plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
jbhuang0604/LapSRN-master
|
mkImpulse.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/mkImpulse.m
| 529 |
utf_8
|
cf6f3809cb123791501bb0e92845a0c6
|
% IM = mkImpulse(SIZE, ORIGIN, AMPLITUDE)
%
% Compute a matrix of dimension SIZE (a [Y X] 2-vector, or a scalar)
% containing a single non-zero entry, at position ORIGIN (defaults to
% ceil(size/2)), of value AMPLITUDE (defaults to 1).
% Eero Simoncelli, 6/96.
function [res] = mkImpulse(sz, origin, amplitude)
sz = sz(:)';
if (size(sz,2) == 1)
sz = [sz sz];
end
if (exist('origin') ~= 1)
origin = ceil(sz/2);
end
if (exist('amplitude') ~= 1)
amplitude = 1;
end
res = zeros(sz);
res(origin(1),origin(2)) = amplitude;
|
github
|
jbhuang0604/LapSRN-master
|
rconv2.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/rconv2.m
| 1,435 |
utf_8
|
da3a54d6c7b1ac17c78eab0a4a7648d9
|
% RES = RCONV2(MTX1, MTX2, CTR)
%
% Convolution of two matrices, with boundaries handled via reflection
% about the edge pixels. Result will be of size of LARGER matrix.
%
% The origin of the smaller matrix is assumed to be its center.
% For even dimensions, the origin is determined by the CTR (optional)
% argument:
% CTR origin
% 0 DIM/2 (default)
% 1 (DIM/2)+1
% Eero Simoncelli, 6/96.
function c = rconv2(a,b,ctr)
if (exist('ctr') ~= 1)
ctr = 0;
end
if (( size(a,1) >= size(b,1) ) & ( size(a,2) >= size(b,2) ))
large = a; small = b;
elseif (( size(a,1) <= size(b,1) ) & ( size(a,2) <= size(b,2) ))
large = b; small = a;
else
error('one arg must be larger than the other in both dimensions!');
end
ly = size(large,1);
lx = size(large,2);
sy = size(small,1);
sx = size(small,2);
%% These values are one less than the index of the small mtx that falls on
%% the border pixel of the large matrix when computing the first
%% convolution response sample:
sy2 = floor((sy+ctr-1)/2);
sx2 = floor((sx+ctr-1)/2);
% pad with reflected copies
clarge = [
large(sy-sy2:-1:2,sx-sx2:-1:2), large(sy-sy2:-1:2,:), ...
large(sy-sy2:-1:2,lx-1:-1:lx-sx2); ...
large(:,sx-sx2:-1:2), large, large(:,lx-1:-1:lx-sx2); ...
large(ly-1:-1:ly-sy2,sx-sx2:-1:2), ...
large(ly-1:-1:ly-sy2,:), ...
large(ly-1:-1:ly-sy2,lx-1:-1:lx-sx2) ];
c = conv2(clarge,small,'valid');
|
github
|
jbhuang0604/LapSRN-master
|
mkR.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/mkR.m
| 775 |
utf_8
|
504bc90f67c72730edc4a9d86630bdf2
|
% IM = mkR(SIZE, EXPT, ORIGIN)
%
% Compute a matrix of dimension SIZE (a [Y X] 2-vector, or a scalar)
% containing samples of a radial ramp function, raised to power EXPT
% (default = 1), with given ORIGIN (default = (size+1)/2, [1 1] =
% upper left). All but the first argument are optional.
% Eero Simoncelli, 6/96.
function [res] = mkR(sz, expt, origin)
sz = sz(:);
if (size(sz,1) == 1)
sz = [sz,sz];
end
% -----------------------------------------------------------------
% OPTIONAL args:
if (exist('expt') ~= 1)
expt = 1;
end
if (exist('origin') ~= 1)
origin = (sz+1)/2;
end
% -----------------------------------------------------------------
[xramp,yramp] = meshgrid( [1:sz(2)]-origin(2), [1:sz(1)]-origin(1) );
res = (xramp.^2 + yramp.^2).^(expt/2);
|
github
|
jbhuang0604/LapSRN-master
|
blur.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/blur.m
| 1,731 |
utf_8
|
a2dc57fdfe85f98549b2f7ddf721c298
|
% RES = blur(IM, LEVELS, FILT)
%
% Blur an image, by filtering and downsampling LEVELS times
% (default=1), followed by upsampling and filtering LEVELS times. The
% blurring is done with filter kernel specified by FILT (default =
% 'binom5'), which can be a string (to be passed to namedFilter), a
% vector (applied separably as a 1D convolution kernel in X and Y), or
% a matrix (applied as a 2D convolution kernel). The downsampling is
% always by 2 in each direction.
% Eero Simoncelli, 3/04.
function res = blur(im, nlevs, filt)
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('nlevs') ~= 1)
nlevs = 1;
end
if (exist('filt') ~= 1)
filt = 'binom5';
end
%------------------------------------------------------------
if isstr(filt)
filt = namedFilter(filt);
end
filt = filt/sum(filt(:));
if nlevs > 0
if (any(size(im)==1))
if (~any(size(filt)==1))
error('Cant apply 2D filter to 1D signal');
end
if (size(im,2)==1)
filt = filt(:);
else
filt = filt(:)';
end
in = corrDn(im,filt,'reflect1',(size(im)~=1)+1);
out = blur(in, nlevs-1, filt);
res = upConv(out, filt, 'reflect1', (size(im)~=1)+1, [1 1], size(im));
elseif (any(size(filt)==1))
filt = filt(:);
in = corrDn(im,filt,'reflect1',[2 1]);
in = corrDn(in,filt','reflect1',[1 2]);
out = blur(in, nlevs-1, filt);
res = upConv(out, filt', 'reflect1', [1 2], [1 1], [size(out,1),size(im,2)]);
res = upConv(res, filt, 'reflect1', [2 1], [1 1], size(im));
else
in = corrDn(im,filt,'reflect1',[2 2]);
out = blur(in, nlevs-1, filt);
res = upConv(out, filt, 'reflect1', [2 2], [1 1], size(im));
end
else
res = im;
end
|
github
|
jbhuang0604/LapSRN-master
|
pyrBand.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/pyrBand.m
| 395 |
utf_8
|
39c1e3772426a1362119d302d9767a24
|
% RES = pyrBand(PYR, INDICES, BAND_NUM)
%
% Access a subband from a pyramid (gaussian, laplacian, QMF/wavelet,
% or steerable). Subbands are numbered consecutively, from finest
% (highest spatial frequency) to coarsest (lowest spatial frequency).
% Eero Simoncelli, 6/96.
function res = pyrBand(pyr, pind, band)
res = reshape( pyr(pyrBandIndices(pind,band)), pind(band,1), pind(band,2) );
|
github
|
jbhuang0604/LapSRN-master
|
kurt2.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/kurt2.m
| 551 |
utf_8
|
cd20c1a5155cba8de454011552ec4f2a
|
% K = KURT2(MTX,MEAN,VAR)
%
% Sample kurtosis (fourth moment divided by squared variance)
% of a matrix. Kurtosis of a Gaussian distribution is 3.
% MEAN (optional) and VAR (optional) make the computation faster.
% Eero Simoncelli, 6/96.
function res = kurt2(mtx, mn, v)
if (exist('mn') ~= 1)
mn = mean(mean(mtx));
end
if (exist('v') ~= 1)
v = var2(mtx,mn);
end
if (isreal(mtx))
res = mean(mean(abs(mtx-mn).^4)) / (v^2);
else
res = mean(mean(real(mtx-mn).^4)) / (real(v)^2) + ...
i*mean(mean(imag(mtx-mn).^4)) / (imag(v)^2);
end
|
github
|
jbhuang0604/LapSRN-master
|
buildSpyr.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/buildSpyr.m
| 2,064 |
utf_8
|
b0caf60e63a52aa734956dd74ea39f95
|
% [PYR, INDICES, STEERMTX, HARMONICS] = buildSpyr(IM, HEIGHT, FILTFILE, EDGES)
%
% Construct a steerable pyramid on matrix IM. Convolutions are
% done with spatial filters.
%
% HEIGHT (optional) specifies the number of pyramid levels to build. Default
% is maxPyrHt(size(IM),size(FILT)).
% You can also specify 'auto' to use this value.
%
% FILTFILE (optional) should be a string referring to an m-file that
% returns the rfilters. (examples: 'sp0Filters', 'sp1Filters',
% 'sp3Filters','sp5Filters'. default = 'sp1Filters'). EDGES specifies
% edge-handling, and defaults to 'reflect1' (see corrDn).
%
% PYR is a vector containing the N pyramid subbands, ordered from fine
% to coarse. INDICES is an Nx2 matrix containing the sizes of
% each subband. This is compatible with the MatLab Wavelet toolbox.
% See the function STEER for a description of STEERMTX and HARMONICS.
% Eero Simoncelli, 6/96.
% See http://www.cis.upenn.edu/~eero/steerpyr.html for more
% information about the Steerable Pyramid image decomposition.
function [pyr,pind,steermtx,harmonics] = buildSpyr(im, ht, filtfile, edges)
%-----------------------------------------------------------------
%% DEFAULTS:
if (exist('filtfile') ~= 1)
filtfile = 'sp1Filters';
end
if (exist('edges') ~= 1)
edges= 'reflect1';
end
if (isstr(filtfile) & (exist(filtfile) == 2))
[lo0filt,hi0filt,lofilt,bfilts,steermtx,harmonics] = eval(filtfile);
else
fprintf(1,'\nUse buildSFpyr for pyramids with arbitrary numbers of orientation bands.\n');
error('FILTFILE argument must be the name of an M-file containing SPYR filters.');
end
max_ht = maxPyrHt(size(im), size(lofilt,1));
if ( (exist('ht') ~= 1) | (ht == 'auto') )
ht = max_ht;
else
if (ht > max_ht)
error(sprintf('Cannot build pyramid higher than %d levels.',max_ht));
end
end
%-----------------------------------------------------------------
hi0 = corrDn(im, hi0filt, edges);
lo0 = corrDn(im, lo0filt, edges);
[pyr,pind] = buildSpyrLevs(lo0, ht, lofilt, bfilts, edges);
pyr = [hi0(:) ; pyr];
pind = [size(hi0); pind];
|
github
|
jbhuang0604/LapSRN-master
|
setPyrBand.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/setPyrBand.m
| 1,049 |
utf_8
|
76554eb735e969097a4723a508facd37
|
% NEWPYR = setPyrBand(PYR, INDICES, NEWBAND, BAND_NUM)
%
% Insert an image (BAND) into a pyramid (gaussian, laplacian, QMF/wavelet,
% or steerable). Subbands are numbered consecutively, from finest
% (highest spatial frequency) to coarsest (lowest spatial frequency).
% Eero Simoncelli, 1/03.
function pyr = setPyrBand(pyr, pind, band, bandNum)
%% Check: PIND a valid index matrix?
if ( ~(ndims(pind) == 2) | ~(size(pind,2) == 2) | ~all(pind==round(pind)) )
pind
error('pyrTools:badArg',...
'PIND argument is not an Nbands X 2 matrix of integers');
end
%% Check: PIND consistent with size of PYR?
if ( length(pyr) ~= sum(prod(pind,2)) )
error('pyrTools:badPyr',...
'Pyramid data vector length is inconsistent with index matrix PIND');
end
%% Check: size of BAND consistent with desired BANDNUM?
if (~all(size(band) == pind(bandNum,:)))
size(band)
pind(bandNum,:)
error('pyrTools:badArg',...
'size of BAND to be inserted is inconsistent with BAND_NUM');
end
pyr(pyrBandIndices(pind,bandNum)) = vectify(band);
|
github
|
jbhuang0604/LapSRN-master
|
var2.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/var2.m
| 390 |
utf_8
|
de26727e055081aa670024c273f0e885
|
% V = VAR2(MTX,MEAN)
%
% Sample variance of a matrix.
% Passing MEAN (optional) makes the calculation faster.
function res = var2(mtx, mn)
if (exist('mn') ~= 1)
mn = mean2(mtx);
end
if (isreal(mtx))
res = sum(sum(abs(mtx-mn).^2)) / max((prod(size(mtx)) - 1),1);
else
res = sum(sum(real(mtx-mn).^2)) + i*sum(sum(imag(mtx-mn).^2));
res = res / max((prod(size(mtx)) - 1),1);
end
|
github
|
jbhuang0604/LapSRN-master
|
reconSFpyrLevs.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/reconSFpyrLevs.m
| 2,016 |
utf_8
|
ff83a4f3d2f0927dcaa8851535e6b20a
|
% RESDFT = reconSFpyrLevs(PYR,INDICES,LOGRAD,XRCOS,YRCOS,ANGLE,NBANDS,LEVS,BANDS)
%
% Recursive function for reconstructing levels of a steerable pyramid
% representation. This is called by reconSFpyr, and is not usually
% called directly.
% Eero Simoncelli, 5/97.
function resdft = reconSFpyrLevs(pyr,pind,log_rad,Xrcos,Yrcos,angle,nbands,levs,bands);
lo_ind = nbands+1;
dims = pind(1,:);
ctr = ceil((dims+0.5)/2);
% log_rad = log_rad + 1;
Xrcos = Xrcos - log2(2); % shift origin of lut by 1 octave.
if any(levs > 1)
lodims = ceil((dims-0.5)/2);
loctr = ceil((lodims+0.5)/2);
lostart = ctr-loctr+1;
loend = lostart+lodims-1;
nlog_rad = log_rad(lostart(1):loend(1),lostart(2):loend(2));
nangle = angle(lostart(1):loend(1),lostart(2):loend(2));
if (size(pind,1) > lo_ind)
nresdft = reconSFpyrLevs( pyr(1+sum(prod(pind(1:lo_ind-1,:)')):size(pyr,1)),...
pind(lo_ind:size(pind,1),:), ...
nlog_rad, Xrcos, Yrcos, nangle, nbands,levs-1, bands);
else
nresdft = fftshift(fft2(pyrBand(pyr,pind,lo_ind)));
end
YIrcos = sqrt(abs(1.0 - Yrcos.^2));
lomask = pointOp(nlog_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
resdft = zeros(dims);
resdft(lostart(1):loend(1),lostart(2):loend(2)) = nresdft .* lomask;
else
resdft = zeros(dims);
end
if any(levs == 1)
lutsize = 1024;
Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi]
order = nbands-1;
%% divide by sqrt(sum_(n=0)^(N-1) cos(pi*n/N)^(2(N-1)) )
const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order));
Ycosn = sqrt(const) * (cos(Xcosn)).^order;
himask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1),0);
ind = 1;
for b = 1:nbands
if any(bands == b)
anglemask = pointOp(angle,Ycosn,Xcosn(1)+pi*(b-1)/nbands,Xcosn(2)-Xcosn(1));
band = reshape(pyr(ind:ind+prod(dims)-1), dims(1), dims(2));
banddft = fftshift(fft2(band));
resdft = resdft + (sqrt(-1))^(nbands-1) * banddft.*anglemask.*himask;
end
ind = ind + prod(dims);
end
end
|
github
|
jbhuang0604/LapSRN-master
|
rcosFn.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/rcosFn.m
| 1,122 |
utf_8
|
36283e0a34f1baf7ea2c5e6cb23aab89
|
% [X, Y] = rcosFn(WIDTH, POSITION, VALUES)
%
% Return a lookup table (suitable for use by INTERP1)
% containing a "raised cosine" soft threshold function:
%
% Y = VALUES(1) + (VALUES(2)-VALUES(1)) *
% cos^2( PI/2 * (X - POSITION + WIDTH)/WIDTH )
%
% WIDTH is the width of the region over which the transition occurs
% (default = 1). POSITION is the location of the center of the
% threshold (default = 0). VALUES (default = [0,1]) specifies the
% values to the left and right of the transition.
% Eero Simoncelli, 7/96.
function [X, Y] = rcosFn(width,position,values)
%------------------------------------------------------------
% OPTIONAL ARGS:
if (exist('width') ~= 1)
width = 1;
end
if (exist('position') ~= 1)
position = 0;
end
if (exist('values') ~= 1)
values = [0,1];
end
%------------------------------------------------------------
sz = 256; %% arbitrary!
X = pi * [-sz-1:1] / (2*sz);
Y = values(1) + (values(2)-values(1)) * cos(X).^2;
% Make sure end values are repeated, for extrapolation...
Y(1) = Y(2);
Y(sz+3) = Y(sz+2);
X = position + (2*width/pi) * (X + pi/4);
|
github
|
jbhuang0604/LapSRN-master
|
wpyrLev.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/wpyrLev.m
| 729 |
utf_8
|
77f309b76f98f3421e786fde4fe2d429
|
% [LEV,IND] = wpyrLev(PYR,INDICES,LEVEL)
%
% Access a level from a separable QMF/wavelet pyramid.
% Return as an SxB matrix, B = number of bands, S = total size of a band.
% Also returns an Bx2 matrix containing dimensions of the subbands.
% Eero Simoncelli, 6/96.
function [lev,ind] = wpyrLev(pyr,pind,level)
if ((pind(1,1) == 1) | (pind(1,2) ==1))
nbands = 1;
else
nbands = 3;
end
if ((level > wpyrHt(pind)) | (level < 1))
error(sprintf('Level number must be in the range [1, %d].', wpyrHt(pind)));
end
firstband = 1 + nbands*(level-1)
firstind = 1;
for l=1:firstband-1
firstind = firstind + prod(pind(l,:));
end
ind = pind(firstband:firstband+nbands-1,:);
lev = pyr(firstind:firstind+sum(prod(ind'))-1);
|
github
|
jbhuang0604/LapSRN-master
|
binomialFilter.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/binomialFilter.m
| 309 |
utf_8
|
47b67219b2519bd65a435f3df318d41a
|
% KERNEL = binomialFilter(size)
%
% Returns a vector of binomial coefficients of order (size-1) .
% Eero Simoncelli, 2/97.
function [kernel] = binomialFilter(sz)
if (sz < 2)
error('size argument must be larger than 1');
end
kernel = [0.5 0.5]';
for n=1:sz-2
kernel = conv([0.5 0.5]', kernel);
end
|
github
|
jbhuang0604/LapSRN-master
|
cconv2.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/cconv2.m
| 1,325 |
utf_8
|
8e564b623ba5cebd51e585eac6c66ba8
|
% RES = CCONV2(MTX1, MTX2, CTR)
%
% Circular convolution of two matrices. Result will be of size of
% LARGER vector.
%
% The origin of the smaller matrix is assumed to be its center.
% For even dimensions, the origin is determined by the CTR (optional)
% argument:
% CTR origin
% 0 DIM/2 (default)
% 1 (DIM/2)+1
% Eero Simoncelli, 6/96. Modified 2/97.
function c = cconv2(a,b,ctr)
if (exist('ctr') ~= 1)
ctr = 0;
end
if (( size(a,1) >= size(b,1) ) & ( size(a,2) >= size(b,2) ))
large = a; small = b;
elseif (( size(a,1) <= size(b,1) ) & ( size(a,2) <= size(b,2) ))
large = b; small = a;
else
error('one arg must be larger than the other in both dimensions!');
end
ly = size(large,1);
lx = size(large,2);
sy = size(small,1);
sx = size(small,2);
%% These values are the index of the small mtx that falls on the
%% border pixel of the large matrix when computing the first
%% convolution response sample:
sy2 = floor((sy+ctr+1)/2);
sx2 = floor((sx+ctr+1)/2);
% pad:
clarge = [ ...
large(ly-sy+sy2+1:ly,lx-sx+sx2+1:lx), large(ly-sy+sy2+1:ly,:), ...
large(ly-sy+sy2+1:ly,1:sx2-1); ...
large(:,lx-sx+sx2+1:lx), large, large(:,1:sx2-1); ...
large(1:sy2-1,lx-sx+sx2+1:lx), ...
large(1:sy2-1,:), ...
large(1:sy2-1,1:sx2-1) ];
c = conv2(clarge,small,'valid');
|
github
|
jbhuang0604/LapSRN-master
|
reconSCFpyr.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/reconSCFpyr.m
| 4,475 |
utf_8
|
a0a6a06af4b5c9f7aa195bb8188fc754
|
% RES = reconSCFpyr(PYR, INDICES, LEVS, BANDS, TWIDTH)
%
% The inverse of buildSCFpyr: Reconstruct image from its complex steerable pyramid representation,
% in the Fourier domain.
%
% The image is reconstructed by forcing the complex subbands to be analytic
% (zero on half of the 2D Fourier plane, as they are supossed to be unless
% they have being modified), and reconstructing from the real part of those
% analytic subbands. That is equivalent to compute the Hilbert transforms of
% the imaginary parts of the subbands, average them with their real
% counterparts, and then reconstructing from the resulting real subbands.
%
% PYR is a vector containing the N pyramid subbands, ordered from fine
% to coarse. INDICES is an Nx2 matrix containing the sizes of
% each subband. This is compatible with the MatLab Wavelet toolbox.
%
% LEVS (optional) should be a list of levels to include, or the string
% 'all' (default). 0 corresonds to the residual highpass subband.
% 1 corresponds to the finest oriented scale. The lowpass band
% corresponds to number spyrHt(INDICES)+1.
%
% BANDS (optional) should be a list of bands to include, or the string
% 'all' (default). 1 = vertical, rest proceeding anti-clockwise.
%
% TWIDTH is the width of the transition region of the radial lowpass
% function, in octaves (default = 1, which gives a raised cosine for
% the bandpass filters).
% Javier Portilla, 7/04, basing on Eero Simoncelli's Matlab Pyrtools code
% and our common code on texture synthesis (textureSynthesis.m).
function res = reconSCFpyr(pyr, indices, levs, bands, twidth)
%%------------------------------------------------------------
%% DEFAULTS:
if ~exist('levs'),
levs = 'all';
end
if ~exist('bands')
bands = 'all';
end
if ~exist('twidth'),
twidth = 1;
elseif (twidth <= 0)
fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n');
twidth = 1;
end
%%------------------------------------------------------------
pind = indices;
Nsc = log2(pind(1,1)/pind(end,1));
Nor = (size(pind,1)-2)/Nsc;
for nsc = 1:Nsc,
firstBnum = (nsc-1)*Nor+2;
%% Re-create analytic subbands
dims = pind(firstBnum,:);
ctr = ceil((dims+0.5)/2);
ang = mkAngle(dims, 0, ctr);
ang(ctr(1),ctr(2)) = -pi/2;
for nor = 1:Nor,
nband = (nsc-1)*Nor+nor+1;
ind = pyrBandIndices(pind,nband);
ch = pyrBand(pyr, pind, nband);
ang0 = pi*(nor-1)/Nor;
xang = mod(ang-ang0+pi, 2*pi) - pi;
amask = 2*(abs(xang) < pi/2) + (abs(xang) == pi/2);
amask(ctr(1),ctr(2)) = 1;
amask(:,1) = 1;
amask(1,:) = 1;
amask = fftshift(amask);
ch = ifft2(amask.*fft2(ch)); % "Analytic" version
%f = 1.000008; % With this factor the reconstruction SNR goes up around 6 dB!
f = 1;
ch = f*0.5*real(ch); % real part
pyr(ind) = ch;
end % nor
end % nsc
res = reconSFpyr(pyr, indices, levs, bands, twidth);
|
github
|
jbhuang0604/LapSRN-master
|
buildSCFpyr.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/buildSCFpyr.m
| 2,713 |
utf_8
|
d94b4004138b50b6651511e8ba6ccb93
|
% [PYR, INDICES, STEERMTX, HARMONICS] = buildSCFpyr(IM, HEIGHT, ORDER, TWIDTH)
%
% This is a modified version of buildSFpyr, that constructs a
% complex-valued steerable pyramid using Hilbert-transform pairs
% of filters. Note that the imaginary parts will *not* be steerable.
%
% To reconstruct from this representation, either call reconSFpyr
% on the real part of the pyramid, *or* call reconSCFpyr which will
% use both real and imaginary parts (forcing analyticity).
%
% Description of this transform appears in: Portilla & Simoncelli,
% Int'l Journal of Computer Vision, 40(1):49-71, Oct 2000.
% Further information: http://www.cns.nyu.edu/~eero/STEERPYR/
% Original code: Eero Simoncelli, 5/97.
% Modified by Javier Portilla to return complex (quadrature pair) channels,
% 9/97.
function [pyr,pind,steermtx,harmonics] = buildSCFpyr(im, ht, order, twidth)
%-----------------------------------------------------------------
%% DEFAULTS:
max_ht = floor(log2(min(size(im)))) - 2;
if (exist('ht') ~= 1)
ht = max_ht;
else
if (ht > max_ht)
error(sprintf('Cannot build pyramid higher than %d levels.',max_ht));
end
end
if (exist('order') ~= 1)
order = 3;
elseif ((order > 15) | (order < 0))
fprintf(1,'Warning: ORDER must be an integer in the range [0,15]. Truncating.\n');
order = min(max(order,0),15);
else
order = round(order);
end
nbands = order+1;
if (exist('twidth') ~= 1)
twidth = 1;
elseif (twidth <= 0)
fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n');
twidth = 1;
end
%-----------------------------------------------------------------
%% Steering stuff:
if (mod((nbands),2) == 0)
harmonics = [0:(nbands/2)-1]'*2 + 1;
else
harmonics = [0:(nbands-1)/2]'*2;
end
steermtx = steer2HarmMtx(harmonics, pi*[0:nbands-1]/nbands, 'even');
%-----------------------------------------------------------------
dims = size(im);
ctr = ceil((dims+0.5)/2);
[xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ...
([1:dims(1)]-ctr(1))./(dims(1)/2) );
angle = atan2(yramp,xramp);
log_rad = sqrt(xramp.^2 + yramp.^2);
log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1);
log_rad = log2(log_rad);
%% Radial transition function (a raised cosine in log-frequency):
[Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]);
Yrcos = sqrt(Yrcos);
YIrcos = sqrt(1.0 - Yrcos.^2);
lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
imdft = fftshift(fft2(im));
lo0dft = imdft .* lo0mask;
[pyr,pind] = buildSCFpyrLevs(lo0dft, log_rad, Xrcos, Yrcos, angle, ht, nbands);
hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
hi0dft = imdft .* hi0mask;
hi0 = ifft2(ifftshift(hi0dft));
pyr = [real(hi0(:)) ; pyr];
pind = [size(hi0); pind];
|
github
|
jbhuang0604/LapSRN-master
|
showIm.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/showIm.m
| 6,111 |
utf_8
|
15fbbf55e2fd54e3f48ca936e23c3f32
|
% RANGE = showIm (MATRIX, RANGE, ZOOM, LABEL, NSHADES )
%
% Display a MatLab MATRIX as a grayscale image in the current figure,
% inside the current axes. If MATRIX is complex, the real and imaginary
% parts are shown side-by-side, with the same grayscale mapping.
%
% If MATRIX is a string, it should be the name of a variable bound to a
% MATRIX in the base (global) environment. This matrix is displayed as an
% image, with the title set to the string.
%
% RANGE (optional) is a 2-vector specifying the values that map to
% black and white, respectively. Passing a value of 'auto' (default)
% sets RANGE=[min,max] (as in MatLab's imagesc). 'auto2' sets
% RANGE=[mean-2*stdev, mean+2*stdev]. 'auto3' sets
% RANGE=[p1-(p2-p1)/8, p2+(p2-p1)/8], where p1 is the 10th percentile
% value of the sorted MATRIX samples, and p2 is the 90th percentile
% value.
%
% ZOOM specifies the number of matrix samples per screen pixel. It
% will be rounded to an integer, or 1 divided by an integer. A value
% of 'same' or 'auto' (default) causes the zoom value to be chosen
% automatically to fit the image into the current axes. A value of
% 'full' fills the axis region (leaving no room for labels). See
% pixelAxes.m.
%
% If LABEL (optional, default = 1, unless zoom='full') is non-zero, the range
% of values that are mapped into the gray colormap and the dimensions
% (size) of the matrix and zoom factor are printed below the image. If label
% is a string, it is used as a title.
%
% NSHADES (optional) specifies the number of gray shades, and defaults
% to the size of the current colormap.
% Eero Simoncelli, 6/96.
%%TODO: should use "newplot"
function range = showIm( im, range, zoom, label, nshades );
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (nargin < 1)
error('Requires at least one input argument.');
end
MLv = version;
if isstr(im)
if (strcmp(MLv(1),'4'))
error('Cannot pass string arg for MATRIX in MatLab version 4.x');
end
label = im;
im = evalin('base',im);
end
if (exist('range') ~= 1)
range = 'auto1';
end
if (exist('nshades') ~= 1)
nshades = size(colormap,1);
end
nshades = max( nshades, 2 );
if (exist('zoom') ~= 1)
zoom = 'auto';
end
if (exist('label') ~= 1)
if strcmp(zoom,'full')
label = 0; % no labeling
else
label = 1; % just print grayrange & dims
end
end
%------------------------------------------------------------
%% Automatic range calculation:
if (strcmp(range,'auto1') | strcmp(range,'auto'))
if isreal(im)
[mn,mx] = range2(im);
else
[mn1,mx1] = range2(real(im));
[mn2,mx2] = range2(imag(im));
mn = min(mn1,mn2);
mx = max(mx1,mx2);
end
if any(size(im)==1)
pad = (mx-mn)/12; % MAGIC NUMBER: graph padding
range = [mn-pad, mx+pad];
else
range = [mn,mx];
end
elseif strcmp(range,'auto2')
if isreal(im)
stdev = sqrt(var2(im));
av = mean2(im);
else
stdev = sqrt((var2(real(im)) + var2(imag(im)))/2);
av = (mean2(real(im)) + mean2(imag(im)))/2;
end
range = [av-2*stdev,av+2*stdev]; % MAGIC NUMBER: 2 stdevs
elseif strcmp(range, 'auto3')
percentile = 0.1; % MAGIC NUMBER: 0<p<0.5
[N,X] = histo(im);
binsz = X(2)-X(1);
N = N+1e-10; % Ensure cumsum will be monotonic for call to interp1
cumN = [0, cumsum(N)]/sum(N);
cumX = [X(1)-binsz, X] + (binsz/2);
ctrRange = interp1(cumN,cumX, [percentile, 1-percentile]);
range = mean(ctrRange) + (ctrRange-mean(ctrRange))/(1-2*percentile);
elseif isstr(range)
error(sprintf('Bad RANGE argument: %s',range))
end
if ((range(2) - range(1)) <= eps)
range(1) = range(1) - 0.5;
range(2) = range(2) + 0.5;
end
if isreal(im)
factor=1;
else
factor = 1+sqrt(-1);
end
xlbl_offset = 0; % default value
if (~any(size(im)==1))
%% MatLab's "image" rounds when mapping to the colormap, so we compute
%% (im-r1)*(nshades-1)/(r2-r1) + 1.5
mult = ((nshades-1) / (range(2)-range(1)));
d_im = (mult * im) + factor*(1.5 - range(1)*mult);
end
if isreal(im)
if (any(size(im)==1))
hh = plot( im);
axis([1, prod(size(im)), range]);
else
hh = image( d_im );
axis('off');
zoom = pixelAxes(size(d_im),zoom);
end
else
if (any(size(im)==1))
subplot(2,1,1);
hh = plot(real(im));
axis([1, prod(size(im)), range]);
subplot(2,1,2);
hh = plot(imag(im));
axis([1, prod(size(im)), range]);
else
subplot(1,2,1);
hh = image(real(d_im));
axis('off'); zoom = pixelAxes(size(d_im),zoom);
ax = gca; orig_units = get(ax,'Units');
set(ax,'Units','points');
pos1 = get(ax,'Position');
set(ax,'Units',orig_units);
subplot(1,2,2);
hh = image(imag(d_im));
axis('off'); zoom = pixelAxes(size(d_im),zoom);
ax = gca; orig_units = get(ax,'Units');
set(ax,'Units','points');
pos2 = get(ax,'Position');
set(ax,'Units',orig_units);
xlbl_offset = (pos1(1)-pos2(1))/2;
end
end
if ~any(size(im)==1)
colormap(gray(nshades));
end
if ((label ~= 0))
if isstr(label)
title(label);
h = get(gca,'Title');
orig_units = get(h,'Units');
set(h,'Units','points');
pos = get(h,'Position');
pos(1:2) = pos(1:2) + [xlbl_offset, -3]; % MAGIC NUMBER: y pixel offset
set(h,'Position',pos);
set(h,'Units',orig_units);
end
if (~any(size(im)==1))
if (zoom > 1)
zformat = sprintf('* %d',round(zoom));
else
zformat = sprintf('/ %d',round(1/zoom));
end
if isreal(im)
format=[' Range: [%.3g, %.3g] \n Dims: [%d, %d] ', zformat];
else
format=['Range: [%.3g, %.3g] ---- Dims: [%d, %d]', zformat];
end
xlabel(sprintf(format, range(1), range(2), size(im,1), size(im,2)));
h = get(gca,'Xlabel');
set(h,'FontSize', 9); % MAGIC NUMBER: font size!!!
orig_units = get(h,'Units');
set(h,'Units','points');
pos = get(h,'Position');
pos(1:2) = pos(1:2) + [xlbl_offset, 10]; % MAGIC NUMBER: y offset in points
set(h,'Position',pos);
set(h,'Units',orig_units);
set(h,'Visible','on'); % axis('image') turned the xlabel off...
end
end
return;
|
github
|
jbhuang0604/LapSRN-master
|
pyrLow.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/pyrLow.m
| 287 |
utf_8
|
b3514ec06e2e106d7b61e534cac20a8e
|
% RES = pyrLow(PYR, INDICES)
%
% Access the lowpass subband from a pyramid
% (gaussian, laplacian, QMF/wavelet, steerable).
% Eero Simoncelli, 6/96.
function res = pyrLow(pyr,pind)
band = size(pind,1);
res = reshape( pyr(pyrBandIndices(pind,band)), pind(band,1), pind(band,2) );
|
github
|
jbhuang0604/LapSRN-master
|
pgmRead.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/pgmRead.m
| 1,259 |
utf_8
|
6f07c13cf0f5d8930a46ac0d778bf86f
|
% IM = pgmRead( FILENAME )
%
% Load a pgm image into a MatLab matrix.
% This format is accessible from the XV image browsing utility.
% Only works for 8bit gray images (raw or ascii)
% Hany Farid, Spring '96. Modified by Eero Simoncelli, 6/96.
function im = pgmRead( fname );
[fid,msg] = fopen( fname, 'r' );
if (fid == -1)
error(msg);
end
%%% First line contains ID string:
%%% "P1" = ascii bitmap, "P2" = ascii greymap,
%%% "P3" = ascii pixmap, "P4" = raw bitmap,
%%% "P5" = raw greymap, "P6" = raw pixmap
TheLine = fgetl(fid);
format = TheLine;
if ~((format(1:2) == 'P2') | (format(1:2) == 'P5'))
error('PGM file must be of type P2 or P5');
end
%%% Any number of comment lines
TheLine = fgetl(fid);
while TheLine(1) == '#'
TheLine = fgetl(fid);
end
%%% dimensions
sz = sscanf(TheLine,'%d',2);
xdim = sz(1);
ydim = sz(2);
sz = xdim * ydim;
%%% Maximum pixel value
TheLine = fgetl(fid);
maxval = sscanf(TheLine, '%d',1);
%%im = zeros(dim,1);
if (format(2) == '2')
[im,count] = fscanf(fid,'%d',sz);
else
[im,count] = fread(fid,sz,'uchar');
end
fclose(fid);
if (count == sz)
im = reshape( im, xdim, ydim )';
else
fprintf(1,'Warning: File ended early!');
im = reshape( [im ; zeros(sz-count,1)], xdim, ydim)';
end
|
github
|
jbhuang0604/LapSRN-master
|
upConv.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/upConv.m
| 2,779 |
utf_8
|
34137e966f38700416bfb0ebb72663ee
|
% RES = upConv(IM, FILT, EDGES, STEP, START, STOP, RES)
%
% Upsample matrix IM, followed by convolution with matrix FILT. These
% arguments should be 1D or 2D matrices, and IM must be larger (in
% both dimensions) than FILT. The origin of filt
% is assumed to be floor(size(filt)/2)+1.
%
% EDGES is a string determining boundary handling:
% 'circular' - Circular convolution
% 'reflect1' - Reflect about the edge pixels
% 'reflect2' - Reflect, doubling the edge pixels
% 'repeat' - Repeat the edge pixels
% 'zero' - Assume values of zero outside image boundary
% 'extend' - Reflect and invert
% 'dont-compute' - Zero output when filter overhangs OUTPUT boundaries
%
% Upsampling factors are determined by STEP (optional, default=[1 1]),
% a 2-vector [y,x].
%
% The window over which the convolution occurs is specfied by START
% (optional, default=[1,1], and STOP (optional, default =
% step .* (size(IM) + floor((start-1)./step))).
%
% RES is an optional result matrix. The convolution result will be
% destructively added into this matrix. If this argument is passed, the
% result matrix will not be returned. DO NOT USE THIS ARGUMENT IF
% YOU DO NOT UNDERSTAND WHAT THIS MEANS!!
%
% NOTE: this operation corresponds to multiplication of a signal
% vector by a matrix whose columns contain copies of the time-reversed
% (or space-reversed) FILT shifted by multiples of STEP. See corrDn.m
% for the operation corresponding to the transpose of this matrix.
% Eero Simoncelli, 6/96. revised 2/97.
function result = upConv(im,filt,edges,step,start,stop,res)
%% THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD)
fprintf(1,'WARNING: You should compile the MEX version of "upConv.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster, and provides more boundary-handling options.\n');
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('edges') == 1)
if (strcmp(edges,'reflect1') ~= 1)
warning('Using REFLECT1 edge-handling (use MEX code for other options).');
end
end
if (exist('step') ~= 1)
step = [1,1];
end
if (exist('start') ~= 1)
start = [1,1];
end
% A multiple of step
if (exist('stop') ~= 1)
stop = step .* (floor((start-ones(size(start)))./step)+size(im))
end
if ( ceil((stop(1)+1-start(1)) / step(1)) ~= size(im,1) )
error('Bad Y result dimension');
end
if ( ceil((stop(2)+1-start(2)) / step(2)) ~= size(im,2) )
error('Bad X result dimension');
end
if (exist('res') ~= 1)
res = zeros(stop-start+1);
end
%------------------------------------------------------------
tmp = zeros(size(res));
tmp(start(1):step(1):stop(1),start(2):step(2):stop(2)) = im;
result = rconv2(tmp,filt) + res;
|
github
|
jbhuang0604/LapSRN-master
|
mean2.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/mean2.m
| 97 |
utf_8
|
cacc007ef6e32ba40a1e0da3b3d80a0e
|
% M = MEAN2(MTX)
%
% Sample mean of a matrix.
function res = mean2(mtx)
res = mean(mean(mtx));
|
github
|
jbhuang0604/LapSRN-master
|
range2.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/range2.m
| 523 |
utf_8
|
b9f23c3a4f73bf568a1b5793f516aa80
|
% [MIN, MAX] = range2(MTX)
%
% Compute minimum and maximum values of MTX, returning them as a 2-vector.
% Eero Simoncelli, 3/97.
function [mn, mx] = range2(mtx)
%% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD)
fprintf(1,'WARNING: You should compile the MEX version of "range2.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster.\n');
if (~isreal(mtx))
error('MTX must be real-valued');
end
mn = min(min(mtx));
mx = max(max(mtx));
|
github
|
jbhuang0604/LapSRN-master
|
buildSCFpyrLevs.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/buildSCFpyrLevs.m
| 2,187 |
utf_8
|
26747285064a0eaa2f3db75013e80849
|
% [PYR, INDICES] = buildSCFpyrLevs(LODFT, LOGRAD, XRCOS, YRCOS, ANGLE, HEIGHT, NBANDS)
%
% Recursive function for constructing levels of a steerable pyramid. This
% is called by buildSCFpyr, and is not usually called directly.
% Original code: Eero Simoncelli, 5/97.
% Modified by Javier Portilla to generate complex bands in 9/97.
function [pyr,pind] = buildSCFpyrLevs(lodft,log_rad,Xrcos,Yrcos,angle,ht,nbands);
if (ht <= 0)
lo0 = ifft2(ifftshift(lodft));
pyr = real(lo0(:));
pind = size(lo0);
else
bands = zeros(prod(size(lodft)), nbands);
bind = zeros(nbands,2);
% log_rad = log_rad + 1;
Xrcos = Xrcos - log2(2); % shift origin of lut by 1 octave.
lutsize = 1024;
Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi]
order = nbands-1;
%% divide by sqrt(sum_(n=0)^(N-1) cos(pi*n/N)^(2(N-1)) )
%% Thanks to Patrick Teo for writing this out :)
const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order));
%
% Ycosn = sqrt(const) * (cos(Xcosn)).^order;
%
% analityc version: only take one lobe
alfa= mod(pi+Xcosn,2*pi)-pi;
Ycosn = 2*sqrt(const) * (cos(Xcosn).^order) .* (abs(alfa)<pi/2);
himask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
for b = 1:nbands
anglemask = pointOp(angle, Ycosn, Xcosn(1)+pi*(b-1)/nbands, Xcosn(2)-Xcosn(1));
banddft = ((-i)^(nbands-1)) .* lodft .* anglemask .* himask;
band = ifft2(ifftshift(banddft));
% bands(:,b) = real(band(:));
% analytic version: full complex value
bands(:,b)=band(:);
bind(b,:) = size(band);
end
dims = size(lodft);
ctr = ceil((dims+0.5)/2);
lodims = ceil((dims-0.5)/2);
loctr = ceil((lodims+0.5)/2);
lostart = ctr-loctr+1;
loend = lostart+lodims-1;
log_rad = log_rad(lostart(1):loend(1),lostart(2):loend(2));
angle = angle(lostart(1):loend(1),lostart(2):loend(2));
lodft = lodft(lostart(1):loend(1),lostart(2):loend(2));
YIrcos = abs(sqrt(1.0 - Yrcos.^2));
lomask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
lodft = lomask .* lodft;
[npyr,nind] = buildSCFpyrLevs(lodft, log_rad, Xrcos, Yrcos, angle, ht-1, nbands);
pyr = [bands(:); npyr];
pind = [bind; nind];
end
|
github
|
jbhuang0604/LapSRN-master
|
clip.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/clip.m
| 814 |
utf_8
|
13c82937ba69d5bc8c94b2ccca783e1b
|
% [RES] = clip(IM, MINVALorRANGE, MAXVAL)
%
% Clip values of matrix IM to lie between minVal and maxVal:
% RES = max(min(IM,MAXVAL),MINVAL)
% The first argument can also specify both min and max, as a 2-vector.
% If only one argument is passed, the range defaults to [0,1].
function res = clip(im, minValOrRange, maxVal)
if (exist('minValOrRange') ~= 1)
minVal = 0;
maxVal = 1;
elseif (length(minValOrRange) == 2)
minVal = minValOrRange(1);
maxVal = minValOrRange(2);
elseif (length(minValOrRange) == 1)
minVal = minValOrRange;
if (exist('maxVal') ~= 1)
maxVal=minVal+1;
end
else
error('MINVAL must be a scalar or a 2-vector');
end
if ( maxVal < minVal )
error('MAXVAL should be less than MINVAL');
end
res = im;
res(find(im < minVal)) = minVal;
res(find(im > maxVal)) = maxVal;
|
github
|
jbhuang0604/LapSRN-master
|
upBlur.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/upBlur.m
| 1,213 |
utf_8
|
7b07d26940520537edb6e8dc25b72242
|
% RES = upBlur(IM, LEVELS, FILT)
%
% Upsample and blur an image. The blurring is done with filter
% kernel specified by FILT (default = 'binom5'), which can be a string
% (to be passed to namedFilter), a vector (applied separably as a 1D
% convolution kernel in X and Y), or a matrix (applied as a 2D
% convolution kernel). The downsampling is always by 2 in each
% direction.
%
% The procedure is applied recursively LEVELS times (default=1).
% Eero Simoncelli, 4/97.
function res = upBlur(im, nlevs, filt)
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('nlevs') ~= 1)
nlevs = 1;
end
if (exist('filt') ~= 1)
filt = 'binom5';
end
%------------------------------------------------------------
if isstr(filt)
filt = namedFilter(filt);
end
if nlevs > 1
im = upBlur(im,nlevs-1,filt);
end
if (nlevs >= 1)
if (any(size(im)==1))
if (size(im,1)==1)
filt = filt';
end
res = upConv(im,filt,'reflect1',(size(im)~=1)+1);
elseif (any(size(filt)==1))
filt = filt(:);
res = upConv(im,filt,'reflect1',[2 1]);
res = upConv(res,filt','reflect1',[1 2]);
else
res = upConv(im,filt,'reflect1',[2 2]);
end
else
res = im;
end
|
github
|
jbhuang0604/LapSRN-master
|
nextFig.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/nextFig.m
| 363 |
utf_8
|
94a66b00983cd3840ff1cc88f118a022
|
% nextFig (MAXFIGS, SKIP)
%
% Make figure number mod((GCF+SKIP), MAXFIGS) the current figure.
% MAXFIGS is optional, and defaults to 2.
% SKIP is optional, and defaults to 1.
% Eero Simoncelli, 2/97.
function nextFig(maxfigs, skip)
if (exist('maxfigs') ~= 1)
maxfigs = 2;
end
if (exist('skip') ~= 1)
skip = 1;
end
figure(1+mod(gcf-1+skip,maxfigs));
|
github
|
jbhuang0604/LapSRN-master
|
zconv2.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/zconv2.m
| 1,164 |
utf_8
|
cd266795530db4cb146c1038383316f3
|
% RES = ZCONV2(MTX1, MTX2, CTR)
%
% Convolution of two matrices, with boundaries handled as if the larger mtx
% lies in a sea of zeros. Result will be of size of LARGER vector.
%
% The origin of the smaller matrix is assumed to be its center.
% For even dimensions, the origin is determined by the CTR (optional)
% argument:
% CTR origin
% 0 DIM/2 (default)
% 1 (DIM/2)+1 (behaves like conv2(mtx1,mtx2,'same'))
% Eero Simoncelli, 2/97.
function c = zconv2(a,b,ctr)
if (exist('ctr') ~= 1)
ctr = 0;
end
if (( size(a,1) >= size(b,1) ) & ( size(a,2) >= size(b,2) ))
large = a; small = b;
elseif (( size(a,1) <= size(b,1) ) & ( size(a,2) <= size(b,2) ))
large = b; small = a;
else
error('one arg must be larger than the other in both dimensions!');
end
ly = size(large,1);
lx = size(large,2);
sy = size(small,1);
sx = size(small,2);
%% These values are the index of the small mtx that falls on the
%% border pixel of the large matrix when computing the first
%% convolution response sample:
sy2 = floor((sy+ctr+1)/2);
sx2 = floor((sx+ctr+1)/2);
clarge = conv2(large,small);
c = clarge(sy2:ly+sy2-1, sx2:lx+sx2-1);
|
github
|
jbhuang0604/LapSRN-master
|
mkZonePlate.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/mkZonePlate.m
| 633 |
utf_8
|
d88329c8d374e54e124222c825679768
|
% IM = mkZonePlate(SIZE, AMPL, PHASE)
%
% Make a "zone plate" image:
% AMPL * cos( r^2 + PHASE)
% SIZE specifies the matrix size, as for zeros().
% AMPL (default = 1) and PHASE (default = 0) are optional.
% Eero Simoncelli, 6/96.
function [res] = mkZonePlate(sz, ampl, ph)
sz = sz(:);
if (size(sz,1) == 1)
sz = [sz,sz];
end
mxsz = max(sz(1),sz(2));
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('ampl') ~= 1)
ampl = 1;
end
if (exist('ph') ~= 1)
ph = 0;
end
%------------------------------------------------------------
res = ampl * cos( (pi/mxsz) * mkR(sz,2) + ph );
|
github
|
jbhuang0604/LapSRN-master
|
steer2HarmMtx.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/steer2HarmMtx.m
| 1,803 |
utf_8
|
35816be985c308717168260dc97419d8
|
% MTX = steer2HarmMtx(HARMONICS, ANGLES, REL_PHASES)
%
% Compute a steering matrix (maps a directional basis set onto the
% angular Fourier harmonics). HARMONICS is a vector specifying the
% angular harmonics contained in the steerable basis/filters. ANGLES
% (optional) is a vector specifying the angular position of each filter.
% REL_PHASES (optional, default = 'even') specifies whether the harmonics
% are cosine or sine phase aligned about those positions.
% The result matrix is suitable for passing to the function STEER.
% Eero Simoncelli, 7/96.
function mtx = steer2HarmMtx(harmonics, angles, evenorodd)
%%=================================================================
%%% Optional Parameters:
if (exist('evenorodd') ~= 1)
evenorodd = 'even';
end
% Make HARMONICS a row vector
harmonics = harmonics(:)';
numh = 2*size(harmonics,2) - any(harmonics == 0);
if (exist('angles') ~= 1)
angles = pi * [0:numh-1]'/numh;
else
angles = angles(:);
end
%%=================================================================
if isstr(evenorodd)
if strcmp(evenorodd,'even')
evenorodd = 0;
elseif strcmp(evenorodd,'odd')
evenorodd = 1;
else
error('EVEN_OR_ODD should be the string EVEN or ODD');
end
end
%% Compute inverse matrix, which maps Fourier components onto
%% steerable basis.
imtx = zeros(size(angles,1),numh);
col = 1;
for h=harmonics
args = h*angles;
if (h == 0)
imtx(:,col) = ones(size(angles));
col = col+1;
elseif evenorodd
imtx(:,col) = sin(args);
imtx(:,col+1) = -cos(args);
col = col+2;
else
imtx(:,col) = cos(args);
imtx(:,col+1) = sin(args);
col = col+2;
end
end
r = rank(imtx);
if (( r ~= numh ) & ( r ~= size(angles,1) ))
fprintf(2,'WARNING: matrix is not full rank');
end
mtx = pinv(imtx);
|
github
|
jbhuang0604/LapSRN-master
|
mkAngularSine.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/mkAngularSine.m
| 845 |
utf_8
|
78a5e0afe3fef5c42804516e2ea1ccc8
|
% IM = mkAngularSine(SIZE, HARMONIC, AMPL, PHASE, ORIGIN)
%
% Make an angular sinusoidal image:
% AMPL * sin( HARMONIC*theta + PHASE),
% where theta is the angle about the origin.
% SIZE specifies the matrix size, as for zeros().
% AMPL (default = 1) and PHASE (default = 0) are optional.
% Eero Simoncelli, 2/97.
function [res] = mkAngularSine(sz, harmonic, ampl, ph, origin)
sz = sz(:);
if (size(sz,1) == 1)
sz = [sz,sz];
end
mxsz = max(sz(1),sz(2));
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('harmonic') ~= 1)
harmonic = 1;
end
if (exist('ampl') ~= 1)
ampl = 1;
end
if (exist('ph') ~= 1)
ph = 0;
end
if (exist('origin') ~= 1)
origin = (sz+1)/2;
end
%------------------------------------------------------------
res = ampl * sin(harmonic*mkAngle(sz,ph,origin) + ph);
|
github
|
jbhuang0604/LapSRN-master
|
mkRamp.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/mkRamp.m
| 1,110 |
utf_8
|
28989822e19c604a816a287a4bee873d
|
% IM = mkRamp(SIZE, DIRECTION, SLOPE, INTERCEPT, ORIGIN)
%
% Compute a matrix of dimension SIZE (a [Y X] 2-vector, or a scalar)
% containing samples of a ramp function, with given gradient DIRECTION
% (radians, CW from X-axis, default = 0), SLOPE (per pixel, default =
% 1), and a value of INTERCEPT (default = 0) at the ORIGIN (default =
% (size+1)/2, [1 1] = upper left). All but the first argument are
% optional.
% Eero Simoncelli, 6/96. 2/97: adjusted coordinate system.
function [res] = mkRamp(sz, dir, slope, intercept, origin)
sz = sz(:);
if (size(sz,1) == 1)
sz = [sz,sz];
end
% -----------------------------------------------------------------
% OPTIONAL args:
if (exist('dir') ~= 1)
dir = 0;
end
if (exist('slope') ~= 1)
slope = 1;
end
if (exist('intercept') ~= 1)
intercept = 0;
end
if (exist('origin') ~= 1)
origin = (sz+1)/2;
end
% -----------------------------------------------------------------
xinc = slope*cos(dir);
yinc = slope*sin(dir);
[xramp,yramp] = meshgrid( xinc*([1:sz(2)]-origin(2)), ...
yinc*([1:sz(1)]-origin(1)) );
res = intercept + xramp + yramp;
|
github
|
jbhuang0604/LapSRN-master
|
histoMatch.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/histoMatch.m
| 858 |
utf_8
|
8936fc2eadacc591ecdffe5967726780
|
% RES = histoMatch(MTX, N, X)
%
% Modify elements of MTX so that normalized histogram matches that
% specified by vectors X and N, where N contains the histogram counts
% and X the histogram bin positions (see histo).
% Eero Simoncelli, 7/96.
function res = histoMatch(mtx, N, X)
if ( exist('histo') == 3 )
[oN, oX] = histo(mtx(:), size(X(:),1));
else
[oN, oX] = hist(mtx(:), size(X(:),1));
end
oStep = oX(2) - oX(1);
oC = [0, cumsum(oN)]/sum(oN);
oX = [oX(1)-oStep/2, oX+oStep/2];
N = N(:)';
X = X(:)';
N = N + mean(N)/(1e8); %% HACK: no empty bins ensures nC strictly monotonic
nStep = X(2) - X(1);
nC = [0, cumsum(N)]/sum(N);
nX = [X(1)-nStep/2, X+nStep/2];
nnX = interp1(nC, nX, oC, 'linear');
if ( exist('pointOp') == 3 )
res = pointOp(mtx, nnX, oX(1), oStep);
else
res = reshape(interp1(oX, nnX, mtx(:)),size(mtx,1),size(mtx,2));
end
|
github
|
jbhuang0604/LapSRN-master
|
subMtx.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/subMtx.m
| 420 |
utf_8
|
c660029ce728dcb8c540c9cf419fa7bc
|
% MTX = subMtx(VEC, DIMENSIONS, START_INDEX)
%
% Reshape a portion of VEC starting from START_INDEX (optional,
% default=1) to the given dimensions.
% Eero Simoncelli, 6/96.
function mtx = subMtx(vec, sz, offset)
if (exist('offset') ~= 1)
offset = 1;
end
vec = vec(:);
sz = sz(:);
if (size(sz,1) ~= 2)
error('DIMENSIONS must be a 2-vector.');
end
mtx = reshape( vec(offset:offset+prod(sz)-1), sz(1), sz(2) );
|
github
|
jbhuang0604/LapSRN-master
|
showLpyr.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/showLpyr.m
| 5,421 |
utf_8
|
0646b94ae144cf6160a44f50e67f8dd5
|
% RANGE = showLpyr (PYR, INDICES, RANGE, GAP, LEVEL_SCALE_FACTOR)
%
% Display a Laplacian (or Gaussian) pyramid, specified by PYR and
% INDICES (see buildLpyr), in the current figure.
%
% RANGE is a 2-vector specifying the values that map to black and
% white, respectively. These values are scaled by
% LEVEL_SCALE_FACTOR^(lev-1) for bands at each level. Passing a value
% of 'auto1' sets RANGE to the min and max values of MATRIX. 'auto2'
% sets RANGE to 3 standard deviations below and above 0.0. In both of
% these cases, the lowpass band is independently scaled. A value of
% 'indep1' sets the range of each subband independently, as in a call
% to showIm(subband,'auto1'). Similarly, 'indep2' causes each subband
% to be scaled independently as if by showIm(subband,'indep2').
% The default value for RANGE is 'auto1' for 1D images, and 'auto2' for
% 2D images.
%
% GAP (optional, default=1) specifies the gap in pixels to leave
% between subbands (2D images only).
%
% LEVEL_SCALE_FACTOR indicates the relative scaling between pyramid
% levels. This should be set to the sum of the kernel taps of the
% lowpass filter used to construct the pyramid (default assumes
% L2-normalalized filters, using a value of 2 for 2D images, sqrt(2) for
% 1D images).
% Eero Simoncelli, 2/97.
function [range] = showLpyr(pyr, pind, range, gap, scale);
% Determine 1D or 2D pyramid:
if ((pind(1,1) == 1) | (pind(1,2) ==1))
oned = 1;
else
oned = 0;
end
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('range') ~= 1)
if (oned==1)
range = 'auto1';
else
range = 'auto2';
end
end
if (exist('gap') ~= 1)
gap = 1;
end
if (exist('scale') ~= 1)
if (oned == 1)
scale = sqrt(2);
else
scale = 2;
end
end
%------------------------------------------------------------
nind = size(pind,1);
%% Auto range calculations:
if strcmp(range,'auto1')
range = zeros(nind,1);
mn = 0.0; mx = 0.0;
for bnum = 1:(nind-1)
band = pyrBand(pyr,pind,bnum)/(scale^(bnum-1));
range(bnum) = scale^(bnum-1);
[bmn,bmx] = range2(band);
mn = min(mn, bmn); mx = max(mx, bmx);
end
if (oned == 1)
pad = (mx-mn)/12; % *** MAGIC NUMBER!!
mn = mn-pad; mx = mx+pad;
end
range = range * [mn mx]; % outer product
band = pyrLow(pyr,pind);
[mn,mx] = range2(band);
if (oned == 1)
pad = (mx-mn)/12; % *** MAGIC NUMBER!!
mn = mn-pad; mx = mx+pad;
end
range(nind,:) = [mn, mx];
elseif strcmp(range,'indep1')
range = zeros(nind,2);
for bnum = 1:nind
band = pyrBand(pyr,pind,bnum);
[mn,mx] = range2(band);
if (oned == 1)
pad = (mx-mn)/12; % *** MAGIC NUMBER!!
mn = mn-pad; mx = mx+pad;
end
range(bnum,:) = [mn mx];
end
elseif strcmp(range,'auto2')
range = zeros(nind,1);
sqsum = 0; numpixels = 0;
for bnum = 1:(nind-1)
band = pyrBand(pyr,pind,bnum)/(scale^(bnum-1));
sqsum = sqsum + sum(sum(band.^2));
numpixels = numpixels + prod(size(band));
range(bnum) = scale^(bnum-1);
end
stdev = sqrt(sqsum/(numpixels-1));
range = range * [ -3*stdev 3*stdev ]; % outer product
band = pyrLow(pyr,pind);
av = mean2(band); stdev = sqrt(var2(band));
range(nind,:) = [av-2*stdev,av+2*stdev];
elseif strcmp(range,'indep2')
range = zeros(nind,2);
for bnum = 1:(nind-1)
band = pyrBand(pyr,pind,bnum);
stdev = sqrt(var2(band));
range(bnum,:) = [ -3*stdev 3*stdev ];
end
band = pyrLow(pyr,pind);
av = mean2(band); stdev = sqrt(var2(band));
range(nind,:) = [av-2*stdev,av+2*stdev];
elseif isstr(range)
error(sprintf('Bad RANGE argument: %s',range))
elseif ((size(range,1) == 1) & (size(range,2) == 2))
scales = scale.^[0:nind-1];
range = scales(:) * range; % outer product
band = pyrLow(pyr,pind);
range(nind,:) = range(nind,:) + mean2(band) - mean(range(nind,:));
end
%% Clear Figure
clf;
if (oned == 1)
%%%%% 1D signal:
for bnum=1:nind
band = pyrBand(pyr,pind,bnum);
subplot(nind,1,nind-bnum+1);
plot(band);
axis([1, prod(size(band)), range(bnum,:)]);
end
else
%%%%% 2D signal:
colormap(gray);
cmap = get(gcf,'Colormap');
nshades = size(cmap,1);
% Find background color index:
clr = get(gcf,'Color');
bg = 1;
dist = norm(cmap(bg,:)-clr);
for n = 1:nshades
ndist = norm(cmap(n,:)-clr);
if (ndist < dist)
dist = ndist;
bg = n;
end
end
%% Compute positions of subbands:
llpos = ones(nind,2);
dir = [-1 -1];
ctr = [pind(1,1)+1+gap 1];
sz = [0 0];
for bnum = 1:nind
prevsz = sz;
sz = pind(bnum,:);
% Determine center position of new band:
ctr = ctr + gap*dir/2 + dir.* floor((prevsz+(dir>0))/2);
dir = dir * [0 -1; 1 0]; % ccw rotation
ctr = ctr + gap*dir/2 + dir.* floor((sz+(dir<0))/2);
llpos(bnum,:) = ctr - floor(sz./2);
end
%% Make position list positive, and allocate appropriate image:
llpos = llpos - ones(nind,1)*min(llpos) + 1;
urpos = llpos + pind - 1;
d_im = bg + zeros(max(urpos));
%% Paste bands into image, (im-r1)*(nshades-1)/(r2-r1) + 1.5
for bnum=1:nind
mult = (nshades-1) / (range(bnum,2)-range(bnum,1));
d_im(llpos(bnum,1):urpos(bnum,1), llpos(bnum,2):urpos(bnum,2)) = ...
mult*pyrBand(pyr,pind,bnum) + (1.5-mult*range(bnum,1));
end
hh = image(d_im);
axis('off');
pixelAxes(size(d_im),'full');
set(hh,'UserData',range);
end
|
github
|
jbhuang0604/LapSRN-master
|
sp1Filters.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/sp1Filters.m
| 9,435 |
utf_8
|
81cfbf726744492bee2374b9b564ebdf
|
% Steerable pyramid filters. Transform described in:
%
% @INPROCEEDINGS{Simoncelli95b,
% TITLE = "The Steerable Pyramid: A Flexible Architecture for
% Multi-Scale Derivative Computation",
% AUTHOR = "E P Simoncelli and W T Freeman",
% BOOKTITLE = "Second Int'l Conf on Image Processing",
% ADDRESS = "Washington, DC", MONTH = "October", YEAR = 1995 }
%
% Filter kernel design described in:
%
%@INPROCEEDINGS{Karasaridis96,
% TITLE = "A Filter Design Technique for
% Steerable Pyramid Image Transforms",
% AUTHOR = "A Karasaridis and E P Simoncelli",
% BOOKTITLE = "ICASSP", ADDRESS = "Atlanta, GA",
% MONTH = "May", YEAR = 1996 }
% Eero Simoncelli, 6/96.
function [lo0filt,hi0filt,lofilt,bfilts,mtx,harmonics] = sp1Filters();
harmonics = [ 1 ];
%% filters only contain first harmonic.
mtx = eye(2);
lo0filt = [ ...
-8.701000e-05 -1.354280e-03 -1.601260e-03 -5.033700e-04 2.524010e-03 -5.033700e-04 -1.601260e-03 -1.354280e-03 -8.701000e-05
-1.354280e-03 2.921580e-03 7.522720e-03 8.224420e-03 1.107620e-03 8.224420e-03 7.522720e-03 2.921580e-03 -1.354280e-03
-1.601260e-03 7.522720e-03 -7.061290e-03 -3.769487e-02 -3.297137e-02 -3.769487e-02 -7.061290e-03 7.522720e-03 -1.601260e-03
-5.033700e-04 8.224420e-03 -3.769487e-02 4.381320e-02 1.811603e-01 4.381320e-02 -3.769487e-02 8.224420e-03 -5.033700e-04
2.524010e-03 1.107620e-03 -3.297137e-02 1.811603e-01 4.376250e-01 1.811603e-01 -3.297137e-02 1.107620e-03 2.524010e-03
-5.033700e-04 8.224420e-03 -3.769487e-02 4.381320e-02 1.811603e-01 4.381320e-02 -3.769487e-02 8.224420e-03 -5.033700e-04
-1.601260e-03 7.522720e-03 -7.061290e-03 -3.769487e-02 -3.297137e-02 -3.769487e-02 -7.061290e-03 7.522720e-03 -1.601260e-03
-1.354280e-03 2.921580e-03 7.522720e-03 8.224420e-03 1.107620e-03 8.224420e-03 7.522720e-03 2.921580e-03 -1.354280e-03
-8.701000e-05 -1.354280e-03 -1.601260e-03 -5.033700e-04 2.524010e-03 -5.033700e-04 -1.601260e-03 -1.354280e-03 -8.701000e-05
];
lofilt = [ ...
-4.350000e-05 1.207800e-04 -6.771400e-04 -1.243400e-04 -8.006400e-04 -1.597040e-03 -2.516800e-04 -4.202000e-04 1.262000e-03 -4.202000e-04 -2.516800e-04 -1.597040e-03 -8.006400e-04 -1.243400e-04 -6.771400e-04 1.207800e-04 -4.350000e-05 ; ...
1.207800e-04 4.460600e-04 -5.814600e-04 5.621600e-04 -1.368800e-04 2.325540e-03 2.889860e-03 4.287280e-03 5.589400e-03 4.287280e-03 2.889860e-03 2.325540e-03 -1.368800e-04 5.621600e-04 -5.814600e-04 4.460600e-04 1.207800e-04 ; ...
-6.771400e-04 -5.814600e-04 1.460780e-03 2.160540e-03 3.761360e-03 3.080980e-03 4.112200e-03 2.221220e-03 5.538200e-04 2.221220e-03 4.112200e-03 3.080980e-03 3.761360e-03 2.160540e-03 1.460780e-03 -5.814600e-04 -6.771400e-04 ; ...
-1.243400e-04 5.621600e-04 2.160540e-03 3.175780e-03 3.184680e-03 -1.777480e-03 -7.431700e-03 -9.056920e-03 -9.637220e-03 -9.056920e-03 -7.431700e-03 -1.777480e-03 3.184680e-03 3.175780e-03 2.160540e-03 5.621600e-04 -1.243400e-04 ; ...
-8.006400e-04 -1.368800e-04 3.761360e-03 3.184680e-03 -3.530640e-03 -1.260420e-02 -1.884744e-02 -1.750818e-02 -1.648568e-02 -1.750818e-02 -1.884744e-02 -1.260420e-02 -3.530640e-03 3.184680e-03 3.761360e-03 -1.368800e-04 -8.006400e-04 ; ...
-1.597040e-03 2.325540e-03 3.080980e-03 -1.777480e-03 -1.260420e-02 -2.022938e-02 -1.109170e-02 3.955660e-03 1.438512e-02 3.955660e-03 -1.109170e-02 -2.022938e-02 -1.260420e-02 -1.777480e-03 3.080980e-03 2.325540e-03 -1.597040e-03 ; ...
-2.516800e-04 2.889860e-03 4.112200e-03 -7.431700e-03 -1.884744e-02 -1.109170e-02 2.190660e-02 6.806584e-02 9.058014e-02 6.806584e-02 2.190660e-02 -1.109170e-02 -1.884744e-02 -7.431700e-03 4.112200e-03 2.889860e-03 -2.516800e-04 ; ...
-4.202000e-04 4.287280e-03 2.221220e-03 -9.056920e-03 -1.750818e-02 3.955660e-03 6.806584e-02 1.445500e-01 1.773651e-01 1.445500e-01 6.806584e-02 3.955660e-03 -1.750818e-02 -9.056920e-03 2.221220e-03 4.287280e-03 -4.202000e-04 ; ...
1.262000e-03 5.589400e-03 5.538200e-04 -9.637220e-03 -1.648568e-02 1.438512e-02 9.058014e-02 1.773651e-01 2.120374e-01 1.773651e-01 9.058014e-02 1.438512e-02 -1.648568e-02 -9.637220e-03 5.538200e-04 5.589400e-03 1.262000e-03 ; ...
-4.202000e-04 4.287280e-03 2.221220e-03 -9.056920e-03 -1.750818e-02 3.955660e-03 6.806584e-02 1.445500e-01 1.773651e-01 1.445500e-01 6.806584e-02 3.955660e-03 -1.750818e-02 -9.056920e-03 2.221220e-03 4.287280e-03 -4.202000e-04 ; ...
-2.516800e-04 2.889860e-03 4.112200e-03 -7.431700e-03 -1.884744e-02 -1.109170e-02 2.190660e-02 6.806584e-02 9.058014e-02 6.806584e-02 2.190660e-02 -1.109170e-02 -1.884744e-02 -7.431700e-03 4.112200e-03 2.889860e-03 -2.516800e-04 ; ...
-1.597040e-03 2.325540e-03 3.080980e-03 -1.777480e-03 -1.260420e-02 -2.022938e-02 -1.109170e-02 3.955660e-03 1.438512e-02 3.955660e-03 -1.109170e-02 -2.022938e-02 -1.260420e-02 -1.777480e-03 3.080980e-03 2.325540e-03 -1.597040e-03 ; ...
-8.006400e-04 -1.368800e-04 3.761360e-03 3.184680e-03 -3.530640e-03 -1.260420e-02 -1.884744e-02 -1.750818e-02 -1.648568e-02 -1.750818e-02 -1.884744e-02 -1.260420e-02 -3.530640e-03 3.184680e-03 3.761360e-03 -1.368800e-04 -8.006400e-04 ; ...
-1.243400e-04 5.621600e-04 2.160540e-03 3.175780e-03 3.184680e-03 -1.777480e-03 -7.431700e-03 -9.056920e-03 -9.637220e-03 -9.056920e-03 -7.431700e-03 -1.777480e-03 3.184680e-03 3.175780e-03 2.160540e-03 5.621600e-04 -1.243400e-04 ; ...
-6.771400e-04 -5.814600e-04 1.460780e-03 2.160540e-03 3.761360e-03 3.080980e-03 4.112200e-03 2.221220e-03 5.538200e-04 2.221220e-03 4.112200e-03 3.080980e-03 3.761360e-03 2.160540e-03 1.460780e-03 -5.814600e-04 -6.771400e-04 ; ...
1.207800e-04 4.460600e-04 -5.814600e-04 5.621600e-04 -1.368800e-04 2.325540e-03 2.889860e-03 4.287280e-03 5.589400e-03 4.287280e-03 2.889860e-03 2.325540e-03 -1.368800e-04 5.621600e-04 -5.814600e-04 4.460600e-04 1.207800e-04 ; ...
-4.350000e-05 1.207800e-04 -6.771400e-04 -1.243400e-04 -8.006400e-04 -1.597040e-03 -2.516800e-04 -4.202000e-04 1.262000e-03 -4.202000e-04 -2.516800e-04 -1.597040e-03 -8.006400e-04 -1.243400e-04 -6.771400e-04 1.207800e-04 -4.350000e-05 ];
hi0filt = [...
-9.570000e-04 -2.424100e-04 -1.424720e-03 -8.742600e-04 -1.166810e-03 -8.742600e-04 -1.424720e-03 -2.424100e-04 -9.570000e-04 ; ...
-2.424100e-04 -4.317530e-03 8.998600e-04 9.156420e-03 1.098012e-02 9.156420e-03 8.998600e-04 -4.317530e-03 -2.424100e-04 ; ...
-1.424720e-03 8.998600e-04 1.706347e-02 1.094866e-02 -5.897780e-03 1.094866e-02 1.706347e-02 8.998600e-04 -1.424720e-03 ; ...
-8.742600e-04 9.156420e-03 1.094866e-02 -7.841370e-02 -1.562827e-01 -7.841370e-02 1.094866e-02 9.156420e-03 -8.742600e-04 ; ...
-1.166810e-03 1.098012e-02 -5.897780e-03 -1.562827e-01 7.282593e-01 -1.562827e-01 -5.897780e-03 1.098012e-02 -1.166810e-03 ; ...
-8.742600e-04 9.156420e-03 1.094866e-02 -7.841370e-02 -1.562827e-01 -7.841370e-02 1.094866e-02 9.156420e-03 -8.742600e-04 ; ...
-1.424720e-03 8.998600e-04 1.706347e-02 1.094866e-02 -5.897780e-03 1.094866e-02 1.706347e-02 8.998600e-04 -1.424720e-03 ; ...
-2.424100e-04 -4.317530e-03 8.998600e-04 9.156420e-03 1.098012e-02 9.156420e-03 8.998600e-04 -4.317530e-03 -2.424100e-04 ; ...
-9.570000e-04 -2.424100e-04 -1.424720e-03 -8.742600e-04 -1.166810e-03 -8.742600e-04 -1.424720e-03 -2.424100e-04 -9.570000e-04 ];
bfilts = -[ ...
6.125880e-03 -8.052600e-03 -2.103714e-02 -1.536890e-02 -1.851466e-02 -1.536890e-02 -2.103714e-02 -8.052600e-03 6.125880e-03 ...
-1.287416e-02 -9.611520e-03 1.023569e-02 6.009450e-03 1.872620e-03 6.009450e-03 1.023569e-02 -9.611520e-03 -1.287416e-02 ...
-5.641530e-03 4.168400e-03 -2.382180e-02 -5.375324e-02 -2.076086e-02 -5.375324e-02 -2.382180e-02 4.168400e-03 -5.641530e-03 ...
-8.957260e-03 -1.751170e-03 -1.836909e-02 1.265655e-01 2.996168e-01 1.265655e-01 -1.836909e-02 -1.751170e-03 -8.957260e-03 ...
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 ...
8.957260e-03 1.751170e-03 1.836909e-02 -1.265655e-01 -2.996168e-01 -1.265655e-01 1.836909e-02 1.751170e-03 8.957260e-03 ...
5.641530e-03 -4.168400e-03 2.382180e-02 5.375324e-02 2.076086e-02 5.375324e-02 2.382180e-02 -4.168400e-03 5.641530e-03 ...
1.287416e-02 9.611520e-03 -1.023569e-02 -6.009450e-03 -1.872620e-03 -6.009450e-03 -1.023569e-02 9.611520e-03 1.287416e-02 ...
-6.125880e-03 8.052600e-03 2.103714e-02 1.536890e-02 1.851466e-02 1.536890e-02 2.103714e-02 8.052600e-03 -6.125880e-03; ...
...
-6.125880e-03 1.287416e-02 5.641530e-03 8.957260e-03 0.000000e+00 -8.957260e-03 -5.641530e-03 -1.287416e-02 6.125880e-03 ...
8.052600e-03 9.611520e-03 -4.168400e-03 1.751170e-03 0.000000e+00 -1.751170e-03 4.168400e-03 -9.611520e-03 -8.052600e-03 ...
2.103714e-02 -1.023569e-02 2.382180e-02 1.836909e-02 0.000000e+00 -1.836909e-02 -2.382180e-02 1.023569e-02 -2.103714e-02 ...
1.536890e-02 -6.009450e-03 5.375324e-02 -1.265655e-01 0.000000e+00 1.265655e-01 -5.375324e-02 6.009450e-03 -1.536890e-02 ...
1.851466e-02 -1.872620e-03 2.076086e-02 -2.996168e-01 0.000000e+00 2.996168e-01 -2.076086e-02 1.872620e-03 -1.851466e-02 ...
1.536890e-02 -6.009450e-03 5.375324e-02 -1.265655e-01 0.000000e+00 1.265655e-01 -5.375324e-02 6.009450e-03 -1.536890e-02 ...
2.103714e-02 -1.023569e-02 2.382180e-02 1.836909e-02 0.000000e+00 -1.836909e-02 -2.382180e-02 1.023569e-02 -2.103714e-02 ...
8.052600e-03 9.611520e-03 -4.168400e-03 1.751170e-03 0.000000e+00 -1.751170e-03 4.168400e-03 -9.611520e-03 -8.052600e-03 ...
-6.125880e-03 1.287416e-02 5.641530e-03 8.957260e-03 0.000000e+00 -8.957260e-03 -5.641530e-03 -1.287416e-02 6.125880e-03 ...
]';
|
github
|
jbhuang0604/LapSRN-master
|
spyrHt.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/spyrHt.m
| 305 |
utf_8
|
06e83c1f45c1a99e242fa7ea37093a11
|
% [HEIGHT] = spyrHt(INDICES)
%
% Compute height of steerable pyramid with given index matrix.
% Eero Simoncelli, 6/96.
function [ht] = spyrHt(pind)
nbands = spyrNumBands(pind);
% Don't count lowpass, or highpass residual bands
if (size(pind,1) > 2)
ht = (size(pind,1)-2)/nbands;
else
ht = 0;
end
|
github
|
jbhuang0604/LapSRN-master
|
spyrBand.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/spyrBand.m
| 819 |
utf_8
|
7d15b24244e521c9e85c68b3037f569b
|
% [LEV,IND] = spyrBand(PYR,INDICES,LEVEL,BAND)
%
% Access a band from a steerable pyramid.
%
% LEVEL indicates the scale (finest = 1, coarsest = spyrHt(INDICES)).
%
% BAND (optional, default=1) indicates which subband
% (1 = vertical, rest proceeding anti-clockwise).
% Eero Simoncelli, 6/96.
function res = spyrBand(pyr,pind,level,band)
if (exist('level') ~= 1)
level = 1;
end
if (exist('band') ~= 1)
band = 1;
end
nbands = spyrNumBands(pind);
if ((band > nbands) | (band < 1))
error(sprintf('Bad band number (%d) should be in range [1,%d].', band, nbands));
end
maxLev = spyrHt(pind);
if ((level > maxLev) | (level < 1))
error(sprintf('Bad level number (%d), should be in range [1,%d].', level, maxLev));
end
firstband = 1 + band + nbands*(level-1);
res = pyrBand(pyr, pind, firstband);
|
github
|
jbhuang0604/LapSRN-master
|
wpyrBand.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/wpyrBand.m
| 873 |
utf_8
|
12e08d90ccd6261b737e2d3c5ac5b1e7
|
% RES = wpyrBand(PYR, INDICES, LEVEL, BAND)
%
% Access a subband from a separable QMF/wavelet pyramid.
%
% LEVEL (optional, default=1) indicates the scale (finest = 1,
% coarsest = wpyrHt(INDICES)).
%
% BAND (optional, default=1) indicates which subband (1=horizontal,
% 2=vertical, 3=diagonal).
% Eero Simoncelli, 6/96.
function im = wpyrBand(pyr,pind,level,band)
if (exist('level') ~= 1)
level = 1;
end
if (exist('band') ~= 1)
band = 1;
end
if ((pind(1,1) == 1) | (pind(1,2) ==1))
nbands = 1;
else
nbands = 3;
end
if ((band > nbands) | (band < 1))
error(sprintf('Bad band number (%d) should be in range [1,%d].', band, nbands));
end
maxLev = wpyrHt(pind);
if ((level > maxLev) | (level < 1))
error(sprintf('Bad level number (%d), should be in range [1,%d].', level, maxLev));
end
band = band + nbands*(level-1);
im = pyrBand(pyr,pind,band);
|
github
|
jbhuang0604/LapSRN-master
|
skew2.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/skew2.m
| 478 |
utf_8
|
b304767117ab43e408c5757ab9e3402d
|
% S = SKEW2(MTX,MEAN,VAR)
%
% Sample skew (third moment divided by variance^3/2) of a matrix.
% MEAN (optional) and VAR (optional) make the computation faster.
function res = skew2(mtx, mn, v)
if (exist('mn') ~= 1)
mn = mean2(mtx);
end
if (exist('v') ~= 1)
v = var2(mtx,mn);
end
if (isreal(mtx))
res = mean(mean((mtx-mn).^3)) / (v^(3/2));
else
res = mean(mean(real(mtx-mn).^3)) / (real(v)^(3/2)) + ...
i * mean(mean(imag(mtx-mn).^3)) / (imag(v)^(3/2));
end
|
github
|
jbhuang0604/LapSRN-master
|
imStats.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/imStats.m
| 1,217 |
utf_8
|
aab8c3264c5939806bbca5657c925734
|
% imStats(IM1,IM2)
%
% Report image (matrix) statistics.
% When called on a single image IM1, report min, max, mean, stdev, skew,
% and kurtosis (4th moment about the mean, divided by squared variance)
%
% When called on two images (IM1 and IM2), report min, max, mean,
% stdev of the difference, and also SNR (relative to IM1).
% Eero Simoncelli, 6/96.
function [] = imStats(im1,im2)
if (~isreal(im1))
error('Args must be real-valued matrices');
end
if (exist('im2') == 1)
difference = im1 - im2;
[mn,mx] = range2(difference);
mean = mean2(difference);
v = var2(difference,mean);
if (v < realmin)
snr = Inf;
else
snr = 10 * log10(var2(im1)/v);
end
fprintf(1, 'Difference statistics:\n');
fprintf(1, ' Range: [%c, %c]\n',mn,mx);
fprintf(1, ' Mean: %f, Stdev (rmse): %f, SNR (dB): %f\n',...
mean,sqrt(v),snr);
else
[mn,mx] = range2(im1);
mean = mean2(im1);
var = var2(im1,mean);
stdev = sqrt(real(var))+sqrt(imag(var));
sk = skew2(im1, mean, stdev^2);
kurt = kurt2(im1, mean, stdev^2);
fprintf(1, 'Image statistics:\n');
fprintf(1, ' Range: [%f, %f]\n',mn,mx);
fprintf(1, ' Mean: %f, Stdev: %f, Skew: %f, Kurt: %f\n',mean,stdev,sk,kurt);
end
|
github
|
jbhuang0604/LapSRN-master
|
innerProd.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/innerProd.m
| 314 |
utf_8
|
e2ea166f9b3ddbc08cb54ef697343d06
|
% RES = innerProd(MTX)
%
% Compute (MTX' * MTX) efficiently (i.e., without copying the matrix)
%
% NOTE: This function used to call a MEX function (C code) to avoid copying, but
% newer versions of matlab have eliminated the overhead of the
% simpler form below.
function res = innerProd(mtx)
res = mtx' * mtx;
|
github
|
jbhuang0604/LapSRN-master
|
reconSFpyr.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/reconSFpyr.m
| 3,114 |
utf_8
|
ebb08817efc597692b9026a84e2a6906
|
% RES = reconSFpyr(PYR, INDICES, LEVS, BANDS, TWIDTH)
%
% Reconstruct image from its steerable pyramid representation, in the Fourier
% domain, as created by buildSFpyr.
%
% PYR is a vector containing the N pyramid subbands, ordered from fine
% to coarse. INDICES is an Nx2 matrix containing the sizes of
% each subband. This is compatible with the MatLab Wavelet toolbox.
%
% LEVS (optional) should be a list of levels to include, or the string
% 'all' (default). 0 corresonds to the residual highpass subband.
% 1 corresponds to the finest oriented scale. The lowpass band
% corresponds to number spyrHt(INDICES)+1.
%
% BANDS (optional) should be a list of bands to include, or the string
% 'all' (default). 1 = vertical, rest proceeding anti-clockwise.
%
% TWIDTH is the width of the transition region of the radial lowpass
% function, in octaves (default = 1, which gives a raised cosine for
% the bandpass filters).
%%% MODIFIED VERSION, 7/04, uses different lookup table for radial frequency!
% Eero Simoncelli, 5/97.
function res = reconSFpyr(pyr, pind, levs, bands, twidth)
%%------------------------------------------------------------
%% DEFAULTS:
if (exist('levs') ~= 1)
levs = 'all';
end
if (exist('bands') ~= 1)
bands = 'all';
end
if (exist('twidth') ~= 1)
twidth = 1;
elseif (twidth <= 0)
fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n');
twidth = 1;
end
%%------------------------------------------------------------
nbands = spyrNumBands(pind);
maxLev = 1+spyrHt(pind);
if strcmp(levs,'all')
levs = [0:maxLev]';
else
if (any(levs > maxLev) | any(levs < 0))
error(sprintf('Level numbers must be in the range [0, %d].', maxLev));
end
levs = levs(:);
end
if strcmp(bands,'all')
bands = [1:nbands]';
else
if (any(bands < 1) | any(bands > nbands))
error(sprintf('Band numbers must be in the range [1,3].', nbands));
end
bands = bands(:);
end
%----------------------------------------------------------------------
dims = pind(1,:);
ctr = ceil((dims+0.5)/2);
[xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ...
([1:dims(1)]-ctr(1))./(dims(1)/2) );
angle = atan2(yramp,xramp);
log_rad = sqrt(xramp.^2 + yramp.^2);
log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1);
log_rad = log2(log_rad);
%% Radial transition function (a raised cosine in log-frequency):
[Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]);
Yrcos = sqrt(Yrcos);
YIrcos = sqrt(abs(1.0 - Yrcos.^2));
if (size(pind,1) == 2)
if (any(levs==1))
resdft = fftshift(fft2(pyrBand(pyr,pind,2)));
else
resdft = zeros(pind(2,:));
end
else
resdft = reconSFpyrLevs(pyr(1+prod(pind(1,:)):size(pyr,1)), ...
pind(2:size(pind,1),:), ...
log_rad, Xrcos, Yrcos, angle, nbands, levs, bands);
end
lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
resdft = resdft .* lo0mask;
%% residual highpass subband
if any(levs == 0)
hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
hidft = fftshift(fft2(subMtx(pyr, pind(1,:))));
resdft = resdft + hidft .* hi0mask;
end
res = real(ifft2(ifftshift(resdft)));
|
github
|
jbhuang0604/LapSRN-master
|
corrDn.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/corrDn.m
| 2,273 |
utf_8
|
22bd1475092a492cb03a6e4134332d24
|
% RES = corrDn(IM, FILT, EDGES, STEP, START, STOP)
%
% Compute correlation of matrices IM with FILT, followed by
% downsampling. These arguments should be 1D or 2D matrices, and IM
% must be larger (in both dimensions) than FILT. The origin of filt
% is assumed to be floor(size(filt)/2)+1.
%
% EDGES is a string determining boundary handling:
% 'circular' - Circular convolution
% 'reflect1' - Reflect about the edge pixels
% 'reflect2' - Reflect, doubling the edge pixels
% 'repeat' - Repeat the edge pixels
% 'zero' - Assume values of zero outside image boundary
% 'extend' - Reflect and invert (continuous values and derivs)
% 'dont-compute' - Zero output when filter overhangs input boundaries
%
% Downsampling factors are determined by STEP (optional, default=[1 1]),
% which should be a 2-vector [y,x].
%
% The window over which the convolution occurs is specfied by START
% (optional, default=[1,1], and STOP (optional, default=size(IM)).
%
% NOTE: this operation corresponds to multiplication of a signal
% vector by a matrix whose rows contain copies of the FILT shifted by
% multiples of STEP. See upConv.m for the operation corresponding to
% the transpose of this matrix.
% Eero Simoncelli, 6/96, revised 2/97.
function res = corrDn(im, filt, edges, step, start, stop)
%% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD)
%fprintf(1,'WARNING: You should compile the MEX version of "corrDn.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster, and provides more boundary-handling options.\n');
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('edges') == 1)
if (strcmp(edges,'reflect1') ~= 1)
warning('Using REFLECT1 edge-handling (use MEX code for other options).');
end
end
if (exist('step') ~= 1)
step = [1,1];
end
if (exist('start') ~= 1)
start = [1,1];
end
if (exist('stop') ~= 1)
stop = size(im);
end
%------------------------------------------------------------
% Reverse order of taps in filt, to do correlation instead of convolution
filt = filt(size(filt,1):-1:1,size(filt,2):-1:1);
tmp = rconv2(im,filt);
res = tmp(start(1):step(1):stop(1),start(2):step(2):stop(2));
|
github
|
jbhuang0604/LapSRN-master
|
vectify.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/vectify.m
| 186 |
utf_8
|
1da0e519af06d6baaff1decc40dc3702
|
% [VEC] = columnize(MTX)
%
% Pack elements of MTX into a column vector. Just provides a
% function-call notatoin for the operation MTX(:)
function vec = columnize(mtx)
vec = mtx(:);
|
github
|
jbhuang0604/LapSRN-master
|
maxPyrHt.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/maxPyrHt.m
| 603 |
utf_8
|
019e5ce9d036a893ec979c63f51ff54a
|
% HEIGHT = maxPyrHt(IMSIZE, FILTSIZE)
%
% Compute maximum pyramid height for given image and filter sizes.
% Specifically: the number of corrDn operations that can be sequentially
% performed when subsampling by a factor of 2.
% Eero Simoncelli, 6/96.
function height = maxPyrHt(imsz, filtsz)
imsz = imsz(:);
filtsz = filtsz(:);
if any(imsz == 1) % 1D image
imsz = prod(imsz);
filtsz = prod(filtsz);
elseif any(filtsz == 1) % 2D image, 1D filter
filtsz = [filtsz(1); filtsz(1)];
end
if any(imsz < filtsz)
height = 0;
else
height = 1 + maxPyrHt( floor(imsz/2), filtsz );
end
|
github
|
jbhuang0604/LapSRN-master
|
buildSpyrLevs.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/buildSpyrLevs.m
| 861 |
utf_8
|
a5fa1e98161a8137e666c1406c28a748
|
% [PYR, INDICES] = buildSpyrLevs(LOIM, HEIGHT, LOFILT, BFILTS, EDGES)
%
% Recursive function for constructing levels of a steerable pyramid. This
% is called by buildSpyr, and is not usually called directly.
% Eero Simoncelli, 6/96.
function [pyr,pind] = buildSpyrLevs(lo0,ht,lofilt,bfilts,edges);
if (ht <= 0)
pyr = lo0(:);
pind = size(lo0);
else
% Assume square filters:
bfiltsz = round(sqrt(size(bfilts,1)));
bands = zeros(prod(size(lo0)),size(bfilts,2));
bind = zeros(size(bfilts,2),2);
for b = 1:size(bfilts,2)
filt = reshape(bfilts(:,b),bfiltsz,bfiltsz);
band = corrDn(lo0, filt, edges);
bands(:,b) = band(:);
bind(b,:) = size(band);
end
lo = corrDn(lo0, lofilt, edges, [2 2], [1 1]);
[npyr,nind] = buildSpyrLevs(lo, ht-1, lofilt, bfilts, edges);
pyr = [bands(:); npyr];
pind = [bind; nind];
end
|
github
|
jbhuang0604/LapSRN-master
|
showSpyr.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/showSpyr.m
| 5,213 |
utf_8
|
bc643d88c491a55c0a0abb5e86c91757
|
% RANGE = showSpyr (PYR, INDICES, RANGE, GAP, LEVEL_SCALE_FACTOR)
%
% Display a steerable pyramid, specified by PYR and INDICES
% (see buildSpyr), in the current figure. The highpass band is not shown.
%
% RANGE is a 2-vector specifying the values that map to black and
% white, respectively. These values are scaled by
% LEVEL_SCALE_FACTOR^(lev-1) for bands at each level. Passing a value
% of 'auto1' sets RANGE to the min and max values of MATRIX. 'auto2'
% sets RANGE to 3 standard deviations below and above 0.0. In both of
% these cases, the lowpass band is independently scaled. A value of
% 'indep1' sets the range of each subband independently, as in a call
% to showIm(subband,'auto1'). Similarly, 'indep2' causes each subband
% to be scaled independently as if by showIm(subband,'indep2').
% The default value for RANGE is 'auto2'.
%
% GAP (optional, default=1) specifies the gap in pixels to leave
% between subbands.
%
% LEVEL_SCALE_FACTOR indicates the relative scaling between pyramid
% levels. This should be set to the sum of the kernel taps of the
% lowpass filter used to construct the pyramid (default is 2, which is
% correct for L2-normalized filters.
% Eero Simoncelli, 2/97.
function [range] = showSpyr(pyr, pind, range, gap, scale);
nbands = spyrNumBands(pind);
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('range') ~= 1)
range = 'auto2';
end
if (exist('gap') ~= 1)
gap = 1;
end
if (exist('scale') ~= 1)
scale = 2;
end
%------------------------------------------------------------
ht = spyrHt(pind);
nind = size(pind,1);
%% Auto range calculations:
if strcmp(range,'auto1')
range = ones(nind,1);
band = spyrHigh(pyr,pind);
[mn,mx] = range2(band);
for lnum = 1:ht
for bnum = 1:nbands
band = spyrBand(pyr,pind,lnum,bnum)/(scale^(lnum-1));
range((lnum-1)*nbands+bnum+1) = scale^(lnum-1);
[bmn,bmx] = range2(band);
mn = min(mn, bmn);
mx = max(mx, bmx);
end
end
range = range * [mn mx]; % outer product
band = pyrLow(pyr,pind);
[mn,mx] = range2(band);
range(nind,:) = [mn, mx];
elseif strcmp(range,'indep1')
range = zeros(nind,2);
for bnum = 1:nind
band = pyrBand(pyr,pind,bnum);
[mn,mx] = range2(band);
range(bnum,:) = [mn mx];
end
elseif strcmp(range,'auto2')
range = ones(nind,1);
band = spyrHigh(pyr,pind);
sqsum = sum(sum(band.^2)); numpixels = prod(size(band));
for lnum = 1:ht
for bnum = 1:nbands
band = spyrBand(pyr,pind,lnum,bnum)/(scale^(lnum-1));
sqsum = sqsum + sum(sum(band.^2));
numpixels = numpixels + prod(size(band));
range((lnum-1)*nbands+bnum+1) = scale^(lnum-1);
end
end
stdev = sqrt(sqsum/(numpixels-1));
range = range * [ -3*stdev 3*stdev ]; % outer product
band = pyrLow(pyr,pind);
av = mean2(band); stdev = sqrt(var2(band));
range(nind,:) = [av-2*stdev,av+2*stdev];
elseif strcmp(range,'indep2')
range = zeros(nind,2);
for bnum = 1:(nind-1)
band = pyrBand(pyr,pind,bnum);
stdev = sqrt(var2(band));
range(bnum,:) = [ -3*stdev 3*stdev ];
end
band = pyrLow(pyr,pind);
av = mean2(band); stdev = sqrt(var2(band));
range(nind,:) = [av-2*stdev,av+2*stdev];
elseif isstr(range)
error(sprintf('Bad RANGE argument: %s',range))
elseif ((size(range,1) == 1) & (size(range,2) == 2))
scales = scale.^[0:(ht-1)];
scales = ones(nbands,1) * scales; %outer product
scales = [1; scales(:); scale^ht]; %tack on highpass and lowpass
range = scales * range; % outer product
band = pyrLow(pyr,pind);
range(nind,:) = range(nind,:) + mean2(band) - mean(range(nind,:));
end
% CLEAR FIGURE:
clf;
colormap(gray);
cmap = get(gcf,'Colormap');
nshades = size(cmap,1);
% Find background color index:
clr = get(gcf,'Color');
bg = 1;
dist = norm(cmap(bg,:)-clr);
for n = 1:nshades
ndist = norm(cmap(n,:)-clr);
if (ndist < dist)
dist = ndist;
bg = n;
end
end
%% Compute positions of subbands:
llpos = ones(nind,2);
if (nbands == 2)
ncols = 1; nrows = 2;
else
ncols = ceil((nbands+1)/2); nrows = ceil(nbands/2);
end
relpos = [ (1-nrows):0, zeros(1,(ncols-1)); ...
zeros(1,nrows), -1:-1:(1-ncols) ]';
if (nbands > 1)
mvpos = [-1 -1];
else
mvpos = [0 -1];
end
basepos = [0 0];
for lnum = 1:ht
ind1 = (lnum-1)*nbands + 2;
sz = pind(ind1,:)+gap;
basepos = basepos + mvpos .* sz;
if (nbands < 5) % to align edges...
sz = sz + gap*(ht-lnum+1);
end
llpos(ind1:ind1+nbands-1,:) = relpos * diag(sz) + ones(nbands,1)*basepos;
end
% lowpass band
sz = pind(nind-1,:)+gap;
basepos = basepos + mvpos .* sz;
llpos(nind,:) = basepos;
%% Make position list positive, and allocate appropriate image:
llpos = llpos - ones(nind,1)*min(llpos) + 1;
llpos(1,:) = [1 1];
urpos = llpos + pind - 1;
d_im = bg + zeros(max(urpos));
%% Paste bands into image, (im-r1)*(nshades-1)/(r2-r1) + 1.5
for bnum=2:nind
mult = (nshades-1) / (range(bnum,2)-range(bnum,1));
d_im(llpos(bnum,1):urpos(bnum,1), llpos(bnum,2):urpos(bnum,2)) = ...
mult*pyrBand(pyr,pind,bnum) + (1.5-mult*range(bnum,1));
end
hh = image(d_im);
axis('off');
pixelAxes(size(d_im),'full');
set(hh,'UserData',range);
|
github
|
jbhuang0604/LapSRN-master
|
histo.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/histo.m
| 1,835 |
utf_8
|
e76d8956cd1d59f518a8146dc5145f9b
|
% [N,X] = histo(MTX, nbinsOrBinsize, binCenter);
%
% Compute a histogram of (all) elements of MTX. N contains the histogram
% counts, X is a vector containg the centers of the histogram bins.
%
% nbinsOrBinsize (optional, default = 101) specifies either
% the number of histogram bins, or the negative of the binsize.
%
% binCenter (optional, default = mean2(MTX)) specifies a center position
% for (any one of) the histogram bins.
%
% How does this differ from MatLab's HIST function? This function:
% - allows uniformly spaced bins only.
% +/- operates on all elements of MTX, instead of columnwise.
% + is much faster (approximately a factor of 80 on my machine).
% + allows specification of number of bins OR binsize. Default=101 bins.
% + allows (optional) specification of binCenter.
% Eero Simoncelli, 3/97.
function [N, X] = histo(mtx, nbins, binCtr)
%% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD)
fprintf(1,'WARNING: You should compile the MEX version of "histo.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster.\n');
mtx = mtx(:);
%------------------------------------------------------------
%% OPTIONAL ARGS:
[mn,mx] = range2(mtx);
if (exist('binCtr') ~= 1)
binCtr = mean(mtx);
end
if (exist('nbins') == 1)
if (nbins < 0)
binSize = -nbins;
else
binSize = ((mx-mn)/nbins);
tmpNbins = round((mx-binCtr)/binSize) - round((mn-binCtr)/binSize);
if (tmpNbins ~= nbins)
warning('Using %d bins instead of requested number (%d)',tmpNbins,nbins);
end
end
else
binSize = ((mx-mn)/101);
end
firstBin = binCtr + binSize*round( (mn-binCtr)/binSize );
tmpNbins = round((mx-binCtr)/binSize) - round((mn-binCtr)/binSize);
bins = firstBin + binSize*[0:tmpNbins];
[N, X] = hist(mtx, bins);
|
github
|
jbhuang0604/LapSRN-master
|
lplot.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/lplot.m
| 1,009 |
utf_8
|
87c83936af0b318d55077862065b56df
|
% lplot(VEC, XRANGE)
%
% Plot VEC, a vector, in "lollipop" format.
% XRANGE (optional, default = [1,length(VEC)]), should be a 2-vector
% specifying the X positions (for labeling purposes) of the first and
% last sample of VEC.
% Mark Liberman, Linguistics Dept, UPenn, 1994.
function lplot(x,xrange)
if (exist('xrange') ~= 1)
xrange = [1,length(x)];
end
msize = size(x);
if ( msize(2) == 1)
x = x';
elseif (msize(1) ~= 1)
error('First arg must be a vector');
end
if (~isreal(x))
fprintf(1,'Warning: Imaginary part of signal ignored\n');
x = abs(x);
end
N = length(x);
index = xrange(1) + (xrange(2)-xrange(1))*[0:(N-1)]/(N-1);
xinc = index(2)-index(1);
xx = [zeros(1,N);x;zeros(1,N)];
indexis = [index;index;index];
xdiscrete = [0 xx(:)' 0];
idiscrete = [index(1)-xinc indexis(:)' index(N)+xinc];
[mn,mx] = range2(xdiscrete);
ypad = (mx-mn)/12; % MAGIC NUMBER: graph padding
plot(idiscrete, xdiscrete, index, x, 'o');
axis([index(1)-xinc, index(N)+xinc, mn-ypad, mx+ypad]);
return
|
github
|
jbhuang0604/LapSRN-master
|
blurDn.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/blurDn.m
| 1,364 |
utf_8
|
d528010bfd2b4c50e7dbb2aede757214
|
% RES = blurDn(IM, LEVELS, FILT)
%
% Blur and downsample an image. The blurring is done with filter
% kernel specified by FILT (default = 'binom5'), which can be a string
% (to be passed to namedFilter), a vector (applied separably as a 1D
% convolution kernel in X and Y), or a matrix (applied as a 2D
% convolution kernel). The downsampling is always by 2 in each
% direction.
%
% The procedure is applied recursively LEVELS times (default=1).
% Eero Simoncelli, 3/97.
function res = blurDn(im, nlevs, filt)
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('nlevs') ~= 1)
nlevs = 1;
end
if (exist('filt') ~= 1)
filt = 'binom5';
end
%------------------------------------------------------------
if isstr(filt)
filt = namedFilter(filt);
end
filt = filt/sum(filt(:));
if nlevs > 1
im = blurDn(im,nlevs-1,filt);
end
if (nlevs >= 1)
if (any(size(im)==1))
if (~any(size(filt)==1))
error('Cant apply 2D filter to 1D signal');
end
if (size(im,2)==1)
filt = filt(:);
else
filt = filt(:)';
end
res = corrDn(im,filt,'reflect1',(size(im)~=1)+1);
elseif (any(size(filt)==1))
filt = filt(:);
res = corrDn(im,filt,'reflect1',[2 1]);
res = corrDn(res,filt','reflect1',[1 2]);
else
res = corrDn(im,filt,'reflect1',[2 2]);
end
else
res = im;
end
|
github
|
jbhuang0604/LapSRN-master
|
reconSpyrLevs.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/reconSpyrLevs.m
| 1,126 |
utf_8
|
1f10e3cea5d79a4f4a30d979f3bb1298
|
% RES = reconSpyrLevs(PYR,INDICES,LOFILT,BFILTS,EDGES,LEVS,BANDS)
%
% Recursive function for reconstructing levels of a steerable pyramid
% representation. This is called by reconSpyr, and is not usually
% called directly.
% Eero Simoncelli, 6/96.
function res = reconSpyrLevs(pyr,pind,lofilt,bfilts,edges,levs,bands);
nbands = size(bfilts,2);
lo_ind = nbands+1;
res_sz = pind(1,:);
% Assume square filters:
bfiltsz = round(sqrt(size(bfilts,1)));
if any(levs > 1)
if (size(pind,1) > lo_ind)
nres = reconSpyrLevs( pyr(1+sum(prod(pind(1:lo_ind-1,:)')):size(pyr,1)), ...
pind(lo_ind:size(pind,1),:), ...
lofilt, bfilts, edges, levs-1, bands);
else
nres = pyrBand(pyr,pind,lo_ind); % lowpass subband
end
res = upConv(nres, lofilt, edges, [2 2], [1 1], res_sz);
else
res = zeros(res_sz);
end
if any(levs == 1)
ind = 1;
for b = 1:nbands
if any(bands == b)
bfilt = reshape(bfilts(:,b), bfiltsz, bfiltsz);
res = upConv(reshape(pyr(ind:ind+prod(res_sz)-1), res_sz(1), res_sz(2)), ...
bfilt, edges, [1 1], [1 1], res_sz, res);
end
ind = ind + prod(res_sz);
end
end
|
github
|
jbhuang0604/LapSRN-master
|
mkSine.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/mkSine.m
| 1,725 |
utf_8
|
35c6d83f70860ab6defcbdcf7366d89e
|
% IM = mkSine(SIZE, PERIOD, DIRECTION, AMPLITUDE, PHASE, ORIGIN)
% or
% IM = mkSine(SIZE, FREQ, AMPLITUDE, PHASE, ORIGIN)
%
% Compute a matrix of dimension SIZE (a [Y X] 2-vector, or a scalar)
% containing samples of a 2D sinusoid, with given PERIOD (in pixels),
% DIRECTION (radians, CW from X-axis, default = 0), AMPLITUDE (default
% = 1), and PHASE (radians, relative to ORIGIN, default = 0). ORIGIN
% defaults to the center of the image.
%
% In the second form, FREQ is a 2-vector of frequencies (radians/pixel).
% Eero Simoncelli, 6/96.
function [res] = mkSine(sz, per_freq, dir_amp, amp_phase, phase_orig, orig)
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (prod(size(per_freq)) == 2)
frequency = norm(per_freq);
direction = atan2(per_freq(1),per_freq(2));
if (exist('dir_amp') == 1)
amplitude = dir_amp;
else
amplitude = 1;
end
if (exist('amp_phase') == 1)
phase = amp_phase;
else
phase = 0;
end
if (exist('phase_orig') == 1)
origin = phase_orig;
end
if (exist('orig') == 1)
error('Too many arguments for (second form) of mkSine');
end
else
frequency = 2*pi/per_freq;
if (exist('dir_amp') == 1)
direction = dir_amp;
else
direction = 0;
end
if (exist('amp_phase') == 1)
amplitude = amp_phase;
else
amplitude = 1;
end
if (exist('phase_orig') == 1)
phase = phase_orig;
else
phase = 0;
end
if (exist('orig') == 1)
origin = orig;
end
end
%------------------------------------------------------------
if (exist('origin') == 1)
res = amplitude*sin(mkRamp(sz, direction, frequency, phase, origin));
else
res = amplitude*sin(mkRamp(sz, direction, frequency, phase));
end
|
github
|
jbhuang0604/LapSRN-master
|
buildSFpyrLevs.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/buildSFpyrLevs.m
| 1,891 |
utf_8
|
52ab858761411b2a5a75e7de641259cf
|
% [PYR, INDICES] = buildSFpyrLevs(LODFT, LOGRAD, XRCOS, YRCOS, ANGLE, HEIGHT, NBANDS)
%
% Recursive function for constructing levels of a steerable pyramid. This
% is called by buildSFpyr, and is not usually called directly.
% Eero Simoncelli, 5/97.
function [pyr,pind] = buildSFpyrLevs(lodft,log_rad,Xrcos,Yrcos,angle,ht,nbands);
if (ht <= 0)
lo0 = ifft2(ifftshift(lodft));
pyr = real(lo0(:));
pind = size(lo0);
else
bands = zeros(prod(size(lodft)), nbands);
bind = zeros(nbands,2);
% log_rad = log_rad + 1;
Xrcos = Xrcos - log2(2); % shift origin of lut by 1 octave.
lutsize = 1024;
Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi]
order = nbands-1;
%% divide by sqrt(sum_(n=0)^(N-1) cos(pi*n/N)^(2(N-1)) )
%% Thanks to Patrick Teo for writing this out :)
const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order));
Ycosn = sqrt(const) * (cos(Xcosn)).^order;
himask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
for b = 1:nbands
anglemask = pointOp(angle, Ycosn, Xcosn(1)+pi*(b-1)/nbands, Xcosn(2)-Xcosn(1));
banddft = ((-sqrt(-1))^order) .* lodft .* anglemask .* himask;
band = ifft2(ifftshift(banddft));
bands(:,b) = real(band(:));
bind(b,:) = size(band);
end
dims = size(lodft);
ctr = ceil((dims+0.5)/2);
lodims = ceil((dims-0.5)/2);
loctr = ceil((lodims+0.5)/2);
lostart = ctr-loctr+1;
loend = lostart+lodims-1;
log_rad = log_rad(lostart(1):loend(1),lostart(2):loend(2));
angle = angle(lostart(1):loend(1),lostart(2):loend(2));
lodft = lodft(lostart(1):loend(1),lostart(2):loend(2));
YIrcos = abs(sqrt(1.0 - Yrcos.^2));
lomask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
lodft = lomask .* lodft;
[npyr,nind] = buildSFpyrLevs(lodft, log_rad, Xrcos, Yrcos, angle, ht-1, nbands);
pyr = [bands(:); npyr];
pind = [bind; nind];
end
|
github
|
jbhuang0604/LapSRN-master
|
pixelAxes.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/pixelAxes.m
| 1,983 |
utf_8
|
1b2a2bfddd425fee2ccd276f3948cec7
|
% [ZOOM] = pixelAxes(DIMS, ZOOM)
%
% Set the axes of the current plot to cover a multiple of DIMS pixels,
% thereby eliminating screen aliasing artifacts when displaying an
% image of size DIMS.
%
% ZOOM (optional, default='same') expresses the desired number of
% samples displayed per screen pixel. It should be a scalar, which
% will be rounded to the nearest integer, or 1 over an integer. It
% may also be the string 'same' or 'auto', in which case the value is chosen so
% as to produce an image closest in size to the currently displayed
% image. It may also be the string 'full', in which case the image is
% made as large as possible while still fitting in the window.
% Eero Simoncelli, 2/97.
function [zoom] = pixelAxes(dims, zoom)
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('zoom') ~= 1)
zoom = 'same';
end
%% Reverse dimension order, since Figure Positions reported as (x,y).
dims = dims(2:-1:1);
%% Use MatLab's axis function to force square pixels, etc:
axis('image');
ax = gca;
oldunits = get(ax,'Units');
if strcmp(zoom,'full');
set(ax,'Units','normalized');
set(ax,'Position',[0 0 1 1]);
zoom = 'same';
end
set(ax,'Units','pixels');
pos = get(ax,'Position');
ctr = pos(1:2)+pos(3:4)/2;
if (strcmp(zoom,'same') | strcmp(zoom,'auto'))
%% HACK: enlarge slightly so that floor doesn't round down
zoom = min( pos(3:4) ./ (dims - 1) );
elseif isstr(zoom)
error(sprintf('Bad ZOOM argument: %s',zoom));
end
%% Force zoom value to be an integer, or inverse integer.
if (zoom < 0.75)
zoom = 1/ceil(1/zoom);
%% Round upward, subtracting 0.5 to avoid floating point errors.
newsz = ceil(zoom*(dims-0.5));
else
zoom = floor(zoom + 0.001); % Avoid floating pt errors
if (zoom < 1.5) % zoom=1
zoom = 1;
newsz = dims + 0.5;
else
newsz = zoom*(dims-1) + mod(zoom,2);
end
end
set(ax,'Position', [floor(ctr-newsz/2)+0.5, newsz] )
% Restore units
set(ax,'Units',oldunits);
|
github
|
jbhuang0604/LapSRN-master
|
pyrBandIndices.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/pyrBandIndices.m
| 589 |
utf_8
|
28f90484526c294bdb24bdbf8014012d
|
% RES = pyrBandIndices(INDICES, BAND_NUM)
%
% Return indices for accessing a subband from a pyramid
% (gaussian, laplacian, QMF/wavelet, steerable).
% Eero Simoncelli, 6/96.
function indices = pyrBandIndices(pind,band)
if ((band > size(pind,1)) | (band < 1))
error(sprintf('BAND_NUM must be between 1 and number of pyramid bands (%d).', ...
size(pind,1)));
end
if (size(pind,2) ~= 2)
error('INDICES must be an Nx2 matrix indicating the size of the pyramid subbands');
end
ind = 1;
for l=1:band-1
ind = ind + prod(pind(l,:));
end
indices = ind:ind+prod(pind(band,:))-1;
|
github
|
jbhuang0604/LapSRN-master
|
pointOp.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/pointOp.m
| 1,209 |
utf_8
|
537b70083d9e7d7ffe4810e966c047f9
|
% RES = pointOp(IM, LUT, ORIGIN, INCREMENT, WARNINGS)
%
% Apply a point operation, specified by lookup table LUT, to image IM.
% LUT must be a row or column vector, and is assumed to contain
% (equi-spaced) samples of the function. ORIGIN specifies the
% abscissa associated with the first sample, and INCREMENT specifies the
% spacing between samples. Between-sample values are estimated via
% linear interpolation. If WARNINGS is non-zero, the function prints
% a warning whenever the lookup table is extrapolated.
%
% This function is much faster than MatLab's interp1, and allows
% extrapolation beyond the lookup table domain. The drawbacks are
% that the lookup table must be equi-spaced, and the interpolation is
% linear.
% Eero Simoncelli, 8/96.
function res = pointOp(im, lut, origin, increment, warnings)
%% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD)
% fprintf(1,'WARNING: You should compile the MEX version of "pointOp.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster.\n');
X = origin + increment*[0:size(lut(:),1)-1];
Y = lut(:);
res = reshape(interp1(X, Y, im(:), 'linear', 'extrap'),size(im));
|
github
|
jbhuang0604/LapSRN-master
|
reconWpyr.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/reconWpyr.m
| 3,992 |
utf_8
|
859a606f214bce204ce3c9ea18c0fc87
|
% RES = reconWpyr(PYR, INDICES, FILT, EDGES, LEVS, BANDS)
%
% Reconstruct image from its separable orthonormal QMF/wavelet pyramid
% representation, as created by buildWpyr.
%
% PYR is a vector containing the N pyramid subbands, ordered from fine
% to coarse. INDICES is an Nx2 matrix containing the sizes of
% each subband. This is compatible with the MatLab Wavelet toolbox.
%
% FILT (optional) can be a string naming a standard filter (see
% namedFilter), or a vector which will be used for (separable)
% convolution. Default = 'qmf9'. EDGES specifies edge-handling,
% and defaults to 'reflect1' (see corrDn).
%
% LEVS (optional) should be a vector of levels to include, or the string
% 'all' (default). 1 corresponds to the finest scale. The lowpass band
% corresponds to wpyrHt(INDICES)+1.
%
% BANDS (optional) should be a vector of bands to include, or the string
% 'all' (default). 1=horizontal, 2=vertical, 3=diagonal. This is only used
% for pyramids of 2D images.
% Eero Simoncelli, 6/96.
function res = reconWpyr(pyr, ind, filt, edges, levs, bands)
if (nargin < 2)
error('First two arguments (PYR INDICES) are required');
end
%%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('filt') ~= 1)
filt = 'qmf9';
end
if (exist('edges') ~= 1)
edges= 'reflect1';
end
if (exist('levs') ~= 1)
levs = 'all';
end
if (exist('bands') ~= 1)
bands = 'all';
end
%%------------------------------------------------------------
maxLev = 1+wpyrHt(ind);
if strcmp(levs,'all')
levs = [1:maxLev]';
else
if (any(levs > maxLev))
error(sprintf('Level numbers must be in the range [1, %d].', maxLev));
end
levs = levs(:);
end
if strcmp(bands,'all')
bands = [1:3]';
else
if (any(bands < 1) | any(bands > 3))
error('Band numbers must be in the range [1,3].');
end
bands = bands(:);
end
if isstr(filt)
filt = namedFilter(filt);
end
filt = filt(:);
hfilt = modulateFlip(filt);
%% For odd-length filters, stagger the sampling lattices:
if (mod(size(filt,1),2) == 0)
stag = 2;
else
stag = 1;
end
%% Compute size of result image: assumes critical sampling (boundaries correct)
res_sz = ind(1,:);
if (res_sz(1) == 1)
loind = 2;
res_sz(2) = sum(ind(:,2));
elseif (res_sz(2) == 1)
loind = 2;
res_sz(1) = sum(ind(:,1));
else
loind = 4;
res_sz = ind(1,:) + ind(2,:); %%horizontal + vertical bands.
hres_sz = [ind(1,1), res_sz(2)];
lres_sz = [ind(2,1), res_sz(2)];
end
%% First, recursively collapse coarser scales:
if any(levs > 1)
if (size(ind,1) > loind)
nres = reconWpyr( pyr(1+sum(prod(ind(1:loind-1,:)')):size(pyr,1)), ...
ind(loind:size(ind,1),:), filt, edges, levs-1, bands);
else
nres = pyrBand(pyr, ind, loind); % lowpass subband
end
if (res_sz(1) == 1)
res = upConv(nres, filt', edges, [1 2], [1 stag], res_sz);
elseif (res_sz(2) == 1)
res = upConv(nres, filt, edges, [2 1], [stag 1], res_sz);
else
ires = upConv(nres, filt', edges, [1 2], [1 stag], lres_sz);
res = upConv(ires, filt, edges, [2 1], [stag 1], res_sz);
end
else
res = zeros(res_sz);
end
%% Add in reconstructed bands from this level:
if any(levs == 1)
if (res_sz(1) == 1)
upConv(pyrBand(pyr,ind,1), hfilt', edges, [1 2], [1 2], res_sz, res);
elseif (res_sz(2) == 1)
upConv(pyrBand(pyr,ind,1), hfilt, edges, [2 1], [2 1], res_sz, res);
else
if any(bands == 1) % horizontal
ires = upConv(pyrBand(pyr,ind,1),filt',edges,[1 2],[1 stag],hres_sz);
upConv(ires,hfilt,edges,[2 1],[2 1],res_sz,res); %destructively modify res
end
if any(bands == 2) % vertical
ires = upConv(pyrBand(pyr,ind,2),hfilt',edges,[1 2],[1 2],lres_sz);
upConv(ires,filt,edges,[2 1],[stag 1],res_sz,res); %destructively modify res
end
if any(bands == 3) % diagonal
ires = upConv(pyrBand(pyr,ind,3),hfilt',edges,[1 2],[1 2],hres_sz);
upConv(ires,hfilt,edges,[2 1],[2 1],res_sz,res); %destructively modify res
end
end
end
|
github
|
jbhuang0604/LapSRN-master
|
showWpyr.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/showWpyr.m
| 5,491 |
utf_8
|
4bc0b260425f553810ae04afced17fda
|
% RANGE = showWpyr (PYR, INDICES, RANGE, GAP, LEVEL_SCALE_FACTOR)
%
% Display a separable QMF/wavelet pyramid, specified by PYR and INDICES
% (see buildWpyr), in the current figure.
%
% RANGE is a 2-vector specifying the values that map to black and
% white, respectively. These values are scaled by
% LEVEL_SCALE_FACTOR^(lev-1) for bands at each level. Passing a value
% of 'auto1' sets RANGE to the min and max values of MATRIX. 'auto2'
% sets RANGE to 3 standard deviations below and above 0.0. In both of
% these cases, the lowpass band is independently scaled. A value of
% 'indep1' sets the range of each subband independently, as in a call
% to showIm(subband,'auto1'). Similarly, 'indep2' causes each subband
% to be scaled independently as if by showIm(subband,'indep2').
% The default value for RANGE is 'auto1' for 1D images, and 'auto2' for
% 2D images.
%
% GAP (optional, default=1) specifies the gap in pixels to leave
% between subbands (2D images only).
%
% LEVEL_SCALE_FACTOR indicates the relative scaling between pyramid
% levels. This should be set to the sum of the kernel taps of the
% lowpass filter used to construct the pyramid (default assumes
% L2-normalized filters, using a value of 2 for 2D images, sqrt(2) for
% 1D images).
% Eero Simoncelli, 2/97.
function [range] = showWpyr(pyr, pind, range, gap, scale);
% Determine 1D or 2D pyramid:
if ((pind(1,1) == 1) | (pind(1,2) ==1))
nbands = 1;
else
nbands = 3;
end
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('range') ~= 1)
if (nbands==1)
range = 'auto1';
else
range = 'auto2';
end
end
if (exist('gap') ~= 1)
gap = 1;
end
if (exist('scale') ~= 1)
if (nbands == 1)
scale = sqrt(2);
else
scale = 2;
end
end
%------------------------------------------------------------
ht = wpyrHt(pind);
nind = size(pind,1);
%% Auto range calculations:
if strcmp(range,'auto1')
range = zeros(nind,1);
mn = 0.0; mx = 0.0;
for lnum = 1:ht
for bnum = 1:nbands
band = wpyrBand(pyr,pind,lnum,bnum)/(scale^(lnum-1));
range((lnum-1)*nbands+bnum) = scale^(lnum-1);
[bmn,bmx] = range2(band);
mn = min(mn, bmn); mx = max(mx, bmx);
end
end
if (nbands == 1)
pad = (mx-mn)/12; % *** MAGIC NUMBER!!
mn = mn-pad; mx = mx+pad;
end
range = range * [mn mx]; % outer product
band = pyrLow(pyr,pind);
[mn,mx] = range2(band);
if (nbands == 1)
pad = (mx-mn)/12; % *** MAGIC NUMBER!!
mn = mn-pad; mx = mx+pad;
end
range(nind,:) = [mn, mx];
elseif strcmp(range,'indep1')
range = zeros(nind,2);
for bnum = 1:nind
band = pyrBand(pyr,pind,bnum);
[mn,mx] = range2(band);
if (nbands == 1)
pad = (mx-mn)/12; % *** MAGIC NUMBER!!
mn = mn-pad; mx = mx+pad;
end
range(bnum,:) = [mn mx];
end
elseif strcmp(range,'auto2')
range = zeros(nind,1);
sqsum = 0; numpixels = 0;
for lnum = 1:ht
for bnum = 1:nbands
band = wpyrBand(pyr,pind,lnum,bnum)/(scale^(lnum-1));
sqsum = sqsum + sum(sum(band.^2));
numpixels = numpixels + prod(size(band));
range((lnum-1)*nbands+bnum) = scale^(lnum-1);
end
end
stdev = sqrt(sqsum/(numpixels-1));
range = range * [ -3*stdev 3*stdev ]; % outer product
band = pyrLow(pyr,pind);
av = mean2(band); stdev = sqrt(var2(band));
range(nind,:) = [av-2*stdev,av+2*stdev];
elseif strcmp(range,'indep2')
range = zeros(nind,2);
for bnum = 1:(nind-1)
band = pyrBand(pyr,pind,bnum);
stdev = sqrt(var2(band));
range(bnum,:) = [ -3*stdev 3*stdev ];
end
band = pyrLow(pyr,pind);
av = mean2(band); stdev = sqrt(var2(band));
range(nind,:) = [av-2*stdev,av+2*stdev];
elseif isstr(range)
error(sprintf('Bad RANGE argument: %s',range))
elseif ((size(range,1) == 1) & (size(range,2) == 2))
scales = scale.^[0:ht];
if (nbands ~= 1)
scales = [scales; scales; scales];
end
range = scales(:) * range; % outer product
band = pyrLow(pyr,pind);
range(nind,:) = range(nind,:) + mean2(band) - mean(range(nind,:));
end
% CLEAR FIGURE:
clf;
if (nbands == 1)
%%%%% 1D signal:
for bnum=1:nind
band = pyrBand(pyr,pind,bnum);
subplot(nind,1,nind-bnum+1);
plot(band);
axis([1, prod(size(band)), range(bnum,:)]);
end
else
%%%%% 2D signal:
colormap(gray);
cmap = get(gcf,'Colormap');
nshades = size(cmap,1);
% Find background color index:
clr = get(gcf,'Color');
bg = 1;
dist = norm(cmap(bg,:)-clr);
for n = 1:nshades
ndist = norm(cmap(n,:)-clr);
if (ndist < dist)
dist = ndist;
bg = n;
end
end
%% Compute positions of subbands:
llpos = ones(nind,2);
for lnum = 1:ht
ind1 = nbands*(lnum-1) + 1;
xpos = pind(ind1,2) + 1 + gap*(ht-lnum+1);
ypos = pind(ind1+1,1) + 1 + gap*(ht-lnum+1);
llpos(ind1:ind1+2,:) = [ypos 1; 1 xpos; ypos xpos];
end
llpos(nind,:) = [1 1]; %lowpass
%% Make position list positive, and allocate appropriate image:
llpos = llpos - ones(nind,1)*min(llpos) + 1;
urpos = llpos + pind - 1;
d_im = bg + zeros(max(urpos));
%% Paste bands into image, (im-r1)*(nshades-1)/(r2-r1) + 1.5
for bnum=1:nind
mult = (nshades-1) / (range(bnum,2)-range(bnum,1));
d_im(llpos(bnum,1):urpos(bnum,1), llpos(bnum,2):urpos(bnum,2)) = ...
mult*pyrBand(pyr,pind,bnum) + (1.5-mult*range(bnum,1));
end
hh = image(d_im);
axis('off');
pixelAxes(size(d_im),'full');
set(hh,'UserData',range);
end
|
github
|
jbhuang0604/LapSRN-master
|
imGradient.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/imGradient.m
| 1,547 |
utf_8
|
b13a85bea09c3f4e0c1e6140c9a31f7a
|
% [dx, dy] = imGradient(im, edges)
%
% Compute the gradient of the image using smooth derivative filters
% optimized for accurate direction estimation. Coordinate system
% corresponds to standard pixel indexing: X axis points rightward. Y
% axis points downward. EDGES specify boundary handling (see corrDn
% for options).
%
% Unlike matlab's new gradient function, which is based on local
% differences, this function computes derivatives using 5x5 filters
% designed to accurately reflect the local orientation content.
% EPS, 1997.
% original filters from Int'l Conf Image Processing, 1994.
% updated filters 10/2003: see Farid & Simoncelli, IEEE Trans Image Processing, 13(4):496-508, April 2004.
% Incorporated into matlabPyrTools 10/2004.
function [dx, dy] = imGradient(im, edges)
if (exist('edges') ~= 1)
edges = 'dont-compute';
end
%% kernels from Farid & Simoncelli, IEEE Trans Image Processing, 13(4):496-508, April 2004.
gp = [0.037659 0.249153 0.426375 0.249153 0.037659]';
gd = [-0.109604 -0.276691 0.000000 0.276691 0.109604]';
dx = corrDn(corrDn(im, gp, edges), gd', edges);
dy = corrDn(corrDn(im, gd, edges), gp', edges);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% TEST:
%%Make a ramp with random slope and direction
dir = 2*pi*rand - pi;
slope = 10*rand;
sz = 32
im = mkRamp(sz, dir, slope);
[dx,dy] = imGradient(im);
showIm(dx + sqrt(-1)*dy);
ctr = (sz*sz/2)+sz/2;
slopeEst = sqrt(dx(ctr).^2 + dy(ctr).^2);
dirEst = atan2(dy(ctr), dx(ctr));
[slope, slopeEst]
[dir, dirEst]
|
github
|
jbhuang0604/LapSRN-master
|
lpyrHt.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/lpyrHt.m
| 233 |
utf_8
|
dd0b45926abda2b3fe9aaec0a4f4d214
|
% [HEIGHT] = lpyrHt(INDICES)
%
% Compute height of Laplacian pyramid with given its INDICES matrix.
% See buildLpyr.m
% Eero Simoncelli, 6/96.
function [ht] = lpyrHt(pind)
% Don't count lowpass residual band
ht = size(pind,1)-1;
|
github
|
jbhuang0604/LapSRN-master
|
buildGpyr.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/buildGpyr.m
| 1,931 |
utf_8
|
3f1cfe5507fe34b51d71a87d955abbf5
|
% [PYR, INDICES] = buildGpyr(IM, HEIGHT, FILT, EDGES)
%
% Construct a Gaussian pyramid on matrix IM.
%
% HEIGHT (optional) specifies the number of pyramid levels to build. Default
% is 1+maxPyrHt(size(IM),size(FILT)).
% You can also specify 'auto' to use this value.
%
% FILT (optional) can be a string naming a standard filter (see
% namedFilter), or a vector which will be used for (separable)
% convolution. Default = 'binom5'. EDGES specifies edge-handling, and
% defaults to 'reflect1' (see corrDn).
%
% PYR is a vector containing the N pyramid subbands, ordered from fine
% to coarse. INDICES is an Nx2 matrix containing the sizes of
% each subband. This is compatible with the MatLab Wavelet toolbox.
% Eero Simoncelli, 6/96.
function [pyr,pind] = buildGpyr(im, ht, filt, edges)
if (nargin < 1)
error('First argument (IM) is required');
end
im_sz = size(im);
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('filt') ~= 1)
filt = 'binom5';
end
if isstr(filt)
filt = namedFilter(filt);
end
if ( (size(filt,1) > 1) & (size(filt,2) > 1) )
error('FILT should be a 1D filter (i.e., a vector)');
else
filt = filt(:);
end
max_ht = 1 + maxPyrHt(im_sz, size(filt,1));
if ( (exist('ht') ~= 1) | (ht == 'auto') )
ht = max_ht;
else
if (ht > max_ht)
error(sprintf('Cannot build pyramid higher than %d levels.',max_ht));
end
end
if (exist('edges') ~= 1)
edges= 'reflect1';
end
%------------------------------------------------------------
if (ht <= 1)
pyr = im(:);
pind = im_sz;
else
if (im_sz(2) == 1)
lo2 = corrDn(im, filt, edges, [2 1], [1 1]);
elseif (im_sz(1) == 1)
lo2 = corrDn(im, filt', edges, [1 2], [1 1]);
else
lo = corrDn(im, filt', edges, [1 2], [1 1]);
lo2 = corrDn(lo, filt, edges, [2 1], [1 1]);
end
[npyr,nind] = buildGpyr(lo2, ht-1, filt, edges);
pyr = [im(:); npyr];
pind = [im_sz; nind];
end
|
github
|
jbhuang0604/LapSRN-master
|
shift.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/shift.m
| 438 |
utf_8
|
2ac42b171e4ca683ef1d361eaf331870
|
% [RES] = shift(MTX, OFFSET)
%
% Circular shift 2D matrix samples by OFFSET (a [Y,X] 2-vector),
% such that RES(POS) = MTX(POS-OFFSET).
function res = shift(mtx, offset)
dims = size(mtx);
offset = mod(-offset,dims);
res = [ mtx(offset(1)+1:dims(1), offset(2)+1:dims(2)), ...
mtx(offset(1)+1:dims(1), 1:offset(2)); ...
mtx(1:offset(1), offset(2)+1:dims(2)), ...
mtx(1:offset(1), 1:offset(2)) ];
|
github
|
jbhuang0604/LapSRN-master
|
namedFilter.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/namedFilter.m
| 3,207 |
utf_8
|
8f45ef65fca60f53e0f734c4f1ae01bf
|
% KERNEL = NAMED_FILTER(NAME)
%
% Some standard 1D filter kernels. These are scaled such that
% their L2-norm is 1.0.
%
% binomN - binomial coefficient filter of order N-1
% haar: - Haar wavelet.
% qmf8, qmf12, qmf16 - Symmetric Quadrature Mirror Filters [Johnston80]
% daub2,daub3,daub4 - Daubechies wavelet [Daubechies88].
% qmf5, qmf9, qmf13: - Symmetric Quadrature Mirror Filters [Simoncelli88,Simoncelli90]
%
% See bottom of file for full citations.
% Eero Simoncelli, 6/96.
function [kernel] = named_filter(name)
if strcmp(name(1:min(5,size(name,2))), 'binom')
kernel = sqrt(2) * binomialFilter(str2num(name(6:size(name,2))));
elseif strcmp(name,'qmf5')
kernel = [-0.076103 0.3535534 0.8593118 0.3535534 -0.076103]';
elseif strcmp(name,'qmf9')
kernel = [0.02807382 -0.060944743 -0.073386624 0.41472545 0.7973934 ...
0.41472545 -0.073386624 -0.060944743 0.02807382]';
elseif strcmp(name,'qmf13')
kernel = [-0.014556438 0.021651438 0.039045125 -0.09800052 ...
-0.057827797 0.42995453 0.7737113 0.42995453 -0.057827797 ...
-0.09800052 0.039045125 0.021651438 -0.014556438]';
elseif strcmp(name,'qmf8')
kernel = sqrt(2) * [0.00938715 -0.07065183 0.06942827 0.4899808 ...
0.4899808 0.06942827 -0.07065183 0.00938715 ]';
elseif strcmp(name,'qmf12')
kernel = sqrt(2) * [-0.003809699 0.01885659 -0.002710326 -0.08469594 ...
0.08846992 0.4843894 0.4843894 0.08846992 -0.08469594 -0.002710326 ...
0.01885659 -0.003809699 ]';
elseif strcmp(name,'qmf16')
kernel = sqrt(2) * [0.001050167 -0.005054526 -0.002589756 0.0276414 -0.009666376 ...
-0.09039223 0.09779817 0.4810284 0.4810284 0.09779817 -0.09039223 -0.009666376 ...
0.0276414 -0.002589756 -0.005054526 0.001050167 ]';
elseif strcmp(name,'haar')
kernel = [1 1]' / sqrt(2);
elseif strcmp(name,'daub2')
kernel = [0.482962913145 0.836516303738 0.224143868042 -0.129409522551]';
elseif strcmp(name,'daub3')
kernel = [0.332670552950 0.806891509311 0.459877502118 -0.135011020010 ...
-0.085441273882 0.035226291882]';
elseif strcmp(name,'daub4')
kernel = [0.230377813309 0.714846570553 0.630880767930 -0.027983769417 ...
-0.187034811719 0.030841381836 0.032883011667 -0.010597401785]';
elseif strcmp(name,'gauss5') % for backward-compatibility
kernel = sqrt(2) * [0.0625 0.25 0.375 0.25 0.0625]';
elseif strcmp(name,'gauss3') % for backward-compatibility
kernel = sqrt(2) * [0.25 0.5 0.25]';
else
error(sprintf('Bad filter name: %s\n',name));
end
% [Johnston80] - J D Johnston, "A filter family designed for use in quadrature
% mirror filter banks", Proc. ICASSP, pp 291-294, 1980.
%
% [Daubechies88] - I Daubechies, "Orthonormal bases of compactly supported wavelets",
% Commun. Pure Appl. Math, vol. 42, pp 909-996, 1988.
%
% [Simoncelli88] - E P Simoncelli, "Orthogonal sub-band image transforms",
% PhD Thesis, MIT Dept. of Elec. Eng. and Comp. Sci. May 1988.
% Also available as: MIT Media Laboratory Vision and Modeling Technical
% Report #100.
%
% [Simoncelli90] - E P Simoncelli and E H Adelson, "Subband image coding",
% Subband Transforms, chapter 4, ed. John W Woods, Kluwer Academic
% Publishers, Norwell, MA, 1990, pp 143--192.
|
github
|
jbhuang0604/LapSRN-master
|
buildLpyr.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/buildLpyr.m
| 2,632 |
utf_8
|
b62aad457634fd598b373448741860cd
|
% [PYR, INDICES] = buildLpyr(IM, HEIGHT, FILT1, FILT2, EDGES)
%
% Construct a Laplacian pyramid on matrix (or vector) IM.
%
% HEIGHT (optional) specifies the number of pyramid levels to build. Default
% is 1+maxPyrHt(size(IM),size(FILT)). You can also specify 'auto' to
% use this value.
%
% FILT1 (optional) can be a string naming a standard filter (see
% namedFilter), or a vector which will be used for (separable)
% convolution. Default = 'binom5'. FILT2 specifies the "expansion"
% filter (default = filt1). EDGES specifies edge-handling, and
% defaults to 'reflect1' (see corrDn).
%
% PYR is a vector containing the N pyramid subbands, ordered from fine
% to coarse. INDICES is an Nx2 matrix containing the sizes of
% each subband. This is compatible with the MatLab Wavelet toolbox.
% Eero Simoncelli, 6/96.
function [pyr,pind] = buildLpyr(im, ht, filt1, filt2, edges)
if (nargin < 1)
error('First argument (IM) is required');
end
im_sz = size(im);
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('filt1') ~= 1)
filt1 = 'binom5';
end
if isstr(filt1)
filt1 = namedFilter(filt1);
end
if ( (size(filt1,1) > 1) & (size(filt1,2) > 1) )
error('FILT1 should be a 1D filter (i.e., a vector)');
else
filt1 = filt1(:);
end
if (exist('filt2') ~= 1)
filt2 = filt1;
end
if isstr(filt2)
filt2 = namedFilter(filt2);
end
if ( (size(filt2,1) > 1) & (size(filt2,2) > 1) )
error('FILT2 should be a 1D filter (i.e., a vector)');
else
filt2 = filt2(:);
end
max_ht = 1 + maxPyrHt(im_sz, max(size(filt1,1), size(filt2,1)));
if ( (exist('ht') ~= 1) | (ht == 'auto') )
ht = max_ht;
else
if (ht > max_ht)
error(sprintf('Cannot build pyramid higher than %d levels.',max_ht));
end
end
if (exist('edges') ~= 1)
edges= 'reflect1';
end
%------------------------------------------------------------
if (ht <= 1)
pyr = im(:);
pind = im_sz;
else
if (im_sz(2) == 1)
lo2 = corrDn(im, filt1, edges, [2 1], [1 1]);
elseif (im_sz(1) == 1)
lo2 = corrDn(im, filt1', edges, [1 2], [1 1]);
else
lo = corrDn(im, filt1', edges, [1 2], [1 1]);
int_sz = size(lo);
lo2 = corrDn(lo, filt1, edges, [2 1], [1 1]);
end
[npyr,nind] = buildLpyr(lo2, ht-1, filt1, filt2, edges);
if (im_sz(1) == 1)
hi2 = upConv(lo2, filt2', edges, [1 2], [1 1], im_sz);
elseif (im_sz(2) == 1)
hi2 = upConv(lo2, filt2, edges, [2 1], [1 1], im_sz);
else
hi = upConv(lo2, filt2, edges, [2 1], [1 1], int_sz);
hi2 = upConv(hi, filt2', edges, [1 2], [1 1], im_sz);
end
hi2 = im - hi2;
pyr = [hi2(:); npyr];
pind = [im_sz; nind];
end
|
github
|
jbhuang0604/LapSRN-master
|
mkAngle.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/mkAngle.m
| 788 |
utf_8
|
126297224256c6e9077dc58f4094c39a
|
% IM = mkAngle(SIZE, PHASE, ORIGIN)
%
% Compute a matrix of dimension SIZE (a [Y X] 2-vector, or a scalar)
% containing samples of the polar angle (in radians, CW from the
% X-axis, ranging from -pi to pi), relative to angle PHASE (default =
% 0), about ORIGIN pixel (default = (size+1)/2).
% Eero Simoncelli, 6/96.
function [res] = mkAngle(sz, phase, origin)
sz = sz(:);
if (size(sz,1) == 1)
sz = [sz,sz];
end
% -----------------------------------------------------------------
% OPTIONAL args:
if (exist('origin') ~= 1)
origin = (sz+1)/2;
end
% -----------------------------------------------------------------
[xramp,yramp] = meshgrid( [1:sz(2)]-origin(2), [1:sz(1)]-origin(1) );
res = atan2(yramp,xramp);
if (exist('phase') == 1)
res = mod(res+(pi-phase),2*pi)-pi;
end
|
github
|
jbhuang0604/LapSRN-master
|
wpyrHt.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/wpyrHt.m
| 270 |
utf_8
|
18e1a724afee99389db70484333eb05a
|
% [HEIGHT] = wpyrHt(INDICES)
%
% Compute height of separable QMF/wavelet pyramid with given index matrix.
% Eero Simoncelli, 6/96.
function [ht] = wpyrHt(pind)
if ((pind(1,1) == 1) | (pind(1,2) ==1))
nbands = 1;
else
nbands = 3;
end
ht = (size(pind,1)-1)/nbands;
|
github
|
jbhuang0604/LapSRN-master
|
sp0Filters.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/sp0Filters.m
| 6,140 |
utf_8
|
0c5cd7bafff21efacd2a8ec71af90f49
|
% Steerable pyramid filters. Transform described in:
%
% @INPROCEEDINGS{Simoncelli95b,
% TITLE = "The Steerable Pyramid: A Flexible Architecture for
% Multi-Scale Derivative Computation",
% AUTHOR = "E P Simoncelli and W T Freeman",
% BOOKTITLE = "Second Int'l Conf on Image Processing",
% ADDRESS = "Washington, DC", MONTH = "October", YEAR = 1995 }
%
% Filter kernel design described in:
%
%@INPROCEEDINGS{Karasaridis96,
% TITLE = "A Filter Design Technique for
% Steerable Pyramid Image Transforms",
% AUTHOR = "A Karasaridis and E P Simoncelli",
% BOOKTITLE = "ICASSP", ADDRESS = "Atlanta, GA",
% MONTH = "May", YEAR = 1996 }
% Eero Simoncelli, 6/96.
function [lo0filt,hi0filt,lofilt,bfilts,mtx,harmonics] = sp0Filters();
harmonics = [ 0 ];
lo0filt = [ ...
-4.514000e-04 -1.137100e-04 -3.725800e-04 -3.743860e-03 -3.725800e-04 -1.137100e-04 -4.514000e-04
-1.137100e-04 -6.119520e-03 -1.344160e-02 -7.563200e-03 -1.344160e-02 -6.119520e-03 -1.137100e-04
-3.725800e-04 -1.344160e-02 6.441488e-02 1.524935e-01 6.441488e-02 -1.344160e-02 -3.725800e-04
-3.743860e-03 -7.563200e-03 1.524935e-01 3.153017e-01 1.524935e-01 -7.563200e-03 -3.743860e-03
-3.725800e-04 -1.344160e-02 6.441488e-02 1.524935e-01 6.441488e-02 -1.344160e-02 -3.725800e-04
-1.137100e-04 -6.119520e-03 -1.344160e-02 -7.563200e-03 -1.344160e-02 -6.119520e-03 -1.137100e-04
-4.514000e-04 -1.137100e-04 -3.725800e-04 -3.743860e-03 -3.725800e-04 -1.137100e-04 -4.514000e-04];
lofilt = [ ...
-2.257000e-04 -8.064400e-04 -5.686000e-05 8.741400e-04 -1.862800e-04 -1.031640e-03 -1.871920e-03 -1.031640e-03 -1.862800e-04 8.741400e-04 -5.686000e-05 -8.064400e-04 -2.257000e-04
-8.064400e-04 1.417620e-03 -1.903800e-04 -2.449060e-03 -4.596420e-03 -7.006740e-03 -6.948900e-03 -7.006740e-03 -4.596420e-03 -2.449060e-03 -1.903800e-04 1.417620e-03 -8.064400e-04
-5.686000e-05 -1.903800e-04 -3.059760e-03 -6.401000e-03 -6.720800e-03 -5.236180e-03 -3.781600e-03 -5.236180e-03 -6.720800e-03 -6.401000e-03 -3.059760e-03 -1.903800e-04 -5.686000e-05
8.741400e-04 -2.449060e-03 -6.401000e-03 -5.260020e-03 3.938620e-03 1.722078e-02 2.449600e-02 1.722078e-02 3.938620e-03 -5.260020e-03 -6.401000e-03 -2.449060e-03 8.741400e-04
-1.862800e-04 -4.596420e-03 -6.720800e-03 3.938620e-03 3.220744e-02 6.306262e-02 7.624674e-02 6.306262e-02 3.220744e-02 3.938620e-03 -6.720800e-03 -4.596420e-03 -1.862800e-04
-1.031640e-03 -7.006740e-03 -5.236180e-03 1.722078e-02 6.306262e-02 1.116388e-01 1.348999e-01 1.116388e-01 6.306262e-02 1.722078e-02 -5.236180e-03 -7.006740e-03 -1.031640e-03
-1.871920e-03 -6.948900e-03 -3.781600e-03 2.449600e-02 7.624674e-02 1.348999e-01 1.576508e-01 1.348999e-01 7.624674e-02 2.449600e-02 -3.781600e-03 -6.948900e-03 -1.871920e-03
-1.031640e-03 -7.006740e-03 -5.236180e-03 1.722078e-02 6.306262e-02 1.116388e-01 1.348999e-01 1.116388e-01 6.306262e-02 1.722078e-02 -5.236180e-03 -7.006740e-03 -1.031640e-03
-1.862800e-04 -4.596420e-03 -6.720800e-03 3.938620e-03 3.220744e-02 6.306262e-02 7.624674e-02 6.306262e-02 3.220744e-02 3.938620e-03 -6.720800e-03 -4.596420e-03 -1.862800e-04
8.741400e-04 -2.449060e-03 -6.401000e-03 -5.260020e-03 3.938620e-03 1.722078e-02 2.449600e-02 1.722078e-02 3.938620e-03 -5.260020e-03 -6.401000e-03 -2.449060e-03 8.741400e-04
-5.686000e-05 -1.903800e-04 -3.059760e-03 -6.401000e-03 -6.720800e-03 -5.236180e-03 -3.781600e-03 -5.236180e-03 -6.720800e-03 -6.401000e-03 -3.059760e-03 -1.903800e-04 -5.686000e-05
-8.064400e-04 1.417620e-03 -1.903800e-04 -2.449060e-03 -4.596420e-03 -7.006740e-03 -6.948900e-03 -7.006740e-03 -4.596420e-03 -2.449060e-03 -1.903800e-04 1.417620e-03 -8.064400e-04
-2.257000e-04 -8.064400e-04 -5.686000e-05 8.741400e-04 -1.862800e-04 -1.031640e-03 -1.871920e-03 -1.031640e-03 -1.862800e-04 8.741400e-04 -5.686000e-05 -8.064400e-04 -2.257000e-04];
mtx = [ 1.000000 ];
hi0filt = [...
5.997200e-04 -6.068000e-05 -3.324900e-04 -3.325600e-04 -2.406600e-04 -3.325600e-04 -3.324900e-04 -6.068000e-05 5.997200e-04
-6.068000e-05 1.263100e-04 4.927100e-04 1.459700e-04 -3.732100e-04 1.459700e-04 4.927100e-04 1.263100e-04 -6.068000e-05
-3.324900e-04 4.927100e-04 -1.616650e-03 -1.437358e-02 -2.420138e-02 -1.437358e-02 -1.616650e-03 4.927100e-04 -3.324900e-04
-3.325600e-04 1.459700e-04 -1.437358e-02 -6.300923e-02 -9.623594e-02 -6.300923e-02 -1.437358e-02 1.459700e-04 -3.325600e-04
-2.406600e-04 -3.732100e-04 -2.420138e-02 -9.623594e-02 8.554893e-01 -9.623594e-02 -2.420138e-02 -3.732100e-04 -2.406600e-04
-3.325600e-04 1.459700e-04 -1.437358e-02 -6.300923e-02 -9.623594e-02 -6.300923e-02 -1.437358e-02 1.459700e-04 -3.325600e-04
-3.324900e-04 4.927100e-04 -1.616650e-03 -1.437358e-02 -2.420138e-02 -1.437358e-02 -1.616650e-03 4.927100e-04 -3.324900e-04
-6.068000e-05 1.263100e-04 4.927100e-04 1.459700e-04 -3.732100e-04 1.459700e-04 4.927100e-04 1.263100e-04 -6.068000e-05
5.997200e-04 -6.068000e-05 -3.324900e-04 -3.325600e-04 -2.406600e-04 -3.325600e-04 -3.324900e-04 -6.068000e-05 5.997200e-04 ];
bfilts = [ ...
-9.066000e-05 -1.738640e-03 -4.942500e-03 -7.889390e-03 -1.009473e-02 -7.889390e-03 -4.942500e-03 -1.738640e-03 -9.066000e-05 ...
-1.738640e-03 -4.625150e-03 -7.272540e-03 -7.623410e-03 -9.091950e-03 -7.623410e-03 -7.272540e-03 -4.625150e-03 -1.738640e-03 ...
-4.942500e-03 -7.272540e-03 -2.129540e-02 -2.435662e-02 -3.487008e-02 -2.435662e-02 -2.129540e-02 -7.272540e-03 -4.942500e-03 ...
-7.889390e-03 -7.623410e-03 -2.435662e-02 -1.730466e-02 -3.158605e-02 -1.730466e-02 -2.435662e-02 -7.623410e-03 -7.889390e-03 ...
-1.009473e-02 -9.091950e-03 -3.487008e-02 -3.158605e-02 9.464195e-01 -3.158605e-02 -3.487008e-02 -9.091950e-03 -1.009473e-02 ...
-7.889390e-03 -7.623410e-03 -2.435662e-02 -1.730466e-02 -3.158605e-02 -1.730466e-02 -2.435662e-02 -7.623410e-03 -7.889390e-03 ...
-4.942500e-03 -7.272540e-03 -2.129540e-02 -2.435662e-02 -3.487008e-02 -2.435662e-02 -2.129540e-02 -7.272540e-03 -4.942500e-03 ...
-1.738640e-03 -4.625150e-03 -7.272540e-03 -7.623410e-03 -9.091950e-03 -7.623410e-03 -7.272540e-03 -4.625150e-03 -1.738640e-03 ...
-9.066000e-05 -1.738640e-03 -4.942500e-03 -7.889390e-03 -1.009473e-02 -7.889390e-03 -4.942500e-03 -1.738640e-03 -9.066000e-05 ]';
|
github
|
jbhuang0604/LapSRN-master
|
sp5Filters.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/sp5Filters.m
| 6,949 |
utf_8
|
305fb0c0ca0709fc34ca6c5b4bb91712
|
% Steerable pyramid filters. Transform described in:
%
% @INPROCEEDINGS{Simoncelli95b,
% TITLE = "The Steerable Pyramid: A Flexible Architecture for
% Multi-Scale Derivative Computation",
% AUTHOR = "E P Simoncelli and W T Freeman",
% BOOKTITLE = "Second Int'l Conf on Image Processing",
% ADDRESS = "Washington, DC", MONTH = "October", YEAR = 1995 }
%
% Filter kernel design described in:
%
%@INPROCEEDINGS{Karasaridis96,
% TITLE = "A Filter Design Technique for
% Steerable Pyramid Image Transforms",
% AUTHOR = "A Karasaridis and E P Simoncelli",
% BOOKTITLE = "ICASSP", ADDRESS = "Atlanta, GA",
% MONTH = "May", YEAR = 1996 }
% Eero Simoncelli, 6/96.
function [lo0filt,hi0filt,lofilt,bfilts,mtx,harmonics] = sp5Filters();
harmonics = [1 3 5];
mtx = [ ...
0.3333 0.2887 0.1667 0.0000 -0.1667 -0.2887
0.0000 0.1667 0.2887 0.3333 0.2887 0.1667
0.3333 -0.0000 -0.3333 -0.0000 0.3333 -0.0000
0.0000 0.3333 0.0000 -0.3333 0.0000 0.3333
0.3333 -0.2887 0.1667 -0.0000 -0.1667 0.2887
-0.0000 0.1667 -0.2887 0.3333 -0.2887 0.1667];
hi0filt = [
-0.00033429 -0.00113093 -0.00171484 -0.00133542 -0.00080639 -0.00133542 -0.00171484 -0.00113093 -0.00033429
-0.00113093 -0.00350017 -0.00243812 0.00631653 0.01261227 0.00631653 -0.00243812 -0.00350017 -0.00113093
-0.00171484 -0.00243812 -0.00290081 -0.00673482 -0.00981051 -0.00673482 -0.00290081 -0.00243812 -0.00171484
-0.00133542 0.00631653 -0.00673482 -0.07027679 -0.11435863 -0.07027679 -0.00673482 0.00631653 -0.00133542
-0.00080639 0.01261227 -0.00981051 -0.11435863 0.81380200 -0.11435863 -0.00981051 0.01261227 -0.00080639
-0.00133542 0.00631653 -0.00673482 -0.07027679 -0.11435863 -0.07027679 -0.00673482 0.00631653 -0.00133542
-0.00171484 -0.00243812 -0.00290081 -0.00673482 -0.00981051 -0.00673482 -0.00290081 -0.00243812 -0.00171484
-0.00113093 -0.00350017 -0.00243812 0.00631653 0.01261227 0.00631653 -0.00243812 -0.00350017 -0.00113093
-0.00033429 -0.00113093 -0.00171484 -0.00133542 -0.00080639 -0.00133542 -0.00171484 -0.00113093 -0.00033429];
lo0filt = [
0.00341614 -0.01551246 -0.03848215 -0.01551246 0.00341614
-0.01551246 0.05586982 0.15925570 0.05586982 -0.01551246
-0.03848215 0.15925570 0.40304148 0.15925570 -0.03848215
-0.01551246 0.05586982 0.15925570 0.05586982 -0.01551246
0.00341614 -0.01551246 -0.03848215 -0.01551246 0.00341614];
lofilt = 2*[
0.00085404 -0.00244917 -0.00387812 -0.00944432 -0.00962054 -0.00944432 -0.00387812 -0.00244917 0.00085404
-0.00244917 -0.00523281 -0.00661117 0.00410600 0.01002988 0.00410600 -0.00661117 -0.00523281 -0.00244917
-0.00387812 -0.00661117 0.01396746 0.03277038 0.03981393 0.03277038 0.01396746 -0.00661117 -0.00387812
-0.00944432 0.00410600 0.03277038 0.06426333 0.08169618 0.06426333 0.03277038 0.00410600 -0.00944432
-0.00962054 0.01002988 0.03981393 0.08169618 0.10096540 0.08169618 0.03981393 0.01002988 -0.00962054
-0.00944432 0.00410600 0.03277038 0.06426333 0.08169618 0.06426333 0.03277038 0.00410600 -0.00944432
-0.00387812 -0.00661117 0.01396746 0.03277038 0.03981393 0.03277038 0.01396746 -0.00661117 -0.00387812
-0.00244917 -0.00523281 -0.00661117 0.00410600 0.01002988 0.00410600 -0.00661117 -0.00523281 -0.00244917
0.00085404 -0.00244917 -0.00387812 -0.00944432 -0.00962054 -0.00944432 -0.00387812 -0.00244917 0.00085404];
bfilts = [...
0.00277643 0.00496194 0.01026699 0.01455399 0.01026699 0.00496194 0.00277643 ...
-0.00986904 -0.00893064 0.01189859 0.02755155 0.01189859 -0.00893064 -0.00986904 ...
-0.01021852 -0.03075356 -0.08226445 -0.11732297 -0.08226445 -0.03075356 -0.01021852 ...
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ...
0.01021852 0.03075356 0.08226445 0.11732297 0.08226445 0.03075356 0.01021852 ...
0.00986904 0.00893064 -0.01189859 -0.02755155 -0.01189859 0.00893064 0.00986904 ...
-0.00277643 -0.00496194 -0.01026699 -0.01455399 -0.01026699 -0.00496194 -0.00277643;
...
-0.00343249 -0.00640815 -0.00073141 0.01124321 0.00182078 0.00285723 0.01166982 ...
-0.00358461 -0.01977507 -0.04084211 -0.00228219 0.03930573 0.01161195 0.00128000 ...
0.01047717 0.01486305 -0.04819057 -0.12227230 -0.05394139 0.00853965 -0.00459034 ...
0.00790407 0.04435647 0.09454202 -0.00000000 -0.09454202 -0.04435647 -0.00790407 ...
0.00459034 -0.00853965 0.05394139 0.12227230 0.04819057 -0.01486305 -0.01047717 ...
-0.00128000 -0.01161195 -0.03930573 0.00228219 0.04084211 0.01977507 0.00358461 ...
-0.01166982 -0.00285723 -0.00182078 -0.01124321 0.00073141 0.00640815 0.00343249;
...
0.00343249 0.00358461 -0.01047717 -0.00790407 -0.00459034 0.00128000 0.01166982 ...
0.00640815 0.01977507 -0.01486305 -0.04435647 0.00853965 0.01161195 0.00285723 ...
0.00073141 0.04084211 0.04819057 -0.09454202 -0.05394139 0.03930573 0.00182078 ...
-0.01124321 0.00228219 0.12227230 -0.00000000 -0.12227230 -0.00228219 0.01124321 ...
-0.00182078 -0.03930573 0.05394139 0.09454202 -0.04819057 -0.04084211 -0.00073141 ...
-0.00285723 -0.01161195 -0.00853965 0.04435647 0.01486305 -0.01977507 -0.00640815 ...
-0.01166982 -0.00128000 0.00459034 0.00790407 0.01047717 -0.00358461 -0.00343249;
...
-0.00277643 0.00986904 0.01021852 -0.00000000 -0.01021852 -0.00986904 0.00277643 ...
-0.00496194 0.00893064 0.03075356 -0.00000000 -0.03075356 -0.00893064 0.00496194 ...
-0.01026699 -0.01189859 0.08226445 -0.00000000 -0.08226445 0.01189859 0.01026699 ...
-0.01455399 -0.02755155 0.11732297 -0.00000000 -0.11732297 0.02755155 0.01455399 ...
-0.01026699 -0.01189859 0.08226445 -0.00000000 -0.08226445 0.01189859 0.01026699 ...
-0.00496194 0.00893064 0.03075356 -0.00000000 -0.03075356 -0.00893064 0.00496194 ...
-0.00277643 0.00986904 0.01021852 -0.00000000 -0.01021852 -0.00986904 0.00277643;
...
-0.01166982 -0.00128000 0.00459034 0.00790407 0.01047717 -0.00358461 -0.00343249 ...
-0.00285723 -0.01161195 -0.00853965 0.04435647 0.01486305 -0.01977507 -0.00640815 ...
-0.00182078 -0.03930573 0.05394139 0.09454202 -0.04819057 -0.04084211 -0.00073141 ...
-0.01124321 0.00228219 0.12227230 -0.00000000 -0.12227230 -0.00228219 0.01124321 ...
0.00073141 0.04084211 0.04819057 -0.09454202 -0.05394139 0.03930573 0.00182078 ...
0.00640815 0.01977507 -0.01486305 -0.04435647 0.00853965 0.01161195 0.00285723 ...
0.00343249 0.00358461 -0.01047717 -0.00790407 -0.00459034 0.00128000 0.01166982;
...
-0.01166982 -0.00285723 -0.00182078 -0.01124321 0.00073141 0.00640815 0.00343249 ...
-0.00128000 -0.01161195 -0.03930573 0.00228219 0.04084211 0.01977507 0.00358461 ...
0.00459034 -0.00853965 0.05394139 0.12227230 0.04819057 -0.01486305 -0.01047717 ...
0.00790407 0.04435647 0.09454202 -0.00000000 -0.09454202 -0.04435647 -0.00790407 ...
0.01047717 0.01486305 -0.04819057 -0.12227230 -0.05394139 0.00853965 -0.00459034 ...
-0.00358461 -0.01977507 -0.04084211 -0.00228219 0.03930573 0.01161195 0.00128000 ...
-0.00343249 -0.00640815 -0.00073141 0.01124321 0.00182078 0.00285723 0.01166982]';
|
github
|
jbhuang0604/LapSRN-master
|
steer.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/steer.m
| 1,990 |
utf_8
|
3db4dd948e0ece7c7237330b7d4f191e
|
% RES = STEER(BASIS, ANGLE, HARMONICS, STEERMTX)
%
% Steer BASIS to the specfied ANGLE.
%
% BASIS should be a matrix whose columns are vectorized rotated copies of a
% steerable function, or the responses of a set of steerable filters.
%
% ANGLE can be a scalar, or a column vector the size of the basis.
%
% HARMONICS (optional, default is N even or odd low frequencies, as for
% derivative filters) should be a list of harmonic numbers indicating
% the angular harmonic content of the basis.
%
% STEERMTX (optional, default assumes cosine phase harmonic components,
% and filter positions at 2pi*n/N) should be a matrix which maps
% the filters onto Fourier series components (ordered [cos0 cos1 sin1
% cos2 sin2 ... sinN]). See steer2HarmMtx.m
% Eero Simoncelli, 7/96.
function res = steer(basis,angle,harmonics,steermtx)
num = size(basis,2);
if ( any(size(angle) ~= [size(basis,1) 1]) & any(size(angle) ~= [1 1]) )
error('ANGLE must be a scalar, or a column vector the size of the basis elements');
end
%% If HARMONICS are not passed, assume derivatives.
if (exist('harmonics') ~= 1)
if (mod(num,2) == 0)
harmonics = [0:(num/2)-1]'*2 + 1;
else
harmonics = [0:(num-1)/2]'*2;
end
else
harmonics = harmonics(:);
if ((2*size(harmonics,1)-any(harmonics == 0)) ~= num)
error('harmonics list is incompatible with basis size');
end
end
%% If STEERMTX not passed, assume evenly distributed cosine-phase filters:
if (exist('steermtx') ~= 1)
steermtx = steer2HarmMtx(harmonics, pi*[0:num-1]/num, 'even');
end
steervect = zeros(size(angle,1),num);
arg = angle * harmonics(find(harmonics~=0))';
if (all(harmonics))
steervect(:, 1:2:num) = cos(arg);
steervect(:, 2:2:num) = sin(arg);
else
steervect(:, 1) = ones(size(arg,1),1);
steervect(:, 2:2:num) = cos(arg);
steervect(:, 3:2:num) = sin(arg);
end
steervect = steervect * steermtx;
if (size(steervect,1) > 1)
tmp = basis' .* steervect';
res = sum(tmp)';
else
res = basis * steervect';
end
|
github
|
jbhuang0604/LapSRN-master
|
mkGaussian.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/mkGaussian.m
| 1,565 |
utf_8
|
1f55e73fbc9155a38607b0667da2d7f3
|
% IM = mkGaussian(SIZE, COVARIANCE, MEAN, AMPLITUDE)
%
% Compute a matrix with dimensions SIZE (a [Y X] 2-vector, or a
% scalar) containing a Gaussian function, centered at pixel position
% specified by MEAN (default = (size+1)/2), with given COVARIANCE (can
% be a scalar, 2-vector, or 2x2 matrix. Default = (min(size)/6)^2),
% and AMPLITUDE. AMPLITUDE='norm' (default) will produce a
% probability-normalized function. All but the first argument are
% optional.
% Eero Simoncelli, 6/96.
function [res] = mkGaussian(sz, cov, mn, ampl)
sz = sz(:);
if (size(sz,1) == 1)
sz = [sz,sz];
end
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('cov') ~= 1)
cov = (min(sz(1),sz(2))/6)^2;
end
if ( (exist('mn') ~= 1) | isempty(mn) )
mn = (sz+1)/2;
else
mn = mn(:);
if (size(mn,1) == 1)
mn = [mn, mn];
end
end
if (exist('ampl') ~= 1)
ampl = 'norm';
end
%------------------------------------------------------------
[xramp,yramp] = meshgrid([1:sz(2)]-mn(2),[1:sz(1)]-mn(1));
if (sum(size(cov)) == 2) % scalar
if (strcmp(ampl,'norm'))
ampl = 1/(2*pi*cov(1));
end
e = (xramp.^2 + yramp.^2)/(-2 * cov);
elseif (sum(size(cov)) == 3) % a 2-vector
if (strcmp(ampl,'norm'))
ampl = 1/(2*pi*sqrt(cov(1)*cov(2)));
end
e = xramp.^2/(-2 * cov(2)) + yramp.^2/(-2 * cov(1));
else
if (strcmp(ampl,'norm'))
ampl = 1/(2*pi*sqrt(det(cov)));
end
cov = -inv(cov)/2;
e = cov(2,2)*xramp.^2 + (cov(1,2)+cov(2,1))*(xramp.*yramp) ...
+ cov(1,1)*yramp.^2;
end
res = ampl .* exp(e);
|
github
|
jbhuang0604/LapSRN-master
|
factorial.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/factorial.m
| 273 |
utf_8
|
370971eae7a2351704973c452848d194
|
%% RES = factorial(NUM)
%
% Factorial function that works on matrices (matlab's does not).
% EPS, 11/02
function res = factorial(num)
res = ones(size(num));
ind = find(num > 0);
if ( ~isempty(ind) )
subNum = num(ind);
res(ind) = subNum .* factorial(subNum-1);
end
|
github
|
jbhuang0604/LapSRN-master
|
entropy2.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/entropy2.m
| 693 |
utf_8
|
c637630f7ac8912e5cb30f67551aece7
|
% E = ENTROPY2(MTX,BINSIZE)
%
% Compute the first-order sample entropy of MTX. Samples of VEC are
% first discretized. Optional argument BINSIZE controls the
% discretization, and defaults to 256/(max(VEC)-min(VEC)).
%
% NOTE: This is a heavily biased estimate of entropy (it is too
% small) when you don't have much data!
% Eero Simoncelli, 6/96.
function res = entropy2(mtx,binsize)
%% Ensure it's a vector, not a matrix.
vec = mtx(:);
[mn,mx] = range2(vec);
if (exist('binsize') == 1)
nbins = max((mx-mn)/binsize, 1);
else
nbins = 256;
end
[bincount,bins] = histo(vec,nbins);
%% Collect non-zero bins:
H = bincount(find(bincount));
H = H/sum(H);
res = -sum(H .* log2(H));
|
github
|
jbhuang0604/LapSRN-master
|
buildSFpyr.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/buildSFpyr.m
| 3,256 |
utf_8
|
84c0a17ac90df74f317c29833c54ffa3
|
% [PYR, INDICES, STEERMTX, HARMONICS] = buildSFpyr(IM, HEIGHT, ORDER, TWIDTH)
%
% Construct a steerable pyramid on matrix IM, in the Fourier domain.
% This is similar to buildSpyr, except that:
%
% + Reconstruction is exact (within floating point errors)
% + It can produce any number of orientation bands.
% - Typically slower, especially for non-power-of-two sizes.
% - Boundary-handling is circular.
%
% HEIGHT (optional) specifies the number of pyramid levels to build. Default
% is maxPyrHt(size(IM),size(FILT));
%
% The squared radial functions tile the Fourier plane, with a raised-cosine
% falloff. Angular functions are cos(theta-k\pi/(K+1))^K, where K is
% the ORDER (one less than the number of orientation bands, default= 3).
%
% TWIDTH is the width of the transition region of the radial lowpass
% function, in octaves (default = 1, which gives a raised cosine for
% the bandpass filters).
%
% PYR is a vector containing the N pyramid subbands, ordered from fine
% to coarse. INDICES is an Nx2 matrix containing the sizes of
% each subband. This is compatible with the MatLab Wavelet toolbox.
% See the function STEER for a description of STEERMTX and HARMONICS.
% Eero Simoncelli, 5/97.
% See http://www.cns.nyu.edu/~eero/STEERPYR/ for more
% information about the Steerable Pyramid image decomposition.
function [pyr,pind,steermtx,harmonics] = buildSFpyr(im, ht, order, twidth)
%-----------------------------------------------------------------
%% DEFAULTS:
max_ht = floor(log2(min(size(im)))) - 2;
if (exist('ht') ~= 1)
ht = max_ht;
else
if (ht > max_ht)
error(sprintf('Cannot build pyramid higher than %d levels.',max_ht));
end
end
if (exist('order') ~= 1)
order = 3;
elseif ((order > 15) | (order < 0))
fprintf(1,'Warning: ORDER must be an integer in the range [0,15]. Truncating.\n');
order = min(max(order,0),15);
else
order = round(order);
end
nbands = order+1;
if (exist('twidth') ~= 1)
twidth = 1;
elseif (twidth <= 0)
fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n');
twidth = 1;
end
%-----------------------------------------------------------------
%% Steering stuff:
if (mod((nbands),2) == 0)
harmonics = [0:(nbands/2)-1]'*2 + 1;
else
harmonics = [0:(nbands-1)/2]'*2;
end
steermtx = steer2HarmMtx(harmonics, pi*[0:nbands-1]/nbands, 'even');
%-----------------------------------------------------------------
dims = size(im);
ctr = ceil((dims+0.5)/2);
[xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ...
([1:dims(1)]-ctr(1))./(dims(1)/2) );
angle = atan2(yramp,xramp);
log_rad = sqrt(xramp.^2 + yramp.^2);
log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1);
log_rad = log2(log_rad);
%% Radial transition function (a raised cosine in log-frequency):
[Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]);
Yrcos = sqrt(Yrcos);
YIrcos = sqrt(1.0 - Yrcos.^2);
lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
imdft = fftshift(fft2(im));
lo0dft = imdft .* lo0mask;
[pyr,pind] = buildSFpyrLevs(lo0dft, log_rad, Xrcos, Yrcos, angle, ht, nbands);
hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
hi0dft = imdft .* hi0mask;
hi0 = ifft2(ifftshift(hi0dft));
pyr = [real(hi0(:)) ; pyr];
pind = [size(hi0); pind];
|
github
|
jbhuang0604/LapSRN-master
|
spyrLev.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/spyrLev.m
| 668 |
utf_8
|
8d25ccc2790a62ab21a20cc3d0772706
|
% [LEV,IND] = spyrLev(PYR,INDICES,LEVEL)
%
% Access a level from a steerable pyramid.
% Return as an SxB matrix, B = number of bands, S = total size of a band.
% Also returns an Bx2 matrix containing dimensions of the subbands.
% Eero Simoncelli, 6/96.
function [lev,ind] = spyrLev(pyr,pind,level)
nbands = spyrNumBands(pind);
if ((level > spyrHt(pind)) | (level < 1))
error(sprintf('Level number must be in the range [1, %d].', spyrHt(pind)));
end
firstband = 2 + nbands*(level-1);
firstind = 1;
for l=1:firstband-1
firstind = firstind + prod(pind(l,:));
end
ind = pind(firstband:firstband+nbands-1,:);
lev = pyr(firstind:firstind+sum(prod(ind'))-1);
|
github
|
jbhuang0604/LapSRN-master
|
pgmWrite.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/pgmWrite.m
| 3,119 |
utf_8
|
6425008296069df51c5c30ee1c011850
|
% RANGE = pgmWrite(MTX, FILENAME, RANGE, TYPE, COMMENT)
%
% Write a MatLab matrix to a pgm (graylevel image) file.
% This format is accessible from the XV image browsing utility.
%
% RANGE (optional) is a 2-vector specifying the values that map to
% black and white, respectively. Passing a value of 'auto' (default)
% sets RANGE=[min,max] (as in MatLab's imagesc). 'auto2' sets
% RANGE=[mean-2*stdev, mean+2*stdev]. 'auto3' sets
% RANGE=[p1-(p2-p1)/8, p2+(p2-p1)/8], where p1 is the 10th percentile
% value of the sorted MATRIX samples, and p2 is the 90th percentile
% value.
%
% TYPE (optional) should be 'raw' or 'ascii'. Defaults to 'raw'.
% Hany Farid, Spring '96. Modified by Eero Simoncelli, 6/96.
function range = pgmWrite(mtx, fname, range, type, comment );
[fid,msg] = fopen( fname, 'w' );
if (fid == -1)
error(msg);
end
%------------------------------------------------------------
%% optional ARGS:
if (exist('range') ~= 1)
range = 'auto';
end
if (exist('type') ~= 1)
type = 'raw';
end
%------------------------------------------------------------
%% Automatic range calculation:
if (strcmp(range,'auto1') | strcmp(range,'auto'))
[mn,mx] = range2(mtx);
range = [mn,mx];
elseif strcmp(range,'auto2')
stdev = sqrt(var2(mtx));
av = mean2(mtx);
range = [av-2*stdev,av+2*stdev]; % MAGIC NUMBER: 2 stdevs
elseif strcmp(range, 'auto3')
percentile = 0.1; % MAGIC NUMBER: 0<p<0.5
[N,X] = histo(mtx);
binsz = X(2)-X(1);
N = N+1e-10; % Ensure cumsum will be monotonic for call to interp1
cumN = [0, cumsum(N)]/sum(N);
cumX = [X(1)-binsz, X] + (binsz/2);
ctrRange = interp1(cumN,cumX, [percentile, 1-percentile]);
range = mean(ctrRange) + (ctrRange-mean(ctrRange))/(1-2*percentile);
elseif isstr(range)
error(sprintf('Bad RANGE argument: %s',range))
end
if ((range(2) - range(1)) <= eps)
range(1) = range(1) - 0.5;
range(2) = range(2) + 0.5;
end
%%% First line contains ID string:
%%% "P1" = ascii bitmap, "P2" = ascii greymap,
%%% "P3" = ascii pixmap, "P4" = raw bitmap,
%%% "P5" = raw greymap, "P6" = raw pixmap
if strcmp(type,'raw')
fprintf(fid,'P5\n');
format = 5;
elseif strcmp(type,'ascii')
fprintf(fid,'P2\n');
format = 2;
else
error(sprintf('PGMWRITE: Bad type argument: %s',type));
end
fprintf(fid,'# MatLab PGMWRITE file, saved %s\n',date);
if (exist('comment') == 1)
fprintf(fid,'# %s\n', comment);
end
%%% dimensions
fprintf(fid,'%d %d\n',size(mtx,2),size(mtx,1));
%%% Maximum pixel value
fprintf(fid,'255\n');
%% MatLab's "fprintf" floors when writing floats, so we compute
%% (mtx-r1)*255/(r2-r1)+0.5
mult = (255 / (range(2)-range(1)));
mtx = (mult * mtx) + (0.5 - mult * range(1));
mtx = max(-0.5+eps,min(255.5-eps,mtx));
if (format == 2)
count = fprintf(fid,'%d ',mtx');
elseif (format == 5)
count = fwrite(fid,mtx','uchar');
end
fclose(fid);
if (count ~= size(mtx,1)*size(mtx,2))
fprintf(1,'Warning: File output terminated early!');
end
%%% TEST:
% foo = 257*rand(100)-1;
% pgmWrite(foo,'foo.pgm',[0 255]);
% foo2=pgmRead('foo.pgm');
% size(find((foo2-round(foo))~=0))
% foo(find((foo2-round(foo))~=0))
|
github
|
jbhuang0604/LapSRN-master
|
modulateFlip.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/modulateFlip.m
| 461 |
utf_8
|
92f12f8068fcf49b9863851f106a5aa3
|
% [HFILT] = modulateFlipShift(LFILT)
%
% QMF/Wavelet highpass filter construction: modulate by (-1)^n,
% reverse order (and shift by one, which is handled by the convolution
% routines). This is an extension of the original definition of QMF's
% (e.g., see Simoncelli90).
% Eero Simoncelli, 7/96.
function [hfilt] = modulateFlipShift(lfilt)
lfilt = lfilt(:);
sz = size(lfilt,1);
sz2 = ceil(sz/2);
ind = [sz:-1:1]';
hfilt = lfilt(ind) .* (-1).^(ind-sz2);
|
github
|
jbhuang0604/LapSRN-master
|
mkFract.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/mkFract.m
| 843 |
utf_8
|
f0d97e35133978ade3a5fe34dea5d08a
|
% IM = mkFract(SIZE, FRACT_DIM)
%
% Make a matrix of dimensions SIZE (a [Y X] 2-vector, or a scalar)
% containing fractal (pink) noise with power spectral density of the
% form: 1/f^(5-2*FRACT_DIM). Image variance is normalized to 1.0.
% FRACT_DIM defaults to 1.0
% Eero Simoncelli, 6/96.
%% TODO: Verify that this matches Mandelbrot defn of fractal dimension.
%% Make this more efficient!
function res = mkFract(dims, fract_dim)
if (exist('fract_dim') ~= 1)
fract_dim = 1.0;
end
res = randn(dims);
fres = fft2(res);
sz = size(res);
ctr = ceil((sz+1)./2);
shape = ifftshift(mkR(sz, -(2.5-fract_dim), ctr));
shape(1,1) = 1; %%DC term
fres = shape .* fres;
fres = ifft2(fres);
if (max(max(abs(imag(fres)))) > 1e-10)
error('Symmetry error in creating fractal');
else
res = real(fres);
res = res / sqrt(var2(res));
end
|
github
|
jbhuang0604/LapSRN-master
|
mkSquare.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/mkSquare.m
| 2,344 |
utf_8
|
7d9553e391552cd91cdd6d81348404e2
|
% IM = mkSquare(SIZE, PERIOD, DIRECTION, AMPLITUDE, PHASE, ORIGIN, TWIDTH)
% or
% IM = mkSine(SIZE, FREQ, AMPLITUDE, PHASE, ORIGIN, TWIDTH)
%
% Compute a matrix of dimension SIZE (a [Y X] 2-vector, or a scalar)
% containing samples of a 2D square wave, with given PERIOD (in
% pixels), DIRECTION (radians, CW from X-axis, default = 0), AMPLITUDE
% (default = 1), and PHASE (radians, relative to ORIGIN, default = 0).
% ORIGIN defaults to the center of the image. TWIDTH specifies width
% of raised-cosine edges on the bars of the grating (default =
% min(2,period/3)).
%
% In the second form, FREQ is a 2-vector of frequencies (radians/pixel).
% Eero Simoncelli, 6/96.
% TODO: Add duty cycle.
function [res] = mkSquare(sz, per_freq, dir_amp, amp_phase, phase_orig, orig_twidth, twidth)
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (prod(size(per_freq)) == 2)
frequency = norm(per_freq);
direction = atan2(per_freq(1),per_freq(2));
if (exist('dir_amp') == 1)
amplitude = dir_amp;
else
amplitude = 1;
end
if (exist('amp_phase') == 1)
phase = amp_phase;
else
phase = 0;
end
if (exist('phase_orig') == 1)
origin = phase_orig;
end
if (exist('orig_twidth') == 1)
transition = orig_twidth;
else
transition = min(2,2*pi/(3*frequency));
end
if (exist('twidth') == 1)
error('Too many arguments for (second form) of mkSine');
end
else
frequency = 2*pi/per_freq;
if (exist('dir_amp') == 1)
direction = dir_amp;
else
direction = 0;
end
if (exist('amp_phase') == 1)
amplitude = amp_phase;
else
amplitude = 1;
end
if (exist('phase_orig') == 1)
phase = phase_orig;
else
phase = 0;
end
if (exist('orig_twidth') == 1)
origin = orig_twidth;
end
if (exist('twidth') == 1)
transition = twidth;
else
transition = min(2,2*pi/(3*frequency));
end
end
%------------------------------------------------------------
if (exist('origin') == 1)
res = mkRamp(sz, direction, frequency, phase, origin) - pi/2;
else
res = mkRamp(sz, direction, frequency, phase) - pi/2;
end
[Xtbl,Ytbl] = rcosFn(transition*frequency,pi/2,[-amplitude amplitude]);
res = pointOp(abs(mod(res+pi, 2*pi)-pi),Ytbl,Xtbl(1),Xtbl(2)-Xtbl(1),0);
% OLD threshold version:
%res = amplitude * (mod(res,2*pi) < pi);
|
github
|
jbhuang0604/LapSRN-master
|
spyrNumBands.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/spyrNumBands.m
| 480 |
utf_8
|
4a10cb68438c7dfc197ec00066f48fd4
|
% [NBANDS] = spyrNumBands(INDICES)
%
% Compute number of orientation bands in a steerable pyramid with
% given index matrix. If the pyramid contains only the highpass and
% lowpass bands (i.e., zero levels), returns 0.
% Eero Simoncelli, 2/97.
function [nbands] = spyrNumBands(pind)
if (size(pind,1) == 2)
nbands = 0;
else
% Count number of orientation bands:
b = 3;
while ((b <= size(pind,1)) & all( pind(b,:) == pind(2,:)) )
b = b+1;
end
nbands = b-2;
end
|
github
|
jbhuang0604/LapSRN-master
|
reconSpyr.m
|
.m
|
LapSRN-master/utils/matlabPyrTools/reconSpyr.m
| 2,671 |
utf_8
|
ea9e71a5f8a76eadbe8c1a2472d89344
|
% RES = reconSpyr(PYR, INDICES, FILTFILE, EDGES, LEVS, BANDS)
%
% Reconstruct image from its steerable pyramid representation, as created
% by buildSpyr.
%
% PYR is a vector containing the N pyramid subbands, ordered from fine
% to coarse. INDICES is an Nx2 matrix containing the sizes of
% each subband. This is compatible with the MatLab Wavelet toolbox.
%
% FILTFILE (optional) should be a string referring to an m-file that returns
% the rfilters. examples: sp0Filters, sp1Filters, sp3Filters
% (default = 'sp1Filters').
% EDGES specifies edge-handling, and defaults to 'reflect1' (see
% corrDn).
%
% LEVS (optional) should be a list of levels to include, or the string
% 'all' (default). 0 corresonds to the residual highpass subband.
% 1 corresponds to the finest oriented scale. The lowpass band
% corresponds to number spyrHt(INDICES)+1.
%
% BANDS (optional) should be a list of bands to include, or the string
% 'all' (default). 1 = vertical, rest proceeding anti-clockwise.
% Eero Simoncelli, 6/96.
function res = reconSpyr(pyr, pind, filtfile, edges, levs, bands)
%%------------------------------------------------------------
%% DEFAULTS:
if (exist('filtfile') ~= 1)
filtfile = 'sp1Filters';
end
if (exist('edges') ~= 1)
edges= 'reflect1';
end
if (exist('levs') ~= 1)
levs = 'all';
end
if (exist('bands') ~= 1)
bands = 'all';
end
%%------------------------------------------------------------
if (isstr(filtfile) & (exist(filtfile) == 2))
[lo0filt,hi0filt,lofilt,bfilts,steermtx,harmonics] = eval(filtfile);
nbands = spyrNumBands(pind);
if ((nbands > 0) & (size(bfilts,2) ~= nbands))
error('Number of pyramid bands is inconsistent with filter file');
end
else
error('filtfile argument must be the name of an M-file containing SPYR filters.');
end
maxLev = 1+spyrHt(pind);
if strcmp(levs,'all')
levs = [0:maxLev]';
else
if (any(levs > maxLev) | any(levs < 0))
error(sprintf('Level numbers must be in the range [0, %d].', maxLev));
end
levs = levs(:);
end
if strcmp(bands,'all')
bands = [1:nbands]';
else
if (any(bands < 1) | any(bands > nbands))
error(sprintf('Band numbers must be in the range [1,3].', nbands));
end
bands = bands(:);
end
if (spyrHt(pind) == 0)
if (any(levs==1))
res1 = pyrBand(pyr,pind,2);
else
res1 = zeros(pind(2,:));
end
else
res1 = reconSpyrLevs(pyr(1+prod(pind(1,:)):size(pyr,1)), ...
pind(2:size(pind,1),:), ...
lofilt, bfilts, edges, levs, bands);
end
res = upConv(res1, lo0filt, edges);
%% residual highpass subband
if any(levs == 0)
res = upConv( subMtx(pyr, pind(1,:)), hi0filt, edges, [1 1], [1 1], size(res), res);
end
|
github
|
phresher/MATLAB_Notes-master
|
ExtraSafePrimes.m
|
.m
|
MATLAB_Notes-master/exercises/Cody/ExtraSafePrimes.m
| 896 |
utf_8
|
d32b789b4f5d2865d2c620d0ae30d2ae
|
% https://cn.mathworks.com/matlabcentral/cody/problems/44385-extra-safe-primes
% Did you know that the number 5 is the first safe prime? A safe prime is
% a prime number that can be expressed as 2p+1, where p is also a prime.
% To celebrate Cody's Five-Year Anniversary, write a function to determine
% if a positive integer n is a safe prime in which the prime p
% (such that n=2p+1) is also a safe prime.
%%
x = 0;
assert(isequal(isextrasafe(x),false))
%%
x = 5;
assert(isequal(isextrasafe(x),false))
%%
function tf = isextrasafe(x)
if ~isprime(x)
tf = false;
return
end
[p, tf] = issafe(x);
if ~tf
return
end
[~, tf] = issafe(p);
end
function [p, tf] = issafe(x)
tf = false;
pSet = primes(x);
for p = pSet
if 2*p+1 == x
tf = true;
return
end
end
end
|
github
|
phresher/MATLAB_Notes-master
|
RecamanSequenceII.m
|
.m
|
MATLAB_Notes-master/exercises/Cody/RecamanSequenceII.m
| 611 |
utf_8
|
1ed66c596c6214396ba8f7547ea0f04b
|
%% https://cn.mathworks.com/matlabcentral/cody/problems/44339-recaman-sequence-ii
%%
x = 0;
y_correct = 2;
assert(isequal(RecamanII(x),y_correct))
%%
x = 90;
y_correct = 35;
assert(isequal(RecamanII(x),y_correct))
%%
x = 123456789;
y_correct = 46633;
assert(isequal(RecamanII(x),y_correct))
%%
function y = RecamanII(startPoint)
n = 1;
hist(1) = startPoint;
while true
n = n + 1;
B=hist(n-1)-(n-1);
C=0.^( abs(B+1) + (B+1) );
D=ismember(B, hist(1:n-1));
hist(n)=hist(n-1)+ (n-1) * (-1)^(C + D -1);
if hist(n) == 1
y = n;
return
end
end
end
|
github
|
phresher/MATLAB_Notes-master
|
IsReal5.m
|
.m
|
MATLAB_Notes-master/exercises/Cody/IsReal5.m
| 774 |
utf_8
|
1705021c5e95d7d3e2c9e48dd2e2590d
|
%%
n = 5;
assert(isequal(is_it_really_a_5(n),1))
%%
n = 15;
assert(isequal(is_it_really_a_5(n),0))
%%
function tf = is_it_really_a_5(n)
tf = 0;
n = num2str(n);
lengthN = length(n);
bit = mod(lengthN,3);
group = fix(lengthN/3);
switch bit
case 1
if n(1) == '5'
tf = 1;
return
end
case 2
if n(1) ~= '1' && n(2) == '5'
tf = 1;
return
end
case 0
if (n(1) == '5') || (n(2) ~= '1' && n(3) == '5')
tf = 1;
return
end
end
if group > 0
for i=1:group
if (n(bit-2+3*group) == '5') || (n(bit-1+3*group) ~= '1' && n(bit+3*group) == '5')
tf = 1;
return
end
end
end
end
|
github
|
phresher/MATLAB_Notes-master
|
TheGlassHalfFull.m
|
.m
|
MATLAB_Notes-master/exercises/Cody/TheGlassHalfFull.m
| 1,299 |
utf_8
|
6f9c6adf0c03b42b52ea8829bb667c75
|
% https://cn.mathworks.com/matlabcentral/cody/problems/44307-the-glass-half-full
% Identical glasses are placed in a triangular tower structure, such that the top level (L = 1) comprises one glass, the next level down (L = 2) comprises three glasses, the next level down (L = 3) comprises six glasses, and so on.
% Follow the link to see a diagram shows the first three levels. The glasses in each levels are represented by the blue circles, while the yellow circles represent the positions of the glasses in the next higher level.
%
% Water is poured into the top glass at a constant volumetric flow rate. When the glass is filled, the water starts spilling over and into the glasses below. Note that water only spills outward , meaning that at some point, some glasses will remain empty.
% v, the volume of a glass in liters
% u, the volumetric flow rate in liters per second
% L, a level in the glass structure
% g, the number of glasses in that level
% f, the number of glasses in that level that will be filled with water
% t, the time, in seconds
%%
%%
[g, f, t] = filltime(0.25, 0.1, 2);
assert(isequal([g f t],[3 3 10]));
%%
function [g, f, t] = filltime(v, u, L)
n = L;
g = (1+n)*n/2;
f = 3*n-3;
t = (1+1.5*n*(n-1))*v/u;
disp([g, f, t]);
end
|
github
|
phresher/MATLAB_Notes-master
|
PerniciousAnniversaryProblem.m
|
.m
|
MATLAB_Notes-master/exercises/Cody/PerniciousAnniversaryProblem.m
| 527 |
utf_8
|
5f09facb34d0a82ae2227d96a6a0f6a9
|
% https://cn.mathworks.com/matlabcentral/cody/problems/2736
% Since Cody is 5 years old, it's pernicious. A Pernicious number is an
% integer whose population count is a prime. Check if the given number is pernicious.
%%
x = 5;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
%%
x = 17;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
%%
function y = isPernicious(x)
bin = dec2bin(x);
bin(bin=='1')=1;
bin(bin=='0')=0;
binSum = sum(bin);
y = isprime(binSum);
end
|
github
|
phresher/MATLAB_Notes-master
|
AsciiBirthdayCake.m
|
.m
|
MATLAB_Notes-master/exercises/Cody/AsciiBirthdayCake.m
| 1,628 |
utf_8
|
ac0c52660ae1d91290b837348175b6fa
|
% https://cn.mathworks.com/matlabcentral/cody/problems/44380-ascii-birthday-cake
% Given an age and a name, give draw an ASCII birthday cake. For example,
% given the name "CODY" and the age 5, return a string with the following (no trailing spaces)
%
% 6 6 6 6 6
% | | | | |
% __|_|_|_|_|__
% { }
% { }
% { CODY }
% { }
% {_____________}
% This uses the string datatype, not a char array.
%%
cake = string(char([32 32 32 54 32 54 32 54 32 54 32 54 10 32 32 32 124 ...
32 124 32 124 32 124 32 124 10 32 95 95 124 95 124 95 124 95 124 95 ...
124 95 95 10 123 32 32 32 32 32 32 32 32 32 32 32 32 32 125 10 123 ...
32 32 32 32 32 32 32 32 32 32 32 32 32 125 10 123 32 32 32 32 67 79 ...
68 89 32 32 32 32 32 125 10 123 32 32 32 32 32 32 32 32 32 32 32 32 ...
32 125 10 123 95 95 95 95 95 95 95 95 95 95 95 95 95 125 10]));
fprintf('%s\n', cake);
assert(isequal(birthday_cake("CODY", 5), cake));
%%
function s = birthday_cake(name, n)
name = char(name);
width = 2*n+5;
nameWidth = length(name);
s1 = blanks(width-3);
s2 = blanks(width-3);
s3 = blanks(width-1);
s4 = blanks(width);
s4(1) = '{'; s4(end) = '}';
s5 = s4;
s6 = s5;
s6(fix(width/2-nameWidth/2)+1:fix(width/2-nameWidth/2)+nameWidth) = name;
s7 = s5;
s8 = s7;
s8(s8==' ') = '_';
for i=1:n
s1(2+2*i)='6';
s2(2+2*i)='|';
s3(2+2*i)='|';
end
s3(s3==' ') = '_';
s3(1) = ' ';
s = [s1, 10, ...
s2, 10, ...
s3, 10, ...
s4, 10, ...
s5, 10, ...
s6, 10, ...
s7, 10, ...
s8, 10];
fprintf('%s\n', s);
s = string(s);
end
|
github
|
phresher/MATLAB_Notes-master
|
MissingFive.m
|
.m
|
MATLAB_Notes-master/exercises/Cody/MissingFive.m
| 371 |
utf_8
|
a954322b0ec7d307deebf3e5adad0fd5
|
assert(isequal(regexprep(char(string(dec2missing5(3))),'^0*',''),'3'))
assert(isequal(regexprep(char(string(dec2missing5(9541))),'^0*',''),'14081'))
function y = dec2missing5(x)
y = [];
while true
remainder = rem(x, 9);
remainder(remainder>=5)=remainder+1;
y = [num2str(remainder) y];
x = fix(x/9);
if x == 0
break
end
end
end
|
github
|
phresher/MATLAB_Notes-master
|
PentagonalNumbers.m
|
.m
|
MATLAB_Notes-master/exercises/Cody/PentagonalNumbers.m
| 951 |
utf_8
|
c46e8cf02090c73476fa7593e2b2fa58
|
% https://cn.mathworks.com/matlabcentral/cody/problems/44360-pentagonal-numbers
% Your function will receive a lower and upper bound.
% It should return all pentagonal numbers within that
% inclusive range in ascending order. Additionally,
% it should return an array that indicates those numbers
% that are divisible by 5. For example,
%
% [p,d] = pentagonal_numbers(10,40)
% should return
%
% p = [12,22,35]
% d = [ 0, 0, 1]
%%
x1 = 1; x2 = 25;
[p,d] = pentagonal_numbers(x1,x2);
assert(isequal(p,[1,5,12,22]))
assert(isequal(d,[0,1,0,0]))
%%
function [p,d] = pentagonal_numbers(lowerBound,upperBound)
p = [];
for i = lowerBound:upperBound
num = double(i);
flag1 = (sqrt(24*num+1) - fix(sqrt(24*num+1))) == 0;
if ~flag1
continue;
end
flag2 = mod(sqrt(24*num+1)+1,6) == 0;
if ~flag2
continue;
end
p = [p, int32(num)];
end
d = mod(p, 5);
d = logical(d);
d = ~d;
end
|
github
|
phresher/MATLAB_Notes-master
|
FivePrimeNumbers.m
|
.m
|
MATLAB_Notes-master/exercises/Cody/FivePrimeNumbers.m
| 850 |
utf_8
|
9b3593f73de2b951dc4aa1b653585400
|
% https://cn.mathworks.com/matlabcentral/cody/problems/44305-5-prime-numbers
% Your function will be given lower and upper integer bounds. Your task is
% to return a vector containing the first five prime numbers in that range
% that contain the number five. But, if you can't find at least five such
% numbers, the function should give up and return -1.
%%
n_min = 60;
n_max = 1000;
y_correct = [151,157,251,257,353];
assert(isequal(five_primes(n_min,n_max),y_correct))
%%
function y = five_primes(n_min,n_max)
p = primes(n_max);
p = p(p>=n_min);
y = nan(1,5);
yNum = 1;
for i=1:length(p)
pStr = num2str(p(i));
flag = pStr(pStr == '5');
if isempty(flag)
continue
else
y(yNum) = p(i);
if yNum == 5
return
end
yNum = yNum + 1;
end
end
y = -1;
end
|
github
|
phresher/MATLAB_Notes-master
|
cubicAndSquare.m
|
.m
|
MATLAB_Notes-master/exercises/Cody/cubicAndSquare.m
| 619 |
utf_8
|
6fb23d0b54a90be335f4191bf7617aec
|
c = 5;
y_correct = [2 11; 5 10];
y = sumoftwosquares(c);
assert(isequal(y,y_correct))
function y = sumoftwosquares(c)
cubic = c^3;
y = [];
first = 0;
while true
first = first + 1;
second = 0;
while true
second = second + 1;
squareSum = first^2 + second^2;
if abs(squareSum - cubic) < 0.1
y = [y;first second];
break;
elseif squareSum > cubic
break
end
end
if first > second
break
end
end
disp(y);
end
|
github
|
phresher/MATLAB_Notes-master
|
EnergyOfAPhoton.m
|
.m
|
MATLAB_Notes-master/exercises/Cody/EnergyOfAPhoton.m
| 576 |
utf_8
|
6bfbcb1464e56d52379ed3c894f825b5
|
% https://cn.mathworks.com/matlabcentral/cody/problems/361-energy-of-a-photon
% ? ? ? ? ? ? ?
%
% Given the frequency F of a photon in giga hertz.
%
% Find energy E of this photon in giga electron volts.
%
% Assume h, Planck's constant is about 4 femto electron-volt-second.
%
% To maximize benefits, it may help not looking at the Test Suite before trying any solution!
%
% For more info: https://en.wikipedia.org/wiki/Planck_constant
%%
F = 1;
E_correct = 3/10^15;
assert(photon_energy(F)>E_correct)
%%
function E = photon_energy(F)
E=100/F;
end
|
github
|
phresher/MATLAB_Notes-master
|
IsWin.m
|
.m
|
MATLAB_Notes-master/exercises/Cody/IsWin.m
| 561 |
utf_8
|
b8fd6230e078941ae006656b0c966586
|
%%
x = [1 1 1
0 0 0
0 0 0];
y_correct = 1;
assert(isequal(your_fcn_name(x),y_correct))
%%
function flagWin = your_fcn_name(M)
flagWin = false;
sum1 = abs(sum(M,1));
sum1 = sum1(sum1==3);
if ~isempty(sum1)
flagWin = true;
return
end
sum2 = abs(sum(M,2));
sum2 = sum2(sum2==3);
if ~isempty(sum2)
flagWin = true;
return
end
sum3 = abs([M(1,1)+M(2,2)+M(3,3) ...
M(1,3)+M(2,2)+M(3,1)]);
sum3 = sum3(sum3==3);
if ~isempty(sum3)
flagWin = true;
return
end
end
|
github
|
phresher/MATLAB_Notes-master
|
mySort.m
|
.m
|
MATLAB_Notes-master/1_2/homework/sort/mySort.m
| 1,918 |
utf_8
|
48df6a98d6971c4b3dd4d3abda1c14d7
|
function A = mySort(A, algorithm)
% Practice several sort algorithms in one function.
L=length(A);
switch algorithm
% insert sort
case 'insert'
for i=2:L
for j=i:-1:2
if A(j)<A(j-1)
[A(j), A(j-1)] = swap(A(j), A(j-1));
else
break
end
end
end
% selection sort
case 'selection'
for i=1:L
for j=i+1:L
if A(i) > A(j)
[A(i), A(j)] = swap(A(i), A(j));
end
end
end
% heap sort
case 'heap'
% Build max-heap from x
A = buildmaxheap(A,L);
% Heapsort
heapsize = L;
for i = L:-1:2
% Put (n + 1 - i)th largest element in place
[A(1), A(i)] = swap(A(1), A(i));
% Max-heapify x(1:heapsize)
heapsize = heapsize - 1;
A = maxheapify(A,1,heapsize);
end
end
end
function A = buildmaxheap(A,L)
% Build max-heap out of x
% Note: In practice, x xhould be passed by reference
for i = floor(L / 2):-1:1
% Put children of x(i) in max-heap order
A = maxheapify(A,i,L);
end
end
function A = maxheapify(A,i,heapsize)
% Put children of x(i) in max-heap order
% Note: In practice, x xhould be passed by reference
% Compute left/right children indices
ll = 2 * i; % Note: In practice, use left bit shift
rr = ll + 1; % Note: In practice, use left bit shift, then add 1 to LSB
% Max-heapify
if ((ll <= heapsize) && (A(ll) > A(i)))
largest = ll;
else
largest = i;
end
if ((rr <= heapsize) && (A(rr) > A(largest)))
largest = rr;
end
if (largest ~= i)
[A(i), A(largest)] = swap(A(i), A(largest));
A = maxheapify(A,largest,heapsize);
end
end
|
github
|
Roboy/roboy_darkroom-master
|
multi_lighthouse_pose_estimator.m
|
.m
|
roboy_darkroom-master/darkroom/scripts/multi_lighthouse_pose_estimator.m
| 3,296 |
utf_8
|
e416582690c4abd06209336b785baa5e
|
%% load the data and parse into per sensor per lighthouse
clear
M = csvread('record_simulated_lighthouse0_calibration.log',1);
[sensor_entries,asort] = sort(M(:,2));
b = M(asort,2:end);
s = unique(sensor_entries);
global sensors
sensors = cell(2,length(s));
for i=1:length(s)
temp = b(sensor_entries==i-1,:);
[~,lighthouse_sort] = sort(temp(:,2));
temp = temp(lighthouse_sort,:);
sensors{1,i} = temp(temp(:,2)==0,3:end);
sensors{2,i} = temp(temp(:,2)==1,3:end);
end
%% read the relative sensor locations from yaml
config = ReadYaml('calibration.yaml');
global rel_pos
rel_pos = cell2mat(config.sensor_relative_locations(:,2:end));
%% pose estimation
global sample
sample = 2
true_pose = sensors{1,sample*2}(1,5:end);
true_pose = [true_pose(1:4);true_pose(5:8);true_pose(9:12)];
% for sensor=1:length(rel_pos)
% if(sensors{1,sensor}(sample,1)==0)
% azimuth = sensors{1,sensor}(sample,3);
% elevation = sensors{1,sensor}(sample+1,3);
% else
% azimuth = sensors{1,sensor}(sample+1,3);
% elevation = sensors{1,sensor}(sample,3);
% end
% disp(sensor-1)
% disp(elevation)
% disp(azimuth)
% end
global lighthouse_pose
lighthouse_pose = eye(4);
% this is lighthouse to world pose
lighthouse_pose(2,4) = 1
fun = @poseMultiLighthouse;
x0 = [0,0,0,0,0,0];
options = optimset('Display','off');
x = fsolve(fun,x0,options);
RT = createRTfrom(x);
assert(norm(RT-true_pose)<0.0001)
true_pose
RT
function RT = createRTfrom(x)
alpha_squared = (x(1)^2 + x(2)^2 + x(3)^2)^2;
q = [(1-alpha_squared)/(alpha_squared+1), 2*x(1)/(alpha_squared+1), 2*x(2)/(alpha_squared+1), 2*x(3)/(alpha_squared+1)];
q = q/norm(q);
qw = q(1); qx = q(2); qy = q(3); qz = q(4);
tx = 2*qx;
ty = 2*qy;
tz = 2*qz;
twx = tx*qw;
twy = ty*qw;
twz = tz*qw;
txx = tx*qx;
txy = ty*qx;
txz = tz*qx;
tyy = ty*qy;
tyz = tz*qy;
tzz = tz*qz;
RT = [1-(tyy+tzz), txy-twz, txz+twy, x(4);
txy+twz, 1-(txx+tzz), tyz-twx, x(5);
txz-twy, tyz+twx , 1-(txx+tyy), x(6)];
end
function F = poseMultiLighthouse(x)
global rel_pos
global sensors
global lighthouse_pose
global sample
RT = createRTfrom(x);
rt = [RT(1,1), RT(2,1), RT(3,1), RT(1,2), RT(2,2), RT(3,2), RT(1,3), RT(2,3), RT(3,3), RT(1,4), RT(2,4), RT(3,4)];
CD = zeros(2*length(rel_pos),12);
b = zeros(2*length(rel_pos),1);
for sensor=1:length(rel_pos)
if(sensors{1,sensor}(sample,1)==0)
azimuth = sensors{1,sensor}(sample,3);
elevation = sensors{1,sensor}(sample+1,3);
else
azimuth = sensors{1,sensor}(sample+1,3);
elevation = sensors{1,sensor}(sample,3);
end
u = tan(pi/2 - azimuth);
v = tan(elevation - pi/2);
C = lighthouse_pose(2,:)*u-lighthouse_pose(1,:);
D = lighthouse_pose(2,:)*v-lighthouse_pose(3,:);
X = rel_pos(sensor,1); Y = rel_pos(sensor,2); Z = rel_pos(sensor,3);
CD(sensor*2:sensor*2+1,:) = [C(1)*X C(2)*X C(3)*X C(1)*Y C(2)*Y C(3)*Y C(1)*Z C(2)*Z C(3)*Z C(1) C(2) C(3);
D(1)*X D(2)*X D(3)*X D(1)*Y D(2)*Y D(3)*Y D(1)*Z D(2)*Z D(3)*Z D(1) D(2) D(3)];
b(sensor*2:sensor*2+1) = [-C(4); -D(4)];
end
F = CD*rt' - b;
end
|
github
|
Roboy/roboy_darkroom-master
|
mergeimports.m
|
.m
|
roboy_darkroom-master/darkroom/scripts/YAMLREADER/mergeimports.m
| 5,334 |
utf_8
|
2564bb2fc532430c64ab664d1cfceb4c
|
%==========================================================================
% Walks through a tree structure data. Whenever it finds a structure, which
% have field named 'import' it assumes that in that field is a cell array
% and merges all structures found in that array. Parameter verb is used for
% debugging purposes.
%==========================================================================
function result = mergeimports(data, verb)
if ~exist('verb','var')
verb = 0;
end;
result = recurse(data, 0, [], verb);
end
%--------------------------------------------------------------------------
% Recursion dispatcher, calls appropriate method for cell/structure or
% displays data if the parameter data is not of mentioned type.
% addit ... for possible future use, now unused
% verb ... for debugging
%
function result = recurse(data, level, addit, verb)
indent = repmat(' | ',1,level); % for debugging
if iscell(data)
result = iter_cell(data, level, addit, verb);
elseif isstruct(data)
result = iter_struct(data, level, addit, verb);
else
if any(verb == 1) % for debugging
fprintf([indent,'Some data: ']);
disp(data);
end;
result = data;
end;
end
%--------------------------------------------------------------------------
% Walks through a cell array and calls recurse on every field.
% data ... Assumed to be a cell. Data to be walked.
% level ... Level in the tree, root has zero.
% addit, verb ... for debugging
%
function result = iter_cell(data, level, addit, verb)
indent = repmat(' | ',1,level); % for debugging
result = {};
if any(verb == 1); fprintf([indent,'cell {\n']); end; % for debugging
for i = 1:length(data)
itemcontent = recurse(data{i}, level + 1, addit, verb);
result{end + 1} = itemcontent;
end;
if any(verb == 1); fprintf([indent,'} cell\n']); end; % for debugging
end
%--------------------------------------------------------------------------
% Walks through a struct and calls recurse on every field. If there is a
% field called 'import' it calls process_import_field on its content. Then
% merges processed import with the rest of the structure. Meaning of all
% parameters is similar to those of iter_cell.
%
function result = iter_struct(data, level, addit, verb)
indent = repmat(' | ',1,level); % for debugging
result = struct();
collected_imports = {};
if any(verb == 1); fprintf([indent,'struct {\n']); end; % for debugging
for i = fields(data)'
fld = char(i);
if any(verb == 1); fprintf([indent,' +-field ',fld,':\n']); end; % for debugging
result.(fld) = recurse(data.(fld), level + 1, addit, verb);
% Tree back-pass - all potential underlying imports were processed,
% so process import here, if needed.
if isequal(fld, 'import')
processed_import = process_import_field(result.(fld));
result = rmfield(result, 'import');
if isstruct(processed_import)
collected_imports{end+1} = processed_import;
% It is maybe useless to collect imports to the array since
% there can be only one field named 'import' per structure.
% collected_imports is proposed to be changed to a simple
% variable.
else
% One of imports was not a struct. In following versions it
% probably won't be an error and will merge to a cell with
% structs.
disp(processed_import);
error('Expected struct, otherwise it cannot be merged with the rest.');
end;
end;
end;
for i = 1:length(collected_imports)
result = merge_struct(result, collected_imports{i}, {}, 'deep');
end;
if any(verb == 1); fprintf([indent,'} struct\n']); end; % for debugging
end
%--------------------------------------------------------------------------
% Walks through the data parameter, which is assumed to be a cell. Merges
% all structures in that cell and returns them as a struct or possibly as a
% cell of merged struct and unmeregeable data.
%
function result = process_import_field(data)
if iscell(data)
merged_structs = struct();
collected_nonstruct = {};
for i = 1:length(data)
if isstruct(data{i})
merged_structs = merge_struct(merged_structs, data{i}, {}, 'deep');
else
collected_nonstruct{end+1} = data{i};
end;
end;
if isempty(collected_nonstruct)
result = merged_structs;
elseif isempty(merged_structs)
result = collected_nonstruct;
else
result = {merged_structs; collected_nonstruct};
end;
else
% For clarity and simplicity, the whole transformation is done so
% that every import field in a struct is cell array even there is
% only one object to be imported.
error('BUG: import field should always contain a cell.');
end;
end
%==========================================================================
|
github
|
Roboy/roboy_darkroom-master
|
ReadYamlRaw.m
|
.m
|
roboy_darkroom-master/darkroom/scripts/YAMLREADER/ReadYamlRaw.m
| 8,106 |
utf_8
|
e088fcbe02b123cafe72ee93107295fe
|
%==========================================================================
% Reads YAML file, converts YAML sequences to MATLAB cell columns and YAML
% mappings to MATLAB structs
%
% filename ... name of yaml file to be imported
% verbose ... verbosity level (0 or absent = no messages,
% 1 = notify imports)
%==========================================================================
function result = ReadYamlRaw(filename, verbose, nosuchfileaction, treatasdata)
if ~exist('verbose','var')
verbose = 0;
end;
if ~exist('nosuchfileaction','var')
nosuchfileaction = 0;
end;
if ~ismember(nosuchfileaction,[0,1])
error('nosuchfileexception parameter must be 0,1 or missing.');
end;
if(~exist('treatasdata','var'))
treatasdata = 0;
end;
if ~ismember(treatasdata,[0,1])
error('treatasdata parameter must be 0,1 or missing.');
end;
[pth,~,~] = fileparts(mfilename('fullpath'));
try
import('org.yaml.snakeyaml.*');
javaObject('Yaml');
catch
dp = [pth filesep 'external' filesep 'snakeyaml-1.9.jar'];
if not(ismember(dp, javaclasspath ('-dynamic')))
javaaddpath(dp); % javaaddpath clears global variables...!?
end
import('org.yaml.snakeyaml.*');
end;
setverblevel(verbose);
% import('org.yaml.snakeyaml.Yaml'); % import here does not affect import in load_yaml ...!?
result = load_yaml(filename, nosuchfileaction, treatasdata);
end
%--------------------------------------------------------------------------
% Actually performs YAML load.
% - If this is a first call during recursion it changes cwd to the path of
% given filename and stores the old path. Then it calls the YAML parser
% and runs the recursive transformation. After transformation or when an
% error occurs, it sets cwd back to the stored value.
% - Otherwise just calls the parser and runs the transformation.
%
function result = load_yaml(inputfilename, nosuchfileaction, treatasdata)
persistent nsfe;
if exist('nosuchfileaction','var') %isempty(nsfe) &&
nsfe = nosuchfileaction;
end;
persistent tadf;
if isempty(tadf) && exist('treatasdata','var')
tadf = treatasdata;
end;
yaml = org.yaml.snakeyaml.Yaml(); % It appears that Java objects cannot be persistent...!?
if ~tadf
[filepath, filename, fileext] = fileparts(inputfilename);
if isempty(filepath)
pathstore = cd();
else
pathstore = cd(filepath);
end;
end;
try
if ~tadf
result = scan(yaml.load(fileread([filename, fileext])));
else
result = scan(yaml.load(inputfilename));
end;
catch ex
if ~tadf
cd(pathstore);
end;
switch ex.identifier
case 'MATLAB:fileread:cannotOpenFile'
if nsfe == 1
error('MATLAB:MATYAML:FileNotFound', ['No such file to read: ',filename,fileext]);
elseif nsfe == 0
warning('MATLAB:MATYAML:FileNotFound', ['No such file to read: ',filename,fileext]);
result = struct();
return;
end;
end;
rethrow(ex);
end;
if ~tadf
cd(pathstore);
end;
end
%--------------------------------------------------------------------------
% Determine node type and call appropriate conversion routine.
%
function result = scan(r)
if isa(r, 'char')
result = scan_string(r);
elseif isa(r, 'double')
result = scan_numeric(r);
elseif isa(r, 'logical')
result = scan_logical(r);
elseif isa(r, 'java.util.Date')
result = scan_datetime(r);
elseif isa(r, 'java.util.List')
result = scan_list(r);
elseif isa(r, 'java.util.Map')
result = scan_map(r);
else
error(['Unknown data type: ' class(r)]);
end;
end
%--------------------------------------------------------------------------
% Transforms Java String to MATLAB char
%
function result = scan_string(r)
result = char(r);
end
%--------------------------------------------------------------------------
% Transforms Java double to MATLAB double
%
function result = scan_numeric(r)
result = double(r);
end
%--------------------------------------------------------------------------
% Transforms Java boolean to MATLAB logical
%
function result = scan_logical(r)
result = logical(r);
end
%--------------------------------------------------------------------------
% Transforms Java Date class to MATLAB DateTime class
%
function result = scan_datetime(r)
result = DateTime(r);
end
%--------------------------------------------------------------------------
% Transforms Java List to MATLAB cell column running scan(...) recursively
% for all ListS items.
%
function result = scan_list(r)
result = cell(r.size(),1);
it = r.iterator();
ii = 1;
while it.hasNext()
i = it.next();
result{ii} = scan(i);
ii = ii + 1;
end;
end
%--------------------------------------------------------------------------
% Transforms Java Map to MATLAB struct running scan(...) recursively for
% content of every Map field.
% When there is field, which is recognized to be the >import keyword<, an
% attempt is made to import file given by the field content.
%
% The result of import is so far stored as a content of the item named 'import'.
%
function result = scan_map(r)
it = r.keySet().iterator();
while it.hasNext()
next = it.next();
i = next;
ich = char(i);
if iskw_import(ich)
result.(ich) = perform_import(r.get(java.lang.String(ich)));
else
result.(genvarname(ich)) = scan(r.get(java.lang.String(ich)));
end;
end;
if not(exist('result','var'))
result={};
end
end
%--------------------------------------------------------------------------
% Determines whether r contains a keyword denoting import.
%
function result = iskw_import(r)
result = isequal(r, 'import');
end
%--------------------------------------------------------------------------
% Transforms input hierarchy the usual way. If the result is char, then
% tries to load file denoted by this char. If the result is cell then tries
% to do just mentioned for each cellS item.
%
function result = perform_import(r)
r = scan(r);
if iscell(r) && all(cellfun(@ischar, r))
result = cellfun(@load_yaml, r, 'UniformOutput', 0);
elseif ischar(r)
result = {load_yaml(r)};
else
disp(r);
error(['Importer does not unterstand given filename. '...
'Invalid node displayed above.']);
end;
end
%--------------------------------------------------------------------------
% Sets verbosity level for all load_yaml infos.
%
function setverblevel(level)
global verbose_readyaml;
verbose_readyaml = 0;
if exist('level','var')
verbose_readyaml = level;
end;
end
%--------------------------------------------------------------------------
% Returns current verbosity level.
%
function result = getverblevel()
global verbose_readyaml;
result = verbose_readyaml;
end
%--------------------------------------------------------------------------
% For debugging purposes. Displays a message as level is more than or equal
% the current verbosity level.
%
function info(level, text, value_to_display)
if getverblevel() >= level
fprintf(text);
if exist('value_to_display','var')
disp(value_to_display);
else
fprintf('\n');
end;
end;
end
%==========================================================================
|
github
|
Roboy/roboy_darkroom-master
|
makematrices.m
|
.m
|
roboy_darkroom-master/darkroom/scripts/YAMLREADER/makematrices.m
| 5,810 |
utf_8
|
afb188bbb6dfad249186bc0158a07fa1
|
%==========================================================================
% Recursively walks through a Matlab hierarchy and substitutes cell vectors
% by a matrix when possible.
% Specifically substitutes cell objects like
%
% {{1,2,3},{4,5,6}}
%
% by
%
% {1,2,3;4,5,6}
%
% It leaves other objects unchanged except that it may change cell
% orientations (from column to row, etc.)
%
% Parameter makeords determines whether to convert from cells to normal
% matrices whenever possible (1) or leave matrices as cells (0).
%==========================================================================
function result = makematrices(r, makeords)
result = recurse(r, 0, [], makeords);
end
%--------------------------------------------------------------------------
%
%
function result = recurse(data, level, addit, makeords)
if iscell(data)
result = iter_cell(data, level, addit, makeords);
elseif isstruct(data)
result = iter_struct(data, level, addit, makeords);
else
result = scan_data(data, level, addit);
end;
end
%--------------------------------------------------------------------------
% Iterates through cell array data. A cell array here is treated as a
% simple sequence, hence it is processed regardless its shape. The array is
% transformed to a cell matrix if it satisfies following conditions:
% - It is vector
% - All its items are cells
% - All its items are vectors
% - All its items are alligned (are of the same size)
% - All its items are rows of a matrix (see ismatrixrow(...))
% Otherwise the content is left unchanged.
%
function result = iter_cell(data, level, addit, makeords)
if isvector(data) && ...
iscell_all(data) && ...
isvector_all(data) && ...
isaligned_all(data) && ...
ismatrixrow_all(data)
tmp = data;
tmp = cellfun(@cell2mat, tmp, 'UniformOutput', 0);
tmp = cellfun(@torow, tmp, 'UniformOutput', 0);
tmp = tocolumn(tmp);
tmp = cell2mat(tmp);
if ~makeords
tmp = num2cell(tmp);
end;
result = tmp;
elseif isempty(data)
result = [];
else
result = {};
for i = 1:length(data)
result{i} = recurse(data{i}, level + 1, addit, makeords);
end;
end;
end
%--------------------------------------------------------------------------
%
%
function result = iter_struct(data, level, addit, makeords)
result = struct();
for i = fields(data)'
fld = char(i);
result.(fld) = recurse(data.(fld), level + 1, addit, makeords);
end;
end
%--------------------------------------------------------------------------
%
%
function result = scan_data(data, level, addit)
result = data;
end
%--------------------------------------------------------------------------
%
%
function result = iscell_all(cellvec)
result = all(cellfun(@iscell, cellvec));
end
%--------------------------------------------------------------------------
% Determines whether all items of cellvec are of the same length.
%
function result = isaligned_all(cellvec)
siz = numel(cellvec{1});
result = all(cellfun(@numel, cellvec) == siz);
end
%--------------------------------------------------------------------------
%
%
function result = ismatrixrow_all(cellvec)
result = all(cellfun(@ismatrixrow, cellvec));
end
%--------------------------------------------------------------------------
% Determines whether cellvec can constitute a matrix row. The vector is a
% matrix row candidate if:
% - all of its items are numeric
% - all of its items are single (neither vectors nor matrices etc.)
% - all of its items are compatible for concatenation to an ordinary
% vector (this is maybe automatically reached by isnumeric_all)
%
function result = ismatrixrow(cellvec)
result = ...
(isnumeric_all(cellvec) || islogical_all(cellvec) || isstruct_all(cellvec)) && ...
issingle_all(cellvec) && ...
iscompatible_all(cellvec);
end
%--------------------------------------------------------------------------
%
%
function result = isnumeric_all(cellvec)
result = all(cellfun(@isnumeric, cellvec));
end
%--------------------------------------------------------------------------
%
%
function result = islogical_all(cellvec)
result = all(cellfun(@islogical, cellvec));
end
%--------------------------------------------------------------------------
%
%
function result = issingle_all(cellvec)
result = all(cellfun(@issingle, cellvec));
end
%--------------------------------------------------------------------------
%
%
function result = iscompatible_all(cellvec)
result = true;
for i = 1:(length(cellvec) - 1)
result = result && iscompatible(cellvec{i}, cellvec{i + 1});
end
end
%--------------------------------------------------------------------------
%
%
function result = iscompatible(obj1, obj2)
result = isequal(class(obj1), class(obj2));
end
%--------------------------------------------------------------------------
%
%
function result = isvector_all(cellvec)
result = all(cellfun(@isvector, cellvec));
end
%--------------------------------------------------------------------------
%
%
function result = isstruct_all(cellvec)
result = all(cellfun(@isstruct, cellvec));
end
%--------------------------------------------------------------------------
%
%
function result = torow(vec)
result = tocolumn(vec).';
end
%--------------------------------------------------------------------------
%
%
function result = tocolumn(vec)
result = vec(:);
end
|
github
|
Roboy/roboy_darkroom-master
|
deflateimports.m
|
.m
|
roboy_darkroom-master/darkroom/scripts/YAMLREADER/deflateimports.m
| 1,847 |
utf_8
|
44bea4918316676d13e94582fc62ed7b
|
%==========================================================================
% Transforms structures:
% - import: A, B
% - import: C
% - import: D, E, F
%
% into:
% - import: A, B, C, D, F, F
%
%==========================================================================
function result = deflateimports(r)
result = recurse(r, 0, []);
end
function result = recurse(data, level, addit)
if iscell(data) && ~ismymatrix(data)
result = iter_cell(data, level, addit);
elseif isstruct(data)
result = iter_struct(data, level, addit);
else
%disp(data);
result = data;
end;
end
function result = iter_cell(data, level, addit)
result = {};
icollect = {};
ii = 1;
for i = 1:length(data)
datai = data{i};
if issingleimport(datai)
if ~iscell(datai.import)
datai.import = {datai.import};
end;
for j = 1:length(datai.import)
icollect{end + 1} = datai.import{j};
end;
else
result{ii} = recurse(datai, level + 1, addit);
ii = ii + 1;
end;
end;
if ~isempty(icollect)
result{end + 1} = struct('import',{icollect});
end;
end
function result = iter_struct(data, level, addit)
result = struct();
for i = fields(data)'
fld = char(i);
result.(fld) = recurse(data.(fld), level + 1, addit);
end;
end
function result = issingleimport_all(r)
result = all(cellfun(@issingleimport, r));
end
function result = issingleimport(r)
result = isstruct(r) && length(fields(r)) == 1 && isfield(r, 'import');
end
function result = addall(list1, list2)
for i = 1:length(list2)
list1{end + 1} = list2{i};
end;
result = list1;
end
|
github
|
Roboy/roboy_darkroom-master
|
dosubstitution.m
|
.m
|
roboy_darkroom-master/darkroom/scripts/YAMLREADER/dosubstitution.m
| 1,084 |
utf_8
|
4c5ec59493e7d2534379763e2d50520c
|
%==========================================================================
%==========================================================================
function result = dosubstitution(r, dictionary)
if ~exist('dictionary','var')
dictionary = {};
end;
result = recurse(r, 0, dictionary);
end
function result = recurse(data, level, dictionary)
if iscell(data) && ~ismymatrix(data)
result = iter_cell(data, level, dictionary);
elseif isstruct(data)
result = iter_struct(data, level, dictionary);
elseif ischar(data) && isfield(dictionary, data)
result = dictionary.(data);
else
result = data;
end;
end
function result = iter_cell(data, level, dictionary)
result = {};
for i = 1:length(data)
result{i} = recurse(data{i}, level + 1, dictionary);
end;
end
function result = iter_struct(data, level, dictionary)
result = data;
for i = fields(data)'
fld = char(i);
result.(fld) = recurse(data.(fld), level + 1, dictionary);
end;
end
|
github
|
Roboy/roboy_darkroom-master
|
merge_struct.m
|
.m
|
roboy_darkroom-master/darkroom/scripts/YAMLREADER/merge_struct.m
| 1,366 |
utf_8
|
afc9cfb74c801763c1a771acc6be9aec
|
%--------------------------------------------------------------------------
% Does merge of two structures. The result is structure which is union of
% fields of p and s. If there are equal field names in p and s, fields in p
% are overwriten with their peers from s.
%
function result = merge_struct(p, s, donotmerge, deep)
if ~( isstruct(p) && isstruct(s) )
error('Only structures can be merged.');
end;
if ~exist('donotmerge','var')
donotmerge = {};
end
if ~exist('deep','var')
deep = 0;
elseif strcmp(deep, 'deep')
deep = 1;
end;
result = p;
for i = fields(s)'
fld = char(i);
if any(cellfun(@(x)isequal(x, fld), donotmerge))
continue;
end;
% if isfield(result, fld)
% % Just give the user a hint that there may be some information
% % lost.
% fprintf(['Overwriting field ',fld,'\n']);
% end;
%disp('Assigning:')
%disp(['fieldname: ',fld]);
%disp(s.(fld));
%disp('----------');
if deep == 1 && isfield(result, fld) && isstruct(result.(fld)) && isstruct(s.(fld))
result.(fld) = merge_struct(result.(fld), s.(fld), donotmerge, deep);
else
result.(fld) = s.(fld);
end;
end;
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.