plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
medooze/swig-master
cpp11_strongly_typed_enumerations_runme.m
.m
swig-master/Examples/test-suite/octave/cpp11_strongly_typed_enumerations_runme.m
9,095
utf_8
79292c56985d5d809f0dd6ca56afc4f7
cpp11_strongly_typed_enumerations function newvalue = enumCheck(actual, expected) if (actual != expected); error("Enum value mismatch. Expected: %d Actual: %d", expected, actual); endif newvalue = expected + 1; end val = 0; val = enumCheck(cpp11_strongly_typed_enumerations.Enum1_Val1, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum1_Val2, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum1_Val3, 13); val = enumCheck(cpp11_strongly_typed_enumerations.Enum1_Val4, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum1_Val5a, 13); val = enumCheck(cpp11_strongly_typed_enumerations.Enum1_Val6a, val); val = 0; val = enumCheck(cpp11_strongly_typed_enumerations.Enum2_Val1, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum2_Val2, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum2_Val3, 23); val = enumCheck(cpp11_strongly_typed_enumerations.Enum2_Val4, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum2_Val5b, 23); val = enumCheck(cpp11_strongly_typed_enumerations.Enum2_Val6b, val); val = 0; val = enumCheck(cpp11_strongly_typed_enumerations.Val1, val); val = enumCheck(cpp11_strongly_typed_enumerations.Val2, val); val = enumCheck(cpp11_strongly_typed_enumerations.Val3, 43); val = enumCheck(cpp11_strongly_typed_enumerations.Val4, val); val = 0; val = enumCheck(cpp11_strongly_typed_enumerations.Enum5_Val1, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum5_Val2, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum5_Val3, 53); val = enumCheck(cpp11_strongly_typed_enumerations.Enum5_Val4, val); val = 0; val = enumCheck(cpp11_strongly_typed_enumerations.Enum6_Val1, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum6_Val2, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum6_Val3, 63); val = enumCheck(cpp11_strongly_typed_enumerations.Enum6_Val4, val); val = 0; val = enumCheck(cpp11_strongly_typed_enumerations.Enum7td_Val1, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum7td_Val2, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum7td_Val3, 73); val = enumCheck(cpp11_strongly_typed_enumerations.Enum7td_Val4, val); val = 0; val = enumCheck(cpp11_strongly_typed_enumerations.Enum8_Val1, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum8_Val2, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum8_Val3, 83); val = enumCheck(cpp11_strongly_typed_enumerations.Enum8_Val4, val); val = 0; val = enumCheck(cpp11_strongly_typed_enumerations.Enum10_Val1, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum10_Val2, val); val = enumCheck(cpp11_strongly_typed_enumerations.Enum10_Val3, 103); val = enumCheck(cpp11_strongly_typed_enumerations.Enum10_Val4, val); val = 0; val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Enum12_Val1, 1121); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Enum12_Val2, 1122); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Enum12_Val3, val); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Enum12_Val4, val); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Enum12_Val5c, 1121); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Enum12_Val6c, val); val = 0; val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Val1, 1131); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Val2, 1132); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Val3, val); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Val4, val); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Val5d, 1131); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Val6d, val); val = 0; val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Enum14_Val1, 1141); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Enum14_Val2, 1142); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Enum14_Val3, val); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Enum14_Val4, val); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Enum14_Val5e, 1141); val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Enum14_Val6e, val); # Requires nested class support to work #val = 0; #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Enum12_Val1, 3121); #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Enum12_Val2, 3122); #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Enum12_Val3, val); #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Enum12_Val4, val); #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Enum12_Val5f, 3121); #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Enum12_Val6f, val); # #val = 0; #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Val1, 3131); #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Val2, 3132); #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Val3, val); #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Val4, val); # #val = 0; #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Enum14_Val1, 3141); #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Enum14_Val2, 3142); #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Enum14_Val3, val); #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Enum14_Val4, val); #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Enum14_Val5g, 3141); #val = enumCheck(cpp11_strongly_typed_enumerations.Class1_Struct1.Enum14_Val6g, val); val = 0; val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Enum12_Val1, 2121); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Enum12_Val2, 2122); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Enum12_Val3, val); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Enum12_Val4, val); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Enum12_Val5h, 2121); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Enum12_Val6h, val); val = 0; val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Val1, 2131); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Val2, 2132); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Val3, val); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Val4, val); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Val5i, 2131); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Val6i, val); val = 0; val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Enum14_Val1, 2141); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Enum14_Val2, 2142); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Enum14_Val3, val); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Enum14_Val4, val); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Enum14_Val5j, 2141); val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Enum14_Val6j, val); # Requires nested class support to work #val = 0; #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Enum12_Val1, 4121); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Enum12_Val2, 4122); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Enum12_Val3, val); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Enum12_Val4, val); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Enum12_Val5k, 4121); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Enum12_Val6k, val); # #val = 0; #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Val1, 4131); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Val2, 4132); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Val3, val); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Val4, val); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Val5l, 4131); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Val6l, val); # #val = 0; #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Enum14_Val1, 4141); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Enum14_Val2, 4142); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Enum14_Val3, val); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Enum14_Val4, val); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Enum14_Val5m, 4141); #val = enumCheck(cpp11_strongly_typed_enumerations.Class2_Struct1_Enum14_Val6m, val); class1 = Class1(); enumCheck(class1.class1Test1(cpp11_strongly_typed_enumerations.Enum1_Val5a), 13); enumCheck(class1.class1Test2(cpp11_strongly_typed_enumerations.Class1_Enum12_Val5c), 1121); #enumCheck(class1.class1Test3(cpp11_strongly_typed_enumerations.Class1_Struct1_Enum12_Val5f), 3121); enumCheck(cpp11_strongly_typed_enumerations.globalTest1(cpp11_strongly_typed_enumerations.Enum1_Val5a), 13); enumCheck(cpp11_strongly_typed_enumerations.globalTest2(cpp11_strongly_typed_enumerations.Class1_Enum12_Val5c), 1121); #enumCheck(globalTest3(cpp11_strongly_typed_enumerations.Class1_Struct1_Enum12_Val5f), 3121);
github
medooze/swig-master
li_std_vector_enum_runme.m
.m
swig-master/Examples/test-suite/octave/li_std_vector_enum_runme.m
486
utf_8
486e8f0461a50153147831e1a8ada0f5
# do not dump Octave core if exist("crash_dumps_octave_core", "builtin") crash_dumps_octave_core(0); endif li_std_vector_enum function check(a, b) if (a != b) error("incorrect match"); endif end ev = EnumVector(); check(ev.nums(0), 10); check(ev.nums(1), 20); check(ev.nums(2), 30); it = ev.nums.begin(); v = it.value(); check(v, 10); it.next(); v = it.value(); check(v, 20); #expected = 10 #ev.nums.each do|val| # swig_assert(val == expected) # expected += 10 #end
github
medooze/swig-master
li_std_containers_overload_runme.m
.m
swig-master/Examples/test-suite/octave/li_std_containers_overload_runme.m
809
utf_8
b70b1cb696d6ff0fefe901c14415e676
# do not dump Octave core if exist("crash_dumps_octave_core", "builtin") crash_dumps_octave_core(0); endif li_std_containers_overload function check(got, expected) if (!strcmp(got, expected)) error("Failed check. '%s' != '%s'", got, expected) endif end v = VectorX(); check(VectorOverload(v), "vector<X>"); v = VectorY(); check(VectorOverload(v), "vector<Y>"); v = VectorInt(); check(VectorOverload(v), "vector<int>"); v = VectorString(); check(VectorOverload(v), "vector<string>"); # TODO: Conversion from an Octave sequence not implemented yet # v = {X()}; # check(VectorOverload(v), "vector<X>"); # v = {Y()}; # check(VectorOverload(v), "vector<Y>"); # v = {1, 2, 3}; # check(VectorOverload(v), "vector<int>"); # v = {"aaa", "bbb", "ccc"}; # check(VectorOverload(v), "vector<string>");
github
medooze/swig-master
exception_order_runme.m
.m
swig-master/Examples/test-suite/octave/exception_order_runme.m
1,008
utf_8
6133e2f0495da4196bfa27e670b12146
# do not dump Octave core if exist("crash_dumps_octave_core", "builtin") crash_dumps_octave_core(0); endif exception_order function check_lasterror(expected) if (!strcmp(lasterror.message, expected)) # Take account of older versions prefixing with "error: " and adding a newline at the end if (!strcmp(regexprep(lasterror.message, 'error: (.*)\n$', '$1'), expected)) error(["Bad exception order. Expected: \"", expected, "\" Got: \"", lasterror.message, "\""]) endif endif endfunction a = A(); try a.foo() catch check_lasterror("C++ side threw an exception of type E1") end_try_catch try a.bar() catch check_lasterror("C++ side threw an exception of type E2") end_try_catch try a.foobar() catch check_lasterror("postcatch unknown (SWIG_RuntimeError)") end_try_catch try a.barfoo(1) catch check_lasterror("C++ side threw an exception of type E1") end_try_catch try a.barfoo(2) catch check_lasterror("C++ side threw an exception of type E2 *") end_try_catch
github
medooze/swig-master
director_abstract_runme.m
.m
swig-master/Examples/test-suite/octave/director_abstract_runme.m
1,136
utf_8
1c206ea202edd1a1ecd87d4e23ff24d4
# do not dump Octave core if exist("crash_dumps_octave_core", "builtin") crash_dumps_octave_core(0); endif director_abstract MyFoo=@() subclass(director_abstract.Foo(),@ping); function out=ping(self) out="MyFoo::ping()"; end a = MyFoo(); if (!strcmp(a.ping(),"MyFoo::ping()")) error(a.ping()) endif if (!strcmp(a.pong(),"Foo::pong();MyFoo::ping()")) error(a.pong()) endif MyExample1=@() subclass(director_abstract.Example1(),'Color',@(self,r,g,b) r); MyExample2=@(a,b) subclass(director_abstract.Example2(a,b),'Color',@(self,r,g,b) g); MyExample3=@() subclass(director_abstract.Example3_i(),'Color',@(self,r,g,b) b); me1 = MyExample1(); if (director_abstract.Example1.get_color(me1, 1,2,3) != 1) error("failed"); endif me2 = MyExample2(1,2); if (me2.get_color(me2, 1,2,3) != 2) error("failed"); endif me3 = MyExample3(); if (me3.get_color(me3, 1,2,3) != 3) error("failed"); endif # don't check that we cannot construct abstract bases, since we have no # way of disambiguating that with the normal construction case using # subclass. furthermore, calling a pure virtual method will still generate # an error.
github
medooze/swig-master
runme.m
.m
swig-master/Examples/octave/class/runme.m
1,110
utf_8
b64cce0a3528cfb71d766e399ec17646
# do not dump Octave core if exist("crash_dumps_octave_core", "builtin") crash_dumps_octave_core(0); endif # This file illustrates the proxy class C++ interface generated # by SWIG. swigexample # ----- Object creation ----- printf("Creating some objects:\n"); c = swigexample.Circle(10) s = swigexample.Square(10) # ----- Access a static member ----- printf("\nA total of %i shapes were created\n", swigexample.Shape.nshapes); # ----- Member data access ----- # Set the location of the object c.x = 20 c.y = 30 s.x = -10 s.y = 5 printf("\nHere is their current position:\n"); printf(" Circle = (%f, %f)\n",c.x,c.y); printf(" Square = (%f, %f)\n",s.x,s.y); # ----- Call some methods ----- printf("\nHere are some properties of the shapes:\n"); function print_shape(o) o printf(" area = %f\n", o.area()); printf(" perimeter = %f\n", o.perimeter()); end; print_shape(c); print_shape(s); printf("\nGuess I'll clean up now\n"); # Note: this invokes the virtual destructor clear c clear s printf("%i shapes remain\n", swigexample.Shape.nshapes); printf("Goodbye\n");
github
medooze/swig-master
horzcat.m
.m
swig-master/Examples/octave/operator/@swig_ref/horzcat.m
229
utf_8
40c402670369b6e777422cca21c0d567
% test octaves concatenation operator function ret=horzcat(a, b) % return the concatenation of two ComplexVal values as a cell array. % (not really useful but it tests the concatenation of swig_ref objects) ret={a, b}; end
github
medooze/swig-master
runme.m
.m
swig-master/Examples/octave/module_load/runme.m
2,491
utf_8
657725c3b1f299ed4a5a705cdfa3339c
# do not dump Octave core if exist("crash_dumps_octave_core", "builtin") crash_dumps_octave_core(0); endif # load module clear all; assert(exist("swigexample") == 3); swigexample; assert(isglobal("swigexample")); assert(cvar.ivar == ifunc); clear all assert(exist("swigexample") == 3); swigexample; assert(isglobal("swigexample")); assert(cvar.ivar == ifunc); clear all # load module in a function globally before base context clear all; function testme_1 % exist("swigexample") returns 1 (variable) in octave >= 4.4 < 6 but 3 (.oct file) in octave >= 6 assert(exist("swigexample")); swigexample; assert(isglobal("swigexample")); assert(cvar.ivar == ifunc); endfunction testme_1 testme_1 assert(exist("swigexample") == 3); swigexample; assert(isglobal("swigexample")); assert(cvar.ivar == ifunc); clear all function testme_2 % exist("swigexample") returns 1 (variable) in octave >= 4.4 < 6 but 3 (.oct file) in octave >= 6 assert(exist("swigexample")); swigexample; assert(isglobal("swigexample")); assert(cvar.ivar == ifunc); endfunction testme_2 testme_2 assert(exist("swigexample") == 3); swigexample; assert(isglobal("swigexample")); assert(cvar.ivar == ifunc); clear all # load module in a function globally after base context clear all; assert(exist("swigexample") == 3); swigexample; assert(isglobal("swigexample")); assert(cvar.ivar == ifunc); function testme_3 % exist("swigexample") returns 1 (variable) in octave >= 4.4 < 6 but 3 (.oct file) in octave >= 6 assert(exist("swigexample")); swigexample; assert(isglobal("swigexample")); assert(cvar.ivar == ifunc); endfunction testme_3 testme_3 clear all assert(exist("swigexample") == 3); swigexample; assert(isglobal("swigexample")); assert(cvar.ivar == ifunc); function testme_4 % exist("swigexample") returns 1 (variable) in octave >= 4.4 < 6 but 3 (.oct file) in octave >= 6 assert(exist("swigexample")); swigexample; assert(isglobal("swigexample")); assert(cvar.ivar == ifunc); endfunction testme_4 testme_4 clear all # octave 3.0.5 randomly crashes on the remaining tests if !swig_octave_prereq(3,2,0) exit endif # load module with no cvar clear all; who; assert(exist("swigexample2") == 3); swigexample2; assert(isglobal("swigexample2")); assert(swigexample2.ivar == ifunc); assert(!exist("cvar", "var")); clear all assert(exist("swigexample2") == 3); swigexample2; assert(isglobal("swigexample2")); assert(swigexample2.ivar == ifunc); assert(!exist("cvar", "var")); clear all
github
FelixPerezCicala/modRankineSCC-master
polyvaln.m
.m
modRankineSCC-master/01 Solver/01-02 Funciones/polyvaln.m
3,497
utf_8
fecc9f839aa56c6637fac3907f279e43
function y = polyvaln(p,x) %POLYVALN evaluate a multivariate polynomial % % The n-variate polynomial p, represented as an n-dimensional % array, is evaluated for each value in the array x. The last % dimension of x should be of size n corresponding to the n % variables in the polynomial. % % Following the convention used in polyval(), the highest % order coefficient of the polynomial comes first in the % array, and we take the first index to be the index of % the x-coefficient, the second of the y-coefficient and % so on. For a bivariate polynomial the array is a matrix % and we have this sort of structure % % [ x^n y^m, x^n y^(m-1), ... x^n y, x^n % x^(n-1) y^m, x^(n-1) y^(m-1), ... x^(n-1) y, x^(n-1) % : % x y^m, x y^(m-1), ... xy, x % y^m, y^(m-1), ... y, 1] % % Example: the polynomial x^2 + 2y^2 - 1 % % p = [0,0,1; % 0,0,0; % 2,0,-1] % % Evaluated at x=1, y=2 % % polyvaln(p,[1,2]) % ans = 8 % % Evaluated at x,y = 1,..,5: we generate a 5x5x2 array xy % with the x values in xy(:,;,1), the y values in xy(:,:,2) % % [x,y] = meshgrid(1:5) % xy = cat(3,x,y) % polyvaln(p,xy) % ans = % 2 5 10 17 26 % 8 11 16 23 32 % 18 21 26 33 42 % 32 35 40 47 56 % 50 53 58 65 74 % % The evaluation method is a nested Horner's rule which is % implemented recursively. No attempt is made to exploit the % sparsity (if any) of the polynomial. % % NOTE - this file should not be confused with the file of the % same name included with the PolyFit package by John D'Errico % http://mathworks.com/matlabcentral/fileexchange/34765-polyfitn % % Copyright (c) 2011, 2012, J.J. Green % $Id: polyvaln.m,v 1.6 2012/05/15 20:26:02 jjg Exp $ % % Changes % % 06 Jan 2011 : initial octave version % 24 Jul 2011 : ported to work with matlab (7.12.0.635) % 15 Mar 2012 : added note on the file in polyfit package % check arguments if nargin ~= 2 error('exactly 2 arguments required') end % handle trivial case if isvector(p) y = polyval(p,x); return; end % size of last dimension of x if isvector(x) ndx = 1; sldx = length(x); else dx = size(x); ndx = numel(dx); sldx = dx(ndx); end % number of dimensions of p dp = size(p); ndp = numel(dp); % check dimensions match if ndp ~= sldx error('size of last dim of x should equal number of dims of p') end % reshape x if needed if ndx > 1 x = reshape(x,prod(dx(1:ndx-1)),sldx); end % call recursive subfunction y = pvn2(p,x); % reshape y to the same pattern as x if needed if ndx > 2 y = reshape(y,dx(1:ndx-1)); end end % recurse over the dimensions of p, evaluating using % polyval() at the leaves of the recursion but pvn3() % as we accumulate the totals function y = pvn2(p,x) if isvector(p) y = polyval(p,x); return end d = size(p); nd = numel(d); c(1:nd-1) = {':'}; x0 = x(:,2:nd); for i = 1:d(1) p0 = squeeze(p(i,c{:})); p1(:,i) = pvn2(p0,x0); end y = pvn3(p1,x(:,1)); end % this is like polyval() except that p is an matrix % with the same number of rows as x function y = pvn3(p,x) n = size(p,2); y = p(:,1); for k = 2:n y = y.*x + p(:,k); end end
github
chuangao/BicMix-master
KSVD.m
.m
BicMix-master/KSVD/KSVD.m
12,290
utf_8
6233b813f69dc0129006dd93929e3b99
function [Dictionary,output] = KSVD(... Data,... % an nXN matrix that contins N signals (Y), each of dimension n. param) % ========================================================================= % K-SVD algorithm % ========================================================================= % The K-SVD algorithm finds a dictionary for linear representation of % signals. Given a set of signals, it searches for the best dictionary that % can sparsely represent each signal. Detailed discussion on the algorithm % and possible applications can be found in "The K-SVD: An Algorithm for % Designing of Overcomplete Dictionaries for Sparse Representation", written % by M. Aharon, M. Elad, and A.M. Bruckstein and appeared in the IEEE Trans. % On Signal Processing, Vol. 54, no. 11, pp. 4311-4322, November 2006. % ========================================================================= % INPUT ARGUMENTS: % Data an nXN matrix that contins N signals (Y), each of dimension n. % param structure that includes all required % parameters for the K-SVD execution. % Required fields are: % K, ... the number of dictionary elements to train % numIteration,... number of iterations to perform. % errorFlag... if =0, a fix number of coefficients is % used for representation of each signal. If so, param.L must be % specified as the number of representing atom. if =1, arbitrary number % of atoms represent each signal, until a specific representation error % is reached. If so, param.errorGoal must be specified as the allowed % error. % preserveDCAtom... if =1 then the first atom in the dictionary % is set to be constant, and does not ever change. This % might be useful for working with natural % images (in this case, only param.K-1 % atoms are trained). % (optional, see errorFlag) L,... % maximum coefficients to use in OMP coefficient calculations. % (optional, see errorFlag) errorGoal, ... % allowed representation error in representing each signal. % InitializationMethod,... mehtod to initialize the dictionary, can % be one of the following arguments: % * 'DataElements' (initialization by the signals themselves), or: % * 'GivenMatrix' (initialization by a given matrix param.initialDictionary). % (optional, see InitializationMethod) initialDictionary,... % if the initialization method % is 'GivenMatrix', this is the matrix that will be used. % (optional) TrueDictionary, ... % if specified, in each % iteration the difference between this dictionary and the trained one % is measured and displayed. % displayProgress, ... if =1 progress information is displyed. If param.errorFlag==0, % the average repersentation error (RMSE) is displayed, while if % param.errorFlag==1, the average number of required coefficients for % representation of each signal is displayed. % ========================================================================= % OUTPUT ARGUMENTS: % Dictionary The extracted dictionary of size nX(param.K). % output Struct that contains information about the current run. It may include the following fields: % CoefMatrix The final coefficients matrix (it should hold that Data equals approximately Dictionary*output.CoefMatrix. % ratio If the true dictionary was defined (in % synthetic experiments), this parameter holds a vector of length % param.numIteration that includes the detection ratios in each % iteration). % totalerr The total representation error after each % iteration (defined only if % param.displayProgress=1 and % param.errorFlag = 0) % numCoef A vector of length param.numIteration that % include the average number of coefficients required for representation % of each signal (in each iteration) (defined only if % param.displayProgress=1 and % param.errorFlag = 1) % ========================================================================= if (~isfield(param,'displayProgress')) param.displayProgress = 0; end totalerr(1) = 99999; if (isfield(param,'errorFlag')==0) param.errorFlag = 0; end if (isfield(param,'TrueDictionary')) displayErrorWithTrueDictionary = 1; ErrorBetweenDictionaries = zeros(param.numIteration+1,1); ratio = zeros(param.numIteration+1,1); else displayErrorWithTrueDictionary = 0; ratio = 0; end if (param.preserveDCAtom>0) FixedDictionaryElement(1:size(Data,1),1) = 1/sqrt(size(Data,1)); else FixedDictionaryElement = []; end % coefficient calculation method is OMP with fixed number of coefficients if (size(Data,2) < param.K) disp('Size of data is smaller than the dictionary size. Trivial solution...'); Dictionary = Data(:,1:size(Data,2)); return; elseif (strcmp(param.InitializationMethod,'DataElements')) Dictionary(:,1:param.K-param.preserveDCAtom) = Data(:,1:param.K-param.preserveDCAtom); elseif (strcmp(param.InitializationMethod,'GivenMatrix')) Dictionary(:,1:param.K-param.preserveDCAtom) = param.initialDictionary(:,1:param.K-param.preserveDCAtom); end % reduce the components in Dictionary that are spanned by the fixed % elements if (param.preserveDCAtom) tmpMat = FixedDictionaryElement \ Dictionary; Dictionary = Dictionary - FixedDictionaryElement*tmpMat; end %normalize the dictionary. Dictionary = Dictionary*diag(1./sqrt(sum(Dictionary.*Dictionary))); Dictionary = Dictionary.*repmat(sign(Dictionary(1,:)),size(Dictionary,1),1); % multiply in the sign of the first element. totalErr = zeros(1,param.numIteration); % the K-SVD algorithm starts here. for iterNum = 1:param.numIteration % find the coefficients if (param.errorFlag==0) %CoefMatrix = mexOMPIterative2(Data, [FixedDictionaryElement,Dictionary],param.L); CoefMatrix = OMP([FixedDictionaryElement,Dictionary],Data, param.L); else %CoefMatrix = mexOMPerrIterative(Data, [FixedDictionaryElement,Dictionary],param.errorGoal); CoefMatrix = OMPerr([FixedDictionaryElement,Dictionary],Data, param.errorGoal); param.L = 1; end replacedVectorCounter = 0; rPerm = randperm(size(Dictionary,2)); for j = rPerm [betterDictionaryElement,CoefMatrix,addedNewVector] = I_findBetterDictionaryElement(Data,... [FixedDictionaryElement,Dictionary],j+size(FixedDictionaryElement,2),... CoefMatrix ,param.L); Dictionary(:,j) = betterDictionaryElement; if (param.preserveDCAtom) tmpCoef = FixedDictionaryElement\betterDictionaryElement; Dictionary(:,j) = betterDictionaryElement - FixedDictionaryElement*tmpCoef; Dictionary(:,j) = Dictionary(:,j)./sqrt(Dictionary(:,j)'*Dictionary(:,j)); end replacedVectorCounter = replacedVectorCounter+addedNewVector; end if (iterNum>1 & param.displayProgress) if (param.errorFlag==0) output.totalerr(iterNum-1) = sqrt(sum(sum((Data-[FixedDictionaryElement,Dictionary]*CoefMatrix).^2))/prod(size(Data))); disp(['Iteration ',num2str(iterNum),' Total error is: ',num2str(output.totalerr(iterNum-1))]); else output.numCoef(iterNum-1) = length(find(CoefMatrix))/size(Data,2); disp(['Iteration ',num2str(iterNum),' Average number of coefficients: ',num2str(output.numCoef(iterNum-1))]); end end if (displayErrorWithTrueDictionary ) [ratio(iterNum+1),ErrorBetweenDictionaries(iterNum+1)] = I_findDistanseBetweenDictionaries(param.TrueDictionary,Dictionary); disp(strcat(['Iteration ', num2str(iterNum),' ratio of restored elements: ',num2str(ratio(iterNum+1))])); output.ratio = ratio; end Dictionary = I_clearDictionary(Dictionary,CoefMatrix(size(FixedDictionaryElement,2)+1:end,:),Data); if (isfield(param,'waitBarHandle')) waitbar(iterNum/param.counterForWaitBar); end end output.CoefMatrix = CoefMatrix; Dictionary = [FixedDictionaryElement,Dictionary]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % findBetterDictionaryElement %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [betterDictionaryElement,CoefMatrix,NewVectorAdded] = I_findBetterDictionaryElement(Data,Dictionary,j,CoefMatrix,numCoefUsed) if (length(who('numCoefUsed'))==0) numCoefUsed = 1; end relevantDataIndices = find(CoefMatrix(j,:)); % the data indices that uses the j'th dictionary element. if (length(relevantDataIndices)<1) %(length(relevantDataIndices)==0) ErrorMat = Data-Dictionary*CoefMatrix; ErrorNormVec = sum(ErrorMat.^2); [d,i] = max(ErrorNormVec); betterDictionaryElement = Data(:,i);%ErrorMat(:,i); % betterDictionaryElement = betterDictionaryElement./sqrt(betterDictionaryElement'*betterDictionaryElement); betterDictionaryElement = betterDictionaryElement.*sign(betterDictionaryElement(1)); CoefMatrix(j,:) = 0; NewVectorAdded = 1; return; end NewVectorAdded = 0; tmpCoefMatrix = CoefMatrix(:,relevantDataIndices); tmpCoefMatrix(j,:) = 0;% the coeffitients of the element we now improve are not relevant. errors =(Data(:,relevantDataIndices) - Dictionary*tmpCoefMatrix); % vector of errors that we want to minimize with the new element % % the better dictionary element and the values of beta are found using svd. % % This is because we would like to minimize || errors - beta*element ||_F^2. % % that is, to approximate the matrix 'errors' with a one-rank matrix. This % % is done using the largest singular value. [betterDictionaryElement,singularValue,betaVector] = svds(errors,1); CoefMatrix(j,relevantDataIndices) = singularValue*betaVector';% *signOfFirstElem %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % findDistanseBetweenDictionaries %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [ratio,totalDistances] = I_findDistanseBetweenDictionaries(original,new) % first, all the column in oiginal starts with positive values. catchCounter = 0; totalDistances = 0; for i = 1:size(new,2) new(:,i) = sign(new(1,i))*new(:,i); end for i = 1:size(original,2) d = sign(original(1,i))*original(:,i); distances =sum ( (new-repmat(d,1,size(new,2))).^2); [minValue,index] = min(distances); errorOfElement = 1-abs(new(:,index)'*d); totalDistances = totalDistances+errorOfElement; catchCounter = catchCounter+(errorOfElement<0.01); end ratio = 100*catchCounter/size(original,2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % I_clearDictionary %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Dictionary = I_clearDictionary(Dictionary,CoefMatrix,Data) T2 = 0.99; T1 = 3; K=size(Dictionary,2); Er=sum((Data-Dictionary*CoefMatrix).^2,1); % remove identical atoms G=Dictionary'*Dictionary; G = G-diag(diag(G)); for jj=1:1:K, if max(G(jj,:))>T2 | length(find(abs(CoefMatrix(jj,:))>1e-7))<=T1 , [val,pos]=max(Er); Er(pos(1))=0; Dictionary(:,jj)=Data(:,pos(1))/norm(Data(:,pos(1))); G=Dictionary'*Dictionary; G = G-diag(diag(G)); end; end;
github
chuangao/BicMix-master
KSVD_NN.m
.m
BicMix-master/KSVD/KSVD_NN.m
11,585
utf_8
c538d2b9c08c765e3fef74f474236041
function [Dictionary,output] = KSVD_NN(... Data,... % an nXN matrix that contins N signals (Y), each of dimension n. param) % ========================================================================= % Non Negative K-SVD algorithm % ========================================================================= % The NN-K-SVD algorithm finds a non-negative dictionary for linear representation of % signals. Given a set of signals, it searches for the best dictionary that % can sparsely represent each signal. Detailed discussion on the algorithm % and possible applications can be found in "K-SVD and its non-negative % variant for dictionary design", written by M. Aharon, M. Elad, and A.M. Bruckstein % and appeared in the Proceedings of the SPIE conference wavelets, Vol. % 5914, July 2005. % ========================================================================= % INPUT ARGUMENTS: % Data an nXN matrix that contins N signals (Y), each of dimension n. % param structure that includes all required % parameters for the K-SVD execution. % Required fields are: % K, ... the number of dictionary elements to train % numIteration,... number of iterations to perform. % L,... maximum coefficients to use in OMP coefficient calculations. % InitializationMethod,... mehtod to initialize the dictionary, can % be one of the following arguments: % * 'DataElements' (initialization by the signals themselves), or: % * 'GivenMatrix' (initialization by a given matrix param.initialDictionary). % (optional, see InitializationMethod) initialDictionary,... % if the initialization method % is 'GivenMatrix', this is the matrix that will be used. % (optional) TrueDictionary, ... % if specified, in each % iteration the difference between this dictionary and the trained one % is measured and displayed. % displayProgress, ... if =1 progress information is displyed. If param.errorFlag==0, % the average repersentation error (RMSE) is displayed, while if % param.errorFlag==1, the average number of required coefficients for % representation of each signal is displayed. % ========================================================================= % OUTPUT ARGUMENTS: % Dictionary The extracted dictionary of size nX(param.K). % output Struct that contains information about the current run. It may include the following fields: % CoefMatrix The final coefficients matrix (it should hold that Data equals approximately Dictionary*output.CoefMatrix. % ratio If the true dictionary was defined (in % synthetic experiments), this parameter holds a vector of length % param.numIteration that includes the detection ratios in each % iteration). % totalerr The total representation error after each % iteration (defined only if % param.displayProgress=1) % ========================================================================= if (~isfield(param,'displayProgress')) param.displayProgress = 0; end totalerr(1) = 99999; if (isfield(param,'errorFlag')==0) param.errorFlag = 0; end %Data(Data<0) = 0; if (isfield(param,'TrueDictionary')) displayErrorWithTrueDictionary = 1; ErrorBetweenDictionaries = zeros(param.numIteration+1,1); ratio = zeros(param.numIteration+1,1); else displayErrorWithTrueDictionary = 0; ratio = 0; end if (param.preserveDCAtom>0) FixedDictionaryElement(:,1) = 1/sqrt(size(Data,1)); else FixedDictionaryElement = []; end % coefficient calculation method is OMP with fixed number of coefficients if (size(Data,2) < param.K) disp('Size of data is smaller than the dictionary size. Trivial solution...'); Dictionary = Data(:,1:size(Data,2)); return; elseif (strcmp(param.InitializationMethod,'DataElements')) Dictionary(:,1:param.K) = Data(:,1:param.K-param.preserveDCAtom); elseif (strcmp(param.InitializationMethod,'GivenMatrix')) Dictionary = param.initialDictionary(:,1:param.K-param.preserveDCAtom); end % reduce the components in Dictionary that are spanned by the fixed % elements if (param.preserveDCAtom) tmpMat = FixedDictionaryElement \ Dictionary; Dictionary = Dictionary - FixedDictionaryElement*tmpMat; end %normalize the dictionary. Dictionary = Dictionary*diag(1./sqrt(sum(Dictionary.*Dictionary))); totalErr = zeros(1,param.numIteration); CoefMatrix = sparse(param.K,size(Data,2)); % the K-SVD algorithm starts here. for iterNum = 1:param.numIteration % find the coefficients CoefMatrix = NN_BP(Data, [FixedDictionaryElement,Dictionary],param.L,CoefMatrix); replacedVectorCounter = 0; rPerm = randperm(size(Dictionary,2)); for j = rPerm [betterDictionaryElement,CoefMatrix,addedNewVector] = I_findBetterDictionaryElement(Data,... [FixedDictionaryElement,Dictionary],j+size(FixedDictionaryElement,2),... CoefMatrix ,param.L); Dictionary(:,j) = betterDictionaryElement; if (param.preserveDCAtom) tmpCoef = FixedDictionaryElement\betterDictionaryElement; Dictionary(:,j) = betterDictionaryElement - FixedDictionaryElement*tmpCoef; Dictionary(:,j) = Dictionary(:,j)./sqrt(Dictionary(:,j)'*Dictionary(:,j)); end replacedVectorCounter = replacedVectorCounter+addedNewVector; end if (iterNum>1 & param.displayProgress) if (param.errorFlag==0) output.totalerr(iterNum-1) = sqrt(sum(sum((Data-[FixedDictionaryElement,Dictionary]*CoefMatrix).^2))/prod(size(Data))); disp(['Iteration ',num2str(iterNum),' Total error is: ',num2str(output.totalerr(iterNum-1))]); else output.numCoef(iterNum-1) = length(find(CoefMatrix))/size(Data,2); disp(['Iteration ',num2str(iterNum),' Average number of coefficients: ',num2str(output.numCoef(iterNum-1))]); end end if (displayErrorWithTrueDictionary ) [ratio(iterNum+1),ErrorBetweenDictionaries(iterNum+1)] = I_findDistanseBetweenDictionaries(param.TrueDictionary,Dictionary); disp(strcat(['Iteration ', num2str(iterNum),' ratio of restored elements: ',num2str(ratio(iterNum+1))])); output.ratio = ratio; end Dictionary = I_clearDictionary(Dictionary,CoefMatrix,Data); if (isfield(param,'waitBarHandle')) waitbar(iterNum/param.counterForWaitBar); end end output.CoefMatrix = CoefMatrix; Dictionary = [FixedDictionaryElement,Dictionary]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % findBetterDictionaryElement %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [betterDictionaryElement,CoefMatrix,NewVectorAdded] = I_findBetterDictionaryElement(Data,Dictionary,j,CoefMatrix,numCoefUsed) if (length(who('numCoefUsed'))==0) numCoefUsed = 1; end relevantDataIndices = find(CoefMatrix(j,:)); % the data indices that uses the j'th dictionary element. if (length(relevantDataIndices)<1) %(length(relevantDataIndices)==0) ErrorMat = Data-Dictionary*CoefMatrix; ErrorNormVec = sum(ErrorMat.^2); [d,i] = max(ErrorNormVec); betterDictionaryElement = Data(:,i);%ErrorMat(:,i); % betterDictionaryElement = betterDictionaryElement./sqrt(betterDictionaryElement'*betterDictionaryElement); betterDictionaryElement = betterDictionaryElement.*sign(betterDictionaryElement(1)); CoefMatrix(j,:) = 0; NewVectorAdded = 1; return; end NewVectorAdded = 0; reduced_coeff = CoefMatrix(:, relevantDataIndices); reduced_Data = Data (:, relevantDataIndices); saveDebugDict = Dictionary(:,j); saveDebugCoef = reduced_coeff(j,:); %debug1 = sum(sum((reduced_Data - Dictionary*reduced_coeff).^2)); reduced_coeff (j, :) = 0; % all but the j-th element err_mat = reduced_Data - Dictionary * reduced_coeff; [U S V flag] = svds((err_mat), 1); % check for sign, flip U and V's sign if negative. Idx_U = find(U<0); Idx_V = find(V<0); u1 = U; u1(Idx_U) = 0; v1 = V; v1(Idx_V) = 0;approx1 = norm(err_mat- u1*v1'*S); u1 = zeros(size(U)); u1(Idx_U) = -U(Idx_U); v1 = zeros(size(V)); v1(Idx_V) = -V(Idx_V);approx2 = norm(err_mat- u1*v1'*S); if (approx1<= approx2) betterDictionaryElement = U; betterDictionaryElement(Idx_U) = 0; coefs = V; coefs(Idx_V) = 0; else betterDictionaryElement = zeros(size(U)); betterDictionaryElement(Idx_U) = -U(Idx_U); coefs = zeros(size(V)); coefs(Idx_V) = -V(Idx_V); end newAtomNorm = sqrt(betterDictionaryElement'*betterDictionaryElement); betterDictionaryElement = betterDictionaryElement/newAtomNorm; coefs = coefs * newAtomNorm; % coefs(coefs<0) = 0; newE = sum(sum(((reduced_Data - Dictionary(:,[1:j-1,j+1:end])*reduced_coeff([1:j-1,j+1:end],:))-betterDictionaryElement*coefs').^2)); oldE = sum(sum(((reduced_Data - Dictionary(:,[1:j-1,j+1:end])*reduced_coeff([1:j-1,j+1:end],:))-saveDebugDict*saveDebugCoef).^2)); if (newE>oldE) for iter = 1:30 % the number of iterations betterDictionaryElement = err_mat*coefs/(coefs'*coefs); betterDictionaryElement(betterDictionaryElement<0) = 0; coefs = err_mat'*betterDictionaryElement/(betterDictionaryElement'*betterDictionaryElement); coefs(coefs<0) = 0; end newAtomNorm = sqrt(betterDictionaryElement'*betterDictionaryElement); betterDictionaryElement = betterDictionaryElement/newAtomNorm; coefs = coefs * newAtomNorm; reduced_coeff(j,:) = coefs; end reduced_coeff(j,:) = coefs; CoefMatrix (:, relevantDataIndices) =reduced_coeff; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % findDistanseBetweenDictionaries %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [ratio,totalDistances] = I_findDistanseBetweenDictionaries(original,new) % first, all the column in oiginal starts with positive values. catchCounter = 0; totalDistances = 0; for i = 1:size(new,2) new(:,i) = new(:,i); end for i = 1:size(original,2) d = original(:,i); distances =sum ( (new-repmat(d,1,size(new,2))).^2); [minValue,index] = min(distances); errorOfElement = 1-abs(new(:,index)'*d); totalDistances = totalDistances+errorOfElement; catchCounter = catchCounter+(errorOfElement<0.01); end ratio = 100*catchCounter/size(original,2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % I_clearDictionary %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Dictionary = I_clearDictionary(Dictionary,CoefMatrix,Data) T2 = 0.999; T1 = 3; K=size(Dictionary,2); Er=sum((Data-Dictionary*CoefMatrix).^2,1); % remove identical atoms G=Dictionary'*Dictionary; G = G-diag(diag(G)); for jj=1:1:K, if max(G(jj,:))>T2 | length(find(abs(CoefMatrix(jj,:))>1e-7))<=T1 , [val,pos]=max(Er); Er(pos(1))=0; Dictionary(:,jj)=Data(:,pos(1))/norm(Data(:,pos(1))); G=Dictionary'*Dictionary; G = G-diag(diag(G)); end; end;
github
chuangao/BicMix-master
gererateSyntheticDictionaryAndData.m
.m
BicMix-master/KSVD/gererateSyntheticDictionaryAndData.m
1,896
utf_8
16de7e46c7a20f0172cc50b3ec4ea1c7
function [Dictionary, data, coefs] = gererateSyntheticDictionaryAndData(N, L, dim, K, SNRdB) randn('state',sum(100*clock)); rand('state',sum(100*clock)); Dictionary = randn(dim,K); Dictionary = Dictionary*diag(1./sqrt(sum(Dictionary.*Dictionary))); [data,coefs] = CreateDataFromDictionarySimple(Dictionary, N, L); if (SNRdB==0) | (SNRdB == 80) return else noise = randn(size(data)); actualNoise = calcNoiseFromSNR(SNRdB,data, noise); SNR = calcSNR(data, data+actualNoise); data = data + actualNoise*SNR/SNRdB; end function [D,xOrig] = CreateDataFromDictionarySimple(dictionary, numElements, numCoef) maxRangeOfCoef = 1; resolution = 0.0001; xOrig = zeros(size(dictionary,2),numElements); %vecOfValues = -1*maxRangeOfCoef:resolution:maxRangeOfCoef; %coefs = randsrc(numCoef,numElements,vecOfValues); coefs = randn(numCoef,numElements)*maxRangeOfCoef; xOrig(1:numCoef,:) = coefs; for i=1:size(xOrig,2) xOrig(:,i) = xOrig(randperm(size(xOrig,1)),i); end %dictionaryElementIndices = randsrc(numCoef*numElements,1,[1:size(dictionary,2)]) ; %matrixOfIndices = repmat([1:numElements],numCoef,1); %xOrig(sub2ind(size(xOrig),dictionaryElementIndices,matrixOfIndices(:))) = coefs; D = dictionary*xOrig; function actualNoise = calcNoiseFromSNR(TargerSNR, signal, randomNoise) signal = signal(:); randomNoiseRow = randomNoise(:); signal_2 = sum(signal.^2); ActualNoise_2 = signal_2/(10^(TargerSNR/10)); noise_2 = sum(randomNoiseRow.^2); ratio = ActualNoise_2./noise_2; actualNoise = randomNoiseRow.*repmat(sqrt(ratio),size(randomNoiseRow,1),1); actualNoise = reshape(actualNoise,size(randomNoise)); function SNR = calcSNR(origSignal, noisySignal) errorSignal = origSignal-noisySignal; signal_2 = sum(origSignal.^2); noise_2 = sum(errorSignal.^2); SNRValues = 10*log10(signal_2./noise_2); SNR = mean(SNRValues);
github
chuangao/BicMix-master
demo3.m
.m
BicMix-master/KSVD/demo3.m
8,504
utf_8
1813214e07f98c446ffd04b272843686
function demo3() % NN-KSVD running file - a synthetic test. % in this file a synthetic test of the NN-K-SVD (non-negative K-SVD) % algorithm is performed. This exact Test is presented in "K-SVD and its non-negative % variant for dictionary design", written by M. Aharon, M. Elad, and A.M. Bruckstein % and appeared in the Proceedings of the SPIE conference wavelets, Vol. % 5914, July 2005. param.K = 10*9; param.L = 5; SNR = 20; numRequiredPoints = 2000; sizeOfElem = 64; A = zeros(sizeOfElem,90); param.numIteration = 200; param.initialDictionary = rand(sizeOfElem,param.K); param.InitializationMethod = 'GivenMatrix'; % ================================= % end of parameter setting % ================================= basisFunction{1} = [0 0 0 0 0 0 0 0 ; 0 0 0 1 1 0 0 0 ; 0 0 1 0 1 0 0 0; 0 0 1 0 1 0 0 0; 0 0 0 0 1 0 0 0 ; 0 0 0 0 1 0 0 0 ; 0 0 0 0 1 0 0 0 ; 0 0 0 0 0 0 0 0 ]; basisFunction{2} = [0 0 0 0 0 0 0 0 ; 0 0 1 1 1 1 0 0 ; 0 0 1 0 0 1 0 0; 0 0 0 0 1 1 0 0; 0 0 0 1 1 0 0 0 ; 0 0 1 1 0 0 0 0 ; 0 0 1 1 1 1 0 0 ; 0 0 0 0 0 0 0 0 ]; basisFunction{3} = [0 0 0 0 0 0 0 0 ; 0 0 1 1 1 1 0 0 ; 0 0 0 0 1 1 0 0; 0 0 0 1 1 0 0 0; 0 0 0 0 1 1 0 0 ; 0 0 0 0 0 1 0 0 ; 0 0 1 1 1 1 0 0 ; 0 0 0 0 0 0 0 0 ]; basisFunction{4} = [0 0 0 0 0 0 0 0 ; 0 0 1 0 0 1 0 0 ; 0 0 1 0 0 1 0 0; 0 0 1 0 0 1 0 0; 0 0 1 1 1 1 0 0 ; 0 0 0 0 0 1 0 0 ; 0 0 0 0 0 1 0 0 ; 0 0 0 0 0 0 0 0 ]; basisFunction{5} = [0 0 0 0 0 0 0 0 ; 0 0 1 1 1 1 0 0 ; 0 0 1 0 0 0 0 0; 0 0 1 1 1 1 0 0; 0 0 0 0 1 1 0 0 ; 0 0 0 0 1 1 0 0 ; 0 0 1 1 1 1 0 0 ; 0 0 0 0 0 0 0 0 ]; basisFunction{6} = [0 0 0 0 0 0 0 0 ; 0 0 0 1 1 1 0 0 ; 0 0 1 0 0 0 0 0; 0 0 1 0 0 0 0 0; 0 0 1 0 1 1 0 0 ; 0 0 1 0 0 1 0 0 ; 0 0 1 1 1 1 0 0 ; 0 0 0 0 0 0 0 0 ]; basisFunction{7} = [0 0 0 0 0 0 0 0 ; 0 0 1 1 1 1 0 0 ; 0 0 0 0 0 1 0 0; 0 0 0 0 1 1 0 0; 0 0 0 1 1 0 0 0 ; 0 0 0 1 0 0 0 0 ; 0 0 0 1 0 0 0 0 ; 0 0 0 0 0 0 0 0 ]; basisFunction{8} = [0 0 0 0 0 0 0 0 ; 0 0 1 1 1 1 0 0 ; 0 0 1 0 0 1 0 0; 0 0 1 1 1 1 0 0; 0 0 1 1 1 1 0 0 ; 0 0 1 0 0 1 0 0 ; 0 0 1 1 1 1 0 0 ; 0 0 0 0 0 0 0 0 ]; basisFunction{9} = [0 0 0 0 0 0 0 0 ; 0 0 1 1 1 1 0 0 ; 0 0 1 0 0 1 0 0; 0 0 1 1 1 1 0 0; 0 0 0 0 0 1 0 0 ; 0 0 0 0 0 1 0 0 ; 0 0 1 1 1 1 0 0 ; 0 0 0 0 0 0 0 0 ]; basisFunction{10} = [0 0 0 0 0 0 0 0 ; 0 0 1 1 1 1 0 0 ; 0 0 1 0 0 1 0 0; 0 0 1 0 0 1 0 0; 0 0 1 0 0 1 0 0 ; 0 0 1 0 0 1 0 0 ; 0 0 1 1 1 1 0 0 ; 0 0 0 0 0 0 0 0 ]; counter = 1; for i=1:10 d = basisFunction{i}; d1 = [zeros(8,2),d(:,1:6)]; d2 = [d(:,3:end),zeros(8,2)]; d3 = [zeros(1,8); d(1:7,:)]; d4 = [d(1:7,:); zeros(1,8)]; d5 = [zeros(1,8); d1(1:7,:)]; d6 = [zeros(1,8); d2(1:7,:)]; d7 = [d1(1:7,:); zeros(1,8)]; d8 = [d2(1:7,:); zeros(1,8)]; d = d(:);d1 = d1(:); d2 = d2(:);d3 = d3(:);d4 = d4(:);d5 = d5(:);d6 = d6(:);d7 = d7(:);d8 = d8(:); A(:,counter) = d/(d'*d); A(:,counter+1) = d1/(d1'*d1); A(:,counter+2) = d2/(d2'*d2); A(:,counter+3) = d3/(d3'*d3); A(:,counter+4) = d4/(d4'*d4); A(:,counter+5) = d5/(d5'*d5); A(:,counter+6) = d6/(d6'*d6); A(:,counter+7) = d7/(d7'*d7); A(:,counter+8) = d8/(d8'*d8); counter = counter+9; end positiveFlag = 1; [D,xOrig] = CreateDataFromDictionarySimple(A, numRequiredPoints,param.L,... positiveFlag); noise = randn(size(D)); if (SNR==0) D = D; else actualNoise = calcNoiseFromSNR(SNR,D, noise); D = D + actualNoise; end A = A./repmat(sqrt(diag(A'*A)'),64,1); displayDictionaryElementsAsImage(A, 10, 9,8,8,0); title('Original dictionary'); param.TrueDictionary = A; param.preserveDCAtom = 0; param.displayProgress = 1; %============================================= % Run the NN-KSVD function %============================================= [Dictionary,output] = KSVD_NN(D,param); %============================================= % display the results %============================================= Dictionary = Dictionary./repmat(sqrt(diag(Dictionary'*Dictionary)'),64,1); figure(1) displayDictionaryElementsAsImage(Dictionary,10, 9,8,8,0); title(['Found dictionary']); figure(2); function [D,xOrig] = CreateDataFromDictionarySimple(dictionary, numElements, numCoef,positiveFlag) maxRangeOfCoef = 1; resolution = 0.0001; xOrig = zeros(size(dictionary,2),numElements); coefs = randn(numCoef,numElements)*maxRangeOfCoef; if (positiveFlag) idx = find(coefs<0); coefs(idx) = coefs(idx)*-1; end xOrig(1:numCoef,:) = coefs; for i=1:size(xOrig,2) xOrig(:,i) = xOrig(randperm(size(xOrig,1)),i); end %dictionaryElementIndices = randsrc(numCoef*numElements,1,[1:size(dictionary,2)]) ; %matrixOfIndices = repmat([1:numElements],numCoef,1); %xOrig(sub2ind(size(xOrig),dictionaryElementIndices,matrixOfIndices(:))) = coefs; D = dictionary*xOrig; function actualNoise = calcNoiseFromSNR(TargerSNR, signal, randomNoise) signal = signal(:); randomNoiseRow = randomNoise(:); signal_2 = sum(signal.^2); ActualNoise_2 = signal_2/(10^(TargerSNR/10)); noise_2 = sum(randomNoiseRow.^2); ratio = ActualNoise_2./noise_2; actualNoise = randomNoiseRow.*repmat(sqrt(ratio),size(randomNoiseRow,1),1); actualNoise = reshape(actualNoise,size(randomNoise));
github
chuangao/BicMix-master
MOD.m
.m
BicMix-master/KSVD/MOD.m
8,053
utf_8
f5300aadcb0fbf0ade04eca1adf42577
function [Dictionary,output] = MOD(Data,param) % ========================================================================= % MOD algorithm % ========================================================================= % Given for comparison reasons only. For detils please see the paper % "Method of optimal directions for frame design", written by K. Engan, % S.O. Aase, and J.H. Husfy, appeared in the IEEE International Conference % on Acoustics, Speech, and Signal Processing, 1999. % ========================================================================= % INPUT ARGUMENTS: % Data an nXN matrix that contins N signals (Y), each of dimension n. % param structure that includes all required % parameters for the K-SVD execution. % Required fields are: % K, ... the number of dictionary elements to train % numIteration,... number of iterations to perform. % errorFlag... if =0, a fix number of coefficients is % used for representation of each signal. If so, param.L must be % specified as the number of representing atom. if =1, arbitrary number % of atoms represent each signal, until a specific representation error % is reached. If so, param.errorGoal must be specified as the allowed % error. % (optional, see errorFlag) L,... % maximum coefficients to use in OMP coefficient calculations. % (optional, see errorFlag) errorGoal, ... % allowed representation error in representing each signal. % InitializationMethod,... mehtod to initialize the dictionary, can % be one of the following arguments: % * 'DataElements' (initialization by the signals themselves), or: % * 'GivenMatrix' (initialization by a given matrix param.initialDictionary). % (optional, see InitializationMethod) initialDictionary,... % if the initialization method % is 'GivenMatrix', this is the matrix that will be used. % preserveDCAtom, ... =1 for a DC atom (in which all entries are equal) to be generated, and % not changed throughout the training. % (optional) TrueDictionary, ... % if specified, in each % iteration the difference between this dictionary and the trained one % is measured and displayed. % displayProgress, ... if =1 progress information is displyed. If param.errorFlag==0, % the average repersentation error (RMSE) is displayed, while if % param.errorFlag==1, the average number of required coefficients for % representation of each signal is displayed. % ========================================================================= % OUTPUT ARGUMENTS: % Dictionary The extracted dictionary of size nX(param.K). % output Struct that contains information about the current run. It may include the following fields: % CoefMatrix The final coefficients matrix (it should hold that Data equals approximately Dictionary*output.CoefMatrix. % ratio If the true dictionary was defined (in % synthetic experiments), this parameter holds a vector of length % param.numIteration that includes the detection ratios in each % iteration). % totalerr The total representation error after each % iteration (defined only if % param.displayProgress=1 and % param.errorFlag = 0) % numCoef A vector of length param.numIteration that % include the average number of coefficients required for representation % of each signal (in each iteration) (defined only if % param.displayProgress=1 and % param.errorFlag = 1) % ========================================================================= if (size(Data,2) < param.K) disp('Size of data is smaller than the dictionary size. Trivial solution...'); Dictionary = Data(:,1:size(Data,2)); return; elseif (strcmp(param.InitializationMethod,'DataElements')) Dictionary(:,1:param.K) = Data(:,1:param.K); elseif (strcmp(param.InitializationMethod,'GivenMatrix')) Dictionary = param.initialDictionary; end %normalize the dictionary. Dictionary = Dictionary*diag(1./sqrt(sum(Dictionary.*Dictionary))); Dictionary = Dictionary.*repmat(sign(Dictionary(1,:)),size(Dictionary,1),1); % multiply in the sign of the first element. K = size(Dictionary,2); totalErr = zeros(1,param.numIteration); if (size(param.TrueDictionary)==size(Dictionary)) displayErrorWithTrueDictionary = 1; ErrorBetweenDictionaries = zeros(param.numIteration+1,1); ratio = zeros(param.numIteration+1,1); else displayErrorWithTrueDictionary = 0; end numCoef = param.L; for iterNum = 1:param.numIteration % find the coefficients if (param.errorFlag==0) %CoefMatrix = mexOMPIterative2(Data, [FixedDictionaryElement,Dictionary],param.L); CoefMatrix = OMP(Dictionary,Data, param.L); else %CoefMatrix = mexOMPerrIterative(Data, [FixedDictionaryElement,Dictionary],param.errorGoal); CoefMatrix = OMPerr(Dictionary,Data, param.errorGoal); param.L = 1; end % improve the dictionary Dictionary = Data*CoefMatrix'*inv(CoefMatrix*CoefMatrix' + 1e-7*speye(size(CoefMatrix,1))); sumDictElems = sum(abs(Dictionary)); zerosIdx = find(sumDictElems<eps); Dictionary(:,zerosIdx) = randn(size(Dictionary,1),length(zerosIdx)); Dictionary = Dictionary*diag(1./sqrt(sum(Dictionary.*Dictionary))); if (iterNum>1 & param.displayProgress) if (param.errorFlag==0) output.totalerr(iterNum-1) = sqrt(sum(sum((Data-Dictionary*CoefMatrix).^2))/prod(size(Data))); disp(['Iteration ',num2str(iterNum),' Total error is: ',num2str(output.totalerr(iterNum-1))]); else output.numCoef(iterNum-1) = length(find(CoefMatrix))/size(Data,2); disp(['Iteration ',num2str(iterNum),' Average number of coefficients: ',num2str(output.numCoef(iterNum-1))]); end end if (displayErrorWithTrueDictionary ) [ratio(iterNum+1),ErrorBetweenDictionaries(iterNum+1)] = I_findDistanseBetweenDictionaries(param.TrueDictionary,Dictionary); disp(strcat(['Iteration ', num2str(iterNum),' ratio of restored elements: ',num2str(ratio(iterNum+1))])); output.ratio = ratio; end end output.CoefMatrix = CoefMatrix; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % findDistanseBetweenDictionaries %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [ratio,totalDistances] = I_findDistanseBetweenDictionaries(original,new) % first, all the column in oiginal starts with positive values. catchCounter = 0; totalDistances = 0; for i = 1:size(new,2) new(:,i) = sign(new(1,i))*new(:,i); end for i = 1:size(original,2) d = sign(original(1,i))*original(:,i); distances =sum ( (new-repmat(d,1,size(new,2))).^2); [minValue,index] = min(distances); errorOfElement = 1-abs(new(:,index)'*d); totalDistances = totalDistances+errorOfElement; catchCounter = catchCounter+(errorOfElement<0.01); end ratio = 100*catchCounter/size(original,2);
github
eardi/sm-fpca-master
test_FELICITY.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/test_FELICITY.m
3,998
utf_8
306a68c40b8cb43a10fdb91f4b94127a
function status = test_FELICITY() %test_FELICITY % % Run the test suite for FELICITY. % Copyright (c) 06-25-2020, Shawn W. Walker VER_NUMBER = '1.3.1'; Test_Files( 1).FH = @compile_static_codes; Test_Files( 2).FH = @test_utilities; Test_Files( 3).FH = @test_static_codes; Test_Files( 4).FH = @test_mesh_classes; Test_Files( 5).FH = @test_elem_defn; Test_Files( 6).FH = @test_fem_classes; Test_Files( 7).FH = @test_managesim_classes; Test_Files( 8).FH = @test_dof_numbering; Test_Files( 9).FH = @test_matrix_assembly; Test_Files(10).FH = @test_fel_pt_search; Test_Files(11).FH = @test_fel_interpolation; Test_Files(12).FH = @test_felicity_demos; output_FELICITY(); FELICITY_user_help(); status = 1; VALID = and(check_path_length(),check_dir_path_for_spaces()); if VALID for ind = 1:length(Test_Files) status = Test_Files(ind).FH(); if (status~=0) disp('Test failed!'); disp(['See ----> ', func2str(Test_Files(ind).FH)]); break; end end else status = -1; end if (status==0) disp('<<<< All FELICITY tests passed >>>>'); disp(' '); disp('*** Your FELICITY installation is fully functional ***'); output_FELICITY(); disp(['Version Number: ', VER_NUMBER]); else disp('<<<< ERROR >>>>'); disp(' '); disp('*** Your FELICITY installation is NOT working... ***'); disp(' '); end end function VALID = check_path_length() % make sure root path length is not longer than 60 characters PATH = [fileparts(mfilename('fullpath')), '\']; LEN = length(PATH); if LEN > 60 choice = questdlg({'It seems you installed FELICITY here:'; ['''', PATH, '''.']; ['The length of this path is too long ', '(', num2str(LEN), ' chars long)', '.']; 'It is recommended that you install FELICITY closer to your root.'; '(Ideally, the path char length should be less than 60.)' 'Otherwise, the unit tests may fail!'; ''; 'Do you wish to continue with unit testing?'}, ... 'FELICITY Root Directory', 'Abort','Continue','Continue'); if strcmp(choice,'Abort') VALID = false; else VALID = true; end else VALID = true; end end function VALID = check_dir_path_for_spaces() % make sure root path does not contain space characters PATH = [fileparts(mfilename('fullpath')), '\']; NO_space = isempty(regexp(PATH, '\s', 'once')); if (~NO_space) % if there is a space... choice = questdlg({'It seems you installed FELICITY here:'; ['''', PATH, '''.']; 'Some of the folder names in the root contain a "space" character.'; 'For example, you may have installed under the directory:'; ' ''C:\Program Files\...'''; 'This is *not* recommended!'; 'You should install FELICITY under a directory *without* spaces.'; 'Otherwise, the unit tests may fail!'; ''; 'Do you wish to continue with unit testing?'}, ... 'FELICITY Root Directory', 'Abort','Continue','Continue'); if strcmp(choice,'Abort') VALID = false; else VALID = true; end else VALID = true; end end function output_FELICITY() disp(' '); disp(' ______ ______ _ _____ _____ _____ _________ __'); disp('| ____| ____| | |_ _/ ____|_ _|__ __\ \ / /'); disp('| |__ | |__ | | | || | | | | | \ \_/ / '); disp('| __| | __| | | | || | | | | | \ / '); disp('| | | |____| |____ _| || |____ _| |_ | | | | '); disp('|_| |______|______|_____\_____|_____| |_| |_| '); disp(' '); end
github
eardi/sm-fpca-master
Generate_HellanHerrmannJohnson_Element_File.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Elem_Defn/Generators/Generate_HellanHerrmannJohnson_Element_File.m
15,770
utf_8
5b5b568e3b4aafb16244458c239e1511
function status = Generate_HellanHerrmannJohnson_Element_File(Element_Domain,Degree_k,Output_Dir) %Generate_HellanHerrmannJohnson_Element_File % % This generates a finite element reference m-file that defines a % particular Hellan-Herrmann-Johnson element of given fixed degree on a % given reference domain. % % The inputs are: % Element_Domain = 'interval', 'triangle', 'tetrahedron', etc. % Degree_k = polynomial degree of finite element. % Output_Dir = string specifying where to write the file. % Copyright (c) 03-22-2018, Shawn W. Walker % get basic info text [Element_Domain, Domain_STR, Domain_Fig_ASCII, Dim] = setup_generic_element_file_text(Element_Domain); ENDL = '\n'; TAB = ' '; %TAB2 = [TAB, TAB]; %TAB3 = [TAB2, TAB]; %TAB4 = [TAB3, TAB]; % get the (reference) finite element space if strcmpi(Element_Domain,'interval') error('Invalid domain!'); elseif strcmpi(Element_Domain,'triangle') [Nodal_Basis, Nodal_Var] = Get_HellanHerrmannJohnson_On_Simplex(Dim,Degree_k); elseif strcmpi(Element_Domain,'tetrahedron') [Nodal_Basis, Nodal_Var] = Get_HellanHerrmannJohnson_On_Simplex(Dim,Degree_k); else error('Not implemented!'); end % setup filename Degree_str = num2str(Degree_k); Dim_str = num2str(Dim); FuncName = ['hellan_herrmann_johnson_deg', Degree_str, '_dim', Dim_str]; Output_FileName = fullfile(Output_Dir, [FuncName, '.m']); % open file for writing fid = fopen(Output_FileName, 'w'); % define write line function write_line = @(STR) fprintf(fid, [STR, ENDL]); write_string = @(STR) fprintf(fid, STR); % write header write_line(['', 'function Elem = ', FuncName, '(Type_STR)']); write_line(['%%', FuncName]); write_line(['%%']); write_line(['%%', TAB, 'This defines a reference finite element to be used by FELICITY.']); write_line(['%%', TAB, 'INPUT: string = ''CG''/''DG'' (continuous/DIScontinuous galerkin).']); write_line(['%%']); write_line(['%%', TAB, 'Hellan-Herrmann-Johnson H(div div) Finite Element of degree = ', Degree_str, ', in dimension = ', Dim_str, '.']); write_line(['%%']); write_line(['%%', TAB, 'Reference Domain: ', Domain_STR, '.']); write_line(['%%']); write_string([Domain_Fig_ASCII]); write_line(['%%']); write_line(['%%', TAB, 'The basis functions are matrix-valued (size = topological dimension X topological dimension).']); write_line(['%%']); write_line(['%%', TAB, 'The basis functions associated with Degrees-of-Freedom (DoFs) on a facet']); write_line(['%%', TAB, 'are "normal-normal" components of the matrix, so facet orientation is *not* needed.']); write_line(['']); current_date = date; write_line(['%%', ' Copyright (c) ', current_date, ', Shawn W. Walker']); write_line(['']); write_line(['%% name it!']); write_line(['Elem.Name = mfilename;']); write_line(['']); write_line(['%% determine continuous or discontinuous galerkin space']); write_line(['if (nargin==0)']); write_line([TAB, 'Type_STR = ''CG''; %% default']); write_line(['end']); write_line(['if strcmpi(Type_STR,''cg'')']); write_line([TAB, 'Elem.Type = ''CG'';']); write_line(['elseif strcmpi(Type_STR,''dg'')']); write_line([TAB, 'Elem.Type = ''DG'';']); write_line(['else']); write_line([TAB, 'error(''Invalid input type! Must be ''''CG'''' or ''''DG''''.'');']); write_line(['end']); write_line(['']); write_line(['%% topological dimension and domain']); write_line(['Elem.Dim = ', Dim_str, ';']); write_line(['Elem.Domain = ''', Element_Domain, ''';']); write_line(['']); write_line(['%% nodal basis function definitions (in the order of their local Degree-of-Freedom index)']); Num_Basis = length(Nodal_Basis); write_line(['Elem.Basis(', num2str(Num_Basis), ').Func = []; %% init']); % loop through nodal basis for ii = 1:length(Nodal_Basis) BF = Nodal_Basis(ii).Func; Basis_Func_Str = write_element_file_basis_func_string(BF); write_line(['Elem.Basis(', num2str(ii), ').Func = {', Basis_Func_Str, '};']); end write_line(['%% local mapping transformation to use']); Transformation_Type_str = 'Hdivdiv_Trans'; write_line(['Elem.Transformation = ''', Transformation_Type_str, ''';']); write_line(['Elem.Degree = ', Degree_str, ';']); write_line(['']); write_line(['%% nodal variable data (in the order of their local Degree-of-Freedom index)']); write_line(['%% (the nodal point is given in barycentric coordinates)']); Num_Nodal_Var = length(Nodal_Var); write_line(['Elem.Nodal_Var(', num2str(Num_Nodal_Var), ').Data = []; %% init']); % loop through nodal variables for ii = 1:length(Nodal_Var) NV = Nodal_Var(ii).Data; Nodal_BC_str = write_element_file_barycentric_string(NV{1}); % write Hellan-Herrmann-Johnson element nodal variable data string if strcmpi(NV{3},'int_facet') Dual_Basis_str = ['[', char(NV{2}), ']']; Nodal_Var_Data_str = ['{', Nodal_BC_str, ', ''', Dual_Basis_str, ''', ''', NV{3}, ''', ', num2str(NV{4}), '}']; elseif strcmpi(NV{3},'int_cell') % generate string for dual basis function BF = NV{2}; if (Dim==2) DB_11 = char(BF(1,1)); DB_12 = char(BF(1,2)); DB_21 = char(BF(2,1)); DB_22 = char(BF(2,2)); Dual_Basis_str = ['[', DB_11, ', ', DB_12, '; ', DB_21, ', ', DB_22 ']']; elseif (Dim==3) DB_1 = char(BF(1)); DB_2 = char(BF(2)); DB_3 = char(BF(3)); error('Not implemented!'); Dual_Basis_str = ['[', DB_1, '; ', DB_2, '; ', DB_3, ']']; elseif (Dim==1) error('Invalid!'); else error('Not implemented!'); end Nodal_Var_Data_str = ['{', Nodal_BC_str, ', ''', Dual_Basis_str, ''', ''', NV{3}, ''', ',... num2str(NV{4}), ', ''', NV{5}, ''', ', num2str(NV{6}), '}']; else error('Invalid!'); end write_line(['Elem.Nodal_Var(', num2str(ii), ').Data = ', Nodal_Var_Data_str, ';']); end write_line(['']); write_line(['%%%%%%%%%% topological arrangement of nodal points %%%%%%%%%%']); write_line(['%% note: multiple sets of nodal variables can be associated with each topological entity.']); write_line(['%% This is done by defining multiple matrix arrays within each matlab cell.']); write_line(['%% See the FELICITY manual for more info.']); write_line(['']); Nodal_Top = get_nodal_top_arrangement(Element_Domain,Nodal_Var); DoF_TAB = ' '; write_line(['%% nodes attached to vertices']); if ~isempty(Nodal_Top.V{1}) write_line(['Elem.Nodal_Top.V = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.V,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.V = {[]};']); end write_line(['']); write_line(['%% nodes attached to edges']); if ~isempty(Nodal_Top.E{1}) write_line(['Elem.Nodal_Top.E = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.E,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.E = {[]};']); end write_line(['']); write_line(['%% nodes attached to triangles (faces)']); if ~isempty(Nodal_Top.F{1}) write_line(['Elem.Nodal_Top.F = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.F,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.F = {[]};']); end write_line(['']); write_line(['%% nodes attached to tetrahedra (cells)']); if ~isempty(Nodal_Top.T{1}) write_line(['Elem.Nodal_Top.T = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.T,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.T = {[]};']); end write_line(['']); write_string(['end']); % DONE! status = fclose(fid); end function Nodal_Top = get_nodal_top_arrangement(Element_Domain,Nodal_Var) % % This arranges the nodal variables (i.e. the nodal points) on their % corresponding topological entities. if strcmpi(Element_Domain,'interval') % this is invalid! Nodal_Top.V = {[]}; Nodal_Top.E = {[]}; Nodal_Top.F = {[]}; Nodal_Top.T = {[]}; elseif strcmpi(Element_Domain,'triangle') % init Edge1 = []; Edge2 = []; Edge3 = []; Cell_1 = []; Cell_2 = []; Cell_3 = []; for ind = 1:length(Nodal_Var) NV = Nodal_Var(ind).Data; Pt = NV{1}; BC_Pt = double(convert_to_barycentric(Pt))'; Type = NV{3}; Entity_Index = NV{4}; if strcmpi(Type,'int_facet') if (Entity_Index==1) Edge1 = [Edge1; ind, BC_Pt]; elseif (Entity_Index==2) Edge2 = [Edge2; ind, BC_Pt]; elseif (Entity_Index==3) Edge3 = [Edge3; ind, BC_Pt]; else error('Invalid!'); end elseif strcmpi(Type,'int_cell') dof_set = NV{6}; if (dof_set==1) Cell_1 = [Cell_1; ind, BC_Pt]; elseif (dof_set==2) Cell_2 = [Cell_2; ind, BC_Pt]; elseif (dof_set==3) Cell_3 = [Cell_3; ind, BC_Pt]; else error('Invalid!'); end else error('Invalid!'); end end Num_E1 = size(Edge1,1); Num_E2 = size(Edge2,1); Num_E3 = size(Edge3,1); Num_C1 = size(Cell_1,1); Num_C2 = size(Cell_2,1); Num_C3 = size(Cell_3,1); Num_DoF = Num_E1 + Num_E2 + Num_E3 + Num_C1 + Num_C2 + Num_C3; if (Num_DoF~=length(Nodal_Var)) error('Number of DoFs is incorrect!'); end CHK_EDGE_DOF = max(abs([Num_E1, Num_E2, Num_E3] - Num_E1)); if (CHK_EDGE_DOF~=0) error('Number of Edge DoFs on each edge is not the same!'); end CHK_CELL_DOF = max(abs([Num_C1, Num_C2, Num_C3] - Num_C1)); if (CHK_CELL_DOF~=0) error('Number of Cell DoFs in each set is not the same!'); end % there are no vertex DoFs Nodal_Top.V = {[]}; % setup the facet (edge) DoFs Edge1 = sortrows(Edge1,1); % sort based on DoF index Edge2 = sortrows(Edge2,1); Edge3 = sortrows(Edge3,1); DoFs_on_Edge = [Edge1(:,1)'; Edge2(:,1)'; Edge3(:,1)']; Nodal_Top.E = {DoFs_on_Edge}; % setup the cell (face) DoFs if ~isempty(Cell_1) Cell_1 = sortrows(Cell_1,1); % sort based on DoF index Cell_2 = sortrows(Cell_2,1); Cell_3 = sortrows(Cell_3,1); DoFs_on_Face_1 = [Cell_1(:,1)']; DoFs_on_Face_2 = [Cell_2(:,1)']; DoFs_on_Face_3 = [Cell_3(:,1)']; % there are 3 sets of DoFs (one for each symmetric matrix basis component in 2-D) Nodal_Top.F = {DoFs_on_Face_1, DoFs_on_Face_2, DoFs_on_Face_3}; else Nodal_Top.F = {[]}; end % there are no other DoFs Nodal_Top.T = {[]}; elseif strcmpi(Element_Domain,'tetrahedron') % init Face1 = []; Face2 = []; Face3 = []; Face4 = []; Cell_1 = []; Cell_2 = []; Cell_3 = []; Cell_4 = []; Cell_5 = []; Cell_6 = []; error('not implemented correctly!'); for ind = 1:length(Nodal_Var) NV = Nodal_Var(ind).Data; Pt = NV{1}; BC_Pt = double(convert_to_barycentric(Pt))'; Type = NV{3}; Entity_Index = NV{4}; if strcmpi(Type,'int_facet') if (Entity_Index==1) Face1 = [Face1; ind, BC_Pt]; elseif (Entity_Index==2) Face2 = [Face2; ind, BC_Pt]; elseif (Entity_Index==3) Face3 = [Face3; ind, BC_Pt]; elseif (Entity_Index==4) Face4 = [Face4; ind, BC_Pt]; else error('Invalid!'); end elseif strcmpi(Type,'int_cell') dof_set = NV{6}; if (dof_set==1) Cell_1 = [Cell_1; ind, BC_Pt]; elseif (dof_set==2) Cell_2 = [Cell_2; ind, BC_Pt]; elseif (dof_set==3) Cell_3 = [Cell_3; ind, BC_Pt]; elseif (dof_set==4) Cell_4 = [Cell_4; ind, BC_Pt]; elseif (dof_set==5) Cell_5 = [Cell_5; ind, BC_Pt]; elseif (dof_set==6) Cell_6 = [Cell_6; ind, BC_Pt]; else error('Invalid!'); end else error('Invalid!'); end end Num_F1 = size(Face1,1); Num_F2 = size(Face2,1); Num_F3 = size(Face3,1); Num_F4 = size(Face4,1); Num_C1 = size(Cell_1,1); Num_C2 = size(Cell_2,1); Num_C3 = size(Cell_3,1); Num_C4 = size(Cell_4,1); Num_C5 = size(Cell_5,1); Num_C6 = size(Cell_6,1); Num_DoF = Num_F1 + Num_F2 + Num_F3 + Num_F4 + ... Num_C1 + Num_C2 + Num_C3 + Num_C4 + Num_C5 + Num_C6; if (Num_DoF~=length(Nodal_Var)) error('Number of DoFs is incorrect!'); end CHK_FACE_DOF = max(abs([Num_F1, Num_F2, Num_F3, Num_F4] - Num_F1)); if (CHK_FACE_DOF~=0) error('Number of Face DoFs on each face is not the same!'); end CHK_CELL_DOF = max(abs([Num_C1, Num_C2, Num_C3, Num_C4, Num_C5, Num_C6] - Num_C1)); if (CHK_CELL_DOF~=0) error('Number of Cell DoFs in each set is not the same!'); end % there are no vertex DoFs Nodal_Top.V = {[]}; % there are no edge DoFs Nodal_Top.E = {[]}; % setup the facet (face) DoFs Face1 = sortrows(Face1,1); % sort based on DoF index Face2 = sortrows(Face2,1); Face3 = sortrows(Face3,1); Face4 = sortrows(Face4,1); DoFs_on_Face = [Face1(:,1)'; Face2(:,1)'; Face3(:,1)'; Face4(:,1)']; Nodal_Top.F = {DoFs_on_Face}; % setup the cell (tet) DoFs if ~isempty(Cell_1) Cell_1 = sortrows(Cell_1,1); % sort based on DoF index Cell_2 = sortrows(Cell_2,1); Cell_3 = sortrows(Cell_3,1); Cell_4 = sortrows(Cell_4,1); Cell_5 = sortrows(Cell_5,1); Cell_6 = sortrows(Cell_6,1); DoFs_on_Cell_1 = [Cell_1(:,1)']; DoFs_on_Cell_2 = [Cell_2(:,1)']; DoFs_on_Cell_3 = [Cell_3(:,1)']; DoFs_on_Cell_4 = [Cell_4(:,1)']; DoFs_on_Cell_5 = [Cell_5(:,1)']; DoFs_on_Cell_6 = [Cell_6(:,1)']; % there are 6 sets of DoFs (one for each symmetric matrix basis component in 3-D) Nodal_Top.T = {DoFs_on_Cell_1, DoFs_on_Cell_2, DoFs_on_Cell_3,... DoFs_on_Cell_4, DoFs_on_Cell_5, DoFs_on_Cell_6}; else Nodal_Top.T = {[]}; end else error('Not implemented!'); end Vtx_DoFs = []; for ii = 1:length(Nodal_Top.V) Vtx_DoFs = [Vtx_DoFs; Nodal_Top.V{ii}(:)]; end Edge_DoFs = []; for ii = 1:length(Nodal_Top.E) Edge_DoFs = [Edge_DoFs; Nodal_Top.E{ii}(:)]; end Face_DoFs = []; for ii = 1:length(Nodal_Top.F) Face_DoFs = [Face_DoFs; Nodal_Top.F{ii}(:)]; end Tet_DoFs = []; for ii = 1:length(Nodal_Top.T) Tet_DoFs = [Tet_DoFs; Nodal_Top.T{ii}(:)]; end All_DoFs = [Vtx_DoFs; Edge_DoFs; Face_DoFs; Tet_DoFs]; % final check Unique_DoFs = unique(All_DoFs); if (length(All_DoFs)~=length(Unique_DoFs)) error('Not all DoF indices are distinct!'); end end
github
eardi/sm-fpca-master
Get_Lagrange_On_Simplex.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Elem_Defn/Generators/Get_Lagrange_On_Simplex.m
24,400
utf_8
7650a20938204235c125a8f0ea449dcd
function [Nodal_Basis, Nodal_Var] = Get_Lagrange_On_Simplex(dim,deg_k) %Get_Lagrange_On_Simplex % % This computes the Lagrange basis functions on a simplex. % Copyright (c) 09-24-2016, Shawn W. Walker disp(['Solve for Lagrange degree ', num2str(deg_k), ' basis functions (on ', num2str(dim), '-D reference simplex):']); if (deg_k < 0) % invalid degree, so return *nothing* Nodal_Basis = []; Nodal_Var = []; return; end % get parameterizations of the reference simplex if (dim==1) % get params of the reference interval Cell = interval_parameterizations(); elseif (dim==2) % get params of the reference triangle Cell = triangle_parameterizations(); elseif (dim==3) % get params of the reference tetrahedron Cell = tetrahedron_parameterizations(); else error('Not implemented!'); end indep_vars = Cell.Param_Inv; % col. vector list of independent variables % define a set of basis functions (indep. variables are x,y,z, depending on dimension) Basis = basis_polys_deg_k(indep_vars,deg_k); % error check Num_Basis = nchoosek(dim + deg_k,deg_k); if (Num_Basis~=length(Basis)) error('Number of basis functions is invalid!'); end % define nodal variable data if (dim==1) Nodal_Var = lagrange_nodal_points_1D(deg_k); elseif (dim==2) Nodal_Var = lagrange_nodal_points_2D(deg_k); elseif (dim==3) Nodal_Var = lagrange_nodal_points_3D(deg_k); else error('Not implemented!'); end % generate matrix entries N = length(Nodal_Var); if (N~=Num_Basis) % error check error('Number of nodal variables is not correct!'); end % init Vandermonde matrix A = sym(zeros(N,N)); % fill in the "Vandermonde" matrix disp('Fill Vandermonde matrix A:'); for ii=1:N % get the current nodal variable (DoF) Nodal_Var_Data = Nodal_Var(ii).Data; Eval_Nodal_Variable = Lagrange_Nodal_Variable(Cell,Nodal_Var_Data,indep_vars); % loop through all of the (primal) basis functions for jj=1:N phi = Basis(jj).func; % get basis function % insert into matrix A(ii,jj) = Eval_Nodal_Variable(phi); % eval nodal variable end disp(['Compute A(', num2str(ii), ', 1:', num2str(N), ').']); end disp('Finished forming Vandermonde matrix...'); % lambda = abs(eig(double(A))); % COND = max(lambda) / min(lambda); % COND % solve for coefficients EYE_SYM = sym(eye(N)); disp('Solve for coefficients:'); COEF = A \ EYE_SYM; % compute the nodal basis functions Nodal_Basis(N).Func = []; for ind=1:N TEMP = 0; % reset! for jj=1:N TEMP = TEMP + COEF(jj,ind) * Basis(jj).func; end Nodal_Basis(ind).Func = simplify(TEMP); end % display for ind=1:N disp(['Nodal Basis Function #', num2str(ind), ':']); pretty(Nodal_Basis(ind).Func) end end function Nodal_Var = lagrange_nodal_points_1D(deg_k) % lay out the points on the reference interval, starting with the end % points (for degree k >= 1). For degree k = 0, just the midpoint. NV = deg_k+1; Nodal_Var(NV).Data = []; % define nodal variable data (in order of the DoF index) % these specify what the Degrees-of-Freedom (DoFs) are % Note: these involve point evaluations (reference coordinates are given) if (deg_k==0) Nodal_Var(1).Data = {sym([0.5]), 'eval_cell', 1}; % point eval on cell else Nodal_Var(1).Data = {sym([0]), 'eval_vertex', 1}; % point eval on vertex #1 Nodal_Var(2).Data = {sym([1]), 'eval_vertex', 2}; % point eval on vertex #2 % now allocate the rest on the cell if NV >= 3 pts = linspace(0,1,NV)'; pts = pts(2:end-1,1); % remove end points for jj = 1:length(pts) Nodal_Var(jj+2).Data = {sym(pts(jj)), 'eval_cell', 1}; % point eval on edge #1 end end end end function Nodal_Var = lagrange_nodal_points_2D(deg_k) % lay out the points on the reference triangle, starting with the vertices % (for degree k >= 1). For degree k = 0, just the barycenter. NV = nchoosek(2 + deg_k,deg_k); Nodal_Var(NV).Data = []; % define nodal variable data (in order of the DoF index) % these specify what the Degrees-of-Freedom (DoFs) are % Note: these involve point evaluations (reference coordinates are given) if (deg_k==0) Nodal_Var(1).Data = {sym([(1/3); (1/3)]), 'eval_cell', 1}; % point eval on cell else Nodal_Var(1).Data = {sym([0; 0]), 'eval_vertex', 1}; % point eval on vertex #1 Nodal_Var(2).Data = {sym([1; 0]), 'eval_vertex', 2}; % point eval on vertex #2 Nodal_Var(3).Data = {sym([0; 1]), 'eval_vertex', 3}; % point eval on vertex #3 % now allocate the rest on the facets and the cell if NV >= 4 if (deg_k==2) Nodal_Var(4).Data = {sym([(1/2); (1/2)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var(5).Data = {sym([0; (1/2)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var(6).Data = {sym([(1/2); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 elseif (deg_k==3) Nodal_Var( 4).Data = {sym([(2/3); (1/3)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var( 5).Data = {sym([(1/3); (2/3)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var( 6).Data = {sym([0; (2/3)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var( 7).Data = {sym([0; (1/3)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var( 8).Data = {sym([(1/3); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 Nodal_Var( 9).Data = {sym([(2/3); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 Nodal_Var(10).Data = {sym([(1/3); (1/3)]), 'eval_cell', 1}; % point eval on cell elseif (deg_k==4) Nodal_Var( 4).Data = {sym([(3/4); (1/4)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var( 5).Data = {sym([(1/2); (1/2)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var( 6).Data = {sym([(1/4); (3/4)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var( 7).Data = {sym([0; (3/4)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var( 8).Data = {sym([0; (1/2)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var( 9).Data = {sym([0; (1/4)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var(10).Data = {sym([(1/4); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 Nodal_Var(11).Data = {sym([(1/2); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 Nodal_Var(12).Data = {sym([(3/4); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 Nodal_Var(13).Data = {sym([(1/4); (1/4)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(14).Data = {sym([(1/2); (1/4)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(15).Data = {sym([(1/4); (1/2)]), 'eval_cell', 1}; % point eval on cell elseif (deg_k==5) Nodal_Var( 4).Data = {sym([(4/5); (1/5)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var( 5).Data = {sym([(3/5); (2/5)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var( 6).Data = {sym([(2/5); (3/5)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var( 7).Data = {sym([(1/5); (4/5)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var( 8).Data = {sym([0; (4/5)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var( 9).Data = {sym([0; (3/5)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var(10).Data = {sym([0; (2/5)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var(11).Data = {sym([0; (1/5)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var(12).Data = {sym([(1/5); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 Nodal_Var(13).Data = {sym([(2/5); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 Nodal_Var(14).Data = {sym([(3/5); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 Nodal_Var(15).Data = {sym([(4/5); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 Nodal_Var(16).Data = {sym([(2/5); (2/5)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(17).Data = {sym([(1/5); (1/5)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(18).Data = {sym([(1/5); (2/5)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(19).Data = {sym([(3/5); (1/5)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(20).Data = {sym([(2/5); (1/5)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(21).Data = {sym([(1/5); (3/5)]), 'eval_cell', 1}; % point eval on cell elseif (deg_k==6) Nodal_Var( 4).Data = {sym([(5/6); (1/6)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var( 5).Data = {sym([(4/6); (2/6)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var( 6).Data = {sym([(3/6); (3/6)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var( 7).Data = {sym([(2/6); (4/6)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var( 8).Data = {sym([(1/6); (5/6)]), 'eval_facet', 1}; % point eval on facet (edge) #1 Nodal_Var( 9).Data = {sym([0; (5/6)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var(10).Data = {sym([0; (4/6)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var(11).Data = {sym([0; (3/6)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var(12).Data = {sym([0; (2/6)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var(13).Data = {sym([0; (1/6)]), 'eval_facet', 2}; % point eval on facet (edge) #2 Nodal_Var(14).Data = {sym([(1/6); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 Nodal_Var(15).Data = {sym([(2/6); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 Nodal_Var(16).Data = {sym([(3/6); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 Nodal_Var(17).Data = {sym([(4/6); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 Nodal_Var(18).Data = {sym([(5/6); 0]), 'eval_facet', 3}; % point eval on facet (edge) #3 Nodal_Var(19).Data = {sym([(3/6); (2/6)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(20).Data = {sym([(2/6); (3/6)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(21).Data = {sym([(1/6); (1/6)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(22).Data = {sym([(1/6); (3/6)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(23).Data = {sym([(1/6); (2/6)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(24).Data = {sym([(4/6); (1/6)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(25).Data = {sym([(2/6); (1/6)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(26).Data = {sym([(3/6); (1/6)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(27).Data = {sym([(1/6); (4/6)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(28).Data = {sym([(1/3); (1/3)]), 'eval_cell', 1}; % point eval on cell else error('Not implemented!'); end end end end function Nodal_Var = lagrange_nodal_points_3D(deg_k) % lay out the points on the reference tetrahedron, starting with the vertices % (for degree k >= 1). For degree k = 0, just the barycenter. NV = nchoosek(3 + deg_k,deg_k); Nodal_Var(NV).Data = []; % define nodal variable data (in order of the DoF index) % these specify what the Degrees-of-Freedom (DoFs) are % Note: these involve point evaluations (reference coordinates are given) if (deg_k==0) Nodal_Var(1).Data = {sym([(1/4); (1/4); (1/4)]), 'eval_cell', 1}; % point eval on cell else Nodal_Var(1).Data = {sym([0; 0; 0]), 'eval_vertex', 1}; % point eval on vertex #1 Nodal_Var(2).Data = {sym([1; 0; 0]), 'eval_vertex', 2}; % point eval on vertex #2 Nodal_Var(3).Data = {sym([0; 1; 0]), 'eval_vertex', 3}; % point eval on vertex #3 Nodal_Var(4).Data = {sym([0; 0; 1]), 'eval_vertex', 4}; % point eval on vertex #4 % now allocate the rest on the facets and the cell if NV >= 5 if (deg_k==2) Nodal_Var( 5).Data = {sym([(1/2); 0; 0]), 'eval_edge', 1}; % point eval on edge #1 Nodal_Var( 6).Data = {sym([0; (1/2); 0]), 'eval_edge', 2}; % point eval on edge #2 Nodal_Var( 7).Data = {sym([0; 0; (1/2)]), 'eval_edge', 3}; % point eval on edge #3 Nodal_Var( 8).Data = {sym([(1/2); (1/2); 0]), 'eval_edge', 4}; % point eval on edge #4 Nodal_Var( 9).Data = {sym([0; (1/2); (1/2)]), 'eval_edge', 5}; % point eval on edge #5 Nodal_Var(10).Data = {sym([(1/2); 0; (1/2)]), 'eval_edge', 6}; % point eval on edge #6 elseif (deg_k==3) Nodal_Var( 5).Data = {sym([(1/3); 0; 0]), 'eval_edge', 1}; % point eval on edge #1 Nodal_Var( 6).Data = {sym([(2/3); 0; 0]), 'eval_edge', 1}; % point eval on edge #1 Nodal_Var( 7).Data = {sym([0; (1/3); 0]), 'eval_edge', 2}; % point eval on edge #2 Nodal_Var( 8).Data = {sym([0; (2/3); 0]), 'eval_edge', 2}; % point eval on edge #2 Nodal_Var( 9).Data = {sym([0; 0; (1/3)]), 'eval_edge', 3}; % point eval on edge #3 Nodal_Var(10).Data = {sym([0; 0; (2/3)]), 'eval_edge', 3}; % point eval on edge #3 Nodal_Var(11).Data = {sym([(2/3); (1/3); 0]), 'eval_edge', 4}; % point eval on edge #4 Nodal_Var(12).Data = {sym([(1/3); (2/3); 0]), 'eval_edge', 4}; % point eval on edge #4 Nodal_Var(13).Data = {sym([0; (2/3); (1/3)]), 'eval_edge', 5}; % point eval on edge #5 Nodal_Var(14).Data = {sym([0; (1/3); (2/3)]), 'eval_edge', 5}; % point eval on edge #5 Nodal_Var(15).Data = {sym([(1/3); 0; (2/3)]), 'eval_edge', 6}; % point eval on edge #6 Nodal_Var(16).Data = {sym([(2/3); 0; (1/3)]), 'eval_edge', 6}; % point eval on edge #6 Nodal_Var(17).Data = {sym([(1/3); (1/3); (1/3)]), 'eval_facet', 1}; % point eval on facet (face) #1 Nodal_Var(18).Data = {sym([ 0; (1/3); (1/3)]), 'eval_facet', 2}; % point eval on facet (face) #2 Nodal_Var(19).Data = {sym([(1/3); 0; (1/3)]), 'eval_facet', 3}; % point eval on facet (face) #3 Nodal_Var(20).Data = {sym([(1/3); (1/3); 0]), 'eval_facet', 4}; % point eval on facet (face) #4 elseif (deg_k==4) Nodal_Var( 5).Data = {sym([(1/4); 0; 0]), 'eval_edge', 1}; % point eval on edge #1 Nodal_Var( 6).Data = {sym([(1/2); 0; 0]), 'eval_edge', 1}; % point eval on edge #1 Nodal_Var( 7).Data = {sym([(3/4); 0; 0]), 'eval_edge', 1}; % point eval on edge #1 Nodal_Var( 8).Data = {sym([0; (1/4); 0]), 'eval_edge', 2}; % point eval on edge #2 Nodal_Var( 9).Data = {sym([0; (1/2); 0]), 'eval_edge', 2}; % point eval on edge #2 Nodal_Var(10).Data = {sym([0; (3/4); 0]), 'eval_edge', 2}; % point eval on edge #2 Nodal_Var(11).Data = {sym([0; 0; (1/4)]), 'eval_edge', 3}; % point eval on edge #3 Nodal_Var(12).Data = {sym([0; 0; (1/2)]), 'eval_edge', 3}; % point eval on edge #3 Nodal_Var(13).Data = {sym([0; 0; (3/4)]), 'eval_edge', 3}; % point eval on edge #3 Nodal_Var(14).Data = {sym([(3/4); (1/4); 0]), 'eval_edge', 4}; % point eval on edge #4 Nodal_Var(15).Data = {sym([(1/2); (1/2); 0]), 'eval_edge', 4}; % point eval on edge #4 Nodal_Var(16).Data = {sym([(1/4); (3/4); 0]), 'eval_edge', 4}; % point eval on edge #4 Nodal_Var(17).Data = {sym([0; (3/4); (1/4)]), 'eval_edge', 5}; % point eval on edge #5 Nodal_Var(18).Data = {sym([0; (1/2); (1/2)]), 'eval_edge', 5}; % point eval on edge #5 Nodal_Var(19).Data = {sym([0; (1/4); (3/4)]), 'eval_edge', 5}; % point eval on edge #5 Nodal_Var(20).Data = {sym([(1/4); 0; (3/4)]), 'eval_edge', 6}; % point eval on edge #6 Nodal_Var(21).Data = {sym([(1/2); 0; (1/2)]), 'eval_edge', 6}; % point eval on edge #6 Nodal_Var(22).Data = {sym([(3/4); 0; (1/4)]), 'eval_edge', 6}; % point eval on edge #6 Nodal_Var(23).Data = {sym([(1/2); (1/4); (1/4)]), 'eval_facet', 1}; % point eval on facet (face) #1 Nodal_Var(24).Data = {sym([(1/4); (1/2); (1/4)]), 'eval_facet', 1}; % point eval on facet (face) #1 Nodal_Var(25).Data = {sym([(1/4); (1/4); (1/2)]), 'eval_facet', 1}; % point eval on facet (face) #1 Nodal_Var(26).Data = {sym([ 0; (1/4); (1/4)]), 'eval_facet', 2}; % point eval on facet (face) #2 Nodal_Var(27).Data = {sym([ 0; (1/4); (1/2)]), 'eval_facet', 2}; % point eval on facet (face) #2 Nodal_Var(28).Data = {sym([ 0; (1/2); (1/4)]), 'eval_facet', 2}; % point eval on facet (face) #2 Nodal_Var(29).Data = {sym([(1/4); 0; (1/4)]), 'eval_facet', 3}; % point eval on facet (face) #3 Nodal_Var(30).Data = {sym([(1/2); 0; (1/4)]), 'eval_facet', 3}; % point eval on facet (face) #3 Nodal_Var(31).Data = {sym([(1/4); 0; (1/2)]), 'eval_facet', 3}; % point eval on facet (face) #3 Nodal_Var(32).Data = {sym([(1/4); (1/4); 0]), 'eval_facet', 4}; % point eval on facet (face) #4 Nodal_Var(33).Data = {sym([(1/4); (1/2); 0]), 'eval_facet', 4}; % point eval on facet (face) #4 Nodal_Var(34).Data = {sym([(1/2); (1/4); 0]), 'eval_facet', 4}; % point eval on facet (face) #4 Nodal_Var(35).Data = {sym([(1/4); (1/4); (1/4)]), 'eval_cell', 1}; % point eval on cell elseif (deg_k==5) Nodal_Var( 5).Data = {sym([(1/5); 0; 0]), 'eval_edge', 1}; % point eval on edge #1 Nodal_Var( 6).Data = {sym([(2/5); 0; 0]), 'eval_edge', 1}; % point eval on edge #1 Nodal_Var( 7).Data = {sym([(3/5); 0; 0]), 'eval_edge', 1}; % point eval on edge #1 Nodal_Var( 8).Data = {sym([(4/5); 0; 0]), 'eval_edge', 1}; % point eval on edge #1 Nodal_Var( 9).Data = {sym([0; (1/5); 0]), 'eval_edge', 2}; % point eval on edge #2 Nodal_Var(10).Data = {sym([0; (2/5); 0]), 'eval_edge', 2}; % point eval on edge #2 Nodal_Var(11).Data = {sym([0; (3/5); 0]), 'eval_edge', 2}; % point eval on edge #2 Nodal_Var(12).Data = {sym([0; (4/5); 0]), 'eval_edge', 2}; % point eval on edge #2 Nodal_Var(13).Data = {sym([0; 0; (1/5)]), 'eval_edge', 3}; % point eval on edge #3 Nodal_Var(14).Data = {sym([0; 0; (2/5)]), 'eval_edge', 3}; % point eval on edge #3 Nodal_Var(15).Data = {sym([0; 0; (3/5)]), 'eval_edge', 3}; % point eval on edge #3 Nodal_Var(16).Data = {sym([0; 0; (4/5)]), 'eval_edge', 3}; % point eval on edge #3 Nodal_Var(17).Data = {sym([(4/5); (1/5); 0]), 'eval_edge', 4}; % point eval on edge #4 Nodal_Var(18).Data = {sym([(3/5); (2/5); 0]), 'eval_edge', 4}; % point eval on edge #4 Nodal_Var(19).Data = {sym([(2/5); (3/5); 0]), 'eval_edge', 4}; % point eval on edge #4 Nodal_Var(20).Data = {sym([(1/5); (4/5); 0]), 'eval_edge', 4}; % point eval on edge #4 Nodal_Var(21).Data = {sym([0; (4/5); (1/5)]), 'eval_edge', 5}; % point eval on edge #5 Nodal_Var(22).Data = {sym([0; (3/5); (2/5)]), 'eval_edge', 5}; % point eval on edge #5 Nodal_Var(23).Data = {sym([0; (2/5); (3/5)]), 'eval_edge', 5}; % point eval on edge #5 Nodal_Var(24).Data = {sym([0; (1/5); (4/5)]), 'eval_edge', 5}; % point eval on edge #5 Nodal_Var(25).Data = {sym([(1/5); 0; (4/5)]), 'eval_edge', 6}; % point eval on edge #6 Nodal_Var(26).Data = {sym([(2/5); 0; (3/5)]), 'eval_edge', 6}; % point eval on edge #6 Nodal_Var(27).Data = {sym([(3/5); 0; (2/5)]), 'eval_edge', 6}; % point eval on edge #6 Nodal_Var(28).Data = {sym([(4/5); 0; (1/5)]), 'eval_edge', 6}; % point eval on edge #6 %%%%%%%%%%% Nodal_Var(29).Data = {sym([(1/5); (2/5); (2/5)]), 'eval_facet', 1}; % point eval on facet (face) #1 Nodal_Var(30).Data = {sym([(3/5); (1/5); (1/5)]), 'eval_facet', 1}; % point eval on facet (face) #1 Nodal_Var(31).Data = {sym([(2/5); (1/5); (2/5)]), 'eval_facet', 1}; % point eval on facet (face) #1 Nodal_Var(32).Data = {sym([(1/5); (3/5); (1/5)]), 'eval_facet', 1}; % point eval on facet (face) #1 Nodal_Var(33).Data = {sym([(2/5); (2/5); (1/5)]), 'eval_facet', 1}; % point eval on facet (face) #1 Nodal_Var(34).Data = {sym([(1/5); (1/5); (3/5)]), 'eval_facet', 1}; % point eval on facet (face) #1 %%%%%%%%%%% Nodal_Var(35).Data = {sym([ 0; (2/5); (2/5)]), 'eval_facet', 2}; % point eval on facet (face) #2 Nodal_Var(36).Data = {sym([ 0; (1/5); (1/5)]), 'eval_facet', 2}; % point eval on facet (face) #2 Nodal_Var(37).Data = {sym([ 0; (2/5); (1/5)]), 'eval_facet', 2}; % point eval on facet (face) #2 Nodal_Var(38).Data = {sym([ 0; (1/5); (3/5)]), 'eval_facet', 2}; % point eval on facet (face) #2 Nodal_Var(39).Data = {sym([ 0; (1/5); (2/5)]), 'eval_facet', 2}; % point eval on facet (face) #2 Nodal_Var(40).Data = {sym([ 0; (3/5); (1/5)]), 'eval_facet', 2}; % point eval on facet (face) #2 %%%%%%%%%%% Nodal_Var(41).Data = {sym([(2/5); 0; (2/5)]), 'eval_facet', 3}; % point eval on facet (face) #3 Nodal_Var(42).Data = {sym([(1/5); 0; (1/5)]), 'eval_facet', 3}; % point eval on facet (face) #3 Nodal_Var(43).Data = {sym([(1/5); 0; (2/5)]), 'eval_facet', 3}; % point eval on facet (face) #3 Nodal_Var(44).Data = {sym([(3/5); 0; (1/5)]), 'eval_facet', 3}; % point eval on facet (face) #3 Nodal_Var(45).Data = {sym([(2/5); 0; (1/5)]), 'eval_facet', 3}; % point eval on facet (face) #3 Nodal_Var(46).Data = {sym([(1/5); 0; (3/5)]), 'eval_facet', 3}; % point eval on facet (face) #3 %%%%%%%%%%% Nodal_Var(47).Data = {sym([(2/5); (2/5); 0]), 'eval_facet', 4}; % point eval on facet (face) #4 Nodal_Var(48).Data = {sym([(1/5); (1/5); 0]), 'eval_facet', 4}; % point eval on facet (face) #4 Nodal_Var(49).Data = {sym([(2/5); (1/5); 0]), 'eval_facet', 4}; % point eval on facet (face) #4 Nodal_Var(50).Data = {sym([(1/5); (3/5); 0]), 'eval_facet', 4}; % point eval on facet (face) #4 Nodal_Var(51).Data = {sym([(1/5); (2/5); 0]), 'eval_facet', 4}; % point eval on facet (face) #4 Nodal_Var(52).Data = {sym([(3/5); (1/5); 0]), 'eval_facet', 4}; % point eval on facet (face) #4 %%%%% Nodal_Var(53).Data = {sym([(1/5); (1/5); (1/5)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(54).Data = {sym([(2/5); (1/5); (1/5)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(55).Data = {sym([(1/5); (2/5); (1/5)]), 'eval_cell', 1}; % point eval on cell Nodal_Var(56).Data = {sym([(1/5); (1/5); (2/5)]), 'eval_cell', 1}; % point eval on cell else error('Not implemented!'); end end end end
github
eardi/sm-fpca-master
Generate_RaviartThomas_Element_File.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Elem_Defn/Generators/Generate_RaviartThomas_Element_File.m
15,235
utf_8
e329cf81684aa6dad279d26b7fbf4d66
function status = Generate_RaviartThomas_Element_File(Element_Domain,Degree_k,Output_Dir) %Generate_RaviartThomas_Element_File % % This generates a finite element reference m-file that defines a % particular Raviart-Thomas element of given fixed degree on a given % reference domain. % % The inputs are: % Element_Domain = 'interval', 'triangle', 'tetrahedron', etc. % Degree_k = polynomial degree of finite element. % Output_Dir = string specifying where to write the file. % Copyright (c) 10-10-2016, Shawn W. Walker % get basic info text [Element_Domain, Domain_STR, Domain_Fig_ASCII, Dim] = setup_generic_element_file_text(Element_Domain); ENDL = '\n'; TAB = ' '; %TAB2 = [TAB, TAB]; %TAB3 = [TAB2, TAB]; %TAB4 = [TAB3, TAB]; % get the (reference) finite element space if strcmpi(Element_Domain,'interval') error('Invalid domain!'); elseif strcmpi(Element_Domain,'triangle') [Nodal_Basis, Nodal_Var] = Get_RaviartThomas_On_Simplex(Dim,Degree_k); elseif strcmpi(Element_Domain,'tetrahedron') [Nodal_Basis, Nodal_Var] = Get_RaviartThomas_On_Simplex(Dim,Degree_k); else error('Not implemented!'); end % setup filename Degree_str = num2str(Degree_k); Dim_str = num2str(Dim); FuncName = ['raviart_thomas_deg', Degree_str, '_dim', Dim_str]; Output_FileName = fullfile(Output_Dir, [FuncName, '.m']); % open file for writing fid = fopen(Output_FileName, 'w'); % define write line function write_line = @(STR) fprintf(fid, [STR, ENDL]); write_string = @(STR) fprintf(fid, STR); % write header write_line(['', 'function Elem = ', FuncName, '(Type_STR)']); write_line(['%%', FuncName]); write_line(['%%']); write_line(['%%', TAB, 'This defines a reference finite element to be used by FELICITY.']); write_line(['%%', TAB, 'INPUT: string = ''CG''/''DG'' (continuous/DIScontinuous galerkin).']); write_line(['%%']); write_line(['%%', TAB, 'Raviart-Thomas H(div) Finite Element of degree = ', Degree_str, ', in dimension = ', Dim_str, '.']); write_line(['%%']); write_line(['%%', TAB, 'Reference Domain: ', Domain_STR, '.']); write_line(['%%']); write_string([Domain_Fig_ASCII]); write_line(['%%']); write_line(['%%', TAB, 'The basis functions are vector-valued (number of components = topological dimension).']); write_line(['%%']); write_line(['%%', TAB, 'The basis functions associated with Degrees-of-Freedom (DoFs) on a facet']); write_line(['%%', TAB, 'have an orientation dictated by the facet''s orientation.']); write_line(['%%']); write_line(['%%', TAB, 'For simplicity, the basis functions specified in this file assume a']); write_line(['%%', TAB, 'fixed orientation on the reference element, which is that all facets']); write_line(['%%', TAB, 'are oriented with the normal vector pointing *OUT* of the reference']); write_line(['%%', TAB, 'element.']); write_line(['%%']); write_line(['%%', TAB, 'Thus, one needs to introduce appropriate +/- sign changes when mapping']); write_line(['%%', TAB, 'these basis functions to the *actual* element in the mesh. This is']); write_line(['%%', TAB, 'handled by the "guts" of FELICITY to auto-generate code to take care of']); write_line(['%%', TAB, 'these sign changes (e.g. when assembling matrices, interpolation, etc.).']); write_line(['%%', TAB, 'Note: only sign changes are made; there is no permuting of DoFs.']); % This is **not** the case with H(curl) elements! write_line(['']); current_date = date; write_line(['%%', ' Copyright (c) ', current_date, ', Shawn W. Walker']); write_line(['']); write_line(['%% name it!']); write_line(['Elem.Name = mfilename;']); write_line(['']); write_line(['%% determine continuous or discontinuous galerkin space']); write_line(['if (nargin==0)']); write_line([TAB, 'Type_STR = ''CG''; %% default']); write_line(['end']); write_line(['if strcmpi(Type_STR,''cg'')']); write_line([TAB, 'Elem.Type = ''CG'';']); write_line(['elseif strcmpi(Type_STR,''dg'')']); write_line([TAB, 'Elem.Type = ''DG'';']); write_line(['else']); write_line([TAB, 'error(''Invalid input type! Must be ''''CG'''' or ''''DG''''.'');']); write_line(['end']); write_line(['']); write_line(['%% topological dimension and domain']); write_line(['Elem.Dim = ', Dim_str, ';']); write_line(['Elem.Domain = ''', Element_Domain, ''';']); write_line(['']); write_line(['%% nodal basis function definitions (in the order of their local Degree-of-Freedom index)']); Num_Basis = length(Nodal_Basis); write_line(['Elem.Basis(', num2str(Num_Basis), ').Func = []; %% init']); % loop through nodal basis for ii = 1:length(Nodal_Basis) BF = Nodal_Basis(ii).Func; Basis_Func_Str = write_element_file_basis_func_string(BF); write_line(['Elem.Basis(', num2str(ii), ').Func = {', Basis_Func_Str, '};']); end write_line(['%% local mapping transformation to use']); Transformation_Type_str = 'Hdiv_Trans'; write_line(['Elem.Transformation = ''', Transformation_Type_str, ''';']); write_line(['Elem.Degree = ', Degree_str, ';']); write_line(['']); write_line(['%% nodal variable data (in the order of their local Degree-of-Freedom index)']); write_line(['%% (the nodal point is given in barycentric coordinates)']); Num_Nodal_Var = length(Nodal_Var); write_line(['Elem.Nodal_Var(', num2str(Num_Nodal_Var), ').Data = []; %% init']); % loop through nodal variables for ii = 1:length(Nodal_Var) NV = Nodal_Var(ii).Data; Nodal_BC_str = write_element_file_barycentric_string(NV{1}); % write Raviart-Thomas element nodal variable data string if strcmpi(NV{3},'int_facet') Dual_Basis_str = ['[', char(NV{2}), ']']; Nodal_Var_Data_str = ['{', Nodal_BC_str, ', ''', Dual_Basis_str, ''', ''', NV{3}, ''', ', num2str(NV{4}), '}']; elseif strcmpi(NV{3},'int_cell') % generate string for dual basis function BF = NV{2}; if (Dim==2) DB_1 = char(BF(1)); DB_2 = char(BF(2)); Dual_Basis_str = ['[', DB_1, '; ', DB_2, ']']; elseif (Dim==3) DB_1 = char(BF(1)); DB_2 = char(BF(2)); DB_3 = char(BF(3)); Dual_Basis_str = ['[', DB_1, '; ', DB_2, '; ', DB_3, ']']; elseif (Dim==1) error('Invalid!'); else error('Not implemented!'); end Nodal_Var_Data_str = ['{', Nodal_BC_str, ', ''', Dual_Basis_str, ''', ''', NV{3}, ''', ',... num2str(NV{4}), ', ''', NV{5}, ''', ', num2str(NV{6}), '}']; else error('Invalid!'); end write_line(['Elem.Nodal_Var(', num2str(ii), ').Data = ', Nodal_Var_Data_str, ';']); end write_line(['']); write_line(['%%%%%%%%%% topological arrangement of nodal points %%%%%%%%%%']); write_line(['%% note: multiple sets of nodal variables can be associated with each topological entity.']); write_line(['%% This is done by defining multiple matrix arrays within each matlab cell.']); write_line(['%% See the FELICITY manual for more info.']); write_line(['']); Nodal_Top = get_nodal_top_arrangement(Element_Domain,Nodal_Var); DoF_TAB = ' '; write_line(['%% nodes attached to vertices']); if ~isempty(Nodal_Top.V{1}) write_line(['Elem.Nodal_Top.V = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.V,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.V = {[]};']); end write_line(['']); write_line(['%% nodes attached to edges']); if ~isempty(Nodal_Top.E{1}) write_line(['Elem.Nodal_Top.E = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.E,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.E = {[]};']); end write_line(['']); write_line(['%% nodes attached to triangles (faces)']); if ~isempty(Nodal_Top.F{1}) write_line(['Elem.Nodal_Top.F = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.F,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.F = {[]};']); end write_line(['']); write_line(['%% nodes attached to tetrahedra (cells)']); if ~isempty(Nodal_Top.T{1}) write_line(['Elem.Nodal_Top.T = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.T,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.T = {[]};']); end write_line(['']); write_string(['end']); % DONE! status = fclose(fid); end function Nodal_Top = get_nodal_top_arrangement(Element_Domain,Nodal_Var) % % This arranges the nodal variables (i.e. the nodal points) on their % corresponding topological entities. if strcmpi(Element_Domain,'interval') % this is invalid! Nodal_Top.V = {[]}; Nodal_Top.E = {[]}; Nodal_Top.F = {[]}; Nodal_Top.T = {[]}; elseif strcmpi(Element_Domain,'triangle') % init Edge1 = []; Edge2 = []; Edge3 = []; Cell_1 = []; Cell_2 = []; for ind = 1:length(Nodal_Var) NV = Nodal_Var(ind).Data; Pt = NV{1}; BC_Pt = double(convert_to_barycentric(Pt))'; Type = NV{3}; Entity_Index = NV{4}; if strcmpi(Type,'int_facet') if (Entity_Index==1) Edge1 = [Edge1; ind, BC_Pt]; elseif (Entity_Index==2) Edge2 = [Edge2; ind, BC_Pt]; elseif (Entity_Index==3) Edge3 = [Edge3; ind, BC_Pt]; else error('Invalid!'); end elseif strcmpi(Type,'int_cell') dof_set = NV{6}; if (dof_set==1) Cell_1 = [Cell_1; ind, BC_Pt]; elseif (dof_set==2) Cell_2 = [Cell_2; ind, BC_Pt]; else error('Invalid!'); end else error('Invalid!'); end end Num_E1 = size(Edge1,1); Num_E2 = size(Edge2,1); Num_E3 = size(Edge3,1); Num_C1 = size(Cell_1,1); Num_C2 = size(Cell_2,1); Num_DoF = Num_E1 + Num_E2 + Num_E3 + Num_C1 + Num_C2; if (Num_DoF~=length(Nodal_Var)) error('Number of DoFs is incorrect!'); end CHK_EDGE_DOF = max(abs([Num_E1, Num_E2, Num_E3] - Num_E1)); if (CHK_EDGE_DOF~=0) error('Number of Edge DoFs on each edge is not the same!'); end if (Num_C1~=Num_C2) error('Number of Cell DoFs in each set is not the same!'); end % there are no vertex DoFs Nodal_Top.V = {[]}; % setup the facet (edge) DoFs Edge1 = sortrows(Edge1,1); % sort based on DoF index Edge2 = sortrows(Edge2,1); Edge3 = sortrows(Edge3,1); DoFs_on_Edge = [Edge1(:,1)'; Edge2(:,1)'; Edge3(:,1)']; Nodal_Top.E = {DoFs_on_Edge}; % setup the cell (face) DoFs if ~isempty(Cell_1) Cell_1 = sortrows(Cell_1,1); % sort based on DoF index Cell_2 = sortrows(Cell_2,1); DoFs_on_Face_1 = [Cell_1(:,1)']; DoFs_on_Face_2 = [Cell_2(:,1)']; % there are 2 sets of DoFs (one for each vector component) Nodal_Top.F = {DoFs_on_Face_1, DoFs_on_Face_2}; else Nodal_Top.F = {[]}; end % there are no other DoFs Nodal_Top.T = {[]}; elseif strcmpi(Element_Domain,'tetrahedron') % init Face1 = []; Face2 = []; Face3 = []; Face4 = []; Cell_1 = []; Cell_2 = []; Cell_3 = []; for ind = 1:length(Nodal_Var) NV = Nodal_Var(ind).Data; Pt = NV{1}; BC_Pt = double(convert_to_barycentric(Pt))'; Type = NV{3}; Entity_Index = NV{4}; if strcmpi(Type,'int_facet') if (Entity_Index==1) Face1 = [Face1; ind, BC_Pt]; elseif (Entity_Index==2) Face2 = [Face2; ind, BC_Pt]; elseif (Entity_Index==3) Face3 = [Face3; ind, BC_Pt]; elseif (Entity_Index==4) Face4 = [Face4; ind, BC_Pt]; else error('Invalid!'); end elseif strcmpi(Type,'int_cell') dof_set = NV{6}; if (dof_set==1) Cell_1 = [Cell_1; ind, BC_Pt]; elseif (dof_set==2) Cell_2 = [Cell_2; ind, BC_Pt]; elseif (dof_set==3) Cell_3 = [Cell_3; ind, BC_Pt]; else error('Invalid!'); end else error('Invalid!'); end end Num_F1 = size(Face1,1); Num_F2 = size(Face2,1); Num_F3 = size(Face3,1); Num_F4 = size(Face4,1); Num_C1 = size(Cell_1,1); Num_C2 = size(Cell_2,1); Num_C3 = size(Cell_3,1); Num_DoF = Num_F1 + Num_F2 + Num_F3 + Num_F4 + ... Num_C1 + Num_C2 + Num_C3; if (Num_DoF~=length(Nodal_Var)) error('Number of DoFs is incorrect!'); end CHK_FACE_DOF = max(abs([Num_F1, Num_F2, Num_F3, Num_F4] - Num_F1)); if (CHK_FACE_DOF~=0) error('Number of Face DoFs on each face is not the same!'); end CHK_CELL_DOF = max(abs([Num_C1, Num_C2, Num_C3] - Num_C1)); if (CHK_CELL_DOF~=0) error('Number of Cell DoFs in each set is not the same!'); end % there are no vertex DoFs Nodal_Top.V = {[]}; % there are no edge DoFs Nodal_Top.E = {[]}; % setup the facet (face) DoFs Face1 = sortrows(Face1,1); % sort based on DoF index Face2 = sortrows(Face2,1); Face3 = sortrows(Face3,1); Face4 = sortrows(Face4,1); DoFs_on_Face = [Face1(:,1)'; Face2(:,1)'; Face3(:,1)'; Face4(:,1)']; Nodal_Top.F = {DoFs_on_Face}; % setup the cell (tet) DoFs if ~isempty(Cell_1) Cell_1 = sortrows(Cell_1,1); % sort based on DoF index Cell_2 = sortrows(Cell_2,1); Cell_3 = sortrows(Cell_3,1); DoFs_on_Cell_1 = [Cell_1(:,1)']; DoFs_on_Cell_2 = [Cell_2(:,1)']; DoFs_on_Cell_3 = [Cell_3(:,1)']; % there are 3 sets of DoFs (one for each vector component) Nodal_Top.T = {DoFs_on_Cell_1, DoFs_on_Cell_2, DoFs_on_Cell_3}; else Nodal_Top.T = {[]}; end else error('Not implemented!'); end Vtx_DoFs = []; for ii = 1:length(Nodal_Top.V) Vtx_DoFs = [Vtx_DoFs; Nodal_Top.V{ii}(:)]; end Edge_DoFs = []; for ii = 1:length(Nodal_Top.E) Edge_DoFs = [Edge_DoFs; Nodal_Top.E{ii}(:)]; end Face_DoFs = []; for ii = 1:length(Nodal_Top.F) Face_DoFs = [Face_DoFs; Nodal_Top.F{ii}(:)]; end Tet_DoFs = []; for ii = 1:length(Nodal_Top.T) Tet_DoFs = [Tet_DoFs; Nodal_Top.T{ii}(:)]; end All_DoFs = [Vtx_DoFs; Edge_DoFs; Face_DoFs; Tet_DoFs]; % final check Unique_DoFs = unique(All_DoFs); if (length(All_DoFs)~=length(Unique_DoFs)) error('Not all DoF indices are distinct!'); end end
github
eardi/sm-fpca-master
Generate_Lagrange_Element_File.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Elem_Defn/Generators/Generate_Lagrange_Element_File.m
17,212
utf_8
42bdd40861f80585634d21c5ebcaaa44
function status = Generate_Lagrange_Element_File(Element_Domain,Degree_k,Output_Dir) %Generate_Lagrange_Element_File % % This generates a finite element reference m-file that defines a % particular Lagrange element of given fixed degree on a given reference % domain. % % The inputs are: % Element_Domain = 'interval', 'triangle', 'tetrahedron', etc. % Degree_k = polynomial degree of finite element. % Output_FileName = string specifying where to write the file. % Copyright (c) 10-10-2016, Shawn W. Walker % get basic info text [Element_Domain, Domain_STR, Domain_Fig_ASCII, Dim] = setup_generic_element_file_text(Element_Domain); ENDL = '\n'; TAB = ' '; %TAB2 = [TAB, TAB]; %TAB3 = [TAB2, TAB]; %TAB4 = [TAB3, TAB]; % get the (reference) finite element space if strcmpi(Element_Domain,'interval') [Nodal_Basis, Nodal_Var] = Get_Lagrange_On_Simplex(Dim,Degree_k); elseif strcmpi(Element_Domain,'triangle') [Nodal_Basis, Nodal_Var] = Get_Lagrange_On_Simplex(Dim,Degree_k); elseif strcmpi(Element_Domain,'tetrahedron') [Nodal_Basis, Nodal_Var] = Get_Lagrange_On_Simplex(Dim,Degree_k); else error('Not implemented!'); end % setup filename Degree_str = num2str(Degree_k); Dim_str = num2str(Dim); FuncName = ['lagrange_deg', Degree_str, '_dim', Dim_str]; Output_FileName = fullfile(Output_Dir, [FuncName, '.m']); % open file for writing fid = fopen(Output_FileName, 'w'); % define write line function write_line = @(STR) fprintf(fid, [STR, ENDL]); write_string = @(STR) fprintf(fid, STR); % write header write_line(['', 'function Elem = ', FuncName, '(Type_STR)']); write_line(['%%', FuncName]); write_line(['%%']); write_line(['%%', TAB, 'This defines a reference finite element to be used by FELICITY.']); write_line(['%%', TAB, 'INPUT: string = ''CG''/''DG'' (continuous/DIScontinuous galerkin).']); write_line(['%%']); write_line(['%%', TAB, 'Lagrange H^1 Finite Element of degree = ', Degree_str, ', in dimension = ', Dim_str, '.']); write_line(['%%']); write_line(['%%', TAB, 'Reference Domain: ', Domain_STR, '.']); write_line(['%%']); write_line([Domain_Fig_ASCII]); current_date = date; write_line(['%%', ' Copyright (c) ', current_date, ', Shawn W. Walker']); write_line(['']); write_line(['%% name it!']); write_line(['Elem.Name = mfilename;']); write_line(['']); if (Degree_k==0) write_line(['%% space must be discontinuous galerkin for piecewise constant']); write_line(['Elem.Type = ''DG'';']); else write_line(['%% determine continuous or discontinuous galerkin space']); write_line(['if (nargin==0)']); write_line([TAB, 'Type_STR = ''CG''; %% default']); write_line(['end']); write_line(['if strcmpi(Type_STR,''cg'')']); write_line([TAB, 'Elem.Type = ''CG'';']); write_line(['elseif strcmpi(Type_STR,''dg'')']); write_line([TAB, 'Elem.Type = ''DG'';']); write_line(['else']); write_line([TAB, 'error(''Invalid input type! Must be ''''CG'''' or ''''DG''''.'');']); write_line(['end']); end write_line(['']); write_line(['%% topological dimension and domain']); write_line(['Elem.Dim = ', Dim_str, ';']); write_line(['Elem.Domain = ''', Element_Domain, ''';']); write_line(['']); write_line(['%% nodal basis function definitions (in the order of their local Degree-of-Freedom index)']); Num_Basis = length(Nodal_Basis); write_line(['Elem.Basis(', num2str(Num_Basis), ').Func = []; %% init']); % loop through nodal basis for ii = 1:length(Nodal_Basis) BF = Nodal_Basis(ii).Func; Basis_Func_Str = write_element_file_basis_func_string(BF); write_line(['Elem.Basis(', num2str(ii), ').Func = {', Basis_Func_Str, '};']); end write_line(['%% local mapping transformation to use']); Transformation_Type_str = 'H1_Trans'; write_line(['Elem.Transformation = ''', Transformation_Type_str, ''';']); write_line(['Elem.Degree = ', Degree_str, ';']); write_line(['']); write_line(['%% nodal variable data (in the order of their local Degree-of-Freedom index)']); write_line(['%% (the nodal point is given in barycentric coordinates)']); Num_Nodal_Var = length(Nodal_Var); write_line(['Elem.Nodal_Var(', num2str(Num_Nodal_Var), ').Data = []; %% init']); % loop through nodal variables for ii = 1:length(Nodal_Var) NV = Nodal_Var(ii).Data; Nodal_BC_str = write_element_file_barycentric_string(NV{1}); % write Lagrange element nodal variable data string Nodal_Var_Data_str = ['{', Nodal_BC_str, ', ''', NV{2}, ''', ', num2str(NV{3}), '}']; write_line(['Elem.Nodal_Var(', num2str(ii), ').Data = ', Nodal_Var_Data_str, ';']); end write_line(['']); write_line(['%%%%%%%%%% topological arrangement of nodal points %%%%%%%%%%']); write_line(['%% note: multiple sets of nodal variables can be associated with each topological entity.']); write_line(['%% This is done by defining multiple matrix arrays within each matlab cell.']); write_line(['%% See the FELICITY manual for more info.']); write_line(['']); Nodal_Top = get_nodal_top_arrangement(Element_Domain,Nodal_Var); DoF_TAB = ' '; write_line(['%% nodes attached to vertices']); if ~isempty(Nodal_Top.V{1}) write_line(['Elem.Nodal_Top.V = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.V,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.V = {[]};']); end write_line(['']); write_line(['%% nodes attached to edges']); if ~isempty(Nodal_Top.E{1}) write_line(['Elem.Nodal_Top.E = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.E,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.E = {[]};']); end write_line(['']); write_line(['%% nodes attached to triangles (faces)']); if ~isempty(Nodal_Top.F{1}) write_line(['Elem.Nodal_Top.F = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.F,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.F = {[]};']); end write_line(['']); write_line(['%% nodes attached to tetrahedra (cells)']); if ~isempty(Nodal_Top.T{1}) write_line(['Elem.Nodal_Top.T = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.T,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.T = {[]};']); end write_line(['']); write_string(['end']); % DONE! status = fclose(fid); end function Nodal_Top = get_nodal_top_arrangement(Element_Domain,Nodal_Var) % % This arranges the nodal variables (i.e. the nodal points) on their % corresponding topological entities. if strcmpi(Element_Domain,'interval') % init Vtx1 = []; Vtx2 = []; Edge1 = []; for ind = 1:length(Nodal_Var) NV = Nodal_Var(ind).Data; Pt = NV{1}; BC_Pt = double(convert_to_barycentric(Pt))'; Type = NV{2}; Entity_Index = NV{3}; if strcmpi(Type,'eval_vertex') if (Entity_Index==1) Vtx1 = [Vtx1; ind, BC_Pt]; elseif (Entity_Index==2) Vtx2 = [Vtx2; ind, BC_Pt]; else error('Invalid!'); end elseif strcmpi(Type,'eval_cell') Edge1 = [Edge1; ind, BC_Pt]; else error('Invalid!'); end end Num_V1 = size(Vtx1,1); Num_V2 = size(Vtx2,1); Num_E1 = size(Edge1,1); Num_DoF = Num_V1 + Num_V2 + Num_E1; if (Num_DoF~=length(Nodal_Var)) error('Number of DoFs is incorrect!'); end if (Num_V1~=Num_V2) error('Number of Vtx DoFs at each vertex is not the same!'); end % setup the vertex DoFs if ~isempty(Vtx1) Vtx1 = sortrows(Vtx1,1); % sort based on DoF index Vtx2 = sortrows(Vtx2,1); DoFs_on_Vtx = [Vtx1(:,1)'; Vtx2(:,1)']; Nodal_Top.V = {DoFs_on_Vtx}; else DoFs_on_Vtx = []; end Nodal_Top.V = {DoFs_on_Vtx}; % setup the cell (edge) DoFs if ~isempty(Edge1) Edge1 = sortrows(Edge1,1); % sort based on DoF index DoFs_on_Edge = [Edge1(:,1)']; else DoFs_on_Edge = []; end Nodal_Top.E = {DoFs_on_Edge}; % there are no other DoFs Nodal_Top.F = {[]}; Nodal_Top.T = {[]}; elseif strcmpi(Element_Domain,'triangle') % init Vtx1 = []; Vtx2 = []; Vtx3 = []; Edge1 = []; Edge2 = []; Edge3 = []; Face1 = []; for ind = 1:length(Nodal_Var) NV = Nodal_Var(ind).Data; Pt = NV{1}; BC_Pt = double(convert_to_barycentric(Pt))'; Type = NV{2}; Entity_Index = NV{3}; if strcmpi(Type,'eval_vertex') if (Entity_Index==1) Vtx1 = [Vtx1; ind, BC_Pt]; elseif (Entity_Index==2) Vtx2 = [Vtx2; ind, BC_Pt]; elseif (Entity_Index==3) Vtx3 = [Vtx3; ind, BC_Pt]; else error('Invalid!'); end elseif strcmpi(Type,'eval_facet') if (Entity_Index==1) Edge1 = [Edge1; ind, BC_Pt]; elseif (Entity_Index==2) Edge2 = [Edge2; ind, BC_Pt]; elseif (Entity_Index==3) Edge3 = [Edge3; ind, BC_Pt]; else error('Invalid!'); end elseif strcmpi(Type,'eval_cell') Face1 = [Face1; ind, BC_Pt]; else error('Invalid!'); end end Num_V1 = size(Vtx1,1); Num_V2 = size(Vtx2,1); Num_V3 = size(Vtx3,1); Num_E1 = size(Edge1,1); Num_E2 = size(Edge2,1); Num_E3 = size(Edge3,1); Num_F1 = size(Face1,1); Num_DoF = Num_V1 + Num_V2 + Num_V3 + Num_E1 + Num_E2 + Num_E3 + Num_F1; if (Num_DoF~=length(Nodal_Var)) error('Number of DoFs is incorrect!'); end CHK_VTX_DOF = max(abs([Num_V1, Num_V2, Num_V3] - Num_V1)); if (CHK_VTX_DOF~=0) error('Number of Vtx DoFs at each vertex is not the same!'); end CHK_EDGE_DOF = max(abs([Num_E1, Num_E2, Num_E3] - Num_E1)); if (CHK_EDGE_DOF~=0) error('Number of Edge DoFs on each edge is not the same!'); end % setup the vertex DoFs if ~isempty(Vtx1) Vtx1 = sortrows(Vtx1,1); % sort based on DoF index Vtx2 = sortrows(Vtx2,1); Vtx3 = sortrows(Vtx3,1); DoFs_on_Vtx = [Vtx1(:,1)'; Vtx2(:,1)'; Vtx3(:,1)']; else DoFs_on_Vtx = []; end Nodal_Top.V = {DoFs_on_Vtx}; % setup the facet (edge) DoFs if ~isempty(Edge1) Edge1 = sortrows(Edge1,1); % sort based on DoF index Edge2 = sortrows(Edge2,1); Edge3 = sortrows(Edge3,1); DoFs_on_Edge = [Edge1(:,1)'; Edge2(:,1)'; Edge3(:,1)']; else DoFs_on_Edge = []; end Nodal_Top.E = {DoFs_on_Edge}; % setup the cell (face) DoFs if ~isempty(Face1) Face1 = sortrows(Face1,1); % sort based on DoF index DoFs_on_Face = [Face1(:,1)']; else DoFs_on_Face = []; end Nodal_Top.F = {DoFs_on_Face}; % there are no other DoFs Nodal_Top.T = {[]}; elseif strcmpi(Element_Domain,'tetrahedron') % init Vtx1 = []; Vtx2 = []; Vtx3 = []; Vtx4 = []; Edge1 = []; Edge2 = []; Edge3 = []; Edge4 = []; Edge5 = []; Edge6 = []; Face1 = []; Face2 = []; Face3 = []; Face4 = []; Tet1 = []; for ind = 1:length(Nodal_Var) NV = Nodal_Var(ind).Data; Pt = NV{1}; BC_Pt = double(convert_to_barycentric(Pt))'; Type = NV{2}; Entity_Index = NV{3}; if strcmpi(Type,'eval_vertex') if (Entity_Index==1) Vtx1 = [Vtx1; ind, BC_Pt]; elseif (Entity_Index==2) Vtx2 = [Vtx2; ind, BC_Pt]; elseif (Entity_Index==3) Vtx3 = [Vtx3; ind, BC_Pt]; elseif (Entity_Index==4) Vtx4 = [Vtx4; ind, BC_Pt]; else error('Invalid!'); end elseif strcmpi(Type,'eval_edge') if (Entity_Index==1) Edge1 = [Edge1; ind, BC_Pt]; elseif (Entity_Index==2) Edge2 = [Edge2; ind, BC_Pt]; elseif (Entity_Index==3) Edge3 = [Edge3; ind, BC_Pt]; elseif (Entity_Index==4) Edge4 = [Edge4; ind, BC_Pt]; elseif (Entity_Index==5) Edge5 = [Edge5; ind, BC_Pt]; elseif (Entity_Index==6) Edge6 = [Edge6; ind, BC_Pt]; else error('Invalid!'); end elseif strcmpi(Type,'eval_facet') if (Entity_Index==1) Face1 = [Face1; ind, BC_Pt]; elseif (Entity_Index==2) Face2 = [Face2; ind, BC_Pt]; elseif (Entity_Index==3) Face3 = [Face3; ind, BC_Pt]; elseif (Entity_Index==4) Face4 = [Face4; ind, BC_Pt]; else error('Invalid!'); end elseif strcmpi(Type,'eval_cell') Tet1 = [Tet1; ind, BC_Pt]; else error('Invalid!'); end end Num_V1 = size(Vtx1,1); Num_V2 = size(Vtx2,1); Num_V3 = size(Vtx3,1); Num_V4 = size(Vtx4,1); Num_E1 = size(Edge1,1); Num_E2 = size(Edge2,1); Num_E3 = size(Edge3,1); Num_E4 = size(Edge4,1); Num_E5 = size(Edge5,1); Num_E6 = size(Edge6,1); Num_F1 = size(Face1,1); Num_F2 = size(Face2,1); Num_F3 = size(Face3,1); Num_F4 = size(Face4,1); Num_T1 = size(Tet1,1); Num_DoF = Num_V1 + Num_V2 + Num_V3 + Num_V4 + ... Num_E1 + Num_E2 + Num_E3 + Num_E4 + Num_E5 + Num_E6 + ... Num_F1 + Num_F2 + Num_F3 + Num_F4 + ... Num_T1; if (Num_DoF~=length(Nodal_Var)) error('Number of DoFs is incorrect!'); end CHK_VTX_DOF = max(abs([Num_V1, Num_V2, Num_V3, Num_V4] - Num_V1)); if (CHK_VTX_DOF~=0) error('Number of Vtx DoFs at each vertex is not the same!'); end CHK_EDGE_DOF = max(abs([Num_E1, Num_E2, Num_E3, Num_E4, Num_E5, Num_E6] - Num_E1)); if (CHK_EDGE_DOF~=0) error('Number of Edge DoFs on each edge is not the same!'); end CHK_FACE_DOF = max(abs([Num_F1, Num_F2, Num_F3, Num_F4] - Num_F1)); if (CHK_FACE_DOF~=0) error('Number of Face DoFs on each face is not the same!'); end % setup the vertex DoFs if ~isempty(Vtx1) Vtx1 = sortrows(Vtx1,1); % sort based on DoF index Vtx2 = sortrows(Vtx2,1); Vtx3 = sortrows(Vtx3,1); Vtx4 = sortrows(Vtx4,1); DoFs_on_Vtx = [Vtx1(:,1)'; Vtx2(:,1)'; Vtx3(:,1)'; Vtx4(:,1)']; else DoFs_on_Vtx = []; end Nodal_Top.V = {DoFs_on_Vtx}; % setup the edge DoFs if ~isempty(Edge1) Edge1 = sortrows(Edge1,1); % sort based on DoF index Edge2 = sortrows(Edge2,1); Edge3 = sortrows(Edge3,1); Edge4 = sortrows(Edge4,1); Edge5 = sortrows(Edge5,1); Edge6 = sortrows(Edge6,1); DoFs_on_Edge = [Edge1(:,1)'; Edge2(:,1)'; Edge3(:,1)'; Edge4(:,1)'; Edge5(:,1)'; Edge6(:,1)']; else DoFs_on_Edge = []; end Nodal_Top.E = {DoFs_on_Edge}; % setup the facet (face) DoFs if ~isempty(Face1) Face1 = sortrows(Face1,1); % sort based on DoF index Face2 = sortrows(Face2,1); Face3 = sortrows(Face3,1); Face4 = sortrows(Face4,1); DoFs_on_Face = [Face1(:,1)'; Face2(:,1)'; Face3(:,1)'; Face4(:,1)']; else DoFs_on_Face = []; end Nodal_Top.F = {DoFs_on_Face}; % setup the cell (tet) DoFs if ~isempty(Tet1) Tet1 = sortrows(Tet1,1); % sort based on DoF index DoFs_on_Tet = [Tet1(:,1)']; else DoFs_on_Tet = []; end Nodal_Top.T = {DoFs_on_Tet}; else error('Not implemented!'); end Vtx_DoFs = []; for ii = 1:length(Nodal_Top.V) Vtx_DoFs = [Vtx_DoFs; Nodal_Top.V{ii}(:)]; end Edge_DoFs = []; for ii = 1:length(Nodal_Top.E) Edge_DoFs = [Edge_DoFs; Nodal_Top.E{ii}(:)]; end Face_DoFs = []; for ii = 1:length(Nodal_Top.F) Face_DoFs = [Face_DoFs; Nodal_Top.F{ii}(:)]; end Tet_DoFs = []; for ii = 1:length(Nodal_Top.T) Tet_DoFs = [Tet_DoFs; Nodal_Top.T{ii}(:)]; end All_DoFs = [Vtx_DoFs; Edge_DoFs; Face_DoFs; Tet_DoFs]; % final check Unique_DoFs = unique(All_DoFs); if (length(All_DoFs)~=length(Unique_DoFs)) error('Not all DoF indices are distinct!'); end end
github
eardi/sm-fpca-master
Generate_Hcurl_3D_Permuted_Basis_Set.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Elem_Defn/Generators/Generate_Hcurl_3D_Permuted_Basis_Set.m
8,790
utf_8
00356351444fae677df87dce712a3086
function Perm_Basis = Generate_Hcurl_3D_Permuted_Basis_Set(Elem,Permute_NV) %Generate_Hcurl_3D_Permuted_Basis_Set % % This generates 24 permutations of the H(curl) basis functions (in 3-D). % Thr output is an array of structs containing the set of basis functions % for each permutation. It also contains the corresponding permutation % signature. % % Note: this works with "Premap_Transformation_in_3D.m", in the % Hcurl_Trans class. % Copyright (c) 11-02-2016, Shawn W. Walker % get basis functions on reference element Ref_Elem = ReferenceFiniteElement(Elem,1); Quad_NOT_USED = Ref_Elem.Gen_Quadrature_Rule(1, 'tetrahedron'); % bogus! not really used Eval_Basis = Ref_Elem.Gen_Basis_Function_Evals(Quad_NOT_USED.Pt,1); clear Ref_Elem; % define generic affine map (represented by a constant matrix and constant vector) % the inputs are the vertex coordinates of the corners of the target % tetrahedron Generic_Perm_Map = @(X1,X2,X3,X4) {... [ (X2(1) - X1(1)), (X3(1) - X1(1)), (X4(1) - X1(1)); (X2(2) - X1(2)), (X3(2) - X1(2)), (X4(2) - X1(2)); (X2(3) - X1(3)), (X3(3) - X1(3)), (X4(3) - X1(3))],... [X1(1); X1(2); X1(3)]}; % % standard reference tetrahedron vertex coordinates XC_1 = [0, 0, 0]; XC_2 = [1, 0, 0]; XC_3 = [0, 1, 0]; XC_4 = [0, 0, 1]; Ref_XC = [XC_1; XC_2; XC_3; XC_4]; % max derivative order to compute %Max_Deriv = Eval_Basis(1).Max_Deriv; % get this! Num_Basis = length(Eval_Basis); % need symbolic variables std_vars = {'x', 'y', 'z'}; tilde_vars = {'x_t', 'y_t', 'z_t'}; syms x y z; vec_x = [x; y; z]; % rename variables in Eval_Basis (do it once!) Eval_Basis_Rename = Eval_Basis; Nodal_BC_Coord = zeros(Num_Basis,4); for bi = 1:Num_Basis Eval_Basis_Rename(bi).Base_Func = Eval_Basis_Rename(bi).Base_Func.Rename_Independent_Vars(std_vars,tilde_vars); % note: we do NOT bother to rename the derivative functions (because they are not used) Nodal_BC_Coord(bi,:) = Elem.Nodal_Var(bi).Data{1}; end % loop through all permutations TEMP_PP = perms([1 2 3 4]); Perm_List = TEMP_PP(end:-1:1,:); Num_Perm = size(Perm_List,1); Perm_Basis(Num_Perm).Signature = []; Perm_Basis(Num_Perm).Elem = []; for pp = 1:Num_Perm % store signature Perm_Signature = Perm_List(pp,:); disp(['Current permutation #', num2str(pp), ' / ', num2str(Num_Perm), '. Signature: ', num2str(Perm_Signature)]); Perm_Tet = get_tetrahedral_entity_permutations(Perm_Signature'); TP = Perm_Signature - 1; % C-style! Perm_Basis(pp).Signature = TP(1) * 1 +... TP(2) * 10 +... TP(3) * 100 +... TP(4) * 1000; % % make the affine map Perm_Coord = Ref_XC(Perm_Signature,:); Perm_Map_Data = Generic_Perm_Map(Perm_Coord(1,:),Perm_Coord(2,:),Perm_Coord(3,:),Perm_Coord(4,:)); Sym_Func_Temp = Perm_Map_Data{1} * vec_x + Perm_Map_Data{2}; % need it symbolically (this is my F_{\tilde{T}} map from \hat{T} --> \tilde{T} Sym_Perm_Map = FELSymFunc(Sym_Func_Temp,std_vars); % and numerically Numerical_Perm_Map = @(X) Perm_Map_Data{1} * X + Perm_Map_Data{2} * ones(1,size(X,2)); Jacobian_Matrix = Perm_Map_Data{1}; % build DoF permutation map (from hat{T} to tilde{T}) DoF_Perm = zeros(Num_Basis,1); % loop through all Topological Entity DoFs DoF_Perm = Build_DoF_Perm(DoF_Perm,Nodal_BC_Coord,Elem.Nodal_Top.V,Perm_Tet.Vtx,Numerical_Perm_Map); DoF_Perm = Build_DoF_Perm(DoF_Perm,Nodal_BC_Coord,Elem.Nodal_Top.E,Perm_Tet.Edge,Numerical_Perm_Map); DoF_Perm = Build_DoF_Perm(DoF_Perm,Nodal_BC_Coord,Elem.Nodal_Top.F,Perm_Tet.Face,Numerical_Perm_Map); DoF_Perm = Build_DoF_Perm(DoF_Perm,Nodal_BC_Coord,Elem.Nodal_Top.T,Perm_Tet.Tet,Numerical_Perm_Map); % error check if (length(unique(DoF_Perm))~=Num_Basis) error('DoF_Perm is not formed properly!'); end if (min(DoF_Perm)==0) error('One of the DoFs was not found!'); end % init basis set New_Basis = Elem.Basis; % loop through basis set for bi = 1:Num_Basis % get function on \tilde{T} Perm_bi = DoF_Perm(bi); Single_Basis_Func = Eval_Basis_Rename(Perm_bi).Base_Func; % a FELSymFunc % compute effective function on \hat{T} Mapped_Basis_Func = Single_Basis_Func.Compose_Function(Sym_Perm_Map); % multiply by jacobian transpose Single_Basis_Func_hat = Mapped_Basis_Func; % init Single_Basis_Func_hat.Func = Jacobian_Matrix' * Mapped_Basis_Func.Func; % a "sym" % BEGIN: TEST CODE % create FELSymBasisCalc object BF_hat = FELSymBasisCalc(Single_Basis_Func_hat,1); BF_hat_d_dx = BF_hat.Get_Derivative([1 0 0]); BF_hat_d_dy = BF_hat.Get_Derivative([0 1 0]); BF_hat_d_dz = BF_hat.Get_Derivative([0 0 1]); BF_hat_grad = [BF_hat_d_dx.Func, BF_hat_d_dy.Func, BF_hat_d_dz.Func]; BF_d_dx = Eval_Basis(Perm_bi).Get_Derivative([1 0 0]); BF_d_dy = Eval_Basis(Perm_bi).Get_Derivative([0 1 0]); BF_d_dz = Eval_Basis(Perm_bi).Get_Derivative([0 0 1]); BF_d_dx = BF_d_dx.Rename_Independent_Vars(std_vars,tilde_vars); BF_d_dy = BF_d_dy.Rename_Independent_Vars(std_vars,tilde_vars); BF_d_dz = BF_d_dz.Rename_Independent_Vars(std_vars,tilde_vars); BF_d_dx = BF_d_dx.Compose_Function(Sym_Perm_Map); BF_d_dy = BF_d_dy.Compose_Function(Sym_Perm_Map); BF_d_dz = BF_d_dz.Compose_Function(Sym_Perm_Map); BF_grad = [BF_d_dx.Func, BF_d_dy.Func, BF_d_dz.Func]; BF_grad_transform = Jacobian_Matrix' * BF_grad * Jacobian_Matrix; CHK1 = simplify(BF_hat_grad - BF_grad_transform); if (sum(abs(CHK1(:)))~=sym(0)) error('Something does not match!'); end % END: TEST CODE % store the basis function (defined on \hat{T}) as a string New_Basis(bi).Func = {char(Single_Basis_Func_hat.Func(1)); char(Single_Basis_Func_hat.Func(2)); char(Single_Basis_Func_hat.Func(3))}; end % store the permuted basis! Perm_Basis(pp).Elem = Elem; % init Perm_Basis(pp).Elem.Basis = New_Basis; Perm_Basis(pp).Elem.Nodal_Var = Permute_NV(DoF_Perm,Perm_Tet,Sym_Perm_Map,Jacobian_Matrix); end end function DoF_Perm = Build_DoF_Perm(DoF_Perm,Nodal_BC_Coord,... Topological_DoFs,Perm_Entity,Numerical_Perm_Map) % % DoF_Perm : \hat{T} --> \tilde{T} % note: the master DoFs (and master finite element) are defined on \tilde{T} % loop through all DoFs of given topology for si = 1:length(Topological_DoFs) DoF_Set = Topological_DoFs{si}; for entity_hat = 1:size(DoF_Set,1) % get corresponding entity in \tilde{T} entity_tilde = Perm_Entity(entity_hat); % get topological entity DoFs (on \tilde{T}) DoF_Indices_tilde = DoF_Set(entity_tilde,:); % get the corresponding DoF indices on \hat{T} % note: the DoF indices are arranged the same way on \hat{T} DoF_Indices_hat = DoF_Set(entity_hat,:); % get barycentric coordinates of DoFs BC_hat = Nodal_BC_Coord(DoF_Indices_hat,:); BC_tilde = Nodal_BC_Coord(DoF_Indices_tilde,:); % make sure to get where the "hat" coordinates get mapped to Ref_Coord_hat = BC_hat(:,2:end); Mapped_Ref_Pt = Numerical_Perm_Map(Ref_Coord_hat')'; Mapped_BC_hat = [1 - sum(Mapped_Ref_Pt,2), Mapped_Ref_Pt]; % deduce mapping from the coordinates Map_hat_to_tilde = Get_Mapping_via_Coordinates(Mapped_BC_hat,BC_tilde); DoF_Perm(DoF_Indices_hat) = DoF_Indices_tilde(Map_hat_to_tilde); end end end function Map_hat_to_tilde = Get_Mapping_via_Coordinates(BC_hat,BC_tilde) Num_Coord = size(BC_hat,1); Map_hat_to_tilde = zeros(Num_Coord,1); % init Indices = (1:1:Num_Coord)'; for ii_hat = 1:Num_Coord Current_BC_hat = BC_hat(ii_hat,:); Diff_1 = BC_tilde - [Current_BC_hat(1)*ones(Num_Coord,1), Current_BC_hat(2)*ones(Num_Coord,1),... Current_BC_hat(3)*ones(Num_Coord,1), Current_BC_hat(4)*ones(Num_Coord,1)]; Diff_CHK = max(abs(Diff_1),[],2); Zero_Mask = (Diff_CHK < 1e-15); if (sum(Zero_Mask)~=1) error('Either no DoF was found, or too many!'); end % record correspondance Map_hat_to_tilde(ii_hat) = Indices(Zero_Mask); end end
github
eardi/sm-fpca-master
Get_Nedelec_1stKind_On_Simplex.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Elem_Defn/Generators/Get_Nedelec_1stKind_On_Simplex.m
12,379
utf_8
474b711c270f1fc0b8f9006820326e70
function [Nodal_Basis, Nodal_Var] = Get_Nedelec_1stKind_On_Simplex(dim,deg_k,use_std) %Get_Nedelec_1stKind_On_Simplex % % This computes the Nedelec (1st kind) basis functions on a simplex. % % This uses the Paul Wesson trick for choosing tangent basis vectors (for % edges and faces); i.e. the global numbering of the element vertices % dictates the choice of tangent vectors (see % "Generate_Nedelec_1stKind_Element_File" for more info). % % The last input (only used in 3-D) determines which reference finite % element to get. Let the global vertices of the physical mesh element % (tetrahedron) be given by [V1, V2, V3, V4] % % use_std = true: this assumes that the vertex indices satisfy: % V1 < V2 < V3 < V4 (standard ascending ordering). % This dictates a particular choice of tangent basis vectors. % % use_std = false: this assumes that the vertex indices satisfy: % V1 < V3 < V2 < V4 (reflect element; mirror image). % This dictates a different choice of tangent basis vectors. % % Note: if the physical element does not satisfy either of these, then % you need another reference element! % Copyright (c) 11-07-2016, Shawn W. Walker % set default if (nargin==2) use_std = true; end if isempty(use_std) use_std = true; end disp(['Solve for Nedelec (1st kind) degree ', num2str(deg_k), ' basis functions (on ', num2str(dim), '-D reference simplex):']); if (deg_k < 1) % invalid degree, so return *nothing* Nodal_Basis = []; Nodal_Var = []; return; end % get parameterizations of the reference simplex if (dim==1) % get params of the reference interval %Cell = interval_parameterizations(); error('Invalid!'); elseif (dim==2) % get params of the reference triangle Cell = triangle_parameterizations(); elseif (dim==3) % get params of the reference tetrahedron Cell = tetrahedron_parameterizations(); else error('Dimension not implemented!'); end indep_vars = Cell.Param_Inv; % col. vector list of independent variables % define a set of basis functions (indep. variables are x,y) num_comp = dim; Basis_1 = basis_vector_polys_deg_k(indep_vars,deg_k-1,num_comp); % get the special polynomial space S_k Basis_2 = basis_vector_polys_deg_k_Sk(indep_vars,deg_k); Basis = [Basis_1, Basis_2]; % direct sum! % for ii = 1:length(Basis) % Basis(ii).func % end % error check if (dim==2) Num_Basis = deg_k*(deg_k + 2); elseif (dim==3) Num_Basis = round((1/2)* deg_k *(deg_k + 2)*(deg_k + 3)); elseif (dim < 2) error('Invalid dimension!'); else error('Dimension not implemented!'); end if (Num_Basis~=length(Basis)) error('Number of basis functions is invalid!'); end indep_vars_cell = num2cell(indep_vars); if (dim==2) % get Lagrange nodal basis functions on reference edge % (i.e. the unit interval) [Lagrange_Basis_Edge, Lagrange_Nodal_Pt_Edge] = Get_Lagrange_On_Simplex(dim-1,deg_k-1); Local_Edge_Var = num2cell(Cell.Edge(1).Local_Var); % replace x with u Lagrange_Basis_Edge = change_basis_func_independent_variable(Lagrange_Basis_Edge,indep_vars_cell(1:dim-1),Local_Edge_Var); % get Lagrange nodal basis functions on unit cell (triangle) [Lagrange_Basis_Cell, Lagrange_Nodal_Pt_Cell] = Get_Lagrange_On_Simplex(dim,deg_k-2); % don't need to change variables elseif (dim==3) % get Lagrange nodal basis functions on reference edge % (i.e. the unit interval) [Lagrange_Basis_Edge, Lagrange_Nodal_Pt_Edge] = Get_Lagrange_On_Simplex(dim-2,deg_k-1); Local_Edge_Var = num2cell(Cell.Edge(1).Local_Var); % replace x with u Lagrange_Basis_Edge = change_basis_func_independent_variable(Lagrange_Basis_Edge,indep_vars_cell(1:dim-2),Local_Edge_Var); % get Lagrange nodal basis functions on reference facet % (i.e. the unit triangle) [Lagrange_Basis_Facet, Lagrange_Nodal_Pt_Facet] = Get_Lagrange_On_Simplex(dim-1,deg_k-2); Local_Facet_Var = num2cell(Cell.Facet(1).Local_Var); % replace {x,y} with {u,v} Lagrange_Basis_Facet = change_basis_func_independent_variable(Lagrange_Basis_Facet,indep_vars_cell(1:dim-1),Local_Facet_Var); % get Lagrange nodal basis functions on unit cell (tetrahedron) [Lagrange_Basis_Cell, Lagrange_Nodal_Pt_Cell] = Get_Lagrange_On_Simplex(dim,deg_k-3); % don't need to change variables elseif (dim==1) error('Invalid dimension!'); else error('Not implemented!'); end % BEGIN: define nodal variable data (in order of the DoF index) % these effectively specify what the Degrees-of-Freedom (DoFs) are % Note: these involve integral averages Num_Nodal_Var = Num_Basis; Nodal_Var(Num_Nodal_Var).Data = []; nodal_index = 0; % init % loop through edge averages if (dim==2) Num_Edge = 3; elseif (dim==3) Num_Edge = 6; else error('Invalid!'); end for ei = 1:Num_Edge % get the correct orientation (for H(curl)!) of the unit tangent vector of the edge Tangent_Vector = get_edge_tangent_vector_for_Hcurl(Cell,dim,ei,use_std); for li = 1:length(Lagrange_Basis_Edge) local_bf = Lagrange_Basis_Edge(li).Func; % local Lagrange basis function % map that function to the edge Xmap_Inv = Cell.Edge(ei).Param_Inv; local_bf = subs(local_bf,Local_Edge_Var,Xmap_Inv); % store the corresponding nodal (Lagrange) point coordinates NP = Lagrange_Nodal_Pt_Edge(li).Data{1}; % map to the facet in question Xmap = Cell.Edge(ei).Param; Mapped_Nodal_Point = subs(Xmap,Local_Edge_Var,NP); % append nodal data nodal_index = nodal_index + 1; Nodal_Var(nodal_index).Data = {Mapped_Nodal_Point, local_bf*Tangent_Vector, 'int_edge', ei}; end end % loop through facet averages if (dim==3) for ti = 1:dim-1 % loop through the different tangent vectors in each facet Num_Facet = 4; for fi = 1:Num_Facet Tangent = get_facet_tangent_vectors_for_Hcurl(Cell,fi,use_std); for li = 1:length(Lagrange_Basis_Facet) local_bf = Lagrange_Basis_Facet(li).Func; % local Lagrange basis function % map that function to the facet Xmap_Inv = Cell.Facet(fi).Param_Inv; local_bf = subs(local_bf,Local_Facet_Var,Xmap_Inv); % store the corresponding nodal (Lagrange) point coordinates NP = Lagrange_Nodal_Pt_Facet(li).Data{1}; % map to the facet in question Xmap = Cell.Facet(fi).Param; Mapped_Nodal_Point = subs(Xmap,Local_Facet_Var,NP); % append nodal data nodal_index = nodal_index + 1; Nodal_Var(nodal_index).Data = {Mapped_Nodal_Point, local_bf*Tangent(ti).Vector, 'int_facet', fi, 'dof_set', ti}; end end end end % loop through cell averages for vi = 1:dim % loop through vector components Vector = zeros(dim,1); Vector(vi) = 1; for li = 1:length(Lagrange_Basis_Cell) local_bf = Lagrange_Basis_Cell(li).Func; % local Lagrange basis function % already mapped to the cell % store the nodal (Lagrange) points Nodal_Point = Lagrange_Nodal_Pt_Cell(li).Data{1}; % already mapped % append nodal data nodal_index = nodal_index + 1; Nodal_Var(nodal_index).Data = {Nodal_Point, local_bf*Vector, 'int_cell', 1, 'dof_set', vi}; end end % END: define nodal variable data (in order of the DoF index) % generate matrix entries N = length(Nodal_Var); if (N~=Num_Nodal_Var) % error check error('Number of nodal variables is too high!'); end % init Vandermonde matrix A = sym(zeros(N,N)); % fill in the "Vandermonde" matrix disp('Fill Vandermonde matrix A:'); for ii=1:N % get the current nodal variable (DoF) Nodal_Var_Data = Nodal_Var(ii).Data; Eval_Nodal_Variable = Nedelec_1stKind_On_Simplex_Nodal_Variable(Cell,Nodal_Var_Data,indep_vars); % loop through all of the (primal) basis functions for jj=1:N vphi = Basis(jj).func; % get basis function % insert into matrix A(ii,jj) = Eval_Nodal_Variable(vphi); % eval nodal variable end disp(['Compute A(', num2str(ii), ', 1:', num2str(N), ').']); end disp('Finished forming Vandermonde matrix...'); % lambda = abs(eig(double(A))); % COND = max(lambda) / min(lambda); % COND % solve for coefficients EYE_SYM = sym(eye(N)); disp('Solve for coefficients:'); COEF = A \ EYE_SYM; % compute the nodal basis functions Nodal_Basis(N).Func = []; for ind=1:N TEMP = 0; % reset! for jj=1:N TEMP = TEMP + COEF(jj,ind) * Basis(jj).func; end Nodal_Basis(ind).Func = simplify(TEMP); end % display for ind=1:N disp(['Nodal Basis Function #', num2str(ind), ':']); pretty(Nodal_Basis(ind).Func) end end function tau = get_edge_tangent_vector_for_Hcurl(Cell,dim,edge_index,use_std) % this returns a tangent vector so that it points from a vertex of lower % index **toward a vertex of higher index**. This is the Paul Wesson trick. % NOTE: these tangent vectors are *unit* tangent vectors. This is how the % degrees-of-freedom are defined. tau = Cell.Edge(edge_index).Tangent; % adjust sign if necessary if (use_std) if (dim==2) if (edge_index==2) % flip this one relative to the "standard" assumed orientation tau = -tau; end elseif (dim==3) % V1 < V2 < V3 < V4 if (edge_index==6) % flip this one relative to the "standard" assumed orientation tau = -tau; end else error('Invalid or not implemented!'); end else % this only happens in 3-D if (dim==3) % V1 < V3 < V2 < V4 if or(edge_index==4,edge_index==6) % flip this relative to the "standard" assumed orientation tau = -tau; end else error('Invalid or not implemented!'); end end end function tau = get_facet_tangent_vectors_for_Hcurl(Cell,face_index,use_std) % this returns two tangent vectors (on the given facet in 3-D) that satisfy % the Paul Wesson trick. I.e. for the given face, with vertices [a,b,c] % given in ascending order with respect to the local vertex index, the % tangent vectors are given by: tau_1 = b - a, tau_2 = c - a. % WARNING!!! these are not necessarily *unit* tangent vectors. % They come from taking the difference of the corner vertex coordinates. % Hence, the tangents on the boundary of the "111" face (i.e. face #1) are % length sqrt(2). % Note: this is how the degrees-of-freedom are defined. tau(2).Vector = []; % init if (use_std) % V1 < V2 < V3 < V4 if (face_index==1) tau(1).Vector = Cell.Edge(4).Tangent * Cell.Edge(4).Measure; % e4 tau(2).Vector = -Cell.Edge(6).Tangent * Cell.Edge(6).Measure; % -e6 elseif (face_index==2) tau(1).Vector = Cell.Edge(2).Tangent; % e2 tau(2).Vector = Cell.Edge(3).Tangent; % e3 elseif (face_index==3) tau(1).Vector = Cell.Edge(1).Tangent; % e1 tau(2).Vector = Cell.Edge(3).Tangent; % e3 elseif (face_index==4) tau(1).Vector = Cell.Edge(1).Tangent; % e1 tau(2).Vector = Cell.Edge(2).Tangent; % e2 else error('Invalid!'); end else % mirror image % V1 < V3 < V2 < V4 if (face_index==1) tau(1).Vector = -Cell.Edge(4).Tangent * Cell.Edge(4).Measure; % -e4 tau(2).Vector = Cell.Edge(5).Tangent * Cell.Edge(5).Measure; % e5 elseif (face_index==2) tau(1).Vector = Cell.Edge(2).Tangent; % e2 tau(2).Vector = Cell.Edge(3).Tangent; % e3 elseif (face_index==3) tau(1).Vector = Cell.Edge(1).Tangent; % e1 tau(2).Vector = Cell.Edge(3).Tangent; % e3 elseif (face_index==4) tau(1).Vector = Cell.Edge(2).Tangent; % e2 tau(2).Vector = Cell.Edge(1).Tangent; % e1 else error('Invalid!'); end end end
github
eardi/sm-fpca-master
Generate_Nedelec_1stKind_Element_File.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Elem_Defn/Generators/Generate_Nedelec_1stKind_Element_File.m
22,662
utf_8
379f28827fcd07fe385a815545b5b676
function status = Generate_Nedelec_1stKind_Element_File(Element_Domain,Degree_k,Output_Dir,Use_Std) %Generate_Nedelec_1stKind_Element_File % % This generates a finite element reference m-file that defines a % particular Nedelec (1st-kind) element of given fixed degree on a given % reference domain. % % The inputs are: % Element_Domain = 'interval', 'triangle', 'tetrahedron', etc. % Degree_k = polynomial degree of finite element. % Output_FileName = string specifying where to write the file. % Use_Std = bool only used in 3-D. Indicates the ordering of % the global vertices of the tetrahedral element, % which is defined by [V1, V2, V3, V4] % true: V1 < V2 < V3 < V4 (ascending order) % false: V1 < V3 < V2 < V4 (reflect mirror element). % Copyright (c) 11-07-2016, Shawn W. Walker % set default if (nargin==3) Use_Std = true; end if isempty(Use_Std) Use_Std = true; end % get basic info text [Element_Domain, Domain_STR, Domain_Fig_ASCII, Dim] = setup_generic_element_file_text(Element_Domain); ENDL = '\n'; TAB = ' '; %TAB2 = [TAB, TAB]; %TAB3 = [TAB2, TAB]; %TAB4 = [TAB3, TAB]; % get the (reference) finite element space if strcmpi(Element_Domain,'interval') error('Invalid domain!'); elseif strcmpi(Element_Domain,'triangle') [Nodal_Basis, Nodal_Var] = Get_Nedelec_1stKind_On_Simplex(Dim,Degree_k,Use_Std); elseif strcmpi(Element_Domain,'tetrahedron') [Nodal_Basis, Nodal_Var] = Get_Nedelec_1stKind_On_Simplex(Dim,Degree_k,Use_Std); else error('Not implemented!'); end % setup filename Degree_str = num2str(Degree_k); Dim_str = num2str(Dim); FuncName = ['nedelec_1stkind_deg', Degree_str, '_dim', Dim_str]; if (~Use_Std) % save mirror image element FuncName = [FuncName, '_mirror_image']; end Output_FileName = fullfile(Output_Dir, [FuncName, '.m']); % open file for writing fid = fopen(Output_FileName, 'w'); % define write line function write_line = @(STR) fprintf(fid, [STR, ENDL]); write_string = @(STR) fprintf(fid, STR); % write header write_line(['', 'function Elem = ', FuncName, '(Type_STR)']); write_line(['%%', FuncName]); write_line(['%%']); write_line(['%%', TAB, 'This defines a reference finite element to be used by FELICITY.']); write_line(['%%', TAB, 'INPUT: string = ''CG''/''DG'' (continuous/DIScontinuous galerkin).']); write_line(['%%']); write_line(['%%', TAB, 'Nedelec (1st-kind) H(curl) Finite Element of degree = ', Degree_str, ', in dimension = ', Dim_str, '.']); write_line(['%%']); if strcmpi(Element_Domain,'tetrahedron') % only applicable in 3-D write_line(['%%', TAB, 'This assumes the tetrahedral element [V_1, V_2, V_3, V_4] satisfies:']); if Use_Std write_line(['%%', TAB, 'V_1 < V_2 < V_3 < V_4 (ascending order)']); else write_line(['%%', TAB, 'V_1 < V_3 < V_2 < V_4 (mirror image the ascending order case)']); end write_line(['%%', TAB, '(see below for more information.)']); end write_line(['%%']); write_line(['%%', TAB, 'Reference Domain: ', Domain_STR, '.']); write_line(['%%']); write_string([Domain_Fig_ASCII]); write_line(['%%']); write_line(['%%', TAB, 'The basis functions are vector-valued (number of components = topological dimension).']); write_line(['%%']); write_line(['%%', TAB, 'The basis functions associated with Degrees-of-Freedom (DoFs) on an edge']); write_line(['%%', TAB, 'have an orientation dictated by the edge''s orientation.']); write_line(['%%', TAB, 'The orientation of an edge is defined to point from the vertex of']); write_line(['%%', TAB, 'lower index toward the vertex of higher index. In other words, given an']); write_line(['%%', TAB, 'edge [V_i, V_j], where i < j, the tangent vector points from V_i toward V_j.']); write_line(['%%']); write_line(['%%', TAB, 'The basis functions associated with Degrees-of-Freedom (DoFs) on a facet (in 3-D)']); write_line(['%%', TAB, 'have an orientation dictated by the tangent vectors of the facet.']); write_line(['%%', TAB, 'In this case, we use the Paul Wesson trick. Given a facet, we order its']); write_line(['%%', TAB, 'vertices [V_i, V_j, V_k] so that i < j < k. Then the tangent vectors are:']); write_line(['%%', TAB, 'tangent_1 = V_j - V_i, tangent_2 = V_k - V_i.']); write_line(['%%']); write_line(['%%', TAB, 'For simplicity, the basis functions specified in this file assume the']); if strcmpi(Element_Domain,'triangle') write_line(['%%', TAB, 'global vertices of the 2-D element [V_1, V_2, V_3] are ordered as:']); write_line(['%%', TAB, 'V1 < V2 < V3 (ascending order)']); write_line(['%%']); write_line(['%%', TAB, 'Thus, one needs to introduce sign changes of the basis functions when mapping to']); write_line(['%%', TAB, 'the *actual* element in the mesh. This is because the actual element will']); write_line(['%%', TAB, 'not (in general) have its vertices ordered in ascending index order.']); write_line(['%%', TAB, 'Note: a different ordering induces a sign change of the edge tangent vectors,']); write_line(['%%', TAB, 'so you only need to flip signs of associated basis functions.']); write_line(['%%']); write_line(['%%', TAB, 'FELICITY handles these sign changes automatically when assembling matrices,']); write_line(['%%', TAB, 'evaluating interpolations, etc. So you do not have to "worry" about it,']); write_line(['%%', TAB, 'but you should *know* about it.']); elseif strcmpi(Element_Domain,'tetrahedron') write_line(['%%', TAB, 'global vertices of the 3-D element [V_1, V_2, V_3, V_4] are ordered as:']); if Use_Std write_line(['%%', TAB, 'V1 < V2 < V3 < V4 (ascending order)']); else write_line(['%%', TAB, 'V1 < V3 < V2 < V4 (mirror image the ascending order case)']); end write_line(['%%']); write_line(['%%', TAB, 'Thus, one needs to ensure that the *actual* element vertices are ordered this']); write_line(['%%', TAB, 'way when mapping the basis functions. If the actual element does not have this']); write_line(['%%', TAB, 'ordering, then you need to use a different set of basis functions! For example,']); write_line(['%%', TAB, 'if the actual element vertices are defined as [a_i, a_j, a_k, a_l], but the']); write_line(['%%', TAB, 'ordering is i < k < l < j, then you must use the correct set of basis functions']); write_line(['%%', TAB, 'for that ordering (*not* this file!).']); write_line(['%%']); write_line(['%%', TAB, 'FELICITY stores two sets of basis functions: one for each of these orderings:']); write_line(['%%', TAB, 'V1 < V2 < V3 < V4 (ascending order)']); write_line(['%%', TAB, 'V1 < V3 < V2 < V4 (mirror image the ascending order case)']); write_line(['%%', TAB, 'Therefore, make sure that your 3-D triangulations contain only these orderings;']); write_line(['%%', TAB, 'otherwise, you get an **error** message.']); write_line(['%%', TAB, 'Note: there is a MeshTetrahedron method to set this ordering, with all mesh']); write_line(['%%', TAB, ' elements having positive volume.']); write_line(['%%']); write_line(['%%', TAB, 'FELICITY''s code generation automatically handles this, so you do not need to']); write_line(['%%', TAB, '"worry" about it, but you should *know* about it.']); write_line(['%%', TAB, 'Note: if a mesh element does not satisfy either ordering, then you will get']); write_line(['%%', TAB, ' an error message when you assemble matrices or evaluate interpolations.']); else error('Not implemented!'); end write_line(['']); current_date = date; write_line(['%%', ' Copyright (c) ', current_date, ', Shawn W. Walker']); write_line(['']); write_line(['%% name it!']); write_line(['Elem.Name = mfilename;']); write_line(['']); write_line(['%% determine continuous or discontinuous galerkin space']); write_line(['if (nargin==0)']); write_line([TAB, 'Type_STR = ''CG''; %% default']); write_line(['end']); write_line(['if strcmpi(Type_STR,''cg'')']); write_line([TAB, 'Elem.Type = ''CG'';']); write_line(['elseif strcmpi(Type_STR,''dg'')']); write_line([TAB, 'Elem.Type = ''DG'';']); write_line(['else']); write_line([TAB, 'error(''Invalid input type! Must be ''''CG'''' or ''''DG''''.'');']); write_line(['end']); write_line(['']); write_line(['%% topological dimension and domain']); write_line(['Elem.Dim = ', Dim_str, ';']); write_line(['Elem.Domain = ''', Element_Domain, ''';']); write_line(['']); write_line(['%% nodal basis function definitions (in the order of their local Degree-of-Freedom index)']); Num_Basis = length(Nodal_Basis); write_line(['Elem.Basis(', num2str(Num_Basis), ').Func = []; %% init']); % loop through nodal basis for ii = 1:length(Nodal_Basis) BF = Nodal_Basis(ii).Func; Basis_Func_Str = write_element_file_basis_func_string(BF); write_line(['Elem.Basis(', num2str(ii), ').Func = {', Basis_Func_Str, '};']); end write_line(['%% local mapping transformation to use']); Transformation_Type_str = 'Hcurl_Trans'; write_line(['Elem.Transformation = ''', Transformation_Type_str, ''';']); write_line(['Elem.Degree = ', Degree_str, ';']); write_line(['']); write_line(['%% nodal variable data (in the order of their local Degree-of-Freedom index)']); write_line(['%% (the nodal point is given in barycentric coordinates)']); Num_Nodal_Var = length(Nodal_Var); write_line(['Elem.Nodal_Var(', num2str(Num_Nodal_Var), ').Data = []; %% init']); % loop through nodal variables for ii = 1:length(Nodal_Var) NV = Nodal_Var(ii).Data; Nodal_BC_str = write_element_file_barycentric_string(NV{1}); % generate string for (vector-valued) dual basis function BF = NV{2}; if (Dim==2) DB_1 = char(BF(1)); DB_2 = char(BF(2)); Dual_Basis_str = ['[', DB_1, '; ', DB_2, ']']; elseif (Dim==3) DB_1 = char(BF(1)); DB_2 = char(BF(2)); DB_3 = char(BF(3)); Dual_Basis_str = ['[', DB_1, '; ', DB_2, '; ', DB_3, ']']; elseif (Dim==1) error('Invalid!'); else error('Not implemented!'); end % write Nedelec element nodal variable data string if strcmpi(NV{3},'int_edge') Nodal_Var_Data_str = ['{', Nodal_BC_str, ', ''', Dual_Basis_str, ''', ''', NV{3}, ''', ', num2str(NV{4}), '}']; elseif or(strcmpi(NV{3},'int_facet'),strcmpi(NV{3},'int_cell')) Nodal_Var_Data_str = ['{', Nodal_BC_str, ', ''', Dual_Basis_str, ''', ''', NV{3}, ''', ',... num2str(NV{4}), ', ''', NV{5}, ''', ', num2str(NV{6}), '}']; else error('Invalid!'); end write_line(['Elem.Nodal_Var(', num2str(ii), ').Data = ', Nodal_Var_Data_str, ';']); end write_line(['']); write_line(['%%%%%%%%%% topological arrangement of nodal points %%%%%%%%%%']); write_line(['%% note: multiple sets of nodal variables can be associated with each topological entity.']); write_line(['%% This is done by defining multiple matrix arrays within each matlab cell.']); write_line(['%% See the FELICITY manual for more info.']); write_line(['']); Nodal_Top = get_nodal_top_arrangement(Element_Domain,Nodal_Var); DoF_TAB = ' '; write_line(['%% nodes attached to vertices']); if ~isempty(Nodal_Top.V{1}) write_line(['Elem.Nodal_Top.V = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.V,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.V = {[]};']); end write_line(['']); write_line(['%% nodes attached to edges']); if ~isempty(Nodal_Top.E{1}) write_line(['Elem.Nodal_Top.E = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.E,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.E = {[]};']); end write_line(['']); write_line(['%% nodes attached to triangles (faces)']); if ~isempty(Nodal_Top.F{1}) write_line(['Elem.Nodal_Top.F = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.F,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.F = {[]};']); end write_line(['']); write_line(['%% nodes attached to tetrahedra (cells)']); if ~isempty(Nodal_Top.T{1}) write_line(['Elem.Nodal_Top.T = {...']); Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Top.T,DoF_TAB); write_line(Nodal_Sets_str); write_line([DoF_TAB, '};']); write_line(['%%']); else write_line(['Elem.Nodal_Top.T = {[]};']); end write_line(['']); write_string(['end']); % DONE! status = fclose(fid); end function Nodal_Top = get_nodal_top_arrangement(Element_Domain,Nodal_Var) % % This arranges the nodal variables (i.e. the nodal points) on their % corresponding topological entities. if or(strcmpi(Element_Domain,'interval'),isempty(Nodal_Var)) % this is invalid! Nodal_Top.V = {[]}; Nodal_Top.E = {[]}; Nodal_Top.F = {[]}; Nodal_Top.T = {[]}; elseif strcmpi(Element_Domain,'triangle') % init Edge1 = []; Edge2 = []; Edge3 = []; Cell_1 = []; Cell_2 = []; for ind = 1:length(Nodal_Var) NV = Nodal_Var(ind).Data; Pt = NV{1}; BC_Pt = double(convert_to_barycentric(Pt))'; Type = NV{3}; Entity_Index = NV{4}; if strcmpi(Type,'int_edge') if (Entity_Index==1) Edge1 = [Edge1; ind, BC_Pt]; elseif (Entity_Index==2) Edge2 = [Edge2; ind, BC_Pt]; elseif (Entity_Index==3) Edge3 = [Edge3; ind, BC_Pt]; else error('Invalid!'); end elseif strcmpi(Type,'int_cell') dof_set = NV{6}; if (dof_set==1) Cell_1 = [Cell_1; ind, BC_Pt]; elseif (dof_set==2) Cell_2 = [Cell_2; ind, BC_Pt]; else error('Invalid!'); end else error('Invalid!'); end end Num_E1 = size(Edge1,1); Num_E2 = size(Edge2,1); Num_E3 = size(Edge3,1); Num_C_1 = size(Cell_1,1); Num_C_2 = size(Cell_2,1); Num_DoF = Num_E1 + Num_E2 + Num_E3 + Num_C_1 + Num_C_2; if (Num_DoF~=length(Nodal_Var)) error('Number of DoFs is incorrect!'); end CHK_EDGE_DOF = max(abs([Num_E1, Num_E2, Num_E3] - Num_E1)); if (CHK_EDGE_DOF~=0) error('Number of Edge DoFs on each edge is not the same!'); end if (Num_C_1~=Num_C_2) error('Number of Cell DoFs in each set is not the same!'); end % there are no vertex DoFs Nodal_Top.V = {[]}; % setup the edge DoFs Edge1 = sortrows(Edge1,1); % sort based on DoF index Edge2 = sortrows(Edge2,1); Edge3 = sortrows(Edge3,1); DoFs_on_Edge = [Edge1(:,1)'; Edge2(:,1)'; Edge3(:,1)']; Nodal_Top.E = {DoFs_on_Edge}; % setup the cell (face) DoFs if ~isempty(Cell_1) Cell_1 = sortrows(Cell_1,1); % sort based on DoF index Cell_2 = sortrows(Cell_2,1); DoFs_on_Face_1 = [Cell_1(:,1)']; DoFs_on_Face_2 = [Cell_2(:,1)']; % there are 2 sets of DoFs (one for each vector component) Nodal_Top.F = {DoFs_on_Face_1, DoFs_on_Face_2}; else Nodal_Top.F = {[]}; end % there are no other DoFs Nodal_Top.T = {[]}; elseif strcmpi(Element_Domain,'tetrahedron') % init Edge1 = []; Edge2 = []; Edge3 = []; Edge4 = []; Edge5 = []; Edge6 = []; Face1_1 = []; % dof_set #1 Face2_1 = []; Face3_1 = []; Face4_1 = []; Face1_2 = []; % dof_set #2 Face2_2 = []; Face3_2 = []; Face4_2 = []; Cell_1 = []; Cell_2 = []; Cell_3 = []; for ind = 1:length(Nodal_Var) NV = Nodal_Var(ind).Data; Pt = NV{1}; BC_Pt = double(convert_to_barycentric(Pt))'; Type = NV{3}; Entity_Index = NV{4}; if strcmpi(Type,'int_edge') if (Entity_Index==1) Edge1 = [Edge1; ind, BC_Pt]; elseif (Entity_Index==2) Edge2 = [Edge2; ind, BC_Pt]; elseif (Entity_Index==3) Edge3 = [Edge3; ind, BC_Pt]; elseif (Entity_Index==4) Edge4 = [Edge4; ind, BC_Pt]; elseif (Entity_Index==5) Edge5 = [Edge5; ind, BC_Pt]; elseif (Entity_Index==6) Edge6 = [Edge6; ind, BC_Pt]; else error('Invalid!'); end elseif strcmpi(Type,'int_facet') dof_set = NV{6}; if (dof_set==1) if (Entity_Index==1) Face1_1 = [Face1_1; ind, BC_Pt]; elseif (Entity_Index==2) Face2_1 = [Face2_1; ind, BC_Pt]; elseif (Entity_Index==3) Face3_1 = [Face3_1; ind, BC_Pt]; elseif (Entity_Index==4) Face4_1 = [Face4_1; ind, BC_Pt]; else error('Invalid!'); end elseif (dof_set==2) if (Entity_Index==1) Face1_2 = [Face1_2; ind, BC_Pt]; elseif (Entity_Index==2) Face2_2 = [Face2_2; ind, BC_Pt]; elseif (Entity_Index==3) Face3_2 = [Face3_2; ind, BC_Pt]; elseif (Entity_Index==4) Face4_2 = [Face4_2; ind, BC_Pt]; else error('Invalid!'); end else error('Invalid!'); end elseif strcmpi(Type,'int_cell') dof_set = NV{6}; if (dof_set==1) Cell_1 = [Cell_1; ind, BC_Pt]; elseif (dof_set==2) Cell_2 = [Cell_2; ind, BC_Pt]; elseif (dof_set==3) Cell_3 = [Cell_3; ind, BC_Pt]; else error('Invalid!'); end else error('Invalid!'); end end Num_E1 = size(Edge1,1); Num_E2 = size(Edge2,1); Num_E3 = size(Edge3,1); Num_E4 = size(Edge4,1); Num_E5 = size(Edge5,1); Num_E6 = size(Edge6,1); Num_F1_1 = size(Face1_1,1); Num_F2_1 = size(Face2_1,1); Num_F3_1 = size(Face3_1,1); Num_F4_1 = size(Face4_1,1); Num_F1_2 = size(Face1_2,1); Num_F2_2 = size(Face2_2,1); Num_F3_2 = size(Face3_2,1); Num_F4_2 = size(Face4_2,1); Num_C_1 = size(Cell_1,1); Num_C_2 = size(Cell_2,1); Num_C_3 = size(Cell_3,1); Num_DoF = Num_E1 + Num_E2 + Num_E3 + Num_E4 + Num_E5 + Num_E6 +... Num_F1_1 + Num_F2_1 + Num_F3_1 + Num_F4_1 + ... Num_F1_2 + Num_F2_2 + Num_F3_2 + Num_F4_2 + ... Num_C_1 + Num_C_2 + Num_C_3; if (Num_DoF~=length(Nodal_Var)) error('Number of DoFs is incorrect!'); end CHK_EDGE_DOF = max(abs([Num_E1, Num_E2, Num_E3, Num_E4, Num_E5, Num_E6] - Num_E1)); if (CHK_EDGE_DOF~=0) error('Number of Edge DoFs on each edge is not the same!'); end CHK_FACE_DOF_1 = max(abs([Num_F1_1, Num_F2_1, Num_F3_1, Num_F4_1] - Num_F1_1)); CHK_FACE_DOF_2 = max(abs([Num_F1_2, Num_F2_2, Num_F3_2, Num_F4_2] - Num_F1_2)); if or(CHK_FACE_DOF_1~=0,CHK_FACE_DOF_2~=0) error('Number of Face DoFs on each face is not the same!'); end CHK_CELL_DOF = max(abs([Num_C_1, Num_C_2, Num_C_3] - Num_C_1)); if (CHK_CELL_DOF~=0) error('Number of Cell DoFs in each set is not the same!'); end % there are no vertex DoFs Nodal_Top.V = {[]}; % setup the edge DoFs Edge1 = sortrows(Edge1,1); % sort based on DoF index Edge2 = sortrows(Edge2,1); Edge3 = sortrows(Edge3,1); Edge4 = sortrows(Edge4,1); Edge5 = sortrows(Edge5,1); Edge6 = sortrows(Edge6,1); DoFs_on_Edge = [Edge1(:,1)'; Edge2(:,1)'; Edge3(:,1)'; Edge4(:,1)'; Edge5(:,1)'; Edge6(:,1)']; Nodal_Top.E = {DoFs_on_Edge}; % setup the facet (face) DoFs if ~isempty(Face1_1) Face1_1 = sortrows(Face1_1,1); % sort based on DoF index Face2_1 = sortrows(Face2_1,1); Face3_1 = sortrows(Face3_1,1); Face4_1 = sortrows(Face4_1,1); DoFs_on_Face_1 = [Face1_1(:,1)'; Face2_1(:,1)'; Face3_1(:,1)'; Face4_1(:,1)']; Face1_2 = sortrows(Face1_2,1); % sort based on DoF index Face2_2 = sortrows(Face2_2,1); Face3_2 = sortrows(Face3_2,1); Face4_2 = sortrows(Face4_2,1); DoFs_on_Face_2 = [Face1_2(:,1)'; Face2_2(:,1)'; Face3_2(:,1)'; Face4_2(:,1)']; % there are 2 sets of DoFs % (one for each tangent vector in tangent space of facet) Nodal_Top.F = {DoFs_on_Face_1, DoFs_on_Face_2}; else Nodal_Top.F = {[]}; end % setup the cell (tet) DoFs if ~isempty(Cell_1) Cell_1 = sortrows(Cell_1,1); % sort based on DoF index Cell_2 = sortrows(Cell_2,1); Cell_3 = sortrows(Cell_3,1); DoFs_on_Cell_1 = [Cell_1(:,1)']; DoFs_on_Cell_2 = [Cell_2(:,1)']; DoFs_on_Cell_3 = [Cell_3(:,1)']; % there are 3 sets of DoFs (one for each vector component) Nodal_Top.T = {DoFs_on_Cell_1, DoFs_on_Cell_2, DoFs_on_Cell_3}; else Nodal_Top.T = {[]}; end else error('Not implemented!'); end Vtx_DoFs = []; for ii = 1:length(Nodal_Top.V) Vtx_DoFs = [Vtx_DoFs; Nodal_Top.V{ii}(:)]; end Edge_DoFs = []; for ii = 1:length(Nodal_Top.E) Edge_DoFs = [Edge_DoFs; Nodal_Top.E{ii}(:)]; end Face_DoFs = []; for ii = 1:length(Nodal_Top.F) Face_DoFs = [Face_DoFs; Nodal_Top.F{ii}(:)]; end Tet_DoFs = []; for ii = 1:length(Nodal_Top.T) Tet_DoFs = [Tet_DoFs; Nodal_Top.T{ii}(:)]; end All_DoFs = [Vtx_DoFs; Edge_DoFs; Face_DoFs; Tet_DoFs]; % final check Unique_DoFs = unique(All_DoFs); if (length(All_DoFs)~=length(Unique_DoFs)) error('Not all DoF indices are distinct!'); end end
github
eardi/sm-fpca-master
write_element_file_nodal_top_string.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Elem_Defn/Generators/Helper_Routines/write_element_file_nodal_top_string.m
1,118
utf_8
e029b77686b94c0616f6cd395d7dc91d
function Nodal_Sets_str = write_element_file_nodal_top_string(Nodal_Sets,TAB) %write_element_file_nodal_top_string % % This creates a string representing the sets of DoF indices. % Copyright (c) 10-10-2016, Shawn W. Walker Nodal_Sets_str = []; % init for ii = 1:length(Nodal_Sets)-1 DoF_set = Nodal_Sets{ii}; Nodal_Sets_str = write_one_set(DoF_set,TAB,Nodal_Sets_str); Nodal_Sets_str = [Nodal_Sets_str, ',...\n']; end DoF_set = Nodal_Sets{end}; Nodal_Sets_str = write_one_set(DoF_set,TAB,Nodal_Sets_str); Nodal_Sets_str = [Nodal_Sets_str, '...']; end function DoF_set_string = write_one_set(DoF_set,TAB,DoF_set_string) DoF_set_string = [DoF_set_string, TAB, '[']; for rr = 1:size(DoF_set,1) for cc = 1:size(DoF_set,2)-1 DoF_set_string = [DoF_set_string, num2str(DoF_set(rr,cc)), ', ']; end if (rr < size(DoF_set,1)) DoF_set_string = [DoF_set_string, num2str(DoF_set(rr,end)), ';\n']; DoF_set_string = [DoF_set_string, TAB, ' ']; else DoF_set_string = [DoF_set_string, num2str(DoF_set(rr,end)), ']']; end end end
github
eardi/sm-fpca-master
basis_symm_matrix_polys_deg_k.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Elem_Defn/Generators/Helper_Routines/basis_symm_matrix_polys_deg_k.m
2,048
utf_8
29f9d893a92766a0988cb1decd000514
function [basis, const_basis] = basis_symm_matrix_polys_deg_k(indep_vars,deg_k,mat_size,exact) %basis_symm_matrix_polys_deg_k % % This returns a set of symmetric matrix-valued basis polynomials % (of degree <= k) in the given independent variables. % % indep_vars = col. vector of symbolic independent vars; % all must be distinct! % deg_k = maximum degree of basis polynomials. % mat_size = size of matrix. % exact = boolean % true: degree of polynomial basis functions is *exactly* deg_k. % false: (default) degree of basis functions is <= deg_k. % Copyright (c) 03-22-2018, Shawn W. Walker if (nargin==3) exact = false; end % scalar basis functions scalar_basis = basis_polys_deg_k(indep_vars,deg_k,exact); num_scalar_basis = length(scalar_basis); % tensor product the scalar basis functions const_basis = get_symm_mat_basis(mat_size); num_basis_of_symm_mat = mat_size * (mat_size+1)/2; if (length(const_basis)~=num_basis_of_symm_mat) error('These should match!'); end num_mat_basis = num_basis_of_symm_mat * num_scalar_basis; basis(num_mat_basis).func = []; % init for mm = 1:num_basis_of_symm_mat for ii = 1:num_scalar_basis scalar_func = scalar_basis(ii).func; % form symmetric matrix basis function mat_func = const_basis(mm).mat * scalar_func; basis(ii + (mm-1)*num_scalar_basis).func = mat_func; end end end function const_basis = get_symm_mat_basis(mat_size) num_basis_of_symm_mat = mat_size * (mat_size+1)/2; const_basis(num_basis_of_symm_mat).mat = []; % init zero_mat = zeros(mat_size,mat_size); % get diagonal component bases for kk = 1:mat_size MB = zero_mat; MB(kk,kk) = 1; const_basis(kk).mat = MB; end INDEX = mat_size; % get off-diagonal component bases for ii = 1:mat_size for jj = ii+1:mat_size MB = zero_mat; MB(ii,jj) = 1; INDEX = INDEX + 1; const_basis(INDEX).mat = (1/2)*(MB + MB'); end end end
github
eardi/sm-fpca-master
Permute_Nedelec_1stKind_On_Simplex_Nodal_Variables.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Elem_Defn/Nodal_Variables/Permute_Nedelec_1stKind_On_Simplex_Nodal_Variables.m
4,466
utf_8
a727f6f2f783ac5a706fb1e9a3752056
function Permute_Nodal_Var = Permute_Nedelec_1stKind_On_Simplex_Nodal_Variables(Cell,DoF_Perm,Perm_Tet,... Sym_Perm_Map,Jacobian_Matrix,Nodal_Var) %Permute_Nedelec_1stKind_On_Simplex_Nodal_Variables % % This permutes the Nodal Variable Data. % Copyright (c) 11-02-2016, Shawn W. Walker % % need it symbolically (this is my F_{\tilde{T}} map from \hat{T} --> \tilde{T} % Sym_Perm_Map = FELSymFunc(Sym_Func_Temp,std_vars); Permute_Nodal_Var = Nodal_Var; % init J_inv = inv(Jacobian_Matrix); det_J = det(Jacobian_Matrix); % DoF_Perm : \hat{T} --> \tilde{T} Num_DoFs = length(DoF_Perm); % map and permute nodal-var data for hat_ind = 1:Num_DoFs tilde_ind = DoF_Perm(hat_ind); NV_tilde_Data = Nodal_Var(tilde_ind).Data; NV_hat_Data = Nodal_Var(hat_ind).Data; % init! NV_Type = NV_tilde_Data{3}; % error check if ~strcmpi(NV_hat_Data{3},NV_Type) error('Nodal types are different!'); end % BEGIN: modify Nodal Variable data on \tilde{T} to be defined on \hat{T} % convert dual function string to useable format func_handle_str = ['@(x,y,z) ', NV_tilde_Data{2}]; func_handle = str2func(func_handle_str); sym_dual_func = sym(func_handle); Dual_Func_tilde = FELSymFunc(sym_dual_func); % modify dual function Dual_Func_tilde = Dual_Func_tilde.Rename_Independent_Vars({'x', 'y', 'z'},{'x_t', 'y_t', 'z_t'}); Mapped_Dual_Func = Dual_Func_tilde.Compose_Function(Sym_Perm_Map); Entity_tilde = NV_tilde_Data{4}; % Note: the barycentric coordinates are already correct; accounted for by DoF_Perm if strcmpi(NV_Type,'int_edge') % get corresponding entity on \hat{T} Entity_hat = inverse_entity_map(Perm_Tet.Edge,Entity_tilde); if (Entity_hat~=NV_hat_Data{4}) error('Permutation data not correct!'); end % get ratio of edge lengths edge_ratio = Cell.Edge(Entity_tilde).Measure / Cell.Edge(Entity_hat).Measure; % multiply by jacobian stuff Dual_Func_hat_sym = edge_ratio * J_inv * Mapped_Dual_Func.Func; % remake into a string NV_hat_Data{2} = make_sym_vec_func_str(Dual_Func_hat_sym); elseif strcmpi(NV_Type,'int_facet') % get corresponding entity on \hat{T} Entity_hat = inverse_entity_map(Perm_Tet.Face,Entity_tilde); if (Entity_hat~=NV_hat_Data{4}) error('Permutation data not correct!'); end % multiply by jacobian stuff Dual_Func_hat_sym = J_inv * Mapped_Dual_Func.Func; % remake into a string NV_hat_Data{2} = make_sym_vec_func_str(Dual_Func_hat_sym); elseif strcmpi(NV_Type,'int_cell') % get corresponding entity on \hat{T} Entity_hat = inverse_entity_map(Perm_Tet.Tet,Entity_tilde); if (Entity_hat~=NV_hat_Data{4}) error('Permutation data not correct!'); end % multiply by jacobian stuff Dual_Func_hat_sym = det_J * J_inv * Mapped_Dual_Func.Func; % remake into a string NV_hat_Data{2} = make_sym_vec_func_str(Dual_Func_hat_sym); else error('Invalid!'); end % END: modify Nodal Variable data on \tilde{T} to be defined on \hat{T} Permute_Nodal_Var(hat_ind).Data = NV_hat_Data; end end function Entity_inverse_index = inverse_entity_map(Perm_Entity,Entity_index) [TF,LOC] = ismember(Entity_index,Perm_Entity); Entity_inverse_index = LOC(TF); if (Perm_Entity(Entity_inverse_index)~=Entity_index) error('Entity permutation not correct!'); end end function Func_Str = make_sym_vec_func_str(Sym_Func) Num_Comp = length(Sym_Func); if (Num_Comp==1) Func_Str = ['[', char(Sym_Func), ']']; elseif (Num_Comp==2) Func_Str = ['[', char(Sym_Func(1)), '; ', char(Sym_Func(2)), ']']; elseif (Num_Comp==3) Func_Str = ['[', char(Sym_Func(1)), '; ', char(Sym_Func(2)), '; ', char(Sym_Func(3)), ']']; elseif (Num_Comp==4) Func_Str = ['[', char(Sym_Func(1)), '; ', char(Sym_Func(2)), '; ', char(Sym_Func(3)), '; ', char(Sym_Func(4)), ']']; elseif (Num_Comp==5) Func_Str = ['[', char(Sym_Func(1)), '; ', char(Sym_Func(2)), '; ', char(Sym_Func(3)), '; ', char(Sym_Func(4)), '; ', char(Sym_Func(5)), ']']; else error('Not implemented!'); end end
github
eardi/sm-fpca-master
demo_test_dirs.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Demo/demo_test_dirs.m
2,611
utf_8
1d6b238662b35218ae37d950eb337e19
function Unit_Test_Dirs = demo_test_dirs() %demo_test_dirs % % This outputs a list of directories containing the demos. % Copyright (c) 05-07-2019, Shawn W. Walker % get the main directory that this function is in! MFN = mfilename('fullpath'); Main_Dir = fileparts(MFN); % define demo dirs % init Unit_Test_Dirs.str1 = fullfile(Main_Dir, 'Closest_Point_Sphere'); Unit_Test_Dirs.str2 = []; Unit_Test_Dirs.str3 = []; % next! str1 = fullfile(Main_Dir, 'Curved_Domain_2D'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); % str1 = fullfile(Main_Dir, 'CiarletRaviart'); % Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'DoFmap_Generation', 'Dim_2'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'EWOD'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Finite_Element_Space_2D'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Finite_Element_Space_On_1D_Subdomain'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Heat_Eqn_On_A_Surface'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Image_Processing'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Interp_2D'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Laplace_1D'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Laplace_Beltrami_Open_Surface'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Laplace_On_Cube_3D'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Local_FE_Matrix'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Mesh_Gen_With_Solving_PDE'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Mesh_Smoothing_2D'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Point_Search_Domain_2D'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Simple_Elasticity_3D'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Stokes_2D'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); end function New_Dirs = append_dir(Dirs,str1,str2,str3) DS.str1 = str1; DS.str2 = str2; DS.str3 = str3; Num = length(Dirs); New_Dirs = Dirs; % init New_Dirs(Num+1) = DS; end
github
eardi/sm-fpca-master
Execute_Laplace_On_Cube_3D.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Demo/Laplace_On_Cube_3D/Execute_Laplace_On_Cube_3D.m
4,920
utf_8
6e31629a01295f97ccdab78f7d76c6b7
function status = Execute_Laplace_On_Cube_3D() %Execute_Laplace_On_Cube_3D % % Demo code for Laplace's equation on 3-D cube. % Copyright (c) 06-25-2012, Shawn W. Walker % BEGIN: define mesh of cube disp(' '); disp('Create Cube Mesh:'); tic Num_Pts = 20+1; % max is 70+1 on my laptop (just barely worked!) % Number of Free DoFs = 328509 % can go much higher with AGMG! [Omega_Tet, Omega_Vertex] = regular_tetrahedral_mesh(Num_Pts,Num_Pts,Num_Pts); Mesh = MeshTetrahedron(Omega_Tet, Omega_Vertex, 'Omega'); %Mesh = Mesh.Reorder; toc clear Omega_Tet Omega_Vertex; % END: define mesh of cube % define subdomains Bdy_Faces = Mesh.freeBoundary(); Mesh = Mesh.Append_Subdomain('2D','Bdy',Bdy_Faces); % define function spaces (i.e. the DoFmaps) P1_Space_DoFmap = uint32(Mesh.ConnectivityList); % assemble disp(' '); disp('Assemble Stiffness matrix:'); tic FEM = DEMO_mex_Laplace_On_Cube_3D_assemble([],Mesh.Points,P1_Space_DoFmap,[],[],P1_Space_DoFmap); toc A_from_scratch = FEM(1).MAT; % doing re-assembly is at least 2 times (and up to 3 times) faster! disp(' '); disp('Assemble AGAIN!:'); tic FEM = DEMO_mex_Laplace_On_Cube_3D_assemble(FEM,Mesh.Points,P1_Space_DoFmap,[],[],P1_Space_DoFmap); toc ERR1 = abs(FEM(1).MAT - A_from_scratch); ERR1 = max(ERR1(:)); disp('Difference between Original Matrix and Re-assembled Matrix:'); ERR1 current_file = mfilename('fullpath'); Current_Dir = fileparts(current_file); RefFEMDataFileName = fullfile(Current_Dir,'Demo_Laplace_On_Cube_3D_REF_Data.mat'); % FEM_REF = FEM; % save(RefFEMDataFileName,'FEM_REF'); load(RefFEMDataFileName); % do some checks disp(' '); disp('Summing the P1 stiffness matrix A should be close to 0. Error is:'); sum(FEM(1).MAT(:)) - 0 disp('Setup Laplace equation with Dirichlet conditions on Bdy:'); Soln = zeros(Mesh.Num_Vtx,1); % init A = FEM(1).MAT; disp('----> set u = sin(2*pi*x) + cos(2*pi*y) + sin(2*pi*z) on Bdy.'); % get Bdy Degrees-of-Freedom (DoF) Bdy_Nodes = unique(Bdy_Faces(:)); % get Bdy DoF coordinates Bdy_XC = Mesh.Points(Bdy_Nodes,:); Soln(Bdy_Nodes,1) = sin(2*pi*Bdy_XC(:,1)) + cos(2*pi*Bdy_XC(:,2)) + sin(2*pi*Bdy_XC(:,3)); RHS = 0*Soln; RHS = RHS - A * Soln; % get the free nodes of the system All_Vtx_Indices = (1:1:Mesh.Num_Vtx)'; FreeNodes = setdiff(All_Vtx_Indices,Bdy_Nodes); disp(' '); disp(['Size of A = ', num2str(size(A))]); disp(['Number of Free DoFs = ', num2str(length(FreeNodes))]); disp(' '); MI = MEM_Info(A); MEM_A = MI.bytes / (2^20); disp(['Memory allocation for A = ', num2str(MEM_A), ' MB']); disp(' '); disp('Solve linear system with backslash:'); tic Soln(FreeNodes,1) = A(FreeNodes,FreeNodes) \ RHS(FreeNodes,1); toc % % Note: you must have AGMG installed to run this! % disp(' '); % TOL = 1e-8; % disp(['Solve linear system with AGMG with TOL = ', num2str(TOL,'%1.2G'), ':']); % Soln_AGMG = Soln; % tic % Soln_AGMG(FreeNodes,1) = agmg(A(FreeNodes,FreeNodes),RHS(FreeNodes,1),[],TOL); % toc % Soln = Soln_AGMG; % Soln_Diff = max(abs(Soln - Soln_AGMG)); % disp(' '); % disp('Max difference between backslash and AGMG:'); % Soln_Diff % % Note: you must have Pardiso installed to run this! Almost as good as backslash % disp(' '); % disp(['Solve linear system with Pardiso (min degree ordering):']); % Soln_Pardiso = Soln; % info = pardisoinit(11,0); % info.iparm(2) = 0; % min degree ordering % info.iparm(3) = 2; % num cores % tic % info = pardisoreorder(A(FreeNodes,FreeNodes),info,true); % info = pardisofactor(A(FreeNodes,FreeNodes),info,true); % [Soln_Pardiso(FreeNodes,1), info] = pardisosolve(A(FreeNodes,FreeNodes),RHS(FreeNodes,1),info,true); % toc % pardisofree(info); % clear info; % Soln_Diff = max(abs(Soln - Soln_Pardiso)); % disp(' '); % disp('Max difference between backslash and Pardiso:'); % Soln_Diff % % Note: you must have SuperLU installed to run this! Really slow compared to backslash % disp(' '); % disp(['Solve linear system with SuperLU:']); % Soln_SuperLU = Soln; % tic % Soln_SuperLU(FreeNodes,1) = lusolve(A(FreeNodes,FreeNodes),RHS(FreeNodes,1)); % toc % Soln_Diff = max(abs(Soln - Soln_SuperLU)); % disp(' '); % disp('Max difference between backslash and SuperLU:'); % Soln_Diff figure; h1 = trisurf(Bdy_Faces,Mesh.Points(:,1),Mesh.Points(:,2),Mesh.Points(:,3),Soln(:,1)); title('Boundary Mesh and Boundary Condition','FontSize',12); set(gca,'FontSize',14); AX = [0 1 0 1 0 1]; axis(AX); axis equal; axis(AX); status = 0; % init % compare to reference data ERRORS = zeros(length(FEM),1); for ind = 1:length(FEM) ERRORS(ind) = max(abs(FEM(ind).MAT(:) - FEM_REF(ind).MAT(:))); if (ERRORS(ind) > 1e-13) disp(['Test Failed for FEM(', num2str(ind), ').MAT...']); status = 1; end end end function MI = MEM_Info(A) MI = whos; end
github
eardi/sm-fpca-master
Execute_EWOD_FalkWalker.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Demo/EWOD/Execute_EWOD_FalkWalker.m
9,276
utf_8
8a44d4c2ac9cd1e18f12669f9cf6e9ea
function status = Execute_EWOD_FalkWalker() %Execute_EWOD_FalkWalker % % Demo code for solving the EWOD problem (using the formulation by Falk % and Walker, 2013). % Copyright (c) 12-05-2017, Shawn W. Walker Main_Dir = fileparts(mfilename('fullpath')); % define initial disk surface Refine_Level = 5; [Tri, Pts] = triangle_mesh_of_disk([0 0],1,Refine_Level); Mesh = MeshTriangle(Tri, Pts, 'Omega'); % add the open boundary BDY = Mesh.freeBoundary(); Mesh = Mesh.Append_Subdomain('1D','Gamma',BDY); clear BDY; %Mesh.Plot; % define parameters alpha = 0.01; beta = 1; dt = 0.1; Num_Steps = 30; % create GeoElementSpace P1_RefElem_2D = ReferenceFiniteElement(lagrange_deg1_dim2()); G_Space = GeoElementSpace('G_h',P1_RefElem_2D,Mesh); G_Space = G_Space.Set_DoFmap(Mesh,uint32(Mesh.ConnectivityList)); G_Space = G_Space.Append_Fixed_Subdomain(Mesh,'Gamma'); % store mesh vertex coordinates x_h_i = G_Space.Get_Mapping_For_Piecewise_Linear_Mesh(Mesh); % initialize x_h_evolve(Num_Steps+1).data = []; x_h_evolve(1).data = x_h_i; % store it % define FE spaces BDM1_RefElem = ReferenceFiniteElement(brezzi_douglas_marini_deg1_dim2()); V_Space = FiniteElementSpace('V_h', BDM1_RefElem, Mesh, 'Omega'); V_DoFmap = mex_EWOD_DoF_Alloc_V_h(uint32(Mesh.ConnectivityList)); V_Space = V_Space.Set_DoFmap(Mesh,uint32(V_DoFmap)); clear V_DoFmap; P0_RefElem = ReferenceFiniteElement(lagrange_deg0_dim2()); Q_Space = FiniteElementSpace('Q_h', P0_RefElem, Mesh, 'Omega'); Q_DoFmap = (1:1:Mesh.Num_Cell)'; % only one DoF per element Q_Space = Q_Space.Set_DoFmap(Mesh,uint32(Q_DoFmap)); clear Q_DoFmap; P1_RefElem = ReferenceFiniteElement(lagrange_deg1_dim1()); M_Space = FiniteElementSpace('M_h', P1_RefElem, Mesh, 'Gamma'); M_DoFmap = mex_EWOD_DoF_Alloc_M_h(uint32(Mesh.Get_Global_Subdomain('Gamma'))); M_Space = M_Space.Set_DoFmap(Mesh,uint32(M_DoFmap)); Y_Space = FiniteElementSpace('M_h', P1_RefElem, Mesh, 'Gamma', 2); Y_Space = Y_Space.Set_DoFmap(Mesh,uint32(M_DoFmap)); % can reuse it! clear M_DoFmap; % initialize u_h: u_h = zeros(V_Space.num_dof,1); % BEGIN: find the mapping from M_h and Y_h nodes to G_h nodes disp('create Quadtree...'); BB = 2*[-1.001, 1.001, -1.001, 1.001]; % bounding box QT = mexQuadtree(x_h_i,BB); % get coordinates of DoFs in M_h and Y_h M_Points = M_Space.Get_DoF_Coord(Mesh); Y_Points = Y_Space.Get_DoF_Coord(Mesh); % find the mapping via closest point [M_h_to_G_h, QT_dist] = QT.kNN_Search(M_Points,1); if max(QT_dist) > 1e-14 error('Points should be right on top of each other.'); end [Y_h_to_G_h, QT_dist] = QT.kNN_Search(Y_Points,1); if max(QT_dist) > 1e-14 error('Points should be right on top of each other.'); end delete(QT); % delete quadtree object % END: find the mapping from M_h and Y_h nodes to G_h nodes % get the DoF indices (of G_h) that are NOT on \Gamma G_h_Free_DoFs = G_Space.Get_Free_DoFs(Mesh,'all'); % compute embedding data Domain_Names = {'Omega'; 'Gamma'}; Omega_Embed = Mesh.Generate_Subdomain_Embedding_Data(Domain_Names); % must choose an orientation of the mesh facets (for BDM_1 space) Edges = Mesh.edges; [~, Omega_Orient] = Mesh.Get_Facet_Info(Edges); % time-stepping for ii = 1:Num_Steps % disp('-------------------------------------------------------'); disp(['Time Index: ', num2str(ii), ' of ', num2str(Num_Steps)]); % assemble tic FEM = mex_MatAssem_EWOD_FalkWalker([],x_h_i,G_Space.DoFmap,Omega_Orient,Omega_Embed,... G_Space.DoFmap,M_Space.DoFmap,Q_Space.DoFmap,V_Space.DoFmap,Y_Space.DoFmap); toc % put FEM into a nice object to make accessing the matrices easier EWOD_Mats = FEMatrixAccessor('EWOD',FEM); clear FEM; % pull out the matrices M = EWOD_Mats.Get_Matrix('M'); K = EWOD_Mats.Get_Matrix('K'); B = EWOD_Mats.Get_Matrix('B'); C = EWOD_Mats.Get_Matrix('C'); D = EWOD_Mats.Get_Matrix('D'); chi = EWOD_Mats.Get_Matrix('chi'); % define EWOD forcing as function over \R^2 %E_exact = @(x,y) 1 - x.^2; E_exact = @(x,y) 3*ewod_force_1(x,y); % interpolate over \Omega E_Omega_h = E_exact(x_h_i(:,1),x_h_i(:,2)); % extract the part that is on \Gamma E_h = E_Omega_h(M_h_to_G_h,1); disp('Solve the EWOD system:'); % make the big matrix VN = V_Space.num_dof; QN = Q_Space.num_dof; YN = 2*Y_Space.num_dof; MN = M_Space.num_dof; MAT = [((alpha/dt)+beta)*M, -B', sparse(VN,YN), C'; -B, sparse(QN,QN), sparse(QN,YN), sparse(QN,MN); sparse(YN,VN), sparse(YN,QN), K, -D'; C, sparse(MN,QN), -(1/dt)*D, sparse(MN,MN)]; RHS = [(alpha/dt)*M*u_h - C'*E_h; zeros(QN,1); zeros(YN,1); -(1/dt)*chi]; % use backslash to solve Soln = MAT \ RHS; % parse the solution u_h = Soln(1:VN,1); p_h = Soln(VN+1:VN+QN,1); x_h_new_bdy = zeros(YN/2,2); x_h_new_bdy(:) = Soln(VN+QN+1:VN+QN+YN,1); lambda_h = Soln(VN+QN+YN+1:end,1); % BEGIN: update \Omega x_h_old_bdy = x_h_i(Y_h_to_G_h,:); Displace_bdy = x_h_new_bdy - x_h_old_bdy; % bdy displacement % init domain displacement Displace = G_Space.Get_Zero_Function; Displace(Y_h_to_G_h,:) = Displace_bdy; D_Soln = Displace(:); % solve for Laplace smoothing A = EWOD_Mats.Get_Matrix('A'); R1 = -A * D_Soln; % set boundary conditions D_Soln(G_h_Free_DoFs,1) = A(G_h_Free_DoFs,G_h_Free_DoFs) \ R1(G_h_Free_DoFs,1); Displace(:) = D_Soln; % put back into two-column matrix format Inf_Norm_Displace = max(abs(Displace(:))); disp(['L^\infty norm of \Omega Displacement: ', num2str(Inf_Norm_Displace,'%1.10G')]); % update domain coordinates x_h_new = x_h_i + Displace; % END: update \Omega % store solution x_h_evolve(ii+1).data = x_h_new; % store it x_h_i = x_h_new; % update for next time-step end % plot solution disp('Plot Droplet Evolution:'); FH_evol = figure('Renderer','painters','PaperPositionMode','auto','Color','w'); BDY = Mesh.Get_Global_Subdomain('Gamma'); hold on; time_vec = [1, 2, 5, length(x_h_evolve)]; for tt = 1:length(time_vec) em = edgemesh(BDY,x_h_evolve(time_vec(tt)).data); set(em,'LineWidth',1.4); end hold off; title('domain \Omega at four time steps'); %title('plotomega'); xlabel('X'); ylabel('Y'); grid on; %set(gca,'FontSize',10); AX = [-2 2 -1 1]; axis(AX); axis equal; axis(AX); view(2); % plot solution disp('Plot Droplet Domain at Final Time:'); FH_x_h = figure('Renderer','painters','PaperPositionMode','auto','Color','w'); tm = trimesh(Mesh.ConnectivityList,x_h_i(:,1),x_h_i(:,2),0*x_h_i(:,2)); set(tm,'EdgeColor','k'); hold on; BDY = Mesh.Get_Global_Subdomain('Gamma'); em = edgemesh(BDY,x_h_i); set(em,'LineWidth',1.5); hold off; title('domain \Omega at final time'); %title('plotomega'); xlabel('X'); ylabel('Y'); grid on; %set(gca,'FontSize',10); AX = [-1.7 1.7 -0.7 0.7]; axis(AX); axis equal; axis(AX); view(2); % Plot the \lambda solution: Gamma_X = x_h_i(M_h_to_G_h,:); FH_lambda_h = figure('Renderer','painters','PaperPositionMode','auto','Color','w'); p2 = edgemesh(M_Space.DoFmap, [Gamma_X, 0*Gamma_X(:,1)], lambda_h); set(p2,'LineWidth',2.0); shading interp; title('Color plot of \lambda_h on \Gamma'); %title('plotlam'); xlabel('X'); ylabel('Y'); grid on; axis(AX); axis equal; axis(AX); colorbar; view(2); % error check RefErrorDataFileName = fullfile(Main_Dir,'FEL_Execute_EWOD_FalkWalker_REF_Data.mat'); % save(RefErrorDataFileName,'x_h_i'); REF_DATA = load(RefErrorDataFileName); % check the difference with previous run x_h_i_REF = REF_DATA.x_h_i; ERR_CHK = abs(x_h_i_REF - x_h_i); ERR_CHK = max(ERR_CHK(:)); % different computers should compute the same errors (up to round-off!) status = 0; % init if (max(ERR_CHK) > 1e-10) disp('EWOD error check failed!'); ERR_CHK status = 1; end % %-------------------------------------------------- % % % code to generate plots for FELICITY paper % FigDir = 'C:\FILES\LaTex\Papers_New\FELICITY_SISC_Paper\Figures'; % %FigDir = 'C:\FILES\FELICITY\Wiki\Images'; % % % % set filename % SaveFig = 'EWOD_FalkWalker_x_h_bdy_Evolve'; % FN = fullfile(FigDir,SaveFig); % %export_fig(FN, '-pdf', '-eps', '-transparent'); % %export_fig(FN, '-pdf', '-transparent'); % % print(FH_evol,'-depsc',FN); % color % %print(FH_evol,'-djpeg',FN); % color % % % % set filename % SaveFig = 'EWOD_FalkWalker_Omega_Final'; % FN = fullfile(FigDir,SaveFig); % %export_fig(FN, '-pdf', '-eps', '-transparent'); % %export_fig(FN, '-pdf', '-transparent'); % % print(FH_x_h,'-depsc',FN); % color % %print(FH_x_h,'-djpeg',FN); % color % % % % set filename % SaveFig = 'EWOD_FalkWalker_lambda_h_Final'; % FN = fullfile(FigDir,SaveFig); % %export_fig(FN, '-pdf', '-eps', '-transparent'); % %export_fig(FN, '-pdf', '-transparent'); % % %print(FH,'-deps',FN); % black and white % print(FH_lambda_h,'-depsc',FN); % color % %print(FH_lambda_h,'-djpeg',FN); % color % % %-------------------------------------------------- end function E_exact = ewod_force_1(x,y) % like the electrode case EL = 0.5*((2/pi)*atan( (x+0.5)/0.02) - 1); ER = 0.5*((2/pi)*atan(-(x-0.5)/0.02) - 1); E_exact = EL + ER; end
github
eardi/sm-fpca-master
matrix_assembly_unit_test_dirs.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/matrix_assembly_unit_test_dirs.m
4,559
utf_8
ab821bb181614a747c0d71a58bbd5bc9
function Unit_Test_Dirs = matrix_assembly_unit_test_dirs() %matrix_assembly_unit_test_dirs % % This outputs a list of directories containing the unit tests. % Copyright (c) 04-05-2018, Shawn W. Walker % get the main directory that this function is in! MFN = mfilename('fullpath'); Main_Dir = fileparts(MFN); % define unit test dirs % init Unit_Test_Dirs.str1 = fullfile(Main_Dir, 'Unit_Test', 'Assembly', 'Assemble_Subset_2D'); Unit_Test_Dirs.str2 = []; Unit_Test_Dirs.str3 = []; % next! str1 = fullfile(Main_Dir, 'Unit_Test', 'Dim_1'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Dim_2'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Dim_3'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Codim_1', 'Coarse_Square'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Codim_1', 'Refined_Square'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hdiv', 'RT0'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hdiv', 'RT0_Codim_1'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hdiv', 'RTk_Surface'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hdiv', 'RT1_Dim3'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hdiv', 'BDM1'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hdiv', 'BDM1_Codim_1'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); % str1 = fullfile(Main_Dir, 'Unit_Test', 'Hdivdiv', 'HHJk'); % Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); disp('SWW: put in unit test for HHJ!!!!'); str1 = fullfile(Main_Dir, 'Unit_Test', 'Lagrange'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hcurl', 'Nedelec1stKind_Deg1_Dim2'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hcurl', 'Nedelec1stKind_Deg1_Dim2'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hcurl', 'Nedelec1stKind_Deg2_Dim3'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hcurl', 'Nedelec1stKind_Deg2_Dim3'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hessian', 'Dim_1'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hessian', 'Dim_2'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hessian', 'Dim_3'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hessian', 'TopDim_1_GeoDim_2'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hessian', 'TopDim_1_GeoDim_3'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Hessian', 'TopDim_2_GeoDim_3'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Mesh_Size', 'Dim_1'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Multiple_Subdomains', 'Embedding_Dim_1'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Multiple_Subdomains', 'Embedding_Dim_2'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Multiple_Subdomains', 'Embedding_Dim_3'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Multiple_Subdomains', 'Mixed_Geometry_1'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Symbolic_Constants', 'Dim_2'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Symbolic_Constants', 'Mixed_Domains'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); end function New_Dirs = append_dir(Dirs,str1,str2,str3) DS.str1 = str1; DS.str2 = str2; DS.str3 = str3; Num = length(Dirs); New_Dirs = Dirs; % init New_Dirs(Num+1) = DS; end
github
eardi/sm-fpca-master
Update_GeomFunc_Options_From_Basis_Functions.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Level_3/@FELSpaces/Update_GeomFunc_Options_From_Basis_Functions.m
4,379
utf_8
9d49f830959cd57a38693c9727ebc5ae
function obj = Update_GeomFunc_Options_From_Basis_Functions(obj,Integration_Index) %Update_GeomFunc_Options_From_Basis_Functions % % This updates what needs to be computed in the C++ code for the geometric % functions in order to compute all the basis function transformations. % Copyright (c) 01-23-2014, Shawn W. Walker All_BF = obj.Integration(Integration_Index).BasisFunc; BF_Names = All_BF.keys; % update the internal geometric function of each basis function for bi = 1:length(BF_Names) % parse out Current_BasisFunc = All_BF(BF_Names{bi}); Basis_Func_Opt = Current_BasisFunc.Opt; % update the geometric options in the GeomFunc associated with the basis function Current_BasisFunc.GeomFunc.Opt = Current_BasisFunc.FuncTrans.Update_Geometric_Options(... Basis_Func_Opt,Current_BasisFunc.GeomFunc.Opt); % save it All_BF(BF_Names{bi}) = Current_BasisFunc; end % next, update the Domain of Integration (DoI) geometric function, if necessary. DoI_GeomFunc = obj.Integration(Integration_Index).DoI_Geom; [All_BF, DoI_GeomFunc] = enforce_consistent_geometric_function(BF_Names,All_BF,DoI_GeomFunc); % don't forget to put it back into the object obj.Integration(Integration_Index).DoI_Geom = DoI_GeomFunc; % now update any other geometric functions, if necessary GF_Names = obj.Integration(Integration_Index).GeomFunc.keys; for gi = 1:length(GF_Names) Single_GF = obj.Integration(Integration_Index).GeomFunc(GF_Names{gi}); [All_BF, Single_GF] = enforce_consistent_geometric_function(BF_Names,All_BF,Single_GF); % don't forget to put it back into the object obj.Integration(Integration_Index).GeomFunc(GF_Names{gi}) = Single_GF; end % don't forget to put it back into the object obj.Integration(Integration_Index).BasisFunc = All_BF; % disp('==========BEGIN GROUP=============='); % disp(' '); % % % PRINT the internal geometric function of each basis function % for bi = 1:length(BF_Names) % % % parse out % Current_BasisFunc = All_BF(BF_Names{bi}); % disp('==========START=============='); % Current_BasisFunc.Func_Name % Current_BasisFunc.GeomFunc % end end function [All_BF, GeomFunc] = enforce_consistent_geometric_function(BF_Names,All_BF,GeomFunc) % make sure the individual basis functions that use the same % geometric function *share* the same options for bi = 1:length(BF_Names) Current_BasisFunc = All_BF(BF_Names{bi}); for oi = 1:length(BF_Names) if (oi~=bi) Other_BasisFunc = All_BF(BF_Names{oi}); % if the basis function's geom_func matches the other geom_func if strcmp(Current_BasisFunc.GeomFunc.CPP.Identifier_Name,Other_BasisFunc.GeomFunc.CPP.Identifier_Name) % OR the options together Current_BasisFunc.GeomFunc = Current_BasisFunc.GeomFunc.OR_Options(Other_BasisFunc.GeomFunc); All_BF(BF_Names{bi}) = Current_BasisFunc; end end end end % sometimes, the geometric function for a basis function IS THE SAME as another % geometric function, such as the integration domain's (DoI) geometric function or some % other (sub-)domain's geometric function. In this case, we must ensure that % both versions (the domain version and the basis function version) have the same options! Domain_GF_Name = GeomFunc.CPP.Identifier_Name; for bi = 1:length(BF_Names) Current_BasisFunc = All_BF(BF_Names{bi}); % if the basis function's geom_func matches the domain geom_func if strcmp(Domain_GF_Name,Current_BasisFunc.GeomFunc.CPP.Identifier_Name) % OR the options together GeomFunc = GeomFunc.OR_Options(Current_BasisFunc.GeomFunc); end end % so now the GeomFunc contains all the options for the domain and ALL of the basis functions % make sure the basis function versions have the SAME geom options as the domain version for bi = 1:length(BF_Names) Current_BasisFunc = All_BF(BF_Names{bi}); % if the basis function's geom_func matches the domain geom_func if strcmp(Domain_GF_Name,Current_BasisFunc.GeomFunc.CPP.Identifier_Name) Current_BasisFunc.GeomFunc.Opt = GeomFunc.Opt; % set them equal All_BF(BF_Names{bi}) = Current_BasisFunc; end end end
github
eardi/sm-fpca-master
Write_Sub_DoI_Embedding_Info_in_Setup_Data.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Level_3/@FELDomain/private/Write_Sub_DoI_Embedding_Info_in_Setup_Data.m
3,661
utf_8
77f1ae62fd09cd00790767ad7918969f
function status = Write_Sub_DoI_Embedding_Info_in_Setup_Data(obj,fid,Embed) %Write_Sub_DoI_Embedding_Info_in_Setup_Data % % This determines the kind of Subdomain/Domain of Integration (DoI) % information that is needed to represent the following containment: % DoI \subset Subdomain \subset Global. % See also: FELDomain::Get_Sub_DoI_Embedding_Data. % % and then it writes that portion of the Setup_Data C++ method to read in this % information from MATLAB. % Copyright (c) 06-07-2012, Shawn W. Walker ENDL = '\n'; TAB = ' '; % topological dimensions Global_TD = obj.Global.Top_Dim; Sub_TD = obj.Subdomain.Top_Dim; DoI_TD = obj.Integration_Domain.Top_Dim; fprintf(fid, [TAB, '// check that we have the correct data', ENDL]); fprintf(fid, [TAB, 'const bool Global_Cell_EMPTY = mxIsEmpty(mxData.mxGlobal_Cell);', ENDL]); fprintf(fid, [TAB, 'const bool Sub_Cell_EMPTY = mxIsEmpty(mxData.mxSub_Cell);', ENDL]); fprintf(fid, [TAB, 'const bool Sub_Entity_EMPTY = mxIsEmpty(mxData.mxSub_Entity);', ENDL]); fprintf(fid, [TAB, 'const bool DoI_Entity_EMPTY = mxIsEmpty(mxData.mxDoI_Entity);', ENDL]); status = fprintf(fid, ['', ENDL]); write_error_check_snippet(fid,Embed); if or(Sub_TD > DoI_TD,Global_TD > Sub_TD) fprintf(fid, [TAB, '// check the entity indices', ENDL]); end if (Sub_TD > DoI_TD) fprintf(fid, [TAB, 'Error_Check_DoI_Entity_Indices(Data);', ENDL]); end if (Global_TD > Sub_TD) fprintf(fid, [TAB, 'Error_Check_Sub_Entity_Indices(Data);', ENDL]); end end function write_error_check_snippet(fid,Embed) ENDL = '\n'; TAB = ' '; TAB2 = [TAB, TAB]; if Embed.Global_Cell_Index Global_Cell_STR = '(!Global_Cell_EMPTY)'; % not empty else Global_Cell_STR = '(Global_Cell_EMPTY)'; end if Embed.Subdomain_Cell_Index Sub_Cell_STR = '(!Sub_Cell_EMPTY)'; % not empty else Sub_Cell_STR = '(Sub_Cell_EMPTY)'; end if Embed.Subdomain_Entity_Index Sub_Entity_STR = '(!Sub_Entity_EMPTY)'; % not empty else Sub_Entity_STR = '(Sub_Entity_EMPTY)'; end if Embed.DoI_Entity_Index DoI_Entity_STR = '(!DoI_Entity_EMPTY)'; % not empty else DoI_Entity_STR = '(DoI_Entity_EMPTY)'; end fprintf(fid, [TAB, 'if ( (Num_Elem > 0) && ( !(', Global_Cell_STR, ' && ', Sub_Cell_STR,... ' && ', Sub_Entity_STR, ' && ', DoI_Entity_STR, ') ) )', ENDL]); fprintf(fid, [TAB2, '{', ENDL]); fprintf(fid, [TAB2, 'mexPrintf("ERROR: ---> There are problems with this Subdomain:\\n");', ENDL]); fprintf(fid, [TAB2, 'mexPrintf("ERROR: Global Domain: %%s\\n",Global_Name);', ENDL]); fprintf(fid, [TAB2, 'mexPrintf("ERROR: Subdomain: %%s\\n",Sub_Name);', ENDL]); fprintf(fid, [TAB2, 'mexPrintf("ERROR: Domain of Integration: %%s\\n",DoI_Name);', ENDL]); fprintf(fid, [TAB2, 'mexPrintf("ERROR: See Subdomain number %%d.\\n",DOM_INDEX+1);', ENDL]); fprintf(fid, [TAB2, 'mexPrintf("ERROR: Subdomain data must include the following information:\\n");', ENDL]); if Embed.Global_Cell_Index fprintf(fid, [TAB2, 'mexPrintf("ERROR: Global_Cell_Index.\\n");', ENDL]); end if Embed.Subdomain_Cell_Index fprintf(fid, [TAB2, 'mexPrintf("ERROR: Subdomain_Cell_Index.\\n");', ENDL]); end if Embed.Subdomain_Entity_Index fprintf(fid, [TAB2, 'mexPrintf("ERROR: Subdomain_Entity_Index.\\n");', ENDL]); end if Embed.DoI_Entity_Index fprintf(fid, [TAB2, 'mexPrintf("ERROR: DoI_Entity_Index.\\n");', ENDL]); end fprintf(fid, [TAB2, 'mexErrMsgTxt("ERROR: Fix your subdomain embedding mesh data!");', ENDL]); fprintf(fid, [TAB2, '}', ENDL]); end
github
eardi/sm-fpca-master
Run_Conversion.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Main/@L1toL3/Run_Conversion.m
3,268
utf_8
94a49c4850a727b00187012b4977ede4
function [FS, FM, C_Codes, Elems_DoF_Allocation] = Run_Conversion(obj,Main_Dir,Snippet_Dir) %Run_Conversion % % This converts MATS (a Level 1 object) into Level 3 objects. % Note: there is an intermediate Level 2 object (struct). % Copyright (c) 11-07-2017, Shawn W. Walker Domain_of_Integration_Info = obj.Setup_FELDomain; % create an array of special basis function objects that know nothing about the % global FE space except for its NAME; just local info (like the reference % element). This array of objects will be stored within FELSpaces... FS = obj.Setup_FELSpaces(Domain_of_Integration_Info); % FELSpace contains one single set of FE spaces and an array of % Integration_Domains. For each Integration_Domain, a set of basis functions is % stored that corresponds to the set of FE spaces. In addition, any coefficient % functions, and extra geometric functions, are also stored in each Integration_Domain. [FM, Matrix_Parsed] = obj.Init_FELMatrices(FS,Snippet_Dir); % Note: Matrix_Parsed is a Level 2 object/struct. [FS, FM] = obj.Define_FELMatrices(FS,FM,Matrix_Parsed); % remove the parts of the FELSpaces that are not used! FS = obj.Prune_BasisFunc(FS,FM); C_Codes = obj.Setup_C_Codes(Main_Dir); % get collection of Finite Element Definition structs needed for generating % automatic DoF allocation mex files Elems_DoF_Allocation = FE_Space_Info_For_DoF_Allocation(obj.MATS); end function ELEMS = FE_Space_Info_For_DoF_Allocation(MATS) ELEMS = containers.Map; % init Num_Matrix_Data = length(MATS.Matrix_Data); for ii = 1:Num_Matrix_Data % get current matrix MD = MATS.Matrix_Data{ii}(1); % only 1 is needed, b/c space is the same if ~isempty(MD.Test_Space) % get the corresponding element FE_Space_Name = MD.Test_Space.Name; Elem = MD.Test_Space.Elem; % only include the FE space if it is *not* a global constant if ~strcmp(Elem.Transformation,'Constant_Trans') ELEMS(FE_Space_Name) = Elem; end end if ~isempty(MD.Trial_Space) % get the corresponding element FE_Space_Name = MD.Trial_Space.Name; Elem = MD.Trial_Space.Elem; % only include the FE space if it is *not* a global constant if ~strcmp(Elem.Transformation,'Constant_Trans') ELEMS(FE_Space_Name) = Elem; end end % don't forget to add in any Coef FE spaces % loop through the integrals for rr = 1:length(MD.Integral) Current_Integral = MD.Integral(rr); if ~isempty(Current_Integral.CoefF) % loop through all CoefF's for kk = 1:length(MD.Integral.CoefF) Specific_CoefF = MD.Integral.CoefF(kk); % get the corresponding element FE_Space_Name = Specific_CoefF.Element.Name; Elem = Specific_CoefF.Element.Elem; % only include the FE space if it is *not* a global constant if ~strcmp(Elem.Transformation,'Constant_Trans') ELEMS(FE_Space_Name) = Elem; end end end end end % add in geometry ELEMS(MATS.GeoElem.Name) = MATS.GeoElem.Elem; end
github
eardi/sm-fpca-master
Check_Domains.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Main/@L1toL3/private/Check_Domains.m
1,362
utf_8
ccd50bda6d9cb47d95dda74cbd142496
function status = Check_Domains(obj,DS) %Check_Domains % % This just does some basic error checking. % Copyright (c) 05-25-2012, Shawn W. Walker status = 0; % check hold-all domain if ~isequal(DS.Hold_All,obj.MATS.GeoElem.Domain) disp('Data structures are inconsistent!'); error('This should not happen. Please report this bug!'); end Num_Domains = length(DS.Domain_Of_Integration); for ind = 1:Num_Domains DoI = DS.Domain_Of_Integration(ind); if strcmp(DoI.Domain.Name,DoI.Domain.Subset_Of) disp(['ERROR: Domain of Integration: ', DoI.Domain.Name]); error('Domain of Integration cannot be a subset of itself!'); end sbr_check_domain(DoI.Domain,DS.Hold_All); % check all embeddings domains for ee=1:length(DoI.Embeddings) sbr_check_domain(DoI.Embeddings(ee),DS.Hold_All); end end end function sbr_check_domain(Domain,Hold_All) % check that the domain is a subset of the Hold_All domain if ~or(strcmp(Domain.Name,Hold_All.Name),strcmp(Domain.Subset_Of,Hold_All.Name)) disp(['ERROR: problem with this Domain: ', Domain.Name]); disp(['ERROR: it is not equal to the hold-all domain: ', Hold_All.Name]); disp(['ERROR: AND it is not a *subset* of the hold-all domain.']); error('ERROR: check your Domain definitions!'); end end
github
eardi/sm-fpca-master
Prune_BasisFunc.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Main/@L1toL3/private/Prune_BasisFunc.m
2,096
utf_8
b367a588109f75da7b9d87356575a65c
function FS = Prune_BasisFunc(obj,FS,FM) %Prune_BasisFunc % % This removes the basis functions that are not used by the FM object. % Copyright (c) 06-24-2012, Shawn W. Walker for ii = 1:length(FS.Integration) % find the FE spaces that are needed to evaluate contributions to the FE % matrices on the current integration domain DoI = FS.Integration(ii).DoI_Geom.Domain.Integration_Domain; Coef_Funcs = FS.Integration(ii).CoefFunc.values; Space_Names = get_spaces_for_DoI(Coef_Funcs,FM,DoI); BF_Set = FS.Integration(ii).BasisFunc.values; for bi = 1:length(BF_Set) Current_BF = BF_Set{bi}; % search through matrices to see if it is used USED = verify_basisfunc_is_used(Space_Names,Current_BF); % if it is NOT used, then remove it! if ~USED remove(FS.Integration(ii).BasisFunc, Current_BF.Space_Name); end end end end function Space_Names = get_spaces_for_DoI(Coef_Funcs,FM,DoI) % get matrices that have a contribution from the current integration domain FM_Int_Index = FM.Get_Integration_Index(DoI); Matrix = FM.Integration(FM_Int_Index).Matrix.values; Map_Names = containers.Map; % init for mi = 1:length(Matrix) if ~isempty(Matrix{mi}.row_func.Space_Name) Map_Names(Matrix{mi}.row_func.Space_Name) = Matrix{mi}.row_func.Space_Name; end if ~isempty(Matrix{mi}.col_func.Space_Name) Map_Names(Matrix{mi}.col_func.Space_Name) = Matrix{mi}.col_func.Space_Name; end end % add in any spaces needed for coefficient functions for ci = 1:length(Coef_Funcs) Map_Names(Coef_Funcs{ci}.Space_Name) = Coef_Funcs{ci}.Space_Name; end Space_Names = Map_Names.keys; % just need a cell array of names end function USED = verify_basisfunc_is_used(Space_Names,BasisFunc) USED = false; % init %disp(['Current BasisFunc Space: ', BasisFunc.Space_Name]); for ind = 1:length(Space_Names) if strcmp(BasisFunc.Space_Name,Space_Names{ind}) USED = true; break; end end end
github
eardi/sm-fpca-master
Filter_Domains.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Main/@L1toL3/private/Filter_Domains.m
810
utf_8
5400132f6ad1a34cb8fc92681d483300
function DS_Map = Filter_Domains(DS) %Filter_Domains % % This make a container.MAP variable to hold a unique list of domains. % Copyright (c) 08-01-2011, Shawn W. Walker Num_DS = length(DS); DS_Map = containers.Map(); for ind = 1:Num_DS DS_Map = append_Domain(DS_Map,DS(ind)); end end function MAP = append_Domain(MAP,DS) if ismember(DS.Name,MAP.keys) % if that domain's name has already been used, then make sure the % struct (mostly) matches what was used before! Other_DS = MAP(DS.Name); if ~strcmp(DS.Type,Other_DS.Type) % if it doesn't match, then the user was doing things he shouldn't! disp(['ERROR: This Domain was redefined: ', DS.Name]); error('You should not redefine a Domain!'); end end MAP(DS.Name) = DS; end
github
eardi/sm-fpca-master
Set_COPY_Struct.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Main/@L1toL3/private/Set_COPY_Struct.m
2,270
utf_8
6437f9ef291a18552bfa051c31c36be0
function Integral_SubMAT_Index = Set_COPY_Struct(L2_Obj_Integral,SubMAT_Index) %Set_COPY_Struct % % Do checks to see if the sub-matrix is identical to others. If so, then you % can just COPY that matrix over. % Copyright (c) 06-25-2012, Shawn W. Walker Num_Integral = length(L2_Obj_Integral); Integral_SubMAT_Index = L2_Obj_Integral(SubMAT_Index); % init if (Num_Integral==1) return; % nothing to copy yet... end % check all the integrals to see if they are the same as "Integral_SubMAT_Index" for ind = 1:Num_Integral if (ind ~= SubMAT_Index) % obviously, ignore the SELF case [Integral_SubMAT_Index, COPIED] = Set_COPY_Struct_internal(Integral_SubMAT_Index,L2_Obj_Integral(ind),'default'); if ~COPIED TEMP_L2_Obj_Integral_ind = L2_Obj_Integral(ind); if and(~isempty(TEMP_L2_Obj_Integral_ind.TestF),~isempty(TEMP_L2_Obj_Integral_ind.TrialF)) % switch test and trial functions TEMP_L2_Obj_Integral_ind.Arg = Swap_Test_And_Trial_Functions(TEMP_L2_Obj_Integral_ind); % try to copy again Integral_SubMAT_Index = Set_COPY_Struct_internal(Integral_SubMAT_Index,TEMP_L2_Obj_Integral_ind,'transpose'); end end end end end function [Integral_Out, COPIED] = Set_COPY_Struct_internal(Int_A,Int_B,type) %Set_COPY_Struct_default % % If Integral A and Integral B are the same, then let A copy B; % recall the routine "Make_Integrand_Use_1st_Tensor_Components" % Copyright (c) 08-01-2011, Shawn W. Walker Integral_Out = Int_A; % init if ~isempty(Integral_Out.COPY) % this has already been copied! COPIED = true; return; end % otherwise, see if you can copy! COPIED = false; A = Int_A.Arg; % store it if isempty(Int_B.COPY) B = Int_B.Arg; if (A==B) COPIED = true; % change the Integral struct Integral_Out.Original = []; COPY = Get_L2_Obj_Integral_COPY_Struct(); COPY.Use_SubMAT_Index = Int_B.SubMAT_Index; COPY.row_index = Int_B.row_index; COPY.col_index = Int_B.col_index; COPY.type = type; Integral_Out.COPY = COPY; end end end
github
eardi/sm-fpca-master
Setup_FELGeoms.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Main/@L1toL3/private/Setup_FELGeoms.m
2,852
utf_8
daff6182d45e825354033321ef8d3495
function FS = Setup_FELGeoms(obj,FS) %Setup_FELGeoms % % This inits the GeomFunc Map container under FS.Integration(ind).GeomFunc. % Copyright (c) 01-23-2014, Shawn W. Walker Num_Distinct_Integration_Domains = length(FS.Integration); for ind = 1:Num_Distinct_Integration_Domains % geometry representation for the domain of integration DoI_GF = FS.Integration(ind).DoI_Geom; Current_Integration_Domain = DoI_GF.Domain.Integration_Domain; % look thru all the matrices Num_Matrix = length(obj.MATS.Matrix_Data); for mi = 1:Num_Matrix ID = obj.MATS.Matrix_Data{mi}.Integral; % search the integrals! for kk = 1:length(ID) % if the integral domain matches the current Integration_Domain if isequal(ID(kk).Domain,Current_Integration_Domain) % include any extra geometric functions for gi = 1:length(ID(kk).GeoF) % get the domain we are interested in Extra_Geom_Domain = ID(kk).GeoF(gi).Domain; % create the object GF = create_valid_extra_geom_func(DoI_GF,Extra_Geom_Domain); if ~isempty(GF) Geom_Domain_Name = GF.Domain.Subdomain.Name; FS.Integration(ind).GeomFunc(Geom_Domain_Name) = GF; % insert! end end end end end end % note: don't worry if a GeometricElementFunction gets overwritten; they are % all on the same domain of integration! end function GeomFunc = create_valid_extra_geom_func(DoI_Geom,Extra_Geom_Domain) % % This creates a GeometricElementFunction for the domain of integration with % respect to containment in the domain for which we want geometric information, i.e. % the Subdomain. % % New_Domain.Global = global mesh domain. % New_Domain.Subdomain = domain corresponding to the geometric data % that we are interested in. % New_Domain.Integration_Domain = where to evaluate the geometric data. % % Note: DoI_Geom is the geometric function representing the geometry of % the Global mesh/domain and how the domain of integration is embedded. % Copyright (c) 01-23-2014, Shawn W. Walker New_Domain = DoI_Geom.Domain; % init % set the Subdomain to be the domain where the geometric data is New_Domain.Subdomain = Extra_Geom_Domain; Extra_Geom_Domain_TopDim = Extra_Geom_Domain.Top_Dim; DoI_TopDim = New_Domain.Integration_Domain.Top_Dim; if (DoI_TopDim > Extra_Geom_Domain_TopDim) % this is not a valid domain embedding, so return NULL GeomFunc = []; else GeomFunc = GeometricElementFunction(DoI_Geom.Elem,New_Domain); end end
github
eardi/sm-fpca-master
Setup_FELSpaces.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Main/@L1toL3/private/Setup_FELSpaces.m
2,510
utf_8
74fb2fe80fa31a9156e117a20a9c1815
function FS = Setup_FELSpaces(obj,Domain_Info) %Setup_FELSpaces % % This inits the FELSpaces object. % Copyright (c) 03-24-2017, Shawn W. Walker check_geometric_element_domain_geodim_consistency(obj.MATS.GeoElem.Tensor_Comp,Domain_Info); % create geometric element for the Hold-All container domain DEBUG = true; Geom_Elem = ReferenceFiniteElement(obj.MATS.GeoElem.Elem,DEBUG); % initialize FS = FELSpaces(Domain_Info,Geom_Elem); % get unique list of FEM spaces MAP = containers.Map(); Num_Matrix = length(obj.MATS.Matrix_Data); for ind = 1:Num_Matrix FORM = obj.MATS.Matrix_Data{ind}; if ~isa(FORM,'Real') if ~isempty(FORM.Test_Space) MAP = Insert_Element_Struct_Into_MAP(FORM.Test_Space,MAP); end if ~isempty(FORM.Trial_Space) MAP = Insert_Element_Struct_Into_MAP(FORM.Trial_Space,MAP); end end % must loop over matrices for the Real case for ir = 1:size(FORM,1) for ic = 1:size(FORM,2) ID = FORM(ir,ic).Integral; for int_i = 1:length(ID) for ci = 1:length(ID(int_i).CoefF) MAP = Insert_Element_Struct_Into_MAP(ID(int_i).CoefF(ci).Element,MAP); end end end end end % append those spaces FS_cell = MAP.values; for ind = 1:length(FS_cell) FS_struct = FS_cell{ind}; REF_ELEM = ReferenceFiniteElement(FS_struct.Elem,DEBUG); FS = FS.Append_FEM_Space(FS_struct.Domain,FS_struct.Space_Name,REF_ELEM,FS_struct.Tensor_Comp); end % include any coefficient functions FS = obj.Setup_FELCoefs(FS); % include any extra geoemtric functions FS = obj.Setup_FELGeoms(FS); end function check_geometric_element_domain_geodim_consistency(Tensor_Comp,Domain_Array) % make sure there is consistency in the geometric dimension for kk = 1:length(Domain_Array) Domain_GD = Domain_Array(kk).Integration_Domain.GeoDim; if (Tensor_Comp~=Domain_GD) err = FELerror; err = err.Add_Comment(['The ', 'Geometric', ' Element space does not have the']); err = err.Add_Comment('same vector dimension as the Domain of Integration.'); err = err.Add_Comment(['Element space has dim = ', num2str(Tensor_Comp)]); err = err.Add_Comment(['Domain of Integration has dim = ', num2str(Domain_GD)]); err = err.Add_Comment('Check your Domain definitions!'); err.Error; error('stop!'); end end end
github
eardi/sm-fpca-master
Get_Unique_List_Of_Domains.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Main/@L1toL3/private/Get_Unique_List_Of_Domains.m
5,416
utf_8
cdb1da66abe0e65d346ccdfe773ee67a
function SS = Get_Unique_List_Of_Domains(obj) %Get_Unique_List_Of_Domains % % This outputs a structure that looks like: % SS.Hold_All = Global container domain. % SS.Domain_Of_Integration(k). % Domain = integration domain (that is embedded in Hold_All % domain). % Embeddings(j) = array of other domains that contain the % integration domain. These embeddings will % need to be computed elsewhere (when the % mesh data is known). % Copyright (c) 05-25-2012, Shawn W. Walker % this is THE GLOBAL container set; there should only be one of these no matter % how many subdomains or domains of integration there are! SS.Hold_All = obj.MATS.GeoElem.Domain; % find all domains of integration first Domains_Of_Integration = containers.Map(); for mi=1:length(obj.MATS.Matrix_Data) ID = obj.MATS.Matrix_Data{mi}.Integral; for kk=1:length(ID) DoI = ID(kk).Domain; if ismember(DoI.Name,Domains_Of_Integration.keys) % if that domain was used before, then make sure it did not change! if ~isequal(DoI,Domains_Of_Integration(DoI.Name)) % if it doesn't match, then the user was doing things he shouldn't! disp(['ERROR: This Domain was redefined: ', DoI.Name]); error('You should not redefine a Domain!'); end else Domains_Of_Integration(DoI.Name) = DoI; end end end % % limit to just one domain of integration (for now) % if length(Domains_Of_Integration) > 1 % error('Can only have one domain of integration.'); % end List_Of_DoI_Names = Domains_Of_Integration.keys; % store the Domain of Integration SS.Domain_Of_Integration = create_domain_of_integration_struct(obj,Domains_Of_Integration(List_Of_DoI_Names{1})); for ind = 2:length(List_Of_DoI_Names) % store the Domain of Integration SS.Domain_Of_Integration(ind) = create_domain_of_integration_struct(obj,Domains_Of_Integration(List_Of_DoI_Names{ind})); end % SS % SS.Domain_Of_Integration(1) % SS.Domain_Of_Integration(2) % disp('=========================='); % SS.Domain_Of_Integration(1).Domain % SS.Domain_Of_Integration(2).Domain % disp('=========================='); % SS.Domain_Of_Integration(1).Embeddings % SS.Domain_Of_Integration(2).Embeddings % safdsafd end function DOI = create_domain_of_integration_struct(obj,Single_Domain_Of_Integration) % this returns a struct: % DOI.Domain % DOI.Embeddings(k) % the DOI.Embeddings(k) is a level 1 Domain that contains the DoI. % % So, for every basis function and coefficient function, we need to know that % the Domain of Integration (DoI) is contained in the domain of definition of % the function (i.e. we need to know to evaluate the function on a subset (DoI) % of its domain of definition). This routine records that in the Embeddings % struct/field. In other words, the Embeddings array contains all domains of % definition that contain the DoI. % store the Domain of integration DOI.Domain = Single_Domain_Of_Integration; Embed = containers.Map(); % init for mi=1:length(obj.MATS.Matrix_Data) ID = obj.MATS.Matrix_Data{mi}.Integral; for di=1:length(ID) if isequal(ID(di).Domain,Single_Domain_Of_Integration) Embed = get_function_domain(Embed, ID(di).TestF, DOI.Domain); Embed = get_function_domain(Embed, ID(di).TrialF,DOI.Domain); Embed = get_function_domain(Embed, ID(di).CoefF, DOI.Domain); end end % obj.MATS.Matrix_Data{mi}.TestF % obj.MATS.Matrix_Data{mi}.TrialF % obj.MATS.Matrix_Data{mi}.CoefF % % Embed = get_function_domain(Embed, obj.MATS.Matrix_Data{mi}.TestF, DOI.Domain); % Embed = get_function_domain(Embed, obj.MATS.Matrix_Data{mi}.TrialF,DOI.Domain); % Embed = get_function_domain(Embed, obj.MATS.Matrix_Data{mi}.CoefF, DOI.Domain); % % for kk=1:length(ID) % % find all domains of integration that match... % if strcmp(ID(kk).Domain.Name,DOI.Domain.Name) % % ...and store the required embeddings % for ee=1:length(ID(kk).Embeddings) % Embed(ID(kk).Embeddings(ee).Name) = ID(kk).Embeddings(ee); % end % end % end end % put into the struct if ~isempty(Embed) keys = Embed.keys; DOI.Embeddings = Embed(keys{1}); for kk = 2:length(keys) DOI.Embeddings(kk) = Embed(keys{kk}); end else DOI.Embeddings = []; % no additional embeddings are needed end end function Embed = get_function_domain(Embed, FUNC, DOI_Domain) for ind = 1:length(FUNC) % only need to add this functions domain of defn if it is different than the DoI if ~isequal(FUNC(ind).Element.Domain,DOI_Domain) % error check: make sure we are only dealing with functions that are % being *evaluated* on the DOI_Domain if ~isequal(FUNC(ind).Domain,DOI_Domain) error('Function (in integrand) must be evaluated on the domain of integration!'); end % store the domain of defn of the function Embed(FUNC(ind).Element.Domain.Name) = FUNC(ind).Element.Domain; end end end
github
eardi/sm-fpca-master
FEL_Compute_Exact_Solution_Hessian_Ex_TD_2_GD_3.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Unit_Test/Hessian/TopDim_2_GeoDim_3/FEL_Compute_Exact_Solution_Hessian_Ex_TD_2_GD_3.m
2,757
utf_8
bfb8ed1aaad6355b19396144ae78beb7
function Q = FEL_Compute_Exact_Solution_Hessian_Ex_TD_2_GD_3() %FEL_Compute_Exact_Solution_Hessian_Ex_TD_2_GD_3 % % Compute exact solution to test FELICITY Auto-Generated Assembly Code. % Copyright (c) 08-14-2014, Shawn W. Walker % parameterization of the domain: paraboloid over a unit disk vr = sym('r','real'); vtheta = sym('theta','real'); vX = [vr .* cos(vtheta); vr .* sin(vtheta); (1 - vr.^2)]; Grad_vX = [diff(vX,'r'), diff(vX,'theta')]; Grad_vX = simplify(Grad_vX); % compute the metric g_met = simplify(Grad_vX' * Grad_vX); g_met_inv = simplify(inv(g_met)); % define function f1 = (vr.*cos(vtheta)).^2 .* (vr.*sin(vtheta)).^2; %f1 = (vr.^1).*sin(vtheta).*exp(-vr); f1 % compute the surface gradient and hessian (in local coordinates) surf_grad_f1 = surf_grad(f1,g_met_inv,Grad_vX); % compute the COVARIANT surface hessian! % compute derivatives of soln (in reference domain) func_grad = [diff(f1,'r',1); diff(f1,'theta',1)]; % compute hessian of soln (in reference domain) func_hess = [diff(f1,'r','r'), diff(f1,'r','theta'); diff(f1,'theta','r'), diff(f1,'theta','theta')]; % % differentiate metric grad_metric(2).mat = []; grad_metric(1).mat = simplify(diff(g_met,'r')); grad_metric(2).mat = simplify(diff(g_met,'theta')); % compute the Christoffel symbols (2nd kind) Gamma(2).ij = sym(zeros(2,2)); for kk=1:2 for ii=1:2 for jj=1:2 TEMP = sym(0); for ll=1:2 TEMP = TEMP + g_met_inv(kk,ll) * ( grad_metric(ii).mat(ll,jj) + grad_metric(jj).mat(ii,ll) - grad_metric(ll).mat(ii,jj) ); end Gamma(kk).ij(ii,jj) = (1/2) * simplify(TEMP); end end end % compute "local" term local_hess = func_hess - ( func_grad(1) * Gamma(1).ij + func_grad(2) * Gamma(2).ij ); local_hess = simplify(local_hess); % map to surface J_g_inv_MAT = Grad_vX * g_met_inv; surf_hess_f1 = J_g_inv_MAT * local_hess * (transpose(J_g_inv_MAT)); %old incorrect way %surf_hess_f1 = surf_grad(surf_grad_f1',g_met_inv,Grad_vX); % compute Frob norm squared of hessian %f1_Norm_Sq = simplify(sum(sum(surf_hess_f1.^2))); %f1_Norm_Sq %hess_11 = simplify(surf_hess_f1(1,1)); hess_trace = simplify(trace(surf_hess_f1)); % compute integrand of L^2 norm squared of hessian of f %integrand = simplify(f1_Norm_Sq * sqrt(det(g_met))); integrand = simplify(hess_trace * sqrt(det(g_met))); %integrand integrand_FH = matlabFunction(integrand); %integrand_FH XMIN = 0; XMAX = 1; YMIN = 0; YMAX = 2*pi; Q = integral2(integrand_FH,XMIN,XMAX,YMIN,YMAX,'AbsTol',1e-15); end function grad_func = surf_grad(func,g_met_inv,Grad_vX) local_grad_func = [diff(func,'r'), diff(func,'theta')]; grad_func = simplify(local_grad_func * g_met_inv * Grad_vX'); end
github
eardi/sm-fpca-master
FEL_Execute_Bending_Plate_2D.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Unit_Test/Mixed_HHJ/Bending_Plate_2D/FEL_Execute_Bending_Plate_2D.m
41,909
utf_8
4b183a62ac0dfcc71c95b66ffa40616c
function status = FEL_Execute_Bending_Plate_2D(deg_geo,deg_k,omega,exact_u,exact_u_hess,... Mesh_type,BC_type) %FEL_Execute_Bending_Plate_2D % % test FELICITY Auto-Generated Assembly Code % Copyright (c) 03-29-2018, Shawn W. Walker Main_Dir = fileparts(mfilename('fullpath')); PD = []; if strcmpi(Mesh_type,'square') Refine_Vec = [0 1 2 3 4 5 6 7]; % went to 9... elseif strcmpi(Mesh_type,'pacman') Refine_Vec = [0 1 2 3 4 5 6]; % <= 6 elseif strcmpi(Mesh_type,'refined_disk') Refine_Vec = [0 1 2 3 4 5 6 7]; % <= 9 elseif strcmpi(Mesh_type,'refined_disk_alt') Refine_Vec = [0 1 2 3 4 5];% 7 8]; % <= 9 elseif strcmpi(Mesh_type,'disk_n_gon') Refine_Vec = [1 2 3 4]; % <= 6 elseif strcmpi(Mesh_type,'circle_alt') NumR = 7; Refine_Vec = (0:1:NumR)'; Mesh_Name = 'Circle_Mesh'; HHJ_Mesh_Dir = 'C:\FILES\FEM_Code\HHJ_Meshes\'; [MR, PD] = Generate_Refined_HHJ_Meshes(Mesh_Name,HHJ_Mesh_Dir,NumR); else error('Invalid!'); end Num_Refine = length(Refine_Vec); % init arrays for storing numerical errors Error_Info.u_L_inf = zeros(Num_Refine,1); Error_Info.u_L2 = zeros(Num_Refine,1); Error_Info.u_H1_semi = zeros(Num_Refine,1); Error_Info.u_H2_semi = zeros(Num_Refine,1); Error_Info.sig_L2 = zeros(Num_Refine,1); Error_Info.sig_Gamma_L2 = zeros(Num_Refine,1); Error_Info.sig_Skel_L2 = zeros(Num_Refine,1); Error_Info.normal_L2 = zeros(Num_Refine,1); % store u values at origin u_origin = zeros(Num_Refine,1); % % store the solution % Soln_Level(Num_Refine).u = []; % Soln_Level(Num_Refine).sig = []; % create struct to hold output of simulation Sim_Info.sides = zeros(Num_Refine,1); Sim_Info.elems = zeros(Num_Refine,1); Sim_Info.dofs = zeros(Num_Refine,1); for kk = 1:Num_Refine % BEGIN: define reference mesh Refine_Level = Refine_Vec(kk); disp('=============================================='); disp(['Run refinement level: ', num2str(Refine_Level)]); MM = []; if strcmpi(Mesh_type,'square') % get mesh of [0, 1] x [0, 1] X_Len = 1; Y_Len = 1; NX = X_Len * 2^Refine_Level + 1; NY = Y_Len * 2^Refine_Level + 1; [Tri, Pts] = regular_triangle_mesh(NX, NY); Pts(:,1) = X_Len * Pts(:,1); Pts(:,2) = Y_Len * Pts(:,2); elseif strcmpi(Mesh_type,'pacman') % % create a pac-man mesh % [Tri, Pts] = triangle_mesh_of_disk([0, 0],1,Refine_Level); % MT = MeshTriangle(Tri, Pts, 'Omega'); % % % remove a section % CC = MT.Get_Cell_Centers(); % ANG1 = atan2d(CC(:,2),CC(:,1)); % Mask_Keep = (ANG1 < 135) & (ANG1 > -135); % Tri = Tri(Mask_Keep,:); % MT = MeshTriangle(Tri, Pts, 'Omega'); % MT = MT.Remove_Unused_Vertices(); % % Tri = MT.ConnectivityList; % Pts = MT.Points; % clear MT; % load up a mesh FN = ['C:\FILES\FELICITY\Demo\CiarletRaviart\ZZ_Pacman_Meshes\pacman_', num2str(Refine_Level), '.mat']; DD = load(FN); Tri = DD.Tri; Pts = DD.Pts; clear DD; % now scale the angle R = sqrt(sum(Pts.^2,2)); THETA = atan2(Pts(:,2),Pts(:,1)); ORIGIN = (R < 1e-14); Ref_omega = 3*pi/2; New_omega = omega; THETA = (New_omega/Ref_omega) * THETA; XX = R .* cos(THETA); YY = R .* sin(THETA); Pts = [XX, YY]; Pts(ORIGIN,:) = [0, 0]; clear R THETA XX YY; elseif strcmpi(Mesh_type,'refined_disk') % create a disk mesh [Tri, Pts] = triangle_mesh_of_disk([0, 0],1,Refine_Level); % % create mesher object % Box_Dim = [-1.2, 1.2]; % Num_BCC_Points = 2^Refine_Level + 4; % Use_Newton = true; % TOL = 1E-12; % tolerance to use in computing the cut points % % BCC mesh of the unit square [0,1] x [0,1] % MG = Mesher2Dmex(Box_Dim,Num_BCC_Points,Use_Newton,TOL); % % LS = LS_Disk(); % LS.Param.rad = [1.0]; % LS.Param.cx = [0]; % LS.Param.cy = [0]; % % Interp_Handle = @(pt) LS.Interpolate(pt); % % MG = MG.Get_Cut_Info(Interp_Handle); % [Tri, Pts] = MG.run_mex(Interp_Handle); elseif strcmpi(Mesh_type,'refined_disk_alt') % create a disk mesh [Tri, Pts] = bcc_triangle_mesh(2,2); for rr = 1:Refine_Level Marked = (1:1:size(Tri,1))'; [Pts, Tri] = Refine_Entire_Mesh(Pts,Tri,[],Marked); end % shift it Pts(:,1) = Pts(:,1) - 0.5; Pts(:,2) = Pts(:,2) - 0.5; % scale it! Pts = ((1/sqrt(2))/0.5) * Pts; elseif strcmpi(Mesh_type,'disk_n_gon') % load up a mesh Num_Sides_Vec = [8 16 32 64 136 264]; NS = Num_Sides_Vec(Refine_Level); FN = ['C:\FILES\FELICITY\Code_Generation\Matrix_Assembly\Unit_Test\Hdivdiv\Bending_Plate_2D\disk_n_gon_', num2str(NS), '.mat']; DD = load(FN); Tri = DD.Tri; Pts = DD.Pts; clear DD; elseif strcmpi(Mesh_type,'circle_alt') % load up a mesh MM = MR(kk); Tri = MM.TRI; Pts = MM.VTX; %MR(kk+1).TRI, MR(kk+1).VTX, MR(kk+1).BdyEDGE, MR(kk+1).BdyChart_Ind, MR(kk+1).BdyChart_Var, MR(kk+1).BdyTRI_Ind else error('Invalid!'); end % disk of radius 0.5 % Pts = 1*[0, 0; 1, 0; 0, 1]; % Tri = [1 2 3]; % Pts = 1*[0, 0; 1, 0; 0.5, 1]; % Tri = [1 2 3]; % Pts = [0, 0; 1, 0; 1, 1; 0, 1]; % Tri = [1 2 3; 1 3 4]; % Pts = [0, 0; 1, 0; 1, 1; 0, 1; 0.3, 0.4]; % Tri = [1 2 5; 2 3 5; 3 4 5; 4 1 5]; % Pts = [0, 0; 1, 0; 0, 1; 1, 1]; % Tri = [1 2 3; 2 4 3]; %Pts = [Pts, 0*Pts(:,1)]; Mesh = MeshTriangle(Tri, Pts, 'Omega'); clear Tri Pts; % END: define reference mesh % add the boundary if isempty(MM) Mesh = Mesh.Remove_Unused_Vertices(); Mesh = Mesh.Reorder(); BDY = Mesh.freeBoundary(); Mesh = Mesh.Append_Subdomain('1D','Gamma',BDY); else Mesh = Mesh.Append_Subdomain('1D','Gamma',MM.BdyEDGE); end % add the skeleton Mesh = Mesh.Append_Skeleton('Skeleton_Plus','Skeleton_Minus'); % % plot mesh % figure; % Mesh.Plot; % hold on; % Mesh.Plot_Subdomain('Gamma'); % hold off; % % plot mesh % figure; % % Mesh.Plot; % hold on; % Mesh.Plot_Subdomain('Skeleton_Plus'); % %Mesh.Plot_Subdomain('Skeleton_Minus'); % hold off; % axis equal; if (kk==Num_Refine) % plot the exact solution exact_u_func = matlabFunction(exact_u); %exact_u_func xp = Mesh.Points(:,1); yp = Mesh.Points(:,2); exact_u_interp = exact_u_func(xp,yp); figure; trisurf(Mesh.ConnectivityList,xp,yp,exact_u_interp); shading interp; AX = Mesh.Bounding_Box; AX = AX(1:4); view(2); axis(AX); axis equal; axis(AX); title('True Exact Solution'); colorbar; %safdsadf end % compute embedding data Domain_Names = {'Omega'; 'Gamma'; 'Skeleton_Plus'; 'Skeleton_Minus'}; Omega_Subdomains = Mesh.Generate_Subdomain_Embedding_Data(Domain_Names); [G_Space, Geo_Points, Geo_Points_hat, V_Space, W_Space, SkDG_Space, OmegaDG_Space] =... create_FE_spaces(Main_Dir,Mesh,deg_geo,deg_k,Mesh_type,BC_type,PD,MM); % % % update P1 mesh with deformed coordinates % DM_13 = W_Space.DoFmap(:,1:3); % P1_pts = 0*Mesh.Points; % init % TRI = Mesh.ConnectivityList; % P1_pts(TRI(:),:) = Geo_Points(DM_13(:),:); % Mesh = Mesh.Set_Points(P1_pts); % disp('Points:'); % Mesh.Points % % disp('Triangulation:'); % uint32(Mesh.ConnectivityList) % % disp('V_Space DoFmap:'); % V_Space.DoFmap % evaluate exact functions exact_u_func = matlabFunction(exact_u); W_X = W_Space.Get_DoF_Coord(Mesh,G_Space,Geo_Points); I_u_exact = exact_u_func(W_X(:,1),W_X(:,2)); exact_u_hess_11 = matlabFunction(exact_u_hess(1,1)); exact_u_hess_12 = matlabFunction(exact_u_hess(1,2)); exact_u_hess_21 = matlabFunction(exact_u_hess(2,1)); exact_u_hess_22 = matlabFunction(exact_u_hess(2,2)); % exact_u_hess_11 % exact_u_hess_12 % exact_u_hess_21 % exact_u_hess_22 eps1 = 1e-20; % to avoid 0/0 sig_exact_W_X = [exact_u_hess_11(W_X(:,1) + eps1,W_X(:,2) + eps1), exact_u_hess_12(W_X(:,1) + eps1,W_X(:,2) + eps1),... exact_u_hess_21(W_X(:,1) + eps1,W_X(:,2) + eps1), exact_u_hess_22(W_X(:,1) + eps1,W_X(:,2) + eps1)]; % % I_sig_exact_11 = sig_exact_W_X(:,1); % I_sig_exact_12 = sig_exact_W_X(:,2); % I_sig_exact_22 = sig_exact_W_X(:,4); % I_sig_exact_11 % I_sig_exact_12 % I_sig_exact_22 sig_soln = V_Space.Get_Zero_Function; u_soln = W_Space.Get_Zero_Function; % assemble tic FEM = UNIT_TEST_mex_Assemble_Bending_Plate_2D([],Geo_Points,G_Space.DoFmap,[],Omega_Subdomains,... V_Space.DoFmap,W_Space.DoFmap,sig_soln,u_soln); toc tic FEM_hat = UNIT_TEST_mex_Assemble_Bending_Plate_2D([],Geo_Points_hat,G_Space.DoFmap,[],Omega_Subdomains,... V_Space.DoFmap,W_Space.DoFmap,sig_soln,u_soln); toc % put FEM into a nice object to make accessing the matrices easier my_Mats = FEMatrixAccessor('Bending Plate',FEM); my_Mats_hat = FEMatrixAccessor('Bending Plate',FEM_hat); clear FEM; % pull out the matrices M = my_Mats.Get_Matrix('Mass_Matrix'); M_hat = my_Mats_hat.Get_Matrix('Mass_Matrix'); M_Scalar = my_Mats.Get_Matrix('Mass_Matrix_Scalar'); Jump_Term = my_Mats.Get_Matrix('Jump_Term'); Jump_Term_hat = my_Mats_hat.Get_Matrix('Jump_Term'); Grad_Grad_Term = my_Mats.Get_Matrix('Grad_Grad_Term'); Grad_Grad_Term_hat = my_Mats_hat.Get_Matrix('Grad_Grad_Term'); DivDiv_h_Term = Grad_Grad_Term - Jump_Term; DivDiv_h_Term_hat = Grad_Grad_Term_hat - Jump_Term_hat; RHS_F = my_Mats.Get_Matrix('RHS_F'); RHS_F_hat = my_Mats_hat.Get_Matrix('RHS_F'); RHS_B = my_Mats.Get_Matrix('RHS_B'); u_H1_Norm = sqrt(my_Mats.Get_Matrix('u_H1_Error_Sq')); sig_L2_Norm = sqrt(my_Mats.Get_Matrix('sig_L2_Error_Sq')); u_H1_Norm sig_L2_Norm % disp('Mass Matrix:'); % full(M) % % disp('Grad_Grad_Term:'); % full(Grad_Grad_Term) % % disp('Jump_Term:'); % full(Jump_Term) % disp('Compute difference of DivDiv_h_Term and DivDiv_h_Term_hat:'); % DivDiv_h_ERR = abs(DivDiv_h_Term - DivDiv_h_Term_hat); % TEMP = DivDiv_h_ERR * inv(M_hat) * (DivDiv_h_ERR'); % %max(DivDiv_h_ERR(:)) % norm(full(TEMP),2) % figure; % imagesc(DivDiv_h_ERR); % colorbar; % axis equal; % % define f % exact_f = @(x,y) 0*x - 0.1; % % evaluate given smooth function % G_Space = G_Space.Set_mex_Dir(Main_Dir,'UNIT_TEST_mex_Interp_G_Space_Bending_Plate_2D'); % W_X = W_Space.Get_DoF_Coord(Mesh,G_Space,Geo_Points); % f_h = exact_f(W_X(:,1),W_X(:,2)); % solve problem Num_V_DoF = V_Space.num_dof; Num_W_DoF = W_Space.num_dof; MAT = [M, -DivDiv_h_Term'; -DivDiv_h_Term, sparse(Num_W_DoF,Num_W_DoF)]; % RHS = [zeros(Num_V_DoF,1); - RHS_F - RHS_B]; BDY = Mesh.Get_Global_Subdomain('Gamma'); Sim_Info.sides(kk) = size(BDY,1); Sim_Info.elems(kk) = Mesh.Num_Cell(); Sim_Info.dofs(kk) = length(RHS); Fixed_V_DoFs = V_Space.Get_Fixed_DoFs(Mesh); Free_V_DoFs = V_Space.Get_Free_DoFs(Mesh); Free_W_DoFs = W_Space.Get_Free_DoFs(Mesh); % find the fixed DoFs a different way % Mesh.Subdomain(1).Data % % V_Space.RefElem.Nodal_Top.V % % V_Space.RefElem.Nodal_Top.E{1}(Mesh.Subdomain(1).Data,:) % % V_Space.RefElem.Nodal_Top.F % % V_Space.RefElem.Nodal_Top.T % Local_Edge_DoFs = V_Space.RefElem.Nodal_Top.E{1}(Mesh.Subdomain(1).Data(:,2),:); % % SubDoFmap = V_Space.DoFmap(Mesh.Subdomain(1).Data(:,1),:); % % LI = (1:1:size(Local_Edge_DoFs,1))'; % % Local_Edge_DoFs_1 = [LI, Local_Edge_DoFs(:,1)]; % % Local_Edge_DoFs_2 = [LI, Local_Edge_DoFs(:,2)]; % % Local_Edge_DoFs_3 = [LI, Local_Edge_DoFs(:,3)]; % % % Local_Edge_DoFs_1 % % Local_Edge_DoFs_2 % % Local_Edge_DoFs_3 % % IND_1 = sub2ind(size(SubDoFmap),LI,Local_Edge_DoFs(:,1)); % IND_2 = sub2ind(size(SubDoFmap),LI,Local_Edge_DoFs(:,2)); % IND_3 = sub2ind(size(SubDoFmap),LI,Local_Edge_DoFs(:,3)); % % DoF_1 = SubDoFmap(IND_1); % DoF_2 = SubDoFmap(IND_2); % DoF_3 = SubDoFmap(IND_3); % % Fixed_V_DoFs_ALT = [DoF_1; DoF_2; DoF_3]; % % Fixed_V_DoFs_ALT = unique(Fixed_V_DoFs_ALT); % % disp('DoF Difference:'); % max(abs(Fixed_V_DoFs - Fixed_V_DoFs_ALT)) % [LIA, LOCB] = ismember(Fixed_V_DoFs,double(V_Space.DoFmap(:,1:9))); % LIA % disp('BB:'); % BB = DivDiv_h_Term(Free_W_DoFs,Free_V_DoFs); % size(BB) % S = svd(full(BB), 'econ'); % length(S) % disp('Ratio:'); % S(1)/S(end) if or(strcmpi(BC_type,'free'),strcmpi(BC_type,'alternate')) % need to get mean value zero part of displacement [~, ind_1] = min(W_X(:,1) + W_X(:,2)); [~, ind_2] = max(W_X(:,1) + W_X(:,2)); [~, ind_3] = min(W_X(:,1) - W_X(:,2)); Fixed_W_DoFs = [ind_1, ind_2, ind_3]'; Free_W_DoFs = setdiff(Free_W_DoFs,Fixed_W_DoFs); % remove three more DoFs Free_DoFs = [Free_V_DoFs; Free_W_DoFs + Num_V_DoF]; % i.e. just remove one DoF for now, which means we are setting the % displacement to zero there else Free_DoFs = [Free_V_DoFs; Free_W_DoFs + Num_V_DoF]; end Soln = zeros(Num_V_DoF + Num_W_DoF,1); % add in BCs disp('Add in stress boundary conditions:'); Proj_hess = my_Mats.Get_Matrix('Proj_sig'); %L2_Proj_hess = 0*sig_soln; L2_Proj_hess = M \ Proj_hess; L2_Proj_hess(Free_V_DoFs,1) = 0; displace_val = zeros(Num_W_DoF,1); displace_val(Fixed_W_DoFs,1) = I_u_exact(Fixed_W_DoFs,1); Soln_BC = [L2_Proj_hess; displace_val]; RHS = RHS - MAT*Soln_BC; disp('Solve mixed HHJ system:'); tic Soln(Free_DoFs) = MAT(Free_DoFs,Free_DoFs) \ RHS(Free_DoFs,1); toc sig_soln = Soln(1:Num_V_DoF,1); u_soln = Soln(Num_V_DoF+1:Num_V_DoF+Num_W_DoF,1); disp('Set solution at points:'); u_soln(Fixed_W_DoFs,1) = displace_val(Fixed_W_DoFs,1); u_soln(Fixed_W_DoFs,1) % disp('Compute "discrete" norms:'); % DivDiv_h_ERR = DivDiv_h_Term - DivDiv_h_Term_hat; % TEMP = M_hat(Free_V_DoFs,Free_V_DoFs) \ (DivDiv_h_ERR(:,Free_V_DoFs)') * u_soln; % u_norm = sqrt(abs(u_soln' * DivDiv_h_ERR(:,Free_V_DoFs) * TEMP)); % u_norm disp('Check \sigma DoFs on \Gamma:'); max(abs(sig_soln(Fixed_V_DoFs))) if or(strcmpi(BC_type,'free'),strcmpi(BC_type,'alternate')) % need to get mean value zero part of displacement % compute average value Area_Domain = full(sum(M_Scalar(:))); Ave_u_value = sum(M_Scalar * u_soln) / Area_Domain; % % subtract off % u_soln = u_soln - Ave_u_value; % % SWW: this can cause an issue for computing the L2 norm of the error, % % because the exact solution may differ by a constant. end % compute the HHJ interpolant of the exact hessian if (deg_k==0) FEM = UNIT_TEST_mex_Assemble_HHJ_Interp_2D([],Geo_Points,G_Space.DoFmap,[],Omega_Subdomains,... SkDG_Space.DoFmap,V_Space.DoFmap); else FEM = UNIT_TEST_mex_Assemble_HHJ_Interp_2D([],Geo_Points,G_Space.DoFmap,[],Omega_Subdomains,... OmegaDG_Space.DoFmap,SkDG_Space.DoFmap,V_Space.DoFmap); end % put FEM into a nice object to make accessing the matrices easier HHJ_Interp_Mats = FEMatrixAccessor('HHJ Interp',FEM); clear FEM; % pull out the matrices NN_DoF = HHJ_Interp_Mats.Get_Matrix('NN_DoF'); NN_RHS = HHJ_Interp_Mats.Get_Matrix('NN_RHS'); % compute the interpolant if (deg_k==0) %Free_SkDG_DoFs = SkDG_Space.Get_Free_DoFs(Mesh); %HHJ_Interp_sig = V_Space.Get_Zero_Function(); %HHJ_Interp_sig(Free_V_DoFs,1) = NN_DoF(Free_SkDG_DoFs,Free_V_DoFs) \ NN_RHS(Free_V_DoFs,1); HHJ_Interp_sig = NN_DoF \ NN_RHS; HHJ_Interp_sig(Fixed_V_DoFs,1) = 0; % set boundary values to zero else Internal_DoF_11 = HHJ_Interp_Mats.Get_Matrix('Internal_DoF_11'); Internal_DoF_12 = HHJ_Interp_Mats.Get_Matrix('Internal_DoF_12'); Internal_DoF_22 = HHJ_Interp_Mats.Get_Matrix('Internal_DoF_22'); Internal_RHS_11 = HHJ_Interp_Mats.Get_Matrix('Internal_RHS_11'); Internal_RHS_12 = HHJ_Interp_Mats.Get_Matrix('Internal_RHS_12'); Internal_RHS_22 = HHJ_Interp_Mats.Get_Matrix('Internal_RHS_22'); HHJ_MAT = [NN_DoF; Internal_DoF_11; Internal_DoF_12; Internal_DoF_22]; HHJ_RHS = [NN_RHS; Internal_RHS_11; Internal_RHS_12; Internal_RHS_22]; HHJ_Interp_sig = HHJ_MAT \ HHJ_RHS; HHJ_Interp_sig(Fixed_V_DoFs,1) = 0; % set boundary values to zero end %sig_soln = HHJ_Interp_sig; % % store the solution % Soln_Level(kk).sig = sig_soln; % Soln_Level(kk).u = u_soln; % % load the solution info % SL_Data = load(fullfile(Main_Dir, 'Soln_Data.mat')); % Soln_Level = SL_Data.Soln_Level; % clear SL_Data; % % sig_soln = Soln_Level(kk).sig; % % u_soln = Soln_Level(kk).u; tic FEM = UNIT_TEST_mex_Assemble_Bending_Plate_2D([],Geo_Points,G_Space.DoFmap,[],Omega_Subdomains,... V_Space.DoFmap,W_Space.DoFmap,sig_soln,u_soln); toc % put FEM into a nice object to make accessing the matrices easier my_Mats = FEMatrixAccessor('Bending Plate',FEM); clear FEM; % Proj_hess = my_Mats.Get_Matrix('Proj_sig'); % L2_Proj_hess = 0*sig_soln; % % RR = (DivDiv_h_Term') * u_soln; % %L2_Proj_hess(Free_V_DoFs,1) = M(Free_V_DoFs,Free_V_DoFs) \ Proj_hess(Free_V_DoFs,1); % L2_Proj_hess(Free_V_DoFs,1) = M(Free_V_DoFs,Free_V_DoFs) \ RR(Free_V_DoFs,1); % %L2_Proj_hess = M \ RR; % sig_soln = L2_Proj_hess; % % % Discrete_Diff = L2_Proj_hess - sig_soln; % % Discrete_L2_Error = sqrt(Discrete_Diff' * M * Discrete_Diff); % % Discrete_L2_Error % tic % FEM = UNIT_TEST_mex_Assemble_Bending_Plate_2D([],Geo_Points,G_Space.DoFmap,[],Omega_Subdomains,... % V_Space.DoFmap,W_Space.DoFmap,L2_Proj_hess,u_soln); % toc % % put FEM into a nice object to make accessing the matrices easier % my_Mats = FEMatrixAccessor('Bending Plate',FEM); % clear FEM; %disp('nn_Gamma:'); %nn_Gamma = my_Mats.Get_Matrix('nn_Gamma'); nn_Gamma_Mass_Matrix = my_Mats.Get_Matrix('nn_Gamma_Mass_Matrix'); sig_soln_test = sig_soln; %sig_soln_test(Fixed_V_DoFs,1) = 0; nn_Gamma_sig_test_L2_norm = sqrt(sig_soln_test' * nn_Gamma_Mass_Matrix * sig_soln_test); nn_Gamma_sig_test_L2_norm u_L2_Error_Sq = my_Mats.Get_Matrix('u_L2_Error_Sq'); Error_Info.u_L2(kk) = sqrt(u_L2_Error_Sq); u_H1_Error_Sq = my_Mats.Get_Matrix('u_H1_Error_Sq'); Error_Info.u_H1_semi(kk) = sqrt(u_H1_Error_Sq); u_H2_Error_Sq = my_Mats.Get_Matrix('u_H2_Error_Sq'); Error_Info.u_H2_semi(kk) = sqrt(u_H2_Error_Sq); sig_L2_Error_Sq = my_Mats.Get_Matrix('sig_L2_Error_Sq'); Error_Info.sig_L2(kk) = sqrt(sig_L2_Error_Sq); % % overwrite! % sig_other = Soln_Level(kk).sig; % sig_diff = (sig_soln - sig_other); % Error_Info.sig_L2(kk) = sqrt(abs(sig_diff' * M * sig_diff)); sig_Gamma_L2_Error_Sq = my_Mats.Get_Matrix('sig_Gamma_L2_Error_Sq'); Error_Info.sig_Gamma_L2(kk) = sqrt(sig_Gamma_L2_Error_Sq); sig_Skel_L2_Error_Sq = my_Mats.Get_Matrix('sig_Skel_L2_Error_Sq'); Error_Info.sig_Skel_L2(kk) = sqrt(sig_Skel_L2_Error_Sq); normal_L2_error_Sq = my_Mats.Get_Matrix('normal_L2_error_Sq'); Error_Info.normal_L2(kk) = sqrt(normal_L2_error_Sq); Error_Info.u_L_inf(kk) = max(abs(u_soln - I_u_exact)); % get value at origin Origin_ind = sqrt(sum(W_X.^2,2)) < 1e-13; u_origin(kk) = u_soln(Origin_ind,1); % store number of triangles Sim_Info.elems(kk) = Mesh.Num_Cell(); % find points in mesh Cell_Indices = uint32([1; 2]); % set some random global points Omega_Neighbors = uint32(Mesh.neighbors); Omega_Given_Points = {Cell_Indices, [0.234, 0.112; 0.114, 0.009], Omega_Neighbors}; % % find points in mesh % Cell_Indices = uint32(ones(size(W_X,1),1)); % % set some random global points % Omega_Neighbors = uint32(Mesh.neighbors); % Omega_Given_Points = {Cell_Indices, W_X, Omega_Neighbors}; % hold on; % plot(W_X(:,1),W_X(:,2),'bd'); % hold off; % Vtx = Geo_Points; % Tri = double(G_Space.DoFmap); % search! tic SEARCH = UNIT_TEST_mex_FEL_Pt_Search_Bending_Plate_2D(Geo_Points(:,1:2),G_Space.DoFmap,[],[],Omega_Given_Points); toc SEARCH.DATA{1} SEARCH.DATA{2} % skip the search, you know how they are embedded... CI = zeros(size(W_X,1),1); RefCoord = zeros(size(W_X,1),2); Local_RefCoord = W_Space.RefElem.Nodal_Data.BC_Coord(:,2:3); DM = double(W_Space.DoFmap); for di = 1:size(Local_RefCoord,1) RefCoord(DM(:,di),1) = Local_RefCoord(di,1); RefCoord(DM(:,di),2) = Local_RefCoord(di,2); CI(DM(:,di),1) = (1:1:size(DM,1))'; end SEARCH.DATA = {uint32(CI), RefCoord}; % now interpolate Omega_Interp_Data = SEARCH.DATA; % Omega_Interp_Pts = Mesh.referenceToCartesian(double(Omega_Interp_Data{1}), Omega_Interp_Data{2}); % Omega_Interp_Pts INTERP = UNIT_TEST_mex_FEL_Interp_Bending_Plate_2D(Geo_Points(:,1:2),G_Space.DoFmap,[],[],Omega_Interp_Data,V_Space.DoFmap,sig_soln); % extract data %INTERP.DATA % sig_hess_1 = [INTERP.DATA{1,1}(1), INTERP.DATA{1,2}(1); % INTERP.DATA{2,1}(1), INTERP.DATA{2,2}(1)]; % sig_hess_2 = [INTERP.DATA{1,1}(2), INTERP.DATA{1,2}(2); % INTERP.DATA{2,1}(2), INTERP.DATA{2,2}(2)]; % % % sig_hess_1 % sig_hess_2 sig_soln_W_X = [INTERP(1).DATA{1,1}, INTERP(1).DATA{1,2}, INTERP(1).DATA{2,1}, INTERP(1).DATA{2,2}]; sig_error_W_X = -(sig_exact_W_X - sig_soln_W_X); sig_abs_error_W_X = sum(abs(sig_error_W_X),2); end % % save the solution info % save(fullfile(Main_Dir, 'Soln_Data.mat'),'Soln_Level'); TXT_DUMP_FN = ['HHJ_Conv_', Mesh_type, '_', BC_type,... '_degGEO_', num2str(deg_geo), '_degHHJ_', num2str(deg_k), '.txt']; text_FN = fullfile(Main_Dir, TXT_DUMP_FN); delete(text_FN); diary(text_FN); disp(' '); disp(' '); disp([' Mesh Type: ', Mesh_type]); disp(['Boundary Condition Type: ', BC_type]); disp(' '); disp(['Degree of Geometry: ', num2str(deg_geo)]); disp(['Degree of HHJ: ', num2str(deg_k)]); disp(' '); % disp('Number of triangles = N_T'); % disp(' '); disp('Error Stats for w in L^2(\Omega) and H^1(\Omega):'); disp(' '); display_error_stats(Sim_Info,'w, L^2(O)',Error_Info.u_L2,'w, H^1(O)',Error_Info.u_H1_semi); disp(' '); disp('Error Stats for \sigma in L^2(\Omega) and h^{1/2} * L^2(Skel):'); disp(' '); kk_vec = (1:1:Num_Refine)'; h_vec = 0.5.^kk_vec; Skel_L2_h_half = Error_Info.sig_Skel_L2 .* h_vec.^(1/2); display_error_stats(Sim_Info,'sig, L^2(O)',Error_Info.sig_L2,'sig, ~L^2(Sk)',Skel_L2_h_half); disp(' '); % disp(' N_T (4^k) | EOC for u (H^1) | EOC for \sigma (L^2(Omega)) |'); % u_H1_EOC = -log2(Error_Info.u_H1_semi(2:end)./Error_Info.u_H1_semi(1:end-1)); % u_H2_EOC = -log2(Error_Info.u_H2_semi(2:end)./Error_Info.u_H2_semi(1:end-1)); % sig_EOC = -log2(Error_Info.sig_L2(2:end)./Error_Info.sig_L2(1:end-1)); % OUT_1 = [log2(Sim_Info.elems)/2, [0; u_H1_EOC], [0; sig_EOC]]; % OUT_1 disp('Error Stats for w in L^\infty(\Omega) and w in H^2(T_{h}):'); disp(' '); display_error_stats(Sim_Info,'w, L^inf(O)',Error_Info.u_L_inf,'w, H^2(T_h)',Error_Info.u_H2_semi); disp(' '); disp('Error Stats for \sigma in L^2(\Gamma) and normal vector in L^2(\Gamma):'); disp(' '); display_error_stats(Sim_Info,'sig, L^2(G)',Error_Info.sig_Gamma_L2,'n, L^2(G)',Error_Info.normal_L2); disp(' '); % disp(' '); % disp(' N_T (4^k) | EOC for \sigma (L^2(Gamma)) | EOC for h^{1/2} (n'' \sigma n) (L^2(Skel))'); % sig_nn_Gamma_EOC = -log2(Error_Info.sig_Gamma_L2(2:end)./Error_Info.sig_Gamma_L2(1:end-1)); % sig_nn_Skel_EOC = -log2(Error_Info.sig_Skel_L2(2:end)./Error_Info.sig_Skel_L2(1:end-1)); % OUT_2 = [log2(Sim_Info.elems)/2, [0; sig_nn_Gamma_EOC], [0; (sig_nn_Skel_EOC + 0.5)]]; % OUT_2 % disp(' '); % disp(' N_T (4^k) | EOC for normal (L^2(Gamma)) | EOC for u (H^2_h) '); % normal_Gamma_EOC = -log2(Error_Info.normal_L2(2:end)./Error_Info.normal_L2(1:end-1)); % OUT_3 = [log2(Sim_Info.elems)/2, [0; normal_Gamma_EOC], [0; u_H2_EOC]]; % OUT_3 disp('Error Stats for the point displacement error at the center:'); disp(' '); displace_err = u_origin - exact_u_func(0,0); display_displacement_stats(Sim_Info,u_origin,displace_err); disp(' '); % evaluate given smooth function %W_X = W_Space.Get_DoF_Coord(Mesh,G_Space,Geo_Points); BB = Mesh.Bounding_Box(); BB(1) = BB(1) - 0.1; BB(2) = BB(2) + 0.1; BB(3) = BB(3) - 0.1; BB(4) = BB(4) + 0.1; BB = BB(1:4); QT = mexQuadtree(W_X(:,1:2),BB); [Mesh_to_W_X, Dist] = QT.kNN_Search(Mesh.Points(:,1:2),1); P1_u = u_soln(Mesh_to_W_X,1); %[Center_W_X_ind, Dist] = QT.kNN_Search([0 0],1); %Dist delete(QT); P1_u_error = P1_u - I_u_exact(Mesh_to_W_X,1); disp('Displacement L^\infty error:'); Error_Info.u_L_inf(end) %max(abs(u_soln - I_u_exact)) figure; trisurf(Mesh.ConnectivityList,Mesh.Points(:,1),Mesh.Points(:,2),P1_u_error); shading interp; % AX = Mesh.Bounding_Box; % view(2); % axis(AX); % axis equal; % axis(AX); title('Numerical Solution (displacement error)'); xlabel('X'); ylabel('Y'); colorbar; % compute t, n W_X_MAG = sqrt(sum(W_X.^2,2)) + 1e-15; W_X_normal = W_X; W_X_normal(:,1) = W_X(:,1) ./ W_X_MAG; W_X_normal(:,2) = W_X(:,2) ./ W_X_MAG; W_X_tangent = [-W_X_normal(:,2), W_X_normal(:,1)]; sig_error_nn = sig_error_W_X(:,1) .* W_X_normal(:,1) .* W_X_normal(:,1)... + sig_error_W_X(:,2) .* W_X_normal(:,1) .* W_X_normal(:,2)... + sig_error_W_X(:,3) .* W_X_normal(:,2) .* W_X_normal(:,1)... + sig_error_W_X(:,4) .* W_X_normal(:,2) .* W_X_normal(:,2); % sig_error_nt = sig_error_W_X(:,1) .* W_X_normal(:,1) .* W_X_tangent(:,1)... + sig_error_W_X(:,2) .* W_X_normal(:,1) .* W_X_tangent(:,2)... + sig_error_W_X(:,3) .* W_X_normal(:,2) .* W_X_tangent(:,1)... + sig_error_W_X(:,4) .* W_X_normal(:,2) .* W_X_tangent(:,2); % sig_error_tt = sig_error_W_X(:,1) .* W_X_tangent(:,1) .* W_X_tangent(:,1)... + sig_error_W_X(:,2) .* W_X_tangent(:,1) .* W_X_tangent(:,2)... + sig_error_W_X(:,3) .* W_X_tangent(:,2) .* W_X_tangent(:,1)... + sig_error_W_X(:,4) .* W_X_tangent(:,2) .* W_X_tangent(:,2); % sig_error_ortho = [sig_error_nn, sig_error_nt, sig_error_nt, sig_error_tt]; sig_error_Mask = W_X_MAG > (1 + 4e-2); sig_error_ortho(sig_error_Mask,:) = 0; % disp('Max sig_error_W_X:'); % max(abs(sig_error_W_X(:))) % % T1 = abs(sig_error_W_X(:)); % T1 = sort(T1); % T1(1:10,1) % % T1(end-10:end,1) % % max(abs(sig_error_ortho(:))) figure; for kk = 1:4 subplot(2,2,kk); %trisurf(Mesh.ConnectivityList,Mesh.Points(:,1),Mesh.Points(:,2),sig_soln_W_X(Mesh_to_W_X,kk)); %trisurf(Mesh.ConnectivityList,Mesh.Points(:,1),Mesh.Points(:,2),sig_error_W_X(Mesh_to_W_X,kk)); trisurf(Mesh.ConnectivityList,Mesh.Points(:,1),Mesh.Points(:,2),sig_error_ortho(Mesh_to_W_X,kk)); %plot3(W_X(:,1),W_X(:,2),sig_error_W_X,'k.','MarkerSize',4); shading interp; AX = Mesh.Bounding_Box; % view(2); % axis(AX); % axis equal; % axis(AX); %index_str = {'11', '12', '21', '22'}; index_str = {'nn', 'nt', 'tn', 'tt'}; title(['Numerical Solution (\sigma_{', index_str{kk}, '} error)']); xlabel('X'); ylabel('Y'); colorbar; end figure; trisurf(Mesh.ConnectivityList,Mesh.Points(:,1),Mesh.Points(:,2),P1_u); shading interp; %trimesh(Mesh.ConnectivityList,Mesh.Points(:,1),Mesh.Points(:,2)); % hold on; % % W_DoFs_Gamma = W_Space.Get_DoFs_On_Subdomain(Mesh,'Gamma'); % % W_X_Gamma = W_X(W_DoFs_Gamma,:); % % plot(W_X_Gamma(:,1),W_X_Gamma(:,2),'md'); % V_DoFs_Gamma = V_Space.Get_Fixed_DoFs(Mesh); % V_X = V_Space.Get_DoF_Coord(Mesh,G_Space,Geo_Points); % V_X_Gamma = V_X(V_DoFs_Gamma,:); % disp('Number of V-DoFs on boundary:'); % length(V_DoFs_Gamma) % disp('Error Check: number of edges in boundary:'); % GM = Mesh.Get_Global_Subdomain('Gamma'); % size(GM,1) % plot(V_X_Gamma(:,1),V_X_Gamma(:,2),'md'); % hold off; AX = Mesh.Bounding_Box; AX = AX(1:4); view(2); axis(AX); axis equal; axis(AX); title('Numerical Solution (displacement)'); xlabel('X'); ylabel('Y'); colorbar; % plot the error decay FH_error = figure('Renderer','painters','PaperPositionMode','auto','Color','w'); Order_1_Line = 10.0 * 2.^(-Refine_Vec); Order_2_Line = 15.0 * 4.^(-Refine_Vec); Order_3_Line = 15.0 * 8.^(-Refine_Vec); Order_4_Line = 15.0 * 16.^(-Refine_Vec); semilogy(Refine_Vec,Error_Info.u_H1_semi,'k-*',... Refine_Vec,Error_Info.sig_L2,'m-*',... Refine_Vec,Order_1_Line,'r-d',... Refine_Vec,Order_2_Line,'b-d',... Refine_Vec,Order_3_Line,'g-d',... Refine_Vec,Order_4_Line,'y-d'); xlabel('Refinement Level'); ylabel('Error'); title('Convergence Rate of Numerical Solution'); %axis([Refine_Vec(1) Refine_Vec(end) 1e-3 1e2]); legend({'$\| u_h - u \|_{H^1(\Omega)}$','$\| \sigma_h - \sigma \|_{L^2(\Omega)}$',... '$O(h)$ line','$O(h^2)$ line','$O(h^3)$ line','$O(h^4)$ line'},... 'Interpreter','latex','FontSize',12,'Location','best'); grid; % u_origin % % Error_Info.u_H1_semi % Error_Info.u_H2_semi % Error_Info.sig_L2 % Error_Info.sig_Gamma_L2 Mesh diary off; % % save mesh % Vtx = Geo_Points; % Tri = double(G_Space.DoFmap); % % % Vtx = Mesh.Points; % % Tri = Mesh.ConnectivityList; % % MT = MeshTriangle(Tri,Vtx,'Test'); % figure; % MT.Plot; % % xmlmesh(Vtx,Tri,'xmlmesh_disk_2D.xml'); asfdasf RefErrorDataFileName = fullfile(Main_Dir,'FEL_Execute_Bending_Plate_2D_REF_Data.mat'); % save(RefErrorDataFileName,'L2_Error_Vec','Small_Matrix_Error_Vec'); REF_DATA = load(RefErrorDataFileName); % simple regression check ERR_CHK1 = max(abs(REF_DATA.L2_Error_Vec - Error_Info.u_H1_semi)); ERR_CHK2 = max(abs(REF_DATA.Small_Matrix_Error_Vec - Small_Matrix_Error_Vec)); ERR_CHK = max(ERR_CHK1,ERR_CHK2); % different computers should compute the same errors (up to round-off!) status = 0; % init if (ERR_CHK > 1e-10) disp('HHJk on a curved disk in 2-D: convergence error failed!'); ERR_CHK status = 1; end end function [G_Space, Geo_Points, Geo_Points_hat, V_Space, W_Space, SkDG_Space, OmegaDG_Space] =... create_FE_spaces(Main_Dir,Mesh,deg_geo,deg_k,Mesh_type,BC_type,PD,MM) % % create GeoElementSpace Pk_Omega = eval(['lagrange_deg', num2str(deg_geo), '_dim2();']); G_Space_RefElem = ReferenceFiniteElement(Pk_Omega); G_Space = GeoElementSpace('G_h',G_Space_RefElem,Mesh); if (deg_geo==1) G_DoFmap = uint32(Mesh.ConnectivityList); else G_DoFmap = UNIT_TEST_mex_Bending_Plate_2D_G_Space_DoF_Allocator(uint32(Mesh.ConnectivityList)); end G_Space = G_Space.Set_DoFmap(Mesh,uint32(G_DoFmap)); G_Space = G_Space.Set_mex_Dir(Main_Dir,'UNIT_TEST_mex_Interp_G_Space_Bending_Plate_2D'); % BEGIN: define the higher order domain Geo_Points_hat = G_Space.Get_Mapping_For_Piecewise_Linear_Mesh(Mesh); % initially starts as a piecewise deg k polynomial (Pk function) interpolating a % piecewise linear (P1) function (representing the initial mesh) Geo_Points = Geo_Points_hat; if or(strcmp(Mesh_type,'refined_disk'),strcmp(Mesh_type,'disk_n_gon')) if (deg_geo > 1) SI = Mesh.Get_Subdomain_Index('Gamma'); Bdy_Tri_Data = double(Mesh.Subdomain(SI).Data); % Bdy_Tri_Data % figure; % Mesh.Plot_Subdomain('Gamma'); Geo_Points = Higher_Order_Elem(G_Space,Geo_Points_hat(:,1:2),Bdy_Tri_Data(:,1),Bdy_Tri_Data(:,2)); %Geo_Points = [Geo_Points, 0*Geo_Points(:,1)]; end elseif strcmp(Mesh_type,'circle_alt') if (deg_geo > 1) SI = Mesh.Get_Subdomain_Index('Gamma'); Bdy_Tri_Data = double(Mesh.Subdomain(SI).Data); % this comes out sorted! % need to correlate [LIA, LOCB] = ismember(MM.BdyTRI_Ind,Bdy_Tri_Data(:,1)); Bdy_Tri_Data_Alt = Bdy_Tri_Data(LOCB,:); % Bdy_Tri_Data_Alt(:,2) % Mesh.ConnectivityList(Bdy_Tri_Data_Alt(:,1),:) % MM.BdyEDGE Geo_Points = Get_Curved_Element_Mapping(G_Space,Geo_Points_hat(:,1:2),MM,Bdy_Tri_Data_Alt(:,1),Bdy_Tri_Data_Alt(:,2)); %Geo_Points = [Geo_Points, 0*Geo_Points(:,1)]; end elseif strcmp(Mesh_type,'refined_disk_alt') % here we take a special square mesh, and deform all elements % find four separate groups of vertices ANG = atan2(Geo_Points_hat(:,2),Geo_Points_hat(:,1)); Right_SEC = (ANG <= 45 * (pi/180)) & (ANG >= -45 * (pi/180)); Top_SEC = (ANG < 135 * (pi/180)) & (ANG > 45 * (pi/180)); Bot_SEC = (ANG > -135 * (pi/180)) & (ANG < -45 * (pi/180)); Left_SEC = ~(Right_SEC | Top_SEC | Bot_SEC); % get other masks Pos_x = Geo_Points_hat(:,1) >= 0; Neg_x = ~Pos_x; Pos_y = Geo_Points_hat(:,2) >= 0; Neg_y = ~Pos_y; % define disk function f_disk = @(s) sqrt(1 - s.^2); Geo_Points = Geo_Points_hat; % init % map the right displace_pos = @(x,y) ( (f_disk(y) - x) ./ (1e-15 + (1/sqrt(2)) - y) ) .* (x - y) + x; displace_neg = @(x,y) ( (f_disk(y) - x) ./ (1e-15 + (1/sqrt(2)) + y) ) .* (x + y) + x; Rt_Pos_y = Pos_y & Right_SEC; Rt_Neg_y = Neg_y & Right_SEC; Geo_Points(Rt_Pos_y,:) = [displace_pos(Geo_Points_hat(Rt_Pos_y,1),Geo_Points_hat(Rt_Pos_y,2)),... Geo_Points_hat(Rt_Pos_y,2)]; % Geo_Points(Rt_Neg_y,:) = [displace_neg(Geo_Points_hat(Rt_Neg_y,1),Geo_Points_hat(Rt_Neg_y,2)),... Geo_Points_hat(Rt_Neg_y,2)]; % % map the left displace_pos = @(x,y) ( (-f_disk(y) - x) ./ (-1e-15 + (-1/sqrt(2)) + y) ) .* (x + y) + x; displace_neg = @(x,y) ( (-f_disk(y) - x) ./ (-1e-15 + (-1/sqrt(2)) - y) ) .* (x - y) + x; Lt_Pos_y = Pos_y & Left_SEC; Lt_Neg_y = Neg_y & Left_SEC; Geo_Points(Lt_Pos_y,:) = [displace_pos(Geo_Points_hat(Lt_Pos_y,1),Geo_Points_hat(Lt_Pos_y,2)),... Geo_Points_hat(Lt_Pos_y,2)]; % Geo_Points(Lt_Neg_y,:) = [displace_neg(Geo_Points_hat(Lt_Neg_y,1),Geo_Points_hat(Lt_Neg_y,2)),... Geo_Points_hat(Lt_Neg_y,2)]; % % map the top displace_pos = @(x,y) ( (f_disk(x) - y) ./ (1e-15 + (1/sqrt(2)) - x) ) .* (y - x) + y; displace_neg = @(x,y) ( (f_disk(x) - y) ./ (1e-15 + (1/sqrt(2)) + x) ) .* (y + x) + y; Top_Pos_x = Pos_x & Top_SEC; Top_Neg_x = Neg_x & Top_SEC; Geo_Points(Top_Pos_x,:) = [Geo_Points_hat(Top_Pos_x,1),... displace_pos(Geo_Points_hat(Top_Pos_x,1),Geo_Points_hat(Top_Pos_x,2))]; % Geo_Points(Top_Neg_x,:) = [Geo_Points_hat(Top_Neg_x,1),... displace_neg(Geo_Points_hat(Top_Neg_x,1),Geo_Points_hat(Top_Neg_x,2))]; % % map the bottom displace_pos = @(x,y) ( (-f_disk(x) - y) ./ (-1e-15 + (-1/sqrt(2)) + x) ) .* (y + x) + y; displace_neg = @(x,y) ( (-f_disk(x) - y) ./ (-1e-15 + (-1/sqrt(2)) - x) ) .* (y - x) + y; Bot_Pos_x = Pos_x & Bot_SEC; Bot_Neg_x = Neg_x & Bot_SEC; Geo_Points(Bot_Pos_x,:) = [Geo_Points_hat(Bot_Pos_x,1),... displace_pos(Geo_Points_hat(Bot_Pos_x,1),Geo_Points_hat(Bot_Pos_x,2))]; % Geo_Points(Bot_Neg_x,:) = [Geo_Points_hat(Bot_Neg_x,1),... displace_neg(Geo_Points_hat(Bot_Neg_x,1),Geo_Points_hat(Bot_Neg_x,2))]; % else disp('WARNING! Assuming mesh is a square...'); disp('No need to have a fancy mapping!'); end % END: define the higher order domain % % plot the higher order domain % figure; % Temp_Pts = Mesh.Points; % qm = trimesh(Mesh.ConnectivityList,Temp_Pts(:,1),Temp_Pts(:,2),0*Temp_Pts(:,2)); % set(qm,'EdgeColor','k'); % hold on; % plot(Geo_Points_hat(:,1),Geo_Points_hat(:,2),'gs'); % plot(Geo_Points(:,1),Geo_Points(:,2),'k*'); % % quiver(vx(1).dof(:,1),vx(1).dof(:,2),Tri_to_Gamma_vn(:,1),Tri_to_Gamma_vn(:,2),'color','r'); % % quiver(vx(2).dof(:,1),vx(2).dof(:,2),Tri_to_Gamma_vn(:,1),Tri_to_Gamma_vn(:,2),'color','b'); % % % Vec_Internal = Geo_Points(Internal_DoF,:) - Geo_Points_hat(Internal_DoF,:); % % VEC_INT = Normalize_Vector_Field(Vec_Internal); % % quiver(Geo_Points_hat(Internal_DoF,1),Geo_Points_hat(Internal_DoF,2),VEC_INT(:,1),VEC_INT(:,2),'color','m'); % % plot(Geo_Points_hat(Internal_DoF,1),Geo_Points_hat(Internal_DoF,2),'pc'); % % PD.Plot_Boundary(10000); % % %cylinder(1,10000); % % % plot(Geo_Points_hat(Tri_to_Gamma_DoF(:,2),1),Geo_Points_hat(Tri_to_Gamma_DoF(:,2),2),'rd'); % % plot(Geo_Points_hat(Tri_to_Gamma_DoF(:,3),1),Geo_Points_hat(Tri_to_Gamma_DoF(:,3),2),'bp'); % % plot(Geo_Points_hat(DoFs_on_Gamma_Edge,1),Geo_Points_hat(DoFs_on_Gamma_Edge,2),'mp'); % % plot(new_dof_ave(:,1),new_dof_ave(:,2),'rd'); % % plot(old_dof_ave(:,1),old_dof_ave(:,2),'mp'); % hold off; % view(2); % axis equal; % % plot skeleton % figure; % subplot(1,2,1); % SK_plus = Mesh.Output_Subdomain_Mesh('Skeleton_Plus'); % SK_plus.Plot; % subplot(1,2,2); % SK_minus = Mesh.Output_Subdomain_Mesh('Skeleton_Minus'); % SK_minus.Plot; clear DoFs_on_Gamma GP_Gamma GP_Dist; % define FE spaces P_k_plus_1 = eval(['lagrange_deg', num2str(deg_k+1), '_dim2();']); P_k_plus_1_RefElem = ReferenceFiniteElement(P_k_plus_1); W_Space = FiniteElementSpace('W_h', P_k_plus_1_RefElem, Mesh, 'Omega'); W_DoFmap = UNIT_TEST_mex_Bending_Plate_2D_W_Space_DoF_Allocator(uint32(Mesh.ConnectivityList)); W_Space = W_Space.Set_DoFmap(Mesh,uint32(W_DoFmap)); if or(strcmpi('clamped',BC_type),strcmpi('simply_supported',BC_type)) % set fixed DoFs W_Space = W_Space.Append_Fixed_Subdomain(Mesh,'Gamma'); else % don't impose anything! end HHJ_k = eval(['hellan_herrmann_johnson_deg', num2str(deg_k), '_dim2();']); HHJ_RefElem = ReferenceFiniteElement(HHJ_k); V_Space = FiniteElementSpace('V_h', HHJ_RefElem, Mesh, 'Omega'); V_DoFmap = UNIT_TEST_mex_Bending_Plate_2D_V_Space_DoF_Allocator(uint32(Mesh.ConnectivityList)); V_Space = V_Space.Set_DoFmap(Mesh,uint32(V_DoFmap)); if or(strcmpi('free',BC_type),strcmpi('simply_supported',BC_type)) % set fixed DoFs V_Space = V_Space.Append_Fixed_Subdomain(Mesh,'Gamma'); else % don't impose anything! end % define DG spaces P_k_DG = eval(['lagrange_deg', num2str(deg_k), '_dim1(''DG'');']); P_k_DG_RefElem = ReferenceFiniteElement(P_k_DG); SkDG_Space = FiniteElementSpace('SkDG', P_k_DG_RefElem, Mesh, 'Skeleton_Plus'); SkEdges = Mesh.Get_Global_Subdomain('Skeleton_Plus'); Num_Edges = size(SkEdges,1); Num_Edge_DoF = deg_k + 1; Dmap_transpose = zeros(Num_Edges,Num_Edge_DoF)'; DoF_Indices = (1:1:(Num_Edges*Num_Edge_DoF))'; Dmap_transpose(:) = DoF_Indices; SkDG_DoFmap = Dmap_transpose'; SkDG_Space = SkDG_Space.Set_DoFmap(Mesh,uint32(SkDG_DoFmap)); if or(strcmpi('free',BC_type),strcmpi('simply_supported',BC_type)) % set fixed DoFs SkDG_Space = SkDG_Space.Append_Fixed_Subdomain(Mesh,'Gamma'); else % don't impose anything! end if (deg_k > 0) P_k_minus_1_DG = eval(['lagrange_deg', num2str(deg_k-1), '_dim2(''DG'');']); P_k_minus_1_DG_RefElem = ReferenceFiniteElement(P_k_minus_1_DG); OmegaDG_Space = FiniteElementSpace('OmegaDG', P_k_minus_1_DG_RefElem, Mesh, 'Omega'); Num_Tri = Mesh.Num_Cell(); Num_Tri_DoF = round((1/2) * deg_k * (deg_k + 1)); Dmap_transpose = zeros(Num_Tri,Num_Tri_DoF)'; DoF_Indices = (1:1:(Num_Tri*Num_Tri_DoF))'; Dmap_transpose(:) = DoF_Indices; OmegaDG_DoFmap = Dmap_transpose'; OmegaDG_Space = OmegaDG_Space.Set_DoFmap(Mesh,uint32(OmegaDG_DoFmap)); else OmegaDG_Space = []; end end function status = display_displacement_stats(SI,displace,err_vec) EOC = -log2( abs(err_vec(2:end)) ./ abs(err_vec(1:end-1)) ); EOC = [0; EOC]; NR = length(displace); STR_sides = num2str(SI.sides); STR_elems = num2str(SI.elems); STR_dofs = num2str(SI.dofs); STR_displ = num2str(displace,'%1.7G'); STR_err = num2str(err_vec,'%1.7G'); STR_rel_err = num2str(err_vec ./ displace,'%1.7G'); STR_EOC = num2str(EOC,'%1.7G'); disp([blanks(size(STR_sides,2)-3), 'sides', ' |', blanks(size(STR_elems,2)-4), 'elems', ' |',... blanks(size(STR_dofs,2)-3), 'DoFs', ' |', blanks(size(STR_displ,2)-7), 'displace', ' |',... blanks(size(STR_err,2)-4), 'error', ' |', blanks(size(STR_rel_err,2)-9), 'rel. error', ' |',... blanks(size(STR_EOC,2)-5), 'EOC']); disp([repmat(' ',NR,1), ... STR_sides, repmat(' | ',NR,1), ... STR_elems, repmat(' | ',NR,1), ... STR_dofs, repmat(' | ',NR,1), ... STR_displ, repmat(' | ',NR,1), ... STR_err, repmat(' | ',NR,1), ... STR_rel_err, repmat(' | ',NR,1), ... STR_EOC ]) % status = 0; end function status = display_error_stats(SI,name_err_1,err_1,name_err_2,err_2) EOC_1 = -log2( abs(err_1(2:end)) ./ abs(err_1(1:end-1)) ); EOC_1 = [0; EOC_1]; EOC_2 = -log2( abs(err_2(2:end)) ./ abs(err_2(1:end-1)) ); EOC_2 = [0; EOC_2]; NR = length(err_1); STR_sides = num2str(SI.sides); STR_elems = num2str(SI.elems); STR_dofs = num2str(SI.dofs); STR_err_1 = num2str(err_1,'%1.10G'); STR_err_2 = num2str(err_2,'%1.10G'); STR_EOC_1 = num2str(EOC_1,'%1.10G'); STR_EOC_2 = num2str(EOC_2,'%1.10G'); disp([blanks(size(STR_sides,2)-3), 'sides', ' |', blanks(size(STR_elems,2)-4), 'elems', ' |',... blanks(size(STR_dofs,2)-3), 'DoFs', ' |',... blanks(size(STR_err_1,2)-length(name_err_1)+1), name_err_1, ' |', blanks(size(STR_EOC_1,2)-2), 'EOC', ' |', ... blanks(size(STR_err_2,2)-length(name_err_2)+1), name_err_2, ' |', blanks(size(STR_EOC_2,2)-2), 'EOC']); disp([repmat(' ',NR,1), ... STR_sides, repmat(' | ',NR,1), ... STR_elems, repmat(' | ',NR,1), ... STR_dofs, repmat(' | ',NR,1), ... STR_err_1, repmat(' | ',NR,1), ... STR_EOC_1, repmat(' | ',NR,1), ... STR_err_2, repmat(' | ',NR,1), ... STR_EOC_2 ]) % status = 0; end
github
eardi/sm-fpca-master
DiffGeo_HHJk_Surface.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Unit_Test/Mixed_HHJ/HHJk_Surface/DiffGeo_HHJk_Surface.m
3,852
utf_8
2329d8c3b439918d7a4972f03e34f5f4
function [soln_func, soln_surf_grad_func, soln_surf_hess, f_func, normal_vec_func] = DiffGeo_HHJk_Surface(surf_func,soln_tilde,vars) %DiffGeo_HHJk_Surface % Copyright (c) 03-30-2018, Shawn W. Walker % note: surf_func is a height function u = vars(1); v = vars(2); soln_func = matlabFunction(soln_tilde); soln_func % define surface parameterization Xmap = [u;v;surf_func(u,v)]; % compute metric Xmap_du = diff(Xmap,u,1); Xmap_dv = diff(Xmap,v,1); J = [Xmap_du, Xmap_dv]; g = transpose(J) * J; % compute the inverse metric g_inv = inv(g); %det_g = det(g); % g % g_inv % det_g % get grad(u), hess(u) [soln_surf_grad, soln_surf_hess] = get_surf_grad_surf_hess(u,v,soln_tilde,J,g,g_inv); soln_surf_grad_func = matlabFunction(soln_surf_grad); %soln_surf_grad_func % soln_surf_hess_func = matlabFunction(soln_surf_hess(:)'); % soln_surf_hess_func soln_surf_hess % get Laplace-Beltrami soln_surf_lap = trace(soln_surf_hess); soln_surf_lap = simplify(soln_surf_lap); % get grad(\Delta u), hess(\Delta u) [~, SL_hess] = get_surf_grad_surf_hess(u,v,soln_surf_lap,J,g,g_inv); soln_surf_biharmonic = trace(SL_hess); symbolic_f = simplify(soln_surf_biharmonic); %symbolic_f % RHS f term f_func = matlabFunction(symbolic_f); f_func % compute the normal vector NV_temp = cross(Xmap_du,Xmap_dv); NV_temp_norm = sqrt(transpose(NV_temp) * NV_temp); Normal_Vector = NV_temp / NV_temp_norm; normal_vec_func = matlabFunction(Normal_Vector); %normal_vec_func end function [surf_grad, surf_hess] = get_surf_grad_surf_hess(u,v,func,J,g,g_inv) % % compute derivatives of soln (in reference domain) % func_du = diff(func,u,1); % func_dv = diff(func,v,1); % % % compute the surface gradient of the solution (in reference coordinates) % surf_grad = ([func_du, func_dv] * g_inv * transpose(J))'; % surf_grad = simplify(surf_grad); surf_grad = get_surf_grad_only(u,v,func,J,g_inv); % compute the COVARIANT surface hessian! % compute derivatives of soln (in reference domain) func_grad = [diff(func,u,1); diff(func,v,1)]; % compute hessian of soln (in reference domain) func_hess = [diff(func,u,u), diff(func,u,v); diff(func,v,u), diff(func,v,v)]; % % differentiate metric grad_metric(2).mat = []; grad_metric(1).mat = simplify(diff(g,u)); grad_metric(2).mat = simplify(diff(g,v)); % compute the Christoffel symbols (2nd kind) Gamma(2).ij = sym(zeros(2,2)); for kk=1:2 for ii=1:2 for jj=1:2 TEMP = sym(0); for ll=1:2 TEMP = TEMP + g_inv(kk,ll) * ( grad_metric(ii).mat(ll,jj) + grad_metric(jj).mat(ii,ll) - grad_metric(ll).mat(ii,jj) ); end Gamma(kk).ij(ii,jj) = (1/2) * simplify(TEMP); end end end % compute "local" term local_hess = func_hess - ( func_grad(1) * Gamma(1).ij + func_grad(2) * Gamma(2).ij ); local_hess = simplify(local_hess); % map to surface J_g_inv_MAT = J * g_inv; surf_hess = J_g_inv_MAT * local_hess * (transpose(J_g_inv_MAT)); % % compute derivatives in reference domain % surf_grad_du = diff(surf_grad,u,1); % surf_grad_dv = diff(surf_grad,v,1); % % % compute the surface gradient of the solution (in reference coordinates) % surf_hess_row(3).vec = []; % for ii = 1:3 % surf_hess_row(ii).vec = [surf_grad_du(ii), surf_grad_dv(ii)] * g_inv * transpose(J); % end % surf_hess = [surf_hess_row(1).vec; % surf_hess_row(2).vec; % surf_hess_row(3).vec]; % % % surf_hess = simplify(surf_hess); end function surf_grad = get_surf_grad_only(u,v,func,J,g_inv) % compute derivatives of soln (in reference domain) func_du = diff(func,u,1); func_dv = diff(func,v,1); % compute the surface gradient of the solution (in reference coordinates) surf_grad = ([func_du, func_dv] * g_inv * transpose(J))'; surf_grad = simplify(surf_grad); end
github
eardi/sm-fpca-master
Output_CPP_Eval_Extension.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/@Hdivdiv_Trans/Output_CPP_Eval_Extension.m
1,276
utf_8
3ce6eb129636b9092f7c76021a3c008f
function CPP_Eval = Output_CPP_Eval_Extension(obj,FIELD_str,Components) %Output_CPP_Eval_Extension % % This outputs a string representing the C++ evaluation code for the given % variable name. % % Components = [basis_comp_1, basis_comp_2, comp_1, comp_2, etc...] % Copyright (c) 03-22-2018, Shawn W. Walker % peel off the basis component Basis_Comp = Components(1:2); Components = Components(3:end); % if strcmp(FIELD_str,'Orientation') % error('you don''t need this!'); if strcmp(FIELD_str,'Val') Basis_Comp_C_index_STR = Get_Index_String(Basis_Comp); CPP_Eval = ['.m', Basis_Comp_C_index_STR]; % elseif strcmp(FIELD_str,'Div') % CPP_Eval = ['.a', '']; % elseif strcmp(FIELD_str,'Grad') % Grad_Comp_C_index_STR = Get_Index_String(Components(1)); % CPP_Eval = ['.v', Grad_Comp_C_index_STR]; % elseif strcmp(FIELD_str,'Hess') % Comp_1_C_index_STR = Get_Index_String(Components(1)); % Comp_2_C_index_STR = Get_Index_String(Components(2)); % CPP_Eval = ['.m', Comp_1_C_index_STR, Comp_2_C_index_STR]; else error('Not valid!'); end end function INDEX_str = Get_Index_String(Index) % use C-style indexing INDEX_str = ['[', num2str(Index(1) - 1), ']', '[', num2str(Index(2) - 1), ']']; end
github
eardi/sm-fpca-master
Output_CPP_Eval_Extension.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/@Hcurl_Trans/Output_CPP_Eval_Extension.m
1,722
utf_8
f271a34bc251f262655357e05cdafcfa
function CPP_Eval = Output_CPP_Eval_Extension(obj,FIELD_str,Components) %Output_CPP_Eval_Extension % % This outputs a string representing the C++ evaluation code for the given % variable name. % % Components = [basis_comp_1, basis_comp_2, comp_1, comp_2, etc...] % Copyright (c) 10-17-2016, Shawn W. Walker % peel off the basis component Basis_Comp = Components(1:2); Components = Components(3:end); if strcmp(FIELD_str,'Orientation') error('you don''t need this!'); elseif strcmp(FIELD_str,'Val') Vec_Comp_C_index_STR = Get_Index_String(Basis_Comp(1)); CPP_Eval = ['.v', Vec_Comp_C_index_STR]; elseif strcmp(FIELD_str,'Curl') TD = obj.GeoMap.TopDim; GD = obj.GeoMap.GeoDim; if (TD==2) if (GD==2) % curl is a scalar CPP_Eval = ['.a', '']; elseif (GD==3) error('Not implemented!'); else error('Invalid!'); end elseif (TD==3) % curl is a vector Vec_Comp_C_index_STR = Get_Index_String(Basis_Comp(1)); CPP_Eval = ['.v', Vec_Comp_C_index_STR]; else error('Not implemented or invalid!'); end % elseif strcmp(FIELD_str,'Grad') % Grad_Comp_C_index_STR = Get_Index_String(Components(1)); % CPP_Eval = ['.v', Grad_Comp_C_index_STR]; % elseif strcmp(FIELD_str,'Hess') % Comp_1_C_index_STR = Get_Index_String(Components(1)); % Comp_2_C_index_STR = Get_Index_String(Components(2)); % CPP_Eval = ['.m', Comp_1_C_index_STR, Comp_2_C_index_STR]; else error('Not valid!'); end end function INDEX_str = Get_Index_String(Index) % use C-style indexing INDEX_str = ['[', num2str(Index - 1), ']']; end
github
eardi/sm-fpca-master
Premap_Basis_in_2D.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/@Hcurl_Trans/private/Premap_Basis_in_2D.m
1,746
utf_8
e5cb527d427b07a5ad76004b9f45763c
function Sign_Change = Premap_Basis_in_2D(Mesh_Orient,All_Edge_DoFs,Num_Basis) %Premap_Basis_in_2D % % This is used by the H(curl) elements for pre-mapping basis functions to % adjust for different edge orientations. % % Sign_Change = Premap_Basis_in_2D(Mesh_Orient,All_Facet_DoFs,Num_Basis); % % Mesh_Orient: NxE vector indicating actual orientation of mesh elements % (N is the number of elements; E is the number of element % edges.) % Example: [+1, -1, +1; ...] (E = 3) % Elem #1: edge 1 and edge 3 are positively oriented; % edge 2 is negative, etc... % All_Edge_DoFs: cell array of sets of DoFs attached to all edges. % Num_Basis: number of basis functions in the element. % % Sign_Change: NxB matrix, where B = number of basis functions: % +1 = no sign change. % -1 = flip sign of corresponding basis function. % Rows correspond to rows of "Mesh_Orient". % Copyright (c) 10-18-2016, Shawn W. Walker Num_Elem = size(Mesh_Orient,1); Num_Edges = size(Mesh_Orient,2); Sign_Change = ones(Num_Elem,Num_Basis); % init % loop through the local edges of the mesh elements for ei = 1:Num_Edges Edge_Sign = Mesh_Orient(:,ei); Neg_Mask = (Edge_Sign==-1); % gets DoF indices on the current edge DoFs_On_Edge = get_dofs_on_edge(All_Edge_DoFs,ei); % flip necessary signs Sign_Change(Neg_Mask,DoFs_On_Edge) = -1; end end function DoFs = get_dofs_on_edge(All_Edge_DoFs,Edge_Index) DoFs = []; % init for ci = 1:length(All_Edge_DoFs) DoF_Set = All_Edge_DoFs{ci}; DI = DoF_Set(Edge_Index,:); DoFs = [DoFs; DI(:)]; end end
github
eardi/sm-fpca-master
test_H1_Trans.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/Unit_Test/test_H1_Trans.m
3,006
utf_8
c4952c0cdf9d5cc0c2354e4d677ed9cb
function status = test_H1_Trans() %test_H1_Trans % % Test code for FELICITY class. % Copyright (c) 05-19-2016, Shawn W. Walker status = 0; GM_test = Geometric_Trans('test',1,1,true); FUNC1_test = H1_Trans('test',GM_test); % make sure all the fields are there! if (min(isfield(FUNC1_test.f,{'Val','Grad','d_ds','Hess','d2_ds2'}))==0) status = 1; end % check all cases! % (GeoDim,TopDim) for gg=1:3 for tt=1:gg if ~valid_f_struct(gg,tt,false) status = 1; end if ~valid_f_struct(gg,tt,true) status = 1; end end end %%%%%%%%%%%%% if (status==0) disp('Test passed!'); else disp('Test failed!'); end end function TF = valid_f_struct(GeoDim,TopDim,LIN_MAP_TF) TF = true; % init test result to passed % define a map! myMAP = Geometric_Trans('test',GeoDim,TopDim,LIN_MAP_TF); myFUNC = H1_Trans('test',myMAP); % ensure that the symbolic variables have the correct size! if ~(min(abs(size(myFUNC.f.Val) - [1 1]))==0) TF = false; end if ~(min(abs(size(myFUNC.f.Grad) - [1 GeoDim]))==0) TF = false; end if ~isempty(myFUNC.f.d_ds) if ~(min(abs(size(myFUNC.f.d_ds) - [1 1]))==0) TF = false; end end if ~(min(abs(size(myFUNC.f.Hess) - [GeoDim GeoDim]))==0) TF = false; end if ~isempty(myFUNC.f.d2_ds2) if ~(min(abs(size(myFUNC.f.d2_ds2) - [1 1]))==0) TF = false; end end % verify code generation! Func_f( 1).Code = myFUNC.FUNC_Val_C_Code; Func_f( 2).Code = myFUNC.FUNC_Val_special_C_Code; Func_f( 3).Code = myFUNC.FUNC_d2_ds2_C_Code; Func_f( 4).Code = myFUNC.FUNC_d_ds_C_Code; Func_f( 5).Code = myFUNC.FUNC_Grad_C_Code; Func_f( 6).Code = myFUNC.FUNC_Hess_C_Code; Func_f( 7).Code = myFUNC.COEF_FUNC_Val_C_Code; Func_f( 8).Code = myFUNC.COEF_FUNC_d2_ds2_C_Code; Func_f( 9).Code = myFUNC.COEF_FUNC_d_ds_C_Code; Func_f(10).Code = myFUNC.COEF_FUNC_Grad_C_Code; Func_f(11).Code = myFUNC.COEF_FUNC_Hess_C_Code; % load up reference data if LIN_MAP_TF LM_str = 'true'; else LM_str = 'false'; end DIR = fileparts(mfilename('fullpath')); FN_str = ['Func_f_Codes_', num2str(GeoDim), num2str(TopDim), '_', LM_str, '.mat']; FullFile_string = fullfile(DIR, FN_str); RefData = load(FullFile_string,'Func_f'); %save(FullFile_string,'Func_f'); % check against reference data for ind=1:length(Func_f(:)) STRUCTS_MATCH = isequal(RefData.Func_f(ind),Func_f(ind)); if ~STRUCTS_MATCH TF = false; % test failed! disp('RefData:'); LIN_MAP_TF display_code_snippet(RefData.Func_f(ind).Code); disp('Actual:'); LIN_MAP_TF display_code_snippet(Func_f(ind).Code); break; end end end function display_code_snippet(Code) Code.Var_Name(1) Code.Constant for ii = 1:length(Code.Defn) disp(Code.Defn(ii).line); end for ii = 1:length(Code.Eval_Snip) disp(Code.Eval_Snip(ii).line); end end
github
eardi/sm-fpca-master
test_Geometric_Trans.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/Unit_Test/test_Geometric_Trans.m
7,370
utf_8
cbadddae9f798275055a84401ea17c40
function status = test_Geometric_Trans() %test_Geometric_Trans % % Test code for FELICITY class. % Copyright (c) 05-19-2016, Shawn W. Walker status = 0; MAP1_test = Geometric_Trans('test',3,3,true); % make sure all the fields are there! if (min(isfield(MAP1_test.PHI,{'Mesh_Size','Val','Grad','Metric','Det_Metric','Inv_Det_Metric','Inv_Metric',... 'Det_Jacobian','Det_Jacobian_with_quad_weight','Inv_Det_Jacobian','Inv_Grad',... 'Tangent_Vector','Normal_Vector','Tangent_Space_Projection',... 'Hess','Hess_Inv_Map','Grad_Metric','Grad_Inv_Metric',... 'Second_Fund_Form','Det_Second_Fund_Form','Inv_Det_Second_Fund_Form',... 'Total_Curvature_Vector','Total_Curvature','Gauss_Curvature','Shape_Operator'}))==0) status = 1; end % check all cases! % (GeoDim,TopDim) for gg=1:3 for tt=1:gg if ~valid_PHI_struct(gg,tt,false); status = 1; end if ~valid_PHI_struct(gg,tt,true); status = 1; end end end %%%%%%%%%%%%% if (status==0) disp('Test passed!'); else disp('Test failed!'); end end function TF = valid_PHI_struct(GeoDim,TopDim,LIN_MAP_TF) TF = true; % init test result to passed % define a map! myMAP = Geometric_Trans('test',GeoDim,TopDim,LIN_MAP_TF); % ensure that the symbolic variables have the correct size! if ~(min(abs(size(myMAP.PHI.Mesh_Size) - [1 1]))==0) TF = false; end if ~(min(abs(size(myMAP.PHI.Val) - [GeoDim 1]))==0) TF = false; end if ~(min(abs(size(myMAP.PHI.Grad) - [GeoDim TopDim]))==0) TF = false; end if ~isempty(myMAP.PHI.Metric) if ~(min(abs(size(myMAP.PHI.Metric) - [TopDim TopDim]))==0) TF = false; end if ~(min(abs(size(myMAP.PHI.Det_Metric) - [1 1]))==0) TF = false; end if ~(min(abs(size(myMAP.PHI.Inv_Det_Metric) - [1 1]))==0) TF = false; end end if ~isempty(myMAP.PHI.Inv_Metric) if ~(min(abs(size(myMAP.PHI.Inv_Metric) - [TopDim TopDim]))==0) TF = false; end end if ~(min(abs(size(myMAP.PHI.Det_Jacobian) - [1 1]))==0) TF = false; end if ~(min(abs(size(myMAP.PHI.Det_Jacobian_with_quad_weight) - [1 1]))==0) TF = false; end if ~(min(abs(size(myMAP.PHI.Inv_Det_Jacobian) - [1 1]))==0) TF = false; end if ~isempty(myMAP.PHI.Inv_Grad) if ~(min(abs(size(myMAP.PHI.Inv_Grad) - [TopDim TopDim]))==0) TF = false; end end if ~isempty(myMAP.PHI.Tangent_Vector) if ~(min(abs(size(myMAP.PHI.Tangent_Vector) - [GeoDim 1]))==0) TF = false; end end if ~isempty(myMAP.PHI.Normal_Vector) if ~(min(abs(size(myMAP.PHI.Normal_Vector) - [GeoDim 1]))==0) TF = false; end end if ~isempty(myMAP.PHI.Tangent_Space_Projection) if ~(min(abs(size(myMAP.PHI.Tangent_Space_Projection) - [GeoDim GeoDim]))==0) TF = false; end end if ~isempty(myMAP.PHI.Hess) [T1, T2, GD] = size(myMAP.PHI.Hess); SizeHess = [T1, T2, GD]; if ~(min(abs(SizeHess - [TopDim TopDim GeoDim]))==0) TF = false; end end if ~isempty(myMAP.PHI.Hess_Inv_Map) [T1, T2, GD] = size(myMAP.PHI.Hess_Inv_Map); SizeHessInv = [T1, T2, GD]; if ~(min(abs(SizeHessInv - [TopDim TopDim GeoDim]))==0) TF = false; end end if ~isempty(myMAP.PHI.Grad_Metric) [T1, T2, GD] = size(myMAP.PHI.Grad_Metric); SizeGradMet = [T1, T2, GD]; if ~(min(abs(SizeGradMet - [TopDim TopDim GeoDim]))==0) TF = false; end end if ~isempty(myMAP.PHI.Grad_Inv_Metric) [T1, T2, GD] = size(myMAP.PHI.Grad_Inv_Metric); SizeGradInvMet = [T1, T2, GD]; if ~(min(abs(SizeGradInvMet - [TopDim TopDim GeoDim]))==0) TF = false; end end if ~isempty(myMAP.PHI.Second_Fund_Form) if ~(min(abs(size(myMAP.PHI.Second_Fund_Form) - [TopDim TopDim]))==0) TF = false; end if ~(min(abs(size(myMAP.PHI.Det_Second_Fund_Form) - [1 1]))==0) TF = false; end if ~(min(abs(size(myMAP.PHI.Inv_Det_Second_Fund_Form) - [1 1]))==0) TF = false; end end if ~isempty(myMAP.PHI.Total_Curvature_Vector) if ~(min(abs(size(myMAP.PHI.Total_Curvature_Vector) - [GeoDim 1]))==0) TF = false; end end if ~isempty(myMAP.PHI.Total_Curvature) if ~(min(abs(size(myMAP.PHI.Total_Curvature) - [1 1]))==0) TF = false; end end if ~isempty(myMAP.PHI.Gauss_Curvature) if ~(min(abs(size(myMAP.PHI.Gauss_Curvature) - [1 1]))==0) TF = false; end end if ~isempty(myMAP.PHI.Shape_Operator) if ~(min(abs(size(myMAP.PHI.Shape_Operator) - [GeoDim GeoDim]))==0) TF = false; end end % verify code generation! NB = 3; % check against the use of 3 basis functions! Map_PHI( 1).Code = myMAP.PHI_Mesh_Size_C_Code(NB); Map_PHI( 2).Code = myMAP.PHI_Val_C_Code(NB); Map_PHI( 3).Code = myMAP.PHI_Grad_C_Code(NB); Map_PHI( 4).Code = myMAP.PHI_Metric_C_Code; Map_PHI( 5).Code = myMAP.PHI_Det_Metric_C_Code; Map_PHI( 6).Code = myMAP.PHI_Inv_Det_Metric_C_Code; Map_PHI( 7).Code = myMAP.PHI_Inv_Metric_C_Code; Map_PHI( 8).Code = myMAP.PHI_Det_Jac_C_Code; Map_PHI( 9).Code = myMAP.PHI_Det_Jac_w_Weight_C_Code; Map_PHI(10).Code = myMAP.PHI_Inv_Det_Jac_C_Code; Map_PHI(11).Code = myMAP.PHI_Inv_Grad_C_Code; Map_PHI(12).Code = myMAP.PHI_Tangent_Vector_C_Code; Map_PHI(13).Code = myMAP.PHI_Normal_Vector_C_Code; Map_PHI(14).Code = myMAP.PHI_Tan_Space_Proj_C_Code; Map_PHI(15).Code = myMAP.PHI_Hess_C_Code(NB); Map_PHI(16).Code = myMAP.PHI_Hess_Inv_Map_C_Code; Map_PHI(17).Code = myMAP.PHI_Grad_Metric_C_Code; Map_PHI(18).Code = myMAP.PHI_Grad_Inv_Metric_C_Code; Map_PHI(19).Code = myMAP.PHI_2nd_Fund_Form_C_Code; Map_PHI(20).Code = myMAP.PHI_Det_2nd_Fund_Form_C_Code; Map_PHI(21).Code = myMAP.PHI_Inv_Det_2nd_Fund_Form_C_Code; Map_PHI(22).Code = myMAP.PHI_Total_Curvature_Vector_C_Code; Map_PHI(23).Code = myMAP.PHI_Total_Curvature_C_Code; Map_PHI(24).Code = myMAP.PHI_Gauss_Curvature_C_Code; Map_PHI(25).Code = myMAP.PHI_Shape_Operator_C_Code; % disp('-----------------------------------------------'); % GeoDim % TopDim % LIN_MAP_TF % Code1 = myMAP.PHI_Grad_Inv_Metric_C_Code; % if ~isempty(Code1) % display_code_snippet(Code1); % end % load up reference data if LIN_MAP_TF LM_str = 'true'; else LM_str = 'false'; end DIR = fileparts(mfilename('fullpath')); FN_str = ['Map_PHI_Codes_', num2str(GeoDim), num2str(TopDim), '_', LM_str, '_NumBasis_', num2str(NB), '.mat']; FullFile_string = fullfile(DIR, FN_str); RefData = load(FullFile_string,'Map_PHI'); % check against reference data for ind=1:length(Map_PHI(:)) STRUCTS_MATCH = isequal(RefData.Map_PHI(ind),Map_PHI(ind)); if ~STRUCTS_MATCH TF = false; % test failed! disp('RefData:'); display_code_snippet(RefData.Map_PHI(ind).Code); disp('Actual:'); display_code_snippet(Map_PHI(ind).Code); break; end end end function display_code_snippet(Code) Code.Var_Name(1) Code.Constant disp('Definition:'); for ii = 1:length(Code.Defn) disp(Code.Defn(ii).line); end disp(' '); disp('Evaluation:'); for ii = 1:length(Code.Eval_Snip) disp(Code.Eval_Snip(ii).line); end end
github
eardi/sm-fpca-master
test_Hdiv_Trans.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/Unit_Test/test_Hdiv_Trans.m
2,585
utf_8
b48224497c37a2d9a5f384bfb36b8ff1
function status = test_Hdiv_Trans() %test_Hdiv_Trans % % Test code for FELICITY class. % Copyright (c) 05-19-2016, Shawn W. Walker status = 0; GM_test = Geometric_Trans('test',2,2,true); FUNC1_test = Hdiv_Trans('test',GM_test); % make sure all the fields are there! if (min(isfield(FUNC1_test.vv,{'Orientation','Val','Div'}))==0) status = 1; end % check all cases! % (GeoDim,TopDim) for gg=2:3 for tt=2:gg if ~valid_vv_struct(gg,tt,false) status = 1; end if ~valid_vv_struct(gg,tt,true) status = 1; end end end %%%%%%%%%%%%% if (status==0) disp('Test passed!'); else disp('Test failed!'); end end function TF = valid_vv_struct(GeoDim,TopDim,LIN_MAP_TF) TF = true; % init test result to passed % define a map! myMAP = Geometric_Trans('test',GeoDim,TopDim,LIN_MAP_TF); myFUNC = Hdiv_Trans('test',myMAP); % ensure that the symbolic variables have the correct size! if ~(min(abs(size(myFUNC.vv.Orientation) - [1 1]))==0) TF = false; end if ~isempty(myFUNC.vv.Val) if ~(min(abs(size(myFUNC.vv.Val) - [GeoDim 1]))==0) TF = false; end end if ~isempty(myFUNC.vv.Div) if ~(min(abs(size(myFUNC.vv.Div) - [1 1]))==0) TF = false; end end % verify code generation! %Func_vv( 1).Code = myFUNC.FUNC_Orientation_C_Code; Func_vv( 1).Code = myFUNC.FUNC_Val_C_Code; Func_vv( 2).Code = myFUNC.FUNC_Div_C_Code; Func_vv( 3).Code = myFUNC.COEF_FUNC_Val_C_Code; Func_vv( 4).Code = myFUNC.COEF_FUNC_Div_C_Code; % load up reference data if LIN_MAP_TF LM_str = 'true'; else LM_str = 'false'; end DIR = fileparts(mfilename('fullpath')); FN_str = ['Func_vv_Hdiv_Codes_', num2str(GeoDim), num2str(TopDim), '_', LM_str, '.mat']; FullFile_string = fullfile(DIR, FN_str); RefData = load(FullFile_string,'Func_vv'); %save(FullFile_string,'Func_vv'); % for ind = 1:4 % Num_Lines = length(Func_vv(ind).Code); % for k = 1:Num_Lines % Func_vv(ind).Code(k).Var_Name % Func_vv(ind).Code(k).Constant % for jj = 1:length(Func_vv(ind).Code(k).Defn) % Func_vv(ind).Code(k).Defn(jj) % end % for jj = 1:length(Func_vv(ind).Code(k).Eval_Snip) % Func_vv(ind).Code(k).Eval_Snip(jj) % end % end % end % check against reference data for ind=1:length(Func_vv(:)) STRUCTS_MATCH = isequal(RefData.Func_vv(ind),Func_vv(ind)); if ~STRUCTS_MATCH TF = false; % test failed! break; end end end
github
eardi/sm-fpca-master
test_Hcurl_Trans.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/Unit_Test/test_Hcurl_Trans.m
2,870
utf_8
821f758f3b1246c472446181f738f1bf
function status = test_Hcurl_Trans() %test_Hcurl_Trans % % Test code for FELICITY class. % Copyright (c) 03-24-2018, Shawn W. Walker status = 0; GM_test = Geometric_Trans('test',2,2,true); FUNC1_test = Hcurl_Trans('test',GM_test); % make sure all the fields are there! if (min(isfield(FUNC1_test.vv,{'Orientation','Val','Curl'}))==0) status = 1; end % check all cases! % (GeoDim,TopDim) for gg=2:3 tt = gg; disp('SWW: need to implement H(curl) on surfaces...'); %for tt=2:gg if ~valid_vv_struct(gg,tt,false) status = 1; end if ~valid_vv_struct(gg,tt,true) status = 1; end %end end %%%%%%%%%%%%% if (status==0) disp('Test passed!'); else disp('Test failed!'); end end function TF = valid_vv_struct(GeoDim,TopDim,LIN_MAP_TF) TF = true; % init test result to passed % define a map! myMAP = Geometric_Trans('test',GeoDim,TopDim,LIN_MAP_TF); myFUNC = Hcurl_Trans('test',myMAP); % ensure that the symbolic variables have the correct size! if ~(min(abs(size(myFUNC.vv.Orientation) - [1 1]))==0) TF = false; end if ~isempty(myFUNC.vv.Val) if ~(min(abs(size(myFUNC.vv.Val) - [GeoDim 1]))==0) TF = false; end end if ~isempty(myFUNC.vv.Curl) if and((TopDim==2),(GeoDim==2)) if ~(min(abs(size(myFUNC.vv.Curl) - [1 1]))==0) TF = false; end elseif and((TopDim==3),(GeoDim==3)) if ~(min(abs(size(myFUNC.vv.Curl) - [GeoDim 1]))==0) TF = false; end end end % verify code generation! %Func_vv( 1).Code = myFUNC.FUNC_Orientation_C_Code; Func_vv( 1).Code = myFUNC.FUNC_Val_C_Code; Func_vv( 2).Code = myFUNC.FUNC_Curl_C_Code; Func_vv( 3).Code = myFUNC.COEF_FUNC_Val_C_Code; Func_vv( 4).Code = myFUNC.COEF_FUNC_Curl_C_Code; % load up reference data if LIN_MAP_TF LM_str = 'true'; else LM_str = 'false'; end DIR = fileparts(mfilename('fullpath')); FN_str = ['Func_vv_Hcurl_Codes_', num2str(GeoDim), num2str(TopDim), '_', LM_str, '.mat']; FullFile_string = fullfile(DIR, FN_str); RefData = load(FullFile_string,'Func_vv'); %save(FullFile_string,'Func_vv'); % for ind = 1:4 % Num_Lines = length(Func_vv(ind).Code); % for k = 1:Num_Lines % Func_vv(ind).Code(k).Var_Name % Func_vv(ind).Code(k).Constant % for jj = 1:length(Func_vv(ind).Code(k).Defn) % Func_vv(ind).Code(k).Defn(jj) % end % for jj = 1:length(Func_vv(ind).Code(k).Eval_Snip) % Func_vv(ind).Code(k).Eval_Snip(jj) % end % end % end % check against reference data for ind=1:length(Func_vv(:)) STRUCTS_MATCH = isequal(RefData.Func_vv(ind),Func_vv(ind)); if ~STRUCTS_MATCH TF = false; % test failed! break; end end end
github
eardi/sm-fpca-master
Write_C_Code_To_File.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/@generic_trans/Write_C_Code_To_File.m
1,494
utf_8
de3f56aac42961fe0a8887fc6b98d99a
function status = Write_C_Code_To_File(obj,FileName,Struct_C_Code) %Write_C_Code_To_File % % This writes a given code struct and writes it to a given file. % Copyright (c) 02-20-2012, Shawn W. Walker % open file for writing fid = fopen(FileName, 'w'); if ~isempty(Struct_C_Code) % write the variable names write_code_line(fid,'// Variable Names:'); write_code_line(fid,'// -----------------------'); for ind=1:length(Struct_C_Code.Var_Name(:)) write_code_line(fid, Struct_C_Code.Var_Name(ind).line); end write_CR(fid); % write the definition code write_code_line(fid,'// Definition Code:'); write_code_line(fid,'// ------------------------'); for ind=1:length(Struct_C_Code.Defn) write_code_line(fid, Struct_C_Code.Defn(ind).line); end write_CR(fid); % write the evaluation code write_code_line(fid,'// Evaluation Code:'); write_code_line(fid,'// ------------------------'); for ind=1:length(Struct_C_Code.Eval_Snip) write_code_line(fid, Struct_C_Code.Eval_Snip(ind).line); end write_CR(fid); else write_code_line(fid,'// EMPTY!!!!!!!!'); write_CR(fid); end % DONE! status = fclose(fid); end function status = write_code_line(fid,STR) ENDL = '\n'; if ~isempty(STR) status = fprintf(fid, [STR, ENDL]); end end function status = write_CR(fid) ENDL = '\n'; status = fprintf(fid, ['', ENDL]); end
github
eardi/sm-fpca-master
Output_CPP_Eval_Extension.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/@Hdiv_Trans/Output_CPP_Eval_Extension.m
1,235
utf_8
5996ca59e64c741048bc8a4d432f8b70
function CPP_Eval = Output_CPP_Eval_Extension(obj,FIELD_str,Components) %Output_CPP_Eval_Extension % % This outputs a string representing the C++ evaluation code for the given % variable name. % % Components = [basis_comp_1, basis_comp_2, comp_1, comp_2, etc...] % Copyright (c) 03-25-2012, Shawn W. Walker % peel off the basis component Basis_Comp = Components(1:2); Components = Components(3:end); if strcmp(FIELD_str,'Orientation') error('you don''t need this!'); elseif strcmp(FIELD_str,'Val') Vec_Comp_C_index_STR = Get_Index_String(Basis_Comp(1)); CPP_Eval = ['.v', Vec_Comp_C_index_STR]; elseif strcmp(FIELD_str,'Div') CPP_Eval = ['.a', '']; % elseif strcmp(FIELD_str,'Grad') % Grad_Comp_C_index_STR = Get_Index_String(Components(1)); % CPP_Eval = ['.v', Grad_Comp_C_index_STR]; % elseif strcmp(FIELD_str,'Hess') % Comp_1_C_index_STR = Get_Index_String(Components(1)); % Comp_2_C_index_STR = Get_Index_String(Components(2)); % CPP_Eval = ['.m', Comp_1_C_index_STR, Comp_2_C_index_STR]; else error('Not valid!'); end end function INDEX_str = Get_Index_String(Index) % use C-style indexing INDEX_str = ['[', num2str(Index - 1), ']']; end
github
eardi/sm-fpca-master
Premap_Basis.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/@Hdiv_Trans/private/Premap_Basis.m
1,747
utf_8
5bb82ea1bf4671cec699d718a1afe095
function Sign_Change = Premap_Basis(Mesh_Orient,All_Facet_DoFs,Num_Basis) %Premap_Basis % % This is used by the H(div) elements for pre-mapping basis functions to % adjust for different facet orientations. % % Sign_Change = Premap_Basis_Hdiv(Mesh_Orient,All_Facet_DoFs,Num_Basis); % % Mesh_Orient: NxF vector indicating actual orientation of mesh elements % (N is the number of elements; F is the number of element % facets.) % Ex: [+1, -1, +1; ...] (F = 3 here) % Elem #1: facet 1 and facet 3 are positively oriented; % facet 2 is negative, etc... % All_Facet_DoFs: cell array of sets of DoFs attached to all facets. % Num_Basis: number of basis functions in the element. % % Sign_Change: NxB matrix, where B = number of basis functions: % +1 = no sign change. % -1 = flip sign of corresponding basis function. % Rows correspond to rows of "Mesh_Orient". % Copyright (c) 09-12-2016, Shawn W. Walker Num_Elem = size(Mesh_Orient,1); Num_Facets = size(Mesh_Orient,2); Sign_Change = ones(Num_Elem,Num_Basis); % init % loop through the local facets (edges) of the mesh elements for fi = 1:Num_Facets Facet_Sign = Mesh_Orient(:,fi); Neg_Mask = (Facet_Sign==-1); % gets DoF indices on the current facet DoFs_On_Facet = get_dofs_on_facet(All_Facet_DoFs,fi); % flip necessary signs Sign_Change(Neg_Mask,DoFs_On_Facet) = -1; end end function DoFs = get_dofs_on_facet(All_Facet_DoFs,Facet_Index) DoFs = []; % init for ci = 1:length(All_Facet_DoFs) DoF_Set = All_Facet_DoFs{ci}; DI = DoF_Set(Facet_Index,:); DoFs = [DoFs; DI(:)]; end end
github
eardi/sm-fpca-master
Generate_Local_Maps_For_Geometric_Basis_Functions.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/@Codim_Map/Generate_Local_Maps_For_Geometric_Basis_Functions.m
10,246
utf_8
82e826bc3b9ccb1863c1f11985f48ba0
function Local_Map = Generate_Local_Maps_For_Geometric_Basis_Functions(obj,entity_ind) %Generate_Local_Maps_For_Geometric_Basis_Functions % % This generates two symbolic maps (expressions) for generating geometric % basis functions that are reduced to Subdomains and Domains of Integration % (DoI's). % % Local_Map = obj.Generate_Local_Maps_For_Geometric_Basis_Functions(ent); % % ent = local mesh topological entity index; either a 1 or 2 length vector of % local indices; 2 length case is a special case. % % Local_Map = struct containing the two maps: % .Sub = FELSymFunc object that defines a map from the reference % element of the Subdomain to a given topological entity in % the Global cell (same topological dimension as the % Subdomain, but the geometric dimension may be higher). % .DoI = FELSymFunc object; similar, except it maps from the % reference element of the DoI to a topological entity in % the Subdomain cell. % % The map Local_Map.Sub has range in the Global cell reference element, and % domain is the Subdomain cell reference element. % % The map Local_Map.DoI has range in the Subdomain cell reference element, and % domain is the DoI cell reference element. % % Thus, the two maps can be composed to create a new map that goes from the % DoI to the Global cell reference element. % % Sub Top_Dim | independent variable % 1 | u_hat % 2 | u_hat,v_hat % 3 | u_hat,v_hat,w_hat % % DoI Top_Dim | independent variable % 1 | x_hat % 2 | x_hat,y_hat % 3 | x_hat,y_hat,z_hat % Copyright (c) 05-20-2016, Shawn W. Walker Global_Hold_All_Top_Dim = obj.Domain.Global.Top_Dim; Subdomain_Top_Dim = obj.Domain.Subdomain.Top_Dim; DoI_Top_Dim = obj.Domain.Integration_Domain.Top_Dim; % Note: 3 >= Global_Hold_All_Top_Dim >= Subdomain_Top_Dim >= DoI_Top_Dim >= 1 % define symbolic variables u = sym('u_hat'); v = sym('v_hat'); w = sym('w_hat'); x = sym('x_hat'); y = sym('y_hat'); z = sym('z_hat'); if (Global_Hold_All_Top_Dim==1) % only get the identity if (Subdomain_Top_Dim==1) Sub_Sym_Map = u; % identity map if (DoI_Top_Dim==1) % codim = 0 DoI_Sym_Map = x; % identity map else error('Invalid!'); end else error('Invalid!'); end elseif (Global_Hold_All_Top_Dim==2) if (Subdomain_Top_Dim==2) % codim = 0 Sub_Sym_Map = [u;v]; % identity map if (DoI_Top_Dim==2) DoI_Sym_Map = [x;y]; % identity map elseif (DoI_Top_Dim==1) % codim = 1 DoI_Sym_Map = map_unit_interval_to_tri_edge(x,entity_ind(1)); else error('Invalid!'); end elseif (Subdomain_Top_Dim==1) Sub_Sym_Map = map_unit_interval_to_tri_edge(u,entity_ind(1)); if (DoI_Top_Dim==1) % codim = 1 DoI_Sym_Map = x; % identity map else error('Invalid!'); end else error('Invalid!'); end elseif (Global_Hold_All_Top_Dim==3) if (Subdomain_Top_Dim==3) Sub_Sym_Map = [u;v;w]; % identity map if (DoI_Top_Dim==3) % codim = 0 DoI_Sym_Map = [x;y;z]; % identity map elseif (DoI_Top_Dim==2) % codim = 1 DoI_Sym_Map = map_unit_triangle_to_tet_face([x;y],entity_ind(1)); elseif (DoI_Top_Dim==1) % codim = 2 DoI_Sym_Map = map_unit_interval_to_tet_edge(x,entity_ind(1)); else error('Invalid!'); end elseif (Subdomain_Top_Dim==2) Sub_Sym_Map = map_unit_triangle_to_tet_face([u;v],entity_ind(1)); if (DoI_Top_Dim==2) % codim = 1 DoI_Sym_Map = [x;y]; % identity map elseif (DoI_Top_Dim==1) % codim = 2 % if this is the special case, then we want the second entity index DoI_Sym_Map = map_unit_interval_to_tri_edge(x,entity_ind(end)); else error('Invalid!'); end elseif (Subdomain_Top_Dim==1) Sub_Sym_Map = map_unit_interval_to_tet_edge(u,entity_ind(1)); if (DoI_Top_Dim==1) % codim = 2 DoI_Sym_Map = x; % identity map else error('Invalid!'); end else error('Invalid!'); end else error('Invalid!'); end if (Subdomain_Top_Dim==1) Sub_Vars = {'u_hat'}; elseif (Subdomain_Top_Dim==2) Sub_Vars = {'u_hat', 'v_hat'}; elseif (Subdomain_Top_Dim==3) Sub_Vars = {'u_hat', 'v_hat', 'w_hat'}; else error('Invalid!'); end Local_Map.Sub = FELSymFunc(Sub_Sym_Map,Sub_Vars); if (DoI_Top_Dim==1) DoI_Vars = {'x_hat'}; elseif (DoI_Top_Dim==2) DoI_Vars = {'x_hat', 'y_hat'}; elseif (DoI_Top_Dim==3) DoI_Vars = {'x_hat', 'y_hat', 'z_hat'}; else error('Invalid!'); end Local_Map.DoI = FELSymFunc(DoI_Sym_Map,DoI_Vars); end function Sym_Map = map_unit_interval_to_tri_edge(indep_var,Entity_Index) % vertices of the reference triangle A1 = [0; 0]; A2 = [1; 0]; A3 = [0; 1]; % map quad rule from interval to 1 of 3 edges with orientation if (Entity_Index==1) % edge1, pos p1 = A2; p2 = A3; elseif (Entity_Index==2) % edge2, pos p1 = A3; p2 = A1; elseif (Entity_Index==3) % edge3, pos p1 = A1; p2 = A2; elseif (Entity_Index==-1) % edge1, neg p1 = A3; p2 = A2; elseif (Entity_Index==-2) % edge2, neg p1 = A1; p2 = A3; elseif (Entity_Index==-3) % edge3, neg p1 = A2; p2 = A1; else error('Entity_Index outside valid range!'); end % Map = (1 - t) * p1 + t*p2 Sym_Map = (1 - indep_var) * p1 + indep_var * p2; end function Sym_Map = map_unit_interval_to_tet_edge(indep_var,Entity_Index) % vertices of the reference tetrahedron A1 = [0; 0; 0]; A2 = [1; 0; 0]; A3 = [0; 1; 0]; A4 = [0; 0; 1]; % map quad rule from interval to 1 of 6 edges with orientation if (Entity_Index==1) % edge1, pos p1 = A1; p2 = A2; elseif (Entity_Index==2) % edge2, pos p1 = A1; p2 = A3; elseif (Entity_Index==3) % edge3, pos p1 = A1; p2 = A4; elseif (Entity_Index==4) % edge4, pos p1 = A2; p2 = A3; elseif (Entity_Index==5) % edge5, pos p1 = A3; p2 = A4; elseif (Entity_Index==6) % edge6, pos p1 = A4; p2 = A2; elseif (Entity_Index==-1) % edge1, neg p1 = A2; p2 = A1; elseif (Entity_Index==-2) % edge2, neg p1 = A3; p2 = A1; elseif (Entity_Index==-3) % edge3, neg p1 = A4; p2 = A1; elseif (Entity_Index==-4) % edge4, neg p1 = A3; p2 = A2; elseif (Entity_Index==-5) % edge5, neg p1 = A4; p2 = A3; elseif (Entity_Index==-6) % edge6, neg p1 = A2; p2 = A4; else error('Entity_Index outside valid range!'); end % Map = (1 - t) * p1 + t*p2 Sym_Map = (1 - indep_var) * p1 + indep_var * p2; end function Sym_Map = map_unit_triangle_to_tet_face(indep_var,Entity_Index) % vertices of the reference tetrahedron A1 = [0; 0; 0]; A2 = [1; 0; 0]; A3 = [0; 1; 0]; A4 = [0; 0; 1]; % map quad rule from ref triangle to 1 of 4 faces with orientation if (Entity_Index==1) % face1, pos v1 = A2; v2 = A3; v3 = A4; elseif (Entity_Index==2) % face2, pos v1 = A1; v2 = A4; v3 = A3; elseif (Entity_Index==3) % face3, pos v1 = A1; v2 = A2; v3 = A4; elseif (Entity_Index==4) % face4, pos v1 = A1; v2 = A3; v3 = A2; elseif (Entity_Index==-1) % face1, neg v1 = A2; % pivot v2 = A4; v3 = A3; elseif (Entity_Index==-2) % face2, neg v1 = A1; % pivot v2 = A3; v3 = A4; elseif (Entity_Index==-3) % face3, neg v1 = A1; % pivot v2 = A4; v3 = A2; elseif (Entity_Index==-4) % face4, neg v1 = A1; % pivot v2 = A2; v3 = A3; else error('Entity_Index outside valid range!'); end % Map = (1 - r - s) * v1 + r*v2 + s*v3 Sym_Map = (1 - indep_var(1) - indep_var(2)) * v1 +... indep_var(1) * v2 +... indep_var(2) * v3; % end % function Sym_Map = map_unit_interval_to_tet_face_edge(indep_var,Entity_Index) % % Sub_Entity_Index = Entity_Index(1); % DoI_Entity_Index = Entity_Index(2); % % % vertices of the reference tetrahedron % A1 = [0; 0; 0]; % A2 = [1; 0; 0]; % A3 = [0; 1; 0]; % A4 = [0; 0; 1]; % % % first get the local face with orientation % if (Sub_Entity_Index==1) % face1, pos % v1 = A2; % v2 = A3; % v3 = A4; % elseif (Sub_Entity_Index==2) % face2, pos % v1 = A1; % v2 = A4; % v3 = A3; % elseif (Sub_Entity_Index==3) % face3, pos % v1 = A1; % v2 = A2; % v3 = A4; % elseif (Sub_Entity_Index==4) % face4, pos % v1 = A1; % v2 = A3; % v3 = A2; % elseif (Sub_Entity_Index==-1) % face1, neg % v1 = A2; % pivot % v2 = A4; % v3 = A3; % elseif (Sub_Entity_Index==-2) % face2, neg % v1 = A1; % pivot % v2 = A3; % v3 = A4; % elseif (Sub_Entity_Index==-3) % face3, neg % v1 = A1; % pivot % v2 = A4; % v3 = A2; % elseif (Sub_Entity_Index==-4) % face4, neg % v1 = A1; % pivot % v2 = A2; % v3 = A3; % else % error('Sub_Entity_Index outside valid range!'); % end % % % Now, get the local edge (of the local face) with orientation % if (DoI_Entity_Index==1) % edge1, pos % p1 = v2; % p2 = v3; % elseif (DoI_Entity_Index==2) % edge2, pos % p1 = v3; % p2 = v1; % elseif (DoI_Entity_Index==3) % edge3, pos % p1 = v1; % p2 = v2; % elseif (DoI_Entity_Index==-1) % edge1, neg % p1 = v3; % p2 = v2; % elseif (DoI_Entity_Index==-2) % edge2, neg % p1 = v1; % p2 = v3; % elseif (DoI_Entity_Index==-3) % edge3, neg % p1 = v2; % p2 = v1; % else % error('DoI_Entity_Index outside valid range!'); % end % % % Map = (1 - t) * p1 + t*p2 % Sym_Map = (1 - indep_var) * p1 + indep_var * p2; % % end
github
eardi/sm-fpca-master
PHI_Grad_Metric_C_Code.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/@Geometric_Trans/PHI_Grad_Metric_C_Code.m
6,314
utf_8
842ef98e2fd16bbfefd4f9b326c1cc7b
function CODE = PHI_Grad_Metric_C_Code(obj) %PHI_Grad_Metric_C_Code % % Generate C-code for direct evaluation of PHI.Grad_Metric. % PHI_Grad_Metric_r_ij(qp) = % \partial_r SUM^GeoDim_{k=1} PHI_Grad_ki(qp) * PHI_Grad_kj(qp), % 1 <= i,j <= TopDim, % and qp are the coordinates of a quadrature point. % Copyright (c) 08-11-2014, Shawn W. Walker if ~isempty(obj.PHI.Grad_Metric) % if this concept exists! % make var string CODE.Var_Name(1).line = []; % init CODE.Var_Name(1).line = obj.Output_CPP_Var_Name('Grad_Metric'); % make a reference for the data evaluated at a quad point CPP_REF_Var_str = obj.Get_Quad_Pt_CPP_Ref_Var_Name(CODE.Var_Name(1).line); % evaluate at the given tensor entry index PHI_Grad_Metric_Tensor_str = [CPP_REF_Var_str]; % need the gradient of the map! Map_PHI_Grad_str = obj.Output_CPP_Var_Name('Grad'); Map_PHI_Grad_Matrix_str = [Map_PHI_Grad_str, '[qp_i]']; % need the hessian of the map! Map_PHI_Hess_str = obj.Output_CPP_Var_Name('Hess'); Map_PHI_Hess_Tensor_str = [Map_PHI_Hess_str, '[qp_i]']; GD = obj.GeoDim; CONST_Metric = obj.Lin_PHI_TF; if ~CONST_Metric % metric is not constant % evaluate! if (obj.TopDim==1) EVAL_STR(3).line = []; % init EVAL_STR(1).line = '// compute 2 * d^2/ds^2 vX DOT d/ds vX'; DP_str = get_dot_product_str(GD,Map_PHI_Hess_Tensor_str,Map_PHI_Grad_Matrix_str,1,1,1); EVAL_STR(2).line = ['const double HG_DP = ', DP_str, ';']; LHS = get_grad_metric_eval_str(PHI_Grad_Metric_Tensor_str,1,1,1); EVAL_STR(3).line = [LHS, ' = 2.0 * HG_DP;']; elseif (obj.TopDim==2) EVAL_STR(16).line = []; % init EVAL_STR(1).line = '// compute d/ds_r d/ds_i vX DOT d/ds_j vX + d/ds_r d/ds_j vX DOT d/ds_i vX'; EVAL_STR(2).line = 'double HG_DP_A;'; % component: 1,1,1 DP_str = get_dot_product_str(GD,Map_PHI_Hess_Tensor_str,Map_PHI_Grad_Matrix_str,1,1,1); EVAL_STR(3).line = ['HG_DP_A = ', DP_str, ';']; LHS_111 = get_grad_metric_eval_str(PHI_Grad_Metric_Tensor_str,1,1,1); EVAL_STR(4).line = [LHS_111, ' = 2.0 * HG_DP_A;']; % component: 1,2,2 DP_str = get_dot_product_str(GD,Map_PHI_Hess_Tensor_str,Map_PHI_Grad_Matrix_str,1,2,2); EVAL_STR(5).line = ['HG_DP_A = ', DP_str, ';']; LHS_122 = get_grad_metric_eval_str(PHI_Grad_Metric_Tensor_str,1,2,2); EVAL_STR(6).line = [LHS_122, ' = 2.0 * HG_DP_A;']; % component: 2,1,1 DP_str = get_dot_product_str(GD,Map_PHI_Hess_Tensor_str,Map_PHI_Grad_Matrix_str,2,1,1); EVAL_STR(7).line = ['HG_DP_A = ', DP_str, ';']; LHS_211 = get_grad_metric_eval_str(PHI_Grad_Metric_Tensor_str,2,1,1); EVAL_STR(8).line = [LHS_211, ' = 2.0 * HG_DP_A;']; % component: 2,2,2 DP_str = get_dot_product_str(GD,Map_PHI_Hess_Tensor_str,Map_PHI_Grad_Matrix_str,2,2,2); EVAL_STR(9).line = ['HG_DP_A = ', DP_str, ';']; LHS_222 = get_grad_metric_eval_str(PHI_Grad_Metric_Tensor_str,2,2,2); EVAL_STR(10).line = [LHS_222, ' = 2.0 * HG_DP_A;']; % component: 1,1,2 DP_str = get_dot_product_str(GD,Map_PHI_Hess_Tensor_str,Map_PHI_Grad_Matrix_str,1,1,2); EVAL_STR(11).line = ['HG_DP_A = ', DP_str, ';']; LHS_112 = get_grad_metric_eval_str(PHI_Grad_Metric_Tensor_str,1,1,2); EVAL_STR(12).line = [LHS_112, ' = HG_DP_A + ', '0.5*', LHS_211, '; // reuse!']; % component: 1,2,1 LHS_121 = get_grad_metric_eval_str(PHI_Grad_Metric_Tensor_str,1,2,1); EVAL_STR(13).line = [LHS_121, ' = ', LHS_112, '; // symmetric']; % component: 2,2,1 DP_str = get_dot_product_str(GD,Map_PHI_Hess_Tensor_str,Map_PHI_Grad_Matrix_str,2,2,1); EVAL_STR(14).line = ['HG_DP_A = ', DP_str, ';']; LHS_221 = get_grad_metric_eval_str(PHI_Grad_Metric_Tensor_str,2,2,1); EVAL_STR(15).line = [LHS_221, ' = HG_DP_A + ', '0.5*', LHS_122, '; // reuse!']; % component: 2,1,2 LHS_212 = get_grad_metric_eval_str(PHI_Grad_Metric_Tensor_str,2,1,2); EVAL_STR(16).line = [LHS_212, ' = ', LHS_221, '; // symmetric']; else error('Invalid!'); end else % map is linear, so metric is constant EVAL_STR(1).line = [PHI_Grad_Metric_Tensor_str, '.Set_To_Zero(); // metric is constant, so gradient is zero']; end % define the data type SIZE = size(obj.PHI.Grad_Metric,1); TYPE_str = obj.Get_CPP_Tensor_Data_Type_Name(SIZE,SIZE,SIZE); Defn_Hdr = '// gradient (in local coordinates) of the metric tensor of the map'; Loop_Hdr = '// compute gradient of metric tensor'; Loop_Comment = []; CONST_VAR = obj.Lin_PHI_TF; CODE = obj.create_declaration_and_eval_code(CODE.Var_Name,TYPE_str,EVAL_STR,... Defn_Hdr,Loop_Hdr,Loop_Comment,CONST_VAR); else CODE = []; end end function DP_str = get_dot_product_str(GD,Map_PHI_Hess_Tensor_str,Map_PHI_Grad_Matrix_str,r,i,j) r_str = ['[', num2str(r-1), ']']; i_str = ['[', num2str(i-1), ']']; j_str = ['[', num2str(j-1), ']']; DP0_str = [Map_PHI_Hess_Tensor_str, '.m[0]', r_str, i_str, ' * ', Map_PHI_Grad_Matrix_str, '.m[0]', j_str]; DP1_str = [Map_PHI_Hess_Tensor_str, '.m[1]', r_str, i_str, ' * ', Map_PHI_Grad_Matrix_str, '.m[1]', j_str]; DP2_str = [Map_PHI_Hess_Tensor_str, '.m[2]', r_str, i_str, ' * ', Map_PHI_Grad_Matrix_str, '.m[2]', j_str]; if (GD==1) DP_str = DP0_str; elseif (GD==2) DP_str = [DP0_str, ' + ', DP1_str]; elseif (GD==3) DP_str = [DP0_str, ' + ', DP1_str, ' + ', DP2_str]; else error('Invalid!'); end end function STR = get_grad_metric_eval_str(PHI_Grad_Metric_Tensor_str,r,i,j) r_str = ['[', num2str(r-1), ']']; i_str = ['[', num2str(i-1), ']']; j_str = ['[', num2str(j-1), ']']; STR = [PHI_Grad_Metric_Tensor_str, '.m', r_str, i_str, j_str]; end
github
eardi/sm-fpca-master
PHI_Mesh_Size_C_Code.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/@Geometric_Trans/PHI_Mesh_Size_C_Code.m
5,483
utf_8
a49c6e600dcd44d9f5f9968ad9a61e09
function CODE = PHI_Mesh_Size_C_Code(obj,Num_Basis) %PHI_Mesh_Size_C_Code % % Generate C-code for computing the mesh size (with PHI). % vx_i(qp) = SUM^{Num_Basis}_{k=1} c_{ki} phi_k(\hat{vx}_i), % 1 <= i <= GeoDim, and \hat{vx}_i are the local % coordinates of the reference element (simplex). % Copyright (c) 08-17-2017, Shawn W. Walker % make var string CODE.Var_Name(1).line = []; % init CODE.Var_Name(1).line = obj.Output_CPP_Var_Name('Mesh_Size'); % loop thru all components of the map Num_Corner_Vtx = obj.TopDim + 1; EVAL_STR(obj.GeoDim*Num_Corner_Vtx + Num_Corner_Vtx + 2).line = []; % init Vec_Data_Type_str = obj.Get_CPP_Vector_Data_Type_Name(obj.GeoDim); INDEX = 0; for cp=1:Num_Corner_Vtx INDEX = INDEX + 1; EVAL_STR(INDEX).line = [Vec_Data_Type_str, ' ', 'Pt', num2str(cp), ';']; end INDEX = INDEX + 1; EVAL_STR(INDEX).line = '// compute vertex positions by summing over basis functions'; for ig=1:obj.GeoDim for cp=1:Num_Corner_Vtx INDEX = INDEX + 1; EVAL_STR(INDEX).line = gen_eval_code(obj,Num_Basis,ig,cp); end end % compute the mesh size INDEX = INDEX + 1; EVAL_STR(INDEX).line = '// compute the local mesh size'; Num1 = length(EVAL_STR); if (obj.TopDim==1) EVAL_STR(Num1 + 1).line = [Vec_Data_Type_str, ' ', 'TEMP_Vec' ';']; EVAL_STR(Num1 + 2).line = ['Subtract_Vector(Pt2, Pt1, TEMP_Vec);']; EVAL_STR(Num1 + 3).line = [CODE.Var_Name(1).line, '[0].a', ' = l2_norm(TEMP_Vec);']; elseif (obj.TopDim==2) EVAL_STR(Num1 + 1).line = [Vec_Data_Type_str, ' ', 'TEMP_Vec' ';']; EVAL_STR(Num1 + 2).line = ['double MESH_H[3];']; EVAL_STR(Num1 + 3).line = ['Subtract_Vector(Pt2, Pt1, TEMP_Vec);']; EVAL_STR(Num1 + 4).line = ['MESH_H[0] = l2_norm(TEMP_Vec);']; EVAL_STR(Num1 + 5).line = ['Subtract_Vector(Pt3, Pt1, TEMP_Vec);']; EVAL_STR(Num1 + 6).line = ['MESH_H[1] = l2_norm(TEMP_Vec);']; EVAL_STR(Num1 + 7).line = ['Subtract_Vector(Pt3, Pt2, TEMP_Vec);']; EVAL_STR(Num1 + 8).line = ['MESH_H[2] = l2_norm(TEMP_Vec);']; EVAL_STR(Num1 + 9).line = [CODE.Var_Name(1).line, '[0].a', ' = *max_element(MESH_H, MESH_H+3); // longest edge']; elseif (obj.TopDim==3) EVAL_STR(Num1 + 1).line = [Vec_Data_Type_str, ' ', 'TEMP_Vec' ';']; EVAL_STR(Num1 + 2).line = ['double MESH_H[6];']; EVAL_STR(Num1 + 3).line = ['Subtract_Vector(Pt2, Pt1, TEMP_Vec);']; EVAL_STR(Num1 + 4).line = ['MESH_H[0] = l2_norm(TEMP_Vec);']; EVAL_STR(Num1 + 5).line = ['Subtract_Vector(Pt3, Pt1, TEMP_Vec);']; EVAL_STR(Num1 + 6).line = ['MESH_H[1] = l2_norm(TEMP_Vec);']; EVAL_STR(Num1 + 7).line = ['Subtract_Vector(Pt4, Pt1, TEMP_Vec);']; EVAL_STR(Num1 + 8).line = ['MESH_H[2] = l2_norm(TEMP_Vec);']; EVAL_STR(Num1 + 9).line = ['Subtract_Vector(Pt3, Pt2, TEMP_Vec);']; EVAL_STR(Num1 + 10).line = ['MESH_H[3] = l2_norm(TEMP_Vec);']; EVAL_STR(Num1 + 11).line = ['Subtract_Vector(Pt4, Pt3, TEMP_Vec);']; EVAL_STR(Num1 + 12).line = ['MESH_H[4] = l2_norm(TEMP_Vec);']; EVAL_STR(Num1 + 13).line = ['Subtract_Vector(Pt2, Pt4, TEMP_Vec);']; EVAL_STR(Num1 + 14).line = ['MESH_H[5] = l2_norm(TEMP_Vec);']; EVAL_STR(Num1 + 15).line = [CODE.Var_Name(1).line, '[0].a', ' = *max_element(MESH_H, MESH_H+6); // longest edge']; else error('Invalid!'); end EVAL_STR(end+1).line = ''; % define the data type TYPE_str = obj.Get_CPP_Scalar_Data_Type_Name; Defn_Hdr = '// local mesh size of reference element'; CONST_VAR = true; % the mesh size is constant over each element CODE = special_declaration_and_eval_code(CODE.Var_Name,TYPE_str,EVAL_STR,... Defn_Hdr,CONST_VAR); % end function STR = gen_eval_code(obj,Num_Basis,ig,cp) % constants that multiply the basis functions coefs = sym('coef_%d_%d_',[Num_Basis, obj.GeoDim]); local_basis = sym('Geo_phi_%d_',[Num_Basis, 1]); RESULT = sum(coefs(:,ig) .* local_basis); % evaluate PHI_i(qp) TEMP_STR = ccode(RESULT); % turn into C-code! % make string replacements COORD_str_X = ['Pt', num2str(cp), '.v', '[', num2str(ig-1), ']']; TEMP_STR = regexprep(TEMP_STR, ' t0', COORD_str_X); % t0 is the default LHS term for ib=1:Num_Basis Geo_phi_S_str = ['Geo_phi_', num2str(ib), '_']; Geo_phi_C_str = ['Geo_Vtx_Basis_Val_0_0_0', '[', num2str(cp-1), ']', '[', num2str(ib-1), ']']; % C-style indexing TEMP_STR = regexprep(TEMP_STR, Geo_phi_S_str, Geo_phi_C_str); coef_S_str = ['coef_', num2str(ib), '_', num2str(ig), '_']; coef_C_str = ['Node_Value', '[', num2str(ig-1), ']', '[kc[', num2str(ib-1), ']]']; % C-style indexing TEMP_STR = regexprep(TEMP_STR, coef_S_str, coef_C_str); end STR = TEMP_STR; end function CODE = special_declaration_and_eval_code(Var_Str,TYPE_str,Eval_Str,... Defn_Hdr,CONST_TF) % create struct (init) CODE.Var_Name = Var_Str; CODE.Constant = CONST_TF; % is the variable a constant (does not vary over the quad points) CODE.Defn = []; CODE.Eval_Snip = []; % create declaration code CODE.Defn(2).line = []; CODE.Defn(1).line = Defn_Hdr; CODE.Defn(2).line = [TYPE_str, ' ', CODE.Var_Name(1).line, '[1]', ';']; % create evaluation code num_eval = length(Eval_Str(:)); CODE.Eval_Snip(num_eval).line = []; for ind=1:num_eval CODE.Eval_Snip(ind).line = [Eval_Str(ind).line]; end end
github
eardi/sm-fpca-master
PHI_Hess_C_Code.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/@Geometric_Trans/PHI_Hess_C_Code.m
5,092
utf_8
d615f7eacfceaab422cac4290afa9022
function CODE = PHI_Hess_C_Code(obj,Num_Basis) %PHI_Hess_C_Code % % Generate C-code for direct evaluation of PHI.Hess. % PHI_Hess_ijk(qp) = SUM^{Num_Basis}_{q=1} c_{qk} * % \partial_i \partial_j phi_k(qp), % 1 <= k <= GeoDim, 1 <= i,j <= TopDim % and qp are the coordinates of a quadrature point. % Copyright (c) 02-20-2012, Shawn W. Walker % make var string CODE.Var_Name(1).line = []; % init CODE.Var_Name(1).line = obj.Output_CPP_Var_Name('Hess'); if ~obj.Lin_PHI_TF % map is non-linear % init (part of) output struct EVAL_STR(obj.TopDim*obj.TopDim*obj.GeoDim).line = []; % init for kk=1:obj.GeoDim if (obj.TopDim==1) % write evaluation code EVAL_STR(1 + (kk-1)*obj.TopDim^2).line =... Generate_Evaluation_String(obj,CODE.Var_Name(1).line,1,1,kk,Num_Basis); elseif (obj.TopDim==2) % write evaluation code EVAL_STR(1 + (kk-1)*obj.TopDim^2).line = Generate_Evaluation_String(obj,CODE.Var_Name(1).line,1,1,kk,Num_Basis); EVAL_STR(2 + (kk-1)*obj.TopDim^2).line = Generate_Evaluation_String(obj,CODE.Var_Name(1).line,1,2,kk,Num_Basis); EVAL_STR(3 + (kk-1)*obj.TopDim^2).line =... [obj.Get_CPP_Tensor_Eval_String(CODE.Var_Name(1).line,kk,2,1), ' = ',... obj.Get_CPP_Tensor_Eval_String(CODE.Var_Name(1).line,kk,1,2), '; // symmetry!']; EVAL_STR(4 + (kk-1)*obj.TopDim^2).line = Generate_Evaluation_String(obj,CODE.Var_Name(1).line,2,2,kk,Num_Basis); elseif (obj.TopDim==3) % write evaluation code EVAL_STR(1 + (kk-1)*obj.TopDim^2).line = Generate_Evaluation_String(obj,CODE.Var_Name(1).line,1,1,kk,Num_Basis); EVAL_STR(2 + (kk-1)*obj.TopDim^2).line = Generate_Evaluation_String(obj,CODE.Var_Name(1).line,1,2,kk,Num_Basis); EVAL_STR(3 + (kk-1)*obj.TopDim^2).line = Generate_Evaluation_String(obj,CODE.Var_Name(1).line,1,3,kk,Num_Basis); EVAL_STR(4 + (kk-1)*obj.TopDim^2).line =... [obj.Get_CPP_Tensor_Eval_String(CODE.Var_Name(1).line,kk,2,1), ' = ',... obj.Get_CPP_Tensor_Eval_String(CODE.Var_Name(1).line,kk,1,2), '; // symmetry!']; EVAL_STR(5 + (kk-1)*obj.TopDim^2).line = Generate_Evaluation_String(obj,CODE.Var_Name(1).line,2,2,kk,Num_Basis); EVAL_STR(6 + (kk-1)*obj.TopDim^2).line = Generate_Evaluation_String(obj,CODE.Var_Name(1).line,2,3,kk,Num_Basis); EVAL_STR(7 + (kk-1)*obj.TopDim^2).line =... [obj.Get_CPP_Tensor_Eval_String(CODE.Var_Name(1).line,kk,3,1), ' = ',... obj.Get_CPP_Tensor_Eval_String(CODE.Var_Name(1).line,kk,1,3), '; // symmetry!']; EVAL_STR(8 + (kk-1)*obj.TopDim^2).line =... [obj.Get_CPP_Tensor_Eval_String(CODE.Var_Name(1).line,kk,3,2), ' = ',... obj.Get_CPP_Tensor_Eval_String(CODE.Var_Name(1).line,kk,2,3), '; // symmetry!']; EVAL_STR(9 + (kk-1)*obj.TopDim^2).line = Generate_Evaluation_String(obj,CODE.Var_Name(1).line,3,3,kk,Num_Basis); else error('Not implemented!'); end end else % the map is linear, so the Hessian is ZERO! Map_Hess_Quad_str = obj.Get_Quad_Pt_CPP_Ref_Var_Name(CODE.Var_Name(1).line); EVAL_STR.line = [Map_Hess_Quad_str, '.Set_To_Zero(); // map is linear, so hessian is ZERO!']; end % define the data type TYPE_str = obj.Get_CPP_Tensor_Data_Type_Name(obj.GeoDim,obj.TopDim,obj.TopDim); Defn_Hdr = '// hessian of the transformation'; Loop_Hdr = '// compute the hessian of the local map\n // note: indexing is in the C style'; Loop_Comment = '// sum over basis functions'; CONST_VAR = obj.Lin_PHI_TF; CODE = obj.create_declaration_and_eval_code(CODE.Var_Name,TYPE_str,EVAL_STR,... Defn_Hdr,Loop_Hdr,Loop_Comment,CONST_VAR); % end function ES = Generate_Evaluation_String(obj,Var_Name,ii,jj,kk,Num_Basis) Map_PHI_Hess_str = obj.Get_CPP_Tensor_Eval_String(Var_Name,kk,ii,jj); ES = [Map_PHI_Hess_str, ' = ']; % init Partial_Deriv_Str = Get_Mixed_Deriv_String(obj,ii,jj); for bb=1:Num_Basis Geo_phi_C_str = ['Geo_Basis_Val_', Partial_Deriv_Str, '[qp_i]', '[', num2str(bb-1), ']']; % C-style indexing coef_C_str = ['Node_Value', '[', num2str(kk-1), ']', '[kc[', num2str(bb-1), ']]']; % C-style indexing MULT_str = [Geo_phi_C_str, ' * ', coef_C_str]; ES = [ES, MULT_str]; if (bb < Num_Basis) ES = [ES, ' + ']; end end ES = [ES, ';']; % close the C++ code! end function Deriv_Str = Get_Mixed_Deriv_String(obj,ii,jj) Num_Deriv = [0 0 0]; % init % MATLAB-style indexing Num_Deriv(ii) = Num_Deriv(ii) + 1; Num_Deriv(jj) = Num_Deriv(jj) + 1; Deriv_Str = obj.Get_Partial_Deriv_String(Num_Deriv); end
github
eardi/sm-fpca-master
Output_CPP_Eval_Extension.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Transformer/@H1_Trans/Output_CPP_Eval_Extension.m
1,117
utf_8
82df6bc9f41b6b64ca1656254d87ac80
function CPP_Eval = Output_CPP_Eval_Extension(obj,FIELD_str,Components) %Output_CPP_Eval_Extension % % This outputs a string representing the C++ evaluation code for the given % variable name. % % Components = [basis_comp_1, basis_comp_2, comp_1, comp_2, etc...] % Copyright (c) 03-25-2012, Shawn W. Walker % peel off the basis component Basis_Comp = Components(1:2); Components = Components(3:end); if strcmp(FIELD_str,'Val') CPP_Eval = ['.a']; elseif strcmp(FIELD_str,'Grad') Grad_Comp_C_index_STR = Get_Index_String(Components(1)); CPP_Eval = ['.v', Grad_Comp_C_index_STR]; elseif strcmp(FIELD_str,'d_ds') CPP_Eval = ['.a']; elseif strcmp(FIELD_str,'Hess') Comp_1_C_index_STR = Get_Index_String(Components(1)); Comp_2_C_index_STR = Get_Index_String(Components(2)); CPP_Eval = ['.m', Comp_1_C_index_STR, Comp_2_C_index_STR]; elseif strcmp(FIELD_str,'d2_ds2') CPP_Eval = ['.a']; else error('Not valid!'); end end function INDEX_str = Get_Index_String(Index) % use C-style indexing INDEX_str = ['[', num2str(Index - 1), ']']; end
github
eardi/sm-fpca-master
Generic_Write_Basis_Eval_Interpolation_to_CPP_Code.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Function/@GenericFiniteElementFunction/Generic_Write_Basis_Eval_Interpolation_to_CPP_Code.m
2,930
utf_8
83957ab5636c3bbbace2b0157658d68e
function status = Generic_Write_Basis_Eval_Interpolation_to_CPP_Code(... obj,fid,Eval_Basis,COMMENT) %Generic_Write_Basis_Eval_Interpolation_to_CPP_Code % % This encapsulates the code generation for writing the evaluations of % basis functions (symbolically). % % The basis functions have already been composed with the correct map and % differentiated before this routine is called! % Copyright (c) 10-28-2016, Shawn W. Walker status = 0; Num_Basis = length(Eval_Basis); ENDL = '\n'; COM_PLUS_TAB = [COMMENT, ' ']; % get info for C++ code CPP_Type_Info = obj.FuncTrans.Get_Reference_Basis_Function_CPP_Type_Info(obj.Opt); CPP_Eval_Names = fieldnames(CPP_Type_Info); % get needed options CPP_Name_Hdr = obj.Get_Basis_Eval_Name_CPP_Hdr([]); for oi = 1:length(CPP_Eval_Names) Single_Eval_Name = CPP_Eval_Names{oi}; Num_Vars = length(CPP_Type_Info.(Single_Eval_Name)); for jj = 1:Num_Vars Tensor_Comp_Set = CPP_Type_Info.(Single_Eval_Name)(jj).Comp; Derivative_Set = CPP_Type_Info.(Single_Eval_Name)(jj).Deriv; Eval_Expression = CPP_Type_Info.(Single_Eval_Name)(jj).Expr; Basis_Sym = Process_Symbolic_Basis_Eval(Eval_Basis,Tensor_Comp_Set,Derivative_Set,Eval_Expression); % % generate optimized C-code from symbolic expression % TEST_EXPR = sym(zeros(Num_Basis,length(Tensor_Comp_Set))); % for bi = 1:Num_Basis % TEST_EXPR(bi,:) = Basis_Sym(bi).Expr.Func; % end % ccode(TEST_EXPR,'file','C:\TEMP\test_code.c'); % declare basis function evaluation string format Basis_Name_str = [CPP_Name_Hdr, '_', CPP_Type_Info.(Single_Eval_Name)(jj).Suffix_str]; Basis_Eval_Func_str = @(bi,quant) [Basis_Name_str, '[', bi, '].Set_Equal_To(', quant, ');']; % write basis function evaluation data (for all quad points and % basis functions). for bi = 1:Num_Basis Sym_Expr = Basis_Sym(bi).Expr.Func; % loop through components Quant_Eval_str = convert_sym_to_ccode_snip(Sym_Expr(1)); for kk = 2:length(Sym_Expr) Quant_Eval_str = [Quant_Eval_str, ', ', convert_sym_to_ccode_snip(Sym_Expr(kk))]; end Basis_Eval_str = Basis_Eval_Func_str(num2str(bi-1),Quant_Eval_str); fprintf(fid, [COM_PLUS_TAB, Basis_Eval_str, ENDL]); end fprintf(fid, ['', ENDL]); end end %fprintf(fid, ['', ENDL]); end function Sym_Expr_CC_Snip = convert_sym_to_ccode_snip(Sym_Expr) C_code_str = ccode(Sym_Expr); % convert to C code! % remove the standard variable that matlab uses for the final output Sym_Expr_CC_Snip = regexprep(C_code_str, 't0 =', ''); % trim! Sym_Expr_CC_Snip = regexprep(Sym_Expr_CC_Snip, ';', ''); Sym_Expr_CC_Snip = strtrim(Sym_Expr_CC_Snip); end
github
eardi/sm-fpca-master
Generic_Write_Basis_Eval_Interpolation_to_CPP_Code_OLD.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Function/@GenericFiniteElementFunction/Generic_Write_Basis_Eval_Interpolation_to_CPP_Code_OLD.m
2,654
utf_8
81d9a4a1db9871971855df405c57b7b9
function status = Generic_Write_Basis_Eval_Interpolation_to_CPP_Code(... obj,VAR_NAME,NUM_BASIS_str,Largest_Derivative_Order,Tensor_Comp,Eval_Basis,fid_Open,COMMENT) %Generic_Write_Basis_Eval_Interpolation_to_CPP_Code % % This encapsulates the code generation for writing the evaluations of % basis functions (symbolically). % % The basis functions have already been composed with the correct map and % differentiated before this routine is called! % Copyright (c) 09-14-2016, Shawn W. Walker status = 0; ENDL = '\n'; COM_PLUS_TAB = [COMMENT, ' ']; Len_alpha = Eval_Basis(1).Get_Length_Of_Multiindex; Local_Basis_Deriv = obj.Get_Local_Basis_Multiindex_Deriv(Len_alpha,Largest_Derivative_Order); % write out the basis function evaluations for ind = 1:size(Local_Basis_Deriv,1) % general comment on evaluating basis functions for specific derivatives Local_Basis_Deriv_spec = Local_Basis_Deriv(ind,:); Basis_Title_str = ['// Value of basis function, derivatives = [', num2str(Local_Basis_Deriv_spec),... '], at local coordinates']; fprintf(fid_Open, [COM_PLUS_TAB, Basis_Title_str, ENDL]); % write code for defining the basis functions Basis_Name_str = obj.Get_Basis_Eval_CPP_Name(VAR_NAME,Local_Basis_Deriv_spec); Basis_Defn_str = ['double ', Basis_Name_str, '[1][', NUM_BASIS_str, '];']; fprintf(fid_Open, [COM_PLUS_TAB, Basis_Defn_str, ENDL]); % loop through all of the basis functions for bb = 1:length(Eval_Basis) % C variable name basis_C_index_str = num2str(bb-1); Basis_Eval_Name_str = [Basis_Name_str, '[0][', basis_C_index_str, ']']; % get specific derivative of basis function alpha = Local_Basis_Deriv_spec(1:Len_alpha); BF_Deriv_Specific = Eval_Basis(bb).Get_Derivative(alpha); % only look at one component! Basis_Differentiate_Sym_Expr = BF_Deriv_Specific.Func(Tensor_Comp(1),Tensor_Comp(2)); % generate code snippet Basis_Eval_str = make_basis_eval_str(Basis_Eval_Name_str, Basis_Differentiate_Sym_Expr); fprintf(fid_Open, [COM_PLUS_TAB, Basis_Eval_str, ENDL]); end status = fprintf(fid_Open, ['', ENDL]); end end function Basis_Eval_str = make_basis_eval_str(Basis_Eval_Name_str, Sym_Expr) C_code_str = ccode(Sym_Expr); % convert to C code! % remove the standard variable that matlab uses for the final output Basis_Eval_str = regexprep(C_code_str, 't0', Basis_Eval_Name_str); end
github
eardi/sm-fpca-master
Get_Eval_String.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Function/@FiniteElementCoefFunction/Get_Eval_String.m
6,463
utf_8
4328cd226be8a0388f4512b3257c59c5
function [obj, Replacement_str] = Get_Eval_String(obj,input_str,var_str,Geo_Dim,Num_Tuple_in_FE_Space) %Get_Eval_String % % This will parse the coefficient function string. It also sets the options % (.Opt) of the function. % Copyright (c) 12-15-2017, Shawn W. Walker % init Replacement_str = []; len_var_str = length(var_str); % BEGIN: some simple checks % rough validity check if length(input_str) < (len_var_str+6) % disp('Input argument string not long enough!'); % var_str return; end % make sure the *beginning of input_str* matches var_str! if ~strncmp(input_str,var_str,len_var_str) % disp('The input_str and var_str are completely different!'); % input_str % var_str return; end % END: some simple checks % setup matching strings CONST_ELEM = ReferenceFiniteElement(constant_one(),true); BF = FiniteElementBasisFunction(CONST_ELEM); MATCH_STR = BF.Get_String_Match_Struct; clear BF CONST_ELEM; % ultimate check MATCH_STR_cell = struct2cell(MATCH_STR); input_str_stripped = obj.Strip_String_Suffix(input_str,MATCH_STR_cell); clear MATCH_STR_cell; if ~strcmp(input_str_stripped,var_str) % 'input_str_stripped' should match 'var_str' exactly, else return % disp('The input_str_stripped and var_str are not exactly the same!'); % input_str_stripped % var_str return; end % vector and tuple index string stuff [Basis_Comp, Tuple_Comp] = obj.Parse_Vector_Tensor_Components(input_str,var_str,Num_Tuple_in_FE_Space); % convert to linear index k = i + (j-1)*m, where m (n) is the number of rows (cols) in the tuple size, % and 1 <= i <= m, 1 <= j <= n Tuple_Comp_Linear_Index = Tuple_Comp(1) + (Tuple_Comp(2)-1) * Num_Tuple_in_FE_Space(1); Tuple_Comp_c_ind_STR = ['[', num2str(Tuple_Comp_Linear_Index - 1), ']']; coef_func_STR = [obj.CPP_Var, '->']; % check if it is the hessian of the function if ~isempty(regexp(input_str,[var_str, MATCH_STR.hess], 'once')) str_match_cell = regexp(input_str,[var_str, MATCH_STR.hess], 'match'); str_match = str_match_cell{1}; obj.Opt.Hess = true; % parse the hessian components Hess_Comp_1_str = str_match(end-1); Hess_Comp_2_str = str_match(end); Hess_Comp = [str2double(Hess_Comp_1_str), str2double(Hess_Comp_2_str)]; if ( max(Hess_Comp) > Geo_Dim ) error('Cannot use derivatives beyond the geometric dimension.'); end Comp = [Basis_Comp, Hess_Comp]; Replacement_str = Func_Coef_Replacement('Hess',obj.FuncTrans,Comp,coef_func_STR,Tuple_Comp_c_ind_STR); % check if it is the gradient of the function elseif ~isempty(regexp(input_str,[var_str, MATCH_STR.grad], 'once')) str_match_cell = regexp(input_str,[var_str, MATCH_STR.grad], 'match'); str_match = str_match_cell{1}; obj.Opt.Grad = true; % parse the gradient component Grad_Comp_str = str_match(end); Grad_Comp = str2double(Grad_Comp_str); if Grad_Comp > Geo_Dim error('Cannot use derivatives beyond the geometric dimension.'); end Comp = [Basis_Comp, Grad_Comp]; Replacement_str = Func_Coef_Replacement('Grad',obj.FuncTrans,Comp,coef_func_STR,Tuple_Comp_c_ind_STR); % check if it is the divergence operator elseif ~isempty(regexp(input_str,[var_str, MATCH_STR.div], 'once')) obj.Opt.Div = true; if (obj.Elem.Basis_Size(1) < 2) error('Can only use "div" operator on functions that are intrinsically vector-valued.'); end Replacement_str = Func_Coef_Replacement('Div',obj.FuncTrans,Basis_Comp,coef_func_STR,Tuple_Comp_c_ind_STR); % check if it is the vector curl operator elseif ~isempty(regexp(input_str,[var_str, MATCH_STR.vector_curl], 'once')) obj.Opt.Curl = true; if (obj.Elem.Basis_Size(1) < 2) error('Can only use "curl" operator on functions that are intrinsically vector-valued.'); end Replacement_str = Func_Coef_Replacement('Curl',obj.FuncTrans,Basis_Comp,coef_func_STR,Tuple_Comp_c_ind_STR); % check if it is the scalar curl operator elseif ~isempty(regexp(input_str,[var_str, MATCH_STR.scalar_curl], 'once')) obj.Opt.Curl = true; if (obj.Elem.Basis_Size(1) < 2) error('Can only use "curl" operator on functions that are intrinsically vector-valued.'); end Replacement_str = Func_Coef_Replacement('Curl',obj.FuncTrans,Basis_Comp,coef_func_STR,Tuple_Comp_c_ind_STR); % check if it is the 2nd arc-length derivative along a curve elseif ~isempty(regexp(input_str,[var_str, MATCH_STR.dsds], 'once')) obj.Opt.d2_ds2 = true; if obj.Elem.Top_Dim > 1 error('Cannot use 2nd arc-length derivative in topological dimensions greater than 1.'); end Replacement_str = Func_Coef_Replacement('d2_ds2',obj.FuncTrans,Basis_Comp,coef_func_STR,Tuple_Comp_c_ind_STR); % check if it is the 1st arc-length derivative along a curve elseif ~isempty(regexp(input_str,[var_str, MATCH_STR.ds], 'once')) obj.Opt.d_ds = true; if obj.Elem.Top_Dim > 1 error('Cannot use 1st arc-length derivative in topological dimensions greater than 1.'); end Replacement_str = Func_Coef_Replacement('d_ds',obj.FuncTrans,Basis_Comp,coef_func_STR,Tuple_Comp_c_ind_STR); % check if it is the value of the function elseif ~isempty(regexp(input_str,[var_str, MATCH_STR.val], 'once')) obj.Opt.Val = true; Replacement_str = Func_Coef_Replacement('Val',obj.FuncTrans,Basis_Comp,coef_func_STR,Tuple_Comp_c_ind_STR); else disp('There was no match for the coefficient function:'); input_str end if ~isempty(Replacement_str) if or(isa(obj.FuncTrans,'Hdiv_Trans'),isa(obj.FuncTrans,'Hcurl_Trans')) % for H(div) and H(curl), we always need the orientation (of the "facets") obj.Opt.Orientation = true; end end end function STR = Func_Coef_Replacement(FIELD_STR,FuncTrans,Comp,coef_func_STR,Tuple_Comp_STR) CPP_Name = FuncTrans.Output_CPP_Var_Name(FIELD_STR); CPP_Name_w_CF = [coef_func_STR, CPP_Name]; if isa(FuncTrans,'Constant_Trans') % special case for global CONSTANT coefficient functions STR_begin = [CPP_Name_w_CF, Tuple_Comp_STR]; else STR_begin = [CPP_Name_w_CF, Tuple_Comp_STR, '[qp]']; end Eval_Ext = FuncTrans.Output_CPP_Eval_Extension(FIELD_STR,Comp); STR = [STR_begin, Eval_Ext]; end
github
eardi/sm-fpca-master
Get_Eval_String.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Function/@FiniteElementBasisFunction/Get_Eval_String.m
7,881
utf_8
0b488bbbcb0dbf9794392c577e07603a
function [obj, Replacement_str] = Get_Eval_String(obj,input_str,var_str,Geo_Dim,Num_Tuple_in_FE_Space) %Get_Eval_String % % This will parse the basis function string. It also sets the options % (.Opt) of the function. % Copyright (c) 12-15-2017, Shawn W. Walker % init Replacement_str = []; len_var_str = length(var_str); CONST = strcmp(obj.Type,'CONST'); % is the basis function the constant 1 if ~CONST %%%% if length(input_str) < (len_var_str+6) % disp('Input argument string not long enough!'); % var_str return; end % make sure the *beginning of input_str* matches var_str! if ~strncmp(input_str,var_str,len_var_str) % if the variable name does not match what is in the input string, % then just exit (this isn't the right function anyway!) return; end % setup matching strings MATCH_STR = obj.Get_String_Match_Struct; % ultimate check MATCH_STR_cell = struct2cell(MATCH_STR); input_str_stripped = obj.Strip_String_Suffix(input_str,MATCH_STR_cell); clear MATCH_STR_cell; if ~strcmp(input_str_stripped,var_str) % 'input_str_stripped' should match 'var_str' exactly, else return % disp('The input_str_stripped and var_str are not exactly the same!'); % input_str_stripped % var_str return; end [Basis_Comp, ~] = obj.Parse_Vector_Tensor_Components(input_str,var_str,Num_Tuple_in_FE_Space); basis_func_STR = [obj.CPP_Var, '->']; if strcmp(obj.Type,'Test') basis_index_STR = '[i]'; % row index elseif strcmp(obj.Type,'Trial') basis_index_STR = '[j]'; % col index else error('Something is wrong!'); end % check if it is the hessian of the function if ~isempty(regexp(input_str,[var_str, MATCH_STR.hess], 'once')) str_match_cell = regexp(input_str,[var_str, MATCH_STR.hess], 'match'); str_match = str_match_cell{1}; obj.Opt.Hess = true; % parse the hessian components Hess_Comp_1_str = str_match(end-1); Hess_Comp_2_str = str_match(end); Hess_Comp = [str2double(Hess_Comp_1_str), str2double(Hess_Comp_2_str)]; if ( max(Hess_Comp) > Geo_Dim ) error('Cannot use derivatives beyond the geometric dimension.'); end Replacement_str = Func_Basis_Replacement('Hess',obj.FuncTrans,[Basis_Comp, Hess_Comp],... basis_func_STR,basis_index_STR); % check if it is the gradient of the function elseif ~isempty(regexp(input_str,[var_str, MATCH_STR.grad], 'once')) str_match_cell = regexp(input_str,[var_str, MATCH_STR.grad], 'match'); str_match = str_match_cell{1}; obj.Opt.Grad = true; % parse the gradient component Grad_Comp_str = str_match(end); Grad_Comp = str2double(Grad_Comp_str); if Grad_Comp > Geo_Dim error('Cannot use derivatives beyond the geometric dimension.'); end Replacement_str = Func_Basis_Replacement('Grad',obj.FuncTrans,[Basis_Comp, Grad_Comp],... basis_func_STR,basis_index_STR); % check if it is the divergence operator elseif ~isempty(regexp(input_str,[var_str, MATCH_STR.div], 'once')) obj.Opt.Div = true; if (obj.Elem.Basis_Size(1) < 2) error('Can only use "div" operator on functions that are intrinsically vector-valued.'); end Replacement_str = Func_Basis_Replacement('Div',obj.FuncTrans,Basis_Comp,... basis_func_STR,basis_index_STR); % check if it is the vector curl operator elseif ~isempty(regexp(input_str,[var_str, MATCH_STR.vector_curl], 'once')) obj.Opt.Curl = true; if (obj.Elem.Basis_Size(1) < 2) error('Can only use "curl" operator on functions that are intrinsically vector-valued.'); end Replacement_str = Func_Basis_Replacement('Curl',obj.FuncTrans,Basis_Comp,... basis_func_STR,basis_index_STR); % check if it is the scalar curl operator elseif ~isempty(regexp(input_str,[var_str, MATCH_STR.scalar_curl], 'once')) obj.Opt.Curl = true; if (obj.Elem.Basis_Size(1) < 2) error('Can only use "curl" operator on functions that are intrinsically vector-valued.'); end Replacement_str = Func_Basis_Replacement('Curl',obj.FuncTrans,Basis_Comp,... basis_func_STR,basis_index_STR); % check if it is the 2nd arc-length derivative along a curve elseif ~isempty(regexp(input_str,[var_str, MATCH_STR.dsds], 'once')) obj.Opt.d2_ds2 = true; if obj.Elem.Top_Dim > 1 error('Cannot use 2nd arc-length derivative in topological dimensions greater than 1.'); end Replacement_str = Func_Basis_Replacement('d2_ds2',obj.FuncTrans,Basis_Comp,... basis_func_STR,basis_index_STR); % check if it is the 1st arc-length derivative along a curve elseif ~isempty(regexp(input_str,[var_str, MATCH_STR.ds], 'once')) obj.Opt.d_ds = true; if obj.Elem.Top_Dim > 1 error('Cannot use 1st arc-length derivative in topological dimensions greater than 1.'); end Replacement_str = Func_Basis_Replacement('d_ds',obj.FuncTrans,Basis_Comp,... basis_func_STR,basis_index_STR); % check if it is the value of the function elseif ~isempty(regexp(input_str,[var_str, MATCH_STR.val], 'once')) obj.Opt.Val = true; Replacement_str = Func_Val_Replacement(obj.FuncTrans,Basis_Comp,basis_func_STR,basis_index_STR); else % there was no match against a *basis* function; % but outside this routine, there may be a match to something else, % like a *coefficient* function or a geometric function. % so, no need to worry just yet. % if nothing identifies it, then an error message outside this will % catch it. %disp('There was no match for the basis function!'); %input_str end end if ~isempty(Replacement_str) if or(isa(obj.FuncTrans,'Hdiv_Trans'),isa(obj.FuncTrans,'Hcurl_Trans')) % for H(div) and H(curl), we always need the orientation (of the "facets") obj.Opt.Orientation = true; end end end function STR = Func_Basis_Replacement(FIELD_STR,FuncTrans,Components,basis_func_STR,basis_index_STR) CPP_Name = FuncTrans.Output_CPP_Var_Name(FIELD_STR); CPP_Name_w_BF = [basis_func_STR, CPP_Name]; STR_begin = [CPP_Name_w_BF, basis_index_STR, '[qp]']; Eval_Ext = FuncTrans.Output_CPP_Eval_Extension(FIELD_STR,Components); STR = [STR_begin, Eval_Ext]; end function STR = Func_Val_Replacement(FuncTrans,Basis_Comp,basis_func_STR,basis_index_STR) CPP_Name = FuncTrans.Output_CPP_Var_Name('Val'); if isa(FuncTrans,'H1_Trans') % special case for H^1 functions % note: we must de-reference here!!!! CPP_Name_w_BF = ['(*', basis_func_STR, CPP_Name, ')']; else CPP_Name_w_BF = [basis_func_STR, CPP_Name]; end if isa(FuncTrans,'Constant_Trans') % special case for global CONSTANT functions STR_begin = CPP_Name_w_BF; else STR_begin = [CPP_Name_w_BF, basis_index_STR, '[qp]']; end Eval_Ext = FuncTrans.Output_CPP_Eval_Extension('Val',Basis_Comp); STR = [STR_begin, Eval_Ext]; end
github
eardi/sm-fpca-master
Write_Basis_Func_Eval_3D_Hcurl_snip.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Function/@FiniteElementBasisFunction/private/Write_Basis_Func_Eval_3D_Hcurl_snip.m
2,198
utf_8
37a1c290a98f63935c0ba1ebb1d60cf6
function status = Write_Basis_Func_Eval_3D_Hcurl_snip(obj,fid,Largest_Derivative_Order,Map_Basis,Quad) %Write_Basis_Func_Eval_3D_Hcurl_snip % % This does part of the job of "Write_Basis_Func_Eval_snip" except for % H(curl) elements in 3-D (because they are a PITA). % Copyright (c) 11-08-2016, Shawn W. Walker % load mirror image basis set FuncName = [obj.Elem.Element_Name, '_mirror_image();']; Mirror_Elem = eval(FuncName); % put into a better object Mirror_RefElem = ReferenceFiniteElement(Mirror_Elem); % get basis functions on reference element Quad_NOT_USED = obj.Elem.Gen_Quadrature_Rule(1, obj.Elem.Simplex_Type); % bogus! not really used Eval_Basis = obj.Elem.Gen_Basis_Function_Evals(Quad_NOT_USED.Pt,Largest_Derivative_Order); Eval_Basis_Mirror = Mirror_RefElem.Gen_Basis_Function_Evals(Quad_NOT_USED.Pt,Largest_Derivative_Order); ENDL = '\n'; TAB = ' '; TAB2 = [TAB, TAB]; TAB3 = [TAB, TAB, TAB]; % begin massive switch statement fprintf(fid, [TAB, '// choose basis evaluations based on element order', ENDL]); fprintf(fid, [TAB, 'if (Std_Elem_Order) // V_1 < V_2 < V_3 < V_4', ENDL]); fprintf(fid, [TAB2, '{', ENDL]); disp(['##write basis evals for ascending order.']); status = write_basis_set(obj,fid,Eval_Basis,Map_Basis,Quad,TAB); fprintf(fid, [TAB2, '}', ENDL]); fprintf(fid, [TAB, 'else // V_1 < V_3 < V_2 < V_4', ENDL]); fprintf(fid, [TAB2, '{', ENDL]); disp(['##write basis evals for mirror image ascending order.']); status = write_basis_set(obj,fid,Eval_Basis_Mirror,Map_Basis,Quad,TAB); fprintf(fid, [TAB2, '}', ENDL]); fprintf(fid, [TAB, '// END: choose basis evaluations based on element order', ENDL]); end function status = write_basis_set(obj,fid,Eval_Basis,Map_Basis,Quad,TAB) % map all basis functions for bb = 1:length(Eval_Basis) % compose basis functions (and their derivatives) with Codim Map, % i.e. we are plugging in the map after differentiating. Eval_Basis(bb) = Eval_Basis(bb).Compose_With_Function(Map_Basis.Codim_Map); end % write out the finite element function basis evaluations status = obj.Generic_Write_Basis_Eval_to_CPP_Code(Quad.Pt,fid,Eval_Basis,TAB); end
github
eardi/sm-fpca-master
Write_Basis_Eval_Interpolation_3D_Hcurl_snip.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Function/@FiniteElementBasisFunction/private/Write_Basis_Eval_Interpolation_3D_Hcurl_snip.m
2,241
utf_8
e29dad7a1ce1538238dac756ebd49585
function status = Write_Basis_Eval_Interpolation_3D_Hcurl_snip(obj,fid,Largest_Derivative_Order,Map_Basis) %Write_Basis_Eval_Interpolation_3D_Hcurl_snip % % This does part of the job of "Write_Basis_Eval_Interpolation_snip" % except for H(curl) elements in 3-D (because they are a PITA). % Copyright (c) 11-13-2016, Shawn W. Walker % load mirror image basis set FuncName = [obj.Elem.Element_Name, '_mirror_image();']; Mirror_Elem = eval(FuncName); % put into a better object Mirror_RefElem = ReferenceFiniteElement(Mirror_Elem); % get basis functions on reference element Quad_NOT_USED = obj.Elem.Gen_Quadrature_Rule(1, obj.Elem.Simplex_Type); % bogus! not really used Eval_Basis = obj.Elem.Gen_Basis_Function_Evals(Quad_NOT_USED.Pt,Largest_Derivative_Order); Eval_Basis_Mirror = Mirror_RefElem.Gen_Basis_Function_Evals(Quad_NOT_USED.Pt,Largest_Derivative_Order); ENDL = '\n'; TAB = ' '; TAB2 = [TAB, TAB]; TAB3 = [TAB, TAB, TAB]; % begin massive switch statement fprintf(fid, [TAB, '// choose basis evaluations based on element order', ENDL]); fprintf(fid, [TAB, 'if (Std_Elem_Order) // V_1 < V_2 < V_3 < V_4', ENDL]); fprintf(fid, [TAB2, '{', ENDL]); disp(['##write basis interpolation for ascending order.']); status = write_basis_set(obj,fid,Eval_Basis,Map_Basis,TAB); fprintf(fid, [TAB2, '}', ENDL]); fprintf(fid, [TAB, 'else // V_1 < V_3 < V_2 < V_4', ENDL]); fprintf(fid, [TAB2, '{', ENDL]); disp(['##write basis interpolation for mirror image ascending order.']); status = write_basis_set(obj,fid,Eval_Basis_Mirror,Map_Basis,TAB); fprintf(fid, [TAB2, '}', ENDL]); fprintf(fid, [TAB, '// END: choose basis evaluations based on element order', ENDL]); end function status = write_basis_set(obj,fid,Eval_Basis,Map_Basis,TAB) % map all basis functions for bb = 1:length(Eval_Basis) % compose basis functions (and their derivatives) with Codim Map, % i.e. we are plugging in the map after differentiating. Eval_Basis(bb) = Eval_Basis(bb).Compose_With_Function(Map_Basis.Codim_Map); end % write out the FE basis function evaluations (at interpolation points) status = obj.Generic_Write_Basis_Eval_Interpolation_to_CPP_Code(fid,Eval_Basis,TAB); end
github
eardi/sm-fpca-master
Gen_Basis_Function_Class_Defn.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Function/@FiniteElementBasisFunction/private/Gen_Basis_Function_Class_Defn.m
4,336
utf_8
aacaf3a8d0cfa90215ebe9c4d58ff7bd
function [status, Premap_CODE] = Gen_Basis_Function_Class_Defn(obj,fid,BF_CODE) %Gen_Basis_Function_Class_Defn % % This declares the Basis_Function_Class definition. % Copyright (c) 01-15-2018, Shawn W. Walker ENDL = '\n'; TAB = ' '; TAB2 = [TAB, TAB]; %%%%%%% % output text-lines fprintf(fid, ['', ENDL]); fprintf(fid, ['/* C++ (Specific) FE Function class definition */', ENDL]); fprintf(fid, ['class SpecificFUNC: public ABSTRACT_FEM_Function_Class // derive from base class', ENDL]); fprintf(fid, ['{', ENDL]); fprintf(fid, ['public:', ENDL]); fprintf(fid, [TAB, 'int* Elem_DoF[NB]; // element DoF list', ENDL]); fprintf(fid, ['', ENDL]); fprintf(fid, [TAB, '// data structure containing information on the function evaluations.', ENDL]); fprintf(fid, [TAB, '// Note: this data is evaluated at several quadrature points!', ENDL]); % write the basis function variable declarations [VAL_CODE, CONST_VAL_CODE] = special_case(obj); if ~isempty(VAL_CODE) DECLARE = VAL_CODE.Defn; for di=1:length(DECLARE) fprintf(fid, [TAB, DECLARE(di).line, ENDL]); end end if ~isempty(CONST_VAL_CODE) DECLARE = CONST_VAL_CODE.Defn; for di=1:length(DECLARE) fprintf(fid, [TAB, DECLARE(di).line, ENDL]); end end for ind=1:length(BF_CODE) DECLARE = BF_CODE(ind).Defn; for di=1:length(DECLARE) fprintf(fid, [TAB, DECLARE(di).line, ENDL]); end end fprintf(fid, ['', ENDL]); fprintf(fid, [TAB, '// constructor', ENDL]); fprintf(fid, [TAB, 'SpecificFUNC ();', ENDL]); fprintf(fid, [TAB, '~SpecificFUNC (); // destructor', ENDL]); fprintf(fid, [TAB, 'void Setup_Function_Space(const mxArray*);', ENDL]); fprintf(fid, [TAB, 'void Get_Local_to_Global_DoFmap(const int&, int*) const;', ENDL]); fprintf(fid, [TAB, ' // need the "const" to ENSURE that nothing in this object will change!', ENDL]); fprintf(fid, [TAB, 'void Transform_Basis_Functions();', ENDL]); fprintf(fid, [TAB, 'const ', obj.GeomFunc.CPP.Data_Type_Name, '* Mesh;', ENDL]); fprintf(fid, ['', ENDL]); fprintf(fid, ['private:', ENDL]); % for H(div) and H(curl), we need a special pre-map function if or(isa(obj.FuncTrans,'Hdiv_Trans'),isa(obj.FuncTrans,'Hcurl_Trans')) Premap_CODE = obj.FuncTrans.Get_Premap_Transformation(obj.Elem); fprintf(fid, [TAB, 'void ', Premap_CODE.CPP_Name, '(', Premap_CODE.Arg_List_Init,') const;', ENDL]); % elseif isa(obj.FuncTrans,'Hcurl_Trans') % Premap_CODE = obj.FuncTrans.Get_Premap_Transformation(obj.Elem); % fprintf(fid, [TAB, 'void ', Premap_CODE.CPP_Name, '(', Premap_CODE.Arg_List_Init,') const;', ENDL]); else Premap_CODE = []; end CDMap = Codim_Map(obj.GeomFunc); Compute_Local_Transformation = CDMap.Get_Basis_Function_Local_Transformation; % only do this if the basis functions are NOT global constants! if isempty(CONST_VAL_CODE) for ind = 1:Compute_Local_Transformation.Num_Map_Basis % Map_Basis... fprintf(fid, [TAB, 'void ', Compute_Local_Transformation.Map_Basis(ind).CPP_Name, '();', ENDL]); end end if ~isempty(VAL_CODE) % special case code for H^1 function evaluation for ind = 1:Compute_Local_Transformation.Num_Map_Basis fprintf(fid, [TAB, Compute_Local_Transformation.Map_Basis(ind).Val.Declare_CPP, ENDL]); end for ind = 1:Compute_Local_Transformation.Num_Map_Basis fprintf(fid, [TAB, 'void ', Compute_Local_Transformation.Map_Basis(ind).Val.CPP_Routine,... '(SCALAR V[NB][NQ]);', ENDL]); end end status = fprintf(fid, ['};', ENDL]); status = fprintf(fid, ['', ENDL]); end function [VAL_CODE, CONST_VAL_CODE] = special_case(obj) % SPECIAL CASE % only do this for H^1 functions (and only if we are not generating % interpolation code) if and(isa(obj.FuncTrans,'H1_Trans'),~obj.INTERPOLATION) % we will compute this ONCE for all elements VAL_CODE = obj.FuncTrans(1).FUNC_Val_C_Code; % we can just take the first one else VAL_CODE = []; end % SPECIAL CASE % only do this for global constant basis functions if isa(obj.FuncTrans,'Constant_Trans') % we will compute this ONCE and for all CONST_VAL_CODE = obj.FuncTrans(1).FUNC_Val_C_Code; % we can just take the first one else CONST_VAL_CODE = []; end end
github
eardi/sm-fpca-master
Get_Eval_String.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Function/@GeometricElementFunction/Get_Eval_String.m
9,080
utf_8
bb4eaf4c05d80983f9c24b6b62f1f2e0
function [obj, Replacement_str] = Get_Eval_String(obj,input_str,domain_choice) %Get_Eval_String % % This will parse the geom function string. domain_choice selects either the Subdomain % geometry or the Domain of Integration (DoI) geometry. % Copyright (c) 01-24-2014, Shawn W. Walker % SWW: could there be a mistake if the end of input_str matches domain_choice? MATCH_STR = obj.Get_String_Match_Struct; % concatenate 'geom' and domain name string if strcmp(domain_choice,'DoI') % we want the Domain of Integration (DoI) geom_domain_str = [obj.Func_Name, obj.Domain.Integration_Domain.Name]; else % assume we want the subdomain geom_domain_str = [obj.Func_Name, obj.Domain.Subdomain.Name]; end % init Replacement_str = []; %Comp = 1; len_geom_domain_str = length(geom_domain_str); % get geometric dimension GeoDim = obj.Domain.Integration_Domain.GeoDim; % make sure we only make replacement when the given variable name is on the % same domain if ~strncmp(input_str,geom_domain_str,len_geom_domain_str) % if the domains are different, just exit! return; end mesh_func_STR = [obj.CPP.Identifier_Name, '->']; % check if it is the mesh size if ~isempty(regexp(input_str,[geom_domain_str, MATCH_STR.mesh_size], 'once')) obj.Opt.Mesh_Size = true; % setup the C-code evaluation string CPP_Name = obj.GeoTrans.Output_CPP_Var_Name('Mesh_Size'); CPP_Name_w_Mesh = [mesh_func_STR, CPP_Name]; Replacement_str = [CPP_Name_w_Mesh, '[0]', '.a']; % check if it is the derivative of the coordinate function elseif ~isempty(regexp(input_str,[geom_domain_str, MATCH_STR.coord_deriv], 'once')) % parse X, Y, or Z component X_Comp_str = input_str(len_geom_domain_str+3); % get coord component X_Comp = str2double(X_Comp_str); % parse derivative component Deriv_Comp_str = input_str(len_geom_domain_str+10); % get s_1, s_2 derivative component Deriv_Comp = str2double(Deriv_Comp_str); if (X_Comp > GeoDim) error('Coordinate component cannot be larger than geometric dimension.'); end if (Deriv_Comp > obj.Elem.Top_Dim) error('Derivative component cannot be larger than topological dimension.'); end obj.Opt.Grad = true; % setup the C-code evaluation string C_style_X_Comp = X_Comp-1; C_style_Deriv_Comp = Deriv_Comp-1; CPP_Name = obj.GeoTrans.Output_CPP_Var_Name('Grad'); CPP_Name_w_Mesh = [mesh_func_STR, CPP_Name]; QP_str = get_quad_pt_str(obj,'Grad'); Replacement_str = [CPP_Name_w_Mesh, QP_str, '.m[', num2str(C_style_X_Comp), '][', num2str(C_style_Deriv_Comp), ']']; % check if it is the PHYSICAL GRADIENT (e.g. like the surface gradient) of the coordinate function % this is just the tangent space projection! elseif ~isempty(regexp(input_str,[geom_domain_str, MATCH_STR.tan_space_proj], 'once')) % parse X, Y, or Z component X_Comp_str = input_str(len_geom_domain_str+6); % get coord component X_Comp = str2double(X_Comp_str); % parse grad component Grad_Comp_str = input_str(len_geom_domain_str+7); % get grad component Grad_Comp = str2double(Grad_Comp_str); if (X_Comp > GeoDim) error('Coordinate component cannot be larger than geometric dimension.'); end if (Grad_Comp > GeoDim) error('Physical gradient component cannot be larger than geometric dimension.'); end obj.Opt.Tangent_Space_Projection = true; % setup the C-code evaluation string C_style_X_Comp = X_Comp-1; C_style_Grad_Comp = Grad_Comp-1; CPP_Name = obj.GeoTrans.Output_CPP_Var_Name('Tangent_Space_Projection'); CPP_Name_w_Mesh = [mesh_func_STR, CPP_Name]; QP_str = get_quad_pt_str(obj,'Tangent_Space_Projection'); Replacement_str = [CPP_Name_w_Mesh, QP_str, '.m[', num2str(C_style_X_Comp), '][', num2str(C_style_Grad_Comp), ']']; % check if it is the coordinate function elseif ~isempty(regexp(input_str,[geom_domain_str, MATCH_STR.coord_val], 'once')) % parse X, Y, or Z component X_Comp_str = input_str(len_geom_domain_str+3); % get coord component X_Comp = str2double(X_Comp_str); if (X_Comp > GeoDim) error('Coordinate component cannot be larger than geometric dimension.'); end obj.Opt.Val = true; % setup the C-code evaluation string C_style_X_Comp = X_Comp-1; CPP_Name = obj.GeoTrans.Output_CPP_Var_Name('Val'); CPP_Name_w_Mesh = [mesh_func_STR, CPP_Name]; QP_str = get_quad_pt_str(obj,'Val'); Replacement_str = [CPP_Name_w_Mesh, QP_str, '.v[', num2str(C_style_X_Comp), ']']; % check if it is the tangent vector elseif ~isempty(regexp(input_str,[geom_domain_str, MATCH_STR.tangent], 'once')) % parse component Comp_str = input_str(len_geom_domain_str+3); % set component Comp = str2double(Comp_str); obj.Opt.Tangent_Vector = true; % setup the C-code evaluation string C_style_Comp = Comp-1; CPP_Name = obj.GeoTrans.Output_CPP_Var_Name('Tangent_Vector'); CPP_Name_w_Mesh = [mesh_func_STR, CPP_Name]; QP_str = get_quad_pt_str(obj,'Tangent_Vector'); Replacement_str = [CPP_Name_w_Mesh, QP_str, '.v[', num2str(C_style_Comp), ']']; % check if it is the normal vector elseif ~isempty(regexp(input_str,[geom_domain_str, MATCH_STR.normal], 'once')) % parse component Comp_str = input_str(len_geom_domain_str+3); % set component Comp = str2double(Comp_str); obj.Opt.Normal_Vector = true; % setup the C-code evaluation string C_style_Comp = Comp-1; CPP_Name = obj.GeoTrans.Output_CPP_Var_Name('Normal_Vector'); CPP_Name_w_Mesh = [mesh_func_STR, CPP_Name]; QP_str = get_quad_pt_str(obj,'Normal_Vector'); Replacement_str = [CPP_Name_w_Mesh, QP_str, '.v[', num2str(C_style_Comp), ']']; % check if it is the curvature vector elseif ~isempty(regexp(input_str,[geom_domain_str, MATCH_STR.curvvec], 'once')) % parse component Comp_str = input_str(len_geom_domain_str+10); % set component Comp = str2double(Comp_str); obj.Opt.Total_Curvature_Vector = true; % setup the C-code evaluation string C_style_Comp = Comp-1; CPP_Name = obj.GeoTrans.Output_CPP_Var_Name('Total_Curvature_Vector'); CPP_Name_w_Mesh = [mesh_func_STR, CPP_Name]; QP_str = get_quad_pt_str(obj,'Total_Curvature_Vector'); Replacement_str = [CPP_Name_w_Mesh, QP_str, '.v[', num2str(C_style_Comp), ']']; % check if it is the (total) scalar curvature elseif ~isempty(regexp(input_str,[geom_domain_str, MATCH_STR.curv], 'once')) obj.Opt.Total_Curvature = true; % setup the C-code evaluation string CPP_Name = obj.GeoTrans.Output_CPP_Var_Name('Total_Curvature'); CPP_Name_w_Mesh = [mesh_func_STR, CPP_Name]; QP_str = get_quad_pt_str(obj,'Total_Curvature'); Replacement_str = [CPP_Name_w_Mesh, QP_str, '.a']; % check if it is the gauss curvature elseif ~isempty(regexp(input_str,[geom_domain_str, MATCH_STR.gauss_curv], 'once')) obj.Opt.Gauss_Curvature = true; % setup the C-code evaluation string CPP_Name = obj.GeoTrans.Output_CPP_Var_Name('Gauss_Curvature'); CPP_Name_w_Mesh = [mesh_func_STR, CPP_Name]; QP_str = get_quad_pt_str(obj,'Gauss_Curvature'); Replacement_str = [CPP_Name_w_Mesh, QP_str, '.a']; % check if it is the shape operator elseif ~isempty(regexp(input_str,[geom_domain_str, MATCH_STR.shape_op], 'once')) % parse the components of the shape operator Comp_1_str = input_str(len_geom_domain_str+11); Comp_2_str = input_str(len_geom_domain_str+12); % get component indices Comp_1 = str2double(Comp_1_str); Comp_2 = str2double(Comp_2_str); if or(Comp_1 > GeoDim, Comp_2 > GeoDim) error('Component indices (for the shape operator) cannot be larger than the geometric dimension.'); end obj.Opt.Shape_Operator = true; % setup the C-code evaluation string C_style_Comp_1 = Comp_1 - 1; C_style_Comp_2 = Comp_2 - 1; CPP_Name = obj.GeoTrans.Output_CPP_Var_Name('Shape_Operator'); CPP_Name_w_Mesh = [mesh_func_STR, CPP_Name]; QP_str = get_quad_pt_str(obj,'Shape_Operator'); Replacement_str = [CPP_Name_w_Mesh, QP_str, '.m[', num2str(C_style_Comp_1), '][', num2str(C_style_Comp_2), ']']; else disp('There was no match for the geometric function:'); input_str disp(' on this domain:') geom_domain_str end end function QP_str = get_quad_pt_str(obj,FIELD_str) CONST_VAR = obj.GeoTrans.Is_Quantity_Constant(FIELD_str); if CONST_VAR % there is only one quad point QP_str = '[0]'; else % the map is non-linear, so we have several quad points QP_str = '[qp]'; end end
github
eardi/sm-fpca-master
Write_SUBRoutine_Compute_Map.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Function/@GeometricElementFunction/private/Write_SUBRoutine_Compute_Map.m
3,451
utf_8
5345521c7f3161f99ade27be2c9724b8
function status = Write_SUBRoutine_Compute_Map(obj,fid,Geo_CODE,Compute_Map) %Write_SUBRoutine_Compute_Map % % This generates a sub-routine of the Mesh_Geometry_Class for computing % transformations of the local element map. % Copyright (c) 03-10-2012, Shawn W. Walker ENDL = '\n'; % insert code snippet fprintf(fid, ['', ENDL]); fprintf(fid, [obj.BEGIN_Auto_Gen, ENDL]); fprintf(fid, ['/***************************************************************************************/', ENDL]); fprintf(fid, ['/* compute the local transformation from the standard reference element', ENDL]); fprintf(fid, [' to an element in the Mesh */', ENDL]); fprintf(fid, ['void MGC::', Compute_Map.CPP_Name,... '(const int& elem_index) // current mesh element index', ENDL]); fprintf(fid, ['{', ENDL]); % fprintf(fid, ['int kc[NB]; // for indexing through the mesh DoFmap', ENDL]); % fprintf(fid, ['', ENDL]); fprintf(fid, ['Get_Local_to_Global_DoFmap(elem_index, kc);', ENDL]); fprintf(fid, ['', ENDL]); % get number of derivatives to compute Num_Deriv = obj.GeoTrans.Number_Of_Derivatives_For_Opt(obj.Opt); % insert basis function evaluations at the quad points if obj.INTERPOLATION % no quad points here status = obj.Write_Geometry_Basis_Eval_Interpolation_snip(fid,Num_Deriv,Compute_Map); else status = obj.Write_Geometry_Basis_Eval_snip(fid,Num_Deriv,Compute_Map); end % insert basis function evaluations at the local vertex coordinates special_case_for_mesh_size(obj,fid,Compute_Map); % now insert the geometry computation code obj.Write_Geometry_Computation_Code_snippets(fid,Geo_CODE); fprintf(fid, ['}', ENDL]); fprintf(fid, ['/***************************************************************************************/', ENDL]); fprintf(fid, [obj.END_Auto_Gen, ENDL]); end function status = special_case_for_mesh_size(obj,fid,Compute_Map) % if you want the mesh size if (obj.Opt.Mesh_Size) % then you need some extra basis function evaluations % get bogus quadrature rule on the ref elem Quad_NOT_USED = obj.Elem.Gen_Quadrature_Rule(1, obj.Elem.Simplex_Type); % get basis functions on reference element Eval_Basis = obj.Elem.Gen_Basis_Function_Evals(Quad_NOT_USED.Pt,0); % map geometric basis functions onto local mesh entity CDMap = Codim_Map(obj); Eval_Basis = CDMap.Map_Geometric_Basis_Function_Evals(Eval_Basis,Compute_Map.Codim_Map); % get the "corner vertices" of the local topological entity Quad.Pt = Get_Local_Simplex_Vertex_Coordinates(Compute_Map); Num_Quad_str = num2str(size(Quad.Pt,1)); for bb = 1:length(Eval_Basis) % evaluate all of the basis functions at the corner vertices % (on the local mesh entity) Eval_Basis(bb) = Eval_Basis(bb).Fill_Eval(Quad.Pt); end ENDL = '\n'; % output text-lines fprintf(fid, [obj.BEGIN_Auto_Gen, ENDL]); OUTSTR = ['// basis function evaluations at the local element vertices']; fprintf(fid, [OUTSTR, ENDL]); Pick_Deriv = [0]; status = obj.Generic_Write_Basis_Eval_to_CPP_Code_OLD('Geo_Vtx',Num_Quad_str,'NB',Eval_Basis,[1 1],Pick_Deriv,fid,''); % NEXT, quad points COMMENT = '// '; status = obj.Gen_Quad_Point_CPP_Code(Quad.Pt,fid,COMMENT,'GLOBAL_TD'); fprintf(fid, [obj.END_Auto_Gen, ENDL]); end end
github
eardi/sm-fpca-master
Parse_Integrals.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Level_1/@Real/Parse_Integrals.m
3,939
utf_8
26556a155ae47c4c4a594c765b64c938
function [Parsed, Num_Nonzeros] = Parse_Integrals(obj) %Parse_Integrals % % This parses the integrals (in a Real matrix) into a more useable struct. % % [Parsed, Num_Nonzeros] = obj.Parse_Integrals; % % Parsed = array (length M) of structs: % .Integrand_Sym(:,:) = RxC sym expression (R,C is the row and col % dimensions of 'obj'). % .Domain = RxC cell array of Level 1 Domains (corresponding to % Integrand_Sym). % .TestF = []. % .TrialF = []. % Note: Parsed(k) corresponds to the unique kth Domain of Integration. % Num_Nonzeros = column vector (length M) where Num_Nonzeros(i) is the number % of non-zero terms in the matrix: Parsed(i).Integrand_Sym. % Copyright (c) 06-22-2012, Shawn W. Walker % example: % % suppose this object (obj) is 2x2, with integrals for each entry looking like: % % ---------------------------------------------------------------------- % | \int_\Omega ... + \int_\Gamma | \int_\Omega | % ---------------------------------------------------------------------- % | \int_\Gamma | 0 | % ---------------------------------------------------------------------- % % this routine creates an array of structs that mimics this: % % Parsed(1).Integrand_Sym(:,:) are integrands evaluated on \int_\Omega: % ---------------------------------------------------------------------- % | \int_\Omega | \int_\Omega | % ---------------------------------------------------------------------- % | 0 | 0 | % ---------------------------------------------------------------------- % % Parsed(2).Integrand_Sym(:,:) are integrands evaluated on \int_\Gamma: % ---------------------------------------------------------------------- % | \int_\Gamma | 0 | % ---------------------------------------------------------------------- % | \int_\Gamma | 0 | % ---------------------------------------------------------------------- % get unique list of integration domains Domains = containers.Map; for ind = 1:length(obj(:)) if ~isempty(obj(ind).Integral) Domains(obj(ind).Integral.Domain.Name) = obj(ind).Integral.Domain; end end DoI_Names = Domains.keys; % manually init Parsed structure Parsed = get_parsed_struct; for di = 1:length(DoI_Names) Parsed(di).Integrand_Sym = sym(zeros(size(obj))); % all zero sym matrix Parsed(di).Domain = cell(size(obj)); for ir = 1:size(obj,1) for ic = 1:size(obj,2) % fill with the *same* domain Parsed(di).Domain{ir,ic} = Domains(DoI_Names{di}); end end end % now fill the integrand Num_Nonzeros = zeros(length(Parsed),1); for ri = 1:size(obj,1) for ci = 1:size(obj,2) % get the Integral object (array) for the (ri,ci) entry in the "Real" matrix ID = obj(ri,ci).Integral; % loop through all of the individual Integral(s) for ii = 1:length(ID) % loop through each unique Domain for pp = 1:length(Parsed) % if the Integral's Domain matches, if isequal(ID(ii).Domain,Parsed(pp).Domain{1,1}) % then store it in the Parsed structure according to that Domain Parsed(pp).Integrand_Sym(ri,ci) = ID.Integrand; Num_Nonzeros(pp) = Num_Nonzeros(pp) + 1; end end end end end end function SS = get_parsed_struct() SS.Integrand_Sym = []; SS.Domain = []; SS.TestF = []; SS.TrialF = []; end
github
eardi/sm-fpca-master
Add_Integral.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Level_1/@genericform/Add_Integral.m
2,585
utf_8
0caf46b517c35633d5df30b374180613
function obj = Add_Integral(obj,Int_Obj) %Add_Integral % % This adds an Integral object to the genericform object. % % obj = obj.Add_Integral(Int_Obj); % % Int_Obj = a Level 1 Integral object. % Copyright (c) 05-25-2012, Shawn W. Walker if or(size(obj,1) > 1,size(obj,2) > 1) disp('This object is an array!'); error('You must index the object you want!'); end if ~isa(Int_Obj,'Integral') error('Input must be an Integral object!'); end % check that the Test, and/or Trial functions match the Test and Trial spaces. check_test_trial_space(obj.Test_Space,Int_Obj.TestF,'Test',Int_Obj.Integrand); check_test_trial_space(obj.Trial_Space,Int_Obj.TrialF,'Trial',Int_Obj.Integrand); obj.Verify_Multilinearity_Of_Form(Int_Obj); [obj, SUCCESS] = obj.Try_To_Combine_Integrals(Int_Obj); if ~SUCCESS % add in the integral Num_Int = length(obj.Integral); if (Num_Int==0) obj.Integral = Int_Obj; else obj.Integral(Num_Int+1) = Int_Obj; end end end function check_test_trial_space(Space,FUNC,FUNC_str,Integrand) err = FELerror; if isempty(Space) if ~isempty(FUNC) err = err.Add_Comment(['Form does not have a ', FUNC_str, ' space defined.']); err = err.Add_Comment(['The problem is with this function: ', FUNC.Name]); err = err.Add_Comment(['There should be *no* ', FUNC_str, ' function in the Integral''s integrand:']); err = err.Add_Comment([' ', char(Integrand)]); err.Error; error('stop!'); end else if isempty(FUNC) err = err.Add_Comment(['Form has a ', FUNC_str, ' space defined: ', Space.Name]); err = err.Add_Comment(['There is *no* ', FUNC_str, ' function in the Integral''s integrand:']); err = err.Add_Comment([' ', char(Integrand)]); err = err.Add_Comment(' '); err = err.Add_Comment(['The integrand *must* have a ', FUNC_str, ' function in it!']); err.Error; error('stop!'); else if ~isequal(Space,FUNC.Element) err = err.Add_Comment(['The form''s ', FUNC_str, ' space does not match the ', FUNC_str, ' function''s space.']); err = err.Add_Comment(['The problem is either with this function: ', FUNC.Name]); err = err.Add_Comment([' OR with this space: ', Space.Name]); err = err.Add_Comment(['Check that you have the correct ', FUNC_str, ' function and/or space!']); err.Error; error('stop!'); end end end end
github
eardi/sm-fpca-master
Verify_Multilinearity_Of_Form.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Level_1/@genericform/private/Verify_Multilinearity_Of_Form.m
3,504
utf_8
c6daa4caa5819c4f4e7f9c2050836b23
function Verify_Multilinearity_Of_Form(obj,Int_Obj) %Verify_Multilinearity_Of_Form % % This checks the symbolic expression that defines the integrand of Int_Obj, and % verifies that it has the proper "form", i.e. the expression should define a proper % bilinear or linear form (as the case may be). % % obj.Verify_Multilinearity_Of_Form(Int_Obj); % % Int_Obj = a Level 1 Integral object. % Copyright (c) 08-08-2013, Shawn W. Walker % store for later Integrand_String = char(Int_Obj.Integrand); Vars = symvar(Int_Obj.Integrand); VALID_TESTF = check_linearity(Int_Obj.Integrand,Vars,Int_Obj.TestF); VALID_TRIALF = check_linearity(Int_Obj.Integrand,Vars,Int_Obj.TrialF); % both variables must be linear! VALID = and(VALID_TESTF,VALID_TRIALF); BILIN = isa(obj,'Bilinear'); LIN = isa(obj,'Linear'); if (BILIN) if ~VALID err = FELerror; err = err.Add_Comment(['Cannot include the following integrand into the current Bilinear form.']); err = err.Add_Comment(['Integrand: ', Integrand_String]); err = err.Add_Comment(' '); err = err.Add_Comment(['The integrand must have the following format:']); err = err.Add_Comment(' '); err = err.Add_Comment([' term #1 + term #2 + term #3 + ...']); err = err.Add_Comment(' '); err = err.Add_Comment(['where each "term" includes a *product* of a single Test function with a single Trial function.']); err = err.Add_Comment(['Otherwise, the integrand is *not* a BILINEAR form!']); err.Error; error('stop!'); end elseif (LIN) if ~VALID err = FELerror; err = err.Add_Comment(['Cannot include the following integrand into the current Linear form.']); err = err.Add_Comment(['Integrand: ', Integrand_String]); err = err.Add_Comment(' '); err = err.Add_Comment(['The integrand must have the following format:']); err = err.Add_Comment(' '); err = err.Add_Comment([' term #1 + term #2 + term #3 + ...']); err = err.Add_Comment(' '); err = err.Add_Comment(['where each "term" includes a single occurrence of a Test function.']); err = err.Add_Comment(['Otherwise, the integrand is *not* a LINEAR form!']); err.Error; error('stop!'); end end end function VALID = check_linearity(Integrand,Vars,FUNC) % store these %Sym_Zero = sym('0'); Sym_One = sym('1'); Sym_Two = sym('2'); subs_H = FEL_subs_handle(); % replace FUNC function with the constant 1 and 2 to check linear scaling if ~isempty(FUNC) % initialize Sym_Integrand_One = Integrand; Sym_Integrand_Two = Integrand; for vi = 1:length(Vars) MATCH = Var_Name_Matches_SymVar(FUNC,Vars(vi)); if MATCH Sym_Integrand_One = subs_H(Sym_Integrand_One,Vars(vi),Sym_One); Sym_Integrand_Two = subs_H(Sym_Integrand_Two,Vars(vi),Sym_Two); end end % make sure it scales linearly DIFF = simplify(2*Sym_Integrand_One - Sym_Integrand_Two,10); % Note: if it is linear, then DIFF should be 0 (i.e. contains no symbolic variables). SV = symvar(DIFF); if isempty(SV) VALID = (double(DIFF)==0); % should be zero if it is linear! else VALID = false; % DIFF must still contain some symbolic variables... end else VALID = true; end end
github
eardi/sm-fpca-master
Verify_Consistent_Function_Domains.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Level_1/@abstractexpr/Verify_Consistent_Function_Domains.m
1,794
utf_8
d2b40c0987726be01797df8e787f086b
function status = Verify_Consistent_Function_Domains(obj) %Verify_Consistent_Function_Domains % % This checks that all functions (Test, Trial, and Coef(s)) stored in this object are % suitably defined on the domain of evaluation. % % status = obj.Verify_Consistent_Function_Domains; % % status = 0, if routine completes successfully. % Copyright (c) 05-25-2012, Shawn W. Walker status = 0; verify_func_domain(obj.TestF, obj.Domain); verify_func_domain(obj.TrialF,obj.Domain); verify_func_domain(obj.CoefF, obj.Domain); end function verify_func_domain(FUNC, Eval_Domain) % make sure that one of two possible states is true: % (1) the function is from a finite element space that is defined on the % domain of evaluation. % OR % (2) the function is from a finite element space AND is *restricted* to the % domain of evaluation. Int_Domain_Name = Eval_Domain.Name; for ind = 1:length(FUNC) FUNC_Domain_of_Defn = FUNC(ind).Get_Domain_Of_Definition; if ~strcmp(Int_Domain_Name,FUNC_Domain_of_Defn.Name) err = FELerror; err = err.Add_Comment(['The function ', FUNC(ind).Name, ' is defined on the domain: ', FUNC_Domain_of_Defn.Name]); err = err.Add_Comment(['The domain of evaluation is: ', Int_Domain_Name]); err = err.Add_Comment('Suggestion: when defining the function, specify the subdomain you want to evaluate it on.'); err = err.Add_Comment([' example: ', FUNC(ind).Name, ' = ', class(FUNC(ind)),... '(', FUNC(ind).Element.Name, ',', Int_Domain_Name, ');']); err = err.Add_Comment('All functions in the *expression* must be defined on the domain of evaluation!'); err.Error; error('stop!'); end end end
github
eardi/sm-fpca-master
Parse_Vars_From_Given_Function.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Matrix_Assembly/Level_1/@abstractexpr/Parse_Vars_From_Given_Function.m
4,021
utf_8
34277b9f7b2e3610dc6689499589a23e
function Parsed_Func = Parse_Vars_From_Given_Function(obj,L1Func,Vars) %Parse_Vars_From_Given_Function % % This takes a given list of symbolic variables, finds the ones that % correspond to the given function, and returns a structure containing those % function vars. Each row of the output structure corresponds to a specific % tensor component, and contains symbolic representations of operators applied % to the given function. % % Parsed_Func = obj.Parse_Vars_From_Given_Function(L1Func,Vars); % % L1Func = a Level 1 l1func object (i.e. Test, Trial, or Coef). % Vars = array of sym (symbolic) objects. % % Parsed_Func = Nx1 cell array of sym row vectors. N = number of tensor % components of L1Func. Each sym row vector contains several % sym entries, each one represents a match between L1Func and % one of the entries in the given 'Vars' list. % Note: if the tuple size is [m, n], then N = m*n. % Copyright (c) 03-24-2018, Shawn W. Walker MATCH_STR.vv_tt = '_v[1-9][1-9]?_t([1-9])([1-9]?)\w*'; MATCH_STR.tt_div = '_t([1-9])([1-9]?)_div'; MATCH_STR.tt_scalar_curl = '_t([1-9])([1-9]?)_curl'; Num_Tuple = L1Func.Num_Tensor; TEMP_Func = cell(Num_Tuple(1),Num_Tuple(2)); Num_Vars = length(Vars); for vv = 1:Num_Vars var_str = char(Vars(vv)); Match_EXPR = [L1Func.Name, MATCH_STR.vv_tt]; m = regexp(var_str, Match_EXPR, 'tokens'); if ~isempty(m) m_match = regexp(var_str, Match_EXPR, 'match'); [ti_1, ti_2] = extract_tuple_index(var_str,Num_Tuple,m); TEMP_Func{ti_1,ti_2} = [TEMP_Func{ti_1,ti_2}, sym(m_match)]; else % check if it was the divergence... Match_EXPR = [L1Func.Name, MATCH_STR.tt_div]; m = regexp(var_str, Match_EXPR, 'tokens'); if ~isempty(m) m_match = regexp(var_str, Match_EXPR, 'match'); [ti_1, ti_2] = extract_tuple_index(var_str,Num_Tuple,m); TEMP_Func{ti_1,ti_2} = [TEMP_Func{ti_1,ti_2}, sym(m_match)]; else % check if it was the scalar curl... Match_EXPR = [L1Func.Name, MATCH_STR.tt_scalar_curl]; m = regexp(var_str, Match_EXPR, 'tokens'); if ~isempty(m) m_match = regexp(var_str, Match_EXPR, 'match'); [ti_1, ti_2] = extract_tuple_index(var_str,Num_Tuple,m); TEMP_Func{ti_1,ti_2} = [TEMP_Func{ti_1,ti_2}, sym(m_match)]; else % L1Func.Name % var_str % error('This variable was not identified!'); end end end end Parsed_Func = TEMP_Func(:); % collapse to linear index % for kk = 1:length(Parsed_Func) % Parsed_Func{kk} % end % Num_Vars = length(Vars); % for ti_1 = 1:Num_Tuple(1) % for ti_2 = 1:Num_Tuple(2) % row_sym = []; % for vv = 1:Num_Vars % var_str = char(Vars(vv)); % Match_EXPR = [L1Func.Name, '_v[1-9][1-9]?_t', num2str(ti_1), num2str(ti_2), '\w*']; % m = regexp(var_str, Match_EXPR, 'match'); % if ~isempty(m) % row_sym = [row_sym, sym(m)]; % else % % check if it was the divergence... % Match_EXPR = [L1Func.Name, '_t', num2str(ti_1), num2str(ti_2), '_div']; % m = regexp(var_str, Match_EXPR, 'match'); % if ~isempty(m) % row_sym = [row_sym, sym(m)]; % end % end % end % kk = ti_1 + (ti_2 - 1)*Num_Tuple(1); % k = i + (j-1)*m % Parsed_Func{kk} = row_sym; % end % end end function [ti_1, ti_2] = extract_tuple_index(var_str,Num_Tuple,mm) tt_ind = mm{1}; ti_1 = str2double(tt_ind{1}); if ~isempty(tt_ind{2}) ti_2 = str2double(tt_ind{2}); else ti_2 = 1; end if or((ti_1 > Num_Tuple(1)),(ti_2 > Num_Tuple(2))) var_str error('Variable has a tuple index greater than what it is supposed to!'); end end
github
eardi/sm-fpca-master
pt_search_unit_test_dirs.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/pt_search_unit_test_dirs.m
1,491
utf_8
0da6eaaf9eb85a0687bdd57f5c980143
function Unit_Test_Dirs = pt_search_unit_test_dirs() %pt_search_unit_test_dirs % % This outputs a list of directories containing the unit tests. % Copyright (c) 05-07-2019, Shawn W. Walker % get the main directory that this function is in! MFN = mfilename('fullpath'); Main_Dir = fileparts(MFN); % define unit test dirs % init Unit_Test_Dirs.str1 = fullfile(Main_Dir, 'Unit_Test', 'Point_Searches', 'Dim_1'); Unit_Test_Dirs.str2 = []; Unit_Test_Dirs.str3 = []; % next! str1 = fullfile(Main_Dir, 'Unit_Test', 'Point_Searches', 'Dim_2'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Point_Searches', 'Dim_2_Codim_1'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Point_Searches', 'Dim_3'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Point_Searches', 'TopDim_1_GeoDim_2'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Point_Searches', 'TopDim_1_GeoDim_3'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Point_Searches', 'TopDim_2_GeoDim_3'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); end function New_Dirs = append_dir(Dirs,str1,str2,str3) DS.str1 = str1; DS.str2 = str2; DS.str3 = str3; Num = length(Dirs); New_Dirs = Dirs; % init New_Dirs(Num+1) = DS; end
github
eardi/sm-fpca-master
interpolation_unit_test_dirs.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/interpolation_unit_test_dirs.m
1,342
utf_8
413ea0d6cff377bb1d0afc6a870997c6
function Unit_Test_Dirs = interpolation_unit_test_dirs() %interpolation_unit_test_dirs % % This outputs a list of directories containing the unit tests. % Copyright (c) 05-07-2019, Shawn W. Walker % get the main directory that this function is in! MFN = mfilename('fullpath'); Main_Dir = fileparts(MFN); % define unit test dirs % init Unit_Test_Dirs.str1 = fullfile(Main_Dir, 'Unit_Test', 'Dim_2', 'Flat_Domain'); Unit_Test_Dirs.str2 = []; Unit_Test_Dirs.str3 = []; % next! str1 = fullfile(Main_Dir, 'Unit_Test', 'Dim_2', 'Hdiv'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Dim_2', 'Mixed_Geometry'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'Dim_2', 'Symbolic_Constant'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'TopDim_1_GeoDim_3', 'Shape_Operator'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); str1 = fullfile(Main_Dir, 'Unit_Test', 'TopDim_2_GeoDim_3', 'Shape_Operator'); Unit_Test_Dirs = append_dir(Unit_Test_Dirs,str1,[],[]); end function New_Dirs = append_dir(Dirs,str1,str2,str3) DS.str1 = str1; DS.str2 = str2; DS.str3 = str3; Num = length(Dirs); New_Dirs = Dirs; % init New_Dirs(Num+1) = DS; end
github
eardi/sm-fpca-master
Need_Orientation.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/Level_3/@FELPointSearches/Need_Orientation.m
647
utf_8
1721234c0d8a17cb6d17bfbca0632fd2
function TF = Need_Orientation(obj) %Need_Orientation % % This indicates if mesh orientation data is needed. % Copyright (c) 06-26-2014, Shawn W. Walker GeomFunc = obj.GeomFuncs.values; % if an option has been set (in any geometric function) for orientation data, % then return true! TF = false; % init for ind = 1:length(GeomFunc) GF = GeomFunc{ind}; Opt = GF.Opt; TF = orientation_present(Opt); if TF break; end end end function TF = orientation_present(Opt) TF = false; if isfield(Opt,'Orientation') if Opt.Orientation TF = true; end end end
github
eardi/sm-fpca-master
Run_Conversion.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/Main/@Interp_L1toL3/Run_Conversion.m
2,360
utf_8
3f020b3d031a14d4966a478a4bf38dcd
function [FS, FI, C_Codes, Elems_DoF_Allocation] = Run_Conversion(obj,Main_Dir,Snippet_Dir) %Run_Conversion % % This converts INTERP (a Level 1 object) into Level 3 objects. % Note: there is an intermediate Level 2 object (struct). % Copyright (c) 01-25-2013, Shawn W. Walker Domain_of_Expression_Info = obj.Setup_FELDomain; % create an array of special basis function objects that know nothing about the % global FE space except for its NAME; just local info (like the reference % element). This array of objects will be stored within FELSpaces... FS = obj.Setup_FELSpaces(Domain_of_Expression_Info); % FELSpace contains one single set of FE spaces and an array of % Integration_Domains (expression domains). For each Integration_Domain, a set % of basis functions is stored that corresponds to the set of FE spaces. In addition, % any coefficient functions, and extra geometric functions, are also stored in each % Integration_Domain. [FS, FI] = obj.Init_FELInterpolations(FS,Snippet_Dir); % remove the parts of the FELSpaces that are not used! FS = obj.Prune_BasisFunc(FS); C_Codes = obj.Setup_C_Codes(Main_Dir); % get collection of Finite Element Definition structs needed for generating % automatic DoF allocation mex files Elems_DoF_Allocation = FE_Space_Info_For_DoF_Allocation(obj.INTERP); end function ELEMS = FE_Space_Info_For_DoF_Allocation(INTERP) ELEMS = containers.Map; % init Num_Interp_Expr = length(INTERP.Interp_Expr); for ii = 1:Num_Interp_Expr % get current interpolation IE = INTERP.Interp_Expr{ii}; if ~isempty(IE.CoefF) % loop through all CoefF's for kk = 1:length(IE.CoefF) Specific_CoefF = IE.CoefF(kk); % get the corresponding element FE_Space_Name = Specific_CoefF.Element.Name; Elem = Specific_CoefF.Element.Elem; % only include the FE space if it is *not* a global constant if ~strcmp(Elem.Transformation,'Constant_Trans') ELEMS(FE_Space_Name) = Elem; end end end % below is not needed... % if ~isempty(IE.GeoF) % % get current element % % REMOVE? % ELEMS(IE.GeoF.Name) = IE.GeoF.Elem; % end end % add in geometry ELEMS(INTERP.GeoElem.Name) = INTERP.GeoElem.Elem; end
github
eardi/sm-fpca-master
Check_Domains.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/Main/@Interp_L1toL3/private/Check_Domains.m
1,360
utf_8
5b967847833790a36e382161ed942ceb
function status = Check_Domains(obj,DS) %Check_Domains % % This just does some basic error checking. % Copyright (c) 01-28-2013, Shawn W. Walker status = 0; % check hold-all domain if ~isequal(DS.Hold_All,obj.INTERP.GeoElem.Domain) disp('Data structures are inconsistent!'); error('This should not happen. Please report this bug!'); end Num_Domains = length(DS.Domain_Of_Expression); for ind = 1:Num_Domains DoE = DS.Domain_Of_Expression(ind); if strcmp(DoE.Domain.Name,DoE.Domain.Subset_Of) disp(['ERROR: Domain of Expression: ', DoE.Domain.Name]); error('Domain of Expression cannot be a subset of itself!'); end sbr_check_domain(DoE.Domain,DS.Hold_All); % check all embeddings domains for ee=1:length(DoE.Embeddings) sbr_check_domain(DoE.Embeddings(ee),DS.Hold_All); end end end function sbr_check_domain(Domain,Hold_All) % check that the domain is a subset of the Hold_All domain if ~or(strcmp(Domain.Name,Hold_All.Name),strcmp(Domain.Subset_Of,Hold_All.Name)) disp(['ERROR: problem with this Domain: ', Domain.Name]); disp(['ERROR: it is not equal to the hold-all domain: ', Hold_All.Name]); disp(['ERROR: AND it is not a *subset* of the hold-all domain.']); error('ERROR: check your Domain definitions!'); end end
github
eardi/sm-fpca-master
Prune_BasisFunc.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/Main/@Interp_L1toL3/private/Prune_BasisFunc.m
1,465
utf_8
8065ea6972e78679badecab1d74cfb90
function FS = Prune_BasisFunc(obj,FS) %Prune_BasisFunc % % This removes the basis functions that are not used by the set of CoefF(s). % Copyright (c) 01-29-2013, Shawn W. Walker for ii = 1:length(FS.Integration) % find the FE spaces that are needed to evaluate the FEM interpolations Coef_Funcs = FS.Integration(ii).CoefFunc.values; Space_Names = get_spaces_for_DoE(Coef_Funcs); BF_Set = FS.Integration(ii).BasisFunc.values; for bi = 1:length(BF_Set) Current_BF = BF_Set{bi}; % search through matrices to see if it is used USED = verify_basisfunc_is_used(Space_Names,Current_BF); % if it is NOT used, then remove it! if ~USED remove(FS.Integration(ii).BasisFunc, Current_BF.Space_Name); end end end end function Space_Names = get_spaces_for_DoE(Coef_Funcs) Map_Names = containers.Map; % init % add in any spaces needed for coefficient functions for ci = 1:length(Coef_Funcs) Map_Names(Coef_Funcs{ci}.Space_Name) = Coef_Funcs{ci}.Space_Name; end Space_Names = Map_Names.keys; % just need a cell array of names end function USED = verify_basisfunc_is_used(Space_Names,BasisFunc) USED = false; % init %disp(['Current BasisFunc Space: ', BasisFunc.Space_Name]); for ind = 1:length(Space_Names) if strcmp(BasisFunc.Space_Name,Space_Names{ind}) USED = true; break; end end end
github
eardi/sm-fpca-master
Setup_FELGeoms.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/Main/@Interp_L1toL3/private/Setup_FELGeoms.m
2,785
utf_8
a0b0fd2a3e98aadc2a1a59f7161141db
function FS = Setup_FELGeoms(obj,FS) %Setup_FELGeoms % % This inits the GeomFunc Map container under FS.Integration(ind).GeomFunc. % Copyright (c) 01-27-2014, Shawn W. Walker Num_Distinct_Expression_Domains = length(FS.Integration); for ind = 1:Num_Distinct_Expression_Domains % geometry representation for the domain of expression DoE_GF = FS.Integration(ind).DoI_Geom; Current_Expression_Domain = FS.Integration(ind).DoI_Geom.Domain.Integration_Domain; % look thru all the matrices Num_Expr = length(obj.INTERP.Interp_Expr); for ie = 1:Num_Expr %ID = obj.MATS.Matrix_Data{mi}.Integral; I_Expr = obj.INTERP.Interp_Expr{ie}; % if the expression domain matches the current Expression_Domain if isequal(I_Expr.Domain,Current_Expression_Domain) % include any coefficient functions for gi = 1:length(I_Expr.GeoF) % get the domain we are interested in Extra_Geom_Domain = I_Expr.GeoF(gi).Domain; % create the object GF = create_valid_extra_geom_func(DoE_GF,Extra_Geom_Domain); if ~isempty(GF) Geom_Domain_Name = GF.Domain.Subdomain.Name; FS.Integration(ind).GeomFunc(Geom_Domain_Name) = GF; % insert! end end end end end % note: don't worry if a GeometricElementFunction gets overwritten; they are % all on the same domain of expression! end function GeomFunc = create_valid_extra_geom_func(DoE_Geom,Extra_Geom_Domain) % % This creates a GeometricElementFunction for the domain of expression with % respect to containment in the domain for which we want geometric information, i.e. % the Subdomain. % % New_Domain.Global = global mesh domain. % New_Domain.Subdomain = domain corresponding to the geometric data % that we are interested in. % New_Domain.Integration_Domain = where to evaluate the geometric data. % % Note: DoE_Geom is the geometric function representing the geometry of % the Global mesh/domain and how the domain of expression is embedded. % Copyright (c) 01-23-2014, Shawn W. Walker New_Domain = DoE_Geom.Domain; % init % set the Subdomain to be the domain where the geometric data is New_Domain.Subdomain = Extra_Geom_Domain; Extra_Geom_Domain_TopDim = Extra_Geom_Domain.Top_Dim; DoE_TopDim = New_Domain.Integration_Domain.Top_Dim; if (DoE_TopDim > Extra_Geom_Domain_TopDim) % this is not a valid domain embedding, so return NULL GeomFunc = []; else GeomFunc = GeometricElementFunction(DoE_Geom.Elem,New_Domain); end end
github
eardi/sm-fpca-master
Setup_FELSpaces.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/Main/@Interp_L1toL3/private/Setup_FELSpaces.m
1,969
utf_8
687a1cb873788515d503e3cb6fd9a23c
function FS = Setup_FELSpaces(obj,Domain_Info) %Setup_FELSpaces % % This inits the FELSpaces object. % Copyright (c) 01-28-2013, Shawn W. Walker check_geometric_element_domain_geodim_consistency(obj.INTERP.GeoElem.Tensor_Comp,Domain_Info); % create geometric element for the Hold-All container domain DEBUG = true; Geom_Elem = ReferenceFiniteElement(obj.INTERP.GeoElem.Elem,DEBUG); % initialize FS = FELSpaces(Domain_Info,Geom_Elem); % get unique list of FEM spaces MAP = containers.Map(); Num_Expr = length(obj.INTERP.Interp_Expr); for ind = 1:Num_Expr I_Expr = obj.INTERP.Interp_Expr{ind}; for ci = 1:length(I_Expr.CoefF) MAP = Insert_Element_Struct_Into_MAP(I_Expr.CoefF(ci).Element,MAP); end end % append those spaces FS_cell = MAP.values; for ind = 1:length(FS_cell) FS_struct = FS_cell{ind}; REF_ELEM = ReferenceFiniteElement(FS_struct.Elem,DEBUG); FS = FS.Append_FEM_Space(FS_struct.Domain,FS_struct.Space_Name,REF_ELEM,FS_struct.Tensor_Comp); end % include any coefficient functions FS = obj.Setup_FELCoefs(FS); % include any extra geometric functions FS = obj.Setup_FELGeoms(FS); end function check_geometric_element_domain_geodim_consistency(Tensor_Comp,Domain_Array) % make sure there is consistency in the geometric dimension for kk = 1:length(Domain_Array) Domain_GD = Domain_Array(kk).Integration_Domain.GeoDim; if (Tensor_Comp~=Domain_GD) err = FELerror; err = err.Add_Comment(['The ', 'Geometric', ' Element space does not have the']); err = err.Add_Comment('same vector dimension as the Domain of Integration.'); err = err.Add_Comment(['Element space has dim = ', num2str(Tensor_Comp)]); err = err.Add_Comment(['Domain of Integration has dim = ', num2str(Domain_GD)]); err = err.Add_Comment('Check your Domain definitions!'); err.Error; error('stop!'); end end end
github
eardi/sm-fpca-master
Get_Unique_List_Of_Domains.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/Main/@Interp_L1toL3/private/Get_Unique_List_Of_Domains.m
4,247
utf_8
da83ba9c50ab0b76828f659d07ea8b05
function SS = Get_Unique_List_Of_Domains(obj) %Get_Unique_List_Of_Domains % % This outputs a structure that looks like: % SS.Hold_All = Global container domain. % SS.Domain_Of_Expression(k). % Domain = expression domain (that is embedded in Hold_All % domain). % Embeddings(j) = array of other domains that contain the % expression domain. These embeddings will % need to be computed elsewhere (when the % mesh data is known). % Copyright (c) 01-28-2013, Shawn W. Walker % this is THE GLOBAL container set; there should only be one of these no matter % how many subdomains or domains of expression there are! SS.Hold_All = obj.INTERP.GeoElem.Domain; % find all domains of expressions first Domains_Of_Expression = containers.Map(); for ie=1:length(obj.INTERP.Interp_Expr) I_Expr = obj.INTERP.Interp_Expr{ie}; Expr_Dom = I_Expr.Domain; if ismember(Expr_Dom.Name,Domains_Of_Expression.keys) % if that domain was used before, then make sure it did not change! if ~isequal(Expr_Dom,Domains_Of_Expression(Expr_Dom.Name)) % if it doesn't match, then the user was doing things he shouldn't! disp(['ERROR: This Domain was redefined: ', Expr_Dom.Name]); error('You should not redefine a Domain!'); end else Domains_Of_Expression(Expr_Dom.Name) = Expr_Dom; end end List_Of_Dom_Names = Domains_Of_Expression.keys; % store the Domain of Expression SS.Domain_Of_Expression = create_domain_of_expression_struct(obj,Domains_Of_Expression(List_Of_Dom_Names{1})); for ind = 2:length(List_Of_Dom_Names) % store the Domain of Expression SS.Domain_Of_Expression(ind) = create_domain_of_expression_struct(obj,Domains_Of_Expression(List_Of_Dom_Names{ind})); end % SS % SS.Domain_Of_Expression(1) % %SS.Domain_Of_Expression(2) % disp('=========================='); % SS.Domain_Of_Expression(1).Domain % %SS.Domain_Of_Expression(2).Domain % disp('=========================='); % SS.Domain_Of_Expression(1).Embeddings % %SS.Domain_Of_Expression(2).Embeddings % safdsafd end function DOE = create_domain_of_expression_struct(obj,Single_Domain_Of_Expression) % this returns a struct: % DOE.Domain % DOE.Embeddings(k) % the DOE.Embeddings(k) is a level 1 Domain that contains the DoE. % % So, for every coefficient function, we need to know that % the Domain of Expression (DoE) is contained in the domain of definition of % the function (i.e. we need to know to evaluate the function on a subset (DoE) % of its domain of definition). This routine records that in the Embeddings % struct/field. In other words, the Embeddings array contains all domains of % definition (of the functions) that contain the DoE. % store the Domain of Expression DOE.Domain = Single_Domain_Of_Expression; Embed = containers.Map(); % init for ie=1:length(obj.INTERP.Interp_Expr) I_Expr = obj.INTERP.Interp_Expr{ie}; if isequal(I_Expr.Domain,Single_Domain_Of_Expression) Embed = get_function_domain(Embed, I_Expr.CoefF, DOE.Domain); end end % put into the struct if ~isempty(Embed) keys = Embed.keys; DOE.Embeddings = Embed(keys{1}); for kk = 2:length(keys) DOE.Embeddings(kk) = Embed(keys{kk}); end else DOE.Embeddings = []; % no additional embeddings are needed end end function Embed = get_function_domain(Embed, FUNC, DOE_Domain) for ind = 1:length(FUNC) % only need to add this functions domain of defn if it is different than the % DoE if ~isequal(FUNC(ind).Element.Domain,DOE_Domain) % error check: make sure we are only dealing with functions that are % being *evaluated* on the DOE_Domain if ~isequal(FUNC(ind).Domain,DOE_Domain) error('Function (in expression) must be evaluated on the domain of expression!'); end % store the domain of defn of the function Embed(FUNC(ind).Element.Domain.Name) = FUNC(ind).Element.Domain; end end end
github
eardi/sm-fpca-master
Gen_Point_Search_Specific_cc.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/Main/@GenFELPtSearchCode/Gen_Point_Search_Specific_cc.m
19,393
utf_8
5ef8bc2c5a51731290830e1e0993a72c
function Gen_Point_Search_Specific_cc(obj,FPS,Search_Domain) %Gen_Point_Search_Specific_cc % % This generates the file: "CLASS_Search_SPECIFIC.cc", except with a more % specific filename! % Copyright (c) 07-26-2014, Shawn W. Walker ENDL = '\n'; % get specific domain search information CPP_PTS = FPS.Get_CPP_Point_Search_Vars(Search_Domain.Name); % start with A part File1 = [CPP_PTS.Search_Obj_CPP_Type, '.cc']; WRITE_File = fullfile(obj.Output_Dir, obj.Sub_Dir.Point_Search_Classes, File1); FEL_CopyFile(fullfile(obj.Skeleton_Dir, 'Point_Search_Specific_A.cc'),WRITE_File); % open file for writing fid = fopen(WRITE_File, 'a'); % EXAMPLE: %%%%%%% % /*------------ BEGIN: Auto Generate ------------*/ % // This class finds points (i.e. their enclosing cell index and local reference coordinates) % // in this domain: Omega, % // with topological dimension = 2 % // and geometric dimension = 2 % /*------------ END: Auto Generate ------------*/ % output text-lines fprintf(fid, [obj.BEGIN_Auto_Gen, ENDL]); fprintf(fid, ['// This class finds points (i.e. their enclosing cell index and local reference coordinates)', ENDL]); fprintf(fid, ['// in this domain: ', Search_Domain.Name, ',', ENDL]); fprintf(fid, ['// with topological dimension = ', num2str(Search_Domain.Top_Dim), ENDL]); fprintf(fid, ['// and geometric dimension = ', num2str(Search_Domain.GeoDim), ENDL]); fprintf(fid, [obj.END_Auto_Gen, ENDL]); fprintf(fid, ['', ENDL]); %%%%%%% % EXAMPLE: %%%%%%% % /*------------ BEGIN: Auto Generate ------------*/ % // define the name of the search domain (should be the same as the filename of this file) % #define SpecificSEARCH CLASS_Search_Omega % #define SpecificSEARCH_str "CLASS_Search_Omega" % /*------------ END: Auto Generate ------------*/ % get geometric function for the current search domain GF = FPS.GeomFuncs(Search_Domain.Name); TD = Search_Domain.Top_Dim(); Num_V = TD + 1; Degree_Estimate = round(GF.Elem.Num_Basis / Num_V); Num_Intermediate_Pts = 2 * Degree_Estimate - 1; if strncmpi(GF.Elem.Element_Name,'lagrange_deg1',13) % when each cell is linear, we do not need to evaluate intermediate points Num_Intermediate_Pts = 0; LINEAR = true; else LINEAR = false; end [Pound_Defines, C_Proto, Append_FileName] = get_c_code_bits(Search_Domain,Num_Intermediate_Pts,LINEAR); % output text-lines fprintf(fid, [obj.BEGIN_Auto_Gen, ENDL]); fprintf(fid, ['// define the name of the search domain (should be the same as the filename of this file)', ENDL]); fprintf(fid, ['#define SpecificSEARCH ', CPP_PTS.Search_Obj_CPP_Type, ENDL]); fprintf(fid, ['#define SpecificSEARCH_str "', CPP_PTS.Search_Obj_CPP_Type, '"', ENDL]); fprintf(fid, ['', ENDL]); % define a bunch of tolerance and max iter stuff... if ~isempty(Pound_Defines) fprintf(fid, ['// define optimization parameters', ENDL]); end for ind = 1:length(Pound_Defines) fprintf(fid, [Pound_Defines(ind).def, ENDL]); end fprintf(fid, [obj.END_Auto_Gen, ENDL]); fprintf(fid, ['', ENDL]); %%%%%%% fprintf(fid, ['/***************************************************************************************/', ENDL]); fprintf(fid, ['/* C++ (Specific) Point Search class */', ENDL]); fprintf(fid, ['class SpecificSEARCH: public Mesh_Point_Search_Class // derive from base class', ENDL]); fprintf(fid, ['{', ENDL]); fprintf(fid, ['public:', ENDL]); fprintf(fid, ['', ENDL]); % EXAMPLE: %%%%%%% % /*------------ BEGIN: Auto Generate ------------*/ % // access and compute domain embedding info % CLASS_Domain_Omega_embedded_in_Omega_restricted_to_Omega* Domain; % /*------------ END: Auto Generate ------------*/ % output text-lines fprintf(fid, [' ', obj.BEGIN_Auto_Gen, ENDL]); fprintf(fid, [' ', '// access and compute domain embedding info', ENDL]); Domain_CPP = GF.Domain.Determine_CPP_Info; fprintf(fid, [' ', Domain_CPP.Data_Type_Name, '* ',... 'Domain', ';', ENDL]); fprintf(fid, [' ', obj.END_Auto_Gen, ENDL]); fprintf(fid, ['', ENDL]); %%%%%%% % EXAMPLE: %%%%%%% % /*------------ BEGIN: Auto Generate ------------*/ % // access and compute local mesh geometry info % CLASS_geom_Omega_embedded_in_Omega_restricted_to_Omega* GeomFunc; % /*------------ END: Auto Generate ------------*/ % output text-lines fprintf(fid, [' ', obj.BEGIN_Auto_Gen, ENDL]); fprintf(fid, [' ', '// access and compute local mesh geometry info', ENDL]); fprintf(fid, [' ', GF.CPP.Data_Type_Name, '* ',... 'GeomFunc', ';', ENDL]); fprintf(fid, [' ', obj.END_Auto_Gen, ENDL]); fprintf(fid, ['', ENDL]); %%%%%%% % EXAMPLE: %%%%%%% % this will write the pre-declarations fprintf(fid, [' ', obj.BEGIN_Auto_Gen, ENDL]); fprintf(fid, [' ', '// constructor', ENDL]); CONSTRUCTOR_STR = ['SpecificSEARCH (const Subdomain_Search_Data_Class*, Unstructured_Local_Points_Class*);']; fprintf(fid, [' ', CONSTRUCTOR_STR, ENDL]); fprintf(fid, [' ', '~SpecificSEARCH (); // destructor', ENDL]); fprintf(fid, [' ', 'void Consistency_Check();', ENDL]); % write routines that are specific to the search domain's topological and geometric dimension! for ind = 1:length(C_Proto) fprintf(fid, [' ', C_Proto(ind).func_prototype, ENDL]); end fprintf(fid, [' ', obj.END_Auto_Gen, ENDL]); fprintf(fid, ['', 'private:', ENDL]); fprintf(fid, ['};', ENDL]); fprintf(fid, ['', ENDL]); %%%%%%% % append the next part Fixed_File = fullfile(obj.Skeleton_Dir, 'Point_Search_Specific_B.cc'); status = obj.Append_ASCII_File_To_Open_File(Fixed_File,fid); % now append file that is specific to the search domain's topological and geometric dimension! Fixed_File = fullfile(obj.Skeleton_Dir, Append_FileName); status = obj.Append_ASCII_File_To_Open_File(Fixed_File,fid); fprintf(fid, ['', '// remove those macros!', ENDL]); fprintf(fid, ['', '#undef SpecificSEARCH', ENDL]); fprintf(fid, ['', '#undef SpecificSEARCH_str', ENDL]); fprintf(fid, ['', '', ENDL]); for ind = 1:length(Pound_Defines) fprintf(fid, [Pound_Defines(ind).undef, ENDL]); end if ~isempty(Pound_Defines) fprintf(fid, ['', '', ENDL]); end fprintf(fid, ['', '/***/', ENDL]); % DONE! fclose(fid); end function [Pound_Defines, C_Proto, Append_FileName] =... get_c_code_bits(Search_Domain,Num_Intermediate_Pts,LINEAR) TopDim = Search_Domain.Top_Dim; GeoDim = Search_Domain.GeoDim; % the #defines depend on the search domain % the function prototypes depend on the topological and geometric dimension % of the search domain Pound_Defines.def = []; % init Pound_Defines.undef = []; % init C_Proto.func_prototype = []; % init if (TopDim==1) if (GeoDim==1) % TopDim=GeoDim Pound_Defines(4).def = []; % init Pound_Defines(1).def = '#define NEWTON_TOL 1E-13'; Pound_Defines(1).undef = '#undef NEWTON_TOL'; Pound_Defines(2).def = '#define REF_CELL_TOL 1E-12'; Pound_Defines(2).undef = '#undef REF_CELL_TOL'; Pound_Defines(3).def = '#define PT_DATA_TOPDIM_GEODIM_TYPE PT_DATA_Top1_Geo1'; Pound_Defines(3).undef = '#undef PT_DATA_TOPDIM_GEODIM_TYPE'; Pound_Defines(4).def = '#define VEC_DIM_TYPE VEC_1x1'; Pound_Defines(4).undef = '#undef VEC_DIM_TYPE'; if LINEAR Pound_Defines(5).def = '#define LINEAR_CELL'; % faster min finding can be used here Pound_Defines(5).undef = '#undef LINEAR_CELL'; end C_Proto(3).func_prototype = []; % init C_Proto(1).func_prototype = 'void Find_Points();'; C_Proto(2).func_prototype = 'bool Find_Single_Point(PT_DATA_Top1_Geo1&);'; C_Proto(3).func_prototype = 'int One_Iteration(PT_DATA_Top1_Geo1&);'; Append_FileName = 'Point_Search_Specific_TopDim_EQUAL_GeoDim.cc'; elseif (GeoDim==2) Pound_Defines(8).def = []; % init Pound_Defines(1).def = ['#define NUM_INTERMEDIATE_PTS ', num2str(Num_Intermediate_Pts)]; Pound_Defines(1).undef = '#undef NUM_INTERMEDIATE_PTS'; Pound_Defines(2).def = '#define OPT_TOL 1E-8'; Pound_Defines(2).undef = '#undef OPT_TOL'; Pound_Defines(3).def = '#define BIAS_TOL 0.25'; % positive and smaller than 0.5 Pound_Defines(3).undef = '#undef BIAS_TOL'; Pound_Defines(4).def = '#define MAX_QUEUE_SIZE 200'; Pound_Defines(4).undef = '#undef MAX_QUEUE_SIZE'; Pound_Defines(5).def = '#define MAX_LINE_SEARCH_ITER 300'; Pound_Defines(5).undef = '#undef MAX_LINE_SEARCH_ITER'; Pound_Defines(6).def = '#define PT_DATA_TOPDIM_GEODIM_TYPE PT_DATA_Top1_Geo2'; Pound_Defines(6).undef = '#undef PT_DATA_TOPDIM_GEODIM_TYPE'; Pound_Defines(7).def = '#define VEC_DIM_TYPE VEC_2x1'; Pound_Defines(7).undef = '#undef VEC_DIM_TYPE'; Pound_Defines(8).def = '#define MAT_DIM_TYPE MAT_2x1'; Pound_Defines(8).undef = '#undef MAT_DIM_TYPE'; if LINEAR Pound_Defines(9).def = '#define LINEAR_CELL'; % faster min finding can be used here Pound_Defines(9).undef = '#undef LINEAR_CELL'; end C_Proto(14).func_prototype = []; % init C_Proto( 1).func_prototype = 'void Find_Points();'; C_Proto( 2).func_prototype = 'bool Get_Valid_Neighbor(unsigned int&, const int&,'; C_Proto( 3).func_prototype = ' const unsigned int*, const unsigned int&);'; C_Proto( 4).func_prototype = 'bool Find_Single_Point(PT_DATA_Top1_Geo2&);'; C_Proto( 5).func_prototype = 'bool Find_Single_Point_Sub_Iter(const VEC_2x1&, unsigned int&,'; C_Proto( 6).func_prototype = ' unsigned int*, unsigned int&,'; C_Proto( 7).func_prototype = ' Min_On_Cell_Top1&, int&);'; C_Proto( 8).func_prototype = 'void Compute_Min_On_Interval(const VEC_2x1&, const unsigned int&,'; C_Proto( 9).func_prototype = ' unsigned int*, unsigned int&,'; C_Proto(10).func_prototype = ' Min_On_Cell_Top1&, int&);'; C_Proto(11).func_prototype = 'double Eval_Cost(const VEC_2x1&, const VEC_1x1&);'; C_Proto(12).func_prototype = 'void Eval_Cost_And_Gradient(const VEC_2x1&, const VEC_1x1&, SCALAR&, VEC_1x1&);'; C_Proto(13).func_prototype = 'void Bisection_And_Cubic_Line_Search(const VEC_2x1&, const unsigned int&,'; C_Proto(14).func_prototype = ' const double&, Min_On_Cell_Top1&, Min_On_Cell_Top1&);'; Append_FileName = 'Point_Search_Specific_TopDim1_GeoDim2or3.cc'; elseif (GeoDim==3) Pound_Defines(8).def = []; % init Pound_Defines(1).def = ['#define NUM_INTERMEDIATE_PTS ', num2str(Num_Intermediate_Pts)]; Pound_Defines(1).undef = '#undef NUM_INTERMEDIATE_PTS'; Pound_Defines(2).def = '#define OPT_TOL 1E-8'; Pound_Defines(2).undef = '#undef OPT_TOL'; Pound_Defines(3).def = '#define BIAS_TOL 0.25'; % positive and smaller than 0.5 Pound_Defines(3).undef = '#undef BIAS_TOL'; Pound_Defines(4).def = '#define MAX_QUEUE_SIZE 200'; Pound_Defines(4).undef = '#undef MAX_QUEUE_SIZE'; Pound_Defines(5).def = '#define MAX_LINE_SEARCH_ITER 300'; Pound_Defines(5).undef = '#undef MAX_LINE_SEARCH_ITER'; Pound_Defines(6).def = '#define PT_DATA_TOPDIM_GEODIM_TYPE PT_DATA_Top1_Geo3'; Pound_Defines(6).undef = '#undef PT_DATA_TOPDIM_GEODIM_TYPE'; Pound_Defines(7).def = '#define VEC_DIM_TYPE VEC_3x1'; Pound_Defines(7).undef = '#undef VEC_DIM_TYPE'; Pound_Defines(8).def = '#define MAT_DIM_TYPE MAT_3x1'; Pound_Defines(8).undef = '#undef MAT_DIM_TYPE'; if LINEAR Pound_Defines(9).def = '#define LINEAR_CELL'; % faster min finding can be used here Pound_Defines(9).undef = '#undef LINEAR_CELL'; end C_Proto(14).func_prototype = []; % init C_Proto( 1).func_prototype = 'void Find_Points();'; C_Proto( 2).func_prototype = 'bool Get_Valid_Neighbor(unsigned int&, const int&,'; C_Proto( 3).func_prototype = ' const unsigned int*, const unsigned int&);'; C_Proto( 4).func_prototype = 'bool Find_Single_Point(PT_DATA_Top1_Geo3&);'; C_Proto( 5).func_prototype = 'bool Find_Single_Point_Sub_Iter(const VEC_3x1&, unsigned int&,'; C_Proto( 6).func_prototype = ' unsigned int*, unsigned int&,'; C_Proto( 7).func_prototype = ' Min_On_Cell_Top1&, int&);'; C_Proto( 8).func_prototype = 'void Compute_Min_On_Interval(const VEC_3x1&, const unsigned int&,'; C_Proto( 9).func_prototype = ' unsigned int*, unsigned int&,'; C_Proto(10).func_prototype = ' Min_On_Cell_Top1&, int&);'; C_Proto(11).func_prototype = 'double Eval_Cost(const VEC_3x1&, const VEC_1x1&);'; C_Proto(12).func_prototype = 'void Eval_Cost_And_Gradient(const VEC_3x1&, const VEC_1x1&, SCALAR&, VEC_1x1&);'; C_Proto(13).func_prototype = 'void Bisection_And_Cubic_Line_Search(const VEC_3x1&, const unsigned int&,'; C_Proto(14).func_prototype = ' const double&, Min_On_Cell_Top1&, Min_On_Cell_Top1&);'; Append_FileName = 'Point_Search_Specific_TopDim1_GeoDim2or3.cc'; else error('Invalid!'); end elseif (TopDim==2) if (GeoDim==2) % TopDim=GeoDim Pound_Defines(4).def = []; % init Pound_Defines(1).def = '#define NEWTON_TOL 1E-13'; Pound_Defines(1).undef = '#undef NEWTON_TOL'; Pound_Defines(2).def = '#define REF_CELL_TOL 1E-12'; Pound_Defines(2).undef = '#undef REF_CELL_TOL'; Pound_Defines(3).def = '#define PT_DATA_TOPDIM_GEODIM_TYPE PT_DATA_Top2_Geo2'; Pound_Defines(3).undef = '#undef PT_DATA_TOPDIM_GEODIM_TYPE'; Pound_Defines(4).def = '#define VEC_DIM_TYPE VEC_2x1'; Pound_Defines(4).undef = '#undef VEC_DIM_TYPE'; if LINEAR Pound_Defines(5).def = '#define LINEAR_CELL'; % faster min finding can be used here Pound_Defines(5).undef = '#undef LINEAR_CELL'; end C_Proto(3).func_prototype = []; % init C_Proto(1).func_prototype = 'void Find_Points();'; C_Proto(2).func_prototype = 'bool Find_Single_Point(PT_DATA_Top2_Geo2&);'; C_Proto(3).func_prototype = 'int One_Iteration(PT_DATA_Top2_Geo2&);'; Append_FileName = 'Point_Search_Specific_TopDim_EQUAL_GeoDim.cc'; elseif (GeoDim==3) Pound_Defines(6).def = []; % init Pound_Defines(1).def = ['#define NUM_INTERMEDIATE_PTS ', num2str(Num_Intermediate_Pts)]; Pound_Defines(1).undef = '#undef NUM_INTERMEDIATE_PTS'; Pound_Defines(2).def = '#define OPT_TOL 1E-8'; Pound_Defines(2).undef = '#undef OPT_TOL'; Pound_Defines(3).def = '#define BIAS_TOL 0.25'; % positive and smaller than 0.5 Pound_Defines(3).undef = '#undef BIAS_TOL'; Pound_Defines(4).def = '#define MAX_QUEUE_SIZE 200'; Pound_Defines(4).undef = '#undef MAX_QUEUE_SIZE'; Pound_Defines(5).def = '#define MAX_GRADIENT_DESCENT_ITER 500'; Pound_Defines(5).undef = '#undef MAX_GRADIENT_DESCENT_ITER'; Pound_Defines(6).def = '#define MAX_LINE_SEARCH_ITER 300'; Pound_Defines(6).undef = '#undef MAX_LINE_SEARCH_ITER'; if LINEAR Pound_Defines(7).def = '#define LINEAR_CELL'; % faster min finding can be used here Pound_Defines(7).undef = '#undef LINEAR_CELL'; end C_Proto(17).func_prototype = []; % init C_Proto( 1).func_prototype = 'void Find_Points();'; C_Proto( 2).func_prototype = 'bool Get_Valid_Neighbor(unsigned int&, int&, const int&,'; C_Proto( 3).func_prototype = ' const unsigned int*, const unsigned int&);'; C_Proto( 4).func_prototype = 'bool Find_Single_Point(PT_DATA_Top2_Geo3&);'; C_Proto( 5).func_prototype = 'bool Find_Single_Point_Sub_Iter(const VEC_3x1& GX, unsigned int& ci,'; C_Proto( 6).func_prototype = ' unsigned int* ciq, unsigned int& qs,'; C_Proto( 7).func_prototype = ' Min_On_Cell_Top2& M, int ln[2]);'; C_Proto( 8).func_prototype = 'void Compute_Min_On_Triangle(const VEC_3x1& GX, const unsigned int& ci,'; C_Proto( 9).func_prototype = ' const int& asi, const int& pmsi,'; C_Proto(10).func_prototype = ' unsigned int* ciq, unsigned int& qs,'; C_Proto(11).func_prototype = ' Min_On_Cell_Top2& M, int ln[2]);'; C_Proto(12).func_prototype = 'bool Run_Gradient_Descent(const VEC_3x1&, Min_On_Cell_Top2&, const double&);'; C_Proto(13).func_prototype = 'double Eval_Cost(const VEC_3x1&, const VEC_2x1&);'; C_Proto(14).func_prototype = 'void Eval_Cost_And_Gradient(const VEC_3x1&, const VEC_2x1&, SCALAR&, VEC_2x1&);'; C_Proto(15).func_prototype = 'void Eval_Cost_And_Directional_Deriv(const VEC_3x1&, const VEC_2x1&, const VEC_2x1&, SCALAR&, SCALAR&);'; C_Proto(16).func_prototype = 'void Bisection_And_Cubic_Line_Search(const VEC_3x1&, const VEC_2x1&, const unsigned int&,'; C_Proto(17).func_prototype = ' const double&, Min_On_Cell_Top2&, Min_On_Cell_Top2&);'; Append_FileName = 'Point_Search_Specific_TopDim2_GeoDim3.cc'; else error('Invalid!'); end elseif (TopDim==3) if (GeoDim==3) % TopDim=GeoDim Pound_Defines(4).def = []; % init Pound_Defines(1).def = '#define NEWTON_TOL 1E-13'; Pound_Defines(1).undef = '#undef NEWTON_TOL'; Pound_Defines(2).def = '#define REF_CELL_TOL 1E-12'; Pound_Defines(2).undef = '#undef REF_CELL_TOL'; Pound_Defines(3).def = '#define PT_DATA_TOPDIM_GEODIM_TYPE PT_DATA_Top3_Geo3'; Pound_Defines(3).undef = '#undef PT_DATA_TOPDIM_GEODIM_TYPE'; Pound_Defines(4).def = '#define VEC_DIM_TYPE VEC_3x1'; Pound_Defines(4).undef = '#undef VEC_DIM_TYPE'; if LINEAR Pound_Defines(5).def = '#define LINEAR_CELL'; % faster min finding can be used here Pound_Defines(5).undef = '#undef LINEAR_CELL'; end C_Proto(3).func_prototype = []; % init C_Proto(1).func_prototype = 'void Find_Points();'; C_Proto(2).func_prototype = 'bool Find_Single_Point(PT_DATA_Top3_Geo3&);'; C_Proto(3).func_prototype = 'int One_Iteration(PT_DATA_Top3_Geo3&);'; Append_FileName = 'Point_Search_Specific_TopDim_EQUAL_GeoDim.cc'; else error('Invalid!'); end else error('Invalid!'); end end
github
eardi/sm-fpca-master
Check_Domains.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/Main/@PtSearch_L1toL3/private/Check_Domains.m
1,232
utf_8
a858da466ecc2d7458d16d88a7f474f4
function status = Check_Domains(obj,DS) %Check_Domains % % This just does some basic error checking. % Copyright (c) 06-13-2014, Shawn W. Walker status = 0; % check hold-all domain if ~isequal(DS.Hold_All,obj.PTSEARCH.GeoElem.Domain) disp('Data structures are inconsistent!'); error('This should not happen. Please report this bug!'); end Num_Domains = length(DS.Domain_Of_Expression); for ind = 1:Num_Domains DoE = DS.Domain_Of_Expression(ind); if strcmp(DoE.Domain.Name,DoE.Domain.Subset_Of) disp(['ERROR: Domain of Expression: ', DoE.Domain.Name]); error('Domain of Expression cannot be a subset of itself!'); end sbr_check_domain(DoE.Domain,DS.Hold_All); end end function sbr_check_domain(Domain,Hold_All) % check that the domain is a subset of the Hold_All domain if ~or(strcmp(Domain.Name,Hold_All.Name),strcmp(Domain.Subset_Of,Hold_All.Name)) disp(['ERROR: there is a problem with this Domain: ', Domain.Name]); disp(['ERROR: it is not equal to the hold-all domain: ', Hold_All.Name]); disp(['ERROR: AND it is not a *subset* of the hold-all domain.']); error('ERROR: check your Domain definitions!'); end end
github
eardi/sm-fpca-master
FEL_Execute_Interp_Shape_Op_2D.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/Unit_Test/TopDim_2_GeoDim_3/Shape_Operator/FEL_Execute_Interp_Shape_Op_2D.m
3,167
utf_8
3b25928aa8a2bd58601717278f12a5eb
function status = FEL_Execute_Interp_Shape_Op_2D(mexName) %FEL_Execute_Interp_Shape_Op_2D % % test FELICITY Auto-Generated Interpolation Code. % Copyright (c) 08-16-2014, Shawn W. Walker % current_file = mfilename('fullpath'); % Current_Dir = fileparts(current_file); % get test mesh [Omega_P1_Vtx, Omega_Tri] = Standard_Triangle_Mesh_Test_Data(); % domain is a square [0, 2] X [0, 2] Mesh = MeshTriangle(Omega_Tri, Omega_P1_Vtx, 'Gamma'); % refine for ind = 1:2 Mesh = Mesh.Refine; end % define other FE space stuff P1_DoFmap = uint32(Mesh.ConnectivityList); P2_DoFmap = uint32(Setup_Lagrange_P2_DoFmap(Mesh.ConnectivityList,[])); % get P2_Lagrange Node coordinates P2_RefElem = ReferenceFiniteElement(lagrange_deg2_dim2()); P2_Lagrange_Space = FiniteElementSpace('Scalar_P2', P2_RefElem, Mesh, 'Gamma'); P2_Lagrange_Space = P2_Lagrange_Space.Set_DoFmap(Mesh,uint32(P2_DoFmap)); P2_X = P2_Lagrange_Space.Get_DoF_Coord(Mesh); % add the z-component P2_X = [P2_X, 0*P2_X(:,1)]; % % make it a paraboloid % P2_X(:,3) = 1 - P2_X(:,1).^2 - P2_X(:,2).^2; % make it a sine wave P2_X(:,3) = sin(2*pi*P2_X(:,1).*P2_X(:,2)); % define the interpolation points Cell_Indices = (1:1:Mesh.Num_Cell)'; % interpolate at the barycenter of reference triangle Gamma_Interp_Data = {uint32(Cell_Indices), (1/3) * ones(Mesh.Num_Cell,2)}; %BC = Mesh.refToBary(Gamma_Interp_Data{2}); %Interp_Pts = Mesh.baryToCart(Cell_Indices, BC); % interpolate! tic INTERP = feval(str2func(mexName),P2_X,P2_DoFmap,[],[],Gamma_Interp_Data); toc kappa = INTERP(1).DATA{1}; kappa_G = INTERP(2).DATA{1}; Num_Pts = length(Gamma_Interp_Data{1}); NV = zeros(Num_Pts,3); NV(:) = cell2mat(INTERP(3).DATA); Shape_Op = zeros(3,3,Num_Pts); for ii = 1:3 for jj = 1:3 Shape_Op(ii,jj,:) = INTERP(4).DATA{ii,jj}; end end % error check CHK_NV = 0; CHK_kappa = 0; CHK_kappa_G = 0; for pt = 1:Num_Pts % get interpolated value at each point kappa_pt = kappa(pt); kappa_G_pt = kappa_G(pt); NV_pt = NV(pt,:)'; Shape_Op_pt = Shape_Op(:,:,pt); % check that the normal vector gets mapped to the zero vector CHK_NV = max(max(abs(Shape_Op_pt * NV_pt)), CHK_NV); % check the eigenvalues of the shape operator against the total and gauss curvatures lambda = eig(Shape_Op_pt); lambda = remove_smallest_mag_element(lambda); CHK_kappa = max(abs(sum(lambda) - kappa_pt), CHK_kappa); CHK_kappa_G = max(prod(lambda) - kappa_G_pt, CHK_kappa_G); end status = 0; % init TOL = 1e-11; if (CHK_NV > TOL) CHK_NV disp('Normal vector is not in the null space of the shape operator.'); status = 1; end if (CHK_kappa > TOL) CHK_kappa disp('Sum of the principle curvatures does not match the trace of the shape operator.'); status = 1; end if (CHK_kappa_G > TOL) CHK_kappa_G disp('Gaussian curvature does not match the product of the (non-zero) eigenvalues of the shape operator.'); status = 1; end end function new_vec = remove_smallest_mag_element(vec) [~, Ind] = min(abs(vec)); new_vec = vec; new_vec(Ind) = []; end
github
eardi/sm-fpca-master
FEL_Execute_Interp_BDM1_2D.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/Unit_Test/Dim_2/Hdiv/FEL_Execute_Interp_BDM1_2D.m
3,908
utf_8
6fba7a850a5c03d3023c9d08e1494e44
function status = FEL_Execute_Interp_BDM1_2D(mexName_DoF,mexName_Interp) %FEL_Execute_Interp_BDM1_2D % % test FELICITY Auto-Generated Interpolation Code. % Copyright (c) 02-10-2013, Shawn W. Walker current_file = mfilename('fullpath'); Current_Dir = fileparts(current_file); % get test mesh [Omega_P1_Vtx, Omega_Tri] = Standard_Triangle_Mesh_Test_Data(); % domain is a square [0, 2] X [0, 2] Mesh = MeshTriangle(Omega_Tri, Omega_P1_Vtx, 'Omega'); % refine for ind = 1:0 Mesh = Mesh.Refine; end % append the boundary as a subdomain FBE = Mesh.freeBoundary; Mesh = Mesh.Append_Subdomain('1D','Gamma',FBE); % create edge orientation Edges = Mesh.edges; [Tri_Edge, Omega_Orient] = Mesh.Get_Facet_Info(Edges); % a true entry means the local edge of the given triangle is contained in the % Tri_Edge array; false means the *reversed* edge is in the Tri_Edge array. % allocate DoFs BDM1_DoFmap = feval(str2func(mexName_DoF),uint32(Mesh.ConnectivityList)); %Num_BDM1_Nodes = max(BDM1_DoFmap(:)); % create embedding data DoE_Names = {'Gamma'; 'Omega'}; Omega_Mesh_Subdomains = Mesh.Generate_Subdomain_Embedding_Data(DoE_Names); % BDM1 FE functions F1 = @(X) [exp(-0.5*X(:,1).*X(:,2)), sin(pi*X(:,1).*X(:,2))]; v = Get_BDM1_Interpolant_of_Function(Mesh.Points,Mesh.ConnectivityList,BDM1_DoFmap,Omega_Orient,F1); % exact interpolant functions I_v = @(x,y) {exp(-0.5*x.*y); sin(pi*x.*y)}; % % define the interpolation points Cell_Omega_Indices = (1:1:Mesh.Num_Cell)'; % interpolate at the barycenter of reference triangle (on Omega) Omega_Interp_Data = {uint32(Cell_Omega_Indices), (1/3) * ones(Mesh.Num_Cell,2)}; Omega_Interp_Pts = Mesh.referenceToCartesian(Cell_Omega_Indices, Omega_Interp_Data{2}); % define the interpolation points Mesh_Gamma = Mesh.Output_Subdomain_Mesh('Gamma'); Cell_Gamma_Indices = (1:1:Mesh_Gamma.Num_Cell)'; % interpolate at the barycenter of reference edge (on Gamma) Gamma_Interp_Data = {uint32(Cell_Gamma_Indices), (1/2) * ones(Mesh_Gamma.Num_Cell,1)}; Gamma_Interp_Pts = Mesh_Gamma.referenceToCartesian(Cell_Gamma_Indices, Gamma_Interp_Data{2}); % interpolate! tic INTERP = feval(str2func(mexName_Interp),Mesh.Points,uint32(Mesh.ConnectivityList),Omega_Orient,Omega_Mesh_Subdomains,... Gamma_Interp_Data,Omega_Interp_Data,BDM1_DoFmap,v); toc RefINTERPDataFileName = fullfile(Current_Dir,'FEL_Execute_Interp_BDM1_2D_REF_Data.mat'); % INTERP_REF = INTERP; % save(RefINTERPDataFileName,'INTERP_REF'); load(RefINTERPDataFileName); % compare the exact values with the interpolated ones I_on_Gamma_exact = I_on_Gamma(Gamma_Interp_Pts(:,1),Gamma_Interp_Pts(:,2)); I_v_exact = I_v(Omega_Interp_Pts(:,1),Omega_Interp_Pts(:,2)); % these errors satisfy the order of accuracy estimates when refining... I_on_Gamma_err = max(abs(I_on_Gamma_exact - INTERP(1).DATA{1,1})); I_v1_err = max(abs(I_v_exact{1,1} - INTERP(2).DATA{1,1})); I_v2_err = max(abs(I_v_exact{2,1} - INTERP(2).DATA{2,1})); disp(' '); disp('L_inf errors for the interpolations:'); I_on_Gamma_err I_v1_err I_v2_err status = 0; % init % compare to reference data for ind = 1:length(INTERP) [nr, nc] = size(INTERP(ind).DATA); for ir = 1:nr for ic = 1:nc ERROR = max(abs(INTERP(ind).DATA{ir,ic} - INTERP_REF(ind).DATA{ir,ic})); if (ERROR > 4e-15) disp(['Test Failed for INTERP(', num2str(ind), ').DATA...']); status = 1; end end end end end function Exact = I_on_Gamma(x,y) v1 = exp(-0.5*x.*y); v2 = sin(pi*x.*y); LEFT = (x < 1e-10); RIGHT = (x > (2-1e-10)); BOT = (y < 1e-10); TOP = (y > (2-1e-10)); Exact = 0*x; Exact(LEFT,1) = -v1(LEFT,1); Exact(RIGHT,1) = v1(RIGHT,1); Exact(BOT,1) = -v2(BOT,1); Exact(TOP,1) = v2(TOP,1); end
github
eardi/sm-fpca-master
FEL_Execute_Pt_Search_Curve_In_3D.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/Unit_Test/Point_Searches/TopDim_1_GeoDim_3/FEL_Execute_Pt_Search_Curve_In_3D.m
4,813
utf_8
8ea863abb0b9ae60f2ff9f3debc156a0
function status = FEL_Execute_Pt_Search_Curve_In_3D(mexName) %FEL_Execute_Pt_Search_Curve_In_3D % % test FELICITY Auto-Generated Point Search Code. % Copyright (c) 07-25-2014, Shawn W. Walker current_file = mfilename('fullpath'); Current_Dir = fileparts(current_file); % get test mesh (interval [0, 9]) [Sigma_P1_Vtx, Sigma_Edge] = Standard_Edge_Mesh_Test_Data(); % add a y and z-component y = 0*Sigma_P1_Vtx(:,1); z = 0*Sigma_P1_Vtx(:,1); Sigma_P1_Vtx = [Sigma_P1_Vtx, y, z]; Mesh = MeshInterval(Sigma_Edge, Sigma_P1_Vtx, 'Sigma'); % refine for ind = 1:2 Mesh = Mesh.Refine; end % make a parabola x = Mesh.Points(:,1); y = 0.1*(20 - (x - 4.5).^2); z = 0.1*(20 - (x - 4.5).^2); Mesh = Mesh.Set_Points([Mesh.Points(:,1), y, z]); % define the global points % NP = 100000; % % set some random global points % rx = 9*rand(NP,1); % ry = 2*rand(NP,1); % rz = 2*rand(NP,1); % GX = [rx, ry, rz]; [XX,YY,ZZ] = meshgrid((0:2:9)',(-1:0.7:1)',(-1:0.7:1)'); GX = [XX(:), YY(:), ZZ(:)]; clear XX YY ZZ; Cell_Indices = uint32(ones(size(GX,1),1)); %Cell_Indices = uint32(randi(Mesh.Num_Cell,size(GX,1),1)); Sigma_Neighbors = uint32(Mesh.neighbors); Sigma_Given_Points = {Cell_Indices, GX, Sigma_Neighbors}; % search! tic SEARCH = feval(str2func(mexName),Mesh.Points,uint32(Mesh.ConnectivityList),[],[],Sigma_Given_Points); toc RefSEARCHDataFileName = fullfile(Current_Dir,'FEL_Execute_Pt_Search_Curve_In_3D_REF_Data.mat'); % SEARCH_REF = SEARCH; % save(RefSEARCHDataFileName,'SEARCH_REF'); load(RefSEARCHDataFileName); status = 0; % init if ~strcmp(SEARCH.Name,Mesh.Name) disp('Domain name does not match!'); status = 1; end % get closest cell indices CI = double(SEARCH.DATA{1}); if (min(CI) <= 0) disp('At least one point was not found in the mesh!'); status = 1; end % get corresponding local reference triangle coordinates Local_Ref_Coord = SEARCH.DATA{2}; N1 = 1 - sum(Local_Ref_Coord,2); CHK = [N1, Local_Ref_Coord]; MIN_VAL = min(CHK(:)); MAX_VAL = max(CHK(:)); % make sure the coordinates are inside the ref triangle if ~and(MIN_VAL >= -1e-15, MAX_VAL <= 1 + 1e-15) disp('Some local points are outside reference triangle!'); status = 1; end % check that difference vector is "orthogonal" to the surface XC = Mesh.referenceToCartesian(CI, Local_Ref_Coord); Global_X = Sigma_Given_Points{2}; DIFF_VEC = Global_X - XC; % look at some of the closest points PT_Mask = (Global_X(:,1) > 1) & (Global_X(:,1) < 8); %PT_Mask_Other = ~PT_Mask; PTS_Closest_To_First_Vtx = [1, 2, 3, 16, 17, 31]; PTS_Closest_To_Last_Vtx = [13, 14, 28]; % compute edge vectors Edges = Mesh.edges; EV = Mesh.Points(Edges(:,2),:) - Mesh.Points(Edges(:,1),:); UNIT_EV = normalize_vec(EV); % check "orthogonality" UNIT_DIFF_VEC = normalize_vec(DIFF_VEC); CHK_ORTHO = dot(UNIT_EV(CI,:),UNIT_DIFF_VEC,2); % only the ones in set A will be ortho CHK_A = CHK_ORTHO(PT_Mask); ORTHO_ERROR = max(abs(CHK_A)); if (ORTHO_ERROR > 1e-13) ORTHO_ERROR disp(['Orthogonality Test Failed for Point Searching...']); status = 1; end % check that the other global points are closest to the ENDS of the parabola XC_First = XC(PTS_Closest_To_First_Vtx,:); First_Vtx = [0, -2.5e-02, -2.5e-02]; CHK_First = [XC_First(:,1) - First_Vtx(1), XC_First(:,2) - First_Vtx(2), XC_First(:,3) - First_Vtx(3)]; CHK_First_MAX = max(abs(CHK_First(:))); XC_Last = XC(PTS_Closest_To_Last_Vtx,:); Last_Vtx = [9, -2.5e-02, -2.5e-02]; CHK_Last = [XC_Last(:,1) - Last_Vtx(1), XC_Last(:,2) - Last_Vtx(2), XC_Last(:,3) - Last_Vtx(3)]; CHK_Last_MAX = max(abs(CHK_Last(:))); if max(CHK_First_MAX,CHK_Last_MAX) disp(['Global Points Not Close To End Points...']); status = 1; end % plot closest points figure; Mesh.Plot; hold on; plot3(Global_X(:,1),Global_X(:,2),Global_X(:,3),'k*','MarkerSize',10); plot3(XC(:,1),XC(:,2),XC(:,3),'r.','MarkerSize',20); plot3([XC(:,1), Global_X(:,1)]',[XC(:,2), Global_X(:,2)]',[XC(:,3), Global_X(:,3)]','b-'); hold off; axis([0 9 -1.5 2.5 -1.5 2.5]); axis equal; title('Closest Point Search On 3-D Curve Mesh'); % compare to reference data for ind = 1:length(SEARCH) ECI = max(abs(SEARCH(ind).DATA{1} - SEARCH_REF(ind).DATA{1})); ELR = max(abs(SEARCH(ind).DATA{2} - SEARCH_REF(ind).DATA{2})); if (ECI > 0) disp(['Test Failed for SEARCH(', num2str(ind), ').DATA{1}...']); status = 1; end if (ELR > 4e-15) disp(['Test Failed for SEARCH(', num2str(ind), ').DATA{2}...']); status = 1; end end end function UNIT_VEC = normalize_vec(VEC) MAG0 = sqrt(sum(VEC.^2,2)); UNIT_VEC = VEC; UNIT_VEC(:,1) = VEC(:,1) ./ MAG0; UNIT_VEC(:,2) = VEC(:,2) ./ MAG0; UNIT_VEC(:,3) = VEC(:,3) ./ MAG0; end
github
eardi/sm-fpca-master
FEL_Execute_Pt_Search_Surface_In_3D.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/Unit_Test/Point_Searches/TopDim_2_GeoDim_3/FEL_Execute_Pt_Search_Surface_In_3D.m
5,266
utf_8
260b1acd6cff744c6f32383e8da40541
function status = FEL_Execute_Pt_Search_Surface_In_3D(mexName) %FEL_Execute_Pt_Search_Surface_In_3D % % test FELICITY Auto-Generated Point Search Code. % Copyright (c) 07-24-2014, Shawn W. Walker current_file = mfilename('fullpath'); Current_Dir = fileparts(current_file); % get test mesh (square [0, 2] X [0, 2]) [Gamma_P1_Vtx, Gamma_Tri] = Standard_Triangle_Mesh_Test_Data(); %Gamma_Tri = Gamma_Tri(:,[3 1 2]); % add a z-component z = 0*Gamma_P1_Vtx(:,1); Gamma_P1_Vtx = [Gamma_P1_Vtx, z]; Mesh = MeshTriangle(Gamma_Tri, Gamma_P1_Vtx, 'Gamma'); % refine for ind = 1:0 Mesh = Mesh.Refine; end % make a quadratic surface z = 1 - ( (Mesh.Points(:,1) - 1).^2 + (Mesh.Points(:,2) - 1).^2 ); Mesh = Mesh.Set_Points([Mesh.Points(:,1:2), z]); % define the global points % NP = 1000; % % set some random global points % rx = 2*rand(NP,1); % ry = 2*rand(NP,1); % %rz = 2*rand(NP,1); % rz = 1.5 + 0.2*(rand(NP,1) - 0.5); % GX = [rx, ry, rz]; s_vec = linspace(0.1,1.9,4)'; [XX,YY] = meshgrid(s_vec,s_vec); rx = XX(:); ry = YY(:); clear XX YY s_vec; rz = 0*rx + 1.05; GX = [rx, ry, rz; 1, 1, 1.4; -0.3, 1, 0; 1, -0.3, 0; 2.3, 1, 0; 1, 2.3, 0; -0.3, -0.3, -0.9; 2.3, -0.3, -0.9; -0.3, 2.3, -0.9; 2.3, 2.3, -0.9]; Cell_Indices = uint32(ones(size(GX,1),1)); %Cell_Indices = uint32(randi(Mesh.Num_Cell,size(GX,1),1)); Gamma_Neighbors = uint32(Mesh.neighbors); Gamma_Given_Points = {Cell_Indices, GX, Gamma_Neighbors}; % search! tic SEARCH = feval(str2func(mexName),Mesh.Points,uint32(Mesh.ConnectivityList),[],[],Gamma_Given_Points); toc RefSEARCHDataFileName = fullfile(Current_Dir,'FEL_Execute_Pt_Search_Surface_In_3D_REF_Data.mat'); % SEARCH_REF = SEARCH; % save(RefSEARCHDataFileName,'SEARCH_REF'); load(RefSEARCHDataFileName); status = 0; % init if ~strcmp(SEARCH.Name,Mesh.Name) disp('Domain name does not match!'); status = 1; end % get closest cell indices CI = double(SEARCH.DATA{1}); if (min(CI) <= 0) disp('At least one point was not found in the mesh!'); status = 1; end % get corresponding local reference triangle coordinates Local_Ref_Coord = SEARCH.DATA{2}; N1 = 1 - sum(Local_Ref_Coord,2); CHK = [N1, Local_Ref_Coord]; MIN_VAL = min(CHK(:)); MAX_VAL = max(CHK(:)); % make sure the coordinates are inside the ref triangle if ~and(MIN_VAL >= -1e-15, MAX_VAL <= 1 + 1e-15) disp('Some local points are outside reference triangle!'); status = 1; end % check that difference vector is "orthogonal" to the surface XC = Mesh.referenceToCartesian(CI, Local_Ref_Coord); Global_X = Gamma_Given_Points{2}; DIFF_VEC = Global_X - XC; % compute edge vectors Edges = Mesh.edges; EV = Mesh.Points(Edges(:,2),:) - Mesh.Points(Edges(:,1),:); EV11 = normalize_vec(EV(11,:)); EV12 = normalize_vec(EV(12,:)); EV18 = normalize_vec(EV(18,:)); EV19 = normalize_vec(EV(19,:)); EV07 = normalize_vec(EV(7,:)); EV14 = normalize_vec(EV(14,:)); EV17 = normalize_vec(EV(17,:)); EV20 = normalize_vec(EV(20,:)); % compute a few normal vectors NV03 = normalize_vec(cross(EV11,EV07)); NV04 = normalize_vec(cross(EV14,EV11)); NV05 = normalize_vec(cross(EV07,EV12)); NV08 = normalize_vec(cross(EV17,EV12)); NV10 = normalize_vec(cross(EV14,EV18)); NV11 = normalize_vec(cross(EV20,EV18)); NV13 = normalize_vec(cross(EV19,EV20)); NV14 = normalize_vec(cross(EV17,EV19)); % check "orthogonality" CHK = zeros(size(Global_X,1),1); NORM_DIFF_VEC = normalize_vec(DIFF_VEC); CHK(6) = dot(EV11,NORM_DIFF_VEC(6,:)); CHK(10) = dot(EV12,NORM_DIFF_VEC(10,:)); CHK(7) = dot(EV18,NORM_DIFF_VEC(7,:)); CHK(11) = dot(EV19,NORM_DIFF_VEC(11,:)); CHK(2) = 1 - dot(NV04,NORM_DIFF_VEC(2,:)); CHK(5) = 1 - dot(NV03,NORM_DIFF_VEC(5,:)); CHK(9) = 1 - dot(NV05,NORM_DIFF_VEC(9,:)); CHK(14) = 1 - dot(NV08,NORM_DIFF_VEC(14,:)); CHK(15) = 1 - dot(NV14,NORM_DIFF_VEC(15,:)); CHK(12) = 1 - dot(NV13,NORM_DIFF_VEC(12,:)); CHK(8) = 1 - dot(NV11,NORM_DIFF_VEC(8,:)); CHK(3) = 1 - dot(NV10,NORM_DIFF_VEC(3,:)); ORTHO_ERROR = max(abs(CHK)); if (ORTHO_ERROR > 1e-15) disp(['Orthogonality Test Failed for Point Searching...']); status = 1; end % plot closest points figure; Mesh.Plot; hold on; plot3(Global_X(:,1),Global_X(:,2),Global_X(:,3),'k*','MarkerSize',10); plot3(XC(:,1),XC(:,2),XC(:,3),'r.','MarkerSize',20); plot3([XC(:,1), Global_X(:,1)]',[XC(:,2), Global_X(:,2)]',[XC(:,3), Global_X(:,3)]','b-'); hold off; axis([-0.5 2.5 -0.5 2.5 -1 1.5]); axis equal; title('Closest Point Search On Triangulation'); % compare to reference data for ind = 1:length(SEARCH) ECI = max(abs(SEARCH(ind).DATA{1} - SEARCH_REF(ind).DATA{1})); ELR = max(abs(SEARCH(ind).DATA{2} - SEARCH_REF(ind).DATA{2})); if (ECI > 0) disp(['Test Failed for SEARCH(', num2str(ind), ').DATA{1}...']); status = 1; end if (ELR > 4e-15) disp(['Test Failed for SEARCH(', num2str(ind), ').DATA{2}...']); status = 1; end end end function UNIT_VEC = normalize_vec(VEC) MAG0 = sqrt(sum(VEC.^2,2)); UNIT_VEC = VEC; UNIT_VEC(:,1) = VEC(:,1) ./ MAG0; UNIT_VEC(:,2) = VEC(:,2) ./ MAG0; UNIT_VEC(:,3) = VEC(:,3) ./ MAG0; end
github
eardi/sm-fpca-master
FEL_Execute_Pt_Search_Curve_In_2D.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Interpolation/Unit_Test/Point_Searches/TopDim_1_GeoDim_2/FEL_Execute_Pt_Search_Curve_In_2D.m
4,244
utf_8
a5ffbbd3253026813175ddca617964c9
function status = FEL_Execute_Pt_Search_Curve_In_2D(mexName) %FEL_Execute_Pt_Search_Curve_In_2D % % test FELICITY Auto-Generated Point Search Code. % Copyright (c) 07-26-2014, Shawn W. Walker current_file = mfilename('fullpath'); Current_Dir = fileparts(current_file); % get test mesh (interval [0, 9]) [Sigma_P1_Vtx, Sigma_Edge] = Standard_Edge_Mesh_Test_Data(); % add y-component y = 0*Sigma_P1_Vtx(:,1); Sigma_P1_Vtx = [Sigma_P1_Vtx, y]; Mesh = MeshInterval(Sigma_Edge, Sigma_P1_Vtx, 'Sigma'); % refine for ind = 1:3 Mesh = Mesh.Refine; end % make a sine wave x = Mesh.Points(:,1); y = sin(0.2*pi*x); Mesh = Mesh.Set_Points([x, y]); % define the global points % NP = 1000; % % set some random global points % rx = 9*rand(NP,1); % ry = 2*rand(NP,1); % GX = [rx, ry]; [XX,YY] = meshgrid((0:2:9)',(-1:0.7:1)'); GX = [XX(:), YY(:)]; clear XX YY; Cell_Indices = uint32(ones(size(GX,1),1)); %Cell_Indices = uint32(randi(Mesh.Num_Cell,size(GX,1),1)); Sigma_Neighbors = uint32(Mesh.neighbors); Sigma_Given_Points = {Cell_Indices, GX, Sigma_Neighbors}; % search! tic SEARCH = feval(str2func(mexName),Mesh.Points,uint32(Mesh.ConnectivityList),[],[],Sigma_Given_Points); toc RefSEARCHDataFileName = fullfile(Current_Dir,'FEL_Execute_Pt_Search_Curve_In_2D_REF_Data.mat'); % SEARCH_REF = SEARCH; % save(RefSEARCHDataFileName,'SEARCH_REF'); load(RefSEARCHDataFileName); status = 0; % init if ~strcmp(SEARCH.Name,Mesh.Name) disp('Domain name does not match!'); status = 1; end % get closest cell indices CI = double(SEARCH.DATA{1}); if (min(CI) <= 0) disp('At least one point was not found in the mesh!'); status = 1; end % get corresponding local reference triangle coordinates Local_Ref_Coord = SEARCH.DATA{2}; N1 = 1 - sum(Local_Ref_Coord,2); CHK = [N1, Local_Ref_Coord]; MIN_VAL = min(CHK(:)); MAX_VAL = max(CHK(:)); % make sure the coordinates are inside the ref triangle if ~and(MIN_VAL >= -1e-15, MAX_VAL <= 1 + 1e-15) disp('Some local points are outside reference triangle!'); status = 1; end % check that difference vector is "orthogonal" to the surface XC = Mesh.referenceToCartesian(CI, Local_Ref_Coord); Global_X = Sigma_Given_Points{2}; DIFF_VEC = Global_X - XC; % look at some of the closest points PTS_Closest_To_First_End = [1, 2]; ALL_Other_PTS = setdiff((1:1:size(Global_X,1))',PTS_Closest_To_First_End); % compute edge vectors Edges = Mesh.edges; EV = Mesh.Points(Edges(:,2),:) - Mesh.Points(Edges(:,1),:); UNIT_EV = normalize_vec(EV); % check "orthogonality" UNIT_DIFF_VEC = normalize_vec(DIFF_VEC); CHK_ORTHO = dot(UNIT_EV(CI,:),UNIT_DIFF_VEC,2); % only the ones in the other set will be ortho CHK_MAX = CHK_ORTHO(ALL_Other_PTS); ORTHO_ERROR = max(abs(CHK_MAX)); if (ORTHO_ERROR > 1e-13) ORTHO_ERROR disp(['Orthogonality Test Failed for Point Searching...']); status = 1; end % check that the other global points are closest to the ENDS of the parabola XC_First = XC(PTS_Closest_To_First_End,:); First_End = [0, 0]; CHK_First = [XC_First(:,1) - First_End(1), XC_First(:,2) - First_End(2)]; CHK_First_MAX = max(abs(CHK_First(:))); if CHK_First_MAX disp(['Global Points Not Close To First End Point...']); status = 1; end % plot closest points figure; Mesh.Plot; hold on; plot(Global_X(:,1),Global_X(:,2),'k*','MarkerSize',10); plot(XC(:,1),XC(:,2),'r.','MarkerSize',20); plot([XC(:,1), Global_X(:,1)]',[XC(:,2), Global_X(:,2)]','b-'); hold off; axis([0 9 -1 1]); axis equal; title('Closest Point Search On 2-D Curve Mesh'); % compare to reference data for ind = 1:length(SEARCH) ECI = max(abs(SEARCH(ind).DATA{1} - SEARCH_REF(ind).DATA{1})); ELR = max(abs(SEARCH(ind).DATA{2} - SEARCH_REF(ind).DATA{2})); if (ECI > 0) disp(['Test Failed for SEARCH(', num2str(ind), ').DATA{1}...']); status = 1; end if (ELR > 4e-15) disp(['Test Failed for SEARCH(', num2str(ind), ').DATA{2}...']); status = 1; end end end function UNIT_VEC = normalize_vec(VEC) MAG0 = sqrt(sum(VEC.^2,2)); UNIT_VEC = VEC; UNIT_VEC(:,1) = VEC(:,1) ./ MAG0; UNIT_VEC(:,2) = VEC(:,2) ./ MAG0; end
github
eardi/sm-fpca-master
Elem_DoF_Allocator_class_declaration_3D_tetrahedron.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/DoF_Numbering/@GenDoFNumberingCode/private/Elem_DoF_Allocator_class_declaration_3D_tetrahedron.m
21,141
utf_8
02781f6353844b17dc6b7b270c08d03d
function clss = Elem_DoF_Allocator_class_declaration_3D_tetrahedron(obj,Elem) %Elem_DoF_Allocator_class_declaration_3D_tetrahedron % % This stores lines of code for sub-sections of the % 'Elem_DoF_Allocator.cc' C++ code file. % Copyright (c) 10-14-2016, Shawn W. Walker Elem_Nodal_Top = Elem.Nodal_Top; Elem_Nodal_Var = Elem.Nodal_Var; %%%%%%% clss = FELtext('class declaration'); clss = clss.Append_CR(obj.String.Separator); clss = clss.Append_CR('// data structure containing information on the local element DoF numbering'); clss = clss.Append_CR('typedef struct'); clss = clss.Append_CR('{'); clss = clss.Append_CR(' int V[Num_Vtx_Sets +1][NUM_VTX +1][Max_DoF_Per_Vtx +1]; // nodes associated with each vertex'); clss = clss.Append_CR(' int E[Num_Edge_Sets+1][NUM_EDGE+1][Max_DoF_Per_Edge+1]; // nodes associated with each edge'); clss = clss.Append_CR(' int F[Num_Face_Sets+1][NUM_FACE+1][Max_DoF_Per_Face+1]; // nodes associated with each face'); clss = clss.Append_CR(' int T[Num_Tet_Sets +1][NUM_TET +1][Max_DoF_Per_Tet +1]; // nodes associated with each tetrahedron'); clss = clss.Append_CR('}'); clss = clss.Append_CR('NODAL_TOPOLOGY;'); clss = clss.Append_CR(''); % BEGIN: edge DoF permutations clss = clss.Append_CR(obj.String.Separator); clss = clss.Append_CR('// data structure containing *one* permutation map'); clss = clss.Append_CR('typedef struct'); clss = clss.Append_CR('{'); clss = clss.Append_CR(' int map[Max_DoF_Per_Edge+1];'); clss = clss.Append_CR('}'); clss = clss.Append_CR('SINGLE_EDGE_PERM_MAP;'); clss = clss.Append_CR(''); clss = clss.Append_CR(obj.String.Separator); clss = clss.Append_CR('// data structure for containing permutation maps of local edge DoFs from'); clss = clss.Append_CR('// one local edge to another.'); clss = clss.Append_CR('struct EDGE_DOF_PERMUTATION'); clss = clss.Append_CR('{'); clss = clss.Append_CR(' EDGE_DOF_PERMUTATION () {} // default constructor'); clss = clss.Append_CR(''); clss = clss.Append_CR(' void Setup_Maps ()'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' // init to all zero'); clss = clss.Append_CR(' for (int di = 0; (di < Num_Edge_Sets); di++)'); clss = clss.Append_CR(' for (int ii = 0; (ii < NUM_EDGE); ii++)'); clss = clss.Append_CR(' for (int si = 0; (si < 2); si++)'); clss = clss.Append_CR(' for (int jj = 0; (jj < NUM_EDGE); jj++)'); clss = clss.Append_CR(' for (int sj = 0; (sj < 2); sj++)'); clss = clss.Append_CR(' for (int kk = 0; (kk <= Max_DoF_Per_Edge); kk++)'); clss = clss.Append_CR(' perm[di][ii][si][jj][sj].map[kk] = 0;'); clss = clss.Append_CR(''); clss = clss.Append_CR(' // define all edge DoF permutation maps'); clss = clss.Append_CR(' // map goes from "current" to "init" local edge'); clss = clss.Append_CR([' ', obj.String.BEGIN_Auto_Gen]); % map from local edge to tail vertex index ei_to_tail_vi = [1 1 1 2 3 4]; % map from local edge to head vertex index ei_to_head_vi = [2 3 4 3 4 2]; if ~isempty(Elem_Nodal_Top.E{1}) Num_Edge_Sets = length(Elem_Nodal_Top.E); for si = 1:Num_Edge_Sets Edge_DoF_Set = Elem_Nodal_Top.E{si}; if (size(Edge_DoF_Set,1)~=6) error('Incorrect number of edges in DoF set!'); end % within each set, figure out the permutation maps between % different local edges % (also account for changes in orientation) cei_index = [-6 -5 -4 -3 -2 -1 1 2 3 4 5 6]; init_ei_index = cei_index; % check all combinations for ii = 1:12 % loop through "current" edges cei = cei_index(ii); for jj = 1:12 % loop through "init" edges init_ei = init_ei_index(jj); % // DoF set #1, (current) -6 ---> (init) -1 clss = clss.Append_CR([' ', '// DoF set #', num2str(si), ', (current) ', num2str(cei), ' ---> (init) ', num2str(init_ei)]); % get current and init edge DoFs cei_DoFs = Edge_DoF_Set(abs(cei),:); init_ei_DoFs = Edge_DoF_Set(abs(init_ei),:); % for the "current" edge, get the tail vertex BC coordinate cei_vi = ei_to_tail_vi(abs(cei)); cei_BCs = get_vtx_barycentric_coordinate_on_edge(cei_DoFs,Elem_Nodal_Var,cei_vi); % for the "init" edge, get the tail or head vertex BC coordinate % (depending on whether the edge orientation is different) if (cei*init_ei < 0) % change in orientation init_ei_vi = ei_to_head_vi(abs(init_ei)); else init_ei_vi = ei_to_tail_vi(abs(init_ei)); end init_ei_BCs = get_vtx_barycentric_coordinate_on_edge(init_ei_DoFs,Elem_Nodal_Var,init_ei_vi); % Note: these lists of barycentric coordinates are in the % order of cei_DoFs/init_ei_DoFs % getting permutation of DoFs from comparing BC lists DoF_perm = get_DoF_permutation_on_edge(cei_BCs,init_ei_BCs); for kk = 1:length(DoF_perm) if cei > 0 sign_cei = 1; else sign_cei = 0; end if init_ei > 0 sign_init_ei = 1; else sign_init_ei = 0; end clss = clss.Append_CR([' ', 'perm[', num2str(si-1), '][',... num2str(abs(cei)-1), '][', num2str(sign_cei), '][',... num2str(abs(init_ei)-1), '][', num2str(sign_init_ei), '].map[',... num2str(kk), '] = ', num2str(DoF_perm(kk)), ';']); end clss = clss.Append_CR(''); end end end else Num_Edge_Sets = 0; end clss = clss.Append_CR([' ', obj.String.END_Auto_Gen]); clss = clss.Append_CR(' }'); clss = clss.Append_CR(''); clss = clss.Append_CR(' inline const int* Get_Map (const int& dof_set, const int& new_edge, const int& init_edge) const'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' // error check'); clss = clss.Append_CR(' if ((new_edge==0) || (new_edge < -6) || (new_edge > 6))'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' mexPrintf("new_edge must be = +/- 1,2,3,4,5,6.\\n");'); clss = clss.Append_CR(' mexErrMsgTxt("Invalid local edge index!\\n");'); clss = clss.Append_CR(' }'); clss = clss.Append_CR(' if ((init_edge==0) || (init_edge < -6) || (init_edge > 6))'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' mexPrintf("init_edge must be = +/- 1,2,3,4,5,6.\\n");'); clss = clss.Append_CR(' mexErrMsgTxt("Invalid local edge index!\\n");'); clss = clss.Append_CR(' }'); clss = clss.Append_CR(' if ((dof_set < 1) || (dof_set > Num_Edge_Sets))'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' mexPrintf("dof_set must be >= 1 and <= %%d.\\n",Num_Edge_Sets);'); clss = clss.Append_CR(' mexErrMsgTxt("Invalid dof_set index!\\n");'); clss = clss.Append_CR(' }'); clss = clss.Append_CR(''); clss = clss.Append_CR(' // massage input'); clss = clss.Append_CR(' const int ne = abs_index( new_edge) - 1; // C-style indexing'); clss = clss.Append_CR(' const int ie = abs_index(init_edge) - 1; // C-style indexing'); clss = clss.Append_CR(' int sign_ne = 1; // init to positive'); clss = clss.Append_CR(' int sign_ie = 1; // init to positive'); clss = clss.Append_CR(' if ( new_edge < 0) sign_ne = 0; // set to negative sign'); clss = clss.Append_CR(' if (init_edge < 0) sign_ie = 0; // set to negative sign'); clss = clss.Append_CR(''); clss = clss.Append_CR(' return perm[dof_set-1][ne][sign_ne][ie][sign_ie].map;'); clss = clss.Append_CR(' }'); clss = clss.Append_CR(''); clss = clss.Append_CR('private:'); clss = clss.Append_CR(' // contains all of the permutation maps'); clss = clss.Append_CR(' // input: [dof_set][new_edge_index][sign of new_edge][init_edge_index][sign of init_edge]'); if (Num_Edge_Sets > 0) clss = clss.Append_CR(' SINGLE_EDGE_PERM_MAP perm[Num_Edge_Sets][NUM_EDGE][2][NUM_EDGE][2];'); else clss = clss.Append_CR(' // NOTE: this is not used b/c there are no edge sets!'); clss = clss.Append_CR(' SINGLE_EDGE_PERM_MAP perm[1][NUM_EDGE][2][NUM_EDGE][2];'); end clss = clss.Append_CR('};'); clss = clss.Append_CR(''); % END: edge DoF permutations % BEGIN: face DoF permutations clss = clss.Append_CR(obj.String.Separator); clss = clss.Append_CR('// data structure containing *one* face-DoF permutation map'); clss = clss.Append_CR('typedef struct'); clss = clss.Append_CR('{'); clss = clss.Append_CR(' int map[Max_DoF_Per_Face+1];'); clss = clss.Append_CR('}'); clss = clss.Append_CR('SINGLE_FACE_PERM_MAP;'); clss = clss.Append_CR(''); clss = clss.Append_CR(obj.String.Separator); clss = clss.Append_CR('// data structure for containing permutation maps of local face DoFs from'); clss = clss.Append_CR('// one local face to another.'); clss = clss.Append_CR('struct FACE_DOF_PERMUTATION'); clss = clss.Append_CR('{'); clss = clss.Append_CR(' FACE_DOF_PERMUTATION () {} // default constructor'); clss = clss.Append_CR(''); clss = clss.Append_CR(' void Setup_Maps ()'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' // init to all zero'); clss = clss.Append_CR(' for (int di = 0; (di < Num_Face_Sets); di++)'); clss = clss.Append_CR(' for (int ii = 0; (ii < NUM_FACE); ii++)'); clss = clss.Append_CR(' for (int si = 0; (si < 6); si++)'); clss = clss.Append_CR(' for (int jj = 0; (jj < NUM_FACE); jj++)'); clss = clss.Append_CR(' for (int sj = 0; (sj < 6); sj++)'); clss = clss.Append_CR(' for (int kk = 0; (kk <= Max_DoF_Per_Face); kk++)'); clss = clss.Append_CR(' perm[di][ii][si][jj][sj].map[kk] = 0;'); clss = clss.Append_CR(''); clss = clss.Append_CR(' // define all face DoF permutation maps'); clss = clss.Append_CR(' // map goes from "current" to "init" local face'); clss = clss.Append_CR([' ', obj.String.BEGIN_Auto_Gen]); % map from local face index to set of three vertex indices fi_to_vtx = [2 3 4; 1 4 3; 1 2 4; 1 3 2]; % % define the 6 permutations face_perm = [1 2 3; % 1 3 1 2; % 2 2 3 1; % 3 3 2 1; % 4 2 1 3; % 5 1 3 2]; % 6 % if ~isempty(Elem_Nodal_Top.F{1}) Num_Face_Sets = length(Elem_Nodal_Top.F); for si = 1:Num_Face_Sets Face_DoF_Set = Elem_Nodal_Top.F{si}; if (size(Face_DoF_Set,1)~=4) error('Incorrect number of faces in DoF set!'); end % within each set, figure out the permutation maps between % different local faces % (check all combinations) % loop through "current" faces for cfi = 1:4 for perm_cfi_index = 1:6 % all permutations perm_cfi = face_perm(perm_cfi_index,:); % loop through "init" faces for init_fi = 1:4 for perm_init_index = 1:6 % all permutations perm_init = face_perm(perm_init_index,:); %init_ei = init_ei_index(jj); % // DoF set #1, (current: face, perm) 2, 4 ---> (init: face, perm) 1, 2 clss = clss.Append_CR([' ', '// DoF set #', num2str(si), ', (current: face, perm) ',... num2str(cfi), ', [', num2str(perm_cfi), ']',... ' ---> (init: face, perm) ',... num2str(init_fi), ', [', num2str(perm_init), ']']); % get current and init face DoFs cfi_DoFs = Face_DoF_Set(cfi,:); init_fi_DoFs = Face_DoF_Set(init_fi,:); % for the "current" face, get the (permuted) BC coordinates current_face_vertices = fi_to_vtx(cfi,:); cfi_BCs = get_vtx_barycentric_coordinates_on_face(cfi_DoFs,Elem_Nodal_Var,current_face_vertices(1,perm_cfi)); % for the "init" face, get the (permuted) BC coordinates init_face_vertices = fi_to_vtx(init_fi,:); init_fi_BCs = get_vtx_barycentric_coordinates_on_face(init_fi_DoFs,Elem_Nodal_Var,init_face_vertices(1,perm_init)); % get permutation of DoFs by comparing BC coordinates DoF_perm = get_DoF_permutation_on_face(cfi_BCs,init_fi_BCs); for kk = 1:length(DoF_perm) clss = clss.Append_CR([' ', 'perm[', num2str(si-1), '][',... num2str(cfi-1), '][', num2str(perm_cfi_index-1), '][',... num2str(init_fi-1), '][', num2str(perm_init_index-1), '].map[',... num2str(kk), '] = ', num2str(DoF_perm(kk)), ';']); end clss = clss.Append_CR(''); end end end end end else Num_Face_Sets = 0; end clss = clss.Append_CR([' ', obj.String.END_Auto_Gen]); clss = clss.Append_CR(' }'); clss = clss.Append_CR(''); clss = clss.Append_CR(' inline const int* Get_Map (const int& dof_set, const int& new_face, const int& perm_new,'); clss = clss.Append_CR(' const int& init_face, const int& perm_init) const'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' // error check'); clss = clss.Append_CR(' if ((new_face < 1) || (new_face > 4))'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' mexPrintf("new_face must be = 1,2,3,4.\\n");'); clss = clss.Append_CR(' mexErrMsgTxt("Invalid local face index!\\n");'); clss = clss.Append_CR(' }'); clss = clss.Append_CR(' if ((perm_new < 1) || (perm_new > 6))'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' mexPrintf("perm_new must be = 1,2,3,4,5,6.\\n");'); clss = clss.Append_CR(' mexErrMsgTxt("Invalid permutation index!\\n");'); clss = clss.Append_CR(' }'); clss = clss.Append_CR(' if ((init_face < 1) || (init_face > 4))'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' mexPrintf("init_face must be = 1,2,3,4.\\n");'); clss = clss.Append_CR(' mexErrMsgTxt("Invalid local face index!\\n");'); clss = clss.Append_CR(' }'); clss = clss.Append_CR(' if ((perm_init < 1) || (perm_init > 6))'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' mexPrintf("perm_init must be = 1,2,3,4,5,6.\\n");'); clss = clss.Append_CR(' mexErrMsgTxt("Invalid permutation index!\\n");'); clss = clss.Append_CR(' }'); clss = clss.Append_CR(' if ((dof_set < 1) || (dof_set > Num_Face_Sets))'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' mexPrintf("dof_set must be >= 1 and <= %%d.\\n",Num_Face_Sets);'); clss = clss.Append_CR(' mexErrMsgTxt("Invalid dof_set index!\\n");'); clss = clss.Append_CR(' }'); clss = clss.Append_CR(''); clss = clss.Append_CR(' return perm[dof_set-1][new_face-1][perm_new-1][init_face-1][perm_init-1].map;'); clss = clss.Append_CR(' }'); clss = clss.Append_CR(''); clss = clss.Append_CR('private:'); clss = clss.Append_CR(' // contains all of the permutation maps'); clss = clss.Append_CR(' // input: [dof_set][new_face_index][perm of new_face][init_face_index][perm of init_face]'); if (Num_Face_Sets > 0) clss = clss.Append_CR(' SINGLE_FACE_PERM_MAP perm[Num_Face_Sets][NUM_FACE][6][NUM_FACE][6];'); else clss = clss.Append_CR(' // NOTE: this is not used b/c there are no face sets!'); clss = clss.Append_CR(' SINGLE_FACE_PERM_MAP perm[1][NUM_FACE][6][NUM_FACE][6];'); end clss = clss.Append_CR('};'); clss = clss.Append_CR(''); % END: face DoF permutations clss = clss.Append_CR(obj.String.Separator); clss = clss.Append_CR('class EDA'); clss = clss.Append_CR('{'); clss = clss.Append_CR('public:'); clss = clss.Append_CR(' char* Name; // name of finite element space'); clss = clss.Append_CR(' int Dim; // intrinsic dimension'); clss = clss.Append_CR(' char* Domain; // type of domain: "interval", "triangle", "tetrahedron"'); clss = clss.Append_CR(''); clss = clss.Append_CR(' NODAL_TOPOLOGY Node; // Nodal DoF arrangment'); clss = clss.Append_CR(' EDGE_DOF_PERMUTATION Edge_DoF_Perm; // permutation maps for local edge DoFs:'); clss = clss.Append_CR(' // this is for allocating DoFs on edges'); clss = clss.Append_CR(' // consistently between elements.'); clss = clss.Append_CR(' FACE_DOF_PERMUTATION Face_DoF_Perm; // permutation maps for local face DoFs:'); clss = clss.Append_CR(' // this is for allocating DoFs on faces'); clss = clss.Append_CR(' // consistently between elements.'); clss = clss.Append_CR(''); clss = clss.Append_CR(' EDA (); // constructor'); clss = clss.Append_CR(' ~EDA (); // DE-structor'); clss = clss.Append_CR(' mxArray* Init_DoF_Map(int);'); clss = clss.Append_CR(' void Fill_DoF_Map (TETRAHEDRON_DATA*);'); clss = clss.Append_CR(' int Assign_Vtx_DoF (TETRAHEDRON_DATA*, const int);'); clss = clss.Append_CR(' int Assign_Edge_DoF(TETRAHEDRON_DATA*, const int);'); clss = clss.Append_CR(' int Assign_Face_DoF(TETRAHEDRON_DATA*, const int);'); clss = clss.Append_CR(' int Assign_Tet_DoF (TETRAHEDRON_DATA*, const int);'); clss = clss.Append_CR(' void Error_Check_DoF_Map(const int&);'); clss = clss.Append_CR(''); clss = clss.Append_CR('private:'); clss = clss.Append_CR(' int* cell_dof[Total_DoF_Per_Cell+1];'); clss = clss.Append_CR('};'); clss = clss.Append_CR(''); end function BCs = get_vtx_barycentric_coordinate_on_edge(DoFs,Nodal_Var,vi) % get the vertex BC coordinate for each DoF Num_DoFs = length(DoFs); BCs = zeros(Num_DoFs,1); for di = 1:Num_DoFs Nodal_Var_Data = Nodal_Var(DoFs(di)).Data; BC_all = Nodal_Var_Data{1}; BCs(di,1) = BC_all(vi); end end function DoF_perm = get_DoF_permutation_on_edge(cei_BCs,init_ei_BCs) Num_DoF = length(cei_BCs); DoF_perm = zeros(Num_DoF,1); % compare the BC coordinates of each DoF in cei and init_ei for cc_BC_index = 1:Num_DoF cc_BC_value = cei_BCs(cc_BC_index); for ii_BC_index = 1:Num_DoF ii_BC_value = init_ei_BCs(ii_BC_index); if ( abs(cc_BC_value - ii_BC_value) < 1e-15 ) DoF_perm(cc_BC_index) = ii_BC_index; % map "current" to "init" break; end end end if min(DoF_perm)==0 error('At least one DoF was not matched up!'); end if (length(unique(DoF_perm))~=Num_DoF) error('Some DoFs got duplicated!'); end end function BCs = get_vtx_barycentric_coordinates_on_face(DoFs,Nodal_Var,face_vertices) % get the vertex BC coordinates for each DoF (in the face) Num_DoFs = length(DoFs); BCs = zeros(Num_DoFs,3); for di = 1:Num_DoFs Nodal_Var_Data = Nodal_Var(DoFs(di)).Data; BC_all = Nodal_Var_Data{1}; BCs(di,:) = BC_all(1,face_vertices); end end function DoF_perm = get_DoF_permutation_on_face(cfi_BCs,init_fi_BCs) Num_DoF = size(cfi_BCs,1); DoF_perm = zeros(Num_DoF,1); % compare the BC coordinates of each DoF in cfi and init_fi for cc_BC_index = 1:Num_DoF cc_BC_value = cfi_BCs(cc_BC_index,:); for ii_BC_index = 1:Num_DoF ii_BC_value = init_fi_BCs(ii_BC_index,:); % compute norm of difference Diff_1 = max(abs(cc_BC_value - ii_BC_value)); if ( Diff_1 < 1e-15 ) DoF_perm(cc_BC_index) = ii_BC_index; % map "current" to "init" break; end end end if min(DoF_perm)==0 error('At least one DoF was not matched up!'); end if (length(unique(DoF_perm))~=Num_DoF) error('Some DoFs got duplicated!'); end end
github
eardi/sm-fpca-master
Elem_DoF_Allocator_class_declaration_2D_triangle.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/DoF_Numbering/@GenDoFNumberingCode/private/Elem_DoF_Allocator_class_declaration_2D_triangle.m
11,622
utf_8
f04f8556c207417053c451c50d554c4a
function clss = Elem_DoF_Allocator_class_declaration_2D_triangle(obj,Elem) %Elem_DoF_Allocator_class_declaration_2D_triangle % % This stores lines of code for sub-sections of the % 'Elem_DoF_Allocator.cc' C++ code file. % Copyright (c) 10-14-2016, Shawn W. Walker Elem_Nodal_Top = Elem.Nodal_Top; Elem_Nodal_Var = Elem.Nodal_Var; %%%%%%% clss = FELtext('class declaration'); clss = clss.Append_CR(obj.String.Separator); clss = clss.Append_CR('// data structure containing information on the local element DoF numbering'); clss = clss.Append_CR('typedef struct'); clss = clss.Append_CR('{'); clss = clss.Append_CR(' int V[Num_Vtx_Sets +1][NUM_VTX +1][Max_DoF_Per_Vtx +1]; // nodes associated with each vertex'); clss = clss.Append_CR(' int E[Num_Edge_Sets+1][NUM_EDGE+1][Max_DoF_Per_Edge+1]; // nodes associated with each edge'); clss = clss.Append_CR(' int F[Num_Face_Sets+1][NUM_FACE+1][Max_DoF_Per_Face+1]; // nodes associated with each face'); clss = clss.Append_CR(' int T[Num_Tet_Sets +1][NUM_TET +1][Max_DoF_Per_Tet +1]; // nodes associated with each tetrahedron'); clss = clss.Append_CR('}'); clss = clss.Append_CR('NODAL_TOPOLOGY;'); clss = clss.Append_CR(''); clss = clss.Append_CR(obj.String.Separator); clss = clss.Append_CR('// data structure containing *one* permutation map'); clss = clss.Append_CR('typedef struct'); clss = clss.Append_CR('{'); clss = clss.Append_CR(' int map[Max_DoF_Per_Edge+1];'); clss = clss.Append_CR('}'); clss = clss.Append_CR('SINGLE_EDGE_PERM_MAP;'); clss = clss.Append_CR(''); clss = clss.Append_CR(obj.String.Separator); clss = clss.Append_CR('// data structure for containing permutation maps of local edge DoFs from'); clss = clss.Append_CR('// one local edge to another.'); clss = clss.Append_CR('struct EDGE_DOF_PERMUTATION'); clss = clss.Append_CR('{'); clss = clss.Append_CR(' EDGE_DOF_PERMUTATION () {} // default constructor'); clss = clss.Append_CR(''); clss = clss.Append_CR(' void Setup_Maps ()'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' // init to all zero'); clss = clss.Append_CR(' for (int di = 0; (di < Num_Edge_Sets); di++)'); clss = clss.Append_CR(' for (int ii = 0; (ii < NUM_EDGE); ii++)'); clss = clss.Append_CR(' for (int si = 0; (si < 2); si++)'); clss = clss.Append_CR(' for (int jj = 0; (jj < NUM_EDGE); jj++)'); clss = clss.Append_CR(' for (int sj = 0; (sj < 2); sj++)'); clss = clss.Append_CR(' for (int kk = 0; (kk <= Max_DoF_Per_Edge); kk++)'); clss = clss.Append_CR(' perm[di][ii][si][jj][sj].map[kk] = 0;'); clss = clss.Append_CR(''); clss = clss.Append_CR(' // define all edge DoF permutation maps'); clss = clss.Append_CR(' // map goes from "current" to "init" local edge'); clss = clss.Append_CR([' ', obj.String.BEGIN_Auto_Gen]); % map from local edge to tail vertex index ei_to_tail_vi = [2 3 1]; % map from local edge to head vertex index ei_to_head_vi = [3 1 2]; if ~isempty(Elem_Nodal_Top.E{1}) Num_Sets = length(Elem_Nodal_Top.E); for si = 1:Num_Sets Edge_DoF_Set = Elem_Nodal_Top.E{si}; if (size(Edge_DoF_Set,1)~=3) error('Incorrect number of edges in DoF set!'); end % within each set, figure out the permutation maps between % different local edges % (also account for changes in orientation) cei_index = [-3 -2 -1 1 2 3]; init_ei_index = cei_index; % check all combinations for ii = 1:6 % loop through "current" edges cei = cei_index(ii); for jj = 1:6 % loop through "init" edges init_ei = init_ei_index(jj); % // DoF set #1, (current) -3 ---> (init) -1 clss = clss.Append_CR([' ', '// DoF set #', num2str(si), ', (current) ', num2str(cei), ' ---> (init) ', num2str(init_ei)]); % get current and init edge DoFs cei_DoFs = Edge_DoF_Set(abs(cei),:); init_ei_DoFs = Edge_DoF_Set(abs(init_ei),:); % for the "current" edge, get the tail vertex BC coordinate cei_vi = ei_to_tail_vi(abs(cei)); cei_BCs = get_vtx_barycentric_coordinate(cei_DoFs,Elem_Nodal_Var,cei_vi); % for the "init" edge, get the tail or head vertex BC coordinate % (depending on whether the edge orientation is different) if (cei*init_ei < 0) % change in orientation init_ei_vi = ei_to_head_vi(abs(init_ei)); else init_ei_vi = ei_to_tail_vi(abs(init_ei)); end init_ei_BCs = get_vtx_barycentric_coordinate(init_ei_DoFs,Elem_Nodal_Var,init_ei_vi); % Note: these lists of barycentric coordinates are in the % order of cei_DoFs/init_ei_DoFs % getting permutation of DoFs from comparing BC lists DoF_perm = get_DoF_permutation(cei_BCs,init_ei_BCs); for kk = 1:length(DoF_perm) if cei > 0 sign_cei = 1; else sign_cei = 0; end if init_ei > 0 sign_init_ei = 1; else sign_init_ei = 0; end clss = clss.Append_CR([' ', 'perm[', num2str(si-1), '][',... num2str(abs(cei)-1), '][', num2str(sign_cei), '][',... num2str(abs(init_ei)-1), '][', num2str(sign_init_ei), '].map[',... num2str(kk), '] = ', num2str(DoF_perm(kk)), ';']); end clss = clss.Append_CR(''); end end end else Num_Sets = 0; end clss = clss.Append_CR([' ', obj.String.END_Auto_Gen]); clss = clss.Append_CR(' }'); clss = clss.Append_CR(''); clss = clss.Append_CR(' inline const int* Get_Map (const int& dof_set, const int& new_edge, const int& init_edge) const'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' // error check'); clss = clss.Append_CR(' if ((new_edge==0) || (new_edge < -3) || (new_edge > 3))'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' mexPrintf("new_edge must be = +/- 1,2,3.\\n");'); clss = clss.Append_CR(' mexErrMsgTxt("Invalid local edge index!\\n");'); clss = clss.Append_CR(' }'); clss = clss.Append_CR(' if ((init_edge==0) || (init_edge < -3) || (init_edge > 3))'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' mexPrintf("init_edge must be = +/- 1,2,3.\\n");'); clss = clss.Append_CR(' mexErrMsgTxt("Invalid local edge index!\\n");'); clss = clss.Append_CR(' }'); clss = clss.Append_CR(' if ((dof_set < 1) || (dof_set > Num_Edge_Sets))'); clss = clss.Append_CR(' {'); clss = clss.Append_CR(' mexPrintf("dof_set must be >= 1 and <= %%d.\\n",Num_Edge_Sets);'); clss = clss.Append_CR(' mexErrMsgTxt("Invalid dof_set index!\\n");'); clss = clss.Append_CR(' }'); clss = clss.Append_CR(''); clss = clss.Append_CR(' // massage input'); clss = clss.Append_CR(' const int ne = abs_index( new_edge) - 1; // C-style indexing'); clss = clss.Append_CR(' const int ie = abs_index(init_edge) - 1; // C-style indexing'); clss = clss.Append_CR(' int sign_ne = 1; // init to positive'); clss = clss.Append_CR(' int sign_ie = 1; // init to positive'); clss = clss.Append_CR(' if ( new_edge < 0) sign_ne = 0; // set to negative sign'); clss = clss.Append_CR(' if (init_edge < 0) sign_ie = 0; // set to negative sign'); clss = clss.Append_CR(''); clss = clss.Append_CR(' return perm[dof_set-1][ne][sign_ne][ie][sign_ie].map;'); clss = clss.Append_CR(' }'); clss = clss.Append_CR(''); clss = clss.Append_CR('private:'); clss = clss.Append_CR(' // contains all of the permutation maps'); clss = clss.Append_CR(' // input: [dof_set][new_edge_index][sign of new_edge][init_edge_index][sign of init_edge]'); if (Num_Sets > 0) clss = clss.Append_CR(' SINGLE_EDGE_PERM_MAP perm[Num_Edge_Sets][NUM_EDGE][2][NUM_EDGE][2];'); else clss = clss.Append_CR(' // NOTE: this is not used b/c there are no edge sets!'); clss = clss.Append_CR(' SINGLE_EDGE_PERM_MAP perm[1][NUM_EDGE][2][NUM_EDGE][2];'); end clss = clss.Append_CR('};'); clss = clss.Append_CR(''); clss = clss.Append_CR(obj.String.Separator); clss = clss.Append_CR('class EDA'); clss = clss.Append_CR('{'); clss = clss.Append_CR('public:'); clss = clss.Append_CR(' char* Name; // name of finite element space'); clss = clss.Append_CR(' int Dim; // intrinsic dimension'); clss = clss.Append_CR(' char* Domain; // type of domain: "interval", "triangle", "tetrahedron"'); clss = clss.Append_CR(''); clss = clss.Append_CR(' NODAL_TOPOLOGY Node; // Nodal DoF arrangment'); clss = clss.Append_CR(' EDGE_DOF_PERMUTATION Edge_DoF_Perm; // permutation maps for local edge DoFs:'); clss = clss.Append_CR(' // this is for allocating DoFs on edges'); clss = clss.Append_CR(' // consistently between elements.'); clss = clss.Append_CR(''); clss = clss.Append_CR(' EDA (); // constructor'); clss = clss.Append_CR(' ~EDA (); // DE-structor'); clss = clss.Append_CR(' mxArray* Init_DoF_Map(int);'); clss = clss.Append_CR(' void Fill_DoF_Map (TRIANGLE_EDGE_SEARCH*);'); clss = clss.Append_CR(' int Assign_Vtx_DoF (TRIANGLE_EDGE_SEARCH*, const int);'); clss = clss.Append_CR(' int Assign_Edge_DoF(TRIANGLE_EDGE_SEARCH*, const int);'); clss = clss.Append_CR(' int Assign_Face_DoF(TRIANGLE_EDGE_SEARCH*, const int);'); clss = clss.Append_CR(' int Assign_Tet_DoF (TRIANGLE_EDGE_SEARCH*, const int);'); clss = clss.Append_CR(' void Error_Check_DoF_Map(const int&);'); clss = clss.Append_CR(''); clss = clss.Append_CR('private:'); clss = clss.Append_CR(' int* cell_dof[Total_DoF_Per_Cell+1];'); clss = clss.Append_CR('};'); clss = clss.Append_CR(''); end function BCs = get_vtx_barycentric_coordinate(DoFs,Nodal_Var,vi) % get the vertex BC coordinate for each DoF Num_DoFs = length(DoFs); BCs = zeros(Num_DoFs,1); for di = 1:Num_DoFs Nodal_Var_Data = Nodal_Var(DoFs(di)).Data; BC_all = Nodal_Var_Data{1}; BCs(di,1) = BC_all(vi); end end function DoF_perm = get_DoF_permutation(cei_BCs,init_ei_BCs) Num_DoF = length(cei_BCs); DoF_perm = zeros(Num_DoF,1); % compare the BC coordinates of each DoF in cei and init_ei for cc_BC_index = 1:Num_DoF cc_BC_value = cei_BCs(cc_BC_index); for ii_BC_index = 1:Num_DoF ii_BC_value = init_ei_BCs(ii_BC_index); if ( abs(cc_BC_value - ii_BC_value) < 1e-15 ) DoF_perm(cc_BC_index) = ii_BC_index; % map "current" to "init" break; end end end if min(DoF_perm)==0 error('At least one DoF was not matched up!'); end if (length(unique(DoF_perm))~=Num_DoF) error('Some DoFs got duplicated!'); end end
github
eardi/sm-fpca-master
Get_Local_Geom_Functions.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Super_Classes/Level_3/@FELExpression/Get_Local_Geom_Functions.m
1,139
utf_8
1af5f161aa08dcfe6c92bba382265b52
function GEOM = Get_Local_Geom_Functions(obj,Spaces,Integration_Index) %Get_Local_Geom_Functions % % This returns a struct containing info about the local geometric functions needed for % the current domain of expression. % note: geometric functions are ``fresh'' everytime (all options off) % Copyright (c) 06-12-2014, Shawn W. Walker % the Domain of Expression (DoE) geometric information % SWW: bad notation here! GEOM.DoI_Geom = Spaces.Integration(Integration_Index).DoI_Geom; % get other geometric functions GeomFuncs = Spaces.Integration(Integration_Index).GeomFunc; Num_Funcs = length(GeomFuncs); Geom_Names = GeomFuncs.keys; if (Num_Funcs > 0) % geometric function GEOM.GF = output_struct(Integration_Index,GeomFuncs(Geom_Names{1})); for ind = 2:Num_Funcs GEOM.GF(ind) = output_struct(Integration_Index,GeomFuncs(Geom_Names{ind})); end else GEOM.GF = []; end end function GF = output_struct(Integration_Index,GeomFunc) % geometric function GF.func = GeomFunc; GF.Integration_Index = Integration_Index; GF.func = GF.func.Reset_Options; end
github
eardi/sm-fpca-master
Get_Local_Coef_Functions.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Super_Classes/Level_3/@FELExpression/Get_Local_Coef_Functions.m
1,046
utf_8
85132f9644bdd53e1f358dde17f4e4c6
function CF = Get_Local_Coef_Functions(obj,Spaces,Integration_Index) %Get_Local_Coef_Functions % % This returns a struct containing info about the local coefficient functions. % note: coef functions are ``fresh'' everytime (all options off) % Copyright (c) 03-24-2017, Shawn W. Walker Coefs = Spaces.Integration(Integration_Index).CoefFunc; Num_Funcs = length(Coefs); Coef_Names = Coefs.keys; if (Num_Funcs > 0) % coefficient function CF = output_struct(Spaces,Integration_Index,Coefs(Coef_Names{1})); for ind = 2:Num_Funcs CF(ind) = output_struct(Spaces,Integration_Index,Coefs(Coef_Names{ind})); end else CF = []; end end function CF = output_struct(Spaces,Integration_Index,CoefFunc) % coefficient function CF.str = CoefFunc.Func_Name; CF.func = CoefFunc; CF.Integration_Index = Integration_Index; % store the vector dimension of FE space f_Space = Spaces.Space(CF.func.Space_Name); CF.Space_Num_Comp = f_Space.Num_Comp; CF.func = CF.func.Reset_Options; end
github
eardi/sm-fpca-master
Robust_Var_Name_Replacements.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Super_Classes/Level_3/@FELExpression/Robust_Var_Name_Replacements.m
1,309
utf_8
e66b02287da17b4285dee40bfc158e88
function [New_Sym_Exp, New_Var_Names] = Robust_Var_Name_Replacements(obj,Sym_Exp,Var_Names) %Robust_Var_Name_Replacements % % This replaces all the variable names in the symbolic expression ``Sym_Exp'' % with new variable names that have DISTINCT names. This is done to ensure % that no name is a subset of another one, which can screw up the text % replacements. The list of variable names is given in ``Var_Names''. % % Note: these replacements are done symbolically, so it won't get confused! % Copyright (c) 04-10-2012, Shawn W. Walker % init New_Sym_Exp = Sym_Exp; New_Var_Names = Var_Names; % create new distinct variable names Num_Vars = length(Var_Names(:)); for ind = 1:Num_Vars Var_Name_str = Get_Indexed_Var_Name(ind); New_Var_Names(ind) = sym(Var_Name_str); end subs_H = FEL_subs_handle(); for ind = 1:Num_Vars New_Sym_Exp = subs_H(New_Sym_Exp,Var_Names(ind),New_Var_Names(ind)); end end function Var_Name_str = Get_Indexed_Var_Name(index) if index > 100000 error('This index is too big!'); end index_str = num2str(index); len_index_str = length(index_str); padded_index_str = '000000'; padded_index_str(end - len_index_str + 1:end) = index_str; Var_Name_str = ['FELICITYVARNAMEABC', padded_index_str, 'XYZ']; end
github
eardi/sm-fpca-master
Need_Orientation.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Super_Classes/Ghost_Writers/@Generic_GenFELCode/Need_Orientation.m
726
utf_8
daa2cb3eec11cb1a7f95010cf58cc961
function TF = Need_Orientation(obj,FS) %Need_Orientation % % This indicates if mesh orientation data is needed. % Copyright (c) 06-25-2012, Shawn W. Walker TF = false; for ind = 1:length(FS.Integration) Opt = FS.Integration(ind).DoI_Geom.Opt; TF = orientation_present(Opt); if ~TF BF_Set = FS.Integration(ind).BasisFunc.values; for bi = 1:length(BF_Set) Opt = BF_Set{bi}.GeomFunc.Opt; TF = orientation_present(Opt); end end if TF break; end end end function TF = orientation_present(Opt) TF = false; if isfield(Opt,'Orientation') if Opt.Orientation TF = true; end end end
github
eardi/sm-fpca-master
Gen_Misc_Matrix_Assembler.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Super_Classes/Ghost_Writers/@Generic_GenFELCode/Gen_Misc_Matrix_Assembler.m
1,499
utf_8
ac4c6b551d264710143b6389a0775e37
function Gen_Misc_Matrix_Assembler(obj,fid) %Gen_Misc_Matrix_Assembler % % This generates a section of Misc_Stuff.h: the core matrix assembly code. % fid = an (open) file ID to "Misc_Stuff.h". % Copyright (c) 06-13-2014, Shawn W. Walker % copy some standard files over FC = FELCodeHdr(); % assembler obj.Make_SubDir(obj.Sub_Dir.Assembler); Assem_Dir = fullfile(obj.Output_Dir, obj.Sub_Dir.Assembler); Matrix_Assembler_Files = FC.Copy_Matrix_Assembler_Files(Assem_Dir); ENDL = '\n'; fprintf(fid, ['// matrix assembler', ENDL]); fprintf(fid, ['#include "./', obj.Sub_Dir.Assembler, '/FEL_Assembler.h"', ENDL]); status = write_assembler_files(obj,Assem_Dir,'FEL_Assembler.h',Matrix_Assembler_Files); fprintf(fid, ['', ENDL]); end function status = write_assembler_files(obj,Dir,hdr_h,Matrix_Assembler_Files) ENDL = '\n'; WRITE_File = fullfile(Dir, hdr_h); % open file for writing fid = fopen(WRITE_File, 'a'); fprintf(fid, ['/*', ENDL]); fprintf(fid, ['============================================================================================', ENDL]); fprintf(fid, [' Contents are matrix assembler files written by David Bindel.', ENDL]); fprintf(fid, ['============================================================================================', ENDL]); fprintf(fid, ['*/', ENDL]); fprintf(fid, ['', ENDL]); obj.Write_Preprocessor_Include_Lines(fid,Matrix_Assembler_Files); fprintf(fid, ['/***/', ENDL]); status = fclose(fid); end
github
eardi/sm-fpca-master
Gen_Misc_Math.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Super_Classes/Ghost_Writers/@Generic_GenFELCode/Gen_Misc_Math.m
1,589
utf_8
a295c1631e3e8e024888f570bf338a9e
function Gen_Misc_Math(obj,fid) %Gen_Misc_Math % % This generates a section of Misc_Stuff.h: the basic math code. % fid = an (open) file ID to "Misc_Stuff.h". % Copyright (c) 06-13-2014, Shawn W. Walker % copy some standard files over FC = FELCodeHdr(); % copy over rudimentary structs and math stuff obj.Make_SubDir(obj.Sub_Dir.Math); Math_Dir = fullfile(obj.Output_Dir, obj.Sub_Dir.Math); Linear_Algebra_Files = FC.Copy_Linear_Algebra_Files(Math_Dir); Geo_Comp_Files = FC.Copy_Geometry_Files(Math_Dir); ENDL = '\n'; fprintf(fid, ['// useful math structures', ENDL]); fprintf(fid, ['#include "./', obj.Sub_Dir.Math, '/FEL_Math_Structs.h"', ENDL]); status = write_math_files(obj,Math_Dir,'FEL_Math_Structs.h',Linear_Algebra_Files,Geo_Comp_Files); fprintf(fid, ['', ENDL]); end function status = write_math_files(obj,Dir,hdr_h,Linear_Algebra_Files,Geo_Comp_Files) ENDL = '\n'; WRITE_File = fullfile(Dir, hdr_h); % open file for writing fid = fopen(WRITE_File, 'a'); fprintf(fid, ['/*', ENDL]); fprintf(fid, ['============================================================================================', ENDL]); fprintf(fid, [' Rudimentary math structures.', ENDL]); fprintf(fid, ['============================================================================================', ENDL]); fprintf(fid, ['*/', ENDL]); fprintf(fid, ['', ENDL]); obj.Write_Preprocessor_Include_Lines(fid,Linear_Algebra_Files); obj.Write_Preprocessor_Include_Lines(fid,Geo_Comp_Files); fprintf(fid, ['/***/', ENDL]); status = fclose(fid); end
github
eardi/sm-fpca-master
Gen_Misc_Domain_Classes.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Super_Classes/Ghost_Writers/@Generic_GenFELCode/Gen_Misc_Domain_Classes.m
1,559
utf_8
0a9ad7e7a0341d40e3f9c79984ac5f5f
function Gen_Misc_Domain_Classes(obj,fid,GeomFunc) %Gen_Misc_Domain_Classes % % This generates a section of Misc_Stuff.h: the domain class files. % fid = an (open) file ID to "Misc_Stuff.h". % Copyright (c) 06-13-2014, Shawn W. Walker % copy some standard files over FC = FELCodeHdr(); % mesh domains obj.Make_SubDir(obj.Sub_Dir.Domains); Domains_Dir = fullfile(obj.Output_Dir, obj.Sub_Dir.Domains); ENDL = '\n'; fprintf(fid, ['// mesh domain class files', ENDL]); fprintf(fid, ['#include "./', obj.Sub_Dir.Domains, '/ALL_Domains.h"', ENDL]); status = write_domain_files(Domains_Dir,'ALL_Domains.h',GeomFunc); fprintf(fid, ['', ENDL]); end function status = write_domain_files(Dir,hdr_h,GeomFunc) ENDL = '\n'; WRITE_File = fullfile(Dir, hdr_h); % open file for writing fid = fopen(WRITE_File, 'a'); fprintf(fid, ['/*', ENDL]); fprintf(fid, ['============================================================================================', ENDL]); fprintf(fid, [' Mesh domain class files.', ENDL]); fprintf(fid, ['============================================================================================', ENDL]); fprintf(fid, ['*/', ENDL]); fprintf(fid, ['', ENDL]); fprintf(fid, ['#include "Abstract_Domain_Class.cc"', ENDL]); Num_GeomFunc = length(GeomFunc); for ind=1:Num_GeomFunc CPP = GeomFunc{ind}.Domain.Determine_CPP_Info; fprintf(fid,['#include "', CPP.Data_Type_Name_cc, '"', ENDL]); end fprintf(fid, ['', ENDL]); fprintf(fid, ['/***/', ENDL]); status = fclose(fid); end
github
eardi/sm-fpca-master
Gen_Misc_Geometry_Classes.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Code_Generation/Super_Classes/Ghost_Writers/@Generic_GenFELCode/Gen_Misc_Geometry_Classes.m
1,582
utf_8
a153098fbfaf70f27401fcfe442c0ffe
function Gen_Misc_Geometry_Classes(obj,fid,GeomFunc) %Gen_Misc_Geometry_Classes % % This generates a section of Misc_Stuff.h: the mesh geometry class files. % fid = an (open) file ID to "Misc_Stuff.h". % Copyright (c) 06-13-2014, Shawn W. Walker % copy some standard files over FC = FELCodeHdr(); % mesh geometry obj.Make_SubDir(obj.Sub_Dir.Geometry); Geometry_Dir = fullfile(obj.Output_Dir, obj.Sub_Dir.Geometry); ENDL = '\n'; fprintf(fid, ['// mesh geometry class files', ENDL]); fprintf(fid, ['#include "./', obj.Sub_Dir.Geometry, '/ALL_Mesh_Geometry.h"', ENDL]); status = write_geometry_files(Geometry_Dir,'ALL_Mesh_Geometry.h',GeomFunc); fprintf(fid, ['', ENDL]); end function status = write_geometry_files(Dir,hdr_h,GeomFunc) ENDL = '\n'; WRITE_File = fullfile(Dir, hdr_h); % open file for writing fid = fopen(WRITE_File, 'a'); fprintf(fid, ['/*', ENDL]); fprintf(fid, ['============================================================================================', ENDL]); fprintf(fid, [' Mesh geometry class files.', ENDL]); fprintf(fid, ['============================================================================================', ENDL]); fprintf(fid, ['*/', ENDL]); fprintf(fid, ['', ENDL]); fprintf(fid, ['#include "Abstract_Mesh_Geometry_Class.cc"', ENDL]); Num_GeomFunc = length(GeomFunc); for ind = 1:Num_GeomFunc FN = GeomFunc{ind}.CPP.Data_Type_Name_cc; fprintf(fid, ['#include "', FN, '"', ENDL]); end fprintf(fid, ['', ENDL]); fprintf(fid, ['/***/', ENDL]); status = fclose(fid); end
github
eardi/sm-fpca-master
Compute_Cut_Points.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Static_Codes/Isosurface_Meshing/@Mesher2Dmex/private/Compute_Cut_Points.m
2,770
utf_8
66a6322116b5a7304b531867f2dcd951
function cut_pts = Compute_Cut_Points(obj,Interp_Func,Edge_Tail_Point,Edge_Head_Point) %Compute_Cut_Points % % This computes a cut point for each cut edge. % Copyright (c) 02-10-2018, Shawn W. Walker TOL = obj.Tolerance; if obj.Use_Newton cut_pts = get_cut_point_newton(Interp_Func,Edge_Tail_Point,Edge_Head_Point,TOL); else cut_pts = get_cut_point_bisection(Interp_Func,Edge_Tail_Point,Edge_Head_Point,TOL); end end function pt = get_cut_point_bisection(Interp_Func,X0,X1,TOL) t_win = [zeros(size(X0,1),1), ones(size(X0,1),1)]; % [a, b] f_a = Interp_Func(X0); % f(a) f_b = Interp_Func(X1); % f(b) zero_mask_a = (f_a==0); % f(a)==0 zero_mask_b = (f_b==0); % f(b)==0 t_win(zero_mask_a,2) = t_win(zero_mask_a,1); % set b := a here t_win(zero_mask_b,1) = t_win(zero_mask_b,2); % set a := b here COUNT = 0; while (max(t_win(:,2) - t_win(:,1)) > TOL) % tolerance is ``normalized'' COUNT = COUNT + 1; if (COUNT > 50) error('Bisection is not converging!'); end % compute mid point: c t = 0.5 * (t_win(:,1) + t_win(:,2)); % get the midpoint MID_PT(:,1) = X0(:,1).*(1-t) + X1(:,1).*t; MID_PT(:,2) = X0(:,2).*(1-t) + X1(:,2).*t; f_c = Interp_Func(MID_PT); % if we get lucky... zero_mask_c = (f_c==0); % f(c)==0 % make window [c, c] t_win(zero_mask_c,1) = t(zero_mask_c); t_win(zero_mask_c,2) = t(zero_mask_c); % at this point, we don't need to consider cases where the sign is zero! % if sign(f(c)) = sign(f(a)) then a := c else b := c DECISION = (sign(f_c) == sign(f_a)); t_win(DECISION,1) = t(DECISION); % a := c t_win(~DECISION,2) = t(~DECISION); % b := c % update f(a) f_a(DECISION,1) = f_c(DECISION,1); end disp('Bisection Finished!'); pt = 0*X0; t = 0.5 * (t_win(:,1) + t_win(:,2)); pt(:,1) = X0(:,1).*(1-t) + X1(:,1).*t; pt(:,2) = X0(:,2).*(1-t) + X1(:,2).*t; end function pt = get_cut_point_newton(Interp_Func,X0,X1,TOL) t = 0.5 * ones(size(X0,1),1); f = ones(size(X0,1),1); TEMP_PT = 0*X0; COUNT = 0; while (max(abs(f)) > TOL) COUNT = COUNT + 1; if (COUNT > 20) error('Newton Method is not converging!'); end TOO_BIG = (t >= 1); TOO_SMALL = (t <= 0); t(TOO_BIG) = 1; t(TOO_SMALL) = 0; TEMP_PT(:,1) = X0(:,1).*(1-t) + X1(:,1).*t; TEMP_PT(:,2) = X0(:,2).*(1-t) + X1(:,2).*t; [f, grad_phi] = Interp_Func(TEMP_PT); f_deriv = dot(grad_phi,X1-X0,2); mf = min(abs(f_deriv)); if (mf==0) error('Derivative is zero. Not allowed!'); end t = t - (f./f_deriv); end disp('Newton Method Finished!'); pt = 0*X0; pt(:,1) = X0(:,1).*(1-t) + X1(:,1).*t; pt(:,2) = X0(:,2).*(1-t) + X1(:,2).*t; end
github
eardi/sm-fpca-master
Compute_Angles.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Static_Codes/Isosurface_Meshing/@Mesher2Dmex/private/Compute_Angles.m
835
utf_8
2e47f6c0a090ec72d27a1da515174090
function A = Compute_Angles(p,t) %Compute_Angles % % 2-D Mesh: A = Tx3 matrix, where each row contains the 3 interior % angles of a single triangle in the mesh. The angles are % ordered with respect to the (local) vertex index. % Angles are given in radians! % Copyright (c) 10-13-2011, Shawn W. Walker X2_X1 = p(t(:,2),:) - p(t(:,1),:); X3_X1 = p(t(:,3),:) - p(t(:,1),:); X3_X2 = p(t(:,3),:) - p(t(:,2),:); X2_X1 = normalize(X2_X1); X3_X1 = normalize(X3_X1); X3_X2 = normalize(X3_X2); theta_1 = acos( dot(X2_X1,X3_X1,2) ); theta_2 = acos( dot(X3_X2,-X2_X1,2) ); theta_3 = acos( dot(-X3_X1,-X3_X2,2) ); A = [theta_1, theta_2, theta_3]; end function V = normalize(V) V_norm = sqrt(sum(V.^2,2)); for ind=1:size(V,2) V(:,ind) = V(:,ind) ./ V_norm; end end
github
eardi/sm-fpca-master
Compute_Cut_Points.m
.m
sm-fpca-master/FELICITY_Ver1.3.1/FELICITY/Static_Codes/Isosurface_Meshing/@Mesher3Dmex/private/Compute_Cut_Points.m
2,947
utf_8
35278f478d47ee0dba388815007ebd05
function cut_pts = Compute_Cut_Points(obj,Interp_Func,Edge_Tail_Point,Edge_Head_Point) %Compute_Cut_Points % % This computes a cut point for each cut edge. % Copyright (c) 02-10-2018, Shawn W. Walker TOL = obj.Tolerance; if obj.Use_Newton cut_pts = get_cut_point_newton(Interp_Func,Edge_Tail_Point,Edge_Head_Point,TOL); else cut_pts = get_cut_point_bisection(Interp_Func,Edge_Tail_Point,Edge_Head_Point,TOL); end end function pt = get_cut_point_bisection(Interp_Func,X0,X1,TOL) t_win = [zeros(size(X0,1),1), ones(size(X0,1),1)]; % [a, b] f_a = Interp_Func(X0); % f(a) f_b = Interp_Func(X1); % f(b) zero_mask_a = (f_a==0); % f(a)==0 zero_mask_b = (f_b==0); % f(b)==0 t_win(zero_mask_a,2) = t_win(zero_mask_a,1); % set b := a here t_win(zero_mask_b,1) = t_win(zero_mask_b,2); % set a := b here COUNT = 0; while (max(t_win(:,2) - t_win(:,1)) > TOL) % tolerance is ``normalized'' COUNT = COUNT + 1; if (COUNT > 50) error('Bisection is not converging!'); end % compute mid point: c t = 0.5 * (t_win(:,1) + t_win(:,2)); % get the midpoint MID_PT(:,1) = X0(:,1).*(1-t) + X1(:,1).*t; MID_PT(:,2) = X0(:,2).*(1-t) + X1(:,2).*t; MID_PT(:,3) = X0(:,3).*(1-t) + X1(:,3).*t; f_c = Interp_Func(MID_PT); % if we get lucky... zero_mask_c = (f_c==0); % f(c)==0 % make window [c, c] t_win(zero_mask_c,1) = t(zero_mask_c); t_win(zero_mask_c,2) = t(zero_mask_c); % at this point, we don't need to consider cases where the sign is zero! % if sign(f(c)) = sign(f(a)) then a := c else b := c DECISION = (sign(f_c) == sign(f_a)); t_win(DECISION,1) = t(DECISION); % a := c t_win(~DECISION,2) = t(~DECISION); % b := c % update f(a) f_a(DECISION,1) = f_c(DECISION,1); end disp('Bisection Finished!'); pt = 0*X0; t = 0.5 * (t_win(:,1) + t_win(:,2)); pt(:,1) = X0(:,1).*(1-t) + X1(:,1).*t; pt(:,2) = X0(:,2).*(1-t) + X1(:,2).*t; pt(:,3) = X0(:,3).*(1-t) + X1(:,3).*t; end function pt = get_cut_point_newton(Interp_Func,X0,X1,TOL) t = 0.5 * ones(size(X0,1),1); f = ones(size(X0,1),1); TEMP_PT = 0*X0; COUNT = 0; while (max(abs(f)) > TOL) COUNT = COUNT + 1; if (COUNT > 20) error('Newton Method is not converging!'); end TOO_BIG = (t >= 1); TOO_SMALL = (t <= 0); t(TOO_BIG) = 1; t(TOO_SMALL) = 0; TEMP_PT(:,1) = X0(:,1).*(1-t) + X1(:,1).*t; TEMP_PT(:,2) = X0(:,2).*(1-t) + X1(:,2).*t; TEMP_PT(:,3) = X0(:,3).*(1-t) + X1(:,3).*t; [f, grad_phi] = Interp_Func(TEMP_PT); f_deriv = dot(grad_phi,X1-X0,2); mf = min(abs(f_deriv)); if (mf==0) error('Derivative is zero. Not allowed!'); end t = t - (f./f_deriv); end disp('Newton Method Finished!'); pt = 0*X0; pt(:,1) = X0(:,1).*(1-t) + X1(:,1).*t; pt(:,2) = X0(:,2).*(1-t) + X1(:,2).*t; pt(:,3) = X0(:,3).*(1-t) + X1(:,3).*t; end