plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
Sbte/RAILS-master
RAILSsolver.m
.m
RAILS-master/matlab/RAILSsolver.m
20,341
utf_8
31b3890dc232722f74a3de00509c8c0c
function [V,T,res,iter,resvec,timevec,restart_data] = RAILSsolver(A, M, B, varargin) % Solver for A*V*T*V'*M+M*V*T*V'*A'+B*B'=0 % [V,T,res,iter,resvec] = RAILSsolver(A, M, B, maxit, tol, opts); % % Input should be clear. M can be left empty for standard Lyapunov. % % opts.projection_method: % Projected equations that are solver are of the form % V'*A*V*T*V'*M'*V+V'*M*V*T*V'*A'*V+V'*B*B'*V=0 % where the options are % 1: V = r (default, start with V_0) % 1.1: V = A^{-1}r (start with A^{-1}V_0) % 1.2: V = A^{-1}r (start with A^{-1}B) % 1.3: V = A^{-1}r (start with V_0) % 2.1: V = [r, A^{-1}r] (start with [V_0, A^{-1}V_0]) % 2.2: V = [r, A^{-1}r] (start with [B, A^{-1}B]) % 2.3: V = [r, A^{-1}r] (start with V_0) % % opts.invA or opts.Ainv: % Function that performs A^{-1}x. This can be approximate. It is % only referenced when projection_method > 1. The default uses \ % but of course it is better to factorize this beforehand. % (default: @(x) A\x). % % opts.space: % Initial space V_0. The default is a random vector, but it can be % set to for instance B. It will be orthonormalized within this % function. (default: random vector). % % opts.expand: % Amount of vectors used to expand the space. (default: 3). % % opts.nullspace: % Space we want to be projected out of V in each step. (default: []). % % opts.ortho: % Orthogonalization method. Default is standard orthogonalization, % but one can also choose to use M-orthogonalization by setting this % to 'M'. (default: []). % % opts.restart_iterations: % Amount of iterations after which the method is restarted. The % method will not be restarted after a set amount of iterations if % this is set to -1. This option should be used in combination with % a restart tolerance, not with the restart size option mentioned % below. (default: -1) % % opts.restart_tolerance: % Tolerance used for retaining eigenvectors. If this is > 0 the % amount of vectors in V is dependent on this tolerance. (default % 1e-3 * tol). % % opts.restart_upon_start: Perform a restart after the first projected % problem is solved to reduce the size of the space. This is % especially useful when restarting from a solution to a similar % previous problem. (default: false). % % opts.restart_upon_convergence: Perform a restart upon convergence to % reduce the size of the space. This is the same as doing a rank % reduction as a post-processing step except that it will also % reiterate to make sure the convergence tolerance is still % reached. (default: true). % % opts.restart_size: % Maximum amount of vectors that V can contain. The amount of % vectors will not be limited in case this is set to -1. Setting % this may cause the method to not converge, since a minimum rank % of the solution is required to reach a certain tolerance. Using % a combination of restart_iterations and restart_tolerance is % more robust. (default: -1). % % opts.reduced_size: % Amount of vectors that is used after a restart. This can be set in % combination with the restart size option. Note that by setting % this it is possible to throw away too much information at every % restart. The reduced size is not limited in case this is set to % -1. (default: -1). % % opts.lanczos_vectors: % Amount of eigenvectors that you want to compute using Lanczos. % For this we use eigs at the moment. Usually it is a good idea to % use more vectors than the amount of expand vectors since it can % happen that eigenvectors of the residual are already in the % space. (default: 2 * expand). % % opts.lanczos_tolerance % Tolerance for computing the eigenvectors/values. % % opts.fast_orthogonalization % Uses vector operations + ortho instead of doing modified GS. % This is less stable but about 10x as fast. (default: true). if nargin < 3 error('Not enough input arguments'); end args = 3; if nargin < args+1 || ~isnumeric(varargin{args-2}) || varargin{args-2} - ceil(varargin{args-2}) ~=0 if nargin >= args+1 && isempty(varargin{args-2}) args = args + 1; end maxit = 100; else maxit = varargin{args-2}; args = args + 1; end hasM = ~isempty(M); invA = []; V = []; AV = []; VAV = []; if nargin < args+1 || ~isnumeric(varargin{args-2}) if nargin >= args+1 && isempty(varargin{args-2}) args = args + 1; end tol = 1e-4; else tol = varargin{args-2}; args = args + 1; end restart_size = -1; restart_iterations = -1; reduced_size = -1; expand = min(3, size(B, 2)); mortho = false; ortho = true; nullspace = []; projection_method = 1; restart_tolerance = 1e-3 * tol; restart_upon_convergence = true; restart_upon_start = false; eigs_tol = []; nev = []; fast_orthogonalization = true; % Options verbosity = 0; if nargin > args opts = varargin{args-2}; if ~isa(opts, 'struct') error('RAILSsolver:OptionsNotStructure',... 'the last argument is not a structure'); end if isfield(opts, 'verbosity') if strcmp(opts.verbosity, 'Verbose') verbosity = 1; else verbosity = opts.verbosity; end end if isfield(opts, 'invA') invA = opts.invA; end if isfield(opts, 'Ainv') invA = opts.Ainv; end if isfield(opts, 'space') V = opts.space; if ~isempty(V) && size(V, 1) ~= size(B, 1) error('RAILSsolver:InvalidOption',... 'opts.space should have the same row dimension as A'); end end if isfield(opts, 'V') V = opts.V; if ~isempty(V) && size(V, 1) ~= size(B, 1) error('RAILSsolver:InvalidOption',... 'opts.V should have the same row dimension as A'); end end if isfield(opts, 'restart_data') if ~isempty(opts.restart_data) if ~isfield(opts.restart_data, 'V') || ... ~isfield(opts.restart_data, 'AV') || ~isfield(opts.restart_data, 'VAV') error('RAILSsolver:InvalidOption',... 'opts.restart_data does not contain valid restart data'); end V = opts.restart_data.V; if ~isempty(V) && size(V, 1) ~= size(B, 1) error('RAILSsolver:InvalidOption',... 'opts.restart_data.V should have the same row dimension as A'); end AV = opts.restart_data.AV; if ~isempty(AV) && size(V, 1) ~= size(AV, 1) error('RAILSsolver:InvalidOption',... 'opts.restart_data.AV should have the same row dimension as A'); end VAV = opts.restart_data.VAV; if ~isempty(VAV) && size(V, 2) ~= size(VAV, 1) error('RAILSsolver:InvalidOption',... 'opts.restart_data.VAV should have the same column dimension as V'); end end end if isfield(opts, 'space_is_orthogonalized') if isempty(V) error('RAILSsolver:InvalidOption',... 'opts.space has not been defined'); end ortho = ~opts.space_is_orthogonalized; end if isfield(opts, 'restart_size') restart_size = opts.restart_size; end if isfield(opts, 'restart_upon_convergence') restart_upon_convergence = opts.restart_upon_convergence; end if isfield(opts, 'restart_upon_start') restart_upon_start = opts.restart_upon_start; end if isfield(opts, 'expand') expand = opts.expand; if expand > size(B, 2) error('RAILSsolver:InvalidOption',... 'opts.expand is larger than the column dimension of B'); end end if isfield(opts, 'nullspace') nullspace = Morth(opts.nullspace, []); end if isfield(opts, 'projection_method') projection_method = opts.projection_method; end if isfield(opts, 'ortho') && opts.ortho == 'M' mortho = true; end if isfield(opts, 'restart_iterations') restart_iterations = opts.restart_iterations; end if isfield(opts, 'restart_tolerance') restart_tolerance = opts.restart_tolerance; end if isfield(opts, 'lanczos_tolerance') eigs_tol = opts.lanczos_tolerance; end if isfield(opts, 'lanczos_vectors') nev = opts.lanczos_vectors; end if isfield(opts, 'fast_orthogonalization') fast_orthogonalization = opts.fast_orthogonalization; end if isfield(opts, 'reduced_size') reduced_size = opts.reduced_size; if reduced_size > 0 && restart_size > 0 && reduced_size >= restart_size error('RAILSsolver:InvalidOption',... 'opts.reduced_size should be smaller than opts.restart_size'); end elseif restart_size > 0 reduced_size = restart_size / 2; end end tstart = tic; % Allow for matrices and functions as input Afun = A; if isa(A, 'double') % Check matrix and right hand side vector inputs have appropriate sizes [m,n] = size(A); if (m ~= n) error('RAILSsolver:SquareMatrix', 'A should be a square matrix'); end Afun = @(x) A * x; else m = size(B,1); n = m; end % Check for a singular mass matrix if ~isempty(M) && 1 / condest(M) < 1e-12 warning('RAILSsolver:SingularMassMatrix', ... ['Your M matrix appears to be singular. ' ... 'It is advised to use the provided RAILSschur method.']); end % Check projection method usage if ~isempty(invA) && projection_method == 1 warning('RAILSsolver:InverseNotUsed', ... ['An inverse application method is provided, but the current ', ... 'projection method does not make use of this']); elseif isempty(invA) invA = @(x) A \ x; end if isempty(V) % We use a random vector V = (rand(n,1) - .5) * 2; end W = V; if ~isempty(invA) && abs(projection_method - floor(projection_method) - 0.1) < sqrt(eps) W = invA(V); end if ~isempty(invA) && abs(projection_method - floor(projection_method) - 0.2) < sqrt(eps) V = full(B); W = invA(V); end if ~isempty(invA) && floor(projection_method) == 2 && ... abs(projection_method - floor(projection_method) - 0.3) > sqrt(eps) V = [V, W]; elseif ~isempty(invA) && floor(projection_method) == 1 && ... abs(projection_method - floor(projection_method) - 0.3) > sqrt(eps) V = W; end if mortho V = Morth(V, M, nullspace, [], fast_orthogonalization); elseif ortho V = Morth(V, [], nullspace, [], fast_orthogonalization); end if isempty(nev) nev = expand; end MV = []; VMV = []; BV = []; VBV = []; H = []; T = []; resvec = []; timevec = []; iter = 0; iter_since_restart = 0; converged = false; reduced = false; r0 = norm(full(B'*B), 2); % Main loop for i=1:maxit iter = i; iter_since_restart = iter_since_restart + 1; if verbosity > 0 fprintf('Iter %d\n', i); end % VAV = V'*A*V; new_indices = size(VAV,2)+1:size(V,2); AVnew = Afun(V(:, new_indices)); if isempty(VAV) VAV = V'*AVnew; else VAV = [[VAV; V(:,new_indices)'*AV], V'*AVnew]; end AV = [AV, AVnew]; % VBV = V'*B*B'*V; new_indices = size(VBV,2)+1:size(V,2); BVnew = B' * V(:,new_indices); if isempty(VBV) VBV = BVnew'*BVnew; else t = BVnew'*BV; VBV = [[VBV; t], [t'; BVnew'*BVnew]]; end BV = [BV, BVnew]; % This is not needed if we use a normal % Lyapunov solver instead of a general one if hasM old_indices = 1:size(MV,2); new_indices = size(MV,2)+1:size(V,2); MVnew = M*V(:, new_indices); MV = [MV, MVnew]; end if hasM && ~mortho % VMV = V'*M*V; if isempty(VMV) VMV = V'*MVnew; else VMV = [[VMV; V(:, new_indices)'*MV(:,old_indices)], V'*MVnew]; end T = lyap(VAV, VBV, [], VMV); else T = lyap(VAV, VBV); end % Compute eigenvalues and vectors of the residual, but make % sure we do not compute too many eopts.issym = true; eopts.tol = eigs_tol; if hasM [V2,D2] = eigs(@(x) AV*(T*(MV'*x)) + MV*(T*(AV'*x)) + B*(B'*x), n, nev, 'lm'); else [V2,D2] = eigs(@(x) AV*(T*(V'*x)) + V*(T*(AV'*x)) + B*(B'*x), n, nev, 'lm'); end H = D2; % Sort eigenvectors by size of the eigenvalue [~,I2] = sort(abs(diag(D2)), 1, 'descend'); V2 = V2(:, I2); D2 = D2(I2, I2); % Orthogonalize so we do not use too eigenvectors that are % already in the space if mortho V2 = Morth(V2, M, V, [], fast_orthogonalization); else V2 = Morth(V2, [], V, [], fast_orthogonalization); end res = norm(D2, inf); if verbosity > 0 fprintf('Estimate Lanczos, absolute: %e, relative: %e, num eigenvectors: %d\n',... res, res / r0, size(V2, 2)); end res = res / r0; if iter_since_restart > 1 || i == 1 resvec = [resvec; res]; timevec = [timevec; toc(tstart)]; end if abs(res) < tol if converged || ~restart_upon_convergence if verbosity > 0 fprintf('Converged with space size %d\n', size(V, 2)); end if nargout > 6 restart_data.V = V; restart_data.AV = AV; restart_data.VAV = VAV; end break; end converged = true; end if i >= maxit || size(V,2) >= m if nargout > 6 restart_data.V = V; restart_data.AV = AV; restart_data.VAV = VAV; end if projection_method == 1 warning('RAILSsolver:ProjectionMethod', ... ['Convergence has not been achieved with ' ... 'opts.projection_method = 1. ' ... 'It is advised to set opts.projection_method ' ... 'to a different value. For instance ' ... 'opts.projection_method = 1.2.']); end break; end if (i == 1 && restart_upon_start) ... || (restart_iterations > 0 && iter_since_restart == restart_iterations) ... || (isempty(H) && reduced_size > 0 && size(T,1) > reduced_size) ... || (restart_size > 0 && size(T, 1) > restart_size) ... || (converged && ~reduced) if reduced_size > 0 && reduced_size < size(V, 2) if verbosity > 0 fprintf(['Decreasing search space size. Trying %d ' ... 'vectors.\n'], reduced_size); end [V3, D3] = eigs(T, reduced_size); else if verbosity > 0 fprintf(['Decreasing search space size. Trying %d ' ... 'vectors.\n'], size(V, 2)); end [V3, D3] = eig(T); end d = abs(diag(D3)); I3 = find(d / max(d) > restart_tolerance); % Restart using only the part of the largest eigenvectors [~,s] = sort(d(I3),'descend'); V3 = V3(:, I3(s)); V = V * V3; if verbosity > 0 fprintf('Restarted with %d vectors.\n', size(V, 2)); end reduced = converged; reortho = 0; if reortho VAV = []; AV = []; VMV = []; MV = []; VBV = []; BV = []; else VAV = V3' * VAV * V3; AV = AV * V3; if ~isempty(MV) MV = MV * V3; end if ~isempty(VMV) VMV = V3' * VMV * V3; end VBV = V3' * VBV * V3; % Make this symmetric for safety reasons VBV = (VBV + VBV') / 2; BV = BV * V3; end iter_since_restart = 0; continue end % Max number of expansion vectors we want num = min(min(expand, size(V2,2)), m - size(V,2)); W = V2(:, 1:num); if ~isempty(invA) && projection_method < 2 && projection_method > 1 W = invA(W); elseif ~isempty(invA) && projection_method < 3 && projection_method > 2 W = [W, invA(W)]; end if mortho V = Morth(W, M, nullspace, V, fast_orthogonalization); else V = Morth(W, [], nullspace, V, fast_orthogonalization); end end if verbosity > 3 && verbosity < 5 semilogy(resvec); end end function V = Morth(W, M, nullspace, V, fast_orthogonalization) % MGS M-orthogonalisation if nargin < 5 fast_orthogonalization = false; end if nargin < 4 V = []; end if nargin < 3 nullspace = []; end num_iter = 1; tol = 1e-8; if isempty(M) if fast_orthogonalization % Really fast orthogonalization, which is not so stable if ~isempty(nullspace) W = W - nullspace*(nullspace'*W); end if ~isempty(V) W = W - V*(V'*W); end V = [V, orth(W)]; else % Actual modified GS, which is supposed to be about as fast % but is actually 10x as slow... for i = 1:size(W,2) v1 = W(:,i) / norm(W(:,i)); for k = 1:num_iter v1 = nullspace_op(v1); for j=1:size(V,2) v1 = v1 - V(:,j)*(V(:,j)'*(v1)); end end nrm = norm(v1); if nrm < tol continue; end V(:,size(V,2)+1) = v1 / nrm; end end else % Modified GS with M-inner product for i = 1:size(W,2) v1 = W(:,i) / norm(W(:,i)); for k = 1:num_iter v1 = nullspace_op(v1); for j=1:size(V,2) v1 = v1 - V(:,j)*(V(:,j)'*(M*v1)); end end nrm = sqrt(v1'*M*v1); if nrm < tol continue; end V(:,size(V,2)+1) = v1 / nrm; end end function y = nullspace_op(x) y = x; if ~isempty(nullspace) if isa(nullspace, 'function_handle') y = nullspace(x); else if isempty(M) for ii=1:size(nullspace, 2) y = y - nullspace(:,ii) * (nullspace(:,ii)' * y); end else for ii=1:size(nullspace, 2) y = y - nullspace(:,ii) * (nullspace(:,ii)' * (M * y)); end end end end end end
github
Sbte/RAILS-master
test_random.m
.m
RAILS-master/matlab/test/test_random.m
1,058
utf_8
91077ecde07f2915b1b3356db39952c0
function test_suite = test_random try test_functions = localfunctions(); test_suite = functiontests(test_functions); catch end try initTestSuite; catch end end function seed() if ~exist('rng') rand('state', 4634); else rng(4634) end end function test_random_ev(t) seed; n = 64; A = sprand(n,n,10/n); M = speye(n); [B,~] = eigs(A,1); [V, S, res, iter] = RAILSsolver(A, M, B, 64); t.assertLessThan(iter, 10); t.assertLessThan(res * norm(B'*B), 1E-2); t.assertLessThan(res, 1E-4); t.assertLessThan(norm(A*V*S*V'*M'+M*V*S*V'*A'+B*B') / norm(B'*B), 1E-4); end function test_random_64(t) seed; n = 64; A = sprand(n,n,10/n); B = rand(n,1); M = spdiags(rand(n,1), 0, n, n); opts.restart_upon_convergence = false; [V, S, res] = RAILSsolver(A, M, B, opts); t.assertLessThan(res * norm(B'*B), 1E-2); t.assertLessThan(res, 1E-4); t.assertLessThan(norm(A*V*S*V'*M'+M*V*S*V'*A'+B*B') / norm(B'*B), 1E-4); end
github
Sbte/RAILS-master
test_Laplace.m
.m
RAILS-master/matlab/test/test_Laplace.m
2,469
utf_8
07e753f63eca25b1bf772d066ffe2f10
function test_suite = test_Laplace try test_functions = localfunctions(); test_suite = functiontests(test_functions); catch end try initTestSuite; catch end end function A = laplacian2(n) m = sqrt(n); I = speye(m); e = ones(m,1); T = spdiags([e -4*e e], -1:1, m, m); S = spdiags([e e], [-1 1], m, m); A = (kron(I,T) + kron(S,I)); end function seed() if ~exist('rng') rand('state', 4634); else rng(4634) end end function test_Laplace_64(t) seed; n = 64; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); B = rand(n,1); [V, S, res, iter] = RAILSsolver(A,M,B); t.assertLessThan(iter, n-10); t.assertLessThan(res * norm(B'*B), 1E-2); t.assertLessThan(res, 1E-4); t.assertLessThan(norm(A*V*S*V'*M'+M*V*S*V'*A'+B*B') / norm(B'*B), 1E-4); end function test_Laplace_256(t) seed; n = 256; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); B = rand(n,1); [V, S, res, iter] = RAILSsolver(A,M,B); t.assertLessThan(iter, n-10); t.assertLessThan(res * norm(B'*B), 1E-2); t.assertLessThan(res, 1E-4); t.assertLessThan(norm(A*V*S*V'*M'+M*V*S*V'*A'+B*B') / norm(B'*B), 1E-4); end function test_Laplace_maxit(t) seed; n = 64; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); B = rand(n,1); t.assertWarning(@(x) RAILSsolver(A, M, B, 10), 'RAILSsolver:ProjectionMethod'); end function test_Laplace_singular(t) seed; n = 64; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); M(n, n) = 0; B = rand(n,1); t.assertWarning(@(x) RAILSsolver(A, M, B, 10), 'RAILSsolver:SingularMassMatrix'); end function test_Laplace_equivalence(t) % Here we show that the Laplace problem is also a Lyapunov problem seed; n = 1024; m = sqrt(n); A_lapl = laplacian2(n); e = ones(n, 1); A = spdiags([e, -2*e, e], -1:1, m, m); I = speye(m); A_kron = kron(A, I) + kron(I, A); t.assertEqual(A_lapl, A_kron); B = rand(m, 1); b = -reshape(B*B', n, 1); x_lapl = A_lapl \ b; opts.restart_upon_convergence = false; [V, S, res, iter] = RAILSsolver(A, [], B, opts); t.assertLessThan(res * norm(B'*B), 1E-2); t.assertLessThan(res, 1E-4); t.assertLessThan(norm(A*V*S*V'+V*S*V'*A'+B*B') / norm(B'*B), 1E-4); x_lyap = reshape(V*S*V', n, 1); t.assertLessThan(norm(x_lapl-x_lyap), 1E-4); end
github
Sbte/RAILS-master
test_MOC.m
.m
RAILS-master/matlab/test/test_MOC.m
3,671
utf_8
0321d28c9adbeba96274c4647a162ff9
function test_suite = test_MOC try test_functions = localfunctions(); test_suite = functiontests(test_functions); catch end try initTestSuite; catch end end function test_MOC_Erik(t) [A,M,B] = get_MOC_data(); n = size(A, 1); t.assertEqual(n, 8*8*4*6); res = 0; [A2,M2,B2] = add_border(A, M, B); % Solve the Schur complement system [S, MS, BS, Sinv, Vtrans] = RAILSschur(A2, M2, B2); [V, T] = RAILSsolver(S, MS, BS, 1000, 1e-3); res = norm(S(V)*T*(V'*MS') + (MS*V)*(S(V)*T)' + BS*BS', 'fro'); t.assertLessThan(res, 1E-3); V = Vtrans(V); V = V(1:n,:); res = norm(A*V*T*V'*M' + M*V*T*V'*A' + B*B', 'fro'); t.assertLessThan(res, 1E-3); end function test_MOC_inv(t) [A,M,B] = get_MOC_data(); n = size(A, 1); t.assertEqual(n, 8*8*4*6); res = 0; [A2,M2,B2] = add_border(A, M, B); % Solve the Schur complement system [S, MS, BS, Sinv, Vtrans] = RAILSschur(A2, M2, B2); opts.projection_method = 2.2; opts.Ainv = Sinv; [V, T] = RAILSsolver(S, MS, BS, 1000, 1e-3, opts); res = norm(S(V)*T*(V'*MS') + (MS*V)*(S(V)*T)' + BS*BS', 'fro'); t.assertLessThan(res, 1E-3); V = Vtrans(V); V = V(1:n,:); res = norm(A*V*T*V'*M' + M*V*T*V'*A' + B*B', 'fro'); t.assertLessThan(res, 1E-3); end function test_MOC_factorize(t) [A,M,B] = get_MOC_data(); n = size(A, 1); t.assertEqual(n, 8*8*4*6); res = 0; [A2,M2,B2] = add_border(A, M, B); % Solve the Schur complement system [S, MS, BS, Sinv, Vtrans] = RAILSschur(A2, M2, B2, true); opts.projection_method = 2.2; opts.Ainv = Sinv; [V, T] = RAILSsolver(S, MS, BS, 1000, 1e-3, opts); res = norm(S(V)*T*(V'*MS') + (MS*V)*(S(V)*T)' + BS*BS', 'fro'); t.assertLessThan(res, 1E-3); V = Vtrans(V); V = V(1:n,:); res = norm(A*V*T*V'*M' + M*V*T*V'*A' + B*B', 'fro'); t.assertLessThan(res, 1E-3); end function [A,M,B] = get_MOC_data() dir = fileparts(mfilename('fullpath')); Abeg = load([dir, '/../DataErik/Ap1.beg']); Aco = load([dir, '/../DataErik/Ap1.co']); Ainfo = load([dir, '/../DataErik/Ap1.info']); Ajco = load([dir, '/../DataErik/Ap1.jco']); Arl = load([dir, '/../DataErik/Ap1.rl']); Mco = load([dir, '/../DataErik/Bp1.co']); F = load([dir, '/../DataErik/Frcp1.co']); n = Ainfo(1); nnz = Ainfo(2); ivals = zeros(nnz,1); jvals = Ajco; vals = Aco; row = 1; idx = 1; while row <= n for k = Abeg(row):Abeg(row+1)-1 ivals(idx) = row; idx = idx + 1; end row = row + 1; end A = sparse(ivals, jvals, vals, n, n); M = sparse(1:n, 1:n, Mco, n, n); % Set everything but temperature and salinity to zero idx = 1:6:n; idx = [idx, idx+1, idx+2, idx+3]; M(idx,idx) = 0; % Set everything but salinity to zero idx = 1:6:n; idx = [idx, idx+1, idx+2, idx+3, idx+4]; F(idx) = 0; % Spatially correlated noise B = 0.1 * F; end function [A2, M2, B2] = add_border(A, M, B) % Add the nullspace to the matrix as border n = size(A, 1); A2 = sparse(n+2, n+2); A2(1:n, 1:n) = A; for j = 0:n-1 if (mod(j, 6) == 3) if mod((mod(floor(j / 6), 4) + mod(floor(floor(j / 6) / 4), 16)), 2) == 0 A2(n+1, j+1) = 1; A2(j+1, n+1) = 1; else A2(n+2, j+1) = 1; A2(j+1, n+2) = 1; end end end M2 = sparse(n+2, n+2); M2(1:n, 1:n) = M; B2 = sparse(n+2, size(B,2)); B2(1:n, 1:size(B,2)) = B; end
github
Sbte/RAILS-master
test_opts.m
.m
RAILS-master/matlab/test/test_opts.m
5,219
utf_8
978879b3a34be12cc2cbaadd5018327f
function test_suite = test_opts try test_functions = localfunctions(); test_suite = functiontests(test_functions); catch end try initTestSuite; catch end end function A = laplacian2(n) m = sqrt(n); I = speye(m); e = ones(m,1); T = spdiags([e -4*e e], -1:1, m, m); S = spdiags([e e], [-1 1], m, m); A = (kron(I,T) + kron(S,I)); end function seed() if ~exist('rng') rand('state', 4634); else rng(4634) end end function test_tol(t) seed; n = 256; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); B = rand(n,1); tol = 5e-5; [V, S, res, iter] = RAILSsolver(A,M,B,tol); t.assertLessThan(iter, n-10); t.assertLessThan(res, tol); t.assertLessThan(norm(A*V*S*V'*M'+M*V*S*V'*A'+B*B') / norm(B'*B), tol); t.assertGreaterThan(norm(A*V*S*V'*M'+M*V*S*V'*A'+B*B') / norm(B'*B), tol / 10); end function test_restart(t) seed; n = 256; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); B = rand(n,1); clear opts; opts.restart_size = 50; opts.reduced_size = 10; [V, S, res, iter] = RAILSsolver(A,M,B,opts); t.assertEqual(size(V,2), 10); t.assertLessThan(iter, 100); t.assertEqual(size(V, 2), size(S, 2)); t.assertLessThan(res * norm(B'*B), 1E-2); t.assertLessThan(res, 1E-4); t.assertLessThan(norm(A*V*S*V'*M'+M*V*S*V'*A'+B*B') / norm(B'*B), 1E-4); end function test_restart2(t) seed; n = 256; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); B = rand(n,1); maxit = 110; clear opts; opts.reduced_size = 15; opts.restart_iterations = 40; [V, S, res, iter] = RAILSsolver(A,M,B,maxit,opts); t.assertLessThan(iter, maxit); t.assertEqual(size(V, 2), size(S, 2)); t.assertLessThan(res * norm(B'*B), 1E-2); t.assertLessThan(res, 1E-4); t.assertLessThan(norm(A*V*S*V'*M'+M*V*S*V'*A'+B*B') / norm(B'*B), 1E-4); end function test_restart3(t) seed; n = 256; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); B = rand(n,1); maxit = 150; clear opts; opts.restart_size = 50; opts.reduced_size = 10; opts.restart_iterations = 20; opts.restart_tolerance = 1e-2; [V, S, res, iter] = RAILSsolver(A,M,B,maxit,opts); t.assertLessThan(iter, maxit); t.assertEqual(size(V, 2), size(S, 2)); t.assertLessThan(res * norm(B'*B), 1E-2); t.assertLessThan(res, 1E-4); t.assertLessThan(norm(A*V*S*V'*M'+M*V*S*V'*A'+B*B') / norm(B'*B), 1E-4); end function test_wrong_restart(t) seed; n = 64; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); B = rand(n,1); clear opts; opts.restart_size = 10; opts.reduced_size = 50; t.assertError(@() RAILSsolver(A,M,B,opts), 'RAILSsolver:InvalidOption'); end function test_wrong_expand(t) seed; n = 64; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); B = rand(n,1); clear opts; opts.expand = 3; t.assertError(@() RAILSsolver(A,M,B,opts), 'RAILSsolver:InvalidOption'); end function test_wrong_space(t) seed; n = 64; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); B = rand(n,1); clear opts; opts.space = rand(n-1,1); t.assertError(@() RAILSsolver(A,M,B,opts), 'RAILSsolver:InvalidOption'); end function test_no_inverse(t) seed; n = 64; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); B = rand(n,1); clear opts; opts.Ainv = @(x) []; t.assertWarning(@() RAILSsolver(A,M,B,opts), 'RAILSsolver:InverseNotUsed'); end function test_space(t) seed; n = 256; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); B = rand(n,1); maxit = 150; clear opts; opts.restart_size = 50; opts.reduced_size = 10; [V, S, res, iter] = RAILSsolver(A,M,B,maxit,opts); opts.space = V(:,1:9); [V, S, res, iter2] = RAILSsolver(A,M,B,maxit,opts); t.assertLessThan(iter2, iter); t.assertEqual(size(V, 2), size(S, 2)); t.assertLessThan(res * norm(B'*B), 1E-2); t.assertLessThan(res, 1E-4); t.assertLessThan(norm(A*V*S*V'*M'+M*V*S*V'*A'+B*B') / norm(B'*B), 1E-4); end function test_morth(t) seed; n = 256; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); B = rand(n,1); opts.ortho = 'M'; [V, S, res, iter] = RAILSsolver(A,M,B,opts); t.assertLessThan(iter, n-10); t.assertLessThan(res * norm(B'*B), 1E-2); t.assertLessThan(res, 1E-4); t.assertLessThan(norm(A*V*S*V'*M'+M*V*S*V'*A'+B*B') / norm(B'*B), 1E-4); end function test_nullspace(t) seed; n = 256; A = laplacian2(n); M = spdiags(rand(n,1), 0, n, n); B = rand(n,1); Q = rand(n,1); Q = Q / norm(Q); P = speye(n) - Q * Q'; A = P*A*P; B = P*B; M = P*M*P; opts.nullspace = Q; warning('off', 'RAILSsolver:SingularMassMatrix'); [V, S, res, iter] = RAILSsolver(A,M,B,opts); warning('on', 'RAILSsolver:SingularMassMatrix'); t.assertLessThan(norm(Q'*V), 1E-10); t.assertLessThan(res * norm(B'*B), 1E-2); t.assertLessThan(res, 1E-4); t.assertLessThan(norm(A*V*S*V'*M'+M*V*S*V'*A'+B*B') / norm(B'*B), 1E-4); end
github
nlbucki/E231A_QuadcopterMPC-master
even_sample.m
.m
E231A_QuadcopterMPC-master/gen/even_sample.m
2,009
utf_8
1d30ba0d23065fd6540ed2803c83ed56
%*********************************************************************** % % CONVERTS A RANDOMLY SAMPLED SIGNAL SET INTO AN EVENLY SAMPLED % SIGNAL SET (by interpolation) % % By : Haldun KOMSUOGLU % Start : 07/23/1999 % Last : 07/23/1999 % Statue : Neural Model Research Material % % Inputs: % t : A column vector that contains the time values for the % corresponding computed state trajectory points % x : A matrix in which each row is a state value on the % solution trajectory that corresponds to the time value in % vector t with the same row value. Format of each row: % row = [x1 x2 ... xN] % Fs: The sampling frequency (1/sec) for the evenly sampled % set to be generated. % % Outputs: % Et : Even sampling instants. This is a column vector in the % same format with "t". % Ex : A matrix of the same form with "x" that contains the % state values corresponding to the time instants in Et % %*********************************************************************** function [Et, Ex] = even_sample(t, x, Fs, type) if nargin < 4, type = 'linear'; end dt = diff(t); dt = dt + (dt==0)*1e-5; t = [0;cumsum(dt)]; % Obtain the process related parameters N = size(x, 2); % number of signals to be interpolated M = size(t, 1); % Number of samples provided t0 = t(1,1); % Initial time tf = t(M,1); % Final time EM = (tf-t0)*Fs; % Number of samples in the evenly sampled case with % the specified sampling frequency Et = linspace(t0, tf, round(EM))'; % Using linear interpolation (used to be cubic spline interpolation) % and re-sample each signal to obtain the evenly sampled forms for s = 1:N, Ex(:,s) = interp1(t(:,1), x(:,s), Et(:,1),type); end;
github
nlbucki/E231A_QuadcopterMPC-master
generate_ref_trajectory.m
.m
E231A_QuadcopterMPC-master/gen/generate_ref_trajectory.m
1,320
utf_8
9b963154ee1991952c8362024c02885b
function[xref,uref] = generate_ref_trajectory(t, sys) %% % function to generate reference trajectory %% % time = 0:params.Ts:(params.Tf+params.N*params.Ts); traj = @(t) sin_traj(t); % traj = @(t) circ_traj(t); % xref = []; % uref = []; % for it = time [ref] = sys.flat2state(traj(t)); xref = [ref.y; ref.z; ref.phi; ref.dy; ref.dz; ref.dphi]; uref = [ref.F1; ref.F2]; % xref = [xref, xref_]; % uref = [uref, uref_]; % end end function [flats] = sin_traj(t) y0 = 0; z0 = 0; vy0 = 1; ay0 = 0.05; zr = 1; f = 0.25; w = 2*pi*f; flats.x = [ay0.*t.^2+t.*vy0+y0;z0+zr.*sin(t.*w)]; flats.dx = [2.*ay0.*t+vy0;w.*zr.*cos(t.*w)]; flats.d2x = [2.*ay0;(-1).*w.^2.*zr.*sin(t.*w)]; flats.d3x = [0;(-1).*w.^3.*zr.*cos(t.*w)]; flats.d4x = [0;w.^4.*zr.*sin(t.*w)]; end function [flats] = circ_traj(t) y0 = 0; z0 = 0; ry = 0.5; rz = 0.5; f = 0.5; w = 2*pi*f; flats.x = [y0+ry.*sin(t.*w),z0+rz.*cos(t.*w)]; flats.dx = [ry.*w.*cos(t.*w),(-1).*rz.*w.*sin(t.*w)]; flats.d2x = [(-1).*ry.*w.^2.*sin(t.*w),(-1).*rz.*w.^2.*cos(t.*w)]; flats.d3x = [(-1).*ry.*w.^3.*cos(t.*w),rz.*w.^3.*sin(t.*w)]; flats.d4x = [ry.*w.^4.*sin(t.*w),rz.*w.^4.*cos(t.*w)]; % flats.x = flip(flats.x); % flats.dx = flip(flats.dx); % flats.d2x = flip(flats.d2x); % flats.d3x = flip(flats.d3x); % flats.d4x = flip(flats.d4x); end
github
nlbucki/E231A_QuadcopterMPC-master
struct_overlay.m
.m
E231A_QuadcopterMPC-master/gen/struct_overlay.m
2,259
utf_8
658e5adeaf0be01c43bb8ef6922d5f7f
%> @brief struct_overlay Overlay default fields with input fields %> @author Eric Cousineau <[email protected]> %> @note From optOverlay() on Mathworks, modified function [opts] = struct_overlay(opts_default, opts_in, options) % Simple cases if iscell(opts_default) opts_default = struct(opts_default{:}); end if isempty(opts_in) opts = opts_default; return; end if iscell(opts_in) opts_in = struct(opts_in{:}); end is_valid = @(o) isstruct(o) && length(o) == 1; assert(is_valid(opts_default), 'opts_default must be scalar struct or structable cell array'); assert(is_valid(opts_in), 'opts_in must be scalar struct or structable cell array'); persistent func_opts_default; if isempty(func_opts_default) func_opts_default = struct('Recursive', true, 'AllowNew', false); end if nargin < 3 options = func_opts_default; else if iscell(options) options = struct(options{:}); end options = struct_overlay(func_opts_default, options); end %TODO Tackle struct arrays? new_fields = fieldnames(opts_in); options_index = find(strcmp(new_fields, 'overlay_options')); indices = 1:length(new_fields); if ~isempty(options_index) options = struct_overlay(options, opts_in.overlay_options); indices(options_index) = []; end if ~options.AllowNew % Check to see if there are bad fields fields = fieldnames(opts_default); unoriginal = setdiff(new_fields(indices), fields); if ~isempty(unoriginal) error(['Fields are not in original: ', implode(unoriginal, ', ')]); end end opts = opts_default; for i = 1:length(indices) index = indices(i); field = new_fields{index}; new_value = opts_in.(field); % Apply recursion if options.Recursive && isfield(opts, field) cur_value = opts.(field); % Both values must be proper option structs if is_valid(cur_value) && is_valid(new_value) new_value = struct_overlay(cur_value, new_value, options); end end opts.(field) = new_value; end end
github
nlbucki/E231A_QuadcopterMPC-master
animateQuadrotorload.m
.m
E231A_QuadcopterMPC-master/@Quadrotorload/animateQuadrotorload.m
4,679
utf_8
71d2d272f431653bc24b013a34dc03b5
function animateQuadrotorload(obj,opts_in) % function to animate the quadrotor % default options opts_default.RATE = 25 * 2; opts_default.t = []; opts_default.x = []; opts_default.xd = [0;0]; opts_default.td = []; opts_default.interp_type = 'spline'; opts_default.vid.MAKE_MOVIE = 0; opts_default.vid.filename = 'results/vid1'; opts_default.vid.Quality = 100; opts_default.vid.FrameRate = 24; % initialize the animation figure and axes figure_x_limits = [-2 2]; figure_y_limits = [-2 2]; figure_z_limits = [0 1] ; fig1 = figure; set(0,'Units','pixels') scnsize = get(0,'ScreenSize'); screen_width = scnsize(3); screen_height = scnsize(4); % find the minimum scaling factor figure_x_size = figure_x_limits(2) - figure_x_limits(1); figure_y_size = figure_y_limits(2) - figure_y_limits(1); xfactor = screen_width/figure_x_size; yfactor = screen_height/figure_y_size; if (xfactor < yfactor) screen_factor = 0.5*xfactor; else screen_factor = 0.5*yfactor; end % calculate screen offsets screen_x_offset = (screen_width - screen_factor*figure_x_size)/2; screen_y_offset = (screen_height - screen_factor*figure_y_size)/2; % draw figure and axes set(fig1,'Position', [screen_x_offset screen_y_offset... 1.5*screen_factor*figure_x_size 1.5*screen_factor*figure_y_size]); set(fig1,'MenuBar', 'none'); axes1 = axes; set(axes1,'XLim',figure_x_limits,'YLim',figure_y_limits); % set(axes1,'Position',[0 0 1 1]); % set(axes1,'Color','w'); % set(axes1,'TickDir','out'); axis equal ; % get inputs opts = struct_overlay(opts_default,opts_in); % extract data RATE = opts.RATE; t = opts.t; x = opts.x; td = opts.td; xd = opts.xd; if isrow(t) t = t'; end if size(x,2)>size(x,1) x = x'; end box on; [t, x] = even_sample(t, x, RATE,opts.interp_type); t = t+t(1); xd_flag = true; if length(xd) == 2 xd = repmat(xd',length(x),1); else [~, xd] = even_sample(td,xd,RATE,opts.interp_type); end if(opts.vid.MAKE_MOVIE) M = moviein(length(t)) ; vidObj = VideoWriter(strcat(opts.vid.filename,'.avi'),'Motion JPEG AVI'); vidObj.FrameRate = opts.vid.FrameRate; vidObj.Quality = opts.vid.Quality; open(vidObj);frameRate = vidObj.FrameRate; % nFrame = floor(frameRate*t(end)); frameDelay = 1/frameRate; time = 0; end %% L_cable = obj.l; hist = 1 ; %% animate for i=1:length(t) drawQuadrotorload(axes1, x(i,:)',L_cable); plot(x(max(1,i-hist):i, 1), x(max(1,i-hist):i, 2), 'k') ; if xd_flag l = plot(xd(max(1,i-hist):i, 1), xd(max(1,i-hist):i, 2), 'og','linewidth',1); l.Color(4) = 0.4; end % plot3(x(max(1,i-hist):i, 1)-L*x(max(1,i-hist):i,7), x(max(1,i-hist):i, 2)-L*x(max(1,i-hist):i,8), x(max(1,i-hist):i, 3)-L*x(max(1,i-hist):i,9), 'r') ; s = sprintf('Running\n t = %1.2fs \n 1/%d realtime speed',t(i), RATE/25); text(x(i,1)-1.5,x(i,2)+1.5,s,'FontAngle','italic','FontWeight','bold'); drawnow; figure_x_limits_ = figure_x_limits+x(i,1); figure_y_limits_ = figure_y_limits+x(i,2); set(axes1,'XLim',figure_x_limits_,'YLim',figure_y_limits_); if opts.vid.MAKE_MOVIE M(:,i) = getframe; % Write data to video file writeVideo(vidObj,getframe(gcf)); % time step system to next frame: time = time + frameDelay; end end end function drawQuadrotorload(parent,x,l) tem = get(parent,'Children'); delete(tem); yL = x(1); zL = x(2); phiL = x(3); phiQ = x(4); yQ = yL-l*sin(phiL); zQ = zL+l*cos(phiL); s.L = 0.175; s.R = 0.05; base = [[s.L; 0], [-s.L; 0], [s.L; s.R], [-s.L; s.R]]; R = [cos(phiQ), -sin(phiQ); sin(phiQ), cos(phiQ)]; points = [yQ;zQ] + R'*base; cable = [ [yQ; zQ], [yL; zL]]; s.qhandle1 = line([points(1,1), points(1,2)], [points(2,1), points(2,2)]); hold on ; s.qhandle2 = line([points(1,1), points(1,3)], [points(2,1), points(2,3)]); s.qhandle3 = line([points(1,2), points(1,4)], [points(2,2), points(2,4)]); s.cable = line(cable(1,:),cable(2,:)); set(s.qhandle1,'Color','r', 'LineWidth',2); set(s.qhandle2,'Color','b', 'LineWidth',2); set(s.qhandle3,'Color','b', 'LineWidth',2); set(s.cable,'Color','b'); s.hload = scatter(yL,zL, 'rs', 'LineWidth',1) ; grid on; xlabel('Y'); ylabel('Z'); end
github
nlbucki/E231A_QuadcopterMPC-master
bSpline2.m
.m
E231A_QuadcopterMPC-master/mpc_ayush/bSpline2.m
2,059
utf_8
b45ad2816bc9e52ce44275b49f0c1de6
function x = bSpline2(tGrid,xGrid,fGrid,t) % x = bSpline2(tGrid,xGrid,fGrid,t) % % This function does piece-wise quadratic interpolation of a set of data. % The quadratic interpolant is constructed such that the slope matches on % both sides of each interval, and the function value matches on the lower % side of the interval. % % INPUTS: % tGrid = [1, n] = time grid (knot points) % xGrid = [m, n] = function at each grid point in tGrid % fGrid = [m, n] = derivative at each grid point in tGrid % t = [1, k] = vector of query times (must be contained within tGrid) % % OUTPUTS: % x = [m, k] = function value at each query time % % NOTES: % If t is out of bounds, then all corresponding values for x are replaced % with NaN % [m,n] = size(xGrid); k = length(t); x = zeros(m, k); % Figure out which segment each value of t should be on [~, bin] = histc(t,[-inf,tGrid,inf]); bin = bin - 1; % Loop over each quadratic segment for i=1:(n-1) idx = i==bin; if sum(idx) > 0 h = (tGrid(i+1)-tGrid(i)); xLow = xGrid(:,i); fLow = fGrid(:,i); fUpp = fGrid(:,i+1); delta = t(idx) - tGrid(i); x(:,idx) = bSpline2Core(h,delta,xLow,fLow,fUpp); end end % Replace any out-of-bounds queries with NaN outOfBounds = bin==0 | bin==(n+1); x(:,outOfBounds) = nan; % Check for any points that are exactly on the upper grid point: if sum(t==tGrid(end))>0 x(:,t==tGrid(end)) = xGrid(:,end); end end function x = bSpline2Core(h,delta,xLow,fLow,fUpp) % % This function computes the interpolant over a single interval % % INPUTS: % alpha = fraction of the way through the interval % xLow = function value at lower bound % fLow = derivative at lower bound % fUpp = derivative at upper bound % % OUTPUTS: % x = [m, p] = function at query times % %Fix dimensions for matrix operations... col = ones(size(delta)); row = ones(size(xLow)); delta = row*delta; xLow = xLow*col; fLow = fLow*col; fUpp = fUpp*col; fDel = (0.5/h)*(fUpp-fLow); x = delta.*(delta.*fDel + fLow) + xLow; end
github
nlbucki/E231A_QuadcopterMPC-master
pwPoly2.m
.m
E231A_QuadcopterMPC-master/traj_opt_ayush/pwPoly2.m
2,091
utf_8
711acbf5b78fa5ee04eaca84e6de2f0c
function x = pwPoly2(tGrid,xGrid,t) % x = pwPoly2(tGrid,xGrid,t) % % This function does piece-wise quadratic interpolation of a set of data, % given the function value at the edges and midpoint of the interval of % interest. % % INPUTS: % tGrid = [1, 2*n-1] = time grid, knot idx = 1:2:end % xGrid = [m, 2*n-1] = function at each grid point in tGrid % t = [1, k] = vector of query times (must be contained within tGrid) % % OUTPUTS: % x = [m, k] = function value at each query time % % NOTES: % If t is out of bounds, then all corresponding values for x are replaced % with NaN % nGrid = length(tGrid); if mod(nGrid-1,2)~=0 || nGrid < 3 error('The number of grid-points must be odd and at least 3'); end % Figure out sizes n = floor((length(tGrid)-1)/2); m = size(xGrid,1); k = length(t); x = zeros(m, k); % Figure out which segment each value of t should be on edges = [-inf, tGrid(1:2:end), inf]; [~, bin] = histc(t,edges); % Loop over each quadratic segment for i=1:n idx = bin==(i+1); if sum(idx) > 0 gridIdx = 2*(i-1) + [1,2,3]; x(:,idx) = quadInterp(tGrid(gridIdx),xGrid(:,gridIdx),t(idx)); end end % Replace any out-of-bounds queries with NaN outOfBounds = bin==1 | bin==(n+2); x(:,outOfBounds) = nan; % Check for any points that are exactly on the upper grid point: if sum(t==tGrid(end))>0 x(:,t==tGrid(end)) = xGrid(:,end); end end function x = quadInterp(tGrid,xGrid,t) % % This function computes the interpolant over a single interval % % INPUTS: % tGrid = [1, 3] = time grid % xGrid = [m, 3] = function grid % t = [1, p] = query times, spanned by tGrid % % OUTPUTS: % x = [m, p] = function at query times % % Rescale the query points to be on the domain [-1,1] t = 2*(t-tGrid(1))/(tGrid(3)-tGrid(1)) - 1; % Compute the coefficients: a = 0.5*(xGrid(:,3) + xGrid(:,1)) - xGrid(:,2); b = 0.5*(xGrid(:,3)-xGrid(:,1)); c = xGrid(:,2); % Evaluate the polynomial for each dimension of the function: p = length(t); m = size(xGrid,1); x = zeros(m,p); tt = t.^2; for i=1:m x(i,:) = a(i)*tt + b(i)*t + c(i); end end
github
nlbucki/E231A_QuadcopterMPC-master
pwPoly3.m
.m
E231A_QuadcopterMPC-master/traj_opt_ayush/pwPoly3.m
2,445
utf_8
f6e1d4ad154e13881760efe5bc8ffe9b
function x = pwPoly3(tGrid,xGrid,fGrid,t) % x = pwPoly3(tGrid,xGrid,fGrid,t) % % This function does piece-wise quadratic interpolation of a set of data, % given the function value at the edges and midpoint of the interval of % interest. % % INPUTS: % tGrid = [1, 2*n-1] = time grid, knot idx = 1:2:end % xGrid = [m, 2*n-1] = function at each grid point in time % fGrid = [m, 2*n-1] = derivative at each grid point in time % t = [1, k] = vector of query times (must be contained within tGrid) % % OUTPUTS: % x = [m, k] = function value at each query time % % NOTES: % If t is out of bounds, then all corresponding values for x are replaced % with NaN % nGrid = length(tGrid); if mod(nGrid-1,2)~=0 || nGrid < 3 error('The number of grid-points must be odd and at least 3'); end % Figure out sizes n = floor((length(tGrid)-1)/2); m = size(xGrid,1); k = length(t); x = zeros(m, k); % Figure out which segment each value of t should be on edges = [-inf, tGrid(1:2:end), inf]; [~, bin] = histc(t,edges); % Loop over each quadratic segment for i=1:n idx = bin==(i+1); if sum(idx) > 0 kLow = 2*(i-1) + 1; kMid = kLow + 1; kUpp = kLow + 2; h = tGrid(kUpp)-tGrid(kLow); xLow = xGrid(:,kLow); fLow = fGrid(:,kLow); fMid = fGrid(:,kMid); fUpp = fGrid(:,kUpp); alpha = t(idx) - tGrid(kLow); x(:,idx) = cubicInterp(h,xLow, fLow, fMid, fUpp,alpha); end end % Replace any out-of-bounds queries with NaN outOfBounds = bin==1 | bin==(n+2); x(:,outOfBounds) = nan; % Check for any points that are exactly on the upper grid point: if sum(t==tGrid(end))>0 x(:,t==tGrid(end)) = xGrid(:,end); end end function x = cubicInterp(h,xLow, fLow, fMid, fUpp,del) % % This function computes the interpolant over a single interval % % INPUTS: % h = time step (tUpp-tLow) % xLow = function value at tLow % fLow = derivative at tLow % fMid = derivative at tMid % fUpp = derivative at tUpp % del = query points on domain [0, h] % % OUTPUTS: % x = [m, p] = function at query times % %%% Fix matrix dimensions for vectorized calculations nx = length(xLow); nt = length(del); xLow = xLow*ones(1,nt); fLow = fLow*ones(1,nt); fMid = fMid*ones(1,nt); fUpp = fUpp*ones(1,nt); del = ones(nx,1)*del; a = (2.*(fLow - 2.*fMid + fUpp))./(3.*h.^2); b = -(3.*fLow - 4.*fMid + fUpp)./(2.*h); c = fLow; d = xLow; x = d + del.*(c + del.*(b + del.*a)); end
github
nlbucki/E231A_QuadcopterMPC-master
traj_gen_QR_pointmass.m
.m
E231A_QuadcopterMPC-master/traj_gen/traj_gen_QR_pointmass.m
2,983
utf_8
98d5b8d09bae71769f0a9205fae541d3
function traj = traj_gen_QR_pointmass(obj) % FUNCTION INPUTS: x0 = [-10.5;-10.5;0;0;0;0]; xF = [0;0;0;0;0;0]; xU = inf(6,1); xL = -xU; uU = 15*ones(2,1); % at least 10 to be able to compensate gravity uL = zeros(2,1); N = 80; % Generate obstacle % LATER: FUNCTION INPUT O = {Polyhedron('V',[-1 1; -20 1; -1 -2; -20 -2]),Polyhedron('V',[2 -1; 2 -10; 6 -1; 6 -10])}; %% Generate optimization problem M = length(O); % number of obstacles numConstrObs = zeros(1,M); % number of constraints to define each obstacle for m=1:M numConstrObs(m) = size(O{m}.H,1); end nx = length(xF); % number of states nu = length(uU); % number of inputs % Define optimization variables x = sdpvar(nx, N+1); % states u = sdpvar(nu, N); % control inputs % Topt = sdpvar(1,N); % optimal timestep variable over horizon Topt = sdpvar(1,1); lambda = sdpvar(sum(numConstrObs),N); % dual variables corresponding to % the constraints defining the obs. % A = sdpvar(nx,nx); % B = sdpvar(nx,nu); % [A,B]==obj.discrLinearizeQuadrotor(Topt,... % zeros(obj.nDof,1),obj.mQ*obj.g*ones(obj.nAct,1)./2) % Specify cost function and constraints q1 = 50; % cost per time unit q2 = 100; R = eye(nu); % cost for control inputs dmin = 0.3; % minimum safety distance cost = 0; constr = [x(:,1)==x0, x(:,N+1)==xF]; for k = 1:N cost = cost + u(:,k)'*R*u(:,k) ... + q1*Topt + q2*Topt^2; % + q1*Topt(k) + q2*Topt(k)^2; % Currently for the dynamics, an Euler discretization is used constr = [constr, xL<=x(:,k)<=xU, uL<=u(:,k)<=uU, ... % x(:,k+1)==x(:,k)+Topt(k)*systemDyn(obj,x(:,k),u(:,k)), ... % 0.01<=Topt(k)<=0.375... x(:,k+1)==x(:,k)+Topt*systemDyn(obj,x(:,k),u(:,k)), ... 0.01<=Topt<=0.375 ... ]; % Include obstacle avoidance constraints for m=1:M lda = lambda(sum(numConstrObs(1:m-1))+1:sum(numConstrObs(1:m)),k); constr = [constr, ... (O{m}.H(:,1:2)*x(1:2,k)-O{m}.H(:,2+1))'*lda>=dmin, ... sum((O{m}.H(:,1:2)'*lda).^2)<=1, ... lda>=zeros(size(lda))]; end end % Specify solver and solve the optimization problem options = sdpsettings('verbose', 1, 'solver', 'IPOPT'); opt = optimize(constr, cost, options); % Assign output variables % traj.t = cumsum(value(Topt)); traj.t = 0:value(Topt):N*value(Topt); traj.u = value(u); traj.x = value(x); if opt.problem ~= 0 % infeasible traj.t = []; traj.x = []; traj.u = []; end % Plot the resulting trajectory figure plot(traj.x(1,:),traj.x(2,:),'x-') xlabel('y') ylabel('z') title('Generated path with obstacle avoidance') hold on for m=1:M plot(O{m},'alpha',0.5) end % Display the amount of time the planned motion would take disp(['Reaching the target takes ' num2str(traj.t(end)) 's.']) end function ddx = systemDyn(obj,x,u) [fvec,gvec] = obj.quadVectorFields(x); ddx = fvec + gvec*u; end
github
nlbucki/E231A_QuadcopterMPC-master
traj_gen_QR_polyhedron.m
.m
E231A_QuadcopterMPC-master/traj_gen/traj_gen_QR_polyhedron.m
3,925
utf_8
6bc3e92343784f6bb380b88cb9079e27
function traj = traj_gen_QR_polyhedron(obj) % FUNCTION INPUTS: x0 = [-10.5;-10.5;0;0;0;0]; xF = [0;0;0;0;0;0]; xU = inf(6,1); xL = -xU; uU = 15*ones(2,1); % at least 10 to be able to compensate gravity uL = zeros(2,1); N = 80; QR_width = 2*0.02; QR_height = 0.015; % Generate obstacle % LATER: FUNCTION INPUT O ={Polyhedron('V',[-2 1; -20 1; -2 -2; -20 -2])};%,... % Polyhedron('V',[0 -3; 0 -10; 6 -3; 6 -10])}; %% Generate quadrotor shape (at "zero" position) QR = Polyhedron('V',[-QR_width/2 0; QR_width/2 0; -QR_width/2 QR_height;... QR_width/2 QR_height]); %% Generate optimization problem M = length(O); % number of obstacles numConstrObs = zeros(1,M); % number of constraints to define each obstacle for m=1:M numConstrObs(m) = size(O{m}.H,1); end numConstrQR = size(QR.H,1); nx = length(xF); % number of states nu = length(uU); % number of inputs % Define optimization variables x = sdpvar(nx, N+1); % states u = sdpvar(nu, N); % control inputs % Topt = sdpvar(1,N); % optimal timestep variable over horizon Topt = sdpvar(1,1); % dual variables corresponding to the constraints defining the obs. lambda = sdpvar(sum(numConstrObs),N); % dual variables ... mu = sdpvar(M*numConstrQR,N); % Define 2D rotation matrix Rot = @(angle) [cos(angle) -sin(angle); sin(angle) cos(angle)]; % A = sdpvar(nx,nx); % B = sdpvar(nx,nu); % [A,B]==obj.discrLinearizeQuadrotor(Topt,... % zeros(obj.nDof,1),obj.mQ*obj.g*ones(obj.nAct,1)./2) % Specify cost function and constraints q1 = 50; % cost per time unit q2 = 100; R = eye(nu); % cost for control inputs dmin = 0.3; % minimum safety distance cost = 0; constr = [x(:,1)==x0, x(:,N+1)==xF]; for k = 1:N cost = cost + u(:,k)'*R*u(:,k) ... + q1*Topt + q2*Topt^2; % + q1*Topt(k) + q2*Topt(k)^2; % Currently for the dynamics, an Euler discretization is used constr = [constr, xL<=x(:,k)<=xU, uL<=u(:,k)<=uU, ... % x(:,k+1)==x(:,k)+Topt(k)*systemDyn(obj,x(:,k),u(:,k)), ... % 0.01<=Topt(k)<=0.375... x(:,k+1)==x(:,k)+Topt*systemDyn(obj,x(:,k),u(:,k)), ... 0.01<=Topt<=0.375... ]; % Include obstacle avoidance constraints for m=1:M lda_m = lambda(sum(numConstrObs(1:m-1))+1:sum(numConstrObs(1:m)),k); mu_m = mu((m-1)*numConstrQR+1:m*numConstrQR,k); constr = [constr, ... -QR.H(:,2+1)'*mu_m + ... (O{m}.H(:,1:2)*x(1:2,k)-O{m}.H(:,2+1))'*lda_m>=dmin, ... QR.H(:,1:2)'*mu_m + Rot(x(3,k))'*O{m}.H(:,1:2)'*lda_m == 0, ... sum((O{m}.H(:,1:2)'*lda_m).^2)<=1, ... lda_m>=zeros(size(lda_m)), ... mu_m>=zeros(size(mu_m))]; end end % Specify solver and solve the optimization problem options = sdpsettings('verbose', 1, 'solver', 'IPOPT'); opt = optimize(constr, cost, options); % Assign output variables % traj.t = cumsum(value(Topt)); traj.t = 0:value(Topt):N*value(Topt); traj.u = value(u); traj.x = value(x); if opt.problem ~= 0 % infeasible traj.t = []; traj.x = []; traj.u = []; end % Plot the resulting trajectory figure plot(traj.x(1,:),traj.x(2,:),'x-') xlabel('y') ylabel('z') title('Generated path with obstacle avoidance') hold on for m=1:M plot(O{m},'alpha',0.5) end for k=1:N+1 plot(Polyhedron('H',[QR.H(:,1:2)*Rot(traj.x(3,k))',... QR.H(:,2+1)+QR.H(:,1:2)*Rot(traj.x(3,k))'*traj.x(1:2,k)]),... 'color','b','alpha',0) end axis equal figure plot(traj.t,traj.x) title('States vs. time') legend('y_Q','z_Q','\phi_Q','yd_Q','zd_Q','\phi d_Q') figure plot(traj.t(1:end-1),traj.u) title('Inputs vs. time') legend('u_1','u_2') % Display the amount of time the planned motion would take disp(['Reaching the target takes ' num2str(traj.t(end)) 's.']) end function ddx = systemDyn(obj,x,u) [fvec,gvec] = obj.quadVectorFields(x); ddx = fvec + gvec*u; end
github
nlbucki/E231A_QuadcopterMPC-master
animateQuadrotor.m
.m
E231A_QuadcopterMPC-master/@Quadrotor/animateQuadrotor.m
4,375
utf_8
419f861ed023b2edf8e60017902ac05d
function animateQuadrotor(obj,opts_in) % function to animate the quadrotor % default options opts_default.RATE = 25 * 2; opts_default.t = []; opts_default.x = []; opts_default.xd = [0;0]; opts_default.td = []; opts_default.interp_type = 'spline'; opts_default.vid.MAKE_MOVIE = 0; opts_default.vid.filename = 'results/vid1'; opts_default.vid.Quality = 100; opts_default.vid.FrameRate = 24; % initialize the animation figure and axes figure_x_limits = [-2 2]; figure_y_limits = [-2 2]; figure_z_limits = [0 1] ; fig1 = figure; set(0,'Units','pixels') scnsize = get(0,'ScreenSize'); screen_width = scnsize(3); screen_height = scnsize(4); % find the minimum scaling factor figure_x_size = figure_x_limits(2) - figure_x_limits(1); figure_y_size = figure_y_limits(2) - figure_y_limits(1); xfactor = screen_width/figure_x_size; yfactor = screen_height/figure_y_size; if (xfactor < yfactor) screen_factor = 0.5*xfactor; else screen_factor = 0.5*yfactor; end % calculate screen offsets screen_x_offset = (screen_width - screen_factor*figure_x_size)/2; screen_y_offset = (screen_height - screen_factor*figure_y_size)/2; % draw figure and axes set(fig1,'Position', [screen_x_offset screen_y_offset... 1.5*screen_factor*figure_x_size 1.5*screen_factor*figure_y_size]); set(fig1,'MenuBar', 'none'); axes1 = axes; set(axes1,'XLim',figure_x_limits,'YLim',figure_y_limits); % set(axes1,'Position',[0 0 1 1]); % set(axes1,'Color','w'); % set(axes1,'TickDir','out'); axis equal ; % get inputs opts = struct_overlay(opts_default,opts_in); % extract data RATE = opts.RATE; t = opts.t; x = opts.x; td = opts.td; xd = opts.xd; if isrow(t) t = t'; end if size(x,2)>size(x,1) x = x'; end box on; [t, x] = even_sample(t, x, RATE,opts.interp_type); t = t+t(1); xd_flag = true; if length(xd) == 2 xd = repmat(xd',length(x),1); else [~, xd] = even_sample(td,xd,RATE,opts.interp_type); end if(opts.vid.MAKE_MOVIE) M = moviein(length(t)) ; vidObj = VideoWriter(strcat(opts.vid.filename,'.avi'),'Motion JPEG AVI'); vidObj.FrameRate = opts.vid.FrameRate; vidObj.Quality = opts.vid.Quality; open(vidObj);frameRate = vidObj.FrameRate; % nFrame = floor(frameRate*t(end)); frameDelay = 1/frameRate; time = 0; end hist = 5000 ; for i=1:length(t) drawQuadrotor(axes1, x(i,:)'); plot(x(max(1,i-hist):i, 1), x(max(1,i-hist):i, 2), 'k') ; if xd_flag l = plot(xd(max(1,i-hist):i, 1), xd(max(1,i-hist):i, 2), 'g','linewidth',1); l.Color(4) = 0.4; end % plot3(x(max(1,i-hist):i, 1)-L*x(max(1,i-hist):i,7), x(max(1,i-hist):i, 2)-L*x(max(1,i-hist):i,8), x(max(1,i-hist):i, 3)-L*x(max(1,i-hist):i,9), 'r') ; s = sprintf('Running\n t = %1.2fs \n 1/%d realtime speed',t(i), RATE/25); text(x(i,1)-1.5,x(i,2)+1.5,s,'FontAngle','italic','FontWeight','bold'); drawnow; figure_x_limits_ = figure_x_limits+x(i,1); figure_y_limits_ = figure_y_limits+x(i,2); set(axes1,'XLim',figure_x_limits_,'YLim',figure_y_limits_); if opts.vid.MAKE_MOVIE M(:,i) = getframe; % Write data to video file writeVideo(vidObj,getframe(gcf)); % time step system to next frame: time = time + frameDelay; end end end function drawQuadrotor(parent,x) tem = get(parent,'Children'); delete(tem); y = x(1); z = x(2); phi = x(3); s.L = 0.175; s.R = 0.05; base = [[s.L; 0], [-s.L; 0], [s.L; s.R], [-s.L; s.R]]; R = [cos(phi), -sin(phi); sin(phi), cos(phi)]; points = [y;z] + R*base; s.qhandle1 = line([points(1,1), points(1,2)], [points(2,1), points(2,2)]); hold on ; s.qhandle2 = line([points(1,1), points(1,3)], [points(2,1), points(2,3)]); s.qhandle3 = line([points(1,2), points(1,4)], [points(2,2), points(2,4)]); set(s.qhandle1,'Color','r', 'LineWidth',2); set(s.qhandle2,'Color','b', 'LineWidth',2); set(s.qhandle3,'Color','b', 'LineWidth',2); grid on; xlabel('Y'); ylabel('Z'); end
github
alexisgoar/MA_RADAR-master
animate.m
.m
MA_RADAR-master/MDoppler1.1.3/Functions/target/animate.m
617
utf_8
f74360fa02b1140e4652aa675a785d48
% function to plot the target per time function animate(obj,tstep,tstart,tend,rx,tx) if nargin == 4 obj.move(tstart); time = tstart; while time < tend plot(obj); pause(0.05); time = time + tstep; obj.move(tstep); end % Animate target with antennas elseif nargin == 6 obj.move(tstart); time = tstart; while time < tend hold on; plot(rx); plot(tx); h1 = plot(obj); pause(0.05); time = time + tstep; obj.move(tstep); if time < tend delete(h1); end end end end
github
alexisgoar/MA_RADAR-master
plot_setup.m
.m
MA_RADAR-master/MDoppler1.1.3/Functions/signal/plot_setup.m
376
utf_8
02bb14f2bcd9385a6f19ee7a9865f454
% Plots the whole setup given a signal class % the obj variable must of type signal (class) function plot_setup(obj,ax) if nargin == 1 plot(obj.tx); plot(obj.rx); size(obj.target,2); for i = 1:size(obj.target,2) plot(obj.target(i)); end else plot(obj.tx,ax); plot(obj.rx,ax); size(obj.target,2); for i = 1:size(obj.target,2) plot(obj.target(i),ax); end end end
github
alexisgoar/MA_RADAR-master
animate.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.1/Functions/target/animate.m
617
utf_8
f74360fa02b1140e4652aa675a785d48
% function to plot the target per time function animate(obj,tstep,tstart,tend,rx,tx) if nargin == 4 obj.move(tstart); time = tstart; while time < tend plot(obj); pause(0.05); time = time + tstep; obj.move(tstep); end % Animate target with antennas elseif nargin == 6 obj.move(tstart); time = tstart; while time < tend hold on; plot(rx); plot(tx); h1 = plot(obj); pause(0.05); time = time + tstep; obj.move(tstep); if time < tend delete(h1); end end end end
github
alexisgoar/MA_RADAR-master
plot_estimated_ranges2.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.1/Functions/signal/plot_estimated_ranges2.m
637
utf_8
cdbb94a28b4b47ca4a4b659282732880
%plots the estimated range for all possible paths % for a single target function plot_estimated_ranges2(obj,NPulses) figure; set(0,'DefaultFigureWindowStyle','docked'); hold on; % subplot(obj.tx.numberofElements*obj.rx.numberofElements,1,1); txn = obj.tx.numberofElements; rxn = obj.rx.numberofElements; for i = 1:txn for j = 1:rxn h = subplot(rxn,txn,i+(j-1)*txn); plot_estimated_range2(obj,i,j,NPulses); Txnum = ['Tx ',num2str(i)]; Rxnum = [' Rx ',num2str(j)]; title([Txnum,Rxnum]); set(gca,'ytick',[]); set(gca,'yticklabel',[]); obj.tx.resetTime(); end end end
github
alexisgoar/MA_RADAR-master
plot_estimated_rangerate4.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.1/Functions/signal/plot_estimated_rangerate4.m
1,530
utf_8
c613c13cd1546484cb4c76f4a1386129
%Plots the received signal in time domain for a single path function s = plot_estimated_rangerate4(obj) NPulses = 100; NObj = size(obj.target,2); NSamples = 54*2; sampleRate = NSamples/obj.tx.tchirp; sampleFreq = 1/sampleRate; Nout = 2; signal_freq = zeros(NPulses,NSamples); signal_rr = zeros(NPulses,1); figure; hold on; time2 = 0; for chirp = 1:NPulses signal = zeros(NSamples,1); timeStamp = zeros(NSamples,1); for k = 1:NSamples for j=1:NObj signal(k)=signal(k)+rxSignal3(obj,obj.tx.time,time2,1,1,j)... +rxSignal3(obj,obj.tx.time,time2,2,1,j); end timeStamp(k) = obj.tx.time; time2 = time2+ obj.tx.samplingRate; obj.tx.nextStep_sampling(); end obj.tx.resetTime(); out = fft(signal); signal_freq(chirp,:) = out; signal_rr(chirp) = signal(Nout); plot(real(signal)); end freq_rr = -(NPulses-1)/(2*NPulses*obj.tx.tchirp):1/(obj.tx.tchirp*NPulses):(NPulses-1)/(2*NPulses*obj.tx.tchirp); freq_rr = freq_rr; %freq_rr = 0:1/(obj.tx.tchirp*NPulses):(NPulses-1)/(NPulses*obj.tx.tchirp); v = freq_rr*obj.tx.lambda/4; signal_freq_all = fftshift(fft(signal_freq,[],1),1); freq =0:1/(obj.tx.samplingRate*NSamples):(NSamples-1)/(NSamples*obj.tx.samplingRate); R = obj.tx.c*freq/(obj.tx.k*2); s = signal_freq; [R_plot,v_plot] =meshgrid(R,v); figure; set(0,'DefaultFigureWindowStyle','docked'); h = surf(R_plot,v_plot,abs(signal_freq_all)); view(0, 90); set(h,'edgecolor','none'); end
github
alexisgoar/MA_RADAR-master
plot_setup.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.1/Functions/signal/plot_setup.m
229
utf_8
63b8be9863ae28ac20b890400848e6b9
% Plots the whole setup given a signal class % the obj variable must of type signal (class) function plot_setup(obj) plot(obj.tx); plot(obj.rx); size(obj.target,2); for i = 1:size(obj.target,2) plot(obj.target(i)); end end
github
alexisgoar/MA_RADAR-master
plot_rxSignal.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.1/Functions/signal/plot_rxSignal.m
452
utf_8
dc6475688db4a256bfd803e0f1e3fa84
%Plots the frequency of the received signal after considering all delays %for one transmitter, one receiver and one target function s = plot_rxSignal(obj,txi,rxi,NPulses) i = 1; while obj.tx.chirpi < NPulses for j = 1:size(obj.target,2) freq(i,j) = rxSignal(obj,obj.tx.time,txi,rxi,j); end timeStamp(i) = obj.tx.time; obj.tx.nextStep(); i = i+1; end for j = 1:size(obj.target,2) h = plot(timeStamp,freq(:,j)); end end
github
alexisgoar/MA_RADAR-master
plot_rxSignals.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.1/Functions/signal/plot_rxSignals.m
819
utf_8
d05ac00f37d2221db46426069088e7ef
%Plots the frequency of the received signal after considering all delays %for one transmitter, one receiver and one target function s = plot_rxSignals(obj,NPulses) figure; set(0,'DefaultFigureWindowStyle','docked'); hold on; txn = obj.tx.numberofElements; rxn = obj.rx.numberofElements; for i = 1:txn for j = 1:rxn h = subplot(rxn,txn,i+(j-1)*txn); hold on; plot_rxSignal(obj,i,j,NPulses); obj.tx.resetTime(); set(gca,'ylim',[obj.tx.frequency-obj.tx.k*obj.tx.tchirp,... obj.tx.frequency+obj.tx.k*obj.tx.tchirp]); set(gca,'xlim',[obj.tx.t0,obj.tx.tchirp*NPulses]); Txnum = ['Tx ',num2str(i)]; Rxnum = [' Rx ',num2str(j)]; title([Txnum,Rxnum]); set(gca,'ytick',[]); set(gca,'yticklabel',[]); end end s = 1; end
github
alexisgoar/MA_RADAR-master
plot_estimated_range.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.1/Functions/signal/plot_estimated_range.m
567
utf_8
0a86ee0e977e8a645237ec1a33094865
% plots the estimated range based on the received signal after % applying an FFT for transimeter txi and receiver rxi % for a single target function h = plot_estimated_range(obj,txi,rxi,targeti) numberofChirps = 1; samplesperChirp = obj.tx.tchirp/obj.tx.samplingRate; time = 0:obj.tx.tchirp/samplesperChirp:obj.tx.tchirp*numberofChirps; for i = 1:size(time,2) s = receivedSignal(obj,time,txi,rxi,targeti); end N=size(time,2); freq =0:1/(obj.tx.samplingRate*N):(N-1)/(N*obj.tx.samplingRate); R = obj.tx.c*freq/(obj.tx.k*2); sfd = fft(s); h = plot(R,abs(sfd)); end
github
alexisgoar/MA_RADAR-master
plot_estimated_range3.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.1/Functions/signal/plot_estimated_range3.m
528
utf_8
902b6ff1ee462a7b5c2eaa786ad93ad2
%Plots the received signal in time domain for a single path function s = plot_estimated_range3(obj,txi,rxi,NPulses) i = 1; while obj.tx.chirpi < NPulses for j = 1:size(obj.target,2) s(i,j) =(rxSignal3(obj,obj.tx.time,txi,rxi,j)); end timeStamp(i) = obj.tx.time; obj.tx.nextStep_sampling(); i = i+1; end N=size(timeStamp,2); freq =0:1/(obj.tx.samplingRate*N):(N-1)/(N*obj.tx.samplingRate); R = obj.tx.c*freq/(obj.tx.k*2); s_time = sum(s,2); s_freq = fft(s_time); h = plot(R,abs(s_freq)); end
github
alexisgoar/MA_RADAR-master
plot_estimated_ranges.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.1/Functions/signal/plot_estimated_ranges.m
606
utf_8
417473a6bd71ed69b06b59f4c81aed8b
%plots the estimated range for all possible paths % for a single target function plot_estimated_ranges(obj,targeti) figure; set(0,'DefaultFigureWindowStyle','docked'); hold on; % subplot(obj.tx.numberofElements*obj.rx.numberofElements,1,1); txn = obj.tx.numberofElements; rxn = obj.rx.numberofElements; for i = 1:txn for j = 1:rxn h = subplot(rxn,txn,i+(j-1)*txn); plot_estimated_range(obj,i,j,targeti); Txnum = ['Tx ',num2str(i)]; Rxnum = [' Rx ',num2str(j)]; title([Txnum,Rxnum]); set(gca,'ytick',[]); set(gca,'yticklabel',[]); end end end
github
alexisgoar/MA_RADAR-master
plot_estimated_rangerate3.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.1/Functions/signal/plot_estimated_rangerate3.m
1,990
utf_8
7623b9ef50bdfc4f65a62a76448d71e7
%Plots the received signal in time domain for a single path function s = plot_estimated_rangerate3(obj) i = 1; txn = obj.tx.numberofElements; rxn = obj.rx.numberofElements; range_rate = [0:0.2:5]; txi = 1; rxi = 1; NPulses = 100; % Get the time domain signal for all targets while obj.tx.chirpi < NPulses for j = 1:size(obj.target,2) s(i,j) =(rxSignal3(obj,obj.tx.time,txi,rxi,j)); end timeStamp(i) = obj.tx.time; obj.tx.nextStep_sampling(); i = i+1; end obj.tx.resetTime(); s_time = sum(s,2); N=size(timeStamp,2); freq =0:1/(obj.tx.samplingRate*N):(N-1)/(N*obj.tx.samplingRate); R = obj.tx.c*freq/(obj.tx.k*2); % FFT to get spectrum %s_freq = fft(s_time); % K = [0:1:N-1]; % for ii = 1:N % s_out = 0; % for iii = 1:N % s = exp(-1i*2*pi*K(ii)*(iii-1)/N); % s_out = s_out + s_time(iii)*s; % end % s_freq(ii) = s_out; % % % end s_time = s_time(1:54:end); timeStamp = timeStamp(1:54:end); % FFT for range_rate N=size(timeStamp,2); sR = obj.tx.samplingRate*54; freq =0:1/(sR*N):(N-1)/(N*sR); K = [0:1:N-1]; for ii = 1:N s_out = 0; for iii = 1:N s = exp(-1i*2*pi*K(ii)*(iii-1)/N); s_out = s_out + s_time(iii)*s; end s_freq2(ii) = s_out; end for range_ratei = 1:size(range_rate,2) arg = 4*pi*obj.tx.frequency; N2 = max(size(s_time)); s_out = 0; size(s_time,2); for int = 1:N2 s = exp(-1i*arg*(int-1)/N2); s_out = s_out + s_time(int)*s; end s_freq_rrate(range_ratei) = s_out; end %size(s_freq_rrate); %profile = mtimes(s_freq,s_freq_rrate); [Rrate_plot,R_plot] = meshgrid(range_rate,R); figure; set(0,'DefaultFigureWindowStyle','docked'); %hold on; %h = surf(R_plot,Rrate_plot,abs(profile)); %set(h,'edgecolor','none'); %figure; %plot(range_rate,abs(s_freq_rrate)) ; %figure; plot(freq,abs(s_freq2)); end
github
alexisgoar/MA_RADAR-master
plot_estimated_range4.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.1/Functions/signal/plot_estimated_range4.m
856
utf_8
a5ccee64f14a4313e9fb9f2473713737
%Used optimized received signal function s = plot_estimated_range4(obj) [signal,timeStamp] = obj.rxSignal4(); N=size(timeStamp,2); freq =0:1/(obj.tx.samplingRate*N):(N-1)/(N*obj.tx.samplingRate); R = obj.tx.c*freq/(obj.tx.k*2); figure; set(0,'DefaultFigureWindowStyle','docked'); hold on; % subplot(obj.tx.numberofElements*obj.rx.numberofElements,1,1); txn = obj.tx.numberofElements; rxn = obj.rx.numberofElements; for txi = 1:txn for rxi = 1:rxn h = subplot(rxn,txn,txi+(rxi-1)*txn); s_time = reshape(signal(txi,rxi,:),[],1); s_freq = fft(s_time); h = plot(R,abs(s_freq)); Txnum = ['Tx ',num2str(txi)]; Rxnum = [' Rx ',num2str(rxi)]; title([Txnum,Rxnum]); set(gca,'ytick',[]); set(gca,'yticklabel',[]); obj.tx.resetTime(); end end end
github
alexisgoar/MA_RADAR-master
plot_estimated_range2.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.1/Functions/signal/plot_estimated_range2.m
528
utf_8
ad8d65f05db9e320d854467e40bc28a4
%Plots the received signal in time domain for a single path function s = plot_estimated_range2(obj,txi,rxi,NPulses) i = 1; while obj.tx.chirpi < NPulses for j = 1:size(obj.target,2) s(i,j) =(rxSignal2(obj,obj.tx.time,txi,rxi,j)); end timeStamp(i) = obj.tx.time; obj.tx.nextStep_sampling(); i = i+1; end N=size(timeStamp,2); freq =0:1/(obj.tx.samplingRate*N):(N-1)/(N*obj.tx.samplingRate); R = obj.tx.c*freq/(obj.tx.k*2); s_time = sum(s,2); s_freq = fft(s_time); h = plot(R,abs(s_freq)); end
github
alexisgoar/MA_RADAR-master
plot_txSignals.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.1/Functions/txarray/plot_txSignals.m
539
utf_8
ab7ea48f68445ea24241a87408e1cdf1
% Function used by class txarray to plot a sent signal % Plots all transmitters %obj must me a txarray class function h = plot_txSignals(obj,NPulses) figure; set(0,'DefaultFigureWindowStyle','docked'); hold on; txn = obj.numberofElements; for i = 1:txn h = subplot(txn,1,i); plot_txSignal(obj,i,NPulses); Txnum = ['Tx ',num2str(i)]; title([Txnum]); set(gca,'ylim',[obj.frequency-obj.k*obj.tchirp,... obj.frequency+obj.k*obj.tchirp]); set(gca,'xlim',[obj.t0,obj.tchirp*NPulses]); obj.resetTime(); end end
github
alexisgoar/MA_RADAR-master
plot_txSignal.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.1/Functions/txarray/plot_txSignal.m
324
utf_8
3a69862f61a7f0651a3fac09348bf0ba
% Function used by class txarray to plot a sent signal % For one receiver only %obj must me a txarray class function h = plot_txSignal(obj,txi,NPulses) i = 1; while obj.chirpi < NPulses freq(i) = txSignal(obj,txi,obj.time); timeStamp(i) = obj.time; obj.nextStep(); i = i+1; end h = plot(timeStamp,freq); end
github
alexisgoar/MA_RADAR-master
animate.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.3/Functions/target/animate.m
617
utf_8
f74360fa02b1140e4652aa675a785d48
% function to plot the target per time function animate(obj,tstep,tstart,tend,rx,tx) if nargin == 4 obj.move(tstart); time = tstart; while time < tend plot(obj); pause(0.05); time = time + tstep; obj.move(tstep); end % Animate target with antennas elseif nargin == 6 obj.move(tstart); time = tstart; while time < tend hold on; plot(rx); plot(tx); h1 = plot(obj); pause(0.05); time = time + tstep; obj.move(tstep); if time < tend delete(h1); end end end end
github
alexisgoar/MA_RADAR-master
plot_setup.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.3/Functions/signal/plot_setup.m
376
utf_8
02bb14f2bcd9385a6f19ee7a9865f454
% Plots the whole setup given a signal class % the obj variable must of type signal (class) function plot_setup(obj,ax) if nargin == 1 plot(obj.tx); plot(obj.rx); size(obj.target,2); for i = 1:size(obj.target,2) plot(obj.target(i)); end else plot(obj.tx,ax); plot(obj.rx,ax); size(obj.target,2); for i = 1:size(obj.target,2) plot(obj.target(i),ax); end end end
github
alexisgoar/MA_RADAR-master
animate.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.2/Functions/target/animate.m
617
utf_8
f74360fa02b1140e4652aa675a785d48
% function to plot the target per time function animate(obj,tstep,tstart,tend,rx,tx) if nargin == 4 obj.move(tstart); time = tstart; while time < tend plot(obj); pause(0.05); time = time + tstep; obj.move(tstep); end % Animate target with antennas elseif nargin == 6 obj.move(tstart); time = tstart; while time < tend hold on; plot(rx); plot(tx); h1 = plot(obj); pause(0.05); time = time + tstep; obj.move(tstep); if time < tend delete(h1); end end end end
github
alexisgoar/MA_RADAR-master
plot_setup.m
.m
MA_RADAR-master/MA_RADAR/MDoppler1.1.2/Functions/signal/plot_setup.m
376
utf_8
02bb14f2bcd9385a6f19ee7a9865f454
% Plots the whole setup given a signal class % the obj variable must of type signal (class) function plot_setup(obj,ax) if nargin == 1 plot(obj.tx); plot(obj.rx); size(obj.target,2); for i = 1:size(obj.target,2) plot(obj.target(i)); end else plot(obj.tx,ax); plot(obj.rx,ax); size(obj.target,2); for i = 1:size(obj.target,2) plot(obj.target(i),ax); end end end
github
alexisgoar/MA_RADAR-master
animate.m
.m
MA_RADAR-master/MDoppler/Functions/target/animate.m
617
utf_8
f74360fa02b1140e4652aa675a785d48
% function to plot the target per time function animate(obj,tstep,tstart,tend,rx,tx) if nargin == 4 obj.move(tstart); time = tstart; while time < tend plot(obj); pause(0.05); time = time + tstep; obj.move(tstep); end % Animate target with antennas elseif nargin == 6 obj.move(tstart); time = tstart; while time < tend hold on; plot(rx); plot(tx); h1 = plot(obj); pause(0.05); time = time + tstep; obj.move(tstep); if time < tend delete(h1); end end end end
github
alexisgoar/MA_RADAR-master
plot_estimated_ranges2.m
.m
MA_RADAR-master/MDoppler/Functions/signal/plot_estimated_ranges2.m
637
utf_8
cdbb94a28b4b47ca4a4b659282732880
%plots the estimated range for all possible paths % for a single target function plot_estimated_ranges2(obj,NPulses) figure; set(0,'DefaultFigureWindowStyle','docked'); hold on; % subplot(obj.tx.numberofElements*obj.rx.numberofElements,1,1); txn = obj.tx.numberofElements; rxn = obj.rx.numberofElements; for i = 1:txn for j = 1:rxn h = subplot(rxn,txn,i+(j-1)*txn); plot_estimated_range2(obj,i,j,NPulses); Txnum = ['Tx ',num2str(i)]; Rxnum = [' Rx ',num2str(j)]; title([Txnum,Rxnum]); set(gca,'ytick',[]); set(gca,'yticklabel',[]); obj.tx.resetTime(); end end end
github
alexisgoar/MA_RADAR-master
plot_estimated_rangerate4.m
.m
MA_RADAR-master/MDoppler/Functions/signal/plot_estimated_rangerate4.m
1,599
utf_8
9057be9c1bb2fa5abf70d1ce5ccb0226
%Plots the received signal in time domain for a single path function s = plot_estimated_rangerate4(obj) NPulses = 100; NObj = size(obj.target,2); NSamples = 54; sampleRate = NSamples/obj.tx.tchirp; sampleFreq = 1/sampleRate; Nout = 2; signal_freq = zeros(NPulses,NSamples); signal_rr = zeros(NPulses,1); for chirp = 1:NPulses signal = zeros(NSamples,1); timeStamp = zeros(NSamples,1); for k = 1:NSamples for j=1:NObj signal(k)=signal(k)+rxSignal3(obj,obj.tx.time,1,1,j); end timeStamp(k) = obj.tx.time; obj.tx.nextStep_sampling(); end out = fft(signal); signal_freq(chirp,:) = out; signal_rr(chirp) = signal(Nout); end freq_rr = -(NPulses-1)/(2*NPulses*obj.tx.tchirp):1/(obj.tx.tchirp*NPulses):(NPulses-1)/(2*NPulses*obj.tx.tchirp); freq_rr = freq_rr; %freq_rr = 0:1/(obj.tx.tchirp*NPulses):(NPulses-1)/(NPulses*obj.tx.tchirp); v = freq_rr*obj.tx.lambda/4; v = v(1:2:end); size(v); freq_rr = freq_rr(1:2:end); figure; hold on; for chirp = 1:NSamples signal_to_transform = signal_freq(1:2:end,chirp); % signal_freq_all(:,chirp) = fftshift(signal_transformed); signal_freq_all(:,chirp) = fftshift(fft((signal_to_transform))); end signal_freq_rr = fft(signal_rr(1:2:end)); freq =0:1/(obj.tx.samplingRate*NSamples):(NSamples-1)/(NSamples*obj.tx.samplingRate); R = obj.tx.c*freq/(obj.tx.k*2); R [R_plot,v_plot] =meshgrid(R,v); figure; set(0,'DefaultFigureWindowStyle','docked'); h = surf(R_plot,v_plot,abs(signal_freq_all)); view(0, 90); set(h,'edgecolor','none'); end
github
alexisgoar/MA_RADAR-master
plot_setup.m
.m
MA_RADAR-master/MDoppler/Functions/signal/plot_setup.m
288
utf_8
3fa316db0ca5a0f2da80b975d223b62f
% Plots the whole setup given a signal class % the obj variable must of type signal (class) function plot_setup(obj) figure; set(0,'DefaultFigureWindowStyle','docked'); hold on; plot(obj.tx); plot(obj.rx); size(obj.target,2); for i = 1:size(obj.target,2) plot(obj.target(i)); end end
github
alexisgoar/MA_RADAR-master
plot_rxSignal.m
.m
MA_RADAR-master/MDoppler/Functions/signal/plot_rxSignal.m
452
utf_8
dc6475688db4a256bfd803e0f1e3fa84
%Plots the frequency of the received signal after considering all delays %for one transmitter, one receiver and one target function s = plot_rxSignal(obj,txi,rxi,NPulses) i = 1; while obj.tx.chirpi < NPulses for j = 1:size(obj.target,2) freq(i,j) = rxSignal(obj,obj.tx.time,txi,rxi,j); end timeStamp(i) = obj.tx.time; obj.tx.nextStep(); i = i+1; end for j = 1:size(obj.target,2) h = plot(timeStamp,freq(:,j)); end end
github
alexisgoar/MA_RADAR-master
plot_rxSignals.m
.m
MA_RADAR-master/MDoppler/Functions/signal/plot_rxSignals.m
819
utf_8
d05ac00f37d2221db46426069088e7ef
%Plots the frequency of the received signal after considering all delays %for one transmitter, one receiver and one target function s = plot_rxSignals(obj,NPulses) figure; set(0,'DefaultFigureWindowStyle','docked'); hold on; txn = obj.tx.numberofElements; rxn = obj.rx.numberofElements; for i = 1:txn for j = 1:rxn h = subplot(rxn,txn,i+(j-1)*txn); hold on; plot_rxSignal(obj,i,j,NPulses); obj.tx.resetTime(); set(gca,'ylim',[obj.tx.frequency-obj.tx.k*obj.tx.tchirp,... obj.tx.frequency+obj.tx.k*obj.tx.tchirp]); set(gca,'xlim',[obj.tx.t0,obj.tx.tchirp*NPulses]); Txnum = ['Tx ',num2str(i)]; Rxnum = [' Rx ',num2str(j)]; title([Txnum,Rxnum]); set(gca,'ytick',[]); set(gca,'yticklabel',[]); end end s = 1; end
github
alexisgoar/MA_RADAR-master
plot_estimated_range.m
.m
MA_RADAR-master/MDoppler/Functions/signal/plot_estimated_range.m
567
utf_8
0a86ee0e977e8a645237ec1a33094865
% plots the estimated range based on the received signal after % applying an FFT for transimeter txi and receiver rxi % for a single target function h = plot_estimated_range(obj,txi,rxi,targeti) numberofChirps = 1; samplesperChirp = obj.tx.tchirp/obj.tx.samplingRate; time = 0:obj.tx.tchirp/samplesperChirp:obj.tx.tchirp*numberofChirps; for i = 1:size(time,2) s = receivedSignal(obj,time,txi,rxi,targeti); end N=size(time,2); freq =0:1/(obj.tx.samplingRate*N):(N-1)/(N*obj.tx.samplingRate); R = obj.tx.c*freq/(obj.tx.k*2); sfd = fft(s); h = plot(R,abs(sfd)); end
github
alexisgoar/MA_RADAR-master
plot_estimated_range3.m
.m
MA_RADAR-master/MDoppler/Functions/signal/plot_estimated_range3.m
528
utf_8
902b6ff1ee462a7b5c2eaa786ad93ad2
%Plots the received signal in time domain for a single path function s = plot_estimated_range3(obj,txi,rxi,NPulses) i = 1; while obj.tx.chirpi < NPulses for j = 1:size(obj.target,2) s(i,j) =(rxSignal3(obj,obj.tx.time,txi,rxi,j)); end timeStamp(i) = obj.tx.time; obj.tx.nextStep_sampling(); i = i+1; end N=size(timeStamp,2); freq =0:1/(obj.tx.samplingRate*N):(N-1)/(N*obj.tx.samplingRate); R = obj.tx.c*freq/(obj.tx.k*2); s_time = sum(s,2); s_freq = fft(s_time); h = plot(R,abs(s_freq)); end
github
alexisgoar/MA_RADAR-master
plot_estimated_ranges.m
.m
MA_RADAR-master/MDoppler/Functions/signal/plot_estimated_ranges.m
606
utf_8
417473a6bd71ed69b06b59f4c81aed8b
%plots the estimated range for all possible paths % for a single target function plot_estimated_ranges(obj,targeti) figure; set(0,'DefaultFigureWindowStyle','docked'); hold on; % subplot(obj.tx.numberofElements*obj.rx.numberofElements,1,1); txn = obj.tx.numberofElements; rxn = obj.rx.numberofElements; for i = 1:txn for j = 1:rxn h = subplot(rxn,txn,i+(j-1)*txn); plot_estimated_range(obj,i,j,targeti); Txnum = ['Tx ',num2str(i)]; Rxnum = [' Rx ',num2str(j)]; title([Txnum,Rxnum]); set(gca,'ytick',[]); set(gca,'yticklabel',[]); end end end
github
alexisgoar/MA_RADAR-master
plot_estimated_rangerate3.m
.m
MA_RADAR-master/MDoppler/Functions/signal/plot_estimated_rangerate3.m
1,990
utf_8
7623b9ef50bdfc4f65a62a76448d71e7
%Plots the received signal in time domain for a single path function s = plot_estimated_rangerate3(obj) i = 1; txn = obj.tx.numberofElements; rxn = obj.rx.numberofElements; range_rate = [0:0.2:5]; txi = 1; rxi = 1; NPulses = 100; % Get the time domain signal for all targets while obj.tx.chirpi < NPulses for j = 1:size(obj.target,2) s(i,j) =(rxSignal3(obj,obj.tx.time,txi,rxi,j)); end timeStamp(i) = obj.tx.time; obj.tx.nextStep_sampling(); i = i+1; end obj.tx.resetTime(); s_time = sum(s,2); N=size(timeStamp,2); freq =0:1/(obj.tx.samplingRate*N):(N-1)/(N*obj.tx.samplingRate); R = obj.tx.c*freq/(obj.tx.k*2); % FFT to get spectrum %s_freq = fft(s_time); % K = [0:1:N-1]; % for ii = 1:N % s_out = 0; % for iii = 1:N % s = exp(-1i*2*pi*K(ii)*(iii-1)/N); % s_out = s_out + s_time(iii)*s; % end % s_freq(ii) = s_out; % % % end s_time = s_time(1:54:end); timeStamp = timeStamp(1:54:end); % FFT for range_rate N=size(timeStamp,2); sR = obj.tx.samplingRate*54; freq =0:1/(sR*N):(N-1)/(N*sR); K = [0:1:N-1]; for ii = 1:N s_out = 0; for iii = 1:N s = exp(-1i*2*pi*K(ii)*(iii-1)/N); s_out = s_out + s_time(iii)*s; end s_freq2(ii) = s_out; end for range_ratei = 1:size(range_rate,2) arg = 4*pi*obj.tx.frequency; N2 = max(size(s_time)); s_out = 0; size(s_time,2); for int = 1:N2 s = exp(-1i*arg*(int-1)/N2); s_out = s_out + s_time(int)*s; end s_freq_rrate(range_ratei) = s_out; end %size(s_freq_rrate); %profile = mtimes(s_freq,s_freq_rrate); [Rrate_plot,R_plot] = meshgrid(range_rate,R); figure; set(0,'DefaultFigureWindowStyle','docked'); %hold on; %h = surf(R_plot,Rrate_plot,abs(profile)); %set(h,'edgecolor','none'); %figure; %plot(range_rate,abs(s_freq_rrate)) ; %figure; plot(freq,abs(s_freq2)); end
github
alexisgoar/MA_RADAR-master
plot_estimated_range4.m
.m
MA_RADAR-master/MDoppler/Functions/signal/plot_estimated_range4.m
856
utf_8
a5ccee64f14a4313e9fb9f2473713737
%Used optimized received signal function s = plot_estimated_range4(obj) [signal,timeStamp] = obj.rxSignal4(); N=size(timeStamp,2); freq =0:1/(obj.tx.samplingRate*N):(N-1)/(N*obj.tx.samplingRate); R = obj.tx.c*freq/(obj.tx.k*2); figure; set(0,'DefaultFigureWindowStyle','docked'); hold on; % subplot(obj.tx.numberofElements*obj.rx.numberofElements,1,1); txn = obj.tx.numberofElements; rxn = obj.rx.numberofElements; for txi = 1:txn for rxi = 1:rxn h = subplot(rxn,txn,txi+(rxi-1)*txn); s_time = reshape(signal(txi,rxi,:),[],1); s_freq = fft(s_time); h = plot(R,abs(s_freq)); Txnum = ['Tx ',num2str(txi)]; Rxnum = [' Rx ',num2str(rxi)]; title([Txnum,Rxnum]); set(gca,'ytick',[]); set(gca,'yticklabel',[]); obj.tx.resetTime(); end end end
github
alexisgoar/MA_RADAR-master
plot_estimated_range2.m
.m
MA_RADAR-master/MDoppler/Functions/signal/plot_estimated_range2.m
528
utf_8
ad8d65f05db9e320d854467e40bc28a4
%Plots the received signal in time domain for a single path function s = plot_estimated_range2(obj,txi,rxi,NPulses) i = 1; while obj.tx.chirpi < NPulses for j = 1:size(obj.target,2) s(i,j) =(rxSignal2(obj,obj.tx.time,txi,rxi,j)); end timeStamp(i) = obj.tx.time; obj.tx.nextStep_sampling(); i = i+1; end N=size(timeStamp,2); freq =0:1/(obj.tx.samplingRate*N):(N-1)/(N*obj.tx.samplingRate); R = obj.tx.c*freq/(obj.tx.k*2); s_time = sum(s,2); s_freq = fft(s_time); h = plot(R,abs(s_freq)); end
github
alexisgoar/MA_RADAR-master
plot_txSignals.m
.m
MA_RADAR-master/MDoppler/Functions/txarray/plot_txSignals.m
539
utf_8
ab7ea48f68445ea24241a87408e1cdf1
% Function used by class txarray to plot a sent signal % Plots all transmitters %obj must me a txarray class function h = plot_txSignals(obj,NPulses) figure; set(0,'DefaultFigureWindowStyle','docked'); hold on; txn = obj.numberofElements; for i = 1:txn h = subplot(txn,1,i); plot_txSignal(obj,i,NPulses); Txnum = ['Tx ',num2str(i)]; title([Txnum]); set(gca,'ylim',[obj.frequency-obj.k*obj.tchirp,... obj.frequency+obj.k*obj.tchirp]); set(gca,'xlim',[obj.t0,obj.tchirp*NPulses]); obj.resetTime(); end end
github
alexisgoar/MA_RADAR-master
plot_txSignal.m
.m
MA_RADAR-master/MDoppler/Functions/txarray/plot_txSignal.m
324
utf_8
3a69862f61a7f0651a3fac09348bf0ba
% Function used by class txarray to plot a sent signal % For one receiver only %obj must me a txarray class function h = plot_txSignal(obj,txi,NPulses) i = 1; while obj.chirpi < NPulses freq(i) = txSignal(obj,txi,obj.time); timeStamp(i) = obj.time; obj.nextStep(); i = i+1; end h = plot(timeStamp,freq); end
github
daniellerch/aletheia-master
GFR.m
.m
aletheia-master/aletheia-octave/octave/GFR.m
6,318
utf_8
5907e54c33bb3ff14818fcfa87056123
function F=GFR(IMAGE,NR,QF,channel) % ------------------------------------------------------------------------- % Copyright (c) 2015 DDE Lab, Binghamton University, NY. % All Rights Reserved. % ------------------------------------------------------------------------- % Permission to use, copy, modify, and distribute this software for % educational, research and non-profit purposes, without fee, and without a % written agreement is hereby granted, provided that this copyright notice % appears in all copies. The program is supplied "as is," without any % accompanying services from DDE Lab. DDE Lab does not warrant the % operation of the program will be uninterrupted or error-free. The % end-user understands that the program was developed for research purposes % and is advised not to rely exclusively on the program for any reason. In % no event shall Binghamton University or DDE Lab be liable to any party % for direct, indirect, special, incidental, or consequential damages, % including lost profits, arising out of the use of this software. DDE Lab % disclaims any warranties, and has no obligations to provide maintenance, % support, updates, enhancements or modifications. % ------------------------------------------------------------------------- % Contact: [email protected] | July 2015 % [email protected] % % http://dde.binghamton.edu/download/feature_extractors % ------------------------------------------------------------------------- % This function extracts Gabor features for steganalysis of JPEG images % proposed in [1]. Parameters are exactly set as they are described in the % paper. Total dimensionality of the features with 32 rotations: 17000. % Note: Phil Sallee's Matlab JPEG toolbox(function jpeg_read)is needed for % running this function. % ------------------------------------------------------------------------- % Input: IMAGE .. path to the JPEG image % QF ..... JPEG quality factor (can be either 75 or 95) % NR .... number of rotations for Gabor kernel % Output: F ...... extracted Gabor features % ------------------------------------------------------------------------- % [1] X. Song, F. Liu, C. Yang, X. Luo and Y. Zhang "Steganalysis of % Adaptive JPEG Steganography Using 2D Gabor Filters", Proceedings of % the 3rd ACM Workshop on Information Hiding and Multimedia Security, % Pages 15-23, Portland, OR, June 2015. % ------------------------------------------------------------------------- I_STRUCT = jpeg_read(IMAGE); % number of histogram bins T = 4; % quantization steps if QF==75 q = [2 4 6 8]; elseif QF==85 q = [1.5 2 4 6]; elseif QF==95 q = [0.5 1 1.5 2]; end Rotations = (0:NR-1)*pi/NR; sr=numel(Rotations); % Standard deviations Sigma = [0.5 0.75 1 1.25]; ss=numel(Sigma); PhaseShift = [0 pi/2]; sp=numel(PhaseShift); AspectRatio = 0.5; % Decompress to spatial domain % fun = @(x)x.data .*I_STRUCT.quant_tables{1}; if channel>1 fun = @(x)x .*I_STRUCT.quant_tables{2}; else fun = @(x)x .*I_STRUCT.quant_tables{1}; end I_spatial = blockproc(I_STRUCT.coef_arrays{channel},[8 8],fun); % fun=@(x)idct2(x.data); fun=@(x)idct2(x); I_spatial = blockproc(I_spatial,[8 8],fun); % Compute DCTR locations to be merged mergedCoordinates = cell(25, 1); for i=1:5 for j=1:5 coordinates = [i,j; i,10-j; 10-i,j; 10-i,10-j]; coordinates = coordinates(all(coordinates<9, 2), :); mergedCoordinates{(i-1)*5 + j} = unique(coordinates, 'rows'); end end % Load Gabor Kernels Kernel = cell(ss,sr,sp); for S = Sigma for R = Rotations for P=PhaseShift Kernel{S==Sigma,R==Rotations,P==PhaseShift} = gaborkernel(S, R, P, AspectRatio); end end end % Compute features modeFeaDim = numel(mergedCoordinates)*(T+1); DimF=sp*ss*sr; DimS=sp*ss*(sr/2+1); FF = zeros(1, DimF*modeFeaDim, 'single'); F = zeros(1, DimS*modeFeaDim, 'single'); for mode_P=1:sp for mode_S = 1:ss for mode_R = 1:sr modeIndex = (mode_P-1)*(sr*ss) + (mode_S-1)*sr+ mode_R; R = conv2(I_spatial, Kernel{mode_S,mode_R,mode_P}, 'valid'); R = abs(round(R / q(mode_S))); R(R > T) = T; % feature extraction and merging for merged_index=1:numel(mergedCoordinates) f_merged = zeros(1, T+1, 'single'); for coord_index = 1:size(mergedCoordinates{merged_index}, 1); r_shift = mergedCoordinates{merged_index}(coord_index, 1); c_shift = mergedCoordinates{merged_index}(coord_index, 2); R_sub = R(r_shift:8:end, c_shift:8:end); f_merged = f_merged + hist(R_sub(:), 0:T); end F_index_from = (modeIndex-1)*modeFeaDim+(merged_index-1)*(T+1)+1; F_index_to = (modeIndex-1)*modeFeaDim+(merged_index-1)*(T+1)+T+1; FF(F_index_from:F_index_to) = f_merged / sum(f_merged); end end % merging of symmetrical directions MIndex=1:sr/2-1; MS=size(MIndex,2)+2; SI = (modeIndex-sr)*modeFeaDim; Fout=FF(SI+1: SI + MS* modeFeaDim ); F_M=FF(SI+1: SI + sr* modeFeaDim ); for i=MIndex Fout(i*modeFeaDim+1:i*modeFeaDim+modeFeaDim)= ( F_M(i*modeFeaDim+1:i*modeFeaDim+modeFeaDim)+ F_M( (sr-i)*modeFeaDim+1: (sr-i)*modeFeaDim+modeFeaDim ) )/2; %%% Needs Modification end ind = (mode_P-1)*ss + mode_S; F((ind-1)*MS*modeFeaDim+1 :(ind-1)*MS*modeFeaDim + MS*modeFeaDim )=Fout; end end function kernel = gaborkernel(sigma, theta, phi, gamma) lambda = sigma / 0.56; gamma2 = gamma^2; s = 1 / (2*sigma^2); f = 2*pi/lambda; % sampling points for Gabor function [x,y]=meshgrid([-7/2:-1/2,1/2:7/2],[-7/2:-1/2,1/2:7/2]); y = -y; xp = x * cos(theta) + y * sin(theta); yp = -x * sin(theta) + y * cos(theta); kernel = exp(-s*(xp.*xp + gamma2*(yp.*yp))) .* cos(f*xp + phi); % normalization kernel = kernel- sum(kernel(:))/sum(abs(kernel(:)))*abs(kernel);
github
daniellerch/aletheia-master
HUGO.m
.m
aletheia-master/aletheia-octave/octave/HUGO.m
7,480
utf_8
f1d2eb26eef610cf221886e0ceff7633
function [stego, distortion] = HUGO(cover, payload) params.gamma = 1; params.sigma = 1; cover = double(imread(cover)); wetCost = 10^8; responseP1 = [0; 0; -1; +1; 0; 0]; % create mirror padded cover image padSize = 3; coverPadded = padarray(cover, [padSize padSize], 'symmetric'); % create residuals C_Rez_H = coverPadded(:, 1:end-1) - coverPadded(:, 2:end); C_Rez_V = coverPadded(1:end-1, :) - coverPadded(2:end, :); C_Rez_Diag = coverPadded(1:end-1, 1:end-1) - coverPadded(2:end, 2:end); C_Rez_MDiag = coverPadded(1:end-1, 2:end) - coverPadded(2:end, 1:end-1); stego = cover; % initialize stego image stegoPadded = coverPadded; % create residuals S_Rez_H = stegoPadded(:, 1:end-1) - stegoPadded(:, 2:end); S_Rez_V = stegoPadded(1:end-1, :) - stegoPadded(2:end, :); S_Rez_Diag = stegoPadded(1:end-1, 1:end-1) - stegoPadded(2:end, 2:end); S_Rez_MDiag = stegoPadded(1:end-1, 2:end) - stegoPadded(2:end, 1:end-1); rhoM1 = zeros(size(cover)); % declare cost of -1 change rhoP1 = zeros(size(cover)); % declare cost of +1 change %% Iterate over elements in the sublattice for row=1:size(cover, 1) for col=1:size(cover, 2) D_P1 = 0; D_M1 = 0; % Horizontal cover_sub = C_Rez_H(row+3, col:col+5)'; stego_sub = S_Rez_H(row+3, col:col+5)'; stego_sub_P1 = stego_sub + responseP1; stego_sub_M1 = stego_sub - responseP1; D_M1 = D_M1 + GetLocalDistortion(cover_sub, stego_sub_M1, params); D_P1 = D_P1 + GetLocalDistortion(cover_sub, stego_sub_P1, params); % Vertical cover_sub = C_Rez_V(row:row+5, col+3); stego_sub = S_Rez_V(row:row+5, col+3); stego_sub_P1 = stego_sub + responseP1; stego_sub_M1 = stego_sub - responseP1; D_M1 = D_M1 + GetLocalDistortion(cover_sub, stego_sub_M1, params); D_P1 = D_P1 + GetLocalDistortion(cover_sub, stego_sub_P1, params); % Diagonal cover_sub = [C_Rez_Diag(row, col); C_Rez_Diag(row+1, col+1); C_Rez_Diag(row+2, col+2); C_Rez_Diag(row+3, col+3); C_Rez_Diag(row+4, col+4); C_Rez_Diag(row+5, col+5)]; stego_sub = [S_Rez_Diag(row, col); S_Rez_Diag(row+1, col+1); S_Rez_Diag(row+2, col+2); S_Rez_Diag(row+3, col+3); S_Rez_Diag(row+4, col+4); S_Rez_Diag(row+5, col+5)]; stego_sub_P1 = stego_sub + responseP1; stego_sub_M1 = stego_sub - responseP1; D_M1 = D_M1 + GetLocalDistortion(cover_sub, stego_sub_M1, params); D_P1 = D_P1 + GetLocalDistortion(cover_sub, stego_sub_P1, params); % Minor Diagonal cover_sub = [C_Rez_MDiag(row, col+5); C_Rez_MDiag(row+1, col+4); C_Rez_MDiag(row+2, col+3); C_Rez_MDiag(row+3, col+2); C_Rez_MDiag(row+4, col+1); C_Rez_MDiag(row+5, col)]; stego_sub = [S_Rez_MDiag(row, col+5); S_Rez_MDiag(row+1, col+4); S_Rez_MDiag(row+2, col+3); S_Rez_MDiag(row+3, col+2); S_Rez_MDiag(row+4, col+1); S_Rez_MDiag(row+5, col)]; stego_sub_P1 = stego_sub + responseP1; stego_sub_M1 = stego_sub - responseP1; D_M1 = D_M1 + GetLocalDistortion(cover_sub, stego_sub_M1, params); D_P1 = D_P1 + GetLocalDistortion(cover_sub, stego_sub_P1, params); rhoM1(row, col) = D_M1; rhoP1(row, col) = D_P1; end end % truncation of the costs rhoM1(rhoM1>wetCost) = wetCost; rhoP1(rhoP1>wetCost) = wetCost; rhoP1(cover == 255) = wetCost; rhoM1(cover == 0) = wetCost; %% Embedding % embedding simulator - params.qarity \in {2,3} stego = EmbeddingSimulator(cover, rhoP1, rhoM1, round(numel(cover)*payload), false); % compute distortion distM1 = rhoM1(stego-cover==-1); distP1 = rhoP1(stego-cover==1); distortion = sum(distM1) + sum(distP1); end % Embedding simulator simulates the embedding made by the best possible ternary coding method (it embeds on the entropy bound). % This can be achieved in practice using "Multi-layered syndrome-trellis codes" (ML STC) that are asymptotically aproaching the bound. function [y] = EmbeddingSimulator(x, rhoP1, rhoM1, m, fixEmbeddingChanges) n = numel(x); lambda = calc_lambda(rhoP1, rhoM1, m, n); pChangeP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pChangeM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); if fixEmbeddingChanges == 1 %RandStream.setGlobalStream(RandStream('mt19937ar','seed',139187)); rand('state', 139187); else %RandStream.setGlobalStream(RandStream('mt19937ar','Seed',sum(100*clock))); rand('state', sum(100*clock)); end randChange = rand(size(x)); y = x; y(randChange < pChangeP1) = y(randChange < pChangeP1) + 1; y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) = y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) - 1; function lambda = calc_lambda(rhoP1, rhoM1, message_length, n) l3 = 1e+3; m3 = double(message_length + 1); iterations = 0; while m3 > message_length l3 = l3 * 2; pP1 = (exp(-l3 .* rhoP1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); pM1 = (exp(-l3 .* rhoM1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); m3 = ternary_entropyf(pP1, pM1); iterations = iterations + 1; if (iterations > 100) lambda = l3; return; end end l1 = 0; m1 = double(n); lambda = 0; alpha = double(message_length)/n; % limit search to 100 iterations % and require that relative payload embedded is roughly within 1/1000 of the required relative payload while (double(m1-m3)/n > alpha/1000.0 ) && (iterations<100) lambda = l1+(l3-l1)/2; pP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); m2 = ternary_entropyf(pP1, pM1); if m2 < message_length l3 = lambda; m3 = m2; else l1 = lambda; m1 = m2; end iterations = iterations + 1; end end function Ht = ternary_entropyf(pP1, pM1) p0 = 1-pP1-pM1; P = [p0(:); pP1(:); pM1(:)]; H = -((P).*log2(P)); H((P<eps) | (P > 1-eps)) = 0; Ht = sum(H); end end function D = GetLocalDistortion(C_resVect, S_resVect, params) D = 0; % C_resVect and S_resVect must have size of 6x1 D = D + GetLocalPotential(C_resVect(1:3), S_resVect(1:3), params); D = D + GetLocalPotential(C_resVect(2:4), S_resVect(2:4), params); D = D + GetLocalPotential(C_resVect(3:5), S_resVect(3:5), params); D = D + GetLocalPotential(C_resVect(4:6), S_resVect(4:6), params); end function Vc = GetLocalPotential(c_res, s_res, params) c_w = (params.sigma + sqrt(sum(c_res.^2))).^(-params.gamma); s_w = (params.sigma + sqrt(sum(s_res.^2))).^(-params.gamma); Vc = (c_w + s_w); end
github
daniellerch/aletheia-master
HILL_MAXSRM.m
.m
aletheia-master/aletheia-octave/octave/HILL_MAXSRM.m
2,109
utf_8
ea3a3722b129eca8a5940ed6b496b13c
function f = HILL_MAXSRM(IMAGE) if ischar(IMAGE) X = imread(IMAGE); else X = IMAGE; end P = f_cal_cost(X); M = 1./P; f = MAXSRM(X, M); end function cost = f_cal_cost(cover) % Copyright (c) 2014 Shenzhen University, % All Rights Reserved. % ------------------------------------------------------------------------- % Permission to use, copy, modify, and distribute this software for % educational, research and non-profit purposes, without fee, and without a % written agreement is hereby granted, provided that this copyright notice % appears in all copies. The program is supplied "as is," without any % accompanying services from Shenzhen University. % ------------------------------------------------------------------------- % Author: Ming Wang % ------------------------------------------------------------------------- % Contact: [email protected] % [email protected] % ------------------------------------------------------------------------- % Input: cover ... cover image% % Output: cost ....... costs value of all pixels % ------------------------------------------------------------------------- % [1] A New Cost Function for Spatial Image Steganography, % B.Li, M.Wang,J.Huang and X.Li, to be presented at IEEE International Conference on Image Processing, 2014. % ------------------------------------------------------------------------- %Get filter HF1=[-1,2,-1;2,-4,2;-1,2,-1]; H2 = fspecial('average',[3 3]); %% Get cost cover=double(cover); sizeCover=size(cover); padsize=max(size(HF1)); coverPadded = padarray(cover, [padsize padsize], 'symmetric');% add padding R1 = conv2(coverPadded,HF1, 'same');%mirror-padded convolution W1 = conv2(abs(R1),H2,'same'); if mod(size(HF1, 1), 2) == 0, W1= circshift(W1, [1, 0]); end; if mod(size(HF1, 2), 2) == 0, W1 = circshift(W1, [0, 1]); end; W1 = W1(((size(W1, 1)-sizeCover(1))/2)+1:end-((size(W1, 1)-sizeCover(1))/2), ((size(W1, 2)-sizeCover(2))/2)+1:end-((size(W1, 2)-sizeCover(2))/2)); rho=1./(W1+10^(-10)); HW = fspecial('average',[15 15]); cost = imfilter(rho, HW ,'symmetric','same'); end
github
daniellerch/aletheia-master
SRM.m
.m
aletheia-master/aletheia-octave/octave/SRM.m
55,472
utf_8
2dd9ded5028c0dd58acc1dbafdacbcf0
function f = SRM(IMAGE, channel) % ------------------------------------------------------------------------- % Copyright (c) 2011 DDE Lab, Binghamton University, NY. % All Rights Reserved. % ------------------------------------------------------------------------- % Permission to use, copy, modify, and distribute this software for % educational, research and non-profit purposes, without fee, and without a % written agreement is hereby granted, provided that this copyright notice % appears in all copies. The program is supplied "as is," without any % accompanying services from DDE Lab. DDE Lab does not warrant the % operation of the program will be uninterrupted or error-free. The % end-user understands that the program was developed for research purposes % and is advised not to rely exclusively on the program for any reason. In % no event shall Binghamton University or DDE Lab be liable to any party % for direct, indirect, special, incidental, or consequential damages, % including lost profits, arising out of the use of this software. DDE Lab % disclaims any warranties, and has no obligations to provide maintenance, % support, updates, enhancements or modifications. % ------------------------------------------------------------------------- % Contact: [email protected] | [email protected] | October 2011 % http://dde.binghamton.edu/download/feature_extractors % ------------------------------------------------------------------------- % Extracts all 106 submodels presented in [1] as part of a rich model for % steganalysis of digital images. All features are calculated in the % spatial domain and are stored in a structured variable 'f'. For more % deatils about the individual submodels, please see the publication [1]. % Total dimensionality of all 106 submodels is 34671. % ------------------------------------------------------------------------- % Input: IMAGE ... path to the image (can be JPEG) % Output: f ....... extracted SRM features in a structured format % ------------------------------------------------------------------------- % [1] Rich Models for Steganalysis of Digital Images, J. Fridrich and J. % Kodovsky, IEEE Transactions on Information Forensics and Security, 2011. % Under review. % ------------------------------------------------------------------------- X = double(imread(IMAGE)); if(size(size(I))==2) X=I(:,:,channel) end f = post_processing(all1st(X,1),'f1',1); % 1st order, q=1 f = post_processing(all1st(X,2),'f1',2,f); % 1st order, q=2 for q=[1 1.5 2], f = post_processing(all2nd(X,q*2),'f2',q,f); end % 2nd order for q=[1 1.5 2], f = post_processing(all3rd(X,q*3),'f3',q,f); end % 3rd order for q=[1 1.5 2], f = post_processing(all3x3(X,q*4),'f3x3',q,f); end % 3x3 for q=[1 1.5 2], f = post_processing(all5x5(X,q*12),'f5x5',q,f); end % 5x5 % print submodels / offsets % i = 0; % e = 0; % for [v, k] = f % e = e + size(v)(2); % printf('%s : %d, %d-%d\n', k, size(v)(2), i, e-1) % i = e; % endfor function RESULT = post_processing(DATA,f,q,RESULT) Ss = fieldnames(DATA); for Sid = 1:length(Ss) VARNAME = [f '_' Ss{Sid} '_q' strrep(num2str(q),'.','')]; eval(['RESULT.' VARNAME ' = reshape(single(DATA.' Ss{Sid} '),1,[]);' ]) end % symmetrize L = fieldnames(RESULT); for i=1:length(L) name = L{i}; % feature name if name(1)=='s', continue; end [T,N,Q] = parse_feaname(name); if strcmp(T,''), continue; end % symmetrization if strcmp(N(1:3),'min') || strcmp(N(1:3),'max') % minmax symmetrization OUT = ['s' T(2:end) '_minmax' N(4:end) '_' Q]; if isfield(RESULT,OUT), continue; end eval(['Fmin = RESULT.' strrep(name,'max','min') ';']); eval(['Fmax = RESULT.' strrep(name,'min','max') ';']); F = symfea([Fmin Fmax]',2,4,'mnmx')'; %#ok<*NASGU> eval(['RESULT.' OUT ' = single(F);' ]); elseif strcmp(N(1:4),'spam') % spam symmetrization OUT = ['s' T(2:end) '_' N '_' Q]; if isfield(RESULT,OUT), continue; end eval(['Fold = RESULT.' name ';']); F = symm1(Fold',2,4)'; eval(['RESULT.' OUT ' = single(F);' ]); end end % delete RESULT.f* L = fieldnames(RESULT); for i=1:length(L) name = L{i}; % feature name if name(1)=='f' RESULT = rmfield(RESULT,name); end end % merge spam features L = fieldnames(RESULT); for i=1:length(L) name = L{i}; % feature name [T,N,Q] = parse_feaname(name); if ~strcmp(N(1:4),'spam'), continue; end if strcmp(T,''), continue; end if strcmp(N(end),'v')||(strcmp(N,'spam11')&&strcmp(T,'s5x5')) elseif strcmp(N(end),'h') % h+v union OUT = [T '_' N 'v_' Q ]; if isfield(RESULT,OUT), continue; end name2 = strrep(name,'h_','v_'); eval(['Fh = RESULT.' name ';']); eval(['Fv = RESULT.' name2 ';']); eval(['RESULT.' OUT ' = [Fh Fv];']); RESULT = rmfield(RESULT,name); RESULT = rmfield(RESULT,name2); elseif strcmp(N,'spam11') % KBKV creation OUT = ['s35_' N '_' Q]; if isfield(RESULT,OUT), continue; end name1 = strrep(name,'5x5','3x3'); name2 = strrep(name,'3x3','5x5'); if ~isfield(RESULT,name1), continue; end if ~isfield(RESULT,name2), continue; end eval(['F_KB = RESULT.' name1 ';']); eval(['F_KV = RESULT.' name2 ';']); eval(['RESULT.' OUT ' = [F_KB F_KV];']); RESULT = rmfield(RESULT,name1); RESULT = rmfield(RESULT,name2); end end function [T,N,Q] = parse_feaname(name) [T,N,Q] = deal(''); P = strfind(name,'_'); if length(P)~=2, return; end T = name(1:P(1)-1); N = name(P(1)+1:P(2)-1); Q = name(P(2)+1:end); function g = all1st(X,q) % % X must be a matrix of doubles or singles (the image) and q is the % quantization step (any positive number). % % Recommended values of q are c, 1.5c, 2c, where c is the central % coefficient in the differential (at X(I,J)). % % This function outputs co-occurrences of ALL 1st-order residuals % listed in Figure 1 in our journal HUGO paper (version from June 14), % including the naming convention. % % List of outputted features: % % 1a) spam14h % 1b) spam14v (orthogonal-spam) % 1c) minmax22v % 1d) minmax24 % 1e) minmax34v % 1f) minmax41 % 1g) minmax34 % 1h) minmax48h % 1i) minmax54 % % Naming convention: % % name = {type}{f}{sigma}{scan} % type \in {spam, minmax} % f \in {1,2,3,4,5} number of filters that are "minmaxed" % sigma \in {1,2,3,4,8} symmetry index % scan \in {h,v,\emptyset} scan of the cooc matrix (empty = sum of both % h and v scans). % % All odd residuals are implemented the same way simply by % narrowing the range for I and J and replacing the residuals -- % -- they should "stick out" (trcet) in the same direction as % the 1st order ones. For example, for the 3rd order: % % RU = -X(I-2,J+2)+3*X(I-1,J+1)-3*X(I,J)+X(I+1,J-1); ... etc. % % Note1: The term X(I,J) should always have the "-" sign. % Note2: This script does not include s, so, cout, cin versions (weak). % This function calls Cooc.m and Quant.m [M N] = size(X); [I,J,T,order] = deal(2:M-1,2:N-1,2,4); % Variable names are self-explanatory (R = right, U = up, L = left, D = down) [R,L,U,D] = deal(X(I,J+1)-X(I,J),X(I,J-1)-X(I,J),X(I-1,J)-X(I,J),X(I+1,J)-X(I,J)); [Rq,Lq,Uq,Dq] = deal(Quant(R,q,T),Quant(L,q,T),Quant(U,q,T),Quant(D,q,T)); [RU,LU,RD,LD] = deal(X(I-1,J+1)-X(I,J),X(I-1,J-1)-X(I,J),X(I+1,J+1)-X(I,J),X(I+1,J-1)-X(I,J)); [RUq,RDq,LUq,LDq] = deal(Quant(RU,q,T),Quant(RD,q,T),Quant(LU,q,T),Quant(LD,q,T)); % minmax22h -- to be symmetrized as mnmx, directional, hv-nonsymmetrical. [RLq_min,UDq_min,RLq_max,UDq_max] = deal(min(Rq,Lq),min(Uq,Dq),max(Rq,Lq),max(Uq,Dq)); g.min22h = reshape(Cooc(RLq_min,order,'hor',T) + Cooc(UDq_min,order,'ver',T),[],1); g.max22h = reshape(Cooc(RLq_max,order,'hor',T) + Cooc(UDq_max,order,'ver',T),[],1); % minmax34h -- to be symmetrized as mnmx, directional, hv-nonsymmetrical [Uq_min,Rq_min,Dq_min,Lq_min] = deal(min(min(Lq,Uq),Rq),min(min(Uq,Rq),Dq),min(min(Rq,Dq),Lq),min(min(Dq,Lq),Uq)); [Uq_max,Rq_max,Dq_max,Lq_max] = deal(max(max(Lq,Uq),Rq),max(max(Uq,Rq),Dq),max(max(Rq,Dq),Lq),max(max(Dq,Lq),Uq)); g.min34h = reshape(Cooc([Uq_min;Dq_min],order,'hor',T) + Cooc([Lq_min Rq_min],order,'ver',T),[],1); g.max34h = reshape(Cooc([Uq_max;Dq_max],order,'hor',T) + Cooc([Rq_max Lq_max],order,'ver',T),[],1); % spam14h/v -- to be symmetrized as spam, directional, hv-nonsymmetrical g.spam14h = reshape(Cooc(Rq,order,'hor',T) + Cooc(Uq,order,'ver',T),[],1); g.spam14v = reshape(Cooc(Rq,order,'ver',T) + Cooc(Uq,order,'hor',T),[],1); % minmax22v -- to be symmetrized as mnmx, directional, hv-nonsymmetrical. Good with higher-order residuals! Note: 22h is bad (too much neighborhood overlap). g.min22v = reshape(Cooc(RLq_min,order,'ver',T) + Cooc(UDq_min,order,'hor',T),[],1); g.max22v = reshape(Cooc(RLq_max,order,'ver',T) + Cooc(UDq_max,order,'hor',T),[],1); % minmax24 -- to be symmetrized as mnmx, directional, hv-symmetrical. Darn good, too. [RUq_min,RDq_min,LUq_min,LDq_min] = deal(min(Rq,Uq),min(Rq,Dq),min(Lq,Uq),min(Lq,Dq)); [RUq_max,RDq_max,LUq_max,LDq_max] = deal(max(Rq,Uq),max(Rq,Dq),max(Lq,Uq),max(Lq,Dq)); g.min24 = reshape(Cooc([RUq_min;RDq_min;LUq_min;LDq_min],order,'hor',T) + Cooc([RUq_min RDq_min LUq_min LDq_min],order,'ver',T),[],1); g.max24 = reshape(Cooc([RUq_max;RDq_max;LUq_max;LDq_max],order,'hor',T) + Cooc([RUq_max RDq_max LUq_max LDq_max],order,'ver',T),[],1); % minmax34v -- v works well, h does not, to be symmetrized as mnmx, directional, hv-nonsymmetrical g.min34v = reshape(Cooc([Uq_min Dq_min],order,'ver',T) + Cooc([Rq_min;Lq_min],order,'hor',T),[],1); g.max34v = reshape(Cooc([Uq_max Dq_max],order,'ver',T) + Cooc([Rq_max;Lq_max],order,'hor',T),[],1); % minmax41 -- to be symmetrized as mnmx, non-directional, hv-symmetrical [R_min,R_max] = deal(min(RLq_min,UDq_min),max(RLq_max,UDq_max)); g.min41 = reshape(Cooc(R_min,order,'hor',T) + Cooc(R_min,order,'ver',T),[],1); g.max41 = reshape(Cooc(R_max,order,'hor',T) + Cooc(R_max,order,'ver',T),[],1); % minmax34 -- good, to be symmetrized as mnmx, directional, hv-symmetrical [RUq_min,RDq_min,LUq_min,LDq_min] = deal(min(RUq_min,RUq),min(RDq_min,RDq),min(LUq_min,LUq),min(LDq_min,LDq)); [RUq_max,RDq_max,LUq_max,LDq_max] = deal(max(RUq_max,RUq),max(RDq_max,RDq),max(LUq_max,LUq),max(LDq_max,LDq)); g.min34 = reshape(Cooc([RUq_min;RDq_min;LUq_min;LDq_min],order,'hor',T) + Cooc([RUq_min RDq_min LUq_min LDq_min],order,'ver',T),[],1); g.max34 = reshape(Cooc([RUq_max;RDq_max;LUq_max;LDq_max],order,'hor',T) + Cooc([RUq_max RDq_max LUq_max LDq_max],order,'ver',T),[],1); % minmax48h -- h better than v, to be symmetrized as mnmx, directional, hv-nonsymmetrical. 48v is almost as good as 48h; for 3rd-order but weaker for 1st-order. Here, I am outputting both but Figure 1 in our paper lists only 48h. [RUq_min2,RDq_min2,LDq_min2,LUq_min2] = deal(min(RUq_min,LUq),min(RDq_min,RUq),min(LDq_min,RDq),min(LUq_min,LDq)); [RUq_min3,RDq_min3,LDq_min3,LUq_min3] = deal(min(RUq_min,RDq),min(RDq_min,LDq),min(LDq_min,LUq),min(LUq_min,RUq)); g.min48h = reshape(Cooc([RUq_min2;LDq_min2;RDq_min3;LUq_min3],order,'hor',T) + Cooc([RDq_min2 LUq_min2 RUq_min3 LDq_min3],order,'ver',T),[],1); g.min48v = reshape(Cooc([RDq_min2;LUq_min2;RUq_min3;LDq_min3],order,'hor',T) + Cooc([RUq_min2 LDq_min2 RDq_min3 LUq_min3],order,'ver',T),[],1); [RUq_max2,RDq_max2,LDq_max2,LUq_max2] = deal(max(RUq_max,LUq),max(RDq_max,RUq),max(LDq_max,RDq),max(LUq_max,LDq)); [RUq_max3,RDq_max3,LDq_max3,LUq_max3] = deal(max(RUq_max,RDq),max(RDq_max,LDq),max(LDq_max,LUq),max(LUq_max,RUq)); g.max48h = reshape(Cooc([RUq_max2;LDq_max2;RDq_max3;LUq_max3],order,'hor',T) + Cooc([RDq_max2 LUq_max2 RUq_max3 LDq_max3],order,'ver',T),[],1); g.max48v = reshape(Cooc([RDq_max2;LUq_max2;RUq_max3;LDq_max3],order,'hor',T) + Cooc([RUq_max2 LDq_max2 RDq_max3 LUq_max3],order,'ver',T),[],1); % minmax54 -- to be symmetrized as mnmx, directional, hv-symmetrical [RUq_min4,RDq_min4,LDq_min4,LUq_min4] = deal(min(RUq_min2,RDq),min(RDq_min2,LDq),min(LDq_min2,LUq),min(LUq_min2,RUq)); [RUq_min5,RDq_min5,LDq_min5,LUq_min5] = deal(min(RUq_min3,LUq),min(RDq_min3,RUq),min(LDq_min3,RDq),min(LUq_min3,LDq)); g.min54 = reshape(Cooc([RUq_min4;LDq_min4;RDq_min5;LUq_min5],order,'hor',T) + Cooc([RDq_min4 LUq_min4 RUq_min5 LDq_min5],order,'ver',T),[],1); [RUq_max4,RDq_max4,LDq_max4,LUq_max4] = deal(max(RUq_max2,RDq),max(RDq_max2,LDq),max(LDq_max2,LUq),max(LUq_max2,RUq)); [RUq_max5,RDq_max5,LDq_max5,LUq_max5] = deal(max(RUq_max3,LUq),max(RDq_max3,RUq),max(LDq_max3,RDq),max(LUq_max3,LDq)); g.max54 = reshape(Cooc([RUq_max4;LDq_max4;RDq_max5;LUq_max5],order,'hor',T) + Cooc([RDq_max4 LUq_max4 RUq_max5 LDq_max5],order,'ver',T),[],1); function g = all2nd(X,q) % % X must be a matrix of doubles or singles (the image) and q is the % quantization step (any positive number). % % Recommended values of q are c, 1.5c, 2c, where c is the central % coefficient in the differential (at X(I,J)). % % This function outputs co-occurrences of ALL 2nd-order residuals % listed in Figure 1 in our journal HUGO paper (version from June 14), % including the naming convention. % % List of outputted features: % % 1a) spam12h % 1b) spam12v (orthogonal-spam) % 1c) minmax21 % 1d) minmax41 % 1e) minmax24h (24v is also outputted but not listed in Figure 1) % 1f) minmax32 % % Naming convention: % % name = {type}{f}{sigma}{scan} % type \in {spam, minmax} % f \in {1,2,3,4,5} number of filters that are "minmaxed" % sigma \in {1,2,3,4,8} symmetry index % scan \in {h,v,\emptyset} scan of the cooc matrix (empty = sum of both % h and v scans). % % All even residuals are implemented the same way simply by % narrowing the range for I and J and replacing the residuals. % % Note1: The term X(I,J) should always have the "-" sign. % Note2: This script does not include s, so, cout, cin versions (weak). % % This function calls Residual.m, Cooc.m, and Quant.m [T,order] = deal(2,4); % 2nd-order residuals are implemented using Residual.m [Dh,Dv,Dd,Dm] = deal(Residual(X,2,'hor'),Residual(X,2,'ver'),Residual(X,2,'diag'),Residual(X,2,'mdiag')); [Yh,Yv,Yd,Ym] = deal(Quant(Dh,q,T),Quant(Dv,q,T),Quant(Dd,q,T),Quant(Dm,q,T)); % spam12h/v g.spam12h = reshape(Cooc(Yh,order,'hor',T) + Cooc(Yv,order,'ver',T),[],1); g.spam12v = reshape(Cooc(Yh,order,'ver',T) + Cooc(Yv,order,'hor',T),[],1); % minmax21 [Dmin,Dmax] = deal(min(Yh,Yv),max(Yh,Yv)); g.min21 = reshape(Cooc(Dmin,order,'hor',T) + Cooc(Dmin,order,'ver',T),[],1); g.max21 = reshape(Cooc(Dmax,order,'hor',T) + Cooc(Dmax,order,'ver',T),[],1); % minmax41 [Dmin2,Dmax2] = deal(min(Dmin,min(Yd,Ym)),max(Dmax,max(Yd,Ym))); g.min41 = reshape(Cooc(Dmin2,order,'hor',T) + Cooc(Dmin2,order,'ver',T),[],1); g.max41 = reshape(Cooc(Dmax2,order,'hor',T) + Cooc(Dmax2,order,'ver',T),[],1); % minmax32 -- good, directional, hv-symmetrical, to be symmetrized as mnmx [RUq_min,RDq_min] = deal(min(Dmin,Ym),min(Dmin,Yd)); [RUq_max,RDq_max] = deal(max(Dmax,Ym),max(Dmax,Yd)); g.min32 = reshape(Cooc([RUq_min;RDq_min],order,'hor',T) + Cooc([RUq_min RDq_min],order,'ver',T),[],1); g.max32 = reshape(Cooc([RUq_max;RDq_max],order,'hor',T) + Cooc([RUq_max RDq_max],order,'ver',T),[],1); % minmax24h,v -- both "not bad," h slightly better, directional, hv-nonsymmetrical, to be symmetrized as mnmx [RUq_min2,RDq_min2,RUq_min3,LUq_min3] = deal(min(Ym,Yh),min(Yd,Yh),min(Ym,Yv),min(Yd,Yv)); g.min24h = reshape(Cooc([RUq_min2;RDq_min2],order,'hor',T)+Cooc([RUq_min3 LUq_min3],order,'ver',T),[],1); g.min24v = reshape(Cooc([RUq_min2 RDq_min2],order,'ver',T)+Cooc([RUq_min3;LUq_min3],order,'hor',T),[],1); [RUq_max2,RDq_max2,RUq_max3,LUq_max3] = deal(max(Ym,Yh),max(Yd,Yh),max(Ym,Yv),max(Yd,Yv)); g.max24h = reshape(Cooc([RUq_max2;RDq_max2],order,'hor',T)+Cooc([RUq_max3 LUq_max3],order,'ver',T),[],1); g.max24v = reshape(Cooc([RUq_max2 RDq_max2],order,'ver',T)+Cooc([RUq_max3;LUq_max3],order,'hor',T),[],1); function g = all3rd(X,q) % % X must be a matrix of doubles or singles (the image) and q is the % quantization step (any positive number). % % Recommended values of q are c, 1.5c, 2c, where c is the central % coefficient in the differential (at X(I,J)). % % This function outputs co-occurrences of ALL 3rd-order residuals % listed in Figure 1 in our journal HUGO paper (version from June 14), % including the naming convention. % % List of outputted features: % % 1a) spam14h % 1b) spam14v (orthogonal-spam) % 1c) minmax22v % 1d) minmax24 % 1e) minmax34v % 1f) minmax41 % 1g) minmax34 % 1h) minmax48h % 1i) minmax54 % % Naming convention: % % name = {type}{f}{sigma}{scan} % type \in {spam, minmax} % f \in {1,2,3,4,5} number of filters that are "minmaxed" % sigma \in {1,2,3,4,8} symmetry index % scan \in {h,v,\emptyset} scan of the cooc matrix (empty = sum of both % h and v scans). % % All odd residuals are implemented the same way simply by % narrowing the range for I and J and replacing the residuals -- % -- they should "stick out" (trcet) in the same direction as % the 1st order ones. For example, for the 3rd order: % % RU = -X(I-2,J+2)+3*X(I-1,J+1)-3*X(I,J)+X(I+1,J-1); ... etc. % % Note1: The term X(I,J) should always have the "-" sign. % Note2: This script does not include s, so, cout, cin versions (weak). [M N] = size(X); [I,J,T,order] = deal(3:M-2,3:N-2,2,4); [R,L,U,D] = deal(-X(I,J+2)+3*X(I,J+1)-3*X(I,J)+X(I,J-1),-X(I,J-2)+3*X(I,J-1)-3*X(I,J)+X(I,J+1),-X(I-2,J)+3*X(I-1,J)-3*X(I,J)+X(I+1,J),-X(I+2,J)+3*X(I+1,J)-3*X(I,J)+X(I-1,J)); [Rq,Lq,Uq,Dq] = deal(Quant(R,q,T),Quant(L,q,T),Quant(U,q,T),Quant(D,q,T)); [RU,LU,RD,LD] = deal(-X(I-2,J+2)+3*X(I-1,J+1)-3*X(I,J)+X(I+1,J-1),-X(I-2,J-2)+3*X(I-1,J-1)-3*X(I,J)+X(I+1,J+1),-X(I+2,J+2)+3*X(I+1,J+1)-3*X(I,J)+X(I-1,J-1),-X(I+2,J-2)+3*X(I+1,J-1)-3*X(I,J)+X(I-1,J+1)); [RUq,RDq,LUq,LDq] = deal(Quant(RU,q,T),Quant(RD,q,T),Quant(LU,q,T),Quant(LD,q,T)); % minmax22h -- to be symmetrized as mnmx, directional, hv-nonsymmetrical [RLq_min,UDq_min] = deal(min(Rq,Lq),min(Uq,Dq)); [RLq_max,UDq_max] = deal(max(Rq,Lq),max(Uq,Dq)); g.min22h = reshape(Cooc(RLq_min,order,'hor',T) + Cooc(UDq_min,order,'ver',T),[],1); g.max22h = reshape(Cooc(RLq_max,order,'hor',T) + Cooc(UDq_max,order,'ver',T),[],1); % minmax34h -- to be symmetrized as mnmx, directional, hv-nonsymmetrical [Uq_min,Rq_min,Dq_min,Lq_min] = deal(min(RLq_min,Uq),min(UDq_min,Rq),min(RLq_min,Dq),min(UDq_min,Lq)); [Uq_max,Rq_max,Dq_max,Lq_max] = deal(max(RLq_max,Uq),max(UDq_max,Rq),max(RLq_max,Dq),max(UDq_max,Lq)); g.min34h = reshape(Cooc([Uq_min;Dq_min],order,'hor',T)+Cooc([Rq_min Lq_min],order,'ver',T),[],1); g.max34h = reshape(Cooc([Uq_max;Dq_max],order,'hor',T)+Cooc([Rq_max Lq_max],order,'ver',T),[],1); % spam14h,v -- to be symmetrized as spam, directional, hv-nonsymmetrical g.spam14h = reshape(Cooc(Rq,order,'hor',T) + Cooc(Uq,order,'ver',T),[],1); g.spam14v = reshape(Cooc(Rq,order,'ver',T) + Cooc(Uq,order,'hor',T),[],1); % minmax22v -- to be symmetrized as mnmx, directional, hv-nonsymmetrical. Good with higher-order residuals! Note: 22h is bad (too much neighborhood overlap). g.min22v = reshape(Cooc(RLq_min,order,'ver',T) + Cooc(UDq_min,order,'hor',T),[],1); g.max22v = reshape(Cooc(RLq_max,order,'ver',T) + Cooc(UDq_max,order,'hor',T),[],1); % minmax24 -- to be symmetrized as mnmx, directional, hv-symmetrical Note: Darn good, too. [RUq_min,RDq_min,LUq_min,LDq_min] = deal(min(Rq,Uq),min(Rq,Dq),min(Lq,Uq),min(Lq,Dq)); [RUq_max,RDq_max,LUq_max,LDq_max] = deal(max(Rq,Uq),max(Rq,Dq),max(Lq,Uq),max(Lq,Dq)); g.min24 = reshape(Cooc([RUq_min;RDq_min;LUq_min;LDq_min],order,'hor',T) + Cooc([RUq_min RDq_min LUq_min LDq_min],order,'ver',T),[],1); g.max24 = reshape(Cooc([RUq_max;RDq_max;LUq_max;LDq_max],order,'hor',T) + Cooc([RUq_max RDq_max LUq_max LDq_max],order,'ver',T),[],1); % minmax34v -- v works well, h does not, to be symmetrized as mnmx, directional, hv-nonsymmetrical g.min34v = reshape(Cooc([Uq_min Dq_min],order,'ver',T) + Cooc([Rq_min;Lq_min],order,'hor',T),[],1); g.max34v = reshape(Cooc([Uq_max Dq_max],order,'ver',T) + Cooc([Rq_max;Lq_max],order,'hor',T),[],1); % minmax41 -- unknown performance as of 6/14/11, to be symmetrized as mnmx, non-directional, hv-symmetrical [R_min,R_max] = deal(min(RUq_min,LDq_min),max(RUq_max,LDq_max)); g.min41 = reshape(Cooc(R_min,order,'hor',T) + Cooc(R_min,order,'ver',T),[],1); g.max41 = reshape(Cooc(R_max,order,'hor',T) + Cooc(R_max,order,'ver',T),[],1); % minmax34 -- good, to be symmetrized as mnmx, directional, hv-symmetrical [RUq_min2,RDq_min2,LUq_min2,LDq_min2] = deal(min(RUq_min,RUq),min(RDq_min,RDq),min(LUq_min,LUq),min(LDq_min,LDq)); [RUq_max2,RDq_max2,LUq_max2,LDq_max2] = deal(max(RUq_max,RUq),max(RDq_max,RDq),max(LUq_max,LUq),max(LDq_max,LDq)); g.min34 = reshape(Cooc([RUq_min2;RDq_min2;LUq_min2;LDq_min2],order,'hor',T) + Cooc([RUq_min2 RDq_min2 LUq_min2 LDq_min2],order,'ver',T),[],1); g.max34 = reshape(Cooc([RUq_max2;RDq_max2;LUq_max2;LDq_max2],order,'hor',T) + Cooc([RUq_max2 RDq_max2 LUq_max2 LDq_max2],order,'ver',T),[],1); % minmax48h -- h better than v, to be symmetrized as mnmx, directional, hv-nonsymmetrical. 48v is almost as good as 48h for 3rd-order but weaker for 1st-order. Here, I am outputting both but Figure 1 in our paper lists only 48h. [RUq_min3,RDq_min3,LDq_min3,LUq_min3] = deal(min(RUq_min2,LUq),min(RDq_min2,RUq),min(LDq_min2,RDq),min(LUq_min2,LDq)); [RUq_min4,RDq_min4,LDq_min4,LUq_min4] = deal(min(RUq_min2,RDq),min(RDq_min2,LDq),min(LDq_min2,LUq),min(LUq_min2,RUq)); g.min48h = reshape(Cooc([RUq_min3;LDq_min3;RDq_min4;LUq_min4],order,'hor',T)+Cooc([RDq_min3 LUq_min3 RUq_min4 LDq_min4],order,'ver',T),[],1); g.min48v = reshape(Cooc([RUq_min3 LDq_min3 RDq_min4 LUq_min4],order,'ver',T)+Cooc([RDq_min3;LUq_min3;RUq_min4;LDq_min4],order,'hor',T),[],1); [RUq_max3,RDq_max3,LDq_max3,LUq_max3] = deal(max(RUq_max2,LUq),max(RDq_max2,RUq),max(LDq_max2,RDq),max(LUq_max2,LDq)); [RUq_max4,RDq_max4,LDq_max4,LUq_max4] = deal(max(RUq_max2,RDq),max(RDq_max2,LDq),max(LDq_max2,LUq),max(LUq_max2,RUq)); g.max48h = reshape(Cooc([RUq_max3;LDq_max3;RDq_max4;LUq_max4],order,'hor',T)+Cooc([RDq_max3 LUq_max3 RUq_max4 LDq_max4],order,'ver',T),[],1); g.max48v = reshape(Cooc([RUq_max3 LDq_max3 RDq_max4 LUq_max4],order,'ver',T)+Cooc([RDq_max3;LUq_max3;RUq_max4;LDq_max4],order,'hor',T),[],1); % minmax54 -- to be symmetrized as mnmx, directional, hv-symmetrical [RUq_min5,RDq_min5,LDq_min5,LUq_min5] = deal(min(RUq_min3,RDq),min(RDq_min3,LDq),min(LDq_min3,LUq),min(LUq_min3,RUq)); [RUq_max5,RDq_max5,LDq_max5,LUq_max5] = deal(max(RUq_max3,RDq),max(RDq_max3,LDq),max(LDq_max3,LUq),max(LUq_max3,RUq)); g.min54 = reshape(Cooc([RUq_min5;LDq_min5;RDq_min5;LUq_min5],order,'hor',T) + Cooc([RDq_min5 LUq_min5 RUq_min5 LDq_min5],order,'ver',T),[],1); g.max54 = reshape(Cooc([RUq_max5;LDq_max5;RDq_max5;LUq_max5],order,'hor',T) + Cooc([RDq_max5 LUq_max5 RUq_max5 LDq_max5],order,'ver',T),[],1); function g = all3x3(X,q) % This function outputs co-occurrences of ALL residuals based on the % KB kernel and its "halves" (EDGE residuals) as listed in Figure 1 % in our journal HUGO paper (version from June 14), including the naming % convention. [T,order] = deal(2,4); % spam11 (old name KB residual), good, non-directional, hv-symmetrical, to be symmetrized as spam D = Residual(X,2,'KB'); Y = Quant(D,q,T); g.spam11 = reshape(Cooc(Y,order,'hor',T) + Cooc(Y,order,'ver',T),[],1); % EDGE residuals D = Residual(X,2,'edge-h');Du = D(:,1:size(D,2)/2);Db = D(:,size(D,2)/2+1:end); D = Residual(X,2,'edge-v');Dl = D(:,1:size(D,2)/2);Dr = D(:,size(D,2)/2+1:end); [Yu,Yb,Yl,Yr] = deal(Quant(Du,q,T),Quant(Db,q,T),Quant(Dl,q,T),Quant(Dr,q,T)); % spam14h,v not bad, directional, hv-nonsym, to be symmetrized as spam g.spam14v = reshape(Cooc([Yu Yb],order,'ver',T) + Cooc([Yl;Yr],order,'hor',T),[],1); g.spam14h = reshape(Cooc([Yu;Yb],order,'hor',T) + Cooc([Yl Yr],order,'ver',T),[],1); % minmax24 -- EXCELLENT, directional, hv-sym, to be symmetrized as mnmx [Dmin1,Dmin2,Dmin3,Dmin4] = deal(min(Yu,Yl),min(Yb,Yr),min(Yu,Yr),min(Yb,Yl)); g.min24 = reshape(Cooc([Dmin1 Dmin2 Dmin3 Dmin4],order,'ver',T) + Cooc([Dmin1;Dmin2;Dmin3;Dmin4],order,'hor',T),[],1); [Dmax1,Dmax2,Dmax3,Dmax4] = deal(max(Yu,Yl),max(Yb,Yr),max(Yu,Yr),max(Yb,Yl)); g.max24 = reshape(Cooc([Dmax1 Dmax2 Dmax3 Dmax4],order,'ver',T) + Cooc([Dmax1;Dmax2;Dmax3;Dmax4],order,'hor',T),[],1); % minmax22 - hv-nonsymmetrical % min22h -- good, to be symmetrized as mnmx, directional, hv-nonsymmetrical % min22v -- EXCELLENT - to be symmetrized as mnmx, directional, [UEq_min,REq_min] = deal(min(Yu,Yb),min(Yr,Yl)); g.min22h = reshape(Cooc(UEq_min,order,'hor',T) + Cooc(REq_min,order,'ver',T),[],1); g.min22v = reshape(Cooc(UEq_min,order,'ver',T) + Cooc(REq_min,order,'hor',T),[],1); [UEq_max,REq_max] = deal(max(Yu,Yb),max(Yr,Yl)); g.max22h = reshape(Cooc(UEq_max,order,'hor',T) + Cooc(REq_max,order,'ver',T),[],1); g.max22v = reshape(Cooc(UEq_max,order,'ver',T) + Cooc(REq_max,order,'hor',T),[],1); % minmax41 -- good, non-directional, hv-sym, to be symmetrized as mnmx [Dmin5,Dmax5] = deal(min(Dmin1,Dmin2),max(Dmax1,Dmax2)); g.min41 = reshape(Cooc(Dmin5,order,'ver',T) + Cooc(Dmin5,order,'hor',T),[],1); g.max41 = reshape(Cooc(Dmax5,order,'ver',T) + Cooc(Dmax5,order,'hor',T),[],1); function g = all5x5(X,q) % This function outputs co-occurrences of ALL residuals based on the % KV kernel and its "halves" (EDGE residuals) as listed in Figure 1 % in our journal HUGO paper (version from June 14), including the naming % convention. [M N] = size(X); [I,J,T,order] = deal(3:M-2,3:N-2,2,4); % spam11 (old name KV residual), good, non-directional, hv-symmetrical, to be symmetrized as spam D = Residual(X,3,'KV'); Y = Quant(D,q,T); g.spam11 = reshape(Cooc(Y,order,'hor',T) + Cooc(Y,order,'ver',T),[],1); % EDGE residuals Du = 8*X(I,J-1)+8*X(I-1,J)+8*X(I,J+1)-6*X(I-1,J-1)-6*X(I-1,J+1)-2*X(I,J-2)-2*X(I,J+2)-2*X(I-2,J)+2*X(I-1,J-2)+2*X(I-2,J-1)+2*X(I-2,J+1)+2*X(I-1,J+2)-X(I-2,J-2)-X(I-2,J+2)-12*X(I,J); Dr = 8*X(I-1,J)+8*X(I,J+1)+8*X(I+1,J)-6*X(I-1,J+1)-6*X(I+1,J+1)-2*X(I-2,J)-2*X(I+2,J)-2*X(I,J+2)+2*X(I-2,J+1)+2*X(I-1,J+2)+2*X(I+1,J+2)+2*X(I+2,J+1)-X(I-2,J+2)-X(I+2,J+2)-12*X(I,J); Db = 8*X(I,J+1)+8*X(I+1,J)+8*X(I,J-1)-6*X(I+1,J+1)-6*X(I+1,J-1)-2*X(I,J-2)-2*X(I,J+2)-2*X(I+2,J)+2*X(I+1,J+2)+2*X(I+2,J+1)+2*X(I+2,J-1)+2*X(I+1,J-2)-X(I+2,J+2)-X(I+2,J-2)-12*X(I,J); Dl = 8*X(I+1,J)+8*X(I,J-1)+8*X(I-1,J)-6*X(I+1,J-1)-6*X(I-1,J-1)-2*X(I-2,J)-2*X(I+2,J)-2*X(I,J-2)+2*X(I+2,J-1)+2*X(I+1,J-2)+2*X(I-1,J-2)+2*X(I-2,J-1)-X(I+2,J-2)-X(I-2,J-2)-12*X(I,J); [Yu,Yb,Yl,Yr] = deal(Quant(Du,q,T),Quant(Db,q,T),Quant(Dl,q,T),Quant(Dr,q,T)); % spam14v not bad, directional, hv-nonsym, to be symmetrized as spam g.spam14v = reshape(Cooc([Yu Yb],order,'ver',T) + Cooc([Yl;Yr],order,'hor',T),[],1); g.spam14h = reshape(Cooc([Yu;Yb],order,'hor',T) + Cooc([Yl Yr],order,'ver',T),[],1); % minmax24 -- EXCELLENT, directional, hv-sym, to be symmetrized as mnmx [Dmin1,Dmin2,Dmin3,Dmin4] = deal(min(Yu,Yl),min(Yb,Yr),min(Yu,Yr),min(Yb,Yl)); g.min24 = reshape(Cooc([Dmin1 Dmin2 Dmin3 Dmin4],order,'ver',T) + Cooc([Dmin1;Dmin2;Dmin3;Dmin4],order,'hor',T),[],1); [Dmax1,Dmax2,Dmax3,Dmax4] = deal(max(Yu,Yl),max(Yb,Yr),max(Yu,Yr),max(Yb,Yl)); g.max24 = reshape(Cooc([Dmax1 Dmax2 Dmax3 Dmax4],order,'ver',T) + Cooc([Dmax1;Dmax2;Dmax3;Dmax4],order,'hor',T),[],1); % minmax22 - hv-nonsymmetrical % min22h -- good, to be symmetrized as mnmx, directional, hv-nonsymmetrical % min22v -- EXCELLENT - to be symmetrized as mnmx, directional, [UEq_min,REq_min] = deal(min(Yu,Yb),min(Yr,Yl)); g.min22h = reshape(Cooc(UEq_min,order,'hor',T) + Cooc(REq_min,order,'ver',T),[],1); g.min22v = reshape(Cooc(UEq_min,order,'ver',T) + Cooc(REq_min,order,'hor',T),[],1); [UEq_max,REq_max] = deal(max(Yu,Yb),max(Yr,Yl)); g.max22h = reshape(Cooc(UEq_max,order,'hor',T) + Cooc(REq_max,order,'ver',T),[],1); g.max22v = reshape(Cooc(UEq_max,order,'ver',T) + Cooc(REq_max,order,'hor',T),[],1); % minmax41 -- good, non-directional, hv-sym, to be symmetrized as mnmx [Dmin5,Dmax5] = deal(min(Dmin1,Dmin2),max(Dmax1,Dmax2)); g.min41 = reshape(Cooc(Dmin5,order,'ver',T) + Cooc(Dmin5,order,'hor',T),[],1); g.max41 = reshape(Cooc(Dmax5,order,'ver',T) + Cooc(Dmax5,order,'hor',T),[],1); function f = Cooc(D,order,type,T) % Co-occurrence operator to be appied to a 2D array of residuals D \in [-T,T] % T ... threshold % order ... cooc order \in {1,2,3,4,5} % type ... cooc type \in {hor,ver,diag,mdiag,square,square-ori,hvdm} % f ... an array of size (2T+1)^order B = 2*T+1; if max(abs(D(:))) > T, fprintf('*** ERROR in Cooc.m: Residual out of range ***\n'), end switch order case 1 f = hist(D(:),-T:T); case 2 f = zeros(B,B); if strcmp(type,'hor'), L = D(:,1:end-1); R = D(:,2:end);end if strcmp(type,'ver'), L = D(1:end-1,:); R = D(2:end,:);end if strcmp(type,'diag'), L = D(1:end-1,1:end-1); R = D(2:end,2:end);end if strcmp(type,'mdiag'), L = D(1:end-1,2:end); R = D(2:end,1:end-1);end for i = -T : T R2 = R(L(:)==i); for j = -T : T f(i+T+1,j+T+1) = sum(R2(:)==j); end end case 3 f = zeros(B,B,B); if strcmp(type,'hor'), L = D(:,1:end-2); C = D(:,2:end-1); R = D(:,3:end);end if strcmp(type,'ver'), L = D(1:end-2,:); C = D(2:end-1,:); R = D(3:end,:);end if strcmp(type,'diag'), L = D(1:end-2,1:end-2); C = D(2:end-1,2:end-1); R = D(3:end,3:end);end if strcmp(type,'mdiag'), L = D(1:end-2,3:end); C = D(2:end-1,2:end-1); R = D(3:end,1:end-2);end for i = -T : T C2 = C(L(:)==i); R2 = R(L(:)==i); for j = -T : T R3 = R2(C2(:)==j); for k = -T : T f(i+T+1,j+T+1,k+T+1) = sum(R3(:)==k); end end end case 4 f = zeros(B,B,B,B); if strcmp(type,'hor'), L = D(:,1:end-3); C = D(:,2:end-2); E = D(:,3:end-1); R = D(:,4:end);end if strcmp(type,'ver'), L = D(1:end-3,:); C = D(2:end-2,:); E = D(3:end-1,:); R = D(4:end,:);end if strcmp(type,'diag'), L = D(1:end-3,1:end-3); C = D(2:end-2,2:end-2); E = D(3:end-1,3:end-1); R = D(4:end,4:end);end if strcmp(type,'mdiag'), L = D(4:end,1:end-3); C = D(3:end-1,2:end-2); E = D(2:end-2,3:end-1); R = D(1:end-3,4:end);end if strcmp(type,'square'), L = D(2:end,1:end-1); C = D(2:end,2:end); E = D(1:end-1,2:end); R = D(1:end-1,1:end-1);end if strcmp(type,'square-ori'), [M, N] = size(D); Dh = D(:,1:M); Dv = D(:,M+1:2*M); L = Dh(2:end,1:end-1); C = Dv(2:end,2:end); E = Dh(1:end-1,2:end); R = Dv(1:end-1,1:end-1);end if strcmp(type,'hvdm'), [M, N] = size(D); L = D(:,1:M); C = D(:,M+1:2*M); E = D(:,2*M+1:3*M); R = D(:,3*M+1:4*M);end if strcmp(type,'s-in'), [M, N] = size(D); Dh = D(:,1:M); Dv = D(:,M+1:2*M); Dh1 = D(:,2*M+1:3*M); Dv1 = D(:,3*M+1:4*M); L = Dh(2:end,1:end-1); C = Dh1(2:end,2:end); E = Dh1(1:end-1,2:end); R = Dh(1:end-1,1:end-1);end if strcmp(type,'s-out'), [M, N] = size(D); Dh = D(:,1:M); Dv = D(:,M+1:2*M); Dh1 = D(:,2*M+1:3*M); Dv1 = D(:,3*M+1:4*M); L = Dh1(2:end,1:end-1); C = Dh(2:end,2:end); E = Dh(1:end-1,2:end); R = Dh1(1:end-1,1:end-1);end if strcmp(type,'ori-in'), [M, N] = size(D); Dh = D(:,1:M); Dv = D(:,M+1:2*M); Dh1 = D(:,2*M+1:3*M); Dv1 = D(:,3*M+1:4*M); L = Dh(2:end,1:end-1); C = Dv1(2:end,2:end); E = Dh1(1:end-1,2:end); R = Dv(1:end-1,1:end-1);end if strcmp(type,'ori-out'),[M, N] = size(D); Dh = D(:,1:M); Dv = D(:,M+1:2*M); Dh1 = D(:,2*M+1:3*M); Dv1 = D(:,3*M+1:4*M); L = Dh1(2:end,1:end-1); C = Dv(2:end,2:end); E = Dh(1:end-1,2:end); R = Dv1(1:end-1,1:end-1);end for i = -T : T ind = (L(:)==i); C2 = C(ind); E2 = E(ind); R2 = R(ind); for j = -T : T ind = (C2(:)==j); E3 = E2(ind); R3 = R2(ind); for k = -T : T R4 = R3(E3(:)==k); for l = -T : T f(i+T+1,j+T+1,k+T+1,l+T+1) = sum(R4(:)==l); end end end end case 5 f = zeros(B,B,B,B,B); if strcmp(type,'hor'),L = D(:,1:end-4); C = D(:,2:end-3); E = D(:,3:end-2); F = D(:,4:end-1); R = D(:,5:end);end if strcmp(type,'ver'),L = D(1:end-4,:); C = D(2:end-3,:); E = D(3:end-2,:); F = D(4:end-1,:); R = D(5:end,:);end for i = -T : T ind = (L(:)==i); C2 = C(ind); E2 = E(ind); F2 = F(ind); R2 = R(ind); for j = -T : T ind = (C2(:)==j); E3 = E2(ind); F3 = F2(ind); R3 = R2(ind); for k = -T : T ind = (E3(:)==k); F4 = F3(ind); R4 = R3(ind); for l = -T : T R5 = R4(F4(:)==l); for m = -T : T f(i+T+1,j+T+1,k+T+1,l+T+1,m+T+1) = sum(R5(:)==m); end end end end end end % normalization f = double(f); fsum = sum(f(:)); if fsum>0, f = f/fsum; end function Y = Quant(X,q,T) % Quantization routine % X ... variable to be quantized/truncated % T ... threshold % q ... quantization step (with type = 'scalar') or a vector of increasing % non-negative integers outlining the quantization process. % Y ... quantized/truncated variable % Example 0: when q is a positive scalar, Y = trunc(round(X/q),T) % Example 1: q = [0 1 2 3] quantizes 0 to 0, 1 to 1, 2 to 2, [3,Inf) to 3, % (-Inf,-3] to -3, -2 to -2, -1 to -1. It is equivalent to Quant(.,3,1). % Example 2: q = [0 2 4 5] quantizes 0 to 0, {1,2} to 1, {3,4} to 2, % [5,Inf) to 3, and similarly with the negatives. % Example 3: q = [1 2] quantizes {-1,0,1} to 0, [2,Inf) to 1, (-Inf,-2] to -1. % Example 4: q = [1 3 7 15 16] quantizes {-1,0,1} to 0, {2,3} to 1, {4,5,6,7} % to 2, {8,9,10,11,12,13,14,15} to 3, [16,Inf) to 4, and similarly the % negatives. if numel(q) == 1 if q > 0, Y = trunc(round(X/q),T); else fprintf('*** ERROR: Attempt to quantize with non-positive step. ***\n'),end else q = round(q); % Making sure the vector q is made of integers if min(q(2:end)-q(1:end-1)) <= 0 fprintf('*** ERROR: quantization vector not strictly increasing. ***\n') end if min(q) < 0, fprintf('*** ERROR: Attempt to quantize with negative step. ***\n'),end T = q(end); % The last value determines the truncation threshold v = zeros(1,2*T+1); % value-substitution vector Y = trunc(X,T)+T+1; % Truncated X and shifted to positive values if q(1) == 0 v(T+1) = 0; z = 1; ind = T+2; for i = 2 : numel(q) v(ind:ind+q(i)-q(i-1)-1) = z; ind = ind+q(i)-q(i-1); z = z+1; end v(1:T) = -v(end:-1:T+2); else v(T+1-q(1):T+1+q(1)) = 0; z = 1; ind = T+2+q(1); for i = 2 : numel(q) v(ind:ind+q(i)-q(i-1)-1) = z; ind = ind+q(i)-q(i-1); z = z+1; end v(1:T-q(1)) = -v(end:-1:T+2+q(1)); end Y = v(Y); % The actual quantization :) end function Z = trunc(X,T) % Truncation to [-T,T] Z = X; Z(Z > T) = T; Z(Z < -T) = -T; function fsym = symfea(f,T,order,type) % Marginalization by sign and directional symmetry for a feature vector % stored as one of our 2*(2T+1)^order-dimensional feature vectors. This % routine should be used for features possiessing sign and directional % symmetry, such as spam-like features or 3x3 features. It should NOT be % used for features from MINMAX residuals. Use the alternative % symfea_minmax for this purpose. % The feature f is assumed to be a 2dim x database_size matrix of features % stored as columns (e.g., hor+ver, diag+minor_diag), with dim = % 2(2T+1)^order. [dim,N] = size(f); B = 2*T+1; c = B^order; ERR = 1; if strcmp(type,'spam') if dim == 2*c switch order % Reduced dimensionality for a B^order dimensional feature vector case 1, red = T + 1; case 2, red = (T + 1)^2; case 3, red = 1 + 3*T + 4*T^2 + 2*T^3; case 4, red = B^2 + 4*T^2*(T + 1)^2; case 5, red = 1/4*(B^2 + 1)*(B^3 + 1); end fsym = zeros(2*red,N); for i = 1 : N switch order case 1, cube = f(1:c,i); case 2, cube = reshape(f(1:c,i),[B B]); case 3, cube = reshape(f(1:c,i),[B B B]); case 4, cube = reshape(f(1:c,i),[B B B B]); case 5, cube = reshape(f(1:c,i),[B B B B B]); end % [size(symm_dir(cube,T,order)) red] fsym(1:red,i) = symm(cube,T,order); switch order case 1, cube = f(c+1:2*c,i); case 2, cube = reshape(f(c+1:2*c,i),[B B]); case 3, cube = reshape(f(c+1:2*c,i),[B B B]); case 4, cube = reshape(f(c+1:2*c,i),[B B B B]); case 5, cube = reshape(f(c+1:2*c,i),[B B B B B]); end fsym(red+1:2*red,i) = symm(cube,T,order); end else fsym = []; fprintf('*** ERROR: feature dimension is not 2x(2T+1)^order. ***\n') end ERR = 0; end if strcmp(type,'mnmx') if dim == 2*c switch order case 3, red = B^3 - T*B^2; % Dim of the marginalized set is (2T+1)^3-T*(2T+1)^2 case 4, red = B^4 - 2*T*(T+1)*B^2; % Dim of the marginalized set is (2T+1)^4-2T*(T+1)*(2T+1)^2 end fsym = zeros(red, N); for i = 1 : N switch order case 1, cube_min = f(1:c,i); cube_max = f(c+1:2*c,i); case 2, cube_min = reshape(f(1:c,i),[B B]); cube_max = reshape(f(c+1:2*c,i),[B B]); f_signsym = cube_min + cube_max(end:-1:1,end:-1:1); case 3, cube_min = reshape(f(1:c,i),[B B B]); cube_max = reshape(f(c+1:2*c,i),[B B B]); f_signsym = cube_min + cube_max(end:-1:1,end:-1:1,end:-1:1); case 4, cube_min = reshape(f(1:c,i),[B B B B]); cube_max = reshape(f(c+1:2*c,i),[B B B B]); f_signsym = cube_min + cube_max(end:-1:1,end:-1:1,end:-1:1,end:-1:1); case 5, cube_min = reshape(f(1:c,i),[B B B B B]); cube_max = reshape(f(c+1:2*c,i),[B B B B B]); f_signsym = cube_min + cube_max(end:-1:1,end:-1:1,end:-1:1,end:-1:1,end:-1:1); end % f_signsym = cube_min + cube_max(end:-1:1,end:-1:1,end:-1:1); fsym(:,i) = symm_dir(f_signsym,T,order); end end ERR = 0; end if ERR == 1, fprintf('*** ERROR: Feature dimension and T, order incompatible. ***\n'), end function As = symm_dir(A,T,order) % Symmetry marginalization routine. The purpose is to reduce the feature % dimensionality and make the features more populated. % A is an array of features of size (2*T+1)^order, otherwise error is outputted. % % Directional marginalization pertains to the fact that the % differences d1, d2, d3, ... in a natural (both cover and stego) image % are as likely to occur as ..., d3, d2, d1. % Basically, we merge all pairs of bins (i,j,k, ...) and (..., k,j,i) % as long as they are two different bins. Thus, instead of dim = % (2T+1)^order, we decrease the dim by 1/2*{# of non-symmetric bins}. % For order = 3, the reduced dim is (2T+1)^order - T(2T+1)^(order-1), % for order = 4, it is (2T+1)^4 - 2T(T+1)(2T+1)^2. B = 2*T+1; done = zeros(size(A)); switch order case 3, red = B^3 - T*B^2; % Dim of the marginalized set is (2T+1)^3-T*(2T+1)^2 case 4, red = B^4 - 2*T*(T+1)*B^2; % Dim of the marginalized set is (2T+1)^4-2T*(T+1)*(2T+1)^2 case 5, red = B^5 - 2*T*(T+1)*B^3; end As = zeros(red, 1); m = 1; switch order case 3 for i = -T : T for j = -T : T for k = -T : T if k ~= i % Asymmetric bin if done(i+T+1,j+T+1,k+T+1) == 0 As(m) = A(i+T+1,j+T+1,k+T+1) + A(k+T+1,j+T+1,i+T+1); % Two mirror-bins are merged done(i+T+1,j+T+1,k+T+1) = 1; done(k+T+1,j+T+1,i+T+1) = 1; m = m + 1; end else % Symmetric bin is just copied As(m) = A(i+T+1,j+T+1,k+T+1); done(i+T+1,j+T+1,k+T+1) = 1; m = m + 1; end end end end case 4 for i = -T : T for j = -T : T for k = -T : T for n = -T : T if (i ~= n) || (j ~= k) % Asymmetric bin if done(i+T+1,j+T+1,k+T+1,n+T+1) == 0 As(m) = A(i+T+1,j+T+1,k+T+1,n+T+1) + A(n+T+1,k+T+1,j+T+1,i+T+1); % Two mirror-bins are merged done(i+T+1,j+T+1,k+T+1,n+T+1) = 1; done(n+T+1,k+T+1,j+T+1,i+T+1) = 1; m = m + 1; end else % Symmetric bin is just copied As(m) = A(i+T+1,j+T+1,k+T+1,n+T+1); done(i+T+1,j+T+1,k+T+1,n+T+1) = 1; m = m + 1; end end end end end case 5 for i = -T : T for j = -T : T for k = -T : T for l = -T : T for n = -T : T if (i ~= n) || (j ~= l) % Asymmetric bin if done(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1) == 0 As(m) = A(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1) + A(n+T+1,l+T+1,k+T+1,j+T+1,i+T+1); % Two mirror-bins are merged done(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1) = 1; done(n+T+1,l+T+1,k+T+1,j+T+1,i+T+1) = 1; m = m + 1; end else % Symmetric bin is just copied As(m) = A(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1); done(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1) = 1; m = m + 1; end end end end end end otherwise fprintf('*** ERROR: Order not equal to 3 or 4 or 5! ***\n') end function fsym = symm1(f,T,order) % Marginalization by sign and directional symmetry for a feature vector % stored as a (2T+1)^order-dimensional array. The input feature f is % assumed to be a dim x database_size matrix of features stored as columns. [dim,N] = size(f); B = 2*T+1; c = B^order; ERR = 1; if dim == c ERR = 0; switch order % Reduced dimensionality for a c-dimensional feature vector case 1, red = T + 1; case 2, red = (T + 1)^2; case 3, red = 1 + 3*T + 4*T^2 + 2*T^3; case 4, red = B^2 + 4*T^2*(T + 1)^2; case 5, red = 1/4*(B^2 + 1)*(B^3 + 1); end fsym = zeros(red,N); for i = 1 : N switch order case 1, cube = f(:,i); case 2, cube = reshape(f(:,i),[B B]); case 3, cube = reshape(f(:,i),[B B B]); case 4, cube = reshape(f(:,i),[B B B B]); case 5, cube = reshape(f(:,i),[B B B B B]); end % [size(symm_dir(cube,T,order)) red] fsym(:,i) = symm(cube,T,order); end end if ERR == 1, fprintf('*** ERROR in symm1: Feature dimension and T, order incompatible. ***\n'), end function As = symm(A,T,order) % Symmetry marginalization routine. The purpose is to reduce the feature % dimensionality and make the features more populated. It can be applied to % 1D -- 5D co-occurrence matrices (order \in {1,2,3,4,5}) with sign and % directional symmetries (explained below). % A must be an array of (2*T+1)^order, otherwise error is outputted. % % Marginalization by symmetry pertains to the fact that, fundamentally, % the differences between consecutive pixels in a natural image (both cover % and stego) d1, d2, d3, ..., have the same probability of occurrence as the % triple -d1, -d2, -d3, ... % % Directional marginalization pertains to the fact that the % differences d1, d2, d3, ... in a natural (cover and stego) image are as % likely to occur as ..., d3, d2, d1. ERR = 1; % Flag denoting when size of A is incompatible with the input parameters T and order m = 2; B = 2*T + 1; switch order case 1 % First-order coocs are only symmetrized if numel(A) == 2*T+1 As(1) = A(T+1); % The only non-marginalized bin is the origin 0 As(2:T+1) = A(1:T) + A(T+2:end); As = As(:); ERR = 0; end case 2 if numel(A) == (2*T+1)^2 As = zeros((T+1)^2, 1); As(1) = A(T+1,T+1); % The only non-marginalized bin is the origin (0,0) for i = -T : T for j = -T : T if (done(i+T+1,j+T+1) == 0) && (abs(i)+abs(j) ~= 0) As(m) = A(i+T+1,j+T+1) + A(T+1-i,T+1-j); done(i+T+1,j+T+1) = 1; done(T+1-i,T+1-j) = 1; if (i ~= j) && (done(j+T+1,i+T+1) == 0) As(m) = As(m) + A(j+T+1,i+T+1) + A(T+1-j,T+1-i); done(j+T+1,i+T+1) = 1; done(T+1-j,T+1-i) = 1; end m = m + 1; end end end ERR = 0; end case 3 if numel(A) == B^3 done = zeros(size(A)); As = zeros(1+3*T+4*T^2+2*T^3, 1); As(1) = A(T+1,T+1,T+1); % The only non-marginalized bin is the origin (0,0,0) for i = -T : T for j = -T : T for k = -T : T if (done(i+T+1,j+T+1,k+T+1) == 0) && (abs(i)+abs(j)+abs(k) ~= 0) As(m) = A(i+T+1,j+T+1,k+T+1) + A(T+1-i,T+1-j,T+1-k); done(i+T+1,j+T+1,k+T+1) = 1; done(T+1-i,T+1-j,T+1-k) = 1; if (i ~= k) && (done(k+T+1,j+T+1,i+T+1) == 0) As(m) = As(m) + A(k+T+1,j+T+1,i+T+1) + A(T+1-k,T+1-j,T+1-i); done(k+T+1,j+T+1,i+T+1) = 1; done(T+1-k,T+1-j,T+1-i) = 1; end m = m + 1; end end end end ERR = 0; end case 4 if numel(A) == (2*T+1)^4 done = zeros(size(A)); As = zeros(B^2 + 4*T^2*(T+1)^2, 1); As(1) = A(T+1,T+1,T+1,T+1); % The only non-marginalized bin is the origin (0,0,0,0) for i = -T : T for j = -T : T for k = -T : T for n = -T : T if (done(i+T+1,j+T+1,k+T+1,n+T+1) == 0) && (abs(i)+abs(j)+abs(k)+abs(n)~=0) As(m) = A(i+T+1,j+T+1,k+T+1,n+T+1) + A(T+1-i,T+1-j,T+1-k,T+1-n); done(i+T+1,j+T+1,k+T+1,n+T+1) = 1; done(T+1-i,T+1-j,T+1-k,T+1-n) = 1; if ((i ~= n) || (j ~= k)) && (done(n+T+1,k+T+1,j+T+1,i+T+1) == 0) As(m) = As(m) + A(n+T+1,k+T+1,j+T+1,i+T+1) + A(T+1-n,T+1-k,T+1-j,T+1-i); done(n+T+1,k+T+1,j+T+1,i+T+1) = 1; done(T+1-n,T+1-k,T+1-j,T+1-i) = 1; end m = m + 1; end end end end end ERR = 0; end case 5 if numel(A) == (2*T+1)^5 done = zeros(size(A)); As = zeros(1/4*(B^2 + 1)*(B^3 + 1), 1); As(1) = A(T+1,T+1,T+1,T+1,T+1); % The only non-marginalized bin is the origin (0,0,0,0,0) for i = -T : T for j = -T : T for k = -T : T for l = -T : T for n = -T : T if (done(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1) == 0) && (abs(i)+abs(j)+abs(k)+abs(l)+abs(n)~=0) As(m) = A(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1) + A(T+1-i,T+1-j,T+1-k,T+1-l,T+1-n); done(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1) = 1; done(T+1-i,T+1-j,T+1-k,T+1-l,T+1-n) = 1; if ((i ~= n) || (j ~= l)) && (done(n+T+1,l+T+1,k+T+1,j+T+1,i+T+1) == 0) As(m) = As(m) + A(n+T+1,l+T+1,k+T+1,j+T+1,i+T+1) + A(T+1-n,T+1-l,T+1-k,T+1-j,T+1-i); done(n+T+1,l+T+1,k+T+1,j+T+1,i+T+1) = 1; done(T+1-n,T+1-l,T+1-k,T+1-j,T+1-i) = 1; end m = m + 1; end end end end end end ERR = 0; end otherwise As = []; fprintf(' Order of cooc is not in {1,2,3,4,5}.\n') end if ERR == 1 As = []; fprintf('*** ERROR in symm: The number of elements in the array is not (2T+1)^order. ***\n') end As = As(:); function D = Residual(X,order,type) % Computes the noise residual of a given type and order from MxN image X. % residual order \in {1,2,3,4,5,6} % type \in {hor,ver,diag,mdiag,KB,edge-h,edge-v,edge-d,edge-m} % The resulting residual is an (M-b)x(N-b) array of the specified order, % where b = ceil(order/2). This cropping is little more than it needs to % be to make sure all the residuals are easily "synchronized". % !!!!!!!!!!!!! Use order = 2 with KB and all edge residuals !!!!!!!!!!!!! [M N] = size(X); I = 1+ceil(order/2) : M-ceil(order/2); J = 1+ceil(order/2) : N-ceil(order/2); switch type case 'hor' switch order case 1, D = - X(I,J) + X(I,J+1); case 2, D = X(I,J-1) - 2*X(I,J) + X(I,J+1); case 3, D = X(I,J-1) - 3*X(I,J) + 3*X(I,J+1) - X(I,J+2); case 4, D = -X(I,J-2) + 4*X(I,J-1) - 6*X(I,J) + 4*X(I,J+1) - X(I,J+2); case 5, D = -X(I,J-2) + 5*X(I,J-1) - 10*X(I,J) + 10*X(I,J+1) - 5*X(I,J+2) + X(I,J+3); case 6, D = X(I,J-3) - 6*X(I,J-2) + 15*X(I,J-1) - 20*X(I,J) + 15*X(I,J+1) - 6*X(I,J+2) + X(I,J+3); end case 'ver' switch order case 1, D = - X(I,J) + X(I+1,J); case 2, D = X(I-1,J) - 2*X(I,J) + X(I+1,J); case 3, D = X(I-1,J) - 3*X(I,J) + 3*X(I+1,J) - X(I+2,J); case 4, D = -X(I-2,J) + 4*X(I-1,J) - 6*X(I,J) + 4*X(I+1,J) - X(I+2,J); case 5, D = -X(I-2,J) + 5*X(I-1,J) - 10*X(I,J) + 10*X(I+1,J) - 5*X(I+2,J) + X(I+3,J); case 6, D = X(I-3,J) - 6*X(I-2,J) + 15*X(I-1,J) - 20*X(I,J) + 15*X(I+1,J) - 6*X(I+2,J) + X(I+3,J); end case 'diag' switch order case 1, D = - X(I,J) + X(I+1,J+1); case 2, D = X(I-1,J-1) - 2*X(I,J) + X(I+1,J+1); case 3, D = X(I-1,J-1) - 3*X(I,J) + 3*X(I+1,J+1) - X(I+2,J+2); case 4, D = -X(I-2,J-2) + 4*X(I-1,J-1) - 6*X(I,J) + 4*X(I+1,J+1) - X(I+2,J+2); case 5, D = -X(I-2,J-2) + 5*X(I-1,J-1) - 10*X(I,J) + 10*X(I+1,J+1) - 5*X(I+2,J+2) + X(I+3,J+3); case 6, D = X(I-3,J-3) - 6*X(I-2,J-2) + 15*X(I-1,J-1) - 20*X(I,J) + 15*X(I+1,J+1) - 6*X(I+2,J+2) + X(I+3,J+3); end case 'mdiag' switch order case 1, D = - X(I,J) + X(I-1,J+1); case 2, D = X(I-1,J+1) - 2*X(I,J) + X(I+1,J-1); case 3, D = X(I-1,J+1) - 3*X(I,J) + 3*X(I+1,J-1) - X(I+2,J-2); case 4, D = -X(I-2,J+2) + 4*X(I-1,J+1) - 6*X(I,J) + 4*X(I+1,J-1) - X(I+2,J-2); case 5, D = -X(I-2,J+2) + 5*X(I-1,J+1) - 10*X(I,J) + 10*X(I+1,J-1) - 5*X(I+2,J-2) + X(I+3,J-3); case 6, D = X(I-3,J+3) - 6*X(I-2,J+2) + 15*X(I-1,J+1) - 20*X(I,J) + 15*X(I+1,J-1) - 6*X(I+2,J-2) + X(I+3,J-3); end case 'KB' D = -X(I-1,J-1) + 2*X(I-1,J) - X(I-1,J+1) + 2*X(I,J-1) - 4*X(I,J) + 2*X(I,J+1) - X(I+1,J-1) + 2*X(I+1,J) - X(I+1,J+1); case 'edge-h' Du = 2*X(I-1,J) + 2*X(I,J-1) + 2*X(I,J+1) - X(I-1,J-1) - X(I-1,J+1) - 4*X(I,J); % -1 2 -1 Db = 2*X(I+1,J) + 2*X(I,J-1) + 2*X(I,J+1) - X(I+1,J-1) - X(I+1,J+1) - 4*X(I,J); % 2 C 2 + flipped vertically D = [Du,Db]; case 'edge-v' Dl = 2*X(I,J-1) + 2*X(I-1,J) + 2*X(I+1,J) - X(I-1,J-1) - X(I+1,J-1) - 4*X(I,J); % -1 2 Dr = 2*X(I,J+1) + 2*X(I-1,J) + 2*X(I+1,J) - X(I-1,J+1) - X(I+1,J+1) - 4*X(I,J); % 2 C + flipped horizontally D = [Dl,Dr]; % -1 2 case 'edge-m' Dlu = 2*X(I,J-1) + 2*X(I-1,J) - X(I-1,J-1) - X(I+1,J-1) - X(I-1,J+1) - X(I,J); % -1 2 -1 Drb = 2*X(I,J+1) + 2*X(I+1,J) - X(I+1,J+1) - X(I+1,J-1) - X(I-1,J+1) - X(I,J); % 2 C + flipped mdiag D = [Dlu,Drb]; % -1 case 'edge-d' Dru = 2*X(I-1,J) + 2*X(I,J+1) - X(I-1,J+1) - X(I-1,J-1) - X(I+1,J+1) - X(I,J); % -1 2 -1 Dlb = 2*X(I,J-1) + 2*X(I+1,J) - X(I+1,J-1) - X(I+1,J+1) - X(I-1,J-1) - X(I,J); % C 2 + flipped diag D = [Dru,Dlb]; % -1 case 'KV' D = 8*X(I-1,J) + 8*X(I+1,J) + 8*X(I,J-1) + 8*X(I,J+1); D = D - 6*X(I-1,J+1) - 6*X(I-1,J-1) - 6*X(I+1,J-1) - 6*X(I+1,J+1); D = D - 2*X(I-2,J) - 2*X(I+2,J) - 2*X(I,J+2) - 2*X(I,J-2); D = D + 2*X(I-1,J-2) + 2*X(I-2,J-1) + 2*X(I-2,J+1) + 2*X(I-1,J+2) + 2*X(I+1,J+2) + 2*X(I+2,J+1) + 2*X(I+2,J-1) + 2*X(I+1,J-2); D = D - X(I-2,J-2) - X(I-2,J+2) - X(I+2,J-2) - X(I+2,J+2) - 12*X(I,J); end
github
daniellerch/aletheia-master
S_UNIWARD.m
.m
aletheia-master/aletheia-octave/octave/S_UNIWARD.m
6,938
utf_8
12eab6d1eb941654f400a98253b0a617
function stego = S_UNIWARD(coverPath, payload) % ------------------------------------------------------------------------- % Copyright (c) 2013 DDE Lab, Binghamton University, NY. % All Rights Reserved. % ------------------------------------------------------------------------- % Permission to use, copy, modify, and distribute this software for % educational, research and non-profit purposes, without fee, and without a % written agreement is hereby granted, provided that this copyright notice % appears in all copies. The program is supplied "as is," without any % accompanying services from DDE Lab. DDE Lab does not warrant the % operation of the program will be uninterrupted or error-free. The % end-user understands that the program was developed for research purposes % and is advised not to rely exclusively on the program for any reason. In % no event shall Binghamton University or DDE Lab be liable to any party % for direct, indirect, special, incidental, or consequential damages, % including lost profits, arising out of the use of this software. DDE Lab % disclaims any warranties, and has no obligations to provide maintenance, % support, updates, enhancements or modifications. % ------------------------------------------------------------------------- % Contact: [email protected] | [email protected] | October 2012 % http://dde.binghamton.edu/download/steganography % ------------------------------------------------------------------------- % This function simulates embedding using S-UNIWARD steganographic % algorithm. For more deatils about the individual submodels, please see % the publication [1]. % ------------------------------------------------------------------------- % Input: coverPath ... path to the image % payload ..... payload in bits per pixel % Output: stego ....... resulting image with embedded payload % ------------------------------------------------------------------------- % PAPER % ------------------------------------------------------------------------- sgm = 1; %% Get 2D wavelet filters - Daubechies 8 % 1D high pass decomposition filter hpdf = [-0.0544158422, 0.3128715909, -0.6756307363, 0.5853546837, 0.0158291053, -0.2840155430, -0.0004724846, 0.1287474266, 0.0173693010, -0.0440882539, ... -0.0139810279, 0.0087460940, 0.0048703530, -0.0003917404, -0.0006754494, -0.0001174768]; % 1D low pass decomposition filter lpdf = (-1).^(0:numel(hpdf)-1).*fliplr(hpdf); % construction of 2D wavelet filters F{1} = lpdf'*hpdf; F{2} = hpdf'*lpdf; F{3} = hpdf'*hpdf; %% Get embedding costs % inicialization cover = double(imread(coverPath)); wetCost = 10^8; [k,l] = size(cover); % add padding padSize = max([size(F{1})'; size(F{2})'; size(F{3})']); coverPadded = padarray(cover, [padSize padSize], 'symmetric'); xi = cell(3, 1); for fIndex = 1:3 % compute residual R = conv2(coverPadded, F{fIndex}, 'same'); % compute suitability xi{fIndex} = conv2(1./(abs(R)+sgm), rot90(abs(F{fIndex}), 2), 'same'); % correct the suitability shift if filter size is even if mod(size(F{fIndex}, 1), 2) == 0, xi{fIndex} = circshift(xi{fIndex}, [1, 0]); end; if mod(size(F{fIndex}, 2), 2) == 0, xi{fIndex} = circshift(xi{fIndex}, [0, 1]); end; % remove padding xi{fIndex} = xi{fIndex}(((size(xi{fIndex}, 1)-k)/2)+1:end-((size(xi{fIndex}, 1)-k)/2), ((size(xi{fIndex}, 2)-l)/2)+1:end-((size(xi{fIndex}, 2)-l)/2)); end % compute embedding costs \rho rho = xi{1} + xi{2} + xi{3}; % adjust embedding costs rho(rho > wetCost) = wetCost; % threshold on the costs rho(isnan(rho)) = wetCost; % if all xi{} are zero threshold the cost rhoP1 = rho; rhoM1 = rho; rhoP1(cover==255) = wetCost; % do not embed +1 if the pixel has max value rhoM1(cover==0) = wetCost; % do not embed -1 if the pixel has min value %% Embedding simulator stego = EmbeddingSimulator(cover, rhoP1, rhoM1, payload*numel(cover), false); %% -------------------------------------------------------------------------------------------------------------------------- % Embedding simulator simulates the embedding made by the best possible ternary coding method (it embeds on the entropy bound). % This can be achieved in practice using "Multi-layered syndrome-trellis codes" (ML STC) that are asymptotically aproaching the bound. function [y] = EmbeddingSimulator(x, rhoP1, rhoM1, m, fixEmbeddingChanges) n = numel(x); lambda = calc_lambda(rhoP1, rhoM1, m, n); pChangeP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pChangeM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); if fixEmbeddingChanges == 1 %RandStream.setGlobalStream(RandStream('mt19937ar','seed',139187)); rand('state', 139187); else %RandStream.setGlobalStream(RandStream('mt19937ar','Seed',sum(100*clock))); rand('state', sum(100*clock)); end randChange = rand(size(x)); y = x; y(randChange < pChangeP1) = y(randChange < pChangeP1) + 1; y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) = y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) - 1; function lambda = calc_lambda(rhoP1, rhoM1, message_length, n) l3 = 1e+3; m3 = double(message_length + 1); iterations = 0; while m3 > message_length l3 = l3 * 2; pP1 = (exp(-l3 .* rhoP1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); pM1 = (exp(-l3 .* rhoM1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); m3 = ternary_entropyf(pP1, pM1); iterations = iterations + 1; if (iterations > 10) lambda = l3; return; end end l1 = 0; m1 = double(n); lambda = 0; alpha = double(message_length)/n; % limit search to 30 iterations % and require that relative payload embedded is roughly within 1/1000 of the required relative payload while (double(m1-m3)/n > alpha/1000.0 ) && (iterations<30) lambda = l1+(l3-l1)/2; pP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); m2 = ternary_entropyf(pP1, pM1); if m2 < message_length l3 = lambda; m3 = m2; else l1 = lambda; m1 = m2; end iterations = iterations + 1; end end function Ht = ternary_entropyf(pP1, pM1) p0 = 1-pP1-pM1; P = [p0(:); pP1(:); pM1(:)]; H = -((P).*log2(P)); H((P<eps) | (P > 1-eps)) = 0; Ht = sum(H); end end end
github
daniellerch/aletheia-master
TRIPLES.m
.m
aletheia-master/aletheia-octave/octave/TRIPLES.m
2,811
utf_8
246cc344502066369572be6f8fb846a5
function beta_hat = TRIPLES(path, channel) % % Triples message length estimator utilizing only the symmetry e_2m+1,2n+1 % = o_2m+1,2n+1 with m,n \in {-5,...,5}. % This implementation follows the method description in: % Andrew D. Ker: "A general framework for the structural steganalysis of % LSB replacement." In: Proc. 7th Information Hiding Workshop, LNCS vol. % 3727, pp. 296-311, Barcelona, Spain. Springer-Verlag, 2005. % % 2011 Copyright by Jessica Fridrich, [email protected], % http:\\ws.binghamton.edu\fridrich % X = double(imread(path)); if(size(size(X))!=2) X=X(:,:,channel); end [M N] = size(X); X = double(X); I = 1 : M; J = 1 : N-2; e = zeros(25,25); o = e; c0 = zeros(11,11); c1 = c0; c2 = c0; c3 = c0; L = X(I,J); C = X(I,J+1); R = X(I,J+2); % Only row triples are considered T1 = C(:) - L(:); % s2 - s1 T2 = R(:) - C(:); % s3 - s2 for m1 = -11 : 13 % We need subscripts 2n-1...2n+3 and the same for 2m-1...2m+3, which means m1,m2 \in {-11...13} for m2 = -11 : 13 i1 = find(T1 == m1); i2 = i1(T2(i1) == m2); e(m1+12,m2+12) = sum(1 - mod(L(i2),2)); % (s1..s3), s2=s1+m1, s3=s2+m2, s1 even o(m1+12,m2+12) = sum(mod(L(i2),2)); % (s1..s3), s2=s1+m1, s3=s2+m2, s1 odd end end m = -5 : 5; n = -5 : 5; d0 = e(2*m+1+12,2*n+1+12)-o(2*m+1+12,2*n+1+12); d1 = e(2*m+1+12,2*n+2+12)+e(2*m+12,2*n+2+12)+o(2*m+12,2*n+1+12)-o(2*m+1+12,2*n+12)-o(2*m+2+12,2*n+12)-e(2*m+2+12,2*n+1+12); d2 = e(2*m+12,2*n+3+12)+o(2*m-1+12,2*n+2+12)+o(2*m+12,2*n+2+12)-o(2*m+2+12,2*n-1+12)-e(2*m+2+12,2*n+12)-e(2*m+3+12,2*n+12); d3 = o(2*m-1+12,2*n+3+12)-e(2*m+3+12,2*n-1+12); c0 = d0 + d1 + d2 + d3; c1 = 3*d0 + d1 - d2 - 3*d3; c2 = 3*d0 - d1 - d2 + 3*d3; c3 = d0 - d1 + d2 - d3; % Solving the quintic epsilon = 0.000000001; Left = 0.6; Right = 7; FL = quintic(Left,c0,c1,c2,c3); FR = quintic(Right,c0,c1,c2,c3); accuracy = 1; if FL * FR > 0 beta_hat = -1; else % Binary search while accuracy > epsilon y = (Left + Right) / 2; Fy = quintic(y,c0,c1,c2,c3); if Fy * FL <= 0 Right = y; FR = Fy; else Left = y; FL = Fy; end accuracy = abs(Right - Left); end end q_hat = (Left + Right) / 2; beta_hat = 1/2*(1 - 1/q_hat); % t = 0.5:0.01:7; % y = quintic(t,c0,c1,c2,c3); % plot(t,y,'k') function y = quintic(q,c0,c1,c2,c3) % q can be a vector [Cm,Cn] = size(c0); y = 0; for m = 1 : Cm for n = 1 : Cn y = y + 2*c0(m,n)*c1(m,n) + q*(4*c0(m,n)*c2(m,n) + 2*c1(m,n)^2); y = y + q.^2*(6*c0(m,n)*c3(m,n) + 6*c1(m,n)*c2(m,n)); y = y + q.^3*(4*c2(m,n)^2 + 8*c1(m,n)*c3(m,n)) + q.^4*10*c2(m,n)*c3(m,n) + q.^5*6*c3(m,n)^2; end end
github
daniellerch/aletheia-master
J_UNIWARD.m
.m
aletheia-master/aletheia-octave/octave/J_UNIWARD.m
7,419
utf_8
862bdb2dc9f6bd8a14f585696267cc87
function J_UNIWARD(cover, payload, stego) % ------------------------------------------------------------------------- % Copyright (c) 2013 DDE Lab, Binghamton University, NY. % All Rights Reserved. % ------------------------------------------------------------------------- % Permission to use, copy, modify, and distribute this software for % educational, research and non-profit purposes, without fee, and without a % written agreement is hereby granted, provided that this copyright notice % appears in all copies. The program is supplied "as is," without any % accompanying services from DDE Lab. DDE Lab does not warrant the % operation of the program will be uninterrupted or error-free. The % end-user understands that the program was developed for research purposes % and is advised not to rely exclusively on the program for any reason. In % no event shall Binghamton University or DDE Lab be liable to any party % for direct, indirect, special, incidental, or consequential damages, % including lost profits, arising out of the use of this software. DDE Lab % disclaims any warranties, and has no obligations to provide maintenance, % support, updates, enhancements or modifications. % ------------------------------------------------------------------------- % Contact: [email protected] | [email protected] | February % 2013 % http://dde.binghamton.edu/download/stego_algorithms/ % ------------------------------------------------------------------------- % This function simulates embedding using J-UNIWARD steganographic % algorithm. % ------------------------------------------------------------------------- % Input: cover ... ... path to the image % payload ..... payload in bits per non zero DCT coefficient % Output: stego ....... resulting JPEG structure with embedded payload % ------------------------------------------------------------------------- C_SPATIAL = double(imread(cover)); C_STRUCT = jpeg_read(cover); C_COEFFS = C_STRUCT.coef_arrays{1}; C_QUANT = C_STRUCT.quant_tables{1}; wetConst = 10^13; sgm = 2^(-6); %% Get 2D wavelet filters - Daubechies 8 % 1D high pass decomposition filter hpdf = [-0.0544158422, 0.3128715909, -0.6756307363, 0.5853546837, 0.0158291053, -0.2840155430, -0.0004724846, 0.1287474266, 0.0173693010, -0.0440882539, ... -0.0139810279, 0.0087460940, 0.0048703530, -0.0003917404, -0.0006754494, -0.0001174768]; % 1D low pass decomposition filter lpdf = (-1).^(0:numel(hpdf)-1).*fliplr(hpdf); F{1} = lpdf'*hpdf; F{2} = hpdf'*lpdf; F{3} = hpdf'*hpdf; %% Pre-compute impact in spatial domain when a jpeg coefficient is changed by 1 spatialImpact = cell(8, 8); for bcoord_i=1:8 for bcoord_j=1:8 testCoeffs = zeros(8, 8); testCoeffs(bcoord_i, bcoord_j) = 1; spatialImpact{bcoord_i, bcoord_j} = idct2(testCoeffs)*C_QUANT(bcoord_i, bcoord_j); end end %% Pre compute impact on wavelet coefficients when a jpeg coefficient is changed by 1 waveletImpact = cell(numel(F), 8, 8); for Findex = 1:numel(F) for bcoord_i=1:8 for bcoord_j=1:8 waveletImpact{Findex, bcoord_i, bcoord_j} = imfilter(spatialImpact{bcoord_i, bcoord_j}, F{Findex}, 'full'); end end end %% Create reference cover wavelet coefficients (LH, HL, HH) % Embedding should minimize their relative change. Computation uses mirror-padding padSize = max([size(F{1})'; size(F{2})']); C_SPATIAL_PADDED = padarray(C_SPATIAL, [padSize padSize], 'symmetric'); % pad image RC = cell(size(F)); for i=1:numel(F) RC{i} = imfilter(C_SPATIAL_PADDED, F{i}); end [k, l] = size(C_COEFFS); nzAC = nnz(C_COEFFS)-nnz(C_COEFFS(1:8:end,1:8:end)); rho = zeros(k, l); tempXi = cell(3, 1); %% Computation of costs for row = 1:k for col = 1:l modRow = mod(row-1, 8)+1; modCol = mod(col-1, 8)+1; subRows = row-modRow-6+padSize:row-modRow+16+padSize; subCols = col-modCol-6+padSize:col-modCol+16+padSize; for fIndex = 1:3 % compute residual RC_sub = RC{fIndex}(subRows, subCols); % get differences between cover and stego wavCoverStegoDiff = waveletImpact{fIndex, modRow, modCol}; % compute suitability tempXi{fIndex} = abs(wavCoverStegoDiff) ./ (abs(RC_sub)+sgm); end rhoTemp = tempXi{1} + tempXi{2} + tempXi{3}; rho(row, col) = sum(rhoTemp(:)); end end rhoM1 = rho; rhoP1 = rho; rhoP1(rhoP1 > wetConst) = wetConst; rhoP1(isnan(rhoP1)) = wetConst; rhoP1(C_COEFFS > 1023) = wetConst; rhoM1(rhoM1 > wetConst) = wetConst; rhoM1(isnan(rhoM1)) = wetConst; rhoM1(C_COEFFS < -1023) = wetConst; %% Embedding simulation S_COEFFS = EmbeddingSimulator(C_COEFFS, rhoP1, rhoM1, round(payload * nzAC)); S_STRUCT = C_STRUCT; S_STRUCT.coef_arrays{1} = S_COEFFS; try jpeg_write(S_STRUCT, stego); catch error('ERROR (problem with saving the stego image)') end function [y, pChangeP1, pChangeM1] = EmbeddingSimulator(x, rhoP1, rhoM1, m) x = double(x); n = numel(x); lambda = calc_lambda(rhoP1, rhoM1, m, n); pChangeP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pChangeM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); randChange = rand(size(x)); y = x; y(randChange < pChangeP1) = y(randChange < pChangeP1) + 1; y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) = y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) - 1; function lambda = calc_lambda(rhoP1, rhoM1, message_length, n) l3 = 1e+3; m3 = double(message_length + 1); iterations = 0; while m3 > message_length l3 = l3 * 2; pP1 = (exp(-l3 .* rhoP1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); pM1 = (exp(-l3 .* rhoM1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); m3 = ternary_entropyf(pP1, pM1); iterations = iterations + 1; if (iterations > 10) lambda = l3; return; end end l1 = 0; m1 = double(n); lambda = 0; alpha = double(message_length)/n; % limit search to 30 iterations % and require that relative payload embedded is roughly within 1/1000 of the required relative payload while (double(m1-m3)/n > alpha/1000.0 ) && (iterations<30) lambda = l1+(l3-l1)/2; pP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); m2 = ternary_entropyf(pP1, pM1); if m2 < message_length l3 = lambda; m3 = m2; else l1 = lambda; m1 = m2; end iterations = iterations + 1; end end function Ht = ternary_entropyf(pP1, pM1) pP1 = pP1(:); pM1 = pM1(:); Ht = -(pP1.*log2(pP1))-(pM1.*log2(pM1))-((1-pP1-pM1).*log2(1-pP1-pM1)); Ht(isnan(Ht)) = 0; Ht = sum(Ht); end end end
github
daniellerch/aletheia-master
HILL_COLOR.m
.m
aletheia-master/aletheia-octave/octave/HILL_COLOR.m
5,448
utf_8
4b65debe28bd32907c6d33ecfc553d73
function stego = HILL_COLOR(cover_path, payload) H=0; cover_3ch = double(imread(cover_path)); stego = zeros(size(cover_3ch)); for index_color=1:3 x = cover_3ch(:,:,index_color); cost=f_cal_cost(x); stego(:,:,index_color) = f_sim_embedding(x, cost, payload, H); end end function cost = f_cal_cost(cover) % Copyright (c) 2014 Shenzhen University, % All Rights Reserved. % ------------------------------------------------------------------------- % Permission to use, copy, modify, and distribute this software for % educational, research and non-profit purposes, without fee, and without a % written agreement is hereby granted, provided that this copyright notice % appears in all copies. The program is supplied "as is," without any % accompanying services from Shenzhen University. % ------------------------------------------------------------------------- % Author: Ming Wang % ------------------------------------------------------------------------- % Contact: [email protected] % [email protected] % ------------------------------------------------------------------------- % Input: cover ... cover image% % Output: cost ....... costs value of all pixels % ------------------------------------------------------------------------- % [1] A New Cost Function for Spatial Image Steganography, % B.Li, M.Wang,J.Huang and X.Li, to be presented at IEEE International Conference on Image Processing, 2014. % ------------------------------------------------------------------------- %Get filter HF1=[-1,2,-1;2,-4,2;-1,2,-1]; H2 = fspecial('average',[3 3]); %% Get cost cover=double(cover); sizeCover=size(cover); padsize=max(size(HF1)); coverPadded = padarray(cover, [padsize padsize], 'symmetric');% add padding R1 = conv2(coverPadded,HF1, 'same');%mirror-padded convolution W1 = conv2(abs(R1),H2,'same'); if mod(size(HF1, 1), 2) == 0, W1= circshift(W1, [1, 0]); end; if mod(size(HF1, 2), 2) == 0, W1 = circshift(W1, [0, 1]); end; W1 = W1(((size(W1, 1)-sizeCover(1))/2)+1:end-((size(W1, 1)-sizeCover(1))/2), ((size(W1, 2)-sizeCover(2))/2)+1:end-((size(W1, 2)-sizeCover(2))/2)); rho=1./(W1+10^(-10)); HW = fspecial('average',[15 15]); cost = imfilter(rho, HW ,'symmetric','same'); end function stegoB = f_sim_embedding(cover, costmat, payload) cover = double(cover); seed = 123; wetCost = 10^10; % compute embedding costs \rho rhoA = costmat; rhoA(rhoA > wetCost) = wetCost; % threshold on the costs rhoA(isnan(rhoA)) = wetCost; % if all xi{} are zero threshold the cost rhoP1 = rhoA; rhoM1 = rhoA; rhoP1(cover==255) = wetCost; % do not embed +1 if the pixel has max value rhoM1(cover==0) = wetCost; % do not embed -1 if the pixel has min value stegoB = f_EmbeddingSimulator_seed(cover, rhoP1, rhoM1, payload*numel(cover)); end function y = f_EmbeddingSimulator_seed(x, rhoP1, rhoM1, m) %% -------------------------------------------------------------------------------------------------- % Embedding simulator simulates the embedding made by the best possible ternary coding method (it embeds on the entropy bound). % This can be achieved in practice using "Multi-layered syndrome-trellis codes" (ML STC) that are asymptotically aproaching the bound. n = numel(x); lambda = calc_lambda(rhoP1, rhoM1, m, n); pChangeP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pChangeM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); rand('state', sum(100*clock)); randChange = rand(size(x)); y = x; y(randChange < pChangeP1) = y(randChange < pChangeP1) + 1; y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) = y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) - 1; function lambda = calc_lambda(rhoP1, rhoM1, message_length, n) l3 = 1e+3; m3 = double(message_length + 1); iterations = 0; while m3 > message_length l3 = l3 * 2; pP1 = (exp(-l3 .* rhoP1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); pM1 = (exp(-l3 .* rhoM1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); m3 = ternary_entropyf(pP1, pM1); iterations = iterations + 1; if (iterations > 10) lambda = l3; return; end end l1 = 0; m1 = double(n); lambda = 0; iterations = 0; alpha = double(message_length)/n; % limit search to 30 iterations % and require that relative payload embedded is roughly within 1/1000 of the required relative payload while (double(m1-m3)/n > alpha/1000.0 ) && (iterations<300) lambda = l1+(l3-l1)/2; pP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); m2 = ternary_entropyf(pP1, pM1); if m2 < message_length l3 = lambda; m3 = m2; else l1 = lambda; m1 = m2; end iterations = iterations + 1; end % disp(iterations); end function Ht = ternary_entropyf(pP1, pM1) p0 = 1-pP1-pM1; P = [p0(:); pP1(:); pM1(:)]; H = -((P).*log2(P)); H((P<eps) | (P > 1-eps)) = 0; Ht = sum(H); end end
github
daniellerch/aletheia-master
HILL.m
.m
aletheia-master/aletheia-octave/octave/HILL.m
5,287
utf_8
5a1e478de28a0b51c3428f209e0f6047
function stego = HILL(cover_path, payload) H=0; x = imread(cover_path); cost=f_cal_cost(x); stego=f_sim_embedding(x, cost, payload, H); end function cost = f_cal_cost(cover) % Copyright (c) 2014 Shenzhen University, % All Rights Reserved. % ------------------------------------------------------------------------- % Permission to use, copy, modify, and distribute this software for % educational, research and non-profit purposes, without fee, and without a % written agreement is hereby granted, provided that this copyright notice % appears in all copies. The program is supplied "as is," without any % accompanying services from Shenzhen University. % ------------------------------------------------------------------------- % Author: Ming Wang % ------------------------------------------------------------------------- % Contact: [email protected] % [email protected] % ------------------------------------------------------------------------- % Input: cover ... cover image% % Output: cost ....... costs value of all pixels % ------------------------------------------------------------------------- % [1] A New Cost Function for Spatial Image Steganography, % B.Li, M.Wang,J.Huang and X.Li, to be presented at IEEE International Conference on Image Processing, 2014. % ------------------------------------------------------------------------- %Get filter HF1=[-1,2,-1;2,-4,2;-1,2,-1]; H2 = fspecial('average',[3 3]); %% Get cost cover=double(cover); sizeCover=size(cover); padsize=max(size(HF1)); coverPadded = padarray(cover, [padsize padsize], 'symmetric');% add padding R1 = conv2(coverPadded,HF1, 'same');%mirror-padded convolution W1 = conv2(abs(R1),H2,'same'); if mod(size(HF1, 1), 2) == 0, W1= circshift(W1, [1, 0]); end; if mod(size(HF1, 2), 2) == 0, W1 = circshift(W1, [0, 1]); end; W1 = W1(((size(W1, 1)-sizeCover(1))/2)+1:end-((size(W1, 1)-sizeCover(1))/2), ((size(W1, 2)-sizeCover(2))/2)+1:end-((size(W1, 2)-sizeCover(2))/2)); rho=1./(W1+10^(-10)); HW = fspecial('average',[15 15]); cost = imfilter(rho, HW ,'symmetric','same'); end function stegoB = f_sim_embedding(cover, costmat, payload) cover = double(cover); seed = 123; wetCost = 10^10; % compute embedding costs \rho rhoA = costmat; rhoA(rhoA > wetCost) = wetCost; % threshold on the costs rhoA(isnan(rhoA)) = wetCost; % if all xi{} are zero threshold the cost rhoP1 = rhoA; rhoM1 = rhoA; rhoP1(cover==255) = wetCost; % do not embed +1 if the pixel has max value rhoM1(cover==0) = wetCost; % do not embed -1 if the pixel has min value stegoB = f_EmbeddingSimulator_seed(cover, rhoP1, rhoM1, payload*numel(cover)); end function y = f_EmbeddingSimulator_seed(x, rhoP1, rhoM1, m) %% -------------------------------------------------------------------------------------------------- % Embedding simulator simulates the embedding made by the best possible ternary coding method (it embeds on the entropy bound). % This can be achieved in practice using "Multi-layered syndrome-trellis codes" (ML STC) that are asymptotically aproaching the bound. n = numel(x); lambda = calc_lambda(rhoP1, rhoM1, m, n); pChangeP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pChangeM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); rand('state', sum(100*clock)); randChange = rand(size(x)); y = x; y(randChange < pChangeP1) = y(randChange < pChangeP1) + 1; y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) = y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) - 1; function lambda = calc_lambda(rhoP1, rhoM1, message_length, n) l3 = 1e+3; m3 = double(message_length + 1); iterations = 0; while m3 > message_length l3 = l3 * 2; pP1 = (exp(-l3 .* rhoP1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); pM1 = (exp(-l3 .* rhoM1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); m3 = ternary_entropyf(pP1, pM1); iterations = iterations + 1; if (iterations > 10) lambda = l3; return; end end l1 = 0; m1 = double(n); lambda = 0; iterations = 0; alpha = double(message_length)/n; % limit search to 30 iterations % and require that relative payload embedded is roughly within 1/1000 of the required relative payload while (double(m1-m3)/n > alpha/1000.0 ) && (iterations<300) lambda = l1+(l3-l1)/2; pP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); m2 = ternary_entropyf(pP1, pM1); if m2 < message_length l3 = lambda; m3 = m2; else l1 = lambda; m1 = m2; end iterations = iterations + 1; end % disp(iterations); end function Ht = ternary_entropyf(pP1, pM1) p0 = 1-pP1-pM1; P = [p0(:); pP1(:); pM1(:)]; H = -((P).*log2(P)); H((P<eps) | (P > 1-eps)) = 0; Ht = sum(H); end end
github
daniellerch/aletheia-master
EBS_COLOR.m
.m
aletheia-master/aletheia-octave/octave/EBS_COLOR.m
4,870
UNKNOWN
003a2f4f562a2f671e2e9327e39b2805
function EBS_COLOR(cover, payload, stego) % Script modified by R�mi Cogranne, based upon the ones provided by Vojtech Holub (in 2014) % use: % toto = jpeg_read('./test.jpg'); % payload = 0.4; % S_STRUCT = EBS(toto, payload) % try C_STRUCT = jpeg_read(cover); catch error('ERROR (problem with the cover image)'); end wetConst = 10^13; STEGO=C_STRUCT; for index_color=1:3 if (index_color==1) C_QUANT = C_STRUCT.quant_tables{index_color}; else C_QUANT = C_STRUCT.quant_tables{2}; end DCT_rounded = C_STRUCT.coef_arrays{index_color}; %% Block Entropy Cost rho_ent = zeros(size(DCT_rounded)); for row=1:size(DCT_rounded, 1)/8 for col=1:size(DCT_rounded, 2)/8 all_coeffs = DCT_rounded(row*8-7:row*8, col*8-7:col*8); all_coeffs(1, 1) = 0; %remove DC nzAC_coeffs = all_coeffs(all_coeffs ~= 0); nzAC_unique_coeffs = unique(nzAC_coeffs); if numel(nzAC_unique_coeffs) > 1 b = hist(nzAC_coeffs, nzAC_unique_coeffs); b = b(b~=0); p = b ./ sum(b); H_block = -sum(p.*log(p)); else H_block = 0; end rho_ent(row*8-7:row*8, col*8-7:col*8) = 1/(H_block^2); end end qi = repmat(C_QUANT, size(DCT_rounded) ./ 8); rho_f = (qi).^2; %% Final cost rho = rho_ent .* rho_f; rho = rho + 10^(-4); rho(rho > wetConst) = wetConst; rho(isnan(rho)) = wetConst; rho(DCT_rounded > 1022) = wetConst; rho(DCT_rounded < -1022) = wetConst; maxCostMat = false(size(rho)); maxCostMat(1:8:end, 1:8:end) = true; maxCostMat(5:8:end, 1:8:end) = true; maxCostMat(1:8:end, 5:8:end) = true; maxCostMat(5:8:end, 5:8:end) = true; rho(maxCostMat) = wetConst; changeable = (rho< wetConst); rho=rho(changeable); %% Compute message lenght for each run nzAC = nnz(DCT_rounded)-nnz(DCT_rounded(1:8:end,1:8:end)); % number of nonzero AC DCT coefficients %% Embedding % permutes path DCT_rounded_changeable=DCT_rounded(changeable); perm = randperm(numel(DCT_rounded_changeable)); [LSBs] = EmbeddingSimulator(DCT_rounded_changeable(perm), rho(perm)', round(payload*nzAC)); LSBs(perm) = LSBs; % inverse permutation % Create stego coefficients temp = mod(DCT_rounded_changeable, 2); ToBeChanged = zeros(size(DCT_rounded_changeable)); ToBeChanged(temp == LSBs) = DCT_rounded_changeable(temp == LSBs); ToBeChanged(temp ~= LSBs) = DCT_rounded_changeable(temp ~= LSBs) + ((rand(1)>0.5)-0.5)*2; S_COEFFS = DCT_rounded; S_COEFFS(changeable) = ToBeChanged; STEGO.coef_arrays{index_color} = S_COEFFS; try jpeg_write(STEGO, stego); catch error('ERROR (problem with saving the stego image)') end end end function [LSBs] = EmbeddingSimulator(x, rho, m) rho = rho'; x = double(x); n = numel(x); lambda = calc_lambda(rho, m, n); pChange = 1 - (double(1)./(1+exp(-lambda.*rho))); %RandStream.setGlobalStream(RandStream('mt19937ar','Seed',sum(100*clock))); rand('state', sum(100*clock)); randChange = rand(size(x)); flippedPixels = (randChange < pChange); LSBs = mod(x + flippedPixels, 2); function lambda = calc_lambda(rho, message_length, n) l3 = 1e+3; m3 = double(message_length + 1); iterations = 0; while m3 > message_length l3 = l3 * 2; p = double(1)./(1 + exp(-l3 .* rho)); m3 = binary_entropyf(p); iterations = iterations + 1; if (iterations > 10) lambda = l3; return; end end l1 = 0; m1 = double(n); lambda = 0; alpha = double(message_length)/n; % limit search to 30 iterations % and require that relative payload embedded is roughly within 1/1000 of the required relative payload while (double(m1-m3)/n > alpha/1000.0 ) && (iterations<30) lambda = l1+(l3-l1)/2; p = double(1)./(1+exp(-lambda.*rho)); m2 = binary_entropyf(p); if m2 < message_length l3 = lambda; m3 = m2; else l1 = lambda; m1 = m2; end iterations = iterations + 1; end end function Hb = binary_entropyf(p) p = p(:); Hb = (-p.*log2(p))-((1-p).*log2(1-p)); Hb(isnan(Hb)) = 0; Hb = sum(Hb); end end
github
daniellerch/aletheia-master
NSF5.m
.m
aletheia-master/aletheia-octave/octave/NSF5.m
3,266
utf_8
4ce30e16d5eae39d4b9b653b21f3d113
function [nzAC,embedding_efficiency,changes] = NSF5(COVER, ALPHA, STEGO) SEED=sum(100*clock); % random key % ------------------------------------------------------------------------- % Contact: [email protected] | June 2011 % ------------------------------------------------------------------------- % This program simulates the embedding impact of the steganographic % algorithm nsF5 [1] as if the best possible coding was used. Please, visit % the webpage http://dde.binghamton.edu/download/nsf5simulator for more % information. % ------------------------------------------------------------------------- % Input: % COVER - cover image (grayscale JPEG image) % STEGO - resulting stego image that will be created % ALPHA - relative payload in terms of bits per nonzero AC DCT coefficient % SEED - PRNG seed for the random walk over the coefficients % Output: % nzAC - number of nonzero AC DCT coefficients in the cover image % embedding_efficiency - bound on embedding efficiency used for simulation % changes - number of changes made % ------------------------------------------------------------------------- % References: % [1] J. Fridrich, T. Pevny, and J. Kodovsky, Statistically undetectable % JPEG steganography: Dead ends, challenges, and opportunities. In J. % Dittmann and J. Fridrich, editors, Proceedings of the 9th ACM % Multimedia & Security Workshop, pages 3-14, Dallas, TX, September % 20-21, 2007. % ------------------------------------------------------------------------- % Note: The program requires Phil Sallee's MATLAB JPEG toolbox available at % http://www.philsallee.com/ % ------------------------------------------------------------------------- %%% load the cover image try jobj = jpeg_read(COVER); % JPEG image structure DCT = jobj.coef_arrays{1}; % DCT plane catch error('ERROR (problem with the cover image)'); end if ALPHA>0 %%% embedding simulation embedding_efficiency = ALPHA/invH(ALPHA); % bound on embedding efficiency nzAC = nnz(DCT)-nnz(DCT(1:8:end,1:8:end)); % number of nonzero AC DCT coefficients changes = ceil(ALPHA*nzAC/embedding_efficiency); % number of changes nsF5 would make on bound changeable = (DCT~=0); % mask of all nonzero DCT coefficients in the image changeable(1:8:end,1:8:end) = false; % do not embed into DC modes changeable = find(changeable); % indexes of the changeable coefficients rand('state',SEED); % initialize PRNG using given SEED changeable = changeable(randperm(nzAC)); % create a pseudorandom walk over nonzero AC coefficients to_be_changed = changeable(1:changes); % coefficients to be changed DCT(to_be_changed) = DCT(to_be_changed)-sign(DCT(to_be_changed)); % decrease the absolute value of the coefficients to be changed end %%% save the resulting stego image try jobj.coef_arrays{1} = DCT; jobj.optimize_coding = 1; jpeg_write(jobj,STEGO); catch error('ERROR (problem with saving the stego image)') end function res = invH(y) % inverse of the binary entropy function to_minimize = @(x) (H(x)-y)^2; res = fminbnd(to_minimize,eps,0.5-eps); function res = H(x) % binary entropy function res = -x*log2(x)-(1-x)*log2(1-x);
github
daniellerch/aletheia-master
S_UNIWARD_COLOR.m
.m
aletheia-master/aletheia-octave/octave/S_UNIWARD_COLOR.m
7,177
utf_8
2990fdc10c4bfdb0df3a1d85f8a67b10
function stego = S_UNIWARD_COLOR(coverPath, payload) % ------------------------------------------------------------------------- % Copyright (c) 2013 DDE Lab, Binghamton University, NY. % All Rights Reserved. % ------------------------------------------------------------------------- % Permission to use, copy, modify, and distribute this software for % educational, research and non-profit purposes, without fee, and without a % written agreement is hereby granted, provided that this copyright notice % appears in all copies. The program is supplied "as is," without any % accompanying services from DDE Lab. DDE Lab does not warrant the % operation of the program will be uninterrupted or error-free. The % end-user understands that the program was developed for research purposes % and is advised not to rely exclusively on the program for any reason. In % no event shall Binghamton University or DDE Lab be liable to any party % for direct, indirect, special, incidental, or consequential damages, % including lost profits, arising out of the use of this software. DDE Lab % disclaims any warranties, and has no obligations to provide maintenance, % support, updates, enhancements or modifications. % ------------------------------------------------------------------------- % Contact: [email protected] | [email protected] | October 2012 % http://dde.binghamton.edu/download/steganography % ------------------------------------------------------------------------- % This function simulates embedding using S-UNIWARD steganographic % algorithm. For more deatils about the individual submodels, please see % the publication [1]. % ------------------------------------------------------------------------- % Input: coverPath ... path to the image % payload ..... payload in bits per pixel % Output: stego ....... resulting image with embedded payload % ------------------------------------------------------------------------- % PAPER % ------------------------------------------------------------------------- sgm = 1; %% Get 2D wavelet filters - Daubechies 8 % 1D high pass decomposition filter hpdf = [-0.0544158422, 0.3128715909, -0.6756307363, 0.5853546837, 0.0158291053, -0.2840155430, -0.0004724846, 0.1287474266, 0.0173693010, -0.0440882539, ... -0.0139810279, 0.0087460940, 0.0048703530, -0.0003917404, -0.0006754494, -0.0001174768]; % 1D low pass decomposition filter lpdf = (-1).^(0:numel(hpdf)-1).*fliplr(hpdf); % construction of 2D wavelet filters F{1} = lpdf'*hpdf; F{2} = hpdf'*lpdf; F{3} = hpdf'*hpdf; wetCost = 10^8; %% Get embedding costs % inicialization cover_3ch = double(imread(coverPath)); stego = zeros(size(cover_3ch)); for index_color=1:3 cover = cover_3ch(:,:,index_color); [k,l] = size(cover); % add padding padSize = max([size(F{1})'; size(F{2})'; size(F{3})']); coverPadded = padarray(cover, [padSize padSize], 'symmetric'); xi = cell(3, 1); for fIndex = 1:3 % compute residual R = conv2(coverPadded, F{fIndex}, 'same'); % compute suitability xi{fIndex} = conv2(1./(abs(R)+sgm), rot90(abs(F{fIndex}), 2), 'same'); % correct the suitability shift if filter size is even if mod(size(F{fIndex}, 1), 2) == 0, xi{fIndex} = circshift(xi{fIndex}, [1, 0]); end; if mod(size(F{fIndex}, 2), 2) == 0, xi{fIndex} = circshift(xi{fIndex}, [0, 1]); end; % remove padding xi{fIndex} = xi{fIndex}(((size(xi{fIndex}, 1)-k)/2)+1:end-((size(xi{fIndex}, 1)-k)/2), ((size(xi{fIndex}, 2)-l)/2)+1:end-((size(xi{fIndex}, 2)-l)/2)); end % compute embedding costs \rho rho = xi{1} + xi{2} + xi{3}; % adjust embedding costs rho(rho > wetCost) = wetCost; % threshold on the costs rho(isnan(rho)) = wetCost; % if all xi{} are zero threshold the cost rhoP1 = rho; rhoM1 = rho; rhoP1(cover==255) = wetCost; % do not embed +1 if the pixel has max value rhoM1(cover==0) = wetCost; % do not embed -1 if the pixel has min value %% Embedding simulator stego(:,:,index_color) = EmbeddingSimulator(cover, rhoP1, rhoM1, payload*numel(cover), false); end %% -------------------------------------------------------------------------------------------------------------------------- % Embedding simulator simulates the embedding made by the best possible ternary coding method (it embeds on the entropy bound). % This can be achieved in practice using "Multi-layered syndrome-trellis codes" (ML STC) that are asymptotically aproaching the bound. function [y] = EmbeddingSimulator(x, rhoP1, rhoM1, m, fixEmbeddingChanges) n = numel(x); lambda = calc_lambda(rhoP1, rhoM1, m, n); pChangeP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pChangeM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); if fixEmbeddingChanges == 1 %RandStream.setGlobalStream(RandStream('mt19937ar','seed',139187)); rand('state', 139187); else %RandStream.setGlobalStream(RandStream('mt19937ar','Seed',sum(100*clock))); rand('state', sum(100*clock)); end randChange = rand(size(x)); y = x; y(randChange < pChangeP1) = y(randChange < pChangeP1) + 1; y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) = y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) - 1; function lambda = calc_lambda(rhoP1, rhoM1, message_length, n) l3 = 1e+3; m3 = double(message_length + 1); iterations = 0; while m3 > message_length l3 = l3 * 2; pP1 = (exp(-l3 .* rhoP1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); pM1 = (exp(-l3 .* rhoM1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); m3 = ternary_entropyf(pP1, pM1); iterations = iterations + 1; if (iterations > 10) lambda = l3; return; end end l1 = 0; m1 = double(n); lambda = 0; alpha = double(message_length)/n; % limit search to 30 iterations % and require that relative payload embedded is roughly within 1/1000 of the required relative payload while (double(m1-m3)/n > alpha/1000.0 ) && (iterations<30) lambda = l1+(l3-l1)/2; pP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); m2 = ternary_entropyf(pP1, pM1); if m2 < message_length l3 = lambda; m3 = m2; else l1 = lambda; m1 = m2; end iterations = iterations + 1; end end function Ht = ternary_entropyf(pP1, pM1) p0 = 1-pP1-pM1; P = [p0(:); pP1(:); pM1(:)]; H = -((P).*log2(P)); H((P<eps) | (P > 1-eps)) = 0; Ht = sum(H); end end end
github
daniellerch/aletheia-master
NSF5_COLOR.m
.m
aletheia-master/aletheia-octave/octave/NSF5_COLOR.m
3,331
utf_8
47c5da642adfa3b7099c404ade7a6a67
function [STEGO,embedding_efficiency,changes] = NSF5_COLOR(cover, payload, stego) % ------------------------------------------------------------------------- % Contact: [email protected] | June 2011 % ------------------------------------------------------------------------- % This program simulates the embedding impact of the steganographic % algorithm nsF5 [1] as if the best possible coding was used. Please, visit % the webpage http://dde.binghamton.edu/download/nsf5simulator for more % information. % ------------------------------------------------------------------------- % Input: % COVER - cover image (grayscale JPEG image) % STEGO - resulting stego image that will be created % ALPHA - relative payload in terms of bits per nonzero AC DCT coefficient % SEED - PRNG seed for the random walk over the coefficients % Output: % nzAC - number of nonzero AC DCT coefficients in the cover image % embedding_efficiency - bound on embedding efficiency used for simulation % changes - number of changes made % ------------------------------------------------------------------------- % References: % [1] J. Fridrich, T. Pevny, and J. Kodovsky, Statistically undetectable % JPEG steganography: Dead ends, challenges, and opportunities. In J. % Dittmann and J. Fridrich, editors, Proceedings of the 9th ACM % Multimedia & Security Workshop, pages 3-14, Dallas, TX, September % 20-21, 2007. % ------------------------------------------------------------------------- % Note: The program requires Phil Sallee's MATLAB JPEG toolbox available at % http://www.philsallee.com/ % ------------------------------------------------------------------------- %%% load the cover image COVER=jpeg_read(cover); STEGO=COVER; for index_color=1:3 DCT=COVER.coef_arrays{index_color}; ALPHA=1; if ALPHA>0 %%% embedding simulation embedding_efficiency = payload/invH(payload); % bound on embedding efficiency nAC = nnz(DCT); % number of nonzero AC DCT coefficients nzAC = nnz(DCT)-nnz(DCT(1:8:end,1:8:end)); % number of nonzero AC DCT coefficients changes = ceil(payload*nzAC/embedding_efficiency); % number of changes nsF5 would make on bound ALPHA=changes/nzAC; embedding_efficiency = ALPHA/invH(ALPHA); % bound on embedding efficiency changeable = (DCT~=0); % mask of all nonzero DCT coefficients in the image changeable(1:8:end,1:8:end) = false; % do not embed into DC modes changeable = find(changeable); % indexes of the changeable coefficients % rand('state',SEED); % initialize PRNG using given SEED changeable = changeable(randperm(nzAC)); % create a pseudorandom walk over nonzero AC coefficients to_be_changed = changeable(1:changes); % coefficients to be changed DCT(to_be_changed) = DCT(to_be_changed)-sign(DCT(to_be_changed)); % decrease the absolute value of the coefficients to be changed end STEGO.coef_arrays{index_color}=DCT; end try jpeg_write(STEGO, stego); catch error('ERROR (problem with saving the stego image)') end function res = invH(y) % inverse of the binary entropy function to_minimize = @(x) (H(x)-y)^2; res = fminbnd(to_minimize,eps,0.5-eps); function res = H(x) % binary entropy function res = -x*log2(x)-(1-x)*log2(1-x);
github
daniellerch/aletheia-master
AUMP.m
.m
aletheia-master/aletheia-octave/octave/AUMP.m
2,725
utf_8
45e5662031d19b8dff0f7251355cf3bf
function beta = AUMP(path, channel) % % AUMP LSB detector as described by L. Fillatre, "Adaptive Steganalysis of % Least Significant Bit Replacement in Grayscale Natural Images", IEEE % TSP, October 2011. % % X = image to be analyzed % m = pixel block size % d = q - 1 = polynomial degree for fitting (predictor) % beta = \hat{\Lambda}^\star(X) detection statistic % m = 16 d = 5 X = double(imread(path)); if(size(size(X))!=2) X=X(:,:,channel); end %X = double(X); [Xpred,~,w] = Pred_aump(X,m,d); % Polynomial prediction, w = weights r = X - Xpred; % Residual Xbar = X + 1 - 2 * mod(X,2); % Flip all LSBs beta = sum(sum(w.*(X-Xbar).*r)); % Detection statistic function [Xpred,S,w] = Pred_aump(X,m,d) % % Pixel predictor by fitting local polynomial of degree d = q - 1 to % m pixels, m must divide the number of pixels in the row. % OUTPUT: predicted image Xpred, local variances S, weights w. % % Implemention follows the description in: L. Fillantre, "Adaptive % Steganalysis of Least Significant Bit Replacement in Grayscale Images", % IEEE Trans. on Signal Processing, 2011. % sig_th = 1; % Threshold for sigma for numerical stability q = d + 1; % q = number of parameters per block Kn = numel(X)/m; % Number of blocks of m pixels Y = zeros(m,Kn); % Y will hold block pixel values as columns S = zeros(size(X)); % Pixel variance Xpred = zeros(size(X)); % Predicted image H = zeros(m,q); % H = Vandermonde matrix for the LSQ fit x1 = (1:m)/m; for i = 1 : q, H(:,i) = (x1').^(i-1); end for i = 1 : m % Form Kn blocks of m pixels (row-wise) as aux = X(:,i:m:end); % columns of Y Y(i,:) = aux(:); end p = H\Y; % Polynomial fit Ypred = H*p; % Predicted Y for i = 1 : m % Predicted X Xpred(:,i:m:end) = reshape(Ypred(i,:),size(X(:,i:m:end))); % Xpred = l_k in the paper end sig2 = sum((Y - Ypred).^2) / (m-q); % sigma_k_hat in the paper (variance in kth block) sig2 = max(sig_th^2 * ones(size(sig2)),sig2); % Assuring numerical stability % le01 = find(sig2 < sig_th^2); % sig2(le01) = (0.1 + sqrt(sig2(le01))).^2; % An alternative way of "scaling" to guarantee num. stability Sy = ones(m,1) * sig2; % Variance of all pixels (order as in Y) for i = 1 : m % Reshaping the variance Sy to size of X S(:,i:m:end) = reshape(Sy(i,:),size(X(:,i:m:end))); end s_n2 = Kn / sum(1./sig2); % Global variance sigma_n_bar_hat^2 in the paper w = sqrt( s_n2 / (Kn * (m-q)) ) ./ S; % Weights
github
daniellerch/aletheia-master
SRMQ1.m
.m
aletheia-master/aletheia-octave/octave/SRMQ1.m
55,091
utf_8
33d050deb6f97a8dae9b351e56119024
function f = SRMQ1(IMAGE, channel) % ------------------------------------------------------------------------- % Copyright (c) 2011 DDE Lab, Binghamton University, NY. % All Rights Reserved. % ------------------------------------------------------------------------- % Permission to use, copy, modify, and distribute this software for % educational, research and non-profit purposes, without fee, and without a % written agreement is hereby granted, provided that this copyright notice % appears in all copies. The program is supplied "as is," without any % accompanying services from DDE Lab. DDE Lab does not warrant the % operation of the program will be uninterrupted or error-free. The % end-user understands that the program was developed for research purposes % and is advised not to rely exclusively on the program for any reason. In % no event shall Binghamton University or DDE Lab be liable to any party % for direct, indirect, special, incidental, or consequential damages, % including lost profits, arising out of the use of this software. DDE Lab % disclaims any warranties, and has no obligations to provide maintenance, % support, updates, enhancements or modifications. % ------------------------------------------------------------------------- % Contact: [email protected] | [email protected] | November 2011 % http://dde.binghamton.edu/download/feature_extractors % ------------------------------------------------------------------------- % Extracts 39 submodels presented in [1] -- only q=1c. All features are % calculated in the spatial domain and are stored in a structured variable % 'f'. For more deatils about the individual submodels, please see the % publication [1]. Total dimensionality of all 39 submodels is 12,753. % ------------------------------------------------------------------------- % Input: IMAGE ... path to the image (can be JPEG) % Output: f ...... extracted SRMQ1 features in a structured format % ------------------------------------------------------------------------- % [1] Rich Models for Steganalysis of Digital Images, J. Fridrich and J. % Kodovsky, IEEE Transactions on Information Forensics and Security, 2011. % Under review. % ------------------------------------------------------------------------- X = double(imread(IMAGE)); if(size(size(I))==2) X=I(:,:,channel) end f = post_processing(all1st(X,1),'f1',1); % 1st order f = post_processing(all2nd(X,2),'f2',1,f); % 2nd order f = post_processing(all3rd(X,3),'f3',1,f); % 3rd order f = post_processing(all3x3(X,4),'f3x3',1,f); % 3x3 f = post_processing(all5x5(X,12),'f5x5',1,f); % 5x5 function RESULT = post_processing(DATA,f,q,RESULT) Ss = fieldnames(DATA); for Sid = 1:length(Ss) VARNAME = [f '_' Ss{Sid} '_q' strrep(num2str(q),'.','')]; eval(['RESULT.' VARNAME ' = reshape(single(DATA.' Ss{Sid} '),1,[]);' ]) end % symmetrize L = fieldnames(RESULT); for i=1:length(L) name = L{i}; % feature name if name(1)=='s', continue; end [T,N,Q] = parse_feaname(name); if strcmp(T,''), continue; end % symmetrization if strcmp(N(1:3),'min') || strcmp(N(1:3),'max') % minmax symmetrization OUT = ['s' T(2:end) '_minmax' N(4:end) '_' Q]; if isfield(RESULT,OUT), continue; end eval(['Fmin = RESULT.' strrep(name,'max','min') ';']); eval(['Fmax = RESULT.' strrep(name,'min','max') ';']); F = symfea([Fmin Fmax]',2,4,'mnmx')'; %#ok<*NASGU> eval(['RESULT.' OUT ' = single(F);' ]); elseif strcmp(N(1:4),'spam') % spam symmetrization OUT = ['s' T(2:end) '_' N '_' Q]; if isfield(RESULT,OUT), continue; end eval(['Fold = RESULT.' name ';']); F = symm1(Fold',2,4)'; eval(['RESULT.' OUT ' = single(F);' ]); end end % delete RESULT.f* L = fieldnames(RESULT); for i=1:length(L) name = L{i}; % feature name if name(1)=='f' RESULT = rmfield(RESULT,name); end end % merge spam features L = fieldnames(RESULT); for i=1:length(L) name = L{i}; % feature name [T,N,Q] = parse_feaname(name); if ~strcmp(N(1:4),'spam'), continue; end if strcmp(T,''), continue; end if strcmp(N(end),'v')||(strcmp(N,'spam11')&&strcmp(T,'s5x5')) elseif strcmp(N(end),'h') % h+v union OUT = [T '_' N 'v_' Q ]; if isfield(RESULT,OUT), continue; end name2 = strrep(name,'h_','v_'); eval(['Fh = RESULT.' name ';']); eval(['Fv = RESULT.' name2 ';']); eval(['RESULT.' OUT ' = [Fh Fv];']); RESULT = rmfield(RESULT,name); RESULT = rmfield(RESULT,name2); elseif strcmp(N,'spam11') % KBKV creation OUT = ['s35_' N '_' Q]; if isfield(RESULT,OUT), continue; end name1 = strrep(name,'5x5','3x3'); name2 = strrep(name,'3x3','5x5'); if ~isfield(RESULT,name1), continue; end if ~isfield(RESULT,name2), continue; end eval(['F_KB = RESULT.' name1 ';']); eval(['F_KV = RESULT.' name2 ';']); eval(['RESULT.' OUT ' = [F_KB F_KV];']); RESULT = rmfield(RESULT,name1); RESULT = rmfield(RESULT,name2); end end function [T,N,Q] = parse_feaname(name) [T,N,Q] = deal(''); P = strfind(name,'_'); if length(P)~=2, return; end T = name(1:P(1)-1); N = name(P(1)+1:P(2)-1); Q = name(P(2)+1:end); function g = all1st(X,q) % % X must be a matrix of doubles or singles (the image) and q is the % quantization step (any positive number). % % Recommended values of q are c, 1.5c, 2c, where c is the central % coefficient in the differential (at X(I,J)). % % This function outputs co-occurrences of ALL 1st-order residuals % listed in Figure 1 in our journal HUGO paper (version from June 14), % including the naming convention. % % List of outputted features: % % 1a) spam14h % 1b) spam14v (orthogonal-spam) % 1c) minmax22v % 1d) minmax24 % 1e) minmax34v % 1f) minmax41 % 1g) minmax34 % 1h) minmax48h % 1i) minmax54 % % Naming convention: % % name = {type}{f}{sigma}{scan} % type \in {spam, minmax} % f \in {1,2,3,4,5} number of filters that are "minmaxed" % sigma \in {1,2,3,4,8} symmetry index % scan \in {h,v,\emptyset} scan of the cooc matrix (empty = sum of both % h and v scans). % % All odd residuals are implemented the same way simply by % narrowing the range for I and J and replacing the residuals -- % -- they should "stick out" (trcet) in the same direction as % the 1st order ones. For example, for the 3rd order: % % RU = -X(I-2,J+2)+3*X(I-1,J+1)-3*X(I,J)+X(I+1,J-1); ... etc. % % Note1: The term X(I,J) should always have the "-" sign. % Note2: This script does not include s, so, cout, cin versions (weak). % This function calls Cooc.m and Quant.m [M N] = size(X); [I,J,T,order] = deal(2:M-1,2:N-1,2,4); % Variable names are self-explanatory (R = right, U = up, L = left, D = down) [R,L,U,D] = deal(X(I,J+1)-X(I,J),X(I,J-1)-X(I,J),X(I-1,J)-X(I,J),X(I+1,J)-X(I,J)); [Rq,Lq,Uq,Dq] = deal(Quant(R,q,T),Quant(L,q,T),Quant(U,q,T),Quant(D,q,T)); [RU,LU,RD,LD] = deal(X(I-1,J+1)-X(I,J),X(I-1,J-1)-X(I,J),X(I+1,J+1)-X(I,J),X(I+1,J-1)-X(I,J)); [RUq,RDq,LUq,LDq] = deal(Quant(RU,q,T),Quant(RD,q,T),Quant(LU,q,T),Quant(LD,q,T)); % minmax22h -- to be symmetrized as mnmx, directional, hv-nonsymmetrical. [RLq_min,UDq_min,RLq_max,UDq_max] = deal(min(Rq,Lq),min(Uq,Dq),max(Rq,Lq),max(Uq,Dq)); g.min22h = reshape(Cooc(RLq_min,order,'hor',T) + Cooc(UDq_min,order,'ver',T),[],1); g.max22h = reshape(Cooc(RLq_max,order,'hor',T) + Cooc(UDq_max,order,'ver',T),[],1); % minmax34h -- to be symmetrized as mnmx, directional, hv-nonsymmetrical [Uq_min,Rq_min,Dq_min,Lq_min] = deal(min(min(Lq,Uq),Rq),min(min(Uq,Rq),Dq),min(min(Rq,Dq),Lq),min(min(Dq,Lq),Uq)); [Uq_max,Rq_max,Dq_max,Lq_max] = deal(max(max(Lq,Uq),Rq),max(max(Uq,Rq),Dq),max(max(Rq,Dq),Lq),max(max(Dq,Lq),Uq)); g.min34h = reshape(Cooc([Uq_min;Dq_min],order,'hor',T) + Cooc([Lq_min Rq_min],order,'ver',T),[],1); g.max34h = reshape(Cooc([Uq_max;Dq_max],order,'hor',T) + Cooc([Rq_max Lq_max],order,'ver',T),[],1); % spam14h/v -- to be symmetrized as spam, directional, hv-nonsymmetrical g.spam14h = reshape(Cooc(Rq,order,'hor',T) + Cooc(Uq,order,'ver',T),[],1); g.spam14v = reshape(Cooc(Rq,order,'ver',T) + Cooc(Uq,order,'hor',T),[],1); % minmax22v -- to be symmetrized as mnmx, directional, hv-nonsymmetrical. Good with higher-order residuals! Note: 22h is bad (too much neighborhood overlap). g.min22v = reshape(Cooc(RLq_min,order,'ver',T) + Cooc(UDq_min,order,'hor',T),[],1); g.max22v = reshape(Cooc(RLq_max,order,'ver',T) + Cooc(UDq_max,order,'hor',T),[],1); % minmax24 -- to be symmetrized as mnmx, directional, hv-symmetrical. Darn good, too. [RUq_min,RDq_min,LUq_min,LDq_min] = deal(min(Rq,Uq),min(Rq,Dq),min(Lq,Uq),min(Lq,Dq)); [RUq_max,RDq_max,LUq_max,LDq_max] = deal(max(Rq,Uq),max(Rq,Dq),max(Lq,Uq),max(Lq,Dq)); g.min24 = reshape(Cooc([RUq_min;RDq_min;LUq_min;LDq_min],order,'hor',T) + Cooc([RUq_min RDq_min LUq_min LDq_min],order,'ver',T),[],1); g.max24 = reshape(Cooc([RUq_max;RDq_max;LUq_max;LDq_max],order,'hor',T) + Cooc([RUq_max RDq_max LUq_max LDq_max],order,'ver',T),[],1); % minmax34v -- v works well, h does not, to be symmetrized as mnmx, directional, hv-nonsymmetrical g.min34v = reshape(Cooc([Uq_min Dq_min],order,'ver',T) + Cooc([Rq_min;Lq_min],order,'hor',T),[],1); g.max34v = reshape(Cooc([Uq_max Dq_max],order,'ver',T) + Cooc([Rq_max;Lq_max],order,'hor',T),[],1); % minmax41 -- to be symmetrized as mnmx, non-directional, hv-symmetrical [R_min,R_max] = deal(min(RLq_min,UDq_min),max(RLq_max,UDq_max)); g.min41 = reshape(Cooc(R_min,order,'hor',T) + Cooc(R_min,order,'ver',T),[],1); g.max41 = reshape(Cooc(R_max,order,'hor',T) + Cooc(R_max,order,'ver',T),[],1); % minmax34 -- good, to be symmetrized as mnmx, directional, hv-symmetrical [RUq_min,RDq_min,LUq_min,LDq_min] = deal(min(RUq_min,RUq),min(RDq_min,RDq),min(LUq_min,LUq),min(LDq_min,LDq)); [RUq_max,RDq_max,LUq_max,LDq_max] = deal(max(RUq_max,RUq),max(RDq_max,RDq),max(LUq_max,LUq),max(LDq_max,LDq)); g.min34 = reshape(Cooc([RUq_min;RDq_min;LUq_min;LDq_min],order,'hor',T) + Cooc([RUq_min RDq_min LUq_min LDq_min],order,'ver',T),[],1); g.max34 = reshape(Cooc([RUq_max;RDq_max;LUq_max;LDq_max],order,'hor',T) + Cooc([RUq_max RDq_max LUq_max LDq_max],order,'ver',T),[],1); % minmax48h -- h better than v, to be symmetrized as mnmx, directional, hv-nonsymmetrical. 48v is almost as good as 48h; for 3rd-order but weaker for 1st-order. Here, I am outputting both but Figure 1 in our paper lists only 48h. [RUq_min2,RDq_min2,LDq_min2,LUq_min2] = deal(min(RUq_min,LUq),min(RDq_min,RUq),min(LDq_min,RDq),min(LUq_min,LDq)); [RUq_min3,RDq_min3,LDq_min3,LUq_min3] = deal(min(RUq_min,RDq),min(RDq_min,LDq),min(LDq_min,LUq),min(LUq_min,RUq)); g.min48h = reshape(Cooc([RUq_min2;LDq_min2;RDq_min3;LUq_min3],order,'hor',T) + Cooc([RDq_min2 LUq_min2 RUq_min3 LDq_min3],order,'ver',T),[],1); g.min48v = reshape(Cooc([RDq_min2;LUq_min2;RUq_min3;LDq_min3],order,'hor',T) + Cooc([RUq_min2 LDq_min2 RDq_min3 LUq_min3],order,'ver',T),[],1); [RUq_max2,RDq_max2,LDq_max2,LUq_max2] = deal(max(RUq_max,LUq),max(RDq_max,RUq),max(LDq_max,RDq),max(LUq_max,LDq)); [RUq_max3,RDq_max3,LDq_max3,LUq_max3] = deal(max(RUq_max,RDq),max(RDq_max,LDq),max(LDq_max,LUq),max(LUq_max,RUq)); g.max48h = reshape(Cooc([RUq_max2;LDq_max2;RDq_max3;LUq_max3],order,'hor',T) + Cooc([RDq_max2 LUq_max2 RUq_max3 LDq_max3],order,'ver',T),[],1); g.max48v = reshape(Cooc([RDq_max2;LUq_max2;RUq_max3;LDq_max3],order,'hor',T) + Cooc([RUq_max2 LDq_max2 RDq_max3 LUq_max3],order,'ver',T),[],1); % minmax54 -- to be symmetrized as mnmx, directional, hv-symmetrical [RUq_min4,RDq_min4,LDq_min4,LUq_min4] = deal(min(RUq_min2,RDq),min(RDq_min2,LDq),min(LDq_min2,LUq),min(LUq_min2,RUq)); [RUq_min5,RDq_min5,LDq_min5,LUq_min5] = deal(min(RUq_min3,LUq),min(RDq_min3,RUq),min(LDq_min3,RDq),min(LUq_min3,LDq)); g.min54 = reshape(Cooc([RUq_min4;LDq_min4;RDq_min5;LUq_min5],order,'hor',T) + Cooc([RDq_min4 LUq_min4 RUq_min5 LDq_min5],order,'ver',T),[],1); [RUq_max4,RDq_max4,LDq_max4,LUq_max4] = deal(max(RUq_max2,RDq),max(RDq_max2,LDq),max(LDq_max2,LUq),max(LUq_max2,RUq)); [RUq_max5,RDq_max5,LDq_max5,LUq_max5] = deal(max(RUq_max3,LUq),max(RDq_max3,RUq),max(LDq_max3,RDq),max(LUq_max3,LDq)); g.max54 = reshape(Cooc([RUq_max4;LDq_max4;RDq_max5;LUq_max5],order,'hor',T) + Cooc([RDq_max4 LUq_max4 RUq_max5 LDq_max5],order,'ver',T),[],1); function g = all2nd(X,q) % % X must be a matrix of doubles or singles (the image) and q is the % quantization step (any positive number). % % Recommended values of q are c, 1.5c, 2c, where c is the central % coefficient in the differential (at X(I,J)). % % This function outputs co-occurrences of ALL 2nd-order residuals % listed in Figure 1 in our journal HUGO paper (version from June 14), % including the naming convention. % % List of outputted features: % % 1a) spam12h % 1b) spam12v (orthogonal-spam) % 1c) minmax21 % 1d) minmax41 % 1e) minmax24h (24v is also outputted but not listed in Figure 1) % 1f) minmax32 % % Naming convention: % % name = {type}{f}{sigma}{scan} % type \in {spam, minmax} % f \in {1,2,3,4,5} number of filters that are "minmaxed" % sigma \in {1,2,3,4,8} symmetry index % scan \in {h,v,\emptyset} scan of the cooc matrix (empty = sum of both % h and v scans). % % All even residuals are implemented the same way simply by % narrowing the range for I and J and replacing the residuals. % % Note1: The term X(I,J) should always have the "-" sign. % Note2: This script does not include s, so, cout, cin versions (weak). % % This function calls Residual.m, Cooc.m, and Quant.m [T,order] = deal(2,4); % 2nd-order residuals are implemented using Residual.m [Dh,Dv,Dd,Dm] = deal(Residual(X,2,'hor'),Residual(X,2,'ver'),Residual(X,2,'diag'),Residual(X,2,'mdiag')); [Yh,Yv,Yd,Ym] = deal(Quant(Dh,q,T),Quant(Dv,q,T),Quant(Dd,q,T),Quant(Dm,q,T)); % spam12h/v g.spam12h = reshape(Cooc(Yh,order,'hor',T) + Cooc(Yv,order,'ver',T),[],1); g.spam12v = reshape(Cooc(Yh,order,'ver',T) + Cooc(Yv,order,'hor',T),[],1); % minmax21 [Dmin,Dmax] = deal(min(Yh,Yv),max(Yh,Yv)); g.min21 = reshape(Cooc(Dmin,order,'hor',T) + Cooc(Dmin,order,'ver',T),[],1); g.max21 = reshape(Cooc(Dmax,order,'hor',T) + Cooc(Dmax,order,'ver',T),[],1); % minmax41 [Dmin2,Dmax2] = deal(min(Dmin,min(Yd,Ym)),max(Dmax,max(Yd,Ym))); g.min41 = reshape(Cooc(Dmin2,order,'hor',T) + Cooc(Dmin2,order,'ver',T),[],1); g.max41 = reshape(Cooc(Dmax2,order,'hor',T) + Cooc(Dmax2,order,'ver',T),[],1); % minmax32 -- good, directional, hv-symmetrical, to be symmetrized as mnmx [RUq_min,RDq_min] = deal(min(Dmin,Ym),min(Dmin,Yd)); [RUq_max,RDq_max] = deal(max(Dmax,Ym),max(Dmax,Yd)); g.min32 = reshape(Cooc([RUq_min;RDq_min],order,'hor',T) + Cooc([RUq_min RDq_min],order,'ver',T),[],1); g.max32 = reshape(Cooc([RUq_max;RDq_max],order,'hor',T) + Cooc([RUq_max RDq_max],order,'ver',T),[],1); % minmax24h,v -- both "not bad," h slightly better, directional, hv-nonsymmetrical, to be symmetrized as mnmx [RUq_min2,RDq_min2,RUq_min3,LUq_min3] = deal(min(Ym,Yh),min(Yd,Yh),min(Ym,Yv),min(Yd,Yv)); g.min24h = reshape(Cooc([RUq_min2;RDq_min2],order,'hor',T)+Cooc([RUq_min3 LUq_min3],order,'ver',T),[],1); g.min24v = reshape(Cooc([RUq_min2 RDq_min2],order,'ver',T)+Cooc([RUq_min3;LUq_min3],order,'hor',T),[],1); [RUq_max2,RDq_max2,RUq_max3,LUq_max3] = deal(max(Ym,Yh),max(Yd,Yh),max(Ym,Yv),max(Yd,Yv)); g.max24h = reshape(Cooc([RUq_max2;RDq_max2],order,'hor',T)+Cooc([RUq_max3 LUq_max3],order,'ver',T),[],1); g.max24v = reshape(Cooc([RUq_max2 RDq_max2],order,'ver',T)+Cooc([RUq_max3;LUq_max3],order,'hor',T),[],1); function g = all3rd(X,q) % % X must be a matrix of doubles or singles (the image) and q is the % quantization step (any positive number). % % Recommended values of q are c, 1.5c, 2c, where c is the central % coefficient in the differential (at X(I,J)). % % This function outputs co-occurrences of ALL 3rd-order residuals % listed in Figure 1 in our journal HUGO paper (version from June 14), % including the naming convention. % % List of outputted features: % % 1a) spam14h % 1b) spam14v (orthogonal-spam) % 1c) minmax22v % 1d) minmax24 % 1e) minmax34v % 1f) minmax41 % 1g) minmax34 % 1h) minmax48h % 1i) minmax54 % % Naming convention: % % name = {type}{f}{sigma}{scan} % type \in {spam, minmax} % f \in {1,2,3,4,5} number of filters that are "minmaxed" % sigma \in {1,2,3,4,8} symmetry index % scan \in {h,v,\emptyset} scan of the cooc matrix (empty = sum of both % h and v scans). % % All odd residuals are implemented the same way simply by % narrowing the range for I and J and replacing the residuals -- % -- they should "stick out" (trcet) in the same direction as % the 1st order ones. For example, for the 3rd order: % % RU = -X(I-2,J+2)+3*X(I-1,J+1)-3*X(I,J)+X(I+1,J-1); ... etc. % % Note1: The term X(I,J) should always have the "-" sign. % Note2: This script does not include s, so, cout, cin versions (weak). [M N] = size(X); [I,J,T,order] = deal(3:M-2,3:N-2,2,4); [R,L,U,D] = deal(-X(I,J+2)+3*X(I,J+1)-3*X(I,J)+X(I,J-1),-X(I,J-2)+3*X(I,J-1)-3*X(I,J)+X(I,J+1),-X(I-2,J)+3*X(I-1,J)-3*X(I,J)+X(I+1,J),-X(I+2,J)+3*X(I+1,J)-3*X(I,J)+X(I-1,J)); [Rq,Lq,Uq,Dq] = deal(Quant(R,q,T),Quant(L,q,T),Quant(U,q,T),Quant(D,q,T)); [RU,LU,RD,LD] = deal(-X(I-2,J+2)+3*X(I-1,J+1)-3*X(I,J)+X(I+1,J-1),-X(I-2,J-2)+3*X(I-1,J-1)-3*X(I,J)+X(I+1,J+1),-X(I+2,J+2)+3*X(I+1,J+1)-3*X(I,J)+X(I-1,J-1),-X(I+2,J-2)+3*X(I+1,J-1)-3*X(I,J)+X(I-1,J+1)); [RUq,RDq,LUq,LDq] = deal(Quant(RU,q,T),Quant(RD,q,T),Quant(LU,q,T),Quant(LD,q,T)); % minmax22h -- to be symmetrized as mnmx, directional, hv-nonsymmetrical [RLq_min,UDq_min] = deal(min(Rq,Lq),min(Uq,Dq)); [RLq_max,UDq_max] = deal(max(Rq,Lq),max(Uq,Dq)); g.min22h = reshape(Cooc(RLq_min,order,'hor',T) + Cooc(UDq_min,order,'ver',T),[],1); g.max22h = reshape(Cooc(RLq_max,order,'hor',T) + Cooc(UDq_max,order,'ver',T),[],1); % minmax34h -- to be symmetrized as mnmx, directional, hv-nonsymmetrical [Uq_min,Rq_min,Dq_min,Lq_min] = deal(min(RLq_min,Uq),min(UDq_min,Rq),min(RLq_min,Dq),min(UDq_min,Lq)); [Uq_max,Rq_max,Dq_max,Lq_max] = deal(max(RLq_max,Uq),max(UDq_max,Rq),max(RLq_max,Dq),max(UDq_max,Lq)); g.min34h = reshape(Cooc([Uq_min;Dq_min],order,'hor',T)+Cooc([Rq_min Lq_min],order,'ver',T),[],1); g.max34h = reshape(Cooc([Uq_max;Dq_max],order,'hor',T)+Cooc([Rq_max Lq_max],order,'ver',T),[],1); % spam14h,v -- to be symmetrized as spam, directional, hv-nonsymmetrical g.spam14h = reshape(Cooc(Rq,order,'hor',T) + Cooc(Uq,order,'ver',T),[],1); g.spam14v = reshape(Cooc(Rq,order,'ver',T) + Cooc(Uq,order,'hor',T),[],1); % minmax22v -- to be symmetrized as mnmx, directional, hv-nonsymmetrical. Good with higher-order residuals! Note: 22h is bad (too much neighborhood overlap). g.min22v = reshape(Cooc(RLq_min,order,'ver',T) + Cooc(UDq_min,order,'hor',T),[],1); g.max22v = reshape(Cooc(RLq_max,order,'ver',T) + Cooc(UDq_max,order,'hor',T),[],1); % minmax24 -- to be symmetrized as mnmx, directional, hv-symmetrical Note: Darn good, too. [RUq_min,RDq_min,LUq_min,LDq_min] = deal(min(Rq,Uq),min(Rq,Dq),min(Lq,Uq),min(Lq,Dq)); [RUq_max,RDq_max,LUq_max,LDq_max] = deal(max(Rq,Uq),max(Rq,Dq),max(Lq,Uq),max(Lq,Dq)); g.min24 = reshape(Cooc([RUq_min;RDq_min;LUq_min;LDq_min],order,'hor',T) + Cooc([RUq_min RDq_min LUq_min LDq_min],order,'ver',T),[],1); g.max24 = reshape(Cooc([RUq_max;RDq_max;LUq_max;LDq_max],order,'hor',T) + Cooc([RUq_max RDq_max LUq_max LDq_max],order,'ver',T),[],1); % minmax34v -- v works well, h does not, to be symmetrized as mnmx, directional, hv-nonsymmetrical g.min34v = reshape(Cooc([Uq_min Dq_min],order,'ver',T) + Cooc([Rq_min;Lq_min],order,'hor',T),[],1); g.max34v = reshape(Cooc([Uq_max Dq_max],order,'ver',T) + Cooc([Rq_max;Lq_max],order,'hor',T),[],1); % minmax41 -- unknown performance as of 6/14/11, to be symmetrized as mnmx, non-directional, hv-symmetrical [R_min,R_max] = deal(min(RUq_min,LDq_min),max(RUq_max,LDq_max)); g.min41 = reshape(Cooc(R_min,order,'hor',T) + Cooc(R_min,order,'ver',T),[],1); g.max41 = reshape(Cooc(R_max,order,'hor',T) + Cooc(R_max,order,'ver',T),[],1); % minmax34 -- good, to be symmetrized as mnmx, directional, hv-symmetrical [RUq_min2,RDq_min2,LUq_min2,LDq_min2] = deal(min(RUq_min,RUq),min(RDq_min,RDq),min(LUq_min,LUq),min(LDq_min,LDq)); [RUq_max2,RDq_max2,LUq_max2,LDq_max2] = deal(max(RUq_max,RUq),max(RDq_max,RDq),max(LUq_max,LUq),max(LDq_max,LDq)); g.min34 = reshape(Cooc([RUq_min2;RDq_min2;LUq_min2;LDq_min2],order,'hor',T) + Cooc([RUq_min2 RDq_min2 LUq_min2 LDq_min2],order,'ver',T),[],1); g.max34 = reshape(Cooc([RUq_max2;RDq_max2;LUq_max2;LDq_max2],order,'hor',T) + Cooc([RUq_max2 RDq_max2 LUq_max2 LDq_max2],order,'ver',T),[],1); % minmax48h -- h better than v, to be symmetrized as mnmx, directional, hv-nonsymmetrical. 48v is almost as good as 48h for 3rd-order but weaker for 1st-order. Here, I am outputting both but Figure 1 in our paper lists only 48h. [RUq_min3,RDq_min3,LDq_min3,LUq_min3] = deal(min(RUq_min2,LUq),min(RDq_min2,RUq),min(LDq_min2,RDq),min(LUq_min2,LDq)); [RUq_min4,RDq_min4,LDq_min4,LUq_min4] = deal(min(RUq_min2,RDq),min(RDq_min2,LDq),min(LDq_min2,LUq),min(LUq_min2,RUq)); g.min48h = reshape(Cooc([RUq_min3;LDq_min3;RDq_min4;LUq_min4],order,'hor',T)+Cooc([RDq_min3 LUq_min3 RUq_min4 LDq_min4],order,'ver',T),[],1); g.min48v = reshape(Cooc([RUq_min3 LDq_min3 RDq_min4 LUq_min4],order,'ver',T)+Cooc([RDq_min3;LUq_min3;RUq_min4;LDq_min4],order,'hor',T),[],1); [RUq_max3,RDq_max3,LDq_max3,LUq_max3] = deal(max(RUq_max2,LUq),max(RDq_max2,RUq),max(LDq_max2,RDq),max(LUq_max2,LDq)); [RUq_max4,RDq_max4,LDq_max4,LUq_max4] = deal(max(RUq_max2,RDq),max(RDq_max2,LDq),max(LDq_max2,LUq),max(LUq_max2,RUq)); g.max48h = reshape(Cooc([RUq_max3;LDq_max3;RDq_max4;LUq_max4],order,'hor',T)+Cooc([RDq_max3 LUq_max3 RUq_max4 LDq_max4],order,'ver',T),[],1); g.max48v = reshape(Cooc([RUq_max3 LDq_max3 RDq_max4 LUq_max4],order,'ver',T)+Cooc([RDq_max3;LUq_max3;RUq_max4;LDq_max4],order,'hor',T),[],1); % minmax54 -- to be symmetrized as mnmx, directional, hv-symmetrical [RUq_min5,RDq_min5,LDq_min5,LUq_min5] = deal(min(RUq_min3,RDq),min(RDq_min3,LDq),min(LDq_min3,LUq),min(LUq_min3,RUq)); [RUq_max5,RDq_max5,LDq_max5,LUq_max5] = deal(max(RUq_max3,RDq),max(RDq_max3,LDq),max(LDq_max3,LUq),max(LUq_max3,RUq)); g.min54 = reshape(Cooc([RUq_min5;LDq_min5;RDq_min5;LUq_min5],order,'hor',T) + Cooc([RDq_min5 LUq_min5 RUq_min5 LDq_min5],order,'ver',T),[],1); g.max54 = reshape(Cooc([RUq_max5;LDq_max5;RDq_max5;LUq_max5],order,'hor',T) + Cooc([RDq_max5 LUq_max5 RUq_max5 LDq_max5],order,'ver',T),[],1); function g = all3x3(X,q) % This function outputs co-occurrences of ALL residuals based on the % KB kernel and its "halves" (EDGE residuals) as listed in Figure 1 % in our journal HUGO paper (version from June 14), including the naming % convention. [T,order] = deal(2,4); % spam11 (old name KB residual), good, non-directional, hv-symmetrical, to be symmetrized as spam D = Residual(X,2,'KB'); Y = Quant(D,q,T); g.spam11 = reshape(Cooc(Y,order,'hor',T) + Cooc(Y,order,'ver',T),[],1); % EDGE residuals D = Residual(X,2,'edge-h');Du = D(:,1:size(D,2)/2);Db = D(:,size(D,2)/2+1:end); D = Residual(X,2,'edge-v');Dl = D(:,1:size(D,2)/2);Dr = D(:,size(D,2)/2+1:end); [Yu,Yb,Yl,Yr] = deal(Quant(Du,q,T),Quant(Db,q,T),Quant(Dl,q,T),Quant(Dr,q,T)); % spam14h,v not bad, directional, hv-nonsym, to be symmetrized as spam g.spam14v = reshape(Cooc([Yu Yb],order,'ver',T) + Cooc([Yl;Yr],order,'hor',T),[],1); g.spam14h = reshape(Cooc([Yu;Yb],order,'hor',T) + Cooc([Yl Yr],order,'ver',T),[],1); % minmax24 -- EXCELLENT, directional, hv-sym, to be symmetrized as mnmx [Dmin1,Dmin2,Dmin3,Dmin4] = deal(min(Yu,Yl),min(Yb,Yr),min(Yu,Yr),min(Yb,Yl)); g.min24 = reshape(Cooc([Dmin1 Dmin2 Dmin3 Dmin4],order,'ver',T) + Cooc([Dmin1;Dmin2;Dmin3;Dmin4],order,'hor',T),[],1); [Dmax1,Dmax2,Dmax3,Dmax4] = deal(max(Yu,Yl),max(Yb,Yr),max(Yu,Yr),max(Yb,Yl)); g.max24 = reshape(Cooc([Dmax1 Dmax2 Dmax3 Dmax4],order,'ver',T) + Cooc([Dmax1;Dmax2;Dmax3;Dmax4],order,'hor',T),[],1); % minmax22 - hv-nonsymmetrical % min22h -- good, to be symmetrized as mnmx, directional, hv-nonsymmetrical % min22v -- EXCELLENT - to be symmetrized as mnmx, directional, [UEq_min,REq_min] = deal(min(Yu,Yb),min(Yr,Yl)); g.min22h = reshape(Cooc(UEq_min,order,'hor',T) + Cooc(REq_min,order,'ver',T),[],1); g.min22v = reshape(Cooc(UEq_min,order,'ver',T) + Cooc(REq_min,order,'hor',T),[],1); [UEq_max,REq_max] = deal(max(Yu,Yb),max(Yr,Yl)); g.max22h = reshape(Cooc(UEq_max,order,'hor',T) + Cooc(REq_max,order,'ver',T),[],1); g.max22v = reshape(Cooc(UEq_max,order,'ver',T) + Cooc(REq_max,order,'hor',T),[],1); % minmax41 -- good, non-directional, hv-sym, to be symmetrized as mnmx [Dmin5,Dmax5] = deal(min(Dmin1,Dmin2),max(Dmax1,Dmax2)); g.min41 = reshape(Cooc(Dmin5,order,'ver',T) + Cooc(Dmin5,order,'hor',T),[],1); g.max41 = reshape(Cooc(Dmax5,order,'ver',T) + Cooc(Dmax5,order,'hor',T),[],1); function g = all5x5(X,q) % This function outputs co-occurrences of ALL residuals based on the % KV kernel and its "halves" (EDGE residuals) as listed in Figure 1 % in our journal HUGO paper (version from June 14), including the naming % convention. [M N] = size(X); [I,J,T,order] = deal(3:M-2,3:N-2,2,4); % spam11 (old name KV residual), good, non-directional, hv-symmetrical, to be symmetrized as spam D = Residual(X,3,'KV'); Y = Quant(D,q,T); g.spam11 = reshape(Cooc(Y,order,'hor',T) + Cooc(Y,order,'ver',T),[],1); % EDGE residuals Du = 8*X(I,J-1)+8*X(I-1,J)+8*X(I,J+1)-6*X(I-1,J-1)-6*X(I-1,J+1)-2*X(I,J-2)-2*X(I,J+2)-2*X(I-2,J)+2*X(I-1,J-2)+2*X(I-2,J-1)+2*X(I-2,J+1)+2*X(I-1,J+2)-X(I-2,J-2)-X(I-2,J+2)-12*X(I,J); Dr = 8*X(I-1,J)+8*X(I,J+1)+8*X(I+1,J)-6*X(I-1,J+1)-6*X(I+1,J+1)-2*X(I-2,J)-2*X(I+2,J)-2*X(I,J+2)+2*X(I-2,J+1)+2*X(I-1,J+2)+2*X(I+1,J+2)+2*X(I+2,J+1)-X(I-2,J+2)-X(I+2,J+2)-12*X(I,J); Db = 8*X(I,J+1)+8*X(I+1,J)+8*X(I,J-1)-6*X(I+1,J+1)-6*X(I+1,J-1)-2*X(I,J-2)-2*X(I,J+2)-2*X(I+2,J)+2*X(I+1,J+2)+2*X(I+2,J+1)+2*X(I+2,J-1)+2*X(I+1,J-2)-X(I+2,J+2)-X(I+2,J-2)-12*X(I,J); Dl = 8*X(I+1,J)+8*X(I,J-1)+8*X(I-1,J)-6*X(I+1,J-1)-6*X(I-1,J-1)-2*X(I-2,J)-2*X(I+2,J)-2*X(I,J-2)+2*X(I+2,J-1)+2*X(I+1,J-2)+2*X(I-1,J-2)+2*X(I-2,J-1)-X(I+2,J-2)-X(I-2,J-2)-12*X(I,J); [Yu,Yb,Yl,Yr] = deal(Quant(Du,q,T),Quant(Db,q,T),Quant(Dl,q,T),Quant(Dr,q,T)); % spam14v not bad, directional, hv-nonsym, to be symmetrized as spam g.spam14v = reshape(Cooc([Yu Yb],order,'ver',T) + Cooc([Yl;Yr],order,'hor',T),[],1); g.spam14h = reshape(Cooc([Yu;Yb],order,'hor',T) + Cooc([Yl Yr],order,'ver',T),[],1); % minmax24 -- EXCELLENT, directional, hv-sym, to be symmetrized as mnmx [Dmin1,Dmin2,Dmin3,Dmin4] = deal(min(Yu,Yl),min(Yb,Yr),min(Yu,Yr),min(Yb,Yl)); g.min24 = reshape(Cooc([Dmin1 Dmin2 Dmin3 Dmin4],order,'ver',T) + Cooc([Dmin1;Dmin2;Dmin3;Dmin4],order,'hor',T),[],1); [Dmax1,Dmax2,Dmax3,Dmax4] = deal(max(Yu,Yl),max(Yb,Yr),max(Yu,Yr),max(Yb,Yl)); g.max24 = reshape(Cooc([Dmax1 Dmax2 Dmax3 Dmax4],order,'ver',T) + Cooc([Dmax1;Dmax2;Dmax3;Dmax4],order,'hor',T),[],1); % minmax22 - hv-nonsymmetrical % min22h -- good, to be symmetrized as mnmx, directional, hv-nonsymmetrical % min22v -- EXCELLENT - to be symmetrized as mnmx, directional, [UEq_min,REq_min] = deal(min(Yu,Yb),min(Yr,Yl)); g.min22h = reshape(Cooc(UEq_min,order,'hor',T) + Cooc(REq_min,order,'ver',T),[],1); g.min22v = reshape(Cooc(UEq_min,order,'ver',T) + Cooc(REq_min,order,'hor',T),[],1); [UEq_max,REq_max] = deal(max(Yu,Yb),max(Yr,Yl)); g.max22h = reshape(Cooc(UEq_max,order,'hor',T) + Cooc(REq_max,order,'ver',T),[],1); g.max22v = reshape(Cooc(UEq_max,order,'ver',T) + Cooc(REq_max,order,'hor',T),[],1); % minmax41 -- good, non-directional, hv-sym, to be symmetrized as mnmx [Dmin5,Dmax5] = deal(min(Dmin1,Dmin2),max(Dmax1,Dmax2)); g.min41 = reshape(Cooc(Dmin5,order,'ver',T) + Cooc(Dmin5,order,'hor',T),[],1); g.max41 = reshape(Cooc(Dmax5,order,'ver',T) + Cooc(Dmax5,order,'hor',T),[],1); function f = Cooc(D,order,type,T) % Co-occurrence operator to be appied to a 2D array of residuals D \in [-T,T] % T ... threshold % order ... cooc order \in {1,2,3,4,5} % type ... cooc type \in {hor,ver,diag,mdiag,square,square-ori,hvdm} % f ... an array of size (2T+1)^order B = 2*T+1; if max(abs(D(:))) > T, fprintf('*** ERROR in Cooc.m: Residual out of range ***\n'), end switch order case 1 f = hist(D(:),-T:T); case 2 f = zeros(B,B); if strcmp(type,'hor'), L = D(:,1:end-1); R = D(:,2:end);end if strcmp(type,'ver'), L = D(1:end-1,:); R = D(2:end,:);end if strcmp(type,'diag'), L = D(1:end-1,1:end-1); R = D(2:end,2:end);end if strcmp(type,'mdiag'), L = D(1:end-1,2:end); R = D(2:end,1:end-1);end for i = -T : T R2 = R(L(:)==i); for j = -T : T f(i+T+1,j+T+1) = sum(R2(:)==j); end end case 3 f = zeros(B,B,B); if strcmp(type,'hor'), L = D(:,1:end-2); C = D(:,2:end-1); R = D(:,3:end);end if strcmp(type,'ver'), L = D(1:end-2,:); C = D(2:end-1,:); R = D(3:end,:);end if strcmp(type,'diag'), L = D(1:end-2,1:end-2); C = D(2:end-1,2:end-1); R = D(3:end,3:end);end if strcmp(type,'mdiag'), L = D(1:end-2,3:end); C = D(2:end-1,2:end-1); R = D(3:end,1:end-2);end for i = -T : T C2 = C(L(:)==i); R2 = R(L(:)==i); for j = -T : T R3 = R2(C2(:)==j); for k = -T : T f(i+T+1,j+T+1,k+T+1) = sum(R3(:)==k); end end end case 4 f = zeros(B,B,B,B); if strcmp(type,'hor'), L = D(:,1:end-3); C = D(:,2:end-2); E = D(:,3:end-1); R = D(:,4:end);end if strcmp(type,'ver'), L = D(1:end-3,:); C = D(2:end-2,:); E = D(3:end-1,:); R = D(4:end,:);end if strcmp(type,'diag'), L = D(1:end-3,1:end-3); C = D(2:end-2,2:end-2); E = D(3:end-1,3:end-1); R = D(4:end,4:end);end if strcmp(type,'mdiag'), L = D(4:end,1:end-3); C = D(3:end-1,2:end-2); E = D(2:end-2,3:end-1); R = D(1:end-3,4:end);end if strcmp(type,'square'), L = D(2:end,1:end-1); C = D(2:end,2:end); E = D(1:end-1,2:end); R = D(1:end-1,1:end-1);end if strcmp(type,'square-ori'), [M, N] = size(D); Dh = D(:,1:M); Dv = D(:,M+1:2*M); L = Dh(2:end,1:end-1); C = Dv(2:end,2:end); E = Dh(1:end-1,2:end); R = Dv(1:end-1,1:end-1);end if strcmp(type,'hvdm'), [M, N] = size(D); L = D(:,1:M); C = D(:,M+1:2*M); E = D(:,2*M+1:3*M); R = D(:,3*M+1:4*M);end if strcmp(type,'s-in'), [M, N] = size(D); Dh = D(:,1:M); Dv = D(:,M+1:2*M); Dh1 = D(:,2*M+1:3*M); Dv1 = D(:,3*M+1:4*M); L = Dh(2:end,1:end-1); C = Dh1(2:end,2:end); E = Dh1(1:end-1,2:end); R = Dh(1:end-1,1:end-1);end if strcmp(type,'s-out'), [M, N] = size(D); Dh = D(:,1:M); Dv = D(:,M+1:2*M); Dh1 = D(:,2*M+1:3*M); Dv1 = D(:,3*M+1:4*M); L = Dh1(2:end,1:end-1); C = Dh(2:end,2:end); E = Dh(1:end-1,2:end); R = Dh1(1:end-1,1:end-1);end if strcmp(type,'ori-in'), [M, N] = size(D); Dh = D(:,1:M); Dv = D(:,M+1:2*M); Dh1 = D(:,2*M+1:3*M); Dv1 = D(:,3*M+1:4*M); L = Dh(2:end,1:end-1); C = Dv1(2:end,2:end); E = Dh1(1:end-1,2:end); R = Dv(1:end-1,1:end-1);end if strcmp(type,'ori-out'),[M, N] = size(D); Dh = D(:,1:M); Dv = D(:,M+1:2*M); Dh1 = D(:,2*M+1:3*M); Dv1 = D(:,3*M+1:4*M); L = Dh1(2:end,1:end-1); C = Dv(2:end,2:end); E = Dh(1:end-1,2:end); R = Dv1(1:end-1,1:end-1);end for i = -T : T ind = (L(:)==i); C2 = C(ind); E2 = E(ind); R2 = R(ind); for j = -T : T ind = (C2(:)==j); E3 = E2(ind); R3 = R2(ind); for k = -T : T R4 = R3(E3(:)==k); for l = -T : T f(i+T+1,j+T+1,k+T+1,l+T+1) = sum(R4(:)==l); end end end end case 5 f = zeros(B,B,B,B,B); if strcmp(type,'hor'),L = D(:,1:end-4); C = D(:,2:end-3); E = D(:,3:end-2); F = D(:,4:end-1); R = D(:,5:end);end if strcmp(type,'ver'),L = D(1:end-4,:); C = D(2:end-3,:); E = D(3:end-2,:); F = D(4:end-1,:); R = D(5:end,:);end for i = -T : T ind = (L(:)==i); C2 = C(ind); E2 = E(ind); F2 = F(ind); R2 = R(ind); for j = -T : T ind = (C2(:)==j); E3 = E2(ind); F3 = F2(ind); R3 = R2(ind); for k = -T : T ind = (E3(:)==k); F4 = F3(ind); R4 = R3(ind); for l = -T : T R5 = R4(F4(:)==l); for m = -T : T f(i+T+1,j+T+1,k+T+1,l+T+1,m+T+1) = sum(R5(:)==m); end end end end end end % normalization f = double(f); fsum = sum(f(:)); if fsum>0, f = f/fsum; end function Y = Quant(X,q,T) % Quantization routine % X ... variable to be quantized/truncated % T ... threshold % q ... quantization step (with type = 'scalar') or a vector of increasing % non-negative integers outlining the quantization process. % Y ... quantized/truncated variable % Example 0: when q is a positive scalar, Y = trunc(round(X/q),T) % Example 1: q = [0 1 2 3] quantizes 0 to 0, 1 to 1, 2 to 2, [3,Inf) to 3, % (-Inf,-3] to -3, -2 to -2, -1 to -1. It is equivalent to Quant(.,3,1). % Example 2: q = [0 2 4 5] quantizes 0 to 0, {1,2} to 1, {3,4} to 2, % [5,Inf) to 3, and similarly with the negatives. % Example 3: q = [1 2] quantizes {-1,0,1} to 0, [2,Inf) to 1, (-Inf,-2] to -1. % Example 4: q = [1 3 7 15 16] quantizes {-1,0,1} to 0, {2,3} to 1, {4,5,6,7} % to 2, {8,9,10,11,12,13,14,15} to 3, [16,Inf) to 4, and similarly the % negatives. if numel(q) == 1 if q > 0, Y = trunc(round(X/q),T); else fprintf('*** ERROR: Attempt to quantize with non-positive step. ***\n'),end else q = round(q); % Making sure the vector q is made of integers if min(q(2:end)-q(1:end-1)) <= 0 fprintf('*** ERROR: quantization vector not strictly increasing. ***\n') end if min(q) < 0, fprintf('*** ERROR: Attempt to quantize with negative step. ***\n'),end T = q(end); % The last value determines the truncation threshold v = zeros(1,2*T+1); % value-substitution vector Y = trunc(X,T)+T+1; % Truncated X and shifted to positive values if q(1) == 0 v(T+1) = 0; z = 1; ind = T+2; for i = 2 : numel(q) v(ind:ind+q(i)-q(i-1)-1) = z; ind = ind+q(i)-q(i-1); z = z+1; end v(1:T) = -v(end:-1:T+2); else v(T+1-q(1):T+1+q(1)) = 0; z = 1; ind = T+2+q(1); for i = 2 : numel(q) v(ind:ind+q(i)-q(i-1)-1) = z; ind = ind+q(i)-q(i-1); z = z+1; end v(1:T-q(1)) = -v(end:-1:T+2+q(1)); end Y = v(Y); % The actual quantization :) end function Z = trunc(X,T) % Truncation to [-T,T] Z = X; Z(Z > T) = T; Z(Z < -T) = -T; function fsym = symfea(f,T,order,type) % Marginalization by sign and directional symmetry for a feature vector % stored as one of our 2*(2T+1)^order-dimensional feature vectors. This % routine should be used for features possiessing sign and directional % symmetry, such as spam-like features or 3x3 features. It should NOT be % used for features from MINMAX residuals. Use the alternative % symfea_minmax for this purpose. % The feature f is assumed to be a 2dim x database_size matrix of features % stored as columns (e.g., hor+ver, diag+minor_diag), with dim = % 2(2T+1)^order. [dim,N] = size(f); B = 2*T+1; c = B^order; ERR = 1; if strcmp(type,'spam') if dim == 2*c switch order % Reduced dimensionality for a B^order dimensional feature vector case 1, red = T + 1; case 2, red = (T + 1)^2; case 3, red = 1 + 3*T + 4*T^2 + 2*T^3; case 4, red = B^2 + 4*T^2*(T + 1)^2; case 5, red = 1/4*(B^2 + 1)*(B^3 + 1); end fsym = zeros(2*red,N); for i = 1 : N switch order case 1, cube = f(1:c,i); case 2, cube = reshape(f(1:c,i),[B B]); case 3, cube = reshape(f(1:c,i),[B B B]); case 4, cube = reshape(f(1:c,i),[B B B B]); case 5, cube = reshape(f(1:c,i),[B B B B B]); end % [size(symm_dir(cube,T,order)) red] fsym(1:red,i) = symm(cube,T,order); switch order case 1, cube = f(c+1:2*c,i); case 2, cube = reshape(f(c+1:2*c,i),[B B]); case 3, cube = reshape(f(c+1:2*c,i),[B B B]); case 4, cube = reshape(f(c+1:2*c,i),[B B B B]); case 5, cube = reshape(f(c+1:2*c,i),[B B B B B]); end fsym(red+1:2*red,i) = symm(cube,T,order); end else fsym = []; fprintf('*** ERROR: feature dimension is not 2x(2T+1)^order. ***\n') end ERR = 0; end if strcmp(type,'mnmx') if dim == 2*c switch order case 3, red = B^3 - T*B^2; % Dim of the marginalized set is (2T+1)^3-T*(2T+1)^2 case 4, red = B^4 - 2*T*(T+1)*B^2; % Dim of the marginalized set is (2T+1)^4-2T*(T+1)*(2T+1)^2 end fsym = zeros(red, N); for i = 1 : N switch order case 1, cube_min = f(1:c,i); cube_max = f(c+1:2*c,i); case 2, cube_min = reshape(f(1:c,i),[B B]); cube_max = reshape(f(c+1:2*c,i),[B B]); f_signsym = cube_min + cube_max(end:-1:1,end:-1:1); case 3, cube_min = reshape(f(1:c,i),[B B B]); cube_max = reshape(f(c+1:2*c,i),[B B B]); f_signsym = cube_min + cube_max(end:-1:1,end:-1:1,end:-1:1); case 4, cube_min = reshape(f(1:c,i),[B B B B]); cube_max = reshape(f(c+1:2*c,i),[B B B B]); f_signsym = cube_min + cube_max(end:-1:1,end:-1:1,end:-1:1,end:-1:1); case 5, cube_min = reshape(f(1:c,i),[B B B B B]); cube_max = reshape(f(c+1:2*c,i),[B B B B B]); f_signsym = cube_min + cube_max(end:-1:1,end:-1:1,end:-1:1,end:-1:1,end:-1:1); end % f_signsym = cube_min + cube_max(end:-1:1,end:-1:1,end:-1:1); fsym(:,i) = symm_dir(f_signsym,T,order); end end ERR = 0; end if ERR == 1, fprintf('*** ERROR: Feature dimension and T, order incompatible. ***\n'), end function As = symm_dir(A,T,order) % Symmetry marginalization routine. The purpose is to reduce the feature % dimensionality and make the features more populated. % A is an array of features of size (2*T+1)^order, otherwise error is outputted. % % Directional marginalization pertains to the fact that the % differences d1, d2, d3, ... in a natural (both cover and stego) image % are as likely to occur as ..., d3, d2, d1. % Basically, we merge all pairs of bins (i,j,k, ...) and (..., k,j,i) % as long as they are two different bins. Thus, instead of dim = % (2T+1)^order, we decrease the dim by 1/2*{# of non-symmetric bins}. % For order = 3, the reduced dim is (2T+1)^order - T(2T+1)^(order-1), % for order = 4, it is (2T+1)^4 - 2T(T+1)(2T+1)^2. B = 2*T+1; done = zeros(size(A)); switch order case 3, red = B^3 - T*B^2; % Dim of the marginalized set is (2T+1)^3-T*(2T+1)^2 case 4, red = B^4 - 2*T*(T+1)*B^2; % Dim of the marginalized set is (2T+1)^4-2T*(T+1)*(2T+1)^2 case 5, red = B^5 - 2*T*(T+1)*B^3; end As = zeros(red, 1); m = 1; switch order case 3 for i = -T : T for j = -T : T for k = -T : T if k ~= i % Asymmetric bin if done(i+T+1,j+T+1,k+T+1) == 0 As(m) = A(i+T+1,j+T+1,k+T+1) + A(k+T+1,j+T+1,i+T+1); % Two mirror-bins are merged done(i+T+1,j+T+1,k+T+1) = 1; done(k+T+1,j+T+1,i+T+1) = 1; m = m + 1; end else % Symmetric bin is just copied As(m) = A(i+T+1,j+T+1,k+T+1); done(i+T+1,j+T+1,k+T+1) = 1; m = m + 1; end end end end case 4 for i = -T : T for j = -T : T for k = -T : T for n = -T : T if (i ~= n) || (j ~= k) % Asymmetric bin if done(i+T+1,j+T+1,k+T+1,n+T+1) == 0 As(m) = A(i+T+1,j+T+1,k+T+1,n+T+1) + A(n+T+1,k+T+1,j+T+1,i+T+1); % Two mirror-bins are merged done(i+T+1,j+T+1,k+T+1,n+T+1) = 1; done(n+T+1,k+T+1,j+T+1,i+T+1) = 1; m = m + 1; end else % Symmetric bin is just copied As(m) = A(i+T+1,j+T+1,k+T+1,n+T+1); done(i+T+1,j+T+1,k+T+1,n+T+1) = 1; m = m + 1; end end end end end case 5 for i = -T : T for j = -T : T for k = -T : T for l = -T : T for n = -T : T if (i ~= n) || (j ~= l) % Asymmetric bin if done(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1) == 0 As(m) = A(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1) + A(n+T+1,l+T+1,k+T+1,j+T+1,i+T+1); % Two mirror-bins are merged done(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1) = 1; done(n+T+1,l+T+1,k+T+1,j+T+1,i+T+1) = 1; m = m + 1; end else % Symmetric bin is just copied As(m) = A(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1); done(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1) = 1; m = m + 1; end end end end end end otherwise fprintf('*** ERROR: Order not equal to 3 or 4 or 5! ***\n') end function fsym = symm1(f,T,order) % Marginalization by sign and directional symmetry for a feature vector % stored as a (2T+1)^order-dimensional array. The input feature f is % assumed to be a dim x database_size matrix of features stored as columns. [dim,N] = size(f); B = 2*T+1; c = B^order; ERR = 1; if dim == c ERR = 0; switch order % Reduced dimensionality for a c-dimensional feature vector case 1, red = T + 1; case 2, red = (T + 1)^2; case 3, red = 1 + 3*T + 4*T^2 + 2*T^3; case 4, red = B^2 + 4*T^2*(T + 1)^2; case 5, red = 1/4*(B^2 + 1)*(B^3 + 1); end fsym = zeros(red,N); for i = 1 : N switch order case 1, cube = f(:,i); case 2, cube = reshape(f(:,i),[B B]); case 3, cube = reshape(f(:,i),[B B B]); case 4, cube = reshape(f(:,i),[B B B B]); case 5, cube = reshape(f(:,i),[B B B B B]); end % [size(symm_dir(cube,T,order)) red] fsym(:,i) = symm(cube,T,order); end end if ERR == 1, fprintf('*** ERROR in symm1: Feature dimension and T, order incompatible. ***\n'), end function As = symm(A,T,order) % Symmetry marginalization routine. The purpose is to reduce the feature % dimensionality and make the features more populated. It can be applied to % 1D -- 5D co-occurrence matrices (order \in {1,2,3,4,5}) with sign and % directional symmetries (explained below). % A must be an array of (2*T+1)^order, otherwise error is outputted. % % Marginalization by symmetry pertains to the fact that, fundamentally, % the differences between consecutive pixels in a natural image (both cover % and stego) d1, d2, d3, ..., have the same probability of occurrence as the % triple -d1, -d2, -d3, ... % % Directional marginalization pertains to the fact that the % differences d1, d2, d3, ... in a natural (cover and stego) image are as % likely to occur as ..., d3, d2, d1. ERR = 1; % Flag denoting when size of A is incompatible with the input parameters T and order m = 2; B = 2*T + 1; switch order case 1 % First-order coocs are only symmetrized if numel(A) == 2*T+1 As(1) = A(T+1); % The only non-marginalized bin is the origin 0 As(2:T+1) = A(1:T) + A(T+2:end); As = As(:); ERR = 0; end case 2 if numel(A) == (2*T+1)^2 As = zeros((T+1)^2, 1); As(1) = A(T+1,T+1); % The only non-marginalized bin is the origin (0,0) for i = -T : T for j = -T : T if (done(i+T+1,j+T+1) == 0) && (abs(i)+abs(j) ~= 0) As(m) = A(i+T+1,j+T+1) + A(T+1-i,T+1-j); done(i+T+1,j+T+1) = 1; done(T+1-i,T+1-j) = 1; if (i ~= j) && (done(j+T+1,i+T+1) == 0) As(m) = As(m) + A(j+T+1,i+T+1) + A(T+1-j,T+1-i); done(j+T+1,i+T+1) = 1; done(T+1-j,T+1-i) = 1; end m = m + 1; end end end ERR = 0; end case 3 if numel(A) == B^3 done = zeros(size(A)); As = zeros(1+3*T+4*T^2+2*T^3, 1); As(1) = A(T+1,T+1,T+1); % The only non-marginalized bin is the origin (0,0,0) for i = -T : T for j = -T : T for k = -T : T if (done(i+T+1,j+T+1,k+T+1) == 0) && (abs(i)+abs(j)+abs(k) ~= 0) As(m) = A(i+T+1,j+T+1,k+T+1) + A(T+1-i,T+1-j,T+1-k); done(i+T+1,j+T+1,k+T+1) = 1; done(T+1-i,T+1-j,T+1-k) = 1; if (i ~= k) && (done(k+T+1,j+T+1,i+T+1) == 0) As(m) = As(m) + A(k+T+1,j+T+1,i+T+1) + A(T+1-k,T+1-j,T+1-i); done(k+T+1,j+T+1,i+T+1) = 1; done(T+1-k,T+1-j,T+1-i) = 1; end m = m + 1; end end end end ERR = 0; end case 4 if numel(A) == (2*T+1)^4 done = zeros(size(A)); As = zeros(B^2 + 4*T^2*(T+1)^2, 1); As(1) = A(T+1,T+1,T+1,T+1); % The only non-marginalized bin is the origin (0,0,0,0) for i = -T : T for j = -T : T for k = -T : T for n = -T : T if (done(i+T+1,j+T+1,k+T+1,n+T+1) == 0) && (abs(i)+abs(j)+abs(k)+abs(n)~=0) As(m) = A(i+T+1,j+T+1,k+T+1,n+T+1) + A(T+1-i,T+1-j,T+1-k,T+1-n); done(i+T+1,j+T+1,k+T+1,n+T+1) = 1; done(T+1-i,T+1-j,T+1-k,T+1-n) = 1; if ((i ~= n) || (j ~= k)) && (done(n+T+1,k+T+1,j+T+1,i+T+1) == 0) As(m) = As(m) + A(n+T+1,k+T+1,j+T+1,i+T+1) + A(T+1-n,T+1-k,T+1-j,T+1-i); done(n+T+1,k+T+1,j+T+1,i+T+1) = 1; done(T+1-n,T+1-k,T+1-j,T+1-i) = 1; end m = m + 1; end end end end end ERR = 0; end case 5 if numel(A) == (2*T+1)^5 done = zeros(size(A)); As = zeros(1/4*(B^2 + 1)*(B^3 + 1), 1); As(1) = A(T+1,T+1,T+1,T+1,T+1); % The only non-marginalized bin is the origin (0,0,0,0,0) for i = -T : T for j = -T : T for k = -T : T for l = -T : T for n = -T : T if (done(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1) == 0) && (abs(i)+abs(j)+abs(k)+abs(l)+abs(n)~=0) As(m) = A(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1) + A(T+1-i,T+1-j,T+1-k,T+1-l,T+1-n); done(i+T+1,j+T+1,k+T+1,l+T+1,n+T+1) = 1; done(T+1-i,T+1-j,T+1-k,T+1-l,T+1-n) = 1; if ((i ~= n) || (j ~= l)) && (done(n+T+1,l+T+1,k+T+1,j+T+1,i+T+1) == 0) As(m) = As(m) + A(n+T+1,l+T+1,k+T+1,j+T+1,i+T+1) + A(T+1-n,T+1-l,T+1-k,T+1-j,T+1-i); done(n+T+1,l+T+1,k+T+1,j+T+1,i+T+1) = 1; done(T+1-n,T+1-l,T+1-k,T+1-j,T+1-i) = 1; end m = m + 1; end end end end end end ERR = 0; end otherwise As = []; fprintf(' Order of cooc is not in {1,2,3,4,5}.\n') end if ERR == 1 As = []; fprintf('*** ERROR in symm: The number of elements in the array is not (2T+1)^order. ***\n') end As = As(:); function D = Residual(X,order,type) % Computes the noise residual of a given type and order from MxN image X. % residual order \in {1,2,3,4,5,6} % type \in {hor,ver,diag,mdiag,KB,edge-h,edge-v,edge-d,edge-m} % The resulting residual is an (M-b)x(N-b) array of the specified order, % where b = ceil(order/2). This cropping is little more than it needs to % be to make sure all the residuals are easily "synchronized". % !!!!!!!!!!!!! Use order = 2 with KB and all edge residuals !!!!!!!!!!!!! [M N] = size(X); I = 1+ceil(order/2) : M-ceil(order/2); J = 1+ceil(order/2) : N-ceil(order/2); switch type case 'hor' switch order case 1, D = - X(I,J) + X(I,J+1); case 2, D = X(I,J-1) - 2*X(I,J) + X(I,J+1); case 3, D = X(I,J-1) - 3*X(I,J) + 3*X(I,J+1) - X(I,J+2); case 4, D = -X(I,J-2) + 4*X(I,J-1) - 6*X(I,J) + 4*X(I,J+1) - X(I,J+2); case 5, D = -X(I,J-2) + 5*X(I,J-1) - 10*X(I,J) + 10*X(I,J+1) - 5*X(I,J+2) + X(I,J+3); case 6, D = X(I,J-3) - 6*X(I,J-2) + 15*X(I,J-1) - 20*X(I,J) + 15*X(I,J+1) - 6*X(I,J+2) + X(I,J+3); end case 'ver' switch order case 1, D = - X(I,J) + X(I+1,J); case 2, D = X(I-1,J) - 2*X(I,J) + X(I+1,J); case 3, D = X(I-1,J) - 3*X(I,J) + 3*X(I+1,J) - X(I+2,J); case 4, D = -X(I-2,J) + 4*X(I-1,J) - 6*X(I,J) + 4*X(I+1,J) - X(I+2,J); case 5, D = -X(I-2,J) + 5*X(I-1,J) - 10*X(I,J) + 10*X(I+1,J) - 5*X(I+2,J) + X(I+3,J); case 6, D = X(I-3,J) - 6*X(I-2,J) + 15*X(I-1,J) - 20*X(I,J) + 15*X(I+1,J) - 6*X(I+2,J) + X(I+3,J); end case 'diag' switch order case 1, D = - X(I,J) + X(I+1,J+1); case 2, D = X(I-1,J-1) - 2*X(I,J) + X(I+1,J+1); case 3, D = X(I-1,J-1) - 3*X(I,J) + 3*X(I+1,J+1) - X(I+2,J+2); case 4, D = -X(I-2,J-2) + 4*X(I-1,J-1) - 6*X(I,J) + 4*X(I+1,J+1) - X(I+2,J+2); case 5, D = -X(I-2,J-2) + 5*X(I-1,J-1) - 10*X(I,J) + 10*X(I+1,J+1) - 5*X(I+2,J+2) + X(I+3,J+3); case 6, D = X(I-3,J-3) - 6*X(I-2,J-2) + 15*X(I-1,J-1) - 20*X(I,J) + 15*X(I+1,J+1) - 6*X(I+2,J+2) + X(I+3,J+3); end case 'mdiag' switch order case 1, D = - X(I,J) + X(I-1,J+1); case 2, D = X(I-1,J+1) - 2*X(I,J) + X(I+1,J-1); case 3, D = X(I-1,J+1) - 3*X(I,J) + 3*X(I+1,J-1) - X(I+2,J-2); case 4, D = -X(I-2,J+2) + 4*X(I-1,J+1) - 6*X(I,J) + 4*X(I+1,J-1) - X(I+2,J-2); case 5, D = -X(I-2,J+2) + 5*X(I-1,J+1) - 10*X(I,J) + 10*X(I+1,J-1) - 5*X(I+2,J-2) + X(I+3,J-3); case 6, D = X(I-3,J+3) - 6*X(I-2,J+2) + 15*X(I-1,J+1) - 20*X(I,J) + 15*X(I+1,J-1) - 6*X(I+2,J-2) + X(I+3,J-3); end case 'KB' D = -X(I-1,J-1) + 2*X(I-1,J) - X(I-1,J+1) + 2*X(I,J-1) - 4*X(I,J) + 2*X(I,J+1) - X(I+1,J-1) + 2*X(I+1,J) - X(I+1,J+1); case 'edge-h' Du = 2*X(I-1,J) + 2*X(I,J-1) + 2*X(I,J+1) - X(I-1,J-1) - X(I-1,J+1) - 4*X(I,J); % -1 2 -1 Db = 2*X(I+1,J) + 2*X(I,J-1) + 2*X(I,J+1) - X(I+1,J-1) - X(I+1,J+1) - 4*X(I,J); % 2 C 2 + flipped vertically D = [Du,Db]; case 'edge-v' Dl = 2*X(I,J-1) + 2*X(I-1,J) + 2*X(I+1,J) - X(I-1,J-1) - X(I+1,J-1) - 4*X(I,J); % -1 2 Dr = 2*X(I,J+1) + 2*X(I-1,J) + 2*X(I+1,J) - X(I-1,J+1) - X(I+1,J+1) - 4*X(I,J); % 2 C + flipped horizontally D = [Dl,Dr]; % -1 2 case 'edge-m' Dlu = 2*X(I,J-1) + 2*X(I-1,J) - X(I-1,J-1) - X(I+1,J-1) - X(I-1,J+1) - X(I,J); % -1 2 -1 Drb = 2*X(I,J+1) + 2*X(I+1,J) - X(I+1,J+1) - X(I+1,J-1) - X(I-1,J+1) - X(I,J); % 2 C + flipped mdiag D = [Dlu,Drb]; % -1 case 'edge-d' Dru = 2*X(I-1,J) + 2*X(I,J+1) - X(I-1,J+1) - X(I-1,J-1) - X(I+1,J+1) - X(I,J); % -1 2 -1 Dlb = 2*X(I,J-1) + 2*X(I+1,J) - X(I+1,J-1) - X(I+1,J+1) - X(I-1,J-1) - X(I,J); % C 2 + flipped diag D = [Dru,Dlb]; % -1 case 'KV' D = 8*X(I-1,J) + 8*X(I+1,J) + 8*X(I,J-1) + 8*X(I,J+1); D = D - 6*X(I-1,J+1) - 6*X(I-1,J-1) - 6*X(I+1,J-1) - 6*X(I+1,J+1); D = D - 2*X(I-2,J) - 2*X(I+2,J) - 2*X(I,J+2) - 2*X(I,J-2); D = D + 2*X(I-1,J-2) + 2*X(I-2,J-1) + 2*X(I-2,J+1) + 2*X(I-1,J+2) + 2*X(I+1,J+2) + 2*X(I+2,J+1) + 2*X(I+2,J-1) + 2*X(I+1,J-2); D = D - X(I-2,J-2) - X(I-2,J+2) - X(I+2,J-2) - X(I+2,J+2) - 12*X(I,J); end
github
daniellerch/aletheia-master
sigma_spam_PSRM.m
.m
aletheia-master/aletheia-octave/octave/sigma_spam_PSRM.m
14,676
utf_8
dc32f2d3b8c164295acc43e9a70410ce
function f = sigma_spam_PSRM(IMAGE, q, Prob) % ------------------------------------------------------------------------- % Copyright (c) 2011 DDE Lab, Binghamton University, NY. % All Rights Reserved. % ------------------------------------------------------------------------- % Permission to use, copy, modify, and distribute this software for % educational, research and non-profit purposes, without fee, and without a % written agreement is hereby granted, provided that this copyright notice % appears in all copies. The program is supplied "as is," without any % accompanying services from DDE Lab. DDE Lab does not warrant the % operation of the program will be uninterrupted or error-free. The % end-user understands that the program was developed for research purposes % and is advised not to rely exclusively on the program for any reason. In % no event shall Binghamton University or DDE Lab be liable to any party % for direct, indirect, special, incidental, or consequential damages, % including lost profits, arising out of the use of this software. DDE Lab % disclaims any warranties, and has no obligations to provide maintenance, % support, updates, enhancements or modifications. % ------------------------------------------------------------------------- % Contact: [email protected] | [email protected] | November 2011 % http://dde.binghamton.edu/download/feature_extractors % ------------------------------------------------------------------------- % Extracts 39 submodels presented in [1] -- only q=1c. All features are % calculated in the spatial domain and are stored in a structured variable % 'f'. For more deatils about the individual submodels, please see the % publication [1]. Total dimensionality of all 39 submodels is 12,753. % ------------------------------------------------------------------------- % Input: IMAGE ... path to the image (can be JPEG) % Output: f ...... extracted PSRM features in a structured format % ------------------------------------------------------------------------- settings.qBins = 3; settings.projCount = 55; settings.seedIndex = 1; settings.fixedSize = 8; settings.binSize = q; X = double(IMAGE); f = post_processing(all1st(X,1),'f1'); % 1st order f = post_processing(all2nd(X,1),'f2',f); % 2nd order f = post_processing(all3rd(X,1),'f3',f); % 3rd order f = post_processing(all3x3(X,1),'f3x3', f); % 3x3 f = post_processing(all5x5(X,1),'f5x5', f); % 5x5 function RESULT = post_processing(DATA,f,RESULT) Ss = fieldnames(DATA); for Sid = 1:length(Ss) VARNAME = [f '_' Ss{Sid}]; eval(['RESULT.' VARNAME ' = reshape(single(DATA.' Ss{Sid} '),1,[]);' ]) end % symmetrize L = fieldnames(RESULT); for i=1:length(L) name = L{i}; % feature name if name(1)=='s', continue; end [T,N] = parse_feaname(name); if strcmp(T,''), continue; end % symmetrization if strcmp(N(1:3),'min') || strcmp(N(1:3),'max') % minmax symmetrization OUT = ['s' T(2:end) '_minmax' N(4:end)]; if isfield(RESULT,OUT), continue; end Fmin = []; Fmax = []; eval(['Fmin = RESULT.' strrep(name,'max','min') ';']); eval(['Fmax = RESULT.' strrep(name,'min','max') ';']); F = mergeMinMax(Fmin, Fmax); eval(['RESULT.' OUT ' = single(F);' ]); elseif strcmp(N(1:4),'spam') % spam symmetrization OUT = ['s' T(2:end) '_' N]; if isfield(RESULT,OUT), continue; end eval(['RESULT.' OUT ' = single(RESULT.' name ');' ]); end end % delete RESULT.f* L = fieldnames(RESULT); for i=1:length(L) name = L{i}; % feature name if name(1)=='f' RESULT = rmfield(RESULT,name); end end % merge spam features L = fieldnames(RESULT); for i=1:length(L) name = L{i}; % feature name [T,N] = parse_feaname(name); if ~strcmp(N(1:4),'spam'), continue; end if strcmp(T,''), continue; end if strcmp(N(end),'v')||(strcmp(N,'spam11')&&strcmp(T,'s5x5')) elseif strcmp(N(end),'h') % h+v union OUT = [T '_' N 'v']; if isfield(RESULT,OUT), continue; end name2 = strrep(name,'h','v'); Fh = []; Fv = []; eval(['Fh = RESULT.' name ';']); eval(['Fv = RESULT.' name2 ';']); eval(['RESULT.' OUT ' = [Fh Fv];']); RESULT = rmfield(RESULT,name); RESULT = rmfield(RESULT,name2); elseif strcmp(N,'spam11') % KBKV creation OUT = ['s35_' N]; if isfield(RESULT,OUT), continue; end name1 = strrep(name,'5x5','3x3'); name2 = strrep(name,'3x3','5x5'); if ~isfield(RESULT,name1), continue; end if ~isfield(RESULT,name2), continue; end F_KB = []; F_KV = []; eval(['F_KB = RESULT.' name1 ';']); eval(['F_KV = RESULT.' name2 ';']); eval(['RESULT.' OUT ' = [F_KB F_KV];']); RESULT = rmfield(RESULT,name1); RESULT = rmfield(RESULT,name2); end end end function [T,N] = parse_feaname(name) [T,N] = deal(''); S = strfind(name,'_'); if length(S)~=1, return; end T = name(1:S-1); N = name(S+1:end); end function g = all1st(X,q) R = [0 0 0; 0 -1 1; 0 0 0]; U = [0 1 0; 0 -1 0; 0 0 0]; g.spam14h = reshape(ProjHistSpam(X,R,Prob,'hor',q) + ProjHistSpam(X,U,Prob,'ver',q),[],1);settings.seedIndex=settings.seedIndex+1; g.spam14v = reshape(ProjHistSpam(X,R,Prob,'ver',q) + ProjHistSpam(X,U,Prob,'hor',q),[],1);settings.seedIndex=settings.seedIndex+1; end function g = all2nd(X,q) Dh = [0 0 0; 1 -2 1; 0 0 0]/2; Dv = [0 1 0; 0 -2 0; 0 1 0]/2; g.spam12h = reshape(ProjHistSpam(X,Dh,Prob,'hor',q) + ProjHistSpam(X,Dv,Prob,'ver',q),[],1);settings.seedIndex=settings.seedIndex+1; g.spam12v = reshape(ProjHistSpam(X,Dh,Prob,'ver',q) + ProjHistSpam(X,Dv,Prob,'hor',q),[],1);settings.seedIndex=settings.seedIndex+1; end function g = all3rd(X,q) R = [0 0 0 0 0; 0 0 0 0 0; 0 1 -3 3 -1; 0 0 0 0 0; 0 0 0 0 0]/3; U = [0 0 -1 0 0; 0 0 3 0 0; 0 0 -3 0 0; 0 0 1 0 0; 0 0 0 0 0]/3; g.spam14h = reshape(ProjHistSpam(X,R,Prob,'hor',q) + ProjHistSpam(X,U,Prob,'ver',q),[],1);settings.seedIndex=settings.seedIndex+1; g.spam14v = reshape(ProjHistSpam(X,R,Prob,'ver',q) + ProjHistSpam(X,U,Prob,'hor',q),[],1);settings.seedIndex=settings.seedIndex+1; end function g = all3x3(X,q) F = [-1 2 -1; 2 -4 2; -1 2 -1]/4; g.spam11 = reshape(ProjHistSpam(X,F,Prob,'hor',q) + ProjHistSpam(X,F,Prob,'ver',q),[],1);settings.seedIndex=settings.seedIndex+1; [Du, Db, Dl, Dr] = deal(F); Du(3,:) = 0; Db(1,:) = 0; Dl(:,3) = 0; Dr(:,1) = 0; g.spam14v = reshape(ProjHistSpam(X,Du,Prob,'ver',q) + ProjHistSpam(X,Db,Prob,'ver',q) + ProjHistSpam(X,Dl,Prob,'hor',q) + ProjHistSpam(X,Dr,Prob,'hor',q),[],1);settings.seedIndex=settings.seedIndex+1; g.spam14h = reshape(ProjHistSpam(X,Du,Prob,'hor',q) + ProjHistSpam(X,Db,Prob,'hor',q) + ProjHistSpam(X,Dl,Prob,'ver',q) + ProjHistSpam(X,Dr,Prob,'ver',q),[],1);settings.seedIndex=settings.seedIndex+1; end function g = all5x5(X,q) F = [-1 2 -2 2 -1; 2 -6 8 -6 2; -2 8 -12 8 -2; 2 -6 8 -6 2; -1 2 -2 2 -1]/12; g.spam11 = reshape(ProjHistSpam(X,F,Prob,'hor',q) + ProjHistSpam(X,F,Prob,'ver',q),[],1);settings.seedIndex=settings.seedIndex+1; [Du, Db, Dl, Dr] = deal(F); Du(4:5,:) = 0; Db(1:2,:) = 0; Dl(:,4:5) = 0; Dr(:,1:2) = 0; g.spam14v = reshape(ProjHistSpam(X,Du,Prob,'ver',q) + ProjHistSpam(X,Db,Prob,'ver',q) + ProjHistSpam(X,Dl,Prob,'hor',q) + ProjHistSpam(X,Dr,Prob,'hor',q),[],1);settings.seedIndex=settings.seedIndex+1; g.spam14h = reshape(ProjHistSpam(X,Du,Prob,'hor',q) + ProjHistSpam(X,Db,Prob,'hor',q) + ProjHistSpam(X,Dl,Prob,'ver',q) + ProjHistSpam(X,Dr,Prob,'ver',q),[],1);settings.seedIndex=settings.seedIndex+1; end function h = ProjHistSpam(X,F,Prob, type, centerVal) %RandStream.setGlobalStream(RandStream('mt19937ar','Seed',settings.seedIndex)); rand('state', settings.seedIndex); h = zeros(settings.qBins * settings.projCount, 1); for projIndex = 1:settings.projCount Psize = randi(settings.fixedSize, 2, 1); P = randn(Psize(1), Psize(2)); n = sqrt(sum(P(:).^2)); P = P ./ n; if strcmp(type, 'ver'), P = P'; end; binEdges = 0:settings.qBins; binEdges = binEdges * settings.binSize * centerVal; proj = conv2( X, conv2( F, P ), 'valid' ); sigma = sqrt( conv2( Prob, conv2( F, P ).^2, 'valid' ) ); h_neigh = prob_hist(abs(proj(:)), sigma, binEdges); if size(P, 2) > 1 proj = conv2( X, conv2( F, fliplr(P) ), 'valid' ); sigma = sqrt( conv2( Prob, conv2( F, fliplr(P) ).^2, 'valid' ) ); h_neigh = h_neigh + prob_hist(abs(proj(:)), sigma, binEdges); end if size(P, 1) > 1 proj = conv2( X, conv2( F, flipud(P) ), 'valid' ); sigma = sqrt( conv2( Prob, conv2( F, flipud(P) ).^2, 'valid' ) ); h_neigh = h_neigh + prob_hist(abs(proj(:)), sigma, binEdges); end if all(size(P)>1) proj = conv2( X, conv2( F, rot90(P, 2) ), 'valid' ); sigma = sqrt( conv2( Prob, conv2( F, rot90(P, 2) ).^2, 'valid' ) ); h_neigh = h_neigh + prob_hist(abs(proj(:)), sigma, binEdges); end h((projIndex-1)*settings.qBins + 1:projIndex*settings.qBins, 1) = h_neigh; end end function h = prob_hist( proj, sigma, binEdges ) h = zeros( length(binEdges)-1, 1 ); for i = 1:length(h) I = (proj >= binEdges(i)) & (proj < binEdges(i+1)); h(i) = sum( sigma(I) ); end end function result = mergeMinMax(Fmin, Fmax) Fmin = reshape(Fmin, 2*settings.qBins, []); Fmin = flipud(Fmin); result = Fmax + Fmin(:)'; end function D = Residual(X,order,type) % Computes the noise residual of a given type and order from MxN image X. % residual order \in {1,2,3,4,5,6} % type \in {hor,ver,diag,mdiag,KB,edge-h,edge-v,edge-d,edge-m} % The resulting residual is an (M-b)x(N-b) array of the specified order, % where b = ceil(order/2). This cropping is little more than it needs to % be to make sure all the residuals are easily "synchronized". % !!!!!!!!!!!!! Use order = 2 with KB and all edge residuals !!!!!!!!!!!!! [M N] = size(X); I = 1+ceil(order/2) : M-ceil(order/2); J = 1+ceil(order/2) : N-ceil(order/2); switch type case 'hor' switch order case 1, D = - X(I,J) + X(I,J+1); case 2, D = X(I,J-1) - 2*X(I,J) + X(I,J+1); case 3, D = X(I,J-1) - 3*X(I,J) + 3*X(I,J+1) - X(I,J+2); case 4, D = -X(I,J-2) + 4*X(I,J-1) - 6*X(I,J) + 4*X(I,J+1) - X(I,J+2); case 5, D = -X(I,J-2) + 5*X(I,J-1) - 10*X(I,J) + 10*X(I,J+1) - 5*X(I,J+2) + X(I,J+3); case 6, D = X(I,J-3) - 6*X(I,J-2) + 15*X(I,J-1) - 20*X(I,J) + 15*X(I,J+1) - 6*X(I,J+2) + X(I,J+3); end case 'ver' switch order case 1, D = - X(I,J) + X(I+1,J); case 2, D = X(I-1,J) - 2*X(I,J) + X(I+1,J); case 3, D = X(I-1,J) - 3*X(I,J) + 3*X(I+1,J) - X(I+2,J); case 4, D = -X(I-2,J) + 4*X(I-1,J) - 6*X(I,J) + 4*X(I+1,J) - X(I+2,J); case 5, D = -X(I-2,J) + 5*X(I-1,J) - 10*X(I,J) + 10*X(I+1,J) - 5*X(I+2,J) + X(I+3,J); case 6, D = X(I-3,J) - 6*X(I-2,J) + 15*X(I-1,J) - 20*X(I,J) + 15*X(I+1,J) - 6*X(I+2,J) + X(I+3,J); end case 'diag' switch order case 1, D = - X(I,J) + X(I+1,J+1); case 2, D = X(I-1,J-1) - 2*X(I,J) + X(I+1,J+1); case 3, D = X(I-1,J-1) - 3*X(I,J) + 3*X(I+1,J+1) - X(I+2,J+2); case 4, D = -X(I-2,J-2) + 4*X(I-1,J-1) - 6*X(I,J) + 4*X(I+1,J+1) - X(I+2,J+2); case 5, D = -X(I-2,J-2) + 5*X(I-1,J-1) - 10*X(I,J) + 10*X(I+1,J+1) - 5*X(I+2,J+2) + X(I+3,J+3); case 6, D = X(I-3,J-3) - 6*X(I-2,J-2) + 15*X(I-1,J-1) - 20*X(I,J) + 15*X(I+1,J+1) - 6*X(I+2,J+2) + X(I+3,J+3); end case 'mdiag' switch order case 1, D = - X(I,J) + X(I-1,J+1); case 2, D = X(I-1,J+1) - 2*X(I,J) + X(I+1,J-1); case 3, D = X(I-1,J+1) - 3*X(I,J) + 3*X(I+1,J-1) - X(I+2,J-2); case 4, D = -X(I-2,J+2) + 4*X(I-1,J+1) - 6*X(I,J) + 4*X(I+1,J-1) - X(I+2,J-2); case 5, D = -X(I-2,J+2) + 5*X(I-1,J+1) - 10*X(I,J) + 10*X(I+1,J-1) - 5*X(I+2,J-2) + X(I+3,J-3); case 6, D = X(I-3,J+3) - 6*X(I-2,J+2) + 15*X(I-1,J+1) - 20*X(I,J) + 15*X(I+1,J-1) - 6*X(I+2,J-2) + X(I+3,J-3); end case 'KB' D = -X(I-1,J-1) + 2*X(I-1,J) - X(I-1,J+1) + 2*X(I,J-1) - 4*X(I,J) + 2*X(I,J+1) - X(I+1,J-1) + 2*X(I+1,J) - X(I+1,J+1); case 'edge-h' Du = 2*X(I-1,J) + 2*X(I,J-1) + 2*X(I,J+1) - X(I-1,J-1) - X(I-1,J+1) - 4*X(I,J); % -1 2 -1 Db = 2*X(I+1,J) + 2*X(I,J-1) + 2*X(I,J+1) - X(I+1,J-1) - X(I+1,J+1) - 4*X(I,J); % 2 C 2 + flipped vertically D = [Du,Db]; case 'edge-v' Dl = 2*X(I,J-1) + 2*X(I-1,J) + 2*X(I+1,J) - X(I-1,J-1) - X(I+1,J-1) - 4*X(I,J); % -1 2 Dr = 2*X(I,J+1) + 2*X(I-1,J) + 2*X(I+1,J) - X(I-1,J+1) - X(I+1,J+1) - 4*X(I,J); % 2 C + flipped horizontally D = [Dl,Dr]; % -1 2 case 'edge-m' Dlu = 2*X(I,J-1) + 2*X(I-1,J) - X(I-1,J-1) - X(I+1,J-1) - X(I-1,J+1) - X(I,J); % -1 2 -1 Drb = 2*X(I,J+1) + 2*X(I+1,J) - X(I+1,J+1) - X(I+1,J-1) - X(I-1,J+1) - X(I,J); % 2 C + flipped mdiag D = [Dlu,Drb]; % -1 case 'edge-d' Dru = 2*X(I-1,J) + 2*X(I,J+1) - X(I-1,J+1) - X(I-1,J-1) - X(I+1,J+1) - X(I,J); % -1 2 -1 Dlb = 2*X(I,J-1) + 2*X(I+1,J) - X(I+1,J-1) - X(I+1,J+1) - X(I-1,J-1) - X(I,J); % C 2 + flipped diag D = [Dru,Dlb]; % -1 case 'KV' D = 8*X(I-1,J) + 8*X(I+1,J) + 8*X(I,J-1) + 8*X(I,J+1); D = D - 6*X(I-1,J+1) - 6*X(I-1,J-1) - 6*X(I+1,J-1) - 6*X(I+1,J+1); D = D - 2*X(I-2,J) - 2*X(I+2,J) - 2*X(I,J+2) - 2*X(I,J-2); D = D + 2*X(I-1,J-2) + 2*X(I-2,J-1) + 2*X(I-2,J+1) + 2*X(I-1,J+2) + 2*X(I+1,J+2) + 2*X(I+2,J+1) + 2*X(I+2,J-1) + 2*X(I+1,J-2); D = D - X(I-2,J-2) - X(I-2,J+2) - X(I+2,J-2) - X(I+2,J+2) - 12*X(I,J); end end end
github
daniellerch/aletheia-master
WOW.m
.m
aletheia-master/aletheia-octave/octave/WOW.m
7,349
utf_8
62f1fbf31d4e9bc8bdb35c9b788a0a4c
function [stego, distortion] = WOW(cover_path, payload) % ------------------------------------------------------------------------- % Copyright (c) 2012 DDE Lab, Binghamton University, NY. % All Rights Reserved. % ------------------------------------------------------------------------- % Permission to use, copy, modify, and distribute this software for % educational, research and non-profit purposes, without fee, and without a % written agreement is hereby granted, provided that this copyright notice % appears in all copies. The program is supplied "as is," without any % accompanying services from DDE Lab. DDE Lab does not warrant the % operation of the program will be uninterrupted or error-free. The % end-user understands that the program was developed for research purposes % and is advised not to rely exclusively on the program for any reason. In % no event shall Binghamton University or DDE Lab be liable to any party % for direct, indirect, special, incidental, or consequential damages, % including lost profits, arising out of the use of this software. DDE Lab % disclaims any warranties, and has no obligations to provide maintenance, % support, updates, enhancements or modifications. % ------------------------------------------------------------------------- % Contact: [email protected] | [email protected] | October 2012 % http://dde.binghamton.edu/download/steganography % ------------------------------------------------------------------------- % This function simulates embedding using WOW steganographic % algorithm. For more deatils about the individual submodels, please see % the publication [1]. % ------------------------------------------------------------------------- % Input: coverPath ... path to the image % payload ..... payload in bits per pixel % Output: stego ....... resulting image with embedded payload % ------------------------------------------------------------------------- % [1] Designing Steganographic Distortion Using Directional Filters, % V. Holub and J. Fridrich, to be presented at WIFS'12 IEEE International % Workshop on Information Forensics and Security % ------------------------------------------------------------------------- %% Get 2D wavelet filters - Daubechies 8 % 1D high pass decomposition filter hpdf = [-0.0544158422, 0.3128715909, -0.6756307363, 0.5853546837, 0.0158291053, -0.2840155430, -0.0004724846, 0.1287474266, 0.0173693010, -0.0440882539, ... -0.0139810279, 0.0087460940, 0.0048703530, -0.0003917404, -0.0006754494, -0.0001174768]; % 1D low pass decomposition filter lpdf = (-1).^(0:numel(hpdf)-1).*fliplr(hpdf); % construction of 2D wavelet filters F{1} = lpdf'*hpdf; F{2} = hpdf'*lpdf; F{3} = hpdf'*hpdf; %% Get embedding costs % inicialization cover = double(imread(cover_path)); p = -1; wetCost = 10^10; sizeCover = size(cover); % add padding padSize = max([size(F{1})'; size(F{2})'; size(F{3})']); coverPadded = padarray(cover, [padSize padSize], 'symmetric'); % compute directional residual and suitability \xi for each filter xi = cell(3, 1); for fIndex = 1:3 % compute residual R = conv2(coverPadded, F{fIndex}, 'same'); % compute suitability xi{fIndex} = conv2(abs(R), rot90(abs(F{fIndex}), 2), 'same'); % correct the suitability shift if filter size is even if mod(size(F{fIndex}, 1), 2) == 0, xi{fIndex} = circshift(xi{fIndex}, [1, 0]); end; if mod(size(F{fIndex}, 2), 2) == 0, xi{fIndex} = circshift(xi{fIndex}, [0, 1]); end; % remove padding xi{fIndex} = xi{fIndex}(((size(xi{fIndex}, 1)-sizeCover(1))/2)+1:end-((size(xi{fIndex}, 1)-sizeCover(1))/2), ((size(xi{fIndex}, 2)-sizeCover(2))/2)+1:end-((size(xi{fIndex}, 2)-sizeCover(2))/2)); end % compute embedding costs \rho rho = ( (xi{1}.^p) + (xi{2}.^p) + (xi{3}.^p) ) .^ (-1/p); % adjust embedding costs rho(rho > wetCost) = wetCost; % threshold on the costs rho(isnan(rho)) = wetCost; % if all xi{} are zero threshold the cost rhoP1 = rho; rhoM1 = rho; rhoP1(cover==255) = wetCost; % do not embed +1 if the pixel has max value rhoM1(cover==0) = wetCost; % do not embed -1 if the pixel has min value %% Embedding simulator stego = EmbeddingSimulator(cover, rhoP1, rhoM1, payload*numel(cover), false); distortion_local = rho(cover~=stego); distortion = sum(distortion_local); %% -------------------------------------------------------------------------------------------------------------------------- % Embedding simulator simulates the embedding made by the best possible ternary coding method (it embeds on the entropy bound). % This can be achieved in practice using "Multi-layered syndrome-trellis codes" (ML STC) that are asymptotically aproaching the bound. function [y] = EmbeddingSimulator(x, rhoP1, rhoM1, m, fixEmbeddingChanges) n = numel(x); lambda = calc_lambda(rhoP1, rhoM1, m, n); pChangeP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pChangeM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); if fixEmbeddingChanges == 1 %RandStream.setGlobalStream(RandStream('mt19937ar','seed',139187)); rand('state', 139187); else %RandStream.setGlobalStream(RandStream('mt19937ar','Seed',sum(100*clock))); rand('state', sum(100*clock)); end randChange = rand(size(x)); y = x; y(randChange < pChangeP1) = y(randChange < pChangeP1) + 1; y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) = y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) - 1; function lambda = calc_lambda(rhoP1, rhoM1, message_length, n) l3 = 1e+3; m3 = double(message_length + 1); iterations = 0; while m3 > message_length l3 = l3 * 2; pP1 = (exp(-l3 .* rhoP1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); pM1 = (exp(-l3 .* rhoM1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); m3 = ternary_entropyf(pP1, pM1); iterations = iterations + 1; if (iterations > 10) lambda = l3; return; end end l1 = 0; m1 = double(n); lambda = 0; alpha = double(message_length)/n; % limit search to 30 iterations % and require that relative payload embedded is roughly within 1/1000 of the required relative payload while (double(m1-m3)/n > alpha/1000.0 ) && (iterations<30) lambda = l1+(l3-l1)/2; pP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); m2 = ternary_entropyf(pP1, pM1); if m2 < message_length l3 = lambda; m3 = m2; else l1 = lambda; m1 = m2; end iterations = iterations + 1; end end function Ht = ternary_entropyf(pP1, pM1) p0 = 1-pP1-pM1; P = [p0(:); pP1(:); pM1(:)]; H = -((P).*log2(P)); H((P<eps) | (P > 1-eps)) = 0; Ht = sum(H); end end end
github
daniellerch/aletheia-master
J_UNIWARD_COLOR.m
.m
aletheia-master/aletheia-octave/octave/J_UNIWARD_COLOR.m
8,229
utf_8
b30f919c16492cfe2115cfd7ded0ecea
function STEGO = J_UNIWARD_COLOR(cover, payload, stego) % ------------------------------------------------------------------------- % Copyright (c) 2013 DDE Lab, Binghamton University, NY. % All Rights Reserved. % ------------------------------------------------------------------------- % Permission to use, copy, modify, and distribute this software for % educational, research and non-profit purposes, without fee, and without a % written agreement is hereby granted, provided that this copyright notice % appears in all copies. The program is supplied "as is," without any % accompanying services from DDE Lab. DDE Lab does not warrant the % operation of the program will be uninterrupted or error-free. The % end-user understands that the program was developed for research purposes % and is advised not to rely exclusively on the program for any reason. In % no event shall Binghamton University or DDE Lab be liable to any party % for direct, indirect, special, incidental, or consequential damages, % including lost profits, arising out of the use of this software. DDE Lab % disclaims any warranties, and has no obligations to provide maintenance, % support, updates, enhancements or modifications. % ------------------------------------------------------------------------- % Contact: [email protected] | [email protected] | February % 2013 % http://dde.binghamton.edu/download/stego_algorithms/ % ------------------------------------------------------------------------- % This function simulates embedding using J-UNIWARD steganographic % algorithm. % ------------------------------------------------------------------------- % Input: coverPath ... path to the image % payload ..... payload in bits per non zero DCT coefficient % Output: stego ....... resulting JPEG structure with embedded payload % ------------------------------------------------------------------------- C_STRUCT = jpeg_read(cover); % C_COEFFS = C_STRUCT.coef_arrays{1}; % C_QUANT = C_STRUCT.quant_tables{1}; wetConst = 10^13; sgm = 2^(-6); %% Get 2D wavelet filters - Daubechies 8 % 1D high pass decomposition filter hpdf = [-0.0544158422, 0.3128715909, -0.6756307363, 0.5853546837, 0.0158291053, -0.2840155430, -0.0004724846, 0.1287474266, 0.0173693010, -0.0440882539, ... -0.0139810279, 0.0087460940, 0.0048703530, -0.0003917404, -0.0006754494, -0.0001174768]; % 1D low pass decomposition filter lpdf = (-1).^(0:numel(hpdf)-1).*fliplr(hpdf); F{1} = lpdf'*hpdf; F{2} = hpdf'*lpdf; F{3} = hpdf'*hpdf; STEGO=C_STRUCT; for index_color=1:3 if (index_color==1) C_QUANT = C_STRUCT.quant_tables{index_color}; else C_QUANT = C_STRUCT.quant_tables{2}; end C_COEFFS = C_STRUCT.coef_arrays{index_color}; fun= @(x) x.*C_QUANT; % Dequantization xi_back= blockproc(C_COEFFS,[8 8],fun); fun=@idct2; C_SPATIAL = blockproc(xi_back,[8 8],fun)+128; %% Pre-compute impact in spatial domain when a jpeg coefficient is changed by 1 spatialImpact = cell(8, 8); for bcoord_i=1:8 for bcoord_j=1:8 testCoeffs = zeros(8, 8); testCoeffs(bcoord_i, bcoord_j) = 1; spatialImpact{bcoord_i, bcoord_j} = idct2(testCoeffs)*C_QUANT(bcoord_i, bcoord_j); end end %% Pre compute impact on wavelet coefficients when a jpeg coefficient is changed by 1 waveletImpact = cell(numel(F), 8, 8); for Findex = 1:numel(F) for bcoord_i=1:8 for bcoord_j=1:8 waveletImpact{Findex, bcoord_i, bcoord_j} = imfilter(spatialImpact{bcoord_i, bcoord_j}, F{Findex}, 'full'); end end end %% Create reference cover wavelet coefficients (LH, HL, HH) % Embedding should minimize their relative change. Computation uses mirror-padding padSize = max([size(F{1})'; size(F{2})']); C_SPATIAL_PADDED = padarray(C_SPATIAL, [padSize padSize], 'symmetric'); % pad image RC = cell(size(F)); for i=1:numel(F) RC{i} = imfilter(C_SPATIAL_PADDED, F{i}); end [k, l] = size(C_COEFFS); nzAC = nnz(C_COEFFS)-nnz(C_COEFFS(1:8:end,1:8:end)); rho = zeros(k, l); tempXi = cell(3, 1); %% Computation of costs for row = 1:k for col = 1:l modRow = mod(row-1, 8)+1; modCol = mod(col-1, 8)+1; subRows = row-modRow-6+padSize:row-modRow+16+padSize; subCols = col-modCol-6+padSize:col-modCol+16+padSize; for fIndex = 1:3 % compute residual RC_sub = RC{fIndex}(subRows, subCols); % get differences between cover and stego wavCoverStegoDiff = waveletImpact{fIndex, modRow, modCol}; % compute suitability tempXi{fIndex} = abs(wavCoverStegoDiff) ./ (abs(RC_sub)+sgm); end rhoTemp = tempXi{1} + tempXi{2} + tempXi{3}; rho(row, col) = sum(rhoTemp(:)); end end rhoM1 = rho; rhoP1 = rho; rhoP1(rhoP1 > wetConst) = wetConst; rhoP1(isnan(rhoP1)) = wetConst; rhoP1(C_COEFFS > 1023) = wetConst; rhoM1(rhoM1 > wetConst) = wetConst; rhoM1(isnan(rhoM1)) = wetConst; rhoM1(C_COEFFS < -1023) = wetConst; %% Embedding simulation STEGO.coef_arrays{index_color} = EmbeddingSimulator(C_COEFFS, rhoP1, rhoM1, round(payload*nzAC)); try jpeg_write(STEGO, stego); catch error('ERROR (problem with saving the stego image)') end end function [y, pChangeP1, pChangeM1] = EmbeddingSimulator(x, rhoP1, rhoM1, m) x = double(x); n = numel(x); lambda = calc_lambda(rhoP1, rhoM1, m, n); pChangeP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pChangeM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); randChange = rand(size(x)); y = x; y(randChange < pChangeP1) = y(randChange < pChangeP1) + 1; y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) = y(randChange >= pChangeP1 & randChange < pChangeP1+pChangeM1) - 1; function lambda = calc_lambda(rhoP1, rhoM1, message_length, n) l3 = 1e+3; m3 = double(message_length + 1); iterations = 0; while m3 > message_length l3 = l3 * 2; pP1 = (exp(-l3 .* rhoP1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); pM1 = (exp(-l3 .* rhoM1))./(1 + exp(-l3 .* rhoP1) + exp(-l3 .* rhoM1)); m3 = ternary_entropyf(pP1, pM1); iterations = iterations + 1; if (iterations > 10) lambda = l3; return; end end l1 = 0; m1 = double(n); lambda = 0; alpha = double(message_length)/n; % limit search to 30 iterations % and require that relative payload embedded is roughly within 1/1000 of the required relative payload while (double(m1-m3)/n > alpha/1000.0 ) && (iterations<30) lambda = l1+(l3-l1)/2; pP1 = (exp(-lambda .* rhoP1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); pM1 = (exp(-lambda .* rhoM1))./(1 + exp(-lambda .* rhoP1) + exp(-lambda .* rhoM1)); m2 = ternary_entropyf(pP1, pM1); if m2 < message_length l3 = lambda; m3 = m2; else l1 = lambda; m1 = m2; end iterations = iterations + 1; end end function Ht = ternary_entropyf(pP1, pM1) pP1 = pP1(:); pM1 = pM1(:); H1= -(pP1.*log2(pP1)); H1(isnan(H1)) = 0; H2= -(pM1.*log2(pM1)); H2(isnan(H2)) = 0; H3= -((1-pP1-pM1).*log2(1-pP1-pM1)); H3(isnan(H3)) = 0; % Ht = -(pP1.*log2(pP1))-(pM1.*log2(pM1))-((1-pP1-pM1).*log2(1-pP1-pM1)); Ht = H1 + H2 + H3; Ht = sum(Ht); end end end
github
daniellerch/aletheia-master
ensemble_training.m
.m
aletheia-master/aletheia-octave/octave/ensemble_training.m
25,595
utf_8
b967dd7b363b4163b56725f5003306f1
function [trained_ensemble,results] = ensemble_training(Xc,Xs,settings) % ------------------------------------------------------------------------- % Ensemble Classification | June 2013 | version 2.0 % ------------------------------------------------------------------------- % The purpose of version 2.0 is to simplify everything as much as possible. % Here is a list of the main modifications compared to the first version of % the ensemble classifier: % - Instead of a single routine, we separated training form testing. This % allows for more flexibility in the usage. % - Training outputs the data structure 'trained_ensemble' which allows % for easy storing of the trained classifier. % - Ensemble now doesn't accept paths to features any more. Instead, it % requires the features directly (Xc - cover features, Xs - stego % features). Xc and Xs must have the same dimension and must contain % synchronized cover/stego pairs - see the attached tutorial for more % details on this. % - There is no output into a log file. So there is no hard-drive access % at all now. % - Since the training and testing routines were separated, our ensemble % implementation no longer takes care of training/testing divisions. % This is the responsibility of the user now. Again, see the attached % tutorial for examples. % - Bagging is now always on % - We fixed the fclose bug (Error: too many files open) % - Covariance caching option was removed % - Added settings.verbose = 2 option (screen output of only the last row) % - Ensemble now works even if full dimension is equal to 1 or 2. If equal % to 1, multiple decisions are still combined as different base learners % are trained on different bootstrap samples (bagging). % ------------------------------------------------------------------------- % Copyright (c) 2013 DDE Lab, Binghamton University, NY. % All Rights Reserved. % ------------------------------------------------------------------------- % Permission to use, copy, modify, and distribute this software for % educational, research and non-profit purposes, without fee, and without a % written agreement is hereby granted, provided that this copyright notice % appears in all copies. The program is supplied "as is," without any % accompanying services from DDE Lab. DDE Lab does not warrant the % operation of the program will be uninterrupted or error-free. The % end-user understands that the program was developed for research purposes % and is advised not to rely exclusively on the program for any reason. In % no event shall Binghamton University or DDE Lab be liable to any party % for direct, indirect, special, incidental, or consequential damages, % including lost profits, arising out of the use of this software. DDE Lab % disclaims any warranties, and has no obligations to provide maintenance, % support, updates, enhancements or modifications. % ------------------------------------------------------------------------- % Contact: [email protected] | [email protected] | June 2013 % http://dde.binghamton.edu/download/ensemble % ------------------------------------------------------------------------- % References: % [1] - J. Kodovsky, J. Fridrich, and V. Holub. Ensemble classifiers for % steganalysis of digital media. IEEE Transactions on Information Forensics % and Security. Currently under review. % ------------------------------------------------------------------------- % INPUT: % Xc - cover features in a row-by-row manner % Xs - corresponding stego features (needs to be synchronized!) % settings % .seed_subspaces (default = random) - PRNG seed for random subspace % generation % .seed_bootstrap (default = random) - PRNG seed for bootstrap samples % generation % .d_sub (default = 'automatic') - random subspace dimensionality; either % an integer (e.g. 200) or the string 'automatic' is accepted; in % the latter case, an automatic search for the optimal subspace % dimensionality is performed, see [1] for more details % .L (default = 'automatic') - number of random subspaces / base % learners; either an integer (e.g. 50) or the string 'automatic' % is accepted; in the latter case, an automatic stopping criterion % is used, see [1] for more details % .verbose (default = 0) - turn on/off screen output % = 0 ... no screen output % = 1 ... full screen output % = 2 ... screen output of only the last row (results) % % Parameters for the search for d_sub (when .d_sub = 'automatic'): % % .k_step (default = 200) - initial step for d_sub when searching from % left (stage 1 of Algorithm 2 in [1]) % .Eoob_tolerance (default = 0.02) - the relative tolerance for the % minimality of OOB within the search, i.e. specifies the stopping % criterion for the stage 2 in Algorithm 2 % % Both default parameters work well for most of the steganalysis scenarios. % % Parameters for automatic stopping criterion for L (when .L ='automatic'); % see [1] for more details: % % .L_kernel (default = ones(1,5)/5) - over how many values of OOB % estimates is the moving average taken over % .L_min_length (default = 25) - the minimum number of random subspaces % that will be generated % .L_memory (default = 50) - how many last OOB estimates need to stay in % the epsilon tube % .L_epsilon (default = 0.005) - specification of the epsilon tube % % According to our experiments, these values are sufficient for most of the % steganalysis tasks (different algorithms and features). Nevertheless, any % of these parameters can be modified before calling the ensemble if % desired. % ------------------------------------------------------------------------- % OUTPUT: % trained_ensemble - cell array of individual FLD base learners, each % containing the following three fields: % - subspace - random subspace indices % - w - vector of weights (normal vector to the decision boundary) % - b - bias % results - data structure with additional results of the training % procedure (training time, progress of the OOB error estimate, % summary of the search for d_sub, etc. See the attached tutorial % where we use some of these pieces of information for demonstrative % purposes % ------------------------------------------------------------------------- if ~exist('settings','var'), settings.all_default = 1; end % check settings, set default values, initial screen print [Xc,Xs,settings] = check_initial_setup(Xc,Xs,settings); % initialization of the search for d_sub [SEARCH,settings,search_counter,MIN_OOB,OOB.error] = initialize_search(settings); % search loop (if search for d_sub is to be executed) while SEARCH.in_progress search_counter = search_counter+1; % initialization [SEARCH.start_time_current_d_sub,i,next_random_subspace,TXT,base_learner] = deal(tic,0,1,'',cell(settings.max_number_base_learners,1)); % loop over individual base learners while next_random_subspace i = i+1; %%% RANDOM SUBSPACE GENERATION %base_learner{i}.subspace = generate_random_subspace(settings.randstream.subspaces,settings.max_dim,settings.d_sub); base_learner{i}.subspace = generate_random_subspace(settings.max_dim,settings.d_sub); %%% BOOTSTRAP INITIALIZATION OOB = bootstrap_initialization(Xc,Xs,OOB,settings); %%% TRAINING PHASE base_learner{i} = FLD_training(Xc,Xs,base_learner{i},OOB,settings); %%% OOB ERROR ESTIMATION OOB = update_oob_error_estimates(Xc,Xs,base_learner{i},OOB,i); [next_random_subspace,MSG] = getFlag_nextRandomSubspace(i,OOB,settings); % SCREEN OUTPUT CT = double(toc(SEARCH.start_time_current_d_sub)); %%TXT = updateTXT(TXT,sprintf(' - d_sub %s : OOB %.4f : L %i : T %.1f sec%s',k_to_string(settings.d_sub),OOB.error,i,CT,MSG),settings); end % while next_random_subspace results.search.d_sub(search_counter) = settings.d_sub; %%updateLog_swipe(settings,'\n'); if OOB.error<MIN_OOB % found the best value of k so far MIN_OOB = OOB.error; results.optimal_L = i; results.optimal_d_sub = settings.d_sub; results.optimal_OOB = OOB.error; results.OOB_progress = OOB.y; trained_ensemble = base_learner(1:i); end [settings,SEARCH] = update_search(settings,SEARCH,OOB.error); results = add_search_info(results,settings,search_counter,SEARCH,i,CT); clear base_learner OOB OOB.error = 1; end % while search_in_progress % training time evaluation results.training_time = toc(uint64(settings.start_time)); %%updateLog_swipe(settings,'# -------------------------\n'); %%updateLog_swipe(settings,sprintf('optimal d_sub %i : OOB %.4f : L %i : T %.1f sec\n',results.optimal_d_sub,results.optimal_OOB,results.optimal_L,results.training_time),1); % ------------------------------------------------------------------------- % SUPPORTING FUNCTIONS % ------------------------------------------------------------------------- function [Xc,Xs,settings] = check_initial_setup(Xc,Xs,settings) % check settings, set default values if size(Xc,2)~=size(Xs,2) error('Ensemble error: cover/stego features must have the same dimension.'); end if size(Xc,1)~=size(Xs,1) error('Ensemble error: cover/stego feature matrices must have the same number of rows (corresponding images!).'); end % convert to single precision (speedup) Xc = single(Xc); Xs = single(Xs); settings.start_time = tic; % settings.randstream.main = RandStream('mt19937ar','Seed',sum(100*clock)); %--settings.randstream.main = RandStream('mt19937ar','Seed',1); % if PRNG seeds for random subspaces and bootstrap samples not specified, generate them randomly if ~isfield(settings,'seed_subspaces') %--settings.seed_subspaces = ceil(rand(settings.randstream.main)*1e9); settings.seed_subspaces = ceil(rand()*1e9); end if ~isfield(settings,'seed_bootstrap') %--settings.seed_bootstrap = ceil(rand(settings.randstream.main)*1e9); settings.seed_bootstrap = ceil(rand()*1e9); end %--settings.randstream.subspaces = RandStream('mt19937ar','Seed',settings.seed_subspaces); %--settings.randstream.bootstrap = RandStream('mt19937ar','Seed',settings.seed_bootstrap); if ~isfield(settings,'L'), settings.L = 'automatic'; end if ~isfield(settings,'d_sub'), settings.d_sub = 'automatic'; end if ~isfield(settings,'verbose'), settings.verbose = 0; end if ~isfield(settings,'max_number_base_learners'), settings.max_number_base_learners = 500; end % Set default values for the automatic stopping criterion for L if ischar(settings.L) if ~isfield(settings,'L_kernel'), settings.L_kernel = ones(1,5)/5; end if ~isfield(settings,'L_min_length'), settings.L_min_length = 25; end if ~isfield(settings,'L_memory'), settings.L_memory = 50; end if ~isfield(settings,'L_epsilon'), settings.L_epsilon = 0.005; end settings.bootstrap = 1; end if ~isfield(settings,'ignore_nearly_singular_matrix_warning') settings.ignore_nearly_singular_matrix_warning = 1; end % Set default values for the search for the subspace dimension d_sub if ischar(settings.d_sub) if ~isfield(settings,'Eoob_tolerance'), settings.Eoob_tolerance = 0.02; end if ~isfield(settings,'d_sub_step'), settings.d_sub_step = 200; end settings.bootstrap = 1; settings.search_for_d_sub = 1; else settings.search_for_d_sub = 0; end settings.max_dim = size(Xc,2); % if full dimensionality is 1, just do a single FLD if settings.max_dim == 1 settings.d_sub = 1; settings.search_for_d_sub = 0; end initial_screen_output(Xc,Xs,settings); function initial_screen_output(Xc,Xs,settings) % initial screen output if settings.verbose~=1,return; end fprintf('# -------------------------\n'); fprintf('# Ensemble classification\n'); fprintf('# - Training samples: %i (%i/%i)\n',size(Xc,1)+size(Xs,1),size(Xc,1),size(Xs,1)); fprintf('# - Feature-space dimensionality: %i\n',size(Xc,2)); if ~ischar(settings.L) fprintf('# - L : %i\n',settings.L); else fprintf('# - L : %s (min %i, max %i, length %i, eps %.5f)\n',settings.L,settings.L_min_length,settings.max_number_base_learners,settings.L_memory,settings.L_epsilon); end if ischar(settings.d_sub) fprintf('# - d_sub : automatic (Eoob tolerance %.4f, step %i)\n',settings.Eoob_tolerance,settings.d_sub_step); else fprintf('# - d_sub : %i\n',settings.d_sub); end fprintf('# - Seed 1 (subspaces) : %i\n',settings.seed_subspaces); fprintf('# - Seed 2 (bootstrap) : %i\n',settings.seed_bootstrap); fprintf('# -------------------------\n'); function [next_random_subspace,TXT] = getFlag_nextRandomSubspace(i,OOB,settings) % decide whether to generate another random subspace or not, based on the % settings TXT=''; if ischar(settings.L) if strcmp(settings.L,'automatic') % automatic criterion for termination next_random_subspace = 1; if ~isfield(OOB,'x'), next_random_subspace = 0; return; end if length(OOB.x)<settings.L_min_length, return; end A = convn(OOB.y(max(length(OOB.y)-settings.L_memory+1,1):end),settings.L_kernel,'valid'); V = abs(max(A)-min(A)); if V<settings.L_epsilon next_random_subspace = 0; return; end if i == settings.max_number_base_learners, % maximal number of base learners reached next_random_subspace = 0; TXT = ' (maximum reached)'; end return; end else % fixed number of random subspaces if i<settings.L next_random_subspace = 1; else next_random_subspace = 0; end end function [settings,SEARCH] = update_search(settings,SEARCH,currErr) % update search progress if ~settings.search_for_d_sub, SEARCH.in_progress = 0; return; end SEARCH.E(settings.d_sub==SEARCH.x) = currErr; % any other unfinished values of k? unfinished = find(SEARCH.E==-1); if ~isempty(unfinished), settings.d_sub = SEARCH.x(unfinished(1)); return; end % check where is minimum [MINIMAL_ERROR,minE_id] = min(SEARCH.E); if SEARCH.step == 1 || MINIMAL_ERROR == 0 % smallest possible step or error => terminate search SEARCH.in_progress = 0; SEARCH.optimal_d_sub = SEARCH.x(SEARCH.E==MINIMAL_ERROR); SEARCH.optimal_d_sub = SEARCH.optimal_d_sub(1); return; end if minE_id == 1 % smallest k is the best => reduce step SEARCH.step = floor(SEARCH.step/2); SEARCH = add_gridpoints(SEARCH,SEARCH.x(1)+SEARCH.step*[-1 1]); elseif minE_id == length(SEARCH.x) % largest k is the best if SEARCH.x(end) + SEARCH.step <= settings.max_dim && (min(abs(SEARCH.x(end) + SEARCH.step-SEARCH.x))>SEARCH.step/2) % continue to the right SEARCH = add_gridpoints(SEARCH,SEARCH.x(end) + SEARCH.step); else % hitting the full dimensionality if (MINIMAL_ERROR/SEARCH.E(end-1) >= 1 - settings.Eoob_tolerance) ... % desired tolerance fulfilled || SEARCH.E(end-1)-MINIMAL_ERROR < 5e-3 ... % maximal precision in terms of error set to 0.5% || SEARCH.step<SEARCH.x(minE_id)*0.05 ... % step is smaller than 5% of the optimal value of k % stopping criterion met SEARCH.in_progress = false; SEARCH.optimal_d_sub = SEARCH.x(SEARCH.E==MINIMAL_ERROR); SEARCH.optimal_d_sub = SEARCH.optimal_d_sub(1); return; else % reduce step SEARCH.step = floor(SEARCH.step/2); if SEARCH.x(end) + SEARCH.step <= settings.max_dim SEARCH = add_gridpoints(SEARCH,SEARCH.x(end)+SEARCH.step*[-1 1]); else SEARCH = add_gridpoints(SEARCH,SEARCH.x(end)-SEARCH.step); end; end end elseif (minE_id == length(SEARCH.x)-1) ... % if lowest is the last but one && (settings.d_sub + SEARCH.step <= settings.max_dim) ... % one more step to the right is still valid (less than d) && (min(abs(settings.d_sub + SEARCH.step-SEARCH.x))>SEARCH.step/2) ... % one more step to the right is not too close to any other point && ~(SEARCH.E(end)>SEARCH.E(end-1) && SEARCH.E(end)>SEARCH.E(end-2)) % the last point is not worse than the two previous ones % robustness ensurance, try one more step to the right SEARCH = add_gridpoints(SEARCH,settings.d_sub + SEARCH.step); else % best k is not at the edge of the grid (and robustness is resolved) err_around = mean(SEARCH.E(minE_id+[-1 1])); if (MINIMAL_ERROR/err_around >= 1 - settings.Eoob_tolerance) ... % desired tolerance fulfilled || err_around-MINIMAL_ERROR < 5e-3 ... % maximal precision in terms of error set to 0.5% || SEARCH.step<SEARCH.x(minE_id)*0.05 ... % step is smaller than 5% of the optimal value of k % stopping criterion met SEARCH.in_progress = false; SEARCH.optimal_d_sub = SEARCH.x(SEARCH.E==MINIMAL_ERROR); SEARCH.optimal_d_sub = SEARCH.optimal_d_sub(1); return; else % reduce step SEARCH.step = floor(SEARCH.step/2); SEARCH = add_gridpoints(SEARCH,SEARCH.x(minE_id)+SEARCH.step*[-1 1]); end end unfinished = find(SEARCH.E==-1); settings.d_sub = SEARCH.x(unfinished(1)); return; function [SEARCH,settings,search_counter,MIN_OOB,OOB_error] = initialize_search(settings) % search for d_sub initialization SEARCH.in_progress = 1; if settings.search_for_d_sub % automatic search for d_sub if settings.d_sub_step >= settings.max_dim/4, settings.d_sub_step = floor(settings.max_dim/4); end if settings.max_dim < 10, settings.d_sub_step = 1; end SEARCH.x = settings.d_sub_step*[1 2 3]; if settings.max_dim==2, SEARCH.x = [1 2]; end SEARCH.E = -ones(size(SEARCH.x)); SEARCH.terminate = 0; SEARCH.step = settings.d_sub_step; settings.d_sub = SEARCH.x(1); end search_counter = 0; MIN_OOB = 1; OOB_error = 1; function TXT = updateTXT(old,TXT,settings) if isfield(settings,'kmin') if length(TXT)>3 if ~strcmp(TXT(1:3),' - ') TXT = [' - ' TXT]; end end end if settings.verbose==1 if exist('/home','dir') % do not delete on cluster, it displays incorrectly when writing through STDOUT into file fprintf(['\n' TXT]); else fprintf([repmat('\b',1,length(old)) TXT]); end end function s = k_to_string(k) if length(k)==1 s = num2str(k); return; end s=['[' num2str(k(1))]; for i=2:length(k) s = [s ',' num2str(k(i))]; %#ok<AGROW> end s = [s ']']; function updateLog_swipe(settings,TXT,final) if ~exist('final','var'), final=0; end if settings.verbose==1 || (settings.verbose==2 && final==1), fprintf(TXT); end function OOB = bootstrap_initialization(Xc,Xs,OOB,settings) % initialization of the structure for OOB error estimates %--OOB.SUB = floor(size(Xc,1)*rand(settings.randstream.bootstrap,size(Xc,1),1))+1; OOB.SUB = floor(size(Xc,1)*rand(size(Xc,1),1))+1; OOB.ID = setdiff(1:size(Xc,1),OOB.SUB); if ~isfield(OOB,'Xc') OOB.Xc.fusion_majority_vote = zeros(size(Xc,1),1); % majority voting fusion OOB.Xc.num = zeros(size(Xc,1),1); % number of fused votes OOB.Xs.fusion_majority_vote = zeros(size(Xs,1),1); % majority voting fusion OOB.Xs.num = zeros(size(Xs,1),1); % number of fused votes end if ~isfield(OOB,'randstream_for_ties') % Doesn't really matter that we fix the seed here. This will be used % only for resolving voting ties. We are fixing this in order to make % all results nicely reproducible. %--OOB.randstream_for_ties = RandStream('mt19937ar','Seed',1); end function [base_learner] = findThreshold(Xm,Xp,base_learner) % find threshold through minimizing (MD+FA)/2, where MD stands for the % missed detection rate and FA for the false alarms rate P1 = Xm*base_learner.w; P2 = Xp*base_learner.w; L = [-ones(size(Xm,1),1);ones(size(Xp,1),1)]; [P,IX] = sort([P1;P2]); L = L(IX); Lm = (L==-1); sgn = 1; MD = 0; FA = sum(Lm); MD2=FA; FA2=MD; Emin = (FA+MD); Eact = zeros(size(L-1)); Eact2 = Eact; for idTr=1:length(P)-1 if L(idTr)==-1 FA=FA-1; MD2=MD2+1; else FA2=FA2-1; MD=MD+1; end Eact(idTr) = FA+MD; Eact2(idTr) = FA2+MD2; if Eact(idTr)<Emin Emin = Eact(idTr); iopt = idTr; sgn=1; end if Eact2(idTr)<Emin Emin = Eact2(idTr); iopt = idTr; sgn=-1; end end base_learner.b = sgn*0.5*(P(iopt)+P(iopt+1)); if sgn==-1, base_learner.w = -base_learner.w; end function OOB = update_oob_error_estimates(Xc,Xs,base_learner,OOB,i) % update OOB error estimates OOB.Xc.proj = Xc(OOB.ID,base_learner.subspace)*base_learner.w-base_learner.b; OOB.Xs.proj = Xs(OOB.ID,base_learner.subspace)*base_learner.w-base_learner.b; OOB.Xc.num(OOB.ID) = OOB.Xc.num(OOB.ID) + 1; OOB.Xc.fusion_majority_vote(OOB.ID) = OOB.Xc.fusion_majority_vote(OOB.ID)+sign(OOB.Xc.proj); OOB.Xs.num(OOB.ID) = OOB.Xs.num(OOB.ID) + 1; OOB.Xs.fusion_majority_vote(OOB.ID) = OOB.Xs.fusion_majority_vote(OOB.ID)+sign(OOB.Xs.proj); % update errors %--TMP_c = OOB.Xc.fusion_majority_vote; TMP_c(TMP_c==0) = rand(OOB.randstream_for_ties,sum(TMP_c==0),1)-0.5; TMP_c = OOB.Xc.fusion_majority_vote; TMP_c(TMP_c==0) = rand(sum(TMP_c==0),1)-0.5; %--TMP_s = OOB.Xs.fusion_majority_vote; TMP_s(TMP_s==0) = rand(OOB.randstream_for_ties,sum(TMP_s==0),1)-0.5; TMP_s = OOB.Xs.fusion_majority_vote; TMP_s(TMP_s==0) = rand(sum(TMP_s==0),1)-0.5; OOB.error = (sum(TMP_c>0)+sum(TMP_s<0))/(length(TMP_c)+length(TMP_s)); if ~ischar(OOB) && ~isempty(OOB) H = hist([OOB.Xc.num;OOB.Xs.num],0:max([OOB.Xc.num;OOB.Xs.num])); avg_L = sum(H.*(0:length(H)-1))/sum(H); % average L in OOB OOB.x(i) = avg_L; OOB.y(i) = OOB.error; end function base_learner = FLD_training(Xc,Xs,base_learner,OOB,settings) % FLD TRAINING Xm = Xc(OOB.SUB,base_learner.subspace); Xp = Xs(OOB.SUB,base_learner.subspace); % remove constants remove = false(1,size(Xm,2)); adepts = unique([find(Xm(1,:)==Xm(2,:)) find(Xp(1,:)==Xp(2,:))]); for ad_id = adepts U1=unique(Xm(:,ad_id)); if numel(U1)==1 U2=unique(Xp(:,ad_id)); if numel(U2)==1, if U1==U2, remove(ad_id) = true; end; end end end muC = sum(Xm,1); muC = double(muC)/size(Xm,1); muS = sum(Xp,1); muS = double(muS)/size(Xp,1); mu = (muS-muC)'; % calculate sigC xc = bsxfun(@minus,Xm,muC); sigC = xc'*xc; sigC = double(sigC)/size(Xm,1); % calculate sigS xc = bsxfun(@minus,Xp,muS); sigS = xc'*xc; sigS = double(sigS)/size(Xp,1); sigCS = sigC + sigS; % regularization sigCS = sigCS + 1e-10*eye(size(sigC,1)); % check for NaN values (may occur when the feature value is constant over images) nan_values = sum(isnan(sigCS))>0; nan_values = nan_values | remove; sigCS = sigCS(~nan_values,~nan_values); mu = mu(~nan_values); lastwarn(''); warning('off','MATLAB:nearlySingularMatrix'); warning('off','MATLAB:singularMatrix'); base_learner.w = sigCS\mu; % regularization (if necessary) [txt,warnid] = lastwarn(); %#ok<ASGLU> while strcmp(warnid,'MATLAB:singularMatrix') || (strcmp(warnid,'MATLAB:nearlySingularMatrix') && ~settings.ignore_nearly_singular_matrix_warning) lastwarn(''); if ~exist('counter','var'), counter=1; else counter = counter*5; end sigCS = sigCS + counter*eps*eye(size(sigCS,1)); base_learner.w = sigCS\mu; [txt,warnid] = lastwarn(); %#ok<ASGLU> end warning('on','MATLAB:nearlySingularMatrix'); warning('on','MATLAB:singularMatrix'); if length(sigCS)~=length(sigC) % resolve previously found NaN values, set the corresponding elements of w equal to zero w_new = zeros(length(sigC),1); w_new(~nan_values) = base_learner.w; base_learner.w = w_new; end % find threshold to minimize FA+MD [base_learner] = findThreshold(Xm,Xp,base_learner); function results = add_search_info(results,settings,search_counter,SEARCH,i,CT) % update information about d_sub search if settings.search_for_d_sub results.search.OOB(search_counter) = SEARCH.E(SEARCH.x==results.search.d_sub(search_counter)); results.search.L(search_counter) = i; results.search.time(search_counter) = CT; end function SEARCH = add_gridpoints(SEARCH,points) % add new points for the search for d_sub for point=points if SEARCH.x(1)>point SEARCH.x = [point SEARCH.x]; SEARCH.E = [-1 SEARCH.E]; continue; end if SEARCH.x(end)<point SEARCH.x = [SEARCH.x point]; SEARCH.E = [SEARCH.E -1]; continue; end pos = 2; while SEARCH.x(pos+1)<point,pos = pos+1; end SEARCH.x = [SEARCH.x(1:pos-1) point SEARCH.x(pos:end)]; SEARCH.E = [SEARCH.E(1:pos-1) -1 SEARCH.E(pos:end)]; end %--function subspace = generate_random_subspace(randstr,max_dim,d_sub) function subspace = generate_random_subspace(max_dim,d_sub) %subspace = randperm(randstr,max_dim); subspace = randperm(max_dim); subspace = subspace(1:d_sub);
github
daniellerch/aletheia-master
HILL_sigma_spam_PSRM.m
.m
aletheia-master/aletheia-octave/octave/HILL_sigma_spam_PSRM.m
2,143
utf_8
98d9ae16440c8a4e9a55029502756479
function f = HILL_sigma_spam_PSRM(IMAGE) if ischar(IMAGE) X = double(imread(IMAGE)); else X = double(IMAGE); end q = 1; P = f_cal_cost(X); f = sigma_spam_PSRM(X, q, P); end function cost = f_cal_cost(cover) % Copyright (c) 2014 Shenzhen University, % All Rights Reserved. % ------------------------------------------------------------------------- % Permission to use, copy, modify, and distribute this software for % educational, research and non-profit purposes, without fee, and without a % written agreement is hereby granted, provided that this copyright notice % appears in all copies. The program is supplied "as is," without any % accompanying services from Shenzhen University. % ------------------------------------------------------------------------- % Author: Ming Wang % ------------------------------------------------------------------------- % Contact: [email protected] % [email protected] % ------------------------------------------------------------------------- % Input: cover ... cover image% % Output: cost ....... costs value of all pixels % ------------------------------------------------------------------------- % [1] A New Cost Function for Spatial Image Steganography, % B.Li, M.Wang,J.Huang and X.Li, to be presented at IEEE International Conference on Image Processing, 2014. % ------------------------------------------------------------------------- %Get filter HF1=[-1,2,-1;2,-4,2;-1,2,-1]; H2 = fspecial('average',[3 3]); %% Get cost cover=double(cover); sizeCover=size(cover); padsize=max(size(HF1)); coverPadded = padarray(cover, [padsize padsize], 'symmetric');% add padding R1 = conv2(coverPadded,HF1, 'same');%mirror-padded convolution W1 = conv2(abs(R1),H2,'same'); if mod(size(HF1, 1), 2) == 0, W1= circshift(W1, [1, 0]); end; if mod(size(HF1, 2), 2) == 0, W1 = circshift(W1, [0, 1]); end; W1 = W1(((size(W1, 1)-sizeCover(1))/2)+1:end-((size(W1, 1)-sizeCover(1))/2), ((size(W1, 2)-sizeCover(2))/2)+1:end-((size(W1, 2)-sizeCover(2))/2)); rho=1./(W1+10^(-10)); HW = fspecial('average',[15 15]); cost = imfilter(rho, HW ,'symmetric','same'); end
github
dylewsky/MultiRes_Discovery-master
Simple_Toy_Model.m
.m
MultiRes_Discovery-master/Example_Simple_Toy_Model/Simple_Toy_Model.m
21,750
utf_8
3191468cb3fb9ecdf1f5d0f154223343
%%% DMD SCALE SEPARATION FOR A SIMPLE MULTISCALE TOY MODEL %%% %%% Before running, make sure to download and set up the optdmd package %%% available here: https://github.com/duqbo/optdmd %%% %%% This code reproduces the results of Sec. III of "Dynamic mode decomposition %%% for multiscale nonlinear physics," by Dylewsky, Tao, and Kutz %%% (DOI: 10.1103/PhysRevE.99.063311) clear variables; close all; clc %% Simulate System % parameters a0=0; b0=0; r0=sqrt(2^2+0.8^2); theta0=atan2(0.8,2); x1_0 = 0; x2_0 = 0.5; y1_0 = 0; y2_0 = 0.5; x0 = [x1_0; x2_0; y1_0; y2_0]; epsilon=0.01; delta = 4; T=48; % RK4 integration of the mixed system h=epsilon/100; TimeSpan = 0:h:T; TimeSteps=length(TimeSpan)-1; % x = zeros(4,TimeSteps+1); % x(:,1) = [x1_0; x2_0; y1_0; y2_0]; [t, x] = ode45(@(t,x) rhs(x,delta,epsilon),TimeSpan,x0); tStep = mean(diff(t))*4; nSteps = ceil(T/tStep); tN = 0:tStep:T; tN = tN(1:nSteps); %match to nSteps xOld = x; x = interp1(t,xOld,tN); %enforce evenly spaced time steps TimeSpan = tN; % Plot Results plot(TimeSpan, x); title('Raw data'); xlabel('Time'); % Apply Linear Mixing rng(111); %seed n = size(x,2); % generate a random unitary matrix M X = rand(n)/sqrt(2); [Q,R] = qr(X); R = diag(diag(R)./abs(diag(R))); M = real(Q*R); x = x * M; save('Simple_Toy_Model_Raw_Data.mat','x','TimeSpan','M'); %% Run Sliding-Window DMD x = x.'; r = size(x,1); %rank to fit w/ optdmd imode = 1; %parameter for optdmd code % imode = 1, fit full data, slower % imode = 2, fit data projected onto first r POD modes % or columns of varargin{2} (should be at least r % columns in varargin{2}) nComponents = 2; %number of distinct time scales present global_SVD = 1; %use global SVD modes for each DMD rather than individual SVD on each window if global_SVD == 1 [u,~,v] = svd(x,'econ'); u = u(:,1:r); %just first r modes v = v(:,1:r); end % Method for making initial guess of DMD eigenvalues: % Recommended settings for first run: initialize_artificially = 0; %this is required for use_last_freq OR use_median_freqs use_last_freq = 0; use_median_freqs = 0; %mutually exclusive w/ use_last_freq % Recommended settings for subsequent runs (using clustering information % obtained from the first run): % initialize_artificially = 1; %this is required for use_last_freq OR use_median_freqs % use_last_freq = 0; % use_median_freqs = 1; %mutually exclusive w/ use_last_freq if use_median_freqs == 1 load('km_centroids.mat'); % Load pre-defined eigenvalue guesses freq_meds = repelem(sqrt(km_centroids),r/nComponents); end wSteps = 5500; % Window size (in time steps) nSplit = 21; %number of windows if they were non-overlapping nSteps = wSteps * nSplit; nVars = size(x,1); thresh_pct = 1; stepSize = 20; nSlide = floor((nSteps-wSteps)/stepSize); % Number of sliding-window iterations save('mwDMD_params.mat','r','nComponents','initialize_artificially','use_last_freq','use_median_freqs','wSteps','nSplit','nSteps','nVars','thresh_pct','stepSize','nSlide'); %% execute optDMD corner_sharpness = 16; %higher = sharper corners lv_kern = tanh(corner_sharpness*(1:wSteps)/wSteps) - tanh(corner_sharpness*((1:wSteps)-wSteps)/wSteps) - 1; mr_res = cell(nSlide,1); for k = 1:nSlide sampleStart = stepSize*(k-1) + 1; sampleSteps = sampleStart : sampleStart + wSteps - 1; xSample = x(:,sampleSteps); tSample = TimeSpan(sampleSteps); mr_res{k}.x = xSample; mr_res{k}.t = tSample; c = mean(xSample,2); %subtract off mean before rounding corners xSample = xSample - repmat(c,1,size(xSample,2)); xSample = xSample.*repmat(lv_kern,nVars,1); %round off corners t_start = tSample(1); tSample = tSample - t_start; if global_SVD == 0 [u,~,~] = svd(xSample,'econ'); u = u(:,1:r); end if (exist('e_init','var')) && (initialize_artificially == 1) [w, e, b] = optdmd(xSample,tSample,r,imode,[],e_init,u); else [w, e, b] = optdmd(xSample,tSample,r,imode,[],[],u); end if use_last_freq == 1 e_init = e; end if use_median_freqs == 1 [eSq, eInd] = sort(e.*conj(e)); %match order to that of freq_meds freq_angs = angle(e(eInd)); e_init = exp(sqrt(-1)*freq_angs) .* freq_meds; end mr_res{k}.w = w; mr_res{k}.Omega = e; mr_res{k}.b = b; mr_res{k}.c = c; mr_res{k}.t_start = t_start; end %% Cluster Frequencies close all; if exist('mr_res','var') == 0 try load('mwDMD_mr_res_i2.mat'); catch ME load('mwDMD_mr_res.mat'); end end all_om = []; all_om_grouped = []; for k = 1:nSlide try Omega = mr_res{k}.Omega; catch ME disp(['Error on k = ' num2str(k)]); continue end all_om = [all_om; Omega]; [~,imSortInd] = sort(imag(Omega)); all_om_grouped = [all_om_grouped; Omega(imSortInd).']; end all_om_sq = conj(all_om) .* all_om; all_om_sq = sort(all_om_sq); all_om_sq_thresh = all_om_sq(floor(thresh_pct*length(all_om_sq))); all_om_sq = all_om_sq(1:floor(thresh_pct*length(all_om_sq))); [~, km_centroids] = kmeans(all_om_sq,nComponents,'Distance','cityblock','Replicates',5); [km_centroids,sortInd] = sort(km_centroids); for k = 1:nSlide try omega = mr_res{k}.Omega; catch ME continue end om_sq = omega.*conj(omega); om_sq_dists = (repmat(km_centroids.',r,1) - repmat(om_sq,1,nComponents)).^2; [~,om_class] = min(om_sq_dists,[],2); mr_res{k}.om_class = om_class; end if use_median_freqs == 0 save('mwDMD_mr_res.mat', 'mr_res'); else save('mwDMD_mr_res_i2.mat', 'mr_res'); end %% Plot MultiRes Results close all; if exist('mr_res','var') == 0 try load('mwDMD_mr_res_i2.mat'); catch ME load('mwDMD_mr_res.mat'); end end export_result = 0; logScale = 0; % figure('units','pixels','Position',[0 0 1366 2*768]) % plotDims = [3 4]; %rows, columns of plot grid on screen at a given time % plotDims = [1 4]; %rows, columns of plot grid on screen at a given time colorList = {'b','r','g','k','y'}; x_PoT = x(:,1:nSteps); t_PoT = TimeSpan(1:nSteps); %res_list: [pn, level #, nSplit, sampleSteps/nSplit] dupShift = 0; %multiplier to shift duplicate values so they can be visually distinguished nBins = 64; figure('units','pixels','Position',[100 100 1200 400]) % j = res_list(q,2); % pn = res_list(q,1); % nSplit = 2^(j-1); % om_spec = zeros(nVars,nSteps); all_om = []; for k = 1:nSlide Omega = mr_res{k}.Omega; all_om = [all_om; Omega]; end all_om_sq = sort(all_om .* conj(all_om)); thresh_om_sq = all_om_sq(floor(thresh_pct*length(all_om_sq))); all_om_sq = all_om_sq(1:floor(thresh_pct*length(all_om_sq))); subplot(2,2,[1 3]); om_hist = histogram(all_om_sq,nBins); mesh_pad = 10; bin_mesh = om_hist.BinEdges(1)-mesh_pad:0.5:om_hist.BinEdges(end)+mesh_pad; xlabel('|\omega|^2'); ylabel('Count'); title('|\omega|^2 Spectrum & k-Means Centroids'); hold on yl = ylim; for c = 1:nComponents plot([km_centroids(c), km_centroids(c)], yl,'Color',colorList{c},'LineWidth',2) end xr = zeros(size(x(:,1:nSteps))); %reconstructed time series xn = zeros(nSteps,1); %count # of windows contributing to each step omega_series = nan(nVars,nSlide); time_series = nan(nSlide,1); for k = 1:nSlide w = mr_res{k}.w; b = mr_res{k}.b; Omega = mr_res{k}.Omega; om_class = mr_res{k}.om_class; t = mr_res{k}.t; c = mr_res{k}.c; t_start = mr_res{k}.t_start; tShift = t-t(1); %compute each segment of xr starting at "t = 0" xr_window = w*diag(b)*exp(Omega*(t-t_start)) + c; xr(:,(k-1)*stepSize+1:(k-1)*stepSize+wSteps) = xr(:,(k-1)*stepSize+1:(k-1)*stepSize+wSteps) + xr_window; xn((k-1)*stepSize+1:(k-1)*stepSize+wSteps) = xn((k-1)*stepSize+1:(k-1)*stepSize+wSteps) + 1; % Plot |omega|^2 spectrum om_sq = conj(Omega).*Omega; om_class = om_class(om_sq <= thresh_om_sq); om_sq = om_sq(om_sq <= thresh_om_sq); %threshold to remove outliers for oi = 1:length(om_sq) for oj = oi:length(om_sq) if (abs(om_sq(oi)-om_sq(oj))/((om_sq(oi)+om_sq(oj))/2)) <= dupShift && (oi ~= oj) om_sq(oi) = om_sq(oi)*(1-dupShift); om_sq(oj) = om_sq(oj)*(1+dupShift); end end end subplot(2,2,2); for g = 1:nComponents om_window_spec_cat = om_sq(om_class == g,:); if isempty(om_window_spec_cat) == 1 continue end if length(om_window_spec_cat) == 2 omega_series(2*g-1:2*g,k) = om_window_spec_cat; time_series(k) = mean(t); end if logScale == 1 for f = 1:length(om_window_spec_cat) semilogy(mean(t),om_window_spec_cat(f),'.','Color',colorList{g},'LineWidth',1,'MarkerSize',10); end else for f = 1:length(om_window_spec_cat) plot(mean(t),om_window_spec_cat,'.','Color',colorList{g},'LineWidth',1,'MarkerSize',10); end end hold on end title('|\omega|^2 Spectra (Moving Window)'); end subplot(2,2,4); plot(t_PoT,real(x_PoT),'k-','LineWidth',1.5) %plot ground truth xlabel('t') ylabel('Measurement Data') xMax = max(max(abs(x_PoT))); ylim(1.5*[-xMax, xMax]); hold on xr = xr./repmat(xn.',4,1); %weight xr so all steps are on equal footing plot(t_PoT,real(xr),'b-','LineWidth',1.5) %plot averaged reconstruction title('Input (Black); DMD Recon. (Blue)'); if export_result == 1 if lv == 1 export_fig 'manyres_opt' '-pdf'; % print(gcf, '-dpdf', 'manyres_opt.pdf'); else export_fig 'manyres_opt' '-pdf' '-append'; % print(gcf, '-dpdf', 'manyres_opt.pdf', '-append'); end close(gcf); end %% Link Consecutive Modes if exist('mr_res','var') == 0 try load('mwDMD_mr_res_i2.mat'); catch ME load('mwDMD_mr_res.mat'); end end allModes = zeros(nSlide,r,r); allFreqs = zeros(nSlide,r); catList = flipud(perms(1:r)); modeCats = zeros(nSlide,r); modeCats(1,:) = 1:r; %label using order of 1st modes allModes(1,:,:) = mr_res{1}.w; allFreqs(1,:) = mr_res{1}.Omega; [~,catsAsc] = sort(mr_res{1}.Omega.*conj(mr_res{1}.Omega)); %category labels in ascending frequency order distThresh = 0; %if more than one mode is within this distance then match using derivative permDistsHist = zeros(size(catList,1),nSlide-1); for k = 2:nSlide w_old = squeeze(allModes(k-1,:,:)); w = mr_res{k}.w; permDists = zeros(size(catList,1),1); for np = 1:size(catList,1) permDists(np) = norm(w(:,catList(np,:))-w_old); end permDistsHist(:,k-1) = sort(permDists); if nnz(permDists <= distThresh) >= 1 if k == 2 %can't compute derivative 1 step back, so skip it [~,minCat] = min(permDists); continue; end w_older = squeeze(allModes(k-2,:,:)); [~,minInds] = sort(permDists); %minInds(1) and minInds(2) point to 2 lowest distances wPrime = w - w_old; wPrime_old = w_old - w_older; for j = 1:size(wPrime,2) wPrime(:,j) = wPrime(:,j)/norm(wPrime(:,j)); wPrime_old(:,j) = wPrime_old(:,j)/norm(wPrime_old(:,j)); end derivDists = zeros(2,1); for np = 1:length(derivDists) derivDists(np) = norm(wPrime(:,catList(minInds(np),:))-wPrime_old); end [~,minDerInd] = min(derivDists); derivDistsSort = sort(derivDists); permDistsSort= sort(permDists); disp(['Derivative-Matching on k = ' num2str(k)]) if (derivDistsSort(2)-derivDistsSort(1)) > (permDistsSort(2) - permDistsSort(1)) minCat = minInds(minDerInd); [~,minCatNaive] = min(permDists); if minCat ~= minCatNaive disp('Naive result was wrong!') end else [~,minCat] = min(permDists); disp('Naive result trumps derivative match') end else [~,minCat] = min(permDists); end modeCats(k,:) = catList(minCat,:); allModes(k,:,:) = w(:,catList(minCat,:)); allFreqs(k,:) = mr_res{k}.Omega(catList(minCat,:)); end meanFreqsSq = sum(allFreqs.*conj(allFreqs),1)/nSlide; if use_median_freqs == 0 save('mwDMD_allModes.mat','allModes','allFreqs'); else save('mwDMD_allModes_i2.mat','allModes','allFreqs'); end %% Second derivative of mode coordinates sd_norms = zeros(r,size(allModes,1)-2); for j = 1:r tsPP = allModes(1:end-2,:,j) + allModes(3:end,:,j) - 2*allModes(2:end-1,:,j); sd_norms(j,:) = vecnorm(tsPP.'); end sd_norms = vecnorm(sd_norms).'; sd_thresh = 0.1; %threshold above which to try different permutations to reduce 2nd deriv %can be set to 0 to just check every step ppOverrideRatio = 0.7; %apply new permutation if 2nd deriv is reduced by at least this factor for k = 2:nSlide-1 thisData = allModes(k-1:k+1,:,:); tdPP = squeeze(thisData(1,:,:) + thisData(3,:,:) - 2*thisData(2,:,:)); if norm(tdPP) < sd_thresh continue; end permDists = zeros(size(catList,1),1); permData = zeros(size(thisData)); for np = 1:size(catList,1) %hold k-1 configuration constant, permute k and k+1 registers permData(1,:,:) = thisData(1,:,:); permData(2:3,:,:) = thisData(2:3,:,catList(np,:)); permPP = squeeze(permData(1,:,:) + permData(3,:,:) - 2*permData(2,:,:)); permDists(np) = norm(permPP); if permDists(np) <= ppOverrideRatio * norm(tdPP) newCat = catList(np,:); allModes(k:end,:,:) = allModes(k:end,:,newCat); modeCats(k,:) = modeCats(k,newCat); disp(['2nd Deriv. Perm. Override: k = ' num2str(k)]); end end end if use_median_freqs == 0 save('mwDMD_allModes.mat','allModes','allFreqs'); else save('mwDMD_allModes_i2.mat','allModes','allFreqs'); end %% Visualize Modes figure('units','pixels','Position',[0 0 1366 768]) colorlist = {'k','r','b','g'}; w = squeeze(allModes(1,:,:)); wPlots = cell(r,r); wTrails = cell(r,r); trailLength = 1000; %in window steps % Plot time series subplot(2,4,5:8) plot(TimeSpan(1:nSteps),x(:,1:nSteps),'LineWidth',1.5) xlim([TimeSpan(1) TimeSpan(nSteps)]) hold on lBound = plot([mr_res{1}.t(1) mr_res{1}.t(1)],ylim,'r-','LineWidth',2); hold on rBound = plot([mr_res{1}.t(end) mr_res{1}.t(end)],ylim,'r-','LineWidth',2); hold on % Plot 1st frame for dim = 1:r subplot(2,4,dim) wi = w(dim,:); for j = 1:r wPlots{dim,j} = plot(real(wi(j)),imag(wi(j)),'o','Color',colorlist{j},'MarkerSize',7); hold on wTrails{dim,j} = plot(real(wi(j)),imag(wi(j)),'-','Color',colorlist{j},'LineWidth',0.1); hold on wTrails{dim,j}.Color(4) = 0.3; % 50% opacity end title(['Proj. Modes into Dimension ' num2str(dim)]) axis equal xlim([-1 1]) ylim([-1 1]) xlabel('Real'); ylabel('Imag'); plot(xlim,[0 0],'k:') hold on plot([0 0],ylim,'k:') hold off end legend([wPlots{r,catsAsc(1)},wPlots{r,catsAsc(2)},wPlots{r,catsAsc(3)},wPlots{r,catsAsc(4)}],{'LF Mode 1','LF Mode 2','HF Mode 1','HF Mode 2'},'Position',[0.93 0.65 0.05 0.2]) %Plot subsequent frames for k = 2:nSlide w = squeeze(allModes(k,:,:)); for dim = 1:r % subplot(4,4,dim) wi = w(dim,:); for j = 1:r wPlots{dim,j}.XData = real(wi(j)); wPlots{dim,j}.YData = imag(wi(j)); if k > trailLength wTrails{dim,j}.XData = [wTrails{dim,j}.XData(2:end) real(wi(j))]; wTrails{dim,j}.YData = [wTrails{dim,j}.YData(2:end) imag(wi(j))]; else wTrails{dim,j}.XData = [wTrails{dim,j}.XData real(wi(j))]; wTrails{dim,j}.YData = [wTrails{dim,j}.YData imag(wi(j))]; end end end lBound.XData = [mr_res{k}.t(1) mr_res{k}.t(1)]; rBound.XData = [mr_res{k}.t(end) mr_res{k}.t(end)]; pause(0.05) end %% Times series of mode coordinates figure('units','pixels','Position',[100 100 1366 768]) for j = 1:r subplot(r,2,2*j-1) plot(real(allModes(:,:,j))) title(['Re[w_' num2str(j) ']']) % legend('a','b','r','\theta') if j == r xlabel('Window #') end subplot(r,2,2*j) plot(imag(allModes(:,:,j))) title(['Im[w_' num2str(j) ']']) % legend('a','b','r','\theta') if j == r xlabel('Window #') end end %% Times series of modes in polar coordinates figure('units','pixels','Position',[100 100 1366 768]) for j = 1:r cMode = squeeze(allModes(:,j,:)); rMode = abs(cMode); thMode = unwrap(angle(cMode)); subplot(r,2,2*j-1) plot(rMode) title(['Magnitudes of Modes in Dim. ' num2str(j)]) legend({'HF','HF','LF','LF'}) % legend('a','b','r','\theta') if j == r xlabel('Window #') end subplot(r,2,2*j) plot(thMode) title(['Angles of Modes in Dim. ' num2str(j)]) legend({'HF','HF','LF','LF'}) % legend('a','b','r','\theta') if j == r xlabel('Window #') end end %% Show how modes are reflections of one another figure('units','pixels','Position',[100 100 1366 768]) subplot(2,2,1) plot(real(allModes(:,:,1) - conj(allModes(:,:,2)))) title('Re[w_1 - w_2^*]') subplot(2,2,2) plot(imag(allModes(:,:,1) - conj(allModes(:,:,2)))) title('Im[w_1 - w_2^*]') subplot(2,2,3) plot(real(allModes(:,:,3) - conj(allModes(:,:,4)))) title('Re[w_3 - w_4^*]') subplot(2,2,4) plot(imag(allModes(:,:,3) - conj(allModes(:,:,4)))) title('Im[w_3 - w_4^*]') %% Output mode time series data t_step = (TimeSpan(2)-TimeSpan(1))*stepSize; %time per window sliding step start_steps = 100; %chop off from beginning to get rid of initial transients % good_winds = [start_steps:626, 644:nSlide]; %manually excise outliers from DMD error % cutoff_inds = 626-start_steps; %after omitting outliers, this is the index location of the cutoff between continuous regions % allFreqsCut = allFreqs(good_winds,:); % allModesCut = allModes(good_winds,:,:); modeStack = zeros(size(allModes,1),r*r); for j = 1:r for k = 1:r modeStack(:,(j-1)*r+k) = allModes(:,k,j); end end % figure % subplot(2,1,1) % plot(real(modeStack(:,1:8))) % subplot(2,1,2) % plot(real(modeStack(:,9:16))) if use_median_freqs == 0 save('modeSeries.mat','modeStack','t_step'); else save('modeSeries_i2.mat','modeStack','t_step'); end %% Split HF/LF Reconstruction xr_H = zeros(size(x(:,1:nSteps))); xr_L = zeros(size(x(:,1:nSteps))); all_b = zeros(nVars,nSlide); xn = zeros(nSteps,1); %track total contribution from all windows to each time step recon_filter_sd = wSteps/8; recon_filter = exp(-((1 : wSteps) - (wSteps+1)/2).^2/recon_filter_sd^2); for k = 1:nSlide w = mr_res{k}.w; b = mr_res{k}.b; all_b(:,k) = b; Omega = mr_res{k}.Omega; om_class = mr_res{k}.om_class; t = mr_res{k}.t; c = mr_res{k}.c; t_start = mr_res{k}.t_start; tShift = t-t(1); %compute each segment of xr starting at "t = 0" % t_nudge = 5; % constant shift gets put in LF recon xr_L_window = w(:, om_class == 1)*diag(b(om_class == 1))*exp(Omega(om_class == 1)*(t-t_start)) + c; xr_H_window = w(:, om_class == 2)*diag(b(om_class == 2))*exp(Omega(om_class == 2)*(t-t_start)); xr_L_window = xr_L_window.*repmat(recon_filter,nVars,1); xr_H_window = xr_H_window.*repmat(recon_filter,nVars,1); xr_L(:,(k-1)*stepSize+1:(k-1)*stepSize+wSteps) = xr_L(:,(k-1)*stepSize+1:(k-1)*stepSize+wSteps) + xr_L_window; xr_H(:,(k-1)*stepSize+1:(k-1)*stepSize+wSteps) = xr_H(:,(k-1)*stepSize+1:(k-1)*stepSize+wSteps) + xr_H_window; xn((k-1)*stepSize+1:(k-1)*stepSize+wSteps) = xn((k-1)*stepSize+1:(k-1)*stepSize+wSteps) + recon_filter.'; end xr_L = xr_L./repmat(xn.',nVars,1); xr_H = xr_H./repmat(xn.',nVars,1); figure subplot(3,1,1) plot(TimeSpan(1:nSteps),x(:,1:nSteps)) title('Input Data') subplot(3,1,2) plot(TimeSpan(1:nSteps),xr_L) title('LF Recon') subplot(3,1,3) plot(TimeSpan(1:nSteps),xr_H) title('HF Recon') figure plot(all_b.') nanCols = ~isnan([xr_H; xr_L]); nanCols = sum(nanCols,1) ~= 0; tspan = TimeSpan(1:nSteps); xr_H = real(xr_H(:,nanCols)); xr_L = real(xr_L(:,nanCols)); tspan = tspan(nanCols); save('mwDMD_sep_recon.mat','xr_L','xr_H','tspan'); %% Construct A Matrices if global_SVD ~= 1 disp('Warning: Averaging A matrices in different bases') end A_avg = zeros(r); A_proj_avg = zeros(r); A_thresh = 100; for k = 1:nSlide x_window = mr_res{k}.x; w = mr_res{k}.w; Omega = mr_res{k}.Omega; A = w*diag(Omega)*pinv(w); A_proj = (u'*w)*diag(Omega)*(pinv(w)*u); A(abs(A) <= A_thresh) = 0; %threshold small values A_proj(abs(A_proj) <= A_thresh) = 0; A_avg = A_avg + A; A_proj_avg = A_proj_avg + A_proj; end A_avg = real(A_avg)/nSlide; %strips small imaginary residuals A_proj_avg = real(A_proj_avg)/nSlide; figure plot(TimeSpan(1:nSteps),v(1:nSteps,:)) legend({'Mode 1','Mode 2','Mode 3','Mode 4'}) %% Time series of mode projections allB = zeros(nSlide,r); colFreqs = zeros(r,1); for k = 1:nSlide thisCat = modeCats(k,:); b = mr_res{k}.b; % b = b(thisCat); allB(k,:) = b.'; colFreqs = colFreqs + abs(mr_res{k}.Omega); end colFreqs = colFreqs/nSlide; wMids = (TimeSpan(2)-TimeSpan(1))*(wSteps/2 + stepSize*(1:nSlide)); figure subplot(2,1,1) plot(wMids,allB(:,[1 3])) legend({'LF','HF'}); title('OptDMD Weight Coefficients Over Time'); xlim([wMids(1) wMids(end)]); subplot(2,1,2) plot(TimeSpan(1:nSteps),x(:,1:nSteps)) xlim([wMids(1) wMids(end)]); %% Function definitions function dx = rhs(x,delta,epsilon) x1 = x(1); x2 = x(2); y1 = x(3); y2 = x(4); dx=[x2; -y1^2 * x1^3; y2; -epsilon^(-1)*y1 - delta*y1^3]; end
github
dylewsky/MultiRes_Discovery-master
Overlapping_Scale_Oscillators.m
.m
MultiRes_Discovery-master/Example_Overlapping_Scale_Oscillators/Overlapping_Scale_Oscillators.m
21,904
utf_8
cf468a2658d1fe4f0690c6c00986f538
%%% DMD SCALE SEPARATION FOR A SYSTEM WITH SEPARATE BUT %%% INTERMITTANTLY-OVERLAPPING TIME SCALES %%% %%% Before running, make sure to download and set up the optdmd package %%% available here: https://github.com/duqbo/optdmd %%% %%% This code reproduces the results of Sec. IV of "Dynamic mode decomposition %%% for multiscale nonlinear physics," by Dylewsky, Tao, and Kutz %%% (DOI: 10.1103/PhysRevE.99.063311) clear; close all; clc %% Simulate Dynamics % parameters T=64; downsample_factor = 2; %integer >= 1 x0 = [-1.110,-0.125]; tau1 = 2; a = 0.7; b = 0.8; Iext = 0.65; y0 = [0 1]; eta = 0; %dampling epsilon = 1; tau2 = 0.2; % RK4 integration of the mixed system dt = 0.0001; TimeSpan = 0:dt:T; TimeSteps=length(TimeSpan)-1; % x = zeros(4,TimeSteps+1); % x(:,1) = [x1_0; x2_0; y1_0; y2_0]; [t1, x] = ode45(@(t1,x) rhs1(x,tau1,a,b,Iext),TimeSpan,x0); [t2, y] = ode45(@(t2,y) rhs2(y,eta,epsilon,tau2),TimeSpan,y0); tStep = mean(diff(t1))*4; nSteps = ceil(T/tStep); tN = 0:tStep:T; tN = tN(1:nSteps); %match to nSteps xOld = x; yOld = y; x = interp1(t1,xOld,tN); %enforce evenly spaced time steps y = interp1(t2,yOld,tN); %enforce evenly spaced time steps TimeSpan = tN; % Plot Results figure subplot(2,1,1) plot(TimeSpan, x); title('x data'); xlabel('Time'); subplot(2,1,2) plot(TimeSpan, y); title('y data') xlabel('Time'); figure plot(TimeSpan(1:end-1),diff(x(:,1)),'DisplayName','x') hold on plot(TimeSpan(1:end-1),diff(y(:,1)),'DisplayName','y') title('Derivatives') legend % Downsample x = x(1:downsample_factor:end,:); y = y(1:downsample_factor:end,:); TimeSpan = TimeSpan(1:downsample_factor:end); uv = [x(:,1) y(:,1)]; % Apply Linear Mixing rng(123); %seed uv_ratio = 1; %ratio of u and v in linear combination n = size(uv,2); m = size(uv,1); nVars_out = 4; %dimension of space to map into A = randn(n,nVars_out); Q = orth(A.').'; %orthonormalize x = uv * A; plot(TimeSpan,x) save('Overlapping_Scale_Oscillators_Raw_Data.mat','x','TimeSpan','A'); %% Sliding-Window DMD x = x.'; r = size(x,1); %rank to fit w/ optdmd imode = 1; %parameter for optdmd code % imode = 1, fit full data, slower % imode = 2, fit data projected onto first r POD modes % or columns of varargin{2} (should be at least r % columns in varargin{2}) nComponents = 2; %number of distinct time scales present global_SVD = 1; %use global SVD modes for each DMD rather than individual SVD on each window if global_SVD == 1 [u,~,v] = svd(x,'econ'); u = u(:,1:r); %just first r modes v = v(:,1:r); end % Method for making initial guess of DMD eigenvalues: % Recommended settings for first run: initialize_artificially = 0; %this is required for use_last_freq OR use_median_freqs use_last_freq = 0; use_median_freqs = 0; %mutually exclusive w/ use_last_freq % Recommended settings for subsequent runs (using clustering information % obtained from the first run): % initialize_artificially = 1; %this is required for use_last_freq OR use_median_freqs % use_last_freq = 0; % use_median_freqs = 1; %mutually exclusive w/ use_last_freq optDMD_opts = varpro_opts('ifprint',0); %disable verbose output for optDMD if (initialize_artificially == 1) && (use_median_freqs == 1) load('km_centroids.mat'); % Load pre-defined eigenvalue guesses freq_meds = repelem(sqrt(km_centroids),r/nComponents); end wSteps = 7000; % Window size (in time steps) nSplit = floor(length(TimeSpan)/wSteps); %number of windows if they were non-overlapping nSteps = wSteps * nSplit; nVars = size(x,1); thresh_pct = 1; stepSize = 2; nSlide = floor((nSteps-wSteps)/stepSize); % Number of sliding-window iterations save('mwDMD_params.mat','r','nComponents','initialize_artificially','use_last_freq','use_median_freqs','wSteps','nSplit','nSteps','nVars','thresh_pct','stepSize','nSlide'); %% execute optDMD corner_sharpness = 16; %higher = sharper corners lv_kern = tanh(corner_sharpness*(1:wSteps)/wSteps) - tanh(corner_sharpness*((1:wSteps)-wSteps)/wSteps) - 1; mr_res = cell(nSlide,1); for k = 1:nSlide disp(['k = ' num2str(k) ' / ' num2str(nSlide)]) sampleStart = stepSize*(k-1) + 1; sampleSteps = sampleStart : sampleStart + wSteps - 1; xSample = x(:,sampleSteps); tSample = TimeSpan(sampleSteps); mr_res{k}.x = xSample; mr_res{k}.t = tSample; c = mean(xSample,2); %subtract off mean before rounding corners xSample = xSample - repmat(c,1,size(xSample,2)); xSample = xSample.*repmat(lv_kern,nVars,1); %round off corners t_start = tSample(1); tSample = tSample - t_start; if global_SVD == 0 [u,~,~] = svd(xSample,'econ'); u = u(:,1:r); end if (exist('e_init','var')) && (initialize_artificially == 1) [w, e, b] = optdmd(xSample,tSample,r,imode,optDMD_opts,e_init,u); else [w, e, b] = optdmd(xSample,tSample,r,imode,optDMD_opts,[],u); end if use_last_freq == 1 e_init = e; end if use_median_freqs == 1 [eSq, eInd] = sort(e.*conj(e)); %match order to that of freq_meds freq_angs = angle(e(eInd)); e_init = exp(sqrt(-1)*freq_angs) .* freq_meds; end mr_res{k}.w = w; mr_res{k}.Omega = e; mr_res{k}.b = b; mr_res{k}.c = c; mr_res{k}.t_start = t_start; end %% Cluster Frequencies close all; if exist('mr_res','var') == 0 try load('mwDMD_mr_res_i2.mat'); catch ME load('mwDMD_mr_res.mat'); end end all_om = []; all_om_grouped = []; for k = 1:nSlide try Omega = mr_res{k}.Omega; catch ME disp(['Error on k = ' num2str(k)]); continue end all_om = [all_om; Omega]; [~,imSortInd] = sort(imag(Omega)); all_om_grouped = [all_om_grouped; Omega(imSortInd).']; end all_om_sq = conj(all_om) .* all_om; all_om_sq = sort(all_om_sq); all_om_sq_thresh = all_om_sq(floor(thresh_pct*length(all_om_sq))); all_om_sq = all_om_sq(1:floor(thresh_pct*length(all_om_sq))); [~, km_centroids] = kmeans(all_om_sq,nComponents,'Distance','cityblock','Replicates',5); [km_centroids,sortInd] = sort(km_centroids); for k = 1:nSlide try omega = mr_res{k}.Omega; catch ME continue end om_sq = omega.*conj(omega); om_sq_dists = (repmat(km_centroids.',r,1) - repmat(om_sq,1,nComponents)).^2; [~,om_class] = min(om_sq_dists,[],2); mr_res{k}.om_class = om_class; end if use_median_freqs == 0 save('mwDMD_mr_res.mat', 'mr_res','-v7.3'); save('km_centroids.mat','km_centroids'); else save('mwDMD_mr_res_i2.mat', 'mr_res','-v7.3'); save('km_centroids_i2.mat','km_centroids'); end %% Plot MultiRes Results close all; if exist('mr_res','var') == 0 try load('mwDMD_mr_res_i2.mat'); catch ME load('mwDMD_mr_res.mat'); end end export_result = 0; logScale = 0; colorList = {'b','r','g','k','y'}; x_PoT = x(:,1:nSteps); t_PoT = TimeSpan(1:nSteps); %res_list: [pn, level #, nSplit, sampleSteps/nSplit] dupShift = 0; %multiplier to shift duplicate values so they can be visually distinguished nBins = 64; figure('units','pixels','Position',[100 100 1200 400]) all_om = []; for k = 1:nSlide Omega = mr_res{k}.Omega; all_om = [all_om; Omega]; end all_om_sq = sort(all_om .* conj(all_om)); thresh_om_sq = all_om_sq(floor(thresh_pct*length(all_om_sq))); all_om_sq = all_om_sq(1:floor(thresh_pct*length(all_om_sq))); subplot(2,2,[1 3]); om_hist = histogram(all_om_sq,nBins); mesh_pad = 10; bin_mesh = om_hist.BinEdges(1)-mesh_pad:0.5:om_hist.BinEdges(end)+mesh_pad; xlabel('|\omega|^2'); ylabel('Count'); title('|\omega|^2 Spectrum & k-Means Centroids'); hold on yl = ylim; for c = 1:nComponents plot([km_centroids(c), km_centroids(c)], yl,'Color',colorList{c},'LineWidth',2) end xr = zeros(size(x(:,1:nSteps))); %reconstructed time series xn = zeros(nSteps,1); %count # of windows contributing to each step omega_series = nan(nVars,nSlide); time_series = nan(nSlide,1); for k = 1:nSlide w = mr_res{k}.w; b = mr_res{k}.b; Omega = mr_res{k}.Omega; om_class = mr_res{k}.om_class; t = mr_res{k}.t; c = mr_res{k}.c; t_start = mr_res{k}.t_start; tShift = t-t(1); %compute each segment of xr starting at "t = 0" xr_window = w*diag(b)*exp(Omega*(t-t_start)) + c; xn_window = all(~isnan(xr_window)); %NaNs don't contribute xr_window(:,any(isnan(xr_window))) = 0; xr(:,(k-1)*stepSize+1:(k-1)*stepSize+wSteps) = xr(:,(k-1)*stepSize+1:(k-1)*stepSize+wSteps) + xr_window; xn((k-1)*stepSize+1:(k-1)*stepSize+wSteps) = xn((k-1)*stepSize+1:(k-1)*stepSize+wSteps) + xn_window.'; % Plot |omega|^2 spectrum om_sq = conj(Omega).*Omega; om_class = om_class(om_sq <= thresh_om_sq); om_sq = om_sq(om_sq <= thresh_om_sq); %threshold to remove outliers for oi = 1:length(om_sq) for oj = oi:length(om_sq) if (abs(om_sq(oi)-om_sq(oj))/((om_sq(oi)+om_sq(oj))/2)) <= dupShift && (oi ~= oj) om_sq(oi) = om_sq(oi)*(1-dupShift); om_sq(oj) = om_sq(oj)*(1+dupShift); end end end subplot(2,2,2); for g = 1:nComponents om_window_spec_cat = om_sq(om_class == g,:); if isempty(om_window_spec_cat) == 1 continue end if length(om_window_spec_cat) == 2 omega_series(2*g-1:2*g,k) = om_window_spec_cat; time_series(k) = mean(t); end if logScale == 1 for f = 1:length(om_window_spec_cat) semilogy(mean(t),om_window_spec_cat(f),'.','Color',colorList{g},'LineWidth',1,'MarkerSize',10); end else for f = 1:length(om_window_spec_cat) plot(mean(t),om_window_spec_cat,'.','Color',colorList{g},'LineWidth',1,'MarkerSize',10); end end hold on end end title('|\omega|^2 Spectra (Moving Window)'); subplot(2,2,4); plot(t_PoT,real(x_PoT),'k-','LineWidth',1.5) %plot ground truth xlabel('t') ylabel('Measurement Data') xMax = max(max(abs(x_PoT))); ylim(1.5*[-xMax, xMax]); hold on xr = xr./repmat(xn.',4,1); %weight xr so all steps are on equal footing plot(t_PoT,real(xr),'b-','LineWidth',1.5) %plot averaged reconstruction title('Input (Black); DMD Recon. (Blue)'); if export_result == 1 if lv == 1 export_fig 'manyres_opt' '-pdf'; % print(gcf, '-dpdf', 'manyres_opt.pdf'); else export_fig 'manyres_opt' '-pdf' '-append'; % print(gcf, '-dpdf', 'manyres_opt.pdf', '-append'); end close(gcf); end %% Link Consecutive Modes if exist('mr_res','var') == 0 try load('mwDMD_mr_res_i2.mat'); catch ME load('mwDMD_mr_res.mat'); end end allModes = zeros(nSlide,r,r); allFreqs = zeros(nSlide,r); catList = flipud(perms(1:r)); modeCats = zeros(nSlide,r); modeCats(1,:) = 1:r; %label using order of 1st modes allModes(1,:,:) = mr_res{1}.w; allFreqs(1,:) = mr_res{1}.Omega; [~,catsAsc] = sort(mr_res{1}.Omega.*conj(mr_res{1}.Omega)); %category labels in ascending frequency order distThresh = 0; % distThresh = 0.11; %if more than one mode is within this distance then match using derivative % minDists = zeros(nSlide-1,1); permDistsHist = zeros(size(catList,1),nSlide-1); for k = 2:nSlide w_old = squeeze(allModes(k-1,:,:)); w = mr_res{k}.w; permDists = zeros(size(catList,1),1); for np = 1:size(catList,1) permDists(np) = norm(w(:,catList(np,:))-w_old); end permDistsHist(:,k-1) = sort(permDists); % minDists(k-1) = min(permDists); if nnz(permDists <= distThresh) >= 1 if k == 2 %can't compute derivative 1 step back, so skip it [~,minCat] = min(permDists); continue; end w_older = squeeze(allModes(k-2,:,:)); [~,minInds] = sort(permDists); %minInds(1) and minInds(2) point to 2 lowest distances wPrime = w - w_old; wPrime_old = w_old - w_older; for j = 1:size(wPrime,2) wPrime(:,j) = wPrime(:,j)/norm(wPrime(:,j)); wPrime_old(:,j) = wPrime_old(:,j)/norm(wPrime_old(:,j)); end derivDists = zeros(2,1); for np = 1:length(derivDists) derivDists(np) = norm(wPrime(:,catList(minInds(np),:))-wPrime_old); end [~,minDerInd] = min(derivDists); derivDistsSort = sort(derivDists); permDistsSort= sort(permDists); disp(['Derivative-Matching on k = ' num2str(k)]) if (derivDistsSort(2)-derivDistsSort(1)) > (permDistsSort(2) - permDistsSort(1)) minCat = minInds(minDerInd); [~,minCatNaive] = min(permDists); if minCat ~= minCatNaive disp('Naive result was wrong!') end else [~,minCat] = min(permDists); disp('Naive result trumps derivative match') end else [~,minCat] = min(permDists); end modeCats(k,:) = catList(minCat,:); allModes(k,:,:) = w(:,catList(minCat,:)); allFreqs(k,:) = mr_res{k}.Omega(catList(minCat,:)); end meanFreqsSq = sum(allFreqs.*conj(allFreqs),1)/nSlide; if use_median_freqs == 0 save('mwDMD_allModes.mat','allModes','allFreqs'); else save('mwDMD_allModes_i2.mat','allModes','allFreqs'); end %% Second derivative of mode coordinates sd_norms = zeros(r,size(allModes,1)-2); for j = 1:r tsPP = allModes(1:end-2,:,j) + allModes(3:end,:,j) - 2*allModes(2:end-1,:,j); sd_norms(j,:) = vecnorm(tsPP.'); end sd_norms = vecnorm(sd_norms).'; sd_thresh = 0.1; %threshold above which to try different permutations to reduce 2nd deriv %can be set to 0 to just check every step ppOverrideRatio = 0.7; %apply new permutation if 2nd deriv is reduced by at least this factor for k = 2:nSlide-1 thisData = allModes(k-1:k+1,:,:); tdPP = squeeze(thisData(1,:,:) + thisData(3,:,:) - 2*thisData(2,:,:)); if norm(tdPP) < sd_thresh continue; end permDists = zeros(size(catList,1),1); permData = zeros(size(thisData)); for np = 1:size(catList,1) %hold k-1 configuration constant, permute k and k+1 registers permData(1,:,:) = thisData(1,:,:); permData(2:3,:,:) = thisData(2:3,:,catList(np,:)); permPP = squeeze(permData(1,:,:) + permData(3,:,:) - 2*permData(2,:,:)); permDists(np) = norm(permPP); if permDists(np) <= ppOverrideRatio * norm(tdPP) newCat = catList(np,:); allModes(k:end,:,:) = allModes(k:end,:,newCat); modeCats(k,:) = modeCats(k,newCat); disp(['2nd Deriv. Perm. Override: k = ' num2str(k)]); end end end if use_median_freqs == 0 save('mwDMD_allModes.mat','allModes','allFreqs'); else save('mwDMD_allModes_i2.mat','allModes','allFreqs'); end %% Visualize Modes figure('units','pixels','Position',[0 0 1366 768]) colorlist = {'k','r','b','g'}; w = squeeze(allModes(1,:,:)); wPlots = cell(r,r); wTrails = cell(r,r); trailLength = 1000; %in window steps % Plot time series subplot(2,4,5:8) plot(TimeSpan(1:nSteps),x(:,1:nSteps),'LineWidth',1.5) xlim([TimeSpan(1) TimeSpan(nSteps)]) hold on lBound = plot([mr_res{1}.t(1) mr_res{1}.t(1)],ylim,'r-','LineWidth',2); hold on rBound = plot([mr_res{1}.t(end) mr_res{1}.t(end)],ylim,'r-','LineWidth',2); hold on % Plot 1st frame for dim = 1:r subplot(2,4,dim) wi = w(dim,:); for j = 1:r wPlots{dim,j} = plot(real(wi(j)),imag(wi(j)),'o','Color',colorlist{j},'MarkerSize',7); hold on wTrails{dim,j} = plot(real(wi(j)),imag(wi(j)),'-','Color',colorlist{j},'LineWidth',0.1); hold on wTrails{dim,j}.Color(4) = 0.3; % 50% opacity end title(['Proj. Modes into Dimension ' num2str(dim)]) axis equal xlim([-1 1]) ylim([-1 1]) xlabel('Real'); ylabel('Imag'); plot(xlim,[0 0],'k:') hold on plot([0 0],ylim,'k:') hold off end legend([wPlots{r,catsAsc(1)},wPlots{r,catsAsc(2)},wPlots{r,catsAsc(3)},wPlots{r,catsAsc(4)}],{'LF Mode 1','LF Mode 2','HF Mode 1','HF Mode 2'},'Position',[0.93 0.65 0.05 0.2]) %Plot subsequent frames for k = 2:nSlide w = squeeze(allModes(k,:,:)); for dim = 1:r % subplot(4,4,dim) wi = w(dim,:); for j = 1:r wPlots{dim,j}.XData = real(wi(j)); wPlots{dim,j}.YData = imag(wi(j)); if k > trailLength wTrails{dim,j}.XData = [wTrails{dim,j}.XData(2:end) real(wi(j))]; wTrails{dim,j}.YData = [wTrails{dim,j}.YData(2:end) imag(wi(j))]; else wTrails{dim,j}.XData = [wTrails{dim,j}.XData real(wi(j))]; wTrails{dim,j}.YData = [wTrails{dim,j}.YData imag(wi(j))]; end end end lBound.XData = [mr_res{k}.t(1) mr_res{k}.t(1)]; rBound.XData = [mr_res{k}.t(end) mr_res{k}.t(end)]; % pause(0.05) end %% Times series of mode coordinates figure('units','pixels','Position',[100 100 1366 768]) for j = 1:r subplot(r,2,2*j-1) plot(real(allModes(:,:,j))) title(['Re[w_' num2str(j) ']']) % legend('a','b','r','\theta') if j == r xlabel('Window #') end subplot(r,2,2*j) plot(imag(allModes(:,:,j))) title(['Im[w_' num2str(j) ']']) % legend('a','b','r','\theta') if j == r xlabel('Window #') end end %% Times series of modes in polar coordinates figure('units','pixels','Position',[100 100 1366 768]) for j = 1:r cMode = squeeze(allModes(:,j,:)); rMode = abs(cMode); thMode = unwrap(angle(cMode)); subplot(r,2,2*j-1) plot(rMode) title(['Magnitudes of Modes in Dim. ' num2str(j)]) legend({'HF','HF','LF','LF'}) % legend('a','b','r','\theta') if j == r xlabel('Window #') end subplot(r,2,2*j) plot(thMode) title(['Angles of Modes in Dim. ' num2str(j)]) legend({'HF','HF','LF','LF'}) % legend('a','b','r','\theta') if j == r xlabel('Window #') end end %% Output mode time series data t_step = (TimeSpan(2)-TimeSpan(1))*stepSize; %time per window sliding step start_steps = 100; %chop off from beginning to get rid of initial transients modeStack = zeros(size(allModes,1),r*r); for j = 1:r for k = 1:r modeStack(:,(j-1)*r+k) = allModes(:,k,j); end end if use_median_freqs == 0 save('modeSeries.mat','modeStack','t_step'); else save('modeSeries_i2.mat','modeStack','t_step'); end %% Split HF/LF Reconstruction xr_H = zeros(size(x(:,1:nSteps))); xr_L = zeros(size(x(:,1:nSteps))); all_b = zeros(nVars,nSlide); xn = zeros(nSteps,1); %track total contribution from all windows to each time step recon_filter_sd = wSteps/8; recon_filter = exp(-((1 : wSteps) - (wSteps+1)/2).^2/recon_filter_sd^2); for k = 1:nSlide w = mr_res{k}.w; b = mr_res{k}.b; all_b(:,k) = b; Omega = mr_res{k}.Omega; om_class = mr_res{k}.om_class; t = mr_res{k}.t; c = mr_res{k}.c; t_start = mr_res{k}.t_start; tShift = t-t(1); %compute each segment of xr starting at "t = 0" % constant shift gets put in LF recon xr_L_window = w(:, om_class == 1)*diag(b(om_class == 1))*exp(Omega(om_class == 1)*(t-t_start)) + c; xr_H_window = w(:, om_class == 2)*diag(b(om_class == 2))*exp(Omega(om_class == 2)*(t-t_start)); xr_L_window = xr_L_window.*repmat(recon_filter,nVars,1); xr_H_window = xr_H_window.*repmat(recon_filter,nVars,1); xr_L(:,(k-1)*stepSize+1:(k-1)*stepSize+wSteps) = xr_L(:,(k-1)*stepSize+1:(k-1)*stepSize+wSteps) + xr_L_window; xr_H(:,(k-1)*stepSize+1:(k-1)*stepSize+wSteps) = xr_H(:,(k-1)*stepSize+1:(k-1)*stepSize+wSteps) + xr_H_window; xn((k-1)*stepSize+1:(k-1)*stepSize+wSteps) = xn((k-1)*stepSize+1:(k-1)*stepSize+wSteps) + recon_filter.'; end xr_L = xr_L./repmat(xn.',nVars,1); xr_H = xr_H./repmat(xn.',nVars,1); figure subplot(3,1,1) plot(TimeSpan(1:nSteps),x(:,1:nSteps)) title('Input Data') subplot(3,1,2) plot(TimeSpan(1:nSteps),xr_L) title('LF Recon') subplot(3,1,3) plot(TimeSpan(1:nSteps),xr_H) title('HF Recon') figure plot(all_b.') nanCols = ~isnan([xr_H; xr_L]); nanCols = sum(nanCols,1) ~= 0; tspan = TimeSpan(1:nSteps); xr_H = real(xr_H(:,nanCols)); xr_L = real(xr_L(:,nanCols)); tspan = tspan(nanCols); save('mwDMD_sep_recon.mat','xr_L','xr_H','tspan'); %% Construct A Matrices if global_SVD ~= 1 disp('Warning: Averaging A matrices in different bases') end A_avg = zeros(r); A_proj_avg = zeros(r); A_thresh = 100; for k = 1:nSlide x_window = mr_res{k}.x; w = mr_res{k}.w; Omega = mr_res{k}.Omega; A = w*diag(Omega)*pinv(w); A_proj = (u'*w)*diag(Omega)*(pinv(w)*u); A(abs(A) <= A_thresh) = 0; %threshold small values A_proj(abs(A_proj) <= A_thresh) = 0; A_avg = A_avg + A; A_proj_avg = A_proj_avg + A_proj; end A_avg = real(A_avg)/nSlide; %strips small imaginary residuals A_proj_avg = real(A_proj_avg)/nSlide; figure plot(TimeSpan(1:nSteps),v(1:nSteps,:)) legend({'Mode 1','Mode 2','Mode 3','Mode 4'}) %% Time series of mode projections allB = zeros(nSlide,r); colFreqs = zeros(r,1); for k = 1:nSlide thisCat = modeCats(k,:); b = mr_res{k}.b; allB(k,:) = b.'; colFreqs = colFreqs + abs(mr_res{k}.Omega); end colFreqs = colFreqs/nSlide; wMids = (TimeSpan(2)-TimeSpan(1))*(wSteps/2 + stepSize*(1:nSlide)); figure subplot(2,1,1) plot(wMids,allB(:,[1 3])) legend({'LF','HF'}); title('OptDMD Weight Coefficients Over Time'); xlim([wMids(1) wMids(end)]); subplot(2,1,2) plot(TimeSpan(1:nSteps),x(:,1:nSteps)) xlim([wMids(1) wMids(end)]); %% Function Definitions function dx = rhs1(x,tau,a,b,Iext) % FitzHugh-Nagumo Model v = x(1); w = x(2); vdot = v - (v^3)/3 - w + Iext; wdot = (1/tau) * (v + a - b*w); dx = [vdot; wdot]; end function dy = rhs2(y,eta,epsilon,tau) % Unforced Duffing Oscillator p = y(1); q = y(2); pdot = q; qdot = (1/tau) * (-2*eta*q - p - epsilon*p^3); dy = [pdot; qdot]; end
github
AgriHarmony/soil-hydraulic-simulation-backup-master
SMmodel_GA_WEB.m
.m
soil-hydraulic-simulation-backup-master/SMmodel_code/SMmodel_GA_WEB.m
4,293
utf_8
550e15e7de23359f535b01408d760f94
% SMmodel_GA_WEB(name,PAR,FIG) % % SMmodel_GA_WEB: Soil Moisture Model based on Green-Ampt for infiltration % Authors: Luca Brocca, Florisa Melone, Tommaso Moramarco function [NS,NS_lnQ,NS_radQ,RQ,RMSE] = SMmodel_GA_WEB(name,PAR,FIG); % Loading input data PTSM=load([name,'.txt']); [M,N]=size(PTSM); D=PTSM(:,1); PIO=PTSM(:,2); TEMPER=PTSM(:,3); WWobs=PTSM(:,4); dt=round(nanmean(diff(D))*24*10000)/10000; MESE=month(D); % Model parameter W_0_RZ= PAR(1); W_max= PAR(2); % mm Psi_av_L= PAR(3); Ks_sup= PAR(4); % mm/h Ks_RZ= PAR(5); % mm/h m_RZ= PAR(6); Kc= PAR(7); % Parameters adjustment Ks_sup=Ks_sup.*dt; Ks_RZ=Ks_RZ.*dt; % Potential Evapotranspiration parameter L=[0.2100;0.2200;0.2300;0.2800;0.3000;0.3100; 0.3000;0.2900;0.2700;0.2500;0.2200;0.2000]; Ka=1.26; EPOT=(TEMPER>0).*(Kc*(Ka*L(MESE).*(0.46*TEMPER+8)-2))/(24/dt); clear PTSM TEMPER % Thresholds for numerical computations soglia=0.01; % Water Content soglia1=0.01; % Infiltration % Parameter initialization F_p=0; F=0.00001; W_init=-9999; WW=zeros(M,1); W_RZ_p=W_0_RZ*W_max; PIOprec=0; inf=0; ii=1; i=1; % Main ROUTINE for t=1:M W_RZ=W_RZ_p; jj=0; err=1000; while err>soglia; % infiltration computation (Green-Ampt) jj=jj+1; if (PIOprec<=0.001) if (PIO(t)>0) W_init=W_RZ; Psi=Psi_av_L*(W_max-W_init); else W_init=-9999; ii=1; F_p=0; F=0.00001; end end if W_init~=-9999 if jj>1 ii=ii-1; end inf=(ii==1)*1000+(ii~=1)*Ks_sup*(1-Psi/F); if inf>PIO(t) inf=PIO(t); F=F+PIO(t); else F_p=F; errore=1000; while errore>soglia1 % iteration for the infiltration F1=F_p-Psi*log((F-Psi)/(F_p-Psi))+Ks_sup; errore=abs((F-F1)/F); F=F+0.01; end inf=F-F_p; end F_p=F; ii=ii+1; end e=EPOT(t)*W_RZ/W_max; perc=Ks_RZ*(W_RZ/W_max).^(m_RZ); W_RZ_corr=W_RZ_p+(inf-e-perc); if W_RZ_corr>=W_max W_RZ_corr=W_max; end err=abs((W_RZ_corr-W_RZ)/W_max); W_RZ=W_RZ_corr; if jj==100, break, end end W_RZ_p=W_RZ_corr; if t>3,PIOprec=sum(PIO(t-3:t));end WW(t)=W_RZ_corr./W_max; end; % Calculation of model performance RMSE=nanmean((WW-WWobs).^2).^0.5; NS=1-nansum((WW-WWobs).^2)./nansum((WWobs-nanmean(WWobs)).^2); NS_radQ=1-nansum((sqrt(WW+0.00001)-sqrt(WWobs+0.00001)).^2)./... nansum((sqrt(WWobs+0.00001)-nanmean(sqrt(WWobs+0.00001))).^2); NS_lnQ=1-nansum((log(WW+0.0001)-log(WWobs+0.0001)).^2)... ./nansum((log(WWobs+0.0001)-nanmean(log(WWobs+0.0001))).^2); NS_lnQ=real(NS_lnQ); NS_radQ=real(NS_radQ); X=[WW,WWobs]; X(any(isnan(X)'),:) = []; RRQ=corrcoef(X).^2; RQ=RRQ(2); % Figure if FIG==1 set(gcf,'paperpositionmode','manual','paperposition',[1 1 20 16]) set(gcf,'position',[560 174 1018 774]) h(1) = axes('Position',[0.1 0.5 0.8 0.40]); set(gca,'Fontsize',12) s=(['NS= ',num2str(NS,'%4.3f'),... ' NS(log)= ',num2str(NS_lnQ,'%4.3f'),... ' NS(radq)= ',num2str(NS_radQ,'%4.3f'),... ' RQ= ',num2str(RQ,'%4.3f'),... ' RMSE= ',num2str(RMSE,'%4.3f')]); title(['\bf',s]); hold on plot(D,WWobs,'g','Linewidth',3) plot(D,WW,'r','Linewidth',2); legend('\theta_o_b_s','\theta_s_i_m',0); datetick('x',20) set(gca,'Xticklabel','') ylabel('relative soil moisture [-]') grid on, box on axis([D(1) D(end) min(WWobs)-0.05 max(WWobs)+0.05]) h(2) = axes('Position',[0.1 0.1 0.8 0.40]); set(gca,'Fontsize',12) hold on plot(D,PIO,'color',[.5 .5 .5],'Linewidth',3) grid on, box on ylabel('rain (mm/h)') datetick('x',20) grid on, box on axis([D(1) D(end) 0 1.05.*max(PIO)]) print(gcf,['GAmodel_',name],'-dpng','-r150') % save res end
github
AgriHarmony/soil-hydraulic-simulation-backup-master
cal_SMmodel_GA_WEB.m
.m
soil-hydraulic-simulation-backup-master/SMmodel_code/cal_SMmodel_GA_WEB.m
1,122
utf_8
d36850ec5f279c4fc1e3bd395fb88b83
function X_OPT=cal_SMmodel_GA_WEB(name,X_ini) if nargin==1,X_ini=ones(7,1)*.5;,end % X_ini=rand(5,1); % [RES,FVAL,EXITFLAG,OUTPUT]=fminsearch(@calibOK,X_ini,... % optimset('Display','iter','MaxIter',1000,... % 'MaxFunEvals',1000,'TolFun',0.5*1E-3,'Largescale','off'),name) [RES,FVAL,EXITFLAG,OUTPUT]=fmincon(@calibOK,X_ini,[],[],[],[],... zeros(7,1),ones(7,1),[],optimset('Display','iter','MaxIter',50,... 'MaxFunEvals',500,'TolFun',1E-5,'TolCon',6,'Largescale','off'),name) X=convert_adim(RES); [NS,NS_lnQ,NS_radQ,RQ]=SMmodel_GA_WEB(name,X,1) !del X_optGA_WEB.txt fid=fopen('X_optGA_WEB.txt','w'); fprintf(fid,'%9.4f\n',X); fclose(fid); %--------------------------------------------------------------------------------- function [err]=calibOK(X_0,name) X=convert_adim(X_0); [NS,NS_lnQ,NS_radQ,RQ]=SMmodel_GA_WEB(name,X,0); err=1-NS; save X_PAR %--------------------------------------------------------------------------------- function X=convert_adim(X_0); LOW=[ 0.0, 40, -1.50, 0.01, 0.01, 1, 0.5]'; UP =[ 1.0, 200, -0.10, 25.0, 25.0, 45, 2.5]'; X=LOW+(UP-LOW).*X_0;
github
AgriHarmony/soil-hydraulic-simulation-backup-master
richards.m
.m
soil-hydraulic-simulation-backup-master/richards_matlab/richards.m
2,511
utf_8
db5175e69e7cd545a8891f6f8d52f1d5
function richards % Solution of the Richards equation % using MATLAB pdepe % % $Ekkehard Holzbecher $Date: 2006/07/13 $ % % Soil data for Guelph Loam (Hornberger and Wiberg, 2005) % m-file based partially on a first version by Janek Greskowiak % url source: https://www.mathworks.com/matlabcentral/fileexchange/15646-environmental-modeling/content/richards.m %-------------------------------------------------------------------------- L = 200; % length [L] s1 = 0.5; % infiltration velocity [L/T] s2 = 0; % bottom suction head [L] T = 4; % maximum time [T] qr = 0.218; % residual water content f = 0.52; % porosity a = 0.0115; % van Genuchten parameter [1/L] n = 2.03; % van Genuchten parameter ks = 31.6; % saturated conductivity [L/T] x = linspace(0,L,100); t = linspace(0,T,25); options=odeset('RelTol',1e-4,'AbsTol',1e-4,'NormControl','off','InitialStep',1e-7) u = pdepe(0,@unsatpde,@unsatic,@unsatbc,x,t,options,s1,s2,qr,f,a,n,ks); figure; title('Richards Equation Numerical Solution, computed with 100 mesh points'); subplot (1,3,1); plot (x,u(1:length(t),:)); xlabel('Depth [L]'); ylabel('Pressure Head [L]'); subplot (1,3,2); plot (x,u(1:length(t),:)-(x'*ones(1,length(t)))'); xlabel('Depth [L]'); ylabel('Hydraulic Head [L]'); for j=1:length(t) for i=1:length(x) [q(j,i),k(j,i),c(j,i)]=sedprop(u(j,i),qr,f,a,n,ks); end end subplot (1,3,3); plot (x,q(1:length(t),:)*100) xlabel('Depth [L]'); ylabel('Water Content [%]'); % ------------------------------------------------------------------------- function [c,f,s] = unsatpde(x,t,u,DuDx,s1,s2,qr,f,a,n,ks) [q,k,c] = sedprop(u,qr,f,a,n,ks); f = k.*DuDx-k; s = 0; % ------------------------------------------------------------------------- function u0 = unsatic(x,s1,s2,qr,f,a,n,ks) u0 = -200+x; if x < 10 u0 = -0.5; end % ------------------------------------------------------------------------- function [pl,ql,pr,qr] = unsatbc(xl,ul,xr,ur,t,s1,s2,qr,f,a,n,ks) pl = s1; ql = 1; pr = ur(1)-s2; qr = 0; %------------------- soil hydraulic properties ---------------------------- function [q,k,c] = sedprop(u,qr,f,a,n,ks) m = 1-1/n; if u >= 0 c=1e-20; k=ks; q=f; else q=qr+(f-qr)*(1+(-a*u)^n)^-m; c=((f-qr)*n*m*a*(-a*u)^(n-1))/((1+(-a*u)^n)^(m+1))+1.e-20; k=ks*((q-qr)/(f-qr))^0.5*(1-(1-((q-qr)/(f-qr))^(1/m))^m)^2; end
github
ChangPaul/B0Mapping-master
region_seg.m
.m
B0Mapping-master/Dependencies/region_seg.m
6,473
utf_8
3184fa5dbf26411a14d7b731345fcadb
% Region Based Active Contour Segmentation % % seg = region_seg(I,init_mask,max_its,alpha,display) % % Inputs: I 2D image % init_mask Initialization (1 = foreground, 0 = bg) % max_its Number of iterations to run segmentation for % alpha (optional) Weight of smoothing term % higer = smoother. default = 0.2 % display (optional) displays intermediate outputs % default = true % % Outputs: seg Final segmentation mask (1=fg, 0=bg) % % Description: This code implements the paper: "Active Contours Without % Edges" By Chan Vese. This is a nice way to segment images whose % foregrounds and backgrounds are statistically different and homogeneous. % % Example: % img = imread('tire.tif'); % m = zeros(size(img)); % m(33:33+117,44:44+128) = 1; % seg = region_seg(img,m,500); % % Coded by: Shawn Lankton (www.shawnlankton.com) %------------------------------------------------------------------------ function seg = region_seg(I,init_mask,max_its,alpha,display) %-- default value for parameter alpha is .1 if(~exist('alpha','var')) alpha = .2; end %-- default behavior is to display intermediate outputs if(~exist('display','var')) display = true; end %-- ensures image is 2D double matrix I = im2graydouble(I); %-- Create a signed distance map (SDF) from mask phi = mask2phi(init_mask); %--main loop for its = 1:max_its % Note: no automatic convergence test idx = find(phi <= 1.2 & phi >= -1.2); %get the curve's narrow band %-- find interior and exterior mean upts = find(phi<=0); % interior points vpts = find(phi>0); % exterior points u = sum(I(upts))/(length(upts)+eps); % interior mean v = sum(I(vpts))/(length(vpts)+eps); % exterior mean F = (I(idx)-u).^2-(I(idx)-v).^2; % force from image information curvature = get_curvature(phi,idx); % force from curvature penalty dphidt = F./max(abs(F)) + alpha*curvature; % gradient descent to minimize energy if sum( isnan( dphidt ) ) > 0 seg = phi <= 0; return; end %-- maintain the CFL condition dt = .45/(max(dphidt)+eps); if size( phi(idx) ) ~= size( dphidt ) | size( dt ) ~= size( dphidt ) seg = phi <= 0; return; end %-- evolve the curve phi(idx) = phi(idx) + dt.*dphidt; %-- Keep SDF smooth phi = sussman(phi, .5); %-- intermediate output if((display>0)&&(mod(its,20) == 0)) showCurveAndPhi(I,phi,its); end end %-- final output if(display) showCurveAndPhi(I,phi,its); end %-- make mask from SDF seg = phi<=0; %-- Get mask from levelset %--------------------------------------------------------------------- %--------------------------------------------------------------------- %-- AUXILIARY FUNCTIONS ---------------------------------------------- %--------------------------------------------------------------------- %--------------------------------------------------------------------- %-- Displays the image with curve superimposed function showCurveAndPhi(I, phi, i) imshow(I,'initialmagnification',200,'displayrange',[0 255]); hold on; contour(phi, [0 0], 'g','LineWidth',4); contour(phi, [0 0], 'k','LineWidth',2); hold off; title([num2str(i) ' Iterations']); drawnow; %-- converts a mask to a SDF function phi = mask2phi(init_a) % phi=bwdist(init_a)-bwdist(1-init_a)+im2double(init_a)-.5; phi=bwdistsc(init_a)-bwdistsc(1-init_a)+init_a-.5; %-- compute curvature along SDF function curvature = get_curvature(phi,idx) [dimy, dimx] = size(phi); [y x] = ind2sub([dimy,dimx],idx); % get subscripts %-- get subscripts of neighbors ym1 = y-1; xm1 = x-1; yp1 = y+1; xp1 = x+1; %-- bounds checking ym1(ym1<1) = 1; xm1(xm1<1) = 1; yp1(yp1>dimy)=dimy; xp1(xp1>dimx) = dimx; %-- get indexes for 8 neighbors idup = sub2ind(size(phi),yp1,x); iddn = sub2ind(size(phi),ym1,x); idlt = sub2ind(size(phi),y,xm1); idrt = sub2ind(size(phi),y,xp1); idul = sub2ind(size(phi),yp1,xm1); idur = sub2ind(size(phi),yp1,xp1); iddl = sub2ind(size(phi),ym1,xm1); iddr = sub2ind(size(phi),ym1,xp1); %-- get central derivatives of SDF at x,y phi_x = -phi(idlt)+phi(idrt); phi_y = -phi(iddn)+phi(idup); phi_xx = phi(idlt)-2*phi(idx)+phi(idrt); phi_yy = phi(iddn)-2*phi(idx)+phi(idup); phi_xy = -0.25*phi(iddl)-0.25*phi(idur)... +0.25*phi(iddr)+0.25*phi(idul); phi_x2 = phi_x.^2; phi_y2 = phi_y.^2; %-- compute curvature (Kappa) curvature = ((phi_x2.*phi_yy + phi_y2.*phi_xx - 2*phi_x.*phi_y.*phi_xy)./... (phi_x2 + phi_y2 +eps).^(3/2)).*(phi_x2 + phi_y2).^(1/2); %-- Converts image to one channel (grayscale) double function img = im2graydouble(img) [dimy, dimx, c] = size(img); if(isfloat(img)) % image is a double if(c==3) img = rgb2gray(uint8(img)); end else % image is a int if(c==3) img = rgb2gray(img); end img = double(img); end %-- level set re-initialization by the sussman method function D = sussman(D, dt) % forward/backward differences a = D - shiftR(D); % backward b = shiftL(D) - D; % forward c = D - shiftD(D); % backward d = shiftU(D) - D; % forward a_p = a; a_n = a; % a+ and a- b_p = b; b_n = b; c_p = c; c_n = c; d_p = d; d_n = d; a_p(a < 0) = 0; a_n(a > 0) = 0; b_p(b < 0) = 0; b_n(b > 0) = 0; c_p(c < 0) = 0; c_n(c > 0) = 0; d_p(d < 0) = 0; d_n(d > 0) = 0; dD = zeros(size(D)); D_neg_ind = find(D < 0); D_pos_ind = find(D > 0); dD(D_pos_ind) = sqrt(max(a_p(D_pos_ind).^2, b_n(D_pos_ind).^2) ... + max(c_p(D_pos_ind).^2, d_n(D_pos_ind).^2)) - 1; dD(D_neg_ind) = sqrt(max(a_n(D_neg_ind).^2, b_p(D_neg_ind).^2) ... + max(c_n(D_neg_ind).^2, d_p(D_neg_ind).^2)) - 1; D = D - dt .* sussman_sign(D) .* dD; %-- whole matrix derivatives function shift = shiftD(M) shift = shiftR(M')'; function shift = shiftL(M) shift = [ M(:,2:size(M,2)) M(:,size(M,2)) ]; function shift = shiftR(M) shift = [ M(:,1) M(:,1:size(M,2)-1) ]; function shift = shiftU(M) shift = shiftL(M')'; function S = sussman_sign(D) S = D ./ sqrt(D.^2 + 1);
github
TurtleZhong/MSCKF-1-master
loadCalibrationCamToCam.m
.m
MSCKF-1-master/kitti_extraction/utils/devkit/loadCalibrationCamToCam.m
1,894
utf_8
88db832a2338f205ea36b1a9f6231aed
function calib = loadCalibrationCamToCam(filename) % open file fid = fopen(filename,'r'); if fid<0 calib = []; return; end % read corner distance calib.cornerdist = readVariable(fid,'corner_dist',1,1); % read all cameras (maximum: 100) for cam=1:100 % read variables S_ = readVariable(fid,['S_' num2str(cam-1,'%02d')],1,2); K_ = readVariable(fid,['K_' num2str(cam-1,'%02d')],3,3); D_ = readVariable(fid,['D_' num2str(cam-1,'%02d')],1,5); R_ = readVariable(fid,['R_' num2str(cam-1,'%02d')],3,3); T_ = readVariable(fid,['T_' num2str(cam-1,'%02d')],3,1); S_rect_ = readVariable(fid,['S_rect_' num2str(cam-1,'%02d')],1,2); R_rect_ = readVariable(fid,['R_rect_' num2str(cam-1,'%02d')],3,3); P_rect_ = readVariable(fid,['P_rect_' num2str(cam-1,'%02d')],3,4); % calibration for this cam completely found? if isempty(S_) || isempty(K_) || isempty(D_) || isempty(R_) || isempty(T_) break; end % write calibration calib.S{cam} = S_; calib.K{cam} = K_; calib.D{cam} = D_; calib.R{cam} = R_; calib.T{cam} = T_; % if rectification available if ~isempty(S_rect_) && ~isempty(R_rect_) && ~isempty(P_rect_) calib.S_rect{cam} = S_rect_; calib.R_rect{cam} = R_rect_; calib.P_rect{cam} = P_rect_; end end % close file fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function A = readVariable(fid,name,M,N) % rewind fseek(fid,0,'bof'); % search for variable identifier success = 1; while success>0 [str,success] = fscanf(fid,'%s',1); if strcmp(str,[name ':']) break; end end % return if variable identifier not found if ~success A = []; return; end % fill matrix A = zeros(M,N); for m=1:M for n=1:N [val,success] = fscanf(fid,'%f',1); if success A(m,n) = val; else A = []; return; end end end
github
TurtleZhong/MSCKF-1-master
loadCalibrationRigid.m
.m
MSCKF-1-master/kitti_extraction/utils/devkit/loadCalibrationRigid.m
855
utf_8
9148661cd7335b41dace4f57bd25b3a4
function Tr = loadCalibrationRigid(filename) % open file fid = fopen(filename,'r'); if fid<0 error(['ERROR: Could not load: ' filename]); end % read calibration R = readVariable(fid,'R',3,3); T = readVariable(fid,'T',3,1); Tr = [R T;0 0 0 1]; % close file fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function A = readVariable(fid,name,M,N) % rewind fseek(fid,0,'bof'); % search for variable identifier success = 1; while success>0 [str,success] = fscanf(fid,'%s',1); if strcmp(str,[name ':']) break; end end % return if variable identifier not found if ~success A = []; return; end % fill matrix A = zeros(M,N); for m=1:M for n=1:N [val,success] = fscanf(fid,'%f',1); if success A(m,n) = val; else A = []; return; end end end
github
ganlubbq/Signal-Processing-master
findpeaks.m
.m
Signal-Processing-master/findpeaks.m
32,468
utf_8
2b7f5afefbaaafe14b836c32851f6f3d
function [Ypk,Xpk,Wpk,Ppk] = findpeaks(Yin,varargin) %FINDPEAKS Find local peaks in data % PKS = FINDPEAKS(Y) finds local peaks in the data vector Y. A local peak % is defined as a data sample which is either larger than the two % neighboring samples or is equal to Inf. % % [PKS,LOCS]= FINDPEAKS(Y) also returns the indices LOCS at which the % peaks occur. % % [PKS,LOCS] = FINDPEAKS(Y,X) specifies X as the location vector of data % vector Y. X must be a strictly increasing vector of the same length as % Y. LOCS returns the corresponding value of X for each peak detected. % If X is omitted, then X will correspond to the indices of Y. % % [PKS,LOCS] = FINDPEAKS(Y,Fs) specifies the sample rate, Fs, as a % positive scalar, where the first sample instant of Y corresponds to a % time of zero. % % [...] = FINDPEAKS(...,'MinPeakHeight',MPH) finds only those peaks that % are greater than the minimum peak height, MPH. MPH is a real-valued % scalar. The default value of MPH is -Inf. % % [...] = FINDPEAKS(...,'MinPeakProminence',MPP) finds peaks guaranteed % to have a vertical drop of more than MPP from the peak on both sides % without encountering either the end of the signal or a larger % intervening peak. The default value of MPP is zero. % % [...] = FINDPEAKS(...,'Threshold',TH) finds peaks that are at least % greater than both adjacent samples by the threshold, TH. TH is a % real-valued scalar greater than or equal to zero. The default value of % TH is zero. % % FINDPEAKS(...,'WidthReference',WR) estimates the width of the peak as % the distance between the points where the signal intercepts a % horizontal reference line. The points are found by linear % interpolation. The height of the line is selected using the criterion % specified in WR: % % 'halfprom' - the reference line is positioned beneath the peak at a % vertical distance equal to half the peak prominence. % % 'halfheight' - the reference line is positioned at one-half the peak % height. The line is truncated if any of its intercept points lie % beyond the borders of the peaks selected by the 'MinPeakHeight', % 'MinPeakProminence' and 'Threshold' parameters. The border between % peaks is defined by the horizontal position of the lowest valley % between them. Peaks with heights less than zero are discarded. % % The default value of WR is 'halfprom'. % % [...] = FINDPEAKS(...,'MinPeakWidth',MINW) finds peaks whose width is % at least MINW. The default value of MINW is zero. % % [...] = FINDPEAKS(...,'MaxPeakWidth',MAXW) finds peaks whose width is % at most MAXW. The default value of MAXW is Inf. % % [...] = FINDPEAKS(...,'MinPeakDistance',MPD) finds peaks separated by % more than the minimum peak distance, MPD. This parameter may be % specified to ignore smaller peaks that may occur in close proximity to % a large local peak. For example, if a large local peak occurs at LOC, % then all smaller peaks in the range [N-MPD, N+MPD] are ignored. If not % specified, MPD is assigned a value of zero. % % [...] = FINDPEAKS(...,'SortStr',DIR) specifies the direction of sorting % of peaks. DIR can take values of 'ascend', 'descend' or 'none'. If not % specified, DIR takes the value of 'none' and the peaks are returned in % the order of their occurrence. % % [...] = FINDPEAKS(...,'NPeaks',NP) specifies the maximum number of peaks % to be found. NP is an integer greater than zero. If not specified, all % peaks are returned. Use this parameter in conjunction with setting the % sort direction to 'descend' to return the NP largest peaks. (see % 'SortStr') % % [PKS,LOCS,W] = FINDPEAKS(...) returns the width, W, of each peak by % linear interpolation of the left- and right- intercept points to the % reference defined by 'WidthReference'. % % [PKS,LOCS,W,P] = FINDPEAKS(...) returns the prominence, P, of each % peak. % % FINDPEAKS(...) without output arguments plots the signal and the peak % values it finds % % FINDPEAKS(...,'Annotate',PLOTSTYLE) will annotate a plot of the % signal with PLOTSTYLE. If PLOTSTYLE is 'peaks' the peaks will be % plotted. If PLOTSTYLE is 'extents' the signal, peak values, widths, % prominences of each peak will be annotated. 'Annotate' will be ignored % if called with output arguments. The default value of PLOTSTYLE is % 'peaks'. % % % Example 1: % % Plot the Zurich numbers of sunspot activity from years 1700-1987 % % and identify all local maxima at least six years apart % load sunspot.dat % findpeaks(sunspot(:,2),sunspot(:,1),'MinPeakDistance',6) % xlabel('Year'); % ylabel('Zurich number'); % % % Example 2: % % Plot peak values of an audio signal that drop at least 1V on either % % side without encountering values larger than the peak. % load mtlb % findpeaks(mtlb,Fs,'MinPeakProminence',1) % % % Example 3: % % Plot all peaks of a chirp signal whose widths are between .5 and 1 % % milliseconds. % Fs = 44.1e3; N = 1000; % x = sin(2*pi*(1:N)/N + (10*(1:N)/N).^2); % findpeaks(x,Fs,'MinPeakWidth',.5e-3,'MaxPeakWidth',1e-3, ... % 'Annotate','extents') % % See also MAX, FINDCHANGEPTS. % Copyright 2007-2015 The MathWorks, Inc. %#ok<*EMCLS> %#ok<*EMCA> %#codegen cond = nargin >= 1; if ~cond coder.internal.assert(cond,'MATLAB:narginchk:notEnoughInputs'); end cond = nargin <= 22; if ~cond coder.internal.assert(cond,'MATLAB:narginchk:tooManyInputs'); end % extract the parameters from the input argument list [y,yIsRow,x,xIsRow,minH,minP,minW,maxW,minD,minT,maxN,sortDir,annotate,refW] ... = parse_inputs(Yin,varargin{:}); % find indices of all finite and infinite peaks and the inflection points [iFinite,iInfite,iInflect] = getAllPeaks(y); % keep only the indices of finite peaks that meet the required % minimum height and threshold iPk = removePeaksBelowMinPeakHeight(y,iFinite,minH,refW); iPk = removePeaksBelowThreshold(y,iPk,minT); % indicate if we need to compute the extent of a peak needWidth = minW>0 || maxW<inf || minP>0 || nargout>2 || strcmp(annotate,'extents'); if needWidth % obtain the indices of each peak (iPk), the prominence base (bPk), and % the x- and y- coordinates of the peak base (bxPk, byPk) and the width % (wxPk) [iPk,bPk,bxPk,byPk,wxPk] = findExtents(y,x,iPk,iFinite,iInfite,iInflect,minP,minW,maxW,refW); else % combine finite and infinite peaks into one list [iPk,bPk,bxPk,byPk,wxPk] = combinePeaks(iPk,iInfite); end % find the indices of the largest peaks within the specified distance idx = findPeaksSeparatedByMoreThanMinPeakDistance(y,x,iPk,minD); % re-order and bound the number of peaks based upon the index vector idx = orderPeaks(y,iPk,idx,sortDir); idx = keepAtMostNpPeaks(idx,maxN); % use the index vector to fetch the correct peaks. iPk = iPk(idx); if needWidth [bPk, bxPk, byPk, wxPk] = fetchPeakExtents(idx,bPk,bxPk,byPk,wxPk); end if nargout > 0 % assign output variables if needWidth [Ypk,Xpk,Wpk,Ppk] = assignFullOutputs(y,x,iPk,wxPk,bPk,yIsRow,xIsRow); else [Ypk,Xpk] = assignOutputs(y,x,iPk,yIsRow,xIsRow); end else % no output arguments specified. plot and optionally annotate hAxes = plotSignalWithPeaks(x,y,iPk); if strcmp(annotate,'extents') plotExtents(hAxes,x,y,iPk,bPk,bxPk,byPk,wxPk,refW); end scalePlot(hAxes); end %-------------------------------------------------------------------------- function [y,yIsRow,x,xIsRow,Ph,Pp,Wmin,Wmax,Pd,Th,NpOut,Str,Ann,Ref] = parse_inputs(Yin,varargin) % Validate input signal validateattributes(Yin,{'numeric'},{'nonempty','real','vector'},... 'findpeaks','Y'); yIsRow = isrow(Yin); y = Yin(:); % copy over orientation of y to x. xIsRow = yIsRow; % indicate if the user specified an Fs or X hasX = ~isempty(varargin) && (isnumeric(varargin{1}) || ... coder.target('MATLAB') && isdatetime(varargin{1}) && numel(varargin{1})>1); if hasX startArg = 2; if isscalar(varargin{1}) % Fs Fs = varargin{1}; validateattributes(Fs,{'double'},{'real','finite','positive'},'findpeaks','Fs'); x = (0:numel(y)-1).'/Fs; else % X Xin = varargin{1}; if isnumeric(Xin) validateattributes(Xin,{'double'},{'real','finite','vector','increasing'},'findpeaks','X'); else % isdatetime(Xin) validateattributes(seconds(Xin-Xin(1)),{'double'},{'real','finite','vector','increasing'},'findpeaks','X'); end if numel(Xin) ~= numel(Yin) if coder.target('MATLAB') throwAsCaller(MException(message('signal:findpeaks:mismatchYX'))); else coder.internal.errorIf(true,'signal:findpeaks:mismatchYX'); end end xIsRow = isrow(Xin); x = Xin(:); end else startArg = 1; % unspecified, use index vector x = (1:numel(y)).'; end if coder.target('MATLAB') try %#ok<EMTC> % Check the input data type. Single precision is not supported. chkinputdatatype(y); if isnumeric(x) chkinputdatatype(x); end catch ME throwAsCaller(ME); end else chkinputdatatype(y); chkinputdatatype(x); end M = numel(y); cond = (M < 3); if cond coder.internal.errorIf(cond,'signal:findpeaks:emptyDataSet'); end %#function dspopts.findpeaks defaultMinPeakHeight = -inf; defaultMinPeakProminence = 0; defaultMinPeakWidth = 0; defaultMaxPeakWidth = Inf; defaultMinPeakDistance = 0; defaultThreshold = 0; defaultNPeaks = []; defaultSortStr = 'none'; defaultAnnotate = 'peaks'; defaultWidthReference = 'halfprom'; if coder.target('MATLAB') p = inputParser; addParameter(p,'MinPeakHeight',defaultMinPeakHeight); addParameter(p,'MinPeakProminence',defaultMinPeakProminence); addParameter(p,'MinPeakWidth',defaultMinPeakWidth); addParameter(p,'MaxPeakWidth',defaultMaxPeakWidth); addParameter(p,'MinPeakDistance',defaultMinPeakDistance); addParameter(p,'Threshold',defaultThreshold); addParameter(p,'NPeaks',defaultNPeaks); addParameter(p,'SortStr',defaultSortStr); addParameter(p,'Annotate',defaultAnnotate); addParameter(p,'WidthReference',defaultWidthReference); parse(p,varargin{startArg:end}); Ph = p.Results.MinPeakHeight; Pp = p.Results.MinPeakProminence; Wmin = p.Results.MinPeakWidth; Wmax = p.Results.MaxPeakWidth; Pd = p.Results.MinPeakDistance; Th = p.Results.Threshold; Np = p.Results.NPeaks; Str = p.Results.SortStr; Ann = p.Results.Annotate; Ref = p.Results.WidthReference; else parms = struct('MinPeakHeight',uint32(0), ... 'MinPeakProminence',uint32(0), ... 'MinPeakWidth',uint32(0), ... 'MaxPeakWidth',uint32(0), ... 'MinPeakDistance',uint32(0), ... 'Threshold',uint32(0), ... 'NPeaks',uint32(0), ... 'SortStr',uint32(0), ... 'Annotate',uint32(0), ... 'WidthReference',uint32(0)); pstruct = eml_parse_parameter_inputs(parms,[],varargin{startArg:end}); Ph = eml_get_parameter_value(pstruct.MinPeakHeight,defaultMinPeakHeight,varargin{startArg:end}); Pp = eml_get_parameter_value(pstruct.MinPeakProminence,defaultMinPeakProminence,varargin{startArg:end}); Wmin = eml_get_parameter_value(pstruct.MinPeakWidth,defaultMinPeakWidth,varargin{startArg:end}); Wmax = eml_get_parameter_value(pstruct.MaxPeakWidth,defaultMaxPeakWidth,varargin{startArg:end}); Pd = eml_get_parameter_value(pstruct.MinPeakDistance,defaultMinPeakDistance,varargin{startArg:end}); Th = eml_get_parameter_value(pstruct.Threshold,defaultThreshold,varargin{startArg:end}); Np = eml_get_parameter_value(pstruct.NPeaks,defaultNPeaks,varargin{startArg:end}); Str = eml_get_parameter_value(pstruct.SortStr,defaultSortStr,varargin{startArg:end}); Ann = eml_get_parameter_value(pstruct.Annotate,defaultAnnotate,varargin{startArg:end}); Ref = eml_get_parameter_value(pstruct.WidthReference,defaultWidthReference,varargin{startArg:end}); end % limit the number of peaks to the number of input samples if isempty(Np) NpOut = M; else NpOut = Np; end % ignore peaks below zero when using halfheight width reference if strcmp(Ref,'halfheight') Ph = max(Ph,0); end validateattributes(Ph,{'numeric'},{'real','scalar','nonempty'},'findpeaks','MinPeakHeight'); if isnumeric(x) validateattributes(Pd,{'numeric'},{'real','scalar','nonempty','nonnegative','<',x(M)-x(1)},'findpeaks','MinPeakDistance'); else if coder.target('MATLAB') && isduration(Pd) validateattributes(seconds(Pd),{'numeric'},{'real','scalar','nonempty','nonnegative'},'findpeaks','MinPeakDistance'); else validateattributes(Pd,{'numeric'},{'real','scalar','nonempty','nonnegative'},'findpeaks','MinPeakDistance'); end end validateattributes(Pp,{'numeric'},{'real','scalar','nonempty','nonnegative'},'findpeaks','MinPeakProminence'); if coder.target('MATLAB') && isduration(Wmin) validateattributes(seconds(Wmin),{'numeric'},{'real','scalar','finite','nonempty','nonnegative'},'findpeaks','MinPeakWidth'); else validateattributes(Wmin,{'numeric'},{'real','scalar','finite','nonempty','nonnegative'},'findpeaks','MinPeakWidth'); end if coder.target('MATLAB') && isduration(Wmax) validateattributes(seconds(Wmax),{'numeric'},{'real','scalar','nonnan','nonempty','nonnegative'},'findpeaks','MaxPeakWidth'); else validateattributes(Wmax,{'numeric'},{'real','scalar','nonnan','nonempty','nonnegative'},'findpeaks','MaxPeakWidth'); end if coder.target('MATLAB') && isduration(Pd) validateattributes(seconds(Pd),{'numeric'},{'real','scalar','nonempty','nonnegative'},'findpeaks','MinPeakDistance'); else validateattributes(Pd,{'numeric'},{'real','scalar','nonempty','nonnegative'},'findpeaks','MinPeakDistance'); end validateattributes(Th,{'numeric'},{'real','scalar','nonempty','nonnegative'},'findpeaks','Threshold'); validateattributes(NpOut,{'numeric'},{'real','scalar','nonempty','integer','positive'},'findpeaks','NPeaks'); Str = validatestring(Str,{'ascend','none','descend'},'findpeaks','SortStr'); Ann = validatestring(Ann,{'peaks','extents'},'findpeaks','SortStr'); Ref = validatestring(Ref,{'halfprom','halfheight'},'findpeaks','WidthReference'); %-------------------------------------------------------------------------- function [iPk,iInf,iInflect] = getAllPeaks(y) % fetch indices all infinite peaks iInf = find(isinf(y) & y>0); % temporarily remove all +Inf values yTemp = y; yTemp(iInf) = NaN; % determine the peaks and inflection points of the signal [iPk,iInflect] = findLocalMaxima(yTemp); %-------------------------------------------------------------------------- function [iPk, iInflect] = findLocalMaxima(yTemp) % bookend Y by NaN and make index vector yTemp = [NaN; yTemp; NaN]; iTemp = (1:numel(yTemp)).'; % keep only the first of any adjacent pairs of equal values (including NaN). yFinite = ~isnan(yTemp); iNeq = [1; 1 + find((yTemp(1:end-1) ~= yTemp(2:end)) & ... (yFinite(1:end-1) | yFinite(2:end)))]; iTemp = iTemp(iNeq); % take the sign of the first sample derivative s = sign(diff(yTemp(iTemp))); % find local maxima iMax = 1 + find(diff(s)<0); % find all transitions from rising to falling or to NaN iAny = 1 + find(s(1:end-1)~=s(2:end)); % index into the original index vector without the NaN bookend. iInflect = iTemp(iAny)-1; iPk = iTemp(iMax)-1; %-------------------------------------------------------------------------- function iPk = removePeaksBelowMinPeakHeight(Y,iPk,Ph,widthRef) if ~isempty(iPk) iPk = iPk(Y(iPk) > Ph); if isempty(iPk) && ~strcmp(widthRef,'halfheight') if coder.target('MATLAB') warning(message('signal:findpeaks:largeMinPeakHeight', 'MinPeakHeight', 'MinPeakHeight')); end end end %-------------------------------------------------------------------------- function iPk = removePeaksBelowThreshold(Y,iPk,Th) base = max(Y(iPk-1),Y(iPk+1)); iPk = iPk(Y(iPk)-base >= Th); %-------------------------------------------------------------------------- function [iPk,bPk,bxPk,byPk,wxPk] = findExtents(y,x,iPk,iFin,iInf,iInflect,minP,minW,maxW,refW) % temporarily filter out +Inf from the input yFinite = y; yFinite(iInf) = NaN; % get the base and left and right indices of each prominence base [bPk,iLB,iRB] = getPeakBase(yFinite,iPk,iFin,iInflect); % keep only those indices with at least the specified prominence [iPk,bPk,iLB,iRB] = removePeaksBelowMinPeakProminence(yFinite,iPk,bPk,iLB,iRB,minP); % get the x-coordinates of the half-height width borders of each peak [wxPk,iLBh,iRBh] = getPeakWidth(yFinite,x,iPk,bPk,iLB,iRB,refW); % merge finite and infinite peaks together into one list [iPk,bPk,bxPk,byPk,wxPk] = combineFullPeaks(y,x,iPk,bPk,iLBh,iRBh,wxPk,iInf); % keep only those in the range minW < w < maxW [iPk,bPk,bxPk,byPk,wxPk] = removePeaksOutsideWidth(iPk,bPk,bxPk,byPk,wxPk,minW,maxW); %-------------------------------------------------------------------------- function [peakBase,iLeftSaddle,iRightSaddle] = getPeakBase(yTemp,iPk,iFin,iInflect) % determine the indices that border each finite peak [iLeftBase, iLeftSaddle] = getLeftBase(yTemp,iPk,iFin,iInflect); [iRightBase, iRightSaddle] = getLeftBase(yTemp,flipud(iPk),flipud(iFin),flipud(iInflect)); iRightBase = flipud(iRightBase); iRightSaddle = flipud(iRightSaddle); peakBase = max(yTemp(iLeftBase),yTemp(iRightBase)); %-------------------------------------------------------------------------- function [iBase, iSaddle] = getLeftBase(yTemp,iPeak,iFinite,iInflect) % pre-initialize output base and saddle indices iBase = zeros(size(iPeak)); iSaddle = zeros(size(iPeak)); % table stores the most recently encountered peaks in order of height peak = zeros(size(iFinite)); valley = zeros(size(iFinite)); iValley = zeros(size(iFinite)); n = 0; i = 1; j = 1; k = 1; % pre-initialize v for code generation v = NaN; iv = 1; while k<=numel(iPeak) % walk through the inflections until you reach a peak while iInflect(i) ~= iFinite(j) v = yTemp(iInflect(i)); iv = iInflect(i); if isnan(v) % border seen, start over. n = 0; else % ignore previously stored peaks with a valley larger than this one while n>0 && valley(n)>v; n = n - 1; end end i = i + 1; end % get the peak p = yTemp(iInflect(i)); % keep the smallest valley of all smaller peaks while n>0 && peak(n) < p if valley(n) < v v = valley(n); iv = iValley(n); end n = n - 1; end % record "saddle" valleys in between equal-height peaks isv = iv; % keep seeking smaller valleys until you reach a larger peak while n>0 && peak(n) <= p if valley(n) < v v = valley(n); iv = iValley(n); end n = n - 1; end % record the new peak and save the index of the valley into the base % and saddle n = n + 1; peak(n) = p; valley(n) = v; iValley(n) = iv; if iInflect(i) == iPeak(k) iBase(k) = iv; iSaddle(k) = isv; k = k + 1; end i = i + 1; j = j + 1; end %-------------------------------------------------------------------------- function [iPk,pbPk,iLB,iRB] = removePeaksBelowMinPeakProminence(y,iPk,pbPk,iLB,iRB,minP) % compute the prominence of each peak Ppk = y(iPk)-pbPk; % keep those that are above the specified prominence idx = find(Ppk >= minP); iPk = iPk(idx); pbPk = pbPk(idx); iLB = iLB(idx); iRB = iRB(idx); %-------------------------------------------------------------------------- function [wxPk,iLBh,iRBh] = getPeakWidth(y,x,iPk,pbPk,iLB,iRB,wRef) if isempty(iPk) % no peaks. define empty containers base = zeros(size(iPk)); iLBh = zeros(size(iPk)); iRBh = zeros(size(iPk)); elseif strcmp(wRef,'halfheight') % set the baseline to zero base = zeros(size(iPk)); % border the width by no more than the lowest valley between this peak % and the next peak iLBh = [iLB(1); max(iLB(2:end),iRB(1:end-1))]; iRBh = [min(iRB(1:end-1),iLB(2:end)); iRB(end)]; iGuard = iLBh > iPk; iLBh(iGuard) = iLB(iGuard); iGuard = iRBh < iPk; iRBh(iGuard) = iRB(iGuard); else % use the prominence base base = pbPk; % border the width by the saddle of the peak iLBh = iLB; iRBh = iRB; end % get the width boundaries of each peak wxPk = getHalfMaxBounds(y, x, iPk, base, iLBh, iRBh); %-------------------------------------------------------------------------- function bounds = getHalfMaxBounds(y, x, iPk, base, iLB, iRB) if isnumeric(x) bounds = zeros(numel(iPk),2); else bounds = [x(1:numel(iPk)) x(1:numel(iPk))]; end % interpolate both the left and right bounds clamping at borders for i=1:numel(iPk) % compute the desired reference level at half-height or half-prominence refHeight = (y(iPk(i))+base(i))/2; % compute the index of the left-intercept at half max iLeft = findLeftIntercept(y, iPk(i), iLB(i), refHeight); if iLeft < iLB(i) xLeft = x(iLB(i)); else xLeft = linterp(x(iLeft),x(iLeft+1),y(iLeft),y(iLeft+1),y(iPk(i)),base(i)); end % compute the index of the right-intercept iRight = findRightIntercept(y, iPk(i), iRB(i), refHeight); if iRight > iRB(i) xRight = x(iRB(i)); else xRight = linterp(x(iRight), x(iRight-1), y(iRight), y(iRight-1), y(iPk(i)),base(i)); end % store result bounds(i,:) = [xLeft xRight]; end %-------------------------------------------------------------------------- function idx = findLeftIntercept(y, idx, borderIdx, refHeight) % decrement index until you pass under the reference height or pass the % index of the left border, whichever comes first while idx>=borderIdx && y(idx) > refHeight idx = idx - 1; end %-------------------------------------------------------------------------- function idx = findRightIntercept(y, idx, borderIdx, refHeight) % increment index until you pass under the reference height or pass the % index of the right border, whichever comes first while idx<=borderIdx && y(idx) > refHeight idx = idx + 1; end %-------------------------------------------------------------------------- function xc = linterp(xa,xb,ya,yb,yc,bc) % interpolate between points (xa,ya) and (xb,yb) to find (xc, 0.5*(yc-yc)). xc = xa + (xb-xa) .* (0.5*(yc+bc)-ya) ./ (yb-ya); % invoke L'Hospital's rule when -Inf is encountered. if isnumeric(xc) && isnan(xc) || coder.target('MATLAB') && isdatetime(xc) && isnat(xc) % yc and yb are guaranteed to be finite. if isinf(bc) % both ya and bc are -Inf. if isnumeric(xa) xc = 0.5*(xa+xb); else xc = xa+0.5*(xb-xa); end else % only ya is -Inf. xc = xb; end end %-------------------------------------------------------------------------- function [iPk,bPk,bxPk,byPk,wxPk] = removePeaksOutsideWidth(iPk,bPk,bxPk,byPk,wxPk,minW,maxW) if isempty(iPk) || minW==0 && maxW == inf; return end % compute the width of each peak and extract the matching indices w = diff(wxPk,1,2); idx = find(minW <= w & w <= maxW); % fetch the surviving peaks iPk = iPk(idx); bPk = bPk(idx); bxPk = bxPk(idx,:); byPk = byPk(idx,:); wxPk = wxPk(idx,:); %-------------------------------------------------------------------------- function [iPkOut,bPk,bxPk,byPk,wxPk] = combinePeaks(iPk,iInf) iPkOut = union(iPk,iInf); bPk = zeros(0,1); bxPk = zeros(0,2); byPk = zeros(0,2); wxPk = zeros(0,2); %-------------------------------------------------------------------------- function [iPkOut,bPkOut,bxPkOut,byPkOut,wxPkOut] = combineFullPeaks(y,x,iPk,bPk,iLBw,iRBw,wPk,iInf) iPkOut = union(iPk, iInf); % create map of new indices to old indices [~, iFinite] = intersect(iPkOut,iPk); [~, iInfinite] = intersect(iPkOut,iInf); % prevent row concatenation when iPk and iInf both have less than one % element iPkOut = iPkOut(:); % compute prominence base bPkOut = zeros(size(iPkOut)); bPkOut(iFinite) = bPk; bPkOut(iInfinite) = 0; % compute indices of left and right infinite borders iInfL = max(1,iInf-1); iInfR = min(iInf+1,numel(x)); % copy out x- values of the left and right prominence base % set each base border of an infinite peaks halfway between itself and % the next adjacent sample if isnumeric(x) bxPkOut = zeros(size(iPkOut,1),2); bxPkOut(iFinite,1) = x(iLBw); bxPkOut(iFinite,2) = x(iRBw); bxPkOut(iInfinite,1) = 0.5*(x(iInf)+x(iInfL)); bxPkOut(iInfinite,2) = 0.5*(x(iInf)+x(iInfR)); else bxPkOut = [x(1:size(iPkOut,1)) x(1:size(iPkOut,1))]; bxPkOut(iFinite,1) = x(iLBw); bxPkOut(iFinite,2) = x(iRBw); bxPkOut(iInfinite,1) = x(iInf) + 0.5*(x(iInfL)-x(iInf)); bxPkOut(iInfinite,2) = x(iInf) + 0.5*(x(iInfR)-x(iInf)); end % copy out y- values of the left and right prominence base byPkOut = zeros(size(iPkOut,1),2); byPkOut(iFinite,1) = y(iLBw); byPkOut(iFinite,2) = y(iRBw); byPkOut(iInfinite,1) = y(iInfL); byPkOut(iInfinite,2) = y(iInfR); % copy out x- values of the width borders % set each width borders of an infinite peaks halfway between itself and % the next adjacent sample if isnumeric(x) wxPkOut = zeros(size(iPkOut,1),2); wxPkOut(iFinite,:) = wPk; wxPkOut(iInfinite,1) = 0.5*(x(iInf)+x(iInfL)); wxPkOut(iInfinite,2) = 0.5*(x(iInf)+x(iInfR)); else wxPkOut = [x(1:size(iPkOut,1)) x(1:size(iPkOut,1))]; wxPkOut(iFinite,:) = wPk; wxPkOut(iInfinite,1) = x(iInf)+0.5*(x(iInfL)-x(iInf)); wxPkOut(iInfinite,2) = x(iInf)+0.5*(x(iInfR)-x(iInf)); end %-------------------------------------------------------------------------- function idx = findPeaksSeparatedByMoreThanMinPeakDistance(y,x,iPk,Pd) % Start with the larger peaks to make sure we don't accidentally keep a % small peak and remove a large peak in its neighborhood. if isempty(iPk) || Pd==0 idx = (1:numel(iPk)).'; return end % copy peak values and locations to a temporary place pks = y(iPk); locs = x(iPk); % Order peaks from large to small [~, sortIdx] = sort(pks,'descend'); locs_temp = locs(sortIdx); idelete = ones(size(locs_temp))<0; for i = 1:length(locs_temp) if ~idelete(i) % If the peak is not in the neighborhood of a larger peak, find % secondary peaks to eliminate. idelete = idelete | (locs_temp>=locs_temp(i)-Pd)&(locs_temp<=locs_temp(i)+Pd); idelete(i) = 0; % Keep current peak end end % report back indices in consecutive order idx = sort(sortIdx(~idelete)); %-------------------------------------------------------------------------- function idx = orderPeaks(Y,iPk,idx,Str) if isempty(idx) || strcmp(Str,'none') return end if strcmp(Str,'ascend') [~,s] = sort(Y(iPk(idx)),'ascend'); else [~,s] = sort(Y(iPk(idx)),'descend'); end idx = idx(s); %-------------------------------------------------------------------------- function idx = keepAtMostNpPeaks(idx,Np) if length(idx)>Np idx = idx(1:Np); end %-------------------------------------------------------------------------- function [bPk,bxPk,byPk,wxPk] = fetchPeakExtents(idx,bPk,bxPk,byPk,wxPk) bPk = bPk(idx); bxPk = bxPk(idx,:); byPk = byPk(idx,:); wxPk = wxPk(idx,:); %-------------------------------------------------------------------------- function [YpkOut,XpkOut] = assignOutputs(y,x,iPk,yIsRow,xIsRow) % fetch the coordinates of the peak Ypk = y(iPk); Xpk = x(iPk); % preserve orientation of Y if yIsRow YpkOut = Ypk.'; else YpkOut = Ypk; end % preserve orientation of X if xIsRow XpkOut = Xpk.'; else XpkOut = Xpk; end %-------------------------------------------------------------------------- function [YpkOut,XpkOut,WpkOut,PpkOut] = assignFullOutputs(y,x,iPk,wxPk,bPk,yIsRow,xIsRow) % fetch the coordinates of the peak Ypk = y(iPk); Xpk = x(iPk); % compute the width and prominence Wpk = diff(wxPk,1,2); Ppk = Ypk-bPk; % preserve orientation of Y (and P) if yIsRow YpkOut = Ypk.'; PpkOut = Ppk.'; else YpkOut = Ypk; PpkOut = Ppk; end % preserve orientation of X (and W) if xIsRow XpkOut = Xpk.'; WpkOut = Wpk.'; else XpkOut = Xpk; WpkOut = Wpk; end %-------------------------------------------------------------------------- function hAxes = plotSignalWithPeaks(x,y,iPk) % plot signal hLine = plot(x,y,'Tag','Signal'); hAxes = ancestor(hLine,'Axes'); % turn on grid grid on; if numel(x)>1 hAxes.XLim = hLine.XData([1 end]); end % use the color of the line color = get(hLine,'Color'); hLine = line(hLine.XData(iPk),y(iPk),'Parent',hAxes, ... 'Marker','o','LineStyle','none','Color',color,'tag','Peak'); % if using MATLAB use offset inverted triangular marker if coder.target('MATLAB') plotpkmarkers(hLine,y(iPk)); end %-------------------------------------------------------------------------- function plotExtents(hAxes,x,y,iPk,bPk,bxPk,byPk,wxPk,refW) % compute level of half-maximum (height or prominence) if strcmp(refW,'halfheight') hm = 0.5*y(iPk); else hm = 0.5*(y(iPk)+bPk); end % get the default color order colors = get(0,'DefaultAxesColorOrder'); % plot boundaries between adjacent peaks when using half-height if strcmp(refW,'halfheight') % plot height plotLines(hAxes,'Height',x(iPk),y(iPk),x(iPk),zeros(numel(iPk),1),colors(2,:)); % plot width plotLines(hAxes,'HalfHeightWidth',wxPk(:,1),hm,wxPk(:,2),hm,colors(3,:)); % plot peak borders idx = find(byPk(:,1)>0); plotLines(hAxes,'Border',bxPk(idx,1),zeros(numel(idx),1),bxPk(idx,1),byPk(idx,1),colors(4,:)); idx = find(byPk(:,2)>0); plotLines(hAxes,'Border',bxPk(idx,2),zeros(numel(idx),1),bxPk(idx,2),byPk(idx,2),colors(4,:)); else % plot prominence plotLines(hAxes,'Prominence',x(iPk), y(iPk), x(iPk), bPk, colors(2,:)); % plot width plotLines(hAxes,'HalfProminenceWidth',wxPk(:,1), hm, wxPk(:,2), hm, colors(3,:)); % plot peak borders idx = find(bPk(:)<byPk(:,1)); plotLines(hAxes,'Border',bxPk(idx,1),bPk(idx),bxPk(idx,1),byPk(idx,1),colors(4,:)); idx = find(bPk(:)<byPk(:,2)); plotLines(hAxes,'Border',bxPk(idx,2),bPk(idx),bxPk(idx,2),byPk(idx,2),colors(4,:)); end if coder.target('MATLAB') hLine = get(hAxes,'Children'); tags = get(hLine,'tag'); legendStrs = {}; searchTags = {'Signal','Peak','Prominence','Height','HalfProminenceWidth','HalfHeightWidth','Border'}; for i=1:numel(searchTags) if any(strcmp(searchTags{i},tags)) legendStrs = [legendStrs, ... {getString(message(['signal:findpeaks:Legend' searchTags{i}]))}]; %#ok<AGROW> end end if numel(hLine)==1 legend(getString(message('signal:findpeaks:LegendSignalNoPeaks')), ... 'Location','best'); else legend(legendStrs,'Location','best'); end end %-------------------------------------------------------------------------- function plotLines(hAxes,tag,x1,y1,x2,y2,c) % concatenate multiple lines into a single line and fencepost with NaN n = numel(x1); if isnumeric(x1) line(reshape([x1(:).'; x2(:).'; NaN(1,n)], 3*n, 1), ... reshape([y1(:).'; y2(:).'; NaN(1,n)], 3*n, 1), ... 'Color',c,'Parent',hAxes,'tag',tag); elseif coder.target('MATLAB') && isdatetime(x1) line(reshape(datenum([x1(:).'; x2(:).'; NaT(1,n)]), 3*n, 1), ... reshape([y1(:).'; y2(:).'; NaN(1,n)], 3*n, 1), ... 'Color',c,'Parent',hAxes,'tag',tag); end %-------------------------------------------------------------------------- function scalePlot(hAxes) % In the event that the plot has integer valued y limits, 'axis auto' may % clip the YLimits directly to the data with no margin. We search every % line for its max and minimum value and create a temporary annotation that % is 10% larger than the min and max values. We then feed this to "axis % auto", save the y limits, set axis to "tight" then restore the y limits. % This obviates the need to check each line for its max and minimum x % values as well. minVal = Inf; maxVal = -Inf; if coder.target('MATLAB') hLines = findall(hAxes,'Type','line'); for i=1:numel(hLines) data = get(hLines(i),'YData'); data = data(isfinite(data)); if ~isempty(data) minVal = min(minVal, min(data(:))); maxVal = max(maxVal, max(data(:))); end end xlimits = xlim; axis auto % grow upper and lower y extent by 5% (a total of 10%) p = .05; y1 = (1+p)*maxVal - p*minVal; y2 = (1+p)*minVal - p*maxVal; % artificially expand the data range by the specified amount hTempLine = line(xlimits([1 1]),[y1 y2],'Parent',hAxes); % save the limits ylimits = ylim; delete(hTempLine); else axis auto ylimits = ylim; end % preserve expanded y limits but tighten x axis. axis tight ylim(ylimits); xlim(xlimits); % [EOF]
github
ganlubbq/Signal-Processing-master
findFrequencySets.m
.m
Signal-Processing-master/findFrequencySets.m
6,594
utf_8
e7153b1ff720af9dbc471ef144397eb7
% ====================================================================== %> @brief findFrequencySets(obj, type, fLow, fHigh, noHarmonics) %> Changed by CS, no obj %> Function finds all frequencies that matches a harmonic set %> %> @param obj ThicknessAlgorithm class object %> @param type Type of psd to search: RESONANCE or MAIN %> @param fLow Lower Frequency %> @param fLow Higher Frequency %> @param fLow Required number of harmonics in each set %> %> @retval setsFound Reference to sets found % ====================================================================== function [setsFound] = findFrequencySets(type, fLow, fHigh, noHarmonics) %% Function finds all frequencies that matches a harmonic set. % Start searching for sets from fHigh and towards fLow % psd: PSD % locs: Array containing index to peaks in PSD % fHigh: Upper frequency in emitted pulse. % Deviation is calculated based on (Fs/N) * deviationFactor import ppPkg.HarmonicSet if(obj.RESONANCE == type) psd = obj.psdResonance; locs = obj.peakLocationResonance; deviationInFrequency = (obj.config.SAMPLE_RATE/obj.config.FFT_LENGTH) * obj.config.DEVIATION_FACTOR; % @TODO: Consider changing how we calculate the deviation frquency. % It should be based on the relevant frequency resolution % Frequency resolution is given by % R = 1/T, % where T is the recording time of the signal. T = Fs/L, % where L is number of samples % % FTT resolution is given by: % Rf = Fs/Nfft. % So having a high Nfft does not improve the frequency % resolution if T is short % Ideal we should have: Fs/L = Fs/Nfft => L = Nfft, but this is not the % case MIN_REQUIRED_HARMONICS = noHarmonics; numberOfSets = 0; % Calculate minimum fundemental frequency that can exists freqFundamentalMinimum = obj.config.V_PIPE/(2*obj.config.D_NOM); % Allowed percentage deviaion from target harmonic frequency % Iterate through array of maxima and find all frequencies that % matches a set. % Flip array so start searching from higher frequency locs = sort(locs); locs = flip(locs); for n = 1:length(locs) for m = (n+1):length(locs) for j =(m):length(locs) %fprintf('index n: %d m: %d j: %d\n',n, m, j); if( j == m ) fN.freq = (locs(n)-1)*obj.config.SAMPLE_RATE/obj.config.FFT_LENGTH; fN.peakValue = (psd(locs(n))); fN.index = locs(n); fM.freq = (locs(m)-1)*obj.config.SAMPLE_RATE/obj.config.FFT_LENGTH; fM.peakValue = (psd(locs(m))); fM.index = locs(m); %tempSet = HarmonicSet(freqN, peakN, locs(n), freqM, peakM, locs(m), deviationInFrequency); %fprintf('create set index n: %d m: %d j: %d\n',n, m, j); % Only create a new set if the difference % between freqN and freqM is larger than % freqFundamentalMinimum if(abs(fM.freq - fN.freq) > freqFundamentalMinimum) % Create harmonicSet object %fprintf('index n: %d m: %d j: %d\n',n, m, j); %tempSet = HarmonicSet(freqN, peakN, locs(n), freqM, peakM, locs(m), deviationInFrequency); tempSet = HarmonicSet(fN, fM, deviationInFrequency, fLow, fHigh); else tempSet = []; break; end else fJ.freq = (locs(j)-1)*obj.config.SAMPLE_RATE/obj.config.FFT_LENGTH; fJ.peakValue = (psd(locs(j))); fJ.index = locs(j); % Try to add next frequency to set if(tempSet.tryAddFreqFromHigh(fJ)) end end end % Search the other direction % Try to add frequencies if(n > 1 && ( numel(tempSet) > 0 )) %fprintf('index n: %d m: %d j: %d\n',n, m, j); for K = flip(locs(1:n-1))' fK.freq = (K-1)*obj.config.SAMPLE_RATE/obj.config.FFT_LENGTH; fK.peakValue = (psd(K)); fK.index = K; tempSet.tryAddFreqFromLow(fK); end end if( j == length(locs)) %fprintf('try save sets %d countf %d\n',numberOfSets, tempSet.frequencyCount); if(isempty(tempSet)) elseif(numberOfSets == 0 && (tempSet.numFrequencies >= MIN_REQUIRED_HARMONICS)) numberOfSets = 1; set = tempSet; % Only keep sets that have more than MIN_REQUIRED_HARMONICS % harmonic frequencies elseif(tempSet.numFrequencies >= MIN_REQUIRED_HARMONICS) numberOfSets = numberOfSets + 1; set(numberOfSets) = tempSet; tempSet = []; end end end end if(numberOfSets == 0) if(obj.config.DEBUG_INFO) disp('No Sets found, try do adjust dB level') end set = []; else % Remove all subsets %set = obj.removeAllSubsets2(set); % Flip frequency array in Harmonic set so that set always % start with the lower frequency for index = 1:length(set) set(index).flip(); end end % Store set to class if(obj.RESONANCE == type) obj.setResonance = set; elseif(obj.MAIN == type) obj.setMain = set; end setsFound = numel(set); end
github
ganlubbq/Signal-Processing-master
processingBinFile.m
.m
Signal-Processing-master/Test_Dev/processingBinFile.m
2,307
utf_8
10c8bb9206d91df52481556c83e8c8a9
%> @file processingBinFile.m %> @brief transform one .bin file to 96 x 520 x 2000 .mat file % ====================================================================== %> @brief Input: % - PathName, Filename % - round_per_read = 520 % %> @brief Output: % - Signal in .mat format % %> @brief Author: Chen Sun; Yingjian Liu % %> @brief Date: Sept 13, 2017 % ====================================================================== function [SignalMatrix] = processingBinFile(PathName,FileName) SignalMatrix = zeros(96,520,2000); dirF = dir(fullfile(PathName,FileName)); sizeAll = dirF.bytes; % total bytes of 96 x 520 x 2000 data round_per_read = floor(sizeAll/32096/12); % = 520 fid=fopen(fullfile(PathName,FileName)); status = fseek(fid,0,'bof'); raw_data = fread(fid,32096*12*round_per_read,'uint8'); fclose(fid); % % Check if is the last read SignalMatrix = zeros(96,520,2000); % if size(raw_data,1)<32096 % break % end sb=0; rp_i=0; ii=zeros(1,128); for i = 1:fix(size(raw_data,1)/32096) %128 gain(i) = uint8(raw_data(sb+24:sb+24)'); raw_fireTime = uint8(raw_data(sb+25:sb+32)'); fireTimeA(i)= typecast(raw_fireTime,'uint64'); roll_b =typecast(uint8(raw_data(sb+17:sb+18)'),'int16'); pitch_b =typecast(uint8(raw_data(sb+19:sb+20)'),'int16'); if((roll_b~=8224)||(pitch_b~=8224)) rp_i=rp_i+1; rp_locs(rp_i)=i; roll_r(i)=roll_b; pitch_r(i)=pitch_b; end for k=0:7 raw_signal = uint8(raw_data(sb+k*4008+41:sb+k*4008+4040)'); signal0 = (typecast(raw_signal, 'uint16')); signal0 = (double(signal0)-32768)/32768; % signal0(1)=32768; raw_firstRef = uint8(raw_data(sb+k*4008+33:sb+k*4008+34)'); firstRef = typecast(raw_firstRef,'uint16'); ch= uint8(raw_data(sb+k*4008+39)); j=ch+1; ii(j)=ii(j)+1; SignalMatrix(j,ii(j),:)=signal0; end % Increment starting bit. Needed sb = sb + 32096; end
github
ganlubbq/Signal-Processing-master
MultiChnLoad.m
.m
Signal-Processing-master/Test_Dev/reference/MultiChnLoad.m
44,220
utf_8
fb1445fac828ff1d542f7dd03a5a2520
function varargout = MultiChnLoad(varargin) % MULTICHNLOAD MATLAB code for MultiChnLoad.fig % See also: GUIDE, GUIDATA, GUIHANDLES % Last Modified by GUIDE v2.5 11-Sep-2017 15:30:56 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @MultiChnLoad_OpeningFcn, ... 'gui_OutputFcn', @MultiChnLoad_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before MultiChnLoad is made visible. function MultiChnLoad_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to MultiChnLoad (see VARARGIN) % Choose default command line output for MultiChnLoad handles.output = hObject; handles.figure2 = []; handles.pathname = []; handles.filename = []; handles.metricdata.h1 = []; handles.metricdata.h2 = []; handles.thickness = []; handles.markedthickness = []; handles.LMax = []; % Update handles structure guidata(hObject, handles); % UIWAIT makes MultiChnLoad wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = MultiChnLoad_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); varargout{1} = handles.output; % --- Executes on button press in LoadFile. function LoadFile_Callback(hObject, eventdata, handles) axes(handles.axes1); cla; Testing96D1; Filename = strcat(PathName,filename); handles = guidata(findobj('Name','MultiChnLoad')); %set(handles.FilePath,'String',Filename); msgbox('Process done!'); guidata(hObject, handles); % -------------------------------------------------------------------- function FileMenu_Callback(hObject, eventdata, handles) % -------------------------------------------------------------------- function OpenMenuItem_Callback(hObject, eventdata, handles) file = uigetfile('*.fig'); if ~isequal(file, 0) open(file); end % -------------------------------------------------------------------- function PrintMenuItem_Callback(hObject, eventdata, handles) printdlg(handles.figure1) % -------------------------------------------------------------------- function CloseMenuItem_Callback(hObject, eventdata, handles) selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],... ['Close ' get(handles.figure1,'Name') '...'],... 'Yes','No','Yes'); if strcmp(selection,'No') return; end delete(handles.figure1) % --- Executes during object creation, after setting all properties. function FilePath_CreateFcn(hObject, eventdata, handles) % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in Plotting. function Plotting_Callback(hObject, eventdata, handles) if isempty(get(handles.FilePath,'String')) if isempty(handles.pathname) [filename,PathName]= uigetfile('*.mat'); else [filename,PathName] = uigetfile([handles.pathname,'*.mat'],'Select the file'); end dirF = dir(fullfile(PathName,filename)); FileName = strcat(PathName,filename); set(handles.FilePath,'String',FileName); load(FileName); handles.pathname = PathName; handles.filename = filename; handles.signal = S; else BinName = get(handles.FilePath,'String'); FileName = strcat(BinName(1:end-4),'.mat'); if isempty(handles.filename) load(FileName); % handles.filename = FileName; handles.signal = S; else S = handles.signal; end end channelValue = get(handles.listChannels,'Value'); if isempty(get(handles.ActualMapping,'String')) %for Olympus trLayout = [1 33 17 29 13 93 49 81 65 77 61 21 25 9 41 5 37 69 73 57 89 53 85 45 2 34 18 30 14 94 50 82 66 78 62 22 26 10 42 6 38 70 74 58 90 54 86 46 3 35 19 31 15 95 51 83 67 79 63 23 27 11 43 7 39 71 75 59 91 55 87 47 4 36 20 32 16 96 52 84 68 80 64 24 28 12 44 8 40 72 76 60 92 56 88 48]; % %for Olympus % trLayout = 1:96; % % for Fraunhofer. % trLayout = [1 17 13 33 5 93 49 65 61 81 77 21 25 41 37 9 29 69 73 89 85 57 53 45 2 18 14 34 6 94 50 66 62 82 78 22 26 42 38 10 30 70 74 90 86 58 54 46 3 19 15 35 7 95 51 67 63 83 79 23 27 43 39 11 31 71 75 91 87 59 55 47 4 20 16 36 8 96 52 68 64 84 80 24 28 44 40 12 32 72 76 92 88 60 56 48]; % for Frauhofer old. % trLayout = [54 63 72 81 90 3 12 21 60 69 78 87 96 9 18 27 66 75 84 93 6 15 24 33 48 57 36 42 45 51 30 39 53 62 71 80 89 2 11 20 58 68 77 86 95 8 17 26 65 74 83 92 5 14 23 32 47 56 35 41 44 50 29 38 46 55 64 73 82 91 4 13 52 61 70 79 88 1 10 19 58 67 76 85 94 7 16 25 40 49 28 34 37 43 22 31] % for Frauhofer old. % trLayout = [78 44 6 71 37 21 86 52 14 79 45 7 72 38 22 87 53 15 80 46 8 63 39 23 88 54 16 59 47 95 64 40 24 60 55 91 61 48 96 57 31 92 62 56 93 65 27 89 58 32 94 73 28 1 66 29 90 81 25 9 74 30 2 67 33 17 82 26 10 75 41 3 68 34 18 83 49 11 76 42 4 69 35 19 84 50 12 77 43 5 70 36 20 85 51 13 14]; set(handles.ActualMapping,'String',num2str(trLayout)); else trLayout = str2num(get(handles.ActualMapping,'String')); end StartChn = (channelValue-1)*12; SNames = fieldnames(S); PlottingChoice = get(handles.PlottingChoice,'Value'); % TimeYLimMin = 500; % TimeYLimMax = 1200; % SpectrumYLimMin = 200; % SpectrumYLimMax = 1100; TimeYLimMin = str2num(handles.TimeMin.String); TimeYLimMax = str2num(handles.TimeMax.String); SpectrumYLimMin = str2num(handles.SpectrumMin.String); SpectrumYLimMax = str2num(handles.SpectrumMax.String); scale = str2num(handles.TimeColorScale.String); SpectrumScale = str2num(handles.SpectrumColorScale.String); fftStart = str2num(handles.SignalStart.String); fftEnd = str2num(handles.SignalEnd.String); switch PlottingChoice case 1 signal = S.(SNames{trLayout(StartChn+1)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end axes(handles.axes1); gca,imagesc(signal'); set(gca,'YLim',[TimeYLimMin TimeYLimMax]); signal = S.(SNames{trLayout(StartChn+2)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end axes(handles.axes2); gca,imagesc(signal'); set(gca,'YLim',[TimeYLimMin TimeYLimMax]); signal = S.(SNames{trLayout(StartChn+3)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end axes(handles.axes3); gca,imagesc(signal'); set(gca,'YLim',[TimeYLimMin TimeYLimMax]); signal = S.(SNames{trLayout(StartChn+4)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end axes(handles.axes4); gca,imagesc(signal'); set(gca,'YLim',[TimeYLimMin TimeYLimMax]); signal = S.(SNames{trLayout(StartChn+5)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end axes(handles.axes5); gca,imagesc(signal'); set(gca,'YLim',[TimeYLimMin TimeYLimMax]); signal = S.(SNames{trLayout(StartChn+6)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end axes(handles.axes6); gca,imagesc(signal'); set(gca,'YLim',[TimeYLimMin TimeYLimMax]); signal = S.(SNames{trLayout(StartChn+7)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end axes(handles.axes7); gca,imagesc(signal'); set(gca,'YLim',[TimeYLimMin TimeYLimMax]); signal = S.(SNames{trLayout(StartChn+8)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end axes(handles.axes8); gca,imagesc(signal'); set(gca,'YLim',[TimeYLimMin TimeYLimMax]); signal = S.(SNames{trLayout(StartChn+9)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end axes(handles.axes9); gca,imagesc(signal'); set(gca,'YLim',[TimeYLimMin TimeYLimMax]); signal = S.(SNames{trLayout(StartChn+10)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end axes(handles.axes10); gca,imagesc(signal'); set(gca,'YLim',[TimeYLimMin TimeYLimMax]); signal = S.(SNames{trLayout(StartChn+11)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end axes(handles.axes11); gca,imagesc(signal'); set(gca,'YLim',[TimeYLimMin TimeYLimMax]); signal = S.(SNames{trLayout(StartChn+12)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end axes(handles.axes12); gca,imagesc(signal'); set(gca,'YLim',[TimeYLimMin TimeYLimMax]); case 2 nFFT = 4096; Fs = 15E6; %newSpectrogram = zeros(size(signal,1),nFFT); axes(handles.axes1); signal = S.(SNames{trLayout(StartChn+1)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end for i = 1:size(signal,1) newSpectrogram(i,:) = abs(fft(signal(i,fftStart:fftEnd)/max(max(signal)),nFFT)); end plotting = newSpectrogram(:,1:nFFT/2); gca,imagesc(plotting'); set(gca,'YLim',[SpectrumYLimMin SpectrumYLimMax]); axes(handles.axes2); signal = S.(SNames{trLayout(StartChn+2)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end for i = 1:size(signal,1) newSpectrogram(i,:) = abs(fft(signal(i,fftStart:fftEnd)/max(max(signal)),nFFT)); end plotting = newSpectrogram(:,1:nFFT/2); gca,imagesc(plotting'); set(gca,'YLim',[SpectrumYLimMin SpectrumYLimMax]); axes(handles.axes3); signal = S.(SNames{trLayout(StartChn+3)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end for i = 1:size(signal,1) newSpectrogram(i,:) = abs(fft(signal(i,fftStart:fftEnd)/max(max(signal)),nFFT)); end plotting = newSpectrogram(:,1:nFFT/2); gca,imagesc(plotting'); set(gca,'YLim',[SpectrumYLimMin SpectrumYLimMax]); axes(handles.axes4); signal = S.(SNames{trLayout(StartChn+4)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end for i = 1:size(signal,1) newSpectrogram(i,:) = abs(fft(signal(i,fftStart:fftEnd)/max(max(signal)),nFFT)); end plotting = newSpectrogram(:,1:nFFT/2); gca,imagesc(plotting'); set(gca,'YLim',[SpectrumYLimMin SpectrumYLimMax]); axes(handles.axes5); signal = S.(SNames{trLayout(StartChn+5)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end for i = 1:size(signal,1) newSpectrogram(i,:) = abs(fft(signal(i,fftStart:fftEnd)/max(max(signal)),nFFT)); end plotting = newSpectrogram(:,1:nFFT/2); gca,imagesc(plotting'); set(gca,'YLim',[SpectrumYLimMin SpectrumYLimMax]); axes(handles.axes6); signal = S.(SNames{trLayout(StartChn+6)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end for i = 1:size(signal,1) newSpectrogram(i,:) = abs(fft(signal(i,fftStart:fftEnd)/max(max(signal)),nFFT)); end plotting = newSpectrogram(:,1:nFFT/2); gca,imagesc(plotting'); set(gca,'YLim',[SpectrumYLimMin SpectrumYLimMax]); axes(handles.axes7); signal = S.(SNames{trLayout(StartChn+7)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end for i = 1:size(signal,1) newSpectrogram(i,:) = abs(fft(signal(i,fftStart:fftEnd)/max(max(signal)),nFFT)); end plotting = newSpectrogram(:,1:nFFT/2); gca,imagesc(plotting'); set(gca,'YLim',[SpectrumYLimMin SpectrumYLimMax]); axes(handles.axes8); signal = S.(SNames{trLayout(StartChn+8)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end for i = 1:size(signal,1) newSpectrogram(i,:) = abs(fft(signal(i,fftStart:fftEnd)/max(max(signal)),nFFT)); end plotting = newSpectrogram(:,1:nFFT/2); gca,imagesc(plotting'); set(gca,'YLim',[SpectrumYLimMin SpectrumYLimMax]); axes(handles.axes9); signal = S.(SNames{trLayout(StartChn+9)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end for i = 1:size(signal,1) newSpectrogram(i,:) = abs(fft(signal(i,fftStart:fftEnd)/max(max(signal)),nFFT)); end plotting = newSpectrogram(:,1:nFFT/2); gca,imagesc(plotting'); set(gca,'YLim',[SpectrumYLimMin SpectrumYLimMax]); axes(handles.axes10); signal = S.(SNames{trLayout(StartChn+10)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end for i = 1:size(signal,1) newSpectrogram(i,:) = abs(fft(signal(i,fftStart:fftEnd)/max(max(signal)),nFFT)); end plotting = newSpectrogram(:,1:nFFT/2); gca,imagesc(plotting'); set(gca,'YLim',[SpectrumYLimMin SpectrumYLimMax]); axes(handles.axes11); signal = S.(SNames{trLayout(StartChn+11)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end for i = 1:size(signal,1) newSpectrogram(i,:) = abs(fft(signal(i,fftStart:fftEnd)/max(max(signal)),nFFT)); end plotting = newSpectrogram(:,1:nFFT/2); gca,imagesc(plotting'); set(gca,'YLim',[SpectrumYLimMin SpectrumYLimMax]); axes(handles.axes12); signal = S.(SNames{trLayout(StartChn+12)}); % if max(max(signal(:,1400:2000))) > 0.8 % signal((signal > 0.7)) = signal((signal > 0.7)) - 1; % end for i = 1:size(signal,1) newSpectrogram(i,:) = abs(fft(signal(i,fftStart:fftEnd)/max(max(signal)),nFFT)); end plotting = newSpectrogram(:,1:nFFT/2); gca,imagesc(plotting'); set(gca,'YLim',[SpectrumYLimMin SpectrumYLimMax]); end axesHandles = findobj(gcf,'Type','Axes'); StepofData = handles.StepofData.Value; set(axesHandles(1:12),'XLim',[0 StepofData]); if SpectrumScale == 0 && handles.PlottingChoice.Value == 2; set(axesHandles(1:12),'CLimMode','auto'); handles.SpectrumScale = get(axesHandles(1:12),'CLim'); elseif SpectrumScale ~= 0 && handles.PlottingChoice.Value == 2; set(axesHandles(1:12),'CLim',[0 SpectrumScale]); %set(axesHandles(1:12),'CLim',[0 SpectrumScale*handles.SpectrumScale]); elseif scale == 0 && handles.PlottingChoice.Value == 1; set(axesHandles(1:12),'CLimMode','auto'); handles.SpectrumScale = get(axesHandles(1:12),'CLim'); else set(axesHandles(1:12),'CLim',[-scale scale]); end %update the channel numbers. handles.ch1.String = num2str(StartChn+1); handles.ch2.String = num2str(StartChn+2); handles.ch3.String = num2str(StartChn+3); handles.ch4.String = num2str(StartChn+4); handles.ch5.String = num2str(StartChn+5); handles.ch6.String = num2str(StartChn+6); handles.ch7.String = num2str(StartChn+7); handles.ch8.String = num2str(StartChn+8); handles.ch9.String = num2str(StartChn+9); handles.ch10.String = num2str(StartChn+10); handles.ch11.String = num2str(StartChn+11); handles.ch12.String = num2str(StartChn+12); guidata(hObject, handles); % --- Executes on button press in PlottingChoice. function PlottingChoice_Callback(hObject, eventdata, handles) % Hint: get(hObject,'Value') returns toggle state of PlottingChoice axesHandles = findobj(gcf,'Type','Axes'); for i = 1:length(axesHandles) XLim(i,:) = get(axesHandles(i),'XLim'); end Plotting_Callback(hObject, eventdata, handles); for i = 1:length(axesHandles) set(axesHandles(i),'XLim',XLim(i,:)); end % --- Executes on selection change in listChannels. function listChannels_Callback(hObject, eventdata, handles) % Hints: contents = cellstr(get(hObject,'String')) returns listChannels contents as cell array % contents{get(hObject,'Value')} returns selected item from listChannels axesHandles = findobj(gcf,'Type','Axes'); for i = 1:length(axesHandles) XLim(i,:) = get(axesHandles(i),'XLim'); end Plotting_Callback(hObject, eventdata, handles); for i = 1:length(axesHandles) set(axesHandles(i),'XLim',XLim(i,:)); end % --- Executes on slider movement. function StepofData_Callback(hObject, eventdata, handles) handles.text7.String = num2str(get(hObject,'Value')); Plotting_Callback(hObject, eventdata, handles); % --- Executes on button press in LinkX. function LinkX_Callback(hObject, eventdata, handles) axesHandles = [handles.axes1 handles.axes2 handles.axes3 handles.axes4... handles.axes5 handles.axes6 handles.axes7 handles.axes8... handles.axes9 handles.axes10 handles.axes11 handles.axes12]; if get(hObject,'Value') == 1 linkaxes(axesHandles,'x'); h = zoom; h.Motion = 'horizontal'; h = pan; h.Motion = 'horizontal'; end % --- Executes on button press in LinkY. function LinkY_Callback(hObject, eventdata, handles) axesHandles = [handles.axes1 handles.axes2 handles.axes3 handles.axes4... handles.axes5 handles.axes6 handles.axes7 handles.axes8... handles.axes9 handles.axes10 handles.axes11 handles.axes12]; if get(hObject,'Value') == 1 linkaxes(axesHandles,'y'); linkaxes([handles.axes13 handles.axes14],'off'); h = zoom; h.Motion = 'vertical'; h = pan; h.Motion = 'vertical'; end % --- Executes on button press in LinkOff. function LinkOff_Callback(hObject, eventdata, handles) axesHandles = [handles.axes1 handles.axes2 handles.axes3 handles.axes4... handles.axes5 handles.axes6 handles.axes7 handles.axes8... handles.axes9 handles.axes10 handles.axes11 handles.axes12]; if get(hObject,'Value') == 1 linkaxes(axesHandles,'off'); h = zoom; h.Motion = 'both'; h = pan; h.Motion = 'both'; end % --- Executes on button press in LinkXY. function LinkXY_Callback(hObject, eventdata, handles) axesHandles = [handles.axes1 handles.axes2 handles.axes3 handles.axes4... handles.axes5 handles.axes6 handles.axes7 handles.axes8... handles.axes9 handles.axes10 handles.axes11 handles.axes12]; if get(hObject,'Value') == 1 h = zoom; h.Motion = 'both'; h = pan; h.Motion = 'both'; linkaxes(axesHandles,'xy'); end function TimeColorScale_Callback(hObject, eventdata, handles) % hObject handle to TimeColorScale (see GCBO) axesHandles = findobj(gcf,'Type','Axes'); for i = 1:length(axesHandles) XLim(i,:) = get(axesHandles(i),'XLim'); end Plotting_Callback(hObject, eventdata, handles); for i = 1:length(axesHandles) set(axesHandles(i),'XLim',XLim(i,:)); end function SpectrumColorScale_Callback(hObject, eventdata, handles) axesHandles = findobj(gcf,'Type','Axes'); for i = 1:length(axesHandles) XLim(i,:) = get(axesHandles(i),'XLim'); end Plotting_Callback(hObject, eventdata, handles); for i = 1:length(axesHandles) set(axesHandles(i),'XLim',XLim(i,:)); end function TimeMin_Callback(hObject, eventdata, handles) % hObject handle to TimeMin (see GCBO) axesHandles = findobj(gcf,'Type','Axes'); for i = 1:length(axesHandles) XLim(i,:) = get(axesHandles(i),'XLim'); end Plotting_Callback(hObject, eventdata, handles); for i = 1:length(axesHandles) set(axesHandles(i),'XLim',XLim(i,:)); end function TimeMax_Callback(hObject, eventdata, handles) % hObject handle to TimeMax (see GCBO) axesHandles = findobj(gcf,'Type','Axes'); for i = 1:length(axesHandles) XLim(i,:) = get(axesHandles(i),'XLim'); end Plotting_Callback(hObject, eventdata, handles); for i = 1:length(axesHandles) set(axesHandles(i),'XLim',XLim(i,:)); end function SpectrumMin_Callback(hObject, eventdata, handles) % hObject handle to SpectrumMin (see GCBO) axesHandles = findobj(gcf,'Type','Axes'); for i = 1:length(axesHandles) XLim(i,:) = get(axesHandles(i),'XLim'); end Plotting_Callback(hObject, eventdata, handles); for i = 1:length(axesHandles) set(axesHandles(i),'XLim',XLim(i,:)); end function SpectrumMax_Callback(hObject, eventdata, handles) % hObject handle to SpectrumMax (see GCBO) axesHandles = findobj(gcf,'Type','Axes'); for i = 1:length(axesHandles) XLim(i,:) = get(axesHandles(i),'XLim'); end Plotting_Callback(hObject, eventdata, handles); for i = 1:length(axesHandles) set(axesHandles(i),'XLim',XLim(i,:)); end % --- Executes on button press in getTime. function getTime_Callback(hObject, eventdata, handles) % hObject handle to getTime (see GCBO) [x,~] = ginput(1); axesObjs = gca; dataObjs = axesObjs.Children; data = dataObjs.CData; XLim = axesObjs.YLim; point = round(x); pointData = data(:,point); switch handles.PlottingChoice.Value case 1 figure,plot(pointData);set(gca,'XLim',XLim);title('plot Time'); Position = get(gcf,'Position');Position(3) = 800; Position(4) = 300; set(gcf,'Position',Position); case 2 figure,plot(pointData);set(gca,'XLim',XLim);title('plot Spectrum'); Position = get(gcf,'Position');Position(3) = 800; Position(4) = 300; set(gcf,'Position',Position); %figure,plot(mag2db(pointData));set(gca,'XLim',XLim);title('plot Spectrum'); %figure,plot(runMean(mag2db(pointData),5)-runMean(mag2db(pointData),200));axis tight; title('plot Spectrum'); ylabel('Magnitude (dB)'); end function SignalStart_Callback(hObject, eventdata, handles) axesHandles = findobj(gcf,'Type','Axes'); for i = 1:length(axesHandles) XLim(i,:) = get(axesHandles(i),'XLim'); end Plotting_Callback(hObject, eventdata, handles); for i = 1:length(axesHandles) set(axesHandles(i),'XLim',XLim(i,:)); end function SignalEnd_Callback(hObject, eventdata, handles) axesHandles = findobj(gcf,'Type','Axes'); for i = 1:length(axesHandles) XLim(i,:) = get(axesHandles(i),'XLim'); end Plotting_Callback(hObject, eventdata, handles); for i = 1:length(axesHandles) set(axesHandles(i),'XLim',XLim(i,:)); end % --- Executes on button press in Normalization. function Normalization_Callback(hObject, eventdata, handles) % hObject handle to Normalization (see GCBO) if isempty(handles.filename) Testing96D1; else BinName = get(handles.FilePath,'String'); FileName = strcat(BinName(1:end-4),'.mat'); load(FileName); handles.filename = FileName; end %% normalize to the main energy envelope. if isempty(get(handles.ActualMapping,'String')) trLayout = [1 33 17 29 13 2 49 81 65 77 61 21 25 9 41 5 37 69 73 57 89 53 85 45 93 34 18 30 14 94 50 82 66 78 62 22 26 10 42 6 38 70 74 58 90 54 86 46 3 35 19 31 15 95 51 83 67 79 63 23 27 11 43 7 39 71 75 59 91 55 87 47 4 36 20 32 16 96 52 84 68 80 64 24 28 12 44 8 40 72 76 60 92 56 88 48]; trLayout = 1:96 set(handles.ActualMapping,'String',num2str(trLayout)); else trLayout = str2num(get(handles.ActualMapping,'String')); end SNames = fieldnames(S); for i = 1:numel(trLayout) signal = S.(SNames{trLayout(i)}); lengthOfPoints = size(signal,1); for j = 1:lengthOfPoints tempSignal = signal(j,:); maximum = max(tempSignal); NormSignal(j,:) = tempSignal/maximum; % normalized the signal to have maximum at 1. end normalizedS.(SNames{trLayout(i)}) = NormSignal; end filename = handles.FilePath.String; S = normalizedS; save(strcat(filename(1:end-4),'_Normalized.mat'),'S'); msgbox('Normalization done!'); % --- Executes on button press in PlotSpecEnergy. function PlotSpecEnergy_Callback(hObject, eventdata, handles) S = handles.signal; trLayout = str2num(get(handles.ActualMapping,'String')); SNames = fieldnames(S); fftStart = str2double(handles.SignalStart.String); fftEnd = str2double(handles.SignalEnd.String); nFFT = 4096; Fs = 15E6; freqTolerance = 5; %frequency tolerance in filtering the desired frequency interal, in data points. materialV = str2num(handles.materialV.String); % sound velocity of the material. Direction = handles.Direction.Value; startThickness = str2double(handles.SlicingStart.String); endThickness = str2double(handles.SlicingEnd.String); BaseFreqStartThickness = materialV/startThickness; %calculate using thickness equals to half wavelength. BaseFreqEndThickness = materialV/endThickness; BaseFreqStartPoints = round((nFFT/2)*BaseFreqStartThickness/Fs); % FFT is double sided. BaseFreqEndPoints = round((nFFT/2)*BaseFreqEndThickness/Fs); % FFT is double sided. % nFreqStart = floor((nFFT/2)/BaseFreqStartPoints); % number of harmonics in spectrum of the start thickness. % nFreqEnd = floor((nFFT/2)/BaseFreqEndPoints); % number of harmonics in spectrum of the end thickness. WeightFreqStart = BaseFreqStartPoints:BaseFreqStartPoints:nFFT/2; WeightFreqEnd = BaseFreqEndPoints:BaseFreqEndPoints:nFFT/2; WeightFreqInterval = [WeightFreqEnd(1:length(WeightFreqStart));WeightFreqStart]; % calculate the energy slicing only for the central frequency band, % roughly at 200-1400 points (10%-70% of 2048 points). nStartSlicing = floor(0.1*length(WeightFreqEnd)); nEndSlicing = floor(0.7*length(WeightFreqEnd)); newSpectrogram = zeros(4096,520); NormalizedSpectrum = zeros(4096,520); energySlicing = zeros(1,nEndSlicing-nStartSlicing+1); EnergySlicing = zeros(96,520); for chn = 1:96 signal = S.(SNames{trLayout(chn)}); for i = 1:size(signal,1) newSpectrogram(:,i) = abs(fft(signal(i,fftStart:fftEnd),nFFT)); % NormalizedSpectrum(:,i) = preprocessSpectrum(newSpectrogram(:,i)); if ~isequal(handles.CoatThickness.String,'CoatThk')&&~isequal(handles.CoatThickness.String,'0'); NormalizedSpectrum(:,i) = newSpectrogram(:,i); else baseline = envelope(newSpectrogram(:,i),120,'rms'); NormalizedSpectrum(:,i) = baseline-newSpectrogram(:,i); % use the teeth rather than peaks. end %% slicing spectrum. for nSlicing = nStartSlicing:nEndSlicing energySlicing(nSlicing-nStartSlicing+1) = sum(NormalizedSpectrum(WeightFreqInterval(1,nSlicing)-freqTolerance:WeightFreqInterval(2,nSlicing)+freqTolerance,i)); end EnergySlicing(chn,i) = sum(energySlicing)/sum(NormalizedSpectrum(:,i)); end EnergySlicing(chn,:) = size(signal,1)*EnergySlicing(chn,:)/sum(EnergySlicing(chn,:)); %normalization. %figure(111),plot(WeightFreqStart,zeros(length(WeightFreqStart),1)+i,'r*'),hold on;plot(WeightFreqEnd,zeros(length(WeightFreqEnd),1)+i,'bo');axis tight; end ToolSpeed = str2double(handles.FlowRate.String)/3.28; % convert from ft/s to m/s. Aligned = lineupRings(ToolSpeed,EnergySlicing,Direction); % figure(111); % imagesc(EnergySlicing,[0.2 1.5]); % figure(112); % imagesc(Aligned,[0.2 1.5]); axes(handles.axes13); imagesc(Aligned); handles.SpecEnergyMap = EnergySlicing; guidata(hObject, handles); % --- Executes on button press in PlotTimeEnergy. function PlotTimeEnergy_Callback(hObject, eventdata, handles) % hObject handle to PlotTimeEnergy (see GCBO) S = handles.signal; trLayout = str2num(get(handles.ActualMapping,'String')); SNames = fieldnames(S); Direction = handles.Direction.Value; Fs = 15E6; materialV = str2double(handles.materialV.String); % sound velocity of the material. coatingV = str2double(handles.coatingV.String); % sound velocity of the material. newSignal = zeros(2000,520); LMax = zeros(96,520); PulseLength = 20; % length of the first pulse reflection. startThickness = str2double(handles.SlicingStart.String); endThickness = str2double(handles.SlicingEnd.String); RefInterval = round(((startThickness+endThickness)*Fs/materialV)*1); % calculate use the nominal thickness plus 20% tolerance. energySlicing1 = zeros(1,520); energySlicing2 = zeros(1,520); EnergySlicing1 = zeros(96,520); EnergySlicing2 = zeros(96,520); if isequal(handles.CoatThickness.String,'CoatThk') CoatingPoints = 0; elseif isequal(handles.CoatThickness.String,'0') CoatingPoints = 0; else CoatThickness = str2double(handles.CoatThickness.String); CoatingPoints = round(CoatThickness*2*Fs/coatingV); end for chn = 1:96 Signal = S.(SNames{trLayout(chn)}); for i = 1:520 newSignal(:,i) = abs(Signal(i,:));%.*Signal(i,:); %NormalizedSignal(:,i) = newSignal(:,i)-runMean(newSignal(:,i),80); %% slicing spectrum. Max = max(newSignal(:,i)); LMax(chn,i) = find(newSignal(:,i)>0.6*Max,1); % find the first incline that has 60% of max value. if LMax(chn,i)<1800 energySlicing1(i) = sum(newSignal(LMax(chn,i)+CoatingPoints+PulseLength:LMax(chn,i)+CoatingPoints+RefInterval-5,i))/sum(newSignal(:,i)); % Energy calculation for in between 1st and 2nd reflections. if LMax(chn,i) < 1300 energySlicing2(i) = sum(newSignal(LMax(chn,i)+81:LMax(chn,i)+150,i))/sum(newSignal(:,i)); % Energy calculation the next 600 points as resonance. elseif LMax(chn,i) > 1300 && LMax(chn,i) < 1800 energySlicing2(i) = sum(newSignal(LMax(chn,i)+201:end,i))/sum(newSignal(:,i)); % Energy calculation the next 600 points as resonance. end else msgbox('one signal starts after data points 1800, check data'); return end end EnergySlicing1(chn,:) = 1000*energySlicing1/sum(energySlicing1); EnergySlicing2(chn,:) = 1000*energySlicing2/sum(energySlicing2); end handles.LMax = LMax; ToolSpeed = str2double(handles.FlowRate.String)/3.28; % convert from ft/s to m/s. switch handles.TimeSlicingChoice.Value case 1 Aligned = lineupRings(ToolSpeed,EnergySlicing1,Direction); axes(handles.axes14); imagesc(Aligned,[0 4]); case 2 Aligned = lineupRings(ToolSpeed,EnergySlicing2,Direction); axes(handles.axes14); imagesc(Aligned,[0 3.5]); end handles.TimeEnergyMap1 = EnergySlicing1; handles.TimeEnergyMap2 = EnergySlicing2; guidata(hObject, handles); % --- Executes on selection change in TimeSlicingChoice. function TimeSlicingChoice_Callback(hObject, eventdata, handles) function SlicingStart_Callback(hObject, eventdata, handles) % hObject handle to SlicingStart (see GCBO) function SlicingEnd_Callback(hObject, eventdata, handles) % hObject handle to SlicingEnd (see GCBO) % --- Executes on button press in SaveEnergyPlot. function SaveEnergyPlot_Callback(hObject, eventdata, handles) PathName = handles.pathname; FileName = handles.filename; TimeEnergyMap1 = handles.TimeEnergyMap1; TimeEnergyMap2 = handles.TimeEnergyMap2; SpecEnergyMap = handles.SpecEnergyMap; [tok,rem]=strtok(FileName,'.'); mkdir(strcat(PathName,'MapResults')); save(strcat(PathName,'MapResults\',tok,'_EnergyMap.mat'),'TimeEnergyMap1','TimeEnergyMap2','SpecEnergyMap'); % --- Executes on button press in LoadEneryPlot. function LoadEneryPlot_Callback(hObject, eventdata, handles) % --- Executes on button press in StitchMultiple. function StitchMultiple_Callback(hObject, eventdata, handles) %% if isempty(handles.pathname) [filename,PathName]= uigetfile('*.mat','MultiSelect', 'on'); else [filename,PathName] = uigetfile([handles.pathname,'*.mat'],'Select the file','MultiSelect', 'on'); end %[filename,PathName]= uigetfile('*.mat','MultiSelect', 'on'); Direction = handles.Direction.Value; datapointsPerFile = 520; toolSpeed = str2double(handles.FlowRate.String)/3.28; % convert from ft/s to m/s.; % tool speed in m/s. for i = 1:length(filename) Energymap = load(fullfile(PathName,cell2mat(filename(i)))); TimeEnergyMap1 = Energymap.TimeEnergyMap1; newTimeEnergyMap1(:,datapointsPerFile*(i-1)+1:datapointsPerFile*i) = TimeEnergyMap1; TimeEnergyMap2 = Energymap.TimeEnergyMap2; newTimeEnergyMap2(:,datapointsPerFile*(i-1)+1:datapointsPerFile*i) = TimeEnergyMap2; SpecEnergyMap = Energymap.SpecEnergyMap; newSpecEnergyMap(:,datapointsPerFile*(i-1)+1:datapointsPerFile*i) = SpecEnergyMap; end AlignedTimeEnergyMap1 = lineupRings(toolSpeed,newTimeEnergyMap1,Direction); AlignedTimeEnergyMap2 = lineupRings(toolSpeed,newTimeEnergyMap2,Direction); AlignedSpecEnergyMap = lineupRings(toolSpeed,newSpecEnergyMap,Direction); %% pipeDia = 36; % in inches. physicalWidth= toolSpeed*5*40*length(filename); % in inches, every file is 5 second, 1m = 40 inches. physicalCircumference = pipeDia*pi; % in inches. height = 800; width = round(height*(physicalWidth/physicalCircumference)); figure(4); set(4,'Name','Harmonics Energy Map','Position',[350 60 width height]); imagesc(AlignedSpecEnergyMap,[0.2 1.5]); figure(5); set(5,'Name','Time Energy Map 1','Position',[350 60 width height]); imagesc(AlignedTimeEnergyMap1,[0 10]); figure(6); set(6,'Name','Time Energy Map 2','Position',[350 60 width height]); imagesc(AlignedTimeEnergyMap2,[0 3.5]); save(strcat(PathName,'stitchedEnergyMap.mat'),'newSpecEnergyMap','newTimeEnergyMap1','newTimeEnergyMap2'); savefig(4,strcat(PathName,'stitchedSpecEnergyMap-Aligned.fig')); savefig(5,strcat(PathName,'stitchedTimeEnergyMap1-Aligned.fig')); savefig(6,strcat(PathName,'stitchedTimeEnergyMap2-Aligned.fig')); function FlowRate_Callback(hObject, eventdata, handles) % --- Executes during object creation, after setting all properties. function FlowRate_CreateFcn(hObject, eventdata, handles) if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function Aligned = lineupRings(ToolSpeed,MatrixNeedAlign,Direction) %% Offset and line up the array if nargin<2 error('at least two argin is required'); return elseif nargin<3 Direction = 1; end % transducerPingRate = 104.1667; % Position offset for each ring (in mm) posArray = [0, 55.88, 111.76, 27.94, 83.82, 139.7]'; % if scan direction is opposite. if Direction == 2 posArray = max(posArray)-posArray; end % Position offset for each transducer posOffset = [posArray; posArray; posArray; posArray; ... posArray; posArray; posArray; posArray; ... posArray; posArray; posArray; posArray; ... posArray; posArray; posArray; posArray]; % Convert from mm to meter posOffset = posOffset/1000; numberOfSamplesOffsetPrChannel = round((posOffset/ToolSpeed)*transducerPingRate); RefElementsToAdd = max(numberOfSamplesOffsetPrChannel); allElementsToAdd = RefElementsToAdd-numberOfSamplesOffsetPrChannel; tempM = zeros(96,size(MatrixNeedAlign,2)+RefElementsToAdd); Aligned = tempM; for index = 1:96 elementsToRemove = numberOfSamplesOffsetPrChannel(index); elementsToAdd = allElementsToAdd(index); tempM = MatrixNeedAlign(index,:); %if(elementsToRemove > 0) % Remove elements in front %tempM(1:elementsToRemove) = []; % Append same amount of zeros to the end tempM = [zeros(1,elementsToAdd)+median(median(MatrixNeedAlign)) tempM zeros(1,elementsToRemove)+median(median(MatrixNeedAlign))]; %end Aligned (index,:) = tempM; end % --- Executes on button press in updateThickness. function updateThickness_Callback(hObject, eventdata, handles) % hObject handle to updateThickness (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) S = handles.signal; PlottingChoice = get(handles.PlottingChoice,'Value'); LMax = handles.LMax; % if there is saved calculation of first reflection peak. trLayout = str2num(get(handles.ActualMapping,'String')); SNames = fieldnames(S); Fs = 15E6; materialV = str2double(handles.materialV.String); % sound velocity of the material. newSignal = zeros(2000,520); startThickness = str2double(handles.SlicingStart.String); timeFlight = round(startThickness*2*Fs/materialV); if isequal(get(handles.CoatThickness,'String'),'CoatThk'); coating = 0; coatingThickness = 0; elseif isequal(get(handles.CoatThickness,'String'),'0'); coating = 0; coatingThickness = 0; else coating = 1; coatingThickness = str2double(get(handles.CoatThickness,'String')); end coatingV = str2double(handles.coatingV.String); %coatingThickness = 0.0024; % 3mm coating for mortar in DI. coatingFlight = round(coatingThickness*2*Fs/coatingV); signalEnd = 1400; % where signal ends, for 12"DI there might be a 2nd set of reflections in the 2000 points range. % button = questdlg('Choose 10 points from the first reference line',... % 'Point Selection','Yes','No','Yes'); % if button ~= 'Yes' % return % msgbox('user cancelled'); % else % [x1,y1] = ginput(10); % axes1 = gca; % end % button = questdlg('Choose 10 points from the second reference line',... % 'Point Selection','Yes','No','Yes'); % if button ~= 'Yes' % return % msgbox('user cancelled'); % else % [x2,y2] = ginput(10); % axes2 = gca; % % end % % if axes1 ~=axes2; % msgbox('both lines should be from the same channel'); % return % else % Axes = axes1; % end % if isempty(LMax) LMax = zeros(96,520); for chn = 1:96 Signal = S.(SNames{trLayout(chn)}); for i = 1:520 newSignal(:,i) = abs(Signal(i,:));%.*Signal(i,:); %NormalizedSignal(:,i) = newSignal(:,i)-runMean(newSignal(:,i),80); %% slicing spectrum. Max = max(newSignal(:,i)); LMax(chn,i) = find(newSignal(:,i)>0.6*Max,1); % find the first incline that has 30% of max value. end end handles.LMax = LMax; end axesObjs = gca; dataObjs = axesObjs.Children; data = dataObjs.CData; XLim = axesObjs.YLim; Direction = handles.Direction.Value; % if scan with opposite direction. switch PlottingChoice case 1 % in time domain. [thickPoints,coatPoints] = Thickness(coating,S,trLayout,timeFlight,coatingFlight,signalEnd); % selecting 0 for coating as no coating, 1 as with coating. %% ToolSpeed = str2double(handles.FlowRate.String)/3.28; % convert from ft/s to m/s.; % tool speed in m/s. AlignedThickPoints = lineupRings(ToolSpeed,thickPoints,Direction); %% thickness = thickPoints*materialV/(2*Fs); figure(3),imagesc(thickness,[0.008 0.012]); AlignedThickness = lineupRings(ToolSpeed,thickness,Direction); figure(4),imagesc(AlignedThickness,[0.008 0.012]); %% gca;hold on; plot(x1,y1,'ro');plot(x2,y2,'go'); p1 = spline(x1,y1);p2 = spline(x2,y2); Xmin1 = round(min(x1));Xmin2 = round(min(x2)); Xmax1 = round(max(x1));Xmax2 = round(max(x2)); X1 = linspace(Xmin1,Xmax1,Xmax1-Xmin1+1); f1 = ppval(p1,X1); X2 = linspace(Xmin2,Xmax2,Xmax2-Xmin2+1); f2 = ppval(p2,X2); gca;hold on;plot(X1,f1,'r');plot(X1,f1,'g'); %% case 2 % in frequency domain. end guidata(hObject, handles); % --- Executes on button press in saveThickness. function saveThickness_Callback(hObject, eventdata, handles) % hObject handle to saveThickness (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in PCA. function PCA_Callback(hObject, eventdata, handles) %% -------------------- preparation of plotting ----------------------- if isempty(handles.figure2) || ~ishandle(handles.figure2) handles.figure2 = figure; %handles.metricdata.figure2 = handles.figure2; set(handles.figure2,'Position',[10 50 1400 800],'Name','Data Plotting','Units','Points',... 'NumberTitle','off',... % clip of figure number. 'WindowButtonDownFcn',@figure2_WindowButtonDownFcn,... 'WindowButtonUpFcn',@figure2_WindowButtonUpFcn,... 'WindowScrollWheelFcn',@figure2_WindowScrollWheelFcn); handles.lbutton = uicontrol('Parent',handles.figure2,... 'Units','normalized',... 'Position',[0.02 0.94 0.05 0.05],... 'Style','pushbutton',... 'String','load Map',... 'Callback','loadMap'); handles.lbutton = uicontrol('Parent',handles.figure2,... 'Units','normalized',... 'Position',[0.07 0.94 0.05 0.05],... 'Style','pushbutton',... 'String','load Marker',... 'Callback','loadMarker'); handles.lbutton = uicontrol('Parent',handles.figure2,... 'Units','normalized',... 'Position',[0.02 0.02 0.05 0.05],... 'Style','pushbutton',... 'String','save Marker',... 'Callback','saveMarker'); end %% draw uilines on figure 2. % set up axes 1. if isempty(handles.metricdata.h1) || ~ishandle(handles.metricdata.h1)||isempty(handles.metricdata.h2) || ~ishandle(handles.metricdata.h2) h1 = axes('Parent',handles.figure2,... 'Units','normalized','Position',[0.045 0.12 0.92 0.8],... 'Color',[1 1 1],'FontName','Arial','FontSize',8, ... 'Tag','OriAxis',... 'XColor',[0 0 0],'YColor',[0 0 0],'ZColor',[0 0 0],... 'XLim',[0 1],'YLim',[0 1]); title(h1,'Amplitude','FontName','Arial'); ylabel(h1,'Normalized amp','FontName','Arial'); set(h1, 'XLim',[min(XData) max(XData)],'YLim',[0.5 1.5]); handles.metricdata.h1 = h1; % set up axes 2. h2 = axes('Parent',handles.figure2,... 'Units','normalized','Position',[0.0466 0.0584 0.919 0.429],... 'Color',[1 1 1],'FontName','Arial','FontSize',8, ... 'Tag','SmoAxis',... 'XColor',[0 0 0],'YColor',[0 0 0],'ZColor',[0 0 0],... 'XLim',[0 1],'YLim',[0.5 1.5]); namedisplay = strcat('Path: ',handles.metricdata.path,' Name:',handles.metricdata.name(1,:)); title(h2,namedisplay,'FontName','Arial'); xlabel(h2,'Phase','FontName','Arial'); ylabel(h2,'Normalized phase','FontName','Arial'); set(h2, 'XLim',[min(XData) max(XData)],'YLim',[0.5 1.5]); handles.metricdata.h2 = h2; else % load data directly from storage. h1 = handles.metricdata.h1; h2 = handles.metricdata.h2; end %% % --- Executes on button press in Debug. function Debug_Callback(hObject, eventdata, handles) % hObject handle to Debug (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) keyboard
github
ganlubbq/Signal-Processing-master
hydrophoneDataProcessLinear.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/hydrophoneDataProcessLinear.m
5,486
utf_8
9c3667e31b0474394c570aece3a8b5a3
function [ psdArray, fVector, distanceArray, meanArray ] = processHydrophoneDataLinear( FFT_LENGTH, fileName ) import ppPkg.* im = ImportHandler; % Import data file header = im.readHeader(fileName); tmArr = im.importDataFile(); % Init variables psdArray = zeros(length(tmArr), FFT_LENGTH/2 + 1); distanceArrayTemp = zeros(1, length(tmArr)); % Create tx pulse txPulse = generatePulse(header.pulsePattern, header.sampleRate, header.pulseLength, header.fLow, header.fHigh ); enablePeak2PeakCalc = 1; for index = 1:length(tmArr) tm = tmArr(index); recordedSignal = tm.signal; %plot(recordedSignal) %y = smooth(recordedSignal, 4); %hold on %plot(y) %grid on if(enablePeak2PeakCalc ) % Find start of emitted pulse in recording [distance, startIndexPulse] = findStartIndexPulse(txPulse, recordedSignal); % Extract signal segment to do FFT etc signalSegment = recordedSignal(startIndexPulse:startIndexPulse+header.pulseLength); % Calculate periodogram [psdPulse, fVector] = periodogram(signalSegment, rectwin(length(signalSegment)), FFT_LENGTH, header.sampleRate,'psd'); psdArray(index, : ) = psdPulse; distanceArrayTemp(index) = distance; % Calculate minimum peak distance peakDistance = round(2/3 * header.sampleRate / header.fLow); % Calculate 6 max and min peaks for signal [maxPeaks, locsMax, minPeaks, locsMin] = findMaxAndMinPeaks(signalSegment, peakDistance); % Sum max and min to calculate "peak2peak" value peak2peakArray = maxPeaks - minPeaks; % Calculate mean meanArray(index) = mean(peak2peakArray); end end distanceArray = distanceArrayTemp; end function y = smooth(x, N) b = (1/N)*ones(1, N); a = 1; y = filtfilt(b, a, x); end function [txPulse, tPulse] = generatePulse(pattern, sampleRate, pulseLength, fLow, fHigh) import ppPkg.* switch lower(pattern) case 'simple' [txPulse, tPulse] = generateSin(sampleRate, pulseLength, fLow); case 'chirp' [txPulse, tPulse] = generateChirp(sampleRate, pulseLength, fLow, fHigh); case 'rectchirp' [txPulse, tPulse] = generateChirp(sampleRate, pulseLength, fLow, fHigh); txPulse = sign(txPulse); case 'sinc' [txPulse, tPulse] = generateSinc(sampleRate, pulseLength, fLow, fHigh); case 'rectpulse' [txPulse, tPulse] = generateRectPulseTrain(sampleRate, pulseLength, fLow, fHigh); txPulse = flip(txPulse) otherwise error('Signal pattern not supported') end end function [distance, startIndexPulse] = findStartIndexPulse(txPulse, signal) % Function use correlation between emitted pulse and recorded signal to find % startIndex for pulse in recorded signal import ppPkg.* ctrl = Controller; callipAlg = CalliperAlgorithm(ctrl.config); % Calculate Calliper % Set transmitted pulse callipAlg.setTxPulse(txPulse); % Start searching at index 0 delay = 0; %% Calculate startIndex for pulse in recording [distance, startIndexPulse] = callipAlg.calculateDistance( delay, signal, 0); % Need to double distance since this is calculated as it should have % been reflected distance = distance * 2; end function plotFrequency(step, psdArray, distanceArray, FFT_LENGTH) f = 0:0.5e6:4e6; N = round( f*FFT_LENGTH/15e6); N(1) = 1; for index = 1:length(N) figure plot(distanceArray, psdArray(:,N(index))) grid on msg = sprintf('Frequency vs distance plot, for f=%d', f(index)); title(msg); xlabel('distance') ylabel('Frequency gain') end end function [maxPeaks, locsMax, minPeaks, locsMin] = findMaxAndMinPeaks(signalSegment, peakDistance) interpFactor = 10; peakDistanceModified = peakDistance * interpFactor; signalSegment_interp = interp(signalSegment,interpFactor); [pksMax, locsMax] = findpeaks(signalSegment_interp,'MinPeakDistance', peakDistanceModified); [pksMin, locsMin] = findpeaks(-signalSegment_interp,'MinPeakDistance', peakDistanceModified); % Only keep peaks 3 to 8 if((length(pksMax) >= 15) && (length(pksMin) >= 15)) maxPeaks = pksMax(10:15); minPeaks = -pksMin(10:15); locsMax = locsMax(10:15); locsMin = locsMin(10:15); elseif(length(pksMax) > 2) error('Error Should find more than 17 peaks') lengthMax = length(pksMax); lengthMin = length(pksMin); if(lengthMax > lengthMin) maxLength = lengthMin; else maxLength = lengthMax; end maxPeaks = pksMax(1:maxLength); minPeaks = -pksMin(1:maxLength); locsMax = locsMax(1:maxLength); locsMin = locsMin(1:maxLength); else error('Error in finding peaks') end end
github
ganlubbq/Signal-Processing-master
hanning.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/hanning.m
2,240
utf_8
e50c3a9e967b4ad6289daa0583051b6b
function w = hanning(varargin) %HANNING Hanning window. % HANNING(N) returns the N-point symmetric Hanning window in a column % vector. Note that the first and last zero-weighted window samples % are not included. % % HANNING(N,'symmetric') returns the same result as HANNING(N). % % HANNING(N,'periodic') returns the N-point periodic Hanning window, % and includes the first zero-weighted window sample. % % NOTE: Use the HANN function to get a Hanning window which has the % first and last zero-weighted samples. % % See also BARTLETT, BLACKMAN, BOXCAR, CHEBWIN, HAMMING, HANN, KAISER % and TRIANG. % Copyright 1988-2004 The MathWorks, Inc. % Check number of inputs narginchk(1,2); % Check for trivial order [n,w,trivialwin] = check_order(varargin{1}); if trivialwin, return, end % Select the sampling option if nargin == 1, sflag = 'symmetric'; else sflag = lower(varargin{2}); end % Allow partial strings for sampling options allsflags = {'symmetric','periodic'}; sflagindex = find(strncmp(sflag, allsflags, length(sflag))); if length(sflagindex)~=1 % catch 0 or 2 matches error(message('signal:hanning:InvalidEnum')); end sflag = allsflags{sflagindex}; % Evaluate the window switch sflag, case 'periodic' % Includes the first zero sample w = [0; sym_hanning(n-1)]; case 'symmetric' % Does not include the first and last zero sample w = sym_hanning(n); end %--------------------------------------------------------------------- function w = sym_hanning(n) %SYM_HANNING Symmetric Hanning window. % SYM_HANNING Returns an exactly symmetric N point window by evaluating % the first half and then flipping the same samples over the other half. if ~rem(n,2) % Even length window half = n/2; w = calc_hanning(half,n); w = [w; w(end:-1:1)]; else % Odd length window half = (n+1)/2; w = calc_hanning(half,n); w = [w; w(end-1:-1:1)]; end %--------------------------------------------------------------------- function w = calc_hanning(m,n) %CALC_HANNING Calculates Hanning window samples. % CALC_HANNING Calculates and returns the first M points of an N point % Hanning window. w = .5*(1 - cos(2*pi*(1:m)'/(n+1))); % [EOF] hanning.m
github
ganlubbq/Signal-Processing-master
pulseTest.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/pulseTest.m
8,219
utf_8
df4650e4966086aaa576800aac218103
function res = pulseTest(ctrl, folder, folderToSaveFig) % Read folder % Get all subfolder names % Do a regex % Keep the ones that matches the regex listing = dir(folder); %folderNames; [pathstr,name,ext] = fileparts(folder); folderIndex = 1; for index = 1:size(listing,1) temp = regexp(listing(index).name,'CIP_.*','match'); if(~isempty(temp)) dataFolders(folderIndex) = cellstr(listing(index).name); folderIndex = folderIndex + 1; end end folderFirstPart = strcat(listing(1).folder,'\'); % Initialize struct res(numel(dataFolders)) = struct('medianNoise',0,... 'meanNoise',0,... 'medianDbAboveNoise',0,... 'meanDbAboveNoise',0,... 'thickness',0,... 'averageF0',0,... 'snr',0,... 'psdF',0,... 'psdMain', 0,... 'psdResonance', 0,... 'dataHeader','',... 'title',''); % Get path to all header files in dataFolders for indexN = 1:numel(dataFolders) folderPath = char(dataFolders(indexN)); folderPath = strcat(folderFirstPart, folderPath); folderPath = strcat(folderPath,'\'); % Get content of folderPath listingFolder = dir(char(folderPath)); % Iterate through the files in the folder for indexM = 1:size(listingFolder,1) % Get the file that contains 'header' and extract information % from the file name temp = regexp(listingFolder(indexM).name,'.*header','match'); if(~isempty(temp)) % Get Transducer info % token1 = regexp(listingFolder(indexM).name,'.*(CHIRP_\d\d_\d\d\d).*','tokens'); % res(indexN).transducer = char(token1{1}); % Get Title txt token2 = regexp(listingFolder(indexM).name,'(.*)_[0-9]+_[0-9]+_header','tokens'); %strrep(res.transducer, '_', ' '); %res(indexN).title = char(token2{1}); res(indexN).title = strrep(char(token2{1}), '_', ' '); %strrep(char(token2{1}), '_', ' ') % Get path to data file header fileName = listingFolder(indexM).name; res(indexN).dataHeader = strcat(folderPath, fileName); end end end % Iterate through struct array to process data from each transducer for index = 1:numel(res) % Process data index res(index) = processData(ctrl, res(index), folderToSaveFig); % Plot PSD main with psd compare %plotPsdMain(ctrl, res(index), psdCompare, folderToSaveFig); %plotPsdResonance(ctrl, res(index), folderToSaveFig); %res(index); %pause() close all end end function res = processData(ctrl, res, folderToSaveFig) import ppPkg.* im = ImportHandler; im.readHeader(res.dataHeader); s = SignalGenerator(lower(im.header.pulsePattern), ... im.header.sampleRate, ... im.header.pulseLength/im.header.sampleRate, ... im.header.fLow, ... im.header.fHigh); txPulse = s.signal; %plot(s.time, s.signal) %grid on ctrl.config.SAMPLE_RATE = im.header.sampleRate; im.dataFileIndex = 1; tmArr = im.importDataFile(); index = 1; tm = tmArr(index); ctrl.callipAlg.setTxPulse(txPulse); delay = 1000; % Start searching at index % % Calculate time in number of samples before recording is started [distance, firstReflectionStartIndex, secondReflectionStartIndex, pitDept] = ctrl.callipAlg.calculateDistance( delay, tm.signal, tm.startTimeRec); %ctrl.callipAlg % % Second reflection is in this data %callipAlg.secondReflectionIndex = 2000; if(distance < 0) error('Outside pipe') return end %% Noise signal noiseSignal = tm.signal(1000:firstReflectionStartIndex-20); % % Enable / Disable use of transducer sensitivity enableTS = false; enableTS_noise = false; transducerId = 1; % Noise PSD calculation: Using pWelch or periodogram [psdNoise, fNoise] = ctrl.noiseAlg.calculatePsd(tm.transducerId, noiseSignal, enableTS_noise, 'periodogram', 'hanning', 400); % Calculate mean and var for range [fLow, fHigh] [meanValue, varValue] = ctrl.noiseAlg.calculateMeanVarInRange(tm.transducerId, im.header.fLow , im.header.fHigh); % Plot Noise PSD % fig = ctrl.noiseAlg.plotPsd(tm.transducerId); % titleTxt = sprintf('Noise psd tr %d mean: %0.1f dB var: %0.1f dB ',tm.transducerId, round(meanValue,1), round(varValue,1)); % title(titleTxt); % ylim([-160 -100]); %% Calculate psdMain and psdResonance ctrl.thicknessAlg.fLow = tm.fLow; ctrl.thicknessAlg.fHigh = tm.fHigh; if(false == ctrl.thicknessAlg.calculateStartStopForAbsorptionAndResonance(tm.signal, ctrl.callipAlg)) error('Error in calculating start and stop index for resonance') end % Calculate PSD for resonance and absoption part of the signal ctrl.thicknessAlg.calculatePsd(tm.signal); % Plot PSD for resonance and absoption part of the signal %ctrl.thicknessAlg.plotPsd(tm.signal); res.psdResonance = ctrl.thicknessAlg.psdResonance; res.psdMain = ctrl.thicknessAlg.psdMain; res.psdF = ctrl.thicknessAlg.fVector; res.snr = ctrl.thicknessAlg.calculateSNR(tm.signal, noiseSignal); ctrl.thicknessAlg.meanNoiseFloor = meanValue;%noiseAlg.meanPsd(1); % Override frequency range by setting fLow or fHigh. fLow = tm.fLow; %tm.fLow; fHigh = tm.fHigh + ctrl.config.DELTA_FREQUENCY_RANGE; %tm.fHigh; %ctrl.config.Q_DB_ABOVE_NOISE = 10; %ctrl.config.Q_DB_MAX = 10; %ctrl.config.PROMINENCE = 8; %tic % Find peaks ctrl.thicknessAlg.findPeaksInPsd(ctrl.thicknessAlg.RESONANCE, fLow, fHigh, PeakMethod.MIN_PEAK_PROMINENCE_AND_MIN_DB_ABOVE_NOISE); %toc % % Plot peaks %ctrl.thicknessAlg.plotPsdPeaks(ctrl.thicknessAlg.RESONANCE); ctrl.config.DEVIATION_FACTOR = (ctrl.config.FFT_LENGTH/ctrl.config.SAMPLE_RATE) * (ctrl.config.SAMPLE_RATE/ctrl.config.PERIODOGRAM_SEGMENT_LENGTH) * 1.5; requiredNumberOfHarmonicsInSet = 2; % Find sets ctrl.thicknessAlg.findFrequencySets(ctrl.thicknessAlg.RESONANCE, fLow, fHigh, requiredNumberOfHarmonicsInSet); %set = ctrl.thicknessAlg.setResonance %% Find resonance sets ctrl.thicknessAlg.processSets(ctrl.thicknessAlg.RESONANCE, ctrl.noiseAlg.psd(transducerId)) ; %set = ctrl.thicknessAlg.setResonance [setC] = ctrl.thicknessAlg.findBestSetE(ctrl.thicknessAlg.setResonance); res.averageF0 = ctrl.thicknessAlg.setResonance(setC).averageFreqDiff; res.thickness = ctrl.thicknessAlg.setResonance(setC).thickness; % Plot the set candidate close all ctrl.thicknessAlg.plotAllSets('resonance', setC) titleTxtPart = strrep(im.header.projectId, '_', ' '); %filenameFig = strcat('Psd_Resonance_', res.title); titleTxt = sprintf('Resonance PSD, \"%s\" segL %d', titleTxtPart, ctrl.config.PERIODOGRAM_SEGMENT_LENGTH); %titleTxt = sprintf('Resonance PSD, %s F %2.2d %2.2e Hz, t: %1.2e s', im.header.pulsePattern, im.header.fLow, im.header.fHigh, im.header.pulseLength/im.header.sampleRate); title(titleTxt) filenameFig = strcat(im.header.projectId,'_psd_resonance'); saveFigPath = strcat(folderToSaveFig,filenameFig); fig = gcf; savefig(fig, saveFigPath) end
github
ganlubbq/Signal-Processing-master
RegularizeData3D.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/RegularizeData3D.m
40,572
utf_8
4c8d0f722d7d1c70c2d58fb1cf81d48b
function [zgrid,xgrid,ygrid] = RegularizeData3D(x,y,z,xnodes,ynodes,varargin) % RegularizeData3D: Produces a smooth 3D surface from scattered input data. % % RegularizeData3D is a modified version of GridFit from the Matlab File Exchange. % RegularizeData3D does essentially the same thing, but is an attempt to overcome several % shortcomings inherent in the design of the legacy code in GridFit. % % * GridFit lacks cubic interpolation capabilities. % Interpolation is necessary to map the scattered input data to locations on the output % surface. The output surface is most likely nonlinear, so linear interpolation used in % GridFit is a lousy approximation. Cubic interpolation accounts for surface curvature, % which is especially beneficial when the output grid is coarse in x and y. % % * GridFit's "smoothness" parameter was poorly defined and its methodology may have led to bad output data. % In RegularizeData3D the smoothness parameter is actually the ratio of smoothness (flatness) to % fidelity (goodness of fit) and is not affected by the resolution of the output grid. % Smoothness = 100 gives 100 times as much weight to smoothness (and produces a nearly flat output % surface) % Smoothness = 1 gives equal weight to smoothness and fidelity (and results in noticeable smoothing) % Smoothness = 0.01 gives 100 times as much weight to fitting the surface to the scattered input data (and % results in very little smoothing) % Smoothness = 0.001 is good for data with low noise. The input points nearly coincide with the output % surface. % % * GridFit didn't do a good job explaining what math it was doing; it just gave usage examples. % % For a detailed explanation of "the math behind the magic" on a 3D dataset, see: % http://mathformeremortals.wordpress.com/2013/07/22/introduction-to-regularizing-3d-data-part-1-of-2/ % % and to apply the same principles to a 2D dataset see: % http://mathformeremortals.wordpress.com/2013/01/29/introduction-to-regularizing-with-2d-data-part-1-of-3/ % % Both of these links include Excel spreadsheets that break down the calculations step by step % so that you can see how RegularizeData3D works. There are also very limited (and very slow!) Excel % spreadsheet functions that do the same thing in 2D or 3D. % % % Aside from the above changes, most of the GridFit code is left intact. % The original GridFit page is: % http://www.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit % usage #1: zgrid = RegularizeData3D(x, y, z, xnodes, ynodes); % usage #2: [zgrid, xgrid, ygrid] = RegularizeData3D(x, y, z, xnodes, ynodes); % usage #3: zgrid = RegularizeData3D(x, y, z, xnodes, ynodes, prop, val, prop, val,...); % % Arguments: (input) % x,y,z - vectors of equal lengths, containing arbitrary scattered data % The only constraint on x and y is they cannot ALL fall on a % single line in the x-y plane. Replicate points will be treated % in a least squares sense. % % ANY points containing a NaN are ignored in the estimation % % xnodes - vector defining the nodes in the grid in the independent % variable (x). xnodes need not be equally spaced. xnodes % must completely span the data. If they do not, then the % 'extend' property is applied, adjusting the first and last % nodes to be extended as necessary. See below for a complete % description of the 'extend' property. % % If xnodes is a scalar integer, then it specifies the number % of equally spaced nodes between the min and max of the data. % % ynodes - vector defining the nodes in the grid in the independent % variable (y). ynodes need not be equally spaced. % % If ynodes is a scalar integer, then it specifies the number % of equally spaced nodes between the min and max of the data. % % Also see the extend property. % % Additional arguments follow in the form of property/value pairs. % Valid properties are: % 'smoothness', 'interp', 'solver', 'maxiter' % 'extend', 'tilesize', 'overlap' % % Any UNAMBIGUOUS shortening (even down to a single letter) is % valid for property names. All properties have default values, % chosen (I hope) to give a reasonable result out of the box. % % 'smoothness' - scalar or vector of length 2 - the ratio of % smoothness to fidelity of the output surface. This must be a % positive real number. % % A smoothness of 1 gives equal weight to fidelity (goodness of fit) % and smoothness of the output surface. This results in noticeable % smoothing. If your input data x,y,z have little or no noise, use % 0.01 to give smoothness 1% as much weight as goodness of fit. % 0.1 applies a little bit of smoothing to the output surface. % % If this parameter is a vector of length 2, then it defines % the relative smoothing to be associated with the x and y % variables. This allows the user to apply a different amount % of smoothing in the x dimension compared to the y dimension. % % DEFAULT: 0.01 % % % 'interp' - character, denotes the interpolation scheme used % to interpolate the data. % % DEFAULT: 'triangle' % % 'bicubic' - use bicubic interpolation within the grid % This is the most accurate because it accounts % for the fact that the output surface is not flat. % In some cases it may be slower than the other methods. % % 'bilinear' - use bilinear interpolation within the grid % % 'triangle' - split each cell in the grid into a triangle, % then apply linear interpolation inside each triangle % % 'nearest' - nearest neighbor interpolation. This will % rarely be a good choice, but I included it % as an option for completeness. % % % 'solver' - character flag - denotes the solver used for the % resulting linear system. Different solvers will have % different solution times depending upon the specific % problem to be solved. Up to a certain size grid, the % direct \ solver will often be speedy, until memory % swaps causes problems. % % What solver should you use? Problems with a significant % amount of extrapolation should avoid lsqr. \ may be % best numerically for small smoothnesss parameters and % high extents of extrapolation. % % Large numbers of points will slow down the direct % \, but when applied to the normal equations, \ can be % quite fast. Since the equations generated by these % methods will tend to be well conditioned, the normal % equations are not a bad choice of method to use. Beware % when a small smoothing parameter is used, since this will % make the equations less well conditioned. % % DEFAULT: 'normal' % % '\' - uses matlab's backslash operator to solve the sparse % system. 'backslash' is an alternate name. % % 'symmlq' - uses matlab's iterative symmlq solver % % 'lsqr' - uses matlab's iterative lsqr solver % % 'normal' - uses \ to solve the normal equations. % % % 'maxiter' - only applies to iterative solvers - defines the % maximum number of iterations for an iterative solver % % DEFAULT: min(10000,length(xnodes)*length(ynodes)) % % % 'extend' - character flag - controls whether the first and last % nodes in each dimension are allowed to be adjusted to % bound the data, and whether the user will be warned if % this was deemed necessary to happen. % % DEFAULT: 'warning' % % 'warning' - Adjust the first and/or last node in % x or y if the nodes do not FULLY contain % the data. Issue a warning message to this % effect, telling the amount of adjustment % applied. % % 'never' - Issue an error message when the nodes do % not absolutely contain the data. % % 'always' - automatically adjust the first and last % nodes in each dimension if necessary. % No warning is given when this option is set. % % % 'tilesize' - grids which are simply too large to solve for % in one single estimation step can be built as a set % of tiles. For example, a 1000x1000 grid will require % the estimation of 1e6 unknowns. This is likely to % require more memory (and time) than you have available. % But if your data is dense enough, then you can model % it locally using smaller tiles of the grid. % % My recommendation for a reasonable tilesize is % roughly 100 to 200. Tiles of this size take only % a few seconds to solve normally, so the entire grid % can be modeled in a finite amount of time. The minimum % tilesize can never be less than 3, although even this % size tile is so small as to be ridiculous. % % If your data is so sparse than some tiles contain % insufficient data to model, then those tiles will % be left as NaNs. % % DEFAULT: inf % % % 'overlap' - Tiles in a grid have some overlap, so they % can minimize any problems along the edge of a tile. % In this overlapped region, the grid is built using a % bi-linear combination of the overlapping tiles. % % The overlap is specified as a fraction of the tile % size, so an overlap of 0.20 means there will be a 20% % overlap of successive tiles. I do allow a zero overlap, % but it must be no more than 1/2. % % 0 <= overlap <= 0.5 % % Overlap is ignored if the tilesize is greater than the % number of nodes in both directions. % % DEFAULT: 0.20 % % % Arguments: (output) % zgrid - (nx,ny) array containing the fitted surface % % xgrid, ygrid - as returned by meshgrid(xnodes,ynodes) % % % Speed considerations: % Remember that gridfit must solve a LARGE system of linear % equations. There will be as many unknowns as the total % number of nodes in the final lattice. While these equations % may be sparse, solving a system of 10000 equations may take % a second or so. Very large problems may benefit from the % iterative solvers or from tiling. % % % Example usage: % % x = rand(100,1); % y = rand(100,1); % z = exp(x+2*y); % xnodes = 0:.1:1; % ynodes = 0:.1:1; % % g = RegularizeData3D(x,y,z,xnodes,ynodes); % % Note: this is equivalent to the following call: % % g = RegularizeData3D(x,y,z,xnodes,ynodes, ... % 'smooth',1, ... % 'interp','triangle', ... % 'solver','normal', ... % 'gradient', ... % 'extend','warning', ... % 'tilesize',inf); % % % Rereleased with improvements as RegularizeData3D % 2014 % - Added bicubic interpolation % - Fixed a bug that caused smoothness to depend on grid fidelity % - Removed the "regularizer" setting and documented the calculation process % Original Version: % Author: John D'Errico % e-mail address: [email protected] % Release: 2.0 % Release date: 5/23/06 % set defaults % The default smoothness is 0.01. i.e. assume the input data x,y,z % have little or no noise. This is different from the legacy code, % which used a default of 1. params.smoothness = 0.01; params.interp = 'triangle'; params.solver = 'backslash'; params.maxiter = []; params.extend = 'warning'; params.tilesize = inf; params.overlap = 0.20; params.mask = []; % was the params struct supplied? if ~isempty(varargin) if isstruct(varargin{1}) % params is only supplied if its a call from tiled_gridfit params = varargin{1}; if length(varargin)>1 % check for any overrides params = parse_pv_pairs(params,varargin{2:end}); end else % check for any overrides of the defaults params = parse_pv_pairs(params,varargin); end end % check the parameters for acceptability params = check_params(params); % ensure all of x,y,z,xnodes,ynodes are column vectors, % also drop any NaN data x=x(:); y=y(:); z=z(:); k = isnan(x) | isnan(y) | isnan(z); if any(k) x(k)=[]; y(k)=[]; z(k)=[]; end xmin = min(x); xmax = max(x); ymin = min(y); ymax = max(y); % did they supply a scalar for the nodes? if length(xnodes)==1 xnodes = linspace(xmin,xmax,xnodes)'; xnodes(end) = xmax; % make sure it hits the max end if length(ynodes)==1 ynodes = linspace(ymin,ymax,ynodes)'; ynodes(end) = ymax; % make sure it hits the max end xnodes=xnodes(:); ynodes=ynodes(:); dx = diff(xnodes); dy = diff(ynodes); nx = length(xnodes); ny = length(ynodes); ngrid = nx*ny; % check to see if any tiling is necessary if (params.tilesize < max(nx,ny)) % split it into smaller tiles. compute zgrid and ygrid % at the very end if requested zgrid = tiled_gridfit(x,y,z,xnodes,ynodes,params); else % its a single tile. % mask must be either an empty array, or a boolean % aray of the same size as the final grid. nmask = size(params.mask); if ~isempty(params.mask) && ((nmask(2)~=nx) || (nmask(1)~=ny)) if ((nmask(2)==ny) || (nmask(1)==nx)) error 'Mask array is probably transposed from proper orientation.' else error 'Mask array must be the same size as the final grid.' end end if ~isempty(params.mask) params.maskflag = 1; else params.maskflag = 0; end % default for maxiter? if isempty(params.maxiter) params.maxiter = min(10000,nx*ny); end % check lengths of the data n = length(x); if (length(y)~=n) || (length(z)~=n) error 'Data vectors are incompatible in size.' end if n<3 error 'Insufficient data for surface estimation.' end % verify the nodes are distinct if any(diff(xnodes)<=0) || any(diff(ynodes)<=0) error 'xnodes and ynodes must be monotone increasing' end % Are there enough output points to form a surface? % Bicubic interpolation requires a 4x4 output grid. Other types require a 3x3 output grid. if strcmp(params.interp, 'bicubic') MinAxisLength = 4; else MinAxisLength = 3; end if length(xnodes) < MinAxisLength error(['The output grid''s x axis must have at least ', num2str(MinAxisLength), ' nodes.']); end if length(ynodes) < MinAxisLength error(['The output grid''s y axis must have at least ', num2str(MinAxisLength), ' nodes.']); end clear MinAxisLength; % do we need to tweak the first or last node in x or y? if xmin<xnodes(1) switch params.extend case 'always' xnodes(1) = xmin; case 'warning' warning('GRIDFIT:extend',['xnodes(1) was decreased by: ',num2str(xnodes(1)-xmin),', new node = ',num2str(xmin)]) xnodes(1) = xmin; case 'never' error(['Some x (',num2str(xmin),') falls below xnodes(1) by: ',num2str(xnodes(1)-xmin)]) end end if xmax>xnodes(end) switch params.extend case 'always' xnodes(end) = xmax; case 'warning' warning('GRIDFIT:extend',['xnodes(end) was increased by: ',num2str(xmax-xnodes(end)),', new node = ',num2str(xmax)]) xnodes(end) = xmax; case 'never' error(['Some x (',num2str(xmax),') falls above xnodes(end) by: ',num2str(xmax-xnodes(end))]) end end if ymin<ynodes(1) switch params.extend case 'always' ynodes(1) = ymin; case 'warning' warning('GRIDFIT:extend',['ynodes(1) was decreased by: ',num2str(ynodes(1)-ymin),', new node = ',num2str(ymin)]) ynodes(1) = ymin; case 'never' error(['Some y (',num2str(ymin),') falls below ynodes(1) by: ',num2str(ynodes(1)-ymin)]) end end if ymax>ynodes(end) switch params.extend case 'always' ynodes(end) = ymax; case 'warning' warning('GRIDFIT:extend',['ynodes(end) was increased by: ',num2str(ymax-ynodes(end)),', new node = ',num2str(ymax)]) ynodes(end) = ymax; case 'never' error(['Some y (',num2str(ymax),') falls above ynodes(end) by: ',num2str(ymax-ynodes(end))]) end end % determine which cell in the array each point lies in [~, indx] = histc(x,xnodes); [~, indy] = histc(y,ynodes); % any point falling at the last node is taken to be % inside the last cell in x or y. k=(indx==nx); indx(k)=indx(k)-1; k=(indy==ny); indy(k)=indy(k)-1; ind = indy + ny*(indx-1); % Do we have a mask to apply? if params.maskflag % if we do, then we need to ensure that every % cell with at least one data point also has at % least all of its corners unmasked. params.mask(ind) = 1; params.mask(ind+1) = 1; params.mask(ind+ny) = 1; params.mask(ind+ny+1) = 1; end % interpolation equations for each point tx = min(1,max(0,(x - xnodes(indx))./dx(indx))); ty = min(1,max(0,(y - ynodes(indy))./dy(indy))); % Future enhancement: add cubic interpolant switch params.interp case 'triangle' % linear interpolation inside each triangle k = (tx > ty); L = ones(n,1); L(k) = ny; t1 = min(tx,ty); t2 = max(tx,ty); A = sparse(repmat((1:n)', 1, 3), [ind, ind + ny + 1, ind + L], [1 - t2, t1, t2 - t1], n, ngrid); case 'nearest' % nearest neighbor interpolation in a cell k = round(1-ty) + round(1-tx)*ny; A = sparse((1:n)',ind+k,ones(n,1),n,ngrid); case 'bilinear' % bilinear interpolation in a cell A = sparse(repmat((1:n)',1,4),[ind,ind+1,ind+ny,ind+ny+1], ... [(1-tx).*(1-ty), (1-tx).*ty, tx.*(1-ty), tx.*ty], ... n,ngrid); case 'bicubic' % Legacy code calculated the starting index ind for bilinear interpolation, but for bicubic interpolation we need to be further away by one % row and one column (but not off the grid). Bicubic interpolation involves a 4x4 grid of coefficients, and we want x,y to be right % in the middle of that 4x4 grid if possible. Use min and max to ensure we won't exceed matrix dimensions. % The sparse matrix format has each column of the sparse matrix A assigned to a unique output grid point. We need to determine which column % numbers are assigned to those 16 grid points. % What are the first indexes (in x and y) for the points? XIndexes = min(max(1, indx - 1), nx - 3); YIndexes = min(max(1, indy - 1), ny - 3); % These are the first indexes of that 4x4 grid of nodes where we are doing the interpolation. AllColumns = (YIndexes + (XIndexes - 1) * ny)'; % Add in the next three points. This gives us output nodes in the first row (i.e. along the x direction). AllColumns = [AllColumns; AllColumns + ny; AllColumns + 2 * ny; AllColumns + 3 * ny]; % Add in the next three rows. This gives us 16 total output points for each input point. AllColumns = [AllColumns; AllColumns + 1; AllColumns + 2; AllColumns + 3]; % Coefficients are calculated based on: % http://en.wikipedia.org/wiki/Lagrange_interpolation % Calculate coefficients for this point based on its coordinates as if we were doing cubic interpolation in x. % Calculate the first coefficients for x and y. XCoefficients = (x(:) - xnodes(XIndexes(:) + 1)) .* (x(:) - xnodes(XIndexes(:) + 2)) .* (x(:) - xnodes(XIndexes(:) + 3)) ./ ((xnodes(XIndexes(:)) - xnodes(XIndexes(:) + 1)) .* (xnodes(XIndexes(:)) - xnodes(XIndexes(:) + 2)) .* (xnodes(XIndexes(:)) - xnodes(XIndexes(:) + 3))); YCoefficients = (y(:) - ynodes(YIndexes(:) + 1)) .* (y(:) - ynodes(YIndexes(:) + 2)) .* (y(:) - ynodes(YIndexes(:) + 3)) ./ ((ynodes(YIndexes(:)) - ynodes(YIndexes(:) + 1)) .* (ynodes(YIndexes(:)) - ynodes(YIndexes(:) + 2)) .* (ynodes(YIndexes(:)) - ynodes(YIndexes(:) + 3))); % Calculate the second coefficients. XCoefficients = [XCoefficients, (x(:) - xnodes(XIndexes(:))) .* (x(:) - xnodes(XIndexes(:) + 2)) .* (x(:) - xnodes(XIndexes(:) + 3)) ./ ((xnodes(XIndexes(:) + 1) - xnodes(XIndexes(:))) .* (xnodes(XIndexes(:) + 1) - xnodes(XIndexes(:) + 2)) .* (xnodes(XIndexes(:) + 1) - xnodes(XIndexes(:) + 3)))]; YCoefficients = [YCoefficients, (y(:) - ynodes(YIndexes(:))) .* (y(:) - ynodes(YIndexes(:) + 2)) .* (y(:) - ynodes(YIndexes(:) + 3)) ./ ((ynodes(YIndexes(:) + 1) - ynodes(YIndexes(:))) .* (ynodes(YIndexes(:) + 1) - ynodes(YIndexes(:) + 2)) .* (ynodes(YIndexes(:) + 1) - ynodes(YIndexes(:) + 3)))]; % Calculate the third coefficients. XCoefficients = [XCoefficients, (x(:) - xnodes(XIndexes(:))) .* (x(:) - xnodes(XIndexes(:) + 1)) .* (x(:) - xnodes(XIndexes(:) + 3)) ./ ((xnodes(XIndexes(:) + 2) - xnodes(XIndexes(:))) .* (xnodes(XIndexes(:) + 2) - xnodes(XIndexes(:) + 1)) .* (xnodes(XIndexes(:) + 2) - xnodes(XIndexes(:) + 3)))]; YCoefficients = [YCoefficients, (y(:) - ynodes(YIndexes(:))) .* (y(:) - ynodes(YIndexes(:) + 1)) .* (y(:) - ynodes(YIndexes(:) + 3)) ./ ((ynodes(YIndexes(:) + 2) - ynodes(YIndexes(:))) .* (ynodes(YIndexes(:) + 2) - ynodes(YIndexes(:) + 1)) .* (ynodes(YIndexes(:) + 2) - ynodes(YIndexes(:) + 3)))]; % Calculate the fourth coefficients. XCoefficients = [XCoefficients, (x(:) - xnodes(XIndexes(:))) .* (x(:) - xnodes(XIndexes(:) + 1)) .* (x(:) - xnodes(XIndexes(:) + 2)) ./ ((xnodes(XIndexes(:) + 3) - xnodes(XIndexes(:))) .* (xnodes(XIndexes(:) + 3) - xnodes(XIndexes(:) + 1)) .* (xnodes(XIndexes(:) + 3) - xnodes(XIndexes(:) + 2)))]; YCoefficients = [YCoefficients, (y(:) - ynodes(YIndexes(:))) .* (y(:) - ynodes(YIndexes(:) + 1)) .* (y(:) - ynodes(YIndexes(:) + 2)) ./ ((ynodes(YIndexes(:) + 3) - ynodes(YIndexes(:))) .* (ynodes(YIndexes(:) + 3) - ynodes(YIndexes(:) + 1)) .* (ynodes(YIndexes(:) + 3) - ynodes(YIndexes(:) + 2)))]; % Allocate space for all of the data we're about to insert. AllCoefficients = zeros(16, n); % There may be a clever way to vectorize this, but then the code would be unreadable and difficult to debug or upgrade. % The matrix solution process will take far longer than this, so it's not worth the effort to vectorize this. for i = 1 : n % Multiply the coefficients to accommodate bicubic interpolation. The resulting matrix is a 4x4 of the interpolation coefficients. TheseCoefficients = repmat(XCoefficients(i, :)', 1, 4) .* repmat(YCoefficients(i, :), 4, 1); % Add these coefficients to the list. AllCoefficients(1 : 16, i) = TheseCoefficients(:); end % Each input point has 16 interpolation coefficients (because of the 4x4 grid). AllRows = repmat(1 : n, 16, 1); % Now that we have all of the indexes and coefficients, we can create the sparse matrix of equality conditions. A = sparse(AllRows(:), AllColumns(:), AllCoefficients(:), n, ngrid); end rhs = z; % Do we have relative smoothing parameters? if numel(params.smoothness) == 1 % Nothing special; this is just a scalar quantity that needs to be the same for x and y directions. xyRelativeStiffness = [1; 1] * params.smoothness; else % What the user asked for xyRelativeStiffness = params.smoothness(:); end % Build a regularizer using the second derivative. This used to be called "gradient" even though it uses a second % derivative, not a first derivative. This is an important distinction because "gradient" implies a horizontal % surface, which is not correct. The second derivative favors flatness, especially if you use a large smoothness % constant. Flat and horizontal are two different things, and in this script we are taking an irregular surface and % flattening it according to the smoothness constant. % The second-derivative calculation is documented here: % http://mathformeremortals.wordpress.com/2013/01/12/a-numerical-second-derivative-from-three-points/ % Minimizes the sum of the squares of the second derivatives (wrt x and y) across the grid [i,j] = meshgrid(1:nx,2:(ny-1)); ind = j(:) + ny*(i(:)-1); dy1 = dy(j(:)-1); dy2 = dy(j(:)); Areg = sparse(repmat(ind,1,3),[ind-1,ind,ind+1], ... xyRelativeStiffness(2)*[-2./(dy1.*(dy1+dy2)), ... 2./(dy1.*dy2), -2./(dy2.*(dy1+dy2))],ngrid,ngrid); [i,j] = meshgrid(2:(nx-1),1:ny); ind = j(:) + ny*(i(:)-1); dx1 = dx(i(:) - 1); dx2 = dx(i(:)); Areg = [Areg;sparse(repmat(ind,1,3),[ind-ny,ind,ind+ny], ... xyRelativeStiffness(1)*[-2./(dx1.*(dx1+dx2)), ... 2./(dx1.*dx2), -2./(dx2.*(dx1+dx2))],ngrid,ngrid)]; nreg = size(Areg, 1); FidelityEquationCount = size(A, 1); % Number of the second derivative equations in the matrix RegularizerEquationCount = nx * (ny - 2) + ny * (nx - 2); % We are minimizing the sum of squared errors, so adjust the magnitude of the squared errors to make second-derivative % squared errors match the fidelity squared errors. Then multiply by smoothparam. NewSmoothnessScale = sqrt(FidelityEquationCount / RegularizerEquationCount); % Second derivatives scale with z exactly because d^2(K*z) / dx^2 = K * d^2(z) / dx^2. % That means we've taken care of the z axis. % The square root of the point/derivative ratio takes care of the grid density. % We also need to take care of the size of the dataset in x and y. % The scaling up to this point applies to local variation. Local means within a domain of [0, 1] or [10, 11], etc. % The smoothing behavior needs to work for datasets that are significantly larger or smaller than that. % For example, if x and y span [0 10,000], smoothing local to [0, 1] is insufficient to influence the behavior of % the whole surface. For the same reason there would be a problem applying smoothing for [0, 1] to a small surface % spanning [0, 0.01]. Multiplying the smoothing constant by SurfaceDomainScale compensates for this, producing the % expected behavior that a smoothing constant of 1 produces noticeable smoothing (when looking at the entire surface % profile) and that 1% does not produce noticeable smoothing. SurfaceDomainScale = (max(max(xnodes)) - min(min(xnodes))) * (max(max(ynodes)) - min(min(ynodes))); NewSmoothnessScale = NewSmoothnessScale * SurfaceDomainScale; A = [A; Areg * NewSmoothnessScale]; rhs = [rhs;zeros(nreg,1)]; % do we have a mask to apply? if params.maskflag unmasked = find(params.mask); end % solve the full system, with regularizer attached switch params.solver case {'\' 'backslash'} if params.maskflag % there is a mask to use zgrid=nan(ny,nx); zgrid(unmasked) = A(:,unmasked)\rhs; else % no mask zgrid = reshape(A\rhs,ny,nx); end case 'normal' % The normal equations, solved with \. Can be faster % for huge numbers of data points, but reasonably % sized grids. The regularizer makes A well conditioned % so the normal equations are not a terribly bad thing % here. if params.maskflag % there is a mask to use Aunmasked = A(:,unmasked); zgrid=nan(ny,nx); zgrid(unmasked) = (Aunmasked'*Aunmasked)\(Aunmasked'*rhs); else zgrid = reshape((A'*A)\(A'*rhs),ny,nx); end case 'symmlq' % iterative solver - symmlq - requires a symmetric matrix, % so use it to solve the normal equations. No preconditioner. tol = abs(max(z)-min(z))*1.e-13; if params.maskflag % there is a mask to use zgrid=nan(ny,nx); [zgrid(unmasked),flag] = symmlq(A(:,unmasked)'*A(:,unmasked), ... A(:,unmasked)'*rhs,tol,params.maxiter); else [zgrid,flag] = symmlq(A'*A,A'*rhs,tol,params.maxiter); zgrid = reshape(zgrid,ny,nx); end % display a warning if convergence problems switch flag case 0 % no problems with convergence case 1 % SYMMLQ iterated MAXIT times but did not converge. warning('GRIDFIT:solver',['Symmlq performed ',num2str(params.maxiter), ... ' iterations but did not converge.']) case 3 % SYMMLQ stagnated, successive iterates were the same warning('GRIDFIT:solver','Symmlq stagnated without apparent convergence.') otherwise warning('GRIDFIT:solver',['One of the scalar quantities calculated in',... ' symmlq was too small or too large to continue computing.']) end case 'lsqr' % iterative solver - lsqr. No preconditioner here. tol = abs(max(z)-min(z))*1.e-13; if params.maskflag % there is a mask to use zgrid=nan(ny,nx); [zgrid(unmasked),flag] = lsqr(A(:,unmasked),rhs,tol,params.maxiter); else [zgrid,flag] = lsqr(A,rhs,tol,params.maxiter); zgrid = reshape(zgrid,ny,nx); end % display a warning if convergence problems switch flag case 0 % no problems with convergence case 1 % lsqr iterated MAXIT times but did not converge. warning('GRIDFIT:solver',['Lsqr performed ', ... num2str(params.maxiter),' iterations but did not converge.']) case 3 % lsqr stagnated, successive iterates were the same warning('GRIDFIT:solver','Lsqr stagnated without apparent convergence.') case 4 warning('GRIDFIT:solver',['One of the scalar quantities calculated in',... ' LSQR was too small or too large to continue computing.']) end end % switch params.solver end % if params.tilesize... % only generate xgrid and ygrid if requested. if nargout>1 [xgrid,ygrid]=meshgrid(xnodes,ynodes); end % ============================================ % End of main function - gridfit % ============================================ % ============================================ % subfunction - parse_pv_pairs % ============================================ function params=parse_pv_pairs(params,pv_pairs) % parse_pv_pairs: parses sets of property value pairs, allows defaults % usage: params=parse_pv_pairs(default_params,pv_pairs) % % arguments: (input) % default_params - structure, with one field for every potential % property/value pair. Each field will contain the default % value for that property. If no default is supplied for a % given property, then that field must be empty. % % pv_array - cell array of property/value pairs. % Case is ignored when comparing properties to the list % of field names. Also, any unambiguous shortening of a % field/property name is allowed. % % arguments: (output) % params - parameter struct that reflects any updated property/value % pairs in the pv_array. % % Example usage: % First, set default values for the parameters. Assume we % have four parameters that we wish to use optionally in % the function examplefun. % % - 'viscosity', which will have a default value of 1 % - 'volume', which will default to 1 % - 'pie' - which will have default value 3.141592653589793 % - 'description' - a text field, left empty by default % % The first argument to examplefun is one which will always be % supplied. % % function examplefun(dummyarg1,varargin) % params.Viscosity = 1; % params.Volume = 1; % params.Pie = 3.141592653589793 % % params.Description = ''; % params=parse_pv_pairs(params,varargin); % params % % Use examplefun, overriding the defaults for 'pie', 'viscosity' % and 'description'. The 'volume' parameter is left at its default. % % examplefun(rand(10),'vis',10,'pie',3,'Description','Hello world') % % params = % Viscosity: 10 % Volume: 1 % Pie: 3 % Description: 'Hello world' % % Note that capitalization was ignored, and the property 'viscosity' % was truncated as supplied. Also note that the order the pairs were % supplied was arbitrary. npv = length(pv_pairs); n = npv/2; if n~=floor(n) error 'Property/value pairs must come in PAIRS.' end if n<=0 % just return the defaults return end if ~isstruct(params) error 'No structure for defaults was supplied' end % there was at least one pv pair. process any supplied propnames = fieldnames(params); lpropnames = lower(propnames); for i=1:n p_i = lower(pv_pairs{2*i-1}); v_i = pv_pairs{2*i}; ind = strmatch(p_i,lpropnames,'exact'); if isempty(ind) ind = find(strncmp(p_i,lpropnames,length(p_i))); if isempty(ind) error(['No matching property found for: ',pv_pairs{2*i-1}]) elseif length(ind)>1 error(['Ambiguous property name: ',pv_pairs{2*i-1}]) end end p_i = propnames{ind}; % override the corresponding default in params params = setfield(params,p_i,v_i); %#ok end % ============================================ % subfunction - check_params % ============================================ function params = check_params(params) % check the parameters for acceptability % smoothness == 1 by default if isempty(params.smoothness) params.smoothness = 1; else if (numel(params.smoothness)>2) || any(params.smoothness<=0) error 'Smoothness must be scalar (or length 2 vector), real, finite, and positive.' end end % interp must be one of: % 'bicubic', 'bilinear', 'nearest', or 'triangle' % but accept any shortening thereof. valid = {'bicubic', 'bilinear', 'nearest', 'triangle'}; if isempty(params.interp) params.interp = 'bilinear'; end ind = find(strncmpi(params.interp,valid,length(params.interp))); if (length(ind)==1) params.interp = valid{ind}; else error(['Invalid interpolation method: ',params.interp]) end % solver must be one of: % 'backslash', '\', 'symmlq', 'lsqr', or 'normal' % but accept any shortening thereof. valid = {'backslash', '\', 'symmlq', 'lsqr', 'normal'}; if isempty(params.solver) params.solver = '\'; end ind = find(strncmpi(params.solver,valid,length(params.solver))); if (length(ind)==1) params.solver = valid{ind}; else error(['Invalid solver option: ',params.solver]) end % extend must be one of: % 'never', 'warning', 'always' % but accept any shortening thereof. valid = {'never', 'warning', 'always'}; if isempty(params.extend) params.extend = 'warning'; end ind = find(strncmpi(params.extend,valid,length(params.extend))); if (length(ind)==1) params.extend = valid{ind}; else error(['Invalid extend option: ',params.extend]) end % tilesize == inf by default if isempty(params.tilesize) params.tilesize = inf; elseif (length(params.tilesize)>1) || (params.tilesize<3) error 'Tilesize must be scalar and > 0.' end % overlap == 0.20 by default if isempty(params.overlap) params.overlap = 0.20; elseif (length(params.overlap)>1) || (params.overlap<0) || (params.overlap>0.5) error 'Overlap must be scalar and 0 < overlap < 1.' end % ============================================ % subfunction - tiled_gridfit % ============================================ function zgrid=tiled_gridfit(x,y,z,xnodes,ynodes,params) % tiled_gridfit: a tiled version of gridfit, continuous across tile boundaries % usage: [zgrid,xgrid,ygrid]=tiled_gridfit(x,y,z,xnodes,ynodes,params) % % Tiled_gridfit is used when the total grid is far too large % to model using a single call to gridfit. While gridfit may take % only a second or so to build a 100x100 grid, a 2000x2000 grid % will probably not run at all due to memory problems. % % Tiles in the grid with insufficient data (<4 points) will be % filled with NaNs. Avoid use of too small tiles, especially % if your data has holes in it that may encompass an entire tile. % % A mask may also be applied, in which case tiled_gridfit will % subdivide the mask into tiles. Note that any boolean mask % provided is assumed to be the size of the complete grid. % % Tiled_gridfit may not be fast on huge grids, but it should run % as long as you use a reasonable tilesize. 8-) % Note that we have already verified all parameters in check_params % Matrix elements in a square tile tilesize = params.tilesize; % Size of overlap in terms of matrix elements. Overlaps % of purely zero cause problems, so force at least two % elements to overlap. overlap = max(2,floor(tilesize*params.overlap)); % reset the tilesize for each particular tile to be inf, so % we will never see a recursive call to tiled_gridfit Tparams = params; Tparams.tilesize = inf; nx = length(xnodes); ny = length(ynodes); zgrid = zeros(ny,nx); % linear ramp for the bilinear interpolation rampfun = inline('(t-t(1))/(t(end)-t(1))','t'); % loop over each tile in the grid h = waitbar(0,'Relax and have a cup of JAVA. Its my treat.'); warncount = 0; xtind = 1:min(nx,tilesize); while ~isempty(xtind) && (xtind(1)<=nx) xinterp = ones(1,length(xtind)); if (xtind(1) ~= 1) xinterp(1:overlap) = rampfun(xnodes(xtind(1:overlap))); end if (xtind(end) ~= nx) xinterp((end-overlap+1):end) = 1-rampfun(xnodes(xtind((end-overlap+1):end))); end ytind = 1:min(ny,tilesize); while ~isempty(ytind) && (ytind(1)<=ny) % update the waitbar waitbar((xtind(end)-tilesize)/nx + tilesize*ytind(end)/ny/nx) yinterp = ones(length(ytind),1); if (ytind(1) ~= 1) yinterp(1:overlap) = rampfun(ynodes(ytind(1:overlap))); end if (ytind(end) ~= ny) yinterp((end-overlap+1):end) = 1-rampfun(ynodes(ytind((end-overlap+1):end))); end % was a mask supplied? if ~isempty(params.mask) submask = params.mask(ytind,xtind); Tparams.mask = submask; end % extract data that lies in this grid tile k = (x>=xnodes(xtind(1))) & (x<=xnodes(xtind(end))) & ... (y>=ynodes(ytind(1))) & (y<=ynodes(ytind(end))); k = find(k); if length(k)<4 if warncount == 0 warning('GRIDFIT:tiling','A tile was too underpopulated to model. Filled with NaNs.') end warncount = warncount + 1; % fill this part of the grid with NaNs zgrid(ytind,xtind) = NaN; else % build this tile zgtile = RegularizeData3D(x(k),y(k),z(k),xnodes(xtind),ynodes(ytind),Tparams); % bilinear interpolation (using an outer product) interp_coef = yinterp*xinterp; % accumulate the tile into the complete grid zgrid(ytind,xtind) = zgrid(ytind,xtind) + zgtile.*interp_coef; end % step to the next tile in y if ytind(end)<ny ytind = ytind + tilesize - overlap; % are we within overlap elements of the edge of the grid? if (ytind(end)+max(3,overlap))>=ny % extend this tile to the edge ytind = ytind(1):ny; end else ytind = ny+1; end end % while loop over y % step to the next tile in x if xtind(end)<nx xtind = xtind + tilesize - overlap; % are we within overlap elements of the edge of the grid? if (xtind(end)+max(3,overlap))>=nx % extend this tile to the edge xtind = xtind(1):nx; end else xtind = nx+1; end end % while loop over x % close down the waitbar close(h) if warncount>0 warning('GRIDFIT:tiling',[num2str(warncount),' tiles were underpopulated & filled with NaNs']) end
github
ganlubbq/Signal-Processing-master
hydrophoneDataProcessSineSweep.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/hydrophoneDataProcessSineSweep.m
6,377
utf_8
0b06324432fbdf55310db51ea1046637
function [meanArray ] = hydrophoneDataProcessSineSweep( fileName, startFrequency, stepFrequency ) import ppPkg.* im = ImportHandler; % Import data file header = im.readHeader(fileName); tmArr = im.importDataFile(); fileName %% Use moving average filter to smooth the data points N = 4; b = (1/N)*ones(1, N); a = 1; % Frequency increases with 100kHz for each step for index = 1:1:length(tmArr) tm = tmArr(index); % % if(index < 170 ) % recordedSignal = filtfilt(b, a, tm.signal); % else % recordedSignal = tm.signal; % end recordedSignal = tm.signal; %plot(recordedSignal) sinusFrequency = startFrequency + stepFrequency*(index-1); pulseLength = 20 * header.sampleRate / sinusFrequency; % Create tx pulse txPulse = generatePulse(header.pulsePattern, header.sampleRate, pulseLength, sinusFrequency, sinusFrequency ); [startIndexPulse] = findStartIndexPulse(txPulse, recordedSignal, 1000); if(round(startIndexPulse) < 7500 && round(startIndexPulse) > 6500 ) % Extract signal segment to investigate signalSegment = recordedSignal(round(startIndexPulse):round(startIndexPulse+pulseLength)); % Calculate minimum peak distance peakDistance = round(2/3 * header.sampleRate / sinusFrequency); [maxPeaks, locsMax, minPeaks, locsMin] = findMaxAndMinPeaks(signalSegment, peakDistance); % Sum max and min to calculate "peak2peak" value peak2peakArray = maxPeaks - minPeaks; % Calculate mean meanArray(index) = mean(peak2peakArray); else meanArray(index) = 0; end %plot(tm.signal, ) %grid on end end function [maxPeaks, locsMax, minPeaks, locsMin] = findMaxAndMinPeaks(signalSegment, peakDistance) interpFactor = 10; peakDistanceModified = peakDistance * interpFactor; signalSegment_interp = interp(signalSegment,interpFactor); %findpeaks(signalSegment_interp,'MinPeakDistance', peakDistanceModified); %findpeaks(-signalSegment_interp,'MinPeakDistance', peakDistanceModified); [pksMax, locsMax] = findpeaks(signalSegment_interp,'MinPeakDistance', peakDistanceModified); [pksMin, locsMin] = findpeaks(-signalSegment_interp,'MinPeakDistance', peakDistanceModified); % sigZeropad(1:10:10 * length(signalSegment) - 1) = signalSegment; % stem(sigZeropad) % hold on % plot(signalSegment_interp) % hold off % Only keep peaks 3 to 8 if((numel(pksMax) >= 12) && (numel(pksMin) >= 12)) maxPeaks = pksMax(5:12); minPeaks = -pksMin(5:12); locsMax = locsMax(5:12); locsMin = locsMin(5:12); elseif(length(pksMax) > 2) disp('Error Should find more than 12 peaks') lengthMax = length(pksMax); lengthMin = length(pksMin); if(lengthMax > lengthMin) maxLength = lengthMin; else maxLength = lengthMax; end maxPeaks = pksMax(1:maxLength); minPeaks = -pksMin(1:maxLength); locsMax = locsMax(1:maxLength); locsMin = locsMin(1:maxLength); else error('Error in finding peaks') end end function [txPulse, tPulse] = generatePulse(pattern, sampleRate, pulseLength, fLow, fHigh) import ppPkg.* switch lower(pattern) case 'simple' [txPulse, tPulse] = generateSin(sampleRate, pulseLength, fLow); case 'chirp' [txPulse, tPulse] = generateChirp(sampleRate, pulseLength, fLow, fHigh); case 'rectchirp' [txPulse, tPulse] = generateChirp(sampleRate, pulseLength, fLow, fHigh); txPulse = sign(txPulse); case 'sinc' [txPulse, tPulse] = generateSinc(sampleRate, pulseLength, fLow, fHigh); case 'rectpulse' [txPulse, tPulse] = generateRectPulseTrain(sampleRate, pulseLength, fLow, fHigh); txPulse = flip(txPulse) otherwise error('Signal pattern not supported') end end function startIndexPulse = findStartIndexPulse(txPulse, signal, delay) % Function use correlation between emitted pulse and recorded signal to find % startIndex for pulse in recorded signal startIndex = 1 + delay; [r, lags] = xcorr(signal(startIndex:end), txPulse); % Find the index where the absolute value of the cross correlation is at its % maximum r_abs = abs(r); [maxValue, maxIndex] = max(r); lagInterp = findLagUsingInterpolation(r_abs, lags, maxIndex); startIndexPulse = delay + round(lagInterp); end function lag = findLagUsingInterpolation(r, x, maxIndex) %% % This function uses interpolation to find a better estimate for the % location of the maximum value of r. % r: sample values (cross correlation) % x: sample points (lags) % max_index: index where r has its maximum value. % Number of point before and after max peak deltaPoint = 3; % Number of quary points for each sample interpolation_factor = 8; startIndex = maxIndex-deltaPoint; stopIndex = maxIndex+deltaPoint; x_startIndex = x(startIndex); x_stopIndex = x(stopIndex); %% Retrieve small segment including max peak % Segment sample points segmentRange = startIndex:1:stopIndex; % Segment sample values r_segment = r(segmentRange); %% Create quary vector % Quary segment sample points interpolationRange = x_startIndex:1/interpolation_factor:x_stopIndex; x_segmentRange = x_startIndex:1:x_stopIndex; r_interp = interp1(x_segmentRange, r_segment,interpolationRange,'spline'); % Find index for max peak for the interpolated curve [~,I_intep] = max(r_interp); % Find lag at this index lag = interpolationRange(I_intep); end
github
ganlubbq/Signal-Processing-master
transducerTest.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/transducerTest.m
6,750
utf_8
c7830cdb2a8c1eec2bec64fd33dc07ab
%> @file transducerTest.m %> @brief Contain functions for processing transducer test measurements % ====================================================================== %> @brief Contain functions for processing transducer test measurements % %> % ====================================================================== % ====================================================================== %> @brief Function transducerTest %> %> @param ctrl Controller object %> @param folder Folder containing transducer test measurements %> @param psdCompare Baseline transducer to compare with %> @param folderToSave Path to folder to where plots should be saved %> @retval res Struct containing: %> medianNoise %> meanNoise %> medianDbAboveNoise %> meanDbAboveNoise %> psdMain %> psdResonance %> dataHeader %> transducer %> title % ====================================================================== function res = transducerTest(ctrl, folder, psdCompare, folderToSaveFig) % Read folder % Get all subfolder names % Do a regex % Keep the ones that matches the regex listing = dir(folder); %folderNames; [pathstr,name,ext] = fileparts(folder); folderIndex = 1; for index = 1:size(listing,1) temp = regexp(listing(index).name,'B12_BN218.*','match'); if(~isempty(temp)) dataFolders(folderIndex) = cellstr(listing(index).name); folderIndex = folderIndex + 1; end end folderFirstPart = strcat(listing(1).folder,'\'); % Initialize struct res(numel(dataFolders)) = struct('medianNoise',0,... 'meanNoise',0,... 'medianDbAboveNoise',0,... 'meanDbAboveNoise',0,... 'psdMain', 0,... 'psdResonance', 0,... 'dataHeader','',... 'transducer','',... 'title',''); % Get path to all header files in dataFolders for indexN = 1:numel(dataFolders) folderPath = char(dataFolders(indexN)); folderPath = strcat(folderFirstPart, folderPath); folderPath = strcat(folderPath,'\'); % Get content of folderPath listingFolder = dir(char(folderPath)); % Iterate through the files in the folder for indexM = 1:size(listingFolder,1) % Get the file that contains 'header' and extract information % from the file name temp = regexp(listingFolder(indexM).name,'.*header','match'); if(~isempty(temp)) % Get Transducer info token1 = regexp(listingFolder(indexM).name,'.*(BN218_\d\d_\d\d\d).*','tokens'); res(indexN).transducer = char(token1{1}); % Get Title txt token2 = regexp(listingFolder(indexM).name,'(.*)_[0-9]+_[0-9]+_header','tokens'); res(indexN).title = char(token2{1}); % Get path to data file header fileName = listingFolder(indexM).name; res(indexN).dataHeader = strcat(folderPath, fileName); end end end % Iterate through struct array to process data from each transducer for index = 1:numel(res) % Process data res(index) = processData(ctrl, res(index)); % Plot PSD main with psd compare plotPsdMain(ctrl, res(index), psdCompare, folderToSaveFig); plotPsdResonance(ctrl, res(index), folderToSaveFig); res(index) %pause() close all end end % ====================================================================== %> @brief Function process transducer data %> Function will calculate median and mean noise, and median and %> mean dB above noise for the peaks. And calculate the mean Psd %> main and psd resonance %> %> @param ctrl Controller object %> @param res Struct %> @retval res Struct % ====================================================================== function res = processData(ctrl, res) ctrl.start(res.dataHeader); res.medianNoise = median([ctrl.pr(:).noiseMean]) res.meanNoise = mean([ctrl.pr(:).noiseMean]) dbAboveNoiseTemp = zeros(1, length(ctrl.pr)); for indexM = 1:length(ctrl.pr) dbAboveNoiseTemp(indexM) = mean(ctrl.pr(indexM).peakDB) - res.medianNoise; end res.medianDbAboveNoise = median(dbAboveNoiseTemp); res.meanDbAboveNoise = mean(dbAboveNoiseTemp); res.psdMain = mean([ctrl.pr(:).psdMain], 2); res.psdResonance = mean([ctrl.pr(:).psdResonance], 2); end % ====================================================================== %> @brief Function plots Psd Main and save figure to file %> %> @param ctrl Controller object %> @param res Struct %> @param psdCompare %> @param folderToSaveFig % ====================================================================== function plotPsdMain(ctrl, res, psdCompare, folderToSaveFig) fig = figure; plot(ctrl.pr(1).fMain,[res.psdMain]) hold on plot(ctrl.pr(1).fMain, psdCompare) title('Psd Main') grid on transducerTxt = strrep(res.transducer, '_', ' '); titleTxt = strrep(res.title, '_', ' '); filenameFig = strcat('Psd_Main_', res.title) legend(transducerTxt,'BN lab 3 LG40 SG05 latest') title(titleTxt) ylim([-120 -60]); saveFigPath = strcat(folderToSaveFig,'\'); saveFigPath = strcat(saveFigPath,filenameFig); savefig(fig, saveFigPath) end % ====================================================================== %> @brief Function plots Psd Resonance %> %> @param ctrl Controller object %> @param res Struct %> @param folderToSaveFig % ====================================================================== function plotPsdResonance(ctrl, res, folderToSaveFig) fig = figure; plot(ctrl.pr(1).fMain,[res.psdResonance]) grid on titleTxt = strrep(res.title, '_', ' '); filenameFig = strcat('Psd_Resonance_', res.title); title(titleTxt) ylim([-150 -80]); saveFigPath = strcat(folderToSaveFig,'\'); saveFigPath = strcat(saveFigPath,filenameFig); savefig(fig, saveFigPath) end
github
ganlubbq/Signal-Processing-master
hydrophoneDataProcess.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/hydrophoneDataProcess.m
7,812
utf_8
015cad9b5dbeee8da2b79fd5733aed31
function [ meanArray, startIndexArray ] = hydrophoneDataProcess( fileName, varargin) % Function calculates the mean peak2peak value of the sinus recorded % by the hydrophone, for each shot the transducer is moved in an angle. % Function now assumes that transducer is moved with 1 degree for each shot % import ppPkg.* im = ImportHandler % Create function input parser object p = inputParser; nVarargs = length(varargin); defaultStep = 0; defaultStartIndex = 0; addRequired(p, 'fileName', @ischar); addRequired(p,'angleResolution', @isnumeric); addRequired(p,'startAngle', @isnumeric); addRequired(p,'stopAngle', @isnumeric); addParameter(p,'stepProcessing', defaultStep, @isnumeric); addParameter(p,'startIndex', defaultStartIndex, @isnumeric); % Parse function input parse(p, fileName, varargin{:}) if(p.Results.stepProcessing) f = figure; end header = im.readHeader(fileName); tmArr = im.importDataFile(); % Create tx pulse txPulse = generatePulse(header.pulsePattern, header.sampleRate, header.pulseLength, header.fLow, header.fHigh ); % Init array meanArray = zeros(1, length(tmArr)); startIndexArray = zeros(1, length(tmArr) ); if(p.Results.angleResolution == 0) startIndex = 1; stopIndex = length(tmArr) elseif(p.Results.startIndex ~= 0) if(p.Results.startIndex>1) startIndex = p.Results.startIndex-1; else startIndex = p.Results.startIndex; end stopIndex = length(tmArr); else startIndex = p.Results.startAngle/p.Results.angleResolution; stopIndex = p.Results.stopAngle/p.Results.angleResolution; if(startIndex > length(tmArr) || stopIndex > length(tmArr)) error('Error in calculating start and stop index') return end end % if(p.Results.startIndex ~= 0) % if(p.Results.startIndex>1) % startIndex = p.Results.startIndex-1; % else % startIndex = p.Results.startIndex; % end % end for index = (startIndex+1):stopIndex %for index = 1:length(tmArr) tm = tmArr(index); recordedSignal = tm.signal; % Find start index pulse startIndexPulse = findStartIndexPulse(txPulse, recordedSignal); startIndexArray(index) = startIndexPulse; %plot(recordedSignal) if(startIndexPulse <= 450 || startIndexPulse > 6000 ) disp('StartIndexPulse outside valid range'); continue; end % Extract signal segment with pulse signalSegment = recordedSignal(startIndexPulse:(startIndexPulse + header.pulseLength)); % Calculate minimum peak distance peakDistance = round(2/3 * header.sampleRate / header.fLow); % Calculate 6 max and min peaks for signal [maxPeaks, locsMax, minPeaks, locsMin, segmentWithPeaks] = findMaxAndMinPeaks((signalSegment), peakDistance); % Sum max and min to calculate "peak2peak" value peak2peakArray = maxPeaks - minPeaks; % Calculate mean meanArray(index) = mean(peak2peakArray); if(p.Results.stepProcessing) subplot(2,1,1) plot(recordedSignal) hold on plot(startIndexPulse,recordedSignal(startIndexPulse), '*') title('Red start: start of signal segment') grid on hold off x = 1:length(segmentWithPeaks); padding = 10; % Create x array for signal segment x_ = ((1:length(signalSegment))*padding)-padding; subplot(2,1,2) plot(x, segmentWithPeaks, ... locsMax, maxPeaks, 'o', ... locsMin, minPeaks,'*',... x_, signalSegment); grid on titleTxt = sprintf('Index %d, press button to continue', index); title(titleTxt); w = 0; while(w == 0) w = waitforbuttonpress; % if w == 0 % disp('Button click') % else % disp('Key press') % end end end end end function [txPulse, tPulse] = generatePulse(pattern, sampleRate, pulseLength, fLow, fHigh) import ppPkg.* switch lower(pattern) case 'simple' [txPulse, tPulse] = generateSin(sampleRate, pulseLength, fLow); case 'chirp' [txPulse, tPulse] = generateChirp(sampleRate, pulseLength, fLow, fHigh); case 'rectchirp' [txPulse, tPulse] = generateChirp(sampleRate, pulseLength, fLow, fHigh); txPulse = sign(txPulse); case 'sinc' [txPulse, tPulse] = generateSinc(sampleRate, pulseLength, fLow, fHigh); case 'rectpulse' [txPulse, tPulse] = generateRectPulseTrain(sampleRate, pulseLength, fLow, fHigh); txPulse = flip(txPulse) otherwise error('Signal pattern not supported') end end function startIndexPulse = findStartIndexPulse(txPulse, signal) % Function use correlation between emitted pulse and recorded signal to find % startIndex for pulse in recorded signal import ppPkg.* ctrl = Controller; callipAlg = CalliperAlgorithm(ctrl.config); % Calculate Calliper % Set transmitted pulse callipAlg.setTxPulse(txPulse); % Start searching at index 0 delay = 0; %% Calculate startIndex for pulse in recording [distance, startIndexPulse] = callipAlg.calculateDistance( delay, signal, 0); end function [maxPeaks, locsMax, minPeaks, locsMin, segment] = findMaxAndMinPeaks(signalSegment, peakDistance) if(1) interpFactor = 10; peakDistanceModified = peakDistance * interpFactor; signalSegment_interp = interp(signalSegment,interpFactor); [pksMax, locsMax] = findpeaks(signalSegment_interp,'MinPeakDistance', peakDistanceModified); [pksMin, locsMin] = findpeaks(-signalSegment_interp,'MinPeakDistance', peakDistanceModified); else [pksMax, locsMax] = findpeaks(signalSegment,'MinPeakDistance', peakDistance); [pksMin, locsMin] = findpeaks(-signalSegment,'MinPeakDistance', peakDistance); end segment = signalSegment_interp; % Only keep peaks 3 to 8 if((length(pksMax) > 12) && (length(pksMin) > 12)) maxPeaks = pksMax(6:13); minPeaks = -pksMin(6:13); locsMax = locsMax(6:13); locsMin = locsMin(6:13); % elseif(length(pksMax) > 2) % lengthMax = length(pksMax); % lengthMin = length(pksMin); % if(lengthMax > lengthMin) % maxLength = lengthMin; % else % maxLength = lengthMax; % end % % maxPeaks = pksMax(1:maxLength); % minPeaks = -pksMin(1:maxLength); % locsMax = locsMax(1:maxLength); % locsMin = locsMin(1:maxLength); else disp('Error in finding peaks') maxPeaks = 0; minPeaks = 0; end end
github
ganlubbq/Signal-Processing-master
findFrequencySets.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/@ThicknessAlgorithm/findFrequencySets.m
6,873
utf_8
c64c627814ebd16c8d51ff8abb5da649
% ====================================================================== %> @brief findFrequencySets(obj, type, fLow, fHigh, noHarmonics) %> %> Function finds all frequencies that matches a harmonic set %> %> @param obj ThicknessAlgorithm class object %> @param type Type of psd to search: RESONANCE or MAIN %> @param fLow Lower Frequency %> @param fLow Higher Frequency %> @param fLow Required number of harmonics in each set %> %> @retval setsFound Reference to sets found % ====================================================================== function [setsFound] = findFrequencySets(obj, type, fLow, fHigh, noHarmonics) %% Function finds all frequencies that matches a harmonic set. % Start searching for sets from fHigh and towards fLow % psd: PSD % locs: Array containing index to peaks in PSD % fHigh: Upper frequency in emitted pulse. % Deviation is calculated based on (Fs/N) * deviationFactor import ppPkg.HarmonicSet if(obj.RESONANCE == type) psd = obj.psdResonance; locs = obj.peakLocationResonance; deviationInFrequency = (obj.config.SAMPLE_RATE/obj.config.FFT_LENGTH) * obj.config.DEVIATION_FACTOR; % @TODO: Consider changing how we calculate the deviation frquency. % It should be based on the relevant frequency resolution % Frequency resolution is given by % R = 1/T, % where T is the recording time of the signal. T = Fs/L, % where L is number of samples % % FTT resolution is given by: % Rf = Fs/Nfft. % So having a high Nfft does not improve the frequency % resolution if T is short % Ideal we should have: Fs/L = Fs/Nfft => L = Nfft, but this is not the % case elseif(obj.MAIN == type) psd = obj.psdMain; locs = obj.peakLocationMain; deviationInFrequency = (obj.config.SAMPLE_RATE/obj.config.FFT_LENGTH) * obj.config.DEVIATION_FACTOR; else error('Illegal spectrum type: %s\n', type); end MIN_REQUIRED_HARMONICS = noHarmonics; numberOfSets = 0; % Calculate minimum fundemental frequency that can exists freqFundamentalMinimum = obj.config.V_PIPE/(2*obj.config.D_NOM); % Allowed percentage deviaion from target harmonic frequency % Iterate through array of maxima and find all frequencies that % matches a set. % Flip array so start searching from higher frequency locs = sort(locs); locs = flip(locs); for n = 1:length(locs) for m = (n+1):length(locs) for j =(m):length(locs) %fprintf('index n: %d m: %d j: %d\n',n, m, j); if( j == m ) fN.freq = (locs(n)-1)*obj.config.SAMPLE_RATE/obj.config.FFT_LENGTH; fN.peakValue = (psd(locs(n))); fN.index = locs(n); fM.freq = (locs(m)-1)*obj.config.SAMPLE_RATE/obj.config.FFT_LENGTH; fM.peakValue = (psd(locs(m))); fM.index = locs(m); %tempSet = HarmonicSet(freqN, peakN, locs(n), freqM, peakM, locs(m), deviationInFrequency); %fprintf('create set index n: %d m: %d j: %d\n',n, m, j); % Only create a new set if the difference % between freqN and freqM is larger than % freqFundamentalMinimum if(abs(fM.freq - fN.freq) > freqFundamentalMinimum) % Create harmonicSet object %fprintf('index n: %d m: %d j: %d\n',n, m, j); %tempSet = HarmonicSet(freqN, peakN, locs(n), freqM, peakM, locs(m), deviationInFrequency); tempSet = HarmonicSet(fN, fM, deviationInFrequency, fLow, fHigh); else tempSet = []; break; end else fJ.freq = (locs(j)-1)*obj.config.SAMPLE_RATE/obj.config.FFT_LENGTH; fJ.peakValue = (psd(locs(j))); fJ.index = locs(j); % Try to add next frequency to set if(tempSet.tryAddFreqFromHigh(fJ)) end end end % Search the other direction % Try to add frequencies if(n > 1 && ( numel(tempSet) > 0 )) %fprintf('index n: %d m: %d j: %d\n',n, m, j); for K = flip(locs(1:n-1))' fK.freq = (K-1)*obj.config.SAMPLE_RATE/obj.config.FFT_LENGTH; fK.peakValue = (psd(K)); fK.index = K; tempSet.tryAddFreqFromLow(fK); end end if( j == length(locs)) %fprintf('try save sets %d countf %d\n',numberOfSets, tempSet.frequencyCount); if(isempty(tempSet)) elseif(numberOfSets == 0 && (tempSet.numFrequencies >= MIN_REQUIRED_HARMONICS)) numberOfSets = 1; set = tempSet; % Only keep sets that have more than MIN_REQUIRED_HARMONICS % harmonic frequencies elseif(tempSet.numFrequencies >= MIN_REQUIRED_HARMONICS) numberOfSets = numberOfSets + 1; set(numberOfSets) = tempSet; tempSet = []; end end end end if(numberOfSets == 0) if(obj.config.DEBUG_INFO) disp('No Sets found, try do adjust dB level') end set = []; else % Remove all subsets %set = obj.removeAllSubsets2(set); % Flip frequency array in Harmonic set so that set always % start with the lower frequency for index = 1:length(set) set(index).flip(); end end % Store set to class if(obj.RESONANCE == type) obj.setResonance = set; elseif(obj.MAIN == type) obj.setMain = set; end setsFound = numel(set); end
github
ganlubbq/Signal-Processing-master
importDataVersion4.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/@ImportHandler/importDataVersion4.m
5,342
utf_8
f2b9870adc59c60749f6514c7db1a4f5
function [tm, numberOfRec, header] = importDataVersion4(obj, h, fileId) % Read file version. Based on version call correct handler % Expects that Labview data is little endian. % Header format % header.version uint8 % header.seqNo uint32 % header.dataType uint8 % header.pattern; uint8 % header.pulseLengthInTime; single % header.fLow; uint32 % header.fHigh; uint32 % header.gain; uint16 % header.sampleRate; uint32 % header.attenuation; uint8 % header.verticalRange; uint8 % header.noRec; uint16 % header.vPipe; uint16 errorMsg = 'Error reading header, Hit EOF'; % TODO: function should return a struct with information about % the emitted pulse. if( not(4 == h.version)) error('File version not supported'); end % SEQ NO [h.seqNo, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end % DATA TYPE: shotData or noise [h.dataType, count] = fread(fileId, 1,'uint8'); if count < 1 error(errorMsg); end % Pattern [h.pattern, count] = fread(fileId, 1,'uint8'); if count < 1 error(errorMsg); end [h.pulseLengthInTime, count] = fread(fileId, 1,'single'); if count < 1 error(errorMsg); end % F LOW [h.fLow, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end % F HIGH [h.fHigh, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end % Gain [h.gain, count] = fread(fileId, 1,'uint16'); if count < 1 error(errorMsg); end [h.sampleRate, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end [h.attenuation, count] = fread(fileId, 1,'uint8'); if count < 1 error(errorMsg); end [h.verticalRange, count] = fread(fileId, 1,'uint8'); if count < 1 error(errorMsg); end [h.numRec, count] = fread(fileId, 1,'uint16'); if count < 1 error(errorMsg); end numberOfRec = h.numRec; [h.vPipe, count] = fread(fileId, 1,'uint16'); if count < 1 error(errorMsg); end % Check number of transducer records if h.numRec < 1 fclose(fileId); error('File contain no records') end import ppPkg.TransducerMeasurement % Set header info header.setNo = h.seqNo; header.pulsePattern = h.pattern; header.pulseLength = h.sampleRate * h.pulseLengthInTime; header.dataType = h.dataType; header.fileVersion = h.version; % TODO: need to define data types for each field % startTimeRec single % numberOfSamples uint16 % xPos double % yPos double % zPos double % transducerId uint8 % samples single ( 4 bytes ) % TODO: Error handling: % How do we avoid corrupted data while reading? for n = 1:h.numRec; numberOfSamples = 0; % Create a new tm object. tm(n) = TransducerMeasurement; % Set common header data tm(n).sampleRate = h.sampleRate; tm(n).fLow = h.fLow; tm(n).fHigh = h.fHigh; % Set specific header data [tm(n).date, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end [tm(n).fireTime, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end [tm(n).startTimeRec, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end [numberOfSamples, count] = fread(fileId, 1,'uint16'); if count < 1 error(errorMsg); end % [tm(n).xPos, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end [tm(n).yPos, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end [tm(n).zPos, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end [tm(n).uPos, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end [tm(n).transducerId, count] = fread(fileId, 1,'uint8'); if count < 1 error(errorMsg); end % Read data [tm(n).signal, count] = fread(fileId, numberOfSamples,'single'); if count < numberOfSamples error(errorMsg); end end end
github
ganlubbq/Signal-Processing-master
importDataVersion1.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/@ImportHandler/importDataVersion1.m
4,718
utf_8
f31eb699831a09c3f8dd1447f150ea99
function [tm, numberOfRec, header] = importDataVersion1(obj, h, fileId) % Read file version. Based on version call correct handler % Expects that Labview data is little endian. % Header format % header.version uint8 % header.seqNo uint32 % header.dataType uint8 % header.pattern; uint16 % header.fLow; uint32 % header.fHigh; uint32 % header.gain; uint16 % header.sampleRate; uint32 % header.attenuation; uint16 % header.verticalRange; uint16 % header.noRec; uint16 % header.vPipe; uint16 % header.transducerType; uint16 errorMsg = 'Error reading header, Hit EOF'; if( not(obj.supportedFileVersion == h.version)) error('File version not supported'); end % SEQ NO [h.seqNo, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end % DATA TYPE: shotData or noise [h.dataType, count] = fread(fileId, 1,'uint8'); if count < 1 error(errorMsg); end % Pattern [h.pattern, count] = fread(fileId, 1,'uint8'); if count < 1 error(errorMsg); end % F LOW [h.fLow, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end % F HIGH [h.fHigh, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end % Gain [h.gain, count] = fread(fileId, 1,'uint16'); if count < 1 error(errorMsg); end [h.sampleRate, count] = fread(fileId, 1,'uint32'); if count < 1 error(errorMsg); end [h.attenuation, count] = fread(fileId, 1,'uint8'); if count < 1 error(errorMsg); end [h.verticalRange, count] = fread(fileId, 1,'uint8'); if count < 1 error(errorMsg); end [h.numRec, count] = fread(fileId, 1,'uint16'); if count < 1 error(errorMsg); end numberOfRec = h.numRec; [h.vPipe, count] = fread(fileId, 1,'uint16'); if count < 1 error(errorMsg); end % Check number of transducer records if h.numRec < 1 fclose(fileId); error('File contain no records') end import ppPkg.TransducerMeasurement % Set header info header.setNo = h.seqNo; header.pulsePattern = h.pattern; % Default for version 1 header.pulseLength = 0; % Default for version 1 header.dataType = h.dataType; header.fileVersion = h.version; % TODO: need to define data types for each field % transducerId uint16 % startTime uint16 % numSamples uint16 % xPos int16 ( single? ) % yPos int16 % zPos int16 % samples single ( 4 bytes ) % TODO: Error handling: % How do we avoid corrupted data while reading? for n = 1:h.numRec; numberOfSamples = 0; % Create a new tm object. tm(n) = TransducerMeasurement; % Set common header data tm(n).sampleRate = h.sampleRate; tm(n).fLow = h.fLow; tm(n).fHigh = h.fHigh; % Set specific header data [tm(n).startTimeRec, count] = fread(fileId, 1,'single'); if count < 1 error(errorMsg); end [numberOfSamples, count] = fread(fileId, 1,'uint16'); if count < 1 error(errorMsg); end % [tm(n).xPos, count] = fread(fileId, 1,'double'); if count < 1 error(errorMsg); end [tm(n).yPos, count] = fread(fileId, 1,'double'); if count < 1 error(errorMsg); end [tm(n).zPos, count] = fread(fileId, 1,'double'); if count < 1 error(errorMsg); end [tm(n).transducerId, count] = fread(fileId, 1,'uint8'); if count < 1 error(errorMsg); end % Read data [tm(n).signal, count] = fread(fileId, numberOfSamples,'single'); if count < numberOfSamples error(errorMsg); end end end
github
ganlubbq/Signal-Processing-master
guaranteedEllipseFit.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/@EllipseFit/guaranteedEllipseFit.m
7,011
utf_8
b971e2ffc43ddbc2156a2ecc3cea081d
% Function: guaranteedEllipseFit % % This function implements the ellipse fitting algorithm described in % Z.Szpak, W. Chojnacki and A. van den Hengel % "Guaranteed Ellipse Fitting with the Sampson Distance" % Proc. 12th European Conference on Computer Vision. ECCV % Firenze,Italy, oct, 2012 % % Parameters: % % t - an initial seed for parameters [a b c d e f] associated with % the equation a x^2 + b x y + c y^2 + d x + e y + f = 0 % data_points - a 2xN matrix where N is the number of data points % % Returns: % % a length-6 vector [a b c d e f] representing the parameters of the equation % % a x^2 + b x y + c y^2 + d x + e y + f = 0 % % with the additional result that b^2 - 4 a c < 0. % % See Also: % % compute_guaranteedellipse_estimates % levenbergMarquardtStep % lineSearchStep % % Zygmunt L. Szpak (c) 2012 % Last modified 25/7/2012 function [theta] = guaranteedEllipseFit(obj, t, data_points ) % various variable initialisations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % primary loop variable keep_going = true; % determines whether we use LineSearchStep or LevenbergMarquadtStep struct.use_pseudoinverse = false; % in some case a LevenbergMarquardtStep does not decrease the cost % function and so the parameters (theta) are not updated struct.theta_updated = false; % damping parameter in LevenbergMarquadtStep struct.lambda = 0.01; % loop counter (matlab arrays start at index 1, not index 0) struct.k = 1; % used to modify the tradeoff between gradient descent and hessian based % descent in LevenbergMarquadtStep struct.damping_multiplier = 1.2; % used in LineSearchStep struct.gamma = 0.00005; % number of data points struct.numberOfPoints = length(data_points); % barrier term that forces parameters to stay in elliptic region Fprim = [0 0 2; 0 -1 0; 2 0 0]; struct.F = [Fprim zeros(3,3); zeros(3,3) zeros(3,3)]; struct.I = eye(6,6); % homotopy parameters that weighs contribution of barrier term struct.alpha = 1e-3; % data points that we are going to fit an ellipse to struct.data_points = data_points; % various parameters that determine stopping criteria %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % maximum loop iterations maxIter = 200; % step-size tolerance struct.tolDelta = 1e-7; % cost tolerance struct.tolCost = 1e-7; % parameter tolerance struct.tolTheta = 1e-7; % various initial memory allocations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % allocate space for cost of each iteration struct.cost = zeros(1,maxIter); % allocate space for the parameters of each iteration struct.t = zeros(6,maxIter); % allocate space for the parameter direction of each iteration struct.delta = zeros(6,maxIter); % make parameter vector a unit norm vector for numerical stability t = t / norm(t); % store the parameters associated with the first iteration struct.t(:,struct.k) = t; % start with some random search direction (here we choose all 1's) % we can initialise with anything we want, so long as the norm of the % vector is not smaller than tolDeta. The initial search direction % is not used in any way in the algorithm. struct.delta(:,struct.k) = ones(6,1); % main estimation loop while (keep_going && struct.k < maxIter) % allocate space for residuals (+1 to store barrier term) struct.r = zeros(struct.numberOfPoints+1,1); % allocate space for the jacobian matrix based on AML component struct.jacobian_matrix = zeros(struct.numberOfPoints,6); % allocate space for the jacobian matrix based on Barrier component struct.jacobian_matrix_barrier = zeros(1,6); % grab the current parameter estimates t = struct.t(:,struct.k); % residuals computed on data points for i = 1:struct.numberOfPoints m = data_points(:,i); % transformed data point ux_j = [m(1)^2 m(1)*m(2) m(2)^2 m(1) m(2) 1]'; % derivative of transformed data point dux_j =[2*m(1) m(2) 0 1 0 0; 0 m(1) 2*m(2) 0 1 0]'; % outer product A = ux_j * ux_j'; % use identity covs ... B = dux_j * dux_j'; tBt = t' * B * t; tAt = t' * A * t; % AML cost for i'th data point struct.r(i) = sqrt(tAt/tBt); % derivative AML component M = (A / tBt); Xbits = B * ((tAt) / (tBt^2)); X = M - Xbits; % gradient for AML cost function grad = (X*t) / sqrt((tAt/tBt)); % build up jacobian matrix struct.jacobian_matrix(i,:) = grad; end % Barrier term tIt = t' * struct.I * t; tFt = t' * struct.F * t; % add the penalty term struct.r(end) = struct.alpha*(tIt/tFt); % Derivative barrier component N = (struct.I / tFt); Ybits = struct.F * ((tIt) / (tFt)^2); Y = N-Ybits; grad_penalty = 2*struct.alpha*Y*t; struct.jacobian_matrix_barrier(1,:) = grad_penalty; % Jacobian matrix after combining AML and barrier terms struct.jacobian_matrix_full = [struct.jacobian_matrix ; struct.jacobian_matrix_barrier]; % approximate Hessian matrix struct.H = struct.jacobian_matrix_full'* struct.jacobian_matrix_full; % sum of squares cost for the current iteration %struct.cost(k) = 0.5*(struct.r'*struct.r); struct.cost(struct.k) = (struct.r'*struct.r); % If we haven't overshot the barrier term then we use LevenbergMarquadt % step if (~struct.use_pseudoinverse) struct = levenbergMarquardtStep(obj, struct); else struct = lineSearchStep(obj, struct); end % Check if the latest update overshot the barrier term if (struct.t(:,struct.k+1)' * struct.F * struct.t(:,struct.k+1) <= 0) % from now onwards we will only use lineSearchStep to ensure % that we do not overshoot the barrier struct.use_pseudoinverse = true; struct.lambda = 0; struct.t(:,struct.k+1) = struct.t(:,struct.k); if (struct.k > 1) struct.t(:,struct.k) = struct.t(:,struct.k-1); end 1; % Check for various stopping criteria to end the main loop elseif (min(norm(struct.t(:,struct.k+1)-struct.t(:,struct.k)),norm(struct.t(:,struct.k+1)+struct.t(:,struct.k))) < struct.tolTheta && struct.theta_updated) keep_going = false; elseif (abs(struct.cost(struct.k) - struct.cost(struct.k+1)) < struct.tolCost && struct.theta_updated) keep_going = false; elseif (norm(struct.delta(:,struct.k+1)) < struct.tolDelta && struct.theta_updated) keep_going = false; end struct.k = struct.k + 1; end 1; theta = struct.t(:,struct.k); theta = theta / norm(theta); end
github
ganlubbq/Signal-Processing-master
levenbergMarquardtStep.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/@EllipseFit/levenbergMarquardtStep.m
6,160
utf_8
1120ba6cf4b82e344e57b31cc3dac075
% Function: levenbergMarquardtStep % % This function is used in the main loop of guaranteedEllipseFit in the process % of minimizing an approximate maximum likelihood cost function of an % ellipse fit to data. It computes an update for the parameters % representing the ellipse, using the method of Levenberg-Marquardt for % non-linear optimisation. % See: http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm % % Parameters: % % struct - a data structure containing various parameters % needed for the optimisation process. % % Returns: % % the same data structure 'struct', except that relevant fields have been updated % % See Also: % % guaranteedEllipseFit % % Zygmunt L. Szpak (c) 2012 % Last modified 25/7/2012 function struct = levenbergMarquardtStep(obj, struct ) % extract variables from data structure jacobian_matrix = struct.jacobian_matrix; jacobian_matrix_barrier = struct.jacobian_matrix_barrier; r = struct.r; I = struct.I; lambda = struct.lambda; delta = struct.delta(struct.k); damping_multiplier = struct.damping_multiplier; F = struct.F; I = struct.I; t = struct.t(:,struct.k); current_cost = struct.cost(struct.k); alpha = struct.alpha; data_points = struct.data_points; numberOfPoints = struct.numberOfPoints; % compute two potential updates for theta based on different weightings of % the identity matrix. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % jacobian (vector), r(t)'d/dtheta[r(t)] jacob = [jacobian_matrix ; jacobian_matrix_barrier]'*r; %tIt = t' * I * t; tFt = t' * F * t; % We solve for the new update direction in a numerically careful manner % If we didn't worry about numerical stability then we would compute % the first new search direction like this: % update_a = - (H+lambda*I)\jacob; % But close to the barrier between ellipses and hyperbolas we may % experience numerical conditioning problems due to the nature of the % barrier term itself. Hence we perform the calculation in a % numerically more stable way with Z_a = [((jacobian_matrix'*jacobian_matrix) + lambda*I) tFt^4*(jacobian_matrix_barrier'*jacobian_matrix_barrier) ; I -(tFt)^4*I]; zz_a = -[jacob ; zeros(6,1)]; update_a = Z_a\zz_a; % drop the nuisance parameter components update_a = update_a(1:6); % In a similar fashion, the second potential search direction could be % computed like this: % update_b = - (H+(lambda/v)*I)\jacob % but instead we computed it with Z_b = [((jacobian_matrix'*jacobian_matrix) + (lambda/damping_multiplier)*I) tFt^4*(jacobian_matrix_barrier'*jacobian_matrix_barrier) ; I -(tFt)^4*I]; zz_b = -[jacob ; zeros(6,1)]; update_b = Z_b\zz_b; % drop the nuisance parameter components update_b = update_b(1:6); % the potential new parameters are then t_potential_a = t + update_a; t_potential_b = t + update_b; % compute new residuals and costs based on these updates %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % residuals computed on data points cost_a = 0; cost_b = 0; for i = 1:numberOfPoints m = data_points(:,i); % transformed data point ux_j = [m(1)^2 m(1)*m(2) m(2)^2 m(1) m(2) 1]'; % derivative of transformed data point dux_j =[2*m(1) m(2) 0 1 0 0; 0 m(1) 2*m(2) 0 1 0]'; % outer product A = ux_j * ux_j'; % use identity covs ... B = dux_j * dux_j'; t_aBt_a = t_potential_a' * B * t_potential_a; t_aAt_a = t_potential_a' * A * t_potential_a; t_bBt_b = t_potential_b' * B * t_potential_b; t_bAt_b = t_potential_b' * A * t_potential_b; % AML cost for i'th data point cost_a = cost_a + t_aAt_a/t_aBt_a ; cost_b = cost_b + t_bAt_b/t_bBt_b ; end % Barrier term t_aIt_a = t_potential_a' * I * t_potential_a; t_aFt_a = t_potential_a' * F * t_potential_a; t_bIt_b = t_potential_b' * I * t_potential_b; t_bFt_b = t_potential_b' * F * t_potential_b; % add the barrier term cost_a = cost_a + (alpha*(t_aIt_a/t_aFt_a))^2; cost_b = cost_b + (alpha*(t_bIt_b/t_bFt_b))^2; % determine appropriate damping and if possible select an update if (cost_a >= current_cost && cost_b >= current_cost) % neither update reduced the cost struct.theta_updated = false; % no change in the cost struct.cost(struct.k+1) = current_cost; % no change in parameters struct.t(:,struct.k+1) = t; % no changes in step direction struct.delta(:,struct.k+1) = delta; % next iteration add more Identity matrix struct.lambda = lambda * damping_multiplier; elseif (cost_b < current_cost) % update 'b' reduced the cost function struct.theta_updated = true; % store the new cost struct.cost(struct.k+1) = cost_b; % choose update 'b' struct.t(:,struct.k+1) = t_potential_b / norm(t_potential_b); % store the step direction struct.delta(:,struct.k+1) = update_b'; % next iteration add less Identity matrix struct.lambda = lambda / damping_multiplier; else % update 'a' reduced the cost function struct.theta_updated = true; % store the new cost struct.cost(struct.k+1) = cost_a; % choose update 'a' struct.t(:,struct.k+1) = t_potential_a / norm(t_potential_a); % store the step direction struct.delta(:,struct.k+1) = update_a'; % keep the same damping for the next iteration struct.lambda = lambda; end % return a data structure containing all the updates struct; end
github
ganlubbq/Signal-Processing-master
compute_directellipse_estimates.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/@EllipseFit/compute_directellipse_estimates.m
2,286
utf_8
f7046187cec5532b1043fdba910dfbbe
% Function: compute_directellipse_estimates % % This function is a wrapper for the numerically stable direct ellipse fit % due to % % R. Halif and J. Flusser % "Numerically stable direct least squares fitting of ellipses" % Proc. 6th International Conference in Central Europe on Computer Graphics and Visualization. WSCG '98 % Czech Republic,125--132, feb, 1998 % % which is a modificaiton of % % A. W. Fitzgibbon, M. Pilu, R. B. Fisher % "Direct Least Squares Fitting of Ellipses" % IEEE Trans. PAMI, Vol. 21, pages 476-480 (1999) % % It first shifts all the data points to a new % coordinate system so that the origin of the coordinate system is at the % center of the data points, and then scales all data points so that they % lie more or less within a unit box. It is within this transformed % coordinate system that the ellipse is estimated. The resulting ellipse % parameters are then transformed back to the original data space. % % Parameters: % % dataPts - a 2xN matrix where N is the number of data points % % Returns: % % a length-6 vector [a b c d e f] representing the parameters of the equation % % a x^2 + b x y + c y^2 + d x + e y + f = 0 % % with the additional result that b^2 - 4 a c < 0. % % See Also: % % compute_guaranteedellipse_estimates % % Zygmunt L. Szpak (c) 2012 % Last modified 25/7/2012 function [theta] = compute_directellipse_estimates(obj, data_points) % grab data points x = data_points; n = length(x); % Need homogenous coordinates for normalize_transform function x = [ x; ones( 1, n ) ]; % hartley normalise the data [x, T] = normalise2dpts(obj, x); % Direct Ellipse Fit %----------------------------------------------------- normalised_data = x; theta = direct_ellipse_fit(obj, normalised_data); theta = theta / norm(theta); %----------------------------------------------------- a = theta(1); b = theta(2) ; c = theta(3) ; d = theta(4) ; e = theta(5); f = theta(6); C = [a b/2 d/2 ; b/2 c e/2; d/2 e/2 f]; % denormalise C C = T'*C*T; aa = C(1,1); bb = C(1,2)*2; dd = C(1,3)*2; cc = C(2,2); ee = C(2,3)*2; ff = C(3,3); theta = [aa bb cc dd ee ff]'; theta = theta / norm(theta); end
github
ganlubbq/Signal-Processing-master
lineSearchStep.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/@EllipseFit/lineSearchStep.m
4,119
utf_8
2a62d73c853d11f08b5e04bb4cc25115
% Function: lineSearchStep % % This function is used in the main loop of guaranteedEllipseFit in the process % of minimizing an approximate maximum likelihood cost function of an % ellipse fit to data. It computes an update for the parameters % representing the ellipse, using the pseudo-inverse of a Gauss-Newton % approximation of the Hessian matrix. It then performs an inexact % line search to determine how far to move along the update direction % so that the resulting fit is still an ellipse. % % Parameters: % % struct - a data structure containing various parameters % needed for the optimisation process. % % Returns: % % the same data structure 'struct', except that relevant fields have been updated % % See Also: % % guaranteedEllipseFit % % Zygmunt L. Szpak (c) 2012 % Last modified 25/7/2012 function struct = lineSearchStep( obj, struct ) % extract variables from data structure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t = struct.t(:,struct.k); jacobian_matrix = struct.jacobian_matrix; jacobian_matrix_barrier = struct.jacobian_matrix_barrier; r = struct.r; I = struct.I; lambda = struct.lambda; delta = struct.delta(struct.k); tolDelta = struct.tolDelta; damping_multiplier = struct.damping_multiplier; F = struct.F; I = struct.I; current_cost = struct.cost(struct.k); data_points = struct.data_points; alpha = struct.alpha; gamma = struct.gamma; numberOfPoints = struct.numberOfPoints; % jacobian (vector), r(t)'d/dtheta[r(t)] jacob = [jacobian_matrix ; jacobian_matrix_barrier]'*r; tFt = t' * F * t; % We solve for the new update direction in a numerically careful manner % If we didn't worry about numerical stability then we would compute % the first new search direction like this: % update = - pinv(H)*jacob; % But close to the barrier between ellipses and hyperbolas we may % experience numerical conditioning problems due to the nature of the % barrier term itself. Hence we perform the calculation in a % numerically more stable way with Z = [((jacobian_matrix'*jacobian_matrix) + lambda*I) tFt^4*(jacobian_matrix_barrier'*jacobian_matrix_barrier) ; I -(tFt)^4*I]; zz = -[jacob ; zeros(6,1)]; update = pinv(Z,1e-20)*zz; % drop the nuisance parameter components update = update(1:6); % there is no repeat...until construct so we use a while-do frac = 0.5; while true % compute potential update t_potential = t + frac*update; delta = frac*update; % halve the step-size frac = frac / 2 ; % compute new residuals on data points cost = 0; for i = 1:numberOfPoints m = data_points(:,i); % transformed data point ux_j = [m(1)^2 m(1)*m(2) m(2)^2 m(1) m(2) 1]'; % derivative of transformed data point dux_j =[2*m(1) m(2) 0 1 0 0; 0 m(1) 2*m(2) 0 1 0]'; % outer product A = ux_j * ux_j'; % use identity covs ... B = dux_j * dux_j'; tBt = t_potential' * B * t_potential; tAt = t_potential' * A * t_potential; % AML cost for i'th data point cost = cost + tAt/tBt ; end % Barrier term tIt = t_potential' * I * t_potential; tFt = t_potential' * F * t_potential; % add the barrier term cost = cost + (alpha*(tIt/tFt))^2; % check to see if cost function was sufficiently decreased, and whether % the estimate is still an ellipse. Additonally, if the step size % becomes too small we stop. if (t_potential'* F * t_potential > 0 && (cost < (1-frac*gamma)*current_cost) || norm(delta) < tolDelta) break; end end struct.theta_update = true; struct.t(:,struct.k+1) = t_potential / norm(t_potential); struct.delta(:,struct.k+1) = delta; struct.cost(struct.k+1) = cost; % return a data structure with all the updates struct; end
github
ganlubbq/Signal-Processing-master
direct_ellipse_fit.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/@EllipseFit/direct_ellipse_fit.m
1,238
utf_8
b911503812da4726e5ba06646fbee602
% This code is an implementation of the following paper % % R. Halif and J. Flusser % Numerically stable direct least squares fitting of ellipses % Proc. 6th International Conference in Central Europe on Computer Graphics and Visualization. WSCG '98 % Czech Republic,125--132, feb, 1998 function a = direct_ellipse_fit(obj, data) x = data(1,:)'; y = data(2,:)'; D1 = [x .^ 2, x .* y, y .^ 2]; % quadratic part of the design matrix D2 = [x, y, ones(size(x))]; % linear part of the design matrix S1 = D1' * D1; % quadratic part of the scatter matrix S2 = D1' * D2; % combined part of the scatter matrix S3 = D2' * D2; % linear part of the scatter matrix T = - inv(S3) * S2'; % for getting a2 from a1 M = S1 + S2 * T; % reduce scatter matrix M = [M(3, :) ./2; - M(2, :); M(1, :) ./2]; % premultiply by inv(C1) [evec, evalue] = eig(M); % solve eigensystem cond = 4 * evec(1, :) .* evec(3, :) - evec(2, :) .^ 2; % evaluate a'Ca al = evec(:, find(cond > 0)); % eigenvector for min. pos. eigenvalue a = [al; T * al]; % ellipse coefficients a = a/norm(a); end
github
ganlubbq/Signal-Processing-master
compute_guaranteedellipse_estimates.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/@EllipseFit/compute_guaranteedellipse_estimates.m
2,809
utf_8
b8db968f07ea32b64e821728f52ac58d
% Function: compute_guaranteedellipse_estimates % % This function is a wrapper for an approximate maximum likelihood guaranteed % ellipse fit due to % % Z.Szpak, W. Chojnacki and A. van den Hengel % "Guaranteed Ellipse Fitting with the Sampson Distance" % Proc. 12th European Conference on Computer Vision. ECCV % Firenze,Italy, oct, 2012 % % It first shifts all the data points to a new coordinate system so that % the origin of the coordinate system is at the center of the data points, % and then scales all data points so that they lie more or less within % a unit box. It is within this transformed coordinate system that the % ellipse is estimated. Since the approximate maximum likelihood method % is an iterative scheme, it requires an initial seed for the parameters. % The seed is taken to be the direct ellipse fit due to % % R. Halif and J. Flusser % "Numerically stable direct least squares fitting of ellipses" % Proc. 6th International Conference in Central Europe on Computer Graphics and Visualization. WSCG '98 % Czech Republic,125--132, feb, 1998 % % Their work is a numerically stable version of % % A. W. Fitzgibbon, M. Pilu, R. B. Fisher % "Direct Least Squares Fitting of Ellipses" % IEEE Trans. PAMI, Vol. 21, pages 476-480 (1999) % % The final ellipse parameters estimates are transformed % back to the original data space. % % Parameters: % % dataPts - a 2xN matrix where N is the number of data points % % Returns: % % a length-6 vector [a b c d e f] representing the parameters of the equation % % a x^2 + b x y + c y^2 + d x + e y + f = 0 % % with the additional result that b^2 - 4 a c < 0. % % See Also: % % compute_directellipse_estimates % guaranteedEllipseFit % % Zygmunt L. Szpak (c) 2012 % Last modified 25/7/2012 function [theta] = compute_guaranteedellipse_estimates(obj, data_points) x = data_points; n = length(x); % Need homogenous coordinates for normalize_transform function x = [ x; ones( 1, n ) ]; % hartley normalise the data [x, T] = normalise2dpts(obj, x); % Flusser Fit %----------------------------------------------------- normalised_data = x; theta = direct_ellipse_fit(obj, normalised_data); theta = theta / norm(theta); %----------------------------------------------------- theta = guaranteedEllipseFit(obj, theta, x ); theta = theta/norm(theta); a = theta(1); b = theta(2) ; c = theta(3) ; d = theta(4) ; e = theta(5); f = theta(6); C = [a b/2 d/2 ; b/2 c e/2; d/2 e/2 f]; % denormalise C C = T'*C*T; aa = C(1,1); bb = C(1,2)*2; dd = C(1,3)*2; cc = C(2,2); ee = C(2,3)*2; ff = C(3,3); theta = [aa bb cc dd ee ff]'; theta = theta / norm(theta); end
github
ganlubbq/Signal-Processing-master
normalise2dpts.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/+ppPkg/@EllipseFit/normalise2dpts.m
2,435
utf_8
69ae603cd7c0fa17b28fd805ea19cfb4
% NORMALISE2DPTS - normalises 2D homogeneous points % % Function translates and normalises a set of 2D homogeneous points % so that their centroid is at the origin and their mean distance from % the origin is sqrt(2). This process typically improves the % conditioning of any equations used to solve homographies, fundamental % matrices etc. % % Usage: [newpts, T] = normalise2dpts(pts) % % Argument: % pts - 3xN array of 2D homogeneous coordinates % % Returns: % newpts - 3xN array of transformed 2D homogeneous coordinates. The % scaling parameter is normalised to 1 unless the point is at % infinity. % T - The 3x3 transformation matrix, newpts = T*pts % % If there are some points at infinity the normalisation transform % is calculated using just the finite points. Being a scaling and % translating transform this will not affect the points at infinity. % Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/~pk % % May 2003 - Original version % February 2004 - Modified to deal with points at infinity. % December 2008 - meandist calculation modified to work with Octave 3.0.1 % (thanks to Ron Parr) function [newpts, T] = normalise2dpts(obj, pts) if size(pts,1) ~= 3 error('pts must be 3xN'); end % Find the indices of the points that are not at infinity finiteind = find(abs(pts(3,:)) > eps); if length(finiteind) ~= size(pts,2) warning('Some points are at infinity'); end % For the finite points ensure homogeneous coords have scale of 1 pts(1,finiteind) = pts(1,finiteind)./pts(3,finiteind); pts(2,finiteind) = pts(2,finiteind)./pts(3,finiteind); pts(3,finiteind) = 1; c = mean(pts(1:2,finiteind)')'; % Centroid of finite points newp(1,finiteind) = pts(1,finiteind)-c(1); % Shift origin to centroid. newp(2,finiteind) = pts(2,finiteind)-c(2); dist = sqrt(newp(1,finiteind).^2 + newp(2,finiteind).^2); meandist = mean(dist(:)); % Ensure dist is a column vector for Octave 3.0.1 scale = sqrt(2)/meandist; T = [scale 0 -scale*c(1) 0 scale -scale*c(2) 0 0 1 ]; newpts = T*pts;
github
ganlubbq/Signal-Processing-master
processHydrophoneDataLinearFromCsv.m
.m
Signal-Processing-master/release_version_0.9_Fraunhofer/matlab/labTestScripts/processHydrophoneDataLinearFromCsv.m
3,820
utf_8
3a2bc5cc40fec8ebd09584dfa8a894f7
function [ meanArray ] = processHydrophoneDataLinearFromCsv( folderName ) %% Import data from text file. % Script for importing data from the following text file: % % D:\scan\hydrophone_scans\CSV\4MHz\4M_20.csv % % To extend the code to different selected data or a different text file, % generate a function instead of a script. % Auto-generated by MATLAB on 2016/08/05 08:41:02 %% Initialize variables. %filename = 'D:\scan\hydrophone_scans\CSV\4MHz\4M_20.csv'; [scan, numScan] = importDataFromCsv(folderName); %% Use moving average filter to smooth the data points N = 8; b = (1/N)*ones(1, N); a = 1 for index = 1:numScan scanFilt(index,:) = filtfilt(b, a, scan(index,:)); end %% % figure % plot(scanFilt(5,:)) % hold on % plot(scan(5,:)) % grid on for index = 1:numScan signalSegment = scanFilt(index,8000:end); peakDistance = 200; % Calculate 6 max and min peaks for signal [maxPeaks, locsMax, minPeaks, locsMin] = findMaxAndMinPeaks(signalSegment, peakDistance); % Sum max and min to calculate "peak2peak" value peak2peakArray = maxPeaks - minPeaks; % Calculate mean meanArray(index) = mean(peak2peakArray); end end function [maxPeaks, locsMax, minPeaks, locsMin] = findMaxAndMinPeaks(signalSegment, peakDistance) peakDistanceModified = peakDistance; signalSegment_interp = signalSegment; [pksMax, locsMax] = findpeaks(signalSegment_interp,'MinPeakDistance', peakDistanceModified); %findpeaks(signalSegment_interp,'MinPeakDistance', peakDistanceModified); [pksMin, locsMin] = findpeaks(-signalSegment_interp,'MinPeakDistance', peakDistanceModified); %findpeaks(-signalSegment_interp,'MinPeakDistance', peakDistanceModified); % Only keep peaks 3 to 8 if((length(pksMax) >= 17 && (length(pksMin) >= 17))) maxPeaks = pksMax(5:12); minPeaks = -pksMin(5:12); locsMax = locsMax(5:12); locsMin = locsMin(5:12); elseif(length(pksMax) > 2) error('Error Should find more than 17 peaks') lengthMax = length(pksMax); lengthMin = length(pksMin); if(lengthMax > lengthMin) maxLength = lengthMin; else maxLength = lengthMax; end maxPeaks = pksMax(1:maxLength); minPeaks = -pksMin(1:maxLength); locsMax = locsMax(1:maxLength); locsMin = locsMin(1:maxLength); else error('Error in finding peaks') end end function [scan, numScan] = importDataFromCsv(folderName) delimiter = ''; startRow = 2; %% listing = dir(folderName); % Read data filename into dataFiles cell array fileIndex = 1; for index = 1:size(listing,1) if(0 == listing(index).isdir) dataFiles(fileIndex) = cellstr(listing(index).name); fileIndex = fileIndex + 1; end end dataFiles = sort(dataFiles'); %% %% Format string for each line of text: % column1: double (%f) % For more information, see the TEXTSCAN documentation. formatSpec = '%f%[^\n\r]'; scan = zeros(length(dataFiles), 12500); for index = 1:length(dataFiles) filename = char(strcat('D:\scan\hydrophone_scans\CSV\4MHz\',dataFiles(index))); fileID = fopen(filename,'r'); dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'EmptyValue' ,NaN,'HeaderLines' ,startRow-1, 'ReturnOnError', false); fclose(fileID); scan(index,:) = dataArray{:, 1}; end numScan = length(dataFiles); end
github
sjgershm/exploration-master
barerrorbar.m
.m
exploration-master/util/barerrorbar.m
6,797
utf_8
75d58de8b06685309614932e0d5f14f9
function varargout = barerrorbar(varargin) % BARERRORBAR Create a bar plot with error bars. BARERRORBAR() uses the % MATLAB functions BAR() and ERRORBAR() and changes the 'XData' property % of the errorbar plot so that the error bars are plotted at the center % of each bar. This does not support "stack" bar plots. % % Syntax: varargout = barerrorbar(varargin) % % Inputs: % Method 1: Cell array method % varargin{1} - A cell array containing all of the inputs to be fed % to bar(). % varargin{2} - A cell array containing all of the inputs to be fed % to errorbar(). % Method 2: Simple Method % varargin{1} - The data to be plotted by bar(). % varargin{2} - The E input to errorbar(). % % Outputs: % varargout{1} - The handle to the bar plot. % varargout{2} - The handle to the errorbar plot. % % Examples: % x = 0.2*randn(3,4,100) + 1; % xMeans = mean(x,3); % xMeansConf = repmat(2*0.2/10,3,4); % xMeansL = repmat(3*0.2/10,3,4); % xMeansU = repmat(4*0.2/10,3,4); % % figure % barerrorbar(xMeans,xMeansConf); % % figure % barerrorbar({3:5,xMeans,'m'}, {repmat((3:5)',1,4),xMeans, xMeansL,xMeansU,'bx'}); % % figure % barerrorbar({3:5,xMeans,'k'}, {repmat((3:5)',1,4),xMeans, xMeansL,xMeansU,'bx'}); % hold on % barerrorbar({7:9,xMeans}, {repmat((7:9)',1,4),xMeans, 2*xMeansL,4*xMeansU,'d','color',[0.7 0.7 0.7]}); % % Other m-files required: none % Subfunctions: interpretinputs % MAT-files required: none % % See also: bar.m errorbar.m % Author: Kenneth D. Morton Jr. and J. Simeon Stohl % Revised by: Kenneth D. Morton Jr. % Duke University, Department of Electrical and Computer Engineering % Email Address: [email protected] % Created: 07-July-2005 % Last revision: 06-January-2006 % Check if hold is on startedWithHoldOn = ishold; [data, barInputs, errorbarInputs] = interpinputs(varargin); % Create the bar plot and keep the handles for later use. barHandles = bar(barInputs{:}); barHandlesStruct = get(barHandles); if ~startedWithHoldOn hold on else % Hold is already on so we need to check the XTick and save them. oldXTicks = get(gca,'XTick'); oldXTickLabels = get(gca,'XTickLabel'); end % Find out the bar width which is dependent on the number of bar sets and % the number of bars in each set. barWidth = barHandlesStruct(1).BarWidth; errorbarHandles = errorbar(errorbarInputs{:}); % The crazy stuff to find the bar centers. Some of it is how bar.m does it. [nGroups, nBarsPerGroup] = size(data); for iBpg = 1:nBarsPerGroup groupMembership(:,iBpg) = barHandlesStruct(iBpg).XData; end groupWidth = min(0.8, nBarsPerGroup/(nBarsPerGroup+1.5)); groupLocs = groupMembership(:,1); distanceToNearestGroup = zeros(1,nGroups); if nGroups > 1 for iGroup = 1:nGroups distanceToNearestGroup(iGroup) = ... min(abs(groupLocs(iGroup)-... groupLocs(groupLocs~=groupLocs(iGroup)))); end end groupWidth = groupWidth*min(distanceToNearestGroup); barGap = (nGroups - 1) * groupWidth / (nGroups-1) / nBarsPerGroup; almostCenters = (0:nBarsPerGroup-1)'.*barGap - 0.5*barGap*nBarsPerGroup; relativeCenters = almostCenters + mean([(1-barWidth)/2.*barGap; (1+barWidth)/2.*barGap]); centers = repmat(relativeCenters',nGroups,1) + groupMembership; % Change the XData of the errorbars to be at our bar centers. for iBpg = 1:nBarsPerGroup set(errorbarHandles(iBpg),'XData',centers(:,iBpg)); end % Turn hold off if it wasn't on to begin with if ~startedWithHoldOn hold off else % Set the XTick and XTickLabels to inlcude the old and new information. newXTicks = groupMembership(:,1); newXTickLabels = num2str(newXTicks); set(gca,'XTick',sort(unique([oldXTicks newXTicks']))); if ischar(oldXTickLabels) % If this is a string then they are probably default so update with % the new additions. set(gca,'XTickLabel',[oldXTickLabels; newXTickLabels]); end end % Prepare both sets of handles as outputs, if requested. if nargout > 0 varargout{1} = barHandles; end if nargout > 1 varargout{2} = errorbarHandles; end colormap(linspecer); % End of barerrorbar() %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data, barInputs, errorbarInputs] = interpinputs(inCell) % Interperate the inputs so that they can be used in barerrorbar(). Make % two different possibilities based on the type of inputs. % Method 1: Cell array method. % varargin{1} - A cell array containing all of the inputs to be fed % to bar(). % varargin{2} - A cell array containing all of the inputs to be fed % to errorbar(). % Method 2: Simple Method % varargin{1} - The data to be plotted by bar(). % varargin{2} - The data to be plotted by errorbar(). if iscell(inCell{1}) % We have entered Method 1 barInputs = inCell{1}; if length(barInputs) > 2 data = barInputs{2}; elseif length(barInputs) < 2 data = barInputs{1}; elseif length(barInputs) == 2 if ischar(barInputs{2}) data = barInputs{1}; else data = barInputs{2}; end end else barInputs = {inCell{1}}; data = inCell{1}; nRows = size(barInputs{1},1); if nRows == 1 barInputs{1} = barInputs{1}'; end end %Plot black dot errorbars for the default. if iscell(inCell{2}) errorbarInputs = inCell{2}; else errorbarInputs = {inCell{1}, inCell{2}, 'k.','LineWidth',2}; end if length(inCell) > 2 error(['Too many input arguments.' ... ' Try using the cell array input method.']); end % Search for the 'stack' option in the bar inputs for iBI = 1:length(barInputs) if ischar(barInputs{iBI}) if strcmpi(barInputs{iBI},'stack') error('barerrorbar() does not support "stack" bar plots.') end end end