plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
dustin-cook/Opensees-master
fn_plot_ida.m
.m
Opensees-master/+ida/fn_plot_ida.m
19,458
utf_8
6b4c3bc0d4f53c391639ac9a92d41014
function [ ] = fn_plot_ida(analysis, model, gm_set_table, ida_results, SSF_ew, main_dir) %UNTITLED Summary of this function goes here % Detailed explanation goes here %% Initial Setup % Import packages import plotting_tools.* % Defined fixed parames if analysis.run_z_motion params = {'b','e','cp'}; else params = {'b','cp'}; end % params = {'b','e','b_e','io','ls','cp','euro_th_NC','euro_th_SD','euro_th_DL'}; frag_probs = [10 25 50 75 100]; % Define Directiries read_dir = [main_dir '/' 'IDA' '/' 'Fragility Data']; plot_dir = [main_dir '/' 'IDA' '/' 'IDA Plots']; if ~exist(plot_dir,'dir') mkdir(plot_dir) end % Load data ida_table = readtable([read_dir filesep 'ida_table.csv']); gm_table = readtable([read_dir filesep 'gm_table.csv']); load([read_dir filesep 'frag_curves.mat']) %% Plot IDA curves fprintf('Saving IDA Summary Data and Figures to Directory: %s \n',plot_dir) if analysis.run_z_motion drs = {'x','z'}; else drs = {'x'}; end for d = 1:length(drs) % Plot IDA curves hold on for gms = 1:height(gm_set_table) ida_plt = plot(ida_table.(['drift_' drs{d}])(strcmp(ida_table.eq_name,gm_set_table.eq_name{gms})),ida_table.(['sa_' drs{d}])(strcmp(ida_table.eq_name,gm_set_table.eq_name{gms})),'-o','color',[0.75 0.75 0.75],'HandleVisibility','off'); end % plot(frag.mean_idr_ew,frag.p695_sa_ew,'b','lineWidth',1.5,'DisplayName','Mean Drift') % plot(frag.mean_idr_ew,frag.p_15_sa_ew,'--b','lineWidth',1.5,'DisplayName','15th Percentile') % plot(frag.mean_idr_ew,frag.p_85_sa_ew,'--b','lineWidth',1.5,'DisplayName','85th Percentile') plot([0,0.1],[ida_results.spectra(d),ida_results.spectra(d)],'--k','lineWidth',1.5,'DisplayName','ICSB Motion') xlim([0 0.1]) xlabel('Max Drift') ylabel(['Sa(T_1=' num2str(ida_results.period(d)) 's) (g)']) fn_format_and_save_plot( plot_dir, ['IDA Plot ' drs{d} ' Frame Direction'], 3 ) end %% Component IDA Curves (only for x dir) % vals2plot = {'gravity_dcr', 'mean_b', 'max_b', 'max_cp', 'lat_cap_ratio_both'}; % for v = 1:length(vals2plot) % % replace drift % hold on % for gms = 1:height(gm_set_table) % ida_plt = plot(ida_table.(vals2plot{v})(strcmp(ida_table.eq_name,gm_set_table.eq_name{gms})),ida_table.('sa_x')(strcmp(ida_table.eq_name,gm_set_table.eq_name{gms})),'-o','color',[0.75 0.75 0.75],'HandleVisibility','off'); % end % xlabel(vals2plot{v}) % ylabel(['Sa(T_1=' num2str(ida_results.period(d)) 's) (g)']) % fn_format_and_save_plot( plot_dir, ['IDA Plot - ' vals2plot{v} ' - 1'], 3 ) % % % % replace sa % % hold on % % for gms = 1:height(gm_set_table) % % ida_plt = plot(ida_table.('drift_x')(strcmp(ida_table.eq_name,gm_set_table.eq_name{gms})),ida_table.(vals2plot{v})(strcmp(ida_table.eq_name,gm_set_table.eq_name{gms})),'-o','color',[0.75 0.75 0.75],'HandleVisibility','off'); % % end % % xlabel('Max Drift') % % ylabel(vals2plot{v}) % % fn_format_and_save_plot( plot_dir, ['IDA Plot - ' vals2plot{v} ' - 2'], 3 ) % end %% Calculate Post Fragulity Curve P695 factors if analysis.run_z_motion factor_3D = 1.11; else factor_3D = 1.0; end SSF = SSF_ew; % Assume EW SSF % Set Ida summary table ida_summary_table.direction = 'EW'; ida_summary_table.period = ida_results.period(1); ida_summary_table.spectra = ida_results.spectra(1); ida_summary_table.mce = ida_results.mce(1); % Collapse Median Sa ida_summary_table.sa_med_col = frag_curves.collapse.theta; ida_summary_table.sa_med_UR = frag_curves.UR.theta; ida_summary_table.sa_med_CP = frag_curves.b.theta(1); % Collapse Margin Ratio ida_summary_table.cmr = ida_summary_table.sa_med_col / ida_summary_table.mce; ida_summary_table.cmr_UR = ida_summary_table.sa_med_UR / ida_summary_table.mce; ida_summary_table.cmr_CP = ida_summary_table.sa_med_CP / ida_summary_table.mce; % Adjust for SSF and 3D ida_summary_table.acmr = factor_3D*SSF*ida_summary_table.cmr; ida_summary_table.acmr_UR = factor_3D*SSF*ida_summary_table.cmr_UR; ida_summary_table.acmr_CP = factor_3D*SSF*ida_summary_table.cmr_CP; median_adjustment = ida_summary_table.sa_med_col*(factor_3D*SSF - 1); ida_summary_table.p_col_mce = logncdf(ida_summary_table.mce,log(frag_curves.collapse.theta),frag_curves.collapse.beta); ida_summary_table.p_col_mce_adjust = logncdf(ida_summary_table.mce,log(frag_curves.collapse.theta + median_adjustment),0.6); ida_summary_table.p_UR_mce = logncdf(ida_summary_table.mce,log(frag_curves.UR.theta),frag_curves.UR.beta); ida_summary_table.p_UR_mce_adjusted = logncdf(ida_summary_table.mce,log(frag_curves.UR.theta + median_adjustment),0.6); ida_summary_table.p_CP_mce = logncdf(ida_summary_table.mce,log(frag_curves.b.theta(1)),frag_curves.b.beta(1)); ida_summary_table.p_C_ICSM = logncdf(ida_summary_table.spectra,log(frag_curves.collapse.theta),frag_curves.collapse.beta); % Save IDA results as table ida_results_table = struct2table(ida_summary_table); writetable(ida_results_table,[plot_dir filesep 'ida_results.csv']) %% Plot Frag Curves % color scheme matlab_colors = [0 0.4470 0.7410; 0.85 0.325 0.0980; 0.929 0.694 0.1250; 0.494 0.184 0.556; 0.466 0.674 0.188; 0.301 0.7445 0.933; 0.635 0.078 0.184]; matlab_colors = [matlab_colors;matlab_colors;matlab_colors]; % stack matlab colors so they repeat % Sa points to plot fragility curves x_points = 0.01:0.01:4; % Total Collapse with discrete scatter if analysis.run_z_motion opts = {'', '_x', '_z'}; else opts = {''}; end for c = 1:length(opts) hold on % Gravity rank_sa = sort(gm_table.sa_collapse_grav(~isnan(gm_table.sa_collapse_grav))); rank_val = 1:length(rank_sa); sct = scatter(rank_sa,rank_val./length(rank_sa),'k','filled','HandleVisibility','off'); cdf = logncdf(x_points,log(frag_curves.collapse_grav.theta),frag_curves.collapse_grav.beta); plot(x_points,cdf,'k','DisplayName','Gravity Collapse') % Sidesway rank_sa = sort(gm_table.(['sa_collapse' opts{c}])(~isnan(gm_table.(['sa_collapse' opts{c}])))); rank_val = 1:length(rank_sa); sct = scatter(rank_sa,rank_val./length(rank_sa),'m','filled','HandleVisibility','off'); cdf = logncdf(x_points,log(frag_curves.(['collapse' opts{c}]).theta),frag_curves.(['collapse' opts{c}]).beta); plot(x_points,cdf,'m','DisplayName','Sidesway Collapse') % Drift % rank_sa = sort(gm_table.sa_collapse_drift_6(~isnan(gm_table.sa_collapse_drift_6))); % rank_val = 1:length(rank_sa); % sct = scatter(rank_sa,rank_val./length(rank_sa),'r','filled','HandleVisibility','off'); % cdf = logncdf(x_points,log(frag_curves.collapse_drift_6.theta),frag_curves.collapse_drift_6.beta); % plot(x_points,cdf,'r','DisplayName','Collapse at 6% Drift') % % All % rank_sa = sort(gm_table.(['sa_collapse_2' opts{c}])(~isnan(gm_table.(['sa_collapse_2' opts{c}])))); % rank_val = 1:length(rank_sa); % sct = scatter(rank_sa,rank_val./length(rank_sa),'k','filled','HandleVisibility','off'); % cdf = logncdf(x_points,log(frag_curves.(['collapse_2' opts{c}]).theta),frag_curves.(['collapse_2' opts{c}]).beta); % plot(x_points,cdf,'k','DisplayName','Collapse Fragility All') xlabel('Sa(T_{1-EW}) (g)') ylabel('P[Collapse]') xlim([0,1.5]) fn_format_and_save_plot( plot_dir, ['Collapse Fragility' opts{c}], 6 ) end % % Total Collapse with 695 adjustments % figure % hold on % cdf = logncdf(x_points,log(frag_curves.collapse.theta),frag_curves.collapse.beta); % plot(x_points,cdf,'b','lineWidth',1,'DisplayName','Collapse Fragility') % cdf = logncdf(x_points,log(frag_curves.collapse.theta + median_adjustment),frag_curves.collapse.beta); % plot(x_points,cdf,'--b','lineWidth',1,'DisplayName','Adjustment') % cdf = logncdf(x_points,log(frag_curves.collapse.theta + median_adjustment),0.6); % plot(x_points,cdf,':b','lineWidth',1.25,'DisplayName','With Uncertainty') % plot([ida_results.mce(1),ida_results.mce(1)],[0,1],'--k','lineWidth',0.5,'DisplayName','MCE_R') % xlabel('Sa(T_{1-EW}) (g)') % ylabel('P[Collapse]') % xlim([0,2]) % fn_format_and_save_plot( plot_dir, 'Collapse Fragility with 695 Uncertainty', 6 ) % % Total Collapse with breakdown in each direction % figure % hold on % rank_sa = sort(gm_table.sa_collapse(~isnan(gm_table.sa_collapse))); % rank_val = (1:length(rank_sa))/length(rank_sa); % scatter(rank_sa,rank_val,'k','filled','HandleVisibility','off'); % cdf = logncdf(x_points,log(frag_curves.collapse.theta),frag_curves.collapse.beta); % plot(x_points,cdf,'k','DisplayName','Total Collapse Fragility') % rank_sa = sort(gm_table.sa_collapse_x(~isnan(gm_table.sa_collapse_x))); % rank_val = (1:length(rank_sa))/length(rank_sa); % scatter(rank_sa,rank_val,'b','filled','HandleVisibility','off'); % cdf = logncdf(x_points,log(frag_curves.ew_collapse.theta),frag_curves.ew_collapse.beta); % plot(x_points,cdf,'b','DisplayName','EW Frame Fragility') % rank_sa = sort(gm_table.sa_collapse_z(~isnan(gm_table.sa_collapse_z))); % rank_val = (1:length(rank_sa))/length(rank_sa); % scatter(rank_sa,rank_val,'r','filled','HandleVisibility','off'); % cdf = logncdf(x_points,log(frag_curves.ns_collapse.theta),frag_curves.ns_collapse.beta); % plot(x_points,cdf,'r','DisplayName','NS Wall Fragility') % xlabel('Sa(T_{1-EW}) (g)') % ylabel('P[Collapse]') % xlim([0,2]) % fn_format_and_save_plot( plot_dir, 'Collapse Fragility Both Directions', 6 ) % % % ASCE 41 Unacceptable Response v Total Collapse with 695 adjustments % figure % hold on % cdf = logncdf(x_points,log(frag_curves.collapse.theta),frag_curves.collapse.beta); % plot(x_points,cdf,'b','DisplayName','Collapse Fragility') % cdf = logncdf(x_points,log(frag_curves.UR.theta),frag_curves.UR.beta); % plot(x_points,cdf,'-.r','DisplayName','Unacceptable Response') % plot([ida_results.mce(1),ida_results.mce(1)],[0,1],'--k','lineWidth',0.5,'DisplayName','MCE_R') % xlabel('Sa(T_{1-EW}) (g)') % ylabel('P[Exceedance]') % xlim([0,2]) % fn_format_and_save_plot( plot_dir, 'Unacceptable Response Fragility', 6 ) % Plot Each acceptance Criteria for p = 1:length(params) plot_name = [params{p} ' Fragilities']; fn_plot_frag_curves(x_points, frag_curves.(params{p}), frag_curves.collapse_2, frag_curves.collapse, ida_results.spectra(1), plot_name, plot_dir, [0,1.5], params{p} ) if analysis.run_z_motion plot_name = [params{p} ' Fragilities_x']; fn_plot_frag_curves(x_points, frag_curves.([params{p} '_x']), frag_curves.collapse_2_x, frag_curves.collapse_x, ida_results.spectra(1), plot_name, plot_dir, [0,1.5], params{p} ) plot_name = [params{p} ' Fragilities_z']; fn_plot_frag_curves(x_points, frag_curves.([params{p} '_z']), frag_curves.collapse_2_z, frag_curves.collapse_z, ida_results.spectra(2), plot_name, plot_dir, [0,1.5], params{p} ) end end % First Acceptance criteria met % figure % hold on % cdf = logncdf(x_points,log(frag_curves.cols_1.cp.theta(1)),frag_curves.cols_1.cp.beta(1)); % plot(x_points,cdf,'color',matlab_colors(1,:),'lineWidth',1.5,'DisplayName','ASCE 41 CP') % cdf = logncdf(x_points,log(frag_curves.cols_1.euro_th_NC.theta(1)),frag_curves.cols_1.euro_th_NC.beta(1)); % plot(x_points,cdf,'--','color',matlab_colors(2,:),'lineWidth',1.5,'DisplayName','EuroCode NC') % xlabel('Sa(T_{1-EW}) (g)') % ylabel('P[Exceedance]') % xlim([0,2]) % fn_format_and_save_plot( plot_dir, 'EuroCode - First Acceptance Criteria', 6 ) % % % 50% Acceptance criteria met % figure % hold on % cdf = logncdf(x_points,log(frag_curves.cols_1.cp.theta(4)),frag_curves.cols_1.cp.beta(4)); % plot(x_points,cdf,'color',matlab_colors(1,:),'lineWidth',1.5,'DisplayName','ASCE 41 CP') % cdf = logncdf(x_points,log(frag_curves.cols_1.euro_th_NC.theta(4)),frag_curves.cols_1.euro_th_NC.beta(4)); % plot(x_points,cdf,'--','color',matlab_colors(2,:),'lineWidth',1.5,'DisplayName','EuroCode NC') % xlabel('Sa(T_{1-EW}) (g)') % ylabel('P[Exceedance]') % xlim([0,2]) % fn_format_and_save_plot( plot_dir, 'EuroCode - 50% Acceptance Criteria', 6 ) % % Plot For Gravity Load Lost % figure % hold on % for f = 1:length(frag_probs) % cdf = logncdf(x_points,log(frag_curves.gravity.(['percent_lost_' num2str(frag_probs(f))]).theta),frag_curves.gravity.(['percent_lost_' num2str(frag_probs(f))]).beta); % plot(x_points,cdf,'color',matlab_colors(f+1,:),'lineWidth',1.5,'DisplayName',[num2str(frag_probs(f)) '% Gravity Capacity Lost']) % end % cdf = logncdf(x_points,log(frag_curves.collapse.theta),frag_curves.collapse.beta); % plot(x_points,cdf,'-k','lineWidth',2,'DisplayName','Collapse Fragility') % cdf = logncdf(x_points,log(frag_curves.UR.theta),frag_curves.UR.beta); % plot(x_points,cdf,'-.r','lineWidth',2,'DisplayName','Unacceptable Response') % plot([ida_results.spectra(1) ida_results.spectra(1)],[0 1],'--k','lineWidth',1.5,'DisplayName','ICSB Motion') % xlabel('Sa(T_{1-EW}) (g)') % ylabel('P[Exceedance]') % xlim([0,2]) % fn_format_and_save_plot( plot_dir, 'Gravity Load Lost Fragilities', 6 ) % % Plot For Drift Fragilities colormap(parula) caxis([0 10]) cmap = parula(10); for c = 1:length(opts) hold on for d = 1:10 cdf = logncdf(x_points,log(frag_curves.drift.(['idr' opts{c} '_' num2str(d)]).theta),frag_curves.drift.(['idr' opts{c} '_' num2str(d)]).beta); plot(x_points,cdf,'color',cmap(d,:),'lineWidth',1.5,'HandleVisibility','off') end cdf = logncdf(x_points,log(frag_curves.(['collapse_2' opts{c}]).theta),frag_curves.(['collapse_2' opts{c}]).beta); plot(x_points,cdf,'--k','lineWidth',2,'DisplayName','Gravity Collapse') cdf = logncdf(x_points,log(frag_curves.(['collapse' opts{c}]).theta),frag_curves.(['collapse' opts{c}]).beta); plot(x_points,cdf,'--m','lineWidth',2,'DisplayName','Sidesway Collapse') xlabel('Sa(T_{1-EW}) (g)') ylabel('P[Exceedance]') xlim([0,2]) h = colorbar; ylabel(h, 'Peak Drift') for i = 1:length(h.TickLabels) h.TickLabels{i} = [num2str(str2double(h.TickLabels{i})*20) '%']; end fn_format_and_save_plot( plot_dir, ['Max Drift Fragilities' opts{c}], 6 ) % Plot For grav dcr hold on for d = 1:10 cdf = logncdf(x_points,log(frag_curves.gravity.(['dcr_' num2str(d*10)]).theta),frag_curves.gravity.(['dcr_' num2str(d*10)]).beta); plot(x_points,cdf,'color',matlab_colors(d,:),'lineWidth',1.5,'DisplayName',['Grav DCR > ' num2str(d)/10]) end cdf = logncdf(x_points,log(frag_curves.(['collapse' opts{c}]).theta),frag_curves.(['collapse' opts{c}]).beta); plot(x_points,cdf,'-k','lineWidth',2,'DisplayName','Collapse Fragility') xlabel('Sa(T_{1-EW}) (g)') ylabel('P[Exceedance]') xlim([0,2]) fn_format_and_save_plot( plot_dir, ['Grav DCR Fragilities' opts{c}], 6 ) end % Plot For lateral cap hold on for d = 1:9 cdf = logncdf(x_points,log(frag_curves.lateral.(['cap_both_' num2str(d*10)]).theta),frag_curves.lateral.(['cap_both_' num2str(d*10)]).beta); plot(x_points,cdf,'color',matlab_colors(d,:),'lineWidth',1.5,'DisplayName',[num2str(d)/10 '% Lat Capacity Remains']) end cdf = logncdf(x_points,log(frag_curves.collapse.theta),frag_curves.collapse.beta); plot(x_points,cdf,'-k','lineWidth',2,'DisplayName','Collapse Fragility') xlabel('Sa(T_{1-EW}) (g)') ylabel('P[Exceedance]') xlim([0,2]) fn_format_and_save_plot( plot_dir, 'Lateral Capacity Fragilities', 6 ) % % % % Plot For Adjacent Components % figure % hold on % cdf = logncdf(x_points,log(frag_curves.adjacent_comp.any.theta),frag_curves.adjacent_comp.any.beta); % plot(x_points,cdf,'color',matlab_colors(1,:),'DisplayName','Any Adjacent Component') % cdf = logncdf(x_points,log(frag_curves.adjacent_comp.any_frame.theta),frag_curves.adjacent_comp.any_frame.beta); % plot(x_points,cdf,'color',matlab_colors(2,:),'DisplayName','Any Adjacent Frame Component') % cdf = logncdf(x_points,log(frag_curves.adjacent_comp.all.theta),frag_curves.adjacent_comp.all.beta); % plot(x_points,cdf,'color',matlab_colors(3,:),'DisplayName','All Adjacent Components') % cdf = logncdf(x_points,log(frag_curves.collapse.theta),frag_curves.collapse.beta); % plot(x_points,cdf,'-k','DisplayName','Collapse Fragility') % xlabel('Sa(T_{1-EW}) (g)') % ylabel('P[Exceedance]') % xlim([0,2]) % fn_format_and_save_plot( plot_dir, 'Adjacent Component Fragilities', 6 ) % % % Plot For Percent of Collapse Energy % figure % hold on % for f = 1:length(frag_probs) % cdf = logncdf(x_points,log(frag_curves.energy.(['percent_collapse_' num2str(frag_probs(f))]).theta),frag_curves.energy.(['percent_collapse_' num2str(frag_probs(f))]).beta); % plot(x_points,cdf,'color',matlab_colors(f,:),'DisplayName',[num2str(frag_probs(f)) '% of Collapse Energy']) % end % cdf = logncdf(x_points,log(frag_curves.collapse.theta),frag_curves.collapse.beta); % plot(x_points,cdf,'-k','DisplayName','Collapse Fragility') % xlabel('Sa(T_{1-EW}) (g)') % ylabel('P[Exceedance]') % xlim([0,2]) % fn_format_and_save_plot( plot_dir, 'Collapse Energy Fragilities', 6 ) % % % Plot Multiple trigger types together % % Plot For Adjacent Components % figure % hold on % cdf = logncdf(x_points,log(frag_curves.cols_walls_1.b_e.theta(1)),frag_curves.cols_walls_1.b_e.beta(1)); % plot(x_points,cdf,'color',matlab_colors(1,:),'DisplayName','ASCE 41 CP') % cdf = logncdf(x_points,log(frag_curves.adjacent_comp.any.theta),frag_curves.adjacent_comp.any.beta); % plot(x_points,cdf,'color',matlab_colors(2,:),'DisplayName','Any Adjacent Component') % cdf = logncdf(x_points,log(frag_curves.gravity.percent_lost_25.theta),frag_curves.gravity.percent_lost_25.beta); % plot(x_points,cdf,'color',matlab_colors(3,:),'DisplayName','25% Load Capacity Lost') % cdf = logncdf(x_points,log(frag_curves.drift.idr_2.theta),frag_curves.drift.idr_2.beta); % plot(x_points,cdf,'color',matlab_colors(4,:),'DisplayName','2% Max Interstory Drift') % cdf = logncdf(x_points,log(frag_curves.collapse.theta),frag_curves.collapse.beta); % plot(x_points,cdf,'-k','DisplayName','Collapse Fragility') % xlabel('Sa(T_{1-EW}) (g)') % ylabel('P[Exceedance]') % xlim([0,2]) % fn_format_and_save_plot( plot_dir, 'Multi Fragility Compare', 6 ) end function [ ] = fn_plot_frag_curves(x_points, frag_curves, col_frag_curve, col_no_grav, icsb_motion, plot_name, plot_dir, x_range, param_name) % Import packages import plotting_tools.* % colormap(parula) colormap(parula) cmap = parula(100); hold on cdf = logncdf(x_points,log(frag_curves.theta(1)),frag_curves.beta(1)); plot(x_points,cdf,'color',cmap(round(100*frag_curves.prct_mech(1)),:),'lineWidth',1.5,'HandleVisibility','off') for i = 2:height(frag_curves) cdf = logncdf(x_points,log(frag_curves.theta(i)),frag_curves.beta(i)); % plot(x_points,cdf,'color',cmap(i,:),'lineWidth',1.5,'DisplayName',[num2str(100*frag_curves.prct_mech(i)) '% of Mechanism']) plot(x_points,cdf,'color',cmap(round(100*frag_curves.prct_mech(i)),:),'lineWidth',1.5,'HandleVisibility','off') end cdf = logncdf(x_points,log(col_frag_curve.theta),col_frag_curve.beta); plot(x_points,cdf,'--k','lineWidth',2,'DisplayName','Gravity Collapse') cdf = logncdf(x_points,log(col_no_grav.theta),col_no_grav.beta); plot(x_points,cdf,'--m','lineWidth',2,'DisplayName','Sidesway Collapse') % plot([icsb_motion icsb_motion],[0 1],'--k','lineWidth',1.5,'DisplayName','ICSB Motion') xlabel('Sa(T_{1-EW}) (g)') ylabel('P[Exceedance]') xlim(x_range) h = colorbar; ylabel(h, ['Fraction of Components Exceeding ' upper(param_name)]) fn_format_and_save_plot( plot_dir, plot_name, 6 ) end
github
dustin-cook/Opensees-master
fn_collect_ida_data.m
.m
Opensees-master/+ida/fn_collect_ida_data.m
16,452
utf_8
b447072a963f905edc4204b5c38695f5
function [ ] = fn_collect_ida_data(analysis, model, gm_set_table, ida_results, main_dir, write_dir) %UNTITLED Summary of this function goes here % Detailed explanation goes here %% Initial Setup % Import packages import plotting_tools.* % Defined fixed parames % params = {'b','e','io','ls','cp','euro_th_NC','euro_th_SD','euro_th_DL'}; % params = {'b','io','ls','cp','euro_th_NC','euro_th_SD','euro_th_DL'}; if analysis.run_z_motion params = {'b','e','io','ls','cp'}; else params = {'b','io','ls','cp'}; end % load element properties ele_prop_table = readtable(['inputs' filesep 'element.csv'],'ReadVariableNames',true); % Load model data model_dir = [main_dir '/' 'opensees_data']; asce41_dir = [main_dir '/' 'asce_41_data']; load([asce41_dir filesep 'element_analysis.mat']); % Collect IDA data id = 0; id_missing = 0; for gm = 1:height(gm_set_table) gm_dir = [main_dir '/' 'IDA' '/' 'Summary Data' '/' 'GM_' num2str(gm_set_table.set_id(gm)) '_' num2str(gm_set_table.pair(gm))]; scale_folders = dir([gm_dir filesep 'Scale_*']); for s = 1:length(scale_folders) % Load data outputs_dir = [main_dir '/' 'IDA' '/' 'Summary Data' '/' 'GM_' num2str(gm_set_table.set_id(gm)) '_' num2str(gm_set_table.pair(gm)) '/' scale_folders(s).name]; outputs_file = [outputs_dir filesep 'summary_results.mat']; hinge_file = [outputs_dir filesep 'hinge_analysis.mat']; story_file = [outputs_dir filesep 'story_analysis.mat']; if exist(outputs_file,'file') && exist(hinge_file,'file') load(outputs_file) load(hinge_file) load(story_file) if isfield(summary,'max_drift_x') id = id + 1; ida.id(id,1) = id; ida.eq_name{id,1} = gm_set_table.eq_name{gm}; ida.scale(id,1) = str2double(regexp(scale_folders(s).name,'(?<=_).+$','match')); if analysis.run_z_motion ida.max_drift(id,1) = max(summary.max_drift_x,summary.max_drift_z); else ida.max_drift(id,1) = summary.max_drift_x; end % X direction ida.sa_x(id,1) = summary.sa_x; ida.sa_geo(id,1) = summary.sa_x; ida.mce_ratio_x(id,1) = ida.sa_x(id,1)/ida_results.mce(1); ida.drift_x(id,1) = summary.max_drift_x; % z direction if analysis.run_z_motion ida.sa_z(id,1) = summary.sa_z; ida.sa_geo(id,1) = geomean([summary.sa_x,summary.sa_z]); ida.mce_ratio_z(id,1) = ida.sa_z(id,1)/ida_results.mce(2); ida.drift_z(id,1) = summary.max_drift_z; end % Collapse metrics ida.collapse(id,1) = summary.collapse; if summary.collapse > 0 ida.collapse_direction{id,1} = summary.collapse_direction; ida.collapse_mech{id,1} = summary.collaspe_mech; if strcmp(summary.collapse_direction,'x') ida.collapse_x(id,1) = summary.collapse; ida.collapse_z(id,1) = NaN; elseif strcmp(summary.collapse_direction,'z') ida.collapse_x(id,1) = NaN; ida.collapse_z(id,1) = summary.collapse; end if contains(summary.collaspe_mech,'column') ida.collapse_comps(id,1) = sum(hinge.b_ratio(strcmp(hinge.ele_type,'column')) >= 1); elseif contains(summary.collaspe_mech,'wall') ida.collapse_comps(id,1) = sum(hinge.e_ratio(strcmp(hinge.ele_type,'wall')) >= 1); else ida.collapse_comps(id,1) = sum(hinge.b_ratio >= 1); end else ida.collapse_direction{id,1} = 'NA'; ida.collapse_mech{id,1} = 'NA'; ida.collapse_x(id,1) = NaN; ida.collapse_z(id,1) = NaN; ida.collapse_comps(id,1) = NaN; end % % Dissapated Energy % col_hinges = hinge(hinge.story == 1 & strcmp(hinge.direction,'primary') & strcmp(hinge.ele_type,'column'),:); % in_plane_col_base = hinge(hinge.story == 1 & hinge.ele_side == 1 & strcmp(hinge.direction,'primary') & strcmp(hinge.ele_type,'column'),:); % % ew_pushover_energy = 0; % for e = 1:height(col_hinges) % pushover_TH = load([pushover_dir filesep 'hinge_TH_' num2str(col_hinges.id(e)) '.mat']); % ew_pushover_energy = max(pushover_TH.hin_TH.energy_ft_lbs) + ew_pushover_energy; % end % % ns_pushover_energy = 0; % % for e = 1:height(wall_hinges) % % pushover_TH = load([pushover_dir filesep 'hinge_TH_' num2str(wall_hinges.id(e)) '.mat']); % % ns_pushover_energy = max(pushover_TH.hin_TH.energy_ft_lbs) + ns_pushover_energy; % % end % ida.total_energy_ft_lbs(id,1) = sum(cols_walls_1_hinges.total_engergy_ft_lbs); % ida.total_energy_ew(id,1) = sum(col_hinges.total_engergy_ft_lbs); % % ida.total_energy_ns(id,1) = sum(wall_hinges.total_engergy_ft_lbs); % % ida.norm_energy_tot(id,1) = ida.total_energy_ft_lbs(id,1) / (ew_pushover_energy + ns_pushover_energy); % ida.norm_energy_tot(id,1) = ida.total_energy_ft_lbs(id,1) / (ew_pushover_energy); % ida.norm_energy_ew(id,1) = ida.total_energy_ew(id,1) / ew_pushover_energy; % % ida.norm_energy_ns(id,1) = ida.total_energy_ns(id,1) / ns_pushover_energy; % % ida.norm_energy_max(id,1) = max([ida.norm_energy_ew(id,1),ida.norm_energy_ns(id,1)]); % ida.norm_energy_max(id,1) = ida.norm_energy_ew(id,1); % Gravity and Lateral Capacity Remaining (currently only works % for EW frame direction, need to record column response OOP to % fix) for i = 1:height(story) gravity_load(i) = sum(story.story_dead_load(i:end)) + sum(story.story_live_load(i:end)); col_hinges_1 = hinge(hinge.story == i & strcmp(hinge.ele_type,'column') & hinge.ele_side == 1,:); col_hinges_2 = hinge(hinge.story == i & strcmp(hinge.ele_type,'column') & hinge.ele_side == 2,:); if ~isempty(col_hinges_1) grav_cap_1 = sum(col_hinges_1.P_capacity); grav_cap_2 = sum(col_hinges_2.P_capacity); gravity_capacity(i) = min([grav_cap_1,grav_cap_2]); else gravity_capacity(i) = inf; end end axial_dcr = gravity_load ./ gravity_capacity; ida.gravity_dcr(id,1) = max(axial_dcr); % Lateral Capacity Remaining (first story) % full strength all_cols = element(element.story == 1 & strcmp(element.type,'column'),:); lat_cap_tot = sum(all_cols.Mn_pos_1) + sum(all_cols.Mn_pos_2); % Mean rotation capacity of columns ida.mean_rot_cap(id,1) = mean([all_cols.b_hinge_1;all_cols.b_hinge_2]); % Mean rotation capacity of columns from gravity tn = tan(pi*65/180); for c = 1:height(all_cols) ele_prop = ele_prop_table(ele_prop_table.id == all_cols.ele_id(c),:); for sd = 1:2 as = ele_prop.(['Av_' num2str(hinge.ele_side(sd))]); fyt = ele_prop.fy_e; dc = ele_prop.w/2 - ele_prop.clear_cover; s = ele_prop.(['S_' num2str(hinge.ele_side(sd))]); all_cols.(['drift_grav_' num2str(sd)])(c) = (4/100)*(1+tn^2)/(tn + all_cols.Pmax(c)*(s / (as*fyt*dc*tn))); end end ida.mean_rot_cap_grav(id,1) = mean([all_cols.drift_grav_1;all_cols.drift_grav_2]); ida.mean_rot_cap_grav_min(id,1) = mean(min(all_cols.drift_grav_1,all_cols.drift_grav_2)); % remaining hinges and columns failed_col_any = hinge.element_id(hinge.story == 1 & strcmp(hinge.ele_type,'column') & hinge.a_ratio > 1); failed_col_1 = hinge.element_id(hinge.story == 1 & strcmp(hinge.ele_type,'column') & hinge.ele_side == 1 & hinge.a_ratio > 1); failed_col_2 = hinge.element_id(hinge.story == 1 & strcmp(hinge.ele_type,'column') & hinge.ele_side == 2 & hinge.a_ratio > 1); remianing_cols = element(element.story == 1 & strcmp(element.type,'column') & ~ismember(element.id,unique(failed_col_any)),:); remianing_cols_1 = element(element.story == 1 & strcmp(element.type,'column') & ~ismember(element.id,failed_col_1),:); remianing_cols_2 = element(element.story == 1 & strcmp(element.type,'column') & ~ismember(element.id,failed_col_2),:); % remaining columns with no damage lat_cap_remain = sum(remianing_cols.Mn_pos_1) + sum(remianing_cols.Mn_pos_2); ida.lat_cap_ratio_any(id,1) = lat_cap_remain / lat_cap_tot; % remaining columns with only 1 side damaged lat_cap_remain = sum(remianing_cols_1.Mn_pos_1) + sum(remianing_cols_2.Mn_pos_2); ida.lat_cap_ratio_both(id,1) = lat_cap_remain / lat_cap_tot; % max side of columns remaining lat_cap_remain = max([sum(remianing_cols_1.Mn_pos_1),sum(remianing_cols_2.Mn_pos_2)]); ida.lat_cap_ratio_max(id,1) = lat_cap_remain / (lat_cap_tot/2); % only works when columns are symmetric % how many full column failures are there ida.num_full_col_fails(id,1) = sum(~ismember(all_cols.id,remianing_cols_1.id) & ~ismember(all_cols.id,remianing_cols_2.id)); else id_missing = id_missing + 1; missing_ida.eq_name{id_missing,1} = gm_set_table.eq_name{gm}; missing_ida.scale(id_missing,1) = str2double(regexp(scale_folders(s).name,'(?<=_).+$','match')); end else id_missing = id_missing + 1; missing_ida.eq_name{id_missing,1} = gm_set_table.eq_name{gm}; missing_ida.scale(id_missing,1) = str2double(regexp(scale_folders(s).name,'(?<=_).+$','match')); end end end ida_table = struct2table(ida); % Remove all cases that failed to converge yet did not get far enough failed_convergence = ida_table(ida_table.collapse == 5,:); ida_table(ida_table.collapse == 5,:) = []; % filter out failed models % Go through and define collapse props for each ground motion for gm = 1:height(gm_set_table) filt_collapse = ida_table.collapse > 0 & strcmp(ida_table.eq_name,gm_set_table.eq_name{gm}); % Remove all GM's that do not collapse if sum(filt_collapse) == 0 ida_table(strcmp(ida_table.eq_name,gm_set_table.eq_name{gm}),:) = []; else collapse_idx = find(filt_collapse,1,'first'); gm_set_table.scale_collapse(gm) = ida_table.scale(collapse_idx); gm_set_table.scale_jbc(gm) = ida_table.scale(collapse_idx - 1); gm_set_table.collapse_dir(gm) = ida_table.collapse_direction(collapse_idx); gm_set_table.collapse_mech(gm) = ida_table.collapse_mech(collapse_idx); gm_set_table.collapse_comps(gm) = ida_table.collapse_comps(collapse_idx); end end gm_set_table(gm_set_table.scale_collapse == 0,:) = []; % Go through IDA table and get hinge properties based on collapse mechanism for i = 1:height(ida_table) outputs_dir = [main_dir '/' 'IDA' '/' 'Summary Data' '/' 'GM_' num2str(gm_set_table.set_id(strcmp(gm_set_table.eq_name,ida_table.eq_name{i}))) '_' num2str(gm_set_table.pair(strcmp(gm_set_table.eq_name,ida_table.eq_name{i}))) '/Scale_' num2str(ida_table.scale(i))]; hinge_file = [outputs_dir filesep 'hinge_analysis.mat']; load(hinge_file) % Identify collapse case for this GM gm_stripes = ida_table(strcmp(ida_table.eq_name,ida_table.eq_name{i}),:); collapse_idx = find(gm_stripes.collapse > 0,1,'first'); collapse_hinge_file = [main_dir '/' 'IDA' '/' 'Summary Data' '/' 'GM_' num2str(gm_set_table.set_id(strcmp(gm_set_table.eq_name,ida_table.eq_name{i}))) '_' num2str(gm_set_table.pair(strcmp(gm_set_table.eq_name,ida_table.eq_name{i}))) '/Scale_' num2str(gm_stripes.scale(collapse_idx)) filesep 'hinge_analysis.mat']; collapse_hinge = load(collapse_hinge_file); % Get element group filters from collapse case if contains(gm_stripes.collapse_mech{collapse_idx},'column') % collapse mechanism is all column hinges that have failed in the first stripe that collapse mech_filter = strcmp(collapse_hinge.hinge.direction,'primary') & collapse_hinge.hinge.b_ratio >= 1 & strcmp(collapse_hinge.hinge.ele_type,'column'); elseif contains(gm_stripes.collapse_mech{collapse_idx},'wall') % collapse mechanism is all wall hinges that have failed in the first stripe that collapse mech_filter = strcmp(collapse_hinge.hinge.direction,'primary') & collapse_hinge.hinge.e_ratio >= 1 & strcmp(collapse_hinge.hinge.ele_type,'wall'); else % collapse mechanism is all hinges that have failed in the first stripe that collapse mech_filter = strcmp(collapse_hinge.hinge.direction,'primary') & (collapse_hinge.hinge.b_ratio >= 1 | collapse_hinge.hinge.e_ratio >= 1); end % mech_filter = strcmp(collapse_hinge.hinge.direction,'primary') & collapse_hinge.hinge.b_ratio >= 1; ida_table.num_comps(i) = sum(mech_filter); mech_hinges = hinge(mech_filter,:); % For Each accetance criteria listed above for p = 1:length(params) [ num_eles, percent_eles, num_eles_15, max_ele, min_ele, mean_ele, range_ele, std_ele, cov_ele ] = fn_collect_component_data(params{p}, ida_table.collapse(i), ida_table.collapse_direction{i}, mech_hinges); ida_table.(['num_' params{p}])(i) = num_eles; ida_table.(['percent_' params{p}])(i) = percent_eles; ida_table.(['num_' params{p} '_15'])(i) = num_eles_15; ida_table.(['max_' params{p}])(i) = max_ele; ida_table.(['min_' params{p}])(i) = min_ele; ida_table.(['mean_' params{p}])(i) = mean_ele; ida_table.(['range_' params{p}])(i) = range_ele; ida_table.(['std_' params{p}])(i) = std_ele; ida_table.(['cov_' params{p}])(i) = cov_ele; end % % Unacceptable Response % if ida_table.collapse(i) == 1 || ida_table.collapse(i) == 3 || ida_table.num_b_15(i) > 0 % ida_table.UR(i) = 1; % else % ida_table.UR(i) = 0; % end % % % Gravity Load Lost % first_story_elements = element(ismember(element.id, mech_hinges.element_id),:); % hinges_lost_grav = mech_hinges(mech_hinges.b_ratio > 1,:); % elements_lost_grav = element(ismember(element.id, hinges_lost_grav.element_id),:); % grav_load_lost = sum(elements_lost_grav.P_grav); % total_grav_load = sum(first_story_elements.P_grav); % ida_table.gravity_load_lost_ratio(i) = grav_load_lost / total_grav_load; end % Save Tabular Results as CSVs writetable(gm_set_table,[write_dir filesep 'gm_table.csv']) writetable(ida_table,[write_dir filesep 'ida_table.csv']) if exist('missing_ida','var') writetable(struct2table(missing_ida),[write_dir filesep 'idas_missing.csv']) end writetable(failed_convergence,[write_dir filesep 'idas_failed_convergence.csv']) end function [ num_eles, percent_eles, num_eles_15, max_ele, min_ele, mean_ele, range_ele, std_ele, cov_ele ] = fn_collect_component_data(var_name, collapse_flag, collaspe_dir, ele_hinges) ele_ratios = ele_hinges.([var_name '_ratio']); num_eles = 0; num_eles_15 = 0; for e = 1:length(ele_ratios) if (collapse_flag == 3 || collapse_flag == 1) if strcmp(ele_hinges.ele_direction(e),collaspe_dir) num_eles = num_eles + 1; % if collapse this gm, in this direction, set this element to 1 num_eles_15 = num_eles_15 + 1; end elseif ele_ratios(e) >= 1.5 num_eles_15 = num_eles_15 + 1; num_eles = num_eles + 1; elseif ele_ratios(e) >= 1 num_eles = num_eles + 1; end end percent_eles = num_eles / length(ele_ratios); max_ele = max(ele_ratios); min_ele = min(ele_ratios); mean_ele = mean(ele_ratios); range_ele = max_ele - min_ele; std_ele = std(ele_ratios); cov_ele = std_ele/mean_ele; end
github
dustin-cook/Opensees-master
fn_LR_classification.m
.m
Opensees-master/+ida/fn_LR_classification.m
4,345
utf_8
8d9543972142be96cfc4d77f90939f0a
function [ ] = fn_LR_classification(analysis,model,gm_set_table) %UNTITLED2 Summary of this function goes here % Detailed explanation goes here %% Initial Setup % Load Fragility Data read_dir = ['outputs' '/' model.name{1} '/' analysis.proceedure '_' analysis.id '/' 'IDA' '/' 'Fragility Data']; ida_table = readtable([read_dir filesep 'ida_table.csv']); %% Fake new collapse cases above for each ground motion such that LR is balanced (or just take the just before collapse and just after collapse for each) % for gm = 1:height(gm_set_table) % gm_response_no_col = ida_table(strcmp(ida_table.eq_name,gm_set_table.eq_name(gm)) & ida_table.collapse == 0,:); % Sa_jbc = max(gm_response_no_col.sa_x); % ida_table.jbc(strcmp(ida_table.eq_name,gm_set_table.eq_name(gm)) & ida_table.sa_x == Sa_jbc) = 1; % end % filt_ida_table = ida_table(ida_table.jbc == 1 | ida_table.collapse > 0,:); new_ida_table = table; for gm = 1:height(gm_set_table) gm_response = ida_table(strcmp(ida_table.eq_name,gm_set_table.eq_name(gm)),:); gm_response.collapse(end) = 1; no_col_cases = gm_response(gm_response.collapse == 0,:); col_cases = gm_response(gm_response.collapse > 0,:); pt_diff = height(no_col_cases) - height(col_cases); new_cases = col_cases(end,:); sa_orig = gm_response.sa_x(gm_response.scale == 1) new_sa = 0.25*sa_orig + col_cases.sa_x(end); new_cases.sa_x = new_sa; for s = 2:pt_diff new_sa = new_sa + 0.25*sa_orig; new_cases(s,:) = col_cases(end,:); new_cases.sa_x(s) = new_sa; end new_ida_table = [new_ida_table;no_col_cases;col_cases;new_cases]; end %% For each component metric, quantify comparison logistic regression % Collapse attrs = {'sa_x', 'max_drift', 'drift_x', 'drift_z', 'gravity_load_lost_ratio','gravity_load_lost_ratio_alt','total_energy_ft_lbs','norm_energy_max','norm_energy_tot',... 'num_adjacent_failure_any','num_adjacent_failure_any_frame','num_adjacent_failure_all', 'cols_walls_1_num_cp', 'cols_walls_1_percent_cp',... 'cols_walls_1_max_cp','cols_walls_1_min_cp','cols_walls_1_mean_cp','cols_walls_1_range_cp','cols_walls_1_std_cp','cols_walls_1_cov_cp',... 'cols_walls_1_num_b_e','cols_walls_1_percent_b_e','cols_walls_1_max_b_e','cols_walls_1_mean_b_e'}; for a = 1:length(attrs) plot_dir = ['outputs' '/' model.name{1} '/' analysis.proceedure '_' analysis.id '/' 'IDA' '/' 'ML Plots' '/' 'Collapse']; [LR.collapse.(attrs{a})] = fn_logistic_regression(max(new_ida_table.(attrs{a}),1e-6), min(new_ida_table.collapse,1), plot_dir, attrs{a}); end % Save Logistic Regression Fits save([read_dir filesep 'LR_data.mat'],'LR') end function [metrics] = fn_logistic_regression(max_component_response, collapse_target, plot_dir, x_label) import plotting_tools.fn_format_and_save_plot %% Logistic Regression B = mnrfit(log(max_component_response),categorical(~collapse_target)); % B = glmfit(log(ida_table_full.sa_x),collapse_target,'binomial','link','probit'); z_val = B(1) + log(max_component_response)*B(2); prob_val = 1 ./ (1+exp(-z_val)); metrics.LR_value_coef = B(1); metrics.LR_correlation_coef = B(2); metrics.LR_threshold_response_ratio = -B(1)/B(2); metrics.LR_prob_consequece_given_component = 1 / (1+exp(-(B(1) + 1*B(2)))); prediction = zeros(length(collapse_target),1); prediction(prob_val > 0.5) = 1; metrics.LR_accuracy = sum(collapse_target == prediction)/length(collapse_target); TP = sum(and(prediction,collapse_target)); TN = sum(and(~prediction,~collapse_target)); FP = sum(and(prediction,~collapse_target)); FN = sum(and(~prediction,collapse_target)); metrics.LR_precision = TP / (TP+FP); metrics.LR_recall = TP / (FN+TP); metrics.LR_F1 = 2*metrics.LR_precision*metrics.LR_recall / (metrics.LR_precision + metrics.LR_recall); max_val = max(max_component_response)*1.1; x_points = linspace(min(max_component_response),max_val,1000); z_predict = B(1) + log(x_points)*B(2); prob_predict = 1 ./ (1+exp(-z_predict)); hold on scatter(max_component_response,collapse_target,'DisplayName','Recorded Collapse') plot(x_points,prob_predict,'DisplayName','Predicted Collapse') xlabel(strrep(x_label,'_',' ')) ylabel('Probability of Collapse') xlim([0,max_val]) fn_format_and_save_plot( plot_dir, x_label, 3, 1 ) % Change Metrics to table for outputs metrics = struct2table(metrics); end
github
dustin-cook/Opensees-master
fn_create_fragilities.m
.m
Opensees-master/+ida/fn_create_fragilities.m
20,396
utf_8
4a3ced77909b5d5079c9ae7ba7388c7a
function [ ] = fn_create_fragilities(analysis, write_dir) %UNTITLED Summary of this function goes here % Detailed explanation goes here %% Initial Setup % Import packages import plotting_tools.* % Defined fixed parames % params = {'b','e','b_e','io','ls','cp','euro_th_NC','euro_th_SD','euro_th_DL'}; % mechs = { 'cols_1', 'walls_1', 'cols_walls_1'}; if analysis.run_z_motion attrs = {'sa_geo', 'max_drift', 'drift_x', 'drift_z', 'gravity_dcr', 'lat_cap_ratio_any', 'lat_cap_ratio_both', 'lat_cap_ratio_max', ... 'num_cp', 'percent_cp','max_cp','min_cp','mean_cp','range_cp','std_cp','cov_cp',... 'num_b','percent_b','min_b','max_b','mean_b', 'num_full_col_fails',... 'num_e','percent_e','min_e','max_e','mean_e'}; params = {'b','e','io','ls','cp'}; else attrs = {'sa_geo', 'max_drift', 'drift_x', 'gravity_dcr', 'lat_cap_ratio_any', 'lat_cap_ratio_both', 'lat_cap_ratio_max', ... 'num_cp', 'percent_cp','max_cp','min_cp','mean_cp','range_cp','std_cp','cov_cp',... 'num_b','percent_b','min_b','max_b','mean_b', 'num_full_col_fails'}; params = {'b','io','ls','cp'}; end frag_probs = [10 25 50 75 100]; %% Collect info for each ground motion (new fragilities) ida_table = readtable([write_dir filesep 'ida_table.csv']); gm_table = readtable([write_dir filesep 'gm_table.csv']); gm_data.collapse = table; gm_data.collapse_2 = table; gm_data.gravity = table; gm_data.collapse_x = table; gm_data.collapse_2_x = table; if analysis.run_z_motion gm_data.collapse_z = table; gm_data.collapse_2_z = table; end for gm = 1:height(gm_table) gm_response = ida_table(strcmp(ida_table.eq_name,gm_table.eq_name(gm)),:); if ~isempty(gm_response) gm_response_no_col = ida_table(strcmp(ida_table.eq_name,gm_table.eq_name(gm)) & ida_table.collapse == 0,:); gm_response_no_col.collapse(gm_response_no_col.sa_geo == max(gm_response_no_col.sa_geo)) = 1; % Flag just before collapse point jbc = gm_response_no_col; % Just Before Collapse gm_data.collapse.eq_name{gm} = gm_table.eq_name{gm}; gm_data.collapse_x.eq_name{gm} = gm_table.eq_name{gm}; if analysis.run_z_motion gm_data.collapse_z.eq_name{gm} = gm_table.eq_name{gm}; end for a = 1:length(attrs) gm_data.collapse.(attrs{a})(gm) = min(jbc.(attrs{a})(jbc.collapse == 1)); if strcmp(gm_table.collapse_dir{gm},'x') gm_data.collapse_x.(attrs{a})(gm) = min(jbc.(attrs{a})(jbc.collapse == 1)); if analysis.run_z_motion gm_data.collapse_z.(attrs{a})(gm) = NaN; end elseif strcmp(gm_table.collapse_dir{gm},'z') gm_data.collapse_x.(attrs{a})(gm) = NaN; gm_data.collapse_z.(attrs{a})(gm) = min(jbc.(attrs{a})(jbc.collapse == 1)); end end % Post Process Collapse pp_collapse = jbc; pp_collapse.collapse(pp_collapse.max_drift >= 0.06) = 1; pp_collapse.collapse(pp_collapse.gravity_dcr >= 1) = 1; gm_data.collapse_2.eq_name{gm} = gm_table.eq_name{gm}; gm_data.collapse_2_x.eq_name{gm} = gm_table.eq_name{gm}; if analysis.run_z_motion gm_data.collapse_2_z.eq_name{gm} = gm_table.eq_name{gm}; end for a = 1:length(attrs) gm_data.collapse_2.(attrs{a})(gm) = min(pp_collapse.(attrs{a})(pp_collapse.collapse == 1)); if strcmp(gm_table.collapse_dir{gm},'x') gm_data.collapse_2_x.(attrs{a})(gm) = min(pp_collapse.(attrs{a})(pp_collapse.collapse == 1)); if analysis.run_z_motion gm_data.collapse_2_z.(attrs{a})(gm) = NaN; end elseif strcmp(gm_table.collapse_dir{gm},'z') gm_data.collapse_2_x.(attrs{a})(gm) = NaN; gm_data.collapse_2_z.(attrs{a})(gm) = min(pp_collapse.(attrs{a})(pp_collapse.collapse == 1)); end end % % Full Gravity Exceedance % gm_data.full_gravity.eq_name{gm} = gm_set_table.eq_name{gm}; % for a = 1:length(attrs) % gm_data.full_gravity.(attrs{a})(gm) = min(jbc.(attrs{a})(jbc.gravity_dcr >= 1)); % end end end % Save Tabular Results as CSVs save([write_dir filesep 'gm_data.mat'],'gm_data') %% Create Fragility Curves based on Baker MLE (New Fragilities) % collape and unnacceptable response field_names = fieldnames(gm_data); for i = 1:length(field_names) fld = field_names{i}; for j = 2:width(gm_data.(fld)) var_name = gm_data.(fld).Properties.VariableNames{j}; [new_frag_curves.(fld).(var_name)] = fn_fit_fragility_MOM(gm_data.(fld).(var_name)); end end % Save Frag Curve Data save([write_dir filesep 'new_frag_curves.mat'],'new_frag_curves') %% Collect info for each ground motion (traditional fragilities) for gm = 1:height(gm_table) gm_response = ida_table(strcmp(ida_table.eq_name,gm_table.eq_name(gm)),:); gm_table.sa_collapse(gm) = max([min(gm_response.sa_geo(gm_response.collapse > 0)),NaN]); gm_table.sa_collapse_drift(gm) = max([min(gm_response.sa_geo(gm_response.collapse == 1)),NaN]); gm_table.sa_collapse_drift_6(gm) = max([min(gm_response.sa_geo(gm_response.max_drift >= 0.06)),NaN]); gm_table.sa_collapse_grav(gm) = max([min(gm_response.sa_geo(gm_response.gravity_dcr >= 1)),NaN]); gm_table.sa_collapse_2(gm) = max([min(gm_response.sa_geo(gm_response.collapse > 0 | gm_response.max_drift >= 0.06 | gm_response.gravity_dcr > 1)),NaN]); gm_table.sa_collapse_x(gm) = max([min(gm_response.sa_geo(gm_response.collapse_x > 0)),NaN]); gm_table.sa_collapse_2_x(gm) = max([min(gm_response.sa_geo(gm_response.collapse_x > 0 | gm_response.drift_x >= 0.06 | gm_response.gravity_dcr > 1)),NaN]); gm_table.sa_collapse_convergence(gm) = max([min(gm_response.sa_geo(gm_response.collapse == 3)),NaN]); gm_table.sa_UR_accept_15(gm) = max([min(gm_response.sa_geo(gm_response.num_b_15 > 0)),NaN]); gm_table.sa_UR(gm) = max([min(gm_response.sa_geo(gm_response.collapse == 1 | gm_response.collapse == 3 | gm_response.num_b_15 > 0)),NaN]); if analysis.run_z_motion gm_table.sa_collapse_z(gm) = max([min(gm_response.sa_geo(gm_response.collapse_z > 0)),NaN]); gm_table.sa_collapse_2_z(gm) = max([min(gm_response.sa_geo(gm_response.collapse_z > 0 | gm_response.drift_z >= 0.06 | gm_response.gravity_dcr > 1)),NaN]); end % 1% to 10% drift fragilities for d = 1:10 gm_table.(['sa_drift_' num2str(d)])(gm) = max([min(gm_response.sa_geo(gm_response.max_drift >= d/100)),NaN]); if analysis.run_z_motion gm_table.(['sa_drift_x_' num2str(d)])(gm) = max([min(gm_response.sa_geo(gm_response.drift_x >= d/100)),NaN]); gm_table.(['sa_drift_z_' num2str(d)])(gm) = max([min(gm_response.sa_geo(gm_response.drift_z >= d/100)),NaN]); end end % drift limit at mean rotation capacity gm_table.sa_drift_mean_rot(gm) = max([min(gm_response.sa_geo(gm_response.max_drift >= gm_response.mean_rot_cap(1))),NaN]); gm_table.sa_drift_mean_rot_grav(gm) = max([min(gm_response.sa_geo(gm_response.max_drift >= gm_response.mean_rot_cap_grav(1))),NaN]); gm_table.sa_drift_mean_rot_grav_min(gm) = max([min(gm_response.sa_geo(gm_response.max_drift >= gm_response.mean_rot_cap_grav_min(1))),NaN]); % grav load dcr for f = 1:10 gm_table.(['sa_gravity_dcr_' num2str(f*10)])(gm) = max([min(gm_response.sa_geo(gm_response.gravity_dcr >= f/10)),NaN]); end % lateral cap remaining for f = 1:9 gm_table.(['sa_lat_cap_any_' num2str(f*10)])(gm) = max([min(gm_response.sa_geo(gm_response.lat_cap_ratio_any < f/10)),NaN]); gm_table.(['sa_lat_cap_both_' num2str(f*10)])(gm) = max([min(gm_response.sa_geo(gm_response.lat_cap_ratio_both < f/10)),NaN]); gm_table.(['sa_lat_cap_max_' num2str(f*10)])(gm) = max([min(gm_response.sa_geo(gm_response.lat_cap_ratio_max < f/10)),NaN]); end % % adjacent components % gm_set_table.sa_adjacent_component_any(gm) = max([min(gm_response.sa_geo(gm_response.adjacent_failure_any == 1)),NaN]); % gm_set_table.sa_adjacent_component_any_frame(gm) = max([min(gm_response.sa_geo(gm_response.adjacent_failure_any_frame == 1)),NaN]); % gm_set_table.sa_adjacent_component_all(gm) = max([min(gm_response.sa_geo(gm_response.adjacent_failure_all == 1)),NaN]); % % % Energy % gm_table.collapse_energy(gm) = max([min(gm_response.total_energy_ft_lbs(gm_response.collapse == 1)),NaN]); % for f = 1:length(frag_probs) % gm_table.(['sa_collapse_energy_percent_' num2str(frag_probs(f))])(gm) = max([min(gm_response.sa_geo(gm_response.total_energy_ft_lbs/gm_table.collapse_energy(gm) >= frag_probs(f)/100)),NaN]); % end % non directional component fragilities for p = 1:length(params) gm_table.(['sa_first_' params{p}])(gm) = max([min(gm_response.sa_geo(gm_response.(['num_' params{p}]) > 0)),NaN]); if any(strcmp(gm_response.collapse_direction,'x')) gm_table.(['sa_first_' params{p} '_x'])(gm) = max([min(gm_response.sa_geo(gm_response.(['num_' params{p}]) > 0)),NaN]); if analysis.run_z_motion gm_table.(['sa_first_' params{p} '_z'])(gm) = NaN; end elseif any(strcmp(gm_response.collapse_direction,'z')) gm_table.(['sa_first_' params{p} '_x'])(gm) = NaN; gm_table.(['sa_first_' params{p} '_z'])(gm) = max([min(gm_response.sa_geo(gm_response.(['num_' params{p}]) > 0)),NaN]); end for pr = 1:length(frag_probs) gm_table.(['sa_' num2str(frag_probs(pr)) '_percent_' params{p}])(gm) = max([min(gm_response.sa_geo(gm_response.(['percent_' params{p}]) >= frag_probs(pr)/100)),NaN]); if any(strcmp(gm_response.collapse_direction,'x')) gm_table.(['sa_' num2str(frag_probs(pr)) '_percent_' params{p} '_x'])(gm) = max([min(gm_response.sa_geo(gm_response.(['percent_' params{p}]) >= frag_probs(pr)/100)),NaN]); if analysis.run_z_motion gm_table.(['sa_' num2str(frag_probs(pr)) '_percent_' params{p} '_z'])(gm) = NaN; end elseif any(strcmp(gm_response.collapse_direction,'z')) gm_table.(['sa_' num2str(frag_probs(pr)) '_percent_' params{p} '_x'])(gm) = NaN; gm_table.(['sa_' num2str(frag_probs(pr)) '_percent_' params{p} '_z'])(gm) = max([min(gm_response.sa_geo(gm_response.(['percent_' params{p}]) >= frag_probs(pr)/100)),NaN]); end end end % % X direction Curves % gm_set_table.sa_collapse_x(gm) = max([min(gm_response.sa_geo(strcmp(gm_response.collapse_direction,'x'))),NaN]); % for p = 1:length(params) % if any(strcmp(gm_response.collapse_direction,'x')) % gm_set_table.(['sa_cols_1_first_' params{p}])(gm) = max([min(gm_response.sa_geo(gm_response.(['cols_1_num_' params{p}]) > 0)),NaN]); % else % gm_set_table.(['sa_cols_1_first_' params{p}])(gm) = NaN; % end % for pr = 1:length(frag_probs) % if any(strcmp(gm_response.collapse_direction,'x')) % gm_set_table.(['sa_cols_1_' num2str(frag_probs(pr)) '_percent_' params{p}])(gm) = max([min(gm_response.sa_geo(gm_response.(['cols_1_percent_' params{p}]) >= frag_probs(pr)/100)),NaN]); % else % gm_set_table.(['sa_cols_1_' num2str(frag_probs(pr)) '_percent_' params{p}])(gm) = NaN; % end % end % end % % % % Z direction curves % if analysis.run_z_motion % gm_set_table.sa_collapse_z(gm) = max([min(gm_response.sa_geo(strcmp(gm_response.collapse_direction,'z'))),NaN]); % for p = 1:length(params) % gm_set_table.(['sa_walls_1_first_' params{p}])(gm) = max([min(gm_response.sa_geo(gm_response.(['walls_1_num_' params{p}]) > 0)),NaN]); % for pr = 1:length(frag_probs) % gm_set_table.(['sa_walls_1_' num2str(frag_probs(pr)) '_percent_' params{p}])(gm) = max([min(gm_response.sa_geo(gm_response.(['walls_1_percent_' params{p}]) >= frag_probs(pr)/100)),NaN]); % end % end % end end % Save Tabular Results as CSVs writetable(gm_table,[write_dir filesep 'gm_table.csv']) %% Create Fragility Curves based on Baker MLE (traditional Fragilities) % collape and unnacceptable response [frag_curves.collapse] = fn_fit_fragility_MOM(gm_table.sa_collapse); [frag_curves.collapse_drift] = fn_fit_fragility_MOM(gm_table.sa_collapse_drift); [frag_curves.collapse_drift_6] = fn_fit_fragility_MOM(gm_table.sa_collapse_drift_6); [frag_curves.collapse_grav] = fn_fit_fragility_MOM(gm_table.sa_collapse_grav); [frag_curves.collapse_2] = fn_fit_fragility_MOM(gm_table.sa_collapse_2); [frag_curves.collapse_x] = fn_fit_fragility_MOM(gm_table.sa_collapse_x); [frag_curves.collapse_2_x] = fn_fit_fragility_MOM(gm_table.sa_collapse_2_x); [frag_curves.collapse_convergence] = fn_fit_fragility_MOM(gm_table.sa_collapse_convergence); [frag_curves.UR_accept_15] = fn_fit_fragility_MOM(gm_table.sa_UR_accept_15); [frag_curves.UR] = fn_fit_fragility_MOM(gm_table.sa_UR); if analysis.run_z_motion [frag_curves.collapse_z] = fn_fit_fragility_MOM(gm_table.sa_collapse_z); [frag_curves.collapse_2_z] = fn_fit_fragility_MOM(gm_table.sa_collapse_2_z); end % non directional component fragilities for p = 1:length(params) [frag_curves.(params{p})] = fn_multi_frag_curves(gm_table, params{p}, '', frag_probs, ida_table.num_comps(1)); if analysis.run_z_motion [frag_curves.([params{p} '_x'])] = fn_multi_frag_curves(gm_table, params{p}, '_x', frag_probs, ida_table.num_comps(1)); [frag_curves.([params{p} '_z'])] = fn_multi_frag_curves(gm_table, params{p}, '_z', frag_probs, ida_table.num_comps(1)); end end % 1% to 5% drift fragilities for d = 1:10 [frag_curves.drift.(['idr_' num2str(d)])] = fn_fit_fragility_MOM(gm_table.(['sa_drift_' num2str(d)])); if analysis.run_z_motion [frag_curves.drift.(['idr_x_' num2str(d)])] = fn_fit_fragility_MOM(gm_table.(['sa_drift_x_' num2str(d)])); [frag_curves.drift.(['idr_z_' num2str(d)])] = fn_fit_fragility_MOM(gm_table.(['sa_drift_z_' num2str(d)])); end end % Drift limit at mean deformation capacity [frag_curves.drift.idr_mean_rot] = fn_fit_fragility_MOM(gm_table.sa_drift_mean_rot); [frag_curves.drift.idr_mean_rot_grav] = fn_fit_fragility_MOM(gm_table.sa_drift_mean_rot_grav); [frag_curves.drift.idr_mean_rot_grav_min] = fn_fit_fragility_MOM(gm_table.sa_drift_mean_rot_grav_min); % grav dcr for f = 1:10 [frag_curves.gravity.(['dcr_' num2str(f*10)])] = fn_fit_fragility_MOM(gm_table.(['sa_gravity_dcr_' num2str(f*10)])); end % lat cap for f = 1:9 [frag_curves.lateral.(['cap_any_' num2str(f*10)])] = fn_fit_fragility_MOM(gm_table.(['sa_lat_cap_any_' num2str(f*10)])); [frag_curves.lateral.(['cap_both_' num2str(f*10)])] = fn_fit_fragility_MOM(gm_table.(['sa_lat_cap_both_' num2str(f*10)])); [frag_curves.lateral.(['cap_max_' num2str(f*10)])] = fn_fit_fragility_MOM(gm_table.(['sa_lat_cap_max_' num2str(f*10)])); end % % adjacent components % [frag_curves.adjacent_comp.any] = fn_fit_fragility_MOM(gm_set_table.sa_adjacent_component_any); % [frag_curves.adjacent_comp.any_frame] = fn_fit_fragility_MOM(gm_set_table.sa_adjacent_component_any_frame); % [frag_curves.adjacent_comp.all] = fn_fit_fragility_MOM(gm_set_table.sa_adjacent_component_all); % % Collapse Energy % for f = 1:length(frag_probs) % [frag_curves.energy.(['percent_collapse_' num2str(frag_probs(f))])] = fn_fit_fragility_MOM(gm_table.(['sa_collapse_energy_percent_' num2str(frag_probs(f))])); % end % % X direction Curves % [frag_curves.ew_collapse] = fn_fit_fragility_MOM(gm_set_table.sa_collapse_x); % for p = 1:length(params) % [frag_curves.cols_1.(params{p})] = fn_multi_frag_curves(gm_set_table, 'cols_1', params{p}, frag_probs, ida_table.num_comps_cols_1(1)); % end % % % Z direction curves % if analysis.run_z_motion % [frag_curves.ns_collapse] = fn_fit_fragility_MOM(gm_set_table.sa_collapse_z); % for p = 1:length(params) % [frag_curves.walls_1.(params{p})] = fn_multi_frag_curves(gm_set_table, 'walls_1', params{p}, frag_probs, ida_table.num_comps_walls_1(1)); % end % end % Save Frag Curve Data save([write_dir filesep 'frag_curves.mat'],'frag_curves') % Write outputs summary file outputs.med_sa_collapse = frag_curves.collapse.theta; outputs.med_sa_collapse_grav = frag_curves.collapse_2.theta; outputs.med_sa_cp = frag_curves.cp.theta(1); outputs.med_sa_cp_10 = frag_curves.cp.theta(frag_curves.cp.prct_mech == 0.1); outputs.med_sa_cp_25 = frag_curves.cp.theta(find(frag_curves.cp.prct_mech == 0.25,1,'first')); outputs.med_sa_cp_50 = frag_curves.cp.theta(find(frag_curves.cp.prct_mech == 0.5,1,'first')); outputs.med_sa_cp_75 = frag_curves.cp.theta(find(frag_curves.cp.prct_mech == 0.75,1,'first')); outputs.med_sa_b = frag_curves.b.theta(1); outputs.collapse_margin = outputs.med_sa_collapse/outputs.med_sa_cp; outputs.collapse_margin_grav = outputs.med_sa_collapse_grav/outputs.med_sa_cp; outputs.collapse_margin_grav_b = outputs.med_sa_collapse_grav/outputs.med_sa_b; outputs.num_comps = median(gm_data.collapse_2.num_cp); outputs.percent_comps = median(gm_data.collapse_2.percent_cp); outputs.num_full_col_fails = median(gm_data.collapse_2.num_full_col_fails); outputs.drift = new_frag_curves.collapse_2.drift_x.theta; outputs.med_sa_drift_2 = frag_curves.drift.idr_2.theta; outputs.med_sa_drift_3 = frag_curves.drift.idr_3.theta; outputs.med_sa_drift_4 = frag_curves.drift.idr_4.theta; outputs.gravity_dcr = median(gm_data.collapse_2.gravity_dcr); outputs.lat_cap_any = median(gm_data.collapse_2.lat_cap_ratio_any); outputs.lat_cap_both = median(gm_data.collapse_2.lat_cap_ratio_both); outputs.lat_cap_max = median(gm_data.collapse_2.lat_cap_ratio_max); outputs.med_sa_lat_50 = frag_curves.lateral.cap_both_50.theta; outputs.med_sa_lat_60 = frag_curves.lateral.cap_both_60.theta; outputs.med_sa_lat_70 = frag_curves.lateral.cap_both_70.theta; outputs.med_sa_lat_80 = frag_curves.lateral.cap_both_80.theta; outputs.med_sa_lat_90 = frag_curves.lateral.cap_both_90.theta; outputs.med_sa_grav_30 = frag_curves.gravity.dcr_30.theta; outputs.med_sa_grav_40 = frag_curves.gravity.dcr_40.theta; outputs.med_sa_grav_50 = frag_curves.gravity.dcr_50.theta; outputs.med_sa_grav_60 = frag_curves.gravity.dcr_60.theta; outputs.med_sa_grav_70 = frag_curves.gravity.dcr_70.theta; outputs.med_sa_grav_80 = frag_curves.gravity.dcr_80.theta; outputs.med_sa_drift_mean = frag_curves.drift.idr_mean_rot.theta; outputs.med_sa_drift_mean_grav = frag_curves.drift.idr_mean_rot_grav.theta; outputs.med_sa_drift_mean_grav_min = frag_curves.drift.idr_mean_rot_grav_min.theta; if analysis.run_z_motion outputs.med_sa_collapse_x = frag_curves.collapse_x.theta; outputs.med_sa_collapse_z = frag_curves.collapse_z.theta; outputs.med_sa_collapse_grav_x = frag_curves.collapse_2_x.theta; outputs.med_sa_collapse_grav_z = frag_curves.collapse_2_z.theta; outputs.med_sa_cp_x = frag_curves.cp_x.theta(1); outputs.med_sa_cp_z = frag_curves.cp_z.theta(1); end writetable(struct2table(outputs),[write_dir filesep 'summary_outputs.csv']) end function [params] = fn_fit_fragility_MOM(limit_state_dist) limit_state_dist(isnan(limit_state_dist)) = []; limit_state_dist(limit_state_dist <= 0) = 1e-6; if ~isempty(limit_state_dist) [pHat, ~] = lognfit(limit_state_dist); params.theta = exp(pHat(1)); params.beta = pHat(2); else params.theta = NaN; params.beta = NaN; end end function [frag_curves] = fn_multi_frag_curves(gm_set_table, param, dir, frag_probs, num_comp_mech) frag_curves = table; frag_curves.num_comp(1) = 1; frag_curves.prct_mech(1) = round(1/num_comp_mech,3); [fits] = fn_fit_fragility_MOM(gm_set_table.(['sa_' 'first_' param dir])); frag_curves.theta(1) = fits.theta; frag_curves.beta(1) = fits.beta; for pr = 1:length(frag_probs) frag_curves.num_comp(pr+1) = ceil(num_comp_mech*frag_probs(pr)/100); frag_curves.prct_mech(pr+1) = frag_probs(pr)/100; [fits] = fn_fit_fragility_MOM(gm_set_table.(['sa_' num2str(frag_probs(pr)) '_percent_' param dir])); frag_curves.theta(pr+1) = fits.theta; frag_curves.beta(pr+1) = fits.beta; end end
github
dustin-cook/Opensees-master
fn_plot_element_scatter.m
.m
Opensees-master/+plotting_tools/fn_plot_element_scatter.m
17,661
utf_8
a1b10c01814b77664a7808663903e84d
function [ ] = fn_plot_element_scatter( element, ele_type, story, hinge, write_dir ) % Description: Fn to create scatter plots of hinge acceptance results % Created By: Dustin Cook % Date Created: 3/11/2019 % Inputs: % Outputs: % Assumptions: %% Initial Setup % Define Plot Dir plot_dir = [write_dir filesep 'Scatter Plots']; %% Begin Method for s = 1:height(story) story_id = story.id(s); ele_story = element(element.story == story_id,:); % Elements of one type ele = ele_story(strcmp(ele_story.type,ele_type),:); ele2use = ele(ele.length >= 89,:); % Omit the nubs on the end of the frame (improve the way I am doing this) hins = hinge(ismember(hinge.element_id,ele2use.id),:); % Primary Direction prim_hin = hins(strcmp(hins.direction,'primary'),:); if ~isempty(prim_hin) side_1 = prim_hin(prim_hin.ele_side == 1,:); side_2 = prim_hin(prim_hin.ele_side == 2,:); if strcmp(ele_type,'wall') if any(strcmp('d_ratio',side_1.Properties.VariableNames)) plot_name = ['d ratio - Primary - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'd_ratio', 'Max(\Delta)/"d"', ele_type ) end else % a ratio if any(strcmp('a_ratio',side_1.Properties.VariableNames)) plot_name = ['a ratio - Primary - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'a_ratio', 'Max(\theta)/"a"', ele_type ) plot_name = ['a ratio - Primary - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'a_ratio', 'Max(\theta)/"a"', ele_type ) end % b ratio if any(strcmp('b_ratio',side_1.Properties.VariableNames)) plot_name = ['b ratio - Primary - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'b_ratio', 'Max(\theta)/"b"', ele_type ) plot_name = ['b ratio - Primary - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'b_ratio', 'Max(\theta)/"b"', ele_type ) end end % V ratio plot_name = ['V ratio - Primary - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'V_ratio', 'Max(V)/Vn', ele_type ) if ~strcmp(ele_type,'wall') plot_name = ['V ratio - Primary - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'V_ratio', 'Max(V)/Vn', ele_type ) end % M ratio if any(strcmp('M_ratio_pos',side_1.Properties.VariableNames)) plot_name = ['M ratio - Primary - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'M_ratio_pos', 'Max(M)/Mn', ele_type ) if ~strcmp(ele_type,'wall') plot_name = ['M ratio - Primary - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'M_ratio_pos', 'Max(M)/Mn', ele_type ) end end if any(strcmp('M_ratio',side_1.Properties.VariableNames)) plot_name = ['M ratio - Primary - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'M_ratio', 'Max(M)/Mn', ele_type ) if ~strcmp(ele_type,'wall') plot_name = ['M ratio - Primary - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'M_ratio', 'Max(M)/Mn', ele_type ) end end % Linear DCRs if any(strcmp('V_ratio_mod',side_1.Properties.VariableNames)) % Modified Demands plot_name = ['V ratio mod - Primary - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'V_ratio_mod', 'Max(V)/V_n', ele_type ) plot_name = ['V ratio mod - Primary - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'V_ratio_mod', 'Max(V)/V_n', ele_type ) plot_name = ['M ratio mod - Primary - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'M_ratio_mod', 'Max(M)/M_n', ele_type ) plot_name = ['M ratio mod - Primary - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'M_ratio_mod', 'Max(M)/M_n', ele_type ) % Acceptance DCRs plot_name = ['DCR V Accept CP - Primary - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'V_ratio_accept_cp', 'Max(V)/V_n', ele_type ) plot_name = ['DCR V Accept CP - Primary - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'V_ratio_accept_cp', 'Max(V)/V_n', ele_type ) plot_name = ['DCR M Accept CP - Primary - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'M_ratio_accept_cp', 'Max(M)/M_n', ele_type ) plot_name = ['DCR M Accept CP - Primary - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'M_ratio_accept_cp', 'Max(M)/M_n', ele_type ) plot_name = ['DCR P Accept CP - Primary - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'P_ratio_accept_cp', 'Max(P)/M_n', ele_type ) plot_name = ['DCR P Accept CP - Primary - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'P_ratio_accept_cp', 'Max(P)/M_n', ele_type ) end end % OOP Direction oop_hin = hins(strcmp(hins.direction,'oop'),:); if ~isempty(oop_hin) side_1 = oop_hin(oop_hin.ele_side == 1,:); side_2 = oop_hin(oop_hin.ele_side == 2,:); if strcmp(ele_type,'wall') % a ratio plot_name = ['a ratio - OOP - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'a_ratio', 'Max(\theta)/"a"', ele_type ) % b ratio plot_name = ['b ratio - OOP - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'b_ratio', 'Max(\theta)/"b"', ele_type ) % V ratio plot_name = ['V ratio - OOP - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'V_ratio', 'Max(V)/Vn', ele_type ) % M ratio plot_name = ['M ratio - OOP - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'M_ratio_pos', 'Max(M)/Mn', ele_type ) else % a ratio plot_name = ['a ratio - OOP - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'a_ratio', 'Max(\theta)/"a"', ele_type ) plot_name = ['a ratio - OOP - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'a_ratio', 'Max(\theta)/"a"', ele_type ) % b ratio plot_name = ['b ratio - OOP - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'b_ratio', 'Max(\theta)/"b"', ele_type ) plot_name = ['b ratio - OOP - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'b_ratio', 'Max(\theta)/"b"', ele_type ) % V ratio plot_name = ['V ratio - OOP - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'V_ratio', 'Max(V)/Vn', ele_type ) plot_name = ['V ratio - OOP - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'V_ratio', 'Max(V)/Vn', ele_type ) % M ratio plot_name = ['M ratio - OOP - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'M_ratio_pos', 'Max(M)/Mn', ele_type ) plot_name = ['M ratio - OOP - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'M_ratio_pos', 'Max(M)/Mn', ele_type ) end end % SRSS Direction srss_hin = hins(strcmp(hins.direction,'primary'),:); srss_hin_oop = hins(strcmp(hins.direction,'oop'),:); if ~isempty(srss_hin) && ~isempty(srss_hin_oop) plot_name = ['SRSS - ' 'Story - ' num2str(story_id) ' - ' ele_type]; srss_hin.a_ratio = sqrt(srss_hin.a_ratio.^2 + srss_hin_oop.a_ratio.^2); srss_hin.b_ratio = sqrt(srss_hin.b_ratio.^2 + srss_hin_oop.b_ratio.^2); srss_hin.V_ratio = sqrt(srss_hin.V_ratio.^2 + srss_hin_oop.V_ratio.^2); clear srss_names [srss_names{1:height(srss_hin)}] = deal('SRSS'); srss_hin.direction = srss_names'; side_1 = srss_hin(srss_hin.ele_side == 1,:); side_2 = srss_hin(srss_hin.ele_side == 2,:); if strcmp(ele_type,'wall') % V ratio plot_name = ['V ratio - OOP - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'V_ratio', 'Max(V)/Vn', ele_type ) else % a ratio plot_name = ['a ratio - SRSS - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'a_ratio', 'Max(\theta)/"a"', ele_type ) plot_name = ['a ratio - SRSS - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'a_ratio', 'Max(\theta)/"a"', ele_type ) % b ratio plot_name = ['b ratio - SRSS - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'b_ratio', 'Max(\theta)/"b"', ele_type ) plot_name = ['b ratio - SRSS - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'b_ratio', 'Max(\theta)/"b"', ele_type ) % V ratio plot_name = ['V ratio - SRSS - Side 1 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_1, plot_dir, plot_name, 'V_ratio', 'Max(V)/Vn', ele_type ) plot_name = ['V ratio - SRSS - Side 2 - Story - ' num2str(story_id) ' - ' ele_type]; fn_plot_results_scatter( side_2, plot_dir, plot_name, 'V_ratio', 'Max(V)/Vn', ele_type ) end end end function [ ] = fn_plot_results_scatter( data, plot_dir, plot_name, target, y_lab, ele_type ) %UNTITLED2 Summary of this function goes here % Detailed explanation goes here % Import Packages import plotting_tools.fn_format_and_save_plot % Matlab colors matlab_colors = [0, 0.4470, 0.7410; 0.8500, 0.3250, 0.0980; 0.9290, 0.6940, 0.1250; 0.4940, 0.1840, 0.5560; 0.4660, 0.6740, 0.1880; 0.3010, 0.7450, 0.9330; 0.6350, 0.0780, 0.1840]; if strcmp(data.direction(1),'SRSS') plt_color = [0 0 0]; elseif strcmp(data.direction(1),'primary') if strcmp(data.ele_direction(1),'x') plt_color = matlab_colors(2,:); elseif strcmp(data.ele_direction(1),'z') plt_color = matlab_colors(1,:); end elseif strcmp(data.direction(1),'oop') if strcmp(data.ele_direction(1),'x') plt_color = matlab_colors(1,:); elseif strcmp(data.ele_direction(1),'z') plt_color = matlab_colors(2,:); end end ele_nums = 1:height(data); % Plot Scatter hold on plot([0.5,height(data)+0.5],[1,1],'--k') scatter(ele_nums(data.damage_recorded >= 2),data.(target)(data.damage_recorded >= 2), 50, plt_color, 's', 'filled' ) scatter(ele_nums(data.damage_recorded <= 1),data.(target)(data.damage_recorded <= 1), 50, plt_color, 's' ) ylabel(y_lab) xlim([0.5,height(data)+0.5]) ylim([0, inf]) xlabel([ele_type ' #']) box on set(gcf,'position',[200, 500, 350, 300]); fn_format_and_save_plot( plot_dir, plot_name, 0 ) % % B or E Ratio % subplot(3,1,2) % hold on % plot([0.5,height(data)+height(side_2)+0.5],[1,1],'--k') % if strcmp(ele_type,'wall') && strcmp(direction,'primary') % scatter(ele_nums(data.damage_recorded == 3),data.e_ratio(data.damage_recorded == 3), 'o', 'filled', 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'r' ) % scatter(ele_nums(data.damage_recorded == 2),data.e_ratio(data.damage_recorded == 2), 'o', 'filled', 'MarkerEdgeColor', [1 0.5 0], 'MarkerFaceColor', [1 0.5 0] ) % scatter(ele_nums(data.damage_recorded == 1),data.e_ratio(data.damage_recorded == 1), 'o', 'filled', 'MarkerEdgeColor', 'c', 'MarkerFaceColor', 'c' ) % scatter(ele_nums(data.damage_recorded == 0),data.e_ratio(data.damage_recorded == 0), 'o', 'filled', 'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'b' ) % scatter(side_2_id(side_2.damage_recorded == 3),side_2.e_ratio(side_2.damage_recorded == 3), 'd', 'filled', 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'r' ) % scatter(side_2_id(side_2.damage_recorded == 2),side_2.e_ratio(side_2.damage_recorded == 2), 'd', 'filled', 'MarkerEdgeColor', [1 0.5 0], 'MarkerFaceColor', [1 0.5 0] ) % scatter(side_2_id(side_2.damage_recorded == 1),side_2.e_ratio(side_2.damage_recorded == 1), 'd', 'filled', 'MarkerEdgeColor', 'c', 'MarkerFaceColor', 'c' ) % scatter(side_2_id(side_2.damage_recorded == 0),side_2.e_ratio(side_2.damage_recorded == 0), 'd', 'filled', 'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'b' ) % ylabel('Max(\Delta)/"e"') % else % scatter(ele_nums(data.damage_recorded == 3),data.b_ratio(data.damage_recorded == 3), 'o', 'filled', 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'r' ) % scatter(ele_nums(data.damage_recorded == 2),data.b_ratio(data.damage_recorded == 2), 'o', 'filled', 'MarkerEdgeColor', [1 0.5 0], 'MarkerFaceColor', [1 0.5 0] ) % scatter(ele_nums(data.damage_recorded == 1),data.b_ratio(data.damage_recorded == 1), 'o', 'filled', 'MarkerEdgeColor', 'c', 'MarkerFaceColor', 'c' ) % scatter(ele_nums(data.damage_recorded == 0),data.b_ratio(data.damage_recorded == 0), 'o', 'filled', 'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'b' ) % scatter(side_2_id(side_2.damage_recorded == 3),side_2.b_ratio(side_2.damage_recorded == 3), 'd', 'filled', 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'r' ) % scatter(side_2_id(side_2.damage_recorded == 2),side_2.b_ratio(side_2.damage_recorded == 2), 'd', 'filled', 'MarkerEdgeColor', [1 0.5 0], 'MarkerFaceColor', [1 0.5 0] ) % scatter(side_2_id(side_2.damage_recorded == 1),side_2.b_ratio(side_2.damage_recorded == 1), 'd', 'filled', 'MarkerEdgeColor', 'c', 'MarkerFaceColor', 'c' ) % scatter(side_2_id(side_2.damage_recorded == 0),side_2.b_ratio(side_2.damage_recorded == 0), 'd', 'filled', 'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'b' ) % ylabel('Max(\theta)/"b"') % end % set(gca,'XTickLabel',[]) % xlim([0.5,height(data)+height(side_2)+0.5]) % ylim([0, inf]) % fn_format_and_save_plot( plot_dir, plot_name, 2, 0 ) % % % V Ratio % subplot(3,1,3) % hold on % plot([0.5,height(data)+height(side_2)+0.5],[1,1],'--k') % scatter(ele_nums(data.damage_recorded == 3),data.V_ratio(data.damage_recorded == 3), 'o', 'filled', 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'r' ) % scatter(ele_nums(data.damage_recorded == 2),data.V_ratio(data.damage_recorded == 2), 'o', 'filled', 'MarkerEdgeColor', [1 0.5 0], 'MarkerFaceColor', [1 0.5 0] ) % scatter(ele_nums(data.damage_recorded == 1),data.V_ratio(data.damage_recorded == 1), 'o', 'filled', 'MarkerEdgeColor', 'c', 'MarkerFaceColor', 'c' ) % scatter(ele_nums(data.damage_recorded == 0),data.V_ratio(data.damage_recorded == 0), 'o', 'filled', 'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'b' ) % scatter(side_2_id(side_2.damage_recorded == 3),side_2.V_ratio(side_2.damage_recorded == 3), 'd', 'filled', 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'r' ) % scatter(side_2_id(side_2.damage_recorded == 2),side_2.V_ratio(side_2.damage_recorded == 2), 'd', 'filled', 'MarkerEdgeColor', [1 0.5 0], 'MarkerFaceColor', [1 0.5 0] ) % scatter(side_2_id(side_2.damage_recorded == 1),side_2.V_ratio(side_2.damage_recorded == 1), 'd', 'filled', 'MarkerEdgeColor', 'c', 'MarkerFaceColor', 'c' ) % scatter(side_2_id(side_2.damage_recorded == 0),side_2.V_ratio(side_2.damage_recorded == 0), 'd', 'filled', 'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'b' ) % xlabel([upper(ele_type(1)) ele_type(2:end) 's']) % ylabel('Max(V)/Vn') % xlim([0.5,height(data)+height(side_2)+0.5]) % ylim([0, inf]) % fn_format_and_save_plot( plot_dir, plot_name, 2, 1 ) end end
github
dustin-cook/Opensees-master
fn_plot_edp_profiles.m
.m
Opensees-master/+plotting_tools/fn_plot_edp_profiles.m
6,536
utf_8
a3f4545e519f61100c5c3676eadb551c
function [ ] = fn_plot_edp_profiles( plot_dir, ground_motion, story, target_disp_in, record_edp ) % Description: Fn to plot edp profiles of the analysis % Created By: Dustin Cook % Date Created: 1/7/2019 % Inputs: % Outputs: % Assumptions: %% Initial Setup % Plot Directory edp_plot_dir = [plot_dir filesep 'EDP Profiles']; %% Caclulate Profiles % X accels if any(strcmp('max_accel_x',story.Properties.VariableNames)) edp_accel_x = [ground_motion.x.pga; story.max_accel_x]; % edp_accel_x_center = [ground_motion.x.pga; story.max_accel_center_x]; end % X disps edp_disp_x = [0; story.max_disp_x]; % edp_disp_x_center = [0; story.max_disp_center_x]; if any(strcmp('max_disp_x_mod',story.Properties.VariableNames)) edp_mods.max_disp.x = [0; story.max_disp_x_mod]; % edp_mods.max_disp_center.x = [0; story.max_disp_center_x_mod]; else edp_mods.max_disp = []; % edp_mods.max_disp_center = []; end % Z direction if isfield(ground_motion,'z') % Z accels if any(strcmp('max_accel_z',story.Properties.VariableNames)) edp_accel_z = [ground_motion.z.pga; story.max_accel_z]; % edp_accel_z_center = [ground_motion.z.pga; story.max_accel_center_z]; end % Z disps edp_disp_z = [0; story.max_disp_z]; edp_disp_z_center = [0; story.max_disp_center_z]; if ismember('max_twist_z',story.Properties.VariableNames) edp_disp_z_twist = [0; story.max_twist_z]; else edp_disp_z_twist = []; end if any(strcmp('max_disp_z_mod',story.Properties.VariableNames)) edp_mods.max_disp.z = [0; story.max_disp_z_mod]; edp_mods.max_disp_center.z = [0; story.max_disp_center_z_mod]; end else edp_accel_z = []; % edp_accel_z_center = []; edp_disp_z = []; % edp_disp_z_center = []; edp_disp_z_twist = []; end if isempty(record_edp) record_edp.max_accel = []; % record_edp.max_accel_center = []; record_edp.max_disp = []; % record_edp.max_disp_center = []; record_edp.max_twist = []; end %% Plot Profiles % Acceleration if any(strcmp('max_accel_x',story.Properties.VariableNames)) fn_plot_profile( edp_accel_x, edp_accel_z, [min(story.id);(story.id+1)], edp_plot_dir, 'Acceleration Profile', 'Acceleration (g)', NaN, record_edp.max_accel, []) % fn_plot_profile( edp_accel_x_center, edp_accel_z_center, [min(story.id);(story.id+1)], edp_plot_dir, 'Acceleration Profile Center', 'Acceleration (g)', NaN, record_edp.max_accel_center, []) end % Displacement fn_plot_profile( edp_disp_x, edp_disp_z, [min(story.id);(story.id+1)], edp_plot_dir, 'Displacement Profile', 'Displacement (in)', target_disp_in, record_edp.max_disp, edp_mods.max_disp) % if ~any(isnan(edp_disp_x_center)) % fn_plot_profile( edp_disp_x_center, edp_disp_z_center, [min(story.id);(story.id+1)], edp_plot_dir, 'Displacement Profile Center', 'Displacement (in)', target_disp_in, record_edp.max_disp_center, edp_mods.max_disp_center) % end % Drift if isfield(ground_motion,'z') fn_plot_profile( story.max_drift_x, story.max_drift_z, story.id, edp_plot_dir, 'Drift Profile', 'Interstory Drift', NaN, [], [] ) else fn_plot_profile( story.max_drift_x, [], story.id, edp_plot_dir, 'Drift Profile', 'Interstory Drift', NaN, [], [] ) end % Twist if ~isempty(edp_disp_z_twist) fn_plot_profile( [], edp_disp_z_twist, [min(story.id);(story.id+1)], edp_plot_dir, 'Twist Profile', 'Twist (in)', NaN, record_edp.max_twist, []) end end function [ ] = fn_plot_profile( profile_x, profile_z, story_ids, plot_dir, plot_name, name, target_disp, recording, mod_profile ) %UNTITLED9 Summary of this function goes here % Detailed explanation goes here %% Initial Setup % Import Packages import plotting_tools.* % Define Colors matlab_colors = [0, 0.4470, 0.7410; 0.8500, 0.3250, 0.0980; 0.9290, 0.6940, 0.1250; 0.4940, 0.1840, 0.5560; 0.4660, 0.6740, 0.1880; 0.3010, 0.7450, 0.9330; 0.6350, 0.0780, 0.1840]; %% NS Plot if ~isempty(profile_z) if strcmp(name,'Interstory Drift') || strcmp(name,'Twist (in)') subplot(1,2,1) else subplot(1,3,1) end hold on max_data = ceil(120*max(profile_z))/100; % Plot Extra data if ~isempty(recording) plot(recording.z(~isnan(recording.z)),story_ids(~isnan(recording.z)),'k--o','MarkerFaceColor','k','DisplayName','Recorded') max_data = ceil(1.2*max([profile_z;recording.z])); end if ~isempty(mod_profile) plot(mod_profile.z,story_ids,'--','color',matlab_colors(1,:),'linewidth',1.5,'DisplayName','Linear Modifications') end % Plot main profile plot(profile_z,story_ids,'color',matlab_colors(1,:),'linewidth',1.5,'DisplayName','Analysis') % Add target dispalcement if isstruct(target_disp) scatter(target_disp.z,max(story_ids),75,matlab_colors(1,:),'*','DisplayName','Target Displacement') end xlabel(['NS ' name]) if strcmp(name,'Interstory Drift') ylabel('Story') else ylabel('Floor Level') end xlim([0,max_data]) ylim([min(story_ids),max(story_ids)]) yticks(story_ids) % legend('location','northwest') % legend boxoff box on % Subplot space for EW plot if strcmp(name,'Interstory Drift') subplot(1,2,2) elseif ~strcmp(name,'Twist (in)') subplot(1,3,2) end end %% EW Plot if ~isempty(profile_x) hold on max_data = ceil(120*max(profile_x))/100; % Additional data if ~isempty(recording) plot(recording.x(~isnan(recording.x)),story_ids(~isnan(recording.x)),'k--o','MarkerFaceColor','k','DisplayName','Recorded') max_data = ceil(1.2*max([profile_x;recording.x])); end if ~isempty(mod_profile) plot(mod_profile.x,story_ids,'--','color',matlab_colors(2,:),'linewidth',1.5,'DisplayName','Linear Modifications') end % Main data plot(profile_x,story_ids,'color',matlab_colors(2,:),'linewidth',1.5,'DisplayName','Analysis') % Add target dispalcement if isstruct(target_disp) scatter(target_disp.x,max(story_ids),75,matlab_colors(2,:),'*','DisplayName','Target Displacement') end xlabel(['EW ' name]) xlim([0,max_data]) ylim([min(story_ids),max(story_ids)]) yticks(story_ids) box on end if ~strcmp(name,'Interstory Drift') hL = legend('location','east'); legend boxoff set(hL,'Position', [0.52 0.48 0.52 0.1]) end fn_format_and_save_plot( plot_dir, plot_name, 0 ) end
github
dustin-cook/Opensees-master
fn_plot_elevation.m
.m
Opensees-master/+plotting_tools/fn_plot_elevation.m
6,476
utf_8
9b84969410cca7b0f170e082d2dc078f
function [ ] = fn_plot_elevation( hinge_or_joint, element, node, elev_title, plot_dir, direction, x_start, x_end, z_start, z_end ) %UNTITLED Summary of this function goes here % Detailed explanation goes here if strcmp(direction,'x') type_filter = ~strcmp(element.type,'wall'); elseif strcmp(direction,'z') type_filter = strcmp(element.type,'wall'); end % Filter Elements count = 0; for i = 1:length(element.id) if (node.z(node.id == element.node_1(i)) >= z_start) && (node.z(node.id == element.node_1(i)) <= z_end) &&(node.x(node.id == element.node_1(i)) >= x_start) && (node.x(node.id == element.node_1(i)) <= x_end) if (node.z(node.id == element.node_2(i)) >= z_start) && (node.z(node.id == element.node_2(i)) <= z_end) && (node.x(node.id == element.node_2(i)) >= x_start) && (node.x(node.id == element.node_2(i)) <= x_end) if type_filter(i) count = count + 1; ele(count,:) = element(i,:); ele_new.id(count) = ele.id(count); ele_new.old_node_1(count) = ele.node_1(count); ele_new.old_node_2(count) = ele.node_2(count); ele_new.node_1(count) = count*2-1; ele_new.node_2(count) = count*2; new_node.id(count*2-1) = count*2-1; new_node.id(count*2) = count*2; new_node.x(count*2-1) = node.x(node.id == ele.node_1(count)); new_node.x(count*2) = node.x(node.id == ele.node_2(count)); new_node.y(count*2-1) = node.y(node.id == ele.node_1(count)); new_node.y(count*2) = node.y(node.id == ele.node_2(count)); new_node.z(count*2-1) = node.z(node.id == ele.node_1(count)); new_node.z(count*2) = node.z(node.id == ele.node_2(count)); end end end end % Define Colors cmap1 = [0, 114, 189; 238 235 112; 252 160 98; 241 95 95]/255; cmap2 = [0,60,48; 1,102,94; 53,151,143; 128,205,193; 199,234,229; 246,232,195; 223,194,125; 191,129,45; 140,81,10; 84,48,5]/255; cmap3 = [0, 114, 189; 241 95 95]/255; %% Plot DCR on elevation of building if contains(elev_title,'Joint') plot_joint_elevation(ele_new, direction, new_node, hinge_or_joint, cmap1, 4, plot_dir, ['ASCE 41 Acceptance - ' elev_title], 'accept', node) plot_joint_elevation(ele_new, direction, new_node, hinge_or_joint, cmap3, 1, plot_dir, ['Yield Check - ' elev_title], 'yield', node) else plot_elevation(ele_new, direction, new_node, hinge_or_joint, cmap1, 4, plot_dir, ['ASCE 41 Acceptance - ' elev_title], 'accept') if any(strcmp('b_ratio',hinge_or_joint.Properties.VariableNames)) plot_elevation(ele_new, direction, new_node, hinge_or_joint, cmap2, 1, plot_dir, ['b Hinge Rotation - ' elev_title], 'b_ratio') end end function [] = plot_elevation(ele_new, direction, new_node, hinge, cmap, cmap_max, plot_dir, plot_name, target) % Import Packages import plotting_tools.* % Graph structure s = ele_new.node_1; t = ele_new.node_2; G = graph(s,t); % Plot Graph if strcmp(direction,'z') x = new_node.z; elseif strcmp(direction,'x') x = new_node.x; end y = new_node.y; H = plot(G,'XData',x,'YData',y,'NodeLabel',{}); axis off %% Highlight Performance % Highlight elemets that pass Acceptance Criteria cmap_length = length(cmap(:,1)); for e = 1:length(ele_new.id) hinges = hinge(hinge.element_id == ele_new.id(e) & strcmp(hinge.direction,'primary'),:); for h = 1:height(hinges) if any(strcmp('node',hinges.Properties.VariableNames)) hinge_new_node_1 = ele_new.node_1(ele_new.old_node_1 == hinges.node(h)); hinge_new_node_2 = ele_new.node_2(ele_new.old_node_2 == hinges.node(h)); hinge_new_node = max([hinge_new_node_1, hinge_new_node_2]); else hinge_new_node_1 = ele_new.node_1(ele_new.old_node_1 == hinges.node_1(h) | ele_new.old_node_1 == hinges.node_2(h)); hinge_new_node_2 = ele_new.node_2(ele_new.old_node_2 == hinges.node_1(h) | ele_new.old_node_1 == hinges.node_2(h)); hinge_new_node = max([hinge_new_node_1, hinge_new_node_2]); end cmap_idx = max([min([round(hinges.(target)(h)*cmap_length/cmap_max),cmap_length]),1]); highlight(H,hinge_new_node) % Make hinge bigger highlight(H,hinge_new_node,'NodeColor',cmap(cmap_idx,:)) % Highlight hinges end end %% Format and save plot title(plot_name) fn_format_and_save_plot( plot_dir, plot_name, 4 ) end function [] = plot_joint_elevation(ele_new, direction, new_node, joint, cmap, cmap_max, plot_dir, plot_name, target, node) % Import Packages import plotting_tools.* % Graph structure s = ele_new.node_1; t = ele_new.node_2; G = graph(s,t); % Plot Graph if strcmp(direction,'z') x = new_node.z; elseif strcmp(direction,'x') x = new_node.x; end y = new_node.y; H = plot(G,'XData',x,'YData',y,'NodeLabel',{}); axis off %% Highlight Performance % Highlight elemets that pass Acceptance Criteria cmap_length = length(cmap(:,1)); hold on for e = 1:length(ele_new.id) jnt_1 = joint(joint.column_high == ele_new.id(e) | joint.beam_right == ele_new.id(e),:); if ~isempty(jnt_1) x_val = node.x(node.id == jnt_1.y_neg); y_up = node.y(node.id == jnt_1.y_pos); y_low = node.y(node.id == jnt_1.y_neg); y_val = mean([y_up,y_low]); cmap_idx = max([min([round(jnt_1.(target)*cmap_length/cmap_max),cmap_length]),1]); scatter(x_val,y_val,100,cmap(cmap_idx,:),'filled','s') % highlight(H,ele_new.node_1(e)) % Make hinge bigger % highlight(H,ele_new.node_1(e),'NodeColor',cmap(cmap_idx,:)) % Highlight hinges end jnt_2 = joint(joint.column_low == ele_new.id(e) | joint.beam_left == ele_new.id(e),:); if ~isempty(jnt_2) x_val = node.x(node.id == jnt_2.y_neg); y_up = node.y(node.id == jnt_2.y_pos); y_low = node.y(node.id == jnt_2.y_neg); y_val = mean([y_up,y_low]); cmap_idx = max([min([round(jnt_2.(target)*cmap_length/cmap_max),cmap_length]),1]); scatter(x_val,y_val,100,cmap(cmap_idx,:),'filled','s') % highlight(H,ele_new.node_2(e)) % Make hinge bigger % highlight(H,ele_new.node_2(e),'NodeColor',cmap(cmap_idx,:)) % Highlight hinges end end %% Format and save plot title(plot_name) fn_format_and_save_plot( plot_dir, plot_name, 4 ) end end
github
vedaldi/mcnSSD-master
compile_mcnSSD.m
.m
mcnSSD-master/compile_mcnSSD.m
3,094
utf_8
a129708c9a7b2fc9ab21ce9c6ee29a84
function compile_mcnSSD(varargin) % COMPILE_MCNSSD compile the C++/CUDA components of the SSD Detector % % Copyright (C) 2017 Samuel Albanie % Licensed under The MIT License [see LICENSE.md for details] tokens = {vl_rootnn, 'matlab', 'mex', '.build', 'last_compile_opts.mat'} ; last_args_path = fullfile(tokens{:}) ; opts = {} ; if exist(last_args_path, 'file'), opts = {load(last_args_path)} ; end opts = selectCompileOpts(opts) ; vl_compilenn(opts{:}, varargin{:}, 'preCompileFn', @preCompileFn) ; % ------------------------------------------------------------------------ function [opts, mex_src, lib_src, flags] = preCompileFn(opts, mex_src, ... lib_src, flags) % ------------------------------------------------------------------------ mcn_root = vl_rootnn() ; root = fullfile(fileparts(mfilename('fullpath')), 'matlab') ; % Build inside the module path flags.src_dir = fullfile(root, 'src') ; flags.mex_dir = fullfile(root, 'mex') ; flags.bld_dir = fullfile(flags.mex_dir, '.build') ; implDir = fullfile(flags.bld_dir,'bits/impl') ; if ~exist(implDir, 'dir'), mkdir(implDir) ; end mex_src = {} ; lib_src = {} ; if opts.enableGpu, ext = 'cu' ; else, ext = 'cpp' ; end % Add mcn dependencies lib_src{end+1} = fullfile(mcn_root, 'matlab/src/bits', ['data.' ext]) ; lib_src{end+1} = fullfile(mcn_root, 'matlab/src/bits', ['datamex.' ext]) ; lib_src{end+1} = fullfile(mcn_root,'matlab/src/bits/impl/copy_cpu.cpp') ; if opts.enableGpu lib_src{end+1} = fullfile(mcn_root,'matlab/src/bits/datacu.cu') ; lib_src{end+1} = fullfile(mcn_root,'matlab/src/bits/impl/copy_gpu.cu') ; end % ---------------------- % include required files % ---------------------- % old style include - leave as comment in case users have different setup %if ~isfield(flags, 'cc'), flags.cc = {inc} ; else, flags.cc{end+1} = inc ; end % new style include inc = sprintf('-I"%s"', fullfile(mcn_root,'matlab','src')) ; inc_local = sprintf('-I"%s"', fullfile(root, 'src')) ; flags.base{end+1} = inc ; flags.base{end+1} = inc_local ; % Add module files lib_src{end+1} = fullfile(root,'src/bits',['nnmultiboxdetector.' ext]) ; mex_src{end+1} = fullfile(root,'src',['vl_nnmultiboxdetector.' ext]) ; % CPU-specific files lib_src{end+1} = fullfile(root,'src/bits/impl/multiboxdetector_cpu.cpp') ; % GPU-specific files if opts.enableGpu lib_src{end+1} = fullfile(root,'src/bits/impl/multiboxdetector_gpu.cu') ; end % ------------------------------------- function opts = selectCompileOpts(opts) % ------------------------------------- keep = {'enableGpu', 'enableImreadJpeg', 'enableCudnn', 'enableDouble', ... 'imageLibrary', 'imageLibraryCompileFlags', ... 'imageLibraryLinkFlags', 'verbose', 'debug', 'cudaMethod', ... 'cudaRoot', 'cudaArch', 'defCudaArch', 'cudnnRoot', 'preCompileFn'} ; s = opts{1} ; f = fieldnames(s) ; for i = 1:numel(f) if ~ismember(f{i}, keep) s = rmfield(s, f{i}) ; end end opts = {s} ;
github
vedaldi/mcnSSD-master
ssd_evaluation.m
.m
mcnSSD-master/core/ssd_evaluation.m
12,198
utf_8
13583628f1b3f5c051fe580181a6d2db
function ssd_evaluation(expDir, net, opts) % ---------------------------------------------------------------- % Prepare imdb % ---------------------------------------------------------------- if exist(opts.dataOpts.imdbPath, 'file') imdb = load(opts.dataOpts.imdbPath) ; else imdb = opts.dataOpts.getImdb(opts) ; imdbDir = fileparts(opts.dataOpts.imdbPath) ; if ~exist(imdbDir, 'dir') mkdir(imdbDir) ; end save(opts.dataOpts.imdbPath, '-struct', 'imdb') ; end opts = opts.dataOpts.configureImdbOpts(expDir, opts) ; switch opts.testset case 'val' setLabel = 2 ; case 'test' setLabel = 3 ; end testIdx = find(imdb.images.set == setLabel) ; % ---------------------------------------------------------------- % Retrieve from caches if possible % ---------------------------------------------------------------- rawPreds = checkCache('rawPreds', opts, net, imdb, testIdx) ; decoded = checkCache('decodedPreds', opts, rawPreds, imdb, testIdx) ; results = checkCache('results', opts, opts.modelName, decoded, imdb) ; opts.dataOpts.displayResults(opts.modelName, results, opts) ; % ------------------------------------------------ function res = checkCache(varname, opts, varargin) % ------------------------------------------------ switch varname case 'rawPreds' path = opts.cacheOpts.rawPredsCache ; flag = opts.cacheOpts.refreshPredictionCache ; func = @computePredictions ; case 'decodedPreds' path = opts.cacheOpts.decodedPredsCache ; flag = opts.cacheOpts.refreshDecodedPredCache ; func = @decodePredictions ; case 'results' path = opts.cacheOpts.resultsCache ; flag = opts.cacheOpts.refreshEvaluationCache ; func = opts.dataOpts.eval_func ; end if exist(path, 'file') && ~flag fprintf('loading %s from cache\n', varname) ; tmp = load(path) ; res = tmp.(varname) ; else s.(varname) = func(varargin{:}, opts) ; save(path, '-struct', 's', '-v7.3') ; res = s.(varname) ; end % ------------------------------------------------------------------------- function decodedPreds = decodePredictions(predictions, imdb, testIdx, opts) % ------------------------------------------------------------------------- % For small datasets (e.g. just a few thousand frames), serial % decoding tends to be faster switch opts.dataOpts.decoder case 'serial' decodedPreds = decodeSerial(predictions, imdb, testIdx, opts) ; case 'parallel' decodedPreds = decodeParallel(predictions, imdb, testIdx, opts) ; otherwise error('deocoder %s not recognised (should be serial or parallel)', ... opts.dataOpts.deocoder) ; end % ------------------------------------------------------------------------- function decodedPreds = decodeSerial(predictions, imdb, testIdx, opts) % ------------------------------------------------------------------------- numClasses = numel(imdb.meta.classes) ; % gather predictions by class, and store the corresponding % image id (i.e. image name) and bouding boxes imageIds = cell(1, numClasses) ; scores = cell(1, numClasses) ; bboxes = cell(1, numClasses) ; for c = 1:numClasses fprintf('extracting predictions for %s\n', imdb.meta.classes{c}) ; for p = 1:numel(testIdx) % add offset for background class (for compatibility with caffe) target = c + 1 ; % find predictions for current image preds = predictions(:,:,:,p) ; targetIdx = find(preds(:,1) == target) ; pScores = preds(targetIdx, 2) ; pBoxes = preds(targetIdx, 3:end) ; % clip predictions to fall in image and scale the % bounding boxes from [0,1] to absolute pixel values if pBoxes pBoxes = min(max(pBoxes, 0), 1) ; imsz = single(imdb.images.imageSizes{testIdx(p)}) ; switch opts.dataOpts.resultsFormat case 'minMax' pBoxes = [pBoxes(:,1) * imsz(2) ... pBoxes(:,2) * imsz(1) ... pBoxes(:,3) * imsz(2) ... pBoxes(:,4) * imsz(1) ] ; case 'minWH' pBoxes = [pBoxes(:,1) * imsz(2) ... pBoxes(:,2) * imsz(1) ... (pBoxes(:,3) - pBoxes(:,1)) * imsz(2) ... (pBoxes(:,4) - pBoxes(:,2)) * imsz(1) ] ; end % store results pId = imdb.images.name{testIdx(p)} ; scores{c} = vertcat(scores{c}, pScores) ; bboxes{c} = vertcat(bboxes{c}, pBoxes) ; imageIds{c} = vertcat(imageIds{c}, repmat({pId}, size(pScores))) ; end fprintf('extracting predictions for image %d/%d\n', p, numel(testIdx)) ; end end decodedPreds.imageIds = imageIds ; decodedPreds.scores = scores ; decodedPreds.bboxes = bboxes ; % ------------------------------------------------------------------------- function decodedPreds = decodeParallel(predictions, imdb, testIdx, opts) % ------------------------------------------------------------------------- numClasses = numel(imdb.meta.classes) ; % gather predictions by class, and store the corresponding % image id (i.e. image name) and bouding boxes imageIds = cell(1, numClasses) ; scores = cell(1, numClasses) ; bboxes = cell(1, numClasses) ; % Use preallocation to enable parallel evaluation predsPerIm = uint32(size(predictions, 1)) ; numTotal = double(predsPerIm) * numel(testIdx) ; for c = 1:numClasses fprintf('extracting predictions for %s\n', opts.dataOpts.classes{c}) ; % add offset for background class (for compatibility with caffe) target = c + 1 ; cBoxes = zeros(numTotal, 4, 'single') ; cScores = zeros(numTotal, 1, 'single') ; cImageIds = cell(numTotal, 1) ; keep = false(numTotal, 1) ; parfor p = 1:numTotal offset = mod(p - 1, predsPerIm) + 1 ; imId = idivide(p - 1, predsPerIm) + 1 ; preds = predictions(offset,:,:,imId) ; keep(p) = (preds(1) == target) ; if ~keep(p) continue else pScore = preds(2) ; if pScore < opts.dataOpts.scoreThresh keep(p) = false ; continue end pBox = preds(3:end) ; % clip predictions to fall in image and scale the % bounding boxes from [0,1] to absolute pixel values pBox = min(max(pBox, 0), 1) ; imsz = single(imdb.images.imageSizes{testIdx(p)}) ; switch opts.dataOpts.resultsFormat case 'minMax' pBox = [pBox(1) * imsz(2) ... pBox(2) * imsz(1) ... pBox(3) * imsz(2) ... pBox(4) * imsz(1) ] ; case 'minWH' pBox = [pBox(1) * imsz(2) ... pBox(2) * imsz(1) ... (pBox(3) - pBox(1)) * imsz(2) ... (pBox(4) - pBox(2)) * imsz(1) ] ; end % store results cScores(p) = pScore ; cBoxes(p,:) = pBox ; cImageIds{p} = imdb.images.name{testIdx(imId)} ; end fprintf('extracting prediction %d/%d for %s\n', p, numTotal, ... opts.dataOpts.classes{c}) ; end scores{c} = cScores(find(keep)) ; bboxes{c} = cBoxes(find(keep),:) ; imageIds{c} = cImageIds(find(keep)) ; end decodedPreds.imageIds = imageIds ; decodedPreds.scores = scores ; decodedPreds.bboxes = bboxes ; % ------------------------------------------------------------------ function predictions = computePredictions(net, imdb, testIdx, opts) % ------------------------------------------------------------------ prepareGPUs(opts, true) ; if numel(opts.gpus) <= 1 state = processDetections(net, imdb, testIdx, opts) ; predictions = state.predictions ; else predictions = zeros(200, 6, 1, numel(testIdx), 'single') ; spmd % resolve parallel path issue addpath(fullfile(vl_rootnn, 'contrib/mcnSSD/matlab/mex')) ; state = processDetections(net, imdb, testIdx, opts) ; end for i = 1:numel(opts.gpus) state_ = state{i} ; predictions(:,:,:,state_.computedIdx) = state_.predictions ; end end % ------------------------------------------------------------------ function state = processDetections(net, imdb, testIdx, opts) % ------------------------------------------------------------------ % benchmark speed num = 0 ; adjustTime = 0 ; stats.time = 0 ; stats.num = num ; start = tic ; % find the output predictions made by the network outVars = net.getOutputs() ; predVar = outVars{1} ; % prepare to store network predictions predIdx = net.getVarIndex(opts.modelOpts.predVar) ; net.vars(predIdx).precious = true ; if ~isempty(opts.gpus), net.move('gpu') ; end % pre-compute the indices of the predictions made by each worker startIdx = labindex:numlabs:opts.batchOpts.batchSize ; idx = arrayfun(@(x) {x:opts.batchOpts.batchSize:numel(testIdx)}, startIdx) ; computedIdx = sort(horzcat(idx{:})) ; % top 200 preds kept keepTopK = net.layers(net.getLayerIndex('detection_out')).block.keepTopK ; state.predictions = zeros(keepTopK, 6, 1, numel(computedIdx), 'single') ; state.computedIdx = computedIdx ; offset = 1 ; for t = 1:opts.batchOpts.batchSize:numel(testIdx) % display progress progress = fix((t-1) / opts.batchOpts.batchSize) + 1 ; totalBatches = ceil(numel(testIdx) / opts.batchOpts.batchSize) ; fprintf('evaluating batch %d / %d: ', progress, totalBatches) ; batchSize = min(opts.batchOpts.batchSize, numel(testIdx) - t + 1) ; batchStart = t + (labindex - 1) ; batchEnd = min(t + opts.batchOpts.batchSize - 1, numel(testIdx)) ; batch = testIdx(batchStart : numlabs : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end inputs = opts.modelOpts.get_eval_batch(imdb, batch, opts) ; if opts.prefetch batchStart_ = t + (labindex - 1) + opts.batchOpts.batchSize ; batchEnd_ = min(t + 2*opts.batchOpts.batchSize - 1, numel(testIdx)) ; nextBatch = testIdx(batchStart_: numlabs : batchEnd_) ; opts.modelOpts.get_eval_batch(imdb, nextBatch, opts, 'prefetch', true) ; end net.eval(inputs) ; storeIdx = offset:offset + numel(batch) -1 ; offset = offset + numel(batch) ; state.predictions(:,:,:,storeIdx) = net.vars(predIdx).value ; time = toc(start) + adjustTime ; batchTime = time - stats.time ; stats.num = num ; stats.time = time ; currentSpeed = batchSize / batchTime ; averageSpeed = (t + batchSize - 1) / time ; if t == 3*opts.batchOpts.batchSize + 1 % compensate for the first three iterations, which are outliers adjustTime = 4*batchTime - time ; stats.time = time + adjustTime ; end fprintf('speed %.1f (%.1f) Hz', averageSpeed, currentSpeed) ; fprintf('\n') ; end net.move('cpu') ; % ------------------------------------------------------------------------- function clearMex() % ------------------------------------------------------------------------- clear vl_tmove vl_imreadjpeg ; % ------------------------------------------------------------------------- function prepareGPUs(opts, cold) % ------------------------------------------------------------------------- numGpus = numel(opts.gpus) ; if numGpus > 1 % check parallel pool integrity as it could have timed out pool = gcp('nocreate') ; if ~isempty(pool) && pool.NumWorkers ~= numGpus delete(pool) ; end pool = gcp('nocreate') ; if isempty(pool) parpool('local', numGpus) ; cold = true ; end end if numGpus >= 1 && cold fprintf('%s: resetting GPU\n', mfilename) clearMex() ; if numGpus == 1 gpuDevice(opts.gpus) else spmd clearMex() ; gpuDevice(opts.gpus(labindex)) end end end
github
vedaldi/mcnSSD-master
ssd_train.m
.m
mcnSSD-master/core/ssd_train.m
2,022
utf_8
6b556426c87f82c6525207c0a22271c8
function ssd_train(expDir, opts, varargin) % ---------------------------------------------------------------- % Prepare imdb % ---------------------------------------------------------------- imdbPath = opts.dataOpts.imdbPath ; if exist(imdbPath, 'file') imdb = load(imdbPath) ; else imdb = opts.dataOpts.getImdb(opts) ; if ~exist(fileparts(imdbPath), 'dir'), mkdir(fileparts(imdbPath)) ; end save(imdbPath, '-struct', 'imdb') ; end [opts, imdb] = opts.dataOpts.prepareImdb(imdb, opts) ; % -------------------------------------------------------------------- % Train % -------------------------------------------------------------------- if ~exist(expDir, 'dir') mkdir(expDir) ; end confirmConfig(expDir, opts) ; net = opts.modelOpts.net_init(opts) ; [net,info] = cnn_train_dag(net, imdb, ... @(i,b) opts.modelOpts.get_batch(i, b, opts.batchOpts), ... opts.train, ... 'expDir', expDir) ; % -------------------------------------------------------------------- % Evaluatte % -------------------------------------------------------------------- [net, modelName] = deployModel(expDir, opts) ; opts.eval_func('net', net, 'modelName', modelName, 'gpus', opts.train.gpus) ; % -------------------------------------------------- function [net, modelName] = deployModel(expDir, opts) % -------------------------------------------------- bestEpoch = findBestEpoch(expDir, 'priorityMetric', 'mbox_loss', ... 'prune', true) ; bestNet = fullfile(expDir, sprintf('net-epoch-%d.mat', bestEpoch)) ; deployPath = sprintf(opts.modelOpts.deployPath, bestEpoch) ; opts.modelOpts.deploy_func(bestNet, deployPath, opts.modelOpts.numClasses) ; net = dagnn.DagNN.loadobj(load(deployPath)) ; [~,modelName,~] = fileparts(expDir) ;
github
vedaldi/mcnSSD-master
ssd_zoo.m
.m
mcnSSD-master/core/ssd_zoo.m
1,688
utf_8
2c7de7034bb3301178fbac60f4f65fcf
function net = ssd_zoo(modelName) caffeModels = { 'ssd-pascal-vggvd-300', ... 'ssd-pascal-vggvd-512', ... 'ssd-pascal-plus-vggvd-300', ... 'ssd-pascal-vggvd-ft-300', ... 'ssd-pascal-plus-vggvd-512', ... 'ssd-pascal-plus-vggvd-ft-300', ... 'ssd-pascal-plus-vggvd-ft-512', ... 'ssd-pascal-vggvd-ft-512', ... 'vgg-vd-16-reduced', ... 'ssd-pascal-mobilenet-ft', ... } ; mcnModels = { 'ssd-mcn-pascal-vggvd-300', ... 'ssd-mcn-pascal-vggvd-512', ... } ; modelNames = horzcat(caffeModels, mcnModels) ; assert(ismember(modelName, modelNames), 'unrecognised model') ; modelDir = fullfile(vl_rootnn, 'data/models-import') ; modelPath = fullfile(modelDir, sprintf('%s.mat', modelName)) ; if ~exist(modelPath, 'file') fetchModel(modelName, modelPath) ; end net = dagnn.DagNN.loadobj(load(modelPath)) ; % --------------------------------------- function fetchModel(modelName, modelPath) % --------------------------------------- waiting = true ; prompt = sprintf(strcat('%s was not found at %s\nWould you like to ', ... ' download it from THE INTERNET (y/n)?\n'), modelName, modelPath) ; while waiting str = input(prompt,'s') ; switch str case 'y' % ensure target directory exists if ~exist(fileparts(modelPath), 'dir') mkdir(fileparts(modelPath)) ; end fprintf(sprintf('Downloading %s ... \n', modelName)) ; baseUrl = 'http://www.robots.ox.ac.uk/~albanie/models/ssd' ; url = sprintf('%s/%s.mat', baseUrl, modelName) ; urlwrite(url, modelPath) ; return ; case 'n' throw(exception) ; otherwise fprintf('input %s not recognised, please use `y` or `n`\n', str) ; end end
github
vedaldi/mcnSSD-master
ssd_init.m
.m
mcnSSD-master/core/ssd_init.m
22,779
utf_8
81641239af58a92c7173e6e7a85d2f6e
function net = ssd_init(opts) % SSD_INIT Initialize a Single Shot Multibox Detector Network % NET = SSD_INIT randomly initializes an SSD network architecture % for reproducibility, fix the seed rng(0, 'twister') ; % load trunk model net = ssd_zoo('vgg-vd-16-reduced') ; % ------------------------------------------------------------- % Set meta properties of net % ------------------------------------------------------------- switch opts.modelOpts.architecture case 300 imSize = [300 300] ; addExtraConv = false ; case 500 imSize = [500 500] ; addExtraConv = true ; case 512 imSize = [512 512] ; addExtraConv = true ; otherwise error('architecture %d is not recognised', ... opts.modelOpts.architecture) ; end net.meta.normalization.imageSize = imSize ; % ------------------------------------------------------------- % Network truncation % ------------------------------------------------------------- % modify trunk biases learnning rate and weight decay to match caffe params = {'conv1_1b', ... 'conv1_2b', ... 'conv2_1b', ... 'conv2_2b', ... 'conv3_1b', ... 'conv3_2b', ... 'conv3_3b', ... 'conv4_1b', ... 'conv4_2b', ... 'conv4_3b' ... 'conv5_1b', ... 'conv5_2b', ... 'conv5_3b' ... 'fc6b', ... 'fc7b' ... } ; for i = 1:length(params) net = matchCaffeBiases(net, params{i}) ; end % update fc6 to match SSD net.layers(net.getLayerIndex('fc6')).block.dilate = [6 6] ; net.layers(net.getLayerIndex('fc6')).block.pad = [6 6] ; % Truncate the layers following relu7 net.removeLayer('fc8') ; net.removeLayer('prob') ; % rename input variable to 'data' net.renameVar('x0', 'data') ; % Alter the pooling to match SSD net.layers(net.getLayerIndex('pool5')).block.stride = [1 1] ; net.layers(net.getLayerIndex('pool5')).block.poolSize = [3 3] ; net.layers(net.getLayerIndex('pool5')).block.pad = [1 1 1 1] ; % -------------------------------------------------------------- % Architectural modifications - add new conv layer stacks % -------------------------------------------------------------- prefix = 'conv6' ; inLayer = 'relu7' ; channelsIn = 1024 ; bottleneck = 256 ; channelsOut = 512 ; kernelSizes = [1 3] ; paddings = [0 0 0 0 ; 1 1 1 1] ; strides = [ 1 1 ; 2 2 ] ; net = addConvStack(net, prefix, inLayer, channelsIn, bottleneck, ... channelsOut, kernelSizes, paddings, strides) ; prefix = 'conv7' ; inLayer = 'conv6_2_relu' ; channelsIn = 512 ; bottleneck = 128 ; channelsOut = 256 ; kernelSizes = [1 3] ; paddings = [0 0 0 0 ; 1 1 1 1] ; strides = [ 1 1 ; 2 2 ] ; net = addConvStack(net, prefix, inLayer, channelsIn, bottleneck, ... channelsOut, kernelSizes, paddings, strides) ; prefix = 'conv8' ; inLayer = 'conv7_2_relu' ; finalLayer = 'conv8_2_relu' ; channelsIn = 256 ; bottleneck = 128 ; channelsOut = 256 ; kernelSizes = [1 3] ; paddings = [0 0 0 0 ; 0 0 0 0] ; strides = [ 1 1 ; 1 1 ] ; net = addConvStack(net, prefix, inLayer, channelsIn, bottleneck, ... channelsOut, kernelSizes, paddings, strides) ; prefix = 'conv9' ; inLayer = 'conv8_2_relu' ; finalLayer = 'conv9_2_relu' ; channelsIn = 256 ; bottleneck = 128 ; channelsOut = 256 ; kernelSizes = [1 3] ; paddings = [0 0 0 0 ; 0 0 0 0] ; strides = [ 1 1 ; 1 1 ] ; net = addConvStack(net, prefix, inLayer, channelsIn, bottleneck, ... channelsOut, kernelSizes, paddings, strides) ; if addExtraConv prefix = 'conv10' ; inLayer = 'conv9_2_relu' ; finalLayer = 'conv10_2_relu' ; channelsIn = 256 ; bottleneck = 128 ; channelsOut = 256 ; kernelSizes = [1 4] ; paddings = [0 0 0 0 ; 1 1 1 1] ; strides = [ 1 1 ; 1 1 ] ; net = addConvStack(net, prefix, inLayer, channelsIn, bottleneck, ... channelsOut, kernelSizes, paddings, strides) ; end % Add normalization layer layerName = 'conv4_3_norm' ; initialScale = single(20) ; layer = dagnn.Normalize() ; inputs = net.layers(net.getLayerIndex('relu4_3')).outputs ; outputs = layerName ; params = {'conv4_3_norm_scale'} ; net.addLayer(layerName, layer, inputs, outputs, params) ; net.params(net.getParamIndex(params)).value = ones(1,1,512) * initialScale ; % ------------------------------------- % Compute multibox prior parameters % ------------------------------------- % minimum dimension of input image minDim = imSize(1) ; switch opts.modelOpts.architecture case 300 % The feature maps which from which the prior box layers are % constructed have the following sizes: sourceLayers = {'conv4_3_norm', ... % 38 x 38 'fc7', ... % 19 x 19 'conv6_2', ... % 10 x 10 'conv7_2', ... % 5 x 5 'conv8_2', ... % 3 x 3 'conv9_2'} ; % 1 x 1 % These ratios are expressed as percentages minRatio = 20 ; maxRatio = 90 ; % Following the paper, the scale for conv4_3 is handled separately % when training on VOC0712, so we can compute the step as follows step = floor((maxRatio - minRatio) / (numel(sourceLayers(2:end)) - 1)) ; minSizes = zeros(numel(sourceLayers), 1) ; maxSizes = zeros(numel(sourceLayers), 1) ; effectiveMax = minRatio + numel(sourceLayers(2:end)) * step ; ratios = [10 minRatio:step:maxRatio effectiveMax] ; for i = 1:numel(ratios) - 1 minSizes(i) = minDim * ratios(i) / 100 ; maxSizes(i) = minDim * ratios(i + 1) / 100 ; end % note: certain layers use fewer aspect ratios (just 1, 1/2, 2/1) aspectRatios = { [2], ... [2, 3], ... [2, 3], ... [2, 3], ... [2], ... [2] } ; steps = [8, 16, 32, 64, 100, 300] ; case 512 % The feature maps which from which the prior box layers are % constructed have the following sizes: sourceLayers = {'conv4_3_norm', ... % 64 x 64 'fc7', ... % 32 x 32 'conv6_2', ... % 16 x 16 'conv7_2', ... % 8 x 8 'conv8_2', ... % 4 x 4 'conv9_2', ... % 2 x 2 'conv10_2'} ; % 1 x 1 % These ratios are expressed as percentages minRatio = 15 ; maxRatio = 90 ; step = floor((maxRatio - minRatio) / (numel(sourceLayers(2:end)) - 1)) ; minSizes = zeros(numel(sourceLayers), 1) ; maxSizes = zeros(numel(sourceLayers), 1) ; effectiveMax = minRatio + numel(sourceLayers(2:end)) * step ; ratios = [7 minRatio:step:maxRatio effectiveMax] ; for i = 1:numel(ratios) - 1 minSizes(i) = minDim * ratios(i) / 100 ; maxSizes(i) = minDim * ratios(i + 1) / 100 ; end aspectRatios = { [2], ... [2, 3], ... [2, 3], ... [2, 3], ... [2, 3], ... [2], ... [2] } ; steps = [8, 16, 32, 64, 128, 256, 512] ; end flip = true ; clip = opts.modelOpts.clipPriors ; variances = [0.1 0.1 0.2 0.2]' ; % an offset is used to centre each prior box between % activations in the feature map (see Sec 2.2. of the % SSD paper) offset = 0.5 ; % Since the computed prior boxes are identical for a fixed size % input, we can cahce them after the first forward pass usePriorCaching = true ; % ------------------------------------- % Construct multibox prior units % ------------------------------------- unit = 1 ; prefix = 'conv4_3_norm' ; inLayerName = 'conv4_3_norm' ; channelsIn = 512 ; [confOut, locOut] = getOutSize(maxSizes(unit), aspectRatios{unit}, opts) ; net = addMultiBoxLayers(net, prefix, inLayerName, minSizes(unit), ... maxSizes(unit), aspectRatios{unit}, flip, ... clip, steps(unit), offset, variances, ... channelsIn, confOut, locOut, usePriorCaching) ; unit = 2 ; prefix = 'fc7' ; inLayerName = 'relu7' ; channelsIn = 1024 ; [confOut, locOut] = getOutSize(maxSizes(unit), aspectRatios{unit}, opts) ; net = addMultiBoxLayers(net, prefix, inLayerName, minSizes(unit), ... maxSizes(unit), aspectRatios{unit}, flip, ... clip, steps(unit), offset, variances, ... channelsIn, confOut, locOut, usePriorCaching) ; unit = 3 ; prefix = 'conv6_2' ; inLayerName = 'conv6_2_relu' ; channelsIn = 512 ; [confOut, locOut] = getOutSize(maxSizes(unit), aspectRatios{unit}, opts) ; net = addMultiBoxLayers(net, prefix, inLayerName, minSizes(unit), ... maxSizes(unit), aspectRatios{unit}, flip, ... clip, steps(unit), offset, variances, ... channelsIn, confOut, locOut, usePriorCaching) ; unit = 4 ; prefix = 'conv7_2' ; inLayerName = 'conv7_2_relu' ; channelsIn = 256 ; [confOut, locOut] = getOutSize(maxSizes(unit), aspectRatios{unit}, opts) ; net = addMultiBoxLayers(net, prefix, inLayerName, minSizes(unit), ... maxSizes(unit), aspectRatios{unit}, flip, ... clip, steps(unit), offset, variances, ... channelsIn, confOut, locOut, usePriorCaching) ; unit = 5 ; prefix = 'conv8_2' ; inLayerName = 'conv8_2_relu' ; channelsIn = 256 ; [confOut, locOut] = getOutSize(maxSizes(unit), aspectRatios{unit}, opts) ; net = addMultiBoxLayers(net, prefix, inLayerName, minSizes(unit), ... maxSizes(unit), aspectRatios{unit}, flip, ... clip, steps(unit), offset, variances, ... channelsIn, confOut, locOut, usePriorCaching) ; unit = 6 ; prefix = 'conv9_2' ; inLayerName = 'conv9_2_relu' ; channelsIn = 256 ; [confOut, locOut] = getOutSize(maxSizes(unit), aspectRatios{unit}, opts) ; net = addMultiBoxLayers(net, prefix, inLayerName, minSizes(unit), ... maxSizes(unit), aspectRatios{unit}, flip, ... clip, steps(unit), offset, variances, ... channelsIn, confOut, locOut, usePriorCaching) ; if addExtraConv unit = 7 ; prefix = 'conv10_2' ; inLayerName = 'conv10_2_relu' ; channelsIn = 256 ; [confOut, locOut] = getOutSize(maxSizes(unit), aspectRatios{unit}, opts) ; net = addMultiBoxLayers(net, prefix, inLayerName, minSizes(unit), ... maxSizes(unit), aspectRatios{unit}, flip, ... clip, steps(unit), offset, variances, ... channelsIn, confOut, locOut, usePriorCaching) ; end % ------------------------------------- % Fuse predictions % ------------------------------------- layerName = 'mbox_loc' ; fuseType = 'loc_flat' ; axis = 3 ; net = addFusionLayer(net, layerName, fuseType, sourceLayers, axis) ; layerName = 'mbox_conf' ; fuseType = 'conf_flat' ; axis = 3 ; net = addFusionLayer(net, layerName, fuseType, sourceLayers, axis) ; layerName = 'mbox_priorbox' ; fuseType = 'priorbox' ; axis = 1 ; net = addFusionLayer(net, layerName, fuseType, sourceLayers, axis) ; % ---------------------------------------------------------------- % Decoder layer % ---------------------------------------------------------------- % Decoder layer -> converts predictions into happiness and rainbows layerName = 'mbox_coder' ; layer = dagnn.MultiboxCoder('backgroundLabel', 1, ... 'negOverlap', 0.5, ... 'overlapThreshold', 0.5, ... 'negPosRatio', 3, ... 'numClasses', opts.modelOpts.numClasses) ; inputLayers = {'mbox_loc', 'mbox_conf', 'mbox_priorbox'} ; inputs = cellfun(@(x) net.layers(net.getLayerIndex(x)).outputs{1}, ... inputLayers, 'UniformOutput', false) ; inputs = horzcat(inputs, 'targets', 'labels') ; outputs = {'loc_preds', 'loc_labels', 'conf_preds', ... 'conf_labels', 'loc_weights', 'conf_weights'} ; params = {} ; net.addLayer(layerName, layer, inputs, outputs, params) ; % ---------------------------------------------------------------- % Loss layers % ---------------------------------------------------------------- % Two losses are used layerName = 'class_loss' ; layer = dagnn.UnnormalizedLoss() ; inputs = { 'conf_preds', 'conf_labels', 'conf_weights'} ; outputs = {'class_loss'} ; net.addLayer(layerName, layer, inputs, outputs, params) ; layerName = 'loc_loss' ; layer = dagnn.HuberLoss() ; inputs = { 'loc_preds', 'loc_labels', 'loc_weights'} ; outputs = {'loc_loss'} ; net.addLayer(layerName, layer, inputs, outputs, params) ; layerName = 'mbox_loss' ; layer = dagnn.MultiboxLoss() ; inputs = { 'class_loss', 'loc_loss'} ; outputs = {'mbox_loss'} ; net.addLayer(layerName, layer, inputs, outputs, params) ; % ---------------------------------------------- function net = matchCaffeBiases(net, param) % ---------------------------------------------- % set the learning rate and weight decay of the % convolution biases to match caffe net.params(net.getParamIndex(param)).learningRate = 2 ; net.params(net.getParamIndex(param)).weightDecay = 0 ; % ------------------------------------------------------- function [confOut, locOut] = getOutSize(maxSize, aspectRatios, opts) % ------------------------------------------------------- % THe filters must produce a prediction for each of the prior % boxes associated with a source feature layer. The number of % prior boxes per feature is explained in detail in the SSD paper % (essentially it is computed according to the number of specified % aspect ratios) numBBoxOffsets = 4 ; priorsPerFeature = 1 + logical(maxSize) + numel(aspectRatios) * 2 ; confOut = opts.modelOpts.numClasses * priorsPerFeature ; locOut = numBBoxOffsets * priorsPerFeature ; % ----------------------------------------------------------------------------- function net = addConvStack(net, prefix, prevLayer, channelsIn, bottleneck, ... channelsOut, kernelSizes, paddings, strides) % ----------------------------------------------------------------------------- layerName = sprintf('%s_1', prefix) ; ks = kernelSizes(1) ; sz = [ks ks channelsIn bottleneck] ; layer = dagnn.Conv('size', sz, ... 'pad', paddings(1,:), ... 'stride', strides(1,:), ... 'hasBias', true) ; inputs = net.layers(net.getLayerIndex(prevLayer)).outputs ; outputs = layerName ; params = {sprintf('%s_1f', prefix), sprintf('%s_1b', prefix)} ; net.addLayer(layerName, layer, inputs, outputs, params) ; net = init_weights(net, layerName, ks, channelsIn, bottleneck) ; prevLayer = layerName ; layerName = sprintf('%s_1_relu', prefix) ; layer = dagnn.ReLU() ; inputs = net.layers(net.getLayerIndex(prevLayer)).outputs ; outputs = layerName ; params = {} ; net.addLayer(layerName, layer, inputs, outputs, params) ; prevLayer = layerName ; layerName = sprintf('%s_2', prefix) ; ks = kernelSizes(2) ; sz = [ks ks bottleneck channelsOut] ; layer = dagnn.Conv('size', sz, ... 'pad', paddings(2,:), ... 'stride', strides(2,:), ... 'hasBias', true) ; inputs = net.layers(net.getLayerIndex(prevLayer)).outputs ; outputs = layerName ; params = {sprintf('%s_12', prefix), sprintf('%s_2b', prefix)} ; net.addLayer(layerName, layer, inputs, outputs, params) ; net = init_weights(net, layerName, ks, bottleneck, channelsOut) ; prevLayer = layerName ; layerName = sprintf('%s_2_relu', prefix) ; layer = dagnn.ReLU() ; inputs = net.layers(net.getLayerIndex(prevLayer)).outputs ; outputs = layerName ; params = {} ; net.addLayer(layerName, layer, inputs, outputs, params) ; % ------------------------------------------------------------------- function net = addMultiBoxLayers(net, prefix, prevLayerName, minSize, ... maxSize, aspectRatios, flip, clip, ... step, offset, variances, channelsIn, ... confOut, locOut, usePriorCaching) % ------------------------------------------------------------------ %ADDMULTIBOXLAYERS adds a set of multibox layers to a dagnn % ADDMULTIBOXLAYERS adds the collection of network layers % required to construct a MultiBox Prior "unit". A unit % consistss of seven layers: % % A PriorBox reference layer defining the default % reference boxes, followed by % Convolution -> Permute -> Flatten % (for prior box locations) % Convolution -> Permute -> Flatten % (for prior box class scores) % % ARGUMENTS: % `net`: dagnn.DagNN net object under construction % `prefix`: (string) name used to prefix each layer name in unit % `prevLayerName`: (string) name of input feature layer % `minSize`: (float) minimum size of prior boxes % `maxSize`: (float) maximum size of prior boxes % `aspectRatios`: (float) array of aspect ratios used for prior boxes % `flip`: (logical) add flipped versions of each aspect ratio % `clip`: (logical) clip prior boxes to lie inside feature map % `step`: (int) number of pixel steps taken in image to match a pixel % step in the feature map % `offset`: (float) offset applied to centre each feature location % `variances`: (4x1 array) variances used to scale prior boxes % `channelsIn`: (int) number of channels in the input layer % `confOut`: (int) number of filters used to predict class confidences % `locOut`: (int) number of filters used to predict box location updates % `usePriorCaching`: (logical) cache the prior boxes and re-use after % the first pass % store the layer on which the multibox layers will be based rootLayerName = prevLayerName ; layerName = sprintf('%s_mbox_priorbox', prefix) ; layer = dagnn.PriorBox('minSize', minSize, ... 'maxSize', maxSize, ... 'aspectRatios', aspectRatios, ... 'flip', flip, ... 'clip', clip, ... 'pixelStep', step, ... 'offset', offset, ... 'usePriorCaching', true, ... 'variance', variances) ; inputs = { net.layers(net.getLayerIndex(rootLayerName)).outputs{1} 'data' }; outputs = layerName ; params = {} ; net.addLayer(layerName, layer, inputs, outputs, params) ; layerName = sprintf('%s_mbox_loc', prefix) ; ks = 3 ; sz = [ks ks channelsIn locOut] ; layer = dagnn.Conv('size', sz, 'pad', 1, 'stride', 1, 'hasBias', true) ; inputs = net.layers(net.getLayerIndex(rootLayerName)).outputs ; outputs = layerName ; params = {sprintf('%s_mbox_locf', prefix), sprintf('%s_mbox_locb', prefix)} ; net.addLayer(layerName, layer, inputs, outputs, params) ; net = init_weights(net, layerName, ks, channelsIn, locOut) ; prevLayerName = layerName ; layerName = sprintf('%s_mbox_loc_perm', prefix) ; layer = dagnn.Permute('order', [3 2 1 4]); inputs = net.layers(net.getLayerIndex(prevLayerName)).outputs ; outputs = layerName ; params = {} ; net.addLayer(layerName, layer, inputs, outputs, params) ; prevLayerName = layerName ; layerName = sprintf('%s_mbox_loc_flat', prefix) ; layer = dagnn.Flatten('axis', 3) ; inputs = net.layers(net.getLayerIndex(prevLayerName)).outputs ; outputs = layerName ; params = {} ; net.addLayer(layerName, layer, inputs, outputs, params) ; layerName = sprintf('%s_mbox_conf', prefix) ; ks = 3 ; sz = [ks ks channelsIn confOut] ; layer = dagnn.Conv('size', sz, 'pad', 1, 'stride', 1, 'hasBias', true) ; inputs = net.layers(net.getLayerIndex(rootLayerName)).outputs ; outputs = layerName ; params = {sprintf('%s_mbox_conff', prefix), sprintf('%s_mbox_confb', prefix)} ; net.addLayer(layerName, layer, inputs, outputs, params) ; net = init_weights(net, layerName, ks, channelsIn, confOut) ; prevLayerName = layerName ; layerName = sprintf('%s_mbox_conf_perm', prefix) ; layer = dagnn.Permute('order', [3 2 1 4]); inputs = net.layers(net.getLayerIndex(prevLayerName)).outputs ; outputs = layerName ; params = {} ; net.addLayer(layerName, layer, inputs, outputs, params) ; prevLayerName = layerName ; layerName = sprintf('%s_mbox_conf_flat', prefix) ; layer = dagnn.Flatten('axis', 3) ; inputs = net.layers(net.getLayerIndex(prevLayerName)).outputs ; outputs = layerName ; params = {} ; net.addLayer(layerName, layer, inputs, outputs, params) ; % -------------------------------------------------------------------------- function net = addFusionLayer(net, layerName, fuseType, sourcePrefixes, axis) % -------------------------------------------------------------------------- %ADDFUSIONLAYER adds a layer to concatenate source layers % ADDFUSIONLAYER adds a concatenation layer fusing inputs of a % particular type % % ARGUMENTS: % `layerName` name of created layer % `fuseType` types to be fused (can be 'loc', 'conf' or % 'priorbox') % `sourcPrefixes` cell array of prefix strings of layers to % be fused % `axis` dimension of concatenation layer = dagnn.Concat('dim', axis) ; inputLayers = cellfun(@(x) sprintf('%s_mbox_%s', x, fuseType), ... sourcePrefixes, 'UniformOutput', false) ; inputs = cellfun(@(x) net.layers(net.getLayerIndex(x)).outputs{1}, ... inputLayers, 'UniformOutput', false) ; outputs = layerName ; params = {} ; net.addLayer(layerName, layer, inputs, outputs, params) ; % ------------------------------------------------------ function net = init_weights(net, layerName, ks, in, out) % ------------------------------------------------------ % xavier initialize weights and set initial learning rates paramNames = net.layers(net.getLayerIndex(layerName)).params ; filterName = paramNames{1} ; biasName = paramNames{2} ; % mimic caffe version sc = sqrt(1/(ks*ks*in)) ; filters = randn(ks, ks, in, out, 'single') * sc ; net.params(net.getParamIndex(filterName)).value = filters ; net.params(net.getParamIndex(filterName)).learningRate = 1 ; biases = zeros(out, 1, 'single') ; net.params(net.getParamIndex(biasName)).value = biases ; net.params(net.getParamIndex(biasName)).learningRate = 2 ; net.params(net.getParamIndex(biasName)).weightDecay = 0 ;
github
vedaldi/mcnSSD-master
patchSampler.m
.m
mcnSSD-master/matlab/utils/patchSampler.m
1,636
utf_8
f8e0fbe5b2a84939aa6a355c41404674
function [patch, targets, labels] = patchSampler(targets, labels, opts) % TODO: docs strategies = {'jacc_0.1', ... 'jacc_0.3', ... 'jacc_0.5', ... 'jacc_0.7', ... 'jacc_0.9', ... 'rand_patch'} ; targetsWH = bboxCoder(targets, 'MinMax', 'MinWH') ; success = false ; while ~success sampledPatches = cellfun(@(x) runSampleStrategy(x, targetsWH, opts), ... strategies, 'Uni', 0) ; % add original image as the last patch strategy sampledPatches{end + 1} = [ 0 0 1 1 ] ; % remove failed samples empty = cellfun(@isempty, sampledPatches) ; sampledPatches(empty) = [] ; % uniformly sample from patch samples :) patch = sampledPatches{randi(length(sampledPatches), 1)} ; %---------------------------- % DEBUG cond = patch(:,3:4) - patch(:,1:2) > 0 ; assert(all(cond(:)), ... 'PATCHSAMPLER:invalidPatch', ... 'patches must be in the (xmin, ymin, xmax, ymax) format') ; %---------------------------- [success, targets, labels] = updateAnnotations(patch, targetsWH, labels, opts) ; end cond = targets(:,3:4) - targets(:,1:2) > 0 ; assert(all(cond(:)), ... 'PATCHSAMPLER:invalidTargets', ... 'target boxes must be in the (xmin, ymin, xmax, ymax) format') ; % --------------------------------------------------------- function patch = runSampleStrategy(strategy, targetsWH, opts) % --------------------------------------------------------- randSource = rand(opts.numTrials, 4) ; patch = runPatchTrials(targetsWH, strategy, randSource, opts) ;
github
vedaldi/mcnSSD-master
findBestEpoch.m
.m
mcnSSD-master/matlab/utils/findBestEpoch.m
3,047
utf_8
013d4183ef2103cc519f6bbec63ee734
function bestEpoch = findBestEpoch(expDir, varargin) %FINDBESTEPOCH finds the best epoch of training % FINDBESTEPOCH(EXPDIR) evaluates the checkpoints % (the `net-epoch-%d.mat` files created during % training) in EXPDIR % % FINDBESTEPOCH(..., 'option', value, ...) accepts the following % options: % % `priorityMetric`:: 'classError' % Determines the highest priority metric by which to rank the % checkpoints. % % `prune`:: false % Removes all saved checkpoints to save space except: % % 1. The checkpoint with the lowest validation error metric % 2. The last checkpoint opts.prune = false ; opts.priorityMetric = 'classError' ; opts = vl_argparse(opts, varargin) ; lastEpoch = findLastCheckpoint(expDir); % return if no checkpoints were found if ~lastEpoch return end bestEpoch = findBestValCheckpoint(expDir, opts.priorityMetric); preciousEpochs = [bestEpoch lastEpoch]; if opts.prune removeOtherCheckpoints(expDir, preciousEpochs); fprintf('----------------------- \n'); fprintf('%s directory cleaned: \n', expDir); fprintf('----------------------- \n'); end % ------------------------------------------------------------------------- function removeOtherCheckpoints(expDir, preciousEpochs) % ------------------------------------------------------------------------- list = dir(fullfile(expDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epochs = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; targets = ~ismember(epochs, preciousEpochs); files = cellfun(@(x) fullfile(expDir, sprintf('net-epoch-%d.mat', x)), ... num2cell(epochs(targets)), 'UniformOutput', false); cellfun(@(x) delete(x), files) % ------------------------------------------------------------------------- function bestEpoch = findBestValCheckpoint(expDir, priorityMetric) % ------------------------------------------------------------------------- lastEpoch = findLastCheckpoint(expDir) ; % handle the different storage structures/error metrics data = load(fullfile(expDir, sprintf('net-epoch-%d.mat', lastEpoch))); if isfield(data, 'stats') valStats = data.stats.val; elseif isfield(data, 'info') valStats = data.info.val; else error('storage structure not recognised'); end % find best checkpoint according to the following priority metrics = {priorityMetric, 'top1error', 'error', 'mbox_loss', 'class_loss'} ; for i = 1:numel(metrics) if isfield(valStats, metrics{i}) errorMetric = [valStats.(metrics{i})] ; break ; end end assert(logical(exist('errorMetric')), 'error metrics not recognized') ; [~, bestEpoch] = min(errorMetric); % ------------------------------------------------------------------------- function epoch = findLastCheckpoint(expDir) % ------------------------------------------------------------------------- list = dir(fullfile(expDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ;
github
vedaldi/mcnSSD-master
printPascalResults.m
.m
mcnSSD-master/matlab/utils/printPascalResults.m
5,238
utf_8
84ec5f37d3be267ee3307feedeb0b60f
function printPascalResults(cacheDir, varargin) %PRINTPASCALRESULTS prints out results as formatted tables % PRINTRESULTS(CACHEDIR) searches the cache directory of % pascal VOC evaluations and prints out a formatted summary % CACHEDIR is a string specifying the absolute path of the % directory holding the cached results % % PRINTPASCALRESULTS(..., 'option', value, ...) takes % the following options: % % `orientation`:: 'portrait' % The orientation in which the table is printed. Can be % either 'landscape' or 'portrait'. Landscape is useful % when you have a wide monitor. % % Copyright (C) 2017 Samuel Albanie % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.orientation = 'portrait' ; opts = vl_argparse(opts, varargin) ; [valResList, testResList] = getResultsList(cacheDir) ; valResults = cellfun(@(x) getResult(x), valResList, 'Uni', false) ; testResults = cellfun(@(x) getResult(x), testResList, 'Uni', false) ; valResults = cell2mat(valResults) ; testResults = cell2mat(testResults) ; if ~isempty(valResults) fprintf('\nVal Set Results:\n') ; prettyPrintTable(valResults, opts) ; end if ~isempty(testResults) fprintf('\nTest Set Results:\n') ; prettyPrintTable(testResults, opts) ; end % ------------------------------------------------------------------------- function [valList, testList] = getResultsList(cacheDir) % ------------------------------------------------------------------------- files = ignoreSystemFiles(dir(fullfile(cacheDir, '*.mat'))) ; names = {files.name} ; [penSuffixes, suffixes] = cellfun(@(x) getSuffixes(x), names, 'Uni', false) ; valList = fullfile(cacheDir, names(strcmp(suffixes, 'results') & ... strcmp(penSuffixes, 'val'))) ; testList = fullfile(cacheDir, names(strcmp(suffixes, 'results') & ... strcmp(penSuffixes, 'test'))) ; % ------------------------------------------------------------------------- function [penSuffix, suffix] = getSuffixes(filename) % ------------------------------------------------------------------------- [~,filename,~] = fileparts(filename) ; tokens = strsplit(filename, '-') ; penSuffix = tokens{end -1} ; suffix = tokens{end} ; % ------------------------------------------------------------------------- function result = getResult(resultFile) % ------------------------------------------------------------------------- [~,fname,~] = fileparts(resultFile) ; tokens = strsplit(fname,'-') ; model = strjoin(tokens(1:end - 2), '-') ; result.model= model; result.subset = tokens{end - 1} ; data = load(resultFile) ; aps = data.results * 100; pascalClasses = {'aeroplane', 'bicycle', 'bird', 'boat', ... 'bottle', 'bus', 'car', 'cat', 'chair', ... 'cow', 'diningtable', 'dog', 'horse', ... 'motorbike', 'person', 'pottedplant', ... 'sheep', 'sofa', 'train', 'tvmonitor'} ; for i = 1:numel(pascalClasses) f = pascalClasses{i} ; result.(f) = aps(i) ; end result.mean = mean(aps) ; %--------------------------------------- function prettyPrintTable(results, opts) %--------------------------------------- switch opts.orientation case 'portrait' table = struct2table(results); numCols = size(table, 1) ; % format the column widths leftCol = 14 ; if ischar(table.model) table.model = {table.model} ; end dataCol = max(cellfun(@length, table.model)) ; % print the table headers columnWidths = horzcat(leftCol, repmat(dataCol, 1, numCols)) ; dividerFormatter = strcat(repmat('%s ', 1, numCols + 1), '\n') ; dividerStrings = arrayfun(@(x) repmat('-', 1, x), columnWidths, ... 'Uni', false) ; fprintf(dividerFormatter, dividerStrings{:}) ; headerFormatter = strcat(sprintf('%%-%ds', leftCol), ... repmat(sprintf(' %%-%ds', dataCol), ... 1, numCols), '\n') ; headerStrings = horzcat(' ', table.model') ; fprintf(headerFormatter, headerStrings{:}) ; fprintf(dividerFormatter, dividerStrings{:}) ; % print the main table categories = setdiff(fieldnames(table), ... {'Properties', 'subset', 'model'}) ; dataFormatter = strcat(sprintf('%%-%ds', leftCol), ... repmat(sprintf(' %%-%d.2f', dataCol), ... 1, numCols), '\n') ; for i = 1:numel(categories); c = categories{i} ; ap = table.(c) ; fprintf(dataFormatter, c, ap(:)) ; end fprintf(dividerFormatter, dividerStrings{:}) ; ap = table.('mean') ; fprintf(dataFormatter, 'mean', ap(:)) ; fprintf(dividerFormatter, dividerStrings{:}) ; case 'landscape' table = struct2table(results); disp(table) ; otherwise error('table orientation must be either landscape or portrait') ; end
github
vedaldi/mcnSSD-master
pruneCheckpoints.m
.m
mcnSSD-master/matlab/utils/pruneCheckpoints.m
1,808
utf_8
decdd56329b5b620f8bbdb243d1a945e
function varargout = pruneCheckpoints(expDir, varargin) %PRUNECHECKPOINTS removes unnecessary checkpoint files % PRUNECHECKPOINTS(EXPDIR) evaluates the checkpoints % (the `net-epoch-%d.mat` files created during % training) in EXPDIR and removes all checkpoints except: % % 1. The checkpoint with the lowest validation error metric % 2. The last checkpoint % % If an output argument is provided, PRUNECHECKPOINTS returns the % epoch with the lowest validation error. % % PRUNECHECKPOINTS(..., 'option', value, ...) accepts the following % options: % % `priorityMetric`:: 'classError' % Determines the highest priority metric by which to rank the % checkpoints for pruning. opts.priorityMetric = 'classError' ; opts = vl_argparse(opts, varargin) ; lastEpoch = findLastCheckpoint(expDir); % return if no checkpoints were found if ~lastEpoch return end bestEpoch = findBestCheckpoint(expDir, opts.priorityMetric); preciousEpochs = [bestEpoch lastEpoch]; removeOtherCheckpoints(expDir, preciousEpochs); fprintf('----------------------- \n'); fprintf('%s directory cleaned: \n', expDir); fprintf('----------------------- \n'); if nargout == 1 varargout{1} = bestEpoch ; end % ------------------------------------------------------------------------- function removeOtherCheckpoints(expDir, preciousEpochs) % ------------------------------------------------------------------------- list = dir(fullfile(expDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epochs = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; targets = ~ismember(epochs, preciousEpochs); files = cellfun(@(x) fullfile(expDir, sprintf('net-epoch-%d.mat', x)), ... num2cell(epochs(targets)), 'UniformOutput', false); cellfun(@(x) delete(x), files)
github
vedaldi/mcnSSD-master
matchPriors.m
.m
mcnSSD-master/matlab/utils/matchPriors.m
2,838
utf_8
b2eb3ece2444e7a7f991742c046e05f5
function [matches, overlaps, ignored] = matchPriors(gtBoxes, pBoxes, varargin) % MATCHPRIORS % % TODO: docs % opts.overlapThreshold = 0.5 ; opts.ignoreXBoundaryBoxes = false ; opts = vl_argparse(opts, varargin, 'nonrecursive') ; if opts.ignoreXBoundaryBoxes boundaryBoxes = pBoxes(:,1) < 0 ... | pBoxes(:,2) < 0 ... | pBoxes(:,3) > 1 ... | pBoxes(:,4) > 1 ; ignored = find(boundaryBoxes) ; pBoxes = updateBoundaryPreds(pBoxes, ignored) ; else ignored = zeros(size(pBoxes, 1), 1) ; end % re-encode bboxes to [xmin ymin width height] gtMinWH = bboxCoder(gtBoxes, 'MinMax', 'MinWH') ; pMinWH = bboxCoder(pBoxes, 'MinMax', 'MinWH') ; % first the best overlapping priors with gt boxes overlaps = bboxOverlapRatio(gtMinWH, pMinWH, 'Union') ; [~, bestOverlapIdx] = max(overlaps, [], 2) ; % find any remaining priors with greater than the overlap threshold boxIdx = 1:size(gtMinWH, 1) ; allMatches_ = arrayfun(@(x, i) ... unique([x find(overlaps(i, :) > opts.overlapThreshold)]), ... bestOverlapIdx', boxIdx, ... 'UniformOutput', false) ; % Each prior box that has matched needs to be assigned to a specific % ground truth. This process is done in two steps. % 1. Initially, all priors are assigned to the gts with which % they have greatest overlap % 2. Then (to ensure that each gt is assigned at least one % prior) each gt is assigned the prior box which has the % highest overlap with it. If multiple gts have their % highest overlap with the same prior, it is assigned % to the gt with which it has greatest overlap and % the other gts get their 'second choice' of prior etc. matchSizes = cellfun(@numel, allMatches_) ; uniqueMatches = unique(horzcat(allMatches_{:}))' ; uniqueMatchOverlaps = overlaps(:,uniqueMatches)' ; [~, assignments] = max(uniqueMatchOverlaps, [], 2) ; for i = 1:size(gtBoxes, 1) [r,c] = maxMatrixElement(uniqueMatchOverlaps) ; assignments(r) = c ; uniqueMatchOverlaps(r,:) = -Inf ; uniqueMatchOverlaps(:,c) = -Inf ; end matches = arrayfun(@(x) uniqueMatches(x == assignments)', ... 1:size(gtBoxes), 'Uni', false) ; % ---------------------------------------------------- function pBoxes = updateBoundaryPreds(pBoxes, ignored) % --------------------------------------------------- % replace predictions that lie on the boundary % with boxes that cannot be matched by priors % choose an unreachable value x = max(pBoxes(:)) + 1 ; % update the predictions pBoxes(ignored,:) = repmat([ x x x+1 x+1 ], numel(ignored), 1) ; % --------------------------------------------- function [row, col] = maxMatrixElement(matrix) % --------------------------------------------- [maxVal,ind] = max(matrix(:)) ; [row,col] = ind2sub(size(matrix),ind) ;
github
vedaldi/mcnSSD-master
confirmConfig.m
.m
mcnSSD-master/matlab/utils/confirmConfig.m
1,953
utf_8
e0d793b88b3c3802c4ff89e950d28208
function confirmConfig(expDir, opts) %DOCS: todo - pretty obvs if ~opts.confirmConfig return ; end [~,expName] = fileparts(expDir) ; fprintf('Experiment name: %s\n', expName) ; fprintf('------------------------------------\n') ; fprintf('Training set: %s\n', opts.dataOpts.trainData) ; fprintf('Testing set: %s\n', opts.dataOpts.testData) ; fprintf('------------------------------------\n') ; fprintf('Prune checkpoints: %d\n', opts.pruneCheckpoints) ; fprintf('GPU: %d\n', opts.train.gpus) ; fprintf('Batch size: %d\n', opts.train.batchSize) ; fprintf('------------------------------------\n') ; fprintf('Train + val: %d\n', opts.dataOpts.useValForTraining) ; fprintf('Flip: %d\n', opts.dataOpts.flipAugmentation) ; fprintf('Patches: %d\n', opts.dataOpts.patchAugmentation) ; fprintf('Zoom: %d\n', opts.dataOpts.zoomAugmentation) ; fprintf('Distort: %d\n', opts.dataOpts.distortAugmentation) ; fprintf('------------------------------------\n') ; printSchedule(opts) ; fprintf('------------------------------------\n') ; waiting = true ; prompt = 'Run experiment with these parameters? `y` or `n`\n' ; while waiting str = input(prompt,'s') ; switch str case 'y' return ; case 'n' throw(exception) ; otherwise fprintf('input %s not recognised, please use `y` or `n`\n', str) ; end end % ------------------------- function printSchedule(opts) % ------------------------- % format learning rates (assumes monotonically % decreasing after the first warmup epochs) fprintf('Learning Rate Schedule: \n') ; lr = opts.train.learningRate ; warmup = lr(1:2) ; fprintf('%g %g (warmup)\n', warmup(1), warmup(2)) ; schedule = lr(3:end) ; [tiers, uIdx] = unique(schedule) ; [~, order] = sort(uIdx) ; for i = 1:numel(order) idx = uIdx(order)' ; tierLength = [ idx(2:end) numel(schedule) + 1] - idx ; fprintf('%g for %d epochs\n', tiers(order(i)), tierLength(i)) ; end
github
vedaldi/mcnSSD-master
nnmultiboxcoder.m
.m
mcnSSD-master/matlab/xtest/suite/nnmultiboxcoder.m
2,571
utf_8
e4acc4d7263d1d0466acd069824ff7b0
classdef nnmultiboxcoder < nntest methods (Test) function basic(test) batchSize = 5 ; numPriors = 7 ; numLocPreds = numPriors * 4 ; numConfPreds = numPriors * 21 ; labelRange = [1 21] ; for i = 1:batchSize numBoxes = randi(10, 1) ; xmin = rand(numBoxes, 1) ; ymin = rand(numBoxes, 1) ; xmax = xmin + (1 - xmin) .* rand(numBoxes, 1) ; ymax = ymin + (1 - ymin) .* rand(numBoxes, 1) ; gt{i} = [ xmin ymin xmax ymax] ; l{i} = randi(21, 1, numBoxes) ; end % we need to encode some viable prior boxes to pass through % the saftey checks vars = [0.1 0.1 0.2 0.2] ; priorBoxes = [ 0.4 0.2 0.7 0.7 ; 0.1 0.1 0.4 0.41 ; 0.1 0.1 0.8 0.8 ; 0.1 0.1 0.8 0.9 ; 0.1 0.1 0.9 0.8 ; 0.2 0.1 0.9 0.8 ; 0.26 0.26 0.75 0.75 ]' ; priorVars = repmat(vars', [numPriors 1]) ; x = randn(1,1,numLocPreds, batchSize,'single') ; v = randn(1,1,numConfPreds, batchSize,'single') ; p = cat(3, priorBoxes(:), priorVars) ; y = vl_nnmultiboxcoder(x, v, p, gt, l) ; posMatches = y{5} ; negMatches = y{6} ; %check derivatives with numerical approximation derLocs = test.randn(size(y{1})) / 100 ; derConfs = test.randn(size(y{3})) / 100 ; dzdy = { derLocs, derConfs } ; dzdxv = vl_nnmultiboxcoder(x, v, p, gt, l, dzdy, ... 'matchingPosIndices', posMatches, ... 'matchingNegIndices', negMatches) ; dzdx = dzdxv{1} ; dzdv = dzdxv{2} ; test.der(@(x) forward_wrapper(x,v,p,gt,l,'locPreds'), x, ... dzdy{1}, dzdx, test.range * 1e-3) ; % NOTE: the delta on this test must be small to avoid "flipping" the % hard negatives test.der(@(v) forward_wrapper(x,v,p,gt,l,'confPreds'), v, ... dzdy{2}, dzdv, test.range * 1e-5) ; end end end % ------------------------------------------------------ function y = forward_wrapper(x,v,p,gt,l,target) % ------------------------------------------------------ y = vl_nnmultiboxcoder(x,v,p,gt,l) ; switch target case 'locPreds' y = y{1} ; case 'confPreds' y = y{3} ; otherwise error('unrecognized derivative') ; end end
github
vedaldi/mcnSSD-master
ssd_pascal_train.m
.m
mcnSSD-master/pascal/ssd_pascal_train.m
5,582
utf_8
6f40b91f660e510dcc290777ac0f3023
function ssd_pascal_train(varargin) opts.gpus = [1] ; opts.continue = true ; opts.confirmConfig = true ; opts.pruneCheckpoints = true ; opts.architecture = 300 ; opts.use_vl_imreadjpeg = false ; opts = vl_argparse(opts, varargin) ; % --------------------------- % configure training options % --------------------------- train.batchSize = 32 ; train.gpus = opts.gpus ; train.continue = opts.continue ; train.parameterServer.method = 'tmove' ; train.numSubBatches = ceil(4 / max(numel(train.gpus), 1)) ; % Since losses in each batch are computed as a function of ground truth % matches rather than batch size, we scale up the final derivative to "undo" % the derivative normalisation performed in cnn_train_dag derScale = train.batchSize / (train.numSubBatches * numel(opts.gpus)) ; train.derOutputs = {'mbox_loss', derScale} ; % ------------------------- % configure dataset options % ------------------------- dataOpts.name = 'pascal' ; dataOpts.trainData = '0712' ; dataOpts.testData = '07' ; dataOpts.flipAugmentation = true ; dataOpts.zoomAugmentation = false ; dataOpts.patchAugmentation = true ; dataOpts.useValForTraining = true ; dataOpts.distortAugmentation = true ; dataOpts.zoomScale = 4 ; dataOpts.getImdb = @getPascalImdb ; dataOpts.prepareImdb = @prepareImdb ; dataOpts.dataRoot = fullfile(vl_rootnn, 'data', 'datasets') ; % ------------------------- % configure model options % ------------------------- modelOpts.type = 'ssd' ; modelOpts.numClasses = 21 ; modelOpts.clipPriors = false ; modelOpts.net_init = @ssd_init ; modelOpts.deploy_func = @ssd_deploy ; modelOpts.batchSize = train.batchSize ; modelOpts.get_batch = @ssd_train_get_batch ; modelOpts.architecture = opts.architecture ; % ------------------------- % Set learning rates % ------------------------- warmup = 0.0001 ; steadyLR = 0.001 ; gentleLR = 0.0001 ; vGentleLR = 0.00001 ; if dataOpts.zoomAugmentation numSteadyEpochs = 155 ; numGentleEpochs = 38 ; numVeryGentleEpochs = 38 ; else numSteadyEpochs = 75 ; numGentleEpochs = 35 ; numVeryGentleEpochs = 0 ; end steady = steadyLR * ones(1, numSteadyEpochs) ; gentle = gentleLR * ones(1, numGentleEpochs) ; veryGentle = vGentleLR * ones(1, numVeryGentleEpochs) ; train.learningRate = [warmup steady gentle veryGentle] ; train.numEpochs = numel(train.learningRate) ; % ---------------------------- % configure batch opts % ---------------------------- batchOpts.clipTargets = true ; batchOpts.imageSize = repmat(modelOpts.architecture, 1, 2) ; batchOpts.patchOpts.use = dataOpts.patchAugmentation ; batchOpts.patchOpts.numTrials = 50 ; batchOpts.patchOpts.minPatchScale = 0.3 ; batchOpts.patchOpts.maxPatchScale = 1 ; batchOpts.patchOpts.minAspect = 0.5 ; batchOpts.patchOpts.maxAspect = 2 ; batchOpts.patchOpts.clipTargets = batchOpts.clipTargets ; batchOpts.flipOpts.use = dataOpts.flipAugmentation ; batchOpts.flipOpts.prob = 0.5 ; batchOpts.zoomOpts.use = dataOpts.zoomAugmentation ; batchOpts.zoomOpts.prob = 0.5 ; batchOpts.zoomOpts.minScale = 1 ; batchOpts.zoomOpts.maxScale = dataOpts.zoomScale ; batchOpts.distortOpts.use = dataOpts.distortAugmentation ; batchOpts.distortOpts.brightnessProb = 0.5 ; batchOpts.distortOpts.contrastProb = 0.5 ; batchOpts.distortOpts.saturationProb = 0.5 ; batchOpts.distortOpts.hueProb = 0.5 ; batchOpts.distortOpts.brightnessDelta = 32 ; batchOpts.distortOpts.contrastLower = 0.5 ; batchOpts.distortOpts.contrastUpper = 1.5 ; batchOpts.distortOpts.hueDelta = 18 ; batchOpts.distortOpts.saturationLower = 0.5 ; batchOpts.distortOpts.saturationUpper = 1.5 ; batchOpts.distortOpts.randomOrderProb = 0 ; batchOpts.numThreads = 2 ; batchOpts.prefetch = false ; batchOpts.useGpu = numel(train.gpus) > 0 ; batchOpts.use_vl_imreadjpeg = opts.use_vl_imreadjpeg ; batchOpts.resizeMethods = {'bilinear', 'box', 'nearest', 'bicubic', 'lanczos2'} ; % determine experiment name expName = getExpName(modelOpts, dataOpts) ; expDir = fullfile(vl_rootnn, 'data', dataOpts.name, expName) ; % ------------------------- % configure paths % ------------------------- dataOpts.imdbPath = fullfile(vl_rootnn, 'data', dataOpts.name, ... '/standard_imdb/imdb.mat') ; modelOpts.deployPath = fullfile(expDir, 'deployed', ... sprintf('local-%s-%s-%d-%%d.mat', modelOpts.type, ... dataOpts.name, modelOpts.architecture)) ; % ------------------------- % configure meta options % ------------------------- opts.train = train ; opts.dataOpts = dataOpts ; opts.modelOpts = modelOpts ; opts.batchOpts = batchOpts ; opts.eval_func = @ssd_pascal_evaluation ; % run ssd_train(expDir, opts) ; % --------------------------------------------------- function [opts, imdb] = prepareImdb(imdb, opts) % --------------------------------------------------- % set path to VOC 2007 devkit directory switch opts.dataOpts.trainData case '07' % to restrict to 2007, remove training 2012 data imdb.images.set(imdb.images.year == 2012 & imdb.images.set == 1) = -1 ; case '12' % to restrict to 2012, remove 2007 training data imdb.images.set(imdb.images.year == 2007 & imdb.images.set == 1) = -1 ; case '0712' ; % do nothing ( use full dataset) otherwise error(sprintf('Training data %s not recognized', ... opts.dataOpts.trainData)) ; end opts.train.val = find(imdb.images.set == 2) ; if opts.dataOpts.useValForTraining opts.train.train = find(imdb.images.set == 2 | imdb.images.set == 1) ; end
github
vedaldi/mcnSSD-master
ssd_pascal_evaluation.m
.m
mcnSSD-master/pascal/ssd_pascal_evaluation.m
5,925
utf_8
4fb44fc4c94fd54bbcc87268d62ba3ff
function ssd_pascal_evaluation(varargin) %SSD_PASCAL_EVALUATION evaluate SSD detector on pascal VOC opts.net = [] ; opts.gpus = 2 ; opts.evalVersion = 'fast' ; opts.modelName = 'ssd-pascal-vggvd-300' ; % configure batch opts opts.batchOpts.batchSize = 8 ; opts.batchOpts.numThreads = 4 ; opts.batchOpts.use_vl_imreadjpeg = true ; opts.batchOpts.scaleInputs = 0.007843 ; opts.batchOpts.imMean = [123, 117, 104] ; opts = vl_argparse(opts, varargin) ; % load network if isempty(opts.net) net = ssd_zoo(opts.modelName) ; else net = opts.net ; end % evaluation options opts.testset = 'test' ; opts.prefetch = true ; opts.fixedSizeInputs = false ; % cache configuration cacheOpts.refreshPredictionCache = false ; cacheOpts.refreshDecodedPredCache = false ; cacheOpts.refreshEvaluationCache = true ; cacheOpts.refreshFigures = true ; % configure model options modelOpts.predVar = 'detection_out' ; modelOpts.get_eval_batch = @ssd_eval_get_batch ; % batch options opts.batchOpts.imageSize = net.meta.normalization.imageSize ; % configure dataset options dataOpts.name = 'pascal' ; dataOpts.decoder = 'serial' ; dataOpts.getImdb = @getPascalImdb ; dataOpts.eval_func = @pascal_eval_func ; dataOpts.evalVersion = opts.evalVersion ; dataOpts.displayResults = @displayPascalResults ; dataOpts.dataRoot = fullfile(vl_rootnn, 'data', 'datasets') ; dataOpts.imdbPath = fullfile(vl_rootnn, 'data/pascal/standard_imdb/imdb.mat') ; dataOpts.configureImdbOpts = @configureImdbOpts ; dataOpts.resultsFormat = 'minMax' ; % configure paths tail = fullfile('evaluations', dataOpts.name, opts.modelName) ; expDir = fullfile(vl_rootnn, 'data', tail) ; resultsFile = sprintf('%s-%s-results.mat', opts.modelName, opts.testset) ; rawPredsFile = sprintf('%s-%s-raw-preds.mat', opts.modelName, opts.testset) ; decodedPredsFile = sprintf('%s-%s-decoded.mat', opts.modelName, opts.testset) ; evalCacheDir = fullfile(expDir, 'eval_cache') ; if ~exist(evalCacheDir, 'dir') mkdir(evalCacheDir) ; mkdir(fullfile(evalCacheDir, 'cache')) ; end cacheOpts.rawPredsCache = fullfile(evalCacheDir, rawPredsFile) ; cacheOpts.decodedPredsCache = fullfile(evalCacheDir, decodedPredsFile) ; cacheOpts.resultsCache = fullfile(evalCacheDir, resultsFile) ; cacheOpts.evalCacheDir = evalCacheDir ; % configure meta options opts.dataOpts = dataOpts ; opts.modelOpts = modelOpts ; opts.cacheOpts = cacheOpts ; ssd_evaluation(expDir, net, opts) ; % ------------------------------------------------------------------ function aps = pascal_eval_func(modelName, decodedPreds, imdb, opts) % ------------------------------------------------------------------ numClasses = numel(imdb.meta.classes) - 1 ; % exclude background aps = zeros(numClasses, 1) ; for c = 1:numClasses className = imdb.meta.classes{c + 1} ; % offset for background results = eval_voc(className, ... decodedPreds.imageIds{c}, ... decodedPreds.bboxes{c}, ... decodedPreds.scores{c}, ... opts.dataOpts.VOCopts, ... 'evalVersion', opts.dataOpts.evalVersion) ; fprintf('%s %.1\n', className, 100 * results.ap) ; aps(c) = results.ap_auc ; end save(opts.cacheOpts.resultsCache, 'aps') ; % ----------------------------------------------------------- function opts = configureImdbOpts(expDir, opts) % ----------------------------------------------------------- % configure VOC options % (must be done after the imdb is in place since evaluation % paths are set relative to data locations) opts.dataOpts = configureVOC(expDir, opts.dataOpts, 'test') ; %----------------------------------------------------------- function dataOpts = configureVOC(expDir, dataOpts, testset) %----------------------------------------------------------- % LOADPASCALOPTS Load the pascal VOC database options % % NOTE: The Pascal VOC dataset has a number of directories % and attributes. The paths to these directories are % set using the VOCdevkit code. The VOCdevkit initialization % code assumes it is being run from the devkit root folder, % so we make a note of our current directory, change to the % devkit root, initialize the pascal options and then change % back into our original directory VOCRoot = fullfile(dataOpts.dataRoot, 'VOCdevkit2007') ; VOCopts.devkitCode = fullfile(VOCRoot, 'VOCcode') ; % check the existence of the required folders assert(logical(exist(VOCRoot, 'dir')), 'VOC root directory not found') ; assert(logical(exist(VOCopts.devkitCode, 'dir')), 'devkit code not found') ; currentDir = pwd ; cd(VOCRoot) ; addpath(VOCopts.devkitCode) ; VOCinit ; % VOCinit loads database options into a variable called VOCopts dataDir = fullfile(VOCRoot, '2007') ; VOCopts.localdir = fullfile(dataDir, 'local') ; VOCopts.imgsetpath = fullfile(dataDir, 'ImageSets/Main/%s.txt') ; VOCopts.imgpath = fullfile(dataDir, 'ImageSets/Main/%s.txt') ; VOCopts.annopath = fullfile(dataDir, 'Annotations/%s.xml') ; VOCopts.cacheDir = fullfile(expDir, '2007/Results/Cache') ; VOCopts.drawAPCurve = false ; VOCopts.testset = testset ; detDir = fullfile(expDir, 'VOCdetections') ; % create detection and cache directories if required requiredDirs = {VOCopts.localdir, VOCopts.cacheDir, detDir} ; for i = 1:numel(requiredDirs) reqDir = requiredDirs{i} ; if ~exist(reqDir, 'dir') , mkdir(reqDir) ; end end VOCopts.detrespath = fullfile(detDir, sprintf('%%s_det_%s_%%s.txt', 'test')) ; dataOpts.VOCopts = VOCopts ; cd(currentDir) ; % return to original directory % --------------------------------------------------------------------------- function displayPascalResults(modelName, aps, opts) % --------------------------------------------------------------------------- fprintf('\n============\n') ; fprintf(sprintf('%s set performance of %s:', opts.testset, modelName)) ; fprintf('%.1f (mean ap) \n', 100 * mean(aps)) ; fprintf('\n============\n') ;
github
vedaldi/mcnSSD-master
vocSetup.m
.m
mcnSSD-master/pascal/vocSetup.m
10,820
utf_8
b83de8160d7f7d8d2127d3722f17144c
function imdb = vocSetup(varargin) opts.edition = '12' ; opts.dataDir = fullfile(vl_rootnn, 'data','datasets', 'voc07') ; opts.archiveDir = fullfile(vl_rootnn, 'data', 'archives') ; opts.includeDetection = false ; opts.includeDevkit = false ; opts.includeSegmentation = false ; opts.includeTest = true ; opts = vl_argparse(opts, varargin) ; % Download data if ~exist(fullfile(opts.dataDir,'Annotations')) download(opts) ; end % Source images and classes imdb.paths.image = esc(fullfile(opts.dataDir, 'JPEGImages', '%s.jpg')) ; imdb.sets.id = uint8([1 2 3]) ; imdb.sets.name = {'train', 'val', 'test'} ; imdb.classes.id = uint8(1:20) ; imdb.classes.name = {... 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', ... 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', ... 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'} ; imdb.classes.images = cell(1,20) ; imdb.images.id = [] ; imdb.images.name = {} ; imdb.images.set = [] ; index = containers.Map() ; [imdb, index] = addImageSet(opts, imdb, index, 'train', 1) ; [imdb, index] = addImageSet(opts, imdb, index, 'val', 2) ; if opts.includeTest [imdb, index] = addImageSet(opts, imdb, index, 'test', 3) ; end % Source segmentations if opts.includeSegmentation n = numel(imdb.images.id) ; imdb.paths.objectSegmentation = esc(fullfile(opts.dataDir, ... 'SegmentationObject', '%s.png')) ; imdb.paths.classSegmentation = esc(fullfile(opts.dataDir, ... 'SegmentationClass', '%s.png')) ; imdb.images.segmentation = false(1, n) ; [imdb, index] = addSegmentationSet(opts, imdb, index, 'train', 1) ; [imdb, index] = addSegmentationSet(opts, imdb, index, 'val', 2) ; if opts.includeTest [imdb, index] = addSegmentationSet(opts, imdb, index, 'test', 3) ; end end % Compress data types imdb.images.id = uint32(imdb.images.id) ; imdb.images.set = uint8(imdb.images.set) ; for i=1:20 imdb.classes.images{i} = uint32(imdb.classes.images{i}) ; end % Source detections if opts.includeDetection imdb.aspects.id = uint8(1:5) ; imdb.aspects.name = {'front', 'rear', 'left', 'right', 'misc'} ; imdb = addDetections(opts, imdb) ; end % Check images on disk and get their size imdb = getImageSizes(imdb) ; % ------------------------------------------------------------------------- function download(opts) % ------------------------------------------------------------------------- baseUrl = 'http://host.robots.ox.ac.uk:8080' ; switch opts.edition case '07', endpoint = sprintf('%s/pascal/VOC/voc2007', baseUrl) ; url = sprintf('%s/VOCtrainval_06-Nov-2007.tar', endpoint) ; testUrl = sprintf('%s/VOCtest_06-Nov-2007.tar', endpoint) ; devkitUrl = sprintf('%s/VOCdevkit_08-Jun-2007.tar', endpoint) ; case '08', url='' ; case '09' url='' ; case '10' url=sprintf('%s/pascal_trainval/VOCtrainval_03-May-2010.tar', baseUrl) ; case '11' url=sprintf('%s/pascal_trainval/VOCtrainval_25-May-2011.tar', baseUrl) ; case '12' url=sprintf('%s/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar', baseUrl) ; end trainvalData = sprintf('VOC20%strainval.tar', opts.edition) ; testData = sprintf('VOC20%stest.tar', opts.edition) ; devkit = sprintf('VOC20%sdevkit.tar', opts.edition) ; if ~exist(opts.archiveDir), mkdir(opts.archiveDir) ; end archivePath = fullfile(opts.archiveDir, trainvalData) ; if ~exist(archivePath) fprintf('%s: downloading %s to %s\n', mfilename, url, archivePath) ; urlwrite(url, archivePath) ; end fprintf('%s: decompressing and rearranging %s\n', mfilename, archivePath) ; untar(archivePath, opts.dataDir) ; if opts.includeDevkit devkitDir = fileparts(opts.dataDir) ; archivePath = fullfile(opts.archiveDir, devkit) ; if ~exist(archivePath) fprintf('%s: downloading %s to %s\n', mfilename, devkitUrl, archivePath) ; urlwrite(devkitUrl, archivePath) ; end fprintf('%s: decompressing and rearranging %s\n', mfilename, archivePath) ; untar(archivePath, devkitDir) ; movefile(fullfile(devkitDir, 'VOCdevkit', '*'), devkitDir) ; rmdir(fullfile(devkitDir, 'VOCdevkit')) ; end if opts.includeTest archivePath = fullfile(opts.archiveDir, testData) ; if ~exist(archivePath) try fprintf('attempting download %s to %s\n', testUrl, archivePath) ; urlwrite(testUrl, archivePath) ; catch error(strcat('Cannot download the test data automatically. Please ', ... ' download the file %s manually from the PASCAL test server.'), ... archivePath) ; end end fprintf('%s: decompressing and rearranging %s\n', mfilename, archivePath) ; untar(archivePath, opts.dataDir) ; end switch opts.edition case '11' movefile(fullfile(opts.dataDir, 'Test', 'VOCdevkit', ... sprintf('VOC20%s',opts.edition), '*'), opts.dataDir) ; rmdir(fullfile(opts.dataDir, 'Test'),'s') ; otherwise movefile(fullfile(opts.dataDir, 'VOCdevkit', ... sprintf('VOC20%s',opts.edition), '*'), opts.dataDir) ; rmdir(fullfile(opts.dataDir, 'VOCdevkit'),'s') ; end % ------------------------------------------------------------------------- function [imdb, index] = addImageSet(opts, imdb, index, setName, setCode) % ------------------------------------------------------------------------- j = length(imdb.images.id) ; for ci = 1:length(imdb.classes.name) className = imdb.classes.name{ci} ; annoPath = fullfile(opts.dataDir, 'ImageSets', 'Main', ... [className '_' setName '.txt']) ; fprintf('%s: reading %s\n', mfilename, annoPath) ; [names,labels] = textread(annoPath, '%s %f') ; for i=1:length(names) if ~index.isKey(names{i}) j = j + 1 ; index(names{i}) = j ; imdb.images.id(j) = j ; imdb.images.set(j) = setCode ; imdb.images.name{j} = names{i} ; imdb.images.classification(j) = true ; else j = index(names{i}) ; end if labels(i) > 0, imdb.classes.images{ci}(end+1) = j ; end end end % ------------------------------------------------------------------------- function [imdb, index] = addSegmentationSet(opts, imdb, index, setName, setCode) % ------------------------------------------------------------------------- segAnnoPath = fullfile(opts.dataDir, 'ImageSets', 'Segmentation', [setName '.txt']) ; fprintf('%s: reading %s\n', mfilename, segAnnoPath) ; segNames = textread(segAnnoPath, '%s') ; j = numel(imdb.images.id) ; for i=1:length(segNames) if index.isKey(segNames{i}) k = index(segNames{i}) ; imdb.images.segmentation(k) = true ; imdb.images.set(k) = setCode ; else j = j + 1 ; index(segNames{i}) = j ; imdb.images.id(j) = j ; imdb.images.set(j) = setCode ; imdb.images.name{j} = segNames{i} ; imdb.images.classification(j) = false ; imdb.images.segmentation(j) = true ; end end % ------------------------------------------------------------------------- function imdb = getImageSizes(imdb) % ------------------------------------------------------------------------- for j=1:numel(imdb.images.id) info = imfinfo(sprintf(imdb.paths.image, imdb.images.name{j})) ; imdb.images.size(:,j) = uint16([info.Width ; info.Height]) ; fprintf('%s: checked image %s [%d x %d]\n', ... mfilename, imdb.images.name{j}, info.Height, info.Width) ; end % ------------------------------------------------------------------------- function imdb = addDetections(opts, imdb) % ------------------------------------------------------------------------- rois = {} ; k = 0 ; fprintf('%s: getting detections for %d images\n', mfilename, ... numel(imdb.images.id)) ; for j=1:numel(imdb.images.id) fprintf('.') ; if mod(j,80)==0,fprintf('\n') ; end name = imdb.images.name{j} ; annoPath = fullfile(opts.dataDir, 'Annotations', [name '.xml']) ; if ~exist(annoPath, 'file') if imdb.images.classification(j) && imdb.images.set(j) ~= 3 warning(strcat('Could not find detection annotations for ', ... 'image ''%s''. Skipping.'), name) ; end continue ; end doc = xmlread(annoPath) ; x = parseXML(doc, doc.getDocumentElement()) ; % figure(1) ; clf ; % imagesc(imread(sprintf(imdb.paths.image,imdb.images.name{j}))) ; for q = 1:numel(x.object) xmin = sscanf(x.object(q).bndbox.xmin,'%d') ; ymin = sscanf(x.object(q).bndbox.ymin,'%d') ; xmax = sscanf(x.object(q).bndbox.xmax,'%d') - 1 ; ymax = sscanf(x.object(q).bndbox.ymax,'%d') - 1 ; k = k + 1 ; roi.id = k ; roi.image = imdb.images.id(j) ; roi.class = find(strcmp(x.object(q).name, imdb.classes.name)) ; roi.box = [xmin;ymin;xmax;ymax] ; roi.difficult = logical(sscanf(x.object(q).difficult,'%d')) ; roi.truncated = logical(sscanf(x.object(q).truncated,'%d')) ; if isfield(x.object(q),'occluded') roi.occluded = logical(sscanf(x.object(q).occluded,'%d')) ; else roi.occluded = false ; end switch x.object(q).pose case 'frontal', roi.aspect = 1 ; case 'rear', roi.aspect = 2 ; case {'sidefaceleft', 'left'}, roi.aspect = 3 ; case {'sidefaceright', 'right'}, roi.aspect = 4 ; case {'','unspecified'}, roi.aspect = 5 ; otherwise, error(sprintf('Unknown view ''%s''', x.object(q).pose)) ; end rois{k} = roi ; end end fprintf('\n') ; rois = horzcat(rois{:}) ; imdb.objects = struct(... 'id', uint32([rois.id]), ... 'image', uint32([rois.image]), ... 'class', uint8([rois.class]), ... 'box', single([rois.box]), ... 'difficult', [rois.difficult], ... 'truncated', [rois.truncated], ... 'occluded', [rois.occluded], ... 'aspect', uint8([rois.aspect])) ; % ------------------------------------------------------------------------- function value = parseXML(doc, x) % ------------------------------------------------------------------------- text = {''} ; opts = struct ; if x.hasChildNodes for c = 1:x.getChildNodes().getLength() y = x.getChildNodes().item(c-1) ; switch y.getNodeType() case doc.TEXT_NODE text{end+1} = lower(char(y.getData())) ; case doc.ELEMENT_NODE param = lower(char(y.getNodeName())) ; if strcmp(param, 'part'), continue ; end value = parseXML(doc, y) ; if ~isfield(opts, param) opts.(param) = value ; else opts.(param)(end+1) = value ; end end end if numel(fieldnames(opts)) > 0 value = opts ; else value = strtrim(horzcat(text{:})) ; end end % ------------------------------------------------------------------------- function str=esc(str) % ------------------------------------------------------------------------- str = strrep(str, '\', '\\') ;
github
vedaldi/mcnSSD-master
getPascalImdb.m
.m
mcnSSD-master/pascal/getPascalImdb.m
5,062
utf_8
6766fbe01fbab02e0b5b7b794636822c
function imdb = getPascalImdb(opts, varargin) % LOADIMDB loads Pascal VOC image database % % Inspiration ancestry for code: % A.Vedaldi -> R.Girshick -> S.Albanie opts.excludeDifficult = false ; opts = vl_argparse(opts, varargin) ; % Although the 2012 data can be used during training, only % the 2007 test data is used for evaluation opts.VOCRoot = fullfile(opts.dataOpts.dataRoot, 'VOCdevkit2007' ) ; opts.devkitCode = fullfile(opts.VOCRoot, 'VOCcode') ; imdb = loadImdb(opts) ; opts.pascalOpts = loadPascalOpts(opts) ; % add meta information (inlcuding background class) imdb.meta.classes = {'background' opts.pascalOpts.classes{:}} ; classIds = 1:numel(imdb.meta.classes) ; imdb.classMap = containers.Map(imdb.meta.classes, classIds) ; imdb.images.ext = 'jpg' ; imdb.meta.sets = {'train', 'val', 'test'} ; %----------------------------------------- function pascalOpts = loadPascalOpts(opts) %----------------------------------------- % LOADPASCALOPTS Load the pascal VOC database options % % NOTE: The Pascal VOC dataset has a number of directories % and attributes. The paths to these directories are % set using the VOCdevkit code. The VOCdevkit initialization % code assumes it is being run from the devkit root folder, % so we make a note of our current directory, change to the % devkit root, initialize the pascal options and then change % back into our original directory % check the existence of the required folders assert(logical(exist(opts.VOCRoot, 'dir')), 'VOC root directory not found') ; assert(logical(exist(opts.devkitCode, 'dir')), 'devkit code not found') ; currentDir = pwd ; cd(opts.VOCRoot) ; addpath(opts.devkitCode) ; % VOCinit loads database options into a variable called VOCopts VOCinit ; % Note - loads the options pascalOpts = VOCopts ; cd(currentDir) ; %----------------------------- function imdb = loadImdb(opts) %----------------------------- cache07 = '/tmp/07.mat' ; if ~exist(cache07, 'file') dataDir07 = fullfile(opts.dataOpts.dataRoot, 'VOCdevkit2007', '2007') ; imdb07 = vocSetup('edition', '07', ... 'dataDir', dataDir07, ... 'archiveDir', dataDir07, ... 'includeDevkit', true, ... 'includeTest', true, ... 'includeDetection', true, ... 'includeSegmentation', false) ; save(cache07, '-struct', 'imdb07') ; else imdb07 = load(cache07) ; end cache12 = '/tmp/12.mat' ; if ~exist(cache12, 'file') dataDir12 = fullfile(opts.dataOpts.dataRoot, 'VOCdevkit2012', '2012') ; imdb12 = vocSetup('edition', '12', ... 'dataDir', dataDir12, ... 'archiveDir', dataDir12, ... 'includeTest', false, ... 'includeDetection', true, ... 'includeSegmentation', false) ; save(cache12, '-struct', 'imdb12') ; else imdb12 = load(cache12) ; end imdb = combineImdbs(imdb07, imdb12, opts) ; % ------------------------------------------------ function imdb = combineImdbs(imdb07, imdb12, opts) % ------------------------------------------------ imdb.images.name = horzcat(imdb07.images.name, ... imdb12.images.name) ; imdb.images.set = horzcat(imdb07.images.set, ... imdb12.images.set) ; imdb.images.year = horzcat(ones(1,numel(imdb07.images.name)) * 2007, ... ones(1,numel(imdb12.images.name)) * 2012) ; imageSizes = horzcat(imdb07.images.size, imdb12.images.size ) ; paths = vertcat(repmat(imdb07.paths.image, numel(imdb07.images.name), 1), ... repmat(imdb12.paths.image, numel(imdb12.images.name), 1)) ; imdb.images.paths = arrayfun(@(x) paths(x,:), 1:size(paths, 1),'Uni', 0) ; % for consistency, store in Height-Width order imdb.images.imageSizes = arrayfun(@(x) imageSizes([2 1],x)', ... 1:size(imageSizes, 2), 'Uni', 0) ; annot07 = loadAnnotations(imdb07, opts) ; annot12 = loadAnnotations(imdb12, opts) ; imdb.annotations = horzcat(annot07, annot12) ; % ------------------------------------------------ function annotations = loadAnnotations(imdb, opts) % ------------------------------------------------ annotations = cell(1, numel(imdb.images.name)) ; for i = 1:numel(imdb.images.name) match = find(imdb.objects.image == i) ; % normalize annotation if opts.excludeDifficult keep = ~[imdb.objects.difficult(match)] ; else keep = 1:numel(match) ; end match = match(keep) ; boxes = imdb.objects.box(:,match) ; classes = imdb.objects.class(match) ; % normalize annotation imSize = repmat(imdb.images.size(:, i)', [1 2]) ; gt.boxes = bsxfun(@rdivide, boxes', single(imSize)) ; gt.classes = classes + 1 ; % add offset for background assert(all(2 <= gt.classes) && all(gt.classes <= 21), ... 'pascal class labels do not lie in the expected range') ; annotations{i} = gt ; fprintf('Loading annotaton %d \n', i) ; end
github
vedaldi/mcnSSD-master
eval_voc.m
.m
mcnSSD-master/pascal/helpers/eval_voc.m
3,611
utf_8
bec81a2c9c611348c2df08b282fec8df
function res = eval_voc(cls, imageIds, bboxes, scores, VOCopts, varargin) % EVAL_VOC evaluate detections on Pascal VOC % RES = EVAL_VOC(CLS, IMAGEIDS, BBOXES, SCORES, VOCOPTS) evalutes a set of % detections specified by BBOXES and SCORES for the given class, CLS. % IMAGEIDS is a cell array containing the ids of the images associated % with each score and bounding box. % % EVAL_VOC takes the following options: % `suffix` :: '' % A suffix which is appended to the result file generated by the script. % % `evalVersion` :: 'official' % A string denoting the evaluation script to be used to produced results. % 'official' indicates that the original script released with the pascal % challnege should be used. However, since this runs extremely slowly, % the option 'fast' may be used in development. % % `useResSalt` :: true % If true, then a random string (known as a salt) is added to the end of the % results file name (prevents concurrent evaluations from wreaking havoc by % over-writing each other) % % `rmResults` :: true % Delete results files after AP computations have completed % % `drawCurve` :: true % plot a curve for the current class % % `compId` :: 'comp4' % The identifier of the competition (comp4 indicates the use of outside % data). % % Author: Samuel Albanie, based directly on Ross Girshick's R-CNN code % (copyright licence inlcuded below) % % --------------------------------------------------------- % Copyright (c) 2014, Ross Girshick % % This file is part of the R-CNN code and is available % under the terms of the Simplified BSD License provided in % LICENSE. Please retain this notice and LICENSE if you use % this file (or any portion of it) in your project. % --------------------------------------------------------- opts.suffix = '' ; opts.useResSalt = true ; opts.rmResults = true ; opts.compId = 'comp4' ; opts.drawCurve = true ; opts.evalVersion = 'official' ; [opts, ~] = vl_argparse(opts, varargin) ; if ~strcmp(opts.suffix, ''), suffix = ['_' opts.suffix] ; end if useResSalt prev_rng = rng ; rng shuffle ; salt = sprintf('%d', randi(100000)) ; res_id = [opts.compId '-' salt] ; rng(prev_rng) ; else res_id = opts.compId ; end resPath = sprintf(VOCopts.detrespath, res_id, cls) ; fid = fopen(resPath, 'w') ; % write out detections in PASCAL format and score for i = 1:numel(imageIds) fprintf(fid, '%s %f %.3f %.3f %.3f %.3f\n', imageIds{i}, scores(i), bboxes(i,:)); end fclose(fid) ; tic ; % Bug in VOCevaldet requires that tic has been called first switch opts.evalVersion case 'official' [recall, prec, ap] = VOCevaldet(VOCopts, res_id, cls, opts.drawCurve) ; case 'fast' [recall, prec, ap] = x10VOCevaldet(VOCopts, res_id, cls, opts.drawCurve) ; otherwise error('Evaluation version %s not recognised', opts.evalVersion) ; end ap_auc = VOCap07(recall, prec) ; % use 2007 evaluation ylim([0 1]) ; xlim([0 1]) ; % fix plot limits tail = sprintf('%s_pr_%s.jpg', cls, suffix) ; print(gcf, '-djpeg', '-r0', fullfile(VOCopts.cacheDir, tail)) ; fprintf('!!! %s : %.4f %.4f\n', cls, ap, ap_auc) ; args = {'recall', 'prec', 'ap', 'ap_auc'} ; save(fullfile(VOCopts.cacheDir, sprintf('%s_pr_%s',cls, suffix)), args) ; res.recall = recall ; res.prec = prec ; res.ap = NaN ; res.ap_auc = ap_auc ; if opts.rmResults, delete(resPath) ; end % ----------------------------- function ap = VOCap07(rec,prec) % ----------------------------- % From the PASCAL VOC 2007 devkit ap = 0 ; for t=0:0.1:1 p=max(prec(rec>=t)) ; if isempty(p) p=0 ; end ap=ap+p/11 ; end
github
liweiwang1993/lip-motion-csi-master
get_scaled_csi.m
.m
lip-motion-csi-master/get_scaled_csi.m
1,842
utf_8
25f6ee30c68e10fbfaaeff35624ab758
%GET_SCALED_CSI Converts a CSI struct to a channel matrix H. % % (c) 2008-2011 Daniel Halperin <[email protected]> % function ret = get_scaled_csi(csi_st) % Pull out CSI csi = csi_st.csi; % Calculate the scale factor between normalized CSI and RSSI (mW) csi_sq = csi .* conj(csi); csi_pwr = sum(csi_sq(:)); rssi_pwr = dbinv(get_total_rss(csi_st)); % Scale CSI -> Signal power : rssi_pwr / (mean of csi_pwr) scale = rssi_pwr / (csi_pwr / 30); % Thermal noise might be undefined if the trace was % captured in monitor mode. % ... If so, set it to -92 if (csi_st.noise == -127) noise_db = -92; else noise_db = csi_st.noise; end thermal_noise_pwr = dbinv(noise_db); % Quantization error: the coefficients in the matrices are % 8-bit signed numbers, max 127/-128 to min 0/1. Given that Intel % only uses a 6-bit ADC, I expect every entry to be off by about % +/- 1 (total across real & complex parts) per entry. % % The total power is then 1^2 = 1 per entry, and there are % Nrx*Ntx entries per carrier. We only want one carrier's worth of % error, since we only computed one carrier's worth of signal above. quant_error_pwr = scale * (csi_st.Nrx * csi_st.Ntx); % Total noise and error power total_noise_pwr = thermal_noise_pwr + quant_error_pwr; % Ret now has units of sqrt(SNR) just like H in textbooks ret = csi * sqrt(scale / total_noise_pwr); if csi_st.Ntx == 2 ret = ret * sqrt(2); elseif csi_st.Ntx == 3 % Note: this should be sqrt(3)~ 4.77 dB. But, 4.5 dB is how % Intel (and some other chip makers) approximate a factor of 3 % % You may need to change this if your card does the right thing. ret = ret * sqrt(dbinv(4.5)); end end
github
liweiwang1993/lip-motion-csi-master
PCACleanCSI.m
.m
lip-motion-csi-master/PCACleanCSI.m
591
utf_8
ecabbb827a2fae88ce726a3665df522c
%%PCA the filter csi %%input:filter the csi data %%output:PCA csi data function maincomponents=PCACleanCSI(filtercsi,num) if (nargin<2) num=3;%%select the component num end warning('off'); startc=2;%%start component endc=startc+num-1;%%end component [length,sender,receiver,~]=size(filtercsi); maincomponents=zeros(length,sender,receiver,num); for i=1:1:sender for j=1:1:receiver a=squeeze(filtercsi(:,i,j,:)); %[coef,score,latent,t2] = pca(a); coef=pca(a); maincomponents(:,i,j,:)=a*coef(:,startc:endc); end end end
github
liweiwang1993/lip-motion-csi-master
GetRawCSI.m
.m
lip-motion-csi-master/GetRawCSI.m
614
utf_8
b3dd515295a2a5a5e187f627fe080de3
%%get the raw CSI(not clean) %file='csi-lip-6-23-train//6-23-all-train//6-23-all-1.dat'; %%input:filename,length:the collect csi data filename,csi length you need %%output:raw csi data---4-D complex data function csi=GetRawCSI(file,sender,receiver) csi_trace=read_bf_file(file);%%read_csi [length,~]=size(csi_trace); channel=30;%%channel csi=zeros(length,sender,receiver,channel);%%initialize the raw csi for i=1:1:length csi_entry=csi_trace{i}; a=get_scaled_csi(csi_entry);%%get the scaled csi for k=1:1:sender csi(i,k,:,:)=a(k,:,:); end end end
github
liweiwang1993/lip-motion-csi-master
FilterCSI.m
.m
lip-motion-csi-master/FilterCSI.m
921
utf_8
4ca0a62b1a326e6ce7518cafb5cb4b91
%%filter the noise from the csi signal %%input:remove the multiple path csi signal %%output:filter the csi function filtercsi=FilterCSI(removedCSIInformation) load SpeakHd2.mat;%%butterwords bandpass filter 0-5hz [length,sender,receiver,channel]=size(removedCSIInformation); amptitude=zeros(length,sender,receiver,channel); filtercsi=zeros(length,sender,receiver,channel); %%csi=squeeze(csi); %%t=1:1:30; %%abs(csi(1,1,:)) %%figure; %for i=1:1:2 % for j=1:1:3 % plot(t,squeeze(db(abs(csi(i,j,:))))); % hold on; % end % end % hold off; %for k=1:1:length %for i=1:1:sender % for j=1:1:receiver % amptitude(k,i,j,:)=db(abs(removedCSIInformation(k,i,j,:))); % end %end %end amptitude(:,:,:,:)=(abs(removedCSIInformation(:,:,:,:))); for i=1:1:sender for j=1:1:receiver for k=1:1:channel filtercsi(:,i,j,k)=filter(SpeakHd2,amptitude(:,i,j,k)); end end end
github
liweiwang1993/lip-motion-csi-master
DWTCSI.m
.m
lip-motion-csi-master/DWTCSI.m
861
utf_8
044d9eb3345b98e5366894ef05adc1ad
%%DWT the maincomponents %%input:maincomponents %%output:Dwtcomponents function Dwtcomponents=DWTCSI(maincomponents,dwtnum) if (nargin<2) dwtnum=3;%%select the component num end warning('off'); [~,sender,receiver,num]=size(maincomponents); [C,L] = wavedec(maincomponents(:,1,1,1),dwtnum,'db4');%%DWT3 tmp = appcoef(C,L,'db4',3); [m,~]=size(tmp); dwtcomponents=zeros(m,sender,receiver,num); for i=1:1:sender for j=1:1:receiver for k=1:1:num [C,L] = wavedec(maincomponents(:,i,j,k),dwtnum,'db4'); cA3 = appcoef(C,L,'db4',dwtnum); dwtcomponents(:,i,j,k)=cA3; end end end Dwtcomponents=zeros(m,sender*receiver*num); x=1; for i=1:1:sender for j=1:1:receiver for k=1:1:num Dwtcomponents(:,x)=squeeze(dwtcomponents(:,i,j,k)); x=x+1; end end end end
github
liweiwang1993/lip-motion-csi-master
read_bf_file.m
.m
lip-motion-csi-master/read_bf_file.m
2,577
utf_8
3046107c2e85bb02155fda059099b086
%READ_BF_FILE Reads in a file of beamforming feedback logs. % This version uses the *C* version of read_bfee, compiled with % MATLAB's MEX utility. % % (c) 2008-2011 Daniel Halperin <[email protected]> % function ret = read_bf_file(filename) %% Input check error(nargchk(1,1,nargin)); %% Open file f = fopen(filename, 'rb'); if (f < 0) error('Couldn''t open file %s', filename); return; end status = fseek(f, 0, 'eof'); if status ~= 0 [msg, errno] = ferror(f); error('Error %d seeking: %s', errno, msg); fclose(f); return; end len = ftell(f); status = fseek(f, 0, 'bof'); if status ~= 0 [msg, errno] = ferror(f); error('Error %d seeking: %s', errno, msg); fclose(f); return; end %% Initialize variables ret = cell(ceil(len/95),1); % Holds the return values - 1x1 CSI is 95 bytes big, so this should be upper bound cur = 0; % Current offset into file count = 0; % Number of records output broken_perm = 0; % Flag marking whether we've encountered a broken CSI yet triangle = [1 3 6]; % What perm should sum to for 1,2,3 antennas %% Process all entries in file % Need 3 bytes -- 2 byte size field and 1 byte code while cur < (len - 3) % Read size and code field_len = fread(f, 1, 'uint16', 0, 'ieee-be'); code = fread(f,1); cur = cur+3; % If unhandled code, skip (seek over) the record and continue if (code == 187) % get beamforming or phy data bytes = fread(f, field_len-1, 'uint8=>uint8'); cur = cur + field_len - 1; if (length(bytes) ~= field_len-1) fclose(f); return; end else % skip all other info fseek(f, field_len - 1, 'cof'); cur = cur + field_len - 1; continue; end if (code == 187) %hex2dec('bb')) Beamforming matrix -- output a record count = count + 1; ret{count} = read_bfee(bytes); perm = ret{count}.perm; Nrx = ret{count}.Nrx; if Nrx == 1 % No permuting needed for only 1 antenna continue; end if sum(perm) ~= triangle(Nrx) % matrix does not contain default values if broken_perm == 0 broken_perm = 1; fprintf('WARN ONCE: Found CSI (%s) with Nrx=%d and invalid perm=[%s]\n', filename, Nrx, int2str(perm)); end else ret{count}.csi(:,perm(1:Nrx),:) = ret{count}.csi(:,1:Nrx,:); end end end ret = ret(1:count); %% Close file fclose(f); end
github
liweiwang1993/lip-motion-csi-master
RemoveMultiplePath.m
.m
lip-motion-csi-master/RemoveMultiplePath.m
1,206
utf_8
19f1188b685b7ab3599866547c3973a7
%%remove the multiple path distortion to clean the csi %%input:raw csi---4-D complex data %%output:remove the multiple path csi---4-D complex data function removedCSIInformation=RemoveMultiplePath(csi) warning('off'); [length,sender,receiver,channel] = size(csi); removedCSIInformation=zeros(length,sender,receiver,channel); interval = 20/30;%%Frequency interval Sf=2433;%%starting frequency Ef=2453;%%Ending frequency for i=1:1:length for j=1:1:sender for k=1:1:receiver a=csi(i,j,k,:); b=a(:,:); %figure %plot(abs(csi)); %hold on % approximate interval of subcarriers %freq: 2431-2453 MHz %number of zeros before CSI numZeros = ceil(Sf/interval); %make up carrier frequency response cfr = [zeros(1,numZeros),b]; %slot of ifft N = numZeros + channel; %get approximate channel impluse response cir = ifft(cfr,N); t = 0:1/(Ef*2):1; [~,tm]=size(t); %%delay=0.5ms RemovedCir=cir(1:round(tm/2)); RemovedCSI=fft(RemovedCir); RemovedCSI=RemovedCSI((Sf+interval):interval:Ef); removedCSIInformation(i,j,k,:)=RemovedCSI; end end end
github
timlautk/BCoAPG-plus-master
scad_prox.m
.m
BCoAPG-plus-master/Tools/scad_prox.m
966
utf_8
9b021761670680d4cb732bd12f754068
function p = scad_prox(u,gamma,lambda) p = zeros(size(u)); p1 = sign(u).*min(lambda,max(0,abs(u)-lambda)); p2 = sign(u).*min(gamma*lambda,max(lambda,(abs(u)*(gamma-1)-gamma*lambda)/(gamma-2))); p3 = sign(u).*max(gamma*lambda,abs(u)); p((h(p1) < h(p2)) & (h(p1) < h(p3))) = p1((h(p1) < h(p2)) & (h(p1) < h(p3))); p((h(p2) < h(p1)) & (h(p2) < h(p3))) = p2((h(p2) < h(p1)) & (h(p2) < h(p3))); p((h(p3) < h(p1)) & (h(p3) < h(p2))) = p3((h(p3) < h(p1)) & (h(p3) < h(p2))); function val = h(x) val = zeros(size(x)); h1 = 0.5*(x-u).^2+lambda*abs(x); h2 = 0.5*(x-u).^2+(2*gamma*lambda*abs(x)-x.^2-lambda^2)/(gamma-1); h3 = 0.5*(x-u).^2+lambda^2*(gamma^2-1)/(2*(gamma-1)); val(abs(x) <= lambda) = h1(abs(x) <= lambda); val(abs(x) > lambda & abs(x) <= gamma*lambda) = h2(abs(x) > lambda & abs(x) <= gamma*lambda); val(abs(x) > gamma*lambda) = h3(abs(x) > gamma*lambda); end end
github
tskarhed/Space-Engineer-Notes-master
bikewheel.m
.m
Space-Engineer-Notes-master/MATLAB/bikewheel.m
3,926
utf_8
86ccbea3e5ae2d5385edc4e1174d5852
function bikewheel(radius, v, angle) %Takes the radius of a circle (bikewheel) which rotates at a velocity v and %calculates the trajectory for particles at angle %Make a single variable so we don't have to retype center = [radius radius]; %Draw the circle drawCircle(radius, center); hold on; %points = randi(100, 1, 20); %points = linspace(0, 2*pi); %Rename variable becase of previous tests points = angle; index = 1; %Rows 1:angles 2:slopes 3:length 4:height %Good for debug etc. attributes = zeros(4, numel(points)); %Make calculations for evey point for alpha = points %Generate point which are displaced 0.1radians from the initial point %and calculate the slope between these two. That is the derivative in %our point. [ point1x, point1y ] = getCirclePoint(radius, alpha-0.1, center); [ point2x, point2y ] = getCirclePoint(radius, alpha+0.1, center); slope = (point2y-point1y)/(point2x-point1x); %Save slope to matrix attributes(2, index) = slope; %Redistribute alpha to get in the interval [0, 2*pi] redAlpha = wrapTo2Pi(alpha); %-pi for angles gives us a positive angle in the opposite direction. It %works ;) if (pi < redAlpha) && (redAlpha < 2*pi) attributes(1, index) = atan(slope)-pi; else attributes(1, index) = atan(slope); end %Draw the trajectory [startX, startY] = getCirclePoint(radius, alpha, center); %Set values for length and height in the matrix [attributes(3, index), attributes(4, index)] = drawTrajectory(attributes(1, index), v, [startX startY]); %Set index index = index +1; end %Titles and labels axis equal title('Cykelstänk', 'fontsize', 20); xlabel('Längd [m]', 'fontsize', 18); ylabel('Höjd [m]', 'fontsize', 18); %Get the longest trajectory maxLength = max(attributes(3, :)); %Get the shortest trajectory minLength = min(attributes(3, :)); %Draw ground and grass plot([minLength maxLength], [0 0], 'LineWidth', 6, 'Color', 'g'); fill([minLength minLength maxLength maxLength], [0 -1 -1 0], [0.7 0.7 0.7], 'EdgeColor', 'none'); axis([-Inf Inf -1 Inf]); hold off; %Tell the command window that we are done! disp('Done!'); end function [ x, y ] = getCirclePoint( radius, angle, center ) %Returns a point at a give angle with a given radius % Form center as coordinate vector center = [x y] % Detailed explanation goes here %y displacement of r y = center(2)+sin(angle)*radius; x = center(1)+cos(angle)*radius; end function drawCircle( radius, center ) %Draws a circle angles = linspace(0, 2*pi); [x, y] = getCirclePoint(radius, angles, center); plot(x, y); axis equal; end function [length, height] = drawTrajectory( angle, velocity, startPoint ) %Draws the trajectory of a particle which starts att [x y] = startPoint %with an angle and a velocity. % Detailed explanation goes here %Gravity g = 9.82; %When the particle hits the ground y = @(t) startPoint(2) + velocity*sin(angle)*t - (g*t.^2)/2; %Find trajectory end %Loop over y(t) and try values until they are equal to 0 (hit the ground). %This solution is not good for big values of velocity, but realistically it %would probably not exceed 20m/s t=0; y0 = y(t); while y0 >= 0 y0 = y(t); %Increase time with a very small step to have a good resolution of the %answer t = t+0.00001; end %%%THIS STUFF WORKS, BUT IT IS SLOW%%% %syms altT; %Creates a "placeholder" variable %equation = startPoint(2) + velocity*sin(angle)*altT-(g*altT^2)/2;%Equation where it hits the ground %times = double(solve(equation, altT));%Solve the equation and give it a numerical value %t = max(times); %Select the positive value %Return the length/height of the parabola (in meters) length = startPoint(1) + velocity*cos(angle)*t; height = startPoint(2) + velocity*sin(angle)*t-(g*t^2)/2; points = linspace(0, t); x = @(t) startPoint(1) + velocity*cos(angle)*t; plot(x(points), y(points)); end
github
paulmmacey/lmgs-master
cspm_lmgs.m
.m
lmgs-master/cspm_lmgs.m
17,957
utf_8
8ee7e17d952207b9823eedc9620c412b
function cspm_lmgs(Pin,overwrite,prefix,display,GM) % CSPM_LMGS - Detrend fMRI image series using LMGS method. % CSPM_LMGS(P, OVERWRITE, PREFIX, DISPLAY, GRANDMEAN ) % P is array of images returned by spm, e.g. (SPM2): % P = spm_get(Inf, '.img',{'Please select images for detrending'}); % You will be prompted for the files if the argument is omitted. % To pass multiple sessions, set P as a cell array with each cell the % files for one session, i.e. (SPM5): % P{1} = = spm_select([3 Inf],'image','Select images for detrending (1st session)'); % P{2} = = spm_select([3 Inf],'image','Select images for detrending (2nd session)'); % P{3} = = spm_select([3 Inf],'image','Select images for detrending (3rd session)'); % OVERWRITE (optional) - defaults to true; if false and detrended % images exist, detrending is skipped. % PREFIX (optional) - prefix for detrended files; defaults to "d". % DISPLAY (optional) - if true, global trends of raw and detrended % data are plotted; defaults to false. % GRANDMEAN (optional) - scale series to this mean (e.g., 100); default 0 (no scaling); % % The procedure applies the detrending to the time-series of files P, and writes % detrended files prepended with PREFIX (defaults to "d"). % % To run in interactive mode, type % >>cspm_lmgs % Interactive mode defaults to overwrite TRUE and prefix "d". % % If at least one input argument is provided (P), the routine will run in batch % mode and use the defaults of any arguments not passed. % % % LMGS (Linear Model of Global Signal) detrending is described in: % P.M. Macey, K.E. Macey, R. Kumar, and R.M. Harper. A method for removal of % global effects from fMRI time series. NeuroImage 22 (2004) 360-366. % % Works with SPM5+ and SPM2. % % cspm_lmgs.m 1.4 Paul Macey 2017-08-23 % Thanks to Marko Wilke for the batch mode and grand mean scaling suggestions. disp('========================================================================') disp('LMGS-Detrending') disp(' ') % Check inputs % Images if nargin == 0 overwrite = 1; prefix = 'd'; num_sessions = spm_input('Number of sessions to detrend', 1, 'n', 1); Pall = cell(1,num_sessions); for i = 1:num_sessions if strcmp(spm('ver'),'SPM99') || strcmp(spm('ver'),'SPM2') Pall{i} = spm_get([3 Inf], '.img',['Select images for detrending (session ',... int2str(i),')']); else Pall{i} = spm_select([3 Inf],'image',['Select images for detrending (session ',... int2str(i),')']); end % Couple of checks if isempty(Pall{i}), return, end if length(Pall{i}) < 3 msgbox('Detrending requires a time-series of images (multiple volumes)',... 'LMGS',... 'warn') i = i-1; %#ok<FXSET> if num_sessions == 1 return end end end display = spm_input('Show graphical results ?','+1','b',(' Yes| No'),[1 0],0); disp('Grand Mean scaling sets session mean to GM') GM = spm_input('Grand mean session scaling (0 = none)', '+1', 'e', 0); else % batch or silent mode if iscell(Pin) % Check case of cell array of filenames (i.e., one session) if min(size(Pin{1})) == 1 Pall{1} = char(Pin); else Pall = Pin; end else % One session only Pall{1} = Pin; end num_sessions = length(Pall); % Flags, etc. if nargin < 2 || isempty(overwrite) overwrite = 1; end if nargin < 3 || isempty(prefix) prefix = 'd'; else if ~ischar(prefix) msgbox('Invalid "Prefix" argument - need character',... 'LMGS','error') help cspm_lmgs return end end if nargin < 4 display = 0; end if nargin < 5 GM = 0; end end for i = 1:num_sessions if num_sessions > 1 disp(['Detrending session ',int2str(i)]) end detrend_onesession(Pall{i},overwrite,prefix,display,GM,i,num_sessions) end disp('LMGS-Detrending complete.') disp(' ') end % ========================================================================= function detrend_onesession(P,overwrite,prefix,display,GM,sn,num_sessions) % Number of scans nscan = size(P,1); % Check for 4D is4D = 0; [pth,nm,ext] = fileparts(P(1,:)); I = find(ext==',',1,'first'); if ~isempty(I) V = spm_vol([pth,filesep,nm,ext(1:I-1)]); if length(V) > 1 is4D = 1; disp('4D file - assuming all images belong to same 4D file') end end % Finish now if overwrite flag is false and files exist if ~overwrite skip = 1; % Check for existing files - if 4D only have one file if is4D thiscount = 1; else thiscount = nscan; end for i = 1:thiscount [pth,nm,ext] = fileparts(P(i,:)); % Detrended I = find(ext==',',1,'first'); if ~isempty(I) ext = ext(1:I-1); end newfname = [pth,filesep,prefix,nm,ext]; if ~exist(newfname,'file') skip = 0; break end end if skip, return, end end % Map volumes V = spm_vol(P); % Check similar dimensions, etc. (Taken from spm_imcalc_ui.) flagDimOK = true; if (strcmp(spm('ver'),'SPM99') || strcmp(spm('ver'),'SPM2')) if any(any(diff(cat(1,V.dim),1,1),1)&[1,1,1,0]) flagDimOK = false; end elseif any(any(diff(cat(1,V.dim),1,1),1)) flagDimOK = false; elseif any(any(any(diff(cat(3,V.mat),1,3),3))) flagDimOK = false; end if ~flagDimOK msgbox('Images don''t have same dimmensions, orientation and voxel size - detrending cancelled.',... 'LMGS','error') return end % Number of voxels num_vox = prod(V(1).dim(1:3)); % Initialize - create independent variable X for model % Global values gt = cspm_globaltrend(P,0,0,0)'; % Remove offset X = detrend(gt,'constant'); % Add Constant X = [X ones(nscan,1)]; % Create output images % Preallocate Vout = repmat( V(1), 1, nscan ); for i = 1:nscan Vnew = V(i); Vnew.dt(1) = spm_type('float32'); [pth,nm,ext] = fileparts(Vnew.fname); I = find(ext==',',1,'first'); if ~isempty(I) ext = ext(1:I-1); end if is4D str = ['3D',num2str(i,'%03d')]; Vnew.n(1) = 1; else str = ''; end Vnew.fname = [pth,filesep,prefix,nm,str,ext]; if strcmp(spm('ver'),'SPM99') Vout(i) = spm_create_image(Vnew); else Vout(i) = spm_create_vol(Vnew); end end adjustcount = 0; num_vox_per_plane = num_vox / V(1).dim(3); dim1 = V(1).dim(1); dim2 = V(1).dim(2); dim3 = V(1).dim(3); dim12 = V(1).dim(1:2); % Loop through planes fprintf('\n%-60s','Detrending') for z = 1:dim3 fprintf('%s%-60s',char(sprintf('\b')*ones(1,60)),... ['Detrending plane ',int2str(z),' / ',int2str(dim3)]) % Get raw data for plane across all volumes. yn = zeros(dim1,dim2,nscan); for i = 1:nscan yn(:,:,i) = spm_slice_vol(V(i),spm_matrix([0 0 z]),dim12,0); end % Use 2-D array to speed processing. yadj = reshape(yn,num_vox_per_plane,nscan)'; s = warning; warning off % Perform detrending voxel-by-voxel in this plane for v = 1:num_vox_per_plane yvox = yadj(:,v); if any(yvox) b = regression(yvox,X); % The following would require the statistics toolbox: % [b,bint,r,rint,stats] = regress(yvox,X,0.05); % Test for positive effect - b(1); % Test for significance as p-value - - stats(3); % Test for correlation (R^2) - stats(1) % Optional: skip voxels that do not meet thresholds % if b(1) <= 0 | stats(3) > 0.8 | stats(1) < 0.3 % continue % end % Another option: remove only voxels that show positive correlations % if b(1) <= 0 % continue % end yvoxmodel = b(1)*X(:,1); % Adjust time-series adjustcount = adjustcount + 1; yadj(:,v) = yvox - yvoxmodel; end end warning(s) yadj = reshape(yadj',dim1,dim2,nscan); % Write adjusted data for i = 1:nscan Vout(i) = spm_write_plane(Vout(i),yadj(:,:,i),z); end end % End loop through planes fprintf('%s%-60s',char(sprintf('\b')*ones(1,60)),'Detrending') fprintf('%-60s\n','Done') disp(['Adjusted ', int2str(adjustcount),... ' non-zero voxels (',int2str(num_vox),' total).']) disp(' ') % Save file names if displaying or scaling (or if 4D, saving back to single 4D % file) if display || GM > 0 || is4D Pd = cell(nscan,1); for i = 1:nscan % Pin{i} = V(i).fname; Pd{i} = Vout(i).fname; end end % Close volumes, if SPM2 if strcmp(spm('ver'),'SPM2') spm_close_vol(V); spm_close_vol(Vout); end % Grand mean scaling if GM > 0 % Calculate required scale to set session mean to GM scale = GM/(mean(cspm_globaltrend(Pd,0,0,0))); % Scale each volume by this amount for i = 1:nscan V = spm_vol(Pd{i}); V.pinfo(1:2,:) = V.pinfo(1:2,:)*scale; V = spm_create_vol(V); if strcmp(spm('ver'),'SPM2') spm_close_vol(V); end end end % Show in percent change the pre- and post-detrending global timetrends if display % Get trends t1 = gt'; % Variable gt was calculated earlier. t2 = cspm_globaltrend(Pd,0,0,0)'; b1 = mean(t1(1:end)); b2 = mean(t2(1:end)); % Percent change t1pc = 100*(t1 - b1)/b1; t2pc = 100*(t2 - b2)/b2; % For x-axis x = 1:length(gt); % Figure if num_sessions > 1 titlestr = ['Effect of adjustment (session ',int2str(sn),')']; else titlestr = 'Effect of adjustment'; end figure('NumberTitle','off','Name',titlestr) subplot(2,1,1) plot(x,t1,'b.-',x,t2,'r.-') title ('Raw values: Original and detrended images') legend('Raw (blue)','Adjusted (red)') subplot(2,1,2) plot(x,t1pc,'b.-',x,t2pc,'r.-') title ('Percent change: Original and detrended images (%)') legend('Raw (blue)','Adjusted (red)') end % Save output back into 4D file if is4D [pth,nm,ext] = fileparts(P(1,:)); I = find(ext==',',1,'first'); if ~isempty(I) ext = ext(1:I-1); end cspm_im_3Dto4D( char(Pd), [pth,filesep,'d',nm,ext] ) end end % ========================================================================= function gt = cspm_globaltrend( P, pc, usespm, display ) % CSPM_GLOBALTREND - Calculate and display global time trend of images. % T = CSPM_GLOBALTREND( P, PC, SPM, DISPLAY) % P - cell array of files, e.g., % P = spm_get(Inf, '.img',{'Please select images for detrending'}); % PC - flag 1 = percent change relative to mean (default), % 0 = absolute value % SPM - flag 1 = use spm_global (all voxels above 1/8 of maximum % intensity; not very accurate) % 0 = avearge of all voxels in volume (default) % DISPLAY - flag 1 = make figure (default) % 0 = no figure % Output: T - global time trend % @(#)cspm_globaltrend.m 1.0 Paul Macey 2005-08-01 % Calculate global trend of series of images if nargin < 1 if strcmp(spm('ver'),'SPM99') || strcmp(spm('ver'),'SPM2') P = spm_get(Inf, '.img','Select images for global trend calculation'); else P = spm_select(Inf,'image','Select images for global trend calculation'); end if isempty(P), return, end end if iscell(P) P = char(P); end if nargin < 2 pc = 1; end if nargin < 3 usespm = 0; end if nargin < 4 display = 1; end V = spm_vol(P); nscan = length(V); gt = zeros(1,nscan); % preallocate for i = 1:nscan if usespm % Note: spm_global estimates the mean after discounting voxels outside % the object using a criteria of greater than > (global mean)/8. % However, for large global signal changes, this does not accurately % estimate the global signal and LMGS detrending based on spm_global % does not remove all gobal components. gt(i) = spm_global(V(i)); else Y = spm_read_vols(V(i)); Y = Y(~isnan(Y)); Y = Y(Y ~= 0); gt(i) = mean(mean(mean(Y))); end end if strcmp(spm('ver'),'SPM2') spm_close_vol(V); end if pc bl = mean(gt); gt = 100*(gt-bl)/bl; pstr = ' (% change)'; else pstr = ' (raw)'; end if display figure('Name',['Global timetrend for ',int2str(length(V)),' files',pstr]) plot(gt) ylabel(['Signal Intensity',pstr]) xlabel('Scan Number') end if nargout == 0 clear gt end end % ========================================================================= function b = regression(y,X) % The following checks are omitted within LMGS (since we know what is being % passed to this function). % % Check that matrix (X) and left hand side (y) have compatible dimensions % [n,p] = size(X); % [n1,collhs] = size(y); % if n ~= n1, % error('The number of rows in Y must equal the number of rows in X.'); % end % % if collhs ~= 1, % error('Y must be a vector, not a matrix'); % end % Remove missing values, if any wasnan = (isnan(y) | any(isnan(X),2)); if (any(wasnan)) y(wasnan) = []; X(wasnan,:) = []; end % Find the least squares solution. [Q, R]=qr(X,0); b = R\(Q'*y); end % ========================================================================= function cspm_im_3Dto4D(P, outfile) % Convert series of 3D images to single 4D image volume (SPM5 only) % based on spm_config_3Dto4D, with some lint-informed changes. if nargin == 0 P = spm_select(Inf,'image','Select images to group into 4D file'); if isempty(P), return, end nfiles = size(P,1); Pnew = cell(1,nfiles); % preallocate for i = 1:nfiles [pth,nm,ext] = fileparts(P(i,:)); I = find(ext==','); if ~isempty(I) ext = ext(1:I-1); end Pnew{i} = [pth,filesep,nm,ext]; end P = char(Pnew); elseif iscell(P) P = char(P); end if size(P,1) == 1 msgbox('Only one image - selected multiple images for 4D file',... upper(mfilename),'warn') return end if nargin < 2 [pth,nm,ext] = fileparts(P(1,:)); [f,p] = uiputfile([pth,filesep,nm,'4D',ext],'Save as 4D file'); if f == 0, return, end outfile = [p,f]; end V = spm_vol(P); ind = cat(1,V.n); N = cat(1,V.private); mx = -Inf; mn = Inf; for i=1:numel(V) dat = V(i).private.dat(:,:,:,ind(i,1),ind(i,2)); dat = dat(isfinite(dat)); mx = max(mx,max(dat(:))); mn = min(mn,min(dat(:))); end data_type = V(1).dt(1); r = spm_type(data_type,'maxval') - spm_type(data_type,'minval'); if isfinite(r) sf = max(mx,-mn)/ r; else sf = 1; end ni = nifti; ni.dat = file_array(outfile,[V(1).dim numel(V)],data_type,0,sf,0); ni.mat = N(1).mat; ni.mat0 = N(1).mat; ni.descrip = '4D image'; create(ni); for i=1:size(ni.dat,4) ni.dat(:,:,:,i) = N(i).dat(:,:,:,ind(i,1),ind(i,2)); spm_get_space([ni.dat.fname ',' num2str(i)], V(i).mat); end % Tidy up - delete 3D files for i=1:numel(V) delete(V(i).fname) end end
github
lanl-ansi/OPFRecourse.jl-master
nesta_case30_ieee.m
.m
OPFRecourse.jl-master/test/data/nesta_case30_ieee.m
17,949
utf_8
a80e55940e636ed49d716d79ca744eb9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% %%%%% %%%% NICTA Energy System Test Case Archive (NESTA) - v0.5.0 %%%%% %%%% Optimal Power Flow - Typical Operation %%%%% %%%% 01 - August - 2015 %%%%% %%%% %%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Power flow data for IEEE 30 bus test case. % This data was converted from IEEE Common Data Format % (ieee30cdf.txt) on 20-Sep-2004 by cdf2matp, rev. 1.11 % % Converted from IEEE CDF file from: % http://www.ee.washington.edu/research/pstca/ % % CDF Header: % 08/20/93 UW ARCHIVE 100.0 1961 W IEEE 30 Bus Test Case % function mpc = nesta_case30_ieee mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 3 0.0 0.0 0.0 0.0 1 1.06000 -0.00000 132.0 1 1.06000 0.94000; 2 2 21.7 12.7 0.0 0.0 1 1.03591 -4.11149 132.0 1 1.06000 0.94000; 3 1 2.4 1.2 0.0 0.0 1 1.01502 -6.85372 132.0 1 1.06000 0.94000; 4 1 7.6 1.6 0.0 0.0 1 1.00446 -8.44574 132.0 1 1.06000 0.94000; 5 2 94.2 19.0 0.0 0.0 1 0.99748 -13.13219 132.0 1 1.06000 0.94000; 6 1 0.0 0.0 0.0 0.0 1 1.00170 -10.15671 132.0 1 1.06000 0.94000; 7 1 22.8 10.9 0.0 0.0 1 0.99208 -11.91706 132.0 1 1.06000 0.94000; 8 2 30.0 30.0 0.0 0.0 1 1.00241 -10.93461 132.0 1 1.06000 0.94000; 9 1 0.0 0.0 0.0 0.0 1 1.03671 -13.26615 1.0 1 1.06000 0.94000; 10 1 5.8 2.0 0.0 19.0 1 1.03220 -14.89730 33.0 1 1.06000 0.94000; 11 2 0.0 0.0 0.0 0.0 1 1.06000 -13.26615 11.0 1 1.06000 0.94000; 12 1 11.2 7.5 0.0 0.0 1 1.04625 -14.18878 33.0 1 1.06000 0.94000; 13 2 0.0 0.0 0.0 0.0 1 1.06000 -14.18878 11.0 1 1.06000 0.94000; 14 1 6.2 1.6 0.0 0.0 1 1.03103 -15.09457 33.0 1 1.06000 0.94000; 15 1 8.2 2.5 0.0 0.0 1 1.02621 -15.17834 33.0 1 1.06000 0.94000; 16 1 3.5 1.8 0.0 0.0 1 1.03259 -14.75320 33.0 1 1.06000 0.94000; 17 1 9.0 5.8 0.0 0.0 1 1.02726 -15.07475 33.0 1 1.06000 0.94000; 18 1 3.2 0.9 0.0 0.0 1 1.01602 -15.79032 33.0 1 1.06000 0.94000; 19 1 9.5 3.4 0.0 0.0 1 1.01317 -15.95831 33.0 1 1.06000 0.94000; 20 1 2.2 0.7 0.0 0.0 1 1.01714 -15.75153 33.0 1 1.06000 0.94000; 21 1 17.5 11.2 0.0 0.0 1 1.01982 -15.35269 33.0 1 1.06000 0.94000; 22 1 0.0 0.0 0.0 0.0 1 1.02041 -15.33860 33.0 1 1.06000 0.94000; 23 1 3.2 1.6 0.0 0.0 1 1.01532 -15.56400 33.0 1 1.06000 0.94000; 24 1 8.7 6.7 0.0 4.3 1 1.00930 -15.72597 33.0 1 1.06000 0.94000; 25 1 0.0 0.0 0.0 0.0 1 1.00621 -15.29138 33.0 1 1.06000 0.94000; 26 1 3.5 2.3 0.0 0.0 1 0.98833 -15.72053 33.0 1 1.06000 0.94000; 27 1 0.0 0.0 0.0 0.0 1 1.01294 -14.75624 33.0 1 1.06000 0.94000; 28 1 0.0 0.0 0.0 0.0 1 0.99824 -10.79567 132.0 1 1.06000 0.94000; 29 1 2.4 0.9 0.0 0.0 1 0.99288 -16.01182 33.0 1 1.06000 0.94000; 30 1 10.6 1.9 0.0 0.0 1 0.98128 -16.91371 33.0 1 1.06000 0.94000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf mpc.gen = [ 1 218.839 9.372 10.0 0.0 1.06 100.0 1 784 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; % COW 2 80.05 24.589 50.0 -40.0 1.03591 100.0 1 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; % NG 5 0.0 32.487 40.0 -40.0 0.99748 100.0 1 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; % SYNC 8 0.0 40.0 40.0 -10.0 1.00241 100.0 1 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; % SYNC 11 0.0 11.87 24.0 -6.0 1.06 100.0 1 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; % SYNC 13 0.0 10.414 24.0 -6.0 1.06 100.0 1 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; % SYNC ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 3 0.000000 0.521378 0.000000; % COW 2 0.0 0.0 3 0.000000 1.135166 0.000000; % NG 2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC 2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC 2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC 2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.0192 0.0575 0.0528 138 138 138 0.0 0.0 1 -30.0 30.0; 1 3 0.0452 0.1652 0.0408 152 152 152 0.0 0.0 1 -30.0 30.0; 2 4 0.057 0.1737 0.0368 139 139 139 0.0 0.0 1 -30.0 30.0; 3 4 0.0132 0.0379 0.0084 135 135 135 0.0 0.0 1 -30.0 30.0; 2 5 0.0472 0.1983 0.0418 144 144 144 0.0 0.0 1 -30.0 30.0; 2 6 0.0581 0.1763 0.0374 139 139 139 0.0 0.0 1 -30.0 30.0; 4 6 0.0119 0.0414 0.009 148 148 148 0.0 0.0 1 -30.0 30.0; 5 7 0.046 0.116 0.0204 127 127 127 0.0 0.0 1 -30.0 30.0; 6 7 0.0267 0.082 0.017 140 140 140 0.0 0.0 1 -30.0 30.0; 6 8 0.012 0.042 0.009 148 148 148 0.0 0.0 1 -30.0 30.0; 6 9 0.0 0.208 0.0 142 142 142 0.978 0.0 1 -30.0 30.0; 6 10 0.0 0.556 0.0 53 53 53 0.969 0.0 1 -30.0 30.0; 9 11 0.0 0.208 0.0 142 142 142 0.0 0.0 1 -30.0 30.0; 9 10 0.0 0.11 0.0 267 267 267 0.0 0.0 1 -30.0 30.0; 4 12 0.0 0.256 0.0 115 115 115 0.932 0.0 1 -30.0 30.0; 12 13 0.0 0.14 0.0 210 210 210 0.0 0.0 1 -30.0 30.0; 12 14 0.1231 0.2559 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 12 15 0.0662 0.1304 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 12 16 0.0945 0.1987 0.0 30 30 30 0.0 0.0 1 -30.0 30.0; 14 15 0.221 0.1997 0.0 20 20 20 0.0 0.0 1 -30.0 30.0; 16 17 0.0524 0.1923 0.0 38 38 38 0.0 0.0 1 -30.0 30.0; 15 18 0.1073 0.2185 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 18 19 0.0639 0.1292 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 19 20 0.034 0.068 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 10 20 0.0936 0.209 0.0 30 30 30 0.0 0.0 1 -30.0 30.0; 10 17 0.0324 0.0845 0.0 33 33 33 0.0 0.0 1 -30.0 30.0; 10 21 0.0348 0.0749 0.0 30 30 30 0.0 0.0 1 -30.0 30.0; 10 22 0.0727 0.1499 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 21 22 0.0116 0.0236 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 15 23 0.1 0.202 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 22 24 0.115 0.179 0.0 26 26 26 0.0 0.0 1 -30.0 30.0; 23 24 0.132 0.27 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 24 25 0.1885 0.3292 0.0 27 27 27 0.0 0.0 1 -30.0 30.0; 25 26 0.2544 0.38 0.0 25 25 25 0.0 0.0 1 -30.0 30.0; 25 27 0.1093 0.2087 0.0 28 28 28 0.0 0.0 1 -30.0 30.0; 28 27 0.0 0.396 0.0 75 75 75 0.968 0.0 1 -30.0 30.0; 27 29 0.2198 0.4153 0.0 28 28 28 0.0 0.0 1 -30.0 30.0; 27 30 0.3202 0.6027 0.0 28 28 28 0.0 0.0 1 -30.0 30.0; 29 30 0.2399 0.4533 0.0 28 28 28 0.0 0.0 1 -30.0 30.0; 8 28 0.0636 0.2 0.0428 140 140 140 0.0 0.0 1 -30.0 30.0; 6 28 0.0169 0.0599 0.013 149 149 149 0.0 0.0 1 -30.0 30.0; ]; % INFO : === Translation Options === % INFO : Phase Angle Bound: 30.0 (deg.) % INFO : Line Capacity Model: stat % INFO : Gen Active Capacity Model: stat % INFO : Gen Reactive Capacity Model: am50ag % INFO : Gen Active Cost Model: stat % INFO : AC OPF Solution File: nesta_case30_ieee.dat.opf.sol % INFO : Line Capacity PAB: 15.0 (deg.) % INFO : % INFO : === Generator Classification Notes === % INFO : SYNC 4 - 0.00 % INFO : COW 1 - 86.68 % INFO : NG 1 - 13.32 % INFO : % INFO : === Generator Active Capacity Stat Model Notes === % INFO : Gen at bus 1 - COW : Pg=260.2, Pmax=360.2 -> Pmax=784 samples: 13 % INFO : Gen at bus 2 - NG : Pg=40.0, Pmax=140.0 -> Pmax=100 samples: 1 % INFO : Gen at bus 5 - SYNC : Pg=0.0, Pmax=100.0 -> Pmax=0 samples: 0 % INFO : Gen at bus 8 - SYNC : Pg=0.0, Pmax=100.0 -> Pmax=0 samples: 0 % INFO : Gen at bus 11 - SYNC : Pg=0.0, Pmax=100.0 -> Pmax=0 samples: 0 % INFO : Gen at bus 13 - SYNC : Pg=0.0, Pmax=100.0 -> Pmax=0 samples: 0 % INFO : % INFO : === Generator Reactive Capacity Atmost Max 50 Percent Active Model Notes === % INFO : % INFO : === Generator Active Cost Stat Model Notes === % INFO : Updated Generator Cost: COW - 0.0 20.0 0.038432 -> 0 0.521377501002 0 % INFO : Updated Generator Cost: NG - 0.0 20.0 0.25 -> 0 1.13516647936 0 % INFO : Updated Generator Cost: SYNC - 0.0 40.0 0.01 -> 0 0.0 0 % INFO : Updated Generator Cost: SYNC - 0.0 40.0 0.01 -> 0 0.0 0 % INFO : Updated Generator Cost: SYNC - 0.0 40.0 0.01 -> 0 0.0 0 % INFO : Updated Generator Cost: SYNC - 0.0 40.0 0.01 -> 0 0.0 0 % INFO : % INFO : === Line Capacity Stat Model Notes === % INFO : Updated Thermal Rating: on line 1-2 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 138 % INFO : Updated Thermal Rating: on line 1-3 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 152 % INFO : Updated Thermal Rating: on line 2-4 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 139 % INFO : Updated Thermal Rating: on line 3-4 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 135 % WARNING : Updated Thermal Rating Stat Model was larger than UB Model: on 2-5 : 161 , 143 % INFO : Updated Thermal Rating: on line 2-5 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 144 % INFO : Updated Thermal Rating: on line 2-6 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 139 % INFO : Updated Thermal Rating: on line 4-6 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 148 % INFO : Updated Thermal Rating: on line 5-7 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 127 % INFO : Updated Thermal Rating: on line 6-7 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 140 % INFO : Updated Thermal Rating: on line 6-8 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 148 % WARNING : Missing data for branch flow stat model on line 6-9 using max current model : from_basekv=132.0 to_basekv=1.0 r=0.0 x=0.208 % INFO : Updated Thermal Rating: on transformer 6-9 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 142 % WARNING : Missing data for branch flow stat model on line 6-10 using max current model : from_basekv=132.0 to_basekv=33.0 r=0.0 x=0.556 % INFO : Updated Thermal Rating: on transformer 6-10 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 53 % WARNING : Missing data for branch flow stat model on line 9-11 using max current model : from_basekv=1.0 to_basekv=11.0 r=0.0 x=0.208 % INFO : Updated Thermal Rating: on line 9-11 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 142 % WARNING : Missing data for branch flow stat model on line 9-10 using max current model : from_basekv=1.0 to_basekv=33.0 r=0.0 x=0.11 % INFO : Updated Thermal Rating: on line 9-10 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 267 % WARNING : Missing data for branch flow stat model on line 4-12 using max current model : from_basekv=132.0 to_basekv=33.0 r=0.0 x=0.256 % INFO : Updated Thermal Rating: on transformer 4-12 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 115 % WARNING : Missing data for branch flow stat model on line 12-13 using max current model : from_basekv=33.0 to_basekv=11.0 r=0.0 x=0.14 % INFO : Updated Thermal Rating: on line 12-13 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 210 % INFO : Updated Thermal Rating: on line 12-14 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 29 % INFO : Updated Thermal Rating: on line 12-15 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 29 % INFO : Updated Thermal Rating: on line 12-16 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 30 % INFO : Updated Thermal Rating: on line 14-15 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 20 % INFO : Updated Thermal Rating: on line 16-17 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 38 % INFO : Updated Thermal Rating: on line 15-18 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 29 % INFO : Updated Thermal Rating: on line 18-19 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 29 % INFO : Updated Thermal Rating: on line 19-20 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 29 % INFO : Updated Thermal Rating: on line 10-20 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 30 % INFO : Updated Thermal Rating: on line 10-17 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 33 % INFO : Updated Thermal Rating: on line 10-21 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 30 % INFO : Updated Thermal Rating: on line 10-22 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 29 % INFO : Updated Thermal Rating: on line 21-22 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 29 % INFO : Updated Thermal Rating: on line 15-23 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 29 % INFO : Updated Thermal Rating: on line 22-24 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 26 % INFO : Updated Thermal Rating: on line 23-24 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 29 % INFO : Updated Thermal Rating: on line 24-25 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 27 % INFO : Updated Thermal Rating: on line 25-26 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 25 % INFO : Updated Thermal Rating: on line 25-27 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 28 % WARNING : Missing data for branch flow stat model on line 28-27 using max current model : from_basekv=132.0 to_basekv=33.0 r=0.0 x=0.396 % INFO : Updated Thermal Rating: on transformer 28-27 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 75 % INFO : Updated Thermal Rating: on line 27-29 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 28 % INFO : Updated Thermal Rating: on line 27-30 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 28 % INFO : Updated Thermal Rating: on line 29-30 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 28 % WARNING : Updated Thermal Rating Stat Model was larger than UB Model: on 8-28 : 140 , 139 % INFO : Updated Thermal Rating: on line 8-28 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 140 % INFO : Updated Thermal Rating: on line 6-28 : Rate A, Rate B, Rate C , 9900.0, 0.0, 0.0 -> 149 % INFO : % INFO : === Voltage Setpoint Replacement Notes === % INFO : Bus 1 : V=1.06, theta=0.0 -> V=1.06, theta=-0.0 % INFO : Bus 2 : V=1.043, theta=-5.48 -> V=1.03591, theta=-4.11149 % INFO : Bus 3 : V=1.021, theta=-7.96 -> V=1.01502, theta=-6.85372 % INFO : Bus 4 : V=1.012, theta=-9.62 -> V=1.00446, theta=-8.44574 % INFO : Bus 5 : V=1.01, theta=-14.37 -> V=0.99748, theta=-13.13219 % INFO : Bus 6 : V=1.01, theta=-11.34 -> V=1.0017, theta=-10.15671 % INFO : Bus 7 : V=1.002, theta=-13.12 -> V=0.99208, theta=-11.91706 % INFO : Bus 8 : V=1.01, theta=-12.1 -> V=1.00241, theta=-10.93461 % INFO : Bus 9 : V=1.051, theta=-14.38 -> V=1.03671, theta=-13.26615 % INFO : Bus 10 : V=1.045, theta=-15.97 -> V=1.0322, theta=-14.8973 % INFO : Bus 11 : V=1.082, theta=-14.39 -> V=1.06, theta=-13.26615 % INFO : Bus 12 : V=1.057, theta=-15.24 -> V=1.04625, theta=-14.18878 % INFO : Bus 13 : V=1.071, theta=-15.24 -> V=1.06, theta=-14.18878 % INFO : Bus 14 : V=1.042, theta=-16.13 -> V=1.03103, theta=-15.09457 % INFO : Bus 15 : V=1.038, theta=-16.22 -> V=1.02621, theta=-15.17834 % INFO : Bus 16 : V=1.045, theta=-15.83 -> V=1.03259, theta=-14.7532 % INFO : Bus 17 : V=1.04, theta=-16.14 -> V=1.02726, theta=-15.07475 % INFO : Bus 18 : V=1.028, theta=-16.82 -> V=1.01602, theta=-15.79032 % INFO : Bus 19 : V=1.026, theta=-17.0 -> V=1.01317, theta=-15.95831 % INFO : Bus 20 : V=1.03, theta=-16.8 -> V=1.01714, theta=-15.75153 % INFO : Bus 21 : V=1.033, theta=-16.42 -> V=1.01982, theta=-15.35269 % INFO : Bus 22 : V=1.033, theta=-16.41 -> V=1.02041, theta=-15.3386 % INFO : Bus 23 : V=1.027, theta=-16.61 -> V=1.01532, theta=-15.564 % INFO : Bus 24 : V=1.021, theta=-16.78 -> V=1.0093, theta=-15.72597 % INFO : Bus 25 : V=1.017, theta=-16.35 -> V=1.00621, theta=-15.29138 % INFO : Bus 26 : V=1.0, theta=-16.77 -> V=0.98833, theta=-15.72053 % INFO : Bus 27 : V=1.023, theta=-15.82 -> V=1.01294, theta=-14.75624 % INFO : Bus 28 : V=1.007, theta=-11.97 -> V=0.99824, theta=-10.79567 % INFO : Bus 29 : V=1.003, theta=-17.06 -> V=0.99288, theta=-16.01182 % INFO : Bus 30 : V=0.992, theta=-17.94 -> V=0.98128, theta=-16.91371 % INFO : % INFO : === Generator Setpoint Replacement Notes === % INFO : Gen at bus 1 : Pg=260.2, Qg=-16.1 -> Pg=218.839, Qg=9.372 % INFO : Gen at bus 1 : Vg=1.06 -> Vg=1.06 % INFO : Gen at bus 2 : Pg=40.0, Qg=50.0 -> Pg=80.05, Qg=24.589 % INFO : Gen at bus 2 : Vg=1.045 -> Vg=1.03591 % INFO : Gen at bus 5 : Pg=0.0, Qg=37.0 -> Pg=0.0, Qg=32.487 % INFO : Gen at bus 5 : Vg=1.01 -> Vg=0.99748 % INFO : Gen at bus 8 : Pg=0.0, Qg=37.3 -> Pg=0.0, Qg=40.0 % INFO : Gen at bus 8 : Vg=1.01 -> Vg=1.00241 % INFO : Gen at bus 11 : Pg=0.0, Qg=16.2 -> Pg=0.0, Qg=11.87 % INFO : Gen at bus 11 : Vg=1.082 -> Vg=1.06 % INFO : Gen at bus 13 : Pg=0.0, Qg=10.6 -> Pg=0.0, Qg=10.414 % INFO : Gen at bus 13 : Vg=1.071 -> Vg=1.06 % INFO : % INFO : === Writing Matpower Case File Notes ===
github
dzwallkilled/IEforAR-master
extract_feature_JLd.m
.m
IEforAR-master/extract_feature_JLd.m
4,296
utf_8
1b604e72cee456b300ee63e67b4c3df3
function [features] = extract_feature_JLd(skeleton_input) index = get_JLd_index01; % index = get_JLd_index02; % index = get_JLd_index03; pts1 = skeleton_input(index(:,1),:,:,:); pts2 = skeleton_input(index(:,2),:,:,:); pts3 = skeleton_input(index(:,3),:,:,:); features = squeeze((sum(cross(pts2-pts1,pts3-pts1,2).^2,2).^(1/2))./(sum((pts3-pts2).^2,2).^(1/2))); end function index = get_JLd_index01 line_index = get_line_index01; len_line = length(line_index); index = zeros(897,3); %[J, (J1,J2)] cnt = 0; for i = 1:25 for j = 1:len_line if i ~= line_index(j,1) && i ~= line_index(j,2) cnt = cnt + 1; index(cnt,:) = [i line_index(j,:)]; end end end end function index = get_JLd_index02 line_index = get_line_index01; neib_index = get_neighbour_index; len_line = length(line_index); index = []; cnt = 0; for i = 1:len_line neib_joints = [neib_index(line_index(i,1)).neib neib_index(line_index(i,2)).neib]; neib_joints = unique(neib_joints); neib_joints(neib_joints== line_index(i,1) | neib_joints== line_index(i,2)) = []; for j = neib_joints cnt = cnt + 1; index(cnt,:) = [j line_index(i,:)]; end end end function index = get_JLd_index03 joints = [3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19]; nb_index = get_neighbour_index; line_index_temp = []; for j = joints nb_joints = [nb_index(j).neib]'; line_temp = [repmat(j,length(nb_joints),1) nb_joints]; line_index_temp = [line_index_temp;line_temp]; end line_index(:,1) = min(line_index_temp,[],2); line_index(:,2) = max(line_index_temp,[],2); [~,I] = sort(line_index(:,1)); line_index = line_index(I,:); line_index = unique(line_index,'rows'); len_line = length(line_index); index=[]; cnt = 1; for i = 1:len_line nb_joints = [nb_index(line_index(i,1)).neib nb_index(line_index(i,2)).neib]'; nb_joints = unique(nb_joints); nb_joints(nb_joints== line_index(i,1) | nb_joints== line_index(i,2)) = []; len = length(nb_joints); index(cnt:cnt+len-1,:) = [nb_joints repmat(line_index(i,:),len,1)]; cnt = cnt+len; end end function index = get_line_index01 %case 1: directly adjacent (calculated from 1 to 25, deep first) index = [1 2; 1 13; 1 17; 2 21; 3 4; 3 21; 5 6; 5 21; 6 7; 7 8; 8 22; 8 23; 9 10; 9 21; 10 11; 11 12; 12 24; 12 25; 13 14; 14 15; 15 16; 17 18; 18 19; 19 20; %case 2: J1 at end, J2 two steps away (End:4,8,12,15,19) 4 21; 8 5; 12 9; 15 13; 19 17; %case 3: J1 and J2 are at end (End:4,8,12,15,19) 4 8; 4 12; 4 15; 4 19; 8 12; 8 15; 8 19; 12 15; 12 19; 15 19]; end function index = get_line_index02 %case 1: directly adjacent (calculated from 1 to 25, deep first) index = [1 2; 1 13; 1 17; 2 21; 3 4; 3 21; 5 6; 5 21; 6 7; 7 8; 8 22; 8 23; 9 10; 9 21; 10 11; 11 12; 12 24; 12 25; 13 14; 14 15; 15 16; 17 18; 18 19; 19 20; %case 2: J1 at end, J2 two steps away (End:4,8,12,15,19) 4 21; 8 5; 12 9; 15 13; 19 17; %case 3: J1 and J2 are at end (End:4,8,12,15,19) 4 8; 4 12; 4 15; 4 19; 8 12; 8 15; 8 19; 12 15; 12 19; 15 19 %case 4: two steps away at four body ends 5 7; 6 8; 9 11; 10 12; 13 16; 17 20 ]; end function index = get_neighbour_index index = []; index(1).neib = [2 13 14 17 18 21]; index(2).neib = [1 3 5 9 13 17 21]; index(3).neib = [2 4 5 9 21]; index(4).neib = [3 21]; index(5).neib = [2 3 6 7 9 21]; index(6).neib = [5 7 8 21]; index(7).neib = [5 6 8 22 23]; index(8).neib = [6 7 22 23]; index(9).neib = [2 3 5 10 11 21]; index(10).neib = [9 11 12 21]; index(11).neib = [9 10 12 24 25]; index(12).neib = [10 11 24 25]; index(13).neib = [1 2 14 15 17]; index(14).neib = [1 13 15 16]; index(15).neib = [13 14 16]; index(16).neib = [14 15]; index(17).neib = [1 2 13 18 19]; index(18).neib = [1 17 19 20]; index(19).neib = [17 18 20]; index(20).neib = [18 19]; index(21).neib = [1 2 3 4 5 6 9 10]; index(22).neib = [7 8 23]; index(23).neib = [7 8 22]; index(24).neib = [11 12 25]; index(25).neib = [11 12 24]; end
github
dzwallkilled/IEforAR-master
extract_feature_LLa.m
.m
IEforAR-master/extract_feature_LLa.m
1,282
utf_8
93762664bd183badcd6223f6f25ef4ff
function [features] = extract_feature_LLa(skeleton_input) index = get_LLa_index01; lines1 = skeleton_input(index(:,2),:,:,:) - skeleton_input(index(:,1),:,:,:); lines2 = skeleton_input(index(:,4),:,:,:) - skeleton_input(index(:,3),:,:,:); features = squeeze(acos(dot(lines1,lines2,2) ...\ ./(sum(lines1.^2,2).^(1/2)) ...\ ./(sum(lines2.^2,2).^(1/2))));%use matrix calculation for efficiency end function index_out = get_LLa_index01 index = get_line_index01; index_out = zeros(741,4); n = 0; for i = 1:38 for j = i+1:39 n = n + 1; index_out(n,:) = [index(i,1) index(i,2) index(j,1) index(j,2)]; end end end function index = get_line_index01 %case 1: directly adjacent (calculated from 1 to 25, deep first) index = [1 2; 1 17; 1 13; 2 21; 3 4; 3 21; 5 6; 5 21; 6 7; 7 8; 8 22; 8 23; 9 10; 9 21; 10 11; 11 12; 12 24; 12 25; 13 14; 14 15; 15 16; 17 18; 18 19; 19 20; %case 2: J1 at end, J2 two steps away (End:4,7,11,15,19) 4 21; 7 5; 11 9; 15 13; 19 17; %case 3: J1 and J2 are at end (End:4,7,11,15,19) 4 7; 4 11; 4 15; 4 19; 7 11; 7 15; 7 19; 11 15; 11 19; 15 19]; end
github
dzwallkilled/IEforAR-master
transform_method9.m
.m
IEforAR-master/transform_method9.m
609
utf_8
3eb5f96647c624ee797e178a73b86bed
function image_output = transform_method9(features,img_size) global cb;%claimed in main file features = imresize(features,img_size,'bilinear'); [dim,frame,~] = size(features); color_index = ones(dim,frame); for f = 1:frame min_value = min(features(:,1:f,1),[],2); range = max(features(:,1:f,1)-min_value,[],2); color_index(:,f) = ceil(256*(features(:,f,1)-min_value)./range); end color_index(color_index < 1 ) = 1; color_index(color_index > 256) = 256; color_index(isnan(color_index) ) = 1; temp = cb(color_index,:); image = reshape(temp,dim,frame,3); image_output = image; end
github
dzwallkilled/IEforAR-master
extract_feature_JJd.m
.m
IEforAR-master/extract_feature_JJd.m
2,236
utf_8
7b73db695bde272f8e98750651ab2b7f
function features = extract_feature_JJd(skeleton_input) % index = get_JJd_index01; % index = get_JJd_index02; % index = get_JJd_index03; index = get_JJd_index04; joints = skeleton_input; vec = joints(index(:,2),:,:,:) - joints(index(:,1),:,:,:); features = squeeze(sum(vec.^2,2).^(1/2)); end function index = get_JJd_index01 % index = zeros(300,2); n = 0; for i = 1:24 for j = i+1:25 n = n + 1; index(n,:) = [i j]; end end end function index = get_JJd_index02 % index = zeros(300,2); n = 0; for i = 1:24 for j = i+1:25 n = n + 1; index(n,:) = [i j]; end end connected = [ %remove directly connected 1 2; 1 13; 1 17; 2 21; 3 4; 3 21; 5 6; 5 21; 6 7; 7 8; 8 22; 8 23; 9 10; 9 21; 10 11; 11 12; 12 24; 12 25; 13 14; 14 15; 15 16; 17 18; 18 19; 19 20 ]; con_index = zeros(length(connected),1); for i = 1:length(connected) idx = index == connected(i,:); con_index(i) = find(idx(:,1) ==1 &idx(:,2)==1); end index(con_index,:) = []; end %16 joints function index = get_JJd_index03 joint_num = [1 4 6 7 8 10 11 12 14 15 18 19 22 23 24 25]; len = length(joint_num); index = zeros(len*(len-1)/2,2); n = 0; for i = 1:len-1 for j = i+1:len n = n + 1; index(n,:) = [joint_num(i) joint_num(j)]; end end end %16 joints function index = get_JJd_index04 joint_num = [1 4 5 7 8 9 11 12 14 15 16 18 19 20 24 25]; len = length(joint_num); index = zeros(len*(len-1)/2,2); n = 0; for i = 1:len-1 for j = i+1:len n = n + 1; index(n,:) = [joint_num(i) joint_num(j)]; end end end %12 joints function index = get_JJd_index05 joint_num = [2 4 5 7 9 11 13 15 17 19 22 24]; len = length(joint_num); index = zeros(len*(len-1)/2,2); n = 0; for i = 1:len-1 for j = i+1:len n = n + 1; index(n,:) = [joint_num(i) joint_num(j)]; end end end %11 joints function index = get_JJd_index06 joint_num = [1 4 6 8 10 12 14 16 18 20 21]; len = length(joint_num); index = zeros(len*(len-1)/2,2); n = 0; for i = 1:len-1 for j = i+1:len n = n + 1; index(n,:) = [joint_num(i) joint_num(j)]; end end end
github
dzwallkilled/IEforAR-master
transform_method1.m
.m
IEforAR-master/transform_method1.m
310
utf_8
28e6ffff361be7a8228a8859d45731b1
%linear transform %specifically for JJo which has 3 dimensional features function image_output = transform_method1(features,img_size) features = imresize(features,img_size,'bilinear'); min_value = min(features,[],2); range = max(features,[],2) - min_value; image_output = (features- min_value)./range; end
github
dzwallkilled/IEforAR-master
extract_feature_JJd01.m
.m
IEforAR-master/extract_feature_JJd01.m
1,170
utf_8
74b608dd2b792e512c333299c397f1d6
function features = extract_feature_JJd01(skeleton_input) [joint_num,cor_dim,frame,body_num] = size(skeleton_input); index = get_JJd_index01; % index = get_JJd_index02; joints = zeros(2*joint_num,cor_dim,frame); joints(1:joint_num,:,:) = skeleton_input(:,:,:,1); if body_num == 1 joints(joint_num+1:end,:,:) = skeleton_input(:,:,:,1); else joints(joint_num+1:end,:,:) = skeleton_input(:,:,:,2); end vec = joints(index(:,2),:,:) - joints(index(:,1),:,:); features = squeeze(sum(vec.^2,2).^(1/2)); end %12 joints, two bodies function index = get_JJd_index01 joint_num = [2 4 5 7 9 11 13 15 17 19 22 24]; joint_num = [joint_num 25+joint_num]; len = length(joint_num); index = zeros(len*(len-1)/2,2); n = 0; for i = 1:len-1 for j = i+1:len n = n + 1; index(n,:) = [joint_num(i) joint_num(j)]; end end end %11 joints, two bodies function index = get_JJd_index02 joint_num = [1 4 6 8 10 12 14 16 18 20 21]; joint_num = [joint_num 25+joint_num]; len = length(joint_num); index = zeros(len*(len-1)/2,2); n = 0; for i = 1:len-1 for j = i+1:len n = n + 1; index(n,:) = [joint_num(i) joint_num(j)]; end end end
github
dzwallkilled/IEforAR-master
create_list.m
.m
IEforAR-master/create_list.m
2,545
utf_8
720b47076443cfef8e3e82163b3d8c6e
% train and test list for two evaluations % cross subject and cross view function [cross_sub_V2Tr1Te0_index, cross_view_V2Tr1Te0_index] = create_list(skeleton_file_list, target_folder) mkdir(target_folder); labels = str2num(skeleton_file_list(:,18:20)); %% cross subject training and test list performer_list = str2num(skeleton_file_list(:,10:12)); training_subjects = [1 2 4 5 8 9 13 14 15 16 17 18 19 25 27 28 31 34 35 38]'; train_index = zeros(length(performer_list),1); for i = 1:length(training_subjects) train_index = train_index | (performer_list == training_subjects(i)); end val_subjects = [2 4 9 14 17 19 25 28 34 38]'; val_index = zeros(length(performer_list),1); for i = 1:length(val_subjects) val_index = val_index | (performer_list == val_subjects(i)); end index = train_index + val_index; % 2 for val, 1 for train, 0 for test print_list(skeleton_file_list, labels, index, [target_folder 'cross_subject/']); cross_sub_V2Tr1Te0_index = index; %% cross view training and test list camera_list = str2num(skeleton_file_list(:,6:8)); training_cameras = [2 3]'; train_index = zeros(length(camera_list),1); for i = 1:length(training_cameras) train_index = train_index | (camera_list == training_cameras(i)); end train_index_list = find(train_index == 1); val_index = zeros(length(train_index),1); temp = randperm(length(train_index_list)); val_index(train_index_list(temp(1:length(train_index_list)/2))) = 1; index = train_index + val_index; print_list(skeleton_file_list,labels, index, [target_folder 'cross_view/']); cross_view_V2Tr1Te0_index = index; %% disp('Cross_subject & Cross_view lists created.') end function print_list(skeleton_file_list, labels, index, target_folder) mkdir(target_folder); train_fid = fopen([target_folder 'train.txt'],'w'); val_fid = fopen([target_folder 'val.txt'],'w'); test_fid = fopen([target_folder 'test.txt'],'w'); for i = 1:length(skeleton_file_list) if index(i) ~= 0 %train 1 fprintf(train_fid, [skeleton_file_list(i,17:20) '/' skeleton_file_list(i,1:20) '.jpg']); fprintf(train_fid, ' %d\n', labels(i)-1); if index(i) == 2% val 2 fprintf(val_fid, [skeleton_file_list(i,17:20) '/' skeleton_file_list(i,1:20) '.jpg']); fprintf(val_fid, ' %d\n', labels(i)-1); end else %test 0 fprintf(test_fid, [skeleton_file_list(i,17:20) '/' skeleton_file_list(i,1:20) '.jpg']); fprintf(test_fid, ' %d\n', labels(i)-1); end end fclose(train_fid); fclose(val_fid); fclose(test_fid); end
github
dzwallkilled/IEforAR-master
transform_method8.m
.m
IEforAR-master/transform_method8.m
601
utf_8
2685988e6ba5c23acfff76e96361e8fd
%temporal information included %active function function image_output = transform_method8(features) global cb;%claimed in main file [dim,frame,~] = size(features); main_feature = features(:,:,1); min_value = min(main_feature(:)); range = max(main_feature(:)) - min_value; % f = (main_feature - min_value)./range; alpha = 50; f = atan(alpha*(main_feature - min_value)./range - alpha/2)/2/atan(alpha/2) + 1/2; color_index = ceil(256*f); color_index(color_index == 0 ) = 1; color_index(isnan(color_index) ) = 1; temp = cb(color_index,:); image = reshape(temp,dim,frame,3); image_output = image; end
github
dzwallkilled/IEforAR-master
preprocess_skeleton_data.m
.m
IEforAR-master/preprocess_skeleton_data.m
4,026
utf_8
b39d4b54fd0cdca8144d8c56fddd71e5
function [skeleton_output, body_num] = preprocess_skeleton_data(skeleton_input) %align the skeleton data according to body_ID %meanwhile normalizing the joint xyz corrdinates based on chain distances [skeleton_output, body_cnt] = enhance_skeleton(skeleton_input); % visualize_skeleton(skeleton_output); %translate (actually there is no need for JLd, JJd and LLa, which are relative features) % skeleton_output = translate_skeleton(skeleton_output); %select a main body [skeleton_output,body_num] = select_main_body(skeleton_output,body_cnt); end % if spread X /spread Y is larger than 0.8, then dismissed % method from 'NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis' function [skeleton_output,body_num] = select_main_body(skeleton_input,body_cnt) body_num = size(skeleton_input,4); if body_num > 1 skeleton_tran = translate_skeleton(skeleton_input); spread = max(skeleton_tran,[],1)-min(skeleton_tran,[],1); ratio = squeeze(spread(1,1,:,:)./spread(1,2,:,:)); ratio(isnan(ratio)) = 0; avg_ratio1 = sum(ratio)./body_cnt'; spread = max(skeleton_input,[],1)-min(skeleton_input,[],1); ratio = squeeze(spread(1,1,:,:)./spread(1,2,:,:)); ratio(isnan(ratio)) = 0; avg_ratio2 = sum(ratio)./body_cnt'; avg_ratio = (avg_ratio1+avg_ratio2)/2; if min(avg_ratio) < 0.8 skeleton_output = skeleton_input(:,:,:,avg_ratio <= 0.8); body_cnt(avg_ratio > 0.8) = []; skeleton_tran(:,:,:,avg_ratio > 0.8) = []; else skeleton_output = skeleton_input(:,:,:,avg_ratio == min(avg_ratio)); body_cnt(avg_ratio ~= min(avg_ratio)) = []; skeleton_tran(:,:,:,avg_ratio ~= min(avg_ratio)) = []; end if size(skeleton_output,4) > 1 if max(body_cnt) == min(body_cnt) variation = squeeze(sum(sum(var(skeleton_tran,0,3),2),1)); [~,I] = sort(variation,'descend'); else [~,I] = sort(body_cnt,'descend'); end skeleton_output = skeleton_output(:,:,:,I); end else skeleton_output = skeleton_input; end end function [skeleton_output, body_cnt] = enhance_skeleton(skeleton_input) frame = length(skeleton_input); max_body_num = 0; body_ID = int64(0); body_index = zeros(7,frame); for f = 1:frame body_num = length(skeleton_input(f).bodies); for b = 1:body_num body_id = skeleton_input(f).bodies(b).bodyID; if isempty(find(body_id == body_ID, 1)) max_body_num = max_body_num + 1; body_ID(max_body_num) = body_id; end idx = find(body_id == body_ID, 1); body_index(idx,f) = 1; end end joints = zeros(25,3,frame,max_body_num); for f = 1:frame body_num = length(skeleton_input(f).bodies); for b = 1:body_num idx = find(skeleton_input(f).bodies(b).bodyID == body_ID, 1); for j = 1:25 joints(j,:,f,idx) = [skeleton_input(f).bodies(b).joints(j).x ...\ skeleton_input(f).bodies(b).joints(j).y ...\ skeleton_input(f).bodies(b).joints(j).z]; end end end %normalization %method from 'On Geometric Features for Skeleton-Based Action Recognition % using Multilayer LSTM Networks' index = get_chain_index; %the index that defines chains according to joint numbers chains = joints(index(:,2),:,:,:) - joints(index(:,1),:,:,:); skeleton_output = 100 * joints./repmat(sum(sum(chains.^2,2).^(0.5),1),25,3); % skeleton_output = joints; body_index(max_body_num+1:end,:) = []; body_cnt = sum(body_index,2); body_index(body_cnt < max(body_cnt)/2,:) = 0; skeleton_output(:,:,sum(body_index,1) == 0,:) = []; skeleton_output(:,:,:,body_cnt<max(body_cnt)/2) = []; body_cnt(body_cnt<max(body_cnt)/2) = []; end function index = get_chain_index % % spine based to spine % index = [1 21]; % all connected chains index = [1 2; 1 17; 1 13; 2 21; 3 4; 3 21; 5 6; 5 21; 6 7; 7 8; 9 10; 9 21; 10 11; 11 12; 13 14; 14 15; 17 18; 18 19]; end
github
dzwallkilled/IEforAR-master
extract_feature_JLd01.m
.m
IEforAR-master/extract_feature_JLd01.m
4,847
utf_8
3601954b68d43129dca09c1e14fa4d45
%use this for computation efficiency speed = 0.079215 seconds function [features] = extract_feature_JLd01(skeleton_input) [joint_num,cor_dim,frame,body_num] = size(skeleton_input); % index = get_JLd_index01; % index = get_JLd_index02; index = get_JLd_index03; dim = length(index); joints = zeros(2*joint_num,cor_dim,frame); joints(1:joint_num,:,:) = skeleton_input(:,:,:,1); if body_num == 1 joints(joint_num+1:end,:,:) = skeleton_input(:,:,:,1); else joints(joint_num+1:end,:,:) = skeleton_input(:,:,:,2); end pts1 = joints(index(:,1),:,:,:); pts2 = joints(index(:,2),:,:,:); pts3 = joints(index(:,3),:,:,:); features = squeeze((sum(cross(pts2-pts1,pts3-pts1,2).^2,2).^(1/2))./(sum((pts3-pts2).^2,2).^(1/2))); end function index = get_JLd_index01 line_index = get_line_index01; len_line = length(line_index); index = zeros(897,3); %[J, (J1,J2)] cnt = 0; for i = 1:25 for j = 1:len_line if i ~= line_index(j,1) && i ~= line_index(j,2) cnt = cnt + 1; index(cnt,:) = [i line_index(j,:)]; end end end end function index = get_JLd_index02 line_index = get_line_index01; neib_index = get_neighbour_index; len_line = length(line_index); index_temp = []; cnt = 0; for i = 1:len_line neib_joints = [neib_index(line_index(i,1)).neib neib_index(line_index(i,2)).neib]; neib_joints = unique(neib_joints); neib_joints(neib_joints== line_index(i,1) | neib_joints== line_index(i,2)) = []; for j = neib_joints cnt = cnt + 1; index_temp(cnt,:) = [j line_index(i,:)]; end end index1 = [[3:25]' repmat(26:27,23,1)]; index2 = [[1:4 6:8 10:25]' repmat([30 34],23,1)]; index = [index_temp;index1;index2]; end function index = get_JLd_index03 joints = [4 6 7 8 10 11 12 14 15 18 19]; % joints = [joints joints+25]; nb_index = get_neighbour_index; line_index_temp = []; for j = joints nb_joints = [nb_index(j).neib nb_index(j).neib + 25]'; line_temp = [repmat(j,length(nb_joints),1) nb_joints]; line_index_temp = [line_index_temp;line_temp]; end line_index(:,1) = min(line_index_temp,[],2); line_index(:,2) = max(line_index_temp,[],2); [~,I] = sort(line_index(:,1)); line_index = line_index(I,:); line_index = unique(line_index,'rows'); len_line = length(line_index); index=[]; cnt = 1; for i = 1:len_line nb_joints = [nb_index(line_index(i,1)).neib]'; nb_joints = [nb_joints;nb_joints+25]; nb_joints = unique(nb_joints); nb_joints(nb_joints== line_index(i,1) | nb_joints== line_index(i,2)) = []; len = length(nb_joints); index(cnt:cnt+len-1,:) = [nb_joints repmat(line_index(i,:),len,1)]; cnt = cnt+len; end end function index = get_line_index01 %case 1: directly adjacent (calculated from 1 to 25, deep first) index = [1 2; 1 13; 1 17; 2 21; 3 4; 3 21; 5 6; 5 21; 6 7; 7 8; 8 22; 8 23; 9 10; 9 21; 10 11; 11 12; 12 24; 12 25; 13 14; 14 15; 15 16; 17 18; 18 19; 19 20; %case 2: J1 at end, J2 two steps away (End:4,8,12,15,19) 4 21; 8 5; 12 9; 15 13; 19 17; %case 3: J1 and J2 are at end (End:4,8,12,15,19) 4 8; 4 12; 4 15; 4 19; 8 12; 8 15; 8 19; 12 15; 12 19; 15 19]; end function index = get_line_index02 %case 1: directly adjacent (calculated from 1 to 25, deep first) index = [1 2; 1 13; 1 17; 2 21; 3 4; 3 21; 5 6; 5 21; 6 7; 7 8; 8 22; 8 23; 9 10; 9 21; 10 11; 11 12; 12 24; 12 25; 13 14; 14 15; 15 16; 17 18; 18 19; 19 20; %case 2: J1 at end, J2 two steps away (End:4,8,12,15,19) 4 21; 8 5; 12 9; 15 13; 19 17; %case 3: J1 and J2 are at end (End:4,8,12,15,19) 4 8; 4 12; 4 15; 4 19; 8 12; 8 15; 8 19; 12 15; 12 19; 15 19 %case 4: two steps away at four body ends 5 7; 6 8; 9 11; 10 12; 13 16; 17 20 ]; end function index = get_neighbour_index index = []; index(1).neib = [2 13 14 17 18 21]; index(2).neib = [1 3 5 9 13 17 21]; index(3).neib = [2 4 5 9 21]; index(4).neib = [3 21]; index(5).neib = [2 3 6 7 9 21]; index(6).neib = [5 7 8 21]; index(7).neib = [5 6 8 22 23]; index(8).neib = [6 7 22 23]; index(9).neib = [2 3 5 10 11 21]; index(10).neib = [9 11 12 21]; index(11).neib = [9 10 12 24 25]; index(12).neib = [10 11 24 25]; index(13).neib = [1 2 14 15 17]; index(14).neib = [1 13 15 16]; index(15).neib = [13 14 16]; index(16).neib = [14 15]; index(17).neib = [1 2 13 18 19]; index(18).neib = [1 17 19 20]; index(19).neib = [17 18 20]; index(20).neib = [18 19]; index(21).neib = [1 2 3 4 5 6 9 10]; index(22).neib = [7 8 23]; index(23).neib = [7 8 22]; index(24).neib = [11 12 25]; index(25).neib = [11 12 24]; end
github
dzwallkilled/IEforAR-master
translate_skeleton.m
.m
IEforAR-master/translate_skeleton.m
743
utf_8
3469b7f8aab3e71f30b0ccffd165df34
%method following 'On Geometric Features for Skeleton-Based Action Recognition using Multilayer %LSTM Networks' %including traslating and rotation function skeleton_output = translate_skeleton(skeleton_input) [~,~,frame,body_num] = size(skeleton_input); skeleton_output = zeros(25,3,frame,body_num); for f = 1:frame for b = 1:body_num u = skeleton_input(5,:,f,b) - skeleton_input(9,:,f,b);%x u = u'/norm(u); v = skeleton_input(21,:,f,b) - skeleton_input(1,:,f,b);%y v = v'/norm(v); w = cross(u,v);%z w = w/norm(w); u = cross(v,w);%orthogonal for xyz skeleton_output(:,:,f,b) = (skeleton_input(:,:,f,b) - repmat(skeleton_input(1,:,f,b),25,1)) * [u v w]; end end end
github
dzwallkilled/IEforAR-master
transform_method3.m
.m
IEforAR-master/transform_method3.m
571
utf_8
bbff146b7c9ed4a9bb65f5c9158f7c78
%specifically for Features like JLd and LLa which have many dimensions, %which could be mapped into three channels of RGB function image_output = transform_method3(features,img_size) dim = size(features,1); features = imresize(features,[dim img_size(2)],'bilinear'); main_feature = features(:,:,1); min_value = min(main_feature,[],2); range = max(main_feature - min_value,[],2); main_feature = (main_feature - min_value)./range; image = reshape(main_feature,dim/3,3,img_size(2)); image = permute(image,[1 3 2]); image_output = imresize(image,img_size,'bilinear'); end
github
dzwallkilled/IEforAR-master
transform_method4.m
.m
IEforAR-master/transform_method4.m
616
utf_8
ed4ae61059983b0b84ff2075fcc0c96b
function image_output = transform_method4(features) global cb;%claimed in main file [dim,frame,body_num] = size(features); new_features = zeros(2*dim,frame); new_features(1:2:end,:) = features(:,:,1); if body_num == 1 new_features(2:2:end,:) = features(:,:,1); else new_features(2:2:end,:) = features(:,:,2); end min_value = min(new_features,[],2)/1; range = max(new_features,[],2) - min_value; color_index = ceil(256*(new_features - min_value)./range); color_index(color_index == 0 ) = 1; color_index(isnan(color_index) ) = 1; temp = cb(color_index,:); image_output = reshape(temp,2*dim,frame,3); end
github
dzwallkilled/IEforAR-master
extract_feature_JJo01.m
.m
IEforAR-master/extract_feature_JJo01.m
1,209
utf_8
8ba3bd991d61abc8edafc86241e51575
function features = extract_feature_JJo01(skeleton_input) [joint_num,cor_dim,frame,body_num] = size(skeleton_input); % index = get_JJo_index01; index = get_JJo_index02; joints = zeros(2*joint_num,cor_dim,frame); joints(1:joint_num,:,:) = skeleton_input(:,:,:,1); if body_num == 1 joints(joint_num+1:end,:,:) = skeleton_input(:,:,:,1); else joints(joint_num+1:end,:,:) = skeleton_input(:,:,:,2); end vec = joints(index(:,2),:,:,1) - joints(index(:,1),:,:,1); features = vec./(sum(vec.^2,2).^(1/2)); features = permute(features,[1 3 2]); end %12 joints, two bodies function index = get_JJo_index01 joint_num = [2 4 5 7 9 11 13 15 17 19 22 24]; joint_num = [joint_num 25+joint_num]; len = length(joint_num); index = zeros(len*(len-1)/2,2); n = 0; for i = 1:len-1 for j = i+1:len n = n + 1; index(n,:) = [joint_num(i) joint_num(j)]; end end end %11 joints, two bodies function index = get_JJo_index02 joint_num = [1 4 6 8 10 12 14 16 18 20 21]; joint_num = [joint_num 25+joint_num]; len = length(joint_num); index = zeros(len*(len-1)/2,2); n = 0; for i = 1:len-1 for j = i+1:len n = n + 1; index(n,:) = [joint_num(i) joint_num(j)]; end end end
github
dzwallkilled/IEforAR-master
visualize_skeleton.m
.m
IEforAR-master/visualize_skeleton.m
628
utf_8
b6769c2058c7a054693356b8ee4f479b
function visualize_skeleton(skeleton_input) [~,~,frame,body_num] = size(skeleton_input); index = get_chain_index; figure; for f=1:frame for b=1:body_num figure(b); for l = 1:18 points = skeleton_input(index(l,:)',:,f,b); plot3(points(:,1),points(:,2),points(:,3)); hold on end end % hold off pause(0.1); end end function index = get_chain_index index = [1 2; 1 17; 1 13; 2 21; 3 4; 3 21; 5 6; 5 21; 6 7; 7 8; 9 10; 9 21; 10 11; 11 12; 13 14; 14 15; 17 18; 18 19]; end
github
dzwallkilled/IEforAR-master
transform_method5.m
.m
IEforAR-master/transform_method5.m
364
utf_8
8cdf1a756b49bf563b8e02ff149e2b56
%3 channels for JJd, JLd, LLa %part of the method is implemented in the begin of this file, i.e. in % the file-name function function image_output = transform_method5(features,img_size) features = imresize(features, img_size,'bilinear'); min_value = min(features,[],2); range = max(features,[],2) - min_value; image_output = (features - min_value)./range; end
github
dzwallkilled/IEforAR-master
transform_method2.m
.m
IEforAR-master/transform_method2.m
692
utf_8
456bd13f1e22d19cb8a73bf4007cd0d9
%linear transform (modified from method1 which has some problems) function image_output = transform_method2(features,img_size) features = imresize(features,img_size); [dim,frame,body_num] = size(features); image_output = zeros(dim,frame,3); min_value = min(features,[],2); range = max(features,[],2) - min_value; image_output(:,:,1) = (features(:,:,1)- repmat(min_value(:,1),1,frame))./repmat(range(:,1),1,frame); if body_num == 1 image_output(:,:,2) = 1-image_output(:,:,1);%one body else image_output(:,:,2) = (features(:,:,2)-repmat(min_value(:,2),1,frame))./repmat(range(:,2),1,frame);%two bodies end image_output(:,:,3) = 4*image_output(:,:,2) .* image_output(:,:,1); end
github
dzwallkilled/IEforAR-master
extract_skeleton_feature.m
.m
IEforAR-master/extract_skeleton_feature.m
413
utf_8
63df637562e07aba87cb7e8975bb33cf
%the codes have been optimised for speed function features = extract_skeleton_feature(skeleton_input, flags) %Joint Joint Distances (JJd) if flags(1) == 1 features.JJd = calculate_JJd(skeleton_input); end %Joint Line Distances (JLd) if flags(2) == 1 features.JLd = calculate_JLd(skeleton_input); end %Line Line Angle (LLa) if flags(3) == 1 features.LLa = calculate_LLa(skeleton_input); end end
github
dzwallkilled/IEforAR-master
extract_feature_JJo.m
.m
IEforAR-master/extract_feature_JJo.m
411
utf_8
eaef8bc7236879fbcd8978dcf9b4d3b0
function features = extract_feature_JJo(skeleton_input) index = get_JJo_index01; joints = skeleton_input; vec = joints(index(:,2),:,:,1) - joints(index(:,1),:,:,1); features = vec./(sum(vec.^2,2).^(1/2)); features = permute(features,[1 3 2]); end function index = get_JJo_index01 % index = zeros(300,2); n = 0; for i = 1:24 for j = i+1:25 n = n + 1; index(n,:) = [i j]; end end end
github
dzwallkilled/IEforAR-master
extract_feature_JJv.m
.m
IEforAR-master/extract_feature_JJv.m
375
utf_8
9161ef7c41e2767f1ea74611a0668b9a
function features = extract_feature_JJv(skeleton_input) index = get_JJo_index01; joints = skeleton_input; features = joints(index(:,2),:,:,1) - joints(index(:,1),:,:,1); features = permute(features,[1 3 2]); end function index = get_JJo_index01 % index = zeros(300,2); n = 0; for i = 1:24 for j = i+1:25 n = n + 1; index(n,:) = [i j]; end end end
github
dzwallkilled/IEforAR-master
extract_feature_JJd02.m
.m
IEforAR-master/extract_feature_JJd02.m
1,447
utf_8
128336bd7e04afc3a163f359916bbebe
function features = extract_feature_JJd02(skeleton_input) [joint_num,cor_dim,frame,body_num] = size(skeleton_input); % index = get_JJd_index01; index = get_JJd_index02; joints = zeros(2*joint_num,cor_dim,frame); joints(1:joint_num,:,:) = skeleton_input(:,:,:,1); if body_num == 1 joints(joint_num+1:end,:,:) = skeleton_input(:,:,:,1); else joints(joint_num+1:end,:,:) = skeleton_input(:,:,:,2); end joints_cyl = zeros(2*joint_num,cor_dim,frame); % [joints_cyl(:,1,:),joints_cyl(:,2,:),joints_cyl(:,3,:)] = cart2pol(joints(:,1,:),joints(:,2,:),joints(:,3,:)); [joints_cyl(:,1,:),joints_cyl(:,2,:),joints_cyl(:,3,:)] = cart2pol(joints(:,1,:),joints(:,3,:),joints(:,2,:)); vec = joints_cyl(index(:,2),:,:) - joints(index(:,1),:,:); features = squeeze(sum(vec.^2,2).^(1/2)); end %12 joints, two bodies function index = get_JJd_index01 joint_num = [2 4 5 7 9 11 13 15 17 19 22 24]; joint_num = [joint_num 25+joint_num]; len = length(joint_num); index = zeros(len*(len-1)/2,2); n = 0; for i = 1:len-1 for j = i+1:len n = n + 1; index(n,:) = [joint_num(i) joint_num(j)]; end end end %11 joints, two bodies function index = get_JJd_index02 joint_num = [1 4 6 8 10 12 14 16 18 20 21]; joint_num = [joint_num 25+joint_num]; len = length(joint_num); index = zeros(len*(len-1)/2,2); n = 0; for i = 1:len-1 for j = i+1:len n = n + 1; index(n,:) = [joint_num(i) joint_num(j)]; end end end
github
dzwallkilled/IEforAR-master
transform_method7.m
.m
IEforAR-master/transform_method7.m
1,043
utf_8
0b038c0de81e48878b0718f95acfa8e1
%temporal information included function image_output = transform_method7(features) [dim,frame,~] = size(features); image = zeros(dim,frame,3); feature_main = features(:,:,1); min_value = min(feature_main,[],2); range = max(feature_main,[],2) - min_value; image(:,:,1) = ((feature_main - min_value)./range); velocity = feature_main(:,2:end) - feature_main(:,1:end-1); temp2 = abs(velocity); min_value = min(temp2,[],2); range = max(temp2,[],2) - min_value; image(:,:,2) = [zeros(dim,1) ((temp2 - min_value)./range).^(1/2)]; % acceleration = velocity(:,2:end,1) - velocity(:,1:end-1,1); temp3 = abs(acceleration); min_value = min(temp3,[],2); range = max(temp3,[],2) - min_value; image(:,:,3) = [zeros(dim,2) ((temp3 - min_value)./range).^(1/2)]; % if body_num > 1 %more than one body % feature_second = features(:,:,1); % min_value = min(feature_second,[],2); % range = max(feature_second,[],2) - min_value; % image(:,:,1) = (0.9*image(:,:,1) + 0.1*((feature_second - min_value)./range)); % end image_output = image; end
github
dzwallkilled/IEforAR-master
extract_feature_JJv01.m
.m
IEforAR-master/extract_feature_JJv01.m
1,185
utf_8
419dac66efe27e6dacc8069fb39be46d
function features = extract_feature_JJv01(skeleton_input) [joint_num,cor_dim,frame,body_num] = size(skeleton_input); % index = get_JJo_index01; index = get_JJo_index02; joints = zeros(2*joint_num,cor_dim,frame); joints(1:joint_num,:,:) = skeleton_input(:,:,:,1); if body_num == 1 joints(joint_num+1:end,:,:) = skeleton_input(:,:,:,1); else joints(joint_num+1:end,:,:) = skeleton_input(:,:,:,2); end vec = joints(index(:,2),:,:,1) - joints(index(:,1),:,:,1); features = vec; features = permute(features,[1 3 2]); end %12 joints, two bodies function index = get_JJo_index01 joint_num = [2 4 5 7 9 11 13 15 17 19 22 24]; joint_num = [joint_num 25+joint_num]; len = length(joint_num); index = zeros(len*(len-1)/2,2); n = 0; for i = 1:len-1 for j = i+1:len n = n + 1; index(n,:) = [joint_num(i) joint_num(j)]; end end end %11 joints, two bodies function index = get_JJo_index02 joint_num = [1 4 6 8 10 12 14 16 18 20 21]; joint_num = [joint_num 25+joint_num]; len = length(joint_num); index = zeros(len*(len-1)/2,2); n = 0; for i = 1:len-1 for j = i+1:len n = n + 1; index(n,:) = [joint_num(i) joint_num(j)]; end end end
github
pshibby/fepll_public-master
operators.m
.m
fepll_public-master/operators/operators.m
13,038
utf_8
53fbe972cad218d67f9f7ab37ab962ed
function op = operators(name, M, N, varargin) % % Function Name: operators % % % Inputs: % name : operator name % - vignetting % - id (denoising) % - blur (deconvolution) % - blur+border (deconv with masked borders) % - motion blur % - subresolution (super-resolution) % - randommasking (inpainting) % - cs (compressed sensing) % % M : number of rows of the image % N : number of columns of the image % varargin : arguments depend on the operator used (see examples) % % Outputs: % op : stuct with function definitions and parameters: % - op.isize : size of x in y = A x % - op.osize : size of y in y = A x % - op.A(x) : apply the operator A to x % - op.At(y) : apply the adjoint A^t to y % - op.AtA(x) : apply the gram matrix A^t A to x % - op.inv_AtA_plus_tauId(x, tau) % : apply (A^t A + tau Id)^-1 % - op.inv_AtA_plus_tauLaplacian(x, tau) % : apply (A^t A + tau Laplacian)^-1 % - op.Tikhonov(x, tau) % : apply (A^t A + tau Laplacian)^-1 A^t % - op.A_norm2 : l2 norm || A ||_2 % - op.A_normF : Frobenius norm || A ||_F % - op.AtA_normF : Gram Frobenius norm || A^t A ||_F % % Examples: % % % Gaussian blur of width 3px % op = operators('blur', M, N, 'width', 3') % % % pre-defined blur % K = fspecial('motion', 10, 45); % op = operators('blur', M, N, 'kernel', K); % % % super-resolution with 0.5px Gaussian bluring, x2 subsampling % % and Kaiser window appodization % op = operators('subresoltuion', M, N, 'width', K, 'factor', 0.5, % 'windowing', 'kaiser'); % % % inpainting with 50% of missing pixels % op = operators('randommasking', 'factor', 0.5); % % % compressed sensing with x2 compression rate % op = operators('randommasking', 'factor', 0.5); % Citation: % If you use this code please cite: % S. Parameswaran, C-A. Deledalle, L. Denis and T. Q. Nguyen, "Accelerating % GMM-based patch priors for image restoration: Three ingredients for a % 100x speed-up", arXiv. % % License details as in license.txt % ________________________________________ options = makeoptions(varargin{:}); % Laplacian laplacian = @(x) ... -4 * x + ... x([2:end end-1], :) + ... x([2 1:end-1], :) + ... x(:, [2:end end-1]) + ... x(:, [2 1:end-1]); [u v] = fftgrid(M, N); klaplacian = zeros(M, N); klaplacian(u == 0 & v == 0) = -4; klaplacian(u == -1 & v == 0) = 1; klaplacian(u == +1 & v == 0) = 1; klaplacian(u == 0 & v == -1) = 1; klaplacian(u == 0 & v == +1) = 1; flaplacian = real(fft2(klaplacian)); op.name = name; switch name case 'vignetting' op.isize = [M, N]; op.osize = [M, N]; w = 0.2+0.8*ifftshift(exp(-sqrt((u.^2/M^2 + v.^2/N^2)*6).^5)); op.A = @(x) w .* x; op.At = @(x) w .* x; op.AtA = @(x) w.^2 .* x; op.inv_AtA_plus_tauId = @(x, tau) ... x ./ (w.^2 + tau); op.inv_AtA_plus_tauLaplacian = @(x, tau) ... imcgs(@(x) op.AtA(x) + tau * laplacian(x), x, ... 1e-6, 8, [], [], x(:) ./ w(:)); op.Tikhonov = @(x, tau) ... op.inv_AtA_plus_tauLaplacian(op.At(x), tau); op.A_norm2 = max(w(:)); op.A_normF = sqrt(sum(w(:).^2)); op.AtA_normF = sqrt(sum(w(:).^4)); case 'id' % denoising op.isize = [M, N]; op.osize = [M, N]; op.A = @(x) x; op.At = @(x) x; op.AtA = @(x) x; op.inv_AtA_plus_tauId = @(x, tau) ... x / (1 + tau); op.inv_AtA_plus_tauLaplacian = @(x, tau) ... imcgs(@(x) op.AtA(x) + tau * laplacian(x), x, ... 1e-6, 8); op.Tikhonov = @(x, tau) ... op.inv_AtA_plus_tauLaplacian(op.At(x), tau); op.A_norm2 = 1; op.A_normF = 1 * sqrt(M*N); op.AtA_normF = 1 * sqrt(M*N); case 'blur' % deconvolution K = getoptions(options, 'kernel', []); if isempty(K) h = getoptions(options, 'width', 1.5); K = exp(-(u.^2 + v.^2) / (2 * h^2)); MK = ceil(8 * h) + 1; NK = ceil(8 * h) + 1; sK = zeros(MK, NK); sK(:) = ifftshift(K(-(MK-1)/2 <= u & u <= (MK-1)/2 & ... -(NK-1)/2 <= v & v <= (NK-1)/2)); K = sK / sum(sK(:)); end [MK, NK] = size(K); if mod(MK, 2) == 0 MK = MK + 1; end if mod(NK, 2) == 0 NK = NK + 1; end kernel = zeros(M, N); kernel(fftshift(-(MK-1)/2 <= u & u <= (MK-1)/2 & ... -(NK-1)/2 <= v & v <= (NK-1)/2)) = K(:); kernel = ifftshift(kernel); fkernel = fft2(kernel); mk = floor((MK-1)/2); nk = floor((NK-1)/2); op.taper = @(x) ... multiedgetaper(padarray(x, [mk nk], 'replicate', 'both'), K, 3); op.zp = @(x) [zeros(mk, N) ; zeros(M-2*mk, nk) x zeros(M-2*mk, nk); zeros(mk, N) ]; op.crop = @(x) x((1+mk):(end-mk), (1+nk):(end-nk)); op.isize = [M, N]; op.osize = [M, N]; op.A = @(x) real(ifft2(fkernel .* fft2(x))); op.At = @(x) real(ifft2(conj(fkernel) .* fft2(x))); op.AtA = @(x) real(ifft2(abs(fkernel).^2 .* fft2(x))); op.inv_AtA_plus_tauId = @(x, tau) ... real(ifft2(1./(abs(fkernel).^2 + tau) .* fft2(x))); op.inv_AtA_plus_tauLaplacian = @(x, tau) ... real(ifft2(1./(abs(fkernel).^2 - tau .* flaplacian) .* fft2(x))); op.Tikhonov = @(x, tau) ... real(ifft2(conj(fkernel)./(abs(fkernel).^2 - tau .* flaplacian) .* fft2(x))); op.A_norm2 = 1; op.A_normF = sqrt(sum(abs(fkernel(:)).^2)); op.AtA_normF = sqrt(sum(abs(fkernel(:)).^4)); case 'blur+border' % deconvolution with masked borders K = getoptions(options, 'kernel', [], 1); [MK NK] = size(K); kernel = zeros(M, N); kernel(fftshift(-(MK-1)/2 <= u & u <= (MK-1)/2 & ... -(NK-1)/2 <= v & v <= (NK-1)/2)) = K; kernel = ifftshift(kernel); fkernel = fft2(kernel); mk = ceil((MK-1)/2); nk = ceil((NK-1)/2); op.isize = [M, N]; op.osize = [M-2*mk, N-2*nk]; crop = @(x) x((1+mk):(end-mk), (1+nk):(end-nk)); zp = @(x) [zeros(mk, N) ; zeros(M-2*mk, nk) x zeros(M-2*mk, nk); zeros(mk, N) ]; op.A = @(x) crop(ifft2(fkernel .* fft2(x))); op.At = @(x) ifft2(conj(fkernel) .* fft2(zp(x))); op.AtA = @(x) op.At(op.A(x)); op.inv_AtA_plus_tauId = @(x, tau) ... imcgs(@(x) op.AtA(x) + tau * x, x, ... 1e-9, 1000); op.inv_AtA_plus_tauLaplacian = @(x, tau) ... imcgs(@(x) op.AtA(x) - tau * laplacian(x), x, ... 1e-9, 1000, [], [], mean(x(:))*ones(size(x(:)))); op.Tikhonov = @(x, tau) ... op.inv_AtA_plus_tauLaplacian(op.At(x), tau); case 'motionblur' K = fspecial('motion', 10, 45); op = operators('blur', M, N, 'kernel', K'); op.name = name; return case 'subresolution' % super-resolution h = getoptions(options, 'width', 0.5); f = getoptions(options, 'factor', 0.7); windowing = getoptions(options, 'windowing', 'kaiser'); % Define blur kernel = exp(-(u.^2 + v.^2) / (2 * h^2)); kernel = kernel ./ sum(kernel(:)); fkernel = fft2(kernel); op.isize = [M, N]; % Define subsampling mask mask = -M/2*f <= u & u < M/2*f & ... -N/2*f <= v & v < N/2*f; op.osize = [sum(mask(:,1)), sum(mask(1,:))]; clip = @(x) reshape(x(mask), op.osize); zpad = @(x) zerropadding(x, mask); % Define anti-aliasing windowing switch windowing case 'hamming' hw = mask .* max((1 - cos(2*pi*u / (M*f-1) + pi))/2 .* ... (1 - cos(2*pi*v / (N*f-1) + pi))/2, 0); case 'kaiser' alpha = -log(f); hw = mask.* (besseli(0, pi * alpha * sqrt(1 - (2*u/(M*f-1)).^2)) .* ... besseli(0, pi * alpha * sqrt(1 - (2*v/(N*f-1)).^2)) ... ./ besseli(0, pi * alpha)^2); otherwise hw = 1; end fkernel = fkernel .* hw; % S is the renormalization of fft2 when changing image size S = prod(op.osize) / prod(op.isize); % Main definitions op.A = @(x) real(ifft2(clip(fkernel .* fft2(x))) * S); op.At = @(x) real(ifft2(conj(fkernel) .* zpad(fft2(x)))); op.AtA = @(x) real(ifft2(abs(fkernel).^2 .* mask .* fft2(x) * S)); op.inv_AtA_plus_tauId = @(x, tau) ... real(ifft2(1./(mask .* abs(fkernel).^2 * S + tau) .* fft2(x))); op.inv_AtA_plus_tauLaplacian = @(x, tau) ... real(ifft2(1 ./ (mask .* abs(fkernel).^2 * S - tau * flaplacian) .* fft2(x))); op.Tikhonov = @(x, tau) ... real(ifft2(conj(fkernel) ./ (mask .* abs(fkernel).^2 * S - tau * flaplacian) ... .* zpad(fft2(x)))); op.A_norm2 = sqrt(S); op.A_normF = sqrt(sum(mask(:) .* abs(fkernel(:)).^2) * S); op.AtA_normF = sqrt(sum(mask(:) .* abs(fkernel(:)).^4) * S^2); case 'randommasking' % inpainting f = getoptions(options, 'factor', 0.5); mask = zeros(M, N); idx = randperm(M*N); P = ceil(M*N*f); mask(idx(1:P)) = 1; op.isize = [M, N]; op.osize = [M, N]; op.mask = mask; op.A = @(x) mask .* x; op.At = @(x) mask .* x; op.AtA = @(x) mask .* x; op.inv_AtA_plus_tauId = @(x, tau) ... x ./ (mask + tau); op.inv_AtA_plus_tauLaplacian = @(x, tau) ... imcgs(@(x) op.AtA(x) + tau * laplacian(x), x, ... 1e-6, 8); op.Tikhonov = @(x, tau) ... op.inv_AtA_plus_tauLaplacian(op.At(x), tau); op.A_norm2 = 1; op.A_normF = sqrt(P); op.AtA_normF = sqrt(P); case 'cs' % compressed sensing f = getoptions(options, 'factor', 0.5); Ms = ceil(M * sqrt(f)); Ns = ceil(N * sqrt(f)); p1 = [ 1, randperm(M*N-1)+1 ]; p2 = [ 1, randperm(M*N-1)+1 ]; P = Ms * Ns; p2 = p2(1:P); P = ceil(Ms * Ns); f1 = @(x) reshape(x(p1), [M, N]); f2 = @(x) x(p2); f2 = @(x) f2(x(:)); f1t = @(x) ipa(x, M, N, p1); f2t = @(x) ipa(x, M, N, p2); op.isize = [M, N]; op.osize = [Ms, Ns]; r = ones(P, 1); op.A = @(x) reshape(r .* f2(idct2(f1(dct2(x)))), [Ms Ns]); op.At = @(x) real(idct2(f1t(dct2(f2t(r .* reshape(x, [P 1])))))); ri = zeros(M, N); ri(p2) = r(:); op.AtA = @(x) real(idct2(f1t(dct2(ri.^2 .* idct2(f1(dct2(x))))))); op.inv_AtA_plus_tauId = @(x, tau) ... real(idct2(f1t(dct2(1./(ri.^2 + tau) .* idct2(f1(dct2(x)))))));; op.inv_AtA_plus_tauLaplacian = @(x, tau) ... imcgs(@(x) op.AtA(x) + tau * laplacian(x), x, ... 1e-6, 8); op.Tikhonov = @(x, tau) ... op.inv_AtA_plus_tauLaplacian(op.At(x), tau); op.A_norm2 = max(r); op.A_normF = sqrt(mean(r.^2))*sqrt(P); op.AtA_normF = sqrt(mean(r.^4))*sqrt(P); otherwise error(sprintf('Operator %s not implemented', name)); end if ~isfield(op, 'A_norm2') op.A_norm2 = estimate_norm2(op.A, op.At, op.isize); end if ~isfield(op, 'A_normF') op.A_normF = estimate_normF(op.A, op.isize); end if ~isfield(op, 'AtA_normF') op.AtA_normF = estimate_normF(op.AtA, op.isize); end function z = zerropadding(x, mask) z = zeros(size(mask)); z(mask) = x; function z = ipa(x, M, N, idx) z = zeros(M*N, 1); z(idx) = x(:); z = reshape(z, [M, N]); %Norm_2^2 = sqrt(max(lambdamax(A' A))) function n2 = estimate_norm2(A, At, size) R = 50; vect = @(x) x(:); z = ones(size); for i = 1:R z = At(A(z)); z = z / norm(z); end n2 = sum(vect(z .* At(A(z)))) / sum(vect(z.^2)); n2 = sqrt(n2); %Norm_F^2 = sqrt(trace(A' A)) function n2 = estimate_normF(A, size) R = 100; n = zeros(R, 1); vect = @(x) x(:); for i = 1:R z = sign(randn(size)); n(i) = norm(vect(A(z)))^2; end n2 = sqrt(mean(n)); function x = multiedgetaper(y, K, n) x = y; for i = 1:n x = edgetaper(x, K); end
github
pshibby/fepll_public-master
gstree_match.m
.m
fepll_public-master/fepll/gstree_match.m
2,286
utf_8
7aff4b07361ca7601c40ee3360b81c91
function labels = gstree_match(y, GStree, sig2, varargin) % % Function Name: gstree_match % % % Inputs: % y : matrix containing image patches % GStree : GMM-tree % sig2 : noise variance % % Outputs: % labels : index of Gaussian components each patch belongs to % Citation: % If you use this code please cite: % S. Parameswaran, C-A. Deledalle, L. Denis and T. Q. Nguyen, "Accelerating % GMM-based patch priors for image restoration: Three ingredients for a % 100x speed-up", arXiv. % % License details as in license.txt % ________________________________________ options = makeoptions(varargin{:}); truncation = getoptions(options, 'truncation', isfield(GStree, 't')); truncation = getoptions(options, 'trunc_match', truncation); sy2 = sum(y.^2, 1); labels = gstree_match_rec(y, sy2, GStree, sig2, truncation); end function labels = gstree_match_rec(y, sy2, GStree, sig2, truncation) [d, n] = size(y); if ~isfield(GStree, 'child') error('GStree must have children'); end K = length(GStree.child); energy = zeros(K, n); for k = 1:K iSPlusSig2 = 1 ./ (GStree.child{k}.S + sig2); if ~truncation uy = GStree.child{k}.U' * y; energy(k, :) = gmm_distance(uy, iSPlusSig2, ... -2 * log(GStree.child{k}.wts)); else t = GStree.child{k}.t; % Energy for the t-1 first dimensions uy = GStree.child{k}.U(:,1:(t-1))' * y; energy(k, :) = gmm_distance(uy, iSPlusSig2(1:(t-1)), ... -2 * log(GStree.child{k}.wts)); % Energy for the d-t+1 last dimensions uyc = sy2 - sum(uy.^2, 1); energy(k, :) = energy(k, :) + ... uyc * iSPlusSig2(t) - (d - t + 1) * log(iSPlusSig2(t)); end end [~, childidx] = min(energy, [], 1); labels = zeros(1, n); for k = 1:K if sum(childidx == k) == 0 continue; end if ~isfield(GStree.child{k}, 'child') labels(childidx == k) = GStree.child{k}.idx; else labels(childidx == k) = ... gstree_match_rec(y(:, childidx == k), ... sy2(:, childidx == k), ... GStree.child{k}, sig2, truncation); end end end
github
pshibby/fepll_public-master
gstree_sv_threshold.m
.m
fepll_public-master/fepll/gstree_sv_threshold.m
1,291
utf_8
f03453a4b1dd0ab6bcdd432629f255b3
function [GStree, GS] = gstree_sv_threshold(GStree, GS, p) % % Function Name: gstee_sv_threshold % % % Inputs: % GStree : GMM-tree % GS : GMM model % p : threshold for truncation % % Outputs: % GStree : GMM-tree after flat-tail approximation % GS : GMM model after flat-tail approximation % Citation: % If you use this code please cite: % S. Parameswaran, C-A. Deledalle, L. Denis and T. Q. Nguyen, "Accelerating % GMM-based patch priors for image restoration: Three ingredients for a % 100x speed-up", arXiv. % % License details as in license.txt % ________________________________________ for k = 1:GS.nmodels S = GS.S{k}; e = cumsum(S) / sum(S); idx = find(e >= p); t = min(idx); GS.S{k}(t:end) = mean(S(t:end)); GS.Sigma{k} = GS.U{k} * diag(GS.S{k}) * GS.U{k}'; GS.t(k) = t; end GStree = gstree_sv_threshold_rec(GStree, p); function GStree = gstree_sv_threshold_rec(GStree, p) S = GStree.S; e = cumsum(S) / sum(S); idx = find(e >= p); t = min(idx); GStree.S(t:end) = mean(GStree.S(t:end)); GStree.Sigma = GStree.U * diag(GStree.S) * GStree.U'; GStree.t = t; if isfield(GStree, 'child') for k = 1:length(GStree.child) GStree.child{k} = gstree_sv_threshold_rec(GStree.child{k}, p); end end
github
RobinAmsters/GT_mobile_robotics-master
build_map.m
.m
GT_mobile_robotics-master/mobile_robotics/Session 2/build_map.m
2,200
utf_8
3b8057bef157c70bd61c6987b12a5660
clear all close all clc %% INTRODUCTION % To start using a turtlebot 3 following procedure % needs to be followed: % % 1) Turn the TB3 on. % 2) Set up the putty SSH connection (IP adress is given) % 3) Type "bringup". % 4) You are now able to run your MATLAB code % % This file file will let the turtlebot drive a square pattern. Whilst % driving, it will build an occupancy grid map. This map is saved and can % later be used for localization. %% MAPPING % Connection to the ROS node system ip = '192.168.42.1'; % This needs to be the ip adres of the ROS master turtlebot = Turtlebot_GT(ip); % Make Turtlebot object % initialize map map = robotics.OccupancyGrid(15,15,20); pose = [5;5;0]; Pcov = 0.01*eye(3); % drive square and map environment dist = 0.25; angle = pi/2; speed = 0.1; for i=1:4 [map, pose, Pcov] = map_while_driving(turtlebot, map, dist, speed, pose, Pcov); [map, pose, Pcov] = map_while_turning(turtlebot, map, angle, -speed*2, pose, Pcov); end turtlebot.stop() % stop driving save 'map.mat' map % save map rosshutdown % shutdown ros master %% FUNCTION DEFINITIONS function [map, pose, Pcov] = map_while_driving(turtlebot, map, dist, speed, pose, Pcov) turtlebot.set_linear_angular_velocity(speed,0.0); d = 0; maxrange = 5; while abs(d) <= dist % Receive laser scan and odometry DATA [ds,dth] = turtlebot.get_odometry(); % Predict new pose with motion model [~, pose] = motionModel(pose, Pcov, ds, dth, 1); d = d + ds; % Get scan data scan = turtlebot.get_scan(); % Add to map insertRay(map,pose,scan.Ranges,scan.Angles,maxrange); show(map) end end function [map, pose, Pcov] = map_while_turning(turtlebot, map, angle, speed, pose, Pcov) turtlebot.set_linear_angular_velocity(0.0,speed); maxrange = 5; th = 0; while abs(th) <= angle % Receive laser scan and odometry DATA [ds,dth] = turtlebot.get_odometry(); % Predict new pose with motion model [~, pose] = motionModel(pose, Pcov, ds, dth, 1); th = th + dth; % Get scan data scan = turtlebot.get_scan(); % Add to map insertRay(map,pose,scan.Ranges,scan.Angles,maxrange); show(map) end end
github
RobinAmsters/GT_mobile_robotics-master
protectfig.m
.m
GT_mobile_robotics-master/common/rvctools/common/protectfig.m
881
utf_8
02ea9bf0328e3371f877b1e9e1b5be6d
% Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function protectfig(h) if nargin == 0 h = gcf; end set(h, 'HandleVisibility', 'off');
github
RobinAmsters/GT_mobile_robotics-master
Polygon.m
.m
GT_mobile_robotics-master/common/rvctools/common/Polygon.m
44,407
utf_8
0f8730e021e78210d0e8ae7ff334f5e9
%POLYGON Polygon class % % A general class for manipulating polygons and vectors of polygons. % % Methods:: % plot Plot polygon % area Area of polygon % moments Moments of polygon % centroid Centroid of polygon % perimeter Perimter of polygon % transform Transform polygon % inside Test if points are inside polygon % intersection Intersection of two polygons % difference Difference of two polygons % union Union of two polygons % xor Exclusive or of two polygons % display print the polygon in human readable form % char convert the polgyon to human readable string % % Properties:: % vertices List of polygon vertices, one per column % extent Bounding box [minx maxx; miny maxy] % n Number of vertices % % Notes:: % - This is reference class object % - Polygon objects can be used in vectors and arrays % % Acknowledgement:: % % The methods: inside, intersection, difference, union, and xor are based on code % written by: % Kirill K. Pankratov, [email protected], % http://puddle.mit.edu/~glenn/kirill/saga.html % and require a licence. However the author does not respond to email regarding % the licence, so use with care, and modify with acknowledgement. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com % TODO % split the code in two. Simple polygon functions in Polgon class, subclass with % Pankratov code to Polygon2. % add method to detect empty polygon, overload isempty classdef Polygon < handle properties vertices extent end properties (Dependent=true) n x y end methods function p = Polygon(v, wh) %Polygon.Polygon Polygon class constructor % % P = Polygon(V) is a polygon with vertices given by V, one column per % vertex. % % P = Polygon(C, WH) is a rectangle centred at C with dimensions % WH=[WIDTH, HEIGHT]. if nargin == 0 p.n = 0; p.vertices = []; return; end if nargin < 2 if numrows(v) ~= 2 error('vertices must have two rows'); end p.vertices = v; end if nargin == 2 if length(v) ~= 2 error('first argument must be polygon centre'); end if length(wh) ~= 2 error('second arugment must be width height'); end p.vertices = [ v(1)-wh(1)/2 v(1)+wh(1)/2 v(1)+wh(1)/2 v(1)-wh(1)/2 v(2)-wh(2)/2 v(2)-wh(2)/2 v(2)+wh(2)/2 v(2)+wh(2)/2 ]; end % compute the extent p.extent(1,1) = min(p.x); p.extent(1,2) = max(p.x); p.extent(2,1) = min(p.y); p.extent(2,2) = max(p.y); end function r = get.n(p) r = numcols(p.vertices); end function r = get.x(p) r = p.vertices(1,:)'; end function r = get.y(p) r = p.vertices(2,:)'; end function r = set.n(p) error('cant set property'); end function r = set.x(p) error('cant set property'); end function r = set.y(p) error('cant set property'); end function ss = char(p) %Polygon.char String representation % % S = P.char() is a compact representation of the polgyon in human % readable form. ss = ''; for i=1:length(p) if p(i).n <= 4 if length(p) > 1 s = sprintf('%2d: ', i); else s = ''; end v = p(i).vertices; for k=1:p(i).n s = strcat(s, sprintf('(%g,%g)', v(:,k))); if k~=p(i).n s = strcat(s, ', '); end end else s = sprintf('... %d vertices', p.n) end ss =strvcat(ss, s); end end function display(p) %Polygon.display Display polygon % % P.display() displays the polygon in a compact human readable form. % % See also Polygon.char. loose = strcmp( get(0, 'FormatSpacing'), 'loose'); if loose disp(' '); end disp([inputname(1), ' = ']) if loose disp(' '); end disp(char(p)) if loose disp(' '); end end function plot(plist, varargin) %Polygon.plot Draw polygon % % P.plot() draws the polygon P in the current plot. % % P.plot(LS) as above but pass the arguments LS to plot. % % Notes:: % - The polygon is added to the current plot. opt.fill = []; [opt,args] = tb_optparse(opt, varargin); ish = ishold; hold all for p=plist % for every polygon in the list % get the vertices X = p.vertices(1,:)'; Y = p.vertices(2,:)'; while true % look for NaNs which indicate disjoint vertex sets k = find(isnan(X)); if length(k) > 0 % if a NaN chop out the segment before and after k = k(1); x = X(1:k-1); y = Y(1:k-1); X = X(k+1:end); Y = Y(k+1:end); else x = X; y = Y; end % close the polygon x = [x; x(1)]; y = [y; y(1)]; if opt.fill patch(x, y, opt.fill); else plot(x, y, args{:}); end if length(k) == 0 break; end end end if ~ish hold off end end function a = area(p) %Polygon.area Area of polygon % % A = P.area() is the area of the polygon. % % See also Polygon.moments. a = p.moments(0, 0); end function m = moments(p, mp, mq) %Polygon.moments Moments of polygon % % A = P.moments(p, q) is the pq'th moment of the polygon. % % See also Polygon.area, Polygon.centroid, mpq_poly. m = mpq_poly(p.vertices, mp, mq); end function q = transform(p, T) %Polygon.transform Transform polygon vertices % % P2 = P.transform(T) is a new Polygon object whose vertices have % been transformed by the SE(2) homgoeneous transformation T (3x3). if length(T) == 3 T = se2(T); end q = Polygon( homtrans(T, p.vertices) ); end function f = inside(p, points) %Polygon.inside Test if points are inside polygon % % IN = P.inside(P) tests if points given by columns of P (2xN) are inside % the polygon. The corresponding elements of IN (1xN) are either true or % false. f = inpolygon(points(1,:), points(2,:), p.x, p.y); end function c = centroid(p) %Polygon.centroid Centroid of polygon % % X = P.centroid() is the centroid of the polygon. % % See also Polygon.moments. c = [p.moments(1,0) p.moments(0,1)] / p.area(); end function r = perimeter(p) %Polygon.perimeter Perimeter of polygon % % L = P.perimeter() is the perimeter of the polygon. p = sum(sqrt(diff(p.x).^2+diff(p.y).^2)); end function f = intersect(p, plist) %Polygon.intersect Intersection of polygon with list of polygons % % I = P.intersect(PLIST) indicates whether or not the Polygon P % intersects with % % i(j) = 1 if p intersects polylist(j), else 0. % Based on ISINTPL % Copyright (c) 1995 by Kirill K. Pankratov, % [email protected]. % 06/20/95, 08/25/95 f = []; for q=plist f = [f isintpl(p.x, p.y, q.x, q.y)]; end end function f = intersect_line(p, l) %Polygon.intersect_line Intersection of polygon and line segment % % I = P.intersect_line(L) is the intersection points of a polygon P with % the line segment L=[x1 x2; y1 y2]. I (2xN) has one column per % intersection, each column is [x y]'. f = []; % find intersections for i=1:p.n in = mod(i, p.n)+1; xv = [p.x(i); p.x(in)]; yv = [p.y(i); p.y(in)]; intsec = iscross(xv, yv, l(1,:)', l(2,:)'); if intsec [x,y] = intsecl(xv, yv, l(1,:)', l(2,:)'); f = [f [x;y]]; end end end function r = difference(p, q) %Polygon.difference Difference of polygons % % D = P.difference(Q) is polygon P minus polygon Q. % % Notes:: % - If polygons P and Q are not intersecting, returns % coordinates of P. % - If the result D is not simply connected or consists of % several polygons, resulting vertex list will contain NaNs. % POLYDIFF Difference of 2 polygons. % [XO,YO] = POLYDIFF(X1,Y1,X2,Y2) Calculates polygon(s) P % of difference of polygons P1 and P1 with coordinates % X1, Y1 and X2, Y2. % The resulting polygon(s) is a set of all points which belong % to P1 but not to to P2: P = P1 & ~P2. % The input polygons must be non-self-intersecting and % simply connected. % % If polygons P1, P2 are not intersecting, returns % coordinates of the first polygon X1, X2. % If the result P is not simply connected or consists of several % polygons, resulting boundary consists of concatenated % coordinates of these polygons, separated by NaN. % Copyright (c) 1995 by Kirill K. Pankratov, % [email protected]. % 06/25/95 % Call POLYBOOL with flag=3 [xo,yo,ind] = polybool(p.x, p.y, q.x, q.y, 3); r = Polygon([xo(:) yo(:)]'); end function r = intersection(p, q) %Polygon.intersection Intersection of polygons % % I = P.intersection(Q) is a Polygon representing the % intersection of polygons P and Q. % % Notes:: % - If these polygons are not intersecting, returns empty polygon. % - If intersection consist of several disjoint polygons % (for non-convex P or Q) then vertices of I is the concatenation % of the vertices of these polygons. % POLYINTS Intersection of 2 polygons. % [XO,YO] = POLYINTS(X1,Y1,X2,Y2) Calculates polygon(s) % if intersection of polygons with coordinates X1, Y1 % and X2, Y2. % The resulting polygon(s) is a set of all points which % belong to both P1 and P2: P = P1 & P2. % These polygons must be non-self-intersecting and % simply connected. % % If these polygons are not intersecting, returns empty. % If intersection consist of several disjoint polygons % (for non-convex P1 or P2) output vectors XO, YO consist % of concatenated cooddinates of these polygons, % Copyright (c) 1995 by Kirill K. Pankratov, % [email protected]. % 06/25/95 % Call POLYBOOL with flag=1 [xo,yo,ind] = polybool(p.x, p.y, q.x, q.y, 1); r = Polygon([xo(:) yo(:)]'); end function r = union(p, q) %Polygon.union Union of polygons % % I = P.union(Q) is a polygon representing the % union of polygons P and Q. % % Notes:: % - If these polygons are not intersecting, returns a polygon with % vertices of both polygons separated by NaNs. % - If the result P is not simply connected (such as a polygon % with a "hole") the resulting contour consist of counter- % clockwise "outer boundary" and one or more clock-wise % "inner boundaries" around "holes". % POLYUNI Union of 2 polygons. % [XO,YO] = POLYINT(X1,Y1,X2,Y2) Calculates polygon(s) P % which is (are) union of polygons P1 and P2 with coordinates % X1, Y1 and X2, Y2. % The resulting polygon(s) is a set of all points which belong % either to P1 or to P2: P = P1 | P2. % The input polygons must be non-self-intersecting and % simply connected. % % If polygons P1, P2 are not intersecting, returns % coordinates of the both polygons separated by NaN. % If both P1 and P2 are convex, their boundaries can have no % more than 2 intersections. The result is also a convex % polygon. % If the result P is not simply connected (such as a polygon % with a "hole") the resulting contour consist of counter- % clockwise "outer boundary" and one or more clock-wise % "inner boundaries" around "holes". % Copyright (c) 1995 by Kirill K. Pankratov, % [email protected]. % 06/25/95 % Call POLYBOOL with flag=2 .......... [xo,yo,ind] = polybool(p.x, p.y, q.x, q.y, 2); r = Polygon([xo(:) yo(:)]'); end function r = xor(p, q) %Polygon.xor Exclusive or of polygons % % I = P.union(Q) is a polygon representing the % exclusive-or of polygons P and Q. % % Notes:: % - If these polygons are not intersecting, returns a polygon with % vertices of both polygons separated by NaNs. % - If the result P is not simply connected (such as a polygon % with a "hole") the resulting contour consist of counter- % clockwise "outer boundary" and one or more clock-wise % "inner boundaries" around "holes". % POLYXOR Exclusive OR of 2 polygons. % [XO,YO] = POLYXOR(X1,Y1,X2,Y2) Calculates polygon(s) P % of difference of polygons P1 and P1 with coordinates % X1, Y1 and X2, Y2. % The resulting polygon(s) is a set of all points which belong % either to P1 or to P2 but not to both: % P = (P1 & ~P2) | (P2 & ~P1). % The input polygons must be non-self-intersecting and % simply connected. % % If polygons P1, P2 are not intersecting, returns % coordinates of the both polygons separated by NaN. % If the result P is not simply connected or consists of several % polygons, resulting boundary consists of concatenated % coordinates of these polygons, separated by NaN. % Copyright (c) 1995 by Kirill K. Pankratov, % [email protected]. % 06/25/95 % Call POLYBOOL twice with flag=3 [xx,yy,ind] = polybool(p.x, p.y, q.x, q.y, 3); xo = [xx; NaN]; yo = [yy; NaN]; [xx,yy,ind] = polybool(q.x, q.y, p.x, p.y, 3); xo = [xo; xx]; yo = [yo; yy]; r = Polygon([xo(:) yo(:)]'); end end % methods end % classdef function [is,in,un] = interval(x1,x2) % Intersection and union of 2 intervals. % [IS,IN,UN] = INTERVAL(X1,X2) calculates pair-wise % intersection IN and union UN of N pairs of % intervals with coordinates X1 and X2 (both are % 2 by N vectors). Returns 1 by N boolean vector IS % equal to 1 if intervals have non-empty intersection % and 0 if they don't. % Copyright (c) 1995 by Kirill K. Pankratov, % [email protected]. % 08/24/95 % Handle input ........................... if nargin==0, help interval, return, end if nargin==1 un = x1; else un = [x1; x2]; end [in,un] = sort(un); % Sort both intervals together un = un(1:2,:)-1; is = sum(floor(un/2)); % Check for [0 0 1 1] or [1 1 0 0] is = (is==1); ii = find(in(2,:)==in(3,:)); is(ii) = .5*ones(size(ii)); % Extract intersection and union from sorted coordinates if nargout>1 un = in([1 4],:); in = in(2:3,:); in(:,~is) = flipud(in(:,~is)); end end function [is,S] = iscross(x1,y1,x2,y2,tol) % ISCROSS Finds whether pairs of lines cross each other % [IS,S] = ISCROSS(X1,Y1,X2,Y2) where arguments X1, Y1, % X2, Y2 are all 2 by N matrices are coordinates of % ends of the pairs of line segments. % Returns vector IS (1 by N) consisting of ones if % corresponding pairs cross each other, zeros if they % don't and .5 if an end of one line segment lies on % another segment. % Also returns a matrix S (4 by N) with each row % consisting of cross products (double areas of % corresponding triangles) built on the following points: % (X2(1,:),Y2(1,:)),(X1(1,:),Y1(1,:)),(X2(2,:),Y2(2,:)), % (X2(1,:),Y2(1,:)),(X1(2,:),Y1(2,:)),(X2(2,:),Y2(2,:)) % (X1(1,:),Y1(1,:)),(X2(1,:),Y2(1,:)),(X1(2,:),Y1(2,:)) % (X1(1,:),Y1(1,:)),(X2(2,:),Y2(2,:)),(X1(2,:),Y1(2,:)) % The signs of these 4 areas can be used to determine % whether these lines and their continuations cross each % other. % [IS,S] = ISCROSS(X1,Y1,X2,Y2,TOL) uses tolerance TOL % for detecting the crossings (default is 0). % Copyright (c) 1995 by Kirill K. Pankratov % [email protected] % 08/14/94, 05/18/95, 08/25/95 % Defaults and parameters ....................... tol_dflt = 0; % Tolerance for area calculation is_chk = 1; % Check input arguments % Handle input .................................. if nargin==0, help iscross, return, end if nargin<4 % Check if all 4 entered error(' Not enough input arguments') end if nargin<5, tol = tol_dflt; end if tol < 0, is_chk = 0; tol = 0; end % Check the format of arguments ................. if is_chk [x1,y1,x2,y2] = linechk(x1,y1,x2,y2); end len = size(x1,2); o2 = ones(2,1); % Find if the ranges of pairs of segments intersect [isx,S,A] = interval(x1,x2); scx = diff(A); [isy,S,A] = interval(y1,y2); scy = diff(A); is = isx & isy; % If S values are not needed, extract only those pairs % which have intersecting ranges .............. if nargout < 2 isx = find(is); % Indices of pairs to be checked % further x1 = x1(:,isx); x2 = x2(:,isx); y1 = y1(:,isx); y2 = y2(:,isx); is = is(isx); if isempty(is), is = zeros(1,len); return, end scx = scx(isx); scy = scy(isx); end % Rescale by ranges ........................... x1 = x1.*scx(o2,:); x2 = x2.*scx(o2,:); y1 = y1.*scy(o2,:); y2 = y2.*scy(o2,:); % Calculate areas ............................. S = zeros(4,length(scx)); S(1,:) = (x2(1,:)-x1(1,:)).*(y2(2,:)-y1(1,:)); S(1,:) = S(1,:)-(x2(2,:)-x1(1,:)).*(y2(1,:)-y1(1,:)); S(2,:) = (x2(1,:)-x1(2,:)).*(y2(2,:)-y1(2,:)); S(2,:) = S(2,:)-(x2(2,:)-x1(2,:)).*(y2(1,:)-y1(2,:)); S(3,:) = (x1(1,:)-x2(1,:)).*(y1(2,:)-y2(1,:)); S(3,:) = S(3,:)-(x1(2,:)-x2(1,:)).*(y1(1,:)-y2(1,:)); S(4,:) = (x1(1,:)-x2(2,:)).*(y1(2,:)-y2(2,:)); S(4,:) = S(4,:)-(x1(2,:)-x2(2,:)).*(y1(1,:)-y2(2,:)); % Find if they cross each other ............... is = (S(1,:).*S(2,:)<=0)&(S(3,:).*S(4,:)<=0); % Find very close to intersection isy = min(abs(S)); ii = find(isy<=tol & is); is(ii) = .5*ones(size(ii)); % Output if nargout < 2 isy = zeros(1,len); isy(isx) = is; is = isy; else isy = scx.*scy; ii = find(~isy); isy(ii) = ones(size(ii)); S = S./isy(ones(4,1),:); end end function [xo,yo,ind] = polybool(x1,y1,x2,y2,flag) % [XO,YO] = POLYBOOL(X1,Y1,X2,Y2,FLAG) % calulates results of Boolean operations on % a pair of polygons. % FLAG Specifies the type of the operation: % 1 - Intersection (P1 & P2) % 2 - Union (P1 | P2) % 3 - Difference (P1 & ~P2) % Copyright (c) 1995 by Kirill K. Pankratov, % [email protected]. % 06/25/95, 09/07/95 % This program calls the following functions: % AREA, ISINTPL, ISCROSS, INTSECL. % Algorithm: % 1. Check boundary contour directions (area). % For intersection and union make all % counter-clockwise. For difference make the second % contour clock-wise. % 2. Calculate matrix of intersections (function ISINTPL). % Quick exit if no intersections. % 3. For intersecting segments calculate intersection % coordinates (function INTSECL). % 4. Sort intersections along both contours. % 5. Calculate sign of cross-product between intersectiong % segments. This will give which contour goes "in" and % "out" at intersections. % % 6. Start with first intersection: % Determine direction to go ("in" for intersection, % "out" for union). % Move until next intersection, switch polygons at each % intersection until coming to the initial point. % If not all intersections are encountered, the % resulting polygon is disjoint. Separate output % coordinates by NaN and repeat procedure until all % intersections are counted. % Default for flag flag_dflt = 1; % 1- intersec., 2-union, 3 - diff. % Handle input if nargin==0, help polybool, return, end if nargin < 4 error(' Not enough input arguments') end if nargin<5, flag = flag_dflt; end x1 = x1(:); y1 = y1(:); x2 = x2(:); y2 = y2(:); l1 = length(x1); l2 = length(x2); % Check areas and reverse if negative nn1 = area(x1,y1); if nn1<0, x1 = flipud(x1); y1 = flipud(y1); end nn2 = area(x2,y2); if (nn2<0 & flag<3) | (nn2>0 & flag==3) x2 = flipud(x2); y2 = flipud(y2); end % If both polygons are identical ........ if l1==l2 if all(x1==x2) & all(y1==y2) if flag<3, xo = x1; yo = y1; ind = 1:l1; else, xo = []; yo = []; ind = []; end return end end % Calculate matrix of intersections ..... [is,C] = isintpl(x1,y1,x2,y2); is = any(any(C)); % Quick exit if no intersections ........ if ~is if flag==1 % Intersection xo=[]; yo = []; elseif flag==2 % Union xo = [x1; nan; x2]; yo = [y1; nan; y2]; elseif flag==3 % Difference xo = x1; yo = y1; end return end % Mark intersections with unique numbers i1 = find(C); ni = length(i1); C(i1) = 1:ni; % Close polygon contours x1 = [x1; x1(1)]; y1 = [y1; y1(1)]; x2 = [x2; x2(1)]; y2 = [y2; y2(1)]; l1 = length(x1); l2 = length(x2); % Calculate intersections themselves [i1,i2,id] = find(C); xs1 = [x1(i1) x1(i1+1)]'; ys1 = [y1(i1) y1(i1+1)]'; xs2 = [x2(i2) x2(i2+1)]'; ys2 = [y2(i2) y2(i2+1)]'; % Call INTSECL ............................ [xint,yint] = intsecl(xs1,ys1,xs2,ys2); % For sements belonging to the same line % find interval of intersection ........... ii = find(xint==inf); if ~isempty(ii) [is,inx] = interval(xs1(:,ii),xs2(:,ii)); [is,iny] = interval(ys1(:,ii),ys2(:,ii)); xint(ii) = mean(inx); yint(ii) = mean(iny); end % Coordinate differences of intersecting segments xs1 = diff(xs1); ys1 = diff(ys1); xs2 = diff(xs2); ys2 = diff(ys2); % Calculate cross-products cp = xs1.*ys2-xs2.*ys1; cp = cp>0; if flag==2, cp=~cp; end % Reverse if union cp(ii) = 2*ones(size(ii)); % Sort intersections along the contours ind = (xint-x1(i1)').^2+(yint-y1(i1)').^2; ind = ind./(xs1.^2+ys1.^2); cnd = min(ind(ind>0)); ind = ind+i1'+i2'/(ni+1)*cnd*0; [xo,ii] = sort(ind); xs1 = id(ii); [xo,ind] = sort(xs1); ind = rem(ind,ni)+1; xs1 = xs1(ind); ind = (xint-x2(i2)').^2+(yint-y2(i2)').^2; ind = ind./(xs2.^2+ys2.^2); cnd = min(ind(ind>0)); [xo,ii] = sort(i2'+ind+i1'/(ni+1)*cnd*0); xs2 = id(ii); [xo,ind] = sort(xs2); ind = rem(ind,ni)+1; xs2 = xs2(ind); % Combine coordinates in one vector x1 = [x1; x2]; y1 = [y1; y2]; % Find max. possible length of a chain xo = find(any(C')); xo = diff([xo xo(1)+l1]); mlen(1) = max(xo); xo = find(any(C)); xo = diff([xo xo(1)+l2]); mlen(2) = max(xo); % Check if multiple intersections in one segment xo = diff([i1 i2]); is_1 = ~all(all(xo)); % Begin counting intersections ********************* % Initialization .................. int = zeros(size(xint)); nn = 1; % First intersection nn1 = i1(nn); nn2 = i2(nn); b = cp(nn); is2 = b==2; xo = []; yo = []; ind = []; closed = 0; % Proceed until all intersections are counted while ~closed % begin counting `````````````````````0 % If contour closes, find new starting point if int(nn) & ~all(int) ii = find(int); C(id(ii)) = zeros(size(ii)); nn = min(find(~int)); % Next intersection nn1 = i1(nn); nn2 = i2(nn); xo = [xo; nan]; % Separate by NaN yo = [yo; nan]; ind = [ind; nan]; % Choose direction ...... b = cp(nn); end % Add current intersection ...... xo = [xo; xint(nn)]; yo = [yo; yint(nn)]; ind = [ind; 0]; int(nn) = 1; closed = all(int); % Find next segment % Indices for next intersection if ~b, nn = xs1(nn); else, nn = xs2(nn); end if ~b, pt0 = nn1; else, pt0 = nn2; end nn1 = i1(nn); nn2 = i2(nn); if b, pt = nn2; else, pt = nn1; end if b, pt0 = pt0+l1; pt = pt+l1; end ii = (pt0+1:pt); % Go through the beginning .............. cnd = pt<pt0 | (pt==pt0 & is_1 & flag>1); if cnd if ~b, ii = [pt0+1:l1 1:pt]; else, ii = [pt0+1:l1+l2 l1+1:pt]; end end len = length(ii); cnd = b & len>mlen(2); cnd = cnd | (~b & len>mlen(1)); if is2 | cnd, ii=[]; end % Add new segment xo = [xo; x1(ii)]; yo = [yo; y1(ii)]; ind = [ind; ii']; % Switch direction if cp(nn)==2, b = ~b; is2 = 1; else, b = cp(nn); is2 = 0; end end % End while (all intersections) '''''''''''''''0 % Remove coincident successive points ii = find(~diff(xo) & ~diff(yo)); xo(ii) = []; yo(ii) = []; ind(ii) = []; % Remove points which are ii = find(isnan(xo)); if ~isempty(ii) i2 = ones(size(xo)); ii = [ii; length(xo)+1]; i1 = find(diff(ii)==3); i1 = ii(i1); i1 = [i1; i1+1; i1+2]; i2(i1) = zeros(size(i1)); i1 = find(diff(ii)==2); i1 = ii(i1); i1 = [i1; i1+1]; i2(i1) = zeros(size(i1)); xo = xo(i2); yo = yo(i2); ind = ind(i2); end end function [xo,yo] = intsecpl(xv,yv,xl,yl,trace) % INTSECPL Intersection of a polygon and a line. % [XI,YI] = INTSECPL(XV,YV,XL,YL) calculates % intersections XI, YI of a polygon with vertices XV, % YV and a line specified by pairs of end coordinates % XL = [XL0 XL1], YL = [YL0 YL1]. Line is assumed to % continue beyond the range of end points. % INTSECPL(XV,YV,[A B]) uses another specification for % a line: Y = A*X+B. % % If a line does not intersect polygon, returns empty % XI, YI. % For convex polygon maximum number of intersections is % 2, for non-convex polygons multiple intersections are % possible. % % INTSECPL(XV,YV,XL,YL) by itself or % [XI,YI] = INTSECPL(XV,YV,XL,YL,1) plots polygon, % a line segment and intersection segment(s) % (part(s) of the same line inside the polygon). % Copyright (c) 1995 by Kirill K. Pankratov, % [email protected]. % 06/25/95, 08/27/95, 09/27/95 % Calls ISCROSS, INTSECL programs. % Defaults and parameters ................................. tol = 1e-14; % Tolerance marg = tol; % Margins for polygon frame is_ab = 0; % Default A*X+B mode % Handle input ............................................ if nargin==0, help intsecpl, return, end if nargin < 3 error(' Not enough input arguments') end if nargin<5, trace = 0; end if nargin==4 % Check if 4-th arg is trace if max(size(yl))==1, trace = yl; is_ab = 1; end end if nargin==3, is_ab = 1; end trace = trace | nargin<2; if length(xv)~=length(yv) error(' Vectors X, Y must have the same size') end % Auxillary ........... xv = [xv(:); xv(1)]; yv = [yv(:); yv(1)]; ii = find(abs(diff(xv))<tol & abs(diff(yv))<tol); xv(ii) = []; yv(ii) = []; nv = length(xv); ov = ones(nv-1,1); % Polygon frame lim = [min(xv)-marg max(xv)+marg min(yv)-marg max(yv)+marg]; % Estimate for diameter d = sqrt((lim(2)-lim(1)).^2+(lim(4)-lim(3)).^2); % Form line segment depending on how line is specified if is_ab % A*X+B mode ................... xl = xl(:); if length(xl)<2 error(' Line is specified by at least two parameters') end a = xl(1); b = xl(2); xl = [lim(1)-1 lim(2)+1]; yl = a*xl+b; else % [X1 X2],[Y1 Y2] mode .......... x0 = (xl(1)+xl(2))/2; y0 = (yl(1)+yl(2))/2; dx = xl(2)-x0; dy = yl(2)-y0; dl = max(abs([lim(1:2)-x0 lim(3:4)-y0])); d = max(d,dl); dl = sqrt(dx.^2+dy.^2); dl = max(d,d/dl); dx = dx*dl; dy = dy*dl; xl = [x0-dx x0+dx]; yl = [y0-dy y0+dy]; end % Find intersecting segments .............................. is = iscross([xv(1:nv-1) xv(2:nv)]',[yv(1:nv-1) yv(2:nv)]',... xl(ov,:)',yl(ov,:)',0); % Quick exit if no intersections ......................... if ~any(is) if trace % Intersection with polygon frame [xl,yl] = intsecpl(lim([1 2 2 1]),lim([3 3 4 4]),xl,yl); %plot(xv,yv,xl,yl) % Plotting itself end xo = []; yo = []; return end % For segments touching the line (is==.5) find whether pairs of % successive segments are on the same side ii = find(is==.5)'; if ii~=[] xo = [ii-1 ii+1]; xo = xo+(nv-1)*(xo<1); yo = iscross([xv(xo(:,1)) xv(xo(:,2))]',[yv(xo(:,1)) yv(xo(:,2))]',... xl,yl,tol); ii = ii(find(yo==1)); is(ii) = zeros(size(ii)); end % Calculate intersection coordinates ...................... ii = find(is); oi = ones(size(ii)); [xo,yo] = intsecl([xv(ii) xv(ii+1)]',[yv(ii) yv(ii+1)]',... xl(oi,:)',yl(oi,:)'); dx = find(~finite(xo)); xo(dx) = []; yo(dx) = []; ii(dx) = []; oi(dx) = []; % Sort intersections along the line .......... xo = xo(:); yo = yo(:); if any(diff(xo)) [xo,ii] = sort(xo); yo = yo(ii); else [yo,ii] = sort(yo); xo = xo(ii); end % Exclude repeated points (degenerate cases) % ///////// It seems that this is not needed, figure this % later /////////////////// if length(ii)>1 & 0 % Do not execute xx = [xo yo]; yy = diff(xx)'; ii = [1 find(any(abs(yy)>tol))+1]; xo = xx(ii,1); yo = xx(ii,2); oi = ones(size(xo)); end % Plotting ................................................ if trace oi(3:2:length(oi)) = oi(3:2:length(oi))+1; oi = cumsum(oi); len = max(oi); xp = nan*ones(len,1); yp = xp; xp(oi) = xo; yp(oi) = yo; % Intersection with polygon frame [xl,yl] = intsecpl(lim([1 2 2 1]),lim([3 3 4 4]),xl,yl); plot(xv,yv,xl,yl,xp,yp) % Plotting itself end end function [is,S] = isintpl(x1,y1,x2,y2) % ISINTPL Check for intersection of polygons. % [IS,S] = ISINTPL(X1,Y1,X2,Y2) Accepts coordinates % X1,Y1 and X2, Y2 of two polygons. Returns scalar % IS equal to 1 if these polygons intersect each other % and 0 if they do not. % Also returns Boolean matrix S of the size length(X1) % by length(X2) so that {ij} element of which is 1 if % line segments i to i+1 of the first polygon and % j to j+1 of the second polygon intersect each other, % 0 if they don't and .5 if they "touch" each other. % Copyright (c) 1995 by Kirill K. Pankratov, % [email protected]. % 06/20/95, 08/25/95 % Handle input ................................... if nargin==0, help isintpl, return, end if nargin<4 error(' Not enough input arguments ') end % Make column vectors and check sizes ............ x1 = x1(:); y1 = y1(:); x2 = x2(:); y2 = y2(:); l1 = length(x1); l2 = length(x2); if length(y1)~=l1 | length(y2)~=l2 error('(X1,Y1) and (X2,Y2) must pair-wise have the same length.') end % Quick exit if empty if l1<1 | l2<1, is = []; S = []; return, end % Check if their ranges are intersecting ......... lim1 = [min(x1) max(x1)]'; lim2 = [min(x2) max(x2)]'; isx = interval(lim1,lim2); % X-ranges lim1 = [min(y1) max(y1)]'; lim2 = [min(y2) max(y2)]'; isy = interval(lim1,lim2); % Y-ranges is = isx & isy; S = zeros(l2,l1); if ~is, return, end % Early exit if disparate limits % Indexing ....................................... [i11,i12] = meshgrid(1:l1,1:l2); [i21,i22] = meshgrid([2:l1 1],[2:l2 1]); i11 = i11(:); i12 = i12(:); i21 = i21(:); i22 = i22(:); % Calculate matrix of intersections .............. S(:) = iscross([x1(i11) x1(i21)]',[y1(i11) y1(i21)]',... [x2(i12) x2(i22)]',[y2(i12) y2(i22)]')'; S = S'; is = any(any(S)); end function [xo,yo] = intsecl(x1,y1,x2,y2,tol) % INTSECL Intersection coordinates of two line segments. % [XI,YI] = INTSECL(X1,Y1,X2,Y2) where all 4 % arguments are 2 by N matrices with coordinates % of ends of N pairs of line segments (so that % the command such as PLOT(X1,Y1,X2,Y2) will plot % these pairs of lines). % Returns 1 by N vectors XI and YI consisting of % coordinates of intersection points of each of N % pairs of lines. % % Special cases: % When a line segment is degenerate into a point % and does not lie on line through the other segment % of a pair returns XI=NaN while YI has the following % values: 1 - when the first segment in a pair is % degenerate, 2 - second segment, 0 - both segments % are degenerate. % When a pair of line segments is parallel, returns % XI = Inf while YI is 1 for coincident lines, % 0 - for parallel non-coincident ones. % INTSECL(X1,Y1,X2,Y2,TOL) also specifies tolerance % in detecting coincident points in different line % segments. % Copyright (c) 1995 by Kirill K. Pankratov % [email protected] % 04/15/94, 08/14/94, 05/10/95, 08/23/95 % Defaults and parameters ......................... tol_dflt = 0; % Tolerance for coincident points is_chk = 1; % Check input arguments % Handle input .................................... if nargin==0, help intsecl, return, end if nargin<4 % Check if all 4 entered error(' Not enough input arguments') end if nargin<5, tol = tol_dflt; end if tol < 0, is_chk = 0; tol = 0; end % Check the format of arguments ....... if is_chk [x1,y1,x2,y2] = linechk(x1,y1,x2,y2); end % Auxillary o2 = ones(2,1); i_pt1 = []; i_pt2 = []; i_pt12 = []; % Make first points origins ........... xo = x1(1,:); yo = y1(1,:); x2 = x2-xo(o2,:); y2 = y2-yo(o2,:); % Differences of first segments ....... a = x1(2,:)-x1(1,:); b = y1(2,:)-y1(1,:); s = sqrt(a.^2+b.^2); % Lengths of first segments i_pt1 = find(~s); s(i_pt1) = ones(size(i_pt1)); rr = rand(size(i_pt1)); a(i_pt1) = cos(rr); b(i_pt1) = sin(rr); % Normalize by length ................. a = a./s; b = b./s; % Rotate coordinates of the second segment tmp = x2.*a(o2,:)+y2.*b(o2,:); y2 = -x2.*b(o2,:)+y2.*a(o2,:); x2 = tmp; % Calculate differences in second segments s = x2(2,:)-x2(1,:); tmp = y2(2,:)-y2(1,:); cc = tmp(i_pt1); % Find some degenerate cases ....................... % Find zeros in differences izy2 = find(~tmp); tmp(izy2) = ones(size(izy2)); % Find degenerate and parallel segments bool = ~s(izy2); i_par = izy2(~bool); i_pt2 = izy2(bool); bool = abs(y2(1,i_pt2))<=tol; i_pt2_off = i_pt2(~bool); i_pt2_on = i_pt2(bool); if ~isempty(i_par) bool = abs(y2(1,i_par))<=tol; i_par_off = i_par(~bool); i_par_on = i_par(bool); end % Calculate intercept with rotated x-axis .......... tmp = s./tmp; % Slope tmp = x2(1,:)-y2(1,:).*tmp; % Rotate and translate back to original coordinates xo = tmp.*a+xo; yo = tmp.*b+yo; % Mark special cases ................................... % First segments are degenerate to points if ~isempty(i_pt1) bool = ~s(i_pt1) & ~cc; i_pt12 = i_pt1(bool); i_pt1 = i_pt1(~bool); bool = abs(tmp(i_pt1))<=tol; i_pt1_on = i_pt1(bool); i_pt1_off = i_pt1(~bool); xo(i_pt1_on) = x1(1,i_pt1_on); yo(i_pt1_on) = y1(1,i_pt1_on); oo = ones(size(i_pt1_off)); xo(i_pt1_off) = nan*oo; yo(i_pt1_off) = oo; end % Second segments are degenerate to points ... if ~isempty(i_pt2) oo = ones(size(i_pt2_off)); xo(i_pt2_off) = nan*oo; yo(i_pt2_off) = 2*oo; end % Both segments are degenerate ............... if ~isempty(i_pt12) bool = x1(i_pt12)==xo(i_pt12); i_pt12_on = i_pt12(bool); i_pt12_off = i_pt12(~bool); xo(i_pt12_on) = x1(1,i_pt12_on); yo(i_pt12_on) = y1(1,i_pt12_on); oo = ones(size(i_pt12_off)); xo(i_pt12_off) = nan*oo; yo(i_pt12_off) = 0*oo; end % Parallel segments ......................... if ~isempty(i_par) oo = ones(size(i_par_on)); xo(i_par_on) = inf*oo; yo(i_par_on) = oo; oo = ones(size(i_par_off)); xo(i_par_off) = inf*oo; yo(i_par_off) = 0*oo; end end function [x1,y1,x2,y2] = linechk(x1,y1,x2,y2) % LINECHK Input checking for line segments. % Copyright (c) 1995 by Kirill K. Pankratov % [email protected] % 08/22/95, % String for transposing str = ['x1=x1'';'; 'y1=y1'';'; 'x2=x2'';'; 'y2=y2'';']; % Sizes sz = [size(x1); size(y1); size(x2); size(y2)]'; psz = prod(sz); % Check x1, y1 if psz(1)~=psz(2) error(' Arguments x1 and y1 must have the same size') end % Check x2, y2 if psz(3)~=psz(3) error(' Arguments x2 and y2 must have the same size') end % Check if any arguments are less than 2 by 1 if any(max(sz)<2) error(' Arguments x1, y1, x2, y2 must be at least 2 by 1 vectors') end % Check if no size is equal to 2 if any(all(sz~=2)) error(' Arguments x1, y1, x2, y2 must be 2 by 1 vectors') end % Find aruments to be transposed ............................. ii = find(sz(1,:)~=2); for jj = 1:length(ii) eval(str(ii(jj),:)); % Transpose if neccessary end sz(:,ii) = flipud(sz(:,ii)); % If vectors, extend to 2 by n matrices ...................... n = max(sz(2,:)); on = ones(1,n); if sz(2,1)<n, x1 = x1(:,on); end if sz(2,2)<n, y1 = y1(:,on); end if sz(2,3)<n, x2 = x2(:,on); end if sz(2,4)<n, y2 = y2(:,on); end end
github
RobinAmsters/GT_mobile_robotics-master
edgelist.m
.m
GT_mobile_robotics-master/common/rvctools/common/edgelist.m
4,737
utf_8
3d7876f26f51a03f4c49328237250877
%EDGELIST Return list of edge pixels for region % % EG = EDGELIST(IM, SEED) is a list of edge pixels (2xN) of a region in the % image IM starting at edge coordinate SEED=[X,Y]. The edgelist has one column per % edge point coordinate (x,y). % % EG = EDGELIST(IM, SEED, DIRECTION) as above, but the direction of edge % following is specified. DIRECTION == 0 (default) means clockwise, non % zero is counter-clockwise. Note that direction is with respect to y-axis % upward, in matrix coordinate frame, not image frame. % % [EG,D] = EDGELIST(IM, SEED, DIRECTION) as above but also returns a vector % of edge segment directions which have values 1 to 8 representing W SW S SE E % NW N NW respectively. % % Notes:: % - Coordinates are given assuming the matrix is an image, so the indices are % always in the form (x,y) or (column,row). % - IM is a binary image where 0 is assumed to be background, non-zero % is an object. % - SEED must be a point on the edge of the region. % - The seed point is always the first element of the returned edgelist. % - 8-direction chain coding can give incorrect results when used with % blobs founds using 4-way connectivty. % % Reference:: % - METHODS TO ESTIMATE AREAS AND PERIMETERS OF BLOB-LIKE OBJECTS: A COMPARISON % Luren Yang, Fritz Albregtsen, Tor Lgnnestad and Per Grgttum % IAPR Workshop on Machine Vision Applications Dec. 13-15, 1994, Kawasaki % % See also ILABEL. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function [e,d] = edgelist(im, P, direction) % deal with direction argument if nargin == 2 direction = 0; end if direction == 0 neighbours = [1:8]; % neigbours in clockwise direction else neighbours = [8:-1:1]; % neigbours in counter-clockwise direction end P = P(:); try pix0 = im(P(2), P(1)); % color of pixel we start at catch error('TBCOMMON:edgelist', 'specified coordinate is not within image'); end P0 = []; % find an adjacent point outside the blob Q = adjacent_point(im, P, pix0); assert(~isempty(Q), 'TBCOMMON:edgelist', 'no neighbour outside the blob'); e = P; % initialize the edge list dir = []; % initialize the direction list % these are directions of 8-neighbours in a clockwise direction dirs = [-1 0; -1 1; 0 1; 1 1; 1 0; 1 -1; 0 -1; -1 -1]'; while true % find which direction is Q dQ = Q - P; for kq=1:8 if all(dQ == dirs(:,kq)) break; end end % now test for directions relative to Q for j=neighbours % get index of neighbour's direction in range [1,8] k = j + kq; if k > 8 k = k - 8; end dir = [dir; k]; % compute coordinate of the k'th neighbour Nk = P + dirs(:,k); try if im(Nk(2), Nk(1)) == pix0 % if this neighbour is in the blob it is the next edge pixel P = Nk; break; end end Q = Nk; % the (k-1)th neighbour end % check if we are back where we started if isempty(P0) P0 = P; % make a note of where we started else if all(P == P0) break; end end % keep going, add P to the edgelist e = [e P]; end if nargout > 1 d = dir; end end function P = adjacent_point(im, seed, pix0) % find an adjacent point not in the region dirs = [1 0; 0 1; -1 0; 0 -1; -1 1; -1 -1; 1 -1; 1 1]; for d=dirs' P = seed(:) + d; try if im(P(2), P(1)) ~= pix0 return; end catch % if we get an exception then by definition P is outside the region, % since it's off the edge of the image return; end end P = []; end
github
RobinAmsters/GT_mobile_robotics-master
diff2.m
.m
GT_mobile_robotics-master/common/rvctools/common/diff2.m
1,285
utf_8
d2018ea5bfa0dc51016c7c936df1b4d1
%DIFF2 First-order difference % % D = DIFF2(V) is the first-order difference (1xN) of the series data in % vector V (1xN) and the first element is zero. % % D = DIFF2(A) is the first-order difference (MxN) of the series data in % each row of the matrix A (MxN) and the first element in each row is zero. % % Notes:: % - Unlike the builtin function DIFF, the result of DIFF2 has the same % number of columns as the input. % % See also DIFF. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function d = diff2(v) [r,c] =size(v); d = [zeros(1,c); diff(v)];
github
RobinAmsters/GT_mobile_robotics-master
rvccheck.m
.m
GT_mobile_robotics-master/common/rvctools/common/rvccheck.m
2,868
utf_8
0a6c6a7bbb84d1de106fefff5323bd67
function rvccheck(verbose) if nargin == 0 verbose = true; end % display current versions of MATLAB year = version('-release'); if verbose fprintf('You are using:\n - MATLAB release %s\n', year); end % check how old it is today = datevec(now); age = today(1) - str2num(year(1:4)); if age >= 2 fprintf(' ** this is at least %d years old, you may have issues\n', age); end % display versions of toolboxes (use unique RTB and MVTB functions) p = getpath('lspb'); a = ver( p ); rtb = ~isempty(a); p = getpath('idisp'); a = ver( p ); mvtb = ~isempty(a); if verbose if rtb if findstr(p, 'Add-Ons') where = 'mltbx install to Add-Ons'; else if exist( fullfile(p, '.git'), 'dir' ) where = 'local (git clone) install'; else where = 'local (zip) install'; end end fprintf(' - %s %s %s [%s]\n', a.Name, a.Version, a.Date, where); end if mvtb if findstr(p, 'Add-Ons') where = 'mltbx install to Add-Ons'; else if exist( fullfile(p, '.git'), 'dir' ) where = 'local (git clone) install'; else where = 'local (zip) install'; end end fprintf(' - %s %s %s [%s]\n', a.Name, a.Version, a.Date, where); end end % check for shadowed files k = 0; if rtb k = k + checkpath('rotx'); k = k + checkpath('roty'); k = k + checkpath('rotz'); k = k + checkpath('angdiff'); end if mvtb k = k + checkpath('im2col'); k = k + checkpath('col2im'); k = k + checkpath('angdiff'); end if k > 0 fprintf('Some Toolbox files are "shadowed" and will cause problems with the use of this toolbox\n'); fprintf('Use path tool to move this Toolbox to the top of the path\n') end end function k = checkpath(funcname) funcpath = which(funcname); % find first instance in path k = 0; good = {'rvc', ... 'robotics-toolbox-matlab', 'Robotics Toolbox for MATLAB', ... 'machinevision-toolbox-matlab', 'Machine Vision Toolbox for MATLAB', ... 'smtb', 'spatial-math', 'Spatial Math Toolbox for MATLAB'}; if exist(funcname) if all( cellfun(@(x) isempty(strfind(funcpath, x)), good) ) fprintf('** Toolbox function %s is shadowed by %s\n', funcname, which(funcname) ); k = 1; end end end function p = getpath(funcname) funcpath = which(funcname); k = strfind( funcpath, [filesep funcname]); p = funcpath(1:k-1); end
github
RobinAmsters/GT_mobile_robotics-master
filt1d.m
.m
GT_mobile_robotics-master/common/rvctools/common/filt1d.m
2,048
utf_8
bc8104a2b86eb158bb26e4ed77ac7e0f
%FILT1D 1-dimensional rank filter % % Y = FILT1D(X, OPTIONS) is the minimum, maximum or median value (1xN) of the % vector X (1xN) compute over an odd length sliding window. % % Options:: % 'max' Compute maximum value over the window (default) % 'min' Compute minimum value over the window % 'median' Compute minimum value over the window % 'width',W Width of the window (default 5) % % Notes:: % - If the window width is even, it is incremented by one. % - The first and last elements of X are replicated so the output vector is the % same length as the input vector. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com % Copyright (c) Peter Corke 6/93 % vectorized version 8/95 pic function m = filt1d(s, varargin) opt.width = 5; opt.op = {'max', 'min', 'median'}; opt = tb_optparse(opt, varargin); % enforce a column vector s = s(:)'; % enforce odd window length w2 = floor(opt.width/2); w = 2*w2 + 1; n = length(s); m = zeros(w,n+w-1); s0 = s(1); sl = s(n); % replicate first and last elements for i=0:(w-1), m(i+1,:) = [s0*ones(1,i) s sl*ones(1,w-i-1)]; end switch (opt.op) case 'max' m = max(m); case 'min' m = min(m); case 'median' m = median(m); end m = m(w2+1:w2+n);
github
RobinAmsters/GT_mobile_robotics-master
yaxis.m
.m
GT_mobile_robotics-master/common/rvctools/common/yaxis.m
1,310
utf_8
0db9a465f805810b37b09d08336176c6
%YAYIS set Y-axis scaling % % YAXIS(MAX) set y-axis scaling from 0 to MAX. % % YAXIS(MIN, MAX) set y-axis scaling from MIN to MAX. % % YAXIS([MIN MAX]) as above. % % YAXIS restore automatic scaling for y-axis. % % See also YAXIS. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function yaxis(a1, a2) if nargin == 0, set(gca, 'YLimMode', 'auto') return elseif nargin == 1, if length(a1) == 1, mn = 0; mx = a1; elseif length(a1) == 2, mn = a1(1); mx = a1(2); end elseif nargin == 2, mn = a1; mx = a2; end set(gca, 'YLimMode', 'manual', 'YLim', [mn mx])
github
RobinAmsters/GT_mobile_robotics-master
colorname.m
.m
GT_mobile_robotics-master/common/rvctools/common/colorname.m
5,777
utf_8
c7a519e639e1ff6b85516095712405d9
%COLORNAME Map between color names and RGB values % % RGB = COLORNAME(NAME) is the RGB-tristimulus value (1x3) corresponding to % the color specified by the string NAME. If RGB is a cell-array (1xN) of % names then RGB is a matrix (Nx3) with each row being the corresponding % tristimulus. % % XYZ = COLORNAME(NAME, 'xyz') as above but the XYZ-tristimulus value % corresponding to the color specified by the string NAME. % % XY = COLORNAME(NAME, 'xy') as above but the xy-chromaticity coordinates % corresponding to the color specified by the string NAME. % % NAME = COLORNAME(RGB) is a string giving the name of the color that is % closest (Euclidean) to the given RGB-tristimulus value (1x3). If RGB is % a matrix (Nx3) then return a cell-array (1xN) of color names. % % NAME = COLORNAME(XYZ, 'xyz') as above but the color is the closest (Euclidean) % to the given XYZ-tristimulus value. % % NAME = COLORNAME(XYZ, 'xy') as above but the color is the closest (Euclidean) % to the given xy-chromaticity value with assumed Y=1. % % Notes:: % - Color name may contain a wildcard, eg. "?burnt" % - Based on the standard X11 color database rgb.txt. % - Tristimulus values are in the range 0 to 1 % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function out = colorname(a, varargin) opt.space = {'rgb', 'xyz', 'xy', 'lab', 'ab'}; opt = tb_optparse(opt, varargin); persistent rgbtable; % ensure that the database is loaded if isempty(rgbtable) % load mapping table from file fprintf('loading rgb.txt\n'); f = fopen('data/rgb.txt', 'r'); k = 0; rgb = []; names = {}; xy = []; while ~feof(f) line = fgets(f); if line(1) == '#', continue; end [A,count,errm,next] = sscanf(line, '%d %d %d'); if count == 3 k = k + 1; rgb(k,:) = A' / 255.0; names{k} = lower( strtrim(line(next:end)) ); end end s.rgb = rgb; s.names = names; rgbtable = s; end if isstr(a) % map name to rgb/xy if a(1) == '?' % just do a wildcard lookup out = namelookup(rgbtable, a(2:end), opt); else out = name2color(rgbtable, a, opt); end elseif iscell(a) % map multiple names to colorspace out = []; for name=a color = name2color(rgbtable, name{1}, opt); if isempty(color) warning('Color %s not found', name{1}); end out = [out; color]; end else % map values to strings out = {}; switch opt.space case {'rgb', 'xyz', 'lab'} assert(numcols(a) == 3, 'Color value must have 3 elements'); % convert reference colors to input color space table = colorspace(['RGB->' opt.space], rgbtable.rgb); for color=a' d = distance(color, table'); [~,k] = min(d); out = [out rgbtable.names{k}]; end case {'xy', 'ab'} assert(numcols(a) == 2, 'Color value must have 2 elements'); % convert reference colors to input color space switch opt.space case 'xy' table = colorspace('RGB->XYZ', rgbtable.rgb); table = table(:,1:2) ./ (sum(table,2)*[1 1]); case 'ab' table = colorspace('RGB->Lab', rgbtable.rgb); table = table(:,2:3); end for color=a' d = distance(color, table'); [~,k] = min(d); out = [out rgbtable.names{k}]; end end if length(out) == 1 out = out{1}; end end end function r = namelookup(table, s, opt) s = lower(s); % all matching done in lower case r = {}; count = 1; for k=1:length(table.names), if ~isempty( findstr(table.names{k}, s) ) r{count} = table.names{k}; count = count + 1; end end end function out = name2color(table, s, opt) s = lower(s); % all matching done in lower case for k=1:length(table.names), if strcmp(s, table.names(k)), rgb = table.rgb(k,:); switch opt.space case {'rgb', 'xyz', 'lab'} out = colorspace(['RGB->' opt.space], rgb); case 'xy' XYZ = colorspace('RGB->XYZ', rgb); out = tristim2cc(XYZ); case 'ab'; Lab = colorspace('RGB->Lab', rgb); out = Lab(2:3); end return; end end out = []; end
github
RobinAmsters/GT_mobile_robotics-master
polydiff.m
.m
GT_mobile_robotics-master/common/rvctools/common/polydiff.m
1,119
utf_8
3358d9e6a460f1a769fc034f0a00897f
%POLYDIFF Differentiate a polynomial % % PD = POLYDIFF(P) is a vector of coefficients of a polynomial (1xN-1) which is the % derivative of the polynomial P (1xN). % % p = [3 2 -1]; % polydiff(p) % ans = % 6 2 % % See also POLYVAL. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function pd = polydiff(p) n = length(p)-1; pd = [n:-1:1] .* p(1:n);
github
RobinAmsters/GT_mobile_robotics-master
randinit.m
.m
GT_mobile_robotics-master/common/rvctools/common/randinit.m
978
utf_8
118aaf915c94e7df6953a8a937ba88f8
%RANDINIT Reset random number generator % % RANDINIT resets the defaul random number stream. % % See also RandStream. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function randinit(seed) stream = RandStream.getGlobalStream; stream.reset()
github
RobinAmsters/GT_mobile_robotics-master
xaxis.m
.m
GT_mobile_robotics-master/common/rvctools/common/xaxis.m
1,832
utf_8
aeb2d1ed8dcaf8d74d9cfff5546879cf
%XAXIS Set X-axis scaling % % XAXIS(MAX) set x-axis scaling from 0 to MAX. % % XAXIS(MIN, MAX) set x-axis scaling from MIN to MAX. % % XAXIS([MIN MAX]) as above. % % XAXIS restore automatic scaling for x-axis. % % See also YAXIS. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function xaxis(varargin) opt.all = false; [opt,args] = tb_optparse(opt, varargin); if length(args) == 0 [x,y] = ginput(2); mn = x(1); mx = x(2); elseif length(args) == 1 if length(args{1}) == 1 mn = 0; mx = args{1}; elseif length(args{1}) == 2 mn = args{1}(1); mx = args{1}(2); end elseif length(args) == 2 mn = args{1}; mx = args{2}; end if opt.all for a=get(gcf,'Children')', if strcmp(get(a, 'Type'), 'axes') == 1, set(a, 'XLimMode', 'manual', 'XLim', [mn mx]) set(a, 'YLimMode', 'auto') end end else set(gca, 'XLimMode', 'manual', 'XLim', [mn mx]) set(gca, 'YLimMode', 'auto') end
github
RobinAmsters/GT_mobile_robotics-master
dockfigs.m
.m
GT_mobile_robotics-master/common/rvctools/common/dockfigs.m
1,180
utf_8
55bce19340194193b60ce661b658894a
%DOCKFIGS Control figure docking in the GUI % % dockfigs causes all new figures to be docked into the GUI % % dockfigs(1) as above. % % dockfigs(0) causes all new figures to be undocked from the GUI % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function dockfigs(arg) if nargin == 0 arg = 1; end if arg set(0, 'DefaultFigureWindowStyle', 'docked') else set(0, 'DefaultFigureWindowStyle', 'normal') end
github
RobinAmsters/GT_mobile_robotics-master
usefig.m
.m
GT_mobile_robotics-master/common/rvctools/common/usefig.m
348
utf_8
c47f23a7a2dcad028e840e34500f5959
%USEFIG Named figure windows % % usefig('Foo') makes figure 'Foo' the current figure, if it doesn't % exist create it. % % h = usefig('Foo') as above, but returns the figure handle function H = usefig(name) h = findobj('Name', name); if isempty(h), h = figure; set(h, 'Name', name); else figure(h); end if nargout > 0, H = h; end
github
RobinAmsters/GT_mobile_robotics-master
circle.m
.m
GT_mobile_robotics-master/common/rvctools/common/circle.m
2,075
utf_8
6a9dea8240a3f9b5329ef331aef61802
%CIRCLE Compute points on a circle % % CIRCLE(C, R, OPTIONS) plots a circle centred at C (1x2) with radius R on the current % axes. % % X = CIRCLE(C, R, OPTIONS) is a matrix (2xN) whose columns define the % coordinates [x,y] of points around the circumferance of a circle % centred at C (1x2) and of radius R. % % C is normally 2x1 but if 3x1 then the circle is embedded in 3D, and X is Nx3, % but the circle is always in the xy-plane with a z-coordinate of C(3). % % Options:: % 'n',N Specify the number of points (default 50) % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function out = circle(centre, rad, varargin) opt.n = 50; [opt,arglist] = tb_optparse(opt, varargin); % compute points on circumference th = [0:opt.n-1]'/ opt.n*2*pi; x = rad*cos(th) + centre(1); y = rad*sin(th) + centre(2); % add extra row if z-coordinate is specified, but circle is always in xy plane if length(centre) > 2 z = ones(size(x))*centre(3); p = [x y z]'; else p = [x y]'; end if nargout > 0 % return now out = p; return; else % else plot the circle p = [p p(:,1)]; % make it close if numrows(p) > 2 plot3(p(1,:), p(2,:), p(3,:), arglist{:}); else plot(p(1,:), p(2,:), arglist{:}); end end
github
RobinAmsters/GT_mobile_robotics-master
stlRead.m
.m
GT_mobile_robotics-master/common/rvctools/common/stlRead.m
11,483
utf_8
152f25d793763b55b15b646992987e02
%STLREAD reads any STL file not depending on its format % % [v, f, n, name] = stlRead(fileName) reads the STL format file (ASCII or % binary) and returns vertices V, faces F, normals N and NAME is the name % of the STL object (NOT the name of the STL file). % % Authors:: % - from MATLAB File Exchange by Pau Mico, https://au.mathworks.com/matlabcentral/fileexchange/51200-stltools % - Copyright (c) 2015, Pau Mico % - Copyright (c) 2013, Adam H. Aitkenhead % - Copyright (c) 2011, Francis Esmonde-White % % stlGetFormat: identifies the format of the STL file and returns 'binary' % or 'ascii'. This file is inspired in the 'READ-stl' file written and % published by Adam H. Aitkenhead % (http://www.mathworks.com/matlabcentral/fileexchange/27390-mesh-voxelisation). % Copyright (c) 2013, Adam H. Aitkenhead. % % stlReadAscii: reads an STL file written in ascii format. This file is % inspired in the 'READ-stl' file written and published by Adam H. % Aitkenhead % (http://www.mathworks.com/matlabcentral/fileexchange/27390-mesh-voxelisation). % Copyright (c) 2013, Adam H. Aitkenhead % % stlReadBinary: reads an STL file written in binary format. This file % is inspired in the 'READ-stl' file written and published by Adam H. % Aitkenhead % (http://www.mathworks.com/matlabcentral/fileexchange/27390-mesh-voxelisation). % Copyright (c) 2013, Adam H. Aitkenhead stlRead: uses 'stlGetFormat', % % 'stlReadAscii' and 'stlReadBinary' to make STL reading independent of the % format of the file % % stlSlimVerts: finds and removes duplicated vertices. This function is % written and published by Francis Esmonde-White as PATCHSLIM % (http://www.mathworks.com/matlabcentral/fileexchange/29986-patch-slim--patchslim-m-). % Copyright (c) 2011, Francis Esmonde-White.% % % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % * Neither the name of the The MathWorks, Inc. nor the names % of its contributors may be used to endorse or promote products derived % from this software without specific prior written permission. % * Neither the name of the The Christie NHS Foundation Trust nor the names % of its contributors may be used to endorse or promote products derived % from this software without specific prior written permission. % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. function [v, f, n, name] = stlRead(fileName) %STLREAD reads any STL file not depending on its format %V are the vertices %F are the faces %N are the normals %NAME is the name of the STL object (NOT the name of the STL file) format = stlGetFormat(fileName); if strcmp(format,'ascii') [v,f,n,name] = stlReadAscii(fileName); elseif strcmp(format,'binary') [v,f,n,name] = stlReadBinary(fileName); end end function format = stlGetFormat(fileName) %STLGETFORMAT identifies the format of the STL file and returns 'binary' or %'ascii' fid = fopen(fileName); assert(fid > 0, 'Cant find file %s', fileName); % Check the file size first, since binary files MUST have a size of 84+(50*n) fseek(fid,0,1); % Go to the end of the file fidSIZE = ftell(fid); % Check the size of the file if rem(fidSIZE-84,50) > 0 format = 'ascii'; else % Files with a size of 84+(50*n), might be either ascii or binary... % Read first 80 characters of the file. % For an ASCII file, the data should begin immediately (give or take a few % blank lines or spaces) and the first word must be 'solid'. % For a binary file, the first 80 characters contains the header. % It is bad practice to begin the header of a binary file with the word % 'solid', so it can be used to identify whether the file is ASCII or % binary. fseek(fid,0,-1); % go to the beginning of the file header = strtrim(char(fread(fid,80,'uchar')')); % trim leading and trailing spaces isSolid = strcmp(header(1:min(5,length(header))),'solid'); % take first 5 char fseek(fid,-80,1); % go to the end of the file minus 80 characters tail = char(fread(fid,80,'uchar')'); isEndSolid = findstr(tail,'endsolid'); % Double check by reading the last 80 characters of the file. % For an ASCII file, the data should end (give or take a few % blank lines or spaces) with 'endsolid <object_name>'. % If the last 80 characters contains the word 'endsolid' then this % confirms that the file is indeed ASCII. if isSolid & isEndSolid format = 'ascii'; else format = 'binary'; end end fclose(fid); end function [v, f, n, name] = stlReadAscii(fileName) %STLREADASCII reads a STL file written in ASCII format %V are the vertices %F are the faces %N are the normals %NAME is the name of the STL object (NOT the name of the STL file) %====================== % STL ascii file format %====================== % ASCII STL files have the following structure. Technically each facet % could be any 2D shape, but in practice only triangular facets tend to be % used. The present code ONLY works for meshes composed of triangular % facets. % % solid object_name % facet normal x y z % outer loop % vertex x y z % vertex x y z % vertex x y z % endloop % endfacet % % <Repeat for all facets...> % % endsolid object_name fid = fopen(fileName); cellcontent = textscan(fid,'%s','delimiter','\n'); % read all the file and put content in cells content = cellcontent{:}(logical(~strcmp(cellcontent{:},''))); % remove all blank lines fclose(fid); % read the STL name line1 = char(content(1)); if (size(line1,2) >= 7) name = line1(7:end); else name = 'Unnamed Object'; end % read the vector normals normals = char(content(logical(strncmp(content,'facet normal',12)))); n = str2num(normals(:,13:end)); % read the vertex coordinates (vertices) vertices = char(content(logical(strncmp(content,'vertex',6)))); v = str2num(vertices(:,7:end)); nvert = length(vertices); % number of vertices nfaces = sum(strcmp(content,'endfacet')); % number of faces if (nvert == 3*nfaces) f = reshape(1:nvert,[3 nfaces])'; % create faces end % slim the file (delete duplicated vertices) [v,f] = stlSlimVerts(v,f); end function [v, f, n, name] = stlReadBinary(fileName) %STLREADBINARY reads a STL file written in BINARY format %V are the vertices %F are the faces %N are the normals %NAME is the name of the STL object (NOT the name of the STL file) %======================= % STL binary file format %======================= % Binary STL files have an 84 byte header followed by 50-byte records, each % describing a single facet of the mesh. Technically each facet could be % any 2D shape, but that would screw up the 50-byte-per-facet structure, so % in practice only triangular facets are used. The present code ONLY works % for meshes composed of triangular facets. % % HEADER: % 80 bytes: Header text % 4 bytes: (int) The number of facets in the STL mesh % % DATA: % 4 bytes: (float) normal x % 4 bytes: (float) normal y % 4 bytes: (float) normal z % 4 bytes: (float) vertex1 x % 4 bytes: (float) vertex1 y % 4 bytes: (float) vertex1 z % 4 bytes: (float) vertex2 x % 4 bytes: (float) vertex2 y % 4 bytes: (float) vertex2 z % 4 bytes: (float) vertex3 x % 4 bytes: (float) vertex3 y % 4 bytes: (float) vertex3 z % 2 bytes: Padding to make the data for each facet 50-bytes in length % ...and repeat for next facet... fid = fopen(fileName); header = fread(fid,80,'int8'); % reading header's 80 bytes name = deblank(native2unicode(header,'ascii')'); if isempty(name) name = 'Unnamed Object'; % no object name in binary files! end nfaces = fread(fid,1,'int32'); % reading the number of facets in the stl file (next 4 byters) nvert = 3*nfaces; % number of vertices % reserve memory for vectors (increase the processing speed) n = zeros(nfaces,3); v = zeros(nvert,3); f = zeros(nfaces,3); for i = 1 : nfaces % read the data for each facet tmp = fread(fid,3*4,'float'); % read coordinates n(i,:) = tmp(1:3); % x,y,z components of the facet's normal vector v(3*i-2,:) = tmp(4:6); % x,y,z coordinates of vertex 1 v(3*i-1,:) = tmp(7:9); % x,y,z coordinates of vertex 2 v(3*i,:) = tmp(10:12); % x,y,z coordinates of vertex 3 f(i,:) = [3*i-2 3*i-1 3*i]; % face fread(fid,1,'int16'); % Move to the start of the next facet (2 bytes of padding) end fclose(fid); % slim the file (delete duplicated vertices) [v,f] = stlSlimVerts(v,f); end function [vnew, fnew]= stlSlimVerts(v, f) % PATCHSLIM removes duplicate vertices in surface meshes. % % This function finds and removes duplicate vertices. % % USAGE: [v, f]=patchslim(v, f) % % Where v is the vertex list and f is the face list specifying vertex % connectivity. % % v contains the vertices for all triangles [3*n x 3]. % f contains the vertex lists defining each triangle face [n x 3]. % % This will reduce the size of typical v matrix by about a factor of 6. % % For more information see: % http://www.esmonde-white.com/home/diversions/matlab-program-for-loading-stl-files % % Francis Esmonde-White, May 2010 if ~exist('v','var') error('The vertex list (v) must be specified.'); end if ~exist('f','var') error('The vertex connectivity of the triangle faces (f) must be specified.'); end [vnew, indexm, indexn] = unique(v, 'rows'); fnew = indexn(f); end
github
RobinAmsters/GT_mobile_robotics-master
pickregion.m
.m
GT_mobile_robotics-master/common/rvctools/common/pickregion.m
3,137
utf_8
f282eb7d77ff4e8df065d73a0c7d9e37
%PICKREGION Pick a rectangular region of a figure using mouse % % [p1,p2] = PICKREGION() initiates a rubberband box at the current click point % and animates it so long as the mouse button remains down. Returns the first % and last coordinates in axis units. % % Options:: % 'axis',A The axis to select from (default current axis) % 'ls',LS Line style for foreground line (default ':y'); % 'bg'LS, Line style for background line (default '-k'); % 'width',W Line width (default 2) % 'pressed' Don't wait for first button press, use current position % % Notes:: % - Effectively a replacement for the builtin rbbox function which draws the box in % the wrong location on my Mac's external monitor. % % Author:: % Based on rubberband box from MATLAB Central written/Edited by Bob Hamans % ([email protected]) 02-04-2003, in turn based on an idea of % Sandra Martinka's Rubberline. function [p1,p2]=pickregion(varargin) % handle options opt.axis = gca; opt.ls = ':y'; opt.bg = '-k'; opt.width = 2; opt.pressed = false; opt = tb_optparse(opt, varargin); h = opt.axis; % Get current user data cudata=get(gcf,'UserData'); hold on; % Wait for left mouse button to be pressed if ~opt.pressed k=waitforbuttonpress; end % get current point p1=get(h,'CurrentPoint'); %get starting point p1=p1(1,1:2); %extract x and y % create 2 overlaid lines for contrast: % black solid % color dotted lh1 = plot(p1(1),p1(2),opt.bg, 'LineWidth', opt.width); %plot starting point lh2 = plot(p1(1), p1(2), opt.ls, 'LineWidth', opt.width); % Save current point and handles in user data udata.p1=p1; udata.h=h; udata.lh1=lh1; udata.lh2=lh2; % Set handlers for mouse up and mouse motion udata.wbupOld = get(gcf, 'WindowButtonUp'); udata.wbmfOld = get(gcf, 'WindowButtonMotionFcn'); set(gcf, ... 'WindowButtonMotionFcn', @(src,event) wbmf(src,udata), ... 'WindowButtonUp', @(src,event) wbup(src,udata), ... 'DoubleBuffer','on'); % Wait until the lines have been destroyed waitfor(lh1); % Get data for the end point p2=get(h,'Currentpoint'); %get end point p2=p2(1,1:2); %extract x and y % Remove the mouse event handlers and restore user data set(gcf,'UserData',cudata,'DoubleBuffer','off'); end function wbmf(src, ud) %window motion callback function % get current coordinates P = get(ud.h,'CurrentPoint'); P = P(1,1:2); % Use 5 point to draw a rectangular rubberband box xdata = [P(1),P(1),ud.p1(1),ud.p1(1),P(1)]; ydata = [P(2),ud.p1(2),ud.p1(2),P(2),P(2)]; % draw the two lines set(ud.lh1,'XData', xdata,'YData', ydata); set(ud.lh2,'XData', xdata,'YData', ydata); end function wbup(src, ud) % remove motion handler set(gcf, 'WindowButtonMotionFcn', ud.wbmfOld); set(gcf, 'WindowButtonUpFcn', ud.wbupOld); % delete the lines delete(ud.lh2); delete(ud.lh1); end
github
RobinAmsters/GT_mobile_robotics-master
mplot.m
.m
GT_mobile_robotics-master/common/rvctools/common/mplot.m
7,123
utf_8
1b7af413e24c0753dcef8934378925e1
%MPLOT Plot time-series data % % A convenience function for plotting time-series data held in a matrix. % Each row is a timestep and the first column is time. % % MPLOT(Y, OPTIONS) plots the time series data Y(NxM) in multiple % subplots. The first column is assumed to be time, so M-1 plots are % produced. % % MPLOT(T, Y, OPTIONS) plots the time series data Y(NxM) in multiple % subplots. Time is provided explicitly as the first argument so M plots % are produced. % % MPLOT(S, OPTIONS) as above but S is a structure. Each field is assumed % to be a time series which is plotted. Time is taken from the field % called 't'. Plots are labelled according to the name of the % corresponding field. % % MPLOT(W, OPTIONS) as above but W is a structure created by the Simulink % write to workspace block where the save format is set to "Structure % with time". Each field in the signals substructure is plotted. % % MPLOT(R, OPTIONS) as above but R is a Simulink.SimulationOutput object % returned by the Simulink sim() function. % % Options:: % 'col',C Select columns to plot, a boolean of length M-1 or a list of % column indices in the range 1 to M-1 % 'label',L Label the axes according to the cell array of strings L % 'date' Add a datestamp in the top right corner % % Notes:: % - In all cases a simple GUI is created which is invoked by a right % clicking on one of the plotted lines. The supported options are: % - zoom in the x-direction % - shift view to the left or right % - unzoom % - show data points % % See also plot2, plotp. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function mplot(varargin) opt.label = []; opt.date = false; opt.cols = []; [opt,args] = tb_optparse(opt, varargin); if isstruct(args{1}) s = args{1}; if isfield(s, 'signals'), % To Workspace type structure matplot(s.time, s.signals.values, opt); if isfield(s, 'blockName'), title(s.blockName) end else % retriever type structure structplot(args{:}) end elseif isa(args{1}, 'Simulink.SimulationOutput') % Simulink output object s = args{1}; matplot(s.find('tout'), s.find('yout'), opt); if isfield(s, 'blockName'), title(s.blockName) end else matplot(args{:}, opt) end if opt.date datestamp end if ~isempty(opt.label) mlabel(opt.label); end mtools end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function structplot(s) if ~isfield(s, 't') & ~isfield(s, 'time') error('structure must include a time element t') end if isfield(s, 't') t = s.t; elseif isfield(s, 'time'), t = s.time; end f = fieldnames(s); n = length(f) - 1; sp = n*100 + 11; tmax = max(t); i = 1; for ff = f' fieldnam = char(ff); switch fieldnam, case {'t', 'time'}, otherwise, h(i) = subplot(sp); plot(t, getfield(s, fieldnam)); set(h(i), 'UserData', i); v = axis; v(2) = tmax; axis(v); grid xlabel('Time'); ylabel(fieldnam); sp = sp +1; i = i + 1; end end axes(h(1)); figure(gcf) end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % legacy function for matrix input data, old mplot() compatible function matplot(a1, a2, a3) [r,c]=size(a1); if nargin == 2 % [t y1 y2 ... yN] t = a1(:,1); y = a1(:,2:c); cols = 1:(c-1); gain = 1; opt = a2; elseif nargin == 3 if isvector(a1) & ismatrix(a2) % t, [y1 y2 .. yN] t = a1(:); cols = 1:numcols(a2); y = a2; elseif isempty(a1) & ismatrix(a2) % [], [y1 y2 .. yN] cols = 1:numcols(a2); y = a2; t = [1:numrows(y)]'; end opt = a3; end t = t(:); [r,c]=size(y); sp = c*100 + 10; tmax = max(t); for i=1:c if (sp+i) == 111, clf plot(t,y(:,i)); h(i) = gca; else h(i) = subplot(sp+i); plot(t,y(:,i)); end set(h(i), 'UserData', i); set(h(i), 'Tag', 'mplot'); v = axis; v(2) = tmax; axis(v); grid xlabel('Time'); lab = sprintf('Y(%2d)', cols(i)); ylabel(lab); end axes(h(1)); figure(gcf) end function mlabel(lab, varargin) % find all child axes (subplots) h = findobj(gcf, 'Type', 'axes'); for i=1:length(h), if strcmp( get(h(i), 'visible'), 'on'), axes(h(i)) % get subplot number from user data (I don't know who % sets this but its very useful) sp = get(h(i), 'UserData'); if sp == 1, topplot = sp; end ylabel(lab{sp}, varargin{:}); end end if 0 if nargin > 1, axes(h(topplot)); % top plot title(tit); end end end function mtools h = uicontextmenu; uimenu(h, 'Label', 'X zoom', 'CallBack', 'xaxis'); uimenu(h, 'Label', '-->', 'CallBack', 'xscroll(0.5)'); uimenu(h, 'Label', '<--', 'CallBack', 'xscroll(-0.5)'); uimenu(h, 'Label', 'CrossHairs', 'CallBack', 'crosshair'); uimenu(h, 'Label', 'X UNzoom', 'CallBack', 'unzoom'); uimenu(h, 'Label', 'Pick delta', 'CallBack', 'fprintf(''%f %f\n'', diff(ginput(2)))'); uimenu(h, 'Label', 'Line fit', 'CallBack', 'ilinefit'); uimenu(h, 'Label', 'Show points', 'CallBack', 'showpoints(gca)'); uimenu(h, 'Label', 'Apply X zoom to all', 'CallBack', 'xaxisall'); for c=get(gcf, 'Children')', set(c, 'UIContextMenu', h); l = get(c, 'Children'); end axes('pos', [0 0 1 0.05], 'visible', 'off') end function datestamp uicontrol('Style', 'text', ... 'String', date, ... 'Units', 'Normalized', ... 'HorizontalAlignment', 'Right', ... 'BackgroundColor', 'w', ... 'Position', [.8 0.97 .2 .03]); end
github
RobinAmsters/GT_mobile_robotics-master
runscript.m
.m
GT_mobile_robotics-master/common/rvctools/common/runscript.m
8,329
utf_8
1a60ae9f2904735bde6dca3af52d4e0a
%RUNSCRIPT Run an M-file in interactive fashion % % RUNSCRIPT(SCRIPT, OPTIONS) runs the M-file SCRIPT and pauses after every % executable line in the file until a key is pressed. Comment lines are shown % without any delay between lines. % % Options:: % 'delay',D Don't wait for keypress, just delay of D seconds (default 0) % 'cdelay',D Pause of D seconds after each comment line (default 0) % 'begin' Start executing the file after the comment line %%begin (default false) % 'dock' Cause the figures to be docked when created % 'path',P Look for the file SCRIPT in the folder P (default .) % 'dock' Dock figures within GUI % 'nocolor' Don't use cprintf to print lines in color (comments black, code blue) % % Notes:: % - If no file extension is given in SCRIPT, .m is assumed. % - A copyright text block will be skipped and not displayed. % - If cprintf exists and 'nocolor' is not given then lines are displayed % in color. % - Leading comment characters are not displayed. % - If the executable statement has comments immediately afterward (no blank lines) % then the pause occurs after those comments are displayed. % - A simple '-' prompt indicates when the script is paused, hit enter. % - If the function cprintf() is in your path, the display is more % colorful. You can get this file from MATLAB File Exchange. % - If the file has a lot of boilerplate, you can skip over and not display % it by giving the 'begin' option which searchers for the first line % starting with %%begin and commences execution at the line after that. % % See also eval. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function runscript(fname, varargin) opt.path = []; opt.delay = []; opt.begin = false; opt.cdelay = 0; opt.dock = false; opt.color = true; opt = tb_optparse(opt, varargin); if ~exist('cprintf') opt.color = false; end close all curDir = pwd(); prevDockStatus = get(0,'DefaultFigureWindowStyle'); if opt.dock set(0,'DefaultFigureWindowStyle','docked'); else set(0,'DefaultFigureWindowStyle','normal'); end if ~isempty(opt.path) fname = fullfile(opt.path, [fname '.m']); else fname = [fname '.m']; end fp = fopen(fname, 'r'); clc fprintf('--- runscript <-- %s\n', fname); running = false; shouldPause = false; savedText = []; if ~opt.begin running = true; end lineNum = 1; skipping = false; % stashMode % 0 normal % 1 loop % 2 continuation continMode = false; compoundDepth = 0; while 1 % get the next line from the file, bail if EOF line = fgetl(fp); if line == -1 break end lineNum = lineNum+1; if startswith(line, '% Copyright') skipping = true; continue; end % logic to skip lines until we see one beginning with %%begin if ~running if strcmp(line, '%%begin') running = true; else continue; end end; if length(strtrim(line)) == 0 % blank line if skipping skipping = false; end fprintf('\n'); if shouldPause scriptwait(opt); shouldPause = false; end continue elseif skipping continue; elseif startswith(strtrim(line), '%') % line was a comment disp( strtrim(line(2:end)) ) pause(opt.cdelay) % optional comment delay continue; else if shouldPause scriptwait(opt); shouldPause = false; end end % if the start of a loop, stash the text for now if startswith(line, 'for') || startswith(line, 'while') || startswith(line, 'if') % found a compound block, don't eval it until we get to the end compoundDepth = compoundDepth + 1; end % if the statement has a continuation if endswith(line, '...') && compoundDepth == 0 % found a compound statement, don't eval it until we get to the end continMode = true; end if compoundDepth == 0 && ~continMode prompt = '>> '; else prompt = ''; end % display the line with a pretend MATLAB prompt if opt.color cprintf('blue', '%s%s', prompt, line) else fprintf('%s', prompt); disp(line) end if compoundDepth > 0 || continMode % we're in stashing mode savedText = strcat(savedText, '\n', line); end if compoundDepth > 0 && startswith(line, 'end') % the compound block is fully unnested compoundDepth = compoundDepth - 1; if compoundDepth == 0 evalSavedText(savedText, lineNum, opt); savedText = ''; shouldPause = true; end continue elseif continMode && ~endswith(line, '...') % no longer in continuation mode evalSavedText(savedText, lineNum, opt); savedText = ''; continMode = false; shouldPause = true; continue end if compoundDepth == 0 && ~continMode % it's a simple executable statement, execute it fprintf(' \n'); try evalSavedText(line, lineNum, opt); catch break end shouldPause = true; end end fprintf('------ done --------\n'); % restore the docking mode if we set it set(0,'DefaultFigureWindowStyle', prevDockStatus) cd(curDir) end function evalSavedText(text, lineNum, opt) if length(strtrim(text)) == 0 return end text = sprintf(text); try if opt.color text = strrep(text, '''', ''''''); % fix single quotes t = evalin('base', strcat('evalc(''', text, ''')') ); cprintf('blue', '%s', t); else evalin('base', text); end catch m fprintf('error in script %s at line %d', fname, lineNum); m.rethrow(); end fprintf('\n'); end % delay or prompt according to passed options function scriptwait(opt) if isempty(opt.delay) %a = input('-', 's'); prompt = 'continue?'; bs = repmat('\b', [1 length(prompt)]); if opt.color cprintf('red', prompt); pause; cprintf('text', bs); else fprintf(prompt); pause; fprintf(bs); end else pause(opt.delay); end end % test if s2 is at the start of s1 (ignoring leading spaces) function res = startswith(s1, s2) s1 = strtrim(s1); % trim leading white space r = strfind(s1, s2); res = false; if ~isempty(r) && (r(1) == 1) res = true; end end % test if s2 is at the end of s1 function res = endswith(s1, s2) if length(s1) < length(s2) res = false; else n2 = length(s2)-1; res = strcmp(s1(end-n2:end), s2); end end
github
RobinAmsters/GT_mobile_robotics-master
rvcpath.m
.m
GT_mobile_robotics-master/common/rvctools/common/rvcpath.m
1,137
utf_8
f1b242a7ae5a23962546beba760c6ae1
%RVCPATH Install location of RVC tools % % p = RVCPATH is the path of the top level folder for the installed RVC % tools. % % p = RVCPATH(FOLDER) is the full path of the specified FOLDER which is relative to the % installed RVC tools. % % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function p = rvcpath(a) p = fileparts( which('startup_rvc.m') ); if nargin > 0 p = fullfile(p, a); end
github
RobinAmsters/GT_mobile_robotics-master
mmlabel.m
.m
GT_mobile_robotics-master/common/rvctools/common/mmlabel.m
1,458
utf_8
6bb8d41bb64488913bcc3a1ae684d829
%MMLABEL labels for mplot style graph % % mmlabel({lab1 lab2 lab3}) % % Notes:: % - was previously (rev 9) named mlabel() but changed to avoid clash with the % Mapping Toolbox. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function mmlabel(lab, varargin) % find all child axes (subplots) h = findobj(gcf, 'Type', 'axes'); for i=1:length(h) if strcmp( get(h(i), 'visible'), 'on'), axes(h(i)) % get subplot number from user data (I don't know who % sets this but its very useful) sp = get(h(i), 'UserData'); if sp == 1, topplot = sp; end ylabel(lab{sp}, varargin{:}); end end if 0 if nargin > 1, axes(h(topplot)); % top plot title(tit); end end
github
RobinAmsters/GT_mobile_robotics-master
plotp.m
.m
GT_mobile_robotics-master/common/rvctools/common/plotp.m
1,573
utf_8
820ce5525622153db6f6a564377af983
%PLOTP Plot trajectory % % Convenience function to plot points stored columnwise. % % PLOTP(P) plots a set of points P, which by Toolbox convention are stored % one per column. P can be 2xN or 3xN. By default a linestyle of 'bx' % is used. % % PLOTP(P, LS) as above but the line style arguments LS are passed to plot. % % See also PLOT, PLOT2. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function h = plotp(p1, varargin) if length(varargin) == 0 varargin = {'bx'}; end assert(any(numrows(p1) == [2 3]), 'RTB:plotp:badarg', '2D or 3D points, columnwise, only'); if numrows(p1) == 3 hh = plot3(p1(1,:), p1(2,:), p1(3,:), varargin{:}); xyzlabel else hh = plot(p1(1,:), p1(2,:), varargin{:}); xlabel('x'); ylabel('y'); end if nargout == 1 h = hh; end
github
RobinAmsters/GT_mobile_robotics-master
mtools.m
.m
GT_mobile_robotics-master/common/rvctools/common/mtools.m
1,847
utf_8
bc44bea8453c76d09fb4f2c4fee81dbd
%MTOOLS add simple/useful tools to all windows in figure % % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function mtools global DDXFILENAME h = uicontextmenu; uimenu(h, 'Label', 'X zoom', 'CallBack', 'xaxis'); uimenu(h, 'Label', '-->', 'CallBack', 'xscroll(0.5)'); uimenu(h, 'Label', '<--', 'CallBack', 'xscroll(-0.5)'); uimenu(h, 'Label', 'CrossHairs', 'CallBack', 'crosshair'); uimenu(h, 'Label', 'X UNzoom', 'CallBack', 'unzoom'); uimenu(h, 'Label', 'Pick delta', 'CallBack', 'fprintf(''%f %f\n'', diff(ginput(2)))'); uimenu(h, 'Label', 'Line fit', 'CallBack', 'ilinefit'); uimenu(h, 'Label', 'Show points', 'CallBack', 'showpoints(gca)'); uimenu(h, 'Label', 'Apply X zoom to all', 'CallBack', 'xaxisall'); for c=get(gcf, 'Children')', set(c, 'UIContextMenu', h); l = get(c, 'Children'); end axes('pos', [0 0 1 0.05], 'visible', 'off') if 0 if ~isempty(DDXFILENAME), s = sprintf('[%s] %s', DDXFILENAME, date); else s = sprintf('%s', date); end text(0.95, 0.1, s, 'horizontalalign', 'right', 'verticalalign', 'baseli') end
github
RobinAmsters/GT_mobile_robotics-master
bresenham.m
.m
GT_mobile_robotics-master/common/rvctools/common/bresenham.m
3,069
utf_8
433dcd2346920722c37d9bbed814dbe8
%BRESENHAM Generate a line % % P = BRESENHAM(X1, Y1, X2, Y2) is a list of integer coordinates (2xN) for % points lying on the line segment joining the integer coordinates (X1,Y1) % and (X2,Y2). % % P = BRESENHAM(P1, P2) as above but P1=[X1; Y1] and P2=[X2; Y2]. % % Notes:: % - Endpoint coordinates must be integer values. % % Author:: % - Based on code by Aaron Wetzler % % See also ICANVAS. % http://www.mathworks.com/matlabcentral/fileexchange/28190-bresenham-optimized-for-matlab % Copyright (c) 2010, Aaron Wetzler % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. function p = bresenham(x1, y1, x2, y2) if nargin == 2 p1 = x1; p2 = y1; x1 = p1(1); y1 = p1(2); x2 = p2(1); y2 = p2(2); elseif nargin ~= 4 error('expecting 2 or 4 arguments'); end % ensure all values are integer x1=round(x1); x2=round(x2); y1=round(y1); y2=round(y2); % compute the vertical and horizontal change dx=abs(x2-x1); dy=abs(y2-y1); steep=abs(dy)>abs(dx); if steep % if slope > 1 swap the deltas t=dx; dx=dy; dy=t; end %The main algorithm goes here. if dy==0 % q=zeros(dx+1,1); else q=[0;diff(mod([floor(dx/2):-dy:-dy*dx+floor(dx/2)]',dx))>=0]; end %and ends here. if steep if y1<=y2 y=[y1:y2]'; else y=[y1:-1:y2]'; end if x1<=x2 x=x1+cumsum(q); else x=x1-cumsum(q); end else if x1<=x2 x=[x1:x2]'; else x=[x1:-1:x2]'; end if y1<=y2 y=y1+cumsum(q); else y=y1-cumsum(q); end end p = [x y]; end
github
RobinAmsters/GT_mobile_robotics-master
gaussfunc.m
.m
GT_mobile_robotics-master/common/rvctools/common/gaussfunc.m
2,159
utf_8
ce83ce3f5a887482ea5ec66c52e5f2d7
%GAUSSFUNC Gaussian kernel % % G = GAUSSFUNC(MEAN, VARIANCE, X) is the value of the normal % distribution (Gaussian) function with MEAN (1x1) and VARIANCE (1x1), at % the point X. % % G = GAUSSFUNC(MEAN, COVARIANCE, X, Y) is the value of the bivariate % normal distribution (Gaussian) function with MEAN (1x2) and COVARIANCE % (2x2), at the point (X,Y). % % G = GAUSSFUNC(MEAN, COVARIANCE, X) as above but X (NxM) and the result % is also (NxM). X and Y values come from the column and row indices of % X. % % Notes:: % - X or Y can be row or column vectors, and the result will also be a vector. % - The area or volume under the curve is unity. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function g = gaussfunc(mu, variance, x, y) if length(mu) == 1 % 1D case assert(all(size(variance) == [1 1]), 'covariance must be a 1x1 matrix') g = 1/sqrt(2*pi*variance) * exp( -((x-mu).^2)/(2*variance) ); elseif length(mu) == 2 % 2D case assert(length(mu) == 2, 'mean must be a 2-vector'); assert(all(size(variance) == [2 2]), 'covariance must be a 2x2 matrix') if nargin < 4 [x,y] = imeshgrid(x); end xx = x(:)-mu(1); yy = y(:)-mu(2); ci = inv(variance); g = 1/(2*pi*sqrt(det(variance))) * exp( -0.5*(xx.^2*ci(1,1) + yy.^2*ci(2,2) + 2*xx.*yy*ci(1,2))); g = reshape(g, size(x)); end
github
RobinAmsters/GT_mobile_robotics-master
PluckerTest.m
.m
GT_mobile_robotics-master/common/rvctools/common/unit_test/PluckerTest.m
790
utf_8
2ba1dac6e1882a015dc1371045aa13bd
function tests = PluckerTest tests = functiontests(localfunctions); end function constructor_test(tc) end function methods_test(tc) % intersection px = Plucker([0 0 0], [1 0 0]); % x-axis py = Plucker([0 0 0], [0 1 0]); % y-axis px1 = Plucker([0 1 0], [1 1 0]); % offset x-axis verifyEqual(tc, px.origin_distance(), 0); verifyEqual(tc, px1.origin_distance(), 1); verifyEqual(tc, px1.origin_closesst(), [0 1 0]'); px.intersect(px) px.intersect(py) px.intersect(px1) end function intersect_test(tc) px = Plucker([0 0 0], [1 0 0]); % x-axis py = Plucker([0 0 0], [0 1 0]); % y-axis plane.d = [1 0 0]; plane.p = 2; % plane x=2 px.intersect_plane(plane) py.intersect_plane(plane) end
github
RobinAmsters/GT_mobile_robotics-master
plotXTest.m
.m
GT_mobile_robotics-master/common/rvctools/common/unit_test/plotXTest.m
10,075
utf_8
5e0c1a61709cdd8015d7777373ef326a
% 2d outline, filled case % 3d outlien, filled case % with LS or edgecolor, color options etc. function tests = plotXTest tests = functiontests(localfunctions); close all end function teardownOnce(tc) close all end function plotpoint_test(tc) % simple points = rand(2,5); clf; plot_point(points); tc.verifyEqual(length(get(gca, 'Children')), 5); tc.verifyEqual(length(findobj(gca, 'Type', 'line')), 5); lines = findobj(gca, 'Type', 'line'); for i=1:5 tc.verifyEqual(length(lines(i).XData), 1); tc.verifyEqual(length(lines(i).YData), 1); tc.verifyEqual(lines(i).LineStyle, 'none'); tc.verifyEqual(lines(i).MarkerSize, 6); tc.verifyEqual(lines(i).MarkerFaceColor, 'none'); tc.verifyEqual(lines(i).Marker, 'square'); end % markers specified clf; plot_point(points, 'rd'); tc.verifyEqual(length(get(gca, 'Children')), 5); tc.verifyEqual(length(findobj(gca, 'Type', 'line')), 5); lines = findobj(gca, 'Type', 'line'); for i=1:5 tc.verifyEqual(lines(i).LineStyle, 'none'); tc.verifyEqual(lines(i).MarkerSize, 6); tc.verifyEqual(lines(i).MarkerFaceColor, 'none'); tc.verifyEqual(lines(i).Marker, 'diamond'); tc.verifyEqual(lines(i).Color, [1 0 0]); end % markers specified solid clf; plot_point(points, 'rd', 'solid'); tc.verifyEqual(length(get(gca, 'Children')), 5); tc.verifyEqual(length(findobj(gca, 'Type', 'line')), 5); lines = findobj(gca, 'Type', 'line'); for i=1:5 tc.verifyEqual(lines(i).LineStyle, 'none'); tc.verifyEqual(lines(i).MarkerSize, 6); tc.verifyEqual(lines(i).MarkerFaceColor, [1 0 0]); tc.verifyEqual(lines(i).Marker, 'diamond'); tc.verifyEqual(lines(i).Color, [1 0 0]); end % sequential labels clf; plot_point(points, 'sequence'); tc.verifyEqual(length(get(gca, 'Children')), 10); tc.verifyEqual(length(findobj(gca, 'Type', 'text')), 5); labels = findobj(gca, 'Type', 'text'); set = [1:5]; for i=1:5 set = setdiff(set, str2num(labels(i).String)); end tc.verifyEmpty(set, 'Not all labels found'); % specified labels L = {'A', 'B', 'C', 'D', 'E'}; clf; plot_point(points, 'label', L); tc.verifyEqual(length(get(gca, 'Children')), 10); tc.verifyEqual(length(findobj(gca, 'Type', 'text')), 5); labels = findobj(gca, 'Type', 'text'); set = [1:5]; for i=1:5 set = setdiff(set, double(strip(labels(i).String))-'A'+1); end tc.verifyEmpty(set, 'Not all labels found'); % printf labels clf; plot_point(points, 'printf', {'label=%d', 21:25}); tc.verifyEqual(length(get(gca, 'Children')), 10); tc.verifyEqual(length(findobj(gca, 'Type', 'text')), 5); labels = findobj(gca, 'Type', 'text'); set = [21:25]; for i=1:5 l = strip(labels(i).String); tc.verifyEqual(l(1:6), 'label='); set = setdiff(set, str2num(l(7:end))); end tc.verifyEmpty(set, 'Not all labels found'); % specify font size clf; plot_point(points, 'sequence', 'textsize', 23); tc.verifyEqual(length(get(gca, 'Children')), 10); tc.verifyEqual(length(findobj(gca, 'Type', 'line')), 5); tc.verifyEqual(length(findobj(gca, 'Type', 'text')), 5); labels = findobj(gca, 'Type', 'text'); for i=1:5 tc.verifyEqual(labels(i).FontSize, 23); tc.verifyEqual(labels(i).FontWeight, 'normal'); end % specify font color clf; plot_point(points, 'sequence', 'textcolor', 'g'); tc.verifyEqual(length(get(gca, 'Children')), 10); tc.verifyEqual(length(findobj(gca, 'Type', 'line')), 5); tc.verifyEqual(length(findobj(gca, 'Type', 'text')), 5); labels = findobj(gca, 'Type', 'text'); for i=1:5 tc.verifyEqual(labels(i).Color, [0 1 0]); tc.verifyEqual(labels(i).FontWeight, 'normal'); end % specify font color clf; plot_point(points, 'sequence', 'textcolor', [0.2 0.3 0.4]); tc.verifyEqual(length(get(gca, 'Children')), 10); tc.verifyEqual(length(findobj(gca, 'Type', 'line')), 5); tc.verifyEqual(length(findobj(gca, 'Type', 'text')), 5); labels = findobj(gca, 'Type', 'text'); for i=1:5 tc.verifyEqual(labels(i).Color, [0.2 0.3 0.4]); tc.verifyEqual(labels(i).FontWeight, 'normal'); end % specify font weight clf; plot_point(points, 'sequence', 'bold'); tc.verifyEqual(length(get(gca, 'Children')), 10); tc.verifyEqual(length(findobj(gca, 'Type', 'line')), 5); tc.verifyEqual(length(findobj(gca, 'Type', 'text')), 5); labels = findobj(gca, 'Type', 'text'); for i=1:5 tc.verifyEqual(labels(i).FontWeight, 'bold'); end % specify font size, weight, color clf; plot_point(points, 'sequence', 'textsize', 23, 'bold', 'textcolor', [0.2 0.3 0.4]); tc.verifyEqual(length(get(gca, 'Children')), 10); tc.verifyEqual(length(findobj(gca, 'Type', 'line')), 5); tc.verifyEqual(length(findobj(gca, 'Type', 'text')), 5); labels = findobj(gca, 'Type', 'text'); for i=1:5 tc.verifyEqual(labels(i).FontSize, 23); tc.verifyEqual(labels(i).FontWeight, 'bold'); tc.verifyEqual(labels(i).Color, [0.2 0.3 0.4]); end end function plotpoly_test(tc) opt.animate = false; % 2d and 3D opt.tag = []; opt.axis = []; P = [1 3 5; 1 5 1]; clf; plot_poly(P); tc.verifyEqual(length(get(gca, 'Children')), 1); lines = findobj(gca, 'Type', 'line'); tc.verifyEqual(length(lines), 1); tc.verifyEqual(length(lines(1).XData), 4); tc.verifyEqual(length(lines(1).YData), 4); tc.verifyEqual(lines(1).Marker, 'none'); tc.verifyEqual(lines(1).LineStyle, '-'); clf; plot_poly(P, 'g--'); tc.verifyEqual(length(get(gca, 'Children')), 1); lines = findobj(gca, 'Type', 'line'); tc.verifyEqual(length(lines), 1); tc.verifyEqual(length(lines(1).XData), 4); tc.verifyEqual(length(lines(1).YData), 4); tc.verifyEqual(lines(1).Marker, 'none'); tc.verifyEqual(lines(1).LineStyle, '--'); tc.verifyEqual(lines(1).Color, [0 1 0]); clf; plot_poly(P, 'edgecolor', 'r'); tc.verifyEqual(length(get(gca, 'Children')), 1); lines = findobj(gca, 'Type', 'line'); tc.verifyEqual(length(lines), 1); tc.verifyEqual(length(lines(1).XData), 4); tc.verifyEqual(length(lines(1).YData), 4); tc.verifyEqual(lines(1).Marker, 'none'); tc.verifyEqual(lines(1).LineStyle, '-'); %tc.verifyEqual(lines(1).Color, [1 0 0]); clf; plot_poly(P, 'edgecolor', [0.2 0.3 0.4]); tc.verifyEqual(length(get(gca, 'Children')), 1); lines = findobj(gca, 'Type', 'line'); tc.verifyEqual(length(lines), 1); tc.verifyEqual(length(lines(1).XData), 4); tc.verifyEqual(length(lines(1).YData), 4); tc.verifyEqual(lines(1).Marker, 'none'); tc.verifyEqual(lines(1).LineStyle, '-'); %tc.verifyEqual(lines(1).Color, [0.2 0.3 0.4]); clf; plot_poly(P, 'tag', 'bob'); lines = findobj(gca, 'Type', 'line'); %tc.verifyEqual(lines(1).Tag, 'bob'); % no tag for line type %-------- patch mode clf; plot_poly(P, 'fillcolor', 'r'); tc.verifyEqual(length(get(gca, 'Children')), 1); patch = findobj(gca, 'Type', 'patch'); tc.verifyEqual(length(patch), 1); tc.verifyEqual(patch.FaceColor, [1 0 0]); tc.verifyEqual(patch.FaceAlpha, 1); tc.verifyEqual(patch.EdgeColor, [0 0 0]); tc.verifyEqual(patch.LineStyle, '-'); tc.verifySize(patch.Faces, [1 3]); tc.verifySize(patch.Vertices, [3 2]); clf; plot_poly(P, 'fillcolor', 'g', 'alpha', 0.5); tc.verifyEqual(length(get(gca, 'Children')), 1); patch = findobj(gca, 'Type', 'patch'); tc.verifyEqual(length(patch), 1); tc.verifyEqual(patch.FaceColor, [0 1 0]); tc.verifyEqual(patch.FaceAlpha, 0.5); tc.verifyEqual(patch.EdgeColor, [0 0 0]); tc.verifyEqual(patch.LineStyle, '-'); tc.verifySize(patch.Faces, [1 3]); tc.verifySize(patch.Vertices, [3 2]); clf; plot_poly(P, 'fillcolor', 'b', 'tag', 'bob'); patch = findobj(gca, 'Type', 'patch'); %tc.verifyEqual(patch.Tag, 'bob'); % no tag end function plot_sphere(tc) end function plot_box(tc) end function plot_arrow(tc) end function plot_homline(tc) end % plot_ellipse function ellipse2d_test(testCase) clf E = diag([9 4]); plot_ellipse(E) plot_ellipse(E, [4 0], 'r--'); plot_ellipse(E, [0 4], 'edgecolor', 'g'); plot_ellipse(E, [4 4], 'fillcolor', 'g'); plot_ellipse(E, [0 8 0.5], 'edgecolor', 'r', 'fillcolor', 'c', 'alpha', 0.5, 'LineWidth', 3); plot_ellipse(E, [4 8], 'b--', 'LineWidth', 3); axis equal end function ellipse2d_animate_test(testCase) clf axis([-4 4 -4 4]); E = diag([9 4]); h = plot_ellipse(E, 'g'); for x = circle([0 0], 1) plot_ellipse(E, x, 'alter', h) pause(0.1) end clf axis([-4 4 -4 4]); h = plot_ellipse(E, [0 0 0.5], 'edgecolor', 'r', 'fillcolor', 'c', 'LineWidth', 3); for x = circle([0 0], 1) plot_ellipse(E, x, 'alter', h) pause(0.1) end end % plot_ellipse function ellipse3d_test(testCase) clf E = diag([9 4 6]); plot_ellipse(E) pause clf plot_ellipse(E, 'edgecolor', 'g'); pause clf plot_ellipse(E, 'fillcolor', 'g'); pause clf plot_ellipse(E, 'fillcolor', 'g', 'shadow'); pause clf plot_ellipse(E, 'fillcolor', 'g', 'edgecolor', 'r', 'LineWidth', 2); pause plot_ellipse(E, [0 8], 'edgecolor', 'r', 'fillcolor', 'c'); plot_ellipse(E, [4 8], 'LineWidth', 3, 'MarkerStyle', '+'); axis equal end function ellipse3d_animate_test(testCase) clf axis([-4 4 -4 4 -4 4]); E = diag([9 4 6]); h = plot_ellipse(E, 'g'); for x = circle([0 0], 1) plot_ellipse(E, [x; 0], 'alter', h) pause(0.1) end end
github
RobinAmsters/GT_mobile_robotics-master
tboptparseTest.m
.m
GT_mobile_robotics-master/common/rvctools/common/unit_test/tboptparseTest.m
8,306
utf_8
7663089541e7d9d2c91c64363ab51eb9
function tests = tboptparseTest() tests = functiontests(localfunctions); end function setupOnce(tc) opt.foo = false; opt.bar = true; opt.blah = []; opt.stuff = {}; opt.choose = {'this', 'that', 'other'}; opt.select = {'#no', '#yes'}; opt.old = '@foo'; opt.d_3d = false; tc.TestData.opt = opt; end function boolTest(tc) opt.foo = false; [out,args] = tb_optparse(opt, {}); tc.verifyEqual(out.foo, false); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'foo'}); tc.verifyEqual(out.foo, true); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'distract'}); tc.verifyEqual(out.foo, false); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'foo', 'distract'}); tc.verifyEqual(out.foo, true); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'distract', 'foo'}); tc.verifyEqual(out.foo, true); tc.verifyEqual(args, {'distract'}); end function noboolTest(tc) opt.foo = true; [out,args] = tb_optparse(opt, {}); tc.verifyEqual(out.foo, true); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'foo'}); tc.verifyEqual(out.foo, true); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'nofoo'}); tc.verifyEqual(out.foo, false); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'distract'}); tc.verifyEqual(out.foo, true); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'foo', 'distract'}); tc.verifyEqual(out.foo, true); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'distract', 'foo'}); tc.verifyEqual(out.foo, true); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'nofoo', 'distract'}); tc.verifyEqual(out.foo, false); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'distract', 'nofoo'}); tc.verifyEqual(out.foo, false); tc.verifyEqual(args, {'distract'}); end function setTest(tc) opt.foo = []; [out,args] = tb_optparse(opt, {}); tc.verifyEqual(out.foo, []); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'foo', 3}); tc.verifyEqual(out.foo, 3); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'foo', 'bar'}); tc.verifyEqual(out.foo, 'bar'); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'foo', [1 2 3]}); tc.verifyEqual(out.foo, [1 2 3]); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'foo', {1 2 3}}); tc.verifyEqual(out.foo, {1 2 3}); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'distract'}); tc.verifyEqual(out.foo, []); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'distract', 'foo', 'bar'}); tc.verifyEqual(out.foo, 'bar'); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'foo', 'bar', 'distract'}); tc.verifyEqual(out.foo, 'bar'); tc.verifyEqual(args, {'distract'}); end function cellsetTest(tc) opt.foo = {}; [out,args] = tb_optparse(opt, {}); tc.verifyEqual(out.foo, {}); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'foo', 3}); tc.verifyEqual(out.foo, {3}); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'foo', 'bar'}); tc.verifyEqual(out.foo, {'bar'}); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'foo', [1 2 3]}); tc.verifyEqual(out.foo, {[1 2 3]}); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'foo', {1 2 3}}); tc.verifyEqual(out.foo, {1 2 3}); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'distract'}); tc.verifyEqual(out.foo, {}); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'distract', 'foo', 'bar'}); tc.verifyEqual(out.foo, {'bar'}); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'foo', 'bar', 'distract'}); tc.verifyEqual(out.foo, {'bar'}); tc.verifyEqual(args, {'distract'}); end function chooseTest(tc) opt.choose = {'this', 'that', 'other'}; [out,args] = tb_optparse(opt, {}); tc.verifyEqual(out.choose, 'this'); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'this'}); tc.verifyEqual(out.choose, 'this'); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'that'}); tc.verifyEqual(out.choose, 'that'); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'other'}); tc.verifyEqual(out.choose, 'other'); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'yetanother'}); % this one not in the list tc.verifyEqual(out.choose, 'this'); % return default tc.verifyEqual(args, {'yetanother'}); % and the arg is returned here [out,args] = tb_optparse(opt, {'distract', 'that'}); tc.verifyEqual(out.choose, 'that'); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'that','distract'}); tc.verifyEqual(out.choose, 'that'); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'yetanother','distract'}); tc.verifyEqual(out.choose, 'this'); tc.verifyEqual(args, {'yetanother','distract'}); end function hashchooseTest(tc) opt.choose = {'#this', '#that', '#other'}; [out,args] = tb_optparse(opt, {}); tc.verifyEqual(out.choose, 1); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'this'}); tc.verifyEqual(out.choose, 1); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'that'}); tc.verifyEqual(out.choose, 2); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'other'}); tc.verifyEqual(out.choose, 3); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'yetanother'}); % this one not in the list tc.verifyEqual(out.choose, 1); % return default tc.verifyEqual(args, {'yetanother'}); % and the arg is returned here [out,args] = tb_optparse(opt, {'distract', 'that'}); tc.verifyEqual(out.choose, 2); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'that','distract'}); tc.verifyEqual(out.choose, 2); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'yetanother','distract'}); tc.verifyEqual(out.choose, 1); tc.verifyEqual(args, {'yetanother','distract'}); end function synonymTest(tc) opt.foo = false; opt.bar = '@foo'; [out,args] = tb_optparse(opt, {}); tc.verifyEqual(out.foo, false); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'foo'}); tc.verifyEqual(out.foo, true); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'bar'}); tc.verifyEqual(out.foo, true); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'distract'}); tc.verifyEqual(out.foo, false); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'bar', 'distract'}); tc.verifyEqual(out.foo, true); tc.verifyEqual(args, {'distract'}); [out,args] = tb_optparse(opt, {'distract', 'bar'}); tc.verifyEqual(out.foo, true); tc.verifyEqual(args, {'distract'}); end function startDigitTest(tc) % bool opt.d_3foo = false; [out,args] = tb_optparse(opt, {}); tc.verifyEqual(out.d_3foo, false); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'3foo'}); tc.verifyEqual(out.d_3foo, true); tc.verifySize(args, [0 0]); % set opt.d_3foo = []; [out,args] = tb_optparse(opt, {}); tc.verifyEqual(out.d_3foo, []); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'3foo', [1 2 3]}); tc.verifyEqual(out.d_3foo, [1 2 3]); tc.verifySize(args, [0 0]); % choose opt.d_3foo = {'this', 'that', 'other'}; [out,args] = tb_optparse(opt, {}); tc.verifyEqual(out.d_3foo, 'this'); tc.verifySize(args, [0 0]); [out,args] = tb_optparse(opt, {'3foo', 'that'}); tc.verifyEqual(out.d_3foo, 'that'); tc.verifySize(args, [0 0]); end
github
RobinAmsters/GT_mobile_robotics-master
wtrans.m
.m
GT_mobile_robotics-master/common/rvctools/robot/wtrans.m
1,393
utf_8
b7605b6674672f58fa44fff0ff9f444b
%WTRANS Transform a wrench between coordinate frames % % WT = WTRANS(T, W) is a wrench (6x1) in the frame represented by the homogeneous % transform T (4x4) corresponding to the world frame wrench W (6x1). % % The wrenches W and WT are 6-vectors of the form [Fx Fy Fz Mx My Mz]'. % % See also TR2DELTA, TR2JAC. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function Wt = wtrans(T, W) assert(ishomog(T), 'RTB:wtrans:badarg', 'T must be 4x4'); assert(isvec(W,6), 'RTB:wtrans:badarg', 'W must be a 6-vector'); W = W(:); f = W(1:3); m = W(4:6); k = cross(f, transl(T) ) + m; ft = t2r(T)' * f; mt = t2r(T)' * k; Wt = [ft; mt];
github
RobinAmsters/GT_mobile_robotics-master
mtraj.m
.m
GT_mobile_robotics-master/common/rvctools/robot/mtraj.m
3,306
utf_8
3b82474dbf11dba63f8278f8dc1b72f9
%MTRAJ Multi-axis trajectory between two points % % [Q,QD,QDD] = MTRAJ(TFUNC, Q0, QF, M) is a multi-axis trajectory (MxN) varying % from configuration Q0 (1xN) to QF (1xN) according to the scalar trajectory function % TFUNC in M steps. Joint velocity and acceleration can be optionally returned as % QD (MxN) and QDD (MxN) respectively. The trajectory outputs have one row per % time step, and one column per axis. % % The shape of the trajectory is given by the scalar trajectory function % TFUNC which is applied to each axis: % [S,SD,SDD] = TFUNC(S0, SF, M); % and possible values of TFUNC include @lspb for a trapezoidal trajectory, or % @tpoly for a polynomial trajectory. % % [Q,QD,QDD] = MTRAJ(TFUNC, Q0, QF, T) as above but T (Mx1) is a time % vector which dictates the number of points on the trajectory. % % Notes:: % - If no output arguments are specified Q, QD, and QDD are plotted. % - When TFUNC is @tpoly the result is functionally equivalent to JTRAJ except % that no initial velocities can be specified. JTRAJ is computationally a little % more efficient. % % See also JTRAJ, MSTRAJ, LSPB, TPOLY. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function [S,Sd,Sdd] = mtraj(tfunc, q0, qf, M) if ~isa(tfunc, 'function_handle') error('first argument must be a function handle'); end M0 = M; if ~isscalar(M) M = length(M); end if numcols(q0) ~= numcols(qf) error('must be same number of columns in q0 and qf') end s = zeros(M, numcols(q0)); sd = zeros(M, numcols(q0)); sdd = zeros(M, numcols(q0)); for i=1:numcols(q0) % for each axis [s(:,i),sd(:,i),sdd(:,i)] = tfunc(q0(i), qf(i), M); end % - If no output arguments are specified S, SD, and SDD are plotted % against time. switch nargout case 0 clf if isscalar(M0) t = [1:M0]'; else t = M0; end subplot(311) plot(t, s); grid; ylabel('s'); subplot(312) plot(t, sd); grid; ylabel('sd'); subplot(313) plot(t, sdd); grid; ylabel('sdd'); if ~isscalar(M0) xlabel('time') else for c=get(gcf, 'Children'); set(c, 'XLim', [1 M0]); end end shg case 1 S = s; case 2 S = s; Sd = sd; case 3 S = s; Sd = sd; Sdd = sdd; end
github
RobinAmsters/GT_mobile_robotics-master
lspb.m
.m
GT_mobile_robotics-master/common/rvctools/robot/lspb.m
5,386
utf_8
fbf1346e01e601dd3d554501c4367a67
%LSPB Linear segment with parabolic blend % % [S,SD,SDD] = LSPB(S0, SF, M) is a scalar trajectory (Mx1) that varies % smoothly from S0 to SF in M steps using a constant velocity segment and % parabolic blends (a trapezoidal velocity profile). Velocity and % acceleration can be optionally returned as SD (Mx1) and SDD (Mx1) % respectively. % % [S,SD,SDD] = LSPB(S0, SF, M, V) as above but specifies the velocity of % the linear segment which is normally computed automatically. % % [S,SD,SDD] = LSPB(S0, SF, T) as above but specifies the trajectory in % terms of the length of the time vector T (Mx1). % % [S,SD,SDD] = LSPB(S0, SF, T, V) as above but specifies the velocity of % the linear segment which is normally computed automatically and a time % vector. % % LSPB(S0, SF, M, V) as above but plots S, SD and SDD versus time in a single % figure. % % Notes:: % - If M is given % - Velocity is in units of distance per trajectory step, not per second. % - Acceleration is in units of distance per trajectory step squared, not % per second squared. % - If T is given then results are scaled to units of time. % - The time vector T is assumed to be monotonically increasing, and time % scaling is based on the first and last element. % - For some values of V no solution is possible and an error is flagged. % % References:: % - Robotics, Vision & Control, Chap 3, % P. Corke, Springer 2011. % % See also TPOLY, JTRAJ. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com %TODO % add a 'dt' option, to convert to everything to units of seconds function [s,sd,sdd] = lspb(q0, q1, t, V) t0 = t; if isscalar(t) t = (0:t-1)'; else t = t(:); end plotsargs = {'Markersize', 16}; tf = max(t(:)); if nargin < 4 % if velocity not specified, compute it V = (q1-q0)/tf * 1.5; else V = abs(V) * sign(q1-q0); if abs(V) < abs(q1-q0)/tf error('V too small'); elseif abs(V) > 2*abs(q1-q0)/tf error('V too big'); end end if q0 == q1 s = ones(size(t)) * q0; sd = zeros(size(t)); sdd = zeros(size(t)); return end tb = (q0 - q1 + V*tf)/V; a = V/tb; p = zeros(length(t), 1); pd = p; pdd = p; for i = 1:length(t) tt = t(i); if tt <= tb % initial blend p(i) = q0 + a/2*tt^2; pd(i) = a*tt; pdd(i) = a; elseif tt <= (tf-tb) % linear motion p(i) = (q1+q0-V*tf)/2 + V*tt; pd(i) = V; pdd(i) = 0; else % final blend p(i) = q1 - a/2*tf^2 + a*tf*tt - a/2*tt^2; pd(i) = a*tf - a*tt; pdd(i) = -a; end end switch nargout case 0 if isscalar(t0) % for scalar time steps, axis is labeled 1 .. M xt = t+1; else % for vector time steps, axis is labeled by vector M xt = t; end clf subplot(311) % highlight the accel, coast, decel phases with different % colored markers hold on %plot(xt, p); k = t<= tb; plot(xt(k), p(k), 'r.-', plotsargs{:}); k = (t>=tb) & (t<= (tf-tb)); plot(xt(k), p(k), 'b.-', plotsargs{:}); k = t>= (tf-tb); plot(xt(k), p(k), 'g.-', plotsargs{:}); grid; ylabel('$s$', 'FontSize', 16, 'Interpreter','latex'); hold off subplot(312) plot(xt, pd, '.-', plotsargs{:}); grid; if isscalar(t0) ylabel('$ds/dk$', 'FontSize', 16, 'Interpreter','latex'); else ylabel('$ds/dt$', 'FontSize', 16, 'Interpreter','latex'); end subplot(313) plot(xt, pdd, '.-', plotsargs{:}); grid; if isscalar(t0) ylabel('$ds^2/dk^2$', 'FontSize', 16, 'Interpreter','latex'); else ylabel('$ds^2/dt^2$', 'FontSize', 16, 'Interpreter','latex'); end if ~isscalar(t0) xlabel('t (seconds)') else xlabel('k (step)'); for c=findobj(gcf, 'Type', 'axes') set(c, 'XLim', [1 t0]); end end shg case 1 s = p; case 2 s = p; sd = pd; case 3 s = p; sd = pd; sdd = pdd; end
github
RobinAmsters/GT_mobile_robotics-master
qplot.m
.m
GT_mobile_robotics-master/common/rvctools/robot/qplot.m
1,557
utf_8
585f70da4e5c4f31e64f8f5b54973326
%QPLOT Plot robot joint angles % % QPLOT(Q) is a convenience function to plot joint angle trajectories (Mx6) for % a 6-axis robot, where each row represents one time step. % % The first three joints are shown as solid lines, the last three joints (wrist) % are shown as dashed lines. A legend is also displayed. % % QPLOT(T, Q) as above but displays the joint angle trajectory versus time % given the time vector T (Mx1). % % See also JTRAJ, PLOTP, PLOT. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function qplot(t, q) if nargin < 2 q = t; t = (1:numrows(q))'; end %clf hold on plot(t, q(:,1:3)) plot(t, q(:,4:6), '--') grid on xlabel('Time (s)') ylabel('Joint coordinates (rad,m)') legend('q1', 'q2', 'q3', 'q4', 'q5', 'q6'); hold off xlim([t(1), t(end)]);
github
RobinAmsters/GT_mobile_robotics-master
distributeblocks.m
.m
GT_mobile_robotics-master/common/rvctools/robot/distributeblocks.m
2,689
utf_8
02d506ec479136e1e31aa0bc8d7e55e2
%DISTRIBUTEBLOCKS Distribute blocks in Simulink block library % % distributeBlocks(MODEL) equidistantly distributes blocks in a Simulink % block library named MODEL. % % Notes:: % - The MATLAB functions to create Simulink blocks from symbolic % expresssions actually place all blocks on top of each other. This % function scans a simulink model and rearranges the blocks on an % equidistantly spaced grid. % - The Simulink model must already be opened before running this % function! % % Author:: % Joern Malzahn, ([email protected]) % % See also symexpr2slblock, doesblockexist. % Copyright (C) 2012-2013, by Joern Malzahn % % This file is part of The Robotics Toolbox for Matlab (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com % % The code generation module emerged during the work on a project funded by % the German Research Foundation (DFG, BE1569/7-1). The authors gratefully % acknowledge the financial support. function [ ] = distributeblocks( mdlName ) %% Get a list of all first level blocks: blockNames = find_system(mdlName,'SearchDepth',1); blockNames = blockNames(2:end); % First cell contains the model name %% Determine the maximum width and height of a block allPosC = get_param(blockNames,'Position'); allPosM = cell2mat(allPosC); % [left top right bottom] The maximum value for a coordinate is 32767 widths = allPosM(:,3)-allPosM(:,1); heights = allPosM(:,4)-allPosM(:,2); maxWidth = max(widths); maxHeight = max(heights); %% Set grid spacing wBase = 2*maxWidth; hBase = 2*maxHeight; %% Start rearranging blocks nBlocks = size(allPosM,1); nColRow = ceil(sqrt(nBlocks)); for iBlocks = 1:nBlocks % block location on grid [row,col] = ind2sub([nColRow, nColRow],iBlocks); % compute block coordinates left = col*wBase; right = left+maxWidth; top = row*hBase; bottom = top+maxHeight; % apply new coordinates set_param(blockNames{iBlocks},'Position',[left top right bottom]) end end
github
RobinAmsters/GT_mobile_robotics-master
ccodefunctionstring.m
.m
GT_mobile_robotics-master/common/rvctools/robot/ccodefunctionstring.m
7,927
utf_8
cfe55f9ddbe99a594495d3620bfe4dd3
%CCODEFUNCTIONSTRING Converts a symbolic expression into a C-code function % % [FUNSTR, HDRSTR] = ccodefunctionstring(SYMEXPR, ARGLIST) returns a string % representing a C-code implementation of a symbolic expression SYMEXPR. % The C-code implementation has a signature of the form: % % void funname(double[][n_o] out, const double in1, % const double* in2, const double[][n_i] in3); % % depending on the number of inputs to the function as well as the % dimensionality of the inputs (n_i) and the output (n_o). % The whole C-code implementation is returned in FUNSTR, while HDRSTR % contains just the signature ending with a semi-colon (for the use in % header files). % % Options:: % 'funname',name Specify the name of the generated C-function. If % this optional argument is omitted, the variable name % of the first input argument is used, if possible. % 'output',outVar Defines the identifier of the output variable in the C-function. % 'vars',varCells The inputs to the C-code function must be defined as a cell array. The % elements of this cell array contain the symbolic variables required to % compute the output. The elements may be scalars, vectors or matrices % symbolic variables. The C-function prototype will be composed accoringly % as exemplified above. % 'flag',sig Specifies if function signature only is generated, default (false). % % Example:: % % Create symbolic variables % syms q1 q2 q3 % % Q = [q1 q2 q3]; % % Create symbolic expression % myrot = rotz(q3)*roty(q2)*rotx(q1) % % % Generate C-function string % [funstr, hdrstr] = ccodefunctionstring(myrot,'output','foo', ... % 'vars',{Q},'funname','rotate_xyz') % % Notes:: % - The function wraps around the built-in Matlab function 'ccode'. It does % not check for proper C syntax. You must take care of proper % dimensionality of inputs and outputs with respect to your symbolic % expression on your own. Otherwise the generated C-function may not % compile as desired. % % Author:: % Joern Malzahn, ([email protected]) % % See also ccode, matlabFunction. % Copyright (C) 2012-2018, by Joern Malzahn % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function [funstr hdrstr] = ccodefunctionstring(f,varargin) % option defaults opt.funname = inputname(1); opt.output{1} = zeros(size(f)); opt.outputName{1} = inputname(1); opt.flag = 0; if isempty(opt.outputName{1}) opt.outputName{1} = 'myout'; end opt.vars = {}; % tb_optparse is not applicable here, % since handling cell inputs and extracting input variable names is % required. % Thus, scan varargin manually: if mod(nargin,2)==0 error('CodeGenerator:codefunctionstring:wrongArgumentList',... 'Wrong number of elements in the argument list.'); end for iArg = 1:2:nargin-1 switch lower(varargin{iArg}) case 'funname' opt.funname = varargin{iArg+1}; case 'output' if ~isempty(varargin{iArg+1}) opt.outputName{1} = varargin{iArg+1}; end case 'vars' opt.vars = varargin{iArg+1}; case 'flag' opt.flag = varargin{iArg+1}; otherwise error('ccodefunctionstring:unknownArgument',... ['Argument ',inputname(iArg),' unknown.']); end end nOut = numel(opt.output); nIn = numel(opt.vars); %% Function signature funstr = sprintf('void %s(', opt.funname); initstr = ''; % outputs for iOut = 1:nOut tmpOutName = opt.outputName{iOut}; tmpOut = opt.output{iOut}; if ~isscalar(tmpOut); funstr = [funstr, sprintf('double %s[][%u]', tmpOutName, size(tmpOut,1) ) ]; for iRow = 1:size(tmpOut,1) for iCol = 1:size(tmpOut,2) initstr = sprintf(' %s %s[%u][%u]=0;\n',initstr,tmpOutName,iCol-1,iRow-1); end end else funstr = [funstr, sprintf('double %s', tmpOutName ) ]; end % separate argument list by commas if ( iOut ~= nOut ) || ( nIn > 0 ) funstr = [funstr,', ']; end end % inputs for iIn = 1:nIn tmpInName = ['input',num2str(iIn)];%opt.varsName{iIn}; tmpIn = opt.vars{iIn}; % treat different dimensionality of input variables if isscalar(tmpIn) funstr = [funstr, sprintf('const double %s', tmpInName ) ]; elseif isvector(tmpIn) funstr = [funstr, sprintf('const double* %s', tmpInName ) ]; elseif ismatrix(tmpIn) funstr = [funstr, sprintf('const double %s[][%u]', tmpInName, size(tmpIn,2) ) ]; else error('ccodefunctionstring:UnsupportedOutputType', 'Unsupported datatype for %s', tmpOutName) end % separate argument list by commas if ( iIn ~= nIn ) funstr = [funstr,', ']; end end funstr = [funstr,sprintf('%s', ')')]; % finalize signature for the use in header files if nargout > 1 hdrstr = [funstr,sprintf('%s', ';')]; end if opt.flag return; %% STOP IF FLAG == TRUE end % finalize signature for use in function definition funstr = [funstr,sprintf('%s', '{')]; funstr = sprintf('%s\n%s',funstr,sprintf('%s', ' ') ); % empty line %% Function body % input paramter expansion for iIn = 1:nIn tmpInName = ['input',num2str(iIn)];%opt.varsName{iIn}; tmpIn = opt.vars{iIn}; % for scalars % -> do nothing % for vectors if ~isscalar(tmpIn) && isvector(tmpIn) nEl = numel(tmpIn); for iEl = 1:nEl funstr = sprintf('%s\n%s',... funstr,... sprintf(' double %s = %s[%u];', char(tmpIn(iEl)), tmpInName,iEl-1 )); end % for matrices elseif ~isscalar(tmpIn) && ~isvector(tmpIn) && ismatrix(tmpIn) nRow = size(tmpIn,1); nCol = size(tmpIn,2); for iRow = 1:nRow for iCol = 1:nCol funstr = sprintf('%s\n%s',... funstr,... sprintf(' double %s%u%u = %s[%u][%u];', char(tmpIn(iRow,iCol)), iRow, iCol, tmpInName{iIn},iRow-1,iCol-1 )); end end end end funstr = sprintf('%s\n%s',... funstr,... sprintf('%s', ' ') ); funstr = sprintf('%s\n%s',... funstr,... sprintf('%s\n\n', initstr) ); % Actual code % use f.' here, because of column/row indexing in C codestr = ''; if ~isequal(f, sym(zeros(size(f)))) eval([opt.outputName{1}, ' = f.''; codestr = ccode(',opt.outputName{1},');']) end if isscalar(f) % in the case of scalar expressions the resulting ccode always % begins with ' t0'. Replace that with the desired name. codestr = strrep(codestr,'t0',opt.outputName{1}); end funstr = sprintf('%s\n%s',... funstr,... codestr ); funstr = sprintf('%s\n%s',... funstr,sprintf('%s', '}') ); funstr = sprintf('%s\n%s',... funstr,sprintf('%s', ' ') ); % empty line
github
RobinAmsters/GT_mobile_robotics-master
PoseGraph.m
.m
GT_mobile_robotics-master/common/rvctools/robot/PoseGraph.m
19,934
utf_8
fb33eb8e5b89b2304d1d87c7ccfcae17
%PoseGraph Pose graph % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com classdef PoseGraph < handle properties graph ngrid center cellsize end methods function pg = PoseGraph(filename, varargin) % parse the file data % we assume g2o format % VERTEX* vertex_id X Y THETA % EDGE* startvertex_id endvertex_id X Y THETA IXX IXY IYY IXT IYT ITT % vertex numbers start at 0 opt.laser = false; opt = tb_optparse(opt, varargin); pg.graph = PGraph(3, 'distance', 'SE2'); fp = fopen(filename, 'r'); assert(fp > 0, 'Can''t open file %s', filename); toroformat = false; nlaser = 0; % indices into ROBOTLASER1 record for the 3x3 info matrix in column major % order g2o = [6 7 8 7 9 10 8 10 11]; toro = [6 7 10 7 8 11 10 11 9]; % we keep an array pgi = vindex(gi) to map g2o vertex index to PGraph vertex index tic while ~feof(fp) line = fgets(fp); % is it a comment? if line(1) == '#' continue; end % get keyword k = strfind(line, ' '); % and deal with it switch line(1:k-1) case 'VERTEX_SE2' % g2o format vertex vertex = sscanf(line(k+1:end), '%d %f %f %f')'; v = pg.graph.add_node(vertex(2:4)); vindex(vertex(1)+1) = v; vd.type = 'vertex'; pg.graph.setvdata(v, vd); case 'VERTEX_XY' vertex = sscanf(line(k+1:end), '%d %f %f')'; v = pg.graph.add_node(vertex(2:4)); vindex(vertex(1)+1) = v; vd.type = 'landmark'; pg.graph.setvdata(v, vd); case 'EDGE_SE2' % g2o format edge edge = sscanf(line(k+1:end), '%f')'; v1 = vindex(edge(1)+1); v2 = vindex(edge(2)+1); % create the edge e = pg.graph.add_edge(v1, v2); % create the edge data as a structure % X Y T % 3 4 5 ed.mean = edge(3:5); % IXX IXY IXT IYY IYT ITT % 6 7 8 9 10 11 ed.info = reshape(edge(g2o), [3 3]); % and attach it pg.graph.setedata(e, ed); case 'VERTEX2' toroformat = true; vertex = sscanf(line(k+1:end), '%d %f %f %f')'; v = pg.graph.add_node(vertex(2:4)); vindex(vertex(1)+1) = v; vd.type = 'vertex'; pg.graph.setvdata(v, vd); case 'EDGE2' toroformat = true; edge = sscanf(line(k+1:end), '%f')'; v1 = vindex(edge(1)+1); v2 = vindex(edge(2)+1); % create the edge e = pg.graph.add_edge(v1, v2); % create the edge data as a structure % X Y T % 3 4 5 ed.mean = edge(3:5); % IXX IXY IYY ITT IXT IYT % 6 7 8 9 10 11 ed.info = reshape(edge(toro), [3 3]); % and attach it pg.graph.setedata(e, ed); case 'ROBOTLASER1' if ~opt.laser continue; end % laser records are associated with the immediately preceding VERTEX record [laser,n] = sscanf(line(k+1:end), '%f'); nbeams = laser(8); vd.theta = [0:nbeams-1] * laser(4) + laser(2); vd.range = laser(9:8+nbeams)'; vd.time = laser(21+nbeams); pg.graph.setvdata(v, vd); nlaser = nlaser + 1; otherwise error('RTB:posegraph:badfile', 'Unexpected line <%s> in %s', line(1:k-1), filename); end end elapsed = toc; fclose(fp); if toroformat fprintf('loaded TORO/LAGO format file: %d nodes, %d edges in %.2f sec\n', pg.graph.n, pg.graph.ne, elapsed); else fprintf('loaded g2o format file: %d nodes, %d edges in %.2f sec\n', pg.graph.n, pg.graph.ne, elapsed); if nlaser > 0 fprintf(' %d laser scans: %d beams, fov %g to %g deg, max range %g\n', ... nlaser, nbeams, [laser(2) sum(laser(2:3))]*180/pi, laser(5) ); end end end function [r, theta] = scan(pg, n) vd = pg.graph.vdata(n); r = vd.range; theta = vd.theta; end function [X,Y] = scanxy(pg, n) vd = pg.graph.vdata(n); [x,y] = pol2cart(vd.theta, vd.range); if nargout == 1 X = [x; y]; elseif nargout == 2 X = x; Y = y; end end function plot_scan(pg, n) for i=n(:)' [x,y] = pg.scanxy(i); plot(x, y, '.', 'MarkerSize', 10); pause end end function xyt = pose(pg, i) xyt = pg.graph.coord(i); end function t = time(pg, n) t = pg.graph.vdata(n).time; end function plot(pg, varargin) pg.graph.plot(varargin{:}); xlabel('x') ylabel('y') grid on end function world = scanmap(pg, varargin) opt.center = [75 50]; opt.ngrid = 3000; opt.cellsize = 0.1; pg = tb_optparse(opt, varargin, pg); h = waitbar(0, 'rendering a map'); world = zeros(pg.ngrid, pg.ngrid, 'int32'); for i=1:1:pg.graph.n if rem(i, 20) == 0 waitbar(i/pg.graph.n, h) end xy = pg.scanxy(i); [r,theta] = pg.scan(i); xy(:,r>40) = []; xyt = pg.graph.coord(i); xy = SE2(xyt) * xy; % start of each ray [x1,y1] = pg.w2g(xyt(1:2)); for s=1:numcols(xy) % end of each ray [x2,y2] = pg.w2g(xy(:,s)); % all cells along the ray p = bresenham(x1, y1, x2, y2); try k = sub2ind(size(world), p(:,1), p(:,2)); k1 = k(1:end-1); k2 = k(end); world(k1) = world(k1) - 1; world(k2) = world(k2) + 1; catch me % come here if any point on the ray is outside the grid % silently ignore it end end end close(h) %idisp(world) end function [gx,gy] = w2g(pg, w) dd = 0.10; w = w(:) + pg.center(:); g = round(w/pg.cellsize); gx = g(1); gy = g(2); end function plot_occgrid(pg, w) x = [1:numcols(w)]*pg.cellsize - pg.center(1); y = [1:numrows(w)]*pg.cellsize - pg.center(2); w(w<0) = -1; w(w>0) = 1; w=-w; idisp(w, 'nogui', 'xydata', {x, y}) xlabel('x'); ylabel('y'); end % This source code is part of the graph optimization package % deveoped for the lectures of robotics2 at the University of Freiburg. % % Copyright (c) 2007 Giorgio Grisetti, Gian Diego Tipaldi % % It is licences under the Common Creative License, % Attribution-NonCommercial-ShareAlike 3.0 % % You are free: % - to Share - to copy, distribute and transmit the work % - to Remix - to adapt the work % % Under the following conditions: % % - Attribution. You must attribute the work in the manner specified % by the author or licensor (but not in any way that suggests that % they endorse you or your use of the work). % % - Noncommercial. You may not use this work for commercial purposes. % % - Share Alike. If you alter, transform, or build upon this work, % you may distribute the resulting work only under the same or % similar license to this one. % % Any of the above conditions can be waived if you get permission % from the copyright holder. Nothing in this license impairs or % restricts the author's moral rights. % % This software is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied % warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR % PURPOSE. %ls-slam.m %this file is released under the creative common license %solves a graph-based slam problem via least squares %vmeans: matrix containing the column vectors of the poses of the vertices % the vertices are odrered such that vmeans[i] corresponds to the ith id %eids: matrix containing the column vectors [idFrom, idTo]' of the ids of the vertices % eids[k] corresponds to emeans[k] and einfs[k]. %emeans: matrix containing the column vectors of the poses of the edges %einfs: 3d matrix containing the information matrices of the edges % einfs(:,:,k) refers to the information matrix of the k-th edge. %n: number of iterations %newmeans: matrix containing the column vectors of the updated vertices positions function g2 = optimize(pg, varargin) opt.iterations = 10; opt.animate = false; opt.retain = false; opt = tb_optparse(opt, varargin); g2 = PGraph(pg.graph); % deep copy eprev = Inf; for i=1:opt.iterations if opt.animate if ~opt.retain clf end g2.plot(); pause(0.5) end [vmeans,energy] = linearize_and_solve(g2); g2.setcoord(vmeans); if energy >= eprev break; end eprev = energy; end; pg.graph = g2; end end % methods end % classdef %computes the taylor expansion of the error function of the k_th edge %vmeans: vertices positions %eids: edge ids %emeans: edge means %k: edge number %e: e_k(x) %A: d e_k(x) / d(x_i) %B: d e_k(x) / d(x_j) %function [e, A, B]=linear_factors(vmeans, eids, emeans, k) function [e, A, B]=linear_factors(g, edge) %extract the ids of the vertices connected by the kth edge % id_i=eids(1,k); % id_j=eids(2,k); %extract the poses of the vertices and the mean of the edge % v_i=vmeans(:,id_i); % v_j=vmeans(:,id_j); % z_ij=emeans(:,k); v = g.vertices(edge); v_i = g.coord(v(1)); v_j = g.coord(v(2)); z_ij = g.edata(edge).mean; %compute the homoeneous transforms of the previous solutions zt_ij=v2t(z_ij); vt_i=v2t(v_i); vt_j=v2t(v_j); %compute the displacement between x_i and x_j f_ij=(inv(vt_i)*vt_j); %this below is too long to explain, to understand it derive it by hand theta_i=v_i(3); ti=v_i(1:2,1); tj=v_j(1:2,1); dt_ij=tj-ti; si=sin(theta_i); ci=cos(theta_i); A= [-ci, -si, [-si, ci]*dt_ij; si, -ci, [-ci, -si]*dt_ij; 0, 0, -1 ]; B =[ ci, si, 0 ; -si, ci, 0 ; 0, 0, 1 ]; ztinv=inv(zt_ij); e=t2v(ztinv*f_ij); ztinv(1:2,3) = 0; A=ztinv*A; B=ztinv*B; % %compute the homogeneous transforms of the previous solutions % zt_ij=v2t(z_ij); % vt_i=v2t(v_i); % vt_j=v2t(v_j); % % zt_ij = SE2(z_ij); % % vt_i = SE2(v_i); % % vt_j = SE2(v_j); % % %compute the displacement between x_i and x_j % %f_ij=(inverse(vt_i)*vt_j); % f_ij = vt_i.inv * vt_j; % % %this below is too long to explain, to understand it derive it by hand % theta_i=v_i(3); % ti=v_i(1:2); % tj=v_j(1:2); % dt_ij=tj-ti; % % si=sin(theta_i); % ci=cos(theta_i); % % A= [-ci, -si, [-si, ci]*dt_ij; si, -ci, [-ci, -si]*dt_ij; 0, 0, -1 ]; % B =[ ci, si, 0 ; -si, ci, 0 ; 0, 0, 1 ]; % % ztinv = inv(zt_ij); % e = xyt(ztinv*f_ij); % ztinv.t = 0; % A = ztinv*A; % B = ztinv*B; end %linearizes and solves one time the ls-slam problem specified by the input %vmeans: vertices positions at the linearization point %eids: edge ids %emeans: edge means %einfs: edge information matrices %newmeans: new solution computed from the initial guess in vmeans function [newmeans,energy] = linearize_and_solve(g) tic fprintf('solving'); % H and b are respectively the system matrix and the system vector H=zeros(g.n*3,g.n*3); b=zeros(g.n*3,1); % this loop constructs the global system by accumulating in H and b the contributions % of all edges (see lecture) %for k=1:size(eids,2) fprintf('.'); etotal = 0; for edge = 1:g.ne [e, A, B]=linear_factors(g, edge); omega = g.edata(edge).info; %compute the blocks of H^k % not quite sure whey SE3 is being transposed, what does that mean? b_i = -A'*omega*e; b_j = -B'*omega*e; H_ii = A'*omega*A; H_ij = A'*omega*B; H_jj = B'*omega*B; v = g.vertices(edge); id_i = v(1); id_j = v(2); %accumulate the blocks in H and b H((id_i-1)*3+1:id_i*3,(id_i-1)*3+1:id_i*3) = H((id_i-1)*3+1:id_i*3,(id_i-1)*3+1:id_i*3) + H_ii; H((id_j-1)*3+1:id_j*3,(id_j-1)*3+1:id_j*3) = H((id_j-1)*3+1:id_j*3,(id_j-1)*3+1:id_j*3) + H_jj; H((id_i-1)*3+1:id_i*3,(id_j-1)*3+1:id_j*3) = H((id_i-1)*3+1:id_i*3,(id_j-1)*3+1:id_j*3) + H_ij; H((id_j-1)*3+1:id_j*3,(id_i-1)*3+1:id_i*3) = H((id_j-1)*3+1:id_j*3,(id_i-1)*3+1:id_i*3) + H_ij'; b((id_i-1)*3+1:id_i*3,1) = b((id_i-1)*3+1:id_i*3,1) + b_i; b((id_j-1)*3+1:id_j*3,1) = b((id_j-1)*3+1:id_j*3,1) + b_j; %NOTE on Matlab compatibility: note that we use the += operator which is octave specific %using H=H+.... results in a tremendous overhead since the matrix would be entirely copied every time %and the matrix is huge etotal = etotal + e'*e; end; fprintf('.'); %note that the system (H b) is obtained only from %relative constraints. H is not full rank. %we solve the problem by anchoring the position of %the the first vertex. %this can be expressed by adding the equation % deltax(1:3,1)=0; %which is equivalent to the following H(1:3,1:3) = H(1:3,1:3) + eye(3); SH=sparse(H); fprintf('.'); deltax=SH\b; fprintf('.'); %split the increments in nice 3x1 vectors and sum them up to the original matrix newmeans = g.coord()+reshape(deltax,3,g.n); %normalize the angles between -PI and PI for (i=1:size(newmeans,2)) s=sin(newmeans(3,i)); c=cos(newmeans(3,i)); newmeans(3,i)=atan2(s,c); end dt = toc; fprintf('done in %.2g sec. Total cost %g \n', dt, etotal); if nargout > 1 energy = etotal; end end % This source code is part of the graph optimization package % deveoped for the lectures of robotics2 at the University of Freiburg. % % Copyright (c) 2007 Giorgio Grisetti, Gian Diego Tipaldi % % It is licences under the Common Creative License, % Attribution-NonCommercial-ShareAlike 3.0 % % You are free: % - to Share - to copy, distribute and transmit the work % - to Remix - to adapt the work % % Under the following conditions: % % - Attribution. You must attribute the work in the manner specified % by the author or licensor (but not in any way that suggests that % they endorse you or your use of the work). % % - Noncommercial. You may not use this work for commercial purposes. % % - Share Alike. If you alter, transform, or build upon this work, % you may distribute the resulting work only under the same or % similar license to this one. % % Any of the above conditions can be waived if you get permission % from the copyright holder. Nothing in this license impairs or % restricts the author's moral rights. % % This software is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied % warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR % PURPOSE. %computes the homogeneous transform matrix A of the pose vector v function A=v2t(v) c=cos(v(3)); s=sin(v(3)); A=[c, -s, v(1) ; s, c, v(2) ; 0 0 1 ]; end %computes the pose vector v from an homogeneous transform A function v=t2v(A) v(1:2, 1)=A(1:2,3); v(3,1)=atan2(A(2,1),A(1,1)); end
github
RobinAmsters/GT_mobile_robotics-master
jsingu.m
.m
GT_mobile_robotics-master/common/rvctools/robot/jsingu.m
1,404
utf_8
be339e3f968bb5c9a77a957fdf69e028
%JSINGU Show the linearly dependent joints in a Jacobian matrix % % JSINGU(J) displays the linear dependency of joints in a Jacobian matrix. % This dependency indicates joint axes that are aligned and causes singularity. % % See also SerialLink.jacobn. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function jsingu(J) % convert to row-echelon form [R, jb] = rref(J); R(abs(R) < 100*eps) = 0; depcols = setdiff( 1:numcols(J), jb); fprintf('%d linearly dependent joints:\n', length(depcols)); for d=depcols fprintf(' q%d depends on: ', d) for k=find(R(:,d)) fprintf('q%d ', k); end fprintf('\n'); end
github
RobinAmsters/GT_mobile_robotics-master
ReedsShepp.m
.m
GT_mobile_robotics-master/common/rvctools/robot/ReedsShepp.m
9,770
utf_8
67ddf6852b22805e223af77aad5a75b0
% Reeds Shepp path planner sample code % % based on python code from Python Robotics by Atsushi Sakai(@Atsushi_twi) % % Peter 3/18 % % Finds the shortest path between 2 configurations: % - robot can move forward or backward % - the robot turns at zero or maximum curvature % - there are discontinuities in velocity and steering commands (cusps) % to see what it does run % % >> ReedsShepp.test % % References:: % - Reeds, J. A.; Shepp, L. A. % Optimal paths for a car that goes both forwards and backwards. % Pacific J. Math. 145 (1990), no. 2, 367--393. % https://projecteuclid.org/euclid.pjm/1102645450 % each path is described by a 3-letter word. % the algorithm finds a bunch of possible paths, then chooses the shortest % one. Each word is represented by a structure with fields: % - word a 3-letter sequence drawn from the letters LRLS % - L total path length % - lengths a 3-vector of lengths, signed to indicate the direction of % curvature % - traj a cell array of 3xN matrices giving the path for each segment % - dir the direction of travel: +1 or -1 % % TODO: display all the solutions in one figure, as subplots classdef ReedsShepp < handle properties best % the best path words maxc end methods function obj = ReedsShepp(q0, qf, maxcurv, dl) obj.maxc = maxcurv; % return the word describing the shortest path obj.words = generate_path(q0, qf, maxcurv); if isempty(obj.words) error('no path'); end % find shortest path [~,k] = min( [obj.words.L] ); obj.best = obj.words(k); % add the trajectory obj.best = generate_trajectories(obj.best, maxcurv, dl, q0); end function p = path(obj) p = [obj.best.traj{:}]'; end function show(obj) for w=obj.words fprintf('%s (%g): [%g %g %g]\n', w.word, w.L, w.lengths); end end function plot(obj, varargin) opt.circles = []; opt.join = []; opt = tb_optparse(opt, varargin); if ~ishold clf end hold on word = obj.best; for i=1:3 if word.dir(i) > 0 color = 'b'; else color = 'r'; end if i == 1 x = word.traj{i}(1,:); y = word.traj{i}(2,:); else % ensure we join up the lines in the plot x = [x(end) word.traj{i}(1,:)]; y = [y(end) word.traj{i}(2,:)]; end if ~isempty(opt.join) && i<3 plot(x(end), y(end), opt.join{:}); end if ~isempty(opt.circles) T = SE2(word.traj{i}(:,1)); R = 1/obj.maxc; c = T*[0; word.dir(i)*R]; plot_circle(c, R, opt.circles) plot_point(c, 'k+') end plot(x, y, color, 'LineWidth', 2); end grid on; xlabel('X'); ylabel('Y') hold off axis equal title('Reeds-Shepp path'); end function s = char(obj) s = ''; s = strvcat(s, sprintf('Reeds-Shepp path: %s, length %f', obj.best.word, obj.best.L)); s = strvcat(s, sprintf(' segment lengths: %f %f %f', obj.best.lengths)); end function display(obj) disp( char(obj) ); end end methods(Static) function test() maxcurv = 1; dl = 0.05; q0 = [0 0 pi/4]'; qf = [0 0 pi]'; p = ReedsShepp(q0, qf, maxcurv, dl) p.plot('circles', 'k--', 'join', {'Marker', 'o', 'MarkerFaceColor', 'k'}); end end end % class ReedsShepp function out = generate_trajectories(word, maxc, d, q0) % initialize the configuration p0 = q0; % output struct is same as input struct, but we will add: % - a cell array of trajectories % - a vector of directions -1 or +1 out = word; for i=1:3 m = word.word(i); l = word.lengths(i); x = [0:d:abs(l) abs(l)]; p = pathseg(x, sign(l), m, maxc, p0); % add new fields to the struct if i == 1 out.traj{i} = p; else % for subsequent segments skip the first point, same as last % point of previous segment out.traj{i} = p(:,2:end); end out.dir(i) = sign(l); % initial state for next segment is last state of this segment p0 = p(:,end); end end function q = pathseg(l, dir, m, maxc, p0) q0 = p0(:); switch m case 'S' f = @(t,q) dir*[cos(q(3)), sin(q(3)), 0]'; case {'L', 'R'} f = @(t,q) dir*[cos(q(3)), sin(q(3)), dir*maxc]'; end [t,q] = ode45(f, l, q0); q = q'; % points are column vectors end function words = generate_path(q0, q1, maxc) % return a list of all possible words q0 = q0(:); q1 = q1(:); dq = q1 - q0; dth = dq(3); xy = rot2(q0(3))' * dq(1:2) * maxc; x = xy(1); y = xy(2); words = []; words = SCS(x, y, dth, words); words = CSC(x, y, dth, words); words = CCC(x, y, dth, words); % account for non-unit curvature for i=1:numel(words) words(i).lengths = words(i).lengths / maxc; words(i).L = words(i).L / maxc; end end %% function owords = SCS(x, y, phi, words) words = SLS([ x y phi], 1, 'SLS', words); words = SLS([ x -y -phi], 1, 'SRS', words); owords = words; end function owords = CCC(x, y, phi, words) words = LRL([ x y phi], 1, 'LRL', words); words = LRL([-x y -phi], -1, 'LRL', words); words = LRL([ x -y -phi], 1, 'RLR', words); words = LRL([-x -y phi], -1, 'RLR', words); % backwards xb = x * cos(phi) + y * sin(phi); yb = x * sin(phi) - y * cos(phi); flip = [0 1 0; 1 0 0; 0 0 1]; % flip u and v words = LRL([ xb yb phi], flip, 'LRL', words); words = LRL([-xb yb -phi], -flip, 'LRL', words); words = LRL([ xb -yb -phi], flip, 'RLR', words); words = LRL([-xb -yb phi], -flip, 'RLR', words); owords = words; end function owords = CSC(x, y, phi, words) words = LSL([ x y phi], 1, 'LSL', words); words = LSL([-x y -phi], -1, 'LSL', words); words = LSL([ x -y -phi], 1, 'RSR', words); words = LSL([-x -y phi], -1, 'RSR', words); words = LSR([ x y phi], 1, 'LSR', words); words = LSR([-x y -phi], -1, 'LSR', words); words = LSR([ x -y -phi], 1, 'RSL', words); words = LSR([-x -y phi], -1, 'RSL', words); owords = words; end % requires LSL, LSR, SLS, LRL %% function owords = SLS(q, sign, word, words) x = q(1); y = q(2); phi = mod(q(3), 2*pi); if y > 0.0 && phi > 0.0 && phi < pi * 0.99 xd = - y / tan(phi) + x; t = xd - tan(phi / 2.0); u = phi; v = norm( [(x - xd) y]) - tan(phi / 2.0); owords = addpath(words, sign*[t, u, v], word); elseif y < 0.0 && phi > 0.0 && phi < pi * 0.99 xd = - y / tan(phi) + x; t = xd - tan(phi / 2.0); u = phi; v = -norm([(x - xd) y]) - tan(phi / 2.0); owords = addpath(words, sign*[t, u, v], word); else owords = words; end end function owords = LSL(q, sign, word, words) x = q(1); y = q(2); phi = mod(q(3), 2*pi); [t,u] = cart2pol(x - sin(phi), y - 1.0 + cos(phi)); if t >= 0.0 v = angdiff(phi - t); if v >= 0.0 owords = addpath(words, sign*[t, u, v], word); return end end owords = words; end function owords = LRL(q, sign, word, words) x = q(1); y = q(2); phi = mod(q(3), 2*pi); [t1,u1] = cart2pol(x - sin(phi), y - 1.0 + cos(phi)); if u1 <= 4.0 u = -2.0 * asin(0.25 * u1); t = angdiff(t1 + 0.5 * u + pi); v = angdiff(phi - t + u); if t >= 0.0 && u <= 0.0 owords = addpath(words, [t, u, v]*sign, word); return end end owords = words; end function owords = LSR(q, sign, word, words) x = q(1); y = q(2); phi = mod(q(3), 2*pi); [t1,u1] = cart2pol(x + sin(phi), y - 1.0 - cos(phi)); u1 = u1^2; if u1 >= 4.0 u = sqrt(u1 - 4.0); theta = atan2(2.0, u); t = angdiff(t1 + theta); v = angdiff(t - phi); if t >= 0.0 && v >= 0.0 owords = addpath(words, sign*[t, u, v], word); return end end owords = words; end %% function owords = addpath(words, lengths, ctypes) % create a struct to represent this segment word.word = ctypes; word.lengths = lengths; % check same path exist for p = words if strcmp(p.word, word.word) if sum(p.lengths) - sum(word.lengths) <= 0.01 owords = words; return %not insert path end end end word.L = sum(abs(lengths)); % long enough to add? if word.L >= 0.01 owords = [words word]; end end
github
RobinAmsters/GT_mobile_robotics-master
purepursuit.m
.m
GT_mobile_robotics-master/common/rvctools/robot/purepursuit.m
2,081
utf_8
2e538c81d09c6a5cac6d21d0139799dc
%PUREPURSUIT Find pure pursuit goal % % P = PUREPURSUIT(CP, R, PATH) is the current pursuit point (2x1) for a robot at % location CP (2x1) following a PATH (Nx2). The pursuit point is the % closest point along the path that is a distance >= R from the current % point CP. % % Reference:: % - A review of some pure-pursuit based tracking techniques for control of % autonomous vehicle, Samuel etal., Int. J. Computer Applications, Feb 2016 % - Steering Control of an Autonomous Ground Vehicle with Application to % the DARPA Urban Challenge, Stefan F. Campbell, Masters thesis, MIT, 2007. % % See also Navigation. % Copyright (C) 1993-2019, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function pstar = purepursuit(cp, R, traj) cp = cp(:)'; % ensure a row vector % find closest point on the path to current point d = colnorm((traj-cp)'); % rely on implicit expansion [~,i] = min(d); % find all points on the path at least R away k = find(d(i+1:end) >= R); % find all points beyond horizon if isempty(k) % no such points, we must be near the end, goal is the end pstar = traj(end,:); else % many such points, take the first one k = k(1); % first point beyond horizon j = i+k-1; % index into traj array pstar = traj(j,:); %[j traj(j,:) norm(pstar-cp)] end end
github
RobinAmsters/GT_mobile_robotics-master
joy2tr.m
.m
GT_mobile_robotics-master/common/rvctools/robot/joy2tr.m
2,953
utf_8
fb046603cd51e0ad017bba56b43b5b8c
%JOY2TR Update transform from joystick % % T = JOY2TR(T, OPTIONS) updates the SE(3) homogeneous transform (4x4) % according to spatial velocities sourced from a connected joystick device. % % Options:: % 'delay',D Pause for D seconds after reading (default 0.1) % 'scale',S A 2-vector which scales joystick translational and % rotational to rates (default [0.5m/s, 0.25rad/s]) % 'world' Joystick motion is in the world frame % 'tool' Joystick motion is in the tool frame (default) % 'rotate',R Index of the button used to enable rotation (default 7) % % Notes:: % - Joystick axes 0,1,3 map to X,Y,Z or R,P,Y motion. % - A joystick button enables the mapping to translation OR rotation. % - A 'delay' of zero means no pause % - If 'delay' is non-zero 'scale' maps full scale to m/s or rad/s. % - If 'delay' is zero 'scale' maps full scale to m/sample or rad/sample. % % See also joystick. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function Tout = joy2tr(T, varargin) % parse the options opt.delay = 0.1; opt.rotate = 7; opt.scale = [0.5 0.25]; opt.frame = {'tool', 'world'}; opt.min = 0.006; opt = tb_optparse(opt, varargin); % get the raw joystick output [j,b] = joystick(); % update a 6-vector of translational and rotational velocities vel = zeros(1,6); if b(7) == 0 % translation mode vel(1:2) = j(1:2); vel(3) = j(4); else % rotation mode vel(4:5) = j(1:2); vel(6) = j(4); end % values below threshold are set to zero vel(abs(vel) < opt.min) = 0; % apply scaling factors scale = opt.scale; if opt.delay > 0 % normalize scaling factors by time pause(opt.delay); scale = scale * opt.delay; end vel(1:3) = vel(1:3) * scale(1); vel(4:6) = vel(4:6) * scale(2); % compute the incremental motion dT = transl(vel(1:3)) * rpy2tr(vel(4:6)); % and apply it to the input transform switch opt.frame case 'tool' Tout = T * dT; case 'world' Tout = dT * T; end % normalize just to be safe Tout = trnorm(Tout);