plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
RobinAmsters/GT_mobile_robotics-master
ikcon.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/ikcon.m
4,777
utf_8
6280fb801405a6b8a91539e63609e98f
%SerialLink.IKCON Inverse kinematics by optimization with joint limits % % Q = R.ikcon(T, OPTIONS) are the joint coordinates (1xN) corresponding to % the robot end-effector pose T which is an SE3 object or homogenenous % transform matrix (4x4), and N is the number of robot joints. OPTIONS is % an optional list of name/value pairs than can be passed to fmincon. % % Q = robot.ikunc(T, Q0, OPTIONS) as above but specify the % initial joint coordinates Q0 used for the minimisation. % % [Q,ERR] = robot.ikcon(T, ...) as above but also returns ERR which is the % scalar final value of the objective function. % % [Q,ERR,EXITFLAG] = robot.ikcon(T, ...) as above but also returns the % status EXITFLAG from fmincon. % % [Q,ERR,EXITFLAG,OUTPUT] = robot.ikcon(T, ...) as above but also returns % a structure with information such as total number of iterations, and final % objective function value. See the documentation of fmincon for a complete list. % % Trajectory operation:: % % In all cases if T is a vector of SE3 objects (1xM) or a homogeneous transform % sequence (4x4xM) then returns the joint coordinates corresponding to % each of the transforms in the sequence. Q is MxN where N is the number % of robot joints. The initial estimate of Q for each time step is taken as % the solution from the previous time step. % % ERR and EXITFLAG are also Mx1 and indicate the results of optimisation % for the corresponding trajectory step. % % Notes:: % - Requires fmincon from the MATLAB Optimization Toolbox. % - Joint limits are considered in this solution. % - Can be used for robots with arbitrary degrees of freedom. % - In the case of multiple feasible solutions, the solution returned % depends on the initial choice of Q0. % - Works by minimizing the error between the forward kinematics of the % joint angle solution and the end-effector frame as an optimisation. % The objective function (error) is described as: % sumsqr( (inv(T)*robot.fkine(q) - eye(4)) * omega ) % Where omega is some gain matrix, currently not modifiable. % % Author:: % Bryan Moutrie % % See also SerialLink.ikunc, fmincon, SerialLink.ikine, SerialLink.fkine. % Copyright (C) Bryan Moutrie, 2013-2015 % Licensed under the GNU Lesser General Public License % see full file for full statement % % LICENSE STATEMENT: % % This file is part of pHRIWARE. % % pHRIWARE is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as % published by the Free Software Foundation, either version 3 of % the License, or (at your option) any later version. % % pHRIWARE is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU Lesser General Public % License along with pHRIWARE. If not, see <http://www.gnu.org/licenses/>. function [qstar, error_, exitflag_, out_] = ikcon(robot, T, varargin) % check if Optimization Toolbox exists, we need it assert( exist('fmincon', 'file')>0, 'rtb:ikcon:nosupport', 'Optimization Toolbox required'); if isa(T, 'SE3') T = T.T; end % create output variables T_sz = size(T, 3); qstar = zeros(T_sz, robot.n); error = zeros(T_sz, 1); exitflag = zeros(T_sz, 1); problem.x0 = zeros(1, robot.n); problem.options = optimoptions('fmincon', ... 'Algorithm', 'active-set', ... 'Display', 'off'); % default options for ikcon if nargin > 2 % check if there is a q0 passed if isnumeric(varargin{1}) && length(varargin{1}) == robot.n problem.x0 = varargin{1}; varargin = varargin(2:end); end end if ~isempty(varargin) % if given, add optional argument to the list of optimiser options problem.options = optimoptions(problem.options, varargin{:}); end % set the joint limit bounds problem.lb = robot.qlim(:,1); problem.ub = robot.qlim(:,2); problem.solver = 'fmincon'; reach = sum(abs([robot.a, robot.d])); omega = diag([1 1 1 3/reach]); for t = 1: T_sz problem.objective = ... @(x) sumsqr(((T(:,:,t) \ robot.fkine(x).T) - eye(4)) * omega); [q_t, err_t, ef_t, out] = fmincon(problem); qstar(t,:) = q_t; error(t) = err_t; exitflag(t) = ef_t; problem.x0 = q_t; end if nargout > 1 error_ = error; end if nargout > 2 exitflag_ = exitflag end if nargout > 3 out_ = out; end end function s = sumsqr(A) s = sum(A(:).^2); end
github
RobinAmsters/GT_mobile_robotics-master
accel.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/accel.m
3,676
utf_8
42821333a63ef7022599dba3741d4d4d
%SerialLink.accel Manipulator forward dynamics % % QDD = R.accel(Q, QD, TORQUE) is a vector (Nx1) of joint accelerations that result % from applying the actuator force/torque (1xN) to the manipulator robot R in % state Q (1xN) and QD (1xN), and N is the number of robot joints. % % If Q, QD, TORQUE are matrices (KxN) then QDD is a matrix (KxN) where each row % is the acceleration corresponding to the equivalent rows of Q, QD, TORQUE. % % QDD = R.accel(X) as above but X=[Q,QD,TORQUE] (1x3N). % % Note:: % - Useful for simulation of manipulator dynamics, in % conjunction with a numerical integration function. % - Uses the method 1 of Walker and Orin to compute the forward dynamics. % - Featherstone's method is more efficient for robots with large numbers % of joints. % - Joint friction is considered. % % References:: % - Efficient dynamic computer simulation of robotic mechanisms, % M. W. Walker and D. E. Orin, % ASME Journa of Dynamic Systems, Measurement and Control, vol. 104, no. 3, pp. 205-211, 1982. % % See also SerialLink.fdyn, SerialLink.rne, SerialLink, ode45. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function qdd = accel(robot, Q, qd, torque) n = robot.n; if nargin == 2 assert(length(Q) == (3*robot.n), 'RTB:accel:badarg', 'Input vector X is length %d, should be %d (q, qd, tau)', length(Q), 3*robot.n); % accel(X) Q = Q(:)'; % make it a row vector q = Q(1:n); qd = Q(n+1:2*n); torque = Q(2*n+1:3*n); elseif nargin == 4 % accel(Q, qd, torque) if numrows(Q) > 1 % handle trajectory by recursion assert(numrows(Q) == numrows(qd), 'RTB:accel:badarg', 'for trajectory q and qd must have same number of rows'); assert(numrows(Q) == numrows(torque), 'RTB:accel:badarg', 'for trajectory q and torque must have same number of rows'); qdd = []; for i=1:numrows(Q) qdd = cat(1, qdd, robot.accel(Q(i,:), qd(i,:), torque(i,:))'); end return else q = Q'; if length(q) == n q = q(:)'; qd = qd(:)'; end assert(numcols(Q) == n, 'RTB:accel:badarg', 'q must have %d columns', n); assert(numcols(qd) == robot.n, 'RTB:accel:badarg', 'qd must have %d columns', n); assert(numcols(torque) == robot.n, 'RTB:accel:badarg', 'torque must have %d columns', n); end else error('RTB:accel:badarg', 'insufficient arguments'); end % compute current manipulator inertia % torques resulting from unit acceleration of each joint with % no gravity. M = rne(robot, ones(n,1)*q, zeros(n,n), eye(n), 'gravity', [0 0 0]); % compute gravity and coriolis torque % torques resulting from zero acceleration at given velocity & % with gravity acting. tau = rne(robot, q, qd, zeros(1,n)); qdd = M \ (torque - tau)'; end
github
RobinAmsters/GT_mobile_robotics-master
itorque.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/itorque.m
1,454
utf_8
d9772d233f666445737e6d06f55011e3
%SerialLink.itorque Inertia torque % % TAUI = R.itorque(Q, QDD) is the inertia force/torque vector (1xN) at the % specified joint configuration Q (1xN) and acceleration QDD (1xN), and N % is the number of robot joints. TAUI = INERTIA(Q)*QDD. % % If Q and QDD are matrices (KxN), each row is interpretted as a joint state % vector, and the result is a matrix (KxN) where each row is the corresponding % joint torques. % % Note:: % - If the robot model contains non-zero motor inertia then this will % included in the result. % % See also SerialLink.inertia, SerialLink.rne. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function it = itorque(robot, q, qdd) it = rne(robot, q, zeros(size(q)), qdd, 'gravity', [0;0;0]);
github
RobinAmsters/GT_mobile_robotics-master
rne_mdh.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/rne_mdh.m
5,106
utf_8
ef0ee9390e2f669674340d0eb6b5bb43
%SERIALLINK.RNE_MDH Compute inverse dynamics via recursive Newton-Euler formulation % % Recursive Newton-Euler for modified Denavit-Hartenberg notation. Is invoked by % R.RNE(). % % See also SERIALLINK.RNE. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function tau = rne_mdh(robot, a1, a2, a3, a4, a5) z0 = [0;0;1]; grav = robot.gravity; % default gravity from the object fext = zeros(6, 1); % Set debug to: % 0 no messages % 1 display results of forward and backward recursions % 2 display print R and p* debug = 0; n = robot.n; if numcols(a1) == 3*n Q = a1(:,1:n); Qd = a1(:,n+1:2*n); Qdd = a1(:,2*n+1:3*n); np = numrows(Q); if nargin >= 3, grav = a2(:); end if nargin == 4 fext = a3; end else np = numrows(a1); Q = a1; Qd = a2; Qdd = a3; if numcols(a1) ~= n || numcols(Qd) ~= n || numcols(Qdd) ~= n || ... numrows(Qd) ~= np || numrows(Qdd) ~= np error('bad data'); end if nargin >= 5, grav = a4(:); end if nargin == 6 fext = a5; end end if robot.issym || any([isa(Q,'sym'), isa(Qd,'sym'), isa(Qdd,'sym')]) tau = zeros(np,n, 'sym'); else tau = zeros(np,n); end for p=1:np q = Q(p,:).'; qd = Qd(p,:).'; qdd = Qdd(p,:).'; Fm = []; Nm = []; pstarm = []; Rm = []; w = zeros(3,1); wd = zeros(3,1); vd = grav(:); % % init some variables, compute the link rotation matrices % for j=1:n link = robot.links(j); Tj = link.A(q(j)); switch link.type case 'R' D = link.d; case 'P' D = q(j); end alpha = link.alpha; pm = [link.a; -D*sin(alpha); D*cos(alpha)]; % (i-1) P i if j == 1 pm = t2r(robot.base) * pm; Tj = robot.base * Tj; end Pm(:,j) = pm; Rm{j} = t2r(Tj); if debug>1 Rm{j} Pm(:,j).' end end % % the forward recursion % for j=1:n link = robot.links(j); R = Rm{j}.'; % transpose!! P = Pm(:,j); Pc = link.r; % % trailing underscore means new value % switch link.type case 'R' % revolute axis w_ = R*w + z0*qd(j); wd_ = R*wd + cross(R*w,z0*qd(j)) + z0*qdd(j); %v = cross(w,P) + R*v; vd_ = R * (cross(wd,P) + ... cross(w, cross(w,P)) + vd); case 'P' % prismatic axis w_ = R*w; wd_ = R*wd; %v = R*(z0*qd(j) + v) + cross(w,P); vd_ = R*(cross(wd,P) + ... cross(w, cross(w,P)) + vd ... ) + 2*cross(R*w,z0*qd(j)) + z0*qdd(j); end % update variables w = w_; wd = wd_; vd = vd_; vdC = cross(wd,Pc).' + ... cross(w,cross(w,Pc)).' + vd; F = link.m*vdC; N = link.I*wd + cross(w,link.I*w); Fm = [Fm F]; Nm = [Nm N]; if debug fprintf('w: '); fprintf('%.3f ', w) fprintf('\nwd: '); fprintf('%.3f ', wd) fprintf('\nvd: '); fprintf('%.3f ', vd) fprintf('\nvdbar: '); fprintf('%.3f ', vdC) fprintf('\n'); end end % % the backward recursion % fext = fext(:); f = fext(1:3); % force/moments on end of arm nn = fext(4:6); for j=n:-1:1 % % order of these statements is important, since both % nn and f are functions of previous f. % link = robot.links(j); if j == n R = eye(3,3); P = [0;0;0]; else R = Rm{j+1}; P = Pm(:,j+1); % i/P/(i+1) end Pc = link.r; f_ = R*f + Fm(:,j); nn_ = Nm(:,j) + R*nn + cross(Pc,Fm(:,j)).' + ... cross(P,R*f); f = f_; nn = nn_; if debug fprintf('f: '); fprintf('%.3f ', f) fprintf('\nn: '); fprintf('%.3f ', nn) fprintf('\n'); end switch link.type case 'R' % revolute tau(p,j) = nn.'*z0 + ... link.G^2 * link.Jm*qdd(j) - ... friction(link, qd(j)); case 'P' % prismatic tau(p,j) = f.'*z0 + ... link.G^2 * link.Jm*qdd(j) - ... friction(link, qd(j)); end end end
github
RobinAmsters/GT_mobile_robotics-master
paycap.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/paycap.m
2,622
utf_8
ea961f604dbe3edd92ea5316e85fdd55
%SerialLink.PAYCAP Static payload capacity of a robot % % [WMAX,J] = R.paycap(Q, W, F, TLIM) returns the maximum permissible % payload wrench WMAX (1x6) applied at the end-effector, and the index of % the joint J which hits its force/torque limit at that wrench. Q (1xN) is % the manipulator pose, W the payload wrench (1x6), F the wrench reference % frame (either '0' or 'e') and TLIM (2xN) is a matrix of joint % forces/torques (first row is maximum, second row minimum). % % Trajectory operation:: % % In the case Q is MxN then WMAX is Mx6 and J is Mx1 where the rows are the % results at the pose given by corresponding row of Q. % % Notes:: % - Wrench vector and Jacobian must be from the same reference frame % - Tool transforms are taken into consideration for F = 'e'. % % Author:: % Bryan Moutrie % % See also SerialLink.pay, SerialLink.gravjac, SerialLink.gravload. % Copyright (C) Bryan Moutrie, 2013-2015 % Licensed under the GNU Lesser General Public License % see full file for full statement % % LICENSE STATEMENT: % % This file is part of pHRIWARE. % % pHRIWARE is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as % published by the Free Software Foundation, either version 3 of % the License, or (at your option) any later version. % % pHRIWARE is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU Lesser General Public % License along with pHRIWARE. If not, see <http://www.gnu.org/licenses/>. function [wM, j] = paycap(robot, q, w, f, tauR) if robot.fast tauB = robot.gravload(q); tauP = robot.rne(q, zeros(size(q)), zeros(size(q)), [0; 0; 0], unit(w)); else switch f case '0' [tauB, J] = gravjac(robot, q); tauP = robot.pay(unit(w), J); case {'n', 'e'} tauB = gravjac(robot, q); tauP = robot.pay(unit(w), q, 'e'); end end M = tauP > 0; m = ~M; TAUm = ones(size(tauB)); TAUM = ones(size(tauB)); for c = 1:robot.n TAUM(:,c) = tauR(1,c); TAUm(:,c) = tauR(2,c); end WM = zeros(size(tauB)); WM(M) = (TAUM(M) - tauB(M)) ./ tauP(M); WM(m) = (TAUm(m) - tauB(m)) ./ tauP(m); WM(isinf(WM)) = Inf; % Makes -Inf values Inf [wM, j] = min(WM,[],2); end function u = unit(v) u = v/norm(v); end
github
RobinAmsters/GT_mobile_robotics-master
gencoords.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/gencoords.m
1,518
utf_8
cd6af91af514831c29cb5821e5915971
%SerialLink.gencoords Vector of symbolic generalized coordinates % % Q = R.gencoords() is a vector (1xN) of symbols [q1 q2 ... qN]. % % [Q,QD] = R.gencoords() as above but QD is a vector (1xN) of % symbols [qd1 qd2 ... qdN]. % % [Q,QD,QDD] = R.gencoords() as above but QDD is a vector (1xN) of % symbols [qdd1 qdd2 ... qddN]. % % See also SerialLink.genforces. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function [q,qd,qdd] = gencoords(r) if nargout > 0 for j=1:r.n q(j) = sym( sprintf('q%d', j), 'real' ); end end if nargout > 1 for j=1:r.n qd(j) = sym( sprintf('qd%d', j), 'real' ); end end if nargout > 2 for j=1:r.n qdd(j) = sym( sprintf('qdd%d', j), 'real' ); end end
github
RobinAmsters/GT_mobile_robotics-master
animate.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/animate.m
6,154
utf_8
dc17434a47ea0147748069dcb9dc3b44
%SerialLink.animate Update a robot animation % % R.animate(q) updates an existing animation for the robot R. This will have % been created using R.plot(). Updates graphical instances of this robot in all figures. % % Notes:: % - Called by plot() and plot3d() to actually move the arm models. % - Used for Simulink robot animation. % % See also SerialLink.plot. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function animate(robot, qq) if nargin < 3 handles = findobj('Tag', robot.name); end links = robot.links; N = robot.n; % get handle of any existing graphical robots of same name % one may have just been created above handles = findobj('Tag', robot.name); % MAIN DISPLAY/ANIMATION LOOP while true % animate over all instances of this robot in different axes for q=qq' % for all configurations in trajectory q = q'; for handle=handles' h = get(handle, 'UserData'); % now draw it for a pose q if robot.mdh % modified DH case T = robot.base; vert = T.t'; for L=1:N if robot.links(L).isprismatic() % scale the box representing the prismatic joint % it is based at the origin and extends in z-direction if q(L) > 0 set(h.pjoint(L), 'Matrix', diag([1 1 q(L) 1])); else % if length is zero the matrix is singular and MATLAB complains %error('Prismatic length must be > 0'); end end T = T * links(L).A(q(L)); set(h.link(L), 'Matrix', T.T); vert = [vert; T.t']; end % update the transform for link N+1 (the tool) T = T * robot.tool; if length(h.link) > N set(h.link(N+1), 'Matrix', T.T); end vert = [vert; T.t']; else % standard DH case T = robot.base; vert = T.t'; for L=1:N % for all N links if robot.links(L).isprismatic() % scale the box representing the prismatic joint % it is based at the origin and extends in z-direction assert( q(L) >= 0, 'Prismatic joint length must be >= 0'); % link lengths must be positive % if scale factor is zero the matrix is singular and MATLAB complains % so we make it no smaller than eps set(h.pjoint(L), 'Matrix', diag([1 1 max(eps, q(L)) 1])); end % now set the transform for frame {L}, this controls the displayed pose of: % the pipes associated with link L, that join {L} back to {L-1} % (optional) a prismatic joint L, that joins {L} to {L+1} if h.link(L) ~= 0 % for plot3d, skip any 0 in the handle list set(h.link(L), 'Matrix', T.T); end T = T * links(L).A(q(L)); vert = [vert; T.t']; end % update the transform for link N+1 (the tool) T = T*robot.tool; if length(h.link) > N set(h.link(N+1), 'Matrix', T.T); end vert = [vert; T.t']; end % now draw the shadow if isfield(h, 'shadow') set(h.shadow, 'Xdata', vert(:,1), 'Ydata', vert(:,2), ... 'Zdata', h.floorlevel*ones(size(vert(:,1)))); end % update the tool tip trail if isfield(h, 'trail') T = robot.fkine(q); robot.trail = [robot.trail; transl(T)]; set(h.trail, 'Xdata', robot.trail(:,1), 'Ydata', robot.trail(:,2), 'Zdata', robot.trail(:,3)); end % animate the wrist frame if ~isempty(h.wrist) trplot(T, 'handle', h.wrist); end % add a frame to the movie if ~isempty(h.robot.movie) h.robot.movie.add(); end if h.robot.delay > 0 pause(h.robot.delay); drawnow end h.q = q; set(handle, 'UserData', h); end end if ~h.robot.loop break; end end
github
RobinAmsters/GT_mobile_robotics-master
perturb.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/perturb.m
1,629
utf_8
d39527df13f484d5f4ccbc649550de00
%SerialLink.perturb Perturb robot parameters % % RP = R.perturb(P) is a new robot object in which the dynamic parameters (link % mass and inertia) have been perturbed. The perturbation is multiplicative so % that values are multiplied by random numbers in the interval (1-P) to (1+P). % The name string of the perturbed robot is prefixed by 'P/'. % % Useful for investigating the robustness of various model-based control % schemes. For example to vary parameters in the range +/- 10 percent is: % r2 = p560.perturb(0.1); % % See also SerialLink.rne. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r2 = perturb(r, p) if nargin == 1 p = 0.1; % 10 percent disturb by default end r2 = SerialLink(r); links = r2.links; for i=1:r.n s = (2*rand-1)*p + 1; links(i).m = links(i).m * s; s = (2*rand-1)*p + 1; links(i).I = links(i).I * s; end r2.name = ['P/' r.name];
github
RobinAmsters/GT_mobile_robotics-master
cinertia.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/cinertia.m
1,323
utf_8
a7665a413c93fb41a1e4abab02293da4
%SerialLink.cinertia Cartesian inertia matrix % % M = R.cinertia(Q) is the NxN Cartesian (operational space) inertia matrix which relates % Cartesian force/torque to Cartesian acceleration at the joint configuration Q, and N % is the number of robot joints. % % See also SerialLink.inertia, SerialLink.rne. % MOD HISTORY % 4/99 add object support % $Log: not supported by cvs2svn $ % $Revision: 1.2 $ % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function Mx = cinertia(robot, q) J = jacob0(robot, q); Ji = inv(J); %#ok<*MINV> M = inertia(robot, q); Mx = Ji' * M * Ji;
github
RobinAmsters/GT_mobile_robotics-master
fkine.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/fkine.m
2,840
utf_8
d75ad4a564c0204ce1a2ad0a0f3f0aae
%SerialLink.fkine Forward kinematics % % T = R.fkine(Q, OPTIONS) is the pose of the robot end-effector as an SE3 % object for the joint configuration Q (1xN). % % If Q is a matrix (KxN) the rows are interpreted as the generalized joint % coordinates for a sequence of points along a trajectory. Q(i,j) is the % j'th joint parameter for the i'th trajectory point. In this case T is a % an array of SE3 objects (K) where the subscript is the index along the path. % % [T,ALL] = R.fkine(Q) as above but ALL (N) is a vector of SE3 objects describing % the pose of the link frames 1 to N. % % Options:: % 'deg' Assume that revolute joint coordinates are in degrees not % radians % % Note:: % - The robot's base or tool transform, if present, are incorporated into the % result. % - Joint offsets, if defined, are added to Q before the forward kinematics are % computed. % - If the result is symbolic then each element is simplified. % % See also SerialLink.ikine, SerialLink.ikine6s. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function [t,allt] = fkine(robot, q, varargin) % % evaluate fkine for each point on a trajectory of % theta_i or q_i data % n = robot.n; opt.deg = false; opt = tb_optparse(opt, varargin); if opt.deg % in degrees mode, scale the columns corresponding to revolute axes q = robot.todegrees(q); end if nargout > 1 allt(n) = SE3; end L = robot.links; if numel(q) == n % single configuration t = SE3(robot.base); for i=1:n t = t * L(i).A(q(i)); if nargout > 1 allt(i) = t; % intermediate transformations end end t = t * SE3(robot.tool); else if numcols(q) ~= n error('q must have %d columns', n) end t(numrows(q)) = SE3; % preallocate storage for k=1:numrows(q) % for each trajectory point qk = q(k,:); tt = SE3(robot.base); for i=1:n tt = tt * L(i).A(qk(i)); end t(k) = tt * SE3(robot.tool); end end if issym(t) t = simplify(t); else t = trnorm(t); end %robot.T = t; %robot.notify('Moved');
github
RobinAmsters/GT_mobile_robotics-master
rne.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/rne.m
4,484
utf_8
c1a1aa9c85b860f820356e2d28c49999
%SerialLink.rne Inverse dynamics % % TAU = R.rne(Q, QD, QDD, OPTIONS) is the joint torque required for the % robot R to achieve the specified joint position Q (1xN), velocity QD % (1xN) and acceleration QDD (1xN), where N is the number of robot joints. % % TAU = R.rne(X, OPTIONS) as above where X=[Q,QD,QDD] (1x3N). % % [TAU,WBASE] = R.rne(X, GRAV, FEXT) as above but the extra output is the % wrench on the base. % % Options:: % 'gravity',G specify gravity acceleration (default [0,0,9.81]) % 'fext',W specify wrench acting on the end-effector W=[Fx Fy Fz Mx My Mz] % 'slow' do not use MEX file % % Trajectory operation:: % % If Q,QD and QDD (MxN), or X (Mx3N) are matrices with M rows representing a % trajectory then TAU (MxN) is a matrix with rows corresponding to each trajectory % step. % % MEX file operation:: % This algorithm is relatively slow, and a MEX file can provide better % performance. The MEX file is executed if: % - the 'slow' option is not given, and % - the robot is not symbolic, and % - the SerialLink property fast is true, and % - the MEX file frne.mexXXX exists in the subfolder rvctools/robot/mex. % % Notes:: % - The torque computed contains a contribution due to armature % inertia and joint friction. % - See the README file in the mex folder for details on how to configure % MEX-file operation. % - The M-file is a wrapper which calls either RNE_DH or RNE_MDH depending on % the kinematic conventions used by the robot object, or the MEX file. % - If a model has no dynamic parameters set the result is zero. % % See also SerialLink.accel, SerialLink.gravload, SerialLink.inertia. % TODO: % fix base transform % % verified against MAPLE code, which is verified by examples % % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function varargout = rne(robot, varargin) % allow more descriptive arguments opt.gravity = []; opt.fext = []; opt.slow = false; [opt,args] = tb_optparse(opt, varargin); narg0 = length(args); if ~isempty(opt.gravity) assert( isvec(opt.gravity, 3), 'RTB:rne:badarg', 'gravity must be a 3-vector'); args = [args opt.gravity(:)]; end if ~isempty(opt.fext) assert( isvec(opt.fext, 6), 'RTB:rne:badarg', 'external force must be a 6-vector'); if length(args) == 3 args = [args robot.gravity]; end args = [args opt.fext]; end if robot.fast && ~opt.slow && (nargout < 2) && ~robot.issym() && ~any(cellfun( @(x) isa(x, 'sym'), args)) % use the MEX-file implementation if: % * the fast property is set at constructor time % * slow override not set % * base wrench not requested % * robot has no symbolic parameters % * joint state has no symbolic values % % the mex-file handles DH and MDH variants % the MEX file doesn't handle base rotation, so we need to hack the gravity % vector instead. It lives in the 4th element of args. if ~robot.base.isidentity() % ok, a non-identity transform, we need to fix it if length(args) == narg0 grav = robot.gravity; % no gravity option provided, take default else grav = args{narg0+1}; % else take value from option processed above end args{narg0+1} = robot.base.R' * grav; % and put it in the argument list end [varargout{1:nargout}] = frne(robot, args{:}); else % use the M-file implementation if robot.mdh == 0 [varargout{1:nargout}] = rne_dh(robot, args{:}); else [varargout{1:nargout}] = rne_mdh(robot, args{:}); end end
github
RobinAmsters/GT_mobile_robotics-master
gravjac.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/gravjac.m
4,489
utf_8
8b40fc1de2d91ced27fe467747bdc502
%SerialLink.GRAVJAC Fast gravity load and Jacobian % % [TAU,JAC0] = R.gravjac(Q) is the generalised joint force/torques due to % gravity TAU (1xN) and the manipulator Jacobian in the base frame JAC0 (6xN) for % robot pose Q (1xN), where N is the number of robot joints. % % [TAU,JAC0] = R.gravjac(Q,GRAV) as above but gravitational acceleration is % given explicitly by GRAV (3x1). % % Trajectory operation:: % % If Q is MxN where N is the number of robot joints then a trajectory is % assumed where each row of Q corresponds to a robot configuration. TAU % (MxN) is the generalised joint torque, each row corresponding to an input % pose, and JAC0 (6xNxM) where each plane is a Jacobian corresponding to an % input pose. % % Notes:: % - The gravity vector is defined by the SerialLink property if not explicitly given. % - Does not use inverse dynamics function RNE. % - Faster than computing gravity and Jacobian separately. % % Author:: % Bryan Moutrie % % See also SerialLink.pay, SerialLink, SerialLink.gravload, SerialLink.jacob0. % Copyright (C) Bryan Moutrie, 2013-2015 % Licensed under the GNU Lesser General Public License % see full file for full statement % % LICENSE STATEMENT: % % This file is part of pHRIWARE. % % pHRIWARE is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as % published by the Free Software Foundation, either version 3 of % the License, or (at your option) any later version. % % pHRIWARE is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU Lesser General Public % License along with pHRIWARE. If not, see <http://www.gnu.org/licenses/>. % function [tauB, J] = gravjac(robot, q, grav) n = robot.n; revolute = [robot.links(:).isrevolute]; if ~robot.mdh baseAxis = robot.base(1:3,3); baseOrigin = robot.base(1:3,4); end poses = size(q, 1); tauB = zeros(poses, n); if nargout == 2, J = zeros(6, robot.n, poses); end % Forces force = zeros(3,n); if nargin < 3, grav = robot.gravity; end for joint = 1: n force(:,joint) = robot.links(joint).m * grav; end % Centre of masses (local frames) r = zeros(4,n); for joint = 1: n r(:,joint) = [robot.links(joint).r'; 1]; end com_arr = zeros(3, n); for pose = 1: poses [Te, T] = robot.fkine(q(pose,:)); jointOrigins = squeeze(T(1:3,4,:)); jointAxes = squeeze(T(1:3,3,:)); if ~robot.mdh jointOrigins = [baseOrigin, jointOrigins(:,1:end-1)]; jointAxes = [baseAxis, jointAxes(:,1:end-1)]; end % Backwards recursion for joint = n: -1: 1 com = T(:,:,joint) * r(:,joint); % C.o.M. in world frame, homog com_arr(:,joint) = com(1:3); % Add it to the distal others t = 0; for link = joint: n % for all links distal to it if revolute(joint) d = com_arr(:,link) - jointOrigins(:,joint); t = t + cross3(d, force(:,link)); % Though r x F would give the applied torque and not the % reaction torque, the gravity vector is nominally in the % positive z direction, not negative, hence the force is % the reaction force else t = t + force(:,link); %force on prismatic joint end end tauB(pose,joint) = t' * jointAxes(:,joint); end if nargout == 2 J(:,:,pose) = makeJ(jointOrigins,jointAxes,Te(1:3,4),revolute); end end end function J = makeJ(O,A,e,r) J(4:6,:) = A; for j = 1:length(r) if r(j) J(1:3,j) = cross3(A(:,j),e-O(:,j)); else J(:,j) = J([4 5 6 1 2 3],j); %J(1:3,:) = 0; end end end function c = cross3(a,b) c(3,1) = a(1)*b(2) - a(2)*b(1); c(1,1) = a(2)*b(3) - a(3)*b(2); c(2,1) = a(3)*b(1) - a(1)*b(3); end
github
RobinAmsters/GT_mobile_robotics-master
teach.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/teach.m
4,150
utf_8
d6f494b5ce61d77a158c7e55471f16fc
%SerialLink.teach Graphical teach pendant % % Allow the user to "drive" a graphical robot using a graphical slider % panel. % % R.teach(OPTIONS) adds a slider panel to a current robot plot. % % R.teach(Q, OPTIONS) as above but the robot joint angles are set to Q (1xN). % % % Options:: % 'eul' Display tool orientation in Euler angles (default) % 'rpy' Display tool orientation in roll/pitch/yaw angles % 'approach' Display tool orientation as approach vector (z-axis) % '[no]deg' Display angles in degrees (default true) % 'callback',CB Set a callback function, called with robot object and % joint angle vector: CB(R, Q) % % Example:: % % To display the velocity ellipsoid for a Puma 560 % % p560.teach('callback', @(r,q) r.vellipse(q)); % % GUI:: % - The specified callback function is invoked every time the joint configuration changes. % the joint coordinate vector. % - The Quit (red X) button removes the teach panel from the robot plot. % % Notes:: % - If the robot is displayed in several windows, only one has the % teach panel added. % - All currently displayed robots move as the sliders are adjusted. % - The slider limits are derived from the joint limit properties. If not % set then for % - a revolute joint they are assumed to be [-pi, +pi] % - a prismatic joint they are assumed unknown and an error occurs. % % See also SerialLink.plot, SerialLink.getpos. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com % a ton of handles and parameters created by this function are stashed in % a structure which is passed into all callbacks function teach(robot, varargin) %---- handle options opt.deg = true; opt.orientation = {'rpy', 'rpy/zyx', 'rpy/xyz', 'eul', 'approach'}; opt.d_2d = false; opt.callback = []; opt.record = []; [opt,args] = tb_optparse(opt, varargin); % get the joint coordinates if given q = []; if isempty(args) % no joint angles passed, assume all zeros q = zeros(1, robot.n); % set any prismatic joints to the minimum value for j=find(robot.links.isprismatic) q(j) = robot.links(j).qlim(1); end else % joint angles passed if isnumeric(args{1}) q = args{1}; args = args(2:end); end end %---- get the current robot state % check to see if there are any graphical robots of this name rhandles = findobj('Tag', robot.name); % find the graphical element of this name if isempty(rhandles) % no robot, plot one so long as joint coordinates were given assert( ~isempty(q), 'RTB:teach:badarg', 'No joint coordinates provided'); robot.plot(q, args{:}); else % graphical robot already exists % get the info from its Userdata info = get(rhandles(1), 'UserData'); % the handle contains current joint angles (set by plot) if isempty(q) && ~isempty(info.q) % if no joint coordinates given get from the graphical model q = info.q; else % joint coordiantes were given, make them current robot.plot(q, args{:}); end end assert( ~isempty(q), 'RTB:teach:badarg', 'No joint coordinates provided'); RTBPlot.install_teach_panel(robot.name, robot, q, opt) end
github
RobinAmsters/GT_mobile_robotics-master
maniplty.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/maniplty.m
5,488
utf_8
6dc8d1e4cd47b12bd3577edd006e419a
%SerialLink.MANIPLTY Manipulability measure % % M = R.maniplty(Q, OPTIONS) is the manipulability index (scalar) for the % robot at the joint configuration Q (1xN) where N is the number of robot % joints. It indicates dexterity, that is, how isotropic the robot's % motion is with respect to the 6 degrees of Cartesian motion. The measure % is high when the manipulator is capable of equal motion in all directions % and low when the manipulator is close to a singularity. % % If Q is a matrix (MxN) then M (Mx1) is a vector of manipulability % indices for each joint configuration specified by a row of Q. % % [M,CI] = R.maniplty(Q, OPTIONS) as above, but for the case of the Asada % measure returns the Cartesian inertia matrix CI. % % R.maniplty(Q) displays the translational and rotational manipulability. % % Two measures can be computed: % - Yoshikawa's manipulability measure is based on the shape of the velocity % ellipsoid and depends only on kinematic parameters (default). % - Asada's manipulability measure is based on the shape of the acceleration % ellipsoid which in turn is a function of the Cartesian inertia matrix and % the dynamic parameters. The scalar measure computed here is the ratio of % the smallest/largest ellipsoid axis. Ideally the ellipsoid would be % spherical, giving a ratio of 1, but in practice will be less than 1. % % Options:: % 'trans' manipulability for transational motion only (default) % 'rot' manipulability for rotational motion only % 'all' manipulability for all motions % 'dof',D D is a vector (1x6) with non-zero elements if the % corresponding DOF is to be included for manipulability % 'yoshikawa' use Yoshikawa algorithm (default) % 'asada' use Asada algorithm % % Notes:: % - The 'all' option includes rotational and translational dexterity, but % this involves adding different units. It can be more useful to look at the % translational and rotational manipulability separately. % - Examples in the RVC book (1st edition) can be replicated by using the 'all' option % % References:: % % - Analysis and control of robot manipulators with redundancy, % T. Yoshikawa, % Robotics Research: The First International Symposium (M. Brady and R. Paul, eds.), % pp. 735-747, The MIT press, 1984. % - A geometrical representation of manipulator dynamics and its application to % arm design, % H. Asada, % Journal of Dynamic Systems, Measurement, and Control, % vol. 105, p. 131, 1983. % - Robotics, Vision & Control, P. Corke, Springer 2011. % % See also SerialLink.inertia, SerialLink.jacob0. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com %TODO % return the ellipsoid? function [w,mx] = maniplty(robot, q, varargin) opt.method = {'yoshikawa', 'asada'}; opt.axes = {'all', 'trans', 'rot'}; opt.dof = []; opt = tb_optparse(opt, varargin); if nargout == 0 opt.axes = 'trans'; mt = maniplty(robot, q, 'setopt', opt); opt.axes = 'rot'; mr = maniplty(robot, q, 'setopt', opt); for i=1:numrows(mt) fprintf('Manipulability: translation %g, rotation %g\n', mt(i), mr(i)); end return; end if isempty(opt.dof) switch opt.axes case 'trans' dof = [1 1 1 0 0 0]; case 'rot' dof = [0 0 0 1 1 1]; case 'all' dof = [1 1 1 1 1 1]; end else dof = opt.dof; end opt.dof = logical(dof); if strcmp(opt.method, 'yoshikawa') w = zeros(numrows(q),1); for i=1:numrows(q) w(i) = yoshi(robot, q(i,:), opt); end elseif strcmp(opt.method, 'asada') w = zeros(numrows(q),1); if nargout > 1 dof = sum(opt.dof); MX = zeros(dof,dof,numrows(q)); for i=1:numrows(q) [ww,mm] = asada(robot, q(i,:), opt); w(i) = ww; MX(:,:,i) = mm; end else for i=1:numrows(q) w(i) = asada(robot, q(i,:), opt); end end end if nargout > 1 mx = MX; end function m = yoshi(robot, q, opt) J = robot.jacob0(q); J = J(opt.dof,:); m2 = det(J * J'); m2 = max(0, m2); % clip it to positive m = sqrt(m2); function [m, mx] = asada(robot, q, opt) J = robot.jacob0(q); if rank(J) < 6 warning('robot is in degenerate configuration') m = 0; return; end Ji = pinv(J); M = robot.inertia(q); Mx = Ji' * M * Ji; d = find(opt.dof); Mx = Mx(d,d); e = eig(Mx); m = min(e) / max(e); if nargout > 1 mx = Mx; end
github
RobinAmsters/GT_mobile_robotics-master
inertia.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/inertia.m
2,008
utf_8
f3f737784c846fc85e9a5b02736fe80c
%SerialLink.INERTIA Manipulator inertia matrix % % I = R.inertia(Q) is the symmetric joint inertia matrix (NxN) which relates % joint torque to joint acceleration for the robot at joint configuration Q. % % If Q is a matrix (KxN), each row is interpretted as a joint state % vector, and the result is a 3d-matrix (NxNxK) where each plane corresponds % to the inertia for the corresponding row of Q. % % Notes:: % - The diagonal elements I(J,J) are the inertia seen by joint actuator J. % - The off-diagonal elements I(J,K) are coupling inertias that relate % acceleration on joint J to force/torque on joint K. % - The diagonal terms include the motor inertia reflected through the gear % ratio. % % See also SerialLink.RNE, SerialLink.CINERTIA, SerialLink.ITORQUE. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function M = inertia(robot, q) if numcols(q) ~= robot.n error('q must have %d columns', robot.n); end if numrows(q) > 1 M = []; for i=1:numrows(q) M = cat(3, M, robot.inertia(q(i,:))); end return end n = robot.n; if numel(q) == robot.n q = q(:).'; end M = zeros(n,n,0); for Q = q.' m = rne(robot, ones(n,1)*Q.', zeros(n,n), eye(n), 'gravity', [0 0 0]); M = cat(3, M, m); end
github
RobinAmsters/GT_mobile_robotics-master
fdyn.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/fdyn.m
5,073
utf_8
a400da6da911640f9610ea979364170f
%SerialLink.fdyn Integrate forward dynamics % % [T,Q,QD] = R.fdyn(TMAX, FTFUN) integrates the dynamics of the robot over % the time interval 0 to TMAX and returns vectors of time T (Kx1), joint % position Q (KxN) and joint velocity QD (KxN). The initial joint position % and velocity are zero. The torque applied to the joints is computed by % the user-supplied control function FTFUN: % % TAU = FTFUN(ROBOT, T, Q, QD) % % where TAU (1xN) is the joint torques to be applied at this time instant, % ROBOT is the robot object being simulated, T is the current time, and Q % (1xN) and QD (1xN) are the manipulator joint coordinate and velocity % state respectively. % % [TI,Q,QD] = R.fdyn(T, FTFUN, Q0, QD0) as above but allows the initial % joint position Q0 (1xN) and velocity QD0 (1x) to be specified. % % [T,Q,QD] = R.fdyn(T1, FTFUN, Q0, QD0, ARG1, ARG2, ...) allows optional % arguments to be passed through to the user-supplied control function: % % TAU = FTFUN(ROBOT, T, Q, QD, ARG1, ARG2, ...) % % Example 1: to apply zero joint torque to the robot without Coulomb friction: % % [t,q] = robot.nofriction().fdyn(5, @my_torque_function); % % function tau = my_torque_function(robot, t, q) % tau = zeros(1, robot.n); % end % % Example 2: as above, but using a lambda function % % [t,q] = robot.nofriction().fdyn(5, @(robot, t, q, qd) zeros(1, robot.n) ); % % % Example 3: the robot is controlled by a PD controller. We first define % a function to compute the control which has additional parameters for % the setpoint and control gains (qstar, P, D) % % function tau = myfunc(q, qd, qstar, P, D) % tau = (qstar-q)*P + qd*D; % P, D are 6x6 % end % % and then integrate the robot dynamics with the control: % % [t,q] = robot.fdyn(10, @(robot, t, q, qd) myfunc(q, qd, qstar, P, D) ); % % where the lambda function ignores the passed values of robot and t but % adds qstar, P and D to argument list for myfunc. % % Note:: % - This function performs poorly with non-linear joint friction, such as % Coulomb friction. The R.nofriction() method can be used to set this % friction to zero. % - If FTFUN is not specified, or is given as [], then zero torque % is applied to the manipulator joints. % - The MATLAB builtin integration function ode45() is used. % % See also SerialLink.accel, SerialLink.nofriction, SerialLink.rne, ode45. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function [t, q, qd] = fdyn(robot, t1, torqfun, q0, qd0, varargin) % check the Matlab version, since ode45 syntax has changed if verLessThan('matlab', '7') error('fdyn now requires MATLAB version >= 7'); end n = robot.n; if nargin == 2 torqfun = []; q0 = zeros(1,n); qd0 = zeros(1,n); elseif nargin == 3 q0 = zeros(1,n); qd0 = zeros(1,n); elseif nargin == 4 qd0 = zeros(1,n); end assert(isempty(torqfun) || isa(torqfun,'function_handle') , 'RTB:fdyn:badarg', 'must pass a function handle or []'); % concatenate q and qd into the initial state vector q0 = [q0(:); qd0(:)]; [t,y] = ode45(@fdyn2, [0 t1], q0, [], robot, torqfun, varargin{:}); q = y(:,1:n); qd = y(:,n+1:2*n); end %FDYN2 private function called by FDYN % % XDD = FDYN2(T, X, FLAG, ROBOT, TORQUEFUN) % % Called by FDYN to evaluate the robot velocity and acceleration for % forward dynamics. T is the current time, X = [Q QD] is the state vector, % ROBOT is the object being integrated, and TORQUEFUN is the string name of % the function to compute joint torques and called as % % TAU = TORQUEFUN(ROBOT, T, X, VARARGIN) % % if not given zero joint torques are assumed. % % The result is XDD = [QD QDD]. function xd = fdyn2(t, x, robot, torqfun, varargin) n = robot.n; q = x(1:n)'; qd = x(n+1:2*n)'; % evaluate the torque function if one is given if isa(torqfun, 'function_handle') tau = torqfun(robot, t, q, qd, varargin{:}); tau = tau(:)'; assert(isreal(tau) && length(tau) == n, 'rtb:fdyn:badretval', 'torque function must return vector with N real elements'); else tau = zeros(1,n); end qdd = robot.accel(x(1:n,1)', x(n+1:2*n,1)', tau); xd = [x(n+1:2*n,1); qdd]; end
github
RobinAmsters/GT_mobile_robotics-master
fellipse.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/fellipse.m
3,069
utf_8
d87897de30852a78a8ed05f0b51612ab
%SerialLink.fellipse Force ellipsoid for seriallink manipulator % % R.fellipse(Q, OPTIONS) displays the force ellipsoid for the % robot R at pose Q. The ellipsoid is centered at the tool tip position. % % Options:: % '2d' Ellipse for translational xy motion, for planar manipulator % 'trans' Ellipsoid for translational motion (default) % 'rot' Ellipsoid for rotational motion % % Display options as per plot_ellipse to control ellipsoid face and edge % color and transparency. % % Example:: % To interactively update the force ellipsoid while using sliders % to change the robot's pose: % robot.teach('callback', @(r,q) r.fellipse(q)) % % Notes:: % - The ellipsoid is tagged with the name of the robot prepended to % ".fellipse". % - Calling the function with a different pose will update the ellipsoid. % % See also SerialLink.jacob0, SerialLink.vellipse, plot_ellipse. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function fellipse(robot, q, varargin) name = [robot.name '.fellipse']; e = findobj('Tag', name); if isempty(q) delete(e); return; end opt.mode = {'trans', 'rot', '2d'}; opt.deg = false; [opt,args] = tb_optparse(opt, varargin); if opt.deg % in degrees mode, scale the columns corresponding to revolute axes q = robot.todegrees(q); end if robot.n == 2 opt.mode = '2d'; end J = robot.jacob0(q); switch opt.mode case'2d' J = J(1:2,1:2); case 'trans' J = J(1:3,:); case 'rot' J = J(4:6,:); end JJ = J*J'; if det(JJ) < 100*eps warning('RTB:fellipse:badval', 'Jacobian is singular, ellipse cannot be drawn') return end N = inv(JJ); t = transl(robot.fkine(q)); switch opt.mode case '2d' if isempty(e) h = plot_ellipse(N, t(1:2), 'edgecolor', 'r', 'Tag', name, args{:}); else plot_ellipse(N, t(1:2), 'alter', e); end otherwise if isempty(e) h = plot_ellipse(N, t(1:3), 'edgecolor', 'k', 'fillcolor', 'r', 'alpha', 0.5, 'Tag', name, args{:}); else plot_ellipse(N, t(1:3), 'alter', e); end end end
github
RobinAmsters/GT_mobile_robotics-master
trchain.m
.m
GT_mobile_robotics-master/common/rvctools/robot/@SerialLink/trchain.m
4,515
utf_8
b601af947d862aed84aa7ed6597c15fc
%SERIALLINK.TRCHAIN Convert to elementary transform sequence % % S = R.TRCHAIN(OPTIONS) is a sequence of elementary transforms that describe the % kinematics of the serial link robot arm. The string S comprises a number % of tokens of the form X(ARG) where X is one of Tx, Ty, Tz, Rx, Ry, or Rz. % ARG is a joint variable, or a constant angle or length dimension. % % For example: % >> mdl_puma560 % >> p560.trchain % ans = % Rz(q1)Rx(90)Rz(q2)Tx(0.431800)Rz(q3)Tz(0.150050)Tx(0.020300)Rx(-90) % Rz(q4)Tz(0.431800)Rx(90)Rz(q5)Rx(-90)Rz(q6) % % Options:: % '[no]deg' Express angles in degrees rather than radians (default deg) % 'sym' Replace length parameters by symbolic values L1, L2 etc. % % See also trchain, trotx, troty, trotz, transl, DHFactor. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function s = trchain(robot, varargin) opt.sym = false; opt.deg = true; opt = tb_optparse(opt, varargin); if opt.deg conv = 180/pi; else conv = 1; end s = ''; varcount = 1; for j=1:robot.n L = robot.links(j); if robot.ismdh() % Method for modified DH parameters % Append Tx(a) if L.a ~= 0 if opt.sym s = append(s, 'Tx(L%d)', varcount); varcount = varcount+1; else s = append(s, 'Tx(%g)', L.a); end end % Append Rx(alpha) if L.alpha ~= 0 s = append(s, 'Rx(%g)', (L.alpha*conv)); end if L.isrevolute() % Append Tz(d) if L.d ~= 0 if opt.sym s = append(s, 'Tz(L%d)', varcount); varcount = varcount+1; else s = append(s, 'Tz(%g)', L.d); end end % Append Rz(q) s = append(s, 'Rz(q%d)', j); else % Append Rz(theta) if L.theta ~= 0 s = append(s, 'Rz(%g)', (L.alpha*conv)); end % Append Tz(q) s = append(s, 'Tz(q%d)', j); end else % Method for standard DH parameters if L.isrevolute() % Append Rz(q) s = append(s, 'Rz(q%d)', j); % Append Tz(d) if L.d ~= 0 if opt.sym s = append(s, 'Tz(L%d)', varcount); varcount = varcount+1; else s = append(s, 'Tz(%g)', L.d); end end else % Append Rz(theta) if L.theta ~= 0 s = append(s, 'Rz(%g)', (L.alpha*conv)); end % Append Tz(q) s = append(s, 'Tz(q%d)', j); end % Append Tx(a) if L.a ~= 0 if opt.sym s = append(s, 'Tx(L%d)', varcount); varcount = varcount+1; else s = append(s, 'Tx(%g)', L.a); end end % Append Rx(alpha) if L.alpha ~= 0 s = append(s, 'Rx(%g)', (L.alpha*conv)); end end end end function s = append(s, fmt, j) s = strcat(s, sprintf(fmt, j)); end
github
RobinAmsters/GT_mobile_robotics-master
dxdemo.m
.m
GT_mobile_robotics-master/common/rvctools/robot/demos/dxdemo.m
4,414
utf_8
a12f5f38fda2788e7906ad3d546bd4fd
%DXDEMO Demonstrate distance transform planner using animation % % MORPHDEMO(IM, SE, OPTIONS) displays an animation to show the principles % of the mathematical morphology operations dilation or erosion. Two % windows are displayed side by side, input binary image on the left and % output image on the right. The structuring element moves over the input % image and is colored red if the result is zero, else blue. Pixels in % the output image are initially all grey but change to black or white % as the structuring element moves. % % OUT = MORPHDEMO(IM, SE, OPTIONS) as above but returns the output image. % % Options:: % 'dilate' Perform morphological dilation % 'erode' Perform morphological erosion % 'delay' Time between animation frames (default 0.5s) % 'scale',S Scale factor for output image (default 64) % 'movie',M Write image frames to the folder M % % Notes:: % - This is meant for small images, say 10x10 pixels. % % See also IMORPH, IDILATE, IERODE. function out = dxdemo(map, goal, varargin) opt.delay = 0; opt.movie = []; opt.scale = 64; opt.metric = {'euclidean', 'manhattan'}; opt = tb_optparse(opt, varargin); set(gcf, 'Position', [90 435 1355 520]) clf goal = [4 8]; start = [7 2]; opt.metric = 'euclidean'; opt.movie = [];%'dxform2.mp4' opt.delay = 0; % make a simple map occgrid = zeros(10,10); occgrid(4:6,3:7) = 1; %occgrid(7:8,7) = 1; % extra bit cost0 = occgrid; cost0(cost0==1) = NaN; cost = cost0; cost(cost0==0) = Inf; cost(goal(2), goal(1)) = 0; if ~isempty(opt.movie) anim = Animate(opt.movie); end if ~isempty(opt.movie) anim.add(); end switch opt.metric case 'cityblock' m = [inf 1 inf 1 0 1 inf 1 inf]; case 'euclidean' r2 = sqrt(2); m = [r2 1 r2 1 0 1 r2 1 r2]; otherwise error('unknown distance metric'); end iteration = 0; ninf = 0; n2 = 1; % half width n22 = 1.5; newcost = inf(size(cost)); title('Wavefront path planning simulation'); while true iteration = iteration+1; maxval = max(max(cost(isfinite(cost)))); subplot(121) showpixels(cost, 'contrast', maxval*0.7, 'fmt', '%.2g', 'cscale', [0 maxval+2], 'fontsize', 20, 'nancolor', 'nohideinf', 'infsymbol', 'nohidenan', 'infcolor') xlabel('x', 'FontSize', 20); ylabel('y', 'FontSize', 20); hpatch1 = patch(1, 1, 'y', 'FaceAlpha', 0.5); for r=n2+1:numrows(cost)-n2 for c=n2+1:numcols(cost)-n2 win = cost(r-n2:r+n2, c-n2:c+n2); if isnan(cost(r,c)) newcost(r,c) = NaN; else newcost(r,c) = min(min(win+m)); end % animate the patch hpatch1.XData = [c-n22 c+n22 c+n22 c-n22]; hpatch1.YData = [r-n22 r-n22 r+n22 r+n22]; subplot(122) cla showpixels(newcost, 'contrast', maxval*0.7, 'fmt', '%.2g', 'cscale', [0 maxval+2], 'fontsize', 20, 'nancolor', 'nohideinf', 'infsymbol', 'nohidenan', 'infcolor') xlabel('x', 'FontSize', 20); ylabel('y', 'FontSize', 20) hpatch2 = patch([c-0.5 c+0.5 c+0.5 c-0.5], [r-0.5 r-0.5 r+0.5 r+0.5], 'y', 'FaceAlpha', 0.5); if ~isempty(opt.movie) anim.add(); end if opt.delay == 0 drawnow else pause(opt.delay); end end end cost = newcost; ninfnow = sum(sum( isinf(cost(2:end-1,2:end-1)) )) % current number of Infs if ninfnow == 0 || ninfnow == ninf % stop if the number of Infs left in the map had stopped reducing % it may never get to zero if there are unreachable cells in the map break; end ninf = ninfnow; if ~isempty(opt.movie) anim.close(); end end
github
RobinAmsters/GT_mobile_robotics-master
check.m
.m
GT_mobile_robotics-master/common/rvctools/robot/mex/check.m
2,355
utf_8
687f3f98ff0462cae7415c80c3caebf3
function check fprintf('***************************************************************\n') fprintf('************************ Puma 560 *****************************\n') fprintf('***************************************************************\n') clear mdl_puma560 mdl_puma560akb if exist('rne') == 3 error('need to remove rne.mex file from @SerialLink dir'); end check1(p560, p560m); fprintf('\n***************************************************************\n') fprintf('********************** Stanford arm ***************************\n') fprintf('***************************************************************\n') clear mdl_stanford stanfordm % non standard model shipped in this folder check1(stanf, stanm); end function check1(rdh, rmdh) %CHECK script to compare M-file and MEX-file versions of RNE % load the model and remove non-linear friction rdh = nofriction(rdh, 'coulomb'); rmdh = nofriction(rdh, 'coulomb'); % number of trials n = 10; fprintf('************************ normal case *****************************\n') args = {}; fprintf('DH: ') check2(rdh, n, args); fprintf('MDH: ') check2(rmdh, n, args); fprintf('************************ no gravity *****************************\n') args = {[0 0 0]}; fprintf('DH: ') check2(rdh, n, args); fprintf('MDH: ') check2(rmdh, n, args); fprintf('************************ ext force *****************************\n') args = {[0 0 9.81], [10 10 10 10 10 10]'}; fprintf('DH: ') check2(rdh, n, args); fprintf('MDH: ') check2(rmdh, n, args); end %CHECK2 script to compare M-file and MEX-file versions of RNE function check2(robot, n, args) robot = nofriction(robot, 'coulomb'); % create random points in state space q = rand(n, 6); qd = rand(n, 6); qdd = rand(n, 6); % test M-file robot.fast = 0; tic; tau = rne(robot, q, qd, qdd, args{:}); t = toc; % test MEX-file robot.fast = 1; tic; tau_f = rne(robot, q, qd, qdd, args{:}); t_f = toc; % print comparative results fprintf('Speedup is %10.0f, worst case error is %f\n', ... t/t_f, max(max(abs(tau-tau_f)))); end
github
RobinAmsters/GT_mobile_robotics-master
move.m
.m
GT_mobile_robotics-master/common/rvctools/robot/interfaces/@Create/move.m
3,671
utf_8
79fa5d2956cbcc99182a784ce925b457
function move(robot, speed, angvel, varargin); %travelDist(serPort, roombaSpeed, distance) %Moves the Create the distance entered in meters. Positive distances move the %Create foward, negative distances move the Create backwards. %roombaSpeed should be between 0.025 and 0.5 m/s % By; Joel Esposito, US Naval Academy, 2011 opt.distance = []; opt.angle = []; opt.time = []; opt.event = []; opt = tb_optparse(opt, varargin); % enforce some limits if (speed < 0) %Speed given by user shouldn't be negative disp('WARNING: Speed inputted is negative. Should be positive. Taking the absolute value'); speed = abs(speed); end robot.flush(); if ~all(isnan([opt.distance opt.angle opt.time opt.event])) % we have a limit defined if ~isempty(opt.distance) robot.write([152 9]); if (opt.distance < 0) %Definition of SetFwdVelRAdius Roomba, speed has to be negative to go backwards. % Takes care of this case. User shouldn't worry about negative speeds speed = -speed; end SetFwdVelAngVelCreate(robot, speed, angvel); robot.write([156]); robot.fwrite(opt.distance*1000, 'int16'); elseif ~isempty(opt.angle) robot.write([152 9]); SetFwdVelAngVelCreate(robot, speed, angvel); robot.write([157]); robot.fwrite(opt.distance, 'int16'); elseif ~isempty(opt.time) robot.write([152 14]); SetFwdVelAngVelCreate(robot, speed, angvel); robot.write([155 opt.time*10]); elseif ~isempty(opt.event) robot.write([152 14]); SetFwdVelAngVelCreate(robot, speed, angvel); robot.write([158 opt.event]); end % tell it to stop moving SetFwdVelAngVelCreate(robot, 0, 0); robot.write([142 1]); % return a sensor value pause(robot.delay) robot.write([153]); % play the script % wait for motion to finish disp('waiting'); while( robot.serPort.BytesAvailable() ==0) %disp('waiting to finish') pause(robot.delay) end pause(robot.delay) else % no limit, constant velocity forever % set robot moving SetFwdVelAngVelCreate(robot, speed, angvel); end pause(robot.delay) end function [] = SetFwdVelAngVelCreate(robot, FwdVel, AngVel ) %[] = SetFwdVelAngVelCreate(serPort, FwdVel, AngVel ) % Specify forward velocity in meters/ sec % [-0.5, 0.5]. Specify Angular Velocity in rad/sec. Negative velocity is backward/Clockwise. Caps overflow. % Note that the wheel speeds are capped at .5 meters per second. So it is possible to % specify speeds that cannot be acheived. Warning is displayed. % Only works with Create I think...not Roomba % By; Joel Esposito, US Naval Academy, 2011 robot.flush(); d = 0.258; % wheel baseline wheelVel = inv([.5 .5; 1/d -1/d])*[FwdVel; AngVel]; rightWheelVel = min( max(1000* wheelVel(1), -500) , 500); leftWheelVel = min( max(1000* wheelVel(2), -500) , 500); if ( abs(rightWheelVel) ==500) | ( abs(leftWheelVel) ==500) disp('Warning: desired velocity combination exceeds limits') end %[leftWheelVel rightWheelVel] robot.write([145]); robot.fwrite(rightWheelVel, 'int16'); robot.fwrite(leftWheelVel, 'int16'); pause(robot.delay) end
github
RobinAmsters/GT_mobile_robotics-master
Num_Keypad_backnovibe.m
.m
GT_mobile_robotics-master/common/rvctools/robot/interfaces/@Create/Num_Keypad_backnovibe.m
12,578
utf_8
7e71977ac697d6139c1bdb60444f6bea
function varargout = RobotGuiControl(varargin) %varargout = Num_Keypad_backnovibe(varargin) %Large Forward Arrow-Moves Roomba forward 10cm %Small Forward Arrow-Moves Roomba forward 5cm %Back Arrow-Moves Roomba backward 5cm %Large Left Arrow-Turns Roomba 15 degrees left %Small Left Arrow-Turns Roomba 5 degrees left %Large Right Arrow-Turns Roomba 15 degrees right %Small Right Arrow-Turns Roomba 5 degrees right % Description: Keypad with No Feedback. Also, creates % a global variable called 'list', which contains all the numeric presses, % NUM_KEYPAD_BACKNOVIBE M-file for Num_Keypad_backnovibe.fig % NUM_KEYPAD_BACKNOVIBE, by itself, creates a new NUM_KEYPAD_BACKNOVIBE or raises the existing % singleton*. % H = NUM_KEYPAD_BACKNOVIBE returns the handle to a new NUM_KEYPAD_BACKNOVIBE or the handle to % the existing singleton*. % % NUM_KEYPAD_BACKNOVIBE('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in NUM_KEYPAD_BACKNOVIBE.M with the given input arguments. % % NUM_KEYPAD_BACKNOVIBE('Property','Value',...) creates a new NUM_KEYPAD_BACKNOVIBE or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before Num_Keypad_backnovibe_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to Num_Keypad_backnovibe_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % % Begin initialization code - DO NOT EDIT %BY; Joel Esposito, US Naval Academy, 2011 gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @Num_Keypad_backnovibe_OpeningFcn, ... 'gui_OutputFcn', @Num_Keypad_backnovibe_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before Num_Keypad_backnovibe is made visible. function RobotGuiControl_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to Num_Keypad_backnovibe (see VARARGIN) % Choose default command line output for Num_Keypad_backnovibe %Global Variables and Startup Processes % ------------------------------------------------------------------------- % START COPY! %-------------------------------------------------------------------------- % Cleaning up old ports serPort = varargin{1}; global a a = instrfind(); if ~isempty(a) fclose(a); pause(1); delete(a); pause(1); end global ser % serial port for vibration % serial port for sending characters ser = RoombaInit(serPort); %logging global keyPresses startTime elapsedTime keyPresses = [0 0]; startTime = []; elapsedTime = []; % speeds and angles global sV sD bV bD sW sA bW bA sV = .1; sD = 0.05; % vel in m/s angles in deg W is angluar speed but in m/s? bV = .2; bD = 0.1; sW = .05; sA = 5; bW = .1; bA = 15; global moving movingTest movingTest = 1; moving=0; handles.output = hObject; % Update handles structure guidata(hObject, handles); % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; keyPresses(2) = keyPresses(2) +1; if isempty(startTime) startTime = tic; end %-------------------------- % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 2]; %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; end global moving movingTest if (movingTest ==0)||(moving ==0) moving=1; travelDist(ser, sV, -sD); moving=0; end %-------------------------- % --- Executes on button press in pushbutton3. function pushbutton3_Callback(hObject, eventdata, handles) % hObject handle to pushbutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 3]; %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; keyPresses(2) = keyPresses(2) +1; if isempty(startTime) startTime = tic; end %-------------------------- % --- Executes on button press in pushbutton4. function pushbutton4_Callback(hObject, eventdata, handles) % hObject handle to pushbutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 4]; %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; end global moving movingTest if (movingTest ==0)||(moving ==0) moving=1; turnAngle(ser, bW, bA); moving=0; end %-------------------------- % --- Executes on button press in pushbutton5. function pushbutton5_Callback(hObject, eventdata, handles) % hObject handle to pushbutton5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 5]; global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; end global moving movingTest if (movingTest ==0)||(moving ==0) moving=1; travelDist(ser, sV, sD); moving=0; end % --- Executes on button press in pushbutton6. function pushbutton6_Callback(hObject, eventdata, handles) % hObject handle to pushbutton6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 6]; %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; end global moving movingTest if (movingTest ==0)||(moving ==0) moving=1; turnAngle(ser, bW, -bA); moving=0; end %-------------------------- % --- Executes on button press in pushbutton7. function pushbutton7_Callback(hObject, eventdata, handles) % hObject handle to pushbutton7 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 7]; %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; end global moving movingTest if (movingTest ==0)||(moving ==0) moving=1; turnAngle(ser, sW, sA); moving=0; end %-------------------------- % --- Executes on button press in pushbutton8. function pushbutton8_Callback(hObject, eventdata, handles) % hObject handle to pushbutton8 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 8]; %-------- %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; end global moving movingTest if (movingTest ==0)||(moving ==0) moving=1; travelDist(ser, bV, bD); moving=0; end %-------------------------- % --- Executes on button press in pushbutton9. function pushbutton9_Callback(hObject, eventdata, handles) % hObject handle to pushbutton9 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 9]; %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; end global moving movingTest if (movingTest ==0)||(moving ==0) moving=1; turnAngle(ser, sW, -sA); moving=0; end %-------------------------- % --- Executes on button press in pushbutton_back. function pushbutton_back_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_back (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %-------- global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; keyPresses(2) = keyPresses(2) +1; if isempty(startTime) startTime = tic; end % --- Executes on button press in pushbutton_del. function pushbutton_del_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_del (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %-------- global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; keyPresses(2) = keyPresses(2) +1; if isempty(startTime) startTime = tic; end % --- Executes on button press in pushbutton_enter. function pushbutton_enter_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_enter (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA global NegVibe NegTime PosVibe PosTime keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; else elapsedTime = toc(startTime); fprintf('Sec: %f, Keystrokes: %d, NegPresses: %d \n ', [elapsedTime keyPresses(1) keyPresses(2)]); end %-------------------------------------------------------------------------- % END COPY %------------------------------------------------------------------------- % --- Executes when figure1 is resized. function figure1_ResizeFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton10. function pushbutton10_Callback(hObject, eventdata, handles) % hObject handle to pushbutton10 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list .]; %-------- global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses = keyPresses +1; if isempty(startTime) startTime = tic; end % UIWAIT makes Num_Keypad_backnovibe wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = RobotGuiControl_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; %global keyPresses elapsedTime
github
RobinAmsters/GT_mobile_robotics-master
teach.m
.m
GT_mobile_robotics-master/common/rvctools/robot/interfaces/@Create/teach.m
12,494
utf_8
bde6f61bbfda699e08b8d7e428a6f4ba
function varargout = RobotGuiControl(varargin) %varargout = RobotGuiControl(varargin) %Large Forward Arrow-Moves Roomba forward 10cm %Small Forward Arrow-Moves Roomba forward 5cm %Back Arrow-Moves Roomba backward 5cm %Large Left Arrow-Turns Roomba 15 degrees left %Small Left Arrow-Turns Roomba 5 degrees left %Large Right Arrow-Turns Roomba 15 degrees right %Small Right Arrow-Turns Roomba 5 degrees right % Note, GUI can be used from touchscreen mobile device by making remote % desktop connection from mobile device to PC running MTIC. % NUM_KEYPAD_BACKNOVIBE M-file for Num_Keypad_backnovibe.fig % NUM_KEYPAD_BACKNOVIBE, by itself, creates a new NUM_KEYPAD_BACKNOVIBE or raises the existing % singleton*. % H = NUM_KEYPAD_BACKNOVIBE returns the handle to a new NUM_KEYPAD_BACKNOVIBE or the handle to % the existing singleton*. % % NUM_KEYPAD_BACKNOVIBE('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in NUM_KEYPAD_BACKNOVIBE.M with the given input arguments. % % NUM_KEYPAD_BACKNOVIBE('Property','Value',...) creates a new NUM_KEYPAD_BACKNOVIBE or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before Num_Keypad_backnovibe_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to Num_Keypad_backnovibe_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % % Begin initialization code - DO NOT EDIT %BY; Joel Esposito, US Naval Academy, 2011 gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @RobotGuiControl_OpeningFcn, ... 'gui_OutputFcn', @RobotGuiControl_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before Num_Keypad_backnovibe is made visible. function RobotGuiControl_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to Num_Keypad_backnovibe (see VARARGIN) % Choose default command line output for Num_Keypad_backnovibe %Global Variables and Startup Processes % ------------------------------------------------------------------------- % START COPY! %-------------------------------------------------------------------------- % Cleaning up old ports serPort = varargin{1}; global a a = instrfind(); if ~isempty(a) fclose(a); pause(1); delete(a); pause(1); end global ser % serial port for vibration % serial port for sending characters ser = RoombaInit(serPort); %logging global keyPresses startTime elapsedTime keyPresses = [0 0]; startTime = []; elapsedTime = []; % speeds and angles global sV sD bV bD sW sA bW bA sV = .1; sD = 0.05; % vel in m/s angles in deg W is angluar speed but in m/s? bV = .2; bD = 0.1; sW = .05; sA = 5; bW = .1; bA = 15; global moving movingTest movingTest = 1; moving=0; handles.output = hObject; % Update handles structure guidata(hObject, handles); % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; keyPresses(2) = keyPresses(2) +1; if isempty(startTime) startTime = tic; end %-------------------------- % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 2]; %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; end global moving movingTest if (movingTest ==0)||(moving ==0) moving=1; travelDist(ser, sV, -sD); moving=0; end %-------------------------- % --- Executes on button press in pushbutton3. function pushbutton3_Callback(hObject, eventdata, handles) % hObject handle to pushbutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 3]; %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; keyPresses(2) = keyPresses(2) +1; if isempty(startTime) startTime = tic; end %-------------------------- % --- Executes on button press in pushbutton4. function pushbutton4_Callback(hObject, eventdata, handles) % hObject handle to pushbutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 4]; %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; end global moving movingTest if (movingTest ==0)||(moving ==0) moving=1; turnAngle(ser, bW, bA); moving=0; end %-------------------------- % --- Executes on button press in pushbutton5. function pushbutton5_Callback(hObject, eventdata, handles) % hObject handle to pushbutton5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 5]; global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; end global moving movingTest if (movingTest ==0)||(moving ==0) moving=1; travelDist(ser, sV, sD); moving=0; end % --- Executes on button press in pushbutton6. function pushbutton6_Callback(hObject, eventdata, handles) % hObject handle to pushbutton6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 6]; %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; end global moving movingTest if (movingTest ==0)||(moving ==0) moving=1; turnAngle(ser, bW, -bA); moving=0; end %-------------------------- % --- Executes on button press in pushbutton7. function pushbutton7_Callback(hObject, eventdata, handles) % hObject handle to pushbutton7 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 7]; %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; end global moving movingTest if (movingTest ==0)||(moving ==0) moving=1; turnAngle(ser, sW, sA); moving=0; end %-------------------------- % --- Executes on button press in pushbutton8. function pushbutton8_Callback(hObject, eventdata, handles) % hObject handle to pushbutton8 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 8]; %-------- %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; end global moving movingTest if (movingTest ==0)||(moving ==0) moving=1; travelDist(ser, bV, bD); moving=0; end %-------------------------- % --- Executes on button press in pushbutton9. function pushbutton9_Callback(hObject, eventdata, handles) % hObject handle to pushbutton9 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list 9]; %------------------------COPY TO ALL OTHERS global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; end global moving movingTest if (movingTest ==0)||(moving ==0) moving=1; turnAngle(ser, sW, -sA); moving=0; end %-------------------------- % --- Executes on button press in pushbutton_back. function pushbutton_back_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_back (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %-------- global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; keyPresses(2) = keyPresses(2) +1; if isempty(startTime) startTime = tic; end % --- Executes on button press in pushbutton_del. function pushbutton_del_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_del (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %-------- global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; keyPresses(2) = keyPresses(2) +1; if isempty(startTime) startTime = tic; end % --- Executes on button press in pushbutton_enter. function pushbutton_enter_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_enter (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses(1) = keyPresses(1) +1; if isempty(startTime) startTime = tic; else elapsedTime = toc(startTime); fprintf('Sec: %f, Keystrokes: %d \n ', [elapsedTime keyPresses(1) ]); end %-------------------------------------------------------------------------- % END COPY %------------------------------------------------------------------------- % --- Executes when figure1 is resized. function figure1_ResizeFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton10. function pushbutton10_Callback(hObject, eventdata, handles) % hObject handle to pushbutton10 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % global list % list=[list .]; %-------- global ser keyPresses startTime elapsedTime global sV sD bV bD sW sA bW bA keyPresses = keyPresses +1; if isempty(startTime) startTime = tic; end % UIWAIT makes Num_Keypad_backnovibe wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = RobotGuiControl_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; %global keyPresses elapsedTime
github
RobinAmsters/GT_mobile_robotics-master
VREP_arm.m
.m
GT_mobile_robotics-master/common/rvctools/robot/interfaces/VREP/VREP_arm.m
12,872
utf_8
f2d3f587eedac1bfd221fb9000c4cc09
%VREP_arm Mirror of V-REP robot arm object % % Mirror objects are MATLAB objects that reflect the state of objects in % the V-REP environment. Methods allow the V-REP state to be examined or % changed. % % This is a concrete class, derived from VREP_mirror, for all V-REP robot % arm objects and allows access to joint variables. % % Methods throw exception if an error occurs. % % Example:: % vrep = VREP(); % arm = vrep.arm('IRB140'); % q = arm.getq(); % arm.setq(zeros(1,6)); % arm.setpose(T); % set pose of base % % Methods:: % % getq get joint coordinates % setq set joint coordinates % setjointmode set joint control parameters % animate animate a joint coordinate trajectory % teach graphical teach pendant % % Superclass methods (VREP_obj):: % getpos get position of object % setpos set position of object % getorient get orientation of object % setorient set orientation of object % getpose get pose of object given % setpose set pose of object % % can be used to set/get the pose of the robot base. % % Superclass methods (VREP_mirror):: % getname get object name %- % setparam_bool set object boolean parameter % setparam_int set object integer parameter % setparam_float set object float parameter % % getparam_bool get object boolean parameter % getparam_int get object integer parameter % getparam_float get object float parameter % % Properties:: % n Number of joints % % See also VREP_mirror, VREP_obj, VREP_arm, VREP_camera, VREP_hokuyo. % Copyright (C) 1993-2015, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com classdef VREP_arm < VREP_obj properties(GetAccess=public, SetAccess=protected) q joint % VREP joint object handles n % number of joints end methods function arm = VREP_arm(vrep, name, varargin) %VREP_arm.VREP_arm Create a robot arm mirror object % % ARM = VREP_arm(NAME, OPTIONS) is a mirror object that corresponds to the % robot arm named NAME in the V-REP environment. % % Options:: % 'fmt',F Specify format for joint object names (default '%s_joint%d') % % Notes:: % - The number of joints is found by searching for objects % with names systematically derived from the root object name, by % default named NAME_N where N is the joint number starting at 0. % % See also VREP.arm. h = vrep.gethandle(name); if h == 0 error('no such object as %s in the scene', name); end arm = arm@VREP_obj(vrep, name); opt.fmt = '%s_joint%d'; opt = tb_optparse(opt, varargin); arm.name = name; % find all the _joint objects, we don't know how many joints so we % keep going till we get an error j = 1; while true [h,s] = vrep.gethandle(opt.fmt, name, j); if s ~= 0 break end arm.joint(j) = h; j = j+1; end arm.n = j - 1; % set all joints to passive mode % for j=1:arm.n % arm.vrep.simxSetJointMode(arm.client, arm.joint(j), arm.vrep.sim_jointmode_passive, arm.vrep.simx_opmode_oneshot_wait); % end end function q = getq(arm) %VREP_arm.getq Get joint angles of V-REP robot % % ARM.getq() is the vector of joint angles (1xN) from the corresponding % robot arm in the V-REP simulation. % % See also VREP_arm.setq. for j=1:arm.n q(j) = arm.vrep.getjoint(arm.joint(j)); end end function setq(arm, q) %VREP_arm.setq Set joint angles of V-REP robot % % ARM.setq(Q) sets the joint angles of the corresponding % robot arm in the V-REP simulation to Q (1xN). % % See also VREP_arm.getq. for j=1:arm.n arm.vrep.setjoint(arm.joint(j), q(j)); end end function setqt(arm, q) %VREP_arm.setq Set joint angles of V-REP robot % % ARM.setq(Q) sets the joint angles of the corresponding % robot arm in the V-REP simulation to Q (1xN). for j=1:arm.n arm.vrep.setjointtarget(arm.joint(j), q(j)); end end function setjointmode(arm, motor, control) %VREP_arm.setjointmode Set joint mode % % ARM.setjointmode(M, C) sets the motor enable M (0 or 1) and motor control % C (0 or 1) parameters for all joints of this robot arm. for j=1:arm.n arm.vrep.setobjparam_int(arm.joint(j), 2000, 1); %motor enable arm.vrep.setobjparam_int(arm.joint(j), 2001, 1); %motor control enable end end function animate(arm, qt, varargin) %VREP_arm.setq Animate V-REP robot % % R.animate(QT, OPTIONS) animates the corresponding V-REP robot with % configurations taken from consecutive rows of QT (MxN) which represents % an M-point trajectory and N is the number of robot joints. % % Options:: % 'delay',D Delay (s) betwen frames for animation (default 0.1) % 'fps',fps Number of frames per second for display, inverse of 'delay' option % '[no]loop' Loop over the trajectory forever % % See also SerialLink.plot. opt.delay = 0.1; opt.fps = []; opt.loop = false; opt = tb_optparse(opt, varargin); if ~isempty(opt.fps) opt.delay = 1/opt.fps; end while true for i=1:numrows(qt) arm.setq(qt(i,:)); pause(opt.delay); end if ~opt.loop break; end end end function teach(obj, varargin) %VREP_arm.teach Graphical teach pendant % % R.teach(OPTIONS) drive a V-REP robot by means of a graphical slider panel. % % Options:: % 'degrees' Display angles in degrees (default radians) % 'q0',q Set initial joint coordinates % % % Notes:: % - The slider limits are all assumed to be [-pi, +pi] % % See also SerialLink.plot. n = obj.n; %------------------------------- % parameters for teach panel bgcol = [135 206 250]/255; % background color height = 1/(n+2); % height of slider rows %------------------------------- opt.degrees = false; opt.q0 = []; % TODO: options for rpy, or eul angle display opt = tb_optparse(opt, varargin); % drivebot(r, q) % drivebot(r, 'deg') if isempty(opt.q0) q = obj.getq(); else q = opt.q0; end % set up scale factor, from actual limits in radians/metres to display units qscale = ones(n,1); for j=1:n if opt.degrees && L.isrevolute qscale(j) = 180/pi; end qlim(j,:) = [-pi pi]; end handles.qscale = qscale; panel = figure(... 'BusyAction', 'cancel', ... 'HandleVisibility', 'off', ... 'Color', bgcol); pos = get(panel, 'Position'); pos(3:4) = [300 400]; set(panel, 'Position', pos); set(panel,'MenuBar','none') set(panel, 'name', 'Teach'); delete( get(panel, 'Children') ) %---- now make the sliders for j=1:n % slider label uicontrol(panel, 'Style', 'text', ... 'Units', 'normalized', ... 'BackgroundColor', bgcol, ... 'Position', [0 height*(n-j) 0.15 height], ... 'FontUnits', 'normalized', ... 'FontSize', 0.5, ... 'String', sprintf('q%d', j)); % slider itself q(j) = max( qlim(j,1), min( qlim(j,2), q(j) ) ); % clip to range handles.slider(j) = uicontrol(panel, 'Style', 'slider', ... 'Units', 'normalized', ... 'Position', [0.15 height*(n-j) 0.65 height], ... 'Min', qlim(j,1), ... 'Max', qlim(j,2), ... 'Value', q(j), ... 'Tag', sprintf('Slider%d', j)); % text box showing slider value, also editable handles.edit(j) = uicontrol(panel, 'Style', 'edit', ... 'Units', 'normalized', ... 'Position', [0.80 height*(n-j)+.01 0.20 height*0.9], ... 'BackgroundColor', bgcol, ... 'String', num2str(qscale(j)*q(j), 3), ... 'HorizontalAlignment', 'left', ... 'FontUnits', 'normalized', ... 'FontSize', 0.4, ... 'Tag', sprintf('Edit%d', j)); end %---- robot name text box uicontrol(panel, 'Style', 'text', ... 'Units', 'normalized', ... 'FontUnits', 'normalized', ... 'FontSize', 1, ... 'HorizontalAlignment', 'center', ... 'Position', [0.05 1-height*1.5 0.9 height], ... 'BackgroundColor', 'white', ... 'String', obj.name); handles.arm = obj; % now assign the callbacks for j=1:n % text edit box set(handles.edit(j), ... 'Interruptible', 'off', ... 'Callback', @(src,event)teach_callback(j, handles, src)); % slider set(handles.slider(j), ... 'Interruptible', 'off', ... 'BusyAction', 'queue', ... 'Callback', @(src,event)teach_callback(j, handles, src)); end end end end function teach_callback(j, handles, src) % called on changes to a slider or to the edit box showing joint coordinate % % src the object that caused the event % name name of the robot % j the joint index concerned (1..N) % slider true if the qscale = handles.qscale; switch get(src, 'Style') case 'slider' % slider changed, get value and reflect it to edit box newval = get(src, 'Value'); set(handles.edit(j), 'String', num2str(qscale(j)*newval)); case 'edit' % edit box changed, get value and reflect it to slider newval = str2double(get(src, 'String')) / qscale(j); set(handles.slider(j), 'Value', newval); end %fprintf('newval %d %f\n', j, newval); handles.arm.vrep.setjoint(handles.arm.joint(j), newval); end
github
RobinAmsters/GT_mobile_robotics-master
walking.m
.m
GT_mobile_robotics-master/common/rvctools/robot/examples/walking.m
4,704
utf_8
415446e79beb2da9251d7463e6ad652b
% set the dimensions of the two leg links % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function walking(varargin) opt.niterations = 500; opt.movie = []; opt = tb_optparse(opt, varargin); L1 = 0.1; L2 = 0.1; fprintf('create leg model\n'); % create the leg links based on DH parameters % theta d a alpha links(1) = Link([ 0 0 0 pi/2 ], 'standard'); links(2) = Link([ 0 0 L1 0 ], 'standard'); links(3) = Link([ 0 0 -L2 0 ], 'standard'); % now create a robot to represent a single leg leg = SerialLink(links, 'name', 'leg', 'offset', [pi/2 0 -pi/2]); % define the key parameters of the gait trajectory, walking in the % x-direction xf = 5; xb = -xf; % forward and backward limits for foot on ground y = 5; % distance of foot from body along y-axis zu = 2; zd = 5; % height of foot when up and down % define the rectangular path taken by the foot segments = [xf y zd; xb y zd; xb y zu; xf y zu] * 0.01; % build the gait. the points are: % 1 start of walking stroke % 2 end of walking stroke % 3 end of foot raise % 4 foot raised and forward % % The segments times are : % 1->2 3s % 2->3 0.5s % 3->4 1s % 4->1 0.5ss % % A total of 4s, of which 3s is walking and 1s is reset. At 0.01s sample % time this is exactly 400 steps long. % % We use a finite acceleration time to get a nice smooth path, which means % that the foot never actually goes through any of these points. This % makes setting the initial robot pose and velocity difficult. % % Intead we create a longer cyclic path: 1, 2, 3, 4, 1, 2, 3, 4. The % first 1->2 segment includes the initial ramp up, and the final 3->4 % has the slow down. However the middle 2->3->4->1 is smooth cyclic % motion so we "cut it out" and use it. fprintf('create trajectory\n'); segments = [segments; segments]; tseg = [3 0.25 0.5 0.25]'; tseg = [1; tseg; tseg]; x = mstraj(segments, [], tseg, segments(1,:), 0.01, 0.1); % pull out the cycle fprintf('inverse kinematics (this will take a while)...'); xcycle = x(100:500,:); qcycle = leg.ikine( transl(xcycle), 'mask', [1 1 1 0 0 0] ); % dimensions of the robot's rectangular body, width and height, the legs % are at each corner. W = 0.1; L = 0.2; % a bit of optimization. We use a lot of plotting options to % make the animation fast: turn off annotations like wrist axes, ground % shadow, joint axes, no smooth shading. Rather than parse the switches % each cycle we pre-digest them here into a plotopt struct. % plotopt = leg.plot({'noraise', 'nobase', 'noshadow', ... % 'nowrist', 'nojaxes'}); % plotopt = leg.plot({'noraise', 'norender', 'nobase', 'noshadow', ... % 'nowrist', 'nojaxes', 'ortho'}); fprintf('\nanimate\n'); plotopt = {'noraise', 'nobase', 'noshadow', 'nowrist', 'nojaxes', 'delay', 0}; % create 4 leg robots. Each is a clone of the leg robot we built above, % has a unique name, and a base transform to represent it's position % on the body of the walking robot. legs(1) = SerialLink(leg, 'name', 'leg1'); legs(2) = SerialLink(leg, 'name', 'leg2', 'base', transl(-L, 0, 0)); legs(3) = SerialLink(leg, 'name', 'leg3', 'base', transl(-L, -W, 0)*trotz(pi)); legs(4) = SerialLink(leg, 'name', 'leg4', 'base', transl(0, -W, 0)*trotz(pi)); % create a fixed size axis for the robot, and set z positive downward clf; axis([-0.3 0.1 -0.2 0.2 -0.15 0.05]); set(gca,'Zdir', 'reverse') hold on % draw the robot's body patch([0 -L -L 0], [0 0 -W -W], [0 0 0 0], ... 'FaceColor', 'r', 'FaceAlpha', 0.5) % instantiate each robot in the axes for i=1:4 legs(i).plot(qcycle(1,:), plotopt{:}); end hold off % walk! k = 1; A = Animate(opt.movie); for i=1:opt.niterations legs(1).animate( gait(qcycle, k, 0, 0)); legs(2).animate( gait(qcycle, k, 100, 0)); legs(3).animate( gait(qcycle, k, 200, 1)); legs(4).animate( gait(qcycle, k, 300, 1)); drawnow k = k+1; A.add(); end end
github
RobinAmsters/GT_mobile_robotics-master
sensorfield.m
.m
GT_mobile_robotics-master/common/rvctools/robot/examples/sensorfield.m
884
utf_8
97e07ff1557dbc0f620859d66506f495
% Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function sensor = sensorfield(x, y) xc = 60; yc = 90; sensor = 200 ./ ((x-xc).^2 + (y-yc).^2 + 200);
github
RobinAmsters/GT_mobile_robotics-master
gait.m
.m
GT_mobile_robotics-master/common/rvctools/robot/examples/gait.m
949
utf_8
43edd6a553ff1f0cbfebbc706ff37f88
% Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function q = gait(cycle, k, offset, flip) k = mod(k+offset-1, numrows(cycle)) + 1; q = cycle(k,:); if flip q(1) = -q(1); % for left-side legs end end
github
RobinAmsters/GT_mobile_robotics-master
braitenberg.m
.m
GT_mobile_robotics-master/common/rvctools/robot/examples/braitenberg.m
2,400
utf_8
37f654774804c3ca95e847c6191036b9
% Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function p = braitenberg(world, robot) % these are coordinates (x,y) % display the world, obstacle, robot and target image(world/max(world(:))*100) colormap(gray); set(gca, 'Ydir', 'normal'); xlabel('x'); ylabel('y'); hold on if nargin < 2 disp('Click on a start point'); [x,y] = ginput(1); robot = [x y]; end if length(robot) == 2 T = transl( [robot 0] ); else T = transl( [robot(1:2) 0] ) * trotz(robot(3)); end p = []; sensorOffset = 2; forwardStep = 1.0; while 1 % read the left and right sensor leftSensor = sensorRead(world, T, transl(0, -sensorOffset, 0)); rightSensor = sensorRead(world, T, transl(0, sensorOffset, 0)); % change our heading based on the ratio of the sensors dth = rightSensor / leftSensor - 1; % bad sensor reading means we fell off the world if isnan(dth) break end % update the robot's pose dT = trotz(dth) * transl(forwardStep, 0, 0); T = T * dT; % display the robot's position xyz = transl( T ); % get position rpy = tr2rpy( T ); % get heading angle plot(xyz(1), xyz(2), 'g.'); p = [p; xyz(1:2)' rpy(3)]; pause(0.1); if numrows(p) > 150 break; end end hold off end % return the sensor reading for the given robot pose and relative pose % of the sensor. function s = sensorRead(field, robot, Tsens) xyz = transl( robot * Tsens ); s = interp2(field, xyz(1), xyz(2)); end
github
RobinAmsters/GT_mobile_robotics-master
SerialLinkTest.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/SerialLinkTest.m
30,524
utf_8
6fa420d1b0d296cd2ce087b11325acd5
%% This is for testing the SerialLink functions in the robotics Toolbox function tests = SerialLinkTest tests = functiontests(localfunctions); clc end function setupOnce(tc) mdl_puma560; tc.TestData.p560 = p560; mdl_planar2 tc.TestData.p2 = p2; mdl_puma560akb tc.TestData.p560m = p560m; mdl_stanford tc.TestData.stanf = stanf; end function teardownOnce(tc) close all end function SerialLink_test(tc) % test making a robot from links L(1)=Link([1 1 1 1 1]); L(2)=Link([0 1 0 1 0]); R1 = SerialLink(L,'name','robot1','comment', 'test robot','manufacturer', 'test',... 'base', eye(4,4), 'tool', eye(4,4), 'offset', [1 1 0 0 0 0 ] ); % test makin a robot from DH matrix DH = [pi/2 0 0 1; 0 2 0 0]; R2 = SerialLink(DH,'name','Robot2'); end function SerialLinkMDH_test(tc) % minimalistic test of modified DH functionality % most code is common, need to exercise MDH code in Link and also for % RNE mdl_puma560akb % qr is not set by the script, it clashes with the builtin function QR(tc) qz = [0 0 0 0 0 0]; T = p560m.fkine(qz); J = p560m.jacobe(qz); tau = p560m.rne(qz, qz, qz); end function dyn_test(tc) mdl_puma560 p560.dyn; mdl_puma560akb p560m.dyn; end % * - compound two robots function compound_test(tc) L(1)=Link([1 1 1 1 1]); L(2)=Link([0 1 0 1 0]); R1 = SerialLink(L,'name','robot1','comment', 'test robot','manufacturer', 'test',... 'base', eye(4,4), 'tool', eye(4,4), 'offset', [1 1 0 0 0 0 ] ); DH = [pi/2 0 0 1; 0 2 0 0]; R2 = SerialLink(DH,'name','Robot2'); %Test two different compunding situations R3 = R1*R2; R4 = R1*R3; end %% Kinematic methods % fkine - forward kinematics function fkine_test(tc) % create simple RP robot we can reason about L(1)=Link([0 2 3 0 0]); L(2)=Link([0 0 0 0 1]); R1 = SerialLink(L,'name','robot1','comment', 'test robot','manufacturer', 'test',... 'base', eye(4,4), 'tool', eye(4,4) ); tc.verifyTrue(isa( R1.fkine([0,0]), 'SE3') ); tc.verifyEqual(R1.fkine([0,0]).T, transl(3,0,2), 'absTol',1e-6); tc.verifyEqual(R1.fkine([pi/2,0]).T, transl(0,3,2)*trotz(pi/2), 'absTol',1e-6); tc.verifyEqual(R1.fkine([0,1]).T, transl(3,0,3), 'absTol',1e-6); mdl_puma560 T=p560.fkine( [0 0 0 0 0 0; 0 0.03 -0.0365 0 0 0] ); tc.verifyEqual(length(T), 2, 'SE3' );; end function plot_test(tc) clf L(1)=Link([1 1 1 1 0]); L(1).qlim = [-5 5]; L(2)=Link([0 1 0 1 0]); R1 = SerialLink(L,'name','robot1','comment', 'test robot','manufacturer', 'test',... 'base', eye(4,4), 'tool', eye(4,4), 'offset', [1 1 0 0 0 0 ] ); R1.plot([1 1]); close all end function plot_animate_test(tc) tc.assumeTrue(ispc || ismac); fname = fullfile(tempdir, 'puma.mp4'); qt = jtraj(tc.TestData.p560.qz, tc.TestData.p560.qr, 50); tc.TestData.p560.plot(qt, 'movie', fname); tc.verifyTrue(exist(fname, 'file') == 2); delete(fname) end function plot3d_test(tc) clf tc.TestData.p560.plot3d( tc.TestData.p560.qn ); close(gcf) end function teach_test(tc) tc.TestData.p560.teach(); close all tc.TestData.p560.teach('eul'); close all tc.TestData.p560.teach('eul', 'deg'); close all tc.TestData.p560.teach('rpy'); close all tc.TestData.p560.teach('rpy/xyz'); close all tc.TestData.p560.teach('rpy/zyx'); close all tc.TestData.p560.teach('approach'); close all tc.TestData.p560.teach('callback', @(r, q) fprintf('hello') ); close all tc.TestData.p2.teach(); close all tc.TestData.p2.teach('2d'); close all figure figure tc.TestData.p2.teach([0.2 0.3]); close all close all end %%-------------------------------------------------------------------------- %inverse kinematics for 6-axis arm with sph.wrist function ikine6s_puma_test(tc) % puma case mdl_puma560; qn = [0 pi/4 -pi 1 pi/4 0]; T = p560.fkine(qn); qik = p560.ikine6s(T,'ru'); tc.verifyEqual(p560.fkine(qik).T, T.T, 'absTol', 1e-6); tc.verifyTrue(qik(2) > 0); T = p560.fkine(qn); qik = p560.ikine6s(T,'ld'); tc.verifyEqual(p560.fkine(qik).T, T.T, 'absTol', 1e-6); tc.verifyTrue(qik(2) < 0); % error handling mdl_puma560akb tc.verifyError( @() p560m.ikine6s(T), 'RTB:ikine:notsupported' ); tc.verifyError( @() tc.TestData.p2.ikine6s(T), 'RTB:ikine:notsupported' ); end function ikine6s_stanford_test(tc) % stanford arm case q = [pi/4 pi/4 0.3 pi/4 -pi/4 pi/4]; T = tc.TestData.stanf.fkine(q); qik = tc.TestData.stanf.ikine6s(T); tc.verifyEqual(tc.TestData.stanf.fkine(qik).T, T.T, 'absTol', 1e-6); end function ikine6s_KR5_test(tc) % kr5 arm case mdl_KR5 q = [0 pi/4 -pi 1 pi/4 0]; T = KR5.fkine(q); qik = KR5.ikine6s(T); tc.verifyEqual(KR5.fkine(qik).T, T.T, 'absTol', 1e-6); end function ikine6s_IRB140_test(tc) tc.assumeTrue(false); %HACK % nooffset type mdl_irb140 q = [0 -3*pi/4 0 0 pi/4 0]; T = irb140.fkine(q); qik = irb140.ikine6s(T); tc.verifyEqual(irb140.fkine(qik).T, T.T, 'absTol', 1e-6); end function ikine_test(tc) T = tc.TestData.p560.fkine(tc.TestData.p560.qn); qik = tc.TestData.p560.ikine(T, [0 0 3 0 0 0]); T2 = tc.TestData.p560.fkine(qik); tc.verifyEqual(T.T, T2.T,'absTol',1e-6); end function ikunc_optim_test(tc) T = tc.TestData.p560.fkine(tc.TestData.p560.qn); qik = tc.TestData.p560.ikunc(T); T2 = tc.TestData.p560.fkine(qik); tc.verifyEqual(T.T, T2.T,'absTol',1e-6); end function ikcon_optim_test(tc) tc.assumeTrue(false); %HACK qn = [0 pi/4 -pi 0 pi/4 0]; T = tc.TestData.p560.fkine(qn); qik = tc.TestData.p560.ikcon(T); T2 = tc.TestData.p560.fkine(qik); tc.verifyEqual(T.T, T2.T,'absTol',1e-6); end function ikine_sym_test(tc) % 2DOF test p2 = SerialLink(tc.TestData.p2); % clone it q = p2.ikine_sym(2); % is the solution sane tc.verifyLength(q, 2); tc.verifyTrue(iscell(q)); tc.verifyTrue(isa(q{1}, 'sym')); tc.verifyLength(q{1}, 2); tc.verifyTrue(isa(q{2}, 'sym')); tc.verifyLength(q{1}, 2); % process the solutions q1 = subs(q{1}, {'tx', 'ty'}, {1,1}); % convert to numeric sol = eval(q1)'; q2 = subs(q{2}, {'tx', 'ty', 'q1'}, {1,1, q1(1)}); x = eval(q2); % first solution sol(1,2) = x(1); q2 = subs(q{2}, {'tx', 'ty', 'q1'}, {1,1, q1(2)}); % second solution x = eval(q2); sol(2,2) = x(1); % check the FK is good tc.verifyEqual(transl(tc.TestData.p2.fkine(sol(1,:))), [1 1 0]); tc.verifyEqual(transl(tc.TestData.p2.fkine(sol(2,:))), [1 1 0]); tc.verifyError( @() tc.TestData.p2.ikine_sym(4), 'RTB:ikine_sym:badarg'); end function ikine_sym2_test(tc) tc.assumeTrue(false); %HACK % 3DOF test % create robot arm with no offset (IRB140 style) robot = SerialLink([0 0.5 0 pi/2; 0 0 0.5 0; 0 0 0.5 0]) test_sym_ik(robot) % create robot arm with offset (Puma560 style) robot = SerialLink(tc.TestData.p560.links(1:3)); robot = SerialLink(robot); % clone it test_sym_ik(robot) function test_sym_ik(robot) % test all 8 solutions are good q = robot.ikine_sym(3); % process the solutions T = robot.fkine([0.2, 0.3, 0.4]); % choose joint angles pe = num2cell(T.t'); q1 = subs(q{1}, {'tx', 'ty', 'tz'}, pe); % convert to numeric qik = []; ss = []; for s1=1:2 try sol1 = eval(q1(s1)); catch fprintf('** q1(%d) eval failure\n', s1); end q2 = subs(q{2}, {'tx', 'ty', 'tz', 'q1'}, [pe q1(s1)]); for s2=1:2 try sol2 = eval(q2(s2)); catch fprintf('** q2(%d) eval failure\n', s2); continue; end q3 = subs(q{3}, {'tx', 'ty', 'tz', 'q1', 'q2'}, [pe q1(s1), q2(s2)]); for s3=1:2 try sol3 = eval(q3(s3)); qik = [qik; sol1 sol2 sol3]; ss = [ss; s1 s2 s3]; catch fprintf('** q3(%d) eval failure\n', s3); end end end end % check the FK is good, zero residual nn = []; for qq=qik' nn = [nn; norm(transl(robot.fkine(qq')-T))]; end tc.verifyEqual(sum(nn), 0, 'absTol', 1e-6); end end %%-------------------------------------------------------------------------- function jacob0_test(tc) function J = jacob0_approx(robot, q, d) e = eye(robot.n); T0 = robot.fkine(q); R0 = t2r(T0); J = []; for i=1:robot.n Ji = (robot.fkine(q + e(i,:)*d) - T0) / d; J = [J [Ji(1:3,4); vex(Ji(1:3,1:3)*R0')]]; end end % implictly tests jacobe qz = [0 1 0 0 2 0]; qn = [0 pi/4 -pi 1 pi/4 0]; out = tc.TestData.p560.jacob0(qz); tc.verifyClass(out, 'double'); tc.verifySize(out, [6 6]); tc.verifyEqual(tc.TestData.p560.jacob0(qz), jacob0_approx(tc.TestData.p560, qz, 1e-8), 'absTol', 1e-4); tc.verifyEqual(tc.TestData.p560.jacob0(qn), jacob0_approx(tc.TestData.p560, qn, 1e-8), 'absTol', 1e-4); expected_out = jacob0_approx(tc.TestData.p560, qn, 1e-8) out = tc.TestData.p560.jacob0(qn*180/pi, 'deg'); tc.verifyEqual(out,expected_out,'absTol',1e-4); out = tc.TestData.p560.jacob0(qn, 'rpy'); tc.verifyClass(out, 'double'); tc.verifySize(out, [6 6]); out = tc.TestData.p560.jacob0(qn, 'eul'); tc.verifyClass(out, 'double'); tc.verifySize(out, [6 6]); out = tc.TestData.p560.jacob0(qn, 'exp'); tc.verifyClass(out, 'double'); tc.verifySize(out, [6 6]); out = tc.TestData.p560.jacob0(qn, 'trans'); tc.verifyClass(out, 'double'); tc.verifySize(out, [3 6]); out = tc.TestData.p560.jacob0(qn, 'rot'); tc.verifyClass(out, 'double'); tc.verifySize(out, [3 6]); tc.verifyEqual(tc.TestData.p560.jacob0(qn), jacob0_approx(tc.TestData.p560, qn, 1e-8), 'absTol', 1e-4); out = tc.TestData.stanf.jacob0([0 0 0 0 0 0]); tc.verifyClass(out, 'double'); tc.verifySize(out, [6 6]); tc.verifyEqual(tc.TestData.stanf.jacob0(qn), jacob0_approx(tc.TestData.stanf, qn, 1e-8), 'absTol', 1e-4); end function jacobe_test(tc) function J = jacobe_approx(robot, q, d) e = eye(robot.n); T0 = robot.fkine(q); R0 = t2r(T0); J = []; for i=1:robot.n Ji = (robot.fkine(q + e(i,:)*d) - T0) / d; J = [J [R0'*Ji(1:3,4); vex(R0'*Ji(1:3,1:3))]]; end end qz = [0 1 0 0 2 0]; qn = [0 pi/4 -pi 1 pi/4 0]; out = tc.TestData.p560.jacobe(qz) tc.verifyClass(out, 'double'); tc.verifySize(out, [6 6]); expected_out = jacobe_approx(tc.TestData.p560, qz, 1e-8) tc.verifyEqual(out,expected_out,'absTol',1e-4); out = tc.TestData.p560.jacobe(qz*180/pi, 'deg'); tc.verifyEqual(out,expected_out,'absTol',1e-4); out = tc.TestData.p560.jacobe(qn); expected_out = jacobe_approx(tc.TestData.p560, qn, 1e-8) tc.verifyEqual(out,expected_out,'absTol',1e-4); out = tc.TestData.p560.jacobe(qn*180/pi, 'deg'); tc.verifyEqual(out,expected_out,'absTol',1e-4); out = tc.TestData.p560.jacob0(qn, 'rpy'); tc.verifyClass(out, 'double'); tc.verifySize(out, [6 6]); out = tc.TestData.p560.jacob0(qn, 'eul'); tc.verifyClass(out, 'double'); tc.verifySize(out, [6 6]); out = tc.TestData.p560.jacob0(qn, 'exp'); tc.verifyClass(out, 'double'); tc.verifySize(out, [6 6]); out = tc.TestData.p560.jacob0(qn, 'trans'); tc.verifyClass(out, 'double'); tc.verifySize(out, [3 6]); out = tc.TestData.p560.jacob0(qn, 'rot'); tc.verifyClass(out, 'double'); tc.verifySize(out, [3 6]); tc.verifyWarning( @() tc.TestData.p560.jacobn(qn), 'RTB:SerialLink:deprecated'); end function maniplty_test(tc) mdl_puma560; q = [0 pi/4 -pi 1 pi/4 0]; tc.verifyEqual(p560.maniplty(q), 0.0786, 'absTol',1e-4); tc.verifyEqual(p560.maniplty(q, 'trans'), 0.1112, 'absTol',1e-4); tc.verifyEqual(p560.maniplty(q, 'rot'), 2.5936, 'absTol',1e-4); tc.verifyEqual(p560.maniplty(q, 'asada', 'trans'), 0.2733, 'absTol',1e-4); end function jacob_dot_test(tc) tc.assumeTrue(false); %HACK function Jdqd = jacob_dot_approx(robot, q, qd, d) e = eye(robot.n); J0 = robot.jacob0(q); Jdqd = zeros(6,1); for i=1:robot.n Ji = (robot.jacob0(q + e(i,:)*d) - J0) / d; Jdqd = Jdqd + Ji * qd(i); end end q = rand(1,6); qd = rand(1,6); jacob_dot_approx(tc.TestData.p560, q, qd, 1e-8)*qd' tc.TestData.p560.jacob_dot(q, qd) end %% Dynamics methods function rne_test(tc) % use something simple we can reason about mdl_twolink g = twolink.gravity(3); qz = [0 0]; % need this to get around a MATLAB bug passing values from a script % different poses Q = twolink.rne([0 0], qz, qz, 'slow'); tc.verifyEqual(Q, g*[2 0.5], 'absTol', 1e-6); Q = twolink.rne([0 pi/2], qz, qz); tc.verifyEqual(Q, g*[1.5 0], 'absTol', 1e-6); Q = twolink.rne([pi/2 0], qz, qz); tc.verifyEqual(Q, g*[0 0], 'absTol', 1e-6); % change gravity Q = twolink.rne([0 0], qz, qz, 'gravity', [0 0 0]); tc.verifyEqual(Q, g*[0 0], 'absTol', 1e-6); Q = twolink.rne([0 0], qz, qz, 'gravity', [0 0 0]'); tc.verifyEqual(Q, g*[0 0], 'absTol', 1e-6); Q = twolink.rne([0 0], qz, qz, 'gravity', [0 0 0]); tc.verifyEqual(Q, g*[0 0], 'absTol', 1e-6); Q = twolink.rne([0 0], qz, qz, 'gravity', [0 0 -g]); tc.verifyEqual(Q, g*[-2 -0.5], 'absTol', 1e-6); % add an external force in end-effector frame % y-axis is vertically upward Q = twolink.rne([0 0], qz, qz, 'gravity', [0 0 0], 'fext', [1 0 0 0 0 0]); tc.verifyEqual(Q, [0 0], 'absTol', 1e-6); Q = twolink.rne([0 0], qz, qz, 'gravity', [0 0 0], 'fext', [0 1 0 0 0 0]); tc.verifyEqual(Q, [2 1], 'absTol', 1e-6); Q = twolink.rne([0 0], qz, qz, 'gravity', [0 0 0], 'fext', [0 0 1 0 0 0]); tc.verifyEqual(Q, [0 0], 'absTol', 1e-6); % test the [q qd qdd] case Q1 = twolink.rne([1 2], [3 4], [5 6]); Q2 = twolink.rne([1 2 3 4 5 6]); tc.verifyEqual(Q1, Q2, 'absTol', 1e-6); % test the matrix input case Q1 = twolink.rne([1 2], [3 4], [5 6]); Q2 = twolink.rne([5 6], [1 2], [3 4]); Q3 = twolink.rne([3 4], [5 6], [1 2]); Q4 = twolink.rne([1 2; 5 6; 3 4], [3 4; 1 2; 5 6], [5 6; 3 4; 1 2]); tc.verifyEqual([Q1; Q2; Q3], Q4, 'absTol', 1e-6); % probably should do a robot with a prismatic axis (or two) end function rne_mdh_test(tc) q = rand(1,6); tc.TestData.p560m.rne(q, q, q); end % accel - forward dynamics function accel_test(tc) qd = 0.5 * [1 1 1 1 1 1]; qz = [0 1 0 0 2 0]; Q = tc.TestData.p560.rne(tc.TestData.p560.qn, qz, qz); out = tc.TestData.p560.accel(qz, qd, Q); expected_out = [ -9.3397 4.9666 1.6095 -5.4305 5.9885 -2.1228]'; tc.verifyEqual(out, expected_out,'absTol',1e-4); out = tc.TestData.p560.accel([qz, qd,Q]); tc.verifyEqual(out, expected_out,'absTol',1e-4); out = tc.TestData.p560.accel([qz, qd,Q]'); tc.verifyEqual(out,expected_out,'absTol',1e-4); qd = [0.1 0.1 0.1 0.1 0.1 0.1;0.2 0.2 0.2 0.2 0.2 0.2]; qz = [0 1 0 0 2 0;0 0.5 0 0 1 0]; qd1 = [0.1 0.1 0.1 0.1 0.1 0.1]; qd2 = [0.2 0.2 0.2 0.2 0.2 0.2]; qz1 = [0 1 0 0 2 0]; qz2 = [0 0.5 0 0 1 0]; qn1 = [0 pi/4 -pi 1 pi/4 0]; qn2 = [0 pi/2 -pi 1 pi/2 0]; Q1 = tc.TestData.p560.rne(qn1,qz1,qz1); Q2 = tc.TestData.p560.rne(qn2,qz2,qz2); q3 = [Q1;Q2]; out = tc.TestData.p560.accel(qz, qd,q3); expected_out = [ -8.2760 5.8119 3.1487 -4.6392 6.9558 -1.6774 -8.3467 -4.8514 6.0575 -4.9232 3.1244 -1.7861 ]; tc.verifyEqual(out,expected_out,'absTol',1e-4); tc.verifyError( @() tc.TestData.p560.accel(), 'RTB:accel:badarg'); tc.verifyError( @() tc.TestData.p560.accel( [ 1 2]), 'RTB:accel:badarg'); tc.verifyError( @() tc.TestData.p560.accel( qz, qz, qd1), 'RTB:accel:badarg'); tc.verifyError( @() tc.TestData.p560.accel( qz, qd1, qd1), 'RTB:accel:badarg'); tc.verifyError( @() tc.TestData.p560.accel( [1 2], qd1, qd1), 'RTB:accel:badarg'); tc.verifyError( @() tc.TestData.p560.accel( qz1, [1 2], qd1), 'RTB:accel:badarg'); tc.verifyError( @() tc.TestData.p560.accel( qz1, qz1, [1 2]), 'RTB:accel:badarg'); tc.verifyError( @() tc.TestData.p560.accel( [ 1 2]), 'RTB:accel:badarg'); end % cinertia - Cartesian manipulator inertia matrix function cinertia_test(tc) mdl_puma560; qn = [0 pi/4 -pi 1 pi/4 0]; out = p560.cinertia(qn); expected_out = [18.0741 -2.2763 -8.8446 -0.0283 0.7541 -0.4015 -2.2763 11.2461 1.7238 -0.0750 0.2214 -0.4733 -8.8446 1.7238 14.1135 -0.0300 0.7525 -0.4032 -0.0283 -0.0750 -0.0300 0.1377 -0.0171 0.0492 0.7541 0.2214 0.7525 -0.0171 0.4612 -0.2461 -0.4015 -0.4733 -0.4032 0.0492 -0.2461 0.3457]; tc.verifyEqual(out,expected_out,'absTol',1e-4);; end % coriolis - centripetal/coriolis torque function coriolis_test(tc) mdl_puma560; qd = 0.5 * [1 1 1 1 1 1]; qn = [0 pi/4 -pi 1 pi/4 0]; out = p560.coriolis(qn, qd); expected_out = [ -0.1336 -0.6458 0.0845 0.0005 -0.0008 0.0000 0.3136 0.1922 0.3851 -0.0018 -0.0007 0.0000 -0.1803 -0.1934 -0.0005 -0.0009 -0.0014 0.0000 0.0007 0.0008 0.0003 0.0001 0.0003 -0.0000 -0.0004 0.0005 0.0005 -0.0003 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0 ]; tc.verifyEqual(out,expected_out,'absTol',1e-4); qd = [0.1 0.1 0.1 0.1 0.1 0.1;0.2 0.2 0.2 0.2 0.2 0.2]; qn = [0 pi/4 -pi 1 pi/4 0; 0 pi/2 -pi 1 pi/2 0]; out = p560.coriolis(qn, qd); expected_out(:,:,1) = [ -0.0267 -0.1292 0.0169 0.0001 -0.0002 0.0000 0.0627 0.0384 0.0770 -0.0004 -0.0001 0.0000 -0.0361 -0.0387 -0.0001 -0.0002 -0.0003 0.0000 0.0001 0.0002 0.0001 0.0000 0.0001 -0.0000 -0.0001 0.0001 0.0001 -0.0001 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0 ]; expected_out(:,:,2) = [ -0.0715 -0.1242 -0.0534 0.0008 -0.0001 -0.0000 0.0731 0.0765 0.1535 -0.0009 -0.0007 0.0000 -0.0023 -0.0772 -0.0003 -0.0004 -0.0007 0.0000 0.0004 0.0006 0.0003 0.0000 0.0002 -0.0000 0.0002 0.0004 0.0004 -0.0002 0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 0 ]; tc.verifyEqual(out,expected_out,'absTol',1e-4); end function gravload_test(tc) qn = [0 pi/4 -pi 1 pi/4 0]; out = tc.TestData.p560.gravload(qn); expected_out = [-0.0000 31.6334 6.0286 -0.0119 0.0218 0]; tc.verifyEqual(out, expected_out, 'absTol',1e-4); qn = [0 pi/4 -pi 1 pi/4 0; 0 pi/2 -pi 1 pi/2 0]; out = tc.TestData.p560.gravload(qn); expected_out = [-0.0000 31.6334 6.0286 -0.0119 0.0218 0 0.0000 7.7198 8.7439 -0.0238 -0.0000 0]; tc.verifyEqual(out, expected_out, 'absTol', 1e-4); % zero gravity out = tc.TestData.p560.gravload(tc.TestData.p560.qn, [0 0 0]); tc.verifyEqual(out, [0 0 0 0 0 0], 'absTol', 1e-4); tc.verifyError( @() tc.TestData.p560.gravload([1 2 3]), 'RTB:SerialLink:gravload:badarg' ); end function inertia_test(tc) mdl_puma560; qn = [0 pi/4 -pi 1 pi/4 0]; out = p560.inertia(qn); expected_out = [3.6591 -0.4042 0.1013 -0.0021 -0.0015 -0.0000 -0.4042 4.4128 0.3504 -0.0008 0.0017 0.0000 0.1013 0.3504 0.9377 -0.0008 0.0008 0.0000 -0.0021 -0.0008 -0.0008 0.1925 0.0000 0.0000 -0.0015 0.0017 0.0008 0.0000 0.1713 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.1941]; tc.verifyEqual(out,expected_out,'absTol',1e-4); qn = [0 pi/4 -pi 1 pi/4 0; 0 pi/2 -pi 1 pi/2 0]; out = p560.inertia(qn); expected_out(:,:,1) = [3.6591 -0.4042 0.1013 -0.0021 -0.0015 -0.0000 -0.4042 4.4128 0.3504 -0.0008 0.0017 0.0000 0.1013 0.3504 0.9377 -0.0008 0.0008 0.0000 -0.0021 -0.0008 -0.0008 0.1925 0.0000 0.0000 -0.0015 0.0017 0.0008 0.0000 0.1713 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.1941]; expected_out(:,:,2) = [2.6621 -0.6880 0.0035 -0.0007 -0.0010 0.0000 -0.6880 4.4114 0.3487 -0.0010 0.0015 0.0000 0.0035 0.3487 0.9359 -0.0010 0.0003 0.0000 -0.0007 -0.0010 -0.0010 0.1926 0.0000 0.0000 -0.0010 0.0015 0.0003 0.0000 0.1713 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1941]; tc.verifyEqual(out,expected_out,'absTol',1e-4); end function dynamic_component_test(tc) % test that inertial components q = rand(1,6); qd = rand(1,6); qdd = rand(1,6); robot = tc.TestData.p560.nofriction('all'); I = robot.inertia(q); C = robot.coriolis(q, qd); g = robot.gravload(q)'; tau = robot.rne(q, qd, qdd)'; tc.verifyEqual(norm(I*qdd'+C*qd'+g-tau), 0, 'absTol', 1e-8); end % itorque - inertia torque function itorque_test(tc) mdl_puma560; qn = [0 pi/4 -pi 1 pi/4 0]; qdd = 0.5 * [1 1 1 1 1 1]; out = p560.itorque(qn,qdd); expected_out = [1.6763 2.1799 0.6947 0.0944 0.0861 0.0971]; tc.verifyEqual(out,expected_out,'absTol',1e-4); % rne - inverse dynamics end function rne2_test(tc) mdl_puma560; qz = [0 1 0 0 2 0]; qn = [0 pi/4 -pi 1 pi/4 0]; out = p560.rne(qn,qz,qz); expected_out = [-0.9748 59.1306 5.9889 -0.0108 1.8872 0.0001]; tc.verifyEqual(out,expected_out,'absTol',1e-4); pnf = p560.nofriction('all'); q = rand(1,6); qd = rand(1,6); qdd = rand(1,6); tau1 = pnf.rne(q,qd,qdd); tau2 = pnf.inertia(q)*qdd' +pnf.coriolis(q,qd)*qd' + pnf.gravload(q)'; tc.verifyEqual(tau1', tau2, 'absTol', 1e-6); end % fdyn - forward dynamics function fdyn_test(tc) mdl_puma560; qn = [0 pi/4 -pi 1 pi/4 0]; qd = 0.5 * [1 1 1 1 1 1]; qdo = [0 0 0 0 0 0]; T = 0.0001; p560 = p560.nofriction(); [TI,Q,QD] = p560.fdyn(T, @(r,t,q,qd) zeros(1,6), qn, qdo); end function nofriction_test(tc) mdl_puma560; verifyFalse(tc, p560.links(3).B == 0); verifyFalse(tc, all(p560.links(3).Tc == 0) ); nf = p560.nofriction(); verifyFalse(tc, nf.links(3).B == 0); tc.verifyTrue( all(nf.links(3).Tc == 0) ); mdl_puma560; nf = p560.nofriction('all'); tc.verifyTrue( nf.links(3).B == 0); tc.verifyTrue( all(nf.links(3).Tc == 0) ); end function jtraj_test(tc) mdl_puma560 qz = [0 0 0 0 0 0]; qr = [0 pi/2 -pi/2 0 0 0]; T1 = p560.fkine(qz); T2 = p560.fkine(qr); qt = p560.jtraj(T1, T2, 50, 'r'); tc.verifyEqual( size(qt), [50 6]); %tc.verifyEqual(qt(1,:), qz, 'abstol', 1e-10); %tc.verifyEqual(qt(end,:), qr, 'abstol', 1e-10); end function edit_test(tc) robot = SerialLink(tc.TestData.p560); robot.edit() table = findobj('Type', 'uitable'); table.Data(1,2) = 7; button = findobj('String', 'Save') f = button.Callback{1}; f(button, [], table); tc.verifyEqual(robot.links(1).d, 7); close(gcf) robot.edit('dyn') table = findobj('Type', 'uitable'); table.Data(1,9) = 7; button = findobj('String', 'Save') f = button.Callback{1}; f(button, [], table); tc.verifyEqual(robot.links(1).m, 7); close(gcf) end function ellipse_test(tc) tc.TestData.p560.plot( tc.TestData.p560.qn ); tc.TestData.p560.fellipse( tc.TestData.p560.qn ); tc.TestData.p560.fellipse( tc.TestData.p560.qn, 'trans' ); tc.TestData.p560.fellipse( tc.TestData.p560.qn, 'rot' ); clf tc.TestData.p560.fellipse( tc.TestData.p560.qn, '2d' ); close(gcf) tc.TestData.p560.plot( tc.TestData.p560.qn ); tc.TestData.p560.vellipse( tc.TestData.p560.qn ); tc.TestData.p560.vellipse( tc.TestData.p560.qn, 'trans' ); tc.TestData.p560.vellipse( tc.TestData.p560.qn, 'rot' ); clf tc.TestData.p560.fellipse( tc.TestData.p560.qn, '2d' ); close(gcf) end function dh_mdh_test(tc) tc.verifyTrue(tc.TestData.p560.isdh) tc.verifyFalse(tc.TestData.p560.ismdh) tc.verifyClass(tc.TestData.p560.isdh, 'logical') tc.verifyClass(tc.TestData.p560.ismdh, 'logical') tc.verifyFalse(tc.TestData.p560m.isdh) tc.verifyTrue(tc.TestData.p560m.ismdh) p560m = tc.TestData.p560.MDH; tc.verifyTrue(isa(p560m, 'SerialLink')); tc.verifyEqual(p560m.n, 6); tc.verifyTrue(p560m.ismdh); p560 = tc.TestData.p560m.DH; tc.verifyTrue(isa(p560, 'SerialLink')); tc.verifyEqual(p560.n, 6); tc.verifyTrue(p560.isdh); p560m = tc.TestData.p560.MDH; p560 = p560m.DH; % should be the same robot T1 = tc.TestData.p560.fkine(tc.TestData.p560.qn); T2 = p560.fkine(tc.TestData.p560.qn); tc.verifyEqual(T1, T2); end function twists_test(tc) [tw,T0] = tc.TestData.p560.twists(tc.TestData.p560.qz); tc.verifyClass(tw, 'Twist'); tc.verifyLength(tw, 6); tc.verifyClass(T0, 'SE3'); tc.verifyLength(T0, 1); tc.verifyEqual( double(prod( [tw.exp(tc.TestData.p560.qn) T0] )), ... double(tc.TestData.p560.fkine(tc.TestData.p560.qn)), ... 'absTol', 1e-6); end function predicates_test(tc) % isdh x = tc.TestData.p560.isdh tc.verifyClass(x, 'logical'); tc.verifyLength(x, 1); tc.verifyTrue(x); x = tc.TestData.p560m.isdh tc.verifyClass(x, 'logical'); tc.verifyLength(x, 1); tc.verifyFalse(x); % ismdh x = tc.TestData.p560.ismdh tc.verifyClass(x, 'logical'); tc.verifyLength(x, 1); tc.verifyFalse(x); x = tc.TestData.p560m.ismdh tc.verifyClass(x, 'logical'); tc.verifyLength(x, 1); tc.verifyTrue(x); % isspherical x = tc.TestData.p560.isspherical tc.verifyClass(x, 'logical'); tc.verifyLength(x, 1); tc.verifyTrue(x); x = tc.TestData.p560.isspherical tc.verifyClass(x, 'logical'); tc.verifyLength(x, 1); tc.verifyTrue(x); % isprismatic x = tc.TestData.stanf.isprismatic tc.verifyClass(x, 'logical'); tc.verifyLength(x, 6); tc.verifyEqual(x, logical([0 0 1 0 0 0])); % isrevolute x = tc.TestData.stanf.isrevolute tc.verifyClass(x, 'logical'); tc.verifyLength(x, 6); tc.verifyEqual(x, ~logical([0 0 1 0 0 0])); % issym x = tc.TestData.p560.issym tc.verifyClass(x, 'logical'); tc.verifyLength(x, 1); tc.verifyFalse(x); mdl_twolink_sym; x = twolink.issym tc.verifyClass(x, 'logical'); tc.verifyLength(x, 1); tc.verifyTrue(x); % isconfig x = tc.TestData.p560.isconfig('RRRRRR'); tc.verifyClass(x, 'logical'); tc.verifyLength(x, 1); tc.verifyTrue(x); x = tc.TestData.p560.isconfig('RRPRRR'); tc.verifyClass(x, 'logical'); tc.verifyLength(x, 1); tc.verifyFalse(x); x = tc.TestData.stanf.isconfig('RRRRRR'); tc.verifyClass(x, 'logical'); tc.verifyLength(x, 1); tc.verifyFalse(x); x = tc.TestData.stanf.isconfig('RRPRRR'); tc.verifyClass(x, 'logical'); tc.verifyLength(x, 1); tc.verifyTrue(x); % islimit x = tc.TestData.p560.islimit([0 0 0 0 0 0]); tc.verifyClass(x, 'double'); tc.verifySize(x, [6 2]); tc.verifyEqual(x, zeros(6,2)); x = tc.TestData.p560.islimit([0 10 0 0 0 0]); tc.verifyClass(x, 'double'); tc.verifySize(x, [6 2]); tc.verifyEqual(x, [0 1 0 0 0 0]'*[1 1]); end function test_get(tc) x = tc.TestData.p560.d; tc.verifyClass(x, 'double'); tc.verifyLength(x, 6); tc.verifyEqual(x, [0 0 0.15005 0.4318 0 0], 'absTol', 1e-6); x = tc.TestData.p560.a; tc.verifyClass(x, 'double'); tc.verifyLength(x, 6); tc.verifyEqual(x, [0 0.4318 0.0203 0 0 0], 'absTol', 1e-6); x = tc.TestData.p560.alpha; tc.verifyClass(x, 'double'); tc.verifyLength(x, 6); tc.verifyEqual(x, [1 0 -1 1 -1 0]*pi/2, 'absTol', 1e-6); x = tc.TestData.p560.theta; tc.verifyClass(x, 'double'); tc.verifyLength(x, 0); end function mat2str_test(tc) mdl_twolink_sym; twolink end function rad_deg_test(tc) q = [1 2 3 4 5 6]; q2 = tc.TestData.p560.todegrees(q); tc.verifyEqual(q*180/pi, q2); q2 = tc.TestData.p560.toradians(q); tc.verifyEqual(q*pi/180, q2); q2 = tc.TestData.stanf.todegrees(q); qq = q*180/pi; qq(3) = q(3); tc.verifyEqual(qq, q2); q2 = tc.TestData.stanf.toradians(q); qq = q*pi/180; qq(3) = q(3); tc.verifyEqual(qq, q2); end function trchain_test(tc) % TODO need to test return values here s = tc.TestData.p560.trchain(); tc.verifyClass(s, 'char'); s = tc.TestData.p560m.trchain(); tc.verifyClass(s, 'char'); end function jointdynamics_test(tc) jd = tc.TestData.p560.jointdynamics( zeros(1,6), zeros(1,6)); tc.verifySize(jd, [1 6]); tc.verifyClass(jd, 'tf'); end
github
RobinAmsters/GT_mobile_robotics-master
SerialLinkModelsTest.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/SerialLinkModelsTest.m
1,696
utf_8
fa5bede9b9eb3d60c3e67db66c9fd7ff
%% This is for testing the SerialLink models in the robotics Toolboxg function tests = SerialLinkModelsTest tests = functiontests(localfunctions); end function models_test(tc) models names = models(); verifyTrue(tc, iscell(names) ); models('6dof') names = models('6dof'); verifyTrue(tc, iscell(names) ); end function all_models_test(tc) all = models(); for model = all' try eval( [model{1} ';'] ); catch verifyFail(tc, sprintf('model %s failed to load', model{1}) ); end % find all the SerialLink objects vars = whos; k = find( cellfun(@(s) strcmp(s,'SerialLink'), {vars.class}) ); if isempty(k) verifyFail(tc, sprintf('no SerialLink models loaded by %s', model{1}) ); end for kk = k clear(vars(kk).name) end % if exist('qz', 'var') ~= 1 % verifyFail(tc, sprintf('model %s doesn''t set qz', model{1})); % end clear qz end end function query_test(tc) names = models('6dof'); for model = names' % attempt to load the model try eval( [model{1} ';'] ); catch verifyFail(tc, 'model %s failed', model{1}); end % find the number of DOF in the model vars = whos; k = find( cellfun(@(s) strcmp(s,'SerialLink'), {vars.class}) ); if ~isempty(k) if eval( [vars(k).name '.n'] ) ~= 6 verifyFail(tc, 'query failed'); end end clear(vars(k).name) end end
github
RobinAmsters/GT_mobile_robotics-master
PlanTest.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/PlanTest.m
8,305
utf_8
5be43c22100201e1aff4290dc8814bd2
function tests = PlanTest tests = functiontests(localfunctions); end function setupOnce(tc) clc load map1 % load map tc.TestData.map = map; tc.TestData.goal = [50 30]; tc.TestData.start = [20 10]; end function teardownOnce(tc) close all end function bug2_test(tc) nav = Bug2(tc.TestData.map); tc.verifyInstanceOf(nav, 'Bug2'); s = nav.char(); verifyTrue(tc, ischar(s) ); nav.plot(); p = nav.query(tc.TestData.start, tc.TestData.goal); tc.verifyTrue(size(p,2) == 2, 'plan must have 2 columns'); tc.verifyEqual(p(1,:), tc.TestData.start, 'start point must be on path'); tc.verifyEqual(p(end,:), tc.TestData.goal, 'goal point must be on path'); tc.verifyFalse( any( nav.isoccupied(p') ), 'path must have no occupied cells'); nav.plot() nav.plot(p); tc.assumeTrue(ispc || ismac); % FILTER video generation for Travis fname = fullfile(tempdir, 'bug.mp4'); p = nav.query(tc.TestData.start, tc.TestData.goal, 'animate', 'movie', fname); tc.verifyTrue(exist(fname, 'file') == 2); delete(fname); tc.verifyError( @() nav.plan(), 'RTB:Bug2:badcall'); map = zeros(10,10); map(3:7,3:7) = 1; map(4:6,4:6) = 0; nav = Bug2(map); tc.verifyError( @() nav.query([5 5], [2 2]), 'RTB:bug2:noplan'); end function dxform_test(tc) nav = DXform(tc.TestData.map); tc.verifyInstanceOf(nav, 'DXform'); s = nav.char(); verifyTrue(tc, ischar(s) ); nav.plot(); nav.plan(tc.TestData.goal); nav.plot(); nav.plan(tc.TestData.goal, 'animate'); p = nav.query(tc.TestData.start); tc.verifyTrue(size(p,2) == 2, 'plan must have 2 columns'); tc.verifyEqual(p(1,:), tc.TestData.start, 'start point must be on path'); tc.verifyEqual(p(end,:), tc.TestData.goal, 'goal point must be on path'); tc.verifyFalse( any( nav.isoccupied(p') ), 'path must have no occupied cells'); nav.query(tc.TestData.start, 'animate'); nav.plot(); nav.plot(p); nav.plot3d(); nav.plot3d(p); end function distancexform_test(tc) map = zeros(10,10); map(4:6,4:6) =1; %args= {'verbose'} args = {}; dx1 = distancexform(map, [5 8], 'fast', 'noipt', args{:}); tc.verifyClass(dx1, 'double'); tc.verifyEqual(dx1(8,5), 0); tc.verifyTrue(all(all(isnan(dx1(map==1))))); i=sub2ind(size(dx1), 8, 5); tc.verifyTrue(all(dx1(i+[-11 -10 -9 -1 1 11 10 9])) > 0); tc.verifySize(dx1, size(map)); dx2 = distancexform(map, [5 8], 'nofast', 'ipt', args{:}); tc.verifyClass(dx1, 'double'); tc.verifySize(dx1, size(map)); dx3 = distancexform(map, [5 8], 'nofast', 'noipt', args{:}); tc.verifyClass(dx1, 'double'); tc.verifySize(dx1, size(map)); tc.verifyEqual(dx1, dx2, 'absTol', 1e-6, 'MEX ~= bwdist'); tc.verifyEqual(dx1, dx3, 'MEX ~= MATLAB'); dx1 = distancexform(map, [5 8], 'cityblock', 'fast', 'noipt', args{:}); tc.verifyClass(dx1, 'double'); tc.verifyTrue(all(all(isnan(dx1(map==1))))); i=sub2ind(size(dx1), 8, 5); tc.verifyTrue(all(dx1(i+[-11 -10 -9 -1 1 11 10 9])) > 0); tc.verifySize(dx1, size(map)); dx2 = distancexform(map, [5 8], 'cityblock', 'nofast', 'ipt', args{:}); tc.verifyClass(dx1, 'double'); tc.verifySize(dx1, size(map)); dx3 = distancexform(map, [5 8], 'cityblock', 'nofast', 'noipt', args{:}); tc.verifyClass(dx1, 'double'); tc.verifySize(dx1, size(map)); tc.verifyEqual(dx1, dx2, 'absTol', 1e-6, 'MEX ~= bwdist'); tc.verifyEqual(dx1, dx3, 'MEX ~= MATLAB'); dx1 = distancexform(map, [5 8], 'cityblock', 'animate'); dx1 = distancexform(map, [5 8], 'cityblock', 'animate', 'delay', 0.1); tc.assumeTrue(ispc || ismac); % FILTER video generation for Travis fname = fullfile(tempdir, 'bug.mp4'); dx1 = distancexform(map, [5 8], 'cityblock', 'animate', 'movie', fname); tc.verifyTrue(exist(fname, 'file') == 2); delete(fname) end function dstar_test(tc) % create a planner nav = Dstar(tc.TestData.map, 'quiet'); tc.verifyInstanceOf(nav, 'Dstar'); s = nav.char(); verifyTrue(tc, ischar(s) ); nav.plot(); % plan path to goal nav.plan(tc.TestData.goal); nav.plan(tc.TestData.goal, 'animate'); % execute it p = nav.query(tc.TestData.start); tc.verifyTrue(size(p,2) == 2, 'plan must have 2 columns'); tc.verifyEqual(p(1,:), tc.TestData.start, 'start point must be on path'); tc.verifyEqual(p(end,:), tc.TestData.goal, 'goal point must be on path'); tc.verifyFalse( any( nav.isoccupied(p') ), 'path must have no occupied cells'); nav.query(tc.TestData.start, 'animate'); nav.plot(); nav.plot(p); % add a swamp for r=78:85 for c=12:45 nav.modify_cost([c;r], 2); end end % replan nav.plan(); % show new path nav.query(tc.TestData.start); p = nav.query(tc.TestData.start); tc.verifyTrue(size(p,2) == 2, 'plan must have 2 columns'); tc.verifyEqual(p(1,:), tc.TestData.start, 'start point must be on path'); tc.verifyEqual(p(end,:), tc.TestData.goal, 'goal point must be on path'); tc.verifyFalse( any( nav.isoccupied(p') ), 'path must have no occupied cells'); nav.plot(p); nav.modify_cost([12 45; 78 85], 2); nav.modify_cost([12 13 14; 78 79 80], [2 3 4]); end function prm_test(tc) randinit nav = PRM(tc.TestData.map); tc.verifyInstanceOf(nav, 'PRM'); s = nav.char(); verifyTrue(tc, ischar(s) ); nav.plot(); nav.plan(); nav.plot(); p = nav.query(tc.TestData.start, tc.TestData.goal); tc.verifyTrue(size(p,2) == 2, 'plan must have 2 columns'); tc.verifyEqual(p(1,:), tc.TestData.start, 'start point must be on path'); tc.verifyEqual(p(end,:), tc.TestData.goal, 'goal point must be on path'); tc.verifyFalse( any( nav.isoccupied(p') ), 'path must have no occupied cells'); nav.query(tc.TestData.start, tc.TestData.goal); nav.plot(p); end function lattice_test(tc) nav = Lattice(); tc.verifyInstanceOf(nav, 'Lattice'); nav.plan('iterations', 8); nav.plot() start = [1 2 pi/2]; goal = [2 -2 0]; p = nav.query( start, goal ); verifyEqual(tc, size(p,1), 7); tc.verifyTrue(size(p,2) == 3, 'plan must have 3 columns'); tc.verifyEqual(p(1,:), start, 'AbsTol', 1e-10, 'start point must be on path'); tc.verifyEqual(p(end,:), goal, 'AbsTol', 1e-10, 'goal point must be on path'); nav.plot nav.plan('cost', [1 10 10]) p = nav.query( start, goal ); verifyEqual(tc, size(p,1), 9); tc.verifyTrue(size(p,2) == 3, 'plan must have 3 columns'); tc.verifyEqual(p(1,:), start, 'AbsTol', 1e-10, 'start point must be on path'); tc.verifyEqual(p(end,:), goal, 'AbsTol', 1e-10, 'goal point must be on path'); load road nav = Lattice(road, 'grid', 5, 'root', [50 50 0]) nav.plan(); start = [30 45 0]; goal = [50 20 0]; p = nav.query(start, goal); tc.verifyTrue(size(p,2) == 3, 'plan must have 3 columns'); tc.verifyEqual(p(1,:), start, 'AbsTol', 1e-10, 'start point must be on path'); tc.verifyEqual(p(end,:), goal, 'AbsTol', 1e-10, 'goal point must be on path'); tc.verifyFalse( any( nav.isoccupied(p(:,1:2)') ), 'path must have no occupied cells'); end function rrt_test(tc) randinit car = Bicycle('steermax', 0.5); %nav = RRT(car, 'goal', goal, 'range', 5); nav = RRT(car, 'npoints', 400); tc.verifyInstanceOf(nav, 'RRT'); s = nav.char(); nav.plan(); nav.plot(); start = [0 0 0]; goal = [0 2 0]; p = nav.query(start, goal); tc.verifyTrue(size(p,2) == 3, 'plan must have 3 columns'); tc.verifyFalse( any( nav.isoccupied(p(:,1:2)') ), 'path must have no occupied cells'); % bigger example with obstacle load road randinit nav = RRT(car, road, 'npoints', 1000, 'root', [50 22 0], 'simtime', 4); nav.plan(); p = nav.query([40 45 0], [50 22 0]); tc.verifyTrue(size(p,2) == 3, 'plan must have 3 columns'); tc.verifyFalse( any( nav.isoccupied(p(:,1:2)') ), 'path must have no occupied cells'); end
github
RobinAmsters/GT_mobile_robotics-master
TrajectoryTest.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/TrajectoryTest.m
18,301
utf_8
14958af0af35aba994d574bf2bf54caa
%% This is for testing the Trajectory Generation functions in the robotics Toolbox function tests = TrajectoryTest tests = functiontests(localfunctions); clc end function teardownOnce(tc) close all end function tpoly_test(tc) s1 = 1; s2 = 2; %% no boundary conditions tpoly(s1, s2, 11); s = tpoly(s1, s2, 11); tc.verifyTrue(all(diff(s) > 0)); % output is monotonic tc.verifyEqual(s(1), s1, 'absTol',1e-10); tc.verifyEqual(s(end), s2, 'absTol',1e-10); tc.verifyEqual(s(6), 1.5, 'absTol',1e-10); [s,sd] = tpoly(s1, s2, 11); tc.verifyTrue(all(diff(s) > 0)); % output is monotonic tc.verifyEqual(s(1), s1, 'absTol',1e-10); tc.verifyEqual(s(end), s2, 'absTol',1e-10); tc.verifyTrue(all(s >= 0)); % velocity is >= 0 tc.verifyEqual(s(6), 1.5, 'absTol',1e-10); tc.verifyEqual(sd(1), 0, 'absTol',1e-10); tc.verifyEqual(sd(end), 0, 'absTol',1e-10); [s,sd,sdd] = tpoly(s1, s2, 11); tc.verifyTrue(all(diff(s) > 0)); % output is monotonic tc.verifyEqual(s(1), s1, 'absTol',1e-10); tc.verifyEqual(s(end), s2, 'absTol',1e-10); tc.verifyTrue(all(sd >= -10*eps)); % velocity is >= 0 tc.verifyEqual(sd(1), 0, 'absTol',1e-10); tc.verifyEqual(sd(end), 0, 'absTol',1e-10); tc.verifyEqual(sdd(1), 0, 'absTol',1e-10); % acceleration tc.verifyEqual(sdd(6), 0, 'absTol',1e-10); tc.verifyEqual(sdd(end), 0, 'absTol',1e-10); tc.verifyEqual(sum(sdd), 0, 'absTol',1e-10); %% time vector version t = linspace(0, 1, 11); tpoly(s1, s2, t); s = tpoly(s1, s2, t); tc.verifyTrue(all(diff(s) > 0)); % output is monotonic tc.verifyEqual(s(1), s1, 'absTol',1e-10); tc.verifyEqual(s(end), s2, 'absTol',1e-10); tc.verifyEqual(s(6), 1.5, 'absTol',1e-10); [s,sd] = tpoly(s1, s2, t); tc.verifyTrue(all(diff(s) > 0)); % output is monotonic tc.verifyEqual(s(1), s1, 'absTol',1e-10); tc.verifyEqual(s(end), s2, 'absTol',1e-10); tc.verifyTrue(all(s >= 0)); % velocity is >= 0 tc.verifyEqual(s(6), 1.5, 'absTol',1e-10); tc.verifyEqual(sd(1), 0, 'absTol',1e-10); tc.verifyEqual(sd(end), 0, 'absTol',1e-10); [s,sd,sdd] = tpoly(s1, s2, t); tc.verifyTrue(all(diff(s) > 0)); % output is monotonic tc.verifyEqual(s(1), s1, 'absTol',1e-10); tc.verifyEqual(s(end), s2, 'absTol',1e-10); tc.verifyTrue(all(sd >= 0)); % velocity is >= 0 tc.verifyEqual(sd(1), 0, 'absTol',1e-10); tc.verifyEqual(sd(end), 0, 'absTol',1e-10); tc.verifyEqual(sdd(1), 0, 'absTol',1e-10); % acceleration tc.verifyEqual(sdd(6), 0, 'absTol',1e-10); tc.verifyEqual(sdd(end), 0, 'absTol',1e-10); tc.verifyEqual(sum(sdd), 0, 'absTol',1e-10); %% boundary conditions [s,sd,sdd] = tpoly(s1, s2, 11, -1, 1); tc.verifyEqual(s(1), s1, 'absTol',1e-10); tc.verifyEqual(s(end), s2, 'absTol',1e-10); tc.verifyEqual(sd(1), -1, 'absTol',1e-10); tc.verifyEqual(sd(end), 1, 'absTol',1e-10); tc.verifyEqual(sdd(1), 0, 'absTol',1e-10); tc.verifyEqual(sdd(end), 0, 'absTol',1e-10); %% plot version tpoly(s1, s2, 11, -1, 1); end function lspb_test(tc) s1 = 1; s2 = 2; %% no boundary conditions lspb(s1, s2, 11); s = lspb(s1, s2, 11); tc.verifyTrue(all(diff(s) > 0)); % output is monotonic tc.verifyEqual(s(1), s1, 'absTol',1e-10); tc.verifyEqual(s(end), s2, 'absTol',1e-10); tc.verifyEqual(s(6), 1.5, 'absTol',1e-10); [s,sd] = lspb(s1, s2, 11); tc.verifyTrue(all(diff(s) > 0)); % output is monotonic tc.verifyEqual(s(1), s1, 'absTol',1e-10); tc.verifyEqual(s(end), s2, 'absTol',1e-10); tc.verifyTrue(all(s >= 0)); % velocity is >= 0 tc.verifyEqual(s(6), 1.5, 'absTol',1e-10); tc.verifyEqual(sd(1), 0, 'absTol',1e-10); tc.verifyEqual(sd(end), 0, 'absTol',1e-10); [s,sd,sdd] = lspb(s1, s2, 11); tc.verifyTrue(all(diff(s) > 0)); % output is monotonic tc.verifyEqual(s(1), s1, 'absTol',1e-10); tc.verifyEqual(s(end), s2, 'absTol',1e-10); tc.verifyTrue(all(sd >= 0)); % velocity is >= 0 tc.verifyEqual(sd(1), 0, 'absTol',1e-10); tc.verifyEqual(sd(end), 0, 'absTol',1e-10); tc.verifyEqual(sum(sdd), 0, 'absTol',1e-10); %% time vector version t = linspace(0, 1, 11); lspb(s1, s2, t); s = lspb(s1, s2, t); tc.verifyTrue(all(diff(s) > 0)); % output is monotonic tc.verifyEqual(s(1), s1, 'absTol',1e-10); tc.verifyEqual(s(end), s2, 'absTol',1e-10); tc.verifyEqual(s(6), 1.5, 'absTol',1e-10); [s,sd] = lspb(s1, s2, t); tc.verifyTrue(all(diff(s) > 0)); % output is monotonic tc.verifyEqual(s(1), s1, 'absTol',1e-10); tc.verifyEqual(s(end), s2, 'absTol',1e-10); tc.verifyTrue(all(s >= 0)); % velocity is >= 0 tc.verifyEqual(s(6), 1.5, 'absTol',1e-10); tc.verifyEqual(sd(1), 0, 'absTol',1e-10); tc.verifyEqual(sd(end), 0, 'absTol',1e-10); [s,sd,sdd] = lspb(s1, s2, t); tc.verifyTrue(all(diff(s) > 0)); % output is monotonic tc.verifyEqual(s(1), s1, 'absTol',1e-10); tc.verifyEqual(s(end), s2, 'absTol',1e-10); tc.verifyTrue(all(sd >= 0)); % velocity is >= 0 tc.verifyEqual(sd(1), 0, 'absTol',1e-10); tc.verifyEqual(sd(end), 0, 'absTol',1e-10); tc.verifyEqual(sum(sdd), 0, 'absTol',1e-10); %% specify velocity [s,sd,sdd] = lspb(s1, s2, 11,0.2); tc.verifyEqual(s(1), s1, 'absTol',1e-10); tc.verifyEqual(s(end), s2, 'absTol',1e-10); tc.verifyEqual(sd(6), 0.2, 'absTol',1e-10); %% plot version lspb(s1, s2, 11); end % ctraj - Cartesian trajectory function ctraj_test(tc) % unit testing ctraj with T0 and T1 and N T0 = transl(1,2,3); T1 = transl(-1,-2,-3)*trotx(pi); T = ctraj(T0, T1, 3); tc.verifyEqual(size(T,3), 3); tc.verifyEqual(T(:,:,1), T0, 'abstol', 1e-10); tc.verifyEqual(T(:,:,2), trotx(pi/2), 'abstol', 1e-10); tc.verifyEqual(T(:,:,3), T1, 'abstol', 1e-10); % unit testing ctraj with T0 and T1 and S(i) T = ctraj(T0, T1, [1 0 0.5]); tc.verifyEqual(size(T,3), 3); tc.verifyEqual(T(:,:,1), T1, 'abstol', 1e-10); tc.verifyEqual(T(:,:,3), trotx(pi/2), 'abstol', 1e-10); tc.verifyEqual(T(:,:,2), T0, 'abstol', 1e-10); end % jtraj - joint space trajectory function jtraj_test(tc) % unit testing jtraj with q1 = [1 2 3 4 5 6]; q2 = -q1; q = jtraj(q1,q2,11); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); [q,qd] = jtraj(q1,q2,11); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qd,1), 11); tc.verifyEqual(size(qd,2), 6); tc.verifyEqual(qd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qd(end,:), zeros(1,6), 'abstol', 1e-10); [q,qd,qdd] = jtraj(q1,q2,11); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qd,1), 11); tc.verifyEqual(size(qd,2), 6); tc.verifyEqual(qd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qd(end,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qdd,1), 11); tc.verifyEqual(size(qdd,2), 6); tc.verifyEqual(qdd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qdd(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qdd(end,:), zeros(1,6), 'abstol', 1e-10); %% with a time vector t = linspace(0, 1, 11); q = jtraj(q1,q2,t); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); [q,qd] = jtraj(q1,q2,t); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qd,1), 11); tc.verifyEqual(size(qd,2), 6); tc.verifyEqual(qd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qd(end,:), zeros(1,6), 'abstol', 1e-10); [q,qd,qdd] = jtraj(q1,q2,t); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qd,1), 11); tc.verifyEqual(size(qd,2), 6); tc.verifyEqual(qd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qd(end,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qdd,1), 11); tc.verifyEqual(size(qdd,2), 6); tc.verifyEqual(qdd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qdd(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qdd(end,:), zeros(1,6), 'abstol', 1e-10); %% test with boundary conditions qone = ones(1,6); [q,qd,qdd] = jtraj(q1,q2,11, -qone, qone); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(size(qd,1), 11); tc.verifyEqual(size(qd,2), 6); tc.verifyEqual(qd(1,:), -qone, 'abstol', 1e-10); tc.verifyEqual(qd(end,:), qone, 'abstol', 1e-10); tc.verifyEqual(size(qdd,1), 11); tc.verifyEqual(size(qdd,2), 6); tc.verifyEqual(qdd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qdd(end,:), zeros(1,6), 'abstol', 1e-10); end % mtraj - multi-axis trajectory for arbitrary function function mtraj_tpoly_test(tc) q1 = [1 2 3 4 5 6]; q2 = -q1; q = mtraj(@tpoly, q1,q2,11); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); [q,qd] = mtraj(@tpoly, q1,q2,11); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qd,1), 11); tc.verifyEqual(size(qd,2), 6); tc.verifyEqual(qd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qd(end,:), zeros(1,6), 'abstol', 1e-10); [q,qd,qdd] = mtraj(@tpoly, q1,q2,11); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qd,1), 11); tc.verifyEqual(size(qd,2), 6); tc.verifyEqual(qd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qd(end,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qdd,1), 11); tc.verifyEqual(size(qdd,2), 6); tc.verifyEqual(qdd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qdd(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qdd(end,:), zeros(1,6), 'abstol', 1e-10); %% with a time vector t = linspace(0, 1, 11); q = mtraj(@tpoly, q1,q2,t); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); [q,qd] = mtraj(@tpoly, q1,q2,t); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qd,1), 11); tc.verifyEqual(size(qd,2), 6); tc.verifyEqual(qd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qd(end,:), zeros(1,6), 'abstol', 1e-10); [q,qd,qdd] = mtraj(@tpoly, q1,q2,t); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qd,1), 11); tc.verifyEqual(size(qd,2), 6); tc.verifyEqual(qd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qd(end,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qdd,1), 11); tc.verifyEqual(size(qdd,2), 6); tc.verifyEqual(qdd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qdd(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qdd(end,:), zeros(1,6), 'abstol', 1e-10); end function mtraj_lspb_test(tc) q1 = [1 2 3 4 5 6]; q2 = -q1; q = mtraj(@lspb, q1,q2,11); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); [q,qd] = mtraj(@lspb, q1,q2,11); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qd,1), 11); tc.verifyEqual(size(qd,2), 6); tc.verifyEqual(qd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qd(end,:), zeros(1,6), 'abstol', 1e-10); [q,qd,qdd] = mtraj(@lspb, q1,q2,11); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qd,1), 11); tc.verifyEqual(size(qd,2), 6); tc.verifyEqual(qd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qd(end,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qdd,1), 11); tc.verifyEqual(size(qdd,2), 6); tc.verifyEqual(sum(qdd), zeros(1,6), 'abstol', 1e-10); %% with a time vector t = linspace(0, 1, 11); q = mtraj(@lspb, q1,q2,t); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); [q,qd] = mtraj(@lspb, q1,q2,t); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qd,1), 11); tc.verifyEqual(size(qd,2), 6); tc.verifyEqual(qd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qd(end,:), zeros(1,6), 'abstol', 1e-10); [q,qd,qdd] = mtraj(@lspb, q1,q2,t); tc.verifyEqual(size(q,1), 11); tc.verifyEqual(size(q,2), 6); tc.verifyEqual(q(1,:), q1, 'abstol', 1e-10); tc.verifyEqual(q(end,:), q2, 'abstol', 1e-10); tc.verifyEqual(q(6,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qd,1), 11); tc.verifyEqual(size(qd,2), 6); tc.verifyEqual(qd(1,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(qd(end,:), zeros(1,6), 'abstol', 1e-10); tc.verifyEqual(size(qdd,1), 11); tc.verifyEqual(size(qdd,2), 6); tc.verifyEqual(sum(qdd), zeros(1,6), 'abstol', 1e-10); end % mstraj - multi-axis multi-segment trajectory function mstraj_test(tc) via = [4 1; 4 4; 5 2; 2 5]; %Test with QDMAX out = mstraj(via, [ 2 1 ],[],[4 1],1,1); expected_out = [4.0000 1.0000 4.0000 1.7500 4.0000 2.5000 4.0000 3.2500 4.3333 3.3333 4.6667 2.6667 4.2500 2.7500 3.5000 3.5000 2.7500 4.2500 2.0000 5.0000]; verifyEqual(tc, out,expected_out ,'absTol',1e-4); % test plotting mstraj(via, [ 2 1 ],[],[4 1],1,1); %Test with QO out = mstraj(via, [],[2 1 3 4],[4 1],1,1); expected_out = [4.0000 1.0000 4.0000 4.0000 4.3333 3.3333 4.6667 2.6667 4.2500 2.7500 3.5000 3.5000 2.7500 4.2500 2.0000 5.0000]; verifyEqual(tc, out,expected_out ,'absTol',1e-4); %Test with QO out = mstraj(via, [],[1 2 3 4],via(1,:),1,1); expected_out = [4.0000 1.0000 4.0000 2.5000 4.3333 3.3333 4.6667 2.6667 4.2500 2.7500 3.5000 3.5000 2.7500 4.2500 2.0000 5.0000]; verifyEqual(tc, out,expected_out ,'absTol',1e-4); [out,t] = mstraj(via, [],[1 2 3 4],via(1,:),1,1); verifyEqual(tc, size(t,1), size(out,1)); verifyEqual(tc, size(t,2), 1); [out,t,info] = mstraj(via, [],[1 2 3 4],via(1,:),1,1); verifyEqual(tc, size(t,1), size(out,1)); verifyEqual(tc, size(t,2), 1); verifyEqual(tc, length(info), size(via,1)+1); verifyTrue(tc, isa(info, 'struct')); end % qplot - plot joint angle trajectories function qplot_test(tc) s = linspace(0, 1, 100)'; qz = [0 0 0 0 0 0]; qr = [1 2 3 4 5 6]; q = (1-s)*qz + s*qr; clf qplot(s*20,q); qplot(q); end
github
RobinAmsters/GT_mobile_robotics-master
NavigationTest.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/NavigationTest.m
2,674
utf_8
fa1ee2e963da90466512c91e59044f9e
% test the Navigation abstract superclass function tests = NavigationTest tests = functiontests(localfunctions); end function map_test(tc) map = zeros(10,10); map(2,3) = 1; nav = Bug2(map); % we can't instantiate Navigation because it's abstract %% test isoccupied method % row vector tc.verifyTrue( nav.isoccupied([3,2]) ); tc.verifyFalse( nav.isoccupied([3,3]) ); % column vector tc.verifyTrue( nav.isoccupied([3,2]') ); tc.verifyFalse( nav.isoccupied([3,3]') ); % separate args tc.verifyTrue( nav.isoccupied(3,2) ); tc.verifyFalse( nav.isoccupied(3,3) ); % out of bound tc.verifyTrue( nav.isoccupied([20 20]) ); % multiple points tc.verifyEqual( nav.isoccupied([3 2; 20 20; 3 3]'), [true true false] ); tc.verifyEqual( nav.isoccupied([3 20 3], [2 20 3]), [true true false] ); tc.verifyEqual( nav.isoccupied([3 20 3]', [2 20 3]), [true true false] ); tc.verifyEqual( nav.isoccupied([3 20 3], [2 20 3]'), [true true false] ); tc.verifyEqual( nav.isoccupied([3 20 3]', [2 20 3]'), [true true false] ); %% test inflation option nav = Bug2(map, 'inflate', 1); tc.verifyTrue( nav.isoccupied([3,2]) ); tc.verifyTrue( nav.isoccupied([3,3]) ); tc.verifyFalse( nav.isoccupied([3,4]) ); end function maptype_test(tc) %% logical map map = zeros(10,10, 'logical'); map(2,3) = true; nav = Bug2(map); % we can't instantiate Navigation because it's abstract tc.verifyTrue( nav.isoccupied([3,2]) ); tc.verifyFalse( nav.isoccupied([3,3]) ); %% uint8 map map = zeros(10,10, 'uint8'); map(2,3) = 1; nav = Bug2(map); % we can't instantiate Navigation because it's abstract tc.verifyTrue( nav.isoccupied([3,2]) ); tc.verifyFalse( nav.isoccupied([3,3]) ); end function rand_test(tc) nav = Bug2(); % we can't instantiate Navigation because it's abstract %% test random number generator r = nav.randn; tc.verifySize(r, [1 1]); tc.verifyInstanceOf(r, 'double'); r = nav.randn(2,2); tc.verifySize(r, [2 2]); end function randi_test(tc) nav = Bug2(); % we can't instantiate Navigation because it's abstract %% test integer random number generator r = nav.randi(10); tc.verifySize(r, [1 1]); tc.verifyEqual(r, floor(r)); % is it an integer value tc.verifyInstanceOf(r, 'double'); r = nav.randi(10, 2,2); tc.verifySize(r, [2 2]); tc.verifyEqual(r, floor(r)); % check range r = nav.randi(10, 100,1); tc.verifyTrue(min(r) >= 1); tc.verifyTrue(max(r) <= 10); end
github
RobinAmsters/GT_mobile_robotics-master
LinkTest.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/LinkTest.m
21,983
utf_8
cebe5d2fc8d7db771204d971accbdde7
%% This is for testing the Link functions in the robotics Toolbox function tests = LinkTest tests = functiontests(localfunctions); end function constructor_classic_dh_test(tc) L = Link(); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 0); tc.verifyEqual(L.d, 0); tc.verifyEqual(L.a, 0); tc.verifyEqual(L.alpha, 0); tc.verifyEqual(L.offset, 0); tc.verifyEqual(L.type, 'R'); tc.verifyTrue(isrevolute(L)); tc.verifyFalse(isprismatic(L)); tc.verifyEqual(L.mdh, 0); L = Link([1 2 3 4]); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 1); tc.verifyEqual(L.d, 2); tc.verifyEqual(L.a, 3); tc.verifyEqual(L.alpha, 4); tc.verifyEqual(L.offset, 0); tc.verifyEqual(L.type, 'R'); tc.verifyTrue(isrevolute(L)); tc.verifyFalse(isprismatic(L)); tc.verifyEqual(L.mdh, 0); L = Link([1 2 3 4 1]); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 1); tc.verifyEqual(L.d, 2); tc.verifyEqual(L.a, 3); tc.verifyEqual(L.alpha, 4); tc.verifyEqual(L.offset, 0); tc.verifyEqual(L.type, 'P'); tc.verifyFalse(isrevolute(L)); tc.verifyTrue(isprismatic(L)); tc.verifyEqual(L.mdh, 0); L = Link([1 2 3 4 1 5]); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 1); tc.verifyEqual(L.d, 2); tc.verifyEqual(L.a, 3); tc.verifyEqual(L.alpha, 4); tc.verifyEqual(L.offset, 5); tc.verifyEqual(L.type, 'P'); tc.verifyFalse(isrevolute(L)); tc.verifyTrue(isprismatic(L)); tc.verifyEqual(L.mdh, 0); L = Link([1 2 3 4 1 5], 'standard'); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 1); tc.verifyEqual(L.d, 2); tc.verifyEqual(L.a, 3); tc.verifyEqual(L.alpha, 4); tc.verifyEqual(L.offset, 5); tc.verifyEqual(L.type, 'P'); tc.verifyFalse(isrevolute(L)); tc.verifyTrue(isprismatic(L)); tc.verifyEqual(L.mdh, 0); verifyError(tc, @() Link(1), 'RTB:Link:badarg'); verifyError(tc, @() Link([1 2 3]), 'RTB:Link:badarg'); % dynamics standard revolute L = Link([1 2 3 4 0 6:19 -20]); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 1); tc.verifyEqual(L.d, 2); tc.verifyEqual(L.a, 3); tc.verifyEqual(L.alpha, 4); tc.verifyEqual(L.offset, 0); tc.verifyEqual(L.type, 'R'); tc.verifyTrue(isrevolute(L)); tc.verifyFalse(isprismatic(L)); tc.verifyEqual(L.mdh, 0); tc.verifyEqual(L.m, 6); tc.verifyEqual(L.r, [7:9]); tc.verifyEqual(diag(L.I)', [10:12]); tc.verifyEqual(diag(L.I,1)', [13:14]); tc.verifyEqual(diag(L.I,2), 15); tc.verifyEqual(L.Jm, 16); tc.verifyEqual(L.G, 17); tc.verifyEqual(L.B, 18); tc.verifyEqual(L.Tc, [19 -20]); % dynamics standard prismatic L = Link([1 2 3 4 1 6:19 -20]); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 1); tc.verifyEqual(L.d, 2); tc.verifyEqual(L.a, 3); tc.verifyEqual(L.alpha, 4); tc.verifyEqual(L.offset, 0); tc.verifyEqual(L.type, 'P'); tc.verifyFalse(isrevolute(L)); tc.verifyTrue(isprismatic(L)); tc.verifyEqual(L.mdh, 0); tc.verifyEqual(L.m, 6); tc.verifyEqual(L.r, [7:9]); tc.verifyEqual(diag(L.I)', [10:12]); tc.verifyEqual(diag(L.I,1)', [13:14]); tc.verifyEqual(diag(L.I,2), 15); tc.verifyEqual(L.Jm, 16); tc.verifyEqual(L.G, 17); tc.verifyEqual(L.B, 18); tc.verifyEqual(L.Tc, [19 -20]); end function constructor_classic_mdh_test(tc) % L = Link('modified'); % tc.verifyTrue( isa(L, 'Link') ); % tc.verifyEqual(L.theta, 0); % tc.verifyEqual(L.d, 0); % tc.verifyEqual(L.a, 0); % tc.verifyEqual(L.alpha, 0); % tc.verifyEqual(L.offset, 0); % tc.verifyEqual(L.type, 'R'); % tc.verifyTrue(isrevolute(L)); % tc.verifyFalse(isprismatic(L)); % tc.verifyEqual(L.mdh, 1); L = Link([1 2 3 4], 'modified'); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 1); tc.verifyEqual(L.d, 2); tc.verifyEqual(L.a, 3); tc.verifyEqual(L.alpha, 4); tc.verifyEqual(L.offset, 0); tc.verifyEqual(L.type, 'R'); tc.verifyTrue(isrevolute(L)); tc.verifyFalse(isprismatic(L)); tc.verifyEqual(L.mdh, 1); L = Link([1 2 3 4 1], 'modified'); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 1); tc.verifyEqual(L.d, 2); tc.verifyEqual(L.a, 3); tc.verifyEqual(L.alpha, 4); tc.verifyEqual(L.offset, 0); tc.verifyEqual(L.type, 'P'); tc.verifyFalse(isrevolute(L)); tc.verifyTrue(isprismatic(L)); tc.verifyEqual(L.mdh, 1); L = Link([1 2 3 4 1 5], 'modified'); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 1); tc.verifyEqual(L.d, 2); tc.verifyEqual(L.a, 3); tc.verifyEqual(L.alpha, 4); tc.verifyEqual(L.offset, 5); tc.verifyEqual(L.type, 'P'); tc.verifyFalse(isrevolute(L)); tc.verifyTrue(isprismatic(L)); tc.verifyEqual(L.mdh, 1); end function constructor_test(tc) % standard revolute L = Link('d', 1, 'a', 2, 'alpha', 3, 'B', 4, 'm', 5, 'G', 6, 'Jm', 7, 'Tc', [8 -9], ... 'r', [10 11 12], 'I', [21:26], 'qlim', [30 31]); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.d, 1); tc.verifyEqual(L.a, 2); tc.verifyEqual(L.alpha, 3); tc.verifyEqual(L.B, 4); tc.verifyEqual(L.m, 5); tc.verifyEqual(L.G, 6); tc.verifyEqual(L.Jm, 7); tc.verifyEqual(L.Tc, [8 -9]); tc.verifyEqual(L.r, [10 11 12]); tc.verifyEqual(diag(L.I)', [21:23]); tc.verifyEqual(diag(L.I,1)', [24:25]); tc.verifyEqual(diag(L.I,2), 26); tc.verifyEqual(L.qlim, [30 31]); tc.verifyTrue(isrevolute(L)); tc.verifyFalse(isprismatic(L)); tc.verifyEqual(L.mdh, 0); % standard revolute L = Link('d', 1, 'a', 2, 'alpha', 3, 'B', 4, 'm', 5, 'G', 6, 'Jm', 7, 'Tc', [8 -9], ... 'r', [10 11 12], 'I', [21:26], 'qlim', [30 31], 'revolute', 'standard'); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.d, 1); tc.verifyEqual(L.a, 2); tc.verifyEqual(L.alpha, 3); tc.verifyEqual(L.B, 4); tc.verifyEqual(L.m, 5); tc.verifyEqual(L.G, 6); tc.verifyEqual(L.Jm, 7); tc.verifyEqual(L.Tc, [8 -9]); tc.verifyEqual(L.r, [10 11 12]); tc.verifyEqual(diag(L.I)', [21:23]); tc.verifyEqual(diag(L.I,1)', [24:25]); tc.verifyEqual(diag(L.I,2), 26); tc.verifyEqual(L.qlim, [30 31]); tc.verifyTrue(isrevolute(L)); tc.verifyFalse(isprismatic(L)); tc.verifyEqual(L.mdh, 0); % standard prismatic L = Link('theta', 1, 'a', 2, 'alpha', 3, 'B', 4, 'm', 5, 'G', 6, 'Jm', 7, 'Tc', [8 -9], ... 'r', [10 11 12], 'I', [21:26], 'qlim', [30 31], 'prismatic'); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 1); tc.verifyEqual(L.a, 2); tc.verifyEqual(L.alpha, 3); tc.verifyEqual(L.B, 4); tc.verifyEqual(L.m, 5); tc.verifyEqual(L.G, 6); tc.verifyEqual(L.Jm, 7); tc.verifyEqual(L.Tc, [8 -9]); tc.verifyEqual(L.r, [10 11 12]); tc.verifyEqual(diag(L.I)', [21:23]); tc.verifyEqual(diag(L.I,1)', [24:25]); tc.verifyEqual(diag(L.I,2), 26); tc.verifyEqual(L.qlim, [30 31]); tc.verifyFalse(isrevolute(L)); tc.verifyTrue(isprismatic(L)); tc.verifyEqual(L.mdh, 0); % modified revolute L = Link('d', 1, 'a', 2, 'alpha', 3, 'B', 4, 'm', 5, 'G', 6, 'Jm', 7, 'Tc', [8 -9], ... 'r', [10 11 12], 'I', [21:26], 'qlim', [30 31], 'modified'); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.d, 1); tc.verifyEqual(L.a, 2); tc.verifyEqual(L.alpha, 3); tc.verifyEqual(L.B, 4); tc.verifyEqual(L.m, 5); tc.verifyEqual(L.G, 6); tc.verifyEqual(L.Jm, 7); tc.verifyEqual(L.Tc, [8 -9]); tc.verifyEqual(L.r, [10 11 12]); tc.verifyEqual(diag(L.I)', [21:23]); tc.verifyEqual(diag(L.I,1)', [24:25]); tc.verifyEqual(diag(L.I,2), 26); tc.verifyEqual(L.qlim, [30 31]); tc.verifyTrue(isrevolute(L)); tc.verifyFalse(isprismatic(L)); tc.verifyEqual(L.mdh, 1); % modified prismatic L = Link('theta', 1, 'a', 2, 'alpha', 3, 'B', 4, 'm', 5, 'G', 6, 'Jm', 7, 'Tc', [8 -9], ... 'r', [10 11 12], 'I', [21:26], 'qlim', [30 31], 'modified', 'prismatic'); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 1); tc.verifyEqual(L.a, 2); tc.verifyEqual(L.alpha, 3); tc.verifyEqual(L.B, 4); tc.verifyEqual(L.m, 5); tc.verifyEqual(L.G, 6); tc.verifyEqual(L.Jm, 7); tc.verifyEqual(L.Tc, [8 -9]); tc.verifyEqual(L.r, [10 11 12]); tc.verifyEqual(diag(L.I)', [21:23]); tc.verifyEqual(diag(L.I,1)', [24:25]); tc.verifyEqual(diag(L.I,2), 26); tc.verifyEqual(L.qlim, [30 31]); tc.verifyFalse(isrevolute(L)); tc.verifyTrue(isprismatic(L)); tc.verifyEqual(L.mdh, 1); verifyError(tc, @() Link('theta', 1, 'd', 2), 'RTB:Link:badarg'); % symbolic L = Link('d', 1, 'a', 2, 'alpha', 3, 'sym'); tc.verifyTrue( isa(L, 'Link') ); tc.verifyTrue(L.issym); tc.verifyTrue(isa(L.d, 'sym')); tc.verifyTrue(eval(L.d == 1)); tc.verifyTrue(isa(L.a, 'sym')); tc.verifyTrue(eval(L.a == 2)); tc.verifyTrue(isa(L.alpha, 'sym')); tc.verifyTrue(eval(L.alpha == 3)); L = Link('theta', 1, 'a', 2, 'alpha', 3, 'sym'); tc.verifyTrue( isa(L, 'Link') ); tc.verifyTrue(L.issym); tc.verifyTrue(isa(L.theta, 'sym')); tc.verifyTrue(eval(L.theta == 1)); tc.verifyTrue(isa(L.a, 'sym')); tc.verifyTrue(eval(L.a == 2)); tc.verifyTrue(isa(L.alpha, 'sym')); tc.verifyTrue(eval(L.alpha == 3)); end %% test the convenience subclasses function constructor_revolute_test(tc) L = Revolute(); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.d, 0); tc.verifyEqual(L.a, 0); tc.verifyEqual(L.alpha, 0); tc.verifyEqual(L.offset, 0); tc.verifyEqual(L.type, 'R'); tc.verifyTrue(isrevolute(L)); tc.verifyFalse(isprismatic(L)); tc.verifyEqual(L.mdh, 0); L = Revolute('d', 1, 'a', 2, 'alpha', 3, 'B', 4, 'm', 5, 'G', 6, 'Jm', 7, 'Tc', [8 -9], ... 'r', [10 11 12], 'I', [21:26], 'qlim', [30 31]); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.d, 1); tc.verifyEqual(L.a, 2); tc.verifyEqual(L.alpha, 3); tc.verifyEqual(L.B, 4); tc.verifyEqual(L.m, 5); tc.verifyEqual(L.G, 6); tc.verifyEqual(L.Jm, 7); tc.verifyEqual(L.Tc, [8 -9]); tc.verifyEqual(L.r, [10 11 12]); tc.verifyEqual(diag(L.I)', [21:23]); tc.verifyEqual(diag(L.I,1)', [24:25]); tc.verifyEqual(diag(L.I,2), 26); tc.verifyEqual(L.qlim, [30 31]); tc.verifyTrue(isrevolute(L)); tc.verifyFalse(isprismatic(L)); tc.verifyEqual(L.mdh, 0); tc.verifyEqual(L.type, 'R'); end function constructor_prismatic_test(tc) L = Prismatic(); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 0); tc.verifyEqual(L.a, 0); tc.verifyEqual(L.alpha, 0); tc.verifyEqual(L.offset, 0); tc.verifyEqual(L.type, 'P'); tc.verifyFalse(isrevolute(L)); tc.verifyTrue(isprismatic(L)); tc.verifyEqual(L.mdh, 0); L = Prismatic('theta', 1, 'a', 2, 'alpha', 3, 'B', 4, 'm', 5, 'G', 6, 'Jm', 7, 'Tc', [8 -9], ... 'r', [10 11 12], 'I', [21:26], 'qlim', [30 31]); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 1); tc.verifyEqual(L.a, 2); tc.verifyEqual(L.alpha, 3); tc.verifyEqual(L.B, 4); tc.verifyEqual(L.m, 5); tc.verifyEqual(L.G, 6); tc.verifyEqual(L.Jm, 7); tc.verifyEqual(L.Tc, [8 -9]); tc.verifyEqual(L.r, [10 11 12]); tc.verifyEqual(diag(L.I)', [21:23]); tc.verifyEqual(diag(L.I,1)', [24:25]); tc.verifyEqual(diag(L.I,2), 26); tc.verifyEqual(L.qlim, [30 31]); tc.verifyEqual(L.type, 'P'); tc.verifyFalse(isrevolute(L)); tc.verifyTrue(isprismatic(L)); tc.verifyEqual(L.mdh, 0); end function constructor_revolute_mdh_test(tc) L = RevoluteMDH(); tc.verifyTrue( isa(L, 'Link') ); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.d, 0); tc.verifyEqual(L.a, 0); tc.verifyEqual(L.alpha, 0); tc.verifyEqual(L.offset, 0); tc.verifyEqual(L.type, 'R'); tc.verifyTrue(isrevolute(L)); tc.verifyFalse(isprismatic(L)); tc.verifyEqual(L.mdh, 1); L = RevoluteMDH('d', 1, 'a', 2, 'alpha', 3, 'B', 4, 'm', 5, 'G', 6, 'Jm', 7, 'Tc', [8 -9], ... 'r', [10 11 12], 'I', [21:26], 'qlim', [30 31]); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.d, 1); tc.verifyEqual(L.a, 2); tc.verifyEqual(L.alpha, 3); tc.verifyEqual(L.B, 4); tc.verifyEqual(L.m, 5); tc.verifyEqual(L.G, 6); tc.verifyEqual(L.Jm, 7); tc.verifyEqual(L.Tc, [8 -9]); tc.verifyEqual(L.r, [10 11 12]); tc.verifyEqual(diag(L.I)', [21:23]); tc.verifyEqual(diag(L.I,1)', [24:25]); tc.verifyEqual(diag(L.I,2), 26); tc.verifyEqual(L.qlim, [30 31]); tc.verifyTrue(isrevolute(L)); tc.verifyFalse(isprismatic(L)); tc.verifyEqual(L.type, 'R'); tc.verifyEqual(L.mdh, 1); end function constructor_prismatic_mdh_test(tc) L = PrismaticMDH(); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 0); tc.verifyEqual(L.a, 0); tc.verifyEqual(L.alpha, 0); tc.verifyEqual(L.offset, 0); tc.verifyEqual(L.type, 'P'); tc.verifyFalse(isrevolute(L)); tc.verifyTrue(isprismatic(L)); tc.verifyEqual(L.mdh, 1); L = PrismaticMDH('theta', 1, 'a', 2, 'alpha', 3, 'B', 4, 'm', 5, 'G', 6, 'Jm', 7, 'Tc', [8 -9], ... 'r', [10 11 12], 'I', [21:26], 'qlim', [30 31]); tc.verifyTrue( isa(L, 'Link') ); tc.verifyFalse(L.issym); tc.verifyEqual(L.theta, 1); tc.verifyEqual(L.a, 2); tc.verifyEqual(L.alpha, 3); tc.verifyEqual(L.B, 4); tc.verifyEqual(L.m, 5); tc.verifyEqual(L.G, 6); tc.verifyEqual(L.Jm, 7); tc.verifyEqual(L.Tc, [8 -9]); tc.verifyEqual(L.r, [10 11 12]); tc.verifyEqual(diag(L.I)', [21:23]); tc.verifyEqual(diag(L.I,1)', [24:25]); tc.verifyEqual(diag(L.I,2), 26); tc.verifyEqual(L.qlim, [30 31]); tc.verifyEqual(L.type, 'P'); tc.verifyFalse(isrevolute(L)); tc.verifyTrue(isprismatic(L)); tc.verifyEqual(L.mdh, 1); end %% construct a robot link object function Link_test(tc) %create a 2 link arm with Link L(1)=Link([1 1 1 1 1]); s = L(1).char; L(1).dyn; L(2)=Link([0 1 0 1 0]); s = L.char; L.display; % dyn display link dynamic parameters L.dyn; % Methods:: % A return link transform (A) matrix %Transforms for link 1 verifyEqual(tc, L(1).A(0.5).T, ... [0.5403 -0.4546 0.7081 0.5403 0.8415 0.2919 -0.4546 0.8415 0 0.8415 0.5403 0.5000 0 0 0 1.0000], ... 'absTol',1e-4); verifyEqual(tc, L(1).A(0).T, ... [0.5403 -0.4546 0.7081 0.5403 0.8415 0.2919 -0.4546 0.8415 0 0.8415 0.5403 0 0 0 0 1.0000], ... 'absTol',1e-4); %Transforms for link 2 verifyEqual(tc, L(2).A(0.5).T, ... [0.8776 -0.2590 0.4034 0 0.4794 0.4742 -0.7385 0 0 0.8415 0.5403 1.0000 0 0 0 1.0000], ... 'absTol',1e-4); verifyEqual(tc, L(2).A(0).T, ... [1.0000 0 0 0 0 0.5403 -0.8415 0 0 0.8415 0.5403 1.0000 0 0 0 1.0000], ... 'absTol',1e-4); % RP return joint type: 'R' or 'P' verifyEqual(tc, L.type, 'PR'); % islimit true if joint exceeds soft limit L(2).qlim = [-1 1]; verifyEqual(tc, L(2).islimit(0), 0); verifyEqual(tc, L(2).islimit(3), 1); verifyEqual(tc, L(2).islimit(-2), -1); % isrevolute true if joint is revolute verifyFalse(tc, L(1).isrevolute); verifyTrue(tc, L(2).isrevolute); % isprismatic true if joint is prismatic verifyFalse(tc, L(2).isprismatic); verifyTrue(tc, L(1).isprismatic); syms a1 m1 c1 Iyy1 b1; L = Revolute('d', 0, 'a', a1, 'alpha', 0, 'm', m1, 'r', [c1 0 0], 'I', [0 Iyy1 0], 'B', b1, 'G', 1, 'Jm', 0, 'standard'); L L.dyn end function deepcopy_test(tc) % deep copy test L = Link([1 2 3 4]); L2 = Link(L); verifyEqual(tc, L.a, 3); verifyEqual(tc, L2.a, 3); L.a = 10; verifyEqual(tc, L.a, 10); verifyEqual(tc, L2.a, 3); end function RP_test(tc) L = Link(); tc.verifyEqual(L.RP, 'R'); tc.verifyWarning( @() L.RP, 'RTB:Link:deprecated'); end function type_test(tc) L = [ Revolute() Prismatic() Prismatic() Revolute()]; tc.verifyEqual(L.type, 'RPPR'); end function set_test(tc) L = Link([1 1 1 1 1]); L.r = [1 2 3]; verifyEqual(tc, L.r, [1 2 3]); L.r = [1 2 3]'; verifyEqual(tc, L.r, [1 2 3]); L.I = [1, 2, 3]; verifyEqual(tc, L.I, diag([1,2,3])); L.I = [1, 2, 3, 4, 5, 6]; verifyEqual(tc, L.I, [1 4 6; 4 2 5; 6 5 3]); A = rand(3,3); L.I = A'*A; % make a symm matrix verifyEqual(tc, L.I, A'*A); L.Tc = 1; verifyEqual(tc, L.Tc, [1 -1]); L.Tc = [1 -2]; verifyEqual(tc, L.Tc, [1 -2]); % all these should all fail function set_fail1 L = Link; L.Tc = [-2 1]; % wrong order end function set_fail2 L = Link; L.r = [ 1 2]'; % too short end function set_fail3 L = Link; L.I = 1; % too short end function set_fail4 L = Link; I = diag([1 2 3]); I(1,2) = 1; L.I = I; % not symmetric end verifyError(tc, @set_fail1, 'RTB:Link:badarg'); verifyError(tc, @set_fail2, 'RTB:Link:badarg'); verifyError(tc, @set_fail3, 'RTB:Link:badarg'); verifyError(tc, @set_fail4, 'RTB:Link:badarg'); end function viscous_friction_test(tc) L = Link(); B = 1; G = 2; Tc = 0; % viscous model L.G = G; L.B = B; L.Tc = Tc; verifyEqual(tc, L.friction(1), -B*G^2); verifyEqual(tc, L.friction(-1), B*G^2); L.G = -G verifyEqual(tc, L.friction(1), -B*G^2); verifyEqual(tc, L.friction(-1), B*G^2); end function coulomb_friction_test(tc) L = Link(); B = 0; G = 2; Tc = [2 -3]; % coulomb model L.G = G L.B = 0; L.Tc = Tc; verifyEqual(tc, L.friction(1), -Tc(1)*G); verifyEqual(tc, L.friction(-1), -Tc(2)*G); % check for negative gear ratio L.G = -G % coulomb model L.B = 0; L.Tc = Tc; verifyEqual(tc, L.friction(1), -Tc(1)*G); verifyEqual(tc, L.friction(-1), -Tc(2)*G); L.Tc = []; % does nothing verifyEqual(tc, L.friction(1), -Tc(1)*G); verifyEqual(tc, L.friction(-1), -Tc(2)*G); %tc.verifyError( @() L.Tc = [1 2 3], 'RTB:Link:badarg'); function wrapper() L.Tc = [1 2 3] end tc.verifyError( @wrapper, 'RTB:Link:badarg'); end % nofriction remove joint friction function nofriction_test(tc) L = Link(); B = 1; G = 2; Tc = [2 -3]; L.B = B; L.G = G L.Tc = Tc; verifyFalse(tc, L.B == 0); verifyFalse(tc, all(L.Tc == 0) ); Lnf = L.nofriction('all'); verifyTrue(tc, Lnf.B == 0); verifyTrue(tc, all(Lnf.Tc == 0) ); % check original object unchanged verifyFalse(tc, L.B == 0); verifyFalse(tc, all(L.Tc == 0) ); Lnf = L.nofriction('viscous'); verifyTrue(tc, Lnf.B == 0); verifyFalse(tc, all(Lnf.Tc == 0) ); Lnf = L.nofriction('coulomb'); verifyFalse(tc, Lnf.B == 0); verifyTrue(tc, all(Lnf.Tc == 0) ); end function flip_test(tc) L = Link(); tc.verifyFalse(L.flip); L = Link('flip'); tc.verifyTrue(L.flip); end function A_test(tc) L = Link([1 2 3 pi/2]); tc.verifyEqual(L.A(0).T, [1 0 0 3; 0 0 -1 0; 0 1 0 2; 0 0 0 1], 'AbsTol', 1e-10); tc.verifyEqual(L.A({0}).T, [1 0 0 3; 0 0 -1 0; 0 1 0 2; 0 0 0 1], 'AbsTol', 1e-10); A = [0 0 1 0; 1 0 0 3; 0 1 0 2; 0 0 0 1]; tc.verifyEqual(L.A(pi/2).T, A, 'AbsTol', 1e-10); L.flip = true; tc.verifyEqual(L.A(-pi/2).T, A, 'AbsTol', 1e-10); end function char_test(tc) L = [ Revolute() Prismatic() Prismatic() Revolute()]; s = char(L); tc.verifyTrue(ischar(s)); tc.verifyEqual(size(s,1), 4); s = char(L, true); tc.verifyTrue(ischar(s)); tc.verifyEqual(size(s,1), 4); L = [ RevoluteMDH() PrismaticMDH() PrismaticMDH() RevoluteMDH()]; s = char(L); tc.verifyTrue(ischar(s)); tc.verifyEqual(size(s,1), 4); s = char(L, true); tc.verifyTrue(ischar(s)); tc.verifyEqual(size(s,1), 4); end function plus_test(tc) R = Revolute()+Prismatic()+Prismatic()+ Revolute(); tc.verifyTrue(isa(R, 'SerialLink')); tc.verifyEqual(R.n, 4); tc.verifyEqual(R.config, 'RPPR'); end
github
RobinAmsters/GT_mobile_robotics-master
DifferentialMotionTest.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/DifferentialMotionTest.m
7,265
utf_8
8045b2810725df6247d2469193269d26
%% This is for testing the Differential Motion functions in the robotics Toolbox function tests = TransformationsTest tests = functiontests(localfunctions); end %% skew - vector to skew symmetric matrix function skew_test(tc) %% 2D case verifyEqual(tc, skew(2),... [0 -2; 2 0],'absTol',1e-4); %% 3D case % test row and column vectors verifyEqual(tc, skew([1, 2, 3]'),... [ 0 -3 2 3 0 -1 -2 1 0],'absTol',1e-4); verifyEqual(tc, skew([1, 2, 3]),... [ 0 -3 2 3 0 -1 -2 1 0],'absTol',1e-4); end %% vex - skew symmetric matrix to vector function vex_test(tc) %% 2D case verifyEqual(tc, vex([0 -2; 2 0]), 2, 'absTol',1e-4); %% 3D case verifyEqual(tc, vex([0, -3, 2; 3, 0, -1; -2, 1, 0]),... [1; 2; 3],'absTol',1e-4); % unit testing vex with 3x3 skew matrix verifyEqual(tc, vex([0 0 0;0 0 0;0 0 0]),... [0; 0; 0],'absTol',1e-4); verifyError(tc, @()vex(1),'SMTB:vex:badarg'); verifyError(tc, @()vex(zeros(4,4)),'SMTB:vex:badarg'); % --------------------------------------------------------------------- % wtrans - transform wrench between frames % does not exist!!! need to find this function %---------------------------------------------------------------------- end %% skewa - augmented vector to skew symmetric matrix function skewa_test(tc) %% 2D case verifyEqual(tc, skewa([1 2 3]),... [0 -3 1; 3 0 2; 0 0 0],'absTol',1e-4); %% 3D case % test row and column vectors verifyEqual(tc, skewa([1, 2, 3, 4, 5, 6]'),... [0 -6 5 1; 6 0 -4 2; -5 4 0 3; 0 0 0 0],'absTol',1e-4); verifyEqual(tc, skewa([1, 2, 3, 4, 5, 6]),... [0 -6 5 1; 6 0 -4 2; -5 4 0 3; 0 0 0 0],'absTol',1e-4); verifyError(tc, @()skewa(1),'SMTB:skewa:badarg'); end %% vexa - augmented skew symmetric matrix to vector function vexa_test(tc) %% 2D case verifyEqual(tc, vexa([0 -3 1; 3 0 2; 0 0 0]), [1 2 3]', 'absTol',1e-4); %% 3D case verifyEqual(tc, vexa([0 -6 5 1; 6 0 -4 2; -5 4 0 3; 0 0 0 0]),... [1 2 3 4 5 6]','absTol',1e-4); verifyError(tc, @()vexa(1),'SMTB:vexa:badarg'); end %% Differential motion % delta2tr - differential motion vector to HT function delta2tr_test(testCase) %test with standard numbers verifyEqual(testCase, delta2tr([0.1 0.2 0.3 0.4 0.5 0.6]),... [1.0000 -0.6000 0.5000 0.1000 0.6000 1.0000 -0.4000 0.2000 -0.5000 0.4000 1.0000 0.3000 0 0 0 1.0000],'absTol',1e-4); %test with zeros verifyEqual(testCase, delta2tr([0 0 0 0 0 0]), eye(4,4),'absTol',1e-4); %test with scaler input verifyError(testCase, @()delta2tr(1),'MATLAB:badsubscript'); end % eul2jac - Euler angles to Jacobian function eul2jac_test(tc) % check it works for simple cases verifyEqual(tc, eul2jac(0, 0, 0), [0 0 0; 0 1 0; 1 0 1]); verifyEqual(tc, eul2jac( [0, 0, 0]), [0 0 0; 0 1 0; 1 0 1]); eul = [0.2 0.3 0.4]; % check complex case verifyEqual(tc, eul2jac( eul(1), eul(2), eul(3)), eul2jac(eul)); %Testing with a scalar number input verifyError(tc, @()eul2jac(1),'SMTB:eul2jac:badarg'); % test Jacobian against numerical approximation dth = 1e-6; R0 = eul2r(eul); R1 = eul2r(eul + dth*[1 0 0]); R2 = eul2r(eul + dth*[0 1 0]); R3 = eul2r(eul + dth*[0 0 1]); JJ = [ vex((R1-R0)*R0') vex((R2-R0)*R0') vex((R3-R0)*R0')] / dth; verifyEqual(tc, JJ, eul2jac(eul), 'absTol',1e-4) end % rpy2jac - RPY angles to Jacobian function rpy2jac_test(tc) % check it works for simple cases verifyEqual(tc, rpy2jac(0, 0, 0), eye(3,3)); verifyEqual(tc, rpy2jac( [0, 0, 0]), eye(3,3)); % check switches work verifyEqual(tc, rpy2jac( [0, 0, 0], 'xyz'), [0 0 1; 0 1 0; 1 0 0]); verifyEqual(tc, rpy2jac( [0, 0, 0], 'zyx'), eye(3,3)); verifyEqual(tc, rpy2jac( [0, 0, 0], 'yxz'), [0 1 0; 0 0 1; 1 0 0]); rpy = [0.2 0.3 0.4]; % check default verifyEqual(tc, rpy2jac(rpy), rpy2jac(rpy, 'zyx') ); % check complex case verifyEqual(tc, rpy2jac( rpy(1), rpy(2), rpy(3)), rpy2jac(rpy)); %Testing with a scalar number input verifyError(tc, @()rpy2jac(1),'SMTB:rpy2jac:badarg'); % test Jacobian against numerical approximation for 3 different orders dth = 1e-6; for oo = {'xyz', 'zyx', 'yxz'} order = oo{1}; R0 = rpy2r(rpy, order); R1 = rpy2r(rpy + dth*[1 0 0], order); R2 = rpy2r(rpy + dth*[0 1 0], order); R3 = rpy2r(rpy + dth*[0 0 1], order); JJ = [ vex((R1-R0)*R0') vex((R2-R0)*R0') vex((R3-R0)*R0')] / dth; verifyEqual(tc, JJ, rpy2jac(rpy, order), 'absTol',1e-4) end end % tr2delta - HT to differential motion vector function tr2delta_test(tc) % unit testing tr2delta with a tr matrix verifyEqual(tc, tr2delta( transl(0.1, 0.2, 0.3) ),... [0.1000, 0.2000, 0.3000, 0, 0, 0]','absTol',1e-4); verifyEqual(tc, tr2delta( transl(0.1, 0.2, 0.3), transl(0.2, 0.4, 0.6) ), ... [0.1000, 0.2000, 0.3000, 0, 0, 0]','absTol',1e-4); verifyEqual(tc, tr2delta( trotx(0.001) ), ... [0,0,0, 0.001,0,0]','absTol',1e-4); verifyEqual(tc, tr2delta( troty(0.001) ), ... [0,0,0, 0,0.001,0]','absTol',1e-4); verifyEqual(tc, tr2delta( trotz(0.001) ), ... [0,0,0, 0,0,0.001]','absTol',1e-4); verifyEqual(tc, tr2delta( trotx(0.001), trotx(0.002) ), ... [0,0,0, 0.001,0,0]','absTol',1e-4); %Testing with a scalar number input verifyError(tc, @()tr2delta(1),'SMTB:tr2delta:badarg'); verifyError(tc, @()tr2delta( ones(3,3) ),'SMTB:tr2delta:badarg'); end % tr2jac - HT to Jacobian function tr2jac_test(tc) % unit testing tr2jac with homogeneous transform T = transl(1,2,3); [R,t] = tr2rt(T); verifyEqual(tc, tr2jac(T), [R' zeros(3,3); zeros(3,3) R']); verifyEqual(tc, tr2jac(T, 'samebody'), [R' (skew(t)*R)'; zeros(3,3) R']); T = transl(1,2,3) * trotx(pi/2) * trotz(pi/2); [R,t] = tr2rt(T); verifyEqual(tc, tr2jac(T), [R' zeros(3,3); zeros(3,3) R']); verifyEqual(tc, tr2jac(T, 'samebody'), [R' (skew(t)*R)'; zeros(3,3) R']); % test with scalar value verifyError(tc, @()tr2jac(1),'SMTB:t2r:badarg'); end function wtrans_test(tc) v = [1 2 3 4 5 6]'; tc.verifyEqual( wtrans(eye(4,4), v), v, 'abstol', 1e-10 ); tc.verifyEqual( wtrans(trotx(pi/2), v), [1 3 -2 4 6 -5]', 'abstol', 1e-10 ); tc.verifyEqual( wtrans(troty(pi/2), v), [-3 2 1 -6 5 4]', 'abstol', 1e-10 ); tc.verifyEqual( wtrans(trotz(pi/2), v), [2 -1 3 5 -4 6]', 'abstol', 1e-10 ); end
github
RobinAmsters/GT_mobile_robotics-master
SimulinkTest.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/SimulinkTest.m
2,857
utf_8
a6cf49d88a3bccec4399020aebe23602
%% Test all the Simulink models function tests = SimulinkTest tests = functiontests(localfunctions); end function setupOnce(testCase) testCase.TestData.StopTime = 0.5; end function teardownOnce(tc) delete('*.slxc') bdclose end function braitenberg_test(testCase) sim('sl_braitenberg', testCase.TestData.StopTime); bdclose all end function lanechange_test(testCase) sim('sl_lanechange', testCase.TestData.StopTime); bdclose all end function pursuit_test(testCase) sim('sl_pursuit', testCase.TestData.StopTime); bdclose all end function drivepoint_test(testCase) assignin('base', 'xg', [5 5]); assignin('base', 'x0', [0 0 pi/2]); sim('sl_drivepoint', testCase.TestData.StopTime); bdclose all end function driveline_test(testCase) assignin('base', 'L', [1 -2 4]); assignin('base', 'x0', [0 -4 pi]); sim('sl_driveline', testCase.TestData.StopTime); bdclose all end function drivepose_test(testCase) assignin('base', 'xg', [5 5 pi/2]); assignin('base', 'x0', [8 5 pi]); r = sim('sl_drivepose', testCase.TestData.StopTime); bdclose all end function jspace_test(testCase) mdl_puma560 assignin('base', 'p560', p560); sim('sl_jspace', testCase.TestData.StopTime); bdclose all end function rrmc_test(testCase) mdl_puma560 assignin('base', 'p560', p560); assignin('base', 'qn', qn); sim('sl_rrmc', testCase.TestData.StopTime); bdclose all end function rrmc2_test(testCase) mdl_puma560 assignin('base', 'p560', p560); assignin('base', 'qn', qn); sim('sl_rrmc2', testCase.TestData.StopTime); bdclose all end function ztorque_test(testCase) mdl_puma560 p560 = p560.nofriction(); assignin('base', 'p560', p560); sim('sl_ztorque', testCase.TestData.StopTime); bdclose all end function vlooptest_test(testCase) sim('vloop_test', testCase.TestData.StopTime); bdclose all end function plooptest_test(testCase) G = 107.815; % in case not previously set by vloop_test sim('ploop_test', 1); bdclose all end function ctorque_test(testCase) mdl_puma560 p560 = p560.nofriction(); assignin('base', 'p560', p560); sim('sl_ctorque', testCase.TestData.StopTime); bdclose all end function feedforward_test(testCase) mdl_puma560 p560 = p560.nofriction(); assignin('base', 'p560', p560); sim('sl_fforward', testCase.TestData.StopTime); bdclose all end function flexlink_test(testCase) mdl_twolink assignin('base', 'twolink', twolink); sim('sl_flex', testCase.TestData.StopTime); bdclose all end function quadcopter_test(testCase) sim('sl_quadrotor', testCase.TestData.StopTime); bdclose all end function quadcopter_vs_test(testCase) testCase.assumeTrue( exist('SphericalCamera') == 2 ); sim('sl_quadrotor_vs', testCase.TestData.StopTime/10); bdclose all end
github
RobinAmsters/GT_mobile_robotics-master
DHFactorTest.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/DHFactorTest.m
4,017
utf_8
6aafc123b008f31b798d1709095eed20
function tests = DHFactorTest tests = functiontests(localfunctions); clc end function constructor1_test(tc) dh = DHFactor('Tz(L1)'); tc.verifyClass(dh, 'DHFactor'); tc.verifySize(dh, [1 1]); tc.verifyEqual( char(dh.tool), 'eye(4,4)'); tc.verifyEqual( char(dh.base), 'eye(4,4)'); tc.verifyEqual( char(dh), 'Tz(L1)'); tc.verifyEqual( char(dh.command('R')), 'SerialLink([], ''name'', ''R'', ''base'', eye(4,4), ''tool'', eye(4,4), ''offset'', [])'); dh = DHFactor('Tz(q1)'); tc.verifyClass(dh, 'DHFactor'); tc.verifySize(dh, [1 1]); tc.verifyEqual( char(dh.tool), 'eye(4,4)'); tc.verifyEqual( char(dh.base), 'eye(4,4)'); tc.verifyEqual( char(dh), 'DH(0, q1, 0, 0)'); tc.verifyEqual( char(dh.command('R')), 'SerialLink([0, 0, 0, 0, 1; ], ''name'', ''R'', ''base'', eye(4,4), ''tool'', eye(4,4), ''offset'', [0 ])'); dh = DHFactor('Rz(q1)'); tc.verifyClass(dh, 'DHFactor'); tc.verifySize(dh, [1 1]); tc.verifyEqual( char(dh.tool), 'eye(4,4)'); tc.verifyEqual( char(dh.base), 'eye(4,4)'); tc.verifyEqual( char(dh), 'DH(q1, 0, 0, 0)'); tc.verifyEqual( char(dh.command('R')), 'SerialLink([0, 0, 0, 0, 0; ], ''name'', ''R'', ''base'', eye(4,4), ''tool'', eye(4,4), ''offset'', [0 ])'); end function constructor2_test(tc) s = 'Tz(L1) Rz(q1) Rx(90) Tx(L2)'; dh = DHFactor(s); tc.verifyClass(dh, 'DHFactor'); tc.verifySize(dh, [1 1]); tc.verifyEqual( char(dh.tool), 'eye(4,4)'); tc.verifyEqual( char(dh.base), 'eye(4,4)'); tc.verifyEqual( char(dh), 'DH(q1, L1, L2, 90)'); s = 'Tz(L1).Rz(q1).Rx(90).Tx(L2)'; dh = DHFactor(s); tc.verifyClass(dh, 'DHFactor'); tc.verifySize(dh, [1 1]); tc.verifyEqual( char(dh.tool), 'eye(4,4)'); tc.verifyEqual( char(dh.base), 'eye(4,4)'); tc.verifyEqual( char(dh), 'DH(q1, L1, L2, 90)'); s = 'Tz(L1)*Rz(q1)*Rx(90)*Tx(L2)'; dh = DHFactor(s); tc.verifyClass(dh, 'DHFactor'); tc.verifySize(dh, [1 1]); tc.verifyEqual( char(dh.tool), 'eye(4,4)'); tc.verifyEqual( char(dh.base), 'eye(4,4)'); tc.verifyEqual( char(dh), 'DH(q1, L1, L2, 90)'); s = 'Tz(-L1) Rz(q1) Rx(90) Tx(L2)'; dh = DHFactor(s); tc.verifyClass(dh, 'DHFactor'); tc.verifySize(dh, [1 1]); tc.verifyEqual( char(dh.tool), 'eye(4,4)'); tc.verifyEqual( char(dh.base), 'eye(4,4)'); tc.verifyEqual( char(dh), 'DH(q1, -L1, L2, 90)'); s = 'Tz(L1) Rz(-q1) Rx(90) Tx(L2)'; dh = DHFactor(s); tc.verifyClass(dh, 'DHFactor'); tc.verifySize(dh, [1 1]); tc.verifyEqual( char(dh.tool), 'eye(4,4)'); tc.verifyEqual( char(dh.base), 'eye(4,4)'); tc.verifyEqual( char(dh), 'DH(-q1, L1, L2, 90)'); s = 'Tz(L1) Rz(q1) Rx(-90) Tx(L2)'; dh = DHFactor(s); tc.verifyClass(dh, 'DHFactor'); tc.verifySize(dh, [1 1]); tc.verifyEqual( char(dh.tool), 'eye(4,4)'); tc.verifyEqual( char(dh.base), 'eye(4,4)'); tc.verifyEqual( char(dh), 'DH(q1, L1, L2, -90)'); s = 'Tz(L1) Rz(q1) Rx(270) Tx(L2)'; dh = DHFactor(s); tc.verifyClass(dh, 'DHFactor'); tc.verifySize(dh, [1 1]); tc.verifyEqual( char(dh.tool), 'eye(4,4)'); tc.verifyEqual( char(dh.base), 'eye(4,4)'); tc.verifyEqual( char(dh), 'DH(q1, L1, L2, 270)'); s = 'Tz(-L1) Rz(-q1) Rx(90) Tx(-L2)'; dh = DHFactor(s); tc.verifyClass(dh, 'DHFactor'); tc.verifySize(dh, [1 1]); tc.verifyEqual( char(dh.tool), 'eye(4,4)'); tc.verifyEqual( char(dh.base), 'eye(4,4)'); tc.verifyEqual( char(dh), 'DH(-q1, -L1, -L2, 90)'); end function puma560_test(tc) s = 'Tz(L1) Rz(q1) Ry(q2) Ty(L2) Tz(L3) Ry(q3) Tx(L4) Ty(L5) Tz(L6) Rz(q4) Ry(q5) Rz(q6)'; dh = DHFactor(s); tc.verifyEqual( char(dh), 'DH(q1, L1, 0, -90).DH(q2+90, 0, -L3, 0).DH(q3-90, L2+L5, L4, 90).DH(q4, L6, 0, -90).DH(q5, 0, 0, 90).DH(q6, 0, 0, 0)'); L1 = 0; L2 = -0.2337; L3 = 0.4318; L4 = 0.0203; L5 = 0.0837; L6 = 0.4318; R = eval( dh.command('R') ); tc.verifyEqual(R.n, 6); end
github
RobinAmsters/GT_mobile_robotics-master
VehicleTest.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/VehicleTest.m
7,297
utf_8
133abe837f10db9ffcfcd6634c19ffc8
function tests = VehicleTest tests = functiontests(localfunctions); clc end function Bicycle_constructor_test(tc) % default constructor v = Bicycle(); % display v % char s = v.char() tc.verifyTrue( ischar(s) ); % all options v = Bicycle( ... 'steermax', 2, ... 'accelmax', 3, ... 'covar', [1 2;3 4], ... 'speedmax', 5, ... 'L',2.5, ... 'x0', [1 2 3], ... 'dt', 0.5, ... 'rdim', 0.3 ... ); tc.verifyEqual(v.steermax, 2); tc.verifyEqual(v.accelmax, 3); tc.verifyEqual(v.V, [1 2;3 4]); tc.verifyEqual(v.speedmax, 5); tc.verifyEqual(v.L, 2.5); tc.verifyEqual(v.x0, [1 2 3]'); tc.verifyEqual(v.dt, 0.5); tc.verifyEqual(v.rdim, 0.3); v.init() tc.verifyEqual(v.x, [1 2 3]'); end function Bicycle_deriv_test(tc) v = Bicycle('steermax', Inf); xd =v.deriv([], [0 0 0], [1 0]); tc.verifyEqual( xd, [1 0 0]', 'AbsTol', 1e-6); xd =v.deriv([], [0 0 pi/2], [1 0]); tc.verifyEqual( xd, [0 1 0]', 'AbsTol', 1e-6); xd =v.deriv([], [0 0 0], [0 1]); tc.verifyEqual( xd, [0 0 0]', 'AbsTol', 1e-6); xd =v.deriv([], [0 0 0], [1 pi/4]); tc.verifyEqual( xd, [1 0 1]', 'AbsTol', 1e-6); v = Bicycle('steermax', pi/4); xd =v.deriv([], [0 0 0], [1 100]); tc.verifyEqual( xd, [1 0 1]', 'AbsTol', 1e-6); v = Bicycle('speedmax', 1, 'steermax', Inf); xd =v.deriv([], [0 0 0], [100 pi/4]); tc.verifyEqual( xd, [1 0 1]', 'AbsTol', 1e-6); v = Bicycle('accelmax', 1); xd =v.deriv([], [0 0 0], [100 0]); tc.verifyEqual( xd, [v.dt 0 0]', 'AbsTol', 1e-6); for i=1:9 xd =v.deriv([], [0 0 0], [100 0]); end tc.verifyEqual( xd, [1 0 0]', 'AbsTol', 1e-6); end function Bicycle_update_test(tc) v = Bicycle('dt', 1, 'speedmax', Inf, 'steermax', Inf); tc.verifyEqual( v.update([1 0]), [1 0], 'AbsTol', 1e-6); tc.verifyEqual( v.x, [1 0 0]', 'AbsTol', 1e-6); tc.verifyEqual( v.update([1 0]), [1 0], 'AbsTol', 1e-6); tc.verifyEqual( v.x, [2 0 0]', 'AbsTol', 1e-6); tc.verifyEqual( v.update([-2 0]), [2 0], 'AbsTol', 1e-6); tc.verifyEqual( v.x, [0 0 0]', 'AbsTol', 1e-6); tc.verifyEqual( size(v.x_hist,1), 3); v.init(); tc.verifyEqual( size(v.x_hist,1), 0); tc.verifyEqual( v.update([0 1]), [0 0], 'AbsTol', 1e-6); tc.verifyEqual( v.update([1 pi/4]), [1 1], 'AbsTol', 1e-6); end function Bicycle_f_test(tc) v = Bicycle('steermax', Inf); tc.verifyEqual( v.f([0 0 0], [1 0], [0 0]), [1 0 0], 'AbsTol', 1e-6); tc.verifyEqual( v.f([2 3 0], [1 0], [0 0]), [3 3 0], 'AbsTol', 1e-6); tc.verifyEqual( v.f([0 0 0], [0 0], [1 0]), [1 0 0], 'AbsTol', 1e-6); tc.verifyEqual( v.f([0 0 0], [0 1], [0 0]), [0 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.f([0 0 0], [sqrt(2) pi/4], [0 0]), [1 1 pi/4], 'AbsTol', 1e-6); tc.verifyEqual( v.f([0 0 0], [sqrt(2) 0], [0 pi/4]), [1 1 pi/4], 'AbsTol', 1e-6); end function Bicycle_jacobian_test(tc) v = Bicycle('steermax', Inf); tc.verifyEqual( v.Fx([0 0 0], [0 0]), [1 0 0; 0 1 0; 0 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.Fx([0 0 0], [2 0]), [1 0 0; 0 1 2; 0 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.Fx([2 3 0], [2 0]), [1 0 0; 0 1 2; 0 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.Fx([0 0 0], [3 pi/2]), [1 0 -3; 0 1 0; 0 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.Fv([0 0 0], [0 0]), [1 0; 0 0; 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.Fv([2 3 0], [0 0]), [1 0; 0 0; 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.Fv([0 0 0], [2 3]), [1 0; 0 0; 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.Fv([0 0 pi/2], [0 0]), [0 0; 1 0; 0 1], 'AbsTol', 1e-6); end function Unicycle_constructor_test(tc) % default constructor v = Unicycle(); % display v % char s = v.char() tc.verifyTrue( ischar(s) ); % all options v = Bicycle( ... 'accelmax', 3, ... 'covar', [1 2;3 4], ... 'speedmax', 5, ... 'L',2.5, ... 'x0', [1 2 3], ... 'dt', 0.5, ... 'rdim', 0.3 ... ); tc.verifyEqual(v.accelmax, 3); tc.verifyEqual(v.V, [1 2;3 4]); tc.verifyEqual(v.speedmax, 5); tc.verifyEqual(v.L, 2.5); tc.verifyEqual(v.x0, [1 2 3]'); tc.verifyEqual(v.dt, 0.5); tc.verifyEqual(v.rdim, 0.3); v.init() tc.verifyEqual(v.x, [1 2 3]'); end function Unicycle_deriv_test(tc) v = Unicycle(); xd =v.deriv([], [0 0 0], [1 0]); tc.verifyEqual( xd, [1 0 0]', 'AbsTol', 1e-6); xd =v.deriv([], [0 0 pi/2], [1 0]); tc.verifyEqual( xd, [0 1 0]', 'AbsTol', 1e-6); xd =v.deriv([], [0 0 0], [0 1]); tc.verifyEqual( xd, [0 0 1]', 'AbsTol', 1e-6); xd =v.deriv([], [0 0 0], [1 1]); tc.verifyEqual( xd, [1 0 1]', 'AbsTol', 1e-6); v = Unicycle('speedmax', 1); xd =v.deriv([], [0 0 0], [100 0]); tc.verifyEqual( xd, [1 0 0]', 'AbsTol', 1e-6); v = Unicycle('accelmax', 1); xd =v.deriv([], [0 0 0], [100 0]); tc.verifyEqual( xd, [v.dt 0 0]', 'AbsTol', 1e-6); for i=1:9 xd =v.deriv([], [0 0 0], [100 0]); end tc.verifyEqual( xd, [1 0 0]', 'AbsTol', 1e-6); end function Unicycle_update_test(tc) v = Unicycle('dt', 1, 'speedmax', Inf); tc.verifyEqual( v.update([1 0]), [1 0], 'AbsTol', 1e-6); tc.verifyEqual( v.x, [1 0 0]', 'AbsTol', 1e-6); tc.verifyEqual( v.update([1 0]), [1 0], 'AbsTol', 1e-6); tc.verifyEqual( v.x, [2 0 0]', 'AbsTol', 1e-6); tc.verifyEqual( v.update([-2 0]), [2 0], 'AbsTol', 1e-6); tc.verifyEqual( v.x, [0 0 0]', 'AbsTol', 1e-6); tc.verifyEqual( size(v.x_hist,1), 3); v.init(); tc.verifyEqual( size(v.x_hist,1), 0); tc.verifyEqual( v.update([0 1]), [0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.update([2 1]), [2 1], 'AbsTol', 1e-6); end function Unicycle_f_test(tc) v = Unicycle(); tc.verifyEqual( v.f([0 0 0], [1 0], [0 0]), [1 0 0], 'AbsTol', 1e-6); tc.verifyEqual( v.f([2 3 0], [1 0], [0 0]), [3 3 0], 'AbsTol', 1e-6); tc.verifyEqual( v.f([0 0 0], [0 0], [1 0]), [1 0 0], 'AbsTol', 1e-6); tc.verifyEqual( v.f([0 0 0], [0 1], [0 0]), [0 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.f([0 0 0], [sqrt(2) pi/4], [0 0]), [1 1 pi/4], 'AbsTol', 1e-6); tc.verifyEqual( v.f([0 0 0], [sqrt(2) 0], [0 pi/4]), [1 1 pi/4], 'AbsTol', 1e-6); end function Unicycle_jacobian_test(tc) v = Unicycle(); tc.verifyEqual( v.Fx([0 0 0], [0 0]), [1 0 0; 0 1 0; 0 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.Fx([0 0 0], [2 0]), [1 0 0; 0 1 2; 0 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.Fx([2 3 0], [2 0]), [1 0 0; 0 1 2; 0 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.Fx([0 0 0], [3 pi/2]), [1 0 -3; 0 1 0; 0 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.Fv([0 0 0], [0 0]), [1 0; 0 0; 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.Fv([2 3 0], [0 0]), [1 0; 0 0; 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.Fv([0 0 0], [2 3]), [1 0; 0 0; 0 1], 'AbsTol', 1e-6); tc.verifyEqual( v.Fv([0 0 pi/2], [0 0]), [0 0; 1 0; 0 1], 'AbsTol', 1e-6); end
github
RobinAmsters/GT_mobile_robotics-master
CodeGeneratorTest.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/CodeGeneratorTest.m
25,883
utf_8
05b04e19e1fc53ea547e7d804d91560c
function tests = CodeGeneratorTest tests = functiontests(localfunctions); end function setupOnce(testCase) % Create a test robot based on the first three links of the Puma 560. deg = pi/180; L(1) = Revolute('d', 0, 'a', 0, 'alpha', pi/2, ... 'I', [0, 0.35, 0, 0, 0, 0], ... 'r', [0, 0, 0], ... 'm', 0, ... 'Jm', 200e-6, ... 'G', -62.6111, ... 'B', 1.48e-3, ... 'Tc', [0.395 -0.435], ... 'qlim', [-160 160]*deg ); L(2) = Revolute('d', 0, 'a', 0.4318, 'alpha', 0, ... 'I', [0.13, 0.524, 0.539, 0, 0, 0], ... 'r', [-0.3638, 0.006, 0.2275], ... 'm', 17.4, ... 'Jm', 200e-6, ... 'G', 107.815, ... 'B', .817e-3, ... 'Tc', [0.126 -0.071], ... 'qlim', [-45 225]*deg ); L(3) = Revolute('d', 0.15005, 'a', 0.0203, 'alpha', -pi/2, ... 'I', [0.066, 0.086, 0.0125, 0, 0, 0], ... 'r', [-0.0203, -0.0141, 0.070], ... 'm', 4.8, ... 'Jm', 200e-6, ... 'G', -53.7063, ... 'B', 1.38e-3, ... 'Tc', [0.132, -0.105], ... 'qlim', [-225 45]*deg ); testRob = SerialLink(L, 'name', 'UnitTestRobot'); testCase.TestData.rob = testRob.nofriction('all'); testCase.TestData.nTrials = 1; % number of tests to perform in each subroutine testCase.TestData.profile = false; testCase.TestData.cGen = CodeGenerator(testCase.TestData.rob,'default','logfile','cGenUnitTestLog.txt'); testCase.TestData.cGen.verbose = 0; end function teardownOnce(testCase) clear mex if ~isempty(strfind(path,testCase.TestData.cGen.basepath)) rmpath(testCase.TestData.cGen.basepath) rmdir(testCase.TestData.cGen.basepath, 's') delete(testCase.TestData.cGen.logfile); end end %% function genfkine_test(testCase) % - test generated forward kinematics code T = testCase.TestData.cGen.genfkine; % generate symbolic expressions and m-files addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); symQ = testCase.TestData.rob.gencoords; Q = rand(testCase.TestData.nTrials,specRob.n); resRTB = rand(4,4,testCase.TestData.nTrials); resSym = rand(4,4,testCase.TestData.nTrials); resM = rand(4,4,testCase.TestData.nTrials); resMEX = rand(4,4,testCase.TestData.nTrials); if testCase.TestData.profile profile on end % test symbolics and generated m-code for iTry = 1:testCase.TestData.nTrials q = Q(iTry,:); resRTB(:,:,iTry) = testCase.TestData.rob.fkine(q).T; resSym(:,:,iTry) = subs(T.T,symQ,q); resM(:,:,iTry) = specRob.fkine(q); end if testCase.TestData.profile profile off; pstat = profile('info'); statRTB = getprofilefunctionstats(pstat,['SerialLink',filesep,'fkine']); statSym = getprofilefunctionstats(pstat,['sym',filesep,'subs']); statM = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'fkine']); profile clear; end clear('specRob'); rmpath(testCase.TestData.cGen.basepath) % assertions so far? verifyEqual(testCase, resRTB, resSym, 'absTol', 1e-6); verifyEqual(testCase, resRTB, resM, 'absTol', 1e-6); testCase.TestData.cGen.genccodefkine; testCase.TestData.cGen.genmexfkine; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); if testCase.TestData.profile profile on; end % test generated mex code for iTry = 1:testCase.TestData.nTrials q = Q(iTry,:); resMEX(:,:,iTry) = specRob.fkine(q); end if testCase.TestData.profile profile off; pstat = profile('info'); statMEX = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'fkine.',mexext],'mex-function'); tRTB = statRTB.TotalTime/statRTB.NumCalls; tSym = statSym.TotalTime/statSym.NumCalls; tM = statM.TotalTime/statM.NumCalls; tMEX = statMEX.TotalTime/statMEX.NumCalls; fprintf('RTB function time(testCase): %f\n', tRTB) fprintf('Sym function time(testCase): %f speedups: %f to RTB\n',tSym, tRTB/tSym); fprintf('M function time(testCase): %f speedups: %f to RTB, %f to Sym\n',tM, tRTB/tM, tSym/tM); fprintf('MEX function time(testCase): %f speedups: %f to RTB, %f to Sym, %f to M\n',tMEX, tRTB/tMEX, tSym/tMEX, tM/tMEX); end verifyEqual(testCase, resRTB, resMEX, 'absTol', 1e-6); end %% function genjacobian_test(testCase) % - test generated differential kinematics code [J0, Jn] = testCase.TestData.cGen.genjacobian; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); symQ = testCase.TestData.rob.gencoords; Q = rand(testCase.TestData.nTrials,specRob.n); resRTB0 = rand(6,specRob.n,testCase.TestData.nTrials); resSym0 = rand(6,specRob.n,testCase.TestData.nTrials); resM0 = rand(6,specRob.n,testCase.TestData.nTrials); resMEX0 = rand(6,specRob.n,testCase.TestData.nTrials); resRTBn = rand(6,specRob.n,testCase.TestData.nTrials); resSymn = rand(6,specRob.n,testCase.TestData.nTrials); resMn = rand(6,specRob.n,testCase.TestData.nTrials); resMEXn = rand(6,specRob.n,testCase.TestData.nTrials); if testCase.TestData.profile profile on end % test symbolics and generated m-code for iTry = 1:testCase.TestData.nTrials q = Q(iTry,:); resRTB0(:,:,iTry) = testCase.TestData.rob.jacob0(q); resSym0(:,:,iTry) = subs(J0,symQ,q); resM0(:,:,iTry) = specRob.jacob0(q); resRTBn(:,:,iTry) = testCase.TestData.rob.jacobe(q); resSymn(:,:,iTry) = subs(Jn,symQ,q); resMn(:,:,iTry) = specRob.jacobe(q); end if testCase.TestData.profile profile off; pstat = profile('info'); statRTB = getprofilefunctionstats(pstat,['SerialLink',filesep,'jacob0']); statSym = getprofilefunctionstats(pstat,['sym',filesep,'subs']); statM = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'jacob0']); profile clear; end clear('specRob'); rmpath(testCase.TestData.cGen.basepath) % assertions so far? verifyEqual(testCase, resRTB0, resSym0, 'absTol', 1e-6); verifyEqual(testCase, resRTB0, resM0, 'absTol', 1e-6); verifyEqual(testCase, resRTBn, resSymn, 'absTol', 1e-6); verifyEqual(testCase, resRTBn, resMn, 'absTol', 1e-6); testCase.TestData.cGen.genccodejacobian; testCase.TestData.cGen.genmexjacobian; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); if testCase.TestData.profile profile on; end % test generated mex code for iTry = 1:testCase.TestData.nTrials q = Q(iTry,:); resMEX0(:,:,iTry) = specRob.jacob0(q); resMEXn(:,:,iTry) = specRob.jacobe(q); end if testCase.TestData.profile profile off; pstat = profile('info'); statMEX = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'jacob0.',mexext],'mex-function'); tRTB = statRTB.TotalTime/statRTB.NumCalls; tSym = statSym.TotalTime/statSym.NumCalls; tM = statM.TotalTime/statM.NumCalls; tMEX = statMEX.TotalTime/statMEX.NumCalls; fprintf('RTB function time(testCase): %f\n', tRTB) fprintf('Sym function time(testCase): %f speedups: %f to RTB\n',tSym, tRTB/tSym); fprintf('M function time(testCase): %f speedups: %f to RTB, %f to Sym\n',tM, tRTB/tM, tSym/tM); fprintf('MEX function time(testCase): %f speedups: %f to RTB, %f to Sym, %f to M\n',tMEX, tRTB/tMEX, tSym/tMEX, tM/tMEX); end verifyEqual(testCase, resRTB0, resMEX0, 'absTol', 1e-6); verifyEqual(testCase, resRTBn, resMEXn, 'absTol', 1e-6); end %% function geninertia_test(testCase) % - test inertial matrix against numeric version [I] = testCase.TestData.cGen.geninertia; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); symQ = testCase.TestData.rob.gencoords; Q = rand(testCase.TestData.nTrials,specRob.n); resRTB = rand(specRob.n,specRob.n,testCase.TestData.nTrials); resSym = rand(specRob.n,specRob.n,testCase.TestData.nTrials); resM = rand(specRob.n,specRob.n,testCase.TestData.nTrials); resMEX = rand(specRob.n,specRob.n,testCase.TestData.nTrials); if testCase.TestData.profile profile on end % test symbolics and generated m-code for iTry = 1:testCase.TestData.nTrials q = Q(iTry,:); resRTB(:,:,iTry) = testCase.TestData.rob.inertia(q); resSym(:,:,iTry) = subs(I,symQ,q); resM(:,:,iTry) = specRob.inertia(q); end if testCase.TestData.profile profile off; pstat = profile('info'); statRTB = getprofilefunctionstats(pstat,['SerialLink',filesep,'inertia']); statSym = getprofilefunctionstats(pstat,['sym',filesep,'subs']); statM = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'inertia']); profile clear; end clear('specRob'); rmpath(testCase.TestData.cGen.basepath) % assertions so far? verifyEqual(testCase, resRTB, resSym, 'absTol', 1e-6); verifyEqual(testCase, resRTB, resM, 'absTol', 1e-6); testCase.TestData.cGen.genccodeinertia; testCase.TestData.cGen.genmexinertia; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); if testCase.TestData.profile profile on; end % test generated mex code for iTry = 1:testCase.TestData.nTrials q = Q(iTry,:); resMEX(:,:,iTry) = specRob.inertia(q); end if testCase.TestData.profile profile off; pstat = profile('info'); statMEX = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'inertia.',mexext],'mex-function'); tRTB = statRTB.TotalTime/statRTB.NumCalls; tSym = statSym.TotalTime/statSym.NumCalls; tM = statM.TotalTime/statM.NumCalls; tMEX = statMEX.TotalTime/statMEX.NumCalls; fprintf('RTB function time(testCase): %f\n', tRTB) fprintf('Sym function time(testCase): %f speedups: %f to RTB\n',tSym, tRTB/tSym); fprintf('M function time(testCase): %f speedups: %f to RTB, %f to Sym\n',tM, tRTB/tM, tSym/tM); fprintf('MEX function time(testCase): %f speedups: %f to RTB, %f to Sym, %f to M\n',tMEX, tRTB/tMEX, tSym/tMEX, tM/tMEX); end verifyEqual(testCase, resRTB, resMEX, 'absTol', 1e-6); end function gencoriolis_test(testCase) % - test coriolis matrix against numeric version [C] = testCase.TestData.cGen.gencoriolis; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); [symQ symQD] = testCase.TestData.rob.gencoords; Q = rand(testCase.TestData.nTrials,specRob.n); QD = rand(testCase.TestData.nTrials,specRob.n); resRTB = rand(specRob.n,specRob.n,testCase.TestData.nTrials); resSym = rand(specRob.n,specRob.n,testCase.TestData.nTrials); resM = rand(specRob.n,specRob.n,testCase.TestData.nTrials); resMEX = rand(specRob.n,specRob.n,testCase.TestData.nTrials); if testCase.TestData.profile profile on end % test symbolics and generated m-code for iTry = 1:testCase.TestData.nTrials q = Q(iTry,:); qd = QD(iTry,:); resRTB(:,:,iTry) = testCase.TestData.rob.coriolis(q,qd); resSym(:,:,iTry) = subs(subs(C,symQ,q),symQD,qd); resM(:,:,iTry) = specRob.coriolis(q,qd); end if testCase.TestData.profile profile off; pstat = profile('info'); statRTB = getprofilefunctionstats(pstat,['SerialLink',filesep,'coriolis']); statSym = getprofilefunctionstats(pstat,['sym',filesep,'subs']); statM = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'coriolis']); profile clear; end clear('specRob'); rmpath(testCase.TestData.cGen.basepath) % assertions so far? verifyEqual(testCase, resRTB, resSym, 'absTol', 1e-6); verifyEqual(testCase, resRTB, resM, 'absTol', 1e-6); testCase.TestData.cGen.genccodecoriolis; testCase.TestData.cGen.genmexcoriolis; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); if testCase.TestData.profile profile on; end % test generated mex code for iTry = 1:testCase.TestData.nTrials q = Q(iTry,:); qd = QD(iTry,:); resMEX(:,:,iTry) = specRob.coriolis(q,qd); end if testCase.TestData.profile profile off; pstat = profile('info'); statMEX = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'coriolis.',mexext],'mex-function'); tRTB = statRTB.TotalTime/statRTB.NumCalls; tSym = statSym.TotalTime/statSym.NumCalls; tM = statM.TotalTime/statM.NumCalls; tMEX = statMEX.TotalTime/statMEX.NumCalls; fprintf('RTB function time(testCase): %f\n', tRTB) fprintf('Sym function time(testCase): %f speedups: %f to RTB\n',tSym, tRTB/tSym); fprintf('M function time(testCase): %f speedups: %f to RTB, %f to Sym\n',tM, tRTB/tM, tSym/tM); fprintf('MEX function time(testCase): %f speedups: %f to RTB, %f to Sym, %f to M\n',tMEX, tRTB/tMEX, tSym/tMEX, tM/tMEX); end verifyEqual(testCase, resRTB, resMEX, 'absTol', 1e-6); end %% function gengravload_test(testCase) % - test vector of gravitational load against numeric version [g] = testCase.TestData.cGen.gengravload; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); symQ = testCase.TestData.rob.gencoords; Q = rand(testCase.TestData.nTrials,specRob.n); resRTB = rand(specRob.n,1,testCase.TestData.nTrials); resSym = rand(specRob.n,1,testCase.TestData.nTrials); resM = rand(specRob.n,1,testCase.TestData.nTrials); resMEX = rand(specRob.n,1,testCase.TestData.nTrials); if testCase.TestData.profile profile on end % test symbolics and generated m-code for iTry = 1:testCase.TestData.nTrials q = Q(iTry,:); resRTB(:,:,iTry) = testCase.TestData.rob.gravload(q); resSym(:,:,iTry) = subs(g,symQ,q); resM(:,:,iTry) = specRob.gravload(q); end if testCase.TestData.profile profile off; pstat = profile('info'); statRTB = getprofilefunctionstats(pstat,['SerialLink',filesep,'gravload']); statSym = getprofilefunctionstats(pstat,['sym',filesep,'subs']); statM = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'gravload']); profile clear; end clear('specRob'); rmpath(testCase.TestData.cGen.basepath) % assertions so far? verifyEqual(testCase, resRTB, resSym, 'absTol', 1e-6); verifyEqual(testCase, resRTB, resM, 'absTol', 1e-6); testCase.TestData.cGen.genccodegravload; testCase.TestData.cGen.genmexgravload; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); if testCase.TestData.profile profile on; end % test generated mex code for iTry = 1:testCase.TestData.nTrials q = Q(iTry,:); resMEX(:,:,iTry) = specRob.gravload(q); end if testCase.TestData.profile profile off; pstat = profile('info'); statMEX = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'gravload.',mexext],'mex-function'); tRTB = statRTB.TotalTime/statRTB.NumCalls; tSym = statSym.TotalTime/statSym.NumCalls; tM = statM.TotalTime/statM.NumCalls; tMEX = statMEX.TotalTime/statMEX.NumCalls; fprintf('RTB function time(testCase): %f\n', tRTB) fprintf('Sym function time(testCase): %f speedups: %f to RTB\n',tSym, tRTB/tSym); fprintf('M function time(testCase): %f speedups: %f to RTB, %f to Sym\n',tM, tRTB/tM, tSym/tM); fprintf('MEX function time(testCase): %f speedups: %f to RTB, %f to Sym, %f to M\n',tMEX, tRTB/tMEX, tSym/tMEX, tM/tMEX); end verifyEqual(testCase, resRTB, resMEX, 'absTol', 1e-6); end function genfriction_test(testCase) % - test friction vector against numeric version [F] = testCase.TestData.cGen.genfriction; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); [~, symQD] = testCase.TestData.rob.gencoords; QD = rand(testCase.TestData.nTrials,specRob.n); resRTB = rand(specRob.n,1,testCase.TestData.nTrials); resSym = rand(specRob.n,1,testCase.TestData.nTrials); resM = rand(specRob.n,1,testCase.TestData.nTrials); resMEX = rand(specRob.n,1,testCase.TestData.nTrials); if testCase.TestData.profile profile on end % test symbolics and generated m-code for iTry = 1:testCase.TestData.nTrials qd = QD(iTry,:); resRTB(:,:,iTry) = testCase.TestData.rob.friction(qd); resSym(:,:,iTry) = subs(F,symQD,qd); resM(:,:,iTry) = specRob.friction(qd); end if testCase.TestData.profile profile off; pstat = profile('info'); statRTB = getprofilefunctionstats(pstat,['SerialLink',filesep,'friction']); statSym = getprofilefunctionstats(pstat,['sym',filesep,'subs']); statM = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'friction']); profile clear; end clear('specRob'); rmpath(testCase.TestData.cGen.basepath) % assertions so far? verifyEqual(testCase, resRTB, resSym, 'absTol', 1e-6); verifyEqual(testCase, resRTB, resM, 'absTol', 1e-6); testCase.TestData.cGen.genccodefriction; testCase.TestData.cGen.genmexfriction; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); if testCase.TestData.profile profile on; end % test generated mex code for iTry = 1:testCase.TestData.nTrials qd = QD(iTry,:); resMEX(:,:,iTry) = specRob.friction(qd); end if testCase.TestData.profile profile off; pstat = profile('info'); statMEX = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'friction.',mexext],'mex-function'); tRTB = statRTB.TotalTime/statRTB.NumCalls; tSym = statSym.TotalTime/statSym.NumCalls; tM = statM.TotalTime/statM.NumCalls; tMEX = statMEX.TotalTime/statMEX.NumCalls; fprintf('RTB function time(testCase): %f\n', tRTB) fprintf('Sym function time(testCase): %f speedups: %f to RTB\n',tSym, tRTB/tSym); fprintf('M function time(testCase): %f speedups: %f to RTB, %f to Sym\n',tM, tRTB/tM, tSym/tM); fprintf('MEX function time(testCase): %f speedups: %f to RTB, %f to Sym, %f to M\n',tMEX, tRTB/tMEX, tSym/tMEX, tM/tMEX); end verifyEqual(testCase, resRTB, resMEX, 'absTol', 1e-6); end function geninvdyn_test(testCase) % - test inverse dynamics against numeric version tau = testCase.TestData.cGen.geninvdyn; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); [symQ, symQD, symQDD] = testCase.TestData.rob.gencoords; Q = rand(testCase.TestData.nTrials,specRob.n); QD = 0*rand(testCase.TestData.nTrials,specRob.n); QDD = 0*rand(testCase.TestData.nTrials,specRob.n); resRTB = rand(specRob.n,1,testCase.TestData.nTrials); resSym = rand(specRob.n,1,testCase.TestData.nTrials); resM = rand(specRob.n,1,testCase.TestData.nTrials); resMEX = rand(specRob.n,1,testCase.TestData.nTrials); if testCase.TestData.profile profile on end % test symbolics and generated m-code for iTry = 1:testCase.TestData.nTrials q = Q(iTry,:); qd = QD(iTry,:); qdd = QDD(iTry,:); resRTB(:,:,iTry) = testCase.TestData.rob.rne(q,qd,qdd); resSym(:,:,iTry) = subs(subs(subs(tau,symQ,q),symQD,qd),symQDD,qdd); resM(:,:,iTry) = specRob.invdyn(q, qd, qdd); end if testCase.TestData.profile profile off; pstat = profile('info'); statRTB = getprofilefunctionstats(pstat,['SerialLink',filesep,'rne']); statSym = getprofilefunctionstats(pstat,['sym',filesep,'subs']); statM = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'invdyn']); profile clear; end clear('specRob'); rmpath(testCase.TestData.cGen.basepath) % assertions so far? verifyEqual(testCase, resRTB, resSym, 'absTol', 1e-6); verifyEqual(testCase, resRTB, resM, 'absTol', 1e-6); testCase.TestData.cGen.genccodeinvdyn; testCase.TestData.cGen.genmexinvdyn; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); if testCase.TestData.profile profile on; end % test generated mex code for iTry = 1:testCase.TestData.nTrials q = Q(iTry,:); qd = QD(iTry,:); qdd = QDD(iTry,:); resMEX(:,:,iTry) = specRob.invdyn(q,qd,qdd); end if testCase.TestData.profile profile off; pstat = profile('info'); statMEX = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'invdyn.',mexext],'mex-function'); tRTB = statRTB.TotalTime/statRTB.NumCalls; tSym = statSym.TotalTime/statSym.NumCalls; tM = statM.TotalTime/statM.NumCalls; tMEX = statMEX.TotalTime/statMEX.NumCalls; fprintf('RTB function time(testCase): %f\n', tRTB) fprintf('Sym function time(testCase): %f speedups: %f to RTB\n',tSym, tRTB/tSym); fprintf('M function time(testCase): %f speedups: %f to RTB, %f to Sym\n',tM, tRTB/tM, tSym/tM); fprintf('MEX function time(testCase): %f speedups: %f to RTB, %f to Sym, %f to M\n',tMEX, tRTB/tMEX, tSym/tMEX, tM/tMEX); end verifyEqual(testCase, resRTB, resMEX, 'absTol', 1e-6); end function genfdyn_test(testCase) % - test forward dynamics against numeric version IqddSym = testCase.TestData.cGen.genfdyn.'; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); [symQ, symQD] = testCase.TestData.rob.gencoords; symTau = testCase.TestData.rob.genforces; Q = rand(testCase.TestData.nTrials,specRob.n); QD = rand(testCase.TestData.nTrials,specRob.n); TAU = rand(testCase.TestData.nTrials,specRob.n); resRTB = zeros(specRob.n,1,testCase.TestData.nTrials); resSym = zeros(specRob.n,1,testCase.TestData.nTrials); resM = zeros(specRob.n,1,testCase.TestData.nTrials); resMEX = zeros(specRob.n,1,testCase.TestData.nTrials); if testCase.TestData.profile profile on end % test symbolics and generated m-code for iTry = 1:testCase.TestData.nTrials q = Q(iTry,:); qd = QD(iTry,:); tau = TAU(iTry,:); resRTB(:,:,iTry) = testCase.TestData.rob.accel(q,qd,tau); resSym(:,:,iTry) = subs(subs(subs(IqddSym,symQ,q),symQD,qd),symTau,tau); resM(:,:,iTry) = specRob.accel(q, qd, tau); end if testCase.TestData.profile profile off; pstat = profile('info'); statRTB = getprofilefunctionstats(pstat,['SerialLink',filesep,'accel']); statSym = getprofilefunctionstats(pstat,['sym',filesep,'subs']); statM = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'accel']); profile clear; end clear('specRob'); rmpath(testCase.TestData.cGen.basepath) % assertions so far? verifyEqual(testCase, resRTB, resM, 'absTol', 1e-6); testCase.TestData.cGen.genccodefdyn; testCase.TestData.cGen.genmexfdyn; addpath(testCase.TestData.cGen.basepath); specRob = eval(testCase.TestData.cGen.getrobfname); if testCase.TestData.profile profile on; end % test generated mex code for iTry = 1:testCase.TestData.nTrials q = Q(iTry,:); qd = QD(iTry,:); tau = TAU(iTry,:); resMEX(:,:,iTry) = specRob.accel(q,qd,tau); end if testCase.TestData.profile profile off; pstat = profile('info'); statMEX = getprofilefunctionstats(pstat,[testCase.TestData.cGen.getrobfname,filesep,'accel.',mexext],'mex-function'); tRTB = statRTB.TotalTime/statRTB.NumCalls; tSym = statSym.TotalTime/statSym.NumCalls; tM = statM.TotalTime/statM.NumCalls; tMEX = statMEX.TotalTime/statMEX.NumCalls; fprintf('RTB function time(testCase): %f\n', tRTB) fprintf('Sym function time(testCase): %f speedups: %f to RTB\n',tSym, tRTB/tSym); fprintf('M function time(testCase): %f speedups: %f to RTB, %f to Sym\n',tM, tRTB/tM, tSym/tM); fprintf('MEX function time(testCase): %f speedups: %f to RTB, %f to Sym, %f to M\n',tMEX, tRTB/tMEX, tSym/tMEX, tM/tMEX); end z = abs(resRTB-resMEX); max(z(:)) verifyEqual(testCase, resRTB, resMEX, 'absTol', 1e-6); end
github
RobinAmsters/GT_mobile_robotics-master
sl_tripleangleTest.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/sl_tripleangleTest.m
2,599
utf_8
7b1fccab6fb5e3e055af09dc9217747b
% test the Simulink RPY and Euler blocks % in conjunction with sl_tripleangleTest.m function tests = sl_tripleangleTest tests = functiontests(localfunctions); clc end function setupOnce(tc) sl_tripleangle end function teardownOnce(tc) bdclose end function radians_test(tc) angles = [0.3 0.4 0.5]; seq = 'XYZ'; set_param('sl_tripleangle/a', 'Value', num2str(angles(1))) set_param('sl_tripleangle/b', 'Value', num2str(angles(2))) set_param('sl_tripleangle/c', 'Value', num2str(angles(3))) set_param('sl_tripleangle/rpy2T', 'degrees' ,'off') set_param('sl_tripleangle/T2rpy', 'degrees' ,'off') set_param('sl_tripleangle/T2rpy', 'sequence', seq) set_param('sl_tripleangle/rpy2T', 'sequence', seq) set_param('sl_tripleangle/eul2T', 'degrees' ,'off') set_param('sl_tripleangle/T2eul', 'degrees' ,'off') [~,~,y] = sim('sl_tripleangle'); tc.verifyEqual(y(1,:), [angles angles], 'AbsTol', 1e-10); seq = 'ZYX'; set_param('sl_tripleangle/T2rpy', 'sequence', seq) set_param('sl_tripleangle/rpy2T', 'sequence', seq) [~,~,y] = sim('sl_tripleangle'); tc.verifyEqual(y(1,:), [angles angles], 'AbsTol', 1e-10); seq = 'YXZ'; set_param('sl_tripleangle/T2rpy', 'sequence', seq) set_param('sl_tripleangle/rpy2T', 'sequence', seq) [~,~,y] = sim('sl_tripleangle'); tc.verifyEqual(y(1,:), [angles angles], 'AbsTol', 1e-10); end function degrees_test(tc) % now in degrees angles = [30 40 50]; seq = 'XYZ'; set_param('sl_tripleangle/a', 'Value', num2str(angles(1))) set_param('sl_tripleangle/b', 'Value', num2str(angles(2))) set_param('sl_tripleangle/c', 'Value', num2str(angles(3))) set_param('sl_tripleangle/rpy2T', 'degrees' ,'on') set_param('sl_tripleangle/T2rpy', 'degrees' ,'on') set_param('sl_tripleangle/T2rpy', 'sequence', seq) set_param('sl_tripleangle/rpy2T', 'sequence', seq) set_param('sl_tripleangle/eul2T', 'degrees' ,'on') set_param('sl_tripleangle/T2eul', 'degrees' ,'on') [~,~,y] = sim('sl_tripleangle'); tc.verifyEqual(y(1,:), [angles angles], 'AbsTol', 1e-10); seq = 'ZYX'; set_param('sl_tripleangle/T2rpy', 'sequence', seq) set_param('sl_tripleangle/rpy2T', 'sequence', seq) [~,~,y] = sim('sl_tripleangle'); tc.verifyEqual(y(1,:), [angles angles], 'AbsTol', 1e-10); seq = 'YXZ'; set_param('sl_tripleangle/T2rpy', 'sequence', seq) set_param('sl_tripleangle/rpy2T', 'sequence', seq) [~,~,y] = sim('sl_tripleangle'); tc.verifyEqual(y(1,:), [angles angles], 'AbsTol', 1e-10); end
github
RobinAmsters/GT_mobile_robotics-master
ETS3Test.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/ETS3Test.m
1,163
utf_8
cdc2014c04234c88bb7e8546058367e1
function tests = ETS3Test tests = functiontests(localfunctions); clc end function revolute1_test(tc) import ETS3.* a1 = 1; E = Rx('q1') * Tx(a1) * Ry('q2') * Ty(a1) * Rz('q3'); tc.verifyTrue(isa(E, 'ETS3')) tc.verifySize(E, [1 5]) tc.verifyEqual(E.n, 3) % number of joints tc.verifyClass(char(E), 'char') tc.verifyEqual(E.structure, 'RRR'); end function prismatic_test(tc) import ETS3.* a1 = 1; E = Tx('q1') * Rx(a1) * Ty('q2') * Ry(a1) * Tz('q3'); tc.verifyTrue(isa(E, 'ETS3')) tc.verifySize(E, [1 5]) tc.verifyEqual(E.n, 3) % number of joints tc.verifyClass(char(E), 'char') tc.verifyEqual(E.structure, 'PPP'); end function fkine_test(tc) import ETS3.* a1 = 1; E = Rx('q1') * Tx(a1) * Ry('q2') * Ty(a1) * Rz('q3'); T = E.fkine([pi/2 pi/2 pi/2]); tc.verifyClass(T, 'SE3') tc.verifyEqual(double(T), [0 0 1 1; 0 -1 0 0; 1 0 0 1; 0 0 0 1], 'AbsTol', 1e-12) end function plot_test(tc) import ETS3.* a1 = 1; a2 = 1; E = Rx('q1') * Tx(a1) * Ry('q2') * Ty(a1) * Rz('q3'); E.plot([pi/4 -pi/4 pi/4]) end
github
RobinAmsters/GT_mobile_robotics-master
LocnTest.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/LocnTest.m
4,870
utf_8
bf1993bf5cb0808ccb0a933d4810a032
function tests = LocnTest tests = functiontests(localfunctions); clc end function setupOnce(testCase) testCase.TestData.Duration = 50; end function Vehicle_test(tc) %% randinit V = diag([0.005, 0.5*pi/180].^2); v = Bicycle('covar', V); v.add_driver( RandomPath(10) ); v.run(tc.TestData.Duration); v.plot_xy(); s = v.char(); J = v.Fx(v.x, [.1 .2]); J = v.Fv(v.x, [.1 .2]); end function DeadReckoning_test(tc) %% randinit V = diag([0.005, 0.5*pi/180].^2); P0 = diag([0.005, 0.005, 0.001].^2); v = Bicycle('covar', V); v.add_driver( RandomPath(10) ); s = char(v); ekf = EKF(v, V, P0); ekf.run(tc.TestData.Duration); clf ekf.plot_xy hold on v.plot_xy('r') grid on xyzlabel ekf.plot_ellipse('g') ekf.plot_P() end function MapLocalization_test(tc) %% randinit W = diag([0.1, 1*pi/180].^2); P0 = diag([0.005, 0.005, 0.001].^2); V = diag([0.005, 0.5*pi/180].^2); map = LandmarkMap(20); map = LandmarkMap(20, 'verbose'); map = LandmarkMap(20, 10, 'verbose'); map = LandmarkMap(20, 10); s = char(map); veh = Bicycle('covar', V); veh.add_driver( RandomPath(10) ); sensor = RangeBearingSensor(veh, map, 'covar', W); sensor.interval = 5; ekf = EKF(veh, W, P0, sensor, W, map); ekf.run(tc.TestData.Duration); clf map.plot() veh.plot_xy('b'); ekf.plot_xy('r'); ekf.plot_ellipse('k') grid on xyzlabel clf ekf.plot_P() end function Mapping_test(tc) %% randinit W = diag([0.1, 1*pi/180].^2); V = diag([0.005, 0.5*pi/180].^2); map = LandmarkMap(20, 10); veh = Bicycle('covar', V); veh.add_driver( RandomPath(10) ); sensor = RangeBearingSensor(veh, map, 'covar', W); sensor.interval = 5; ekf = EKF(veh, [], [], sensor, W, []); ekf.run(tc.TestData.Duration); clf map.plot() veh.plot_xy('b'); ekf.plot_map('g'); grid on xyzlabel %% verifyEqual(tc, numcols(ekf.landmarks), 20); end function SLAM_test(tc) %% randinit W = diag([0.1, 1*pi/180].^2); P0 = diag([0.005, 0.005, 0.001].^2); V = diag([0.005, 0.5*pi/180].^2); map = LandmarkMap(20, 10); veh = Bicycle(V); veh.add_driver( RandomPath(10) ); sensor = RangeBearingSensor(veh, map, 'covar', W); sensor.interval = 1; ekf = EKF(veh, V, P0, sensor, W, []); ekf ekf.verbose = false; ekf.run(tc.TestData.Duration); clf map.plot() veh.plot_xy('b'); ekf.plot_xy('r'); ekf.plot_ellipse('k') grid on xyzlabel clf ekf.plot_P() clf map.plot(); ekf.plot_map('g'); %% verifyEqual(tc, numcols(ekf.landmarks), 20); end function ParticleFilter_test(tc) %% randinit map = LandmarkMap(20); W = diag([0.1, 1*pi/180].^2); v = Bicycle('covar', W); v.add_driver( RandomPath(10) ); V = diag([0.005, 0.5*pi/180].^2); sensor = RangeBearingSensor(v, map, 'covar', V); Q = diag([0.1, 0.1, 1*pi/180]).^2; L = diag([0.1 0.1]); pf = ParticleFilter(v, sensor, Q, L, 1000); pf pf.run(tc.TestData.Duration); plot(pf.std) xlabel('time step') ylabel('standard deviation') legend('x', 'y', '\theta') grid clf pf.plot_pdf(); clf pf.plot_xy(); end function posegraph_test(tc) pg = PoseGraph('pg1.g2o') tc.verifyClass(pg, 'PoseGraph'); tc.verifyEqual(pg.graph.n, 4); clf pg.plot() pg.optimize('animate') close all pg = PoseGraph('killian-small.toro') tc.verifyClass(pg, 'PoseGraph'); tc.verifyEqual(pg.graph.n, 1941); pg = PoseGraph('killian.g2o', 'laser') tc.verifyClass(pg, 'PoseGraph'); tc.verifyEqual(pg.graph.n, 3873); [r,theta] = pg.scan(1); tc.verifyClass(r, 'double'); tc.verifyLength(r, 180); tc.verifyClass(theta, 'double'); tc.verifyLength(theta, 180); [x,y] = pg.scan(1); tc.verifyClass(x, 'double'); tc.verifyLength(x, 180); tc.verifyClass(y, 'double'); tc.verifyLength(y, 180); pose = pg.pose(1); tc.verifyClass(pose, 'double'); tc.verifySize(pose, [3 1]); t = pg.time(1); tc.verifyClass(t, 'double'); tc.verifySize(t, [1 1]); w = pg.scanmap('ngrid', 3000); tc.verifyClass(w, 'int32'); tc.verifySize(w, [3000 3000]); tc.assumeTrue(exist('idisp', 'file')); %REMINDER clf pg.plot_occgrid(w); close all end function makemap_test(tc) tc.assumeTrue(false); %REMINDER end function chi2inv_test(tc) tc.verifyEqual( chi2inv_rtb(0,2), 0); tc.verifyEqual( chi2inv_rtb(1,2), Inf); tc.verifyEqual( chi2inv_rtb(3,2), NaN); tc.verifyError( @() chi2inv_rtb(1,1), 'RTB:chi2inv_rtb:badarg'); end
github
RobinAmsters/GT_mobile_robotics-master
ETS2Test.m
.m
GT_mobile_robotics-master/common/rvctools/robot/unit_test/ETS2Test.m
1,362
utf_8
4807c7cbda642f59e8dcd4af08ebb115
function tests = ETS2Test tests = functiontests(localfunctions); clc end function revolute1_test(tc) import ETS2.* a1 = 1; E = Rz('q1') * Tx(a1); tc.verifyTrue(isa(E, 'ETS2')) tc.verifySize(E, [1 2]) tc.verifyEqual(E.n, 1) % number of joints tc.verifyClass(char(E), 'char') tc.verifyEqual(E.structure, 'R'); end function revolute2_test(tc) import ETS2.* a1 = 1; a2 = 1; E = Rz('q1') * Tx(a1) * Rz('q2') * Tx(a2); tc.verifyTrue(isa(E, 'ETS2')) tc.verifySize(E, [1 4]) tc.verifyEqual(E.n, 2) % number of joints tc.verifyClass(char(E), 'char') tc.verifyEqual(E.structure, 'RR'); end function prismatic_test(tc) import ETS2.* a1 = 1; E = Rz('q1') * Tx(a1) * Tx('q2'); tc.verifyTrue(isa(E, 'ETS2')) tc.verifySize(E, [1 3]) tc.verifyEqual(E.n, 2) % number of joints tc.verifyClass(char(E), 'char') tc.verifyEqual(E.structure, 'RP'); end function fkine_test(tc) import ETS2.* a1 = 1; E = Rz('q1') * Tx(a1) * Tx('q2'); T = E.fkine([pi/2 1]); tc.verifyClass(T, 'SE2') tc.verifyEqual(double(T), [0 -1 0; 1 0 2; 0 0 1], 'AbsTol', 1e-12) end function plot_test(tc) import ETS2.* a1 = 1; a2 = 1; E = Rz('q1') * Tx(a1) * Rz('q2') * Tx(a2); E.plot([pi/4 -pi/4]) end
github
RobinAmsters/GT_mobile_robotics-master
arrow.m
.m
GT_mobile_robotics-master/common/rvctools/robot/private/arrow.m
55,316
utf_8
a9fba6cb870e440f70d88c6a4849cb63
function [h,yy,zz] = arrow(varargin) % ARROW Draw a line with an arrowhead. % % ARROW(Start,Stop) draws a line with an arrow from Start to Stop (points % should be vectors of length 2 or 3, or matrices with 2 or 3 % columns), and returns the graphics handle of the arrow(s). % % ARROW uses the mouse (click-drag) to create an arrow. % % ARROW DEMO & ARROW DEMO2 show 3-D & 2-D demos of the capabilities of ARROW. % % ARROW may be called with a normal argument list or a property-based list. % ARROW(Start,Stop,Length,BaseAngle,TipAngle,Width,Page,CrossDir) is % the full normal argument list, where all but the Start and Stop % points are optional. If you need to specify a later argument (e.g., % Page) but want default values of earlier ones (e.g., TipAngle), % pass an empty matrix for the earlier ones (e.g., TipAngle=[]). % % ARROW('Property1',PropVal1,'Property2',PropVal2,...) creates arrows with the % given properties, using default values for any unspecified or given as % 'default' or NaN. Some properties used for line and patch objects are % used in a modified fashion, others are passed directly to LINE, PATCH, % or SET. For a detailed properties explanation, call ARROW PROPERTIES. % % Start The starting points. B % Stop The end points. /|\ ^ % Length Length of the arrowhead in pixels. /|||\ | % BaseAngle Base angle in degrees (ADE). //|||\\ L| % TipAngle Tip angle in degrees (ABC). ///|||\\\ e| % Width Width of the base in pixels. ////|||\\\\ n| % Page Use hardcopy proportions. /////|D|\\\\\ g| % CrossDir Vector || to arrowhead plane. //// ||| \\\\ t| % NormalDir Vector out of arrowhead plane. /// ||| \\\ h| % Ends Which end has an arrowhead. //<----->|| \\ | % ObjectHandles Vector of handles to update. / base ||| \ V % E angle||<-------->C % ARROW(H,'Prop1',PropVal1,...), where H is a |||tipangle % vector of handles to previously-created arrows ||| % and/or line objects, will update the previously- ||| % created arrows according to the current view -->|A|<-- width % and any specified properties, and will convert % two-point line objects to corresponding arrows. ARROW(H) will update % the arrows if the current view has changed. Root, figure, or axes % handles included in H are replaced by all descendant Arrow objects. % % A property list can follow any specified normal argument list, e.g., % ARROW([1 2 3],[0 0 0],36,'BaseAngle',60) creates an arrow from (1,2,3) to % the origin, with an arrowhead of length 36 pixels and 60-degree base angle. % % The basic arguments or properties can generally be vectorized to create % multiple arrows with the same call. This is done by passing a property % with one row per arrow, or, if all arrows are to have the same property % value, just one row may be specified. % % You may want to execute AXIS(AXIS) before calling ARROW so it doesn't change % the axes on you; ARROW determines the sizes of arrow components BEFORE the % arrow is plotted, so if ARROW changes axis limits, arrows may be malformed. % % This version of ARROW uses features of MATLAB 6.x and is incompatible with % earlier MATLAB versions (ARROW for MATLAB 4.2c is available separately); % some problems with perspective plots still exist. % Copyright (c)1995-2009, Dr. Erik A. Johnson <[email protected]>, 5/20/2009 % http://www.usc.edu/civil_eng/johnsone/ % Revision history: % 5/20/09 EAJ Fix view direction in (3D) demo. % 6/26/08 EAJ Replace eval('trycmd','catchcmd') with try, trycmd; catch, % catchcmd; end; -- break's MATLAB 5 compatibility. % 8/26/03 EAJ Eliminate OpenGL attempted fix since it didn't fix anyway. % 11/15/02 EAJ Accomodate how MATLAB 6.5 handles NaN and logicals % 7/28/02 EAJ Tried (but failed) work-around for MATLAB 6.x / OpenGL bug % if zero 'Width' or not double-ended % 11/10/99 EAJ Add logical() to eliminate zero index problem in MATLAB 5.3. % 11/10/99 EAJ Corrected warning if axis limits changed on multiple axes. % 11/10/99 EAJ Update e-mail address. % 2/10/99 EAJ Some documentation updating. % 2/24/98 EAJ Fixed bug if Start~=Stop but both colinear with viewpoint. % 8/14/97 EAJ Added workaround for MATLAB 5.1 scalar logical transpose bug. % 7/21/97 EAJ Fixed a few misc bugs. % 7/14/97 EAJ Make arrow([],'Prop',...) do nothing (no old handles) % 6/23/97 EAJ MATLAB 5 compatible version, release. % 5/27/97 EAJ Added Line Arrows back in. Corrected a few bugs. % 5/26/97 EAJ Changed missing Start/Stop to mouse-selected arrows. % 5/19/97 EAJ MATLAB 5 compatible version, beta. % 4/13/97 EAJ MATLAB 5 compatible version, alpha. % 1/31/97 EAJ Fixed bug with multiple arrows and unspecified Z coords. % 12/05/96 EAJ Fixed one more bug with log plots and NormalDir specified % 10/24/96 EAJ Fixed bug with log plots and NormalDir specified % 11/13/95 EAJ Corrected handling for 'reverse' axis directions % 10/06/95 EAJ Corrected occasional conflict with SUBPLOT % 4/24/95 EAJ A major rewrite. % Fall 94 EAJ Original code. % Things to be done: % - in the arrow_clicks section, prompt by printing to the screen so that % the user knows what's going on; also make sure the figure is brought % to the front. % - segment parsing, computing, and plotting into separate subfunctions % - change computing from Xform to Camera paradigms % + this will help especially with 3-D perspective plots % + if the WarpToFill section works right, remove warning code % + when perpsective works properly, remove perspective warning code % - add cell property values and struct property name/values (like get/set) % - get rid of NaN as the "default" data label % + perhaps change userdata to a struct and don't include (or leave % empty) the values specified as default; or use a cell containing % an empty matrix for a default value % - add functionality of GET to retrieve current values of ARROW properties % Many thanks to Keith Rogers <[email protected]> for his many excellent % suggestions and beta testing. Check out his shareware package MATDRAW % (at ftp://ftp.mathworks.com/pub/contrib/v5/graphics/matdraw/) -- he has % permission to distribute ARROW with MATDRAW. % Permission is granted to distribute ARROW with the toolboxes for the book % "Solving Solid Mechanics Problems with MATLAB 5", by F. Golnaraghi et al. % (Prentice Hall, 1999). % Permission is granted to Dr. Josef Bigun to distribute ARROW with his % software to reproduce the figures in his image analysis text. % global variable initialization global ARROW_PERSP_WARN ARROW_STRETCH_WARN ARROW_AXLIMITS if isempty(ARROW_PERSP_WARN ), ARROW_PERSP_WARN =1; end; if isempty(ARROW_STRETCH_WARN), ARROW_STRETCH_WARN=1; end; % Handle callbacks if (nargin>0 & isstr(varargin{1}) & strcmp(lower(varargin{1}),'callback')), arrow_callback(varargin{2:end}); return; end; % Are we doing the demo? c = sprintf('\n'); if (nargin==1 & isstr(varargin{1})), arg1 = lower(varargin{1}); if strncmp(arg1,'prop',4), arrow_props; elseif strncmp(arg1,'demo',4) clf reset demo_info = arrow_demo; if ~strncmp(arg1,'demo2',5), hh=arrow_demo3(demo_info); else, hh=arrow_demo2(demo_info); end; if (nargout>=1), h=hh; end; elseif strncmp(arg1,'fixlimits',3), arrow_fixlimits(ARROW_AXLIMITS); ARROW_AXLIMITS=[]; elseif strncmp(arg1,'help',4), disp(help(mfilename)); else, error([upper(mfilename) ' got an unknown single-argument string ''' deblank(arg1) '''.']); end; return; end; % Check # of arguments if (nargout>3), error([upper(mfilename) ' produces at most 3 output arguments.']); end; % find first property number firstprop = nargin+1; for k=1:length(varargin), if ~isnumeric(varargin{k}), firstprop=k; break; end; end; lastnumeric = firstprop-1; % check property list if (firstprop<=nargin), for k=firstprop:2:nargin, curarg = varargin{k}; if ~isstr(curarg) | sum(size(curarg)>1)>1, error([upper(mfilename) ' requires that a property name be a single string.']); end; end; if (rem(nargin-firstprop,2)~=1), error([upper(mfilename) ' requires that the property ''' ... varargin{nargin} ''' be paired with a property value.']); end; end; % default output if (nargout>0), h=[]; end; if (nargout>1), yy=[]; end; if (nargout>2), zz=[]; end; % set values to empty matrices start = []; stop = []; len = []; baseangle = []; tipangle = []; wid = []; page = []; crossdir = []; ends = []; ax = []; oldh = []; ispatch = []; defstart = [NaN NaN NaN]; defstop = [NaN NaN NaN]; deflen = 16; defbaseangle = 90; deftipangle = 16; defwid = 0; defpage = 0; defcrossdir = [NaN NaN NaN]; defends = 1; defoldh = []; defispatch = 1; % The 'Tag' we'll put on our arrows ArrowTag = 'Arrow'; % check for oldstyle arguments if (firstprop==2), % assume arg1 is a set of handles oldh = varargin{1}(:); if isempty(oldh), return; end; elseif (firstprop>9), error([upper(mfilename) ' takes at most 8 non-property arguments.']); elseif (firstprop>2), {start,stop,len,baseangle,tipangle,wid,page,crossdir}; args = [varargin(1:firstprop-1) cell(1,length(ans)-(firstprop-1))]; [start,stop,len,baseangle,tipangle,wid,page,crossdir] = deal(args{:}); end; % parse property pairs extraprops={}; for k=firstprop:2:nargin, prop = varargin{k}; val = varargin{k+1}; prop = [lower(prop(:)') ' ']; if strncmp(prop,'start' ,5), start = val; elseif strncmp(prop,'stop' ,4), stop = val; elseif strncmp(prop,'len' ,3), len = val(:); elseif strncmp(prop,'base' ,4), baseangle = val(:); elseif strncmp(prop,'tip' ,3), tipangle = val(:); elseif strncmp(prop,'wid' ,3), wid = val(:); elseif strncmp(prop,'page' ,4), page = val; elseif strncmp(prop,'cross' ,5), crossdir = val; elseif strncmp(prop,'norm' ,4), if (isstr(val)), crossdir=val; else, crossdir=val*sqrt(-1); end; elseif strncmp(prop,'end' ,3), ends = val; elseif strncmp(prop,'object',6), oldh = val(:); elseif strncmp(prop,'handle',6), oldh = val(:); elseif strncmp(prop,'type' ,4), ispatch = val; elseif strncmp(prop,'userd' ,5), %ignore it else, % make sure it is a valid patch or line property try get(0,['DefaultPatch' varargin{k}]); catch errstr = lasterr; try get(0,['DefaultLine' varargin{k}]); catch errstr(1:max(find(errstr==char(13)|errstr==char(10)))) = ''; error([upper(mfilename) ' got ' errstr]); end end; extraprops={extraprops{:},varargin{k},val}; end; end; % Check if we got 'default' values start = arrow_defcheck(start ,defstart ,'Start' ); stop = arrow_defcheck(stop ,defstop ,'Stop' ); len = arrow_defcheck(len ,deflen ,'Length' ); baseangle = arrow_defcheck(baseangle,defbaseangle,'BaseAngle' ); tipangle = arrow_defcheck(tipangle ,deftipangle ,'TipAngle' ); wid = arrow_defcheck(wid ,defwid ,'Width' ); crossdir = arrow_defcheck(crossdir ,defcrossdir ,'CrossDir' ); page = arrow_defcheck(page ,defpage ,'Page' ); ends = arrow_defcheck(ends ,defends ,'' ); oldh = arrow_defcheck(oldh ,[] ,'ObjectHandles'); ispatch = arrow_defcheck(ispatch ,defispatch ,'' ); % check transpose on arguments [m,n]=size(start ); if any(m==[2 3])&(n==1|n>3), start = start'; end; [m,n]=size(stop ); if any(m==[2 3])&(n==1|n>3), stop = stop'; end; [m,n]=size(crossdir); if any(m==[2 3])&(n==1|n>3), crossdir = crossdir'; end; % convert strings to numbers if ~isempty(ends) & isstr(ends), endsorig = ends; [m,n] = size(ends); col = lower([ends(:,1:min(3,n)) ones(m,max(0,3-n))*' ']); ends = NaN*ones(m,1); oo = ones(1,m); ii=find(all(col'==['non']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*0; end; ii=find(all(col'==['sto']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*1; end; ii=find(all(col'==['sta']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*2; end; ii=find(all(col'==['bot']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*3; end; if any(isnan(ends)), ii = min(find(isnan(ends))); error([upper(mfilename) ' does not recognize ''' deblank(endsorig(ii,:)) ''' as a valid ''Ends'' value.']); end; else, ends = ends(:); end; if ~isempty(ispatch) & isstr(ispatch), col = lower(ispatch(:,1)); patchchar='p'; linechar='l'; defchar=' '; mask = col~=patchchar & col~=linechar & col~=defchar; if any(mask), error([upper(mfilename) ' does not recognize ''' deblank(ispatch(min(find(mask)),:)) ''' as a valid ''Type'' value.']); end; ispatch = (col==patchchar)*1 + (col==linechar)*0 + (col==defchar)*defispatch; else, ispatch = ispatch(:); end; oldh = oldh(:); % check object handles if ~all(ishandle(oldh)), error([upper(mfilename) ' got invalid object handles.']); end; % expand root, figure, and axes handles if ~isempty(oldh), ohtype = get(oldh,'Type'); mask = strcmp(ohtype,'root') | strcmp(ohtype,'figure') | strcmp(ohtype,'axes'); if any(mask), oldh = num2cell(oldh); for ii=find(mask)', oldh(ii) = {findobj(oldh{ii},'Tag',ArrowTag)}; end; oldh = cat(1,oldh{:}); if isempty(oldh), return; end; % no arrows to modify, so just leave end; end; % largest argument length [mstart,junk]=size(start); [mstop,junk]=size(stop); [mcrossdir,junk]=size(crossdir); argsizes = [length(oldh) mstart mstop ... length(len) length(baseangle) length(tipangle) ... length(wid) length(page) mcrossdir length(ends) ]; args=['length(ObjectHandle) '; ... '#rows(Start) '; ... '#rows(Stop) '; ... 'length(Length) '; ... 'length(BaseAngle) '; ... 'length(TipAngle) '; ... 'length(Width) '; ... 'length(Page) '; ... '#rows(CrossDir) '; ... '#rows(Ends) ']; if (any(imag(crossdir(:))~=0)), args(9,:) = '#rows(NormalDir) '; end; if isempty(oldh), narrows = max(argsizes); else, narrows = length(oldh); end; if (narrows<=0), narrows=1; end; % Check size of arguments ii = find((argsizes~=0)&(argsizes~=1)&(argsizes~=narrows)); if ~isempty(ii), s = args(ii',:); while ((size(s,2)>1)&((abs(s(:,size(s,2)))==0)|(abs(s(:,size(s,2)))==abs(' ')))), s = s(:,1:size(s,2)-1); end; s = [ones(length(ii),1)*[upper(mfilename) ' requires that '] s ... ones(length(ii),1)*[' equal the # of arrows (' num2str(narrows) ').' c]]; s = s'; s = s(:)'; s = s(1:length(s)-1); error(setstr(s)); end; % check element length in Start, Stop, and CrossDir if ~isempty(start), [m,n] = size(start); if (n==2), start = [start NaN*ones(m,1)]; elseif (n~=3), error([upper(mfilename) ' requires 2- or 3-element Start points.']); end; end; if ~isempty(stop), [m,n] = size(stop); if (n==2), stop = [stop NaN*ones(m,1)]; elseif (n~=3), error([upper(mfilename) ' requires 2- or 3-element Stop points.']); end; end; if ~isempty(crossdir), [m,n] = size(crossdir); if (n<3), crossdir = [crossdir NaN*ones(m,3-n)]; elseif (n~=3), if (all(imag(crossdir(:))==0)), error([upper(mfilename) ' requires 2- or 3-element CrossDir vectors.']); else, error([upper(mfilename) ' requires 2- or 3-element NormalDir vectors.']); end; end; end; % fill empty arguments if isempty(start ), start = [Inf Inf Inf]; end; if isempty(stop ), stop = [Inf Inf Inf]; end; if isempty(len ), len = Inf; end; if isempty(baseangle ), baseangle = Inf; end; if isempty(tipangle ), tipangle = Inf; end; if isempty(wid ), wid = Inf; end; if isempty(page ), page = Inf; end; if isempty(crossdir ), crossdir = [Inf Inf Inf]; end; if isempty(ends ), ends = Inf; end; if isempty(ispatch ), ispatch = Inf; end; % expand single-column arguments o = ones(narrows,1); if (size(start ,1)==1), start = o * start ; end; if (size(stop ,1)==1), stop = o * stop ; end; if (length(len )==1), len = o * len ; end; if (length(baseangle )==1), baseangle = o * baseangle ; end; if (length(tipangle )==1), tipangle = o * tipangle ; end; if (length(wid )==1), wid = o * wid ; end; if (length(page )==1), page = o * page ; end; if (size(crossdir ,1)==1), crossdir = o * crossdir ; end; if (length(ends )==1), ends = o * ends ; end; if (length(ispatch )==1), ispatch = o * ispatch ; end; ax = o * gca; % if we've got handles, get the defaults from the handles if ~isempty(oldh), for k=1:narrows, oh = oldh(k); ud = get(oh,'UserData'); ax(k) = get(oh,'Parent'); ohtype = get(oh,'Type'); if strcmp(get(oh,'Tag'),ArrowTag), % if it's an arrow already if isinf(ispatch(k)), ispatch(k)=strcmp(ohtype,'patch'); end; % arrow UserData format: [start' stop' len base tip wid page crossdir' ends] start0 = ud(1:3); stop0 = ud(4:6); if (isinf(len(k))), len(k) = ud( 7); end; if (isinf(baseangle(k))), baseangle(k) = ud( 8); end; if (isinf(tipangle(k))), tipangle(k) = ud( 9); end; if (isinf(wid(k))), wid(k) = ud(10); end; if (isinf(page(k))), page(k) = ud(11); end; if (isinf(crossdir(k,1))), crossdir(k,1) = ud(12); end; if (isinf(crossdir(k,2))), crossdir(k,2) = ud(13); end; if (isinf(crossdir(k,3))), crossdir(k,3) = ud(14); end; if (isinf(ends(k))), ends(k) = ud(15); end; elseif strcmp(ohtype,'line')|strcmp(ohtype,'patch'), % it's a non-arrow line or patch convLineToPatch = 1; %set to make arrow patches when converting from lines. if isinf(ispatch(k)), ispatch(k)=convLineToPatch|strcmp(ohtype,'patch'); end; x=get(oh,'XData'); x=x(~isnan(x(:))); if isempty(x), x=NaN; end; y=get(oh,'YData'); y=y(~isnan(y(:))); if isempty(y), y=NaN; end; z=get(oh,'ZData'); z=z(~isnan(z(:))); if isempty(z), z=NaN; end; start0 = [x(1) y(1) z(1) ]; stop0 = [x(end) y(end) z(end)]; else, error([upper(mfilename) ' cannot convert ' ohtype ' objects.']); end; ii=find(isinf(start(k,:))); if ~isempty(ii), start(k,ii)=start0(ii); end; ii=find(isinf(stop( k,:))); if ~isempty(ii), stop( k,ii)=stop0( ii); end; end; end; % convert Inf's to NaN's start( isinf(start )) = NaN; stop( isinf(stop )) = NaN; len( isinf(len )) = NaN; baseangle( isinf(baseangle)) = NaN; tipangle( isinf(tipangle )) = NaN; wid( isinf(wid )) = NaN; page( isinf(page )) = NaN; crossdir( isinf(crossdir )) = NaN; ends( isinf(ends )) = NaN; ispatch( isinf(ispatch )) = NaN; % set up the UserData data (here so not corrupted by log10's and such) ud = [start stop len baseangle tipangle wid page crossdir ends]; % Set Page defaults page = ~isnan(page) & trueornan(page); % Get axes limits, range, min; correct for aspect ratio and log scale axm = zeros(3,narrows); axr = zeros(3,narrows); axrev = zeros(3,narrows); ap = zeros(2,narrows); xyzlog = zeros(3,narrows); limmin = zeros(2,narrows); limrange = zeros(2,narrows); oldaxlims = zeros(narrows,7); oneax = all(ax==ax(1)); if (oneax), T = zeros(4,4); invT = zeros(4,4); else, T = zeros(16,narrows); invT = zeros(16,narrows); end; axnotdone = logical(ones(size(ax))); while (any(axnotdone)), ii = min(find(axnotdone)); curax = ax(ii); curpage = page(ii); % get axes limits and aspect ratio axl = [get(curax,'XLim'); get(curax,'YLim'); get(curax,'ZLim')]; oldaxlims(min(find(oldaxlims(:,1)==0)),:) = [curax reshape(axl',1,6)]; % get axes size in pixels (points) u = get(curax,'Units'); axposoldunits = get(curax,'Position'); really_curpage = curpage & strcmp(u,'normalized'); if (really_curpage), curfig = get(curax,'Parent'); pu = get(curfig,'PaperUnits'); set(curfig,'PaperUnits','points'); pp = get(curfig,'PaperPosition'); set(curfig,'PaperUnits',pu); set(curax,'Units','pixels'); curapscreen = get(curax,'Position'); set(curax,'Units','normalized'); curap = pp.*get(curax,'Position'); else, set(curax,'Units','pixels'); curapscreen = get(curax,'Position'); curap = curapscreen; end; set(curax,'Units',u); set(curax,'Position',axposoldunits); % handle non-stretched axes position str_stretch = { 'DataAspectRatioMode' ; ... 'PlotBoxAspectRatioMode' ; ... 'CameraViewAngleMode' }; str_camera = { 'CameraPositionMode' ; ... 'CameraTargetMode' ; ... 'CameraViewAngleMode' ; ... 'CameraUpVectorMode' }; notstretched = strcmp(get(curax,str_stretch),'manual'); manualcamera = strcmp(get(curax,str_camera),'manual'); if ~arrow_WarpToFill(notstretched,manualcamera,curax), % give a warning that this has not been thoroughly tested if 0 & ARROW_STRETCH_WARN, ARROW_STRETCH_WARN = 0; strs = {str_stretch{1:2},str_camera{:}}; strs = [char(ones(length(strs),1)*sprintf('\n ')) char(strs)]'; warning([upper(mfilename) ' may not yet work quite right ' ... 'if any of the following are ''manual'':' strs(:).']); end; % find the true pixel size of the actual axes texttmp = text(axl(1,[1 2 2 1 1 2 2 1]), ... axl(2,[1 1 2 2 1 1 2 2]), ... axl(3,[1 1 1 1 2 2 2 2]),''); set(texttmp,'Units','points'); textpos = get(texttmp,'Position'); delete(texttmp); textpos = cat(1,textpos{:}); textpos = max(textpos(:,1:2)) - min(textpos(:,1:2)); % adjust the axes position if (really_curpage), % adjust to printed size textpos = textpos * min(curap(3:4)./textpos); curap = [curap(1:2)+(curap(3:4)-textpos)/2 textpos]; else, % adjust for pixel roundoff textpos = textpos * min(curapscreen(3:4)./textpos); curap = [curap(1:2)+(curap(3:4)-textpos)/2 textpos]; end; end; if ARROW_PERSP_WARN & ~strcmp(get(curax,'Projection'),'orthographic'), ARROW_PERSP_WARN = 0; warning([upper(mfilename) ' does not yet work right for 3-D perspective projection.']); end; % adjust limits for log scale on axes curxyzlog = [strcmp(get(curax,'XScale'),'log'); ... strcmp(get(curax,'YScale'),'log'); ... strcmp(get(curax,'ZScale'),'log')]; if (any(curxyzlog)), ii = find([curxyzlog;curxyzlog]); if (any(axl(ii)<=0)), error([upper(mfilename) ' does not support non-positive limits on log-scaled axes.']); else, axl(ii) = log10(axl(ii)); end; end; % correct for 'reverse' direction on axes; curreverse = [strcmp(get(curax,'XDir'),'reverse'); ... strcmp(get(curax,'YDir'),'reverse'); ... strcmp(get(curax,'ZDir'),'reverse')]; ii = find(curreverse); if ~isempty(ii), axl(ii,[1 2])=-axl(ii,[2 1]); end; % compute the range of 2-D values curT = get(curax,'Xform'); lim = curT*[0 1 0 1 0 1 0 1;0 0 1 1 0 0 1 1;0 0 0 0 1 1 1 1;1 1 1 1 1 1 1 1]; lim = lim(1:2,:)./([1;1]*lim(4,:)); curlimmin = min(lim')'; curlimrange = max(lim')' - curlimmin; curinvT = inv(curT); if (~oneax), curT = curT.'; curinvT = curinvT.'; curT = curT(:); curinvT = curinvT(:); end; % check which arrows to which cur corresponds ii = find((ax==curax)&(page==curpage)); oo = ones(1,length(ii)); axr(:,ii) = diff(axl')' * oo; axm(:,ii) = axl(:,1) * oo; axrev(:,ii) = curreverse * oo; ap(:,ii) = curap(3:4)' * oo; xyzlog(:,ii) = curxyzlog * oo; limmin(:,ii) = curlimmin * oo; limrange(:,ii) = curlimrange * oo; if (oneax), T = curT; invT = curinvT; else, T(:,ii) = curT * oo; invT(:,ii) = curinvT * oo; end; axnotdone(ii) = zeros(1,length(ii)); end; oldaxlims(oldaxlims(:,1)==0,:)=[]; % correct for log scales curxyzlog = xyzlog.'; ii = find(curxyzlog(:)); if ~isempty(ii), start( ii) = real(log10(start( ii))); stop( ii) = real(log10(stop( ii))); if (all(imag(crossdir)==0)), % pulled (ii) subscript on crossdir, 12/5/96 eaj crossdir(ii) = real(log10(crossdir(ii))); end; end; % correct for reverse directions ii = find(axrev.'); if ~isempty(ii), start( ii) = -start( ii); stop( ii) = -stop( ii); crossdir(ii) = -crossdir(ii); end; % transpose start/stop values start = start.'; stop = stop.'; % take care of defaults, page was done above ii=find(isnan(start(:) )); if ~isempty(ii), start(ii) = axm(ii)+axr(ii)/2; end; ii=find(isnan(stop(:) )); if ~isempty(ii), stop(ii) = axm(ii)+axr(ii)/2; end; ii=find(isnan(crossdir(:) )); if ~isempty(ii), crossdir(ii) = zeros(length(ii),1); end; ii=find(isnan(len )); if ~isempty(ii), len(ii) = ones(length(ii),1)*deflen; end; ii=find(isnan(baseangle )); if ~isempty(ii), baseangle(ii) = ones(length(ii),1)*defbaseangle; end; ii=find(isnan(tipangle )); if ~isempty(ii), tipangle(ii) = ones(length(ii),1)*deftipangle; end; ii=find(isnan(wid )); if ~isempty(ii), wid(ii) = ones(length(ii),1)*defwid; end; ii=find(isnan(ends )); if ~isempty(ii), ends(ii) = ones(length(ii),1)*defends; end; % transpose rest of values len = len.'; baseangle = baseangle.'; tipangle = tipangle.'; wid = wid.'; page = page.'; crossdir = crossdir.'; ends = ends.'; ax = ax.'; % given x, a 3xN matrix of points in 3-space; % want to convert to X, the corresponding 4xN 2-space matrix % % tmp1=[(x-axm)./axr; ones(1,size(x,1))]; % if (oneax), X=T*tmp1; % else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1; % tmp2=zeros(4,4*N); tmp2(:)=tmp1(:); % X=zeros(4,N); X(:)=sum(tmp2)'; end; % X = X ./ (ones(4,1)*X(4,:)); % for all points with start==stop, start=stop-(verysmallvalue)*(up-direction); ii = find(all(start==stop)); if ~isempty(ii), % find an arrowdir vertical on screen and perpendicular to viewer % transform to 2-D tmp1 = [(stop(:,ii)-axm(:,ii))./axr(:,ii);ones(1,length(ii))]; if (oneax), twoD=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,ii).*tmp1; tmp2=zeros(4,4*length(ii)); tmp2(:)=tmp1(:); twoD=zeros(4,length(ii)); twoD(:)=sum(tmp2)'; end; twoD=twoD./(ones(4,1)*twoD(4,:)); % move the start point down just slightly tmp1 = twoD + [0;-1/1000;0;0]*(limrange(2,ii)./ap(2,ii)); % transform back to 3-D if (oneax), threeD=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT(:,ii).*tmp1; tmp2=zeros(4,4*length(ii)); tmp2(:)=tmp1(:); threeD=zeros(4,length(ii)); threeD(:)=sum(tmp2)'; end; start(:,ii) = (threeD(1:3,:)./(ones(3,1)*threeD(4,:))).*axr(:,ii)+axm(:,ii); end; % compute along-arrow points % transform Start points tmp1=[(start-axm)./axr;ones(1,narrows)]; if (oneax), X0=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); X0=zeros(4,narrows); X0(:)=sum(tmp2)'; end; X0=X0./(ones(4,1)*X0(4,:)); % transform Stop points tmp1=[(stop-axm)./axr;ones(1,narrows)]; if (oneax), Xf=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); Xf=zeros(4,narrows); Xf(:)=sum(tmp2)'; end; Xf=Xf./(ones(4,1)*Xf(4,:)); % compute pixel distance between points D = sqrt(sum(((Xf(1:2,:)-X0(1:2,:)).*(ap./limrange)).^2)); D = D + (D==0); %eaj new 2/24/98 % compute and modify along-arrow distances len1 = len; len2 = len - (len.*tan(tipangle/180*pi)-wid/2).*tan((90-baseangle)/180*pi); slen0 = zeros(1,narrows); slen1 = len1 .* ((ends==2)|(ends==3)); slen2 = len2 .* ((ends==2)|(ends==3)); len0 = zeros(1,narrows); len1 = len1 .* ((ends==1)|(ends==3)); len2 = len2 .* ((ends==1)|(ends==3)); % for no start arrowhead ii=find((ends==1)&(D<len2)); if ~isempty(ii), slen0(ii) = D(ii)-len2(ii); end; % for no end arrowhead ii=find((ends==2)&(D<slen2)); if ~isempty(ii), len0(ii) = D(ii)-slen2(ii); end; len1 = len1 + len0; len2 = len2 + len0; slen1 = slen1 + slen0; slen2 = slen2 + slen0; % note: the division by D below will probably not be accurate if both % of the following are true: % 1. the ratio of the line length to the arrowhead % length is large % 2. the view is highly perspective. % compute stoppoints tmp1=X0.*(ones(4,1)*(len0./D))+Xf.*(ones(4,1)*(1-len0./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; stoppoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute tippoints tmp1=X0.*(ones(4,1)*(len1./D))+Xf.*(ones(4,1)*(1-len1./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; tippoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute basepoints tmp1=X0.*(ones(4,1)*(len2./D))+Xf.*(ones(4,1)*(1-len2./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; basepoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute startpoints tmp1=X0.*(ones(4,1)*(1-slen0./D))+Xf.*(ones(4,1)*(slen0./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; startpoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute stippoints tmp1=X0.*(ones(4,1)*(1-slen1./D))+Xf.*(ones(4,1)*(slen1./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; stippoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute sbasepoints tmp1=X0.*(ones(4,1)*(1-slen2./D))+Xf.*(ones(4,1)*(slen2./D)); if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1; tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end; sbasepoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm; % compute cross-arrow directions for arrows with NormalDir specified if (any(imag(crossdir(:))~=0)), ii = find(any(imag(crossdir)~=0)); crossdir(:,ii) = cross((stop(:,ii)-start(:,ii))./axr(:,ii), ... imag(crossdir(:,ii))).*axr(:,ii); end; % compute cross-arrow directions basecross = crossdir + basepoint; tipcross = crossdir + tippoint; sbasecross = crossdir + sbasepoint; stipcross = crossdir + stippoint; ii = find(all(crossdir==0)|any(isnan(crossdir))); if ~isempty(ii), numii = length(ii); % transform start points tmp1 = [basepoint(:,ii) tippoint(:,ii) sbasepoint(:,ii) stippoint(:,ii)]; tmp1 = (tmp1-axm(:,[ii ii ii ii])) ./ axr(:,[ii ii ii ii]); tmp1 = [tmp1; ones(1,4*numii)]; if (oneax), X0=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,[ii ii ii ii]).*tmp1; tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:); X0=zeros(4,4*numii); X0(:)=sum(tmp2)'; end; X0=X0./(ones(4,1)*X0(4,:)); % transform stop points tmp1 = [(2*stop(:,ii)-start(:,ii)-axm(:,ii))./axr(:,ii);ones(1,numii)]; tmp1 = [tmp1 tmp1 tmp1 tmp1]; if (oneax), Xf=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,[ii ii ii ii]).*tmp1; tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:); Xf=zeros(4,4*numii); Xf(:)=sum(tmp2)'; end; Xf=Xf./(ones(4,1)*Xf(4,:)); % compute perpendicular directions pixfact = ((limrange(1,ii)./limrange(2,ii)).*(ap(2,ii)./ap(1,ii))).^2; pixfact = [pixfact pixfact pixfact pixfact]; pixfact = [pixfact;1./pixfact]; [dummyval,jj] = max(abs(Xf(1:2,:)-X0(1:2,:))); jj1 = ((1:4)'*ones(1,length(jj))==ones(4,1)*jj); jj2 = ((1:4)'*ones(1,length(jj))==ones(4,1)*(3-jj)); jj3 = jj1(1:2,:); Xf(jj1)=Xf(jj1)+(Xf(jj1)-X0(jj1)==0); %eaj new 2/24/98 Xp = X0; Xp(jj2) = X0(jj2) + ones(sum(jj2(:)),1); Xp(jj1) = X0(jj1) - (Xf(jj2)-X0(jj2))./(Xf(jj1)-X0(jj1)) .* pixfact(jj3); % inverse transform the cross points if (oneax), Xp=invT*Xp; else, tmp1=[Xp;Xp;Xp;Xp]; tmp1=invT(:,[ii ii ii ii]).*tmp1; tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:); Xp=zeros(4,4*numii); Xp(:)=sum(tmp2)'; end; Xp=(Xp(1:3,:)./(ones(3,1)*Xp(4,:))).*axr(:,[ii ii ii ii])+axm(:,[ii ii ii ii]); basecross(:,ii) = Xp(:,0*numii+(1:numii)); tipcross(:,ii) = Xp(:,1*numii+(1:numii)); sbasecross(:,ii) = Xp(:,2*numii+(1:numii)); stipcross(:,ii) = Xp(:,3*numii+(1:numii)); end; % compute all points % compute start points axm11 = [axm axm axm axm axm axm axm axm axm axm axm]; axr11 = [axr axr axr axr axr axr axr axr axr axr axr]; st = [stoppoint tippoint basepoint sbasepoint stippoint startpoint stippoint sbasepoint basepoint tippoint stoppoint]; tmp1 = (st - axm11) ./ axr11; tmp1 = [tmp1; ones(1,size(tmp1,2))]; if (oneax), X0=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[T T T T T T T T T T T].*tmp1; tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:); X0=zeros(4,11*narrows); X0(:)=sum(tmp2)'; end; X0=X0./(ones(4,1)*X0(4,:)); % compute stop points tmp1 = ([start tipcross basecross sbasecross stipcross stop stipcross sbasecross basecross tipcross start] ... - axm11) ./ axr11; tmp1 = [tmp1; ones(1,size(tmp1,2))]; if (oneax), Xf=T*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[T T T T T T T T T T T].*tmp1; tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:); Xf=zeros(4,11*narrows); Xf(:)=sum(tmp2)'; end; Xf=Xf./(ones(4,1)*Xf(4,:)); % compute lengths len0 = len.*((ends==1)|(ends==3)).*tan(tipangle/180*pi); slen0 = len.*((ends==2)|(ends==3)).*tan(tipangle/180*pi); le = [zeros(1,narrows) len0 wid/2 wid/2 slen0 zeros(1,narrows) -slen0 -wid/2 -wid/2 -len0 zeros(1,narrows)]; aprange = ap./limrange; aprange = [aprange aprange aprange aprange aprange aprange aprange aprange aprange aprange aprange]; D = sqrt(sum(((Xf(1:2,:)-X0(1:2,:)).*aprange).^2)); Dii=find(D==0); if ~isempty(Dii), D=D+(D==0); le(Dii)=zeros(1,length(Dii)); end; %should fix DivideByZero warnings tmp1 = X0.*(ones(4,1)*(1-le./D)) + Xf.*(ones(4,1)*(le./D)); % inverse transform if (oneax), tmp3=invT*tmp1; else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[invT invT invT invT invT invT invT invT invT invT invT].*tmp1; tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:); tmp3=zeros(4,11*narrows); tmp3(:)=sum(tmp2)'; end; pts = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)) .* axr11 + axm11; % correct for ones where the crossdir was specified ii = find(~(all(crossdir==0)|any(isnan(crossdir)))); if ~isempty(ii), D1 = [pts(:,1*narrows+ii)-pts(:,9*narrows+ii) ... pts(:,2*narrows+ii)-pts(:,8*narrows+ii) ... pts(:,3*narrows+ii)-pts(:,7*narrows+ii) ... pts(:,4*narrows+ii)-pts(:,6*narrows+ii) ... pts(:,6*narrows+ii)-pts(:,4*narrows+ii) ... pts(:,7*narrows+ii)-pts(:,3*narrows+ii) ... pts(:,8*narrows+ii)-pts(:,2*narrows+ii) ... pts(:,9*narrows+ii)-pts(:,1*narrows+ii)]/2; ii = ii'*ones(1,8) + ones(length(ii),1)*[1:4 6:9]*narrows; ii = ii(:)'; pts(:,ii) = st(:,ii) + D1; end; % readjust for reverse directions iicols=(1:narrows)'; iicols=iicols(:,ones(1,11)); iicols=iicols(:).'; tmp1=axrev(:,iicols); ii = find(tmp1(:)); if ~isempty(ii), pts(ii)=-pts(ii); end; % readjust for log scale on axes tmp1=xyzlog(:,iicols); ii = find(tmp1(:)); if ~isempty(ii), pts(ii)=10.^pts(ii); end; % compute the x,y,z coordinates of the patches; ii = narrows*(0:10)'*ones(1,narrows) + ones(11,1)*(1:narrows); ii = ii(:)'; x = zeros(11,narrows); y = zeros(11,narrows); z = zeros(11,narrows); x(:) = pts(1,ii)'; y(:) = pts(2,ii)'; z(:) = pts(3,ii)'; % do the output if (nargout<=1), % % create or modify the patches newpatch = trueornan(ispatch) & (isempty(oldh)|~strcmp(get(oldh,'Type'),'patch')); newline = ~trueornan(ispatch) & (isempty(oldh)|~strcmp(get(oldh,'Type'),'line')); if isempty(oldh), H=zeros(narrows,1); else, H=oldh; end; % % make or modify the arrows for k=1:narrows, if all(isnan(ud(k,[3 6])))&arrow_is2DXY(ax(k)), zz=[]; else, zz=z(:,k); end; xx=x(:,k); yy=y(:,k); if (0), % this fix didn't work, so let's not use it -- 8/26/03 % try to work around a MATLAB 6.x OpenGL bug -- 7/28/02 mask=any([ones(1,2+size(zz,2));diff([xx yy zz],[],1)],2); xx=xx(mask); yy=yy(mask); if ~isempty(zz), zz=zz(mask); end; end; % plot the patch or line xyz = {'XData',xx,'YData',yy,'ZData',zz,'Tag',ArrowTag}; if newpatch(k)|newline(k), if newpatch(k), H(k) = patch(xyz{:}); else, H(k) = line(xyz{:}); end; if ~isempty(oldh), arrow_copyprops(oldh(k),H(k)); end; else, if ispatch(k), xyz={xyz{:},'CData',[]}; end; set(H(k),xyz{:}); end; end; if ~isempty(oldh), delete(oldh(oldh~=H)); end; % % additional properties set(H,'Clipping','off'); set(H,{'UserData'},num2cell(ud,2)); if (length(extraprops)>0), set(H,extraprops{:}); end; % handle choosing arrow Start and/or Stop locations if unspecified [H,oldaxlims,errstr] = arrow_clicks(H,ud,x,y,z,ax,oldaxlims); if ~isempty(errstr), error([upper(mfilename) ' got ' errstr]); end; % set the output if (nargout>0), h=H; end; % make sure the axis limits did not change if isempty(oldaxlims), ARROW_AXLIMITS = []; else, lims = get(oldaxlims(:,1),{'XLim','YLim','ZLim'})'; lims = reshape(cat(2,lims{:}),6,size(lims,2)); mask = arrow_is2DXY(oldaxlims(:,1)); oldaxlims(mask,6:7) = lims(5:6,mask)'; ARROW_AXLIMITS = oldaxlims(find(any(oldaxlims(:,2:7)'~=lims)),:); if ~isempty(ARROW_AXLIMITS), warning(arrow_warnlimits(ARROW_AXLIMITS,narrows)); end; end; else, % don't create the patch, just return the data h=x; yy=y; zz=z; end; function out = arrow_defcheck(in,def,prop) % check if we got 'default' values out = in; if ~isstr(in), return; end; if size(in,1)==1 & strncmp(lower(in),'def',3), out = def; elseif ~isempty(prop), error([upper(mfilename) ' does not recognize ''' in(:)' ''' as a valid ''' prop ''' string.']); end; function [H,oldaxlims,errstr] = arrow_clicks(H,ud,x,y,z,ax,oldaxlims) % handle choosing arrow Start and/or Stop locations if necessary errstr = ''; if isempty(H)|isempty(ud)|isempty(x), return; end; % determine which (if any) need Start and/or Stop needStart = all(isnan(ud(:,1:3)'))'; needStop = all(isnan(ud(:,4:6)'))'; mask = any(needStart|needStop); if ~any(mask), return; end; ud(~mask,:)=[]; ax(:,~mask)=[]; x(:,~mask)=[]; y(:,~mask)=[]; z(:,~mask)=[]; % make them invisible for the time being set(H,'Visible','off'); % save the current axes and limits modes; set to manual for the time being oldAx = gca; limModes=get(ax(:),{'XLimMode','YLimMode','ZLimMode'}); set(ax(:),{'XLimMode','YLimMode','ZLimMode'},{'manual','manual','manual'}); % loop over each arrow that requires attention jj = find(mask); for ii=1:length(jj), h = H(jj(ii)); axes(ax(ii)); % figure out correct call if needStart(ii), prop='Start'; else, prop='Stop'; end; [wasInterrupted,errstr] = arrow_click(needStart(ii)&needStop(ii),h,prop,ax(ii)); % handle errors and control-C if wasInterrupted, delete(H(jj(ii:end))); H(jj(ii:end))=[]; oldaxlims(jj(ii:end),:)=[]; break; end; end; % restore the axes and limit modes axes(oldAx); set(ax(:),{'XLimMode','YLimMode','ZLimMode'},limModes); function [wasInterrupted,errstr] = arrow_click(lockStart,H,prop,ax) % handle the clicks for one arrow fig = get(ax,'Parent'); % save some things oldFigProps = {'Pointer','WindowButtonMotionFcn','WindowButtonUpFcn'}; oldFigValue = get(fig,oldFigProps); oldArrowProps = {'EraseMode'}; oldArrowValue = get(H,oldArrowProps); set(H,'EraseMode','background'); %because 'xor' makes shaft invisible unless Width>1 global ARROW_CLICK_H ARROW_CLICK_PROP ARROW_CLICK_AX ARROW_CLICK_USE_Z ARROW_CLICK_H=H; ARROW_CLICK_PROP=prop; ARROW_CLICK_AX=ax; ARROW_CLICK_USE_Z=~arrow_is2DXY(ax)|~arrow_planarkids(ax); set(fig,'Pointer','crosshair'); % set up the WindowButtonMotion so we can see the arrow while moving around set(fig,'WindowButtonUpFcn','set(gcf,''WindowButtonUpFcn'','''')', ... 'WindowButtonMotionFcn',''); if ~lockStart, set(H,'Visible','on'); set(fig,'WindowButtonMotionFcn',[mfilename '(''callback'',''motion'');']); end; % wait for the button to be pressed [wasKeyPress,wasInterrupted,errstr] = arrow_wfbdown(fig); % if we wanted to click-drag, set the Start point if lockStart & ~wasInterrupted, pt = arrow_point(ARROW_CLICK_AX,ARROW_CLICK_USE_Z); feval(mfilename,H,'Start',pt,'Stop',pt); set(H,'Visible','on'); ARROW_CLICK_PROP='Stop'; set(fig,'WindowButtonMotionFcn',[mfilename '(''callback'',''motion'');']); % wait for the mouse button to be released try waitfor(fig,'WindowButtonUpFcn',''); catch errstr = lasterr; wasInterrupted = 1; end; end; if ~wasInterrupted, feval(mfilename,'callback','motion'); end; % restore some things set(gcf,oldFigProps,oldFigValue); set(H,oldArrowProps,oldArrowValue); function arrow_callback(varargin) % handle redrawing callbacks if nargin==0, return; end; str = varargin{1}; if ~isstr(str), error([upper(mfilename) ' got an invalid Callback command.']); end; s = lower(str); if strcmp(s,'motion'), % motion callback global ARROW_CLICK_H ARROW_CLICK_PROP ARROW_CLICK_AX ARROW_CLICK_USE_Z feval(mfilename,ARROW_CLICK_H,ARROW_CLICK_PROP,arrow_point(ARROW_CLICK_AX,ARROW_CLICK_USE_Z)); drawnow; else, error([upper(mfilename) ' does not recognize ''' str(:).' ''' as a valid Callback option.']); end; function out = arrow_point(ax,use_z) % return the point on the given axes if nargin==0, ax=gca; end; if nargin<2, use_z=~arrow_is2DXY(ax)|~arrow_planarkids(ax); end; out = get(ax,'CurrentPoint'); out = out(1,:); if ~use_z, out=out(1:2); end; function [wasKeyPress,wasInterrupted,errstr] = arrow_wfbdown(fig) % wait for button down ignoring object ButtonDownFcn's if nargin==0, fig=gcf; end; errstr = ''; % save ButtonDownFcn values objs = findobj(fig); buttonDownFcns = get(objs,'ButtonDownFcn'); mask=~strcmp(buttonDownFcns,''); objs=objs(mask); buttonDownFcns=buttonDownFcns(mask); set(objs,'ButtonDownFcn',''); % save other figure values figProps = {'KeyPressFcn','WindowButtonDownFcn'}; figValue = get(fig,figProps); % do the real work set(fig,'KeyPressFcn','set(gcf,''KeyPressFcn'','''',''WindowButtonDownFcn'','''');', ... 'WindowButtonDownFcn','set(gcf,''WindowButtonDownFcn'','''')'); lasterr(''); try waitfor(fig,'WindowButtonDownFcn',''); wasInterrupted = 0; catch wasInterrupted = 1; end wasKeyPress = ~wasInterrupted & strcmp(get(fig,'KeyPressFcn'),''); if wasInterrupted, errstr=lasterr; end; % restore ButtonDownFcn and other figure values set(objs,'ButtonDownFcn',buttonDownFcns); set(fig,figProps,figValue); function [out,is2D] = arrow_is2DXY(ax) % check if axes are 2-D X-Y plots % may not work for modified camera angles, etc. out = logical(zeros(size(ax))); % 2-D X-Y plots is2D = out; % any 2-D plots views = get(ax(:),{'View'}); views = cat(1,views{:}); out(:) = abs(views(:,2))==90; is2D(:) = out(:) | all(rem(views',90)==0)'; function out = arrow_planarkids(ax) % check if axes descendents all have empty ZData (lines,patches,surfaces) out = logical(ones(size(ax))); allkids = get(ax(:),{'Children'}); for k=1:length(allkids), kids = get([findobj(allkids{k},'flat','Type','line') findobj(allkids{k},'flat','Type','patch') findobj(allkids{k},'flat','Type','surface')],{'ZData'}); for j=1:length(kids), if ~isempty(kids{j}), out(k)=logical(0); break; end; end; end; function arrow_fixlimits(axlimits) % reset the axis limits as necessary if isempty(axlimits), disp([upper(mfilename) ' does not remember any axis limits to reset.']); end; for k=1:size(axlimits,1), if any(get(axlimits(k,1),'XLim')~=axlimits(k,2:3)), set(axlimits(k,1),'XLim',axlimits(k,2:3)); end; if any(get(axlimits(k,1),'YLim')~=axlimits(k,4:5)), set(axlimits(k,1),'YLim',axlimits(k,4:5)); end; if any(get(axlimits(k,1),'ZLim')~=axlimits(k,6:7)), set(axlimits(k,1),'ZLim',axlimits(k,6:7)); end; end; function out = arrow_WarpToFill(notstretched,manualcamera,curax) % check if we are in "WarpToFill" mode. out = strcmp(get(curax,'WarpToFill'),'on'); % 'WarpToFill' is undocumented, so may need to replace this by % out = ~( any(notstretched) & any(manualcamera) ); function out = arrow_warnlimits(axlimits,narrows) % create a warning message if we've changed the axis limits msg = ''; switch (size(axlimits,1)) case 1, msg=''; case 2, msg='on two axes '; otherwise, msg='on several axes '; end; msg = [upper(mfilename) ' changed the axis limits ' msg ... 'when adding the arrow']; if (narrows>1), msg=[msg 's']; end; out = [msg '.' sprintf('\n') ' Call ' upper(mfilename) ... ' FIXLIMITS to reset them now.']; function arrow_copyprops(fm,to) % copy line properties to patches props = {'EraseMode','LineStyle','LineWidth','Marker','MarkerSize',... 'MarkerEdgeColor','MarkerFaceColor','ButtonDownFcn', ... 'Clipping','DeleteFcn','BusyAction','HandleVisibility', ... 'Selected','SelectionHighlight','Visible'}; lineprops = {'Color', props{:}}; patchprops = {'EdgeColor',props{:}}; patch2props = {'FaceColor',patchprops{:}}; fmpatch = strcmp(get(fm,'Type'),'patch'); topatch = strcmp(get(to,'Type'),'patch'); set(to( fmpatch& topatch),patch2props,get(fm( fmpatch& topatch),patch2props)); %p->p set(to(~fmpatch&~topatch),lineprops, get(fm(~fmpatch&~topatch),lineprops )); %l->l set(to( fmpatch&~topatch),lineprops, get(fm( fmpatch&~topatch),patchprops )); %p->l set(to(~fmpatch& topatch),patchprops, get(fm(~fmpatch& topatch),lineprops) ,'FaceColor','none'); %l->p function arrow_props % display further help info about ARROW properties c = sprintf('\n'); disp([c ... 'ARROW Properties: Default values are given in [square brackets], and other' c ... ' acceptable equivalent property names are in (parenthesis).' c c ... ' Start The starting points. For N arrows, B' c ... ' this should be a Nx2 or Nx3 matrix. /|\ ^' c ... ' Stop The end points. For N arrows, this /|||\ |' c ... ' should be a Nx2 or Nx3 matrix. //|||\\ L|' c ... ' Length Length of the arrowhead (in pixels on ///|||\\\ e|' c ... ' screen, points on a page). [16] (Len) ////|||\\\\ n|' c ... ' BaseAngle Angle (degrees) of the base angle /////|D|\\\\\ g|' c ... ' ADE. For a simple stick arrow, use //// ||| \\\\ t|' c ... ' BaseAngle=TipAngle. [90] (Base) /// ||| \\\ h|' c ... ' TipAngle Angle (degrees) of tip angle ABC. //<----->|| \\ |' c ... ' [16] (Tip) / base ||| \ V' c ... ' Width Width of the base in pixels. Not E angle ||<-------->C' c ... ' the ''LineWidth'' prop. [0] (Wid) |||tipangle' c ... ' Page If provided, non-empty, and not NaN, |||' c ... ' this causes ARROW to use hardcopy |||' c ... ' rather than onscreen proportions. A' c ... ' This is important if screen aspect --> <-- width' c ... ' ratio and hardcopy aspect ratio are ----CrossDir---->' c ... ' vastly different. []' c... ' CrossDir A vector giving the direction towards which the fletches' c ... ' on the arrow should go. [computed such that it is perpen-' c ... ' dicular to both the arrow direction and the view direction' c ... ' (i.e., as if it was pasted on a normal 2-D graph)] (Note' c ... ' that CrossDir is a vector. Also note that if an axis is' c ... ' plotted on a log scale, then the corresponding component' c ... ' of CrossDir must also be set appropriately, i.e., to 1 for' c ... ' no change in that direction, >1 for a positive change, >0' c ... ' and <1 for negative change.)' c ... ' NormalDir A vector normal to the fletch direction (CrossDir is then' c ... ' computed by the vector cross product [Line]x[NormalDir]). []' c ... ' (Note that NormalDir is a vector. Unlike CrossDir,' c ... ' NormalDir is used as is regardless of log-scaled axes.)' c ... ' Ends Set which end has an arrowhead. Valid values are ''none'',' c ... ' ''stop'', ''start'', and ''both''. [''stop''] (End)' c... ' ObjectHandles Vector of handles to previously-created arrows to be' c ... ' updated or line objects to be converted to arrows.' c ... ' [] (Object,Handle)' c ]); function out = arrow_demo % demo % create the data [x,y,z] = peaks; [ddd,out.iii]=max(z(:)); out.axlim = [min(x(:)) max(x(:)) min(y(:)) max(y(:)) min(z(:)) max(z(:))]; % modify it by inserting some NaN's [m,n] = size(z); m = floor(m/2); n = floor(n/2); z(1:m,1:n) = NaN*ones(m,n); % graph it clf('reset'); out.hs=surf(x,y,z); out.x=x; out.y=y; out.z=z; xlabel('x'); ylabel('y'); function h = arrow_demo3(in) % set the view axlim = in.axlim; axis(axlim); zlabel('z'); %set(in.hs,'FaceColor','interp'); view(3); % view(viewmtx(-37.5,30,20)); title(['Demo of the capabilities of the ARROW function in 3-D']); % Normal blue arrow h1 = feval(mfilename,[axlim(1) axlim(4) 4],[-.8 1.2 4], ... 'EdgeColor','b','FaceColor','b'); % Normal white arrow, clipped by the surface h2 = feval(mfilename,axlim([1 4 6]),[0 2 4]); t=text(-2.4,2.7,7.7,'arrow clipped by surf'); % Baseangle<90 h3 = feval(mfilename,[3 .125 3.5],[1.375 0.125 3.5],30,50); t2=text(3.1,.125,3.5,'local maximum'); % Baseangle<90, fill and edge colors different h4 = feval(mfilename,axlim(1:2:5)*.5,[0 0 0],36,60,25, ... 'EdgeColor','b','FaceColor','c'); t3=text(axlim(1)*.5,axlim(3)*.5,axlim(5)*.5-.75,'origin'); set(t3,'HorizontalAlignment','center'); % Baseangle>90, black fill h5 = feval(mfilename,[-2.9 2.9 3],[-1.3 .4 3.2],30,120,[],6, ... 'EdgeColor','r','FaceColor','k','LineWidth',2); % Baseangle>90, no fill h6 = feval(mfilename,[-2.9 2.9 1.3],[-1.3 .4 1.5],30,120,[],6, ... 'EdgeColor','r','FaceColor','none','LineWidth',2); % Stick arrow h7 = feval(mfilename,[-1.6 -1.65 -6.5],[0 -1.65 -6.5],[],16,16); t4=text(-1.5,-1.65,-7.25,'global mininum'); set(t4,'HorizontalAlignment','center'); % Normal, black fill h8 = feval(mfilename,[-1.4 0 -7.2],[-1.4 0 -3],'FaceColor','k'); t5=text(-1.5,0,-7.75,'local minimum'); set(t5,'HorizontalAlignment','center'); % Gray fill, crossdir specified, 'LineStyle' -- h9 = feval(mfilename,[-3 2.2 -6],[-3 2.2 -.05],36,[],27,6,[],[0 -1 0], ... 'EdgeColor','k','FaceColor',.75*[1 1 1],'LineStyle','--'); % a series of normal arrows, linearly spaced, crossdir specified h10y=(0:4)'/3; h10 = feval(mfilename,[-3*ones(size(h10y)) h10y -6.5*ones(size(h10y))], ... [-3*ones(size(h10y)) h10y -.05*ones(size(h10y))], ... 12,[],[],[],[],[0 -1 0]); % a series of normal arrows, linearly spaced h11x=(1:.33:2.8)'; h11 = feval(mfilename,[h11x -3*ones(size(h11x)) 6.5*ones(size(h11x))], ... [h11x -3*ones(size(h11x)) -.05*ones(size(h11x))]); % series of magenta arrows, radially oriented, crossdir specified h12x=2; h12y=-3; h12z=axlim(5)/2; h12xr=1; h12zr=h12z; ir=.15;or=.81; h12t=(0:11)'/6*pi; h12 = feval(mfilename, ... [h12x+h12xr*cos(h12t)*ir h12y*ones(size(h12t)) ... h12z+h12zr*sin(h12t)*ir],[h12x+h12xr*cos(h12t)*or ... h12y*ones(size(h12t)) h12z+h12zr*sin(h12t)*or], ... 10,[],[],[],[], ... [-h12xr*sin(h12t) zeros(size(h12t)) h12zr*cos(h12t)],... 'FaceColor','none','EdgeColor','m'); % series of normal arrows, tangentially oriented, crossdir specified or13=.91; h13t=(0:.5:12)'/6*pi; locs = [h12x+h12xr*cos(h13t)*or13 h12y*ones(size(h13t)) h12z+h12zr*sin(h13t)*or13]; h13 = feval(mfilename,locs(1:end-1,:),locs(2:end,:),6); % arrow with no line ==> oriented downwards h14 = feval(mfilename,[3 3 .100001],[3 3 .1],30); t6=text(3,3,3.6,'no line'); set(t6,'HorizontalAlignment','center'); % arrow with arrowheads at both ends h15 = feval(mfilename,[-.5 -3 -3],[1 -3 -3],'Ends','both','FaceColor','g', ... 'Length',20,'Width',3,'CrossDir',[0 0 1],'TipAngle',25); h=[h1;h2;h3;h4;h5;h6;h7;h8;h9;h10;h11;h12;h13;h14;h15]; function h = arrow_demo2(in) axlim = in.axlim; dolog = 1; if (dolog), set(in.hs,'YData',10.^get(in.hs,'YData')); end; shading('interp'); view(2); title(['Demo of the capabilities of the ARROW function in 2-D']); hold on; [C,H]=contour(in.x,in.y,in.z,20,'-'); hold off; for k=H', set(k,'ZData',(axlim(6)+1)*ones(size(get(k,'XData'))),'Color','k'); if (dolog), set(k,'YData',10.^get(k,'YData')); end; end; if (dolog), axis([axlim(1:2) 10.^axlim(3:4)]); set(gca,'YScale','log'); else, axis(axlim(1:4)); end; % Normal blue arrow start = [axlim(1) axlim(4) axlim(6)+2]; stop = [in.x(in.iii) in.y(in.iii) axlim(6)+2]; if (dolog), start(:,2)=10.^start(:,2); stop(:,2)=10.^stop(:,2); end; h1 = feval(mfilename,start,stop,'EdgeColor','b','FaceColor','b'); % three arrows with varying fill, width, and baseangle start = [-3 -3 10; -3 -1.5 10; -1.5 -3 10]; stop = [-.03 -.03 10; -.03 -1.5 10; -1.5 -.03 10]; if (dolog), start(:,2)=10.^start(:,2); stop(:,2)=10.^stop(:,2); end; h2 = feval(mfilename,start,stop,24,[90;60;120],[],[0;0;4],'Ends',str2mat('both','stop','stop')); set(h2(2),'EdgeColor',[0 .35 0],'FaceColor',[0 .85 .85]); set(h2(3),'EdgeColor','r','FaceColor',[1 .5 1]); h=[h1;h2]; function out = trueornan(x) if isempty(x), out=x; else, out = isnan(x); out(~out) = x(~out); end;
github
RobinAmsters/GT_mobile_robotics-master
mdl_ur3.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_ur3.m
2,856
utf_8
adf30ae6a0e9dbce9ac8cbb59ac24e31
%MDL_UR5 Create model of Universal Robotics UR3 manipulator % % MDL_UR5 is a script that creates the workspace variable ur3 which % describes the kinematic characteristics of a Universal Robotics UR3 manipulator % using standard DH conventions. % % Also define the workspace vectors: % qz zero joint angle configuration % qr arm along +ve x-axis configuration % % Reference:: % - https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/actual-center-of-mass-for-robot-17264/ % % Notes:: % - SI units of metres are used. % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also mdl_ur5, mdl_ur10, mdl_puma560, SerialLink. % MODEL: Universal Robotics, UR3, 6DOF, standard_DH % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = mdl_ur3() deg = pi/180; % robot length values (metres) a = [0, -0.24365, -0.21325, 0, 0, 0]'; d = [0.1519, 0, 0, 0.11235, 0.08535, 0.0819]'; alpha = [1.570796327, 0, 0, 1.570796327, -1.570796327, 0]'; theta = zeros(6,1); DH = [theta d a alpha]; mass = [2, 3.42, 1.26, 0.8, 0.8, 0.35]; center_of_mass = [ 0,-0.02, 0 0.13, 0, 0.1157 0.05, 0, 0.0238 0, 0, 0.01 0, 0, 0.01 0, 0, -0.02 ]; % and build a serial link manipulator % offsets from the table on page 4, "Mico" angles are the passed joint % angles. "DH Algo" are the result after adding the joint angle offset. robot = SerialLink(DH, ... 'name', 'UR3', 'manufacturer', 'Universal Robotics'); % add the mass data, no inertia available links = robot.links; for i=1:6 links(i).m = mass(i); links(i).r = center_of_mass(i,:); end % place the variables into the global workspace if nargin == 1 r = robot; elseif nargin == 0 assignin('caller', 'ur3', robot); assignin('caller', 'qz', [0 0 0 0 0 0]); % zero angles assignin('caller', 'qr', [180 0 0 0 90 0]*deg); % vertical pose as per Fig 2 end end
github
RobinAmsters/GT_mobile_robotics-master
mdl_hyper3d.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_hyper3d.m
2,453
utf_8
0b51edaf018a57987435de79571d823f
%MDL_HYPER3D Create model of a hyper redundant 3D manipulator % % MDL_HYPER3D is a script that creates the workspace variable h3d which % describes the kinematic characteristics of a serial link manipulator with % 10 joints which at zero angles is a straight line in the XY plane. % % MDL_HYPER3D(N) as above but creates a manipulator with N joints. % % Also define the workspace vectors: % qz joint angle vector for zero angle configuration % % R = MDL_HYPER3D(N) functional form of the above, returns the SerialLink object. % % [R,QZ] = MDL_HYPER3D(N) as above but also returns a vector of zero joint angles. % % Notes:: % - In the zero configuration joint axes alternate between being parallel % to the z- and y-axes. % - A crude snake or elephant trunk robot. % - The manipulator in default pose is a straight line 1m long. % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also mdl_hyper2d, mdl_ball, mdl_coil, SerialLink. % MODEL: hyper redundant, 10DOF, standard_DH % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function [r,qq] = mdl_hyper3d(N) if nargin == 0 N = 10; end % create the links for i=1:N links(i) = Link([0 0 1/N, pi/2]); q(i) = 0; end % and build a serial link manipulator robot = SerialLink(links, 'name', 'hyper3d', ... 'plotopt', {'nojoints'}); % place the variables into the global workspace if nargout == 0 assignin('caller', 'h3d', robot); assignin('caller', 'qz', q); elseif nargout == 1 r = robot; elseif nargout == 2 r = robot; qq = q; end end
github
RobinAmsters/GT_mobile_robotics-master
mdl_panda.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_panda.m
4,184
utf_8
2921b74bc99d500bced903651c7d0157
%MDL_PANDA Create model of Franka-Emika PANDA robot % % MDL_PANDA is a script that creates the workspace variable panda which % describes the kinematic characteristics of a Franka-Emika PANDA manipulator % using standard DH conventions. % % Also define the workspace vectors: % qz zero joint angle configuration % qr arm along +ve x-axis configuration % % Reference:: % - http://www.diag.uniroma1.it/~deluca/rob1_en/WrittenExamsRob1/Robotics1_18.01.11.pdf % - "Dynamic Identification of the Franka Emika Panda Robot With Retrieval of Feasible Parameters Using Penalty-Based Optimization" % C. Gaz, M. Cognetti, A. Oliva, P. Robuffo Giordano and A. De Luca % IEEE Robotics and Automation Letters 4(4), pp. 4147-4154, Oct. 2019, doi: 10.1109/LRA.2019.2931248 % % Notes:: % - SI units of metres are used. % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also mdl_sawyer, SerialLink. % MODEL: Franka-Emika, PANDA, 7DOF, standard_DH % Copyright (C) 1993-2018, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = mdl_panda() deg = pi/180; mm = 1e-3; %% Define links (thanks Alex Smith for this code) L1 = RevoluteMDH('a', 0.0, 'd', 0.333, 'alpha', 0.0, 'qlim', [-2.8973 2.8973], ... 'm', 4.970684, 'r', [3.875e-03 2.081e-03 0], 'I', [7.03370e-01 7.06610e-01 9.11700e-03 -1.39000e-04 1.91690e-02 6.77200e-03], 'G', 1); L2 = RevoluteMDH('a', 0.0, 'd', 0.0, 'alpha', -pi/2, 'qlim', [-1.7628 1.7628], ... 'm', 0.646926, 'r', [-3.141e-03 -2.872e-02 3.495e-03], 'I', [7.96200e-03 2.81100e-02 2.59950e-02 -3.92500e-03 7.04000e-04 1.02540e-02], 'G', 1); L3 = RevoluteMDH('a', 0.0, 'd', 0.316, 'alpha', pi/2, 'qlim', [-2.8973 2.8973], ... 'm', 3.228604, 'r', [ 2.7518e-02 3.9252e-02 -6.6502e-02], 'I', [3.72420e-02 3.61550e-02 1.08300e-02 -4.76100e-03 -1.28050e-02 -1.13960e-02], 'G', 1); L4 = RevoluteMDH('a', 0.0825, 'd', 0.0, 'alpha', pi/2, 'qlim', [-3.0718 -0.0698], ... 'm', 3.587895, 'r', [-5.317e-02 1.04419e-01 2.7454e-02], 'I', [2.58530e-02 1.95520e-02 2.83230e-02 7.79600e-03 8.64100e-03 -1.33200e-03], 'G', 1); L5 = RevoluteMDH('a', -0.0825, 'd', 0.384, 'alpha', -pi/2, 'qlim', [-2.8973 2.8973], ... 'm', 1.225946, 'r', [-1.1953e-02 4.1065e-02 -3.8437e-02], 'I', [3.55490e-02 2.94740e-02 8.62700e-03 -2.11700e-03 2.29000e-04 -4.03700e-03], 'G', 1); L6 = RevoluteMDH('a', 0.0, 'd', 0.0, 'alpha', pi/2, 'qlim', [-0.0175 3.7525], ... 'm', 1.666555, 'r', [6.0149e-02 -1.4117e-02 -1.0517e-02], 'I', [1.96400e-03 4.35400e-03 5.43300e-03 1.09000e-04 3.41000e-04 -1.15800e-03], 'G', 1); L7 = RevoluteMDH('a', 0.088, 'd', 0.107, 'alpha', pi/2, 'qlim', [-2.8973 2.8973], ... 'm', 7.35522e-01, 'r', [1.0517e-02 -4.252e-03 6.1597e-02 ], 'I', [1.25160e-02 1.00270e-02 4.81500e-03 -4.28000e-04 -7.41000e-04 -1.19600e-03], 'G', 1); %% Create SerialLink object robot = SerialLink([L1 L2 L3 L4 L5 L6 L7], 'name', 'PANDA', 'manufacturer', 'Franka-Emika', 'tool', transl([0 0 110*mm])); qv = [0 0 0 -4 0 0 0]*deg; qr = [0 -90 -90 90 0 -90 90]*deg; % place the variables into the global workspace if nargin == 1 r = robot; elseif nargin == 0 assignin('caller', 'panda', robot); assignin('caller', 'qv', qv); % zero angles assignin('caller', 'qr', qr); end end
github
RobinAmsters/GT_mobile_robotics-master
mdl_offset6.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_offset6.m
2,194
utf_8
313a23c9bd82f70359a9cc6af980e14c
%MDL_OFFSET6 A minimalistic 6DOF robot arm with shoulder offset % % MDL_OFFSET6 is a script that creates the workspace variable off6 which % describes the kinematic characteristics of a simple arm manipulator with % a spherical wrist and a shoulder offset, using standard DH conventions. % % Also define the workspace vectors: % qz zero joint angle configuration % % Notes:: % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also mdl_simple6, mdl_puma560, mdl_twolink, SerialLink. % MODEL: generic, 6DOF, standard_DH % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = mdl_offset6() % robot length values (metres) L1 = 1; L2 = 1; O1 = 0; O2 = 0.2; O3 = 0; % and build a serial link manipulator robot = SerialLink([ Revolute('alpha', -pi/2, 'a', O1, 'd', 0) Revolute('alpha', 0, 'a', L1, 'd', O2) Revolute('alpha', pi/2, 'a', L2, 'd', O3) Revolute('alpha', pi/2, 'a', 0, 'd', 0) Revolute('alpha', -pi/2, 'a', 0, 'd', 0) Revolute('alpha', 0, 'a', 0, 'd', 0) ], ... 'name', 'Offset6'); % place the variables into the global workspace if nargout == 1 r = robot; elseif nargout == 0 assignin('caller', 'off6', robot); assignin('caller', 'qz', [0 0 0 0 0 0]); % zero angles, arm up end end
github
RobinAmsters/GT_mobile_robotics-master
mdl_M16.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_M16.m
2,668
utf_8
73dc87ecd65dc4a301c45bd0abe8762c
%MDL_M16 Create model of Fanuc M16 manipulator % % MDL_M16 is a script that creates the workspace variable m16 which % describes the kinematic characteristics of a Fanuc M16 manipulator using % standard DH conventions. % % Also define the workspace vectors: % qz zero joint angle configuration % qr vertical 'READY' configuration % qd lower arm horizontal as per data sheet % % References:: % - "Fanuc M-16iB data sheet", http://www.robots.com/fanuc/m-16ib. % - "Utilizing the Functional Work Space Evaluation Tool for Assessing a % System Design and Reconfiguration Alternatives", % A. Djuric and R. J. Urbanic % % Notes:: % - SI units of metres are used. % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also mdl_irb140, mdl_fanuc10l, mdl_motomanHP6, mdl_S4ABB2p8, mdl_puma560, SerialLink. % MODEL: Fanuc, M16, 6DOF, standard_DH % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = mdl_m16() deg = pi/180; % robot length values (metres) d1 = 0.524; a1 = 0.150; a2 = 0.770; a3 = -0.100; d4 = 0.740; d6 = 0.100; % DH parameter table % theta d a alpha dh = [0 d1 a1 -pi/2 0 0 a2 pi 0 0 a3 pi/2 0 d4 0 -pi/2 0 0 0 pi/2 0 d6 0 pi]; % and build a serial link manipulator robot = SerialLink(dh, 'name', 'M16', ... 'manufacturer', 'Fanuc'); % place the variables into the global workspace if nargin == 1 r = robot; elseif nargin == 0 assignin('caller', 'm16', robot); assignin('caller', 'qz', [0 0 0 0 0 0]); % zero angles assignin('caller', 'qd', [0 -90 0 0 -180 180]*deg); % data sheet pose, horizontal assignin('caller', 'qr', [0 -90 90 0 -180 180]*deg); % ready pose, arm up end end
github
RobinAmsters/GT_mobile_robotics-master
mdl_simple6.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_simple6.m
2,112
utf_8
9a12a84c51a8b43ed67a2abcce02a22b
%MDL_SIMPLE6 A minimalistic 6DOF robot arm % % MDL_SIMPLE6 is a script creates the workspace variable s6 which describes % the kinematic characteristics of a simple arm manipulator with a % spherical wrist and no shoulder offset, using standard DH conventions. % % Also define the workspace vectors: % qz zero joint angle configuration % % Notes:: % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also mdl_offset6, mdl_puma560, SerialLink. % MODEL: generic, 6DOF, standard_DH % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = mdl_simple6() % robot length values (metres) L1 = 1; L2 = 1; % and build a serial link manipulator robot = SerialLink([ Revolute('alpha', pi/2, 'a', 0, 'd', 0) Revolute('alpha', 0, 'a', L1, 'd', 0) Revolute('alpha', -pi/2, 'a', L2, 'd', 0) Revolute('alpha', -pi/2, 'a', 0, 'd', 0) Revolute('alpha', pi/2, 'a', 0, 'd', 0) Revolute('alpha', 0, 'a', 0, 'd', 0) ], ... 'name', 'Simple6'); % place the variables into the global workspace if nargout == 1 r = robot; elseif nargout == 0 assignin('caller', 's6', robot); assignin('caller', 'qz', [0 0 0 0 0 0]); % zero angles, arm up end end
github
RobinAmsters/GT_mobile_robotics-master
mdl_irb140.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_irb140.m
2,661
utf_8
745d238d39c628d1e889e77fe9bdb79a
%MDL_IRB140 Create model of ABB IRB 140 manipulator % % MDL_IRB140 is a script that creates the workspace variable irb140 which % describes the kinematic characteristics of an ABB IRB 140 manipulator % using standard DH conventions. % % Also define the workspace vectors: % qz zero joint angle configuration % qr vertical 'READY' configuration % qd lower arm horizontal as per data sheet % % Reference:: % - "IRB 140 data sheet", ABB Robotics. % - "Utilizing the Functional Work Space Evaluation Tool for Assessing a % System Design and Reconfiguration Alternatives" % A. Djuric and R. J. Urbanic % % Notes:: % - SI units of metres are used. % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also mdl_fanuc10l, mdl_m16, mdl_motormanHP6, mdl_S4ABB2p8, mdl_puma560, SerialLink. % MODEL: ABB, IRB140, 6DOF, standard_DH % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = mdl_irb140() deg = pi/180; % robot length values (metres) d1 = 0.352; a1 = 0.070; a2 = 0.360; d4 = 0.380; d6 = 0.065; % DH parameter table % theta d a alpha dh = [0 d1 a1 -pi/2 0 0 a2 0 0 0 0 pi/2 0 d4 0 -pi/2 0 0 0 pi/2 0 d6 0 pi/2]; % and build a serial link manipulator robot = SerialLink(dh, 'name', 'IRB 140', ... 'manufacturer', 'ABB', 'ikine', 'nooffset'); % place the variables into the global workspace if nargin == 1 r = robot; elseif nargin == 0 assignin('caller', 'irb140', robot); assignin('caller', 'qz', [0 0 0 0 0 0]); % zero angles assignin('caller', 'qd', [0 -90 180 0 0 -90]*deg); % data sheet pose, horizontal assignin('caller', 'qr', [0 -90 90 0 90 -90]*deg); % ready pose, arm up end end
github
RobinAmsters/GT_mobile_robotics-master
mdl_jaco.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_jaco.m
2,912
utf_8
bf104e27b26a59eeb11cbed46a7ee03d
%MDL_JACO Create model of Kinova Jaco manipulator % % MDL_JACO is a script that creates the workspace variable jaco which % describes the kinematic characteristics of a Kinova Jaco manipulator % using standard DH conventions. % % Also define the workspace vectors: % qz zero joint angle configuration % qr vertical 'READY' configuration % % Reference:: % - "DH Parameters of Jaco" Version 1.0.8, July 25, 2013. % % Notes:: % - SI units of metres are used. % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also mdl_mico, mdl_puma560, SerialLink. % MODEL: Kinova, Jaco, 6DOF, standard_DH % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = mdl_jaco() deg = pi/180; % robot length values (metres) D1 = 0.2755; D2 = 0.4100; D3 = 0.2073; D4 = 0.0743; D5 = 0.0743; D6 = 0.1687; e2 = 0.0098; % alternate parameters aa = 30*deg; ca = cos(aa); sa = sin(aa); c2a = cos(2*aa); s2a = sin(2*aa); d4b = D3 + sa/s2a*D4; d5b = sa/s2a*D4 + sa/s2a*D5; d6b = sa/s2a*D5 + D6; % and build a serial link manipulator % offsets from the table on page 4, "Mico" angles are the passed joint % angles. "DH Algo" are the result after adding the joint angle offset. robot = SerialLink([ Revolute('alpha', pi/2, 'a', 0, 'd', D1, 'flip') Revolute('alpha', pi, 'a', D2, 'd', 0, 'offset', -pi/2) Revolute('alpha', pi/2, 'a', 0, 'd', -e2, 'offset', pi/2) Revolute('alpha', 2*aa, 'a', 0, 'd', -d4b) Revolute('alpha', 2*aa, 'a', 0, 'd', -d5b, 'offset', -pi) Revolute('alpha', pi, 'a', 0, 'd', -d6b, 'offset', 100*deg) ], ... 'name', 'Jaco', 'manufacturer', 'Kinova'); % place the variables into the global workspace if nargin == 1 r = robot; elseif nargin == 0 assignin('caller', 'jaco', robot); assignin('caller', 'qz', [0 0 0 0 0 0]); % zero angles assignin('caller', 'qr', [270 180 180 0 0 0]*deg); % vertical pose as per Fig 2 end end
github
RobinAmsters/GT_mobile_robotics-master
mdl_coil.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_coil.m
2,093
utf_8
e950b9ee64dab23230e15783425d5406
%MDL_COIL Create model of a coil manipulator % % MDL_COIL creates the workspace variable coil which describes the % kinematic characteristics of a serial link manipulator with 50 joints % that folds into a helix shape. % % MDL_BALL(N) as above but creates a manipulator with N joints. % % Also defines the workspace vectors: % q joint angle vector for default helical configuration % % Reference:: % - "A divide and conquer articulated-body algorithm for parallel O(log(n)) % calculation of rigid body dynamics, Part 2", % Int. J. Robotics Research, 18(9), pp 876-892. % % Notes:: % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also mdl_ball, SerialLink. % MODEL: generic, coil, hyper redundant, 50DOF, standard_DH % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = mdl_coil(N) if nargin == 0 N = 50; end % create the links for i=1:N links(i) = Link('d', 0, 'a', 1/N, 'alpha', 5*pi/N); end % and build a serial link manipulator robot = SerialLink(links, 'name', 'coil'); % place the variables into the global workspace if nargin == 1 r = robot; elseif nargin == 0 assignin('caller', 'coil', robot); assignin('caller', 'q', 10*pi/N*ones(1,N)); end
github
RobinAmsters/GT_mobile_robotics-master
mdl_ur5.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_ur5.m
2,911
utf_8
b86d09aa65b4a2a4c7071a210c1661cd
%MDL_UR5 Create model of Universal Robotics UR5 manipulator % % MDL_UR5 is a script that creates the workspace variable ur5 which % describes the kinematic characteristics of a Universal Robotics UR5 manipulator % using standard DH conventions. % % Also define the workspace vectors: % qz zero joint angle configuration % qr arm along +ve x-axis configuration % % Reference:: % - https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/actual-center-of-mass-for-robot-17264/ % % Notes:: % - SI units of metres are used. % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also mdl_ur3, mdl_ur10, mdl_puma560, SerialLink. % MODEL: Universal Robotics, UR5, 6DOF, standard_DH % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = mdl_ur5() deg = pi/180; % robot length values (metres) a = [0, -0.42500, -0.39225, 0, 0, 0]'; d = [0.089459, 0, 0, 0.10915, 0.09465, 0.0823]'; alpha = [1.570796327, 0, 0, 1.570796327, -1.570796327, 0]'; theta = zeros(6,1); DH = [theta d a alpha]; mass = [3.7000, 8.3930, 2.33, 1.2190, 1.2190, 0.1897]; center_of_mass = [ 0,-0.02561, 0.00193 0.2125, 0, 0.11336 0.15, 0, 0.0265 0, -0.0018, 0.01634 0, -0.0018, 0.01634 0, 0, -0.001159]; % and build a serial link manipulator % offsets from the table on page 4, "Mico" angles are the passed joint % angles. "DH Algo" are the result after adding the joint angle offset. robot = SerialLink(DH, ... 'name', 'UR5', 'manufacturer', 'Universal Robotics'); % add the mass data, no inertia available links = robot.links; for i=1:6 links(i).m = mass(i); links(i).r = center_of_mass(i,:); end % place the variables into the global workspace if nargin == 1 r = robot; elseif nargin == 0 assignin('caller', 'ur5', robot); assignin('caller', 'qz', [0 0 0 0 0 0]); % zero angles assignin('caller', 'qr', [180 0 0 0 90 0]*deg); % vertical pose as per Fig 2 end end
github
RobinAmsters/GT_mobile_robotics-master
mdl_mico.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_mico.m
3,573
utf_8
563156da7fc9b980f7ea7f2eefe0d57d
%MDL_MICO Create model of Kinova Mico manipulator % % MDL_MICO is a script that creates the workspace variable mico which % describes the kinematic characteristics of a Kinova Mico manipulator % using standard DH conventions. % % Also define the workspace vectors: % qz zero joint angle configuration % qr vertical 'READY' configuration % % Reference:: % - "DH Parameters of Mico" Version 1.0.1, August 05, 2013. % Kinova % % Notes:: % - SI units of metres are used. % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also Revolute, mdl_jaco, mdl_puma560, mdl_twolink, SerialLink. % MODEL: Kinova, Mico, 6DOF, standard_DH % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = mdl_mico() deg = pi/180; % robot length values (metres) page 4 D1 = 0.2755; D2 = 0.2900; D3 = 0.1233; D4 = 0.0741; D5 = 0.0741; D6 = 0.1600; e2 = 0.0070; % alternate parameters aa = 30*deg; ca = cos(aa); sa = sin(aa); c2a = cos(2*aa); s2a = sin(2*aa); d4b = D3 + sa/s2a*D4; d5b = sa/s2a*D4 + sa/s2a*D5; d6b = sa/s2a*D5 + D6; % and build a serial link manipulator % offsets from the table on page 4, "Mico" angles are the passed joint % angles. "DH Algo" are the result after adding the joint angle offset. robot = SerialLink([ Revolute('alpha', pi/2, 'a', 0, 'd', D1, 'flip') Revolute('alpha', pi, 'a', D2, 'd', 0, 'offset', -pi/2) Revolute('alpha', pi/2, 'a', 0, 'd', -e2, 'offset', pi/2) Revolute('alpha', 2*aa, 'a', 0, 'd', -d4b) Revolute('alpha', 2*aa, 'a', 0, 'd', -d5b, 'offset', -pi) Revolute('alpha', pi, 'a', 0, 'd', -d6b, 'offset', pi/2) ], ... 'name', 'Mico', 'manufacturer', 'Kinova'); %{ % MDH version, no test yet robot = SerialLink([ Revolute('alpha', 0, 'a', 0, 'd', D1, 'modified', 'flip') Revolute('alpha', -pi/2, 'a', 0, 'd', 0, 'modified', 'offset', -pi/2) Revolute('alpha', 0, 'a', D2, 'd', e2, 'modified', 'offset', pi/2) Revolute('alpha', -pi/2, 'a', 0, 'd', d4b, 'modified') Revolute('alpha', 2*aa, 'a', 0, 'd', d5b, 'modified', 'offset', -pi) Revolute('alpha', 2*aa, 'a', 0, 'd', d6b, 'modified', 'offset', pi/2) ], ... 'name', 'Mico', 'manufacturer', 'Kinova'); %} % place the variables into the global workspace if nargin == 1 r = robot; elseif nargin == 0 assignin('caller', 'mico', robot); assignin('caller', 'qz', [0 0 0 0 0 0]); % zero angles, arm up assignin('caller', 'qr', [270 180 180 0 0 180]*deg); % vertical pose as per Fig 2 end end
github
RobinAmsters/GT_mobile_robotics-master
mdl_ur10.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_ur10.m
2,890
utf_8
11ff9e3db6c3032bb4470970e053ab65
%MDL_UR10 Create model of Universal Robotics UR10 manipulator % % MDL_UR5 is a script that creates the workspace variable ur10 which % describes the kinematic characteristics of a Universal Robotics UR10 manipulator % using standard DH conventions. % % Also define the workspace vectors: % qz zero joint angle configuration % qr arm along +ve x-axis configuration % % Reference:: % - https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/actual-center-of-mass-for-robot-17264/ % % Notes:: % - SI units of metres are used. % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also mdl_ur3, mdl_ur5, mdl_puma560, SerialLink. % MODEL: Universal Robotics, UR10, 6DOF, standard_DH % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = mdl_ur10() deg = pi/180; % robot length values (metres) a = [0, -0.612, -0.5723, 0, 0, 0]'; d = [0.1273, 0, 0, 0.163941, 0.1157, 0.0922]'; alpha = [1.570796327, 0, 0, 1.570796327, -1.570796327, 0]'; theta = zeros(6,1); DH = [theta d a alpha]; mass = [7.1, 12.7, 4.27, 2.000, 2.000, 0.365]; center_of_mass = [ 0.021, 0, 0.027 0.38, 0, 0.158 0.24, 0, 0.068 0.0, 0.007, 0.018 0.0, 0.007, 0.018 0, 0, -0.026 ]; % and build a serial link manipulator % offsets from the table on page 4, "Mico" angles are the passed joint % angles. "DH Algo" are the result after adding the joint angle offset. robot = SerialLink(DH, ... 'name', 'UR10', 'manufacturer', 'Universal Robotics'); % add the mass data, no inertia available links = robot.links; for i=1:6 links(i).m = mass(i); links(i).r = center_of_mass(i,:); end % place the variables into the global workspace if nargin == 1 r = robot; elseif nargin == 0 assignin('caller', 'ur10', robot); assignin('caller', 'qz', [0 0 0 0 0 0]); % zero angles assignin('caller', 'qr', [180 0 0 0 90 0]*deg); % vertical pose as per Fig 2 end end
github
RobinAmsters/GT_mobile_robotics-master
mdl_sawyer.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_sawyer.m
2,512
utf_8
3505a00351cb03e2c2c617d54aa358e9
%MDL_SAWYER Create model of Rethink Robotics Sawyer robot % % MDL_SAYWER is a script that creates the workspace variable sawyer which % describes the kinematic characteristics of a Rethink Robotics Sawyer manipulator % using standard DH conventions. % % Also define the workspace vectors: % qz zero joint angle configuration % qr arm along +ve x-axis configuration % % Reference:: % - https://sites.google.com/site/daniellayeghi/daily-work-and-writing/major-project-2 % % Notes:: % - SI units of metres are used. % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also mdl_baxter, SerialLink. % MODEL: Rethink Robotics, Sawyer, 7DOF, standard_DH % Copyright (C) 1993-2018, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = mdl_sawyer() deg = pi/180; mm = 1e-3; % robot length values (metres) d = [81 0 0 0 0 0 0]'*mm; a = [317 192.5 400 168.5 400 136.3 133.75]'*mm; alpha = [-pi/2 -pi/2 -pi/2 -pi/2 -pi/2 -pi/2 0]'; theta = zeros(7,1); DH = [theta d a alpha]; % and build a serial link manipulator % offsets from the table on page 4, "Mico" angles are the passed joint % angles. "DH Algo" are the result after adding the joint angle offset. qz = [0 0 0 0 0 0 0]; qr = [0 270 0 180 0 180 270]*deg; robot = SerialLink(DH, ... 'configs', {'qz', qz, 'qr', qr}, ... 'name', 'Sawyer', 'manufacturer', 'Rethink Robotics'); % place the variables into the global workspace if nargin == 1 r = robot; elseif nargin == 0 assignin('caller', 'sawyer', robot); assignin('caller', 'qz', qz); % zero angles assignin('caller', 'qr', qr); end end
github
RobinAmsters/GT_mobile_robotics-master
mdl_hyper2d.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_hyper2d.m
2,321
utf_8
4e99a45a15c4a444ea67a5279b6d9513
%MDL_HYPER2D Create model of a hyper redundant planar manipulator % % MDL_HYPER2D creates the workspace variable h2d which describes the % kinematic characteristics of a serial link manipulator with 10 joints % which at zero angles is a straight line in the XY plane. % % MDL_HYPER2D(N) as above but creates a manipulator with N joints. % % Also define the workspace vectors: % qz joint angle vector for zero angle configuration % % R = MDL_HYPER2D(N) functional form of the above, returns the SerialLink object. % % [R,QZ] = MDL_HYPER2D(N) as above but also returns a vector of zero joint angles. % % Notes:: % - All joint axes are parallel to z-axis. % - The manipulator in default pose is a straight line 1m long. % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also mdl_hyper3d, mdl_coil, mdl_ball, mdl_twolink, SerialLink. % MODEL: planar, hyper redundant, 10DOF, standard_DH % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function [r,qq] = mdl_hyper2d(N) if nargin == 0 N = 10; end % create the links for i=1:N links(i) = Link([0 0 1/N, 0]); q(i) = 0; end % and build a serial link manipulator robot = SerialLink(links, 'name', 'hyper2d'); % place the variables into the global workspace if nargout == 0 assignin('caller', 'h2d', robot); assignin('caller', 'qz', q); elseif nargout == 1 r = robot; elseif nargout == 2 r = robot; qq = q; end end
github
RobinAmsters/GT_mobile_robotics-master
mdl_ball.m
.m
GT_mobile_robotics-master/common/rvctools/robot/models/mdl_ball.m
2,377
utf_8
24984b99a4eeb299735e225c67a81ed2
%MDL_BALL Create model of a ball manipulator % % MDL_BALL creates the workspace variable ball which describes the % kinematic characteristics of a serial link manipulator with 50 joints % that folds into a ball shape. % % MDL_BALL(N) as above but creates a manipulator with N joints. % % Also define the workspace vectors: % q joint angle vector for default ball configuration % % Reference:: % - "A divide and conquer articulated-body algorithm for parallel O(log(n)) % calculation of rigid body dynamics, Part 2", % Int. J. Robotics Research, 18(9), pp 876-892. % % Notes:: % - Unlike most other mdl_xxx scripts this one is actually a function that % behaves like a script and writes to the global workspace. % % See also mdl_coil, SerialLink. % MODEL: generic, ball shape, hyper redundant, 50DOF, standard_DH % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = mdl_ball(N) if nargin == 0 N = 50; end % create the links for i=1:N links(i) = Link([0 0 0.1, pi/2]); q(i) = fract(i); end % and build a serial link manipulator robot = SerialLink(links, 'name', 'ball'); % place the variables into the global workspace if nargin == 1 r = robot; elseif nargin == 0 assignin('caller', 'ball', robot); assignin('caller', 'q', q); end end function f = fract(i) theta1 = 1; theta2 = -2/3; switch mod(i,3) case 1 f = theta1; case 2 f = theta2; case 0 f = fract(i/3); end end
github
RobinAmsters/GT_mobile_robotics-master
tripleangle.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Apps/tripleangle.m
16,728
utf_8
fe2b05e9e2f40ca331623cf7307f61ec
% TRIPLEANGLE Visualize triple angle rotations % % TRIPLEANGLE, by itself, displays a simple GUI with three angle sliders % and a set of axes showing three coordinate frames. The frames correspond % to rotation after the first angle (red), the first and second angles (green) % and all three angles (blue). % % TRIPLEANGLE(OPTIONS) as above but with options to select the rotation axes. % % Options:: % 'rpy' Rotation about axes x, y, z (default) % 'euler' Rotation about axes z, y, z % 'ABC' Rotation about axes A, B, C where A,B,C are each one of x,y or z. % % Other options relevant to TRPLOT can be appended. % % Notes:: % - All angles are displayed in units of degrees. % - Requires a number of .stl files in the examples folder. % - Buttons select particular view points. % - Checkbutton enables display of the gimbals (on by default) % - This file originally generated by GUIDE. % % See also RPY2R, EUL2R, TRPLOT. % Copyright (C) 1993-2017, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function varargout = tripleangle(varargin) % Last Modified by GUIDE v2.5 19-Aug-2015 15:19:48 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @tripleangle_OpeningFcn, ... 'gui_OutputFcn', @tripleangle_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before tripleang is made visible. function tripleangle_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to tripleang (see VARARGIN) % Choose default command line output for tripleang handles.output = hObject; figure(handles.figure1); % process options opt.wait = false; opt.which = {'rpy', 'euler'}; [opt,args] = tb_optparse(opt, varargin); if length(args) > 0 && ischar(args{1}) s = args{1}; try set(handles.popupmenu1, 'Value', strfind('xyz', s(1))); set(handles.popupmenu2, 'Value', strfind('xyz', s(2))); set(handles.popupmenu3, 'Value', strfind('xyz', s(3))); if length(args) > 1 args = args{2:end}; else args = {}; end opt.which = 'none'; catch me % doesnt match a rotation string, go with 'rpy' opt.which = 'rpy'; end end % set initial slider to axis mapping switch opt.which case 'rpy' set(handles.popupmenu1, 'Value', 3); set(handles.popupmenu2, 'Value', 2); set(handles.popupmenu3, 'Value', 1); case 'euler' set(handles.popupmenu1, 'Value', 3); set(handles.popupmenu2, 'Value', 2); set(handles.popupmenu3, 'Value', 3); end % draw the axes at null rotation %handles.h1 = trplot(eye(3,3), 'color', 'r', args{:}); % set the initial value of text fields set(handles.text1, 'String', sprintf('%.1f', get(handles.slider1, 'Value'))); set(handles.text2, 'String', sprintf('%.1f', get(handles.slider2, 'Value'))); set(handles.text3, 'String', sprintf('%.1f', get(handles.slider3, 'Value'))); % configure the graphics axis(1.5*[-1 1 -1 1 -1 1]); daspect([1 1 1]); light('Position', [0 0 5]); light('Position', [2 2 1]); grid on xlabel('X') ylabel('Y'); zlabel('Z'); % establish transforms handles.plane = hgtransform('Tag', 'plane'); handles.ring1 = hgtransform('Tag', 'ring1'); handles.ring2 = hgtransform('Tag', 'ring2'); handles.ring3 = hgtransform('Tag', 'ring3'); %% load the models % read the plane model fprintf('reading STL models...'); [V,F] = stlRead( 'spitfire_assy-gear_up.stl' ); % shift origin to wing centre line V = bsxfun(@plus, V, [0 0 75]); patch('Faces', F, 'Vertices', V/180, ... 'FaceColor', 0.8*[1.0000 0.7812 0.4975], 'EdgeAlpha', 0, ... 'Parent', handles.plane); %% read the gimbal rings % inner fprintf('.'); [V,F] = stlRead( 'gimbal-ring1.stl' ); patch('Faces', F, 'Vertices', V*1, ... 'FaceColor', 'b', 'EdgeAlpha', 0, ... 'Parent', handles.ring1); % middle fprintf('.'); [V,F] = stlRead( 'gimbal-ring2.stl' ); patch('Faces', F, 'Vertices', V*1.1, ... 'FaceColor', 'g', 'EdgeAlpha', 0, ... 'Parent', handles.ring2); % outer fprintf('.'); [V,F] = stlRead( 'gimbal-ring3.stl' ); patch('Faces', F, 'Vertices', V*1.1^2, ... 'FaceColor', 'r', 'EdgeAlpha', 0, ... 'Parent', handles.ring3); fprintf('\rSupermarine Spitfire Mk VIII by Ed Morley @GRABCAD\n'); fprintf('Gimbal models by Peter Corke using OpenSCAD\n'); % enable mouse-based 3D rotation rotate3d on view(50, 22); % Update handles structure guidata(hObject, handles); % ask for continuous callbacks addlistener(handles.slider1, 'ContinuousValueChange', ... @(obj,event) slider1_Callback(obj, event, handles) ); addlistener(handles.slider2, 'ContinuousValueChange', ... @(obj,event) slider2_Callback(obj, event, handles) ); addlistener(handles.slider3, 'ContinuousValueChange', ... @(obj,event) slider3_Callback(obj, event, handles) ); update(handles) % UIWAIT makes tripleang wait for user response (see UIRESUME) if opt.wait uiwait(handles.figure1); end % --- Outputs from this function are returned to the command line. function varargout = tripleangle_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure % --- Executes on selection change in popupmenu1. function popupmenu1_Callback(hObject, eventdata, handles) % hObject handle to popupmenu1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu1 % --- Executes during object creation, after setting all properties. function popupmenu1_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on slider movement. function slider1_Callback(hObject, eventdata, handles) % hObject handle to slider1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider set(handles.text1, 'String', sprintf('%.1f', get(hObject, 'Value'))); update(handles); % --- Executes during object creation, after setting all properties. function slider1_CreateFcn(hObject, eventdata, handles) % hObject handle to slider1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function slider2_Callback(hObject, eventdata, handles) % hObject handle to slider2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider set(handles.text2, 'String', sprintf('%.1f', get(hObject, 'Value'))); update(handles); % --- Executes during object creation, after setting all properties. function slider2_CreateFcn(hObject, eventdata, handles) % hObject handle to slider2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function slider3_Callback(hObject, eventdata, handles) % hObject handle to slider3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider set(handles.text3, 'String', sprintf('%.1f', get(hObject, 'Value'))); update(handles); % --- Executes during object creation, after setting all properties. function slider3_CreateFcn(hObject, eventdata, handles) % hObject handle to slider3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on selection change in popupmenu2. function popupmenu2_Callback(hObject, eventdata, handles) % hObject handle to popupmenu2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu2 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu2 % --- Executes during object creation, after setting all properties. function popupmenu2_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in popupmenu3. function popupmenu3_Callback(hObject, eventdata, handles) % hObject handle to popupmenu3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu3 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu3 % --- Executes during object creation, after setting all properties. function popupmenu3_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function update(handles) % compute the three rotation matrices R1 = Rx( get(handles.slider1, 'Value'), get(handles.popupmenu1, 'Value')); R2 = Rx( get(handles.slider2, 'Value'), get(handles.popupmenu2, 'Value')); R3 = Rx( get(handles.slider3, 'Value'), get(handles.popupmenu3, 'Value')); % display the three frames %trplot(R1*R2*R3, 'handle', handles.h1); set(handles.ring3, 'Matrix', r2t( R1 * roty(pi/2) )); % Ry set(handles.ring2, 'Matrix', r2t( R1*R2 * rotz(pi/2) )); % Rx set(handles.ring1, 'Matrix', r2t( R1*R2*R3 * rotx(pi/2) )); set(handles.plane, 'Matrix', r2t( R1*R2*R3 * roty(pi/2)*rotz(pi/2) )) function R = Rx(theta, which) theta = theta * pi/180; switch which case 1 R = rotx(theta); case 2 R = roty(theta); case 3 R = rotz(theta); end % --- Executes on button press in pb_RPY. function pb_RPY_Callback(hObject, eventdata, handles) % hObject handle to pb_RPY (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set(handles.popupmenu1, 'Value', 3); set(handles.popupmenu2, 'Value', 2); set(handles.popupmenu3, 'Value', 1); % --- Executes on button press in pb_euler. function pb_euler_Callback(hObject, eventdata, handles) % hObject handle to pb_euler (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set(handles.popupmenu1, 'Value', 2); set(handles.popupmenu2, 'Value', 3); set(handles.popupmenu3, 'Value', 2); % --- Executes on button press in pb_top. function pb_top_Callback(hObject, eventdata, handles) % hObject handle to pb_top (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) view(90, 90) % --- Executes on button press in pb_side. function pb_side_Callback(hObject, eventdata, handles) % hObject handle to pb_side (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) view(0, 0); % --- Executes on button press in pb_front. function pb_front_Callback(hObject, eventdata, handles) % hObject handle to pb_front (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) view(90, 0); % --- Executes on button press in pb_reset. function pb_reset_Callback(hObject, eventdata, handles) % hObject handle to pb_reset (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set(handles.slider1, 'Value', 0); set(handles.text1, 'String', sprintf('%.1f', 0)); set(handles.slider2, 'Value', 0); set(handles.text2, 'String', sprintf('%.1f', 0)); set(handles.slider3, 'Value', 0); set(handles.text3, 'String', sprintf('%.1f', 0)); update(handles) view(50, 22); % --- Executes on button press in gimbals. function gimbals_Callback(hObject, eventdata, handles) % hObject handle to gimbals (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of gimbals if get(hObject,'Value') set(handles.ring1, 'Visible', 'on'); set(handles.ring2, 'Visible', 'on'); set(handles.ring3, 'Visible', 'on'); else set(handles.ring1, 'Visible', 'off'); set(handles.ring2, 'Visible', 'off'); set(handles.ring3, 'Visible', 'off'); end
github
RobinAmsters/GT_mobile_robotics-master
polar_sfunc.m
.m
GT_mobile_robotics-master/common/rvctools/robot/simulink/polar_sfunc.m
4,897
utf_8
e94a62691fcfd183c87cde7beb3d91ee
function movepoint_sfunc(block) block.NumInputPorts = 1; block.NumOutputPorts = 1; % Setup port properties to be inherited or dynamic block.SetPreCompInpPortInfoToDynamic; block.SetPreCompOutPortInfoToDynamic; % Override input port properties block.InputPort(1).DatatypeID = 0; % double block.InputPort(1).Complexity = 'Real'; block.InputPort(1).Dimensions = 3; block.InputPort(1).DirectFeedthrough = true; % Override output port properties block.OutputPort(1).DatatypeID = 0; % double block.OutputPort(1).Complexity = 'Real'; block.OutputPort(1).Dimensions = 4; block.NumDialogPrms = 0; % Specify if Accelerator should use TLC or call back into % M-file block.SetAccelRunOnTLC(false); block.SimStateCompliance = 'DefaultSimState'; %block.RegBlockMethod('CheckParameters', @CheckPrms); %block.RegBlockMethod('SetInputPortSamplingMode', @SetInpPortFrameData); %block.RegBlockMethod('SetInputPortDimensions', @SetInpPortDims); %block.RegBlockMethod('SetOutputPortDimensions', @SetOutPortDims); %block.RegBlockMethod('SetInputPortDataType', @SetInpPortDataType); %block.RegBlockMethod('SetOutputPortDataType', @SetOutPortDataType); %block.RegBlockMethod('SetInputPortComplexSignal', @SetInpPortComplexSig); %block.RegBlockMethod('SetOutputPortComplexSignal', @SetOutPortComplexSig); %% PostPropagationSetup: %% Functionality : Setup work areas and state variables. Can %% also register run-time methods here block.RegBlockMethod('PostPropagationSetup', @DoPostPropSetup); %% Register methods called at run-time %% ----------------------------------------------------------------- %% %% ProcessParameters: %% Functionality : Called in order to allow update of run-time %% parameters %block.RegBlockMethod('ProcessParameters', @ProcessPrms); %% %% InitializeConditions: %% Functionality : Called in order to initialize state and work %% area values %block.RegBlockMethod('InitializeConditions', @InitializeConditions); %% %% Start: %% Functionality : Called in order to initialize state and work %% area values block.RegBlockMethod('Start', @Start); %% %% Outputs: %% Functionality : Called to generate block outputs in %% simulation step block.RegBlockMethod('Outputs', @Outputs); %% %% Update: %% Functionality : Called to update discrete states %% during simulation step %% C-Mex counterpart: mdlUpdate %% %block.RegBlockMethod('Update', @Update); %% %% Derivatives: %% Functionality : Called to update derivatives of %% continuous states during simulation step %% C-Mex counterpart: mdlDerivatives %% %block.RegBlockMethod('Derivatives', @Derivatives); %% %% Projection: %% Functionality : Called to update projections during %% simulation step %% C-Mex counterpart: mdlProjections %% %block.RegBlockMethod('Projection', @Projection); %% %% SimStatusChange: %% Functionality : Called when simulation goes to pause mode %% or continnues from pause mode %% C-Mex counterpart: mdlSimStatusChange %% %block.RegBlockMethod('SimStatusChange', @SimStatusChange); %% %% Terminate: %% Functionality : Called at the end of simulation for cleanup %% C-Mex counterpart: mdlTerminate %% %block.RegBlockMethod('Terminate', @Terminate); %block.RegBlockMethod('WriteRTW', @WriteRTW); end function DoPostPropSetup(block) block.NumDworks = 1; block.Dwork(1).Name = 'direction'; block.Dwork(1).Dimensions = 1; block.Dwork(1).DatatypeID = 0; block.Dwork(1).Complexity = 'Real'; block.Dwork(1).UsedAsDiscState = false; end function Start(block) block.Dwork(1).Data = 0; end function Outputs(block) X = block.InputPort(1).Data; x = X(1); y = X(2); theta = X(3); d = sqrt(x^2 + y^2); if block.Dwork(1).Data == 0 beta = -atan2(-y, -x); alpha = -theta - beta; fprintf('alpha %f, beta %f\n', alpha, beta); % first time in simulation, choose the direction of travel if (alpha > pi/2) || (alpha < -pi/2) fprintf('going backwards\n'); block.Dwork(1).Data = -1; else fprintf('going forwards\n'); block.Dwork(1).Data = 1; end elseif block.Dwork(1).Data == -1 beta = -atan2(y, x); alpha = -theta - beta; else beta = -atan2(-y, -x); alpha = -theta - beta; end if alpha > pi/2 alpha = pi/2; end if alpha < -pi/2 alpha = -pi/2; end block.OutputPort(1).Data = [d alpha beta block.Dwork(1).Data]; end
github
RobinAmsters/GT_mobile_robotics-master
slplotbot.m
.m
GT_mobile_robotics-master/common/rvctools/robot/simulink/slplotbot.m
1,828
utf_8
ba0ac29e746c49ecc04195482e486441
%SLPLOTBOT S-function for robot animation % % This is the S-function for animating the robot. It assumes input % data u to be the joint angles q. % % Implemented as an S-function so as to update display at the end of % each Simulink major integration step. function [sys,x0,str,ts] = splotbot(t,x,u,flag, robot, fps, holdplot) switch flag case 0 % initialize the robot graphics [sys,x0,str,ts] = mdlInitializeSizes(fps); % Init if ~isempty(robot) clf robot.plot(zeros(1, robot.n), 'delay', 0, 'noraise') end if holdplot hold on end case 3 % come here on update if ~isempty(u) %fprintf('--slplotbot: t=%f\n', t); robot.animate(u'); drawnow end ret = []; case {1, 2, 4, 9} ret = []; end % %============================================================================= % mdlInitializeSizes % Return the sizes, initial conditions, and sample times for the S-function. %============================================================================= % function [sys,x0,str,ts]=mdlInitializeSizes(fps) % % call simsizes for a sizes structure, fill it in and convert it to a % sizes array. % % Note that in this example, the values are hard coded. This is not a % recommended practice as the characteristics of the block are typically % defined by the S-function parameters. % sizes = simsizes; sizes.NumContStates = 0; sizes.NumDiscStates = 0; sizes.NumOutputs = 0; sizes.NumInputs = -1; sizes.DirFeedthrough = 1; sizes.NumSampleTimes = 1; % at least one sample time is needed sys = simsizes(sizes); % % initialize the initial conditions % x0 = []; % % str is always an empty matrix % str = []; % % initialize the array of sample times % ts = [-1 0]; %[1.0/fps]; % end mdlInitializeSizes
github
RobinAmsters/GT_mobile_robotics-master
quadrotor_dynamics.m
.m
GT_mobile_robotics-master/common/rvctools/robot/simulink/quadrotor_dynamics.m
9,935
utf_8
93681b1e292cd9a30d3887f7d7603cc9
function [sys,x0,str,ts] = quadrotor_dynamics(t,x,u,flag, quad, x0, groundflag) % Flyer2dynamics lovingly coded by Paul Pounds, first coded 12/4/04 % A simulation of idealised X-4 Flyer II flight dynamics. % version 2.0 2005 modified to be compatible with latest version of Matlab % version 3.0 2006 fixed rotation matrix problem % version 4.0 4/2/10, fixed rotor flapping rotation matrix bug, mirroring % version 5.0 8/8/11, simplified and restructured % version 6.0 25/10/13, fixed rotation matrix/inverse wronskian definitions, flapping cross-product bug warning off MATLAB:divideByZero global groundFlag; % New in version 2: % - Generalised rotor thrust model % - Rotor flapping model % - Frame aerodynamic drag model % - Frame aerodynamic surfaces model % - Internal motor model % - Much coolage % Version 1.3 % - Rigid body dynamic model % - Rotor gyroscopic model % - External motor model %ARGUMENTS % u Reference inputs 1x4 % tele Enable telemetry (1 or 0) 1x1 % crash Enable crash detection (1 or 0) 1x1 % init Initial conditions 1x12 %INPUTS % u = [N S E W] % NSEW motor commands 1x4 %CONTINUOUS STATES % z Position 3x1 (x,y,z) % v Velocity 3x1 (xd,yd,zd) % n Attitude 3x1 (Y,P,R) % o Angular velocity 3x1 (wx,wy,wz) % w Rotor angular velocity 4x1 % % Notes: z-axis downward so altitude is -z(3) %CONTINUOUS STATE MATRIX MAPPING % x = [z1 z2 z3 n1 n2 n3 z1 z2 z3 o1 o2 o3 w1 w2 w3 w4] %INITIAL CONDITIONS n0 = [0 0 0]; % n0 Ang. position initial conditions 1x3 v0 = [0 0 0]; % v0 Velocity Initial conditions 1x3 o0 = [0 0 0]; % o0 Ang. velocity initial conditions 1x3 init = [x0 n0 v0 o0]; % x0 is the passed initial position 1x3 groundFlag = groundflag; %CONTINUOUS STATE EQUATIONS % z` = v % v` = g*e3 - (1/m)*T*R*e3 % I*o` = -o X I*o + G + torq % R = f(n) % n` = inv(W)*o % Dispatch the flag. % switch flag case 0 [sys,x0,str,ts]=mdlInitializeSizes(init, quad); % Initialization case 1 sys = mdlDerivatives(t,x,u, quad); % Calculate derivatives case 3 sys = mdlOutputs(t,x, quad); % Calculate outputs case { 2, 4, 9 } % Unused flags sys = []; otherwise error(['Unhandled flag = ',num2str(flag)]); % Error handling end end % End of flyer2dynamics %============================================================== % mdlInitializeSizes % Return the sizes, initial conditions, and sample times for the % S-function. %============================================================== % function [sys,x0,str,ts] = mdlInitializeSizes(init, quad) % % Call simsizes for a sizes structure, fill it in and convert it % to a sizes array. % sizes = simsizes; sizes.NumContStates = 12; sizes.NumDiscStates = 0; sizes.NumOutputs = 12; sizes.NumInputs = 4; sizes.DirFeedthrough = 0; sizes.NumSampleTimes = 1; sys = simsizes(sizes); % % Initialize the initial conditions. x0 = init; % % str is an empty matrix. str = []; % % Generic timesample ts = [0 0]; if quad.verbose disp(sprintf('t\t\tz1\t\tz2\t\tz3\t\tn1\t\tn2\t\tn3\t\tv1\t\tv2\t\tv3\t\to1\t\to2\t\to3\t\tw1\t\tw2\t\tw3\t\tw4\t\tu1\t\tu2\t\tu3\t\tu4')) end end % End of mdlInitializeSizes. %============================================================== % mdlDerivatives % Calculate the state derivatives for the next timestep %============================================================== % function sys = mdlDerivatives(t,x,u, quad) global a1s b1s groundFlag %CONSTANTS %Cardinal Direction Indicies N = 1; % N 'North' 1x1 E = 2; % S 'South' 1x1 S = 3; % E 'East' 1x1 W = 4; % W 'West' 1x1 D(:,1) = [quad.d;0;quad.h]; % Di Rotor hub displacements 1x3 D(:,2) = [0;quad.d;quad.h]; D(:,3) = [-quad.d;0;quad.h]; D(:,4) = [0;-quad.d;quad.h]; %Body-fixed frame references e1 = [1;0;0]; % ei Body fixed frame references 3x1 e2 = [0;1;0]; e3 = [0;0;1]; %EXTRACT ROTOR SPEEDS FROM U w = u(1:4); %EXTRACT STATES FROM X z = x(1:3); % position in {W} n = x(4:6); % RPY angles {W} v = x(7:9); % velocity in {W} o = x(10:12); % angular velocity in {W} %PREPROCESS ROTATION AND WRONSKIAN MATRICIES phi = n(1); % yaw the = n(2); % pitch psi = n(3); % roll % rotz(phi)*roty(the)*rotx(psi) R = [cos(the)*cos(phi) sin(psi)*sin(the)*cos(phi)-cos(psi)*sin(phi) cos(psi)*sin(the)*cos(phi)+sin(psi)*sin(phi); %BBF > Inertial rotation matrix cos(the)*sin(phi) sin(psi)*sin(the)*sin(phi)+cos(psi)*cos(phi) cos(psi)*sin(the)*sin(phi)-sin(psi)*cos(phi); -sin(the) sin(psi)*cos(the) cos(psi)*cos(the)]; %Manual Construction % Q3 = [cos(phi) -sin(phi) 0;sin(phi) cos(phi) 0;0 0 1]; % RZ %Rotation mappings % Q2 = [cos(the) 0 sin(the);0 1 0;-sin(the) 0 cos(the)]; % RY % Q1 = [1 0 0;0 cos(psi) -sin(psi);0 sin(psi) cos(psi)]; % RX % R = Q3*Q2*Q1 %Rotation matrix % % RZ * RY * RX iW = [0 sin(psi) cos(psi); %inverted Wronskian 0 cos(psi)*cos(the) -sin(psi)*cos(the); cos(the) sin(psi)*sin(the) cos(psi)*sin(the)] / cos(the); if any(w == 0) % might need to fix this, preculudes aerobatics :( % mu becomes NaN due to 0/0 error('quadrotor_dynamics: not defined for zero rotor speed'); end %ROTOR MODEL for i=[N E S W] %for each rotor %Relative motion Vr = cross(o,D(:,i)) + v; mu = sqrt(sum(Vr(1:2).^2)) / (abs(w(i))*quad.r); %Magnitude of mu, planar components lc = Vr(3) / (abs(w(i))*quad.r); %Non-dimensionalised normal inflow li = mu; %Non-dimensionalised induced velocity approximation alphas = atan2(lc,mu); j = atan2(Vr(2),Vr(1)); %Sideslip azimuth relative to e1 (zero over nose) J = [cos(j) -sin(j); sin(j) cos(j)]; %BBF > mu sideslip rotation matrix %Flapping beta = [((8/3*quad.theta0 + 2*quad.theta1)*mu - 2*(lc)*mu)/(1-mu^2/2); %Longitudinal flapping 0;];%sign(w) * (4/3)*((Ct/sigma)*(2*mu*gamma/3/a)/(1+3*e/2/r) + li)/(1+mu^2/2)]; %Lattitudinal flapping (note sign) beta = J'*beta; %Rotate the beta flapping angles to longitudinal and lateral coordinates. a1s(i) = beta(1) - 16/quad.gamma/abs(w(i)) * o(2); b1s(i) = beta(2) - 16/quad.gamma/abs(w(i)) * o(1); %Forces and torques T(:,i) = quad.Ct*quad.rho*quad.A*quad.r^2*w(i)^2 * [-cos(b1s(i))*sin(a1s(i)); sin(b1s(i));-cos(a1s(i))*cos(b1s(i))]; %Rotor thrust, linearised angle approximations Q(:,i) = -quad.Cq*quad.rho*quad.A*quad.r^3*w(i)*abs(w(i)) * e3; %Rotor drag torque - note that this preserves w(i) direction sign tau(:,i) = cross(T(:,i),D(:,i)); %Torque due to rotor thrust end %RIGID BODY DYNAMIC MODEL dz = v; dn = iW*o; dv = quad.g*e3 + R*(1/quad.M)*sum(T,2); % vehicle can't fall below ground if groundFlag && (z(3) > 0) z(3) = 0; dz(3) = 0; end do = inv(quad.J)*(cross(-o,quad.J*o) + sum(tau,2) + sum(Q,2)); %row sum of torques sys = [dz;dn;dv;do]; %This is the state derivative vector end % End of mdlDerivatives. %============================================================== % mdlOutputs % Calculate the output vector for this timestep %============================================================== % function sys = mdlOutputs(t,x, quad) %TELEMETRY if quad.verbose disp(sprintf('%0.3f\t',t,x)) end % compute output vector as a function of state vector % z Position 3x1 (x,y,z) % v Velocity 3x1 (xd,yd,zd) % n Attitude 3x1 (Y,P,R) % o Angular velocity 3x1 (Yd,Pd,Rd) n = x(4:6); % RPY angles phi = n(1); % yaw the = n(2); % pitch psi = n(3); % roll % rotz(phi)*roty(the)*rotx(psi) R = [cos(the)*cos(phi) sin(psi)*sin(the)*cos(phi)-cos(psi)*sin(phi) cos(psi)*sin(the)*cos(phi)+sin(psi)*sin(phi); %BBF > Inertial rotation matrix cos(the)*sin(phi) sin(psi)*sin(the)*sin(phi)+cos(psi)*cos(phi) cos(psi)*sin(the)*sin(phi)-sin(psi)*cos(phi); -sin(the) sin(psi)*cos(the) cos(psi)*cos(the)]; iW = [0 sin(psi) cos(psi); %inverted Wronskian 0 cos(psi)*cos(the) -sin(psi)*cos(the); cos(the) sin(psi)*sin(the) cos(psi)*sin(the)] / cos(the); % return velocity in the body frame sys = [ x(1:6); inv(R)*x(7:9); % translational velocity mapped to body frame iW*x(10:12)]; % RPY rates mapped to body frame %sys = [x(1:6); iW*x(7:9); iW*x(10:12)]; %sys = x; end % End of mdlOutputs.
github
RobinAmsters/GT_mobile_robotics-master
quadrotor_plot.m
.m
GT_mobile_robotics-master/common/rvctools/robot/simulink/quadrotor_plot.m
6,817
utf_8
d45a42badcf21b410b948d7700545049
% Copyright (C) 1993-2014, by Peter I. Corke % % This file is part of The Robotics Toolbox for Matlab (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. function [sys,x0,str,ts] = quadrotor_plot(t,x,u,flag,s,plot,enable,vehicle) % Flyer plot, lovingly coded by Paul Pounds, first coded 17/4/02 % version 2 2004 added scaling and ground display % version 3 2010 improved rotor rendering and fixed mirroring bug % % Displays X-4 flyer position and attitude in a 3D plot. % GREEN ROTOR POINTS NORTH % BLUE ROTOR POINTS EAST % PARAMETERS % s defines the plot size in meters % swi controls flyer attitude plot; 1 = on, otherwise off. % INPUTS % 1 Center X position % 2 Center Y position % 3 Center Z position % 4 Yaw angle in rad % 5 Pitch angle in rad % 6 Roll angle in rad % OUTPUTS % None ts = [-1 0]; if ~isfield(vehicle, 'nrotors') vehicle.nrotors = 4; % sensible default for quadrotor function end switch flag case 0 [sys,x0,str,ts] = mdlInitializeSizes(ts,plot,enable); % Initialization case 3 sys = mdlOutputs(t,u,s,plot,enable, vehicle); % Calculate outputs case {1,2, 4, 9} % Unused flags sys = []; otherwise error(['unhandled flag = ',num2str(flag)]); % Error handling end % Initialize function [sys,x0,str,ts] = mdlInitializeSizes(ts,plot,enable) % Call simsizes for a sizes structure, fill it in, and convert it % to a sizes array. sizes = simsizes; sizes.NumContStates = 0; sizes.NumDiscStates = 0; sizes.NumOutputs = 0; sizes.NumInputs = 6; sizes.DirFeedthrough = 1; sizes.NumSampleTimes = 1; sys = simsizes(sizes); x0 = []; str = []; % Set str to an empty matrix. ts = [0.05 0]; if enable == 1 figure(plot); clf; %colordef(1,'none'); %global anim %anim = Animate('quad-movie'); %TODO enable animation saving from the block end % End of mdlInitializeSizes. function sys = mdlOutputs(t,u,s, plot, enable, quad) global a1s b1s % not quite sure what this is about -- PIC if numel(a1s) == [0]; a1s = zeros(1, quad.nrotors); b1s = zeros(1, quad.nrotors); end % vehicle dimensons d = quad.d; %Hub displacement from COG r = quad.r; %Rotor radius for i = 1:quad.nrotors theta = (i-1)/quad.nrotors*2*pi; % Di Rotor hub displacements (1x3) % first rotor is on the x-axis, clockwise order looking down from above D(:,i) = [ d*cos(theta); d*sin(theta); 0]; scal = s(1)/4; %Attitude center displacements C(:,i) = [ scal*cos(theta); scal*sin(theta); 0]; end if enable == 1 %draw ground figure(plot); clf; if length(s) == 1 axis([-s s -s s 0 s]); else axis([-s(1) s(1) -s(1) s(1) 0 s(2)]) s = s(1); end hold on; % plot the ground boundaries and the big cross plot3([-s -s],[s -s],[0 0],'-b') plot3([-s s],[s s],[0 0],'-b') plot3([s -s],[-s -s],[0 0],'-b') plot3([s s],[s -s],[0 0],'-b') plot3([s -s],[-s s],[0 0],'-b') plot3([-s s],[-s s],[0 0],'-b') grid on %READ STATE z = [u(1);u(2);u(3)]; n = [u(4);u(5);u(6)]; %PREPROCESS ROTATION MATRIX phi = n(1); %Euler angles the = n(2); psi = n(3); R = [cos(the)*cos(phi) sin(psi)*sin(the)*cos(phi)-cos(psi)*sin(phi) cos(psi)*sin(the)*cos(phi)+sin(psi)*sin(phi); %BBF > Inertial rotation matrix cos(the)*sin(phi) sin(psi)*sin(the)*sin(phi)+cos(psi)*cos(phi) cos(psi)*sin(the)*sin(phi)-sin(psi)*cos(phi); -sin(the) sin(psi)*cos(the) cos(psi)*cos(the)]; %Manual Construction %Q3 = [cos(psi) -sin(psi) 0;sin(psi) cos(psi) 0;0 0 1]; %Rotation mappings %Q2 = [cos(the) 0 sin(the);0 1 0;-sin(the) 0 cos(the)]; %Q1 = [1 0 0;0 cos(phi) -sin(phi);0 sin(phi) cos(phi)]; %R = Q3*Q2*Q1; %Rotation matrix %CALCULATE FLYER TIP POSITONS USING COORDINATE FRAME ROTATION F = [1 0 0;0 -1 0;0 0 -1]; %Draw flyer rotors t = [0:pi/8:2*pi]; for j = 1:length(t) circle(:,j) = [r*sin(t(j));r*cos(t(j));0]; end for i = 1:quad.nrotors hub(:,i) = F*(z + R*D(:,i)); %points in the inertial frame q = 1; %Flapping angle scaling for output display - makes it easier to see what flapping is occurring Rr = [cos(q*a1s(i)) sin(q*b1s(i))*sin(q*a1s(i)) cos(q*b1s(i))*sin(q*a1s(i)); %Rotor > Plot frame 0 cos(q*b1s(i)) -sin(q*b1s(i)); -sin(q*a1s(i)) sin(q*b1s(i))*cos(q*a1s(i)) cos(q*b1s(i))*cos(q*a1s(i))]; tippath(:,:,i) = F*R*Rr*circle; plot3([hub(1,i)+tippath(1,:,i)],[hub(2,i)+tippath(2,:,i)],[hub(3,i)+tippath(3,:,i)],'b-') end %Draw flyer hub0 = F*z; % centre of vehicle for i = 1:quad.nrotors % line from hub to centre plot3([hub(1,N) hub(1,S)],[hub(2,N) hub(2,S)],[hub(3,N) hub(3,S)],'-b') plot3([hub(1,i) hub0(1)],[hub(2,i) hub0(2)],[hub(3,i) hub0(3)],'-b') % plot a circle at the hub itself plot3([hub(1,i)],[hub(2,i)],[hub(3,i)],'o') end % plot the vehicle's centroid on the ground plane plot3([z(1) 0],[-z(2) 0],[0 0],'--k') plot3([z(1)],[-z(2)],[0],'xk') % label the axes xlabel('x'); ylabel('y'); zlabel('z (height above ground)'); view(3) end sys = []; % End of mdlOutputs.
github
RobinAmsters/GT_mobile_robotics-master
nrotor_dynamics.m
.m
GT_mobile_robotics-master/common/rvctools/robot/simulink/nrotor_dynamics.m
10,074
utf_8
2bf71a487d17cb2635f1e387cbcd02c1
function [sys,x0,str,ts] = nrotor_dynamics(t,x,u,flag, vehicle, x0, groundflag) % Flyer2dynamics lovingly coded by Paul Pounds, first coded 12/4/04 % A simulation of idealised X-4 Flyer II flight dynamics. % version 2.0 2005 modified to be compatible with latest version of Matlab % version 3.0 2006 fixed rotation matrix problem % version 4.0 4/2/10, fixed rotor flapping rotation matrix bug, mirroring % version 5.0 8/8/11, simplified and restructured % version 6.0 25/10/13, fixed rotation matrix/inverse wronskian definitions, flapping cross-product bug % modified by PIC for N rotors global groundFlag warning off MATLAB:divideByZero % New in version 2: % - Generalised rotor thrust model % - Rotor flapping model % - Frame aerodynamic drag model % - Frame aerodynamic surfaces model % - Internal motor model % - Much coolage % Version 1.3 % - Rigid body dynamic model % - Rotor gyroscopic model % - External motor model %ARGUMENTS % u Reference inputs 1x4 % tele Enable telemetry (1 or 0) 1x1 % crash Enable crash detection (1 or 0) 1x1 % init Initial conditions 1x12 %INPUTS % u rotor speed 1xN %CONTINUOUS STATES % z Position 3x1 (x,y,z) % v Velocity 3x1 (xd,yd,zd) % n Attitude 3x1 (Y,P,R) % o Angular velocity 3x1 (wx,wy,wz) % w Rotor angular velocity 4x1 %CONTINUOUS STATE MATRIX MAPPING % x = [z1 z2 z3 n1 n2 n3 z1 z2 z3 o1 o2 o3 w1 w2 w3 w4] %INITIAL CONDITIONS n0 = [0 0 0]; % n0 Ang. position initial conditions 1x3 v0 = [0 0 0]; % v0 Velocity Initial conditions 1x3 o0 = [0 0 0]; % o0 Ang. velocity initial conditions 1x3 init = [x0 n0 v0 o0]; % x0 is the passed initial position 1x3 groundFlag = groundflag;; %CONTINUOUS STATE EQUATIONS % z' = v % v' = g*e3 - (1/m)*T*R*e3 % I*o' = -o X I*o + G + torq % R = f(n) % n' = inv(W)*o % basic sanity checks on number of rotors if ~isfield(vehicle, 'nrotors') error('RTB:nrotor_dynamics:bardarg', 'Number of rotors not specified in model structure') end if mod(vehicle.nrotors,2) == 1 error('RTB:nrotor_dynamics:bardarg', 'Number of rotors must be even') end if vehicle.nrotors < 4 error('RTB:nrotor_dynamics:bardarg', 'Number of rotors must be at least 4') end groundFlag = groundflag; % Dispatch the flag. switch flag case 0 [sys,x0,str,ts]=mdlInitializeSizes(init, vehicle); % Initialization case 1 sys = mdlDerivatives(t,x,u, vehicle); % Calculate derivatives case 3 sys = mdlOutputs(t,x, vehicle); % Calculate outputs case { 2, 4, 9 } % Unused flags sys = []; otherwise error(['Unhandled flag = ',num2str(flag)]); % Error handling end end % End of flyer2dynamics %============================================================== % mdlInitializeSizes % Return the sizes, initial conditions, and sample times for the % S-function. %============================================================== % function [sys,x0,str,ts] = mdlInitializeSizes(init, vehicle) % % Call simsizes for a sizes structure, fill it in and convert it % to a sizes array. % sizes = simsizes; sizes.NumContStates = 12; sizes.NumDiscStates = 0; sizes.NumOutputs = 12; sizes.NumInputs = vehicle.nrotors; sizes.DirFeedthrough = 0; sizes.NumSampleTimes = 1; sys = simsizes(sizes); % % Initialize the initial conditions. x0 = init; % % str is an empty matrix. str = []; % % Generic timesample ts = [0 0]; if vehicle.verbose disp(sprintf('t\t\tz1\t\tz2\t\tz3\t\tn1\t\tn2\t\tn3\t\tv1\t\tv2\t\tv3\t\to1\t\to2\t\to3\t\tw1\t\tw2\t\tw3\t\tw4\t\tu1\t\tu2\t\tu3\t\tu4')) end end % End of mdlInitializeSizes. %============================================================== % mdlDerivatives % Calculate the state derivatives for the next timestep %============================================================== % function sys = mdlDerivatives(t,x,u, quad) global a1s b1s for i = 1:quad.nrotors theta = (i-1)/quad.nrotors*2*pi; % Di Rotor hub displacements (1x3) % first rotor is on the x-axis, clockwise order looking down from above D(:,i) = [ quad.d*cos(theta); quad.d*sin(theta); quad.h]; end %Body-fixed frame references e1 = [1;0;0]; % ei Body fixed frame references 3x1 e2 = [0;1;0]; e3 = [0;0;1]; %EXTRACT ROTOR SPEED DEMANDS FROM U w = u(1:quad.nrotors); %EXTRACT STATES FROM X z = x(1:3); % position in {W} n = x(4:6); % RPY angles {W} v = x(7:9); % velocity in {W} o = x(10:12); % angular velocity in {W} %PREPROCESS ROTATION AND WRONSKIAN MATRICIES phi = n(1); % yaw the = n(2); % pitch psi = n(3); % roll % rotz(phi)*roty(the)*rotx(psi) R = [cos(the)*cos(phi) sin(psi)*sin(the)*cos(phi)-cos(psi)*sin(phi) cos(psi)*sin(the)*cos(phi)+sin(psi)*sin(phi); %BBF > Inertial rotation matrix cos(the)*sin(phi) sin(psi)*sin(the)*sin(phi)+cos(psi)*cos(phi) cos(psi)*sin(the)*sin(phi)-sin(psi)*cos(phi); -sin(the) sin(psi)*cos(the) cos(psi)*cos(the)]; %Manual Construction % Q3 = [cos(phi) -sin(phi) 0;sin(phi) cos(phi) 0;0 0 1]; % RZ %Rotation mappings % Q2 = [cos(the) 0 sin(the);0 1 0;-sin(the) 0 cos(the)]; % RY % Q1 = [1 0 0;0 cos(psi) -sin(psi);0 sin(psi) cos(psi)]; % RX % R = Q3*Q2*Q1 %Rotation matrix % % RZ * RY * RX iW = [0 sin(psi) cos(psi); %inverted Wronskian 0 cos(psi)*cos(the) -sin(psi)*cos(the); cos(the) sin(psi)*sin(the) cos(psi)*sin(the)] / cos(the); %ROTOR MODEL for i=1:quad.nrotors %for each rotor %Relative motion Vr = cross(o,D(:,i)) + v; mu = sqrt(sum(Vr(1:2).^2)) / (abs(w(i))*quad.r); %Magnitude of mu, planar components lc = Vr(3) / (abs(w(i))*quad.r); %Non-dimensionalised normal inflow li = mu; %Non-dimensionalised induced velocity approximation alphas = atan2(lc,mu); j = atan2(Vr(2),Vr(1)); %Sideslip azimuth relative to e1 (zero over nose) J = [cos(j) -sin(j); sin(j) cos(j)]; %BBF > mu sideslip rotation matrix %Flapping beta = [((8/3*quad.theta0 + 2*quad.theta1)*mu - 2*(lc)*mu)/(1-mu^2/2); %Longitudinal flapping 0;];%sign(w) * (4/3)*((Ct/sigma)*(2*mu*gamma/3/a)/(1+3*e/2/r) + li)/(1+mu^2/2)]; %Lattitudinal flapping (note sign) beta = J'*beta; %Rotate the beta flapping angles to longitudinal and lateral coordinates. a1s(i) = beta(1) - 16/quad.gamma/abs(w(i)) * o(2); b1s(i) = beta(2) - 16/quad.gamma/abs(w(i)) * o(1); %Forces and torques T(:,i) = quad.Ct*quad.rho*quad.A*quad.r^2*w(i)^2 * [-cos(b1s(i))*sin(a1s(i)); sin(b1s(i));-cos(a1s(i))*cos(b1s(i))]; %Rotor thrust, linearised angle approximations Q(:,i) = -quad.Cq*quad.rho*quad.A*quad.r^3*w(i)*abs(w(i)) * e3; %Rotor drag torque - note that this preserves w(i) direction sign tau(:,i) = cross(T(:,i),D(:,i)); %Torque due to rotor thrust end %RIGID BODY DYNAMIC MODEL dz = v; % vehicle can't fall below ground if groundFlag && (z(3) > 0) z(3) = 0; dz(3) = 0; end dn = iW*o; dv = quad.g*e3 + R*(1/quad.M)*sum(T,2); do = inv(quad.J)*(cross(-o,quad.J*o) + sum(tau,2) + sum(Q,2)); %row sum of torques sys = [dz;dn;dv;do]; %This is the state derivative vector end % End of mdlDerivatives. %============================================================== % mdlOutputs % Calculate the output vector for this timestep %============================================================== % function sys = mdlOutputs(t,x, quad) %CRASH DETECTION if x(3)>0 x(3) = 0; if x(6) > 0 x(6) = 0; end end %if (x(3)>0)&(crash) % error('CRASH!') %end %TELEMETRY if quad.verbose disp(sprintf('%0.3f\t',t,x)) end % compute output vector as a function of state vector % z Position 3x1 (x,y,z) % v Velocity 3x1 (xd,yd,zd) % n Attitude 3x1 (Y,P,R) % o Angular velocity 3x1 (Yd,Pd,Rd) n = x(4:6); % RPY angles phi = n(1); % yaw the = n(2); % pitch psi = n(3); % roll % rotz(phi)*roty(the)*rotx(psi) R = [cos(the)*cos(phi) sin(psi)*sin(the)*cos(phi)-cos(psi)*sin(phi) cos(psi)*sin(the)*cos(phi)+sin(psi)*sin(phi); %BBF > Inertial rotation matrix cos(the)*sin(phi) sin(psi)*sin(the)*sin(phi)+cos(psi)*cos(phi) cos(psi)*sin(the)*sin(phi)-sin(psi)*cos(phi); -sin(the) sin(psi)*cos(the) cos(psi)*cos(the)]; iW = [0 sin(psi) cos(psi); %inverted Wronskian 0 cos(psi)*cos(the) -sin(psi)*cos(the); cos(the) sin(psi)*sin(the) cos(psi)*sin(the)] / cos(the); % return velocity in the body frame sys = [ x(1:6); inv(R)*x(7:9); % translational velocity mapped to body frame iW*x(10:12)]; % RPY rates mapped to body frame %sys = [x(1:6); iW*x(7:9); iW*x(10:12)]; %sys = x; end % End of mdlOutputs.
github
RobinAmsters/GT_mobile_robotics-master
slaccel.m
.m
GT_mobile_robotics-master/common/rvctools/robot/simulink/slaccel.m
1,863
utf_8
b40a5c69f4b536d307e49d1c9a3e0261
%SLACCEL S-function for robot acceleration % % This is the S-function for computing robot acceleration. It assumes input % data u to be the vector [q qd tau]. % % Implemented as an S-function to get around vector sizing problem with % Simulink 4. function [sys, x0, str, ts] = slaccel(t, x, u, flag, robot) switch flag case 0 % initialize the robot graphics [sys,x0,str,ts] = mdlInitializeSizes(robot); % Init case {3} % come here to calculate derivitives % first check that the torque vector is sensible assert(numel(u) == (3*robot.n), 'RTB:slaccel:badarg', 'Input vector is length %d, should be %d', numel(u), 3*robot.n); assert(isreal(u), 'RTB:slaccel:badarg', 'Input vector is complex, should be real'); sys = robot.accel(u(:)'); case {1, 2, 4, 9} sys = []; end % %============================================================================= % mdlInitializeSizes % Return the sizes, initial conditions, and sample times for the S-function. %============================================================================= % function [sys,x0,str,ts]=mdlInitializeSizes(robot) % % call simsizes for a sizes structure, fill it in and convert it to a % sizes array. % % Note that in this example, the values are hard coded. This is not a % recommended practice as the characteristics of the block are typically % defined by the S-function parameters. % sizes = simsizes; sizes.NumContStates = 0; sizes.NumDiscStates = 0; sizes.NumOutputs = robot.n; sizes.NumInputs = 3*robot.n; sizes.DirFeedthrough = 1; sizes.NumSampleTimes = 1; % at least one sample time is needed sys = simsizes(sizes); % % initialize the initial conditions % x0 = []; % % str is always an empty matrix % str = []; % % initialize the array of sample times % ts = [0 0]; % end mdlInitializeSizes
github
RobinAmsters/GT_mobile_robotics-master
SerialLink.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/SerialLink.m
3,422
utf_8
6b79f782cc7245759b17bccc567eadfb
%ROBOT robot object constructor % % ROBOT % ROBOT(robot) create a copy of an existing ROBOT object % ROBOT(LINK, ...) create from a cell array of LINK objects % ROBOT(DH, ...) create from legacy DYN matrix % ROBOT(DYN, ...) create from legacy DYN matrix % % optional trailing arguments are: % Name robot type or name % Manufacturer who built it % Comment general comment % % If the legacy matrix forms are used the default name is the workspace % variable that held the data. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = SerialLink(L, varargin) r.name = 'noname'; r.manufacturer = ''; r.comment = ''; r.links = []; r.n = 0; r.mdh = 0; r.gravity = [0; 0; 9.81]; r.base = eye(4,4); r.tool = eye(4,4); r.handle = []; % graphics handles r.q = []; % current joint angles r.lineopt = {'Color', 'black', 'Linewidth', 4}; r.shadowopt = {'Color', 0.7*[1 1 1], 'Linewidth', 3}; r.plotopt = {}; r = class(r, 'SerialLink'); if nargin == 0 %zero argument constructor return; else if isa(L, 'SerialLink') if length(L) == 1 % clone the passed robot for j=1:L.n newlinks(j) = L.links(j); end r.links = newlinks; else % compound the robots in the vector r = L(1); for k=2:length(L) r = r * L(k); end end elseif isa(L,'Link') r.links = L; %attach the links elseif isa(L, 'double') % legacy matrix dh_dyn = L; clear L for j=1:numrows(dh_dyn) L(j) = Link(); L(j).theta = dh_dyn(j,1); L(j).d = dh_dyn(j,2); L(j).a = dh_dyn(j,3); L(j).alpha = dh_dyn(j,4); if numcols(dh_dyn) > 4 L(j).sigma = dh_dyn(j,5); end end r.links = L; else error('unknown type passed to SerialLink'); end r.n = length(r.links); end %process the rest of the arguments in key, value pairs opt.name = 'robot'; opt.comment = []; opt.manufacturer = []; opt.base = []; opt.tool = []; opt.offset = []; opt.qlim = []; opt.plotopt = []; [opt,out] = tb_optparse(opt, varargin); if ~isempty(out) error( sprintf('unknown option <%s>', out{1})); end % copy the properties to robot object p = fieldnames(r); for i=1:length(p) if isfield(opt, p{i}) && ~isempty(getfield(opt, p{i})) r = setfield(r, p{i}, getfield(opt, p{i})); end end % set the robot object mdh status flag mdh = [r.links.mdh]; if all(mdh == 0) r.mdh = mdh(1); elseif all (mdh == 1) r.mdh = mdh(1); else error('SerialLink has mixed D&H links conventions'); end r = class(r, 'SerialLink'); endfunction
github
RobinAmsters/GT_mobile_robotics-master
showlink.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/showlink.m
1,144
utf_8
c7461e742177bef949f7c9c1f29746a4
%SerialLink.showlink Show parameters of all links % % R.showlink() shows details of all link parameters for the robot object, % including inertial parameters. % % See also Link.showlink, Link. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function showlink(r) for i=1:r.n, fprintf('Link %d------------------------\n', i); r.links(i).dyn(); end
github
RobinAmsters/GT_mobile_robotics-master
plot.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/plot.m
12,227
utf_8
a5e1b4b6574996e90a18af55228dd05d
%PLOT Graphical robot animation % % PLOT(ROBOT, Q) % PLOT(ROBOT, Q, options) % % Displays a graphical animation of a robot based on the % kinematic model. A stick figure polyline joins the origins of % the link coordinate frames. % The robot is displayed at the joint angle Q, or if a matrix it is % animated as the robot moves along the trajectory. % % The graphical robot object holds a copy of the robot object and % the graphical element is tagged with the robot's name (.name method). % This state also holds the last joint configuration % drawn (.q method). % % If no robot of this name is currently displayed then a robot will % be drawn in the current figure. If the robot already exists then % that graphical model will be found and moved. % % MULTIPLE VIEWS OF THE SAME ROBOT % If one or more plots of this robot already exist then these will all % be moved according to the argument Q. % % MULTIPLE ROBOTS % Multiple robots can be displayed in the same plot, by using "hold on" % before calls to plot(robot). % % options is a list of any of the following: % 'workspace' [xmin, xmax ymin ymax zmin zmax] % 'perspective' 'ortho' controls camera view mode % 'erase' 'noerase' controls erasure of arm during animation % 'base' 'nobase' controls display of base 'pedestal' % 'loop' 'noloop' controls display of base 'pedestal' % 'wrist' 'nowrist' controls display of wrist % 'name', 'noname' display the robot's name near the first joint % 'shadow' 'noshadow' controls display of shadow % 'xyz' 'noa' wrist axis label % 'joints' 'nojoints' controls display of joints % 'mag' scale annotation scale factor % % The options come from 3 sources and are processed in the order: % 1. Cell array of options returned by the function PLOTBOTOPT % 2. Cell array of options returned by the .plotopt method of the % robot object. These are set by the .plotopt method. % 3. List of arguments in the command line. % % GRAPHICAL ANNOTATIONS: % % The basic stick figure robot can be annotated with % shadow on the floor % XYZ wrist axes and labels % joint cylinders and axes % % All of these require some kind of dimension and this is determined % using a simple heuristic from the workspace dimensions. This dimension % can be changed by setting the multiplicative scale factor using the % 'mag' option above. % % GETTING GRAPHICAL ROBOT STATE: % q = PLOT(ROBOT) % Returns the joint configuration from the state of an existing % graphical representation of the specified robot. If multiple % instances exist, that of the first one returned by findobj() is % given. % % See also PLOTBOTOPT, DRIVEBOT, FKINE, ROBOT. % Copright (C) Peter Corke 1993 % HANDLES: % % A robot comprises a bunch of individual graphical elements and these are % kept in a structure which can be stored within the .handle element of a % robot object. % h.robot the robot stick figure % h.shadow the robot's shadow % h.x wrist vectors % h.y % h.z % h.xt wrist vector labels % h.yt % h.zt % % The plot function returns a new robot object with the handle element set. % % For the h.robot object we additionally: % save this new robot object as its UserData % tag it with the name field from the robot object % % This enables us to find all robots with a given name, in all figures, % and update them. % MOD.HISTORY % 12/94 make axis scaling adjust to robot kinematic params % 4/99 use objects % 2/01 major rewrite, axis names, drivebot, state etc. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function rnew = plot(robot, tg, varargin) % % q = PLOT(robot) % return joint coordinates from a graphical robot of given name % if nargin == 1, rh = findobj('Tag', robot.name); if ~isempty(rh), r = get(rh(1), 'UserData'); rnew = r.q; end return end np = numrows(tg); n = robot.n; if numcols(tg) ~= n, error('Insufficient columns in q') end if ~isfield(robot, 'handles'), % % if there are no handles in this object we assume it has % been invoked from the command line not drivebot() so we % process the options % %%%%%%%%%%%%%% process options erasemode = 'xor'; joints = 1; wrist = 1; repeat = 1; shadow = 1; wrist = 1; dims = []; base = 0; wristlabel = 'xyz'; projection = 'orthographic'; magscale = 1; name = 1; % read options string in the order % 1. robot.plotopt % 2. the M-file plotbotopt if it exists % 3. command line arguments if exist('plotbotopt', 'file') == 2, options = plotbotopt; options = [options robot.plotopt varargin]; else options = [robot.plotopt varargin]; end i = 1; while i <= length(options), switch lower(options{i}), case 'workspace' dims = options{i+1}; i = i+1; case 'mag' magscale = options{i+1}; i = i+1; case 'perspective' projection = 'perspective'; case 'ortho' projection = 'orthographic'; case 'erase' erasemode = 'xor'; case 'noerase' erasemode = 'none'; case 'base' base = 1; case 'nobase' base = 0; case 'loop' repeat = Inf; case 'noloop' repeat = 1; case 'name', name = 1; case 'noname', name = 0; case 'wrist' wrist = 1; case 'nowrist' wrist = 0; case 'shadow' shadow = 1; case 'noshadow' shadow = 0; case 'xyz' wristlabel = 'XYZ'; case 'noa' wristlabel = 'NOA'; case 'joints' joints = 1; case 'nojoints' joints = 0; otherwise error(['unknown option: ' options{i}]); end i = i+1; end if isempty(dims), % % simple heuristic to figure the maximum reach of the robot % L = robot.links; reach = 0; for i=1:n, reach = reach + abs(L(i).a) + abs(L(i).d); end dims = [-reach reach -reach reach -reach reach]; mag = reach/10; else reach = min(abs(dims)); end mag = magscale * reach/10; end % % setup an axis in which to animate the robot % if isempty(robot.handle) & isempty(findobj(gcf, 'Tag', robot.name)), if ~ishold, clf axis(dims); end figure(gcf); % bring to the top xlabel('X') ylabel('Y') zlabel('Z') set(gca, 'drawmode', 'fast'); grid on zlim = get(gca, 'ZLim'); h.zmin = zlim(1); if base, b = transl(robot.base); line('xdata', [b(1);b(1)], ... 'ydata', [b(2);b(2)], ... 'zdata', [h.zmin;b(3)], ... 'LineWidth', 4, ... 'color', 'red'); end if name, b = transl(robot.base); text(b(1), b(2)-mag, [' ' robot.name]) end % create a line which we will % subsequently modify. Set erase mode to xor for fast % update % h.robot = line(robot.lineopt{:}, ... 'Erasemode', erasemode); if shadow == 1, h.shadow = line(robot.shadowopt{:}, ... 'Erasemode', erasemode); end if wrist == 1, h.x = line('xdata', [0;0], ... 'ydata', [0;0], ... 'zdata', [0;0], ... 'color', 'red', ... 'erasemode', 'xor'); h.y = line('xdata', [0;0], ... 'ydata', [0;0], ... 'zdata', [0;0], ... 'color', 'green', ... 'erasemode', 'xor'); h.z = line('xdata', [0;0], ... 'ydata', [0;0], ... 'zdata', [0;0], ... 'color', 'blue', ... 'erasemode', 'xor'); h.xt = text(0, 0, wristlabel(1), 'FontWeight', 'bold', 'HorizontalAlignment', 'Center'); h.yt = text(0, 0, wristlabel(2), 'FontWeight', 'bold', 'HorizontalAlignment', 'Center'); h.zt = text(0, 0, wristlabel(3), 'FontWeight', 'bold', 'HorizontalAlignment', 'Center'); end % % display cylinders (revolute) or boxes (pristmatic) at % each joint, as well as axis centerline. % if joints == 1, L = robot.links; for i=1:robot.n, % cylinder or box to represent the joint if L(i).sigma == 0, N = 8; else N = 4; end [xc,yc,zc] = cylinder([mag/4, mag/4], N); zc(zc==0) = -mag/2; zc(zc==1) = mag/2; % add the surface object and color it h.joint(i) = surface(xc,yc,zc); %set(h.joint(i), 'erasemode', 'xor'); set(h.joint(i), 'FaceColor', 'blue'); % build a matrix of coordinates so we % can transform the cylinder in animate() % and hang it off the cylinder xyz = [xc(:)'; yc(:)'; zc(:)'; ones(1,2*N+2)]; set(h.joint(i), 'UserData', xyz); % add a dashed line along the axis h.jointaxis(i) = line('xdata', [0;0], ... 'ydata', [0;0], ... 'zdata', [0;0], ... 'color', 'blue', ... 'linestyle', '--', ... 'erasemode', 'xor'); end end h.mag = mag; robot.handle = h; set(h.robot, 'Tag', robot.name); set(h.robot, 'UserData', robot); end % save the handles in the passed robot object rh = findobj('Tag', robot.name); for r=1:repeat, for p=1:np, for r=rh', animate( get(r, 'UserData'), tg(p,:)); end end end % save the last joint angles away in the graphical robot for r=rh', rr = get(r, 'UserData'); rr.q = tg(end,:); set(r, 'UserData', rr); end if nargout > 0, rnew = robot; end function animate(robot, q) n = robot.n; h = robot.handle; L = robot.links; mag = h.mag; b = transl(robot.base); x = b(1); y = b(2); z = b(3); xs = b(1); ys = b(2); zs = h.zmin; % compute the link transforms, and record the origin of each frame % for the animation. t = robot.base; Tn = t; for j=1:n, Tn(:,:,j) = t; t = t * L(j).A(q(j)); x = [x; t(1,4)]; y = [y; t(2,4)]; z = [z; t(3,4)]; xs = [xs; t(1,4)]; ys = [ys; t(2,4)]; zs = [zs; h.zmin]; end t = t *robot.tool; % % draw the robot stick figure and the shadow % set(h.robot,'xdata', x, 'ydata', y, 'zdata', z); if isfield(h, 'shadow'), set(h.shadow,'xdata', xs, 'ydata', ys, 'zdata', zs); end % % display the joints as cylinders with rotation axes % if isfield(h, 'joint'), xyz_line = [0 0; 0 0; -2*mag 2*mag; 1 1]; for j=1:n, % get coordinate data from the cylinder xyz = get(h.joint(j), 'UserData'); xyz = Tn(:,:,j) * xyz; ncols = numcols(xyz)/2; xc = reshape(xyz(1,:), 2, ncols); yc = reshape(xyz(2,:), 2, ncols); zc = reshape(xyz(3,:), 2, ncols); set(h.joint(j), 'Xdata', xc, 'Ydata', yc, ... 'Zdata', zc); xyzl = Tn(:,:,j) * xyz_line; set(h.jointaxis(j), 'Xdata', xyzl(1,:), 'Ydata', xyzl(2,:), 'Zdata', xyzl(3,:)); xyzl = Tn(:,:,j) * xyz_line; h.jointlabel(j) = text(xyzl(1,1), xyzl(2,1) , xyzl(3,1), num2str(j), 'HorizontalAlignment', 'Center'); end end % % display the wrist axes and labels % if isfield(h, 'x'), % % compute the wrist axes, based on final link transformation % plus the tool transformation. % xv = t*[mag;0;0;1]; yv = t*[0;mag;0;1]; zv = t*[0;0;mag;1]; % % update the line segments, wrist axis and links % set(h.x,'xdata',[t(1,4) xv(1)], 'ydata', [t(2,4) xv(2)], ... 'zdata', [t(3,4) xv(3)]); set(h.y,'xdata',[t(1,4) yv(1)], 'ydata', [t(2,4) yv(2)], ... 'zdata', [t(3,4) yv(3)]); set(h.z,'xdata',[t(1,4) zv(1)], 'ydata', [t(2,4) zv(2)], ... 'zdata', [t(3,4) zv(3)]); wristlabel = "XYZ"; % text(xv(1),xv(2),xv(3), ['X']) % text(yv(1),yv(2),yv(3), ['Y']) % text(zv(1),zv(2),zv(3), ['Z']) h.xt = text(xv(1),xv(2),xv(3), wristlabel(1), 'FontWeight', 'bold', 'HorizontalAlignment', 'Center'); h.yt = text(yv(1),yv(2),yv(3), wristlabel(2), 'FontWeight', 'bold', 'HorizontalAlignment', 'Center'); h.zt = text(zv(1),zv(2),zv(3), wristlabel(3), 'FontWeight', 'bold', 'HorizontalAlignment', 'Center'); % set(h.zt, 'rotation', zv(1:3)); % set(h.xt, 'Position', xv(1:3)); % set(h.yt, 'Position', yv(1:3)); end drawnow
github
RobinAmsters/GT_mobile_robotics-master
dyn.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/dyn.m
1,207
utf_8
3c68eba44763c252b2636604f6cd8e84
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function dyn(r) %SerialLink.dyn Display inertial properties % % R.dyn() displays the inertial properties of the SerialLink object in a multi-line % format. The properties shown are mass, centre of mass, inertia, gear ratio, % motor inertia and motor friction. % % See also Link.dyn. for j=1:r.n fprintf('----- link %d\n', j); l = r.links(j); l.dyn() end end
github
RobinAmsters/GT_mobile_robotics-master
rne_dh.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/rne_dh.m
4,885
utf_8
1e44d3260a31a7c4fce5eb34a71c71fc
%SERIALLINK.RNE_DH Compute inverse dynamics via recursive Newton-Euler formulation % % Recursive Newton-Euler for standard Denavit-Hartenberg notation. Is invoked by % R.RNE(). % % See also SERIALLINK.RNE. % % verified against MAPLE code, which is verified by examples % % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function [tau,wbase] = rne_dh(robot, a1, a2, a3, a4, a5) z0 = [0;0;1]; grav = robot.gravity; % default gravity from the object fext = zeros(6, 1); n = robot.n; % check that robot object has dynamic parameters for each link for j=1:n, link = robot.links(j); if isempty(link.r) || isempty(link.I) || isempty(link.m) error('dynamic parameters (m, r, I) not set in link %d', j); end end % Set debug to: % 0 no messages % 1 display results of forward and backward recursions % 2 display print R and p* debug = 0; if numcols(a1) == 3*n, Q = a1(:,1:n); Qd = a1(:,n+1:2*n); Qdd = a1(:,2*n+1:3*n); np = numrows(Q); if nargin >= 3, grav = a2(:); end if nargin == 4, fext = a3; end else np = numrows(a1); Q = a1; Qd = a2; Qdd = a3; if numcols(a1) ~= n | numcols(Qd) ~= n | numcols(Qdd) ~= n | ... numrows(Qd) ~= np | numrows(Qdd) ~= np, error('bad data'); end if nargin >= 5, grav = a4(:); end if nargin == 6, fext = a5; end end tau = zeros(np,n); for p=1:np, q = Q(p,:)'; qd = Qd(p,:)'; qdd = Qdd(p,:)'; Fm = []; Nm = []; pstarm = []; Rm = []; w = zeros(3,1); wd = zeros(3,1); v = zeros(3,1); vd = grav(:); % % init some variables, compute the link rotation matrices % for j=1:n, link = robot.links(j); Tj = link.A(q(j)); if link.RP == 'R', d = link.d; else d = q(j); end alpha = link.alpha; pstar = [link.a; d*sin(alpha); d*cos(alpha)]; if j == 1, pstar = t2r(robot.base) * pstar; Tj = robot.base * Tj; end pstarm(:,j) = pstar; Rm{j} = t2r(Tj); if debug>1, Rm{j} Pstarm(:,j)' end end % % the forward recursion % for j=1:n, link = robot.links(j); Rt = Rm{j}'; % transpose!! pstar = pstarm(:,j); r = link.r; % % statement order is important here % if link.RP == 'R', % revolute axis wd = Rt*(wd + z0*qdd(j) + ... cross(w,z0*qd(j))); w = Rt*(w + z0*qd(j)); %v = cross(w,pstar) + Rt*v; vd = cross(wd,pstar) + ... cross(w, cross(w,pstar)) +Rt*vd; else % prismatic axis w = Rt*w; wd = Rt*wd; vd = Rt*(z0*qdd(j)+vd) + ... cross(wd,pstar) + ... 2*cross(w,Rt*z0*qd(j)) +... cross(w, cross(w,pstar)); end %whos vhat = cross(wd,r') + ... cross(w,cross(w,r')) + vd; F = link.m*vhat; N = link.I*wd + cross(w,link.I*w); Fm = [Fm F]; Nm = [Nm N]; if debug, fprintf('w: '); fprintf('%.3f ', w) fprintf('\nwd: '); fprintf('%.3f ', wd) fprintf('\nvd: '); fprintf('%.3f ', vd) fprintf('\nvdbar: '); fprintf('%.3f ', vhat) fprintf('\n'); end end % % the backward recursion % fext = fext(:); f = fext(1:3); % force/moments on end of arm nn = fext(4:6); for j=n:-1:1, link = robot.links(j); pstar = pstarm(:,j); % % order of these statements is important, since both % nn and f are functions of previous f. % if j == n, R = eye(3,3); else R = Rm{j+1}; end r = link.r; nn = R*(nn + cross(R'*pstar,f)) + ... cross(pstar+r',Fm(:,j)) + ... Nm(:,j); f = R*f + Fm(:,j); if debug, fprintf('f: '); fprintf('%.3f ', f) fprintf('\nn: '); fprintf('%.3f ', nn) fprintf('\n'); end R = Rm{j}; if link.RP == 'R', % revolute tau(p,j) = nn'*(R'*z0) + ... link.G^2 * link.Jm*qdd(j) + ... abs(link.G) * friction(link, qd(j)); else % prismatic tau(p,j) = f'*(R'*z0) + ... link.G^2 * link.Jm*qdd(j) + ... abs(link.G) * friction(link, qd(j)); end end % this last bit needs work/testing R = Rm{1}; nn = R*(nn); f = R*f; wbase = [f; nn]; end endfunction
github
RobinAmsters/GT_mobile_robotics-master
ikine6s.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/ikine6s.m
6,065
utf_8
4f342a905d0c1a34d604e6fa1ed16df5
%SerialLink.ikine6s Inverse kinematics for 6-axis robot with spherical wrist % % Q = R.ikine6s(T) is the joint coordinates corresponding to the robot % end-effector pose T represented by the homogenenous transform. This % is a analytic solution for a 6-axis robot with a spherical wrist (such as % the Puma 560). % % Q = R.IKINE6S(T, CONFIG) as above but specifies the configuration of the arm in % the form of a string containing one or more of the configuration codes: % % 'l' arm to the left (default) % 'r' arm to the right % 'u' elbow up (default) % 'd' elbow down % 'n' wrist not flipped (default) % 'f' wrist flipped (rotated by 180 deg) % % Notes:: % - The inverse kinematic solution is generally not unique, and % depends on the configuration string. % % Reference:: % % Inverse kinematics for a PUMA 560 based on the equations by Paul and Zhang % From The International Journal of Robotics Research % Vol. 5, No. 2, Summer 1986, p. 32-44 % % % Author:: % Robert Biro with Gary Von McMurray, % GTRI/ATRP/IIMB, % Georgia Institute of Technology % 2/13/95 % % See also SerialLink.FKINE, SerialLink.IKINE. function theta = ikine6s(robot, T, varargin) if robot.n ~= 6, error('Solution only applicable for 6DOF manipulator'); end if robot.mdh ~= 0, error('Solution only applicable for standard DH conventions'); end if ndims(T) == 3, theta = []; for k=1:size(T,3), th = ikine6s(robot, T(:,:,k), varargin{:}); theta = [theta; th]; end return; end L = robot.links; a1 = L(1).a; a2 = L(2).a; a3 = L(3).a; if ~isspherical(robot) error('wrist is not spherical') end d1 = L(1).d; d2 = L(2).d; d3 = L(3).d; d4 = L(4).d; if ~ishomog(T), error('T is not a homog xform'); end % undo base transformation T = inv(robot.base) * T; % The following parameters are extracted from the Homogeneous % Transformation as defined in equation 1, p. 34 Ox = T(1,2); Oy = T(2,2); Oz = T(3,2); Ax = T(1,3); Ay = T(2,3); Az = T(3,3); Px = T(1,4); Py = T(2,4); Pz = T(3,4); % The configuration parameter determines what n1,n2,n4 values are used % and how many solutions are determined which have values of -1 or +1. if nargin < 3, configuration = ''; else configuration = lower(varargin{1}); end % default configuration n1 = -1; % L n2 = -1; % U n4 = -1; % N if ~isempty(findstr(configuration, 'l')), n1 = -1; end if ~isempty(findstr(configuration, 'r')), n1 = 1; end if ~isempty(findstr(configuration, 'u')), if n1 == 1, n2 = 1; else n2 = -1; end end if ~isempty(findstr(configuration, 'd')), if n1 == 1, n2 = -1; else n2 = 1; end end if ~isempty(findstr(configuration, 'n')), n4 = 1; end if ~isempty(findstr(configuration, 'f')), n4 = -1; end % % Solve for theta(1) % % r is defined in equation 38, p. 39. % theta(1) uses equations 40 and 41, p.39, % based on the configuration parameter n1 % r=sqrt(Px^2 + Py^2); if (n1 == 1), theta(1)= atan2(Py,Px) + asin(d3/r); else theta(1)= atan2(Py,Px) + pi - asin(d3/r); end % % Solve for theta(2) % % V114 is defined in equation 43, p.39. % r is defined in equation 47, p.39. % Psi is defined in equation 49, p.40. % theta(2) uses equations 50 and 51, p.40, based on the configuration % parameter n2 % V114= Px*cos(theta(1)) + Py*sin(theta(1)); r=sqrt(V114^2 + Pz^2); Psi = acos((a2^2-d4^2-a3^2+V114^2+Pz^2)/(2.0*a2*r)); if ~isreal(Psi), warning('point not reachable'); theta = [NaN NaN NaN NaN NaN NaN]; return end theta(2) = atan2(Pz,V114) + n2*Psi; % % Solve for theta(3) % % theta(3) uses equation 57, p. 40. % num = cos(theta(2))*V114+sin(theta(2))*Pz-a2; den = cos(theta(2))*Pz - sin(theta(2))*V114; theta(3) = atan2(a3,d4) - atan2(num, den); % % Solve for theta(4) % % V113 is defined in equation 62, p. 41. % V323 is defined in equation 62, p. 41. % V313 is defined in equation 62, p. 41. % theta(4) uses equation 61, p.40, based on the configuration % parameter n4 % V113 = cos(theta(1))*Ax + sin(theta(1))*Ay; V323 = cos(theta(1))*Ay - sin(theta(1))*Ax; V313 = cos(theta(2)+theta(3))*V113 + sin(theta(2)+theta(3))*Az; theta(4) = atan2((n4*V323),(n4*V313)); %[(n4*V323),(n4*V313)] % % Solve for theta(5) % % num is defined in equation 65, p. 41. % den is defined in equation 65, p. 41. % theta(5) uses equation 66, p. 41. % num = -cos(theta(4))*V313 - V323*sin(theta(4)); den = -V113*sin(theta(2)+theta(3)) + Az*cos(theta(2)+theta(3)); theta(5) = atan2(num,den); %[num den] % % Solve for theta(6) % % V112 is defined in equation 69, p. 41. % V122 is defined in equation 69, p. 41. % V312 is defined in equation 69, p. 41. % V332 is defined in equation 69, p. 41. % V412 is defined in equation 69, p. 41. % V432 is defined in equation 69, p. 41. % num is defined in equation 68, p. 41. % den is defined in equation 68, p. 41. % theta(6) uses equation 70, p. 41. % V112 = cos(theta(1))*Ox + sin(theta(1))*Oy; V132 = sin(theta(1))*Ox - cos(theta(1))*Oy; V312 = V112*cos(theta(2)+theta(3)) + Oz*sin(theta(2)+theta(3)); V332 = -V112*sin(theta(2)+theta(3)) + Oz*cos(theta(2)+theta(3)); V412 = V312*cos(theta(4)) - V132*sin(theta(4)); V432 = V312*sin(theta(4)) + V132*cos(theta(4)); num = -V412*cos(theta(5)) - V332*sin(theta(5)); den = - V432; theta(6) = atan2(num,den); % remove the link offset angles for i=1:6 theta(i) = theta(i) - L(i).offset; end
github
RobinAmsters/GT_mobile_robotics-master
jacob0.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/jacob0.m
2,687
utf_8
d4357319844fce3feaea8b842aa504d1
%SerialLink.JACOB0 Jacobian in world coordinates % % J0 = R.jacob0(Q, OPTIONS) is a 6xN Jacobian matrix for the robot in pose Q. % The manipulator Jacobian matrix maps joint velocity to end-effector spatial % velocity V = J0*QD expressed in the world-coordinate frame. % % Options:: % 'rpy' Compute analytical Jacobian with rotation rate in terms of % roll-pitch-yaw angles % 'eul' Compute analytical Jacobian with rotation rates in terms of % Euler angles % 'trans' Return translational submatrix of Jacobian % 'rot' Return rotational submatrix of Jacobian % % Note:: % - the Jacobian is computed in the world frame and transformed to the % end-effector frame. % - the default Jacobian returned is often referred to as the geometric % Jacobian, as opposed to the analytical Jacobian. % % See also SerialLink.jacobn, deltatr, tr2delta. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function J0 = jacob0(robot, q, varargin) opt.rpy = false; opt.eul = false; opt.trans = false; opt.rot = false; opt = tb_optparse(opt, varargin); % % dX_tn = Jn dq % Jn = jacobn(robot, q); % Jacobian from joint to wrist space % % convert to Jacobian in base coordinates % Tn = fkine(robot, q); % end-effector transformation R = t2r(Tn); J0 = [R zeros(3,3); zeros(3,3) R] * Jn; if opt.rpy rpy = tr2rpy( fkine(robot, q) ); B = rpy2jac(rpy); if rcond(B) < eps, error('Representational singularity'); end J0 = blkdiag( eye(3,3), inv(B) ) * J0; elseif opt.eul eul = tr2eul( fkine(robot, q) ); B = eul2jac(eul); if rcond(B) < eps, error('Representational singularity'); end J0 = blkdiag( eye(3,3), inv(B) ) * J0; end if opt.trans J0 = J0(1:3,:); elseif opt.rot J0 = J0(4:6,:); end
github
RobinAmsters/GT_mobile_robotics-master
jacobn.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/jacobn.m
2,285
utf_8
d0a28ea847a72cd2f6438b539ca8bedc
%SerialLink.JACOBN Jacobian in end-effector frame % % JN = R.jacobn(Q, options) is a 6xN Jacobian matrix for the robot in % pose Q. The manipulator Jacobian matrix maps joint velocity to % end-effector spatial velocity V = J0*QD in the end-effector frame. % % Options:: % 'trans' Return translational submatrix of Jacobian % 'rot' Return rotational submatrix of Jacobian % % Notes:: % - this Jacobian is often referred to as the geometric Jacobian % % Reference:: % Paul, Shimano, Mayer, % Differential Kinematic Control Equations for Simple Manipulators, % IEEE SMC 11(6) 1981, % pp. 456-460 % % See also SerialLink.jacob0, delta2tr, tr2delta. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function J = jacobn(robot, q, varargin) opt.trans = false; opt.rot = false; opt = tb_optparse(opt, varargin); n = robot.n; L = robot.links; % get the links J = []; U = robot.tool; for j=n:-1:1, if robot.mdh == 0, % standard DH convention U = L(j).A(q(j)) * U; end if L(j).RP == 'R', % revolute axis d = [ -U(1,1)*U(2,4)+U(2,1)*U(1,4) -U(1,2)*U(2,4)+U(2,2)*U(1,4) -U(1,3)*U(2,4)+U(2,3)*U(1,4)]; delta = U(3,1:3)'; % nz oz az else % prismatic axis d = U(3,1:3)'; % nz oz az delta = zeros(3,1); % 0 0 0 end J = [[d; delta] J]; if robot.mdh ~= 0, % modified DH convention U = L(j).A(q(j)) * U; end end if opt.trans J0 = J0(1:3,:); elseif opt.rot J0 = J0(4:6,:); end
github
RobinAmsters/GT_mobile_robotics-master
subsasgn.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/subsasgn.m
1,764
utf_8
12b197110489a5436b0f9c7d8346641f
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r = subsasgn(r, s, v) if s(1).type ~= '.' error('only .field supported') end switch s(1).subs, case 'links' r.links = v; case 'lineopt', r.lineopt = v; case 'shadowopt', r.shadowopt = v; case 'offset', L = r.links; for i=1:r.n, L(i).offset = v(i); end case 'qlim', if numrows(v) ~= r.n, error('insufficient rows in joint limit matrix'); end L = r.links; for i=1:r.n, L(i).qlim = v(i,:); end case 'q', r.q = v; case 'handle', r.handle = v; case 'plotopt', r.plotopt = v; case 'gravity', r.gravity = v; case 'tool', if ~ishomog(v) error('base must be a homogeneous transform'); end r.tool = v; case 'base', if ~ishomog(v) error('base must be a homogeneous transform'); end r.base = v; case 'name', r.name = v; case 'manufacturer', r.manufacturer = v; case 'comment', r.comment = v; otherwise, error('Unknown method in subsasgn') end
github
RobinAmsters/GT_mobile_robotics-master
isspherical.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/isspherical.m
1,289
utf_8
a8a3dab75cbabe5ce56b5d99f9cbed37
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function v = isspherical(r) %SerialLink.isspherical Test for spherical wrist % % R.isspherical() is true if the robot has a spherical wrist, that is, the % last 3 axes intersect at a point. % % See also SerialLink.ikine6s. L = r.links(end-2:end); v = false; if ~isempty( find( [L(1).a L(2).a L(3).a L(2).d L(3).d] ~= 0 )) return end if (abs(L(1).alpha) == pi/2) & (abs(L(1).alpha + L(2).alpha) < eps) v = true; return; end end
github
RobinAmsters/GT_mobile_robotics-master
islimit.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/islimit.m
1,196
utf_8
10b2f47bd6a9fdbf33da48c014e3bb33
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function v = islimit(r,q) %SerialLink.islimit Joint limit test % % V = R.ISLIMIT(Q) is a vector of boolean values, one per joint, % false (0) if Q(i) is within the joint limits, else true (1). L = r.links; if length(q) ~= r.n error('argument for islimit method is wrong length'); end v = []; for i=1:r.n v = [v; r.links(i).islimit(q(i))]; end end
github
RobinAmsters/GT_mobile_robotics-master
jacob_dot.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/jacob_dot.m
2,601
utf_8
9f2000212bd6bcf04fa5999185dd9fd6
%SerialLink.jacob_dot Hessian in end-effector frame % % JDQ = R.jacob_dot(Q, QD) is the product of the Hessian, derivative of the % Jacobian, and the joint rates. % % Notes:: % - useful for operational space control % - not yet tested/debugged. % % See also: SerialLink.jacob0, diff2tr, tr2diff. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function Jdot = jacob_dot(robot, q, qd) n = robot.n; L = robot.links; % get the links Tj = robot.base; % this is cumulative transform from base w = [0;0;0]; v = [0;0;0]; for j=1:n, link = robot.links(j); Aj = link.A(q(j)); Tj = Tj * Aj; R{j} = t2r(Aj); T{j} = t2r(Tj); p(:,j) = transl(Tj); % origin of link j if j>1, z(:,j) = T{j-1} * [0 0 1]'; % in world frame w = R{j}*( w + z(:,j) * qd(j)); v = v + cross(R{j}*w, R{j-1}*p(:,j)); %v = R{j-1}'*v + cross(w, p(:,j)); %w = R{j-1}'* w + z(:,j) * qd(j); else z(:,j) = [0 0 1]'; v = [0 0 0]'; w = z(:,j) * qd(j); end vel(:,j) = v; % velocity of origin of link j omega(:,j) = w; % omega of link j in link j frame end omega z J = []; Jdot = []; for j=1:n, if j>1, t = p(:,n) - p(:,j-1); td = vel(:,n) - vel(:,j-1); else t = p(:,n); td = vel(:,n); end if L(j).RP == 'R', J_col = [cross(z(:,j), t); z(:,j)]; Jdot_col = [cross(cross(omega(:,j), z(:,j)), t) + cross(z(:,j), td) ; cross(omega(:,j), z(:,j))]; else J_col = [z(:,j); 0;0;0]; Jdot_col = zeros(6,1); end J = [J J_col]; Jdot = [Jdot Jdot_col]; end
github
RobinAmsters/GT_mobile_robotics-master
jtraj.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/jtraj.m
1,770
utf_8
ea27c1029941256bff4d31f4be8b7f73
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function jt = jtraj(r, T1, T2, t, varargin) %SerialLink.jtraj Create joint space trajectory % % Q = R.jtraj(T0, TF, M) is a joint space trajectory where the joint % coordinates reflect motion from end-effector pose T0 to TF in M steps with % default zero boundary conditions for velocity and acceleration. % The trajectory Q is an MxN matrix, with one row per time step, and % one column per joint, where N is the number of robot joints. % % Note:: % - requires solution of inverse kinematics. R.ikine6s() is used if % appropriate, else R.ikine(). Additional trailing arguments to R.jtraj() % are passed as trailing arugments to the these functions. % % See also jtraj, SerialLink.ikine, SerialLink.ikine6s. if isspherical(r) && (r.n == 6) q1 = ikine6s(r, T1, varargin{:}); q2 = ikine6s(r, T2, varargin{:}); else q1 = ikine(r, T1, varargin{:}); q2 = ikine(r, T2, varargin{:}); end jt = jtraj(q1, q2, t); end
github
RobinAmsters/GT_mobile_robotics-master
gravload.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/gravload.m
1,717
utf_8
03a9c9463c5e3f40ba8d40fe8907fffc
%SerialLink.gravload Gravity loading % % TAUG = R.gravload(Q) is the joint gravity loading for the robot in the % joint configuration Q. Gravitational acceleration is a property of the % robot object. % % If Q is a row vector, the result is a row vector of joint torques. If % Q is a matrix, each row is interpreted as a joint configuration vector, % and the result is a matrix each row being the corresponding joint torques. % % TAUG = R.gravload(Q, GRAV) is as above but the gravitational % acceleration vector GRAV is given explicitly. % % See also SerialLink.rne, SerialLink.itorque, SerialLink.coriolis. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function tg = gravload(robot, q, grav) if numcols(q) ~= robot.n error('Insufficient columns in q') end if nargin == 2 tg = rne(robot, q, zeros(size(q)), zeros(size(q))); elseif nargin == 3 tg = rne(robot, q, zeros(size(q)), zeros(size(q)), grav); end
github
RobinAmsters/GT_mobile_robotics-master
char.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/char.m
2,312
utf_8
1d0928dd606e427c1cf624e12f7cd15e
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function s = char(robot) % % S = R.char() is a string representation of the robot parameters. s = ''; for j=1:length(robot) r = robot(j); % informational line if r.mdh convention = 'modDH'; else convention = 'stdDH'; end s = sprintf('%s (%d axis, %s, %s)', r.name, r.n, config(r), convention); % comment and other info line = ''; if ~isempty(r.manufacturer) line = strcat(line, sprintf(' %s;', r.manufacturer)); end if ~isempty(r.comment) line = strcat(line, sprintf(' %s;', r.comment)); end s = strvcat(s, line); % link parameters s = strvcat(s, '+---+-----------+-----------+-----------+-----------+'); s = strvcat(s, '| j | theta | d | a | alpha |'); s = strvcat(s, '+---+-----------+-----------+-----------+-----------+'); s = strvcat(s, char(r.links, true)); s = strvcat(s, '+---+-----------+-----------+-----------+-----------+'); % gravity, base, tool s_grav = horzcat(strvcat('grav = ', ' ', ' '), num2str(r.gravity)); s_grav = strvcat(s_grav, " "); s_base = horzcat(strvcat(" base = ",' ',' ', ' '),num2str(r.base)); s_tool = horzcat(strvcat(' tool = ',' ',' ', ' '), num2str(r.tool)); line = horzcat(s_grav, s_base, s_tool); s = strvcat(s, ' ', line); if j ~= length(robot) s = strvcat(s, ' '); end end endfunction function v = config(r) v = ''; for i=1:r.n v(i) = r.links(i).RP; end end
github
RobinAmsters/GT_mobile_robotics-master
friction.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/friction.m
1,264
utf_8
324caf1538af019255ff9332591ec174
%SerialLink.friction Friction force % % TAU = R.friction(QD) is the vector of joint friction forces/torques for the % robot moving with joint velocities QD. % % The friction model includes viscous friction (linear with velocity) % and Coulomb friction (proportional to sign(QD)). % % See also Link.friction. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function tau = friction(robot, qd) L = robot.links; for i=1:robot.n, tau(i) = friction(L(i), qd(i)); end
github
RobinAmsters/GT_mobile_robotics-master
ikine.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/ikine.m
4,504
utf_8
391a739d99e22dd779dd9fb68317af08
%SerialLink.IKINE Inverse manipulator kinematics % % Q = R.ikine(T) is the joint coordinates corresponding to the robot % end-effector pose T which is a homogenenous transform. % % Q = R.ikine(T, Q0, OPTIONS) specifies the initial estimate of the joint % coordinates. % % Q = R.ikine(T, Q0, M, OPTIONS) specifies the initial estimate of the joint % coordinates and a mask matrix. For the case where the manipulator % has fewer than 6 DOF the solution space has more dimensions than can % be spanned by the manipulator joint coordinates. In this case % the mask matrix M specifies the Cartesian DOF (in the wrist coordinate % frame) that will be ignored in reaching a solution. The mask matrix % has six elements that correspond to translation in X, Y and Z, and rotation % about X, Y and Z respectively. The value should be 0 (for ignore) or 1. % The number of non-zero elements should equal the number of manipulator DOF. % % For example when using a 5 DOF manipulator rotation about the wrist z-axis % might be unimportant in which case M = [1 1 1 1 1 0]. % % In all cases if T is 4x4xM it is taken as a homogeneous transform sequence % and R.ikine() returns the joint coordinates corresponding to each of the % transforms in the sequence. Q is MxN where N is the number of robot joints. % The initial estimate of Q for each time step is taken as the solution % from the previous time step. % % Options:: % % Notes:: % - Solution is computed iteratively using the pseudo-inverse of the % manipulator Jacobian. % - The inverse kinematic solution is generally not unique, and % depends on the initial guess Q0 (defaults to 0). % - Such a solution is completely general, though much less efficient % than specific inverse kinematic solutions derived symbolically. % - This approach allows a solution to obtained at a singularity, but % the joint angles within the null space are arbitrarily assigned. % % See also SerialLink.fkine, tr2delta, SerialLink.jacob0, SerialLink.ikine6s. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function qt = ikine(robot, tr, varargin) % set default parameters for solution opt.ilimit = 100; opt.tol = 1e-6; opt.alpha = 1; opt.plot = false; opt.pinv = false; [opt,args] = tb_optparse(opt, varargin); n = robot.n; % robot.ikine(tr, q) if length(args) > 0 q = args{1}; if isempty(q) q = zeros(1, n); else q = q(:)'; end else q = zeros(1, n); end % robot.ikine(tr, q, m) if length(args) > 1 m = args{2}; m = m(:); if numel(m) ~= 6 error('Mask matrix should have 6 elements'); end if numel(find(m)) ~= robot.n error('Mask matrix must have same number of 1s as robot DOF') end else if n < 6 error('For a manipulator with fewer than 6DOF a mask matrix argument must be specified'); end m = ones(6, 1); end % make this a logical array so we can index with it m = logical(m); npoints = size(tr,3); % number of points qt = zeros(npoints, n); % preallocate space for results tcount = 0; % total iteration count eprev = Inf; save.e = Inf; save.q = []; history = []; for i=1:npoints T = tr(:,:,i); nm = Inf; count = 0; optim = optimset('Display', 'iter', 'TolX', 0, 'TolFun', opt.tol, 'MaxIter', opt.ilimit); optim q = fminsearch(@(x) ikinefunc(x, T, robot, m), q, optim); end qt = q; end function E = ikinefunc(q, T, robot, m) e = tr2delta(fkine(robot, q'), T); E = norm(e(m)); end
github
RobinAmsters/GT_mobile_robotics-master
nofriction.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/nofriction.m
1,537
utf_8
703f45d87978f4e206b0b491525168f5
%SerialLink.nofriction Remove friction % % RNF = R.nofriction() is a robot object with the same parameters as R but % with non-linear (Couolmb) friction coefficients set to zero. % % RNF = R.nofriction('all') as above but all friction coefficients set to zero. % % Notes: % - Non-linear (Coulomb) friction can cause numerical problems when integrating % the equations of motion (R.fdyn). % - The resulting robot object has its name string modified by prepending 'NF/'. % % See also SerialLink.fdyn, Link.nofriction. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r2 = nofriction(r, varargin) r2 = SerialLink(r); % make a copy for j=1:r2.n, r2.links(j) = r.links(j).nofriction(varargin{:}); end r2.name = ['NF/' r.name];
github
RobinAmsters/GT_mobile_robotics-master
subsref.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/subsref.m
3,987
utf_8
278306b42a8ab93fa47e1b7062d8fa9f
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function [v, a, b] = subsref(r, s) if s(1).type ~= '.' %error('only .field supported') end % NOTE WELL: the following code can't use getfield() since % getfield() uses this, and Matlab will crash!! el = char(s(1).subs); switch el, %------------------------------------------------------------------------------------- % External Functions case 'fkine', q = s(2).subs; v = fkine(r,q{:}); case 'ikine6s', q = s(2).subs; v = ikine6s(r,q{:}); case 'ikine', q = s(2).subs; v = ikine(r,q{:}); case 'maniplty', q = s(2).subs; [v, a] = maniplty(r,q{:}); case 'rne' q = s(2).subs; [v, a] = rne(r,q{:}); case 'isspherical', v = isspherical(r); case 'gravload' q = s(2).subs; v = gravload(r,q{:}); case 'inertia' q = s(2).subs; v = inertia(r,q{:}); case 'cinertia', q = s(2).subs; v = cinertia(r,q{:}); case 'coriolis' q = s(2).subs; v = coriolis(r,q{:}); case 'friction' q = s(2).subs; v = friction(r,q{:}); case 'nofriction' if numel(s(2).subs) < 1 v = nofriction(r); else q = s(2).subs; v = nofriction(r,q{:}); end case 'islimit', q = s(2).subs; v = islimit(r,q{:}); case 'payload', q = s(2).subs; l = r.links; l(r.n).m = q{1}; l(r.n).r = q{2}; r.links = l; v = SerialLink(r); case 'jacob0', q = s(2).subs; v = jacob0(r,q{:}); case 'accel', q = s(2).subs; v = accel(r,q{:}); case 'plot', q = s(2).subs; plot(r,q{:}) case 'fdyn', q = s(2).subs; [v, a, b] = fdyn(r,q{:}); case 'jacobn', q = s(2).subs; v = jacobn(r,q{:}); case 'jtraj', q = s(2).subs; v = jtraj(r,q{:}); case 'perturb', q = s(2).subs; v = perturb(r,q{:}); case 'itorque', q = s(2).subs; v = itorque(r,q{:}); case 'jacob_dot', q = s(2).subs; v = jacob_dot(r,q{:}); case 'dyn', q = s(2).subs; v = dyn(r,q{:}); case 'showlink', q = s(2).subs; v = showlink(r,q{:}); %------------------------------------------------------------------------------------- case 'links', if length(s) == 1, v = r.links; elseif length(s) == 2, if s(2).type == '()' j = s(2).subs; j = j{:}; if (j < 1) | (j > r.n) error('link index out of bounds') end end v = r.links(j); elseif length(s) >= 3, if s(2).type == '()' j = s(2).subs; j = j{:}; if (j < 1) | (j > r.n) error('link index out of bounds') end end if s(3).subs = 'dyn', link = r.links(j); v = link.dyn(); end end case 'offset', L = r.links; v = []; for i=1:r.n, v = [v; L(i).offset]; end case 'qlim', L = r.links; v = []; for i=1:r.n, v = [v; L(i).qlim]; end case 'n', v = r.n; case 'name', v = r.name; case 'dh', v = rdh(r); case 'dyn' v = rdyn(r); case 'gravity' v = r.gravity; case 'tool' v = r.tool; case 'base' v = r.base; case 'mdh', v = r.mdh; case 'q', v = r.q; case 'plotopt', v = r.plotopt; case 'lineopt' v = r.lineopt; case 'shadowopt' v = r.shadowopt; case {'show', 'handle'} v = r.handle'; otherwise, error('Unknown method in subsref') end
github
RobinAmsters/GT_mobile_robotics-master
coriolis.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/coriolis.m
3,406
utf_8
752fc02f5d2bb2dafac400185d4ff702
%SerialLink.coriolis Coriolis matrix % % C = R.CORIOLIS(Q, QD) is the NxN Coriolis/centripetal matrix for % the robot in configuration Q and velocity QD, where N is the number of % joints. The product C*QD is the vector of joint force/torque due to velocity % coupling. The diagonal elements are due to centripetal effects and the % off-diagonal elements are due to Coriolis effects. This matrix is also % known as the velocity coupling matrix, since gives the disturbance forces % on all joints due to velocity of any joint. % % If Q and QD are matrices (DxN), each row is interpretted as a joint state % vector, and the result (NxNxD) is a 3d-matrix where each plane corresponds % to a row of Q and QD. % % Notes:: % - joint friction is also a joint force proportional to velocity but it is % eliminated in the computation of this value. % - computationally slow, involves N^2/2 invocations of RNE. % % See also SerialLink.rne. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function C = coriolis(robot, q, qd) if numcols(q) ~= robot.n error('q must have %d columns', robot.n); end if numcols(qd) ~= robot.n error('qd must have %d columns', robot.n); end % we need to create a clone robot with no friciton, since friction % is also proportional to joint velocity robot2 = nofriction(robot,'all'); if numrows(q) > 1 if numrows(q) ~= numrows(qd) error('for trajectory q and qd must have same number of rows'); end C = []; for i=1:numrows(q) C = cat(3, C, robot2.coriolis(q(i,:), qd(i,:))); end return end N = robot2.n; C = zeros(N,N); Csq = zeros(N,N); % find the torques that depend on a single finite joint speed, % these are due to the squared (centripetal) terms % % set QD = [1 0 0 ...] then resulting torque is due to qd_1^2 for j=1:N QD = zeros(1,N); QD(j) = 1; tau = rne(robot2,q, QD, zeros(size(q)), [0 0 0]'); Csq(:,j) = Csq(:,j) + tau'; end % find the torques that depend on a pair of finite joint speeds, % these are due to the product (Coridolis) terms % set QD = [1 1 0 ...] then resulting torque is due to % qd_1 qd_2 + qd_1^2 + qd_2^2 for j=1:N for k=j+1:N % find a product term qd_j * qd_k QD = zeros(1,N); QD(j) = 1; QD(k) = 1; tau = rne(robot2,q, QD, zeros(size(q)), [0 0 0]'); C(:,k) = C(:,k) + (tau' - Csq(:,k) - Csq(:,j)) * qd(j); end end C = C + Csq * diag(qd);
github
RobinAmsters/GT_mobile_robotics-master
accel.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/accel.m
2,889
utf_8
4cab37c2a136ea9cb47620898bafff08
%SerialLink.accel Manipulator forward dynamics % % QDD = R.accel(Q, QD, TORQUE) is a vector (Nx1) of joint accelerations that result % from applying the actuator force/torque to the manipulator robot in state Q and QD. % If Q, QD, TORQUE are matrices with M rows, then QDD is a matrix with M rows % of acceleration corresponding to the equivalent rows of Q, QD, TORQUE. % % QDD = R.ACCEL(X) as above but X=[Q,QD,TORQUE]. % % Note:: % - Uses the method 1 of Walker and Orin to compute the forward dynamics. % - This form is useful for simulation of manipulator dynamics, in % conjunction with a numerical integration function. % % See also SerialLink.rne, SerialLink, ode45. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function qdd = accel(robot, Q, qd, torque) if numcols(Q) ~= robot.n error('q must have %d columns', robot.n); end if numcols(qd) ~= robot.n error('qd must have %d columns', robot.n); end if numcols(torque) ~= robot.n error('torque must have %d columns', robot.n); end if numrows(Q) > 1 if numrows(Q) ~= numrows(qd) error('for trajectory q and qd must have same number of rows'); end if numrows(Q) ~= numrows(torque) error('for trajectory q and torque must have same number of rows'); end qdd = []; for i=1:numrows(Q) qdd = cat(1, qdd, robot.accel(Q(i,:), qd(i,:), torque(i,:))'); end return end n = robot.n; if nargin == 2 % accel(X) q = Q(1:n); qd = Q(n+1:2*n); torque = Q(2*n+1:3*n); else % accel(Q, qd, torque) q = Q; if length(q) == robot.n, q = q(:); qd = qd(:); end end % compute current manipulator inertia % torques resulting from unit acceleration of each joint with % no gravity. M = rne(robot, ones(n,1)*q', zeros(n,n), eye(n), [0;0;0]); % compute gravity and coriolis torque % torques resulting from zero acceleration at given velocity & % with gravity acting. tau = rne(robot, q', qd', zeros(1,n)); qdd = inv(M) * (torque(:) - tau');
github
RobinAmsters/GT_mobile_robotics-master
itorque.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/itorque.m
1,522
utf_8
cc3d52dd02430ec8e7e51b019dd6000a
%SerialLink.itorque Inertia torque % % TAUI = R.itorque(Q, QDD) is the inertia force/torque N-vector at the specified % joint configuration Q and acceleration QDD, that is, TAUI = INERTIA(Q)*QDD. % % If Q and QDD are row vectors, the result is a row vector of joint torques. % If Q and QDD are matrices, each row is interpretted as a joint state % vector, and the result is a matrix each row being the corresponding joint % torques. % % Note:: % - If the robot model contains non-zero motor inertia then this will % included in the result. % % See also SerialLink.rne, SerialLink.inertia. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function it = itorque(robot, q, qdd) it = rne(robot, q, zeros(size(q)), qdd, [0;0;0]);
github
RobinAmsters/GT_mobile_robotics-master
rne_mdh.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/rne_mdh.m
4,445
utf_8
336e755459929378f84bea818a23b08b
%SERIALLINK.RNE_MDH Compute inverse dynamics via recursive Newton-Euler formulation % % Recursive Newton-Euler for modified Denavit-Hartenberg notation. Is invoked by % R.RNE(). % % See also SERIALLINK.RNE. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function tau = rne_mdh(robot, a1, a2, a3, a4, a5) z0 = [0;0;1]; grav = robot.gravity; % default gravity from the object fext = zeros(6, 1); % Set debug to: % 0 no messages % 1 display results of forward and backward recursions % 2 display print R and p* debug = 0; n = robot.n; if numcols(a1) == 3*n, Q = a1(:,1:n); Qd = a1(:,n+1:2*n); Qdd = a1(:,2*n+1:3*n); np = numrows(Q); if nargin >= 3, grav = a2(:); end if nargin == 4, fext = a3; end else np = numrows(a1); Q = a1; Qd = a2; Qdd = a3; if numcols(a1) ~= n | numcols(Qd) ~= n | numcols(Qdd) ~= n | ... numrows(Qd) ~= np | numrows(Qdd) ~= np, error('bad data'); end if nargin >= 5, grav = a4(:); end if nargin == 6, fext = a5; end end tau = zeros(np,n); for p=1:np, q = Q(p,:)'; qd = Qd(p,:)'; qdd = Qdd(p,:)'; Fm = []; Nm = []; pstarm = []; Rm = []; w = zeros(3,1); wd = zeros(3,1); v = zeros(3,1); vd = grav(:); % % init some variables, compute the link rotation matrices % for j=1:n, link = robot.link{j}; Tj = link(q(j)); if link.RP == 'R', D = link.D; else D = q(j); end alpha = link.alpha; pm = [link.A; -D*sin(alpha); D*cos(alpha)]; % (i-1) P i if j == 1, pm = t2r(robot.base) * pm; Tj = robot.base * Tj; end Pm(:,j) = pm; Rm{j} = t2r(Tj); if debug>1, Rm{j} Pm(:,j)' end end % % the forward recursion % for j=1:n, link = robot.link{j}; R = Rm{j}'; % transpose!! P = Pm(:,j); Pc = link.r; % % trailing underscore means new value % if link.RP == 'R', % revolute axis w_ = R*w + z0*qd(j); wd_ = R*wd + cross(R*w,z0*qd(j)) + z0*qdd(j); %v = cross(w,P) + R*v; vd_ = R * (cross(wd,P) + ... cross(w, cross(w,P)) + vd); else % prismatic axis w_ = R*w; wd_ = R*wd; %v = R*(z0*qd(j) + v) + cross(w,P); vd_ = R*(cross(wd,P) + ... cross(w, cross(w,P)) + vd ... ) + 2*cross(R*w,z0*qd(j)) + z0*qdd(j); end % update variables w = w_; wd = wd_; vd = vd_; vdC = cross(wd,Pc) + ... cross(w,cross(w,Pc)) + vd; F = link.m*vdC; N = link.I*wd + cross(w,link.I*w); Fm = [Fm F]; Nm = [Nm N]; if debug, fprintf('w: '); fprintf('%.3f ', w) fprintf('\nwd: '); fprintf('%.3f ', wd) fprintf('\nvd: '); fprintf('%.3f ', vd) fprintf('\nvdbar: '); fprintf('%.3f ', vdC) fprintf('\n'); end end % % the backward recursion % fext = fext(:); f = fext(1:3); % force/moments on end of arm nn = fext(4:6); for j=n:-1:1, % % order of these statements is important, since both % nn and f are functions of previous f. % link = robot.link{j}; if j == n, R = eye(3,3); P = [0;0;0]; else R = Rm{j+1}; P = Pm(:,j+1); % i/P/(i+1) end Pc = link.r; f_ = R*f + Fm(:,j); nn_ = Nm(:,j) + R*nn + cross(Pc,Fm(:,j)) + ... cross(P,R*f); f = f_; nn = nn_; if debug, fprintf('f: '); fprintf('%.3f ', f) fprintf('\nn: '); fprintf('%.3f ', nn) fprintf('\n'); end if link.RP == 'R', % revolute tau(p,j) = nn'*z0 + ... link.G^2 * link.Jm*qdd(j) + ... abs(link.G) * friction(link, qd(j)); else % prismatic tau(p,j) = f'*z0 + ... link.G^2 * link.Jm*qdd(j) + ... abs(link.G) * friction(link, qd(j)); end end end
github
RobinAmsters/GT_mobile_robotics-master
mtimes.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/mtimes.m
1,843
utf_8
6c52eb4cccc6f967d5e7786b9ed721e1
% robot objects can be multiplied r1*r2 which is mechanically equivalent % to mounting robot r2 on the end of robot r1. % % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r2 = mtimes(r, l) %SerialLink.mtimes Join robots % % R = R1 * R2 is a robot object that is equivalent to mounting robot R2 % on the end of robot R1. if isa(l, 'SerialLink') r2 = SerialLink(r); x = r2.links; for i = 1:length(x) new_links(i) = Link(x(i)); end y = l.links; for i = 1:length(y) new_links(i + length(x)) = Link(y(i)); end r2.links = new_links; r2.base = r.base; r2.n = length(r2.links); elseif isa(l, 'Link') r2 = SerialLink(r); x = r2.links; for i = 1:length(x) new_links(i) = Link(x(i)); end for i = 1:length(l) new_links(i + length(x)) = Link(l(i)); end r2.links = new_links; r2.n = length(r2.links); end end
github
RobinAmsters/GT_mobile_robotics-master
perturb.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/perturb.m
1,687
utf_8
021a5522f737b29a05c4b03005bcd14c
%SerialLink.perturb Perturb robot parameters % % RP = R.perturb(P) is a new robot object in which the dynamic parameters (link % mass and inertia) have been perturbed. The perturbation is multiplicative so % that values are multiplied by random numbers in the interval (1-P) to (1+P). % The name string of the perturbed robot is prefixed by 'P/'. % % Useful for investigating the robustness of various model-based control % schemes. For example to vary parameters in the range +/- 10 percent is: % r2 = p560.perturb(0.1); % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function r2 = perturb(r, p) if nargin == 1, p = 0.1; % 10 percent disturb by default end for i=1:r.n, l2(i) = r.links(i); s = (2*rand-1)*p + 1; l2(i).m = l2(i).m * s; s = (2*rand-1)*p + 1; l2(i).I = l2(i).I * s; end % clone the robot r2 = SerialLink(r); r2.links = l2; r2.name = ['P/' r.name];
github
RobinAmsters/GT_mobile_robotics-master
cinertia.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/cinertia.m
1,262
utf_8
4b7612402dafd0f93bce5f1d520ee65f
%SerialLink.cinertia Cartesian inertia matrix % % M = R.cinertia(Q) is the NxN Cartesian (operational space) inertia matrix which relates % Cartesian force/torque to Cartesian acceleration at the joint configuration Q, and N % is the number of robot joints. % % See also SerialLink.inertia, SerialLink.rne. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function Mx = cinertia(robot, q) J = jacob0(robot, q); Ji = inv(J); M = inertia(robot, q); Mx = Ji' * M * Ji;
github
RobinAmsters/GT_mobile_robotics-master
fkine.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/fkine.m
2,043
utf_8
8ed8bfe464ffe53e36fe550ac805285e
%SerialLink.fkine Forward kinematics % % T = R.fkine(Q) is the pose of the robot end-effector as a homogeneous % transformation for the joint configuration Q. For an N-axis manipulator % Q is an N-vector. % % If Q is a matrix, the M rows are interpretted as the generalized % joint coordinates for a sequence of points along a trajectory. Q(i,j) is % the j'th joint parameter for the i'th trajectory point. In this case % it returns a 4x4xM matrix where the last subscript is the index % along the path. % % Note:: % - The robot's base or tool transform, if present, are incorporated into the % result. % % See also SerialLink.ikine, SerialLink.ikine6s. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function t = fkine(robot, q) % % evaluate fkine for each point on a trajectory of % theta_i or q_i data % n = robot.n; L = robot.links; if numel(q) == n t = robot.base; for i=1:n t = t * L(i).A(q(i)); end t = t * robot.tool; else if numcols(q) ~= n error('q must have %d columns', n) end t = zeros(4,4,0); for qv=q', % for each trajectory point tt = robot.base; for i=1:n tt = tt * L(i).A(qv(i)); end t = cat(3, t, tt * robot.tool); end end %robot.T = t; %robot.notify('Moved');
github
RobinAmsters/GT_mobile_robotics-master
rne.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/rne.m
2,475
utf_8
02a4a285327714868d309bb0a561c56a
%SerialLink.rne Inverse dynamics % % TAU = R.rne(Q, QD, QDD) is the joint torque required for the robot R % to achieve the specified joint position Q, velocity QD and acceleration QDD. % % TAU = R.rne(Q, QD, QDD, GRAV) as above but overriding the gravitational % acceleration vector in the robot object R. % % TAU = R.rne(Q, QD, QDD, GRAV, FEXT) as above but specifying a wrench % acting on the end of the manipulator which is a 6-vector [Fx Fy Fz Mx My Mz]. % % TAU = R.rne(X) as above where X=[Q,QD,QDD]. % % TAU = R.rne(X, GRAV) as above but overriding the gravitational % acceleration vector in the robot object R. % % TAU = R.rne(X, GRAV, FEXT) as above but specifying a wrench % acting on the end of the manipulator which is a 6-vector [Fx Fy Fz Mx My Mz]. % % If Q,QD and QDD, or X are matrices with M rows representing a trajectory then % TAU is an MxN matrix with rows corresponding to each trajectory state. % % Notes: % - The robot base transform is ignored % - The torque computed also contains a contribution due to armature % inertia. % - RNE can be either an M-file or a MEX-file. See the manual for details on % how to configure the MEX-file. The M-file is a wrapper which calls either % RNE_DH or RNE_MDH depending on the kinematic conventions used by the robot % object. % % See also SerialLink.accel, SerialLink.gravload, SerialLink.inertia. % TODO: % should use tb_optparse % % verified against MAPLE code, which is verified by examples % % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function [tau,f] = rne(robot, varargin) if robot.mdh == 0, [tau,f] = rne_dh(robot, varargin{:}); else tau = rne_mdh(robot, varargin{:}); end endfunction
github
RobinAmsters/GT_mobile_robotics-master
teach.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/teach.m
10,728
utf_8
47647b268a77098aa9ff5d1fa3f5dda0
%SerialLink.teach Graphical teach pendant % % R.teach() drive a graphical robot by means of a graphical slider panel. % If no graphical robot exists one is created in a new window. Otherwise % all current instanes of the graphical robots are driven. % % R.teach(Q) specifies the initial joint angle, otherwise it is taken from % one of the existing graphical robots. % % See also SerialLink.plot. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com %% TODO: %% make the sliders change the animation while moving %% http://www.mathworks.com/matlabcentral/newsreader/view_thread/159374 %% 1. download FINDJOBJ from the file exchange: http://www.mathworks.com/matlabcentral/fileexchange/14317 %% 2. hSlider = uicontrol('style','slider', ...); %create the slider, get its Matlab handle %% 3. jSlider = findjobj(hSlider,'nomenu'); %get handle of the underlying java object %% 4. jSlider.AdjustmentValueChangedCallback = @myMatlabFunction; %set callback %% %% Note: you can also use the familiar format: %% set(jSlider,'AdjustmentValueChangedCallback',@myMatlabFunction) %% %% Feel free to explore many other properties (and ~30 callbacks) %% available in jSlider but not in its Matlab front-end interface hSlider. %% %% Warning: FINDJOBJ relies on undocumented and unsupported Matlab/Java %% functionality. function teach(r, varargin) bgcol = [135 206 250]/255; opt.degrees = false; opt.q0 = []; % TODO: options for rpy, or eul angle display opt = tb_optparse(opt, varargin); % drivebot(r, q) % drivebot(r, 'deg') scale = ones(r.n,1); n = r.n; width = 300; height = 40; minVal = -pi; maxVal = pi; qlim = r.qlim; if isempty(qlim) qlim = [minVal*ones(r.n,1) maxVal*ones(r.n,1)]; end if isempty(opt.q0) q = zeros(1,n); else q = opt.q0; end % set up scale factor scale = []; for L=r.links if opt.degrees && L.revolute scale = [scale 180/pi]; else scale = [scale 1]; end end T6 = r.fkine(q); fig = figure('Units', 'pixels', ... 'Position', [0 -height width height*(n+2)+20], ... 'Color', bgcol); set(fig,'MenuBar','none') delete( get(fig, 'Children') ) % first we check to see if there are any graphical robots of % this name, if so we use them, otherwise create a robot plot. rh = findobj('Tag', r.name); % attempt to get current joint config of graphical robot if ~isempty(rh) rr = get(rh(1), 'UserData'); if ~isempty(rr.q) q = rr.q; end end % now make the sliders for i=1:n % slider label uicontrol(fig, 'Style', 'text', ... 'Units', 'pixels', ... 'BackgroundColor', bgcol, ... 'Position', [0 height*(n-i)+20 width*0.1 height*0.4], ... 'String', sprintf('q%d', i)); % slider itself q(i) = max( qlim(i,1), min( qlim(i,2), q(i) ) ); % clip to range h(i) = uicontrol(fig, 'Style', 'slider', ... 'Units', 'pixels', ... 'Position', [width*0.1 height*(n-i)+20 width*0.7 height*0.4], ... 'Min', scale(i)*qlim(i,1), ... 'Max', scale(i)*qlim(i,2), ... 'Value', scale(i)*q(i), ... 'Tag', sprintf('Slider%d', i), ... 'Callback', @(src,event)teach_callback(r.name, i)); % if findjobj exists use it, since it lets us get continous callbacks while % a slider moves if exist('findjobj') && ~ispc drawnow jh = findjobj(h(i),'nomenu'); jh.AdjustmentValueChangedCallback = {@sliderCallbackFunc, r.name, i}; end % text box showing slider value, also editable h2(i) = uicontrol(fig, 'Style', 'edit', ... 'Units', 'pixels', ... 'Position', [width*0.8 height*(n-i-0.1)+20 width*0.2 height*0.7], ... 'String', num2str(scale(i)*q(i)), ... 'Tag', sprintf('Edit%d', i), ... 'Callback', @(src,event)teach_callback(r.name, i)); % hang handles off the slider and edit objects handles = {h(i) h2(i) scale}; set(h(i), 'Userdata', handles); set(h2(i), 'Userdata', handles); end % robot name text box uicontrol(fig, 'Style', 'text', ... 'Units', 'pixels', ... 'FontSize', 20, ... 'HorizontalAlignment', 'left', ... 'Position', [0 height*(n+1.2)+20 0.8*width 0.8*height], ... 'BackgroundColor', 'white', ... 'String', r.name); % X uicontrol(fig, 'Style', 'text', ... 'Units', 'pixels', ... 'BackgroundColor', bgcol, ... 'Position', [0 height*(n+0.5)+20 0.06*width height/2], ... 'BackgroundColor', 'yellow', ... 'FontSize', 10, ... 'HorizontalAlignment', 'right', ... 'String', 'x:'); h3(1,1) = uicontrol(fig, 'Style', 'edit', ... 'Units', 'pixels', ... 'Position', [0.06*width height*(n+0.5)+20 width*0.2 height*0.6], ... 'String', sprintf('%.3f', T6(1,4)), ... 'Tag', 'T6'); % Y uicontrol(fig, 'Style', 'text', ... 'Units', 'pixels', ... 'BackgroundColor', bgcol, ... 'Position', [0.26*width height*(n+0.5)+20 0.06*width height/2], ... 'BackgroundColor', 'yellow', ... 'FontSize', 10, ... 'HorizontalAlignment', 'right', ... 'String', 'y:'); h3(2,1) = uicontrol(fig, 'Style', 'edit', ... 'Units', 'pixels', ... 'Position', [0.32*width height*(n+0.5)+20 width*0.2 height*0.6], ... 'String', sprintf('%.3f', T6(2,4))); % Z uicontrol(fig, 'Style', 'text', ... 'Units', 'pixels', ... 'BackgroundColor', bgcol, ... 'Position', [0.52*width height*(n+0.5)+20 0.06*width height/2], ... 'BackgroundColor', 'yellow', ... 'FontSize', 10, ... 'HorizontalAlignment', 'right', ... 'String', 'z:'); h3(3,1) = uicontrol(fig, 'Style', 'edit', ... 'Units', 'pixels', ... 'Position', [0.58*width height*(n+0.5)+20 width*0.2 height*0.6], ... 'String', sprintf('%.3f', T6(3,4))); % AX uicontrol(fig, 'Style', 'text', ... 'Units', 'pixels', ... 'BackgroundColor', bgcol, ... 'Position', [0 height*(n)+20 0.06*width height/2], ... 'BackgroundColor', 'yellow', ... 'FontSize', 10, ... 'HorizontalAlignment', 'right', ... 'String', 'ax:'); h3(1,2) = uicontrol(fig, 'Style', 'edit', ... 'Units', 'pixels', ... 'Position', [0.06*width height*(n)+20 width*0.2 height*0.6], ... 'String', sprintf('%.3f', T6(1,3))); % AY uicontrol(fig, 'Style', 'text', ... 'Units', 'pixels', ... 'BackgroundColor', bgcol, ... 'Position', [0.26*width height*(n)+20 0.06*width height/2], ... 'BackgroundColor', 'yellow', ... 'FontSize', 10, ... 'HorizontalAlignment', 'right', ... 'String', 'ay:'); h3(2,2) = uicontrol(fig, 'Style', 'edit', ... 'Units', 'pixels', ... 'Position', [0.32*width height*(n)+20 width*0.2 height*0.6], ... 'String', sprintf('%.3f', T6(2,3))); % AZ uicontrol(fig, 'Style', 'text', ... 'Units', 'pixels', ... 'BackgroundColor', bgcol, ... 'Position', [0.52*width height*(n)+20 0.06*width height/2], ... 'BackgroundColor', 'yellow', ... 'FontSize', 10, ... 'HorizontalAlignment', 'right', ... 'String', 'az:'); h3(3,2) = uicontrol(fig, 'Style', 'edit', ... 'Units', 'pixels', ... 'Position', [0.58*width height*(n)+20 width*0.2 height*0.6], ... 'String', sprintf('%.3f', T6(3,3))); set(h3(1,1), 'Userdata', h3); uicontrol(fig, 'Style', 'pushbutton', ... 'Units', 'pixels', ... 'FontSize', 16, ... 'Position', [0.8*width height*n+20 0.2*width 2*height], ... 'CallBack', 'delete(gcf)', ... 'BackgroundColor', 'red', ... 'String', 'Quit'); if isempty(rh) figure r.plot(q); end end function teach_callback(a, b) % called on changes to a slider or to the edit box showing joint coordinate % teach_callback(robot name, joint index) name = a; % name of the robot j = b; % joint index % find all graphical objects tagged with the robot name, this is the % instancs of that robot across all figures rh = findobj('Tag', name); % get the handles {slider, textbox, scale factor} handles = get(gcbo, 'Userdata'); scale = handles{3}; for r=rh' % for every graphical robot instance robot = get(r, 'UserData'); % get the robot object q = robot.q; % get its current joint angles if isempty(q) q = zeros(1,robot.n); end if gcbo == handles{1} % get value from slider q(j) = get(gcbo, 'Value') / scale(j); set(handles{2}, 'String', num2str(scale(j)*q(j))); elseif gcbo == handles{2} % get value from text box q(j) = str2num(get(gcbo, 'String')) / scale(j); set(handles{1}, 'Value', q(j)); else warning('shouldnt happen'); end robot.q = q; set(r, 'UserData', robot); robot.plot(q) end % compute and display the T6 pose T6 = robot.fkine(q); h3 = get(findobj('Tag', 'T6'), 'UserData'); for i=1:3 set(h3(i,1), 'String', sprintf('%.3f', T6(i,4))); set(h3(i,2), 'String', sprintf('%.3f', T6(i,3))); end robot.T = T6; robot.notify('Moved'); drawnow end function sliderCallbackFunc(src, ev, name, joint) if get(src,'ValueIsAdjusting') == 1 try teach_callback(name, joint); drawnow catch return end end end
github
RobinAmsters/GT_mobile_robotics-master
maniplty.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/maniplty.m
3,592
utf_8
db86403e6ccb78655d8feed3f696f702
%SerialLink.MANIPLTY Manipulability measure % % M = R.maniplty(Q, OPTIONS) is the manipulability index measure for the robot % at the joint configuration Q. It indicates dexterity, how isotropic the % robot's motion is with respect to the 6 degrees of Cartesian motion. % The measure is low when the manipulator is close to a singularity. % If Q is a matrix M is a column vector of manipulability % indices for each pose specified by a row of Q. % % Two measures can be selected: % - Yoshikawa's manipulability measure is based on the shape of the velocity % ellipsoid and depends only on kinematic parameters. % - Asada's manipulability measure is based on the shape of the acceleration % ellipsoid which in turn is a function of the Cartesian inertia matrix and % the dynamic parameters. The scalar measure computed here is the ratio of % the smallest/largest ellipsoid axis. Ideally the ellipsoid would be % spherical, giving a ratio of 1, but in practice will be less than 1. % % Options:: % 'T' compute manipulability for just transational motion % 'R' compute manipulability for just rotational motion % 'yoshikawa' use Asada algorithm (default) % 'asada' use Asada algorithm % % Notes:: % - by default the measure includes rotational and translational dexterity, but % this involves adding different units. It can be more useful to look at the % translational and rotational manipulability separately. % % See also SerialLink.inertia, SerialLink.jacob0. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function [w,mx] = maniplty(robot, q, varargin) n = robot.n; opt.yoshikawa = true; opt.asada = false; opt.axes = {'all', 'T', 'R'}; opt = tb_optparse(opt, varargin); if length(q) == robot.n, q = q(:)'; end w = []; MX = []; if opt.yoshikawa for Q = q', w = [w; yoshi(robot, Q, opt)]; end elseif opt.asada for Q = q', if nargout > 1 [ww,mm] = asada(robot, Q); w = [w; ww]; MX = cat(3, MX, mm); else w = [w; asada(robot, Q, opt)]; end end end if nargout > 1 mx = MX; end function m = yoshi(robot, q, opt) J = jacob0(robot, q); switch opt.axes case 'T' J = J(1:3,:); case 'R' J = J(4:6,:); end m = sqrt(det(J * J')); function [m, mx] = asada(robot, q, opt) J = jacob0(robot, q); if rank(J) < 6, warning('robot is in degenerate configuration') m = 0; return; end switch opt.axes case 'T' J = J(1:3,:) case 'R' J = J(4:6,:); end Ji = inv(J); M = inertia(robot, q); Mx = Ji' * M * Ji; e = eig(Mx(1:3,1:3)); m = min(e) / max(e); if nargout > 1 mx = Mx; end
github
RobinAmsters/GT_mobile_robotics-master
inertia.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/inertia.m
1,944
utf_8
4bda3471b7775960cef1f31a8b0b2dcb
%SerialLink.INERTIA Manipulator inertia matrix % % I = R.inertia(Q) is the NxN symmetric joint inertia matrix which relates % joint torque to joint acceleration for the robot at joint configuration Q. % The diagonal elements I(j,j) are the inertia seen by joint actuator j. % The off-diagonal elements are coupling inertias that relate acceleration % on joint i to force/torque on joint j. % % If Q is a matrix (DxN), each row is interpretted as a joint state % vector, and the result (NxNxD) is a 3d-matrix where each plane corresponds % to the inertia for the corresponding row of Q. % % See also SerialLink.RNE, SerialLink.CINERTIA, SerialLink.ITORQUE. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function M = inertia(robot, q) if numcols(q) ~= robot.n error('q must have %d columns', robot.n); end if numrows(q) > 1 M = []; for i=1:numrows(q) M = cat(3, M, robot.inertia(q(i,:))); end return end n = robot.n; if numel(q) == robot.n, q = q(:)'; end M = zeros(n,n,0); for Q = q', m = rne(robot, ones(n,1)*Q', zeros(n,n), eye(n), [0;0;0]); M = cat(3, M, m); end
github
RobinAmsters/GT_mobile_robotics-master
fdyn.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@SerialLink/fdyn.m
3,481
utf_8
2cf029c0bca1d90d2a4cb9ea9ed78ddb
%SerialLink.fdyn Integrate forward dynamics % % [T,Q,QD] = R.fdyn(T1, TORQFUN) integrates the dynamics of the robot over % the time interval 0 to T and returns vectors of time TI, joint position Q % and joint velocity QD. The initial joint position and velocity are zero. % The torque applied to the joints is computed by the user function TORQFUN: % % [TI,Q,QD] = R.fdyn(T, TORQFUN, Q0, QD0) as above but allows the initial % joint position and velocity to be specified. % % The control torque is computed by a user defined function % % TAU = TORQFUN(T, Q, QD, ARG1, ARG2, ...) % % where Q and QD are the manipulator joint coordinate and velocity state % respectively], and T is the current time. % % [T,Q,QD] = R.fdyn(T1, TORQFUN, Q0, QD0, ARG1, ARG2, ...) allows optional % arguments to be passed through to the user function. % % Note:: % - This function performs poorly with non-linear joint friction, such as % Coulomb friction. The R.nofriction() method can be used to set this % friction to zero. % - If TORQFUN is not specified, or is given as 0 or [], then zero torque % is applied to the manipulator joints. % - The builtin integration function ode45() is used. % % See also SerialLink.accel, SerialLink.nofriction, SerialLink.RNE, ode45. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function [t, q, qd] = fdyn(robot, t1, torqfun, q0, qd0, varargin) global __fdyn_robot; global __fdyn_torqfun; n = robot.n; if nargin == 2 torqfun = 0; q0 = zeros(1,n); qd0 = zeros(1,n); elseif nargin == 3 q0 = zeros(1,n); qd0 = zeros(1,n); elseif nargin == 4 qd0 = zeros(1,n); end % concatenate q and qd into the initial state vector x0= [q0(:); qd0(:)]; __fdyn_robot = robot; __fdyn_torqfun = torqfun; dt = t1/100; t = 0:dt:t1; y = lsode(@fdyn2, x0, t); t = t' q = y(:,1:n); qd = y(:,n+1:2*n); %FDYN2 private function called by FDYN % % XDD = FDYN2(T, X, FLAG, ROBOT, TORQUEFUN) % % Called by FDYN to evaluate the robot velocity and acceleration for % forward dynamics. T is the current time, X = [Q QD] is the state vector, % ROBOT is the object being integrated, and TORQUEFUN is the string name of % the function to compute joint torques and called as % % TAU = TORQUEFUN(T, X) % % if not given zero joint torques are assumed. % % The result is XDD = [QD QDD]. function xd = fdyn2(x, t) global __fdyn_robot; global __fdyn_torqfun; robot = __fdyn_robot; torqfun = __fdyn_torqfun; n = robot.n; q = x(1:n); qd = x(n+1:2*n); if isstr(torqfun) tau = feval(torqfun, t, q, qd); else tau = zeros(n,1)'; end qdd = accel(robot, x(1:n,1)', x(n+1:2*n,1)', tau); xd = [x(n+1:2*n,1); qdd];
github
RobinAmsters/GT_mobile_robotics-master
dot.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/dot.m
979
utf_8
20a6e25089ef3d09abe3812e3c78ad39
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function qd = dot(q, omega) E = q.s*eye(3,3) - skew(q.v); omega = omega(:); qd = Quaternion(-0.5*q.v*omega, 0.5*E*omega); end
github
RobinAmsters/GT_mobile_robotics-master
norm.m
.m
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/norm.m
1,016
utf_8
03b88aa052109c5e5daca5fae9986aee
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see <http://www.gnu.org/licenses/>. % % http://www.petercorke.com function n = norm(q) %Quaternion.norm Compute the norm of a quaternion % % QN = Q.norm(Q) is the scalar norm or magnitude of the quaternion Q. n = norm(double(q)); end