plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
BII-wushuang/FLLIT-master
train_boost_hd.m
.m
FLLIT-master/src/KernelBoost-v0.1/train_boost_hd.m
6,367
utf_8
d698663f6ad6929515c06eb563151f6f
% % samples_idx(:,1) => sample image no % samples_idx(:,2) => sample row % samples_idx(:,3) => sample column % samples_idx(:,4) => sample label (-1/+1) function [weak_learners] = train_boost_hd(params,data,hd,samples_idx) % Train a KernelBoost classifier on the given samples % the classifier combine the histogram discriptor % % authors: Carlos Becker, Roberto Rigamonti, CVLab EPFL % e-mail: name <dot> surname <at> epfl <dot> ch % web: http://cvlab.epfl.ch/ % date: February 2014 samples_no = size(samples_idx,1); weak_learners(params.wl_no).alpha = 0; labels = samples_idx(:,4); samples_idx = samples_idx(:,1:3); current_response = zeros(samples_no,1); [compute_wi,compute_ri,compute_loss,compute_indiv_loss,compute_2nd_deriv,mex_loss_type] = select_fncts(params,labels); W = compute_wi(current_response); R = compute_ri(current_response); train_scores = zeros(params.wl_no,3); for i_w = 1:params.wl_no t_wl = tic; fprintf(' Learning WL %d/%d\n',i_w,params.wl_no); % Indexes of the two training subparts T1_idx = sort(randperm(length(labels),params.T1_size),'ascend'); T2_idx = sort(randperm(length(labels),params.T2_size),'ascend'); [wr_idxs,wr_responses,wr_weights] = compute_wr(params,T1_idx,W,R,compute_indiv_loss,compute_2nd_deriv,labels,current_response); s_T1 = samples_idx(wr_idxs,1:3); s_T2 = samples_idx(T2_idx,1:3); features = cell(params.ch_no,1); kernels = cell(params.ch_no,1); kernel_params = cell(params.ch_no,1); for i_ch = 1:params.ch_no ch = params.ch_list{i_ch}; fprintf(' Learning channel %s (%d/%d)\n',ch,i_ch,params.ch_no); X = data.train.(ch).X(:,data.train.(ch).idxs); X_idxs = data.train.(ch).idxs; sub_ch_no = data.train.(ch).sub_ch_no; features{i_ch} = cell(sub_ch_no,1); kernels{i_ch} = cell(sub_ch_no,1); kernel_params{i_ch} = cell(sub_ch_no,1); % Learn the filters fprintf(' Learning filters on the sub-channels\n'); for i_s = 1:sub_ch_no t_sch = tic; fprintf(' Learning on subchannel %d/%d of channel %s\n',i_s,sub_ch_no,ch); [kernels{i_ch}{i_s},kernel_params{i_ch}{i_s}] = mexMultipleSmoothRegression(params,params.(ch),X(:,i_s),X_idxs,s_T1,wr_responses,wr_weights,i_ch,i_s,ch); sch_time = toc(t_sch); fprintf(' Completed, learned %d filters in %f seconds\n',length(kernels{i_ch}{i_s}),sch_time); t_ev = tic; fprintf(' Evaluating the filters learned on the subchannel\n'); features{i_ch}{i_s} = mexEvaluateKernels(X(:,i_s),s_T2(:,1:3),params.sample_size,kernels{i_ch}{i_s},kernel_params{i_ch}{i_s}); ev_time = toc(t_ev); fprintf(' Evaluation completed in %f seconds\n',ev_time); end end fprintf(' Merging features and kernels...\n'); [kernels,kernel_params,features] = merge_features_kernels(kernels,kernel_params,features); fprintf(' Done!\n'); % add the histogram discriptor hd1 = hd(T2_idx,:); features = [features,hd1]; fprintf(' Training regression tree on learned features...\n'); t_tr = tic; reg_tree = LDARegStumpTrain(single(features),R(T2_idx),W(T2_idx)/sum(W(T2_idx)),uint32(params.tree_depth)); time_tr = toc(t_tr); fprintf(' Done! (took %f seconds)\n',time_tr); fprintf(' Removing useless kernels...\n'); [weak_learners(i_w).kernels,weak_learners(i_w).kernel_params,weak_learners(i_w).reg_tree,... weak_learners(i_w).hd_feature] = remove_useless_filters_hd(reg_tree,kernels,kernel_params); t_ev = tic; fprintf(' Evaluating the learned kernels on the whole training set...\n'); features = zeros(length(labels),length(weak_learners(i_w).kernels)); for i_ch = 1:params.ch_no ch = params.ch_list{i_ch}; sub_ch_no = data.train.(ch).sub_ch_no; X = data.train.(ch).X(:,data.train.(ch).idxs); for i_s = 1:sub_ch_no idxs = find(cellfun(@(x)(x.ch_no==i_ch && x.sub_ch_no==i_s),weak_learners(i_w).kernel_params)); if (~isempty(idxs)) features(:,idxs) = mexEvaluateKernels(X(:,i_s),samples_idx(:,1:3),params.sample_size,weak_learners(i_w).kernels(idxs),weak_learners(i_w).kernel_params(idxs)); end end end ev_time = toc(t_ev); fprintf(' Evaluation completed in %f seconds\n',ev_time); % add the hd feature hd_aug = hd(:,weak_learners(i_w).hd_feature); features = [features,hd_aug]; fprintf(' Performing prediction on the whole training set...\n'); t_pr = tic; cached_responses = LDARegStumpPredict(weak_learners(i_w).reg_tree,single(features)); time_pr = toc(t_pr); fprintf(' Prediction finished, took %f seconds\n',time_pr); clear features; fprintf(' Finding alpha through line search...\n'); t_alp = tic; alpha = mexLineSearch(current_response,cached_responses,labels,mex_loss_type); time_alp = toc(t_alp); fprintf(' Good alpha found (alpha=%f), took %f seconds\n',alpha,time_alp); alpha = alpha * params.shrinkage_factor; current_response = current_response + alpha*cached_responses; W = compute_wi(current_response); R = compute_ri(current_response); weak_learners(i_w).alpha = alpha; MR = sum((current_response>0)~=(labels>0))/length(labels); fprintf(' Misclassif rate: %.2f | Loss: %f\n',100*MR,compute_loss(current_response)); train_scores(i_w,1) = 100*MR; train_scores(i_w,2) = compute_loss(current_response); train_scores(i_w,3) = alpha; wl_time = toc(t_wl); fprintf(' Learning WL %d took %f seconds\n------------------------------------------------\n\n',i_w,wl_time); end clf; figure(1); plot(1:params.wl_no,train_scores(:,1),'b') legend('MR'); saveas(gcf,fullfile(params.results_dir,'MR_train_scores.jpg'),'jpg'); figure(2); plot(1:params.wl_no,train_scores(:,2),'g'); legend('loss'); saveas(gcf,fullfile(params.results_dir,'LOSS_train_scores.jpg'),'jpg'); figure(3); plot(1:params.wl_no,train_scores(:,3),'r'); legend('alpha'); saveas(gcf,fullfile(params.results_dir,'ALPHA_train_scores.jpg'),'jpg'); end
github
pirovc/fgap-master
fgap.m
.m
fgap-master/fgap.m
66,228
utf_8
9568dac0e7f59e09c35645295dfbc255
% FGAP: an automated gap closing tool % Vitor C Piro, Helisson Faoro, Vinicius A Weiss, Maria BR Steffens, Fabio O Pedrosa, Emanuel M Souza and Roberto T Raittz % BMC Research Notes 2014, 7:371 doi:10.1186/1756-0500-7-371 % % The MIT License (MIT) % % Copyright (c) 2014 UFPR - Universidade Federal do Paraná (Vitor C. Piro - [email protected]) % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, including without limitation the rights % to use, copy, modify, merge, publish, distribute, sublicense, and/or sell % copies of the Software, and to permit persons to whom the Software is % furnished to do so, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR % IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE % AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, % OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN % THE SOFTWARE. % function [] = fgap(varargin) % Status: % s1 - Regions were not found in datasets % s2 - BLAST returned no significant results % s3 - Can not find significant alignments (pairs) % s4 - There were no pre-candidates in dataset % s5 - There were no candidates for closing % s6 - There were no compatible blast results %Inicia contador de tempo tic (); global minScore maxEValue minIdentity contigEndLength edgeTrimLength gapChar maxRemoveLength maxInsertLength ... blastAlignParam blastMaxResults threads outputPrefix moreOutput blastPath positiveGap zeroGap negativeGap ... plusBasesMoreOutput saveDatasetsPath loadDatasetsPath; minScore = 25; maxEValue = 1e-7; minIdentity = 70; contigEndLength = 300; edgeTrimLength = 0; maxRemoveLength = 500; maxInsertLength = 500; positiveGap = 1; zeroGap = 0; negativeGap = 0; gapChar = 'N'; blastPath = ''; blastAlignParam = '1,1,1,-3,15'; blastMaxResults = 200; threads = 1; moreOutput = 0; outputPrefix = 'output_fgap'; %%%%% VERSAO %%%%%%% global version; version = '1.8.1'; %%%%%%%%%%%%%%%%%%%% disp([repmat('-',1,42) 10 9 9 'FGAP v' version 10 repmat('-',1,42) 10]); %%%%%%%%%%%%%%%%%%%% %% Declaração %disp(num2str(nargin)); %disp(char(varargin)); if(nargin==1) showHelp(); return; elseif (nargin<4) disp('Not enough input arguments'); showHelp(); return; elseif (rem(nargin,2)~=0) disp('Incorrect number of arguments'); showHelp(); return; else okargs = {'-d','--draft-file',... '-a','--datasets-files',... '-S','--save-datasets',... '-L','--load-datasets',... '-s','--min-score', ... '-e','--max-evalue', ... '-i','--min-identity', ... '-C','--contig-end-length', ... '-T','--edge-trim-length', ... '-R','--max-remove-length', ... '-I','--max-insert-length', ... '-p','--positive-gap', ... '-z','--zero-gap', ... '-g','--negative-gap', ... '-c','--gap-char', ... '-b','--blast-path', ... '-l','--blast-alignment-parameters', ... '-r','--blast-max-results', ... '-t','--threads', ... '-m','--more-output', ... '-o','--output-prefix',... '-h','--help'}; % Caso possua argumentos que não pertencam a lista if length(setdiff(varargin(1:2:end),okargs(1:1:end)))>0 disp('Incorrect arguments'); showHelp(); return; else for i=1:2:nargin if(strcmp(varargin{i},'-d') || strcmp(varargin{i},'--draft-file')) draftFile = varargin{i+1}; elseif(strcmp(varargin{i},'-a') || strcmp(varargin{i},'--datasets-files')) datasetsFiles = varargin{i+1}; elseif(strcmp(varargin{i},'-s') || strcmp(varargin{i},'--min-score')) minScore = str2num(varargin{i+1}); elseif(strcmp(varargin{i},'-e') || strcmp(varargin{i},'--max-evalue')) maxEValue = str2num(varargin{i+1}); elseif(strcmp(varargin{i},'-i') || strcmp(varargin{i},'--min-identity')) minIdentity = str2num(varargin{i+1}); elseif(strcmp(varargin{i},'-C') || strcmp(varargin{i},'--contig-end-length')) contigEndLength = str2num(varargin{i+1}); elseif(strcmp(varargin{i},'-T') || strcmp(varargin{i},'--edge-trim-length')) edgeTrimLength = str2num(varargin{i+1}); elseif(strcmp(varargin{i},'-R') || strcmp(varargin{i},'--max-remove-length')) maxRemoveLength = str2num(varargin{i+1}); elseif(strcmp(varargin{i},'-I') || strcmp(varargin{i},'--max-insert-length')) maxInsertLength = str2num(varargin{i+1}); elseif(strcmp(varargin{i},'-p') || strcmp(varargin{i},'--positive-gap')) positiveGap = str2num(varargin{i+1}); elseif(strcmp(varargin{i},'-z') || strcmp(varargin{i},'--zero-gap')) zeroGap = str2num(varargin{i+1}); elseif(strcmp(varargin{i},'-g') || strcmp(varargin{i},'--negative-gap')) negativeGap = str2num(varargin{i+1}); elseif(strcmp(varargin{i},'-c') || strcmp(varargin{i},'--gap-char')) gapChar = varargin{i+1}; elseif(strcmp(varargin{i},'-b') || strcmp(varargin{i},'--blast-path')) blastPath = varargin{i+1}; elseif(strcmp(varargin{i},'-l') || strcmp(varargin{i},'--blast-alignment-parameters')) blastAlignParam = varargin{i+1}; elseif(strcmp(varargin{i},'-r') || strcmp(varargin{i},'--blast-max-results')) blastMaxResults = str2num(varargin{i+1}); elseif(strcmp(varargin{i},'-t') || strcmp(varargin{i},'--threads')) threads = str2num(varargin{i+1}); elseif(strcmp(varargin{i},'-m') || strcmp(varargin{i},'--more-output')) moreOutput = str2num(varargin{i+1}); elseif(strcmp(varargin{i},'-o') || strcmp(varargin{i},'--output-prefix')) outputPrefix = varargin{i+1}; end end end end % Quantidade de bases dos contigs ends no outputmore plusBasesMoreOutput = contigEndLength; % Salvar dataset para uso posterior saveDatasetsPath = ''; loadDatasetsPath = ''; %% Verificações if ~exist('draftFile','var') || ~exist('datasetsFiles','var') disp('Not enough input arguments'); return; elseif ~exist(draftFile,'file') disp(['File not found: ' draftFile]); return; elseif ~isFasta(draftFile) disp(['File is not in fasta format: ' draftFile]); return; else if(sum(regexp(datasetsFiles,','))==0 && isempty(datasetsFiles)) disp(['Wrong input arguments (use commas between datasets)']); return; end ds = regexp(datasetsFiles,',','split'); for dt = 1:length(ds) df = char(ds(dt)); if (length(ds)==1 && strcmp(df(end-8:end),'.datasets')) if ~exist([df '.mat'],'file') || ~exist([df '.nhr'],'file') || ~exist([df '.nin'],'file') || ~exist([df '.nsq'],'file') disp(['File(s) not found: ' df ' (.mat, .nhr, .nin, .nsq)']); return; else loadDatasetsPath = df; end elseif (dt==length(ds) && strcmp(df(end-8:end),'.datasets')) [fo, ~, ~] = fileparts(df); if ~isempty(fo) if ~exist(fo,'dir') disp(['Directory not found: ' fo]); else saveDatasetsPath = df; end else saveDatasetsPath = df; end else if ~exist(df,'file') disp(['File not found: ' df]); return; elseif ~isFasta(df) disp(['File is not in fasta format: ' df]); return; end end end end % Verifica se pasta de saída existe [folder_outputPrefix,~,~] = fileparts(outputPrefix); if ~exist(folder_outputPrefix,'dir') && ~isempty(folder_outputPrefix) disp('Output folder does not exist'); return; elseif ~isempty(folder_outputPrefix) folder_outputPrefix = [folder_outputPrefix '/']; end % Verifica caminho blast global makeblastdbAlgorithm; [makeblastdbAlgortihmStatus, makeblastdbAlgorithm] = system([blastPath 'makeblastdb -version']); if makeblastdbAlgortihmStatus>0 disp(['Error MAKEBLASTDB path: ' makeblastdbAlgorithm]); return; else makeblastdbAlgorithm = strtrim(makeblastdbAlgorithm); disp(makeblastdbAlgorithm); end global blastnAlgorithm; [blastnAlgortihmStatus, blastnAlgorithm] = system([blastPath 'blastn -version']); if blastnAlgortihmStatus>0 disp(['Error BLASTN path: ' blastnAlgorithm]); return; else blastnAlgorithm = strtrim(blastnAlgorithm); disp(blastnAlgorithm); end %% Inicialização de componentes % Para notação cientifica na matriz %format('shortG'); % Cria pasta temporária global tmp_folder; tmp_folder = [folder_outputPrefix 'tmp_fgap/']; if exist(tmp_folder,'dir') rmdir(tmp_folder,'s'); end [mkdirStatus, mkdirMsg] = mkdir(tmp_folder); if mkdirStatus==0 disp(['Temporary folder ' tmp_folder ' could not be created: ' mkdirMsg]); return; end % Arquivo de stats global stats_file; stats_file = [outputPrefix '.stats']; if exist(stats_file,'file') delete(stats_file); end % Estatísticas - totalizadores global stats; stats = struct('before',[],'after',[],'removedBases',0,'insertedBases',0,'totalGapsClosed',0,'datasetCount',[],'typeCount',[0 0 0]); %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %% %% %%%%%%%%%%%%%%%% INICIA FGAP %%%%%%%%%%%%%%%% %% %% %% %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% warning off [draft_genome_fasta error_msg] = loadDraftFile(draftFile); if isempty(error_msg) stats.before = getStats(draft_genome_fasta,0); [datasets_fasta error_msg] = loadDatasetsFiles(datasetsFiles); if isempty(error_msg) if isempty(buildDatabase(datasets_fasta)) [draft_genome_fasta error_msg] = identifyGaps(draft_genome_fasta); if isempty(error_msg) disp('Starting gap closure ...'); pre_fasta = draftFile; out_more_before = [outputPrefix '.before.fasta' ]; out_more_after = [outputPrefix '.after.fasta' ]; total_char = getTotalChars(draft_genome_fasta); total_char_before = 0; log_round = []; more_before = cell(1); more_after = cell(1); round = 0; while total_char~=0 && total_char_before~=total_char round=round+1; % Função principal pre_draft_genome_fasta = draft_genome_fasta; [draft_genome_fasta candidates error_msg status_msg] = closeGaps(draft_genome_fasta, datasets_fasta); if isempty(error_msg) && isempty(status_msg) out_fasta = [outputPrefix '_' num2str(round) '.fasta']; out_final = [outputPrefix '.final.fasta']; out_log = [outputPrefix '_' num2str(round) '.log' ]; % Gera log [log] = generateLog(candidates,pre_draft_genome_fasta,datasets_fasta,pre_fasta); % Salva total de gaps anteriores e atual total_char_before = total_char; total_char = getTotalChars(draft_genome_fasta); stats.totalGapsClosed = stats.totalGapsClosed + (total_char_before-total_char); % Mostra informações na tela gapsclosed_round = ['Round ' num2str(round) ': ' num2str(total_char_before-total_char) ' gaps']; disp(gapsclosed_round); % Salva dados da rodada no arquivo de stats log_round(round).log = [gapsclosed_round 10 ' Output log: ' hidePath(out_log) 10 ' Output fasta: ' hidePath(out_fasta) 10 ' After round ' num2str(round) ':' 10 ' ' getStats(draft_genome_fasta,1) 10]; % Escreve Log da rodada writeLog(out_log,log); % Escreve fasta da rodada writeFasta(out_fasta, draft_genome_fasta); if(moreOutput) [more_before{round} more_after{round}] = generateMoreOutput(candidates,pre_draft_genome_fasta); end pre_fasta = [outputPrefix '_' num2str(round) '.fasta']; elseif ~isempty(status_msg) disp(status_msg); total_char_before = total_char; elseif ~isempty(error_msg) break; end end stats.after = getStats(draft_genome_fasta,0); if(moreOutput) writeMoreOutput(more_before,out_more_before,more_after,out_more_after); end %Escreve arquivo final if(exist('out_fasta','var')) copyfile(out_fasta,out_final); end elapsed = ['Elapsed time is ' num2str(toc ()) ' seconds']; writeStats(draftFile,datasets_fasta,log_round,elapsed); end end end end if ~isempty(error_msg) disp(error_msg); end disp('Cleaning files ...'); rmdir(tmp_folder,'s'); if exist('elapsed','var') disp(elapsed); end end %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %% %% %%%%%%%%%%%%%%%%%% FUNCOES %%%%%%%%%%%%%%%%%% %% %% %% %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [out_draft candidates error_msg status_msg] = closeGaps(draft_genome_fasta, datasets_fasta) global contigEndLength edgeTrimLength minScore maxEValue minIdentity blastMaxResults blastAlignParam threads tmp_folder blastPath stats saveDatasetsPath loadDatasetsPath; out_draft = draft_genome_fasta; candidates = []; error_msg = ''; status_msg = ''; %% Procura Chars válidos no Draft for i = 1:length(draft_genome_fasta) if ~isempty(draft_genome_fasta(i).Pos) % Marca gaps que já tentaram ser fechados (1) com -1 draft_genome_fasta(i).Pos(draft_genome_fasta(i).Pos(:,4)==1,4) = -1; % Gaps que ainda nao foram fechados (0) new_chars = draft_genome_fasta(i).Pos(draft_genome_fasta(i).Pos(:,4)==0,1:3); if ~isempty(new_chars) % Pega apenas chars que estão distantes um do outros (areas de contigEndLength nao se encontram) cnt=1; draft_genome_fasta(i).Pos(draft_genome_fasta(i).Pos(:,3)==new_chars(1,3),4) = 1; for j=2:length(new_chars(:,1)) % Caso tenha diferenca de dois lados do ultimo gap valido, marca como candidato (1) if (new_chars(j,1) - new_chars(j-cnt,2)) >= (edgeTrimLength*2)+(contigEndLength*2) draft_genome_fasta(i).Pos(draft_genome_fasta(i).Pos(:,3)==new_chars(j,3),4) = 1; cnt = 1; else cnt = cnt + 1; end end end end end %% Gera regiões de ancoragem cont = 0; draft_contig = struct('draft_char',struct()); for i = 1:length(draft_genome_fasta) if ~isempty(draft_genome_fasta(i).Pos) % Verifica apenas chars candidatos (1) cand_chars = draft_genome_fasta(i).Pos(draft_genome_fasta(i).Pos(:,4)==1,1:3); if ~isempty(cand_chars) for j = 1:length(cand_chars(:,1)) % Caso edges ultrapassem regiao possível (sem deixar área para o contigEndLength) if edgeTrimLength >= cand_chars(j,1)-1 || (cand_chars(j,2) + edgeTrimLength) >= length(draft_genome_fasta(i).Sequence) continue; end % Posição inicial e final de ancoragem seq_start = cand_chars(j,1)-(contigEndLength+edgeTrimLength); seq_end = cand_chars(j,2)+(contigEndLength+edgeTrimLength); % Caso não possua região de aconragem suficiente (excede arquivo) if seq_start<1 seq_start_len = cand_chars(j,1)-edgeTrimLength-1; seq_start = 1; else seq_start_len = contigEndLength; end if seq_end>length(draft_genome_fasta(i).Sequence) seq_end_len = (length(draft_genome_fasta(i).Sequence)-cand_chars(j,2))-edgeTrimLength; seq_end = length(draft_genome_fasta(i).Sequence); else seq_end_len = contigEndLength; end % Para recuperação de dados draft_contig(i).draft_char(cand_chars(j,3)).Header = ['draft_' num2str(i) '_' num2str(cand_chars(j,3))]; draft_contig(i).draft_char(cand_chars(j,3)).Sequence = draft_genome_fasta(i).Sequence(seq_start:seq_end); % Para arquivo fasta, grava lado A (montante) e B (jusante) em relação ao char cont = cont + 1; draft_regions(cont).Header = ['draft_' num2str(i) '_' num2str(cand_chars(j,3)) '_A']; draft_regions(cont).Sequence = draft_genome_fasta(i).Sequence(seq_start:seq_start+seq_start_len-1); cont = cont + 1; draft_regions(cont).Header = ['draft_' num2str(i) '_' num2str(cand_chars(j,3)) '_B']; draft_regions(cont).Sequence = draft_genome_fasta(i).Sequence(seq_end-seq_end_len+1:seq_end); end end end end if ~exist('draft_regions','var') status_msg = 'There are no more possible gaps to be closed (s1)'; return; end %% BLAST % Salva arquivo fastawrite2([tmp_folder 'draft_regions.fasta'],draft_regions); % Verifica se está carregando de arquivo específico ou pasta temporária % (se está salvando também está em pasta diferente) if ~isempty(loadDatasetsPath) dboutputfolder = loadDatasetsPath; elseif ~isempty(saveDatasetsPath) dboutputfolder = saveDatasetsPath; else dboutputfolder = [tmp_folder 'datasets']; end blastAlignParamSplit = regexp(blastAlignParam,',','split'); % Executa BLAST - blastn blastn = ['-query ' tmp_folder 'draft_regions.fasta' ... ' -db ' dboutputfolder ... ' -task blastn ' ... ' -min_raw_gapped_score ' num2str(minScore) ... ' -evalue ' num2str(maxEValue) ... ' -perc_identity ' num2str(minIdentity) ... ' -word_size ' char(blastAlignParamSplit(5)) ... ' -gapopen ' char(blastAlignParamSplit(1)) ... ' -gapextend ' char(blastAlignParamSplit(2)) ... ' -penalty ' char(blastAlignParamSplit(4)) ... ' -reward ' char(blastAlignParamSplit(3)) ... ' -max_target_seqs ' num2str(blastMaxResults) ... ' -out ' [tmp_folder 'blastn.out'] ... ' -num_threads ' num2str(threads) ...%' -dust no ' % fechou mais mas piorou a validacao ... ' -outfmt "6 qseqid sseqid score bitscore evalue pident nident mismatch sstrand qstart qseq qend sstart sseq send qlen length qcovhsp"' ]; %qseqid sseqid score bitscore evalue pident nident mismatch sstrand qstart qseq qend sstart sseq send qlen %1 Query Seq-id %2 Subject Seq-id %3 Raw score %4 Bit score %5 Expect value %6 Percentage of identical matches %7 Number of identical matches %8 Number of mismatches %9 Subject Strand %10 Start of alignment in query %11 Aligned part of query sequence %12 End of alignment in query %13 Start of alignment in subject %14 Aligned part of subject sequence %15 End of alignment in subject %16 Query sequence length %17 Alignment length %18 Query Coverage Per HSP [blastnStatus, ~] = system([blastPath 'blastn ' blastn]); if blastnStatus>0 error_msg = ['Error BLASTN: ' blastnStatus]; return; end fid = fopen([tmp_folder 'blastn.out'],'r'); % Open text file blastnResult = textscan(fid,'%s','delimiter','\n','bufsize',(contigEndLength*2)+1000); fclose(fid); if isempty(blastnResult) status_msg = 'There are no more possible gaps to be closed (s2)'; return; end cont = 0; old_draft_head = ''; for i=1:length(blastnResult{1}) parts = regexp(blastnResult{1}{i},'\t','split'); if ~strcmp(old_draft_head,parts(1)) cont = cont + 1; posi = 1; else posi = posi + 1; end blast_result{cont}{posi} = parts; old_draft_head=parts(1); end if ~exist('blast_result','var') status_msg = 'There are no more possible gaps to be closed (s6)'; return; end %% Filtra resultados do BLAST (retira lados orfãos) i=0; cont = 0; % Apenas mantem resultados que possuem outro lado com resultados também while i <= length(blast_result) - 2 if i <= length(blast_result) - 2 i = i + 1; A = blast_result{i}; A_q = A{1}{1}; i = i + 1; B = blast_result{i}; B_q = B{1}{1}; if ~strcmp(A_q(1:end-2),B_q(1:end-2)) i = i - 1; else cont = cont + 1; blast_result_filter{cont} = A; cont = cont + 1; blast_result_filter{cont} = B; end end end if ~exist('blast_result_filter','var') status_msg = 'There are no more possible gaps to be closed (s3)'; return; end %% Loop nos resultados para pegar candidatos i=0; cont = 0; while i < length(blast_result_filter) % Pega HSPs dos dois lados i = i + 1; A = blast_result_filter{i}; A_hsps = getHSPs(A,i); i = i + 1; B = blast_result_filter{i}; B_hsps = getHSPs(B,i); % Caso possua HSPs compativeis com os parametros if (~isempty(A_hsps) && ~isempty(B_hsps)) % Loop nos resultados do A procurando no B for j=1:length(A_hsps(:,1)) vA = []; vB = []; vB_list=[]; vA = A_hsps(j,:); % Compara coluna 1 (file) 2 (ctg) e 9 (strand) - se bateu no % mesmo arquivo e contig do dataset e strand vB_list = B_hsps(A_hsps(j,1)==B_hsps(:,1) & A_hsps(j,2)==B_hsps(:,2) & A_hsps(j,9)==B_hsps(:,9),:); % Caso possua hits no B_hsps(vB_list) referente ao A_hsps if (~isempty(vB_list)) % Adiciona todos os possiveis candidatos do lado B que tenham referencia no lado A for k=1:length(vB_list(:,1)) % Pega ocorrencia de vB vB = vB_list(k,:); cont = cont +1; id = regexp(A{1}{1}, '_', 'split'); id_draft_scaf = str2num(id{2}); id_char = str2num(id{3}); % Grava pré-candidatos pre_candidates(cont).id_DtsetFile = vA(1); pre_candidates(cont).id_DtsetContig = vA(2); pre_candidates(cont).id_DraftScaf = id_draft_scaf; pre_candidates(cont).id_DraftChar = id_char; pre_candidates(cont).rawScore = [vA(16) vB(16)]; pre_candidates(cont).bitScore = [vA(3) vB(3)]; pre_candidates(cont).eValue = [vA(4) vB(4)]; pre_candidates(cont).identitiesPercent = [vA(12) vB(12)]; pre_candidates(cont).identitiesPossible = [vA(13) vB(13)]; pre_candidates(cont).identitiesMatch = [vA(14) vB(14)]; pre_candidates(cont).queryIndices = [vA(5) vA(6) vB(5) vB(6)]; pre_candidates(cont).subjectIndices = [vA(7) vA(8) vB(7) vB(8)]; pre_candidates(cont).alignmentBlastQuery = [blast_result_filter{vA(10)}{vA(11)}(11) ; blast_result_filter{vB(10)}{vB(11)}(11)]; pre_candidates(cont).alignmentBlastSubject = [blast_result_filter{vA(10)}{vA(11)}(14) ; blast_result_filter{vB(10)}{vB(11)}(14)]; pre_candidates(cont).strand = [vA(9) vB(9)]; pre_candidates(cont).lengthcontigEndLengths = [vA(15) vB(15)]; pre_candidates(cont).queryCoverage = [vA(17) vB(17)]; end end end end end if ~exist('pre_candidates','var') status_msg = 'There are no more possible gaps to be closed (s4)'; return; end %% Verifica candidatos pre_candidates = verifyPreCandidates(pre_candidates,draft_genome_fasta, datasets_fasta); if ~isempty(pre_candidates) candidates = selectCandidates(pre_candidates,datasets_fasta); end if isempty(candidates) status_msg = 'There are no more possible gaps to be closed (s5)'; return; end %% Adiciona informações ao candidato candidates = addCandidateData(candidates,draft_genome_fasta,datasets_fasta); %% Gera novo draft com gap fechado new_draft = draft_genome_fasta; for i=1:length(candidates) % NÃO USAR DA STRUCT - Precisa gerar a cada rodada pois dados da tabela mudam [remove_start remove_end remove_seq] = getRemovedSeqDraft(candidates(i),new_draft); % Caso tenha fechado mais de um gap, verifica se foi antes ou % depois e quantos para cada lado (para atualizar a tabela de Pos) closed_chars = getChars(remove_seq); closed_chars = length(closed_chars(:,1)); if closed_chars>1 [n_start n_end] = getPosN(candidates(i),new_draft); rem_before = n_start - remove_start; rem_after = remove_end - n_end; closed_chars_before = size(getChars(remove_seq(1:rem_before)),1); closed_chars_after = size(getChars(remove_seq(end-rem_after+1:end)),1); % Verifica apenas chars disponiveis para fechamento (~=2) open_chars = new_draft(candidates(i).id_DraftScaf).Pos(new_draft(candidates(i).id_DraftScaf).Pos(:,4)~=2,:); % Identifica posicao relativa pos_open_chars = find(open_chars(:,3)==candidates(i).id_DraftChar); % Encontra quais chars antes e depois foram fechados chars_bef_aft = open_chars(pos_open_chars-closed_chars_before:pos_open_chars+closed_chars_after,3); index_chars_closed = ismember(new_draft(candidates(i).id_DraftScaf).Pos(:,3),chars_bef_aft); else index_chars_closed = candidates(i).id_DraftChar; end % Tamanho anterior para comparacao de bases old_length = length(new_draft(candidates(i).id_DraftScaf).Sequence); % Insere nova sequencia no draft new_draft(candidates(i).id_DraftScaf).Sequence = [new_draft(candidates(i).id_DraftScaf).Sequence(1:remove_start-1) lower(candidates(i).insertedSeqDtset) new_draft(candidates(i).id_DraftScaf).Sequence(remove_end+1:end)]; new_length = length(new_draft(candidates(i).id_DraftScaf).Sequence); % Move os outros gaps do contig para a posição correta apos inserir nova sequencia % Calcula diferenca de area new_area_size = new_length - old_length; % Pega todos os chars abaixo do gap fechado pos_chars_below = new_draft(candidates(i).id_DraftScaf).Pos(:,3)>candidates(i).id_DraftChar; % Altera posicao dos chars abaixo new_draft(candidates(i).id_DraftScaf).Pos(pos_chars_below,1:2) = new_draft(candidates(i).id_DraftScaf).Pos(pos_chars_below,1:2)+new_area_size; % Marca gaps como fechado (2) no Pos (verifica se nao fechou mais de um por vez) new_draft(candidates(i).id_DraftScaf).Pos(index_chars_closed,4) = 2; stats.datasetCount(candidates(i).id_DtsetFile) = stats.datasetCount(candidates(i).id_DtsetFile) + closed_chars; stats.typeCount(candidates(i).gapType+2) = stats.typeCount(candidates(i).gapType+2) + closed_chars; stats.removedBases = stats.removedBases + (remove_end - remove_start + 1); stats.insertedBases = stats.insertedBases + length(candidates(i).insertedSeqDtset); end out_draft = new_draft; end %% function [cand] = addCandidateData(cand,draft_genome_fasta,datasets_fasta) for i=1:length(cand) % Salva dados de inserção [insert_start insert_end insert_seq] = getInsertedSeqDtset(cand(i),datasets_fasta(cand(i).id_DtsetFile).fasta); cand(i).insertedSeqDtset = insert_seq; cand(i).insertedPosDtset = [insert_start insert_end]; % Salva dados de remoção [remove_start remove_end remove_seq] = getRemovedSeqDraft(cand(i),draft_genome_fasta); cand(i).removedSeqDraft = remove_seq; cand(i).removedPosDraft = [remove_start remove_end]; end end %% function [log_complete] = generateLog(candidates,pre_draft_genome_fasta,datasets_fasta,pre_fasta) for c=1:length(candidates) % Query(draft/Cends) 1 % |||||||||||||||||| 2 % Subject (datasets) 3 vAl = (candidates(c).alignmentBlastQuery{1}==candidates(c).alignmentBlastSubject{1})*'|'; vAl(vAl==0) = 32; blastA = [candidates(c).alignmentBlastQuery{1}; vAl ;candidates(c).alignmentBlastSubject{1}]; vBl = (candidates(c).alignmentBlastQuery{2}==candidates(c).alignmentBlastSubject{2})*'|'; vBl(vBl==0) = 32; blastB = [candidates(c).alignmentBlastQuery{2}; vBl ;candidates(c).alignmentBlastSubject{2}]; dtset_min = min(candidates(c).subjectIndices); dtset_max = max(candidates(c).subjectIndices); openSubjectA = 0; if(candidates(c).gapType==1) % 'empurra' começo do B quando existe open gap no lado A openSubjectA = length(regexp(blastA(3,:),'-')) ; end if(candidates(c).strand(1)==1) A_st = candidates(c).subjectIndices(1) - dtset_min + 1; B_st = candidates(c).subjectIndices(3) - dtset_min + 1 + openSubjectA; elseif(candidates(c).strand(1)==2) A_st = dtset_max - candidates(c).subjectIndices(1) + 1; B_st = dtset_max - candidates(c).subjectIndices(3) + 1 + openSubjectA; end A_en = A_st + length(candidates(c).alignmentBlastSubject{1}) - 1; B_en = B_st + length(candidates(c).alignmentBlastSubject{2}) - 1; % ajusta visualização de gaps sobrepostos if candidates(c).gapType==-1 && B_en > A_st if A_st > B_st openStart = length(regexp(candidates(c).alignmentBlastSubject{2}(1:A_st-1),'-')) ; A_st = A_st + openStart; A_en = A_en + openStart; elseif B_st > A_st openStart = length(regexp(candidates(c).alignmentBlastSubject{1}(1:B_st-1),'-')) ; B_st = B_st + openStart; B_en = B_en + openStart; end end % Tamamanho geral do log dtset_len = max([A_en B_en]); % Contig End 3' Sequencia a1A = blanks(dtset_len); a1A(A_st:A_en) = blastA(1,:); % Contig End 5' Sequencia a1B = blanks(dtset_len); a1B(B_st:B_en) = blastB(1,:); % Contig End 3' Alinhamento a2A = blanks(dtset_len); a2A(A_st:A_en) = blastA(2,:); % Contig End 5' Alinhamento a2B = blanks(dtset_len); a2B(B_st:B_en) = blastB(2,:); % Subject - Dataset Sequencia a3A = blanks(dtset_len); a3A(A_st:A_en) = blastA(3,:); a3B = blanks(dtset_len); a3B(B_st:B_en) = blastB(3,:); % Caso seja gap positivo, região inserida insert_seq = ''; if(candidates(c).gapType==1) insert_seq = lower(candidates(c).insertedSeqDtset); a3A(A_en+1:B_st-1) = insert_seq; a3B(A_en+1:B_st-1) = insert_seq; end % Posições [queryA_start queryA_end queryB_start queryB_end] = getRealQueryPos(candidates(c),pre_draft_genome_fasta); subjectA_start = candidates(c).subjectIndices(1); subjectA_end = candidates(c).subjectIndices(2); subjectB_start = candidates(c).subjectIndices(3); subjectB_end = candidates(c).subjectIndices(4); if(candidates(c).strand(1)==1 && candidates(c).gapType==1) subjectA_end = subjectA_end + length(insert_seq); subjectB_start = subjectB_start - length(insert_seq); elseif(candidates(c).strand(1)==2 && candidates(c).gapType==1) subjectA_end = subjectA_end - length(insert_seq); subjectB_start = subjectB_start + length(insert_seq); end gap_id = getGapId(candidates(c)); % INICIO - escreve log em cell log = cell(1); l = 1; log{l} = ['Gap ID: ' gap_id]; l=l+1; log{l} = ['Gap Type: ' gapTypeName(candidates(c).gapType) 10]; l=l+1; log{l} = ['Draft file: ' hidePath(pre_fasta) ' (' pre_draft_genome_fasta(candidates(c).id_DraftScaf).Header ')']; l=l+1; log{l} = ['DtSet file: ' hidePath(datasets_fasta(candidates(c).id_DtsetFile).file) ' (' datasets_fasta(candidates(c).id_DtsetFile).fasta(candidates(c).id_DtsetContig).Header ')' 10]; l=l+1; log{l} = ['Contig end 3'':']; l=l+1; log{l} = [' Bit Score: ' num2str(candidates(c).bitScore(1)) ' bits (' num2str(candidates(c).rawScore(1)) ')']; l=l+1; log{l} = [' E-Value: ' num2str(candidates(c).eValue(1))]; l=l+1; log{l} = [' Identity: ' num2str(candidates(c).identitiesMatch(1)) '/' num2str(candidates(c).identitiesPossible(1)) ' (' num2str(candidates(c).identitiesPercent(1)) '%)']; l=l+1; log{l} = [' Query Cov.: ' num2str(candidates(c).queryCoverage(1)) '%']; l=l+1; log{l} = ['Contig end 5'':']; l=l+1; log{l} = [' Bit Score: ' num2str(candidates(c).bitScore(2)) ' bits (' num2str(candidates(c).rawScore(2)) ')']; l=l+1; log{l} = [' E-Value: ' num2str(candidates(c).eValue(2))]; l=l+1; log{l} = [' Identity: ' num2str(candidates(c).identitiesMatch(2)) '/' num2str(candidates(c).identitiesPossible(2)) ' (' num2str(candidates(c).identitiesPercent(2)) '%)']; l=l+1; log{l} = [' Query Cov.: ' num2str(candidates(c).queryCoverage(2)) '%']; l=l+1; log{l} = ['Strand (CEnds/Dtset): ' verifyStrandRev(candidates(c).strand(1)) 10]; l=l+1; %len_res = dtset_len; len_res = 60; len_max_number = length(num2str(max([queryA_start queryB_start subjectA_start subjectB_start]))); pos_qA = ''; pos_qB = '';pos_sA='';pos_sB=''; for x=1:len_res:dtset_len if(x+len_res>dtset_len) e = dtset_len; pos_qA = [' ' num2str(queryA_end,'%.f')]; pos_qB = [' ' num2str(queryB_end,'%.f')]; pos_sA = [' ' num2str(subjectA_end,'%.f')]; pos_sB = [' ' num2str(subjectB_end,'%.f')]; else e = x+len_res-1; end if x==1 pre_qA = sprintf(['%' num2str(len_max_number) 'd'],queryA_start); pre_qB = sprintf(['%' num2str(len_max_number) 'd'],queryB_start); pre_sA = sprintf(['%' num2str(len_max_number) 'd'],subjectA_start); pre_sB = sprintf(['%' num2str(len_max_number) 'd'],subjectB_start); else pre_qA = blanks(len_max_number); pre_qB = blanks(len_max_number); pre_sA = blanks(len_max_number); pre_sB = blanks(len_max_number); end pre_al = blanks(len_max_number); log{l} = ['CEnd3 ' pre_qA ' ' a1A(x:e) pos_qA]; l=l+1; log{l} = [' ' pre_al ' ' a2A(x:e)]; l=l+1; log{l} = ['Dtset ' pre_sA ' ' a3A(x:e) pos_sA]; l=l+1; log{l} = ['Dtset ' pre_sB ' ' a3B(x:e) pos_sB]; l=l+1; log{l} = [' ' pre_al ' ' a2B(x:e)]; l=l+1; log{l} = ['CEnd5 ' pre_qB ' ' a1B(x:e) pos_qB]; l=l+1; log{l} = [10]; l=l+1; end log{l} = ['Removed sequence (' num2str(length(candidates(c).removedSeqDraft)) 'bp):']; l=l+1; len_max_number = length(num2str(candidates(c).removedPosDraft(1))); remove_seq_p = regexp(candidates(c).removedSeqDraft, ['\w{1,' num2str(len_res) '}'], 'match'); log{l} = [num2str(candidates(c).removedPosDraft(1),'%.f') ' ' remove_seq_p{1}]; for p=2:length(remove_seq_p) log{l} = [log{l} 10 blanks(len_max_number) ' ' remove_seq_p{p}]; end log{l} = [log{l} ' ' num2str(candidates(c).removedPosDraft(2),'%.f')]; l=l+1; if(candidates(c).gapType==1) log{l} = ['Inserted sequence (' num2str(length(insert_seq)) 'bp):']; l=l+1; if(candidates(c).strand==1) is = candidates(c).insertedPosDtset(1); ie = candidates(c).insertedPosDtset(2); else is = candidates(c).insertedPosDtset(2); ie = candidates(c).insertedPosDtset(1); end len_max_number = length(num2str(is)); insert_seq_p = regexp(insert_seq, ['\w{1,' num2str(len_res) '}'], 'match'); log{l} = [num2str(is,'%.f') ' ' insert_seq_p{1}]; for p=2:length(insert_seq_p) log{l} = [log{l} 10 blanks(len_max_number) ' ' insert_seq_p{p}]; end log{l} = [log{l} ' ' num2str(ie,'%.f')]; l=l+1; end log{l} = [10 repmat('-',1,80)]; l=l+1; log_complete{c} = log; end end %% function [hsps_out] = getHSPs(blast_result,id_blast) global minScore; % Output: %1 id_file %2 id_contig %3 Score %4 eValue %5 QueryIndices start %6 QueryIndices end %7 SubjectIndices start %8 SubjectIndices end %9 Strand (1 - Plus/Plus, 2 - Plus/Minus) %10 id blast_result_filter %11 id HSP %12 Identity Percent %13 Identity Possible (Alignment length) %14 Identity Match %15 Query Length %16 Bit Score %17 Query Coverage Per HSP hsps_out = []; for j=1:length(blast_result) id = regexp(char(blast_result{j}(2)), '_', 'split'); id_dataset = str2num(id{2}); id_contig = str2num(id{3}); %if (str2num(blast_result{j}{4}) >= minScore) hsps_out = [hsps_out; ... id_dataset ... id_contig ... str2num(blast_result{j}{4}) ... str2num(blast_result{j}{5}) ... str2num(blast_result{j}{10}) ... str2num(blast_result{j}{12}) ... str2num(blast_result{j}{13}) ... str2num(blast_result{j}{15}) ... verifyStrand(blast_result{j}{9}) ... id_blast j ... str2num(blast_result{j}{6}) ... str2num(blast_result{j}{17}) ... str2num(blast_result{j}{7}) ... str2num(blast_result{j}{16}) ... str2num(blast_result{j}{3}) ... str2num(blast_result{j}{18}) ... ]; %end end end %% function [pre_cand] = verifyPreCandidates(pre_candidates,draft_genome_fasta,datasets_fasta) global gapChar maxInsertLength maxRemoveLength positiveGap zeroGap negativeGap; cont = 0; for i=1:length(pre_candidates) [insert_start insert_end] = getInsertedPosDtset(pre_candidates(i)); % Tipo do gap if (insert_end-insert_start+1)==0 % ZERO GAP pre_candidates(i).gapType = 0; if(~zeroGap) continue; end elseif (insert_end-insert_start+1)<0 % NEGATIVE GAP pre_candidates(i).gapType = -1; if(~negativeGap) continue; end else % POSITIVE GAP pre_candidates(i).gapType = 1; if(~positiveGap) continue; end end % Verifica se nova regiao inserida é menor ou igual ao permitido if (insert_end-insert_start+1)>maxInsertLength continue; end [remove_start remove_end] = getRemovedPosDraft(pre_candidates(i),draft_genome_fasta); if (remove_end-remove_start+1) > maxRemoveLength continue; end if(pre_candidates(i).gapType==1) [~,~,insert_seq] = getInsertedSeqDtset(pre_candidates(i),datasets_fasta(pre_candidates(i).id_DtsetFile).fasta); % Verifica se possui o char na nova região (fecha gap com outro gap) if sum(insert_seq==gapChar)>=1 continue; end end cont = cont + 1; pre_cand(cont) = pre_candidates(i); end if ~exist('pre_cand','var') pre_cand = []; end end %% function [cand] = selectCandidates(pre_candidates,datasets_fasta) pc = zeros(length(pre_candidates),8); for i=1:length(pre_candidates) p = pre_candidates(i); pc(i,:) = [i ... p.id_DraftScaf ... p.id_DraftChar ... sum(p.rawScore) ... sum(p.queryCoverage) ... sum(p.identitiesPercent) ... sum(p.eValue) ... length(datasets_fasta(p.id_DtsetFile).fasta(p.id_DtsetContig).Sequence)]; end pc = sortrows(pc,[2 3 -4 -5 -6 7 -8]); [~, idx, ~] = unique(pc(:,2:3),'rows','first'); pc = pc(idx,:); cand = pre_candidates(pc(:,1)); if ~exist('cand','var') cand = []; end end %% function [stats] = getStats(fasta,inline) global gapChar; if(inline==1) separator = 9; else separator = 10; end c=0;g=0;chars=0;ls=[]; for i=1:length(fasta) seq = upper(fasta(i).Sequence); c = c + sum(seq=='C'); g = g + sum(seq=='G'); chars = chars + sum(seq==gapChar); ls = [ls; length(seq)]; end lseq = sum(ls); gc = (c+g) / lseq; ls = sortrows(ls,-1); aux_sum = 0;n50 = 0; h = lseq/2; for x=1:length(ls) aux_sum = aux_sum + ls(x); if(aux_sum >= h) n50 = ls(x); break; end end stats = [' Gaps: ' num2str(getTotalChars(fasta),'%.f') separator ' Sequences: ' num2str(length(fasta),'%.f') separator ' Length: ' num2str(lseq,'%.f') 'bp ' separator ' GC: ' num2str(gc*100) '%' separator ' N50: ' num2str(n50,'%.f') separator ' Min: ' num2str(min(ls),'%.f') separator ' Max: ' num2str(max(ls),'%.f') separator ' ' gapChar 's: ' num2str(chars,'%.f')]; end %% function [s] = verifyStrand(strand) % Strand (1 - Plus/Plus, 2 - Plus/Minus) if strcmp(strand,'plus') s=1; elseif strcmp(strand,'minus') s=2; end end %% function [s] = verifyStrandRev(strand) % Strand (1 - Plus/Plus, 2 - Plus/Minus) if strand==1 s='Plus/Plus'; elseif strand==2 s='Plus/Minus'; end end %% function [sequence_fasta] = fastaUpper(sequence_fasta) for i=1:length(sequence_fasta) sequence_fasta(i).Sequence = upper(sequence_fasta(i).Sequence); end end %% function [char_list] = getChars(sequence) global gapChar; char_list = []; if ~isempty(sequence) [sn,en] = regexpi(sequence,[gapChar '[' gapChar ']*']); char_list = [sn' en']; end end %% function [total] = getTotalChars(sequence_fasta) total = 0; for i=1:length(sequence_fasta) ch = getChars(sequence_fasta(i).Sequence); if ~isempty(ch) total = total + length(ch(:,1)); end end end %% function [n_start n_end] = getPosN(cand,seq) n_start=[];n_end=[]; N = seq(cand.id_DraftScaf).Pos(cand.id_DraftChar,1:2); n_start = N(1); n_end = N(2); end %% function [remove_start remove_end] = getRemovedPosDraft(cand,seq) [queryA_start queryA_end queryB_start queryB_end] = getRealQueryPos(cand,seq); remove_start = queryA_end + 1; remove_end = queryB_start - 1; % Ajusta caso possua alinhamento negativo if(cand.gapType==-1) openQueryA= 0; openSubjectA = 0; % Identifica posições no alinhamento em relação ao lado A dtsetA_min = min(cand.subjectIndices(1:2)); dtsetA_max = max(cand.subjectIndices(1:2)); if(cand.strand(1)==1) A_st = cand.subjectIndices(1) - dtsetA_min + 1; B_st = cand.subjectIndices(3) - dtsetA_min + 1; elseif(cand.strand(1)==2) A_st = dtsetA_max - cand.subjectIndices(1) + 1; B_st = dtsetA_max - cand.subjectIndices(3) + 1; end A_en = A_st + length(cand.alignmentBlastSubject{1}) -1; B_en = B_st + length(cand.alignmentBlastSubject{2}) -1; % Apenas quando há sobreposição if B_en > A_st % Conta número de opengaps na sobreposição p = sort([A_st A_en B_st B_en]); openQueryA = length(regexp(cand.alignmentBlastQuery{1}(p(2):p(3)),'-')); openSubjectA = length(regexp(cand.alignmentBlastSubject{1}(p(2):p(3)),'-')); end remove_start = remove_start - (abs(cand.subjectIndices(2) - cand.subjectIndices(3)) + 1) + openQueryA - openSubjectA; if remove_start<1 remove_start=1; end end end %% function [remove_start remove_end remove_seq] = getRemovedSeqDraft(cand,seq) [remove_start remove_end] = getRemovedPosDraft(cand,seq); if remove_start>0 && remove_end>0 && remove_end>=remove_start remove_seq = seq(cand.id_DraftScaf).Sequence(remove_start:remove_end); else remove_seq = []; end end %% function [insert_start insert_end] = getInsertedPosDtset(cand) if(cand.strand(1)==1) insert_start = cand.subjectIndices(2)+1; insert_end = cand.subjectIndices(3)-1; elseif(cand.strand(1)==2) insert_start = cand.subjectIndices(3)+1; insert_end = cand.subjectIndices(2)-1; end end %% function [insert_start insert_end insert_seq] = getInsertedSeqDtset(cand,seq) [insert_start insert_end] = getInsertedPosDtset(cand); insert_seq = []; if insert_end >= insert_start if(cand.strand(1)==1) insert_seq = seq(cand.id_DtsetContig).Sequence(insert_start:insert_end); elseif(cand.strand(1)==2) insert_seq = seqrcomplement2(seq(cand.id_DtsetContig).Sequence(insert_start:insert_end)); end end end %% function [queryA_start queryA_end queryB_start queryB_end] = getRealQueryPos(cand,seq) global edgeTrimLength; [n_start n_end] = getPosN(cand,seq); queryA_start = n_start - edgeTrimLength - cand.lengthcontigEndLengths(1) + cand.queryIndices(1) - 1; queryA_end = n_start - edgeTrimLength - cand.lengthcontigEndLengths(1) + cand.queryIndices(1) + length(regexp(cand.alignmentBlastQuery{1},'[^-]')) - 2; queryB_start = n_end + edgeTrimLength + cand.queryIndices(3); queryB_end = n_end + edgeTrimLength + cand.queryIndices(3) + length(regexp(cand.alignmentBlastQuery{2},'[^-]')) - 1; end %% function [name] = gapTypeName(gapType) if(gapType==-1) name = 'Negative gap'; elseif(gapType==0) name = 'Zero gap'; elseif(gapType==1) name = 'Positive gap'; end end %% function [filename] = hidePath(filepath) %[~,n,e] = fileparts(filepath); %filename = [n e]; filename = filepath; end %% function fastawrite2(filename, fastadata) len_line = 60; fid = fopen(filename,'w'); for i=1:length(fastadata) fprintf(fid,'>%s\n',fastadata(i).Header); len_seq = length(fastadata(i).Sequence); for s=1:len_line:len_seq if(s+len_line>len_seq) e = len_seq; else e = s+len_line-1; end fprintf(fid,'%s\n',fastadata(i).Sequence(s:e)); end end fclose(fid); end %% function fastawritefast(filename, fastadata) text = ''; for d=1:length(fastadata) text = [text '>' fastadata(d).Header 10 fastadata(d).Sequence 10]; end fid = fopen(filename,'w'); fprintf(fid,'%s',text); fclose(fid); end %% function [fasta] = fastaread2(filename) i = 1; fid = fopen(filename); l = fgets(fid); while l > -1 fasta(i).Header = l(2:end-1); l = fscanf(fid, '%[^>]s'); l(find(l==char(13) | l==char(10) | l==' ')) = []; fasta(i).Sequence = l; i = i + 1; l = fgets(fid); end fclose(fid); end %% function [bool] = isFasta(filename) fid = fopen(filename); l = fgets(fid); if (l(1)~='>') bool=0; else bool=1; end fclose(fid); end %% function [draft_genome_fasta error_msg] = loadDraftFile(draftFile) error_msg=''; disp([10 'Reading draft: ' draftFile]); draft_genome_fasta = fastaUpper(fastaread2(draftFile)); if(getTotalChars(draft_genome_fasta)==0) error_msg = ['Draft file ' draftFile ' does not have gaps']; return; end end %% function [datasets_fasta error_msg] = loadDatasetsFiles(datasetsFiles) global stats saveDatasetsPath loadDatasetsPath; error_msg=''; ds = regexp(datasetsFiles,',','split'); % Caso esteja carregando os datasets de arquivo salvo if ~isempty(loadDatasetsPath) disp(['Loading datasets: ' loadDatasetsPath]); if 1==1 end load([loadDatasetsPath '.mat']); for d=1:length(datasets_fasta) disp([' - ' datasets_fasta(d).file ' loaded']); end else % Caso rodando pela primeira vez e salvando if ~isempty(saveDatasetsPath) ds = ds(1:end-1); end % Carrega arquivos for dt = 1:length(ds) disp(['Reading dataset: ' char(ds(dt))]); datasets_fasta(dt).file = char(ds(dt)); datasets_fasta(dt).fasta = fastaUpper(fastaread2(char(ds(dt)))); end % Caso rodando pela primeira vez e salvando if ~isempty(saveDatasetsPath) disp(['Saving datasets: ' saveDatasetsPath]); pause(0.001); save([saveDatasetsPath '.mat'],'datasets_fasta','-v7.3'); end end stats.datasetCount(length(datasets_fasta)) = 0; end %% function [error_msg] = buildDatabase(datasets_fasta) global tmp_folder blastPath saveDatasetsPath loadDatasetsPath; error_msg=''; if ~isempty(loadDatasetsPath) disp('Loading database ...'); else % Salva em arquivo específico ou temporário if ~isempty(saveDatasetsPath) dboutputfolder = saveDatasetsPath; else dboutputfolder = [tmp_folder 'datasets']; end disp('Building database ...'); % Monta fasta para banco cont = 0; for dt=1:length(datasets_fasta) for i=1:length(datasets_fasta(dt).fasta) if(~isempty(datasets_fasta(dt).fasta(i).Sequence)) % Para arquivo fasta cont = cont + 1; datasets(cont).Header = ['dataset_' num2str(dt) '_' num2str(i)]; datasets(cont).Sequence = datasets_fasta(dt).fasta(i).Sequence; end end end fastawrite2([tmp_folder 'datasets.fasta'], datasets); makeblastdb = ['-dbtype nucl -in ' tmp_folder 'datasets.fasta -out ' dboutputfolder ' -title datasets -logfile ' tmp_folder 'makeblastdb.log']; [makeblastdbStatus, makeblastdbResult] = system([blastPath 'makeblastdb ' makeblastdb]); if makeblastdbStatus>0 error_msg = ['Error MAKEBLASTDB: ' makeblastdbResult]; return; end end end %% function [draft_genome_fasta error_msg] = identifyGaps(draft_genome_fasta) % Identifica gaps (0-inicial, 1-candidato, 2-fechado, -1-não fechado/pular) error_msg=''; for i = 1:length(draft_genome_fasta) chars = getChars(draft_genome_fasta(i).Sequence); if ~isempty(chars) lc = length(chars(:,1)); c = 1:lc; chars = [chars c' zeros(lc,1)]; end draft_genome_fasta(i).Pos = chars; end end %% function writeStats(draftFile,datasets_fasta,log_round,elapsed) global stats stats_file minScore maxEValue minIdentity contigEndLength edgeTrimLength ... gapChar maxRemoveLength maxInsertLength blastAlignParam blastMaxResults blastPath threads ... outputPrefix moreOutput version blastnAlgorithm makeblastdbAlgorithm positiveGap zeroGap negativeGap ... saveDatasetsPath loadDatasetsPath; fid = fopen(stats_file, 'a'); fprintf(fid, '%s GENERAL STATS %s\n',repmat('-',1,20),repmat('-',1,20)); fprintf(fid, '\nClosed gaps (%s): %s\n\n', gapChar, num2str(stats.totalGapsClosed) ); fprintf(fid, 'Before FGAP: \n%s\n\n', stats.before ); fprintf(fid, 'After FGAP: \n%s\n\n', stats.after); fprintf(fid, 'Inserted: %sbp\n', num2str(stats.insertedBases,'%.f')); fprintf(fid, 'Removed : %sbp\n\n', num2str(stats.removedBases,'%.f')); fprintf(fid, 'Closed gaps by each dataset:\n'); for i=1:length(datasets_fasta) fprintf(fid, ' %s: %s gaps\n', hidePath(datasets_fasta(i).file), num2str(stats.datasetCount(i),'%.f')); end fprintf(fid, '\nClosed gaps by type:\n'); for i=1:3 fprintf(fid, ' %s: %s gaps\n', gapTypeName(i-2), num2str(stats.typeCount(i),'%.f')); end if(~isempty(log_round)) fprintf(fid, '\n%s STATS PER ROUND %s\n\n',repmat('-',1,20),repmat('-',1,20)); for j=1:length(log_round) fprintf(fid, '%s\n', log_round(j).log); end end fprintf(fid, '%s PARAMETERS %s\n\n',repmat('-',1,20),repmat('-',1,20)); fprintf(fid, '\tdraftFile: %s\n', hidePath(draftFile)); if ~isempty(loadDatasetsPath) fprintf(fid, '\tDatasets loaded: %s\n', loadDatasetsPath); end for i=1:length(datasets_fasta) fprintf(fid, '\tdatasetsFiles: %s\n', hidePath(datasets_fasta(i).file)); end if ~isempty(saveDatasetsPath) fprintf(fid, '\tDatasets saved: %s\n', saveDatasetsPath); end fprintf(fid, '\tminScore: %s\n', num2str(minScore)); fprintf(fid, '\tmaxEValue: %s\n', num2str(maxEValue)); fprintf(fid, '\tminIdentity: %s\n', num2str(minIdentity)); fprintf(fid, '\tcontigEndLength: %s\n', num2str(contigEndLength)); fprintf(fid, '\tedgeTrimLength: %s\n', num2str(edgeTrimLength)); fprintf(fid, '\tmaxRemoveLength: %s\n', num2str(maxRemoveLength)); fprintf(fid, '\tmaxInsertLength: %s\n', num2str(maxInsertLength)); fprintf(fid, '\tpositiveGap: %s\n', num2str(positiveGap)); fprintf(fid, '\tzeroGap: %s\n', num2str(zeroGap)); fprintf(fid, '\tnegativeGap: %s\n', num2str(negativeGap)); fprintf(fid, '\tgapChar: %s\n', gapChar); fprintf(fid, '\tblastPath: %s\n', num2str(blastPath)); fprintf(fid, '\tblastAlignParam: %s\n', num2str(blastAlignParam)); fprintf(fid, '\tblastMaxResults: %s\n', num2str(blastMaxResults)); fprintf(fid, '\tthreads: %s\n', num2str(threads)); fprintf(fid, '\tmoreOutput: %s\n', num2str(moreOutput)); fprintf(fid, '\toutputPrefix: %s\n\n', hidePath(outputPrefix)); fprintf(fid, '%s\n',repmat('-',1,50)); fprintf(fid, '\n%s\n', elapsed); fprintf(fid, '%s\n', datestr(now)); fprintf(fid, 'FGAP v%s\n', version); fprintf(fid, '%s\n', makeblastdbAlgorithm); fprintf(fid, '%s\n', blastnAlgorithm); fclose(fid); end %% function [more_before more_after] = generateMoreOutput(candidates,pre_draft_genome_fasta) for c=1:length(candidates) gap_id = getGapId(candidates(c)); chars = getChars(candidates(c).removedSeqDraft); total_chars = length(chars(:,1)); more_id = [gap_id '|' num2str(candidates(c).gapType) '|' num2str(total_chars,'%.f')]; [more_before(c).Sequence gap_start gap_end] = generateBeforeSequence(candidates(c),pre_draft_genome_fasta); more_before(c).Header = [more_id '|' num2str(gap_start,'%.f') '|' num2str(gap_end,'%.f')]; [more_after(c).Sequence insert_start insert_end] = generateAfterSequence(candidates(c),pre_draft_genome_fasta); more_after(c).Header = [more_id '|' num2str(insert_start,'%.f') '|' num2str(insert_end,'%.f')]; end end %% function writeMoreOutput(more_before,out_more_before,more_after,out_more_after) more_before_all = []; more_after_all = []; for i=1:length(more_before) more_before_all = [more_before_all more_before{i}]; more_after_all = [more_after_all more_after{i}]; end if ~isempty(out_more_before) fastawrite2(out_more_before,more_before_all); fastawrite2(out_more_after,more_after_all); end end %% function writeLog(out_log,log) fid = fopen(out_log, 'wt'); for i=1:length(log) fprintf(fid, '%s\n', log{i}{:}); end fclose(fid); end %% function writeFasta(out_fasta, draft_genome_fasta) fastawrite2(out_fasta, draft_genome_fasta); end %% function [gap_id] = getGapId(cand) gap_id = [num2str(cand.id_DraftScaf) '_' num2str(cand.id_DraftChar)]; end %% function [after_seq insert_start insert_end] = generateAfterSequence(cand,pre_draft_genome_fasta) global gapChar plusBasesMoreOutput; len_seq = length(pre_draft_genome_fasta(cand.id_DraftScaf).Sequence); if(cand.gapType==-1) insert_start = 0; insert_end = 0; st_plus = cand.removedPosDraft(1) - plusBasesMoreOutput; if st_plus < 1 st_plus=1; end en_plus = cand.removedPosDraft(2) + plusBasesMoreOutput; if en_plus > len_seq en_plus = len_seq; end after_seq = [pre_draft_genome_fasta(cand.id_DraftScaf).Sequence(st_plus:cand.removedPosDraft(1)-1) ... pre_draft_genome_fasta(cand.id_DraftScaf).Sequence(cand.removedPosDraft(2)+1:en_plus)]; %Condensa gaps das pontas para melhorar validação after_seq = regexprep(after_seq,[gapChar '[' gapChar ']*'],gapChar); else len_seq = length(pre_draft_genome_fasta(cand.id_DraftScaf).Sequence); st_plus = cand.removedPosDraft(1) - plusBasesMoreOutput; if st_plus < 1 st_plus=1; end en_plus = cand.removedPosDraft(2) + plusBasesMoreOutput; if en_plus > len_seq en_plus = len_seq; end pre_seq = pre_draft_genome_fasta(cand.id_DraftScaf).Sequence(st_plus:cand.removedPosDraft(1)-1); pos_seq = pre_draft_genome_fasta(cand.id_DraftScaf).Sequence(cand.removedPosDraft(2)+1:en_plus); % Retira sequencia caso possua N nos contigsEnds para fazer validação [~,n_pre_en] = regexpi(pre_seq,[gapChar '[' gapChar ']*']); if ~isempty(n_pre_en) pre_seq = pre_seq(n_pre_en(length(n_pre_en))+1:end); end [n_pos_st,~] = regexpi(pos_seq,[gapChar '[' gapChar ']*']); if ~isempty(n_pos_st) pos_seq = pos_seq(1:n_pos_st(1)-1); end after_seq = [pre_seq lower(cand.insertedSeqDtset) pos_seq ]; insert_start = length(pre_seq)+1; insert_end = insert_start + length(cand.insertedSeqDtset) - 1; %Condensa gaps das pontas para melhorar validação %after_seq = regexprep(after_seq,[gapChar '[' gapChar ']*'],gapChar); end end %% function [before_seq gap_start gap_end] = generateBeforeSequence(cand,pre_draft_genome_fasta) global edgeTrimLength plusBasesMoreOutput; len_seq = length(pre_draft_genome_fasta(cand.id_DraftScaf).Sequence); [n_start n_end] = getPosN(cand,pre_draft_genome_fasta); st_plus = n_start - edgeTrimLength - plusBasesMoreOutput; if st_plus < 1 st_plus=1; end en_plus = n_end + edgeTrimLength + plusBasesMoreOutput; if en_plus > len_seq en_plus = len_seq; end before_seq = pre_draft_genome_fasta(cand.id_DraftScaf).Sequence(st_plus:en_plus); gap_start = edgeTrimLength + plusBasesMoreOutput + 1; gap_end = gap_start + (n_end - n_start); end %% function [seqrc] = seqrcomplement2(seq) %Inverte seqr = seq(end:-1:1); seqrc = ones(1,length(seqr)); l = {'A','C','G','T','R','Y','K','M','S','W','B','D','H','V','N','-','*'}; t = {'T','G','C','A','Y','R','M','K','S','W','V','H','D','B','N','-','*'}; for i=1:length(l) seqrc(seqr==l{i})=t{i}; end seqrc = char(seqrc); end %% function [] = showHelp() disp([ 10 'Usage in command-line mode (compiled): ./run_fgap.sh <MCR installation folder> -d <draft file> -a "<dataset(s) file(s)>" [parameters]']); disp(['Usage in Matlab/Octave (source): fgap -d <draft file> -a ''<dataset(s) file(s)>'' [parameters]' 10]); disp(['-d /--draft-file' 9 'Draft genome file [fasta format - Ex: ''draft.fasta'']']); disp(['-a /--datasets-files' 9 'List of datasets files to close gaps [fasta format - Ex: ''dataset1.fasta,dataset2.fasta'']' 10]); %disp(['--save-datasets']); %disp(['--load-datasets']); disp(['-s /--min-score' 9 9 'Min Score (raw) to return results from BLAST (integer) - Default: 25']); disp(['-e /--max-evalue' 9 'Max E-Value to return results from BLAST (float) - Default: 1e-7']); disp(['-i /--min-identity' 9 'Min identity (%) to return results from BLAST (integer [0-100]) - Default: 70' 10]); disp(['-C /--contig-end-length' 9 'Length (bp) of contig ends to perform BLAST alignment (integer) - Default: 300']); disp(['-T /--edge-trim-length' 9 'Length of ignored bases (bp) upstream and downstrem of the gap (integer) - Default: 0']); disp(['-R /--max-remove-length' 9 'Max number of bases (bp) that can be removed (integer) - Default: 500']); disp(['-I /--max-insert-length' 9 'Max number of bases (bp) that can be inserted (integer) - Default: 500' 10]); disp(['-p /--positive-gap' 9 'Enable closing of positive gaps (with insertion) (integer [0-1]) - Default: 1']); disp(['-z /--zero-gap' 9 9 'Enable closing of zero gaps (without insert any base) (integer [0-1]) - Default: 0']); disp(['-g /--negative-gap' 9 'Enable closing of negative gaps (overlapping contig ends) (integer [0-1]) - Default: 0' 10]); disp(['-c /--gap-char' 9 9 9 9 'Base that represents the gap (char) - Default: ''N''']); disp(['-b /--blast-path' 9 9 9 'Blast+ package path (only makeblastdb and blastn are needed, version 2.2.28+ or higher) - Default: ''''']); disp(['-l /--blast-alignment-parameters' 9 'BLAST alignment parameters (opengap,extendgap,match,mismatch,wordsize) - Default: ''1,1,1,-3,15''']); disp(['-r /--blast-max-results' 9 9 9 'Max results from BLAST for each query (integer) - Default: 200']); disp(['-t /--threads' 9 9 9 9 'Number of threads (integer) - Default: 1' 10]); disp(['-m /--more-output' 9 'More output files with gap regions after and before gap closing (integer [0-1]) - Default: 0']); disp(['-o /--output-prefix' 9 'Output prefix [File or folder - Ex: ''out'' or ''out_folder/out'' ] - Default: ''output_fgap''']); disp(['-h /--help' 9 9 'This help message']); end
github
rashwin1989/plicFoam-master
umfpack_report.m
.m
plicFoam-master/UMFPACK/MATLAB/umfpack_report.m
16,015
utf_8
ab2ab9204411376267d5931f57b6b59b
function umfpack_report (Control, Info) %UMFPACK_REPORT prints optional control settings and statistics % % Example: % umfpack_report (Control, Info) ; % % Prints the current Control settings for umfpack2, and the statistical % information returned by umfpack2 in the Info array. If Control is % an empty matrix, then the default control settings are printed. % % Control is 20-by-1, and Info is 90-by-1. Not all entries are used. % % Alternative usages: % % umfpack_report ([ ], Info) ; print the default control parameters % and the Info array. % umfpack_report (Control) ; print the control parameters only. % umfpack_report ; print the default control parameters % and an empty Info array. % % See also umfpack, umfpack2, umfpack_make, umfpack_details, % umfpack_demo, and umfpack_simple. % Copyright 1995-2007 by Timothy A. Davis. %------------------------------------------------------------------------------- % get inputs, use defaults if input arguments not present %------------------------------------------------------------------------------- % The contents of Control and Info are defined in umfpack.h if (nargin < 1) Control = [] ; end if (nargin < 2) Info = [] ; end if (isempty (Control)) Control = umfpack2 ; end if (isempty (Info)) Info = [ 0 (-ones (1, 89)) ] ; end %------------------------------------------------------------------------------- % control settings %------------------------------------------------------------------------------- fprintf ('\nUMFPACK: Control settings:\n\n') ; fprintf (' Control (1): print level: %d\n', Control (1)) ; fprintf (' Control (2): dense row parameter: %g\n', Control (2)) ; fprintf (' "dense" rows have > max (16, (%g)*16*sqrt(n_col)) entries\n', Control (2)) ; fprintf (' Control (3): dense column parameter: %g\n', Control (3)) ; fprintf (' "dense" columns have > max (16, (%g)*16*sqrt(n_row)) entries\n', Control (3)) ; fprintf (' Control (4): pivot tolerance: %g\n', Control (4)) ; fprintf (' Control (5): max block size for dense matrix kernels: %d\n', Control (5)) ; prstrat (' Control (6): strategy: %g ', Control (6)) ; fprintf (' Control (7): initial allocation ratio: %g\n', Control (7)) ; fprintf (' Control (8): max iterative refinement steps: %d\n', Control (8)) ; fprintf (' Control (13): 2-by-2 pivot tolerance: %g\n', Control (13)) ; fprintf (' Control (14): Q fixed during numeric factorization: %g ', Control (14)) ; if (Control (14) > 0) fprintf ('(yes)\n') ; elseif (Control (14) < 0) fprintf ('(no)\n') ; else fprintf ('(auto)\n') ; end fprintf (' Control (15): AMD dense row/column parameter: %g\n', Control (15)) ; fprintf (' "dense" rows/columns in A+A'' have > max (16, (%g)*sqrt(n)) entries.\n', Control (15)) ; fprintf (' Only used if the AMD ordering is used.\n') ; fprintf (' Control (16): diagonal pivot tolerance: %g\n', Control (16)) ; fprintf (' Only used if diagonal pivoting is attempted.\n') ; fprintf (' Control (17): scaling option: %g ', Control (17)) ; if (Control (17) == 0) fprintf ('(none)\n') ; elseif (Control (17) == 2) fprintf ('(scale the matrix by\n') ; fprintf (' dividing each row by max. abs. value in each row)\n') ; else fprintf ('(scale the matrix by\n') ; fprintf (' dividing each row by sum of abs. values in each row)\n') ; end fprintf (' Control (18): frontal matrix allocation ratio: %g\n', Control (18)) ; fprintf (' Control (19): drop tolerance: %g\n', Control (19)) ; fprintf (' Control (20): AMD and COLAMD aggressive absorption: %g ', Control (20)) ; yes_no (Control (20)) ; % compile-time options: fprintf ('\n The following options can only be changed at compile-time:\n') ; if (Control (9) == 1) fprintf (' Control (9): compiled to use the BLAS\n') ; else fprintf (' Control (9): compiled without the BLAS\n') ; fprintf (' (you will not get the best possible performance)\n') ; end if (Control (10) == 1) fprintf (' Control (10): compiled for MATLAB\n') ; elseif (Control (10) == 2) fprintf (' Control (10): compiled for MATLAB\n') ; else fprintf (' Control (10): not compiled for MATLAB\n') ; fprintf (' Printing will be in terms of 0-based matrix indexing,\n') ; fprintf (' not 1-based as is expected in MATLAB. Diary output may\n') ; fprintf (' not be properly recorded.\n') ; end if (Control (11) == 2) fprintf (' Control (11): uses POSIX times ( ) to get CPU time and wallclock time.\n') ; elseif (Control (11) == 1) fprintf (' Control (11): uses getrusage to get CPU time.\n') ; else fprintf (' Control (11): uses ANSI C clock to get CPU time.\n') ; fprintf (' The CPU time may wrap around, type "help cputime".\n') ; end if (Control (12) == 1) fprintf (' Control (12): compiled with debugging enabled\n') ; fprintf (' ###########################################\n') ; fprintf (' ### This will be exceedingly slow! ########\n') ; fprintf (' ###########################################\n') ; else fprintf (' Control (12): compiled for normal operation (no debugging)\n') ; end %------------------------------------------------------------------------------- % Info: %------------------------------------------------------------------------------- if (nargin == 1) return end status = Info (1) ; fprintf ('\nUMFPACK status: Info (1): %d, ', status) ; if (status == 0) fprintf ('OK\n') ; elseif (status == 1) fprintf ('WARNING matrix is singular\n') ; elseif (status == -1) fprintf ('ERROR out of memory\n') ; elseif (status == -3) fprintf ('ERROR numeric LU factorization is invalid\n') ; elseif (status == -4) fprintf ('ERROR symbolic LU factorization is invalid\n') ; elseif (status == -5) fprintf ('ERROR required argument is missing\n') ; elseif (status == -6) fprintf ('ERROR n <= 0\n') ; elseif (status <= -7 & status >= -12 | status == -14) %#ok fprintf ('ERROR matrix A is corrupted\n') ; elseif (status == -13) fprintf ('ERROR invalid system\n') ; elseif (status == -15) fprintf ('ERROR invalid permutation\n') ; elseif (status == -911) fprintf ('ERROR internal error!\n') ; fprintf ('Please report this error to Tim Davis ([email protected])\n') ; else fprintf ('ERROR unrecognized error. Info array corrupted\n') ; end fprintf (' (a -1 means the entry has not been computed):\n') ; fprintf ('\n Basic statistics:\n') ; fprintf (' Info (2): %d, # of rows of A\n', Info (2)) ; fprintf (' Info (17): %d, # of columns of A\n', Info (17)) ; fprintf (' Info (3): %d, nnz (A)\n', Info (3)) ; fprintf (' Info (4): %d, Unit size, in bytes, for memory usage reported below\n', Info (4)) ; fprintf (' Info (5): %d, size of int (in bytes)\n', Info (5)) ; fprintf (' Info (6): %d, size of UF_long (in bytes)\n', Info (6)) ; fprintf (' Info (7): %d, size of pointer (in bytes)\n', Info (7)) ; fprintf (' Info (8): %d, size of numerical entry (in bytes)\n', Info (8)) ; fprintf ('\n Pivots with zero Markowitz cost removed to obtain submatrix S:\n') ; fprintf (' Info (57): %d, # of pivots with one entry in pivot column\n', Info (57)) ; fprintf (' Info (58): %d, # of pivots with one entry in pivot row\n', Info (58)) ; fprintf (' Info (59): %d, # of rows/columns in submatrix S (if square)\n', Info (59)) ; fprintf (' Info (60): ') ; if (Info (60) > 0) fprintf ('submatrix S square and diagonal preserved\n') ; elseif (Info (60) == 0) fprintf ('submatrix S not square or diagonal not preserved\n') ; else fprintf ('\n') ; end fprintf (' Info (9): %d, # of "dense" rows in S\n', Info (9)) ; fprintf (' Info (10): %d, # of empty rows in S\n', Info (10)) ; fprintf (' Info (11): %d, # of "dense" columns in S\n', Info (11)) ; fprintf (' Info (12): %d, # of empty columns in S\n', Info (12)) ; fprintf (' Info (34): %g, symmetry of pattern of S\n', Info (34)) ; fprintf (' Info (35): %d, # of off-diagonal nonzeros in S+S''\n', Info (35)) ; fprintf (' Info (36): %d, nnz (diag (S))\n', Info (36)) ; fprintf ('\n 2-by-2 pivoting to place large entries on diagonal:\n') ; fprintf (' Info (52): %d, # of small diagonal entries of S\n', Info (52)) ; fprintf (' Info (53): %d, # of unmatched small diagonal entries\n', Info (53)) ; fprintf (' Info (54): %g, symmetry of P2*S\n', Info (54)) ; fprintf (' Info (55): %d, # of off-diagonal entries in (P2*S)+(P2*S)''\n', Info (55)) ; fprintf (' Info (56): %d, nnz (diag (P2*S))\n', Info (56)) ; fprintf ('\n AMD results, for strict diagonal pivoting:\n') ; fprintf (' Info (37): %d, est. nz in L and U\n', Info (37)) ; fprintf (' Info (38): %g, est. flop count\n', Info (38)) ; fprintf (' Info (39): %g, # of "dense" rows in S+S''\n', Info (39)) ; fprintf (' Info (40): %g, est. max. nz in any column of L\n', Info (40)) ; fprintf ('\n Final strategy selection, based on the analysis above:\n') ; prstrat (' Info (19): %d, strategy used ', Info (19)) ; fprintf (' Info (20): %d, ordering used ', Info (20)) ; if (Info (20) == 0) fprintf ('(COLAMD on A)\n') ; elseif (Info (20) == 1) fprintf ('(AMD on A+A'')\n') ; elseif (Info (20) == 2) fprintf ('(provided by user)\n') ; else fprintf ('(undefined ordering option)\n') ; end fprintf (' Info (32): %d, Q fixed during numeric factorization: ', Info (32)) ; yes_no (Info (32)) ; fprintf (' Info (33): %d, prefer diagonal pivoting: ', Info (33)) ; yes_no (Info (33)) ; fprintf ('\n symbolic analysis time and memory usage:\n') ; fprintf (' Info (13): %d, defragmentations during symbolic analysis\n', Info (13)) ; fprintf (' Info (14): %d, memory used during symbolic analysis (Units)\n', Info (14)) ; fprintf (' Info (15): %d, final size of symbolic factors (Units)\n', Info (15)) ; fprintf (' Info (16): %.2f, symbolic analysis CPU time (seconds)\n', Info (16)) ; fprintf (' Info (18): %.2f, symbolic analysis wall clock time (seconds)\n', Info (18)) ; fprintf ('\n Estimates computed in the symbolic analysis:\n') ; fprintf (' Info (21): %d, est. size of LU factors (Units)\n', Info (21)) ; fprintf (' Info (22): %d, est. total peak memory usage (Units)\n', Info (22)) ; fprintf (' Info (23): %d, est. factorization flop count\n', Info (23)) ; fprintf (' Info (24): %d, est. nnz (L)\n', Info (24)) ; fprintf (' Info (25): %d, est. nnz (U)\n', Info (25)) ; fprintf (' Info (26): %d, est. initial size, variable-part of LU (Units)\n', Info (26)) ; fprintf (' Info (27): %d, est. peak size, of variable-part of LU (Units)\n', Info (27)) ; fprintf (' Info (28): %d, est. final size, of variable-part of LU (Units)\n', Info (28)) ; fprintf (' Info (29): %d, est. max frontal matrix size (# of entries)\n', Info (29)) ; fprintf (' Info (30): %d, est. max # of rows in frontal matrix\n', Info (30)) ; fprintf (' Info (31): %d, est. max # of columns in frontal matrix\n', Info (31)) ; fprintf ('\n Computed in the numeric factorization (estimates shown above):\n') ; fprintf (' Info (41): %d, size of LU factors (Units)\n', Info (41)) ; fprintf (' Info (42): %d, total peak memory usage (Units)\n', Info (42)) ; fprintf (' Info (43): %d, factorization flop count\n', Info (43)) ; fprintf (' Info (44): %d, nnz (L)\n', Info (44)) ; fprintf (' Info (45): %d, nnz (U)\n', Info (45)) ; fprintf (' Info (46): %d, initial size of variable-part of LU (Units)\n', Info (46)) ; fprintf (' Info (47): %d, peak size of variable-part of LU (Units)\n', Info (47)) ; fprintf (' Info (48): %d, final size of variable-part of LU (Units)\n', Info (48)) ; fprintf (' Info (49): %d, max frontal matrix size (# of numerical entries)\n', Info (49)) ; fprintf (' Info (50): %d, max # of rows in frontal matrix\n', Info (50)) ; fprintf (' Info (51): %d, max # of columns in frontal matrix\n', Info (51)) ; fprintf ('\n Computed in the numeric factorization (no estimates computed a priori):\n') ; fprintf (' Info (61): %d, defragmentations during numeric factorization\n', Info (61)) ; fprintf (' Info (62): %d, reallocations during numeric factorization\n', Info (62)) ; fprintf (' Info (63): %d, costly reallocations during numeric factorization\n', Info (63)) ; fprintf (' Info (64): %d, integer indices in compressed pattern of L and U\n', Info (64)) ; fprintf (' Info (65): %d, numerical values stored in L and U\n', Info (65)) ; fprintf (' Info (66): %.2f, numeric factorization CPU time (seconds)\n', Info (66)) ; fprintf (' Info (76): %.2f, numeric factorization wall clock time (seconds)\n', Info (76)) ; if (Info (66) > 0.05 & Info (43) > 0) %#ok fprintf (' mflops in numeric factorization phase: %.2f\n', 1e-6 * Info (43) / Info (66)) ; end fprintf (' Info (67): %d, nnz (diag (U))\n', Info (67)) ; fprintf (' Info (68): %g, reciprocal condition number estimate\n', Info (68)) ; fprintf (' Info (69): %g, matrix was ', Info (69)) ; if (Info (69) == 0) fprintf ('not scaled\n') ; elseif (Info (69) == 2) fprintf ('scaled (row max)\n') ; else fprintf ('scaled (row sum)\n') ; end fprintf (' Info (70): %g, min. scale factor of rows of A\n', Info (70)) ; fprintf (' Info (71): %g, max. scale factor of rows of A\n', Info (71)) ; fprintf (' Info (72): %g, min. abs. on diagonal of U\n', Info (72)) ; fprintf (' Info (73): %g, max. abs. on diagonal of U\n', Info (73)) ; fprintf (' Info (74): %g, initial allocation parameter used\n', Info (74)) ; fprintf (' Info (75): %g, # of forced updates due to frontal growth\n', Info (75)) ; fprintf (' Info (77): %d, # of off-diaogonal pivots\n', Info (77)) ; fprintf (' Info (78): %d, nnz (L), if no small entries dropped\n', Info (78)) ; fprintf (' Info (79): %d, nnz (U), if no small entries dropped\n', Info (79)) ; fprintf (' Info (80): %d, # of small entries dropped\n', Info (80)) ; fprintf ('\n Computed in the solve step:\n') ; fprintf (' Info (81): %d, iterative refinement steps taken\n', Info (81)) ; fprintf (' Info (82): %d, iterative refinement steps attempted\n', Info (82)) ; fprintf (' Info (83): %g, omega(1), sparse-backward error estimate\n', Info (83)) ; fprintf (' Info (84): %g, omega(2), sparse-backward error estimate\n', Info (84)) ; fprintf (' Info (85): %d, solve flop count\n', Info (85)) ; fprintf (' Info (86): %.2f, solve CPU time (seconds)\n', Info (86)) ; fprintf (' Info (87): %.2f, solve wall clock time (seconds)\n', Info (87)) ; fprintf ('\n Info (88:90): unused\n\n') ; %------------------------------------------------------------------------------- function prstrat (fmt, strategy) % prstrat print the ordering strategy fprintf (fmt, strategy) ; if (strategy == 1) fprintf ('(unsymmetric)\n') ; fprintf (' Q = COLAMD (A), Q refined during numerical\n') ; fprintf (' factorization, and no attempt at diagonal pivoting.\n') ; elseif (strategy == 2) fprintf ('(symmetric, with 2-by-2 pivoting)\n') ; fprintf (' P2 = row permutation to place large values on the diagonal\n') ; fprintf (' Q = AMD (P2*A+(P2*A)''), Q not refined during numeric factorization,\n') ; fprintf (' and diagonal pivoting attempted.\n') ; elseif (strategy == 3) fprintf ('(symmetric)\n') ; fprintf (' Q = AMD (A+A''), Q not refined during numeric factorization,\n') ; fprintf (' and diagonal pivoting (P=Q'') attempted.\n') ; else % strategy = 0 ; fprintf ('(auto)\n') ; end %------------------------------------------------------------------------------- function yes_no (s) % yes_no print yes or no if (s == 0) fprintf ('(no)\n') ; else fprintf ('(yes)\n') ; end
github
rashwin1989/plicFoam-master
umfpack_make.m
.m
plicFoam-master/UMFPACK/MATLAB/umfpack_make.m
11,580
utf_8
64f05bca5117d3c3bdc652a04a176080
function umfpack_make (lapack) %UMFPACK_MAKE to compile umfpack2 for use in MATLAB % % Compiles the umfpack2 mexFunction and then runs a simple demo. % % Example: % umfpack_make % use default LAPACK and BLAS % umfpack_make ('lcc_lib/libmwlapack.lib') % for Windows % umfpack_make ('-lmwlapack -lmwblas') % for Linux, Unix, Mac % % the string gives the locations of the LAPACK and BLAS libraries. % % See also: umfpack, umfpack2, umfpack_details, umfpack_report, umfpack_demo, % and umfpack_simple. % Copyright 1995-2007 by Timothy A. Davis. details = 0 ; d = '' ; if (~isempty (strfind (computer, '64'))) d = ' -largeArrayDims' ; end v = getversion ; try % ispc does not appear in MATLAB 5.3 pc = ispc ; catch % if ispc fails, assume we are on a Windows PC if it's not unix pc = ~isunix ; end fprintf ('Compiling UMFPACK for MATLAB Version %g\n', v) ; if (pc) obj = 'obj' ; else obj = 'o' ; end kk = 0 ; %------------------------------------------------------------------------------- % BLAS option %------------------------------------------------------------------------------- % This is exceedingly ugly. The MATLAB mex command needs to be told where to % fine the LAPACK and BLAS libraries, which is a real portability nightmare. if (nargin < 1) if (pc) if (v < 6.5) % MATLAB 6.1 and earlier: use the version supplied here lapack = 'lcc_lib/libmwlapack.lib' ; fprintf ('Using %s. If this fails with dgemm and others\n',lapack); fprintf ('undefined, then edit umfpack_make.m and modify the') ; fprintf (' statement:\nlapack = ''%s'' ;\n', lapack) ; elseif (v < 7.5) lapack = 'libmwlapack.lib' ; else % MATLAB R2007b (7.5) made the problem worse lapack = 'libmwlapack.lib libmwblas.lib' ; end else % For other systems, mex should find lapack on its own, but this has % been broken in MATLAB R2007a; the following is now required. if (v < 7.5) lapack = '-lmwlapack' ; else % MATLAB R2007b (7.5) made the problem worse lapack = '-lmwlapack -lmwblas' ; end end end %------------------------------------------------------------------------------- % -DNPOSIX option (for sysconf and times timer routines) %------------------------------------------------------------------------------- posix = '' ; % if (~pc) % msg = [ ... % '--------------------------------------------------------------\n', ... % '\nUMFPACK can use the POSIX routines sysconf () and times ()\n', ... % 'to provide CPU time and wallclock time statistics. If you do not\n', ... % 'have a POSIX-compliant operating system, then UMFPACK won''t\n', ... % 'compile. If you don''t know which option to pick, try the\n', ... % 'default. If you get an error saying that sysconf and/or times\n', ... % 'are not defined, then recompile with the non-POSIX option.\n', ... % '\nPlease select one of the following options:\n', ... % ' 1: use POSIX sysconf and times routines (default)\n', ... % ' 2: do not use POSIX routines\n'] ; % fprintf (msg) ; % posix = str2num (input (': ', 's')) ; % if (isempty (posix)) % posix = 1 ; % end % if (posix == 2) % fprintf ('\nNot using POSIX sysconf and times routines.\n') ; % posix = ' -DNPOSIX' ; % else % fprintf ('\nUsing POSIX sysconf and times routines.\n') ; % posix = '' ; % end % end %------------------------------------------------------------------------------- % mex command %------------------------------------------------------------------------------- umfdir = '../Source/' ; amddir = '../../AMD/Source/' ; incdir = ' -I../Include -I../Source -I../../AMD/Include -I../../UFconfig' ; mx = sprintf ('mex -O%s%s%s ', posix, incdir, d) ; % fprintf ('compile options:\n%s\n', mx) ; %------------------------------------------------------------------------------- % source files %------------------------------------------------------------------------------- % non-user-callable umf_*.[ch] files: umfch = { 'assemble', 'blas3_update', ... 'build_tuples', 'create_element', ... 'dump', 'extend_front', 'garbage_collection', ... 'get_memory', 'init_front', 'kernel', ... 'kernel_init', 'kernel_wrapup', ... 'local_search', 'lsolve', 'ltsolve', ... 'mem_alloc_element', 'mem_alloc_head_block', ... 'mem_alloc_tail_block', 'mem_free_tail_block', ... 'mem_init_memoryspace', ... 'report_vector', 'row_search', 'scale_column', ... 'set_stats', 'solve', 'symbolic_usage', 'transpose', ... 'tuple_lengths', 'usolve', 'utsolve', 'valid_numeric', ... 'valid_symbolic', 'grow_front', 'start_front', '2by2', ... 'store_lu', 'scale' } ; % non-user-callable umf_*.[ch] files, int versions only (no real/complex): umfint = { 'analyze', 'apply_order', 'colamd', 'free', 'fsize', ... 'is_permutation', 'malloc', 'realloc', 'report_perm', ... 'singletons' } ; % non-user-callable and user-callable amd_*.[ch] files (int versions only): amdsrc = { 'aat', '1', '2', 'dump', 'postorder', 'post_tree', 'defaults', ... 'order', 'control', 'info', 'valid', 'preprocess', 'global' } ; % user-callable umfpack_*.[ch] files (real/complex): user = { 'col_to_triplet', 'defaults', 'free_numeric', ... 'free_symbolic', 'get_numeric', 'get_lunz', ... 'get_symbolic', 'get_determinant', 'numeric', 'qsymbolic', ... 'report_control', 'report_info', 'report_matrix', ... 'report_numeric', 'report_perm', 'report_status', ... 'report_symbolic', 'report_triplet', ... 'report_vector', 'solve', 'symbolic', ... 'transpose', 'triplet_to_col', 'scale' ... 'load_numeric', 'save_numeric', 'load_symbolic', 'save_symbolic' } ; % user-callable umfpack_*.[ch], only one version generic = { 'timer', 'tictoc', 'global' } ; M = cell (0) ; %------------------------------------------------------------------------------- % Create the umfpack2 and amd2 mexFunctions for MATLAB (int versions only) %------------------------------------------------------------------------------- for k = 1:length(umfint) [M, kk] = make (M, '%s -DDLONG -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s.%s', mx, umfint {k}, umfint {k}, 'm', obj, umfdir, ... kk, details) ; end rules = { [mx ' -DDLONG'] , [mx ' -DZLONG'] } ; kinds = { 'md', 'mz' } ; for what = 1:2 rule = rules {what} ; kind = kinds {what} ; [M, kk] = make (M, '%s -DCONJUGATE_SOLVE -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s.%s', rule, 'ltsolve', 'lhsolve', kind, obj, umfdir, ... kk, details) ; [M, kk] = make (M, '%s -DCONJUGATE_SOLVE -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s.%s', rule, 'utsolve', 'uhsolve', kind, obj, umfdir, ... kk, details) ; [M, kk] = make (M, '%s -DDO_MAP -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s_map_nox.%s', rule, 'triplet', 'triplet', kind, obj, ... umfdir, kk, details) ; [M, kk] = make (M, '%s -DDO_VALUES -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s_nomap_x.%s', rule, 'triplet', 'triplet', kind, obj, ... umfdir, kk, details) ; [M, kk] = make (M, '%s -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s_nomap_nox.%s', rule, 'triplet', 'triplet', kind, obj, ... umfdir, kk, details) ; [M, kk] = make (M, '%s -DDO_MAP -DDO_VALUES -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s_map_x.%s', rule, 'triplet', 'triplet', kind, obj, ... umfdir, kk, details) ; [M, kk] = make (M, '%s -DFIXQ -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s_fixq.%s', rule, 'assemble', 'assemble', kind, obj, ... umfdir, kk, details) ; [M, kk] = make (M, '%s -DDROP -c %sumf_%s.c', 'umf_%s.%s', ... 'umf_%s_%s_drop.%s', rule, 'store_lu', 'store_lu', kind, obj, ... umfdir, kk, details) ; for k = 1:length(umfch) [M, kk] = make (M, '%s -c %sumf_%s.c', 'umf_%s.%s', 'umf_%s_%s.%s', ... rule, umfch {k}, umfch {k}, kind, obj, umfdir, kk, details) ; end [M, kk] = make (M, '%s -DWSOLVE -c %sumfpack_%s.c', 'umfpack_%s.%s', ... 'umfpack_%s_w%s.%s', rule, 'solve', 'solve', kind, obj, umfdir, ... kk, details) ; for k = 1:length(user) [M, kk] = make (M, '%s -c %sumfpack_%s.c', 'umfpack_%s.%s', ... 'umfpack_%s_%s.%s', rule, user {k}, user {k}, kind, obj, ... umfdir, kk, details) ; end end for k = 1:length(generic) [M, kk] = make (M, '%s -c %sumfpack_%s.c', 'umfpack_%s.%s', ... 'umfpack_%s_%s.%s', mx, generic {k}, generic {k}, 'm', obj, ... umfdir, kk, details) ; end %---------------------------------------- % AMD routines (int only) %---------------------------------------- for k = 1:length(amdsrc) [M, kk] = make (M, '%s -DDLONG -c %samd_%s.c', 'amd_%s.%s', ... 'amd_%s_%s.%s', mx, amdsrc {k}, amdsrc {k}, 'm', obj, amddir, ... kk, details) ; end %---------------------------------------- % compile the umfpack2 mexFunction %---------------------------------------- C = sprintf ('%s -output umfpack2 umfpackmex.c', mx) ; for i = 1:length (M) C = [C ' ' (M {i})] ; %#ok end C = [C ' ' lapack] ; kk = cmd (C, kk, details) ; %---------------------------------------- % delete the object files %---------------------------------------- for i = 1:length (M) rmfile (M {i}) ; end %---------------------------------------- % compile the luflop mexFunction %---------------------------------------- cmd (sprintf ('%s -output luflop luflopmex.c', mx), kk, details) ; fprintf ('\nUMFPACK successfully compiled\n') ; %=============================================================================== % end of umfpack_make %=============================================================================== %------------------------------------------------------------------------------- function rmfile (file) % rmfile: delete a file, but only if it exists if (length (dir (file)) > 0) %#ok delete (file) ; end %------------------------------------------------------------------------------- function cpfile (src, dst) % cpfile: copy the src file to the filename dst, overwriting dst if it exists rmfile (dst) if (length (dir (src)) == 0) %#ok fprintf ('File does not exist: %s\n', src) ; error ('File does not exist') ; end copyfile (src, dst) ; %------------------------------------------------------------------------------- function mvfile (src, dst) % mvfile: move the src file to the filename dst, overwriting dst if it exists cpfile (src, dst) ; rmfile (src) ; %------------------------------------------------------------------------------- function kk = cmd (s, kk, details) %CMD: evaluate a command, and either print it or print a "." if (details) fprintf ('%s\n', s) ; else if (mod (kk, 60) == 0) fprintf ('\n') ; end kk = kk + 1 ; fprintf ('.') ; end eval (s) ; %------------------------------------------------------------------------------- function [M, kk] = make (M, s, src, dst, rule, file1, file2, kind, obj, ... srcdir, kk, details) % make: execute a "make" command for a source file kk = cmd (sprintf (s, rule, srcdir, file1), kk, details) ; src = sprintf (src, file1, obj) ; dst = sprintf (dst, kind, file2, obj) ; mvfile (src, dst) ; M {end + 1} = dst ; %------------------------------------------------------------------------------- function v = getversion % determine the MATLAB version, and return it as a double. v = sscanf (version, '%d.%d.%d') ; v = 10.^(0:-1:-(length(v)-1)) * v ;
github
rashwin1989/plicFoam-master
umfpack_btf.m
.m
plicFoam-master/UMFPACK/MATLAB/umfpack_btf.m
4,651
utf_8
905709090e298d8bfd5e9937181c95b6
function [x, info] = umfpack_btf (A, b, Control) %UMFPACK_BTF factorize A using a block triangular form % % Example: % x = umfpack_btf (A, b, Control) % % solve Ax=b by first permuting the matrix A to block triangular form via dmperm % and then using UMFPACK to factorize each diagonal block. Adjacent 1-by-1 % blocks are merged into a single upper triangular block, and solved via % MATLAB's \ operator. The Control parameter is optional (Type umfpack_details % and umfpack_report for details on its use). A must be square. % % See also umfpack, umfpack2, umfpack_details, dmperm % Copyright 1995-2007 by Timothy A. Davis. if (nargin < 2) help umfpack_btf error ('Usage: x = umfpack_btf (A, b, Control)') ; end [m n] = size (A) ; if (m ~= n) help umfpack_btf error ('umfpack_btf: A must be square') ; end m1 = size (b,1) ; if (m1 ~= n) help umfpack_btf error ('umfpack_btf: b has the wrong dimensions') ; end if (nargin < 3) Control = umfpack2 ; end %------------------------------------------------------------------------------- % find the block triangular form %------------------------------------------------------------------------------- % dmperm built-in may segfault in MATLAB 7.4 or earlier; fixed in MATLAB 7.5 % since dmperm now uses CSparse [p,q,r] = dmperm (A) ; nblocks = length (r) - 1 ; info = [0 0 0] ; % [nnz(L), nnz(U), nnz(F)], optional 2nd output %------------------------------------------------------------------------------- % solve the system %------------------------------------------------------------------------------- if (nblocks == 1 | sprank (A) < n) %#ok %--------------------------------------------------------------------------- % matrix is irreducible or structurally singular %--------------------------------------------------------------------------- [x info2] = umfpack2 (A, '\', b, Control) ; info = [info2(78) info2(79) 0] ; else %--------------------------------------------------------------------------- % A (p,q) is in block triangular form %--------------------------------------------------------------------------- b = b (p,:) ; A = A (p,q) ; x = zeros (size (b)) ; %--------------------------------------------------------------------------- % merge adjacent singletons into a single upper triangular block %--------------------------------------------------------------------------- [r, nblocks, is_triangular] = merge_singletons (r) ; %--------------------------------------------------------------------------- % solve the system: x (q) = A\b %--------------------------------------------------------------------------- for k = nblocks:-1:1 % get the kth block k1 = r (k) ; k2 = r (k+1) - 1 ; % solve the system [x2 info2] = solver (A (k1:k2, k1:k2), b (k1:k2,:), ... is_triangular (k), Control) ; x (k1:k2,:) = x2 ; % off-diagonal block back substitution F2 = A (1:k1-1, k1:k2) ; b (1:k1-1,:) = b (1:k1-1,:) - F2 * x (k1:k2,:) ; info (1:2) = info (1:2) + info2 (1:2) ; info (3) = info (3) + nnz (F2) ; end x (q,:) = x ; end %------------------------------------------------------------------------------- % merge_singletons %------------------------------------------------------------------------------- function [r, nblocks, is_triangular] = merge_singletons (r) % % Given r from [p,q,r] = dmperm (A), where A is square, return a modified r that % reflects the merger of adjacent singletons into a single upper triangular % block. is_triangular (k) is 1 if the kth block is upper triangular. nblocks % is the number of new blocks. nblocks = length (r) - 1 ; bsize = r (2:nblocks+1) - r (1:nblocks) ; t = [0 (bsize == 1)] ; z = (t (1:nblocks) == 0 & t (2:nblocks+1) == 1) | t (2:nblocks+1) == 0 ; y = [(find (z)) nblocks+1] ; r = r (y) ; nblocks = length (y) - 1 ; is_triangular = y (2:nblocks+1) - y (1:nblocks) > 1 ; %------------------------------------------------------------------------------- % solve Ax=b, but check for small and/or triangular systems %------------------------------------------------------------------------------- function [x, info] = solver (A, b, is_triangular, Control) if (is_triangular) % back substitution only x = A \ b ; info = [nnz(A) 0 0] ; elseif (size (A,1) < 4) % a very small matrix, solve it as a dense linear system x = full (A) \ b ; n = size (A,1) ; info = [(n^2+n)/2 (n^2+n)/2 0] ; else % solve it as a sparse linear system [x info] = umfpack_solve (A, '\', b, Control) ; end
github
pooya-git/DeepNeuralDecoder-master
SteaneTrainingSetd5.m
.m
DeepNeuralDecoder-master/Data/Generator/Steane_CNOT_D5/SteaneTrainingSetd5.m
113,759
utf_8
f0dabe553929f5beb0a63b422cbf428b
% MIT License % % Copyright (c) 2018 Chris Chamberland % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, including without limitation the rights % to use, copy, modify, merge, publish, distribute, sublicense, and/or sell % copies of the Software, and to permit persons to whom the Software is % furnished to do so, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in all % copies or substantial portions of the Software. % % THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR % IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE % AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, % OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE % SOFTWARE. function SteaneTrainingSetd5 % Circuit descriptors: % -1: qubit non-active % 0: Noiseless memory % 1: Gate memory % 2: Measurement memory % 3: Preparation in X basis (|+> state) % 4: Preparation in Z basis (|0> state) % 5: Measurement in X basis % 6: Measurement in Z basis % 7: X gate % 8: Z gate % 10: H gate % 11: S gate % 20: T gate %1---: Control qubit for CNOT with target --- %1000: Target qubit for CNOT % Circuit for CNOT 1-exRec n = 19; % Generate lookup table lookUpO = lookUpOFunc(1,n); lookUpPlus = lookUpPlusFunc(1,n); %Test % CNOT circuit containing all four EC blocks CFull = [0,0,0,0,0,1000,1006,0,1010,0,0,0,0,0,1000,1006,0; 4,1003,0,1000,2,1001,0,5,-1,4,1003,0,1000,2,1001,0,5; 4,1000,6,-1,-1,-1,-1,-1,-1,4,1000,6,-1,-1,-1,-1,-1; 4,1005,0,1002,5,-1,-1,-1,-1,4,1005,0,1002,5,-1,-1,-1; 4,1000,6,-1,-1,-1,-1,-1,-1,4,1000,6,-1,-1,-1,-1,-1; 3,1000,0,1008,2,0,1000,6,-1,3,1000,0,1008,2,0,1000,6; 3,1006,5,-1,-1,-1,-1,-1,-1,3,1006,5,-1,-1,-1,-1,-1; 3,1000,0,1000,6,-1,-1,-1,-1,3,1000,0,1000,6,-1,-1,-1; 3,1008,5,-1,-1,-1,-1,-1,-1,3,1008,5,-1,-1,-1,-1,-1; 0,0,0,0,0,1011,1000,0,1000,0,0,0,0,0,1011,1000,0; 3,1000,0,1013,2,1000,0,6,-1,3,1000,0,1013,2,1000,0,6; 3,1011,5,-1,-1,-1,-1,-1,-1,3,1011,5,-1,-1,-1,-1,-1; 3,1000,0,1000,6,-1,-1,-1,-1,3,1000,0,1000,6,-1,-1,-1; 3,1013,5,-1,-1,-1,-1,-1,-1,3,1013,5,-1,-1,-1,-1,-1; 4,1016,0,1000,2,0,1010,5,-1,4,1016,0,1000,2,0,1010,5; 4,1000,6,-1,-1,-1,-1,-1,-1,4,1000,6,-1,-1,-1,-1,-1; 4,1018,0,1015,5,-1,-1,-1,-1,4,1018,0,1015,5,-1,-1,-1; 4,1000,6,-1,-1,-1,-1,-1,-1,4,1000,6,-1,-1,-1,-1,-1]; parfor i = 1:7 numIterations = 2*10^7; v = [6*10^-4,7*10^-4,8*10^-4,9*10^-4,10^-3,1.5*10^-3,2*10^-3]; errRate = v(1,i); errStatePrepString = 'ErrorStatePrep'; str_errRate = num2str(errRate,'%0.3e'); str_mat = '.mat'; str_temp = strcat(errStatePrepString,str_errRate); str_errStatePrep = strcat(str_temp,str_mat); % numIterations1 = 10^5; % % [eO,eOIndex,numAcceptedO] = PacceptErrorGeneratorOPrepUpper(errRate,numIterations1,n,lookUpPlus,lookUpO); % [ePlus,ePlusIndex,numAcceptedPlus] = PacceptErrorGeneratorPlusPrepUpper(errRate,numIterations1,n,lookUpPlus,lookUpO); % parsaveErrorStatePrep(str_errStatePrep,eO,eOIndex,numAcceptedO,ePlus,ePlusIndex,numAcceptedPlus); switch i case 1 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep6.000e-04.mat'); case 2 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep7.000e-04.mat'); case 3 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep8.000e-04.mat'); case 4 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep9.000e-04.mat'); case 5 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep1.000e-03.mat'); case 6 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep1.500e-03.mat'); otherwise [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep2.000e-03.mat'); end if (~isempty(eOIndex)) && (~isempty(ePlusIndex)) [A1,A2,OutputCount] = OutSynAndError(eO,eOIndex,ePlus,ePlusIndex,errRate,numIterations,CFull,n,lookUpPlus,lookUpO); TempStr1 = 'SyndromeOnly'; TempStr2 = '.txt'; TempStr3 = 'ErrorOnly'; str_Final1 = strcat(TempStr1,str_errRate); str_Final2 = strcat(str_Final1,TempStr2); str_Final3 = strcat(TempStr3,str_errRate); str_Final4 = strcat(str_Final3,TempStr2); fid = fopen(str_Final2, 'w+t'); for ii = 1:size(A1,1) fprintf(fid,'%g\t',A1(ii,:)); fprintf(fid,'\n'); end fclose(fid); fid = fopen(str_Final4, 'w+t'); for ii = 1:size(A2,1) fprintf(fid,'%g\t',A2(ii,:)); fprintf(fid,'\n'); end fclose(fid); end str_Count = strcat('Count',str_errRate); str_CountFinal = strcat(str_Count,'.mat'); parsaveCount(str_CountFinal,OutputCount); end end function parsaveErrorStatePrep(fname,eO,eOIndex,numAcceptedO,ePlus,ePlusIndex,numAcceptedPlus) save(fname,'eO','eOIndex','numAcceptedO','ePlus','ePlusIndex','numAcceptedPlus'); end function parsaveErrorVec(fname,errorVecMat) save(fname,'errorVecMat'); end function [out1,out2,out3,out4] = parload(fname) load(fname); out1 = eO; out2 = eOIndex; out3 = ePlus; out4 = ePlusIndex; end function parsaveCount(fname,OutputCount) save(fname,'OutputCount'); end function Output = lookUpOFunc(n,numQubits) % Circuit for |0> state prep lookUpO = zeros(70,5,numQubits); C = [3 1018 1014 1013 1009 1004 1010 1007 3 1014 1018 1009 1019 1010 1015 1004 3 0 0 1019 1015 1007 1004 1013 4 0 0 0 0 1000 1000 1000 3 1019 1009 1018 1014 1015 1007 1010 3 0 0 0 0 1009 1018 1017 4 0 0 0 0 1000 1000 1000 3 0 0 1017 1010 1014 1013 1009 4 0 1000 1000 1000 1000 1 1000 4 0 0 0 1000 1000 1000 1000 3 0 0 1014 1013 1018 1017 1019 3 0 0 0 0 1013 1014 1015 4 0 0 1000 1000 1000 1000 1000 4 1000 1000 1000 1000 1000 1000 1 4 0 0 0 1000 1000 1000 1000 3 0 0 0 0 1017 1019 1018 4 0 0 1000 1 1000 1000 1000 4 1000 1000 1000 1 1000 1000 1000 4 1000 1 1000 1000 1 1000 1000]; % Find the number of gate storage locations in C counterStorage = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) == 1 counterStorage = counterStorage + 1; end end end % Find the number of CNOT locations in C counterCNOT = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) > 1000 counterCNOT = counterCNOT + 1; end end end % fills in lookUpTable locations where lookUpO(i,j,k) has j = k = 1. counter = 1; for i = 1:counterStorage lookUpO(i,1,1) = 1; counter = counter + 1; end for i = 1 : length(C(:,1)) lookUpO(counter,1,1) = C(i,1); counter = counter + 1; end for i = 1 : counterCNOT lookUpO(counter,1,1) = 1000; counter = counter + 1; end e = zeros(1,4); % fills in LookUpO(i,j,:) for storage gate errors j = 2,3. counter = 1; for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = 2:3 if jj == 2 if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpO(counter,jj,:) = xVector(C, n, e); end else if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpO(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end % fills in LookUpO(i,j,:) for state prep errors j = 2,3. for i = 1:length(C(:,1)) if C(i,1) == 3 e(1,:) = [2,i,1,1]; lookUpO(counter,3,:) = zVector(C, n, e); counter = counter + 1; else e(1,:) = [1,i,1,1]; lookUpO(counter,2,:) = xVector(C, n, e); counter = counter + 1; end end % fills in LookUpO(i,j,:) for CNOT erros, j = 2,3. for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = [2,3,4,5] switch jj case 2 if C(j,i) > 1000 e(1,:) = [1,j,1,i]; lookUpO(counter,jj,:) = xVector(C, n, e); end case 3 if C(j,i) > 1000 e(1,:) = [2,j,1,i]; lookUpO(counter,jj,:) = zVector(C, n, e); end case 4 if C(j,i) > 1000 e(1,:) = [4,j,1,i]; lookUpO(counter,jj,:) = xVector(C, n, e); end otherwise if C(j,i) > 1000 e(1,:) = [8,j,1,i]; lookUpO(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end Output = lookUpO; end function Output = lookUpPlusFunc(n,numQubits) % Circuit for |+> state prep lookUpPlus = zeros(70,5,numQubits); C = [4 1000 1000 1000 1000 1000 1000 1000 4 1000 1000 1000 1000 1000 1000 1000 4 0 0 1000 1000 1000 1000 1000 3 0 0 0 0 1001 1003 1002 4 1000 1000 1000 1000 1000 1000 1000 4 0 0 0 0 1000 1000 1000 3 0 0 0 0 1003 1005 1001 4 0 0 1000 1000 1000 1000 1000 3 0 1005 1002 1001 1006 1 1008 3 0 0 0 1008 1002 1001 1005 4 0 0 1000 1000 1000 1000 1000 4 0 0 0 0 1000 1000 1000 3 0 0 1001 1011 1012 1008 1003 3 1002 1001 1011 1005 1008 1012 1 3 0 0 0 1003 1005 1002 1012 4 0 0 0 0 1000 1000 1000 3 0 0 1008 1 1016 1011 1006 3 1001 1002 1005 1 1011 1006 1016 3 1005 1 1003 1002 1 1016 1011]; % Find the number of gate storage locations in C counterStorage = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) == 1 counterStorage = counterStorage + 1; end end end % Find the number of CNOT locations in C counterCNOT = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) > 1000 counterCNOT = counterCNOT + 1; end end end % fills in lookUpTable locations where lookUpO(i,j,k) has j = k = 1. counter = 1; for i = 1:counterStorage lookUpPlus(i,1,1) = 1; counter = counter + 1; end for i = 1 : length(C(:,1)) lookUpPlus(counter,1,1) = C(i,1); counter = counter + 1; end for i = 1 : counterCNOT lookUpPlus(counter,1,1) = 1000; counter = counter + 1; end e = zeros(1,4); % fills in LookUpO(i,j,:) for storage gate errors j = 2,3. counter = 1; for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = 2:3 if jj == 2 if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpPlus(counter,jj,:) = xVector(C, n, e); end else if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpPlus(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end % fills in LookUpO(i,j,:) for state prep errors j = 2,3. for i = 1:length(C(:,1)) if C(i,1) == 3 e(1,:) = [2,i,1,1]; lookUpPlus(counter,3,:) = zVector(C, n, e); counter = counter + 1; else e(1,:) = [1,i,1,1]; lookUpPlus(counter,2,:) = xVector(C, n, e); counter = counter + 1; end end % fills in LookUpO(i,j,:) for CNOT erros, j = 2,3. for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = [2,3,4,5] switch jj case 2 if C(j,i) > 1000 e(1,:) = [1,j,1,i]; lookUpPlus(counter,jj,:) = xVector(C, n, e); end case 3 if C(j,i) > 1000 e(1,:) = [2,j,1,i]; lookUpPlus(counter,jj,:) = zVector(C, n, e); end case 4 if C(j,i) > 1000 e(1,:) = [4,j,1,i]; lookUpPlus(counter,jj,:) = xVector(C, n, e); end otherwise if C(j,i) > 1000 e(1,:) = [8,j,1,i]; lookUpPlus(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end Output = lookUpPlus; end function Output = PropagationStatePrepArb(C, n, e) % C encodes information about the circuit % n is the number of qubits per encoded codeblock % eN are the error entries (location and time) % The Output matrix will contain (2q+m) rows and n columns. The paramters Output(i,j) are: % i <= 2q and odd: Stores X type errors for output qubit #ceil(i/2) (order based on matrix C) % i <= 2q and even: Stores Z type errors for output qubit #ceil(i/2) (order based on matrix C) % i > 2q: Stores measurement error for measurement number #i-2q (type is X or Z depending on measurement type) % The Errors matrix will be a tensor with 2 parameters Output(i, j) % i: logical qubit number % j<=n: X error at physical qubit number j % j>n : Z error at physical qubit number j % Error inputs eN are characterized by four parameters, thus a vector (i,j, k, l) % i: error type: 0 = I, 1 = X, 2 = Z, 3 = Y % j: logical qubit number (if the entry here is '0' then this will correspond to an identity "error") % k: physical qubit number within a codeblock % l: time location N_meas = length(find(C==5)) + length(find(C==6)); % number of logical measurements in the circuit N_output = length(C(:,end)) - sum(C(:,end)==-1) - sum(C(:,end)==5) - sum(C(:,end)==6); % number of output active qubits that have not been measured Meas_dict = [find(C==5); find(C==6)]; Meas_dict = sort(Meas_dict); Output = zeros(2*N_output + N_meas, n); Errors = zeros(length(C(:,1)), 2*n); for t= 1:length(C(1,:)) % If the error occurs at a measurement location then the error is introduced before propagation of faults for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( ( C(e(j,2),t) == 5 ) || ( C(e(j,2),t) == 6 ) ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end end end % Propagation of errors (do not need to do it for the first step of circuit if t>1 for i = 1:length(C(:,t)) if C(i, t) == 10 % In this case must flip the X and Z error information v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = v2; Errors(i, n+1:end) = v1; end if C(i, t) == 11 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = mod(v1+v2, 2); end if C(i,t) > 1000 % check to see if target qubit according to control qubit is actually a target qubit if C(C(i,t) - 1000, t) == 1000 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); w1 = Errors(C(i,t) - 1000, 1:n); w2 = Errors(C(i,t) - 1000, (n+1):end); %mod(v2+w2,2) Errors(C(i,t) - 1000, 1:n) = mod(v1+w1, 2); Errors(i, (n+1):end) = mod(v2+w2, 2); end end if C(i,t) == 5 % This corresponds to X measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, (n+1):end); Errors(i, 1:end) = 0; end if C(i,t) == 6 % This corresponds to Z measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, 1:n); Errors(i, 1:end) = 0; end end end % Introduce faults for locations that are not measurements for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( C(e(j,2),t) ~= 5 ) && ( C(e(j,2),t) ~= 6 ) % This IF statement checks to see if the gate at this location is NOT a CNOT or Prep if ( C(e(j,2),t) < 1000 ) %&& ( C(e(j,2),t) ~= 3 ) && ( C(e(j,2),t) ~= 4 ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end % Introduce errors in the case of CNOT gate for control and target qubits % Errors for control qubit are entry mod(e(j,1),4) according to standard indexing above if ( C(e(j,2),t) > 1000 ) if C(C(e(j,2),t) - 1000, t) == 1000 if mod(e(j,1),2) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if mod(e(j,1),4) > 1 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if mod(floor(e(j,1)/4),2) == 1 Errors(C(e(j,2),t) - 1000, e(j,3)) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)) + 1, 2); end if mod(floor(e(j,1)/4),4) > 1 Errors(C(e(j,2),t) - 1000, e(j,3)+n) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)+n) + 1, 2); end end end end end end end %Errors counter = 1; % This will be used to iterate over the different qubits for j = 1:length(C(:,end)) if (C(j,end) ~= -1) && (C(j,end) ~= 5) && (C(j,end) ~= 6) Output(counter,:) = Errors(j,1:n); Output(counter+1,:) = Errors(j,(n+1):end); counter = counter + 2; end end end function Output = xVector(C, n, e) outputMatrix = PropagationStatePrepArb(C, n, e); jx = 1; for i = 1:length(outputMatrix) if mod(i,2) == 1 xvector(jx) = outputMatrix(i,1); jx = jx + 1; end end Output = xvector; end function Output = zVector(C, n, e) outputMatrix = PropagationStatePrepArb(C, n, e); jz = 1; for i = 1:length(outputMatrix) if mod(i,2) == 0 zvector(jz) = outputMatrix(i,1); jz = jz + 1; end end Output = zvector; end function Output = PropagationArb(C, n, e, XPrepTable, ZPrepTable) % C encodes information about the circuit % n is the number of qubits per encoded codeblock % eN are the error entries (location and time) % The Output matrix will contain (2q+m) rows and n columns. The paramters Output(i,j) are: % i <= 2q and odd: Stores X type errors for output qubit #ceil(i/2) (order based on matrix C) % i <= 2q and even: Stores Z type errors for output qubit #ceil(i/2) (order based on matrix C) % i > 2q: Stores measurement error for measurement number #i-2q (type is X or Z depending on measurement type) % The Errors matrix will be a tensor with 2 parameters Output(i, j) % i: logical qubit number % j<=n: X error at physical qubit number j % j>n : Z error at physical qubit number j % Error inputs eN are characterized by four parameters, thus a vector (i,j, k, l) % i: error type: 0 = I, 1 = X, 2 = Z, 3 = Y % j: logical qubit number (if the entry here is '0' then this will correspond to an identity "error") % k: physical qubit number within a codeblock % l: time location N_meas = length(find(C==5)) + length(find(C==6)); % number of logical measurements in the circuit N_output = length(C(:,end)) - sum(C(:,end)==-1) - sum(C(:,end)==5) - sum(C(:,end)==6); % number of output active qubits that have not been measured Meas_dict = [find(C==5); find(C==6)]; Meas_dict = sort(Meas_dict); Output = zeros(2*N_output + N_meas, n); Errors = zeros(length(C(:,1)), 2*n); for t= 1:length(C(1,:)) % If the error occurs at a measurement location then the error is introduced before propagation of faults for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( ( C(e(j,2),t) == 5 ) || ( C(e(j,2),t) == 6 ) ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end end end % Propagation of errors (do not need to do it for the first step of % circuit) if t>1 for i = 1:length(C(:,t)) if C(i, t) == 10 % In this case must flip the X and Z error information v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = v2; Errors(i, n+1:end) = v1; end if C(i, t) == 11 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = mod(v1+v2, 2); end if C(i,t) > 1000 % check to see if target qubit according to control qubit is actually a target qubit if C(C(i,t) - 1000, t) == 1000 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); w1 = Errors(C(i,t) - 1000, 1:n); w2 = Errors(C(i,t) - 1000, (n+1):end); %mod(v2+w2,2) Errors(C(i,t) - 1000, 1:n) = mod(v1+w1, 2); Errors(i, (n+1):end) = mod(v2+w2, 2); end end if C(i,t) == 5 % This corresponds to X measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, (n+1):end); Errors(i, 1:end) = 0; end if C(i,t) == 6 % This corresponds to Z measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, 1:n); Errors(i, 1:end) = 0; end end end % Introduce faults for locations that are not measurements for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( C(e(j,2),t) ~= 5 ) && ( C(e(j,2),t) ~= 6 ) % This IF statement checks to see if the gate at this location is NOT a CNOT or Prep if ( C(e(j,2),t) < 1000 ) && ( C(e(j,2),t) ~= 3 ) && ( C(e(j,2),t) ~= 4 ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end % Introduce errors in the case of CNOT gate for control and target qubits % Errors for control qubit are entry mod(e(j,1),4) according to standard indexing above if ( C(e(j,2),t) > 1000 ) if C(C(e(j,2),t) - 1000, t) == 1000 if mod(e(j,1),2) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if mod(e(j,1),4) > 1 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if mod(floor(e(j,1)/4),2) == 1 Errors(C(e(j,2),t) - 1000, e(j,3)) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)) + 1, 2); end if mod(floor(e(j,1)/4),4) > 1 Errors(C(e(j,2),t) - 1000, e(j,3)+n) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)+n) + 1, 2); end end end % Introduce errors in the case of |0> prep if ( C(e(j,2),t) == 4 ) eVec = zeros(1,n); if mod(e(j,1),2) == 1 % Need to translate the entries in the Prep tables to right format for a = 1:n eVec(a) = ZPrepTable(e(j,3), 2, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(e(j,1),4) > 1 for a = 1:n eVec(a) = ZPrepTable(e(j,3), 3, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end)+eVec, 2); end if mod(floor(e(j,1)/4),2) == 1 for a = 1:n eVec(a) = ZPrepTable(e(j,3), 4, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(floor(e(j,1)/4),4) > 1 for a = 1:n eVec(a) = ZPrepTable(e(j,3), 5, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end) + eVec, 2); end end % Introduce errors in the case of |+> prep if ( C(e(j,2),t) == 3 ) eVec = zeros(1,n); if mod(e(j,1),2) == 1 % Need to translate the entries in the Prep tables to right format for a = 1:n eVec(a) = XPrepTable(e(j,3), 2, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(e(j,1),4) > 1 for a = 1:n eVec(a) = XPrepTable(e(j,3), 3, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end)+eVec, 2); end if mod(floor(e(j,1)/4),2) == 1 for a = 1:n eVec(a) = XPrepTable(e(j,3), 4, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(floor(e(j,1)/4),4) > 1 for a = 1:n eVec(a) = XPrepTable(e(j,3), 5, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end) + eVec, 2); end end end end end end %Errors counter = 1; % This will be used to iterate over the different qubits for j = 1:length(C(:,end)) if (C(j,end) ~= -1) && (C(j,end) ~= 5) && (C(j,end) ~= 6) Output(counter,:) = Errors(j,1:n); Output(counter+1,:) = Errors(j,(n+1):end); counter = counter + 2; end end end function Output = IdealDecoder19QubitColor(xErr) Stabs = [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0]; newMat = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0]; Syn = zeros(1,9); for i = 1:9 Syn(i) = mod(sum(conj(xErr).* Stabs(i,1:19)),2); % obtain error syndrom end correctionRow = 1; % convert binary syndrome to decimal to find row in matrix newMat % corresponding to measured syndrome for i = 1:length(Syn) correctionRow = correctionRow + 2^(9-i)*Syn(i); end Output = newMat(correctionRow,:); end function Output = Syndrome(errIn) g = [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0]; syn = zeros(1,9); for i = 1:9 syn(1,i) = mod( sum(errIn.*g(i,:)), 2); end Output = syn; end function Output = errorGeneratorPacceptOprepUpper(errRate) % Generates errors in the ancilla preparation part of the EC's e = zeros(1,4); rows = 1; % Locations within the state prep |0> circuit for i = 1:2 for l = 1:6 xi = rand; if xi < errRate k = randi([1,3]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end for l = 7:25 if (l == 7) || (l == 8) || (l == 9) || (l == 11) || (l == 12) || (l == 14) || (l == 17) || (l == 18) || (l == 22) xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,i,l,1]; rows = rows + 1; end else xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,i,l,1]; rows = rows + 1; end end end for l = 26:70 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end end for i = [1,3] for l = 1:19 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,2]; rows = rows + 1; end end end for i = [2,4] for l = 1:19 xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,i,l,3]; rows = rows + 1; end end end for l = 1:19 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,3,l,4]; rows = rows + 1; end end for l = 1:19 xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,3,l,5]; rows = rows + 1; end end Output = e; end function [Output1,Output2,Output3] = PacceptErrorGeneratorOPrepUpper(errRate,numIterations,n,lookUpPlus,lookUpO) C = [4,1002,0,1000,2; 4,1000,6,-1,-1; 4,1004,0,1001,5; 4,1000,6,-1,-1]; eAccepted = zeros(1,4); eIndex = zeros(1,1); countereIndex = 1; counterRows = 0; numAccepted = 0; while length(eAccepted(:,1)) < numIterations e = errorGeneratorPacceptOprepUpper(errRate); if isequal(e,zeros(1,4)) counter = 0; else counter = length(e(:,1)); end propagatedMatrix = PropagationArb(C,n,e,lookUpPlus,lookUpO); if (sum(IdealDecoder19QubitColor(propagatedMatrix(3,:)))==0) && (sum(IdealDecoder19QubitColor(propagatedMatrix(4,:)))==0) && (sum(IdealDecoder19QubitColor(propagatedMatrix(5,:)))==0) && (mod(sum(propagatedMatrix(3,:)),2)==0) && (mod(sum(propagatedMatrix(4,:)),2)==0) && (mod(sum(propagatedMatrix(5,:)),2)==0) if counter ~= 0 numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + counter; eAccepted((counterLast + 1):(counterLast + counter),:) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; else numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + 1; eAccepted((counterLast + 1),1:4) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; end end end Output1 = eAccepted; Output2 = eIndex; Output3 = numAccepted; end function Output = errorGeneratorPacceptPlusprepUpper(errRate) e = zeros(1,4); rows = 1; for i = 1:2 for l = 1:6 xi = rand; if xi < errRate k = randi([1,3]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end for l = 7:25 if (l == 7) || (l == 8) || (l == 9) || (l == 11) || (l == 12) || (l == 14) || (l == 17) || (l == 18) || (l == 22) xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,i,l,1]; rows = rows + 1; end else xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,i,l,1]; rows = rows + 1; end end end for l = 26:70 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end end for i = [2,4] for l = 1:19 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,2]; rows = rows + 1; end end end for i = [2,4] for l = 1:19 xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,i,l,3]; rows = rows + 1; end end end for l = 1:19 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,1,l,4]; rows = rows + 1; end end for l = 1:19 xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,3,l,5]; rows = rows + 1; end end Output = e; end function [Output1,Output2,Output3] = PacceptErrorGeneratorPlusPrepUpper(errRate,numIterations,n,lookUpPlus,lookUpO) C = [3,1000,0,1003,2; 3,1001,5,-1,-1; 3,1000,0,1000,6; 3,1003,5,-1,-1]; eAccepted = zeros(1,4); eIndex = zeros(1,1); countereIndex = 1; counterRows = 0; numAccepted = 0; while length(eAccepted(:,1)) < numIterations e = errorGeneratorPacceptPlusprepUpper(errRate); if isequal(e,zeros(1,4)) counter = 0; else counter = length(e(:,1)); end propagatedMatrix = PropagationArb(C, n, e,lookUpPlus, lookUpO); if (sum(IdealDecoder19QubitColor(propagatedMatrix(3,:)))==0) && (sum(IdealDecoder19QubitColor(propagatedMatrix(4,:)))==0) && (sum(IdealDecoder19QubitColor(propagatedMatrix(5,:)))==0) && (mod(sum(propagatedMatrix(3,:)),2)==0) && (mod(sum(propagatedMatrix(4,:)),2)==0) && (mod(sum(propagatedMatrix(5,:)),2)==0) if counter ~= 0 numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + counter; eAccepted((counterLast + 1):(counterLast + counter),:) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; else numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + 1; eAccepted((counterLast + 1),1:4) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; end end end Output1 = eAccepted; Output2 = eIndex; Output3 = numAccepted; end function Output = errorGeneratorRemaining(errRate,numQubits) % generates remaining errors outside state-prep circuits. e = zeros(1,4); counter = 1; % Errors in first block for i = [2,6] % Storage locations in first block for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,l,5]; counter = counter + 1; end end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,2,l,6]; counter = counter + 1; end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,1,l,7]; counter = counter + 1; end end for l = 1:numQubits % measurment in X basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,2,l,8]; counter = counter + 1; end end for l = 1:numQubits % measurment in Z basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,6,l,8]; counter = counter + 1; end end % Error at encoded CNOT location for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,1,l,9]; counter = counter + 1; end end % Error in second block (connected to first data qubit) for i = [2,6] % Storage locations in first block for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,l,14]; counter = counter + 1; end end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,2,l,15]; counter = counter + 1; end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,1,l,16]; counter = counter + 1; end end for l = 1:numQubits % measurment in X basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,2,l,17]; counter = counter + 1; end end for l = 1:numQubits % measurment in Z basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,6,l,17]; counter = counter + 1; end end % Errors in third block (connected to second data qubit) for i = [11,15] % Storage locations in first block for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,l,5]; counter = counter + 1; end end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,10,l,6]; counter = counter + 1; end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,15,l,7]; counter = counter + 1; end end for l = 1:numQubits % measurment in Z basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,11,l,8]; counter = counter + 1; end end for l = 1:numQubits % measurment in X basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,15,l,8]; counter = counter + 1; end end % Errors in fourth block for i = [11,15] % Storage locations in first block for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,l,14]; counter = counter + 1; end end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,10,l,15]; counter = counter + 1; end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,15,l,16]; counter = counter + 1; end end for l = 1:numQubits % measurment in Z basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,11,l,17]; counter = counter + 1; end end for l = 1:numQubits % measurment in X basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,15,l,17]; counter = counter + 1; end end Output = e; end function [Output1,Output2,Output3] = OutSynAndError(eO,eOIndex,ePlus,ePlusIndex,errRate,numIterations,CFull,n,lookUpPlus,lookUpO) MatSyn = zeros(4*numIterations,18); % Format (XSyn|ZSyn); MatErr = zeros(2*numIterations,38); %Format (XErr|ZErr); numRows = 1; countIterations = 0; while numRows < (numIterations+1) % Generate errors from |0> state-prep circuit in first 1-EC lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); for i = 1:length(errorO(:,1)) errorO(i,2) = errorO(i,2) + 1; % Increase index of column 2 by one so that error is inserted in the correct row in the full circuit. end e = errorO; rows = length(e(:,1)); % Genrate errors from |+> state-prep circuit in first 1-EC lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); for i = 1:length(errorPlus(:,1)) errorPlus(i,2) = errorPlus(i,2) + 5; end e1Plus = errorPlus; rowse1Plus = length(e1Plus(:,1)); e((rows + 1):(rows + rowse1Plus),:) = e1Plus; rows = rows + rowse1Plus; % Generate errors from |0> state-prep circuit in the second 1-EC lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); for i = 1:length(errorO(:,1)) errorO(i,2) = errorO(i,2) + 1; % Increase index of column 2 by one so that error is inserted in the correct row in the full circuit. end e2O = errorO; for i = 1:length(e2O(:,1)) e2O(i,2) = e2O(i,2) + 13; end rowse2O = length(e2O(:,1)); e((rows + 1):(rows + rowse2O),:) = e2O; rows = rows + rowse2O; % Generate errors from |+> state-prep in the second 1-EC lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); for i = 1:length(errorPlus(:,1)) errorPlus(i,2) = errorPlus(i,2) + 5; end e2Plus = errorPlus; for i = 1:length(e2Plus(:,1)) e2Plus(i,2) = e2Plus(i,2) + 5; end rowse2Plus = length(e2Plus(:,1)); e((rows + 1):(rows + rowse2Plus),:) = e2Plus; rows = rows + rowse2Plus; % Generate errors from |0> state-prep circuit in third 1-EC lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); for i = 1:length(errorO(:,1)) errorO(i,2) = errorO(i,2) + 1; % Increase index of column 2 by one so that error is inserted in the correct row in the full circuit. end e3O = errorO; for i = 1:length(e3O(:,1)) e3O(i,4) = e3O(i,4) + 9; end rowse3O = length(e3O(:,1)); e((rows + 1):(rows + rowse3O),:) = e3O; rows = rows + rowse3O; % Genrate errors from |+> state-prep circuit in third 1-EC lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); for i = 1:length(errorPlus(:,1)) errorPlus(i,2) = errorPlus(i,2) + 5; end e3Plus = errorPlus; for i = 1:length(e3Plus(:,1)) e3Plus(i,4) = e3Plus(i,4) + 9; end rowse3Plus = length(e3Plus(:,1)); e((rows + 1):(rows + rowse3Plus),:) = e3Plus; rows = rows + rowse3Plus; % Generate errors from |0> state-prep circuit in the fourth 1-EC lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); for i = 1:length(errorO(:,1)) errorO(i,2) = errorO(i,2) + 1; % Increase index of column 2 by one so that error is inserted in the correct row in the full circuit. end e4O = errorO; for i = 1:length(e4O(:,1)) e4O(i,2) = e4O(i,2) + 13; e4O(i,4) = e4O(i,4) + 9; end rowse4O = length(e4O(:,1)); e((rows + 1):(rows + rowse4O),:) = e4O; rows = rows + rowse4O; % Generate errors from |+> state-prep in the fourth 1-EC lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); for i = 1:length(errorPlus(:,1)) errorPlus(i,2) = errorPlus(i,2) + 5; end e4Plus = errorPlus; for i = 1:length(e4Plus(:,1)) e4Plus(i,2) = e4Plus(i,2) + 5; e4Plus(i,4) = e4Plus(i,4) + 9; end rowse4Plus = length(e4Plus(:,1)); e((rows + 1):(rows + rowse4Plus),:) = e4Plus; rows = rows + rowse4Plus; % Next we generate a random error in the circuit (outside of state-prep % circuits) to add to the matrix e (given the error rate errRate). eRemain = errorGeneratorRemaining(errRate,n); e((rows + 1):(rows + length(eRemain(:,1))),:) = eRemain; Cfinal = PropagationArb(CFull,n,e,lookUpPlus,lookUpO); % Propagate errors through the full CNOT circuit % Store measurment syndromes ErrZ17 = Cfinal(17,:); SynZ17 = Syndrome(ErrZ17); ErrX18 = Cfinal(18,:); SynX18 = Syndrome(ErrX18); ErrX19 = Cfinal(19,:); SynX19 = Syndrome(ErrX19); ErrZ20 = Cfinal(20,:); SynZ20 = Syndrome(ErrZ20); ErrZ33 = Cfinal(2,:); SynZ33 = Syndrome(Cfinal(33,:)); ErrX34 = Cfinal(1,:); SynX34 = Syndrome(Cfinal(34,:)); ErrX35 = Cfinal(3,:); SynX35 = Syndrome(Cfinal(35,:)); ErrZ36 = Cfinal(4,:); SynZ36 = Syndrome(Cfinal(36,:)); t1 = sum(SynX18+SynZ17+SynX19+SynZ20+SynX34+SynZ33+SynX35+SynZ36); t2 = sum(ErrZ33+ErrX34+ErrX35+ErrZ36); if (t1 ~= 0) || (t2 ~= 0) MatSynTemp = [SynX18,SynZ17;SynX19,SynZ20;SynX34,SynZ33;SynX35,SynZ36]; MatErrorTemp = [ErrX34,ErrZ33;ErrX35,ErrZ36]; MatSyn((4*(numRows-1)+1):(4*numRows),:) = MatSynTemp; MatErr((2*(numRows-1)+1):(2*numRows),:) = MatErrorTemp; numRows = numRows + 1; end countIterations = countIterations + 1; end Output1 = MatSyn; Output2 = MatErr; Output3 = countIterations; end
github
pooya-git/DeepNeuralDecoder-master
SteaneTrainingSetd3.m
.m
DeepNeuralDecoder-master/Data/Generator/Steane_CNOT_D3/SteaneTrainingSetd3.m
61,494
utf_8
17049c07b5d6cc375a5d6f39bd9c3c9b
% MIT License % % Copyright (c) 2018 Chris Chamberland % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, including without limitation the rights % to use, copy, modify, merge, publish, distribute, sublicense, and/or sell % copies of the Software, and to permit persons to whom the Software is % furnished to do so, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in all % copies or substantial portions of the Software. % % THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR % IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE % AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, % OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE % SOFTWARE. function SteaneTrainingSetd3 % Circuit descriptors: % -1: qubit non-active % 0: Noiseless memory % 1: Gate memory % 2: Measurement memory % 3: Preparation in X basis (|+> state) % 4: Preparation in Z basis (|0> state) % 5: Measurement in X basis % 6: Measurement in Z basis % 7: X gate % 8: Z gate % 10: H gate % 11: S gate % 20: T gate %1---: Control qubit for CNOT with target --- %1000: Target qubit for CNOT % Circuit for CNOT 1-exRec n = 7; % Generate lookup table lookUpO = lookUpOFunc(1,n); lookUpPlus = lookUpPlusFunc(1,n); %Test % CNOT circuit containing all four EC blocks CFull = [0,0,0,0,0,1000,1006,0,1010,0,0,0,0,0,1000,1006,0; 4,1003,0,1000,2,1001,0,5,-1,4,1003,0,1000,2,1001,0,5; 4,1000,6,-1,-1,-1,-1,-1,-1,4,1000,6,-1,-1,-1,-1,-1; 4,1005,0,1002,5,-1,-1,-1,-1,4,1005,0,1002,5,-1,-1,-1; 4,1000,6,-1,-1,-1,-1,-1,-1,4,1000,6,-1,-1,-1,-1,-1; 3,1000,0,1008,2,0,1000,6,-1,3,1000,0,1008,2,0,1000,6; 3,1006,5,-1,-1,-1,-1,-1,-1,3,1006,5,-1,-1,-1,-1,-1; 3,1000,0,1000,6,-1,-1,-1,-1,3,1000,0,1000,6,-1,-1,-1; 3,1008,5,-1,-1,-1,-1,-1,-1,3,1008,5,-1,-1,-1,-1,-1; 0,0,0,0,0,1011,1000,0,1000,0,0,0,0,0,1011,1000,0; 3,1000,0,1013,2,1000,0,6,-1,3,1000,0,1013,2,1000,0,6; 3,1011,5,-1,-1,-1,-1,-1,-1,3,1011,5,-1,-1,-1,-1,-1; 3,1000,0,1000,6,-1,-1,-1,-1,3,1000,0,1000,6,-1,-1,-1; 3,1013,5,-1,-1,-1,-1,-1,-1,3,1013,5,-1,-1,-1,-1,-1; 4,1016,0,1000,2,0,1010,5,-1,4,1016,0,1000,2,0,1010,5; 4,1000,6,-1,-1,-1,-1,-1,-1,4,1000,6,-1,-1,-1,-1,-1; 4,1018,0,1015,5,-1,-1,-1,-1,4,1018,0,1015,5,-1,-1,-1; 4,1000,6,-1,-1,-1,-1,-1,-1,4,1000,6,-1,-1,-1,-1,-1]; parfor i = 1:7 numIterations = 2*10^6; v = [10^-4,2*10^-4,3*10^-4,4*10^-4,5*10^-4,6*10^-4,7*10^-4]; errRate = v(1,i); errStatePrepString = 'ErrorStatePrep'; str_errRate = num2str(errRate,'%0.3e'); str_mat = '.mat'; str_temp = strcat(errStatePrepString,str_errRate); str_errStatePrep = strcat(str_temp,str_mat); % numIterations1 = 10^5; % % [eO,eOIndex,numAcceptedO] = PacceptErrorGeneratorOPrepUpper(errRate,numIterations1,n,lookUpPlus,lookUpO); % [ePlus,ePlusIndex,numAcceptedPlus] = PacceptErrorGeneratorPlusPrepUpper(errRate,numIterations1,n,lookUpPlus,lookUpO); % parsaveErrorStatePrep(str_errStatePrep,eO,eOIndex,numAcceptedO,ePlus,ePlusIndex,numAcceptedPlus); switch i case 1 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep1.000e-04.mat'); case 2 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep2.000e-04.mat'); case 3 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep3.000e-04.mat'); case 4 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep4.000e-04.mat'); case 5 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep5.000e-04.mat'); case 6 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep6.000e-04.mat'); case 7 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep7.000e-04.mat'); end if (~isempty(eOIndex)) && (~isempty(ePlusIndex)) [A1,A2,OutputCount] = OutSynAndError(eO,eOIndex,ePlus,ePlusIndex,errRate,numIterations,CFull,n,lookUpPlus,lookUpO); TempStr1 = 'SyndromeOnly'; TempStr2 = '.txt'; TempStr3 = 'ErrorOnly'; str_Final1 = strcat(TempStr1,str_errRate); str_Final2 = strcat(str_Final1,TempStr2); str_Final3 = strcat(TempStr3,str_errRate); str_Final4 = strcat(str_Final3,TempStr2); fid = fopen(str_Final2, 'w+t'); for ii = 1:size(A1,1) fprintf(fid,'%g\t',A1(ii,:)); fprintf(fid,'\n'); end fclose(fid); fid = fopen(str_Final4, 'w+t'); for ii = 1:size(A2,1) fprintf(fid,'%g\t',A2(ii,:)); fprintf(fid,'\n'); end fclose(fid); end str_Count = strcat('Count',str_errRate); str_CountFinal = strcat(str_Count,'.mat'); parsaveCount(str_CountFinal,OutputCount); end end function parsaveErrorStatePrep(fname,eO,eOIndex,numAcceptedO,ePlus,ePlusIndex,numAcceptedPlus) save(fname,'eO','eOIndex','numAcceptedO','ePlus','ePlusIndex','numAcceptedPlus'); end function parsaveErrorVec(fname,errorVecMat) save(fname,'errorVecMat'); end function [out1,out2,out3,out4] = parload(fname) load(fname); out1 = eO; out2 = eOIndex; out3 = ePlus; out4 = ePlusIndex; end function parsaveCount(fname,OutputCount) save(fname,'OutputCount'); end function Output = lookUpOFunc(n,numQubits) % Circuit for |0> state prep lookUpO = zeros(19,5,numQubits); C = [3,1007,1005,1003; 3,1003,1006,1; 4,1000,1,1000; 3,1006,1,1005; 4,0,1000,1000; 4,1000,1000,1007; 4,1000,1,1000]; % Find the number of gate storage locations in C counterStorage = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) == 1 counterStorage = counterStorage + 1; end end end % Find the number of CNOT locations in C counterCNOT = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) > 1000 counterCNOT = counterCNOT + 1; end end end % fills in lookUpTable locations where lookUpO(i,j,k) has j = k = 1. counter = 1; for i = 1:counterStorage lookUpO(i,1,1) = 1; counter = counter + 1; end for i = 1 : length(C(:,1)) lookUpO(counter,1,1) = C(i,1); counter = counter + 1; end for i = 1 : counterCNOT lookUpO(counter,1,1) = 1000; counter = counter + 1; end e = zeros(1,4); % fills in LookUpO(i,j,:) for storage gate errors j = 2,3. counter = 1; for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = 2:3 if jj == 2 if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpO(counter,jj,:) = xVector(C, n, e); end else if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpO(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end % fills in LookUpO(i,j,:) for state prep errors j = 2,3. for i = 1:length(C(:,1)) if C(i,1) == 3 e(1,:) = [2,i,1,1]; lookUpO(counter,3,:) = zVector(C, n, e); counter = counter + 1; else e(1,:) = [1,i,1,1]; lookUpO(counter,2,:) = xVector(C, n, e); counter = counter + 1; end end % fills in LookUpO(i,j,:) for CNOT erros, j = 2,3. for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = [2,3,4,5] switch jj case 2 if C(j,i) > 1000 e(1,:) = [1,j,1,i]; lookUpO(counter,jj,:) = xVector(C, n, e); end case 3 if C(j,i) > 1000 e(1,:) = [2,j,1,i]; lookUpO(counter,jj,:) = zVector(C, n, e); end case 4 if C(j,i) > 1000 e(1,:) = [4,j,1,i]; lookUpO(counter,jj,:) = xVector(C, n, e); end otherwise if C(j,i) > 1000 e(1,:) = [8,j,1,i]; lookUpO(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end Output = lookUpO; end function Output = lookUpPlusFunc(n,numQubits) % Circuit for |+> state prep lookUpPlus = zeros(19,5,numQubits); C = [4,1000,1000,1000; 4,1000,1000,1; 3,1002,1,1001; 4,1000,1,1000; 3,0,1001,1004; 3,1004,1002,1000; 3,1001,1,1006]; % Find the number of gate storage locations in C counterStorage = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) == 1 counterStorage = counterStorage + 1; end end end % Find the number of CNOT locations in C counterCNOT = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) > 1000 counterCNOT = counterCNOT + 1; end end end % fills in lookUpTable locations where lookUpO(i,j,k) has j = k = 1. counter = 1; for i = 1:counterStorage lookUpPlus(i,1,1) = 1; counter = counter + 1; end for i = 1 : length(C(:,1)) lookUpPlus(counter,1,1) = C(i,1); counter = counter + 1; end for i = 1 : counterCNOT lookUpPlus(counter,1,1) = 1000; counter = counter + 1; end e = zeros(1,4); % fills in LookUpO(i,j,:) for storage gate errors j = 2,3. counter = 1; for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = 2:3 if jj == 2 if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpPlus(counter,jj,:) = xVector(C, n, e); end else if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpPlus(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end % fills in LookUpO(i,j,:) for state prep errors j = 2,3. for i = 1:length(C(:,1)) if C(i,1) == 3 e(1,:) = [2,i,1,1]; lookUpPlus(counter,3,:) = zVector(C, n, e); counter = counter + 1; else e(1,:) = [1,i,1,1]; lookUpPlus(counter,2,:) = xVector(C, n, e); counter = counter + 1; end end % fills in LookUpO(i,j,:) for CNOT erros, j = 2,3. for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = [2,3,4,5] switch jj case 2 if C(j,i) > 1000 e(1,:) = [1,j,1,i]; lookUpPlus(counter,jj,:) = xVector(C, n, e); end case 3 if C(j,i) > 1000 e(1,:) = [2,j,1,i]; lookUpPlus(counter,jj,:) = zVector(C, n, e); end case 4 if C(j,i) > 1000 e(1,:) = [4,j,1,i]; lookUpPlus(counter,jj,:) = xVector(C, n, e); end otherwise if C(j,i) > 1000 e(1,:) = [8,j,1,i]; lookUpPlus(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end Output = lookUpPlus; end function Output = PropagationStatePrepArb(C, n, e) % C encodes information about the circuit % n is the number of qubits per encoded codeblock % eN are the error entries (location and time) % The Output matrix will contain (2q+m) rows and n columns. The paramters Output(i,j) are: % i <= 2q and odd: Stores X type errors for output qubit #ceil(i/2) (order based on matrix C) % i <= 2q and even: Stores Z type errors for output qubit #ceil(i/2) (order based on matrix C) % i > 2q: Stores measurement error for measurement number #i-2q (type is X or Z depending on measurement type) % The Errors matrix will be a tensor with 2 parameters Output(i, j) % i: logical qubit number % j<=n: X error at physical qubit number j % j>n : Z error at physical qubit number j % Error inputs eN are characterized by four parameters, thus a vector (i,j, k, l) % i: error type: 0 = I, 1 = X, 2 = Z, 3 = Y % j: logical qubit number (if the entry here is '0' then this will correspond to an identity "error") % k: physical qubit number within a codeblock % l: time location N_meas = length(find(C==5)) + length(find(C==6)); % number of logical measurements in the circuit N_output = length(C(:,end)) - sum(C(:,end)==-1) - sum(C(:,end)==5) - sum(C(:,end)==6); % number of output active qubits that have not been measured Meas_dict = [find(C==5); find(C==6)]; Meas_dict = sort(Meas_dict); Output = zeros(2*N_output + N_meas, n); Errors = zeros(length(C(:,1)), 2*n); for t= 1:length(C(1,:)) % If the error occurs at a measurement location then the error is introduced before propagation of faults for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( ( C(e(j,2),t) == 5 ) || ( C(e(j,2),t) == 6 ) ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end end end % Propagation of errors (do not need to do it for the first step of circuit if t>1 for i = 1:length(C(:,t)) if C(i, t) == 10 % In this case must flip the X and Z error information v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = v2; Errors(i, n+1:end) = v1; end if C(i, t) == 11 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = mod(v1+v2, 2); end if C(i,t) > 1000 % check to see if target qubit according to control qubit is actually a target qubit if C(C(i,t) - 1000, t) == 1000 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); w1 = Errors(C(i,t) - 1000, 1:n); w2 = Errors(C(i,t) - 1000, (n+1):end); %mod(v2+w2,2) Errors(C(i,t) - 1000, 1:n) = mod(v1+w1, 2); Errors(i, (n+1):end) = mod(v2+w2, 2); end end if C(i,t) == 5 % This corresponds to X measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, (n+1):end); Errors(i, 1:end) = 0; end if C(i,t) == 6 % This corresponds to Z measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, 1:n); Errors(i, 1:end) = 0; end end end % Introduce faults for locations that are not measurements for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( C(e(j,2),t) ~= 5 ) && ( C(e(j,2),t) ~= 6 ) % This IF statement checks to see if the gate at this location is NOT a CNOT or Prep if ( C(e(j,2),t) < 1000 ) %&& ( C(e(j,2),t) ~= 3 ) && ( C(e(j,2),t) ~= 4 ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end % Introduce errors in the case of CNOT gate for control and target qubits % Errors for control qubit are entry mod(e(j,1),4) according to standard indexing above if ( C(e(j,2),t) > 1000 ) if C(C(e(j,2),t) - 1000, t) == 1000 if mod(e(j,1),2) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if mod(e(j,1),4) > 1 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if mod(floor(e(j,1)/4),2) == 1 Errors(C(e(j,2),t) - 1000, e(j,3)) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)) + 1, 2); end if mod(floor(e(j,1)/4),4) > 1 Errors(C(e(j,2),t) - 1000, e(j,3)+n) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)+n) + 1, 2); end end end end end end end %Errors counter = 1; % This will be used to iterate over the different qubits for j = 1:length(C(:,end)) if (C(j,end) ~= -1) && (C(j,end) ~= 5) && (C(j,end) ~= 6) Output(counter,:) = Errors(j,1:n); Output(counter+1,:) = Errors(j,(n+1):end); counter = counter + 2; end end end function Output = xVector(C, n, e) outputMatrix = PropagationStatePrepArb(C, n, e); jx = 1; for i = 1:length(outputMatrix) if mod(i,2) == 1 xvector(jx) = outputMatrix(i,1); jx = jx + 1; end end Output = xvector; end function Output = zVector(C, n, e) outputMatrix = PropagationStatePrepArb(C, n, e); jz = 1; for i = 1:length(outputMatrix) if mod(i,2) == 0 zvector(jz) = outputMatrix(i,1); jz = jz + 1; end end Output = zvector; end function Output = PropagationArb(C, n, e, XPrepTable, ZPrepTable) % C encodes information about the circuit % n is the number of qubits per encoded codeblock % eN are the error entries (location and time) % The Output matrix will contain (2q+m) rows and n columns. The paramters Output(i,j) are: % i <= 2q and odd: Stores X type errors for output qubit #ceil(i/2) (order based on matrix C) % i <= 2q and even: Stores Z type errors for output qubit #ceil(i/2) (order based on matrix C) % i > 2q: Stores measurement error for measurement number #i-2q (type is X or Z depending on measurement type) % The Errors matrix will be a tensor with 2 parameters Output(i, j) % i: logical qubit number % j<=n: X error at physical qubit number j % j>n : Z error at physical qubit number j % Error inputs eN are characterized by four parameters, thus a vector (i,j, k, l) % i: error type: 0 = I, 1 = X, 2 = Z, 3 = Y % j: logical qubit number (if the entry here is '0' then this will correspond to an identity "error") % k: physical qubit number within a codeblock % l: time location N_meas = length(find(C==5)) + length(find(C==6)); % number of logical measurements in the circuit N_output = length(C(:,end)) - sum(C(:,end)==-1) - sum(C(:,end)==5) - sum(C(:,end)==6); % number of output active qubits that have not been measured Meas_dict = [find(C==5); find(C==6)]; Meas_dict = sort(Meas_dict); Output = zeros(2*N_output + N_meas, n); Errors = zeros(length(C(:,1)), 2*n); for t= 1:length(C(1,:)) % If the error occurs at a measurement location then the error is introduced before propagation of faults for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( ( C(e(j,2),t) == 5 ) || ( C(e(j,2),t) == 6 ) ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end end end % Propagation of errors (do not need to do it for the first step of % circuit) if t>1 for i = 1:length(C(:,t)) if C(i, t) == 10 % In this case must flip the X and Z error information v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = v2; Errors(i, n+1:end) = v1; end if C(i, t) == 11 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = mod(v1+v2, 2); end if C(i,t) > 1000 % check to see if target qubit according to control qubit is actually a target qubit if C(C(i,t) - 1000, t) == 1000 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); w1 = Errors(C(i,t) - 1000, 1:n); w2 = Errors(C(i,t) - 1000, (n+1):end); %mod(v2+w2,2) Errors(C(i,t) - 1000, 1:n) = mod(v1+w1, 2); Errors(i, (n+1):end) = mod(v2+w2, 2); end end if C(i,t) == 5 % This corresponds to X measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, (n+1):end); Errors(i, 1:end) = 0; end if C(i,t) == 6 % This corresponds to Z measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, 1:n); Errors(i, 1:end) = 0; end end end % Introduce faults for locations that are not measurements for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( C(e(j,2),t) ~= 5 ) && ( C(e(j,2),t) ~= 6 ) % This IF statement checks to see if the gate at this location is NOT a CNOT or Prep if ( C(e(j,2),t) < 1000 ) && ( C(e(j,2),t) ~= 3 ) && ( C(e(j,2),t) ~= 4 ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end % Introduce errors in the case of CNOT gate for control and target qubits % Errors for control qubit are entry mod(e(j,1),4) according to standard indexing above if ( C(e(j,2),t) > 1000 ) if C(C(e(j,2),t) - 1000, t) == 1000 if mod(e(j,1),2) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if mod(e(j,1),4) > 1 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if mod(floor(e(j,1)/4),2) == 1 Errors(C(e(j,2),t) - 1000, e(j,3)) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)) + 1, 2); end if mod(floor(e(j,1)/4),4) > 1 Errors(C(e(j,2),t) - 1000, e(j,3)+n) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)+n) + 1, 2); end end end % Introduce errors in the case of |0> prep if ( C(e(j,2),t) == 4 ) eVec = zeros(1,n); if mod(e(j,1),2) == 1 % Need to translate the entries in the Prep tables to right format for a = 1:n eVec(a) = ZPrepTable(e(j,3), 2, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(e(j,1),4) > 1 for a = 1:n eVec(a) = ZPrepTable(e(j,3), 3, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end)+eVec, 2); end if mod(floor(e(j,1)/4),2) == 1 for a = 1:n eVec(a) = ZPrepTable(e(j,3), 4, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(floor(e(j,1)/4),4) > 1 for a = 1:n eVec(a) = ZPrepTable(e(j,3), 5, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end) + eVec, 2); end end % Introduce errors in the case of |+> prep if ( C(e(j,2),t) == 3 ) eVec = zeros(1,n); if mod(e(j,1),2) == 1 % Need to translate the entries in the Prep tables to right format for a = 1:n eVec(a) = XPrepTable(e(j,3), 2, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(e(j,1),4) > 1 for a = 1:n eVec(a) = XPrepTable(e(j,3), 3, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end)+eVec, 2); end if mod(floor(e(j,1)/4),2) == 1 for a = 1:n eVec(a) = XPrepTable(e(j,3), 4, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(floor(e(j,1)/4),4) > 1 for a = 1:n eVec(a) = XPrepTable(e(j,3), 5, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end) + eVec, 2); end end end end end end %Errors counter = 1; % This will be used to iterate over the different qubits for j = 1:length(C(:,end)) if (C(j,end) ~= -1) && (C(j,end) ~= 5) && (C(j,end) ~= 6) Output(counter,:) = Errors(j,1:n); Output(counter+1,:) = Errors(j,(n+1):end); counter = counter + 2; end end end function Output = equivalenceTable(errIn) % used for measurments in the Z basis g1 = [0,0,0,1,1,1,1]; g2 = [0,1,1,0,0,1,1]; g3 = [1,0,1,0,1,0,1]; g = [g1;g2;g3]; syn = zeros(1,3); for i = 1:3 syn(1,i) = mod(sum(errIn.*g(i,:)), 2); end if isequal(syn,[0,0,0]) corr = zeros(1,7); elseif isequal(syn,[0,0,1]) corr = [1,0,0,0,0,0,0]; elseif isequal(syn,[0,1,0]) corr = [0,1,0,0,0,0,0]; elseif isequal(syn,[0,1,1]) corr = [0,0,1,0,0,0,0]; elseif isequal(syn,[1,0,0]) corr = [0,0,0,1,0,0,0]; elseif isequal(syn,[1,0,1]) corr = [0,0,0,0,1,0,0]; elseif isequal(syn,[1,1,0]) corr = [0,0,0,0,0,1,0]; elseif isequal(syn,[1,1,1]) corr = [0,0,0,0,0,0,1]; end Output = corr; end function Output = Syndrome(errIn) g1 = [0,0,0,1,1,1,1]; g2 = [0,1,1,0,0,1,1]; g3 = [1,0,1,0,1,0,1]; g = [g1;g2;g3]; syn = zeros(1,3); for i = 1:3 syn(1,i) = mod( sum(errIn.*g(i,:)), 2); end Output = syn; end function Output = errorGeneratorPacceptOprepUpper(errRate) % Generates errors in the ancilla preparation part of the EC's e = zeros(1,4); rows = 1; % Locations within the state prep |0> circuit for i = 1:4 for l = 1:4 xi = rand; if xi < errRate k = randi([1,3]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end for l = 5:11 if (l == 5) || (l == 6) || (l == 8) xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,i,l,1]; rows = rows + 1; end else xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,i,l,1]; rows = rows + 1; end end end for l = 12:19 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end end for i = [1,3] for l = 1:7 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,2]; rows = rows + 1; end end end for i = [2,4] for l = 1:7 xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,i,l,3]; rows = rows + 1; end end end for l = 1:7 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,3,l,4]; rows = rows + 1; end end for l = 1:7 xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,3,l,5]; rows = rows + 1; end end Output = e; end function [Output1,Output2,Output3] = PacceptErrorGeneratorOPrepUpper(errRate,numIterations,n,lookUpPlus,lookUpO) C = [4,1002,0,1000,2; 4,1000,6,-1,-1; 4,1004,0,1001,5; 4,1000,6,-1,-1]; eAccepted = zeros(1,4); eIndex = zeros(1,1); countereIndex = 1; counterRows = 0; numAccepted = 0; while length(eAccepted(:,1)) < numIterations e = errorGeneratorPacceptOprepUpper(errRate); if isequal(e,zeros(1,4)) counter = 0; else counter = length(e(:,1)); end propagatedMatrix = PropagationArb(C,n,e,lookUpPlus,lookUpO); if (sum(equivalenceTable(propagatedMatrix(3,:)))==0) && (sum(equivalenceTable(propagatedMatrix(4,:)))==0) && (sum(equivalenceTable(propagatedMatrix(5,:)))==0) && (mod(sum(propagatedMatrix(3,:)),2)==0) && (mod(sum(propagatedMatrix(4,:)),2)==0) && (mod(sum(propagatedMatrix(5,:)),2)==0) if counter ~= 0 numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + counter; eAccepted((counterLast + 1):(counterLast + counter),:) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; else numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + 1; eAccepted((counterLast + 1),1:4) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; end end end Output1 = eAccepted; Output2 = eIndex; Output3 = numAccepted; end function Output = errorGeneratorPacceptPlusprepUpper(errRate) e = zeros(1,4); rows = 1; for i = 1:4 for l = 1:4 xi = rand; if xi < errRate k = randi([1,3]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end for l = 5:11 if (l == 7) || (l == 9) || (l == 10) || (l == 11) xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,i,l,1]; rows = rows + 1; end else xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,i,l,1]; rows = rows + 1; end end end for l = 12:19 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end end for i = [2,4] for l = 1:7 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,2]; rows = rows + 1; end end end for i = [2,4] for l = 1:7 xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,i,l,3]; rows = rows + 1; end end end for l = 1:7 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,1,l,4]; rows = rows + 1; end end for l = 1:7 xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,3,l,5]; rows = rows + 1; end end Output = e; end function [Output1,Output2,Output3] = PacceptErrorGeneratorPlusPrepUpper(errRate,numIterations,n,lookUpPlus,lookUpO) C = [3,1000,0,1003,2; 3,1001,5,-1,-1; 3,1000,0,1000,6; 3,1003,5,-1,-1]; eAccepted = zeros(1,4); eIndex = zeros(1,1); countereIndex = 1; counterRows = 0; numAccepted = 0; while length(eAccepted(:,1)) < numIterations e = errorGeneratorPacceptPlusprepUpper(errRate); if isequal(e,zeros(1,4)) counter = 0; else counter = length(e(:,1)); end propagatedMatrix = PropagationArb(C, n, e,lookUpPlus, lookUpO); if (sum(equivalenceTable(propagatedMatrix(3,:)))==0) && (sum(equivalenceTable(propagatedMatrix(4,:)))==0) && (sum(equivalenceTable(propagatedMatrix(5,:)))==0) && (mod(sum(propagatedMatrix(3,:)),2)==0) && (mod(sum(propagatedMatrix(4,:)),2)==0) && (mod(sum(propagatedMatrix(5,:)),2)==0) if counter ~= 0 numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + counter; eAccepted((counterLast + 1):(counterLast + counter),:) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; else numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + 1; eAccepted((counterLast + 1),1:4) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; end end end Output1 = eAccepted; Output2 = eIndex; Output3 = numAccepted; end function Output = errorGeneratorRemaining(errRate,numQubits) % generates remaining errors outside state-prep circuits. e = zeros(1,4); counter = 1; % Errors in first block for i = [2,6] % Storage locations in first block for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,l,5]; counter = counter + 1; end end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,2,l,6]; counter = counter + 1; end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,1,l,7]; counter = counter + 1; end end for l = 1:numQubits % measurment in X basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,2,l,8]; counter = counter + 1; end end for l = 1:numQubits % measurment in Z basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,6,l,8]; counter = counter + 1; end end % Error at encoded CNOT location for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,1,l,9]; counter = counter + 1; end end % Error in second block (connected to first data qubit) for i = [2,6] % Storage locations in first block for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,l,14]; counter = counter + 1; end end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,2,l,15]; counter = counter + 1; end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,1,l,16]; counter = counter + 1; end end for l = 1:numQubits % measurment in X basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,2,l,17]; counter = counter + 1; end end for l = 1:numQubits % measurment in Z basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,6,l,17]; counter = counter + 1; end end % Errors in third block (connected to second data qubit) for i = [11,15] % Storage locations in first block for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,l,5]; counter = counter + 1; end end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,10,l,6]; counter = counter + 1; end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,15,l,7]; counter = counter + 1; end end for l = 1:numQubits % measurment in Z basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,11,l,8]; counter = counter + 1; end end for l = 1:numQubits % measurment in X basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,15,l,8]; counter = counter + 1; end end % Errors in fourth block for i = [11,15] % Storage locations in first block for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,l,14]; counter = counter + 1; end end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,10,l,15]; counter = counter + 1; end end for l = 1:numQubits % CNOT locations xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,15,l,16]; counter = counter + 1; end end for l = 1:numQubits % measurment in Z basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,11,l,17]; counter = counter + 1; end end for l = 1:numQubits % measurment in X basis xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,15,l,17]; counter = counter + 1; end end Output = e; end function [Output1,Output2,Output3,Output4] = depolarizingGenerator(eO,eOIndex,ePlus,ePlusIndex,errRate,numIterations,CFull,CFirst,n,lookUpPlus,lookUpO) errorVec1 = zeros(1,15); errorVec2 = zeros(1,15); errorVec3 = zeros(1,15); errorVec4 = zeros(1,15); for ii = 1:numIterations % Generate errors from |0> state-prep circuit in first 1-EC lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); for i = 1:length(errorO(:,1)) errorO(i,2) = errorO(i,2) + 1; % Increase index of column 2 by one so that error is inserted in the correct row in the full circuit. end e = errorO; rows = length(e(:,1)); % Genrate errors from |+> state-prep circuit in first 1-EC lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); for i = 1:length(errorPlus(:,1)) errorPlus(i,2) = errorPlus(i,2) + 5; end e1Plus = errorPlus; rowse1Plus = length(e1Plus(:,1)); e((rows + 1):(rows + rowse1Plus),:) = e1Plus; rows = rows + rowse1Plus; % Generate errors from |0> state-prep circuit in the second 1-EC lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); for i = 1:length(errorO(:,1)) errorO(i,2) = errorO(i,2) + 1; % Increase index of column 2 by one so that error is inserted in the correct row in the full circuit. end e2O = errorO; for i = 1:length(e2O(:,1)) e2O(i,2) = e2O(i,2) + 13; end rowse2O = length(e2O(:,1)); e((rows + 1):(rows + rowse2O),:) = e2O; rows = rows + rowse2O; % Generate errors from |+> state-prep in the second 1-EC lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); for i = 1:length(errorPlus(:,1)) errorPlus(i,2) = errorPlus(i,2) + 5; end e2Plus = errorPlus; for i = 1:length(e2Plus(:,1)) e2Plus(i,2) = e2Plus(i,2) + 5; end rowse2Plus = length(e2Plus(:,1)); e((rows + 1):(rows + rowse2Plus),:) = e2Plus; rows = rows + rowse2Plus; % Generate errors from |0> state-prep circuit in third 1-EC lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); for i = 1:length(errorO(:,1)) errorO(i,2) = errorO(i,2) + 1; % Increase index of column 2 by one so that error is inserted in the correct row in the full circuit. end e3O = errorO; for i = 1:length(e3O(:,1)) e3O(i,4) = e3O(i,4) + 9; end rowse3O = length(e3O(:,1)); e((rows + 1):(rows + rowse3O),:) = e3O; rows = rows + rowse3O; % Genrate errors from |+> state-prep circuit in third 1-EC lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); for i = 1:length(errorPlus(:,1)) errorPlus(i,2) = errorPlus(i,2) + 5; end e3Plus = errorPlus; for i = 1:length(e3Plus(:,1)) e3Plus(i,4) = e3Plus(i,4) + 9; end rowse3Plus = length(e3Plus(:,1)); e((rows + 1):(rows + rowse3Plus),:) = e3Plus; rows = rows + rowse3Plus; % Generate errors from |0> state-prep circuit in the fourth 1-EC lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); for i = 1:length(errorO(:,1)) errorO(i,2) = errorO(i,2) + 1; % Increase index of column 2 by one so that error is inserted in the correct row in the full circuit. end e4O = errorO; for i = 1:length(e4O(:,1)) e4O(i,2) = e4O(i,2) + 13; e4O(i,4) = e4O(i,4) + 9; end rowse4O = length(e4O(:,1)); e((rows + 1):(rows + rowse4O),:) = e4O; rows = rows + rowse4O; % Generate errors from |+> state-prep in the fourth 1-EC lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); for i = 1:length(errorPlus(:,1)) errorPlus(i,2) = errorPlus(i,2) + 5; end e4Plus = errorPlus; for i = 1:length(e4Plus(:,1)) e4Plus(i,2) = e4Plus(i,2) + 5; e4Plus(i,4) = e4Plus(i,4) + 9; end rowse4Plus = length(e4Plus(:,1)); e((rows + 1):(rows + rowse4Plus),:) = e4Plus; rows = rows + rowse4Plus; % Next we generate a random error in the circuit (outside of state-prep % circuits) to add to the matrix e (given the error rate errRate). eRemain = errorGeneratorRemaining(errRate); e((rows + 1):(rows + length(eRemain(:,1))),:) = eRemain; Cint = PropagationArb(CFirst,n,e,lookUpPlus,lookUpO); % Propagate errors up to one time step past the encoded CNOT Cfinal = PropagationArb(CFull,n,e,lookUpPlus,lookUpO); % Propagate errors through the full CNOT circuit % Store measurment syndromes czRow17 = equivalenceTable(Cfinal(17,1:n)); cxRow18 = equivalenceTable(Cfinal(18,1:n)); cxRow19 = equivalenceTable(Cfinal(19,1:n)); czRow20 = equivalenceTable(Cfinal(20,1:n)); czRow33 = equivalenceTable(Cfinal(33,1:n)); cxRow34 = equivalenceTable(Cfinal(34,1:n)); cxRow35 = equivalenceTable(Cfinal(35,1:n)); czRow36 = equivalenceTable(Cfinal(36,1:n)); % Case where both TEC's have been removed CBothECRemoved(1,:) = mod(Cint(1,:) + cxRow18,2); CBothECRemoved(2,:) = mod(Cint(2,:) + czRow17,2); CBothECRemoved(3,:) = mod(Cint(3,:) + cxRow19,2); CBothECRemoved(4,:) = mod(Cint(4,:) + czRow20,2); ef1BothECRemoved = mod(sum(mod(CBothECRemoved(1,:) + equivalenceTableX(CBothECRemoved(1,:)),2)),2); ef2BothECRemoved = mod(sum(mod(CBothECRemoved(2,:) + equivalenceTableZ(CBothECRemoved(2,:)),2)),2); ef3BothECRemoved = mod(sum(mod(CBothECRemoved(3,:) + equivalenceTableX(CBothECRemoved(3,:)),2)),2); ef4BothECRemoved = mod(sum(mod(CBothECRemoved(4,:) + equivalenceTableZ(CBothECRemoved(4,:)),2)),2); stringVec1 = [ef1BothECRemoved,ef2BothECRemoved,ef3BothECRemoved,ef4BothECRemoved]; if (sum(stringVec1) ~= 0) ind1 = (2^3)*ef4BothECRemoved + (2^2)*ef3BothECRemoved + 2*ef2BothECRemoved + ef1BothECRemoved; errorVec1(1,ind1) = errorVec1(1,ind1) + 1; end % Case where both TEC's are kept CFullMat(1,:) = mod(Cfinal(1,:) + cxRow18 + multilayerDecoderX(mod(cxRow18 + cxRow34,2)),2); CFullMat(2,:) = mod(Cfinal(2,:) + czRow17 + czRow20 + multilayerDecoderZ(mod(czRow17 + czRow20 + czRow33,2)),2); CFullMat(3,:) = mod(Cfinal(3,:) + cxRow18 + cxRow19 + multilayerDecoderX(mod(cxRow18 + cxRow19 + cxRow35,2)),2); CFullMat(4,:) = mod(Cfinal(4,:) + czRow20 + multilayerDecoderZ(mod(czRow20+ czRow36,2)),2); ef1Full = mod(sum(mod(CFullMat(1,:) + multilayerDecoderX(CFullMat(1,:)),2)),2); ef2Full = mod(sum(mod(CFullMat(2,:) + multilayerDecoderZ(CFullMat(2,:)),2)),2); ef3Full = mod(sum(mod(CFullMat(3,:) + multilayerDecoderX(CFullMat(3,:)),2)),2); ef4Full = mod(sum(mod(CFullMat(4,:) + multilayerDecoderZ(CFullMat(4,:)),2)),2); stringVec2 = [ef1Full,ef2Full,ef3Full,ef4Full]; if (sum(stringVec2) ~= 0) ind2 = (2^3)*ef4Full + (2^2)*ef3Full + 2*ef2Full + ef1Full; errorVec2(1,ind2) = errorVec2(1,ind2) + 1; end % Case where control TEC is removed CConECRem(1,:) = mod(Cint(1,:) + cxRow18,2); CConECRem(2,:) = mod(Cint(2,:) + czRow17 + czRow20 + multilayerDecoderZ(mod(czRow17 + czRow20,2)),2); CConECRem(3,:) = mod(Cfinal(3,:) + cxRow18 + cxRow19 + multilayerDecoderX(mod(cxRow18 + cxRow19 + cxRow35,2)),2); CConECRem(4,:) = mod(Cfinal(4,:) + czRow20 + multilayerDecoderZ(mod(czRow20+ czRow36,2)),2); ef1ConECRem = mod(sum(mod(CConECRem(1,:) + multilayerDecoderX(CConECRem(1,:)),2)),2); ef2ConECRem = mod(sum(mod(CConECRem(2,:) + multilayerDecoderZ(CConECRem(2,:)),2)),2); ef3ConECRem = mod(sum(mod(CConECRem(3,:) + multilayerDecoderX(CConECRem(3,:)),2)),2); ef4ConECRem = mod(sum(mod(CConECRem(4,:) + multilayerDecoderZ(CConECRem(4,:)),2)),2); stringVec3 = [ef1ConECRem,ef2ConECRem,ef3ConECRem,ef4ConECRem]; if (sum(stringVec3) ~= 0) ind3 = (2^3)*ef4ConECRem + (2^2)*ef3ConECRem + 2*ef2ConECRem + ef1ConECRem; errorVec3(1,ind3) = errorVec3(1,ind3) + 1; end % Case where target TEC is removed CTarECRem(1,:) = mod(Cfinal(1,:) + cxRow18 + multilayerDecoderX(mod(cxRow18 + cxRow34,2)),2); CTarECRem(2,:) = mod(Cfinal(2,:) + czRow17 + czRow20 + multilayerDecoderZ(mod(czRow17 + czRow20 + czRow33,2)),2); CTarECRem(3,:) = mod(Cint(3,:) + cxRow18 + cxRow19 + multilayerDecoderX(mod(cxRow18 + cxRow19,2)),2); CTarECRem(4,:) = mod(Cint(4,:) + czRow20,2); ef1TarECRem = mod(sum(mod(CTarECRem(1,:) + multilayerDecoderX(CTarECRem(1,:)),2)),2); ef2TarECRem = mod(sum(mod(CTarECRem(2,:) + multilayerDecoderZ(CTarECRem(2,:)),2)),2); ef3TarECRem = mod(sum(mod(CTarECRem(3,:) + multilayerDecoderX(CTarECRem(3,:)),2)),2); ef4TarECRem = mod(sum(mod(CTarECRem(4,:) + multilayerDecoderZ(CTarECRem(4,:)),2)),2); stringVec4 = [ef1TarECRem,ef2TarECRem,ef3TarECRem,ef4TarECRem]; if (sum(stringVec4) ~= 0) ind4 = (2^3)*ef4TarECRem + (2^2)*ef3TarECRem + 2*ef2TarECRem + ef1TarECRem; errorVec4(1,ind4) = errorVec4(1,ind4) + 1; end end Output1 = errorVec1; Output2 = errorVec2; Output3 = errorVec3; Output4 = errorVec4; end function [Output1,Output2,Output3] = OutSynAndError(eO,eOIndex,ePlus,ePlusIndex,errRate,numIterations,CFull,n,lookUpPlus,lookUpO) MatSyn = zeros(4*numIterations,6); % Format (XSyn|ZSyn); MatErr = zeros(2*numIterations,14); %Format (XErr|ZErr); numRows = 1; countIterations = 0; while numRows < (numIterations+1) % Generate errors from |0> state-prep circuit in first 1-EC lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); for i = 1:length(errorO(:,1)) errorO(i,2) = errorO(i,2) + 1; % Increase index of column 2 by one so that error is inserted in the correct row in the full circuit. end e = errorO; rows = length(e(:,1)); % Genrate errors from |+> state-prep circuit in first 1-EC lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); for i = 1:length(errorPlus(:,1)) errorPlus(i,2) = errorPlus(i,2) + 5; end e1Plus = errorPlus; rowse1Plus = length(e1Plus(:,1)); e((rows + 1):(rows + rowse1Plus),:) = e1Plus; rows = rows + rowse1Plus; % Generate errors from |0> state-prep circuit in the second 1-EC lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); for i = 1:length(errorO(:,1)) errorO(i,2) = errorO(i,2) + 1; % Increase index of column 2 by one so that error is inserted in the correct row in the full circuit. end e2O = errorO; for i = 1:length(e2O(:,1)) e2O(i,2) = e2O(i,2) + 13; end rowse2O = length(e2O(:,1)); e((rows + 1):(rows + rowse2O),:) = e2O; rows = rows + rowse2O; % Generate errors from |+> state-prep in the second 1-EC lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); for i = 1:length(errorPlus(:,1)) errorPlus(i,2) = errorPlus(i,2) + 5; end e2Plus = errorPlus; for i = 1:length(e2Plus(:,1)) e2Plus(i,2) = e2Plus(i,2) + 5; end rowse2Plus = length(e2Plus(:,1)); e((rows + 1):(rows + rowse2Plus),:) = e2Plus; rows = rows + rowse2Plus; % Generate errors from |0> state-prep circuit in third 1-EC lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); for i = 1:length(errorO(:,1)) errorO(i,2) = errorO(i,2) + 1; % Increase index of column 2 by one so that error is inserted in the correct row in the full circuit. end e3O = errorO; for i = 1:length(e3O(:,1)) e3O(i,4) = e3O(i,4) + 9; end rowse3O = length(e3O(:,1)); e((rows + 1):(rows + rowse3O),:) = e3O; rows = rows + rowse3O; % Genrate errors from |+> state-prep circuit in third 1-EC lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); for i = 1:length(errorPlus(:,1)) errorPlus(i,2) = errorPlus(i,2) + 5; end e3Plus = errorPlus; for i = 1:length(e3Plus(:,1)) e3Plus(i,4) = e3Plus(i,4) + 9; end rowse3Plus = length(e3Plus(:,1)); e((rows + 1):(rows + rowse3Plus),:) = e3Plus; rows = rows + rowse3Plus; % Generate errors from |0> state-prep circuit in the fourth 1-EC lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); for i = 1:length(errorO(:,1)) errorO(i,2) = errorO(i,2) + 1; % Increase index of column 2 by one so that error is inserted in the correct row in the full circuit. end e4O = errorO; for i = 1:length(e4O(:,1)) e4O(i,2) = e4O(i,2) + 13; e4O(i,4) = e4O(i,4) + 9; end rowse4O = length(e4O(:,1)); e((rows + 1):(rows + rowse4O),:) = e4O; rows = rows + rowse4O; % Generate errors from |+> state-prep in the fourth 1-EC lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); for i = 1:length(errorPlus(:,1)) errorPlus(i,2) = errorPlus(i,2) + 5; end e4Plus = errorPlus; for i = 1:length(e4Plus(:,1)) e4Plus(i,2) = e4Plus(i,2) + 5; e4Plus(i,4) = e4Plus(i,4) + 9; end rowse4Plus = length(e4Plus(:,1)); e((rows + 1):(rows + rowse4Plus),:) = e4Plus; rows = rows + rowse4Plus; % Next we generate a random error in the circuit (outside of state-prep % circuits) to add to the matrix e (given the error rate errRate). eRemain = errorGeneratorRemaining(errRate,n); e((rows + 1):(rows + length(eRemain(:,1))),:) = eRemain; Cfinal = PropagationArb(CFull,n,e,lookUpPlus,lookUpO); % Propagate errors through the full CNOT circuit % Store measurment syndromes ErrZ17 = Cfinal(17,:); SynZ17 = Syndrome(ErrZ17); ErrX18 = Cfinal(18,:); SynX18 = Syndrome(ErrX18); ErrX19 = Cfinal(19,:); SynX19 = Syndrome(ErrX19); ErrZ20 = Cfinal(20,:); SynZ20 = Syndrome(ErrZ20); ErrZ33 = Cfinal(2,:); SynZ33 = Syndrome(Cfinal(33,:)); ErrX34 = Cfinal(1,:); SynX34 = Syndrome(Cfinal(34,:)); ErrX35 = Cfinal(3,:); SynX35 = Syndrome(Cfinal(35,:)); ErrZ36 = Cfinal(4,:); SynZ36 = Syndrome(Cfinal(36,:)); t1 = sum(SynX18+SynZ17+SynX19+SynZ20+SynX34+SynZ33+SynX35+SynZ36); t2 = sum(ErrZ33+ErrX34+ErrX35+ErrZ36); if (t1 ~= 0) || (t2 ~= 0) MatSynTemp = [SynX18,SynZ17;SynX19,SynZ20;SynX34,SynZ33;SynX35,SynZ36]; MatErrorTemp = [ErrX34,ErrZ33;ErrX35,ErrZ36]; MatSyn((4*(numRows-1)+1):(4*numRows),:) = MatSynTemp; MatErr((2*(numRows-1)+1):(2*numRows),:) = MatErrorTemp; numRows = numRows + 1; end countIterations = countIterations + 1; end Output1 = MatSyn; Output2 = MatErr; Output3 = countIterations; end
github
pooya-git/DeepNeuralDecoder-master
KnillTrainingSetd5.m
.m
DeepNeuralDecoder-master/Data/Generator/Knill_CNOT_D5/KnillTrainingSetd5.m
115,585
utf_8
2d49b56c69ce10f5248a535f239fb15b
% MIT License % % Copyright (c) 2018 Chris Chamberland % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, including without limitation the rights % to use, copy, modify, merge, publish, distribute, sublicense, and/or sell % copies of the Software, and to permit persons to whom the Software is % furnished to do so, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in all % copies or substantial portions of the Software. % % THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR % IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE % AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, % OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE % SOFTWARE. function KnillTrainingSetd3 % Circuit descriptors: % -1: qubit non-active % 0: Noiseless memory % 1: Gate memory % 2: Measurement memory % 3: Preparation in X basis (|+> state) % 4: Preparation in Z basis (|0> state) % 5: Measurement in X basis % 6: Measurement in Z basis % 7: X gate % 8: Z gate % 10: H gate % 11: S gate % 20: T gate %1---: Control qubit for CNOT with target --- %1000: Target qubit for CNOT % Circuit for CNOT 1-exRec n = 19; % Generate lookup table lookUpO = lookUpOFunc(1,n); lookUpPlus = lookUpPlusFunc(1,n); %Test % Knill-EC CNOT exRec circuit containing all four EC blocks CFirst = [0,0,0,0,0,0,1002,5,-1 3,1000,0,1004,1,1006,1000,6,-1 3,1002,5,-1,-1,-1,-1,-1,-1 3,1000,0,1000,6,-1,-1,-1,-1 3,1004,5,-1,-1,-1,-1,-1,-1 4,1007,0,1000,1,1000,1,0,0 4,1000,6,-1,-1,-1,-1,-1,-1 4,1009,0,1006,5,-1,-1,-1,-1 4,1000,6,-1,-1,-1,-1,-1,-1 0,0,0,0,0,0,1011,5,-1 3,1000,0,1013,1,1015,1000,6,-1 3,1011,5,-1,-1,-1,-1,-1,-1 3,1000,0,1000,6,-1,-1,-1,-1 3,1013,5,-1,-1,-1,-1,-1,-1 4,1016,0,1000,1,1000,1,0,0 4,1000,6,-1,-1,-1,-1,-1,-1 4,1018,0,1015,5,-1,-1,-1,-1 4,1000,6,-1,-1,-1,-1,-1,-1]; CLastWithCNOT = [0,1010,0,0,0,0,0,0,1002,5,-1 0,0,3,1000,0,1004,1,1006,1000,6,-1 0,0,3,1002,5,-1,-1,-1,-1,-1,-1 0,0,3,1000,0,1000,6,-1,-1,-1,-1 0,0,3,1004,5,-1,-1,-1,-1,-1,-1 0,0,4,1007,0,1000,1,1000,1,0,0 0,0,4,1000,6,-1,-1,-1,-1,-1,-1 0,0,4,1009,0,1006,5,-1,-1,-1,-1 0,0,4,1000,6,-1,-1,-1,-1,-1,-1 0,1000,0,0,0,0,0,0,1011,5,-1 0,0,3,1000,0,1013,1,1015,1000,6,-1 0,0,3,1011,5,-1,-1,-1,-1,-1,-1 0,0,3,1000,0,1000,6,-1,-1,-1,-1 0,0,3,1013,5,-1,-1,-1,-1,-1,-1 0,0,4,1016,0,1000,1,1000,1,0,0 0,0,4,1000,6,-1,-1,-1,-1,-1,-1 0,0,4,1018,0,1015,5,-1,-1,-1,-1 0,0,4,1000,6,-1,-1,-1,-1,-1,-1]; tic parfor i = 1:7 v = [6*10^-4,7*10^-4,8*10^-4,9*10^-4,10^-3,1.5*10^-3,2*10^-3]; errRate = v(1,i); errStatePrepString = 'ErrorStatePrep'; str_errRate = num2str(errRate,'%0.3e'); str_mat = '.mat'; str_temp = strcat(errStatePrepString,str_errRate); str_errStatePrep = strcat(str_temp,str_mat); % numIterations1 = 10^5; % % [eO,eOIndex,numAcceptedO] = PacceptErrorGeneratorOPrepUpper(errRate,numIterations1,n,lookUpPlus,lookUpO); % [ePlus,ePlusIndex,numAcceptedPlus] = PacceptErrorGeneratorPlusPrepUpper(errRate,numIterations1,n,lookUpPlus,lookUpO); % parsaveErrorStatePrep(str_errStatePrep,eO,eOIndex,numAcceptedO,ePlus,ePlusIndex,numAcceptedPlus); switch i case 1 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep6.000e-04.mat'); case 2 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep7.000e-04.mat'); case 3 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep8.000e-04.mat'); case 4 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep9.000e-04.mat'); case 5 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep1.000e-03.mat'); case 6 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep1.500e-03.mat'); otherwise [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep2.000e-03.mat'); end numIterations = 2*10^7; if (~isempty(eOIndex)) && (~isempty(ePlusIndex)) [A1,A2,OutputCount] = OutSynAndError(eO,eOIndex,ePlus,ePlusIndex,errRate,numIterations,CFirst,CLastWithCNOT,n,lookUpPlus,lookUpO); TempStr1 = 'SyndromeOnly'; TempStr2 = '.txt'; TempStr3 = 'ErrorOnly'; str_Final1 = strcat(TempStr1,str_errRate); str_Final2 = strcat(str_Final1,TempStr2); str_Final3 = strcat(TempStr3,str_errRate); str_Final4 = strcat(str_Final3,TempStr2); fid = fopen(str_Final2, 'w+t'); for ii = 1:size(A1,1) fprintf(fid,'%g\t',A1(ii,:)); fprintf(fid,'\n'); end fclose(fid); fid = fopen(str_Final4, 'w+t'); for ii = 1:size(A2,1) fprintf(fid,'%g\t',A2(ii,:)); fprintf(fid,'\n'); end fclose(fid); end str_Count = strcat('Count',str_errRate); str_CountFinal = strcat(str_Count,'.mat'); parsaveCount(str_CountFinal,OutputCount); end toc end function parsaveErrorStatePrep(fname,eO,eOIndex,numAcceptedO,ePlus,ePlusIndex,numAcceptedPlus) save(fname,'eO','eOIndex','numAcceptedO','ePlus','ePlusIndex','numAcceptedPlus'); end function parsaveErrorVec(fname,errorVecMat) save(fname,'errorVecMat'); end function parsaveCount(fname,OutputCount) save(fname,'OutputCount'); end function [out1,out2,out3,out4] = parload(fname) load(fname); out1 = eO; out2 = eOIndex; out3 = ePlus; out4 = ePlusIndex; end function Output = lookUpOFunc(n,numQubits) % Circuit for |0> state prep lookUpO = zeros(70,5,numQubits); C = [3 1018 1014 1013 1009 1004 1010 1007 3 1014 1018 1009 1019 1010 1015 1004 3 0 0 1019 1015 1007 1004 1013 4 0 0 0 0 1000 1000 1000 3 1019 1009 1018 1014 1015 1007 1010 3 0 0 0 0 1009 1018 1017 4 0 0 0 0 1000 1000 1000 3 0 0 1017 1010 1014 1013 1009 4 0 1000 1000 1000 1000 1 1000 4 0 0 0 1000 1000 1000 1000 3 0 0 1014 1013 1018 1017 1019 3 0 0 0 0 1013 1014 1015 4 0 0 1000 1000 1000 1000 1000 4 1000 1000 1000 1000 1000 1000 1 4 0 0 0 1000 1000 1000 1000 3 0 0 0 0 1017 1019 1018 4 0 0 1000 1 1000 1000 1000 4 1000 1000 1000 1 1000 1000 1000 4 1000 1 1000 1000 1 1000 1000]; % Find the number of gate storage locations in C counterStorage = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) == 1 counterStorage = counterStorage + 1; end end end % Find the number of CNOT locations in C counterCNOT = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) > 1000 counterCNOT = counterCNOT + 1; end end end % fills in lookUpTable locations where lookUpO(i,j,k) has j = k = 1. counter = 1; for i = 1:counterStorage lookUpO(i,1,1) = 1; counter = counter + 1; end for i = 1 : length(C(:,1)) lookUpO(counter,1,1) = C(i,1); counter = counter + 1; end for i = 1 : counterCNOT lookUpO(counter,1,1) = 1000; counter = counter + 1; end e = zeros(1,4); % fills in LookUpO(i,j,:) for storage gate errors j = 2,3. counter = 1; for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = 2:3 if jj == 2 if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpO(counter,jj,:) = xVector(C, n, e); end else if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpO(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end % fills in LookUpO(i,j,:) for state prep errors j = 2,3. for i = 1:length(C(:,1)) if C(i,1) == 3 e(1,:) = [2,i,1,1]; lookUpO(counter,3,:) = zVector(C, n, e); counter = counter + 1; else e(1,:) = [1,i,1,1]; lookUpO(counter,2,:) = xVector(C, n, e); counter = counter + 1; end end % fills in LookUpO(i,j,:) for CNOT erros, j = 2,3. for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = [2,3,4,5] switch jj case 2 if C(j,i) > 1000 e(1,:) = [1,j,1,i]; lookUpO(counter,jj,:) = xVector(C, n, e); end case 3 if C(j,i) > 1000 e(1,:) = [2,j,1,i]; lookUpO(counter,jj,:) = zVector(C, n, e); end case 4 if C(j,i) > 1000 e(1,:) = [4,j,1,i]; lookUpO(counter,jj,:) = xVector(C, n, e); end otherwise if C(j,i) > 1000 e(1,:) = [8,j,1,i]; lookUpO(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end Output = lookUpO; end function Output = lookUpPlusFunc(n,numQubits) % Circuit for |+> state prep lookUpPlus = zeros(70,5,numQubits); C = [4 1000 1000 1000 1000 1000 1000 1000 4 1000 1000 1000 1000 1000 1000 1000 4 0 0 1000 1000 1000 1000 1000 3 0 0 0 0 1001 1003 1002 4 1000 1000 1000 1000 1000 1000 1000 4 0 0 0 0 1000 1000 1000 3 0 0 0 0 1003 1005 1001 4 0 0 1000 1000 1000 1000 1000 3 0 1005 1002 1001 1006 1 1008 3 0 0 0 1008 1002 1001 1005 4 0 0 1000 1000 1000 1000 1000 4 0 0 0 0 1000 1000 1000 3 0 0 1001 1011 1012 1008 1003 3 1002 1001 1011 1005 1008 1012 1 3 0 0 0 1003 1005 1002 1012 4 0 0 0 0 1000 1000 1000 3 0 0 1008 1 1016 1011 1006 3 1001 1002 1005 1 1011 1006 1016 3 1005 1 1003 1002 1 1016 1011]; % Find the number of gate storage locations in C counterStorage = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) == 1 counterStorage = counterStorage + 1; end end end % Find the number of CNOT locations in C counterCNOT = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) > 1000 counterCNOT = counterCNOT + 1; end end end % fills in lookUpTable locations where lookUpO(i,j,k) has j = k = 1. counter = 1; for i = 1:counterStorage lookUpPlus(i,1,1) = 1; counter = counter + 1; end for i = 1 : length(C(:,1)) lookUpPlus(counter,1,1) = C(i,1); counter = counter + 1; end for i = 1 : counterCNOT lookUpPlus(counter,1,1) = 1000; counter = counter + 1; end e = zeros(1,4); % fills in LookUpO(i,j,:) for storage gate errors j = 2,3. counter = 1; for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = 2:3 if jj == 2 if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpPlus(counter,jj,:) = xVector(C, n, e); end else if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpPlus(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end % fills in LookUpO(i,j,:) for state prep errors j = 2,3. for i = 1:length(C(:,1)) if C(i,1) == 3 e(1,:) = [2,i,1,1]; lookUpPlus(counter,3,:) = zVector(C, n, e); counter = counter + 1; else e(1,:) = [1,i,1,1]; lookUpPlus(counter,2,:) = xVector(C, n, e); counter = counter + 1; end end % fills in LookUpO(i,j,:) for CNOT erros, j = 2,3. for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = [2,3,4,5] switch jj case 2 if C(j,i) > 1000 e(1,:) = [1,j,1,i]; lookUpPlus(counter,jj,:) = xVector(C, n, e); end case 3 if C(j,i) > 1000 e(1,:) = [2,j,1,i]; lookUpPlus(counter,jj,:) = zVector(C, n, e); end case 4 if C(j,i) > 1000 e(1,:) = [4,j,1,i]; lookUpPlus(counter,jj,:) = xVector(C, n, e); end otherwise if C(j,i) > 1000 e(1,:) = [8,j,1,i]; lookUpPlus(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end Output = lookUpPlus; end function Output = PropagationStatePrepArb(C, n, e) % C encodes information about the circuit % n is the number of qubits per encoded codeblock % eN are the error entries (location and time) % The Output matrix will contain (2q+m) rows and n columns. The paramters Output(i,j) are: % i <= 2q and odd: Stores X type errors for output qubit #ceil(i/2) (order based on matrix C) % i <= 2q and even: Stores Z type errors for output qubit #ceil(i/2) (order based on matrix C) % i > 2q: Stores measurement error for measurement number #i-2q (type is X or Z depending on measurement type) % The Errors matrix will be a tensor with 2 parameters Output(i, j) % i: logical qubit number % j<=n: X error at physical qubit number j % j>n : Z error at physical qubit number j % Error inputs eN are characterized by four parameters, thus a vector (i,j, k, l) % i: error type: 0 = I, 1 = X, 2 = Z, 3 = Y % j: logical qubit number (if the entry here is '0' then this will correspond to an identity "error") % k: physical qubit number within a codeblock % l: time location N_meas = length(find(C==5)) + length(find(C==6)); % number of logical measurements in the circuit N_output = length(C(:,end)) - sum(C(:,end)==-1) - sum(C(:,end)==5) - sum(C(:,end)==6); % number of output active qubits that have not been measured Meas_dict = [find(C==5); find(C==6)]; Meas_dict = sort(Meas_dict); Output = zeros(2*N_output + N_meas, n); Errors = zeros(length(C(:,1)), 2*n); for t= 1:length(C(1,:)) % If the error occurs at a measurement location then the error is introduced before propagation of faults for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( ( C(e(j,2),t) == 5 ) || ( C(e(j,2),t) == 6 ) ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end end end % Propagation of errors (do not need to do it for the first step of circuit if t>1 for i = 1:length(C(:,t)) if C(i, t) == 10 % In this case must flip the X and Z error information v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = v2; Errors(i, n+1:end) = v1; end if C(i, t) == 11 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = mod(v1+v2, 2); end if C(i,t) > 1000 % check to see if target qubit according to control qubit is actually a target qubit if C(C(i,t) - 1000, t) == 1000 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); w1 = Errors(C(i,t) - 1000, 1:n); w2 = Errors(C(i,t) - 1000, (n+1):end); %mod(v2+w2,2) Errors(C(i,t) - 1000, 1:n) = mod(v1+w1, 2); Errors(i, (n+1):end) = mod(v2+w2, 2); end end if C(i,t) == 5 % This corresponds to X measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, (n+1):end); Errors(i, 1:end) = 0; end if C(i,t) == 6 % This corresponds to Z measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, 1:n); Errors(i, 1:end) = 0; end end end % Introduce faults for locations that are not measurements for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( C(e(j,2),t) ~= 5 ) && ( C(e(j,2),t) ~= 6 ) % This IF statement checks to see if the gate at this location is NOT a CNOT or Prep if ( C(e(j,2),t) < 1000 ) %&& ( C(e(j,2),t) ~= 3 ) && ( C(e(j,2),t) ~= 4 ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end % Introduce errors in the case of CNOT gate for control and target qubits % Errors for control qubit are entry mod(e(j,1),4) according to standard indexing above if ( C(e(j,2),t) > 1000 ) if C(C(e(j,2),t) - 1000, t) == 1000 if mod(e(j,1),2) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if mod(e(j,1),4) > 1 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if mod(floor(e(j,1)/4),2) == 1 Errors(C(e(j,2),t) - 1000, e(j,3)) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)) + 1, 2); end if mod(floor(e(j,1)/4),4) > 1 Errors(C(e(j,2),t) - 1000, e(j,3)+n) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)+n) + 1, 2); end end end end end end end %Errors counter = 1; % This will be used to iterate over the different qubits for j = 1:length(C(:,end)) if (C(j,end) ~= -1) && (C(j,end) ~= 5) && (C(j,end) ~= 6) Output(counter,:) = Errors(j,1:n); Output(counter+1,:) = Errors(j,(n+1):end); counter = counter + 2; end end end function Output = xVector(C, n, e) outputMatrix = PropagationStatePrepArb(C, n, e); jx = 1; for i = 1:length(outputMatrix) if mod(i,2) == 1 xvector(jx) = outputMatrix(i,1); jx = jx + 1; end end Output = xvector; end function Output = zVector(C, n, e) outputMatrix = PropagationStatePrepArb(C, n, e); jz = 1; for i = 1:length(outputMatrix) if mod(i,2) == 0 zvector(jz) = outputMatrix(i,1); jz = jz + 1; end end Output = zvector; end function Output = PropagationArb(C, n, e, XPrepTable, ZPrepTable) % C encodes information about the circuit % n is the number of qubits per encoded codeblock % eN are the error entries (location and time) % The Output matrix will contain (2q+m) rows and n columns. The paramters Output(i,j) are: % i <= 2q and odd: Stores X type errors for output qubit #ceil(i/2) (order based on matrix C) % i <= 2q and even: Stores Z type errors for output qubit #ceil(i/2) (order based on matrix C) % i > 2q: Stores measurement error for measurement number #i-2q (type is X or Z depending on measurement type) % The Errors matrix will be a tensor with 2 parameters Output(i, j) % i: logical qubit number % j<=n: X error at physical qubit number j % j>n : Z error at physical qubit number j % Error inputs eN are characterized by four parameters, thus a vector (i,j, k, l) % i: error type: 0 = I, 1 = X, 2 = Z, 3 = Y % j: logical qubit number (if the entry here is '0' then this will correspond to an identity "error") % k: physical qubit number within a codeblock % l: time location N_meas = length(find(C==5)) + length(find(C==6)); % number of logical measurements in the circuit N_output = length(C(:,end)) - sum(C(:,end)==-1) - sum(C(:,end)==5) - sum(C(:,end)==6); % number of output active qubits that have not been measured Meas_dict = [find(C==5); find(C==6)]; Meas_dict = sort(Meas_dict); Output = zeros(2*N_output + N_meas, n); Errors = zeros(length(C(:,1)), 2*n); for t= 1:length(C(1,:)) % If the error occurs at a measurement location then the error is introduced before propagation of faults for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( ( C(e(j,2),t) == 5 ) || ( C(e(j,2),t) == 6 ) ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end end end % Propagation of errors (do not need to do it for the first step of % circuit) if t>1 for i = 1:length(C(:,t)) if C(i, t) == 10 % In this case must flip the X and Z error information v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = v2; Errors(i, n+1:end) = v1; end if C(i, t) == 11 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = mod(v1+v2, 2); end if C(i,t) > 1000 % check to see if target qubit according to control qubit is actually a target qubit if C(C(i,t) - 1000, t) == 1000 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); w1 = Errors(C(i,t) - 1000, 1:n); w2 = Errors(C(i,t) - 1000, (n+1):end); %mod(v2+w2,2) Errors(C(i,t) - 1000, 1:n) = mod(v1+w1, 2); Errors(i, (n+1):end) = mod(v2+w2, 2); end end if C(i,t) == 5 % This corresponds to X measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, (n+1):end); Errors(i, 1:end) = 0; end if C(i,t) == 6 % This corresponds to Z measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, 1:n); Errors(i, 1:end) = 0; end end end % Introduce faults for locations that are not measurements for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( C(e(j,2),t) ~= 5 ) && ( C(e(j,2),t) ~= 6 ) % This IF statement checks to see if the gate at this location is NOT a CNOT or Prep if ( C(e(j,2),t) < 1000 ) && ( C(e(j,2),t) ~= 3 ) && ( C(e(j,2),t) ~= 4 ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end % Introduce errors in the case of CNOT gate for control and target qubits % Errors for control qubit are entry mod(e(j,1),4) according to standard indexing above if ( C(e(j,2),t) > 1000 ) if C(C(e(j,2),t) - 1000, t) == 1000 if mod(e(j,1),2) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if mod(e(j,1),4) > 1 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if mod(floor(e(j,1)/4),2) == 1 Errors(C(e(j,2),t) - 1000, e(j,3)) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)) + 1, 2); end if mod(floor(e(j,1)/4),4) > 1 Errors(C(e(j,2),t) - 1000, e(j,3)+n) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)+n) + 1, 2); end end end % Introduce errors in the case of |0> prep if ( C(e(j,2),t) == 4 ) eVec = zeros(1,n); if mod(e(j,1),2) == 1 % Need to translate the entries in the Prep tables to right format for a = 1:n eVec(a) = ZPrepTable(e(j,3), 2, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(e(j,1),4) > 1 for a = 1:n eVec(a) = ZPrepTable(e(j,3), 3, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end)+eVec, 2); end if mod(floor(e(j,1)/4),2) == 1 for a = 1:n eVec(a) = ZPrepTable(e(j,3), 4, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(floor(e(j,1)/4),4) > 1 for a = 1:n eVec(a) = ZPrepTable(e(j,3), 5, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end) + eVec, 2); end end % Introduce errors in the case of |+> prep if ( C(e(j,2),t) == 3 ) eVec = zeros(1,n); if mod(e(j,1),2) == 1 % Need to translate the entries in the Prep tables to right format for a = 1:n eVec(a) = XPrepTable(e(j,3), 2, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(e(j,1),4) > 1 for a = 1:n eVec(a) = XPrepTable(e(j,3), 3, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end)+eVec, 2); end if mod(floor(e(j,1)/4),2) == 1 for a = 1:n eVec(a) = XPrepTable(e(j,3), 4, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(floor(e(j,1)/4),4) > 1 for a = 1:n eVec(a) = XPrepTable(e(j,3), 5, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end) + eVec, 2); end end end end end end %Errors counter = 1; % This will be used to iterate over the different qubits for j = 1:length(C(:,end)) if (C(j,end) ~= -1) && (C(j,end) ~= 5) && (C(j,end) ~= 6) Output(counter,:) = Errors(j,1:n); Output(counter+1,:) = Errors(j,(n+1):end); counter = counter + 2; end end end function Output = IdealDecoder19QubitColor(xErr) Stabs = [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0]; newMat = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0]; Syn = zeros(1,9); for i = 1:9 Syn(i) = mod(sum(conj(xErr).* Stabs(i,1:19)),2); % obtain error syndrom end correctionRow = 1; % convert binary syndrome to decimal to find row in matrix newMat % corresponding to measured syndrome for i = 1:length(Syn) correctionRow = correctionRow + 2^(9-i)*Syn(i); end Output = newMat(correctionRow,:); end function Output = Syndrome(errIn) g = [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0]; syn = zeros(1,9); for i = 1:9 syn(1,i) = mod( sum(errIn.*g(i,:)), 2); end Output = syn; end function Output = errorGeneratorPacceptOprepUpper(errRate) % Generates errors in the ancilla preparation part of the EC's e = zeros(1,4); rows = 1; % Locations within the state prep |0> circuit for i = 1:2 for l = 1:6 xi = rand; if xi < errRate k = randi([1,3]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end for l = 7:25 if (l == 7) || (l == 8) || (l == 9) || (l == 11) || (l == 12) || (l == 14) || (l == 17) || (l == 18) || (l == 22) xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,i,l,1]; rows = rows + 1; end else xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,i,l,1]; rows = rows + 1; end end end for l = 26:70 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end end for i = [1,3] for l = 1:19 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,2]; rows = rows + 1; end end end for i = [2,4] for l = 1:19 xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,i,l,3]; rows = rows + 1; end end end for l = 1:19 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,3,l,4]; rows = rows + 1; end end for l = 1:19 xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,3,l,5]; rows = rows + 1; end end Output = e; end function [Output1,Output2,Output3] = PacceptErrorGeneratorOPrepUpper(errRate,numIterations,n,lookUpPlus,lookUpO) C = [4,1002,0,1000,2; 4,1000,6,-1,-1; 4,1004,0,1001,5; 4,1000,6,-1,-1]; eAccepted = zeros(1,4); eIndex = zeros(1,1); countereIndex = 1; counterRows = 0; numAccepted = 0; while length(eAccepted(:,1)) < numIterations e = errorGeneratorPacceptOprepUpper(errRate); if isequal(e,zeros(1,4)) counter = 0; else counter = length(e(:,1)); end propagatedMatrix = PropagationArb(C,n,e,lookUpPlus,lookUpO); if (sum(IdealDecoder19QubitColor(propagatedMatrix(3,:)))==0) && (sum(IdealDecoder19QubitColor(propagatedMatrix(4,:)))==0) && (sum(IdealDecoder19QubitColor(propagatedMatrix(5,:)))==0) && (mod(sum(propagatedMatrix(3,:)),2)==0) && (mod(sum(propagatedMatrix(4,:)),2)==0) && (mod(sum(propagatedMatrix(5,:)),2)==0) if counter ~= 0 numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + counter; eAccepted((counterLast + 1):(counterLast + counter),:) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; else numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + 1; eAccepted((counterLast + 1),1:4) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; end end end Output1 = eAccepted; Output2 = eIndex; Output3 = numAccepted; end function Output = errorGeneratorPacceptPlusprepUpper(errRate) e = zeros(1,4); rows = 1; for i = 1:2 for l = 1:6 xi = rand; if xi < errRate k = randi([1,3]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end for l = 7:25 if (l == 7) || (l == 8) || (l == 9) || (l == 11) || (l == 12) || (l == 14) || (l == 17) || (l == 18) || (l == 22) xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,i,l,1]; rows = rows + 1; end else xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,i,l,1]; rows = rows + 1; end end end for l = 26:70 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end end for i = [2,4] for l = 1:19 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,2]; rows = rows + 1; end end end for i = [2,4] for l = 1:19 xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,i,l,3]; rows = rows + 1; end end end for l = 1:19 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,1,l,4]; rows = rows + 1; end end for l = 1:19 xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,3,l,5]; rows = rows + 1; end end Output = e; end function [Output1,Output2,Output3] = PacceptErrorGeneratorPlusPrepUpper(errRate,numIterations,n,lookUpPlus,lookUpO) C = [3,1000,0,1003,2; 3,1001,5,-1,-1; 3,1000,0,1000,6; 3,1003,5,-1,-1]; eAccepted = zeros(1,4); eIndex = zeros(1,1); countereIndex = 1; counterRows = 0; numAccepted = 0; while length(eAccepted(:,1)) < numIterations e = errorGeneratorPacceptPlusprepUpper(errRate); if isequal(e,zeros(1,4)) counter = 0; else counter = length(e(:,1)); end propagatedMatrix = PropagationArb(C, n, e,lookUpPlus, lookUpO); if (sum(IdealDecoder19QubitColor(propagatedMatrix(3,:)))==0) && (sum(IdealDecoder19QubitColor(propagatedMatrix(4,:)))==0) && (sum(IdealDecoder19QubitColor(propagatedMatrix(5,:)))==0) && (mod(sum(propagatedMatrix(3,:)),2)==0) && (mod(sum(propagatedMatrix(4,:)),2)==0) && (mod(sum(propagatedMatrix(5,:)),2)==0) if counter ~= 0 numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + counter; eAccepted((counterLast + 1):(counterLast + counter),:) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; else numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + 1; eAccepted((counterLast + 1),1:4) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; end end end Output1 = eAccepted; Output2 = eIndex; Output3 = numAccepted; end function Output = errorGeneratorRemainingCFirst(errRate,numQubits) % This function generates remaining errors outside state-prep circuits in % a Knill-EC CNOT exRec circuit. e = zeros(1,4); counter = 1; % Errors at all the storage locations for i = [2,6,11,15] for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,l,5]; counter = counter + 1; end end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,6,l,7]; counter = counter + 1; end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,15,l,7]; counter = counter + 1; end end % Errors at measurement locations % X-measurement locations for i = [1,10] for l = 1:numQubits xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,i,l,8]; counter = counter + 1; end end end % Z-measurement locations for i = [2,11] for l = 1:numQubits xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,i,l,8]; counter = counter + 1; end end end % Errors at CNOT locations % Full CNOT's for i = [2,11] for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,i,l,6]; counter = counter + 1; end end end % CNOT's coupling to data prior to teleportation for i = [1,10] for l = 1:numQubits xi = rand; if xi < 12*errRate/15 vecErr = [2,4,6]; vecRand = randi([1,3]); k = vecErr(1,vecRand); e(counter,:) = [k,i,l,7]; counter = counter + 1; end end end Output = e; end function Output = errorGeneratorRemainingCLastWithCNOT(errRate,numQubits) % This function generates remaining errors outside state-prep circuits in % a Knill-EC CNOT exRec circuit. e = zeros(1,4); counter = 1; % Errors at all the storage locations for i = [2,6,11,15] for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,l,7]; counter = counter + 1; end end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,6,l,9]; counter = counter + 1; end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,15,l,9]; counter = counter + 1; end end % Errors at measurement locations % X-measurement locations for i = [1,10] for l = 1:numQubits xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,i,l,10]; counter = counter + 1; end end end % Z-measurement locations for i = [2,11] for l = 1:numQubits xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,i,l,10]; counter = counter + 1; end end end % Errors at CNOT locations % Full CNOT's for i = [2,11] for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,i,l,8]; counter = counter + 1; end end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,1,l,2]; counter = counter + 1; end end % CNOT's coupling to data prior to teleportation for i = [1,10] for l = 1:numQubits xi = rand; if xi < 12*errRate/15 vecErr = [2,4,6]; vecRand = randi([1,3]); k = vecErr(1,vecRand); e(counter,:) = [k,i,l,9]; counter = counter + 1; end end end Output = e; end function Output = ConvertVecXToErrMatX(ErrIn) e = zeros(1,4); counter = 1; for i = 1:length(ErrIn(1,:)) if ErrIn(1,i) ~= 0 e(counter,:) = [1,1,i,1]; counter = counter + 1; end end Output = e; end function Output = ConvertVecZToErrMatZ(ErrIn) e = zeros(1,4); counter = 1; for i = 1:length(ErrIn(1,:)) if ErrIn(1,i) ~= 0 e(counter,:) = [2,1,i,1]; counter = counter + 1; end end Output = e; end function [Output1,Output2,Output3] = OutSynAndError(eO,eOIndex,ePlus,ePlusIndex,errRate,numIterations,CFirst,CLastWithCNOT,n,lookUpPlus,lookUpO) MatSyn = zeros(4*numIterations,18); % Format (XSyn|ZSyn); MatErr = zeros(2*numIterations,38); %Format (XErr|ZErr); numRows = 1; countIterations = 0; while numRows < (numIterations+1) % We will first propagate errors through the leading EC's. Recall that % errors on blocks 1 and 10 should be copied to bloks 6 and 15 due to % the teleportation occuring in Knill EC. % Generate errors from |0> state-prep circuit in the first EC block lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); errorO(:,2) = errorO(:,2) + 5; % Insert errors on the appropriate block of the EC circuit e = errorO; rows = length(e(:,1)); % Genrate errors from |+> state-prep circuit in the first EC block lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); errorPlus(:,2) = errorPlus(:,2) + 1; % Insert errors on the appropriate block of the EC circuit rowse1Plus = length(errorPlus(:,1)); e((rows + 1):(rows + rowse1Plus),:) = errorPlus; rows = rows + rowse1Plus; % Generate errors from |0> state-prep circuit in the second EC block lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); errorO(:,2) = errorO(:,2) + 14; % Insert errors on the appropriate block of the EC circuit rowse2O = length(errorO(:,1)); e((rows + 1):(rows + rowse2O),:) = errorO; rows = rows + rowse2O; % Generate errors from |+> state-prep in the second EC block lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); errorPlus(:,2) = errorPlus(:,2) + 10; % Insert errors on the appropriate block of the EC circuit rowse2Plus = length(errorPlus(:,1)); e((rows + 1):(rows + rowse2Plus),:) = errorPlus; rows = rows + rowse2Plus; % Next we generate a random error in the circuit (outside of state-prep % circuits) to add to the matrix e (given the error rate errRate). eRemain = errorGeneratorRemainingCFirst(errRate,n); e((rows + 1):(rows + length(eRemain(:,1))),:) = eRemain; ErrOutFirst = PropagationArb(CFirst,n,e,lookUpPlus,lookUpO); % Propagate errors through the CFirst circuit % Next we store the syndromes based on the measured syndromes XSynB1EC1 = Syndrome(ErrOutFirst(18,:)); ZSynB1EC1 = Syndrome(ErrOutFirst(17,:)); XSynB2EC1 = Syndrome(ErrOutFirst(20,:)); ZSynB2EC1 = Syndrome(ErrOutFirst(19,:)); % Add X errors of control input qubit to control teleported qubit XerrB1EC1 = mod(ErrOutFirst(1,:)+ErrOutFirst(18,:),2); % Add Z errors of control input qubit to control teleported qubit ZerrB1EC1 = mod(ErrOutFirst(2,:)+ErrOutFirst(17,:),2); % Add X errors of target input qubit to target teleported qubit XerrB2EC1 = mod(ErrOutFirst(3,:)+ErrOutFirst(20,:),2); % Add Z errors of target input qubit to target teleported qubit ZerrB2EC1 = mod(ErrOutFirst(4,:)+ErrOutFirst(19,:),2); % Next we convert the output errors into matrix form for input into the % final part of the CNOT exRec circuit e1X = ConvertVecXToErrMatX(XerrB1EC1); e1Z = ConvertVecZToErrMatZ(ZerrB1EC1); e2X = ConvertVecXToErrMatX(XerrB2EC1); e2Z = ConvertVecZToErrMatZ(ZerrB2EC1); e2X(1,2) = 10; e2Z(1,2) = 10; eFinal = [e1X;e1Z;e2X;e2Z]; rows = length(eFinal(:,1)); % Generate errors from |0> state-prep circuit in the third EC block lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); errorO(:,2) = errorO(:,2) + 5; errorO(:,4) = errorO(:,4) + 2; rowse3O = length(errorO(:,1)); eFinal((rows + 1):(rows + rowse3O),:) = errorO; rows = rows + rowse3O; % Genrate errors from |+> state-prep circuit in the first EC block lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); errorPlus(:,2) = errorPlus(:,2) + 1; errorPlus(:,4) = errorPlus(:,4) + 2; rowse3Plus = length(errorPlus(:,1)); eFinal((rows + 1):(rows + rowse3Plus),:) = errorPlus; rows = rows + rowse3Plus; % Generate errors from |0> state-prep circuit in the fourth EC block lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); errorO(:,2) = errorO(:,2) + 14; errorO(:,4) = errorO(:,4) + 2; rowse4O = length(errorO(:,1)); eFinal((rows + 1):(rows + rowse4O),:) = errorO; rows = rows + rowse4O; % Generate errors from |+> state-prep in the fourth EC block lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); errorPlus(:,2) = errorPlus(:,2) + 10; errorPlus(:,4) = errorPlus(:,4) + 2; rowse4Plus = length(errorPlus(:,1)); eFinal((rows + 1):(rows + rowse4Plus),:) = errorPlus; rows = rows + rowse4Plus; % Next we generate a random error in the final output circuit % (outside of state-prep circuits) to add to the matrix e % (given the error rate errRate). errorRemainFinal = errorGeneratorRemainingCLastWithCNOT(errRate,n); eFinal((rows + 1):(rows + length(errorRemainFinal(:,1))),:) = errorRemainFinal; ErrOutLast = PropagationArb(CLastWithCNOT,n,eFinal,lookUpPlus,lookUpO); % Propagate errors through the CFirst circuit % Next we store the syndromes based on the measured syndromes XSynB1EC2 = Syndrome(ErrOutLast(18,:)); ZSynB1EC2 = Syndrome(ErrOutLast(17,:)); XSynB2EC2 = Syndrome(ErrOutLast(20,:)); ZSynB2EC2 = Syndrome(ErrOutLast(19,:)); % Add X errors of control input qubit to control teleported qubit XerrB1EC2 = mod(ErrOutLast(1,:)+ ErrOutLast(18,:),2); % Add Z errors of control input qubit to control teleported qubit ZerrB1EC2 = mod(ErrOutLast(2,:)+ ErrOutLast(17,:),2); % Add X errors of target input qubit to target teleported qubit XerrB2EC2 = mod(ErrOutLast(3,:)+ ErrOutLast(20,:),2); % Add Z errors of target input qubit to target teleported qubit ZerrB2EC2 = mod(ErrOutLast(4,:)+ ErrOutLast(19,:),2); t1 = sum(XSynB1EC1 + ZSynB1EC1 + XSynB2EC1 + ZSynB2EC1 + XSynB1EC2 + ZSynB1EC2 + XSynB2EC2 + ZSynB2EC2); t2 = sum(XerrB1EC2 + ZerrB1EC2 + XerrB2EC2 + ZerrB2EC2); if (t1 ~= 0) || (t2 ~= 0) MatSynTemp = [XSynB1EC1,ZSynB1EC1;XSynB2EC1,ZSynB2EC1;XSynB1EC2,ZSynB1EC2;XSynB2EC2,ZSynB2EC2]; MatErrorTemp = [XerrB1EC2,ZerrB1EC2;XerrB2EC2,ZerrB2EC2]; MatSyn((4*(numRows-1)+1):(4*numRows),:) = MatSynTemp; MatErr((2*(numRows-1)+1):(2*numRows),:) = MatErrorTemp; numRows = numRows + 1; end countIterations = countIterations + 1; end Output1 = MatSyn; Output2 = MatErr; Output3 = countIterations; end
github
pooya-git/DeepNeuralDecoder-master
KnillTrainingSetd3.m
.m
DeepNeuralDecoder-master/Data/Generator/Knill_CNOT_D3/KnillTrainingSetd3.m
54,575
utf_8
9fda8f3ecaae3b68dc4a0a6fa3389b07
% MIT License % % Copyright (c) 2018 Chris Chamberland % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, including without limitation the rights % to use, copy, modify, merge, publish, distribute, sublicense, and/or sell % copies of the Software, and to permit persons to whom the Software is % furnished to do so, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in all % copies or substantial portions of the Software. % % THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR % IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE % AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, % OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE % SOFTWARE. function KnillTrainingSetd3 % Circuit descriptors: % -1: qubit non-active % 0: Noiseless memory % 1: Gate memory % 2: Measurement memory % 3: Preparation in X basis (|+> state) % 4: Preparation in Z basis (|0> state) % 5: Measurement in X basis % 6: Measurement in Z basis % 7: X gate % 8: Z gate % 10: H gate % 11: S gate % 20: T gate %1---: Control qubit for CNOT with target --- %1000: Target qubit for CNOT % Circuit for CNOT 1-exRec n = 7; % Generate lookup table lookUpO = lookUpOFunc(1,n); lookUpPlus = lookUpPlusFunc(1,n); CFirst = [0,0,0,0,0,0,1002,5,-1 3,1000,0,1004,1,1006,1000,6,-1 3,1002,5,-1,-1,-1,-1,-1,-1 3,1000,0,1000,6,-1,-1,-1,-1 3,1004,5,-1,-1,-1,-1,-1,-1 4,1007,0,1000,1,1000,1,0,0 4,1000,6,-1,-1,-1,-1,-1,-1 4,1009,0,1006,5,-1,-1,-1,-1 4,1000,6,-1,-1,-1,-1,-1,-1 0,0,0,0,0,0,1011,5,-1 3,1000,0,1013,1,1015,1000,6,-1 3,1011,5,-1,-1,-1,-1,-1,-1 3,1000,0,1000,6,-1,-1,-1,-1 3,1013,5,-1,-1,-1,-1,-1,-1 4,1016,0,1000,1,1000,1,0,0 4,1000,6,-1,-1,-1,-1,-1,-1 4,1018,0,1015,5,-1,-1,-1,-1 4,1000,6,-1,-1,-1,-1,-1,-1]; CLastWithCNOT = [0,1010,0,0,0,0,0,0,1002,5,-1 0,0,3,1000,0,1004,1,1006,1000,6,-1 0,0,3,1002,5,-1,-1,-1,-1,-1,-1 0,0,3,1000,0,1000,6,-1,-1,-1,-1 0,0,3,1004,5,-1,-1,-1,-1,-1,-1 0,0,4,1007,0,1000,1,1000,1,0,0 0,0,4,1000,6,-1,-1,-1,-1,-1,-1 0,0,4,1009,0,1006,5,-1,-1,-1,-1 0,0,4,1000,6,-1,-1,-1,-1,-1,-1 0,1000,0,0,0,0,0,0,1011,5,-1 0,0,3,1000,0,1013,1,1015,1000,6,-1 0,0,3,1011,5,-1,-1,-1,-1,-1,-1 0,0,3,1000,0,1000,6,-1,-1,-1,-1 0,0,3,1013,5,-1,-1,-1,-1,-1,-1 0,0,4,1016,0,1000,1,1000,1,0,0 0,0,4,1000,6,-1,-1,-1,-1,-1,-1 0,0,4,1018,0,1015,5,-1,-1,-1,-1 0,0,4,1000,6,-1,-1,-1,-1,-1,-1]; parfor i = 1:7 v = [10^-4,2*10^-4,3*10^-4,4*10^-4,5*10^-4,6*10^-4,7*10^-4]; errRate = v(1,i); errStatePrepString = 'ErrorStatePrep'; str_errRate = num2str(errRate,'%0.3e'); str_mat = '.mat'; str_temp = strcat(errStatePrepString,str_errRate); str_errStatePrep = strcat(str_temp,str_mat); % numIterations1 = 10^5; % % [eO,eOIndex,numAcceptedO] = PacceptErrorGeneratorOPrepUpper(errRate,numIterations1,n,lookUpPlus,lookUpO); % [ePlus,ePlusIndex,numAcceptedPlus] = PacceptErrorGeneratorPlusPrepUpper(errRate,numIterations1,n,lookUpPlus,lookUpO); % parsaveErrorStatePrep(str_errStatePrep,eO,eOIndex,numAcceptedO,ePlus,ePlusIndex,numAcceptedPlus); switch i case 1 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep1.000e-04.mat'); case 2 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep2.000e-04.mat'); case 3 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep3.000e-04.mat'); case 4 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep4.000e-04.mat'); case 5 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep5.000e-04.mat'); case 6 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep6.000e-04.mat'); case 7 [eO,eOIndex,ePlus,ePlusIndex] = parload('ErrorStatePrep7.000e-04.mat'); end numIterations = 2*10^6; if (~isempty(eOIndex)) && (~isempty(ePlusIndex)) [A1,A2,OutputCount] = OutSynAndError(eO,eOIndex,ePlus,ePlusIndex,errRate,numIterations,CFirst,CLastWithCNOT,n,lookUpPlus,lookUpO); TempStr1 = 'SyndromeOnly'; TempStr2 = '.txt'; TempStr3 = 'ErrorOnly'; str_Final1 = strcat(TempStr1,str_errRate); str_Final2 = strcat(str_Final1,TempStr2); str_Final3 = strcat(TempStr3,str_errRate); str_Final4 = strcat(str_Final3,TempStr2); fid = fopen(str_Final2, 'w+t'); for ii = 1:size(A1,1) fprintf(fid,'%g\t',A1(ii,:)); fprintf(fid,'\n'); end fclose(fid); fid = fopen(str_Final4, 'w+t'); for ii = 1:size(A2,1) fprintf(fid,'%g\t',A2(ii,:)); fprintf(fid,'\n'); end fclose(fid); end str_Count = strcat('Count',str_errRate); str_CountFinal = strcat(str_Count,'.mat'); parsaveCount(str_CountFinal,OutputCount); end end function parsaveErrorStatePrep(fname,eO,eOIndex,numAcceptedO,ePlus,ePlusIndex,numAcceptedPlus) save(fname,'eO','eOIndex','numAcceptedO','ePlus','ePlusIndex','numAcceptedPlus'); end function parsaveErrorVec(fname,errorVecMat) save(fname,'errorVecMat'); end function parsaveCount(fname,OutputCount) save(fname,'OutputCount'); end function [out1,out2,out3,out4] = parload(fname) load(fname); out1 = eO; out2 = eOIndex; out3 = ePlus; out4 = ePlusIndex; end function Output = lookUpOFunc(n,numQubits) % Circuit for |0> state prep lookUpO = zeros(19,5,numQubits); C = [3,1007,1005,1003; 3,1003,1006,1; 4,1000,1,1000; 3,1006,1,1005; 4,0,1000,1000; 4,1000,1000,1007; 4,1000,1,1000]; % Find the number of gate storage locations in C counterStorage = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) == 1 counterStorage = counterStorage + 1; end end end % Find the number of CNOT locations in C counterCNOT = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) > 1000 counterCNOT = counterCNOT + 1; end end end % fills in lookUpTable locations where lookUpO(i,j,k) has j = k = 1. counter = 1; for i = 1:counterStorage lookUpO(i,1,1) = 1; counter = counter + 1; end for i = 1 : length(C(:,1)) lookUpO(counter,1,1) = C(i,1); counter = counter + 1; end for i = 1 : counterCNOT lookUpO(counter,1,1) = 1000; counter = counter + 1; end e = zeros(1,4); % fills in LookUpO(i,j,:) for storage gate errors j = 2,3. counter = 1; for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = 2:3 if jj == 2 if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpO(counter,jj,:) = xVector(C, n, e); end else if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpO(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end % fills in LookUpO(i,j,:) for state prep errors j = 2,3. for i = 1:length(C(:,1)) if C(i,1) == 3 e(1,:) = [2,i,1,1]; lookUpO(counter,3,:) = zVector(C, n, e); counter = counter + 1; else e(1,:) = [1,i,1,1]; lookUpO(counter,2,:) = xVector(C, n, e); counter = counter + 1; end end % fills in LookUpO(i,j,:) for CNOT erros, j = 2,3. for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = [2,3,4,5] switch jj case 2 if C(j,i) > 1000 e(1,:) = [1,j,1,i]; lookUpO(counter,jj,:) = xVector(C, n, e); end case 3 if C(j,i) > 1000 e(1,:) = [2,j,1,i]; lookUpO(counter,jj,:) = zVector(C, n, e); end case 4 if C(j,i) > 1000 e(1,:) = [4,j,1,i]; lookUpO(counter,jj,:) = xVector(C, n, e); end otherwise if C(j,i) > 1000 e(1,:) = [8,j,1,i]; lookUpO(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end Output = lookUpO; end function Output = lookUpPlusFunc(n,numQubits) % Circuit for |+> state prep lookUpPlus = zeros(19,5,numQubits); C = [4,1000,1000,1000; 4,1000,1000,1; 3,1002,1,1001; 4,1000,1,1000; 3,0,1001,1004; 3,1004,1002,1000; 3,1001,1,1006]; % Find the number of gate storage locations in C counterStorage = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) == 1 counterStorage = counterStorage + 1; end end end % Find the number of CNOT locations in C counterCNOT = 0; for i = 1:length(C(1,:)) for j = 1:length(C(:,1)) if C(j,i) > 1000 counterCNOT = counterCNOT + 1; end end end % fills in lookUpTable locations where lookUpO(i,j,k) has j = k = 1. counter = 1; for i = 1:counterStorage lookUpPlus(i,1,1) = 1; counter = counter + 1; end for i = 1 : length(C(:,1)) lookUpPlus(counter,1,1) = C(i,1); counter = counter + 1; end for i = 1 : counterCNOT lookUpPlus(counter,1,1) = 1000; counter = counter + 1; end e = zeros(1,4); % fills in LookUpO(i,j,:) for storage gate errors j = 2,3. counter = 1; for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = 2:3 if jj == 2 if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpPlus(counter,jj,:) = xVector(C, n, e); end else if C(j,i) == 1 e(1,:) = [jj-1,j,1,i]; lookUpPlus(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end % fills in LookUpO(i,j,:) for state prep errors j = 2,3. for i = 1:length(C(:,1)) if C(i,1) == 3 e(1,:) = [2,i,1,1]; lookUpPlus(counter,3,:) = zVector(C, n, e); counter = counter + 1; else e(1,:) = [1,i,1,1]; lookUpPlus(counter,2,:) = xVector(C, n, e); counter = counter + 1; end end % fills in LookUpO(i,j,:) for CNOT erros, j = 2,3. for i = 2:length(C(1,:)) for j = 1:length(C(:,1)) for jj = [2,3,4,5] switch jj case 2 if C(j,i) > 1000 e(1,:) = [1,j,1,i]; lookUpPlus(counter,jj,:) = xVector(C, n, e); end case 3 if C(j,i) > 1000 e(1,:) = [2,j,1,i]; lookUpPlus(counter,jj,:) = zVector(C, n, e); end case 4 if C(j,i) > 1000 e(1,:) = [4,j,1,i]; lookUpPlus(counter,jj,:) = xVector(C, n, e); end otherwise if C(j,i) > 1000 e(1,:) = [8,j,1,i]; lookUpPlus(counter,jj,:) = zVector(C, n, e); counter = counter + 1; end end end end end Output = lookUpPlus; end function Output = PropagationStatePrepArb(C, n, e) % C encodes information about the circuit % n is the number of qubits per encoded codeblock % eN are the error entries (location and time) % The Output matrix will contain (2q+m) rows and n columns. The paramters Output(i,j) are: % i <= 2q and odd: Stores X type errors for output qubit #ceil(i/2) (order based on matrix C) % i <= 2q and even: Stores Z type errors for output qubit #ceil(i/2) (order based on matrix C) % i > 2q: Stores measurement error for measurement number #i-2q (type is X or Z depending on measurement type) % The Errors matrix will be a tensor with 2 parameters Output(i, j) % i: logical qubit number % j<=n: X error at physical qubit number j % j>n : Z error at physical qubit number j % Error inputs eN are characterized by four parameters, thus a vector (i,j, k, l) % i: error type: 0 = I, 1 = X, 2 = Z, 3 = Y % j: logical qubit number (if the entry here is '0' then this will correspond to an identity "error") % k: physical qubit number within a codeblock % l: time location N_meas = length(find(C==5)) + length(find(C==6)); % number of logical measurements in the circuit N_output = length(C(:,end)) - sum(C(:,end)==-1) - sum(C(:,end)==5) - sum(C(:,end)==6); % number of output active qubits that have not been measured Meas_dict = [find(C==5); find(C==6)]; Meas_dict = sort(Meas_dict); Output = zeros(2*N_output + N_meas, n); Errors = zeros(length(C(:,1)), 2*n); for t= 1:length(C(1,:)) % If the error occurs at a measurement location then the error is introduced before propagation of faults for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( ( C(e(j,2),t) == 5 ) || ( C(e(j,2),t) == 6 ) ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end end end % Propagation of errors (do not need to do it for the first step of circuit if t>1 for i = 1:length(C(:,t)) if C(i, t) == 10 % In this case must flip the X and Z error information v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = v2; Errors(i, n+1:end) = v1; end if C(i, t) == 11 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = mod(v1+v2, 2); end if C(i,t) > 1000 % check to see if target qubit according to control qubit is actually a target qubit if C(C(i,t) - 1000, t) == 1000 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); w1 = Errors(C(i,t) - 1000, 1:n); w2 = Errors(C(i,t) - 1000, (n+1):end); %mod(v2+w2,2) Errors(C(i,t) - 1000, 1:n) = mod(v1+w1, 2); Errors(i, (n+1):end) = mod(v2+w2, 2); end end if C(i,t) == 5 % This corresponds to X measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, (n+1):end); Errors(i, 1:end) = 0; end if C(i,t) == 6 % This corresponds to Z measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, 1:n); Errors(i, 1:end) = 0; end end end % Introduce faults for locations that are not measurements for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( C(e(j,2),t) ~= 5 ) && ( C(e(j,2),t) ~= 6 ) % This IF statement checks to see if the gate at this location is NOT a CNOT or Prep if ( C(e(j,2),t) < 1000 ) %&& ( C(e(j,2),t) ~= 3 ) && ( C(e(j,2),t) ~= 4 ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end % Introduce errors in the case of CNOT gate for control and target qubits % Errors for control qubit are entry mod(e(j,1),4) according to standard indexing above if ( C(e(j,2),t) > 1000 ) if C(C(e(j,2),t) - 1000, t) == 1000 if mod(e(j,1),2) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if mod(e(j,1),4) > 1 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if mod(floor(e(j,1)/4),2) == 1 Errors(C(e(j,2),t) - 1000, e(j,3)) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)) + 1, 2); end if mod(floor(e(j,1)/4),4) > 1 Errors(C(e(j,2),t) - 1000, e(j,3)+n) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)+n) + 1, 2); end end end end end end end %Errors counter = 1; % This will be used to iterate over the different qubits for j = 1:length(C(:,end)) if (C(j,end) ~= -1) && (C(j,end) ~= 5) && (C(j,end) ~= 6) Output(counter,:) = Errors(j,1:n); Output(counter+1,:) = Errors(j,(n+1):end); counter = counter + 2; end end end function Output = xVector(C, n, e) outputMatrix = PropagationStatePrepArb(C, n, e); jx = 1; for i = 1:length(outputMatrix) if mod(i,2) == 1 xvector(jx) = outputMatrix(i,1); jx = jx + 1; end end Output = xvector; end function Output = zVector(C, n, e) outputMatrix = PropagationStatePrepArb(C, n, e); jz = 1; for i = 1:length(outputMatrix) if mod(i,2) == 0 zvector(jz) = outputMatrix(i,1); jz = jz + 1; end end Output = zvector; end function Output = PropagationArb(C, n, e, XPrepTable, ZPrepTable) % C encodes information about the circuit % n is the number of qubits per encoded codeblock % eN are the error entries (location and time) % The Output matrix will contain (2q+m) rows and n columns. The paramters Output(i,j) are: % i <= 2q and odd: Stores X type errors for output qubit #ceil(i/2) (order based on matrix C) % i <= 2q and even: Stores Z type errors for output qubit #ceil(i/2) (order based on matrix C) % i > 2q: Stores measurement error for measurement number #i-2q (type is X or Z depending on measurement type) % The Errors matrix will be a tensor with 2 parameters Output(i, j) % i: logical qubit number % j<=n: X error at physical qubit number j % j>n : Z error at physical qubit number j % Error inputs eN are characterized by four parameters, thus a vector (i,j, k, l) % i: error type: 0 = I, 1 = X, 2 = Z, 3 = Y % j: logical qubit number (if the entry here is '0' then this will correspond to an identity "error") % k: physical qubit number within a codeblock % l: time location N_meas = length(find(C==5)) + length(find(C==6)); % number of logical measurements in the circuit N_output = length(C(:,end)) - sum(C(:,end)==-1) - sum(C(:,end)==5) - sum(C(:,end)==6); % number of output active qubits that have not been measured Meas_dict = [find(C==5); find(C==6)]; Meas_dict = sort(Meas_dict); Output = zeros(2*N_output + N_meas, n); Errors = zeros(length(C(:,1)), 2*n); for t= 1:length(C(1,:)) % If the error occurs at a measurement location then the error is introduced before propagation of faults for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( ( C(e(j,2),t) == 5 ) || ( C(e(j,2),t) == 6 ) ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end end end % Propagation of errors (do not need to do it for the first step of % circuit) if t>1 for i = 1:length(C(:,t)) if C(i, t) == 10 % In this case must flip the X and Z error information v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = v2; Errors(i, n+1:end) = v1; end if C(i, t) == 11 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = mod(v1+v2, 2); end if C(i,t) > 1000 % check to see if target qubit according to control qubit is actually a target qubit if C(C(i,t) - 1000, t) == 1000 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); w1 = Errors(C(i,t) - 1000, 1:n); w2 = Errors(C(i,t) - 1000, (n+1):end); %mod(v2+w2,2) Errors(C(i,t) - 1000, 1:n) = mod(v1+w1, 2); Errors(i, (n+1):end) = mod(v2+w2, 2); end end if C(i,t) == 5 % This corresponds to X measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, (n+1):end); Errors(i, 1:end) = 0; end if C(i,t) == 6 % This corresponds to Z measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, 1:n); Errors(i, 1:end) = 0; end end end % Introduce faults for locations that are not measurements for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( C(e(j,2),t) ~= 5 ) && ( C(e(j,2),t) ~= 6 ) % This IF statement checks to see if the gate at this location is NOT a CNOT or Prep if ( C(e(j,2),t) < 1000 ) && ( C(e(j,2),t) ~= 3 ) && ( C(e(j,2),t) ~= 4 ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end % Introduce errors in the case of CNOT gate for control and target qubits % Errors for control qubit are entry mod(e(j,1),4) according to standard indexing above if ( C(e(j,2),t) > 1000 ) if C(C(e(j,2),t) - 1000, t) == 1000 if mod(e(j,1),2) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if mod(e(j,1),4) > 1 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if mod(floor(e(j,1)/4),2) == 1 Errors(C(e(j,2),t) - 1000, e(j,3)) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)) + 1, 2); end if mod(floor(e(j,1)/4),4) > 1 Errors(C(e(j,2),t) - 1000, e(j,3)+n) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)+n) + 1, 2); end end end % Introduce errors in the case of |0> prep if ( C(e(j,2),t) == 4 ) eVec = zeros(1,n); if mod(e(j,1),2) == 1 % Need to translate the entries in the Prep tables to right format for a = 1:n eVec(a) = ZPrepTable(e(j,3), 2, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(e(j,1),4) > 1 for a = 1:n eVec(a) = ZPrepTable(e(j,3), 3, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end)+eVec, 2); end if mod(floor(e(j,1)/4),2) == 1 for a = 1:n eVec(a) = ZPrepTable(e(j,3), 4, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(floor(e(j,1)/4),4) > 1 for a = 1:n eVec(a) = ZPrepTable(e(j,3), 5, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end) + eVec, 2); end end % Introduce errors in the case of |+> prep if ( C(e(j,2),t) == 3 ) eVec = zeros(1,n); if mod(e(j,1),2) == 1 % Need to translate the entries in the Prep tables to right format for a = 1:n eVec(a) = XPrepTable(e(j,3), 2, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(e(j,1),4) > 1 for a = 1:n eVec(a) = XPrepTable(e(j,3), 3, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end)+eVec, 2); end if mod(floor(e(j,1)/4),2) == 1 for a = 1:n eVec(a) = XPrepTable(e(j,3), 4, a); end Errors(e(j,2), 1:n ) = mod(Errors(e(j,2), 1:n) + eVec, 2); end if mod(floor(e(j,1)/4),4) > 1 for a = 1:n eVec(a) = XPrepTable(e(j,3), 5, a); end Errors(e(j,2), (n+1):end ) = mod(Errors(e(j,2), (n+1):end) + eVec, 2); end end end end end end %Errors counter = 1; % This will be used to iterate over the different qubits for j = 1:length(C(:,end)) if (C(j,end) ~= -1) && (C(j,end) ~= 5) && (C(j,end) ~= 6) Output(counter,:) = Errors(j,1:n); Output(counter+1,:) = Errors(j,(n+1):end); counter = counter + 2; end end end function Output = equivalenceTable(errIn) % used for measurments in the Z basis g = [0,0,0,1,1,1,1 0,1,1,0,0,1,1 1,0,1,0,1,0,1]; MatRecovery = [0,0,0,0,0,0,0 1,0,0,0,0,0,0 0,1,0,0,0,0,0 0,0,1,0,0,0,0 0,0,0,1,0,0,0 0,0,0,0,1,0,0 0,0,0,0,0,1,0 0,0,0,0,0,0,1]; syn = zeros(1,3); for i = 1:length(g(:,1)) syn(1,i) = mod(sum(conj(errIn).* g(i,:)),2); end % Find the correction corresponding to the syndrome correctionRow = 1; for i = 1:length(syn) correctionRow = correctionRow + 2^(3-i)*syn(i); end Output = MatRecovery(correctionRow,:); end function Output = Syndrome(errIn) g1 = [0,0,0,1,1,1,1]; g2 = [0,1,1,0,0,1,1]; g3 = [1,0,1,0,1,0,1]; g = [g1;g2;g3]; syn = zeros(1,3); for i = 1:3 syn(1,i) = mod( sum(errIn.*g(i,:)), 2); end Output = syn; end function Output = errorGeneratorPacceptOprepUpper(errRate) % Generates errors in the ancilla preparation part of the EC's e = zeros(1,4); rows = 1; % Locations within the state prep |0> circuit for i = 1:4 for l = 1:4 xi = rand; if xi < errRate k = randi([1,3]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end for l = 5:11 if (l == 5) || (l == 6) || (l == 8) xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,i,l,1]; rows = rows + 1; end else xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,i,l,1]; rows = rows + 1; end end end for l = 12:19 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end end for i = [1,3] for l = 1:7 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,2]; rows = rows + 1; end end end for i = [2,4] for l = 1:7 xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,i,l,3]; rows = rows + 1; end end end for l = 1:7 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,3,l,4]; rows = rows + 1; end end for l = 1:7 xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,3,l,5]; rows = rows + 1; end end Output = e; end function [Output1,Output2,Output3] = PacceptErrorGeneratorOPrepUpper(errRate,numIterations,n,lookUpPlus,lookUpO) C = [4,1002,0,1000,2; 4,1000,6,-1,-1; 4,1004,0,1001,5; 4,1000,6,-1,-1]; eAccepted = zeros(1,4); eIndex = zeros(1,1); countereIndex = 1; counterRows = 0; numAccepted = 0; while length(eAccepted(:,1)) < numIterations e = errorGeneratorPacceptOprepUpper(errRate); if isequal(e,zeros(1,4)) counter = 0; else counter = length(e(:,1)); end propagatedMatrix = PropagationArb(C,n,e,lookUpPlus,lookUpO); if (sum(equivalenceTable(propagatedMatrix(3,:)))==0) && (sum(equivalenceTable(propagatedMatrix(4,:)))==0) && (sum(equivalenceTable(propagatedMatrix(5,:)))==0) && (mod(sum(propagatedMatrix(3,:)),2)==0) && (mod(sum(propagatedMatrix(4,:)),2)==0) && (mod(sum(propagatedMatrix(5,:)),2)==0) if counter ~= 0 numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + counter; eAccepted((counterLast + 1):(counterLast + counter),:) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; else numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + 1; eAccepted((counterLast + 1),1:4) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; end end end Output1 = eAccepted; Output2 = eIndex; Output3 = numAccepted; end function Output = errorGeneratorPacceptPlusprepUpper(errRate) e = zeros(1,4); rows = 1; for i = 1:4 for l = 1:4 xi = rand; if xi < errRate k = randi([1,3]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end for l = 5:11 if (l == 7) || (l == 9) || (l == 10) || (l == 11) xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,i,l,1]; rows = rows + 1; end else xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,i,l,1]; rows = rows + 1; end end end for l = 12:19 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,1]; rows = rows + 1; end end end for i = [2,4] for l = 1:7 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,i,l,2]; rows = rows + 1; end end end for i = [2,4] for l = 1:7 xi = rand; if xi < 2*errRate/3 e(rows,:) = [2,i,l,3]; rows = rows + 1; end end end for l = 1:7 xi = rand; if xi < errRate k = randi([1,15]); e(rows,:) = [k,1,l,4]; rows = rows + 1; end end for l = 1:7 xi = rand; if xi < 2*errRate/3 e(rows,:) = [1,3,l,5]; rows = rows + 1; end end Output = e; end function [Output1,Output2,Output3] = PacceptErrorGeneratorPlusPrepUpper(errRate,numIterations,n,lookUpPlus,lookUpO) C = [3,1000,0,1003,2; 3,1001,5,-1,-1; 3,1000,0,1000,6; 3,1003,5,-1,-1]; eAccepted = zeros(1,4); eIndex = zeros(1,1); countereIndex = 1; counterRows = 0; numAccepted = 0; while length(eAccepted(:,1)) < numIterations e = errorGeneratorPacceptPlusprepUpper(errRate); if isequal(e,zeros(1,4)) counter = 0; else counter = length(e(:,1)); end propagatedMatrix = PropagationArb(C, n, e,lookUpPlus, lookUpO); if (sum(equivalenceTable(propagatedMatrix(3,:)))==0) && (sum(equivalenceTable(propagatedMatrix(4,:)))==0) && (sum(equivalenceTable(propagatedMatrix(5,:)))==0) && (mod(sum(propagatedMatrix(3,:)),2)==0) && (mod(sum(propagatedMatrix(4,:)),2)==0) && (mod(sum(propagatedMatrix(5,:)),2)==0) if counter ~= 0 numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + counter; eAccepted((counterLast + 1):(counterLast + counter),:) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; else numAccepted = numAccepted + 1; counterLast = counterRows; counterRows = counterRows + 1; eAccepted((counterLast + 1),1:4) = e; eIndex(countereIndex,1) = counterLast + 1; countereIndex = countereIndex + 1; end end end Output1 = eAccepted; Output2 = eIndex; Output3 = numAccepted; end function Output = errorGeneratorRemaining(errRate,numQubits) % This function generates remaining errors outside state-prep circuits in % a Knill-EC CNOT exRec circuit. e = zeros(1,4); counter = 1; % Errors at all the storage locations for i = [2,6,11,15] for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,l,5]; counter = counter + 1; end end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,6,l,7]; counter = counter + 1; end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,15,l,7]; counter = counter + 1; end end for i = [7,11,16,20] for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,l,15]; counter = counter + 1; end end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,11,l,17]; counter = counter + 1; end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,20,l,17]; counter = counter + 1; end end % Errors at measurement locations % X-measurement locations for i = [1,10] for l = 1:numQubits xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,i,l,8]; counter = counter + 1; end end end for i = [6,15] for l = 1:numQubits xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,i,l,18]; counter = counter + 1; end end end % Z-measurement locations for i = [2,11] for l = 1:numQubits xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,i,l,8]; counter = counter + 1; end end end for i = [7,16] for l = 1:numQubits xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,i,l,18]; counter = counter + 1; end end end % Errors at CNOT locations % Full CNOT's for i = [2,11] for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,i,l,6]; counter = counter + 1; end end end for i = [7,16] for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,i,l,16]; counter = counter + 1; end end end % CNOT's coupling to data prior to teleportation for i = [1,10] for l = 1:numQubits xi = rand; if xi < 12*errRate/15 k = randi([2,4,6]); e(counter,:) = [k,i,l,7]; counter = counter + 1; end end end for i = [6,15] for l = 1:numQubits xi = rand; if xi < 12*errRate/15 k = randi([2,4,6]); e(counter,:) = [k,i,l,17]; counter = counter + 1; end end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,6,l,10]; counter = counter + 1; end end Output = e; end function Output = errorGeneratorRemainingCFirst(errRate,numQubits) % This function generates remaining errors outside state-prep circuits in % a Knill-EC CNOT exRec circuit. e = zeros(1,4); counter = 1; % Errors at all the storage locations for i = [2,6,11,15] for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,l,5]; counter = counter + 1; end end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,6,l,7]; counter = counter + 1; end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,15,l,7]; counter = counter + 1; end end % Errors at measurement locations % X-measurement locations for i = [1,10] for l = 1:numQubits xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,i,l,8]; counter = counter + 1; end end end % Z-measurement locations for i = [2,11] for l = 1:numQubits xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,i,l,8]; counter = counter + 1; end end end % Errors at CNOT locations % Full CNOT's for i = [2,11] for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,i,l,6]; counter = counter + 1; end end end % CNOT's coupling to data prior to teleportation for i = [1,10] for l = 1:numQubits xi = rand; if xi < 12*errRate/15 vecErr = [2,4,6]; vecRand = randi([1,3]); k = vecErr(1,vecRand); e(counter,:) = [k,i,l,7]; counter = counter + 1; end end end Output = e; end function Output = errorGeneratorRemainingCLastWithCNOT(errRate,numQubits) % This function generates remaining errors outside state-prep circuits in % a Knill-EC CNOT exRec circuit. e = zeros(1,4); counter = 1; % Errors at all the storage locations for i = [2,6,11,15] for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,l,7]; counter = counter + 1; end end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,6,l,9]; counter = counter + 1; end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,15,l,9]; counter = counter + 1; end end % Errors at measurement locations % X-measurement locations for i = [1,10] for l = 1:numQubits xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,i,l,10]; counter = counter + 1; end end end % Z-measurement locations for i = [2,11] for l = 1:numQubits xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,i,l,10]; counter = counter + 1; end end end % Errors at CNOT locations % Full CNOT's for i = [2,11] for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,i,l,8]; counter = counter + 1; end end end for l = 1:numQubits xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,1,l,2]; counter = counter + 1; end end % CNOT's coupling to data prior to teleportation for i = [1,10] for l = 1:numQubits xi = rand; if xi < 12*errRate/15 vecErr = [2,4,6]; vecRand = randi([1,3]); k = vecErr(1,vecRand); e(counter,:) = [k,i,l,9]; counter = counter + 1; end end end Output = e; end function Output = ConvertVecXToErrMatX(ErrIn) e = zeros(1,4); counter = 1; for i = 1:length(ErrIn(1,:)) if ErrIn(1,i) ~= 0 e(counter,:) = [1,1,i,1]; counter = counter + 1; end end Output = e; end function Output = ConvertVecZToErrMatZ(ErrIn) e = zeros(1,4); counter = 1; for i = 1:length(ErrIn(1,:)) if ErrIn(1,i) ~= 0 e(counter,:) = [2,1,i,1]; counter = counter + 1; end end Output = e; end function [Output1,Output2,Output3] = OutSynAndError(eO,eOIndex,ePlus,ePlusIndex,errRate,numIterations,CFirst,CLastWithCNOT,n,lookUpPlus,lookUpO) MatSyn = zeros(4*numIterations,6); % Format (XSyn|ZSyn); MatErr = zeros(2*numIterations,14); %Format (XErr|ZErr); numRows = 1; countIterations = 0; while numRows < (numIterations+1) % We will first propagate errors through the leading EC's. Recall that % errors on blocks 1 and 10 should be copied to bloks 6 and 15 due to % the teleportation occuring in Knill EC. % Generate errors from |0> state-prep circuit in the first EC block lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); errorO(:,2) = errorO(:,2) + 5; % Insert errors on the appropriate block of the EC circuit e = errorO; rows = length(e(:,1)); % Genrate errors from |+> state-prep circuit in the first EC block lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); errorPlus(:,2) = errorPlus(:,2) + 1; % Insert errors on the appropriate block of the EC circuit rowse1Plus = length(errorPlus(:,1)); e((rows + 1):(rows + rowse1Plus),:) = errorPlus; rows = rows + rowse1Plus; % Generate errors from |0> state-prep circuit in the second EC block lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); errorO(:,2) = errorO(:,2) + 14; % Insert errors on the appropriate block of the EC circuit rowse2O = length(errorO(:,1)); e((rows + 1):(rows + rowse2O),:) = errorO; rows = rows + rowse2O; % Generate errors from |+> state-prep in the second EC block lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); errorPlus(:,2) = errorPlus(:,2) + 10; % Insert errors on the appropriate block of the EC circuit rowse2Plus = length(errorPlus(:,1)); e((rows + 1):(rows + rowse2Plus),:) = errorPlus; rows = rows + rowse2Plus; % Next we generate a random error in the circuit (outside of state-prep % circuits) to add to the matrix e (given the error rate errRate). eRemain = errorGeneratorRemainingCFirst(errRate,n); e((rows + 1):(rows + length(eRemain(:,1))),:) = eRemain; ErrOutFirst = PropagationArb(CFirst,n,e,lookUpPlus,lookUpO); % Propagate errors through the CFirst circuit % Next we store the syndromes based on the measured syndromes XSynB1EC1 = Syndrome(ErrOutFirst(18,:)); ZSynB1EC1 = Syndrome(ErrOutFirst(17,:)); XSynB2EC1 = Syndrome(ErrOutFirst(20,:)); ZSynB2EC1 = Syndrome(ErrOutFirst(19,:)); % Add X errors of control input qubit to control teleported qubit XerrB1EC1 = mod(ErrOutFirst(1,:)+ErrOutFirst(18,:),2); % Add Z errors of control input qubit to control teleported qubit ZerrB1EC1 = mod(ErrOutFirst(2,:)+ErrOutFirst(17,:),2); % Add X errors of target input qubit to target teleported qubit XerrB2EC1 = mod(ErrOutFirst(3,:)+ErrOutFirst(20,:),2); % Add Z errors of target input qubit to target teleported qubit ZerrB2EC1 = mod(ErrOutFirst(4,:)+ErrOutFirst(19,:),2); % Next we convert the output errors into matrix form for input into the % final part of the CNOT exRec circuit e1X = ConvertVecXToErrMatX(XerrB1EC1); e1Z = ConvertVecZToErrMatZ(ZerrB1EC1); e2X = ConvertVecXToErrMatX(XerrB2EC1); e2Z = ConvertVecZToErrMatZ(ZerrB2EC1); e2X(1,2) = 10; e2Z(1,2) = 10; eFinal = [e1X;e1Z;e2X;e2Z]; rows = length(eFinal(:,1)); % Generate errors from |0> state-prep circuit in the third EC block lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); errorO(:,2) = errorO(:,2) + 5; errorO(:,4) = errorO(:,4) + 2; rowse3O = length(errorO(:,1)); eFinal((rows + 1):(rows + rowse3O),:) = errorO; rows = rows + rowse3O; % Genrate errors from |+> state-prep circuit in the first EC block lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); errorPlus(:,2) = errorPlus(:,2) + 1; errorPlus(:,4) = errorPlus(:,4) + 2; rowse3Plus = length(errorPlus(:,1)); eFinal((rows + 1):(rows + rowse3Plus),:) = errorPlus; rows = rows + rowse3Plus; % Generate errors from |0> state-prep circuit in the fourth EC block lORand = randi([1,length(eOIndex(:,1))]); if eOIndex(lORand,1) ~= 0 indexStart = eOIndex(lORand,1); if lORand == length(eOIndex(:,1)) indexEnd = length(eO(:,1)); else indexEnd = eOIndex(lORand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorO = eO(indexStart:indexEnd,:); errorO(:,2) = errorO(:,2) + 14; errorO(:,4) = errorO(:,4) + 2; rowse4O = length(errorO(:,1)); eFinal((rows + 1):(rows + rowse4O),:) = errorO; rows = rows + rowse4O; % Generate errors from |+> state-prep in the fourth EC block lPlusRand = randi([1,length(ePlusIndex(:,1))]); if ePlusIndex(lPlusRand,1) ~= 0 indexStart = ePlusIndex(lPlusRand,1); if lPlusRand == length(ePlusIndex(:,1)) indexEnd = length(ePlus(:,1)); else indexEnd = ePlusIndex(lPlusRand + 1,1) - 1; end else indexStart = 1; indexEnd = 1; end errorPlus = ePlus(indexStart:indexEnd,:); errorPlus(:,2) = errorPlus(:,2) + 10; errorPlus(:,4) = errorPlus(:,4) + 2; rowse4Plus = length(errorPlus(:,1)); eFinal((rows + 1):(rows + rowse4Plus),:) = errorPlus; rows = rows + rowse4Plus; % Next we generate a random error in the final output circuit % (outside of state-prep circuits) to add to the matrix e % (given the error rate errRate). errorRemainFinal = errorGeneratorRemainingCLastWithCNOT(errRate,n); eFinal((rows + 1):(rows + length(errorRemainFinal(:,1))),:) = errorRemainFinal; ErrOutLast = PropagationArb(CLastWithCNOT,n,eFinal,lookUpPlus,lookUpO); % Propagate errors through the CFirst circuit % Next we store the syndromes based on the measured syndromes XSynB1EC2 = Syndrome(ErrOutLast(18,:)); ZSynB1EC2 = Syndrome(ErrOutLast(17,:)); XSynB2EC2 = Syndrome(ErrOutLast(20,:)); ZSynB2EC2 = Syndrome(ErrOutLast(19,:)); % Add X errors of control input qubit to control teleported qubit ErrOutLast(1,:) = mod(ErrOutLast(1,:)+ ErrOutLast(18,:),2); % Add Z errors of control input qubit to control teleported qubit ErrOutLast(2,:) = mod(ErrOutLast(2,:)+ ErrOutLast(17,:),2); % Add X errors of target input qubit to target teleported qubit ErrOutLast(3,:) = mod(ErrOutLast(3,:)+ ErrOutLast(20,:),2); % Add Z errors of target input qubit to target teleported qubit ErrOutLast(4,:) = mod(ErrOutLast(4,:)+ ErrOutLast(19,:),2); % Store the errors of the first two blocks XerrB1EC2 = ErrOutLast(1,:); ZerrB1EC2 = ErrOutLast(2,:); XerrB2EC2 = ErrOutLast(3,:); ZerrB2EC2 = ErrOutLast(4,:); t1 = sum(XSynB1EC1 + ZSynB1EC1 + XSynB2EC1 + ZSynB2EC1 + XSynB1EC2 + ZSynB1EC2 + XSynB2EC2 + ZSynB2EC2); t2 = sum(XerrB1EC2 + ZerrB1EC2 + XerrB2EC2 + ZerrB2EC2); if (t1 ~= 0) || (t2 ~= 0) MatSynTemp = [XSynB1EC1,ZSynB1EC1;XSynB2EC1,ZSynB2EC1;XSynB1EC2,ZSynB1EC2;XSynB2EC2,ZSynB2EC2]; MatErrorTemp = [XerrB1EC2,ZerrB1EC2;XerrB2EC2,ZerrB2EC2]; MatSyn((4*(numRows-1)+1):(4*numRows),:) = MatSynTemp; MatErr((2*(numRows-1)+1):(2*numRows),:) = MatErrorTemp; numRows = numRows + 1; end countIterations = countIterations + 1; end Output1 = MatSyn; Output2 = MatErr; Output3 = countIterations; end
github
pooya-git/DeepNeuralDecoder-master
SurfaceCodeTrainingSetd3.m
.m
DeepNeuralDecoder-master/Data/Generator/Surface_1EC_D3/SurfaceCodeTrainingSetd3.m
32,816
utf_8
15195dd006d9959226e29930688b525b
% MIT License % % Copyright (c) 2018 Chris Chamberland % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, including without limitation the rights % to use, copy, modify, merge, publish, distribute, sublicense, and/or sell % copies of the Software, and to permit persons to whom the Software is % furnished to do so, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in all % copies or substantial portions of the Software. % % THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR % IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE % AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, % OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE % SOFTWARE. function SurfaceCodeTrainingSetd3 n=1; parfor i = 1:16 numIterations = 2*10^6; v = [7*10^-5,8*10^-5,9*10^-5,9.5*10^-5,10^-4,1.5*10^-4,2*10^-4,2.5*10^-4,3*10^-4,4*10^-4,5*10^-4,6*10^-4,7*10^-4,8*10^-4,9*10^-4,10^-3]; errRate = v(1,i); str_errRate = num2str(errRate,'%0.3e'); [OutputSynX1,OutputSynZ1,OutputErrX1,OutputErrZ1,OutputCount] = depolarizingSimulator(numIterations,errRate,n); A = [OutputSynX1,OutputSynZ1,OutputErrX1,OutputErrZ1]; TempStr1 = 'SyndromeAndError'; TempStr2 = '.txt'; str_Final1 = strcat(TempStr1,str_errRate); str_Final2 = strcat(str_Final1,TempStr2); fid = fopen(str_Final2, 'w+t'); for ii = 1:size(A,1) fprintf(fid,'%g\t',A(ii,:)); fprintf(fid,'\n'); end fclose(fid); str_Count = strcat('Count',str_errRate); str_CountFinal = strcat(str_Count,'.mat'); parsaveCount(str_CountFinal,OutputCount); end end function parsaveErrorVec(fname,errorVecMat) save(fname,'errorVecMat'); end function parsaveCount(fname,OutputCount) save(fname,'OutputCount'); end function Output = PropagationStatePrepArb(C, n, e) % C encodes information about the circuit % n is the number of qubits per encoded codeblock % eN are the error entries (location and time) % The Output matrix will contain (2q+m) rows and n columns. The paramters Output(i,j) are: % i <= 2q and odd: Stores X type errors for output qubit #ceil(i/2) (order based on matrix C) % i <= 2q and even: Stores Z type errors for output qubit #ceil(i/2) (order based on matrix C) % i > 2q: Stores measurement error for measurement number #i-2q (type is X or Z depending on measurement type) % The Errors matrix will be a tensor with 2 parameters Output(i, j) % i: logical qubit number % j<=n: X error at physical qubit number j % j>n : Z error at physical qubit number j % Error inputs eN are characterized by four parameters, thus a vector (i,j, k, l) % i: error type: 0 = I, 1 = X, 2 = Z, 3 = Y % j: logical qubit number (if the entry here is '0' then this will correspond to an identity "error") % k: physical qubit number within a codeblock % l: time location N_meas = length(find(C==5)) + length(find(C==6)); % number of logical measurements in the circuit N_output = length(C(:,end)) - sum(C(:,end)==-1) - sum(C(:,end)==5) - sum(C(:,end)==6); % number of output active qubits that have not been measured Meas_dict = [find(C==5); find(C==6)]; Meas_dict = sort(Meas_dict); Output = zeros(2*N_output + N_meas, n); Errors = zeros(length(C(:,1)), 2*n); for t= 1:length(C(1,:)) % If the error occurs at a measurement location then the error is introduced before propagation of faults for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( ( C(e(j,2),t) == 5 ) || ( C(e(j,2),t) == 6 ) ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end end end % Propagation of errors (do not need to do it for the first step of circuit if t>1 for i = 1:length(C(:,t)) if C(i, t) == 10 % In this case must flip the X and Z error information v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = v2; Errors(i, n+1:end) = v1; end if C(i, t) == 11 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = mod(v1+v2, 2); end if (C(i,t) > 1000) && (C(i,t) < 2000) % check to see if target qubit according to control qubit is actually a target qubit if C(C(i,t) - 1000, t) == 1000 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); w1 = Errors(C(i,t) - 1000, 1:n); w2 = Errors(C(i,t) - 1000, (n+1):end); %mod(v2+w2,2) Errors(C(i,t) - 1000, 1:n) = mod(v1+w1, 2); Errors(i, (n+1):end) = mod(v2+w2, 2); end end if C(i,t) > 2000 % check to see if target qubit according to control qubit is actually a target qubit if C(C(i,t) - 2000, t) == 2000 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); w1 = Errors(C(i,t) - 2000, 1:n); w2 = Errors(C(i,t) - 2000, (n+1):end); Errors(C(i,t) - 2000, 1:n) = v1; Errors(C(i,t) - 2000, (n+1):end) = v2; Errors(i, 1:end) = w1; Errors(i, (n+1):end) = w2; end end if C(i,t) == 5 % This corresponds to X measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, (n+1):end); Errors(i, 1:end) = 0; end if C(i,t) == 6 % This corresponds to Z measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, 1:n); Errors(i, 1:end) = 0; end end end % Introduce faults for locations that are not measurements for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( C(e(j,2),t) ~= 5 ) && ( C(e(j,2),t) ~= 6 ) % This IF statement checks to see if the gate at this location is NOT a CNOT or Prep if ( C(e(j,2),t) < 1000 ) %&& ( C(e(j,2),t) ~= 3 ) && ( C(e(j,2),t) ~= 4 ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end % Introduce errors in the case of CNOT gate for control and target qubits % Errors for control qubit are entry mod(e(j,1),4) according to standard indexing above if ( (C(e(j,2),t) > 1000) && (C(e(j,2),t) < 2000)) if C(C(e(j,2),t) - 1000, t) == 1000 if mod(e(j,1),2) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if mod(e(j,1),4) > 1 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if mod(floor(e(j,1)/4),2) == 1 Errors(C(e(j,2),t) - 1000, e(j,3)) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)) + 1, 2); end if mod(floor(e(j,1)/4),4) > 1 Errors(C(e(j,2),t) - 1000, e(j,3)+n) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)+n) + 1, 2); end end end if C(e(j,2),t) > 2000 if C(C(e(j,2),t) - 2000, t) == 2000 if mod(e(j,1),2) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if mod(e(j,1),4) > 1 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if mod(floor(e(j,1)/4),2) == 1 Errors(C(e(j,2),t) - 2000, e(j,3)) = mod(Errors(C(e(j,2),t) - 2000, e(j,3)) + 1, 2); end if mod(floor(e(j,1)/4),4) > 1 Errors(C(e(j,2),t) - 2000, e(j,3)+n) = mod(Errors(C(e(j,2),t) - 2000, e(j,3)+n) + 1, 2); end end end end end end end %Errors counter = 1; % This will be used to iterate over the different qubits for j = 1:length(C(:,end)) if (C(j,end) ~= -1) && (C(j,end) ~= 5) && (C(j,end) ~= 6) Output(counter,:) = Errors(j,1:n); Output(counter+1,:) = Errors(j,(n+1):end); counter = counter + 2; end end end function Output = SurfaceCodeCircuitGenerator(d) % Creates d = 3 surface code circuit Matteo % Circuit descriptors: % -1: qubit non-active % 0: Noiseless memory % 1: Gate memory % 2: Measurement memory % 3: Preparation in X basis (|+> state) % 4: Preparation in Z basis (|0> state) % 5: Measurement in X basis % 6: Measurement in Z basis % 7: X gate % 8: Z gate % 10: H gate % 11: S gate % 20: T gate %1---: Control qubit for CNOT with target --- %1000: Target qubit for CNOT %2000: Qubit for SWAP gate numRows = 2*(d^2) -1 ; numTimeSteps = 6; qubitNum = (d^2-1)/2; Cd3 = zeros(numRows,numTimeSteps); % Set the storage locations at all qubit locations (first two and last two % time steps) for i = 1:(d^2) for j = 1:numTimeSteps Cd3(i + qubitNum,j) = 1; Cd3(i + qubitNum,j) = 1; Cd3(i + qubitNum,j) = 1; Cd3(i + qubitNum,j) = 1; end end % Initialise X stabilizer state prep and measurements for i = 1:((d^2)-1)/2 Cd3(i,1) = 3; Cd3(i,6) = 5; end % Initialise Z stabilizer state prep and measurements for i = (((3*(d^2)-1)/2)+1):(2*(d^2)-1) Cd3(i,1) = 4; Cd3(i,6) = 6; end % Creat matrix of data qubit number dataMat = zeros(d,d); counter = 1; for i = 1:d for j = 1:d dataMat(i,j) = counter + (((d^2)-1)/2); counter = counter + 1; end end % Creat matrix for X and Z stabilizer ancilla qubit numbers ancillaStabXMat = zeros(((d+1)/2),d-1); ancillaStabZMat = zeros(d-1,((d+1)/2)); counter = 1; for i = 1:length(ancillaStabXMat(1,:)) for j = 1:length(ancillaStabXMat(:,1)) ancillaStabXMat(j,i) = counter; counter = counter + 1; end end counter = 1; for i = 1:length(ancillaStabZMat(:,1)) for j = 1:length(ancillaStabZMat(1,:)) ancillaStabZMat(i,j) = counter; counter = counter + 1; end end % Next we input gates from measurement qubits to data qubits % First cycle (measure upper right qubits) % Input target and control of the CNOT gates for X stabilizers timeStep = 2; rwoXstab = 1; for i = 1:length(dataMat(:,1)) if mod(i,2) == 0 colXstab = 2; else colXstab = 1; end for j = 1:length(dataMat(1,:)) if mod(i,2) == 1 if mod(j,2) == 0 Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; end else if mod(j,2) == 1 && j ~= 1 Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; end end end if mod(i,2) == 1 rwoXstab = rwoXstab + 1; end end % Input target and control of the CNOT gates for Z stabilizers rwoZstab = 1; for i = 1:(length(dataMat(:,1))-1) colZstab = 1; for j = 1:length(dataMat(1,:)) if mod(i,2) == 1 if mod(j,2) == 1 Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; end else if mod(j,2) == 0 Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; end end end rwoZstab = rwoZstab + 1; end % Second cycle (measure upper left qubits for X stabilizers and lower right qubits for Z stabilizers) timeStep = timeStep + 1; % Input target and control of the CNOT gates for X stabilizers rwoXstab = 1; for i = 1:length(dataMat(:,1)) if mod(i,2) == 0 colXstab = 2; else colXstab = 1; end for j = 1:length(dataMat(1,:)) if (mod(i,2) == 1) && (mod(j,2) == 1) && (j < length(dataMat(1,:))) Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; elseif (mod(i,2) == 0) && (mod(j,2) == 0) Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; end end if mod(i,2) == 1 rwoXstab = rwoXstab + 1; end end % Input target and control of the CNOT gates for Z stabilizers rwoZstab = 1; for i = 2:length(dataMat(:,1)) colZstab = 1; for j = 1:length(dataMat(1,:)) if (mod(i,2) == 0) && (mod(j,2) == 1) Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; elseif (mod(i,2) == 1) && (mod(j,2) == 0) Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; end end rwoZstab = rwoZstab + 1; end % Third cycle (lower right qubits for X stabilizers and upper left qubits for Z stabilizers) timeStep = timeStep + 1; % Input target and control of the CNOT gates for X stabilizers rwoXstab = 1; for i = 1:length(dataMat(:,1)) if mod(i,2) == 0 colXstab = 1; else colXstab = 2; end for j = 2:length(dataMat(1,:)) if mod(i,2) == 1 && mod(j,2) == 1 Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; elseif mod(i,2) == 0 && mod(j,2) == 0 Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; end end if mod(i,2) == 0 rwoXstab = rwoXstab + 1; end end % Input target and control of the CNOT gates for Z stabilizers rwoZstab = 1; for i = 1:(length(dataMat(:,1))-1) if mod(i,2) == 1 colZstab = 2; else colZstab = 1; end for j = 1:length(dataMat(1,:)) if mod(i,2) == 1 && mod(j,2) == 0 Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; elseif mod(i,2) == 0 && mod(j,2) == 1 Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; end end rwoZstab = rwoZstab + 1; end % Fourth cycle (lower right qubits for X stabilizers and upper left qubits for Z stabilizers) timeStep = timeStep + 1; % Input target and control of the CNOT gates for X stabilizers rwoXstab = 1; for i = 1:length(dataMat(:,1)) if mod(i,2) == 0 colXstab = 1; else colXstab = 2; end for j = 1:(length(dataMat(1,:))-1) if mod(i,2) == 1 && mod(j,2) == 0 Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; elseif mod(i,2) == 0 && mod(j,2) == 1 Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; end end if mod(i,2) == 0 rwoXstab = rwoXstab + 1; end end % Input target and control of the CNOT gates for Z stabilizers rwoZstab = 1; for i = 2:length(dataMat(:,1)) if mod(i,2) == 0 colZstab = 2; else colZstab = 1; end for j = 1:length(dataMat(1,:)) if mod(i,2) == 0 && mod(j,2) == 0 Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; elseif mod(i,2) == 1 && mod(j,2) == 1 Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; end end rwoZstab = rwoZstab + 1; end Output = Cd3; end function Output = FullLookupTableXCorrection(errX) gZ = [1,0,0,1,0,0,0,0,0; 0,1,1,0,1,1,0,0,0; 0,0,0,1,1,0,1,1,0; 0,0,0,0,0,1,0,0,1]; XcorrectionMat = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0]; syn = zeros(1,4); for i = 1:length(gZ(:,1)) syn(1,i) = mod(errX*transpose(gZ(i,:)),2); end correctionRow = 1; for ii = 1:length(syn) correctionRow = correctionRow + 2^(4-ii)*syn(ii); end Output = XcorrectionMat(correctionRow,:); end function Output = FullLookupTableZCorrection(errZ) gX = [1,1,0,1,1,0,0,0,0; 0,1,1,0,0,0,0,0,0; 0,0,0,0,1,1,0,1,1; 0,0,0,0,0,0,1,1,0]; ZcorrectionMat = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0]; syn = zeros(1,4); for i = 1:length(gX(:,1)) syn(1,i) = mod(errZ*transpose(gX(i,:)),2); end correctionRow = 1; for ii = 1:length(syn) correctionRow = correctionRow + 2^(4-ii)*syn(ii); end Output = ZcorrectionMat(correctionRow,:); end function Output = ErrorGenerator(Cmat,errRate) %This function outputs an error vector based on the input circuit %represented by Cmat. We have the following noise model. % 1) |0> state preparation: Perfect |0> state followed by X error with probability p % 2) Z-measurement: X pauli with probability p followed by perfect Z-basis % measurement. % 3) CNOT: Perfect CNOT followed by %{IX,IY,IZ,XI,YI,ZI,XX,XY,XZ,ZX,ZY,ZZ,YX,YY,YZ} with probability p/15 each. % 4) Hadamard: Perfect Hadamard followed by {X,Y,Z} with probability p/12 %each. % 5) SWAP: Perfect SWAP followed by % {IX,IY,IZ,XI,YI,ZI,XX,XY,XZ,ZX,ZY,ZZ,YX,YY,YZ} with probability p/60 % each. % Storage: Pauli {X,Y,Z} with probability p/30 each. % Here errRate = p and Cmat is the circuit representing the surface code % lattice. e = zeros(1,4); counter = 1; for i = 1:length(Cmat(:,1)) for j = 1:length(Cmat(1,:)) % Adds storage errors with probability p if (Cmat(i,j) == 1) xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,1,j]; counter = counter + 1; end end % Adds state-preparation errors with probability 2p/3 if Cmat(i,j) == 4 xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,i,1,j]; counter = counter + 1; end end if Cmat(i,j) == 3 xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,i,1,j]; counter = counter + 1; end end % Adds measurement errors with probability 2p/3 if Cmat(i,j) == 6 xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,i,1,j]; counter = counter + 1; end end if Cmat(i,j) == 5 xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,i,1,j]; counter = counter + 1; end end % Adds CNOT errors with probability p if (Cmat(i,j) > 1000) xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,i,1,j]; counter = counter + 1; end end end end Output = e; end function Output = ConvertErrorXStringToErrorVec(ErrStrX) e = zeros(1,4); counter = 1; for i = 1:length(ErrStrX(1,:)) if ErrStrX(1,i) == 1 e(counter,:) = [1,i+4,1,1]; counter = counter + 1; end end Output = e; end function Output = ConvertErrorZStringToErrorVec(ErrStrZ) e = zeros(1,4); counter = 1; for i = 1:length(ErrStrZ(1,:)) if ErrStrZ(1,i) == 1 e(counter,:) = [2,i+4,1,1]; counter = counter + 1; end end Output = e; end function Output = FaultTolerantCorrectionX(Syn1,Syn2,Syn3) % Corrects X errors based on syndromes from 3 rounds of syndrome % measurement XcorrectionMat = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0]; s1 = max(Syn1); s2 = max(Syn2); s3 = max(Syn3); if (s1 == 0 && (s2 == 0 || s3 == 0)) || (s2 == 0 && s3 == 0) % If at least two syndromes are trivial, apply no correction corrX = zeros(1,9); elseif isequal(Syn1,Syn2) || isequal(Syn1,Syn3) % If at least two syndromes are equal correctionRow = 1; for ii = 1:length(Syn1) correctionRow = correctionRow + 2^(4-ii)*Syn1(ii); end corrX = XcorrectionMat(correctionRow,:); elseif isequal(Syn2,Syn3) correctionRow = 1; for ii = 1:length(Syn2) correctionRow = correctionRow + 2^(4-ii)*Syn2(ii); end corrX = XcorrectionMat(correctionRow,:); else % If all three syndromes are non-trivial and different, use the last syndrome to correct correctionRow = 1; for ii = 1:length(Syn3) correctionRow = correctionRow + 2^(4-ii)*Syn3(ii); end corrX = XcorrectionMat(correctionRow,:); end Output = corrX; end function Output = FaultTolerantCorrectionZ(Syn1,Syn2,Syn3) % Corrects X errors based on syndromes from 3 rounds of syndrome % measurement ZcorrectionMat = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0]; s1 = max(Syn1); s2 = max(Syn2); s3 = max(Syn3); if (s1 == 0 && (s2 == 0 || s3 == 0)) || (s2 == 0 && s3 == 0) % If at least two syndromes are trivial, apply no correction corrZ = zeros(1,9); elseif isequal(Syn1,Syn2) || isequal(Syn1,Syn3) % If at least two syndromes are equal correctionRow = 1; for ii = 1:length(Syn1) correctionRow = correctionRow + 2^(4-ii)*Syn1(ii); end corrZ = ZcorrectionMat(correctionRow,:); elseif isequal(Syn2,Syn3) correctionRow = 1; for ii = 1:length(Syn2) correctionRow = correctionRow + 2^(4-ii)*Syn2(ii); end corrZ = ZcorrectionMat(correctionRow,:); else % If all three syndromes are non-trivial and different, use the last syndrome to correct correctionRow = 1; for ii = 1:length(Syn3) correctionRow = correctionRow + 2^(4-ii)*Syn3(ii); end corrZ = ZcorrectionMat(correctionRow,:); end Output = corrZ; end function [OutputSynX1,OutputSynZ1,OutputErrX1,OutputErrZ1,OutputCount] = depolarizingSimulator(numIterations,errRate,n) % This function generates X and Z syndrome measurement results for three % rounds of error correction of the d=3 rotated surface code as well as the % X and Z errors for each round % Circuit descriptors: % -1: qubit non-active % 0: Noiseless memory % 1: Gate memory % 2: Measurement memory % 3: Preparation in X basis (|+> state) % 4: Preparation in Z basis (|0> state) % 5: Measurement in X basis % 6: Measurement in Z basis % 7: X gate % 8: Z gate % 10: H gate % 11: S gate % 20: T gate %1---: Control qubit for CNOT with target --- %1000: Target qubit for CNOT % Full circuit for measuring the X and Z stabilizers of the d=3 rotated % surface code Circuit = [3 1006 1005 1009 1008 5 3 1012 1011 0 0 5 3 0 0 1007 1006 5 3 1010 1009 1013 1012 5 1 1014 1000 1 1 1 1 1000 1 1015 1000 1 1 1015 1 1000 1 1 1 1 1014 1016 1000 1 1 1016 1000 1000 1015 1 1 1000 1015 1017 1 1 1 1 1000 1 1016 1 1 1000 1016 1 1000 1 1 1 1 1000 1017 1 4 1000 1000 0 0 6 4 1000 1000 1000 1000 6 4 1000 1000 1000 1000 6 4 0 0 1000 1000 6]; ErrXOutputBlock1 = zeros(3*numIterations,9); ErrZOutputBlock1 = zeros(3*numIterations,9); SynXOutputBlock1 = zeros(3*numIterations,4); SynZOutputBlock1 = zeros(3*numIterations,4); numSize = 1; countIterations = 0; while numSize < numIterations e = zeros(1,4); XSyn = zeros(3,4); ZSyn = zeros(3,4); eXString = zeros(3,9); eZString = zeros(3,9); for i = 1:3 eCircuit = ErrorGenerator(Circuit,errRate); eTemp = [e;eCircuit]; Cout = transpose(PropagationStatePrepArb(Circuit,n,eTemp)); Xerror = Cout(1,1:2:18); Zerror = Cout(1,2:2:18); ZSyn(i,:) = Cout(1,19:22); XSyn(i,:) = Cout(1,23:26); eXString(i,:) = Xerror; eZString(i,:) = Zerror; eX = ConvertErrorXStringToErrorVec(Xerror); eZ = ConvertErrorZStringToErrorVec(Zerror); if i ~= 3 e = [eX;eZ]; end end if sum(any(XSyn)) ~= 0 || sum(any(ZSyn)) ~= 0 || sum(any(eXString)) ~= 0 || sum(any(eZString)) ~= 0 ErrXOutputBlock1(3*(numSize-1)+1:3*numSize,:) = eXString; ErrZOutputBlock1(3*(numSize-1)+1:3*numSize,:) = eZString; SynXOutputBlock1(3*(numSize-1)+1:3*numSize,:) = XSyn; SynZOutputBlock1(3*(numSize-1)+1:3*numSize,:) = ZSyn; numSize = numSize + 1; end countIterations = countIterations + 1; end OutputSynX1 = SynXOutputBlock1; OutputSynZ1 = SynZOutputBlock1; OutputErrX1 = ErrXOutputBlock1; OutputErrZ1 = ErrZOutputBlock1; OutputCount = countIterations; end
github
pooya-git/DeepNeuralDecoder-master
SurfaceCodeTrainingSetd5.m
.m
DeepNeuralDecoder-master/Data/Generator/Surface_1EC_D5/SurfaceCodeTrainingSetd5.m
29,093
utf_8
c7189ded75707169c19b5618d5c38518
% MIT License % % Copyright (c) 2018 Chris Chamberland % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, including without limitation the rights % to use, copy, modify, merge, publish, distribute, sublicense, and/or sell % copies of the Software, and to permit persons to whom the Software is % furnished to do so, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in all % copies or substantial portions of the Software. % % THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR % IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE % AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, % OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE % SOFTWARE. function SurfaceCodeTrainingSetd5 n=1; t=2; parfor i = 1:6 numIterations = 2*10^2; v = [3*10^-4,4*10^-4,5*10^-4,6*10^-4,7*10^-4,8*10^-4]; errRate = v(1,i); str_errRate = num2str(errRate,'%0.3e'); [OutputSynX1,OutputSynZ1,OutputErrX1,OutputErrZ1,OutputCount] = depolarizingSimulator(numIterations,errRate,n,t); A1 = [OutputSynX1,OutputSynZ1]; A2 = [OutputErrX1,OutputErrZ1]; %clear OutputSynX1 OutputSynZ1 OutputErrX1 OutputErrZ1 TempStr1 = 'SyndromeOnly'; TempStr2 = '.txt'; TempStr3 = 'ErrorOnly'; str_Final1 = strcat(TempStr1,str_errRate); str_Final2 = strcat(str_Final1,TempStr2); str_Final3 = strcat(TempStr3,str_errRate); str_Final4 = strcat(str_Final3,TempStr2); fid = fopen(str_Final2, 'w+t'); for ii = 1:size(A1,1) fprintf(fid,'%g\t',A1(ii,:)); fprintf(fid,'\n'); end fclose(fid); fid = fopen(str_Final4, 'w+t'); for ii = 1:size(A2,1) fprintf(fid,'%g\t',A2(ii,:)); fprintf(fid,'\n'); end fclose(fid); %clear A1 A2 str_Count = strcat('Count',str_errRate); str_CountFinal = strcat(str_Count,'.mat'); parsaveCount(str_CountFinal,OutputCount); end end function parsaveErrorVec(fname,errorVecMat) save(fname,'errorVecMat'); end function parsaveCount(fname,OutputCount) save(fname,'OutputCount'); end function Output = PropagationStatePrepArb(C, n, e) % C encodes information about the circuit % n is the number of qubits per encoded codeblock % eN are the error entries (location and time) % The Output matrix will contain (2q+m) rows and n columns. The paramters Output(i,j) are: % i <= 2q and odd: Stores X type errors for output qubit #ceil(i/2) (order based on matrix C) % i <= 2q and even: Stores Z type errors for output qubit #ceil(i/2) (order based on matrix C) % i > 2q: Stores measurement error for measurement number #i-2q (type is X or Z depending on measurement type) % The Errors matrix will be a tensor with 2 parameters Output(i, j) % i: logical qubit number % j<=n: X error at physical qubit number j % j>n : Z error at physical qubit number j % Error inputs eN are characterized by four parameters, thus a vector (i,j, k, l) % i: error type: 0 = I, 1 = X, 2 = Z, 3 = Y % j: logical qubit number (if the entry here is '0' then this will correspond to an identity "error") % k: physical qubit number within a codeblock % l: time location N_meas = length(find(C==5)) + length(find(C==6)); % number of logical measurements in the circuit N_output = length(C(:,end)) - sum(C(:,end)==-1) - sum(C(:,end)==5) - sum(C(:,end)==6); % number of output active qubits that have not been measured Meas_dict = [find(C==5); find(C==6)]; Meas_dict = sort(Meas_dict); Output = zeros(2*N_output + N_meas, n); Errors = zeros(length(C(:,1)), 2*n); for t= 1:length(C(1,:)) % If the error occurs at a measurement location then the error is introduced before propagation of faults for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( ( C(e(j,2),t) == 5 ) || ( C(e(j,2),t) == 6 ) ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end end end % Propagation of errors (do not need to do it for the first step of circuit if t>1 for i = 1:length(C(:,t)) if C(i, t) == 10 % In this case must flip the X and Z error information v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = v2; Errors(i, n+1:end) = v1; end if C(i, t) == 11 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); Errors(i, 1:n) = mod(v1+v2, 2); end if (C(i,t) > 1000) && (C(i,t) < 2000) % check to see if target qubit according to control qubit is actually a target qubit if C(C(i,t) - 1000, t) == 1000 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); w1 = Errors(C(i,t) - 1000, 1:n); w2 = Errors(C(i,t) - 1000, (n+1):end); %mod(v2+w2,2) Errors(C(i,t) - 1000, 1:n) = mod(v1+w1, 2); Errors(i, (n+1):end) = mod(v2+w2, 2); end end if C(i,t) > 2000 % check to see if target qubit according to control qubit is actually a target qubit if C(C(i,t) - 2000, t) == 2000 v1 = Errors(i, 1:n); v2 = Errors(i, (n+1):end); w1 = Errors(C(i,t) - 2000, 1:n); w2 = Errors(C(i,t) - 2000, (n+1):end); Errors(C(i,t) - 2000, 1:n) = v1; Errors(C(i,t) - 2000, (n+1):end) = v2; Errors(i, 1:end) = w1; Errors(i, (n+1):end) = w2; end end if C(i,t) == 5 % This corresponds to X measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, (n+1):end); Errors(i, 1:end) = 0; end if C(i,t) == 6 % This corresponds to Z measurement, therefore need to look at Z errors find(Meas_dict==(i+(t-1)*length(C(:,1))) ); % Dont think these are needed, used for checking Output(2*N_output + find(Meas_dict==(i+(t-1)*length(C(:,1))) ), :) = Errors(i, 1:n); Errors(i, 1:end) = 0; end end end % Introduce faults for locations that are not measurements for j = 1:length(e(:,1)) if e(j,1) ~= 0 if e(j,4) == t && ( C(e(j,2),t) ~= 5 ) && ( C(e(j,2),t) ~= 6 ) % This IF statement checks to see if the gate at this location is NOT a CNOT or Prep if ( C(e(j,2),t) < 1000 ) %&& ( C(e(j,2),t) ~= 3 ) && ( C(e(j,2),t) ~= 4 ) if e(j,1) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if e(j,1) == 2 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if e(j,1) == 3 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end end % Introduce errors in the case of CNOT gate for control and target qubits % Errors for control qubit are entry mod(e(j,1),4) according to standard indexing above if ( (C(e(j,2),t) > 1000) && (C(e(j,2),t) < 2000)) if C(C(e(j,2),t) - 1000, t) == 1000 if mod(e(j,1),2) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if mod(e(j,1),4) > 1 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if mod(floor(e(j,1)/4),2) == 1 Errors(C(e(j,2),t) - 1000, e(j,3)) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)) + 1, 2); end if mod(floor(e(j,1)/4),4) > 1 Errors(C(e(j,2),t) - 1000, e(j,3)+n) = mod(Errors(C(e(j,2),t) - 1000, e(j,3)+n) + 1, 2); end end end if C(e(j,2),t) > 2000 if C(C(e(j,2),t) - 2000, t) == 2000 if mod(e(j,1),2) == 1 Errors(e(j,2), e(j,3)) = mod(Errors(e(j,2), e(j,3)) + 1, 2); end if mod(e(j,1),4) > 1 Errors(e(j,2), e(j,3)+n) = mod(Errors(e(j,2), e(j,3)+n) + 1, 2); end if mod(floor(e(j,1)/4),2) == 1 Errors(C(e(j,2),t) - 2000, e(j,3)) = mod(Errors(C(e(j,2),t) - 2000, e(j,3)) + 1, 2); end if mod(floor(e(j,1)/4),4) > 1 Errors(C(e(j,2),t) - 2000, e(j,3)+n) = mod(Errors(C(e(j,2),t) - 2000, e(j,3)+n) + 1, 2); end end end end end end end %Errors counter = 1; % This will be used to iterate over the different qubits for j = 1:length(C(:,end)) if (C(j,end) ~= -1) && (C(j,end) ~= 5) && (C(j,end) ~= 6) Output(counter,:) = Errors(j,1:n); Output(counter+1,:) = Errors(j,(n+1):end); counter = counter + 2; end end end function Output = SurfaceCodeCircuitGenerator(d) % Creates d = 3 surface code circuit Matteo % Circuit descriptors: % -1: qubit non-active % 0: Noiseless memory % 1: Gate memory % 2: Measurement memory % 3: Preparation in X basis (|+> state) % 4: Preparation in Z basis (|0> state) % 5: Measurement in X basis % 6: Measurement in Z basis % 7: X gate % 8: Z gate % 10: H gate % 11: S gate % 20: T gate %1---: Control qubit for CNOT with target --- %1000: Target qubit for CNOT %2000: Qubit for SWAP gate numRows = 2*(d^2) -1 ; numTimeSteps = 6; qubitNum = (d^2-1)/2; Cd3 = zeros(numRows,numTimeSteps); % Set the storage locations at all qubit locations (first two and last two % time steps) for i = 1:(d^2) for j = 1:numTimeSteps Cd3(i + qubitNum,j) = 1; Cd3(i + qubitNum,j) = 1; Cd3(i + qubitNum,j) = 1; Cd3(i + qubitNum,j) = 1; end end % Initialise X stabilizer state prep and measurements for i = 1:((d^2)-1)/2 Cd3(i,1) = 3; Cd3(i,6) = 5; end % Initialise Z stabilizer state prep and measurements for i = (((3*(d^2)-1)/2)+1):(2*(d^2)-1) Cd3(i,1) = 4; Cd3(i,6) = 6; end % Creat matrix of data qubit number dataMat = zeros(d,d); counter = 1; for i = 1:d for j = 1:d dataMat(i,j) = counter + (((d^2)-1)/2); counter = counter + 1; end end % Creat matrix for X and Z stabilizer ancilla qubit numbers ancillaStabXMat = zeros(((d+1)/2),d-1); ancillaStabZMat = zeros(d-1,((d+1)/2)); counter = 1; for i = 1:length(ancillaStabXMat(1,:)) for j = 1:length(ancillaStabXMat(:,1)) ancillaStabXMat(j,i) = counter; counter = counter + 1; end end counter = 1; for i = 1:length(ancillaStabZMat(:,1)) for j = 1:length(ancillaStabZMat(1,:)) ancillaStabZMat(i,j) = counter; counter = counter + 1; end end % Next we input gates from measurement qubits to data qubits % First cycle (measure upper right qubits) % Input target and control of the CNOT gates for X stabilizers timeStep = 2; rwoXstab = 1; for i = 1:length(dataMat(:,1)) if mod(i,2) == 0 colXstab = 2; else colXstab = 1; end for j = 1:length(dataMat(1,:)) if mod(i,2) == 1 if mod(j,2) == 0 Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; end else if mod(j,2) == 1 && j ~= 1 Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; end end end if mod(i,2) == 1 rwoXstab = rwoXstab + 1; end end % Input target and control of the CNOT gates for Z stabilizers rwoZstab = 1; for i = 1:(length(dataMat(:,1))-1) colZstab = 1; for j = 1:length(dataMat(1,:)) if mod(i,2) == 1 if mod(j,2) == 1 Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; end else if mod(j,2) == 0 Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; end end end rwoZstab = rwoZstab + 1; end % Second cycle (measure upper left qubits for X stabilizers and lower right qubits for Z stabilizers) timeStep = timeStep + 1; % Input target and control of the CNOT gates for X stabilizers rwoXstab = 1; for i = 1:length(dataMat(:,1)) if mod(i,2) == 0 colXstab = 2; else colXstab = 1; end for j = 1:length(dataMat(1,:)) if (mod(i,2) == 1) && (mod(j,2) == 1) && (j < length(dataMat(1,:))) Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; elseif (mod(i,2) == 0) && (mod(j,2) == 0) Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; end end if mod(i,2) == 1 rwoXstab = rwoXstab + 1; end end % Input target and control of the CNOT gates for Z stabilizers rwoZstab = 1; for i = 2:length(dataMat(:,1)) colZstab = 1; for j = 1:length(dataMat(1,:)) if (mod(i,2) == 0) && (mod(j,2) == 1) Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; elseif (mod(i,2) == 1) && (mod(j,2) == 0) Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; end end rwoZstab = rwoZstab + 1; end % Third cycle (lower right qubits for X stabilizers and upper left qubits for Z stabilizers) timeStep = timeStep + 1; % Input target and control of the CNOT gates for X stabilizers rwoXstab = 1; for i = 1:length(dataMat(:,1)) if mod(i,2) == 0 colXstab = 1; else colXstab = 2; end for j = 2:length(dataMat(1,:)) if mod(i,2) == 1 && mod(j,2) == 1 Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; elseif mod(i,2) == 0 && mod(j,2) == 0 Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; end end if mod(i,2) == 0 rwoXstab = rwoXstab + 1; end end % Input target and control of the CNOT gates for Z stabilizers rwoZstab = 1; for i = 1:(length(dataMat(:,1))-1) if mod(i,2) == 1 colZstab = 2; else colZstab = 1; end for j = 1:length(dataMat(1,:)) if mod(i,2) == 1 && mod(j,2) == 0 Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; elseif mod(i,2) == 0 && mod(j,2) == 1 Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; end end rwoZstab = rwoZstab + 1; end % Fourth cycle (lower right qubits for X stabilizers and upper left qubits for Z stabilizers) timeStep = timeStep + 1; % Input target and control of the CNOT gates for X stabilizers rwoXstab = 1; for i = 1:length(dataMat(:,1)) if mod(i,2) == 0 colXstab = 1; else colXstab = 2; end for j = 1:(length(dataMat(1,:))-1) if mod(i,2) == 1 && mod(j,2) == 0 Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; elseif mod(i,2) == 0 && mod(j,2) == 1 Cd3(dataMat(i,j),timeStep) = 1000; Cd3(ancillaStabXMat(rwoXstab,colXstab),timeStep) = 1000 + dataMat(i,j); colXstab = colXstab + 2; end end if mod(i,2) == 0 rwoXstab = rwoXstab + 1; end end % Input target and control of the CNOT gates for Z stabilizers rwoZstab = 1; for i = 2:length(dataMat(:,1)) if mod(i,2) == 0 colZstab = 2; else colZstab = 1; end for j = 1:length(dataMat(1,:)) if mod(i,2) == 0 && mod(j,2) == 0 Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; elseif mod(i,2) == 1 && mod(j,2) == 1 Cd3(ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2,timeStep) = 1000; Cd3(dataMat(i,j),timeStep) = 1000 + ancillaStabZMat(rwoZstab,colZstab)+d^2+((d^2)-1)/2; colZstab = colZstab + 1; end end rwoZstab = rwoZstab + 1; end Output = Cd3; end function Output = ErrorGenerator(Cmat,errRate) %This function outputs an error vector based on the input circuit %represented by Cmat. We have the following noise model. % 1) |0> state preparation: Perfect |0> state followed by X error with probability p % 2) Z-measurement: X pauli with probability p followed by perfect Z-basis % measurement. % 3) CNOT: Perfect CNOT followed by %{IX,IY,IZ,XI,YI,ZI,XX,XY,XZ,ZX,ZY,ZZ,YX,YY,YZ} with probability p/15 each. % 4) Hadamard: Perfect Hadamard followed by {X,Y,Z} with probability p/12 %each. % 5) SWAP: Perfect SWAP followed by % {IX,IY,IZ,XI,YI,ZI,XX,XY,XZ,ZX,ZY,ZZ,YX,YY,YZ} with probability p/60 % each. % Storage: Pauli {X,Y,Z} with probability p/30 each. % Here errRate = p and Cmat is the circuit representing the surface code % lattice. e = zeros(1,4); counter = 1; for i = 1:length(Cmat(:,1)) for j = 1:length(Cmat(1,:)) % Adds storage errors with probability p if (Cmat(i,j) == 1) xi = rand; if xi < errRate k = randi([1,3]); e(counter,:) = [k,i,1,j]; counter = counter + 1; end end % Adds state-preparation errors with probability 2p/3 if Cmat(i,j) == 4 xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,i,1,j]; counter = counter + 1; end end if Cmat(i,j) == 3 xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,i,1,j]; counter = counter + 1; end end % Adds measurement errors with probability 2p/3 if Cmat(i,j) == 6 xi = rand; if xi < 2*errRate/3 e(counter,:) = [1,i,1,j]; counter = counter + 1; end end if Cmat(i,j) == 5 xi = rand; if xi < 2*errRate/3 e(counter,:) = [2,i,1,j]; counter = counter + 1; end end % Adds CNOT errors with probability p if (Cmat(i,j) > 1000) xi = rand; if xi < errRate k = randi([1,15]); e(counter,:) = [k,i,1,j]; counter = counter + 1; end end end end Output = e; end function Output = ConvertErrorXStringToErrorVec(ErrStrX) e = zeros(1,4); counter = 1; for i = 1:length(ErrStrX(1,:)) if ErrStrX(1,i) == 1 e(counter,:) = [1,i+12,1,1]; counter = counter + 1; end end Output = e; end function Output = ConvertErrorZStringToErrorVec(ErrStrZ) e = zeros(1,4); counter = 1; for i = 1:length(ErrStrZ(1,:)) if ErrStrZ(1,i) == 1 e(counter,:) = [2,i+12,1,1]; counter = counter + 1; end end Output = e; end function [OutputSynX1,OutputSynZ1,OutputErrX1,OutputErrZ1,OutputCount] = depolarizingSimulator(numIterations,errRate,n,t) % This function generates X and Z syndrome measurement results for three % rounds of error correction of the d=3 rotated surface code as well as the % X and Z errors for each round % Circuit descriptors: % -1: qubit non-active % 0: Noiseless memory % 1: Gate memory % 2: Measurement memory % 3: Preparation in X basis (|+> state) % 4: Preparation in Z basis (|0> state) % 5: Measurement in X basis % 6: Measurement in Z basis % 7: X gate % 8: Z gate % 10: H gate % 11: S gate % 20: T gate %1---: Control qubit for CNOT with target --- %1000: Target qubit for CNOT % Full circuit for measuring the X and Z stabilizers of the d=3 rotated % surface code Circuit = [3 1014 1013 1019 1018 5 3 1024 1023 1029 1028 5 3 1034 1033 0 0 5 3 0 0 1015 1014 5 3 1020 1019 1025 1024 5 3 1030 1029 1035 1034 5 3 1016 1015 1021 1020 5 3 1026 1025 1031 1030 5 3 1036 1035 0 0 5 3 0 0 1017 1016 5 3 1022 1021 1027 1026 5 3 1032 1031 1037 1036 5 1 1038 1000 1 1 1 1 1000 1 1039 1000 1 1 1039 1000 1000 1 1 1 1000 1 1040 1000 1 1 1040 1 1000 1 1 1 1 1038 1041 1000 1 1 1041 1000 1000 1039 1 1 1000 1039 1042 1000 1 1 1042 1000 1000 1040 1 1 1000 1040 1043 1 1 1 1044 1000 1 1041 1 1 1000 1041 1045 1000 1 1 1045 1000 1000 1042 1 1 1000 1042 1046 1000 1 1 1046 1 1000 1043 1 1 1 1044 1047 1000 1 1 1047 1000 1000 1045 1 1 1000 1045 1048 1000 1 1 1048 1000 1000 1046 1 1 1000 1046 1049 1 1 1 1 1000 1 1047 1 1 1000 1047 1 1000 1 1 1 1000 1000 1048 1 1 1000 1048 1 1000 1 1 1 1 1000 1049 1 4 1000 1000 0 0 6 4 1000 1000 1000 1000 6 4 1000 1000 1000 1000 6 4 1000 1000 1000 1000 6 4 1000 1000 1000 1000 6 4 0 0 1000 1000 6 4 1000 1000 0 0 6 4 1000 1000 1000 1000 6 4 1000 1000 1000 1000 6 4 1000 1000 1000 1000 6 4 1000 1000 1000 1000 6 4 0 0 1000 1000 6]; totalIt = 0.5*((t^2)+3*t+2); ErrXOutputBlock1 = zeros(totalIt*numIterations,25); ErrZOutputBlock1 = zeros(totalIt*numIterations,25); SynXOutputBlock1 = zeros(totalIt*numIterations,12); SynZOutputBlock1 = zeros(totalIt*numIterations,12); numSize = 1; countIterations = 0; while numSize < (numIterations+1) XSyn = zeros(totalIt,12); % Stores the X syndromes for each round ZSyn = zeros(totalIt,12); % Stores the Z syndromes for each round XErrTrack = zeros(totalIt,25); % Stores the X errors for each round ZErrTrack = zeros(totalIt,25); % Stores the Z errors for each round e = zeros(1,4); for numRound = 1:6 eCircuit = ErrorGenerator(Circuit,errRate); eTemp = [e;eCircuit]; Cout = transpose(PropagationStatePrepArb(Circuit, n, eTemp)); Xerror = Cout(1,1:2:50); Zerror = Cout(1,2:2:50); XErrTrack(numRound,:) = Xerror; ZErrTrack(numRound,:) = Zerror; ZSyn(numRound,:) = Cout(1,51:62); XSyn(numRound,:) = Cout(1,63:74); eX = ConvertErrorXStringToErrorVec(Xerror); eZ = ConvertErrorZStringToErrorVec(Zerror); e = [eX;eZ]; end if sum(any(XSyn)) ~= 0 || sum(any(ZSyn)) ~= 0 || sum(any(Xerror)) ~= 0 || sum(any(Zerror)) ~= 0 ErrXOutputBlock1(totalIt*(numSize-1)+1:totalIt*numSize,:) = XErrTrack; ErrZOutputBlock1(totalIt*(numSize-1)+1:totalIt*numSize,:) = ZErrTrack; SynXOutputBlock1(totalIt*(numSize-1)+1:totalIt*numSize,:) = XSyn; SynZOutputBlock1(totalIt*(numSize-1)+1:totalIt*numSize,:) = ZSyn; numSize = numSize + 1; end countIterations = countIterations + 1; end OutputSynX1 = SynXOutputBlock1; OutputSynZ1 = SynZOutputBlock1; OutputErrX1 = ErrXOutputBlock1; OutputErrZ1 = ErrZOutputBlock1; OutputCount = countIterations; end
github
cellgeometry/heteromotility-master
dist_v_mag.m
.m
heteromotility-master/analysis/dist_v_mag.m
583
utf_8
e60f1112cfd713a52381b1a4c364beac
%% Calculate distance and vector magnitude at each point in a divergence matrix function [result] = dist_v_mag(div, m_u, m_v, m_s); % div = N x M divergence matrix % m_u = N x M matrix of vector field x-component % m_v = N x M matrix of vector field y-component % m_s = 2 x 1 vector i, j index for minimum divergence (metastable state) result = zeros(length(div(:)), 2); for k = 1:length(div(:)); [i,j] = ind2sub(size(div), k); u = [i j]; d = sqrt( sum((m_s-u).^2) ); flux = [m_u(i,j), m_v(i,j)]; mag = sqrt( dot(flux,flux) ); result(k,:) = [d mag]; end end
github
MohamedAbdelsalam9/SceneRecognition-master
get_image_paths.m
.m
SceneRecognition-master/code/get_image_paths.m
1,671
utf_8
50df335e4058c9fe2f305b5711efa9a3
%we used this function from James Hayes Course to load the image paths %This function returns cell arrays containing the file path for each train %and test image, as well as cell arrays with the label of each train and %test image. function [train_image_paths, test_image_paths, train_labels, test_labels] = ... get_image_paths(data_path, categories, num_train_per_cat) num_categories = length(categories); %number of scene categories. %This paths for each training and test image. By default it will have 1500 %entries (15 categories * 100 training and test examples each) train_image_paths = cell(num_categories * num_train_per_cat, 1); test_image_paths = cell(num_categories * num_train_per_cat, 1); %The name of the category for each training and test image. With the %default setup, these arrays will actually be the same, but they are built %independently for clarity and ease of modification. train_labels = cell(num_categories * num_train_per_cat, 1); test_labels = cell(num_categories * num_train_per_cat, 1); for i=1:num_categories images = dir(fullfile(data_path, 'train', categories{i}, '*.jpg')); for j=1:num_train_per_cat train_image_paths{(i-1)*num_train_per_cat + j} = fullfile(data_path, 'train', categories{i}, images(j).name); train_labels{(i-1)*num_train_per_cat + j} = categories{i}; end images = dir( fullfile(data_path, 'test', categories{i}, '*.jpg')); for j=1:num_train_per_cat test_image_paths{(i-1)*num_train_per_cat + j} = fullfile(data_path, 'test', categories{i}, images(j).name); test_labels{(i-1)*num_train_per_cat + j} = categories{i}; end end
github
MohamedAbdelsalam9/SceneRecognition-master
create_results_webpage.m
.m
SceneRecognition-master/code/create_results_webpage.m
12,092
utf_8
cb211d5fedc6451c228c5b7a3f1104cc
% This function creates a webpage (html and images) visualizing the % classiffication results. This webpage will contain % (1) A confusion matrix plot % (2) A table with one row per category, with 3 columns - training % examples, true positives, false positives, and false negatives. % false positives are instances claimed as that category but belonging to % another category, e.g. in the 'forest' row an image that was classified % as 'forest' but is actually 'mountain'. This same image would be % considered a false negative in the 'mountain' row, because it should have % been claimed by the 'mountain' classifier but was not. function create_results_webpage( train_image_paths, test_image_paths, train_labels, test_labels, categories, abbr_categories, predicted_categories) fprintf('Creating results_webpage/index.html, thumbnails, and confusion matrix\n') %number of examples of training examples, true positives, false positives, %and false negatives. Thus the table will be num_samples * 4 images wide %(unless there aren't enough images) num_samples = 2; thumbnail_height = 75; %pixels %delete the old thumbnails, if there are any delete('results_webpage/thumbnails/*.jpg') [success,message,messageid] = mkdir('results_webpage'); [success,message,messageid] = mkdir('results_webpage/thumbnails'); fclose('all'); fid = fopen('results_webpage/index.html', 'w+t'); num_categories = length(categories); %% Create And Save Confusion Matrix % Based on the predicted category for each test case, we will now build a % confusion matrix. Entry (i,j) in this matrix well be the proportion of % times a test image of ground truth category i was predicted to be % category j. An identity matrix is the ideal case. You should expect % roughly 50-95% along the diagonal depending on your features, % classifiers, and particular categories. For example, suburb is very easy % to recognize. confusion_matrix = zeros(num_categories, num_categories); for i=1:length(predicted_categories) row = find(strcmp(test_labels{i}, categories)); column = find(strcmp(predicted_categories{i}, categories)); confusion_matrix(row, column) = confusion_matrix(row, column) + 1; end %if the number of training examples and test casees are not equal, this %statement will be invalid. num_test_per_cat = length(test_labels) / num_categories; confusion_matrix = confusion_matrix ./ num_test_per_cat; accuracy = mean(diag(confusion_matrix)); fprintf( 'Accuracy (mean of diagonal of confusion matrix) is %.3f\n', accuracy) fig_handle = figure; imagesc(confusion_matrix, [0 1]); set(fig_handle, 'Color', [.988, .988, .988]) axis_handle = get(fig_handle, 'CurrentAxes'); set(axis_handle, 'XTick', 1:15) set(axis_handle, 'XTickLabel', abbr_categories) set(axis_handle, 'YTick', 1:15) set(axis_handle, 'YTickLabel', categories) visualization_image = frame2im(getframe(fig_handle)); % getframe() is unreliable. Depending on the rendering settings, it will % grab foreground windows instead of the figure in question. It could also % return a partial image. imwrite(visualization_image, 'results_webpage/confusion_matrix.png') %% Create webpage header fprintf(fid,'<!DOCTYPE html>\n'); fprintf(fid,'<html>\n'); fprintf(fid,'<head>\n'); fprintf(fid,'<link href=''http://fonts.googleapis.com/css?family=Nunito:300|Crimson+Text|Droid+Sans+Mono'' rel=''stylesheet'' type=''text/css''>\n'); fprintf(fid,'<style type="text/css">\n'); fprintf(fid,'body {\n'); fprintf(fid,' margin: 0px;\n'); fprintf(fid,' width: 100%%;\n'); fprintf(fid,' font-family: ''Crimson Text'', serif;\n'); fprintf(fid,' background: #fcfcfc;\n'); fprintf(fid,'}\n'); fprintf(fid,'table td {\n'); fprintf(fid,' text-align: center;\n'); fprintf(fid,' vertical-align: middle;\n'); fprintf(fid,'}\n'); fprintf(fid,'h1 {\n'); fprintf(fid,' font-family: ''Nunito'', sans-serif;\n'); fprintf(fid,' font-weight: normal;\n'); fprintf(fid,' font-size: 28px;\n'); fprintf(fid,' margin: 25px 0px 0px 0px;\n'); fprintf(fid,' text-transform: lowercase;\n'); fprintf(fid,'}\n'); fprintf(fid,'.container {\n'); fprintf(fid,' margin: 0px auto 0px auto;\n'); fprintf(fid,' width: 1160px;\n'); fprintf(fid,'}\n'); fprintf(fid,'</style>\n'); fprintf(fid,'</head>\n'); fprintf(fid,'<body>\n\n'); fprintf(fid,'<div class="container">\n\n\n'); fprintf(fid,'<center>\n'); fprintf(fid,'<h1>CS 143 Project 3 results visualization</h1>\n'); fprintf(fid,'<img src="confusion_matrix.png">\n\n'); fprintf(fid,'<br>\n'); fprintf(fid,'Accuracy (mean of diagonal of confusion matrix) is %.3f\n', accuracy); fprintf(fid,'<p>\n\n'); %% Create results table fprintf(fid,'<table border=0 cellpadding=4 cellspacing=1>\n'); fprintf(fid,'<tr>\n'); fprintf(fid,'<th>Category name</th>\n'); fprintf(fid,'<th>Accuracy</th>\n'); fprintf(fid,'<th colspan=%d>Sample training images</th>\n', num_samples); fprintf(fid,'<th colspan=%d>Sample true positives</th>\n', num_samples); fprintf(fid,'<th colspan=%d>False positives with true label</th>\n', num_samples); fprintf(fid,'<th colspan=%d>False negatives with wrong predicted label</th>\n', num_samples); fprintf(fid,'</tr>\n'); for i = 1:num_categories fprintf(fid,'<tr>\n'); fprintf(fid,'<td>'); %category name fprintf(fid,'%s', categories{i}); fprintf(fid,'</td>\n'); fprintf(fid,'<td>'); %category accuracy fprintf(fid,'%.3f', confusion_matrix(i,i)); fprintf(fid,'</td>\n'); %collect num_samples random paths to images of each type. %Training examples. train_examples = train_image_paths(strcmp(categories{i}, train_labels)); %True positives. There might not be enough of these if the classifier %is bad true_positives = test_image_paths(strcmp(categories{i}, test_labels) & ... strcmp(categories{i}, predicted_categories)); %False positives. There might not be enough of them if the classifier %is good false_positive_inds = ~strcmp(categories{i}, test_labels) & ... strcmp(categories{i}, predicted_categories); false_positives = test_image_paths(false_positive_inds); false_positive_labels = test_labels(false_positive_inds); %False negatives. There might not be enough of them if the classifier %is good false_negative_inds = strcmp(categories{i}, test_labels) & ... ~strcmp(categories{i}, predicted_categories); false_negatives = test_image_paths( false_negative_inds ); false_negative_labels = predicted_categories(false_negative_inds); %Randomize each list of files train_examples = train_examples( randperm(length(train_examples))); true_positives = true_positives( randperm(length(true_positives))); false_positive_shuffle = randperm(length(false_positives)); false_positives = false_positives(false_positive_shuffle); false_positive_labels = false_positive_labels(false_positive_shuffle); false_negative_shuffle = randperm(length(false_negatives)); false_negatives = false_negatives(false_negative_shuffle); false_negative_labels = false_negative_labels(false_negative_shuffle); %Truncate each list to length at most num_samples train_examples = train_examples( 1:min(length(train_examples), num_samples)); true_positives = true_positives( 1:min(length(true_positives), num_samples)); false_positives = false_positives(1:min(length(false_positives),num_samples)); false_positive_labels = false_positive_labels(1:min(length(false_positive_labels),num_samples)); false_negatives = false_negatives(1:min(length(false_negatives),num_samples)); false_negative_labels = false_negative_labels(1:min(length(false_negative_labels),num_samples)); %sample training images %Create and save all of the thumbnails for j=1:num_samples if(j <= length(train_examples)) tmp = imread(train_examples{j}); height = size(tmp,1); rescale_factor = thumbnail_height / height; tmp = imresize(tmp, rescale_factor); [height, width] = size(tmp); [pathstr,name, ext] = fileparts(train_examples{j}); imwrite(tmp, ['results_webpage/thumbnails/' categories{i} '_' name '.jpg'], 'quality', 100) fprintf(fid,'<td bgcolor=LightBlue>'); fprintf(fid,'<img src="%s" width=%d height=%d>', ['thumbnails/' categories{i} '_' name '.jpg'], width, height); fprintf(fid,'</td>\n'); else fprintf(fid,'<td bgcolor=LightBlue>'); fprintf(fid,'</td>\n'); end end for j=1:num_samples if(j <= length(true_positives)) tmp = imread(true_positives{j}); height = size(tmp,1); rescale_factor = thumbnail_height / height; tmp = imresize(tmp, rescale_factor); [height, width] = size(tmp); [pathstr,name, ext] = fileparts(true_positives{j}); imwrite(tmp, ['results_webpage/thumbnails/' categories{i} '_' name '.jpg'], 'quality', 100) fprintf(fid,'<td bgcolor=LightGreen>'); fprintf(fid,'<img src="%s" width=%d height=%d>', ['thumbnails/' categories{i} '_' name '.jpg'], width, height); fprintf(fid,'</td>\n'); else fprintf(fid,'<td bgcolor=LightGreen>'); fprintf(fid,'</td>\n'); end end for j=1:num_samples if(j <= length(false_positives)) tmp = imread(false_positives{j}); height = size(tmp,1); rescale_factor = thumbnail_height / height; tmp = imresize(tmp, rescale_factor); [height, width] = size(tmp); [pathstr,name, ext] = fileparts(false_positives{j}); imwrite(tmp, ['results_webpage/thumbnails/' false_positive_labels{j} '_' name '.jpg'], 'quality', 100) fprintf(fid,'<td bgcolor=LightCoral>'); fprintf(fid,'<img src="%s" width=%d height=%d>', ['thumbnails/' false_positive_labels{j} '_' name '.jpg'], width, height); fprintf(fid,'<br><small>%s</small>', false_positive_labels{j}); fprintf(fid,'</td>\n'); else fprintf(fid,'<td bgcolor=LightCoral>'); fprintf(fid,'</td>\n'); end end for j=1:num_samples if(j <= length(false_negatives)) tmp = imread(false_negatives{j}); height = size(tmp,1); rescale_factor = thumbnail_height / height; tmp = imresize(tmp, rescale_factor); [height, width] = size(tmp); [pathstr,name, ext] = fileparts(false_negatives{j}); imwrite(tmp, ['results_webpage/thumbnails/' categories{i} '_' name '.jpg'], 'quality', 100) fprintf(fid,'<td bgcolor=#FFBB55>'); fprintf(fid,'<img src="%s" width=%d height=%d>', ['thumbnails/' categories{i} '_' name '.jpg'], width, height); fprintf(fid,'<br><small>%s</small>', false_negative_labels{j}); fprintf(fid,'</td>\n'); else fprintf(fid,'<td bgcolor=#FFBB55>'); fprintf(fid,'</td>\n'); end end fprintf(fid,'</tr>\n'); end fprintf(fid,'<tr>\n'); fprintf(fid,'<th>Category name</th>\n'); fprintf(fid,'<th>Accuracy</th>\n'); fprintf(fid,'<th colspan=%d>Sample training images</th>\n', num_samples); fprintf(fid,'<th colspan=%d>Sample true positives</th>\n', num_samples); fprintf(fid,'<th colspan=%d>False positives with true label</th>\n', num_samples); fprintf(fid,'<th colspan=%d>False negatives with wrong predicted label</th>\n', num_samples); fprintf(fid,'</tr>\n'); fprintf(fid,'</table>\n'); fprintf(fid,'</center>\n\n\n'); fprintf(fid,'</div>\n') %% Create end of web page fprintf(fid,'</body>\n'); fprintf(fid,'</html>\n'); fclose(fid);
github
MohamedAbdelsalam9/SceneRecognition-master
svm_classify.m
.m
SceneRecognition-master/code/svm_classify.m
3,037
utf_8
20eadab16b1ff5e3902e2b9641cf7254
%train a one vs all linear SVM classifier, and apply each classifier of the 15 to each image %and the category is assigned based on the highest result %5 fold cross validation is applied to get the best regularization parameter (lambda) and avoid overfitting function predicted_categories = svm_classify(train_features, labels, test_features, categories) start = tic; lambda = [0.00001, 0.0001, 0.001, 0.005, 0.01, 0.04, 0.07, 0.1, 0.3, 0.5, 0.7, 1, 10]; % Regularization parameters to choose from accuracy_f = zeros(1,length(lambda)); %accuracy when using each lambda in the cross validation step maxIter = 100000; % Maximum number of iterations fold = 5.; %leave five items from the data set each iteration for cross validation for i = 1 : length(categories) for j = 1:length(labels) if strcmp(labels(j),categories(i)) y(j) = 1; %%convert the training labels to either 1 (for this category) or -1 (for all other categories) to train one vs all classifier for each category else y(j) = -1; end end %take a sample from the negatives to prevent it's over representation (1:3 positives to negatives), with the negatives taken randomly from all the negatives no_positives = sum(y==1); order_ = randperm(length(labels),no_positives*4); order = ones(1,no_positives*3); count = 1; %make sure that this random sample contains negatives only (as positives will be added in the next step) for k = 1:length(order_) if count > length(order) break; end if (order_(k) < (i-1)*no_positives + 1 || order_(k) > i*no_positives) order(count) = order_(k); count = count + 1; end end %put all the positives in the beginning for easier manipulation [y_1 I] = sort(y,'descend'); y = [y_1(1:no_positives) y_1(order)]; x = [train_features(:,I(1:no_positives)) train_features(:,order)]; no_folds = uint16(length(y)/fold); %%the no of iterations needed to span the whole training set based on the fold size %cross validation for regularization parameter for k = 1:length(lambda) accuracy = zeros(1,no_folds); for j = 1 : no_folds x_ = [x(:,1:(j-1)*fold) x(:, j*fold+1:size(x,2))]; y_ = [y(1:(j-1)*fold) y(j*fold+1:size(x,2))]; [w_ b_] = vl_svmtrain(x_, y_, lambda(k), 'MaxNumIterations', maxIter); accuracy(j) = sum(y((j-1)*fold+1:j*fold) == sign(w_'*x(:,(j-1)*fold+1:j*fold) + b_)) / fold; end accuracy_f(k) = sum(accuracy) / double(no_folds); %%cross validation accuracy of each lambda end [a(i) ind(i)] = max(accuracy_f); %%get the best lambda [w(:,i) b(i)] = vl_svmtrain(x, y, lambda(ind(i)), 'MaxNumIterations', maxIter); %%the training on the whole data set with the lambda choosen end %classifying the test set for i = 1 : length(test_features) classification = w'*test_features(:,i) + b'; [acc(i) indx(i)] = max(classification); predicted_categories(i,1) = categories(indx(i)); end telapsed = toc(start); fprintf('time for getting classifying: %d secs\n', telapsed) end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_compile.m
.m
SceneRecognition-master/code/vlfeat/toolbox/vl_compile.m
5,060
utf_8
978f5189bb9b2a16db3368891f79aaa6
function vl_compile(compiler) % VL_COMPILE Compile VLFeat MEX files % VL_COMPILE() uses MEX() to compile VLFeat MEX files. This command % works only under Windows and is used to re-build problematic % binaries. The preferred method of compiling VLFeat on both UNIX % and Windows is through the provided Makefiles. % % VL_COMPILE() only compiles the MEX files and assumes that the % VLFeat DLL (i.e. the file VLFEATROOT/bin/win{32,64}/vl.dll) has % already been built. This file is built by the Makefiles. % % By default VL_COMPILE() assumes that Visual C++ is the active % MATLAB compiler. VL_COMPILE('lcc') assumes that the active % compiler is LCC instead (see MEX -SETUP). Unfortunately LCC does % not seem to be able to compile the latest versions of VLFeat due % to bugs in the support of 64-bit integers. Therefore it is % recommended to use Visual C++ instead. % % See also: VL_NOPREFIX(), VL_HELP(). % Authors: Andrea Vedadli, Jonghyun Choi % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin < 1, compiler = 'visualc' ; end switch lower(compiler) case 'visualc' fprintf('%s: assuming that Visual C++ is the active compiler\n', mfilename) ; useLcc = false ; case 'lcc' fprintf('%s: assuming that LCC is the active compiler\n', mfilename) ; warning('LCC may fail to compile VLFeat. See help vl_compile.') ; useLcc = true ; otherwise error('Unknown compiler ''%s''.', compiler) end vlDir = vl_root ; toolboxDir = fullfile(vlDir, 'toolbox') ; switch computer case 'PCWIN' fprintf('%s: compiling for PCWIN (32 bit)\n', mfilename); mexwDir = fullfile(toolboxDir, 'mex', 'mexw32') ; binwDir = fullfile(vlDir, 'bin', 'win32') ; case 'PCWIN64' fprintf('%s: compiling for PCWIN64 (64 bit)\n', mfilename); mexwDir = fullfile(toolboxDir, 'mex', 'mexw64') ; binwDir = fullfile(vlDir, 'bin', 'win64') ; otherwise error('The architecture is neither PCWIN nor PCWIN64. See help vl_compile.') ; end impLibPath = fullfile(binwDir, 'vl.lib') ; libDir = fullfile(binwDir, 'vl.dll') ; mkd(mexwDir) ; % find the subdirectories of toolbox that we should process subDirs = dir(toolboxDir) ; subDirs = subDirs([subDirs.isdir]) ; discard = regexp({subDirs.name}, '^(.|..|noprefix|mex.*)$', 'start') ; keep = cellfun('isempty', discard) ; subDirs = subDirs(keep) ; subDirs = {subDirs.name} ; % Copy support files ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if ~exist(fullfile(binwDir, 'vl.dll')) error('The VLFeat DLL (%s) could not be found. See help vl_compile.', ... fullfile(binwDir, 'vl.dll')) ; end tmp = dir(fullfile(binwDir, '*.dll')) ; supportFileNames = {tmp.name} ; for fi = 1:length(supportFileNames) name = supportFileNames{fi} ; cp(fullfile(binwDir, name), ... fullfile(mexwDir, name) ) ; end % Ensure implib for LCC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if useLcc lccImpLibDir = fullfile(mexwDir, 'lcc') ; lccImpLibPath = fullfile(lccImpLibDir, 'VL.lib') ; lccRoot = fullfile(matlabroot, 'sys', 'lcc', 'bin') ; lccImpExePath = fullfile(lccRoot, 'lcc_implib.exe') ; mkd(lccImpLibDir) ; cp(fullfile(binwDir, 'vl.dll'), fullfile(lccImpLibDir, 'vl.dll')) ; cmd = ['"' lccImpExePath '"', ' -u ', '"' fullfile(lccImpLibDir, 'vl.dll') '"'] ; fprintf('Running:\n> %s\n', cmd) ; curPath = pwd ; try cd(lccImpLibDir) ; [d,w] = system(cmd) ; if d, error(w); end cd(curPath) ; catch cd(curPath) ; error(lasterr) ; end end % Compile each mex file ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ for i = 1:length(subDirs) thisDir = fullfile(toolboxDir, subDirs{i}) ; fileNames = ls(fullfile(thisDir, '*.c')); for f = 1:size(fileNames,1) fileName = fileNames(f, :) ; sp = strfind(fileName, ' '); if length(sp) > 0, fileName = fileName(1:sp-1); end filePath = fullfile(thisDir, fileName); fprintf('MEX %s\n', filePath); dot = strfind(fileName, '.'); mexFile = fullfile(mexwDir, [fileName(1:dot) 'dll']); if exist(mexFile) delete(mexFile) end cmd = {['-I' toolboxDir], ... ['-I' vlDir], ... '-O', ... '-outdir', mexwDir, ... filePath } ; if useLcc cmd{end+1} = lccImpLibPath ; else cmd{end+1} = impLibPath ; end mex(cmd{:}) ; end end % -------------------------------------------------------------------- function cp(src,dst) % -------------------------------------------------------------------- if ~exist(dst,'file') fprintf('Copying ''%s'' to ''%s''.\n', src,dst) ; copyfile(src,dst) ; end % -------------------------------------------------------------------- function mkd(dst) % -------------------------------------------------------------------- if ~exist(dst, 'dir') fprintf('Creating directory ''%s''.', dst) ; mkdir(dst) ; end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_noprefix.m
.m
SceneRecognition-master/code/vlfeat/toolbox/vl_noprefix.m
1,875
utf_8
97d8755f0ba139ac1304bc423d3d86d3
function vl_noprefix % VL_NOPREFIX Create a prefix-less version of VLFeat commands % VL_NOPREFIX() creats prefix-less stubs for VLFeat functions % (e.g. SIFT for VL_SIFT). This function is seldom used as the stubs % are included in the VLFeat binary distribution anyways. Moreover, % on UNIX platforms, the stubs are generally constructed by the % Makefile. % % See also: VL_COMPILE(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). root = fileparts(which(mfilename)) ; list = listMFilesX(root); outDir = fullfile(root, 'noprefix') ; if ~exist(outDir, 'dir') mkdir(outDir) ; end for li = 1:length(list) name = list(li).name(1:end-2) ; % remove .m nname = name(4:end) ; % remove vl_ stubPath = fullfile(outDir, [nname '.m']) ; fout = fopen(stubPath, 'w') ; fprintf('Creating stub %s for %s\n', stubPath, nname) ; fprintf(fout, 'function varargout = %s(varargin)\n', nname) ; fprintf(fout, '%% %s Stub for %s\n', upper(nname), upper(name)) ; fprintf(fout, '[varargout{1:nargout}] = %s(varargin{:})\n', name) ; fclose(fout) ; end end function list = listMFilesX(root) list = struct('name', {}, 'path', {}) ; files = dir(root) ; for fi = 1:length(files) name = files(fi).name ; if files(fi).isdir if any(regexp(name, '^(\.|\.\.|noprefix)$')) continue ; else tmp = listMFilesX(fullfile(root, name)) ; list = [list, tmp] ; end end if any(regexp(name, '^vl_(demo|test).*m$')) continue ; elseif any(regexp(name, '^vl_(demo|setup|compile|help|root|noprefix)\.m$')) continue ; elseif any(regexp(name, '\.m$')) list(end+1) = struct(... 'name', {name}, ... 'path', {fullfile(root, name)}) ; end end end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_pegasos.m
.m
SceneRecognition-master/code/vlfeat/toolbox/misc/vl_pegasos.m
2,837
utf_8
d5e0915c439ece94eb5597a07090b67d
% VL_PEGASOS [deprecated] % VL_PEGASOS is deprecated. Please use VL_SVMTRAIN() instead. function [w b info] = vl_pegasos(X,Y,LAMBDA, varargin) % Verbose not supported if (sum(strcmpi('Verbose',varargin))) varargin(find(strcmpi('Verbose',varargin),1))=[]; fprintf('Option VERBOSE is no longer supported.\n'); end % DiagnosticCallRef not supported if (sum(strcmpi('DiagnosticCallRef',varargin))) varargin(find(strcmpi('DiagnosticCallRef',varargin),1)+1)=[]; varargin(find(strcmpi('DiagnosticCallRef',varargin),1))=[]; fprintf('Option DIAGNOSTICCALLREF is no longer supported.\n Please follow the VLFeat tutorial on SVMs for more information on diagnostics\n'); end % different default value for MaxIterations if (sum(strcmpi('MaxIterations',varargin)) == 0) varargin{end+1} = 'MaxIterations'; varargin{end+1} = ceil(10/LAMBDA); end % different default value for BiasMultiplier if (sum(strcmpi('BiasMultiplier',varargin)) == 0) varargin{end+1} = 'BiasMultiplier'; varargin{end+1} = 0; end % parameters for vl_maketrainingset setvarargin = {}; if (sum(strcmpi('HOMKERMAP',varargin))) setvarargin{end+1} = 'HOMKERMAP'; setvarargin{end+1} = varargin{find(strcmpi('HOMKERMAP',varargin),1)+1}; varargin(find(strcmpi('HOMKERMAP',varargin),1)+1)=[]; varargin(find(strcmpi('HOMKERMAP',varargin),1))=[]; end if (sum(strcmpi('KChi2',varargin))) setvarargin{end+1} = 'KChi2'; varargin(find(strcmpi('KChi2',varargin),1))=[]; end if (sum(strcmpi('KINTERS',varargin))) setvarargin{end+1} = 'KINTERS'; varargin(find(strcmpi('KINTERS',varargin),1))=[]; end if (sum(strcmpi('KL1',varargin))) setvarargin{end+1} = 'KL1'; varargin(find(strcmpi('KL1',varargin),1))=[]; end if (sum(strcmpi('KJS',varargin))) setvarargin{end+1} = 'KJS'; varargin(find(strcmpi('KJS',varargin),1))=[]; end if (sum(strcmpi('Period',varargin))) setvarargin{end+1} = 'Period'; setvarargin{end+1} = varargin{find(strcmpi('Period',varargin),1)+1}; varargin(find(strcmpi('Period',varargin),1)+1)=[]; varargin(find(strcmpi('Period',varargin),1))=[]; end if (sum(strcmpi('Window',varargin))) setvarargin{end+1} = 'Window'; setvarargin{end+1} = varargin{find(strcmpi('Window',varargin),1)+1}; varargin(find(strcmpi('Window',varargin),1)+1)=[]; varargin(find(strcmpi('Window',varargin),1))=[]; end if (sum(strcmpi('Gamma',varargin))) setvarargin{end+1} = 'Gamma'; setvarargin{end+1} = varargin{find(strcmpi('Gamma',varargin),1)+1}; varargin(find(strcmpi('Gamma',varargin),1)+1)=[]; varargin(find(strcmpi('Gamma',varargin),1))=[]; end setvarargin{:} DATA = vl_maketrainingset(double(X),int8(Y),setvarargin{:}); DATA [w b info] = vl_svmtrain(DATA,LAMBDA,varargin{:}); fprintf('\n vl_pegasos is DEPRECATED. Please use vl_svmtrain instead. \n\n'); end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_svmpegasos.m
.m
SceneRecognition-master/code/vlfeat/toolbox/misc/vl_svmpegasos.m
1,178
utf_8
009c2a2b87a375d529ed1a4dbe3af59f
% VL_SVMPEGASOS [deprecated] % VL_SVMPEGASOS is deprecated. Please use VL_SVMTRAIN() instead. function [w b info] = vl_svmpegasos(DATA,LAMBDA, varargin) % Verbose not supported if (sum(strcmpi('Verbose',varargin))) varargin(find(strcmpi('Verbose',varargin),1))=[]; fprintf('Option VERBOSE is no longer supported.\n'); end % DiagnosticCallRef not supported if (sum(strcmpi('DiagnosticCallRef',varargin))) varargin(find(strcmpi('DiagnosticCallRef',varargin),1)+1)=[]; varargin(find(strcmpi('DiagnosticCallRef',varargin),1))=[]; fprintf('Option DIAGNOSTICCALLREF is no longer supported.\n Please follow the VLFeat tutorial on SVMs for more information on diagnostics\n'); end % different default value for MaxIterations if (sum(strcmpi('MaxIterations',varargin)) == 0) varargin{end+1} = 'MaxIterations'; varargin{end+1} = ceil(10/LAMBDA); end % different default value for BiasMultiplier if (sum(strcmpi('BiasMultiplier',varargin)) == 0) varargin{end+1} = 'BiasMultiplier'; varargin{end+1} = 0; end [w b info] = vl_svmtrain(DATA,LAMBDA,varargin{:}); fprintf('\n vl_svmpegasos is DEPRECATED. Please use vl_svmtrain instead. \n\n'); end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_override.m
.m
SceneRecognition-master/code/vlfeat/toolbox/misc/vl_override.m
4,654
utf_8
e233d2ecaeb68f56034a976060c594c5
function config = vl_override(config,update,varargin) % VL_OVERRIDE Override structure subset % CONFIG = VL_OVERRIDE(CONFIG, UPDATE) copies recursively the fileds % of the structure UPDATE to the corresponding fields of the % struture CONFIG. % % Usually CONFIG is interpreted as a list of paramters with their % default values and UPDATE as a list of new paramete values. % % VL_OVERRIDE(..., 'Warn') prints a warning message whenever: (i) % UPDATE has a field not found in CONFIG, or (ii) non-leaf values of % CONFIG are overwritten. % % VL_OVERRIDE(..., 'Skip') skips fields of UPDATE that are not found % in CONFIG instead of copying them. % % VL_OVERRIDE(..., 'CaseI') matches field names in a % case-insensitive manner. % % Remark:: % Fields are copied at the deepest possible level. For instance, % if CONFIG has fields A.B.C1=1 and A.B.C2=2, and if UPDATE is the % structure A.B.C1=3, then VL_OVERRIDE() returns a strucuture with % fields A.B.C1=3, A.B.C2=2. By contrast, if UPDATE is the % structure A.B=4, then the field A.B is copied, and VL_OVERRIDE() % returns the structure A.B=4 (specifying 'Warn' would warn about % the fact that the substructure B.C1, B.C2 is being deleted). % % Remark:: % Two fields are matched if they correspond exactly. Specifically, % two fileds A(IA).(FA) and B(IA).FB of two struct arrays A and B % match if, and only if, (i) A and B have the same dimensions, % (ii) IA == IB, and (iii) FA == FB. % % See also: VL_ARGPARSE(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). warn = false ; skip = false ; err = false ; casei = false ; if length(varargin) == 1 & ~ischar(varargin{1}) % legacy warn = 1 ; end if ~warn & length(varargin) > 0 for i=1:length(varargin) switch lower(varargin{i}) case 'warn' warn = true ; case 'skip' skip = true ; case 'err' err = true ; case 'argparse' argparse = true ; case 'casei' casei = true ; otherwise error(sprintf('Unknown option ''%s''.',varargin{i})) ; end end end % if CONFIG is not a struct array just copy UPDATE verbatim if ~isstruct(config) config = update ; return ; end % if CONFIG is a struct array but UPDATE is not, no match can be % established and we simply copy UPDATE verbatim if ~isstruct(update) config = update ; return ; end % if CONFIG and UPDATE are both struct arrays, but have different % dimensions then nom atch can be established and we simply copy % UPDATE verbatim if numel(update) ~= numel(config) config = update ; return ; end % if CONFIG and UPDATE are both struct arrays of the same % dimension, we override recursively each field for idx=1:numel(update) fields = fieldnames(update) ; for i = 1:length(fields) updateFieldName = fields{i} ; if casei configFieldName = findFieldI(config, updateFieldName) ; else configFieldName = findField(config, updateFieldName) ; end if ~isempty(configFieldName) config(idx).(configFieldName) = ... vl_override(config(idx).(configFieldName), ... update(idx).(updateFieldName)) ; else if warn warning(sprintf('copied field ''%s'' which is in UPDATE but not in CONFIG', ... updateFieldName)) ; end if err error(sprintf('The field ''%s'' is in UPDATE but not in CONFIG', ... updateFieldName)) ; end if skip if warn warning(sprintf('skipping field ''%s'' which is in UPDATE but not in CONFIG', ... updateFieldName)) ; end continue ; end config(idx).(updateFieldName) = update(idx).(updateFieldName) ; end end end % -------------------------------------------------------------------- function field = findFieldI(S, matchField) % -------------------------------------------------------------------- field = '' ; fieldNames = fieldnames(S) ; for fi=1:length(fieldNames) if strcmpi(fieldNames{fi}, matchField) field = fieldNames{fi} ; end end % -------------------------------------------------------------------- function field = findField(S, matchField) % -------------------------------------------------------------------- field = '' ; fieldNames = fieldnames(S) ; for fi=1:length(fieldNames) if strcmp(fieldNames{fi}, matchField) field = fieldNames{fi} ; end end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_quickvis.m
.m
SceneRecognition-master/code/vlfeat/toolbox/quickshift/vl_quickvis.m
3,696
utf_8
27f199dad4c5b9c192a5dd3abc59f9da
function [Iedge dists map gaps] = vl_quickvis(I, ratio, kernelsize, maxdist, maxcuts) % VL_QUICKVIS Create an edge image from a Quickshift segmentation. % IEDGE = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) creates an edge % stability image from a Quickshift segmentation. RATIO controls the tradeoff % between color consistency and spatial consistency (See VL_QUICKSEG) and % KERNELSIZE controls the bandwidth of the density estimator (See VL_QUICKSEG, % VL_QUICKSHIFT). MAXDIST is the maximum distance between neighbors which % increase the density. % % VL_QUICKVIS takes at most MAXCUTS thresholds less than MAXDIST, forming at % most MAXCUTS segmentations. The edges between regions in each of these % segmentations are labeled in IEDGE, where the label corresponds to the % largest DIST which preserves the edge. % % [IEDGE,DISTS] = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) also % returns the DIST thresholds that were chosen. % % IEDGE = VL_QUICKVIS(I, RATIO, KERNELSIZE, DISTS) will use the DISTS % specified % % [IEDGE,DISTS,MAP,GAPS] = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) % also returns the MAP and GAPS from VL_QUICKSHIFT. % % See Also: VL_QUICKSHIFT(), VL_QUICKSEG(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin == 4 dists = maxdist; maxdist = max(dists); [Iseg labels map gaps E] = vl_quickseg(I, ratio, kernelsize, maxdist); else [Iseg labels map gaps E] = vl_quickseg(I, ratio, kernelsize, maxdist); dists = unique(floor(gaps(:))); dists = dists(2:end-1); % remove the inf thresh and the lowest level thresh if length(dists) > maxcuts ind = round(linspace(1,length(dists), maxcuts)); dists = dists(ind); end end [Iedge dists] = mapvis(map, gaps, dists); function [Iedge dists] = mapvis(map, gaps, maxdist, maxcuts) % MAPVIS Create an edge image from a Quickshift segmentation. % IEDGE = MAPVIS(MAP, GAPS, MAXDIST, MAXCUTS) creates an edge % stability image from a Quickshift segmentation. MAXDIST is the maximum % distance between neighbors which increase the density. % % MAPVIS takes at most MAXCUTS thresholds less than MAXDIST, forming at most % MAXCUTS segmentations. The edges between regions in each of these % segmentations are labeled in IEDGE, where the label corresponds to the % largest DIST which preserves the edge. % % [IEDGE,DISTS] = MAPVIS(MAP, GAPS, MAXDIST, MAXCUTS) also returns the DIST % thresholds that were chosen. % % IEDGE = MAPVIS(MAP, GAPS, DISTS) will use the DISTS specified % % See Also: VL_QUICKVIS, VL_QUICKSHIFT, VL_QUICKSEG if nargin == 3 dists = maxdist; maxdist = max(dists); else dists = unique(floor(gaps(:))); dists = dists(2:end-1); % remove the inf thresh and the lowest level thresh % throw away min region size instead of maxdist? ind = find(dists < maxdist); dists = dists(ind); if length(dists) > maxcuts ind = round(linspace(1,length(dists), maxcuts)); dists = dists(ind); end end Iedge = zeros(size(map)); for i = 1:length(dists) s = find(gaps >= dists(i)); mapdist = map; mapdist(s) = s; [mapped labels] = vl_flatmap(mapdist); fprintf('%d/%d %d regions\n', i, length(dists), length(unique(mapped))) borders = getborders(mapped); Iedge(borders) = dists(i); %Iedge(borders) = Iedge(borders) + 1; %Iedge(borders) = i; end %%%%%%%%% GETBORDERS function borders = getborders(map) dx = conv2(map, [-1 1], 'same'); dy = conv2(map, [-1 1]', 'same'); borders = find(dx ~= 0 | dy ~= 0);
github
MohamedAbdelsalam9/SceneRecognition-master
vl_demo_aib.m
.m
SceneRecognition-master/code/vlfeat/toolbox/demo/vl_demo_aib.m
2,928
utf_8
590c6db09451ea608d87bfd094662cac
function vl_demo_aib % VL_DEMO_AIB Test Agglomerative Information Bottleneck (AIB) D = 4 ; K = 20 ; randn('state',0) ; rand('state',0) ; X1 = randn(2,300) ; X1(1,:) = X1(1,:) + 2 ; X2 = randn(2,300) ; X2(1,:) = X2(1,:) - 2 ; X3 = randn(2,300) ; X3(2,:) = X3(2,:) + 2 ; figure(1) ; clf ; hold on ; vl_plotframe(X1,'color','r') ; vl_plotframe(X2,'color','g') ; vl_plotframe(X3,'color','b') ; axis equal ; xlim([-4 4]); ylim([-4 4]); axis off ; rectangle('position',D*[-1 -1 2 2]) vl_demo_print('aib_basic_data', .6) ; C = 1:K*K ; Pcx = zeros(3,K*K) ; f1 = quantize(X1,D,K) ; f2 = quantize(X2,D,K) ; f3 = quantize(X3,D,K) ; Pcx(1,:) = vl_binsum(Pcx(1,:), ones(size(f1)), f1) ; Pcx(2,:) = vl_binsum(Pcx(2,:), ones(size(f2)), f2) ; Pcx(3,:) = vl_binsum(Pcx(3,:), ones(size(f3)), f3) ; Pcx = Pcx / sum(Pcx(:)) ; [parents, cost] = vl_aib(Pcx) ; cutsize = [K*K, 10, 3, 2, 1] ; for i=1:length(cutsize) [cut,map,short] = vl_aibcut(parents, cutsize(i)) ; parents_cut(short > 0) = parents(short(short > 0)) ; C = short(1:K*K+1) ; [drop1,drop2,C] = unique(C) ; figure(i+1) ; clf ; plotquantization(D,K,C) ; hold on ; %plottree(D,K,parents_cut) ; axis equal ; axis off ; title(sprintf('%d clusters', cutsize(i))) ; vl_demo_print(sprintf('aib_basic_clust_%d',i),.6) ; end % -------------------------------------------------------------------- function f = quantize(X,D,K) % -------------------------------------------------------------------- d = 2*D / K ; j = round((X(1,:) + D) / d) ; i = round((X(2,:) + D) / d) ; j = max(min(j,K),1) ; i = max(min(i,K),1) ; f = sub2ind([K K],i,j) ; % -------------------------------------------------------------------- function [i,j] = plotquantization(D,K,C) % -------------------------------------------------------------------- hold on ; cl = [[.3 .3 .3] ; .5*hsv(max(C)-1)+.5] ; d = 2*D / K ; for i=0:K-1 for j=0:K-1 patch(d*(j+[0 1 1 0])-D, ... d*(i+[0 0 1 1])-D, ... cl(C(j*K+i+1),:)) ; end end % -------------------------------------------------------------------- function h = plottree(D,K,parents) % -------------------------------------------------------------------- d = 2*D / K ; C = zeros(2,2*K*K-1)+NaN ; N = zeros(1,2*K*K-1) ; for i=0:K-1 for j=0:K-1 C(:,j*K+i+1) = [d*j-D; d*i-D]+d/2 ; N(:,j*K+i+1) = 1 ; end end for i=1:length(parents) p = parents(i) ; if p==0, continue ; end; if all(isnan(C(:,i))), continue; end if all(isnan(C(:,p))) C(:,p) = C(:,i) / N(i) ; else C(:,p) = C(:,p) + C(:,i) / N(i) ; end N(p) = N(p) + 1 ; end C(1,:) = C(1,:) ./ N ; C(2,:) = C(2,:) ./ N ; xt = zeros(3, 2*length(parents)-1)+NaN ; yt = zeros(3, 2*length(parents)-1)+NaN ; for i=1:length(parents) p = parents(i) ; if p==0, continue ; end; xt(1,i) = C(1,i) ; xt(2,i) = C(1,p) ; yt(1,i) = C(2,i) ; yt(2,i) = C(2,p) ; end h=line(xt(:),yt(:),'linestyle','-','marker','.','linewidth',3) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_demo_alldist.m
.m
SceneRecognition-master/code/vlfeat/toolbox/demo/vl_demo_alldist.m
5,460
utf_8
6d008a64d93445b9d7199b55d58db7eb
function vl_demo_alldist % numRepetitions = 3 ; numDimensions = 1000 ; numSamplesRange = [300] ; settingsRange = {{'alldist2', 'double', 'l2', }, ... {'alldist', 'double', 'l2', 'nosimd'}, ... {'alldist', 'double', 'l2' }, ... {'alldist2', 'single', 'l2', }, ... {'alldist', 'single', 'l2', 'nosimd'}, ... {'alldist', 'single', 'l2' }, ... {'alldist2', 'double', 'l1', }, ... {'alldist', 'double', 'l1', 'nosimd'}, ... {'alldist', 'double', 'l1' }, ... {'alldist2', 'single', 'l1', }, ... {'alldist', 'single', 'l1', 'nosimd'}, ... {'alldist', 'single', 'l1' }, ... {'alldist2', 'double', 'chi2', }, ... {'alldist', 'double', 'chi2', 'nosimd'}, ... {'alldist', 'double', 'chi2' }, ... {'alldist2', 'single', 'chi2', }, ... {'alldist', 'single', 'chi2', 'nosimd'}, ... {'alldist', 'single', 'chi2' }, ... {'alldist2', 'double', 'hell', }, ... {'alldist', 'double', 'hell', 'nosimd'}, ... {'alldist', 'double', 'hell' }, ... {'alldist2', 'single', 'hell', }, ... {'alldist', 'single', 'hell', 'nosimd'}, ... {'alldist', 'single', 'hell' }, ... {'alldist2', 'double', 'kl2', }, ... {'alldist', 'double', 'kl2', 'nosimd'}, ... {'alldist', 'double', 'kl2' }, ... {'alldist2', 'single', 'kl2', }, ... {'alldist', 'single', 'kl2', 'nosimd'}, ... {'alldist', 'single', 'kl2' }, ... {'alldist2', 'double', 'kl1', }, ... {'alldist', 'double', 'kl1', 'nosimd'}, ... {'alldist', 'double', 'kl1' }, ... {'alldist2', 'single', 'kl1', }, ... {'alldist', 'single', 'kl1', 'nosimd'}, ... {'alldist', 'single', 'kl1' }, ... {'alldist2', 'double', 'kchi2', }, ... {'alldist', 'double', 'kchi2', 'nosimd'}, ... {'alldist', 'double', 'kchi2' }, ... {'alldist2', 'single', 'kchi2', }, ... {'alldist', 'single', 'kchi2', 'nosimd'}, ... {'alldist', 'single', 'kchi2' }, ... {'alldist2', 'double', 'khell', }, ... {'alldist', 'double', 'khell', 'nosimd'}, ... {'alldist', 'double', 'khell' }, ... {'alldist2', 'single', 'khell', }, ... {'alldist', 'single', 'khell', 'nosimd'}, ... {'alldist', 'single', 'khell' }, ... } ; %settingsRange = settingsRange(end-5:end) ; styles = {} ; for marker={'x','+','.','*','o'} for color={'r','g','b','k','y'} styles{end+1} = {'color', char(color), 'marker', char(marker)} ; end end for ni=1:length(numSamplesRange) for ti=1:length(settingsRange) tocs = [] ; for ri=1:numRepetitions rand('state',ri) ; randn('state',ri) ; numSamples = numSamplesRange(ni) ; settings = settingsRange{ti} ; [tocs(end+1), D] = run_experiment(numDimensions, ... numSamples, ... settings) ; end means(ni,ti) = mean(tocs) ; stds(ni,ti) = std(tocs) ; if mod(ti-1,3) == 0 D0 = D ; else err = max(abs(D(:)-D0(:))) ; fprintf('err %f\n', err) ; if err > 1, keyboard ; end end end end if 0 figure(1) ; clf ; hold on ; numStyles = length(styles) ; for ti=1:length(settingsRange) si = mod(ti - 1, numStyles) + 1 ; h(ti) = plot(numSamplesRange, means(:,ti), styles{si}{:}) ; leg{ti} = sprintf('%s ', settingsRange{ti}{:}) ; errorbar(numSamplesRange, means(:,ti), stds(:,ti), 'linestyle', 'none') ; end end for ti=1:length(settingsRange) leg{ti} = sprintf('%s ', settingsRange{ti}{:}) ; end figure(1) ; clf ; barh(means(end,:)) ; set(gca,'ytick', 1:length(leg), 'yticklabel', leg,'ydir','reverse') ; xlabel('Time [s]') ; function [elaps, D] = run_experiment(numDimensions, numSamples, settings) distType = 'l2' ; algType = 'alldist' ; classType = 'double' ; useSimd = true ; for si=1:length(settings) arg = settings{si} ; switch arg case {'l1', 'l2', 'chi2', 'hell', 'kl2', 'kl1', 'kchi2', 'khell'} distType = arg ; case {'alldist', 'alldist2'} algType = arg ; case {'single', 'double'} classType = arg ; case 'simd' useSimd = true ; case 'nosimd' useSimd = false ; otherwise assert(false) ; end end X = rand(numDimensions, numSamples) ; X(X < .3) = 0 ; switch classType case 'double' case 'single' X = single(X) ; end vl_simdctrl(double(useSimd)) ; switch algType case 'alldist' tic ; D = vl_alldist(X, distType) ; elaps = toc ; case 'alldist2' tic ; D = vl_alldist2(X, distType) ; elaps = toc ; end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_demo_ikmeans.m
.m
SceneRecognition-master/code/vlfeat/toolbox/demo/vl_demo_ikmeans.m
774
utf_8
17ff0bb7259d390fb4f91ea937ba7de0
function vl_demo_ikmeans() % VL_DEMO_IKMEANS numData = 10000 ; dimension = 2 ; data = uint8(255*rand(dimension,numData)) ; numClusters = 3^3 ; [centers, assignments] = vl_ikmeans(data, numClusters); figure(1) ; clf ; axis off ; plotClusters(data, centers, assignments) ; vl_demo_print('ikmeans_2d',0.6); [tree, assignments] = vl_hikmeans(data,3,numClusters) ; figure(2) ; clf ; axis off ; plotClusters(data, [], [4 2 1] * double(assignments)) ; vl_demo_print('hikmeans_2d',0.6); function plotClusters(data, centers, assignments) hold on ; cc=jet(double(max(assignments(:)))); for i=1:max(assignments(:)) plot(data(1,assignments == i),data(2,assignments == i),'.','color',cc(i,:)); end if ~isempty(centers) plot(centers(1,:),centers(2,:),'k.','MarkerSize',20) end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_demo_svm.m
.m
SceneRecognition-master/code/vlfeat/toolbox/demo/vl_demo_svm.m
1,235
utf_8
7cf6b3504e4fc2cbd10ff3fec6e331a7
% VL_DEMO_SVM Demo: SVM: 2D linear learning function vl_demo_svm y=[];X=[]; % Load training data X and their labels y load('vl_demo_svm_data.mat') Xp = X(:,y==1); Xn = X(:,y==-1); figure plot(Xn(1,:),Xn(2,:),'*r') hold on plot(Xp(1,:),Xp(2,:),'*b') axis equal ; vl_demo_print('svm_training') ; % Parameters lambda = 0.01 ; % Regularization parameter maxIter = 1000 ; % Maximum number of iterations energy = [] ; % Diagnostic function function diagnostics(svm) energy = [energy [svm.objective ; svm.dualObjective ; svm.dualityGap ] ] ; end % Training the SVM energy = [] ; [w b info] = vl_svmtrain(X, y, lambda,... 'MaxNumIterations',maxIter,... 'DiagnosticFunction',@diagnostics,... 'DiagnosticFrequency',1) % Visualisation eq = [num2str(w(1)) '*x+' num2str(w(2)) '*y+' num2str(b)]; line = ezplot(eq, [-0.9 0.9 -0.9 0.9]); set(line, 'Color', [0 0.8 0],'linewidth', 2); vl_demo_print('svm_training_result') ; figure hold on plot(energy(1,:),'--b') ; plot(energy(2,:),'-.g') ; plot(energy(3,:),'r') ; legend('Primal objective','Dual objective','Duality gap') xlabel('Diagnostics iteration') ylabel('Energy') vl_demo_print('svm_energy') ; end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_demo_kdtree_sift.m
.m
SceneRecognition-master/code/vlfeat/toolbox/demo/vl_demo_kdtree_sift.m
6,832
utf_8
e676f80ac330a351f0110533c6ebba89
function vl_demo_kdtree_sift % VL_DEMO_KDTREE_SIFT % Demonstrates the use of a kd-tree forest to match SIFT % features. If FLANN is present, this function runs a comparison % against it. % AUTORIGHS rand('state',0) ; randn('state',0); do_median = 0 ; do_mean = 1 ; % try to setup flann if ~exist('flann_search', 'file') if exist(fullfile(vl_root, 'opt', 'flann', 'build', 'matlab')) addpath(fullfile(vl_root, 'opt', 'flann', 'build', 'matlab')) ; end end do_flann = exist('nearest_neighbors') == 3 ; if ~do_flann warning('FLANN not found. Comparison disabled.') ; end maxNumComparisonsRange = [1 10 50 100 200 300 400] ; numTreesRange = [1 2 5 10] ; % get data (SIFT features) im1 = imread(fullfile(vl_root, 'data', 'roofs1.jpg')) ; im2 = imread(fullfile(vl_root, 'data', 'roofs2.jpg')) ; im1 = single(rgb2gray(im1)) ; im2 = single(rgb2gray(im2)) ; [f1,d1] = vl_sift(im1,'firstoctave',-1,'floatdescriptors','verbose') ; [f2,d2] = vl_sift(im2,'firstoctave',-1,'floatdescriptors','verbose') ; % add some noise to make matches unique d1 = single(d1) + rand(size(d1)) ; d2 = single(d2) + rand(size(d2)) ; % match exhaustively to get the ground truth elapsedDirect = tic ; D = vl_alldist(d1,d2) ; [drop, best] = min(D, [], 1) ; elapsedDirect = toc(elapsedDirect) ; for ti=1:length(numTreesRange) for vi=1:length(maxNumComparisonsRange) v = maxNumComparisonsRange(vi) ; t = numTreesRange(ti) ; if do_median tic ; kdtree = vl_kdtreebuild(d1, ... 'verbose', ... 'thresholdmethod', 'median', ... 'numtrees', t) ; [i, d] = vl_kdtreequery(kdtree, d1, d2, ... 'verbose', ... 'maxcomparisons',v) ; elapsedKD_median(vi,ti) = toc ; errors_median(vi,ti) = sum(double(i) ~= best) / length(best) ; errorsD_median(vi,ti) = mean(abs(d - drop) ./ drop) ; end if do_mean tic ; kdtree = vl_kdtreebuild(d1, ... 'verbose', ... 'thresholdmethod', 'mean', ... 'numtrees', t) ; %kdtree = readflann(kdtree, '/tmp/flann.txt') ; %checkx(kdtree, d1, 1, 1) ; [i, d] = vl_kdtreequery(kdtree, d1, d2, ... 'verbose', ... 'maxcomparisons', v) ; elapsedKD_mean(vi,ti) = toc ; errors_mean(vi,ti) = sum(double(i) ~= best) / length(best) ; errorsD_mean(vi,ti) = mean(abs(d - drop) ./ drop) ; end if do_flann tic ; [i, d] = flann_search(d1, d2, 1, struct('algorithm','kdtree', ... 'trees', t, ... 'checks', v)); ifla = i ; elapsedKD_flann(vi,ti) = toc; errors_flann(vi,ti) = sum(i ~= best) / length(best) ; errorsD_flann(vi,ti) = mean(abs(d - drop) ./ drop) ; end end end figure(1) ; clf ; leg = {} ; hnd = [] ; sty = {{'color','r'},{'color','g'},... {'color','b'},{'color','c'},... {'color','k'}} ; for ti=1:length(numTreesRange) s = sty{mod(ti,length(sty))+1} ; if do_median h1=loglog(elapsedDirect ./ elapsedKD_median(:,ti),100*errors_median(:,ti),'-*',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat median (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h1 ; end if do_mean h2=loglog(elapsedDirect ./ elapsedKD_mean(:,ti), 100*errors_mean(:,ti), '-o',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h2 ; end if do_flann h3=loglog(elapsedDirect ./ elapsedKD_flann(:,ti), 100*errors_flann(:,ti), '+--',s{:}) ; hold on ; leg{end+1} = sprintf('FLANN (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h3 ; end end set([hnd], 'linewidth', 2) ; xlabel('speedup over linear search (log times)') ; ylabel('percentage of incorrect matches (%)') ; h=legend(hnd, leg{:}, 'location', 'southeast') ; set(h,'fontsize',8) ; grid on ; axis square ; vl_demo_print('kdtree_sift_incorrect',.6) ; figure(2) ; clf ; leg = {} ; hnd = [] ; for ti=1:length(numTreesRange) s = sty{mod(ti,length(sty))+1} ; if do_median h1=loglog(elapsedDirect ./ elapsedKD_median(:,ti),100*errorsD_median(:,ti),'*-',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat median (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h1 ; end if do_mean h2=loglog(elapsedDirect ./ elapsedKD_mean(:,ti), 100*errorsD_mean(:,ti), 'o-',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h2 ; end if do_flann h3=loglog(elapsedDirect ./ elapsedKD_flann(:,ti), 100*errorsD_flann(:,ti), '+--',s{:}) ; hold on ; leg{end+1} = sprintf('FLANN (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h3 ; end end set([hnd], 'linewidth', 2) ; xlabel('speedup over linear search (log times)') ; ylabel('relative overestimation of minmium distannce (%)') ; h=legend(hnd, leg{:}, 'location', 'southeast') ; set(h,'fontsize',8) ; grid on ; axis square ; vl_demo_print('kdtree_sift_distortion',.6) ; % -------------------------------------------------------------------- function checkx(kdtree, X, t, n, mib, mab) % -------------------------------------------------------------------- if nargin <= 4 mib = -inf * ones(size(X,1),1) ; mab = +inf * ones(size(X,1),1) ; end lc = kdtree.trees(t).nodes.lowerChild(n) ; uc = kdtree.trees(t).nodes.upperChild(n) ; if lc < 0 for i=-lc:-uc-1 di = kdtree.trees(t).dataIndex(i) ; if any(X(:,di) > mab) error('a') ; end if any(X(:,di) < mib) error('b') ; end end return end i = kdtree.trees(t).nodes.splitDimension(n) ; v = kdtree.trees(t).nodes.splitThreshold(n) ; mab_ = mab ; mab_(i) = min(mab(i), v) ; checkx(kdtree, X, t, lc, mib, mab_) ; mib_ = mib ; mib_(i) = max(mib(i), v) ; checkx(kdtree, X, t, uc, mib_, mab) ; % -------------------------------------------------------------------- function kdtree = readflann(kdtree, path) % -------------------------------------------------------------------- data = textread(path)' ; for i=1:size(data,2) nodeIds = data(1,:) ; ni = find(nodeIds == data(1,i)) ; if ~isnan(data(2,i)) % internal node li = find(nodeIds == data(4,i)) ; ri = find(nodeIds == data(5,i)) ; kdtree.trees(1).nodes.lowerChild(ni) = int32(li) ; kdtree.trees(1).nodes.upperChild(ni) = int32(ri) ; kdtree.trees(1).nodes.splitThreshold(ni) = single(data(2,i)) ; kdtree.trees(1).nodes.splitDimension(ni) = single(data(3,i)+1) ; else di = data(3,i) + 1 ; kdtree.trees(1).nodes.lowerChild(ni) = int32(- di) ; kdtree.trees(1).nodes.upperChild(ni) = int32(- di - 1) ; end kdtree.trees(1).dataIndex = uint32(1:kdtree.numData) ; end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_impattern.m
.m
SceneRecognition-master/code/vlfeat/toolbox/imop/vl_impattern.m
6,876
utf_8
1716a4d107f0186be3d11c647bc628ce
function im = vl_impattern(varargin) % VL_IMPATTERN Generate an image from a stock pattern % IM=VLPATTERN(NAME) returns an instance of the specified % pattern. These stock patterns are useful for testing algoirthms. % % All generated patterns are returned as an image of class % DOUBLE. Both gray-scale and colour images have range in [0,1]. % % VL_IMPATTERN() without arguments shows a gallery of the stock % patterns. The following patterns are supported: % % Wedge:: % The image of a wedge. % % Cone:: % The image of a cone. % % SmoothChecker:: % A checkerboard with Gaussian filtering on top. Use the % option-value pair 'sigma', SIGMA to specify the standard % deviation of the smoothing and the pair 'step', STEP to specfity % the checker size in pixels. % % ThreeDotsSquare:: % A pattern with three small dots and two squares. % % UniformNoise:: % Random i.i.d. noise. % % Blobs: % Gaussian blobs of various sizes and anisotropies. % % Blobs1: % Gaussian blobs of various orientations and anisotropies. % % Blob: % One Gaussian blob. Use the option-value pairs 'sigma', % 'orientation', and 'anisotropy' to specify the respective % parameters. 'sigma' is the scalar standard deviation of an % isotropic blob (the image domain is the rectangle % [-1,1]^2). 'orientation' is the clockwise rotation (as the Y % axis points downards). 'anisotropy' (>= 1) is the ratio of the % the largest over the smallest axis of the blob (the smallest % axis length is set by 'sigma'). Set 'cut' to TRUE to cut half % half of the blob. % % A stock image:: % Any of 'box', 'roofs1', 'roofs2', 'river1', 'river2', 'spotted'. % % All pattern accept a SIZE parameter [WIDTH,HEIGHT]. For all but % the stock images, the default size is [128,128]. % Author: Andrea Vedaldi % Copyright (C) 2012 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin > 0 pattern=varargin{1} ; varargin=varargin(2:end) ; else pattern = 'gallery' ; end patterns = {'wedge','cone','smoothChecker','threeDotsSquare', ... 'blob', 'blobs', 'blobs1', ... 'box', 'roofs1', 'roofs2', 'river1', 'river2'} ; % spooling switch lower(pattern) case 'wedge', im = wedge(varargin) ; case 'cone', im = cone(varargin) ; case 'smoothchecker', im = smoothChecker(varargin) ; case 'threedotssquare', im = threeDotSquare(varargin) ; case 'uniformnoise', im = uniformNoise(varargin) ; case 'blob', im = blob(varargin) ; case 'blobs', im = blobs(varargin) ; case 'blobs1', im = blobs1(varargin) ; case {'box','roofs1','roofs2','river1','river2','spots'} im = stockImage(pattern, varargin) ; case 'gallery' clf ; num = numel(patterns) ; for p = 1:num vl_tightsubplot(num,p,'box','outer') ; imagesc(vl_impattern(patterns{p}),[0 1]) ; axis image off ; title(patterns{p}) ; end colormap gray ; return ; otherwise error('Unknown patter ''%s''.', pattern) ; end if nargout == 0 clf ; imagesc(im) ; hold on ; colormap gray ; axis image off ; title(pattern) ; clear im ; end function [u,v,opts,args] = commonOpts(args) opts.size = [128 128] ; [opts,args] = vl_argparse(opts, args) ; ur = linspace(-1,1,opts.size(2)) ; vr = linspace(-1,1,opts.size(1)) ; [u,v] = meshgrid(ur,vr); function im = wedge(args) [u,v,opts,args] = commonOpts(args) ; im = abs(u) + abs(v) > (1/4) ; im(v < 0) = 0 ; function im = cone(args) [u,v,opts,args] = commonOpts(args) ; im = sqrt(u.^2+v.^2) ; im = im / max(im(:)) ; function im = smoothChecker(args) opts.size = [128 128] ; opts.step = 16 ; opts.sigma = 2 ; opts = vl_argparse(opts, args) ; [u,v] = meshgrid(0:opts.size(1)-1, 0:opts.size(2)-1) ; im = xor((mod(u,opts.step*2) < opts.step),... (mod(v,opts.step*2) < opts.step)) ; im = double(im) ; im = vl_imsmooth(im, opts.sigma) ; function im = threeDotSquare(args) [u,v,opts,args] = commonOpts(args) ; im = ones(size(u)) ; im(-2/3<u & u<2/3 & -2/3<v & v<2/3) = .75 ; im(-1/3<u & u<1/3 & -1/3<v & v<1/3) = .50 ; [drop,i] = min(abs(v(:,1))) ; [drop,j1] = min(abs(u(1,:)-1/6)) ; [drop,j2] = min(abs(u(1,:))) ; [drop,j3] = min(abs(u(1,:)+1/6)) ; im(i,j1) = 0 ; im(i,j2) = 0 ; im(i,j3) = 0 ; function im = blobs(args) [u,v,opts,args] = commonOpts(args) ; im = zeros(size(u)) ; num = 5 ; square = 2 / num ; sigma = square / 2 / 3 ; scales = logspace(log10(0.5), log10(1), num) ; skews = linspace(1,2,num) ; for i=1:num for j=1:num cy = (i-1) * square + square/2 - 1; cx = (j-1) * square + square/2 - 1; A = sigma * diag([scales(i) scales(i)/skews(j)]) * [1 -1 ; 1 1] / sqrt(2) ; C = inv(A'*A) ; x = u - cx ; y = v - cy ; im = im + exp(-0.5 *(x.*x*C(1,1) + y.*y*C(2,2) + 2*x.*y*C(1,2))) ; end end im = im / max(im(:)) ; function im = blob(args) [u,v,opts,args] = commonOpts(args) ; opts.sigma = 0.15 ; opts.anisotropy = .5 ; opts.orientation = 2/3 * pi ; opts.cut = false ; opts = vl_argparse(opts, args) ; im = zeros(size(u)) ; th = opts.orientation ; R = [cos(th) -sin(th) ; sin(th) cos(th)] ; A = opts.sigma * R * diag([opts.anisotropy 1]) ; T = [0;0] ; [x,y] = vl_waffine(inv(A),-inv(A)*T,u,v) ; im = exp(-0.5 *(x.^2 + y.^2)) ; if opts.cut im = im .* double(x > 0) ; end function im = blobs1(args) [u,v,opts,args] = commonOpts(args) ; opts.number = 5 ; opts.sigma = [] ; opts = vl_argparse(opts, args) ; im = zeros(size(u)) ; square = 2 / opts.number ; num = opts.number ; if isempty(opts.sigma) sigma = 1/6 * square ; else sigma = opts.sigma * square ; end rotations = linspace(0,pi,num+1) ; rotations(end) = [] ; skews = linspace(1,2,num) ; for i=1:num for j=1:num cy = (i-1) * square + square/2 - 1; cx = (j-1) * square + square/2 - 1; th = rotations(i) ; R = [cos(th) -sin(th); sin(th) cos(th)] ; A = sigma * R * diag([1 1/skews(j)]) ; C = inv(A*A') ; x = u - cx ; y = v - cy ; im = im + exp(-0.5 *(x.*x*C(1,1) + y.*y*C(2,2) + 2*x.*y*C(1,2))) ; end end im = im / max(im(:)) ; function im = uniformNoise(args) opts.size = [128 128] ; opts.seed = 1 ; opts = vl_argparse(opts, args) ; state = vl_twister('state') ; vl_twister('state',opts.seed) ; im = vl_twister(opts.size([2 1])) ; vl_twister('state',state) ; function im = stockImage(pattern,args) opts.size = [] ; opts = vl_argparse(opts, args) ; switch pattern case 'river1', path='river1.jpg' ; case 'river2', path='river2.jpg' ; case 'roofs1', path='roofs1.jpg' ; case 'roofs2', path='roofs2.jpg' ; case 'box', path='box.pgm' ; case 'spots', path='spots.jpg' ; end im = imread(fullfile(vl_root,'data',path)) ; im = im2double(im) ; if ~isempty(opts.size) im = imresize(im, opts.size) ; im = max(im,0) ; im = min(im,1) ; end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_tpsu.m
.m
SceneRecognition-master/code/vlfeat/toolbox/imop/vl_tpsu.m
1,755
utf_8
09f36e1a707c069b375eb2817d0e5f13
function [U,dU,delta]=vl_tpsu(X,Y) % VL_TPSU Compute the U matrix of a thin-plate spline transformation % U=VL_TPSU(X,Y) returns the matrix % % [ U(|X(:,1) - Y(:,1)|) ... U(|X(:,1) - Y(:,N)|) ] % [ ] % [ U(|X(:,M) - Y(:,1)|) ... U(|X(:,M) - Y(:,N)|) ] % % where X is a 2xM matrix and Y a 2xN matrix of points and U(r) is % the opposite -r^2 log(r^2) of the radial basis function of the % thin plate spline specified by X and Y. % % [U,dU]=vl_tpsu(x,y) returns the derivatives of the columns of U with % respect to the parameters Y. The derivatives are arranged in a % Mx2xN array, one layer per column of U. % % See also: VL_TPS(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if exist('tpsumx') U = tpsumx(X,Y) ; else M=size(X,2) ; N=size(Y,2) ; % Faster than repmat, but still fairly slow r2 = ... (X( ones(N,1), :)' - Y( ones(1,M), :)).^2 + ... (X( 1+ones(N,1), :)' - Y(1+ones(1,M), :)).^2 ; U = - rb(r2) ; end if nargout > 1 M=size(X,2) ; N=size(Y,2) ; dx = X( ones(N,1), :)' - Y( ones(1,M), :) ; dy = X(1+ones(N,1), :)' - Y(1+ones(1,M), :) ; r2 = (dx.^2 + dy.^2) ; r = sqrt(r2) ; coeff = drb(r)./(r+eps) ; dU = reshape( [coeff .* dx ; coeff .* dy], M, 2, N) ; end % The radial basis function function y = rb(r2) y = zeros(size(r2)) ; sel = find(r2 ~= 0) ; y(sel) = - r2(sel) .* log(r2(sel)) ; % The derivative of the radial basis function function y = drb(r) y = zeros(size(r)) ; sel = find(r ~= 0) ; y(sel) = - 4 * r(sel) .* log(r(sel)) - 2 * r(sel) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_xyz2lab.m
.m
SceneRecognition-master/code/vlfeat/toolbox/imop/vl_xyz2lab.m
1,570
utf_8
09f95a6f9ae19c22486ec1157357f0e3
function J=vl_xyz2lab(I,il) % VL_XYZ2LAB Convert XYZ color space to LAB % J = VL_XYZ2LAB(I) converts the image from XYZ format to LAB format. % % VL_XYZ2LAB(I,IL) uses one of the illuminants A, B, C, E, D50, D55, % D65, D75, D93. The default illuminatn is E. % % See also: VL_XYZ2LUV(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin < 2 il='E' ; end switch lower(il) case 'a' xw = 0.4476 ; yw = 0.4074 ; case 'b' xw = 0.3324 ; yw = 0.3474 ; case 'c' xw = 0.3101 ; yw = 0.3162 ; case 'e' xw = 1/3 ; yw = 1/3 ; case 'd50' xw = 0.3457 ; yw = 0.3585 ; case 'd55' xw = 0.3324 ; yw = 0.3474 ; case 'd65' xw = 0.312713 ; yw = 0.329016 ; case 'd75' xw = 0.299 ; yw = 0.3149 ; case 'd93' xw = 0.2848 ; yw = 0.2932 ; end J=zeros(size(I)) ; % Reference white Yw = 1.0 ; Xw = xw/yw ; Zw = (1-xw-yw)/yw * Yw ; % XYZ components X = I(:,:,1) ; Y = I(:,:,2) ; Z = I(:,:,3) ; x = X/Xw ; y = Y/Yw ; z = Z/Zw ; L = 116 * f(y) - 16 ; a = 500*(f(x) - f(y)) ; b = 200*(f(y) - f(z)) ; J = cat(3,L,a,b) ; % -------------------------------------------------------------------- function b=f(a) % -------------------------------------------------------------------- sp = find(a > 0.00856) ; sm = find(a <= 0.00856) ; k = 903.3 ; b=zeros(size(a)) ; b(sp) = a(sp).^(1/3) ; b(sm) = (k*a(sm) + 16)/116 ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_gmm.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_gmm.m
1,332
utf_8
76782cae6c98781c6c38d4cbf5549d94
function results = vl_test_gmm(varargin) % VL_TEST_GMM % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). vl_test_init ; end function s = setup() randn('state',0) ; s.X = randn(128, 1000) ; end function test_multithreading(s) dataTypes = {'single','double'} ; for dataType = dataTypes conversion = str2func(char(dataType)) ; X = conversion(s.X) ; vl_twister('state',0) ; vl_threads(0) ; [means, covariances, priors, ll, posteriors] = ... vl_gmm(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Initialization', 'rand') ; vl_twister('state',0) ; vl_threads(1) ; [means_, covariances_, priors_, ll_, posteriors_] = ... vl_gmm(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Initialization', 'rand') ; vl_assert_almost_equal(means, means_, 1e-2) ; vl_assert_almost_equal(covariances, covariances_, 1e-2) ; vl_assert_almost_equal(priors, priors_, 1e-2) ; vl_assert_almost_equal(ll, ll_, 1e-2 * abs(ll)) ; vl_assert_almost_equal(posteriors, posteriors_, 1e-2) ; end end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_twister.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_twister.m
1,251
utf_8
2bfb5a30cbd6df6ac80c66b73f8646da
function results = vl_test_twister(varargin) % VL_TEST_TWISTER vl_test_init ; function test_illegal_args() vl_assert_exception(@() vl_twister(-1), 'vl:invalidArgument') ; vl_assert_exception(@() vl_twister(1, -1), 'vl:invalidArgument') ; vl_assert_exception(@() vl_twister([1, -1]), 'vl:invalidArgument') ; function test_seed_by_scalar() rand('twister',1) ; a = rand ; vl_twister('state',1) ; b = vl_twister ; vl_assert_equal(a,b,'seed by scalar + VL_TWISTER()') ; function test_get_set_state() rand('twister',1) ; a = rand('twister') ; vl_twister('state',1) ; b = vl_twister('state') ; vl_assert_equal(a,b,'read state') ; a(1) = a(1) + 1 ; vl_twister('state',a) ; b = vl_twister('state') ; vl_assert_equal(a,b,'set state') ; function test_multi_dimensions() b = rand('twister') ; rand('twister',b) ; vl_twister('state',b) ; a=rand([1 2 3 4 5]) ; b=vl_twister([1 2 3 4 5]) ; vl_assert_equal(a,b,'VL_TWISTER([M N P ...])') ; function test_multi_multi_args() rand('twister',1) ; a=rand(1, 2, 3, 4, 5) ; vl_twister('state',1) ; b=vl_twister(1, 2, 3, 4, 5) ; vl_assert_equal(a,b,'VL_TWISTER(M, N, P, ...)') ; function test_square() rand('twister',1) ; a=rand(10) ; vl_twister('state',1) ; b=vl_twister(10) ; vl_assert_equal(a,b,'VL_TWISTER(N)') ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_kdtree.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_kdtree.m
2,449
utf_8
9d7ad2b435a88c22084b38e5eb5f9eb9
function results = vl_test_kdtree(varargin) % VL_TEST_KDTREE vl_test_init ; function s = setup() randn('state',0) ; s.X = single(randn(10, 1000)) ; s.Q = single(randn(10, 10)) ; function test_nearest(s) for tmethod = {'median', 'mean'} for type = {@single, @double} conv = type{1} ; tmethod = char(tmethod) ; X = conv(s.X) ; Q = conv(s.Q) ; tree = vl_kdtreebuild(X,'ThresholdMethod', tmethod) ; [nn, d2] = vl_kdtreequery(tree, X, Q) ; D2 = vl_alldist2(X, Q, 'l2') ; [d2_, nn_] = min(D2) ; vl_assert_equal(... nn,uint32(nn_),... 'incorrect nns: type=%s th. method=%s', func2str(conv), tmethod) ; vl_assert_almost_equal(... d2,d2_,... 'incorrect distances: type=%s th. method=%s', func2str(conv), tmethod) ; end end function test_nearests(s) numNeighbors = 7 ; tree = vl_kdtreebuild(s.X) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; vl_assert_equal(nn,uint32(nn_)) ; vl_assert_almost_equal(d2,d2_) ; function test_ann(s) vl_twister('state', 1) ; numNeighbors = 7 ; maxComparisons = numNeighbors * 50 ; tree = vl_kdtreebuild(s.X) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors, ... 'maxComparisons', maxComparisons) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; for i=1:size(s.Q,2) overlap = numel(intersect(nn(:,i), nn_(:,i))) / ... numel(union(nn(:,i), nn_(:,i))) ; assert(overlap > 0.6, 'ANN did not return enough correct nearest neighbors') ; end function test_ann_forest(s) vl_twister('state', 1) ; numNeighbors = 7 ; maxComparisons = numNeighbors * 25 ; numTrees = 5 ; tree = vl_kdtreebuild(s.X, 'numTrees', 5) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors, ... 'maxComparisons', maxComparisons) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; for i=1:size(s.Q,2) overlap = numel(intersect(nn(:,i), nn_(:,i))) / ... numel(union(nn(:,i), nn_(:,i))) ; assert(overlap > 0.6, 'ANN did not return enough correct nearest neighbors') ; end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_imwbackward.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_imwbackward.m
514
utf_8
33baa0784c8f6f785a2951d7f1b49199
function results = vl_test_imwbackward(varargin) % VL_TEST_IMWBACKWARD vl_test_init ; function s = setup() s.I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; function test_identity(s) xr = 1:size(s.I,2) ; yr = 1:size(s.I,1) ; [x,y] = meshgrid(xr,yr) ; vl_assert_almost_equal(s.I, vl_imwbackward(xr,yr,s.I,x,y)) ; function test_invalid_args(s) xr = 1:size(s.I,2) ; yr = 1:size(s.I,1) ; [x,y] = meshgrid(xr,yr) ; vl_assert_exception(@() vl_imwbackward(xr,yr,single(s.I),x,y), 'vl:invalidArgument') ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_alphanum.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_alphanum.m
1,624
utf_8
2da2b768c2d0f86d699b8f31614aa424
function results = vl_test_alphanum(varargin) % VL_TEST_ALPHANUM vl_test_init ; function s = setup() s.strings = ... {'1000X Radonius Maximus','10X Radonius','200X Radonius','20X Radonius','20X Radonius Prime','30X Radonius','40X Radonius','Allegia 50 Clasteron','Allegia 500 Clasteron','Allegia 50B Clasteron','Allegia 51 Clasteron','Allegia 6R Clasteron','Alpha 100','Alpha 2','Alpha 200','Alpha 2A','Alpha 2A-8000','Alpha 2A-900','Callisto Morphamax','Callisto Morphamax 500','Callisto Morphamax 5000','Callisto Morphamax 600','Callisto Morphamax 6000 SE','Callisto Morphamax 6000 SE2','Callisto Morphamax 700','Callisto Morphamax 7000','Xiph Xlater 10000','Xiph Xlater 2000','Xiph Xlater 300','Xiph Xlater 40','Xiph Xlater 5','Xiph Xlater 50','Xiph Xlater 500','Xiph Xlater 5000','Xiph Xlater 58'} ; s.sortedStrings = ... {'10X Radonius','20X Radonius','20X Radonius Prime','30X Radonius','40X Radonius','200X Radonius','1000X Radonius Maximus','Allegia 6R Clasteron','Allegia 50 Clasteron','Allegia 50B Clasteron','Allegia 51 Clasteron','Allegia 500 Clasteron','Alpha 2','Alpha 2A','Alpha 2A-900','Alpha 2A-8000','Alpha 100','Alpha 200','Callisto Morphamax','Callisto Morphamax 500','Callisto Morphamax 600','Callisto Morphamax 700','Callisto Morphamax 5000','Callisto Morphamax 6000 SE','Callisto Morphamax 6000 SE2','Callisto Morphamax 7000','Xiph Xlater 5','Xiph Xlater 40','Xiph Xlater 50','Xiph Xlater 58','Xiph Xlater 300','Xiph Xlater 500','Xiph Xlater 2000','Xiph Xlater 5000','Xiph Xlater 10000'} ; function test_basic(s) sorted = vl_alphanum(s.strings) ; assert(isequal(sorted,s.sortedStrings)) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_printsize.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_printsize.m
1,447
utf_8
0f0b6437c648b7a2e1310900262bd765
function results = vl_test_printsize(varargin) % VL_TEST_PRINTSIZE vl_test_init ; function s = setup() s.fig = figure(1) ; s.usletter = [8.5, 11] ; % inches s.a4 = [8.26772, 11.6929] ; clf(s.fig) ; plot(1:10) ; function teardown(s) close(s.fig) ; function test_basic(s) for sigma = [1 0.5 0.2] vl_printsize(s.fig, sigma) ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(1), sigma*s.usletter(1), 1e-4) ; vl_assert_almost_equal(pos(1), 0, 1e-4) ; vl_assert_almost_equal(pos(3), sigma*s.usletter(1), 1e-4) ; end function test_papertype(s) vl_printsize(s.fig, 1, 'papertype', 'a4') ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(1), s.a4(1), 1e-4) ; function test_margin(s) m = 0.5 ; vl_printsize(s.fig, 1, 'margin', m) ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(1), s.usletter(1) * (1 + 2*m), 1e-4) ; vl_assert_almost_equal(pos(1), s.usletter(1) * m, 1e-4) ; function test_reference(s) sigma = 1 ; vl_printsize(s.fig, 1, 'reference', 'vertical') ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(2), sigma*s.usletter(2), 1e-4) ; vl_assert_almost_equal(pos(2), 0, 1e-4) ; vl_assert_almost_equal(pos(4), sigma*s.usletter(2), 1e-4) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_cummax.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_cummax.m
838
utf_8
5e98ee1681d4823f32ecc4feaa218611
function results = vl_test_cummax(varargin) % VL_TEST_CUMMAX vl_test_init ; function test_basic() vl_assert_almost_equal(... vl_cummax(1), 1) ; vl_assert_almost_equal(... vl_cummax([1 2 3 4], 2), [1 2 3 4]) ; function test_multidim() a = [1 2 3 4 3 2 1] ; b = [1 2 3 4 4 4 4] ; for k=1:6 dims = ones(1,6) ; dims(k) = numel(a) ; a = reshape(a, dims) ; b = reshape(b, dims) ; vl_assert_almost_equal(... vl_cummax(a, k), b) ; end function test_storage_classes() types = {@double, @single, ... @int32, @uint32, ... @int16, @uint16, ... @int8, @uint8} ; if vl_matlabversion() > 71000 types = horzcat(types, {@int64, @uint64}) ; end for a = types a = a{1} ; for b = types b = b{1} ; vl_assert_almost_equal(... vl_cummax(a(eye(3))), a(toeplitz([1 1 1], [1 0 0 ]))) ; end end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_imintegral.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_imintegral.m
1,429
utf_8
4750f04ab0ac9fc4f55df2c8583e5498
function results = vl_test_imintegral(varargin) % VL_TEST_IMINTEGRAL vl_test_init ; function state = setup() state.I = ones(5,6) ; state.correct = [ 1 2 3 4 5 6 ; 2 4 6 8 10 12 ; 3 6 9 12 15 18 ; 4 8 12 16 20 24 ; 5 10 15 20 25 30 ; ] ; function test_matlab_equivalent(s) vl_assert_equal(slow_imintegral(s.I), s.correct) ; function test_basic(s) vl_assert_equal(vl_imintegral(s.I), s.correct) ; function test_multi_dimensional(s) vl_assert_equal(vl_imintegral(repmat(s.I, [1 1 3])), ... repmat(s.correct, [1 1 3])) ; function test_random(s) numTests = 50 ; for i = 1:numTests I = rand(5) ; vl_assert_almost_equal(vl_imintegral(s.I), ... slow_imintegral(s.I)) ; end function test_datatypes(s) vl_assert_equal(single(vl_imintegral(s.I)), single(s.correct)) ; vl_assert_equal(double(vl_imintegral(s.I)), double(s.correct)) ; vl_assert_equal(uint32(vl_imintegral(s.I)), uint32(s.correct)) ; vl_assert_equal(int32(vl_imintegral(s.I)), int32(s.correct)) ; vl_assert_equal(int32(vl_imintegral(-s.I)), -int32(s.correct)) ; function integral = slow_imintegral(I) integral = zeros(size(I)); for k = 1:size(I,3) for r = 1:size(I,1) for c = 1:size(I,2) integral(r,c,k) = sum(sum(I(1:r,1:c,k))); end end end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_sift.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_sift.m
1,318
utf_8
806c61f9db9f2ebb1d649c9bfcf3dc0a
function results = vl_test_sift(varargin) % VL_TEST_SIFT vl_test_init ; function s = setup() s.I = im2single(imread(fullfile(vl_root,'data','box.pgm'))) ; [s.ubc.f, s.ubc.d] = ... vl_ubcread(fullfile(vl_root,'data','box.sift')) ; function test_ubc_descriptor(s) err = [] ; [f, d] = vl_sift(s.I,... 'firstoctave', -1, ... 'frames', s.ubc.f) ; D2 = vl_alldist(f, s.ubc.f) ; [drop, perm] = min(D2) ; f = f(:,perm) ; d = d(:,perm) ; error = mean(sqrt(sum((single(s.ubc.d) - single(d)).^2))) ... / mean(sqrt(sum(single(s.ubc.d).^2))) ; assert(error < 0.1, ... 'sift descriptor did not produce desctiptors similar to UBC ones') ; function test_ubc_detector(s) [f, d] = vl_sift(s.I,... 'firstoctave', -1, ... 'peakthresh', .01, ... 'edgethresh', 10) ; s.ubc.f(4,:) = mod(s.ubc.f(4,:), 2*pi) ; f(4,:) = mod(f(4,:), 2*pi) ; % scale the components so that 1 pixel erro in x,y,z is equal to a % 10-th of angle. S = diag([1 1 1 20/pi]); D2 = vl_alldist(S * s.ubc.f, S * f) ; [d2,perm] = sort(min(D2)) ; error = sqrt(d2) ; quant80 = round(.8 * size(f,2)) ; % check for less than one pixel error at 80% quantile assert(error(quant80) < 1, ... 'sift detector did not produce enough keypoints similar to UBC ones') ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_binsum.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_binsum.m
1,377
utf_8
f07f0f29ba6afe0111c967ab0b353a9d
function results = vl_test_binsum(varargin) % VL_TEST_BINSUM vl_test_init ; function test_three_args() vl_assert_almost_equal(... vl_binsum([0 0], 1, 2), [0 1]) ; vl_assert_almost_equal(... vl_binsum([1 7], -1, 1), [0 7]) ; vl_assert_almost_equal(... vl_binsum([1 7], -1, [1 2 2 2 2 2 2 2]), [0 0]) ; function test_four_args() vl_assert_almost_equal(... vl_binsum(eye(3), [1 1 1], [1 2 3], 1), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), [1 1 1]', [1 2 3]', 2), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), 1, [1 2 3], 1), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), 1, [1 2 3]', 2), 2*eye(3)) ; function test_3d_one() Z = zeros(3,3,3) ; B = 3*ones(3,1,3) ; R = Z ; R(:,3,:) = 17 ; vl_assert_almost_equal(... vl_binsum(Z, 17, B, 2), R) ; function test_3d_two() Z = zeros(3,3,3) ; B = 3*ones(3,3,1) ; X = zeros(3,3,1) ; X(:,:,1) = 17 ; R = Z ; R(:,:,3) = 17 ; vl_assert_almost_equal(... vl_binsum(Z, X, B, 3), R) ; function test_storage_classes() types = {@double, @single, ... @int32, @uint32, ... @int16, @uint16, ... @int8, @uint8} ; if vl_matlabversion() > 71000 types = horzcat(types, {@int64, @uint64}) ; end for a = types a = a{1} ; for b = types b = b{1} ; vl_assert_almost_equal(... vl_binsum(a(eye(3)), a([1 1 1]), b([1 2 3]), 1), a(2*eye(3))) ; end end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_lbp.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_lbp.m
892
utf_8
a79c0ce0c85e25c0b1657f3a0b499538
function results = vl_test_lbp(varargin) % VL_TEST_TWISTER vl_test_init ; function test_unfiorm_lbps(s) % enumerate the 56 uniform lbps q = 0 ; for i=0:7 for j=1:7 I = zeros(3) ; p = mod(s.pixels - i + 8, 8) + 1 ; I(p <= j) = 1 ; f = vl_lbp(single(I), 3) ; q = q + 1 ; vl_assert_equal(find(f), q) ; end end % constant lbps I = [1 1 1 ; 1 0 1 ; 1 1 1] ; f = vl_lbp(single(I), 3) ; vl_assert_equal(find(f), 57) ; I = [1 1 1 ; 1 1 1 ; 1 1 1] ; f = vl_lbp(single(I), 3) ; vl_assert_equal(find(f), 57) ; % other lbps I = [1 0 1 ; 0 0 0 ; 1 0 1] ; f = vl_lbp(single(I), 3) ; vl_assert_equal(find(f), 58) ; function test_fliplr(s) randn('state',0) ; I = randn(256,256,1,'single') ; f = vl_lbp(fliplr(I), 8) ; f_ = vl_lbpfliplr(vl_lbp(I, 8)) ; vl_assert_almost_equal(f,f_,1e-3) ; function s = setup() s.pixels = [5 6 7 ; 4 NaN 0 ; 3 2 1] ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_colsubset.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_colsubset.m
828
utf_8
be0c080007445b36333b863326fb0f15
function results = vl_test_colsubset(varargin) % VL_TEST_COLSUBSET vl_test_init ; function s = setup() s.x = [5 2 3 6 4 7 1 9 8 0] ; function test_beginning(s) vl_assert_equal(1:5, vl_colsubset(1:10, 5, 'beginning')) ; vl_assert_equal(1:5, vl_colsubset(1:10, .5, 'beginning')) ; function test_ending(s) vl_assert_equal(6:10, vl_colsubset(1:10, 5, 'ending')) ; vl_assert_equal(6:10, vl_colsubset(1:10, .5, 'ending')) ; function test_largest(s) vl_assert_equal([5 6 7 9 8], vl_colsubset(s.x, 5, 'largest')) ; vl_assert_equal([5 6 7 9 8], vl_colsubset(s.x, .5, 'largest')) ; function test_smallest(s) vl_assert_equal([2 3 4 1 0], vl_colsubset(s.x, 5, 'smallest')) ; vl_assert_equal([2 3 4 1 0], vl_colsubset(s.x, .5, 'smallest')) ; function test_random(s) assert(numel(intersect(s.x, vl_colsubset(s.x, 5, 'random'))) == 5) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_alldist.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_alldist.m
2,373
utf_8
9ea1a36c97fe715dfa2b8693876808ff
function results = vl_test_alldist(varargin) % VL_TEST_ALLDIST vl_test_init ; function s = setup() vl_twister('state', 0) ; s.X = 3.1 * vl_twister(10,10) ; s.Y = 4.7 * vl_twister(10,7) ; function test_null_args(s) vl_assert_equal(... vl_alldist(zeros(15,12), zeros(15,0), 'kl2'), ... zeros(12,0)) ; vl_assert_equal(... vl_alldist(zeros(15,0), zeros(15,0), 'kl2'), ... zeros(0,0)) ; vl_assert_equal(... vl_alldist(zeros(15,0), zeros(15,12), 'kl2'), ... zeros(0,12)) ; vl_assert_equal(... vl_alldist(zeros(0,15), zeros(0,12), 'kl2'), ... zeros(15,12)) ; function test_self(s) vl_assert_almost_equal(... vl_alldist(s.X, 'kl2'), ... makedist(@(x,y) x*y, s.X, s.X), ... 1e-6) ; function test_distances(s) dists = {'chi2', 'l2', 'l1', 'hell', 'js', ... 'kchi2', 'kl2', 'kl1', 'khell', 'kjs'} ; distsEquiv = { ... @(x,y) (x-y)^2 / (x + y), ... @(x,y) (x-y)^2, ... @(x,y) abs(x-y), ... @(x,y) (sqrt(x) - sqrt(y))^2, ... @(x,y) x - x .* log2(1 + y/x) + y - y .* log2(1 + x/y), ... @(x,y) 2 * (x*y) / (x + y), ... @(x,y) x*y, ... @(x,y) min(x,y), ... @(x,y) sqrt(x.*y), ... @(x,y) .5 * (x .* log2(1 + y/x) + y .* log2(1 + x/y))} ; types = {'single', 'double'} ; for simd = [0 1] for d = 1:length(dists) for t = 1:length(types) vl_simdctrl(simd) ; X = feval(str2func(types{t}), s.X) ; Y = feval(str2func(types{t}), s.Y) ; vl_assert_almost_equal(... vl_alldist(X,Y,dists{d}), ... makedist(distsEquiv{d},X,Y), ... 1e-4, ... 'alldist failed for dist=%s type=%s simd=%d', ... dists{d}, ... types{t}, ... simd) ; end end end function test_distance_kernel_pairs(s) dists = {'chi2', 'l2', 'l1', 'hell', 'js'} ; for d = 1:length(dists) dist = char(dists{d}) ; X = s.X ; Y = s.Y ; ker = ['k' dist] ; kxx = vl_alldist(X,X,ker) ; kyy = vl_alldist(Y,Y,ker) ; kxy = vl_alldist(X,Y,ker) ; kxx = repmat(diag(kxx), 1, size(s.Y,2)) ; kyy = repmat(diag(kyy), 1, size(s.X,1))' ; d2 = vl_alldist(X,Y,dist) ; vl_assert_almost_equal(d2, kxx + kyy - 2 * kxy, '1e-6') ; end function D = makedist(cmp,X,Y) [d,m] = size(X) ; [d,n] = size(Y) ; D = zeros(m,n) ; for i = 1:m for j = 1:n acc = 0 ; for k = 1:d acc = acc + cmp(X(k,i),Y(k,j)) ; end D(i,j) = acc ; end end conv = str2func(class(X)) ; D = conv(D) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_ihashsum.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_ihashsum.m
581
utf_8
edc283062469af62056b0782b171f5fc
function results = vl_test_ihashsum(varargin) % VL_TEST_IHASHSUM vl_test_init ; function s = setup() rand('state',0) ; s.data = uint8(round(16*rand(2,100))) ; sel = find(all(s.data==0)) ; s.data(1,sel)=1 ; function test_hash(s) D = size(s.data,1) ; K = 5 ; h = zeros(1,K,'uint32') ; id = zeros(D,K,'uint8'); next = zeros(1,K,'uint32') ; [h,id,next] = vl_ihashsum(h,id,next,K,s.data) ; sel = vl_ihashfind(id,next,K,s.data) ; count = double(h(sel)) ; [drop,i,j] = unique(s.data','rows') ; for k=1:size(s.data,2) count_(k) = sum(j == j(k)) ; end vl_assert_equal(count,count_) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_grad.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_grad.m
434
utf_8
4d03eb33a6a4f68659f868da95930ffb
function results = vl_test_grad(varargin) % VL_TEST_GRAD vl_test_init ; function s = setup() s.I = rand(150,253) ; s.I_small = rand(2,2) ; function test_equiv(s) vl_assert_equal(gradient(s.I), vl_grad(s.I)) ; function test_equiv_small(s) vl_assert_equal(gradient(s.I_small), vl_grad(s.I_small)) ; function test_equiv_forward(s) Ix = diff(s.I,2,1) ; Iy = diff(s.I,2,1) ; vl_assert_equal(gradient(s.I_small), vl_grad(s.I_small)) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_whistc.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_whistc.m
1,384
utf_8
81c446d35c82957659840ab2a579ec2c
function results = vl_test_whistc(varargin) % VL_TEST_WHISTC vl_test_init ; function test_acc() x = ones(1, 10) ; e = 1 ; o = 1:10 ; vl_assert_equal(vl_whistc(x, o, e), 55) ; function test_basic() x = 1:10 ; e = 1:10 ; o = ones(1, 10) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; x = linspace(-1,11,100) ; o = ones(size(x)) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; function test_multidim() x = rand(10, 20, 30) ; e = linspace(0,1,10) ; o = ones(size(x)) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; vl_assert_equal(histc(x, e, 1), vl_whistc(x, o, e, 1)) ; vl_assert_equal(histc(x, e, 2), vl_whistc(x, o, e, 2)) ; vl_assert_equal(histc(x, e, 3), vl_whistc(x, o, e, 3)) ; function test_nan() x = rand(10, 20, 30) ; e = linspace(0,1,10) ; o = ones(size(x)) ; x(1:7:end) = NaN ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; vl_assert_equal(histc(x, e, 1), vl_whistc(x, o, e, 1)) ; vl_assert_equal(histc(x, e, 2), vl_whistc(x, o, e, 2)) ; vl_assert_equal(histc(x, e, 3), vl_whistc(x, o, e, 3)) ; function test_no_edges() x = rand(10, 20, 30) ; o = ones(size(x)) ; vl_assert_equal(histc(1, []), vl_whistc(1, 1, [])) ; vl_assert_equal(histc(x, []), vl_whistc(x, o, [])) ; vl_assert_equal(histc(x, [], 1), vl_whistc(x, o, [], 1)) ; vl_assert_equal(histc(x, [], 2), vl_whistc(x, o, [], 2)) ; vl_assert_equal(histc(x, [], 3), vl_whistc(x, o, [], 3)) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_roc.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_roc.m
1,019
utf_8
9b2ae71c9dc3eda0fc54c65d55054d0c
function results = vl_test_roc(varargin) % VL_TEST_ROC vl_test_init ; function s = setup() s.scores0 = [5 4 3 2 1] ; s.scores1 = [5 3 4 2 1] ; s.labels = [1 1 -1 -1 -1] ; function test_perfect_tptn(s) [tpr,tnr] = vl_roc(s.labels,s.scores0) ; vl_assert_almost_equal(tpr, [0 1 2 2 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 3 3 2 1 0] / 3) ; function test_perfect_metrics(s) [tpr,tnr,info] = vl_roc(s.labels,s.scores0) ; vl_assert_almost_equal(info.eer, 0) ; vl_assert_almost_equal(info.auc, 1) ; function test_swap1_tptn(s) [tpr,tnr] = vl_roc(s.labels,s.scores1) ; vl_assert_almost_equal(tpr, [0 1 1 2 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 3 2 2 1 0] / 3) ; function test_swap1_tptn_stable(s) [tpr,tnr] = vl_roc(s.labels,s.scores1,'stable',true) ; vl_assert_almost_equal(tpr, [1 2 1 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 2 2 1 0] / 3) ; function test_swap1_metrics(s) [tpr,tnr,info] = vl_roc(s.labels,s.scores1) ; vl_assert_almost_equal(info.eer, 1/3) ; vl_assert_almost_equal(info.auc, 1 - 1/(2*3)) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_dsift.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_dsift.m
2,048
utf_8
fbbfb16d5a21936c1862d9551f657ccc
function results = vl_test_dsift(varargin) % VL_TEST_DSIFT vl_test_init ; function s = setup() I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; s.I = rgb2gray(single(I)) ; function test_fast_slow(s) binSize = 4 ; % bin size in pixels magnif = 3 ; % bin size / keypoint scale scale = binSize / magnif ; windowSize = 5 ; [f, d] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors') ; [f_, d_] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors', ... 'fast') ; error = std(d_(:) - d(:)) / std(d(:)) ; assert(error < 0.1, 'dsift fast approximation not close') ; function test_sift(s) binSize = 4 ; % bin size in pixels magnif = 3 ; % bin size / keypoint scale scale = binSize / magnif ; windowSizeRange = [1 1.2 5] ; for wi = 1:length(windowSizeRange) windowSize = windowSizeRange(wi) ; [f, d] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors') ; numKeys = size(f, 2) ; f_ = [f ; ones(1, numKeys) * scale ; zeros(1, numKeys)] ; [f_, d_] = vl_sift(s.I, ... 'magnif', magnif, ... 'frames', f_, ... 'firstoctave', -1, ... 'levels', 5, ... 'floatdescriptors', ... 'windowsize', windowSize) ; error = std(d_(:) - d(:)) / std(d(:)) ; assert(error < 0.1, 'dsift and sift equivalence') ; end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_alldist2.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_alldist2.m
2,284
utf_8
89a787e3d83516653ae8d99c808b9d67
function results = vl_test_alldist2(varargin) % VL_TEST_ALLDIST vl_test_init ; % TODO: test integer classes function s = setup() vl_twister('state', 0) ; s.X = 3.1 * vl_twister(10,10) ; s.Y = 4.7 * vl_twister(10,7) ; function test_null_args(s) vl_assert_equal(... vl_alldist2(zeros(15,12), zeros(15,0), 'kl2'), ... zeros(12,0)) ; vl_assert_equal(... vl_alldist2(zeros(15,0), zeros(15,0), 'kl2'), ... zeros(0,0)) ; vl_assert_equal(... vl_alldist2(zeros(15,0), zeros(15,12), 'kl2'), ... zeros(0,12)) ; vl_assert_equal(... vl_alldist2(zeros(0,15), zeros(0,12), 'kl2'), ... zeros(15,12)) ; function test_self(s) vl_assert_almost_equal(... vl_alldist2(s.X, 'kl2'), ... makedist(@(x,y) x*y, s.X, s.X), ... 1e-6) ; function test_distances(s) dists = {'chi2', 'l2', 'l1', 'hell', ... 'kchi2', 'kl2', 'kl1', 'khell'} ; distsEquiv = { ... @(x,y) (x-y)^2 / (x + y), ... @(x,y) (x-y)^2, ... @(x,y) abs(x-y), ... @(x,y) (sqrt(x) - sqrt(y))^2, ... @(x,y) 2 * (x*y) / (x + y), ... @(x,y) x*y, ... @(x,y) min(x,y), ... @(x,y) sqrt(x.*y)}; types = {'single', 'double', 'sparse'} ; for simd = [0 1] for d = 1:length(dists) for t = 1:length(types) vl_simdctrl(simd) ; X = feval(str2func(types{t}), s.X) ; Y = feval(str2func(types{t}), s.Y) ; a = vl_alldist2(X,Y,dists{d}) ; b = makedist(distsEquiv{d},X,Y) ; vl_assert_almost_equal(a,b, ... 1e-4, ... 'alldist failed for dist=%s type=%s simd=%d', ... dists{d}, ... types{t}, ... simd) ; end end end function test_distance_kernel_pairs(s) dists = {'chi2', 'l2', 'l1', 'hell'} ; for d = 1:length(dists) dist = char(dists{d}) ; X = s.X ; Y = s.Y ; ker = ['k' dist] ; kxx = vl_alldist2(X,X,ker) ; kyy = vl_alldist2(Y,Y,ker) ; kxy = vl_alldist2(X,Y,ker) ; kxx = repmat(diag(kxx), 1, size(s.Y,2)) ; kyy = repmat(diag(kyy), 1, size(s.X,1))' ; d2 = vl_alldist2(X,Y,dist) ; vl_assert_almost_equal(d2, kxx + kyy - 2 * kxy, '1e-6') ; end function D = makedist(cmp,X,Y) [d,m] = size(X) ; [d,n] = size(Y) ; D = zeros(m,n) ; for i = 1:m for j = 1:n acc = 0 ; for k = 1:d acc = acc + cmp(X(k,i),Y(k,j)) ; end D(i,j) = acc ; end end conv = str2func(class(X)) ; D = conv(D) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_fisher.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_fisher.m
2,097
utf_8
c9afd9ab635bd412cbf8be3c2d235f6b
function results = vl_test_fisher(varargin) % VL_TEST_FISHER vl_test_init ; function s = setup() randn('state',0) ; dimension = 5 ; numData = 21 ; numComponents = 3 ; s.x = randn(dimension,numData) ; s.mu = randn(dimension,numComponents) ; s.sigma2 = ones(dimension,numComponents) ; s.prior = ones(1,numComponents) ; s.prior = s.prior / sum(s.prior) ; function test_basic(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior) ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_norm(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi_ = phi_ / norm(phi_) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'normalized') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_sqrt(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi_ = sign(phi_) .* sqrt(abs(phi_)) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'squareroot') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_improved(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi_ = sign(phi_) .* sqrt(abs(phi_)) ; phi_ = phi_ / norm(phi_) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'improved') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_fast(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior, true) ; phi_ = sign(phi_) .* sqrt(abs(phi_)) ; phi_ = phi_ / norm(phi_) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'improved', 'fast') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function enc = simple_fisher(x, mu, sigma2, pri, fast) if nargin < 5, fast = false ; end sigma = sqrt(sigma2) ; for k = 1:size(mu,2) delta{k} = bsxfun(@times, bsxfun(@minus, x, mu(:,k)), 1./sigma(:,k)) ; q(k,:) = log(pri(k)) - 0.5 * sum(log(sigma2(:,k))) - 0.5 * sum(delta{k}.^2,1) ; end q = exp(bsxfun(@minus, q, max(q,[],1))) ; q = bsxfun(@times, q, 1 ./ sum(q,1)) ; n = size(x,2) ; if fast [~,i] = max(q) ; q = zeros(size(q)) ; q(sub2ind(size(q),i,1:n)) = 1 ; end for k = 1:size(mu,2) u{k} = delta{k} * q(k,:)' / n / sqrt(pri(k)) ; v{k} = (delta{k}.^2 - 1) * q(k,:)' / n / sqrt(2*pri(k)) ; end enc = cat(1, u{:}, v{:}) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_imsmooth.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_imsmooth.m
1,837
utf_8
718235242cad61c9804ba5e881c22f59
function results = vl_test_imsmooth(varargin) % VL_TEST_IMSMOOTH vl_test_init ; function s = setup() I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; I = max(min(vl_imdown(I),1),0) ; s.I = single(I) ; function test_pad_by_continuity(s) % Convolving a constant signal padded with continuity does not change % the signal. I = ones(3) ; for ker = {'triangular', 'gaussian'} ker = char(ker) ; J = vl_imsmooth(I, 2, ... 'kernel', ker, ... 'padding', 'continuity') ; vl_assert_almost_equal(J, I, 1e-4, ... 'padding by continutiy with kernel = %s', ker) ; end function test_kernels(s) for ker = {'triangular', 'gaussian'} ker = char(ker) ; for type = {@single, @double} for simd = [0 1] for sigma = [1 2 7] for step = [1 2 3] vl_simdctrl(simd) ; conv = type{1} ; g = equivalent_kernel(ker, sigma) ; J = vl_imsmooth(conv(s.I), sigma, ... 'kernel', ker, ... 'padding', 'zero', ... 'subsample', step) ; J_ = conv(convolve(s.I, g, step)) ; vl_assert_almost_equal(J, J_, 1e-4, ... 'kernel=%s sigma=%f step=%d simd=%d', ... ker, sigma, step, simd) ; end end end end end function g = equivalent_kernel(ker, sigma) switch ker case 'gaussian' W = ceil(4*sigma) ; g = exp(-.5*((-W:W)/(sigma+eps)).^2) ; case 'triangular' W = max(round(sigma),1) ; g = W - abs(-W+1:W-1) ; end g = g / sum(g) ; function I = convolve(I, g, step) if strcmp(class(I),'single') g = single(g) ; else g = double(g) ; end for k=1:size(I,3) I(:,:,k) = conv2(g,g,I(:,:,k),'same'); end I = I(1:step:end,1:step:end,:) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_svmtrain.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_svmtrain.m
4,277
utf_8
071b7c66191a22e8236fda16752b27aa
function results = vl_test_svmtrain(varargin) % VL_TEST_SVMTRAIN vl_test_init ; end function s = setup() randn('state',0) ; Np = 10 ; Nn = 10 ; xp = diag([1 3])*randn(2, Np) ; xn = diag([1 3])*randn(2, Nn) ; xp(1,:) = xp(1,:) + 2 + 1 ; xn(1,:) = xn(1,:) - 2 + 1 ; s.x = [xp xn] ; s.y = [ones(1,Np) -ones(1,Nn)] ; s.lambda = 0.01 ; s.biasMultiplier = 10 ; if 0 figure(1) ; clf; vl_plotframe(xp, 'g') ; hold on ; vl_plotframe(xn, 'r') ; axis equal ; grid on ; end % Run LibSVM as an accuate solver to compare results with. Note that % LibSVM optimizes a slightly different cost function due to the way % the bias is handled. % [s.w, s.b] = accurate_solver(s.x, s.y, s.lambda, s.biasMultiplier) ; s.w = [1.180762951236242; 0.098366470721632] ; s.b = -1.540018443946204 ; s.obj = obj(s, s.w, s.b) ; end function test_sgd_basic(s) for conv = {@single, @double} conv = conv{1} ; vl_twister('state',0) ; [w b info] = vl_svmtrain(s.x, s.y, s.lambda, ... 'Solver', 'sgd', ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', 1/s.biasMultiplier, ... 'MaxNumIterations', 1e5, ... 'Epsilon', 1e-3) ; % there are no absolute guarantees on the objective gap, but % the heuristic SGD uses as stopping criterion seems reasonable % within a factor 10 at least. o = obj(s, w, b) ; gap = o - s.obj ; vl_assert_almost_equal(conv([w; b]), conv([s.w; s.b]), 0.1) ; assert(gap <= 1e-2) ; end end function test_sdca_basic(s) for conv = {@single, @double} conv = conv{1} ; vl_twister('state',0) ; [w b info] = vl_svmtrain(s.x, s.y, s.lambda, ... 'Solver', 'sdca', ... 'BiasMultiplier', s.biasMultiplier, ... 'MaxNumIterations', 1e5, ... 'Epsilon', 1e-3) ; % the gap with the accurate solver cannot be % greater than the duality gap. o = obj(s, w, b) ; gap = o - s.obj ; vl_assert_almost_equal(conv([w; b]), conv([s.w; s.b]), 0.1) ; assert(gap <= 1e-3) ; end end function test_weights(s) for algo = {'sgd', 'sdca'} for conv = {@single, @double} conv = conv{1} ; vl_twister('state',0) ; numRepeats = 10 ; pos = find(s.y > 0) ; neg = find(s.y < 0) ; weights = ones(1, numel(s.y)) ; weights(pos) = numRepeats ; % simulate weighting by repeating positives [w b info] = vl_svmtrain(... s.x(:, [repmat(pos,1,numRepeats) neg]), ... s.y(:, [repmat(pos,1,numRepeats) neg]), ... s.lambda / (numel(pos) *numRepeats + numel(neg)) / (numel(pos) + numel(neg)), ... 'Solver', 'sdca', ... 'BiasMultiplier', s.biasMultiplier, ... 'MaxNumIterations', 1e6, ... 'Epsilon', 1e-4) ; % apply weigthing [w_ b_ info_] = vl_svmtrain(... s.x, ... s.y, ... s.lambda, ... 'Solver', char(algo), ... 'BiasMultiplier', s.biasMultiplier, ... 'MaxNumIterations', 1e6, ... 'Epsilon', 1e-4, ... 'Weights', weights) ; vl_assert_almost_equal(conv([w; b]), conv([w_; b_]), 0.05) ; end end end function test_homkermap(s) for solver = {'sgd', 'sdca'} for conv = {@single,@double} conv = conv{1} ; dataset = vl_svmdataset(conv(s.x), 'homkermap', struct('order',1)) ; vl_twister('state',0) ; [w_ b_] = vl_svmtrain(dataset, s.y, s.lambda) ; x_hom = vl_homkermap(conv(s.x), 1) ; vl_twister('state',0) ; [w b] = vl_svmtrain(x_hom, s.y, s.lambda) ; vl_assert_almost_equal([w; b],[w_; b_], 1e-7) ; end end end function [w,b] = accurate_solver(X, y, lambda, biasMultiplier) addpath opt/libsvm/matlab/ N = size(X,2) ; model = svmtrain(y', [(1:N)' X'*X], sprintf(' -c %f -t 4 -e 0.00001 ', 1/(lambda*N))) ; w = X(:,model.SVs) * model.sv_coef ; b = - model.rho ; format long ; disp('model w:') disp(w) disp('bias b:') disp(b) end function o = obj(s, w, b) o = (sum(w.*w) + b*b) * s.lambda / 2 + mean(max(0, 1 - s.y .* (w'*s.x + b))) ; end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_phow.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_phow.m
549
utf_8
f761a3bb218af855986263c67b2da411
function results = vl_test_phow(varargin) % VL_TEST_PHOPW vl_test_init ; function s = setup() s.I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; s.I = single(s.I) ; function test_gray(s) [f,d] = vl_phow(s.I, 'color', 'gray') ; assert(size(d,1) == 128) ; function test_rgb(s) [f,d] = vl_phow(s.I, 'color', 'rgb') ; assert(size(d,1) == 128*3) ; function test_hsv(s) [f,d] = vl_phow(s.I, 'color', 'hsv') ; assert(size(d,1) == 128*3) ; function test_opponent(s) [f,d] = vl_phow(s.I, 'color', 'opponent') ; assert(size(d,1) == 128*3) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_kmeans.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_kmeans.m
3,632
utf_8
0e1d6f4f8101c8982a0e743e0980c65a
function results = vl_test_kmeans(varargin) % VL_TEST_KMEANS % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). vl_test_init ; function s = setup() randn('state',0) ; s.X = randn(128, 100) ; function test_basic(s) [centers, assignments, en] = vl_kmeans(s.X, 10, 'NumRepetitions', 10) ; [centers_, assignments_, en_] = simpleKMeans(s.X, 10) ; assert(en_ <= 1.1 * en, 'vl_kmeans did not optimize enough') ; function test_algorithms(s) distances = {'l1', 'l2'} ; dataTypes = {'single','double'} ; for dataType = dataTypes for distance = distances distance = char(distance) ; conversion = str2func(char(dataType)) ; X = conversion(s.X) ; vl_twister('state',0) ; [centers, assignments, en] = vl_kmeans(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Algorithm', 'Lloyd', ... 'Distance', distance) ; vl_twister('state',0) ; [centers_, assignments_, en_] = vl_kmeans(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Algorithm', 'Elkan', ... 'Distance', distance) ; vl_twister('state',0) ; [centers__, assignments__, en__] = vl_kmeans(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Algorithm', 'ANN', ... 'Distance', distance, ... 'NumTrees', 3, ... 'MaxNumComparisons',0) ; vl_assert_almost_equal(centers, centers_, 1e-5) ; vl_assert_almost_equal(assignments, assignments_, 1e-5) ; vl_assert_almost_equal(en, en_, 1e-4) ; vl_assert_almost_equal(centers, centers__, 1e-5) ; vl_assert_almost_equal(assignments, assignments__, 1e-5) ; vl_assert_almost_equal(en, en__, 1e-4) ; vl_assert_almost_equal(centers_, centers__, 1e-5) ; vl_assert_almost_equal(assignments_, assignments__, 1e-5) ; vl_assert_almost_equal(en_, en__, 1e-4) ; end end function test_patterns(s) distances = {'l1', 'l2'} ; dataTypes = {'single','double'} ; for dataType = dataTypes for distance = distances distance = char(distance) ; conversion = str2func(char(dataType)) ; data = [1 1 0 0 ; 1 0 1 0] ; data = conversion(data) ; [centers, assignments, en] = vl_kmeans(data, 4, ... 'NumRepetitions', 100, ... 'Distance', distance) ; assert(isempty(setdiff(data', centers', 'rows'))) ; end end function [centers, assignments, en] = simpleKMeans(X, numCenters) [dimension, numData] = size(X) ; centers = randn(dimension, numCenters) ; for iter = 1:10 [dists, assignments] = min(vl_alldist(centers, X)) ; en = sum(dists) ; centers = [zeros(dimension, numCenters) ; ones(1, numCenters)] ; centers = vl_binsum(centers, ... [X ; ones(1,numData)], ... repmat(assignments, dimension+1, 1), 2) ; centers = centers(1:end-1, :) ./ repmat(centers(end,:), dimension, 1) ; end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_hikmeans.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_hikmeans.m
463
utf_8
dc3b493646e66316184e86ff4e6138ab
function results = vl_test_hikmeans(varargin) % VL_TEST_IKMEANS vl_test_init ; function s = setup() rand('state',0) ; s.data = uint8(rand(2,1000) * 255) ; function test_basic(s) [tree, assign] = vl_hikmeans(s.data,3,100) ; assign_ = vl_hikmeanspush(tree, s.data) ; vl_assert_equal(assign,assign_) ; function test_elkan(s) [tree, assign] = vl_hikmeans(s.data,3,100,'method','elkan') ; assign_ = vl_hikmeanspush(tree, s.data) ; vl_assert_equal(assign,assign_) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_aib.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_aib.m
1,277
utf_8
78978ae54e7ebe991d136336ba4bf9c6
function results = vl_test_aib(varargin) % VL_TEST_AIB vl_test_init ; function s = setup() s = [] ; function test_basic(s) Pcx = [.3 .3 0 0 0 0 .2 .2] ; % This results in the AIB tree % % 1 - \ % 5 - \ % 2 - / \ % - 7 % 3 - \ / % 6 - / % 4 - / % % coded by the map [5 5 6 6 7 1] (1 denotes the root). [parents,cost] = vl_aib(Pcx) ; vl_assert_equal(parents, [5 5 6 6 7 7 1]) ; vl_assert_almost_equal(mi(Pcx)*[1 1 1], cost(1:3), 1e-3) ; [cut,map,short] = vl_aibcut(parents,2) ; vl_assert_equal(cut, [5 6]) ; vl_assert_equal(map, [1 1 2 2 1 2 0]) ; vl_assert_equal(short, [5 5 6 6 5 6 7]) ; function test_cluster_null(s) Pcx = [.5 .5 0 0 0 0 0 0] ; % This results in the AIB tree % % 1 - \ % 5 % 2 - / % % 3 x % % 4 x % % If ClusterNull is specified, the values 3 and 4 % which have zero probability are merged first % % 1 ----------\ % 7 % 2 ----- \ / % 6-/ % 3 -\ / % 5 -/ % 4 -/ parents1 = vl_aib(Pcx) ; parents2 = vl_aib(Pcx,'ClusterNull') ; vl_assert_equal(parents1, [5 5 0 0 1 0 0]) ; vl_assert_equal(parents2(3), parents2(4)) ; function x = mi(P) % mutual information P1 = sum(P,1) ; P2 = sum(P,2) ; x = sum(sum(P .* log(max(P,1e-10) ./ (P2*P1)))) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_plotbox.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_plotbox.m
414
utf_8
aa06ce4932a213fb933bbede6072b029
function results = vl_test_plotbox(varargin) % VL_TEST_PLOTBOX vl_test_init ; function test_basic(s) figure(1) ; clf ; vl_plotbox([-1 -1 1 1]') ; xlim([-2 2]) ; ylim([-2 2]) ; close(1) ; function test_multiple(s) figure(1) ; clf ; randn('state', 0) ; vl_plotbox(randn(4,10)) ; close(1) ; function test_style(s) figure(1) ; clf ; randn('state', 0) ; vl_plotbox(randn(4,10), 'r-.', 'LineWidth', 3) ; close(1) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_imarray.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_imarray.m
795
utf_8
c5e6a5aa8c2e63e248814f5bd89832a8
function results = vl_test_imarray(varargin) % VL_TEST_IMARRAY vl_test_init ; function test_movie_rgb(s) A = rand(23,15,3,4) ; B = vl_imarray(A,'movie',true) ; function test_movie_indexed(s) cmap = get(0,'DefaultFigureColormap') ; A = uint8(size(cmap,1)*rand(23,15,4)) ; A = min(A,size(cmap,1)-1) ; B = vl_imarray(A,'movie',true) ; function test_movie_gray_indexed(s) A = uint8(255*rand(23,15,4)) ; B = vl_imarray(A,'movie',true,'cmap',gray(256)) ; for k=1:size(A,3) vl_assert_equal(squeeze(A(:,:,k)), ... frame2im(B(k))) ; end function test_basic(s) M = 3 ; N = 4 ; width = 32 ; height = 15 ; for i=1:M for j=1:N A{i,j} = rand(width,height) ; end end A1 = A'; A1 = cat(3,A1{:}) ; A2 = cell2mat(A) ; B = vl_imarray(A1, 'layout', [M N]) ; vl_assert_equal(A2,B) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_homkermap.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_homkermap.m
1,903
utf_8
c157052bf4213793a961bde1f73fb307
function results = vl_test_homkermap(varargin) % VL_TEST_HOMKERMAP vl_test_init ; function check_ker(ker, n, window, period) args = {n, ker, 'window', window} ; if nargin > 3 args = {args{:}, 'period', period} ; end x = [-1 -.5 0 .5 1] ; y = linspace(0,2,100) ; for conv = {@single, @double} x = feval(conv{1}, x) ; y = feval(conv{1}, y) ; sx = sign(x) ; sy = sign(y) ; psix = vl_homkermap(x, args{:}) ; psiy = vl_homkermap(y, args{:}) ; k = vl_alldist(psix,psiy,'kl2') ; k_ = (sx'*sy) .* vl_alldist(sx.*x,sy.*y,ker) ; vl_assert_almost_equal(k, k_, 2e-2) ; end function test_uniform_kchi2(), check_ker('kchi2', 3, 'uniform', 15) ; function test_uniform_kjs(), check_ker('kjs', 3, 'uniform', 15) ; function test_uniform_kl1(), check_ker('kl1', 29, 'uniform', 15) ; function test_rect_kchi2(), check_ker('kchi2', 3, 'rectangular', 15) ; function test_rect_kjs(), check_ker('kjs', 3, 'rectangular', 15) ; function test_rect_kl1(), check_ker('kl1', 29, 'rectangular', 10) ; function test_auto_uniform_kchi2(),check_ker('kchi2', 3, 'uniform') ; function test_auto_uniform_kjs(), check_ker('kjs', 3, 'uniform') ; function test_auto_uniform_kl1(), check_ker('kl1', 25, 'uniform') ; function test_auto_rect_kchi2(), check_ker('kchi2', 3, 'rectangular') ; function test_auto_rect_kjs(), check_ker('kjs', 3, 'rectangular') ; function test_auto_rect_kl1(), check_ker('kl1', 25, 'rectangular') ; function test_gamma() x = linspace(0,1,20) ; for gamma = linspace(.2,2,10) k = vl_alldist(x, 'kchi2') .* (x'*x + 1e-12).^((gamma-1)/2) ; psix = vl_homkermap(x, 3, 'kchi2', 'gamma', gamma) ; assert(norm(k - psix'*psix) < 1e-2) ; end function test_negative() x = linspace(-1,1,20) ; k = vl_alldist(abs(x), 'kchi2') .* (sign(x)'*sign(x)) ; psix = vl_homkermap(x, 3, 'kchi2') ; assert(norm(k - psix'*psix) < 1e-2) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_slic.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_slic.m
200
utf_8
12a6465e3ef5b4bcfd7303cd8a9229d4
function results = vl_test_slic(varargin) % VL_TEST_SLIC vl_test_init ; function s = setup() s.im = im2single(vl_impattern('roofs1')) ; function test_slic(s) segmentation = vl_slic(s.im, 10, 0.1) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_ikmeans.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_ikmeans.m
466
utf_8
1ee2f647ac0035ed0d704a0cd615b040
function results = vl_test_ikmeans(varargin) % VL_TEST_IKMEANS vl_test_init ; function s = setup() rand('state',0) ; s.data = uint8(rand(2,1000) * 255) ; function test_basic(s) [centers, assign] = vl_ikmeans(s.data,100) ; assign_ = vl_ikmeanspush(s.data, centers) ; vl_assert_equal(assign,assign_) ; function test_elkan(s) [centers, assign] = vl_ikmeans(s.data,100,'method','elkan') ; assign_ = vl_ikmeanspush(s.data, centers) ; vl_assert_equal(assign,assign_) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_mser.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_mser.m
242
utf_8
1ad33563b0c86542a2978ee94e0f4a39
function results = vl_test_mser(varargin) % VL_TEST_MSER vl_test_init ; function s = setup() s.im = im2uint8(rgb2gray(vl_impattern('roofs1'))) ; function test_mser(s) [regions,frames] = vl_mser(s.im) ; mask = vl_erfill(s.im, regions(1)) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_inthist.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_inthist.m
811
utf_8
459027d0c54d8f197563a02ab66ef45d
function results = vl_test_inthist(varargin) % VL_TEST_INTHIST vl_test_init ; function s = setup() rand('state',0) ; s.labels = uint32(8*rand(123, 76, 3)) ; function test_basic(s) l = 10 ; hist = vl_inthist(s.labels, 'numlabels', l) ; hist_ = inthist_slow(s.labels, l) ; vl_assert_equal(double(hist),hist_) ; function test_sample(s) rand('state',0) ; boxes = 10 * rand(4,20) + .5 ; boxes(3:4,:) = boxes(3:4,:) + boxes(1:2,:) ; boxes = min(boxes, 10) ; boxes = uint32(boxes) ; inthist = vl_inthist(s.labels) ; hist = vl_sampleinthist(inthist, boxes) ; function hist = inthist_slow(labels, numLabels) m = size(labels,1) ; n = size(labels,2) ; l = numLabels ; b = zeros(m*n,l) ; b = vl_binsum(b, 1, reshape(labels,m*n,[]), 2) ; b = reshape(b,m,n,l) ; for k=1:l hist(:,:,k) = cumsum(cumsum(b(:,:,k)')') ; end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_imdisttf.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_imdisttf.m
1,885
utf_8
ae921197988abeb984cbcdf9eaf80e77
function results = vl_test_imdisttf(varargin) % VL_TEST_DISTTF vl_test_init ; function test_basic() for conv = {@single, @double} conv = conv{1} ; I = conv([0 0 0 ; 0 -2 0 ; 0 0 0]) ; D = vl_imdisttf(I); assert(isequal(D, conv(- [0 1 0 ; 1 2 1 ; 0 1 0]))) ; I(2,2) = -3 ; [D,map] = vl_imdisttf(I) ; assert(isequal(D, conv(-1 - [0 1 0 ; 1 2 1 ; 0 1 0]))) ; assert(isequal(map, 5 * ones(3))) ; end function test_1x1() assert(isequal(1, vl_imdisttf(1))) ; function test_rand() I = rand(13,31) ; for t=1:4 param = [rand randn rand randn] ; [D0,map0] = imdisttf_equiv(I,param) ; [D,map] = vl_imdisttf(I,param) ; vl_assert_almost_equal(D,D0,1e-10) assert(isequal(map,map0)) ; end function test_param() I = zeros(3,4) ; I(1,1) = -1 ; [D,map] = vl_imdisttf(I,[1 0 1 0]); assert(isequal(-[1 0 0 0 ; 0 0 0 0 ; 0 0 0 0 ;], D)) ; D0 = -[1 .9 .6 .1 ; 0 0 0 0 ; 0 0 0 0 ;] ; [D,map] = vl_imdisttf(I,[.1 0 1 0]); vl_assert_almost_equal(D,D0,1e-10); D0 = -[1 .9 .6 .1 ; .9 .8 .5 0 ; .6 .5 .2 0 ;] ; [D,map] = vl_imdisttf(I,[.1 0 .1 0]); vl_assert_almost_equal(D,D0,1e-10); D0 = -[.9 1 .9 .6 ; .8 .9 .8 .5 ; .5 .6 .5 .2 ; ] ; [D,map] = vl_imdisttf(I,[.1 1 .1 0]); vl_assert_almost_equal(D,D0,1e-10); function test_special() I = rand(13,31) -.5 ; D = vl_imdisttf(I, [0 0 1e5 0]) ; vl_assert_almost_equal(D(:,1),min(I,[],2),1e-10); D = vl_imdisttf(I, [1e5 0 0 0]) ; vl_assert_almost_equal(D(1,:),min(I,[],1),1e-10); function [D,map]=imdisttf_equiv(I,param) D = inf + zeros(size(I)) ; map = zeros(size(I)) ; ur = 1:size(D,2) ; vr = 1:size(D,1) ; [u,v] = meshgrid(ur,vr) ; for v_=vr for u_=ur E = I(v_,u_) + ... param(1) * (u - u_ - param(2)).^2 + ... param(3) * (v - v_ - param(4)).^2 ; map(E < D) = sub2ind(size(I),v_,u_) ; D = min(D,E) ; end end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_vlad.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_vlad.m
1,977
utf_8
d3797288d6edb1d445b890db3780c8ce
function results = vl_test_vlad(varargin) % VL_TEST_VLAD vl_test_init ; function s = setup() randn('state',0) ; s.x = randn(128,256) ; s.mu = randn(128,16) ; assignments = rand(16, 256) ; s.assignments = bsxfun(@times, assignments, 1 ./ sum(assignments,1)) ; function test_basic (s) x = [1, 2, 3] ; mu = [0, 0, 0] ; assignments = eye(3) ; phi = vl_vlad(x, mu, assignments, 'unnormalized') ; vl_assert_equal(phi, [1 2 3]') ; mu = [0, 1, 2] ; phi = vl_vlad(x, mu, assignments, 'unnormalized') ; vl_assert_equal(phi, [1 1 1]') ; phi = vl_vlad([x x], mu, [assignments assignments], 'unnormalized') ; vl_assert_equal(phi, [2 2 2]') ; function test_rand (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi = vl_vlad(s.x, s.mu, s.assignments, 'unnormalized') ; vl_assert_equal(phi, phi_) ; function test_norm (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi_ = phi_ / norm(phi_) ; phi = vl_vlad(s.x, s.mu, s.assignments) ; vl_assert_almost_equal(phi, phi_, 1e-4) ; function test_sqrt (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi_ = sign(phi_) .* sqrt(abs(phi_)) ; phi_ = phi_ / norm(phi_) ; phi = vl_vlad(s.x, s.mu, s.assignments, 'squareroot') ; vl_assert_almost_equal(phi, phi_, 1e-4) ; function test_individual (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi_ = reshape(phi_, size(s.x,1), []) ; phi_ = bsxfun(@times, phi_, 1 ./ sqrt(sum(phi_.^2))) ; phi_ = phi_(:) ; phi = vl_vlad(s.x, s.mu, s.assignments, 'unnormalized', 'normalizecomponents') ; vl_assert_almost_equal(phi, phi_, 1e-4) ; function test_mass (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi_ = reshape(phi_, size(s.x,1), []) ; phi_ = bsxfun(@times, phi_, 1 ./ sum(s.assignments,2)') ; phi_ = phi_(:) ; phi = vl_vlad(s.x, s.mu, s.assignments, 'unnormalized', 'normalizemass') ; vl_assert_almost_equal(phi, phi_, 1e-4) ; function enc = simple_vlad(x, mu, assign) for i = 1:size(assign,1) enc{i} = x * assign(i,:)' - sum(assign(i,:)) * mu(:,i) ; end enc = cat(1, enc{:}) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_pr.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_pr.m
3,763
utf_8
4d1da5ccda1a7df2bec35b8f12fdd620
function results = vl_test_pr(varargin) % VL_TEST_PR vl_test_init ; function s = setup() s.scores0 = [5 4 3 2 1] ; s.scores1 = [5 3 4 2 1] ; s.labels = [1 1 -1 -1 -1] ; function test_perfect_tptn(s) [rc,pr] = vl_pr(s.labels,s.scores0) ; vl_assert_almost_equal(pr, [1 1/1 2/2 2/3 2/4 2/5]) ; vl_assert_almost_equal(rc, [0 1 2 2 2 2] / 2) ; function test_perfect_metrics(s) [rc,pr,info] = vl_pr(s.labels,s.scores0) ; vl_assert_almost_equal(info.auc, 1) ; vl_assert_almost_equal(info.ap, 1) ; vl_assert_almost_equal(info.ap_interp_11, 1) ; function test_swap1_tptn(s) [rc,pr] = vl_pr(s.labels,s.scores1) ; vl_assert_almost_equal(pr, [1 1/1 1/2 2/3 2/4 2/5]) ; vl_assert_almost_equal(rc, [0 1 1 2 2 2] / 2) ; function test_swap1_tptn_stable(s) [rc,pr] = vl_pr(s.labels,s.scores1,'stable',true) ; vl_assert_almost_equal(pr, [1/1 2/3 1/2 2/4 2/5]) ; vl_assert_almost_equal(rc, [1 2 1 2 2] / 2) ; function test_swap1_metrics(s) [rc,pr,info] = vl_pr(s.labels,s.scores1) ; clf; vl_pr(s.labels,s.scores1) ; vl_assert_almost_equal(info.auc, [.5 + .5 * (.5 + 2/3)/2]) ; vl_assert_almost_equal(info.ap, [1/1 + 2/3]/2) ; vl_assert_almost_equal(info.ap_interp_11, mean([1 1 1 1 1 1 2/3 2/3 2/3 2/3 2/3])) ; function test_inf(s) scores = [1 -inf -1 -1 -1 -1] ; labels = [1 1 -1 -1 -1 -1] ; [rc1,pr1,info1] = vl_pr(labels, scores, 'includeInf', true) ; [rc2,pr2,info2] = vl_pr(labels, scores, 'includeInf', false) ; vl_assert_equal(numel(rc1), numel(rc2) + 1) ; vl_assert_almost_equal(info1.auc, [1 * .5 + (1/5 + 2/6)/2 * .5]) ; vl_assert_almost_equal(info1.ap, [1 * .5 + 2/6 * .5]) ; vl_assert_almost_equal(info1.ap_interp_11, [1 * 6/11 + 2/6 * 5/11]) ; vl_assert_almost_equal(info2.auc, 0.5) ; vl_assert_almost_equal(info2.ap, 0.5) ; vl_assert_almost_equal(info2.ap_interp_11, 1 * 6 / 11) ; function test_inf_stable(s) scores = [-1 -1 -1 -1 -inf +1] ; labels = [-1 -1 -1 -1 +1 +1] ; [rc1,pr1,info1] = vl_pr(labels, scores, 'includeInf', true, 'stable', true) ; [rc2,pr2,info2] = vl_pr(labels, scores, 'includeInf', false, 'stable', true) ; [rc1_,pr1_,info1_] = vl_pr(labels, scores, 'includeInf', true, 'stable', false) ; [rc2_,pr2_,info2_] = vl_pr(labels, scores, 'includeInf', false, 'stable', false) ; % stability does not change scores vl_assert_almost_equal(info1,info1_) ; vl_assert_almost_equal(info2,info2_) ; % unstable with inf (first point (0,1) is conventional) vl_assert_almost_equal(rc1_, [0 .5 .5 .5 .5 .5 1]) vl_assert_almost_equal(pr1_, [1 1 1/2 1/3 1/4 1/5 2/6]) % unstable without inf vl_assert_almost_equal(rc2_, [0 .5 .5 .5 .5 .5]) vl_assert_almost_equal(pr2_, [1 1 1/2 1/3 1/4 1/5]) % stable with inf (no conventional point here) vl_assert_almost_equal(rc1, [.5 .5 .5 .5 1 .5]) ; vl_assert_almost_equal(pr1, [1/2 1/3 1/4 1/5 2/6 1]) ; % stable without inf (no conventional point and -inf are NaN) vl_assert_almost_equal(rc2, [.5 .5 .5 .5 NaN .5]) ; vl_assert_almost_equal(pr2, [1/2 1/3 1/4 1/5 NaN 1]) ; function test_normalised_pr(s) scores = [+1 +2] ; labels = [+1 -1] ; [rc1,pr1,info1] = vl_pr(labels,scores) ; [rc2,pr2,info2] = vl_pr(labels,scores,'normalizePrior',.5) ; vl_assert_almost_equal(pr1, pr2) ; vl_assert_almost_equal(rc1, rc2) ; scores_ = [+1 +2 +2 +2] ; labels_ = [+1 -1 -1 -1] ; [rc3,pr3,info3] = vl_pr(labels_,scores_) ; [rc4,pr4,info4] = vl_pr(labels,scores,'normalizePrior',1/4) ; vl_assert_almost_equal(info3, info4) ; function test_normalised_pr_corner_cases(s) scores = 1:10 ; labels = ones(1,10) ; [rc1,pr1,info1] = vl_pr(labels,scores) ; vl_assert_almost_equal(rc1, (0:10)/10) ; vl_assert_almost_equal(pr1, ones(1,11)) ; scores = 1:10 ; labels = zeros(1,10) ; [rc2,pr2,info2] = vl_pr(labels,scores) ; vl_assert_almost_equal(rc2, zeros(1,11)) ; vl_assert_almost_equal(pr2, ones(1,11)) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_hog.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_hog.m
1,555
utf_8
eed7b2a116d142040587dc9c4eb7cd2e
function results = vl_test_hog(varargin) % VL_TEST_HOG vl_test_init ; function s = setup() s.im = im2single(vl_impattern('roofs1')) ; [x,y]= meshgrid(linspace(-1,1,128)) ; s.round = single(x.^2+y.^2); s.imSmall = s.im(1:128,1:128,:) ; s.imSmall = s.im ; s.imSmallFlipped = s.imSmall(:,end:-1:1,:) ; function test_basic_call(s) cellSize = 8 ; hog = vl_hog(s.im, cellSize) ; function test_bilinear_orientations(s) cellSize = 8 ; vl_hog(s.im, cellSize, 'bilinearOrientations') ; function test_variants_and_flipping(s) variants = {'uoctti', 'dalaltriggs'} ; numOrientationsRange = 3:9 ; cellSize = 8 ; for cellSize = [4 8 16] for i=1:numel(variants) for j=1:numel(numOrientationsRange) args = {'bilinearOrientations', ... 'variant', variants{i}, ... 'numOrientations', numOrientationsRange(j)} ; hog = vl_hog(s.imSmall, cellSize, args{:}) ; perm = vl_hog('permutation', args{:}) ; hog1 = vl_hog(s.imSmallFlipped, cellSize, args{:}) ; hog2 = hog(:,end:-1:1,perm) ; %norm(hog1(:)-hog2(:)) vl_assert_almost_equal(hog1,hog2,1e-3) ; end end end function test_polar(s) cellSize = 8 ; im = s.round ; for b = [0 1] if b args = {'bilinearOrientations'} ; else args = {} ; end hog1 = vl_hog(im, cellSize, args{:}) ; [ix,iy] = vl_grad(im) ; m = sqrt(ix.^2 + iy.^2) ; a = atan2(iy,ix) ; m(:,[1 end]) = 0 ; m([1 end],:) = 0 ; hog2 = vl_hog(cat(3,m,a), cellSize, 'DirectedPolarField', args{:}) ; vl_assert_almost_equal(hog1,hog2,norm(hog1(:))/1000) ; end
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_argparse.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_argparse.m
795
utf_8
e72185b27206d0ee1dfdc19fe77a5be6
function results = vl_test_argparse(varargin) % VL_TEST_ARGPARSE vl_test_init ; function test_basic() opts.field1 = 1 ; opts.field2 = 2 ; opts.field3 = 3 ; opts_ = opts ; opts_.field1 = 3 ; opts_.field2 = 10 ; opts = vl_argparse(opts, {'field2', 10, 'field1', 3}) ; assert(isequal(opts, opts_)) ; opts_.field1 = 9 ; opts = vl_argparse(opts, {'field1', 4, 'field1', 9}) ; assert(isequal(opts, opts_)) ; function test_error() opts.field1 = 1 ; try opts = vl_argparse(opts, {'field2', 5}) ; catch e return ; end assert(false) ; function test_leftovers() opts1.field1 = 1 ; opts2.field2 = 1 ; opts1_.field1 = 2 ; opts2_.field2 = 2 ; [opts1,args] = vl_argparse(opts1, {'field1', 2, 'field2', 2}) ; opts2 = vl_argparse(opts2, args) ; assert(isequal(opts1,opts1_), isequal(opts2,opts2_)) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_liop.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_liop.m
1,023
utf_8
a162be369073bed18e61210f44088cf3
function results = vl_test_liop(varargin) % VL_TEST_SIFT vl_test_init ; function s = setup() randn('state',0) ; s.patch = randn(65,'single') ; xr = -32:32 ; [x,y] = meshgrid(xr) ; s.blob = - single(x.^2+y.^2) ; function test_basic(s) d = vl_liop(s.patch) ; function test_blob(s) % with a blob, all local intensity order pattern are equal. In % particular, if the blob intensity decreases away from the center, % then all local intensities sampled in a neighbourhood of 2 elements % are already sorted (see LIOP details). d = vl_liop(s.blob, ... 'IntensityThreshold', 0, ... 'NumNeighbours', 2, ... 'NumSpatialBins', 1) ; assert(isequal(d, single([1;0]))) ; function test_neighbours(s) for n=2:5 for p=1:3 d = vl_liop(s.patch, 'NumNeighbours', n, 'NumSpatialBins', p) ; assert(numel(d) == p * factorial(n)) ; end end function test_multiple(s) x = randn(31,31,3, 'single') ; d = vl_liop(x) ; for i=1:3 d_(:,i) = vl_liop(squeeze(x(:,:,i))) ; end assert(isequal(d,d_)) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_test_binsearch.m
.m
SceneRecognition-master/code/vlfeat/toolbox/xtest/vl_test_binsearch.m
1,339
utf_8
85dc020adce3f228fe7dfb24cf3acc63
function results = vl_test_binsearch(varargin) % VL_TEST_BINSEARCH vl_test_init ; function test_inf_bins() x = [-inf -1 0 1 +inf] ; vl_assert_equal(vl_binsearch([], x), [0 0 0 0 0]) ; vl_assert_equal(vl_binsearch([-inf 0], x), [1 1 2 2 2]) ; vl_assert_equal(vl_binsearch([-inf], x), [1 1 1 1 1]) ; vl_assert_equal(vl_binsearch([-inf +inf], x), [1 1 1 1 2]) ; function test_empty() vl_assert_equal(vl_binsearch([], []), []) ; function test_bnd() vl_assert_equal(vl_binsearch([], [1]), [0]) ; vl_assert_equal(vl_binsearch([], [-inf]), [0]) ; vl_assert_equal(vl_binsearch([], [+inf]), [0]) ; vl_assert_equal(vl_binsearch([1], [.9]), [0]) ; vl_assert_equal(vl_binsearch([1], [1]), [1]) ; vl_assert_equal(vl_binsearch([1], [-inf]), [0]) ; vl_assert_equal(vl_binsearch([1], [+inf]), [1]) ; function test_basic() vl_assert_equal(vl_binsearch(-10:10, -10:10), 1:21) ; vl_assert_equal(vl_binsearch(-10:10, -11:10), 0:21) ; vl_assert_equal(vl_binsearch(-10:10, [-inf, -11:10, +inf]), [0 0:21 21]) ; function test_frac() vl_assert_equal(vl_binsearch(1:10, 1:.5:10), floor(1:.5:10)) vl_assert_equal(vl_binsearch(1:10, fliplr(1:.5:10)), ... fliplr(floor(1:.5:10))) ; function test_array() a = reshape(1:100,10,10) ; b = reshape(1:.5:100.5, 2, []) ; c = floor(b) ; vl_assert_equal(vl_binsearch(a,b), c) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_roc.m
.m
SceneRecognition-master/code/vlfeat/toolbox/plotop/vl_roc.m
10,113
utf_8
22fd8ff455ee62a96ffd94b9074eafeb
function [tpr,tnr,info] = vl_roc(labels, scores, varargin) %VL_ROC ROC curve. % [TPR,TNR] = VL_ROC(LABELS, SCORES) computes the Receiver Operating % Characteristic (ROC) curve [1]. LABELS is a row vector of ground % truth labels, greater than zero for a positive sample and smaller % than zero for a negative one. SCORES is a row vector of % corresponding sample scores, usually obtained from a % classifier. The scores induce a ranking of the samples where % larger scores should correspond to positive labels. % % Without output arguments, the function plots the ROC graph of the % specified data in the current graphical axis. % % Otherwise, the function returns the true positive and true % negative rates TPR and TNR. These are vectors of the same size of % LABELS and SCORES and are computed as follows. Samples are ranked % by decreasing scores, starting from rank 1. TPR(K) and TNR(K) are % the true positive and true negative rates when samples of rank % smaller or equal to K-1 are predicted to be positive. So for % example TPR(3) is the true positive rate when the two samples with % largest score are predicted to be positive. Similarly, TPR(1) is % the true positive rate when no samples are predicted to be % positive, i.e. the constant 0. % % Setting a label to zero ignores the corresponding sample in the % calculations, as if the sample was removed from the data. Setting % the score of a sample to -INF causes the function to assume that % that sample was never retrieved. If there are samples with -INF % score, the ROC curve is incomplete as the maximum recall is less % than 1. % % [TPR,TNR,INFO] = VL_ROC(...) returns an additional structure INFO % with the following fields: % % info.auc:: Area under the ROC curve (AUC). % This is the area under the ROC plot, the parametric curve % (FPR(S), TPR(S)). The PLOT option can be used to plot variants % of this curve, which affects the calculation of a corresponding % AUC. % % info.eer:: Equal error rate (EER). % The equal error rate is the value of FPR (or FNR) when the ROC % curves intersects the line connecting (0,0) to (1,1). % % info.eerThreshold:: EER threshold. % The value of the score for which the EER is attained. % % VL_ROC() accepts the following options: % % Plot:: [] % Setting this option turns on plotting unconditionally. The % following plot variants are supported: % % tntp:: Plot TPR against TNR (standard ROC plot). % tptn:: Plot TNR against TPR (recall on the horizontal axis). % fptp:: Plot TPR against FPR. % fpfn:: Plot FNR against FPR (similar to a DET curve). % % Note that this option will affect the INFO.AUC value computation % too. % % NumPositives:: [] % NumNegatives:: [] % If either of these parameters is set to a number, the function % pretends that LABELS contains the specified number of % positive/negative labels. NUMPOSITIVES/NUMNEGATIVES cannot be % smaller than the actual number of positive/negative entries in % LABELS. The additional positive/negative labels are appended to % the end of the sequence as if they had -INF scores (as explained % above, the function interprets such samples as `not % retrieved'). This feature can be used to evaluate the % performance of a large-scale retrieval experiment in which only % a subset of highly-scoring results are recorded for efficiency % reason. % % Stable:: false % If set to true, TPR and TNR are returned in the same order % of LABELS and SCORES rather than being sorted by decreasing % score. % % About the ROC curve:: % Consider a classifier that predicts as positive all samples whose % score is not smaller than a threshold S. The ROC curve represents % the performance of such classifier as the threshold S is % changed. Formally, define % % P = overall num. of positive samples, % N = overall num. of negative samples, % % and for each threshold S % % TP(S) = num. of samples that are correctly classified as positive, % TN(S) = num. of samples that are correctly classified as negative, % FP(S) = num. of samples that are incorrectly classified as positive, % FN(S) = num. of samples that are incorrectly classified as negative. % % Consider also the rates: % % TPR = TP(S) / P, FNR = FN(S) / P, % TNR = TN(S) / N, FPR = FP(S) / N, % % and notice that, by definition, % % P = TP(S) + FN(S) , N = TN(S) + FP(S), % 1 = TPR(S) + FNR(S), 1 = TNR(S) + FPR(S). % % The ROC curve is the parametric curve (FPR(S), TPR(S)) obtained % as the classifier threshold S is varied in the reals. The TPR is % the same as `recall' in a PR curve (see VL_PR()). % % The ROC curve is contained in the square with vertices (0,0) The % (average) ROC curve of a random classifier is a line which % connects (1,0) and (0,1). % % The ROC curve is independent of the prior probability of the % labels (i.e. of P/(P+N) and N/(P+N)). % % REFERENCES: % [1] http://en.wikipedia.org/wiki/Receiver_operating_characteristic % % See also: VL_PR(), VL_DET(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). [tp, fp, p, n, perm, varargin] = vl_tpfp(labels, scores, varargin{:}) ; opts.plot = [] ; opts.stable = false ; opts = vl_argparse(opts,varargin) ; % compute the rates small = 1e-10 ; tpr = tp / max(p, small) ; fpr = fp / max(n, small) ; fnr = 1 - tpr ; tnr = 1 - fpr ; do_plots = ~isempty(opts.plot) || nargout == 0 ; if isempty(opts.plot), opts.plot = 'fptp' ; end % -------------------------------------------------------------------- % Additional info % -------------------------------------------------------------------- if nargout > 2 || do_plots % Area under the curve. Since the curve is a staircase (in the % sense that for each sample either tn is decremented by one % or tp is incremented by one but the other remains fixed), % the integral is particularly simple and exact. switch opts.plot case 'tntp', info.auc = -sum(tpr .* diff([0 tnr])) ; case 'fptp', info.auc = +sum(tpr .* diff([0 fpr])) ; case 'tptn', info.auc = +sum(tnr .* diff([0 tpr])) ; case 'fpfn', info.auc = +sum(fnr .* diff([0 fpr])) ; otherwise error('''%s'' is not a valid PLOT type.', opts.plot); end % Equal error rate. One must find the index S in correspondence of % which TNR(S) and TPR(s) cross. Note that TPR(S) is non-decreasing, % TNR(S) is non-increasing, and from rank S to rank S+1 only one of % the two quantities can change. Hence there are exactly two types % of crossing points: % % 1) TNR(S) = TNR(S+1) = EER and TPR(S) <= EER, TPR(S+1) > EER, % 2) TPR(S) = TPR(S+1) = EER and TNR(S) > EER, TNR(S+1) <= EER. % % Moreover, if the maximum TPR is smaller than 1, then it is % possible that neither of the two cases realizes. In the latter % case, we return EER=NaN. s = max(find(tnr > tpr)) ; if s == length(tpr) info.eer = NaN ; info.eerThreshold = 0 ; else if tpr(s) == tpr(s+1) info.eer = 1 - tpr(s) ; else info.eer = 1 - tnr(s) ; end info.eerThreshold = scores(perm(s)) ; end end % -------------------------------------------------------------------- % Plot % -------------------------------------------------------------------- if do_plots cla ; hold on ; switch lower(opts.plot) case 'tntp' hroc = plot(tnr, tpr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; spline([0 1], [0 1], 'k--', 'linewidth', 1) ; plot(1-info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; xlabel('true negative rate') ; ylabel('true positive rate (recall)') ; loc = 'sw' ; case 'fptp' hroc = plot(fpr, tpr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [0 1], 'r--', 'linewidth', 2) ; spline([1 0], [0 1], 'k--', 'linewidth', 1) ; plot(info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; xlabel('false positive rate') ; ylabel('true positive rate (recall)') ; loc = 'se' ; case 'tptn' hroc = plot(tpr, tnr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; spline([0 1], [0 1], 'k--', 'linewidth', 1) ; plot(1-info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; xlabel('true positive rate (recall)') ; ylabel('false positive rate') ; loc = 'sw' ; case 'fpfn' hroc = plot(fpr, fnr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; spline([0 1], [0 1], 'k--', 'linewidth', 1) ; plot(info.eer, info.eer, 'k*', 'linewidth', 1) ; xlabel('false positive (false alarm) rate') ; ylabel('false negative (miss) rate') ; loc = 'ne' ; otherwise error('''%s'' is not a valid PLOT type.', opts.plot); end grid on ; xlim([0 1]) ; ylim([0 1]) ; axis square ; title(sprintf('ROC (AUC: %.2f%%, EER: %.2f%%)', info.auc * 100, info.eer * 100), ... 'interpreter', 'none') ; legend([hroc hrand], 'ROC', 'ROC rand.', 'location', loc) ; end % -------------------------------------------------------------------- % Stable output % -------------------------------------------------------------------- if opts.stable tpr(1) = [] ; tnr(1) = [] ; tpr_ = tpr ; tnr_ = tnr ; tpr = NaN(size(tpr)) ; tnr = NaN(size(tnr)) ; tpr(perm) = tpr_ ; tnr(perm) = tnr_ ; end % -------------------------------------------------------------------- function h = spline(x,y,spec,varargin) % -------------------------------------------------------------------- prop = vl_linespec2prop(spec) ; h = line(x,y,prop{:},varargin{:}) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_click.m
.m
SceneRecognition-master/code/vlfeat/toolbox/plotop/vl_click.m
2,661
utf_8
6982e869cf80da57fdf68f5ebcd05a86
function P = vl_click(N,varargin) ; % VL_CLICK Click a point % P=VL_CLICK() let the user click a point in the current figure and % returns its coordinates in P. P is a two dimensiona vectors where % P(1) is the point X-coordinate and P(2) the point Y-coordinate. The % user can abort the operation by pressing any key, in which case the % empty matrix is returned. % % P=VL_CLICK(N) lets the user select N points in a row. The user can % stop inserting points by pressing any key, in which case the % partial list is returned. % % VL_CLICK() accepts the following options: % % PlotMarker:: [0] % Plot a marker as points are selected. The markers are deleted on % exiting the function. % % See also: VL_CLICKPOINT(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). plot_marker = 0 ; for k=1:2:length(varargin) switch lower(varargin{k}) case 'plotmarker' plot_marker = varargin{k+1} ; otherwise error(['Uknown option ''', varargin{k}, '''.']) ; end end if nargin < 1 N=1; end % -------------------------------------------------------------------- % Do job % -------------------------------------------------------------------- fig = gcf ; is_hold = ishold ; hold on ; bhandler = get(fig,'WindowButtonDownFcn') ; khandler = get(fig,'KeyPressFcn') ; pointer = get(fig,'Pointer') ; set(fig,'WindowButtonDownFcn',@click_handler) ; set(fig,'KeyPressFcn',@key_handler) ; set(fig,'Pointer','crosshair') ; P=[] ; h=[] ; data.exit=0; guidata(fig,data) ; while size(P,2) < N uiwait(fig) ; data = guidata(fig) ; if(data.exit) break ; end P = [P data.P] ; if( plot_marker ) h=[h plot(data.P(1),data.P(2),'rx')] ; end end if ~is_hold hold off ; end if( plot_marker ) pause(.1); delete(h) ; end set(fig,'WindowButtonDownFcn',bhandler) ; set(fig,'KeyPressFcn',khandler) ; set(fig,'Pointer',pointer) ; % ==================================================================== function click_handler(obj,event) % -------------------------------------------------------------------- data = guidata(gcbo) ; P = get(gca, 'CurrentPoint') ; P = [P(1,1); P(1,2)] ; data.P = P ; guidata(obj,data) ; uiresume(gcbo) ; % ==================================================================== function key_handler(obj,event) % -------------------------------------------------------------------- data = guidata(gcbo) ; data.exit = 1 ; guidata(obj,data) ; uiresume(gcbo) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_pr.m
.m
SceneRecognition-master/code/vlfeat/toolbox/plotop/vl_pr.m
9,138
utf_8
c7fe6832d2b6b9917896810c52a05479
function [recall, precision, info] = vl_pr(labels, scores, varargin) %VL_PR Precision-recall curve. % [RECALL, PRECISION] = VL_PR(LABELS, SCORES) computes the % precision-recall (PR) curve. LABELS are the ground truth labels, % greather than zero for a positive sample and smaller than zero for % a negative one. SCORES are the scores of the samples obtained from % a classifier, where lager scores should correspond to positive % samples. % % Samples are ranked by decreasing scores, starting from rank 1. % PRECISION(K) and RECALL(K) are the precison and recall when % samples of rank smaller or equal to K-1 are predicted to be % positive and the remaining to be negative. So for example % PRECISION(3) is the percentage of positive samples among the two % samples with largest score. PRECISION(1) is the precision when no % samples are predicted to be positive and is conventionally set to % the value 1. % % Set to zero the lables of samples that should be ignored in the % evaluation. Set to -INF the scores of samples which are not % retrieved. If there are samples with -INF score, then the PR curve % may have maximum recall smaller than 1, unless the INCLUDEINF % option is used (see below). The options NUMNEGATIVES and % NUMPOSITIVES can be used to add additional surrogate samples with % -INF score (see below). % % [RECALL, PRECISION, INFO] = VL_PR(...) returns an additional % structure INFO with the following fields: % % info.auc:: % The area under the precision-recall curve. If the INTERPOLATE % option is set to FALSE, then trapezoidal interpolation is used % to integrate the PR curve. If the INTERPOLATE option is set to % TRUE, then the curve is piecewise constant and no other % approximation is introduced in the calculation of the area. In % the latter case, INFO.AUC is the same as INFO.AP. % % info.ap:: % Average precision as defined by TREC. This is the average of the % precision observed each time a new positive sample is % recalled. In this calculation, any sample with -INF score % (unless INCLUDEINF is used) and any additional positive induced % by NUMPOSITIVES has precision equal to zero. If the INTERPOLATE % option is set to true, the AP is computed from the interpolated % precision and the result is the same as INFO.AUC. Note that AP % as defined by TREC normally does not use interpolation [1]. % % info.ap_interp_11:: % 11-points interpolated average precision as defined by TREC. % This is the average of the maximum precision for recall levels % greather than 0.0, 0.1, 0.2, ..., 1.0. This measure was used in % the PASCAL VOC challenge up to the 2008 edition. % % info.auc_pa08:: % Deprecated. It is the same of INFO.AP_INTERP_11. % % VL_PR(...) with no output arguments plots the PR curve in the % current axis. % % VL_PR() accepts the following options: % % Interpolate:: false % If set to true, use interpolated precision. The interpolated % precision is defined as the maximum precision for a given recall % level and onwards. Here it is implemented as the culumative % maximum from low to high scores of the precision. % % NumPositives:: [] % NumNegatives:: [] % If set to a number, pretend that LABELS contains this may % positive/negative labels. NUMPOSITIVES/NUMNEGATIVES cannot be % smaller than the actual number of positive/negative entrires in % LABELS. The additional positive/negative labels are appended to % the end of the sequence, as if they had -INF scores (not % retrieved). This is useful to evaluate large retrieval systems % for which one stores ony a handful of top results for efficiency % reasons. % % IncludeInf:: false % If set to true, data with -INF score SCORES is included in the % evaluation and the maximum recall is 1 even if -INF scores are % present. This option does not include any additional positive or % negative data introduced by specifying NUMPOSITIVES and % NUMNEGATIVES. % % Stable:: false % If set to true, RECALL and PRECISION are returned in the same order % of LABELS and SCORES rather than being sorted by decreasing % score (increasing recall). Samples with -INF scores are assigned % RECALL and PRECISION equal to NaN. % % NormalizePrior:: [] % If set to a scalar, reweights positive and negative labels so % that the fraction of positive ones is equal to the specified % value. This computes the normalised PR curves of [2] % % About the PR curve:: % This section uses the same symbols used in the documentation of % the VL_ROC() function. In addition to those quantities, define: % % PRECISION(S) = TP(S) / (TP(S) + FP(S)) % RECALL(S) = TPR(S) = TP(S) / P % % The precision is the fraction of positivie predictions which are % correct, and the recall is the fraction of positive labels that % have been correctly classified (recalled). Notice that the recall % is also equal to the true positive rate for the ROC curve (see % VL_ROC()). % % REFERENCES: % [1] C. D. Manning, P. Raghavan, and H. Schutze. An Introduction to % Information Retrieval. Cambridge University Press, 2008. % [2] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in % object detectors. In Proc. ECCV, 2012. % % See also VL_ROC(), VL_HELP(). % Author: Andrea Vedaldi % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). % TP and FP are the vectors of true positie and false positve label % counts for decreasing scores, P and N are the total number of % positive and negative labels. Note that if certain options are used % some labels may actually not be stored explicitly by LABELS, so P+N % can be larger than the number of element of LABELS. [tp, fp, p, n, perm, varargin] = vl_tpfp(labels, scores, varargin{:}) ; opts.stable = false ; opts.interpolate = false ; opts.normalizePrior = [] ; opts = vl_argparse(opts,varargin) ; % compute precision and recall small = 1e-10 ; recall = tp / max(p, small) ; if isempty(opts.normalizePrior) precision = max(tp, small) ./ max(tp + fp, small) ; else a = opts.normalizePrior ; precision = max(tp * a/max(p,small), small) ./ ... max(tp * a/max(p,small) + fp * (1-a)/max(n,small), small) ; end % interpolate precision if needed if opts.interpolate precision = fliplr(vl_cummax(fliplr(precision))) ; end % -------------------------------------------------------------------- % Additional info % -------------------------------------------------------------------- if nargout > 2 || nargout == 0 % area under the curve using trapezoid interpolation if ~opts.interpolate info.auc = 0.5 * sum((precision(1:end-1) + precision(2:end)) .* diff(recall)) ; end % average precision (for each recalled positive sample) sel = find(diff(recall)) + 1 ; info.ap = sum(precision(sel)) / p ; if opts.interpolate info.auc = info.ap ; end % TREC 11 points average interpolated precision info.ap_interp_11 = 0.0 ; for rc = linspace(0,1,11) pr = max([0, precision(recall >= rc)]) ; info.ap_interp_11 = info.ap_interp_11 + pr / 11 ; end % legacy definition info.auc_pa08 = info.ap_interp_11 ; end % -------------------------------------------------------------------- % Plot % -------------------------------------------------------------------- if nargout == 0 cla ; hold on ; plot(recall,precision,'linewidth',2) ; if isempty(opts.normalizePrior) randomPrecision = p / (p + n) ; else randomPrecision = opts.normalizePrior ; end spline([0 1], [1 1] * randomPrecision, 'r--', 'linewidth', 2) ; axis square ; grid on ; xlim([0 1]) ; xlabel('recall') ; ylim([0 1]) ; ylabel('precision') ; title(sprintf('PR (AUC: %.2f%%, AP: %.2f%%, AP11: %.2f%%)', ... info.auc * 100, ... info.ap * 100, ... info.ap_interp_11 * 100)) ; if opts.interpolate legend('PR interp.', 'PR rand.', 'Location', 'SouthEast') ; else legend('PR', 'PR rand.', 'Location', 'SouthEast') ; end clear recall precision info ; end % -------------------------------------------------------------------- % Stable output % -------------------------------------------------------------------- if opts.stable precision(1) = [] ; recall(1) = [] ; precision_ = precision ; recall_ = recall ; precision = NaN(size(precision)) ; recall = NaN(size(recall)) ; precision(perm) = precision_ ; recall(perm) = recall_ ; end % -------------------------------------------------------------------- function h = spline(x,y,spec,varargin) % -------------------------------------------------------------------- prop = vl_linespec2prop(spec) ; h = line(x,y,prop{:},varargin{:}) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_ubcread.m
.m
SceneRecognition-master/code/vlfeat/toolbox/sift/vl_ubcread.m
3,015
utf_8
e8ddd3ecd87e76b6c738ba153fef050f
function [f,d] = vl_ubcread(file, varargin) % SIFTREAD Read Lowe's SIFT implementation data files % [F,D] = VL_UBCREAD(FILE) reads the frames F and the descriptors D % from FILE in UBC (Lowe's original implementation of SIFT) format % and returns F and D as defined by VL_SIFT(). % % VL_UBCREAD(FILE, 'FORMAT', 'OXFORD') assumes the format used by % Oxford VGG implementations . % % See also: VL_SIFT(), VL_HELP(). % Authors: Andrea Vedaldi % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.verbosity = 0 ; opts.format = 'ubc' ; opts = vl_argparse(opts, varargin) ; g = fopen(file, 'r'); if g == -1 error(['Could not open file ''', file, '''.']) ; end [header, count] = fscanf(g, '%d', [1 2]) ; if count ~= 2 error('Invalid keypoint file header.'); end switch opts.format case 'ubc' numKeypoints = header(1) ; descrLen = header(2) ; case 'oxford' numKeypoints = header(2) ; descrLen = header(1) ; otherwise error('Unknown format ''%s''.', opts.format) ; end if(opts.verbosity > 0) fprintf('%d keypoints, %d descriptor length.\n', numKeypoints, descrLen) ; end %creates two output matrices switch opts.format case 'ubc' P = zeros(4,numKeypoints) ; case 'oxford' P = zeros(5,numKeypoints) ; end L = zeros(descrLen, numKeypoints) ; %parse tmp.key for k = 1:numKeypoints switch opts.format case 'ubc' % Record format: i,j,s,th [record, count] = fscanf(g, '%f', [1 4]) ; if count ~= 4 error(... sprintf('Invalid keypoint file (parsing keypoint %d, frame part)',k) ); end P(:,k) = record(:) ; case 'oxford' % Record format: x, y, a, b, c such that x' [a b ; b c] x = 1 [record, count] = fscanf(g, '%f', [1 5]) ; if count ~= 5 error(... sprintf('Invalid keypoint file (parsing keypoint %d, frame part)',k) ); end P(:,k) = record(:) ; end % Record format: descriptor [record, count] = fscanf(g, '%d', [1 descrLen]) ; if count ~= descrLen error(... sprintf('Invalid keypoint file (parsing keypoint %d, descriptor part)',k) ); end L(:,k) = record(:) ; end fclose(g) ; switch opts.format case 'ubc' P(1:2,:) = flipud(P(1:2,:)) + 1 ; % i,j -> x,y f=[ P(1:2,:) ; P(3,:) ; -P(4,:) ] ; d=uint8(L) ; p=[1 2 3 4 5 6 7 8] ; q=[1 8 7 6 5 4 3 2] ; for j=0:3 for i=0:3 d(8*(i+4*j)+p,:) = d(8*(i+4*j)+q,:) ; end end case 'oxford' P(1:2,:) = P(1:2,:) + 1 ; % matlab origin f = P ; f(3:5,:) = inv2x2(f(3:5,:)) ; d = uint8(L) ; end % -------------------------------------------------------------------- function S = inv2x2(C) % -------------------------------------------------------------------- den = C(1,:) .* C(3,:) - C(2,:) .* C(2,:) ; S = [C(3,:) ; -C(2,:) ; C(1,:)] ./ den([1 1 1], :) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_frame2oell.m
.m
SceneRecognition-master/code/vlfeat/toolbox/sift/vl_frame2oell.m
2,806
utf_8
c93792632f630743485fa4c2cf12d647
function eframes = vl_frame2oell(frames) % VL_FRAMES2OELL Convert a geometric frame to an oriented ellipse % EFRAME = VL_FRAME2OELL(FRAME) converts the generic FRAME to an % oriented ellipses EFRAME. FRAME and EFRAME can be matrices, with % one frame per column. % % A frame is either a point, a disc, an oriented disc, an ellipse, % or an oriented ellipse. These are represented respectively by 2, % 3, 4, 5 and 6 parameters each, as described in VL_PLOTFRAME(). An % oriented ellipse is the most general geometric frame; hence, there % is no loss of information in this conversion. % % If FRAME is an oriented disc or ellipse, then the conversion is % immediate. If, however, FRAME is not oriented (it is either a % point or an unoriented disc or ellipse), then an orientation must % be assigned. The orientation is chosen in such a way that the % affine transformation that maps the standard oriented frame into % the output EFRAME does not rotate the Y axis. If frames represent % detected visual features, this convention corresponds to assume % that features are upright. % % If FRAME is a point, then the output is an ellipse with null area. % % See: <a href="matlab:vl_help('tut.frame')">feature frames</a>, % VL_PLOTFRAME(), VL_HELP(). % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). [D,K] = size(frames) ; eframes = zeros(6,K) ; switch D case 2 eframes(1:2,:) = frames(1:2,:) ; case 3 eframes(1:2,:) = frames(1:2,:) ; eframes(3,:) = frames(3,:) ; eframes(6,:) = frames(3,:) ; case 4 r = frames(3,:) ; c = r.*cos(frames(4,:)) ; s = r.*sin(frames(4,:)) ; eframes(1:2,:) = frames(1:2,:) ; eframes(3:6,:) = [c ; s ; -s ; c] ; case 5 eframes(1:2,:) = frames(1:2,:) ; eframes(3:6,:) = mapFromS(frames(3:5,:)) ; case 6 eframes = frames ; otherwise error('FRAMES format is unknown.') ; end % -------------------------------------------------------------------- function A = mapFromS(S) % -------------------------------------------------------------------- % Returns the (stacking of the) 2x2 matrix A that maps the unit circle % into the ellipses satisfying the equation x' inv(S) x = 1. Here S % is a stacked covariance matrix, with elements S11, S12 and S22. % % The goal is to find A such that AA' = S. In order to let the Y % direction unaffected (upright feature), the assumption is taht % A = [a b ; 0 c]. Hence % % AA' = [a^2, ab ; ab, b^2+c^2] = S. A = zeros(4,size(S,2)) ; a = sqrt(S(1,:)); b = S(2,:) ./ max(a, 1e-18) ; A(1,:) = a ; A(2,:) = b ; A(4,:) = sqrt(max(S(3,:) - b.*b, 0)) ;
github
MohamedAbdelsalam9/SceneRecognition-master
vl_plotsiftdescriptor.m
.m
SceneRecognition-master/code/vlfeat/toolbox/sift/vl_plotsiftdescriptor.m
5,114
utf_8
a4e125a8916653f00143b61cceda2f23
function h=vl_plotsiftdescriptor(d,f,varargin) % VL_PLOTSIFTDESCRIPTOR Plot SIFT descriptor % VL_PLOTSIFTDESCRIPTOR(D) plots the SIFT descriptor D. If D is a % matrix, it plots one descriptor per column. D has the same format % used by VL_SIFT(). % % VL_PLOTSIFTDESCRIPTOR(D,F) plots the SIFT descriptors warped to % the SIFT frames F, specified as columns of the matrix F. F has the % same format used by VL_SIFT(). % % H=VL_PLOTSIFTDESCRIPTOR(...) returns the handle H to the line % drawing representing the descriptors. % % The function assumes that the SIFT descriptors use the standard % configuration of 4x4 spatial bins and 8 orientations bins. The % following parameters can be used to change this: % % NumSpatialBins:: 4 % Number of spatial bins in both spatial directions X and Y. % % NumOrientationBins:: 8 % Number of orientation bis. % % MagnificationFactor:: 3 % Magnification factor. The width of one bin is equal to the scale % of the keypoint F multiplied by this factor. % % See also: VL_SIFT(), VL_PLOTFRAME(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.magnificationFactor = 3.0 ; opts.numSpatialBins = 4 ; opts.numOrientationBins = 8 ; opts.maxValue = 0 ; if nargin > 1 if ~ isnumeric(f) error('F must be a numeric type (use [] to leave it unspecified)') ; end end opts = vl_argparse(opts, varargin) ; % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- if(size(d,1) ~= opts.numSpatialBins^2 * opts.numOrientationBins) error('The number of rows of D does not match the geometry of the descriptor') ; end if nargin > 1 if (~isempty(f) & (size(f,1) < 2 | size(f,1) > 6)) error('F must be either empty of have from 2 to six rows.'); end if size(f,1) == 2 % translation only f(3:6,:) = deal([10 0 0 10]') ; %f = [f; 10 * ones(1, size(f,2)) ; 0 * zeros(1, size(f,2))] ; end if size(f,1) == 3 % translation and scale f(3:6,:) = [1 0 0 1]' * f(3,:) ; %f = [f; 0 * zeros(1, size(f,2))] ; end if size(f,1) == 4 c = cos(f(4,:)) ; s = sin(f(4,:)) ; f(3:6,:) = bsxfun(@times, f(3,:), [c ; s ; -s ; c]) ; end if size(f,1) == 5 assert(false) ; c = cos(f(4,:)) ; s = sin(f(4,:)) ; f(3:6,:) = bsxfun(@times, f(3,:), [c ; s ; -s ; c]) ; end if(~isempty(f) & size(f,2) ~= size(d,2)) error('D and F have incompatible dimension') ; end end % Descriptors are often non-double numeric arrays d = double(d) ; K = size(d,2) ; if nargin < 2 | isempty(f) f = repmat([0;0;1;0;0;1],1,K) ; end % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- xall=[] ; yall=[] ; for k=1:K [x,y] = render_descr(d(:,k), opts.numSpatialBins, opts.numOrientationBins, opts.maxValue) ; xall = [xall opts.magnificationFactor*f(3,k)*x + opts.magnificationFactor*f(5,k)*y + f(1,k)] ; yall = [yall opts.magnificationFactor*f(4,k)*x + opts.magnificationFactor*f(6,k)*y + f(2,k)] ; end h=line(xall,yall) ; % -------------------------------------------------------------------- function [x,y] = render_descr(d, numSpatialBins, numOrientationBins, maxValue) % -------------------------------------------------------------------- % Get the coordinates of the lines of the SIFT grid; each bin has side 1 [x,y] = meshgrid(-numSpatialBins/2:numSpatialBins/2,-numSpatialBins/2:numSpatialBins/2) ; % Get the corresponding bin centers xc = x(1:end-1,1:end-1) + 0.5 ; yc = y(1:end-1,1:end-1) + 0.5 ; % Rescale the descriptor range so that the biggest peak fits inside the bin diagram if maxValue d = 0.4 * d / maxValue ; else d = 0.4 * d / max(d(:)+eps) ; end % We scramble the the centers to have them in row major order % (descriptor convention). xc = xc' ; yc = yc' ; % Each spatial bin contains a star with numOrientationBins tips xc = repmat(xc(:)',numOrientationBins,1) ; yc = repmat(yc(:)',numOrientationBins,1) ; % Do the stars th=linspace(0,2*pi,numOrientationBins+1) ; th=th(1:end-1) ; xd = repmat(cos(th), 1, numSpatialBins*numSpatialBins) ; yd = repmat(sin(th), 1, numSpatialBins*numSpatialBins) ; xd = xd .* d(:)' ; yd = yd .* d(:)' ; % Re-arrange in sequential order the lines to draw nans = NaN * ones(1,numSpatialBins^2*numOrientationBins) ; x1 = xc(:)' ; y1 = yc(:)' ; x2 = x1 + xd ; y2 = y1 + yd ; xstars = [x1;x2;nans] ; ystars = [y1;y2;nans] ; % Horizontal lines of the grid nans = NaN * ones(1,numSpatialBins+1); xh = [x(:,1)' ; x(:,end)' ; nans] ; yh = [y(:,1)' ; y(:,end)' ; nans] ; % Verical lines of the grid xv = [x(1,:) ; x(end,:) ; nans] ; yv = [y(1,:) ; y(end,:) ; nans] ; x=[xstars(:)' xh(:)' xv(:)'] ; y=[ystars(:)' yh(:)' yv(:)'] ;
github
MohamedAbdelsalam9/SceneRecognition-master
phow_caltech101.m
.m
SceneRecognition-master/code/vlfeat/apps/phow_caltech101.m
11,594
utf_8
7f4890a2e6844ca56debbfe23cca64f3
function phow_caltech101() % PHOW_CALTECH101 Image classification in the Caltech-101 dataset % This program demonstrates how to use VLFeat to construct an image % classifier on the Caltech-101 data. The classifier uses PHOW % features (dense SIFT), spatial histograms of visual words, and a % Chi2 SVM. To speedup computation it uses VLFeat fast dense SIFT, % kd-trees, and homogeneous kernel map. The program also % demonstrates VLFeat PEGASOS SVM solver, although for this small % dataset other solvers such as LIBLINEAR can be more efficient. % % By default 15 training images are used, which should result in % about 64% performance (a good performance considering that only a % single feature type is being used). % % Call PHOW_CALTECH101 to train and test a classifier on a small % subset of the Caltech-101 data. Note that the program % automatically downloads a copy of the Caltech-101 data from the % Internet if it cannot find a local copy. % % Edit the PHOW_CALTECH101 file to change the program configuration. % % To run on the entire dataset change CONF.TINYPROBLEM to FALSE. % % The Caltech-101 data is saved into CONF.CALDIR, which defaults to % 'data/caltech-101'. Change this path to the desired location, for % instance to point to an existing copy of the Caltech-101 data. % % The program can also be used to train a model on custom data by % pointing CONF.CALDIR to it. Just create a subdirectory for each % class and put the training images there. Make sure to adjust % CONF.NUMTRAIN accordingly. % % Intermediate files are stored in the directory CONF.DATADIR. All % such files begin with the prefix CONF.PREFIX, which can be changed % to test different parameter settings without overriding previous % results. % % The program saves the trained model in % <CONF.DATADIR>/<CONF.PREFIX>-model.mat. This model can be used to % test novel images independently of the Caltech data. % % load('data/baseline-model.mat') ; # change to the model path % label = model.classify(model, im) ; % % Author: Andrea Vedaldi % Copyright (C) 2011-2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). conf.calDir = 'data/caltech-101' ; conf.dataDir = 'data/' ; conf.autoDownloadData = true ; conf.numTrain = 15 ; conf.numTest = 15 ; conf.numClasses = 102 ; conf.numWords = 600 ; conf.numSpatialX = [2 4] ; conf.numSpatialY = [2 4] ; conf.quantizer = 'kdtree' ; conf.svm.C = 10 ; conf.svm.solver = 'sdca' ; %conf.svm.solver = 'sgd' ; %conf.svm.solver = 'liblinear' ; conf.svm.biasMultiplier = 1 ; conf.phowOpts = {'Step', 3} ; conf.clobber = false ; conf.tinyProblem = true ; conf.prefix = 'baseline' ; conf.randSeed = 1 ; if conf.tinyProblem conf.prefix = 'tiny' ; conf.numClasses = 5 ; conf.numSpatialX = 2 ; conf.numSpatialY = 2 ; conf.numWords = 300 ; conf.phowOpts = {'Verbose', 2, 'Sizes', 7, 'Step', 5} ; end conf.vocabPath = fullfile(conf.dataDir, [conf.prefix '-vocab.mat']) ; conf.histPath = fullfile(conf.dataDir, [conf.prefix '-hists.mat']) ; conf.modelPath = fullfile(conf.dataDir, [conf.prefix '-model.mat']) ; conf.resultPath = fullfile(conf.dataDir, [conf.prefix '-result']) ; randn('state',conf.randSeed) ; rand('state',conf.randSeed) ; vl_twister('state',conf.randSeed) ; % -------------------------------------------------------------------- % Download Caltech-101 data % -------------------------------------------------------------------- if ~exist(conf.calDir, 'dir') || ... (~exist(fullfile(conf.calDir, 'airplanes'),'dir') && ... ~exist(fullfile(conf.calDir, '101_ObjectCategories', 'airplanes'))) if ~conf.autoDownloadData error(... ['Caltech-101 data not found. ' ... 'Set conf.autoDownloadData=true to download the required data.']) ; end vl_xmkdir(conf.calDir) ; calUrl = ['http://www.vision.caltech.edu/Image_Datasets/' ... 'Caltech101/101_ObjectCategories.tar.gz'] ; fprintf('Downloading Caltech-101 data to ''%s''. This will take a while.', conf.calDir) ; untar(calUrl, conf.calDir) ; end if ~exist(fullfile(conf.calDir, 'airplanes'),'dir') conf.calDir = fullfile(conf.calDir, '101_ObjectCategories') ; end % -------------------------------------------------------------------- % Setup data % -------------------------------------------------------------------- classes = dir(conf.calDir) ; classes = classes([classes.isdir]) ; classes = {classes(3:conf.numClasses+2).name} ; images = {} ; imageClass = {} ; for ci = 1:length(classes) ims = dir(fullfile(conf.calDir, classes{ci}, '*.jpg'))' ; ims = vl_colsubset(ims, conf.numTrain + conf.numTest) ; ims = cellfun(@(x)fullfile(classes{ci},x),{ims.name},'UniformOutput',false) ; images = {images{:}, ims{:}} ; imageClass{end+1} = ci * ones(1,length(ims)) ; end selTrain = find(mod(0:length(images)-1, conf.numTrain+conf.numTest) < conf.numTrain) ; selTest = setdiff(1:length(images), selTrain) ; imageClass = cat(2, imageClass{:}) ; model.classes = classes ; model.phowOpts = conf.phowOpts ; model.numSpatialX = conf.numSpatialX ; model.numSpatialY = conf.numSpatialY ; model.quantizer = conf.quantizer ; model.vocab = [] ; model.w = [] ; model.b = [] ; model.classify = @classify ; % -------------------------------------------------------------------- % Train vocabulary % -------------------------------------------------------------------- if ~exist(conf.vocabPath) || conf.clobber % Get some PHOW descriptors to train the dictionary selTrainFeats = vl_colsubset(selTrain, 30) ; descrs = {} ; %for ii = 1:length(selTrainFeats) parfor ii = 1:length(selTrainFeats) im = imread(fullfile(conf.calDir, images{selTrainFeats(ii)})) ; im = standarizeImage(im) ; [drop, descrs{ii}] = vl_phow(im, model.phowOpts{:}) ; end descrs = vl_colsubset(cat(2, descrs{:}), 10e4) ; descrs = single(descrs) ; % Quantize the descriptors to get the visual words vocab = vl_kmeans(descrs, conf.numWords, 'verbose', 'algorithm', 'elkan', 'MaxNumIterations', 50) ; save(conf.vocabPath, 'vocab') ; else load(conf.vocabPath) ; end model.vocab = vocab ; if strcmp(model.quantizer, 'kdtree') model.kdtree = vl_kdtreebuild(vocab) ; end % -------------------------------------------------------------------- % Compute spatial histograms % -------------------------------------------------------------------- if ~exist(conf.histPath) || conf.clobber hists = {} ; parfor ii = 1:length(images) % for ii = 1:length(images) fprintf('Processing %s (%.2f %%)\n', images{ii}, 100 * ii / length(images)) ; im = imread(fullfile(conf.calDir, images{ii})) ; hists{ii} = getImageDescriptor(model, im); end hists = cat(2, hists{:}) ; save(conf.histPath, 'hists') ; else load(conf.histPath) ; end % -------------------------------------------------------------------- % Compute feature map % -------------------------------------------------------------------- psix = vl_homkermap(hists, 1, 'kchi2', 'gamma', .5) ; % -------------------------------------------------------------------- % Train SVM % -------------------------------------------------------------------- if ~exist(conf.modelPath) || conf.clobber switch conf.svm.solver case {'sgd', 'sdca'} lambda = 1 / (conf.svm.C * length(selTrain)) ; w = [] ; parfor ci = 1:length(classes) perm = randperm(length(selTrain)) ; fprintf('Training model for class %s\n', classes{ci}) ; y = 2 * (imageClass(selTrain) == ci) - 1 ; [w(:,ci) b(ci) info] = vl_svmtrain(psix(:, selTrain(perm)), y(perm), lambda, ... 'Solver', conf.svm.solver, ... 'MaxNumIterations', 50/lambda, ... 'BiasMultiplier', conf.svm.biasMultiplier, ... 'Epsilon', 1e-3); end case 'liblinear' svm = train(imageClass(selTrain)', ... sparse(double(psix(:,selTrain))), ... sprintf(' -s 3 -B %f -c %f', ... conf.svm.biasMultiplier, conf.svm.C), ... 'col') ; w = svm.w(:,1:end-1)' ; b = svm.w(:,end)' ; end model.b = conf.svm.biasMultiplier * b ; model.w = w ; save(conf.modelPath, 'model') ; else load(conf.modelPath) ; end % -------------------------------------------------------------------- % Test SVM and evaluate % -------------------------------------------------------------------- % Estimate the class of the test images scores = model.w' * psix + model.b' * ones(1,size(psix,2)) ; [drop, imageEstClass] = max(scores, [], 1) ; % Compute the confusion matrix idx = sub2ind([length(classes), length(classes)], ... imageClass(selTest), imageEstClass(selTest)) ; confus = zeros(length(classes)) ; confus = vl_binsum(confus, ones(size(idx)), idx) ; % Plots figure(1) ; clf; subplot(1,2,1) ; imagesc(scores(:,[selTrain selTest])) ; title('Scores') ; set(gca, 'ytick', 1:length(classes), 'yticklabel', classes) ; subplot(1,2,2) ; imagesc(confus) ; title(sprintf('Confusion matrix (%.2f %% accuracy)', ... 100 * mean(diag(confus)/conf.numTest) )) ; print('-depsc2', [conf.resultPath '.ps']) ; save([conf.resultPath '.mat'], 'confus', 'conf') ; % ------------------------------------------------------------------------- function im = standarizeImage(im) % ------------------------------------------------------------------------- im = im2single(im) ; if size(im,1) > 480, im = imresize(im, [480 NaN]) ; end % ------------------------------------------------------------------------- function hist = getImageDescriptor(model, im) % ------------------------------------------------------------------------- im = standarizeImage(im) ; width = size(im,2) ; height = size(im,1) ; numWords = size(model.vocab, 2) ; % get PHOW features [frames, descrs] = vl_phow(im, model.phowOpts{:}) ; % quantize local descriptors into visual words switch model.quantizer case 'vq' [drop, binsa] = min(vl_alldist(model.vocab, single(descrs)), [], 1) ; case 'kdtree' binsa = double(vl_kdtreequery(model.kdtree, model.vocab, ... single(descrs), ... 'MaxComparisons', 50)) ; end for i = 1:length(model.numSpatialX) binsx = vl_binsearch(linspace(1,width,model.numSpatialX(i)+1), frames(1,:)) ; binsy = vl_binsearch(linspace(1,height,model.numSpatialY(i)+1), frames(2,:)) ; % combined quantization bins = sub2ind([model.numSpatialY(i), model.numSpatialX(i), numWords], ... binsy,binsx,binsa) ; hist = zeros(model.numSpatialY(i) * model.numSpatialX(i) * numWords, 1) ; hist = vl_binsum(hist, ones(size(bins)), bins) ; hists{i} = single(hist / sum(hist)) ; end hist = cat(1,hists{:}) ; hist = hist / sum(hist) ; % ------------------------------------------------------------------------- function [className, score] = classify(model, im) % ------------------------------------------------------------------------- hist = getImageDescriptor(model, im) ; psix = vl_homkermap(hist, 1, 'kchi2', 'gamma', .5) ; scores = model.w' * psix + model.b' ; [score, best] = max(scores) ; className = model.classes{best} ;
github
MohamedAbdelsalam9/SceneRecognition-master
sift_mosaic.m
.m
SceneRecognition-master/code/vlfeat/apps/sift_mosaic.m
4,621
utf_8
8fa3ad91b401b8f2400fb65944c79712
function mosaic = sift_mosaic(im1, im2) % SIFT_MOSAIC Demonstrates matching two images using SIFT and RANSAC % % SIFT_MOSAIC demonstrates matching two images based on SIFT % features and RANSAC and computing their mosaic. % % SIFT_MOSAIC by itself runs the algorithm on two standard test % images. Use SIFT_MOSAIC(IM1,IM2) to compute the mosaic of two % custom images IM1 and IM2. % AUTORIGHTS if nargin == 0 im1 = imread(fullfile(vl_root, 'data', 'river1.jpg')) ; im2 = imread(fullfile(vl_root, 'data', 'river2.jpg')) ; end % make single im1 = im2single(im1) ; im2 = im2single(im2) ; % make grayscale if size(im1,3) > 1, im1g = rgb2gray(im1) ; else im1g = im1 ; end if size(im2,3) > 1, im2g = rgb2gray(im2) ; else im2g = im2 ; end % -------------------------------------------------------------------- % SIFT matches % -------------------------------------------------------------------- [f1,d1] = vl_sift(im1g) ; [f2,d2] = vl_sift(im2g) ; [matches, scores] = vl_ubcmatch(d1,d2) ; numMatches = size(matches,2) ; X1 = f1(1:2,matches(1,:)) ; X1(3,:) = 1 ; X2 = f2(1:2,matches(2,:)) ; X2(3,:) = 1 ; % -------------------------------------------------------------------- % RANSAC with homography model % -------------------------------------------------------------------- clear H score ok ; for t = 1:100 % estimate homograpyh subset = vl_colsubset(1:numMatches, 4) ; A = [] ; for i = subset A = cat(1, A, kron(X1(:,i)', vl_hat(X2(:,i)))) ; end [U,S,V] = svd(A) ; H{t} = reshape(V(:,9),3,3) ; % score homography X2_ = H{t} * X1 ; du = X2_(1,:)./X2_(3,:) - X2(1,:)./X2(3,:) ; dv = X2_(2,:)./X2_(3,:) - X2(2,:)./X2(3,:) ; ok{t} = (du.*du + dv.*dv) < 6*6 ; score(t) = sum(ok{t}) ; end [score, best] = max(score) ; H = H{best} ; ok = ok{best} ; % -------------------------------------------------------------------- % Optional refinement % -------------------------------------------------------------------- function err = residual(H) u = H(1) * X1(1,ok) + H(4) * X1(2,ok) + H(7) ; v = H(2) * X1(1,ok) + H(5) * X1(2,ok) + H(8) ; d = H(3) * X1(1,ok) + H(6) * X1(2,ok) + 1 ; du = X2(1,ok) - u ./ d ; dv = X2(2,ok) - v ./ d ; err = sum(du.*du + dv.*dv) ; end if exist('fminsearch') == 2 H = H / H(3,3) ; opts = optimset('Display', 'none', 'TolFun', 1e-8, 'TolX', 1e-8) ; H(1:8) = fminsearch(@residual, H(1:8)', opts) ; else warning('Refinement disabled as fminsearch was not found.') ; end % -------------------------------------------------------------------- % Show matches % -------------------------------------------------------------------- dh1 = max(size(im2,1)-size(im1,1),0) ; dh2 = max(size(im1,1)-size(im2,1),0) ; figure(1) ; clf ; subplot(2,1,1) ; imagesc([padarray(im1,dh1,'post') padarray(im2,dh2,'post')]) ; o = size(im1,2) ; line([f1(1,matches(1,:));f2(1,matches(2,:))+o], ... [f1(2,matches(1,:));f2(2,matches(2,:))]) ; title(sprintf('%d tentative matches', numMatches)) ; axis image off ; subplot(2,1,2) ; imagesc([padarray(im1,dh1,'post') padarray(im2,dh2,'post')]) ; o = size(im1,2) ; line([f1(1,matches(1,ok));f2(1,matches(2,ok))+o], ... [f1(2,matches(1,ok));f2(2,matches(2,ok))]) ; title(sprintf('%d (%.2f%%) inliner matches out of %d', ... sum(ok), ... 100*sum(ok)/numMatches, ... numMatches)) ; axis image off ; drawnow ; % -------------------------------------------------------------------- % Mosaic % -------------------------------------------------------------------- box2 = [1 size(im2,2) size(im2,2) 1 ; 1 1 size(im2,1) size(im2,1) ; 1 1 1 1 ] ; box2_ = inv(H) * box2 ; box2_(1,:) = box2_(1,:) ./ box2_(3,:) ; box2_(2,:) = box2_(2,:) ./ box2_(3,:) ; ur = min([1 box2_(1,:)]):max([size(im1,2) box2_(1,:)]) ; vr = min([1 box2_(2,:)]):max([size(im1,1) box2_(2,:)]) ; [u,v] = meshgrid(ur,vr) ; im1_ = vl_imwbackward(im2double(im1),u,v) ; z_ = H(3,1) * u + H(3,2) * v + H(3,3) ; u_ = (H(1,1) * u + H(1,2) * v + H(1,3)) ./ z_ ; v_ = (H(2,1) * u + H(2,2) * v + H(2,3)) ./ z_ ; im2_ = vl_imwbackward(im2double(im2),u_,v_) ; mass = ~isnan(im1_) + ~isnan(im2_) ; im1_(isnan(im1_)) = 0 ; im2_(isnan(im2_)) = 0 ; mosaic = (im1_ + im2_) ./ mass ; figure(2) ; clf ; imagesc(mosaic) ; axis image off ; title('Mosaic') ; if nargout == 0, clear mosaic ; end end
github
MohamedAbdelsalam9/SceneRecognition-master
encodeImage.m
.m
SceneRecognition-master/code/vlfeat/apps/recognition/encodeImage.m
5,278
utf_8
5d9dc6161995b8e10366b5649bf4fda4
function descrs = encodeImage(encoder, im, varargin) % ENCODEIMAGE Apply an encoder to an image % DESCRS = ENCODEIMAGE(ENCODER, IM) applies the ENCODER % to image IM, returning a corresponding code vector PSI. % % IM can be an image, the path to an image, or a cell array of % the same, to operate on multiple images. % % ENCODEIMAGE(ENCODER, IM, CACHE) utilizes the specified CACHE % directory to store encodings for the given images. The cache % is used only if the images are specified as file names. % % See also: TRAINENCODER(). % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.cacheDir = [] ; opts.cacheChunkSize = 512 ; opts = vl_argparse(opts,varargin) ; if ~iscell(im), im = {im} ; end % break the computation into cached chunks startTime = tic ; descrs = cell(1, numel(im)) ; numChunks = ceil(numel(im) / opts.cacheChunkSize) ; for c = 1:numChunks n = min(opts.cacheChunkSize, numel(im) - (c-1)*opts.cacheChunkSize) ; chunkPath = fullfile(opts.cacheDir, sprintf('chunk-%03d.mat',c)) ; if ~isempty(opts.cacheDir) && exist(chunkPath) fprintf('%s: loading descriptors from %s\n', mfilename, chunkPath) ; load(chunkPath, 'data') ; else range = (c-1)*opts.cacheChunkSize + (1:n) ; fprintf('%s: processing a chunk of %d images (%3d of %3d, %5.1fs to go)\n', ... mfilename, numel(range), ... c, numChunks, toc(startTime) / (c - 1) * (numChunks - c + 1)) ; data = processChunk(encoder, im(range)) ; if ~isempty(opts.cacheDir) save(chunkPath, 'data') ; end end descrs{c} = data ; clear data ; end descrs = cat(2,descrs{:}) ; % -------------------------------------------------------------------- function psi = processChunk(encoder, im) % -------------------------------------------------------------------- psi = cell(1,numel(im)) ; if numel(im) > 1 & matlabpool('size') > 1 parfor i = 1:numel(im) psi{i} = encodeOne(encoder, im{i}) ; end else % avoiding parfor makes debugging easier for i = 1:numel(im) psi{i} = encodeOne(encoder, im{i}) ; end end psi = cat(2, psi{:}) ; % -------------------------------------------------------------------- function psi = encodeOne(encoder, im) % -------------------------------------------------------------------- im = encoder.readImageFn(im) ; features = encoder.extractorFn(im) ; imageSize = size(im) ; psi = {} ; for i = 1:size(encoder.subdivisions,2) minx = encoder.subdivisions(1,i) * imageSize(2) ; miny = encoder.subdivisions(2,i) * imageSize(1) ; maxx = encoder.subdivisions(3,i) * imageSize(2) ; maxy = encoder.subdivisions(4,i) * imageSize(1) ; ok = ... minx <= features.frame(1,:) & features.frame(1,:) < maxx & ... miny <= features.frame(2,:) & features.frame(2,:) < maxy ; descrs = encoder.projection * bsxfun(@minus, ... features.descr(:,ok), ... encoder.projectionCenter) ; if encoder.renormalize descrs = bsxfun(@times, descrs, 1./max(1e-12, sqrt(sum(descrs.^2)))) ; end w = size(im,2) ; h = size(im,1) ; frames = features.frame(1:2,:) ; frames = bsxfun(@times, bsxfun(@minus, frames, [w;h]/2), 1./[w;h]) ; descrs = extendDescriptorsWithGeometry(encoder.geometricExtension, frames, descrs) ; switch encoder.type case 'bovw' [words,distances] = vl_kdtreequery(encoder.kdtree, encoder.words, ... descrs, ... 'MaxComparisons', 100) ; z = vl_binsum(zeros(encoder.numWords,1), 1, double(words)) ; z = sqrt(z) ; case 'fv' z = vl_fisher(descrs, ... encoder.means, ... encoder.covariances, ... encoder.priors, ... 'Improved') ; case 'vlad' [words,distances] = vl_kdtreequery(encoder.kdtree, encoder.words, ... descrs, ... 'MaxComparisons', 15) ; assign = zeros(encoder.numWords, numel(words), 'single') ; assign(sub2ind(size(assign), double(words), 1:numel(words))) = 1 ; z = vl_vlad(descrs, ... encoder.words, ... assign, ... 'SquareRoot', ... 'NormalizeComponents') ; end z = z / max(sqrt(sum(z.^2)), 1e-12) ; psi{i} = z(:) ; end psi = cat(1, psi{:}) ; % -------------------------------------------------------------------- function psi = getFromCache(name, cache) % -------------------------------------------------------------------- [drop, name] = fileparts(name) ; cachePath = fullfile(cache, [name '.mat']) ; if exist(cachePath, 'file') data = load(cachePath) ; psi = data.psi ; else psi = [] ; end % -------------------------------------------------------------------- function storeToCache(name, cache, psi) % -------------------------------------------------------------------- [drop, name] = fileparts(name) ; cachePath = fullfile(cache, [name '.mat']) ; vl_xmkdir(cache) ; data.psi = psi ; save(cachePath, '-STRUCT', 'data') ;
github
MohamedAbdelsalam9/SceneRecognition-master
experiments.m
.m
SceneRecognition-master/code/vlfeat/apps/recognition/experiments.m
6,905
utf_8
1e4a4911eed4a451b9488b9e6cc9b39c
function experiments() % EXPERIMENTS Run image classification experiments % The experimens download a number of benchmark datasets in the % 'data/' subfolder. Make sure that there are several GBs of % space available. % % By default, experiments run with a lite option turned on. This % quickly runs all of them on tiny subsets of the actual data. % This is used only for testing; to run the actual experiments, % set the lite variable to false. % % Running all the experiments is a slow process. Using parallel % MATLAB and several cores/machiens is suggested. % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). lite = true ; clear ex ; ex(1).prefix = 'fv-aug' ; ex(1).trainOpts = {'C', 10} ; ex(1).datasets = {'fmd', 'scene67'} ; ex(1).seed = 1 ; ex(1).opts = {... 'type', 'fv', ... 'numWords', 256, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'xy', ... 'numPcaDimensions', 80, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(2) = ex(1) ; ex(2).datasets = {'caltech101'} ; ex(2).opts{end} = @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(0:-.5:-3)) ; ex(3) = ex(1) ; ex(3).datasets = {'voc07'} ; ex(3).C = 1 ; ex(4) = ex(1) ; ex(4).prefix = 'vlad-aug' ; ex(4).opts = {... 'type', 'vlad', ... 'numWords', 256, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'xy', ... 'numPcaDimensions', 100, ... 'whitening', true, ... 'whiteningRegul', 0.01, ... 'renormalize', true, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(5) = ex(4) ; ex(5).datasets = {'caltech101'} ; ex(5).opts{end} = ex(2).opts{end} ; ex(6) = ex(4) ; ex(6).datasets = {'voc07'} ; ex(6).C = 1 ; ex(7) = ex(1) ; ex(7).prefix = 'bovw-aug' ; ex(7).opts = {... 'type', 'bovw', ... 'numWords', 4096, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'xy', ... 'numPcaDimensions', 100, ... 'whitening', true, ... 'whiteningRegul', 0.01, ... 'renormalize', true, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(8) = ex(7) ; ex(8).datasets = {'caltech101'} ; ex(8).opts{end} = ex(2).opts{end} ; ex(9) = ex(7) ; ex(9).datasets = {'voc07'} ; ex(9).C = 1 ; ex(10).prefix = 'fv' ; ex(10).trainOpts = {'C', 10} ; ex(10).datasets = {'fmd', 'scene67'} ; ex(10).seed = 1 ; ex(10).opts = {... 'type', 'fv', ... 'numWords', 256, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'none', ... 'numPcaDimensions', 80, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(11) = ex(10) ; ex(11).datasets = {'caltech101'} ; ex(11).opts{end} = @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(0:-.5:-3)) ; ex(12) = ex(10) ; ex(12).datasets = {'voc07'} ; ex(12).C = 1 ; ex(13).prefix = 'fv-sp' ; ex(13).trainOpts = {'C', 10} ; ex(13).datasets = {'fmd', 'scene67'} ; ex(13).seed = 1 ; ex(13).opts = {... 'type', 'fv', ... 'numWords', 256, ... 'layouts', {'1x1', '3x1'}, ... 'geometricExtension', 'none', ... 'numPcaDimensions', 80, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(14) = ex(13) ; ex(14).datasets = {'caltech101'} ; ex(14).opts{6} = {'1x1', '2x2'} ; ex(14).opts{end} = @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(0:-.5:-3)) ; ex(15) = ex(13) ; ex(15).datasets = {'voc07'} ; ex(15).C = 1 ; if lite, tag = 'lite' ; else, tag = 'ex' ; end for i=1:numel(ex) for j=1:numel(ex(i).datasets) dataset = ex(i).datasets{j} ; if ~isfield(ex(i), 'trainOpts') || ~iscell(ex(i).trainOpts) ex(i).trainOpts = {} ; end traintest(... 'prefix', [tag '-' dataset '-' ex(i).prefix], ... 'seed', ex(i).seed, ... 'dataset', char(dataset), ... 'datasetDir', fullfile('data', dataset), ... 'lite', lite, ... ex(i).trainOpts{:}, ... 'encoderParams', ex(i).opts) ; end end % print HTML table pf('<table>\n') ; ph('method', 'VOC07', 'Caltech 101', 'Scene 67', 'FMD') ; pr('FV', ... ge([tag '-voc07-fv'],'ap11'), ... ge([tag '-caltech101-fv']), ... ge([tag '-scene67-fv']), ... ge([tag '-fmd-fv'])) ; pr('FV + aug.', ... ge([tag '-voc07-fv-aug'],'ap11'), ... ge([tag '-caltech101-fv-aug']), ... ge([tag '-scene67-fv-aug']), ... ge([tag '-fmd-fv-aug'])) ; pr('FV + s.p.', ... ge([tag '-voc07-fv-sp'],'ap11'), ... ge([tag '-caltech101-fv-sp']), ... ge([tag '-scene67-fv-sp']), ... ge([tag '-fmd-fv-sp'])) ; %pr('VLAD', ... % ge([tag '-voc07-vlad'],'ap11'), ... % ge([tag '-caltech101-vlad']), ... % ge([tag '-scene67-vlad']), ... % ge([tag '-fmd-vlad'])) ; pr('VLAD + aug.', ... ge([tag '-voc07-vlad-aug'],'ap11'), ... ge([tag '-caltech101-vlad-aug']), ... ge([tag '-scene67-vlad-aug']), ... ge([tag '-fmd-vlad-aug'])) ; %pr('VLAD+sp', ... % ge([tag '-voc07-vlad-sp'],'ap11'), ... % ge([tag '-caltech101-vlad-sp']), ... % ge([tag '-scene67-vlad-sp']), ... % ge([tag '-fmd-vlad-sp'])) ; %pr('BOVW', ... % ge([tag '-voc07-bovw'],'ap11'), ... % ge([tag '-caltech101-bovw']), ... % ge([tag '-scene67-bovw']), ... % ge([tag '-fmd-bovw'])) ; pr('BOVW + aug.', ... ge([tag '-voc07-bovw-aug'],'ap11'), ... ge([tag '-caltech101-bovw-aug']), ... ge([tag '-scene67-bovw-aug']), ... ge([tag '-fmd-bovw-aug'])) ; %pr('BOVW+sp', ... % ge([tag '-voc07-bovw-sp'],'ap11'), ... % ge([tag '-caltech101-bovw-sp']), ... % ge([tag '-scene67-bovw-sp']), ... % ge([tag '-fmd-bovw-sp'])) ; pf('</table>\n'); function pf(str) fprintf(str) ; function str = ge(name, format) if nargin == 1, format = 'acc'; end data = load(fullfile('data', name, 'result.mat')) ; switch format case 'acc' str = sprintf('%.2f%% <span style="font-size:8px;">Acc</span>', mean(diag(data.confusion)) * 100) ; case 'ap11' str = sprintf('%.2f%% <span style="font-size:8px;">mAP</span>', mean(data.ap11) * 100) ; end function pr(varargin) fprintf('<tr>') ; for i=1:numel(varargin), fprintf('<td>%s</td>',varargin{i}) ; end fprintf('</tr>\n') ; function ph(varargin) fprintf('<tr>') ; for i=1:numel(varargin), fprintf('<th>%s</th>',varargin{i}) ; end fprintf('</tr>\n') ;
github
MohamedAbdelsalam9/SceneRecognition-master
getDenseSIFT.m
.m
SceneRecognition-master/code/vlfeat/apps/recognition/getDenseSIFT.m
1,679
utf_8
2059c0a2a4e762226d89121408c6e51c
function features = getDenseSIFT(im, varargin) % GETDENSESIFT Extract dense SIFT features % FEATURES = GETDENSESIFT(IM) extract dense SIFT features from % image IM. % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.scales = logspace(log10(1), log10(.25), 5) ; opts.contrastthreshold = 0 ; opts.step = 3 ; opts.rootSift = false ; opts.normalizeSift = true ; opts.binSize = 8 ; opts.geometry = [4 4 8] ; opts.sigma = 0 ; opts = vl_argparse(opts, varargin) ; dsiftOpts = {'norm', 'fast', 'floatdescriptors', ... 'step', opts.step, ... 'size', opts.binSize, ... 'geometry', opts.geometry} ; if size(im,3)>1, im = rgb2gray(im) ; end im = im2single(im) ; im = vl_imsmooth(im, opts.sigma) ; for si = 1:numel(opts.scales) im_ = imresize(im, opts.scales(si)) ; [frames{si}, descrs{si}] = vl_dsift(im_, dsiftOpts{:}) ; % root SIFT if opts.rootSift descrs{si} = sqrt(descrs{si}) ; end if opts.normalizeSift descrs{si} = snorm(descrs{si}) ; end % zero low contrast descriptors info.contrast{si} = frames{si}(3,:) ; kill = info.contrast{si} < opts.contrastthreshold ; descrs{si}(:,kill) = 0 ; % store frames frames{si}(1:2,:) = (frames{si}(1:2,:)-1) / opts.scales(si) + 1 ; frames{si}(3,:) = opts.binSize / opts.scales(si) / 3 ; end features.frame = cat(2, frames{:}) ; features.descr = cat(2, descrs{:}) ; features.contrast = cat(2, info.contrast{:}) ; function x = snorm(x) x = bsxfun(@times, x, 1./max(1e-5,sqrt(sum(x.^2,1)))) ;
github
ColeLab/ColeAnticevicNetPartition-master
save.m
.m
ColeAnticevicNetPartition-master/code/gifti-1.6/@gifti/save.m
9,801
utf_8
d7999ec374bfbb32da9b38b849ef15ab
function save(this,filename,encoding) % Save GIfTI object in a GIfTI format file % FORMAT save(this,filename,encoding) % this - GIfTI object % filename - name of GIfTI file to be created [Default: 'untitled.gii'] % encoding - optional argument to specify encoding format, among % ASCII, Base64Binary, GZipBase64Binary, ExternalFileBinary. % [Default: 'GZipBase64Binary'] %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Guillaume Flandin % $Id: save.m 6516 2015-08-07 17:28:33Z guillaume $ % Check filename %-------------------------------------------------------------------------- ext = '.gii'; if nargin == 1 filename = 'untitled'; end [p,f,e] = fileparts(filename); if ~ismember(lower(e),{ext}) e = ext; end filename = fullfile(p,[f e]); % Open file for writing %-------------------------------------------------------------------------- fid = fopen(filename,'wt'); if fid == -1 error('Unable to write file %s: permission denied.',filename); end % Write file %-------------------------------------------------------------------------- if nargin < 3, encoding = 'GZipBase64Binary'; end switch encoding case {'ASCII','Base64Binary','GZipBase64Binary','ExternalFileBinary'} otherwise error('Unknown encoding.'); end fid = save_gii(fid,this,encoding); % Close file %-------------------------------------------------------------------------- fclose(fid); %========================================================================== % function fid = save_gii(fid,this,encoding) %========================================================================== function fid = save_gii(fid,this,encoding) % Defaults for DataArray's attributes %-------------------------------------------------------------------------- [unused,unused,mach] = fopen(fid); if strncmp('ieee-be',mach,7) def.Endian = 'BigEndian'; elseif strncmp('ieee-le',mach,7) def.Endian = 'LittleEndian'; else error('[GIFTI] Unknown byte order "%s".',mach); end def.Encoding = encoding; def.Intent = 'NIFTI_INTENT_NONE'; def.DataType = 'NIFTI_TYPE_FLOAT32'; def.ExternalFileName = ''; def.ExternalFileOffset = ''; def.offset = 0; % Edit object DataArray attributes %-------------------------------------------------------------------------- for i=1:length(this.data) % Revert the dimension storage d = this.data{i}.attributes.Dim; if numel(d) > 1 && d(end) == 1 d = d(1:end-1); end this.data{i}.attributes = rmfield(this.data{i}.attributes,'Dim'); this.data{i}.attributes.Dimensionality = num2str(length(d)); for j=1:length(d) this.data{i}.attributes.(sprintf('Dim%d',j-1)) = num2str(d(j)); end % Enforce some conventions this.data{i}.attributes.ArrayIndexingOrder = 'ColumnMajorOrder'; if ~isfield(this.data{i}.attributes,'DataType') || ... isempty(this.data{i}.attributes.DataType) warning('DataType set to default: %s', def.DataType); this.data{i}.attributes.DataType = def.DataType; end if ~isfield(this.data{i}.attributes,'Intent') || ... isempty(this.data{i}.attributes.Intent) warning('Intent code set to default: %s', def.Intent); this.data{i}.attributes.Intent = def.Intent; end this.data{i}.attributes.Encoding = def.Encoding; this.data{i}.attributes.Endian = def.Endian; this.data{i}.attributes.ExternalFileName = def.ExternalFileName; this.data{i}.attributes.ExternalFileOffset = def.ExternalFileOffset; switch this.data{i}.attributes.Encoding case {'ASCII', 'Base64Binary','GZipBase64Binary' } case 'ExternalFileBinary' extfilename = this.data{i}.attributes.ExternalFileName; if isempty(extfilename) [p,f] = fileparts(fopen(fid)); extfilename = [f '.dat']; end [p,f,e] = fileparts(extfilename); this.data{i}.attributes.ExternalFileName = fullfile(fileparts(fopen(fid)),[f e]); this.data{i}.attributes.ExternalFileOffset = num2str(def.offset); otherwise error('[GIFTI] Unknown data encoding: %s.',this.data{i}.attributes.Encoding); end end % Prolog %-------------------------------------------------------------------------- fprintf(fid,'<?xml version="1.0" encoding="UTF-8"?>\n'); fprintf(fid,'<!DOCTYPE GIFTI SYSTEM "http://www.nitrc.org/frs/download.php/115/gifti.dtd">\n'); fprintf(fid,'<GIFTI Version="1.0" NumberOfDataArrays="%d">\n',numel(this.data)); o = @(x) blanks(x*3); % MetaData %-------------------------------------------------------------------------- fprintf(fid,'%s<MetaData',o(1)); if isempty(this.metadata) fprintf(fid,'/>\n'); else fprintf(fid,'>\n'); for i=1:length(this.metadata) fprintf(fid,'%s<MD>\n',o(2)); fprintf(fid,'%s<Name><![CDATA[%s]]></Name>\n',o(3),... this.metadata(i).name); fprintf(fid,'%s<Value><![CDATA[%s]]></Value>\n',o(3),... this.metadata(i).value); fprintf(fid,'%s</MD>\n',o(2)); end fprintf(fid,'%s</MetaData>\n',o(1)); end % LabelTable %-------------------------------------------------------------------------- fprintf(fid,'%s<LabelTable',o(1)); if isempty(this.label) fprintf(fid,'/>\n'); else fprintf(fid,'>\n'); for i=1:length(this.label.name) if ~all(isnan(this.label.rgba(i,:))) label_rgba = sprintf(' Red="%f" Green="%f" Blue="%f" Alpha="%f"',... this.label.rgba(i,:)); else label_rgba = ''; end fprintf(fid,'%s<Label Key="%d"%s><![CDATA[%s]]></Label>\n',o(2),... this.label.key(i), label_rgba, this.label.name{i}); end fprintf(fid,'%s</LabelTable>\n',o(1)); end % DataArray %-------------------------------------------------------------------------- for i=1:length(this.data) fprintf(fid,'%s<DataArray',o(1)); if def.offset this.data{i}.attributes.ExternalFileOffset = num2str(def.offset); end fn = sort(fieldnames(this.data{i}.attributes)); oo = repmat({o(5) '\n'},length(fn),1); oo{1} = ' '; oo{end} = ''; for j=1:length(fn) if strcmp(fn{j},'ExternalFileName') [p,f,e] = fileparts(this.data{i}.attributes.(fn{j})); attval = [f e]; else attval = this.data{i}.attributes.(fn{j}); end fprintf(fid,'%s%s="%s"%s',oo{j,1},... fn{j},attval,sprintf(oo{j,2})); end fprintf(fid,'>\n'); % MetaData %---------------------------------------------------------------------- fprintf(fid,'%s<MetaData>\n',o(2)); for j=1:length(this.data{i}.metadata) fprintf(fid,'%s<MD>\n',o(3)); fprintf(fid,'%s<Name><![CDATA[%s]]></Name>\n',o(4),... this.data{i}.metadata(j).name); fprintf(fid,'%s<Value><![CDATA[%s]]></Value>\n',o(4),... this.data{i}.metadata(j).value); fprintf(fid,'%s</MD>\n',o(3)); end fprintf(fid,'%s</MetaData>\n',o(2)); % CoordinateSystemTransformMatrix %---------------------------------------------------------------------- for j=1:length(this.data{i}.space) fprintf(fid,'%s<CoordinateSystemTransformMatrix>\n',o(2)); fprintf(fid,'%s<DataSpace><![CDATA[%s]]></DataSpace>\n',o(3),... this.data{i}.space(j).DataSpace); fprintf(fid,'%s<TransformedSpace><![CDATA[%s]]></TransformedSpace>\n',o(3),... this.data{i}.space(j).TransformedSpace); fprintf(fid,'%s<MatrixData>%s</MatrixData>\n',o(3),... sprintf('%f ',this.data{i}.space(j).MatrixData')); fprintf(fid,'%s</CoordinateSystemTransformMatrix>\n',o(2)); end % Data (saved using MATLAB's ColumnMajorOrder) %---------------------------------------------------------------------- fprintf(fid,'%s<Data>',o(2)); tp = getdict; try tp = tp.(this.data{i}.attributes.DataType); catch error('[GIFTI] Unknown DataType.'); end switch this.data{i}.attributes.Encoding case 'ASCII' fprintf(fid, [tp.format ' '], this.data{i}.data); case 'Base64Binary' fprintf(fid,base64encode(typecast(this.data{i}.data(:),'uint8'))); % uses native machine format case 'GZipBase64Binary' fprintf(fid,base64encode(zstream('C',typecast(this.data{i}.data(:),'uint8')))); % uses native machine format case 'ExternalFileBinary' extfilename = this.data{i}.attributes.ExternalFileName; dat = this.data{i}.data; if isa(dat,'file_array') dat = subsref(dat,substruct('()',repmat({':'},1,numel(dat.dim)))); end if ~def.offset fide = fopen(extfilename,'w'); % uses native machine format else fide = fopen(extfilename,'a'); % uses native machine format end if fide == -1 error('Unable to write file %s: permission denied.',extfilename); end fseek(fide,0,1); fwrite(fide,dat,tp.class); def.offset = ftell(fide); fclose(fide); otherwise error('[GIFTI] Unknown data encoding.'); end fprintf(fid,'</Data>\n'); fprintf(fid,'%s</DataArray>\n',o(1)); end fprintf(fid,'</GIFTI>\n');
github
ColeLab/ColeAnticevicNetPartition-master
gifti.m
.m
ColeAnticevicNetPartition-master/code/gifti-1.6/@gifti/gifti.m
3,918
utf_8
59128f02da0486e8123d2abf2d645bf1
function this = gifti(varargin) % GIfTI Geometry file format class % Geometry format under the Neuroimaging Informatics Technology Initiative % (NIfTI): % http://www.nitrc.org/projects/gifti/ % http://nifti.nimh.nih.gov/ %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Guillaume Flandin % $Id: gifti.m 6347 2015-02-24 17:59:16Z guillaume $ switch nargin case 0 this = giftistruct; this = class(this,'gifti'); case 1 if isa(varargin{1},'gifti') this = varargin{1}; elseif isstruct(varargin{1}) f = {'faces', 'face', 'tri' 'vertices', 'vert', 'pnt', 'cdata', 'indices'}; ff = {'faces', 'faces', 'faces', 'vertices', 'vertices', 'vertices', 'cdata', 'indices'}; [c, ia] = intersect(f,fieldnames(varargin{1})); if ~isempty(c) this = gifti; for i=1:length(c) this = subsasgn(this,... struct('type','.','subs',ff{ia(i)}),... varargin{1}.(c{i})); end elseif isempty(setxor(fieldnames(varargin{1}),... {'metadata','label','data'})) this = class(varargin{1},'gifti'); else error('[GIFTI] Invalid structure.'); end elseif ishandle(varargin{1}) this = struct('vertices',get(varargin{1},'Vertices'), ... 'faces', get(varargin{1},'Faces')); if ~isempty(get(varargin{1},'FaceVertexCData')); this.cdata = get(varargin{1},'FaceVertexCData'); end this = gifti(this); elseif isnumeric(varargin{1}) this = gifti; this = subsasgn(this,... struct('type','.','subs','cdata'),... varargin{1}); elseif ischar(varargin{1}) if size(varargin{1},1)>1 this = gifti(cellstr(varargin{1})); return; end [p,n,e] = fileparts(varargin{1}); if strcmpi(e,'.mat') try this = gifti(load(varargin{1})); catch error('[GIFTI] Loading of file %s failed.', varargin{1}); end elseif strcmpi(e,'.asc') || strcmpi(e,'.srf') this = read_freesurfer_file(varargin{1}); this = gifti(this); else this = read_gifti_file_standalone(varargin{1},giftistruct); this = class(this,'gifti'); end elseif iscellstr(varargin{1}) fnames = varargin{1}; this(numel(fnames)) = giftistruct; this = class(this,'gifti'); for i=1:numel(fnames) this(i) = gifti(fnames{i}); end else error('[GIFTI] Invalid object construction.'); end otherwise error('[GIFTI] Invalid object construction.'); end %========================================================================== function s = giftistruct s = struct(... 'metadata', ... struct(... 'name', {}, ... 'value', {} ... ), ... 'label', ... struct(... 'name', {}, ... 'index', {} ... ), ... 'data', ... struct(... 'attributes', {}, ... 'metadata', struct('name',{}, 'value',{}), ... 'space', {}, ... 'data', {} ... ) ... );
github
ColeLab/ColeAnticevicNetPartition-master
saveas.m
.m
ColeAnticevicNetPartition-master/code/gifti-1.6/@gifti/saveas.m
13,730
utf_8
93c2b293811510f3a6bd3359f2f5e8d5
function saveas(this,filename,format) % Save GIfTI object in external file format % FORMAT saveas(this,filename,format) % this - GIfTI object % filename - name of file to be created [Default: 'untitled.vtk'] % format - optional argument to specify encoding format, among % VTK (.vtk,.vtp), Collada (.dae), IDTF (.idtf). [Default: VTK] %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Guillaume Flandin % $Id$ % Check filename and file format %-------------------------------------------------------------------------- ext = '.vtk'; if nargin == 1 filename = ['untitled' ext]; else if nargin == 3 && strcmpi(format,'collada') ext = '.dae'; end if nargin == 3 && strcmpi(format,'idtf') ext = '.idtf'; end if nargin == 3 && strncmpi(format,'vtk',3) format = lower(format(5:end)); ext = '.vtk'; end [p,f,e] = fileparts(filename); if strcmpi(e,'.gii') warning('Use save instead of saveas.'); save(this,filename); return; end if ~ismember(lower(e),{ext}) warning('Changing file extension from %s to %s.',e,ext); e = ext; end filename = fullfile(p,[f e]); end % Write file %-------------------------------------------------------------------------- s = struct(this); switch ext case '.dae' save_dae(s,filename); case '.idtf' save_idtf(s,filename); case {'.vtk','.vtp'} if nargin < 3, format = 'legacy-ascii'; end mvtk_write(s,filename,format); otherwise error('Unknown file format.'); end %========================================================================== % function save_dae(s,filename) %========================================================================== function save_dae(s,filename) o = @(x) blanks(x*3); % Split the mesh into connected components %-------------------------------------------------------------------------- try C = spm_mesh_label(s.faces); d = []; for i=1:numel(unique(C)) d(i).faces = s.faces(C==i,:); u = unique(d(i).faces); d(i).vertices = s.vertices(u,:); a = 1:max(d(i).faces(:)); a(u) = 1:size(d(i).vertices,1); %a = sparse(1,double(u),1:1:size(d(i).vertices,1)); d(i).faces = a(d(i).faces); end s = d; end % Open file for writing %-------------------------------------------------------------------------- fid = fopen(filename,'wt'); if fid == -1 error('Unable to write file %s: permission denied.',filename); end % Prolog & root of the Collada XML file %-------------------------------------------------------------------------- fprintf(fid,'<?xml version="1.0"?>\n'); fprintf(fid,'<COLLADA xmlns="http://www.collada.org/2008/03/COLLADASchema" version="1.5.0">\n'); % Assets %-------------------------------------------------------------------------- fprintf(fid,'%s<asset>\n',o(1)); fprintf(fid,'%s<contributor>\n',o(2)); fprintf(fid,'%s<author_website>%s</author_website>\n',o(3),... 'http://www.fil.ion.ucl.ac.uk/spm/'); fprintf(fid,'%s<authoring_tool>%s</authoring_tool>\n',o(3),'SPM'); fprintf(fid,'%s</contributor>\n',o(2)); fprintf(fid,'%s<created>%s</created>\n',o(2),datestr(now,'yyyy-mm-ddTHH:MM:SSZ')); fprintf(fid,'%s<modified>%s</modified>\n',o(2),datestr(now,'yyyy-mm-ddTHH:MM:SSZ')); fprintf(fid,'%s<unit name="millimeter" meter="0.001"/>\n',o(2)); fprintf(fid,'%s<up_axis>Z_UP</up_axis>\n',o(2)); fprintf(fid,'%s</asset>\n',o(1)); % Image, Materials, Effects %-------------------------------------------------------------------------- %fprintf(fid,'%s<library_images/>\n',o(1)); fprintf(fid,'%s<library_materials>\n',o(1)); for i=1:numel(s) fprintf(fid,'%s<material id="material%d" name="material%d">\n',o(2),i,i); fprintf(fid,'%s<instance_effect url="#material%d-effect"/>\n',o(3),i); fprintf(fid,'%s</material>\n',o(2)); end fprintf(fid,'%s</library_materials>\n',o(1)); fprintf(fid,'%s<library_effects>\n',o(1)); for i=1:numel(s) fprintf(fid,'%s<effect id="material%d-effect" name="material%d-effect">\n',o(2),i,i); fprintf(fid,'%s<profile_COMMON>\n',o(3)); fprintf(fid,'%s<technique sid="COMMON">\n',o(4)); fprintf(fid,'%s<lambert>\n',o(5)); fprintf(fid,'%s<emission>\n',o(6)); fprintf(fid,'%s<color>%f %f %f %d</color>\n',o(7),[0 0 0 1]); fprintf(fid,'%s</emission>\n',o(6)); fprintf(fid,'%s<ambient>\n',o(6)); fprintf(fid,'%s<color>%f %f %f %d</color>\n',o(7),[0 0 0 1]); fprintf(fid,'%s</ambient>\n',o(6)); fprintf(fid,'%s<diffuse>\n',o(6)); fprintf(fid,'%s<color>%f %f %f %d</color>\n',o(7),[0.5 0.5 0.5 1]); fprintf(fid,'%s</diffuse>\n',o(6)); fprintf(fid,'%s<transparent>\n',o(6)); fprintf(fid,'%s<color>%d %d %d %d</color>\n',o(7),[1 1 1 1]); fprintf(fid,'%s</transparent>\n',o(6)); fprintf(fid,'%s<transparency>\n',o(6)); fprintf(fid,'%s<float>%f</float>\n',o(7),0); fprintf(fid,'%s</transparency>\n',o(6)); fprintf(fid,'%s</lambert>\n',o(5)); fprintf(fid,'%s</technique>\n',o(4)); fprintf(fid,'%s</profile_COMMON>\n',o(3)); fprintf(fid,'%s</effect>\n',o(2)); end fprintf(fid,'%s</library_effects>\n',o(1)); % Geometry %-------------------------------------------------------------------------- fprintf(fid,'%s<library_geometries>\n',o(1)); for i=1:numel(s) fprintf(fid,'%s<geometry id="shape%d" name="shape%d">\n',o(2),i,i); fprintf(fid,'%s<mesh>\n',o(3)); fprintf(fid,'%s<source id="shape%d-positions">\n',o(4),i); fprintf(fid,'%s<float_array id="shape%d-positions-array" count="%d">',o(5),i,numel(s(i).vertices)); fprintf(fid,'%f ',reshape(s(i).vertices',1,[])); fprintf(fid,'</float_array>\n'); fprintf(fid,'%s<technique_common>\n',o(5)); fprintf(fid,'%s<accessor count="%d" offset="0" source="#shape%d-positions-array" stride="3">\n',o(6),size(s(i).vertices,1),i); fprintf(fid,'%s<param name="X" type="float" />\n',o(7)); fprintf(fid,'%s<param name="Y" type="float" />\n',o(7)); fprintf(fid,'%s<param name="Z" type="float" />\n',o(7)); fprintf(fid,'%s</accessor>\n',o(6)); fprintf(fid,'%s</technique_common>\n',o(5)); fprintf(fid,'%s</source>\n',o(4)); fprintf(fid,'%s<vertices id="shape%d-vertices">\n',o(4),i); fprintf(fid,'%s<input semantic="POSITION" source="#shape%d-positions"/>\n',o(5),i); fprintf(fid,'%s</vertices>\n',o(4)); fprintf(fid,'%s<triangles material="material%d" count="%d">\n',o(4),i,size(s(i).faces,1)); fprintf(fid,'%s<input semantic="VERTEX" source="#shape%d-vertices" offset="0"/>\n',o(5),i); fprintf(fid,'%s<p>',o(5)); fprintf(fid,'%d ',reshape(s(i).faces',1,[])-1); fprintf(fid,'</p>\n'); fprintf(fid,'%s</triangles>\n',o(4)); fprintf(fid,'%s</mesh>\n',o(3)); fprintf(fid,'%s</geometry>\n',o(2)); end fprintf(fid,'%s</library_geometries>\n',o(1)); % Scene %-------------------------------------------------------------------------- fprintf(fid,'%s<library_visual_scenes>\n',o(1)); fprintf(fid,'%s<visual_scene id="VisualSceneNode" name="SceneNode">\n',o(2)); for i=1:numel(s) fprintf(fid,'%s<node id="node%d">\n',o(3),i); fprintf(fid,'%s<instance_geometry url="#shape%d">\n',o(4),i); fprintf(fid,'%s<bind_material>\n',o(5)); fprintf(fid,'%s<technique_common>\n',o(6)); fprintf(fid,'%s<instance_material symbol="material%d" target="#material%d"/>\n',o(7),i,i); fprintf(fid,'%s</technique_common>\n',o(6)); fprintf(fid,'%s</bind_material>\n',o(5)); fprintf(fid,'%s</instance_geometry>\n',o(4)); fprintf(fid,'%s</node>\n',o(3)); end fprintf(fid,'%s</visual_scene>\n',o(2)); fprintf(fid,'%s</library_visual_scenes>\n',o(1)); fprintf(fid,'%s<scene>\n',o(1)); fprintf(fid,'%s<instance_visual_scene url="#VisualSceneNode" />\n',o(2)); fprintf(fid,'%s</scene>\n',o(1)); % End of XML %-------------------------------------------------------------------------- fprintf(fid,'</COLLADA>\n'); % Close file %-------------------------------------------------------------------------- fclose(fid); %========================================================================== % function save_idtf(s,filename) %========================================================================== function save_idtf(s,filename) o = @(x) blanks(x*3); % Compute normals %-------------------------------------------------------------------------- if ~isfield(s,'normals') try s.normals = spm_mesh_normals(... struct('vertices',s.vertices,'faces',s.faces),true); catch s.normals = []; end end % Split the mesh into connected components %-------------------------------------------------------------------------- try C = spm_mesh_label(s.faces); d = []; try if size(s.cdata,2) == 1 && (any(s.cdata>1) || any(s.cdata<0)) mi = min(s.cdata); ma = max(s.cdata); s.cdata = (s.cdata-mi)/ (ma-mi); else end end for i=1:numel(unique(C)) d(i).faces = s.faces(C==i,:); u = unique(d(i).faces); d(i).vertices = s.vertices(u,:); d(i).normals = s.normals(u,:); a = 1:max(d(i).faces(:)); a(u) = 1:size(d(i).vertices,1); %a = sparse(1,double(u),1:1:size(d(i).vertices,1)); d(i).faces = a(d(i).faces); d(i).mat = s.mat; try d(i).cdata = s.cdata(u,:); if size(d(i).cdata,2) == 1 d(i).cdata = repmat(d(i).cdata,1,3); end end end s = d; end % Open file for writing %-------------------------------------------------------------------------- fid = fopen(filename,'wt'); if fid == -1 error('Unable to write file %s: permission denied.',filename); end % FILE_HEADER %-------------------------------------------------------------------------- fprintf(fid,'FILE_FORMAT "IDTF"\n'); fprintf(fid,'FORMAT_VERSION 100\n\n'); % NODES %-------------------------------------------------------------------------- for i=1:numel(s) fprintf(fid,'NODE "MODEL" {\n'); fprintf(fid,'%sNODE_NAME "%s"\n',o(1),sprintf('Mesh%04d',i)); fprintf(fid,'%sPARENT_LIST {\n',o(1)); fprintf(fid,'%sPARENT_COUNT %d\n',o(2),1); fprintf(fid,'%sPARENT %d {\n',o(2),0); fprintf(fid,'%sPARENT_NAME "%s"\n',o(3),'<NULL>'); fprintf(fid,'%sPARENT_TM {\n',o(3)); I = s(i).mat; % eye(4); for j=1:size(I,2) fprintf(fid,'%s',o(4)); fprintf(fid,'%f ',I(:,j)'); fprintf(fid,'\n'); end fprintf(fid,'%s}\n',o(3)); fprintf(fid,'%s}\n',o(2)); fprintf(fid,'%s}\n',o(1)); fprintf(fid,'%sRESOURCE_NAME "%s"\n',o(1),sprintf('Mesh%04d',i)); %fprintf(fid,'%sMODEL_VISIBILITY "BOTH"\n',o(1)); fprintf(fid,'}\n\n'); end % NODE_RESOURCES %-------------------------------------------------------------------------- for i=1:numel(s) fprintf(fid,'RESOURCE_LIST "MODEL" {\n'); fprintf(fid,'%sRESOURCE_COUNT %d\n',o(1),1); fprintf(fid,'%sRESOURCE %d {\n',o(1),0); fprintf(fid,'%sRESOURCE_NAME "%s"\n',o(2),sprintf('Mesh%04d',i)); fprintf(fid,'%sMODEL_TYPE "MESH"\n',o(2)); fprintf(fid,'%sMESH {\n',o(2)); fprintf(fid,'%sFACE_COUNT %d\n',o(3),size(s(i).faces,1)); fprintf(fid,'%sMODEL_POSITION_COUNT %d\n',o(3),size(s(i).vertices,1)); fprintf(fid,'%sMODEL_NORMAL_COUNT %d\n',o(3),size(s(i).normals,1)); if ~isfield(s(i),'cdata') || isempty(s(i).cdata) c = 0; else c = size(s(i).cdata,1); end fprintf(fid,'%sMODEL_DIFFUSE_COLOR_COUNT %d\n',o(3),c); fprintf(fid,'%sMODEL_SPECULAR_COLOR_COUNT %d\n',o(3),0); fprintf(fid,'%sMODEL_TEXTURE_COORD_COUNT %d\n',o(3),0); fprintf(fid,'%sMODEL_BONE_COUNT %d\n',o(3),0); fprintf(fid,'%sMODEL_SHADING_COUNT %d\n',o(3),1); fprintf(fid,'%sMODEL_SHADING_DESCRIPTION_LIST {\n',o(3)); fprintf(fid,'%sSHADING_DESCRIPTION %d {\n',o(4),0); fprintf(fid,'%sTEXTURE_LAYER_COUNT %d\n',o(5),0); fprintf(fid,'%sSHADER_ID %d\n',o(5),0); fprintf(fid,'%s}\n',o(4)); fprintf(fid,'%s}\n',o(3)); fprintf(fid,'%sMESH_FACE_POSITION_LIST {\n',o(3)); fprintf(fid,'%d %d %d\n',s(i).faces'-1); fprintf(fid,'%s}\n',o(3)); fprintf(fid,'%sMESH_FACE_NORMAL_LIST {\n',o(3)); fprintf(fid,'%d %d %d\n',s(i).faces'-1); fprintf(fid,'%s}\n',o(3)); fprintf(fid,'%sMESH_FACE_SHADING_LIST {\n',o(3)); fprintf(fid,'%d\n',zeros(size(s(i).faces,1),1)); fprintf(fid,'%s}\n',o(3)); if c fprintf(fid,'%sMESH_FACE_DIFFUSE_COLOR_LIST {\n',o(3)); fprintf(fid,'%d %d %d\n',s(i).faces'-1); fprintf(fid,'%s}\n',o(3)); end fprintf(fid,'%sMODEL_POSITION_LIST {\n',o(3)); fprintf(fid,'%f %f %f\n',s(i).vertices'); fprintf(fid,'%s}\n',o(3)); fprintf(fid,'%sMODEL_NORMAL_LIST {\n',o(3)); fprintf(fid,'%f %f %f\n',s(i).normals'); fprintf(fid,'%s}\n',o(3)); if c fprintf(fid,'%sMODEL_DIFFUSE_COLOR_LIST {\n',o(3)); fprintf(fid,'%f %f %f\n',s(i).cdata'); fprintf(fid,'%s}\n',o(3)); end fprintf(fid,'%s}\n',o(2)); fprintf(fid,'%s}\n',o(1)); fprintf(fid,'}\n'); end % Close file %-------------------------------------------------------------------------- fclose(fid);
github
ColeLab/ColeAnticevicNetPartition-master
xml_parser.m
.m
ColeAnticevicNetPartition-master/code/gifti-1.6/@gifti/private/xml_parser.m
16,915
utf_8
de0a4766201059ea1860acc2a4a1a019
function tree = xml_parser(xmlstr) % XML (eXtensible Markup Language) Processor % FORMAT tree = xml_parser(xmlstr) % % xmlstr - XML string to parse % tree - tree structure corresponding to the XML file %__________________________________________________________________________ % % xml_parser.m is an XML 1.0 (http://www.w3.org/TR/REC-xml) parser. % It aims to be fully conforming. It is currently not a validating % XML processor. % % A description of the tree structure provided in output is detailed in % the header of this m-file. %__________________________________________________________________________ % Copyright (C) 2002-2015 http://www.artefact.tk/ % Guillaume Flandin % $Id: xml_parser.m 6480 2015-06-13 01:08:30Z guillaume $ % XML Processor for GNU Octave and MATLAB (The Mathworks, Inc.) % Copyright (C) 2002-2015 Guillaume Flandin <[email protected]> % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation Inc, 59 Temple Pl. - Suite 330, Boston, MA 02111-1307, USA. %-------------------------------------------------------------------------- % Suggestions for improvement and fixes are always welcome, although no % guarantee is made whether and when they will be implemented. % Send requests to <[email protected]> % Check also the latest developments on the following webpage: % <http://www.artefact.tk/software/matlab/xml/> %-------------------------------------------------------------------------- % The implementation of this XML parser is much inspired from a % Javascript parser that used to be available at <http://www.jeremie.com/> % A C-MEX file xml_findstr.c is also required, to encompass some % limitations of the built-in FINDSTR function. % Compile it on your architecture using 'mex -O xml_findstr.c' command % if the compiled version for your system is not provided. % If this function does not behave as expected, comment the line % '#define __HACK_MXCHAR__' in xml_findstr.c and compile it again. %-------------------------------------------------------------------------- % Structure of the output tree: % There are 5 types of nodes in an XML file: element, chardata, cdata, % pi and comment. % Each of them contains an UID (Unique Identifier): an integer between % 1 and the number of nodes of the XML file. % % element (a tag <name key="value"> [contents] </name> % |_ type: 'element' % |_ name: string % |_ attributes: cell array of struct 'key' and 'value' or [] % |_ contents: double array of uid's or [] if empty % |_ parent: uid of the parent ([] if root) % |_ uid: double % % chardata (a character array) % |_ type: 'chardata' % |_ value: string % |_ parent: uid of the parent % |_ uid: double % % cdata (a litteral string <![CDATA[value]]>) % |_ type: 'cdata' % |_ value: string % |_ parent: uid of the parent % |_ uid: double % % pi (a processing instruction <?target value ?>) % |_ type: 'pi' % |_ target: string (may be empty) % |_ value: string % |_ parent: uid of the parent % |_ uid: double % % comment (a comment <!-- value -->) % |_ type: 'comment' % |_ value: string % |_ parent: uid of the parent % |_ uid: double % %-------------------------------------------------------------------------- % TODO/BUG/FEATURES: % - [compile] only a warning if TagStart is empty ? % - [attribution] should look for " and ' rather than only " % - [main] with normalize as a preprocessing, CDATA are modified % - [prolog] look for a DOCTYPE in the whole string even if it occurs % only in a far CDATA tag, bug even if the doctype is inside a comment % - [tag_element] erode should replace normalize here % - remove globals? uppercase globals rather persistent (clear mfile)? % - xml_findstr is indeed xml_strfind according to Mathworks vocabulary % - problem with entities: do we need to convert them here? (&eacute;) %-------------------------------------------------------------------------- %- XML string to parse and number of tags read global xmlstring Xparse_count xtree; %- Check input arguments %error(nargchk(1,1,nargin)); if isempty(xmlstr) error('[XML] Not enough parameters.') elseif ~ischar(xmlstr) || sum(size(xmlstr)>1)>1 error('[XML] Input must be a string.') end %- Initialize number of tags (<=> uid) Xparse_count = 0; %- Remove prolog and white space characters from the XML string xmlstring = normalize(prolog(xmlstr)); %- Initialize the XML tree xtree = {}; tree = fragment; tree.str = 1; tree.parent = 0; %- Parse the XML string tree = compile(tree); %- Return the XML tree tree = xtree; %- Remove global variables from the workspace clear global xmlstring Xparse_count xtree; %========================================================================== % SUBFUNCTIONS %-------------------------------------------------------------------------- function frag = compile(frag) global xmlstring xtree Xparse_count; while 1, if length(xmlstring)<=frag.str || ... (frag.str == length(xmlstring)-1 && strcmp(xmlstring(frag.str:end),' ')) return end TagStart = xml_findstr(xmlstring,'<',frag.str,1); if isempty(TagStart) %- Character data error('[XML] Unknown data at the end of the XML file.'); Xparse_count = Xparse_count + 1; xtree{Xparse_count} = chardata; xtree{Xparse_count}.value = erode(entity(xmlstring(frag.str:end))); xtree{Xparse_count}.parent = frag.parent; xtree{frag.parent}.contents = [xtree{frag.parent}.contents Xparse_count]; frag.str = ''; elseif TagStart > frag.str if strcmp(xmlstring(frag.str:TagStart-1),' ') %- A single white space before a tag (ignore) frag.str = TagStart; else %- Character data Xparse_count = Xparse_count + 1; xtree{Xparse_count} = chardata; xtree{Xparse_count}.value = erode(entity(xmlstring(frag.str:TagStart-1))); xtree{Xparse_count}.parent = frag.parent; xtree{frag.parent}.contents = [xtree{frag.parent}.contents Xparse_count]; frag.str = TagStart; end else if strcmp(xmlstring(frag.str+1),'?') %- Processing instruction frag = tag_pi(frag); else if length(xmlstring)-frag.str>4 && strcmp(xmlstring(frag.str+1:frag.str+3),'!--') %- Comment frag = tag_comment(frag); else if length(xmlstring)-frag.str>9 && strcmp(xmlstring(frag.str+1:frag.str+8),'![CDATA[') %- Litteral data frag = tag_cdata(frag); else %- A tag element (empty (<.../>) or not) if ~isempty(frag.end) endmk = ['/' frag.end '>']; else endmk = '/>'; end if strcmp(xmlstring(frag.str+1:frag.str+length(frag.end)+2),endmk) || ... strcmp(strip(xmlstring(frag.str+1:frag.str+length(frag.end)+2)),endmk) frag.str = frag.str + length(frag.end)+3; return else frag = tag_element(frag); end end end end end end %-------------------------------------------------------------------------- function frag = tag_element(frag) global xmlstring xtree Xparse_count; close = xml_findstr(xmlstring,'>',frag.str,1); if isempty(close) error('[XML] Tag < opened but not closed.'); else empty = strcmp(xmlstring(close-1:close),'/>'); if empty close = close - 1; end starttag = normalize(xmlstring(frag.str+1:close-1)); nextspace = xml_findstr(starttag,' ',1,1); attribs = ''; if isempty(nextspace) name = starttag; else name = starttag(1:nextspace-1); attribs = starttag(nextspace+1:end); end Xparse_count = Xparse_count + 1; xtree{Xparse_count} = element; xtree{Xparse_count}.name = strip(name); if frag.parent xtree{Xparse_count}.parent = frag.parent; xtree{frag.parent}.contents = [xtree{frag.parent}.contents Xparse_count]; end if ~isempty(attribs) xtree{Xparse_count}.attributes = attribution(attribs); end if ~empty contents = fragment; contents.str = close+1; contents.end = name; contents.parent = Xparse_count; contents = compile(contents); frag.str = contents.str; else frag.str = close+2; end end %-------------------------------------------------------------------------- function frag = tag_pi(frag) global xmlstring xtree Xparse_count; close = xml_findstr(xmlstring,'?>',frag.str,1); if isempty(close) warning('[XML] Tag <? opened but not closed.') else nextspace = xml_findstr(xmlstring,' ',frag.str,1); Xparse_count = Xparse_count + 1; xtree{Xparse_count} = pri; if nextspace > close || nextspace == frag.str+2 xtree{Xparse_count}.value = erode(xmlstring(frag.str+2:close-1)); else xtree{Xparse_count}.value = erode(xmlstring(nextspace+1:close-1)); xtree{Xparse_count}.target = erode(xmlstring(frag.str+2:nextspace)); end if frag.parent xtree{frag.parent}.contents = [xtree{frag.parent}.contents Xparse_count]; xtree{Xparse_count}.parent = frag.parent; end frag.str = close+2; end %-------------------------------------------------------------------------- function frag = tag_comment(frag) global xmlstring xtree Xparse_count; close = xml_findstr(xmlstring,'-->',frag.str,1); if isempty(close) warning('[XML] Tag <!-- opened but not closed.') else Xparse_count = Xparse_count + 1; xtree{Xparse_count} = comment; xtree{Xparse_count}.value = erode(xmlstring(frag.str+4:close-1)); if frag.parent xtree{frag.parent}.contents = [xtree{frag.parent}.contents Xparse_count]; xtree{Xparse_count}.parent = frag.parent; end frag.str = close+3; end %-------------------------------------------------------------------------- function frag = tag_cdata(frag) global xmlstring xtree Xparse_count; close = xml_findstr(xmlstring,']]>',frag.str,1); if isempty(close) warning('[XML] Tag <![CDATA[ opened but not closed.') else Xparse_count = Xparse_count + 1; xtree{Xparse_count} = cdata; xtree{Xparse_count}.value = xmlstring(frag.str+9:close-1); if frag.parent xtree{frag.parent}.contents = [xtree{frag.parent}.contents Xparse_count]; xtree{Xparse_count}.parent = frag.parent; end frag.str = close+3; end %-------------------------------------------------------------------------- function all = attribution(str) %- Initialize attributs nbattr = 0; all = cell(nbattr); %- Look for 'key="value"' substrings while 1, eq = xml_findstr(str,'=',1,1); if isempty(str) || isempty(eq), return; end id = sort([xml_findstr(str,'"',1,1),xml_findstr(str,'''',1,1)]); id=id(1); nextid = sort([xml_findstr(str,'"',id+1,1),xml_findstr(str,'''',id+1,1)]);nextid=nextid(1); nbattr = nbattr + 1; all{nbattr}.key = strip(str(1:(eq-1))); all{nbattr}.val = entity(str((id+1):(nextid-1))); str = str((nextid+1):end); end %-------------------------------------------------------------------------- function elm = element global Xparse_count; elm = struct('type','element','name','','attributes',[],'contents',[],'parent',[],'uid',Xparse_count); %-------------------------------------------------------------------------- function cdat = chardata global Xparse_count; cdat = struct('type','chardata','value','','parent',[],'uid',Xparse_count); %-------------------------------------------------------------------------- function cdat = cdata global Xparse_count; cdat = struct('type','cdata','value','','parent',[],'uid',Xparse_count); %-------------------------------------------------------------------------- function proce = pri global Xparse_count; proce = struct('type','pi','value','','target','','parent',[],'uid',Xparse_count); %-------------------------------------------------------------------------- function commt = comment global Xparse_count; commt = struct('type','comment','value','','parent',[],'uid',Xparse_count); %-------------------------------------------------------------------------- function frg = fragment frg = struct('str','','parent','','end',''); %-------------------------------------------------------------------------- function str = prolog(str) %- Initialize beginning index of elements tree b = 1; %- Initial tag start = xml_findstr(str,'<',1,1); if isempty(start) error('[XML] No tag found.') end %- Header (<?xml version="1.0" ... ?>) if strcmpi(str(start:start+2),'<?x') close = xml_findstr(str,'?>',1,1); if ~isempty(close) b = close + 2; else warning('[XML] Header tag incomplete.') end end %- Doctype (<!DOCTYPE type ... [ declarations ]>) start = xml_findstr(str,'<!DOCTYPE',b,1); % length('<!DOCTYPE') = 9 if ~isempty(start) close = xml_findstr(str,'>',start+9,1); if ~isempty(close) b = close + 1; dp = xml_findstr(str,'[',start+9,1); if (~isempty(dp) && dp < b) k = xml_findstr(str,']>',start+9,1); if ~isempty(k) b = k + 2; else warning('[XML] Tag [ in DOCTYPE opened but not closed.') end end else warning('[XML] Tag DOCTYPE opened but not closed.') end end %- Skip prolog from the xml string str = str(b:end); %-------------------------------------------------------------------------- function str = strip(str) str(isspace(str)) = ''; %-------------------------------------------------------------------------- function str = normalize(str) % Find white characters (space, newline, carriage return, tabs, ...) i = isspace(str); i = find(i == 1); str(i) = ' '; % replace several white characters by only one if ~isempty(i) j = i - [i(2:end) i(end)]; str(i(j == -1)) = []; end %-------------------------------------------------------------------------- function str = entity(str) str = strrep(str,'&lt;','<'); str = strrep(str,'&gt;','>'); str = strrep(str,'&quot;','"'); str = strrep(str,'&apos;',''''); str = strrep(str,'&amp;','&'); %-------------------------------------------------------------------------- function str = erode(str) if ~isempty(str) && str(1)==' ', str(1)=''; end; if ~isempty(str) && str(end)==' ', str(end)=''; end; %----------------------------------------------------------------------- function k = xml_findstr(s,p,i,n) % K = XML_FINDSTR(TEXT,PATTERN,INDICE,NBOCCUR) % k = regexp(s(i:end),p,'once') + i - 1; j = strfind(s,p); k = j(j>=i); if ~isempty(k), k = k(1:min(n,length(k))); end
github
ColeLab/ColeAnticevicNetPartition-master
read_gifti_file_standalone.m
.m
ColeAnticevicNetPartition-master/code/gifti-1.6/@gifti/private/read_gifti_file_standalone.m
8,244
utf_8
018a4c448f6eeab3ab67b1b95d3086ea
function this = read_gifti_file_standalone(filename, this) % Low level reader of GIfTI 1.0 files % FORMAT this = read_gifti_file(filename, this) % filename - XML GIfTI filename % this - structure with fields 'metaData', 'label' and 'data'. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Guillaume Flandin % $Id: read_gifti_file_standalone.m 6404 2015-04-13 14:29:53Z guillaume $ % Import XML-based GIfTI file %-------------------------------------------------------------------------- try fid = fopen(filename,'rt'); xmlstr = fread(fid,'*char')'; fclose(fid); t = xml_parser(xmlstr); catch error('[GIFTI] Loading of XML file %s failed.', filename); end % Root element of a GIFTI file %-------------------------------------------------------------------------- if ~strcmp(xml_get(t,xml_root(t),'name'),'GIFTI') error('[GIFTI] %s is not a GIFTI 1.0 file.', filename); end attr = cell2mat(xml_attributes(t,'get',xml_root(t))); attr = cell2struct({attr.val},strrep({attr.key},':','___'),2); if ~all(ismember({'Version','NumberOfDataArrays'},fieldnames(attr))) error('[GIFTI] Missing mandatory attributes for GIFTI root element.'); end if str2double(attr.Version) ~= 1 warning('[GIFTI] Unknown specification version of GIFTI file (%s).',attr.Version); end nbData = str2double(attr.NumberOfDataArrays); % Read children elements %-------------------------------------------------------------------------- uid = xml_children(t,xml_root(t)); for i=1:length(uid) switch xml_get(t,uid(i),'name') case 'MetaData' this.metadata = gifti_MetaData(t,uid(i)); case 'LabelTable' this.label = gifti_LabelTable(t,uid(i)); case 'DataArray' this.data{end+1} = gifti_DataArray(t,uid(i),filename); otherwise warning('[GIFTI] Unknown element "%s": ignored.',xml_get(t,uid(i),'name')); end end if nbData ~= length(this.data) warning('[GIFTI] Mismatch between expected and effective number of datasets.'); end %========================================================================== function s = gifti_MetaData(t,uid) s = struct('name',{}, 'value',{}); c = xml_children(t,uid); for i=1:length(c) for j=xml_children(t,c(i)) s(i).(lower(xml_get(t,j,'name'))) = xml_get(t,xml_children(t,j),'value'); end end %========================================================================== function s = gifti_LabelTable(t,uid) s = struct('name',{}, 'key',[], 'rgba',[]); c = xml_children(t,uid); for i=1:length(c) a = xml_attributes(t,'get',c(i)); s(1).rgba(i,1:4) = NaN; for j=1:numel(a) switch lower(a{j}.key) case {'key','index'} s(1).key(i) = str2double(a{j}.val); case 'red' s(1).rgba(i,1) = str2double(a{j}.val); case 'green' s(1).rgba(i,2) = str2double(a{j}.val); case 'blue' s(1).rgba(i,3) = str2double(a{j}.val); case 'alpha' s(1).rgba(i,4) = str2double(a{j}.val); otherwise end end s(1).name{i} = xml_get(t,xml_children(t,c(i)),'value'); end %========================================================================== function s = gifti_DataArray(t,uid,filename) s = struct(... 'attributes', {}, ... 'data', {}, ... 'metadata', struct([]), ... 'space', {} ... ); attr = cell2mat(xml_attributes(t,'get',uid)); s(1).attributes = cell2struct({attr.val},{attr.key},2); s(1).attributes.Dim = []; for i=1:str2double(s(1).attributes.Dimensionality) f = sprintf('Dim%d',i-1); s(1).attributes.Dim(i) = str2double(s(1).attributes.(f)); s(1).attributes = rmfield(s(1).attributes,f); end s(1).attributes = rmfield(s(1).attributes,'Dimensionality'); if isfield(s(1).attributes,'ExternalFileName') && ... ~isempty(s(1).attributes.ExternalFileName) s(1).attributes.ExternalFileName = fullfile(fileparts(filename),... s(1).attributes.ExternalFileName); end c = xml_children(t,uid); for i=1:length(c) switch xml_get(t,c(i),'name') case 'MetaData' s(1).metadata = gifti_MetaData(t,c(i)); case 'CoordinateSystemTransformMatrix' s(1).space(end+1) = gifti_Space(t,c(i)); case 'Data' s(1).data = gifti_Data(t,c(i),s(1).attributes); otherwise error('[GIFTI] Unknown DataArray element "%s".',xml_get(t,c(i),'name')); end end %========================================================================== function s = gifti_Space(t,uid) s = struct('DataSpace','', 'TransformedSpace','', 'MatrixData',[]); for i=xml_children(t,uid) s.(xml_get(t,i,'name')) = xml_get(t,xml_children(t,i),'value'); end s.MatrixData = reshape(str2num(s.MatrixData),4,4)'; %========================================================================== function d = gifti_Data(t,uid,s) tp = getdict; try tp = tp.(s.DataType); catch error('[GIFTI] Unknown DataType.'); end [unused,unused,mach] = fopen(1); sb = @(x) x; try if (strcmp(s.Endian,'LittleEndian') && ~isempty(strmatch('ieee-be',mach))) ... || (strcmp(s.Endian,'BigEndian') && ~isempty(strmatch('ieee-le',mach))) sb = @swapbyte; end catch % Byte Order can be absent if encoding is ASCII, assume native otherwise end switch s.Encoding case 'ASCII' d = feval(tp.conv,sscanf(xml_get(t,xml_children(t,uid),'value'),tp.format)); case 'Base64Binary' d = typecast(sb(base64decode(xml_get(t,xml_children(t,uid),'value'))), tp.cast); case 'GZipBase64Binary' d = typecast(zstream('D',sb(base64decode(xml_get(t,xml_children(t,uid),'value')))), tp.cast); case 'ExternalFileBinary' [p,f,e] = fileparts(s.ExternalFileName); if isempty(p) s.ExternalFileName = fullfile(pwd,[f e]); end if true fid = fopen(s.ExternalFileName,'r'); if fid == -1 error('[GIFTI] Unable to read binary file %s.',s.ExternalFileName); end fseek(fid,str2double(s.ExternalFileOffset),0); d = sb(fread(fid,prod(s.Dim),['*' tp.class])); fclose(fid); else d = file_array(s.ExternalFileName, s.Dim, tp.class, ... str2double(s.ExternalFileOffset),1,0,'rw'); end otherwise error('[GIFTI] Unknown data encoding: %s.',s.Encoding); end if length(s.Dim) == 1, s.Dim(end+1) = 1; end switch s.ArrayIndexingOrder case 'RowMajorOrder' d = permute(reshape(d,fliplr(s.Dim)),length(s.Dim):-1:1); case 'ColumnMajorOrder' d = reshape(d,s.Dim); otherwise error('[GIFTI] Unknown array indexing order.'); end %========================================================================== %========================================================================== function uid = xml_root(tree) uid = 1; for i=1:length(tree) if strcmp(xml_get(tree,i,'type'),'element') uid = i; break end end %-------------------------------------------------------------------------- function child = xml_children(tree,uid) if strcmp(tree{uid}.type,'element') child = tree{uid}.contents; else child = []; end %-------------------------------------------------------------------------- function value = xml_get(tree,uid,parameter) if isempty(uid), value = {}; return; end try value = tree{uid}.(parameter); catch error(sprintf('[XML] Parameter %s not found.',parameter)); end %-------------------------------------------------------------------------- function varargout = xml_attributes(tree,method,uid) if ~strcmpi(method,'get'), error('[XML] Unknown attributes method.'); end if isempty(tree{uid}.attributes) varargout{1} = {}; else varargout{1} = tree{uid}.attributes; end
github
ColeLab/ColeAnticevicNetPartition-master
mvtk_write.m
.m
ColeAnticevicNetPartition-master/code/gifti-1.6/@gifti/private/mvtk_write.m
18,882
utf_8
006b1aa29abf46ab17ab3eb11c9cb992
function mvtk_write(M,filename,format) % Write geometric data on disk using VTK file format (legacy/XML,ascii/binary) % FORMAT mvtk_write(M,filename,format) % % M - data structure % filename - output filename [Default: 'untitled'] % format - VTK file format: legacy, legacy-ascii, legacy-binary, xml, % xml-ascii, xml-binary [Default: 'legacy-ascii'] %__________________________________________________________________________ % % VTK File Formats Specifications: % http://www.vtk.org/VTK/img/file-formats.pdf % % Requirements: zstream, base64encode %__________________________________________________________________________ % Copyright (C) 2015 Wellcome Trust Centre for Neuroimaging % Guillaume Flandin % $Id: mvtk_write.m 6520 2015-08-13 16:13:06Z guillaume $ %-Input parameters %-------------------------------------------------------------------------- if nargin < 2 || isempty(filename), filename = 'untitled'; end if nargin < 3 || isempty(format) [pth,name,ext] = fileparts(filename); switch ext case {'','.vtk'} ext = '.vtk'; format = 'legacy-ascii'; % default case 'vtp' format = 'xml-ascii'; case {'.vti','.vtr','.vts','.vtu'} format = 'xml-ascii'; warning('Only partially handled.'); otherwise error('Unknown file extension.'); end else switch lower(format) case {'legacy','legacy-ascii','legacy-binary'} ext = '.vtk'; case {'xml','xml-ascii','xml-binary','xml-appended'} ext = '.vtp'; otherwise error('Unknown file format.'); end end %-Filename %-------------------------------------------------------------------------- [pth,name,e] = fileparts(filename); if ~strcmpi(e,ext) warning('Changing file extension from %s to %s.',e,ext); end filename = fullfile(pth,[name ext]); %-Convert input structure if necessary %-------------------------------------------------------------------------- %-Three scalars per item interpreted as color % if isfield(M,'cdata') && size(M.cdata,2) == 3 % M.color = M.cdata; % M = rmfield(M,'cdata'); % end %-Compute normals if ~isfield(M,'normals') M.normals = compute_normals(M); end %-Write file %-------------------------------------------------------------------------- switch lower(format) case {'legacy','legacy-ascii'} mvtk_write_legacy(M,filename,'ASCII'); case {'legacy-binary'} mvtk_write_legacy(M,filename,'BINARY'); case {'xml','xml-ascii'} mvtk_write_xml(M,filename,'ASCII'); case {'xml-binary'} mvtk_write_xml(M,filename,'BINARY'); case {'xml-appended'} mvtk_write_xml(M,filename,'APPENDED'); otherwise error('Unknown file format.'); end %========================================================================== % function fid = mvtk_write_legacy(s,filename,format) %========================================================================== function fid = mvtk_write_legacy(s,filename,format) %-Open file %-------------------------------------------------------------------------- if nargin == 2, format = 'ASCII'; else format = upper(format); end switch format case 'ASCII' fopen_opts = {'wt'}; write_data = @(fid,fmt,prec,dat) fprintf(fid,fmt,dat); case 'BINARY' fopen_opts = {'wb','ieee-be'}; write_data = @(fid,fmt,prec,dat) [fwrite(fid,dat,prec);fprintf(fid,'\n');]; otherwise error('Unknown file format.'); end fid = fopen(filename,fopen_opts{:}); if fid == -1 error('Unable to write file %s: permission denied.',filename); end %-Legacy VTK file format %========================================================================== %- Part 1: file version and identifier %-------------------------------------------------------------------------- fprintf(fid,'# vtk DataFile Version 2.0\n'); %- Part 2: header %-------------------------------------------------------------------------- hdr = 'Saved using mVTK'; fprintf(fid,'%s\n',hdr(1:min(length(hdr),256))); %- Part 3: data type (either ASCII or BINARY) %-------------------------------------------------------------------------- fprintf(fid,'%s\n',format); %- Part 4: dataset structure: geometry/topology %-------------------------------------------------------------------------- % One of: STRUCTURED_POINTS, STRUCTURED_GRID, UNSTRUCTURED_GRID, POLYDATA, % RECTILINEAR_GRID, FIELD if isfield(s,'vertices') || isfield(s,'faces') type = 'POLYDATA'; elseif isfield(s,'spacing') type = 'STRUCTURED_POINTS'; %elseif isfield(s,'mat') % type = 'STRUCTURED_GRID'; else error('Unknown dataset structure.'); end fprintf(fid,'DATASET %s\n',type); if isfield(s,'vertices') fprintf(fid,'POINTS %d %s\n',size(s.vertices,1),'float'); write_data(fid,'%f %f %f\n','float32',s.vertices'); end if isfield(s,'faces') nFaces = size(s.faces,1); nConn = size(s.faces,2); fprintf(fid,'POLYGONS %d %d\n',nFaces,nFaces*(nConn+1)); dat = uint32([repmat(nConn,1,nFaces); (s.faces'-1)]); fmt = repmat('%d ',1,size(dat,1)); fmt(end) = ''; write_data(fid,[fmt '\n'],'uint32',dat); end if isfield(s,'spacing') fprintf(fid,'DIMENSIONS %d %d %d\n',size(s.cdata)); fprintf(fid,'ORIGIN %f %f %f\n',s.origin); fprintf(fid,'SPACING %f %f %f\n',s.spacing); s.cdata = s.cdata(:); end % if isfield(s,'mat') % dim = size(s.cdata); % fprintf(fid,'DIMENSIONS %d %d %d\n',dim); % fprintf(fid,'POINTS %d %s\n',prod(dim),'float'); % [R,C,P] = ndgrid(1:dim(1),1:dim(2),1:dim(3)); % RCP = [R(:)';C(:)';P(:)']; % clear R C P % RCP(4,:) = 1; % XYZmm = s.mat(1:3,:)*RCP; % write_data(fid,'%f %f %f\n','float32',XYZmm); % s.cdata = s.cdata(:); % end fprintf(fid,'\n'); %- Part 5: dataset attributes (POINT_DATA and CELL_DATA) %-------------------------------------------------------------------------- point_data_hdr = false; %-SCALARS (and LOOKUP_TABLE) if isfield(s,'cdata') && ~isempty(s.cdata) if ~point_data_hdr fprintf(fid,'POINT_DATA %d\n',size(s.cdata,1)); point_data_hdr = true; end if ~isfield(s,'lut') lut_name = 'default'; else lut_name = 'my_lut'; if size(s.lut,2) == 3 s.lut = [s.lut ones(size(s.lut,1),1)]; % alpha end end dataName = 'cdata'; fprintf(fid,'SCALARS %s %s %d\n',dataName,'float',size(s.cdata,2)); fprintf(fid,'LOOKUP_TABLE %s\n',lut_name); fmt = repmat('%f ',1,size(s.cdata,2)); fmt(end) = ''; write_data(fid,[fmt '\n'],'float32',s.cdata'); if ~strcmp(lut_name,'default') fprintf(fid,'LOOKUP_TABLE %s %d\n',lut_name,size(s.lut,1)); if strcmp(format,'ASCII') % float values between (0,1) write_data(fid,'%f %f %f %f\n','float32',s.lut'); % rescale else % four unsigned char values per table entry write_data(fid,'','uint8',uint8(s.lut')); % rescale end end end %-COLOR_SCALARS if isfield(s,'color') && ~isempty(s.color) if ~point_data_hdr fprintf(fid,'POINT_DATA %d\n',size(s.color,1)); point_data_hdr = true; end dataName = 'color'; fprintf(fid,'COLOR_SCALARS %s %d\n',dataName,size(s.color,2)); if strcmp(format,'ASCII') % nValues float values between (0.1) fmt = repmat('%f ',1,size(s.color,2)); fmt(end) = ''; write_data(fid,[fmt '\n'],'float32',s.color'); % rescale else % nValues unsigned char values per scalar value write_data(fid,'','uint8',uint8(s.color')); % rescale end end %-VECTORS if isfield(s,'vectors') && ~isempty(s.vectors) if ~point_data_hdr fprintf(fid,'POINT_DATA %d\n',size(s.vectors,1)); point_data_hdr = true; end dataName = 'vectors'; fprintf(fid,'VECTORS %s %s\n',dataName,'float'); write_data(fid,'%f %f %f\n','float32',s.vectors'); end %-NORMALS if isfield(s,'normals') && ~isempty(s.normals) if ~point_data_hdr fprintf(fid,'POINT_DATA %d\n',size(s.vertices,1)); point_data_hdr = true; end dataName = 'normals'; fprintf(fid,'NORMALS %s %s\n',dataName,'float'); write_data(fid,'%f %f %f\n','float32',-s.normals'); end %-TENSORS if isfield(s,'tensors') && ~isempty(s.tensors) if ~point_data_hdr fprintf(fid,'POINT_DATA %d\n',size(s.tensors,1)); point_data_hdr = true; end dataName = 'tensors'; fprintf(fid,'TENSORS %s %s\n',dataName,'float'); write_data(fid,repmat('%f %f %f\n',1,3),'float32',s.tensors'); end %-Close file %-------------------------------------------------------------------------- fclose(fid); %========================================================================== % function fid = mvtk_write_xml(s,filename,format) %========================================================================== function fid = mvtk_write_xml(s,filename,format) %-Open file %-------------------------------------------------------------------------- if nargin == 2, format = 'ascii'; else format = lower(format); end clear store_appended_data switch format case 'ascii' fopen_opts = {'wt'}; write_data = @(fmt,dat) deal(NaN,sprintf(fmt,dat)); case 'binary' fopen_opts = {'wb','ieee-le'}; write_data = @(fmt,dat) deal(NaN,[... base64encode(typecast(uint32(numel(dat)*numel(typecast(dat(1),'uint8'))),'uint8')) ... base64encode(typecast(dat(:),'uint8'))]); case 'appended' fopen_opts = {'wt'}; store_appended_data('start'); store_appended_data('base64'); % format: raw, [base64] store_appended_data('none'); % compression: none, [zlib] write_data = @(fmt,dat) deal(store_appended_data(fmt,dat),''); otherwise error('Unknown format.'); end fid = fopen(filename,fopen_opts{:}); if fid == -1 error('Unable to write file %s: permission denied.',filename); end %-XML VTK file format %========================================================================== o = @(x) blanks(x*3); %-XML prolog %-------------------------------------------------------------------------- fprintf(fid,'<?xml version="1.0"?>\n'); %-VTKFile %-------------------------------------------------------------------------- VTKFile = struct; VTKFile.type = 'PolyData'; VTKFile.version = '0.1'; VTKFile.byte_order = 'LittleEndian'; VTKFile.header_type = 'UInt32'; if strcmp(store_appended_data('compression'),'zlib') VTKFile.compressor = 'vtkZLibDataCompressor'; end fprintf(fid,'<VTKFile'); for i=fieldnames(VTKFile)' fprintf(fid,' %s="%s"',i{1},VTKFile.(i{1})); end fprintf(fid,'>\n'); %-PolyData %-------------------------------------------------------------------------- fprintf(fid,'%s<PolyData>\n',o(1)); Piece = struct; Piece.NumberOfPoints = sprintf('%d',size(s.vertices,1)); Piece.NumberOfVerts = sprintf('%d',0); Piece.NumberOfLines = sprintf('%d',0); Piece.NumberOfStrips = sprintf('%d',0); Piece.NumberOfPolys = sprintf('%d',size(s.faces,1)); fprintf(fid,'%s<Piece',o(2)); for i=fieldnames(Piece)' fprintf(fid,' %s="%s"',i{1},Piece.(i{1})); end fprintf(fid,'>\n'); %-PointData %-------------------------------------------------------------------------- PointData = struct; if isfield(s,'cdata') && ~isempty(s.cdata) PointData.Scalars = 'scalars'; end if isfield(s,'normals') && ~isempty(s.normals) PointData.Normals = 'normals'; end fprintf(fid,'%s<PointData',o(3)); for i=fieldnames(PointData)' fprintf(fid,' %s="%s"',i{1},PointData.(i{1})); end fprintf(fid,'>\n'); %-Scalars if isfield(s,'cdata') && ~isempty(s.cdata) [offset,dat] = write_data('%f ',single(s.cdata')); DataArray = struct; DataArray.type = 'Float32'; DataArray.Name = 'scalars'; DataArray.NumberOfComponents = sprintf('%d',size(s.cdata,2)); DataArray.format = format; if ~isnan(offset), DataArray.offset = sprintf('%d',offset); end fprintf(fid,'%s<DataArray',o(4)); for i=fieldnames(DataArray)' fprintf(fid,' %s="%s"',i{1},DataArray.(i{1})); end fprintf(fid,'>%s</DataArray>\n',dat); end %-Normals if isfield(s,'normals') && ~isempty(s.normals) [offset,dat] = write_data('%f ',single(-s.normals')); DataArray = struct; DataArray.type = 'Float32'; DataArray.Name = 'normals'; DataArray.NumberOfComponents = sprintf('%d',3); DataArray.format = format; if ~isnan(offset), DataArray.offset = sprintf('%d',offset); end fprintf(fid,'%s<DataArray',o(4)); for i=fieldnames(DataArray)' fprintf(fid,' %s="%s"',i{1},DataArray.(i{1})); end fprintf(fid,'>%s</DataArray>\n',dat); end fprintf(fid,'%s</PointData>\n',o(3)); %-CellData %-------------------------------------------------------------------------- fprintf(fid,'%s<CellData/>\n',o(3)); %-Points %-------------------------------------------------------------------------- fprintf(fid,'%s<Points>\n',o(3)); if isfield(s,'vertices') [offset,dat] = write_data('%f ',single(s.vertices')); DataArray = struct; DataArray.type = 'Float32'; DataArray.Name = 'Vertices'; DataArray.NumberOfComponents = sprintf('%d',3); DataArray.format = format; if ~isnan(offset), DataArray.offset = sprintf('%d',offset); end fprintf(fid,'%s<DataArray',o(4)); for i=fieldnames(DataArray)' fprintf(fid,' %s="%s"',i{1},DataArray.(i{1})); end fprintf(fid,'>%s</DataArray>\n',dat); end fprintf(fid,'%s</Points>\n',o(3)); %-Verts %-------------------------------------------------------------------------- fprintf(fid,'%s<Verts/>\n',o(3)); %-Lines %-------------------------------------------------------------------------- fprintf(fid,'%s<Lines/>\n',o(3)); %-Strips %-------------------------------------------------------------------------- fprintf(fid,'%s<Strips/>\n',o(3)); %-Polys %-------------------------------------------------------------------------- fprintf(fid,'%s<Polys>\n',o(3)); if isfield(s,'faces') [offset,dat] = write_data('%d ',uint32(s.faces'-1)); DataArray = struct; DataArray.type = 'UInt32'; DataArray.Name = 'connectivity'; DataArray.format = format; if ~isnan(offset), DataArray.offset = sprintf('%d',offset); end fprintf(fid,'%s<DataArray',o(4)); for i=fieldnames(DataArray)' fprintf(fid,' %s="%s"',i{1},DataArray.(i{1})); end fprintf(fid,'>%s</DataArray>\n',dat); [offset,dat] = write_data('%d ',uint32(3:3:3*size(s.faces,1))); DataArray = struct; DataArray.type = 'UInt32'; DataArray.Name = 'offsets'; DataArray.format = format; if ~isnan(offset), DataArray.offset = sprintf('%d',offset); end fprintf(fid,'%s<DataArray',o(4)); for i=fieldnames(DataArray)' fprintf(fid,' %s="%s"',i{1},DataArray.(i{1})); end fprintf(fid,'>%s</DataArray>\n',dat); end fprintf(fid,'%s</Polys>\n',o(3)); fprintf(fid,'%s</Piece>\n',o(2)); fprintf(fid,'%s</PolyData>\n',o(1)); %-AppendedData %-------------------------------------------------------------------------- if strcmp(format,'appended') dat = store_appended_data('retrieve'); store_appended_data('stop'); AppendedData = struct; AppendedData.encoding = store_appended_data('encoding'); fprintf(fid,'%s<AppendedData',o(1)); for i=fieldnames(AppendedData)' fprintf(fid,' %s="%s"',i{1},AppendedData.(i{1})); end fprintf(fid,'>\n%s_',o(2)); fwrite(fid,dat); fprintf(fid,'\n%s</AppendedData>\n',o(1)); end fprintf(fid,'</VTKFile>\n'); %-Close file %-------------------------------------------------------------------------- fclose(fid); %========================================================================== % function varargout = store_appended_data(fmt,dat) %========================================================================== function varargout = store_appended_data(fmt,dat) persistent fid encoding compression if isempty(encoding), encoding = 'raw'; end if isempty(compression), compression = 'none'; end if ~nargin, fmt = 'start'; end if nargin < 2 varargout = {}; switch lower(fmt) case 'start' filename = tempname; fid = fopen(filename,'w+b'); if fid == -1 error('Cannot open temporary file.'); end case 'stop' filename = fopen(fid); fclose(fid); delete(filename); fid = -1; case 'retrieve' frewind(fid); varargout = {fread(fid)}; case 'encoding' varargout = {encoding}; case 'compression' varargout = {compression}; case {'raw','base64'} encoding = fmt; case {'none','zlib'} compression = fmt; otherwise error('Unknown action.'); end return; end varargout = {ftell(fid)}; N = uint32(numel(dat)*numel(typecast(dat(1),'uint8'))); switch encoding case 'raw' switch compression case 'none' dat = typecast(dat(:),'uint8'); hdr = N; case 'zlib' dat = zstream('C',typecast(dat(:),'uint8')); hdr = uint32([1 N N numel(dat)]); otherwise error('Unknown compression.'); end fwrite(fid,hdr,'uint32'); fwrite(fid,dat,class(dat)); case 'base64' switch compression case 'none' dat = typecast(dat(:),'uint8'); hdr = N; case 'zlib' dat = zstream('C',typecast(dat(:),'uint8')); hdr = uint32([1 N N numel(dat)]); otherwise error('Unknown compression.'); end fwrite(fid,base64encode(typecast(hdr,'uint8'))); fwrite(fid,base64encode(dat)); otherwise error('Unknown encoding.'); end %========================================================================== % function N = compute_normals(S) %========================================================================== function N = compute_normals(S) try t = triangulation(double(S.faces),double(S.vertices)); N = -double(t.vertexNormal); normN = sqrt(sum(N.^2,2)); normN(normN < eps) = 1; N = N ./ repmat(normN,1,3); catch N = []; end
github
ColeLab/ColeAnticevicNetPartition-master
isintent.m
.m
ColeAnticevicNetPartition-master/code/gifti-1.6/@gifti/private/isintent.m
2,803
utf_8
059679d968315674d5e6cccbbd6f128c
function [a, b] = isintent(this,intent) % Correspondance between fieldnames and NIfTI intent codes % FORMAT ind = isintent(this,intent) % this - GIfTI object % intent - fieldnames % a - indices of found intent(s) % b - indices of dataarrays of found intent(s) %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Guillaume Flandin % $Id: isintent.m 6345 2015-02-20 12:25:50Z guillaume $ a = []; b = []; if ischar(intent), intent = cellstr(intent); end for i=1:length(this(1).data) switch this(1).data{i}.attributes.Intent(14:end) case 'POINTSET' [tf, loc] = ismember('vertices',intent); if tf a(end+1) = loc; b(end+1) = i; end [tf, loc] = ismember('mat',intent); if tf a(end+1) = loc; b(end+1) = i; end case 'TRIANGLE' [tf, loc] = ismember('faces',intent); if tf a(end+1) = loc; b(end+1) = i; end case 'VECTOR' [tf, loc] = ismember('normals',intent); if tf a(end+1) = loc; b(end+1) = i; end case 'NODE_INDEX' [tf, loc] = ismember('indices',intent); if tf a(end+1) = loc; b(end+1) = i; end case cdata [tf, loc] = ismember('cdata',intent); if tf a(end+1) = loc; b(end+1) = i; end if strcmp(this(1).data{i}.attributes.Intent(14:end),'LABEL') [tf, loc] = ismember('labels',intent); if tf a(end+1) = loc; b(end+1) = i; end end otherwise fprintf('Intent %s is ignored.\n',this.data{i}.attributes.Intent); end end %[d,i] = unique(a); %if length(d) < length(a) % warning('Several fields match intent type. Using first.'); % a = a(i); % b = b(i); %end function c = cdata c = { 'NONE' 'CORREL' 'TTEST' 'FTEST' 'ZSCORE' 'CHISQ' 'BETA' 'BINOM' 'GAMMA' 'POISSON' 'NORMAL' 'FTEST_NONC' 'CHISQ_NONC' 'LOGISTIC' 'LAPLACE' 'UNIFORM' 'TTEST_NONC' 'WEIBULL' 'CHI' 'INVGAUSS' 'EXTVAL' 'PVAL' 'LOGPVAL' 'LOG10PVAL' 'ESTIMATE' 'LABEL' 'NEURONAMES' 'GENMATRIX' 'SYMMATRIX' 'DISPVECT' 'QUATERNION' 'DIMLESS' 'TIME_SERIES' 'RGB_VECTOR' 'RGBA_VECTOR' 'SHAPE' 'CONNECTIVITY_DENSE' 'CONNECTIVITY_DENSE_TIME' 'CONNECTIVITY_PARCELLATED' 'CONNECTIVITY_PARCELLATED_TIME' 'CONNECTIVITY_CONNECTIVITY_TRAJECTORY' };
github
anilbas/3DMMasSTN-master
dagnn_3dmmasstn.m
.m
3DMMasSTN-master/dagnn_3dmmasstn.m
3,391
utf_8
1390f606b065f165349ee949d51a3164
function [net, info] = dagnn_3dmmasstn(imdb,varargin) run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.networkType = 'dagnn' ; opts.derOutputs = {'objective1',0.8998,'objective2',0.1,'objective3',0.0001,'objective4',0.0001}; % expDir: Output directory for the net-epoch-* files and the train.pdf figure opts.expDir = fullfile(vl_rootnn, 'examples', '3DMMasSTN', 'data') ; % dataDir: The VGG directory opts.dataDir = fullfile(vl_rootnn, 'data', 'models') ; % The imdb.mat file opts.imdbPath = fullfile(vl_rootnn, 'data', 'imdb.mat'); opts.theta_learningRate = [4 8]; opts.thetab_weightDecay = 0; opts.learningRate = 1e-10; opts.batchSize = 32; opts.numEpochs = 1000; opts.train = struct() ; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end % ------------------------------------------------------------------------- % Prepare model and data % ------------------------------------------------------------------------- addpath(genpath(pwd)); % load landmarks idx = readLandmarks('util/landmarks/Landmarks21_112.anl'); % load model model = load('model.mat'); % load network net = dagnn_3dmmasstn_init(model,idx,opts); % load data if (~exist('imdb', 'var') || isempty(imdb)), imdb = load(opts.imdbPath); end % ------------------------------------------------------------------------- % Train % ------------------------------------------------------------------------- [net, info] = cnn_train_dag(net, imdb, getBatch(opts), ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train, ... 'derOutputs',opts.derOutputs, ... 'val', find(imdb.images.set == 2)); % ------------------------------------------------------------------------- function fn = getBatch(opts) % ------------------------------------------------------------------------- bopts = struct('numGpus', numel(opts.train.gpus)); fn = @(x,y) getDagNNBatch(bopts,x,y); % ------------------------------------------------------------------------- function inputs = getDagNNBatch(opts, imdb, batch) % ------------------------------------------------------------------------- images = imdb.images.data(:,:,:,batch); labels = imdb.images.labels(:,:,:,batch); [images, labels] = refineData(images, labels); if opts.numGpus > 0 images = gpuArray(images); labels = gpuArray(labels); end inputs = {'input', images, 'label', labels}; % ------------------------------------------------------------------------- function [Images, Labels] = refineData(images, labels) % ------------------------------------------------------------------------- batchSize = size(images,4); Images = zeros(224,224,3,batchSize*2,'single'); Labels = zeros(1,3,21,batchSize*2,'single'); for i=1:batchSize id = 2*(i-1)+1; im = images(:,:,:,i); xp = squeeze(labels(:,1:2,:,i)); vis = squeeze(labels(:,3,:,i)); flippedxp = xp; flippedxp(1,:) = ( size(im,2)+1-xp(1,:) ) .*(xp(1,:)~=0); flippedxp = syncFlippedLandmarks( flippedxp ); Images(:,:,:,id) = im; Labels(1,1:2,:,id) = xp; Labels(1,3,:,id) = vis; Images(:,:,:,id+1) = fliplr(im); Labels(1,1:2,:,id+1) = flippedxp; Labels(1,3,:,id+1) = syncFlippedLandmarks(vis); end
github
KleinYuan/doppia-master
use_cimgmatlab.m
.m
doppia-master/libs/CImg/examples/use_cimgmatlab.m
1,242
utf_8
c7cefea57d7bf6077ec6a77f3bdda6b6
/*----------------------------------------------------------------------- File : use_cimgmatlab.m Description: Example of use for the CImg plugin 'plugins/cimgmatlab.h' which allows to use CImg in order to develop matlab external functions (mex functions). User should be familiar with Matlab C/C++ mex function concepts, as this file is by no way a mex programming tutorial. This simple example implements a mex function that can be called as - v = cimgmatlab_cannyderiche(u,s) - v = cimgmatlab_cannyderiche(u,sx,sy) - v = cimgmatlab_cannyderiche(u,sx,sy,sz) The corresponding m-file is cimgmatlab_cannyderiche.m Copyright : Francois Lauze - http://www.itu.dk/people/francois This software is governed by the Gnu General Public License see http://www.gnu.org/copyleft/gpl.html The plugin home page is at http://www.itu.dk/people/francois/cimgmatlab.html for the compilation: using the mex utility provided with matlab, just remember to add the -I flags with paths to CImg.h and/or cimgmatlab.h. The default lcc cannot be used, it is a C compiler and not a C++ one! --------------------------------------------------------------------------*/ function v = cimgmatlab_cannyderiche(u,sx,sy,sz)
github
M-T3K/UPM-master
Lagrange.m
.m
UPM-master/Algoritmica Numerica I/prac_provincias/Lagrange.m
351
utf_8
e95f109d17853801395ded5014eac57f
% p(x) = sum(i = 0..n, Li(x)*f(x_i)) function px = Lagrange(x, y, xx) px = 0; n = length(x) for i = 1:n Li = 1; % Hacemos Bases de Lagrange for j = 1:n if j ~= i Li = Li .* ( (xx - x(j) )/ (x(i) - x(j) ) ); % Li(x_i) end end px = px + Li * y(i); end end
github
M-T3K/UPM-master
cost.m
.m
UPM-master/Algoritmica Numerica I/prac_provincias/cost.m
536
utf_8
02d733abf7d4d7402613f3ee45fda36b
% trazo se refiere a la funcion % x_p se refiere a las coordenadas x de los puntos elegidos % y_p se refiere a las coorenadas y de los puntos elegidos function coste = cost(trazo, len, xx, x_p, y_p) coste = 0; n = length(x_p); m = length(trazo); for j = 1:m for i = 1:n if xx(j) == x_p(i) dx = abs(y_p(i) - trazo(j)); if dx ~= 0 coste = coste + dx*0.5; end end end end % coste = coste + len * 2; end
github
M-T3K/UPM-master
Lagrangio.m
.m
UPM-master/Algoritmica Numerica I/prac_provincias/Lagrangio.m
379
utf_8
b6531bc3e5ca77772970459ea57f1ea3
% p(x) = sum(i = 0..n, Li(x)*f(x_i)) function px = Lagrangio(x, y, xx) px = 0; n = length(x) for i = 1:n Li = 1; % Hacemos Bases de Lagrange for j = 1:n if j ~= i Li = Li .* ( (xx - x(j) )/ (x(i) - x(j) ) ); % Li(x_i) end end subplot(n, 1, i) plot(xx, Li, 'b') end end
github
fbs2112/adaptive_multifilters-master
formatFig.m
.m
adaptive_multifilters-master/Misc/formatFig.m
4,039
utf_8
522ecaf1d786e78433b2e93b3ad16ca6
function formatFig(varargin) % % This function was created by Leonardo Nunes ([email protected]). % % This script configures the current figure. The folowing figure properties are configured: % - text (ticks and labels) size % - text (ticks and labels) font % - line width % - figure size % % If the variable 'figName' exists, a .fig, a .png, and an .eps files with the name % contained in 'figName' are saved. % % Example: % figProp = struct('size',14,'font','Times','lineWidth',2,'figDim',[1 1 600 400]); % figFileName = sprintf('figs/rse_pos-%d',pos); % formatFig(gcf,figFileName,'en',figProp); % % Tip: Always save .fig using 'en' (language) option, because 'en' converts well to 'pt', % but 'pt' does not convert well to 'en' (commas are not replaced by dots) % figHandler = varargin{1}; figName = varargin{2}; lang = varargin{3}; % Congigurarion: if(length(varargin)==4) size = varargin{4}.size; font = varargin{4}.font; lineWidth = varargin{4}.lineWidth; figDim = varargin{4}.figDim; else size = 21; font = 'Times'; lineWidth = 2; figDim = [1 1 600 400]; end %-------------------------------------------------------------------------- % Configuring figure if(~isempty(get(0,'CurrentFigure'))) set(figHandler,'Position',figDim); fc = get(figHandler,'children'); % children of the current figure. % Cycling through children: for ii9183=1:length(fc) if(strcmp(get(fc(ii9183),'Type'),'axes')) % Configuring axes text: set(fc(ii9183),'FontSize',size); set(fc(ii9183),'FontName',font); % Configuring label text: ax = get(fc(ii9183),'xlabel'); set(ax,'FontSize',size); set(ax,'FontName',font); ay = get(fc(ii9183),'ylabel'); set(ay,'FontSize',size); set(ay,'FontName',font); % Configuring title text: at = get(fc(ii9183),'title'); set(at,'FontSize',size); set(at,'FontName',font); ac = get(fc(ii9183),'children'); % axes children. for jj98719=1:length(ac) if(strcmp(get(ac(jj98719),'Type'),'line')) set(ac(jj98719),'LineWidth',lineWidth); if(strcmp(get(ac(jj98719),'marker'),'.')) set(ac(jj98719),'markerSize',15); end end if(strcmp(get(ac(jj98719),'Type'),'text')) set(ac(jj98719),'FontSize',size); set(ac(jj98719),'FontName',font); end end if(strcmpi(lang,'pt')) tick = get(fc(ii9183),'XTickLabel'); tick = changeComma(tick); set(fc(ii9183),'XTickLabel',tick); tick = get(fc(ii9183),'YTickLabel'); tick = changeComma(tick); set(fc(ii9183),'YTickLabel',tick); tick = get(fc(ii9183),'ZTickLabel'); tick = changeComma(tick); set(fc(ii9183),'ZTickLabel',tick); set(fc(ii9183),'XTickMode','manual'); set(fc(ii9183),'YTickMode','manual'); set(fc(ii9183),'ZTickMode','manual'); end end end set(figHandler,'Position',figDim); set(figHandler,'PaperPositionMode','auto') aux = [figName '.eps']; saveas(figHandler,aux,'epsc2'); aux = [figName '.fig']; saveas(figHandler,aux); aux = [figName '.pdf']; % .png, pdf, jpg saveas(figHandler,aux); aux = [figName '.png']; saveas(figHandler,aux); end function str = changeComma(str) for ii = 1:size(str,1) str(ii,:) = regexprep(str(ii,:),'[.]', ','); end
github
xylimeng/WARP-master
phantom3d.m
.m
WARP-master/phantom3d.m
8,295
utf_8
dfa7b40691a0d7f82426d690e64afcda
function [p,ellipse]=phantom3d(varargin) %PHANTOM3D Three-dimensional analogue of MATLAB Shepp-Logan phantom % P = PHANTOM3D(DEF,N) generates a 3D head phantom that can % be used to test 3-D reconstruction algorithms. % % DEF is a string that specifies the type of head phantom to generate. % Valid values are: % % 'Shepp-Logan' A test image used widely by researchers in % tomography % 'Modified Shepp-Logan' (default) A variant of the Shepp-Logan phantom % in which the contrast is improved for better % visual perception. % % N is a scalar that specifies the grid size of P. % If you omit the argument, N defaults to 64. % % P = PHANTOM3D(E,N) generates a user-defined phantom, where each row % of the matrix E specifies an ellipsoid in the image. E has ten columns, % with each column containing a different parameter for the ellipsoids: % % Column 1: A the additive intensity value of the ellipsoid % Column 2: a the length of the x semi-axis of the ellipsoid % Column 3: b the length of the y semi-axis of the ellipsoid % Column 4: c the length of the z semi-axis of the ellipsoid % Column 5: x0 the x-coordinate of the center of the ellipsoid % Column 6: y0 the y-coordinate of the center of the ellipsoid % Column 7: z0 the z-coordinate of the center of the ellipsoid % Column 8: phi phi Euler angle (in degrees) (rotation about z-axis) % Column 9: theta theta Euler angle (in degrees) (rotation about x-axis) % Column 10: psi psi Euler angle (in degrees) (rotation about z-axis) % % For purposes of generating the phantom, the domains for the x-, y-, and % z-axes span [-1,1]. Columns 2 through 7 must be specified in terms % of this range. % % [P,E] = PHANTOM3D(...) returns the matrix E used to generate the phantom. % % Class Support % ------------- % All inputs must be of class double. All outputs are of class double. % % Remarks % ------- % For any given voxel in the output image, the voxel's value is equal to the % sum of the additive intensity values of all ellipsoids that the voxel is a % part of. If a voxel is not part of any ellipsoid, its value is 0. % % The additive intensity value A for an ellipsoid can be positive or negative; % if it is negative, the ellipsoid will be darker than the surrounding pixels. % Note that, depending on the values of A, some voxels may have values outside % the range [0,1]. % % Example % ------- % ph = phantom3d(128); % figure, imshow(squeeze(ph(64,:,:))) % % Copyright 2005 Matthias Christian Schabel (matthias @ stanfordalumni . org) % University of Utah Department of Radiology % Utah Center for Advanced Imaging Research % 729 Arapeen Drive % Salt Lake City, UT 84108-1218 % % This code is released under the Gnu Public License (GPL). For more information, % see : http://www.gnu.org/copyleft/gpl.html % % Portions of this code are based on phantom.m, copyrighted by the Mathworks % [ellipse,n] = parse_inputs(varargin{:}); p = zeros([n n n]); rng = ( (0:n-1)-(n-1)/2 ) / ((n-1)/2); [x,y,z] = meshgrid(rng,rng,rng); coord = [flatten(x); flatten(y); flatten(z)]; p = flatten(p); for k = 1:size(ellipse,1) A = ellipse(k,1); % Amplitude change for this ellipsoid asq = ellipse(k,2)^2; % a^2 bsq = ellipse(k,3)^2; % b^2 csq = ellipse(k,4)^2; % c^2 x0 = ellipse(k,5); % x offset y0 = ellipse(k,6); % y offset z0 = ellipse(k,7); % z offset phi = ellipse(k,8)*pi/180; % first Euler angle in radians theta = ellipse(k,9)*pi/180; % second Euler angle in radians psi = ellipse(k,10)*pi/180; % third Euler angle in radians cphi = cos(phi); sphi = sin(phi); ctheta = cos(theta); stheta = sin(theta); cpsi = cos(psi); spsi = sin(psi); % Euler rotation matrix alpha = [cpsi*cphi-ctheta*sphi*spsi cpsi*sphi+ctheta*cphi*spsi spsi*stheta; -spsi*cphi-ctheta*sphi*cpsi -spsi*sphi+ctheta*cphi*cpsi cpsi*stheta; stheta*sphi -stheta*cphi ctheta]; % rotated ellipsoid coordinates coordp = alpha*coord; idx = find((coordp(1,:)-x0).^2./asq + (coordp(2,:)-y0).^2./bsq + (coordp(3,:)-z0).^2./csq <= 1); p(idx) = p(idx) + A; end p = reshape(p,[n n n]); return; function out = flatten(in) out = reshape(in,[1 prod(size(in))]); return; function [e,n] = parse_inputs(varargin) % e is the m-by-10 array which defines ellipsoids % n is the size of the phantom brain image n = 128; % The default size e = []; defaults = {'shepp-logan', 'modified shepp-logan', 'yu-ye-wang'}; for i=1:nargin if ischar(varargin{i}) % Look for a default phantom def = lower(varargin{i}); idx = strmatch(def, defaults); if isempty(idx) eid = sprintf('Images:%s:unknownPhantom',mfilename); msg = 'Unknown default phantom selected.'; error(eid,'%s',msg); end switch defaults{idx} case 'shepp-logan' e = shepp_logan; case 'modified shepp-logan' e = modified_shepp_logan; case 'yu-ye-wang' e = yu_ye_wang; end elseif numel(varargin{i})==1 n = varargin{i}; % a scalar is the image size elseif ndims(varargin{i})==2 && size(varargin{i},2)==10 e = varargin{i}; % user specified phantom else eid = sprintf('Images:%s:invalidInputArgs',mfilename); msg = 'Invalid input arguments.'; error(eid,'%s',msg); end end % ellipse is not yet defined if isempty(e) e = modified_shepp_logan; end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Default head phantoms: % %%%%%%%%%%%%%%%%%%%%%%%%%%%%% function e = shepp_logan e = modified_shepp_logan; e(:,1) = [1 -.98 -.02 -.02 .01 .01 .01 .01 .01 .01]; return; function e = modified_shepp_logan % % This head phantom is the same as the Shepp-Logan except % the intensities are changed to yield higher contrast in % the image. Taken from Toft, 199-200. % % A a b c x0 y0 z0 phi theta psi % ----------------------------------------------------------------- e = [ 1 .6900 .920 .810 0 0 0 0 0 0 -.8 .6624 .874 .780 0 -.0184 0 0 0 0 -.2 .1100 .310 .220 .22 0 0 -18 0 10 -.2 .1600 .410 .280 -.22 0 0 18 0 10 .1 .2100 .250 .410 0 .35 -.15 0 0 0 .1 .0460 .046 .050 0 .1 .25 0 0 0 .1 .0460 .046 .050 0 -.1 .25 0 0 0 .1 .0460 .023 .050 -.08 -.605 0 0 0 0 .1 .0230 .023 .020 0 -.606 0 0 0 0 .1 .0230 .046 .020 .06 -.605 0 0 0 0 ]; return; function e = yu_ye_wang % % Yu H, Ye Y, Wang G, Katsevich-Type Algorithms for Variable Radius Spiral Cone-Beam CT % % A a b c x0 y0 z0 phi theta psi % ----------------------------------------------------------------- e = [ 1 .6900 .920 .900 0 0 0 0 0 0 -.8 .6624 .874 .880 0 0 0 0 0 0 -.2 .4100 .160 .210 -.22 0 -.25 108 0 0 -.2 .3100 .110 .220 .22 0 -.25 72 0 0 .2 .2100 .250 .500 0 .35 -.25 0 0 0 .2 .0460 .046 .046 0 .1 -.25 0 0 0 .1 .0460 .023 .020 -.08 -.65 -.25 0 0 0 .1 .0460 .023 .020 .06 -.65 -.25 90 0 0 .2 .0560 .040 .100 .06 -.105 .625 90 0 0 -.2 .0560 .056 .100 0 .100 .625 0 0 0 ]; return;
github
xylimeng/WARP-master
mex_this.m
.m
WARP-master/mex_this.m
644
utf_8
8a2d4ddbd2fe11a7a6155a00fa0a0e2b
% 'path' is the absolute path of the directory containing the header 'armadillo' % For example, it could be '/usr/local/include' in macOS function mex_this(path) if nargin == 0 path = '/usr/local/include'; % default end ipath = ['-I' path]; mex('-v', ipath, '-larmadillo', '-lgfortran', 'treeLikelihood.cpp', 'tree_class.cpp','helper.cpp'); mex('-v', ipath, '-larmadillo', '-lgfortran', 'treeFit.cpp', 'tree_class.cpp','helper.cpp'); % mex -I/usr/local/include -larmadillo -lgfortran treeLikelihood.cpp tree_class.cpp helper.cpp -v % mex -I/usr/local/include -larmadillo -lgfortran treeFit.cpp tree_class.cpp helper.cpp -v end
github
xylimeng/WARP-master
sim_data.m
.m
WARP-master/sim_data.m
2,141
utf_8
8109f9b7e8ce14b9c0cb272cdd5ab881
% function to generate the true 3D images % f1: f1 in Peihua Qiu's paper % f2: f2 in Peihua Qiu's paper % f3: 3D phantom % Input: n - length of each dimensiona; % sigma_noise - standard deviation of Gaussian noise; % type - type of simulated data, could be f1, f2 or f3 function [true, obs] = sim_data(n, sigma_noise, type) if type ~= 3 n1 = n; n2= n; n3 = n; z = zeros([1,n1*n2*n3]); if (type == 1) for (i = 1:n1) for (j = 1:n2) for (k = 1:n3) z((i-1)*n2*n3+(j-1)*n3+k) = -(i/n1-0.5)^2 -(j/n2-0.5)^2 -(k/n3-0.5)^2; if ( ((abs(i/n1-0.5)<=0.25) & (abs(j/n2-0.5)<=0.25) & (abs(k/n3-0.5)<=0.25)) ) z((i-1)*n2*n3+(j-1)*n3+k) = -(i/n1-0.5)^2 -(j/n2-0.5)^2 -(k/n3-0.5)^2 + 1; end if ( (((i/n1-0.5)^2+(j/n2-0.5)^2 <=0.15^2) & (abs(k/n3-0.5)<=0.35)) ) z((i-1)*n2*n3+(j-1)*n3+k) = -(i/n1-0.5)^2 -(j/n2-0.5)^2 -(k/n3-0.5)^2 + 1; end end end end end if (type == 2) for (i = 1:n1) for (j = 1:n2) for (k = 1:n3) z((i-1)*n2*n3+(j-1)*n3+k) = 1/4 * sin(2*pi*(i/n1 + j/n2 + k/n3) + 1) + 0.25; if ( (((i/n1-0.5)^2 + (j/n2 - 0.5)^2 <= 1/4 * (k/n3 - 0.5)^2)) & (k/n3 >= 0.2) & (k/n3 <= 0.5) ) z((i-1)*n2*n3+(j-1)*n3+k) = 1/4 * sin(2*pi*(i/n1 + j/n2 + k/n3) + 1) + 1.25; end if ( (((i/n1-0.5)^2+(j/n2-0.5)^2 + (k/n3 - 0.5)^2) <= 0.4^2) & ((i/n1-0.5)^2+(j/n2-0.5)^2 + (k/n3 - 0.5)^2 > 0.2^2) & (k/n3 < 0.45) ) z((i-1)*n2*n3+(j-1)*n3+k) = 1/4 * sin(2*pi*(i/n1 + j/n2 + k/n3) + 1) + 1.25; end end end end end g = z + randn(size(z)) * sigma_noise; true = zeros([n1,n2,n3]); obs = true; for (i = 1:n1) for (j = 1:n2) for (k = 1:n3) true(i,j,k) = z((i-1)*n2*n3+(j-1)*n3+k); obs(i,j,k) = g((i-1)*n2*n3+(j-1)*n3+k); end end end end if type == 3 true = phantom3d(n); obs = true + randn([n,n,n]) .* sigma_noise; end end
github
dustin-cook/Opensees-master
collect_sensitivity_data.m
.m
Opensees-master/collect_sensitivity_data.m
4,863
utf_8
c3f518cdc4fd91f19e9f82de229a7001
clear all close all clc % Collect results from model sensitivity study % Define Model analysis.model_id = 18; analysis.proceedure = 'NDP'; analysis.id = 'baseline_beams'; analysis.model = 'ICBS_model_5ew_col_base'; %% Define outputs directories analysis_name = [analysis.proceedure '_' analysis.id]; outputs_dir = ['outputs' filesep analysis.model filesep analysis_name filesep 'sensitivity_study' ]; %% Define sensitivity study parameters % model_name = {'ductility', 'ductility_no_var', 'strength', 'both', 'both_more'}; model_name = {'ductility', 'strength', 'both'}; % model_name = {'both'}; num_bays = 5; % just hardcoded for now %% Collect baseline data % Baseline for sensitivity baseline_dir = ['outputs' filesep analysis.model filesep analysis_name]; id = 1; [ outputs_table_base, baseline_input_dir ] = collect_baseline_data( baseline_dir, id, 'baseline', num_bays ); % % ICSB 2D Model % baseline_dir = ['outputs' filesep 'ICBS_model_5ew' filesep 'NDP_baseline']; % id = 2; % [ outputs_table_2D, ~ ] = collect_baseline_data( baseline_dir, id, 'ICSB_2D', num_bays ); % % ICSB 3D Model % baseline_dir = ['outputs' filesep 'ICBS_model_3D_fixed' filesep 'NDP_baseline']; % id = 3; % [ outputs_table_3D, ~ ] = collect_baseline_data( baseline_dir, id, 'ICSB_3D', num_bays ); % Join tables % outputs_table = [outputs_table_base; outputs_table_2D; outputs_table_3D]; % outputs_table = [outputs_table_base; outputs_table_2D]; outputs_table = outputs_table_base; %% Collect data for each sensitivity study for m = 1:length(model_name) % Read all models model_dir = [outputs_dir filesep model_name{m} filesep 'model_files']; models = dir([model_dir filesep 'model_*']); for mdl = 1:length(models) % Define model directories this_model_dir = [model_dir filesep models(mdl).name]; inputs_dir = [this_model_dir filesep 'asce_41_data']; load([inputs_dir filesep 'element_analysis.mat']) load([inputs_dir filesep 'joint_analysis.mat']) load([baseline_input_dir filesep 'story_analysis.mat']) % Calculate input parameters [strength_cov, ductility_cov, energy_cov, scwb_ratio] = collect_model_inputs(element, story, joint); % Load sensitivity summary results summary_results = readtable([this_model_dir filesep 'IDA' filesep 'Fragility Data' filesep 'summary_outputs.csv']); % Join tables id = id + 1; [outputs_table_row] = create_outputs_table(id, model_name{m}, mdl, strength_cov, ductility_cov, energy_cov, scwb_ratio, num_bays, summary_results); outputs_table = [outputs_table; outputs_table_row]; end end % Write sensitivity study outputs file writetable(outputs_table,[outputs_dir filesep 'summary_results.csv']) % Functions function [strength_cov, ductility_cov, energy_cov, scwb_ratio] = collect_model_inputs(element, story, joint) first_story_columns = element(element.story == 1 & strcmp(element.type,'column'),:); strength_cov = std(first_story_columns.Mn_pos_1)/mean(first_story_columns.Mn_pos_1); ductility_cov = std(first_story_columns.b_hinge_1)/mean(first_story_columns.b_hinge_1); energy_cov = std(first_story_columns.b_hinge_1.*first_story_columns.Mn_pos_1)/mean(first_story_columns.b_hinge_1.*first_story_columns.Mn_pos_1); for s = 1:height(story) story.scwb(s) = mean(joint.col_bm_ratio(joint.story == s)); end scwb_ratio = mean(story.scwb); end function [outputs_table_row] = create_outputs_table(id, group, variant, strength_cov, ductility_cov, energy_cov, scwb_ratio, num_bays, summary_results) inputs.id = id; summary_results.id = id; inputs.group = {group}; inputs.variant = variant; inputs.strength_cov = strength_cov; inputs.ductility_cov = ductility_cov; inputs.energy_cov = energy_cov; inputs.scwb_ratio = scwb_ratio; inputs.num_bays = num_bays; inputs_table = struct2table(inputs); outputs_table_row = join(inputs_table, summary_results); end function [ outputs_table, baseline_input_dir ] = collect_baseline_data( baseline_dir, id, model_name, num_bays ) % Define model directories baseline_input_dir = [baseline_dir filesep 'asce_41_data']; % Calculate input parameters load([baseline_input_dir filesep 'element_analysis.mat']) load([baseline_input_dir filesep 'joint_analysis.mat']) load([baseline_input_dir filesep 'story_analysis.mat']) [strength_cov, ductility_cov, energy_cov, scwb_ratio] = collect_model_inputs(element, story, joint); % Load sensitivity summary results summary_results = readtable([baseline_dir filesep 'IDA' filesep 'Fragility Data' filesep 'summary_outputs.csv']); % Create Outputs Table [outputs_table] = create_outputs_table(id, model_name, 1, strength_cov, ductility_cov, energy_cov, scwb_ratio, num_bays, summary_results); end
github
dustin-cook/Opensees-master
process_multiple_IDA.m
.m
Opensees-master/process_multiple_IDA.m
5,504
utf_8
df05c881e505cb66a8b6a1aead7363d6
%% Script to: % 1. pull sensitivity results from Dropbox % 2. run frag curve post processors on all of them % 3. save results in repo folders % 4. Create cummulative plots clear all close all clc import ida.* import plotting_tools.* %% Define inputs model_baseline_name = 'NDP_baseline_1'; model.name{1} = 'ICBS_model_5ew_col_base'; model_names = {'Model_uniform' 'NDP_baseline' 'Model' 'Model' 'Model' 'Model' 'Model' 'NDP_Model_extreme' }; model_ids = {'1' '1' '1' '4' '6' '8' '10' '1'}; % model_names = {'NDP_Model_extreme'}; % model_ids = {'1'}; analysis.run_z_motion = 0; ida_results.direction = {'EW'; 'NS'}; ida_results.period = [1.14; 0.35]; ida_results.spectra = [0.56; 1.18]; % max direction spectra of ICSB motion ida_results.mce = [0.79; 1.55]; % MCE Max from SP3, fixed to this site and model period % Load ground motion data gm_set_table = readtable(['ground_motions' filesep 'FEMA_far_field' filesep 'ground_motion_set.csv'],'ReadVariableNames',true); %% For each model for m = 1:length(model_names) % Define Analysis Name and Location analysis.proceedure = model_names{m}; analysis.id = model_ids{m}; write_dir = ['outputs/' model.name{1} '/' analysis.proceedure '_' analysis.id '/IDA/Fragility Data']; pushover_dir = ['outputs' '/' model.name{1} '/' model_baseline_name '/' 'pushover']; model_dir = ['outputs' '/' model.name{1} '/' model_baseline_name '/' 'opensees_data']; if ~exist(write_dir,'dir') mkdir(write_dir) end % Post Process for Fragilities sprintf('%s_%s', analysis.proceedure, analysis.id) % fn_collect_ida_data(analysis, model, gm_set_table, ida_results, write_dir, pushover_dir, model_dir) % fn_create_fragilities(analysis, gm_set_table, write_dir) % Collect Summary Statistics read_dir = ['outputs' '/' model.name{1} '/' analysis.proceedure '_' analysis.id '/' 'IDA' '/' 'Fragility Data']; ele_dir = ['outputs' '/' model.name{1} '/' analysis.proceedure '_' analysis.id '/' 'asce_41_data']; [percent_CP, sa_med_col, sa_med_cp, col_margin, min_cp_med, mean_cp_med, max_cp_med, column_cov, column_base_cov, column_min, column_range] = fn_collect_cummary_data(read_dir, ele_dir); models.percent_CP(:,m) = percent_CP; models.sa_med_col(m) = sa_med_col; models.sa_med_cp(m) = sa_med_cp; models.col_margin(m) = col_margin; models.min_cp_med(m) = min_cp_med; models.mean_cp_med(m) = mean_cp_med; models.max_cp_med(m) = max_cp_med; models.column_cov(m) = column_cov; models.column_base_cov(m) = column_base_cov; models.column_min(m) = column_min; models.column_range(m) = column_range; end %% Create Plots outputs_dir = ['outputs' filesep 'ICBS_model_3D_fixed' filesep 'NDP_IDA_new' filesep 'sensitivity_study']; rank = ((1:44)/44)'; cmap = colormap(jet(100)); hold on for i = 1:length(model_names) plot(models.percent_CP(:,i),rank,'color',cmap(max(round(100*models.column_cov(i)),1),:),'linewidth',1.25) end xlabel('Fraction of Components Exceeding CP') ylabel('P[Collapse]') h = colorbar; h.Limits = [0,0.7]; ylabel(h, 'Column Deformation Capacity COV') grid on box on fn_format_and_save_plot( outputs_dir, 'Multi Percent CP plot', 4, 1 ) hold on plot(models.column_cov, models.sa_med_cp,'b','marker','o','DisplayName','CP') plot(models.column_cov, models.sa_med_col,'k','marker','d','DisplayName','Collapse') ylim([0,1]) xlabel('Column Deformation Capacity COV') ylabel('Median Sa') legend('location','northeast') grid on box on fn_format_and_save_plot( outputs_dir, 'Median Exceedence Trend', 4, 1 ) plot(models.column_cov, models.col_margin,'k','marker','o') ylim([0,2]) xlabel('Column Deformation Capacity COV') ylabel('Collapse Margin') grid on box on fn_format_and_save_plot( outputs_dir, 'Collapse Margin Trend', 4, 1 ) hold on plot(models.column_cov, models.min_cp_med,'b','marker','o','DisplayName','Min') plot(models.column_cov, models.mean_cp_med,'k','marker','d','DisplayName','Mean') plot(models.column_cov, models.max_cp_med,'r','marker','s','DisplayName','Max') ylim([0,2]) xlabel('Column Deformation Capacity COV') ylabel('Median Deformation Demand to CP Ratio') legend('location','northeast') grid on box on fn_format_and_save_plot( outputs_dir, 'Min Mean Max Trend', 4, 1 ) function [percent_CP, sa_med_col, sa_med_cp, col_margin, min_cp_med, mean_cp_med, max_cp_med, column_cov, column_base_cov, column_min, column_range] = fn_collect_cummary_data(read_dir, ele_dir) load([read_dir filesep 'frag_curves.mat']) load([read_dir filesep 'new_frag_curves.mat']) load([read_dir filesep 'gm_data.mat']) load([ele_dir filesep 'element_analysis.mat']) % Percent Comps exceede CP discrete fragilitu percent_CP = sort(gm_data.collapse.cols_walls_1_percent_cp); % Median Collapse Capacity sa_med_col = frag_curves.collapse.theta; % Collapse Margin sa_med_cp = frag_curves.cols_walls_1.cp.theta(1); col_margin = sa_med_col / sa_med_cp; % Min Mean Max CP min_cp_med = new_frag_curves.collapse.cols_walls_1_min_cp.theta; mean_cp_med = new_frag_curves.collapse.cols_walls_1_mean_cp.theta; max_cp_med = new_frag_curves.collapse.cols_walls_1_max_cp.theta; % Calculate Element COV columns = element(element.story == 1 & strcmp(element.type,'column'),:); column_cov = std(columns.b_hinge_1 + columns.b_hinge_2) / mean(columns.b_hinge_1 + columns.b_hinge_2); column_base_cov = std(columns.b_hinge_1) / mean(columns.b_hinge_1); column_min = min(columns.b_hinge_1); column_range = max(columns.b_hinge_1) - min(columns.b_hinge_1); end
github
dustin-cook/Opensees-master
xml2struct.m
.m
Opensees-master/+file_exchange/xml2struct.m
6,766
utf_8
fef7daf056271b3557a6d729d3dd392a
function [ s ] = xml2struct( file ) %Convert xml file into a MATLAB structure % [ s ] = xml2struct( file ) % % A file containing: % <XMLname attrib1="Some value"> % <Element>Some text</Element> % <DifferentElement attrib2="2">Some more text</Element> % <DifferentElement attrib3="2" attrib4="1">Even more text</DifferentElement> % </XMLname> % % Will produce: % s.XMLname.Attributes.attrib1 = "Some value"; % s.XMLname.Element.Text = "Some text"; % s.XMLname.DifferentElement{1}.Attributes.attrib2 = "2"; % s.XMLname.DifferentElement{1}.Text = "Some more text"; % s.XMLname.DifferentElement{2}.Attributes.attrib3 = "2"; % s.XMLname.DifferentElement{2}.Attributes.attrib4 = "1"; % s.XMLname.DifferentElement{2}.Text = "Even more text"; % % Please note that the following characters are substituted % '-' by '_dash_', ':' by '_colon_' and '.' by '_dot_' % % Written by W. Falkena, ASTI, TUDelft, 21-08-2010 % Attribute parsing speed increased by 40% by A. Wanner, 14-6-2011 % Added CDATA support by I. Smirnov, 20-3-2012 % % Modified by X. Mo, University of Wisconsin, 12-5-2012 if (nargin < 1) clc; help xml2struct return end if isa(file, 'org.apache.xerces.dom.DeferredDocumentImpl') || isa(file, 'org.apache.xerces.dom.DeferredElementImpl') % input is a java xml object xDoc = file; else %check for existance if (exist(file,'file') == 0) %Perhaps the xml extension was omitted from the file name. Add the %extension and try again. if (isempty(strfind(file,'.xml'))) file = [file '.xml']; end if (exist(file,'file') == 0) error(['The file ' file ' could not be found']); end end %read the xml file xDoc = xmlread(file); end %parse xDoc into a MATLAB structure s = parseChildNodes(xDoc); end % ----- Subfunction parseChildNodes ----- function [children,ptext,textflag] = parseChildNodes(theNode) % Recurse over node children. children = struct; ptext = struct; textflag = 'Text'; if hasChildNodes(theNode) childNodes = getChildNodes(theNode); numChildNodes = getLength(childNodes); for count = 1:numChildNodes theChild = item(childNodes,count-1); [text,name,attr,childs,textflag] = getNodeData(theChild); if (~strcmp(name,'#text') && ~strcmp(name,'#comment') && ~strcmp(name,'#cdata_dash_section')) %XML allows the same elements to be defined multiple times, %put each in a different cell if (isfield(children,name)) if (~iscell(children.(name))) %put existsing element into cell format children.(name) = {children.(name)}; end index = length(children.(name))+1; %add new element children.(name){index} = childs; if(~isempty(fieldnames(text))) children.(name){index} = text; end if(~isempty(attr)) children.(name){index}.('Attributes') = attr; end else %add previously unknown (new) element to the structure children.(name) = childs; if(~isempty(text) && ~isempty(fieldnames(text))) children.(name) = text; end if(~isempty(attr)) children.(name).('Attributes') = attr; end end else ptextflag = 'Text'; if (strcmp(name, '#cdata_dash_section')) ptextflag = 'CDATA'; elseif (strcmp(name, '#comment')) ptextflag = 'Comment'; end %this is the text in an element (i.e., the parentNode) if (~isempty(regexprep(text.(textflag),'[\s]*',''))) if (~isfield(ptext,ptextflag) || isempty(ptext.(ptextflag))) ptext.(ptextflag) = text.(textflag); else %what to do when element data is as follows: %<element>Text <!--Comment--> More text</element> %put the text in different cells: % if (~iscell(ptext)) ptext = {ptext}; end % ptext{length(ptext)+1} = text; %just append the text ptext.(ptextflag) = [ptext.(ptextflag) text.(textflag)]; end end end end end end % ----- Subfunction getNodeData ----- function [text,name,attr,childs,textflag] = getNodeData(theNode) % Create structure of node info. %make sure name is allowed as structure name name = toCharArray(getNodeName(theNode))'; name = strrep(name, '-', '_dash_'); name = strrep(name, ':', '_colon_'); name = strrep(name, '.', '_dot_'); attr = parseAttributes(theNode); if (isempty(fieldnames(attr))) attr = []; end %parse child nodes [childs,text,textflag] = parseChildNodes(theNode); if (isempty(fieldnames(childs)) && isempty(fieldnames(text))) %get the data of any childless nodes % faster than if any(strcmp(methods(theNode), 'getData')) % no need to try-catch (?) % faster than text = char(getData(theNode)); text.(textflag) = toCharArray(getTextContent(theNode))'; end end % ----- Subfunction parseAttributes ----- function attributes = parseAttributes(theNode) % Create attributes structure. attributes = struct; if hasAttributes(theNode) theAttributes = getAttributes(theNode); numAttributes = getLength(theAttributes); for count = 1:numAttributes %attrib = item(theAttributes,count-1); %attr_name = regexprep(char(getName(attrib)),'[-:.]','_'); %attributes.(attr_name) = char(getValue(attrib)); %Suggestion of Adrian Wanner str = toCharArray(toString(item(theAttributes,count-1)))'; k = strfind(str,'='); attr_name = str(1:(k(1)-1)); attr_name = strrep(attr_name, '-', '_dash_'); attr_name = strrep(attr_name, ':', '_colon_'); attr_name = strrep(attr_name, '.', '_dot_'); attributes.(attr_name) = str((k(1)+2):(end-1)); end end end
github
dustin-cook/Opensees-master
main_ASCE_41_post_process.m
.m
Opensees-master/+asce_41/main_ASCE_41_post_process.m
4,838
utf_8
b2dd01dfc4dd125661da841739818ef9
function [ capacity, torsion ] = main_ASCE_41_post_process( analysis, ele_prop_table ) % Description: Main script that post process an ASCE 41 analysis % Created By: Dustin Cook % Date Created: 1/3/2019 % Inputs: % Outputs: % Assumptions: %% Initial Setup % Import Packages import asce_41.* % Define Read and Write Directories read_dir = [analysis.out_dir filesep 'opensees_data']; write_dir = [analysis.out_dir filesep 'asce_41_data']; if ~exist(write_dir,'dir') fn_make_directory( write_dir ) end % Load Analysis Data load([read_dir filesep 'model_analysis.mat']) load([read_dir filesep 'story_analysis.mat']) load([read_dir filesep 'element_analysis.mat']) load([read_dir filesep 'joint_analysis.mat']) load([read_dir filesep 'node_analysis.mat']) %% Calculate Element Properties and Modify Analysis Results based on ASCE 41-17 % Basic building or analysis properties [ model, element, torsion, node ] = fn_basic_analysis_properties( model, story, element, node ); % Filter Accelerations if analysis.type == 1 && analysis.filter_accel == 1 [ story ] = fn_accel_filter(node, story, analysis.filter_freq_range, read_dir, write_dir); end if analysis.asce_41_post_process % Procedure Specific Analysis if strcmp(analysis.proceedure,'NDP') && analysis.type == 1 % Nonlinear Dynamic Proceedure % Merge demands from analysis into capacities from pushover [element] = fn_merge_demands(element, write_dir, model); [joint] = fn_merge_joint_demands(joint, element, ele_prop_table, write_dir, read_dir); % calculate hinge demand to capacity ratios load([read_dir filesep 'hinge_analysis.mat']) [ hinge ] = fn_accept_hinge( element, ele_prop_table, hinge, read_dir, node ); [ joint ] = fn_accept_joint( joint, analysis.joint_explicit, read_dir); elseif strcmp(analysis.proceedure,'LDP') && analysis.type == 1 % Linear Dynamic Proceedure % Merge demands from analysis into capacities from pushover [element] = fn_merge_demands(element, write_dir, model); [joint] = fn_merge_joint_demands(joint, element, ele_prop_table, write_dir); else % Pushovers and all other cases [ element, joint ] = main_element_capacity( story, ele_prop_table, element, analysis, joint, read_dir, write_dir ); [ element, joint ] = main_hinge_properties( ele_prop_table, element, joint ); end end %% Save Data save([write_dir filesep 'model_analysis.mat'],'model') save([write_dir filesep 'story_analysis.mat'],'story') save([write_dir filesep 'element_analysis.mat'],'element') save([write_dir filesep 'joint_analysis.mat'],'joint') save([write_dir filesep 'node_analysis.mat'],'node') if exist('hinge','var') save([write_dir filesep 'hinge_analysis.mat'],'hinge') end % Save load case info if ~strcmp(analysis.case,'NA') write_dir = [analysis.out_dir filesep analysis.case]; fn_make_directory( write_dir ) save([write_dir filesep 'story_analysis.mat'],'story') save([write_dir filesep 'element_analysis.mat'],'element') if exist('hinge','var') save([write_dir filesep 'hinge_analysis.mat'],'hinge') end end % % Save capacities to compare iterations % if analysis.asce_41_post_process % capacity = element.capacity; % else % capacity = []; % end end function [element] = fn_merge_demands(element, write_dir, model) % Save demand tables from most recent opensees run OS_demands = element; % Load Post process capacity data load([write_dir filesep 'element_analysis.mat']) % Merge demands into capacity tables element.Pmax = OS_demands.Pmax; element.Pmin = OS_demands.Pmin; element.Vmax_1 = OS_demands.Vmax_1; element.Vmax_2 = OS_demands.Vmax_2; if strcmp(model.dimension,'3D') element.Vmax_oop_1 = OS_demands.Vmax_oop_1; element.Vmax_oop_2 = OS_demands.Vmax_oop_2; end element.Mmax_1 = OS_demands.Mmax_1; element.Mmax_2 = OS_demands.Mmax_2; % Keep node info from latest run (for linear sake) element.node_1 = OS_demands.node_1; element.node_2 = OS_demands.node_2; end function [joint] = fn_merge_joint_demands(joint, element, ele_prop_table, write_dir, read_dir) %% Joints % import packages import asce_41.fn_joint_capacity % Load Post process capacity data load([write_dir filesep 'joint_analysis.mat']) % Save demand tables from most recent opensees run OS_joint = joint; % Determine Joint demands based on element capacities for i = 1:height(OS_joint) OS_jnt = OS_joint(i,:); TH_file = [read_dir filesep 'joint_TH_' num2str(OS_jnt.id) '.mat']; if ~exist(TH_file,'file') jnt_TH = []; else load(TH_file) end [ OS_jnt ] = fn_joint_capacity( OS_jnt, element, ele_prop_table, jnt_TH ); % Merge joint demands into capacity table joint.Pmax(i) = OS_jnt.Pmax; joint.Vmax(i) = OS_jnt.Vmax; end end