plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
RobinAmsters/GT_mobile_robotics-master
|
Quaternion.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/Quaternion.m
| 4,034 |
utf_8
|
f2afd42f26b30a934c594f8e7fb16791
|
%QUATERNION constructor for quaternion objects
%
% QUATERNION([s v1 v2 v3]) from 4 elements
% QUATERNION(v, theta) from vector plus angle
% QUATERNION(R) from a 3x3 or 4x4 matrix
% QUATERNION(q) from another quaternion
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function q = Quaternion(a1, a2)
if nargin == 0,
q.s = 1;
q.v = [0 0 0];
q = class (q, 'Quaternion');
elseif nargin == 1
if isa(a1, 'Quaternion')
q = a1;
q = class(q, 'Quaternion');
elseif isreal (a1) && size(a1) == 1
q.s = a1(1);
q.v = [0,0,0];
q = class(q, 'Quaternion');
elseif isreal (a1) && all (size (a1) == [1 3]) # Quaternion (vector part)
q.s = 0;
q.v = a1(1:3);
q = class(q, 'Quaternion');
elseif all(size(a1) == [3 3])
q = Quaternion( tr2q(a1) );
elseif all(size(a1) == [4 4])
q = Quaternion( tr2q(a1(1:3,1:3)) );
elseif all(size(a1) == [1 4])
q.s = a1(1);
q.v = a1(2:4);
q = class(q, 'Quaternion');
else
error('unknown dimension of input');
end
elseif nargin == 2
if isscalar(a1) && isvector(a2)
q.s = cos(a1/2);
q.v = (sin(a1/2)*unit(a2(:)'));
q = class(q, 'Quaternion');
end
end
endfunction
%TR2Q Convert homogeneous transform to a unit-quaternion
%
% Q = tr2q(T)
%
% Return a unit quaternion corresponding to the rotational part of the
% homogeneous transform T.
%
% See also Q2TR
% Ryan Steidnl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function q = tr2q(t)
qs = sqrt(trace(t)+1)/2.0;
kx = t(3,2) - t(2,3); % Oz - Ay
ky = t(1,3) - t(3,1); % Ax - Nz
kz = t(2,1) - t(1,2); % Ny - Ox
if (t(1,1) >= t(2,2)) & (t(1,1) >= t(3,3))
kx1 = t(1,1) - t(2,2) - t(3,3) + 1; % Nx - Oy - Az + 1
ky1 = t(2,1) + t(1,2); % Ny + Ox
kz1 = t(3,1) + t(1,3); % Nz + Ax
add = (kx >= 0);
elseif (t(2,2) >= t(3,3))
kx1 = t(2,1) + t(1,2); % Ny + Ox
ky1 = t(2,2) - t(1,1) - t(3,3) + 1; % Oy - Nx - Az + 1
kz1 = t(3,2) + t(2,3); % Oz + Ay
add = (ky >= 0);
else
kx1 = t(3,1) + t(1,3); % Nz + Ax
ky1 = t(3,2) + t(2,3); % Oz + Ay
kz1 = t(3,3) - t(1,1) - t(2,2) + 1; % Az - Nx - Oy + 1
add = (kz >= 0);
end
if add
kx = kx + kx1;
ky = ky + ky1;
kz = kz + kz1;
else
kx = kx - kx1;
ky = ky - ky1;
kz = kz - kz1;
end
nm = norm([kx ky kz]);
if nm == 0,
q = Quaternion([1 0 0 0]);
else
s = sqrt(1 - qs^2) / nm;
qv = s*[kx ky kz];
q = Quaternion([qs qv]);
end
endfunction
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
display.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/display.m
| 1,029 |
utf_8
|
5005939253bba5057986ba5e99fcc973
|
%DISPLAY display the value of a quaternion object
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
% Copright (C) Peter Corke 1999
function display(q)
disp(' ');
disp([inputname(1), ' = '])
disp(' ');
disp([' ' char(q)])
disp(' ');
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
interp.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/interp.m
| 2,037 |
utf_8
|
0285ce161dcea6f15ec661917ade554c
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function q = interp(Q1, Q2, r)
%Quaternion.interp Interpolate rotations expressed by quaternion objects
%
% QI = Q1.interp(Q2, R) is a unit-quaternion that interpolates between Q1 for R=0
% to Q2 for R=1. This is a spherical linear interpolation (slerp) that can be
% interpretted as interpolation along a great circle arc on a sphere.
%
% If R is a vector QI is a vector of quaternions, each element
% corresponding to sequential elements of R.
%
% Notes:
% - the value of r is clipped to the interval 0 to 1
%
% See also ctraj, Quaternion.scale.
q1 = double(Q1);
q2 = double(Q2);
theta = acos(q1*q2');
count = 1;
% clip values of r
r(r<0) = 0;
r(r>1) = 1;
if length(r) == 1
if theta == 0
q = Q1;
else
q = Quaternion( (sin((1-r)*theta) * q1 + sin(r*theta) * q2) / sin(theta) );
end
else
for R=r(:)'
if theta == 0
qq = Q1;
else
qq = Quaternion( (sin((1-R)*theta) * q1 + sin(R*theta) * q2) / sin(theta) );
end
q(count) = qq;
count = count + 1;
end
end
end
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
plot.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/plot.m
| 1,334 |
utf_8
|
a911420db26f46c33659a9d91a300906
|
%PLOT plot a quaternion object as a rotated coordinate frame
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
% Copright (C) Peter Corke 1999
function plot(Q)
axis([-1 1 -1 1 -1 1])
o = [0 0 0]';
x1 = Q*[1 0 0]';
y1 = Q*[0 1 0]';
z1 = Q*[0 0 1]';
hold on
plot3([0;x1(1)], [0; x1(2)], [0; x1(3)])
text(x1(1), x1(2), x1(3), 'X')
plot3([0;y1(1)], [0; y1(2)], [0; y1(3)])
text(y1(1), y1(2), y1(3), 'Y')
plot3([0;z1(1)], [0; z1(2)], [0; z1(3)])
text(z1(1), z1(2), z1(3), 'Z')
grid on
xlabel('X')
ylabel('Y')
zlabel('Z')
hold off
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
double.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/double.m
| 1,055 |
utf_8
|
3c6907b9af17b78cda4c776b0542d2fc
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function v = double(q)
%Quaternion.double Convert a quaternion object to a 4-element vector
%
% V = Q.double() is a 4-vector comprising the quaternion
% elements [s vx vy vz].
v = [q.s q.v];
endfunction
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
scale.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/scale.m
| 2,018 |
utf_8
|
2adf3b3004453808797ce265b58b7659
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function q = scale(Q, r)
%Quaternion.scale Interpolate rotations expressed by quaternion objects
%
% QI = Q.scale(R) is a unit-quaternion that interpolates between identity for R=0
% to Q for R=1. This is a spherical linear interpolation (slerp) that can
% be interpretted as interpolation along a great circle arc on a sphere.
%
% If R is a vector QI is a cell array of quaternions, each element
% corresponding to sequential elements of R.
%
% See also ctraj, Quaternion.interp.
q2 = double(Q);
if any(r<0) || (r>1)
error('r out of range');
end
q1 = [1 0 0 0]; % identity quaternion
theta = acos(q1*q2');
if length(r) == 1
if theta == 0
q = Q;
else
q = unit(Quaternion( (sin((1-r)*theta) * q1 + sin(r*theta) * q2) / sin(theta) ));
end
else
count = 1;
for R=r(:)'
if theta == 0
qq = Q;
else
qq = Quaternion( (sin((1-r)*theta) * q1 + sin(r*theta) * q2) / sin(theta) ).unit;
end
q(count) = qq;
count = count + 1;
end
end
end
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
mrdivide.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/mrdivide.m
| 1,282 |
utf_8
|
a9c1b7b8b87592a33fc161d28efd23c9
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function qq = mrdivide(q1, q2)
%Quaternion.mrdivide Compute quaternion quotient.
%
% Q1/Q2 is a quaternion formed by Hamilton product of Q1 and inv(Q2)
% Q/S is the element-wise division of quaternion elements by by the scalar S
if isa(q2, 'Quaternion')
% qq = q1 / q2
% = q1 * qinv(q2)
qq = q1 * inv(q2);
elseif isa(q2, 'double')
qq = Quaternion( double(q1) / q2 );
end
end
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
qinterp.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/qinterp.m
| 1,727 |
utf_8
|
2e5be9d99ede2b9ce58a5d2b7db344fd
|
%QINTERP Interpolate rotations expressed by quaternion objects
%
% QI = qinterp(Q1, Q2, R)
%
% Return a unit-quaternion that interpolates between Q1 and Q2 as R moves
% from 0 to 1. This is a spherical linear interpolation (slerp) that can
% be interpretted as interpolation along a great circle arc on a sphere.
%
% If r is a vector, QI, is a cell array of quaternions.
%
% See also TR2Q
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
% MOD HISTORY
% 2/99 convert to use of objects
% Copright (C) Peter Corke 1999
function q = qinterp(Q1, Q2, r)
q1 = double(Q1);
q2 = double(Q2);
if (r<0) | (r>1),
error('R out of range');
end
theta = acos(q1*q2');
q = {};
count = 1;
if length(r) == 1,
q = quaternion( (sin((1-r)*theta) * q1 + sin(r*theta) * q2) / sin(theta) );
else
for R=r(:)',
qq = quaternion( (sin((1-R)*theta) * q1 + sin(R*theta) * q2) / sin(theta) );
q{count} = qq;
count = count + 1;
end
end
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
char.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/char.m
| 1,040 |
utf_8
|
b71a701e2d387683b513855d663de42b
|
%CHAR create string representation of quaternion object
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
% Copright (C) Peter Corke 1999
function s = char(q)
s = [num2str(q.s), ' <' num2str(q.v(1)) ', ' num2str(q.v(2)) ', ' num2str(q.v(3)) '>'];
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
unit.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/unit.m
| 997 |
utf_8
|
4745971f54ca4b629a6e8bc55a078408
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function qu = unit(q)
%Quaternion.unit Unitize a quaternion
%
% QU = Q.unit() is a quaternion which is a unitized version of Q
qu = q / norm(q);
end
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
subsref.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/subsref.m
| 1,930 |
utf_8
|
64b5d237e94c65cd19baefc95598c973
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function v = subsref(q, s)
if (length (s)<2)
if s(1).type == '.'
% NOTE WELL: the following code can't use getfield() since
% getfield() uses this, and Matlab will crash!!
el = char(s(1).subs);
switch el
case 'd'
v = double(q);
case 's'
v = q.s;
case 'v'
v = q.v;
case 'T'
v = q2tr(q);
case 'R'
v = q2tr(q);
v = v(1:3,1:3);
case 'inv'
v = inv(q);
case 'norm'
v = norm(q);
case 'unit'
v = unit(q);
case 'double'
v = double(q);
case 'plot'
v = plot(q);
end
else
error('only .field supported')
end
elseif (length(s) == 2 )
if s(1).type == '.'
% NOTE WELL: the following code can't use getfield() since
% getfield() uses this, and Matlab will crash!!
el = char(s(1).subs);
args = s(2).subs;
switch el
case 'interp'
v = interp(q,args{:});
case 'scale'
v = scale(q,args{:});
case 'dot'
v = dot(q,args{:});
end
else
error('only .field supported')
end
else
error('only .field supported')
end
endfunction
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
q2tr.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/q2tr.m
| 1,167 |
utf_8
|
c29ddf72eec74706e77c4bda8b562bde
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function t = q2tr(q)
q = double(q);
s = q(1);
x = q(2);
y = q(3);
z = q(4);
r = [ 1-2*(y^2+z^2) 2*(x*y-s*z) 2*(x*z+s*y)
2*(x*y+s*z) 1-2*(x^2+z^2) 2*(y*z-s*x)
2*(x*z-s*y) 2*(y*z+s*x) 1-2*(x^2+y^2) ];
t = eye(4,4);
t(1:3,1:3) = r;
t(4,4) = 1;
endfunction
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
plus.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/plus.m
| 1,081 |
utf_8
|
b0e2a4b5d2c508c817f9a56397002779
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function qp = plus(q1, q2)
%PLUS Add two quaternion objects
%
% Q1+Q2 is the element-wise sum of quaternion elements.
if isa(q1, 'Quaternion') & isa(q2, 'Quaternion')
qp = Quaternion(double(q1) + double(q2));
end
end
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
mpower.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/mpower.m
| 1,355 |
utf_8
|
7b9a578d511f56a544e2c15d8e15dde2
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function qp = mpower(q, p)
%Quaternion.mpower Raise quaternion to integer power
%
% Q^N is quaternion Q raised to the integer power N, and computed by repeated multiplication.
% check that exponent is an integer
if (p - floor(p)) ~= 0
error('quaternion exponent must be integer');
end
qp = q;
% multiply by itself so many times
for i = 2:abs(p)
qp = qp * q;
end
% if exponent was negative, invert it
if p<0
qp = inv(qp);
end
end
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
mtimes.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/mtimes.m
| 2,478 |
utf_8
|
99b0537c96d9e7857dce59ca93da8eb1
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function qp = mtimes(q1, q2)
%Quaternion.mtimes Multiply a quaternion object
%
% Q1*Q2 is a quaternion formed by Hamilton product of two quaternions.
% Q*V is the vector V rotated by the quaternion Q
% Q*S is the element-wise multiplication of quaternion elements by by the scalar S
if isa(q1, 'Quaternion') & isa(q2, 'Quaternion')
%QQMUL Multiply unit-quaternion by unit-quaternion
%
% QQ = qqmul(Q1, Q2)
%
% Return a product of unit-quaternions.
%
% See also: TR2Q
% decompose into scalar and vector components
s1 = q1.s; v1 = q1.v;
s2 = q2.s; v2 = q2.v;
% form the product
qp = Quaternion([s1*s2-v1*v2' s1*v2+s2*v1+cross(v1,v2)]);
elseif isa(q1, 'Quaternion') & isa(q2, 'double')
%QVMUL Multiply vector by unit-quaternion
%
% VT = qvmul(Q, V)
%
% Rotate the vector V by the unit-quaternion Q.
%
% See also: QQMUL, QINV
if length(q2) == 3
qp = q1 * Quaternion([0 q2(:)']) * inv(q1);
qp = qp.v(:);
elseif length(q2) == 1
qp = Quaternion(double(q1)*q2);
else
error('quaternion-vector product: must be a 3-vector or scalar');
end
elseif isa(q2, 'Quaternion') & isa(q1, 'double')
if length(q1) == 3
qp = q2 * Quaternion([0 q1(:)']) * inv(q2);
qp = qp.v;
elseif length(q1) == 1
qp = Quaternion(double(q2)*q1);
else
error('quaternion-vector product: must be a 3-vector or scalar');
end
end
end
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
inv.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/inv.m
| 1,023 |
utf_8
|
4acf75d995437c869ea1f6e806104619
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function qi = inv(q)
%Quaternion.inv Invert a unit-quaternion
%
% QI = Q.inv() is a quaternion object representing the inverse of Q.
qi = Quaternion([q.s -q.v]);
endfunction
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
minus.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Quaternion/minus.m
| 1,106 |
utf_8
|
7844d4807b15185b86f3b9993bf72d66
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function qp = minus(q1, q2)
%Quaternion.minus Subtract two quaternion objects
%
% Q1-Q2 is the element-wise difference of quaternion elements.
if isa(q1, 'Quaternion') & isa(q2, 'Quaternion')
qp = Quaternion(double(q1) - double(q2));
end
end
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
display.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Link/display.m
| 992 |
utf_8
|
1744ef8c7924b5841a47207003535695
|
%DISPLAY display the value of a LINK object
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
% Copright (C) Peter Corke 1999
function display(l)
disp([inputname(1), ' = '])
disp( char(l) );
end
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
show.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Link/show.m
| 1,226 |
utf_8
|
c90fb8c0e8972f93ea8c30b673633d2e
|
%SHOW show all parameters of LINK object
%
% SHOW(link)
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function show(l)
llab = 6;
for n =fieldnames(l)'
v = getfield(l, char(n));
name = char(n);
spaces = char(' '*ones(1,llab-length(name)));
val = num2str(v);
label = [name spaces ' = '];
if numrows(val) > 1,
pad = {label; char(' '*ones(numrows(val)-1,1))};
else
pad = label;
end
disp([char(pad) val]);
end
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
subsasgn.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Link/subsasgn.m
| 2,843 |
utf_8
|
9a4a1d65fc4137471a6bd218fbd2a960
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function this = subsasgn(this, index, value)
switch index(1).type
case '.'
switch index(1).subs,
case 'alpha',
this.alpha = value;
case 'a',
this.a = value;
case 'theta',
this.theta = value;
case 'd',
this.d = value;
case 'offset',
this.offset = value;
case 'sigma',
if ischar(value)
this.sigma = lower(value) == 'p';
else
this.sigma = value;
end
case 'mdh',
this.mdh = value;
case 'G',
this.G = value;
case 'I',
if isempty(value)
return;
end
if all(size(value) == [3 3])
if norm(value-value') > eps
error('inertia matrix must be symmetric');
end
this.I = value;
elseif length(value) == 3
this.I = diag(value);
elseif length(value) == 6
this.I = [ value(1) value(4) value(6)
value(4) value(2) value(5)
value(6) value(5) value(3)];
end
case 'r',
if isempty(value)
return;
end
if length(value) ~= 3
error('COG must be a 3-vector');
end
this.r = value(:)';
case 'Jm',
this.Jm = value;
case 'B',
this.B = value;
case 'Tc',
if isempty(value)
return;
end
if length(value) == 1
this.Tc = [value -value];
elseif length(value) == 2
if value(1) < value(2)
error('Coulomb friction is [Tc+ Tc-]');
end
this.Tc = value;
else
error('Coulomb friction vector can have 1 (symmetric) or 2 (asymmetric) elements only')
end
case 'm',
this.m = value;
case 'qlim',
if length(value) ~= 2,
error('joint limit must have 2 elements');
end
this.qlim = value;
otherwise, error('Unknown method')
end
case '()'
if numel(index) == 1
if isempty(this)
this = value; %% this is a crude bug fix
end
this = builtin('subsasgn', this, index, value);
else
this_subset = this(index(1).subs{:}); % get the subset
this_subset = subsasgn(this_subset, index(2:end), value);
this(index(1).subs{:}) = this_subset; % put subset back;
end
end
endfunction
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
char.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Link/char.m
| 2,817 |
utf_8
|
a0694168712bc20d14a58df87d0cce09
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function s = char(links, from_robot)
%Link.char String representation of parameters
%
% s = L.char() is a string showing link parameters in compact single line format.
% If L is a vector of Link objects return a string with one line per Link.
%
% See also Link.display.
% display in the order theta d a alpha
if nargin < 2
from_robot = false;
end
s = '';
for j=1:length(links)
l = links(j);
if from_robot
if l.sigma == 1
% prismatic joint
js = sprintf('|%3d|%11.4g|%11s|%11.4g|%11.4g|', ...
j, l.theta, sprintf('q%d', j), l.a, l.alpha);
else
js = sprintf('|%3d|%11s|%11.4g|%11.4g|%11.4g|', ...
j, sprintf('q%d', j), l.d, l.a, l.alpha);
end
else
if l.sigma == 0,
conv = 'R';
else
conv = 'P';
end
if l.mdh == 0
conv = [conv ',stdDH'];
else
conv = [conv ',modDH'];
end
if length(links) == 1
qname = 'q';
else
qname = sprintf('q%d', j);
end
if l.sigma == 1
% prismatic joint
js = sprintf(' theta=%.4g, d=%s, a=%.4g, alpha=%.4g (%s)', ...
l.theta, qname, l.a, l.alpha, conv);
else
js = sprintf(' theta=%s, d=%.4g, a=%.4g, alpha=%.4g (%s)', ...
qname, l.d, l.a, l.alpha, conv);
end
end
s = strvcat(s, js);
end
end % char()
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
friction.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Link/friction.m
| 1,399 |
utf_8
|
fd114474c00d7a5a4850ddb1f11e11af
|
%FRICTION compute friction torque on the LINK object
%
% TAU = FRICTION(LINK, QD)
%
% Return the friction torque on the link moving at speed QD. Depending
% on fields in the LINK object viscous and/or Coulomb friction
% are computed.
%
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function tau = friction(l, qd)
%Link.friction Joint friction force
%
% F = L.friction(QD) is the joint friction force/torque for link velocity QD
tau = 0.0;
tau = l.B * qd;
if qd > 0
tau = tau + l.Tc(1);
elseif qd < 0
tau = tau + l.Tc(2);
end
tau = -tau; % friction opposes motion
endfunction % friction()
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
nofriction.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Link/nofriction.m
| 1,338 |
utf_8
|
af30540d9fe008e95184816cb1baaea8
|
%NOFRICTION return link object with zero friction
%
% LINK = NOFRICTION(LINK)
%
%
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function l2 = nofriction(l, only)
%Link.nofriction Remove friction
%
% LN = L.nofriction() is a link object with the same parameters as L except
% nonlinear (Coulomb) friction parameter is zero.
%
% LN = L.nofriction('all') is a link object with the same parameters as L
% except all friction parameters are zero.
l2 = Link(l);
if (nargin == 2) && strcmpi(only(1:3), 'all')
l2.B = 0;
end
l2.Tc = [0 0];
end
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
subsref.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Link/subsref.m
| 6,453 |
utf_8
|
0251a70ca1dfd3e28127b24e79472d31
|
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function v = subsref(l, s)
switch s(1).type
case '.'
% NOTE WELL: the following code can't use getfield() since
% getfield() uses this, and Matlab will crash!!
el = char(s(1).subs);
switch el,
case 'alpha',
v = l.alpha;
case 'a',
v = l.a;
case 'theta',
v = l.theta;
case 'd',
v = l.d;
case 'offset',
v = l.offset;
case 'sigma',
v = l.sigma;
case 'RP',
if l.sigma == 0,
v = 'R';
else
v = 'P';
end
case 'mdh',
v = l.mdh;
case 'G',
v = l.G;
case 'I',
v = l.I;
case 'r',
v = l.r;
case 'Jm',
v = l.Jm;
case 'B',
v = l.B;
case 'Tc',
v = l.Tc;
case 'qlim',
v = l.qlim;
case 'islimit',
if s(2).type ~= '()'
error('expecting argument for islimit method');
end
q = s(2).subs{1};
v = (q > l.qlim(2)) - (q < l.qlim(1));
case 'm',
v = l.m;
case 'dh',
v = [l.alpha l.A l.theta l.D l.sigma];
case 'dyn',
dyn(l);
case 'A',
if s(2).type ~= '()'
error('expecting argument for A method');
else
args = s(2).subs;
v = A(l,args{1});
end
case 'nofriction',
q = s(2).subs;
v = nofriction(l,q{:});
otherwise,
disp('Unknown method ref')
end
case '()'
if numel(s) == 1
v = builtin('subsref', l, s);
else
z = s(1).subs; % cell array
k = z{1};
l = l(k);
v_subset = subsref(l, s(2:end));
v = v_subset; % put subset back;
end
otherwise
error('only .field supported')
end %switch
endfunction
function T = A(L, q)
%Link.A Link transform matrix
%
% T = L.A(Q) is the 4x4 link homogeneous transformation matrix corresponding
% to the link variable Q which is either theta (revolute) or d (prismatic).
%
% Notes::
% - For a revolute joint the theta parameter of the link is ignored, and Q used instead.
% - For a prismatic joint the d parameter of the link is ignored, and Q used instead.
% - The link offset parameter is added to Q before computation of the transformation matrix.
if L.mdh == 0
T = linktran([L.alpha L.a L.theta L.d L.sigma], ...
q+L.offset);
else
T = mlinktran([L.alpha L.a L.theta L.d L.sigma], ...
q+L.offset);
end
endfunction % A()
function t = linktran(a, b, c, d)
%LINKTRAN Compute the link transform from kinematic parameters
%
% LINKTRAN(alpha, an, theta, dn)
% LINKTRAN(DH, q) is a homogeneous
% transformation between link coordinate frames.
%
% alpha is the link twist angle
% an is the link length
% theta is the link rotation angle
% dn is the link offset
% sigma is 0 for a revolute joint, non-zero for prismatic
%
% In the second case, q is substitued for theta or dn according to sigma.
%
% Based on the standard Denavit and Hartenberg notation.
% Copright (C) Peter Corke 1993
if nargin == 4,
alpha = a;
an = b;
theta = c;
dn = d;
else
if numcols(a) < 4,
error('too few columns in DH matrix');
end
alpha = a(1);
an = a(2);
if numcols(a) > 4,
if a(5) == 0, % revolute
theta = b;
dn = a(4);
else % prismatic
theta = a(3);
dn = b;
end
else
theta = b; % assume revolute if sigma not given
dn = a(4);
end
end
sa = sin(alpha); ca = cos(alpha);
st = sin(theta); ct = cos(theta);
t = [ ct -st*ca st*sa an*ct
st ct*ca -ct*sa an*st
0 sa ca dn
0 0 0 1];
endfunction
%MLINKTRANS Compute the link transform from kinematic parameters
%
% MLINKTRANS(alpha, an, theta, dn)
% MLINKTRANS(DH, q) is a homogeneous
% transformation between link coordinate frames.
%
% alpha is the link twist angle
% an is the link length
% theta is the link rotation angle
% dn is the link offset
% sigma is 0 for a revolute joint, non-zero for prismatic
%
% In the second case, q is substitued for theta or dn according to sigma.
%
% Based on the modified Denavit and Hartenberg notation.
% Copright (C) Peter Corke 1993
function t = mlinktrans(a, b, c, d)
if nargin == 4,
alpha = a;
an = b;
theta = c;
dn = d;
else
if numcols(a) < 4,
error('too few columns in DH matrix');
end
alpha = a(1);
an = a(2);
if numcols(a) > 4,
if a(5) == 0, % revolute
theta = b;
dn = a(4);
else % prismatic
theta = a(3);
dn = b;
end
else
theta = b; % assume revolute if no sigma given
dn = a(4);
end
end
sa = sin(alpha); ca = cos(alpha);
st = sin(theta); ct = cos(theta);
t = [ ct -st 0 an
st*ca ct*ca -sa -sa*dn
st*sa ct*sa ca ca*dn
0 0 0 1];
endfunction
function dyn(l)
%Link.dyn Display the inertial properties of link
%
% L.dyn() displays the inertial properties of the link object in a multi-line format.
% The properties shown are mass, centre of mass, inertia, friction, gear ratio
% and motor properties.
%
% If L is a vector of Link objects show properties for each element.
if length(l) > 1
for j=1:length(l)
ll = l(j);
fprintf('%d: %f; %f %f %f; %f %f %f\n', ...
j, ll.m, ll.r, diag(ll.I));
%dyn(ll);
end
return;
end
display(l);
if ~isempty(l.m)
fprintf(' m = %f\n', l.m)
end
if ~isempty(l.r)
fprintf(' r = %f %f %f\n', l.r);
end
if ~isempty(l.I)
fprintf(' I = | %f %f %f |\n', l.I(1,:));
fprintf(' | %f %f %f |\n', l.I(2,:));
fprintf(' | %f %f %f |\n', l.I(3,:));
end
if ~isempty(l.Jm)
fprintf(' Jm = %f\n', l.Jm);
end
if ~isempty(l.B)
fprintf(' Bm = %f\n', l.B);
end
if ~isempty(l.Tc)
fprintf(' Tc = %f(+) %f(-)\n', l.Tc(1), l.Tc(2));
end
if ~isempty(l.G)
fprintf(' G = %f\n', l.G);
end
if ~isempty(l.qlim)
fprintf(' qlim = %f to %f\n', l.qlim(1), l.qlim(2));
end
endfunction % dyn()
|
github
|
RobinAmsters/GT_mobile_robotics-master
|
Link.m
|
.m
|
GT_mobile_robotics-master/common/rvctools/robot/Octave/@Link/Link.m
| 4,156 |
utf_8
|
39a5ccb999393609550d38e629c54d5b
|
%LINK create a new LINK object
%
% A LINK object holds all information related to a robot link such as
% kinematics of the joint, rigid-body inertial parameters, motor and
% transmission parameters.
%
% LINK
% LINK(link)
%
% Create a default link, or a clone of the passed link.
%
% A = LINK(q)
%
% Compute the link transform matrix for the link, given the joint
% variable q.
%
% LINK([alpha A theta D sigma])
% LINK(DH_ROW) create from row of legacy DH matrix
% LINK(DYN_ROW) create from row of legacy DYN matrix
%
% Any of the last 3 forms can have an optional flag argument which is 0
% for standard D&H parameters and 1 for modified D&H parameters.
% Handling the different kinematic conventions is now hidden within the LINK
% object.
%
% Conceivably all sorts of stuff could live in the LINK object such as
% graphical models of links and so on.
% MOD HISTORY
% 3/99 modify to use on a LINK object
% 6/99 fix the number of fields inthe object, v5.3 doesn't let me change them
% mod by Francisco Javier Blanco Rodriguez <[email protected]>
% Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9)
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function l = Link(dh, convention)
% legacy DH matrix
% link([theta d a alpha])
% link([theta d a alpha sigma])
% link([theta d a alpha sigma offset])
if nargin == 0,
l.theta = 0;
l.d = 0;
l.a = 0;
l.alpha = 0;
l.sigma = 0;
l.offset = 0;
l.mdh = 0;
% it's a legacy DYN matrix
l.m = [];
l.r = [];
v = [];
l.I = [];
l.Jm = [];
l.G = [];
l.B = 0;
l.Tc = [0 0];
l.qlim = [];
l = class(l, "Link");
elseif isa(dh, 'Link')
l = dh;
elseif length(dh) < 4
error('must provide params (theta d a alpha)');
elseif length(dh) <= 6
% legacy DH matrix
l.theta = dh(1);
l.d = dh(2);
l.a = dh(3);
l.alpha = dh(4);
if length(dh) >= 5,
l.sigma = dh(5);
else
l.sigma = 0;
end
if length(dh) >= 6
l.offset = dh(6);
else
l.offset = 0;
end
l.mdh = 0;
if nargin > 1
if strncmp(convention, 'mod', 3) == 1
l.mdh = 1;
elseif strncmp(convention, 'sta', 3) == 1
l.mdh = 0;
else
error('convention must be modified or standard');
end
end
% we know nothing about the dynamics
l.m = [];
l.r = [];
v = [];
l.I = [];
l.Jm = [];
l.G = [];
l.B = 0;
l.Tc = [0 0];
l.qlim = [];
l = class(l, "Link");
else
% legacy DYN matrix
l.theta = dh(1);
l.d = dh(2);
l.a = dh(3);
l.alpha = dh(4);
if length(dh) >= 5,
l.sigma = dh(5);
else
l.sigma = 0;
end
l.offset = 0;
l.mdh = 0;
if nargin > 1
if strncmp(convention, 'mod', 3) == 1
l.mdh = 1;
elseif strncmp(convention, 'sta', 3) == 1
l.mdh = 0;
else
error('convention must be modified or standard');
end
end
% it's a legacy DYN matrix
if length(dh) >= 6,
l.m = [dh(6)];
else
l.m = [];
end
if length(dh) >= 9,
l.r = dh(7:9);
else
l.r = [];
end
if length(dh) >= 15,
v = dh(10:15);
l.I = [ v(1) v(4) v(6)
v(4) v(2) v(5)
v(6) v(5) v(3)];
else
v = [];
l.I = [];
end
if length(dh) >= 16,
l.Jm = dh(16);
else
l.Jm = [];
end
if length(dh) >= 17,
l.G = dh(17);
else
l.G = [];
end
if length(dh) >= 18,
l.B = dh(18);
else
l.B = 0;
end
if length(dh) >= 20,
l.Tc = dh(19:20);
else
l.Tc = [0 0];
end
l.qlim = [];
l = class(l, "Link");
end
endfunction
|
github
|
qhtian/CaCLEAN-master
|
CICRrebuildSimp.m
|
.m
|
CaCLEAN-master/CICRrebuildSimp.m
| 5,741 |
utf_8
|
c5178a88615def815466088aa13c31fa
|
function S=CICRrebuildSimp(S,varargin)
%% CleanObj=CICRrebuildSimp(CleanObj,varargin);
% CICRrebuildSimp calculates the upstroke of a calcium transient from the
% calculated calcium release map that is derived with CaCLEAN algorithm.
%
% Inputs:
% CleanObj: the struct result from CaCLEAN (CICRcleanSimp) function.
% Name-Value Parameters:
% DecayFF0Rate: default 0.03. The program follows F = F - dF/F0*K*t.
% ConsiderDiffusion: default true.
%
% Output:
% CleanObj: the struct containing the calculated upstroke of a
% calcium transient.
%
% Qinghai Tian
% Institute for Molecular Cellbiology
% Medical Facalty of University of
% Saarland.
% Homburg, Germany.
% [email protected]
%%
p=inputParser;
p.addParameter('DecayFF0Rate',0.03,@(x)isscalar(x) && x>=0); % In F = F - dF/F0 * K * t.
p.addParameter('ConsiderDiffusion',1,@(x)isscalar(x) && x>=0); % In F = F - dF/F0 * K * t.
parse(p, varargin{:});
p=p.Results;
ConsiderDiffusion=p.ConsiderDiffusion;
DecayFF0Rate=p.DecayFF0Rate;
CPU_NumCores=feature('NumCores');
%% Apply Ca diffusion.
Snumel=numel(S);
for j=1:Snumel
fprintf(' %0.0f / %0.0f%-34s 0%%',j,Snumel,' Calcium diffusing:');
% PSFdiffusionHalf=generatePSF([S(j).xyt_dim(1:2),S(j).xyt_dim(3)/2],S(j).CaDiffuseK);
PSFdiffusionHalf=S(j).CLEANPSF;
PSFdiffusionHalf=PSFdiffusionHalf/sum(PSFdiffusionHalf(:));
try
PSFdiffusion=S(j).DiffusionPSF;
catch
PSFdiffusion=generatePSF(S.xyt_dim,S.CaDiffuseK);
end
CICRrebuiltStack=double(S(j).CaReleaseCounting);
Isiz=size(CICRrebuiltStack);
% Diffusion.
for k=1:Isiz(3)
if ConsiderDiffusion
if k==1
CICRLastTimePieceDiffuse=ImDiffuseParallel(zeros(Isiz(1),Isiz(2)),S(j).Mask,PSFdiffusion,CPU_NumCores);
else
CICRLastTimePieceDiffuse=ImDiffuseParallel(CICRrebuiltStack(:,:,k-1),S(j).Mask,PSFdiffusion,CPU_NumCores);
end
else
if k==1
CICRLastTimePieceDiffuse=zeros(Isiz(1),Isiz(2));
else
CICRLastTimePieceDiffuse=CICRrebuiltStack(:,:,k-1);
end
end
CICRCurrTimePieceDiffuse=ImDiffuseParallel(CICRrebuiltStack(:,:,k),S(j).Mask,PSFdiffusionHalf,CPU_NumCores);
CICRFF0Removal=(CICRLastTimePieceDiffuse+CICRCurrTimePieceDiffuse)*DecayFF0Rate*S(j).xyt_dim(3)/2;
CICRrebuiltStack(:,:,k)=CICRLastTimePieceDiffuse+CICRCurrTimePieceDiffuse-CICRFF0Removal;
% CICRrebuiltStack(:,:,k)=CICRrebuiltStack(:,:,k)*S(j).PSFAmplitude;
fprintf('\b\b\b\b%3.0f%%',floor(k/size(CICRrebuiltStack,3)*100));
end
CICRrebuiltStack=CICRrebuiltStack*S(j).PSFAmplitude;
clear('CICRLastTimePieceDiffuse','CICRCurrTimePieceDiffuse','CICRFF0Removal');
fprintf('\n');
S(j).CICRrebuilt=CICRrebuiltStack;
end
end
% function [PSF,CaDiffuse]=generatePSF(xyt_dim,ApparentDiffusionK)
% CaDiffuse=@(t,D,x,y) exp(-(x.^2+y.^2)/(4*D*t));
% CaDiffuseSize=-30:xyt_dim(1):30;
% if mod(numel(CaDiffuseSize),2)==0
% CaDiffuseSize=numel(CaDiffuseSize)/2;
% CaDiffuseSize=0:xyt_dim(1):xyt_dim(1)*CaDiffuseSize;
% CaDiffuseSize=cat(2,-fliplr(CaDiffuseSize(2:end)),CaDiffuseSize);
% end
% [x,y]=ndgrid(CaDiffuseSize,CaDiffuseSize);
% PSF=CaDiffuse(xyt_dim(3)/1000,ApparentDiffusionK,x,y);
% PSF_bw=PSF>max(PSF(:))*0.001;
% PSF_bw=sum(PSF_bw,2);
% PSF_bw=ceil(sum(PSF_bw>0)/2);
% PSF_siz=(size(PSF,1)+1)/2;
% PSF=PSF((PSF_siz-PSF_bw):(PSF_siz+PSF_bw),(PSF_siz-PSF_bw):(PSF_siz+PSF_bw));
% PSF=PSF/sum(PSF(:));
% end
function Icon=ImDiffuseParallel(I,bw,PSF,CPUCore_Num)
if size(I,1)>size(I,2); I=I'; end
step=floor(size(I,2)/CPUCore_Num);
stepStart=1:step:size(I,2);
stepEnd=stepStart+step-1;
stepEnd(end)=size(I,2);
Icon=zeros(size(I));
parfor k=1:numel(stepStart)
Icon=Icon+ImDiffuse(I,bw,PSF,1,size(I,1),stepStart(k),stepEnd(k));
end
if size(I,1)>size(I,2); Icon=Icon'; end
end
function Icon=ImDiffuse(I,bw,PSF,k1,k2,j1,j2)
RecrdSize=size(I);
Icon=zeros(RecrdSize);
PSFsiz=size(PSF);
for k=k1:k2
for j=j1:j2
x1=k-(PSFsiz(1)-1)/2;
x2=k+(PSFsiz(1)-1)/2;
x1Spark=1;
x2Spark=PSFsiz(1);
if x1<1
xyshift=1-x1;
x1=1;
x1Spark=xyshift+1;
end
if x2>RecrdSize(1)
xyshift=x2-RecrdSize(1);
x2=RecrdSize(1);
x2Spark=PSFsiz(1)-xyshift;
end
y1=j-(PSFsiz(2)-1)/2;
y2=j+(PSFsiz(2)-1)/2;
y1Spark=1;
y2Spark=PSFsiz(2);
if y1<1
xyshift=1-y1;
y1=1;
y1Spark=xyshift+1;
end
if y2>RecrdSize(2)
xyshift=y2-RecrdSize(2);
y2=RecrdSize(2);
y2Spark=PSFsiz(2)-xyshift;
end
currPSF=PSF(x1Spark:x2Spark,y1Spark:y2Spark).*bw(x1:x2,y1:y2);
currPSF_sum=sum(currPSF(:));
if currPSF_sum==0;
continue;
else
currPSF=currPSF/currPSF_sum;
end
currPSF=currPSF*I(k,j);
Icon(x1:x2,y1:y2)=Icon(x1:x2,y1:y2)+currPSF;
end
end
end
|
github
|
qhtian/CaCLEAN-master
|
CICRsimulation.m
|
.m
|
CaCLEAN-master/CICRsimulation.m
| 17,643 |
utf_8
|
d15e0655e0bd3b2d6552a9633d87ba78
|
function varargout=CICRsimulation(varargin)
%% varargout=CICRsimulation(varargin);
% CICRsimulation simulates confocal recordings of cardiac calcium transient.
%
% Name-Value parameters:
% Please check the parameter defininaitons in the first section of
% the program body.
% Output:
% SparkWithNoise: Spark recordings with noise.
% SparkNoiseFree: Spark recordings without noise.
% SparkPosition: (1)ID (2)xc (3)yc (4)t_onset (5)Bgr (6)dF/F0
% (7)FWHM/2 (8)Decay.
% Qinghai Tian
% Institute for Molecular Cellbiology
% Medical Facalty of University of
% Saarland.
% Homburg, Germany.
% [email protected]
%% Input.
CPU_NumCores=feature('NumCores');
p=inputParser;
p.addParameter('LaserIntensity',30,@(x)isscalar(x) && x>0 && x<=100); % Percentage.
p.addParameter('DetectorOffset',400,@(x)isscalar(x) && x>0); % a.u.
p.addParameter('DetectorGain',2.7,@(x)isscalar(x) && x>0);
p.addParameter('DetectorGaussNoise',6.2,@(x)isscalar(x) && x>0); % a.u.
p.addParameter('xyt_dim',[0.215,0.215,6.85],@(x)numel(x)==3); % In micrometer.
p.addParameter('CaReleaseSigma',1,@(x)isscalar(x) && x>0); % In millisecond.
p.addParameter('CaReleaseTau', 3,@(x)isscalar(x) && x>0); % In millisecond.
p.addParameter('CaReleaseFWHMMax',0.2,@(x)isscalar(x) && x>0); % In micrometer.
p.addParameter('CaReleaseTauFWHM',1,@(x)isscalar(x) && x>0); % In millisecond.
p.addParameter('CaReleaseDurationSD',3,@(x)isscalar(x) && x>0);
p.addParameter('Xdim',[],@(x)isscalar(x) && x>0); % In pixel.
p.addParameter('Ydim',[],@(x)isscalar(x) && x>0); % In pixel.
p.addParameter('Tdim',600,@(x)isscalar(x) && x>0); % In ms.
p.addParameter('ReleaseAmplitude',[],@(x)isempty(x) || (isscalar(x) && x>0));
p.addParameter('ApparentDiffusionK',50,@(x)isscalar(x) && x>0); % In millisecond.
p.addParameter('DecayFF0Rate',0.03,@(x)isscalar(x) && x>0); % In F = F - dF/F0 * K * t.
p.addParameter('CaReleaseNum',35000,@(x)isscalar(x) && x>=0);
p.addParameter('ExpAmp', false, @(x)islogical(x)); % Distribution.
p.addParameter('RampAmp',false, @(x)islogical(x)); % Distribution.
p.addParameter('CaReleaseAmp',1.0,@(x)isscalar(x) && x>0); % In dF/F0.
p.addParameter('CPUNumCores',CPU_NumCores,@(x)isscalar(x) && x>0 && x<CPU_NumCores);
% Parameters for the FWHM function.
parse(p, varargin{:});
p=p.Results;
clear('varargin')
%% Parameters and sample Ca release.
Gain=p.DetectorGain;
xyt_dim=p.xyt_dim;
Xdim=p.Xdim;
Ydim=p.Ydim;
Tdim=ceil(p.Tdim/xyt_dim(3));
ReleaseTrigger=Tdim*0.3;
LaserIntensity=p.LaserIntensity;
CaReleaseAmp=p.CaReleaseAmp;
CaReleaseDurationSD=p.CaReleaseDurationSD;
CaReleaseNum=p.CaReleaseNum;
CaReleaseSigma=p.CaReleaseSigma;
CaReleaseTau=p.CaReleaseTau;
CaReleaseFWHMMax=p.CaReleaseFWHMMax;
CaReleaseTauFWHM=p.CaReleaseTauFWHM;
ApparentDiffusionK=p.ApparentDiffusionK;
DetectorOffset=p.DetectorOffset;
DetectorGaussNoise=p.DetectorGaussNoise;
ReleaseAmplitude=p.ReleaseAmplitude;
DecayFF0Rate=p.DecayFF0Rate;
SampleCaReleaseSpark=SparkDsptSimAllInOneV1_2('Mu',xyt_dim(3),'SpR',xyt_dim(1),'TpR',xyt_dim(3),...
'FWHMMax',CaReleaseFWHMMax,'TauFWHM',CaReleaseTauFWHM,...
'Sigma',CaReleaseSigma,'Tau',CaReleaseTau);
clear('CaReleaseFWHMMax','CaReleaseTauFWHM','CaReleaseSigma','CaReleaseTau');
%% Load sample bgr.
if isempty(Xdim)
S=SampleCell;
Xdim=size(S.Bgr,1);
Ydim=size(S.Bgr,2);
else
S=SampleCell([Xdim,Ydim]);
end
Bgr=single(S.Bgr);
Bgr=Bgr/S.LaserIntensity*LaserIntensity;
BgrBW=S.BgrBW;
clear('S');
%% Pararmeters.
fprintf(' ==================================================================\n')
fprintf(' Spark movie settings:\n')
fprintf(' %-38s%0.2f um X %0.2f um, %0.1f ms\n','Resolution (x,y,t):',xyt_dim(1),xyt_dim(2),xyt_dim(3));
fprintf(' %-38s%0.0f%%\n','Laser Intensity:',LaserIntensity);
fprintf(' %-38s%0.2f\n','Device Gain:',Gain);
fprintf(' %-38s%0.0f\n','CaR Number:',CaReleaseNum);
fprintf(' %-38s%0.3f\n','Spark amplitude (dF/F0):',CaReleaseAmp);
fprintf(' %-38s%0.3f\n','Apparent diffusion K (um^2/s):',ApparentDiffusionK);
fprintf(' %-38s%0.2f / %0.2f a.u.\n','Detector offset/noise:',DetectorOffset,DetectorGaussNoise);
if p.ExpAmp
fprintf(' %-38sExponential, center = %0.2f\n','Amplitude distribution:',CaReleaseAmp);
elseif p.RampAmp
fprintf(' %-38sRamp from 0 to %0.2f\n','Amplitude distribution:',CaReleaseAmp);
else
fprintf(' %-38sConstant, center = %0.2f\n','Amplitude distribution:',CaReleaseAmp);
end
fprintf(' ==================================================================\n')
%% coordinates template.
fprintf(' %-38s','Generating coordinates:');
P=generateCaReleaseProbabilityMap(Xdim,1.075/xyt_dim(1),Ydim,1.935/xyt_dim(1));
[xPos,yPos]=generateCaReleaseProbabilityReleasePos(P,CaReleaseNum);
CaReleaseNum=numel(xPos);
tPos=round((randn(CaReleaseNum,1)*CaReleaseDurationSD)/xyt_dim(3)+ReleaseTrigger);
xytTemplate=cat(2,xPos,yPos,tPos);
clear('tPos','xPos','yPos','P')
fprintf('done\n %-38s%0.0f\n','CaR Number New:',CaReleaseNum); %fprintf('done\n');
%% Amplitude distribution.
if p.ExpAmp
AmpDistribution=exprnd(CaReleaseAmp,[CaReleaseNum,1]);
elseif p.RampAmp
AmpDistribution=rand(CaReleaseNum,1)*CaReleaseAmp;
else
AmpDistribution=ones(CaReleaseNum,1)*CaReleaseAmp;
end
%% Ca release recording coordinates.
xyt=round(rand(CaReleaseNum,1)*size(xytTemplate,1));
for k=1:numel(xyt)
if xyt(k)==0
continue;
end
if ~BgrBW(xytTemplate(xyt(k),1),xytTemplate(xyt(k),2));
xyt(k)=0;
end
end
while min(xyt)<=0
bw=xyt<=0;
xytTemp=round(rand(sum(bw(:)),1)*size(xytTemplate,1));
xyt(bw)=xytTemp;
for k=1:numel(xyt)
if xyt(k)==0; continue; end
if ~BgrBW(xytTemplate(xyt(k),1),xytTemplate(xyt(k),2)); xyt(k)=0; continue; end
end
end
xyt=xytTemplate(xyt,:);
clear('xytTemplate','bw','k');
%% Ca release recording. Put sparks in.
CICRNoiseFree=zeros(Xdim,Ydim,Tdim,'single');
SparkPosition=zeros(CaReleaseNum,6);
fprintf('%-38s 0%%',' Putting in Ca Release:');
CurrSarkSize=[size(SampleCaReleaseSpark,1),size(SampleCaReleaseSpark,2),size(SampleCaReleaseSpark,3)];
for k=1:CaReleaseNum
% Define x positions to put in.
x1=round(xyt(k,1)-CurrSarkSize(1)/2);
x2=x1+CurrSarkSize(1)-1;
x1Spark=1;
x2Spark=CurrSarkSize(1);
if x1<1
xyshift=1-x1;
x1=1;
x1Spark=xyshift+1;
end
if x2>Xdim
xyshift=x2-Xdim;
x2=Xdim;
x2Spark=CurrSarkSize(1)-xyshift;
end
% Define y positions to put in.
y1=round(xyt(k,2)-CurrSarkSize(2)/2);
y2=y1+CurrSarkSize(2)-1;
y1Spark=1;
y2Spark=CurrSarkSize(2);
if y1<1
xyshift=1-y1;
y1=1;
y1Spark=xyshift+1;
end
if y2>Ydim
xyshift=y2-Ydim;
y2=Ydim;
y2Spark=CurrSarkSize(2)-xyshift;
end
% Define t positions to put in.
t1=xyt(k,3);
t2=t1+CurrSarkSize(3)-1;
t1Spark=1;
t2Spark=CurrSarkSize(3);
if t1<1
xyshift=1-t1;
t1=1;
t1Spark=xyshift+1;
end
if t2>Tdim
xyshift=t2-Tdim;
t2=Tdim;
t2Spark=CurrSarkSize(3)-xyshift;
end
% Calculate Bgr
CurrBgr=Bgr(x1:x2,y1:y2);
CurrBgr=median(CurrBgr(:));
CurSparkTemp=SampleCaReleaseSpark*AmpDistribution(k)*CurrBgr;
CICRNoiseFree(x1:x2,y1:y2,t1:t2)=CICRNoiseFree(x1:x2,y1:y2,t1:t2)+...
CurSparkTemp(x1Spark:x2Spark,y1Spark:y2Spark,t1Spark:t2Spark);
SparkPosition(k,:)=[k,xyt(k,1),xyt(k,2),xyt(k,3),CurrBgr,...
AmpDistribution(k)];
fprintf('\b\b\b\b%3.0f%%',floor(k/CaReleaseNum*100));
end
clear('j','t1','t2','x1','x2','y1','y2','xyt','CurrBgr','CurrSarkSize','SampleSpark','xytTemplate')
fprintf('\n');
%% Check the amplitude.
if ~isempty(ReleaseAmplitude)
fprintf(' %-38s','Adjusting amplitude:');
dFF0=sum(sum(sum(CICRNoiseFree,3),2),1);
dFF0=dFF0/sum(Bgr(BgrBW));
FF0Ratio=max(dFF0)/ReleaseAmplitude;
CICRNoiseFree=CICRNoiseFree/FF0Ratio;
fprintf('done\n');
else
FF0Ratio=1;
end
%% Apply Ca diffusion.
fprintf('%-38s 0%%',' Calcium diffusing:');
p.PSFdiffusion=generatePSF(xyt_dim,ApparentDiffusionK);
PSFdiffusion=p.PSFdiffusion;
p.PSFdiffusionHalf=generatePSF([xyt_dim(1:2),xyt_dim(3)/2],ApparentDiffusionK);
PSFdiffusionHalf=p.PSFdiffusionHalf;
CICRBeforeDiffusion=CICRNoiseFree;
BgrBW=imfill(BgrBW,'holes');
for k=2:Tdim
% Diffusion.
CICRLastTimePieceDiffuse=ImDiffuseParallel(CICRNoiseFree(:,:,k-1),BgrBW,PSFdiffusion,CPU_NumCores);
CICRCurrTimePieceDiffuse=ImDiffuseParallel(CICRNoiseFree(:,:,k),BgrBW,PSFdiffusionHalf,CPU_NumCores);
CICRFF0Removal=(CICRLastTimePieceDiffuse+CICRCurrTimePieceDiffuse)*DecayFF0Rate*xyt_dim(3)/2;
CICRNoiseFree(:,:,k)=CICRLastTimePieceDiffuse+CICRCurrTimePieceDiffuse-CICRFF0Removal;
fprintf('\b\b\b\b%3.0f%%',floor(k/Tdim*100));
end
clear('CICRLastTimePieceDiffuse','CICRCurrTimePieceDiffuse','CICRFF0Removal');
fprintf('\n');
%% Record the Release Ca Pos.
SparkPositionMovie=zeros(size(CICRNoiseFree),'single');
for k=1:size(SparkPosition,1)
SparkPosition(k,6)=SparkPosition(k,6)/FF0Ratio;
SparkPositionMovie(SparkPosition(k,2),SparkPosition(k,3),SparkPosition(k,4))=...
SparkPositionMovie(SparkPosition(k,2),SparkPosition(k,3),SparkPosition(k,4))+SparkPosition(k,6);
end
%% Add Poissonian noise.
fprintf(' %-38s','Generating noise:');
SparkOnCellWithPoissonNoise=zeros(size(CICRNoiseFree),'single');
parfor k=1:size(CICRNoiseFree,3)
SparkOnCellWithPoissonNoise(:,:,k)=Gain*poissrnd((CICRNoiseFree(:,:,k)+Bgr)/Gain);
end
% Final movie.
CICRRecording=SparkOnCellWithPoissonNoise + DetectorOffset+randn(size(SparkOnCellWithPoissonNoise))*DetectorGaussNoise;
fprintf('done\n')
%% Output
if nargout==1
output.CaRelease=CICRBeforeDiffusion;
output.CaT=CICRRecording;
output.CaTNoiseFree=CICRNoiseFree;
output.CaReleasePos=SparkPositionMovie;
output.CaReleaseInfo=SparkPosition;
output.CaReleaseInfoFormat='(1)ID (2)dF/F0 (3)Bgr (4)xc (5)yc (6)t_onset';
output.SampleCaRelease=SampleCaReleaseSpark;
output.Bgr=Bgr;
output.BgrBW=BgrBW;
output.InputParameter=p;
varargout{1}=output;
end
end
function Icon=ImDiffuseParallel(I,bw,PSF,CPUCore_Num)
if size(I,1)>size(I,2); I=I'; end
step=floor(size(I,2)/CPUCore_Num);
stepStart=1:step:size(I,2);
stepEnd=stepStart+step-1;
stepEnd(end)=size(I,2);
Icon=zeros(size(I));
parfor k=1:numel(stepStart)
Icon=Icon+ImDiffuse(I,bw,PSF,1,size(I,1),stepStart(k),stepEnd(k));
end
if size(I,1)>size(I,2); Icon=Icon'; end
end
function Icon=ImDiffuse(I,bw,PSF,k1,k2,j1,j2)
Xdim=size(I,1);
Ydim=size(I,2);
Icon=zeros([Xdim,Ydim]);
PSFsiz=size(PSF);
for k=k1:k2
for j=j1:j2
x1=k-(PSFsiz(1)-1)/2;
x2=k+(PSFsiz(1)-1)/2;
x1Spark=1;
x2Spark=PSFsiz(1);
if x1<1
xyshift=1-x1;
x1=1;
x1Spark=xyshift+1;
end
if x2>Xdim
xyshift=x2-Xdim;
x2=Xdim;
x2Spark=PSFsiz(1)-xyshift;
end
y1=j-(PSFsiz(2)-1)/2;
y2=j+(PSFsiz(2)-1)/2;
y1Spark=1;
y2Spark=PSFsiz(2);
if y1<1
xyshift=1-y1;
y1=1;
y1Spark=xyshift+1;
end
if y2>Ydim
xyshift=y2-Ydim;
y2=Ydim;
y2Spark=PSFsiz(2)-xyshift;
end
currPSF=PSF(x1Spark:x2Spark,y1Spark:y2Spark).*bw(x1:x2,y1:y2);
currPSF_sum=sum(currPSF(:));
if currPSF_sum==0;
continue;
else
currPSF=currPSF/currPSF_sum;
end
currPSF=currPSF*I(k,j);
Icon(x1:x2,y1:y2)=Icon(x1:x2,y1:y2)+currPSF;
end
end
end
function varargout=SparkDsptSimAllInOneV1_2(varargin)
%% Spark simulation with decriptive model.
%% Input.
p=inputParser;
% Parameters for the HillExp function.
p.addParameter('Mu',30,@(x)isscalar(x)); % In millisecond.
p.addParameter('Sigma',6,@(x)isscalar(x)); % In millisecond.
p.addParameter('Tau',40,@(x)isscalar(x)); % In millisecond.
% Parameters for the FWHM function.
p.addParameter('FWHMMax',0.56,@(x)isscalar(x)); % In micrometer.
p.addParameter('TauFWHM',15,@(x)isscalar(x)); % In millisecond.
p.addParameter('SpR',0.28,@(x)isscalar(x)); % In micrometer.
p.addParameter('TpR',1,@(x)isscalar(x)); % In millisecond.
p.addParameter('DecayLimit',0.001,@(x)isscalar(x) && x<=0.01 && x>0);
parse(p, varargin{:});
p=p.Results;
clear('varargin')
%% 2D Gaussian surface on X and Y, and ExpExp on temporal dimension.
% p(1), amplitude; p(2), mu; p(3), exponential tau; p(4), gaussian sigma.
GauConvExpFWHM=@(FWHMMax,T,Mu,TauFWHM) FWHMMax*(1-exp((-(T-Mu)./TauFWHM))).*((1-exp((...
-(T-Mu)./TauFWHM)))>0)+1e-9;
GauConvExp=@(x,AmpMax,Mu,Tau,Sigma) AmpMax/2.*exp((Sigma^2+2*Tau*(Mu-x))/2/Tau^2).*(1-(Sigma^2+...
Tau*(Mu-x))./abs(Sigma^2+Tau*(Mu-x)).*erf(abs(Sigma^2+Tau*(Mu-x))/sqrt(2)/Sigma/Tau));
GauConvExpSpark=@(X,Y,T,FWHMMax,Mu,TauFWHM,AmpMax,Tau,Sigma) exp(-(X.^2+Y.^2)/2./(...
GauConvExpFWHM(FWHMMax,T,Mu,TauFWHM)).^2).*GauConvExp(T,AmpMax,Mu+Sigma*2,Tau,Sigma);
%% Dimensions.
tlen=-p.Tau*log(p.DecayLimit)+round(p.Mu);
T=0:p.TpR:tlen;
PositivePart=0:p.SpR:p.FWHMMax*3; NegativePart=sort(PositivePart(2:end),'descend')*(-1);
XYrange=[NegativePart PositivePart];
[X,Y,T]=ndgrid(XYrange,XYrange,T);
clear('tlen','PositivePart','NegativePart','XYrange')
%% Generate spark.
spark=GauConvExpSpark(X,Y,T,p.FWHMMax,p.Mu,p.TauFWHM,1,p.Tau,p.Sigma);
clear('X','Y','T','HillexpampSpark','Amp','FWHM')
%% Normalization.
spark=spark/max(spark(:));
%% Remove zeros in the matrix / Shrink the matrix.
spark_positive_index=find(spark>0);
[spark_x,spark_y,spark_t]=ind2sub(size(spark),spark_positive_index);
spark=spark(min(spark_x):max(spark_x),min(spark_y):max(spark_y),min(spark_t):max(spark_t));
%% Output.
if nargout==1
varargout(1) = {spark};
end
if nargout==2
varargout(1) = {spark};
varargout(2) = {linescan};
end
end
function I=generateCaReleaseProbabilityMap(Xdim,xspace,Ydim,yspace)
sizsigma=0.5; % pixel; 0.107um.
Gau2D=@(x,y,x0,y0,sigma) exp(-((x-x0).^2+(y-y0).^2)/2/sigma^2);
I=zeros(Xdim,Ydim);
[x,y]=ndgrid(1:Xdim,1:Ydim);
x0=1:xspace:Xdim;
y0=1:yspace:Ydim;
for k=1:numel(x0)
for j=1:numel(y0)
I=I+Gau2D(x,y,x0(k),y0(j),sizsigma);
end
end
I=I/max(I(:));
end
function [xPos,yPos]=generateCaReleaseProbabilityReleasePos(P,NumCaR)
[x,y]=ndgrid(1:size(P,1),1:size(P,2));
P=round(P*NumCaR/sum(P(:)));
xPos=[]; yPos=[];
for k=1:size(P,1)
for j=1:size(P,2)
if P(k,j)>0
currX=ones(P(k,j),1)*x(k,j); xPos=cat(1,xPos,currX);
currY=ones(P(k,j),1)*y(k,j); yPos=cat(1,yPos,currY);
end
end
end
end
function [PSF,CaDiffuse]=generatePSF(xyt_dim,ApparentDiffusionK)
CaDiffuse=@(t,D,x,y) exp(-(x.^2+y.^2)/(4*D*t));
CaDiffuseSize=-30:xyt_dim(1):30;
if mod(numel(CaDiffuseSize),2)==0
CaDiffuseSize=numel(CaDiffuseSize)/2;
CaDiffuseSize=0:xyt_dim(1):xyt_dim(1)*CaDiffuseSize;
CaDiffuseSize=cat(2,-fliplr(CaDiffuseSize(2:end)),CaDiffuseSize);
end
[x,y]=ndgrid(CaDiffuseSize,CaDiffuseSize);
PSF=CaDiffuse(xyt_dim(3)/1000,ApparentDiffusionK,x,y);
PSF_bw=PSF>max(PSF(:))*0.001;
PSF_bw=sum(PSF_bw,2);
PSF_bw=ceil(sum(PSF_bw>0)/2);
PSF_siz=(size(PSF,1)+1)/2;
PSF=PSF((PSF_siz-PSF_bw):(PSF_siz+PSF_bw),(PSF_siz-PSF_bw):(PSF_siz+PSF_bw));
PSF=PSF/sum(PSF(:));
end
|
github
|
qhtian/CaCLEAN-master
|
CRUProps.m
|
.m
|
CaCLEAN-master/CRUProps.m
| 4,738 |
utf_8
|
a2eda4c85d87bd1571b297501878765c
|
function CleanObj=CRUProps(CleanObj)
%% CleanObj=CRUProps(CleanObj);
% CRUProps segments the calcium release map and calculates the
% properties of single Calcium Release Units (CRU).
%
% Qinghai Tian
% Institute for Molecular Cellbiology
% Medical Facalty of University of
% Saarland.
% Homburg, Germany.
% [email protected]
%% Some parameters.
xyt_dim=CleanObj(1).xyt_dim;
% Some temporary parameters;
minimumPixelNumPerCluster=0.2/xyt_dim(1)/xyt_dim(2); % um^2, 2.8 Pixels
clusterTerritoryRadius=ceil(0.5/xyt_dim(1)); % 1.5 um.
localThrsholdNormalizedToLocalMax=0.05;
%% Calculation start here.
hLocalMax=fspecial('disk',clusterTerritoryRadius);
hLocalMax=hLocalMax==max(hLocalMax(:));
for k=1:numel(CleanObj)
% Calculate the dF/F0
currMask=CleanObj(k).Mask;
I=double(CleanObj(k).CaRelease2D)./double(CleanObj(k).DataBgr);
I=I.*(I>0).*currMask;
I(isnan(I))=0;
I=I.*(I>CleanObj(k).CaCleanThreshold/mean(CleanObj(k).DataBgr(CleanObj(k).Mask))); % Just to remove values close to zero.
% Local max mask.
localMaxMask=imlocalmax2d(I,hLocalMax);
localMaxMask=(I>(localMaxMask*localThrsholdNormalizedToLocalMax));
% Watershed
CRULabel=watershed(-I);
CRULabel=single(CRULabel).*currMask.*localMaxMask;
CRULabelProps=regionprops(CRULabel,I,'BoundingBox','WeightedCentroid','Area');
CRUnum=numel(CRULabelProps);
FWHM=nan(numel(CRULabelProps),1);
Amp=nan(numel(CRULabelProps),1);
Isiz=size(I);
parfor j=1:CRUnum
if CRULabelProps(j).Area<minimumPixelNumPerCluster; continue; end
currProps=CRULabelProps(j).BoundingBox;
x1=ceil(currProps(2)); if x1<1; x1=1; end
x2=floor(x1+currProps(4)); if x2>Isiz(1);x2=Isiz(1); end %#ok<PFBNS>
y1=ceil(currProps(1)); if y1<1; y1=1; end
y2=floor(y1+currProps(3)); if y2>Isiz(2);y2=Isiz(2); end
currBW=CRULabel(x1:x2,y1:y2)==j; %#ok<PFBNS>
currCRU=I(x1:x2,y1:y2); %#ok<PFBNS>
currCRU=currCRU.*currBW;
[FWHM(j),Amp(j)]=PeakFitting(currCRU,currBW);
end
for j=CRUnum:-1:1
if isnan(FWHM(j))
CRULabel(CRULabel==j)=0;
CRULabelProps(j)=[];
Amp(j)=[];
FWHM(j)=[];
else
CRULabelProps(j).FWHM=FWHM(j)*xyt_dim(1);
CRULabelProps(j).Amp=Amp(j);
end
end
CleanObj(k).CaRelease2D_dFF0=I;
CleanObj(k).CRUProps=CRULabelProps;
CleanObj(k).CRULabel=CRULabel;
CleanObj(k).CV_IntraCaTClusterFiring=std(Amp)/mean(Amp)*100;
fprintf('\t%d\tNumCluster=%0.0f\n',k,numel(CRULabelProps));
end
CV_InterCaTClusterFiring=calculateCVinterCaT(cat(3,CleanObj.CRULabel),cat(3,CleanObj.CaRelease2D_dFF0));
for k=1:numel(CleanObj)
CleanObj(k).CV_InterCaTClusterFiring=CV_InterCaTClusterFiring(k);
end
end
function [FWHM,Amp]=PeakFitting(I,mask)
I=double(I);
[sizey,sizex] = size(I);
%% Get center of mass, amplitude, and sigma.
[X,Y]=ndgrid(1:sizey,1:sizex);
bwMaxLoc=(I==max(I(:)));
cx=X(bwMaxLoc); if numel(cx)>1; cx=cx(1); end
cy=Y(bwMaxLoc); if numel(cy)>1; cy=cy(1); end
distance=sqrt((X-cx).^2+(Y-cy).^2);
sigma=sqrt(sum(mask(:))/pi)/2;
distance=distance(mask);
I=I(mask);
I_max=max(I);
Dis_max=max(distance);
%% Do a Gaussian fitting with mu=0 and Bgr=0.
Gau=@(x,p)p(1)*exp(-x.^2/2/p(2)^2);
fun_dev=@(x,y,p)sum((Gau(x,p)-y).^2);
options=optimset('MaxIter',100000000,'Display','off');
p=fminsearchbnd(@(p)fun_dev(distance,I,p),[I_max sigma],...
[I_max/10 sigma/10], [I_max*20 Dis_max*3],options);
FWHM=p(2)*2;
Amp=p(1);
end
function CV=calculateCVinterCaT(ClusterLabel,I)
Isiz=size(ClusterLabel,3);
CV=nan(Isiz,1);
bw=ClusterLabel>0;
for k=1:Isiz
currBW=bw(:,:,k);
ImProps=regionprops(currBW,I(:,:,k),'Area','MeanIntensity');
ImProps=[ImProps(:).MeanIntensity]'.*[ImProps(:).Area]';
ImProps=repmat(ImProps,[1,Isiz]);
for j=1:Isiz
if j==k; continue; end
currImProps=regionprops(currBW,I(:,:,j),'Area','MeanIntensity');
currImProps=[currImProps(:).MeanIntensity]'.*[currImProps(:).Area]';
ImProps(:,j)=currImProps;
end
currCV=std(ImProps,0,2)./mean(ImProps,2)*100;
CV(k)=mean(currCV);
end
end
|
github
|
thisjunjiang/Differential_Privacy-master
|
AddLapNoise.m
|
.m
|
Differential_Privacy-master/AddLapNoise.m
| 359 |
utf_8
|
23a58f6a506b0a3129a36ffbfd6d0969
|
% This function adds noise directly to the probability.
% sens is sensitivity. epsilon is the privacy parameter.
% what should the sens be?
function Pij_hat = AddLapNoise(Pij,sens,epsilon)
[m,n]=size(Pij);
lambda = sens/epsilon;
Delta_ij = laprnd(0,lambda,m,n);
Pij_hat = Pij + Delta_ij;
Pij_hat(Pij_hat<0)=0;
Pij_hat(Pij_hat>1)=1;
end
|
github
|
thisjunjiang/Differential_Privacy-master
|
cdf_poibin.m
|
.m
|
Differential_Privacy-master/cdf_poibin.m
| 1,248 |
utf_8
|
da7ac8bdb397026095cc495e86240ca9
|
% This function calculates the pmf and cdf of the poisson binomial
% distribution. This function has been verified with the library provided
% by Yili Hong in R.
% function [a,b,pmf,cdf]=cdf_poibin(Pij,sens,epsilon)
% Pij_hat = AddLapNoise(Pij,sens,epsilon)
function [a,b,pmf,cdf]=cdf_poibin(Pij_hat)
i = sqrt(-1);
%[m,n] = size(Pij_hat);
Pj = Pij_hat(:);
%num = m*n;
num = length(Pj);
omega = 2*pi/(num + 1);
Z = zeros(num,num);
for l = 1:num
Z(:,l)=cos(omega*l)+i*sin(omega*l);
end
Z = bsxfun(@plus,(1-Pj),bsxfun(@times,Pj,Z));
Z_modu = abs(Z);
Z_arg = atan2(imag(Z),real(Z)); %Z_arg = angle(Z);
d = exp(sum(log(Z_modu)));
Z_argtemp = sum(Z_arg);
a = d.*cos(Z_argtemp);
b = d.*sin(Z_argtemp);
x = a + i*b;
x = [1,x];
xx = x/(num+1);
pmf = real(fft(xx));
cdf = zeros(1,num+1);
for k = 1:num+1
cdf(1,k)= sum(pmf(1:k));
end
% generate a count according to the cdf
count = Generate(cdf);
end
% This function generates a count of events according to the input cdf.
function count = Generate(cdf)
temp = rand(1);
cdf_temp = temp - cdf;
count_temp = find(cdf_temp<=0);
count = count_temp(1)-1;
end
|
github
|
thisjunjiang/Differential_Privacy-master
|
CGenerate.m
|
.m
|
Differential_Privacy-master/CGenerate.m
| 837 |
utf_8
|
502570713b69ea5fb6c30994d93c6393
|
% This function generates a count of events using counts
function count = CGenerate(x1,y1,x2,y2)
counts = getCounts(x1,y1,x2,y2);
% min_count = min(counts);
% max_count = max(counts);
% num_bins = max_count - min_count + 1;
% h = histogram(counts, num_bins);
% hvalues = h.Values;
%
% length = sum(hvalues~=0);
% hcounts = zeros(length,2);
[hcounts(:,2),hcounts(:,1)] = hist(counts, unique(counts));
len = length(hcounts);
hprobs = zeros(len,1);
hprobs(2:len,1) = AddLapNoise2(hcounts(2:len,2),1,0.5);
if sum(hprobs)<1
hprobs(1,1) = 1-sum(hprobs);
else
hprobs(1,1) = 0;
end
counts_cdf = cumsum(hprobs(:,1));
temp = rand(1);
cdf_temp = temp - counts_cdf;
count_temp = find(cdf_temp<=0);
count = hcounts(count_temp(1),1);
end
|
github
|
thisjunjiang/Differential_Privacy-master
|
MapGenerate2.m
|
.m
|
Differential_Privacy-master/MapGenerate2.m
| 366 |
utf_8
|
e57411f6b83cbfdd5c7dd4b2ffe39926
|
% This funciton generates a map using counts.
function map = MapGenerate2(x_start, y_start, M, N, medium)
map = zeros(M,N);
for i = 1:M
x1 = x_start+medium*(i-1);
x2 = x1+medium-1;
for j = 1:N
y1 = y_start+medium*(j-1);
y2 = y1+medium-1;
map(i,j) = CGenerate(x1,y1,x2,y2);
end
end
end
|
github
|
thisjunjiang/Differential_Privacy-master
|
getCounts.m
|
.m
|
Differential_Privacy-master/getCounts.m
| 881 |
utf_8
|
44370df0336cfc38845edf9dd835dff5
|
% This function gets event counts for this area for each time interval.
% x1, y1, x2, y2 are all coordinates in the map matrix, i.e starting from 1.
function counts = getCounts(x1, y1, x2, y2)
global m;
global total_intervals;
global x_min;
global y_max;
global data;
counts = zeros(1, total_intervals);
curr_interval = 1;
for k = 1:m
x_temp = y_max-data(k,3)+1;
y_temp = data(k,2)-x_min+1;
if x_temp >= x1 && x_temp <= x2 && y_temp >= y1 && y_temp <= y2
if data(k,1) == curr_interval
counts(1,curr_interval) = counts(1,curr_interval)+1;
else
curr_interval = curr_interval+1;
counts(1,curr_interval) = counts(1,curr_interval)+1;
end
end
end
end
% With the counts, you can fit a distribution. Refer histfit() in MATLAB.
|
github
|
thisjunjiang/Differential_Privacy-master
|
AddLapNoise2.m
|
.m
|
Differential_Privacy-master/AddLapNoise2.m
| 1,878 |
utf_8
|
a7140fcdbde5098ebc5a2b91d588dbb4
|
% This function adds noise to the counts.
% Nij is the count of each cell. M is the total intervals.
% sens here should be 1
function Pij_hat = AddLapNoise2(Nij,sens,epsilon)
global total_intervals;
[m,n]=size(Nij);
lambda = sens/epsilon;
Delta_ij = laprnd(0,lambda,m,n);
Nij_hat = Nij + Delta_ij;
Pij_hat = Nij_hat/total_intervals;
Pij_hat(Pij_hat<0)=0;
Pij_hat(Pij_hat>1)=1;
end
% The Gaussian mechanism with parameter sigma adds noise scaled to
% N(0,sigma^2) to each of the d components.
% R = normrnd(MU,SIGMA,m,n) % MU--mena, SIGMA--standard variance
% This function adds Gaussian noise to the probabilities.
function Pij_hat = AddGauNoise(Pij,sens2,epsilon,delta)
% epsilon (0,1), delta should be small
% c^2 > 2ln(1.25/delta)
c = sqrt(2*log(1.25/delta));
% sigma >= c*sens2/epsilon
sigma = c*sens2/epsilon;
[m,n]=size(Nij);
Delta_ij = normrnd(0,sigma,m,n);
Pij_hat = Pij + Delta_ij;
Pij_hat(Pij_hat<0)=0;
Pij_hat(Pij_hat>1)=1;
end
% This function adds Gaussian noise to the counts.
function Pij_hat = AddGauNoise2(Nij,M,sens2,epsilon)
% epsilon (0,1)
% c^2 > 2ln(1.25/delta)
c = sqrt(2*log(1.25/delta));
% sigma >= c*sens/epsilon
sigma = c*sens2/epsilon;
[m,n]=size(Nij);
Delta_ij = normrnd(0,sigma,m,n);
Nij_hat = Nij + Delta_ij;
Pij_hat = Nij_hat/M;
Pij_hat(Pij_hat<0)=0;
Pij_hat(Pij_hat>1)=1;
end
% This function generates m*n laplace noise.
function x = laprnd(mu,lambda,m,n)
% mu is mean, sigma >= 0 is standard deviation, lambda is a scale parameter.
% m and n represent the number of rows and columns of the generated random
% matrix
% sigma = sqrt(2)*b;
% lambda = sigma/sqrt(2);
u = rand(m,n)-0.5;
x = mu - lambda*sign(u).*log(1-2*abs(u));
end
% test laplace distribution
% x = laprnd(0,1,1,10000); mean(x); std(x); hist(x,100)
|
github
|
thisjunjiang/Differential_Privacy-master
|
MapGenerate1.m
|
.m
|
Differential_Privacy-master/MapGenerate1.m
| 388 |
utf_8
|
c56c8583444cd8b238f92484385e33e4
|
% This funciton generates a map using the model of poisson binomial.
function map = MapGenerate1(x_start, y_start, M, N, medium)
map = zeros(M,N);
for i = 1:M
x1 = x_start+medium*(i-1);
x2 = x1+medium-1;
for j = 1:N
y1 = y_start+medium*(j-1);
y2 = y1+medium-1;
map(i,j) = PBGenerate(x1,y1,x2,y2);
end
end
end
|
github
|
thisjunjiang/Differential_Privacy-master
|
BGenerate.m
|
.m
|
Differential_Privacy-master/BGenerate.m
| 409 |
utf_8
|
11b420035623e282b4995c397d88cea1
|
% This function generates a count of events using bernoulli distribution
function count = BGenerate(x1,y1,x2,y2)
count = 0;
[count_cells, ~] = getProb(x1, y1, x2, y2);
Pij_hat = AddLapNoise2(count_cells,1,0.5); %laplacian noise added
Pj = Pij_hat(:);
num = length(Pj);
for i = 1:num
temp = rand(1);
if(temp <= Pj(i))
count = count+1;
end
end
end
|
github
|
thisjunjiang/Differential_Privacy-master
|
PBGenerate.m
|
.m
|
Differential_Privacy-master/PBGenerate.m
| 391 |
utf_8
|
af971d679e3a7ef717bafd6ef86d79d3
|
% This function generates a count of events according to poison binomial
function count = PBGenerate(x1,y1,x2,y2)
[count_cells, ~] = getProb(x1, y1, x2, y2);
Pij_hat = AddLapNoise2(count_cells,1,0.5); %laplacian noise added
[~,~,~,cdf] = cdf_poibin(Pij_hat);
temp = rand(1);
cdf_temp = temp - cdf;
count_temp = find(cdf_temp<=0);
count = count_temp(1)-1;
end
|
github
|
thisjunjiang/Differential_Privacy-master
|
pmf_poibin.m
|
.m
|
Differential_Privacy-master/pmf_poibin.m
| 1,347 |
utf_8
|
e1828fe0509a80d671a1a96d8966f0cf
|
function [a,b,pmf]=cdf_poibin(Pij_hat)
i = sqrt(-1);
%[m,n] = size(Pij_hat);
Pj = Pij_hat(:);
%num = m*n;
num = length(Pj);
omega = 2*pi/(num + 1);
Z = zeros(num,num);
for l = 1:num
Z(:,l)=cos(omega*l)+i*sin(omega*l)
end
Z = bsxfun(@plus,(1-Pj),bsxfun(@times,Pj,Z));
Z_modu = abs(Z);
Z_arg = atan2(imag(Z),real(Z)); %Z_arg = angle(Z);
d = exp(sum(log(Z_modu)));
Z_argtemp = sum(Z_arg);
a = d.*cos(Z_argtemp);
b = d.*sin(Z_argtemp);
x = a + i*b;
x = [1,x];
xx = x/(num+1);
pmf = fft(xx);
end
% The function adds noise directly to the probability.
function Pij_hat = AddNoise(Pij,sens,epsilon)
[m,n]=size(Pij);
lambda = sens/epsilon;
Delta_ij = laprnd(0,lambda,m,n);
Pij_hat = Pij + Delta_ij;
Pij_hat(Pij_hat<0)=0;
Pij_hat(Pij_hat>1)=1;
end
% The function adds noise to the counts.
function AddNoise2(Nij,M,sens,epsilon)
end
function x = laprnd(mu,lambda,m,n)
%mu is mean, sigma >= 0 is standard deviation, lambda is a scale parameter.
% m and n represent the number of rows and columns of the generated random
% matrix
% sigma = sqrt(2)*b;
% lambda = sigma/sqrt(2);
u = rand(m,n)-0.5;
x = mu - lambda*sign(u).*log(1-2*abs(u));
end
%test laplace distribution
%x = laprnd(0,1,1,10000); mean(x); std(x); hist(x,100)
|
github
|
thisjunjiang/Differential_Privacy-master
|
MapGenerate3.m
|
.m
|
Differential_Privacy-master/MapGenerate3.m
| 398 |
utf_8
|
5b0982a6ac8ea8f77f8787d6f4a7b924
|
% This funciton generates a map based on bernoulli distribution of each cell.
function map = MapGenerate3(x_start, y_start, M, N, medium)
map = zeros(M,N);
for i = 1:M
x1 = x_start+medium*(i-1);
x2 = x1+medium-1;
for j = 1:N
y1 = y_start+medium*(j-1);
y2 = y1+medium-1;
map(i,j) = BGenerate(x1,y1,x2,y2);
end
end
end
|
github
|
HanyangLiu/BCLS-master
|
BalanceEvl.m
|
.m
|
BCLS-master/BalanceEvl.m
| 623 |
utf_8
|
168b5e79f43097e1e018048dde2d7844
|
%% Normalized Entropy
% Evaluate the balance of the distribution of the clustering
function [entro, stDev, RME] = BalanceEvl(k, N_cluster)
aa = [];
bb = [];
for i=1:k
N = sum(N_cluster);
Ni = N_cluster(i)+eps;
a = Ni/N * log(Ni/N);
aa(i) = a;
b = (Ni-N/k)^2;
bb(i) = b;
end
entro = -1/(log(k)) * sum(aa); % Entropy of the cluster distribution; (0,1)
stDev = (1/(k-1)*sum(bb))^(1/2); % Standard deviation in cluster size (SDCS)
RME = (min(N_cluster))/(N/k); % ratio of minimum to expected (RME); (0,1)
end
|
github
|
HanyangLiu/BCLS-master
|
BCLS_ALM.m
|
.m
|
BCLS-master/BCLS_ALM.m
| 1,455 |
utf_8
|
2a844bb16dc96d459a84fd2bcf2cba46
|
%
function [ID, Y, Obj] = BCLS_ALM(X, Y, gamma, lam, mu)
% BCLS_ALM
% min_Y,W,b ||X'W+1b'-Y||^2 + gamma*||W||^2 + lam*Tr(Z'11'Z) + mu/2*||Y-Z + 1/mu*Lambda||^2
% INPUT:
% X: data matrix (d by n), already processed by PCA with 80%~90% information preserved
% Y: randomly initialized label matrix (n by c)
% Parameters: gamma and lam are the parameters respectively corresponding to Eq.(13) in the paper
% OUTPUT:
% ID: indicator vector (n by 1)
% Y: generated label matrix (b by c)
ITER = 1200;
[dim, n] = size(X);
H = eye(n) - 1/n*ones(n);
X = X*H;
c = size(Y,2); % number of clusters
Lambda = zeros(n,c);
rho = 1.005;
P = eye(dim)/(X*X'+gamma*eye(dim));
for iter = 1:ITER
display(['Solving alternatively...',num2str(iter)]);
% Solve W and b
W = P*(X*Y);
b = mean(Y)';
E = X'*W + ones(n,1)*b' - Y;
% Solve Z
% Z = (mu*eye(n)+2*lam*ones(n))\(mu*Y + Lambda); % original solution - O(n^3)
Z = (-2*lam*ones(n)+(mu+2*n*lam)*eye(n))/(mu^2+2*n*lam*mu)*(mu*Y+Lambda); % new solution - O(n^2)
% Solve Y
V = 1/(2+mu)*(2*X'*W + 2*ones(n,1)*b' + mu*Z - Lambda);
[~, ind] = max(V,[],2);
Y = zeros(n,c);
Y((1:n)' + n*(ind-1)) = 1;
% Update Lambda and mu according to ALM
Lambda = Lambda + mu*(Y-Z);
mu = min(mu*rho, 10^5);
% Objective value
Obj(iter) = trace(E'*E) + gamma*trace(W'*W) + lam*trace(Y'*ones(n)*Y);
end;
[~,ID] = max(Y,[],2);
end
|
github
|
AlokD123/Hybrid-Storage_Project-master
|
DesignMtx.m
|
.m
|
Hybrid-Storage_Project-master/Numerical_Solutions/DesignMtx.m
| 12,483 |
utf_8
|
271b07e5f2563a4faf351acba24474c4
|
function Phi = DesignMtx(indepvar,depvar,modelterms)
% DesigMtx creates a general polynomial regression design matrix
% (n-th order polynomial fit, ALL terms included)
%
% Adapted from Polyfitn... Refer to license at end
% Source: https://www.mathworks.com/matlabcentral/fileexchange/34765-polyfitn
% Date: June 1, 2018
%
% Polyfitn fits a polynomial regression model of one or more
% independent variables, of the general form:
%
% z = f(x,y,...) + error
%
% arguments: (input)
% indepvar - (n x p) array of independent variables as columns
% n is the number of data points
% p is the dimension of the independent variable space
%
% IF n == 1, then I will assume there is only a
% single independent variable.
%
% depvar - (n x 1 or 1 x n) vector - dependent variable
% length(depvar) must be n.
%
% Only 1 dependent variable is allowed, since I also
% return statistics on the model.
%
% modelterms - defines the terms used in the model itself
%
% IF modelterms is a scalar integer, then it designates
% the overall order of the model. All possible terms
% up to that order will be employed. Thus, if order
% is 2 and p == 2 (i.e., there are two variables) then
% the terms selected will be:
%
% {constant, x, x^2, y, x*y, y^2}
%
% Beware the consequences of high order polynomial
% models.
%
% IF modelterms is a (k x p) numeric array, then each
% row of this array designates the exponents of one
% term in the model. Thus to designate a model with
% the above list of terms, we would define modelterms as
%
% modelterms = [0 0;1 0;2 0;0 1;1 1;0 2]
%
% If modelterms is a character string, then it will be
% parsed as a list of terms in the regression model.
% The terms will be assume to be separated by a comma
% or by blanks. The variable names used must be legal
% matlab variable names. Exponents in the model may
% may be any real number, positive or negative.
%
% For example, 'constant, x, y, x*y, x^2, x*y*y'
% will be parsed as a model specification as if you
% had supplied:
% modelterms = [0 0;1 0;0 1;1 1;2 0;1 2]
%
% The word 'constant' is a keyword, and will denote a
% constant terms in the model. Variable names will be
% sorted in alphabetical order as defined by sort.
% This order will assign them to columns of the
% independent array. Note that 'xy' will be parsed as
% a single variable name, not as the product of x and y.
%
% If modelterms is a cell array, then it will be taken
% to be a list of character terms. Similarly,
%
% {'constant', 'x', 'y', 'x*y', 'x^2', 'x*y^-1'}
%
% will be parsed as a model specification as if you
% had supplied:
%
% modelterms = [0 0;1 0;0 1;1 1;2 0;1 -1]
%
% Arguments: (output)
% polymodel - A structure containing the regression model
% polymodel.ModelTerms = list of terms in the model
% polymodel.Coefficients = regression coefficients
% polymodel.ParameterVar = variances of model coefficients
% polymodel.ParameterStd = standard deviation of model coefficients
% polymodel.DoF = Degrees of freedom remaining
% polymodel.p = double sided t-probability, as a test against zero
% polymodel.R2 = R^2 for the regression model
% polymodel.AdjustedR2 = Adjusted R^2 for the regression model
% polymodel.RMSE = Root mean squared error
% polymodel.VarNames = Cell array of variable names
% as parsed from a char based model specification.
%
% Note 1: Because the terms in a general polynomial
% model can be arbitrarily chosen by the user, I must
% package the erms and coefficients together into a
% structure. This also forces use of a special evaluation
% tool: polyvaln.
%
% Note 2: A polymodel can be evaluated for any set
% of values with the function polyvaln. However, if
% you wish to manipulate the result symbolically using
% my own sympoly tools, this structure can be converted
% to a sympoly using the function polyn2sympoly. There
% is also a polyn2sym tool, for those who prefer the
% symbolic TB.
%
% Note 3: When no constant term is included in the model,
% the traditional R^2 can be negative. This case is
% identified, and then a more appropriate computation
% for R^2 is then used.
%
% Note 4: Adjusted R^2 accounts for changing degrees of
% freedom in the model. It CAN be negative, and will always
% be less than the traditional R^2 values.
%
% Note 5: DoF is just the number of data points minus the number of
% terms to estimate.
%
% Note 6: p is effectively a 2-sided t-test against the
% corresponding coefficient being zero. So p should be
% near zero.
%
% Example:
% mdl = polyfitn(rand(1000,1),rand(1000,1),4)
% mdl =
% ModelTerms: [5x1 double]
% Coefficients: [0.95506 -2.2363 1.6668 -0.45408 0.55207]
% ParameterVar: [3.7645 15.461 6.9479 0.42831 0.0022732]
% ParameterStd: [1.9402 3.9321 2.6359 0.65446 0.047678]
% DoF: 995
% p: [0.62266 0.56966 0.5273 0.48796 3.5389e-29]
% R2: 0.0021445
% AdjustedR2: -0.001867
% RMSE: 0.2884
% VarNames: {'X1'}
%
% Only the constant term should be significantly different from zero
% in this model. In fact, if we looked at a rough confidence interval
% on that coefficient, we would get
%
% mdl.Coefficients(5) + 2*[-1 1]*mdl.ParameterStd(5)
% ans =
% 0.45672 0.64743
%
% This interval should contain 0.5, as it does.
%
% Find my sympoly toolbox here:
% http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=9577&objectType=FILE
%
% See also: polyvaln, polyfit, polyval, polyn2sympoly, sympoly
%
% Author: John D'Errico
% Release: 2.0
% Release date: 2/19/06
if nargin<1
help polyfitn
return
end
% get sizes, test for consistency
[n,p] = size(indepvar);
if n == 1
indepvar = indepvar';
[n,p] = size(indepvar);
end
[m,q] = size(depvar);
if m == 1
depvar = depvar';
[m,q] = size(depvar);
end
% only 1 dependent variable allowed at a time
if q~=1
error 'Only 1 dependent variable allowed at a time.'
end
if n~=m
error 'indepvar and depvar are of inconsistent sizes.'
end
% check for and remove nans in data
nandata = isnan(depvar) | any(isnan(indepvar),2);
if any(nandata)
depvar(nandata,:) = [];
indepvar(nandata,:) = [];
n = size(indepvar,1);
end
indepvar_s=indepvar;
% do we need to parse a supplied model?
if iscell(modelterms) || ischar(modelterms)
[modelterms,varlist] = parsemodel(modelterms,p);
if size(modelterms,2) < p
modelterms = [modelterms, zeros(size(modelterms,1),p - size(modelterms,2))];
end
elseif length(modelterms) == 1
% do we need to generate a set of modelterms?
[modelterms,varlist] = buildcompletemodel(modelterms,p);
elseif size(modelterms,2) ~= p
error 'ModelTerms must be a scalar or have the same # of columns as indepvar'
else
varlist = repmat({''},1,p);
end
nt = size(modelterms,1);
% check for replicate terms
if nt>1
mtu = unique(modelterms,'rows');
if size(mtu,1)<nt
warning 'Replicate terms identified in the model.'
end
end
% build the design matrix
M = ones(n,nt);
scalefact = ones(1,nt);
for i = 1:nt
for j = 1:p
M(:,i) = M(:,i).*indepvar_s(:,j).^modelterms(i,j);
end
end
% Return design matrix
Phi=M;
% ==================================================
% =============== begin subfunctions ===============
% ==================================================
function [modelterms,varlist] = buildcompletemodel(order,p)
%
% arguments: (input)
% order - scalar integer, defines the total (maximum) order
%
% p - scalar integer - defines the dimension of the
% independent variable space
%
% arguments: (output)
% modelterms - exponent array for the model
%
% varlist - cell array of character variable names
% build the exponent array recursively
if p == 0
% terminal case
modelterms = [];
elseif (order == 0)
% terminal case
modelterms = zeros(1,p);
elseif (p==1)
% terminal case
modelterms = (order:-1:0)';
else
% general recursive case
modelterms = zeros(0,p);
for k = order:-1:0
t = buildcompletemodel(order-k,p-1);
nt = size(t,1);
modelterms = [modelterms;[repmat(k,nt,1),t]];
end
end
% create a list of variable names for the variables on the fly
varlist = cell(1,p);
for i = 1:p
varlist{i} = ['X',num2str(i)];
end
% ==================================================
function [modelterms,varlist] = parsemodel(model,p);
%
% arguments: (input)
% model - character string or cell array of strings
%
% p - number of independent variables in the model
%
% arguments: (output)
% modelterms - exponent array for the model
modelterms = zeros(0,p);
if ischar(model)
model = deblank(model);
end
varlist = {};
while ~isempty(model)
if iscellstr(model)
term = model{1};
model(1) = [];
else
[term,model] = strtok(model,' ,');
end
% We've stripped off a model term. Now parse it.
% Is it the reserved keyword 'constant'?
if strcmpi(term,'constant')
modelterms(end+1,:) = 0;
else
% pick this term apart
expon = zeros(1,p);
while ~isempty(term)
vn = strtok(term,'*/^. ,');
k = find(strncmp(vn,varlist,length(vn)));
if isempty(k)
% its a variable name we have not yet seen
% is it a legal name?
nv = length(varlist);
if ismember(vn(1),'1234567890_')
error(['Variable is not a valid name: ''',vn,''''])
elseif nv>=p
error 'More variables in the model than columns of indepvar'
end
varlist{nv+1} = vn;
k = nv+1;
end
% variable must now be in the list of vars.
% drop that variable from term
i = strfind(term,vn);
term = term((i+length(vn)):end);
% is there an exponent?
eflag = false;
if strncmp('^',term,1)
term(1) = [];
eflag = true;
elseif strncmp('.^',term,2)
term(1:2) = [];
eflag = true;
end
% If there was one, get it
ev = 1;
if eflag
ev = sscanf(term,'%f');
if isempty(ev)
error 'Problem with an exponent in parsing the model'
end
end
expon(k) = expon(k) + ev;
% next monomial subterm?
k1 = strfind(term,'*');
if isempty(k1)
term = '';
else
term(k1(1)) = ' ';
end
end
modelterms(end+1,:) = expon;
end
end
% Once we have compiled the list of variables and
% exponents, we need to sort them in alphabetical order
[varlist,tags] = sort(varlist);
modelterms = modelterms(:,tags);
% Copyright (c) 2016, John D'Errico
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
|
github
|
AlokD123/Hybrid-Storage_Project-master
|
optNextStateLimited.m
|
.m
|
Hybrid-Storage_Project-master/Numerical_Solutions/optNextStateLimited.m
| 1,140 |
utf_8
|
466fa3e5c982b80d4634ca8f4623ce44
|
%Calculate subsequent state accounting for no inherent storage loss when
%dropping below lower bound of state
function [ nextE1,nextE2 ] = optNextStateLimited( E1,E2,D1,D2,L ) % Input: state, controls, load
global E_MIN; global BETA; global ALPHA_D; global ALPHA_C;
newE1=StateEqn1(E1,D1,BETA(1),ALPHA_D(1));
if(newE1<E_MIN(1)) %If below lower bound...
if(StateEqn1(E1,D1,1,ALPHA_D(1))>=E_MIN(1)) %If would not be if with no inherent loss, ASSUME lossless
nextE1=E_MIN(1); %In this case, will drop to lower bound
else
nextE1=newE1; %Else, doesn't matter
end
else
nextE1=newE1;
end
%Repeat for second storage
newE2=StateEqn2(E2,D1,D2,L,BETA(2),ALPHA_C(2),ALPHA_D(2));
if(newE2<E_MIN(2))
if(StateEqn2(E2,D1,D2,L,1,ALPHA_C(2),ALPHA_D(2))>=E_MIN(2))
nextE2=E_MIN(2);
%
elseif(StateEqn2(E2,D1,D2,L,1,1,1)>=E_MIN(2))&&E2<=2
nextE2=E_MIN(2);
%}
else
nextE2=newE2;
end
else
nextE2=newE2;
end
end
|
github
|
AlokD123/Hybrid-Storage_Project-master
|
fitStateExpr.m
|
.m
|
Hybrid-Storage_Project-master/Numerical_Solutions/fitStateExpr.m
| 165 |
utf_8
|
2f7a36491ae3640dc359636cfe073e0c
|
%Expression that is constant for a given state aggregation. Hand-engineered; can be modified here
function [fitExpr] = fitStateExpr(E1,E2,L)
fitExpr=L-E2;
end
|
github
|
AlokD123/Hybrid-Storage_Project-master
|
LimitCtrls.m
|
.m
|
Hybrid-Storage_Project-master/Numerical_Solutions/LimitCtrls.m
| 2,686 |
utf_8
|
7d18067d7e1790b22ce44f979a22b9c0
|
%To limit control (discharge), if would lead to a state out of bounds
function [ D1Opt,D2Opt ] = LimitCtrls( E1,E2,D1Opt,D2Opt,t ) % Input: states, and controls (before saturation), at time t
global MAX_DISCHARGE; global E_MAX; global E_MIN;
global expL_State;
%For D1 control...
if(StateEqn1(E1,D1Opt)>E_MAX(1)) %If next state index would be higher than index of MAX_STATE... (should NOT be possible)
D1Opt=0; %%% NEED TO CHECK!!! %Set control so index of next state is maximum state's index
elseif(StateEqn1(E1,D1Opt)<E_MIN(1)||D1Opt>MAX_DISCHARGE(1)) %If next state index would be lower than index of MIN_STATE -or- discharge too high
D1Opt=min( GetCtrl1_CurrNextState(E1,E_MIN(1)), MAX_DISCHARGE(1)); %Set control so index of next state is minimum state's index, or discharge is limited
end
%Repeated for D2 control...
if(StateEqn2(E2,D1Opt,D2Opt,expL_State(E1-E_MIN(1)+1,E2-E_MIN(2)+1,t))>E_MAX(2))
D2Opt=GetCtrl2_CurrNextState(E2,E_MAX(2),D1Opt,expL_State(E1-E_MIN(1)+1,E2-E_MIN(2)+1,t)); %Set control so index of next state is maximum state's index <------------ %%% NEED TO CHECK that D2>=0 !!!!!
elseif(StateEqn2(E2,D1Opt,D2Opt,expL_State(E1-E_MIN(1)+1,E2-E_MIN(2)+1,t))<E_MIN(2)||D2Opt>MAX_DISCHARGE(2))
D2=min( GetCtrl2_CurrNextState(E2,E_MIN(2),D1Opt,expL_State(E1-E_MIN(1)+1,E2-E_MIN(2)+1,t)), MAX_DISCHARGE(2)); %Set control so index of next state is minimum state's index, or discharge is limited
%If still leads to out of bounds, increase nextE2 up to E_MAX(2)-1, and then decrease D1 down to 0
% (IN THAT ORDER, to minimize cost)
if( StateEqn2(E2,D1Opt,D2,expL_State(E1-E_MIN(1)+1,E2-E_MIN(2)+1,t))>E_MAX(2) )
nextE2=E_MIN(2);
while(nextE2<=(E_MAX(2)-1) && GetCtrl2_CurrNextState(E2,nextE2,D1Opt,expL_State(E1-E_MIN(1)+1,E2-E_MIN(2)+1,t))>MAX_DISCHARGE(2))
nextE2=nextE2+1;
end
D1=D1Opt;
while(D1>=1 && GetCtrl2_CurrNextState(E2,nextE2,D1,expL_State(E1-E_MIN(1)+1,E2-E_MIN(2)+1,t))>MAX_DISCHARGE(2) && StateEqn1(E1,D1)<E_MAX(1))
if( GetCtrl2_CurrNextState(E2,nextE2,D1-1,expL_State(E1-E_MIN(1)+1,E2-E_MIN(2)+1,t)) >=0) %If discharging remains positive, decrease
D1=D1-1;
else
if(GetCtrl2_CurrNextState(E2,nextE2-1,D1Opt,expL_State(E1-E_MIN(1)+1,E2-E_MIN(2)+1,t)) < MAX_DISCHARGE(2))
nextE2=nextE2-1;
end
break;
end
end
D1Opt=D1;
D2Opt=GetCtrl2_CurrNextState(E2,nextE2,D1Opt,expL_State(E1-E_MIN(1)+1,E2-E_MIN(2)+1,t));
else
D2Opt=D2;
end
end
end
|
github
|
AlokD123/Hybrid-Storage_Project-master
|
optNextStateLimited_v2.m
|
.m
|
Hybrid-Storage_Project-master/Numerical_Solutions/optNextStateLimited_v2.m
| 1,266 |
utf_8
|
231806c780862cf556c4dc91ebea80f8
|
%Calculate subsequent state accounting for no inherent storage loss when dropping below lower bound of state.
%V2: added regenerative braking
function [ nextE1,nextE2 ] = optNextStateLimited_v2( E1,E2,D1,D2,C2,L ) % Input: state, controls, load
global E_MIN; global BETA; global ALPHA_C; global ALPHA_D;
newE1=StateEqn1_wRegenBraking(E1,D1,D2,C2,L,BETA(1));
if(newE1<E_MIN(1)) %If below lower bound...
if(StateEqn1_wRegenBraking(E1,D1,D2,C2,L,1)>=E_MIN(1)) %If would not be if with no inherent loss, ASSUME lossless
nextE1=E_MIN(1); %In this case, will drop to lower bound
else
nextE1=newE1; %Else, doesn't matter
end
else
nextE1=newE1;
end
%Repeat for second storage
newE2=StateEqn2_wRegenBraking(E2,D2,C2,BETA(2),ALPHA_C(2),ALPHA_D(2));
if(newE2<E_MIN(2))
if(StateEqn2_wRegenBraking(E2,D2,C2,1,ALPHA_C(2),ALPHA_D(2))>=E_MIN(2))
nextE2=E_MIN(2);
%{
elseif(StateEqn2(E2,D1,D2,L,1,1,1)>=E_MIN(2))&&E2<=2
nextE2=E_MIN(2);
%}
else
nextE2=newE2;
end
else
nextE2=newE2;
end
end
|
github
|
AlokD123/Hybrid-Storage_Project-master
|
Cuboid.m
|
.m
|
Hybrid-Storage_Project-master/Numerical_Solutions/Cuboid.m
| 727 |
utf_8
|
7fc2a5c64dbf4a9dc4c425819014b110
|
% - B.I SOLID POINT CLOUD CUBOID
function [xp,yp,zp]=Cuboid(x,y,z)
% - Generates coordinates for a solid cuboid composed of points
a=length(x);b=length(y);c=length(z); % assigning for coding simplicity
% B.I.1. Finding all x coordinates
xp=zeros(1,a*b*c); % preallocating
for nx=1:a
if nx==1,xp(1:c*b)=(repmat(x(nx),1,c*b));
else xp(((nx-1)*c*b)+1:nx*c*b)=repmat(x(nx),1,c*b);end
end
% B.I.2. Finding all y coordinates
yp=zeros(1,b*c); % preallocating
for ny=1:b
if ny==1,yp(1:c)=repmat(y(ny),1,c);
else yp(((ny-1)*c)+1:ny*c)=repmat(y(ny),1,c);
end
end
yp=repmat(yp,1,a);
% B.I.3. Finding all z coordinates
zp=repmat(z,1,b*a);
% B.I.4. Coordinates of the cuboid generated.
%P=[xp;yp;zp];
end % To Optimize
|
github
|
AlokD123/Hybrid-Storage_Project-master
|
optNextStateLimited_v3.m
|
.m
|
Hybrid-Storage_Project-master/Numerical_Solutions/optNextStateLimited_v3.m
| 1,253 |
utf_8
|
86d7bab16babedb57764b1a74fa0755e
|
%Calculate subsequent state accounting for no inherent storage loss when dropping below lower bound of state.
%V3: single control, with regenerative braking
function [ nextE1,nextE2 ] = optNextStateLimited_v3( E1,E2,U1,L ) % Input: state, control, load
global E_MIN; global BETA; global ALPHA_C; global ALPHA_D;
newE1=StateEqn1_wRegenBraking_v2(E1,U1,BETA(1));
if(newE1<E_MIN(1)) %If below lower bound...
if(StateEqn1_wRegenBraking_v2(E1,U1,1)>=E_MIN(1)) %If would not be if with no inherent loss, ASSUME lossless
nextE1=E_MIN(1); %In this case, will drop to lower bound
else
nextE1=newE1; %Else, doesn't matter
end
else
nextE1=newE1;
end
%Repeat for second storage
newE2=StateEqn2_wRegenBraking_v2(E2,U1,L,BETA(2),ALPHA_C(2),ALPHA_D(2));
if(newE2<E_MIN(2))
if(StateEqn2_wRegenBraking_v2(E2,U1,L,1,ALPHA_C(2),ALPHA_D(2))>=E_MIN(2))
nextE2=E_MIN(2);
%{
elseif(StateEqn2(E2,U1,L,1,1,1)>=E_MIN(2))&&E2<=2
nextE2=E_MIN(2);
%}
else
nextE2=newE2;
end
else
nextE2=newE2;
end
end
|
github
|
AlokD123/Hybrid-Storage_Project-master
|
GetCtrl1_CurrNextState.m
|
.m
|
Hybrid-Storage_Project-master/Numerical_Solutions/GetCtrl1_CurrNextState.m
| 450 |
utf_8
|
aabfe9276d9d39f326dacdfc78e0c12f
|
%Finds the control value D1 leading to next state E1 from current E1, if BOTH known
%For NO regenerative braking case (uncombined controls)
%Input: E1(t), E1(t+1)
function [ D1Opt_State ] = GetCtrl1_CurrNextState( E1,nextE1 )
global ALPHA_D; global BETA;
D1=round(-ALPHA_D(1)*(nextE1-BETA(1)*E1)); %Allow for rounding -0.5->0 up to 0 (to REDUCE discretization issues)
if D1<0
disp("Error, D1<0\n");
end
D1Opt_State=D1;
end
|
github
|
AlokD123/Hybrid-Storage_Project-master
|
GetCtrl2_CurrNextState.m
|
.m
|
Hybrid-Storage_Project-master/Numerical_Solutions/GetCtrl2_CurrNextState.m
| 596 |
utf_8
|
a2e4a271690f2ca4b4ba92b2d8ebd40e
|
%Finds the control value D1 leading to next state E2 from current E2, if BOTH known
%For NO regenerative braking case (uncombined controls)
%Input: E2(t), E2(t+1), D1 (found from D1Opt_State), and L (particular load for which opt control)
function [ D2Opt_State ] = GetCtrl2_CurrNextState( E2,nextE2,D1Opt_State,L )
global ALPHA_D;global ALPHA_C; global BETA;
D2=round((nextE2-BETA(2)*E2-ALPHA_C(2)*(D1Opt_State-L))/(ALPHA_C(2)-1/ALPHA_D(2))); %Allow for rounding -0.5->0 up to 0 (to REDUCE discretization issues)
if D2<0
disp("Error, D2<0\n");
end
D2Opt_State=D2;
end
|
github
|
koobonil/Boss2D-master
|
readDetection.m
|
.m
|
Boss2D-master/Boss2D/addon/webrtc-jumpingyang001_for_boss/modules/audio_processing/transient/test/readDetection.m
| 927 |
utf_8
|
f6af5020971d028a50a4d19a31b33bcb
|
%
% Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function [d, t] = readDetection(file, fs, chunkSize)
%[d, t] = readDetection(file, fs, chunkSize)
%
%Reads a detection signal from a DAT file.
%
%d: The detection signal.
%t: The respective time vector.
%
%file: The DAT file where the detection signal is stored in float format.
%fs: The signal sample rate in Hertz.
%chunkSize: The chunk size used for the detection in seconds.
fid = fopen(file);
d = fread(fid, inf, 'float');
fclose(fid);
t = 0:(1 / fs):(length(d) * chunkSize - 1 / fs);
d = d(floor(t / chunkSize) + 1);
|
github
|
koobonil/Boss2D-master
|
readPCM.m
|
.m
|
Boss2D-master/Boss2D/addon/webrtc-jumpingyang001_for_boss/modules/audio_processing/transient/test/readPCM.m
| 821 |
utf_8
|
76b2955e65258ada1c1e549a4fc9bf79
|
%
% Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function [x, t] = readPCM(file, fs)
%[x, t] = readPCM(file, fs)
%
%Reads a signal from a PCM file.
%
%x: The read signal after normalization.
%t: The respective time vector.
%
%file: The PCM file where the signal is stored in int16 format.
%fs: The signal sample rate in Hertz.
fid = fopen(file);
x = fread(fid, inf, 'int16');
fclose(fid);
x = x - mean(x);
x = x / max(abs(x));
t = 0:(1 / fs):((length(x) - 1) / fs);
|
github
|
koobonil/Boss2D-master
|
plotDetection.m
|
.m
|
Boss2D-master/Boss2D/addon/webrtc-jumpingyang001_for_boss/modules/audio_processing/transient/test/plotDetection.m
| 923 |
utf_8
|
e8113bdaf5dcfe4f50200a3ca29c3846
|
%
% Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function [] = plotDetection(PCMfile, DATfile, fs, chunkSize)
%[] = plotDetection(PCMfile, DATfile, fs, chunkSize)
%
%Plots the signal alongside the detection values.
%
%PCMfile: The file of the input signal in PCM format.
%DATfile: The file containing the detection values in binary float format.
%fs: The sample rate of the signal in Hertz.
%chunkSize: The chunk size used to compute the detection values in seconds.
[x, tx] = readPCM(PCMfile, fs);
[d, td] = readDetection(DATfile, fs, chunkSize);
plot(tx, x, td, d);
|
github
|
koobonil/Boss2D-master
|
apmtest.m
|
.m
|
Boss2D-master/Boss2D/addon/webrtc-jumpingyang001_for_boss/modules/audio_processing/test/apmtest.m
| 9,874 |
utf_8
|
17ad6af59f6daa758d983dd419e46ff0
|
%
% Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function apmtest(task, testname, filepath, casenumber, legacy)
%APMTEST is a tool to process APM file sets and easily display the output.
% APMTEST(TASK, TESTNAME, CASENUMBER) performs one of several TASKs:
% 'test' Processes the files to produce test output.
% 'list' Prints a list of cases in the test set, preceded by their
% CASENUMBERs.
% 'show' Uses spclab to show the test case specified by the
% CASENUMBER parameter.
%
% using a set of test files determined by TESTNAME:
% 'all' All tests.
% 'apm' The standard APM test set (default).
% 'apmm' The mobile APM test set.
% 'aec' The AEC test set.
% 'aecm' The AECM test set.
% 'agc' The AGC test set.
% 'ns' The NS test set.
% 'vad' The VAD test set.
%
% FILEPATH specifies the path to the test data files.
%
% CASENUMBER can be used to select a single test case. Omit CASENUMBER,
% or set to zero, to use all test cases.
%
if nargin < 5 || isempty(legacy)
% Set to true to run old VQE recordings.
legacy = false;
end
if nargin < 4 || isempty(casenumber)
casenumber = 0;
end
if nargin < 3 || isempty(filepath)
filepath = 'data/';
end
if nargin < 2 || isempty(testname)
testname = 'all';
end
if nargin < 1 || isempty(task)
task = 'test';
end
if ~strcmp(task, 'test') && ~strcmp(task, 'list') && ~strcmp(task, 'show')
error(['TASK ' task ' is not recognized']);
end
if casenumber == 0 && strcmp(task, 'show')
error(['CASENUMBER must be specified for TASK ' task]);
end
inpath = [filepath 'input/'];
outpath = [filepath 'output/'];
refpath = [filepath 'reference/'];
if strcmp(testname, 'all')
tests = {'apm','apmm','aec','aecm','agc','ns','vad'};
else
tests = {testname};
end
if legacy
progname = './test';
else
progname = './process_test';
end
global farFile;
global nearFile;
global eventFile;
global delayFile;
global driftFile;
if legacy
farFile = 'vqeFar.pcm';
nearFile = 'vqeNear.pcm';
eventFile = 'vqeEvent.dat';
delayFile = 'vqeBuf.dat';
driftFile = 'vqeDrift.dat';
else
farFile = 'apm_far.pcm';
nearFile = 'apm_near.pcm';
eventFile = 'apm_event.dat';
delayFile = 'apm_delay.dat';
driftFile = 'apm_drift.dat';
end
simulateMode = false;
nErr = 0;
nCases = 0;
for i=1:length(tests)
simulateMode = false;
if strcmp(tests{i}, 'apm')
testdir = ['apm/'];
outfile = ['out'];
if legacy
opt = ['-ec 1 -agc 2 -nc 2 -vad 3'];
else
opt = ['--no_progress -hpf' ...
' -aec --drift_compensation -agc --fixed_digital' ...
' -ns --ns_moderate -vad'];
end
elseif strcmp(tests{i}, 'apm-swb')
simulateMode = true;
testdir = ['apm-swb/'];
outfile = ['out'];
if legacy
opt = ['-fs 32000 -ec 1 -agc 2 -nc 2'];
else
opt = ['--no_progress -fs 32000 -hpf' ...
' -aec --drift_compensation -agc --adaptive_digital' ...
' -ns --ns_moderate -vad'];
end
elseif strcmp(tests{i}, 'apmm')
testdir = ['apmm/'];
outfile = ['out'];
opt = ['-aec --drift_compensation -agc --fixed_digital -hpf -ns ' ...
'--ns_moderate'];
else
error(['TESTNAME ' tests{i} ' is not recognized']);
end
inpathtest = [inpath testdir];
outpathtest = [outpath testdir];
refpathtest = [refpath testdir];
if ~exist(inpathtest,'dir')
error(['Input directory ' inpathtest ' does not exist']);
end
if ~exist(refpathtest,'dir')
warning(['Reference directory ' refpathtest ' does not exist']);
end
[status, errMsg] = mkdir(outpathtest);
if (status == 0)
error(errMsg);
end
[nErr, nCases] = recurseDir(inpathtest, outpathtest, refpathtest, outfile, ...
progname, opt, simulateMode, nErr, nCases, task, casenumber, legacy);
if strcmp(task, 'test') || strcmp(task, 'show')
system(['rm ' farFile]);
system(['rm ' nearFile]);
if simulateMode == false
system(['rm ' eventFile]);
system(['rm ' delayFile]);
system(['rm ' driftFile]);
end
end
end
if ~strcmp(task, 'list')
if nErr == 0
fprintf(1, '\nAll files are bit-exact to reference\n', nErr);
else
fprintf(1, '\n%d files are NOT bit-exact to reference\n', nErr);
end
end
function [nErrOut, nCases] = recurseDir(inpath, outpath, refpath, ...
outfile, progname, opt, simulateMode, nErr, nCases, task, casenumber, ...
legacy)
global farFile;
global nearFile;
global eventFile;
global delayFile;
global driftFile;
dirs = dir(inpath);
nDirs = 0;
nErrOut = nErr;
for i=3:length(dirs) % skip . and ..
nDirs = nDirs + dirs(i).isdir;
end
if nDirs == 0
nCases = nCases + 1;
if casenumber == nCases || casenumber == 0
if strcmp(task, 'list')
fprintf([num2str(nCases) '. ' outfile '\n'])
else
vadoutfile = ['vad_' outfile '.dat'];
outfile = [outfile '.pcm'];
% Check for VAD test
vadTest = 0;
if ~isempty(findstr(opt, '-vad'))
vadTest = 1;
if legacy
opt = [opt ' ' outpath vadoutfile];
else
opt = [opt ' --vad_out_file ' outpath vadoutfile];
end
end
if exist([inpath 'vqeFar.pcm'])
system(['ln -s -f ' inpath 'vqeFar.pcm ' farFile]);
elseif exist([inpath 'apm_far.pcm'])
system(['ln -s -f ' inpath 'apm_far.pcm ' farFile]);
end
if exist([inpath 'vqeNear.pcm'])
system(['ln -s -f ' inpath 'vqeNear.pcm ' nearFile]);
elseif exist([inpath 'apm_near.pcm'])
system(['ln -s -f ' inpath 'apm_near.pcm ' nearFile]);
end
if exist([inpath 'vqeEvent.dat'])
system(['ln -s -f ' inpath 'vqeEvent.dat ' eventFile]);
elseif exist([inpath 'apm_event.dat'])
system(['ln -s -f ' inpath 'apm_event.dat ' eventFile]);
end
if exist([inpath 'vqeBuf.dat'])
system(['ln -s -f ' inpath 'vqeBuf.dat ' delayFile]);
elseif exist([inpath 'apm_delay.dat'])
system(['ln -s -f ' inpath 'apm_delay.dat ' delayFile]);
end
if exist([inpath 'vqeSkew.dat'])
system(['ln -s -f ' inpath 'vqeSkew.dat ' driftFile]);
elseif exist([inpath 'vqeDrift.dat'])
system(['ln -s -f ' inpath 'vqeDrift.dat ' driftFile]);
elseif exist([inpath 'apm_drift.dat'])
system(['ln -s -f ' inpath 'apm_drift.dat ' driftFile]);
end
if simulateMode == false
command = [progname ' -o ' outpath outfile ' ' opt];
else
if legacy
inputCmd = [' -in ' nearFile];
else
inputCmd = [' -i ' nearFile];
end
if exist([farFile])
if legacy
inputCmd = [' -if ' farFile inputCmd];
else
inputCmd = [' -ir ' farFile inputCmd];
end
end
command = [progname inputCmd ' -o ' outpath outfile ' ' opt];
end
% This prevents MATLAB from using its own C libraries.
shellcmd = ['bash -c "unset LD_LIBRARY_PATH;'];
fprintf([command '\n']);
[status, result] = system([shellcmd command '"']);
fprintf(result);
fprintf(['Reference file: ' refpath outfile '\n']);
if vadTest == 1
equal_to_ref = are_files_equal([outpath vadoutfile], ...
[refpath vadoutfile], ...
'int8');
if ~equal_to_ref
nErr = nErr + 1;
end
end
[equal_to_ref, diffvector] = are_files_equal([outpath outfile], ...
[refpath outfile], ...
'int16');
if ~equal_to_ref
nErr = nErr + 1;
end
if strcmp(task, 'show')
% Assume the last init gives the sample rate of interest.
str_idx = strfind(result, 'Sample rate:');
fs = str2num(result(str_idx(end) + 13:str_idx(end) + 17));
fprintf('Using %d Hz\n', fs);
if exist([farFile])
spclab(fs, farFile, nearFile, [refpath outfile], ...
[outpath outfile], diffvector);
%spclab(fs, diffvector);
else
spclab(fs, nearFile, [refpath outfile], [outpath outfile], ...
diffvector);
%spclab(fs, diffvector);
end
end
end
end
else
for i=3:length(dirs)
if dirs(i).isdir
[nErr, nCases] = recurseDir([inpath dirs(i).name '/'], outpath, ...
refpath,[outfile '_' dirs(i).name], progname, opt, ...
simulateMode, nErr, nCases, task, casenumber, legacy);
end
end
end
nErrOut = nErr;
function [are_equal, diffvector] = ...
are_files_equal(newfile, reffile, precision, diffvector)
are_equal = false;
diffvector = 0;
if ~exist(newfile,'file')
warning(['Output file ' newfile ' does not exist']);
return
end
if ~exist(reffile,'file')
warning(['Reference file ' reffile ' does not exist']);
return
end
fid = fopen(newfile,'rb');
new = fread(fid,inf,precision);
fclose(fid);
fid = fopen(reffile,'rb');
ref = fread(fid,inf,precision);
fclose(fid);
if length(new) ~= length(ref)
warning('Reference is not the same length as output');
minlength = min(length(new), length(ref));
new = new(1:minlength);
ref = ref(1:minlength);
end
diffvector = new - ref;
if isequal(new, ref)
fprintf([newfile ' is bit-exact to reference\n']);
are_equal = true;
else
if isempty(new)
warning([newfile ' is empty']);
return
end
snr = snrseg(new,ref,80);
fprintf('\n');
are_equal = false;
end
|
github
|
koobonil/Boss2D-master
|
parse_delay_file.m
|
.m
|
Boss2D-master/Boss2D/addon/webrtc-jumpingyang001_for_boss/modules/audio_coding/neteq/test/delay_tool/parse_delay_file.m
| 6,405 |
utf_8
|
4cc70d6f90e1ca5901104f77a7e7c0b3
|
%
% Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function outStruct = parse_delay_file(file)
fid = fopen(file, 'rb');
if fid == -1
error('Cannot open file %s', file);
end
textline = fgetl(fid);
if ~strncmp(textline, '#!NetEQ_Delay_Logging', 21)
error('Wrong file format');
end
ver = sscanf(textline, '#!NetEQ_Delay_Logging%d.%d');
if ~all(ver == [2; 0])
error('Wrong version of delay logging function')
end
start_pos = ftell(fid);
fseek(fid, -12, 'eof');
textline = fgetl(fid);
if ~strncmp(textline, 'End of file', 21)
error('File ending is not correct. Seems like the simulation ended abnormally.');
end
fseek(fid,-12-4, 'eof');
Npackets = fread(fid, 1, 'int32');
fseek(fid, start_pos, 'bof');
rtpts = zeros(Npackets, 1);
seqno = zeros(Npackets, 1);
pt = zeros(Npackets, 1);
plen = zeros(Npackets, 1);
recin_t = nan*ones(Npackets, 1);
decode_t = nan*ones(Npackets, 1);
playout_delay = zeros(Npackets, 1);
optbuf = zeros(Npackets, 1);
fs_ix = 1;
clock = 0;
ts_ix = 1;
ended = 0;
late_packets = 0;
fs_now = 8000;
last_decode_k = 0;
tot_expand = 0;
tot_accelerate = 0;
tot_preemptive = 0;
while not(ended)
signal = fread(fid, 1, '*int32');
switch signal
case 3 % NETEQ_DELAY_LOGGING_SIGNAL_CLOCK
clock = fread(fid, 1, '*float32');
% keep on reading batches of M until the signal is no longer "3"
% read int32 + float32 in one go
% this is to save execution time
temp = [3; 0];
M = 120;
while all(temp(1,:) == 3)
fp = ftell(fid);
temp = fread(fid, [2 M], '*int32');
end
% back up to last clock event
fseek(fid, fp - ftell(fid) + ...
(find(temp(1,:) ~= 3, 1 ) - 2) * 2 * 4 + 4, 'cof');
% read the last clock value
clock = fread(fid, 1, '*float32');
case 1 % NETEQ_DELAY_LOGGING_SIGNAL_RECIN
temp_ts = fread(fid, 1, 'uint32');
if late_packets > 0
temp_ix = ts_ix - 1;
while (temp_ix >= 1) && (rtpts(temp_ix) ~= temp_ts)
% TODO(hlundin): use matlab vector search instead?
temp_ix = temp_ix - 1;
end
if temp_ix >= 1
% the ts was found in the vector
late_packets = late_packets - 1;
else
temp_ix = ts_ix;
ts_ix = ts_ix + 1;
end
else
temp_ix = ts_ix;
ts_ix = ts_ix + 1;
end
rtpts(temp_ix) = temp_ts;
seqno(temp_ix) = fread(fid, 1, 'uint16');
pt(temp_ix) = fread(fid, 1, 'int32');
plen(temp_ix) = fread(fid, 1, 'int16');
recin_t(temp_ix) = clock;
case 2 % NETEQ_DELAY_LOGGING_SIGNAL_FLUSH
% do nothing
case 4 % NETEQ_DELAY_LOGGING_SIGNAL_EOF
ended = 1;
case 5 % NETEQ_DELAY_LOGGING_SIGNAL_DECODE
last_decode_ts = fread(fid, 1, 'uint32');
temp_delay = fread(fid, 1, 'uint16');
k = find(rtpts(1:(ts_ix - 1))==last_decode_ts,1,'last');
if ~isempty(k)
decode_t(k) = clock;
playout_delay(k) = temp_delay + ...
5 * fs_now / 8000; % add overlap length
last_decode_k = k;
end
case 6 % NETEQ_DELAY_LOGGING_SIGNAL_CHANGE_FS
fsvec(fs_ix) = fread(fid, 1, 'uint16');
fschange_ts(fs_ix) = last_decode_ts;
fs_now = fsvec(fs_ix);
fs_ix = fs_ix + 1;
case 7 % NETEQ_DELAY_LOGGING_SIGNAL_MERGE_INFO
playout_delay(last_decode_k) = playout_delay(last_decode_k) ...
+ fread(fid, 1, 'int32');
case 8 % NETEQ_DELAY_LOGGING_SIGNAL_EXPAND_INFO
temp = fread(fid, 1, 'int32');
if last_decode_k ~= 0
tot_expand = tot_expand + temp / (fs_now / 1000);
end
case 9 % NETEQ_DELAY_LOGGING_SIGNAL_ACCELERATE_INFO
temp = fread(fid, 1, 'int32');
if last_decode_k ~= 0
tot_accelerate = tot_accelerate + temp / (fs_now / 1000);
end
case 10 % NETEQ_DELAY_LOGGING_SIGNAL_PREEMPTIVE_INFO
temp = fread(fid, 1, 'int32');
if last_decode_k ~= 0
tot_preemptive = tot_preemptive + temp / (fs_now / 1000);
end
case 11 % NETEQ_DELAY_LOGGING_SIGNAL_OPTBUF
optbuf(last_decode_k) = fread(fid, 1, 'int32');
case 12 % NETEQ_DELAY_LOGGING_SIGNAL_DECODE_ONE_DESC
last_decode_ts = fread(fid, 1, 'uint32');
k = ts_ix - 1;
while (k >= 1) && (rtpts(k) ~= last_decode_ts)
% TODO(hlundin): use matlab vector search instead?
k = k - 1;
end
if k < 1
% packet not received yet
k = ts_ix;
rtpts(ts_ix) = last_decode_ts;
late_packets = late_packets + 1;
end
decode_t(k) = clock;
playout_delay(k) = fread(fid, 1, 'uint16') + ...
5 * fs_now / 8000; % add overlap length
last_decode_k = k;
end
end
fclose(fid);
outStruct = struct(...
'ts', rtpts, ...
'sn', seqno, ...
'pt', pt,...
'plen', plen,...
'arrival', recin_t,...
'decode', decode_t,...
'fs', fsvec(:),...
'fschange_ts', fschange_ts(:),...
'playout_delay', playout_delay,...
'tot_expand', tot_expand,...
'tot_accelerate', tot_accelerate,...
'tot_preemptive', tot_preemptive,...
'optbuf', optbuf);
|
github
|
koobonil/Boss2D-master
|
plot_neteq_delay.m
|
.m
|
Boss2D-master/Boss2D/addon/webrtc-jumpingyang001_for_boss/modules/audio_coding/neteq/test/delay_tool/plot_neteq_delay.m
| 5,967 |
utf_8
|
cce342fed6406ef0f12d567fe3ab6eef
|
%
% Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function [delay_struct, delayvalues] = plot_neteq_delay(delayfile, varargin)
% InfoStruct = plot_neteq_delay(delayfile)
% InfoStruct = plot_neteq_delay(delayfile, 'skipdelay', skip_seconds)
%
% Henrik Lundin, 2006-11-17
% Henrik Lundin, 2011-05-17
%
try
s = parse_delay_file(delayfile);
catch
error(lasterr);
end
delayskip=0;
noplot=0;
arg_ptr=1;
delaypoints=[];
s.sn=unwrap_seqno(s.sn);
while arg_ptr+1 <= nargin
switch lower(varargin{arg_ptr})
case {'skipdelay', 'delayskip'}
% skip a number of seconds in the beginning when calculating delays
delayskip = varargin{arg_ptr+1};
arg_ptr = arg_ptr + 2;
case 'noplot'
noplot=1;
arg_ptr = arg_ptr + 1;
case {'get_delay', 'getdelay'}
% return a vector of delay values for the points in the given vector
delaypoints = varargin{arg_ptr+1};
arg_ptr = arg_ptr + 2;
otherwise
warning('Unknown switch %s\n', varargin{arg_ptr});
arg_ptr = arg_ptr + 1;
end
end
% find lost frames that were covered by one-descriptor decoding
one_desc_ix=find(isnan(s.arrival));
for k=1:length(one_desc_ix)
ix=find(s.ts==max(s.ts(s.ts(one_desc_ix(k))>s.ts)));
s.sn(one_desc_ix(k))=s.sn(ix)+1;
s.pt(one_desc_ix(k))=s.pt(ix);
s.arrival(one_desc_ix(k))=s.arrival(ix)+s.decode(one_desc_ix(k))-s.decode(ix);
end
% remove duplicate received frames that were never decoded (RED codec)
if length(unique(s.ts(isfinite(s.ts)))) < length(s.ts(isfinite(s.ts)))
ix=find(isfinite(s.decode));
s.sn=s.sn(ix);
s.ts=s.ts(ix);
s.arrival=s.arrival(ix);
s.playout_delay=s.playout_delay(ix);
s.pt=s.pt(ix);
s.optbuf=s.optbuf(ix);
plen=plen(ix);
s.decode=s.decode(ix);
end
% find non-unique sequence numbers
[~,un_ix]=unique(s.sn);
nonun_ix=setdiff(1:length(s.sn),un_ix);
if ~isempty(nonun_ix)
warning('RTP sequence numbers are in error');
end
% sort vectors
[s.sn,sort_ix]=sort(s.sn);
s.ts=s.ts(sort_ix);
s.arrival=s.arrival(sort_ix);
s.decode=s.decode(sort_ix);
s.playout_delay=s.playout_delay(sort_ix);
s.pt=s.pt(sort_ix);
send_t=s.ts-s.ts(1);
if length(s.fs)<1
warning('No info about sample rate found in file. Using default 8000.');
s.fs(1)=8000;
s.fschange_ts(1)=min(s.ts);
elseif s.fschange_ts(1)>min(s.ts)
s.fschange_ts(1)=min(s.ts);
end
end_ix=length(send_t);
for k=length(s.fs):-1:1
start_ix=find(s.ts==s.fschange_ts(k));
send_t(start_ix:end_ix)=send_t(start_ix:end_ix)/s.fs(k)*1000;
s.playout_delay(start_ix:end_ix)=s.playout_delay(start_ix:end_ix)/s.fs(k)*1000;
s.optbuf(start_ix:end_ix)=s.optbuf(start_ix:end_ix)/s.fs(k)*1000;
end_ix=start_ix-1;
end
tot_time=max(send_t)-min(send_t);
seq_ix=s.sn-min(s.sn)+1;
send_t=send_t+max(min(s.arrival-send_t),0);
plot_send_t=nan*ones(max(seq_ix),1);
plot_send_t(seq_ix)=send_t;
plot_nw_delay=nan*ones(max(seq_ix),1);
plot_nw_delay(seq_ix)=s.arrival-send_t;
cng_ix=find(s.pt~=13); % find those packets that are not CNG/SID
if noplot==0
h=plot(plot_send_t/1000,plot_nw_delay);
set(h,'color',0.75*[1 1 1]);
hold on
if any(s.optbuf~=0)
peak_ix=find(s.optbuf(cng_ix)<0); % peak mode is labeled with negative values
no_peak_ix=find(s.optbuf(cng_ix)>0); %setdiff(1:length(cng_ix),peak_ix);
h1=plot(send_t(cng_ix(peak_ix))/1000,...
s.arrival(cng_ix(peak_ix))+abs(s.optbuf(cng_ix(peak_ix)))-send_t(cng_ix(peak_ix)),...
'r.');
h2=plot(send_t(cng_ix(no_peak_ix))/1000,...
s.arrival(cng_ix(no_peak_ix))+abs(s.optbuf(cng_ix(no_peak_ix)))-send_t(cng_ix(no_peak_ix)),...
'g.');
set([h1, h2],'markersize',1)
end
%h=plot(send_t(seq_ix)/1000,s.decode+s.playout_delay-send_t(seq_ix));
h=plot(send_t(cng_ix)/1000,s.decode(cng_ix)+s.playout_delay(cng_ix)-send_t(cng_ix));
set(h,'linew',1.5);
hold off
ax1=axis;
axis tight
ax2=axis;
axis([ax2(1:3) ax1(4)])
end
% calculate delays and other parameters
delayskip_ix = find(send_t-send_t(1)>=delayskip*1000, 1 );
use_ix = intersect(cng_ix,... % use those that are not CNG/SID frames...
intersect(find(isfinite(s.decode)),... % ... that did arrive ...
(delayskip_ix:length(s.decode))')); % ... and are sent after delayskip seconds
mean_delay = mean(s.decode(use_ix)+s.playout_delay(use_ix)-send_t(use_ix));
neteq_delay = mean(s.decode(use_ix)+s.playout_delay(use_ix)-s.arrival(use_ix));
Npack=max(s.sn(delayskip_ix:end))-min(s.sn(delayskip_ix:end))+1;
nw_lossrate=(Npack-length(s.sn(delayskip_ix:end)))/Npack;
neteq_lossrate=(length(s.sn(delayskip_ix:end))-length(use_ix))/Npack;
delay_struct=struct('mean_delay',mean_delay,'neteq_delay',neteq_delay,...
'nw_lossrate',nw_lossrate,'neteq_lossrate',neteq_lossrate,...
'tot_expand',round(s.tot_expand),'tot_accelerate',round(s.tot_accelerate),...
'tot_preemptive',round(s.tot_preemptive),'tot_time',tot_time,...
'filename',delayfile,'units','ms','fs',unique(s.fs));
if not(isempty(delaypoints))
delayvalues=interp1(send_t(cng_ix),...
s.decode(cng_ix)+s.playout_delay(cng_ix)-send_t(cng_ix),...
delaypoints,'nearest',NaN);
else
delayvalues=[];
end
% SUBFUNCTIONS %
function y=unwrap_seqno(x)
jumps=find(abs((diff(x)-1))>65000);
while ~isempty(jumps)
n=jumps(1);
if x(n+1)-x(n) < 0
% negative jump
x(n+1:end)=x(n+1:end)+65536;
else
% positive jump
x(n+1:end)=x(n+1:end)-65536;
end
jumps=find(abs((diff(x(n+1:end))-1))>65000);
end
y=x;
return;
|
github
|
koobonil/Boss2D-master
|
rtpAnalyze.m
|
.m
|
Boss2D-master/Boss2D/addon/webrtc-jumpingyang001_for_boss/tools_webrtc/matlab/rtpAnalyze.m
| 7,892 |
utf_8
|
46e63db0fa96270c14a0c205bbab42e4
|
function rtpAnalyze( input_file )
%RTP_ANALYZE Analyze RTP stream(s) from a txt file
% The function takes the output from the command line tool rtp_analyze
% and analyzes the stream(s) therein. First, process your rtpdump file
% through rtp_analyze (from command line):
% $ out/Debug/rtp_analyze my_file.rtp my_file.txt
% Then load it with this function (in Matlab):
% >> rtpAnalyze('my_file.txt')
% Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
[SeqNo,TimeStamp,ArrTime,Size,PT,M,SSRC] = importfile(input_file);
%% Filter out RTCP packets.
% These appear as RTP packets having payload types 72 through 76.
ix = not(ismember(PT, 72:76));
fprintf('Removing %i RTCP packets\n', length(SeqNo) - sum(ix));
SeqNo = SeqNo(ix);
TimeStamp = TimeStamp(ix);
ArrTime = ArrTime(ix);
Size = Size(ix);
PT = PT(ix);
M = M(ix);
SSRC = SSRC(ix);
%% Find streams.
[uSSRC, ~, uix] = unique(SSRC);
% If there are multiple streams, select one and purge the other
% streams from the data vectors. If there is only one stream, the
% vectors are good to use as they are.
if length(uSSRC) > 1
for i=1:length(uSSRC)
uPT = unique(PT(uix == i));
fprintf('%i: %s (%d packets, pt: %i', i, uSSRC{i}, ...
length(find(uix==i)), uPT(1));
if length(uPT) > 1
fprintf(', %i', uPT(2:end));
end
fprintf(')\n');
end
sel = input('Select stream number: ');
if sel < 1 || sel > length(uSSRC)
error('Out of range');
end
ix = find(uix == sel);
% This is where the data vectors are trimmed.
SeqNo = SeqNo(ix);
TimeStamp = TimeStamp(ix);
ArrTime = ArrTime(ix);
Size = Size(ix);
PT = PT(ix);
M = M(ix);
SSRC = SSRC(ix);
end
%% Unwrap SeqNo and TimeStamp.
SeqNoUW = maxUnwrap(SeqNo, 65535);
TimeStampUW = maxUnwrap(TimeStamp, 4294967295);
%% Generate some stats for the stream.
fprintf('Statistics:\n');
fprintf('SSRC: %s\n', SSRC{1});
uPT = unique(PT);
if length(uPT) > 1
warning('This tool cannot yet handle changes in codec sample rate');
end
fprintf('Payload type(s): %i', uPT(1));
if length(uPT) > 1
fprintf(', %i', uPT(2:end));
end
fprintf('\n');
fprintf('Packets: %i\n', length(SeqNo));
SortSeqNo = sort(SeqNoUW);
fprintf('Missing sequence numbers: %i\n', ...
length(find(diff(SortSeqNo) > 1)));
fprintf('Duplicated packets: %i\n', length(find(diff(SortSeqNo) == 0)));
reorderIx = findReorderedPackets(SeqNoUW);
fprintf('Reordered packets: %i\n', length(reorderIx));
tsdiff = diff(TimeStampUW);
tsdiff = tsdiff(diff(SeqNoUW) == 1);
[utsdiff, ~, ixtsdiff] = unique(tsdiff);
fprintf('Common packet sizes:\n');
for i = 1:length(utsdiff)
fprintf(' %i samples (%i%%)\n', ...
utsdiff(i), ...
round(100 * length(find(ixtsdiff == i))/length(ixtsdiff)));
end
%% Trying to figure out sample rate.
fs_est = (TimeStampUW(end) - TimeStampUW(1)) / (ArrTime(end) - ArrTime(1));
fs_vec = [8, 16, 32, 48];
fs = 0;
for f = fs_vec
if abs((fs_est-f)/f) < 0.05 % 5% margin
fs = f;
break;
end
end
if fs == 0
fprintf('Cannot determine sample rate. I get it to %.2f kHz\n', ...
fs_est);
fs = input('Please, input a sample rate (in kHz): ');
else
fprintf('Sample rate estimated to %i kHz\n', fs);
end
SendTimeMs = (TimeStampUW - TimeStampUW(1)) / fs;
fprintf('Stream duration at sender: %.1f seconds\n', ...
(SendTimeMs(end) - SendTimeMs(1)) / 1000);
fprintf('Stream duration at receiver: %.1f seconds\n', ...
(ArrTime(end) - ArrTime(1)) / 1000);
fprintf('Clock drift: %.2f%%\n', ...
100 * ((ArrTime(end) - ArrTime(1)) / ...
(SendTimeMs(end) - SendTimeMs(1)) - 1));
fprintf('Sent average bitrate: %i kbps\n', ...
round(sum(Size) * 8 / (SendTimeMs(end)-SendTimeMs(1))));
fprintf('Received average bitrate: %i kbps\n', ...
round(sum(Size) * 8 / (ArrTime(end)-ArrTime(1))));
%% Plots.
delay = ArrTime - SendTimeMs;
delay = delay - min(delay);
delayOrdered = delay;
delayOrdered(reorderIx) = nan; % Set reordered packets to NaN.
delayReordered = delay(reorderIx); % Pick the reordered packets.
sendTimeMsReordered = SendTimeMs(reorderIx);
% Sort time arrays in packet send order.
[~, sortix] = sort(SeqNoUW);
SendTimeMs = SendTimeMs(sortix);
Size = Size(sortix);
delayOrdered = delayOrdered(sortix);
figure
plot(SendTimeMs / 1000, delayOrdered, ...
sendTimeMsReordered / 1000, delayReordered, 'r.');
xlabel('Send time [s]');
ylabel('Relative transport delay [ms]');
title(sprintf('SSRC: %s', SSRC{1}));
SendBitrateKbps = 8 * Size(1:end-1) ./ diff(SendTimeMs);
figure
plot(SendTimeMs(1:end-1)/1000, SendBitrateKbps);
xlabel('Send time [s]');
ylabel('Send bitrate [kbps]');
end
%% Subfunctions.
% findReorderedPackets returns the index to all packets that are considered
% old compared with the largest seen sequence number. The input seqNo must
% be unwrapped for this to work.
function reorderIx = findReorderedPackets(seqNo)
largestSeqNo = seqNo(1);
reorderIx = [];
for i = 2:length(seqNo)
if seqNo(i) < largestSeqNo
reorderIx = [reorderIx; i]; %#ok<AGROW>
else
largestSeqNo = seqNo(i);
end
end
end
%% Auto-generated subfunction.
function [SeqNo,TimeStamp,SendTime,Size,PT,M,SSRC] = ...
importfile(filename, startRow, endRow)
%IMPORTFILE Import numeric data from a text file as column vectors.
% [SEQNO,TIMESTAMP,SENDTIME,SIZE,PT,M,SSRC] = IMPORTFILE(FILENAME) Reads
% data from text file FILENAME for the default selection.
%
% [SEQNO,TIMESTAMP,SENDTIME,SIZE,PT,M,SSRC] = IMPORTFILE(FILENAME,
% STARTROW, ENDROW) Reads data from rows STARTROW through ENDROW of text
% file FILENAME.
%
% Example:
% [SeqNo,TimeStamp,SendTime,Size,PT,M,SSRC] =
% importfile('rtpdump_recv.txt',2, 123);
%
% See also TEXTSCAN.
% Auto-generated by MATLAB on 2015/05/28 09:55:50
%% Initialize variables.
if nargin<=2
startRow = 2;
endRow = inf;
end
%% Format string for each line of text:
% column1: double (%f)
% column2: double (%f)
% column3: double (%f)
% column4: double (%f)
% column5: double (%f)
% column6: double (%f)
% column7: text (%s)
% For more information, see the TEXTSCAN documentation.
formatSpec = '%5f%11f%11f%6f%6f%3f%s%[^\n\r]';
%% Open the text file.
fileID = fopen(filename,'r');
%% Read columns of data according to format string.
% This call is based on the structure of the file used to generate this
% code. If an error occurs for a different file, try regenerating the code
% from the Import Tool.
dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, ...
'Delimiter', '', 'WhiteSpace', '', 'HeaderLines', startRow(1)-1, ...
'ReturnOnError', false);
for block=2:length(startRow)
frewind(fileID);
dataArrayBlock = textscan(fileID, formatSpec, ...
endRow(block)-startRow(block)+1, 'Delimiter', '', 'WhiteSpace', ...
'', 'HeaderLines', startRow(block)-1, 'ReturnOnError', false);
for col=1:length(dataArray)
dataArray{col} = [dataArray{col};dataArrayBlock{col}];
end
end
%% Close the text file.
fclose(fileID);
%% Post processing for unimportable data.
% No unimportable data rules were applied during the import, so no post
% processing code is included. To generate code which works for
% unimportable data, select unimportable cells in a file and regenerate the
% script.
%% Allocate imported array to column variable names
SeqNo = dataArray{:, 1};
TimeStamp = dataArray{:, 2};
SendTime = dataArray{:, 3};
Size = dataArray{:, 4};
PT = dataArray{:, 5};
M = dataArray{:, 6};
SSRC = dataArray{:, 7};
end
|
github
|
koobonil/Boss2D-master
|
readDetection.m
|
.m
|
Boss2D-master/Boss2D/addon/_old/webrtc-qt5.11.2_for_boss/modules/audio_processing/transient/test/readDetection.m
| 927 |
utf_8
|
f6af5020971d028a50a4d19a31b33bcb
|
%
% Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function [d, t] = readDetection(file, fs, chunkSize)
%[d, t] = readDetection(file, fs, chunkSize)
%
%Reads a detection signal from a DAT file.
%
%d: The detection signal.
%t: The respective time vector.
%
%file: The DAT file where the detection signal is stored in float format.
%fs: The signal sample rate in Hertz.
%chunkSize: The chunk size used for the detection in seconds.
fid = fopen(file);
d = fread(fid, inf, 'float');
fclose(fid);
t = 0:(1 / fs):(length(d) * chunkSize - 1 / fs);
d = d(floor(t / chunkSize) + 1);
|
github
|
koobonil/Boss2D-master
|
readPCM.m
|
.m
|
Boss2D-master/Boss2D/addon/_old/webrtc-qt5.11.2_for_boss/modules/audio_processing/transient/test/readPCM.m
| 821 |
utf_8
|
76b2955e65258ada1c1e549a4fc9bf79
|
%
% Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function [x, t] = readPCM(file, fs)
%[x, t] = readPCM(file, fs)
%
%Reads a signal from a PCM file.
%
%x: The read signal after normalization.
%t: The respective time vector.
%
%file: The PCM file where the signal is stored in int16 format.
%fs: The signal sample rate in Hertz.
fid = fopen(file);
x = fread(fid, inf, 'int16');
fclose(fid);
x = x - mean(x);
x = x / max(abs(x));
t = 0:(1 / fs):((length(x) - 1) / fs);
|
github
|
koobonil/Boss2D-master
|
plotDetection.m
|
.m
|
Boss2D-master/Boss2D/addon/_old/webrtc-qt5.11.2_for_boss/modules/audio_processing/transient/test/plotDetection.m
| 923 |
utf_8
|
e8113bdaf5dcfe4f50200a3ca29c3846
|
%
% Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function [] = plotDetection(PCMfile, DATfile, fs, chunkSize)
%[] = plotDetection(PCMfile, DATfile, fs, chunkSize)
%
%Plots the signal alongside the detection values.
%
%PCMfile: The file of the input signal in PCM format.
%DATfile: The file containing the detection values in binary float format.
%fs: The sample rate of the signal in Hertz.
%chunkSize: The chunk size used to compute the detection values in seconds.
[x, tx] = readPCM(PCMfile, fs);
[d, td] = readDetection(DATfile, fs, chunkSize);
plot(tx, x, td, d);
|
github
|
koobonil/Boss2D-master
|
apmtest.m
|
.m
|
Boss2D-master/Boss2D/addon/_old/webrtc-qt5.11.2_for_boss/modules/audio_processing/test/apmtest.m
| 9,874 |
utf_8
|
17ad6af59f6daa758d983dd419e46ff0
|
%
% Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function apmtest(task, testname, filepath, casenumber, legacy)
%APMTEST is a tool to process APM file sets and easily display the output.
% APMTEST(TASK, TESTNAME, CASENUMBER) performs one of several TASKs:
% 'test' Processes the files to produce test output.
% 'list' Prints a list of cases in the test set, preceded by their
% CASENUMBERs.
% 'show' Uses spclab to show the test case specified by the
% CASENUMBER parameter.
%
% using a set of test files determined by TESTNAME:
% 'all' All tests.
% 'apm' The standard APM test set (default).
% 'apmm' The mobile APM test set.
% 'aec' The AEC test set.
% 'aecm' The AECM test set.
% 'agc' The AGC test set.
% 'ns' The NS test set.
% 'vad' The VAD test set.
%
% FILEPATH specifies the path to the test data files.
%
% CASENUMBER can be used to select a single test case. Omit CASENUMBER,
% or set to zero, to use all test cases.
%
if nargin < 5 || isempty(legacy)
% Set to true to run old VQE recordings.
legacy = false;
end
if nargin < 4 || isempty(casenumber)
casenumber = 0;
end
if nargin < 3 || isempty(filepath)
filepath = 'data/';
end
if nargin < 2 || isempty(testname)
testname = 'all';
end
if nargin < 1 || isempty(task)
task = 'test';
end
if ~strcmp(task, 'test') && ~strcmp(task, 'list') && ~strcmp(task, 'show')
error(['TASK ' task ' is not recognized']);
end
if casenumber == 0 && strcmp(task, 'show')
error(['CASENUMBER must be specified for TASK ' task]);
end
inpath = [filepath 'input/'];
outpath = [filepath 'output/'];
refpath = [filepath 'reference/'];
if strcmp(testname, 'all')
tests = {'apm','apmm','aec','aecm','agc','ns','vad'};
else
tests = {testname};
end
if legacy
progname = './test';
else
progname = './process_test';
end
global farFile;
global nearFile;
global eventFile;
global delayFile;
global driftFile;
if legacy
farFile = 'vqeFar.pcm';
nearFile = 'vqeNear.pcm';
eventFile = 'vqeEvent.dat';
delayFile = 'vqeBuf.dat';
driftFile = 'vqeDrift.dat';
else
farFile = 'apm_far.pcm';
nearFile = 'apm_near.pcm';
eventFile = 'apm_event.dat';
delayFile = 'apm_delay.dat';
driftFile = 'apm_drift.dat';
end
simulateMode = false;
nErr = 0;
nCases = 0;
for i=1:length(tests)
simulateMode = false;
if strcmp(tests{i}, 'apm')
testdir = ['apm/'];
outfile = ['out'];
if legacy
opt = ['-ec 1 -agc 2 -nc 2 -vad 3'];
else
opt = ['--no_progress -hpf' ...
' -aec --drift_compensation -agc --fixed_digital' ...
' -ns --ns_moderate -vad'];
end
elseif strcmp(tests{i}, 'apm-swb')
simulateMode = true;
testdir = ['apm-swb/'];
outfile = ['out'];
if legacy
opt = ['-fs 32000 -ec 1 -agc 2 -nc 2'];
else
opt = ['--no_progress -fs 32000 -hpf' ...
' -aec --drift_compensation -agc --adaptive_digital' ...
' -ns --ns_moderate -vad'];
end
elseif strcmp(tests{i}, 'apmm')
testdir = ['apmm/'];
outfile = ['out'];
opt = ['-aec --drift_compensation -agc --fixed_digital -hpf -ns ' ...
'--ns_moderate'];
else
error(['TESTNAME ' tests{i} ' is not recognized']);
end
inpathtest = [inpath testdir];
outpathtest = [outpath testdir];
refpathtest = [refpath testdir];
if ~exist(inpathtest,'dir')
error(['Input directory ' inpathtest ' does not exist']);
end
if ~exist(refpathtest,'dir')
warning(['Reference directory ' refpathtest ' does not exist']);
end
[status, errMsg] = mkdir(outpathtest);
if (status == 0)
error(errMsg);
end
[nErr, nCases] = recurseDir(inpathtest, outpathtest, refpathtest, outfile, ...
progname, opt, simulateMode, nErr, nCases, task, casenumber, legacy);
if strcmp(task, 'test') || strcmp(task, 'show')
system(['rm ' farFile]);
system(['rm ' nearFile]);
if simulateMode == false
system(['rm ' eventFile]);
system(['rm ' delayFile]);
system(['rm ' driftFile]);
end
end
end
if ~strcmp(task, 'list')
if nErr == 0
fprintf(1, '\nAll files are bit-exact to reference\n', nErr);
else
fprintf(1, '\n%d files are NOT bit-exact to reference\n', nErr);
end
end
function [nErrOut, nCases] = recurseDir(inpath, outpath, refpath, ...
outfile, progname, opt, simulateMode, nErr, nCases, task, casenumber, ...
legacy)
global farFile;
global nearFile;
global eventFile;
global delayFile;
global driftFile;
dirs = dir(inpath);
nDirs = 0;
nErrOut = nErr;
for i=3:length(dirs) % skip . and ..
nDirs = nDirs + dirs(i).isdir;
end
if nDirs == 0
nCases = nCases + 1;
if casenumber == nCases || casenumber == 0
if strcmp(task, 'list')
fprintf([num2str(nCases) '. ' outfile '\n'])
else
vadoutfile = ['vad_' outfile '.dat'];
outfile = [outfile '.pcm'];
% Check for VAD test
vadTest = 0;
if ~isempty(findstr(opt, '-vad'))
vadTest = 1;
if legacy
opt = [opt ' ' outpath vadoutfile];
else
opt = [opt ' --vad_out_file ' outpath vadoutfile];
end
end
if exist([inpath 'vqeFar.pcm'])
system(['ln -s -f ' inpath 'vqeFar.pcm ' farFile]);
elseif exist([inpath 'apm_far.pcm'])
system(['ln -s -f ' inpath 'apm_far.pcm ' farFile]);
end
if exist([inpath 'vqeNear.pcm'])
system(['ln -s -f ' inpath 'vqeNear.pcm ' nearFile]);
elseif exist([inpath 'apm_near.pcm'])
system(['ln -s -f ' inpath 'apm_near.pcm ' nearFile]);
end
if exist([inpath 'vqeEvent.dat'])
system(['ln -s -f ' inpath 'vqeEvent.dat ' eventFile]);
elseif exist([inpath 'apm_event.dat'])
system(['ln -s -f ' inpath 'apm_event.dat ' eventFile]);
end
if exist([inpath 'vqeBuf.dat'])
system(['ln -s -f ' inpath 'vqeBuf.dat ' delayFile]);
elseif exist([inpath 'apm_delay.dat'])
system(['ln -s -f ' inpath 'apm_delay.dat ' delayFile]);
end
if exist([inpath 'vqeSkew.dat'])
system(['ln -s -f ' inpath 'vqeSkew.dat ' driftFile]);
elseif exist([inpath 'vqeDrift.dat'])
system(['ln -s -f ' inpath 'vqeDrift.dat ' driftFile]);
elseif exist([inpath 'apm_drift.dat'])
system(['ln -s -f ' inpath 'apm_drift.dat ' driftFile]);
end
if simulateMode == false
command = [progname ' -o ' outpath outfile ' ' opt];
else
if legacy
inputCmd = [' -in ' nearFile];
else
inputCmd = [' -i ' nearFile];
end
if exist([farFile])
if legacy
inputCmd = [' -if ' farFile inputCmd];
else
inputCmd = [' -ir ' farFile inputCmd];
end
end
command = [progname inputCmd ' -o ' outpath outfile ' ' opt];
end
% This prevents MATLAB from using its own C libraries.
shellcmd = ['bash -c "unset LD_LIBRARY_PATH;'];
fprintf([command '\n']);
[status, result] = system([shellcmd command '"']);
fprintf(result);
fprintf(['Reference file: ' refpath outfile '\n']);
if vadTest == 1
equal_to_ref = are_files_equal([outpath vadoutfile], ...
[refpath vadoutfile], ...
'int8');
if ~equal_to_ref
nErr = nErr + 1;
end
end
[equal_to_ref, diffvector] = are_files_equal([outpath outfile], ...
[refpath outfile], ...
'int16');
if ~equal_to_ref
nErr = nErr + 1;
end
if strcmp(task, 'show')
% Assume the last init gives the sample rate of interest.
str_idx = strfind(result, 'Sample rate:');
fs = str2num(result(str_idx(end) + 13:str_idx(end) + 17));
fprintf('Using %d Hz\n', fs);
if exist([farFile])
spclab(fs, farFile, nearFile, [refpath outfile], ...
[outpath outfile], diffvector);
%spclab(fs, diffvector);
else
spclab(fs, nearFile, [refpath outfile], [outpath outfile], ...
diffvector);
%spclab(fs, diffvector);
end
end
end
end
else
for i=3:length(dirs)
if dirs(i).isdir
[nErr, nCases] = recurseDir([inpath dirs(i).name '/'], outpath, ...
refpath,[outfile '_' dirs(i).name], progname, opt, ...
simulateMode, nErr, nCases, task, casenumber, legacy);
end
end
end
nErrOut = nErr;
function [are_equal, diffvector] = ...
are_files_equal(newfile, reffile, precision, diffvector)
are_equal = false;
diffvector = 0;
if ~exist(newfile,'file')
warning(['Output file ' newfile ' does not exist']);
return
end
if ~exist(reffile,'file')
warning(['Reference file ' reffile ' does not exist']);
return
end
fid = fopen(newfile,'rb');
new = fread(fid,inf,precision);
fclose(fid);
fid = fopen(reffile,'rb');
ref = fread(fid,inf,precision);
fclose(fid);
if length(new) ~= length(ref)
warning('Reference is not the same length as output');
minlength = min(length(new), length(ref));
new = new(1:minlength);
ref = ref(1:minlength);
end
diffvector = new - ref;
if isequal(new, ref)
fprintf([newfile ' is bit-exact to reference\n']);
are_equal = true;
else
if isempty(new)
warning([newfile ' is empty']);
return
end
snr = snrseg(new,ref,80);
fprintf('\n');
are_equal = false;
end
|
github
|
koobonil/Boss2D-master
|
parse_delay_file.m
|
.m
|
Boss2D-master/Boss2D/addon/_old/webrtc-qt5.11.2_for_boss/modules/audio_coding/neteq/test/delay_tool/parse_delay_file.m
| 6,405 |
utf_8
|
4cc70d6f90e1ca5901104f77a7e7c0b3
|
%
% Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function outStruct = parse_delay_file(file)
fid = fopen(file, 'rb');
if fid == -1
error('Cannot open file %s', file);
end
textline = fgetl(fid);
if ~strncmp(textline, '#!NetEQ_Delay_Logging', 21)
error('Wrong file format');
end
ver = sscanf(textline, '#!NetEQ_Delay_Logging%d.%d');
if ~all(ver == [2; 0])
error('Wrong version of delay logging function')
end
start_pos = ftell(fid);
fseek(fid, -12, 'eof');
textline = fgetl(fid);
if ~strncmp(textline, 'End of file', 21)
error('File ending is not correct. Seems like the simulation ended abnormally.');
end
fseek(fid,-12-4, 'eof');
Npackets = fread(fid, 1, 'int32');
fseek(fid, start_pos, 'bof');
rtpts = zeros(Npackets, 1);
seqno = zeros(Npackets, 1);
pt = zeros(Npackets, 1);
plen = zeros(Npackets, 1);
recin_t = nan*ones(Npackets, 1);
decode_t = nan*ones(Npackets, 1);
playout_delay = zeros(Npackets, 1);
optbuf = zeros(Npackets, 1);
fs_ix = 1;
clock = 0;
ts_ix = 1;
ended = 0;
late_packets = 0;
fs_now = 8000;
last_decode_k = 0;
tot_expand = 0;
tot_accelerate = 0;
tot_preemptive = 0;
while not(ended)
signal = fread(fid, 1, '*int32');
switch signal
case 3 % NETEQ_DELAY_LOGGING_SIGNAL_CLOCK
clock = fread(fid, 1, '*float32');
% keep on reading batches of M until the signal is no longer "3"
% read int32 + float32 in one go
% this is to save execution time
temp = [3; 0];
M = 120;
while all(temp(1,:) == 3)
fp = ftell(fid);
temp = fread(fid, [2 M], '*int32');
end
% back up to last clock event
fseek(fid, fp - ftell(fid) + ...
(find(temp(1,:) ~= 3, 1 ) - 2) * 2 * 4 + 4, 'cof');
% read the last clock value
clock = fread(fid, 1, '*float32');
case 1 % NETEQ_DELAY_LOGGING_SIGNAL_RECIN
temp_ts = fread(fid, 1, 'uint32');
if late_packets > 0
temp_ix = ts_ix - 1;
while (temp_ix >= 1) && (rtpts(temp_ix) ~= temp_ts)
% TODO(hlundin): use matlab vector search instead?
temp_ix = temp_ix - 1;
end
if temp_ix >= 1
% the ts was found in the vector
late_packets = late_packets - 1;
else
temp_ix = ts_ix;
ts_ix = ts_ix + 1;
end
else
temp_ix = ts_ix;
ts_ix = ts_ix + 1;
end
rtpts(temp_ix) = temp_ts;
seqno(temp_ix) = fread(fid, 1, 'uint16');
pt(temp_ix) = fread(fid, 1, 'int32');
plen(temp_ix) = fread(fid, 1, 'int16');
recin_t(temp_ix) = clock;
case 2 % NETEQ_DELAY_LOGGING_SIGNAL_FLUSH
% do nothing
case 4 % NETEQ_DELAY_LOGGING_SIGNAL_EOF
ended = 1;
case 5 % NETEQ_DELAY_LOGGING_SIGNAL_DECODE
last_decode_ts = fread(fid, 1, 'uint32');
temp_delay = fread(fid, 1, 'uint16');
k = find(rtpts(1:(ts_ix - 1))==last_decode_ts,1,'last');
if ~isempty(k)
decode_t(k) = clock;
playout_delay(k) = temp_delay + ...
5 * fs_now / 8000; % add overlap length
last_decode_k = k;
end
case 6 % NETEQ_DELAY_LOGGING_SIGNAL_CHANGE_FS
fsvec(fs_ix) = fread(fid, 1, 'uint16');
fschange_ts(fs_ix) = last_decode_ts;
fs_now = fsvec(fs_ix);
fs_ix = fs_ix + 1;
case 7 % NETEQ_DELAY_LOGGING_SIGNAL_MERGE_INFO
playout_delay(last_decode_k) = playout_delay(last_decode_k) ...
+ fread(fid, 1, 'int32');
case 8 % NETEQ_DELAY_LOGGING_SIGNAL_EXPAND_INFO
temp = fread(fid, 1, 'int32');
if last_decode_k ~= 0
tot_expand = tot_expand + temp / (fs_now / 1000);
end
case 9 % NETEQ_DELAY_LOGGING_SIGNAL_ACCELERATE_INFO
temp = fread(fid, 1, 'int32');
if last_decode_k ~= 0
tot_accelerate = tot_accelerate + temp / (fs_now / 1000);
end
case 10 % NETEQ_DELAY_LOGGING_SIGNAL_PREEMPTIVE_INFO
temp = fread(fid, 1, 'int32');
if last_decode_k ~= 0
tot_preemptive = tot_preemptive + temp / (fs_now / 1000);
end
case 11 % NETEQ_DELAY_LOGGING_SIGNAL_OPTBUF
optbuf(last_decode_k) = fread(fid, 1, 'int32');
case 12 % NETEQ_DELAY_LOGGING_SIGNAL_DECODE_ONE_DESC
last_decode_ts = fread(fid, 1, 'uint32');
k = ts_ix - 1;
while (k >= 1) && (rtpts(k) ~= last_decode_ts)
% TODO(hlundin): use matlab vector search instead?
k = k - 1;
end
if k < 1
% packet not received yet
k = ts_ix;
rtpts(ts_ix) = last_decode_ts;
late_packets = late_packets + 1;
end
decode_t(k) = clock;
playout_delay(k) = fread(fid, 1, 'uint16') + ...
5 * fs_now / 8000; % add overlap length
last_decode_k = k;
end
end
fclose(fid);
outStruct = struct(...
'ts', rtpts, ...
'sn', seqno, ...
'pt', pt,...
'plen', plen,...
'arrival', recin_t,...
'decode', decode_t,...
'fs', fsvec(:),...
'fschange_ts', fschange_ts(:),...
'playout_delay', playout_delay,...
'tot_expand', tot_expand,...
'tot_accelerate', tot_accelerate,...
'tot_preemptive', tot_preemptive,...
'optbuf', optbuf);
|
github
|
koobonil/Boss2D-master
|
plot_neteq_delay.m
|
.m
|
Boss2D-master/Boss2D/addon/_old/webrtc-qt5.11.2_for_boss/modules/audio_coding/neteq/test/delay_tool/plot_neteq_delay.m
| 5,967 |
utf_8
|
cce342fed6406ef0f12d567fe3ab6eef
|
%
% Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function [delay_struct, delayvalues] = plot_neteq_delay(delayfile, varargin)
% InfoStruct = plot_neteq_delay(delayfile)
% InfoStruct = plot_neteq_delay(delayfile, 'skipdelay', skip_seconds)
%
% Henrik Lundin, 2006-11-17
% Henrik Lundin, 2011-05-17
%
try
s = parse_delay_file(delayfile);
catch
error(lasterr);
end
delayskip=0;
noplot=0;
arg_ptr=1;
delaypoints=[];
s.sn=unwrap_seqno(s.sn);
while arg_ptr+1 <= nargin
switch lower(varargin{arg_ptr})
case {'skipdelay', 'delayskip'}
% skip a number of seconds in the beginning when calculating delays
delayskip = varargin{arg_ptr+1};
arg_ptr = arg_ptr + 2;
case 'noplot'
noplot=1;
arg_ptr = arg_ptr + 1;
case {'get_delay', 'getdelay'}
% return a vector of delay values for the points in the given vector
delaypoints = varargin{arg_ptr+1};
arg_ptr = arg_ptr + 2;
otherwise
warning('Unknown switch %s\n', varargin{arg_ptr});
arg_ptr = arg_ptr + 1;
end
end
% find lost frames that were covered by one-descriptor decoding
one_desc_ix=find(isnan(s.arrival));
for k=1:length(one_desc_ix)
ix=find(s.ts==max(s.ts(s.ts(one_desc_ix(k))>s.ts)));
s.sn(one_desc_ix(k))=s.sn(ix)+1;
s.pt(one_desc_ix(k))=s.pt(ix);
s.arrival(one_desc_ix(k))=s.arrival(ix)+s.decode(one_desc_ix(k))-s.decode(ix);
end
% remove duplicate received frames that were never decoded (RED codec)
if length(unique(s.ts(isfinite(s.ts)))) < length(s.ts(isfinite(s.ts)))
ix=find(isfinite(s.decode));
s.sn=s.sn(ix);
s.ts=s.ts(ix);
s.arrival=s.arrival(ix);
s.playout_delay=s.playout_delay(ix);
s.pt=s.pt(ix);
s.optbuf=s.optbuf(ix);
plen=plen(ix);
s.decode=s.decode(ix);
end
% find non-unique sequence numbers
[~,un_ix]=unique(s.sn);
nonun_ix=setdiff(1:length(s.sn),un_ix);
if ~isempty(nonun_ix)
warning('RTP sequence numbers are in error');
end
% sort vectors
[s.sn,sort_ix]=sort(s.sn);
s.ts=s.ts(sort_ix);
s.arrival=s.arrival(sort_ix);
s.decode=s.decode(sort_ix);
s.playout_delay=s.playout_delay(sort_ix);
s.pt=s.pt(sort_ix);
send_t=s.ts-s.ts(1);
if length(s.fs)<1
warning('No info about sample rate found in file. Using default 8000.');
s.fs(1)=8000;
s.fschange_ts(1)=min(s.ts);
elseif s.fschange_ts(1)>min(s.ts)
s.fschange_ts(1)=min(s.ts);
end
end_ix=length(send_t);
for k=length(s.fs):-1:1
start_ix=find(s.ts==s.fschange_ts(k));
send_t(start_ix:end_ix)=send_t(start_ix:end_ix)/s.fs(k)*1000;
s.playout_delay(start_ix:end_ix)=s.playout_delay(start_ix:end_ix)/s.fs(k)*1000;
s.optbuf(start_ix:end_ix)=s.optbuf(start_ix:end_ix)/s.fs(k)*1000;
end_ix=start_ix-1;
end
tot_time=max(send_t)-min(send_t);
seq_ix=s.sn-min(s.sn)+1;
send_t=send_t+max(min(s.arrival-send_t),0);
plot_send_t=nan*ones(max(seq_ix),1);
plot_send_t(seq_ix)=send_t;
plot_nw_delay=nan*ones(max(seq_ix),1);
plot_nw_delay(seq_ix)=s.arrival-send_t;
cng_ix=find(s.pt~=13); % find those packets that are not CNG/SID
if noplot==0
h=plot(plot_send_t/1000,plot_nw_delay);
set(h,'color',0.75*[1 1 1]);
hold on
if any(s.optbuf~=0)
peak_ix=find(s.optbuf(cng_ix)<0); % peak mode is labeled with negative values
no_peak_ix=find(s.optbuf(cng_ix)>0); %setdiff(1:length(cng_ix),peak_ix);
h1=plot(send_t(cng_ix(peak_ix))/1000,...
s.arrival(cng_ix(peak_ix))+abs(s.optbuf(cng_ix(peak_ix)))-send_t(cng_ix(peak_ix)),...
'r.');
h2=plot(send_t(cng_ix(no_peak_ix))/1000,...
s.arrival(cng_ix(no_peak_ix))+abs(s.optbuf(cng_ix(no_peak_ix)))-send_t(cng_ix(no_peak_ix)),...
'g.');
set([h1, h2],'markersize',1)
end
%h=plot(send_t(seq_ix)/1000,s.decode+s.playout_delay-send_t(seq_ix));
h=plot(send_t(cng_ix)/1000,s.decode(cng_ix)+s.playout_delay(cng_ix)-send_t(cng_ix));
set(h,'linew',1.5);
hold off
ax1=axis;
axis tight
ax2=axis;
axis([ax2(1:3) ax1(4)])
end
% calculate delays and other parameters
delayskip_ix = find(send_t-send_t(1)>=delayskip*1000, 1 );
use_ix = intersect(cng_ix,... % use those that are not CNG/SID frames...
intersect(find(isfinite(s.decode)),... % ... that did arrive ...
(delayskip_ix:length(s.decode))')); % ... and are sent after delayskip seconds
mean_delay = mean(s.decode(use_ix)+s.playout_delay(use_ix)-send_t(use_ix));
neteq_delay = mean(s.decode(use_ix)+s.playout_delay(use_ix)-s.arrival(use_ix));
Npack=max(s.sn(delayskip_ix:end))-min(s.sn(delayskip_ix:end))+1;
nw_lossrate=(Npack-length(s.sn(delayskip_ix:end)))/Npack;
neteq_lossrate=(length(s.sn(delayskip_ix:end))-length(use_ix))/Npack;
delay_struct=struct('mean_delay',mean_delay,'neteq_delay',neteq_delay,...
'nw_lossrate',nw_lossrate,'neteq_lossrate',neteq_lossrate,...
'tot_expand',round(s.tot_expand),'tot_accelerate',round(s.tot_accelerate),...
'tot_preemptive',round(s.tot_preemptive),'tot_time',tot_time,...
'filename',delayfile,'units','ms','fs',unique(s.fs));
if not(isempty(delaypoints))
delayvalues=interp1(send_t(cng_ix),...
s.decode(cng_ix)+s.playout_delay(cng_ix)-send_t(cng_ix),...
delaypoints,'nearest',NaN);
else
delayvalues=[];
end
% SUBFUNCTIONS %
function y=unwrap_seqno(x)
jumps=find(abs((diff(x)-1))>65000);
while ~isempty(jumps)
n=jumps(1);
if x(n+1)-x(n) < 0
% negative jump
x(n+1:end)=x(n+1:end)+65536;
else
% positive jump
x(n+1:end)=x(n+1:end)-65536;
end
jumps=find(abs((diff(x(n+1:end))-1))>65000);
end
y=x;
return;
|
github
|
koobonil/Boss2D-master
|
rtpAnalyze.m
|
.m
|
Boss2D-master/Boss2D/addon/_old/webrtc-qt5.11.2_for_boss/tools_webrtc/matlab/rtpAnalyze.m
| 7,892 |
utf_8
|
46e63db0fa96270c14a0c205bbab42e4
|
function rtpAnalyze( input_file )
%RTP_ANALYZE Analyze RTP stream(s) from a txt file
% The function takes the output from the command line tool rtp_analyze
% and analyzes the stream(s) therein. First, process your rtpdump file
% through rtp_analyze (from command line):
% $ out/Debug/rtp_analyze my_file.rtp my_file.txt
% Then load it with this function (in Matlab):
% >> rtpAnalyze('my_file.txt')
% Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
[SeqNo,TimeStamp,ArrTime,Size,PT,M,SSRC] = importfile(input_file);
%% Filter out RTCP packets.
% These appear as RTP packets having payload types 72 through 76.
ix = not(ismember(PT, 72:76));
fprintf('Removing %i RTCP packets\n', length(SeqNo) - sum(ix));
SeqNo = SeqNo(ix);
TimeStamp = TimeStamp(ix);
ArrTime = ArrTime(ix);
Size = Size(ix);
PT = PT(ix);
M = M(ix);
SSRC = SSRC(ix);
%% Find streams.
[uSSRC, ~, uix] = unique(SSRC);
% If there are multiple streams, select one and purge the other
% streams from the data vectors. If there is only one stream, the
% vectors are good to use as they are.
if length(uSSRC) > 1
for i=1:length(uSSRC)
uPT = unique(PT(uix == i));
fprintf('%i: %s (%d packets, pt: %i', i, uSSRC{i}, ...
length(find(uix==i)), uPT(1));
if length(uPT) > 1
fprintf(', %i', uPT(2:end));
end
fprintf(')\n');
end
sel = input('Select stream number: ');
if sel < 1 || sel > length(uSSRC)
error('Out of range');
end
ix = find(uix == sel);
% This is where the data vectors are trimmed.
SeqNo = SeqNo(ix);
TimeStamp = TimeStamp(ix);
ArrTime = ArrTime(ix);
Size = Size(ix);
PT = PT(ix);
M = M(ix);
SSRC = SSRC(ix);
end
%% Unwrap SeqNo and TimeStamp.
SeqNoUW = maxUnwrap(SeqNo, 65535);
TimeStampUW = maxUnwrap(TimeStamp, 4294967295);
%% Generate some stats for the stream.
fprintf('Statistics:\n');
fprintf('SSRC: %s\n', SSRC{1});
uPT = unique(PT);
if length(uPT) > 1
warning('This tool cannot yet handle changes in codec sample rate');
end
fprintf('Payload type(s): %i', uPT(1));
if length(uPT) > 1
fprintf(', %i', uPT(2:end));
end
fprintf('\n');
fprintf('Packets: %i\n', length(SeqNo));
SortSeqNo = sort(SeqNoUW);
fprintf('Missing sequence numbers: %i\n', ...
length(find(diff(SortSeqNo) > 1)));
fprintf('Duplicated packets: %i\n', length(find(diff(SortSeqNo) == 0)));
reorderIx = findReorderedPackets(SeqNoUW);
fprintf('Reordered packets: %i\n', length(reorderIx));
tsdiff = diff(TimeStampUW);
tsdiff = tsdiff(diff(SeqNoUW) == 1);
[utsdiff, ~, ixtsdiff] = unique(tsdiff);
fprintf('Common packet sizes:\n');
for i = 1:length(utsdiff)
fprintf(' %i samples (%i%%)\n', ...
utsdiff(i), ...
round(100 * length(find(ixtsdiff == i))/length(ixtsdiff)));
end
%% Trying to figure out sample rate.
fs_est = (TimeStampUW(end) - TimeStampUW(1)) / (ArrTime(end) - ArrTime(1));
fs_vec = [8, 16, 32, 48];
fs = 0;
for f = fs_vec
if abs((fs_est-f)/f) < 0.05 % 5% margin
fs = f;
break;
end
end
if fs == 0
fprintf('Cannot determine sample rate. I get it to %.2f kHz\n', ...
fs_est);
fs = input('Please, input a sample rate (in kHz): ');
else
fprintf('Sample rate estimated to %i kHz\n', fs);
end
SendTimeMs = (TimeStampUW - TimeStampUW(1)) / fs;
fprintf('Stream duration at sender: %.1f seconds\n', ...
(SendTimeMs(end) - SendTimeMs(1)) / 1000);
fprintf('Stream duration at receiver: %.1f seconds\n', ...
(ArrTime(end) - ArrTime(1)) / 1000);
fprintf('Clock drift: %.2f%%\n', ...
100 * ((ArrTime(end) - ArrTime(1)) / ...
(SendTimeMs(end) - SendTimeMs(1)) - 1));
fprintf('Sent average bitrate: %i kbps\n', ...
round(sum(Size) * 8 / (SendTimeMs(end)-SendTimeMs(1))));
fprintf('Received average bitrate: %i kbps\n', ...
round(sum(Size) * 8 / (ArrTime(end)-ArrTime(1))));
%% Plots.
delay = ArrTime - SendTimeMs;
delay = delay - min(delay);
delayOrdered = delay;
delayOrdered(reorderIx) = nan; % Set reordered packets to NaN.
delayReordered = delay(reorderIx); % Pick the reordered packets.
sendTimeMsReordered = SendTimeMs(reorderIx);
% Sort time arrays in packet send order.
[~, sortix] = sort(SeqNoUW);
SendTimeMs = SendTimeMs(sortix);
Size = Size(sortix);
delayOrdered = delayOrdered(sortix);
figure
plot(SendTimeMs / 1000, delayOrdered, ...
sendTimeMsReordered / 1000, delayReordered, 'r.');
xlabel('Send time [s]');
ylabel('Relative transport delay [ms]');
title(sprintf('SSRC: %s', SSRC{1}));
SendBitrateKbps = 8 * Size(1:end-1) ./ diff(SendTimeMs);
figure
plot(SendTimeMs(1:end-1)/1000, SendBitrateKbps);
xlabel('Send time [s]');
ylabel('Send bitrate [kbps]');
end
%% Subfunctions.
% findReorderedPackets returns the index to all packets that are considered
% old compared with the largest seen sequence number. The input seqNo must
% be unwrapped for this to work.
function reorderIx = findReorderedPackets(seqNo)
largestSeqNo = seqNo(1);
reorderIx = [];
for i = 2:length(seqNo)
if seqNo(i) < largestSeqNo
reorderIx = [reorderIx; i]; %#ok<AGROW>
else
largestSeqNo = seqNo(i);
end
end
end
%% Auto-generated subfunction.
function [SeqNo,TimeStamp,SendTime,Size,PT,M,SSRC] = ...
importfile(filename, startRow, endRow)
%IMPORTFILE Import numeric data from a text file as column vectors.
% [SEQNO,TIMESTAMP,SENDTIME,SIZE,PT,M,SSRC] = IMPORTFILE(FILENAME) Reads
% data from text file FILENAME for the default selection.
%
% [SEQNO,TIMESTAMP,SENDTIME,SIZE,PT,M,SSRC] = IMPORTFILE(FILENAME,
% STARTROW, ENDROW) Reads data from rows STARTROW through ENDROW of text
% file FILENAME.
%
% Example:
% [SeqNo,TimeStamp,SendTime,Size,PT,M,SSRC] =
% importfile('rtpdump_recv.txt',2, 123);
%
% See also TEXTSCAN.
% Auto-generated by MATLAB on 2015/05/28 09:55:50
%% Initialize variables.
if nargin<=2
startRow = 2;
endRow = inf;
end
%% Format string for each line of text:
% column1: double (%f)
% column2: double (%f)
% column3: double (%f)
% column4: double (%f)
% column5: double (%f)
% column6: double (%f)
% column7: text (%s)
% For more information, see the TEXTSCAN documentation.
formatSpec = '%5f%11f%11f%6f%6f%3f%s%[^\n\r]';
%% Open the text file.
fileID = fopen(filename,'r');
%% Read columns of data according to format string.
% This call is based on the structure of the file used to generate this
% code. If an error occurs for a different file, try regenerating the code
% from the Import Tool.
dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, ...
'Delimiter', '', 'WhiteSpace', '', 'HeaderLines', startRow(1)-1, ...
'ReturnOnError', false);
for block=2:length(startRow)
frewind(fileID);
dataArrayBlock = textscan(fileID, formatSpec, ...
endRow(block)-startRow(block)+1, 'Delimiter', '', 'WhiteSpace', ...
'', 'HeaderLines', startRow(block)-1, 'ReturnOnError', false);
for col=1:length(dataArray)
dataArray{col} = [dataArray{col};dataArrayBlock{col}];
end
end
%% Close the text file.
fclose(fileID);
%% Post processing for unimportable data.
% No unimportable data rules were applied during the import, so no post
% processing code is included. To generate code which works for
% unimportable data, select unimportable cells in a file and regenerate the
% script.
%% Allocate imported array to column variable names
SeqNo = dataArray{:, 1};
TimeStamp = dataArray{:, 2};
SendTime = dataArray{:, 3};
Size = dataArray{:, 4};
PT = dataArray{:, 5};
M = dataArray{:, 6};
SSRC = dataArray{:, 7};
end
|
github
|
qian-liu/off_line_SNN-master
|
myOctaveVersion.m
|
.m
|
off_line_SNN-master/matlab_paf/util/myOctaveVersion.m
| 169 |
utf_8
|
d4603482a968c496b66a4ed4e7c72471
|
% return OCTAVE_VERSION or 'undefined' as a string
function result = myOctaveVersion()
if isOctave()
result = OCTAVE_VERSION;
else
result = 'undefined';
end
|
github
|
qian-liu/off_line_SNN-master
|
isOctave.m
|
.m
|
off_line_SNN-master/matlab_paf/util/isOctave.m
| 108 |
utf_8
|
4695e8d7c4478e1e67733cca9903f9ef
|
%detects if we're running Octave
function result = isOctave()
result = exist('OCTAVE_VERSION') ~= 0;
end
|
github
|
qian-liu/off_line_SNN-master
|
makeLMfilters.m
|
.m
|
off_line_SNN-master/matlab_paf/util/makeLMfilters.m
| 1,895 |
utf_8
|
21950924882d8a0c49ab03ef0681b618
|
function F=makeLMfilters
% Returns the LML filter bank of size 49x49x48 in F. To convolve an
% image I with the filter bank you can either use the matlab function
% conv2, i.e. responses(:,:,i)=conv2(I,F(:,:,i),'valid'), or use the
% Fourier transform.
SUP=49; % Support of the largest filter (must be odd)
SCALEX=sqrt(2).^[1:3]; % Sigma_{x} for the oriented filters
NORIENT=6; % Number of orientations
NROTINV=12;
NBAR=length(SCALEX)*NORIENT;
NEDGE=length(SCALEX)*NORIENT;
NF=NBAR+NEDGE+NROTINV;
F=zeros(SUP,SUP,NF);
hsup=(SUP-1)/2;
[x,y]=meshgrid([-hsup:hsup],[hsup:-1:-hsup]);
orgpts=[x(:) y(:)]';
count=1;
for scale=1:length(SCALEX),
for orient=0:NORIENT-1,
angle=pi*orient/NORIENT; % Not 2pi as filters have symmetry
c=cos(angle);s=sin(angle);
rotpts=[c -s;s c]*orgpts;
F(:,:,count)=makefilter(SCALEX(scale),0,1,rotpts,SUP);
F(:,:,count+NEDGE)=makefilter(SCALEX(scale),0,2,rotpts,SUP);
count=count+1;
end;
end;
count=NBAR+NEDGE+1;
SCALES=sqrt(2).^[1:4];
for i=1:length(SCALES),
F(:,:,count)=normalise(fspecial('gaussian',SUP,SCALES(i)));
F(:,:,count+1)=normalise(fspecial('log',SUP,SCALES(i)));
F(:,:,count+2)=normalise(fspecial('log',SUP,3*SCALES(i)));
count=count+3;
end;
return
function f=makefilter(scale,phasex,phasey,pts,sup)
gx=gauss1d(3*scale,0,pts(1,:),phasex);
gy=gauss1d(scale,0,pts(2,:),phasey);
f=normalise(reshape(gx.*gy,sup,sup));
return
function g=gauss1d(sigma,mean,x,ord)
% Function to compute gaussian derivatives of order 0 <= ord < 3
% evaluated at x.
x=x-mean;num=x.*x;
variance=sigma^2;
denom=2*variance;
g=exp(-num/denom)/(pi*denom)^0.5;
switch ord,
case 1, g=-g.*(x/variance);
case 2, g=g.*((num-variance)/(variance^2));
end;
return
function f=normalise(f), f=f-mean(f(:)); f=f/sum(abs(f(:))); return
|
github
|
xyxxmb/CVcode-master
|
make.m
|
.m
|
CVcode-master/A Bayesian Hierarchical Model for Learning Natural Scene Categories/PG_BOW_DEMO_SIFT/libsvm/make.m
| 940 |
utf_8
|
b8261ca58f0371965ae9b1c8ea3e9da3
|
% This make.m is for MATLAB and OCTAVE under Windows, Mac, and Unix
function make()
try
% This part is for OCTAVE
if (exist ('OCTAVE_VERSION', 'builtin'))
mex libsvmread.c
mex libsvmwrite.c
mex -I.. svmtrain.c ../libsvm/svm.cpp svm_model_matlab.c
mex -I.. svmpredict.c ../libsvm/svm.cpp svm_model_matlab.c
% This part is for MATLAB
% Add -largeArrayDims on 64-bit machines of MATLAB
else
mex COMPFLAGS="\$COMPFLAGS -std=c99" -largeArrayDims libsvmread.c
mex COMPFLAGS="\$COMPFLAGS -std=c99" -largeArrayDims libsvmwrite.c
mex COMPFLAGS="\$COMPFLAGS -std=c99" -I.. -largeArrayDims svmtrain.c ../libsvm/svm.cpp svm_model_matlab.c
mex COMPFLAGS="\$COMPFLAGS -std=c99" -I.. -largeArrayDims svmpredict.c ../libsvm/svm.cpp svm_model_matlab.c
end
catch err
fprintf('Error: %s failed (line %d)\n', err.stack(1).file, err.stack(1).line);
disp(err.message);
fprintf('=> Please check README for detailed instructions.\n');
end
|
github
|
xyxxmb/CVcode-master
|
lbp.m
|
.m
|
CVcode-master/A Bayesian Hierarchical Model for Learning Natural Scene Categories/PG_BOW_DEMO_SIFT/LBP/lbp.m
| 5,835 |
utf_8
|
e75b46f8a1e3ec7462b6bafc1c914b59
|
%LBP returns the local binary pattern image or LBP histogram of an image.
% J = LBP(I,R,N,MAPPING,MODE) returns either a local binary pattern
% coded image or the local binary pattern histogram of an intensity
% image I. The LBP codes are computed using N sampling points on a
% circle of radius R and using mapping table defined by MAPPING.
% See the getmapping function for different mappings and use 0 for
% no mapping. Possible values for MODE are
% 'h' or 'hist' to get a histogram of LBP codes
% 'nh' to get a normalized histogram
% Otherwise an LBP code image is returned.
%
% J = LBP(I) returns the original (basic) LBP histogram of image I
%
% J = LBP(I,SP,MAPPING,MODE) computes the LBP codes using n sampling
% points defined in (n * 2) matrix SP. The sampling points should be
% defined around the origin (coordinates (0,0)).
%
% Examples
% --------
% I=imread('rice.png');
% mapping=getmapping(8,'u2');
% H1=LBP(I,1,8,mapping,'h'); %LBP histogram in (8,1) neighborhood
% %using uniform patterns
% subplot(2,1,1),stem(H1);
%
% H2=LBP(I);
% subplot(2,1,2),stem(H2);
%
% SP=[-1 -1; -1 0; -1 1; 0 -1; -0 1; 1 -1; 1 0; 1 1];
% I2=LBP(I,SP,0,'i'); %LBP code image using sampling points in SP
% %and no mapping. Now H2 is equal to histogram
% %of I2.
function result = lbp(varargin) % image,radius,neighbors,mapping,mode)
% Version 0.3.2
% Authors: Marko Heikkil? and Timo Ahonen
% Changelog
% Version 0.3.2: A bug fix to enable using mappings together with a
% predefined spoints array
% Version 0.3.1: Changed MAPPING input to be a struct containing the mapping
% table and the number of bins to make the function run faster with high number
% of sampling points. Lauge Sorensen is acknowledged for spotting this problem.
% Check number of input arguments.
error(nargchk(1,5,nargin));
image=varargin{1};
d_image=double(image);
if nargin==1
spoints=[-1 -1; -1 0; -1 1; 0 -1; -0 1; 1 -1; 1 0; 1 1];
neighbors=8;
mapping=0;
mode='h';
end
if (nargin == 2) && (length(varargin{2}) == 1)
error('Input arguments');
end
if (nargin > 2) && (length(varargin{2}) == 1)
radius=varargin{2};
neighbors=varargin{3};
spoints=zeros(neighbors,2);
% Angle step.
a = 2*pi/neighbors;
for i = 1:neighbors
spoints(i,1) = -radius*sin((i-1)*a);
spoints(i,2) = radius*cos((i-1)*a);
end
if(nargin >= 4)
mapping=varargin{4};
if(isstruct(mapping) && mapping.samples ~= neighbors)
error('Incompatible mapping');
end
else
mapping=0;
end
if(nargin >= 5)
mode=varargin{5};
else
mode='h';
end
end
if (nargin > 1) && (length(varargin{2}) > 1)
spoints=varargin{2};
neighbors=size(spoints,1);
if(nargin >= 3)
mapping=varargin{3};
if(isstruct(mapping) && mapping.samples ~= neighbors)
error('Incompatible mapping');
end
else
mapping=0;
end
if(nargin >= 4)
mode=varargin{4};
else
mode='h';
end
end
% Determine the dimensions of the input image.
[ysize xsize] = size(image);
miny=min(spoints(:,1));
maxy=max(spoints(:,1));
minx=min(spoints(:,2));
maxx=max(spoints(:,2));
% Block size, each LBP code is computed within a block of size bsizey*bsizex
bsizey=ceil(max(maxy,0))-floor(min(miny,0))+1;
bsizex=ceil(max(maxx,0))-floor(min(minx,0))+1;
% Coordinates of origin (0,0) in the block
origy=1-floor(min(miny,0));
origx=1-floor(min(minx,0));
% Minimum allowed size for the input image depends
% on the radius of the used LBP operator.
if(xsize < bsizex || ysize < bsizey)
error('Too small input image. Should be at least (2*radius+1) x (2*radius+1)');
end
% Calculate dx and dy;
dx = xsize - bsizex;
dy = ysize - bsizey;
% Fill the center pixel matrix C.
C = image(origy:origy+dy,origx:origx+dx);
d_C = double(C);
bins = 2^neighbors;
% Initialize the result matrix with zeros.
result=zeros(dy+1,dx+1);
%Compute the LBP code image
for i = 1:neighbors
y = spoints(i,1)+origy;
x = spoints(i,2)+origx;
% Calculate floors, ceils and rounds for the x and y.
fy = floor(y); cy = ceil(y); ry = round(y);
fx = floor(x); cx = ceil(x); rx = round(x);
% Check if interpolation is needed.
if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6)
% Interpolation is not needed, use original datatypes
N = image(ry:ry+dy,rx:rx+dx);
D = N >= C;
else
% Interpolation needed, use double type images
ty = y - fy;
tx = x - fx;
% Calculate the interpolation weights.
w1 = (1 - tx) * (1 - ty);
w2 = tx * (1 - ty);
w3 = (1 - tx) * ty ;
w4 = tx * ty ;
% Compute interpolated pixel values
N = w1*d_image(fy:fy+dy,fx:fx+dx) + w2*d_image(fy:fy+dy,cx:cx+dx) + ...
w3*d_image(cy:cy+dy,fx:fx+dx) + w4*d_image(cy:cy+dy,cx:cx+dx);
D = N >= d_C;
end
% Update the result matrix.
v = 2^(i-1);
result = result + v*D;
end
%Apply mapping if it is defined
if isstruct(mapping)
bins = mapping.num;
for i = 1:size(result,1)
for j = 1:size(result,2)
result(i,j) = mapping.table(result(i,j)+1);
end
end
end
if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh'))
% Return with LBP histogram if mode equals 'hist'.
result=hist(result(:),0:(bins-1));
if (strcmp(mode,'nh'))
result=result/sum(result);
end
else
%Otherwise return a matrix of unsigned integers
if ((bins-1)<=intmax('uint8'))
result=uint8(result);
elseif ((bins-1)<=intmax('uint16'))
result=uint16(result);
else
result=uint32(result);
end
end
end
|
github
|
xyxxmb/CVcode-master
|
getmapping.m
|
.m
|
CVcode-master/A Bayesian Hierarchical Model for Learning Natural Scene Categories/PG_BOW_DEMO_SIFT/LBP/getmapping.m
| 2,662 |
utf_8
|
3520760e26ca814b2eb0cecaa8891b1e
|
%GETMAPPING returns a structure containing a mapping table for LBP codes.
% MAPPING = GETMAPPING(SAMPLES,MAPPINGTYPE) returns a
% structure containing a mapping table for
% LBP codes in a neighbourhood of SAMPLES sampling
% points. Possible values for MAPPINGTYPE are
% 'u2' for uniform LBP
% 'ri' for rotation-invariant LBP
% 'riu2' for uniform rotation-invariant LBP.
%
% Example:
% I=imread('rice.tif');
% MAPPING=getmapping(16,'riu2');
% LBPHIST=lbp(I,2,16,MAPPING,'hist');
% Now LBPHIST contains a rotation-invariant uniform LBP
% histogram in a (16,2) neighbourhood.
%
function mapping = getmapping(samples,mappingtype)
% Version 0.1.1
% Authors: Marko Heikkil? and Timo Ahonen
% Changelog
% 0.1.1 Changed output to be a structure
% Fixed a bug causing out of memory errors when generating rotation
% invariant mappings with high number of sampling points.
% Lauge Sorensen is acknowledged for spotting this problem.
table = 0:2^samples-1;
newMax = 0; %number of patterns in the resulting LBP code
index = 0;
if strcmp(mappingtype,'u2') %Uniform 2
newMax = samples*(samples-1) + 3;
for i = 0:2^samples-1
j = bitset(bitshift(i,1,samples),1,bitget(i,samples)); %rotate left
numt = sum(bitget(bitxor(i,j),1:samples)); %number of 1->0 and
%0->1 transitions
%in binary string
%x is equal to the
%number of 1-bits in
%XOR(x,Rotate left(x))
if numt <= 2
table(i+1) = index;
index = index + 1;
else
table(i+1) = newMax - 1;
end
end
end
if strcmp(mappingtype,'ri') %Rotation invariant
tmpMap = zeros(2^samples,1) - 1;
for i = 0:2^samples-1
rm = i;
r = i;
for j = 1:samples-1
r = bitset(bitshift(r,1,samples),1,bitget(r,samples)); %rotate
%left
if r < rm
rm = r;
end
end
if tmpMap(rm+1) < 0
tmpMap(rm+1) = newMax;
newMax = newMax + 1;
end
table(i+1) = tmpMap(rm+1);
end
end
if strcmp(mappingtype,'riu2') %Uniform & Rotation invariant
newMax = samples + 2;
for i = 0:2^samples - 1
j = bitset(bitshift(i,1,samples),1,bitget(i,samples)); %rotate left
numt = sum(bitget(bitxor(i,j),1:samples));
if numt <= 2
table(i+1) = sum(bitget(i,1:samples));
else
table(i+1) = samples+1;
end
end
end
mapping.table=table;
mapping.samples=samples;
mapping.num=newMax;
|
github
|
xyxxmb/CVcode-master
|
make.m
|
.m
|
CVcode-master/A Bayesian Hierarchical Model for Learning Natural Scene Categories/PG_BOW_DEMO_HOG/libsvm/make.m
| 940 |
utf_8
|
b8261ca58f0371965ae9b1c8ea3e9da3
|
% This make.m is for MATLAB and OCTAVE under Windows, Mac, and Unix
function make()
try
% This part is for OCTAVE
if (exist ('OCTAVE_VERSION', 'builtin'))
mex libsvmread.c
mex libsvmwrite.c
mex -I.. svmtrain.c ../libsvm/svm.cpp svm_model_matlab.c
mex -I.. svmpredict.c ../libsvm/svm.cpp svm_model_matlab.c
% This part is for MATLAB
% Add -largeArrayDims on 64-bit machines of MATLAB
else
mex COMPFLAGS="\$COMPFLAGS -std=c99" -largeArrayDims libsvmread.c
mex COMPFLAGS="\$COMPFLAGS -std=c99" -largeArrayDims libsvmwrite.c
mex COMPFLAGS="\$COMPFLAGS -std=c99" -I.. -largeArrayDims svmtrain.c ../libsvm/svm.cpp svm_model_matlab.c
mex COMPFLAGS="\$COMPFLAGS -std=c99" -I.. -largeArrayDims svmpredict.c ../libsvm/svm.cpp svm_model_matlab.c
end
catch err
fprintf('Error: %s failed (line %d)\n', err.stack(1).file, err.stack(1).line);
disp(err.message);
fprintf('=> Please check README for detailed instructions.\n');
end
|
github
|
xyxxmb/CVcode-master
|
lbp.m
|
.m
|
CVcode-master/A Bayesian Hierarchical Model for Learning Natural Scene Categories/PG_BOW_DEMO_HOG/LBP/lbp.m
| 5,835 |
utf_8
|
e75b46f8a1e3ec7462b6bafc1c914b59
|
%LBP returns the local binary pattern image or LBP histogram of an image.
% J = LBP(I,R,N,MAPPING,MODE) returns either a local binary pattern
% coded image or the local binary pattern histogram of an intensity
% image I. The LBP codes are computed using N sampling points on a
% circle of radius R and using mapping table defined by MAPPING.
% See the getmapping function for different mappings and use 0 for
% no mapping. Possible values for MODE are
% 'h' or 'hist' to get a histogram of LBP codes
% 'nh' to get a normalized histogram
% Otherwise an LBP code image is returned.
%
% J = LBP(I) returns the original (basic) LBP histogram of image I
%
% J = LBP(I,SP,MAPPING,MODE) computes the LBP codes using n sampling
% points defined in (n * 2) matrix SP. The sampling points should be
% defined around the origin (coordinates (0,0)).
%
% Examples
% --------
% I=imread('rice.png');
% mapping=getmapping(8,'u2');
% H1=LBP(I,1,8,mapping,'h'); %LBP histogram in (8,1) neighborhood
% %using uniform patterns
% subplot(2,1,1),stem(H1);
%
% H2=LBP(I);
% subplot(2,1,2),stem(H2);
%
% SP=[-1 -1; -1 0; -1 1; 0 -1; -0 1; 1 -1; 1 0; 1 1];
% I2=LBP(I,SP,0,'i'); %LBP code image using sampling points in SP
% %and no mapping. Now H2 is equal to histogram
% %of I2.
function result = lbp(varargin) % image,radius,neighbors,mapping,mode)
% Version 0.3.2
% Authors: Marko Heikkil? and Timo Ahonen
% Changelog
% Version 0.3.2: A bug fix to enable using mappings together with a
% predefined spoints array
% Version 0.3.1: Changed MAPPING input to be a struct containing the mapping
% table and the number of bins to make the function run faster with high number
% of sampling points. Lauge Sorensen is acknowledged for spotting this problem.
% Check number of input arguments.
error(nargchk(1,5,nargin));
image=varargin{1};
d_image=double(image);
if nargin==1
spoints=[-1 -1; -1 0; -1 1; 0 -1; -0 1; 1 -1; 1 0; 1 1];
neighbors=8;
mapping=0;
mode='h';
end
if (nargin == 2) && (length(varargin{2}) == 1)
error('Input arguments');
end
if (nargin > 2) && (length(varargin{2}) == 1)
radius=varargin{2};
neighbors=varargin{3};
spoints=zeros(neighbors,2);
% Angle step.
a = 2*pi/neighbors;
for i = 1:neighbors
spoints(i,1) = -radius*sin((i-1)*a);
spoints(i,2) = radius*cos((i-1)*a);
end
if(nargin >= 4)
mapping=varargin{4};
if(isstruct(mapping) && mapping.samples ~= neighbors)
error('Incompatible mapping');
end
else
mapping=0;
end
if(nargin >= 5)
mode=varargin{5};
else
mode='h';
end
end
if (nargin > 1) && (length(varargin{2}) > 1)
spoints=varargin{2};
neighbors=size(spoints,1);
if(nargin >= 3)
mapping=varargin{3};
if(isstruct(mapping) && mapping.samples ~= neighbors)
error('Incompatible mapping');
end
else
mapping=0;
end
if(nargin >= 4)
mode=varargin{4};
else
mode='h';
end
end
% Determine the dimensions of the input image.
[ysize xsize] = size(image);
miny=min(spoints(:,1));
maxy=max(spoints(:,1));
minx=min(spoints(:,2));
maxx=max(spoints(:,2));
% Block size, each LBP code is computed within a block of size bsizey*bsizex
bsizey=ceil(max(maxy,0))-floor(min(miny,0))+1;
bsizex=ceil(max(maxx,0))-floor(min(minx,0))+1;
% Coordinates of origin (0,0) in the block
origy=1-floor(min(miny,0));
origx=1-floor(min(minx,0));
% Minimum allowed size for the input image depends
% on the radius of the used LBP operator.
if(xsize < bsizex || ysize < bsizey)
error('Too small input image. Should be at least (2*radius+1) x (2*radius+1)');
end
% Calculate dx and dy;
dx = xsize - bsizex;
dy = ysize - bsizey;
% Fill the center pixel matrix C.
C = image(origy:origy+dy,origx:origx+dx);
d_C = double(C);
bins = 2^neighbors;
% Initialize the result matrix with zeros.
result=zeros(dy+1,dx+1);
%Compute the LBP code image
for i = 1:neighbors
y = spoints(i,1)+origy;
x = spoints(i,2)+origx;
% Calculate floors, ceils and rounds for the x and y.
fy = floor(y); cy = ceil(y); ry = round(y);
fx = floor(x); cx = ceil(x); rx = round(x);
% Check if interpolation is needed.
if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6)
% Interpolation is not needed, use original datatypes
N = image(ry:ry+dy,rx:rx+dx);
D = N >= C;
else
% Interpolation needed, use double type images
ty = y - fy;
tx = x - fx;
% Calculate the interpolation weights.
w1 = (1 - tx) * (1 - ty);
w2 = tx * (1 - ty);
w3 = (1 - tx) * ty ;
w4 = tx * ty ;
% Compute interpolated pixel values
N = w1*d_image(fy:fy+dy,fx:fx+dx) + w2*d_image(fy:fy+dy,cx:cx+dx) + ...
w3*d_image(cy:cy+dy,fx:fx+dx) + w4*d_image(cy:cy+dy,cx:cx+dx);
D = N >= d_C;
end
% Update the result matrix.
v = 2^(i-1);
result = result + v*D;
end
%Apply mapping if it is defined
if isstruct(mapping)
bins = mapping.num;
for i = 1:size(result,1)
for j = 1:size(result,2)
result(i,j) = mapping.table(result(i,j)+1);
end
end
end
if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh'))
% Return with LBP histogram if mode equals 'hist'.
result=hist(result(:),0:(bins-1));
if (strcmp(mode,'nh'))
result=result/sum(result);
end
else
%Otherwise return a matrix of unsigned integers
if ((bins-1)<=intmax('uint8'))
result=uint8(result);
elseif ((bins-1)<=intmax('uint16'))
result=uint16(result);
else
result=uint32(result);
end
end
end
|
github
|
xyxxmb/CVcode-master
|
getmapping.m
|
.m
|
CVcode-master/A Bayesian Hierarchical Model for Learning Natural Scene Categories/PG_BOW_DEMO_HOG/LBP/getmapping.m
| 2,662 |
utf_8
|
3520760e26ca814b2eb0cecaa8891b1e
|
%GETMAPPING returns a structure containing a mapping table for LBP codes.
% MAPPING = GETMAPPING(SAMPLES,MAPPINGTYPE) returns a
% structure containing a mapping table for
% LBP codes in a neighbourhood of SAMPLES sampling
% points. Possible values for MAPPINGTYPE are
% 'u2' for uniform LBP
% 'ri' for rotation-invariant LBP
% 'riu2' for uniform rotation-invariant LBP.
%
% Example:
% I=imread('rice.tif');
% MAPPING=getmapping(16,'riu2');
% LBPHIST=lbp(I,2,16,MAPPING,'hist');
% Now LBPHIST contains a rotation-invariant uniform LBP
% histogram in a (16,2) neighbourhood.
%
function mapping = getmapping(samples,mappingtype)
% Version 0.1.1
% Authors: Marko Heikkil? and Timo Ahonen
% Changelog
% 0.1.1 Changed output to be a structure
% Fixed a bug causing out of memory errors when generating rotation
% invariant mappings with high number of sampling points.
% Lauge Sorensen is acknowledged for spotting this problem.
table = 0:2^samples-1;
newMax = 0; %number of patterns in the resulting LBP code
index = 0;
if strcmp(mappingtype,'u2') %Uniform 2
newMax = samples*(samples-1) + 3;
for i = 0:2^samples-1
j = bitset(bitshift(i,1,samples),1,bitget(i,samples)); %rotate left
numt = sum(bitget(bitxor(i,j),1:samples)); %number of 1->0 and
%0->1 transitions
%in binary string
%x is equal to the
%number of 1-bits in
%XOR(x,Rotate left(x))
if numt <= 2
table(i+1) = index;
index = index + 1;
else
table(i+1) = newMax - 1;
end
end
end
if strcmp(mappingtype,'ri') %Rotation invariant
tmpMap = zeros(2^samples,1) - 1;
for i = 0:2^samples-1
rm = i;
r = i;
for j = 1:samples-1
r = bitset(bitshift(r,1,samples),1,bitget(r,samples)); %rotate
%left
if r < rm
rm = r;
end
end
if tmpMap(rm+1) < 0
tmpMap(rm+1) = newMax;
newMax = newMax + 1;
end
table(i+1) = tmpMap(rm+1);
end
end
if strcmp(mappingtype,'riu2') %Uniform & Rotation invariant
newMax = samples + 2;
for i = 0:2^samples - 1
j = bitset(bitshift(i,1,samples),1,bitget(i,samples)); %rotate left
numt = sum(bitget(bitxor(i,j),1:samples));
if numt <= 2
table(i+1) = sum(bitget(i,1:samples));
else
table(i+1) = samples+1;
end
end
end
mapping.table=table;
mapping.samples=samples;
mapping.num=newMax;
|
github
|
sheldona/hessianIK-master
|
LMFsolve.m
|
.m
|
hessianIK-master/matlab/ik/LMFsolve.m
| 10,348 |
utf_8
|
89bc7a366758036b07b83af3d6238091
|
function [xf, S, cnt] = LMFsolve(varargin)
% LMFSOLVE Solve a Set of Nonlinear Equations in Least-Squares Sense.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% A solution is obtained by a shortened Fletcher version of the
% Levenberg-Maquardt algoritm for minimization of a sum of squares
% of equation residuals.
%
% [Xf, Ssq, CNT] = LMFsolve(FUN,Xo,Options)
% FUN is a function handle or a function M-file name that evaluates
% m-vector of equation residuals,
% Xo is n-vector of initial guesses of solution,
% Options is an optional set of Name/Value pairs of control parameters
% of the algorithm. It may be also preset by calling:
% Options = LMFsolve('default'), or by a set of Name/Value pairs:
% Options = LMFsolve('Name',Value, ... ), or updating the Options
% set by calling
% Options = LMFsolve(Options,'Name',Value, ...).
%
% Name Values {default} Description
% 'Display' integer Display iteration information
% {0} no display
% k display initial and every k-th iteration;
% 'FunTol' {1e-7} norm(FUN(x),1) stopping tolerance;
% 'XTol' {1e-7} norm(x-xold,1) stopping tolerance;
% 'MaxIter' {100} Maximum number of iterations;
% 'ScaleD' Scale control:
% value D = eye(m)*value;
% vector D = diag(vector);
% {[]} D(k,k) = JJ(k,k) for JJ(k,k)>0, or
% = 1 otherwise,
% where JJ = J.'*J
% Not defined fields of the Options structure are filled by default values.
%
% Output Arguments:
% Xf final solution approximation
% Ssq sum of squares of residuals
% Cnt >0 count of iterations
% -MaxIter, did not converge in MaxIter iterations
% Example: Rosenbrock valey inside circle with unit diameter
% R = @(x) sqrt(x'*x)-.5; % A distance from the radius r=0.5
% ros= @(x) [ 10*(x(2)-x(1)^2); 1-x(1); (R(x)>0)*R(x)*1000];
% [x,ssq,cnt]=LMFsolve(ros,[-1.2,1],'Display',1,'MaxIter',50)
% returns x = [0.4556; 0.2059], ssq = 0.2966, cnt = 18.
%
% Note: Users with old MATLAB versions (<7), which have no anonymous
% functions implemented, should call LMFsolve with named function for
% residuals. For above example it is
% [x,ssq,cnt]=LMFsolve('rosen',[-1.2,1]);
% where the function rosen.m is of the form
% function r = rosen(x)
%% Rosenbrock valey with a constraint
% R = sqrt(x(1)^2+x(2)^2)-.5;
%% Residuals:
% r = [ 10*(x(2)-x(1)^2) % first part
% 1-x(1) % second part
% (R>0)*R*1000. % penalty
% ];
%
% Reference:
% Fletcher, R., (1971): A Modified Marquardt Subroutine for Nonlinear Least
% Squares. Rpt. AERE-R 6799, Harwell
%
% Original code by: Miroslav Balda, [email protected]
% Modified by: Sheldon Andrews, [email protected]
%
% 2007-07-02 v 1.0
% 2008-12-22 v 1.1 * Changed name of the function in LMFsolv
% * Removed part with wrong code for use of analytical
% form for assembling of Jacobian matrix
% 2009-01-08 v 1.2 * Changed subfunction printit.m for better one, and
% modified its calling from inside LMFsolve.
% * Repaired a bug, which caused an inclination to
% istability, in charge of slower convergence.
% 2017-09-10 v 1.3 * Modified to accept exact Hessian and additional
% options used by the IK framework.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% OPTIONS
%%%%%%%
% Default Options
if nargin==1 && strcmpi('default',varargin(1))
xf.Display = 0; % no print of iterations
xf.MaxIter = 100; % maximum number of iterations allowed
xf.ScaleD = 1.0; % default is unit scaling.
xf.FunTol = 1e-7; % tolerace for final function value
xf.XTol = 1e-4; % tolerance on difference of x-solutions
xf.ExactHessian = false; % use exact Hessian
xf.OutputFcn = []; % output function
xf.SpecifyObjectiveGradient = true;
return
% Updating Options
elseif isstruct(varargin{1}) % Options=LMFsolve(Options,'Name','Value',...)
if ~isfield(varargin{1},'Display')
error('Options Structure not correct for LMFsolve.')
end
xf=varargin{1}; % Options
for i=2:2:nargin-1
name=varargin{i}; % Option to be updated
if ~ischar(name)
error('Parameter Names Must be Strings.')
end
name=lower(name(isletter(name)));
value=varargin{i+1}; % value of the option
if strncmp(name,'d',1), xf.Display = value;
elseif strncmp(name,'f',1), xf.FunTol = value(1);
elseif strncmp(name,'x',1), xf.XTol = value(1);
elseif strncmp(name,'m',1), xf.MaxIter = value(1);
elseif strncmp(name,'s',1), xf.ScaleD = value;
else disp(['Unknown Parameter Name --> ' name])
end
end
return
% Pairs of Options
elseif ischar(varargin{1}) % check for Options=LMFSOLVE('Name',Value,...)
Pnames=char('display','funtol','xtol','maxiter','scaled','hessian','outputfcn');
if strncmpi(varargin{1},Pnames,length(varargin{1}))
xf=LMFsolve('default'); % get default values
xf=LMFsolve(xf,varargin{:});
return
end
end
% LMFSOLVE(FUN,Xo,Options)
%%%%%%%%%%%%%%%%%%%%%%%%
FUN=varargin{1}; % function handle
if ~(isvarname(FUN) || isa(FUN,'function_handle'))
error('FUN Must be a Function Handle or M-file Name.')
end
xc=varargin{2}; % Xo
if nargin>2 % OPTIONS
if isstruct(varargin{3})
options=varargin{3};
else
if ~exist('options','var')
options = LMFsolve('default');
end
for i=3:2:size(varargin,2)-1
options=LMFsolve(options, varargin{i},varargin{i+1});
end
end
else
if ~exist('options','var')
options = LMFsolve('default');
end
end
x = xc(:);
lx = length(x);
if( options.ExactHessian )
[r,J,H] = feval(FUN,x); % Residuals, Jacobian, and Hessian at starting point
H = H;
else
[r,J] = feval(FUN,x);
H = J'*J;
end
%~~~~~~~~~~~~~~~~~
S = (r'*r); % compute function value
epsx = options.XTol(:);
epsf = options.FunTol(:);
if length(epsx)<lx, epsx=epsx*ones(lx,1); end
%~~~~~~~~~~~~~~~~~~~~~~~
nfJ = 2;
A = H; % System matrix
v = -J'*r;
funccount = 1;
stop = false;
if (isa(options.OutputFcn,'function_handle'))
optimValues.fval = r;
optimValues.funccount = funccount;
stop = feval(options.OutputFcn, x, optimValues, 'init');
end
D = options.ScaleD;
if isempty(D)
D = diag(diag(A)); % automatic scaling
for i = 1:lx
if D(i,i)==0, D(i,i)=1; end
end
else
if numel(D)>1
D = diag(sqrt(abs(D(1:lx)))); % vector of individual scaling
else
D = sqrt(abs(D))*eye(lx); % scalar of unique scaling
end
end
Rlo = 0.25;
Rhi = 0.75;
l=1.0; % initial damping
lc=.75;
is=0;
cnt = 0;
ipr = options.Display;
printit(ipr,-1); % Table header
d = options.XTol; % vector for the first cycle
maxit = options.MaxIter; % maximum permitted number of iterations
% while cnt<maxit && ... % MAIN ITERATION CYCLE
% any(abs(d) >= epsx) && ... %%%%%%%%%%%%%%%%%%%%
% any(abs(r) >= epsf)
while (~stop && cnt<maxit) % MAIN ITERATION CYCLE
d = (A+l*D)\v; % negative solution increment
xd = x-d;
rd = feval(FUN,xd);
funccount = funccount+1;
% ~~~~~~~~~~~~~~~~~~~
nfJ = nfJ+1;
Sd = (rd.'*rd); % value at next solution
dS = d.'*(2*v-A*d); % predicted reduction
R = (S-Sd)/dS;
if R>Rhi % halve lambda if R too high
l = l/2;
% if l<lc, l=0; end
elseif R<Rlo % find new nu if R too low
nu = (Sd-S)/(d.'*v)+2;
if nu<2
nu = 2;
elseif nu>10
nu = 10;
end
if l==0
lc = 1/max(abs(diag(inv(A))));
l = lc;
nu = nu/2;
end
l = nu*l;
end
if ipr~=0 && (rem(cnt,ipr)==0 || cnt==1) % print iteration?
printit(ipr,cnt,nfJ,S,x,d,l,lc)
end
if Sd<S
if( options.ExactHessian )
[rd,J,H] = feval(FUN,xd); % residuals, Jacobian, and Hessian at new point
H = H;
else
[rd,J] = feval(FUN,xd);
H = J'*J;
end
S = (rd'*rd);
x = xd;
r = rd;
% ~~~~~~~~~~~~~~~~~~~~~~~~~
nfJ = nfJ+1;
A = H;
v = -J'*r;
end
if (isa(options.OutputFcn,'function_handle'))
optimValues.fval = r;
optimValues.funccount = funccount;
stop = feval(options.OutputFcn, x, optimValues, 'iter');
end
cnt = cnt+1;
end % while
xf = x; % final solution
if cnt==maxit
cnt = -cnt;
end % maxit reached
rd = feval(FUN,xf);
nfJ = nfJ+1;
Sd = (rd'*rd);
if ipr, disp(' '), end
printit(ipr,cnt,nfJ,Sd,xf,d,l,lc)
function printit(ipr,cnt,res,SS,x,dx,l,lc)
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Printing of intermediate results
% ipr < 0 do not print lambda columns
% = 0 do not print at all
% > 0 print every (ipr)th iteration
% cnt = -1 print out the header
% 0 print out second row of results
% >0 print out first row of results
if ipr~=0
if cnt<0 % table header
disp('')
disp(char('*'*ones(1,75)))
fprintf(' itr nfJ SUM(r^2) dx');
if ipr>0
fprintf(' l ');
end
fprintf('\n');
disp(char('*'*ones(1,75)))
disp('')
else % iteration output
if rem(cnt,ipr)==0
% Print iteration count, residual, sum of squares, and step size
fprintf('%4.0f %4.0f %12.4e %12.4e %12.4e \n', cnt,res,SS,sqrt(dx'*dx),l);
end
end
end
|
github
|
sheldona/hessianIK-master
|
runIK.m
|
.m
|
hessianIK-master/matlab/ik/runIK.m
| 7,838 |
utf_8
|
1e7d2f4c4105cb717d37fbf7d1f24ef3
|
function [x,f,history] = runIK(varargin)
% Copyright (C) 2017 Sheldon Andrews
%
% Permission to use and modify in any way, and for any purpose, this
% software, is granted by the author. Permission to redistribute
% unmodified copies is also granted. Modified copies may only be
% redistributed with the express written consent of:
% Sheldon Andrews ([email protected])
%
%RUNIK Run an IK optimization.
% [x,f,history] = runIK(x0, skel, targets, method, useHessian, useBounds, ftol, maxiter, epsPCG, bPCG)
%INPUTS:
% x0 - Initial solution, the dofs of the skeleton including root trans.
% skel - The skeleton data structure following HDM05 sepecification.
% targets - The position of C3D markers.
% method - 0 = trust-region method and exact Hessian,
% 1 = a quasi-Newton method (BFGS) with exact gradient
% 2 = Levenberg-Marquardt
% useBounds - Apply joint angle box limits, in which case fmincon is used.
% ftol - Stopping tolerance for the IK objective function. (Default 1e-20)
% maxiter - Maximum number of iterations to use in the Newton or
% quasi-Newton method.
% epsPCG - Preconditioned Conjugate Gradient (PCG) stopping tolerance.
% This is only used by the exact Newton algorithm with Hessian, which
% is based on a reflective trust region method. (Default 0.1)
% bPCG - Bandwidth of the preconditioner for PCG. (Default 24)
%OUTPUTS:
% x - The optimal solution, which is the degrees of freedom of the
% skeleton
% f - Objective function value at the optimal solution.
% history - Cell array storing information about each iteration.
%
if( nargin < 3 )
disp('Usage: [x,f,history] = runIK(x0, skel, targets, method, useHessian, useBounds, ftol, maxiter, epsPCG, bPCG)');
return;
else
x0 = varargin{1};
skel = varargin{2};
targets = varargin{3};
method = 0;
useHessian = false;
useBounds = false;
ftol = 1e-20;
maxiter = 100;
epsPCG = 1e-1; % Default values for epsPCG and bPCG selected based on
bPCG = 8; % parameter sweep (see doParamSweep.m)
end
if( nargin > 3 )
method = varargin{4};
end
if( nargin > 4 )
useHessian = varargin{5};
end
if( nargin > 5 )
useBounds = varargin{6};
end
if( nargin > 6 )
ftol = varargin{7};
end
if( nargin > 7 )
maxiter = varargin{8};
end
if( nargin > 8 )
epsPCG = varargin{9};
end
if( nargin > 9 )
bPCG = varargin{10};
end
%% Main optimization code
%
ndof = size(x0,1);
conversion_factor = 1.;
if( strcmp(skel.angleUnit,'deg') ) % conversion: degrees-to-radians
conversion_factor = pi/180.;
end
if( method < 2 )
if( ~useBounds ) % setup unconstrained optimization
options = optimoptions(@fminunc);
if( useHessian )
options.Algorithm = 'trust-region';
options.HessianFcn = 'objective';
else
options.Algorithm = 'quasi-newton';
options.HessianFcn = [];
options.HessUpdate = 'bfgs';
end
else % setup constrained optimization with joint limits
options = optimoptions(@fmincon);
if( useHessian )
options.Algorithm = 'trust-region-reflective';
options.HessianFcn = 'objective';
else
options.Algorithm = 'interior-point';
options.HessianFcn = [];
end
end
%
% Options common to MATLAB algorithms
%
options.OutputFcn = @outfun;
options.Display = 'iter';
options.StepTolerance = 1e-120;
% Trust region options
%
options.MaxPCGIter = ndof*ndof; % Give cg more time to solve sub-problem.
options.TolPCG = epsPCG; % Setting this too low will give poor convergence!
options.PrecondBandWidth = bPCG; % Close to diagonal pre-conditioner seems to give good performance.
options.FunctionTolerance= 1e-120;
options.SpecifyObjectiveGradient = true; % We always specify the gradient.
%options.CheckGradients = true; % Uncomment to verify the gradient.
options.OptimalityTolerance = 1e-120;
options.MaxIterations = maxiter;
options.MaxFunctionEvaluations = 1e6; % Don't limit function evals, just max iterations.
else
% Use our custom LM solver
%
options = LMFsolve('default');
options.Display = 1;
options.MaxIter = maxiter;
options.ScaleD = [];
options.FunTol = 1e-120;
options.XTol = 1e-120;
options.ExactHessian = useHessian;
options.HessianFcn = 'objective';
options.OutputFcn = @outfun;
options.SpecifyObjectiveGradient = true;
end
% Create struct to keep track of function values and
% the solution at each iteration.
history.fval = [];
history.x = [];
history.funccount = 0;
% Create an empty motion struct to store the single frame
% which is being optimized. We do this so that we can 'piggy back' on
% the HDM05 forward kinematics functions.
oneFrame = emptyMotion;
oneFrame.njoints = skel.njoints;
oneFrame.nframes = 1;
oneFrame.jointNames = skel.jointNames;
oneFrame.nameMap = skel.nameMap;
oneFrame.animated = skel.animated;
oneFrame.unanimated = skel.unanimated;
oneFrame.angleUnit = 'rad';
if( method < 2 && ~useBounds ) % unconstrained optimization
[x,f] = fminunc(@ikFunc,x0,options);
elseif( method < 2 ) % constrained optimization with joint limits
[x,f] = fmincon(@ikFunc,x0,[],[],[],[],skel.lb,skel.ub,[],options);
else
[x,f] = LMFsolve(@ikFunc,x0,options);
end
%% Nested function to evaluate the IK solution x.
% The exact gradient and Hessian are also returned.
%
function [f,g,H] = ikFunc(x)
oneFrame = unpackDOF(x, skel, oneFrame, 1);
oneFrame = convert2quat(skel,oneFrame);
[oneFrame.jointTrajectories,oneFrame.jointRotations] = forwardKinematicsQuat(skel,oneFrame);
[bonePos, boneQuat] = extractBonePosQuat(skel,oneFrame,1);
[f, r] = objectiveIK(skel, bonePos, boneQuat, targets);
H = [];
g = [];
if( method < 2 )
if( nargout > 1 && options.SpecifyObjectiveGradient ) % only compute gradient if req'd.
[ J ] = jacobianIK(skel, bonePos, boneQuat, x, targets);
g = -J'*r;
end
else
if( nargout > 1 && options.SpecifyObjectiveGradient ) % only compute gradient if req'd.
[ J ] = jacobianIK(skel, bonePos, boneQuat, x, targets);
g = J;
end
f = r;
end
if( nargout > 2 && ~isempty(options.HessianFcn) ) % only compute Hessian if req'd.
[ H ] = hessianIK(skel, bonePos, boneQuat, x, targets, J);
% H = nearestSPD(H);
% disp(['Condition number ' num2str(cond(H)) ', rank ' num2str(rank(H))]);
% if( ~check )
% y = 1;
% end
end
end
%% Nested function to collect optimization
%
function stop = outfun(x,optimValues,state)
stop = false;
switch state
case 'iter'
% Concatenate current point and objective function
% value with history. x must be a row vector.
if( isfield(optimValues, 'fval') )
[m,n] = size(optimValues.fval);
if( m > 1 ),
fval = 0.5*optimValues.fval'*optimValues.fval;
else
fval = optimValues.fval;
end
elseif( isfield(optimValues, 'residual') )
fval = 0.5*optimValues.residual'*optimValues.residual;
end
history.fval = [history.fval; fval];
history.x = [history.x; x];
history.funccount = history.funccount + optimValues.funccount;
if( fval < ftol )
stop = true;
end
otherwise
end
end
end
|
github
|
sheldona/hessianIK-master
|
scaleSkelMot.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/scaleSkelMot.m
| 1,327 |
utf_8
|
adfc3ca5991b4d42619f4af9d67e53bb
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [skel,mot] = scaleSkelMot(skel,mot,S)
% [skel,mot] = scaleSkelMot(skel,mot,S)
% S is the downscale factor
for k=1:length(skel.nodes)
skel.nodes(k).length = skel.nodes(k).length/S;
skel.nodes(k).offset = skel.nodes(k).offset/S;
end
mot.rootTranslation = mot.rootTranslation/S;
mot.jointTrajectories = forwardKinematicsQuat(skel,mot);
mot.boundingBox = computeBoundingBox(mot);
s = sprintf('Motion scaled using "scaleSkelMot" with factor %f',S);
mot.documentation = vertcat(mot.documentation,{s});
|
github
|
sheldona/hessianIK-master
|
trajectoryID.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/trajectoryID.m
| 1,111 |
utf_8
|
930b62e1d6b4f5a64b70c64a8f333ebe
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function ID = trajectoryID(skel,jointname)
i = strmatch(upper(jointname),upper(skel.nameMap(:,1)),'exact');
if (isempty(i))
error(['Unknown standard joint name "' jointname '"!']);
end
if (length(i)>1)
error(['Ambiguous standard joint name "' jointname '"!']);
end
ID = skel.nameMap{i,3};
|
github
|
sheldona/hessianIK-master
|
eatWhitespace.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/eatWhitespace.m
| 1,101 |
utf_8
|
b72fc9f0488ce8f7a64dc7be3c1492d8
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function l_out = eatWhitespace(l_in)
% fast forward in file, skipping whitespace
n = 1;
for i = 1:size(l_in,2)
c = double(l_in(i));
if (c == 9) | (c == 10) | (c == 13) | (c == 32) % TAB, CR, LF, SPC
n = n+1;
else
break;
end
end
l_out = l_in(n:size(l_in,2));
|
github
|
sheldona/hessianIK-master
|
forwardKinematicsQuat.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/forwardKinematicsQuat.m
| 1,419 |
utf_8
|
5429b3ff27b5cf1797d3feaee1b6606e
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [jointTrajectories,jointRotations] = forwardKinematicsQuat(skel,mot)
[jointTrajectories,jointRotations] = recursive_forwardKinematicsQuat(skel,...
mot,...
1,...
mot.rootTranslation + repmat(skel.nodes(1).offset,1,mot.nframes),...
quatmult(repmat(skel.rootRotationalOffsetQuat,1,mot.nframes),mot.rotationQuat{1}),...
mot.jointTrajectories, mot.jointRotations);
|
github
|
sheldona/hessianIK-master
|
recursive_forwardKinematicsEuler.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/recursive_forwardKinematicsEuler.m
| 3,643 |
utf_8
|
7d328b56ae42bdc58cbecd6b4639bf36
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [trajectories,rotations] = recursive_forwardKinematicsEuler(skel, mot, node_id, current_position, current_rotation, trajectories, rotations)
% trajectories = recursive_forwardKinematicsEuler(skel, mot, node_id, current_position, current_rotation, trajectories)
%
% skel: skeleton
% mot: motion
% node_id: index of current node in node array
% current_position: for all frames: current local coordinate offsets from world origin (3xnframes sequence of vectors)
% current_rotation: for all frames: current local coordinate rotations against world coordinate frame (4xnframes sequence of quaternions)
% trajectories: input & output cell array containing the trajectories that have been computed so far
% rotations: input & output cell array containing the rotations that have been computed so far
switch lower(mot.angleUnit)
case 'deg'
conversion_factor = pi/180;
case 'rad'
conversion_factor = 1;
otherwise
error(['Unknown angle unit: ' mot.angleUnit]);
end
trajectories{node_id,1} = current_position;
rotations{node_id,1} = current_rotation;
for child_id = skel.nodes(node_id).children'
child = skel.nodes(child_id);
if (~isempty(mot.rotationEuler{child_id}))
nRotDOF = size(mot.rotationEuler{child.ID,1},1); % number of rotational DOFs
% zero-pad Euler array at the appropriate places, according to rotation order and presence/absence of respective DOFs
if nRotDOF > 0
completeEulers = zeros(3,mot.nframes);
d = 1; % index for DOFs present in mot.rotationEuler
for r = 1:3 % go through rotationOrder.
idx = strmatch(['r' lower(child.rotationOrder(r))], lower(child.DOF), 'exact');
if (~isempty(idx))
completeEulers(r,:) = mot.rotationEuler{child.ID,1}(d,:)*conversion_factor;
d = d+1;
end
end
axis_quat = repmat(euler2quat(flipud(child.axis)*conversion_factor,'zyx'),1,mot.nframes); % According to ASF specs, rotation order for "axis" should be XYZ. However, they use the opposite multiplication order as we do!
rotationQuat = quatmult(axis_quat,quatmult(euler2quat(flipud(completeEulers),fliplr(child.rotationOrder)),quatinv(axis_quat))); % ASF specs use opposite multiplication order as we do, hence fliplr() and flipud()!
end
child_rotation = quatmult(current_rotation,rotationQuat);
else
child_rotation = current_rotation;
end
child_position = current_position + quatrot(repmat(child.offset,1,mot.nframes),child_rotation);
[trajectories,rotations] = recursive_forwardKinematicsEuler(skel, mot, child_id, child_position, child_rotation, trajectories, rotations);
end
|
github
|
sheldona/hessianIK-master
|
recursive_forwardKinematicsQuat.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/recursive_forwardKinematicsQuat.m
| 2,212 |
utf_8
|
719da37ba0ceddce75b2e190eefffe4c
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [trajectories,rotations] = recursive_forwardKinematicsQuat(skel, mot, node_id, current_position, current_rotation, trajectories, rotations)
% trajectories = recursive_forwardKinematicsQuat(skel, mot, node_id, current_position, current_rotation, trajectories)
%
% skel: skeleton
% mot: motion
% node_id: index of current node in node array
% current_position: for all frames: current local coordinate offsets from world origin (3xnframes sequence of vectors)
% current_rotation: for all frames: current local coordinate rotations against world coordinate frame (4xnframes sequence of quaternions)
% trajectories: input & output cell array containing the trajectories that have been computed so far
trajectories{node_id,1} = current_position;
rotations{node_id,1} = current_rotation;
parent = skel.nodes(node_id);
for child_id = skel.nodes(node_id).children'
child = skel.nodes(child_id);
if (~isempty(mot.rotationQuat{child_id}))
child_rotation = quatmult(current_rotation,mot.rotationQuat{child_id});
else
child_rotation = current_rotation;
end
child_position = current_position + quatrot(repmat(parent.offset,1,mot.nframes),current_rotation);
[trajectories,rotations] = recursive_forwardKinematicsQuat(skel, mot, child_id, child_position, child_rotation, trajectories, rotations);
end
|
github
|
sheldona/hessianIK-master
|
averageFrontVector.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/averageFrontVector.m
| 1,289 |
utf_8
|
3b7f6f6fe483ed4a64e320be687d842a
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function v = averageFrontVector(mot,varargin)
p1_name = 'lhip';
p2_name = 'rhip';
if (nargin>2)
p2_name = varargin{2};
end
if (nargin>1)
p1_name = varargin{1};
end
p1 = trajectoryID(mot,p1_name);
p2 = trajectoryID(mot,p2_name);
n = mot.jointTrajectories{p1} - mot.jointTrajectories{p2};
n = n([1 3],:);
n = n./repmat(sqrt(sum(n.^2)),2,1);
v = mean(n,2);
v = v/sqrt(sum(v.^2));
v = [-v(2);v(1)]; % compute front vector as normal of average direction from lhip to rhip
|
github
|
sheldona/hessianIK-master
|
computeBoundingBox.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/computeBoundingBox.m
| 1,374 |
utf_8
|
27fa4c644f03225656638b7994aff02b
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function boundingBox = computeBoundingBox(mot)
boundingBox = [inf;-inf;inf;-inf;inf;-inf];
for k = 1:mot.njoints
trajectory = mot.jointTrajectories{k};
boundingBox(1) = min(boundingBox(1),min(trajectory(1,:))); % xmin
boundingBox(2) = max(boundingBox(2),max(trajectory(1,:))); % xmax
boundingBox(3) = min(boundingBox(3),min(trajectory(2,:))); % ymin
boundingBox(4) = max(boundingBox(4),max(trajectory(2,:))); % ymax
boundingBox(5) = min(boundingBox(5),min(trajectory(3,:))); % zmin
boundingBox(6) = max(boundingBox(6),max(trajectory(3,:))); % zmax
end
|
github
|
sheldona/hessianIK-master
|
reflectMotYZ.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/reflectMotYZ.m
| 1,360 |
utf_8
|
b98a41cc5913918c779cdc1eebf6fe0a
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function mot = reflectMotYZ(mot)
%%%%%%%% reflect elderwalk about yz plane
for k=1:length(mot.jointTrajectories)
mot.jointTrajectories{k,1}([1],:) = -mot.jointTrajectories{k,1}([1],:);
mot.jointTrajectories{k,1} = mot.jointTrajectories{k,1} - repmat(mot.rootTranslation(:,1) - mot.rootTranslation(:,1),1,mot.nframes);
end
mot.rootTranslation([1],:) = -mot.rootTranslation([1],:);
mot.rootTranslation = mot.rootTranslation - repmat(mot.rootTranslation(:,1) - mot.rootTranslation(:,1),1,mot.nframes);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
github
|
sheldona/hessianIK-master
|
findNextToken.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/findNextToken.m
| 1,177 |
utf_8
|
4367d453652e96e43a65c9e7ff6bbd00
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [result, token] = findNextToken(fid)
% stops at first occurence of any non-whitespace word and returns the entire line as token.
line_count = 0;
while ~feof(fid)
line = fgetl(fid);
line_count = line_count + 1;
line = strtok(line);
if (length(line)>0)
token = line;
result = true;
return;
end
end
result = false;
|
github
|
sheldona/hessianIK-master
|
forwardKinematicsEuler.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/forwardKinematicsEuler.m
| 2,294 |
utf_8
|
cf8b5abbc0e2f08bc9b39c35b738f0e6
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [jointTrajectories,jointRotations] = forwardKinematicsEuler(skel,mot)
switch lower(mot.angleUnit)
case 'deg'
conversion_factor = pi/180;
case 'rad'
conversion_factor = 1;
otherwise
error(['Unknown angle unit: ' mot.angleUnit]);
end
% root node involves special case for determination of rotation order (node.rotationOrder only concerns the global rotational offset in this case)
node = skel.nodes(1);
completeEulers = mot.rotationEuler{1};
rootTransformationOrder = char(skel.nodes(1).DOF);
rootTransformationOrder = rootTransformationOrder(:,2)';
[x,IA,IB] = intersect({'rx','ry','rz'}, lower(skel.nodes(1).DOF));
rootRotationOrder = rootTransformationOrder(sort(IB));
mot.rotationQuat{node.ID,1} = euler2quat(flipud(completeEulers),fliplr(node.rotationOrder)); % ASF specs use opposite multiplication order as we do, hence fliplr() and flipud()!
[jointTrajectories,jointRotations] = recursive_forwardKinematicsEuler(skel,...
mot,...
1,...
mot.rootTranslation + repmat(skel.nodes(1).offset,1,mot.nframes),...
quatmult(repmat(skel.rootRotationalOffsetQuat,1,mot.nframes),euler2quat(conversion_factor*flipud(mot.rotationEuler{1}),rootRotationOrder)),...
mot.jointTrajectories, mot.jointRotations);
|
github
|
sheldona/hessianIK-master
|
findKeyword.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/findKeyword.m
| 1,394 |
utf_8
|
4b11f2d224ce9c9ee1d15ff1b0edf79c
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [b, line, pos, line_count] = findKeyword(varargin)
% stops at first occurence of any of the keywords. NOT case sensitive!
% args: fid,keywords
if nargin < 2
error('Not enough arguments!');
end
fid = varargin{1};
pos = 0;
line_count = 0;
line = [];
while ~feof(fid)
l = eatWhitespace(fgetl(fid));
line_count = line_count + 1;
for i = 2:nargin
k = strfind(upper(l),upper(varargin{i}));
if size(k) > 0
line = l(k:size(l,2));
b = true;
pos = ftell(fid);
return;
end
end
end
b = false;
|
github
|
sheldona/hessianIK-master
|
readMocapGUI.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/readMocapGUI.m
| 1,997 |
utf_8
|
27f8ac81934acbe5dbfd371cfc8881dd
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [skel, mot] = readMocapGUI(noCaching);
% [skel, mot] = readMocapGUI(noCaching)
if nargin < 1
noCaching = false;
end
global VARS_GLOBAL;
oldPath = cd;
try
defaultPath = VARS_GLOBAL.readMocapGUILastDir;
catch
try
defaultPath = VARS_GLOBAL.dir_root;
catch
defaultPath = cd;
end
end
cd(defaultPath);
[datafile,datapath] = uigetfile('*.c3d; *.amc', 'Choose data file', 40, 40);
if datafile ~= 0
VARS_GLOBAL.readMocapGUILastDir = datapath;
idx = findstr(datafile,'.');
ext = upper(datafile(idx(end):end));
if strcmp(ext, '.C3D')
[skel, mot] = readMocap([datapath,datafile], [], noCaching);
elseif strcmp(ext, '.AMC')
asfFiles = dir([datapath '\*.ASF']);
if isempty(asfFiles)
cd(datapath);
[asfFile, asfPath] = uigetfile('*.asf', 'Choose ASF file', 40, 40);
else
asfPath = datapath;
asfFile = [datafile(1:6) '.ASF'];
end
[skel, mot] = readMocap([datapath,asfFile], [datapath,datafile], [], true, true, true, noCaching);
end
end
cd(oldPath);
|
github
|
sheldona/hessianIK-master
|
cropMot.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/cropMot.m
| 2,152 |
utf_8
|
eba0a2efc5c1dac2063903d9f011883b
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function mot_out = cropMot(mot_in,range)
if isempty(range)
mot_out = mot_in;
return;
end
mot_out = emptyMotion;
mot_out.njoints = mot_in.njoints;
mot_out.nframes = length(range);
mot_out.frameTime = mot_in.frameTime;
mot_out.samplingRate = mot_in.samplingRate;
mot_out.jointNames = mot_in.jointNames;
mot_out.boneNames = mot_in.boneNames;
mot_out.nameMap = mot_in.nameMap;
mot_out.animated = mot_in.animated;
mot_out.unanimated = mot_in.unanimated;
if not(isempty(mot_in.rootTranslation))
mot_out.rootTranslation = mot_in.rootTranslation(:,range);
end
for k = 1:size(mot_in.jointTrajectories,1)
if ~isempty(mot_in.jointTrajectories{k,1})
mot_out.jointTrajectories{k,1} = mot_in.jointTrajectories{k,1}(:,range);
end
end
for k = 1:size(mot_in.rotationEuler,1)
if (~isempty(mot_in.rotationEuler{k}))
mot_out.rotationEuler{k,1} = mot_in.rotationEuler{k,1}(:,range);
end
end
for k = 1:size(mot_in.rotationQuat,1)
if (~isempty(mot_in.rotationQuat{k,1}))
mot_out.rotationQuat{k,1} = mot_in.rotationQuat{k,1}(:,range);
end
end
mot_out.filename = mot_in.filename;
mot_out.documentation = vertcat(mot_in.documentation,{['The original file has been cropped to the range ' num2str(range) '!']});
mot_out.angleUnit = mot_in.angleUnit;
mot_out.boundingBox = computeBoundingBox(mot_out);
|
github
|
sheldona/hessianIK-master
|
filename2info.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/filename2info.m
| 2,729 |
utf_8
|
e4219a9b0c0ec499293fc7d24cf4d08e
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [info,OK] = filename2info(amcfullpath)
info = struct('amcname','',...
'asfname','',...
'amcpath','',...
'filetype','ASF/AMC',...
'skeletonSource','',...
'skeletonID','',...
'motionCategory','',...
'motionDescription','',...
'samplingRate',0);
[info.amcpath, name, ext] = fileparts(amcfullpath);
info.amcname = [name ext];
% n = strfind(amcfullpath, filesep);
% if (isempty(n))
% info.amcpath = '';
% info.amcname = amcfullpath;
% else
% n = n(end);
% info.amcpath = amcfullpath(1:n);
% info.amcname = amcfullpath(n+1:end);
% end
OK = true;
p = strfind(info.amcname,'_');
if (length(p)~=4)
disp(['**** Filename "' info.amcname '" doesn''t conform with MoCaDa standard!']);
OK = false;
return;
end
n = strfind(info.amcname,'.');
if (length(n)<=0) % no period in amc filename? weird... there should at least be a ".amc"!!
disp(['**** Filename "' info.amcname '" doesn''t have a file extension!']);
OK = false;
return;
% n = length(info.amcname+1);
else
n = n(end);
end
info.skeletonSource = info.amcname(1:p(1)-1);
info.skeletonID = info.amcname(p(1)+1:p(2)-1);
info.motionCategory = info.amcname(p(2)+1:p(3)-1);
info.motionDescription = info.amcname(p(3)+1:p(4)-1);
[info.samplingRate,OK] = str2num(info.amcname(p(4)+1:n-1));
if (~OK)
disp(['**** Couldn''t deduce sampling rate from filename "' info.amcname '"!']);
end
if (strcmpi(info.amcname(n(end)+1:end),'BVH'))
info.asfname = info.amcname;
info.filetype = 'BVH';
elseif (strcmpi(info.amcname(n(end)+1:end),'C3D'))
info.asfname = info.amcname;
info.filetype = 'C3D';
elseif (strcmpi(info.amcname(n(end)+1:end),'mpii'))
info.asfname='';
info.filetype = 'MPII';
else
info.asfname = [info.skeletonSource '_' info.skeletonID '.asf'];
end
|
github
|
sheldona/hessianIK-master
|
readMocapD.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/readMocapD.m
| 1,493 |
utf_8
|
874ec42ed05d5143dff477a18be81a71
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [skel,mot] = readMocapD(file_num, range)
global VARS_GLOBAL
if ~(exist('DB_concat'))
DB_concat = DB_index_load('HDM05_amc',{'AK_lower'},4);
files_name = DB_concat.files_name;
end
amcfullpath = fullfile(VARS_GLOBAL.dir_root, files_name{file_num});
[info,OK] = filename2info(amcfullpath);
if (OK)
[skel,mot] = readMocap([info.amcpath info.asfname], amcfullpath, [1 inf]);
if (nargin > 2)
mot = cropMot(mot, range);
end
elseif strcmpi(amcfullpath(end-4:end),'.bvh')
[skel,mot] = readMocap(amcfullpath);
else % assume an AMC file with an ASF that has the same name
[skel,mot] = readMocap([amcfullpath(1:end-4) '.asf'],amcfullpath);
end
|
github
|
sheldona/hessianIK-master
|
emptyMotion.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/emptyMotion.m
| 2,872 |
utf_8
|
38f0c2659c457303e73eb708c9a7ebce
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function mot = emptyMotion
mot = struct('njoints',0,... % number of joints
'nframes',0,... % number of frames
'frameTime',1/120,... % inverse sampling rate: time per frame (in seconds)
'samplingRate',120,... % sampling rate (in Hertz) (120 Hertz is Carnegie-Mellon Mocap-DB standard)
'jointTrajectories',cell(1,1),... % 3D joint trajectories
'jointRotations',cell(1,1),... % 3D joint rotations (as quats)
'rootTranslation',[],... % global translation data stream of the root
'rotationEuler',cell(1,1),... % rotational data streams for all joints, including absolute root rotation at pos. 1, Euler angles
'rotationQuat',cell(1,1),... % rotational data streams for all joints, including absolute root rotation at pos. 1, quaternions
'jointNames',cell(1,1),... % cell array of joint names: maps node ID to joint name
'boneNames',cell(1,1),... % cell array of bone names: maps bone ID to node name. ID 1 is the root.
'nameMap',cell(1,1),... % cell array mapping standard joint names to DOF IDs and trajectory IDs
'animated',[],... % vector of IDs for animated joints/bones
'unanimated',[],... % vector of IDs for unanimated joints/bones
'boundingBox',[],... % bounding box (given a specific skeleton)
'filename','',... % source filename
'documentation','',... % documentation from source file
'angleUnit','deg'); % angle unit, either deg or rad
|
github
|
sheldona/hessianIK-master
|
constructNameMap.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/constructNameMap.m
| 4,020 |
utf_8
|
574b0f767b91884c549577440a2e5408
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function map = constructNameMap(skel)
% format:
% standard joint name, DOF ID, trajectory ID
switch skel.fileType
case 'TOM.ASF'
map = {'root',1,1;...
'lhip',3,25;... %25 sacroiliac_@_l_hip
'lknee',4,26;... %26 l_hip_@_l_knee
'lankle',5,27;... %27 l_knee_@_l_ankle
'ltoes',0,29;... %29 l_metatarsal_@_l_forefoot_tip
'rhip',8,31;... %31sacroiliac_@_r_hip
'rknee',9,32;... %32r_hip_@_r_knee
'rankle',10,33;... %33r_knee_@_r_ankle
'rtoes',0,35;... %35r_metatarsal_@_r_forefoot_tip
'belly',13,4;... %4vl1_@_vt10
'chest',14,5;... %5vt10_@_vt6
'neck',15,6;... %6vt6_@_vt1
'head',17,7;... %7vt1_@_skullbase
'headtop',0,8;... %8skullbase_@_skull_tip
'lclavicle',18,6;...
'lshoulder',19,13;...%13l_acromioclavicular_@_l_shoulder
'lelbow',20,14;... %14l_shoulder_@_l_elbow
'lwrist',22,15;... %15l_elbow_@_l_wrist
'lfingers',0,16;... %16l_wrist_@_l_wrist_tip
'rclavicle',25,6;...
'rshoulder',26,19;...%19r_acromioclavicular_@_r_shoulder
'relbow',27,20;... %20r_shoulder_@_r_elbow
'rwrist',29,21;... %21r_elbow_@_r_wrist
'rfingers',0,22}; %22r_wrist_@_r_wrist_tip
case 'ASF'
map = {'root',1,1;...
'lhip',3,2;...
'lknee',4,3;...
'lankle',5,4;...
'ltoes',0,6;...
'rhip',8,7;...
'rknee',9,8;...
'rankle',10,9;...
'rtoes',0,11;...
'belly',13,12;...
'chest',14,13;...
'neck',15,14;...
'head',17,16;...
'headtop',0,17;...
'lclavicle',18,14;...
'lshoulder',19,18;...
'lelbow',20,19;...
'lwrist',22,21;...
'lfingers',0,23;...
'rclavicle',25,14;...
'rshoulder',26,25;...
'relbow',27,26;...
'rwrist',29,28;...
'rfingers',0,30};
case 'BVH'
map = {'root',1,1;...
'lhip',19,18;...
'lknee',20,19;...
'lankle',21,20;...
'ltoes',0,21;...
'rhip',23,22;...
'rknee',24,23;...
'rankle',25,24;...
'rtoes',0,25;...
'belly',3,2;...
'chest',17,3;...
'neck',15,14;...
'head',16,15;...
'headtop',0,16;...
'lclavicle',5,4;...
'lshoulder',6,5;...
'lelbow',7,6;...
'lwrist',8,7;...
'lfingers',0,8;...
'rclavicle',10,9;...
'rshoulder',11,10;...
'relbow',12,11;...
'rwrist',13,12;...
'rfingers',0,13};
case 'MPII'
map = {'root',0,1;...
'lhip',0,2;...
'lknee',0,3;...
'lankle',0,4;...
'ltoes',0,5;...
'rhip',0,6;...
'rknee',0,7;...
'rankle',0,8;...
'rtoes',0,9;...
'belly',0,10;...
'chest',0,11;...
'neck',0,12;...
'head',0,13;...
'headtop',0,14;...
'lclavicle',0,15;...
'lshoulder',0,16;...
'lelbow',0,17;...
'lwrist',0,18;...
'lfingers',0,19;...
'lhand',0,19;...
'rclavicle',0,20;...
'rshoulder',0,21;...
'relbow',0,22;...
'rwrist',0,23;...
'rfingers',0,24;...
'rhand',0,24};
end
|
github
|
sheldona/hessianIK-master
|
rotateMotY.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/rotateMotY.m
| 1,223 |
utf_8
|
a9f76f0c3d064b7e2ff764321d52c817
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [mot,skel] = rotateMotY(skel,mot,desiredFrontVec,varargin)
frontVec = averageFrontVector(mot,varargin{:});
phi = directedAngle(frontVec,desiredFrontVec);
skel.rootRotationalOffsetQuat = euler2quat([0; -phi; 0],'xyz');
mot.rootTranslation = quatrot(mot.rootTranslation,skel.rootRotationalOffsetQuat);
mot.jointTrajectories = forwardKinematicsQuat(skel,mot);
mot.boundingBox = computeBoundingBox(mot);
|
github
|
sheldona/hessianIK-master
|
escapeUnderscore.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/escapeUnderscore.m
| 972 |
utf_8
|
767b62cc11a1fb04793099750b766bbf
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [ escapedString ] = escapeUnderscore( string )
%ESCAPEUNDERSCORE Escapes all underscores _ of string to \_ .
escapedString = strrep(string, '_', '\_');
|
github
|
sheldona/hessianIK-master
|
readMocap.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/readMocap.m
| 6,473 |
utf_8
|
d034211789e7b0ff5581ade56787b029
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [skel,mot] = readMocap(skelfile, varargin)
% Reads file formats ASF/AMC, BVH or C3D into [skel, mot] structure.
% Possible calls:
%
% [skel,mot] = readMocap(ASFfile, AMCfile, frameRange, compute_quats, do_FK, use_TXT_or_BIN, noCaching)
% [skel,mot] = readMocap(BVHfile, frameRange, compute_quats, do_FK, noCaching)
% [skel,mot] = readMocap(C3Dfile, frameRange, generateSkel, skelFitMethod, noCaching)
% where skelFitMethod can be 'ATS' (default), 'trans_heu', 'trans_opt' or 'none'.
% WARNING: If left empty, bone lengths will vary over time!
% [skel,mot] = readMocap(MPIIfile, noCaching)
% set defaults
global VARS_GLOBAL;
if nargin < 1
help readMocap
return
end
motfile = skelfile;
range = [];
compute_quats = true;
do_FK = true;
use_TXT_or_BIN = true;
generateSkeleton = true;
skelFitMethod = 'ATS';
noCaching = false;
% parse Parameter list
fileExtension = upper(skelfile(end-3:end));
if strcmp(fileExtension, '.C3D')
if nargin > 1, range = varargin{1}; end
if nargin > 2, generateSkeleton = varargin{2}; end
if nargin > 3, skelFitMethod = varargin{3}; end
if nargin > 4, noCaching = varargin{4}; end
if isempty(skelFitMethod)
skelFitMethod = 'ATS';
end
elseif strcmp(fileExtension, '.ASF')
if nargin > 1, motfile = varargin{1}; end
if nargin > 2, range = varargin{2}; end
if nargin > 3, compute_quats = varargin{3}; end
if nargin > 4, do_FK = varargin{4}; end
if nargin > 5, use_TXT_or_BIN = varargin{5}; end
if nargin > 6, noCaching = varargin{6}; end
elseif strcmp(fileExtension, '.BVH')
if nargin > 1, range = varargin{1}; end
if nargin > 2, compute_quats = varargin{2}; end
if nargin > 3, do_FK = varargin{3}; end
if nargin > 4, noCaching = varargin{4}; end
elseif strcmp(fileExtension, 'MPII')
if nargin > 1, noCaching = varargin{1}; end
else
error(['Unknown file extension: ' fileExtension]);
end
% Caching
writeMAT = false; % write a MAT-file?
existsMAT = false;
matFullpath = [motfile '.mat'];
csvFullpath = [motfile '.csv'];
if exist('VARS_GLOBAL','var') && isfield(VARS_GLOBAL,'dir_root') && isfield(VARS_GLOBAL,'dir_additional')
csvFullpath = strrep(csvFullpath,VARS_GLOBAL.dir_root,VARS_GLOBAL.dir_additional);
end
if ~noCaching
h = fopen(matFullpath);
% does MAT version already exist?
if (h~=-1)
fclose(h);
load(matFullpath, 'skel', 'mot');
existsMAT = true;
% in case of C3D we have to check whether the *.MAT file contains a
% skeleton or not. This should not be the case but who knows...
% maybe someone saved a version with a generated skeleton.
if strcmp(fileExtension, '.C3D')
if isempty(strmatch('root', skel.nameMap(:,1))) % if no root-joint present => marker based
if generateSkeleton
; % we want a skeleton but did not get one: Construct it later
else
return; % we did not get a skeleton and don't want one => good! :-)
end
else
if generateSkeleton
disp('WARNING:');
disp('Keeping skeleton-version of cached MAT-file... check bone length constraints!');
return; % we got a skeleton and want it => good! :-)
else
writeMAT = true; % parse again, because we got a skeleton-based MAT-file but don't want it
end
end
else
%mot.csvFile = csvFullpath;
%[mot.Labels,mot.Data] = BK_load_csv(csvFullpath);
return; % in case of BVH or ASF/AMC, use the cached version
end
else
writeMAT = true;
end
end
% delegate to parser
if ~existsMAT
switch (fileExtension)
case '.BVH'
[skel,mot] = readBVH(skelfile,range,compute_quats,do_FK);
save(matFullpath, 'skel', 'mot');
case '.ASF'
skel = readASF(skelfile);
mot = readAMC(motfile,skel,range,compute_quats,do_FK,use_TXT_or_BIN);
mot.csvFile = csvFullpath;
mot.Labels = {};
mot.Data = {};
save(matFullpath, 'skel', 'mot');
case '.C3D'
[Markers,VideoFrameRate,AnalogSignals,AnalogFrameRate,Event,ParameterGroup,CameraInfo,ResidualError] = readC3D(skelfile);
%[skel, mot] = convertC3D_to_skelMot(Markers, ParameterGroup, VideoFrameRate, skelfile, generateSkeleton);
[skel, mot] = convertC3D_to_skelMot(Markers, ParameterGroup, VideoFrameRate, skelfile);
%[skel, mot] = convertC3D_to_skelMot_NEFF_dirty(Markers, ParameterGroup, VideoFrameRate, skelfile);
% save *.MAT
if writeMAT
save(matFullpath, 'skel', 'mot');
end
case 'MPII'
[skel, mot] = readMPII(skelfile);
% save *.MAT
if writeMAT
save(matFullpath, 'skel', 'mot');
end
end
end
if strcmp(fileExtension, '.C3D')
% generate Skeleton if needed
if generateSkeleton
[skel, mot] = generateSkel(skel, mot);
if not(strcmpi(skelFitMethod, 'none'))
switch(upper(skelFitMethod))
case 'ATS'
mot = skelfitATS(mot);
case 'TRANS_HEU'
mot = skelfitH(mot, 'boneNumbers', 0.15);
case 'TRANS_OPT'
mot = skelfitOptT(mot);
otherwise
error('Unknown skelfit method!');
end
end
end
end
|
github
|
sheldona/hessianIK-master
|
DOFID.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/DOFID.m
| 1,104 |
utf_8
|
5b01ed99ee13d7c42cbc33375554169f
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function ID = DOFID(skel,jointname)
i = strmatch(upper(jointname),upper(skel.nameMap(:,1)),'exact');
if (isempty(i))
error(['Unknown standard joint name "' jointname '"!']);
end
if (length(i)>1)
error(['Ambiguous standard joint name "' jointname '"!']);
end
ID = skel.nameMap{i,2};
|
github
|
sheldona/hessianIK-master
|
resampleMot_new.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/resampleMot_new.m
| 2,897 |
utf_8
|
511955a12057902dc5b302b8879bd2ab
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function mot_out = resampleMot_new(skel_in, mot_in,target_frame_rate)
target_frame_rate = round(target_frame_rate);
mot_out = emptyMotion;
mot_out.njoints = mot_in.njoints;
mot_out.frameTime = 1/target_frame_rate;
mot_out.samplingRate = target_frame_rate;
mot_out.jointNames = mot_in.jointNames;
mot_out.boneNames = mot_in.boneNames;
mot_out.nameMap = mot_in.nameMap;
mot_out.animated = mot_in.animated;
mot_out.unanimated = mot_in.unanimated;
if ~isempty(mot_in.rootTranslation)
%mot_out.rootTranslation = resample(mot_in.rootTranslation',target_frame_rate,round(mot_in.samplingRate))';
mot_out.rootTranslation = resampleTSData(mot_in.rootTranslation,round(mot_in.samplingRate),target_frame_rate);
end
if ~isempty(mot_in.rotationQuat)
for k = 1:size(mot_in.rotationQuat,1)
if (~isempty(mot_in.rotationQuat{k,1}))
%mot_out.rotationQuat{k,1} = resample(mot_in.rotationQuat{k,1}',target_frame_rate,round(mot_in.samplingRate))';
mot_out.rotationQuat{k,1} = resampleTSData(mot_in.rotationQuat{k,1},round(mot_in.samplingRate),target_frame_rate);
mot_out.rotationQuat{k,1} = quatnormalize(mot_out.rotationQuat{k,1});
end
end
mot_out.nframes= size(mot_out.rotationQuat{1}, 2);
mot_out.jointTrajectories = forwardKinematicsQuat(skel_in, mot_out);
for k = 1:size(mot_in.rotationEuler,1)
if (~isempty(mot_in.rotationEuler{k}))
mot_out.rotationEuler{k,1} = quat2euler(mot_in.rotationQuat{k, 1});
end
end
else
error('This motion does not contain the field "rotationQuat" or the field is empty!\nIf you want to resize motions containing C3D marker positions, better use "resampleMotion"');
end
mot_out.nframes = max( size(mot_out.rootTranslation,2),size(mot_out.jointTrajectories{1},2));
mot_out.filename = mot_in.filename;
mot_out.documentation = vertcat(mot_in.documentation,{['The original file has been resampled to new frame rate ' num2str(target_frame_rate) ' Hz!']});
mot_out.angleUnit = mot_in.angleUnit;
mot_out.boundingBox = mot_in.boundingBox;
|
github
|
sheldona/hessianIK-master
|
moveMotToXZ.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/moveMotToXZ.m
| 1,114 |
utf_8
|
d4cc909224c2c13ed48c443f6e320177
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function mot = moveMotToXZ(mot,p)
v = p - mot.rootTranslation([1 3],1);
for k=1:length(mot.jointTrajectories)
mot.jointTrajectories{k}([1 3],:) = mot.jointTrajectories{k}([1 3],:) + repmat(v,1,mot.nframes);
end
mot.rootTranslation([1 3],:) = mot.rootTranslation([1 3],:) + repmat(v,1,mot.nframes);
|
github
|
sheldona/hessianIK-master
|
readMocapSmart.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/readMocapSmart.m
| 1,980 |
utf_8
|
d9928728ce340b27d7f5237f7fa8ff8a
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [ skel, mot ] = readMocapSmart( fullFilename, noCaching, noScaling )
% [ skel, mot ] = readMocapSmart( fullFilename, noCaching, noScaling )
%
%
%
% readMocapSmart does not require specification of ASF-file
% and automatically performs scaling (unit conversion)
%
% noCaching: Don't read *.MAT-file
% noScaling: Don't scale ASF/AMC files by 2.54 (default: false)
%
%
% Units are may be in centimeter or in inches
% (ASF/AMC units of HDM05 files are in inches)
% (C3D units of HDM05 files are in centimeters)
%
% noScaling = false -> scaling by factor 1/2.54 to
% convert inches -> centimeters (only for ASF/AMC)
%
if nargin < 2
noCaching = false;
end
if nargin < 3
noScaling = false;
end
info = filename2info(fullFilename);
if strcmpi(info.filetype, 'C3D')
[skel, mot] = readMocap(fullFilename, [], noCaching );
elseif strcmpi(info.filetype, 'ASF/AMC')
skelFile = fullfile(info.amcpath, info.asfname);
[skel, mot] = readMocap(skelFile, fullFilename, [], true, true, true, noCaching);
if ~noScaling
[skel, mot] = scaleSkelMot(skel, mot, 1/2.54); % our ASF
end
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.