plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
Roboy/roboy_darkroom-master
datadump.m
.m
roboy_darkroom-master/darkroom/scripts/YAMLREADER/datadump.m
1,072
utf_8
a6d8c5d1e2c330b66626e585e43ff721
function datadump(data) recurse(data, 0, []); end function result = recurse(data, level, addit) indent = repmat(' | ',1,level); if iscell(data) && ~ismymatrix(data) result = iter_cell(data, level, addit); elseif isstruct(data) result = iter_struct(data, level, addit); else fprintf([indent,' +-Some data: ']); disp(data); result = data; end; end function result = iter_cell(data, level, addit) indent = repmat(' | ',1,level); result = {}; fprintf([indent,'cell {\n']); for i = 1:length(data) result{i} = recurse(data{i}, level + 1, addit); end; fprintf([indent,'} cell\n']); end function result = iter_struct(data, level, addit) indent = repmat(' | ',1,level); result = struct(); fprintf([indent,'struct {\n']); for i = fields(data)' fld = char(i); fprintf([indent,' +-field ',fld,':\n']); result.(fld) = recurse(data.(fld), level + 1, addit); end; fprintf([indent,'} struct\n']); end
github
Roboy/roboy_darkroom-master
ReadYaml.m
.m
roboy_darkroom-master/darkroom/scripts/YAMLREADER/ReadYaml.m
2,780
utf_8
434901add453af4ae87764737b8b421c
%========================================================================== % Actually reads YAML file and transforms it using several mechanisms: % % - Transforms mappings and lists into Matlab structs and cell arrays, % for timestamps uses DateTime class, performs all imports (when it % finds a struct field named 'import' it opens file(s) named in the % field content and substitutes the filename by their content. % - Deflates outer imports into inner imports - see deflateimports(...) % for details. % - Merges imported structures with the structure from where the import % was performed. This is actually the same process as inheritance with % the difference that parent is located in a different file. % - Does inheritance - see doinheritance(...) for details. % - Makes matrices from cell vectors - see makematrices(...) for details. % % Parameters: % filename ... name of an input yaml file % nosuchfileaction ... Determines what to do if a file to read is missing % 0 or not present - missing file will only throw a % warning % 1 - missing file throws an % exception and halts the process % makeords ... Determines whether to convert cell array to % ordinary matrix whenever possible (1). % dictionary ... Dictionary of of labels that will be replaced, % struct is expected function result = ReadYaml(filename, nosuchfileaction, makeords, treatasdata, dictionary) if ~exist('nosuchfileaction','var') nosuchfileaction = 0; end; if ~ismember(nosuchfileaction,[0,1]) error('nosuchfileexception parameter must be 0,1 or missing.'); end; if ~exist('makeords','var') makeords = 0; end; if ~ismember(makeords,[0,1]) error('makeords parameter must be 0,1 or missing.'); end; if(~exist('treatasdata','var')) treatasdata = 0; end; if ~ismember(treatasdata,[0,1]) error('treatasdata parameter must be 0,1 or missing.'); end; ry = ReadYamlRaw(filename, 0, nosuchfileaction, treatasdata); ry = deflateimports(ry); if iscell(ry) && ... length(ry) == 1 && ... isstruct(ry{1}) && ... length(fields(ry{1})) == 1 && ... isfield(ry{1},'import') ry = ry{1}; end; ry = mergeimports(ry); ry = doinheritance(ry); ry = makematrices(ry, makeords); if exist('dictionary','var') ry = dosubstitution(ry, dictionary); end; result = ry; clear global nsfe; end
github
Roboy/roboy_darkroom-master
doinheritance.m
.m
roboy_darkroom-master/darkroom/scripts/YAMLREADER/doinheritance.m
3,279
utf_8
8ab1f9998935c4994858f87c9669cac9
%========================================================================== % Searches through some hierarchy and performs inheritance. Whenever finds % struct field named 'parent' it tries to find all points, defined by its % content and uses them as the struct ancestors. Example: % % Given: % % s.a.a = 1 % s.a.b = 2 % s.a.parent: 'b' % % s.b.a = 3 % s.b.c = 4 % % the result of r = doinheritance(s) is: % % r.a = 1 % r.c = 4 % r.b = 2 % r.parent = 'b' % % Multiple inheritance is allowed using cell array of parent point strings % instead of one simple string. % %========================================================================== function result = doinheritance(r, tr) if ~exist('tr','var') tr = r; end; result = recurse(r, 0, {tr}); end function result = recurse(data, level, addit) if iscell(data) && ~ismymatrix(data) result = iter_cell(data, level, addit); elseif isstruct(data) result = iter_struct(data, level, addit); else result = data; end; end function result = iter_cell(data, level, addit) result = {}; for i = 1:length(data) result{i} = recurse(data{i}, level + 1, addit); end; for i = 1:length(data) if isstruct(result{i}) && isfield(result{i}, kwd_parent()) result{i} = inherit(result{i}, result{i}.(kwd_parent()), [], addit{1}, {}); % !!! end; end; end function result = iter_struct(data, level, addit) result = data; for i = fields(data)' fld = char(i); result.(fld) = recurse(data.(fld), level + 1, addit); end; for i = fields(result)' fld = char(i); if isstruct(result.(fld)) && isfield(result.(fld), kwd_parent()) result.(fld) = inherit(result.(fld), result.(fld).(kwd_parent()), [], addit{1}, {}); end; end; end function result = inherit(child, parent_chr, container, oaroot, loc_imported) result = child; if ~iscell(parent_chr) parent_chr = {parent_chr}; end; for i = length(parent_chr):-1:1 if contains(loc_imported, parent_chr{i}) error('MATLAB:MATYAML:inheritedtwice',['Cyclic inheritance: ', parent_chr{i}]); end; try parentstruct = eval(['oaroot.',parent_chr{i}]); catch ex switch ex.identifier case {'MATLAB:nonExistentField', 'MATLAB:badsubscript'} error('MATLAB:MATYAML:NonExistentParent', ['Parent was not found: ',parent_chr{i}]); end; rethrow(ex); end; if isstruct(parentstruct) && isfield(parentstruct, kwd_parent()) next_loc_imported = loc_imported; next_loc_imported{end + 1} = parent_chr{i}; result = merge_struct(inherit(parentstruct, parentstruct.(kwd_parent()), [], oaroot, next_loc_imported), result, {'import'}); end; result = merge_struct(parentstruct, result, {'import'}); end; end function result = contains(list, chr) for i = 1:length(list) if strcmp(list{i}, chr) result = true; return; end; end; result = false; end
github
Roboy/roboy_darkroom-master
WriteYaml.m
.m
roboy_darkroom-master/darkroom/scripts/YAMLREADER/WriteYaml.m
7,008
utf_8
9b2a88b3fbb0257a77af09222129699c
%========================================================================== % Recursively walks through a Matlab hierarchy and converts it to the % hierarchy of java.util.ArrayListS and java.util.MapS. Then calls % Snakeyaml to write it to a file. %========================================================================= function result = WriteYaml(filename, data, flowstyle) if ~exist('flowstyle','var') flowstyle = 0; end; if ~ismember(flowstyle, [0,1]) error('Flowstyle must be 0,1 or empty.'); end; result = []; [pth,~,~] = fileparts(mfilename('fullpath')); try import('org.yaml.snakeyaml.*'); javaObject('Yaml'); catch dp = [pth filesep 'external' filesep 'snakeyaml-1.9.jar']; if not(ismember(dp, javaclasspath ('-dynamic'))) javaaddpath(dp); % javaaddpath clears global variables...!? end import('org.yaml.snakeyaml.*'); end; javastruct = scan(data); dumperopts = DumperOptions(); dumperopts.setLineBreak(... javaMethod('getPlatformLineBreak',... 'org.yaml.snakeyaml.DumperOptions$LineBreak')); if flowstyle classes = dumperopts.getClass.getClasses; flds = classes(3).getDeclaredFields(); fsfld = flds(1); if ~strcmp(char(fsfld.getName), 'FLOW') error(['Accessed another field instead of FLOW. Please correct',... 'class/field indices (this error maybe caused by new snakeyaml version).']); end; dumperopts.setDefaultFlowStyle(fsfld.get([])); end; yaml = Yaml(dumperopts); output = yaml.dump(javastruct); if ~isempty(filename) fid = fopen(filename,'w'); fprintf(fid,'%s',char(output) ); fclose(fid); else result = output; end; end %-------------------------------------------------------------------------- % % function result = scan(r) if ischar(r) result = scan_char(r); elseif iscell(r) result = scan_cell(r); elseif isord(r) result = scan_ord(r); elseif isstruct(r) result = scan_struct(r); elseif isnumeric(r) result = scan_numeric(r); elseif islogical(r) result = scan_logical(r); elseif isa(r,'DateTime') result = scan_datetime(r); else error(['Cannot handle type: ' class(r)]); end end %-------------------------------------------------------------------------- % % function result = scan_numeric(r) if isempty(r) result = java.util.ArrayList(); else result = java.lang.Double(r); end end %-------------------------------------------------------------------------- % % function result = scan_logical(r) if isempty(r) result = java.util.ArrayList(); else result = java.lang.Boolean(r); end end %-------------------------------------------------------------------------- % % function result = scan_char(r) if isempty(r) result = java.util.ArrayList(); else result = java.lang.String(r); end end %-------------------------------------------------------------------------- % % function result = scan_datetime(r) % datestr 30..in ISO8601 format %java.text.SimpleDateFormat('yyyymmdd'T'HH:mm:ssz" ); [Y, M, D, H, MN,S] = datevec(double(r)); result = java.util.GregorianCalendar(Y, M-1, D, H, MN,S); result.setTimeZone(java.util.TimeZone.getTimeZone('UTC')); %tz = java.util.TimeZone.getTimeZone('UTC'); %cal = java.util.GregorianCalendar(tz); %cal.set %result = java.util.Date(datestr(r)); end %-------------------------------------------------------------------------- % % function result = scan_cell(r) if(isrowvector(r)) result = scan_cell_row(r); elseif(iscolumnvector(r)) result = scan_cell_column(r); elseif(ismymatrix(r)) result = scan_cell_matrix(r); elseif(issingle(r)); result = scan_cell_single(r); elseif(isempty(r)) result = java.util.ArrayList(); else error('Unknown cell content.'); end; end %-------------------------------------------------------------------------- % % function result = scan_ord(r) if(isrowvector(r)) result = scan_ord_row(r); elseif(iscolumnvector(r)) result = scan_ord_column(r); elseif(ismymatrix(r)) result = scan_ord_matrix(r); elseif(issingle(r)) result = scan_ord_single(r); elseif(isempty(r)) result = java.util.ArrayList(); else error('Unknown ordinary array content.'); end; end %-------------------------------------------------------------------------- % % function result = scan_cell_row(r) result = java.util.ArrayList(); for ii = 1:size(r,2) result.add(scan(r{ii})); end; end %-------------------------------------------------------------------------- % % function result = scan_cell_column(r) result = java.util.ArrayList(); for ii = 1:size(r,1) tmp = r{ii}; if ~iscell(tmp) tmp = {tmp}; end; result.add(scan(tmp)); end; end %-------------------------------------------------------------------------- % % function result = scan_cell_matrix(r) result = java.util.ArrayList(); for ii = 1:size(r,1) i = r(ii,:); result.add(scan_cell_row(i)); end; end %-------------------------------------------------------------------------- % % function result = scan_cell_single(r) result = java.util.ArrayList(); result.add(scan(r{1})); end %-------------------------------------------------------------------------- % % function result = scan_ord_row(r) result = java.util.ArrayList(); for i = r result.add(scan(i)); end; end %-------------------------------------------------------------------------- % % function result = scan_ord_column(r) result = java.util.ArrayList(); for i = 1:size(r,1) result.add(scan_ord_row(r(i))); end; end %-------------------------------------------------------------------------- % % function result = scan_ord_matrix(r) result = java.util.ArrayList(); for i = r' result.add(scan_ord_row(i')); end; end %-------------------------------------------------------------------------- % % function result = scan_ord_single(r) result = java.util.ArrayList(); for i = r' result.add(r); end; end %-------------------------------------------------------------------------- % % function result = scan_struct(r) result = java.util.LinkedHashMap(); for i = fields(r)' key = i{1}; val = r.(key); result.put(key,scan(val)); end; end
github
Roboy/roboy_darkroom-master
selftest_yamlmatlab.m
.m
roboy_darkroom-master/darkroom/scripts/YAMLREADER/Tests/selftest_yamlmatlab.m
2,954
utf_8
4b0ea27db95878c651e0c46855f39e18
function selftest_yamlmatlab(varargin) % This function tests consistency of YAMLMatlab, by default, the results % are stored in selftest_report.html in current work folder. % Example % >> selftest_yamlmatlab() % >> selftest_yamlmatlab(outFileName) % % %====================================================================== %{ Copyright (c) 2011 This program is a result of a joined cooperation of Energocentrum PLUS, s.r.o. and Czech Technical University (CTU) in Prague. The program is maintained by Energocentrum PLUS, s.r.o. and licensed under the terms of MIT license. Full text of the license is included in the program release. Author(s): Jiri Cigler, Dept. of Control Engineering, CTU Prague Jan Siroky, Energocentrum PLUS s.r.o. Implementation and Revisions: Auth Date Description of change ---- --------- ------------------------------------------------- jc 25-May-11 First implementation %} %====================================================================== fprintf('Running tests.\n'); outFname = 'selftest_report.html'; if numel(varargin) outFname = varargin{1}; end outStr = getHTMLHeader(); outStr = strcat(outStr,'<h1>Selftest report from:',datestr(now),'</h1>'); tests = dir([fileparts(which('selftest_yamlmatlab')) filesep 'test*.m']); for test=tests' [~,func]=fileparts(test.name); fhandle = str2func(func); stat = fhandle(); outStr = strcat(outStr, '<div id="MainTest"> <h2>',func, '</h2>', stat2html(stat,func),'</div>'); end outStr = strcat(outStr,'</BODY></HTML>'); fid = fopen(outFname,'w'); fprintf(fid,outStr); fclose(fid); fprintf('Opening internal browser.\n'); web(outFname,'-new'); end function html = stat2html(stat,name) if not(isstruct(stat)) error('Input argument must be a struct'); end html = ''; fn = fieldnames(stat); if all(ismember({'ok','desc'},fn)) if stat.ok flag = 'Passed'; else flag = '<b style="color:red">Failed</b>,'; end html = strcat(html,'<div id="Test"><h3>',name,': </h3> ', flag, ' <i>', stat.desc,'</i> </div>' ); end html = [html, '<table>']; for test = setdiff(fn',{'ok','desc'}) html = [html, '<tr>']; html = strcat(html, stat2html(stat.(test{1}),test{1})); html = [html, '</tr>']; end html = [html, '</table>']; end function str = getHTMLHeader() str = [ '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">' ... '<HTML> ' ... '<HEAD>'... '<TITLE>::SELFTEST REPORT::</TITLE><STYLE> H2{color:blue} #MainTest{border: 1px blue solid;} h3,h4,h5,h6 {display: inline;} </STYLE>'... '</HEAD><BODY style="font-family:Arial, helvetica">']; end
github
Roboy/roboy_darkroom-master
test_ReadYaml.m
.m
roboy_darkroom-master/darkroom/scripts/YAMLREADER/Tests/test_ReadYaml.m
8,883
utf_8
1647e455763d95a6c10948a007741f02
function stat = test_ReadYaml() % this function tests reading in the yaml file stat.ok = 1; stat.desc = ''; try %stat.test_ReadYaml_SimpleStructure = test_ReadYaml_SimpleStructure(); %stat.test_ReadYaml_DateTime = test_ReadYaml_DateTime(); fprintf('Testing read '); stat.test_RY_Matrices = test_RY_Matrices(); fprintf('.'); stat.test_RY_Whitespaces = test_RY_Whitespaces(); fprintf('.'); stat.test_RY_FloatingPoints = test_RY_FloatingPoints(); fprintf('.'); stat.test_RY_Indentation = test_RY_Indentation(); fprintf('.'); stat.test_RY_SequenceMapping = test_RY_SequenceMapping(); fprintf('.'); stat.test_RY_Simple = test_RY_Simple(); fprintf('.'); stat.test_RY_Time = test_RY_Time(); fprintf('.'); stat.test_RY_TimeVariants = test_RY_TimeVariants(); fprintf('.'); stat.test_RY_Import = test_RY_Import(); fprintf('.'); stat.test_RY_ImportDef = test_RY_ImportDef(); fprintf('.'); stat.test_RY_ImportNonex = test_RY_ImportNonex(); fprintf('.'); stat.test_RY_Inheritance = test_RY_Inheritance(); fprintf('.'); stat.test_RY_InheritanceMultiple = test_RY_InheritanceMultiple(); fprintf('.'); stat.test_RY_InheritanceLoop = test_RY_InheritanceLoop(); fprintf('.'); stat.test_RY_usecase_01 = test_RY_usecase_01(); fprintf('.\n'); catch stat.ok = 0; stat.desc = 'Program crash'; end end function result = PTH_PRIMITIVES() result = sprintf('Data%stest_primitives%s',filesep,filesep); end function result = PTH_IMPORT() result = sprintf('Data%stest_import%s',filesep,filesep); end function result = PTH_INHERITANCE() result = sprintf('Data%stest_inheritance%s',filesep,filesep); end function stat = test_RY_Matrices() stat.ok = 1; stat.desc = ''; try ry = ReadYaml([PTH_PRIMITIVES() 'matrices.yaml']); tv = load([PTH_PRIMITIVES() 'matrices.mat']); if ~isequal(ry, tv.testval) stat.desc = 'Wrong values loaded'; stat.ok = 0; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_RY_FloatingPoints() stat.ok = 1; stat.desc = ''; try ry = ReadYaml([PTH_PRIMITIVES() 'floating_points.yaml']); tv = load([PTH_PRIMITIVES() 'floating_points.mat']); if ~isequalwithequalnans(ry, tv.testval) stat.desc = 'Wrong values loaded'; stat.ok = 0; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_RY_Indentation() stat.ok = 1; stat.desc = ''; try ry = ReadYaml([PTH_PRIMITIVES() 'indentation.yaml']); tv = load([PTH_PRIMITIVES() 'indentation.mat']); if ~isequal(ry, tv.testval) stat.desc = 'Wrong values loaded'; stat.ok = 0; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_RY_SequenceMapping() stat.ok = 1; stat.desc = ''; try ry = ReadYaml([PTH_PRIMITIVES() 'sequence_mapping.yaml']); tv = load([PTH_PRIMITIVES() 'sequence_mapping.mat']); if ~isequal(ry, tv.testval) stat.desc = 'Wrong values loaded'; stat.ok = 0; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_RY_Simple() stat.ok = 1; stat.desc = ''; try ry = ReadYaml([PTH_PRIMITIVES() 'simple.yaml']); tv = load([PTH_PRIMITIVES() 'simple.mat']); if ~isequal(ry, tv.testval) stat.desc = 'Wrong values loaded'; stat.ok = 0; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_RY_Time() stat.ok = 1; stat.desc = ''; try ry = ReadYaml([PTH_PRIMITIVES() 'time.yaml']); tv = load([PTH_PRIMITIVES() 'time.mat']); if ~isequal(ry, tv.testval) stat.desc = 'Wrong values loaded'; stat.ok = 0; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_RY_TimeVariants() stat.ok = 1; stat.desc = ''; try ry = ReadYaml([PTH_PRIMITIVES() 'time_variants.yaml']); tv = load([PTH_PRIMITIVES() 'time_variants.mat']); if ~isequal(ry, tv.testval) stat.desc = 'Wrong values loaded'; stat.ok = 0; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_RY_Import() stat.ok = 1; stat.desc = ''; try ry = ReadYaml([PTH_IMPORT() 'import.yaml']); tv = load([PTH_IMPORT() 'import.mat']); if ~isequal(ry, tv.testval) stat.desc = 'Wrong values loaded'; stat.ok = 0; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_RY_ImportDef() stat.ok = 1; stat.desc = ''; try ry = ReadYaml([PTH_IMPORT() 'import_def.yaml']); tv = load([PTH_IMPORT() 'import_def.mat']); if ~isequal(ry, tv.testval) stat.desc = 'Wrong values loaded'; stat.ok = 0; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_RY_ImportNonex() stat.ok = 0; stat.desc = 'Did not end with any exception.'; try try ry = ReadYaml([PTH_IMPORT() 'import_nonex.yaml'],1); catch ex if strcmp(ex.identifier, 'MATLAB:MATYAML:FileNotFound') stat.desc = ''; stat.ok = 1; else rethrow(ex); end; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_RY_Inheritance() stat.ok = 1; stat.desc = ''; try ry = ReadYaml([PTH_INHERITANCE() 'inheritance.yaml']); tv = load([PTH_INHERITANCE() 'inheritance.mat']); if ~isequal(ry, tv.testval) stat.desc = 'Wrong values loaded'; stat.ok = 0; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_RY_InheritanceMultiple() stat.ok = 1; stat.desc = ''; try ry = ReadYaml([PTH_INHERITANCE() 'inheritance_multiple.yaml']); tv = load([PTH_INHERITANCE() 'inheritance_multiple.mat']); if ~isequal(ry, tv.testval) stat.desc = 'Wrong values loaded'; stat.ok = 0; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_RY_InheritanceLoop() stat.ok = 0; stat.desc = 'Did not end with any exception.'; try try ry = ReadYaml([PTH_INHERITANCE() 'inheritance_loop.yaml']); catch ex if strcmp(ex.identifier, 'MATLAB:MATYAML:inheritedtwice') stat.desc = ''; stat.ok = 1; else rethrow(ex); end; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_RY_Whitespaces() stat.ok = 1; stat.desc = ''; try ry = ReadYaml([PTH_PRIMITIVES() 'whitespaces.yaml']); if ~isfield(ry,'ImageFile') || ~isfield(ry,'ContoursCount') stat.desc = 'Wrong values loaded'; stat.ok = 0; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_RY_usecase_01() stat.ok = 1; stat.desc = ''; try ry = ReadYaml([PTH_PRIMITIVES() 'usecase_struct_01.yaml']); tv = load([PTH_PRIMITIVES() 'usecase_struct_01.mat']); if ~isequalwithequalnans(ry, tv.testval) stat.desc = 'Wrong values loaded'; stat.ok = 0; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end function stat = test_ReadYaml_SimpleStructure() stat.ok = 1; stat.desc = ''; try s = ReadYaml('simple.yaml'); ages = [s.age]; if not(isequal([33 27], ages)) || not(all(ismember({'John Smith', 'Mary Smith'}, {s.name}) )) stat.desc = ' Wrong values loaded'; stat.ok = 0; end catch stat.desc = 'Program crash'; stat.ok = 0; end end function stat = test_ReadYaml_DateTime() stat.ok = 1; stat.desc = ''; try s = ReadYaml('time.yaml'); if ~isa(s.Data.B1_S_SW{1},'DateTime') stat.desc = ' Wrong data type of datetick'; stat.ok = 0; end if isa(s.Data.B1_S_SW{2},'DateTime') stat.desc = ' Wrong data type of datetick'; stat.ok = 0; end catch stat.desc = 'Program crash'; stat.ok = 0; end end
github
Roboy/roboy_darkroom-master
test_WriteYaml.m
.m
roboy_darkroom-master/darkroom/scripts/YAMLREADER/Tests/test_WriteYaml.m
1,745
utf_8
de37cbde8a33d40a7b1f05ef8e7f16cf
function stat = test_WriteYaml() stat.ok = 1; stat.desc = ''; try fprintf('Testing write '); stat.test_WY_Matrices = test_WY_Universal(PTH_PRIMITIVES(), 'matrices'); fprintf('.'); stat.test_WY_FloatingPoints = test_WY_Universal(PTH_PRIMITIVES(), 'floating_points'); fprintf('.'); stat.test_WY_Indentation = test_WY_Universal(PTH_PRIMITIVES(), 'indentation'); fprintf('.'); stat.test_WY_SequenceMapping = test_WY_Universal(PTH_PRIMITIVES(), 'sequence_mapping'); fprintf('.'); stat.test_WY_Simple = test_WY_Universal(PTH_PRIMITIVES(), 'simple'); fprintf('.'); stat.test_WY_Time = test_WY_Universal(PTH_PRIMITIVES(), 'time'); fprintf('.'); stat.test_WY_ComplexStructure = test_WY_Universal(PTH_IMPORT(), 'import'); fprintf('.'); stat.test_WY_usecase_01 = test_WY_Universal(PTH_PRIMITIVES(), 'usecase_struct_01'); fprintf('.\n'); catch stat.ok = 0; stat.desc = 'Program crash'; end end function result = PTH_PRIMITIVES() result = sprintf('Data%stest_primitives%s',filesep,filesep); end function result = PTH_IMPORT() result = sprintf('Data%stest_import%s',filesep,filesep); end function result = PTH_INHERITANCE() result = sprintf('Data%stest_inheritance%s',filesep,filesep); end function stat = test_WY_Universal(path, filename) stat.ok = 1; stat.desc = ''; try data = load([path, filesep, filename, '.mat']); WriteYaml('~temporary.yaml',data.testval); ry = ReadYaml('~temporary.yaml'); if ~isequalwithequalnans(ry, data.testval) stat.desc = 'Wrong values loaded'; stat.ok = 0; end; catch stat.ok = 0; stat.desc = 'Crash'; end; end
github
Roboy/roboy_darkroom-master
calibration.m
.m
roboy_darkroom-master/darkroom/scripts/calibration/calibration.m
7,516
utf_8
9d4ef0c4049d2da1a69de8df06209b24
%% read the relative sensor locations from yaml clear all close all config = ReadYaml('calibration.yaml'); rel_pos = cell2mat(config.sensor_relative_locations(:,2:end)); %% pose estimation lighthouse_pose = eye(4); % this is lighthouse to world pose lighthouse_pose(2,4) = 1 numberOfFrames = 100 plot = false pose_generator = 'random' translation_range = 1 object_poses = cell(numberOfFrames,1); object_pose_estimates = cell(numberOfFrames,1); angles_true = cell(numberOfFrames,1); angles_measured = cell(numberOfFrames,1); calibration_scale = 10 calibration_values = [(rand()-0.5)/calibration_scale (rand()-0.5)/calibration_scale (rand()-0.5)/calibration_scale (rand()-0.5)/calibration_scale (rand()-0.5)/calibration_scale (rand()-0.5)/calibration_scale (rand()-0.5)/calibration_scale (rand()-0.5)/calibration_scale] % calibration_values = [0 0 0.5 0.4 0 0 0 0]; if(plot) g.figure1=figure('Name','simulated calibration values'); %config 3d plot g.axes=axes('Linewidth',2,'DataAspectRatio',[1 1 1], ... 'XGrid','on','YGrid','on','ZGrid','on', ... 'XLim',[-1 1],'YLim',[0 1],'ZLim',[-1 1]); view(0,0) hold on for i=90:10:90 elevation = i/180*pi; for j=0:10:180 azimuth = j/180*pi; ray = [cos(azimuth)*sin(elevation), sin(azimuth)*sin(elevation), -sin(azimuth)*cos(elevation)]; ray = ray/norm(ray); [ele_calib, azi_calib] = applyCalibrationModel(elevation, azimuth, calibration_values); ray_calib = [cos(azi_calib)*sin(ele_calib), sin(azi_calib)*sin(ele_calib), -sin(azi_calib)*cos(ele_calib)]; ray_calib = ray_calib/norm(ray_calib); plot3([0 ray(1)],[0 ray(2)],[0 ray(3)],'g--') plot3([0 ray_calib(1)],[0 ray_calib(2)],[0 ray_calib(3)],'r') end end end for frame=1:numberOfFrames object_pose = eye(4); switch(pose_generator) case 'random' % generate random object pose phi = rand()*2*pi*0.1; theta = rand()*pi*0.1; psi = rand()*2*pi*0.1; x = (rand()-0.5); y = (rand()-0.5); z = (rand()-0.5); object_pose = [cos(psi) * cos(phi) - cos(theta) * sin(phi) * sin(psi), cos(psi) * sin(phi) + cos(theta) * cos(phi) * sin(psi), sin(psi) * sin(theta), x; -sin(psi) * cos(phi) - cos(theta) * sin(phi) * cos(psi), -sin(psi) * sin(phi) + cos(theta) * cos(phi) * cos(psi), cos(psi) * sin(theta), y; sin(theta) * sin(phi), -sin(theta) * cos(phi), cos(theta), z; 0, 0, 0, 1]; case 'rot_x' % generate random object pose by rotation around x axis phi = rand()*2*pi; object_pose = [1 0 0 0; 0 cos(phi) -sin(phi) 0; 0 sin(phi) cos(phi) 0; 0 0 0 1]; case 'rot_y' phi = rand()*2*pi; object_pose = [cos(phi) 0 sin(phi) 0; 0 1 0 0; -sin(phi) 0 cos(phi) 0; 0 0 0 1]; case 'rot_z' phi = rand()*2*pi; object_pose = [cos(phi) -sin(phi) 0 0; sin(phi) cos(phi) 0 0; 0 0 1 0; 0 0 0 1]; case 'x' x = (rand()-0.5)*translation_range; object_pose(1:3,4) = [x;0;0]; case 'y' y = (rand()-0.5)*translation_range; object_pose(1:3,4) = [0;y;0]; case 'z' z = (rand()-0.5)*translation_range; object_pose(1:3,4) = [0;0;z]; case 'xy' x = (rand()-0.5)*translation_range; y = (rand()-0.5)*translation_range; object_pose(1:3,4) = [x;y;0]; case 'yz' y = (rand()-0.5)*translation_range; z = (rand()-0.5)*translation_range; object_pose(1:3,4) = [0;y;z]; case 'xz' x = (rand()-0.5)*translation_range; z = (rand()-0.5)*translation_range; object_pose(1:3,4) = [x;0;z]; case 'xyz' x = (rand()-0.5)*translation_range; y = (rand()-0.5)*translation_range; z = (rand()-0.5)*translation_range; object_pose(1:3,4) = [x;y;z]; end object_poses{frame} = object_pose; true_pose = lighthouse_pose*object_pose; [elevations_measured,azimuths_measured,elevations_true,azimuths_true] = calculateLighthouseAngles(rel_pos,true_pose,calibration_values); ang_true = [elevations_true azimuths_true]; ang_measured = [elevations_measured azimuths_measured]; angles_true{frame} = ang_true; angles_measured{frame} = ang_measured; fun = @(x) poseMultiLighthouse(x, rel_pos, ang_measured, lighthouse_pose) ; x0 = [0,0,0,0,0,0]; options = optimset('Display','off'); x = fsolve(fun,x0,options); object_pose_estimate = createRTfrom(x); object_pose_estimates{frame} = object_pose_estimate; error = norm(object_pose_estimate-object_pose); if(plot) %config 3d plot h.axes=axes('Linewidth',2,'DataAspectRatio',[1 1 1], ... 'XGrid','on','YGrid','on','ZGrid','on', ... 'XLim',[-0.5 0.5],'YLim',[-1 0.2],'ZLim',[-0.5 0.5]); view(0,0) plotCoordinateFrame(inv(lighthouse_pose),0.2,'lighthouse1') plotCoordinateFrame(object_pose,0.2,'object') plotLighthouseSensors(rel_pos,object_pose,'gx',8) plotCoordinateFrame(object_pose_estimate,0.2,'object estimate') plotLighthouseSensors(rel_pos,object_pose_estimate,'ro',8) if(error<0.00001) str = ['pose estimation successsful with error ' num2str(error)]; disp(str) else str = ['pose estimation failed with error ' num2str(error)]; disp(str) end object_pose object_pose_estimate pause; clf end disp(frame) end %% calibration estimation calibration_value_estimate = ones(size(calibration_values))*0.0001; % calibration_value_estimate = [0 0 0.15 0.22 0 0 0 0]; fun = @(x) calibrationEstimator(x, rel_pos, object_poses, lighthouse_pose, angles_measured) ; options = optimoptions('fsolve'); options.FunctionTolerance = 1.0000e-08; options.OptimalityTolerance = 1.0000e-08; calibration_values calibration_value_estimate = fsolve(fun,calibration_value_estimate,options) norm(calibration_value_estimate-calibration_values) angles_estimate = angles_true; angle_error = zeros(size(angles_true{1})); for frame=1:numberOfFrames [elevation_estimate, azimuth_estimate] = applyCalibrationModel(angles_true{frame}(:,1),angles_true{frame}(:,2),calibration_value_estimate); angles_estimate{frame} = [elevation_estimate azimuth_estimate]; angle_error = angle_error + (angles_estimate{frame}-angles_measured{frame}).^2; end disp(angle_error) function F = calibrationEstimator(x, rel_pos, object_poses, lighthouse_pose, angles_measured) F = [0;0]; for frame=1:length(object_poses) [elevations_estimate,azimuths_estimate] = calculateLighthouseAngles(rel_pos,lighthouse_pose*object_poses{frame},x); for i=1:length(elevations_estimate) F(1) = F(1) + (angles_measured{frame}(i,1)-elevations_estimate(i)); F(2) = F(2) + (angles_measured{frame}(i,2)-azimuths_estimate(i)); end end end
github
zhaohuajing/V2V-network-sensitivity-analysis-master
mean_err_MC_uniform.m
.m
V2V-network-sensitivity-analysis-master/mean_err_MC_uniform.m
2,596
utf_8
d1b354e64d6192a89888453831bff41e
%Numerically calculate an unbiased estimator for the expected CMM error by Monte Carlo simulation function [nv,m_err]=mean_err_MC_uniform(sig_n2) %load rand_angle.mat % for N_v=15:15 % N_v % angle=2*pi*rand(1,10); % angle=[4.18473579635023,4.76497989105900,1.87071752652456,3.01069347870357,1.92007770503973,1.26918034736393,2.85125031627114,0.214647648900359]; % for jj=1:60 % for kk=1:60 % jj % angle(11)=2*pi/60*jj; % angle(12)=2*pi/60*kk; % er(jj,kk)=square_error(angle,2,0.09); % end % end for jj=10:50 % jj angle=rand(1,jj)*2*pi; %angle(9)=2*pi/60*jj; clearvars -except jj mm N_v mean_error angle sig_n2 for mm=1:100 %mm Np=1000; %angle=(0:4*N_v-1)*pi/2; %angle=rand(1,N_v)*2*pi; %angle=[2.84054158477136,0.581356079534006,0.270717219775257,2.59491150573350,3.32870592904893,5.14107148506157,4.32780123945169,1.47165259096693,2.18578161834098,0.391802737491801]; %angle=2*pi/N_v*(0:N_v-1); N=length(angle); %N=8; %large_noise=zeros(1,N); % for k=1:N/4 % large_noise(4*k-floor(4*rand(1)))=1; %used to insert a large n-common error to the corresponding vehicles % end % if N_v>10 % large_noise(11:end)=1; % end width=2; unit_vector=[]; points=[]; for k=1:N unit_vector=[unit_vector,[cos(angle(k));sin(angle(k))]]; points=[points,width*[cos(angle(k));sin(angle(k))]]; end common=[0;0]; n_common=[]; %sig_n2=1; for k=1:N n_common=[n_common,mvnrnd([0;0],(sig_n2)*[1,0;0,1])'];%+*large_noise(k)*(rand(2,1)-0.5)]; end cor=(rand(2,Np)-0.5*ones(2,Np))*12; % for k=1:Np % cor(:,k)=mvnrnd([0;0],10*[1,0;0,1]); % end for k=1:Np; pf(:,k)=cor(:,k)+common; %particle location end for k=1:Np weight(1,k)=1; for j=1:N d=pf(:,k)+n_common(:,j)-points(:,j); if dot(d,unit_vector(:,j))>0 d2=dot(d,unit_vector(:,j)); weight(1,k)=weight(1,k)*exp(-0.5/sig_n2*d2^2); % weight(1,k)=0; % break; %here is no break!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! end end end weight=weight/sum(weight); %normilize the weight common_cor(:,mm)=[0;0]; for k=1:Np common_cor(:,mm)=common_cor(:,mm)+weight(k)*cor(:,k); end er(mm)=norm(common_cor(:,mm)+common); er2(mm)=er(mm)^2; if isnan(er2(mm))&mm>1 er2(mm)=mean(er2); end if isnan(er2(mm))&mm==1 er2(mm)=10; end end mean_error(jj-9)=mean(er2); end nv=10:50; m_err=mean_error; end %corr(a.',b.','type','Spearman') %common_cor(:,mm)+common
github
zhaohuajing/V2V-network-sensitivity-analysis-master
MC_analytic.m
.m
V2V-network-sensitivity-analysis-master/MC_analytic.m
1,047
utf_8
075393ab09db204332273466018d9689
%Numerically calculate an unbiased estimator for the expected CMM error at a crossroad by Monte Carlo simulation function [nv,m_err]=MC_analytic(sig) for N_v_each=3:12; % sig2=0.09; % sig=sqrt(sig2); for mm=1:5000 X1=max(randn(1,N_v_each)*sig); X2=max(randn(1,N_v_each)*sig); X3=max(randn(1,N_v_each)*sig); X4=max(randn(1,N_v_each)*sig); er2(mm)=0.25*(X1-X3)^2+0.25*(X2-X4)^2; end mean_error(N_v_each-2)=mean(er2); end nv=4*(3:12); m_err=mean_error; end % clear all % % for N_v=10:50; % sig2=0.09; % sig=sqrt(sig2); % % for mm=1:5000 % N_each=ones(4,1); % for k=1:N_v-4 %to ensure at least have one vehicle on one side % a1=rand(1); % N_each(ceil(a1/0.25))=N_each(ceil(a1/0.25))+1; % end % % % X1=max(randn(1,N_each(1))*sig); % X2=max(randn(1,N_each(2))*sig); % X3=max(randn(1,N_each(3))*sig); % X4=max(randn(1,N_each(4))*sig); % er2(mm)=0.25*(X1-X3)^2+0.25*(X2-X4)^2; % end % mean_error(N_v-9)=mean(er2); % end
github
skojaku/km_config-master
km_config.m
.m
km_config-master/src/matlab/km_config.m
1,100
utf_8
6a78d3e991ee915e825171939fb5ac78
% % MATLAB client for the KM-config algorithm % % % An algorithm for finding multiple core-periphery pairs in networks % % % Core-periphery structure requires something else in the network % Sadamori Kojaku and Naoki Masuda % Preprint arXiv:1710.07076 % % % Please do not distribute without contacting the authors. % % % AUTHOR - Sadamori Kojaku % % % DATE - 11 Oct 2017 function [cids, x, Q, q, p_vals] = km_config(A, varargin) num_of_runs = 10; num_of_rand_nets = 500; alpha = 1; if nargin >= 2; num_of_runs = varargin{1}; end if nargin >= 3; alpha = varargin{2}; end if nargin == 4; num_of_rand_nets = varargin{3}; end if alpha > 1-1e-4; num_of_rand_nets = 0; end [node_ids1, node_ids2, w] = find(triu(A, 1)); N = size(A, 1); [cids, x, Q, q, p_vals] = km_config_mex([node_ids1, node_ids2, w], N, length(node_ids1), num_of_runs, num_of_rand_nets); if alpha > 1-1e-4; return; end % K = max(cids); significant = p_vals <= ( 1 - (1 - alpha) ^(1 / size(K, 2)) ); x(~significant(cids)) = NaN; cids(~significant(cids)) = NaN; p_vals = p_vals(significant); q = q(significant); Q = sum(q); end
github
BMHLab/CElegansConnectomeGeneExpression-master
compareGOannotations.m
.m
CElegansConnectomeGeneExpression-master/Analysis/Genes/compareGOannotations.m
3,845
utf_8
7f9635759e746ee89717d759e5416403
% check if there are genes in worm from the categories used in mouse % get a list of go categories in mouse and compare to the list in worm (for % all posible genes) % ------------------------------------------------------------------------------ % read in all txt files from mouse and combine unique GO categories in a % list function GOtable = compareGOannotations(C,G) %------------------------------------------------------------------------------- % Aurina Arnatkeviciute 13-04-2017 % % This function compares GO annotations found in mouse by Fulcher PNAS 2016 to GO annotations available in C. elegans" % 1. to all possible GO annotations in C elegans (from GO annotation file for the worm - all possible annotations generated using % 2. to GO annotations for genes in C.elegans dataset (948 genes) % 3. to GO annotations for genes in C.elegans dataset that were used for connected vs unconnected analysis (577 genes) % 4. to GO annotations for genes in C.elegans dataset that were used for rich/feeder vs peripheral analysis (390 genes) % INPUT: C and G structures. % OUTPUT: a list of genes for each GO category that was matched geneListinSample (948, 577,390 gene samples used) %------------------------------------------------------------------------------- load('GOAnnotation.mat'); types = {'conBP', 'conBPCC', 'rfBP', 'rfBPCC'}; GOmouse = cell(length(types),1); for t=1:length(types) filePath = sprintf('Data/ermineJdata/mouseGO%s.txt', types{t}); fid = fopen(filePath,'r'); % headings = textscan(fid,'%s %s %s %s %s %s %s %s %s %s %s %s %s',1,'Delimiter','\t','CollectOutput',1); GOmouse{t} = textscan(fid,'%s%s%*[^\n\r]','Delimiter','\t'); %,'EndOfLine','\n'); fclose(fid); %textscan(fid,'%s%s%s%*[^\n\r]','Delimiter',' & ','EndOfLine','\n'); end GOids = [GOmouse{1}{1,1};GOmouse{2}{1,1};GOmouse{3}{1,1};GOmouse{4}{1,1}]; GOnames = [GOmouse{1}{1,2};GOmouse{2}{1,2};GOmouse{3}{1,2};GOmouse{4}{1,2}]; f_ind = @(x)str2num(x(5:end)); GOlistmouse = cellfun(f_ind,GOids); [~, indGOmouseANDworm] = intersect(allGOCategories, GOlistmouse); [~, indS] = intersect(GOlistmouse, allGOCategories); GOmouseANDwormNames = GOnames(indS); % ------------------------------------------------------------------------------ % get genes with matching categories in worm genesWORM = geneAcronymAnnotations(indGOmouseANDworm); % for each GO category, check how many genes we have in our list of 948 % genes. % all genes geneListALL = G.geneAcronyms.Direct; % genes for connected vs unconnected analysis [~,geneScoresCON,~] = GCCbinomial(C,G,'Connected',true,false); geneListCON= geneScoresCON.geneName; %genes for Rich feeder analysis [~,geneScoresRF,~] = GCCbinomial(C,G,'RichFeeder',true,false); geneListRF= geneScoresRF.geneName; geneListinSample = cell(length(genesWORM),4); analysis = {'all', 'connected', 'richfeeder'}; for anal=analysis for j=1:length(genesWORM) GOcategory = genesWORM{j}; if strcmp(anal,'all') geneListinSample{j,1} = intersect(GOcategory, geneListALL); elseif strcmp(anal,'connected') geneListinSample{j,2} = intersect(GOcategory, geneListCON); elseif strcmp(anal,'richfeeder') geneListinSample{j,3} = intersect(GOcategory, geneListRF); end end end geneListinSample(:,4) = GOmouseANDwormNames; GOtable = table(); GOtable.list948genesALL = geneListinSample(:,1); GOtable.list577genesCON = geneListinSample(:,2); GOtable.list390genesRF = geneListinSample(:,3); GOtable.GOcategories = geneListinSample(:,4); filePath = fullfile('Data','ermineJdata','GOannotationsCompared.mat'); save(filePath,'GOtable'); fprintf(1,'Saved to %s\n',filePath); %------------------------------------------------------------------------------- %------------------------------------------------------------------------------- end
github
BMHLab/CElegansConnectomeGeneExpression-master
AdjLabelNodes.m
.m
CElegansConnectomeGeneExpression-master/Analysis/Both/AdjLabelNodes.m
2,442
utf_8
efff47d0cbf1f2161c5dedaa203b43e4
% Ben Fulcher, 2014-10-01 % Labels nodes according to their links to/from the rich club % Modified by Taqi Ali 17-7-15 % ------------------------------------------------------------------------------ function [nodeLabels,labelNames,nodeData] = AdjLabelNodes(labelWhat,Adj,extraParam,networkType) if nargin < 4 networkType = 'bd'; end numNodes = length(Adj); % ------------------------------------------------------------------------------ % Basic functions: % ------------------------------------------------------------------------------ % Total degree: switch networkType case {'bu','wu'} totDegree = @(x) sum(x,2); % just choose one sided connections case {'bd','wd'} totDegree = @(x) (sum(x,1)' + sum(x,2)); % outputs a column vector end % ------------------------------------------------------------------------------ % Do the labeling: % ------------------------------------------------------------------------------ switch labelWhat case {'hub-kth','hub-topN'} if strcmp(labelWhat,'hub-topN') warning('hub-topN doesn''t work the best yet'); end if nargin < 3 extraParam = {'degree',50}; end whatDegree = extraParam{1}; switch whatDegree case 'degree' nodeData = totDegree(Adj); end kth = extraParam{2}; isHub = (nodeData > kth); nodeLabels = isHub + 1; labelNames = {'non-hub',sprintf('hub (k > %u)',kth)}; case 'RichFeed' % Ben Fulcher, 2014-10-01 kth = extraParam{2}; % threshold on degree to count as rich % 1. Get total degree of each node: nodeData = totDegree(Adj); isHub = (nodeData >= kth); nodeLabels = zeros(numNodes,1); linksToHub = (Adj*isHub > 0); linksFromHub = (isHub'*Adj > 0)'; nodeLabels(isHub) = 1; % Hubs nodeLabels(~isHub & linksToHub & ~linksFromHub) = 2; % Feed-in nodeLabels(~isHub & ~linksToHub & linksFromHub) = 3; % Feed-out nodeLabels(~isHub & linksToHub & linksFromHub) = 4; % Feed-in-out nodeLabels(~isHub & ~linksToHub & ~linksFromHub) = 5; % Local labelNames = {sprintf('hub (%u)',sum(sum(nodeLabels==1))),... sprintf('feed-in (%u)',sum(sum(nodeLabels==2))),... sprintf('feed-out (%u)',sum(sum(nodeLabels==3))),... sprintf('feed-in-out (%u)',sum(sum(nodeLabels==4))),... sprintf('local (%u)',sum(sum(nodeLabels==5)))}; end end
github
BMHLab/CElegansConnectomeGeneExpression-master
coexpELCHUncon.m
.m
CElegansConnectomeGeneExpression-master/Analysis/Both/coexpELCHUncon.m
3,600
utf_8
c8c9715b1605bf0a956bbd4428bc0bd0
%% [p, stats] = coexpConnUncon (C, G, connectivityType, anatomyPart, dorankedTest) % ------------------------------------------------------------------------------ % function compares and plots coexpression between pairs of neurons that are connected with electrical, chemical synapses as well as pairs of unconnected neurons. % links in Celegans connectome. % ------------------------------------------------------------------------------ % Inputs % ------------------------------------------------------------------------------ % C (connectivity structure), G (gene structure) should be loaded; % coexpMeasure - choose coexpression measure as defined in G.Corr. default Pearson_noLR % dorankedTest - true (will do ranksum test to compare distributions), false - will do ttest2 to compare distributions. %% ------------------------------------------------------------------------------ % Outputs % ------------------------------------------------------------------------------ % p - p value from the test comparing distributions for connected and unconnected links % stats - stats output from the test comparing distributions for connected and unconnected links. % ------------------------------------------------------------------------------ % Aurina Arnatkeviciute, 2016-12-20 % ------------------------------------------------------------------------------ function [dataCell, S,P] = coexpELCHUncon (C, G, dorankedTest, doOnly) if nargin < 3 dorankedTest = true; fprintf(1,'Using rank test BY DEFAULT\n'); end if nargin < 4 doOnly = false; end Adj = GiveMeAdj(C); maskisLR = GiveMeLRMask(C); if doOnly == true mask = GiveMeMask(C,'hubType','bu',Adj); Chemical = mask.chemicalOnly & ~maskisLR; Electrical = mask.electricalOnly & ~maskisLR; %Unc = mask.none; else mask = GiveMeMask(C,'hubType','bu', Adj); Chemical=GiveMeAdj(C,'zeroBinary', 'ch') & ~maskisLR; Electrical=GiveMeAdj(C,'zeroBinary', 'el') & ~maskisLR; end coexpression = GiveMeCoexpression(G,[],false); coexpression = coexpression.*~maskisLR; Both = mask.chelboth|mask.chelboth' & ~maskisLR; Con = mask.either; Con = Con|Con' & ~maskisLR; Unc = ~Con & ~maskisLR; Con = triu(Con,1); Unc = triu(Unc,1); Uncon = coexpression.*Unc; Chemical = Chemical|Chemical'; Chemical = triu(coexpression.*Chemical,1); Electrical = Electrical|Electrical'; Electrical = triu(coexpression.*Electrical,1); Con = coexpression.*Con; Both = triu(coexpression.*Both,1); % exclude zeros Uncon = nonzeros(Uncon); Chemical = nonzeros(Chemical); Electrical = nonzeros(Electrical); Both = nonzeros(Both); Con = nonzeros(Con); % compare distributions if dorankedTest==false [~,P.pEC,~,S.statsEC] = ttest2(Electrical,Chemical, 'Vartype','unequal'); [~,P.pCU,~,S.statsCU] = ttest2(Con,Uncon, 'Vartype','unequal'); elseif dorankedTest==true [P.pEC,~,S.statsEC] = ranksum(Electrical,Chemical); [P.pCU,~,S.statsCU] = ranksum(Con, Uncon); %[P.pBC,~,S.statsBC] = ranksum(Both, Chemical); %[P.pBE,~,S.statsBE] = ranksum(Both, Electrical); end if doOnly==true dataCell{1,1} = Electrical; dataCell{2,1} = Chemical; dataCell{3,1} = Both; dataCell{4,1} = Uncon; else dataCell{1,1} = Electrical; dataCell{2,1} = Chemical; dataCell{3,1} = Uncon; end % xLabels = {'Connected', 'Unconnected'}; % % JitteredParallelScatter(dataCell) % % set(gca,'Xtick', [1 2], 'XTickLabel',xLabels, 'FontSize', 15); % set(gca,'Ytick', [0 0.2 0.4 0.6 0.8 1], 'YTickLabel',[0 0.2 0.4 0.6 0.8 1], 'FontSize', 15); % set(gca,'box','off'); % ylabel('Coexpression','FontSize', 15); end
github
BMHLab/CElegansConnectomeGeneExpression-master
coexpRecUnidirUncon.m
.m
CElegansConnectomeGeneExpression-master/Analysis/Both/coexpRecUnidirUncon.m
2,470
utf_8
6d35b058bd9a3ac9c65d337b2ff4b552
% ------------------------------------------------------------------------------ % Aurina Arnatkeviciute % ------------------------------------------------------------------------------ % script for checking reciplocally/unidirctionally connected and unconnected link coexpression using % Pearson coexpression % ------------------------------------------------------------------------------ function [p, S, dataCell] = coexpRecUnidirUncon (C, G, conType, anatomyPart, test) % test - ttest or ranksum if nargin < 3 Adj = GiveMeAdj(C,'zeroBinary'); end if nargin < 4 anatomyPart = 'whole'; end if nargin < 5 test = 'ranksum'; fprintf(1,'Comparing distributions with ranksum test BY DEFAULT\n'); end if nargin < 6 coexpression = GiveMeCoexpression(G,[],true); end switch anatomyPart case 'whole' coexpression = GiveMeCoexpression(G,[],true); case 'head' head = C.RegionM(:,9); Adj = Adj(head == 1, head == 1); coexpression = coexpression(head == 1, head == 1); end NaNmatrix = nan(size(coexpression,1),size(coexpression,1)); NaNmatrix = tril(NaNmatrix); Adj = Adj+Adj'; maskRecip = Adj==2; maskRecip = maskRecip+NaNmatrix; maskUnidir = Adj==1; maskUnidir = maskUnidir+NaNmatrix; % Adj(Adj == 0) = NaN; Unc = Adj == 0; Unc = Unc+NaNmatrix; Uncon = coexpression.*Unc; Rec = coexpression.*maskRecip; Unidir = coexpression.*maskUnidir; % if only electrical synapses are chosen, use one half of the matrix % (symetrical) if strcmp(conType, 'el') Uncon = triu(Uncon,1); Con = triu(Con,1); end Rec = nonzeros(Rec); Rec=(Rec(~isnan(Rec))); Unidir = nonzeros(Unidir); Unidir=(Unidir(~isnan(Unidir))); Uncon = nonzeros(Uncon); Uncon=(Uncon(~isnan(Uncon))); %JitteredParallelScatter(dataCell) %ylabel('Average coexpression'); legend('Connecteced', 'Unconnected'); switch test case 'ttest' [~,p.RecUnidir,~,S.RecUnidir] = ttest2(Rec,Unidir, 'Vartype','unequal'); [~,p.UnidirUncon,~,S.UnidirUncon] = ttest2(Unidir,Uncon, 'Vartype','unequal'); [~,p.RecUncon,~,S.RecUncon] = ttest2(Rec,Uncon, 'Vartype','unequal'); dataCell{1,1} = Rec; dataCell{2,1} = Unidir; dataCell{3,1} = Uncon; case 'ranksum' [p.RecUnidir,~,S.RecUnidir] = ranksum(Rec,Unidir); [p.UnidirUncon,~,S.UnidirUncon] = ranksum(Unidir,Uncon); [p.RecUncon,~,S.RecUncon] = ranksum(Rec,Uncon); dataCell{1,1} = Rec; dataCell{2,1} = Unidir; dataCell{3,1} = Uncon; end end
github
BMHLab/CElegansConnectomeGeneExpression-master
coexpConnUncon.m
.m
CElegansConnectomeGeneExpression-master/Analysis/Both/coexpConnUncon.m
3,265
utf_8
8794762ceb527d6f932a3fff97cc603f
%% [p, stats] = coexpConnUncon (C, G, connectivityType, anatomyPart, dorankedTest) % ------------------------------------------------------------------------------ % function compares and plots coexpression for connected and unconnected % links in Celegans connectome. % ------------------------------------------------------------------------------ % Inputs % ------------------------------------------------------------------------------ % C (connectivity structure), G (gene structure) should be loaded; % coexpMeasure - choose coexpression measure as defined in G.Corr. default Pearson_noLR % connectivityType: chemical synapses - 'ch', electrical synapses - 'el', chemical + electrical synapses - 'all' % anatomyPart: perform calculation on the whole nervous system - 'wholeNervousSystem'; perform calculations only on head neurons - 'headOnly' % dorankedTest - true (will do ranksum test to compare distributions), false - will do ttest2 to compare distributions. %% ------------------------------------------------------------------------------ % Outputs % ------------------------------------------------------------------------------ % p - p value from the test comparing distributions for connected and unconnected links % stats - stats output from the test comparing distributions for connected and unconnected links. % ------------------------------------------------------------------------------ % Aurina Arnatkeviciute, 2016-12-20 % ------------------------------------------------------------------------------ function [dataCell, p, stats] = coexpConnUncon (C, G, anatomyPart, dorankedTest) if nargin < 3 anatomyPart = 'wholeNervousSystem'; fprintf(1,'Using whole nervous system BY DEFAULT\n'); end if nargin < 4 dorankedTest = true; fprintf(1,'Using rank test BY DEFAULT\n'); end coexpression = GiveMeCoexpression(G,[],true); Adj = GiveMeAdj(C,'zeroBinary'); numNeurons = size(Adj,1); switch anatomyPart case 'wholeNervousSystem' coexpression = GiveMeCoexpression(G,[],true); %Pearson_noLR; case 'headOnly' coexpression = GiveMeCoexpression(G,[],true); head = C.RegionM(:,9); Adj = Adj(head == 1, head == 1); coexpression = coexpression(head == 1, head == 1); end NaNmatrix = nan(numNeurons,numNeurons); NaNmatrix = tril(NaNmatrix,-1); Adj = triu(logical(Adj+Adj'),1)+0; Adj = Adj+NaNmatrix; % get a mask for unconnected links Unc = Adj == 0; % get a mask for connected links Con = Adj == 1; Uncon = coexpression.*Unc; Con = coexpression.*Con; Uncon(1:size(Uncon,1)+1:end) = nan; Con(1:size(Con,1)+1:end) = nan; % exclude NaNs and zeros Uncon = nonzeros(Uncon); Uncon=(Uncon(~isnan(Uncon))); Con = nonzeros(Con); Con=(Con(~isnan(Con))); % compare distributions if dorankedTest==false [h,p,ci,stats] = ttest2(Con,Uncon, 'Vartype','unequal'); elseif dorankedTest==true [p,h,stats] = ranksum(Con,Uncon); end dataCell{1,1} = Con; dataCell{2,1} = Uncon; % xLabels = {'Connected', 'Unconnected'}; % % JitteredParallelScatter(dataCell) % % set(gca,'Xtick', [1 2], 'XTickLabel',xLabels, 'FontSize', 15); % set(gca,'Ytick', [0 0.2 0.4 0.6 0.8 1], 'YTickLabel',[0 0.2 0.4 0.6 0.8 1], 'FontSize', 15); % set(gca,'box','off'); % ylabel('Coexpression','FontSize', 15); end
github
BMHLab/CElegansConnectomeGeneExpression-master
giveDistributions.m
.m
CElegansConnectomeGeneExpression-master/Analysis/Both/giveDistributions.m
2,510
utf_8
9cb9ba4d9fd2592173dbf66cdfc7942b
% ------------------------------------------------------------------------------ % Aurina Arnatkeviciute, % make violin plots for rich/feeder/peripheral/unconnected for a chosen hub % threshold. Can change to lineage matrix instead of coexpression matrix % ------------------------------------------------------------------------------ function [dataCell, P2, S2] = giveDistributions(C, G, type) if nargin <3 type = 'all'; end Adj = GiveMeAdj(C, 'zeroBinary', type); [~,~,deg] = degrees_dir(Adj); Adj = Adj|Adj'; Adj = triu(Adj,1); NaNmatrix = nan(279,279); NaNmatrix = tril(NaNmatrix,-1); Adj = Adj+NaNmatrix; correlation = GiveMeCoexpression(G,'',true); % C.LineageDistance;GiveMeCoexpression(G,'',true); % if strcmp(type, 'ch') D = GiveMeDefault('synaptic'); elseif strcmp(type, 'all') D = GiveMeDefault('all'); end k=D.kHub; %[~,~,deg] = degrees_dir(Adj); numNeurons = C.numNeurons; hub = deg>k; mask = zeros(numNeurons,numNeurons); mask(hub, hub)=1; mask(~hub, hub)=2; mask(hub, ~hub)=3; mask(~hub,~hub)=4; mask = mask.*Adj; rich = mask==1; rich = nonzeros(rich.*correlation); dataCell{4,1} = rich(~isnan(rich)); feedin = mask==2; feedin = nonzeros(feedin.*correlation); dataCell{2,1} = feedin(~isnan(feedin)); feedout = mask==3; feedout = nonzeros(feedout.*correlation); dataCell{3,1} = feedout(~isnan(feedout)); peripheral = mask==4; peripheral = nonzeros(peripheral.*correlation); dataCell{1,1} = peripheral(~isnan(peripheral)); %JitteredParallelScatterAA(dataCell) [P2.RF,~,S2.RF] = ranksum(rich,feedin); [P2.FinFout,~,S2.FinFout] = ranksum(feedin, feedout); %,'Vartype','unequal','Tail','right'); [P2.FoutP,~,S2.FoutP] = ranksum(feedout,peripheral);%,'Vartype','unequal','Tail','right'); [P2.FinP,~,S2.FinP] = ranksum(feedin,peripheral); %,'Vartype','unequal','Tail','right'); [P2.RP,~,S2.RP] = ranksum(rich,peripheral); %,'Vartype','unequal','Tail','right'); %[~,p6,~,stat6] = ttest2(feedin,nonzeros(peripheral),'Vartype','unequal','Tail','right'); % [~,p1,~,stat1] = ttest2(rich,feedin,'Vartype','unequal','Tail','right'); % [~,p2,~,stat2] = ttest2(feedin, feedout,'Vartype','unequal','Tail','right'); % [~,p3,~,stat3] = ttest2(feedout,nonzeros(peripheral),'Vartype','unequal','Tail','right'); % [~,p4,~,stat4] = ttest2(rich,feedout,'Vartype','unequal','Tail','right'); % [~,p5,~,stat5] = ttest2(rich,nonzeros(peripheral),'Vartype','unequal','Tail','right'); % [~,p6,~,stat6] = ttest2(feedin,nonzeros(peripheral),'Vartype','unequal','Tail','right'); end
github
BMHLab/CElegansConnectomeGeneExpression-master
degreeDependence.m
.m
CElegansConnectomeGeneExpression-master/Analysis/Both/degreeDependence.m
8,980
utf_8
624d87ab72d87977d1887cafedcc8488
%% [data, numberHere] = degreeDependence(C,G, measureTouse, doStrength, conType, chooseCategory, includingCategory, chooseRigth, useKinKout, doNonOverlap, categoryNoOverlap) % ------------------------------------------------------------------------------ % function plots coexpression for links involving a specific category % (motor/sensory/interneurons) as a function of degree (or strength). % ------------------------------------------------------------------------------ % Inputs % ------------------------------------------------------------------------------ % C (connectivity structure), % G (gene data structure); % coexpMeasure - choose coexpression measure as defined in G.Corr. default Pearson_noLR % measureTouse - mean or median to summarise coexpression at each threshold % conType - chemical (ch), all(all), electrical(el) % chooseRight - 0/1; on top of the category chosen, it will filter only % right side neurons of that category; % chooseCategory = [] - set of numbers from C.C.neuronAnatomyNames (can be from 1 to 10) % includingCat = 0/1/2/3 % (0 - exclude connections involving neurons in subcategory; % 1 - include connections involving neurons in subcategory, % 2 - include only connections within subcategory (subcategory neurons % connecting to other subcategory neurons) % 3 - exclude connections involving neurons within subcategory (e.g. include all connections except interneuron-interneuron connections) % ------------------------------------------------------------------------------ % Outputs % ------------------------------------------------------------------------------ % data - degree, coexpression and number fo links for each type of neurons; % ------------------------------------------------------------------------------ % Aurina Arnatkeviciute, 2017-03-20 % ------------------------------------------------------------------------------ function [data, numberHere] = degreeDependence(C,G, coexpMeasure, measureTouse, doStrength, conType, chooseCategory, includingCategory, chooseRigth, useKinKout, doNonOverlap) if nargin < 3 correlation = GiveMeCoexpression(G,[],true); end if nargin < 4 measureTouse = 'mean'; end if nargin < 5 doStrength = false; end if nargin < 6 conType = 'all'; end if nargin < 7 chooseCategory = [10 13 17]; %interneuron, motor, sensory; end if nargin < 8 includingCategory = 1; end if nargin < 9 chooseRigth = false; end if nargin < 10 useKinKout = false; end if nargin < 11 doNonOverlap = false; end Adj = GiveMeAdj(C,'zeroWeighted',conType); correlation = GiveMeCoexpression(G,coexpMeasure,true); if doStrength [kin,kout,deg] = strengths_dir(Adj); else [kin,kout,deg] = degrees_dir(Adj); end if useKinKout == 1 deg = kout; end Adj = logical(Adj); Adj=logical(Adj+Adj')+0; nans = tril(nan(279,279)); % make nan matrix and use that to exclude the lower triangle. Adj = Adj+nans; coexp = correlation.*Adj; coexp(coexp==0) = NaN; data = cell(length(chooseCategory),2); figure('color', 'w'); set(gcf,'Position',[1000,200,1000,500]) n=ones(1,279); for k=1:length(chooseCategory) l = chooseCategory(k); subCat = C.RegionM(:,l)'; % if useOppositeCat == 1 % subCat = ~subCat; % end if doNonOverlap == 1 %subCat(subCat~=3)=0; - interneurons, but not in the head %subCat(subCat~=1)=0; - head neurons, but not interneurons subCat(subCat~=1)=0; subCat = logical(subCat); end if chooseRigth == 1 isRight = extractfield(C.RegionStruct, 'Right'); subCat = subCat+isRight; thr = 2; else thr = 1; end [uniqueDeg, expHere,numSubcat] = coexpressionDeg(subCat, coexp, includingCategory); lineStyle = '-'; markerStyle = 'o'; data{k,1} = uniqueDeg; data{k,2} = expHere; data{k,3} = numSubcat; uniqueDegrees = unique(horzcat(data{:,1})); colorlist = GiveMeColors('InterneuronMotorSensoryMulti'); %('[1 .46 .22; .32 .28 .31; 0 .5 .5];%{'r', 'b', 'c', 'm', 'g', 'k', 'm'};%'color', CM(k,:), sp2=subplot(2,5,6:8); plot(data{k,1}, data{k,2}, lineStyle, 'color',colorlist(k,:),'LineWidth',2.5); hold on; plot(data{k,1}, data{k,2},markerStyle,'MarkerEdgeColor',colorlist(k,:),... 'MarkerFaceColor',brighten(colorlist(k,:),+0.5),'LineWidth',1,'MarkerSize',7); legendInfo{k} = [C.neuronAnatomyNames{l}];box off; end pos=get(sp2,'Position'); set(sp2,'Position',[pos(1)*1, pos(2)*2.5, pos(3)*1, pos(4)*0.8]); % [left bottom width height] %legend(legendInfo); % if includingCategory == 1 % title('Connections involving category'); % elseif includingCategory == 0 % title('Connections not involving category'); % elseif includingCategory == 2 % title('Connections only between category'); % elseif includingCategory == 3 % title('Connections only between non category'); %end if doStrength == 1 xlabel('strength>=s', 'FontSize', 12); else xlabel('Degree, k', 'FontSize', 12); end switch measureTouse case 'mean' ylabel('Gene coexpression', 'FontSize', 12); case 'median' ylabel('Gene coexpression', 'FontSize', 12); end uniqueDegrees = unique(horzcat(data{:,1})); numberHere = zeros(length(uniqueDegrees), length(chooseCategory)); for p=1:length(uniqueDegrees) for u=1:length(chooseCategory) dcat = uniqueDegrees(p); indHere= find(data{u,1}==dcat); if isempty(indHere) numberHere(p,u) = 0; else numberHere(p,u) = data{u,3}(indHere); end end end sp1=subplot(2,5,1:3); H = bar(uniqueDegrees,numberHere, 'stacked', 'EdgeColor', 'w'); xlim([1,max(uniqueDegrees)]); ylim([0,3500]); set(gca,'Xtick', []); pos=get(sp1,'Position'); set(sp1,'Position',[pos(1)*1, pos(2)*1, pos(3)*1, pos(4)*0.5]); % [left bottom width height] %title('Number of links for each category'); if doStrength == 1 ylabel('Number of links', 'FontSize', 12);%xlabel('strength>=s'); else ylabel('Number of links', 'FontSize', 12);%xlabel('degree>=k'); end for v=1:length(chooseCategory) set(H(v),'facecolor',colorlist(v,:)); end box off; hold on; %AX=legend(H, {'a','b','c','d','e','f'}, 'Location','Best','FontSize',8); function [uniqueDeg, expHere, numSubcat] = coexpressionDeg(subCat, coexp,includingCategory) if includingCategory==1 nc1 = sum(subCat); valsc1=linspace(1,nc1,nc1); c1rank = zeros(279,1); c1rank(subCat==1)=valsc1; valsc12 = linspace(nc1+1,279,279-nc1); c1rank(subCat==0)=valsc12; [~, valInd] = sort(c1rank); categoryDeg = deg(valInd); category = coexp(valInd, valInd); category((nc1+1):279, (nc1+1):279)=NaN; % calcCatDeg = categoryDeg(1:nc1); elseif includingCategory==0 nc1 = sum(~subCat); valsc1=linspace(1,nc1,nc1); c1rank = zeros(279,1); c1rank(subCat==0)=valsc1; valsc12 = linspace(nc1+1,279,279-nc1); c1rank(subCat==1)=valsc12; [~, valInd] = sort(c1rank); categoryDeg = deg(valInd); category = coexp(valInd, valInd); category((nc1+1):279, (nc1+1):279)=NaN; % calcCatDeg = categoryDeg(1:nc1); elseif includingCategory==2 category = coexp(subCat == thr,subCat == thr); categoryDeg = deg(subCat==thr); elseif includingCategory==3 subCat=~subCat; category = coexp(subCat == thr,subCat == thr); categoryDeg = deg(subCat==thr); end uniqueDeg = unique(categoryDeg); expHere = zeros(length(uniqueDeg),1); numSubcat = zeros(length(uniqueDeg),1); for j=1:length(uniqueDeg) degHere = uniqueDeg(j); indDeg = find(categoryDeg>degHere); %calcCatDeg = categoryDeg( %numSubcat(j) = length(indDeg); numLinks = category(indDeg,indDeg); numLinks(isnan(numLinks))=0; numSubcat(j) = sum(sum(logical(numLinks))); switch measureTouse case 'median' expHere(j) = nanmedian(nanmedian(category(indDeg,indDeg))); case 'mean' expHere(j) = nanmean(nanmean(category(indDeg,indDeg))); end end numSubcat(isnan(expHere))=NaN; uniqueDeg(isnan(expHere))=NaN; end % plot non-hub/ hub interneurons [p, stats, dataCell] = plotInterneuronsDegree(C,G); hold on; sp3 = subplot(2,5,4:5); extraParams = struct('customSpot',''); JitteredParallelScatter(dataCell,0,1,false, extraParams); xLabels = {'Hub interneurons', 'Non-hub interneurons'}; set(gca,'Xtick', [1 2], 'XTickLabel',xLabels, 'FontSize', 12); set(gca,'Ytick', [0 0.2 0.4 0.6 0.8 1], 'YTickLabel',[0 0.2 0.4 0.6 0.8 1], 'FontSize', 12); set(gca,'box','off'); ylabel('Coexpression','FontSize', 12); pos=get(sp3,'Position'); set(sp3,'Position',[pos(1)*1.05, pos(2)*0.5, pos(3)*1, pos(4)*1.2]); % [left bottom width height] end
github
BMHLab/CElegansConnectomeGeneExpression-master
RichClubPhiNorm_A.m
.m
CElegansConnectomeGeneExpression-master/Analysis/Connectome/RichClubPhiNorm_A.m
5,364
utf_8
86916b0bffc1f3fd416b8b7be62d737e
function [PhiNorm,PhiTrue,PhiRand, rAdj] = RichClubPhiNorm_A(Adj,kmax,numIter,numRepeats,WhatTypeNetwork,whatNullModel, wei_freq) % RichClubPhiNorm % % INPUTS: % Adjacency matrix, Adj % Compares to m randomly permuted version of the same matrix % Does QE iterations, where E is the number of edges % In the case of weighted networks, THIS WILL NOT preserve strength of each node % (i.e., weight of its links) but will preserve the degree of each node. % % Rewire the network NumLinks*Q times, and repeat this m times. % % ------------------------------------------------------------------------------ % Ben Fulcher, 2014-06-16, updated for use in analyzing the mouse connectome. % Ben Fulcher, 2014-04-28 % ------------------------------------------------------------------------------ % ------------------------------------------------------------------------------ % Check inputs, preliminaries % ------------------------------------------------------------------------------ if nargin < 2 || isempty(kmax) kmax = max(sum(Adj)); fprintf(1,'Setting maximum k to k_max = %u\n',kmax); end if nargin < 6 || isempty(whatNullModel) switch WhatTypeNetwork case 'bu' whatNullModel = 'randmio_und'; case 'bd' whatNullModel = 'randmio_dir'; case 'wu' whatNullModel = 'Randomise_weights_keeping_topology'; case 'wus' whatNullModel = 'Randomise_weights_keeping_topology'; otherwise error('Appropriate default null model unavailable.'); end end NumNodes = length(Adj); % ------------------------------------------------------------------------------ % Compute phi for the adjacency matrix % ------------------------------------------------------------------------------ switch WhatTypeNetwork case 'wd' % Weighted, directed network: RichClubFun = @(x) rich_club_wd(x,kmax); case 'wu' % Weighted, undirected network: RichClubFun = @(x) rich_club_wu(x,kmax); case 'wus' % Weighted, undirected network: RichClubFun = @(x) rich_club_wu_strength(x,kmax); case 'bu2h' % Weighted, undirected network: RichClubFun = @(x) rich_club_bu(x,kmax); case 'bu' % binary, undirected network: RichClubFun = @(x) rich_club_bu(x,kmax); case 'bd' % binary, directed network: % "degree is taken to be the sum of incoming and outgoing connections" RichClubFun = @(x) rich_club_bd(x,kmax); otherwise error('Unknown network type ''%s''',WhatTypeNetwork); end % ------------------------------------------------------------------------------ % Compute phi for the real network: % ------------------------------------------------------------------------------ PhiTrue = RichClubFun(Adj); % ------------------------------------------------------------------------------ % Compute for randomized versions of the network % ------------------------------------------------------------------------------ PhiRand = zeros(numRepeats,kmax); fprintf(1,['Computing %u link-permuted matrices, ' ... 'using %u iterations for each randomization\n'],numRepeats,numIter); switch whatNullModel case 'randmio_und' f_rand_null = @randmio_und; case 'randmio_dir' f_rand_null = @randmio_dir; case 'shuffleWeights' % topology fixed, strength preserved, weight distribution not preserved f_rand_null = @f_shuffleWeights; case 'Randomise_weights_keeping_topology' % topology kept, weights distributed randomly f_rand_null = @Randomise_weights_keeping_topology; case 'null_model_und_sign' f_rand_null = @null_model_und_sign; end timer = tic; parfor i = 1:numRepeats fprintf(1,'[%u/%u] Rewiring each link %u times...',i,numRepeats,numIter); if strcmp(whatNullModel, 'null_model_und_sign') [Adj_rand, numRewirings] = f_rand_null(Adj, numIter, wei_freq); % Random graph with preserved in/out degree distribution else [Adj_rand, numRewirings] = f_rand_null(Adj, numIter); % Random graph with preserved in/out degree distribution end fprintf(1,' %u rewirings performed.\n',numRewirings); PhiRand(i,:) = RichClubFun(Adj_rand); % if i==1 || mod(i,numRepeats/10)==0 % fprintf(1,'Approx. %s remaining...\n',BF_thetime(toc(timer)/i*(numRepeats-i))); % end end % ------------------------------------------------------------------------------ % Calculate normalized phi values for the resulting nomalization, PhiNorm % ------------------------------------------------------------------------------ % Definition in vandenHeuvel:2011he is the following: meanNotNaN = @(x)mean(x(~isnan(x) & ~isinf(x))); PhiNorm = PhiTrue./arrayfun(@(x)meanNotNaN(PhiRand(:,x)),1:kmax); % ------------------------------------------------------------------------------ % Extra functions: function [rAdj,numRewirings] = f_shuffleWeights(Adj,numIter); % Ben Fulcher, 2014-12-01 % Shuffles weights, keeping the topology fixed while preserving % strenght of each node % Get all elements of link data where a connection exists: % allActualLinks = Adj(Adj~=0); % Shuffle them [suffled]=random_weight_distribution(Adj); allActualLinksDataShuffled = suffled; % Put them back in the matrix rAdj = zeros(size(Adj)); rAdj(Adj~=0) = allActualLinksDataShuffled; % Not relevant to this method: numRewirings = 0; end % ------------------------------------------------------------------------------ end
github
BMHLab/CElegansConnectomeGeneExpression-master
propLinkDegree.m
.m
CElegansConnectomeGeneExpression-master/Analysis/Connectome/propLinkDegree.m
2,564
utf_8
863e43052e46e7a4057cdd7fa6f41489
%% propTypesDegree(C) % ------------------------------------------------------------------------------ % Function plots the proportion of interneurons/motor/sensory/polymodal neurons as a function of degree. %------------------------------------------------------------------------------- % Inputs % ------------------------------------------------------------------------------ % C (connectivity structure) % ------------------------------------------------------------------------------ % Aurina Arnatkeviciute 2017-03-20 % ------------------------------------------------------------------------------ function [link, deg] = propLinkDegree(C, whatAdj,whatType) if nargin<2 whatAdj = 'zeroBinary'; end if nargin <3 whatType = 'all'; end %types = [10 13 17 21]; Adj = GiveMeAdj(C,whatAdj,whatType); % chemical network %Adj = GiveMeAdj(C,'zeroBinary'); % Compute degree: [~,~,deg] = degrees_dir(Adj); kmax = max(deg); kmin = min(deg); degsort = (kmin: kmax); % calculate proportion %prop = zeros(length(types), length(degsort)); link = zeros(4,length(degsort)); for i = 1:length(degsort) ind = (deg > degsort(i)); link(1,i) = sum(sum(Adj(ind, ind)))/sum(Adj(:)); link(2,i) = sum(sum(Adj(~ind, ind)))/sum(Adj(:)); link(3,i) = sum(sum(Adj(ind, ~ind)))/sum(Adj(:)); link(4,i) = sum(sum(Adj(~ind, ~ind)))/sum(Adj(:)); % for j=1:size(link,2) % prop(j,i) = sum(link(:,j))/sum(link(:)); % end end end % plot proportion % f = figure('color','w'); % subplot(2,1,1) % kRange = degsort; % N = arrayfun(@(x)sum(deg==x),kRange); % bar(kRange,N,'EdgeColor','k','FaceColor','k') % xlim([min(deg),max(deg)]); % ylabel('Frequency') % subplot(2,1,2) % % Give colors: % colors = BF_getcmap('spectral',4,1); % kRange = min(deg):max(deg); % for i = 1:length(kRange) % %ind = (deg >= degsort(i)); % %categoriesHere = C.RegionM(ind==1, types); % proportions = link'; %countcats(categoriesHere)/length(categoriesHere); % for j = 1:size(proportions,2) % if proportions(i,j) > 0 % rectangle('Position',[kRange(i),sum(proportions(i,1:j-1)),1,proportions(i,j)], ... % 'FaceColor',colors{j},'EdgeColor',colors{j}) % end % end % end %Labels = C.neuronAnatomyNames(types); % where = zeros(length(types),1); % for w=1:length(types) % if w==1 % where(w) = proportions(1,w)/2; % else % where(w) = sum(proportions(1,1:w-1))+proportions(1,w)/2; % end % end % prop1 = proportions(1,:); % for j = 1:length(prop1) % text(kRange(1),where(j),Labels{j}) % end
github
BMHLab/CElegansConnectomeGeneExpression-master
RichClubPhiNorm.m
.m
CElegansConnectomeGeneExpression-master/Analysis/Connectome/RichClubPhiNorm.m
9,767
utf_8
a22de308555e4efd49481ebf187f09f1
function [PhiNorm,PhiTrue,PhiRand] = RichClubPhiNorm(Adj,kmax,numIter,numRepeats,WhatTypeNetwork,whatNullModel) % RichClubPhiNorm % % INPUTS: % Adjacency matrix, Adj % Compares to m randomly permuted version of the same matrix % Does QE iterations, where E is the number of edges % In the case of weighted networks, THIS WILL NOT preserve strength of each node % (i.e., weight of its links) but will preserve the degree of each node. % % Rewire the network NumLinks*Q times, and repeat this m times. % % ------------------------------------------------------------------------------ % Ben Fulcher, 2014-06-16, updated for use in analyzing the mouse connectome. % Ben Fulcher, 2014-04-28 % ------------------------------------------------------------------------------ % ------------------------------------------------------------------------------ % Check inputs, preliminaries % ------------------------------------------------------------------------------ if nargin < 2 || isempty(kmax) kmax = max(sum(Adj)); fprintf(1,'Setting maximum k to k_max = %u\n',kmax); end if nargin < 6 || isempty(whatNullModel) switch WhatTypeNetwork case 'bu' whatNullModel = 'randmio_und'; case 'bd' whatNullModel = 'randmio_dir'; otherwise error('Appropriate default null model unavailable.'); end end NumNodes = length(Adj); % ------------------------------------------------------------------------------ % Compute phi for the adjacency matrix % ------------------------------------------------------------------------------ switch WhatTypeNetwork case 'wd' % Weighted, directed network: RichClubFun = @(x) rich_club_wd(x,kmax); case 'wu' % Weighted, undirected network: RichClubFun = @(x) rich_club_wu(x,kmax); case 'bu' % binary, undirected network: RichClubFun = @(x) rich_club_bu(x,kmax); case 'bd' % binary, directed network: % "degree is taken to be the sum of incoming and outgoing connections" RichClubFun = @(x) rich_club_bd(x,kmax); otherwise error('Unknown network type ''%s''',WhatTypeNetwork); end % ------------------------------------------------------------------------------ % Compute phi for the real network: % ------------------------------------------------------------------------------ PhiTrue = RichClubFun(Adj); % ------------------------------------------------------------------------------ % Compute for randomized versions of the network % ------------------------------------------------------------------------------ PhiRand = zeros(numRepeats,kmax); fprintf(1,['Computing %u link-permuted matrices, ' ... 'using %u iterations for each randomization\n'],numRepeats,numIter); switch whatNullModel case 'randmio_und' f_rand_null = @randmio_und; case 'randmio_dir' f_rand_null = @randmio_dir; case 'shuffleWeights' f_rand_null = @f_shuffleWeights; end timer = tic; parfor i = 1:numRepeats fprintf(1,'[%u/%u] Rewiring each link %u times...',i,numRepeats,numIter); [Adj_rand,numRewirings] = f_rand_null(Adj,numIter); % Random graph with preserved in/out degree distribution fprintf(1,' %u rewirings performed.\n',numRewirings); PhiRand(i,:) = RichClubFun(Adj_rand); if i==1 || mod(i,numRepeats/10)==0 fprintf(1,'Approx. %s remaining...\n',BF_thetime(toc(timer)/i*(numRepeats-i))); end end % ------------------------------------------------------------------------------ % Calculate normalized phi values for the resulting nomalization, PhiNorm % ------------------------------------------------------------------------------ % Definition in vandenHeuvel:2011he is the following: meanNotNaN = @(x)mean(x(~isnan(x) & ~isinf(x))); PhiNorm = PhiTrue./arrayfun(@(x)meanNotNaN(PhiRand(:,x)),1:kmax); % ------------------------------------------------------------------------------ % Extra functions: function [rAdj,numRewirings] = f_shuffleWeights(Adj,numIter); % Ben Fulcher, 2014-12-01 % Shuffles weights, keeping the topology fixed % 1. Find % Get all elements of link data where a connection exists: allActualLinks = Adj(Adj~=0); % Shuffle them: allActualLinksDataShuffled = allActualLinks(randperm(length(allActualLinks))); % Put them back in the matrix rAdj = logical(Adj)+0; rAdj(Adj~=0) = allActualLinksDataShuffled; % Not relevant to this method: numRewirings = 0; end % ------------------------------------------------------------------------------ end % % ------------------------------------------------------------------------------ % % Get normalized phi by comparing to randomized versions % % (that preserve the degree distribution) % % ------------------------------------------------------------------------------ % % Rewire numIter times % % Do this m times % % % Much easier in the format NodeLinks = [Node_i,Node_j,weight]; % % AllLinks = Adj(logical(triu(ones(size(Adj)),+1))); % % Set below-diagonal terms to zero, assuming a symmetric input matrix % AllLinks = Adj; % AllLinks(logical(tril(ones(size(Adj)),-1))) = 0; % [Thei,Thej] = find(AllLinks>0); % NumLinks = length(Thei); % numIter = NumLinks*Q; % % NodeLinks = zeros(length(Thei),3); % for i = 1:NumLinks % NodeLinks(i,1) = Thei(i); % NodeLinks(i,2) = Thej(i); % NodeLinks(i,3) = Adj(Thei(i),Thej(i)); % end % % k_orig = (sum(Adj>0)); % Degree of each node % % fprintf(1,['Computing %u link-permuted matrices, ' ... % 'using %u iterations for each randomization\n'],m,numIter); % % (as per Julian J. McAuley et al. Appl. Phys. Lett. 91, 084103, 2007) % % (the swapping method in Milo et al., arXiv:2004) % PhiRand = zeros(m,kmax); % for i = 1:m % m random matrices % fprintf(1,'\n---------ITERATION%u---------\n',i); % NodeLinks_ran = NodeLinks; % start the same, then progressively randomize % % DidSwap = zeros(numIter,1); % IterTimer = tic; % time the iterations % for j = 1:numIter % numIter link permutations % % if (mod(j,floor(numIter/10))==0) % fprintf(1,'Approx %s remaining! We have made %u swaps so far...\n', ... % BF_thetime(toc(IterTimer)/j*(numIter-j)),sum(DidSwap(1:j-1))) % end % % % Pick two links at random: r1 and r2 % r1 = randi(NumLinks); % r2 = randi(NumLinks); % % % Make sure the second link is not same as the first link: % % notr1 = setxor(1:NumLinks,r1); % % r2 = notr1(r2); % % % Swapping will either have no effect, or produce a self-link % if length(unique([NodeLinks_ran(r1,1:2),NodeLinks_ran(r2,1:2)])) < 4 % % fprintf(1,'(%u,%u) and (%u,%u) self-link\n', ... % % NodeLinks_ran(r1,1),NodeLinks_ran(r1,2), ... % % NodeLinks_ran(r2,1),NodeLinks_ran(r2,2)); % % fprintf(1,'S'); % continue % end % % % Pick start (or end)-point to swap % n1 = randi(2); % swap node (1) or (2) in first link % n2 = randi(2); % with node (1) or (2) in the second link % % % Swap node n1 of link r1 with node n2 of link r2 % old1 = NodeLinks_ran(r1,1:2); % old2 = NodeLinks_ran(r2,1:2); % new1 = old1; new1(n1) = old2(n2); new1 = sort(new1); % new2 = old2; new2(n2) = old1(n1); new2 = sort(new2); % % % Check that these new links don't already exist (else you create a double-link): % if any(sum(bsxfun(@minus,NodeLinks_ran(:,1:2),new1)==0,2)==2) % % fprintf(1,'Can''t swap (%u,%u) -> (%u,%u) because it already exists...\n', ... % % old1(1),old1(2),new1(1),new1(2)); % continue % elseif any(sum(bsxfun(@minus,NodeLinks_ran(:,1:2),new2)==0,2)==2) % % fprintf(1,'Can''t swap (%u,%u) -> (%u,%u) because it already exists...\n', ... % % old2(1),old2(2),new2(1),new2(2)); % % fprintf(1,'E'); % continue % end % % % So we haven't continued yet and can swap! % % fprintf(1,'Swapped (%u,%u) -> (%u,%u) and (%u,%u) -> (%u,%u)\n', ... % % old1(1),old1(2),new1(1),new1(2), ... % % old2(1),old2(2),new2(1),new2(2)); % NodeLinks_ran(r1,1:2) = new1; % NodeLinks_ran(r2,1:2) = new2; % DidSwap(j) = 1; % % % Adj_rand = zeros(NumNodes); % % for k = 1:NumLinks % % Adj_rand(NodeLinks_ran(k,1),NodeLinks_ran(k,2)) = NodeLinks_ran(k,3); % % end % % Adj_rand = Adj_rand + Adj_rand'; % % k_rand = (sum(Adj_rand>0)); % % if sum(k_rand-k_orig)~=0 % % fprintf(1,'WOWWOWWOW\n'); % % keyboard % % end % % end % % fprintf(1,'Made a total of %u (/%u) link permutations...\n',sum(DidSwap),numIter); % % % Convert back to an adjacency matrix to feed into the rich club calculation: % Adj_rand = zeros(NumNodes); % for j = 1:NumLinks % Adj_rand(NodeLinks_ran(j,1),NodeLinks_ran(j,2)) = NodeLinks_ran(j,3); % end % Adj_rand = Adj_rand + Adj_rand'; % k_rand = (sum(Adj_rand>0)); % if sum(k_rand-k_orig)~=0 % fprintf(1,'Sorry to break this to you, but degree distributions actually don''t match... :-/\n'); % keyboard % else % fprintf(1,'Degree distributions match!\n'); % end % % % Visualize the randomized matrix % % if i==1 % % figure('color','w'); box('on'); % % subplot(2,1,1); pcolor(Adj); shading('flat'); axis square % % subplot(2,1,2); pcolor(Adj_rand); shading('flat'); axis square % % end % % PhiRand(i,:) = rich_club_wu(Adj_rand,kmax); % end
github
BMHLab/CElegansConnectomeGeneExpression-master
NeuronRegionFinder.m
.m
CElegansConnectomeGeneExpression-master/DataProcessing/NeuronRegionFinder.m
4,349
utf_8
c7115a0bce8edb2694ed4d71204db3cf
function C = NeuronRegionFinder(C,beVocal) %------------------------------------------------------------------------------- % 1. Reads in the hierarchy file (from RetrieveHierarchy.py) % 2. Creates a translation table, and assigns all neurons to specific regions % 3. Outputs results to matlab file: CElegans_Connectivity_Data.mat %------------------------------------------------------------------------------- if nargin < 1 load('CElegansConnectivityData.mat','C'); end if nargin < 2 beVocal = true; end % Extract neuron ID neuronID = cell2mat({C.RegionStruct.id}); numNeurons = length(neuronID); %------------------------------------------------------------------------------- %% Create translation table for parents -> children %------------------------------------------------------------------------------- % Read in and parse data from hierarchy.csv [parentName,childName,parentID,childID] = ReadInHierarchy(); % Find anatomy terms annotated directly under the Neuron anatomy term index = (parentID==3679); % WBbt:0003679 neuronAnatomyIDs = childID(index); neuronAnatomyNames = childName(index); numNeuronAnatomyIDs = length(neuronAnatomyIDs); fprintf(1,'%u direct neuron anatomy terms in hierarchy\n',numNeuronAnatomyIDs); % Find subsets of anatomy terms to assign labels to each neuron RegionM = zeros(numNeurons,numNeuronAnatomyIDs); % Cycle through neurons: for m = 1:numNeurons if beVocal fprintf(1,'Neuron %u/%u\n',m,numNeurons); end % Keep going up the hierarchy, matching, until at the top RegionM(m,:) = PropagateUp(neuronID(m)); end % add information about neuron type according to wormatlas for neurons that % are not assigned to be neither motor/interneuron/sensory neuron. see: http://www.wormatlas.org/neurons/Individual%20Neurons/PLNframeset.html % ALA, ALNL, ALNR, AUAL, AUAR - interneurons; % ALA, CEPDL, CEPDR, CEPVL, CEPVR, PLNL PLNR - sensory neurons RegionM([23 26 27 52 53],10) = 1; RegionM([23 83 84 85 86 148 149],17) = 1; isInter = RegionM(:,strcmp(neuronAnatomyNames,'interneuron')); isSensory = RegionM(:,strcmp(neuronAnatomyNames,'sensory neuron')); isMotor = RegionM(:,strcmp(neuronAnatomyNames,'motor neuron')); multi = isInter+isSensory+isMotor; % check if a neuron belongs to more then one category RegionM(:,21) = 0; % create empty variable RegionM(multi>1,21) = 1; % populate with ones if neuron is assigned to more than 1 category. neuronAnatomyNames{21} = 'multimodal'; % edit information about head-tail assignment according to wormatlas. % ALA (23), AVFL(62), AVFR(63), AVG(64), RIFL(173), RIFR(174), RIGL(175), % RIGR 176), SABD(206), SABVL(207), SABVR(208), SMDVL(225) - in wormatlas % locations of these neurons are labeled as head. % Hierarchy file assignes neither head, nor tail. % manualy assign those neurons to head. RegionM([23 62 63 64 173 174 175 176 206 207 208 225],9)=1; C.RegionM = RegionM; C.neuronAnatomyNames = neuronAnatomyNames; C.neuronAnatomyIDs = neuronAnatomyIDs; %------------------------------------------------------------------------------- % Save data to file: CElegans_Connectivity_Data.mat % fileName = 'CElegansConnectivityData.mat'; % save(fileName,'C','-append'); % fprintf(1,'Saved neuronAnatomy term annotation results to %s\n',fileName); %------------------------------------------------------------------------------- function annotations = PropagateUp(idStart) % start at an ID and propagate up the hierarchy, annotating matches on the way idHere = idStart; annotations = zeros(1,numNeuronAnatomyIDs); % find matches to current ID if any(idHere==neuronAnatomyIDs) annotations(idHere==neuronAnatomyIDs) = 1; if beVocal fprintf(1,'Annotated for %u\n',idStart); end else % Go up hierarchy to parents idUp = parentID(childID==idHere); numParents = length(idUp); if numParents == 0 if beVocal fprintf(1,'Got to top for %u\n',idStart); end else if beVocal fprintf(1,'Going up for %u parents\n',numParents); end for j = 1:numParents % go up hierarchy for each parent: annotate_j = PropagateUp(idUp(j)); annotations(annotate_j==1) = 1; end end end end end
github
BMHLab/CElegansConnectomeGeneExpression-master
GiveMeQuantileMeans.m
.m
CElegansConnectomeGeneExpression-master/PeripheralFunctions/GiveMeQuantileMeans.m
950
utf_8
5226c27e131644e8b97c99433b8a53c4
% Outputs the xRange used for the quantiles % Outputs the means of the yData provided in each quantiled-bin % Outputs the indices of the data used in each quantile (as a cell) % ------------------------------------------------------------------------------ % Ben Fulcher, 2014-11-05 function [xRange,yMeans,affectedInd] = GiveMeQuantileMeans(xData,yData,numThresholds) % Set up quantiles for computing distances: xQuantiles = linspace(0,1,numThresholds + 1); % xRange = zeros(numThresholds+1,1); for i = 1:numThresholds+1 xRange(i) = quantile(xData,xQuantiles(i)); end xRange(1) = xRange(1) - eps; % affectedInd contains the indices for links in the given distance range (by quantile) affectedInd = cell(numThresholds,1); yMeans = zeros(numThresholds,1); for i = 1:numThresholds affectedInd{i} = (xData > xRange(i) & xData <= xRange(i+1)); if ~isempty(yData) yMeans(i) = nanmean(yData(affectedInd{i})); end end end
github
BMHLab/CElegansConnectomeGeneExpression-master
BF_thetime.m
.m
CElegansConnectomeGeneExpression-master/PeripheralFunctions/BF_thetime.m
2,985
utf_8
f3ce0b3b40c5a21901c4ce987dc0e7cc
% ------------------------------------------------------------------------------ % BF_thetime % ------------------------------------------------------------------------------ % % Converts the input, tsec, a duration of time in seconds, into an appropriate % string for output (i.e., converts to minutes or hours or days as appropriate) % output is something like '25.5 minutes' or '3.2 days' -- always displays to % one decimal place. % %---INPUTS: % tsec, the duration in seconds % FormatLong, (i) 0: display short units (like 's' instead of 'seconds') % [default] % (ii) 1: display long units (like 'seconds' instead of 's') % %---OUTPUT: % TimeString, an interpretable text version of the input time. % % This code is useful for displaying user feedback on tic/toc statements. % %---HISTORY: % Ben Fulcher, 2009 % % ------------------------------------------------------------------------------ % Copyright (C) 2013, Ben D. Fulcher <[email protected]>, % <http://www.benfulcher.com> % % This function is free software: you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free Software % Foundation, either version 3 of the License, or (at your option) any later % version. % % This program is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS % FOR A PARTICULAR PURPOSE. See the GNU General Public License for more % details. % % You should have received a copy of the GNU General Public License along with % this program. If not, see <http://www.gnu.org/licenses/>. % ------------------------------------------------------------------------------ function TimeString = BF_thetime(tsec,FormatLong) if nargin < 2 || isempty(FormatLong) FormatLong = 0; % Set to 1 to use a longer format for the unit end if tsec < 1E-3 if FormatLong TimeString = '< 1 milliseconds'; else TimeString = '< 1ms'; end elseif tsec < 1 % less than a second, display in integer number of milliseconds if FormatLong TimeString = sprintf('%.0f milliseconds',tsec*1000); else TimeString = sprintf('%.0fms',tsec*1000); end elseif tsec <= 60 % less than a minute, display in seconds if FormatLong TimeString = sprintf('%.1f seconds',tsec); else TimeString = sprintf('%.1fs',tsec); end elseif tsec <= 60*60 % less than an hour, display in minutes if FormatLong TimeString = sprintf('%.1f minutes',tsec/60); else TimeString = sprintf('%.1fmin',tsec/60); end elseif tsec <= 60*24*60 % less than a day, display in hours if FormatLong TimeString = sprintf('%.1f hours',tsec/60/60); else TimeString = sprintf('%.1fh',tsec/60/60); end % elseif tsec<=60*24*7*60 % less than a week, display in days else % display in days TimeString = sprintf('%.1f days',tsec/60/60/24); end end
github
BMHLab/CElegansConnectomeGeneExpression-master
communicability.m
.m
CElegansConnectomeGeneExpression-master/PeripheralFunctions/communicability.m
1,229
utf_8
54866b44e768f75fee441f69e6c20f5d
% ------------------------------------------------------------------------------ % Ben Fulcher, 2014-09-18 % ------------------------------------------------------------------------------ % Quick implementation of communicability, a measure introduced by Estrada and % Hatano (2008). % %---INPUTS: % Adj, the adjacency matrix function G = communicability(Adj) % Check that diagonal is zero if ~all(diag(Adj)==0) fprintf(1,'Setting diagonal to zero.\n'); Adj(logical(eye(size(Adj)))) = 0; end if islogical(Adj) Adj = double(Adj); end % ------------------------------------------------------------------------------ % Compute the communicability measure as the exponential of the adjacency matrix. % ------------------------------------------------------------------------------ % This weights higher order paths between two nodes lower, decreasing as 1/x! G = expm(Adj); % Set diagonal to zero: % G(diag(G)) = 0; % ------------------------------------------------------------------------------ % Compute mean communicability, meanG: % ------------------------------------------------------------------------------ % (keeping diagonal terms in the mix when computing the average): % meanG = mean(G(logical(Adj))); end
github
BMHLab/CElegansConnectomeGeneExpression-master
ClusterDown.m
.m
CElegansConnectomeGeneExpression-master/PeripheralFunctions/ClusterDown.m
4,972
utf_8
47d0d299d41fca3513d3959292e96e34
% Originally TSQ_localcorrm, used in fetal heart rate analysis work. % Takes in a distance matrix, and clusters it down to a reduced set % Clusters down a set of operations based on their behavior % ------------------------------------------------------------------------------ % Ben Fulcher, 2014-06-25 % Ben Fulcher, 2011-03-17 % ------------------------------------------------------------------------------ function [DistMat_cl,Cluster_Groupi,ord] = ClusterDown(DistMat,numClusters,opts) if nargin < 2 || isempty(numClusters) numClusters = 5; % removes very highly-correlated operations end % Additional parameters stored in the opts structure: if nargin < 3 opts = []; end if isfield(opts,'WhatDistance') % Input is a distance matrix based on correlation coefficient WhatDistance = opts.WhatDistance; else WhatDistance = 'general'; end if isfield(opts,'errth') errth = opts.errth; else errth = 30; % set error threshold instead of just top number end if isfield(opts,'teststat') % necessary to do the thresholding teststat = opts.teststat; end if isfield(opts,'miorcorr') miorcorr = opts.miorcorr; else miorcorr = 'corr'; % 'mi', 'corr' end if isfield(opts,'ClusterMeth') ClusterMeth = opts.ClusterMeth; else ClusterMeth = 'linkage'; % 'linkage', 'kmedoids' end if isfield(opts,'LinkageMethod') LinkageMethod = opts.LinkageMethod; else LinkageMethod = 'average'; end if isfield(opts,'plotbig') plotbig = opts.plotbig; else plotbig = 0; end % ------------------------------------------------------------------------------ % Cluster down to a reduced number of groups (some very highly-correlated operations): % ------------------------------------------------------------------------------ figure('color','w'); % Do the linkage clustering: fprintf(1,'Computing linkage information for %ux%u gene expression data...',length(DistMat),length(DistMat)); links = linkage(DistMat,LinkageMethod); fprintf(1,' Done.\n'); % Get the dendrogram reordering: subplot(5,1,1) [h_dend,~,ord] = dendrogram(links,0); % Reorder the distance matrix by dendrogram ordering: [could add optimalleaforder] DistMat_cl = DistMat(ord,ord); % Make the dendrogram look aight axis_pos = get(gca,'Position'); axis_pos(1) = 0.26; axis_pos(3) = 0.42; set(gca,'Position',axis_pos) set(h_dend,'color','k','LineWidth',1) set(gca,'XTickLabel',{}) % Compute clustering into groups for many different cluster numbers: numClusterings = length(numClusters); Cluster_Groupi = cell(numClusterings,1); Cluster_Groupi_cl = cell(numClusterings,1); ClusterCenters_cl = cell(numClusterings,1); ClusterCenters = cell(numClusterings,1); for i = 1:numClusterings fprintf(1,'Distance-based clustering with %u clusters\n',numClusters(i)) % Cluster the dendrogram: T = cluster(links,'maxclust',numClusters(i)); numClusters(i) = max(T); % Reorder members of each cluster by distance to other members of the cluster: Cluster_Groupi{i} = cell(numClusters(i),1); for j = 1:numClusters(i) Cluster_Groupi{i}{j} = find(T==j); if length(T==j) > 1 % Sort by increasing sum of distances to other members of the cluster [~,ix] = sort(sum(DistMat(Cluster_Groupi{i}{j},Cluster_Groupi{i}{j})),'ascend'); Cluster_Groupi{i}{j} = Cluster_Groupi{i}{j}(ix); end end % Select the closest to cluster centre in each group try ClusterCenters{i} = cellfun(@(x)x(1),Cluster_Groupi{i}); Cluster_Groupi_cl{i} = cellfun(@(x) arrayfun(@(y)find(ord==y),x),Cluster_Groupi{i},'UniformOutput',0); ClusterCenters_cl{i} = arrayfun(@(y)find(ord==y),ClusterCenters{i}); catch keyboard end end % ------------------------------------------------------------------------------ % Now plot it: % ------------------------------------------------------------------------------ % Pick a given clustering and plot it cLevel = min(1,numClusterings); % plot the first clustering nlook = length(DistMat_cl); % Plot as a similarity matrix: subplot(5,1,2:5) switch WhatDistance case 'corr' % Input is a absolute correlation matrix: PlotCorrMat(1-DistMat_cl,1); case 'general' % Input is a general distance matrix: PlotCorrMat(DistMat_cl,0); end % Add rectangles to indicate highly correlated clusters of statistics: RectangleColors = BF_getcmap('accent',5,1); for i = 1:numClusters % Cluster borders: rectangle('Position',[min(Cluster_Groupi_cl{cLevel}{i})-0.5,min(Cluster_Groupi_cl{cLevel}{i})-0.5, ... length(Cluster_Groupi_cl{cLevel}{i}),length(Cluster_Groupi_cl{cLevel}{i})], ... 'EdgeColor',RectangleColors{1},'LineWidth',3); % Cluster centers: rectangle('Position',[ClusterCenters_cl{cLevel}(i)-0.5,ClusterCenters_cl{cLevel}(i)-0.5,1,1], ... 'EdgeColor',RectangleColors{5},'LineWidth',3); end end
github
BMHLab/CElegansConnectomeGeneExpression-master
RemoveNaN_DistMat.m
.m
CElegansConnectomeGeneExpression-master/PeripheralFunctions/RemoveNaN_DistMat.m
808
utf_8
9e6741adf3e66bc6c3077a2fd7e31255
% Removes NaN entries from an input distance matrix, R % ------------------------------------------------------------------------------ % Ben Fulcher, 2014-06-25 % ------------------------------------------------------------------------------ function [R, keepers] = RemoveNaN_DistMat(R) keepers = logical(ones(length(R),1)); if any(isnan(R(:))) AreNaN = 1; while AreNaN NumNaNs = sum(isnan(R(keepers,keepers))); [~,irem] = max(NumNaNs); % the index (of keepers==1) that has the most NaNs fkeep = find(keepers); keepers(fkeep(irem)) = 0; % remove this index from the full list, keepers R_keep_tmp = R(keepers,keepers); AreNaN = any(isnan(R_keep_tmp(:))); % are there still more NaNs after removing this? end R = R(keepers,keepers); end end
github
BMHLab/CElegansConnectomeGeneExpression-master
BF_NaNCov.m
.m
CElegansConnectomeGeneExpression-master/PeripheralFunctions/BF_NaNCov.m
2,271
utf_8
0a261b6d7bf567015ac1fc6a9d689663
% Covariance including NaNs for an input matrix, X % Not exact, because removes full mean across all values, rather than across % overlapping range, but should a reasonable approximation when number of NaNs % is small. % Output can be either the covariance matrix, or matrix of correlation % coefficients, depending on the second input. % ------------------------------------------------------------------------------ % Ben Fulcher, 2014-06-26 % ------------------------------------------------------------------------------ function C = NaNCov(X,MakeCoeff,MakeDist) if nargin < 2 MakeCoeff = 1; % by default, convert to correlation coefficients end if nargin < 3 MakeDist = 0; % by default, don't convert to distances end % Number of rows and columns (should be the same): [NRow,NCol] = size(X); if any(isnan(X(:))) % Indicate non-NaN values: GoodValues = single(~isnan(X)); % Compute column means, excluding NaNs: % Problem is with X(~isnan) -> 0 meanNotNan = @(x) mean(x(~isnan(x))); ColMeans = arrayfun(@(x)meanNotNan(X(:,x)),1:NCol); % Remove mean from each column, to make centered version: Xc = bsxfun(@minus,X,ColMeans); % X0 copies Xc but puts zeros over NaNs: X0 = Xc; X0(~GoodValues) = 0; % NaN -> 0 % Count good points (overlapping non-NaN values) GoodBoth = GoodValues' * GoodValues; % This is our approximation to the covariance matrix: C = (X0' * X0) ./ (GoodBoth - 1); % Convert to a correlation coefficient: if MakeCoeff % Normalize by sample standard deviations: stdNotNan = @(x) std(x(~isnan(x))); ColStds = arrayfun(@(x)stdNotNan(X(:,x)),1:NCol); S = ColStds'*ColStds; C = C./S; end else % no NaNs, use the matlab cov function: C = cov(X); if MakeCoeff % Normalize by sample standard deviations: ColStds = arrayfun(@(x)std(X(:,x)),1:NCol); S = ColStds'*ColStds; C = C./S; end end % ------------------------------------------------------------------------------ % Convert to distances % ------------------------------------------------------------------------------ if MakeDist && MakeCoeff C(logical(eye(size(C)))) = 1; C = 1-C; end end
github
BMHLab/CElegansConnectomeGeneExpression-master
BF_NormalizeMatrix.m
.m
CElegansConnectomeGeneExpression-master/PeripheralFunctions/BF_NormalizeMatrix.m
10,527
utf_8
cbe478d5295aa270b1b6953658b08fdc
% ------------------------------------------------------------------------------ % BF_NormalizeMatrix % ------------------------------------------------------------------------------ % % Normalizes all columns of an input matrix. % %---INPUTS: % F, the input matrix % normopt, the normalization method to use (see body of the code for options) % itrain, learn the normalization parameters just on these indices, then apply % it on the full dataset (required for training/testing procedures where % the testing data has to remain unseen). % %---OUTPUT: % F, the normalized matrix % % Note that NaNs are ignored -- only real data is used for the normalization % (assume NaNs are a minority of the data). % %---HISTORY: % Ben Fulcher 28/1/2011 -- Added this NaN capability % Ben Fulcher 12/9/2011 -- Added itrain input: obtain the transformation % on this subset, apply it to all the data. % Ben Fulcher, 2014-06-26 -- Added a mixed sigmoid approach % % ------------------------------------------------------------------------------ % Copyright (C) 2013, Ben D. Fulcher <[email protected]>, % <http://www.benfulcher.com> % % If you use this code for your research, please cite: % B. D. Fulcher, M. A. Little, N. S. Jones, "Highly comparative time-series % analysis: the empirical structure of time series and their methods", % J. Roy. Soc. Interface 10(83) 20130048 (2010). DOI: 10.1098/rsif.2013.0048 % % This function is free software: you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free Software % Foundation, either version 3 of the License, or (at your option) any later % version. % % This program is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS % FOR A PARTICULAR PURPOSE. See the GNU General Public License for more % details. % % You should have received a copy of the GNU General Public License along with % this program. If not, see <http://www.gnu.org/licenses/>. % ------------------------------------------------------------------------------ function F = BF_NormalizeMatrix(F,normopt,itrain) % ------------------------------------------------------------------------------ %% Check Inputs % ------------------------------------------------------------------------------ if nargin < 2 || isempty(normopt) fprintf(1,'We''re normalizing using sigmoid transform by default\n') normopt = 'sigmoid'; end if nargin < 3 itrain = []; end N2 = size(F,2); if isempty(itrain) FT = F; % train the transformation on the full dataset else FT = F(itrain,:); % train the transformation on the specified subset if ~strcmp(normopt,'scaledSQzscore') error('TRAINING SPECIFIER ONLY WORKS FOR ''scaledSQzscore''...'); end end % ------------------------------------------------------------------------------ % Normalize according to the specified normalizing transformation % ------------------------------------------------------------------------------ switch normopt case 'relmean' % Normalizes each column to a proportion of the mean of that column F = bsxfun(@rdivide,F,nanmean(F)); case {'maxmin','minmax'} % Linear rescaling to the unit interval for i = 1:N2 % cycle through the operations rr = ~isnan(F(:,i)); kk = F(rr,i); if (max(kk)==min(kk)) % Rescaling will blow it up F(rr,i) = NaN; else F(rr,i) = (kk-min(kk))/(max(kk)-min(kk)); end end case 'MixedSigmoid' % Ben Fulcher, 2014-06-26 % Runs a normal sigmoid if iqr=0; a scaled sigmoid otherwise % Computes statistics on non-nans % Rescale to unit interval: UnityRescale = @(x) (x-min(x(~isnan(x))))/(max(x(~isnan(x)))-min(x(~isnan(x)))); % Outlier-adjusted sigmoid: SQ_Sig = @(x) UnityRescale(1./(1 + exp(-(x-median(x(~isnan(x))))/(iqr(x(~isnan(x))/1.35))))); SQ_Sig_noiqr = @(x) UnityRescale(1./(1 + exp(-(x-mean(x(~isnan(x))))/std(x(~isnan(x)))))); F_norm = zeros(size(F)); for i = 1:N2 % cycle through columns if max(F(:,i))==min(F(:,i)) % A constant column is set to 0: F_norm(:,i) = 0; elseif all(isnan(F(:,i))) % Everything a NaN, kept at NaN: F_norm(:,i) = NaN; elseif iqr(F(~isnan(F(:,i)),i))==0 % iqr of data is zero: perform a normal sigmoidal transformation: F_norm(:,i) = SQ_Sig_noiqr(F(:,i)); else % Perform an outlier-robust version of the sigmoid: F_norm(:,i) = SQ_Sig(F(:,i)); end end F = F_norm; % set F_norm to F to output case 'scaledSQzscore' % A scaled sigmoided quantile zscore % Problem is that if iqr=0, we're kind of screwed for i = 1:N2 rr = ~isnan(F(:,i)); rt = ~isnan(FT(:,i)); FF = FT(rt,i); % good values in the training portion if iqr(FF)==0 F(:,i) = NaN; else % Sigmoid transformation (gets median and iqr only % from training data FT): F1 = (F(rr,i)-median(FF))/(iqr(FF)/1.35); kk = 1./(1+exp(-F1)); % Rescale to unit interval: F(rr,i) = (kk-min(kk))/(max(kk)-min(kk)); end end case 'scaledsigmoid' % A standard sigmoid transform, then a rescaling to the unit interval for i = 1:N2 % cycle through the metrics rr = ~isnan(F(:,i)); FF = F(rr,i); kk = 1./(1+exp(-zscore(FF))); if (max(kk)==min(kk)) % rescaling will blow up F(rr,i) = NaN; else F(rr,i) = (kk-min(kk))/(max(kk)-min(kk)); end end case 'scaledsigmoid5q' % First caps at 5th and 95th quantile, then does scaled sigmoid for i = 1:N2 % cycle through the metrics rr = ~isnan(F(:,i)); FF = F(rr,i); qs = quantile(FF,[0.05,0.95]); qr = (FF>=qs(1) & FF<=qs(2)); % quantile range % calculate mean and std based on quantile range only meanF = mean(FF(qr)); stdF = std(FF(qr)); if stdF==0 F(rr,i) = NaN; % avoid +/- Infs else % kk = 1./(1+exp(-zscore(FF))); kk = 1./(1+exp(-(FF-meanF)/stdF)); F(rr,i) = (kk-min(kk))/(max(kk)-min(kk)); end end case 'sigmoid' for i = 1:N2 % cycle through the metrics rr = ~isnan(F(:,i)); FF = F(rr,i); % F(:,i) = 1./(1+exp(-pi*zscore(F(:,i))/sqrt(3))); F(rr,i) = 1./(1+exp(-zscore(FF))); end % case 'maxmin' % for i = 1:N2 % cycle through the metrics % rr = ~isnan(F(:,i)); % FF = F(rr,i); % if range(FF)==0 % F(rr,i) = NaN; % else % F(rr,i) = (FF-min(FF))/(max(FF)-min(FF)); % end % end case 'zscore' % F = zscore(F); for i = 1:N2 rr = ~isnan(F(:,i)); F(rr,i) = zscore(F(rr,i)); end case 'Qzscore' % quantile zscore % invented by me. for i = 1:N2 rr = ~isnan(F(:,i)); FF = F(rr,i); if iqr(FF)==0 % could get +/- Infs otherwise F(rr,i) = NaN; else F(rr,i) = (FF-median(FF))/(iqr(FF)/1.35); end end case 'SQzscore' % sigmoided quantile zscore for i = 1:N2 rr = ~isnan(F(:,i)); FF = F(rr,i); if iqr(FF)==0 % could get +/- Infs otherwise F(rr,i) = NaN; else F1 = (FF-median(FF))/(iqr(FF)/1.35); F(rr,i) = 1./(1+exp(-F1)); end end case 'scaled2ways' for i = 1:N2 rr = ~isnan(F(:,i)); FF = F(rr,i); if iqr(FF)==0 % then there's definitely no outlier problem: can safely do a % sigmoid kk = 1./(1+exp(-zscore(FF))); if (max(kk)==min(kk)) % rescaling will blow up F(rr,i) = NaN; else F(rr,i) = (kk-min(kk))/(max(kk)-min(kk)); end else % wide distribution -- do a transformation that is not so % sensitive to outliers F1 = (FF-median(FF))/(iqr(FF)/1.35); kk = 1./(1+exp(-F1)); F(rr,i) = (kk-min(kk))/(max(kk)-min(kk)); end end case 'LDscaled' % (i) maxmin % linear rescaling to the unit interval for i = 1:N2 % cycle through the metrics rr = ~isnan(F(:,i)); kk = F(rr,i); if (max(kk)==min(kk)) % rescaling will blow up F(rr,i) = 0; % constant column else F(rr,i) = (kk-min(kk))/(max(kk)-min(kk)); end end % (ii) outliersigmoid or sigmoid or nothing for i = 1:N2 rr = ~isnan(F(:,i)); FF = F(rr,i); if iqr(FF)==0 if std(FF)==0 F(rr,i) = 0; else % then there's definitely no outlier problem: can safely do a % normal sigmoid kk = 1./(1+exp(-zscore(FF))); if (max(kk)==min(kk)) % rescaling will blow up F(rr,i) = NaN; else F(rr,i) = (kk-min(kk))/(max(kk)-min(kk)); end end else % wide distribution -- do a transformation that is not so % sensitive to outliers F1 = (FF-median(FF))/(iqr(FF)/1.35); kk = 1./(1+exp(-F1)); F(rr,i) = (kk-min(kk))/(max(kk)-min(kk)); end end otherwise error('Invalid normalization method ''%s''', normopt) end end
github
BMHLab/CElegansConnectomeGeneExpression-master
PlotCorrMat.m
.m
CElegansConnectomeGeneExpression-master/PeripheralFunctions/PlotCorrMat.m
1,444
utf_8
9aba8801d74815c2322704078cf9aad7
% ------------------------------------------------------------------------------ % Ben Fulcher, 2014-06-24 % ------------------------------------------------------------------------------ function PlotCorrMat(D_corr,Minus1To1) if nargin < 2 || isempty(Minus1To1) Minus1To1 = 1; % assume range from -1 to 1 end % Make a matrix if any(size(D_corr)==1) D_corr = squareform(D_corr); end imagesc(D_corr) axis square % Set color limits and colormap if Minus1To1 caxis([-1,1]) colormap([flipud(BF_getcmap('blues',9,0));BF_getcmap('reds',9,0)]) else % assume [0,1] (a normalized distance metric) caxis([0,1]) colormap(BF_getcmap('reds',9,0)) end % ------------------------------------------------------------------------------ % Superimpose green/yellow rectangles over NaN values % ------------------------------------------------------------------------------ if any(isnan(D_corr(:))) Green = BF_getcmap('greens',3,1); Red = BF_getcmap('reds',3,1); [theNaNs_i,theNaNs_j] = find(isnan(D_corr)); fprintf(1,['Superimposing green/red rectangles over all %u NaNs in ' ... 'the data matrix\n'],length(theNaNs_i)); for i = 1:length(theNaNs_i) rectangle('Position',[theNaNs_j(i)-0.5,theNaNs_i(i)-0.5,1,1],'FaceColor',Green{end}, ... 'EdgeColor',Red{end}) end end % Add a colorbar colorbar % Remove ticks: set(gca,'TickLength',[0,0]) end
github
BMHLab/CElegansConnectomeGeneExpression-master
BF_pdist.m
.m
CElegansConnectomeGeneExpression-master/PeripheralFunctions/BF_pdist.m
7,563
utf_8
a9994650d52efdec2c584a240d2e4a04
% ------------------------------------------------------------------------------ % BF_pdist % ------------------------------------------------------------------------------ % % Same as pdist but then goes through and fills in NaNs with indiviually % calculated values using an overlapping range of good values. % % HISTORY: % Ben Fulcher, 2014-06-26 -- added support for NaNCorr, which should be a much % faster approximate implementation for large matrices. % ------------------------------------------------------------------------------ % Copyright (C) 2013, Ben D. Fulcher <[email protected]>, % <http://www.benfulcher.com> % % If you use this code for your research, please cite: % B. D. Fulcher, M. A. Little, N. S. Jones, "Highly comparative time-series % analysis: the empirical structure of time series and their methods", % J. Roy. Soc. Interface 10(83) 20130048 (2010). DOI: 10.1098/rsif.2013.0048 % % This work is licensed under the Creative Commons % Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of % this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send % a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, % California, 94041, USA. % ------------------------------------------------------------------------------ function R = BF_pdist(F,distMetric,toVector,opts,beSilent,minPropGood) % ------------------------------------------------------------------------------ % Check Inputs: % ------------------------------------------------------------------------------ if nargin < 2 || isempty(distMetric) distMetric = 'euclidean'; fprintf(1,'Using the Euclidean distance metric\n') end if nargin < 3 || isempty(toVector) toVector = 0; end if nargin < 4 opts = []; end if nargin < 5 beSilent = 0; end if nargin < 6 % By default, don't require a minimum proportion of good values to be % present to compute a pairwise distance minPropGood = 0; end [n1, n2] = size(F); % We're computing for rows (operations are rows) % ------------------------------------------------------------------------------ % Define the distance function % ------------------------------------------------------------------------------ switch distMetric case {'Euclidean','euclidean'} dij = @(v1,v2) sqrt(sum((v1-v2).^2))/length(v1)*n2; % if less entries, don't bias case {'corr','correlation','abscorr','Pearson'} dij = @(v1,v2) subdc(v1,v2,'Pearson'); case 'Spearman' dij = @(v1,v2) subdc(v1,v2,'Spearman'); end % ------------------------------------------------------------------------------ % Compute pairwise distances % ------------------------------------------------------------------------------ switch distMetric case 'mi' % Mutual information distances: can't make use of the inbuilt pdist function if ~isempty(opts) nbins = opts; % for MI, extra argument specifies nbins else nbins = 10; end if ~beSilent, fprintf(1,'Using a histogram with %u bins\n',nbins); end goodies = ~isnan(F); % now we can deal with NaNs into design matrix mis = zeros(n1); mitimer = tic; % Way faster to not store the time taken for every iteration for i = 1:n1 % tic goodi = goodies(i,:); for j = i:n1 goodj = goodies(j,:); goodboth = (goodi & goodj); mis(i,j) = BF_MutualInformation(F(i,goodboth),F(j,goodboth),'quantile','quantile',nbins); % by quantile with nbins mis(j,i) = mis(i,j); end if (mod(i,floor(n1/50)) == 0) fprintf(1,'Approximately %s remaining! We''re at %u / %u\n', ... BF_thetime(toc(mitimer)/i*(n1-i)),i,n1) end end clear mitimer % stop timing R = mis; clear mis; % not really an R but ok. case {'corr_fast','abscorr_fast'} % Try using fast approximation to correlation coefficients when data includes NaNs % This is an approximation in that it centers columns on their full mean rather than % the mean of overlapping good values, but it's a start, and a good approximation % for a small proportion of NaNs. % Ben Fulcher, 2014-06-26 if ~beSilent, fprintf(1,'Using BF_NaNCov to approximate correlations between %u objects...',size(F,1)); end tic R = BF_NaNCov(F',1,1); if ~beSilent, fprintf(1,' Done in %s.\n',BF_thetime(toc)); end case {'euclidean','Euclidean','corr','correlation','abscorr'} % First use in-built pdist, which is fast if ~beSilent fprintf(1,'First computing pairwise distances using pdist...'); end tic if strcmp(distMetric,'abscorr') R = pdist(F,'corr'); else R = pdist(F,distMetric); end R = squareform(R); % Make a matrix if ~beSilent fprintf(1,' Done in %s.\n',BF_thetime(toc)); end % Now go through and fill in any NaNs [nani, nanj] = find(isnan(R)); if ~isempty(nani) % there are NaNs in R ij = (nanj >= nani); % only keep diagonal or upper diagonal entries nani = nani(ij); nanj = nanj(ij); NotNaN = ~isnan(F); if ~beSilent fprintf(1,['Recalculating distances individually for %u NaN ' ... 'entries in the distance matrix...\n'],length(nani)); end NaNtimer = tic; % time it for i = 1:length(nani) ii = nani(i); jj = nanj(i); goodboth = (NotNaN(ii,:) & NotNaN(jj,:)); if mean(goodboth) >= minPropGood R(ii,jj) = dij(F(ii,goodboth)',F(jj,goodboth)'); % Calculate the distance else R(ii,jj) = NaN; % Not enough good, overlapping set of values -- store as NaN. end R(jj,ii) = R(ii,jj); % Add the symmetrized entry % Give update on time remaining after 1000 iterations (if more than 10000 total iterations) % and then 5 more times... if ~beSilent && ((i==1000 && length(nani) > 10000) || (mod(i,floor(length(nani)/5))==0)) fprintf(1,'Approximately %s remaining! We''re at %u / %u.\n', ... BF_thetime(toc(NaNtimer)/i*(length(nani)-i)),i,length(nani)) end end clear NaNtimer % stop the timer end otherwise error('Unknown distance metric ''%s''',distMetric); end % ------------------------------------------------------------------------------ % Transform from correlation distance to absolute correlation distance: % ------------------------------------------------------------------------------ if ismember(distMetric,{'abscorr','abscorr_fast'}) R = 1 - abs(1-R); end % ------------------------------------------------------------------------------ % Convert from matrix back to a vector: % ------------------------------------------------------------------------------ if toVector try R = squareform(R); % back to vector catch error('This metric is not consistant with a pairwise distance matrix...?') end end % ------------------------------------------------------------------------------ function d = subdc(v1,v2,corrType) rc = corr(v1,v2,'type',corrType); if isnan(rc) d = 2; % return maximum distance--for this subset, constant values else d = 1 - rc; % Return the (raw) correlation coefficient end end % ------------------------------------------------------------------------------ end
github
BMHLab/CElegansConnectomeGeneExpression-master
BF_removeNaNColumns.m
.m
CElegansConnectomeGeneExpression-master/PeripheralFunctions/BF_removeNaNColumns.m
1,138
utf_8
ab75a92b242a05c5c2f8817b832a70fa
% ------------------------------------------------------------------------------ % Removes columns with NaNs in them % ------------------------------------------------------------------------------ % Ben Fulcher, 2014-09-23 Added parameter that allows some proportion of bad values % Ben Fulcher, 2014-07-08 % ------------------------------------------------------------------------------ function [A,KeepCol] = BF_removeNaNColumns(A,propBadTol) % ------------------------------------------------------------------------------ % Check inputs: % ------------------------------------------------------------------------------ if nargin < 2 % Can tolerate a proportion propBad of bad values % Set to 0 by default (no tolerance for any bad values) propBadTol = 0; end % ------------------------------------------------------------------------------ if propBadTol==0 KeepCol = arrayfun(@(x)~any(isnan(A(:,x))),1:size(A,2)); else % Compute the proportion of NaN values in each column: propBad = arrayfun(@(x)sum(isnan(A(:,x))),1:size(A,2))/size(A,1); KeepCol = (propBad > propBadTol); end A = A(:,KeepCol); end
github
jfrascon/SLAM_AND_PATH_PLANNING_ALGORITHMS-master
arrow.m
.m
SLAM_AND_PATH_PLANNING_ALGORITHMS-master/10-EXTRA_RESOURCES/MATLAB_SCRIPTS/arrow.m
59,561
utf_8
c7638a77607ba7fa39d3d641f7bd4ce7
function [h,yy,zz] = arrow(varargin) % ARROW Draw a line with an arrowhead. % % ARROW(Start,Stop) draws a line with an arrow from Start to Stop (points % should be vectors of length 2 or 3, or matrices with 2 or 3 % columns), and returns the graphics handle of the arrow(s). % % ARROW uses the mouse (click-drag) to create an arrow. % % ARROW DEMO & ARROW DEMO2 show 3-D & 2-D demos of the capabilities of ARROW. % % ARROW may be called with a normal argument list or a property-based list. % ARROW(Start,Stop,Length,BaseAngle,TipAngle,Width,Page,CrossDir) is % the full normal argument list, where all but the Start and Stop % points are optional. If you need to specify a later argument (e.g., % Page) but want default values of earlier ones (e.g., TipAngle), % pass an empty matrix for the earlier ones (e.g., TipAngle=[]). % % ARROW('Property1',PropVal1,'Property2',PropVal2,...) creates arrows with the % given properties, using default values for any unspecified or given as % 'default' or NaN. Some properties used for line and patch objects are % used in a modified fashion, others are passed directly to LINE, PATCH, % or SET. For a detailed properties explanation, call ARROW PROPERTIES. % % Start The starting points. B % Stop The end points. /|\ ^ % Length Length of the arrowhead in pixels. /|||\ | % BaseAngle Base angle in degrees (ADE). //|||\\ L| % TipAngle Tip angle in degrees (ABC). ///|||\\\ e| % Width Width of the base in pixels. ////|||\\\\ n| % Page Use hardcopy proportions. /////|D|\\\\\ g| % CrossDir Vector || to arrowhead plane. //// ||| \\\\ t| % NormalDir Vector out of arrowhead plane. /// ||| \\\ h| % Ends Which end has an arrowhead. //<----->|| \\ | % ObjectHandles Vector of handles to update. / base ||| \ V % E angle||<-------->C % ARROW(H,'Prop1',PropVal1,...), where H is a |||tipangle % vector of handles to previously-created arrows ||| % and/or line objects, will update the previously- ||| % created arrows according to the current view -->|A|<-- width % and any specified properties, and will convert % two-point line objects to corresponding arrows. ARROW(H) will update % the arrows if the current view has changed. Root, figure, or axes % handles included in H are replaced by all descendant Arrow objects. % % A property list can follow any specified normal argument list, e.g., % ARROW([1 2 3],[0 0 0],36,'BaseAngle',60) creates an arrow from (1,2,3) to % the origin, with an arrowhead of length 36 pixels and 60-degree base angle. % % Normally, an ARROW is a PATCH object, so any valid PATCH property/value pairs % can be passed, e.g., ARROW(Start,Stop,'EdgeColor','r','FaceColor','g'). % ARROW will use LINE objects when requested by ARROW(...,'Type','line') or, % using LINE property/value pairs, ARROW(Start,Stop,'Type','line','Color','b'). % % The basic arguments or properties can generally be vectorized to create % multiple arrows with the same call. This is done by passing a property % with one row per arrow, or, if all arrows are to have the same property % value, just one row may be specified. % % You may want to execute AXIS(AXIS) before calling ARROW so it doesn't change % the axes on you; ARROW determines the sizes of arrow components BEFORE the % arrow is plotted, so if ARROW changes axis limits, arrows may be malformed. % % This version of ARROW uses features of MATLAB 6.x and is incompatible with % earlier MATLAB versions (ARROW for MATLAB 4.2c is available separately); % some problems with perspective plots still exist. % Copyright (c)1995-2016, Dr. Erik A. Johnson <[email protected]>, 5/25/2016 % http://www.usc.edu/civil_eng/johnsone/ % Revision history: % 5/25/16 EAJ Add documentation of 'Type','line' % Add documentation of how to set color % Add 'Color' property (which sets both 'EdgeColor' and 'FaceColor' for patch objects) % 5/24/16 EAJ Remove 'EraseMode' in HG2 % 7/16/14 EAJ R2014b HandleGraphics2 compatibility % 7/14/14 EAJ 5/20/13 patch extension didn't work right in HG2 % so break the arrow along its length instead % 5/20/13 EAJ Extend patch line one more segment so EPS/PDF printed versions % have nice rounded tips when the LineWidth is wider % 2/06/13 EAJ Add ShortenLength property to shorten length if arrow is short % 1/24/13 EAJ Remove some old comments. % 5/20/09 EAJ Fix view direction in (3D) demo. % 6/26/08 EAJ Replace eval('trycmd','catchcmd') with try, trycmd; catch, % catchcmd; end; -- break's MATLAB 5 compatibility. % 8/26/03 EAJ Eliminate OpenGL attempted fix since it didn't fix anyway. % 11/15/02 EAJ Accomodate how MATLAB 6.5 handles NaN and logicals % 7/28/02 EAJ Tried (but failed) work-around for MATLAB 6.x / OpenGL bug % if zero 'Width' or not double-ended % 11/10/99 EAJ Add logical() to eliminate zero index problem in MATLAB 5.3. % 11/10/99 EAJ Corrected warning if axis limits changed on multiple axes. % 11/10/99 EAJ Update e-mail address. % 2/10/99 EAJ Some documentation updating. % 2/24/98 EAJ Fixed bug if Start~=Stop but both colinear with viewpoint. % 8/14/97 EAJ Added workaround for MATLAB 5.1 scalar logical transpose bug. % 7/21/97 EAJ Fixed a few misc bugs. % 7/14/97 EAJ Make arrow([],'Prop',...) do nothing (no old handles) % 6/23/97 EAJ MATLAB 5 compatible version, release. % 5/27/97 EAJ Added Line Arrows back in. Corrected a few bugs. % 5/26/97 EAJ Changed missing Start/Stop to mouse-selected arrows. % 5/19/97 EAJ MATLAB 5 compatible version, beta. % 4/13/97 EAJ MATLAB 5 compatible version, alpha. % 1/31/97 EAJ Fixed bug with multiple arrows and unspecified Z coords. % 12/05/96 EAJ Fixed one more bug with log plots and NormalDir specified % 10/24/96 EAJ Fixed bug with log plots and NormalDir specified % 11/13/95 EAJ Corrected handling for 'reverse' axis directions % 10/06/95 EAJ Corrected occasional conflict with SUBPLOT % 4/24/95 EAJ A major rewrite. % Fall 94 EAJ Original code. % Things to be done: % - in the arrow_clicks section, prompt by printing to the screen so that % the user knows what's going on; also make sure the figure is brought % to the front. % - segment parsing, computing, and plotting into separate subfunctions % - change computing from Xform to Camera paradigms % + this will help especially with 3-D perspective plots % + if the WarpToFill section works right, remove warning code % + when perpsective works properly, remove perspective warning code % - add cell property values and struct property name/values (like get/set) % - get rid of NaN as the "default" data label % + perhaps change userdata to a struct and don't include (or leave % empty) the values specified as default; or use a cell containing % an empty matrix for a default value % - add functionality of GET to retrieve current values of ARROW properties % % New list of things to be done: % - rewrite as a graphics or class object that updates itself in real time % (but have a 'Static' or 'DoNotUpdate' property to avoid updating) % Permission is granted to distribute ARROW with the toolboxes for the book % "Solving Solid Mechanics Problems with MATLAB 5", by F. Golnaraghi et al. % (Prentice Hall, 1999). % Permission is granted to Dr. Josef Bigun to distribute ARROW with his % software to reproduce the figures in his image analysis text. % global variable initialization persistent ARROW_PERSP_WARN ARROW_STRETCH_WARN ARROW_AXLIMITS ARROW_AX if isempty(ARROW_PERSP_WARN ), ARROW_PERSP_WARN =1; end; if isempty(ARROW_STRETCH_WARN), ARROW_STRETCH_WARN=1; end; % Handle callbacks if (nargin>0 & isstr(varargin{1}) & strcmp(lower(varargin{1}),'callback')), arrow_callback(varargin{2:end}); return; end; % Are we doing the demo? c = sprintf('\n'); if (nargin==1 & isstr(varargin{1})), arg1 = lower(varargin{1}); if strncmp(arg1,'prop',4), arrow_props; elseif strncmp(arg1,'demo',4) clf reset demo_info = arrow_demo; if ~strncmp(arg1,'demo2',5), hh=arrow_demo3(demo_info); else, hh=arrow_demo2(demo_info); end; if (nargout>=1), h=hh; end; elseif strncmp(arg1,'fixlimits',3), arrow_fixlimits(ARROW_AX,ARROW_AXLIMITS); ARROW_AXLIMITS=[]; ARROW_AX=[]; elseif strncmp(arg1,'help',4), disp(help(mfilename)); else, error([upper(mfilename) ' got an unknown single-argument string ''' deblank(arg1) '''.']); end; return; end; % Check # of arguments if (nargout>3), error([upper(mfilename) ' produces at most 3 output arguments.']); end; % find first property number firstprop = nargin+1; for k=1:length(varargin), if ~isnumeric(varargin{k}) && ~all(ishandle(varargin{k})), firstprop=k; break; end; end; %eaj 5/24/16 for k=1:length(varargin), if ~isnumeric(varargin{k}), firstprop=k; break; end; end; lastnumeric = firstprop-1; % check property list if (firstprop<=nargin), for k=firstprop:2:nargin, curarg = varargin{k}; if ~isstr(curarg) | sum(size(curarg)>1)>1, error([upper(mfilename) ' requires that a property name be a single string.']); end; end; if (rem(nargin-firstprop,2)~=1), error([upper(mfilename) ' requires that the property ''' ... varargin{nargin} ''' be paired with a property value.']); end; end; % default output if (nargout>0), h=[]; end; if (nargout>1), yy=[]; end; if (nargout>2), zz=[]; end; % set values to empty matrices start = []; stop = []; len = []; baseangle = []; tipangle = []; wid = []; page = []; crossdir = []; ends = []; shorten = []; ax = []; oldh = []; ispatch = []; defstart = [NaN NaN NaN]; defstop = [NaN NaN NaN]; deflen = 16; defbaseangle = 90; deftipangle = 16; defwid = 0; defpage = 0; defcrossdir = [NaN NaN NaN]; defends = 1; defshorten = 0; defoldh = []; defispatch = 1; % The 'Tag' we'll put on our arrows ArrowTag = 'Arrow'; % check for oldstyle arguments if (firstprop==2), % assume arg1 is a set of handles oldh = varargin{1}(:); if isempty(oldh), return; end; elseif (firstprop>9), error([upper(mfilename) ' takes at most 8 non-property arguments.']); elseif (firstprop>2), {start,stop,len,baseangle,tipangle,wid,page,crossdir}; args = [varargin(1:firstprop-1) cell(1,length(ans)-(firstprop-1))]; [start,stop,len,baseangle,tipangle,wid,page,crossdir] = deal(args{:}); end; % parse property pairs extraprops={}; for k=firstprop:2:nargin, prop = varargin{k}; val = varargin{k+1}; prop = [lower(prop(:)') ' ']; if strncmp(prop,'start' ,5), start = val; elseif strncmp(prop,'stop' ,4), stop = val; elseif strncmp(prop,'len' ,3), len = val(:); elseif strncmp(prop,'base' ,4), baseangle = val(:); elseif strncmp(prop,'tip' ,3), tipangle = val(:); elseif strncmp(prop,'wid' ,3), wid = val(:); elseif strncmp(prop,'page' ,4), page = val; elseif strncmp(prop,'cross' ,5), crossdir = val; elseif strncmp(prop,'norm' ,4), if (isstr(val)), crossdir=val; else, crossdir=val*sqrt(-1); end; elseif strncmp(prop,'end' ,3), ends = val; elseif strncmp(prop,'shorten',5), shorten = val; elseif strncmp(prop,'object' ,6), oldh = val(:); elseif strncmp(prop,'handle' ,6), oldh = val(:); elseif strncmp(prop,'type' ,4), ispatch = val; elseif strncmp(prop,'userd' ,5), %ignore it else, % make sure it is a valid patch or line property try get(0,['DefaultPatch' varargin{k}]); catch errstr = lasterr; try get(0,['DefaultLine' varargin{k}]); catch errstr(1:max(find(errstr==char(13)|errstr==char(10)))) = ''; error([upper(mfilename) ' got ' errstr]); end end; extraprops={extraprops{:},varargin{k},val}; end; end; % Check if we got 'default' values start = arrow_defcheck(start ,defstart ,'Start' ); stop = arrow_defcheck(stop ,defstop ,'Stop' ); len = arrow_defcheck(len ,deflen ,'Length' ); baseangle = arrow_defcheck(baseangle,defbaseangle,'BaseAngle' ); tipangle = arrow_defcheck(tipangle ,deftipangle ,'TipAngle' ); wid = arrow_defcheck(wid ,defwid ,'Width' ); crossdir = arrow_defcheck(crossdir ,defcrossdir ,'CrossDir' ); page = arrow_defcheck(page ,defpage ,'Page' ); ends = arrow_defcheck(ends ,defends ,'' ); shorten = arrow_defcheck(shorten ,defshorten ,'' ); oldh = arrow_defcheck(oldh ,[] ,'ObjectHandles'); ispatch = arrow_defcheck(ispatch ,defispatch ,'' ); % check transpose on arguments [m,n]=size(start ); if any(m==[2 3])&(n==1|n>3), start = start'; end; [m,n]=size(stop ); if any(m==[2 3])&(n==1|n>3), stop = stop'; end; [m,n]=size(crossdir); if any(m==[2 3])&(n==1|n>3), crossdir = crossdir'; end; % convert strings to numbers if ~isempty(ends) & isstr(ends), endsorig = ends; [m,n] = size(ends); col = lower([ends(:,1:min(3,n)) ones(m,max(0,3-n))*' ']); ends = NaN*ones(m,1); oo = ones(1,m); ii=find(all(col'==['non']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*0; end; ii=find(all(col'==['sto']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*1; end; ii=find(all(col'==['sta']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*2; end; ii=find(all(col'==['bot']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*3; end; if any(isnan(ends)), ii = min(find(isnan(ends))); error([upper(mfilename) ' does not recognize ''' deblank(endsorig(ii,:)) ''' as a valid ''Ends'' value.']); end; else, ends = ends(:); end; if ~isempty(ispatch) & isstr(ispatch), col = lower(ispatch(:,1)); patchchar='p'; linechar='l'; defchar=' '; mask = col~=patchchar & col~=linechar & col~=defchar; if any(mask), error([upper(mfilename) ' does not recognize ''' deblank(ispatch(min(find(mask)),:)) ''' as a valid ''Type'' value.']); end; ispatch = (col==patchchar)*1 + (col==linechar)*0 + (col==defchar)*defispatch; else, ispatch = ispatch(:); end; oldh = oldh(:); % check object handles if ~all(ishandle(oldh)), error([upper(mfilename) ' got invalid object handles.']); end; % expand root, figure, and axes handles if ~isempty(oldh), ohtype = get(oldh,'Type'); mask = strcmp(ohtype,'root') | strcmp(ohtype,'figure') | strcmp(ohtype,'axes'); if any(mask), oldh = num2cell(oldh); for ii=find(mask)', oldh(ii) = {findobj(oldh{ii},'Tag',ArrowTag)}; end; oldh = cat(1,oldh{:}); if isempty(oldh), return; end; % no arrows to modify, so just leave end; end; % largest argument length [mstart,junk]=size(start); [mstop,junk]=size(stop); [mcrossdir,junk]=size(crossdir); argsizes = [length(oldh) mstart mstop ... length(len) length(baseangle) length(tipangle) ... length(wid) length(page) mcrossdir length(ends) length(shorten)]; args=['length(ObjectHandle) '; ... '#rows(Start) '; ... '#rows(Stop) '; ... 'length(Length) '; ... 'length(BaseAngle) '; ... 'length(TipAngle) '; ... 'length(Width) '; ... 'length(Page) '; ... '#rows(CrossDir) '; ... '#rows(Ends) '; ... 'length(ShortenLength) ']; if (any(imag(crossdir(:))~=0)), args(9,:) = '#rows(NormalDir) '; end; if isempty(oldh), narrows = max(argsizes); else, narrows = length(oldh); end; if (narrows<=0), narrows=1; end; % Check size of arguments ii = find((argsizes~=0)&(argsizes~=1)&(argsizes~=narrows)); if ~isempty(ii), s = args(ii',:); while ((size(s,2)>1)&((abs(s(:,size(s,2)))==0)|(abs(s(:,size(s,2)))==abs(' ')))), s = s(:,1:size(s,2)-1); end; s = [ones(length(ii),1)*[upper(mfilename) ' requires that '] s ... ones(length(ii),1)*[' equal the # of arrows (' num2str(narrows) ').' c]]; s = s'; s = s(:)'; s = s(1:length(s)-1); error(setstr(s)); end; % check element length in Start, Stop, and CrossDir if ~isempty(start), [m,n] = size(start); if (n==2), start = [start NaN*ones(m,1)]; elseif (n~=3), error([upper(mfilename) ' requires 2- or 3-element Start points.']); end; end; if ~isempty(stop), [m,n] = size(stop); if (n==2), stop = [stop NaN*ones(m,1)]; elseif (n~=3), error([upper(mfilename) ' requires 2- or 3-element Stop points.']); end; end; if ~isempty(crossdir), [m,n] = size(crossdir); if (n<3), crossdir = [crossdir NaN*ones(m,3-n)]; elseif (n~=3), if (all(imag(crossdir(:))==0)), error([upper(mfilename) ' requires 2- or 3-element CrossDir vectors.']); else, error([upper(mfilename) ' requires 2- or 3-element NormalDir vectors.']); end; end; end; % fill empty arguments if isempty(start ), start = [Inf Inf Inf]; end; if isempty(stop ), stop = [Inf Inf Inf]; end; if isempty(len ), len = Inf; end; if isempty(baseangle ), baseangle = Inf; end; if isempty(tipangle ), tipangle = Inf; end; if isempty(wid ), wid = Inf; end; if isempty(page ), page = Inf; end; if isempty(crossdir ), crossdir = [Inf Inf Inf]; end; if isempty(ends ), ends = Inf; end; if isempty(shorten ), shorten = Inf; end; if isempty(ispatch ), ispatch = Inf; end; % expand single-column arguments o = ones(narrows,1); if (size(start ,1)==1), start = o * start ; end; if (size(stop ,1)==1), stop = o * stop ; end; if (length(len )==1), len = o * len ; end; if (length(baseangle )==1), baseangle = o * baseangle ; end; if (length(tipangle )==1), tipangle = o * tipangle ; end; if (length(wid )==1), wid = o * wid ; end; if (length(page )==1), page = o * page ; end; if (size(crossdir ,1)==1), crossdir = o * crossdir ; end; if (length(ends )==1), ends = o * ends ; end; if (length(shorten )==1), shorten = o * shorten ; end; if (length(ispatch )==1), ispatch = o * ispatch ; end; ax = repmat(gca,narrows,1); %eaj 7/16/14 ax=gca; if ~isnumeric(ax), ax=double(ax); end; ax=o*ax; % if we've got handles, get the defaults from the handles if ~isempty(oldh), for k=1:narrows, oh = oldh(k); ud = get(oh,'UserData'); ax(k) = get(oh,'Parent'); %eaj 7/16/14 get(oh,'Parent'); if ~isnumeric(ans), double(ans); end; ax(k)=ans; ohtype = get(oh,'Type'); if strcmp(get(oh,'Tag'),ArrowTag), % if it's an arrow already if isinf(ispatch(k)), ispatch(k)=strcmp(ohtype,'patch'); end; % arrow UserData format: [start' stop' len base tip wid page crossdir' ends shorten] start0 = ud(1:3); stop0 = ud(4:6); if (isinf(len(k))), len(k) = ud( 7); end; if (isinf(baseangle(k))), baseangle(k) = ud( 8); end; if (isinf(tipangle(k))), tipangle(k) = ud( 9); end; if (isinf(wid(k))), wid(k) = ud(10); end; if (isinf(page(k))), page(k) = ud(11); end; if (isinf(crossdir(k,1))), crossdir(k,1) = ud(12); end; if (isinf(crossdir(k,2))), crossdir(k,2) = ud(13); end; if (isinf(crossdir(k,3))), crossdir(k,3) = ud(14); end; if (isinf(ends(k))), ends(k) = ud(15); end; if (isinf(shorten(k))), shorten(k) = ud(16); end; elseif strcmp(ohtype,'line')|strcmp(ohtype,'patch'), % it's a non-arrow line or patch convLineToPatch = 1; %set to make arrow patches when converting from lines. if isinf(ispatch(k)), ispatch(k)=convLineToPatch|strcmp(ohtype,'patch'); end; x=get(oh,'XData'); x=x(~isnan(x(:))); if isempty(x), x=NaN; end; y=get(oh,'YData'); y=y(~isnan(y(:))); if isempty(y), y=NaN; end; z=get(oh,'ZData'); z=z(~isnan(z(:))); if isempty(z), z=NaN; end; start0 = [x(1) y(1) z(1) ]; stop0 = [x(end) y(end) z(end)]; else, error([upper(mfilename) ' cannot convert ' ohtype ' objects.']); end; ii=find(isinf(start(k,:))); if ~isempty(ii), start(k,ii)=start0(ii); end; ii=find(isinf(stop( k,:))); if ~isempty(ii), stop( k,ii)=stop0( ii); end; end; end; % convert Inf's to NaN's start( isinf(start )) = NaN; stop( isinf(stop )) = NaN; len( isinf(len )) = NaN; baseangle( isinf(baseangle)) = NaN; tipangle( isinf(tipangle )) = NaN; wid( isinf(wid )) = NaN; page( isinf(page )) = NaN; crossdir( isinf(crossdir )) = NaN; ends( isinf(ends )) = NaN; shorten( isinf(shorten )) = NaN; ispatch( isinf(ispatch )) = NaN; % set up the UserData data (here so not corrupted by log10's and such) ud = [start stop len baseangle tipangle wid page crossdir ends shorten]; % Set Page defaults page = ~isnan(page) & trueornan(page); % Get axes limits, range, min; correct for aspect ratio and log scale axm = zeros(3,narrows); axr = zeros(3,narrows); axrev = zeros(3,narrows); ap = zeros(2,narrows); xyzlog = zeros(3,narrows); limmin = zeros(2,narrows); limrange = zeros(2,narrows); oldaxlims = zeros(6,narrows); oneax = all(ax==ax(1)); if (oneax), T = zeros(4,4); invT = zeros(4,4); else, T = zeros(16,narrows); invT = zeros(16,narrows); end; axnotdone = true(size(ax)); while (any(axnotdone)), ii = find(axnotdone,1); curax = ax(ii); curpage = page(ii); % get axes limits and aspect ratio axl = [get(curax,'XLim'); get(curax,'YLim'); get(curax,'ZLim')]; ax==curax; oldaxlims(:,ans)=repmat(reshape(axl',[],1),1,sum(ans)); % get axes size in pixels (points) u = get(curax,'Units'); axposoldunits = get(curax,'Position'); really_curpage = curpage & strcmp(u,'normalized'); if (really_curpage), curfig = get(curax,'Parent'); pu = get(curfig,'PaperUnits'); set(curfig,'PaperUnits','points'); pp = get(curfig,'PaperPosition'); set(curfig,'PaperUnits',pu); set(curax,'Units','pixels'); curapscreen = get(curax,'Position'); set(curax,'Units','normalized'); curap = pp.*get(curax,'Position'); else, set(curax,'Units','pixels'); curapscreen = get(curax,'Position'); curap = curapscreen; end; set(curax,'Units',u); set(curax,'Position',axposoldunits); % handle non-stretched axes position str_stretch = { 'DataAspectRatioMode' ; ... 'PlotBoxAspectRatioMode' ; ... 'CameraViewAngleMode' }; str_camera = { 'CameraPositionMode' ; ... 'CameraTargetMode' ; ... 'CameraViewAngleMode' ; ... 'CameraUpVectorMode' }; notstretched = strcmp(get(curax,str_stretch),'manual'); manualcamera = strcmp(get(curax,str_camera),'manual'); if ~arrow_WarpToFill(notstretched,manualcamera,curax), % give a warning that this has not been thoroughly tested if 0 & ARROW_STRETCH_WARN, ARROW_STRETCH_WARN = 0; strs = {str_stretch{1:2},str_camera{:}}; strs = [char(ones(length(strs),1)*sprintf('\n ')) char(strs)]'; warning([upper(mfilename) ' may not yet work quite right ' ... 'if any of the following are ''manual'':' strs(:).']); end; % find the true pixel size of the actual axes texttmp = text(axl(1,[1 2 2 1 1 2 2 1]), ... axl(2,[1 1 2 2 1 1 2 2]), ... axl(3,[1 1 1 1 2 2 2 2]),''); set(texttmp,'Units','points'); textpos = get(texttmp,'Position'); delete(texttmp); textpos = cat(1,textpos{:}); textpos = max(textpos(:,1:2)) - min(textpos(:,1:2)); % adjust the axes position if (really_curpage), % adjust to printed size textpos = textpos * min(curap(3:4)./textpos); curap = [curap(1:2)+(curap(3:4)-textpos)/2 textpos]; else, % adjust for pixel roundoff textpos = textpos * min(curapscreen(3:4)./textpos); curap = [curap(1:2)+(curap(3:4)-textpos)/2 textpos]; end; end; if ARROW_PERSP_WARN & ~strcmp(get(curax,'Projection'),'orthographic'), ARROW_PERSP_WARN = 0; warning([upper(mfilename) ' does not yet work right for 3-D perspective projection.']); end; % adjust limits for log scale on axes curxyzlog = strcmp(get(curax,{'XScale' 'YScale' 'ZScale'})','log'); if (any(curxyzlog)), ii = find([curxyzlog;curxyzlog]); if (any(axl(ii)<=0)), error([upper(mfilename) ' does not support non-positive limits on log-scaled axes.']); else, axl(ii) = log10(axl(ii)); end; end; % correct for 'reverse' direction on axes; curreverse = strcmp(get(curax,{'XDir' 'YDir' 'ZDir'})','reverse'); ii = find(curreverse); if ~isempty(ii), axl(ii,[1 2])=-axl(ii,[2 1]); end; % compute the range of 2-D values try, curT=get(curax,'Xform'); catch, num2cell(get(curax,'View')); curT=viewmtx(ans{:}); end; lim = curT*[0 1 0 1 0 1 0 1;0 0 1 1 0 0 1 1;0 0 0 0 1 1 1 1;1 1 1 1 1 1 1 1]; lim = lim(1:2,:)./([1;1]*lim(4,:)); curlimmin = min(lim')'; curlimrange = max(lim')' - curlimmin; curinvT = inv(curT); if (~oneax), curT = curT.'; curinvT = curinvT.'; curT = curT(:); curinvT = curinvT(:); end; % check which arrows to which cur corresponds ii = find((ax==curax)&(page==curpage)); oo = ones(1,length(ii)); axr(:,ii) = diff(axl')' * oo; axm(:,ii) = axl(:,1) * oo; axrev(:,ii) = curreverse * oo; ap(:,ii) = curap(3:4)' * oo; xyzlog(:,ii) = curxyzlog * oo; limmin(:,ii) = curlimmin * oo; limrange(:,ii) = curlimrange * oo; if (oneax), T = curT; invT = curinvT; else, T(:,ii) = curT * oo; invT(:,ii) = curinvT * oo; end; axnotdone(ii) = zeros(1,length(ii)); end; % correct for log scales curxyzlog = xyzlog.'; ii = find(curxyzlog(:)); if ~isempty(ii), start( ii) = real(log10(start( ii))); stop( ii) = real(log10(stop( ii))); if (all(imag(crossdir)==0)), % pulled (ii) subscript on crossdir, 12/5/96 eaj crossdir(ii) = real(log10(crossdir(ii))); end; end; % correct for reverse directions ii = find(axrev.'); if ~isempty(ii), start( ii) = -start( ii); stop( ii) = -stop( ii); crossdir(ii) = -crossdir(ii); end; % transpose start/stop values start = start.'; stop = stop.'; % take care of defaults, page was done above ii=find(isnan(start(:) )); if ~isempty(ii), start(ii) = axm(ii)+axr(ii)/2; end; ii=find(isnan(stop(:) )); if ~isempty(ii), stop(ii) = axm(ii)+axr(ii)/2; end; ii=find(isnan(crossdir(:) )); if ~isempty(ii), crossdir(ii) = zeros(length(ii),1); end; ii=find(isnan(len )); if ~isempty(ii), len(ii) = ones(length(ii),1)*deflen; end; ii=find(isnan(baseangle )); if ~isempty(ii), baseangle(ii) = ones(length(ii),1)*defbaseangle; end; ii=find(isnan(tipangle )); if ~isempty(ii), tipangle(ii) = ones(length(ii),1)*deftipangle; end; ii=find(isnan(wid )); if ~isempty(ii), wid(ii) = ones(length(ii),1)*defwid; end; ii=find(isnan(ends )); if ~isempty(ii), ends(ii) = ones(length(ii),1)*defends; end; ii=find(isnan(shorten )); if ~isempty(ii), shorten(ii) = ones(length(ii),1)*defshorten; end; % transpose rest of values len = len.'; baseangle = baseangle.'; tipangle = tipangle.'; wid = wid.'; page = page.'; crossdir = crossdir.'; ends = ends.'; shorten = shorten.'; ax = ax.'; % given x, a 3xN matrix of points in 3-space; % want to convert to X, the corresponding 4xN 2-space matrix % % tmp1=[(x-axm)./axr; ones(1,size(x,1))]; % if (oneax), X=T*tmp1; % else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1; % tmp2=zeros(4,4*N); tmp2(:)=tmp1(:); % X=zeros(4,N); X(:)=sum(tmp2)'; end; % X = X ./ (ones(4,1)*X(4,:)); % for all points with start==stop, start=stop-(verysmallvalue)*(up-direction); ii = find(all(start==stop)); if ~isempty(ii), % find an arrowdir vertical on screen and perpendicular to viewer % transform to 2-D tmp1 = [(stop(:,ii)-axm(:,ii))./axr(:,ii);ones(1,length(ii))]; if (oneax), twoD=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,ii).*tmp1; tmp2=zeros(4,4*length(ii)); tmp2(:)=tmp1(:); twoD=zeros(4,length(ii)); twoD(:)=sum(tmp2)'; end; twoD=twoD./(ones(4,1)*twoD(4,:)); % move the start point down just slightly tmp1 = twoD + [0;-1/1000;0;0]*(limrange(2,ii)./ap(2,ii)); % transform back to 3-D if (oneax), threeD=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT(:,ii).*tmp1; tmp2=zeros(4,4*length(ii)); tmp2(:)=tmp1(:); threeD=zeros(4,length(ii)); threeD(:)=sum(tmp2)'; end; start(:,ii) = (threeD(1:3,:)./(ones(3,1)*threeD(4,:))).*axr(:,ii)+axm(:,ii); end; % compute along-arrow points % transform Start points tmp1=[(start-axm)./axr;ones(1,narrows)]; if (oneax), X0=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); X0=zeros(4,narrows); X0(:)=sum(tmp2)'; end; X0=X0./(ones(4,1)*X0(4,:)); % transform Stop points tmp1=[(stop-axm)./axr;ones(1,narrows)]; if (oneax), Xf=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); Xf=zeros(4,narrows); Xf(:)=sum(tmp2)'; end; Xf=Xf./(ones(4,1)*Xf(4,:)); % compute pixel distance between points D = sqrt(sum(((Xf(1:2,:)-X0(1:2,:)).*(ap./limrange)).^2)); D = D + (D==0); %eaj new 2/24/98 % shorten the length if requested % added 2/6/2013 numends = (ends==1) + (ends==2) + 2*(ends==3); mask = shorten & D<len.*numends; len(mask) = D(mask) ./ numends(mask); % compute and modify along-arrow distances len1 = len; len2 = len - (len.*tan(tipangle/180*pi)-wid/2).*tan((90-baseangle)/180*pi); slen0 = zeros(1,narrows); slen1 = len1 .* ((ends==2)|(ends==3)); slen2 = len2 .* ((ends==2)|(ends==3)); len0 = zeros(1,narrows); len1 = len1 .* ((ends==1)|(ends==3)); len2 = len2 .* ((ends==1)|(ends==3)); % for no start arrowhead ii=find((ends==1)&(D<len2)); if ~isempty(ii), slen0(ii) = D(ii)-len2(ii); end; % for no end arrowhead ii=find((ends==2)&(D<slen2)); if ~isempty(ii), len0(ii) = D(ii)-slen2(ii); end; len1 = len1 + len0; len2 = len2 + len0; slen1 = slen1 + slen0; slen2 = slen2 + slen0; % note: the division by D below will probably not be accurate if both % of the following are true: % 1. the ratio of the line length to the arrowhead % length is large % 2. the view is highly perspective. % compute stoppoints tmp1=X0.*(ones(4,1)*(len0./D))+Xf.*(ones(4,1)*(1-len0./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; stoppoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute tippoints tmp1=X0.*(ones(4,1)*(len1./D))+Xf.*(ones(4,1)*(1-len1./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; tippoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute basepoints tmp1=X0.*(ones(4,1)*(len2./D))+Xf.*(ones(4,1)*(1-len2./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; basepoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute startpoints tmp1=X0.*(ones(4,1)*(1-slen0./D))+Xf.*(ones(4,1)*(slen0./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; startpoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute stippoints tmp1=X0.*(ones(4,1)*(1-slen1./D))+Xf.*(ones(4,1)*(slen1./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; stippoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute sbasepoints tmp1=X0.*(ones(4,1)*(1-slen2./D))+Xf.*(ones(4,1)*(slen2./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; sbasepoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute cross-arrow directions for arrows with NormalDir specified if (any(imag(crossdir(:))~=0)), ii = find(any(imag(crossdir)~=0)); crossdir(:,ii) = cross((stop(:,ii)-start(:,ii))./axr(:,ii), ... imag(crossdir(:,ii))).*axr(:,ii); end; % compute cross-arrow directions basecross = crossdir + basepoint; tipcross = crossdir + tippoint; sbasecross = crossdir + sbasepoint; stipcross = crossdir + stippoint; ii = find(all(crossdir==0)|any(isnan(crossdir))); if ~isempty(ii), numii = length(ii); % transform start points tmp1 = [basepoint(:,ii) tippoint(:,ii) sbasepoint(:,ii) stippoint(:,ii)]; tmp1 = (tmp1-axm(:,[ii ii ii ii])) ./ axr(:,[ii ii ii ii]); tmp1 = [tmp1; ones(1,4*numii)]; if (oneax), X0=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,[ii ii ii ii]).*tmp1; tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:); X0=zeros(4,4*numii); X0(:)=sum(tmp2)'; end; X0=X0./(ones(4,1)*X0(4,:)); % transform stop points tmp1 = [(2*stop(:,ii)-start(:,ii)-axm(:,ii))./axr(:,ii);ones(1,numii)]; tmp1 = [tmp1 tmp1 tmp1 tmp1]; if (oneax), Xf=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,[ii ii ii ii]).*tmp1; tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:); Xf=zeros(4,4*numii); Xf(:)=sum(tmp2)'; end; Xf=Xf./(ones(4,1)*Xf(4,:)); % compute perpendicular directions pixfact = ((limrange(1,ii)./limrange(2,ii)).*(ap(2,ii)./ap(1,ii))).^2; pixfact = [pixfact pixfact pixfact pixfact]; pixfact = [pixfact;1./pixfact]; [dummyval,jj] = max(abs(Xf(1:2,:)-X0(1:2,:))); jj1 = ((1:4)'*ones(1,length(jj))==ones(4,1)*jj); jj2 = ((1:4)'*ones(1,length(jj))==ones(4,1)*(3-jj)); jj3 = jj1(1:2,:); Xf(jj1)=Xf(jj1)+(Xf(jj1)-X0(jj1)==0); %eaj new 2/24/98 Xp = X0; Xp(jj2) = X0(jj2) + ones(sum(jj2(:)),1); Xp(jj1) = X0(jj1) - (Xf(jj2)-X0(jj2))./(Xf(jj1)-X0(jj1)) .* pixfact(jj3); % inverse transform the cross points if (oneax), Xp=invT*Xp; else, tmp1=[Xp;Xp;Xp;Xp]; tmp1=invT(:,[ii ii ii ii]).*tmp1; tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:); Xp=zeros(4,4*numii); Xp(:)=sum(tmp2)'; end; Xp=(Xp(1:3,:)./(ones(3,1)*Xp(4,:))).*axr(:,[ii ii ii ii])+axm(:,[ii ii ii ii]); basecross(:,ii) = Xp(:,0*numii+(1:numii)); tipcross(:,ii) = Xp(:,1*numii+(1:numii)); sbasecross(:,ii) = Xp(:,2*numii+(1:numii)); stipcross(:,ii) = Xp(:,3*numii+(1:numii)); end; % compute all points % compute start points axm11 = [axm axm axm axm axm axm axm axm axm axm axm]; axr11 = [axr axr axr axr axr axr axr axr axr axr axr]; st = [stoppoint tippoint basepoint sbasepoint stippoint startpoint stippoint sbasepoint basepoint tippoint stoppoint]; tmp1 = (st - axm11) ./ axr11; tmp1 = [tmp1; ones(1,size(tmp1,2))]; if (oneax), X0=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[T T T T T T T T T T T].*tmp1; tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:); X0=zeros(4,11*narrows); X0(:)=sum(tmp2)'; end; X0=X0./(ones(4,1)*X0(4,:)); % compute stop points tmp1 = ([start tipcross basecross sbasecross stipcross stop stipcross sbasecross basecross tipcross start] ... - axm11) ./ axr11; tmp1 = [tmp1; ones(1,size(tmp1,2))]; if (oneax), Xf=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[T T T T T T T T T T T].*tmp1; tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:); Xf=zeros(4,11*narrows); Xf(:)=sum(tmp2)'; end; Xf=Xf./(ones(4,1)*Xf(4,:)); % compute lengths len0 = len.*((ends==1)|(ends==3)).*tan(tipangle/180*pi); slen0 = len.*((ends==2)|(ends==3)).*tan(tipangle/180*pi); le = [zeros(1,narrows) len0 wid/2 wid/2 slen0 zeros(1,narrows) -slen0 -wid/2 -wid/2 -len0 zeros(1,narrows)]; aprange = ap./limrange; aprange = [aprange aprange aprange aprange aprange aprange aprange aprange aprange aprange aprange]; D = sqrt(sum(((Xf(1:2,:)-X0(1:2,:)).*aprange).^2)); Dii=find(D==0); if ~isempty(Dii), D=D+(D==0); le(Dii)=zeros(1,length(Dii)); end; %should fix DivideByZero warnings tmp1 = X0.*(ones(4,1)*(1-le./D)) + Xf.*(ones(4,1)*(le./D)); % inverse transform if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[invT invT invT invT invT invT invT invT invT invT invT].*tmp1; tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,11*narrows); tmp3(:)=sum(tmp2)'; end; pts = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)) .* axr11 + axm11; % correct for ones where the crossdir was specified ii = find(~(all(crossdir==0)|any(isnan(crossdir)))); if ~isempty(ii), D1 = [pts(:,1*narrows+ii)-pts(:,9*narrows+ii) ... pts(:,2*narrows+ii)-pts(:,8*narrows+ii) ... pts(:,3*narrows+ii)-pts(:,7*narrows+ii) ... pts(:,4*narrows+ii)-pts(:,6*narrows+ii) ... pts(:,6*narrows+ii)-pts(:,4*narrows+ii) ... pts(:,7*narrows+ii)-pts(:,3*narrows+ii) ... pts(:,8*narrows+ii)-pts(:,2*narrows+ii) ... pts(:,9*narrows+ii)-pts(:,1*narrows+ii)]/2; ii = ii'*ones(1,8) + ones(length(ii),1)*[1:4 6:9]*narrows; ii = ii(:)'; pts(:,ii) = st(:,ii) + D1; end; % readjust for reverse directions iicols=(1:narrows)'; iicols=iicols(:,ones(1,11)); iicols=iicols(:).'; tmp1=axrev(:,iicols); ii = find(tmp1(:)); if ~isempty(ii), pts(ii)=-pts(ii); end; % change from starting/ending at the stop point to doing it at the midpoint %eaj 7/14/2014 (pts(:,2*narrows+1:3*narrows)+pts(:,3*narrows+1:4*narrows))/2; %eaj 7/14/2014 pts = [ans pts(:,[3*narrows+1:end narrows+1:3*narrows]) ans]; %eaj 7/14/2014 % readjust for log scale on axes tmp1=xyzlog(:,iicols); ii = find(tmp1(:)); if ~isempty(ii), pts(ii)=10.^pts(ii); end; % compute the x,y,z coordinates of the patches; ii = narrows*(0:size(pts,2)/narrows-1)'*ones(1,narrows) + ones(size(pts,2)/narrows,1)*(1:narrows); ii = ii(:)'; x = zeros(size(pts,2)/narrows,narrows); y = zeros(size(pts,2)/narrows,narrows); z = zeros(size(pts,2)/narrows,narrows); x(:) = pts(1,ii)'; y(:) = pts(2,ii)'; z(:) = pts(3,ii)'; % do the output if (nargout<=1), % % create or modify the patches newpatch = trueornan(ispatch) & (isempty(oldh)|~strcmp(get(oldh,'Type'),'patch')); newline = ~trueornan(ispatch) & (isempty(oldh)|~strcmp(get(oldh,'Type'),'line')); if isempty(oldh), H=zeros(narrows,1); else, H=oldh; end; % % make or modify the arrows for k=1:narrows, if all(isnan(ud(k,[3 6])))&arrow_is2DXY(ax(k)), zz=[]; else, zz=z(:,k); end; xx=x(:,k); yy=y(:,k); if (0), % this fix didn't work, so let's not use it -- 8/26/03 % try to work around a MATLAB 6.x OpenGL bug -- 7/28/02 mask=any([ones(1,2+size(zz,2));diff([xx yy zz],[],1)],2); xx=xx(mask); yy=yy(mask); if ~isempty(zz), zz=zz(mask); end; end; % plot the patch or line if newpatch(k) || trueornan(ispatch(k)) %eaj 7/14/2014, 5/25/2016 % patch is closed so don't need endpoints %eaj 7/14/2014 if ~isempty(xx), xx(end)=[]; end; %eaj 7/14/2014 if ~isempty(yy), yy(end)=[]; end; %eaj 7/14/2014 if ~isempty(zz), zz(end)=[]; end; %eaj 7/14/2014 end %eaj 7/14/2014 xyz = {'XData',xx,'YData',yy,'ZData',zz,'Tag',ArrowTag}; if newpatch(k)|newline(k), if newpatch(k), H(k) = patch(xyz{:}); else, H(k) = line(xyz{:}); end; if ~isempty(oldh), arrow_copyprops(oldh(k),H(k)); end; else, if strcmp(get(H(k),'Type'),'patch') %eaj 5/25/16 if ispatch(k) xyz = {xyz{:},'CData',[]}; end; set(H(k),xyz{:}); end; end; if ~isempty(oldh), delete(oldh(oldh~=H)); end; % % additional properties set(H,'Clipping','off'); set(H,{'UserData'},num2cell(ud,2)); if length(extraprops)>0 ii = find(strcmpi(extraprops(1:2:end),'color')); %eaj 5/25/16 ispatch = strcmp(get(H,'Type'),'patch'); %eaj start 5/25/16 while ~isempty(ii) && any(ispatch) if ii>1, set(H,extraprops{1:2*ii-2}); end; c = extraprops{2*ii}; extraprops(1:2*ii) = []; ii(1) = []; if all(ispatch) || ischar(c)&&size(c,1)==1 || isnumeric(c)&&isequal(size(c),[1 3]) set(H,'EdgeColor',c,'FaceColor',c) elseif iscell(c) && numel(c)~=numel(H) set(H(ispatch),'EdgeColor',c(ispatch),'FaceColor',c(ispatch)); set(H(~ispatch),'Color',c(~ispatch)); elseif isnumeric(c) && isequal(size(c),[numel(H) 3]) set(H(ispatch),'EdgeColor',num2cell(c(ispatch,:),2),'FaceColor',num2cell(c(ispatch,:),2)); set(H(~ispatch),'Color',num2cell(c(~ispatch,:),2)); else warning('ignoring unknown or invalid ''Color'' specification'); end end if ~isempty(extraprops) %eaj end 5/25/16 set(H,extraprops{:}); end %eaj 5/25/16 end % handle choosing arrow Start and/or Stop locations if unspecified [H,oldaxlims,errstr] = arrow_clicks(H,ud,x,y,z,ax,oldaxlims); if ~isempty(errstr), error([upper(mfilename) ' got ' errstr]); end; % set the output if (nargout>0), h=H; end; % make sure the axis limits did not change if isempty(oldaxlims), ARROW_AXLIMITS = []; ARROW_AX = []; else, lims = get(ax(:),{'XLim','YLim','ZLim'})'; lims = reshape(cat(2,lims{:}),6,size(lims,2)); mask = arrow_is2DXY(ax(:)); oldaxlims(5:6,mask) = lims(5:6,mask); % store them for possible restoring mask = any(oldaxlims~=lims,1); ARROW_AX=ax(mask); ARROW_AXLIMITS=oldaxlims(:,mask); if any(mask), warning(arrow_warnlimits(ARROW_AX,narrows)); end; end; else, % don't create the patch, just return the data h=x; yy=y; zz=z; end; function out = arrow_defcheck(in,def,prop) % check if we got 'default' values out = in; if ~isstr(in), return; end; if size(in,1)==1 & strncmp(lower(in),'def',3), out = def; elseif ~isempty(prop), error([upper(mfilename) ' does not recognize ''' in(:)' ''' as a valid ''' prop ''' string.']); end; function [H,oldaxlims,errstr] = arrow_clicks(H,ud,x,y,z,ax,oldaxlims) % handle choosing arrow Start and/or Stop locations if necessary errstr = ''; if isempty(H)|isempty(ud)|isempty(x), return; end; % determine which (if any) need Start and/or Stop needStart = all(isnan(ud(:,1:3)'))'; needStop = all(isnan(ud(:,4:6)'))'; mask = any(needStart|needStop); if ~any(mask), return; end; ud(~mask,:)=[]; ax(:,~mask)=[]; x(:,~mask)=[]; y(:,~mask)=[]; z(:,~mask)=[]; % make them invisible for the time being set(H,'Visible','off'); % save the current axes and limits modes; set to manual for the time being oldAx = gca; limModes=get(ax(:),{'XLimMode','YLimMode','ZLimMode'}); set(ax(:),{'XLimMode','YLimMode','ZLimMode'},{'manual','manual','manual'}); % loop over each arrow that requires attention jj = find(mask); for ii=1:length(jj), h = H(jj(ii)); axes(ax(ii)); % figure out correct call if needStart(ii), prop='Start'; else, prop='Stop'; end; [wasInterrupted,errstr] = arrow_click(needStart(ii)&needStop(ii),h,prop,ax(ii)); % handle errors and control-C if wasInterrupted, delete(H(jj(ii:end))); H(jj(ii:end))=[]; oldaxlims(jj(ii:end),:)=[]; break; end; end; % restore the axes and limit modes axes(oldAx); set(ax(:),{'XLimMode','YLimMode','ZLimMode'},limModes); function [wasInterrupted,errstr] = arrow_click(lockStart,H,prop,ax) % handle the clicks for one arrow fig = get(ax,'Parent'); % save some things oldFigProps = {'Pointer','WindowButtonMotionFcn','WindowButtonUpFcn'}; oldFigValue = get(fig,oldFigProps); oldArrowProps = {'EraseMode'}; if ~isnumeric(fig), oldArrowProps={}; end %eaj 5/24/16 % only use in HG2 oldArrowValue = get(H,oldArrowProps); if isnumeric(fig), %eaj 5/24/16 set(H,'EraseMode','background'); %because 'xor' makes shaft invisible unless Width>1 -- only use in HG2 end %eaj 5/24/16 global ARROW_CLICK_H ARROW_CLICK_PROP ARROW_CLICK_AX ARROW_CLICK_USE_Z ARROW_CLICK_H=H; ARROW_CLICK_PROP=prop; ARROW_CLICK_AX=ax; ARROW_CLICK_USE_Z=~arrow_is2DXY(ax)|~arrow_planarkids(ax); set(fig,'Pointer','crosshair'); % set up the WindowButtonMotion so we can see the arrow while moving around set(fig,'WindowButtonUpFcn','set(gcf,''WindowButtonUpFcn'','''')', ... 'WindowButtonMotionFcn',''); if ~lockStart, set(H,'Visible','on'); set(fig,'WindowButtonMotionFcn',[mfilename '(''callback'',''motion'');']); end; % wait for the button to be pressed [wasKeyPress,wasInterrupted,errstr] = arrow_wfbdown(fig); % if we wanted to click-drag, set the Start point if lockStart & ~wasInterrupted, pt = arrow_point(ARROW_CLICK_AX,ARROW_CLICK_USE_Z); feval(mfilename,H,'Start',pt,'Stop',pt); set(H,'Visible','on'); ARROW_CLICK_PROP='Stop'; set(fig,'WindowButtonMotionFcn',[mfilename '(''callback'',''motion'');']); % wait for the mouse button to be released try waitfor(fig,'WindowButtonUpFcn',''); catch errstr = lasterr; wasInterrupted = 1; end; end; if ~wasInterrupted, feval(mfilename,'callback','motion'); end; % restore some things set(gcf,oldFigProps,oldFigValue); set(H,oldArrowProps,oldArrowValue); function arrow_callback(varargin) % handle redrawing callbacks if nargin==0, return; end; str = varargin{1}; if ~isstr(str), error([upper(mfilename) ' got an invalid Callback command.']); end; s = lower(str); if strcmp(s,'motion'), % motion callback global ARROW_CLICK_H ARROW_CLICK_PROP ARROW_CLICK_AX ARROW_CLICK_USE_Z feval(mfilename,ARROW_CLICK_H,ARROW_CLICK_PROP,arrow_point(ARROW_CLICK_AX,ARROW_CLICK_USE_Z)); drawnow; else, error([upper(mfilename) ' does not recognize ''' str(:).' ''' as a valid Callback option.']); end; function out = arrow_point(ax,use_z) % return the point on the given axes if nargin==0, ax=gca; end; if nargin<2, use_z=~arrow_is2DXY(ax)|~arrow_planarkids(ax); end; out = get(ax,'CurrentPoint'); out = out(1,:); if ~use_z, out=out(1:2); end; function [wasKeyPress,wasInterrupted,errstr] = arrow_wfbdown(fig) % wait for button down ignoring object ButtonDownFcn's if nargin==0, fig=gcf; end; errstr = ''; % save ButtonDownFcn values objs = findobj(fig); buttonDownFcns = get(objs,'ButtonDownFcn'); mask=~strcmp(buttonDownFcns,''); objs=objs(mask); buttonDownFcns=buttonDownFcns(mask); set(objs,'ButtonDownFcn',''); % save other figure values figProps = {'KeyPressFcn','WindowButtonDownFcn'}; figValue = get(fig,figProps); % do the real work set(fig,'KeyPressFcn','set(gcf,''KeyPressFcn'','''',''WindowButtonDownFcn'','''');', ... 'WindowButtonDownFcn','set(gcf,''WindowButtonDownFcn'','''')'); lasterr(''); try waitfor(fig,'WindowButtonDownFcn',''); wasInterrupted = 0; catch wasInterrupted = 1; end wasKeyPress = ~wasInterrupted & strcmp(get(fig,'KeyPressFcn'),''); if wasInterrupted, errstr=lasterr; end; % restore ButtonDownFcn and other figure values set(objs,'ButtonDownFcn',buttonDownFcns); set(fig,figProps,figValue); function [out,is2D] = arrow_is2DXY(ax) % check if axes are 2-D X-Y plots % may not work for modified camera angles, etc. out = false(size(ax)); % 2-D X-Y plots is2D = out; % any 2-D plots views = get(ax(:),{'View'}); views = cat(1,views{:}); out(:) = abs(views(:,2))==90; is2D(:) = out(:) | all(rem(views',90)==0)'; function out = arrow_planarkids(ax) % check if axes descendents all have empty ZData (lines,patches,surfaces) out = true(size(ax)); allkids = get(ax(:),{'Children'}); for k=1:length(allkids), kids = get([findobj(allkids{k},'flat','Type','line') findobj(allkids{k},'flat','Type','patch') findobj(allkids{k},'flat','Type','surface')],{'ZData'}); for j=1:length(kids), if ~isempty(kids{j}), out(k)=logical(0); break; end; end; end; function arrow_fixlimits(ax,lims) % reset the axis limits as necessary if isempty(ax) || isempty(lims), disp([upper(mfilename) ' does not remember any axis limits to reset.']); end; for k=1:numel(ax), if any(get(ax(k),'XLim')~=lims(1:2,k)'), set(ax(k),'XLim',lims(1:2,k)'); end; if any(get(ax(k),'YLim')~=lims(3:4,k)'), set(ax(k),'YLim',lims(3:4,k)'); end; if any(get(ax(k),'ZLim')~=lims(5:6,k)'), set(ax(k),'ZLim',lims(5:6,k)'); end; end; function out = arrow_WarpToFill(notstretched,manualcamera,curax) % check if we are in "WarpToFill" mode. out = strcmp(get(curax,'WarpToFill'),'on'); % 'WarpToFill' is undocumented, so may need to replace this by % out = ~( any(notstretched) & any(manualcamera) ); function out = arrow_warnlimits(ax,narrows) % create a warning message if we've changed the axis limits msg = ''; switch (numel(ax)) case 1, msg=''; case 2, msg='on two axes '; otherwise, msg='on several axes '; end; msg = [upper(mfilename) ' changed the axis limits ' msg ... 'when adding the arrow']; if (narrows>1), msg=[msg 's']; end; out = [msg '.' sprintf('\n') ' Call ' upper(mfilename) ... ' FIXLIMITS to reset them now.']; function arrow_copyprops(fm,to) % copy line properties to patches props = {'EraseMode','LineStyle','LineWidth','Marker','MarkerSize',... 'MarkerEdgeColor','MarkerFaceColor','ButtonDownFcn', ... 'Clipping','DeleteFcn','BusyAction','HandleVisibility', ... 'Selected','SelectionHighlight','Visible'}; if ~isnumeric(findobj('Type','root')), props(strcmp(props,'EraseMode'))=[]; end; %eaj 5/24/16 lineprops = {'Color', props{:}}; patchprops = {'EdgeColor',props{:}}; patch2props = {'FaceColor',patchprops{:}}; fmpatch = strcmp(get(fm,'Type'),'patch'); topatch = strcmp(get(to,'Type'),'patch'); set(to( fmpatch& topatch),patch2props,get(fm( fmpatch& topatch),patch2props)); %p->p set(to(~fmpatch&~topatch),lineprops, get(fm(~fmpatch&~topatch),lineprops )); %l->l set(to( fmpatch&~topatch),lineprops, get(fm( fmpatch&~topatch),patchprops )); %p->l set(to(~fmpatch& topatch),patchprops, get(fm(~fmpatch& topatch),lineprops) ,'FaceColor','none'); %l->p function arrow_props % display further help info about ARROW properties c = sprintf('\n'); disp([c ... 'ARROW Properties: Default values are given in [square brackets], and other' c ... ' acceptable equivalent property names are in (parenthesis).' c c ... ' Start The starting points. For N arrows, B' c ... ' this should be a Nx2 or Nx3 matrix. /|\ ^' c ... ' Stop The end points. For N arrows, this /|||\ |' c ... ' should be a Nx2 or Nx3 matrix. //|||\\ L|' c ... ' Length Length of the arrowhead (in pixels on ///|||\\\ e|' c ... ' screen, points on a page). [16] (Len) ////|||\\\\ n|' c ... ' BaseAngle Angle (degrees) of the base angle /////|D|\\\\\ g|' c ... ' ADE. For a simple stick arrow, use //// ||| \\\\ t|' c ... ' BaseAngle=TipAngle. [90] (Base) /// ||| \\\ h|' c ... ' TipAngle Angle (degrees) of tip angle ABC. //<----->|| \\ |' c ... ' [16] (Tip) / base ||| \ V' c ... ' Width Width of the base in pixels. Not E angle ||<-------->C' c ... ' the ''LineWidth'' prop. [0] (Wid) |||tipangle' c ... ' Page If provided, non-empty, and not NaN, |||' c ... ' this causes ARROW to use hardcopy |||' c ... ' rather than onscreen proportions. A' c ... ' This is important if screen aspect --> <-- width' c ... ' ratio and hardcopy aspect ratio are ----CrossDir---->' c ... ' vastly different. []' c... ' CrossDir A vector giving the direction towards which the fletches' c ... ' on the arrow should go. [computed such that it is perpen-' c ... ' dicular to both the arrow direction and the view direction' c ... ' (i.e., as if it was pasted on a normal 2-D graph)] (Note' c ... ' that CrossDir is a vector. Also note that if an axis is' c ... ' plotted on a log scale, then the corresponding component' c ... ' of CrossDir must also be set appropriately, i.e., to 1 for' c ... ' no change in that direction, >1 for a positive change, >0' c ... ' and <1 for negative change.)' c ... ' NormalDir A vector normal to the fletch direction (CrossDir is then' c ... ' computed by the vector cross product [Line]x[NormalDir]). []' c ... ' (Note that NormalDir is a vector. Unlike CrossDir,' c ... ' NormalDir is used as is regardless of log-scaled axes.)' c ... ' Ends Set which end has an arrowhead. Valid values are ''none'',' c ... ' ''stop'', ''start'', and ''both''. [''stop''] (End)' c... ' ShortenLength Shorten length of arrowhead(s) if line is too short' c ... ' ObjectHandles Vector of handles to previously-created arrows to be' c ... ' updated or line objects to be converted to arrows.' c ... ' [] (Object,Handle)' c ... ' Type ''patch'' creates the arrow with a PATCH object (the default)' c ... ' and ''line'' creates it with a LINE object [''patch''].' c ... ' Color For patch arrows (the default), set both ''FaceColor'' and' c ... ' ''EdgeColor'' to the given value. For line arrows, set' c ... ' the ''Color'' property to the given value.' c ... ]); function out = arrow_demo % demo % create the data [x,y,z] = peaks; [ddd,out.iii]=max(z(:)); out.axlim = [min(x(:)) max(x(:)) min(y(:)) max(y(:)) min(z(:)) max(z(:))]; % modify it by inserting some NaN's [m,n] = size(z); m = floor(m/2); n = floor(n/2); z(1:m,1:n) = NaN*ones(m,n); % graph it clf('reset'); out.hs=surf(x,y,z); out.x=x; out.y=y; out.z=z; xlabel('x'); ylabel('y'); function h = arrow_demo3(in) % set the view axlim = in.axlim; axis(axlim); zlabel('z'); %set(in.hs,'FaceColor','interp'); view(3); % view(viewmtx(-37.5,30,20)); title(['Demo of the capabilities of the ARROW function in 3-D']); % Normal blue arrow h1 = feval(mfilename,[axlim(1) axlim(4) 4],[-.8 1.2 4], ... 'EdgeColor','b','FaceColor','b'); % Normal white arrow, clipped by the surface h2 = feval(mfilename,axlim([1 4 6]),[0 2 4]); t=text(-2.4,2.7,7.7,'arrow clipped by surf'); % Baseangle<90 h3 = feval(mfilename,[3 .125 3.5],[1.375 0.125 3.5],30,50); t2=text(3.1,.125,3.5,'local maximum'); % Baseangle<90, fill and edge colors different h4 = feval(mfilename,axlim(1:2:5)*.5,[0 0 0],36,60,25, ... 'EdgeColor','b','FaceColor','c'); t3=text(axlim(1)*.5,axlim(3)*.5,axlim(5)*.5-.75,'origin'); set(t3,'HorizontalAlignment','center'); % Baseangle>90, black fill h5 = feval(mfilename,[-2.9 2.9 3],[-1.3 .4 3.2],30,120,[],6, ... 'EdgeColor','r','FaceColor','k','LineWidth',2); % Baseangle>90, no fill h6 = feval(mfilename,[-2.9 2.9 1.3],[-1.3 .4 1.5],30,120,[],6, ... 'EdgeColor','r','FaceColor','none','LineWidth',2); % Stick arrow h7 = feval(mfilename,[-1.6 -1.65 -6.5],[0 -1.65 -6.5],[],16,16); t4=text(-1.5,-1.65,-7.25,'global mininum'); set(t4,'HorizontalAlignment','center'); % Normal, black fill h8 = feval(mfilename,[-1.4 0 -7.2],[-1.4 0 -3],'FaceColor','k'); t5=text(-1.5,0,-7.75,'local minimum'); set(t5,'HorizontalAlignment','center'); % Gray fill, crossdir specified, 'LineStyle' -- h9 = feval(mfilename,[-3 2.2 -6],[-3 2.2 -.05],36,[],27,6,[],[0 -1 0], ... 'EdgeColor','k','FaceColor',.75*[1 1 1],'LineStyle','--'); % a series of normal arrows, linearly spaced, crossdir specified h10y=(0:4)'/3; h10 = feval(mfilename,[-3*ones(size(h10y)) h10y -6.5*ones(size(h10y))], ... [-3*ones(size(h10y)) h10y -.05*ones(size(h10y))], ... 12,[],[],[],[],[0 -1 0]); % a series of normal arrows, linearly spaced h11x=(1:.33:2.8)'; h11 = feval(mfilename,[h11x -3*ones(size(h11x)) 6.5*ones(size(h11x))], ... [h11x -3*ones(size(h11x)) -.05*ones(size(h11x))]); % series of magenta arrows, radially oriented, crossdir specified h12x=2; h12y=-3; h12z=axlim(5)/2; h12xr=1; h12zr=h12z; ir=.15;or=.81; h12t=(0:11)'/6*pi; h12 = feval(mfilename, ... [h12x+h12xr*cos(h12t)*ir h12y*ones(size(h12t)) ... h12z+h12zr*sin(h12t)*ir],[h12x+h12xr*cos(h12t)*or ... h12y*ones(size(h12t)) h12z+h12zr*sin(h12t)*or], ... 10,[],[],[],[], ... [-h12xr*sin(h12t) zeros(size(h12t)) h12zr*cos(h12t)],... 'FaceColor','none','EdgeColor','m'); % series of normal arrows, tangentially oriented, crossdir specified or13=.91; h13t=(0:.5:12)'/6*pi; locs = [h12x+h12xr*cos(h13t)*or13 h12y*ones(size(h13t)) h12z+h12zr*sin(h13t)*or13]; h13 = feval(mfilename,locs(1:end-1,:),locs(2:end,:),6); % arrow with no line ==> oriented downwards h14 = feval(mfilename,[3 3 .100001],[3 3 .1],30); t6=text(3,3,3.6,'no line'); set(t6,'HorizontalAlignment','center'); % arrow with arrowheads at both ends h15 = feval(mfilename,[-.5 -3 -3],[1 -3 -3],'Ends','both','FaceColor','g', ... 'Length',20,'Width',3,'CrossDir',[0 0 1],'TipAngle',25); h=[h1;h2;h3;h4;h5;h6;h7;h8;h9;h10;h11;h12;h13;h14;h15]; function h = arrow_demo2(in) axlim = in.axlim; dolog = 1; if (dolog), set(in.hs,'YData',10.^get(in.hs,'YData')); end; shading('interp'); view(2); title(['Demo of the capabilities of the ARROW function in 2-D']); hold on; [C,H]=contour(in.x,in.y,in.z,20,'-'); hold off; for k=H', set(k,'ZData',(axlim(6)+1)*ones(size(get(k,'XData'))),'Color','k'); if (dolog), set(k,'YData',10.^get(k,'YData')); end; end; if (dolog), axis([axlim(1:2) 10.^axlim(3:4)]); set(gca,'YScale','log'); else, axis(axlim(1:4)); end; % Normal blue arrow start = [axlim(1) axlim(4) axlim(6)+2]; stop = [in.x(in.iii) in.y(in.iii) axlim(6)+2]; if (dolog), start(:,2)=10.^start(:,2); stop(:,2)=10.^stop(:,2); end; h1 = feval(mfilename,start,stop,'EdgeColor','b','FaceColor','b'); % three arrows with varying fill, width, and baseangle start = [-3 -3 10; -3 -1.5 10; -1.5 -3 10]; stop = [-.03 -.03 10; -.03 -1.5 10; -1.5 -.03 10]; if (dolog), start(:,2)=10.^start(:,2); stop(:,2)=10.^stop(:,2); end; h2 = feval(mfilename,start,stop,24,[90;60;120],[],[0;0;4],'Ends',str2mat('both','stop','stop')); set(h2(2),'EdgeColor',[0 .35 0],'FaceColor',[0 .85 .85]); set(h2(3),'EdgeColor','r','FaceColor',[1 .5 1]); h=[h1;h2]; function out = trueornan(x) if isempty(x), out=x; else, out = isnan(x); out(~out) = x(~out); end;
github
jfrascon/SLAM_AND_PATH_PLANNING_ALGORITHMS-master
compute_derivative.m
.m
SLAM_AND_PATH_PLANNING_ALGORITHMS-master/10-EXTRA_RESOURCES/MATLAB_SCRIPTS/compute_derivative.m
315
utf_8
c9a63637037ba13f518a21e57aa78124
function [jumps] = compute_derivative(scan, min_dist) jumps = zeros(1, length(scan)); for i =2:length(scan)-1 l = scan(i-1); r = scan(i+1); if(l > min_dist && r > min_dist) der = (r - l)/2.0; jumps(i) = der; else jumps(i) = 0; jumps.append(0); end end end
github
albanie/mcnDatasets-master
getAfewImdb.m
.m
mcnDatasets-master/afew3.0/getAfewImdb.m
7,968
utf_8
e0c2c8792224231b31c5422ab050db1d
function imdb = getAfewImdb(opts, varargin) %GETAFEWIMDB AFEW 3.0 imdb construction % IMDB = GETAFEWIMDB(OPTS) builds an image/video database for training and % testing on the AFEW 3.0 dataset % % GETAFEWIMDB(..'name', value) accepts the following options: % % `includeTest` :: false % whether to include face tracks from the test set. % % `subsampleStride` :: 0 % If set to be greater than zero, subsamples the faces at the given % stride. % % `generateWavs` :: false % whether to extract the audio track of each video into a separate wav file. % % `dropTracksWithNoDets` :: false % If true, will drop tracks with no detections (on all subsets). This % is useful for develepmont with the provided faces, but should not be used % in an official evaluation (since it changes the number of examples in the % validation and test sets), or if it is used, you must apply a small % adjustment factor to account for it. Alternatively, you can re-run a % better face detector to ensure that every track has some detections. % More precisely, dropping tracks reduces the validation set from 383 % samples to 381 samples (a 0.52% change). % % Copyright (C) 2018 Samuel Albanie % Licensed under The MIT License [see LICENSE.md for details] opts.includeTest = false ; opts.subsampleStride = 0 ; opts.generateWavs = true ; opts.dropTracksWithNoDets = false ; opts = vl_argparse(opts, varargin) ; imdb = afewSetup(opts) ; imdb.images.ext = 'jpg' ; end % ------------------------------ function imdb = afewSetup(opts) % ------------------------------ emotions = {'Angry', 'Disgust', 'Fear', 'Happy', ... 'Sad', 'Surprise', 'Neutral'} ; faceDir = fullfile(opts.dataDir, 'Faces') ; subsets = {'Train', 'Val'} ; % determine track labels - note that the same video may be used (in different % segments) for both training and validation, so we need to collect labels % *per-subset*. labelMaps = {containers.Map, containers.Map} ; if opts.includeTest subsets{end+1} = 'Test' ; labelMaps{end+1} = containers.Map ; end for ii = 1:numel(subsets) fprintf('building label map for %s..\n', subsets{ii}) ; for jj = 1:numel(emotions) emo = emotions{jj} ; folder = fullfile(opts.dataDir, subsets{ii}, emo) ; paths = zs_getImgsInDir(folder, 'avi') ; for kk = 1:numel(paths) [~,vidName,~] = fileparts(paths{kk}) ; msg = 'no track should be repeated in a single subset' ; assert(~any(ismember(labelMaps{ii}.keys(), vidName)), msg) ; labelMaps{ii}(vidName) = jj ; % use emotion index, rather than string end end end % sanity check number of faces facePaths = zs_getImgsInSubdirs(faceDir, 'jpg') ; fprintf('found %d face images (expected 100048) \n', numel(facePaths)) ; % to avoid issues with shared video names across subsets, generate a unique % index per track numTracks = sum(cellfun(@(x) numel(x.keys()), labelMaps)) ; % use FER2013 ordering relPaths = cell(1, numTracks) ; subsetIdx = zeros(1, numTracks) ; labels = zeros(1, numTracks) ; vidNames = cell(1, numTracks) ; vidPaths = cell(1, numTracks) ; if opts.generateWavs wavPaths = cell(1, numTracks) ; end counter = 1 ; sortedVidNames = cellfun(@(x) sort(x.keys()), labelMaps, 'uni', 0) ; for ii = 1:numel(subsets) subset = subsets{ii} ; sortedVids = sortedVidNames{ii} ; for jj = 1:numel(sortedVids) fprintf('processing %d/%d (%s)\n', jj, numel(sortedVids), subset) ; vidName = sortedVids{jj} ; faceDir = fullfile(opts.dataDir, 'Faces', subset, vidName) ; paths = sort(zs_getImgsInSubdirs(faceDir, 'jpg')) ; if opts.subsampleStride && numel(paths) > 0 % assumes that the original frames were extracted at 25 fps % and keeps all frames that are not contiguous [~,fnames,~] = cellfun(@fileparts, paths, 'Uni', 0) ; frameIdx = cellfun(@str2double, fnames) ; contig = zeros(1, numel(frameIdx)-1) ; prev = frameIdx(1) ; for kk = 2:numel(frameIdx) if frameIdx(kk) == prev + 1 contig(kk-1) = 1 ; end prev = frameIdx(kk) ; end splits = find(~contig) ; ranges = arrayfun(@(x,y) {[x+1, y]}, [0 splits], [splits numel(frameIdx)]) ; subsampled = cellfun(@(x) {[x(1):opts.subsampleStride:x(2)]}, ranges) ; paths = paths([subsampled{:}]) ; end tails = cellfun(@(x) getTail(x, 4), paths, 'Uni', 0) ; relPaths{counter} = tails ; subsetIdx(counter) = ii ; labels(counter) = labelMaps{ii}(vidName) ; % store path to video and generate wav if requested [base, vidId] = fileparts(strrep(faceDir, 'Faces/', '')) ; vidBasePath = fullfile(base, emotions{labels(counter)}, vidId) ; vidPath = [vidBasePath '.avi'] ; assert(logical(exist(vidPath, 'file')), 'avi does not exist') ; vidPaths{counter} = vidPath ; if opts.generateWavs wavPaths{counter} = extractAudio(vidBasePath) ; end vidNames{counter} = vidName ; counter = counter + 1 ; end end % sanity check expected track numbers assert(counter - 1 == 383 + 773, 'unexpected number of tracks') ; imdb.tracks.vids = vidNames ; imdb.tracks.paths = relPaths ; imdb.tracks.vidPaths = vidPaths ; imdb.tracks.labels = labels ; imdb.tracks.labelsFerPlus = convertFerToFerPlus(labels, emotions) ; imdb.tracks.set = subsetIdx ; imdb.meta.classes = emotions ; imdb.meta.sets = subsets ; if opts.generateWavs imdb.tracks.wavPaths = wavPaths ; end % check statistics against expected numbers msg = 'emotion statistics do not match expected numbers' ; assert(sum(imdb.tracks.set == 1 & imdb.tracks.labels == 1) == 133, msg) ; if opts.dropTracksWithNoDets % remove empty frames if requested fprintf('removing empty face tracks....') ; keep = ~cellfun(@isempty, imdb.tracks.paths) ; numTracks = sum(keep) ; fnames = {'vids', 'paths', 'vidPaths', 'wavPaths', ... 'labels', 'labelsFerPlus', 'set'} ; for ii = 1:numel(fnames) imdb.tracks.(fnames{ii}) = imdb.tracks.(fnames{ii})(keep) ; end fprintf('done\n') ; end imdb.tracks.id = 1:numTracks ; end % ------------------------------------------------------------------------- function labels = convertFerToFerPlus(labels, ferEmotions) % ------------------------------------------------------------------------- % convert FER labels to FERplus emotion indices ferPlusEmotions = {'neutral', 'happiness', 'surprise', 'sadness', ... 'anger', 'disgust', 'fear', 'contempt'} ; % match strings strMap = containers.Map() ; strMap('Happy') = 'happiness' ; strMap('Sad') = 'sadness' ; strMap('Neutral') = 'neutral' ; strMap('Surprise') = 'surprise' ; strMap('Disgust') = 'disgust' ; strMap('Fear') = 'fear' ; strMap('Angry') = 'anger' ; % generate label permutation array permuteMap = cellfun(@(x) find(strcmp(strMap(x), ferPlusEmotions)), ... ferEmotions) ; msg = 'contempt should not exist in original labels' ; assert(~ismember(8, permuteMap), msg) ; labels = permuteMap(labels) ; end % --------------------------------------- function tail = getTail(path, numTokens) % --------------------------------------- tokens = strsplit(path, '/') ; tail = fullfile(tokens{end-numTokens+1:end}) ; end % ------------------------------------------------------------------------- function destPath = extractAudio(vidBasePath) % ------------------------------------------------------------------------- srcPath = [vidBasePath '.avi'] ; destPath = [vidBasePath '.wav'] ; if ~exist(destPath, 'file') ffmpegBin = '/users/albanie/local/bin/ffmpeg' ; cmd = sprintf('%s -y -i %s -ac 1 -f wav -vn %s', ... ffmpegBin, srcPath, destPath) ; status = system(cmd) ; if status ~= 0, keyboard ; end end end
github
albanie/mcnDatasets-master
printCocoResults.m
.m
mcnDatasets-master/coco/printCocoResults.m
2,339
utf_8
0050c5f890a3045bd3578931851f99cf
function res = printCocoResults(cacheDir, varargin) %PRINTCOCORESULTS print summary of coco results % % Copyright (C) 2017 Samuel Albanie % Licensed under The MIT License [see LICENSE.md for details] opts.expTag = '' ; opts.orientation = 'portrait' ; opts = vl_argparse(opts, varargin) ; % handle either a single, or cell array of inputs if ischar(cacheDir), cacheDirs = {cacheDir} ; else, cacheDirs = cacheDir ; end valList = selectExp(cacheDirs, opts) ; res = cellfun(@(x) getResult(x), valList) ; %--------------------------------------------- function valList = selectExp(cacheDirs, opts) %-------------------------------------------- valList = cellfun(@getResultsList, cacheDirs, 'Uni', 0) ; if isempty(opts.expTag), valList = [valList{:}] ; return ; end % no tag, return all keep = [] ; % otherwise, return selected for i = 1:numel(testList) s = testList{i} ; fname = sprintf('%s.mat', opts.expTag) ; if ~isempty(s) && exist(fullfile(fileparts(s{1}), fname), 'file') keep(end+1) = i ; end end valList = [valList{keep}] ; % ------------------------------------- function val = getResultsList(cacheDir) % ------------------------------------- files = ignoreSystemFiles(dir(fullfile(cacheDir, '*.mat'))) ; names = {files.name} ; [set, sfx] = cellfun(@(x) getSuffixes(x), names, 'Uni', false) ; val = fullfile(cacheDir, names(strcmp(sfx, 'results') & strcmp(set, 'val'))) ; % --------------------------------------------------- function [penSuffix, suffix] = getSuffixes(filename) % --------------------------------------------------- [~,filename,~] = fileparts(filename) ; tokens = strsplit(filename, '-') ; if numel(tokens) == 1 penSuffix = '' ; suffix = '' ; else penSuffix = tokens{end -1} ; suffix = tokens{end} ; end % -------------------------------------- function result = getResult(resultFile) % -------------------------------------- [~,fname,~] = fileparts(resultFile) ; tokens = strsplit(fname,'-') ; model = strjoin(tokens(1:end - 2), '-') ; result.model = model; result.subset = tokens{end - 1} ; data = load(resultFile) ; fprintf('---\n%s\n---\n', model) ; ev = CocoEval() ; ev.eval = data.results ; ev.summarize() ; a = 1 ; m = 3 ; s = data.results.precision(:,:,:,a,m) ; result = mean(s(s>=0)) ;
github
albanie/mcnDatasets-master
getCocoImdb.m
.m
mcnDatasets-master/coco/getCocoImdb.m
7,468
utf_8
ffd12136cf3dab046980e1204fd96fe1
function imdb = getCocoImdb(opts) %GETCOCOIMDB coco imdb construction % IMDB = GETCOCOIMDB(OPTS) builds an image database for training and % testing on the coco dataset % % Copyright (C) 2017 Samuel Albanie % Licensed under The MIT License [see LICENSE.md for details] imdb = cocoSetup(opts) ; classIds = 1:numel(imdb.meta.classes) ; imdb.classMap = containers.Map(imdb.meta.classes, classIds) ; imdb.images.ext = 'jpg' ; imdb.meta.sets = {'train', 'val', 'test'} ; % offset categories for background imdb.meta.classes = [{'background'} imdb.meta.classes] ; imdb.meta.supercategories = [{'background'} imdb.meta.supercategories] ; % ------------------------------ function imdb = cocoSetup(opts) % ------------------------------ opts.dataDir = fullfile(opts.dataOpts.dataRoot, 'mscoco') ; switch opts.dataOpts.year case 2014 imdb.sets.name = {'train', 'val', 'test'} ; imdb.sets.id = uint8([1 2 3]) ; trainImdb = buildSet(opts, 'train', 1) ; valImdb = buildSet(opts, 'val', 2) ; imdb = mergeImdbs(trainImdb, valImdb) ; % merge train and val if opts.imdbOpts.includeTest testImdb = buildTestSet(opts, 'test', 3) ; imdb = mergeImdbs(imdb, testImdb) ; end imdb.meta = trainImdb.meta ; % only one meta copy is needed case 2015 assert(opts.imdbOpts.includeTest == true, '2015 only has test images') ; imdb.sets.name = {'test', 'test-dev'} ; imdb.sets.id = uint8([3 4]) ; testImdb = buildTestSet(opts, 'test', 3) ; testDevImdb = buildTestSet(opts, 'test-dev', 4) ; imdb = mergeImdbs(testImdb, testDevImdb) ; imdb.meta = testImdb.meta ; case 2017 imdb.sets.name = {'train', 'val', 'test', 'test-dev'} ; imdb.sets.id = uint8([1 2 3 4]) ; trainImdb = buildSet(opts, 'train', 1) ; valImdb = buildSet(opts, 'val', 2) ; testImdb = buildTestSet(opts, 'test', 3) ; testDevImdb = buildTestSet(opts, 'test-dev', 4) ; imdb = mergeImdbs(trainImdb, valImdb) ; imdb = mergeImdbs(imdb, testImdb) ; imdb = mergeImdbs(imdb, testDevImdb) ; imdb.meta = trainImdb.meta ; % only one meta copy is needed otherwise, error('year %d not supported', opts.dataOpts.year) ; end % ------------------------------------------------------------------------- function imdb = buildSet(opts, setName, setCode) % ------------------------------------------------------------------------- annoFile = sprintf('instances_%s%d.json', setName, opts.dataOpts.year) ; annoPath = fullfile(opts.dataDir, 'annotations', annoFile) ; if opts.dataOpts.year == 2017 && ismember(setName, {'train', 'val'}) archive = 'annotations_trainval2017d.zip' ; %slightly different in 2017 else archive = sprintf('annotations_%s%d.zip', setName, opts.dataOpts.year) ; end archivePath = fullfile(fileparts(annoPath), archive) ; fetch(annoPath, archivePath) ; fprintf('reading annotations from %s \n', annoPath) ; tmp = importdata(annoPath) ; cocoData = jsondecode(tmp{1}) ; imdb = getImageData(opts, cocoData, setName, setCode) ; imdb.meta.classes = {cocoData.categories.name} ; imdb.meta.supercategories = {cocoData.categories.supercategory} ; ids = [cocoData.annotations.image_id] ; annos_ = arrayfun(@(x) {cocoData.annotations(ids == x)}, imdb.images.id) ; annos = cell(1, numel(annos_)) ; for ii = 1:numel(annos_) fprintf('processing annotation %d/%d\n', ii, numel(annos_)) ; anno_ = annos_{ii} ; sz = imdb.images.imageSizes{ii} ; if ~opts.imdbOpts.conserveSpace newAnno.id = [anno_.id] ; newAnno.area = [anno_.area] ; newAnno.iscrowd = [anno_.iscrowd] ; newAnno.image_id = [anno_.image_id] ; newAnno.segmentation = {anno_.segmentation} ; end newAnno.classes = uint8([anno_.category_id]) ; if numel(anno_) > 0 % store normalized boxes, rather than original pixel locations b = [anno_.bbox]' ; b = [b(:,1:2) b(:,1:2) + b(:,3:4)] ; newAnno.boxes = single(bsxfun(@rdivide, b, [sz([2 1]) sz([2 1])])) ; else newAnno.boxes = [] ; end annos{ii} = newAnno ; end imdb.annotations = annos ; % ------------------------------------------------------------------------- function imdb = buildTestSet(opts, setName, setCode) % ------------------------------------------------------------------------- annoFile = sprintf('image_info_%s%d.json', setName, opts.dataOpts.year) ; annoPath = fullfile(opts.dataDir, 'annotations', annoFile) ; fprintf('reading annotations from %s \n', annoPath) ; if contains(setName, 'dev') archive = sprintf('image_info_test-dev%d.zip', opts.dataOpts.year) ; else archive = sprintf('image_info_test%d.zip', opts.dataOpts.year) ; end archivePath = fullfile(fileparts(annoPath), archive) ; fetch(annoPath, archivePath) ; fprintf('reading annotations from %s \n', annoPath) ; tmp = importdata(annoPath) ; cocoData = jsondecode(tmp{1}) ; pos = regexp(setName, '-dev$') ; % trim -dev suffix if present if ~isempty(pos), setName = setName(1:pos-1) ; end imdb = getImageData(opts, cocoData, setName, setCode) ; imdb.meta.classes = {cocoData.categories.name} ; imdb.meta.supercategories = {cocoData.categories.supercategory} ; % ------------------------------------------------------------------------- function imdb = getImageData(opts, cocoData, setName, setCode) % ------------------------------------------------------------------------- imdb.images.name = {cocoData.images.file_name} ; imdb.images.id = [cocoData.images.id] ; imdb.images.set = ones(1, numel(imdb.images.name)) * setCode ; height = [cocoData.images.height] ; width = [cocoData.images.width] ; imdb.images.imageSizes = arrayfun(@(x,y) {[x, y]}, height, width) ; imFolder = sprintf('%s%d', setName, opts.dataOpts.year) ; imdb.paths.image = esc(fullfile(opts.dataDir, 'images', imFolder, '%s')) ; paths = repmat(imdb.paths.image, numel(imdb.images.name), 1) ; imdb.images.paths = arrayfun(@(x) {paths(x,:)}, 1:size(paths,1)) ; % -------------------------------------- function imdb = mergeImdbs(imdb1, imdb2) % -------------------------------------- imdb.images.id = [imdb1.images.id imdb2.images.id] ; imdb.images.set = [imdb1.images.set imdb2.images.set] ; imdb.images.name = [imdb1.images.name imdb2.images.name] ; imdb.images.imageSizes = [imdb1.images.imageSizes imdb2.images.imageSizes] ; imdb.images.paths = horzcat(imdb1.images.paths, imdb2.images.paths) ; if isfield(imdb1, 'annotations') && isfield(imdb2, 'annotations') imdb.annotations = horzcat(imdb1.annotations, imdb2.annotations) ; elseif isfield(imdb1, 'annotations') imdb.annotations = imdb1.annotations ; elseif isfield(imdb2, 'annotations') imdb.annotations = imdb2.annotations ; else % pass end % ----------------------------------- function fetch(annoPath, archivePath) % ----------------------------------- % Fetch data from coco server if required if ~exist(annoPath, 'file') if ~exist(archivePath, 'file') base = 'http://images.cocodataset.org/annotations' ; url = fullfile(base, archive) ; fprintf('downloading %s from %s\n', archive, url) ; websave(archivePath, url) ; end unzip(archivePath,fileparts(fileparts(archivePath))) ; end % ------------------------------------------------------------------------- function str=esc(str) % ------------------------------------------------------------------------- str = strrep(str, '\', '\\') ;
github
albanie/mcnDatasets-master
getEnterfaceImdb.m
.m
mcnDatasets-master/enterface/getEnterfaceImdb.m
6,163
utf_8
5ea10b5523c5a127fa92868c620706d4
function imdb = getEnterfaceImdb(opts, varargin) %GETENTERFACE Enterface imdb construction % IMDB = GETENTERFACE(OPTS) builds an image/video database for training and % testing on the Enterface dataset % % Copyright (C) 2018 Samuel Albanie % Licensed under The MIT License [see LICENSE.md for details] opts.generateWavs = true ; opts = vl_argparse(opts, varargin) ; imdb = enterfaceSetup(opts) ; imdb.images.ext = 'jpg' ; end % ------------------------------ function imdb = enterfaceSetup(opts) % ------------------------------ emotions = {'Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise'} ; % notation used in folders emoKeys = {'anger', 'disgust', 'fear', 'happiness', 'sadness', 'surprise'} ; faceDir = fullfile(opts.dataDir, 'faces') ; subsets = {'train', 'val'} ; trainIds = 1:30 ; valIds = 31:44 ; trainSpeakers = arrayfun(@(x) {sprintf('subject-%d', x)}, trainIds) ; valSpeakers = arrayfun(@(x) {sprintf('subject-%d', x)}, valIds) ; speakers = {trainSpeakers, valSpeakers} ; facePaths = zs_getImgsInSubdirs(faceDir, 'jpg') ; allTracks = cellfun(@fileparts, facePaths, 'uni', 0) ; numTracks = numel(unique(allTracks)) ; fprintf('found %d tracks (expected 1293) \n', numTracks) ; % use FER2013 ordering labels = zeros(1, numTracks) ; relPaths = cell(1, numTracks) ; vidNames = cell(1, numTracks) ; spIds = zeros(1, numTracks) ; subsetIdx = zeros(1, numTracks) ; vidPaths = cell(1, numTracks) ; if opts.generateWavs wavPaths = cell(1, numTracks) ; end % determine track labels counter = 1 ; for ii = 1:numel(subsets) subset = subsets{ii} ; subsetSpeakers = speakers{ii} ; for jj = 1:numel(subsetSpeakers) sp = subsetSpeakers{jj} ; emotionDirs = zs_getSubdirs(fullfile(faceDir, sp)) ; for kk = 1:numel(emotionDirs) sentenceDirs = zs_getSubdirs(emotionDirs{kk}) ; % The folder structure of the dataset is not consistent, so we % flatten sentence dirs that contain extra subfolders to ensure % an even depth if any(~ismember(sentenceDirs, allTracks)) subdirs = cellfun(@zs_getSubdirs, sentenceDirs, 'uni', 0) ; sentenceDirs = [subdirs{:}] ; depth = 6 ; else depth = 5 ; end msg = 'incorrect track selection' ; assert(all(ismember(sentenceDirs, allTracks)), msg) ; for ll = 1:numel(sentenceDirs) fprintf('processing %d/%d (%s)\n', counter, numTracks, subset) ; [~,vidName,~] = fileparts(sentenceDirs{ll}) ; switch depth case 5 [~,emoName] = fileparts(fileparts(sentenceDirs{ll})) ; case 6 [~,emoName] = fileparts(fileparts(fileparts(sentenceDirs{ll}))) ; otherwise, error('unexpected folder depth %d\n', depth) ; end label = find(strcmp(emoKeys, emoName)) ; assert(numel(label) == 1, 'could not find appropriate label') ; paths = zs_getImgsInSubdirs(sentenceDirs{ll}, 'jpg') ; tails = cellfun(@(x) getTail(x, depth), paths, 'Uni', 0) ; relPaths{counter} = tails ; subsetIdx(counter) = ii ; labels(counter) = label ; vidNames{counter} = vidName ; % store path to video and generate wav if requested vidBasePath = strrep(sentenceDirs{ll}, 'faces', 'raw') ; vidPath = [vidBasePath '.avi'] ; assert(logical(exist(vidPath, 'file')), 'avi does not exist') ; vidPaths{counter} = vidPath ; if opts.generateWavs wavPaths{counter} = extractAudio(vidBasePath) ; end spIds(counter) = find(strcmp(sp, [speakers{:}])) ; counter = counter + 1 ; end end end end % sanity check expected track numbers assert(counter == 1294, 'unexpected number of tracks') ; imdb.tracks.vids = vidNames ; imdb.tracks.vidPaths = vidPaths ; imdb.tracks.paths = relPaths ; imdb.tracks.labels = labels ; imdb.tracks.labelsFerPlus = convertFerToFerPlus(labels, emotions) ; imdb.tracks.set = subsetIdx ; imdb.meta.classes = emotions ; imdb.meta.sets = subsets ; if opts.generateWavs imdb.tracks.wavPaths = wavPaths ; end % check statistics against expected numbers msg = 'emotion statistics do not match expected numbers' ; assert(sum(imdb.tracks.set == 1 & imdb.tracks.labels == 1) == 146, msg) ; imdb.tracks.id = 1:numTracks ; end % ------------------------------------------------------------------------- function destPath = extractAudio(vidBasePath) % ------------------------------------------------------------------------- srcPath = [vidBasePath '.avi'] ; destPath = [vidBasePath '.wav'] ; if ~exist(destPath, 'file') ffmpegBin = '/users/albanie/local/bin/ffmpeg' ; cmd = sprintf('%s -i %s -vn -acodec copy %s', ... ffmpegBin, srcPath, destPath) ; status = system(cmd) ; if status ~= 0, keyboard ; end end end % ------------------------------------------------------------------------- function labels = convertFerToFerPlus(labels, ferEmotions) % ------------------------------------------------------------------------- % convert FER labels to FERplus emotion indices ferPlusEmotions = {'neutral', 'happiness', 'surprise', 'sadness', ... 'anger', 'disgust', 'fear', 'contempt'} ; % match strings strMap = containers.Map() ; strMap('Happy') = 'happiness' ; strMap('Sad') = 'sadness' ; strMap('Neutral') = 'neutral' ; strMap('Surprise') = 'surprise' ; strMap('Disgust') = 'disgust' ; strMap('Fear') = 'fear' ; strMap('Angry') = 'anger' ; % generate label permutation array permuteMap = cellfun(@(x) find(strcmp(strMap(x), ferPlusEmotions)), ... ferEmotions) ; msg = 'contempt should not exist in original labels' ; assert(~ismember(8, permuteMap), msg) ; labels = permuteMap(labels) ; end % --------------------------------------- function tail = getTail(path, numTokens) % --------------------------------------- tokens = strsplit(path, '/') ; tail = fullfile(tokens{end-numTokens+1:end}) ; end
github
albanie/mcnDatasets-master
getSfewImdb.m
.m
mcnDatasets-master/sfew/getSfewImdb.m
2,881
utf_8
92f19b9656b9963c9bbbfb9d468dc823
function imdb = getSfewImdb(dataDir) %GETSFEWIMDB Returns imdb (the image database) % IMDB = GETSFEWIMDB(DATADIR) loads the SFEW image datbase. This % functions assumes that DATADIR is directory containing a collection % of images in png format arranged in three folders 'Train', 'Val' % and 'Test'. 'Train' and 'Val' are assumed to contain further subfolders, % each with the name of an emotion. 'Test' should contain an unlabelled % collection of png files (the labels for the test set are not publicly % available). % % Copyright (C) 2016 Samuel Albanie % Licensed under The MIT License [see LICENSE.md for details] trainIms = zs_getImgsInSubdirs(fullfile(dataDir, 'Train'), 'png') ; valIms = zs_getImgsInSubdirs(fullfile(dataDir, 'Val'), 'png') ; testIms = zs_getImgsInSubdirs(fullfile(dataDir, 'Test'), 'png') ; [trainData, trainLabels] = preprocessSFEW(trainIms, true) ; [valData, valLabels] = preprocessSFEW(valIms, true) ; testData = preprocessSFEW(testIms, false) ; trainSet = ones(1, size(trainData, 4)) ; valSet = 2 * ones(1, size(valData, 4)) ; testSet = 3 * ones(1, size(testData, 4)) ; imdb.images.data = cat(4, trainData, valData, testData) ; imdb.images.labels = cat(2, trainLabels, valLabels) ; imdb.images.set = [trainSet valSet testSet] ; imdb.meta.sets = {'train', 'val', 'test'} ; imdb.meta.classes = {'anger', 'disgust', 'fear', ... 'happiness', 'sadness', 'surprise', 'neutral'} ; % -------------------------------------------------------------------- function [data, labels] = preprocessSFEW(imList, extractLabels) % -------------------------------------------------------------------- %PREPROCESSSFEW - preprocess images stored in the SFEW layout % [DATA, LABELS] = PREPROCESSSFEW(IMLIST, EXTRACTLABELS) loads the % the data from a cell array of paths to image files. If EXTRACTLABELS % is set to TRUE, these image paths should each have the form: % SOME_DIR/EMOTION/IMG_NAME.PNG % The EMOTION subfolder will be used to produce a label for each image. % Alternatively, if EXTRACTLABELS is FALSE, the image paths should have the % form: % SOME_DIR/IMG_NAME.PNG % % The function returns 96 x 96 x 3 x N data array containing the images. If % EXTRACTLABELS is TRUE, it will also return an Nx1 array of emotion labels. rawData = cellfun(@(x) {single(imread(x))}, imList) ; data = cat(4, rawData{:}) ; if extractLabels, labels = cellfun(@extractEmotion, imList)' ; end % ----------------------------------------- function emotionLabel = extractEmotion(path) % ----------------------------------------- pathElems = strsplit(path, '/') ; emotionKey = pathElems{end - 1} ; keys = {'Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral'} ; values = [1, 2, 3, 4, 5, 6. 7] ; emotionMap = containers.Map(keys, values) ; emotionLabel = emotionMap(emotionKey) ;
github
albanie/mcnDatasets-master
getFerPlusImdb.m
.m
mcnDatasets-master/FER2013+/getFerPlusImdb.m
6,404
utf_8
03a434a2ba9a28fb6cc3b6776e55d443
function imdb = getFerPlusImdb(dataDir, varargin) %GETFERPLUSIMDB Returns imdb (the image database) % IMDB = GETFERPLUSIMDB(DATADIR, VARARGIN) loads the FER+ image datbase. % % GETFERPLUSIMDB(..'name', value) accepts the following options: % % `dataType` :: 'CNTK' % This option which labels and images are included. % There are three options: "clean", which aggressively cleans the dataset, % "CNTK", which aims to follow the cleaning procedure described in the % Microsoft paper (link to the github page below), and "full", which does % not apply any form of cleaning. % % Uses "plus" labels from: https://github.com/Microsoft/FERPlus % See the paper for more details: https://arxiv.org/abs/1608.01041 % % Copyright (C) 2018 Samuel Albanie % Licensed under The MIT License [see LICENSE.md for details] opts.dataType = 'CNTK' ; opts = vl_argparse(opts, varargin) ; imdb = getFerImdb(dataDir) ; imdb = updateLabels(imdb, dataDir, opts.dataType) ; % -------------------------------------------------------------------- function imdb = updateLabels(imdb, dataDir, dataType) % -------------------------------------------------------------------- plusLabelPath = fullfile(dataDir, 'fer2013new.csv') ; if ~exist(plusLabelPath, 'file') fetchDataset('fer2013+', plusLabelPath) ; end csvData = importdata(plusLabelPath) ; data = csvData.data ; header = csvData.textdata(1,:) ; emotions = header(3:10) ; subsets = csvData.textdata(2:end,1) ; % skip header switch dataType case 'clean' % use stronger labels to remove non-faces from the dataset (where the majority % of annotators agree that the image does not contain a face). We % also drop images where the majority vote by the annotators label is % "unknown". [~,cls] = max(data, [], 2) ; dropUnsure = sum(ismember(cls, 9)) ; dropNF = sum(ismember(cls, 10)) ; fprintf('dropped: %d non-face labels \n', dropNF) ; fprintf('dropped: %d unsure labels \n', dropUnsure) ; drop = find(ismember(cls, [9 10])) ; data(drop,:) = [] ; subsets(drop,:) = [] ; imdb.images.data(:,:,:,drop) = [] ; imdb.images.labels(drop) = [] ; imdb.images.set(drop) = [] ; case 'CNTK' % try to replicate the Microsoft cleaning process origData = data ; % remove emotions with a single vote (outlier removal) outliers = (data <= 1) ; data(outliers) = 0 ; dropped = 1 - sum(data(:))/sum(origData(:)) ; fprintf('dropped %.1f%% of votes as outliers\n', 100 * dropped) ; numVotes = sum(data, 2) ; % per row % following cntk processing - there are three reasons to drop examples: % (1) If the majority votes for either "unknown-face" or "not-face" % (2) If more than three votes share the maximum voting value % (3) If the max votes do not account for more than half of the votes toDrop = zeros(size(data,1), 1) ; for ii = 1:size(data,1) fprintf('processing %d/%d\n', ii, size(data,1)) ; maxVote = max(data(ii,:)) ; maxVoteEmos = find(data(ii,:) == maxVote) ; drop = any(ismember(maxVoteEmos, [9 10])) ; % reason (1) numMaxVotes = numel(maxVoteEmos) ; drop = drop || logical(numMaxVotes >= 3) ; % reason (2) drop = drop || logical((numMaxVotes * maxVote) <= 0.5 * numVotes(ii)) ; % reason (3) toDrop(ii) = drop ; end toDrop = logical(toDrop) ; data(toDrop,:) = [] ; subsets(toDrop,:) = [] ; imdb.images.data(:,:,:,toDrop) = [] ; imdb.images.labels(toDrop) = [] ; imdb.images.set(toDrop) = [] ; case 'full' % do nothing otherwise, error('unknown data type: %s\n', dataType) ; end imdb.images.oldLabels = imdb.images.labels ; % store FER original labels imdb.images = rmfield(imdb.images, 'labels') ; % remove to avoid confusion % use majority labels, and store votes [~,cls] = max(data, [], 2) ; imdb.images.votes = data ; imdb.images.hardLabels = cls' ; % sanity check the subset markers trainCorrect = all(ismember(subsets(imdb.images.set == 1), {'Training'})) ; valCorrect = all(ismember(subsets(imdb.images.set == 2), {'PublicTest'})) ; testCorrect = all(ismember(subsets(imdb.images.set == 3), {'PrivateTest'})) ; assert(trainCorrect, 'train subset does not match') ; assert(valCorrect, 'val subset does not match') ; assert(testCorrect, 'test subset does not match') ; imdb.meta.sets = {'train', 'val', 'test'} ; imdb.meta.classes = emotions ; % ----------------------------------------- function fetchDataset(datasetName, dataPath) % ----------------------------------------- waiting = true ; prompt = sprintf(strcat('%s was not found at %s\nWould you like to ', ... ' download it from THE INTERNET (y/n)?\n'), datasetName, dataPath) ; while waiting str = input(prompt,'s') ; switch str case 'y' dataDir = fileparts(dataPath) ; if ~exist(dataDir, 'dir'), mkdir(dataDir) ; end fprintf(sprintf('Downloading %s ... \n', datasetName)) ; baseUrl = 'http://www.robots.ox.ac.uk/~albanie/data/mirrors' ; url = sprintf('%s/%s.zip', baseUrl, datasetName) ; % write the tar file to the same directory and unpack archivePath = fullfile(dataDir, sprintf('%s.zip', datasetName)) ; urlwrite(url, archivePath) ; % matlab builtin untar keeps breaking, so use cmd line cmd = sprintf('unzip %s -d %s', archivePath, dataDir) ; status = system(cmd) ; if status > 0 error(['automatic extraction failed, it will be necessary to '... 'set up the dataset manually\n']) ; end % move data up a directory srcPath = fullfile(dataDir, 'fer2013+/fer2013new.csv') ; destPath = fullfile(dataDir, 'fer2013new.csv') ; status = movefile(srcPath, destPath) ; if status ~= 1 % note that MATLAB uses 1 for a success :( error(['directory layout failed, it will be necessary to '... 'set up the dataset manually\n']) ; end delete(archivePath) ; % clean up fprintf('successfully extracted the dataset!\n') ; return ; case 'n', throw(exception) ; otherwise, fprintf('input %s not recognised, please use `y/n`\n', str) ; end end
github
albanie/mcnDatasets-master
getFerImdb.m
.m
mcnDatasets-master/FER2013/getFerImdb.m
3,726
utf_8
c07a753c36c98f7af25539f20f2c75d4
function imdb = getFerImdb(dataDir) %GETFERIMDB Returns imdb (the image database) % IMDB = GETFERIMDB(DATADIR) loads the FER image datbase. This functions % assumes that the raw data `fer2013.csv` has been downloaded and placed % in DATADIR. % % Copyright (C) 2018 Samuel Albanie % Licensed under The MIT License [see LICENSE.md for details] rawFaceDims = [48 48 1] ; dataPath = fullfile(dataDir, 'fer2013.csv') ; if ~exist(dataPath, 'file') fetchDataset('fer2013', dataPath) ; end csvData = importdata(dataPath) ; % parse data csvData = csvData(2:end) ; % skip header numRows = numel(csvData) ; % skip header labels = zeros(1, numRows) ; subset = zeros(1, numRows) ; imData = zeros(48, 48, 1, numRows, 'single') ; parfor ii = 1:numRows fprintf('extracting example %d/%d\n', ii, numRows) ; tokens = strsplit(csvData{ii}, ',') ; labels(ii) = str2double(tokens{1}) + 1 ; % labels need to be one-indexed % NOTE: we could use a switch/otherwise statement here, but the matlab % code analyser sucks and throws a warning if it is used instead of % if/else within a parfor, so we use the following hack: setIdx = 0 ; if strcmp(tokens{3}, 'Training') setIdx = 1 ; elseif strcmp(tokens{3}, 'PublicTest') setIdx = 2 ; elseif strcmp(tokens{3}, 'PrivateTest') setIdx = 3 ; end if ~ismember(setIdx, [1 2 3]), error('setIdx is unset') ; end subset(ii) = setIdx ; pixels = single(cellfun(@str2double, strsplit(tokens{2}, ' '))) ; face = reshape(pixels, rawFaceDims)' ; imData(:,:,:,ii) = face ; end imdb.images.data = imData ; imdb.images.labels = labels ; imdb.images.set = subset ; imdb.meta.sets = {'train', 'val', 'test'} ; imdb.meta.classes = {'anger', 'disgust', 'fear', ... 'happiness', 'sadness', 'surprise', 'neutral'} ; % ----------------------------------------- function fetchDataset(datasetName, dataPath) % ----------------------------------------- waiting = true ; prompt = sprintf(strcat('%s was not found at %s\nWould you like to ', ... ' download it from THE INTERNET (y/n)?\n'), datasetName, dataPath) ; while waiting str = input(prompt,'s') ; switch str case 'y' dataDir = fileparts(dataPath) ; if ~exist(dataDir, 'dir'), mkdir(dataDir) ; end fprintf(sprintf('Downloading %s ... \n', datasetName)) ; baseUrl = 'http://www.robots.ox.ac.uk/~albanie/data/mirrors' ; url = sprintf('%s/%s.tar', baseUrl, datasetName) ; % write the tar file to the same directory and unpack archivePath = fullfile(dataDir, sprintf('%s.tar', datasetName)) ; urlwrite(url, archivePath) ; % matlab builtin untar keeps breaking, so use cmd line cmd = sprintf('tar -xvf %s -C %s', archivePath, dataDir) ; status = system(cmd) ; if status > 0 error(['automatic extraction failed, it will be necessary to '... 'set up the dataset manually\n']) ; end % move data up a directory srcPath = fullfile(dataDir, 'fer2013/fer2013.csv') ; destPath = fullfile(dataDir, 'fer2013.csv') ; status = movefile(srcPath, destPath) ; if status ~= 1 % note that MATLAB uses 1 for a success :( error(['directory layout failed, it will be necessary to '... 'set up the dataset manually\n']) ; end delete(archivePath) ; % clean up fprintf('successfully extracted the dataset!\n') ; return ; case 'n', throw(exception) ; otherwise, fprintf('input %s not recognised, please use `y/n`\n', str) ; end end
github
albanie/mcnDatasets-master
getCombinedPascalImdb.m
.m
mcnDatasets-master/pascal/getCombinedPascalImdb.m
6,155
utf_8
5438bfc85dc18199302018cc40fe2863
function imdb = getCombinedPascalImdb(opts, varargin) % GETCOMBINEDPASCALIMDB - load Pascal IMDB file % IMDB = GETCOMBINEDPASCALIMDB(OPTS) constructs an IMDB for the % Pascal VOC data spanning the 2007 and 2012 dataset (commonly referred % to as the "0712" dataset in object detection. % % GETCOMBINEDPASCALIMDBPASCALIMDB(..., 'option', value, ...) accepts % the following options: % % `excludeDifficult`:: false % Remove objects labelled as "difficult" from the VOC training annotations. % % `includeSegmentation`:: true % Include segmentation labels for the subset of labeled images. % % `includeDevkit`:: true % Include development kit code released with the challenge. % % `includeDetection`:: true % Include detection labels for the subset of labeled images. % % Inspiration ancestry for code: % A.Vedaldi -> R.Girshick -> S.Albanie % % Copyright (C) 2017 Samuel Albanie % Licensed under The MIT License [see LICENSE.md for details] opts.includeDevkit = true ; opts.includeDetection = true ; opts.excludeDifficult = false ; opts.includeSegmentation = true ; opts.vocAdditionalSegmentations = true ; opts = vl_argparse(opts, varargin) ; % Although the 2012 data can be used during training, only % the 2007 test data is used for evaluation opts.VOCRoot = fullfile(opts.dataOpts.dataRoot, 'VOCdevkit2007' ) ; opts.devkitCode = fullfile(opts.VOCRoot, 'VOCcode') ; imdb = loadImdb(opts) ; opts.pascalOpts = loadPascalOpts(opts) ; % add meta information (inlcuding background class) imdb.meta.classes = [{'background'} opts.pascalOpts.classes'] ; classIds = 1:numel(imdb.meta.classes) ; imdb.classMap = containers.Map(imdb.meta.classes, classIds) ; imdb.images.ext = 'jpg' ; imdb.meta.sets = {'train', 'val', 'test'} ; %----------------------------------------- function pascalOpts = loadPascalOpts(opts) %----------------------------------------- % LOADPASCALOPTS Load the pascal VOC database options % % NOTE: The Pascal VOC dataset has a number of directories % and attributes. The paths to these directories are % set using the VOCdevkit code. The VOCdevkit initialization % code assumes it is being run from the devkit root folder, % so we make a note of our current directory, change to the % devkit root, initialize the pascal options and then change % back into our original directory % check the existence of the required folders assert(logical(exist(opts.VOCRoot, 'dir')), 'VOC root directory not found') ; assert(logical(exist(opts.devkitCode, 'dir')), 'devkit code not found') ; currentDir = pwd ; cd(opts.VOCRoot) ; addpath(opts.devkitCode) ; VOCinit ; % VOCinit loads database options into a variable called VOCopts pascalOpts = VOCopts ; cd(currentDir) ; %----------------------------- function imdb = loadImdb(opts) %----------------------------- dataDir07 = fullfile(opts.dataOpts.dataRoot, 'VOCdevkit2007', '2007') ; imdb07 = getPascalYearImdb(dataDir07, 07, ... 'includeDevkit', opts.includeDevkit, ... 'includeTest', true, ... 'includeDetection', opts.includeDetection, ... 'includeSegmentation', opts.includeSegmentation) ; dataDir12 = fullfile(opts.dataOpts.dataRoot, 'VOCdevkit2012', '2012') ; imdb12 = getPascalYearImdb(dataDir12, 12 , ... 'includeTest', false, ... % download manually 'includeDevkit', opts.includeDevkit, ... 'includeDetection', opts.includeDetection, ... 'includeSegmentation', opts.includeSegmentation, ... 'vocAdditionalSegmentations', opts.vocAdditionalSegmentations) ; imdb = combineImdbs(imdb07, imdb12, opts) ; % ------------------------------------------------ function imdb = combineImdbs(imdb07, imdb12, opts) % ------------------------------------------------ imdb.images.name = [imdb07.images.name, imdb12.images.name] ; imdb.images.set = [imdb07.images.set imdb12.images.set] ; imageSizes = [imdb07.images.size, imdb12.images.size] ; imdb.images.year = [ones(1,numel(imdb07.images.name)) * 2007 ... ones(1,numel(imdb12.images.name)) * 2012] ; imdb.images.classification = [imdb07.images.classification ... imdb12.images.classification] ; imdb.images.segmentation = [imdb07.images.segmentation ... imdb12.images.segmentation] ; % add individual image paths for backward compatibility paths = vertcat(repmat(imdb07.paths.image, numel(imdb07.images.name), 1), ... repmat(imdb12.paths.image, numel(imdb12.images.name), 1)) ; imdb.images.paths = arrayfun(@(x) {paths(x,:)}, 1:size(paths, 1)) ; % also include the paths from both years to handle optional extra segmentations imdb.paths2007 = imdb07.paths ; imdb.paths2012 = imdb12.paths ; % for consistency, store in Height-Width order imdb.images.imageSizes = arrayfun(@(x) {imageSizes([2 1],x)'}, ... 1:size(imageSizes, 2)) ; if opts.includeDetection annot07 = loadAnnotations(imdb07, opts) ; annot12 = loadAnnotations(imdb12, opts) ; imdb.annotations = horzcat(annot07, annot12) ; end % ------------------------------------------------ function annotations = loadAnnotations(imdb, opts) % ------------------------------------------------ annotations = cell(1, numel(imdb.images.name)) ; for ii = 1:numel(imdb.images.name) match = find(imdb.objects.image == ii) ; if opts.excludeDifficult keep = ~(imdb.objects.difficult(match)) ; else keep = 1:numel(match) ; end match = match(keep) ; boxes = imdb.objects.box(:,match) ; classes = imdb.objects.class(match) ; % normalize annotation imSize = repmat(imdb.images.size(:, ii)', [1 2]) ; gt.boxes = bsxfun(@rdivide, boxes', single(imSize)) ; gt.classes = classes + 1 ; % add offset for background assert(all(2 <= gt.classes) && all(gt.classes <= 21), ... 'pascal class labels do not lie in the expected range') ; annotations{ii} = gt ; fprintf('Loading annotaton %d \n', ii) ; end
github
albanie/mcnDatasets-master
vocSetup.m
.m
mcnDatasets-master/pascal/vocSetup.m
11,730
utf_8
cf914b40f0b77ff3859f66c2e2563a3e
function imdb = vocSetup(varargin) % VOCSETUP download and setup data from the Pascal VOC challenge % % This script was sourced from the Matconvnet-fcn project, written by % Sebastien Erhardt and Andrea Vedaldi: % https://github.com/vlfeat/matconvnet-fcn opts.edition = '07' ; opts.dataDir = fullfile('data','voc07') ; opts.archiveDir = fullfile('data','archives') ; opts.includeDetection = false ; opts.includeSegmentation = false ; opts.includeTest = false ; opts.includeDevkit = false ; opts = vl_argparse(opts, varargin) ; % Download data if ~exist(fullfile(opts.dataDir,'Annotations'), 'dir'), download(opts) ; end % Source images and classes imdb.paths.image = esc(fullfile(opts.dataDir, 'JPEGImages', '%s.jpg')) ; imdb.sets.id = uint8([1 2 3]) ; imdb.sets.name = {'train', 'val', 'test'} ; imdb.classes.id = uint8(1:20) ; imdb.classes.name = {... 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', ... 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', ... 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'} ; imdb.classes.images = cell(1,20) ; imdb.images.id = [] ; imdb.images.name = {} ; imdb.images.set = [] ; index = containers.Map() ; [imdb, index] = addImageSet(opts, imdb, index, 'train', 1) ; [imdb, index] = addImageSet(opts, imdb, index, 'val', 2) ; if opts.includeTest, [imdb, index] = addImageSet(opts, imdb, index, 'test', 3) ; end % Source segmentations if opts.includeSegmentation n = numel(imdb.images.id) ; imdb.paths.objectSegmentation = esc(fullfile(opts.dataDir, ... 'SegmentationObject', '%s.png')) ; imdb.paths.classSegmentation = esc(fullfile(opts.dataDir, ... 'SegmentationClass', '%s.png')) ; imdb.images.segmentation = false(1, n) ; [imdb, index] = addSegmentationSet(opts, imdb, index, 'train', 1) ; [imdb, index] = addSegmentationSet(opts, imdb, index, 'val', 2) ; if opts.includeTest [imdb, ~] = addSegmentationSet(opts, imdb, index, 'test', 3) ; end end % Compress data types imdb.images.id = uint32(imdb.images.id) ; imdb.images.set = uint8(imdb.images.set) ; for i=1:20 imdb.classes.images{i} = uint32(imdb.classes.images{i}) ; end % Source detections if opts.includeDetection imdb.aspects.id = uint8(1:5) ; imdb.aspects.name = {'front', 'rear', 'left', 'right', 'misc'} ; imdb = addDetections(opts, imdb) ; end % Check images on disk and get their size imdb = getImageSizes(imdb) ; % ------------------------------------------------------------------------- function download(opts) % ------------------------------------------------------------------------- baseUrl = 'http://host.robots.ox.ac.uk:8080' ; switch opts.edition case '07' endpoint = sprintf('%s/pascal/VOC/voc2007', baseUrl) ; url = sprintf('%s/VOCtrainval_06-Nov-2007.tar', endpoint) ; testUrl = sprintf('%s/VOCtest_06-Nov-2007.tar', endpoint) ; devkitUrl = sprintf('%s/VOCdevkit_08-Jun-2007.tar', endpoint) ; case '08' url='' ; case '09' url='' ; case '10' url=sprintf('%s/pascal_trainval/VOCtrainval_03-May-2010.tar', baseUrl) ; case '11' url=sprintf('%s/pascal_trainval/VOCtrainval_25-May-2011.tar', baseUrl) ; case '12' base12 = sprintf('%s/pascal/VOC', baseUrl) ; % different for 2012 url = sprintf('%s/voc2012/VOCtrainval_11-May-2012.tar', base12) ; devkitUrl = sprintf('%s/voc2012/VOCdevkit_18-May-2011.tar', base12) ; end trainvalData = sprintf('VOC20%strainval.tar', opts.edition) ; testData = sprintf('VOC20%stest.tar', opts.edition) ; devkit = sprintf('VOC20%sdevkit.tar', opts.edition) ; if ~exist(opts.archiveDir, 'dir'), mkdir(opts.archiveDir) ; end archivePath=fullfile(opts.archiveDir, trainvalData) ; if ~exist(archivePath, 'file') fprintf('%s: downloading %s to %s\n', mfilename, url, archivePath) ; urlwrite(url, archivePath) ; end fprintf('%s: decompressing and rearranging %s\n', mfilename, archivePath) ; untar(archivePath, opts.dataDir) ; switch opts.edition case '11' % Decompresses in TrainVal/VOCdevkit, Test/VOCdevkit (sigh!) movefile(fullfile(opts.dataDir, 'TrainVal'), fullfile(opts.dataDir,'Test')) ; otherwise % Decomporesses directly in VOCdevkit end if opts.includeDevkit devkitDir = fileparts(opts.dataDir) ; archivePath = fullfile(opts.archiveDir, devkit) ; if ~exist(archivePath, 'file') fprintf('%s: downloading %s to %s\n', mfilename, devkitUrl, archivePath) ; urlwrite(devkitUrl, archivePath) ; end fprintf('%s: decompressing and rearranging %s\n', mfilename, archivePath) ; untar(archivePath, devkitDir) ; movefile(fullfile(devkitDir, 'VOCdevkit', '*'), devkitDir) ; rmdir(fullfile(devkitDir, 'VOCdevkit')) ; end if opts.includeTest archivePath = fullfile(opts.archiveDir, testData) ; if ~exist(archivePath, 'file') try fprintf('attempting download %s to %s\n', testUrl, archivePath) ; urlwrite(testUrl, archivePath) ; catch error(['Cannot download the test data automatically. ', ... 'Please download the file %s manually from the PASCAL test ', ... 'server.'], archivePath) ; end end fprintf('%s: decompressing and rearranging %s\n', mfilename, archivePath) ; untar(archivePath, opts.dataDir) ; end switch opts.edition case '11' movefile(fullfile(opts.dataDir, 'Test', 'VOCdevkit', ... sprintf('VOC20%s',opts.edition), '*'), opts.dataDir) ; rmdir(fullfile(opts.dataDir, 'Test'),'s') ; otherwise movefile(fullfile(opts.dataDir, 'VOCdevkit', ... sprintf('VOC20%s',opts.edition), '*'), opts.dataDir) ; rmdir(fullfile(opts.dataDir, 'VOCdevkit'),'s') ; end % ------------------------------------------------------------------------- function [imdb, index] = addImageSet(opts, imdb, index, setName, setCode) % ------------------------------------------------------------------------- j = length(imdb.images.id) ; for ci = 1:length(imdb.classes.name) className = imdb.classes.name{ci} ; annoPath = fullfile(opts.dataDir, 'ImageSets', 'Main', ... [className '_' setName '.txt']) ; fprintf('%s: reading %s\n', mfilename, annoPath) ; [names,labels] = textread(annoPath, '%s %f') ; %#ok for i=1:length(names) if ~index.isKey(names{i}) j = j + 1 ; index(names{i}) = j ; imdb.images.id(j) = j ; imdb.images.set(j) = setCode ; imdb.images.name{j} = names{i} ; imdb.images.classification(j) = true ; else j = index(names{i}) ; end if labels(i) > 0, imdb.classes.images{ci}(end+1) = j ; end end end % ------------------------------------------------------------------------------ function [imdb, index] = addSegmentationSet(opts, imdb, index, setName, setCode) % ------------------------------------------------------------------------------ segAnnoPath = fullfile(opts.dataDir, 'ImageSets', ... 'Segmentation', [setName '.txt']) ; fprintf('%s: reading %s\n', mfilename, segAnnoPath) ; segNames = textread(segAnnoPath, '%s') ; %#ok j = numel(imdb.images.id) ; for i=1:length(segNames) if index.isKey(segNames{i}) k = index(segNames{i}) ; imdb.images.segmentation(k) = true ; imdb.images.set(k) = setCode ; else j = j + 1 ; index(segNames{i}) = j ; imdb.images.id(j) = j ; imdb.images.set(j) = setCode ; imdb.images.name{j} = segNames{i} ; imdb.images.classification(j) = false ; imdb.images.segmentation(j) = true ; end end % ------------------------------------------------------------------------- function imdb = getImageSizes(imdb) % ------------------------------------------------------------------------- for j=1:numel(imdb.images.id) info = imfinfo(sprintf(imdb.paths.image, imdb.images.name{j})) ; imdb.images.size(:,j) = uint16([info.Width ; info.Height]) ; msg = '%s: checked image %s [%d x %d]\n' ; fprintf(msg, mfilename, imdb.images.name{j}, info.Height, info.Width) ; end % ------------------------------------------------------------------------- function imdb = addDetections(opts, imdb) % ------------------------------------------------------------------------- rois = {} ; k = 0 ; msg = '%s: getting detections for %d images\n' ; fprintf(msg, mfilename, numel(imdb.images.id)) ; for j=1:numel(imdb.images.id) fprintf('.') ; if mod(j,80)==0,fprintf('\n') ; end name = imdb.images.name{j} ; annoPath = fullfile(opts.dataDir, 'Annotations', [name '.xml']) ; if ~exist(annoPath, 'file') if imdb.images.classification(j) && imdb.images.set(j) ~= 3 msg = 'Could not find detection annotations for ''%s''. Skipping.' ; warning(msg, name) ; end continue ; end doc = xmlread(annoPath) ; x = parseXML(doc, doc.getDocumentElement()) ; for q = 1:numel(x.object) xmin = sscanf(x.object(q).bndbox.xmin,'%d') ; ymin = sscanf(x.object(q).bndbox.ymin,'%d') ; xmax = sscanf(x.object(q).bndbox.xmax,'%d') - 1 ; ymax = sscanf(x.object(q).bndbox.ymax,'%d') - 1 ; k = k + 1 ; roi.id = k ; roi.image = imdb.images.id(j) ; roi.class = find(strcmp(x.object(q).name, imdb.classes.name)) ; roi.box = [xmin;ymin;xmax;ymax] ; roi.difficult = logical(sscanf(x.object(q).difficult,'%d')) ; roi.truncated = logical(sscanf(x.object(q).truncated,'%d')) ; if isfield(x.object(q),'occluded') roi.occluded = logical(sscanf(x.object(q).occluded,'%d')) ; else roi.occluded = false ; end switch x.object(q).pose case 'frontal', roi.aspect = 1 ; case 'rear', roi.aspect = 2 ; case {'sidefaceleft', 'left'}, roi.aspect = 3 ; case {'sidefaceright', 'right'}, roi.aspect = 4 ; case {'','unspecified'}, roi.aspect = 5 ; otherwise, error('Unknown view ''%s''', x.object(q).pose) ; end rois{k} = roi ; %#ok end end fprintf('\n') ; rois = horzcat(rois{:}) ; imdb.objects = struct(... 'id', uint32([rois.id]), ... 'image', uint32([rois.image]), ... 'class', uint8([rois.class]), ... 'box', single([rois.box]), ... 'difficult', [rois.difficult], ... 'truncated', [rois.truncated], ... 'occluded', [rois.occluded], ... 'aspect', uint8([rois.aspect])) ; % ------------------------------------------------------------------------- function value = parseXML(doc, x) % ------------------------------------------------------------------------- text = {''} ; opts = struct ; if x.hasChildNodes for c = 1:x.getChildNodes().getLength() y = x.getChildNodes().item(c-1) ; switch y.getNodeType() case doc.TEXT_NODE text{end+1} = lower(char(y.getData())) ; %#ok case doc.ELEMENT_NODE param = lower(char(y.getNodeName())) ; if strcmp(param, 'part'), continue ; end value = parseXML(doc, y) ; if ~isfield(opts, param) opts.(param) = value ; else opts.(param)(end+1) = value ; end end end if numel(fieldnames(opts)) > 0 value = opts ; else value = strtrim(horzcat(text{:})) ; end end % ------------------------------------------------------------------------- function str=esc(str) % ------------------------------------------------------------------------- str = strrep(str, '\', '\\') ;
github
albanie/mcnDatasets-master
eval_voc_cls.m
.m
mcnDatasets-master/pascal/helpers/eval_voc_cls.m
2,667
utf_8
2ecdf767a03c8f7c347660d9b63b00cf
function res = eval_voc_cls(cls, image_ids, scores, VOCopts, varargin) % RES = EVAL_VOC(CLS, IMAGE_IDS, SCORES, VOCOPTS) % Use the VOCdevkit to evaluate classifications specified in boxes % for class cls against the ground-truth boxes in the image % database IMDB. Results files are saved with an optional suffix. % % This is a modified version of Ross Girshick's Fast R-CNN code. % Add a random string ("salt") to the end of the results file name % to prevent concurrent evaluations from clobbering each other opts.use_res_salt = true ; opts.rm_res = true ; % Delete results files after computing APs opts.comp_id = 'comp2' ; % comp2 because we use outside data (ILSVRC2012) drawCurve = true ; % draw each class curve opts.suffix = '' ; opts.year = 2007 ; [opts, ~] = vl_argparse(opts, varargin) ; if ~strcmp(opts.suffix, ''), opts.suffix = ['_' opts.suffix] ; end if opts.use_res_salt prev_rng = rng ; rng shuffle ; salt = sprintf('%d', randi(100000)) ; res_id = [opts.comp_id '-' salt] ; rng(prev_rng) ; else res_id = opts.comp_id ; end % write out detections in PASCAL format and score res_fn = sprintf(VOCopts.clsrespath, res_id, cls); fid = fopen(res_fn, 'w') ; for i = 1:numel(image_ids) template = '%s %f\n' ; fprintf(fid, template, image_ids{i}, scores(i)) ; end fclose(fid) ; [recall, prec, ap] = VOCevalcls(VOCopts, res_id, cls, drawCurve) ; switch opts.year case 2007, ap_auc = VOCap07(recall, prec) ; case 2012, ap_auc = xVOCap(recall, prec) ; otherwise, error('Year %d not recognised', opts.year) ; end ylim([0 1]) ; xlim([0 1]) ; % force plot limits path = fullfile(VOCopts.cacheDir, sprintf('%s_pr_%s.jpg', cls, opts.suffix)) ; print(gcf, '-djpeg', '-r0', path) ; fprintf('!!! %s : %.4f %.4f\n', cls, ap, ap_auc) ; path = fullfile(VOCopts.cacheDir, sprintf('%s_pr_%s',cls, opts.suffix)) ; save(path, 'recall', 'prec', 'ap', 'ap_auc') ; res.recall = recall ; res.prec = prec ; res.ap = NaN ; res.ap_auc = ap_auc ; if opts.rm_res, delete(res_fn) ; end % ----------------------------- function ap = VOCap07(rec,prec) % ----------------------------- % From the PASCAL VOC 2007 devkit ap = 0 ; for t = 0:0.1:1 p = max(prec(rec>=t)) ; if isempty(p), p=0 ; end ap = ap + (p/11) ; end % ----------------------------- function ap = xVOCap(rec,prec) % ----------------------------- % this function is part of the PASCAL VOC 2011 devkit mrec=[0 ; rec ; 1]; mpre=[0 ; prec ; 0]; for i=numel(mpre)-1:-1:1 mpre(i)=max(mpre(i),mpre(i+1)); end i=find(mrec(2:end)~=mrec(1:end-1))+1; ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
github
albanie/mcnDatasets-master
eval_voc.m
.m
mcnDatasets-master/pascal/helpers/eval_voc.m
3,584
utf_8
1894c1f0ce5c9212bd5dc7325dfc9bbf
function res = eval_voc(cls, image_ids, bboxes, scores, VOCopts, varargin) % RES = EVAL_VOC(CLS, IMAGE_IDS, BBOXES, SCORES, VOCOPTS) % Use the VOCdevkit to evaluate detections specified in boxes % for class cls against the ground-truth boxes in the image % database IMDB. Results files are saved with an optional suffix. % % This is a modified version of Ross Girshick's code % % as part of R-CNN. released % AUTORIGHTS % --------------------------------------------------------- % Copyright (c) 2014, Ross Girshick % % This file is part of the R-CNN code and is available % under the terms of the Simplified BSD License provided in % LICENSE. Please retain this notice and LICENSE if you use % this file (or any portion of it) in your project. % --------------------------------------------------------- % Add a random string ("salt") to the end of the results file name % to prevent concurrent evaluations from clobbering each other opts.use_res_salt = true; opts.rm_res = true ; % Delete results files after computing APs opts.comp_id = 'comp4' ; % comp4 because we use outside data (ILSVRC2012) drawCurve = true ; % draw each class curve opts.suffix = '' ; opts.year = 2007 ; % the official eval is quite slow, so use x10 version for development % and switch to official for paper experiments opts.evalVersion = 'official' ; [opts, ~] = vl_argparse(opts, varargin) ; if ~strcmp(opts.suffix, ''), opts.suffix = ['_' opts.suffix] ; end if opts.use_res_salt prev_rng = rng ; rng shuffle ; salt = sprintf('%d', randi(100000)) ; res_id = [opts.comp_id '-' salt] ; rng(prev_rng) ; else res_id = opts.comp_id ; end % write out detections in PASCAL format and score res_fn = sprintf(VOCopts.detrespath, res_id, cls); fid = fopen(res_fn, 'w') ; for i = 1:numel(image_ids) template = '%s %f %.3f %.3f %.3f %.3f\n' ; fprintf(fid, template, image_ids{i}, scores(i), bboxes(i,:)) ; end fclose(fid) ; tic ; % bug in VOCevaldet requires that tic has been called first switch opts.evalVersion case 'official' [recall, prec, ap] = VOCevaldet(VOCopts, res_id, cls, drawCurve) ; case 'fast' [recall, prec, ap] = x10VOCevaldet(VOCopts, res_id, cls, drawCurve) ; otherwise error('Evaluation version %s not recognised', opts.evalVersion) ; end switch opts.year case 2007, ap_auc = VOCap07(recall, prec) ; case 2012, ap_auc = xVOCap(recall, prec) ; otherwise, error('Year %d not recognised', opts.year) ; end ylim([0 1]) ; xlim([0 1]) ; % force plot limits path = fullfile(VOCopts.cacheDir, sprintf('%s_pr_%s.jpg', cls, opts.suffix)) ; print(gcf, '-djpeg', '-r0', path) ; fprintf('!!! %s : %.4f %.4f\n', cls, ap, ap_auc) ; path = fullfile(VOCopts.cacheDir, sprintf('%s_pr_%s',cls, opts.suffix)) ; save(path, 'recall', 'prec', 'ap', 'ap_auc') ; res.recall = recall ; res.prec = prec ; res.ap = NaN ; res.ap_auc = ap_auc ; if opts.rm_res, delete(res_fn) ; end % ----------------------------- function ap = VOCap07(rec,prec) % ----------------------------- % From the PASCAL VOC 2007 devkit ap = 0 ; for t = 0:0.1:1 p = max(prec(rec>=t)) ; if isempty(p), p=0 ; end ap = ap + (p/11) ; end % ----------------------------- function ap = xVOCap(rec,prec) % ----------------------------- % this function is part of the PASCAL VOC 2011 devkit mrec=[0 ; rec ; 1]; mpre=[0 ; prec ; 0]; for i=numel(mpre)-1:-1:1 mpre(i)=max(mpre(i),mpre(i+1)); end i=find(mrec(2:end)~=mrec(1:end-1))+1; ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
github
albanie/mcnDatasets-master
getRmlImdb.m
.m
mcnDatasets-master/rml/getRmlImdb.m
5,299
utf_8
891c2e84680f145e95cb207c55c406d4
function imdb = getRmlImdb(opts, varargin) %GETRMLIMDB Rml imdb construction % IMDB = GETRMLIMDB(OPTS) builds an image/video database for training and % testing on the RML dataset % % Copyright (C) 2018 Samuel Albanie % Licensed under The MIT License [see LICENSE.md for details] opts.generateWavs = true ; opts = vl_argparse(opts, varargin) ; imdb = rmlSetup(opts) ; imdb.images.ext = 'jpg' ; end % ------------------------------ function imdb = rmlSetup(opts) % ------------------------------ emotions = {'Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise'} ; emoKeys = {'an', 'di', 'fe', 'ha', 'sa', 'su'} ; % notation used in folders faceDir = fullfile(opts.dataDir, 'faces') ; subsets = {'rml-1', 'rml-2'} ; speakers = {{'s1', 's2', 's3', 's4', 's5'}, {'s6', 's7', 's8'}} ; facePaths = zs_getImgsInSubdirs(faceDir, 'jpg') ; allTracks = cellfun(@fileparts, facePaths, 'uni', 0) ; numTracks = numel(unique(allTracks)) ; fprintf('found %d tracks (expected 720) \n', numTracks) ; % use FER2013 ordering labels = zeros(1, numTracks) ; relPaths = cell(1, numTracks) ; vidNames = cell(1, numTracks) ; spIds = zeros(1, numTracks) ; subsetIdx = zeros(1, numTracks) ; vidPaths = cell(1, numTracks) ; if opts.generateWavs wavPaths = cell(1, numTracks) ; end % determine track labels counter = 1 ; for ii = 1:numel(subsets) subset = subsets{ii} ; subsetSpeakers = speakers{ii} ; for jj = 1:numel(subsetSpeakers) sp = subsetSpeakers{jj} ; tracks = zs_getSubdirs(fullfile(faceDir, subset, sp)) ; % flatten speakers with multiple languages if any(~ismember(tracks, allTracks)) subTracks = cellfun(@zs_getSubdirs, tracks, 'uni', 0) ; tracks = [subTracks{:}] ; depth = 6 ; else depth = 5 ; end assert(all(ismember(tracks, allTracks)), 'incorrect track selection') ; for kk = 1:numel(tracks) fprintf('processing %d/%d (%s)\n', counter, numTracks, subset) ; [~,vidName,~] = fileparts(tracks{kk}) ; label = find(strcmp(emoKeys, vidName(1:2))) ; assert(numel(label) == 1, 'could not find appropriate label') ; paths = zs_getImgsInSubdirs(tracks{kk}, 'jpg') ; tails = cellfun(@(x) getTail(x, depth), paths, 'Uni', 0) ; relPaths{counter} = tails ; subsetIdx(counter) = ii ; labels(counter) = label ; vidNames{counter} = vidName ; % store path to video and generate wav if requested vidBasePath = strrep(tracks{kk}, '/faces', '') ; % chop from path vidPath = [vidBasePath '.avi'] ; assert(logical(exist(vidPath, 'file')), 'avi does not exist') ; vidPaths{counter} = vidPath ; if opts.generateWavs wavPaths{counter} = extractAudio(vidBasePath) ; end spIds(counter) = find(strcmp(sp, [speakers{:}])) ; counter = counter + 1 ; end end end % sanity check expected track numbers assert(counter == 721, 'unexpected number of tracks') ; imdb.tracks.vids = vidNames ; imdb.tracks.vidPaths = vidPaths ; imdb.tracks.paths = relPaths ; imdb.tracks.labels = labels ; imdb.tracks.labelsFerPlus = convertFerToFerPlus(labels, emotions) ; imdb.tracks.set = subsetIdx ; imdb.meta.classes = emotions ; imdb.meta.sets = subsets ; if opts.generateWavs imdb.tracks.wavPaths = wavPaths ; end % check statistics against expected numbers msg = 'emotion statistics do not match expected numbers' ; assert(sum(imdb.tracks.set == 1 & imdb.tracks.labels == 1) == 66, msg) ; imdb.tracks.id = 1:numTracks ; end % ------------------------------------------------------------------------- function destPath = extractAudio(vidBasePath) % ------------------------------------------------------------------------- srcPath = [vidBasePath '.avi'] ; destPath = [vidBasePath '.wav'] ; if ~exist(destPath, 'file') ffmpegBin = '/users/albanie/local/bin/ffmpeg' ; cmd = sprintf('%s -i %s -vn -acodec copy %s', ... ffmpegBin, srcPath, destPath) ; status = system(cmd) ; if status ~= 0, keyboard ; end end end % ------------------------------------------------------------------------- function labels = convertFerToFerPlus(labels, ferEmotions) % ------------------------------------------------------------------------- % convert FER labels to FERplus emotion indices ferPlusEmotions = {'neutral', 'happiness', 'surprise', 'sadness', ... 'anger', 'disgust', 'fear', 'contempt'} ; % match strings strMap = containers.Map() ; strMap('Happy') = 'happiness' ; strMap('Sad') = 'sadness' ; strMap('Neutral') = 'neutral' ; strMap('Surprise') = 'surprise' ; strMap('Disgust') = 'disgust' ; strMap('Fear') = 'fear' ; strMap('Angry') = 'anger' ; % generate label permutation array permuteMap = cellfun(@(x) find(strcmp(strMap(x), ferPlusEmotions)), ... ferEmotions) ; msg = 'contempt should not exist in original labels' ; assert(~ismember(8, permuteMap), msg) ; labels = permuteMap(labels) ; end % --------------------------------------- function tail = getTail(path, numTokens) % --------------------------------------- tokens = strsplit(path, '/') ; tail = fullfile(tokens{end-numTokens+1:end}) ; end
github
q-omar/gravity_anomalies-master
grav_pot_point.m
.m
gravity_anomalies-master/matlab_implementation/grav_pot_point.m
307
utf_8
e8daed0e0a3699dea2338cd54278e2f5
%GOPH 547-Gravity and Magnetics %Safian Omar Qureshi %ID: 10086638 %TA: Ye Sun %% Question 1a function [U]=grav_pot_point(x,xm,m,G) %defining gravity potential function r_norm=norm(x-xm); %simply using formula U=(G*m)./r_norm; end %these will be used in other parts of the code
github
q-omar/gravity_anomalies-master
grav_eff_point.m
.m
gravity_anomalies-master/matlab_implementation/grav_eff_point.m
369
utf_8
d201104f25cc68482ed0caa23d8be8d7
%GOPH 547-Gravity and Magnetics (W2017) %Safian Omar Qureshi %ID: 10086638 %TA: Ye Sun %% Question 1b function [gz]=grav_eff_point(x,xm,m,G) %defining gravity effect function r_norm=norm(x-xm); %simply using formula r3=r_norm^3; dz=(x(3)-xm(3)); gz=(G*m*dz)/r3; end %these will be used in other parts of the code
github
xiaosonghe/DynamicFunctionalConnectivity-master
S4ModularityMeasures.m
.m
DynamicFunctionalConnectivity-master/S4ModularityMeasures.m
1,059
utf_8
28d9089e18e0b75bb522eb263277638c
% Calculating MA, Flexibility, LI, P, Z, FCw and FCb clear all; sbj=importdata('E:\VerbGeneration_network\sbj.txt'); System=[1;1;1;2;2;2;2;2;3;3;3;4;4;4;4;4];% Define System for LI and I, R calculation parfor t=1:length(sbj) X=load(['E:\VerbGeneration_network\6CommunityMatrix\' sbj{t} '.mat']); pathD=['E:\VerbGeneration_network\7ModularityMeasures\' sbj{t} '.mat']; ModularityMeasures(System,X.S,X.A,pathD); end function ModularityMeasures(System,SO,A,pathD) for ii=1:100 MA(:,:,ii)=allegiance(SO(:,:,ii));% Module Allegiance F(ii,:)=flexibility(SO(:,:,ii));% Flexibility Prom(ii,:)=promiscuity(SO(:,:,ii));% Promiscuity I_s(ii,:)=integration(MA(:,:,ii),System);% Integration by System (L Broca, L Wernicke, R Broca, R Wernicke) R_s(ii,:)=recruitment(MA(:,:,ii),System);% Recruitment by System (L Broca, L Wernicke, R Broca, R Wernicke) RI(:,:,ii)=integration_sub(MA(:,:,ii),System);% RI by System (L Broca, L Wernicke, R Broca, R Wernicke) end save(pathD,'MA','F','Prom','I_s','R_s','RI'); end
github
xiaosonghe/DynamicFunctionalConnectivity-master
S6NullModelMeasures.m
.m
DynamicFunctionalConnectivity-master/S6NullModelMeasures.m
1,889
utf_8
fae0f8439cbcaffb12cfb602dd83c24a
% Calculating Flexibility and MA clear all; sbj=importdata('E:\VerbGeneration_network\sbj.txt'); System=[1;1;1;2;2;2;2;2;3;3;3;4;4;4;4;4];% Define System for LI and I, R calculation parfor t=1:length(sbj) x=load(['E:\VerbGeneration_network\8RandomCommunity\' sbj{t} '.mat']); pathD=['E:\VerbGeneration_network\9NullModelMeasures\' sbj{t} '.mat']; % Generating Modularity Measures GenModalMeasure(C,System,x.Scr,x.Str,x.Snr,x.Ss,pathD); end % Generating Modularity Measures function GenModalMeasure(C,System,Scr,Str,Snr,Ss,pathD) for k=1:100 clear SO MAt Ft Promt Perst I_ht I_st R_ht R_st; SO(:,:,:,1)=Scr(:,:,:,k); SO(:,:,:,2)=Snr(:,:,:,k); SO(:,:,:,3)=Ss(:,:,:,k); for ii=1:100 for t=1:3 MAt(:,:,ii,t)=allegiance(SO(:,:,ii,t));% Module Allegiance Ft(ii,:,t)=flexibility(SO(:,:,ii,t));% Flexibility Promt(ii,:,t)=promiscuity(SO(:,:,ii,t));% Promiscuity I_st(ii,:,t)=integration(MAt(:,:,ii),System);% Integration by System (L Broca, L Wernicke, R Broca, R Wernicke) R_st(ii,:,t)=recruitment(MAt(:,:,ii),System);% Recruitment by System (L Broca, L Wernicke, R Broca, R Wernicke) end end MAcr(:,:,:,k)=MAt(:,:,:,1);MAnr(:,:,:,k)=MAt(:,:,:,2);MAs(:,:,:,k)=MAt(:,:,:,3); Fcr(:,:,k)=Ft(:,:,1);Fnr(:,:,k)=Ft(:,:,2);Fs(:,:,k)=Ft(:,:,3); Promcr(:,:,k)=Promt(:,:,1);Promnr(:,:,k)=Promt(:,:,2);Proms(:,:,k)=Promt(:,:,3); I_scr(:,:,k)=I_st(:,:,1);I_snr(:,:,k)=I_st(:,:,2);I_ss(:,:,k)=I_st(:,:,3); R_scr(:,:,k)=R_st(:,:,1);R_snr(:,:,k)=R_st(:,:,2);R_ss(:,:,k)=R_st(:,:,3); clear SO MAt Ft Promt I_st R_st; end if exist(pathD,'file') delete(pathD); end save(pathD,'MAcr','MAnr','MAs','Fcr','Fnr','Fs','Promcr','Promnr','Proms','I_scr','I_snr','I_ss','R_hcr','R_hnr','R_hs','R_scr','R_snr','R_ss'); end
github
xiaosonghe/DynamicFunctionalConnectivity-master
S5RandomCommunity.m
.m
DynamicFunctionalConnectivity-master/S5RandomCommunity.m
4,936
utf_8
6d95f5a97f8291e0a715e8fe46fd2dbb
% Generating Null Models clear all; sbj=importdata('E:\VerbGeneration_network\sbj.txt'); gamma = 1; omega = 0.4; % Based on Chai et al 2016 CC parfor t=1:length(sbj) X=load(['E:\VerbGeneration_network\5tDecomposedSignals\' sbj{t} '.mat'],'D2'); pathD=['E:\VerbGeneration_network\8RandomCommunity\' sbj{t} '.mat']; % Connectional Null Model ConnectionalNullModel(pathD,X.D2,gamma,omega); % Nodal Null Model NodalNullModel(pathD,X.D2,gamma,omega); % Static Null Model StaticNullModel(pathD,X.D2,gamma,omega); end % Connectional Null Model function ConnectionalNullModel(pathD,d,gamma,omega) % Creating adjacency matrix over time: Window Size = 40 sec (14 windows, 8=half-window)/30 sec (19 windows, 6=half-window)/1 min (9 windows, 12=half-window; % Overlapping = 50% with matlab new wavelet coherence SampRate=1/2.5; for i=1:14 clear At; for k=1:16 for kk=1:16 clear wcoh f; [wcoh,~,f] = wcoherence(d(((i-1)*8+1):(i+1)*8,k),d(((i-1)*8+1):(i+1)*8,kk),SampRate); At(k,kk)=mean(mean(wcoh(find(f>0.05 & f<0.1),:))); clear wcoh f; end end At=round(At.*1000000)./1000000; A{i,1}=At; clear At; end for k=1:100 clear Acr; for i=1:14 Acr{i}=randmio_und(A{i},20); end for ii=1:100 % 100 times of optimization clear N T B mm PP St; N=length(Acr{1}); T=length(Acr); [B,mm] = multiord(Acr,gamma,omega); PP = @(S) postprocess_ordinal_multilayer(S,T); [St,Qcr(ii,k),~] = iterated_genlouvain(B,10000,0,1,'moverandw',[], PP); % tobe saved (Qtr) Qcr(ii,k)=Qcr(ii,k)/mm; St = reshape(St, N, T); Scr(:,:,ii,k)=St';% tobe saved Str clear N T B mm PP St; end clear Acr; end if exist(pathD,'file') delete(pathD); end save(pathD,'Qcr','Scr'); end % Nodal Null Model function NodalNullModel(pathD,d,gamma,omega) % Creating adjacency matrix over time: Window Size = 40 sec (14 windows, 8=half-window)/30 sec (19 windows, 6=half-window)/1 min (9 windows, 12=half-window; % Overlapping = 50% with matlab new wavelet coherence SampRate=1/2.5; % Creating 100 null models for k=1:100 % Creating adjacency matrix over time, with ROIs rotated at each window clear Anr; for i=1:14 clear At rd dt tt; rd=randperm(16); % [~,Inr(i,:,k)]=sort(rd);% tobe saved Inr for tt=1:16 dt(:,tt)=d(:,rd(tt)); end % Coherence for kk=1:16 for kkk=1:16 clear wcoh f; [wcoh,~,f] = wcoherence(dt(((i-1)*8+1):(i+1)*8,kk),dt(((i-1)*8+1):(i+1)*8,kkk),SampRate); At(kk,kkk)=mean(mean(wcoh(find(f>0.05 & f<0.1),:))); clear wcoh f; end end At=round(At.*1000000)./1000000; Anr{i,1}=At; clear At rd dt tt; end for ii=1:100 % 100 times of optimization clear N T B mm PP St; N=length(Anr{1}); T=length(Anr); [B,mm] = multiord(Anr,gamma,omega); PP = @(S) postprocess_ordinal_multilayer(S,T); [St,Qnr(ii,k),~] = iterated_genlouvain(B,10000,0,1,'moverandw',[], PP); % tobe saved (Qnr) Qnr(ii,k)=Qnr(ii,k)/mm; St = reshape(St, N, T); Snr(:,:,ii,k)=St';% tobe saved Snr clear N T B mm PP St; end clear Anr; end save(pathD,'Qnr','Snr','-append');% 'Inr' end % Static Null Model function StaticNullModel(pathD,d,gamma,omega) % Creating adjacency matrix over time: Window Size = 40 sec (14 windows, 8=half-window)/30 sec (19 windows, 6=half-window)/1 min (9 windows, 12=half-window; % Overlapping = 50% with matlab new wavelet coherence SampRate=1/2.5; % Creating 100 null models for k=1:100 % Creating adjacency matrix over time, by duplicating one of the windows clear At As; rd=randperm(14); % coherence for kk=1:16 for kkk=1:16 clear wcoh f; [wcoh,~,f] = wcoherence(d(((rd(1)-1)*8+1):(rd(1)+1)*8,kk),d(((rd(1)-1)*8+1):(rd(1)+1)*8,kkk),SampRate); At(kk,kkk)=mean(mean(wcoh(find(f>0.05 & f<0.1),:))); clear wcoh f; end end At=round(At.*1000000)./1000000; for i=1:14 As{i,1}=At; end for ii=1:100 % 100 times of optimization % Following based on Example on multilayer network quality function of Mucha et al. 2010 % (using multilayer cell A with A{s} the adjacency matrix of layer s) clear N T B mm PP St; N=length(As{1}); T=length(As); [B,mm] = multiord(As,gamma,omega); PP = @(S) postprocess_ordinal_multilayer(S,T); [St,Qs(ii,k),~] = iterated_genlouvain(B,10000,0,1,'moverandw',[], PP); % tobe saved (Qs) Qs(ii,k)=Qs(ii,k)/mm; St = reshape(St, N, T); Ss(:,:,ii,k)=St';% tobe saved Ss clear N T B mm PP St; end clear At As; end save(pathD,'Qs','Ss','-append'); end
github
xiaosonghe/DynamicFunctionalConnectivity-master
S2ROISignalExtract.m
.m
DynamicFunctionalConnectivity-master/S2ROISignalExtract.m
816
utf_8
b4aa37c89259eabb7055f0f84f518721
% Extract ROI Signal % Order: LIFGorb, LIFG, LMFG, LAT, LMAT, LMPT, LPT, LAG, RIFGorb, RIFG, RMFG, RAT, RMAT, RMPT, RPT, RAG clear all; sbj=importdata('E:\VerbGeneration_network\sbj.txt'); parfor i=1:length(sbj) roi_filest = spm_get('files',['E:\VerbGeneration_network\4IndividualROIs\' sbj{i}],'*roi.mat'); roi_files=roi_filest([4 3 5 2 6:8 1 12 11 13 10 14:16 9],:); ImgData=['E:\VerbGeneration_network\1Preprocessing\FunImgARCWS\' sbj{i} '\swCovRegressed_4DVolume.nii']; pathD=['E:\VerbGeneration_network\5ROISignals\' sbj{i} '.txt']; extractROIsignals(roi_files,ImgData,pathD); end function extractROIsignals(roi_files,ImgData,pathD) rois = maroi('load_cell', roi_files); mY=get_marsy(rois{:},ImgData,'mean'); y = summary_data(mY); save(pathD,'y','-ascii','-double'); end
github
xiaosonghe/DynamicFunctionalConnectivity-master
S3CommunityMatrix.m
.m
DynamicFunctionalConnectivity-master/S3CommunityMatrix.m
2,321
utf_8
06bb3a5eb523023ff2e1fbfb87078632
% Generate the community assignments matrix clear all; sbj=importdata('E:\VerbGeneration_network\sbj.txt'); gamma = 1; omega = 0.4; % Based on Chai et al 2016 CC parfor t=1:length(sbj) X=load(['E:\VerbGeneration_network\5tDecomposedSignals\' sbj{t} '.mat'],'D2'); pathD=['E:\VerbGeneration_network\6CommunityMatrix\' sbj{t} '.mat']; communitydetection(gamma,omega,pathD,X.D2); end function communitydetection(gamma,omega,pathD,d) % Creating adjacency matrix over time: Window Size = 40 sec (14 windows, 8=half-window)/30 sec (19 windows, 6=half-window)/1 min (9 windows, 12=half-window; % Overlapping = 50% with matlab new wavelet coherence SampRate=1/2.5; for i=1:14 clear At; for k=1:16 for kk=1:16 clear wcoh f; [wcoh,~,f] = wcoherence(d(((i-1)*8+1):(i+1)*8,k),d(((i-1)*8+1):(i+1)*8,kk),SampRate); At(k,kk)=mean(mean(wcoh(find(f>0.05 & f<0.1),:))); clear wcoh f; end end At=round(At.*1000000)./1000000; A{i,1}=At; clear At; end % % Creating adjacency matrix over time: Window Size = 40 sec (27 windows, (4*i-3):(4*i+12))/30 sec (28 windows, (4*i-3):(4*i+8)); % % Step = 4 TR/10s; with matlab new wavelet coherence % SampRate=1/2.5; % for i=1:27 % clear At; % for k=1:16 % for kk=1:16 % clear wcoh f; % [wcoh,~,f] = wcoherence(d((4*i-3):(4*i+12),k),d((4*i-3):(4*i+12),kk),SampRate); % At(k,kk)=mean(mean(wcoh(find(f>0.05 & f<0.1),:))); % clear wcoh f; % end % end % At=round(At.*1000000)./1000000; % A{i,1}=At; % clear At; % end for ii=1:100 % 100 times of optimization % Following based on Example on multilayer network quality function of Mucha et al. 2010 % (using multilayer cell A with A{s} the adjacency matrix of layer s) clear N T B mm PP St; N=length(A{1}); T=length(A); [B,mm] = multiord(A,gamma,omega); PP = @(S) postprocess_ordinal_multilayer(S,T); [St,Q(ii),~] = iterated_genlouvain(B,10000,0,1,'moverandw',[], PP); % tobe saved (Q) St = reshape(St, N, T); Q(ii)=Q(ii)/mm; S(:,:,ii)=St';% tobe saved clear N T B mm PP St; end if exist(pathD,'file') delete(pathD); end save(pathD,'A','Q','S'); end
github
Erin-H/Activity-Recognition-master
LDA.m
.m
Activity-Recognition-master/LDA.m
8,682
utf_8
6fa50a0b489e557f036d16d4122c282d
function [eigvector, eigvalue] = LDA(gnd,options,data) % LDA: Linear Discriminant Analysis % % [eigvector, eigvalue] = LDA(gnd, options, data) % % Input: % data - Data matrix. Each row vector of fea is a data point. % gnd - Colunm vector of the label information for each % data point. % options - Struct value in Matlab. The fields in options % that can be set: % % Regu - 1: regularized solution, % a* = argmax (a'X'WXa)/(a'X'Xa+ReguAlpha*I) % 0: solve the sinularity problem by SVD % Default: 0 % % ReguAlpha - The regularization parameter. Valid % when Regu==1. Default value is 0.1. % % ReguType - 'Ridge': Tikhonov regularization % 'Custom': User provided % regularization matrix % Default: 'Ridge' % regularizerR - (nFea x nFea) regularization % matrix which should be provided % if ReguType is 'Custom'. nFea is % the feature number of data % matrix % Fisherface - 1: Fisherface approach % PCARatio = nSmp - nClass % Default: 0 % % PCARatio - The percentage of principal % component kept in the PCA % step. The percentage is % calculated based on the % eigenvalue. Default is 1 % (100%, all the non-zero % eigenvalues will be kept. % If PCARatio > 1, the PCA step % will keep exactly PCARatio principle % components (does not exceed the % exact number of non-zero components). % % % Output: % eigvector - Each column is an embedding function, for a new % data point (row vector) x, y = x*eigvector % will be the embedding result of x. % eigvalue - The sorted eigvalue of LDA eigen-problem. % elapse - Time spent on different steps % % Examples: % % fea = rand(50,70); % gnd = [ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4]; % options = []; % options.Fisherface = 1; % [eigvector, eigvalue] = LDA(gnd, options, fea); % Y = fea*eigvector; % % % See also LPP, constructW, LGE % % % %Reference: % % Deng Cai, Xiaofei He, Jiawei Han, "SRDA: An Efficient Algorithm for % Large Scale Discriminant Analysis", IEEE Transactions on Knowledge and % Data Engineering, 2007. % % Deng Cai, "Spectral Regression: A Regression Framework for % Efficient Regularized Subspace Learning", PhD Thesis, Department of % Computer Science, UIUC, 2009. % % version 3.0 --Dec/2011 % version 2.1 --June/2007 % version 2.0 --May/2007 % version 1.1 --Feb/2006 % version 1.0 --April/2004 % % Written by Deng Cai (dengcai AT gmail.com) % MAX_MATRIX_SIZE = 1600; % You can change this number according your machine computational power EIGVECTOR_RATIO = 0.1; % You can change this number according your machine computational power if (~exist('options','var')) options = []; end if ~isfield(options,'Regu') || ~options.Regu bPCA = 1; if ~isfield(options,'PCARatio') options.PCARatio = 1; end else bPCA = 0; if ~isfield(options,'ReguType') options.ReguType = 'Ridge'; end if ~isfield(options,'ReguAlpha') options.ReguAlpha = 0.1; end end % ====== Initialization [nSmp,nFea] = size(data); if length(gnd) ~= nSmp error('gnd and data mismatch!'); end classLabel = unique(gnd); nClass = length(classLabel); Dim = nClass - 1; if bPCA && isfield(options,'Fisherface') && options.Fisherface options.PCARatio = nSmp - nClass; end if issparse(data) data = full(data); end sampleMean = mean(data,1); data = (data - repmat(sampleMean,nSmp,1)); bChol = 0; if bPCA && (nSmp > nFea+1) && (options.PCARatio >= 1) DPrime = data'*data; DPrime = max(DPrime,DPrime'); [R,p] = chol(DPrime); if p == 0 bPCA = 0; bChol = 1; end end %====================================== % SVD %====================================== if bPCA [U, S, V] = mySVD(data); [U, S, V]=CutonRatio(U,S,V,options); eigvalue_PCA = full(diag(S)); data = U; eigvector_PCA = V*spdiags(eigvalue_PCA.^-1,0,length(eigvalue_PCA),length(eigvalue_PCA)); else if ~bChol DPrime = data'*data; % options.ReguAlpha = nSmp*options.ReguAlpha; switch lower(options.ReguType) case {lower('Ridge')} for i=1:size(DPrime,1) DPrime(i,i) = DPrime(i,i) + options.ReguAlpha; end case {lower('Tensor')} DPrime = DPrime + options.ReguAlpha*options.regularizerR; case {lower('Custom')} DPrime = DPrime + options.ReguAlpha*options.regularizerR; otherwise error('ReguType does not exist!'); end DPrime = max(DPrime,DPrime'); end end [nSmp,nFea] = size(data); Hb = zeros(nClass,nFea); for i = 1:nClass, index = find(gnd==classLabel(i)); classMean = mean(data(index,:),1); Hb (i,:) = sqrt(length(index))*classMean; end if bPCA [dumpVec,eigvalue,eigvector] = svd(Hb,'econ'); eigvalue = diag(eigvalue); eigIdx = find(eigvalue < 1e-3); eigvalue(eigIdx) = []; eigvector(:,eigIdx) = []; eigvalue = eigvalue.^2; eigvector = eigvector_PCA*eigvector; else WPrime = Hb'*Hb; WPrime = max(WPrime,WPrime'); dimMatrix = size(WPrime,2); if Dim > dimMatrix Dim = dimMatrix; end if isfield(options,'bEigs') bEigs = options.bEigs; else if (dimMatrix > MAX_MATRIX_SIZE) && (ReducedDim < dimMatrix*EIGVECTOR_RATIO) bEigs = 1; else bEigs = 0; end end if bEigs %disp('use eigs to speed up!'); option = struct('disp',0); if bChol option.cholB = 1; [eigvector, eigvalue] = eigs(WPrime,R,Dim,'la',option); else [eigvector, eigvalue] = eigs(WPrime,DPrime,Dim,'la',option); end eigvalue = diag(eigvalue); else [eigvector, eigvalue] = eig(WPrime,DPrime); eigvalue = diag(eigvalue); [junk, index] = sort(-eigvalue); eigvalue = eigvalue(index); eigvector = eigvector(:,index); if Dim < size(eigvector,2) eigvector = eigvector(:, 1:Dim); eigvalue = eigvalue(1:Dim); end end end for i = 1:size(eigvector,2) eigvector(:,i) = eigvector(:,i)./norm(eigvector(:,i)); end function [U, S, V]=CutonRatio(U,S,V,options) if ~isfield(options, 'PCARatio') options.PCARatio = 1; end eigvalue_PCA = full(diag(S)); if options.PCARatio > 1 idx = options.PCARatio; if idx < length(eigvalue_PCA) U = U(:,1:idx); V = V(:,1:idx); S = S(1:idx,1:idx); end elseif options.PCARatio < 1 sumEig = sum(eigvalue_PCA); sumEig = sumEig*options.PCARatio; sumNow = 0; for idx = 1:length(eigvalue_PCA) sumNow = sumNow + eigvalue_PCA(idx); if sumNow >= sumEig break; end end U = U(:,1:idx); V = V(:,1:idx); S = S(1:idx,1:idx); end
github
melaniafilosa/ray-mapping-fresnel-lens-master
mc_raytracing.m
.m
ray-mapping-fresnel-lens-master/mc_raytracing.m
3,123
utf_8
767c6a36c4ffed235827ccde07dc7265
% This function computes the ray tracing given the position and the % direction of the ray and the optical system function [zout, thetaout,last_surface] = ... mc_raytracing(surfaces, z , tau, variables) graf = 0; a = 2; k = -1; % (x,z) = coordinates of the initial position ray.x = surfaces(1).x(1); ray.z = z; ray.n = 1; % Initial angle with respect to the optical axis % Ray direction ray.sz = tau; ray.sx = sqrt(1-tau^2); % store initial conditions for debugging % ray.n=1; % we start in air ray_source = ray; s = zeros(length(surfaces) ,1); % s = parameter for the ray parameterization xn = zeros(length(surfaces) ,1); % xn(i) = x-s(i)*sin(theta) zn = zeros(length(surfaces) ,1); % zn(i) = z+s(i)*cos(theta) surfaces_hit = 0; while( k~=4 && k~=5 && k~=6 && k~=1 && k~=7 && surfaces_hit<100) surfaces_hit = surfaces_hit+1; x0 = ray.x; z0 = ray.z; for i=1:length(surfaces) [xn(i),zn(i),s(i), valid(i)] = ... surfaces(i).intersection(ray, surfaces(i), variables); end [k] = distances(xn,zn,ray,s,valid); % disp([' closest intersection from surface ',num2str(k),' ',surfaces(k).name]); % (x,z) = coordinates of the closer intersection %if(k~=7) ray.x = xn(k); ray.z = zn(k); % plot([x0, xn(k)], [z0, zn(k)], ' g', 'linewidth', 1.2); a = a+1; % plot the path of the rays [ray1, ray2,ray,check, energy] = surfaces(k).action(ray,surfaces(k), ... k, x0, z0, variables, 1); %end if ( graf) figure(3) hold on if(check) plot([x0, xn(k)], [z0, zn(k)], ' m', 'linewidth', 1.2); % plot([ray1.x, xn(k)], [ray1.z, zn(k)], ' -- g', 'linewidth', 1.2); else plot([x0, xn(k)], [z0, zn(k)], ' g', 'linewidth', 1.2); % plot([ray2.x, xn(k)], [ray2.z, zn(k)], '-- m', 'linewidth', 1.2); end % plot([x0, xn(k)], [z0, zn(k)], '* m', 'linewidth', 1.2); end % if(k==2 || k==3) % for i=1:length(surfaces) % [xn1(i),zn1(i),s1(i), valid1(i)] = ... % surfaces(i).intersection(ray1, surfaces(i), variables); % [xn2(i),zn2(i),s2(i), valid2(i)] = ... % surfaces(i).intersection(ray2, surfaces(i), variables); % % end % [k1] = distances(xn1,zn1,ray1,s1,valid1); % [k2] = distances(xn2,zn2,ray2, s2,valid2); % plot([ray1.x, xn1(k1)], [ray1.z, zn1(k1)], '-- c') % plot([ray2.x, xn2(k2)], [ray2.z, zn2(k2)], '-- b') % end % if(R == 1) % figure(1) % hold on % plot([x0, xn(k)], [z0, zn(k)], ' m', 'linewidth', 1.2); % end end % end while % xout = xn(k); %if(k~=7) zout = zn(k); thetaout = ray.sz; last_surface = k; % else % xout= 0; % zout = 0; % thetaout = tau; % last_surface = k; % end
github
melaniafilosa/ray-mapping-fresnel-lens-master
bisection_method.m
.m
ray-mapping-fresnel-lens-master/bisection_method.m
2,217
utf_8
7b0f651017dede5a9b1f9528a7c54b28
% This function uses the bisection method top find the rays with % the same number of reflections of A function [C1, targetC1,pathC1, C2, targetC2, pathC2] = ... bisection_method(A, B, targetA,targetB, pathA, surfaces, ... action, variables) %pathA = [pathA, A.surface]; toll = 1e-12; pathB = 4; while(abs(targetA.z-targetB.z)>toll) % Consider the middle point between targetA.x and targetB.x pathM = 4; K = 0; targetM.z = (targetA.z + targetB.z)/2; targetM.x = targetA.x; targetM.sx = targetA.sx; targetM.sz = targetA.sz; targetM.n = 1; targetM.surface = -1; targetM.I = 1; M = targetM; M.I = 1; i = 2; while (i <=length(pathA)) Mr = M; Mt = M; % Do ray tracing for target M [Mr,Mt, RM, TM] = raytracing(M, surfaces, variables); K = length(pathM); if(action(K)==1) M = Mt; M.I = Mt.T; if(Mr.n==1) M.n = 1.5; else M.n = 1; end else M = Mr; M.I = Mr.R; if(Mr.n==1) M.n = 1; else M.n = 1.5; end end if(isempty(M)) i = length(pathA); else if((M.surface==1) || (M.surface==4) ... || (M.surface==5)|| (M.surface==6) || (M.surface==7)) pathM = [pathM, M.surface]; i = length(pathA); else pathM = [pathM, M.surface]; end i = i+1; end end if(isequal(pathA,pathM)) A = M; targetA = targetM; pathA = pathM; RA = RM; TA = TM; else % if(A.surface~=M.surface) B = M; targetB = targetM; RB = RM; TB = TM; pathB = pathM; end % figure(2) % hold on % plot(targetA.x, targetA.sx, '*', targetB.x, targetB.sx, '*') % drawnow end C2 = B; targetC2 = targetB; pathC2 = pathB; C1 = A; targetC1 = targetA; pathC1 = pathA;
github
melaniafilosa/ray-mapping-fresnel-lens-master
reflect.m
.m
ray-mapping-fresnel-lens-master/reflect.m
1,118
utf_8
8c88c4d9eac2b5335667033ce177209b
% This function computes the direction of the reflected ray function [ray] = reflect(ray, surface, k) % Compute the normal to the surface "cup" h = 5; l = 10; d = 0.5; r = sqrt((l-d)^2+h^2); if(k==2|| k==3) n = 1.5; L = r + n*d; A = (1-n^2); B = 2*n*(n*l-L); C = ray.z^2-L^2+2*n*L*l-n^2*l^2; rad = sqrt(B^2-4*A*C); if( rad~=0) if(surface.xmin<l) der = (2*ray.z)/rad; else der = -(2*ray.z)/rad; end normal = [-der 1]./sqrt(der^2+1); else normal = [0 1]; end else normal = [0 1]; end % rays: ray direction rays = [ray.sz; ray.sx]; if (dot(normal,rays)<0) normal = -normal; end; ray.normal = normal; % Consider always a normal directed inside the optical system % if (dot(normal,rays)<0) % normal=-normal; % end; % Compute the reflection law to calculate the new direction alpha = 1; beta = -2*dot(normal,rays); ray.sz = alpha*ray.sz+beta*normal(1); ray.sx = alpha*ray.sx+beta*normal(2); R = 1; end
github
melaniafilosa/ray-mapping-fresnel-lens-master
ellipse_intersection.m
.m
ray-mapping-fresnel-lens-master/ellipse_intersection.m
3,981
utf_8
8cc25ad3977848522ba6a5bc7cb55191
% This function computes the intersection between the ray and the ellips % with axis a and b where a<b function [xn,zn, s, valid] = ellipse_intersection(ray, surface, variables) graph = 0; s = 0; % Plot the ray on the surface if graph % figure(7) % hold on % plot(ray.x, ray.z , ' * y') end valid = 0; % Parameters of the lens % h = 5; % l = 10; % d = 0.5; % r = sqrt((l-d)^2+h^2); % n = 1.5; % L = r + n*d; n = variables.n; l = variables.l; L = variables.L; % Coefficients of the second order equation of the left reflector A =(1-n^2)*ray.sx^2+ray.sz^2; B = 2*(1-n^2)*ray.x*ray.sx+2*n*(n*l-L)*ray.sx+2*ray.z*ray.sz; C = (1-n^2)*ray.x^2+2*n*(n*l-L)*ray.x+ray.z^2-L^2+2*n*l*L-n^2*l^2; % Coefficients for the second order equation of the right reflector A1 = (1-n^2)*ray.sx^2+ray.sz^2; B1 = 2*(1-n^2)*ray.x*ray.sx-4*l*(1-n^2)*ray.sx-2*n*(n*l-L)*ray.sx+2*ray.sz*ray.z; C1 = (1-n^2)*ray.x^2-4*l*(1-n^2)*ray.x+4*l^2*(1-n^2)-2*n*(n*l-L)*ray.x+... 4*n*l*(n*l-L)+ray.z^2-L^2+2*n*l*L-n^2*l^2; if(surface.xmin<l) % Arc length of the left reflector s1 = (-B+sqrt(B^2-4*A*C))/(2*A); s2 = (-B-sqrt(B^2-4*A*C))/(2*A); xn1 = ray.x+s1*ray.sx; zn1 = ray.z+s1*ray.sz; xn2 = ray.x+s2*ray.sx; zn2 = ray.z+s2*ray.sz; else % Arc length of the right reflector % if(B1^2-4*A1*C1<0) % disp('Error') % end s1 = (-B1+sqrt(B1^2-4*A1*C1))/(2*A1); s2 = (-B1-sqrt(B1^2-4*A1*C1))/(2*A1); xn1 = ray.x+s1*ray.sx; zn1 = ray.z+s1*ray.sz; xn2 = ray.x+s2*ray.sx; zn2 = ray.z+s2*ray.sz; end eps = 10^-8; %if((xn1-surface.xmin>=-eps)&& (xn1-surface.xmax<=eps)) && ... if((zn1-surface.zmin>=-eps) && (zn1-surface.zmax<=eps)) % && ... % sqrt((xn-ray.x)^2+(zn-ray.z)^2)>=0) % if ((xn-cpc.xmin>=0) || (xn-cpc.xmin>=-eps && xn-cpc.xmin<=0)) && ... % ((xn-cpc.xmax<=0)||(xn-cpc.xmax<=eps && xn-cpc.xmax>=0)) if(surface.xmin<l) A1 = (1-n^2); B1 = 2*n*(n*l-L); C1 = zn1.^2-L^2+2*n*L*l-n^2*l^2; x1 = (-B1-sqrt(B1^2-4*A1*C1))/(2*A1); else A1 = (1-n^2); B1 = 2*n*(n*l-L); C1 = zn1.^2-L^2+2*n*L*l-n^2*l^2; x1 = -(-B1-sqrt(B1^2-4*A1*C1))/(2*A1)+2*l; end if (abs(x1-xn1)<=10^-6) valid1 = 1; xn1 = x1; else valid1 = 0; end else valid1=0; end; if(valid1==1) s = s1; xn = xn1; zn = zn1; end %if((xn2-surface.xmin>=-eps)&& (xn2-surface.xmax<=eps)) % && ... if((zn2-surface.zmin>=-eps) && (zn2-surface.zmax<=eps)) % && ... % sqrt((xn1-ray.x)^2+(zn1-ray.z)^2)>=0) % if ((xn1-cpc.xmin>=0) || (xn1-cpc.xmin>=-eps && xn1-cpc.xmin<=0)) && ... % ((xn1-cpc.xmax<=0)||(xn1-cpc.xmax<=eps && xn1-cpc.xmax>=0)) if(surface.xmin<l) A1 = (1-n^2); B1 = 2*n*(n*l-L); C1 = zn2^2-L^2+2*n*L*l-n^2*l^2; x2 = (-B1-sqrt(B1^2-4*A1*C1))/(2*A1); else A1 = (1-n^2); B1 = 2*n*(n*l-L); C1 = zn2^2-L^2+2*n*L*l-n^2*l^2; x2 = -(-B1-sqrt(B1^2-4*A1*C1))/(2*A1)+2*l; end if (abs(x2-xn2)<=10^-6) valid2 = 1; xn2 = x2; else valid2 = 0; end else valid2=0; end; if(valid1==1 && valid2 ==1) if(xn1-ray.x==0 && zn1-ray.z==0) % if ((xn-ray.x>=0) || (xn-ray.x>=-eps && xn-ray.x<=0)) && ... % ((xn-ray.x<=0)||(xn-ray.x<=eps && xn-ray.x>=0)) xn = xn2; zn = zn2; s = s2; valid = 1; else xn = xn1; zn = zn1; s = s1; valid = 1; end elseif(valid1==1 && valid2==0) xn = xn1; zn = zn1; s = s1; valid = 1; elseif(valid1==0 && valid2==1) xn = xn2; zn = zn2; s = s2; valid = 1; elseif(valid1==0 && valid2==0) xn = ray.x; zn = ray.z; s = -1; valid = 0; end
github
melaniafilosa/ray-mapping-fresnel-lens-master
mc_fill_vector.m
.m
ray-mapping-fresnel-lens-master/mc_fill_vector.m
378
utf_8
2d8d00d168ede3e8206caf25b29befb5
% This function fills in a vector all the rays informations function mc_fill_vector(z,t,zout,tout,path, energy) global mc_vector mc_vector.zin = [mc_vector.zin; z]; mc_vector.zout = [mc_vector.zout; zout]; mc_vector.tauin = [mc_vector.tauin; t]; mc_vector.tauout = [mc_vector.tauout; tout]; mc_vector.path = [mc_vector.path path]; mc_vector.energy = [mc_vector.energy energy];
github
melaniafilosa/ray-mapping-fresnel-lens-master
Create_variables.m
.m
ray-mapping-fresnel-lens-master/Create_variables.m
336
utf_8
4910a5170d3f14ced4636ff1d69acc59
% This function defines the parameters that caracterize the equation of the Lens function [variables] = Create_variables(); variables.h = 5; variables.l = 10; variables.d = 0.5; variables.r = sqrt((variables.l-variables.d)^2+variables.h^2); % index of refraction variables.n = 1.5; variables.L = variables.r + variables.n*variables.d;
github
melaniafilosa/ray-mapping-fresnel-lens-master
ellipse_intersection1.m
.m
ray-mapping-fresnel-lens-master/ellipse_intersection1.m
3,651
utf_8
abd742c8b3c1d132b3ecaae306b33491
% This function computes the intersection between the ray and the ellips % with axis a and b where a<b function [xn,zn, s, valid] = ellipse_intersection1(ray, surface) graph = 0; s = 0; % Plot the ray on the surface if graph % figure(7) % hold on % plot(ray.x, ray.z , ' * y') end valid = 0; h = 5; l = 10; d = 0.5; r = sqrt((l-d)^2+h^2); n = 1.5; L = r + n*d; A0 = (1-n^2); B0 = 2*n*(n*l-L); %C0 = za.^2-L^2+2*n*L*l-n^2*l^2; A =(1-n^2)*ray.sx^2+ray.sz^2; B = (1-n^2)*ray.x*ray.sx+2*n*(n*l-L)*ray.sx+2*ray.z*ray.sz; C = (1-n^2)*ray.x^2+2*n*(n*l-L)*ray.x+ray.z^2-L^2+2*n*l*L-n^2*l^2; A1 =(4*A0^2)*ray.sx^2+4*A0*ray.sz^2; B1 = (8*A0^2)*ray.x*ray.sx-4*A0*B0*ray.sx-16*A0^2*l*ray.sx+8*A0*ray.z*ray.sz; C1 = 4*A0^2*ray.x^2-B0^2+16*A0^2*l^2+ 8*l*A0*B0-B0... -4*A0*(2*n*l*L-n^2*l^2)-4*A0*ray.z^2; s1 = (-B+sqrt(B^2-4*A*C))/(2*A); s2 = (-B-sqrt(B^2-4*A*C))/(2*A); s3 = (-B1+sqrt(B1^2-4*A1*C1))/(2*A1); s4 = (-B1-sqrt(B1^2-4*A1*C1))/(2*A1); if(surface.xmin<l) xn1 = ray.x+s1*ray.sx; zn1 = ray.z+s1*ray.sz; xn2 = ray.x+s2*ray.sx; zn2 = ray.z+s2*ray.sz; else xn1 = ray.x+s3*ray.sx; zn1 = ray.z+s3*ray.sz; xn2 = ray.x+s4*ray.sx; zn2 = ray.z+s4*ray.sz; end eps = 10^-8; %if((xn1-surface.xmin>=-eps)&& (xn1-surface.xmax<=eps)) && ... if((zn1-surface.zmin>=-eps) && (zn1-surface.zmax<=eps)) % && ... % sqrt((xn-ray.x)^2+(zn-ray.z)^2)>=0) % if ((xn-cpc.xmin>=0) || (xn-cpc.xmin>=-eps && xn-cpc.xmin<=0)) && ... % ((xn-cpc.xmax<=0)||(xn-cpc.xmax<=eps && xn-cpc.xmax>=0)) % if(surface.xmin<l) % A1 = (1-n^2); % B1 = 2*n*(n*l-L); % C1 = zn1.^2-L^2+2*n*L*l-n^2*l^2; % x1 = (-B1-sqrt(B1^2-4*A1*C1))/(2*A1); % else % A1 = (1-n^2); % B1 = 2*n*(n*l-L); % C1 = zn1.^2-L^2+2*n*L*l-n^2*l^2; % x1 = -(-B1-sqrt(B1^2-4*A1*C1))/(2*A1)+2*l; % end if (abs(x1-xn1)<=10^-6) valid1 = 1; xn1 = x1; else valid1 = 0; end else valid1=0; end; if(valid1==1) s = s1; xn = xn1; zn = zn1; end %if((xn2-surface.xmin>=-eps)&& (xn2-surface.xmax<=eps)) % && ... if((zn2-surface.zmin>=-eps) && (zn2-surface.zmax<=eps)) % && ... % sqrt((xn1-ray.x)^2+(zn1-ray.z)^2)>=0) % if ((xn1-cpc.xmin>=0) || (xn1-cpc.xmin>=-eps && xn1-cpc.xmin<=0)) && ... % ((xn1-cpc.xmax<=0)||(xn1-cpc.xmax<=eps && xn1-cpc.xmax>=0)) if(surface.xmin<l) A1 = (1-n^2); B1 = 2*n*(n*l-L); C1 = zn2^2-L^2+2*n*L*l-n^2*l^2; x2 = (-B1-sqrt(B1^2-4*A1*C1))/(2*A1); else A1 = (1-n^2); B1 = 2*n*(n*l-L); C1 = zn2.^2-L^2+2*n*L*l-n^2*l^2; x2 = -(-B1-sqrt(B1^2-4*A1*C1))/(2*A1)+2*l; end if (abs(x2-xn2)<=10^-6) valid2 = 1; xn2 = x2; else valid2 = 0; end else valid2=0; end; if(valid1==1 && valid2 ==1) if(xn1-ray.x==0 && zn1-ray.z==0) % if ((xn-ray.x>=0) || (xn-ray.x>=-eps && xn-ray.x<=0)) && ... % ((xn-ray.x<=0)||(xn-ray.x<=eps && xn-ray.x>=0)) xn = xn2; zn = zn2; s = s2; valid = 1; else xn = xn1; zn = zn1; s = s1; valid = 1; end elseif(valid1==1 && valid2==0) xn = xn1; zn = zn1; s = s1; valid = 1; elseif(valid1==0 && valid2==1) xn = xn2; zn = zn2; s = s2; valid = 1; elseif(valid1==0 && valid2==0) xn = ray.x; zn = ray.z; s = -1; valid = 0; end
github
melaniafilosa/ray-mapping-fresnel-lens-master
mc_fill_vector1.m
.m
ray-mapping-fresnel-lens-master/mc_fill_vector1.m
394
utf_8
c49df8c084ffa9eb34d2c981a9e0b8cc
% This function fills in a vector all the rays informations function mc_fill_vector1(z,t,zout,tout,path, energy) global mc_vector1 mc_vector1.zin = [mc_vector1.zin; z]; mc_vector1.zout = [mc_vector1.zout; zout]; mc_vector1.tauin = [mc_vector1.tauin; t]; mc_vector1.tauout = [mc_vector1.tauout; tout]; mc_vector1.path = [mc_vector1.path path]; %mc_vector1.energy = [mc_vector1.energy energy];
github
melaniafilosa/ray-mapping-fresnel-lens-master
interpolation.m
.m
ray-mapping-fresnel-lens-master/interpolation.m
2,038
utf_8
272c270078518ec9c56ea1c9ab3f1a3a
% This function does an interpolation between targetA and targetB function intensity = interpolation(intensity, targetA, targetB, .... pathA, A, B,variables, surfaces, action) for z = targetA.z+0.01:(targetB.z-targetA.z-0.02)/500:targetB.z-0.01 % trace the rays with z coordinates = i % and tau coordinates = target.sz i = 1; targetC.z = z; targetC.x = surfaces(4).xmax; targetC.sx = targetA.sx; targetC.sz = targetA.sz; targetC.n = 1; targetC.surface = -1; targetC.I = 1; C = targetC; pathC = 4; % Trace one ray while (i <=length(pathA)) Cr = C; Ct = C; % Do ray tracing for target M [Cr,Ct, RC, TC] = raytracing(C, surfaces, variables); K = length(pathC); if(action(K)==1) C = Ct; if(C.surface~=1) C.I = Ct.T; end if(Cr.n==1) C.n = 1.5; else C.n = 1; end else C = Cr; if(C.surface~=1) C.I = Cr.R; end if(Cr.n==1) C.n = 1; else C.n = 1.5; end end if(isempty(C)) i = length(pathA); else if((C.surface==1) || (C.surface==4) ... || (C.surface==5)|| (C.surface==6) || (C.surface==7)) pathC = [pathC, C.surface]; i = length(pathC); % if(C.surface~=1) % intensity = [intensity, C.I]; % end % figure(1) % hold on % plot(targetC.z, targetC.sz, '. r') figure(2) hold on plot(targetC.z, C.I, '. b') drawnow else pathC = [pathC, C.surface]; end i = i+1; end end intensity = [intensity, C.I]; end
github
melaniafilosa/ray-mapping-fresnel-lens-master
raytracing.m
.m
ray-mapping-fresnel-lens-master/raytracing.m
1,732
utf_8
b6f87e6f0594e92f7ee3dc34feca39f9
% This function computes the ray tracing given the position and the % direction of the ray and the optical system function [reflected, transmitted, R, T] = ... raytracing(ray, surfaces, variables) k = -1; x0 = ray.x; z0 = ray.z; % (x,z) = coordinates of the initial position % ray.x = surfaces(4).x(1); % ray.z = z; % ray.n = 1; % % Initial angle with respect to the optical axis % % Ray direction % ray.sz = tau; % ray.sx = -sqrt(1-ray.sz^2); % store initial conditions for debugging % ray.n=1; % we start in air % s = parameter for the ray parameterization s = zeros(length(surfaces) ,1); xn = zeros(length(surfaces) ,1); % xn(i) = x-s(i)*sin(theta) zn = zeros(length(surfaces) ,1); % zn(i) = z+s(i)*cos(theta) for i=1:length(surfaces) [xn(i),zn(i),s(i), valid(i)] = ... surfaces(i).intersection(ray, surfaces(i), variables); end %plot(xn(k), zn(k), '*') [k] = distances(xn,zn,ray,s,valid); if(k==-1) % disp('Error') end % disp([' closest intersection from surface ',num2str(k),' ',surfaces(k).name]); % (x,z) = coordinates of the closer intersection if(k~=7) ray.x = xn(k); ray.z = zn(k); ray.surface = k; % figure(4) % hold on % plot([x0, xn(k)], [z0, zn(k)], ' g', 'linewidth', 1.2); [reflected, transmitted, R, T] = surfaces(k).action(ray,surfaces(k),... k,variables); else ray.surface = k; R = 0; T = 0; reflected = ray; transmitted = ray; if(ray.n==1) transmitted.n=1.5; else transmitted.n=1; end end % if(R==0 || T==0) % disp('R or T is 0') % end
github
melaniafilosa/ray-mapping-fresnel-lens-master
intensity_computation.m
.m
ray-mapping-fresnel-lens-master/intensity_computation.m
6,646
utf_8
a76e39fb7277d62f8e82866962e15983
% This function computes the intensity at the target % along a given direction it considers function intensity = intensity_computation(A, B, targetA, targetB,... pathA,pathB,surfaces, action, variables,... intensity) max_number_of_reflections = 4; % If A and B are on the same line % (this is always true at the first step as both start from the target if(A.surface==B.surface) if(A.surface==1) if(A.n==1.5) % Compute the intensity % intensity = intensity + abs(targetA.x-targetB.x); if(isequal(pathA, [4,3,2,1])) % figure(1) % plot([targetA.z, targetB.z],[targetA.sz, targetB.sz],'* r') % hold on % drawnow % disp(['pathA ', num2str(pathA)]); % disp(['pathB ', num2str(pathB)]); intensity = [intensity, A.I]; intensity = interpolation(intensity, targetA, targetB, .... pathA, A, B,variables, surfaces, action); intensity = [intensity, B.I]; % if(A.R ~=0 && A.R ~=1) % A.R; % A.T; % B.R; % B.T; % end % disp(['RA ', num2str(RA)]); disp(['TA ', num2str(TA)]); % disp(['RA+TA ', num2str(RA+TA)]); end else % % A not physical path is found % % Discard those rays intensity = intensity; end else % (if the source is not reached yet) % and if nether the target nor the reflectors are hit again % if(length(pathA)==6) % figure(1) % plot([targetA.z, targetB.z],[targetA.sz, targetB.sz],'. b') % end if((A.surface~=4) && (A.surface~=5)... && (A.surface~=6) && (A.surface~=7)) % If the maximum number of reflection is not reached if(length(pathA)<max_number_of_reflections) % Trace back the rays A and B % For both of them compute both the reflected and % the transmitted ray. % Calculate the reflectance and the transmittance if(A.surface~=1) [Ar, At, RA, TA] = raytracing(A, surfaces, variables); [Br, Bt, RB, TB] = raytracing(B, surfaces, variables); % At.I = A.I*TA; pathA = [pathA, At.surface]; pathB = [pathB, Bt.surface]; K = length(pathA)-1; end if(K>length(action)) disp('Error') % K end if(action(K)==1) if(At.surface~=1)&&(Bt.surface~=1) At.I = A.I*TA; Bt.I = B.I*TB; end intensity = intensity_computation(At, Bt, targetA,... targetB, pathA,pathB, surfaces, action, ... variables, intensity); else if(At.surface~=1)&&(Bt.surface~=1) Ar.I = A.I*RA; Br.I = B.I*RB; end intensity = intensity_computation(Ar, Br, targetA,... targetB, pathA,pathB,surfaces, action, ... variables, intensity); end else % If the maximum number of reflection is reached % then the contribution to the intensity is negligible intensity = intensity; end else % if the ray hits either the target again or % one of the reflectors stop the procedure intensity = intensity; end end % If A and B hit two different surfaces elseif(A.surface~=B.surface) % If the maximum number of reflection is not reached yet if(length(pathA)<=max_number_of_reflections) % Do bisection to find the ray C1 with the same path of A % The ray C2 has a different path % targetC1 and targetC2 are the coordinates of the found % rays at the target % C1 and C2 are the coordinates of the rays at the last surface % that they hit, for C1 this is equal to pathA(end) for C1 [C1, targetC1,pathC1, C2, targetC2, pathC2] = ... bisection_method(A, B, targetA,... targetB, pathA, surfaces, action, variables); % If there is an interval at the left of ray A % If the target and the reflectors are not reache yet if((A.surface~=4) && (A.surface~=5)... && (A.surface~=6) && (A.surface~=7) ) if(~isequal(pathA, pathC1)) disp(['pathA ', num2str(pathA)]); disp(['pathC1 ', num2str(pathC1)]); end % Recall the function for the rays with the same path intensity = intensity_computation(A, C1, targetA,... targetC1, pathA,pathC1,surfaces, ... action, variables, intensity); else % If the rays hit either the target or the reflectors again % discard those rays intensity = intensity; end % Recall the function for the rays with a different path intensity = intensity_computation(C2, B, targetC2,... targetB, pathC2,pathB, surfaces, ... action, variables, intensity); else % (if the maximum number of reflection is reached) % The contribution to the intensity given by those rays is % negligible intensity = intensity; end end end
github
melaniafilosa/ray-mapping-fresnel-lens-master
new_distances.m
.m
ray-mapping-fresnel-lens-master/new_distances.m
1,347
utf_8
4829f3d1201529d0a875fd2764111c1e
% This functions calculates the number of the % next surface that the ray hit function [k] = new_distances(xn,zn,ray,s,valid) N=length(xn); % d = vector with the distances between the ray % and all the intersection points of the ray % with the optical lines d = sqrt((xn-ray.x).^2+(zn-ray.z).^2); t = 1; % valid distances is a vector with the following components: % 1. the distance between the ray and the line that it leaves (around 0) % 2. the distance between the ray and the next line it hits % 3. -1 for the others intersections for j = 1:N if(valid(j)==1 && s(j)>=0) valid_distances(t) = d(j); else valid_distances(t) = -1; end t = t+1; end % d % valid_distances [dmax,k] = max(valid_distances); if(dmax~=-1) k=k; else k=4; end % count = 0; % distances = valid_distances; % y = find(valid_distances==-1); % distances(y) = []; % for i = 1:length(valid_distances) % if(valid_distances(i) ~= -1 && i~=ray.surface && ray.surface~=-1) % count = count+1; % end % end % if(count==1) % [dmax,k] = max(valid_distances); % else % [dmax, k] = min(distances); % k = find(valid_distances==dmax); % end
github
melaniafilosa/ray-mapping-fresnel-lens-master
distances.m
.m
ray-mapping-fresnel-lens-master/distances.m
1,841
utf_8
ea49434cacd67c7297546090b45388d3
% This function computes the distances between the initial position of % the ray and all crossing points of the ray with the 10 surfaces of the % TIR-collimator. % It also computes the minimal distance % (without considering distances = 0 and negative directions) % Meaning of the most important variables % d(t) = distance from the initial surface to the surface t (10x1 vector) % dmin = minim distance % s = parameter of the ray parameterization (10x1 vector) % k = index of the minimal distance function [k] = distances(xn,zn,ray,s, valid) N=length(xn); d = sqrt((xn-ray.x).^2+(zn-ray.z).^2); epsilon_d = 1.0e-11; % epsilon = 1.0e-7; t = 1; k = -1; dmin = 0; epsilon_s = 10^-15; % first find a surface for which there is at least a relevant stepsize.. while (dmin<epsilon_d && t<=N) if (valid(t)==1 && s(t)>=epsilon_s) dmin=d(t); k=t; end; t=t+1; end if(k==7) dip('Error'); end % give an error message if we are above the maximum number of surfaces if (t>N+1) error(['not a distance larger than ',num2str(epsilon_d),' found']); end; for j=t:N if (d(j)>epsilon_d && d(j)<dmin && valid(j)==1 && s(j)>=epsilon_s) dmin = d(j); k = j; end end if (k<0 && t>N) k = 7; disp(['no crossing found! number of surfaces ',num2str(t)]); % disp(['ray.x0 ',num2str(ray.x0),' ray.z0 ',num2str(ray.z0)]); % disp(['ray.sx0 ',num2str(ray.sx0),' ray.sz0 ',num2str(ray.sz0)]); % disp(['ray.n ',num2str(ray.n)]); % error('no crossing found!'); % pause % plot([ray.x ,ray.normal(1)+ray.x], [ray.z,ray.normal(2)+ray.z],'m') % plot(x,z,'c') % plot([ray.x ray.x+ray.sx],[ray.z ray.z+ray.sz],'c'); end; % level=1; end
github
melaniafilosa/ray-mapping-fresnel-lens-master
line_intersection.m
.m
ray-mapping-fresnel-lens-master/line_intersection.m
1,047
utf_8
7e92fa1a4d5db606d99367f88076f9a6
% This function compute the intersection point between the source and the % rays % s = parameter for the ray parameterization % (x,z) = coordinates of the initial point % theta = initial angle with respect to the normal of the surface % xn = x- s*sin(theta) := x-coordinate of the intersection point % zn = z+ s*cos(theta) := z-coordinate of the intersection point % i = index of the surface hit function [xn,zn,s, valid] = line_intersection(ray,surfaces, variables) num = (ray.z-surfaces.z(1))*(surfaces.x(2)-surfaces.x(1))- ... (ray.x-surfaces.x(1))*(surfaces.z(2)-surfaces.z(1)); den = ray.sx*(surfaces.z(2)-surfaces.z(1))- ... ray.sz*(surfaces.x(2)-surfaces.x(1)); s = num/den; xn = ray.x+s*ray.sx; zn = ray.z+s*ray.sz; % check if valid crossing (between -2 and 2 in x direction) if (surfaces.xmin~=surfaces.xmax) if (xn>surfaces.xmin && xn<surfaces.xmax) valid=1; else valid=0; end; else if (zn>surfaces.zmin && zn<surfaces.zmax) valid=1; else valid=0; end; end;
github
hsun2022/CrowdComputing-master
crowd_model.m
.m
CrowdComputing-master/seek-plus/crowd_model.m
1,678
utf_8
bc956c57d0029eb0368c986c92744497
function model = crowd_model(L,varargin) %%parameters.... Ntask =size(L,1); Nwork=size(L,2); %neiborhods NeibTask = cell(1,Ntask); for task_j = 1:Ntask NeibTask{task_j} = find(L(task_j,:)); end NeibWork = cell(Nwork,1); for work_i = 1:Nwork NeibWork{work_i} = find(L(:,work_i))'; end model=init_model(); LabelTask=cell(1,Ntask); for task_j = 1:Ntask, LabelTask{task_j} = L(task_j, NeibTask{task_j}); % the labels of the same task should have the same dimension end LjDomain=cell(1,Ntask); for task_j=1:Ntask LjDomain{task_j} = unique(LabelTask{task_j}); end LabelWork=cell(Nwork,1); for work_i = 1:Nwork, LabelWork{work_i} = L(NeibWork{work_i},work_i)'; % the labels of the same task should have the same dimension end LabelDomain = unique(L(L~=0)); model.LabelDomain = LabelDomain(:)'; model.Ndom = length(LabelDomain); model.LabelTask=LabelTask; model.LabelWork=LabelWork; model.LjDomain=LjDomain; model.Ntask = Ntask; model.Nwork = Nwork; model.NeibTask = NeibTask; model.NeibWork = NeibWork; model.L=L; if ~isempty(varargin) model.true_labels=varargin{1}; end end function model = init_model() model.L= []; %: [5000x5000 double] model.LabelTask= []; %: {1x5000 cell} model.LjDomain= []; model.LabelWork= []; %: {1x5000 cell} model.LabelDomain= []; %: [1 2] model.Ntask= []; %: 5000 model.Nwork= []; %: 5000 model.Ndom= []; %: [1 2] model.NeibTask= []; %: {1x5000 cell} model.NeibWork= []; %: {1x5000 cell} model.true_labels= []; %: [1x5000 double] return; end
github
hsun2022/CrowdComputing-master
L_simulation_noNoise.m
.m
CrowdComputing-master/seek-plus/L_simulation_noNoise.m
994
utf_8
f24a6a31d78cb2b78138be45ee2fde8a
function [L,groundtruth] = L_simulation_noNoise(Ntask,Nworker,Ndom,Redun,ndom) p0 = 0.05; p1 = 0.75; %prop = 0.5; groundtruth = zeros(1,Ntask); L = zeros(Ntask,Nworker); for task_j = 1:Ntask labelSet = randperm(Ndom,ndom); groundtruth(task_j) = randsrc(1,1,labelSet); prob = zeros(1,ndom); for k = 1:ndom dom_k = labelSet(k); if isHypernym(dom_k,groundtruth(task_j)) prob(k) = p1/(1-p1); elseif dom_k == groundtruth(task_j) prob(k) = ndom-1; else prob(k) = p0/(1-p0); end end workerSet = randperm(Nworker,Redun); for i = 1:Redun worker_i = workerSet(i); prob = prob/sum(prob); L(task_j,worker_i) = randsrc(1,1,[labelSet;prob]); end end end function flag = isHypernym(i,j) % To confirm i is or not j's hypernym. if i > floor(j/2) flag = 0; elseif i == floor(j/2) flag = 1; else flag = isHypernym(i,floor(j/2)); end end
github
hsun2022/CrowdComputing-master
SEEK_lnr_norm_semi.m
.m
CrowdComputing-master/seek-plus/SEEK_lnr_norm_semi.m
7,277
utf_8
800a43c9f98e78f632f301e31ef7c729
function result = SEEK_lnr_norm_semi(model, KnowledgeMatrix,groundTruthFlag) maxIter = 20; TOL = 1e-6; global L NeibTask NeibWork LabelDomain Relation Ntask Nwork Ndom LabelTask LabelWork LjDomain groundTruth Flag bias Ntask = model.Ntask; Nwork = model.Nwork; Ndom = model.Ndom; NeibTask = model.NeibTask; NeibWork = model.NeibWork; LabelDomain = model.LabelDomain; Relation = KnowledgeMatrix; L = model.L; LabelTask = model.LabelTask; LabelWork = model.LabelWork; LjDomain = model.LjDomain; groundTruth = model.true_labels; Flag = groundTruthFlag; bias = 0.0001; Nflag = sum(Flag); majority = MajorityVote(model); ansLabel = majority.ans_labels; result.majorityAnsLabel = ansLabel; if ~isempty(model.true_labels) result.majorityAccuracy = sum(~(ansLabel-model.true_labels))/Ntask; end err = NaN; Ability = zeros(1,Nwork); Simplicity = zeros(1,Ntask); for iter = 1:maxIter if err < TOL break; elseif iter >=maxIter % disp('iter in main function reached to maxIter'); break; end p_lt = Estep(Ability, Simplicity); % obj = Aux(Ability,Simplicity,p_lt); % disp(['object in Estep is: ',num2str(obj)]); [Ability_tem,Simplicity_tem] = Mstep(Ability, Simplicity, p_lt); err = (sum(abs(Ability_tem-Ability))+sum(abs(Ability_tem-Ability)))/(Ntask+Nwork); Ability = Ability_tem; Simplicity = Simplicity_tem; % obj = Aux(Ability,Simplicity,p_lt); % disp(['object in Mstep is: ',num2str(obj)]); end L_anslabel = ones(1,Ntask); for task_j = 1:Ntask [~, I] = max(p_lt{task_j}); L_anslabel(task_j) = LjDomain{task_j}(I); end if ~isempty(model.true_labels) result.accuracy = sum(~(L_anslabel-model.true_labels))/Ntask; result.FaultLabelIndex = find(L_anslabel-model.true_labels); result.accuracy_unlabeled = (result.accuracy-Nflag/Ntask)/(1-Nflag/Ntask); end result.anslabel=L_anslabel; end function p_lt = Estep(Ability, Simplicity) global NeibTask LabelTask LjDomain Ntask Nwork Relation groundTruth Flag bias p_lij = cell(Ntask,Nwork); p_lt = cell(1,Ntask); for task_j = 1:Ntask LjD = LjDomain{task_j}; NumLjD = length(LjD); p_lt{task_j} = ones(1,NumLjD); if Flag(task_j) == 1 for k = 1:NumLjD if LjD(k) == groundTruth(task_j) p_lt{task_j}(k) = 1; else p_lt{task_j}(k) = 0; end end continue; end workerList = NeibTask{task_j}; labelList = LabelTask{task_j}; Nworker_j = length(workerList); for i = 1:Nworker_j worker_i = workerList(i); lij = labelList(i); lij_index = find(LjD==lij,1); p_lij{task_j,worker_i} = zeros(NumLjD,NumLjD); for k = 1:NumLjD for k2 = 1:NumLjD if k == k2 p_lij{task_j,worker_i}(k2,k) = (NumLjD-1+bias)*exp(Ability(worker_i)+Simplicity(task_j)+Relation(LjD(k2),LjD(k))); else p_lij{task_j,worker_i}(k2,k) = exp(Relation(LjD(k2),LjD(k))); end end p_lij{task_j,worker_i}(:,k) = p_lij{task_j,worker_i}(:,k)/sum(p_lij{task_j,worker_i}(:,k)); p_lt{task_j}(k) = p_lt{task_j}(k)*p_lij{task_j,worker_i}(lij_index,k); end end p_lt{task_j} = p_lt{task_j}/sum(p_lt{task_j}); end end function [Ability, Simplicity] = Mstep(oldAbility, oldSimplicity, p_lt) global Ntask Nwork err = NaN; maxIter = 10; TOL = 1e-6; Ability = oldAbility; Simplicity = oldSimplicity; for iter = 1:maxIter if err < TOL return; elseif iter >= maxIter % disp('iter reachs to the maxIter in Mstep') end obj_old = Aux(oldAbility,oldSimplicity,p_lt); [A_gradient,S_gradient] = gradient(oldAbility,oldSimplicity,p_lt); alpha = 0.5; for iter2 = 1:maxIter if iter2 >= maxIter A_gradient S_gradient error('error in gradient'); end Ability = oldAbility +alpha*A_gradient; Simplicity = oldSimplicity + alpha*S_gradient; obj = Aux(Ability,Simplicity,p_lt); if obj >= obj_old break; else alpha = alpha/4; end end err = (sum(abs(Ability-oldAbility))+sum(abs(Simplicity-oldSimplicity)))/(Ntask+Nwork); oldAbility = Ability; oldSimplicity = Simplicity; end end function [A_gradient,S_gradient] = gradient(Ability,Simplicity,p_lt) global Ntask Nwork LjDomain Relation NeibTask LabelTask bias A_gradient = zeros(1,Nwork); S_gradient = zeros(1,Ntask); for task_j = 1:Ntask LjD = LjDomain{task_j}; NumLjD = length(LjD); workerList = NeibTask{task_j}; labelList = LabelTask{task_j}; NumWorker = length(workerList); for i = 1:NumWorker worker_i = workerList(i); lij = labelList(i); item = 0; for k = 1:NumLjD groundTruth = LjD(k); tem = 0; for k2 = 1:NumLjD if LjD(k2) == groundTruth main_tem = (NumLjD-1+bias)*exp(Ability(worker_i)+Simplicity(task_j)+Relation(groundTruth,groundTruth)); else tem = tem + exp(Relation(LjD(k2),groundTruth)); end end pro_main = main_tem/(main_tem+tem); if groundTruth == lij item = item + p_lt{task_j}(k) - p_lt{task_j}(k)*pro_main; else item = item -p_lt{task_j}(k)*pro_main; end end A_gradient(worker_i) = A_gradient(worker_i) + item; S_gradient(task_j) = S_gradient(task_j) + item; end end A_gradient = A_gradient - Ability; S_gradient = S_gradient - Simplicity; end function obj = Aux(Ability,Simplicity,p_lt) global NeibTask LabelTask Relation Nwork Ntask LjDomain Flag bias part1 = 0; part2 = 0; part3 = 0; B_reciprocal = cell(Ntask,Nwork); for task_j = 1:Ntask workerList = NeibTask{task_j}; labelList = LabelTask{task_j}; LjD = LjDomain{task_j}; NumLjD = length(LjD); NumWorker = length(workerList); for k = 1:NumLjD if Flag(task_j) == 1 break; end part1 = part1 - p_lt{task_j}(k)*log(NumLjD*p_lt{task_j}(k)); end for i = 1:NumWorker worker_i = workerList(i); lij = labelList(i); B_reciprocal{task_j,worker_i} = zeros(1,NumLjD); for k = 1:NumLjD groundTruth = LjD(k); for k2 = 1:NumLjD if k2 == k B_reciprocal{task_j,worker_i}(k) = B_reciprocal{task_j,worker_i}(k) + (NumLjD-1+bias)*exp(Ability(worker_i)+Simplicity(task_j)+Relation(groundTruth,groundTruth)); else B_reciprocal{task_j,worker_i}(k) = B_reciprocal{task_j,worker_i}(k) + exp(Relation(LjD(k2),groundTruth)); end end part2 = part2 + p_lt{task_j}(k)*(Relation(lij,groundTruth)-log(B_reciprocal{task_j,worker_i}(k))); if lij == groundTruth part2 = part2 + p_lt{task_j}(k)*(Ability(worker_i)+Simplicity(task_j)+log(NumLjD-1+bias)); end end end end for task_j = 1:Ntask part3 = part3 - Simplicity(task_j)^2/2; end for worker_i = 1:Nwork part3 = part3 - Ability(worker_i)^2/2; end obj = part1 + part2 + part3; end
github
shuangshuangguo/dense_flow-master
extractOpticalFlow_gpu.m
.m
dense_flow-master/matlab/extractOpticalFlow_gpu.m
1,645
utf_8
e184fc7aad7743036e394d6b08ba37f9
function [] = extractOpticalFlow_gpu(index, device_id, type) % path1 = '/nfs/lmwang/lmwang/Data/UCF101/ucf101_org/'; % if type ==0 % path2 = '/media/sdb/lmwang/data/UCF101/ucf101_flow_img_farn_gpu_step_2/'; % elseif type ==1 % path2 = '/media/sdb/lmwang/data/UCF101/ucf101_flow_img_tvl1_gpu_step_2/'; % else % path2 = '/media/sdb/lmwang/data/UCF101/ucf101_flow_img_brox_gpu_step_2/'; % end path1 = '/nfs/lmwang/lmwang/Data/HMDB51/hmdb51_org/'; if type ==0 path2 = '/media/sdb/lmwang/data/HMDB51/hmdb51_flow_img_farn_gpu/'; elseif type ==1 path2 = '/media/sdb/lmwang/data/HMDB51/hmdb51_flow_img_tvl1_gpu/'; else path2 = '/media/sdb/lmwang/data/HMDB51/hmdb51_flow_img_brox_gpu/'; end folderlist = dir(path1); foldername = {folderlist(:).name}; foldername = setdiff(foldername,{'.','..'}); for i = index if ~exist([path2,foldername{i}],'dir') mkdir([path2,foldername{i}]); end filelist = dir([path1,foldername{i},'/*.avi']); for j = 1:length(filelist) if ~exist([path2,foldername{i},'/',filelist(j).name(1:end-4)],'dir') mkdir([path2,foldername{i},'/',filelist(j).name(1:end-4)]); end file1 = [path1,foldername{i},'/',filelist(j).name]; file2 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_x']; file3 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_y']; file4 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_i']; cmd = sprintf('./extract_gpu -f %s -x %s -y %s -i %s -b 20 -t %d -d %d -s %d',... file1,file2,file3,file4,type,device_id,1); system(cmd); end i end end
github
shuangshuangguo/dense_flow-master
extracOpticalFlow.m
.m
dense_flow-master/matlab/extracOpticalFlow.m
1,034
utf_8
87c098785c996cfa862cd7e84742994e
function [] = extracOpticalFlow(index) path1 = '/home/lmwang/data/UCF/ucf101_org/'; path2 = '/home/lmwang/data/UCF/ucf101_warp_flow_img/'; folderlist = dir(path1); foldername = {folderlist(:).name}; foldername = setdiff(foldername,{'.','..'}); for i = index if ~exist([path2,foldername{i}],'dir') mkdir([path2,foldername{i}]); end filelist = dir([path1,foldername{i},'/*.avi']); for j = 1:length(filelist) if ~exist([path2,foldername{i},'/',filelist(j).name(1:end-4)],'dir') mkdir([path2,foldername{i},'/',filelist(j).name(1:end-4)]); end file1 = [path1,foldername{i},'/',filelist(j).name]; file2 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_x']; file3 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_y']; file4 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_i']; cmd = sprintf('./extract_gpu -f %s -x %s -y %s -i %s -b 20',file1,file2,file3,file4); system(cmd); end i end end
github
shuangshuangguo/dense_flow-master
extractOpticalFlow.m
.m
dense_flow-master/matlab/extractOpticalFlow.m
1,042
utf_8
e73edca68bee408e232e58e19e2aae1b
function [] = extractOpticalFlow(index) path1 = '/nfs/lmwang/lmwang/Data/UCF101/ucf101_org/'; path2 = '/media/sdb/lmwang/data/UCF101/ucf101_flow_img_TV/'; folderlist = dir(path1); foldername = {folderlist(:).name}; foldername = setdiff(foldername,{'.','..'}); for i = index if ~exist([path2,foldername{i}],'dir') mkdir([path2,foldername{i}]); end filelist = dir([path1,foldername{i},'/*.avi']); for j = 1:length(filelist) if ~exist([path2,foldername{i},'/',filelist(j).name(1:end-4)],'dir') mkdir([path2,foldername{i},'/',filelist(j).name(1:end-4)]); end file1 = [path1,foldername{i},'/',filelist(j).name]; file2 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_x']; file3 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_y']; file4 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_i']; cmd = sprintf('./extract_gpu -f %s -x %s -y %s -i %s -b 20',file1,file2,file3,file4); system(cmd); end i end end
github
Reasat/cr-comp-master
gen_PU_PSK.m
.m
cr-comp-master/channel_allocation_scheduling/gen_PU_PSK.m
2,764
utf_8
b1bb1d3a1b9bc90924170e535d1df534
% initial sample of transmitted signal is assumed zero but pu tx state is % assumed busy, fix it later function [ch_tx,t_ch, pu_state]=gen_PU_PSK(T,lambda,Fs,M,hpsk) %% Creating PU activity Ts=1/Fs; old = digits(3); % specify number of significant decimal digits Ts=double(vpa(Ts)); digits(old);%Restore the default accuracy setting for further computations state=randi(2,1,1)-1; % state= 1==>busy % state= 0==>idle seq=state; % list of transition between states busy/idle emission=-1*log(1-rand)/lambda(2);% amount of time the channel will be busy emission=floor(emission/Ts)*Ts; while sum(emission)<T if state==1% if busy toggle state=0;% make idle seq=[seq,state]; temp_busy=-1*log(1-rand)/lambda(1); temp_busy=floor(temp_busy/Ts)*Ts; emission=[emission temp_busy]; else if state==0% if idle toggle state=1;% make busy seq=[seq,state]; temp_idle=-1*log(1-rand)/lambda(2); temp_idle=floor(temp_idle/Ts)*Ts; emission=[emission temp_idle]; end end end if sum(emission)>T emission(end)=emission(end)-(sum(emission)-T); end %% creating PU signal %% PU signal variables ch_tx=[];% ch is signal in channel t_ch=[];% time of channel samples pu_state=[]; for i=1:length(seq) state_ch=seq(i); t = Ts:Ts:emission(i); % Sampling times if isempty(t_ch) temp=0; else temp=t_ch(end); end t=t+temp; t_ch=[t_ch t]; %% creating and modulating signal at PU transmitter N_t=length(t); if state_ch==1 % busy infoSignal = randi(M,N_t,1)-1; % random binary signal (bits = log2(M)) signal_ch_tx = step(hpsk,infoSignal)'; % M-psk signal % y is the transmitted signal else if state_ch==0 %idle signal_ch_tx = zeros(1,N_t); % no signal end end ch_tx=[ch_tx signal_ch_tx]; pu_state=[pu_state seq(i)*ones(1,length(signal_ch_tx))]; end t_ch=t_ch-Ts; N=T*Fs; if(length(t_ch)<N) temp=t_ch(end)+Ts*(1:(N-length(t_ch))); t_ch=[ t_ch temp ]; ch_tx=[ch_tx zeros(1,length(temp))]; pu_state=[pu_state zeros(1,length(temp))]; end if(length(t_ch)>N) t_ch= t_ch(1:N); ch_tx=ch_tx(1:N); pu_state=pu_state(1:N); end % if(length(t_ch)~=N) % temp=t_ch(end)+Ts*(1:(N-length(t_ch))); % t_ch=[ t_ch temp ]; % ch_tx=[ch_tx zeros(1,length(temp))]; % pu_state=[pu_state zeros(1,length(temp))]; % end % if(length(t_ch)>N) % t_ch= t_ch(1:N); % ch_tx=ch_tx(1:N); % pu_state=pu_state(1:N); % end
github
PianoDan/TDP-master
TempoAvg.m
.m
TDP-master/TempoAvg.m
7,164
utf_8
089ba8ab4b3365c3c6a8896556e102e3
function varargout = TempoAvg(varargin) % TEMPOAVG MATLAB code for TempoAvg.fig % TEMPOAVG, by itself, creates a new TEMPOAVG or raises the existing % singleton*. % % H = TEMPOAVG returns the handle to a new TEMPOAVG or the handle to % the existing singleton*. % % TEMPOAVG('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in TEMPOAVG.M with the given input arguments. % % TEMPOAVG('Property','Value',...) creates a new TEMPOAVG or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before TempoAvg_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to TempoAvg_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help TempoAvg % Last Modified by GUIDE v2.5 14-Feb-2018 20:15:39 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @TempoAvg_OpeningFcn, ... 'gui_OutputFcn', @TempoAvg_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before TempoAvg is made visible. function TempoAvg_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to TempoAvg (see VARARGIN) % Choose default command line output for TempoAvg handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes TempoAvg wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = TempoAvg_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in ActiveDirectoryButton. function ActiveDirectoryButton_Callback(hObject, eventdata, handles) % hObject handle to ActiveDirectoryButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.dir = uigetdir('','Set Active Directory'); if ~handles.dir return; end handles.ActiveDirectoryBox.String = handles.dir; subjectlist = dir([handles.dir,filesep,'*_analysis.mat']); for i = length(subjectlist):-1:1 handles.subject(i) = load([handles.dir,filesep,subjectlist(i).name]); melodies = cellfun(@str2num,handles.subject(i).subject.data(:,1)); [melodies, indices] = sort(melodies); handles.subject(i).subject.data = handles.subject(i).subject.data(indices,:); end handles.MelodyBox.String = handles.subject(1).subject.data(:,1); set(handles.SaveAveragesButton,'enable','on'); guidata(hObject,handles); % --- Executes on selection change in MelodyBox. function MelodyBox_Callback(hObject, eventdata, handles) % hObject handle to MelodyBox (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns MelodyBox contents as cell array % contents{get(hObject,'Value')} returns selected item from MelodyBox selection = get(hObject,'Value'); subjectid = {}; for i = length(handles.subject):-1:1 interplength(i) = length(handles.subject(i).subject.data{selection,3}) -1; subjectid(i) = {handles.subject(i).subject.id;}; end [maxlength,maxindex] = max(interplength); allinterpy = nan(maxlength,length(handles.subject)); for i = length(handles.subject):-1:1 x = cell2mat(handles.subject(i).subject.data{selection,4}(2:end,11)); y = cell2mat(handles.subject(i).subject.data{selection,4}(2:end,9)); interpy = cell2mat(handles.subject(i).subject.data{selection,3}(2:end,9)); allinterpy(:,i) = [interpy;nan(maxlength-length(interpy),1)]; plot(x,y,'Parent',handles.Ax); hold on end interpx = cell2mat(handles.subject(maxindex).subject.data{selection,3}(2:end,11)); plot(interpx,nanmean(allinterpy,2),'k','Parent',handles.Ax); subjectid = flip(subjectid); subjectid(end+1) = {'Average'}; legend(subjectid); xlabel('Total Beats'); ylabel('Beat Duration (ms)'); hold off % --- Executes during object creation, after setting all properties. function MelodyBox_CreateFcn(hObject, eventdata, handles) % hObject handle to MelodyBox (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in SaveAveragesButton. function SaveAveragesButton_Callback(hObject, eventdata, handles) % hObject handle to SaveAveragesButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) nmelodies = length(handles.MelodyBox.String); header = {'Melody'}; outputfile = [handles.dir,filesep,'MelodyAverages.xlsx']; for j = 1:nmelodies header = [header; {handles.MelodyBox.String{j}}]; header = [header; {' '}]; subjectid = {}; for i = length(handles.subject):-1:1 interplength(i) = length(handles.subject(i).subject.data{j,3}) -1; subjectid(i) = {handles.subject(i).subject.id;}; end [maxlength,maxindex] = max(interplength); allinterpy = nan(maxlength,length(handles.subject)); for i = length(handles.subject):-1:1 interpy = cell2mat(handles.subject(i).subject.data{j,3}(2:end,9)); allinterpy(:,i) = [interpy;nan(maxlength-length(interpy),1)]; end interpx = cell2mat(handles.subject(maxindex).subject.data{j,3}(2:end,11)); meany = nanmean(allinterpy,2); xlswrite(outputfile,handles.MelodyBox.String{j},1,['A',num2str(j*2)]); xlswrite(outputfile,interpx',1,['B' num2str(j*2)]); xlswrite(outputfile,meany',1,['B' num2str(j*2 + 1)]); disp(j); end xlswrite(outputfile,header,1,'A1');
github
PianoDan/TDP-master
TDPPlot.m
.m
TDP-master/TDPPlot.m
8,860
utf_8
4f515dcaccab2050037da3818dcd5f87
function varargout = TDPPlot(varargin) % TDPPLOT MATLAB code for TDPPlot.fig % TDPPLOT, by itself, creates a new TDPPLOT or raises the existing % singleton*. % % H = TDPPLOT returns the handle to a new TDPPLOT or the handle to % the existing singleton*. % % TDPPLOT('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in TDPPLOT.M with the given input arguments. % % TDPPLOT('Property','Value',...) creates a new TDPPLOT or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before TDPPlot_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to TDPPlot_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help TDPPlot % Last Modified by GUIDE v2.5 18-Oct-2017 20:45:27 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @TDPPlot_OpeningFcn, ... 'gui_OutputFcn', @TDPPlot_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before TDPPlot is made visible. function TDPPlot_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to TDPPlot (see VARARGIN) subjectlist = dir('*_analysis.mat'); set(handles.SubjectBox,'String',{subjectlist.name}); % Choose default command line output for TDPPlot handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes TDPPlot wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = TDPPlot_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on selection change in SubjectBox. function SubjectBox_Callback(hObject, ~, handles) % hObject handle to SubjectBox (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns SubjectBox contents as cell array % contents{get(hObject,'Value')} returns selected item from SubjectBox contents = cellstr(get(hObject,'String')); subjectfile = contents{get(hObject,'Value')}; load(subjectfile); handles.subject = subject; set(handles.startstopaction,'Enable','on'); [~, idx] = sort(str2double({subject.data{:,1}})); subject.data = subject.data(idx,:); set(handles.StimulusBox,'String',{subject.data{:,1}}); guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function SubjectBox_CreateFcn(hObject, eventdata, handles) % hObject handle to SubjectBox (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in StimulusBox. function StimulusBox_Callback(hObject, eventdata, handles) % hObject handle to StimulusBox (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns StimulusBox contents as cell array % contents{get(hObject,'Value')} returns selected item from StimulusBox contents = cellstr(get(hObject,'String')); stimulus = contents{get(hObject,'Value')}; index = strcmp(handles.subject.data,stimulus); data = handles.subject.data{index,2}; graphtype = get(handles.GraphTypeMenu,'Value'); timems = cell2mat(data(2:end,7)); answerms = cell2mat(data(2:end,9)); totalbeats = cell2mat(data(2:end,11)); if graphtype == 1 x = totalbeats; y = answerms; elseif graphtype == 2 x = timems; y = answerms; end plot(handles.GraphAxes,x,y); ylabel('Answer (ms)') if graphtype == 1 xlabel('Total Beats'); elseif graphtype == 2 xlabel('Time (ms)'); end set(handles.startbox,'String',strcat(num2str(y(1)),' ms')); set(handles.endbox,'String',strcat(num2str(y(end)),' ms')); % --- Executes during object creation, after setting all properties. function StimulusBox_CreateFcn(hObject, eventdata, handles) % hObject handle to StimulusBox (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in GraphTypeMenu. function GraphTypeMenu_Callback(hObject, eventdata, handles) % hObject handle to GraphTypeMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns GraphTypeMenu contents as cell array % contents{get(hObject,'Value')} returns selected item from GraphTypeMenu contents = cellstr(get(handles.StimulusBox,'String')); if isempty(contents{1}) return end stimulus = contents{get(handles.StimulusBox,'Value')}; index = strcmp(handles.subject.data,stimulus); data = handles.subject.data{index,2}; graphtype = get(handles.GraphTypeMenu,'Value'); timems = cell2mat(data(2:end,7)); answerms = cell2mat(data(2:end,9)); totalbeats = cell2mat(data(2:end,11)); if graphtype == 1 x = totalbeats; y = answerms; elseif graphtype == 2 x = timems; y = answerms; end plot(handles.GraphAxes,x,y); ylabel('Answer (ms)') if graphtype == 1 xlabel('Total Beats'); elseif graphtype == 2 xlabel('Time (ms)'); end % --- Executes during object creation, after setting all properties. function GraphTypeMenu_CreateFcn(hObject, eventdata, handles) % hObject handle to GraphTypeMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % -------------------------------------------------------------------- function toolsmenu_Callback(hObject, eventdata, handles) % hObject handle to toolsmenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function startstopaction_Callback(hObject, eventdata, handles) % hObject handle to startstopaction (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) nsubjects = length(handles.subject.data); stimuli = strings(1,nsubjects); starts = zeros(1,nsubjects); ends = zeros(1,nsubjects); for idx = 1:nsubjects stimuli(idx) = handles.subject.data{idx,1}; starts(idx) = handles.subject.data{idx,2}{2,9}; ends(idx) = handles.subject.data{idx,2}{end,9}; end [~,i]=sort(str2double(stimuli)); f=figure; set(f,'Name',['Intitial/Final Answers for Subject ' handles.subject.id]); output = [stimuli(i);starts(i);ends(i)]'; t=uitable(f,'Data',cellstr(output)); t.ColumnName = {'Stimulus','Start(ms)','End(ms)'};
github
PianoDan/TDP-master
SubjectAvg.m
.m
TDP-master/SubjectAvg.m
7,407
utf_8
ac10cb4c905651c4816c4a0271313751
function varargout = SubjectAvg(varargin) % SubjectAvg MATLAB code for SubjectAvg.fig % SubjectAvg, by itself, creates a new SubjectAvg or raises the existing % singleton*. % % H = SubjectAvg returns the handle to a new SubjectAvg or the handle to % the existing singleton*. % % SubjectAvg('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in SubjectAvg.M with the given input arguments. % % SubjectAvg('Property','Value',...) creates a new SubjectAvg or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before SubjectAvg_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to SubjectAvg_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help SubjectAvg % Last Modified by GUIDE v2.5 21-May-2018 18:10:44 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @SubjectAvg_OpeningFcn, ... 'gui_OutputFcn', @SubjectAvg_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before SubjectAvg is made visible. function SubjectAvg_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to SubjectAvg (see VARARGIN) % Choose default command line output for SubjectAvg handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes SubjectAvg wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = SubjectAvg_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in ActiveDirectoryButton. function ActiveDirectoryButton_Callback(hObject, eventdata, handles) % hObject handle to ActiveDirectoryButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.dir = uigetdir('','Set Active Directory'); if ~handles.dir return; end handles.ActiveDirectoryBox.String = handles.dir; subjectlist = dir([handles.dir,filesep,'*_analysis.mat']); ids = []; for i = length(subjectlist):-1:1 handles.subject(i) = load([handles.dir,filesep,subjectlist(i).name]); melodies = cellfun(@str2num,handles.subject(i).subject.data(:,1)); ids = [str2double(handles.subject(i).subject.id) ids]; [melodies, indices] = sort(melodies); handles.subject(i).subject.data = handles.subject(i).subject.data(indices,:); end [ids, idindices] = sort(ids); handles.subject = handles.subject(:,idindices); handles.idindices = idindices; handles.MelodyBox.String = ids; set(handles.SaveAveragesButton,'enable','on'); guidata(hObject,handles); % --- Executes on selection change in MelodyBox. function MelodyBox_Callback(hObject, eventdata, handles) % hObject handle to MelodyBox (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns MelodyBox contents as cell array % contents{get(hObject,'Value')} returns selected item from MelodyBox selection = get(hObject,'Value'); nstimuli = length(handles.subject(selection).subject.data); for i = nstimuli:-1:1 interplength(i) = length(handles.subject(selection).subject.data{i,3}) -1; stimulusid(i) = {handles.subject(selection).subject.data{i,1};}; end [maxlength,maxindex] = max(interplength); allinterpy = nan(maxlength,nstimuli); for i = 1:nstimuli x = cell2mat(handles.subject(selection).subject.data{i,4}(2:end,11)); y = cell2mat(handles.subject(selection).subject.data{i,4}(2:end,9)); interpy = cell2mat(handles.subject(selection).subject.data{i,3}(2:end,9)); allinterpy(:,i) = [interpy;nan(maxlength-length(interpy),1)]; plot(x,y,'Parent',handles.Ax); hold on end interpx = cell2mat(handles.subject(selection).subject.data{maxindex,3}(2:end,11)); plot(interpx,nanmean(allinterpy,2),'k','Parent',handles.Ax); %stimulusid = flip(stimulusid); stimulusid(end+1) = {'Average'}; legend(stimulusid); xlabel('Total Beats'); ylabel('Beat Duration (ms)'); hold off % --- Executes during object creation, after setting all properties. function MelodyBox_CreateFcn(hObject, eventdata, handles) % hObject handle to MelodyBox (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in SaveAveragesButton. function SaveAveragesButton_Callback(hObject, eventdata, handles) % hObject handle to SaveAveragesButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) nsubjects = length(handles.MelodyBox.String(:,1)); header = {'Subject'}; outputfile = [handles.dir,filesep,'SubjectAverages.xlsx']; for j = 1:nsubjects header = [header; {handles.MelodyBox.String(j,:)}]; header = [header; {' '}]; subjectid = {}; nstimuli = length(handles.subject(j).subject.data); for i = nstimuli:-1:1 interplength(i) = length(handles.subject(j).subject.data{i,3}) -1; subjectid(i) = {handles.subject(j).subject.id;}; end [maxlength,maxindex] = max(interplength); allinterpy = nan(maxlength,length(handles.subject)); for i = nstimuli:-1:1 interpy = cell2mat(handles.subject(j).subject.data{i,3}(2:end,9)); allinterpy(:,i) = [interpy;nan(maxlength-length(interpy),1)]; end interpx = cell2mat(handles.subject(j).subject.data{maxindex,3}(2:end,11)); meany = nanmean(allinterpy,2); xlswrite(outputfile,cellstr(handles.MelodyBox.String(j,:)),1,['A',num2str(j*2)]); xlswrite(outputfile,interpx',1,['B' num2str(j*2)]); xlswrite(outputfile,meany',1,['B' num2str(j*2 + 1)]); end xlswrite(outputfile,header,1,'A1');
github
Jeffrey28/PlatoonBased-AIM-master
OccupancyGrid.m
.m
PlatoonBased-AIM-master/Matlab2/OccupancyGrid.m
54,073
utf_8
48a2d107b354fe119551901e2740db99
classdef (Sealed)OccupancyGrid <OccupancyGridBase %OCCUPANCYGRID Create an occupancy grid % OCCUPANCYGRID creates a 2D occupancy grid map. Each cell has % a value representing the probability of occupancy of that cell. % Probability values close to 1 represent certainty that the workspace % represented by the cell is occupied by an obstacle. Values close to 0 % represent certainty that the workspace represented by the cell is not % occupied and is obstacle-free. % % The probability values in the occupancy grid are stored with % a precision of at least 1e-3 to reduce memory usage and allow creation of % occupancy grid objects to represent large workspace. The minimum and % maximum probability that can be represented are 0.001 and 0.999 % respectively. % % MAP = robotics.OccupancyGrid(W, H) creates a 2D occupancy grid % object representing a world space of width(W) and height(H) in % meters. The default grid resolution is 1 cell per meter. % % MAP = robotics.OccupancyGrid(W, H, RES) creates an OccupancyGrid % object with resolution(RES) specified in cells per meter. % % MAP = robotics.OccupancyGrid(M, N, RES, 'grid') creates an % OccupancyGrid object and specifies a grid size of M rows and N columns. % RES specifies the cells per meter resolution. % % MAP = robotics.OccupancyGrid(P) creates an occupancy grid object % from the values in the matrix, P. The size of the grid matches the % matrix with each cell value interpreted from that matrix location. % Matrix, P, may contain any numeric type with values between zero(0) % and one(1). % % MAP = robotics.OccupancyGrid(P, RES) creates an OccupancyGrid % object from matrix, P, with RES specified in cells per meter. % % OccupancyGrid properties: % FreeThreshold - Threshold to consider cells as obstacle-free % OccupiedThreshold - Threshold to consider cells as occupied % ProbabilitySaturation - Saturation limits on probability values as [min, max] % GridSize - Size of the grid in [rows, cols] (number of cells) % Resolution - Grid resolution in cells per meter % XWorldLimits - Minimum and maximum values of X % YWorldLimits - Minimum and maximum values of Y % GridLocationInWorld - Location of grid in world coordinates % % % OccupancyGrid methods: % checkOccupancy - Check locations for free, occupied or unknown % copy - Create a copy of the object % getOccupancy - Get occupancy of a location % grid2world - Convert grid indices to world coordinates % inflate - Inflate each occupied grid location % insertRay - Insert rays from laser scan observation % occupancyMatrix - Convert occupancy grid to double matrix % raycast - Compute cell indices along a ray % rayIntersection - Compute map intersection points of rays % setOccupancy - Set occupancy of a location % show - Show grid values in a figure % updateOccupancy - Integrate probability observation at a location % world2grid - Convert world coordinates to grid indices % % % Example: % % % Create a 2m x 2m empty map % map = robotics.OccupancyGrid(2,2); % % % Create a 10m x 10m empty map with resolution 20 % map = robotics.OccupancyGrid(10, 10, 20); % % % Insert a laser scan in the occupancy grid % ranges = 5*ones(100, 1); % angles = linspace(-pi/2, pi/2, 100); % insertRay(map, [5,5,0], ranges, angles, 20); % % % Show occupancy grid in Graphics figure % show(map); % % % Create a map from a matrix with resolution 20 % p = eye(100)*0.5; % map = robotics.OccupancyGrid(p, 20); % % % Check occupancy of the world location (0.3, 0.2) % value = getOccupancy(map, [0.3 0.2]); % % % Set world position (1.5, 2.1) as occupied % setOccupancy(map, [1.5 2.1], 0.8); % % % Get the grid cell indices for world position (2.5, 2.1) % ij = world2grid(map, [2.5 2.1]); % % % Set the grid cell indices to unoccupied % setOccupancy(map, [1 1], 0.2, 'grid'); % % % Integrate occupancy observation at a location % updateOccupancy(map, [1 1], 0.7); % % % Show occupancy grid in Graphics figure % show(map); % % See also robotics.MonteCarloLocalization, robotics.BinaryOccupancyGrid. % Copyright 2016 The MathWorks, Inc. %#codegen %% properties (Dependent) %OccupiedThreshold Probability threshold to consider cells as occupied % A scalar representing the probability threshold above which % cells are considered to be occupied. The OccupiedThreshold will be % saturated based on ProbabilitySaturation property. % % Default: 0.65 OccupiedThreshold %FreeThreshold Probability threshold to consider cells as obstacle-free % A scalar representing the probability threshold below which % cells are considered to be obstacle-free. The FreeThreshold will be % saturated based on ProbabilitySaturation property. % % Default: 0.20 FreeThreshold %ProbabilitySaturation Saturation values for probability % A vector [MIN MAX] representing the probability saturation % values. The probability values below MIN value will be saturated to % MIN and above MAX values will be saturated to MAX. The MIN % value cannot be below 0.001 and MAX value cannot be above 0.999. % % Default: [0.001 0.999] ProbabilitySaturation end properties (Access = public) %Logodds Internal log-odds representation for probability Logodds end properties (Access = protected, Constant) %DefaultType Default datatype used for log-odds DefaultType = 'int16'; %ProbMaxSaturation Maximum probability saturation possible ProbMaxSaturation = [0.001 0.999] %LookupTable Lookup table to convert between log-odds and probability LookupTable = createLookupTable(); %LinSpaceInt16 The line space for all integer log-odds values LinSpaceInt16 = getIntLineSpace(); end properties (Access = private) %FreeThresholdIntLogodds Integer log-odds values for FreeThreshold % The log-odds value correspond to the default threshold of 0.2 FreeThresholdIntLogodds %OccupiedThresholdIntLogodds Integer log-odds values for OccupiedThreshold % The log-odds value correspond to the default threshold of 0.65 OccupiedThresholdIntLogodds end properties (Access = public) %LogoddsHit Integer log-odds value for update on sensor hit % This is the default log-odds value used to update grid cells % where a hit is detected. This value represents probability % value of 0.7 LogoddsHit %LogoddsMiss Integer log-odds value for update on sensor miss % This is the default log-odds value used to update grid cells % where a miss is detected (i.e. laser ray passes through grid % cells). This value represents probability value of 0.4 LogoddsMiss %ProbSatIntLogodds Int log-odds for saturation % These values correspond to default ProbabilitySaturation % values of [0.001 0.999] ProbSatIntLogodds end methods function set.OccupiedThreshold(obj,threshold) freeThreshold = obj.intLogoddsToProb(obj.FreeThresholdIntLogodds); validateattributes(threshold, {'numeric'}, ... {'scalar', 'real', 'nonnan', 'finite', 'nonnegative'}, ... 'OccupiedThreshold'); logOddsThreshold = obj.probToIntLogodds(double(threshold)); check = obj.FreeThresholdIntLogodds > logOddsThreshold; if check if coder.target('MATLAB') error(message('robotics:robotalgs:occgrid:ThresholdOutsideBounds', 'OccupiedThreshold', ... '>=', num2str(freeThreshold,'%.3f'))); else coder.internal.errorIf(check, 'robotics:robotalgs:occgrid:ThresholdOutsideBounds', 'OccupiedThreshold', ... '>=', coder.internal.num2str(freeThreshold)); end end obj.OccupiedThresholdIntLogodds = logOddsThreshold; end function threshold = get.OccupiedThreshold(obj) threshold = double(obj.intLogoddsToProb(obj.OccupiedThresholdIntLogodds)); end function set.FreeThreshold(obj,threshold) occupiedThreshold = obj.intLogoddsToProb(obj.OccupiedThresholdIntLogodds); validateattributes(threshold, {'numeric'}, ... {'scalar', 'real', 'nonnan', 'finite', 'nonnegative'}, ... 'FreeThreshold'); logOddsThreshold = obj.probToIntLogodds(double(threshold)); check = obj.OccupiedThresholdIntLogodds < logOddsThreshold; if check if coder.target('MATLAB') error(message('robotics:robotalgs:occgrid:ThresholdOutsideBounds', 'FreeThreshold', ... '<=', num2str(occupiedThreshold,'%.3f'))); else coder.internal.errorIf(check, 'robotics:robotalgs:occgrid:ThresholdOutsideBounds', 'FreeThreshold', ... '<=', coder.internal.num2str(occupiedThreshold)); end end obj.FreeThresholdIntLogodds = logOddsThreshold; end function threshold = get.FreeThreshold(obj) threshold = double(obj.intLogoddsToProb(obj.FreeThresholdIntLogodds)); end function set.ProbabilitySaturation(obj, sat) % Run basic checks validateattributes(sat, {'numeric'}, ... {'vector', 'real', 'nonnan', 'numel', 2}, 'ProbabilitySaturation'); % Check the limits sortedSat = sort(sat); validateattributes(sortedSat(1), {'numeric'}, {'>=',obj.ProbMaxSaturation(1), ... '<=',0.5}, ... 'ProbabilitySaturation', 'lower saturation'); validateattributes(sortedSat(2), {'numeric'}, {'>=',0.5, ... '<=',obj.ProbMaxSaturation(2)}, ... 'ProbabilitySaturation', 'upper saturation'); obj.ProbSatIntLogodds = obj.probToIntLogoddsMaxSat(double([sortedSat(1), sortedSat(2)])); obj.Logodds(obj.Logodds < obj.ProbSatIntLogodds(1)) = obj.ProbSatIntLogodds(1); obj.Logodds(obj.Logodds > obj.ProbSatIntLogodds(2)) = obj.ProbSatIntLogodds(2); end function sat = get.ProbabilitySaturation(obj) sat = double(obj.intLogoddsToProb(obj.ProbSatIntLogodds)); end function obj = OccupancyGrid(varargin) %OccupancyGrid Constructor % Parse input arguments narginchk(1,4); [resolution, isGrid, mat, width, height, isMat]... = obj.parseConstructorInputs(varargin{:}); % Assign properties with default values obj.FreeThresholdIntLogodds = obj.probToIntLogoddsMaxSat(0.2); obj.OccupiedThresholdIntLogodds = obj.probToIntLogoddsMaxSat(0.65); obj.LogoddsHit = obj.probToIntLogoddsMaxSat(0.7); obj.LogoddsMiss = obj.probToIntLogoddsMaxSat(0.4); obj.ProbSatIntLogodds = [intmin(obj.DefaultType), intmax(obj.DefaultType)]; % Apply probability saturation to matrix mat(mat < obj.ProbSatIntLogodds(1)) = obj.ProbSatIntLogodds(1); mat(mat > obj.ProbSatIntLogodds(2)) = obj.ProbSatIntLogodds(2); obj.Resolution = resolution; % Construct grid from a matrix input if isMat obj.Logodds = mat; obj.GridSize = size(obj.Logodds); return; end % Construct empty grid from width and height if isGrid obj.Logodds = mat; else gridsize = size(mat); % Throw a warning if we round off the grid size if any(gridsize ~= ([height, width]*obj.Resolution)) coder.internal.warning(... 'robotics:robotalgs:occgridcommon:RoundoffWarning'); end obj.Logodds = mat; end obj.GridSize = size(obj.Logodds); end function cpObj = copy(obj) %COPY Creates a copy of the object % cpObj = COPY(obj) creates a deep copy of the % Occupancy Grid object with the same properties. % % Example: % % Create an occupancy grid of 10m x 10m world representation % map = robotics.OccupancyGrid(10, 10); % % % Create a copy of the object % cpObj = copy(map); % % % Access the class methods from the new object % setOccupancy(cpObj,[2 4],true); % % % Delete the handle object % delete(cpObj) % % See also robotics.OccupancyGrid if isempty(obj) % This will not be encountered in code generation cpObj = OccupancyGrid.empty(0,1); else % Create a new object with the same properties cpObj = OccupancyGrid(obj.GridSize(1),... obj.GridSize(2),obj.Resolution,'grid'); % Assign the grid data to the new object handle cpObj.Logodds = obj.Logodds; cpObj.GridLocationInWorld = obj.GridLocationInWorld; cpObj.OccupiedThresholdIntLogodds = obj.OccupiedThresholdIntLogodds; cpObj.FreeThresholdIntLogodds = obj.FreeThresholdIntLogodds; cpObj.ProbSatIntLogodds = obj.ProbSatIntLogodds; end end function value = getOccupancy(obj, pos, frame) %getOccupancy Get occupancy value for one or more positions % VAL = getOccupancy(MAP, XY) returns an N-by-1 array of % occupancy values for N-by-2 array, XY. Each row of the % array XY corresponds to a point with [X Y] world coordinates. % % VAL = getOccupancy(MAP, IJ, 'grid') returns an N-by-1 % array of occupancy values for N-by-2 array IJ. Each row of % the array IJ refers to a grid cell index [X,Y]. % % Example: % % Create an occupancy grid and get occupancy % % values for a position % map = robotics.OccupancyGrid(10, 10); % % % Get occupancy of the world coordinate (0, 0) % value = getOccupancy(map, [0 0]); % % % Get occupancy of multiple coordinates % [X, Y] = meshgrid(0:0.5:5); % values = getOccupancy(map, [X(:) Y(:)]); % % % Get occupancy of the grid cell (1, 1) % value = getOccupancy(map, [1 1], 'grid'); % % % Get occupancy of multiple grid cells % [I, J] = meshgrid(1:5); % values = getOccupancy(map, [I(:) J(:)], 'grid'); % % See also robotics.OccupancyGrid, setOccupancy isGrid = false; % If optional argument present then parse it separately if nargin > 2 isGrid = obj.parseOptionalFrameInput(frame, 'getOccupancy'); end % Validate position or subscripts and convert it to indices indices = obj.getIndices(pos, isGrid, 'getOccupancy'); value = double(obj.intLogoddsToProb(obj.Logodds(indices))); end function setOccupancy(obj, pos, value, frame) %setOccupancy Set occupancy value for one or more positions % setOccupancy(MAP, XY, VAL) assigns the scalar occupancy % value, VAL to each coordinate specified in the N-by-2 array, % XY. Each row of the array XY corresponds to a point with % [X Y] world coordinates. % % setOccupancy(MAP, XY, VAL) assigns each element of the % N-by-1 vector, VAL to the coordinate position of the % corresponding row of the N-by-2 array, XY. % % setOccupancy(MAP, IJ, VAL, 'grid') assigns occupancy values % to the grid positions specified by each row of the N-by-2 % array, IJ, which refers to the [row, col] index from each row % in the array. % % Example: % % Create an occupancy grid and set occupancy % % values for a position % map = robotics.OccupancyGrid(10, 10); % % % Set occupancy of the world coordinate (0, 0) % setOccupancy(map, [0 0], 0.2); % % % Set occupancy of multiple coordinates % [X, Y] = meshgrid(0:0.5:5); % values = ones(numel(X),1)*0.65; % setOccupancy(map, [X(:) Y(:)], values); % % % Set occupancy of the grid cell (1, 1) % setOccupancy(map, [1 1], 0.4, 'grid'); % % % Set occupancy of multiple grid cells % [I, J] = meshgrid(1:5); % setOccupancy(map, [I(:) J(:)], 0.4, 'grid'); % % % Set occupancy of multiple grid cells % [I, J] = meshgrid(1:5); % values = ones(numel(I),1)*0.8; % setOccupancy(map, [I(:) J(:)], values, 'grid'); % % See also robotics.OccupancyGrid, getOccupancy isGrid = false; % If optional argument present then parse it separately if nargin > 3 isGrid = obj.parseOptionalFrameInput(frame, 'setOccupancy'); end % Validate values obj.validateOccupancyValues(value, size(pos, 1), 'setOccupancy', 'val'); % Validate position or subscripts and convert it to indices indices = obj.getIndices(pos, isGrid, 'setOccupancy'); obj.Logodds(indices) = probToIntLogodds(obj,double(value(:))); end function inflate(obj, varargin) %INFLATE Inflate the occupied positions by a given amount % INFLATE(MAP, R) inflates each occupied position of the % occupancy grid by at least R meters. Each cell of the % occupancy grid is inflated by number of cells which is the % closest integer higher than the value MAP.Resolution*R. % % INFLATE(MAP, R, 'grid') inflates each cell of the % occupancy grid by R cells. % % Note that the inflate function does not inflate the % positions past the limits of the grid. % % Example: % % Create an occupancy grid and inflate map % mat = eye(100)*0.6; % map = robotics.OccupancyGrid(mat); % % % Create a copy of the map for inflation % cpMap = copy(map); % % % Inflate occupied cells using inflation radius in % % meters % inflate(cpMap, 0.1); % % % Inflate occupied cells using inflation radius in % % number of cells % inflate(cpMap, 2, 'grid'); % % See also robotics.OccupancyGrid, copy narginchk(2,3); obj.Logodds = obj.inflateGrid(obj.Logodds, varargin{:}); end function imageHandle = show(obj, varargin) %SHOW Display the occupancy grid in a figure % SHOW(MAP) displays the MAP occupancy grid in the % current axes with the axes labels representing the world % coordinates. % % SHOW(MAP, 'grid') displays the MAP occupancy grid in % the current axes with the axes of the figure representing % the grid indices. % % HIMAGE = SHOW(MAP, ___) returns the handle to the image % object created by show. % % SHOW(MAP,___,Name,Value) provides additional options specified % by one or more Name,Value pair arguments. Name must appear % inside single quotes (''). You can specify several name-value % pair arguments in any order as Name1,Value1,...,NameN,ValueN: % % 'Parent' - Handle of an axes that specifies % the parent of the image object % created by show. % % Example: % % Create an occupancy grid and display % map = robotics.OccupancyGrid(eye(5)*0.5); % % % Display the occupancy with axes showing the world % % coordinates % imgHandle = show(map); % % % Display the occupancy with axes showing the grid % % indices % imgHandle = show(map, 'grid'); % % % Display the occupancy with axes showing the world % % coordinates and specify a parent axes % fHandle = figure; % aHandle = axes('Parent', fh); % imgHandle = show(map, 'world', 'Parent', ah); % % See also robotics.OccupancyGrid [axHandle, isGrid] = obj.showInputParser(varargin{:}); [axHandle, imghandle] = showGrid(obj, obj.intLogoddsToProb(obj.Logodds), axHandle, isGrid); title(axHandle, ... 'Platoon Based Autonomous Intersection Management'); % Only return handle if user requested it. if nargout > 0 imageHandle = imghandle; end end function occupied = checkOccupancy(obj, pos, frame) %checkOccupancy Check ternary occupancy status for one or more positions % VAL = checkOccupancy(MAP, XY) returns an N-by-1 array of % occupancy status using OccupiedThreshold and FreeThreshold, % for N-by-2 array, XY. Each row of the array XY corresponds % to a point with [X Y] world coordinates. Occupancy status % of 0 refers to obstacle-free cells, 1 refers to occupied % cells and -1 refers to unknown cells. % % VAL = checkOccupancy(MAP, IJ, 'grid') returns an N-by-1 % array of occupancy status for N-by-2 array IJ. Each row of % the array IJ refers to a grid cell index [X,Y]. % % Example: % % Create an occupancy grid % map = robotics.OccupancyGrid(10, 10); % % % Check occupancy status of the world coordinate (0, 0) % value = checkOccupancy(map, [0 0]); % % % Check occupancy status of multiple coordinates % [X, Y] = meshgrid(0:0.5:5); % values = checkOccupancy(map, [X(:) Y(:)]); % % % Check occupancy status of the grid cell (1, 1) % value = checkOccupancy(map, [1 1], 'grid'); % % % Check occupancy status of multiple grid cells % [I, J] = meshgrid(1:5); % values = checkOccupancy(map, [I(:) J(:)], 'grid'); % % See also robotics.OccupancyGrid, getOccupancy isGrid = false; % If optional argument present then parse it separately if nargin > 2 isGrid = obj.parseOptionalFrameInput(frame, 'checkOccupancy'); end % Validate position or subscripts and convert it to indices indices = obj.getIndices(pos, isGrid, 'checkOccupancy'); value = obj.Logodds(indices); freeIdx = (value < obj.FreeThresholdIntLogodds); occIdx = (value > obj.OccupiedThresholdIntLogodds); occupied = ones(size(value))*(-1); occupied(freeIdx) = 0; occupied(occIdx) = 1; end function idx = world2grid(obj, pos) %WORLD2GRID Convert world coordinates to grid indices % IJ = WORLD2GRID(MAP, XY) converts an N-by-2 array of world % coordinates, XY, to an N-by-2 array of grid indices, IJ. The % input, XY, is in [X Y] format. The output grid indices, IJ, % are in [ROW COL] format. % % Example: % % Create an occupancy grid and convert world % % coordinates to grid indices % % Create a 10m x 10m world representation % map = robotics.OccupancyGrid(10, 10); % % % Get grid indices from world coordinates % ij = world2grid(map, [0 0]) % % % Get grid indices from world coordinates % [x y] = meshgrid(0:0.5:2); % ij = world2grid(map, [x(:) y(:)]) pos = obj.validatePosition(pos, obj.XWorldLimits, ... obj.YWorldLimits, 'world2grid', 'xy'); % Convert world coordinate to grid indices idx = worldToGridPrivate(obj, pos); end function pos = grid2world(obj, idx) %GRID2WORLD Convert grid indices to world coordinates % XY = GRID2WORLD(MAP, IJ) converts an N-by-2 array of grid % indices, IJ, to an N-by-2 array of world coordinates, XY. The % input grid indices, IJ, are in [ROW COL] format. The output, % XY, is in [X Y] format. % % Example: % % Create an occupancy grid and convert grid % % indices to world coordinates % % Create a 10m x 10m world representation % map = robotics.OccupancyGrid(10, 10); % % % Get world coordinates from grid indices % xy = grid2world(map, [1 1]) % % % Get world coordinates from grid indices % [i j] = meshgrid(1:5); % xy = world2grid(map, [i(:) j(:)]) idx = obj.validateGridIndices(idx, obj.GridSize, ... 'grid2world', 'IJ'); % Convert grid index to world coordinate pos = gridToWorldPrivate(obj, idx); end function updateOccupancy(obj, pos, value, frame) %updateOccupancy Integrate occupancy value for one or more positions % updateOccupancy(MAP, XY, OBS) probabilistically integrates % the scalar observation OBS for each coordinate specified in the % N-by-2 array, XY. Each row of the array XY corresponds to a % point with [X Y] world coordinates. Default update values % are used if OBS is logical. Update values are 0.7 and 0.4 % for true and false respectively. Alternatively, OBS can be % of any numeric type with value between 0 and 1. % % updateOccupancy(MAP, XY, OBS) probabilistically integrates % each element of the N-by-1 vector, OBS with the coordinate % position of the corresponding row of the N-by-2 array, XY. % % updateOccupancy(MAP, IJ, OBS, 'grid') probabilistically % integrates observation values to the grid positions % specified by each row of the N-by-2 array, IJ, which refers % to the [row, col] index from each row in the array. % % Example: % % Create an occupancy grid and update occupancy % % values for a position % map = robotics.OccupancyGrid(10, 10); % % % Update occupancy of the world coordinate (0, 0) % updateOccupancy(map, [0 0], true); % % % Update occupancy of multiple coordinates % [X, Y] = meshgrid(0:0.5:5); % values = ones(numel(X),1)*0.65; % updateOccupancy(map, [X(:) Y(:)], values); % % % Update occupancy of the grid cell (1, 1) % updateOccupancy(map, [1 1], false, 'grid'); % % % Update occupancy of multiple grid cells % [I, J] = meshgrid(1:5); % updateOccupancy(map, [I(:) J(:)], 0.4, 'grid'); % % % Update occupancy of multiple grid cells % [I, J] = meshgrid(1:5); % values = true(numel(I),1); % updateOccupancy(map, [I(:) J(:)], values, 'grid'); % % See also robotics.OccupancyGrid, setOccupancy isGrid = false; % If optional argument present then parse it separately if nargin > 3 isGrid = obj.parseOptionalFrameInput(frame, 'updateOccupancy'); end % Validate values obj.validateOccupancyValues(value, size(pos, 1), 'updateOccupancy', 'val'); % Validate position or subscripts and convert it to indices indices = obj.getIndices(pos, isGrid, 'updateOccupancy'); if isscalar(value) value = cast(ones(size(pos, 1), 1)*value, 'like', value); end if islogical(value) updateValuesHit = obj.Logodds(indices(logical(value(:)))) + obj.LogoddsHit; updateValuesHit(updateValuesHit > obj.ProbSatIntLogodds(2)) = obj.ProbSatIntLogodds(2); obj.Logodds(indices(logical(value(:)))) = updateValuesHit; updateValuesMiss = obj.Logodds(indices(~logical(value(:)))) + obj.LogoddsMiss; updateValuesMiss(updateValuesMiss < obj.ProbSatIntLogodds(1)) = obj.ProbSatIntLogodds(1); obj.Logodds(indices(~logical(value(:)))) = updateValuesMiss; else updateValues = obj.Logodds(indices) + obj.probToIntLogoddsMaxSat(double(value(:))); updateValues(updateValues > obj.ProbSatIntLogodds(2)) = obj.ProbSatIntLogodds(2); updateValues(updateValues < obj.ProbSatIntLogodds(1)) = obj.ProbSatIntLogodds(1); obj.Logodds(indices) = updateValues; end end function collisionPt = rayIntersection(obj, pose, angles, maxRange, threshold) %rayIntersection Compute map intersection points of rays % PTS = rayIntersection(MAP, POSE, ANGLES, MAXRANGE) returns % collision points PTS in the world coordinate frame for % rays emanating from POSE. PTS is an N-by-2 array of points. % POSE is a 1-by-3 array of sensor pose [X Y THETA] in the world % coordinate frame. ANGLES is an N-element vector of angles % at which to get ray intersection points. MAXRANGE is a % scalar representing the maximum range of the range sensor. If % there is no collision up-to the maximum range then [NaN NaN] % output is returned. By default, the OccupiedThreshold % property in MAP is used to determine occupied cells. % % PTS = rayIntersection(MAP, POSE, ANGLES, MAXRANGE, THRESHOLD) % returns collision points PTS, where the THRESHOLD is used % to determine the occupied cells. Any cell with a probability % value greater or equal to THRESHOLD is considered occupied. % % Example: % % Create an occupancy grid % map = robotics.OccupancyGrid(eye(10)); % % % Set occupancy of the world coordinate (5, 5) % setOccupancy(map, [5 5], 0.5); % % % Get collision points % collisionPts = rayIntersection(map, [0,0,0], [pi/4, pi/6], 10); % % % Visualize the collision points % show(map); % hold('on'); % plot(collisionPts(:,1),collisionPts(:,2) , '*') % % % Get collision points with threshold value 0.4 % collisionPts = rayIntersection(map, [0,0,0], [pi/4, pi/6], 10, 0.4); % % % Visualize the collision points % plot(collisionPts(:,1),collisionPts(:,2) , '*') % % See also robotics.OccupancyGrid, raycast narginchk(4,5); vPose = obj.validatePose(pose, obj.XWorldLimits, obj.YWorldLimits, 'rayIntersection', 'pose'); vAngles = obj.validateAngles(angles, 'rayIntersection', 'angles'); validateattributes(maxRange, {'numeric'}, ... {'real', 'nonnan', 'finite', 'scalar', 'positive'}, 'rayIntersection', 'maxrange'); if nargin < 5 grid = (obj.occupancyMatrix('ternary') == 1); else validateattributes(threshold, {'numeric'}, ... {'real', 'nonnan', 'finite', 'scalar', '<=', 1, '>=', 0}, 'rayIntersection', 'threshold'); grid = obj.occupancyMatrix > threshold; end [ranges, endPt] = robotics.algs.internal.calculateRanges(vPose, vAngles, double(maxRange), ... grid, obj.GridSize, obj.Resolution, obj.GridLocationInWorld); collisionPt = endPt; collisionPt(isnan(ranges), :) = nan; end function [endPts, middlePts] = raycast(obj, varargin) %RAYCAST Get cells along a ray % [ENDPTS, MIDPTS] = RAYCAST(MAP, POSE, RANGE, ANGLE) returns % cell indices of all cells traversed by a ray emanating from % POSE at an angle ANGLE with length equal to RANGE. POSE is % a 3-element vector representing robot pose [X, Y, THETA] in % the world coordinate frame. ANGLE and RANGE are scalars. % The ENDPTS are indices of cells touched by the % end point of the ray. MIDPTS are all the cells touched by % the ray excluding the ENDPTS. % % [ENDPTS, MIDPTS] = RAYCAST(MAP, P1, P2) returns % the cell indices of all cells between the line segment % P1=[X1,Y1] to P2=[X2,Y2] in the world coordinate frame. % % For faster insertion of range sensor data, use the insertRay % method with an array of ranges or an array of end points. % % Example: % % Create an occupancy grid % map = robotics.OccupancyGrid(10, 10, 20); % % % compute cells along a ray % [endPts, midPts] = raycast(map, [5,3,0], 4, pi/3); % % % Change occupancy cells to visualize % updateOccupancy(map, endPts, true, 'grid'); % updateOccupancy(map, midPts, false, 'grid'); % % Compute cells along a line segment % [endPts, midPts] = raycast(map, [2,5], [6,8]); % % % Change occupancy cells to visualize % updateOccupancy(map, endPts, true, 'grid'); % updateOccupancy(map, midPts, false, 'grid'); % % % Visualize the raycast output % show(map); % % See also robotics.OccupancyGrid, insertRay narginchk(3,4); if nargin == 4 pose = obj.validatePose(varargin{1}, obj.XWorldLimits, ... obj.YWorldLimits, 'raycast', 'pose'); validateattributes(varargin{2}, {'numeric'}, ... {'real', 'nonnan', 'finite', 'scalar', 'nonnegative'}, 'raycast', 'range'); validateattributes(varargin{3}, {'numeric'}, ... {'real', 'nonnan', 'finite', 'scalar'}, 'raycast', 'angle'); range = double(varargin{2}); angle = double(varargin{3}) + pose(3); startPoint = pose(1:2); endPoint = [pose(1) + range*cos(angle), ... pose(2) + range*sin(angle)]; else startPoint = obj.validatePosition(varargin{1}, obj.XWorldLimits, ... obj.YWorldLimits, 'raycast', 'StartPoint'); validateattributes(varargin{1}, {'numeric'}, {'numel', 2}, ... 'raycast', 'p1'); endPoint = obj.validatePosition(varargin{2}, obj.XWorldLimits, ... obj.YWorldLimits, 'raycast', 'EndPoint'); validateattributes(varargin{2}, {'numeric'}, {'numel', 2}, ... 'raycast', 'p2'); end [endPts, middlePts] = robotics.algs.internal.raycastCells(startPoint, endPoint, ... obj.GridSize(1), obj.GridSize(2), obj.Resolution, obj.GridLocationInWorld); end function insertRay(obj, varargin) %insertRay Insert rays from laser scan observation % insertRay(MAP, POSE, RANGES, ANGLES, MAXRANGE) inserts one % or more range sensor observations in the occupancy grid. % POSE is a 3-element vector representing sensor pose % [X, Y, THETA] in world coordinate frame, RANGES and ANGLES % are corresponding N-element vectors for range sensor % readings, MAXRANGE is the maximum range of the sensor. % The cells along the ray except the end points are observed % as obstacle-free and updated with probability of 0.4. % The cells touching the end point are observed as occupied % and updated with probability of 0.7. NaN values in RANGES are % ignored. RANGES above MAXRANGE are truncated and the end % points are not updated for MAXRANGE readings. % % insertRay(MAP, POSE, RANGES, ANGLES, MAXRANGE, INVMODEL) % inserts the ray with update probabilities according to a % 2-element vector INVMODEL. The first element of % INVMODEL is used to update obstacle-free observations and % the second element is used to update occupied observations. % Values in INVMODEL should be between 0 and 1. % % insertRay(MAP, STARTPT, ENDPTS) inserts cells between the % line segments STARTPT and ENDPTS. STARTPT is 2-element vector % representing the start point [X,Y] in the world coordinate frame. % ENDPTS is N-by-2 array of end points in the world coordinate % frame. The cells along the line segment except the end points % are updated with miss probability of 0.4 and the cells % touching the end point are updated with hit probability of 0.7. % % insertRay(MAP, STARTPT, ENDPTS, INVMODEL) inserts the % line segment with update probabilities according to a % 1-by-2 or 2-by-1 array INVMODEL. % % Example: % % Create an occupancy grid % map = robotics.OccupancyGrid(10,10,20); % % % Insert two rays % insertRay(map, [5,5,0], [5, 6], [pi/4, pi/6], 20); % % % Insert rays with non default inverse model % insertRay(map, [5,5,0], [5, 6], [pi/3, pi/2], 20, [0.3 0.8]); % % % Visualize inserted rays % show(map); % % % Insert a line segment % insertRay(map, [0,0], [3,3]); % % % Visualize inserted ray % show(map); % % See also robotics.OccupancyGrid, raycast % Supported syntax %insertRay(ogmap, robotpose, ranges, angles, maxRange) %insertRay(ogmap, robotpose, ranges, angles, maxRange, inverseModel) %insertRay(ogmap, startPoint, endPoints) %insertRay(ogmap, startPoint, endPoints, inverseModel) gridSize = obj.GridSize; res = obj.Resolution; loc = obj.GridLocationInWorld; narginchk(3, 6); if nargin < 5 % Cartesian input validateattributes(varargin{1}, {'numeric'}, ... {'nonempty', 'numel', 2}, 'insertRay', 'startpt'); startPt = [varargin{1}(1) varargin{1}(2)]; startPt = obj.validatePosition(startPt, obj.XWorldLimits, ... obj.YWorldLimits, 'insertRay', 'StartPoint'); endPt = obj.validatePosition(varargin{2}, obj.XWorldLimits, ... obj.YWorldLimits, 'insertRay', 'endpts'); else % Polar input pose = obj.validatePose(varargin{1}, obj.XWorldLimits, ... obj.YWorldLimits, 'insertRay', 'pose'); maxRange = varargin{4}; validateattributes(maxRange, {'numeric'}, ... {'real', 'nonnan', 'finite', 'scalar', 'positive'}, 'insertRay', 'maxrange'); ranges = obj.validateRanges(varargin{2}, 'insertRay', 'ranges'); angles = obj.validateAngles(varargin{3}, 'insertRay', 'angles'); isInvalidSize = (numel(ranges) ~= numel(angles)); coder.internal.errorIf(isInvalidSize, ... 'robotics:robotalgs:occgridcommon:RangeAngleMismatch', 'ranges', 'angles'); vRanges = ranges(~isnan(ranges(:))); vAngles = angles(~isnan(ranges(:))); vRanges = min(maxRange, vRanges); startPt = [pose(1) pose(2)]; endPt = [pose(1) + vRanges.*cos(pose(3)+vAngles), ... pose(2) + vRanges.*sin(pose(3)+vAngles)]; end if nargin == 6 || nargin == 4 % Validate inverse model validateattributes(varargin{end}, {'numeric'}, ... {'real', 'nonnan', 'finite', 'nonempty', 'numel', 2}, 'insertRay', 'invmodel'); invModel = varargin{end}(:)'; if coder.target('MATLAB') firstElementMsg = message('robotics:robotalgs:occgrid:FirstElement').getString; secondElementMsg = message('robotics:robotalgs:occgrid:SecondElement').getString; else % Hard code error string for code generation as coder % does not support getting string from catalog. firstElementMsg = 'first element of'; secondElementMsg = 'second element of'; end validateattributes(invModel(1,1), {'numeric'}, ... {'>=', 0, '<=', 0.5, 'scalar'}, 'insertRay', [firstElementMsg 'invModel']); validateattributes(invModel(1,2), {'numeric'}, ... {'>=', 0.5, '<=', 1, 'scalar'}, 'insertRay', [secondElementMsg 'invModel']); inverseModelLogodds = obj.probToIntLogoddsMaxSat(double(invModel)); else inverseModelLogodds = [obj.LogoddsMiss obj.LogoddsHit]; end for i = 1:size(endPt, 1) [endPts, middlePts] = robotics.algs.internal.raycastCells(startPt, endPt(i,:), ... gridSize(1), gridSize(2), res, loc); if ~isempty(middlePts) mIndex = sub2ind(gridSize, middlePts(:,1), middlePts(:,2)); updateValuesMiss = obj.Logodds(mIndex) + inverseModelLogodds(1); updateValuesMiss(updateValuesMiss < obj.ProbSatIntLogodds(1)) = obj.ProbSatIntLogodds(1); obj.Logodds(mIndex) = updateValuesMiss; end % For max range reading do not add end point if nargin >= 5 && vRanges(i) >= maxRange continue; end if ~isempty(endPts) eIndex = sub2ind(gridSize, endPts(:,1), endPts(:,2)); updateValuesHit = obj.Logodds(eIndex) + inverseModelLogodds(2); updateValuesHit(updateValuesHit > obj.ProbSatIntLogodds(2)) = obj.ProbSatIntLogodds(2); obj.Logodds(eIndex) = updateValuesHit; end end end function mat = occupancyMatrix(obj, option) %OCCUPANCYMATRIX Export occupancy grid as a matrix % MAT = OCCUPANCYMATRIX(MAP) returns probability values stored in the % occupancy grid object as a matrix. % % MAT = OCCUPANCYMATRIX(MAP, 'ternary') returns occupancy status of % the each occupancy grid cell as a matrix. The % OccupiedThreshold and FreeThreshold are used to determine % obstacle-free and occupied cells. Value 0 refers to % obstacle-free cell, 1 refers to occupied cell and -1 refers % to unknown cell. % % Example: % % Create an occupancy grid % inputMat = repmat(0.2:0.1:0.9, 8, 1); % map = robotics.OccupancyGrid(inputMat); % % % Export occupancy grid as a matrix % mat = occupancyMatrix(map); % % % Export occupancy grid as a ternary matrix % mat = occupancyMatrix(map, 'ternary'); % % See also robotics.OccupancyGrid, getOccupancy narginchk(1,2); if nargin < 2 mat = double(obj.intLogoddsToProb(obj.Logodds)); return; end validStrings = {'Ternary'}; validatestring(option, validStrings, 'occupancyMatrix'); mat = -1*ones(size(obj.Logodds)); occupied = (obj.Logodds > obj.OccupiedThresholdIntLogodds); free = (obj.Logodds < obj.FreeThresholdIntLogodds); mat(occupied) = 1; mat(free) = 0; end end %================================================================ methods (Static, Access = {?matlab.unittest.TestCase, ... ?robotics.algs.internal.OccupancyGridBase}) function logodds = probToLogodds(prob) %probToLogodds Get log-odds value from probabilities logodds = log(prob./(1-prob)); end function probability = logoddsToProb(logodds) %logoddsToProb Get probabilities from log-odds values probability = 1 - 1./(1 + exp(logodds)); end function maxSat = getMaxSaturation() %getMaxSaturation Get max saturation for testing purposes maxSat = robotics.OccupancyGrid.ProbMaxSaturation; end end methods (Access = {?matlab.unittest.TestCase, ... ?robotics.algs.internal.OccupancyGridBase}) function logodds = probToIntLogodds(obj, prob) %probToIntLogodds Convert probability to int16 log-odds prob(prob < obj.ProbabilitySaturation(1)) = obj.ProbabilitySaturation(1); prob(prob > obj.ProbabilitySaturation(2)) = obj.ProbabilitySaturation(2); logodds = int16(interp1(obj.LookupTable, ... single(obj.LinSpaceInt16),prob,'nearest', 'extrap')); end function probability = intLogoddsToProb(obj, logodds) %intLogoddsToProb Convert int16 log-odds to probability probability = interp1(single(obj.LinSpaceInt16), ... obj.LookupTable, single(logodds),'nearest', 'extrap'); end function logodds = probToIntLogoddsMaxSat(obj, prob) %probToIntLogoddsMaxSat Convert probability to int16 log-odds % This method uses maximum possible saturation. Required for % update occupancy. prob(prob < obj.ProbMaxSaturation(1)) = obj.ProbMaxSaturation(1); prob(prob > obj.ProbMaxSaturation(2)) = obj.ProbMaxSaturation(2); logodds = int16(interp1(obj.LookupTable, ... single(obj.LinSpaceInt16),prob,'nearest', 'extrap')); end end methods (Access = protected) function mat = processMatrix(obj, varargin) %processMatrix Process construction input and create log-odds % Supports two input patterns: % processMatrix(obj, rows,columns); % processMatrix(obj, mat); if nargin == 3 rows = varargin{1}; columns = varargin{2}; mat = zeros(rows, columns, obj.DefaultType); elseif nargin == 2 % As probability saturation is not assigned, use max % saturation. mat = obj.probToIntLogoddsMaxSat(single(varargin{1})); end end end methods (Static, Access =public) function P = validateMatrixInput(P) %validateMatrixInput Validates the matrix input if islogical(P) validateattributes(P, {'logical'}, ... {'2d', 'real', 'nonempty'}, ... 'OccupancyGrid', 'P', 1); else validateattributes(P, {'numeric','logical'}, ... {'2d', 'real', 'nonempty','nonnan','<=',1,'>=',0}, ... 'OccupancyGrid', 'P', 1); end end function className = getClassName() className = 'OccupancyGrid'; end function validateOccupancyValues(values, len, fcnName, argname) %validateOccupancyValues Validate occupancy value vector % check that the values are numbers in [0,1] if islogical(values) validateattributes(values, {'logical'}, ... {'real','vector', 'nonempty'}, fcnName, argname); else validateattributes(values, {'numeric'}, ... {'real','vector', 'nonnan', '<=',1,'>=',0, 'nonempty'}, fcnName, argname); end isSizeMismatch = length(values) ~= 1 && length(values) ~= len; coder.internal.errorIf(isSizeMismatch,... 'robotics:robotalgs:occgridcommon:InputSizeMismatch'); end end end function linSpace = getIntLineSpace() %getIntLineSpace Generate line space for integer log-odds defaultType = OccupancyGrid.DefaultType; linSpace = intmin(defaultType):intmax(defaultType); end function lookup = createLookupTable() %createLookupTable Create lookup table for integer log-odds to probability numOfPoints = abs(double(intmin(OccupancyGrid.DefaultType)))+... double(intmax(OccupancyGrid.DefaultType))+1; logOddsLimits = OccupancyGrid.probToLogodds(OccupancyGrid.ProbMaxSaturation); lookup = single(OccupancyGrid.logoddsToProb(... linspace(logOddsLimits(1), logOddsLimits(2), numOfPoints))); end
github
Jeffrey28/PlatoonBased-AIM-master
AIM_Optimal.m
.m
PlatoonBased-AIM-master/Matlab2/AIM_Optimal.m
13,139
utf_8
bd8a3a8dbf63c5717afdaf44da5e5b26
function [F,callCounter,packets,var,AverageDelayPerVehicle,AverageDelayPerPlatoon,totalVehicles,totalVehiclesCrossed] = AIM_Optimal(policyName,ver,seed,granularity,platoonMaxSize,spawnRate,duration,simSpeed,handles) tic; rng(seed); packetsFromPlatoons = 0; packetsToPlatoons = 0; %Get Map, Show Map intersectionData = intersection(); map = intersectionData.getMap(granularity); show(map) %title('Platoon-Based Intersection Management'); xlim([0 granularity]); ylim([0 granularity]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Initialization and Constants laneTraffic = zeros(1,4); laneIsFull= zeros(1,4); global simulationTime; numVehiclesPassed = 0; numPlatoonsPassed = 0; currentAvgDelay = 0; totalVehicles = [0 0 0 0]; totalVehiclesCrossed = [0 0 0 0]; %LaneTail is initialized to the stop points, this will dynamically change.. %as platoon stop for their turn.other platoons will use this data to stop %right behind the last platoon in queue. laneStop = [180 195;%for Lane 1 205 180;%for Lane 2 220 205;%for Lane 3 195 215;%for Lane 4 ]; turns ={'straight' 'left' 'right'}; numOfPlatoons = 0; numOfLanes = 4; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% frameCounter = 1; F(frameCounter) = getframe(gcf); %legend('Vehicle'); %stoppedByUser=0; tic; elapsedTime = toc; %Spawn First Platoon laneNumber = randi([1 numOfLanes]); platoonLeader = vehicleModel(intersectionData.spawnPoints(laneNumber,:)); %Spawn The followers platoonSize = randi([1 platoonMaxSize]); turnDecision = turns{randi([1 3])}; platoons(numOfPlatoons+1) = vehiclePlatoon(platoonSize,platoonLeader,turnDecision,frameCounter); numOfPlatoons = numOfPlatoons+1; platoons(numOfPlatoons).addVehicle(platoonSize-1); simulationTime = 5*simSpeed; spawnPerSec = spawnRate/3600; lastFrame = 0; clearTime = 0; times = 0; laneCapacity = 16; %legend('Stopped Platoon','Stopped Platoon','Stopped Platoon','Stopped Platoon'); newBatch = 1; fps=2; index=0; gone = []; numOfPlatoonsInSchedule=0; callCounter = 0; candidates = [0 0 0 0]; while(frameCounter<duration*fps) set(handles.timeLabel,'String',sprintf('%.2fs',frameCounter/fps)); set(handles.crossedVehicles,'String',sprintf('%d',sum(totalVehiclesCrossed))); if(mod(frameCounter,1)==0)%Spawn 4 platoons every 100 frames for k=1:4 %Spawn New Platoons %decide lane %laneNumber = randi([1 numOfLanes]); %decide turn turnDecision = turns{randi([1 3])}; %decide platoon size platoonSize = randi([1 platoonMaxSize]); %Spawn Leader prob = rand(); threshold = spawnPerSec*0.5/platoonSize; if(prob<threshold && ((laneTraffic(k)+platoonSize)<laneCapacity)) totalVehicles(k) = totalVehicles(k) + platoonSize; platoonLeader = vehicleModel(intersectionData.spawnPoints(k,:)); %Spawn The followers platoons(numOfPlatoons+1) = vehiclePlatoon(platoonSize,platoonLeader,turnDecision,frameCounter); numOfPlatoons = numOfPlatoons+1; platoons(numOfPlatoons).addVehicle(platoonSize-1); laneTraffic(k) = laneTraffic(k) +platoonSize; if(laneTraffic(k)>laneCapacity) laneIsFull(k)=1; else laneIsFull(k)=0; end end end end %Get Solution%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% arrivals = []; lengths = []; waitings = []; packetsFromPlatoons = packetsFromPlatoons + length(platoons); indices = 1:length(platoons); indices(gone) = []; if(isempty(indices)) drawnow; frameCounter = frameCounter+1; %F(frameCounter) = getframe(gcf); continue; else for j=indices if (j==1) waitings = [1 platoons(j).waitingTime platoons(j).arrivalTime]; %arrivals = [1 platoons(j).arrivalTime]; else waitings = [waitings; j platoons(j).waitingTime platoons(j).arrivalTime]; %lengths = [lengths; j platoons(j).platoonSize]; end end schedule2 = sortrows(waitings,[3]); sortedList = [schedule2(:,1)']; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% counter = 0; timePassed = frameCounter-lastFrame; lastCandidates = candidates; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if(newBatch==1 || ver==2)%index>numOfPlatoonsInSchedule || index==0) candidates = [0 0 0 0]; candidateCounter = 0; for pt=sortedList if(candidateCounter==4) break else lane = platoons(pt).arrivalLane; if(candidates(lane)==0 && ~strcmp(platoons(pt).state,'crossing') ... && ~strcmp(platoons(pt).state,'done')... && platoons(pt).arrivalTime<=clearTime) candidates(lane)=pt; candidateCounter = candidateCounter+1; end end end candidates = candidates(candidates~=0); if(~isempty(candidates)) if(length(candidates)~=length(lastCandidates)) newSchedule = greedySort(candidates); callCounter = callCounter+1; newBatch = 0; numOfPlatoonsInSchedule = length(newSchedule); index = 1; elseif(candidates~=lastCandidates) newSchedule = greedySort(candidates); callCounter = callCounter+1; newBatch = 0; numOfPlatoonsInSchedule = length(newSchedule); index = 1; else newSchedule = greedySort(candidates); newBatch = 0; numOfPlatoonsInSchedule = length(newSchedule); index = 1; end else newSchedule = 0; index = 0; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for j=sortedList if(index>0 && index <=numOfPlatoonsInSchedule) whosTurn = newSchedule(index); else whosTurn=0; end if(isvalid(platoons(j))) if(strcmp(platoons(j).state,'done')) gone = [gone j]; end timePassed = frameCounter-lastFrame; if(timePassed>=clearTime && j==whosTurn ... && (strcmp(platoons(j).state,'stopandwait')... || strcmp(platoons(j).state,'moveandwait'))) index = index + 1; if(index>numOfPlatoonsInSchedule) newBatch=1; end packetsToPlatoons = packetsToPlatoons + 1; packetsFromPlatoons = packetsFromPlatoons + 1; platoons(j).setPath(intersectionData.getTrajectory(platoons(j).arrivalLane,platoons(j).turn),frameCounter); arrival = platoons(j).arrivalTime; totalVehiclesCrossed(platoons(j).arrivalLane) = totalVehiclesCrossed(platoons(j).arrivalLane) + platoons(j).platoonSize; %counter = counter + 1; clearTime = arrival + (25+(platoons(j).platoonSize*8))/(platoons(j).linearVelocity*simulationTime); lastFrame = frameCounter; laneTraffic(platoons(j).arrivalLane) = laneTraffic(platoons(j).arrivalLane) -platoons(j).platoonSize; if(laneTraffic(platoons(j).arrivalLane)>laneCapacity) laneIsFull(platoons(j).arrivalLane)=1; else laneIsFull(platoons(j).arrivalLane)=0; end %counter = counter + 1; for ii= sortedList(find(sortedList==j,1)+1:end) platoons(ii).updateStopPoint(platoons(j).stopPoints(platoons(j).arrivalLane,:),platoons(j).arrivalLane); end end drive(platoons(j),simulationTime,frameCounter,true); if(strcmp(platoons(j).state,'stopandwait')... || strcmp(platoons(j).state,'moveandwait')) for ii= sortedList(find(sortedList==j,1)+1:end) platoons(ii).updateStopPoint(platoons(j).tail(),platoons(j).arrivalLane); end end end end drawnow; frameCounter = frameCounter+1; %platoonSizeSetting = platoonMaxSize %SimulationTime = frameCounter/2 F(frameCounter) = getframe(gcf); %tic; %pause(time/1000); %times = [times toc-elapsedTime]; %elapsedTime = toc; %platoons = sort(platoons); end end aveTime = mean(times); delays = []; platoonDelays = []; for j=1:length(platoons) if(isvalid(platoons(j))) if(strcmp(platoons(j).state,'done') || strcmp(platoons(j).state,'crossing')) %totalVehiclesCrossed(platoons(j).arrivalLane) = totalVehiclesCrossed(platoons(j).arrivalLane) + platoons(j).platoonSize; delay =platoons(j).totalWaiting/fps; if(delay>=0) platoonDelays = [platoonDelays delay]; for(i=1:platoons(j).platoonSize) delays = [delays delay]; end end elseif(platoons(j).waitingTime>=0) delay = platoons(j).waitingTime/fps; platoonDelays = [platoonDelays delay]; for(i=1:platoons(j).platoonSize) delays = [delays delay]; end end delete(platoons(j)); end end delays = delays; platoonDelays = platoonDelays; AverageDelayPerVehicle = mean(delays); AverageDelayPerPlatoon = mean(platoonDelays); packets = packetsFromPlatoons+packetsToPlatoons; var = sum(delays.^2)/(length(delays)-1) - (length(delays))*mean(delays)^2/(length(delays)-1); function sol = getSchedule(lengths,waitingTimes) [sorted sol] = sort(waitingTimes,'descend'); end function sol = getSchedule2(lengths,arrivalTimes) [sorted sol] = sort(arrivalTimes); end function [newSchedule] = greedySort(candidates) minimumDelay = inf; newSchedule = candidates; clearTimes = getClearTimes(candidates); permutations = perms(candidates); for i=1:size(permutations,1) maxDelay = 0; extraWaitTime = max(clearTime - platoons(permutations(i,1)).arrivalTime ,0); extraWait = extraWaitTime>0; delayPerVehicle = (platoons(permutations(i,1)).waitingTime*extraWait +... extraWaitTime)*... platoons(permutations(i,1)).platoonSize; totalDelay = clearTimes(find(candidates ==permutations(i,1),1))+clearTime+... +max(platoons(permutations(i,1)).arrivalTime-clearTime,0); %delayPerVehicle = delayPerVehicle+... % platoons(permutations(i,1)).waitingTime*... % platoons(permutations(i,1)).platoonSize; %delayPerVehicle=0; %delayPerVehicle = delayPerVehicle +... % platoons(permutations(i,1)).waitingTime*... % platoons(permutations(i,1)).platoonSize; if(delayPerVehicle>maxDelay) maxDelay = delayPerVehicle; end for j=2:size(permutations,2) extraWaitTime = max(totalDelay - platoons(permutations(i,j)).arrivalTime ,0); extraWait = extraWaitTime>0; if(strcmp(policyName,'pdm')) delayPerVehicle =delayPerVehicle+(extraWait*platoons(permutations(i,j)).waitingTime+... extraWaitTime)*... platoons(permutations(i,j)).platoonSize; else delayPerVehicle =delayPerVehicle+ j*(extraWait*platoons(permutations(i,j)).waitingTime+... extraWaitTime)*... platoons(permutations(i,j)).platoonSize; end %platoons(permutations(i,j)).waitingTime+ %laneTraffic(platoons(permutations(i,j)).arrivalLane); %platoons(permutations(i,j)).platoonSize; % + ... totalDelay = totalDelay+max(platoons(permutations(i,j)).arrivalTime - totalDelay,0) + ... clearTimes(find(candidates ==permutations(i,j),1)); if(delayPerVehicle>maxDelay) maxDelay = delayPerVehicle; end end if(delayPerVehicle<minimumDelay) minimumDelay = delayPerVehicle; newSchedule = permutations(i,:); end end end function clearTimes = getClearTimes(candidates) for i=1:length(candidates) if(candidates(i)==0) pSize(i) = 0; else pSize(i) = platoons(candidates(i)).platoonSize; end end constants = zeros(1,length(candidates)).*25; clearTimes = (constants+(pSize.*8))./(simulationTime); end end
github
Jeffrey28/PlatoonBased-AIM-master
intersection.m
.m
PlatoonBased-AIM-master/Matlab2/intersection.m
6,087
utf_8
c8d83f6e75ff575d165c9f3adf6d0cb6
classdef intersection < handle properties(SetAccess = private) granularity; lineWidth; lanePerRoad; end properties(SetAccess = public) spawnPoints = [20 195 0;%for Lane 1 205 20 pi/2;%for Lane 2 380 205 pi;%for Lane 3 195 380 -pi/2;%for Lane 4 ]; stopPoints = [180 195;%for Lane 1 205 180;%for Lane 2 220 205;%for Lane 3 195 215;%for Lane 4 ]; endPoints = [20 205; 195 20; 380 195; 205 380;]; lane1To4 = [180 195;%Lane 1 Turn left 190 195; 195 200; 200 205; 202 210; 205 220; 205 380]; lane1To3 = [180 195;%Lane 1 Go Straight 190 195; 195 195; 200 195; 205 195; 240 195; 380 195]; lane1To2 = [180 195;%Lane 1 Turn right 185 195; 190 195; 192 195; 194 185; 195 145; 195 20]; lane2To3 = [205 180;%Lane 2 turn right 205 185; 205 190; 205 192; 215 195; 275 195; 380 195]; lane2To4 = [205 180;%Lane 2 go straight 205 190; 205 195; 205 200; 205 205; 205 245; 205 380]; lane2To1 = [205 180; 205 190; 205 195; 200 200; 190 205; 130 205; 20 205];%Lane 2 turn left lane3To4 = [220 205; 210 205; 207 205; 205 210; 205 220; 205 280; 205 380];%Lane 3 turn right lane3To1 = [220 205; 210 205; 200 205; 160 205; 100 205; 50 205; 20 205];%Lane 3 go straight lane3To2 = [220 205; 205 205; 200 200; 195 195; 195 190; 195 130; 195 20];%Lane 3 turn left lane4To1 = [195 220; 195 210; 190 208; 180 205; 130 205; 80 205; 20 205];%Lane 4 turn right lane4To2 = [195 220; 195 210; 195 205; 195 200; 195 195; 195 155; 195 20;]%Lane 4 go straight lane4To3 = [195 220; 195 205; 200 200; 205 195; 220 195; 280 195; 380 195;]%Lane 4 turn left trajectories; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% methods(Access=public) function path = getTrajectory(obj,arrivalLane,turn) switch turn case 'right' offset=1; case 'straight' offset=2; case 'left' offset=3; end index = (arrivalLane-1)*3+offset; path = obj.trajectories(:,:,index); end end methods(Static) function obj = intersection() obj.granularity = 400; obj.lineWidth = 1; obj.lanePerRoad = 1; obj.trajectories = obj.lane1To2;%Lane 1 turn right obj.trajectories(:,:,2) = obj.lane1To3;%Lane 1 go straight obj.trajectories(:,:,3) = obj.lane1To4;%Lane 1 turn left obj.trajectories(:,:,4) = obj.lane2To3;%Lane 2 turn right obj.trajectories(:,:,5) = obj.lane2To4;%Lane 2 go straight obj.trajectories(:,:,6) = obj.lane2To1;%Lane 2 turn left obj.trajectories(:,:,7) = obj.lane3To4;%Lane 3 turn right obj.trajectories(:,:,8) = obj.lane3To1;%Lane 3 go straight obj.trajectories(:,:,9) = obj.lane3To2;%Lane 3 turn left obj.trajectories(:,:,10) = obj.lane4To1;%Lane 4 turn right obj.trajectories(:,:,11) = obj.lane4To2;%Lane 4 go straight obj.trajectories(:,:,12) = obj.lane4To3;%Lane 4 turn left end function map = getMap(varargin) %UNTITLED Summary of this function goes here % Detailed explanation goes here numvarargs = length(varargin); if numvarargs > 3 error('gridMapGenerator: TooManyInputs', ... 'This function takes 1-3 input arguments'); end optargs = {200 1 1}; optargs(1:numvarargs) = varargin; [granularity lineWidth lanePerRoad] = optargs{:}; obj.granularity = granularity; obj.lineWidth = lineWidth; obj.lanePerRoad = lanePerRoad; %granularity = 200; %lineWidth = 1; intersectionGridMap = zeros(granularity, granularity); bottomOfLane = 0.5*granularity-10; topOfLane = 0.5* granularity+10; intersectionGridMap(bottomOfLane:bottomOfLane+lineWidth,1:bottomOfLane)=1; intersectionGridMap(bottomOfLane:bottomOfLane+lineWidth,topOfLane:end)=1; intersectionGridMap(topOfLane:topOfLane+lineWidth,1:bottomOfLane)=1; intersectionGridMap(topOfLane:topOfLane+lineWidth,topOfLane:end)=1; intersectionGridMap(1:bottomOfLane+lineWidth,bottomOfLane:bottomOfLane+lineWidth)=1; intersectionGridMap(topOfLane:end,bottomOfLane:bottomOfLane+lineWidth)=1; intersectionGridMap(1:bottomOfLane,topOfLane:topOfLane+lineWidth)=1; intersectionGridMap(topOfLane:end,topOfLane:topOfLane+lineWidth)=1; intersectionGridMap(0.5*granularity,1:bottomOfLane)=0.5; intersectionGridMap(0.5*granularity,topOfLane+lineWidth:end)=0.5; intersectionGridMap(1:bottomOfLane,0.5*granularity)=0.5; intersectionGridMap(topOfLane+lineWidth:end,0.5*granularity)=0.5; intersectionGridMap(1:bottomOfLane,1:bottomOfLane)=0.7; intersectionGridMap(1:bottomOfLane,topOfLane+lineWidth:end)=0.7; intersectionGridMap(topOfLane+lineWidth:end,1:bottomOfLane)=0.7; intersectionGridMap(topOfLane+lineWidth:end,topOfLane+lineWidth:end)=0.7; intersectionGridMap = intersectionGridMap'; map = OccupancyGrid(intersectionGridMap); end end end
github
Jeffrey28/PlatoonBased-AIM-master
simulator.m
.m
PlatoonBased-AIM-master/Matlab2/simulator.m
27,407
utf_8
cf0a2074baee1fc10130713ee54d1d6e
function varargout = simulator(varargin) % SIMULATOR MATLAB code for simulator.fig %% %% % SIMULATOR, by itself, creates a new SIMULATOR or raises the existing % singleton*. % % H = SIMULATOR returns the handle to a new SIMULATOR or the handle to % the existing singleton*. % % SIMULATOR('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in SIMULATOR.M with the given input arguments. % % SIMULATOR('Property','Value',...) creates a new SIMULATOR or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before simulator_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to simulator_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help simulator % Last Modified by GUIDE v2.5 02-Jan-2017 18:06:33 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @simulator_OpeningFcn, ... 'gui_OutputFcn', @simulator_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before simulator is made visible. function simulator_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to simulator (see VARARGIN) % Choose default command line output for simulator handles.output = hObject; % Update handles structure handles.simTime = 500; handles.readyColor = [1 1 1]; handles.runningColor = [104/255 151/255 187/255]; handles.finishedColor = [102/255 205/255 170/255]; handles.savingColor = [211/255 71/255 31/255]; grid on; grid minor; guidata(hObject, handles); axes(handles.axes1); %title('Platoon-Based Autonomous Intersection Management'); xlim([0 400]); ylim([0 400]); %grid on %grid minor set(handles.resetbutton,'Enable','off'); set(handles.savevideo,'Enable','off'); %axes(handles.axes1); % UIWAIT makes simulator wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = simulator_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in start. function start_Callback(hObject, eventdata, handles) % hObject handle to start (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %clf; handles.simTime = round(get(handles.duration,'Value')); handles.simSpeed = round(get(handles.simulationSpeed,'Value')); handles.spawnRate = round(get(handles.spawn,'Value')); axes(handles.axes1); g = 400; contents = str2double(get(handles.platoonSize,'String')); maxSize= contents(get(handles.platoonSize,'Value')); set(handles.resetbutton,'Enable','on'); set(handles.savevideo,'Enable','off'); set(handles.start,'Enable','off'); set(handles.status, 'BackgroundColor',handles.runningColor); set(handles.status, 'String','Simulation is Running'); policyNumber = get(handles.policy,'Value'); seed = 12345; if(policyNumber==1) [handles.F,p,var,vDelay,pDelay,tv,tvc] = AIM(seed,g,maxSize,handles.spawnRate,handles.simTime,handles.simSpeed,handles); elseif(policyNumber==2) % [handles.Fcc,p,var,vDelay,pDelay,tv,tvc] = AIM_Optimal(1,seed,g,maxSize,handles.spawnRate,handles.simTime,handles.simSpeed,handles); % vDelay % var % cc [handles.F,cc,p,var,vDelay,pDelay,tv,tvc] = AIM_Optimal('pdm',2,seed,g,maxSize,handles.spawnRate,handles.simTime,handles.simSpeed,handles); vDelay var cc elseif(policyNumber==3) % [handles.Fcc,p,var,vDelay,pDelay,tv,tvc] = AIM_Optimal(1,seed,g,maxSize,handles.spawnRate,handles.simTime,handles.simSpeed,handles); % vDelay % var % cc [handles.F,cc,p,var,vDelay,pDelay,tv,tvc] = AIM_Optimal('pvm',2,seed,g,maxSize,handles.spawnRate,handles.simTime,handles.simSpeed,handles); vDelay var cc end fprintf('The Average Delay per Vehicle is %f\n', vDelay) guidata(hObject,handles); set(handles.status, 'BackgroundColor',handles.finishedColor); set(handles.status, 'String','Finished'); set(handles.start,'Enable','on'); set(handles.resetbutton,'Enable','off'); set(handles.savevideo,'Enable','on'); % --- Executes on selection change in granularity. function granularity_Callback(hObject, eventdata, handles) % hObject handle to granularity (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns granularity contents as cell array % contents{get(hObject,'Value')} returns selected item from granularity % --- Executes during object creation, after setting all properties. function granularity_CreateFcn(hObject, eventdata, handles) % hObject handle to granularity (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in resetbutton. function resetbutton_Callback(hObject, eventdata, handles) % hObject handle to resetbutton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %axes(handles.axes1); %error('stop requested by user'); %handles.stop=1; %guidata(hObject,handles); %clc; cla; grid on; grid minor; set(handles.status, 'BackgroundColor',handles.finishedColor); set(handles.status, 'String','Ready!'); set(handles.start,'Enable','on'); set(handles.savevideo,'Enable','off'); % --- Executes on slider movement. function duration_Callback(hObject, eventdata, handles) % hObject handle to duration (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider handles.simTime = round(get(hObject,'Value')); labelText = strcat(num2str(handles.simTime),' Sec.'); set(handles.durationlabel,'String',labelText); guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function duration_CreateFcn(hObject, eventdata, handles) % hObject handle to duration (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function slider2_Callback(hObject, eventdata, handles) % hObject handle to slider2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider % --- Executes during object creation, after setting all properties. function slider2_CreateFcn(hObject, eventdata, handles) % hObject handle to slider2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on button press in exit. function exit_Callback(hObject, eventdata, handles) % hObject handle to exit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) close(gcf); % --- If Enable == 'on', executes on mouse press in 5 pixel border. % --- Otherwise, executes on mouse press in 5 pixel border or over start. function start_ButtonDownFcn(hObject, eventdata, handles) % hObject handle to start (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in savevideo. function savevideo_Callback(hObject, eventdata, handles) % hObject handle to savevideo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set(handles.start,'Enable','off'); set(handles.status, 'BackgroundColor',handles.savingColor); set(handles.status, 'String','Saving Video'); pause(0.5); policyNumber = get(handles.policy,'Value'); uniqueNumber = num2str(randi([0 100])*100+policyNumber); video = VideoWriter(strcat('AIM-Demo-',uniqueNumber),'MPEG-4'); video.FrameRate = 20; open(video); writeVideo(video,handles.F); close(video); set(handles.status, 'BackgroundColor',handles.finishedColor); set(handles.status, 'String','Video was saved to File!'); set(handles.start,'Enable','on'); % --- Executes on slider movement. function slider5_Callback(hObject, eventdata, handles) % hObject handle to slider5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider % --- Executes during object creation, after setting all properties. function slider5_CreateFcn(hObject, eventdata, handles) % hObject handle to slider5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on selection change in platoonSize. function platoonSize_Callback(hObject, eventdata, handles) % hObject handle to platoonSize (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns platoonSize contents as cell array % contents{get(hObject,'Value')} returns selected item from platoonSize % --- Executes during object creation, after setting all properties. function platoonSize_CreateFcn(hObject, eventdata, handles) % hObject handle to platoonSize (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on slider movement. function simulationSpeed_Callback(hObject, eventdata, handles) % hObject handle to simulationSpeed (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider handles.simSpeed = round(get(hObject,'Value')); labelText = strcat(num2str(handles.simSpeed),'X'); set(handles.speedlabel,'String',labelText); guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function simulationSpeed_CreateFcn(hObject, eventdata, handles) % hObject handle to simulationSpeed (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function spawn_Callback(hObject, eventdata, handles) % hObject handle to spawn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider handles.spawnRate = round(get(hObject,'Value')); labelText = strcat(num2str(handles.spawnRate),' Veh/H/L'); set(handles.spawnLabel,'String',labelText); guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function spawn_CreateFcn(hObject, eventdata, handles) % hObject handle to spawn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on selection change in policy. function policy_Callback(hObject, eventdata, handles) % hObject handle to policy (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns policy contents as cell array % contents{get(hObject,'Value')} returns selected item from policy % --- Executes during object creation, after setting all properties. function policy_CreateFcn(hObject, eventdata, handles) % hObject handle to policy (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in experiment. function experiment_Callback(hObject, eventdata, handles) % hObject handle to experiment (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.simTime = round(get(handles.duration,'Value')); handles.simSpeed = round(get(handles.simulationSpeed,'Value')); handles.spawnRate = round(get(handles.spawn,'Value')); axes(handles.axes1); g = 400; contents = str2double(get(handles.platoonSize,'String')); maxSize= contents(get(handles.platoonSize,'Value')); set(handles.resetbutton,'Enable','on'); set(handles.savevideo,'Enable','off'); set(handles.start,'Enable','off'); set(handles.status, 'BackgroundColor',handles.runningColor); set(handles.status, 'String','Simulation is Running'); policyNumber = get(handles.policy,'Value'); totalVehicles = 0; totalVehiclesCrossed = 0; trafficFlows = []; counter=0; seed = 1234; for j = 500:100:2000 trafficFlows = [trafficFlows j]; counter = counter+1; n_exp = 1; for i=1:8 seed = 1234; if(policyNumber==1) p = zeros(1,n_exp); v = zeros(1,n_exp); vDelay = zeros(1,n_exp); pDelay = zeros(1,n_exp); fprintf('Max_Platoon = %d, Traffic Level = %d\n',i,j); for n=1:n_exp seed = seed+n; [p(n),v(n),vDelay(n),pDelay(n),tv,tvc] = AIM(seed,g,i,j,handles.simTime,handles.simSpeed,handles); fprintf('Experiment #%d\n',n); Average_Delay_Per_Vehicle = vDelay(n) cla end fprintf('Max_Platoon = %d, Traffic Level = %d\n',i,j); v; vDelay; packets(i,counter) = mean(p); var(i,counter) = mean(v); AverageDelayPerVehicle(i,counter) = mean(vDelay) AverageDelayPerPlatoon(i,counter) = mean(pDelay); elseif(policyNumber==2) [p,var(i,counter),vDelay,pDelay,tv,tvc] = AIM_Optimal(g,i,j,handles.simTime,handles.simSpeed,handles); packets(i,counter)=p; AverageDelayPerVehicle(i,counter) = vDelay; AverageDelayPerPlatoon(i,counter) = pDelay; end %totalVehicles(i,counter) = sum(tv); %totalVehiclesCrossed(i,counter) = sum(tvc); %AverageDelayPerVehicle %packets end end figure plot(trafficFlows,AverageDelayPerVehicle(1,:),'color','r','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(2,:),'color','g','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(3,:),'color','b','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(4,:),'color','c','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(5,:),'color','k','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(6,:),'color','m','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(7,:),'color','y','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(8,:),'color',[0.545 0.27 0.074],'marker','o','lineStyle','--','lineWidth',1); legend('Max-Platoon-Size=1','Max-Platoon-Size=2','Max-Platoon-Size=3' ... ,'Max-Platoon-Size=4','Max-Platoon-Size=5','Max-Platoon-Size=6' ... ,'Max-Platoon-Size=7','Max-Platoon-Size=8'); xlabel('Traffic Level (Vehicle/Hour/Lane)'); ylabel('Average Delay (S)'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% figure plot(trafficFlows,var(1,:),'color','r','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(2,:),'color','g','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(3,:),'color','b','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(4,:),'color','c','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(5,:),'color','k','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(6,:),'color','m','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(7,:),'color','y','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(8,:),'color',[0.545 0.27 0.074],'marker','o','lineStyle','--','lineWidth',1); legend('Max-Platoon-Size=1','Max-Platoon-Size=2','Max-Platoon-Size=3' ... ,'Max-Platoon-Size=4','Max-Platoon-Size=5','Max-Platoon-Size=6' ... ,'Max-Platoon-Size=7','Max-Platoon-Size=8'); xlabel('Traffic Level (Vehicle/Hour/Lane)'); ylabel('Travel Delay Variance (S^2)'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% figure plot(trafficFlows,packets(1,:),'color','r','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,packets(2,:),'color','g','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,packets(3,:),'color','b','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,packets(4,:),'color','c','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,packets(5,:),'color','k','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,packets(6,:),'color','m','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,packets(7,:),'color','y','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,packets(8,:),'color',[0.545 0.27 0.074],'marker','o','lineStyle','--','lineWidth',1); legend('Max-Platoon-Size=1','Max-Platoon-Size=2','Max-Platoon-Size=3' ... ,'Max-Platoon-Size=4','Max-Platoon-Size=5','Max-Platoon-Size=6' ... ,'Max-Platoon-Size=7','Max-Platoon-Size=8'); xlabel('Traffic Level (Vehicle/Hour/Lane)'); ylabel('# Packets Exchanged'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % figure % congestion = totalVehicles-totalVehiclesCrossed % plot(trafficFlows,congestion(1,:),'ro-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(2,:),'bo-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(3,:),'mo-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(4,:),'go-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(5,:),'ko-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(6,:),'co-.','lineWidth',2); % legend('Max-Platoon-Size=1','Max-Platoon-Size=2','Max-Platoon-Size=3' ... % ,'Max-Platoon-Size=4','Max-Platoon-Size=5','Max-Platoon-Size=6'); % title('Average Congestion'); guidata(hObject,handles); set(handles.status, 'BackgroundColor',handles.finishedColor); set(handles.status, 'String','Finished'); set(handles.start,'Enable','on'); set(handles.resetbutton,'Enable','off'); set(handles.savevideo,'Enable','on'); % --- Executes on button press in pushbutton6. function pushbutton6_Callback(hObject, eventdata, handles) % hObject handle to pushbutton6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.simTime = round(get(handles.duration,'Value')); handles.simSpeed = round(get(handles.simulationSpeed,'Value')); handles.spawnRate = round(get(handles.spawn,'Value')); axes(handles.axes1); g = 400; contents = str2double(get(handles.platoonSize,'String')); maxSize= contents(get(handles.platoonSize,'Value')); set(handles.resetbutton,'Enable','on'); set(handles.savevideo,'Enable','off'); set(handles.start,'Enable','off'); set(handles.status, 'BackgroundColor',handles.runningColor); set(handles.status, 'String','Simulation is Running'); policyNumber = get(handles.policy,'Value'); totalVehicles = 0; totalVehiclesCrossed = 0; trafficFlows = []; counter=0; seed = 1234; callCounter=[]; %for kk =1:6 % seed = 1233+kk; for j = 500:100:2000 trafficFlows = [trafficFlows j]; counter = counter+1; [p,var(1,counter),vDelay,pDelay,tv,tvc] = AIM(seed,g,maxSize,j,handles.simTime,handles.simSpeed,handles); packets(1,counter) = p; AverageDelayPerVehicle(1,counter) = vDelay AverageDelayPerPlatoon(1,counter) = pDelay; cla ver=1; [callCounter(1,counter),p,var(2,counter),vDelay,pDelay,tv,tvc] = AIM_Optimal(ver,seed,g,maxSize,j,handles.simTime,handles.simSpeed,handles); packets(2,counter)=p; AverageDelayPerVehicle(2,counter) = vDelay AverageDelayPerPlatoon(2,counter) = pDelay; cla ver=2; [callCounter(2,counter),p,var(3,counter),vDelay,pDelay,tv,tvc] = AIM_Optimal(ver,seed,g,maxSize,j,handles.simTime,handles.simSpeed,handles); packets(3,counter)=p; AverageDelayPerVehicle(3,counter) = vDelay var AverageDelayPerPlatoon(3,counter) = pDelay; callCounter; end %end figure plot(trafficFlows,AverageDelayPerVehicle(1,:),'color','k','marker','d','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(2,:),'color','r','marker','d','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(3,:),'color','b','marker','d','lineStyle','--','lineWidth',1); legend('Policy = StopSign','Policy = Optimal','Policy = Optimal-Updating'); xlabel('Traffic Level (Vehicle/Hour/Lane)'); ylabel('Average Delay (S)'); grid minor %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% figure plot(trafficFlows,var(1,:),'color','k','marker','d','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(2,:),'color','r','marker','d','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(3,:),'color','b','marker','d','lineStyle','--','lineWidth',1); legend('Policy = StopSign','Policy = Optimal','Policy = Optimal-Updating'); xlabel('Traffic Level (Vehicle/Hour/Lane)'); ylabel('Travel Delay Variance (S^2)'); grid minor %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % figure % plot(trafficFlows,packets(1,:),'color','k','marker','d','lineStyle','--','lineWidth',1); % hold on % plot(trafficFlows,packets(2,:),'color','r','marker','d','lineStyle','--','lineWidth',1); % hold on % plot(trafficFlows,packets(3,:),'color','b','marker','d','lineStyle','--','lineWidth',1); % legend('Policy = StopSign','Policy = Optimal','Policy = Optimal-Updating'); % xlabel('Traffic Level (Vehicle/Hour/Lane)'); % ylabel('# Packets Exchanged With the Infrastructure'); % grid minor %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % figure % congestion = totalVehicles-totalVehiclesCrossed % plot(trafficFlows,congestion(1,:),'ro-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(2,:),'bo-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(3,:),'mo-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(4,:),'go-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(5,:),'ko-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(6,:),'co-.','lineWidth',2); % legend('Max-Platoon-Size=1','Max-Platoon-Size=2','Max-Platoon-Size=3' ... % ,'Max-Platoon-Size=4','Max-Platoon-Size=5','Max-Platoon-Size=6'); % title('Average Congestion'); guidata(hObject,handles); set(handles.status, 'BackgroundColor',handles.finishedColor); set(handles.status, 'String','Finished'); set(handles.start,'Enable','on'); set(handles.resetbutton,'Enable','off'); set(handles.savevideo,'Enable','on');
github
Jeffrey28/PlatoonBased-AIM-master
OccupancyGrid.m
.m
PlatoonBased-AIM-master/Matlab/OccupancyGrid.m
54,073
utf_8
48a2d107b354fe119551901e2740db99
classdef (Sealed)OccupancyGrid <OccupancyGridBase %OCCUPANCYGRID Create an occupancy grid % OCCUPANCYGRID creates a 2D occupancy grid map. Each cell has % a value representing the probability of occupancy of that cell. % Probability values close to 1 represent certainty that the workspace % represented by the cell is occupied by an obstacle. Values close to 0 % represent certainty that the workspace represented by the cell is not % occupied and is obstacle-free. % % The probability values in the occupancy grid are stored with % a precision of at least 1e-3 to reduce memory usage and allow creation of % occupancy grid objects to represent large workspace. The minimum and % maximum probability that can be represented are 0.001 and 0.999 % respectively. % % MAP = robotics.OccupancyGrid(W, H) creates a 2D occupancy grid % object representing a world space of width(W) and height(H) in % meters. The default grid resolution is 1 cell per meter. % % MAP = robotics.OccupancyGrid(W, H, RES) creates an OccupancyGrid % object with resolution(RES) specified in cells per meter. % % MAP = robotics.OccupancyGrid(M, N, RES, 'grid') creates an % OccupancyGrid object and specifies a grid size of M rows and N columns. % RES specifies the cells per meter resolution. % % MAP = robotics.OccupancyGrid(P) creates an occupancy grid object % from the values in the matrix, P. The size of the grid matches the % matrix with each cell value interpreted from that matrix location. % Matrix, P, may contain any numeric type with values between zero(0) % and one(1). % % MAP = robotics.OccupancyGrid(P, RES) creates an OccupancyGrid % object from matrix, P, with RES specified in cells per meter. % % OccupancyGrid properties: % FreeThreshold - Threshold to consider cells as obstacle-free % OccupiedThreshold - Threshold to consider cells as occupied % ProbabilitySaturation - Saturation limits on probability values as [min, max] % GridSize - Size of the grid in [rows, cols] (number of cells) % Resolution - Grid resolution in cells per meter % XWorldLimits - Minimum and maximum values of X % YWorldLimits - Minimum and maximum values of Y % GridLocationInWorld - Location of grid in world coordinates % % % OccupancyGrid methods: % checkOccupancy - Check locations for free, occupied or unknown % copy - Create a copy of the object % getOccupancy - Get occupancy of a location % grid2world - Convert grid indices to world coordinates % inflate - Inflate each occupied grid location % insertRay - Insert rays from laser scan observation % occupancyMatrix - Convert occupancy grid to double matrix % raycast - Compute cell indices along a ray % rayIntersection - Compute map intersection points of rays % setOccupancy - Set occupancy of a location % show - Show grid values in a figure % updateOccupancy - Integrate probability observation at a location % world2grid - Convert world coordinates to grid indices % % % Example: % % % Create a 2m x 2m empty map % map = robotics.OccupancyGrid(2,2); % % % Create a 10m x 10m empty map with resolution 20 % map = robotics.OccupancyGrid(10, 10, 20); % % % Insert a laser scan in the occupancy grid % ranges = 5*ones(100, 1); % angles = linspace(-pi/2, pi/2, 100); % insertRay(map, [5,5,0], ranges, angles, 20); % % % Show occupancy grid in Graphics figure % show(map); % % % Create a map from a matrix with resolution 20 % p = eye(100)*0.5; % map = robotics.OccupancyGrid(p, 20); % % % Check occupancy of the world location (0.3, 0.2) % value = getOccupancy(map, [0.3 0.2]); % % % Set world position (1.5, 2.1) as occupied % setOccupancy(map, [1.5 2.1], 0.8); % % % Get the grid cell indices for world position (2.5, 2.1) % ij = world2grid(map, [2.5 2.1]); % % % Set the grid cell indices to unoccupied % setOccupancy(map, [1 1], 0.2, 'grid'); % % % Integrate occupancy observation at a location % updateOccupancy(map, [1 1], 0.7); % % % Show occupancy grid in Graphics figure % show(map); % % See also robotics.MonteCarloLocalization, robotics.BinaryOccupancyGrid. % Copyright 2016 The MathWorks, Inc. %#codegen %% properties (Dependent) %OccupiedThreshold Probability threshold to consider cells as occupied % A scalar representing the probability threshold above which % cells are considered to be occupied. The OccupiedThreshold will be % saturated based on ProbabilitySaturation property. % % Default: 0.65 OccupiedThreshold %FreeThreshold Probability threshold to consider cells as obstacle-free % A scalar representing the probability threshold below which % cells are considered to be obstacle-free. The FreeThreshold will be % saturated based on ProbabilitySaturation property. % % Default: 0.20 FreeThreshold %ProbabilitySaturation Saturation values for probability % A vector [MIN MAX] representing the probability saturation % values. The probability values below MIN value will be saturated to % MIN and above MAX values will be saturated to MAX. The MIN % value cannot be below 0.001 and MAX value cannot be above 0.999. % % Default: [0.001 0.999] ProbabilitySaturation end properties (Access = public) %Logodds Internal log-odds representation for probability Logodds end properties (Access = protected, Constant) %DefaultType Default datatype used for log-odds DefaultType = 'int16'; %ProbMaxSaturation Maximum probability saturation possible ProbMaxSaturation = [0.001 0.999] %LookupTable Lookup table to convert between log-odds and probability LookupTable = createLookupTable(); %LinSpaceInt16 The line space for all integer log-odds values LinSpaceInt16 = getIntLineSpace(); end properties (Access = private) %FreeThresholdIntLogodds Integer log-odds values for FreeThreshold % The log-odds value correspond to the default threshold of 0.2 FreeThresholdIntLogodds %OccupiedThresholdIntLogodds Integer log-odds values for OccupiedThreshold % The log-odds value correspond to the default threshold of 0.65 OccupiedThresholdIntLogodds end properties (Access = public) %LogoddsHit Integer log-odds value for update on sensor hit % This is the default log-odds value used to update grid cells % where a hit is detected. This value represents probability % value of 0.7 LogoddsHit %LogoddsMiss Integer log-odds value for update on sensor miss % This is the default log-odds value used to update grid cells % where a miss is detected (i.e. laser ray passes through grid % cells). This value represents probability value of 0.4 LogoddsMiss %ProbSatIntLogodds Int log-odds for saturation % These values correspond to default ProbabilitySaturation % values of [0.001 0.999] ProbSatIntLogodds end methods function set.OccupiedThreshold(obj,threshold) freeThreshold = obj.intLogoddsToProb(obj.FreeThresholdIntLogodds); validateattributes(threshold, {'numeric'}, ... {'scalar', 'real', 'nonnan', 'finite', 'nonnegative'}, ... 'OccupiedThreshold'); logOddsThreshold = obj.probToIntLogodds(double(threshold)); check = obj.FreeThresholdIntLogodds > logOddsThreshold; if check if coder.target('MATLAB') error(message('robotics:robotalgs:occgrid:ThresholdOutsideBounds', 'OccupiedThreshold', ... '>=', num2str(freeThreshold,'%.3f'))); else coder.internal.errorIf(check, 'robotics:robotalgs:occgrid:ThresholdOutsideBounds', 'OccupiedThreshold', ... '>=', coder.internal.num2str(freeThreshold)); end end obj.OccupiedThresholdIntLogodds = logOddsThreshold; end function threshold = get.OccupiedThreshold(obj) threshold = double(obj.intLogoddsToProb(obj.OccupiedThresholdIntLogodds)); end function set.FreeThreshold(obj,threshold) occupiedThreshold = obj.intLogoddsToProb(obj.OccupiedThresholdIntLogodds); validateattributes(threshold, {'numeric'}, ... {'scalar', 'real', 'nonnan', 'finite', 'nonnegative'}, ... 'FreeThreshold'); logOddsThreshold = obj.probToIntLogodds(double(threshold)); check = obj.OccupiedThresholdIntLogodds < logOddsThreshold; if check if coder.target('MATLAB') error(message('robotics:robotalgs:occgrid:ThresholdOutsideBounds', 'FreeThreshold', ... '<=', num2str(occupiedThreshold,'%.3f'))); else coder.internal.errorIf(check, 'robotics:robotalgs:occgrid:ThresholdOutsideBounds', 'FreeThreshold', ... '<=', coder.internal.num2str(occupiedThreshold)); end end obj.FreeThresholdIntLogodds = logOddsThreshold; end function threshold = get.FreeThreshold(obj) threshold = double(obj.intLogoddsToProb(obj.FreeThresholdIntLogodds)); end function set.ProbabilitySaturation(obj, sat) % Run basic checks validateattributes(sat, {'numeric'}, ... {'vector', 'real', 'nonnan', 'numel', 2}, 'ProbabilitySaturation'); % Check the limits sortedSat = sort(sat); validateattributes(sortedSat(1), {'numeric'}, {'>=',obj.ProbMaxSaturation(1), ... '<=',0.5}, ... 'ProbabilitySaturation', 'lower saturation'); validateattributes(sortedSat(2), {'numeric'}, {'>=',0.5, ... '<=',obj.ProbMaxSaturation(2)}, ... 'ProbabilitySaturation', 'upper saturation'); obj.ProbSatIntLogodds = obj.probToIntLogoddsMaxSat(double([sortedSat(1), sortedSat(2)])); obj.Logodds(obj.Logodds < obj.ProbSatIntLogodds(1)) = obj.ProbSatIntLogodds(1); obj.Logodds(obj.Logodds > obj.ProbSatIntLogodds(2)) = obj.ProbSatIntLogodds(2); end function sat = get.ProbabilitySaturation(obj) sat = double(obj.intLogoddsToProb(obj.ProbSatIntLogodds)); end function obj = OccupancyGrid(varargin) %OccupancyGrid Constructor % Parse input arguments narginchk(1,4); [resolution, isGrid, mat, width, height, isMat]... = obj.parseConstructorInputs(varargin{:}); % Assign properties with default values obj.FreeThresholdIntLogodds = obj.probToIntLogoddsMaxSat(0.2); obj.OccupiedThresholdIntLogodds = obj.probToIntLogoddsMaxSat(0.65); obj.LogoddsHit = obj.probToIntLogoddsMaxSat(0.7); obj.LogoddsMiss = obj.probToIntLogoddsMaxSat(0.4); obj.ProbSatIntLogodds = [intmin(obj.DefaultType), intmax(obj.DefaultType)]; % Apply probability saturation to matrix mat(mat < obj.ProbSatIntLogodds(1)) = obj.ProbSatIntLogodds(1); mat(mat > obj.ProbSatIntLogodds(2)) = obj.ProbSatIntLogodds(2); obj.Resolution = resolution; % Construct grid from a matrix input if isMat obj.Logodds = mat; obj.GridSize = size(obj.Logodds); return; end % Construct empty grid from width and height if isGrid obj.Logodds = mat; else gridsize = size(mat); % Throw a warning if we round off the grid size if any(gridsize ~= ([height, width]*obj.Resolution)) coder.internal.warning(... 'robotics:robotalgs:occgridcommon:RoundoffWarning'); end obj.Logodds = mat; end obj.GridSize = size(obj.Logodds); end function cpObj = copy(obj) %COPY Creates a copy of the object % cpObj = COPY(obj) creates a deep copy of the % Occupancy Grid object with the same properties. % % Example: % % Create an occupancy grid of 10m x 10m world representation % map = robotics.OccupancyGrid(10, 10); % % % Create a copy of the object % cpObj = copy(map); % % % Access the class methods from the new object % setOccupancy(cpObj,[2 4],true); % % % Delete the handle object % delete(cpObj) % % See also robotics.OccupancyGrid if isempty(obj) % This will not be encountered in code generation cpObj = OccupancyGrid.empty(0,1); else % Create a new object with the same properties cpObj = OccupancyGrid(obj.GridSize(1),... obj.GridSize(2),obj.Resolution,'grid'); % Assign the grid data to the new object handle cpObj.Logodds = obj.Logodds; cpObj.GridLocationInWorld = obj.GridLocationInWorld; cpObj.OccupiedThresholdIntLogodds = obj.OccupiedThresholdIntLogodds; cpObj.FreeThresholdIntLogodds = obj.FreeThresholdIntLogodds; cpObj.ProbSatIntLogodds = obj.ProbSatIntLogodds; end end function value = getOccupancy(obj, pos, frame) %getOccupancy Get occupancy value for one or more positions % VAL = getOccupancy(MAP, XY) returns an N-by-1 array of % occupancy values for N-by-2 array, XY. Each row of the % array XY corresponds to a point with [X Y] world coordinates. % % VAL = getOccupancy(MAP, IJ, 'grid') returns an N-by-1 % array of occupancy values for N-by-2 array IJ. Each row of % the array IJ refers to a grid cell index [X,Y]. % % Example: % % Create an occupancy grid and get occupancy % % values for a position % map = robotics.OccupancyGrid(10, 10); % % % Get occupancy of the world coordinate (0, 0) % value = getOccupancy(map, [0 0]); % % % Get occupancy of multiple coordinates % [X, Y] = meshgrid(0:0.5:5); % values = getOccupancy(map, [X(:) Y(:)]); % % % Get occupancy of the grid cell (1, 1) % value = getOccupancy(map, [1 1], 'grid'); % % % Get occupancy of multiple grid cells % [I, J] = meshgrid(1:5); % values = getOccupancy(map, [I(:) J(:)], 'grid'); % % See also robotics.OccupancyGrid, setOccupancy isGrid = false; % If optional argument present then parse it separately if nargin > 2 isGrid = obj.parseOptionalFrameInput(frame, 'getOccupancy'); end % Validate position or subscripts and convert it to indices indices = obj.getIndices(pos, isGrid, 'getOccupancy'); value = double(obj.intLogoddsToProb(obj.Logodds(indices))); end function setOccupancy(obj, pos, value, frame) %setOccupancy Set occupancy value for one or more positions % setOccupancy(MAP, XY, VAL) assigns the scalar occupancy % value, VAL to each coordinate specified in the N-by-2 array, % XY. Each row of the array XY corresponds to a point with % [X Y] world coordinates. % % setOccupancy(MAP, XY, VAL) assigns each element of the % N-by-1 vector, VAL to the coordinate position of the % corresponding row of the N-by-2 array, XY. % % setOccupancy(MAP, IJ, VAL, 'grid') assigns occupancy values % to the grid positions specified by each row of the N-by-2 % array, IJ, which refers to the [row, col] index from each row % in the array. % % Example: % % Create an occupancy grid and set occupancy % % values for a position % map = robotics.OccupancyGrid(10, 10); % % % Set occupancy of the world coordinate (0, 0) % setOccupancy(map, [0 0], 0.2); % % % Set occupancy of multiple coordinates % [X, Y] = meshgrid(0:0.5:5); % values = ones(numel(X),1)*0.65; % setOccupancy(map, [X(:) Y(:)], values); % % % Set occupancy of the grid cell (1, 1) % setOccupancy(map, [1 1], 0.4, 'grid'); % % % Set occupancy of multiple grid cells % [I, J] = meshgrid(1:5); % setOccupancy(map, [I(:) J(:)], 0.4, 'grid'); % % % Set occupancy of multiple grid cells % [I, J] = meshgrid(1:5); % values = ones(numel(I),1)*0.8; % setOccupancy(map, [I(:) J(:)], values, 'grid'); % % See also robotics.OccupancyGrid, getOccupancy isGrid = false; % If optional argument present then parse it separately if nargin > 3 isGrid = obj.parseOptionalFrameInput(frame, 'setOccupancy'); end % Validate values obj.validateOccupancyValues(value, size(pos, 1), 'setOccupancy', 'val'); % Validate position or subscripts and convert it to indices indices = obj.getIndices(pos, isGrid, 'setOccupancy'); obj.Logodds(indices) = probToIntLogodds(obj,double(value(:))); end function inflate(obj, varargin) %INFLATE Inflate the occupied positions by a given amount % INFLATE(MAP, R) inflates each occupied position of the % occupancy grid by at least R meters. Each cell of the % occupancy grid is inflated by number of cells which is the % closest integer higher than the value MAP.Resolution*R. % % INFLATE(MAP, R, 'grid') inflates each cell of the % occupancy grid by R cells. % % Note that the inflate function does not inflate the % positions past the limits of the grid. % % Example: % % Create an occupancy grid and inflate map % mat = eye(100)*0.6; % map = robotics.OccupancyGrid(mat); % % % Create a copy of the map for inflation % cpMap = copy(map); % % % Inflate occupied cells using inflation radius in % % meters % inflate(cpMap, 0.1); % % % Inflate occupied cells using inflation radius in % % number of cells % inflate(cpMap, 2, 'grid'); % % See also robotics.OccupancyGrid, copy narginchk(2,3); obj.Logodds = obj.inflateGrid(obj.Logodds, varargin{:}); end function imageHandle = show(obj, varargin) %SHOW Display the occupancy grid in a figure % SHOW(MAP) displays the MAP occupancy grid in the % current axes with the axes labels representing the world % coordinates. % % SHOW(MAP, 'grid') displays the MAP occupancy grid in % the current axes with the axes of the figure representing % the grid indices. % % HIMAGE = SHOW(MAP, ___) returns the handle to the image % object created by show. % % SHOW(MAP,___,Name,Value) provides additional options specified % by one or more Name,Value pair arguments. Name must appear % inside single quotes (''). You can specify several name-value % pair arguments in any order as Name1,Value1,...,NameN,ValueN: % % 'Parent' - Handle of an axes that specifies % the parent of the image object % created by show. % % Example: % % Create an occupancy grid and display % map = robotics.OccupancyGrid(eye(5)*0.5); % % % Display the occupancy with axes showing the world % % coordinates % imgHandle = show(map); % % % Display the occupancy with axes showing the grid % % indices % imgHandle = show(map, 'grid'); % % % Display the occupancy with axes showing the world % % coordinates and specify a parent axes % fHandle = figure; % aHandle = axes('Parent', fh); % imgHandle = show(map, 'world', 'Parent', ah); % % See also robotics.OccupancyGrid [axHandle, isGrid] = obj.showInputParser(varargin{:}); [axHandle, imghandle] = showGrid(obj, obj.intLogoddsToProb(obj.Logodds), axHandle, isGrid); title(axHandle, ... 'Platoon Based Autonomous Intersection Management'); % Only return handle if user requested it. if nargout > 0 imageHandle = imghandle; end end function occupied = checkOccupancy(obj, pos, frame) %checkOccupancy Check ternary occupancy status for one or more positions % VAL = checkOccupancy(MAP, XY) returns an N-by-1 array of % occupancy status using OccupiedThreshold and FreeThreshold, % for N-by-2 array, XY. Each row of the array XY corresponds % to a point with [X Y] world coordinates. Occupancy status % of 0 refers to obstacle-free cells, 1 refers to occupied % cells and -1 refers to unknown cells. % % VAL = checkOccupancy(MAP, IJ, 'grid') returns an N-by-1 % array of occupancy status for N-by-2 array IJ. Each row of % the array IJ refers to a grid cell index [X,Y]. % % Example: % % Create an occupancy grid % map = robotics.OccupancyGrid(10, 10); % % % Check occupancy status of the world coordinate (0, 0) % value = checkOccupancy(map, [0 0]); % % % Check occupancy status of multiple coordinates % [X, Y] = meshgrid(0:0.5:5); % values = checkOccupancy(map, [X(:) Y(:)]); % % % Check occupancy status of the grid cell (1, 1) % value = checkOccupancy(map, [1 1], 'grid'); % % % Check occupancy status of multiple grid cells % [I, J] = meshgrid(1:5); % values = checkOccupancy(map, [I(:) J(:)], 'grid'); % % See also robotics.OccupancyGrid, getOccupancy isGrid = false; % If optional argument present then parse it separately if nargin > 2 isGrid = obj.parseOptionalFrameInput(frame, 'checkOccupancy'); end % Validate position or subscripts and convert it to indices indices = obj.getIndices(pos, isGrid, 'checkOccupancy'); value = obj.Logodds(indices); freeIdx = (value < obj.FreeThresholdIntLogodds); occIdx = (value > obj.OccupiedThresholdIntLogodds); occupied = ones(size(value))*(-1); occupied(freeIdx) = 0; occupied(occIdx) = 1; end function idx = world2grid(obj, pos) %WORLD2GRID Convert world coordinates to grid indices % IJ = WORLD2GRID(MAP, XY) converts an N-by-2 array of world % coordinates, XY, to an N-by-2 array of grid indices, IJ. The % input, XY, is in [X Y] format. The output grid indices, IJ, % are in [ROW COL] format. % % Example: % % Create an occupancy grid and convert world % % coordinates to grid indices % % Create a 10m x 10m world representation % map = robotics.OccupancyGrid(10, 10); % % % Get grid indices from world coordinates % ij = world2grid(map, [0 0]) % % % Get grid indices from world coordinates % [x y] = meshgrid(0:0.5:2); % ij = world2grid(map, [x(:) y(:)]) pos = obj.validatePosition(pos, obj.XWorldLimits, ... obj.YWorldLimits, 'world2grid', 'xy'); % Convert world coordinate to grid indices idx = worldToGridPrivate(obj, pos); end function pos = grid2world(obj, idx) %GRID2WORLD Convert grid indices to world coordinates % XY = GRID2WORLD(MAP, IJ) converts an N-by-2 array of grid % indices, IJ, to an N-by-2 array of world coordinates, XY. The % input grid indices, IJ, are in [ROW COL] format. The output, % XY, is in [X Y] format. % % Example: % % Create an occupancy grid and convert grid % % indices to world coordinates % % Create a 10m x 10m world representation % map = robotics.OccupancyGrid(10, 10); % % % Get world coordinates from grid indices % xy = grid2world(map, [1 1]) % % % Get world coordinates from grid indices % [i j] = meshgrid(1:5); % xy = world2grid(map, [i(:) j(:)]) idx = obj.validateGridIndices(idx, obj.GridSize, ... 'grid2world', 'IJ'); % Convert grid index to world coordinate pos = gridToWorldPrivate(obj, idx); end function updateOccupancy(obj, pos, value, frame) %updateOccupancy Integrate occupancy value for one or more positions % updateOccupancy(MAP, XY, OBS) probabilistically integrates % the scalar observation OBS for each coordinate specified in the % N-by-2 array, XY. Each row of the array XY corresponds to a % point with [X Y] world coordinates. Default update values % are used if OBS is logical. Update values are 0.7 and 0.4 % for true and false respectively. Alternatively, OBS can be % of any numeric type with value between 0 and 1. % % updateOccupancy(MAP, XY, OBS) probabilistically integrates % each element of the N-by-1 vector, OBS with the coordinate % position of the corresponding row of the N-by-2 array, XY. % % updateOccupancy(MAP, IJ, OBS, 'grid') probabilistically % integrates observation values to the grid positions % specified by each row of the N-by-2 array, IJ, which refers % to the [row, col] index from each row in the array. % % Example: % % Create an occupancy grid and update occupancy % % values for a position % map = robotics.OccupancyGrid(10, 10); % % % Update occupancy of the world coordinate (0, 0) % updateOccupancy(map, [0 0], true); % % % Update occupancy of multiple coordinates % [X, Y] = meshgrid(0:0.5:5); % values = ones(numel(X),1)*0.65; % updateOccupancy(map, [X(:) Y(:)], values); % % % Update occupancy of the grid cell (1, 1) % updateOccupancy(map, [1 1], false, 'grid'); % % % Update occupancy of multiple grid cells % [I, J] = meshgrid(1:5); % updateOccupancy(map, [I(:) J(:)], 0.4, 'grid'); % % % Update occupancy of multiple grid cells % [I, J] = meshgrid(1:5); % values = true(numel(I),1); % updateOccupancy(map, [I(:) J(:)], values, 'grid'); % % See also robotics.OccupancyGrid, setOccupancy isGrid = false; % If optional argument present then parse it separately if nargin > 3 isGrid = obj.parseOptionalFrameInput(frame, 'updateOccupancy'); end % Validate values obj.validateOccupancyValues(value, size(pos, 1), 'updateOccupancy', 'val'); % Validate position or subscripts and convert it to indices indices = obj.getIndices(pos, isGrid, 'updateOccupancy'); if isscalar(value) value = cast(ones(size(pos, 1), 1)*value, 'like', value); end if islogical(value) updateValuesHit = obj.Logodds(indices(logical(value(:)))) + obj.LogoddsHit; updateValuesHit(updateValuesHit > obj.ProbSatIntLogodds(2)) = obj.ProbSatIntLogodds(2); obj.Logodds(indices(logical(value(:)))) = updateValuesHit; updateValuesMiss = obj.Logodds(indices(~logical(value(:)))) + obj.LogoddsMiss; updateValuesMiss(updateValuesMiss < obj.ProbSatIntLogodds(1)) = obj.ProbSatIntLogodds(1); obj.Logodds(indices(~logical(value(:)))) = updateValuesMiss; else updateValues = obj.Logodds(indices) + obj.probToIntLogoddsMaxSat(double(value(:))); updateValues(updateValues > obj.ProbSatIntLogodds(2)) = obj.ProbSatIntLogodds(2); updateValues(updateValues < obj.ProbSatIntLogodds(1)) = obj.ProbSatIntLogodds(1); obj.Logodds(indices) = updateValues; end end function collisionPt = rayIntersection(obj, pose, angles, maxRange, threshold) %rayIntersection Compute map intersection points of rays % PTS = rayIntersection(MAP, POSE, ANGLES, MAXRANGE) returns % collision points PTS in the world coordinate frame for % rays emanating from POSE. PTS is an N-by-2 array of points. % POSE is a 1-by-3 array of sensor pose [X Y THETA] in the world % coordinate frame. ANGLES is an N-element vector of angles % at which to get ray intersection points. MAXRANGE is a % scalar representing the maximum range of the range sensor. If % there is no collision up-to the maximum range then [NaN NaN] % output is returned. By default, the OccupiedThreshold % property in MAP is used to determine occupied cells. % % PTS = rayIntersection(MAP, POSE, ANGLES, MAXRANGE, THRESHOLD) % returns collision points PTS, where the THRESHOLD is used % to determine the occupied cells. Any cell with a probability % value greater or equal to THRESHOLD is considered occupied. % % Example: % % Create an occupancy grid % map = robotics.OccupancyGrid(eye(10)); % % % Set occupancy of the world coordinate (5, 5) % setOccupancy(map, [5 5], 0.5); % % % Get collision points % collisionPts = rayIntersection(map, [0,0,0], [pi/4, pi/6], 10); % % % Visualize the collision points % show(map); % hold('on'); % plot(collisionPts(:,1),collisionPts(:,2) , '*') % % % Get collision points with threshold value 0.4 % collisionPts = rayIntersection(map, [0,0,0], [pi/4, pi/6], 10, 0.4); % % % Visualize the collision points % plot(collisionPts(:,1),collisionPts(:,2) , '*') % % See also robotics.OccupancyGrid, raycast narginchk(4,5); vPose = obj.validatePose(pose, obj.XWorldLimits, obj.YWorldLimits, 'rayIntersection', 'pose'); vAngles = obj.validateAngles(angles, 'rayIntersection', 'angles'); validateattributes(maxRange, {'numeric'}, ... {'real', 'nonnan', 'finite', 'scalar', 'positive'}, 'rayIntersection', 'maxrange'); if nargin < 5 grid = (obj.occupancyMatrix('ternary') == 1); else validateattributes(threshold, {'numeric'}, ... {'real', 'nonnan', 'finite', 'scalar', '<=', 1, '>=', 0}, 'rayIntersection', 'threshold'); grid = obj.occupancyMatrix > threshold; end [ranges, endPt] = robotics.algs.internal.calculateRanges(vPose, vAngles, double(maxRange), ... grid, obj.GridSize, obj.Resolution, obj.GridLocationInWorld); collisionPt = endPt; collisionPt(isnan(ranges), :) = nan; end function [endPts, middlePts] = raycast(obj, varargin) %RAYCAST Get cells along a ray % [ENDPTS, MIDPTS] = RAYCAST(MAP, POSE, RANGE, ANGLE) returns % cell indices of all cells traversed by a ray emanating from % POSE at an angle ANGLE with length equal to RANGE. POSE is % a 3-element vector representing robot pose [X, Y, THETA] in % the world coordinate frame. ANGLE and RANGE are scalars. % The ENDPTS are indices of cells touched by the % end point of the ray. MIDPTS are all the cells touched by % the ray excluding the ENDPTS. % % [ENDPTS, MIDPTS] = RAYCAST(MAP, P1, P2) returns % the cell indices of all cells between the line segment % P1=[X1,Y1] to P2=[X2,Y2] in the world coordinate frame. % % For faster insertion of range sensor data, use the insertRay % method with an array of ranges or an array of end points. % % Example: % % Create an occupancy grid % map = robotics.OccupancyGrid(10, 10, 20); % % % compute cells along a ray % [endPts, midPts] = raycast(map, [5,3,0], 4, pi/3); % % % Change occupancy cells to visualize % updateOccupancy(map, endPts, true, 'grid'); % updateOccupancy(map, midPts, false, 'grid'); % % Compute cells along a line segment % [endPts, midPts] = raycast(map, [2,5], [6,8]); % % % Change occupancy cells to visualize % updateOccupancy(map, endPts, true, 'grid'); % updateOccupancy(map, midPts, false, 'grid'); % % % Visualize the raycast output % show(map); % % See also robotics.OccupancyGrid, insertRay narginchk(3,4); if nargin == 4 pose = obj.validatePose(varargin{1}, obj.XWorldLimits, ... obj.YWorldLimits, 'raycast', 'pose'); validateattributes(varargin{2}, {'numeric'}, ... {'real', 'nonnan', 'finite', 'scalar', 'nonnegative'}, 'raycast', 'range'); validateattributes(varargin{3}, {'numeric'}, ... {'real', 'nonnan', 'finite', 'scalar'}, 'raycast', 'angle'); range = double(varargin{2}); angle = double(varargin{3}) + pose(3); startPoint = pose(1:2); endPoint = [pose(1) + range*cos(angle), ... pose(2) + range*sin(angle)]; else startPoint = obj.validatePosition(varargin{1}, obj.XWorldLimits, ... obj.YWorldLimits, 'raycast', 'StartPoint'); validateattributes(varargin{1}, {'numeric'}, {'numel', 2}, ... 'raycast', 'p1'); endPoint = obj.validatePosition(varargin{2}, obj.XWorldLimits, ... obj.YWorldLimits, 'raycast', 'EndPoint'); validateattributes(varargin{2}, {'numeric'}, {'numel', 2}, ... 'raycast', 'p2'); end [endPts, middlePts] = robotics.algs.internal.raycastCells(startPoint, endPoint, ... obj.GridSize(1), obj.GridSize(2), obj.Resolution, obj.GridLocationInWorld); end function insertRay(obj, varargin) %insertRay Insert rays from laser scan observation % insertRay(MAP, POSE, RANGES, ANGLES, MAXRANGE) inserts one % or more range sensor observations in the occupancy grid. % POSE is a 3-element vector representing sensor pose % [X, Y, THETA] in world coordinate frame, RANGES and ANGLES % are corresponding N-element vectors for range sensor % readings, MAXRANGE is the maximum range of the sensor. % The cells along the ray except the end points are observed % as obstacle-free and updated with probability of 0.4. % The cells touching the end point are observed as occupied % and updated with probability of 0.7. NaN values in RANGES are % ignored. RANGES above MAXRANGE are truncated and the end % points are not updated for MAXRANGE readings. % % insertRay(MAP, POSE, RANGES, ANGLES, MAXRANGE, INVMODEL) % inserts the ray with update probabilities according to a % 2-element vector INVMODEL. The first element of % INVMODEL is used to update obstacle-free observations and % the second element is used to update occupied observations. % Values in INVMODEL should be between 0 and 1. % % insertRay(MAP, STARTPT, ENDPTS) inserts cells between the % line segments STARTPT and ENDPTS. STARTPT is 2-element vector % representing the start point [X,Y] in the world coordinate frame. % ENDPTS is N-by-2 array of end points in the world coordinate % frame. The cells along the line segment except the end points % are updated with miss probability of 0.4 and the cells % touching the end point are updated with hit probability of 0.7. % % insertRay(MAP, STARTPT, ENDPTS, INVMODEL) inserts the % line segment with update probabilities according to a % 1-by-2 or 2-by-1 array INVMODEL. % % Example: % % Create an occupancy grid % map = robotics.OccupancyGrid(10,10,20); % % % Insert two rays % insertRay(map, [5,5,0], [5, 6], [pi/4, pi/6], 20); % % % Insert rays with non default inverse model % insertRay(map, [5,5,0], [5, 6], [pi/3, pi/2], 20, [0.3 0.8]); % % % Visualize inserted rays % show(map); % % % Insert a line segment % insertRay(map, [0,0], [3,3]); % % % Visualize inserted ray % show(map); % % See also robotics.OccupancyGrid, raycast % Supported syntax %insertRay(ogmap, robotpose, ranges, angles, maxRange) %insertRay(ogmap, robotpose, ranges, angles, maxRange, inverseModel) %insertRay(ogmap, startPoint, endPoints) %insertRay(ogmap, startPoint, endPoints, inverseModel) gridSize = obj.GridSize; res = obj.Resolution; loc = obj.GridLocationInWorld; narginchk(3, 6); if nargin < 5 % Cartesian input validateattributes(varargin{1}, {'numeric'}, ... {'nonempty', 'numel', 2}, 'insertRay', 'startpt'); startPt = [varargin{1}(1) varargin{1}(2)]; startPt = obj.validatePosition(startPt, obj.XWorldLimits, ... obj.YWorldLimits, 'insertRay', 'StartPoint'); endPt = obj.validatePosition(varargin{2}, obj.XWorldLimits, ... obj.YWorldLimits, 'insertRay', 'endpts'); else % Polar input pose = obj.validatePose(varargin{1}, obj.XWorldLimits, ... obj.YWorldLimits, 'insertRay', 'pose'); maxRange = varargin{4}; validateattributes(maxRange, {'numeric'}, ... {'real', 'nonnan', 'finite', 'scalar', 'positive'}, 'insertRay', 'maxrange'); ranges = obj.validateRanges(varargin{2}, 'insertRay', 'ranges'); angles = obj.validateAngles(varargin{3}, 'insertRay', 'angles'); isInvalidSize = (numel(ranges) ~= numel(angles)); coder.internal.errorIf(isInvalidSize, ... 'robotics:robotalgs:occgridcommon:RangeAngleMismatch', 'ranges', 'angles'); vRanges = ranges(~isnan(ranges(:))); vAngles = angles(~isnan(ranges(:))); vRanges = min(maxRange, vRanges); startPt = [pose(1) pose(2)]; endPt = [pose(1) + vRanges.*cos(pose(3)+vAngles), ... pose(2) + vRanges.*sin(pose(3)+vAngles)]; end if nargin == 6 || nargin == 4 % Validate inverse model validateattributes(varargin{end}, {'numeric'}, ... {'real', 'nonnan', 'finite', 'nonempty', 'numel', 2}, 'insertRay', 'invmodel'); invModel = varargin{end}(:)'; if coder.target('MATLAB') firstElementMsg = message('robotics:robotalgs:occgrid:FirstElement').getString; secondElementMsg = message('robotics:robotalgs:occgrid:SecondElement').getString; else % Hard code error string for code generation as coder % does not support getting string from catalog. firstElementMsg = 'first element of'; secondElementMsg = 'second element of'; end validateattributes(invModel(1,1), {'numeric'}, ... {'>=', 0, '<=', 0.5, 'scalar'}, 'insertRay', [firstElementMsg 'invModel']); validateattributes(invModel(1,2), {'numeric'}, ... {'>=', 0.5, '<=', 1, 'scalar'}, 'insertRay', [secondElementMsg 'invModel']); inverseModelLogodds = obj.probToIntLogoddsMaxSat(double(invModel)); else inverseModelLogodds = [obj.LogoddsMiss obj.LogoddsHit]; end for i = 1:size(endPt, 1) [endPts, middlePts] = robotics.algs.internal.raycastCells(startPt, endPt(i,:), ... gridSize(1), gridSize(2), res, loc); if ~isempty(middlePts) mIndex = sub2ind(gridSize, middlePts(:,1), middlePts(:,2)); updateValuesMiss = obj.Logodds(mIndex) + inverseModelLogodds(1); updateValuesMiss(updateValuesMiss < obj.ProbSatIntLogodds(1)) = obj.ProbSatIntLogodds(1); obj.Logodds(mIndex) = updateValuesMiss; end % For max range reading do not add end point if nargin >= 5 && vRanges(i) >= maxRange continue; end if ~isempty(endPts) eIndex = sub2ind(gridSize, endPts(:,1), endPts(:,2)); updateValuesHit = obj.Logodds(eIndex) + inverseModelLogodds(2); updateValuesHit(updateValuesHit > obj.ProbSatIntLogodds(2)) = obj.ProbSatIntLogodds(2); obj.Logodds(eIndex) = updateValuesHit; end end end function mat = occupancyMatrix(obj, option) %OCCUPANCYMATRIX Export occupancy grid as a matrix % MAT = OCCUPANCYMATRIX(MAP) returns probability values stored in the % occupancy grid object as a matrix. % % MAT = OCCUPANCYMATRIX(MAP, 'ternary') returns occupancy status of % the each occupancy grid cell as a matrix. The % OccupiedThreshold and FreeThreshold are used to determine % obstacle-free and occupied cells. Value 0 refers to % obstacle-free cell, 1 refers to occupied cell and -1 refers % to unknown cell. % % Example: % % Create an occupancy grid % inputMat = repmat(0.2:0.1:0.9, 8, 1); % map = robotics.OccupancyGrid(inputMat); % % % Export occupancy grid as a matrix % mat = occupancyMatrix(map); % % % Export occupancy grid as a ternary matrix % mat = occupancyMatrix(map, 'ternary'); % % See also robotics.OccupancyGrid, getOccupancy narginchk(1,2); if nargin < 2 mat = double(obj.intLogoddsToProb(obj.Logodds)); return; end validStrings = {'Ternary'}; validatestring(option, validStrings, 'occupancyMatrix'); mat = -1*ones(size(obj.Logodds)); occupied = (obj.Logodds > obj.OccupiedThresholdIntLogodds); free = (obj.Logodds < obj.FreeThresholdIntLogodds); mat(occupied) = 1; mat(free) = 0; end end %================================================================ methods (Static, Access = {?matlab.unittest.TestCase, ... ?robotics.algs.internal.OccupancyGridBase}) function logodds = probToLogodds(prob) %probToLogodds Get log-odds value from probabilities logodds = log(prob./(1-prob)); end function probability = logoddsToProb(logodds) %logoddsToProb Get probabilities from log-odds values probability = 1 - 1./(1 + exp(logodds)); end function maxSat = getMaxSaturation() %getMaxSaturation Get max saturation for testing purposes maxSat = robotics.OccupancyGrid.ProbMaxSaturation; end end methods (Access = {?matlab.unittest.TestCase, ... ?robotics.algs.internal.OccupancyGridBase}) function logodds = probToIntLogodds(obj, prob) %probToIntLogodds Convert probability to int16 log-odds prob(prob < obj.ProbabilitySaturation(1)) = obj.ProbabilitySaturation(1); prob(prob > obj.ProbabilitySaturation(2)) = obj.ProbabilitySaturation(2); logodds = int16(interp1(obj.LookupTable, ... single(obj.LinSpaceInt16),prob,'nearest', 'extrap')); end function probability = intLogoddsToProb(obj, logodds) %intLogoddsToProb Convert int16 log-odds to probability probability = interp1(single(obj.LinSpaceInt16), ... obj.LookupTable, single(logodds),'nearest', 'extrap'); end function logodds = probToIntLogoddsMaxSat(obj, prob) %probToIntLogoddsMaxSat Convert probability to int16 log-odds % This method uses maximum possible saturation. Required for % update occupancy. prob(prob < obj.ProbMaxSaturation(1)) = obj.ProbMaxSaturation(1); prob(prob > obj.ProbMaxSaturation(2)) = obj.ProbMaxSaturation(2); logodds = int16(interp1(obj.LookupTable, ... single(obj.LinSpaceInt16),prob,'nearest', 'extrap')); end end methods (Access = protected) function mat = processMatrix(obj, varargin) %processMatrix Process construction input and create log-odds % Supports two input patterns: % processMatrix(obj, rows,columns); % processMatrix(obj, mat); if nargin == 3 rows = varargin{1}; columns = varargin{2}; mat = zeros(rows, columns, obj.DefaultType); elseif nargin == 2 % As probability saturation is not assigned, use max % saturation. mat = obj.probToIntLogoddsMaxSat(single(varargin{1})); end end end methods (Static, Access =public) function P = validateMatrixInput(P) %validateMatrixInput Validates the matrix input if islogical(P) validateattributes(P, {'logical'}, ... {'2d', 'real', 'nonempty'}, ... 'OccupancyGrid', 'P', 1); else validateattributes(P, {'numeric','logical'}, ... {'2d', 'real', 'nonempty','nonnan','<=',1,'>=',0}, ... 'OccupancyGrid', 'P', 1); end end function className = getClassName() className = 'OccupancyGrid'; end function validateOccupancyValues(values, len, fcnName, argname) %validateOccupancyValues Validate occupancy value vector % check that the values are numbers in [0,1] if islogical(values) validateattributes(values, {'logical'}, ... {'real','vector', 'nonempty'}, fcnName, argname); else validateattributes(values, {'numeric'}, ... {'real','vector', 'nonnan', '<=',1,'>=',0, 'nonempty'}, fcnName, argname); end isSizeMismatch = length(values) ~= 1 && length(values) ~= len; coder.internal.errorIf(isSizeMismatch,... 'robotics:robotalgs:occgridcommon:InputSizeMismatch'); end end end function linSpace = getIntLineSpace() %getIntLineSpace Generate line space for integer log-odds defaultType = OccupancyGrid.DefaultType; linSpace = intmin(defaultType):intmax(defaultType); end function lookup = createLookupTable() %createLookupTable Create lookup table for integer log-odds to probability numOfPoints = abs(double(intmin(OccupancyGrid.DefaultType)))+... double(intmax(OccupancyGrid.DefaultType))+1; logOddsLimits = OccupancyGrid.probToLogodds(OccupancyGrid.ProbMaxSaturation); lookup = single(OccupancyGrid.logoddsToProb(... linspace(logOddsLimits(1), logOddsLimits(2), numOfPoints))); end
github
Jeffrey28/PlatoonBased-AIM-master
AIM_Optimal.m
.m
PlatoonBased-AIM-master/Matlab/AIM_Optimal.m
13,184
utf_8
288e2c22a0200535ab23bf32c3793c77
function [delays,callCounter,packets,var,AverageDelayPerVehicle,AverageDelayPerPlatoon,totalVehicles,totalVehiclesCrossed] = AIM_Optimal(bal,seed,granularity,platoonMaxSize,spawnRate,duration,simSpeed,handles) tic; ver=2; rng(seed); packetsFromPlatoons = 0; packetsToPlatoons = 0; %Get Map, Show Map intersectionData = intersection(); map = intersectionData.getMap(granularity); show(map) %title('Platoon-Based Intersection Management'); xlim([0 granularity]); ylim([0 granularity]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Initialization and Constants laneTraffic = zeros(1,4); laneIsFull= zeros(1,4); global simulationTime; numVehiclesPassed = 0; numPlatoonsPassed = 0; currentAvgDelay = 0; totalVehicles = [0 0 0 0]; totalVehiclesCrossed = [0 0 0 0]; %LaneTail is initialized to the stop points, this will dynamically change.. %as platoon stop for their turn.other platoons will use this data to stop %right behind the last platoon in queue. laneStop = [180 195;%for Lane 1 205 180;%for Lane 2 220 205;%for Lane 3 195 215;%for Lane 4 ]; turns ={'straight' 'left' 'right'}; numOfPlatoons = 0; numOfLanes = 4; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% frameCounter = 1; %F(frameCounter) = getframe(gcf); %legend('Vehicle'); %stoppedByUser=0; tic; elapsedTime = toc; %Spawn First Platoon laneNumber = randi([1 numOfLanes]); platoonLeader = vehicleModel(intersectionData.spawnPoints(laneNumber,:)); %Spawn The followers platoonSize = randi([1 platoonMaxSize]); turnDecision = turns{randi([1 3])}; platoons(numOfPlatoons+1) = vehiclePlatoon(platoonSize,platoonLeader,turnDecision,frameCounter); numOfPlatoons = numOfPlatoons+1; platoons(numOfPlatoons).addVehicle(platoonSize-1); simulationTime = 5*simSpeed; spawnPerSec = spawnRate/3600; lastFrame = 0; clearTime = 0; times = 0; laneCapacity = 16; %legend('Stopped Platoon','Stopped Platoon','Stopped Platoon','Stopped Platoon'); newBatch = 1; fps=2; index=0; gone = []; numOfPlatoonsInSchedule=0; callCounter = 0; candidates = [0 0 0 0]; while(frameCounter<duration*fps) set(handles.timeLabel,'String',sprintf('%.2fs',frameCounter/fps)); set(handles.crossedVehicles,'String',sprintf('%d',sum(totalVehiclesCrossed))); if(mod(frameCounter,1)==0)%Spawn 4 platoons every 100 frames for k=1:4 %Spawn New Platoons %decide lane %laneNumber = randi([1 numOfLanes]); %decide turn turnDecision = turns{randi([1 3])}; %decide platoon size platoonSize = randi([1 platoonMaxSize]); %Spawn Leader prob = rand(); threshold = spawnPerSec*0.5/platoonSize; if(prob<threshold && ((laneTraffic(k)+platoonSize)<laneCapacity)) totalVehicles(k) = totalVehicles(k) + platoonSize; platoonLeader = vehicleModel(intersectionData.spawnPoints(k,:)); %Spawn The followers platoons(numOfPlatoons+1) = vehiclePlatoon(platoonSize,platoonLeader,turnDecision,frameCounter); numOfPlatoons = numOfPlatoons+1; platoons(numOfPlatoons).addVehicle(platoonSize-1); laneTraffic(k) = laneTraffic(k) +platoonSize; if(laneTraffic(k)>laneCapacity) laneIsFull(k)=1; else laneIsFull(k)=0; end end end end %Get Solution%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% arrivals = []; lengths = []; waitings = []; packetsFromPlatoons = packetsFromPlatoons + length(platoons); indices = 1:length(platoons); indices(gone) = []; if(isempty(indices)) drawnow; frameCounter = frameCounter+1; continue; else for j=indices if (j==1) waitings = [1 platoons(j).waitingTime platoons(j).arrivalTime]; %arrivals = [1 platoons(j).arrivalTime]; else waitings = [waitings; j platoons(j).waitingTime platoons(j).arrivalTime]; %lengths = [lengths; j platoons(j).platoonSize]; end end schedule2 = sortrows(waitings,[3]); sortedList = [schedule2(:,1)']; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% counter = 0; timePassed = frameCounter-lastFrame; lastCandidates = candidates; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if(newBatch==1 || ver==2)%index>numOfPlatoonsInSchedule || index==0) candidates = [0 0 0 0]; candidateCounter = 0; for pt=sortedList if(candidateCounter==4) break else lane = platoons(pt).arrivalLane; if(candidates(lane)==0 && ~strcmp(platoons(pt).state,'crossing') ... && ~strcmp(platoons(pt).state,'done')... && platoons(pt).arrivalTime<=clearTime) candidates(lane)=pt; candidateCounter = candidateCounter+1; end end end candidates = candidates(candidates~=0); if(~isempty(candidates)) if(length(candidates)~=length(lastCandidates)) newSchedule = greedySort(candidates); callCounter = callCounter+1; newBatch = 0; numOfPlatoonsInSchedule = length(newSchedule); index = 1; elseif(candidates~=lastCandidates) newSchedule = greedySort(candidates); callCounter = callCounter+1; newBatch = 0; numOfPlatoonsInSchedule = length(newSchedule); index = 1; else newSchedule = greedySort(candidates); newBatch = 0; numOfPlatoonsInSchedule = length(newSchedule); index = 1; end else newSchedule = 0; index = 0; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for j=sortedList if(index>0 && index <=numOfPlatoonsInSchedule) whosTurn = newSchedule(index); else whosTurn=0; end if(isvalid(platoons(j))) if(strcmp(platoons(j).state,'done')) gone = [gone j]; end timePassed = frameCounter-lastFrame; if(timePassed>=clearTime && j==whosTurn ... && (strcmp(platoons(j).state,'stopandwait')... || strcmp(platoons(j).state,'moveandwait'))) index = index + 1; if(index>numOfPlatoonsInSchedule) newBatch=1; end packetsToPlatoons = packetsToPlatoons + 1; packetsFromPlatoons = packetsFromPlatoons + 1; platoons(j).setPath(intersectionData.getTrajectory(platoons(j).arrivalLane,platoons(j).turn),frameCounter); arrival = platoons(j).arrivalTime; totalVehiclesCrossed(platoons(j).arrivalLane) = totalVehiclesCrossed(platoons(j).arrivalLane) + platoons(j).platoonSize; %counter = counter + 1; clearTime = arrival + (25+(platoons(j).platoonSize*8))/(platoons(j).linearVelocity*simulationTime); lastFrame = frameCounter; laneTraffic(platoons(j).arrivalLane) = laneTraffic(platoons(j).arrivalLane) -platoons(j).platoonSize; if(laneTraffic(platoons(j).arrivalLane)>laneCapacity) laneIsFull(platoons(j).arrivalLane)=1; else laneIsFull(platoons(j).arrivalLane)=0; end %counter = counter + 1; for ii= sortedList(find(sortedList==j,1)+1:end) platoons(ii).updateStopPoint(platoons(j).stopPoints(platoons(j).arrivalLane,:),platoons(j).arrivalLane); end end drive(platoons(j),simulationTime,frameCounter,true); if(strcmp(platoons(j).state,'stopandwait')... || strcmp(platoons(j).state,'moveandwait')) for ii= sortedList(find(sortedList==j,1)+1:end) platoons(ii).updateStopPoint(platoons(j).tail(),platoons(j).arrivalLane); end end end end drawnow; frameCounter = frameCounter+1; %platoonSizeSetting = platoonMaxSize %SimulationTime = frameCounter/2 %F(frameCounter) = getframe(gcf); %tic; %pause(time/1000); %times = [times toc-elapsedTime]; %elapsedTime = toc; %platoons = sort(platoons); end end aveTime = mean(times); delays = []; platoonDelays = []; for j=1:length(platoons) if(isvalid(platoons(j))) if(strcmp(platoons(j).state,'done') || strcmp(platoons(j).state,'crossing')) %totalVehiclesCrossed(platoons(j).arrivalLane) = totalVehiclesCrossed(platoons(j).arrivalLane) + platoons(j).platoonSize; delay =platoons(j).totalWaiting/fps; if(delay>=0) platoonDelays = [platoonDelays delay]; for(i=1:platoons(j).platoonSize) delays = [delays delay]; end end elseif(platoons(j).waitingTime>=0) delay = platoons(j).waitingTime/fps; platoonDelays = [platoonDelays delay]; for(i=1:platoons(j).platoonSize) delays = [delays delay]; end end delete(platoons(j)); end end delays = delays; platoonDelays = platoonDelays; AverageDelayPerVehicle = mean(delays); AverageDelayPerPlatoon = mean(platoonDelays); packets = packetsFromPlatoons+packetsToPlatoons; var = sum(delays.^2)/(length(delays)-1) - (length(delays))*mean(delays)^2/(length(delays)-1); function sol = getSchedule(lengths,waitingTimes) [sorted sol] = sort(waitingTimes,'descend'); end function sol = getSchedule2(lengths,arrivalTimes) [sorted sol] = sort(arrivalTimes); end function [newSchedule] = greedySort(candidates) minimumDelay = inf; newSchedule = candidates; clearTimes = getClearTimes(candidates); permutations = perms(candidates); for i=1:size(permutations,1) maxDelay = 0; extraWaitTime = max(clearTime - platoons(permutations(i,1)).arrivalTime ,0); extraWaitTime = 0; if(bal==1) delayPerVehicle = (platoons(permutations(i,1)).waitingTime +... extraWaitTime)*... platoons(permutations(i,1)).platoonSize; else delayPerVehicle = (platoons(permutations(i,1)).waitingTime +... extraWaitTime)*... platoons(permutations(i,1)).platoonSize; end totalDelay = clearTimes(find(candidates ==permutations(i,1),1))+clearTime+... +max(platoons(permutations(i,1)).arrivalTime-clearTime,0); % platoons(permutations(i,1)).waitingTime*... % platoons(permutations(i,1)).platoonSize; %delayPerVehicle=0; %delayPerVehicle = delayPerVehicle +... % platoons(permutations(i,1)).waitingTime*... % platoons(permutations(i,1)).platoonSize; if(delayPerVehicle>maxDelay) maxDelay = delayPerVehicle; end for j=2:size(permutations,2) extraWaitTime = max(totalDelay - platoons(permutations(i,j)).arrivalTime ,0); extraWait = extraWaitTime>0; if(bal==2) delayPerVehicle =delayPerVehicle+j*(platoons(permutations(i,j)).waitingTime+... extraWaitTime)*... platoons(permutations(i,j)).platoonSize; else delayPerVehicle =delayPerVehicle+(platoons(permutations(i,j)).waitingTime+... extraWaitTime)*... platoons(permutations(i,j)).platoonSize; end %platoons(permutations(i,j)).waitingTime+ %laneTraffic(platoons(permutations(i,j)).arrivalLane); %platoons(permutations(i,j)).platoonSize; % + ... totalDelay = totalDelay+max(platoons(permutations(i,j)).arrivalTime - totalDelay,0) + ... clearTimes(find(candidates ==permutations(i,j),1)); if(delayPerVehicle>maxDelay) maxDelay = delayPerVehicle; end end if(delayPerVehicle<minimumDelay) minimumDelay = delayPerVehicle; newSchedule = permutations(i,:); end end end function clearTimes = getClearTimes(candidates) for i=1:length(candidates) if(candidates(i)==0) pSize(i) = 0; else pSize(i) = platoons(candidates(i)).platoonSize; end end constants = zeros(1,length(candidates)).*25; clearTimes = (constants+(pSize.*8))./(simulationTime); end end
github
Jeffrey28/PlatoonBased-AIM-master
intersection.m
.m
PlatoonBased-AIM-master/Matlab/intersection.m
6,087
utf_8
c8d83f6e75ff575d165c9f3adf6d0cb6
classdef intersection < handle properties(SetAccess = private) granularity; lineWidth; lanePerRoad; end properties(SetAccess = public) spawnPoints = [20 195 0;%for Lane 1 205 20 pi/2;%for Lane 2 380 205 pi;%for Lane 3 195 380 -pi/2;%for Lane 4 ]; stopPoints = [180 195;%for Lane 1 205 180;%for Lane 2 220 205;%for Lane 3 195 215;%for Lane 4 ]; endPoints = [20 205; 195 20; 380 195; 205 380;]; lane1To4 = [180 195;%Lane 1 Turn left 190 195; 195 200; 200 205; 202 210; 205 220; 205 380]; lane1To3 = [180 195;%Lane 1 Go Straight 190 195; 195 195; 200 195; 205 195; 240 195; 380 195]; lane1To2 = [180 195;%Lane 1 Turn right 185 195; 190 195; 192 195; 194 185; 195 145; 195 20]; lane2To3 = [205 180;%Lane 2 turn right 205 185; 205 190; 205 192; 215 195; 275 195; 380 195]; lane2To4 = [205 180;%Lane 2 go straight 205 190; 205 195; 205 200; 205 205; 205 245; 205 380]; lane2To1 = [205 180; 205 190; 205 195; 200 200; 190 205; 130 205; 20 205];%Lane 2 turn left lane3To4 = [220 205; 210 205; 207 205; 205 210; 205 220; 205 280; 205 380];%Lane 3 turn right lane3To1 = [220 205; 210 205; 200 205; 160 205; 100 205; 50 205; 20 205];%Lane 3 go straight lane3To2 = [220 205; 205 205; 200 200; 195 195; 195 190; 195 130; 195 20];%Lane 3 turn left lane4To1 = [195 220; 195 210; 190 208; 180 205; 130 205; 80 205; 20 205];%Lane 4 turn right lane4To2 = [195 220; 195 210; 195 205; 195 200; 195 195; 195 155; 195 20;]%Lane 4 go straight lane4To3 = [195 220; 195 205; 200 200; 205 195; 220 195; 280 195; 380 195;]%Lane 4 turn left trajectories; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% methods(Access=public) function path = getTrajectory(obj,arrivalLane,turn) switch turn case 'right' offset=1; case 'straight' offset=2; case 'left' offset=3; end index = (arrivalLane-1)*3+offset; path = obj.trajectories(:,:,index); end end methods(Static) function obj = intersection() obj.granularity = 400; obj.lineWidth = 1; obj.lanePerRoad = 1; obj.trajectories = obj.lane1To2;%Lane 1 turn right obj.trajectories(:,:,2) = obj.lane1To3;%Lane 1 go straight obj.trajectories(:,:,3) = obj.lane1To4;%Lane 1 turn left obj.trajectories(:,:,4) = obj.lane2To3;%Lane 2 turn right obj.trajectories(:,:,5) = obj.lane2To4;%Lane 2 go straight obj.trajectories(:,:,6) = obj.lane2To1;%Lane 2 turn left obj.trajectories(:,:,7) = obj.lane3To4;%Lane 3 turn right obj.trajectories(:,:,8) = obj.lane3To1;%Lane 3 go straight obj.trajectories(:,:,9) = obj.lane3To2;%Lane 3 turn left obj.trajectories(:,:,10) = obj.lane4To1;%Lane 4 turn right obj.trajectories(:,:,11) = obj.lane4To2;%Lane 4 go straight obj.trajectories(:,:,12) = obj.lane4To3;%Lane 4 turn left end function map = getMap(varargin) %UNTITLED Summary of this function goes here % Detailed explanation goes here numvarargs = length(varargin); if numvarargs > 3 error('gridMapGenerator: TooManyInputs', ... 'This function takes 1-3 input arguments'); end optargs = {200 1 1}; optargs(1:numvarargs) = varargin; [granularity lineWidth lanePerRoad] = optargs{:}; obj.granularity = granularity; obj.lineWidth = lineWidth; obj.lanePerRoad = lanePerRoad; %granularity = 200; %lineWidth = 1; intersectionGridMap = zeros(granularity, granularity); bottomOfLane = 0.5*granularity-10; topOfLane = 0.5* granularity+10; intersectionGridMap(bottomOfLane:bottomOfLane+lineWidth,1:bottomOfLane)=1; intersectionGridMap(bottomOfLane:bottomOfLane+lineWidth,topOfLane:end)=1; intersectionGridMap(topOfLane:topOfLane+lineWidth,1:bottomOfLane)=1; intersectionGridMap(topOfLane:topOfLane+lineWidth,topOfLane:end)=1; intersectionGridMap(1:bottomOfLane+lineWidth,bottomOfLane:bottomOfLane+lineWidth)=1; intersectionGridMap(topOfLane:end,bottomOfLane:bottomOfLane+lineWidth)=1; intersectionGridMap(1:bottomOfLane,topOfLane:topOfLane+lineWidth)=1; intersectionGridMap(topOfLane:end,topOfLane:topOfLane+lineWidth)=1; intersectionGridMap(0.5*granularity,1:bottomOfLane)=0.5; intersectionGridMap(0.5*granularity,topOfLane+lineWidth:end)=0.5; intersectionGridMap(1:bottomOfLane,0.5*granularity)=0.5; intersectionGridMap(topOfLane+lineWidth:end,0.5*granularity)=0.5; intersectionGridMap(1:bottomOfLane,1:bottomOfLane)=0.7; intersectionGridMap(1:bottomOfLane,topOfLane+lineWidth:end)=0.7; intersectionGridMap(topOfLane+lineWidth:end,1:bottomOfLane)=0.7; intersectionGridMap(topOfLane+lineWidth:end,topOfLane+lineWidth:end)=0.7; intersectionGridMap = intersectionGridMap'; map = OccupancyGrid(intersectionGridMap); end end end
github
Jeffrey28/PlatoonBased-AIM-master
simulator.m
.m
PlatoonBased-AIM-master/Matlab/simulator.m
28,773
utf_8
8ac19883ed2c0563a0e03fa0f0535b83
function varargout = simulator(varargin) % SIMULATOR MATLAB code for simulator.fig %% %% % SIMULATOR, by itself, creates a new SIMULATOR or raises the existing % singleton*. % % H = SIMULATOR returns the handle to a new SIMULATOR or the handle to % the existing singleton*. % % SIMULATOR('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in SIMULATOR.M with the given input arguments. % % SIMULATOR('Property','Value',...) creates a new SIMULATOR or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before simulator_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to simulator_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help simulator % Last Modified by GUIDE v2.5 02-Jan-2017 18:06:33 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @simulator_OpeningFcn, ... 'gui_OutputFcn', @simulator_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before simulator is made visible. function simulator_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to simulator (see VARARGIN) % Choose default command line output for simulator handles.output = hObject; % Update handles structure handles.simTime = 500; handles.readyColor = [1 1 1]; handles.runningColor = [104/255 151/255 187/255]; handles.finishedColor = [102/255 205/255 170/255]; handles.savingColor = [211/255 71/255 31/255]; grid on; grid minor; guidata(hObject, handles); axes(handles.axes1); %title('Platoon-Based Autonomous Intersection Management'); xlim([0 400]); ylim([0 400]); %grid on %grid minor set(handles.resetbutton,'Enable','off'); set(handles.savevideo,'Enable','off'); %axes(handles.axes1); % UIWAIT makes simulator wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = simulator_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in start. function start_Callback(hObject, eventdata, handles) % hObject handle to start (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %clf; handles.simTime = round(get(handles.duration,'Value')); handles.simSpeed = round(get(handles.simulationSpeed,'Value')); handles.spawnRate = round(get(handles.spawn,'Value')); axes(handles.axes1); g = 400; contents = str2double(get(handles.platoonSize,'String')); maxSize= contents(get(handles.platoonSize,'Value')); set(handles.resetbutton,'Enable','on'); set(handles.savevideo,'Enable','off'); set(handles.start,'Enable','off'); set(handles.status, 'BackgroundColor',handles.runningColor); set(handles.status, 'String','Simulation is Running'); policyNumber = get(handles.policy,'Value'); seed = 12345; if(policyNumber==1) [p,var,vDelay,pDelay,tv,tvc] = AIM(seed,g,maxSize,handles.spawnRate,handles.simTime,handles.simSpeed,handles); elseif(policyNumber==2) % [handles.Fcc,p,var,vDelay,pDelay,tv,tvc] = AIM_Optimal(1,seed,g,maxSize,handles.spawnRate,handles.simTime,handles.simSpeed,handles); % vDelay % var % cc [handles.F,cc,p,var,vDelay,pDelay,tv,tvc] = AIM_Optimal(2,seed,g,maxSize,handles.spawnRate,handles.simTime,handles.simSpeed,handles); vDelay var cc end fprintf('The Average Delay per Vehicle is %f\n', vDelay) guidata(hObject,handles); set(handles.status, 'BackgroundColor',handles.finishedColor); set(handles.status, 'String','Finished'); set(handles.start,'Enable','on'); set(handles.resetbutton,'Enable','off'); set(handles.savevideo,'Enable','on'); % --- Executes on selection change in granularity. function granularity_Callback(hObject, eventdata, handles) % hObject handle to granularity (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns granularity contents as cell array % contents{get(hObject,'Value')} returns selected item from granularity % --- Executes during object creation, after setting all properties. function granularity_CreateFcn(hObject, eventdata, handles) % hObject handle to granularity (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in resetbutton. function resetbutton_Callback(hObject, eventdata, handles) % hObject handle to resetbutton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %axes(handles.axes1); %error('stop requested by user'); %handles.stop=1; %guidata(hObject,handles); %clc; cla; grid on; grid minor; set(handles.status, 'BackgroundColor',handles.finishedColor); set(handles.status, 'String','Ready!'); set(handles.start,'Enable','on'); set(handles.savevideo,'Enable','off'); % --- Executes on slider movement. function duration_Callback(hObject, eventdata, handles) % hObject handle to duration (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider handles.simTime = round(get(hObject,'Value')); labelText = strcat(num2str(handles.simTime),' Sec.'); set(handles.durationlabel,'String',labelText); guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function duration_CreateFcn(hObject, eventdata, handles) % hObject handle to duration (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function slider2_Callback(hObject, eventdata, handles) % hObject handle to slider2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider % --- Executes during object creation, after setting all properties. function slider2_CreateFcn(hObject, eventdata, handles) % hObject handle to slider2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on button press in exit. function exit_Callback(hObject, eventdata, handles) % hObject handle to exit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) close(gcf); % --- If Enable == 'on', executes on mouse press in 5 pixel border. % --- Otherwise, executes on mouse press in 5 pixel border or over start. function start_ButtonDownFcn(hObject, eventdata, handles) % hObject handle to start (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in savevideo. function savevideo_Callback(hObject, eventdata, handles) % hObject handle to savevideo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set(handles.start,'Enable','off'); set(handles.status, 'BackgroundColor',handles.savingColor); set(handles.status, 'String','Saving Video'); pause(0.5); uniqueNumber = num2str(randi([0 100])*100); video = VideoWriter(strcat('AIM-Demo-',uniqueNumber),'MPEG-4'); video.FrameRate = 20; open(video); writeVideo(video,handles.F); close(video); set(handles.status, 'BackgroundColor',handles.finishedColor); set(handles.status, 'String','Video was saved to File!'); set(handles.start,'Enable','on'); % --- Executes on slider movement. function slider5_Callback(hObject, eventdata, handles) % hObject handle to slider5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider % --- Executes during object creation, after setting all properties. function slider5_CreateFcn(hObject, eventdata, handles) % hObject handle to slider5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on selection change in platoonSize. function platoonSize_Callback(hObject, eventdata, handles) % hObject handle to platoonSize (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns platoonSize contents as cell array % contents{get(hObject,'Value')} returns selected item from platoonSize % --- Executes during object creation, after setting all properties. function platoonSize_CreateFcn(hObject, eventdata, handles) % hObject handle to platoonSize (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on slider movement. function simulationSpeed_Callback(hObject, eventdata, handles) % hObject handle to simulationSpeed (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider handles.simSpeed = round(get(hObject,'Value')); labelText = strcat(num2str(handles.simSpeed),'X'); set(handles.speedlabel,'String',labelText); guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function simulationSpeed_CreateFcn(hObject, eventdata, handles) % hObject handle to simulationSpeed (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function spawn_Callback(hObject, eventdata, handles) % hObject handle to spawn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider handles.spawnRate = round(get(hObject,'Value')); labelText = strcat(num2str(handles.spawnRate),' Veh/H/L'); set(handles.spawnLabel,'String',labelText); guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function spawn_CreateFcn(hObject, eventdata, handles) % hObject handle to spawn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on selection change in policy. function policy_Callback(hObject, eventdata, handles) % hObject handle to policy (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns policy contents as cell array % contents{get(hObject,'Value')} returns selected item from policy % --- Executes during object creation, after setting all properties. function policy_CreateFcn(hObject, eventdata, handles) % hObject handle to policy (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in experiment. function experiment_Callback(hObject, eventdata, handles) % hObject handle to experiment (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.simTime = round(get(handles.duration,'Value')); handles.simSpeed = round(get(handles.simulationSpeed,'Value')); handles.spawnRate = round(get(handles.spawn,'Value')); axes(handles.axes1); g = 400; contents = str2double(get(handles.platoonSize,'String')); maxSize= contents(get(handles.platoonSize,'Value')); set(handles.resetbutton,'Enable','on'); set(handles.savevideo,'Enable','off'); set(handles.start,'Enable','off'); set(handles.status, 'BackgroundColor',handles.runningColor); set(handles.status, 'String','Simulation is Running'); policyNumber = get(handles.policy,'Value'); totalVehicles = 0; totalVehiclesCrossed = 0; trafficFlows = []; counter=0; seed = 1234; for j = 500:100:2000 trafficFlows = [trafficFlows j]; counter = counter+1; n_exp = 1; for i=1:8 seed = 1234; if(policyNumber==1) p = zeros(1,n_exp); v = zeros(1,n_exp); vDelay = zeros(1,n_exp); pDelay = zeros(1,n_exp); fprintf('Max_Platoon = %d, Traffic Level = %d\n',i,j); for n=1:n_exp seed = seed+n; [p(n),v(n),vDelay(n),pDelay(n),tv,tvc] = AIM(seed,g,i,j,handles.simTime,handles.simSpeed,handles); fprintf('Experiment #%d\n',n); Average_Delay_Per_Vehicle = vDelay(n) cla end fprintf('Max_Platoon = %d, Traffic Level = %d\n',i,j); v; vDelay; packets(i,counter) = mean(p); var(i,counter) = mean(v); AverageDelayPerVehicle(i,counter) = mean(vDelay) AverageDelayPerPlatoon(i,counter) = mean(pDelay); elseif(policyNumber==2) [p,var(i,counter),vDelay,pDelay,tv,tvc] = AIM_Optimal(g,i,j,handles.simTime,handles.simSpeed,handles); packets(i,counter)=p; AverageDelayPerVehicle(i,counter) = vDelay; AverageDelayPerPlatoon(i,counter) = pDelay; end %totalVehicles(i,counter) = sum(tv); %totalVehiclesCrossed(i,counter) = sum(tvc); %AverageDelayPerVehicle %packets end end figure plot(trafficFlows,AverageDelayPerVehicle(1,:),'color','r','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(2,:),'color','g','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(3,:),'color','b','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(4,:),'color','c','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(5,:),'color','k','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(6,:),'color','m','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(7,:),'color','y','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(8,:),'color',[0.545 0.27 0.074],'marker','o','lineStyle','--','lineWidth',1); legend('Max-Platoon-Size=1','Max-Platoon-Size=2','Max-Platoon-Size=3' ... ,'Max-Platoon-Size=4','Max-Platoon-Size=5','Max-Platoon-Size=6' ... ,'Max-Platoon-Size=7','Max-Platoon-Size=8'); xlabel('Traffic Level (Vehicle/Hour/Lane)'); ylabel('Average Delay (S)'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% figure plot(trafficFlows,var(1,:),'color','r','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(2,:),'color','g','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(3,:),'color','b','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(4,:),'color','c','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(5,:),'color','k','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(6,:),'color','m','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(7,:),'color','y','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(8,:),'color',[0.545 0.27 0.074],'marker','o','lineStyle','--','lineWidth',1); legend('Max-Platoon-Size=1','Max-Platoon-Size=2','Max-Platoon-Size=3' ... ,'Max-Platoon-Size=4','Max-Platoon-Size=5','Max-Platoon-Size=6' ... ,'Max-Platoon-Size=7','Max-Platoon-Size=8'); xlabel('Traffic Level (Vehicle/Hour/Lane)'); ylabel('Travel Delay Variance (S^2)'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% figure plot(trafficFlows,packets(1,:),'color','r','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,packets(2,:),'color','g','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,packets(3,:),'color','b','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,packets(4,:),'color','c','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,packets(5,:),'color','k','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,packets(6,:),'color','m','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,packets(7,:),'color','y','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,packets(8,:),'color',[0.545 0.27 0.074],'marker','o','lineStyle','--','lineWidth',1); legend('Max-Platoon-Size=1','Max-Platoon-Size=2','Max-Platoon-Size=3' ... ,'Max-Platoon-Size=4','Max-Platoon-Size=5','Max-Platoon-Size=6' ... ,'Max-Platoon-Size=7','Max-Platoon-Size=8'); xlabel('Traffic Level (Vehicle/Hour/Lane)'); ylabel('# Packets Exchanged'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % figure % congestion = totalVehicles-totalVehiclesCrossed % plot(trafficFlows,congestion(1,:),'ro-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(2,:),'bo-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(3,:),'mo-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(4,:),'go-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(5,:),'ko-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(6,:),'co-.','lineWidth',2); % legend('Max-Platoon-Size=1','Max-Platoon-Size=2','Max-Platoon-Size=3' ... % ,'Max-Platoon-Size=4','Max-Platoon-Size=5','Max-Platoon-Size=6'); % title('Average Congestion'); guidata(hObject,handles); set(handles.status, 'BackgroundColor',handles.finishedColor); set(handles.status, 'String','Finished'); set(handles.start,'Enable','on'); set(handles.resetbutton,'Enable','off'); set(handles.savevideo,'Enable','on'); % --- Executes on button press in pushbutton6. function pushbutton6_Callback(hObject, eventdata, handles) % hObject handle to pushbutton6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.simTime = round(get(handles.duration,'Value')); handles.simSpeed = round(get(handles.simulationSpeed,'Value')); handles.spawnRate = round(get(handles.spawn,'Value')); axes(handles.axes1); g = 400; contents = str2double(get(handles.platoonSize,'String')); maxSize= contents(get(handles.platoonSize,'Value')); set(handles.resetbutton,'Enable','on'); set(handles.savevideo,'Enable','off'); set(handles.start,'Enable','off'); set(handles.status, 'BackgroundColor',handles.runningColor); set(handles.status, 'String','Simulation is Running'); policyNumber = get(handles.policy,'Value'); totalVehicles = 0; totalVehiclesCrossed = 0; trafficFlows = []; counter=0; seed = 1234; callCounter=[]; %for kk =1:6 % seed = 1233+kk; max1=0; max2=0; max3=0; for j = 1000:100:1000 trafficFlows = [trafficFlows j]; counter = counter+1; [delays1,p,var(1,counter),vDelay,pDelay,tv,tvc] = AIM(seed,g,maxSize,j,handles.simTime,handles.simSpeed,handles); packets(1,counter) = p; maxDelay(1,counter) = max(delays1); AverageDelayPerVehicle(1,counter) = vDelay AverageDelayPerPlatoon(1,counter) = pDelay; cla ver=1; [delays2,callCounter(1,counter),p,var(2,counter),vDelay,pDelay,tv,tvc] = AIM_Optimal(ver,seed,g,maxSize,j,handles.simTime,handles.simSpeed,handles); packets(2,counter)=p; maxDelay(2,counter) = max(delays2); AverageDelayPerVehicle(2,counter) = vDelay AverageDelayPerPlatoon(2,counter) = pDelay; cla ver=2; [delays3,callCounter(2,counter),p,var(3,counter),vDelay,pDelay,tv,tvc] = AIM_Optimal(ver,seed,g,maxSize,j,handles.simTime,handles.simSpeed,handles); packets(3,counter)=p; maxDelay(3,counter) = max(delays3); AverageDelayPerVehicle(3,counter) = vDelay var AverageDelayPerPlatoon(3,counter) = pDelay; callCounter; csvwrite('delays_stopsign.csv',delays1); csvwrite('delays_pdm.csv',delays2); csvwrite('delays_pvm.csv',delays3); end %end % bins = [min(delays1):0.5:max(delays1)]; % %bins = 100; % figure % hh = histogram(delays1,bins); % plot(hh.BinEdges(2:end),hh.Values,'k'); % % %delete(hh(1)); % %plot(hh(2)); % hold on % gg = histogram(delays2,bins); % plot(gg.BinEdges(2:end),gg.Values,'r'); % % %delete(gg(1)); % hold on % ff = histogram(delays3,bins); % plot(ff.BinEdges(2:end),ff.Values,'b'); % %delete(ff(1)); % %figure % delete(ff); % delete(gg); % delete(hh); % legend('avali','dovomi','sevomi'); figure plot(trafficFlows,AverageDelayPerVehicle(1,:),'color','k','marker','d','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(2,:),'color','r','marker','d','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,AverageDelayPerVehicle(3,:),'color','b','marker','d','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,maxDelay(1,:),'color','k','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,maxDelay(2,:),'color','r','marker','o','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,maxDelay(3,:),'color','b','marker','o','lineStyle','--','lineWidth',1); legend('Average\_Delay_{StopSigns}',... 'Average\_Delay_{MD}',... 'Average\_Delay_{MV}',... 'MAX\_Delay_{StopSigns}',... 'MAX\_Delay_{MD}',... 'MAX\_Delay_{MV}'); xlabel('Traffic Level (Vehicle/Hour/Lane)'); ylabel('Delay(S)'); grid minor %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% figure plot(trafficFlows,var(1,:),'color','k','marker','d','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(2,:),'color','r','marker','d','lineStyle','--','lineWidth',1); hold on plot(trafficFlows,var(3,:),'color','b','marker','d','lineStyle','--','lineWidth',1); legend('Policy = StopSigns','Policy = Minimize_Delay','Policy = Minimize_Variance'); xlabel('Traffic Level (Vehicle/Hour/Lane)'); ylabel('Travel Delay Variance (S^2)'); grid minor % figure % plot(trafficFlows,maxDelay(1,:),'color','k','marker','d','lineStyle','--','lineWidth',1); % hold on % plot(trafficFlows,maxDelay(2,:),'color','r','marker','d','lineStyle','--','lineWidth',1); % hold on % plot(trafficFlows,maxDelay(3,:),'color','b','marker','d','lineStyle','--','lineWidth',1); % legend('Policy = StopSigns','Policy = Minimize_Delay','Policy = Minimize_Variance'); % xlabel('Traffic Level (Vehicle/Hour/Lane)'); % ylabel('MAX_{DelayPerVehicle} (S^2)'); % grid minor %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % figure % plot(trafficFlows,packets(1,:),'color','k','marker','d','lineStyle','--','lineWidth',1); % hold on % plot(trafficFlows,packets(2,:),'color','r','marker','d','lineStyle','--','lineWidth',1); % hold on % plot(trafficFlows,packets(3,:),'color','b','marker','d','lineStyle','--','lineWidth',1); % legend('Policy = StopSign','Policy = Optimal','Policy = Optimal-Updating'); % xlabel('Traffic Level (Vehicle/Hour/Lane)'); % ylabel('# Packets Exchanged With the Infrastructure'); % grid minor %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % figure % congestion = totalVehicles-totalVehiclesCrossed % plot(trafficFlows,congestion(1,:),'ro-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(2,:),'bo-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(3,:),'mo-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(4,:),'go-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(5,:),'ko-.','lineWidth',2); % hold on % plot(trafficFlows,congestion(6,:),'co-.','lineWidth',2); % legend('Max-Platoon-Size=1','Max-Platoon-Size=2','Max-Platoon-Size=3' ... % ,'Max-Platoon-Size=4','Max-Platoon-Size=5','Max-Platoon-Size=6'); % title('Average Congestion'); guidata(hObject,handles); set(handles.status, 'BackgroundColor',handles.finishedColor); set(handles.status, 'String','Finished'); set(handles.start,'Enable','on'); set(handles.resetbutton,'Enable','off'); set(handles.savevideo,'Enable','on');
github
felipe-vrgs/QuadMat-master
PID.m
.m
QuadMat-master/src/PID.m
2,558
utf_8
3f3b4dc3905901015e37226434bbfb47
% PID: Aplicação de PID % % @param Gains Os ganhos [kp ki kd] % @param x Vetor de esp est % @param SetPoint Ponto que queremos chegar % @param Ref Qual malha está sendo controlada % @param t Passo de tempo atual % % @return U Esforço de controle % function [U] = PID(Gains, x, SetPoint, Ref, t) % Globais do PID global err_ant err_int windup t_ant err_dot U_ant err_2ant; % Pegando as variáveis de acordo com quem chamou a função if strcmp(Ref,'U1') idx = 1; trgt = x(7); elseif strcmp(Ref,'U2') idx = 2; trgt = x(1); elseif strcmp(Ref,'U3') idx = 3; trgt = x(3); elseif strcmp(Ref,'U4') idx = 4; trgt = x(5); end % Ganhos do PID Kp = Gains(1); Ki = Gains(2); Kd = Gains(3); % Passo de tempo atual dt = t - t_ant(idx); % Calcula-se o erro err = SetPoint - trgt; % Tem que verificar se o tempo foi pra frente (os algoritmos ode tem esse comportamento de não seguirem o tempo de forma linear) if (t > t_ant(idx)) % Erro integrativo acumulado err_int(idx) = err_int(idx) + ((err+err_ant(idx))/2)*dt; % Erro derivativo com uma suavização if dt ~= 0 if err_dot(idx) == 0 err_dot(idx) = (err - err_ant(idx))/dt; else % Isso é feito para reduzir variações bruscas no valor devido a derivada err_dot(idx) = (err_dot(idx) + (err - err_ant(idx))/dt)/2; end else err_dot(idx) = 0; end % Quase um tony hawk fechando S K A T E aqui P = Kp*err; I = Ki*err_int(idx); D = Kd*err_dot(idx); % Calculando o U com o valor do PID U = Err2U((P+I+D), x, Ref); % Saturação if U > windup(idx) U = windup(idx); elseif U < -windup(idx) U = - windup(idx); end % Filtro para a saída (melhorar o esforço de controle) U = U_ant(idx) + (dt/0.01)*(U - U_ant(idx)); else % Caso seja um passo retroativo não faz nada U = U_ant(idx); end % Atualiza as variáveis para o prox passo t_ant(idx) = t; U_ant(idx) = U; err_2ant(idx) = err_ant(idx); err_ant(idx) = err; end %% Err2U: Pega o erro devolve o esforço de controle. function [U] = Err2U(val, x, Ref) % Só isola o valor de cada U das equações de espaço de estados % TODO: Fazer o omegar vir nessa equação global g L Kf Km m a b; if strcmp(Ref,'U1') U = (val+g)*m/(cos(x(1))*cos(x(3))); elseif strcmp(Ref,'U2') U = (val-a(1)*x(6)*x(4))/b(1); elseif strcmp(Ref,'U3') U = (val-a(3)*x(2)*x(6))/b(2); elseif strcmp(Ref,'U4') U = (val-a(5)*x(2)*x(4))/b(3); end end
github
felipe-vrgs/QuadMat-master
PlotDrone.m
.m
QuadMat-master/src/PlotDrone.m
8,620
utf_8
f33f1fc20471e03c83cbb487034015d9
% PlotDrone: Funão que realiza a plotagem dos gráficos. % % @param t Tempo % @param X X % @param ty Tipo do gráfico % % @return graphs ! % function PlotDrone(t,X,ty) % Verifica qual é o tipo e redireciona para a função correta % Não vou entrar muito em detalhes nesse arquivo tendo em vista que as funções são bem simples if strcmp(ty,'XYZ') PlotXYZ(t,X) elseif strcmp(ty,'XYZAng') PlotXYZAng(t,X) elseif strcmp(ty,'Ang') PlotAngles(t,X) elseif strcmp(ty,'VelXYZ') PlotXYZVel(t,X) elseif strcmp(ty,'VelAng') PlotAngVel(t,X) elseif strcmp(ty,'U') PlotU(t) elseif strcmp(ty,'W') PlotW() end end %% PlotU: function description function PlotU(t) global U_hist; figure() subplot(2,2,1) plot(t, U_hist(:,1)) title('Empuxo Vertical','Interpreter','Latex') ylabel('U1','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') subplot(2,2,2) plot(t, U_hist(:,2)) title('Rolagem','Interpreter','Latex') ylabel('U2','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') subplot(2,2,3) plot(t, U_hist(:,3)) title('Arfagem','Interpreter','Latex') ylabel('U3','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') subplot(2,2,4) plot(t, U_hist(:,4)) title('Guinada','Interpreter','Latex') ylabel('U4','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') end %% PlotU: function description function PlotW() global W_hist T_hist; figure() subplot(2,2,1) plot(T_hist(:,1), Rad2RPM(W_hist(:,1))) title('Vel. Ang. Motor 1','Interpreter','Latex') ylabel('W1 (rpm)','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') subplot(2,2,2) plot(T_hist(:,1), Rad2RPM(W_hist(:,2))) title('Vel. Ang. Motor 2','Interpreter','Latex') ylabel('W2 (rpm)','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') subplot(2,2,3) plot(T_hist(:,1), Rad2RPM(W_hist(:,3))) title('Vel. Ang. Motor 3','Interpreter','Latex') ylabel('W3 (rpm)','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') subplot(2,2,4) plot(T_hist(:,1), Rad2RPM(W_hist(:,4))) title('Vel. Ang. Motor 4','Interpreter','Latex') ylabel('W4 (rpm)','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') suptitle('Velocidade Angular dos motores (rpm)') end %% Rad2RPM: function description function [RPM] = Rad2RPM(rad) RPM = rad*9.54929658551; end %% Rad2RPM: function description function [Deg] = Rad2Deg(rad) Deg = rad*57.2958; end %% getOS: function description function [os] = getOS(vals, setpoint, deg) if nargin == 2 deg = 1; end % Verifica o % de OS if vals(1) > setpoint os = min(vals); elseif vals(1) == setpoint os = 0; else os = max(vals); end os if deg == 1 os = (abs(os)/abs(vals(1)))*100 else os = ((abs(os) - setpoint)/setpoint)*100 end end %% getSetTime: function description function [setTime] = getSetTime(x, t, setpoint, deg) if nargin == 3 deg = 1; end if deg == 1 varbl = Rad2Deg(x(1)); else varbl = x(1); end setTime = 0; if varbl > setpoint cmp = 1.02*setpoint; elseif varbl == setpoint cmp = 0; else cmp = 0.98*setpoint; end if setpoint == 0 if varbl > setpoint cmp = 0.02*varbl; elseif varbl < setpoint cmp = -0.02*varbl; end end for I = 1:size(t) if deg == 1 varbl = Rad2Deg(x(I)); else newVar = x(I); end if varbl > setpoint if (newVar <= cmp) setTime = t(I); break end elseif varbl < setpoint if (newVar >= cmp) setTime = t(I); break end end end setTime end function PlotXYZ(t,X) figure() % subplot(2,2,1) % plot(t,X(:,9)) % Posição em X % title('Posi\c{c}\~{a}o em X','Interpreter','Latex') % ylabel('X','Interpreter','Latex') % xlabel('Tempo (s)','Interpreter','Latex') % grid on % subplot(2,2,2) % plot(t,X(:,11)) % Posição em Y % title('Posi\c{c}\~{a}o em Y','Interpreter','Latex') % ylabel('Y','Interpreter','Latex') % xlabel('Tempo (s)','Interpreter','Latex') % grid on % subplot(2,1,2) plot(t,X(:,7)) % Posição em Z title('Posi\c{c}\~{a}o em Z','Interpreter','Latex') ylabel('Z','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on % getSetTime(X(:,7),t, 2, 0) % getOS(X(:,7),2,0); % X(350,7) % suptitle('Movimento em XYZ') end function PlotXYZVel(t,X) figure() subplot(2,2,1) plot(t,X(:,10)) % Velocidade em X title('Velocidade em X','Interpreter','Latex') ylabel('$\dot{X}$','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on subplot(2,2,2) plot(t,X(:,12)) % Velocidade em Y title('Velocidade em Y','Interpreter','Latex') ylabel('$\dot{Y}$','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on subplot(2,1,2) plot(t,X(:,8)) % Velocidade em Z title('Velocidade em Z','Interpreter','Latex') ylabel('$\dot{Z}$','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on suptitle('Velocidade em XYZ') end function PlotAngles(t,X) figure() subplot(2,2,1) plot(t,Rad2Deg(X(:,1))) % Angulo phi title('\^Angulo $\phi$','Interpreter','Latex') ylabel('Graus','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on getSetTime(X(:,1),t,0); getOS(X(:,1),0); Rad2Deg(X(350,1)) subplot(2,2,2) plot(t,Rad2Deg(X(:,3))) % Posição em theta title('\^Angulo $\theta$','Interpreter','Latex') ylabel('Graus','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on getSetTime(X(:,3),t,0); getOS(X(:,3),0); Rad2Deg(X(350,3)) subplot(2,1,2) plot(t,Rad2Deg(X(:,5))) % Posição em psi title('\^Angulo $\psi$','Interpreter','Latex') ylabel('Graus','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on getSetTime(X(:,5),t,0); getOS(X(:,5),0); Rad2Deg(X(350,5)) suptitle('Movimento Angular') end function PlotXYZAng(t,X) figure() hold on subplot(3,2,1) plot(t,X(:,9)) % Posição em X % title('Posi\c{c}\~{a}o em X','Interpreter','Latex') ylabel('X','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on subplot(3,2,2) plot(t,X(:,1)) % Angulo phi % title('\^Angulo $\phi$','Interpreter','Latex') ylabel('$\phi$','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on subplot(3,2,3) plot(t,X(:,11)) % Posição em Y % title('Posi\c{c}\~{a}o em Y','Interpreter','Latex') ylabel('Y','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on subplot(3,2,5) plot(t,X(:,7)) % Posição em Z % title('Posi\c{c}\~{a}o em Z','Interpreter','Latex') ylabel('Z','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on subplot(3,2,4) plot(t,X(:,3)) % Posição em theta % title('\^Angulo $\theta$','Interpreter','Latex') ylabel('$\theta$','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on subplot(3,2,6) plot(t,X(:,5)) % Posição em psi % title('\^Angulo $\psi$','Interpreter','Latex') ylabel('$\psi$','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on suptitle('Variacao das Posicoes Angulares e Lineares') end function PlotAngVel(t,X) figure() subplot(2,2,1) plot(t,X(:,2)) % Velocidade phi title('Velocidade $\dot\phi$','Interpreter','Latex') ylabel('$\dot\phi$','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on subplot(2,2,2) plot(t,X(:,4)) % Posição em theta title('Velocidade $\dot\theta$','Interpreter','Latex') ylabel('$\dot\theta$','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on subplot(2,1,2) plot(t,X(:,6)) % Posição em psi title('Velocidade $\dot\psi$','Interpreter','Latex') ylabel('$\dot\psi$','Interpreter','Latex') xlabel('Tempo (s)','Interpreter','Latex') grid on suptitle('Velocidade Angular') end
github
felipe-vrgs/QuadMat-master
Fitness.m
.m
QuadMat-master/src/Fitness.m
1,564
utf_8
b6c06b639c3ac9425948e088bb14c101
% Fitness: function description % % @param target Quem será controlado % @param gains Os ganhos do PID % @param setpoint O SetPoint % % @return O fitness % function fit = Fitness(target, gains, setpoint, p) if nargin == 3 p = 0; end global err_int; %{ Apesar do código estar pronto para um fitness diferente por malha foi utilizada a mesma equação, ou seja, apenas a soma do erro é levada em conta no fitness No caso do Z o fitness é multiplicado por 2000*20 para que a sua escala fique mais agradável, tendo em vista que o seu erro seria alto por ser uma malha lenta que possui valores grandes, o que é diferente para os ângulos, tendo em vista que apresentam uma variação média entre -0.32 e 0.32. %} [t,X] = QuadMat(gains,target,setpoint,p); errMax = 0; err = zeros(size(t)); chkVar = zeros(size(t)); Kfit = 30; KOS = 100; switch target case 'z' chkVar(:) = X(:,7); Kfit = 2000*2; case 'phi' chkVar(:) = X(:,1); case 'theta' chkVar(:) = X(:,3); case 'psi' chkVar(:) = X(:,5); end for n = 1:size(t) err(n) = t(n)*(real(chkVar(n)) - setpoint)^2; errMax = errMax + err(n); end % Verifica o % de OS if chkVar(1) > setpoint osValue = min(chkVar); elseif chkVar(1) == setpoint osValue = 0; else osValue = max(chkVar); end if p == 1 if setpoint ~= 0 ((osValue - setpoint)/setpoint)*100; else osValue*100; end end errMax = errMax + (abs(osValue - setpoint)^2)*KOS; if errMax == 0 fit = 10000000; else fit = (1/errMax)*Kfit; end end
github
felipe-vrgs/QuadMat-master
cacm.m
.m
QuadMat-master/src/cacm.m
3,926
utf_8
1c3f4d672c3c3d9f50124b348ded3773
% CACM: function description % % @param target Quem será controlado % @param gains Os ganhos do PID % @param setpoint O SetPoint % % @return O CACM % function CACM() % CACM global divisoes numSim z_val zdot_val x1ini x1fim x1divs x2ini x2fim x2divs x1delta x2delta numCores CodigoCores cacm U_MAP; numCores = 255; CodigoCores = zeros(numCores,3); % cores RGB for n=1:numCores CodigoCores(n,1) = 255 - 255*((n-1)/255); CodigoCores(n,2) = 255 - 255*((n-1)/255); CodigoCores(n,3) = 255 - 255*((n-1)/255); end divisoes=100; x1ini=-0; x1fim=4; x1divs=divisoes; x2ini=-4; x2fim=4; x2divs=divisoes; x1delta=(x1fim-x1ini)/(x1divs); x2delta=(x2fim-x2ini)/(x2divs); cacm = zeros(divisoes,divisoes); U_MAP = zeros(divisoes,divisoes); numact = 0; numSim = 20; % figure(1); hold on; for num=1:numSim+1 numact = numact + 1; z_val = (num - 1)/((numSim)/4); for num2=1:numSim+1 zdot_val = -4 + 2*(num2 - 1)/((numSim)/4); fprintf('z_val=%g zdot_val=%g Sim n: %g\n',z_val,zdot_val,numact); if (z_val == 2 && zdot_val == 0) else [t,X] = QuadMat([],'',0,0); end numact = numact + 1; % plot(t(1:500),X(1:500,7)) end end % hold off; assignin('base', 'cacm', cacm); assignin('base', 'U_MAP', U_MAP); plot1(cacm, U_MAP); end %% InterpolaRGB: function description function [c] = InterpolaRGB(ci,cf,intr) c = zeros(3,1); c(1) = (((cf(1)-ci(1))*intr(1,1)/255) + ci(1))/255; c(2) = (((cf(2)-ci(2))*intr(1,2)/255) + ci(2))/255; c(3) = (((cf(3)-ci(3))*intr(1,3)/255) + ci(3))/255; end %% Plot1: function description %! @brief Does the plotting of the space state in the shape %! of colored squares. %! @param cacm The space state matrix function plot1(cacm, U_MAP) global CodigoCores divisoes x1ini x1delta x2ini x2delta numCores; figure(); hold on; for j=1:divisoes for i=1:divisoes coordx=x1ini+(i-1)*x1delta; coordy=x2ini+(j-1)*x2delta; val=cacm(i,j)+1; c = zeros(1,3); if val >= numCores val = numCores; end c = InterpolaRGB([0 0 0],[255 255 255],CodigoCores(val,:)); % [100 0 0],[239 255 203] % fprintf('i=%g j=%g cacmij=%g\n',i,j,val); % fprintf('x=%g y=%g [%g %g %g]\n\n',coordx,coordy,c(1),c(2),c(3)); plot(coordx,coordy,'s',... 'Markersize',16,... 'MarkerEdgeColor',[0.96 0.96 0.96],... 'MarkerFaceColor',[c(1) c(2) c(3)]); %drawnow; end end hold off; ylabel('$\dot{Z}$','Interpreter','Latex') xlabel('Z','Interpreter','Latex') title('Evolu\c{c}\~{a}o dos Estados','Interpreter','Latex'); figure() mesh(U_MAP) ylabel('$\dot{Z}$','Interpreter','Latex') xlabel('$Z$','Interpreter','Latex') zlabel('$U_{1}$','Interpreter','Latex') % figure() % pcolor(cacm) % ylabel('$\dot{Z}$','Interpreter','Latex') % xlabel('Z','Interpreter','Latex') end %% AchaCelula: function description %! @brief Calculates the i-th, j-th partition of the state space the % states x1 and x2 belongs to. %! @param x1,x2 states x1 and x2 %! @return i, j partition i,j of the state space function [i,j] = AchaCelula(x1,x2) global divisoes x1ini x1fim x1divs x2ini x2fim x2divs x1delta x2delta; % Aqui é o único cálculo a ser feito: i=(abs(x1)-x1ini)/x1delta; i=floor(i+1); if i > divisoes i=divisoes; elseif i < 1 i = 1; end j=(x2-x2ini)/x2delta; j=floor(j+1); if j > divisoes j=divisoes; elseif j < 1 j = 1; end % somar 1 e arredondar para baixo end
github
felipe-vrgs/QuadMat-master
magnifyOnFigure.m
.m
QuadMat-master/src/magnifyOnFigure.m
97,117
utf_8
602ece8d29b1a3fea8602b011364b137
% NAME: magnifyOnFigure % % AUTHOR: David Fernandez Prim ([email protected]) % % PURPOSE: Shows a functional zoom tool, suitable for publishing of zoomed % images and 2D plots % % INPUT ARGUMENTS: % figureHandle [double 1x1]: graphic handle of the target figure % axesHandle [double 1x1]: graphic handle of the target axes. % % OUTPUT ARGUMENTS: % none % % SINTAX: % 1) magnifyOnFigure; % $ Adds magnifier on the first axes of the current figure, with % default behavior. % % 2) magnifyOnFigure( figureHandle ); % $ Adds magnifier on the first axes of the figure with handle % 'figureHandle', with default behavior. % % 3) magnifyOnFigure( figureHandle, 'property1', value1,... ); % $ Adds magnifier on the first axes of the figure with handle % 'figureHandle', with modified behavior. % % 4) magnifyOnFigure( axesHandle ); % $ Adds magnifier on the axes with handle 'axesHandle', with % default behavior. % % 5) magnifyOnFigure( axesHandle, 'property1', value1,... ); % $ Adds magnifier on the axes with handle 'axesHandle', with % modified behavior. % % 6) Consecutive calls to this function (in any of the syntaxes % exposed above) produce multiple selectable magnifiers on the target axes. % % USAGE EXAMPLES: see script 'magnifyOnFigure_examples.m' % % PROPERTIES: % 'magnifierShape': 'Shape of the magnifier ('rectangle' or 'ellipse' allowed, 'rectangle' as default) % 'secondaryAxesFaceColor': ColorSpec % 'edgeWidth' Color of the box surrounding the secondary % axes, magnifier and link. Default 1 % 'edgeColor': Color of the box surrounding the secondary % axes, magnifier and link. Default 'black' % 'displayLinkStyle': Style of the link. 'none', 'straight' or % 'edges', with 'straight' as default. % 'mode': 'manual' or 'interactive' (allowing % adjustments through mouse/keyboard). Default % 'interactive'. % 'units' Units in which the position vectors are % given. Only 'pixels' currently supported % 'initialPositionSecondaryAxes': Initial position vector ([left bottom width height]) % of secondary axes, in pixels % 'initialPositionMagnifier': Initial position vector ([left bottom width height]) % of magnifier, in pixels % 'secondaryAxesXLim': Initial XLim value of the secondary axes % 'secondaryAxesYLim': Initial YLim value of the secondary axes % 'frozenZoomAspectRatio': Specially useful for images, forces the use of the same zoom % factor on both X and Y axes, in order to keep the aspect ratio % ('on' or 'off' allowed, 'off' by default % % HOT KEYS (active if 'mode' set to 'interactive') % % -In a figure with multiple tool instances % 'Tab': Switch the focus from one magnifier instance % to the next one on the current figure. % 'Mouse pointer on secondary axes or magnifier of a tool+double left click' % Regain focus % % -On the focused magnifier instance % 'up arrow': Moves magnifier 1 pixel upwards % 'down arrow': Moves magnifier 1 pixel downwards % 'left arrow': Moves magnifier 1 pixel to the left % 'right arrow': Moves magnifier 1 pixel to the right % 'Shift+up arrow': Expands magnifier 10% on the Y-axis % 'Shift+down arrow': Compress magnifier 10% on the Y-axis % 'Shift+left arrow': Compress magnifier 10% on the X-axis % 'Shift+right arrow': Expands magnifier 10% on the X-axis % 'Control+up arrow': Moves secondary axes 1 pixel upwards % 'Control+down arrow': Moves secondary axes 1 pixel downwards % 'Control+left arrow': Moves secondary axes 1 pixel to the left % 'Control+right arrow': Moves secondary axes 1 pixel to the right % 'Alt+up arrow': Expands secondary axes 10% on the Y-axis % 'Alt+down arrow': Compress secondary axes 10% on the Y-axis % 'Alt+left arrow': Compress secondary axes 10% on the X-axis % 'Alt+right arrow': Expands secondary axes 10% on the X-axis % 'PageUp': Increase additional zooming factor on X-axis % 'PageDown': Decrease additional zooming factor on X-axis % 'Shift+PageUp': Increase additional zooming factor on Y-axis % 'Shift+PageDown': Decrease additional zooming factor on Y-axis % 'Control+Q': Resets the additional zooming factors to 0 % 'Control+A': Displays position of secondary axes and % magnifier in the command window % 'Control+D': Deletes the focused tool % 'Control+I': Shows/hides the tool identifier (red % background color when the tool has the focus, % black otherwise) % 'Mouse pointer on magnifier+left click' Drag magnifier to any % direction % 'Mouse pointer on secondary axes+left click' Drag secondary axes in any % direction % % TODO: % - Use another axes copy as magnifier instead of rectangle (no ticks). % - Adapt to work on 3D plots. % - Add tip tool with interface description?. % % KNOWN ISSUES: % - Secondary axes are not updated when the zoomming or panning tools of the figure are used. % - Degraded performance for big data sets or big window sizes. % - The size and position of the magnifier are modified for % 'PaperPositionMode' equal to 'auto', when the figure is printed to file % through 'print' % % CHANGE HISTORY: % % Version | Date | Author | Description %---------------|---------------|-------------------|--------------------------------------- % 1.0 | 28/11/2009 | D. Fernandez | First version % 1.1 | 29/11/2009 | D. Fernandez | Added link from magnifier to secondary axes % 1.2 | 30/11/2009 | D. Fernandez | Keyboard support added % 1.3 | 01/12/2009 | D. Fernandez | Properties added % 1.4 | 02/12/2009 | D. Fernandez | Manual mode supported % 1.5 | 03/12/2009 | D. Fernandez | New link style added ('edges') % 1.6 | 03/12/2009 | D. Fernandez | Bug solved in display of link style 'edges' % 1.7 | 04/12/2009 | D. Fernandez | Target axes selection added % 1.8 | 07/12/2009 | D. Fernandez | Solved bug when any of the axes are reversed. % 1.9 | 08/12/2009 | D. Fernandez | Adapted to work under all axes modes (tight, square, image, ...) % 1.10 | 08/12/2009 | D. Fernandez | Added frozenZoomAspectRatio zoom mode, useful for images % 1.11 | 08/12/2009 | D. Fernandez | Solved bug when axes contain other than 'line' or 'image' objects % 1.12 | 05/01/2010 | D. Fernandez | Added support to multiple instances % 1.13 | 05/01/2010 | D. Fernandez | Added 'delete' functionality % 1.14 | 05/01/2010 | D. Fernandez | Solved bug when initial positions for secondary axes and/or magnifier are specified % 1.15 | 07/01/2010 | D. Fernandez | Solved bug when resizing window % 1.16 | 07/01/2010 | D. Fernandez | Improved documentation % 1.17 | 28/03/2010 | D. Fernandez | Added tool identifications feature % function magnifyOnFigure( varargin ) clear global appDataStruct global appDataStruct %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %CHECK OUTPUT ARGUMENTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch nargout case 0 %Correct outputObjectExpected = false; case 1 %tool object expected at the output outputObjectExpected = false; otherwise error('Number of output arguments not supported.'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %CHECK INPUT ARGUMENTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargin == 0 %Initialize 'appDataStructuct' with default values appDataStruct = initializeToolStruct(); %Set figure handle appDataStruct.figureHandle = gcf; % Get number of axes in the same figure childHandle = get(appDataStruct.figureHandle, 'Children'); iAxes = find(strcmpi(get(childHandle, 'Type'), 'axes')); % If no target axes specified, select the first found as mainAxes appDataStruct.mainAxesHandle = childHandle( iAxes(end) ); elseif nargin > 0 if isstruct(varargin{1}) %Initialize 'appDataStructuct' with existent structure appDataStruct = initializeToolStruct( varargin{1} ); elseif ishandle(varargin{1}) && strcmpi(get(varargin{1}, 'Type'), 'figure') %Initialize 'appDataStructuct' with default values appDataStruct = initializeToolStruct(); %Set figure handle appDataStruct.figureHandle = varargin{1}; % Get number of axes in the same figure childHandle = get(appDataStruct.figureHandle, 'Children'); iAxes = find(strcmpi(get(childHandle, 'Type'), 'axes')); % If no target axes specified, select the first found as mainAxes appDataStruct.mainAxesHandle = childHandle( iAxes(end) ); elseif ishandle(varargin{1}) && strcmpi(get(varargin{1}, 'Type'), 'axes') %Initialize 'appDataStructuct' with default values appDataStruct = initializeToolStruct(); appDataStruct.mainAxesHandle = varargin{1}; % Get figure handle parentHandle = get(varargin{1}, 'Parent'); iHandle = find(strcmpi(get(parentHandle, 'Type'), 'figure')); % Figure is the parent of the axes appDataStruct.figureHandle = parentHandle( iHandle(1) ); else if ishandle(varargin{1}) warning('Wrong figure/axes handle specified. The magnifier will be applied on the current figure.'); elseif isobject(varargin{1}) error('Wrong object specified.'); else error('Wrong input class specified.'); end end if mod(nargin-1, 2) == 0 %Check input properties for i = 2:2:nargin if ~strcmpi( varargin{i}, 'frozenZoomAspectRatio' ) &&... ~strcmpi( varargin{i}, 'magnifierShape' ) &&... ~strcmpi( varargin{i}, 'secondaryaxesxlim' ) &&... ~strcmpi( varargin{i}, 'secondaryaxesylim' ) &&... ~strcmpi( varargin{i}, 'secondaryaxesfacecolor' ) &&... ~strcmpi( varargin{i}, 'edgewidth' ) &&... ~strcmpi( varargin{i}, 'edgecolor' ) &&... ~strcmpi( varargin{i}, 'displayLinkStyle' ) &&... ~strcmpi( varargin{i}, 'mode' ) &&... ~strcmpi( varargin{i}, 'units' ) &&... ~strcmpi( varargin{i}, 'initialpositionsecondaryaxes' ) &&... ~strcmpi( varargin{i}, 'initialpositionmagnifier' ) error('Illegal property specified. Please check.'); end if strcmpi( varargin{i}, 'frozenZoomAspectRatio' ) if ischar(varargin{i+1}) &&... ( strcmpi(varargin{i+1}, 'on') || strcmpi(varargin{i+1}, 'off') ) appDataStruct.globalZoomMode = lower(varargin{i+1}); else warning(sprintf('Specified zoom mode not supported. Default values will be applied [%s].', appDataStruct.globalZoomMode)); end end if strcmpi( varargin{i}, 'mode' ) if ischar(varargin{i+1}) &&... ( strcmpi(varargin{i+1}, 'manual') || strcmpi(varargin{i+1}, 'interactive') ) appDataStruct.globalMode = lower(varargin{i+1}); else warning(sprintf('Specified mode descriptor not supported. Default values will be applied [%s].', appDataStruct.globalMode)); end end if strcmpi( varargin{i}, 'magnifierShape' ) if ischar(varargin{i+1}) &&... ( strcmpi(varargin{i+1}, 'rectangle') || strcmpi(varargin{i+1}, 'ellipse') ) appDataStruct.magnifierShape = lower(varargin{i+1}); else warning(sprintf('Specified magnifier shape not supported. Default values will be applied [%s].', appDataStruct.magnifierShape)); end end if strcmpi( varargin{i}, 'displayLinkStyle' ) if ischar(varargin{i+1}) &&... ( strcmpi(varargin{i+1}, 'straight') || strcmpi(varargin{i+1}, 'none') || strcmpi(varargin{i+1}, 'edges') ) if ~strcmpi(appDataStruct.magnifierShape, 'rectangle') && strcmpi(varargin{i+1}, 'edges') warning(sprintf('Specified link style not supported. Default values will be applied for ''displayLinkStyle''[%s].', appDataStruct.linkDisplayStyle)); else appDataStruct.linkDisplayStyle = lower(varargin{i+1}); end else warning(sprintf('Specified descriptor not supported. Default values will be applied for ''displayLink''[%s].', appDataStruct.linkDisplayStyle)); end end if strcmpi( varargin{i}, 'units' ) if ischar(varargin{i+1}) && strcmpi(varargin{i+1}, 'pixels') appDataStruct.globalUnits = lower(varargin{i+1}); else warning(sprintf('Specified units descriptor not supported. Default values will be applied [%s].', appDataStruct.globalUnits)); end end if strcmpi( varargin{i}, 'edgewidth' ) if length(varargin{i+1})==1 && isnumeric(varargin{i+1}) appDataStruct.globalEdgeWidth = varargin{i+1}; else warning(sprintf('Incorrect edge width value. Default value will be applied [%g].', appDataStruct.globalEdgeWidth )) end end if strcmpi( varargin{i}, 'edgecolor' ) if ( length(varargin{i+1})==3 && isnumeric(varargin{i+1}) ) ||... ( ischar(varargin{i+1}) ) appDataStruct.globalEdgeColor = varargin{i+1}; else warning('Incorrect edge color value. Default black will be applied.'); end end if strcmpi( varargin{i}, 'secondaryaxesfacecolor' ) if ( length(varargin{i+1})==3 && isnumeric(varargin{i+1}) ) ||... ( ischar(varargin{i+1}) ) appDataStruct.secondaryAxesFaceColor = varargin{i+1}; else warning('Incorrect secondary axes face color value. Default white will be applied.'); end end if strcmpi( varargin{i}, 'secondaryaxesxlim' ) if ( length(varargin{i+1})==2 && isnumeric(varargin{i+1}) ) appDataStruct.secondaryAxesXLim = varargin{i+1}; else warning('Incorrect secondary axes XLim value. Default white will be applied.'); end end if strcmpi( varargin{i}, 'secondaryaxesylim' ) if ( length(varargin{i+1})==2 && isnumeric(varargin{i+1}) ) appDataStruct.secondaryAxesYLim = varargin{i+1}; else warning('Incorrect secondary axes YLim value. Default white will be applied.'); end end if strcmpi( varargin{i}, 'initialpositionsecondaryaxes' ) if length(varargin{i+1})==4 && isnumeric(varargin{i+1}) appDataStruct.secondaryAxesPosition = varargin{i+1}; else warning('Incorrect initial position of secondary axes. Default values will be applied.') end end if strcmpi( varargin{i}, 'initialpositionmagnifier' ) if length(varargin{i+1})==4 && isnumeric(varargin{i+1}) appDataStruct.magnifierPosition = varargin{i+1}; else warning('Incorrect initial position of magnifier. Default values will be applied.') end end end else error('Number of input arguments not supported.'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %ENTRY POINT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Create secondary axes if isempty(appDataStruct.secondaryAxesHandle) appDataStruct.secondaryAxesHandle = copyobj(appDataStruct.mainAxesHandle, appDataStruct.figureHandle); end %Configure secondary axis set( appDataStruct.secondaryAxesHandle, 'Color', get(appDataStruct.mainAxesHandle,'Color'), 'Box','on'); set( appDataStruct.secondaryAxesHandle, 'FontWeight', 'bold',... 'LineWidth', appDataStruct.globalEdgeWidth,... 'XColor', appDataStruct.globalEdgeColor,... 'YColor', appDataStruct.globalEdgeColor,... 'Color', appDataStruct.secondaryAxesFaceColor ); set( appDataStruct.figureHandle, 'CurrentAxes', appDataStruct.secondaryAxesHandle ); xlabel(''); ylabel(''); zlabel(''); title(''); axis( appDataStruct.secondaryAxesHandle, 'normal'); %Ensure that secondary axes are not resizing set( appDataStruct.figureHandle, 'CurrentAxes', appDataStruct.mainAxesHandle ); %Default magnifier position if isempty(appDataStruct.magnifierPosition) appDataStruct.magnifierPosition = computeMagnifierDefaultPosition(); end %Default secondary axes position if isempty(appDataStruct.secondaryAxesPosition) appDataStruct.secondaryAxesPosition = computeSecondaryAxesDefaultPosition(); end % #PATCH 1 (part 1) toolArrayAux = get(appDataStruct.figureHandle, 'userdata'); set(appDataStruct.figureHandle, 'userdata', []); % #END PATCH 1 (part 1) %Set initial position of secondary axes setSecondaryAxesPositionInPixels( appDataStruct.secondaryAxesPosition ); %Set initial position of magnifier setMagnifierPositionInPixels( appDataStruct.magnifierPosition ); % #PATCH 1 (part 2) set(appDataStruct.figureHandle, 'userdata', toolArrayAux); % #END PATCH 1 (part 2) %Update view limits on secondary axis refreshSecondaryAxisLimits(); %Update link between secondary axes and magnifier refreshMagnifierToSecondaryAxesLink(); %Set actions for interactive mode if strcmpi( appDataStruct.globalMode, 'interactive') toolArray = get(appDataStruct.figureHandle, 'userdata'); nTools = length(toolArray); if nTools == 0 %Store figure position appDataStruct.figurePosition = getFigurePositionInPixels(); %Store old callbacks appDataStruct.figureOldWindowButtonDownFcn = get( appDataStruct.figureHandle, 'WindowButtonDownFcn'); appDataStruct.figureOldWindowButtonUpFcn = get( appDataStruct.figureHandle, 'WindowButtonUpFcn'); appDataStruct.figureOldWindowButtonMotionFcn = get( appDataStruct.figureHandle, 'WindowButtonMotionFcn'); appDataStruct.figureOldKeyPressFcn = get( appDataStruct.figureHandle, 'KeyPressFcn'); appDataStruct.figureOldDeleteFcn = get( appDataStruct.figureHandle, 'DeleteFcn'); appDataStruct.figureOldResizeFcn = get( appDataStruct.figureHandle, 'ResizeFcn'); %Set service funcions to events set( appDataStruct.figureHandle, ... 'WindowButtonDownFcn', @ButtonDownCallback, ... 'WindowButtonUpFcn', @ButtonUpCallback, ... 'WindowButtonMotionFcn', @ButtonMotionCallback, ... 'KeyPressFcn', @KeyPressCallback, ... 'DeleteFcn', @DeleteCallback,... 'ResizeFcn', @ResizeCallback... ); end else %Set service funcions to events set( appDataStruct.figureHandle, ... 'WindowButtonDownFcn', '', ... 'WindowButtonUpFcn', '', ... 'WindowButtonMotionFcn', '', ... 'KeyPressFcn', '', ... 'DeleteFcn', '',... 'ResizeFcn', ''... ); end %Set focus appDataStruct.focusOnThisTool = true; %Compute unique ID of this magnifying tool, from handles of its elements toolId = appDataStruct.figureHandle +... appDataStruct.mainAxesHandle +... appDataStruct.magnifierHandle +... appDataStruct.linkHandle +... appDataStruct.secondaryAxesHandle; %Set ID of this magnifying tool appDataStruct.toolId = toolId; %Get active figure figureHandle = appDataStruct.figureHandle; %Save object of this tool to userdata in figure object toolArray = get(figureHandle, 'UserData'); if isempty(toolArray) toolArray = struct(appDataStruct); toolArray.focusOnThisTool = true; else %Set focus to this tool focusedTool = find([toolArray.focusOnThisTool] == 1); toolArray(focusedTool).focusOnThisTool = false; %search tool ID indexFoundToolId = find([toolArray.toolId] == toolId); if isempty(indexFoundToolId) %If not found, create new indexFoundToolId = length(toolArray)+1; end toolArray(indexFoundToolId) = struct(appDataStruct); toolArray(indexFoundToolId).focusOnThisTool = true; end set( figureHandle, 'UserData', toolArray ); %Set callback global behaviour set(appDataStruct.figureHandle, 'Interruptible', 'off'); set(appDataStruct.figureHandle, 'BusyAction', 'cancel'); %Return created object if requested if outputObjectExpected == true varargout{1} = appDataStruct; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: refreshSecondaryAxisLimits % % PURPOSE: Updates the view on the secondary axis, based on position and % span of magnifier, and extend of secondary axis. % % INPUT ARGUMENTS: % appDataStructuct [struct 1x1]: global variable % OUTPUT ARGUMENTS: % change 'XLim' and 'YLim' of secondary axis (ACTION) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function refreshSecondaryAxisLimits() global appDataStruct; if isempty(appDataStruct) return; end %If limits specified if ~(isempty(appDataStruct.secondaryAxesXLim) ||... isempty(appDataStruct.secondaryAxesYLim)) initialXLim = appDataStruct.secondaryAxesXLim; initialYLim = appDataStruct.secondaryAxesYLim; limitsToSet = [... initialXLim(1)... initialXLim(2)... initialYLim(1)... initialYLim(2)... ]; axis(appDataStruct.secondaryAxesHandle, limitsToSet); appDataStruct.secondaryAxesXLim = []; appDataStruct.secondaryAxesYLim = []; else %Get main axes limits, in axes units mainAxesXLim = get( appDataStruct.mainAxesHandle, 'XLim' ); mainAxesYLim = get( appDataStruct.mainAxesHandle, 'YLim' ); mainAxesXDir = get( appDataStruct.mainAxesHandle, 'XDir' ); mainAxesYDir = get( appDataStruct.mainAxesHandle, 'YDir' ); %Get position and size of main axes in pixels mainAxesPositionInPixels = getMainAxesPositionInPixels(); %Compute Pixels-to-axes units conversion factors xMainAxisPixels2UnitsFactor = determineSpan( mainAxesXLim(1), mainAxesXLim(2) )/mainAxesPositionInPixels(3); yMainAxisPixels2UnitsFactor = determineSpan( mainAxesYLim(1), mainAxesYLim(2) )/mainAxesPositionInPixels(4); %Get position and extend of magnifier, in pixels magnifierPosition = getMagnifierPositionInPixels(); %In pixels %Relative to the lower-left corner of the axes magnifierPosition(1) = magnifierPosition(1) - mainAxesPositionInPixels(1); magnifierPosition(2) = magnifierPosition(2) - mainAxesPositionInPixels(2); %Compute position and exted of magnifier, in axes units magnifierPosition(3) = magnifierPosition(3) * xMainAxisPixels2UnitsFactor; magnifierPosition(4) = magnifierPosition(4) * yMainAxisPixels2UnitsFactor; if strcmpi(mainAxesXDir, 'normal') && strcmpi(mainAxesYDir, 'normal') magnifierPosition(1) = mainAxesXLim(1) + magnifierPosition(1)*xMainAxisPixels2UnitsFactor; magnifierPosition(2) = mainAxesYLim(1) + magnifierPosition(2)*yMainAxisPixels2UnitsFactor; end if strcmpi(mainAxesXDir, 'normal') && strcmpi(mainAxesYDir, 'reverse') magnifierPosition(1) = mainAxesXLim(1) + magnifierPosition(1)*xMainAxisPixels2UnitsFactor; magnifierPosition(2) = mainAxesYLim(2) - magnifierPosition(2)*yMainAxisPixels2UnitsFactor - magnifierPosition(4); end if strcmpi(mainAxesXDir, 'reverse') && strcmpi(mainAxesYDir, 'normal') magnifierPosition(1) = mainAxesXLim(2) - magnifierPosition(1)*xMainAxisPixels2UnitsFactor - magnifierPosition(3); magnifierPosition(2) = mainAxesYLim(1) + magnifierPosition(2)*yMainAxisPixels2UnitsFactor; end if strcmpi(mainAxesXDir, 'reverse') && strcmpi(mainAxesYDir, 'reverse') magnifierPosition(1) = mainAxesXLim(2) - magnifierPosition(1)*xMainAxisPixels2UnitsFactor - magnifierPosition(3); magnifierPosition(2) = mainAxesYLim(2) - magnifierPosition(2)*yMainAxisPixels2UnitsFactor - magnifierPosition(4); end secondaryAxisXlim = [magnifierPosition(1) magnifierPosition(1)+magnifierPosition(3)]; secondaryAxisYlim = [magnifierPosition(2) magnifierPosition(2)+magnifierPosition(4)]; zoomFactor = appDataStruct.secondaryAxesAdditionalZoomingFactor; xZoom = zoomFactor(1); yZoom = zoomFactor(2); aux_secondaryAxisXlim(1) = mean(secondaryAxisXlim) -... determineSpan( secondaryAxisXlim(1), mean(secondaryAxisXlim) )*(1-xZoom); aux_secondaryAxisXlim(2) = mean(secondaryAxisXlim) +... determineSpan( secondaryAxisXlim(2), mean(secondaryAxisXlim) )*(1-xZoom); aux_secondaryAxisYlim(1) = mean(secondaryAxisYlim) -... determineSpan( secondaryAxisYlim(1), mean(secondaryAxisYlim) )*(1-yZoom); aux_secondaryAxisYlim(2) = mean(secondaryAxisYlim) +... determineSpan( secondaryAxisYlim(2), mean(secondaryAxisYlim) )*(1-yZoom); if aux_secondaryAxisXlim(1)<aux_secondaryAxisXlim(2) &&... all(isfinite(aux_secondaryAxisXlim)) set( appDataStruct.secondaryAxesHandle, 'XLim', aux_secondaryAxisXlim ); end if aux_secondaryAxisYlim(1)<aux_secondaryAxisYlim(2) &&... all(isfinite(aux_secondaryAxisYlim)) set( appDataStruct.secondaryAxesHandle, 'YLim', aux_secondaryAxisYlim ); end end %Increase line width in plots on secondary axis childHandle = get( appDataStruct.secondaryAxesHandle, 'Children'); for iChild = 1:length(childHandle) if strcmpi(get(childHandle(iChild), 'Type'), 'line') set(childHandle(iChild), 'LineWidth', 2); end if strcmpi(get(childHandle(iChild), 'Type'), 'image') %Do nothing for now end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: determineSpan % % PURPOSE: Computes the distance between two real numbers on a 1D space. % % INPUT ARGUMENTS: % v1 [double 1x1]: first number % v2 [double 1x1]: second number % OUTPUT ARGUMENTS: % span [double 1x1]: computed span % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function span = determineSpan( v1, v2 ) if v1>=0 && v2>=0 span = max(v1,v2) - min(v1,v2); end if v1>=0 && v2<0 span = v1 - v2; end if v1<0 && v2>=0 span = -v1 + v2; end if v1<0 && v2<0 span = max(-v1,-v2) - min(-v1,-v2); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: ResizeCallback % % PURPOSE: Service routine to Resize event. % % INPUT ARGUMENTS: % % OUTPUT ARGUMENTS: % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ResizeCallback(src,eventdata) global appDataStruct; if isempty(appDataStruct) return; end %Get userdata toolArray = get(src, 'userdata'); if isempty(toolArray) return; end nTools = length( toolArray ); %Store Old&New Figure positions oldFigurePosition = toolArray(1).figurePosition; newFigurePosition = getFigurePositionInPixels(); %Backup global appDataStruct appDataStructAux = appDataStruct; for i=1:nTools %Modify global vaiable, accessed by functions called below appDataStruct = initializeToolStruct( toolArray(i) ); %Set position of secondaryAxes (automatically modified) toolArray(i).secondaryAxesPosition = getSecondaryAxesPositionInPixels(); toolArray(i).magnifierPosition(1) = toolArray(i).magnifierPosition(1) * newFigurePosition(3)/oldFigurePosition(3); toolArray(i).magnifierPosition(2) = toolArray(i).magnifierPosition(2) * newFigurePosition(4)/oldFigurePosition(4); toolArray(i).magnifierPosition(3) = toolArray(i).magnifierPosition(3) * newFigurePosition(3)/oldFigurePosition(3); toolArray(i).magnifierPosition(4) = toolArray(i).magnifierPosition(4) * newFigurePosition(4)/oldFigurePosition(4); setMagnifierPositionInPixels( toolArray(i).magnifierPosition ); %Update view limits on secondary axis refreshSecondaryAxisLimits(); %Update link between secondary axes and magnifier refreshMagnifierToSecondaryAxesLink(); if i==1 %Update figure position toolArray(i).figurePosition = getFigurePositionInPixels(); appDataStruct.figurePosition = toolArray(i).figurePosition; end end %Update userdata set(toolArray(1).figureHandle, 'userdata', toolArray); %Update appDataStruct appDataStruct = appDataStructAux; %Get current position of seconday axes (in pixels) appDataStruct.secondaryAxesPosition = getSecondaryAxesPositionInPixels(); %Get magnifier current position and size appDataStruct.magnifierPosition = getMagnifierPositionInPixels(); clear appDataStructAux; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: KeyPressCallback % % PURPOSE: Service routine to KeyPress event. % % INPUT ARGUMENTS: % % OUTPUT ARGUMENTS: % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function KeyPressCallback(src,eventdata) global appDataStruct if isempty(appDataStruct) return; end currentCaracter = eventdata.Key; currentModifier = eventdata.Modifier; switch(currentCaracter) case {'leftarrow'} % left arrow %Move magnifier to the left if isempty(currentModifier) position = getMagnifierPositionInPixels(); magnifierPosition(1) = position(1)-1; magnifierPosition(2) = position(2); magnifierPosition(3) = position(3); magnifierPosition(4) = position(4); setMagnifierPositionInPixels( magnifierPosition ); toolArray = get( src, 'UserData' ); focusedTool = find([toolArray.focusOnThisTool] == 1); toolArray(focusedTool) = updateToolId( toolArray(focusedTool), focusedTool, 'noToggle' ); set( src, 'UserData', toolArray ); end %Compress magnifier on the X axis if strcmp(currentModifier, 'shift') position = getMagnifierPositionInPixels(); magnifierPosition(3) = position(3)*(1 - 0.1); if strcmpi( appDataStruct.globalZoomMode, 'off') magnifierPosition(4) = position(4); else %If 'freezeZoomAspectRatio' to 'on', be consistent magnifierPosition(4) = position(4)*(1 - 0.1); end magnifierPosition(1) = position(1)-(-position(3)+magnifierPosition(3))/2; magnifierPosition(2) = position(2)-(-position(4)+magnifierPosition(4))/2; setMagnifierPositionInPixels( magnifierPosition ); end %Move secondary axes to the left if strcmp(currentModifier, 'control') position = getSecondaryAxesPositionInPixels(); secondaryAxesPosition(1) = position(1)-1; secondaryAxesPosition(2) = position(2); secondaryAxesPosition(3) = position(3); secondaryAxesPosition(4) = position(4); setSecondaryAxesPositionInPixels( secondaryAxesPosition ); end %Compress secondary axes on the X axis if strcmp(currentModifier, 'alt') position = getSecondaryAxesPositionInPixels(); secondaryAxesPosition(3) = position(3)*(1 - 0.1); if strcmpi( appDataStruct.globalZoomMode, 'off') secondaryAxesPosition(4) = position(4); else %If 'freezeZoomAspectRatio' to 'on', be consistent secondaryAxesPosition(4) = position(4)*(1 - 0.1); end secondaryAxesPosition(1) = position(1)-(-position(3)+secondaryAxesPosition(3))/2; secondaryAxesPosition(2) = position(2)-(-position(4)+secondaryAxesPosition(4))/2; setSecondaryAxesPositionInPixels( secondaryAxesPosition ); end case {'rightarrow'} % right arrow %Move magnifier to the right if isempty(currentModifier) position = getMagnifierPositionInPixels(); magnifierPosition(1) = position(1)+1; magnifierPosition(2) = position(2); magnifierPosition(3) = position(3); magnifierPosition(4) = position(4); setMagnifierPositionInPixels( magnifierPosition ); toolArray = get( src, 'UserData' ); focusedTool = find([toolArray.focusOnThisTool] == 1); toolArray(focusedTool) = updateToolId( toolArray(focusedTool), focusedTool, 'noToggle' ); set( src, 'UserData', toolArray ); end %Expand magnifier on the X axis if strcmp(currentModifier, 'shift') position = getMagnifierPositionInPixels(); magnifierPosition(3) = position(3)*(1 + 0.1); if strcmpi( appDataStruct.globalZoomMode, 'off') magnifierPosition(4) = position(4); else %If 'freezeZoomAspectRatio' to 'on', be consistent magnifierPosition(4) = position(4)*(1 + 0.1); end magnifierPosition(1) = position(1)-(-position(3)+magnifierPosition(3))/2; magnifierPosition(2) = position(2)-(-position(4)+magnifierPosition(4))/2; setMagnifierPositionInPixels( magnifierPosition ); end %Move secondary axes to the right if strcmp(currentModifier, 'control') position = getSecondaryAxesPositionInPixels(); secondaryAxesPosition(1) = position(1)+1; secondaryAxesPosition(2) = position(2); secondaryAxesPosition(3) = position(3); secondaryAxesPosition(4) = position(4); setSecondaryAxesPositionInPixels( secondaryAxesPosition ); end %Expand secondary axes on the X axis if strcmp(currentModifier, 'alt') position = getSecondaryAxesPositionInPixels(); secondaryAxesPosition(3) = position(3)*(1 + 0.1); if strcmpi( appDataStruct.globalZoomMode, 'off') secondaryAxesPosition(4) = position(4); else %If 'freezeZoomAspectRatio' to 'on', be consistent secondaryAxesPosition(4) = position(4)*(1 + 0.1); end secondaryAxesPosition(1) = position(1)-(-position(3)+secondaryAxesPosition(3))/2; secondaryAxesPosition(2) = position(2)-(-position(4)+secondaryAxesPosition(4))/2; setSecondaryAxesPositionInPixels( secondaryAxesPosition ); end case {'uparrow'} % up arrow %Move magnifier to the top if isempty(currentModifier) position = getMagnifierPositionInPixels(); magnifierPosition(1) = position(1); magnifierPosition(2) = position(2)+1; magnifierPosition(3) = position(3); magnifierPosition(4) = position(4); setMagnifierPositionInPixels( magnifierPosition ); toolArray = get( src, 'UserData' ); focusedTool = find([toolArray.focusOnThisTool] == 1); toolArray(focusedTool) = updateToolId( toolArray(focusedTool), focusedTool, 'noToggle' ); set( src, 'UserData', toolArray ); end %Expand magnifier on the Y axis if strcmp(currentModifier, 'shift') position = getMagnifierPositionInPixels(); if strcmpi( appDataStruct.globalZoomMode, 'off') magnifierPosition(3) = position(3); else %If 'freezeZoomAspectRatio' to 'on', be consistent magnifierPosition(3) = position(3)*(1 + 0.1); end magnifierPosition(4) = position(4)*(1 + 0.1); magnifierPosition(1) = position(1)-(-position(3)+magnifierPosition(3))/2; magnifierPosition(2) = position(2)-(-position(4)+magnifierPosition(4))/2; setMagnifierPositionInPixels( magnifierPosition ); end %Move secondary axes to the top if strcmp(currentModifier, 'control') position = getSecondaryAxesPositionInPixels(); secondaryAxesPosition(1) = position(1); secondaryAxesPosition(2) = position(2)+1; secondaryAxesPosition(3) = position(3); secondaryAxesPosition(4) = position(4); setSecondaryAxesPositionInPixels( secondaryAxesPosition ); end %Expand secondary axes on the Y axis if strcmp(currentModifier, 'alt') position = getSecondaryAxesPositionInPixels(); if strcmpi( appDataStruct.globalZoomMode, 'off') secondaryAxesPosition(3) = position(3); else %If 'freezeZoomAspectRatio' to 'on', be consistent secondaryAxesPosition(3) = position(3)*(1 + 0.1); end secondaryAxesPosition(4) = position(4)*(1 + 0.1); secondaryAxesPosition(1) = position(1)-(-position(3)+secondaryAxesPosition(3))/2; secondaryAxesPosition(2) = position(2)-(-position(4)+secondaryAxesPosition(4))/2; setSecondaryAxesPositionInPixels( secondaryAxesPosition ); end case {'downarrow'} % down arrow %Move magnifier to the bottom if isempty(currentModifier) position = getMagnifierPositionInPixels(); magnifierPosition(1) = position(1); magnifierPosition(2) = position(2)-1; magnifierPosition(3) = position(3); magnifierPosition(4) = position(4); setMagnifierPositionInPixels( magnifierPosition ); toolArray = get( src, 'UserData' ); focusedTool = find([toolArray.focusOnThisTool] == 1); toolArray(focusedTool) = updateToolId( toolArray(focusedTool), focusedTool, 'noToggle' ); set( src, 'UserData', toolArray ); end %Compress magnifier on the Y axis if strcmp(currentModifier, 'shift') position = getMagnifierPositionInPixels(); if strcmpi( appDataStruct.globalZoomMode, 'off') magnifierPosition(3) = position(3); else %If 'freezeZoomAspectRatio' to 'on', be consistent magnifierPosition(3) = position(3)*(1 - 0.1); end magnifierPosition(4) = position(4)*(1 - 0.1); magnifierPosition(1) = position(1)-(-position(3)+magnifierPosition(3))/2; magnifierPosition(2) = position(2)-(-position(4)+magnifierPosition(4))/2; setMagnifierPositionInPixels( magnifierPosition ); end %Move secondary axes to the bottom if strcmp(currentModifier, 'control') position = getSecondaryAxesPositionInPixels(); secondaryAxesPosition(1) = position(1); secondaryAxesPosition(2) = position(2)-1; secondaryAxesPosition(3) = position(3); secondaryAxesPosition(4) = position(4); setSecondaryAxesPositionInPixels( secondaryAxesPosition ); end %Compress secondary axes on the Y axis if strcmp(currentModifier, 'alt') position = getSecondaryAxesPositionInPixels(); if strcmpi( appDataStruct.globalZoomMode, 'off') secondaryAxesPosition(3) = position(3); else %If 'freezeZoomAspectRatio' to 'on', be consistent secondaryAxesPosition(3) = position(3)*(1 - 0.1); end secondaryAxesPosition(4) = position(4)*(1 - 0.1); secondaryAxesPosition(1) = position(1)-(-position(3)+secondaryAxesPosition(3))/2; secondaryAxesPosition(2) = position(2)-(-position(4)+secondaryAxesPosition(4))/2; setSecondaryAxesPositionInPixels( secondaryAxesPosition ); end case {'tab'} % Tabulator %Switch focus to next magnifier instance on the current figure toolArray = get( src, 'UserData' ); nTools = length(toolArray); focusedTool = find([toolArray.focusOnThisTool] == 1); if focusedTool ~= nTools nextFocusedTool = focusedTool+1; else nextFocusedTool = 1; end appDataStruct = initializeToolStruct( toolArray(nextFocusedTool) ); appDataStruct.focusOnThisTool = 1; toolArray(focusedTool).focusOnThisTool = 0; toolArray(nextFocusedTool).focusOnThisTool = 1; if not(isempty(toolArray(focusedTool).toolIdHandle)) set(toolArray(focusedTool).toolIdHandle,'BackgroundColor', 'black', 'Color', 'white'); set(toolArray(nextFocusedTool).toolIdHandle,'BackgroundColor', 'red', 'Color', 'white'); end set( src, 'UserData', toolArray ); case {'d'} % 'd' %Delete focused instance if strcmp(currentModifier, 'control') toolArray = get( src, 'UserData' ); nTools = length(toolArray); focusedTool = find([toolArray.focusOnThisTool] == 1); delete(toolArray(focusedTool).magnifierHandle); delete(toolArray(focusedTool).linkHandle); delete(toolArray(focusedTool).secondaryAxesHandle); if nTools > 1 %Set focus to next instance if focusedTool ~= nTools nextFocusedTool = focusedTool+1; else nextFocusedTool = 1; end toolArray(nextFocusedTool).focusOnThisTool = 1; appDataStruct = initializeToolStruct( toolArray(nextFocusedTool) ); toolArray(focusedTool) = []; set( src, 'UserData', toolArray ); else %No instance to set focus on appDataStruct = []; set( src, 'UserData', [] ); end end case {'a'} % 'a' %Debug info if strcmp(currentModifier, 'control') magnifierPosition = getMagnifierPositionInPixels(); disp(sprintf('Magnifier position: [%g %g %g %g];', magnifierPosition(1), magnifierPosition(2), magnifierPosition(3), magnifierPosition(4) )); secondaryAxesPosition = getSecondaryAxesPositionInPixels(); disp(sprintf('Secondary axes position: [%g %g %g %g];', secondaryAxesPosition(1), secondaryAxesPosition(2), secondaryAxesPosition(3), secondaryAxesPosition(4) )); end case {'q'} % 'q' %additional xooming factors reseted if strcmp(currentModifier, 'control') appDataStruct.secondaryAxesAdditionalZoomingFactor = [0 0]; end case {'i'} % 'i' %display/hide on-screen tool identifier if strcmp(currentModifier, 'control') toolArray = get( src, 'UserData' ); nTools = length(toolArray); for iTool = 1:nTools toolArray(iTool) = updateToolId( toolArray(iTool), iTool, 'toggle' ); end set( src, 'UserData', toolArray ); end case {'pageup'} % '+' zoomFactor = appDataStruct.secondaryAxesAdditionalZoomingFactor; %Increase additional zooming factor on X-axis if isempty(currentModifier) zoomFactor(1) = zoomFactor(1) + 0.1; if strcmpi( appDataStruct.globalZoomMode, 'on') zoomFactor(2) = zoomFactor(2) + 0.1; end appDataStruct.secondaryAxesAdditionalZoomingFactor = zoomFactor; end %Increase additional zooming factor on Y-axis if strcmp(currentModifier, 'shift') zoomFactor(2) = zoomFactor(2) + 0.1; if strcmpi( appDataStruct.globalZoomMode, 'on') zoomFactor(1) = zoomFactor(1) + 0.1; end appDataStruct.secondaryAxesAdditionalZoomingFactor = zoomFactor; end case {'pagedown'} % '-' zoomFactor = appDataStruct.secondaryAxesAdditionalZoomingFactor; %Redude additional zooming factor on X-axis if isempty(currentModifier) zoomFactor(1) = zoomFactor(1) - 0.1; if strcmpi( appDataStruct.globalZoomMode, 'on') zoomFactor(2) = zoomFactor(2) - 0.1; end appDataStruct.secondaryAxesAdditionalZoomingFactor = zoomFactor; end %Redude additional zooming factor on Y-axis if strcmp(currentModifier, 'shift') zoomFactor(2) = zoomFactor(2) - 0.1; if strcmpi( appDataStruct.globalZoomMode, 'on') zoomFactor(1) = zoomFactor(1) - 0.1; end appDataStruct.secondaryAxesAdditionalZoomingFactor = zoomFactor; end otherwise end %Update view limits on secondary axis refreshSecondaryAxisLimits(); %Update link between secondary axes and magnifier refreshMagnifierToSecondaryAxesLink(); % %Update userdata % toolArray = get(src, 'userdata'); % focusedTool = find([toolArray.focusOnThisTool] == 1); % toolArray(focusedTool) = appDataStruct; % set(src, 'userData', toolArray); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: ButtonMotionCallback % % PURPOSE: Service routine to ButtonMotion event. % % INPUT ARGUMENTS: % % OUTPUT ARGUMENTS: % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ButtonMotionCallback(src,eventdata) global appDataStruct if isempty(appDataStruct) return; end % pointerPos = get(appDataStructuct.figure.handle, 'CurrentPoint'); % disp(sprintf('X: %g ; Y: %g', pointerPos(1), pointerPos(2)) ); getPointerArea(); %If Left mouse button not pressed, exit if appDataStruct.ButtonDown == false return; end %If Left mouse button pressed while the pointer is moving (drag) switch appDataStruct.pointerArea case 'insideSecondaryAxis' %Get current position of seconday axes (in pixels) appDataStruct.secondaryAxesPosition = getSecondaryAxesPositionInPixels(); %Get pointer position on figure's frame currentPointerPositionOnFigureFrame = getPointerPositionOnFigureFrame(); pointerPositionOnButtonDown = appDataStruct.pointerPositionOnButtonDown; %Modify position secondaryAxisPosition_W = appDataStruct.secondaryAxesPosition(3); secondaryAxisPosition_H = appDataStruct.secondaryAxesPosition(4); secondaryAxisPosition_X = appDataStruct.secondaryAxesPosition(1) + (-pointerPositionOnButtonDown(1)+currentPointerPositionOnFigureFrame(1)); secondaryAxisPosition_Y = appDataStruct.secondaryAxesPosition(2) + (-pointerPositionOnButtonDown(2)+currentPointerPositionOnFigureFrame(2)); appDataStruct.pointerPositionOnButtonDown = currentPointerPositionOnFigureFrame; %Set initial position and size of secondary axes setSecondaryAxesPositionInPixels( [... secondaryAxisPosition_X,... secondaryAxisPosition_Y,... secondaryAxisPosition_W,... secondaryAxisPosition_H... ] ); case 'insideMagnifier' %Get magnifier current position and size appDataStruct.magnifierPosition = getMagnifierPositionInPixels(); %Get pointer position on figure's frame currentPointerPosition = getPointerPositionOnFigureFrame(); pointerPositionOnButtonDown = appDataStruct.pointerPositionOnButtonDown; %Modify magnifier position magnifierPosition_W = appDataStruct.magnifierPosition(3); magnifierPosition_H = appDataStruct.magnifierPosition(4); magnifierPosition_X = appDataStruct.magnifierPosition(1) + (-pointerPositionOnButtonDown(1)+currentPointerPosition(1)); magnifierPosition_Y = appDataStruct.magnifierPosition(2) + (-pointerPositionOnButtonDown(2)+currentPointerPosition(2)); appDataStruct.pointerPositionOnButtonDown = currentPointerPosition; %Set initial position and size of magnifying rectangle setMagnifierPositionInPixels( [... magnifierPosition_X... magnifierPosition_Y... magnifierPosition_W... magnifierPosition_H... ] ); %Refresh zooming on secondary axis, based on magnifier position and extend refreshSecondaryAxisLimits(); toolArray = get( src, 'UserData' ); focusedTool = find([toolArray.focusOnThisTool] == 1); toolArray(focusedTool) = updateToolId( toolArray(focusedTool), focusedTool, 'noToggle' ); set( src, 'UserData', toolArray ); otherwise % appDataStructuct.pointerArea end %Update link between secondary axes and magnifier refreshMagnifierToSecondaryAxesLink(); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: ButtonDownCallback % % PURPOSE: Service routine to ButtonDown event. % % INPUT ARGUMENTS: % % OUTPUT ARGUMENTS: % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ButtonDownCallback(src,eventdata) global appDataStruct if isempty(appDataStruct) return; end if strcmpi( get(appDataStruct.figureHandle, 'SelectionType'), 'normal' ) %Respond to left mouse button appDataStruct.ButtonDown = true; %Get pointer position on figure's frame appDataStruct.pointerPositionOnButtonDown = getPointerPositionOnFigureFrame(); elseif strcmpi( get(appDataStruct.figureHandle, 'SelectionType'), 'alt' ) %Display contextual menu? elseif strcmpi( get(appDataStruct.figureHandle, 'SelectionType'), 'open' ) %Is pointer on any active area? toolArray = get(src, 'userdata'); nTools = length(toolArray); focusedTool = find([toolArray.focusOnThisTool] == 1); nextFocusedTool = 0; foundActive = false; while nextFocusedTool<=nTools-1 && foundActive == false nextFocusedTool = nextFocusedTool+1; appDataStructAux = appDataStruct; appDataStruct = initializeToolStruct( toolArray(nextFocusedTool) ); getPointerArea(); if ~strcmp( appDataStruct.pointerArea, 'none') foundActive = true; end end if foundActive == true %Switch focus to next magnifier instance on the current figure appDataStruct = initializeToolStruct( toolArray(nextFocusedTool) ); appDataStruct.focusOnThisTool = 1; toolArray(focusedTool).focusOnThisTool = 0; toolArray(nextFocusedTool).focusOnThisTool = 1; if not(isempty(toolArray(focusedTool).toolIdHandle)) set(toolArray(focusedTool).toolIdHandle,'BackgroundColor', 'black', 'Color', 'white'); set(toolArray(nextFocusedTool).toolIdHandle,'BackgroundColor', 'red', 'Color', 'white'); end set( src, 'UserData', toolArray ); else appDataStruct = appDataStructAux; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: ButtonUpCallback % % PURPOSE: Service routine to ButtonUp event. % % INPUT ARGUMENTS: % % OUTPUT ARGUMENTS: % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ButtonUpCallback(src,eventdata) global appDataStruct if isempty(appDataStruct) return; end % if strcmp(appDataStruct.pointerArea, 'insideMagnifier') % %Refresh zooming on secondary axis, based on magnifier position and extend % refreshSecondaryAxisLimits(); % end appDataStruct.ButtonDown = false; toolArray = get(src, 'userdata'); focusedTool = find([toolArray.focusOnThisTool] == 1); toolArray(focusedTool).ButtonDown = false; set(src, 'userdata', toolArray); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: DeleteCallback % % PURPOSE: Service routine to Delete event. % % INPUT ARGUMENTS: % % OUTPUT ARGUMENTS: % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function DeleteCallback(src,eventdata) global appDataStruct; if isempty(appDataStruct) return; end toolArray = get(src, 'UserData'); %Recover old callback handles from the first instance set( src, 'WindowButtonDownFcn', toolArray(1).figureOldWindowButtonDownFcn ); set( src, 'WindowButtonUpFcn', toolArray(1).figureOldWindowButtonUpFcn ); set( src, 'WindowButtonMotionFcn', toolArray(1).figureOldWindowButtonMotionFcn ); set( src, 'KeyPressFcn', toolArray(1).figureOldKeyPressFcn ); set( src, 'DeleteFcn', toolArray(1).figureOldDeleteFcn ); set( src, 'ResizeFcn', toolArray(1).figureOldResizeFcn ); %Clear global variable when figure is closed clear global appDataStructuct; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: getPointerPositionOnFigureFrame % % PURPOSE: determine if the position of the mouse pointer on the figure frame, in pixels. % % INPUT ARGUMENTS: % none % OUTPUT ARGUMENTS: % pointerPositionOnFigureFrame [double 1x2]: (X Y) % position % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function pointerPositionOnFigureFrame = getPointerPositionOnFigureFrame() global appDataStruct if isempty(appDataStruct) return; end %Get position of mouse pointer on screen defaultUnits = get(appDataStruct.figureHandle,'Units'); set(appDataStruct.figureHandle, 'Units', 'pixels'); pointerPositionOnFigureFrame = get(appDataStruct.figureHandle,'CurrentPoint'); set(appDataStruct.figureHandle, 'Units', defaultUnits); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: getPointerArea % % PURPOSE: determine if the mouse pointer is on an active area. Change % pointer image if this is the case, and communicate the status. % % INPUT ARGUMENTS: % appDataStructuct [struct 1x1]: global variable % OUTPUT ARGUMENTS: % change image of pointer (ACTION) % appDataStructuct.pointerArea: ID of the active area % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function getPointerArea() global appDataStruct if isempty(appDataStruct) return; end %Get current pointer position on figure frame pointerPositionOnFigureFrame = getPointerPositionOnFigureFrame(); %Get current secondaryAxes position secondaryAxesPosition = getSecondaryAxesPositionInPixels(); %Get current magnifier position magnifierPosition = getMagnifierPositionInPixels(); %If mouse pointer on the secondary axis if pointerPositionOnFigureFrame(1)>=secondaryAxesPosition(1) &&... pointerPositionOnFigureFrame(1)<=secondaryAxesPosition(1)+secondaryAxesPosition(3) &&... pointerPositionOnFigureFrame(2)>=secondaryAxesPosition(2) &&... pointerPositionOnFigureFrame(2)<=secondaryAxesPosition(2)+secondaryAxesPosition(4) %Pointer inside secondary axis set(appDataStruct.figureHandle, 'Pointer', 'fleur'); appDataStruct.pointerArea = 'insideSecondaryAxis'; elseif pointerPositionOnFigureFrame(1)>=magnifierPosition(1) &&... pointerPositionOnFigureFrame(1)<=magnifierPosition(1)+magnifierPosition(3) &&... pointerPositionOnFigureFrame(2)>=magnifierPosition(2) &&... pointerPositionOnFigureFrame(2)<=magnifierPosition(2)+magnifierPosition(4) %Pointer inside magnifier set(appDataStruct.figureHandle, 'Pointer', 'fleur'); appDataStruct.pointerArea = 'insideMagnifier'; else %Otherwise set(appDataStruct.figureHandle, 'Pointer', 'arrow'); appDataStruct.pointerArea = 'none'; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: getFigurePositionInPixels % % PURPOSE: obtain the position and size of the figure, relative to the % lower left corner of the screen, in pixels. % % INPUT ARGUMENTS: % none % OUTPUT ARGUMENTS: % position [double 1x4]: % X of lower left corner of the figure frame % Y of lower left corner of the figure frame % Width of the figure frame % Height of the figure frame % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function position = getFigurePositionInPixels() global appDataStruct if isempty(appDataStruct) return; end defaultUnits = get(appDataStruct.figureHandle,'Units'); set(appDataStruct.figureHandle,'Units', 'pixels'); position = get(appDataStruct.figureHandle,'Position'); %pixels [ low bottom width height] set(appDataStruct.figureHandle,'Units', defaultUnits); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: getMainAxesPositionInPixels % % PURPOSE: obtain the position and size of the main axes, relative to the % lower left corner of the figure, in pixels. This fucntion locates the % lower-left corner of the displayed axes, accounting for all conditions of % DataAspectRatio and PlotBoxAspectRatio. % % INPUT ARGUMENTS: % none % OUTPUT ARGUMENTS: % position [double 1x4]: % X of lower left corner of the axis frame % Y of lower left corner of the axis frame % Width of the axis frame % Height of the axis frame % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function position = getMainAxesPositionInPixels() global appDataStruct if isempty(appDataStruct) position = []; return; end %Characterize mainAxes in axes units mainAxisXLim = get( appDataStruct.mainAxesHandle, 'XLim' ); mainAxisYLim = get( appDataStruct.mainAxesHandle, 'YLim' ); spanX = determineSpan(mainAxisXLim(1), mainAxisXLim(2) ); spanY = determineSpan(mainAxisYLim(1), mainAxisYLim(2)); %Capture default units of mainAxes, and fix units to 'pixels' defaultUnits = get(appDataStruct.mainAxesHandle,'Units'); set(appDataStruct.mainAxesHandle, 'Units', 'pixels'); %Obtain values in 'pixels' mainAxesPosition = get(appDataStruct.mainAxesHandle, 'Position'); dataAspectRatioMode = get(appDataStruct.mainAxesHandle, 'DataAspectRatioMode'); dataAspectRatio = get(appDataStruct.mainAxesHandle, 'DataAspectRatio'); plotBoxAspectRatioMode = get(appDataStruct.mainAxesHandle, 'PlotBoxAspectRatioMode'); plotBoxAspectRatio = get(appDataStruct.mainAxesHandle, 'PlotBoxAspectRatio'); %Determine correction values dataAspectRatioLimits = (spanX/dataAspectRatio(1))/(spanY/dataAspectRatio(2)); plotBoxAspectRatioRelation = plotBoxAspectRatio(1)/plotBoxAspectRatio(2); mainAxesRatio = mainAxesPosition(3)/mainAxesPosition(4); %Id DataAspectRatio to auto and PlotBoxAspectRatio to auto if ~strcmpi( dataAspectRatioMode, 'manual') && ~strcmpi( plotBoxAspectRatioMode, 'manual') %Recover default units of mainAxes set(appDataStruct.mainAxesHandle,'Units', defaultUnits); %Obtain 'real' position from a temporal axes temporalAxes = axes('Visible', 'off'); set(temporalAxes, 'Units', 'pixels'); set(temporalAxes, 'Position', mainAxesPosition); position = get(temporalAxes, 'Position'); delete(temporalAxes); return; end %If DataAspectRatio to manual if strcmpi( dataAspectRatioMode, 'manual') if dataAspectRatioLimits <= mainAxesRatio position(4) = mainAxesPosition(4); position(3) = mainAxesPosition(4) * dataAspectRatioLimits; position(2) = mainAxesPosition(2); position(1) = mainAxesPosition(1) + (mainAxesPosition(3) - position(3))/2; else position(1) = mainAxesPosition(1); position(3) = mainAxesPosition(3); position(4) = mainAxesPosition(3)/dataAspectRatioLimits; position(2) = mainAxesPosition(2) + (mainAxesPosition(4) - position(4))/2; end elseif strcmpi( plotBoxAspectRatioMode, 'manual') % Or PlotBoxAspectRatio to manual if plotBoxAspectRatioRelation <= mainAxesRatio position(4) = mainAxesPosition(4); position(3) = mainAxesPosition(4) * plotBoxAspectRatioRelation; position(2) = mainAxesPosition(2); position(1) = mainAxesPosition(1) + (mainAxesPosition(3) - position(3))/2; else position(1) = mainAxesPosition(1); position(3) = mainAxesPosition(3); position(4) = mainAxesPosition(3)/plotBoxAspectRatioRelation; position(2) = mainAxesPosition(2) + (mainAxesPosition(4) - position(4))/2; end end %Recover default units of mainAxes set(appDataStruct.mainAxesHandle, 'Units', defaultUnits); %Obtain 'real' position from a temporal axes temporalAxes = axes('Visible', 'off'); set(temporalAxes, 'Units', 'pixels'); set(temporalAxes, 'Position', position ); position = get(temporalAxes, 'Position'); delete(temporalAxes); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: getMagnifierPositionInPixels % % PURPOSE: obtain the position (of the lower left corner) and size of the % magnifier, relative to the lower left corner of the figure, in pixels. % % INPUT ARGUMENTS: % none % OUTPUT ARGUMENTS: % position [double 1x4]: % X of lower left corner of the magnifier % Y of lower left corner of the magnifier % Width of the magnifier % Height of the magnifier % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function position = getMagnifierPositionInPixels() global appDataStruct if isempty(appDataStruct) return; end; defaultUnits = get(appDataStruct.magnifierHandle, 'Units'); set(appDataStruct.magnifierHandle, 'Units', 'pixels'); position = get(appDataStruct.magnifierHandle, 'Position'); set(appDataStruct.magnifierHandle, 'Units', defaultUnits ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: getSecondaryAxesPositionInPixels % % PURPOSE: obtain the position and size of the secondary axis, relative to the % lower left corner of the figure, in pixels. Includes legends and axes % numbering % % INPUT ARGUMENTS: % none % OUTPUT ARGUMENTS: % position [double 1x4]: % X of lower left corner of the axis frame % Y of lower left corner of the axis frame % Width of the axis frame % Height of the axis frame % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function position = getSecondaryAxesPositionInPixels() global appDataStruct if isempty(appDataStruct) return; end defaultUnits = get(appDataStruct.secondaryAxesHandle,'Units'); set(appDataStruct.secondaryAxesHandle,'Units', 'pixels'); position = get(appDataStruct.secondaryAxesHandle,'Position'); %[ left bottom width height] set(appDataStruct.secondaryAxesHandle,'Units', defaultUnits); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: setSecondaryAxesPositionInPixels % % PURPOSE: fix the position and size of the secondary axis, relative to the % lower left corner of the figure, in pixels. % % INPUT ARGUMENTS: % position [double 1x4]: % X of lower left corner of the axis frame % Y of lower left corner of the axis frame % Width of the axis frame % Height of the axis frame % OUTPUT ARGUMENTS: % none % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function setSecondaryAxesPositionInPixels( position ) global appDataStruct if isempty(appDataStruct) return; end %Get position of secondary axes defaultUnits = get(appDataStruct.secondaryAxesHandle,'Units'); set(appDataStruct.secondaryAxesHandle, 'Units', 'pixels'); set( appDataStruct.secondaryAxesHandle,... 'Position', [... position(1),... position(2),... position(3),... position(4)... ]... ); % tightInset = get( appDataStruct.secondaryAxes.handle, 'TightInset' ); set(appDataStruct.secondaryAxesHandle,'Units', defaultUnits); %Update appDataStruct appDataStruct.secondaryAxesPosition = getSecondaryAxesPositionInPixels(); %Update 'userdata' toolArray = get(appDataStruct.figureHandle, 'userdata'); if ~isempty(toolArray) focusedTool = find([toolArray.focusOnThisTool] == 1); toolArray(focusedTool).secondaryAxesPosition = appDataStruct.secondaryAxesPosition; set(appDataStruct.figureHandle, 'userdata', toolArray); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: setMagnifierPositionInPixels % % PURPOSE: fix the position and size of the magnifier, relative to the % lower left corner of the figure, in pixels. % % INPUT ARGUMENTS: % position [double 1x4]: % X of lower left corner of the magnifier % Y of lower left corner of the magnifier % Width of the magnifier frame % Height of the magnifier frame % OUTPUT ARGUMENTS: % none % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function setMagnifierPositionInPixels( position ) global appDataStruct if isempty(appDataStruct) return; end %Limit position of magnifier within the main axes mainAxesPosition = getMainAxesPositionInPixels(); if position(1)<mainAxesPosition(1) position(1) = mainAxesPosition(1); end if position(1)+position(3)>mainAxesPosition(1)+mainAxesPosition(3) position(1) = mainAxesPosition(1)+mainAxesPosition(3)-position(3); end if position(2)<mainAxesPosition(2) position(2) = mainAxesPosition(2); end if position(2)+position(4)>mainAxesPosition(2)+mainAxesPosition(4) position(2) = mainAxesPosition(2)+mainAxesPosition(4)-position(4); end %Create of set magnifier if isempty(appDataStruct.magnifierHandle) if strcmpi(appDataStruct.magnifierShape, 'rectangle') appDataStruct.magnifierHandle = ... annotation( 'rectangle',... 'Units', 'pixels',... 'Position', position,... 'LineWidth', appDataStruct.globalEdgeWidth,... 'LineStyle','-',... 'EdgeColor', appDataStruct.globalEdgeColor... ); end if strcmpi(appDataStruct.magnifierShape, 'ellipse') appDataStruct.magnifierHandle = ... annotation( 'ellipse',... 'Units', 'pixels',... 'Position', position,... 'LineWidth', appDataStruct.globalEdgeWidth,... 'LineStyle','-',... 'EdgeColor', appDataStruct.globalEdgeColor... ); end else set( appDataStruct.magnifierHandle,... 'Position', position,... 'LineWidth', appDataStruct.globalEdgeWidth,... 'EdgeColor', appDataStruct.globalEdgeColor ); end %Update appDataStruct appDataStruct.magnifierPosition = getMagnifierPositionInPixels(); %Update 'userdata' toolArray = get(appDataStruct.figureHandle, 'userdata'); if ~isempty(toolArray) focusedTool = find([toolArray.focusOnThisTool] == 1); toolArray(focusedTool).magnifierPosition = appDataStruct.magnifierPosition; set(appDataStruct.figureHandle, 'userdata', toolArray); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: refreshMagnifierToSecondaryAxesLink % % PURPOSE: Updates the line connection between the magnifier and the secondary axes. % % INPUT ARGUMENTS: % % OUTPUT ARGUMENTS: % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function refreshMagnifierToSecondaryAxesLink() global appDataStruct; if isempty(appDataStruct) return; end %Don't display link if not requestred linkStyle = appDataStruct.linkDisplayStyle; if strcmpi( linkStyle(1), 'none') return; end %Get position and size of figure in pixels figurePosition = getFigurePositionInPixels(); %Get position and size of secondary axes in pixels secondaryAxesPosition = getSecondaryAxesPositionInPixels(); defaultUnits = get(appDataStruct.secondaryAxesHandle, 'Units'); set(appDataStruct.secondaryAxesHandle, 'Units', 'pixels'); tightInset = get(appDataStruct.secondaryAxesHandle, 'TightInset'); set(appDataStruct.secondaryAxesHandle, 'Units', defaultUnits); %Get position and size of secondary axes in pixels magnifierPosition = getMagnifierPositionInPixels(); if strcmpi( linkStyle, 'straight') %Magnifier Hot points magnifierHotPoints = [... magnifierPosition(1) + magnifierPosition(3)/2 magnifierPosition(2);... magnifierPosition(1) + magnifierPosition(3) magnifierPosition(2)+magnifierPosition(4)/2;... magnifierPosition(1) + magnifierPosition(3)/2 magnifierPosition(2)+magnifierPosition(4);... magnifierPosition(1) magnifierPosition(2)+magnifierPosition(4)/2;... ]; %Secondary axes Hot points secondaryAxesHotPoints = [... secondaryAxesPosition(1) + secondaryAxesPosition(3)/2 secondaryAxesPosition(2) - tightInset(2) - 2;... secondaryAxesPosition(1) + secondaryAxesPosition(3) secondaryAxesPosition(2)+secondaryAxesPosition(4)/2;... secondaryAxesPosition(1) + secondaryAxesPosition(3)/2 secondaryAxesPosition(2)+secondaryAxesPosition(4);... secondaryAxesPosition(1) - tightInset(1) - 2 secondaryAxesPosition(2)+secondaryAxesPosition(4)/2;... ]; %Minimize distance between hot spots L1 = size(magnifierHotPoints, 1); L2 = size(secondaryAxesHotPoints, 1); [iMagnifierHotPoints iSecondaryAxesHotPoints] = meshgrid(1:L1, 1:L2); D2 = ( magnifierHotPoints(iMagnifierHotPoints(:),1) - secondaryAxesHotPoints(iSecondaryAxesHotPoints(:),1) ).^2 + ... ( magnifierHotPoints(iMagnifierHotPoints(:),2) - secondaryAxesHotPoints(iSecondaryAxesHotPoints(:),2) ).^2; [C,I] = sort( D2, 'ascend' ); X(1) = magnifierHotPoints(iMagnifierHotPoints(I(1)),1); Y(1) = magnifierHotPoints(iMagnifierHotPoints(I(1)),2); X(2) = secondaryAxesHotPoints(iSecondaryAxesHotPoints(I(1)),1); Y(2) = secondaryAxesHotPoints(iSecondaryAxesHotPoints(I(1)),2); %Plot/update line if isempty(appDataStruct.linkHandle) appDataStruct.linkHandle = annotation( 'line', X/figurePosition(3), Y/figurePosition(4),... 'LineWidth', appDataStruct.globalEdgeWidth,... 'Color', appDataStruct.globalEdgeColor ); else set(appDataStruct.linkHandle, 'X', X/figurePosition(3), 'Y', Y/figurePosition(4),... 'LineWidth', appDataStruct.globalEdgeWidth,... 'Color', appDataStruct.globalEdgeColor ); end end if strcmpi( linkStyle, 'edges') %Magnifier Hot points magnifierHotPoints = [... magnifierPosition(1) - 3 magnifierPosition(2);... magnifierPosition(1) + magnifierPosition(3) magnifierPosition(2);... magnifierPosition(1) + magnifierPosition(3) magnifierPosition(2)+magnifierPosition(4);... magnifierPosition(1) - 3 magnifierPosition(2)+magnifierPosition(4)... ]; %Secondary axes Hot points secondaryAxesHotPoints = [... secondaryAxesPosition(1) secondaryAxesPosition(2);... secondaryAxesPosition(1) + secondaryAxesPosition(3) secondaryAxesPosition(2);... secondaryAxesPosition(1) + secondaryAxesPosition(3) secondaryAxesPosition(2)+secondaryAxesPosition(4);... secondaryAxesPosition(1) secondaryAxesPosition(2)+secondaryAxesPosition(4)... ]; for i=1:4 X(1) = magnifierHotPoints(i,1); Y(1) = magnifierHotPoints(i,2); X(2) = secondaryAxesHotPoints(i,1); Y(2) = secondaryAxesHotPoints(i,2); %If intersection with secondary Axes bottom edge % intersectionPoint = intersectionPointInPixels(... % [X(1) Y(1) X(2) Y(2)], ... % [ secondaryAxesPosition(1)... % secondaryAxesPosition(2)... % secondaryAxesPosition(1)+secondaryAxesPosition(3)... % secondaryAxesPosition(2) ]... % ); % if ~isempty(intersectionPoint) % D2_1 = (X(1)-X(2))^2 + (Y(1)-Y(2))^2; % D2_2 = (X(1)-intersectionPoint(1))^2 + (Y(1)-intersectionPoint(2))^2; % if D2_2<D2_1 % %link to intersecting point % X(2) = intersectionPoint(1); % Y(2) = intersectionPoint(2); % end % end % % %If intersection with secondary Axes top edge % intersectionPoint = intersectionPointInPixels(... % [X(1) Y(1) X(2) Y(2)], ... % [ secondaryAxesPosition(1)... % secondaryAxesPosition(2)+secondaryAxesPosition(4)... % secondaryAxesPosition(1)+secondaryAxesPosition(3)... % secondaryAxesPosition(2)+secondaryAxesPosition(4) ]... % ); % if ~isempty(intersectionPoint) % D2_1 = (X(1)-X(2))^2 + (Y(1)-Y(2))^2; % D2_2 = (X(1)-intersectionPoint(1))^2 + (Y(1)-intersectionPoint(2))^2; % if D2_2<D2_1 % %link to intersecting point % X(2) = intersectionPoint(1); % Y(2) = intersectionPoint(2); % end % end % % %If intersection with secondary Axes left edge % intersectionPoint = intersectionPointInPixels(... % [X(1) Y(1) X(2) Y(2)], ... % [ secondaryAxesPosition(1)... % secondaryAxesPosition(2)... % secondaryAxesPosition(1)... % secondaryAxesPosition(2)+secondaryAxesPosition(4) ]... % ); % if ~isempty(intersectionPoint) % D2_1 = (X(1)-X(2))^2 + (Y(1)-Y(2))^2; % D2_2 = (X(1)-intersectionPoint(1))^2 + (Y(1)-intersectionPoint(2))^2; % if D2_2<D2_1 % %link to intersecting point % X(2) = intersectionPoint(1); % Y(2) = intersectionPoint(2); % end % end % % %If intersection with secondary Axes right edge % intersectionPoint = intersectionPointInPixels(... % [X(1) Y(1) X(2) Y(2)], ... % [ secondaryAxesPosition(1)+secondaryAxesPosition(3)... % secondaryAxesPosition(2)... % secondaryAxesPosition(1)+secondaryAxesPosition(3)... % secondaryAxesPosition(2)+secondaryAxesPosition(4) ]... % ); % if ~isempty(intersectionPoint) % D2_1 = (X(1)-X(2))^2 + (Y(1)-Y(2))^2; % D2_2 = (X(1)-intersectionPoint(1))^2 + (Y(1)-intersectionPoint(2))^2; % if D2_2<D2_1 % %link to intersecting point % X(2) = intersectionPoint(1); % Y(2) = intersectionPoint(2); % end % end %Plot/update line if isempty( appDataStruct.linkHandle ) newlinkHandle = annotation( 'line', X/figurePosition(3), Y/figurePosition(4),... 'LineWidth', appDataStruct.globalEdgeWidth,... 'LineStyle', ':',... 'Color', appDataStruct.globalEdgeColor ); linkHandle = appDataStruct.linkHandle; appDataStruct.linkHandle = [linkHandle newlinkHandle]; else linkHandle = appDataStruct.linkhandle; set( linkHandle(i), 'X', X/figurePosition(3), 'Y', Y/figurePosition(4),... 'LineWidth', appDataStruct.globalEdgeWidth,... 'Color', appDataStruct.globalEdgeColor ); end end end if strcmpi( linkStyle, 'elbow') %Magnifier Hot points magnifierHotPoints = [... magnifierPosition(1) + magnifierPosition(3)/2 magnifierPosition(2);... magnifierPosition(1) + magnifierPosition(3) magnifierPosition(2)+magnifierPosition(4)/2;... magnifierPosition(1) + magnifierPosition(3)/2 magnifierPosition(2)+magnifierPosition(4);... magnifierPosition(1) magnifierPosition(2)+magnifierPosition(4)/2;... ]; %Secondary axes Hot points secondaryAxesHotPoints = [... secondaryAxesPosition(1) + secondaryAxesPosition(3)/2 secondaryAxesPosition(2) - tightInset(2) - 2;... secondaryAxesPosition(1) + secondaryAxesPosition(3) secondaryAxesPosition(2)+secondaryAxesPosition(4)/2;... secondaryAxesPosition(1) + secondaryAxesPosition(3)/2 secondaryAxesPosition(2)+secondaryAxesPosition(4);... secondaryAxesPosition(1) - tightInset(1) - 2 secondaryAxesPosition(2)+secondaryAxesPosition(4)/2;... ]; %Allowed connections % iMagnifierHotPoints(1) = 1; % iSecondaryAxesHotPoints(1) = 4; % iMagnifierHotPoints(2) = 1; % iSecondaryAxesHotPoints(2) = 2; % iMagnifierHotPoints(3) = 2; % iSecondaryAxesHotPoints(3) = 3; % iMagnifierHotPoints(4) = 2; % iSecondaryAxesHotPoints(4) = 1; % iMagnifierHotPoints(5) = 3; % iSecondaryAxesHotPoints(5) = 4; % iMagnifierHotPoints(6) = 3; % iSecondaryAxesHotPoints(6) = 2; % iMagnifierHotPoints(7) = 4; % iSecondaryAxesHotPoints(7) = 1; % iMagnifierHotPoints(8) = 4; % iSecondaryAxesHotPoints(8) = 3; % iMagnifierHotPoints(9) = 1; % iSecondaryAxesHotPoints(9) = 3; % iMagnifierHotPoints(10) = 2; % iSecondaryAxesHotPoints(10) = 4; % iMagnifierHotPoints(11) = 3; % iSecondaryAxesHotPoints(11) = 1; % iMagnifierHotPoints(12) = 4; % iSecondaryAxesHotPoints(12) = 2; %Minimize distance between hot spots L1 = size(magnifierHotPoints, 1); L2 = size(secondaryAxesHotPoints, 1); [iMagnifierHotPoints iSecondaryAxesHotPoints] = meshgrid(1:L1, 1:L2); D2 = ( magnifierHotPoints(iMagnifierHotPoints(:),1) - secondaryAxesHotPoints(iSecondaryAxesHotPoints(:),1) ).^2 + ... ( magnifierHotPoints(iMagnifierHotPoints(:),2) - secondaryAxesHotPoints(iSecondaryAxesHotPoints(:),2) ).^2; [C,I] = sort( D2, 'ascend' ); X(1) = magnifierHotPoints(iMagnifierHotPoints(I(1)),1); Y(1) = magnifierHotPoints(iMagnifierHotPoints(I(1)),2); X(2) = secondaryAxesHotPoints(iSecondaryAxesHotPoints(I(1)),1); Y(2) = secondaryAxesHotPoints(iSecondaryAxesHotPoints(I(1)),2); %Plot/update line if isempty( appDataStruct.linkHandle ) newlinkHandle = annotation( 'line', X/figurePosition(3), Y/figurePosition(4),... 'LineWidth', appDataStruct.globalEdgeWidth,... 'Color', appDataStruct.globalEdgeColor ); linkHandle = appDataStruct.linkHandle; appDataStruct.linkHandle = [linkHandle newlinkHandle]; else linkHandle = appDataStruct.linkhandle; set( linkHandle, 'X', X/figurePosition(3), 'Y', Y/figurePosition(4),... 'LineWidth', appDataStruct.globalEdgeWidth,... 'Color', appDataStruct.globalEdgeColor ); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: intersectionPointInPixels % % PURPOSE: Computes constrained intersection of two lines in pixels, on the 2D space % % INPUT ARGUMENTS: % line1 [double 1x4]: [Xstart Ystart Xend Yend] % line2 [double 1x4]: [Xstart Ystart Xend Yend] % % OUTPUT ARGUMENTS: % intersectionPont [double 1x2]: [X Y] intersection % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function intersectionPoint = intersectionPointInPixels( line1, line2) %Cartessian caracterization of line 1 X1(1) = line1(1); Y1(1) = line1(2); X1(2) = line1(3); Y1(2) = line1(4); a1 = (Y1(2) - Y1(1)) / (X1(2) - X1(1)); b1 = Y1(1) - X1(1)*a1; %Cartessian caracterization of line 2 X2(1) = line2(1); Y2(1) = line2(2); X2(2) = line2(3); Y2(2) = line2(4); a2 = (Y2(2) - Y2(1)) / (X2(2) - X2(1)); b2 = Y2(1) - X2(1)*a2; %Intersection if isfinite(a1) && isfinite(a2) intersectionPoint(1) = (b2-b1) / (a1-a2); intersectionPoint(2) = intersectionPoint(1)*a1 + b1; end %Pathologic case 1 (line2 x=constant) if isfinite(a1) && ~isfinite(a2) intersectionPoint(1) = X2(1); intersectionPoint(2) = intersectionPoint(1)*a1 + b1; end %Pathologic case 2 (line1 x=constant) if ~isfinite(a1) && isfinite(a2) intersectionPoint(1) = X1(1); intersectionPoint(2) = intersectionPoint(1)*a2 + b2; end if intersectionPoint(1)<min([X1(1) X2(1)]) ||... intersectionPoint(1)>max([X1(2) X2(2)]) ||... intersectionPoint(2)<min([Y1(1) Y2(1)]) ||... intersectionPoint(2)>max([Y1(2) Y2(2)]) intersectionPoint = []; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: computeSecondaryAxesDefaultPosition % % PURPOSE: obtain the default position and size of the secondary axis, relative to the % lower left corner of the figure, in pixels. Includes legends and axes % numbering % % INPUT ARGUMENTS: % none % OUTPUT ARGUMENTS: % position [double 1x4]: % X of lower left corner of the axis frame % Y of lower left corner of the axis frame % Width of the axis frame % Height of the axis frame % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function defaultPosition = computeSecondaryAxesDefaultPosition() global appDataStruct if isempty(appDataStruct) return; end; % If image, defualt aspect ratio of magnifier and secondary axes to [1 1] childHandle = get(appDataStruct.mainAxesHandle, 'Children'); plotFlag = ~isempty( find(strcmpi(get(childHandle, 'Type'), 'line'),1) ); imageFlag = ~isempty( find(strcmpi(get(childHandle, 'Type'), 'image'),1) ); %Get position and size of main Axis (left & bottom relative to figure frame) mainAxesPosition = getMainAxesPositionInPixels(); if plotFlag %Set initial position and size for secondary axis secondaryAxisPosition_W = mainAxesPosition(3)*0.3; secondaryAxisPosition_H = mainAxesPosition(4)*0.3; secondaryAxisPosition_X = mainAxesPosition(1)+mainAxesPosition(3)-secondaryAxisPosition_W-10; secondaryAxisPosition_Y = mainAxesPosition(2)+mainAxesPosition(4)-secondaryAxisPosition_H-10; else %Set initial position and size for secondary axis secondaryAxisPosition_W = mainAxesPosition(3)*0.3; secondaryAxisPosition_H = mainAxesPosition(4)*0.3; secondaryAxisPosition_X = mainAxesPosition(1)+mainAxesPosition(3)-secondaryAxisPosition_W-10; secondaryAxisPosition_Y = mainAxesPosition(2)+mainAxesPosition(4)-secondaryAxisPosition_H-10; end defaultPosition = [... secondaryAxisPosition_X... secondaryAxisPosition_Y... secondaryAxisPosition_W... secondaryAxisPosition_H... ]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: computeMagnifierDefaultPosition % % PURPOSE: obtain the default position and size of the magnifier, relative to the % lower left corner of the figure, in pixels. Includes legends and axes % numbering % % INPUT ARGUMENTS: % none % OUTPUT ARGUMENTS: % position [double 1x4]: % X of lower left corner of the rectangle % Y of lower left corner of the rectangle % Width of the rectangle % Height of the rectangle % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function defaultPosition = computeMagnifierDefaultPosition() global appDataStruct if isempty(appDataStruct) return; end; % If image, defualt aspect ratio of magnifier and secondary axes to [1 1] childHandle = get(appDataStruct.mainAxesHandle, 'Children'); plotFlag = ~isempty( find(strcmpi(get(childHandle, 'Type'), 'line'),1) ); imageFlag = ~isempty( find(strcmpi(get(childHandle, 'Type'), 'image'),1) ); %Set initial position and size of magnifying rectangle mainAxisXLim = get( appDataStruct.mainAxesHandle, 'XLim' ); mainAxisYLim = get( appDataStruct.mainAxesHandle, 'YLim' ); mainAxesPositionInPixels = getMainAxesPositionInPixels(); xMainAxisUnits2PixelsFactor = mainAxesPositionInPixels(3)/determineSpan( mainAxisXLim(1), mainAxisXLim(2) ); yMainAxisUnits2PixelsFactor = mainAxesPositionInPixels(4)/determineSpan( mainAxisYLim(1), mainAxisYLim(2) ); if plotFlag %Get main axis position and dimensions, in pixels magnifierPosition_W = determineSpan(mainAxisXLim(1), mainAxisXLim(2))*xMainAxisUnits2PixelsFactor*0.1; magnifierPosition_H = determineSpan(mainAxisYLim(1), mainAxisYLim(2))*yMainAxisUnits2PixelsFactor*0.3; magnifierPosition_X = determineSpan(mean(mainAxisXLim), mainAxisXLim(1))*xMainAxisUnits2PixelsFactor - magnifierPosition_W/2; magnifierPosition_Y = determineSpan(mean(mainAxisYLim), mainAxisYLim(1))*yMainAxisUnits2PixelsFactor - magnifierPosition_H/2; else %Get main axis position and dimensions, in pixels magnifierPosition_W = determineSpan(mainAxisXLim(1), mainAxisXLim(2))*xMainAxisUnits2PixelsFactor*0.1; magnifierPosition_H = determineSpan(mainAxisYLim(1), mainAxisYLim(2))*yMainAxisUnits2PixelsFactor*0.1; magnifierPosition_X = determineSpan(mean(mainAxisXLim), mainAxisXLim(1))*xMainAxisUnits2PixelsFactor - magnifierPosition_W/2; magnifierPosition_Y = determineSpan(mean(mainAxisYLim), mainAxisYLim(1))*yMainAxisUnits2PixelsFactor - magnifierPosition_H/2; end defaultPosition = [... magnifierPosition_X+mainAxesPositionInPixels(1)... magnifierPosition_Y+mainAxesPositionInPixels(2)... magnifierPosition_W... magnifierPosition_H... ]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: initializeToolStruct % % PURPOSE: Set value for default properties % % INPUT ARGUMENTS: % none % OUTPUT ARGUMENTS: % none % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function obj = initializeToolStruct(varargin) if nargin == 0 obj.toolId = []; obj.focusOnThisTool = true; obj.toolIdHandle = []; %figure obj.figureHandle = []; obj.figurePosition = []; obj.figureOldWindowButtonDownFcn = []; obj.figureOldWindowButtonUpFcn = []; obj.figureOldWindowButtonMotionFcn = []; obj.figureOldKeyPressFcn = []; obj.figureOldDeleteFcn = []; obj.figureOldResizeFcn = []; %main axes obj.mainAxesHandle = []; %magnifier obj.magnifierHandle = []; obj.magnifierPosition = []; obj.magnifierShape = 'rectangle'; %link obj.linkHandle = []; obj.linkDisplayStyle = 'straight'; %secondary axes obj.secondaryAxesHandle = []; obj.secondaryAxesFaceColor = 'white'; obj.secondaryAxesPosition = []; obj.secondaryAxesXLim = []; obj.secondaryAxesYLim = []; obj.secondaryAxesAdditionalZoomingFactor = [0 0]; %global obj.globalUnits = 'pixels'; obj.globalMode = 'interactive'; obj.globalEdgeWidth = 1; obj.globalEdgeColor = 'black'; obj.globalZoomMode = 'off'; %Temp obj.pointerArea = 'none'; obj.ButtonDown = false; obj.pointerPositionOnButtonDown = []; end if nargin == 1 && isstruct(varargin{1}) structIn = varargin{1}; if all(isfield(structIn, {'toolId','focusOnThisTool',... 'figureHandle', 'figurePosition', 'figureOldWindowButtonDownFcn',... 'figureOldWindowButtonUpFcn', 'figureOldWindowButtonMotionFcn',... 'figureOldKeyPressFcn', 'figureOldDeleteFcn', 'figureOldResizeFcn',... 'mainAxesHandle', 'magnifierHandle', 'magnifierPosition', ... 'magnifierShape', 'linkHandle', 'linkDisplayStyle', 'secondaryAxesHandle',... 'secondaryAxesFaceColor', 'secondaryAxesPosition', 'secondaryAxesXLim',... 'secondaryAxesYLim', 'secondaryAxesAdditionalZoomingFactor', ... 'globalUnits', 'globalMode', 'globalEdgeWidth', 'globalEdgeColor',... 'globalZoomMode', 'pointerArea', 'ButtonDown', 'pointerPositionOnButtonDown'})) else error('Input structure not recognized'); end obj = structIn; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NAME: updateToolId % % PURPOSE: Updated position and status of tool id % % INPUT ARGUMENTS: % toolArray structure of the tool in focus % OUTPUT ARGUMENTS: % none % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function toolArrayOut = updateToolId( toolArrayIn, toolNum, modeStr ) toolArrayOut = toolArrayIn; set(toolArrayOut.figureHandle, 'currentAxes', toolArrayOut.secondaryAxesHandle); if strcmp(modeStr, 'toggle') if isempty(toolArrayOut.toolIdHandle) xL = get(toolArrayOut.secondaryAxesHandle, 'XLim'); yL = get(toolArrayOut.secondaryAxesHandle, 'YLim'); toolArrayOut.toolIdHandle = text( (xL(2)+xL(1))/2, (yL(2)+yL(1))/2, num2str(toolNum)); set(toolArrayOut.toolIdHandle, 'FontSize', 30, 'FontWeight', 'bold' ); if toolArrayOut.focusOnThisTool set(toolArrayOut.toolIdHandle,'BackgroundColor', 'red', 'Color', 'white'); else set(toolArrayOut.toolIdHandle,'BackgroundColor', 'black', 'Color', 'white'); end else delete(toolArrayOut.toolIdHandle); toolArrayOut.toolIdHandle = []; end else if not(isempty(toolArrayOut.toolIdHandle)) xL = get(toolArrayOut.secondaryAxesHandle, 'XLim'); yL = get(toolArrayOut.secondaryAxesHandle, 'YLim'); set(toolArrayOut.toolIdHandle, 'Position', [(xL(2)+xL(1))/2, (yL(2)+yL(1))/2] ); if toolArrayOut.focusOnThisTool set(toolArrayOut.toolIdHandle,'BackgroundColor', 'red', 'Color', 'white'); else set(toolArrayOut.toolIdHandle,'BackgroundColor', 'black', 'Color', 'white'); end end end set(toolArrayOut.figureHandle, 'currentAxes', toolArrayOut.mainAxesHandle);
github
medooze/swig-master
member_pointer_runme.m
.m
swig-master/Examples/test-suite/octave/member_pointer_runme.m
922
utf_8
5d65cb03abdda4efc4dd89ee739e27b6
# Example using pointers to member functions member_pointer function check(what,expected,actual) if (expected != actual) error ("Failed: %s, Expected: %f, Actual: %f",what,expected,actual); endif end # Get the pointers area_pt = areapt; perim_pt = perimeterpt; # Create some objects s = Square(10); # Do some calculations check ("Square area ", 100.0, do_op(s,area_pt)); check ("Square perim", 40.0, do_op(s,perim_pt)); memberPtr = cvar.areavar; memberPtr = cvar.perimetervar; # Try the variables check ("Square area ", 100.0, do_op(s,cvar.areavar)); check ("Square perim", 40.0, do_op(s,cvar.perimetervar)); # Modify one of the variables cvar.areavar = perim_pt; check ("Square perimeter", 40.0, do_op(s,cvar.areavar)); # Try the constants memberPtr = AREAPT; memberPtr = PERIMPT; memberPtr = NULLPT; check ("Square area ", 100.0, do_op(s,AREAPT)); check ("Square perim", 40.0, do_op(s,PERIMPT));
github
medooze/swig-master
director_basic_runme.m
.m
swig-master/Examples/test-suite/octave/director_basic_runme.m
1,778
utf_8
7cc0b3cfcf243842955e597f2f9889f2
director_basic function self=OctFoo() global director_basic; self=subclass(director_basic.Foo()); self.ping=@OctFoo_ping; end function string=OctFoo_ping(self) string="OctFoo::ping()"; end a = OctFoo(); if (!strcmp(a.ping(),"OctFoo::ping()")) error(a.ping()) endif if (!strcmp(a.pong(),"Foo::pong();OctFoo::ping()")) error(a.pong()) endif b = director_basic.Foo(); if (!strcmp(b.ping(),"Foo::ping()")) error(b.ping()) endif if (!strcmp(b.pong(),"Foo::pong();Foo::ping()")) error(b.pong()) endif a = director_basic.A1(1); if (a.rg(2) != 2) error("failed"); endif function self=OctClass() global director_basic; self=subclass(director_basic.MyClass()); self.method=@OctClass_method; self.vmethod=@OctClass_vmethod; end function OctClass_method(self,vptr) self.cmethod = 7; end function out=OctClass_vmethod(self,b) b.x = b.x + 31; out=b; end b = director_basic.Bar(3); d = director_basic.MyClass(); c = OctClass(); cc = director_basic.MyClass_get_self(c); dd = director_basic.MyClass_get_self(d); bc = cc.cmethod(b); bd = dd.cmethod(b); cc.method(b); if (c.cmethod != 7) error("failed"); endif if (bc.x != 34) error("failed"); endif if (bd.x != 16) error("failed"); endif function self=OctMulti() global director_basic; self=subclass(director_basic.Foo(),director_basic.MyClass()); self.vmethod=@OctMulti_vmethod; self.ping=@OctMulti_ping; end function out=OctMulti_vmethod(self,b) b.x = b.x + 31; out=b; end function out=OctMulti_ping(self) out="OctFoo::ping()"; end a = 0; for i=0:100, octmult = OctMulti(); octmult.pong(); clear octmult endfor octmult = OctMulti(); p1 = director_basic.Foo_get_self(octmult); p2 = director_basic.MyClass_get_self(octmult); p1.ping(); p2.vmethod(bc);
github
medooze/swig-master
director_string_runme.m
.m
swig-master/Examples/test-suite/octave/director_string_runme.m
566
utf_8
d0a720bc282afbf1ac33203b567084f3
# do not dump Octave core if exist("crash_dumps_octave_core", "builtin") crash_dumps_octave_core(0); endif director_string function out=get_first(self) out = strcat(self.A.get_first()," world!"); end function process_text(self,string) self.A.process_text(string); self.smem = "hello"; end B=@(string) subclass(A(string),'get_first',@get_first,'process_text',@process_text); b = B("hello"); b.get(0); if (!strcmp(b.get_first(),"hello world!")) error(b.get_first()) endif b.call_process_func(); if (!strcmp(b.smem,"hello")) error(b.smem) endif
github
medooze/swig-master
overload_null_runme.m
.m
swig-master/Examples/test-suite/octave/overload_null_runme.m
945
utf_8
96d0d2a599a578a152484af795a6992b
# do not dump Octave core if exist("crash_dumps_octave_core", "builtin") crash_dumps_octave_core(0); endif overload_null function check(a, b) if (a != b) error("%i does not equal %i", a, b); endif end o = Overload(); x = X(); null = []; # NULL pointer check(1, o.byval1(x)); check(2, o.byval1(null)); check(3, o.byval2(null)); check(4, o.byval2(x)); check(5, o.byref1(x)); check(6, o.byref1(null)); check(7, o.byref2(null)); check(8, o.byref2(x)); check(9, o.byconstref1(x)); check(10, o.byconstref1(null)); check(11, o.byconstref2(null)); check(12, o.byconstref2(x)); # const pointer references check(13, o.byval1cpr(x)); check(14, o.byval1cpr(null)); check(15, o.byval2cpr(null)); check(16, o.byval2cpr(x)); # fwd class declaration check(17, o.byval1fwdptr(x)); check(18, o.byval1fwdptr(null)); check(19, o.byval2fwdptr(null)); check(20, o.byval2fwdptr(x)); check(21, o.byval1fwdref(x)); check(22, o.byval2fwdref(x));
github
medooze/swig-master
li_boost_shared_ptr_runme.m
.m
swig-master/Examples/test-suite/octave/li_boost_shared_ptr_runme.m
15,667
utf_8
4ba4347214279b5ab96617f27384b547
# do not dump Octave core if exist("crash_dumps_octave_core", "builtin") crash_dumps_octave_core(0); endif 1; li_boost_shared_ptr; function verifyValue(expected, got) if (expected ~= got) error("verify value failed.");% Expected: ", expected, " Got: ", got) end endfunction function verifyCount(expected, k) got = use_count(k); if (expected ~= got) error("verify use_count failed. Expected: %d Got: %d ", expected, got); end endfunction function runtest() li_boost_shared_ptr; # KTTODO this needs to be here at present. Global module failure? # simple shared_ptr usage - created in C++ k = Klass("me oh my"); val = k.getValue(); verifyValue("me oh my", val) verifyCount(1, k) # simple shared_ptr usage - not created in C++ k = factorycreate(); val = k.getValue(); verifyValue("factorycreate", val) verifyCount(1, k) # pass by shared_ptr k = Klass("me oh my"); kret = smartpointertest(k); val = kret.getValue(); verifyValue("me oh my smartpointertest", val) verifyCount(2, k) verifyCount(2, kret) # pass by shared_ptr pointer k = Klass("me oh my"); kret = smartpointerpointertest(k); val = kret.getValue(); verifyValue("me oh my smartpointerpointertest", val) verifyCount(2, k) verifyCount(2, kret) # pass by shared_ptr reference k = Klass("me oh my"); kret = smartpointerreftest(k); val = kret.getValue(); verifyValue("me oh my smartpointerreftest", val) verifyCount(2, k) verifyCount(2, kret) # pass by shared_ptr pointer reference k = Klass("me oh my"); kret = smartpointerpointerreftest(k); val = kret.getValue(); verifyValue("me oh my smartpointerpointerreftest", val) verifyCount(2, k) verifyCount(2, kret) # const pass by shared_ptr k = Klass("me oh my"); kret = constsmartpointertest(k); val = kret.getValue(); verifyValue("me oh my", val) verifyCount(2, k) verifyCount(2, kret) # const pass by shared_ptr pointer k = Klass("me oh my"); kret = constsmartpointerpointertest(k); val = kret.getValue(); verifyValue("me oh my", val) verifyCount(2, k) verifyCount(2, kret) # const pass by shared_ptr reference k = Klass("me oh my"); kret = constsmartpointerreftest(k); val = kret.getValue(); verifyValue("me oh my", val) verifyCount(2, k) verifyCount(2, kret) # pass by value k = Klass("me oh my"); kret = valuetest(k); val = kret.getValue(); verifyValue("me oh my valuetest", val) verifyCount(1, k) verifyCount(1, kret) # pass by pointer k = Klass("me oh my"); kret = pointertest(k); val = kret.getValue(); verifyValue("me oh my pointertest", val) verifyCount(1, k) verifyCount(1, kret) # pass by reference k = Klass("me oh my"); kret = reftest(k); val = kret.getValue(); verifyValue("me oh my reftest", val) verifyCount(1, k) verifyCount(1, kret) # pass by pointer reference k = Klass("me oh my"); kret = pointerreftest(k); val = kret.getValue(); verifyValue("me oh my pointerreftest", val) verifyCount(1, k) verifyCount(1, kret) # null tests #KTODO None not defined # k = None; # if (smartpointertest(k) ~= None) # error("return was not null") # end # if (smartpointerpointertest(k) ~= None) # error("return was not null") # end # if (smartpointerreftest(k) ~= None) # error("return was not null") # end # if (smartpointerpointerreftest(k) ~= None) # error("return was not null") # end # if (nullsmartpointerpointertest(None) ~= "null pointer") # error("not null smartpointer pointer") # end # # try: # # valuetest(k) # # error("Failed to catch null pointer") # # except ValueError: # # pass # if (pointertest(k) ~= None) # error("return was not null") # end # # try: # # reftest(k) # # error("Failed to catch null pointer") # # except ValueError: # # pass # $owner k = pointerownertest(); val = k.getValue(); verifyValue("pointerownertest", val) verifyCount(1, k) k = smartpointerpointerownertest(); val = k.getValue(); verifyValue("smartpointerpointerownertest", val) verifyCount(1, k) # //////////////////////////////// Derived class //////////////////////////////////////// # derived pass by shared_ptr k = KlassDerived("me oh my"); kret = derivedsmartptrtest(k); val = kret.getValue(); verifyValue("me oh my derivedsmartptrtest-Derived", val) verifyCount(2, k) verifyCount(2, kret) # derived pass by shared_ptr pointer k = KlassDerived("me oh my"); kret = derivedsmartptrpointertest(k); val = kret.getValue(); verifyValue("me oh my derivedsmartptrpointertest-Derived", val) verifyCount(2, k) verifyCount(2, kret) # derived pass by shared_ptr ref k = KlassDerived("me oh my"); kret = derivedsmartptrreftest(k); val = kret.getValue(); verifyValue("me oh my derivedsmartptrreftest-Derived", val) verifyCount(2, k) verifyCount(2, kret) # derived pass by shared_ptr pointer ref k = KlassDerived("me oh my"); kret = derivedsmartptrpointerreftest(k); val = kret.getValue(); verifyValue("me oh my derivedsmartptrpointerreftest-Derived", val) verifyCount(2, k) verifyCount(2, kret) # derived pass by pointer k = KlassDerived("me oh my"); kret = derivedpointertest(k); val = kret.getValue(); verifyValue("me oh my derivedpointertest-Derived", val) verifyCount(1, k) verifyCount(1, kret) # derived pass by ref k = KlassDerived("me oh my"); kret = derivedreftest(k); val = kret.getValue(); verifyValue("me oh my derivedreftest-Derived", val) verifyCount(1, k) verifyCount(1, kret) # //////////////////////////////// Derived and base class mixed //////////////////////////////////////// # pass by shared_ptr (mixed) k = KlassDerived("me oh my"); kret = smartpointertest(k); val = kret.getValue(); verifyValue("me oh my smartpointertest-Derived", val) verifyCount(2, k) verifyCount(2, kret) # pass by shared_ptr pointer (mixed) k = KlassDerived("me oh my"); kret = smartpointerpointertest(k); val = kret.getValue(); verifyValue("me oh my smartpointerpointertest-Derived", val) verifyCount(2, k) verifyCount(2, kret) # pass by shared_ptr reference (mixed) k = KlassDerived("me oh my"); kret = smartpointerreftest(k); val = kret.getValue(); verifyValue("me oh my smartpointerreftest-Derived", val) verifyCount(2, k) verifyCount(2, kret) # pass by shared_ptr pointer reference (mixed) k = KlassDerived("me oh my"); kret = smartpointerpointerreftest(k); val = kret.getValue(); verifyValue("me oh my smartpointerpointerreftest-Derived", val) verifyCount(2, k) verifyCount(2, kret) # pass by value (mixed) k = KlassDerived("me oh my"); kret = valuetest(k); val = kret.getValue(); verifyValue("me oh my valuetest", val) # note slicing verifyCount(1, k) verifyCount(1, kret) # pass by pointer (mixed) k = KlassDerived("me oh my"); kret = pointertest(k); val = kret.getValue(); verifyValue("me oh my pointertest-Derived", val) verifyCount(1, k) verifyCount(1, kret) # pass by ref (mixed) k = KlassDerived("me oh my"); kret = reftest(k); val = kret.getValue(); verifyValue("me oh my reftest-Derived", val) verifyCount(1, k) verifyCount(1, kret) # //////////////////////////////// Overloading tests //////////////////////////////////////// # Base class k = Klass("me oh my"); verifyValue(overload_rawbyval(k), "rawbyval") verifyValue(overload_rawbyref(k), "rawbyref") verifyValue(overload_rawbyptr(k), "rawbyptr") verifyValue(overload_rawbyptrref(k), "rawbyptrref") verifyValue(overload_smartbyval(k), "smartbyval") verifyValue(overload_smartbyref(k), "smartbyref") verifyValue(overload_smartbyptr(k), "smartbyptr") verifyValue(overload_smartbyptrref(k), "smartbyptrref") # Derived class k = KlassDerived("me oh my"); verifyValue(overload_rawbyval(k), "rawbyval") verifyValue(overload_rawbyref(k), "rawbyref") verifyValue(overload_rawbyptr(k), "rawbyptr") verifyValue(overload_rawbyptrref(k), "rawbyptrref") verifyValue(overload_smartbyval(k), "smartbyval") verifyValue(overload_smartbyref(k), "smartbyref") verifyValue(overload_smartbyptr(k), "smartbyptr") verifyValue(overload_smartbyptrref(k), "smartbyptrref") # 3rd derived class k = Klass3rdDerived("me oh my"); val = k.getValue(); verifyValue("me oh my-3rdDerived", val) verifyCount(1, k) val = test3rdupcast(k); verifyValue("me oh my-3rdDerived", val) verifyCount(1, k) # //////////////////////////////// Member variables //////////////////////////////////////// # smart pointer by value m = MemberVariables(); k = Klass("smart member value"); m.SmartMemberValue = k; val = k.getValue(); verifyValue("smart member value", val) verifyCount(2, k) kmember = m.SmartMemberValue; val = kmember.getValue(); verifyValue("smart member value", val) verifyCount(3, kmember) verifyCount(3, k) clear m verifyCount(2, kmember) verifyCount(2, k) # smart pointer by pointer m = MemberVariables(); k = Klass("smart member pointer"); m.SmartMemberPointer = k; val = k.getValue(); verifyValue("smart member pointer", val) verifyCount(1, k) kmember = m.SmartMemberPointer; val = kmember.getValue(); verifyValue("smart member pointer", val) verifyCount(2, kmember) verifyCount(2, k) clear m verifyCount(2, kmember) verifyCount(2, k) # smart pointer by reference m = MemberVariables(); k = Klass("smart member reference"); m.SmartMemberReference = k; val = k.getValue(); verifyValue("smart member reference", val) verifyCount(2, k) kmember = m.SmartMemberReference; val = kmember.getValue(); verifyValue("smart member reference", val) verifyCount(3, kmember) verifyCount(3, k) # The C++ reference refers to SmartMemberValue... kmemberVal = m.SmartMemberValue; val = kmember.getValue(); verifyValue("smart member reference", val) verifyCount(4, kmemberVal) verifyCount(4, kmember) verifyCount(4, k) clear m verifyCount(3, kmemberVal) verifyCount(3, kmember) verifyCount(3, k) # plain by value m = MemberVariables(); k = Klass("plain member value"); m.MemberValue = k; val = k.getValue(); verifyValue("plain member value", val) verifyCount(1, k) kmember = m.MemberValue; val = kmember.getValue(); verifyValue("plain member value", val) verifyCount(1, kmember) verifyCount(1, k) clear m verifyCount(1, kmember) verifyCount(1, k) # plain by pointer m = MemberVariables(); k = Klass("plain member pointer"); m.MemberPointer = k; val = k.getValue(); verifyValue("plain member pointer", val) verifyCount(1, k) kmember = m.MemberPointer; val = kmember.getValue(); verifyValue("plain member pointer", val) verifyCount(1, kmember) verifyCount(1, k) clear m verifyCount(1, kmember) verifyCount(1, k) # plain by reference m = MemberVariables(); k = Klass("plain member reference"); m.MemberReference = k; val = k.getValue(); verifyValue("plain member reference", val) verifyCount(1, k) kmember = m.MemberReference; val = kmember.getValue(); verifyValue("plain member reference", val) verifyCount(1, kmember) verifyCount(1, k) clear m verifyCount(1, kmember) verifyCount(1, k) # null member variables m = MemberVariables(); # shared_ptr by value k = m.SmartMemberValue; #KTODO None not defined # if (k ~= None) # error("expected null") # end # m.SmartMemberValue = None # k = m.SmartMemberValue # if (k ~= None) # error("expected null") # end # verifyCount(0, k) # # plain by value # # try: # # m.MemberValue = None # # error("Failed to catch null pointer") # # except ValueError: # # pass # # ////////////////////////////////// Global variables //////////////////////////////////////// # # smart pointer # kglobal = cvar.GlobalSmartValue # if (kglobal ~= None) # error("expected null") # end k = Klass("smart global value"); cvar.GlobalSmartValue = k; verifyCount(2, k) kglobal = cvar.GlobalSmartValue; val = kglobal.getValue(); verifyValue("smart global value", val) verifyCount(3, kglobal) verifyCount(3, k) verifyValue("smart global value", cvar.GlobalSmartValue.getValue()) #KTTODO cvar.GlobalSmartValue = None # plain value k = Klass("global value"); cvar.GlobalValue = k; verifyCount(1, k) kglobal = cvar.GlobalValue; val = kglobal.getValue(); verifyValue("global value", val) verifyCount(1, kglobal) verifyCount(1, k) verifyValue("global value", cvar.GlobalValue.getValue()) # try: # cvar.GlobalValue = None # error("Failed to catch null pointer") # except ValueError: # pass # plain pointer kglobal = cvar.GlobalPointer; #KTODO if (kglobal ~= None) #KTODO error("expected null") #KTODO end k = Klass("global pointer"); cvar.GlobalPointer = k; verifyCount(1, k) kglobal = cvar.GlobalPointer; val = kglobal.getValue(); verifyValue("global pointer", val) verifyCount(1, kglobal) verifyCount(1, k) #KTODO cvar.GlobalPointer = None # plain reference k = Klass("global reference"); cvar.GlobalReference = k; verifyCount(1, k) kglobal = cvar.GlobalReference; val = kglobal.getValue(); verifyValue("global reference", val) verifyCount(1, kglobal) verifyCount(1, k) # try: # cvar.GlobalReference = None # error("Failed to catch null pointer") # except ValueError: # pass # ////////////////////////////////// Templates //////////////////////////////////////// pid = PairIntDouble(10, 20.2); if (pid.baseVal1 ~= 20 || pid.baseVal2 ~= 40.4) error("Base values wrong") end if (pid.val1 ~= 10 || pid.val2 ~= 20.2) error("Derived Values wrong") end endfunction debug = false;%true; if (debug) fprintf( "Started\n" ) end cvar.debug_shared = debug; # Change loop count to run for a long time to monitor memory loopCount = 1; #5000 for i=0:loopCount runtest() end # Expect 1 instance - the one global variable (GlobalValue) #KTTODO next fails, possibly because we commented GlobalSmartValue=None #if (Klass.getTotal_count() ~= 1) # error("Klass.total_count=%d", Klass.getTotal_count()) #end wrapper_count = shared_ptr_wrapper_count() ; #KTTODO next fails as NOT_COUNTING not in octave name space, so we hard-wire it here #if (wrapper_count ~= NOT_COUNTING) if (wrapper_count ~= -123456) # Expect 1 instance - the one global variable (GlobalSmartValue) if (wrapper_count ~= 1) error("shared_ptr wrapper count=%s", wrapper_count) end end if (debug) fprintf( "Finished\n" ) end
github
medooze/swig-master
voidtest_runme.m
.m
swig-master/Examples/test-suite/octave/voidtest_runme.m
632
utf_8
8328758f24f7f57e3360e2e34ffae9c7
# do not dump Octave core if exist("crash_dumps_octave_core", "builtin") crash_dumps_octave_core(0); endif voidtest voidtest.globalfunc(); f = voidtest.Foo(); f.memberfunc(); voidtest.Foo_staticmemberfunc(); function fvoid() end try a = f.memberfunc(); catch end_try_catch try a = fvoid(); catch end_try_catch v1 = voidtest.vfunc1(f); v2 = voidtest.vfunc2(f); if (swig_this(v1) != swig_this(v2)) error("failed"); endif v3 = voidtest.vfunc3(v1); if (swig_this(v3) != swig_this(f)) error("failed"); endif v4 = voidtest.vfunc1(f); if (swig_this(v4) != swig_this(v1)) error("failed"); endif v3.memberfunc();
github
medooze/swig-master
director_detect_runme.m
.m
swig-master/Examples/test-suite/octave/director_detect_runme.m
654
utf_8
b67110f81021223aa13bcfcf1a6db401
director_detect global MyBar=@(val=2) subclass(director_detect.Bar(),'val',val,@get_value,@get_class,@just_do_it,@clone); function val=get_value(self) self.val = self.val + 1; val = self.val; end function ptr=get_class(self) global director_detect; self.val = self.val + 1; ptr=director_detect.A(); end function just_do_it(self) self.val = self.val + 1; end function ptr=clone(self) global MyBar; ptr=MyBar(self.val); end b = MyBar(); f = b.baseclass(); v = f.get_value(); a = f.get_class(); f.just_do_it(); c = b.clone(); vc = c.get_value(); if ((v != 3) || (b.val != 5) || (vc != 6)) error("Bad virtual detection") endif
github
medooze/swig-master
preproc_constants_runme.m
.m
swig-master/Examples/test-suite/octave/preproc_constants_runme.m
533
utf_8
917a1bdadc03d5ce92d7468e9c4c81b2
preproc_constants assert(CONST_INT1, 10) assert(CONST_DOUBLE3, 12.3) assert(CONST_BOOL1, true) assert(CONST_CHAR, 'x') assert(CONST_STRING1, "const string") # Test global constants can be seen within functions function test_global() global CONST_INT1 global CONST_DOUBLE3 global CONST_BOOL1 global CONST_CHAR global CONST_STRING1 assert(CONST_INT1, 10) assert(CONST_DOUBLE3, 12.3) assert(CONST_BOOL1, true) assert(CONST_CHAR, 'x') assert(CONST_STRING1, "const string") endfunction test_global
github
medooze/swig-master
director_classic_runme.m
.m
swig-master/Examples/test-suite/octave/director_classic_runme.m
2,521
utf_8
34c0a5c2bef2aca0089be422d83e3982
# do not dump Octave core if exist("crash_dumps_octave_core", "builtin") crash_dumps_octave_core(0); endif director_classic TargetLangPerson=@() subclass(Person(),'id',@(self) "TargetLangPerson"); TargetLangChild=@() subclass(Child(),'id',@(self) "TargetLangChild"); TargetLangGrandChild=@() subclass(GrandChild(),'id',@(self) "TargetLangGrandChild"); # Semis - don't override id() in target language TargetLangSemiPerson=@() subclass(Person()); TargetLangSemiChild=@() subclass(Child()); TargetLangSemiGrandChild=@() subclass(GrandChild()); # Orphans - don't override id() in C++ TargetLangOrphanPerson=@() subclass(OrphanPerson(),'id',@(self) "TargetLangOrphanPerson"); TargetLangOrphanChild=@() subclass(OrphanChild(),'id',@(self) "TargetLangOrphanChild"); function check(person,expected) global Caller; # Normal target language polymorphic call ret = person.id(); if (ret != expected) raise ("Failed. Received: " + ret + " Expected: " + expected); endif # Polymorphic call from C++ caller = Caller(); caller.setCallback(person); ret = caller.call(); if (ret != expected) error ("Failed. Received: " + ret + " Expected: " + expected); endif # Polymorphic call of object created in target language and passed to C++ and back again baseclass = caller.baseClass(); ret = baseclass.id(); if (ret != expected) error ("Failed. Received: " + ret + " Expected: " + expected); endif caller.resetCallback(); end person = Person(); check(person, "Person"); clear person; person = Child(); check(person, "Child"); clear person; person = GrandChild(); check(person, "GrandChild"); clear person; person = TargetLangPerson(); check(person, "TargetLangPerson"); clear person; person = TargetLangChild(); check(person, "TargetLangChild"); clear person; person = TargetLangGrandChild(); check(person, "TargetLangGrandChild"); clear person; # Semis - don't override id() in target language person = TargetLangSemiPerson(); check(person, "Person"); clear person; person = TargetLangSemiChild(); check(person, "Child"); clear person; person = TargetLangSemiGrandChild(); check(person, "GrandChild"); clear person; # Orphans - don't override id() in C++ person = OrphanPerson(); check(person, "Person"); clear person; person = OrphanChild(); check(person, "Child"); clear person; person = TargetLangOrphanPerson(); check(person, "TargetLangOrphanPerson"); clear person; person = TargetLangOrphanChild(); check(person, "TargetLangOrphanChild"); clear person;