data,3);
EEG.setname = 'Brain Vision Analyzer file';
EEG.comments = [ 'Original file: ' filename ];
% convert channel location structure
% ----------------------------------
disp('Importing channel location information');
for index = 1:length(chanstruct)
EEG.chanlocs(index).labels = chanstruct(index).Name;
if chanstruct(index).Radius ~= 0
EEG.chanlocs(index).sph_theta_besa = chanstruct(index).Theta;
EEG.chanlocs(index).sph_phi_besa = chanstruct(index).Phi;
EEG.chanlocs(index).sph_radius = chanstruct(index).Radius;
else
EEG.chanlocs(index).sph_theta_besa = [];
EEG.chanlocs(index).sph_phi_besa = [];
EEG.chanlocs(index).sph_radius = [];
end;
end;
EEG.chanlocs = convertlocs(EEG.chanlocs, 'sphbesa2all');
EEG.chanlocs = rmfield(EEG.chanlocs, 'sph_theta_besa');
EEG.chanlocs = rmfield(EEG.chanlocs, 'sph_phi_besa');
% convert event information
% -------------------------
disp('Importing events');
index = 0;
for index1 = 1:size(bva.Markers,1)
for index2 = 0:size(bva.Markers,2)-1
if ~isempty(bva.Markers(index2*size(bva.Markers,1)+index1).Description)
index = index + 1;
EEG.event(index).type = bva.Markers(index2*size(bva.Markers,1)+index1).Description;
EEG.event(index).latency = bva.Markers(index2*size(bva.Markers,1)+index1).Position;
EEG.event(index).Points = bva.Markers(index2*size(bva.Markers,1)+index1).Points;
try
EEG.event(index).bvatype = bva.Markers(index2*size(bva.Markers,1)+index1).Type;
EEG.event(index).description = bva.Markers(index2*size(bva.Markers,1)+index1).Description;
catch, end;
try
EEG.event(index).chan = bva.Markers(index2*size(bva.Markers,1)+index1).Chan;
catch, end;
try
EEG.event(index).channelnumber = bva.Markers(index2*size(bva.Markers,1)+index1).ChannelNumber;
catch, end;
if bva.SegmentCount > 1
EEG.event(index).epoch = index1;
EEG.event(index).latency = bva.Markers(index2*size(bva.Markers,1)+index1).Position+(index1-1)*EEG.pnts;
else
EEG.event(index).latency = bva.Markers(index2*size(bva.Markers,1)+index1).Position;
end;
end;
end;
end;
EEG = eeg_checkset(EEG, 'makeur');
EEG = eeg_checkset(EEG, 'eventconsistency');
com = sprintf('EEG = pop_loadbva(''%s'');', filename);
|
github
|
lcnbeapp/beapp-master
|
eegplugin_MARA.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/MARA-master/eegplugin_MARA.m
| 2,770 |
utf_8
|
7619f29fb825e45ca839265d7d4046e0
|
% eegplugin_MARA() - EEGLab plugin to classify artifactual ICs based on
% 6 features from the time domain, the frequency domain,
% and the pattern
%
% Inputs:
% fig - [integer] EEGLAB figure
% try_strings - [struct] "try" strings for menu callbacks.
% catch_strings - [struct] "catch" strings for menu callbacks.
%
% See also: pop_processMARA(), processMARA(), MARA()
% Copyright (C) 2013 Irene Winkler and Eric Waldburger
% Berlin Institute of Technology, Germany
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function eegplugin_MARA( fig, try_strings, catch_strings)
toolsmenu = findobj(fig, 'tag', 'tools');
h = uimenu(toolsmenu, 'label', 'IC Artifact Classification (MARA)');
uimenu(h, 'label', 'MARA Classification', 'callback', ...
[try_strings.no_check ...
'[ALLEEG,EEG,CURRENTSET,LASTCOM]= pop_processMARA( ALLEEG ,EEG ,CURRENTSET );' ...
catch_strings.add_to_hist ]);
uimenu(h, 'label', 'Visualize Components', 'tag', 'MARAviz', 'Enable', ...
'off', 'callback', [try_strings.no_check ...
'EEG = pop_selectcomps_MARA(EEG); pop_visualizeMARAfeatures(EEG.reject.gcompreject, EEG.reject.MARAinfo); ' ...
catch_strings.add_to_hist ]);
uimenu(h, 'label', 'About', 'Separator', 'on', 'Callback', ...
['warndlg2(sprintf([''MARA automatizes the process of hand-labeling independent components for ', ...
'artifact rejection. It is a supervised machine learning algorithm that learns from ', ...
'expert ratings of 1290 components. Features were optimized to solve the binary classification problem ', ...
'reject vs. accept.\n \n', ...
'If you have questions or suggestions about the toolbox, please contact \n ', ...
'Irene Winkler, TU Berlin [email protected] \n \n ', ...
'Reference: \nI. Winkler, S. Haufe, and M. Tangermann, Automatic classification of artifactual', ...
'ICA-components for artifact removal in EEG signals, Behavioral and Brain Functions, 7, 2011.''])', ...
',''About MARA'');']);
|
github
|
lcnbeapp/beapp-master
|
pop_visualizeMARAfeatures.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/MARA-master/pop_visualizeMARAfeatures.m
| 4,558 |
utf_8
|
c888a9b58c7e7893d090883d152d5e09
|
% pop_visualizeMARAfeatures() - Display features that MARA's decision
% for artifact rejection is based on
%
% Usage:
% >> pop_visualizeMARAfeatures(gcompreject, MARAinfo);
%
% Inputs:
% gcompreject - array <1 x nIC> containing 1 if component was rejected
% MARAinfo - struct containing more information about MARA classification
% (output of function <MARA>)
% .posterior_artefactprob : posterior probability for each
% IC of being an artefact according to
% .normfeats : <6 x nIC > features computed by MARA for each IC,
% normalized by the training data
% The features are: (1) Current Density Norm, (2) Range
% in Pattern, (3) Local Skewness of the Time Series,
% (4) Lambda, (5) 8-13 Hz, (6) FitError.
%
% See also: MARA(), processMARA(), pop_selectcomps_MARA()
% Copyright (C) 2013 Irene Winkler and Eric Waldburger
% Berlin Institute of Technology, Germany
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function pop_visualizeMARAfeatures(gcompreject, MARAinfo)
%try
set(0,'units','pixels');
resolution = get(0, 'Screensize');
width = resolution(3);
height = resolution(4);
panelsettings.rowsize = 200;
panelsettings.columnsize = 200;
panelsettings.columns = floor(width/(2*panelsettings.columnsize));
panelsettings.rows = floor(height/panelsettings.rowsize);
panelsettings.numberPerPage = panelsettings.columns * panelsettings.rows;
panelsettings.pages = ceil(length(gcompreject)/ panelsettings.numberPerPage);
% display components on a number of different pages
for page=1:panelsettings.pages
selectcomps_1page(page, panelsettings, gcompreject, MARAinfo);
end;
%catch
% eeglab_error
%end
function EEG = selectcomps_1page(page, panelsettings, gcompreject, MARAinfo)
try, icadefs;
catch,
BACKCOLOR = [0.8 0.8 0.8];
GUIBUTTONCOLOR = [0.8 0.8 0.8];
end;
% set up the figure
% %%%%%%%%%%%%%%%%
if ~exist('fig')
mainFig = figure('name', 'Visualize MARA features', 'numbertitle', 'off');
set(mainFig, 'Color', BACKCOLOR)
set(gcf,'MenuBar', 'none');
pos = get(gcf,'Position');
set(gcf,'Position', [20 20 panelsettings.columnsize*panelsettings.columns panelsettings.rowsize*panelsettings.rows]);
end;
% compute range of components to display
if page < panelsettings.pages
range = (1 + (panelsettings.numberPerPage * (page-1))) : (panelsettings.numberPerPage + ( panelsettings.numberPerPage * (page-1)));
else
range = (1 + (panelsettings.numberPerPage * (page-1))) : length(gcompreject);
end
% draw each component
% %%%%%%%%%%%%%%%%
for i = 1:length(range)
subplot(panelsettings.rows, panelsettings.columns, i)
for j = 1:6
h = barh(j, MARAinfo.normfeats(j, range(i)));
hold on;
if j <= 4 && MARAinfo.normfeats(j, range(i)) > 0
set(h, 'FaceColor', [0.4 0 0]);
end
if j > 4 && MARAinfo.normfeats(j, range(i)) < 0
set(h, 'FaceColor', [0.4 0 0]);
end
end
axis square;
if mod(i, panelsettings.columns) == 1
set(gca,'YTick', 1:6, 'YTickLabel', {'Current Density Norm', ...
'Range in Pattern', 'Local Skewness', 'lambda', '8-13Hz', 'FitError'})
else
set(gca,'YTick', 1:6, 'YTickLabel', cell(1,6))
end
if gcompreject(range(i)) == 1
title(sprintf('IC %d, p-artifact = %1.2f', range(i),MARAinfo.posterior_artefactprob(range(i))),...
'Color', [0.4 0 0]);
set(gca, 'Color', [1 0.7 0.7])
%keyboard
else
title(sprintf('IC %d, p-artifact = %1.2f', range(i),MARAinfo.posterior_artefactprob(range(i))));
end
end
|
github
|
lcnbeapp/beapp-master
|
processMARA.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/MARA-master/processMARA.m
| 6,510 |
utf_8
|
896a41c6475ec80bf7706cc7166ce7a8
|
% processMARA() - Processing for Automatic Artifact Classification with MARA.
% processMARA() calls MACA and saves the identified artifactual components
% in EEG.reject.gcompreject.
% The functions optionally filters the data, runs ICA, plots components or
% reject artifactual components immediately.
%
% Usage:
% >> [ALLEEG,EEG,CURRENTSET] = processMARA(ALLEEG,EEG,CURRENTSET,options)
%
% Inputs and Outputs:
% ALLEEG - array of EEG dataset structures
% EEG - current dataset structure or structure array
% (EEG.reject.gcompreject will be updated)
% CURRENTSET - index(s) of the current EEG dataset(s) in ALLEEG
%
%
% Optional Input:
% options - 1x5 array specifing optional operations, default is [0,0,0,0,0]
% - option(1) = 1 => filter the data before MARA classification
% - option(2) = 1 => run ica before MARA classification
% - option(3) = 1 => plot components to label them for rejection after MARA classification
% (for rejection)
% - option(4) = 1 => plot MARA features for each IC
% - option(4) = 1 => automatically reject MARA's artifactual
% components without inspecting them
%
% See also: pop_eegfilt(), pop_runica, MARA(), pop_selectcomps_MARA(), pop_subcomp
% Copyright (C) 2013 Irene Winkler and Eric Waldburger
% Berlin Institute of Technology, Germany
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [ALLEEG,EEG,CURRENTSET] = processMARA(ALLEEG,EEG,CURRENTSET,varargin)
if isempty(EEG.chanlocs)
try
error('No channel locations. Aborting MARA.')
catch
eeglab_error;
return;
end
end
if not(isempty(varargin))
options = varargin{1};
else
options = [0 0 0 0 0];
end
%% filter the data
if options(1) == 1
disp('Filtering data');
[EEG, LASTCOM] = pop_eegfilt(EEG);
eegh(LASTCOM);
[ALLEEG EEG CURRENTSET, LASTCOM] = pop_newset(ALLEEG, EEG, CURRENTSET);
eegh(LASTCOM);
end
%% run ica
if options(2) == 1
disp('Run ICA');
[EEG, LASTCOM] = pop_runica(EEG);
[ALLEEG EEG CURRENTSET, LASTCOM] = pop_newset(ALLEEG, EEG, CURRENTSET);
eegh(LASTCOM);
end
%% check if ica components are present
[EEG LASTCOM] = eeg_checkset(EEG, 'ica');
if LASTCOM < 0
disp('There are no ICA components present. Aborting classification.');
return
else
eegh(LASTCOM);
end
%% classify artifactual components with MARA
[artcomps, MARAinfo] = MARA(EEG);
EEG.reject.MARAinfo = MARAinfo;
disp('MARA marked the following components for rejection: ')
if isempty(artcomps)
disp('None')
else
disp(artcomps)
disp(' ')
end
if isempty(EEG.reject.gcompreject)
EEG.reject.gcompreject = zeros(1,size(EEG.icawinv,2));
gcompreject_old = EEG.reject.gcompreject;
else % if gcompreject present check whether labels differ from MARA
if and(length(EEG.reject.gcompreject) == size(EEG.icawinv,2), ...
not(isempty(find(EEG.reject.gcompreject))))
tmp = zeros(1,size(EEG.icawinv,2));
tmp(artcomps) = 1;
if not(isequal(tmp, EEG.reject.gcompreject))
answer = questdlg(...
'Some components are already labeled for rejection. What do you want to do?',...
'Labels already present','Merge artifactual labels','Overwrite old labels', 'Cancel','Cancel');
switch answer,
case 'Overwrite old labels',
gcompreject_old = EEG.reject.gcompreject;
EEG.reject.gcompreject = zeros(1,size(EEG.icawinv,2));
disp('Overwrites old labels')
case 'Merge artifactual labels'
disp('Merges MARA''s and old labels')
gcompreject_old = EEG.reject.gcompreject;
case 'Cancel',
return;
end
else
gcompreject_old = EEG.reject.gcompreject;
end
else
EEG.reject.gcompreject = zeros(1,size(EEG.icawinv,2));
gcompreject_old = EEG.reject.gcompreject;
end
end
EEG.reject.gcompreject(artcomps) = 1;
try
EEGLABfig = findall(0, 'tag', 'EEGLAB');
MARAvizmenu = findobj(EEGLABfig, 'tag', 'MARAviz');
set(MARAvizmenu, 'Enable', 'on');
catch
keyboard
end
%% display components with checkbox to label them for artifact rejection
if options(3) == 1
if isempty(artcomps)
answer = questdlg2(...
'MARA identied no artifacts. Do you still want to visualize components?',...
'No artifacts identified','Yes', 'No', 'No');
if strcmp(answer,'No')
return;
end
end
[EEG, LASTCOM] = pop_selectcomps_MARA(EEG, gcompreject_old);
eegh(LASTCOM);
if options(4) == 1
pop_visualizeMARAfeatures(EEG.reject.gcompreject, EEG.reject.MARAinfo);
end
end
%% automatically remove artifacts
if and(and(options(5) == 1, not(options(3) == 1)), not(isempty(artcomps)))
try
[EEG LASTCOM] = pop_subcomp(EEG);
eegh(LASTCOM);
catch
eeglab_error
end
[ALLEEG EEG CURRENTSET LASTCOM] = pop_newset(ALLEEG, EEG, CURRENTSET);
eegh(LASTCOM);
disp('Artifact rejection done.');
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.