plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
sheldona/hessianIK-master
|
emptySkeleton.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/emptySkeleton.m
| 2,792 |
utf_8
|
269e811e8abce591c94074b36eeba9aa
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function skel = emptySkeleton
skel = struct('njoints',0,... % number of joints
'rootRotationalOffsetEuler',[0;0;0],... % global (constant) rotation of root in world system, Euler angles.
'rootRotationalOffsetQuat',[1;0;0;0],... % global (constant) rotation of root in world system, quaternion.
'nodes',struct([]),... % struct array containing nodes of skeleton tree data structure
'paths',cell(1,1),... % contains a set of edge-disjoint paths the union of which represents the whole tree; represented as cell array of joint ID vectors
'jointNames',cell(1,1),... % cell array of joint names: maps joint ID to joint name
'boneNames',cell(1,1),... % cell array of bone names: maps bone ID to node name. ID 1 is the root.
'nameMap',cell(1,1),... % cell array mapping standard joint names to DOF IDs and trajectory IDs
'animated',[],... % vector of IDs for animated joints/bones
'unanimated',[],... % vector of IDs for unanimated joints/bones
'filename','',... % source filename
'version','',... % file format version
'name','',... % name for this skeleton
'massUnit',1,... % unit divisor for mass
'lengthUnit',1,... % unit divisor for lengths
'angleUnit','deg',... % angle unit (deg or rad)
'documentation','',... % documentation from source file
'fileType','',... % file type (BVH / ASF)
'skin',cell(1,1)); % cell array of skin filenames for this skeleton
|
github
|
sheldona/hessianIK-master
|
emptySkeletonNode.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/emptySkeletonNode.m
| 2,036 |
utf_8
|
5f2126b69ec37eb46b000e2c8f162a24
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function node = emptySkeletonNode
node = struct('children',[],... % struct array containing this node's child nodes' indices within "nodes" array of skeleton data structure
'jointName','',... % name of this joint (if it is a joint (BVH))
'boneName','',... % name of this bone (if it is a bone (ASF))
'ID',0,... % ID number of this joint/bone
'parentID',0,... % parent node ID
'offset',[0;0;0],... % offset vector from the parent of this node to this node
'direction',[0;0;0],... % direction vector for this bone, given in global coordinates
'length',0,... % length of this bone
'axis',[0;0;0],... % axis of rotation for this node
'DOF',cell(1,1),... % degrees of freedom and rotation order for this node, in the form {'tx','ty','tz','rx','ry','rz'} (e.g.)
'rotationOrder','',... % rotation order in string representation (e.g., 'xyz')
'limits',[]); % kx2, kx2 or kx2 matrix of limits for this node's DOFs
|
github
|
sheldona/hessianIK-master
|
amc_to_matrix.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/ASFAMCparser/amc_to_matrix.m
| 2,554 |
utf_8
|
b1cf288c34613efe546bd9409ebb7ae7
|
% Reads data from an AMC motion file into a Matlab matrix variable.
% AMC file has to be in the AMC format used in the online CMU motion capture library.
% number of dimensions = number of columns = 62
% function D = amc_to_matrix(fname)
% fname = name of disk input file, in AMC format
% Example:
% D = amc_to_matrix(fname)
%
% Jernej Barbic
% CMU
% March 2003
% Databases Course
function [D] = amc_to_matrix(fname)
fid=fopen(fname, 'rt');
if fid == -1,
fprintf('Error, can not open file %s.\n', fname);
return;
end;
% read-in header
line=fgetl(fid);
while ~strcmp(line,':DEGREES')
line=fgetl(fid);
end
D=[];
dims =[6 3 3 3 3 3 3 2 3 1 1 2 1 2 2 3 1 1 2 1 2 3 1 2 1 3 1 2 1];
locations = [1 7 10 13 16 19 22 25 27 30 31 32 34 35 37 39 42 43 44 46 47 49 52 53 55 56 59 60 62];
% read-in data
% labels can be in any order
frame=1;
while ~feof(fid)
if rem(frame,100) == 0
disp('Reading frame: ');
disp(frame);
end;
row = zeros(62,1);
% read frame number
line = fscanf(fid,'%s\n',1);
for i=1:29
% read angle label
id = fscanf (fid,'%s',1);
switch (id)
case 'root', index = 1;
case 'lowerback', index = 2;
case 'upperback', index = 3;
case 'thorax', index = 4;
case 'lowerneck', index = 5;
case 'upperneck', index = 6;
case 'head', index = 7;
case 'rclavicle', index = 8;
case 'rhumerus', index = 9;
case 'rradius', index = 10;
case 'rwrist', index = 11;
case 'rhand', index = 12;
case 'rfingers', index = 13;
case 'rthumb', index = 14;
case 'lclavicle', index = 15;
case 'lhumerus', index = 16;
case 'lradius', index = 17;
case 'lwrist', index = 18;
case 'lhand', index = 19;
case 'lfingers', index = 20;
case 'lthumb', index = 21;
case 'rfemur', index = 22;
case 'rtibia', index = 23;
case 'rfoot', index = 24;
case 'rtoes', index = 25;
case 'lfemur', index = 26;
case 'ltibia', index = 27;
case 'lfoot', index = 28;
case 'ltoes', index = 29;
otherwise
fprintf('Error, labels in the amc are not correct.\n');
return;
end
% where to put the data
location = locations(index);
len = dims(index);
if len == 6
x = fscanf (fid,'%f %f %f %f %f %f\n',6);
else
if len == 3
x = fscanf (fid,'%f %f %f\n',3);
else
if len == 2
x = fscanf (fid,'%f %f\n',2);
else
if len == 1
x = fscanf (fid,'%f\n',1);
end
end
end
end
row(location:location+len-1,1) = x;
end
row = row';
D = [D; row];
frame = frame + 1;
end
disp('Total number of frames read: ');
disp(frame-1);
fclose(fid);
|
github
|
sheldona/hessianIK-master
|
matrix_to_amc.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/parser/ASFAMCparser/matrix_to_amc.m
| 2,157 |
utf_8
|
54cc2acc388d5a139ee98e11ff0745c4
|
% Writes motion data from matrix D to an AMC file on disk.
% The ACM format is the format used in the CMU online motion capture database
% function [] = matrix_to_amc(fname, D)
% fname = output disk file name for AMC file
% D = input Matlab data matrix
% Example:
% matrix_to_amc('running1.amc', D)
%
%
% Jernej Barbic
% CMU
% March 2003
% Databases Course
function [] = matrix_to_amc(fname, D)
fid=fopen(fname, 'wt');
if fid == -1,
fprintf('Error, can not open file %s.\n', fname);
return;
end;
% print header
fprintf(fid,'#!Matlab matrix to amc conversion\n');
fprintf(fid,':FULLY-SPECIFIED\n');
fprintf(fid,':DEGREES\n');
[rows, cols] = size(D);
% print data
for frame=1:rows
fprintf(fid,'%d\n',frame);
fprintf(fid,'root %f %f %f %f %f %f\n', D(frame,1:6));
fprintf(fid,'lowerback %f %f %f\n', D(frame,7:9));
fprintf(fid,'upperback %f %f %f\n', D(frame,10:12));
fprintf(fid,'thorax %f %f %f\n', D(frame,13:15));
fprintf(fid,'lowerneck %f %f %f\n', D(frame,16:18));
fprintf(fid,'upperneck %f %f %f\n', D(frame,19:21));
fprintf(fid,'head %f %f %f\n', D(frame,22:24));
fprintf(fid,'rclavicle %f %f\n', D(frame,25:26));
fprintf(fid,'rhumerus %f %f %f\n', D(frame,27:29));
fprintf(fid,'rradius %f\n', D(frame,30));
fprintf(fid,'rwrist %f\n', D(frame,31));
fprintf(fid,'rhand %f %f\n', D(frame,32:33));
fprintf(fid,'rfingers %f\n', D(frame,34));
fprintf(fid,'rthumb %f %f\n', D(frame,35:36));
fprintf(fid,'lclavicle %f %f\n', D(frame,37:38));
fprintf(fid,'lhumerus %f %f %f\n', D(frame,39:41));
fprintf(fid,'lradius %f\n', D(frame,42));
fprintf(fid,'lwrist %f\n', D(frame,43));
fprintf(fid,'lhand %f %f\n', D(frame,44:45));
fprintf(fid,'lfingers %f\n', D(frame,46));
fprintf(fid,'lthumb %f %f\n', D(frame,47:48));
fprintf(fid,'rfemur %f %f %f\n', D(frame,49:51));
fprintf(fid,'rtibia %f\n', D(frame,52));
fprintf(fid,'rfoot %f %f\n', D(frame,53:54));
fprintf(fid,'rtoes %f\n', D(frame,55));
fprintf(fid,'lfemur %f %f %f\n', D(frame,56:58));
fprintf(fid,'ltibia %f\n', D(frame,59));
fprintf(fid,'lfoot %f %f\n', D(frame,60:61));
fprintf(fid,'ltoes %f\n', D(frame,62));
end
fclose(fid);
|
github
|
sheldona/hessianIK-master
|
filterR4.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/quaternions/filterR4.m
| 2,139 |
utf_8
|
9c7df4fc6f448e66036bb7397f11e78e
|
function [Y,t] = filterR4(varargin)
% Y = filterR4(w,X,step,padding_method)
% Filters curves embedded in the unit quaternion sphere with a sliding window.
% Simply views quats as 4D data without additional structure and renormalizes
% to S^3 after filtering
%
% Input: w, weight vector
% X, 4xN matrix of input unit quaternions
% optional: step, step size for window (window length is length(w)), default is step=1.
% ->!! Length of output sequence is ceil(N/step). !! <-
% optional: padding method, one of {'symmetric', 'zero'}. default is 'symmetric'
%
% Output: Y, Filtered version of X
% t, running time for filter.
%
switch (nargin)
case 2
w = varargin{1};
X = varargin{2};
step = 1;
padding_method = 'symmetric';
case 3
w = varargin{1};
X = varargin{2};
step = varargin{3};
padding_method = 'symmetric';
case 4
w = varargin{1};
X = varargin{2};
step = varargin{3};
padding_method = varargin{4};
otherwise
error('Wrong number of arguments!');
end
L = size(w,2);
N = size(X,2);
if (L>N)
error('Filter length must not be larger than number of data points!');
end
%%%% prepare data set X by means of pre- and postpadding
switch mod(L,2)
case 0 % even filter length
prepad_length = L/2;
postpad_length = L/2 - 1;
case 1 % odd filter length
prepad_length = (L - 1)/2;
postpad_length = (L - 1)/2;
end
tic;
if (strncmp(padding_method,'symmetric',1))
pre = fliplr(X(:,1:prepad_length));
post = fliplr(X(:,N-postpad_length+1:N));
elseif (strncmp(padding_method,'zero',1))
pre = [ones(1,prepad_length);zeros(3,prepad_length)];
post = [ones(1,postpad_length);zeros(3,postpad_length)];;
else
error('Unknown padding option!');
end
X = [pre X post];
Y = zeros(4,ceil(N/step));
for (i=1:ceil(N/step))
pos = step*(i-1)+1;
Y(:,i) = bruteForceAverageR4(X(:,pos:pos+L-1),w);
end
t = toc;
%%%%%%%%%%%
function Y = bruteForceAverageR4(X,w)
Y = sum(X.*repmat(w,4,1),2);
Y = Y./sqrt(sum(Y.^2,1));
|
github
|
sheldona/hessianIK-master
|
new_animate.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/new_animate.m
| 4,443 |
utf_8
|
7c2a0775e942d33be94bf604b50913e4
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function new_animate(skel,mot,varargin)
% new_animate(skel,mot,num_repeats,time_stretch_factor,range,draw_labels,observer_fcn,start_animation)
% INPUT:
% - skel and mot are assumed to be struct arrays of identical length containing
% skeleton/motion pairs to be animated simultaneously. All mots are supposed to have the same samplingRate.
% - range is a cell array which is supposed to be of same length as skel/mot.
% Empty cell array entries in range indicate that the entire frame range is to be played back.
% - draw_labels is a logical vector the same length as skel indicating whether the corresponding skeleton
% is to be drawn with a frame counter label. Empty draw_labels means "draw no labels at all".
% - observer_fcn function called at each frame animation; used for progress monitoring
% - start_animation determines whether the actual animation shall start immediately or pause until resumeAnimation is called.
global VARS_GLOBAL_ANIM
if (isempty(VARS_GLOBAL_ANIM))
VARS_GLOBAL_ANIM = emptyVarsGlobalAnimStruct;
end
num_repeats = 1;
time_stretch_factor = 1;
VARS_GLOBAL_ANIM.range = cell(length(mot),1);
VARS_GLOBAL_ANIM.draw_labels = ones(length(mot),1);
start_animation = true;
timer_fcn = {'new_animate_showFrame'};
if (nargin>7)
start_animation = varargin{6};
end
if (nargin>6)
timer_fcn = {'new_animate_showFrame',varargin{5}};
end
if (nargin > 5)
VARS_GLOBAL_ANIM.draw_labels = varargin{4};
end
if (nargin > 4)
VARS_GLOBAL_ANIM.range = varargin{3};
if (~iscell(VARS_GLOBAL_ANIM.range))
VARS_GLOBAL_ANIM.range = {VARS_GLOBAL_ANIM.range};
end
end
if (nargin > 3)
time_stretch_factor = varargin{2};
end
if (nargin > 2)
num_repeats = varargin{1};
end
VARS_GLOBAL_ANIM.skel = skel;
VARS_GLOBAL_ANIM.mot = mot;
num_frames = -inf;
if (isempty(VARS_GLOBAL_ANIM.range))
VARS_GLOBAL_ANIM.range = cell(1,length(mot));
end
for k=1:length(VARS_GLOBAL_ANIM.mot)
if (isempty(VARS_GLOBAL_ANIM.range{k}))
VARS_GLOBAL_ANIM.range{k} = [1:VARS_GLOBAL_ANIM.mot(k).nframes];
end
if (length(VARS_GLOBAL_ANIM.range{k})>num_frames) % determine num_frames as maximum of range lengths
num_frames = length(VARS_GLOBAL_ANIM.range{k});
end
end
new_animate_initGraphics;
desired_frame_time = VARS_GLOBAL_ANIM.mot(1).frameTime;
if (~isempty(VARS_GLOBAL_ANIM.figure_camera_file))
h = str2func(VARS_GLOBAL_ANIM.figure_camera_file);
feval(h, gca);
end
if (~isempty(VARS_GLOBAL_ANIM.figure_position))
set(gcf,'position',VARS_GLOBAL_ANIM.figure_position);
end
for (i=1:num_repeats)
VARS_GLOBAL_ANIM.frame_draw_time = 0;
VARS_GLOBAL_ANIM.frames_drawn = 0;
VARS_GLOBAL_ANIM.animation_done = false;
t=timerfind('Name','AnimationTimer');
if (~isempty(t))
delete(t);
end
t = timer('Name','AnimationTimer');
try
VARS_GLOBAL_ANIM.previous_call = clock;
VARS_GLOBAL_ANIM.current_frame = 1;
VARS_GLOBAL_ANIM.frames_total = num_frames;
set(t,'TimerFcn',timer_fcn);
set(t,'ExecutionMode','fixedRate');
set(t,'TasksToExecute',num_frames);
period = round(1000*desired_frame_time/time_stretch_factor)/1000;
VARS_GLOBAL_ANIM.timer_period = period;
if (period == 0)
warning(['Requested timer period of ' num2str(desired_frame_time/time_stretch_factor) ' s is too short for Matlab! Setting period to minimum of 1 ms :-(']);
period = 0.001;
end
set(t,'Period',period);
set(t,'BusyMode','queue');
if(start_animation)
start(t);
end
catch
delete(t);
return
end
end
|
github
|
sheldona/hessianIK-master
|
coordsDiscNormal.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/coordsDiscNormal.m
| 2,544 |
utf_8
|
ef826401167a9e0fcb50a9677d3e8573
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [X,Y,Z] = coordsDiscNormal(n, x0, radius, nsteps, offset)
% [X,Y,Z] = coordsDiscNormal(n, x0, radius, nsteps, offset)
%
% creates the coordinates of a regular nsteps-gon in 3-space within a plane specified by n and x0
% n....... normal vector, must be 3 x 1
% x0...... fixture point, must be 3 x 1
% radius.. scalar
% nsteps.. integer, specifies number of vertices
% offset.. constant offset to x0, 3 x 1. Will be projected onto plane.
% X,Y and Z are vectors of length nsteps
d = length(n);
i = find(abs(n)>eps); % find first nonzero component of n
% a new basis {e_1,...,e_{i-1},n,e_{i+1},...,e_d},
% where e_i was replaced by n, will still span the whole space IR^d,
% since e_i appears in the expansion of n with a nonzero coefficient.
if (size(i) == 0) % in this case the normal was near zero... useless!
return;
end;
i = i(1);
P = eye(d); % construct permutation matrix that swaps rows 1 and i
z = P(:,i);
P(:,i) = P(:,1);
P(:,1) = z;
%line([x0(1);x0(1)+n(1)],[x0(2);x0(2)+n(2)],[x0(3);x0(3)+n(3)]);
offset_proj = offset - dot(n,offset) * n;
n = P * n; % don't forget to change the representation of our normal!
R = zeros(d,d);
R(:,1) = n; % "basis vector e_1 will map to n"; replace e_1 (the former e_i) by n.
R(2:d,2:d) = eye(d-1);
R = gramschmidt(R); % R now contains an orthonormal basis where the first basis vector is n.
R = R * P; % permute back: R now contains an orthonormal basis where the ith basis vector is n.
t = [0:(2*pi)/nsteps:2*pi-(1/nsteps)];
M = [zeros(1,nsteps); radius*cos(t); radius*sin(t)];
midpoint = x0+offset_proj;
%M = R * M + repmat(midpoint,1,nsteps);
M = R * M + midpoint(:, ones(1, nsteps));
X = [M(1,:)'; midpoint(1)];
Y = [M(2,:)'; midpoint(2)];
Z = [M(3,:)'; midpoint(3)];
|
github
|
sheldona/hessianIK-master
|
coordsCappedCylinder.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/coordsCappedCylinder.m
| 4,089 |
utf_8
|
90bc8049364cd8f5a2b1163f35b9475f
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [X,Y,Z] = coordsCappedCylinder(p1, p2, epsilon, nsteps, varargin)
% [X,Y,Z] = coordsCappedCylinder(p1, p2, epsilon, nsteps, use_caps)
%
% creates the coordinates of half-sphere-capped cylinder around line segment p1p2 in 3-space, of radius epsilon.
% p1...... point 2 defining line segment, must be 3 x 1
% p2...... point 2 defining line segment, must be 3 x 1
% epsilon. scalar
% nsteps.. integer, specifies number of vertices at circular cylinder circumference and number of longitude lines around caps
% use_caps boolean 2-vector indicating whether caps at p1 and p2 are to be included or not
% X,Y and Z are vectors. length: cylinder contributes 2*nsteps entries, each cap contributes (ceil(nsteps/2)-1)*nsteps+1 entries
use_caps = [true true];
if (nargin>4)
use_caps = varargin{1};
end
n = (p2-p1)/norm(p2-p1);
d = length(n);
i = find(abs(n)>eps); % find first nonzero component of n
% a new basis {e_1,...,e_{i-1},n,e_{i+1},...,e_d},
% where e_i was replaced by n, will still span the whole space IR^d,
% since e_i appears in the expansion of n with a nonzero coefficient.
if (size(i) == 0) % in this case the normal was near zero... useless!
return;
end;
i = i(1);
P = eye(d); % construct permutation matrix that swaps rows 1 and i
z = P(:,i);
P(:,i) = P(:,1);
P(:,1) = z;
%line([x0(1);x0(1)+n(1)],[x0(2);x0(2)+n(2)],[x0(3);x0(3)+n(3)]);
n = P * n; % don't forget to change the representation of our normal!
R = zeros(d,d);
R(:,1) = n; % "basis vector e_1 will map to n"; replace e_1 (the former e_i) by n.
R(2:d,2:d) = eye(d-1);
R = gramschmidt(R); % R now contains an orthonormal basis where the first basis vector is n.
R = R * P; % permute back: R now contains an orthonormal basis where the ith basis vector is n.
t = [0:(2*pi)/nsteps:2*pi-(1/nsteps)];
M = [zeros(1,nsteps); epsilon*cos(t); epsilon*sin(t)];
M1 = R * M + repmat(p1,1,nsteps);
M2 = R * M + repmat(p2,1,nsteps);
X = M1(1,:)';
Y = M1(2,:)';
Z = M1(3,:)';
nlatitude = ceil(nsteps/2);
C = zeros(3,(nlatitude-1)*nsteps);
% create half sphere with nlatitude latitude and nsteps longitude lines
k=1;
for alpha=(pi/2)/nlatitude:(pi/2)/nlatitude:pi/2-(pi/2)/nlatitude
radius = epsilon * cos(alpha);
h = epsilon * sin(alpha);
C(:,(k-1)*nsteps+1:k*nsteps) = [h*ones(1,nsteps); radius*cos(t); radius*sin(t)];
k=k+1;
end
v = (p2-p1)/norm(p2-p1);
if (use_caps(1))
Cflip(1,:) = -C(1,:);
Cflip(2:3,:) = C(2:3,:);
C1 = R * Cflip + repmat(p1,1,(nlatitude-1)*nsteps);
X = [X; C1(1,:)'; p1(1)-v(1)*epsilon];
Y = [Y; C1(2,:)'; p1(2)-v(2)*epsilon];
Z = [Z; C1(3,:)'; p1(3)-v(3)*epsilon];
else
Cflat = C;
Cflat(1,:) = zeros(1,size(C,2));
C1 = R * Cflat + repmat(p1,1,(nlatitude-1)*nsteps);
X = [X; C1(1,:)'; p1(1)];
Y = [Y; C1(2,:)'; p1(2)];
Z = [Z; C1(3,:)'; p1(3)];
end
X = [X; M2(1,:)'];
Y = [Y; M2(2,:)'];
Z = [Z; M2(3,:)'];
if (use_caps(2))
C2 = R * C + repmat(p2,1,(nlatitude-1)*nsteps);
X = [X; C2(1,:)'; p2(1)+v(1)*epsilon];
Y = [Y; C2(2,:)'; p2(2)+v(2)*epsilon];
Z = [Z; C2(3,:)'; p2(3)+v(3)*epsilon];
else
Cflat = C;
Cflat(1,:) = zeros(1,size(C,2));
C2 = R * Cflat + repmat(p2,1,(nlatitude-1)*nsteps);
X = [X; C2(1,:)'; p2(1)];
Y = [Y; C2(2,:)'; p2(2)];
Z = [Z; C2(3,:)'; p2(3)];
end
|
github
|
sheldona/hessianIK-master
|
old_createPlaneNormal.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/old_createPlaneNormal.m
| 1,183 |
utf_8
|
b97f43b934cb7043af84fe9ae222d544
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [X,Y,Z] = createPlaneNormal(n, x0, sides_length)
X = [-sides_length(1)/2 -sides_length(1)/2;sides_length(1)/2 sides_length(1)/2];
Y = [sides_length(2)/2 -sides_length(2)/2;sides_length(2)/2 -sides_length(2)/2];
Z = [0 0;0 0];
n0 = [0;0;1];
x = cross(n,n0);
cphi = dot(n/norm(n),n0/norm(n0));
rotate(h,x,phi*180/pi);
set(h,'facecolor','black');
alpha(h,0.25);
|
github
|
sheldona/hessianIK-master
|
animateGUI.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/animateGUI.m
| 13,691 |
utf_8
|
5739395d8d277eb8131b34cd31154869
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function varargout = animateGUI(varargin)
% animateGUI M-file for animateGUI.fig
% animateGUI, by itself, creates a new animateGUI or raises the existing
% singleton*.
%
% H = animateGUI returns the handle to a new animateGUI or the handle to
% the existing singleton*.
%
% animateGUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in animateGUI.M with the given input arguments.
%
% animateGUI('Property','Value',...) creates a new animateGUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before animateGUI_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to animateGUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help animateGUI
% Last Modified by GUIDE v2.5 18-Jul-2006 17:52:38
% Begin initialization code - DO NOT EDIT
gui_Singleton = 0;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @animateGUI_OpeningFcn, ...
'gui_OutputFcn', @animateGUI_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin & isstr(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% --- Executes just before animateGUI is made visible.
function animateGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to animateGUI (see VARARGIN)
% Choose default command line output for animateGUI
handles.output = hObject;
handles.skel = varargin{1};
handles.mot = varargin{2};
mot_num = length(handles.mot);
frames_total = max([handles.mot.nframes]);
set(handles.slider_animate, 'Min',0.9,'Max', frames_total +.1,'Value', 1,'SliderStep', [1/frames_total 1/frames_total]);
% reset animation controls
set(handles.slider_animate, 'Enable','off');
set(handles.slider_speed,'Enable','off');
set(handles.pushbutton_pause,'Enable','off');
set(handles.pushbutton_play,'Enable','off');
% Update handles structure
guidata(hObject, handles);
cameratoolbar;
cameratoolbar('SetCoordSys','y');
handles = startAnimation(hObject,handles);
% frame counter
global VARS_GLOBAL_ANIM;
VARS_GLOBAL_ANIM.graphics_data.frameLabel = handles.text_frameCounter;
% UIWAIT makes animateGUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% --- Outputs from this function are returned to the command line.
function varargout = animateGUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% --- Start animating
function handles = startAnimation(hObject,handles)
% hObject handle to UI-control calling this function
% handles structure with handles and user data (see GUIDATA)
global VARS_GLOBAL_ANIM
% pause the animation that might currently be running
pauseAnimation;
% prepare animation controls
frames_total = max([handles.mot.nframes]);
set(handles.slider_animate, 'Enable','on','Max', frames_total+.001,'Value', 1,'SliderStep', [1/frames_total 1/frames_total]);
set(handles.slider_speed, 'Enable','on');
set(handles.pushbutton_play, 'Enable','on');
set(handles.pushbutton_pause, 'Enable','on');
speed = get(handles.slider_speed,'Value');
% set some properties for the animation
VARS_GLOBAL_ANIM = emptyVarsGlobalAnimStruct;
VARS_GLOBAL_ANIM.figure_color = get(gcf,'Color');
VARS_GLOBAL_ANIM.animated_skeleton_Color = [0 0 0]/255;
VARS_GLOBAL_ANIM.animated_skeleton_Marker = '.';
VARS_GLOBAL_ANIM.animated_skeleton_MarkerEdgeColor = [1 0 0];
VARS_GLOBAL_ANIM.animated_skeleton_MarkerFaceColor = [1 0 0];
VARS_GLOBAL_ANIM.kill_timer = false;
VARS_GLOBAL_ANIM.animated_skeleton_MarkerSize = 8;
VARS_GLOBAL_ANIM.animated_point_MarkerSize = 12;
VARS_GLOBAL_ANIM.animated_skeleton_LineWidth = 4;
VARS_GLOBAL_ANIM.ground_tile_size_factor = 1;
VARS_GLOBAL_ANIM.bounding_box_border_extension = 0.01;
%VARS_GLOBAL_ANIM.figure_position = [5 5 512 384];
%rehash path
set(gcf,'CurrentAxes',handles.axes_animate);
cla reset;
% start animation
VARS_GLOBAL_ANIM.animation_paused = false;
new_animate(handles.skel,handles.mot,1,speed,{},{},{'updateAnimationSlider',handles.slider_animate},true);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% --- Executes on button press in pushbutton_pause.
function pushbutton_pause_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton_pause (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
pauseAnimation;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% --- Executes on button press in pushbutton_play.
function pushbutton_play_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton_play (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global VARS_GLOBAL_ANIM;
speed = get(handles.slider_speed,'Value');
frame = round(get(handles.slider_animate,'Value'));
max_frame = round(get(handles.slider_animate,'Max'));
if (frame == max_frame)
resumeAnimation(1,speed);
elseif (VARS_GLOBAL_ANIM.animation_paused)
resumeAnimation(frame,speed);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% --- Executes on slider movement.
function slider_animate_Callback(hObject, eventdata, handles)
% hObject handle to slider_animate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
global VARS_GLOBAL_ANIM
was_already_paused = VARS_GLOBAL_ANIM.animation_paused;
pauseAnimation;
current_frame = round(get(hObject,'Value'));
VARS_GLOBAL_ANIM.current_frame = current_frame;
new_animate_showFrame([],[],{},current_frame);
if (~was_already_paused)
resumeAnimation;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% --- Executes during object creation, after setting all properties.
function slider_animate_CreateFcn(hObject, eventdata, handles)
% hObject handle to slider_animate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background, change
% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.
usewhitebg = 1;
if usewhitebg
set(hObject,'BackgroundColor',[.9 .9 .9]);
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% --- Executes on button press in pushbutton_done.
function pushbutton_done_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton_done (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
pauseAnimation;
t = timerfind('Name','AnimationTimer');
if (~isempty(t))
delete(t);
end
delete(gcf);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% --- Executes during object creation, after setting all properties.
function slider_speed_CreateFcn(hObject, eventdata, handles)
% hObject handle to slider_speed (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background, change
% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.
usewhitebg = 1;
if usewhitebg
set(hObject,'BackgroundColor',[.9 .9 .9]);
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% --- Executes on slider movement.
function slider_speed_Callback(hObject, eventdata, handles)
% hObject handle to slider_speed (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
global VARS_GLOBAL_ANIM
% adjust animation speed
if(~VARS_GLOBAL_ANIM.animation_paused)
pauseAnimation;
current_frame = VARS_GLOBAL_ANIM.current_frame;
speed = get(hObject,'Value');
resumeAnimation(current_frame,speed);
else
speed = get(hObject,'Value');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% --- Executes on state change of checkbox_loop.
function checkbox_loop_Callback(hObject, eventdata, handles)
% hObject handle to checkbox_loop (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of checkbox_loop
global VARS_GLOBAL_ANIM
VARS_GLOBAL_ANIM.loop_playback = get(hObject,'Value');
% --- Executes during object creation, after setting all properties.
function edit_gotoFrame_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_gotoFrame (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function edit_gotoFrame_Callback(hObject, eventdata, handles)
% hObject handle to edit_gotoFrame (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_gotoFrame as text
% str2double(get(hObject,'String')) returns contents of edit_gotoFrame as a double
global VARS_GLOBAL_ANIM
was_already_paused = VARS_GLOBAL_ANIM.animation_paused;
pauseAnimation;
current_frame = round(str2num(char(get(hObject,'String'))));
VARS_GLOBAL_ANIM.current_frame = current_frame;
new_animate_showFrame([],[],{},current_frame);
if (~was_already_paused)
resumeAnimation;
end
|
github
|
sheldona/hessianIK-master
|
saveCamera.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/saveCamera.m
| 1,684 |
utf_8
|
7749a04b6cedd203283a11fafe2214e5
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function saveCamera(varargin)
ax = gca;
file = 'camera.m';
if (nargin>1)
file = varargin{2};
end
if (nargin>0)
ax = varargin{1};
end
[fid,msg]=fopen(file,'w');
if (fid < 0)
disp(msg);
return;
end
fprintf(fid,'function camera(axs)\n\n');
fprintf(fid,'set(axs,''CameraPosition'', [%s],...\n',num2str(get(ax,'CameraPosition')));
fprintf(fid,' ''CameraPositionMode'',''manual'',...\n');
fprintf(fid,' ''CameraTarget'', [%s],...\n',num2str(get(ax,'CameraTarget')));
fprintf(fid,' ''CameraTargetMode'',''manual'',...\n');
fprintf(fid,' ''CameraUpVector'', [%s],...\n',num2str(get(ax,'CameraUpVector')));
fprintf(fid,' ''CameraUpVectorMode'',''manual'',...\n');
fprintf(fid,' ''CameraViewAngle'', [%s],...\n',num2str(get(ax,'CameraViewAngle')));
fprintf(fid,' ''CameraViewAngleMode'',''manual'');');
fclose(fid);
|
github
|
sheldona/hessianIK-master
|
gramschmidt.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/gramschmidt.m
| 1,318 |
utf_8
|
3407cb5995f0348fefd4819b84082843
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function B = gramschmidt(A)
n = size(A,1);
if (size(A,2) ~= n)
return;
end;
B = zeros(n,n);
B(:,1) = (1/norm(A(:,1)))*A(:,1);
for i=2:n
v = A(:,i);
U = B(:,1:i-1); % subspace basis which has already been orthonormalized
pc = transpose(U)*v; % orthogonal projection coefficients of v onto U
p = U * pc; % orthogonal projection vector of v onto U
v = v - p;
if (norm(v)<eps) % vectors are not linearly independent!
return;
end;
v = v/norm(v);
B(:,i) = v;
end;
|
github
|
sheldona/hessianIK-master
|
coordsGridDiscNormal.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/coordsGridDiscNormal.m
| 2,922 |
utf_8
|
d2f60be72f8b308194ab808ee1b48fbb
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [X,Y,Z] = coordsGridDiscNormal(n, x0, radius, nlongitude, nlatitude, offset)
% [X,Y,Z] = coordsGridDiscNormal(n, x0, radius, nlongitude, offset)
%
% creates the coordinates of nlongitude equally spaced concentric regular nlongitude-gons in 3-space within a plane specified by n and x0, max radius "radius"
% n....... normal vector, must be 3 x 1
% x0...... fixture point, must be 3 x 1
% radius.. scalar
% nlongitude.. integer, specifies number of vertices per concentric nstep-gon
% offset.. constant offset to x0, 3 x 1. Will be projected onto plane.
% X,Y and Z are vectors of length nlongitude
d = length(n);
i = find(abs(n)>eps); % find first nonzero component of n
% a new basis {e_1,...,e_{i-1},n,e_{i+1},...,e_d},
% where e_i was replaced by n, will still span the whole space IR^d,
% since e_i appears in the expansion of n with a nonzero coefficient.
if (size(i) == 0) % in this case the normal was near zero... useless!
return;
end;
i = i(1);
P = eye(d); % construct permutation matrix that swaps rows 1 and i
z = P(:,i);
P(:,i) = P(:,1);
P(:,1) = z;
%line([x0(1);x0(1)+n(1)],[x0(2);x0(2)+n(2)],[x0(3);x0(3)+n(3)]);
offset_proj = offset - dot(n,offset) * n;
n = P * n; % don't forget to change the representation of our normal!
R = zeros(d,d);
R(:,1) = n; % "basis vector e_1 will map to n"; replace e_1 (the former e_i) by n.
R(2:d,2:d) = eye(d-1);
R = gramschmidt(R); % R now contains an orthonormal basis where the first basis vector is n.
R = R * P; % permute back: R now contains an orthonormal basis where the ith basis vector is n.
t = [0:(2*pi)/nlongitude:2*pi-(1/nlongitude)];
C = zeros(3,nlatitude*nlongitude);
% create concentric circles with nlatitude latitude and nlongitude longitude lines
k=1;
for r = radius:-radius/nlatitude:radius/nlatitude
C(:,(k-1)*nlongitude+1:k*nlongitude) = [zeros(1,nlongitude); r*cos(t); r*sin(t)];
k=k+1;
end
midpoint = x0+offset_proj;
%C = R * C + repmat(midpoint,1,nlatitude*nlongitude);
C = R * C + midpoint(:, ones(1,nlatitude*nlongitude));
X = [C(1,:)'; midpoint(1)];
Y = [C(2,:)'; midpoint(2)];
Z = [C(3,:)'; midpoint(3)];
|
github
|
sheldona/hessianIK-master
|
resumeAnimation.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/resumeAnimation.m
| 2,150 |
utf_8
|
42f8280c765992e5a383c09d67f18409
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function resumeAnimation(varargin)
global VARS_GLOBAL_ANIM
if (nargin >1)
new_time_stretch_factor = varargin{2};
else
new_time_stretch_factor = -1;
end
if (nargin >0)
range = varargin{1};
current_frame = range(1);
if(length(range) == 2)
last_frame = range(2);
else
last_frame = VARS_GLOBAL_ANIM.frames_total;
end
else
current_frame = VARS_GLOBAL_ANIM.current_frame;
last_frame = VARS_GLOBAL_ANIM.frames_total;
end
t = timerfind('Name','AnimationTimer');
try
if(~isempty(t))
t = t(1);
num_frames = last_frame - current_frame +1;
set(t,'TasksToExecute',num_frames);
VARS_GLOBAL_ANIM.current_frame = current_frame;
if(new_time_stretch_factor ~= -1)
desired_frame_time = VARS_GLOBAL_ANIM.mot(1).frameTime;
period = round(1000*desired_frame_time/new_time_stretch_factor)/1000;
VARS_GLOBAL_ANIM.timer_period = period;
if (period == 0)
warning(['Requested timer period of ' num2str(desired_frame_time/time_stretch_factor) ' s is too short for Matlab! Setting period to minimum of 1 ms :-(']);
period = 0.001;
end
set(t,'Period',period);
end
start(t);
end
catch
delete(t);
return
end
VARS_GLOBAL_ANIM.animation_paused = false;
|
github
|
sheldona/hessianIK-master
|
animate_sound.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/animate_sound.m
| 4,499 |
utf_8
|
01e75d42c480e6a8ca1ba1846c3f6e77
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function animate_sound(skel,mot,y,fs_audio,varargin)
% animate(skel,mot,num_repeats,time_stretch_factor,range,draw_labels)
% INPUT:
% - skel and mot are assumed to be struct arrays of identical length containing
% skeleton/motion pairs to be animated simultaneously. All mots are supposed to have the same samplingRate.
% - range is a cell array which is supposed to be of same length as skel/mot.
% Empty cell array entries in range indicate that the entire frame range is to be played back.
% - draw_labels is a logical vector the same length as skel indicating whether the corresponding skeleton
% is to be drawn with a frame counter label. Empty draw_labels means "draw no labels at all".
global VARS_GLOBAL_ANIM
if (isempty(VARS_GLOBAL_ANIM))
VARS_GLOBAL_ANIM = emptyVarsGlobalAnimStruct;
end
num_repeats = 1;
time_stretch_factor = 1;
VARS_GLOBAL_ANIM.range = cell(length(mot),1);
VARS_GLOBAL_ANIM.draw_labels = ones(length(mot),1);
if (nargin > 8)
error('Too many arguments!');
end
if (nargin > 7)
VARS_GLOBAL_ANIM.draw_labels = varargin{4};
end
if (nargin > 6)
VARS_GLOBAL_ANIM.range = varargin{3};
if (~iscell(VARS_GLOBAL_ANIM.range))
VARS_GLOBAL_ANIM.range = {VARS_GLOBAL_ANIM.range};
end
end
if (nargin > 5)
time_stretch_factor = varargin{2};
end
if (nargin > 4)
num_repeats = varargin{1};
end
VARS_GLOBAL_ANIM.skel = skel;
VARS_GLOBAL_ANIM.mot = mot;
num_frames = -inf;
for k=1:length(VARS_GLOBAL_ANIM.range)
if (isempty(VARS_GLOBAL_ANIM.range{k}))
VARS_GLOBAL_ANIM.range{k} = [1:VARS_GLOBAL_ANIM.mot(k).nframes];
end
if (length(VARS_GLOBAL_ANIM.range{k})>num_frames) % determine num_frames as maximum of range lengths
num_frames = length(VARS_GLOBAL_ANIM.range{k});
end
end
animate_initGraphics;
desired_frame_time = VARS_GLOBAL_ANIM.mot(1).frameTime;
if (~isempty(VARS_GLOBAL_ANIM.figure_camera_file))
h = str2func(VARS_GLOBAL_ANIM.figure_camera_file);
feval(h, gca);
end
if (~isempty(VARS_GLOBAL_ANIM.figure_position))
set(gcf,'position',VARS_GLOBAL_ANIM.figure_position);
end
for (i=1:num_repeats)
VARS_GLOBAL_ANIM.frame_draw_time = 0;
VARS_GLOBAL_ANIM.frames_drawn = 0;
VARS_GLOBAL_ANIM.animation_done = false;
t=timerfind('Name','AnimationTimer');
if (~isempty(t))
delete(t);
end
t = timer('Name','AnimationTimer');
try
set(t,'TimerFcn','animate_showFrame');
set(t,'ExecutionMode','fixedRate');
set(t,'TasksToExecute',num_frames);
period = round(1000*desired_frame_time/time_stretch_factor)/1000;
if (period == 0)
warning(['Requested timer period of ' num2str(desired_frame_time/time_stretch_factor) ' s is too short for Matlab! Setting period to minimum of 1 ms :-(']);
period = 0.001;
end
set(t,'Period',period);
set(t,'BusyMode','queue');
t1=clock;
sound(y,fs_audio);
start(t);
wait(t);
t2=clock;
elapsed_time = etime(t2,t1);
delete(t);
catch
delete(t);
return
end
clip_duration = desired_frame_time*num_frames/time_stretch_factor;
avg_frame_time = elapsed_time / VARS_GLOBAL_ANIM.frames_drawn;
actual_frame_rate = 1/avg_frame_time;
target_frame_rate = time_stretch_factor/desired_frame_time;
disp(['Frame rate: ' num2str(actual_frame_rate) ' fps, target frame rate was ' num2str(target_frame_rate) ' fps.']);
disp(['Clip duration: ' num2str(clip_duration) ' sec. Total frame drawing time: ' num2str(VARS_GLOBAL_ANIM.frame_draw_time) ' sec, ' num2str(100*(target_frame_rate/actual_frame_rate)*VARS_GLOBAL_ANIM.frame_draw_time/clip_duration) ' percent load.']);
end
|
github
|
sheldona/hessianIK-master
|
emptyVarsGlobalAnimStruct.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/emptyVarsGlobalAnimStruct.m
| 3,735 |
utf_8
|
4f769d2096aef0f6b1b3368c3a991162
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function s = emptyVarsGlobalAnimStruct
s = struct('animation_done',true,...
'range',[],...
'skel',[],...
'mot',[],...
'graphics_data',[],... % struct array with handles to graphics data (planes, lines, etc.)
'graphics_data_index',0,... % index into graphics_data struct array, denoting the currently active figure
'frame_draw_time',0,...
'frames_drawn',0,...
'draw_labels',[],... % boolean array the same size as skel and mot, indicating whether frame counter labels are to be drawn
'figure_position',[],...
'figure_color',[192 192 192]/255,...
'figure_camera_file',[],...
'ground_tile_size_factor',1,... % measures size of ground tiles in multiples of humerus lengths
'bounding_box_border_extension',1,... % how many tiles are to be appended around the ground plane?
'animated_skeleton_Color','black',...
'animated_skeleton_LineWidth',6,...
'animated_skeleton_LineStyle','-',...
'animated_skeleton_Marker','.',...
'animated_skeleton_MarkerSize',36,...
'animated_skeleton_MarkerEdgeColor','red',...
'animated_skeleton_MarkerFaceColor','red',...
'trace_pose_Color','black',...
'trace_pose_LineWidth',2,...
'trace_pose_LineStyle','-',...
'trace_pose_Marker','.',...
'trace_pose_MarkerSize',12,...
'trace_pose_MarkerEdgeColor',[200 200 200]/255,...
'trace_pose_MarkerFaceColor',[200 200 200]/255,...
'animated_point_MarkerSize',20,...
'animated_point_Marker','o',...
'animated_point_MarkerEdgeColor',[0 0 0],... % put RGB row vector here. MarkerFaceColor is user-determined... put empty value if MarkerEdgeColor==MarkerFaceColor is desired
'video_compression','HFYU',...
'video_flip_vert',false,...
'video_flip_horz',false);
s.animated_skeleton_Color = 'black';
s.animated_skeleton_LineWidth = 5;
s.animated_skeleton_LineStyle= '-';
s.animated_skeleton_Marker= '.';
s.animated_skeleton_MarkerSize= 15;
s.animated_skeleton_MarkerEdgeColor= [0.4 0.4 0.4];
s.animated_skeleton_MarkerFaceColor= [0.4 0.4 0.4];
|
github
|
sheldona/hessianIK-master
|
animate_showFrame.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/animate_showFrame.m
| 6,254 |
utf_8
|
559c1de0a69ae55a7b39a19bbdbea997
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function animate_showFrame(varargin)
global VARS_GLOBAL_ANIM
if (VARS_GLOBAL_ANIM.animation_done)
return;
end
if (nargin>=1) % direct frame draw mode!
tasks_executed = varargin{1};
tasks_to_execute = inf;
else
t = timerfind('Name','AnimationTimer');
if (size(t)==0)
return
end
t = t(1);
tasks_executed = get(t,'TasksExecuted');
tasks_to_execute = get(t,'TasksToExecute');
end
tic
%%%%%%%%%%%%% draw "current_frame" for all skeletons
for i = 1:length(VARS_GLOBAL_ANIM.skel)
if (tasks_executed > length(VARS_GLOBAL_ANIM.range{i})) % if motion number i need not be animated anymore, skip it!
continue;
end
current_frame = VARS_GLOBAL_ANIM.range{i}(tasks_executed);
npaths = size(VARS_GLOBAL_ANIM.skel(i).paths,1);
for k = 1:npaths
path = VARS_GLOBAL_ANIM.skel(i).paths{k};
nlines = length(path)-1;
px = zeros(2,1); py = zeros(2,1); pz = zeros(2,1);
px(1) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(1)}(1,current_frame);
py(1) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(1)}(2,current_frame);
pz(1) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(1)}(3,current_frame);
for j = 2:nlines % path number
px(2) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(j)}(1,current_frame);
py(2) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(j)}(2,current_frame);
pz(2) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(j)}(3,current_frame);
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).skel_lines{i}{k}(j-1),'XData',px,'YData',py,'ZData',pz);
px(1) = px(2);
py(1) = py(2);
pz(1) = pz(2);
end
px(2) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(nlines+1)}(1,current_frame);
py(2) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(nlines+1)}(2,current_frame);
pz(2) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(nlines+1)}(3,current_frame);
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).skel_lines{i}{k}(nlines),'XData',px,'YData',py,'ZData',pz);
end
if (isfield(VARS_GLOBAL_ANIM.mot(i),'animated_patch_data'))
npatches = length(VARS_GLOBAL_ANIM.mot(i).animated_patch_data);
for k=1:npatches
X = VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).X(:,current_frame);
Y = VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).Y(:,current_frame);
Z = VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).Z(:,current_frame);
if (size(VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).color,1)==1)
%C = repmat(VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).color,size(Z,1),1);
C = VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).color(ones(size(Z,1),1),:);
else
%C = repmat(VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).color(current_frame,:),size(Z,1),1);
C = VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).color(current_frame,:)
C = C(ones(size(Z,1),1),:);
end
switch (lower(VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).type))
case 'disc'
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).animated_patches{i}(k),...
'Vertices',[X Y Z],...
'FaceVertexCData',C);
case 'polygondisc'
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).animated_patches{i}(k),...
'Vertices',[X Y Z],...
'FaceVertexCData',C);
case 'griddisc'
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).animated_patches{i}(k),...
'Vertices',[X Y Z],...
'FaceVertexCData',C);
case 'point'
if isempty(VARS_GLOBAL_ANIM.animated_point_MarkerEdgeColor)
markeredgecolor = C;
else
%markeredgecolor = repmat(VARS_GLOBAL_ANIM.animated_point_MarkerEdgeColor,size(Z,1),1);
markeredgecolor = VARS_GLOBAL_ANIM.animated_point_MarkerEdgeColor(ones(size(Z,1),1),1);
end
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).animated_patches{i}(k),...
'Vertices',[X Y Z],...
'MarkerEdgeColor',markeredgecolor,...
'MarkerFaceColor',C);
case 'cappedcylinder'
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).animated_patches{i}(k),...
'Vertices',[X Y Z],...
'FaceVertexCData',C);
end
end
end
if (~isempty(VARS_GLOBAL_ANIM.draw_labels) && VARS_GLOBAL_ANIM.draw_labels(i))
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).text_handle(i),'string',sprintf(' Frame %d',current_frame),'position',VARS_GLOBAL_ANIM.mot(i).jointTrajectories{1}(:,current_frame));
end
end
drawnow;
t = toc;
VARS_GLOBAL_ANIM.frames_drawn = VARS_GLOBAL_ANIM.frames_drawn + 1;
VARS_GLOBAL_ANIM.frame_draw_time = VARS_GLOBAL_ANIM.frame_draw_time + t;
if (tasks_executed>=tasks_to_execute)
VARS_GLOBAL_ANIM.animation_done = true;
end
|
github
|
sheldona/hessianIK-master
|
showTracePoses.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/showTracePoses.m
| 2,166 |
utf_8
|
22106722235c86ca330051e8c0791b28
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function showTracePoses(skel,mot,frames)
global VARS_GLOBAL_ANIM
if (isempty(VARS_GLOBAL_ANIM)||isempty(VARS_GLOBAL_ANIM.graphics_data))
VARS_GLOBAL_ANIM = emptyVarsGlobalAnimStruct;
animate_initGraphics;
end
f = find(cell2mat({VARS_GLOBAL_ANIM.graphics_data.figure}) == gcf);
if (isempty(f))
animate_initGraphics;
f = gcf;
end
VARS_GLOBAL_ANIM.graphics_data_index = f;
for k=1:length(frames)
VARS_GLOBAL_ANIM.graphics_data(f).trace_poses=...
[VARS_GLOBAL_ANIM.graphics_data(f).trace_poses; ...
createSkeletonLines({skel,mot},frames(k),...
VARS_GLOBAL_ANIM.trace_pose_Color,...
VARS_GLOBAL_ANIM.trace_pose_LineWidth,...
VARS_GLOBAL_ANIM.trace_pose_LineStyle,...
VARS_GLOBAL_ANIM.trace_pose_Marker,...
VARS_GLOBAL_ANIM.trace_pose_MarkerSize,...
VARS_GLOBAL_ANIM.trace_pose_MarkerEdgeColor,...
VARS_GLOBAL_ANIM.trace_pose_MarkerFaceColor)];
% {skel, mot}, frames, color, linewidth, linestyle, marker, markersize, markeredgecolor, markerfacecolor
end
|
github
|
sheldona/hessianIK-master
|
params_planePointNormal.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/params_planePointNormal.m
| 2,782 |
utf_8
|
ea22c0084f199090b885985a7baf6db8
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [fixture,n,min_radius] = params_planePointNormal(mot,p1_name,p2_name,p3_name,q_name,d,varargin)
% p1 and p2 define the normal of an oriented plane.
% p3+offset is the fixture point for the plane.
% q is the point that is tested against this plane
% d is the offset distance for the plane in the direction of n.
% optional argument offset is a 3-vector denoting an offset to be added to the fixture point during min_radius calculation
%
% function returns sequence of fixture points and unit normals along with
% minimum radii that make sense to visualize position of q in relation to the plane.
offset = [0;0;0];
if (nargin>6)
offset = varargin{1};
end
if (ischar(p1_name))
p1 = trajectoryID(mot,p1_name);
else
p1 = mot.nameMap{p1_name,3};
end
if (ischar(p2_name))
p2 = trajectoryID(mot,p2_name);
else
p2 = mot.nameMap{p2_name,3};
end
if (ischar(p3_name))
p3 = trajectoryID(mot,p3_name);
else
p3 = mot.nameMap{p3_name,3};
end
if (ischar(q_name))
q = trajectoryID(mot,q_name);
else
q = mot.nameMap{q_name,3};
end
n = mot.jointTrajectories{p2} - mot.jointTrajectories{p1};
n = n./repmat(sqrt(sum(n.^2)),3,1);
% points = mot.jointTrajectories{p3}+n*d;
%
% fixture = mot.jointTrajectories{p3}+repmat(offset,1,mot.nframes);
% dist = dot(n,mot.jointTrajectories{q}-fixture);
% q_proj = mot.jointTrajectories{q} - repmat(dist,3,1).*n;
%
% min_radius = sqrt(sum((fixture-q_proj).^2));
offset = repmat(offset,1,mot.nframes) - repmat(dot(n,repmat(offset,1,mot.nframes)),3,1).*n;
%points = mot.jointTrajectories{p1} + n*d;
fixture = mot.jointTrajectories{p3}+offset + n*d;
dist_q = dot(n,mot.jointTrajectories{q}-fixture);
dist_p3 = dot(n,mot.jointTrajectories{p3}-fixture);
q_proj = mot.jointTrajectories{q} - repmat(dist_q,3,1).*n;
p3_proj = mot.jointTrajectories{p3} - repmat(dist_p3,3,1).*n;
radius_q = sqrt(sum((fixture-q_proj).^2));
radius_p3 = sqrt(sum((fixture-p3_proj).^2));
min_radius = max([radius_q; radius_p3]);
|
github
|
sheldona/hessianIK-master
|
new_animate_showFrame.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/new_animate_showFrame.m
| 7,936 |
utf_8
|
54cf87ae23a8624ff5da8c91f5b5f896
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function new_animate_showFrame(obj,event,varargin)
global VARS_GLOBAL_ANIM
tic;
if (VARS_GLOBAL_ANIM.animation_done)
toc;
return;
end
if (nargin>3) % direct frame draw mode!
current_frame = varargin{2};
VARS_GLOBAL_ANIM.current_frame = current_frame;
frames_total = inf;
else
current_frame = VARS_GLOBAL_ANIM.current_frame;
frames_total = VARS_GLOBAL_ANIM.frames_total;
end
if (nargin>2)
observer_fcn = varargin{1};
else
observer_fcn = {};
end
if (current_frame>=frames_total)
t = timerfind('Name','AnimationTimer');
if (~isempty(t))
if(VARS_GLOBAL_ANIM.kill_timer)
delete(t);
VARS_GLOBAL_ANIM.animation_done = true;
avg_frame_time = VARS_GLOBAL_ANIM.frame_draw_time / VARS_GLOBAL_ANIM.frames_drawn;
actual_frame_rate = 1/avg_frame_time;
disp(['Frame rate: ' num2str(actual_frame_rate) ' fps.']);
disp(['Total frame drawing time: ' num2str(VARS_GLOBAL_ANIM.frame_draw_time) ' sec.']);
else
stop(t);
VARS_GLOBAL_ANIM.animation_paused = true;
end
end
if(VARS_GLOBAL_ANIM.loop_playback)
current_frame = 1;
VARS_GLOBAL_ANIM.current_frame = 1;
VARS_GLOBAL_ANIM.animation_paused = false;
set(t,'TasksToExecute', VARS_GLOBAL_ANIM.frames_total+1);
start(t);
end
end
%if (current_frame>frames_total)
% disp('Error: Timer sent too many calls to animate_showFrame!');
% return;
%end
if(~isempty(observer_fcn))
feval(observer_fcn{1},VARS_GLOBAL_ANIM.current_frame,observer_fcn{2:end});
end
% drop frames if more than 30 fps
elapsed = etime(clock,VARS_GLOBAL_ANIM.previous_call);
if (elapsed < 1/30 && current_frame ~= frames_total)
VARS_GLOBAL_ANIM.current_frame = current_frame + 1;
t2 = toc;
VARS_GLOBAL_ANIM.frame_draw_time = VARS_GLOBAL_ANIM.frame_draw_time + t2;
return;
end
%%%%%%%%%%%%% draw "current_frame" for all skeletons
for i = 1:length(VARS_GLOBAL_ANIM.skel)
if (current_frame > length(VARS_GLOBAL_ANIM.range{i})) % if motion number i need not be animated anymore, skip it!
continue;
end
% delay beginning of motion for a short period of time
%current_frame = max(1,current_frame - 19);
current_frame_in_mot = VARS_GLOBAL_ANIM.range{i}(current_frame);
set(VARS_GLOBAL_ANIM.graphics_data.frameLabel, 'String', ['frame ' int2str(current_frame_in_mot)]);
npaths = size(VARS_GLOBAL_ANIM.skel(i).paths,1);
for k = 1:npaths
path = VARS_GLOBAL_ANIM.skel(i).paths{k};
nlines = length(path)-1;
px = zeros(2,1); py = zeros(2,1); pz = zeros(2,1);
px(1) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(1)}(1,current_frame_in_mot);
py(1) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(1)}(2,current_frame_in_mot);
pz(1) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(1)}(3,current_frame_in_mot);
for j = 2:nlines % path number
px(2) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(j)}(1,current_frame_in_mot);
py(2) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(j)}(2,current_frame_in_mot);
pz(2) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(j)}(3,current_frame_in_mot);
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).skel_lines{i}{k}(j-1),'XData',px,'YData',py,'ZData',pz);
px(1) = px(2);
py(1) = py(2);
pz(1) = pz(2);
end
px(2) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(nlines+1)}(1,current_frame_in_mot);
py(2) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(nlines+1)}(2,current_frame_in_mot);
pz(2) = VARS_GLOBAL_ANIM.mot(i).jointTrajectories{path(nlines+1)}(3,current_frame_in_mot);
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).skel_lines{i}{k}(nlines),'XData',px,'YData',py,'ZData',pz);
end
if (isfield(VARS_GLOBAL_ANIM.mot(i),'animated_patch_data'))
npatches = length(VARS_GLOBAL_ANIM.mot(i).animated_patch_data);
for k=1:npatches
X = VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).X(:,current_frame_in_mot);
Y = VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).Y(:,current_frame_in_mot);
Z = VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).Z(:,current_frame_in_mot);
if (size(VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).color,1)==1)
%C = repmat(VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).color,size(Z,1),1);
C = VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).color(ones(size(Z,1),1),:);
else
C = repmat(VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).color(current_frame_in_mot,:),size(Z,1),1);
end
switch (lower(VARS_GLOBAL_ANIM.mot(i).animated_patch_data(k).type))
case 'disc'
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).animated_patches{i}(k),...
'Vertices',[X Y Z],...
'FaceVertexCData',C);
case 'polygondisc'
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).animated_patches{i}(k),...
'Vertices',[X Y Z],...
'FaceVertexCData',C);
case 'griddisc'
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).animated_patches{i}(k),...
'Vertices',[X Y Z],...
'FaceVertexCData',C);
case 'point'
if isempty(VARS_GLOBAL_ANIM.animated_point_MarkerEdgeColor)
markeredgecolor = C;
else
markeredgecolor = repmat(VARS_GLOBAL_ANIM.animated_point_MarkerEdgeColor,size(Z,1),1);
end
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).animated_patches{i}(k),...
'Vertices',[X Y Z],...
'MarkerEdgeColor',markeredgecolor,...
'MarkerFaceColor',C);
case 'cappedcylinder'
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).animated_patches{i}(k),...
'Vertices',[X Y Z],...
'FaceVertexCData',C);
end
end
end
if (~isempty(VARS_GLOBAL_ANIM.draw_labels) && VARS_GLOBAL_ANIM.draw_labels(i))
set(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).text_handle(i),'string',sprintf(' Frame %d',current_frame),'position',VARS_GLOBAL_ANIM.mot(i).jointTrajectories{1}(:,current_frame_in_mot));
end
end
drawnow;
t2 = toc;
VARS_GLOBAL_ANIM.frames_drawn = VARS_GLOBAL_ANIM.frames_drawn + 1;
VARS_GLOBAL_ANIM.frame_draw_time = VARS_GLOBAL_ANIM.frame_draw_time + t2;
VARS_GLOBAL_ANIM.current_frame = current_frame + 1;
VARS_GLOBAL_ANIM.previous_call = clock;
|
github
|
sheldona/hessianIK-master
|
new_animate_initGraphics.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/new_animate_initGraphics.m
| 8,957 |
utf_8
|
98c0162f25275bc385e84a3284063b25
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function new_animate_initGraphics
global VARS_GLOBAL_ANIM
VARS_GLOBAL_ANIM.loop_playback = 1;
bb = [inf -inf inf -inf inf -inf]';
ground_tile_size = -inf;
for k = 1:length(VARS_GLOBAL_ANIM.mot)
bb([2 4 6]) = max(bb([2 4 6]), VARS_GLOBAL_ANIM.mot(k).boundingBox([2 4 6]));
bb([1 3 5]) = min(bb([1 3 5]), VARS_GLOBAL_ANIM.mot(k).boundingBox([1 3 5]));
lclavicleIdx = strMatch('lshoulder', {VARS_GLOBAL_ANIM.skel(1).nameMap{:,1}}, 'exact');
if(isempty(lclavicleIdx))
lclavicleIdx = strMatch('LSHO', {VARS_GLOBAL_ANIM.skel(1).nameMap{:,1}}, 'exact');
if(isempty(lclavicleIdx))
lclavicleIdx = strMatch('lsho', {VARS_GLOBAL_ANIM.skel(1).nameMap{:,1}}, 'exact');
end
end
if isempty(lclavicleIdx)
warning('Could not find the clavicle in the nameMap. Using default size 10 [?] of the ground plane grid.');
x=10;
else
lclavicleIdx = VARS_GLOBAL_ANIM.skel(1).nameMap{lclavicleIdx, 3};
lelbowIdx = strMatch('lelbow', {VARS_GLOBAL_ANIM.skel(1).nameMap{:,1}});
if(isempty(lelbowIdx))
lelbowIdx = strMatch('LELB', {VARS_GLOBAL_ANIM.skel(1).nameMap{:,1}}, 'exact');
if(isempty(lelbowIdx))
lelbowIdx = strMatch('lelb', {VARS_GLOBAL_ANIM.skel(1).nameMap{:,1}}, 'exact');
end
end
lelbowIdx = VARS_GLOBAL_ANIM.skel(1).nameMap{lelbowIdx, 3};
x = VARS_GLOBAL_ANIM.ground_tile_size_factor*sqrt(sum((VARS_GLOBAL_ANIM.mot(1).jointTrajectories{lclavicleIdx}(:,1)-VARS_GLOBAL_ANIM.mot(1).jointTrajectories{lelbowIdx}(:,1)).^2));
end
% x = VARS_GLOBAL_ANIM.ground_tile_size_factor*VARS_GLOBAL_ANIM.skel(1).nodes(VARS_GLOBAL_ANIM.skel(1).nameMap{16,2}).length; % ground tile size will be a multiple of the length of longest lhumerus (DOF id 16)
if (x>ground_tile_size)
ground_tile_size = x;
end
end
if (sum(isinf(bb)>0))
ground_tile_size = 1;
bb_extension = zeros(6,1);
bb = [-1 1 0 1 -1 1]';
else
bb_extension = [-1 1 0 1 -1 1]'*VARS_GLOBAL_ANIM.bounding_box_border_extension*ground_tile_size;
bb = bb + bb_extension;
end
%nground_tiles = 10;
%ground_tile_size = min(bb(2) - bb(1), bb(6) - bb(5)) / nground_tiles;
create_new = false;
if (~isempty(VARS_GLOBAL_ANIM.graphics_data))
% eliminate invalid figure handles
valid_figure_handle_indices = find(ishandle(cell2mat({VARS_GLOBAL_ANIM.graphics_data.figure})));
VARS_GLOBAL_ANIM.graphics_data = VARS_GLOBAL_ANIM.graphics_data(valid_figure_handle_indices);
view_curr = view(gca);
% newplot;
current_figure = gcf;
% find current figure in graphics_data
VARS_GLOBAL_ANIM.graphics_data_index = find(cell2mat({VARS_GLOBAL_ANIM.graphics_data.figure}) == current_figure);
if (isempty(VARS_GLOBAL_ANIM.graphics_data_index)) % current figure hasn't been used for our skeleton graphics output previously
create_new = true;
VARS_GLOBAL_ANIM.graphics_data_index = length(VARS_GLOBAL_ANIM.graphics_data)+1; % create new entry in graphics_data array
VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index) = struct('figure',current_figure,...
'skel_lines',cell(1,1),...
'animated_patches',cell(1,1),...
'ground_plane',0,...
'text_handle',0,...
'view',[],...
'trace_poses',[]);
end
else % graphics_data IS empty!
create_new = true;
view_curr = view(gca);
% newplot;
current_figure = gcf;
VARS_GLOBAL_ANIM.graphics_data = struct('figure',current_figure,...
'skel_lines',cell(1,1),...
'animated_patches',cell(1,1),...
'ground_plane',0,...
'text_handle',0,...
'view',[],...
'trace_poses',[]);
VARS_GLOBAL_ANIM.graphics_data_index = 1;
end
i = VARS_GLOBAL_ANIM.graphics_data_index;
if (~create_new)
delete(VARS_GLOBAL_ANIM.graphics_data(i).ground_plane(find(ishandle(VARS_GLOBAL_ANIM.graphics_data(i).ground_plane))));
VARS_GLOBAL_ANIM.graphics_data(i).ground_plane = [];
delete(VARS_GLOBAL_ANIM.graphics_data(i).text_handle(find(ishandle(VARS_GLOBAL_ANIM.graphics_data(i).text_handle) & (VARS_GLOBAL_ANIM.graphics_data(i).text_handle > 0))));
VARS_GLOBAL_ANIM.graphics_data(i).text_handle = [];
for k=1:length(VARS_GLOBAL_ANIM.graphics_data(i).skel_lines)
if (~isempty(VARS_GLOBAL_ANIM.graphics_data(i).skel_lines{k}))
for j = 1:size(VARS_GLOBAL_ANIM.graphics_data(i).skel_lines{k},1)
delete(VARS_GLOBAL_ANIM.graphics_data(i).skel_lines{k}{j}(find(ishandle(VARS_GLOBAL_ANIM.graphics_data(i).skel_lines{k}{j}))));
VARS_GLOBAL_ANIM.graphics_data(i).skel_lines{k}{j} = [];
end
end
end
for k=1:length(VARS_GLOBAL_ANIM.graphics_data(i).animated_patches)
if (~isempty(VARS_GLOBAL_ANIM.graphics_data(i).animated_patches{k}))
delete(VARS_GLOBAL_ANIM.graphics_data(i).animated_patches{k}(find(ishandle(VARS_GLOBAL_ANIM.graphics_data(i).animated_patches{k}))));
VARS_GLOBAL_ANIM.graphics_data(i).animated_patches{k} = [];
end
end
end
reset(gca);
if (isempty(VARS_GLOBAL_ANIM.graphics_data(i).view))
VARS_GLOBAL_ANIM.graphics_data(i).view = [-0.9129 0.0000 1.7180 -0.4026;...
0.0461 1.6227 0.4335 -1.0511;...
0.4056 -0.1843 3.8170 21.0978;...
0 0 0 1.0000];
else
VARS_GLOBAL_ANIM.graphics_data(i).view = view_curr;
end
hld=ishold;
set(gcf,'NextPlot','add');
set(gca,'NextPlot','add');
%%%%%%%%%%% create ground plane
%bb([1 2 5 6],:) = bb([1 2 5 6],:)*10;
%ground_tile_size=ground_tile_size*10;
VARS_GLOBAL_ANIM.graphics_data(i).ground_plane = createGroundPlane(bb,bb_extension,ground_tile_size);
for k=1:length(VARS_GLOBAL_ANIM.skel)
%%%%%%%%%%% create text fields for frame number
if (~isempty(VARS_GLOBAL_ANIM.draw_labels) && VARS_GLOBAL_ANIM.draw_labels(k))
VARS_GLOBAL_ANIM.graphics_data(i).text_handle(k) = text(0,0,0,'');
set(VARS_GLOBAL_ANIM.graphics_data(i).text_handle(k),'interpreter','none');
end
%%%%%%%%%%% create lines for skeleton visualization
range = VARS_GLOBAL_ANIM.range{k};
current_frame = range(1);
VARS_GLOBAL_ANIM.graphics_data(i).skel_lines{k,1} = createSkeletonLines(k,current_frame);
%%%%%%%%%%% create patches for animated plane/cylinder/sphere/etc visualization
if (isfield(VARS_GLOBAL_ANIM.mot(k),'animated_patch_data'))
VARS_GLOBAL_ANIM.graphics_data(i).animated_patches{k,1} = createAnimatedPatches(k,current_frame);
end
end
if (~hld)
%set(gcf,'NextPlot','replace');
set(gca,'NextPlot','replace');
end
figure(VARS_GLOBAL_ANIM.graphics_data(i).figure);
set(gcf,'renderer','OpenGL','DoubleBuffer','on');
%set(gcf,'Color','w');
set(gcf,'Color',VARS_GLOBAL_ANIM.figure_color);
% set(gca,'Color','w',...
% 'XColor','w',...
% 'YColor','w',...
% 'ZColor','w');
set(gca,'visible','off');
axis equal;
axis(bb+[-1 1 -1 1 -1 1]'*ground_tile_size);
camup([0 1 0]);
%view(VARS_GLOBAL_ANIM.graphics_data(i).view);
camproj('perspective');
camlight headlight;
light;
%set(gcf,'position',[5 5 512 284]);
%set(gca,'Units','centimeter')
%camva('auto');
%camva('manual');
|
github
|
sheldona/hessianIK-master
|
createSkeletonLines.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/createSkeletonLines.m
| 3,310 |
utf_8
|
81475446626b2907be67cac6c5a709b9
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function skel_lines = createSkeletonLines(skel_ind,current_frame,varargin)
global VARS_GLOBAL_ANIM
if (~iscell(skel_ind))
skel = VARS_GLOBAL_ANIM.skel(skel_ind);
mot = VARS_GLOBAL_ANIM.mot(skel_ind);
else
skel = skel_ind{1};
mot = skel_ind{2};
end
color = VARS_GLOBAL_ANIM.animated_skeleton_Color;
linewidth = VARS_GLOBAL_ANIM.animated_skeleton_LineWidth;
linestyle = VARS_GLOBAL_ANIM.animated_skeleton_LineStyle;
marker = VARS_GLOBAL_ANIM.animated_skeleton_Marker;
markersize = VARS_GLOBAL_ANIM.animated_skeleton_MarkerSize;
markeredgecolor = VARS_GLOBAL_ANIM.animated_skeleton_MarkerEdgeColor;
markerfacecolor = VARS_GLOBAL_ANIM.animated_skeleton_MarkerFaceColor;
% color, linewidth, linestyle, marker, markersize, markeredgecolor, markerfacecolor
if (nargin>8)
markerfacecolor = varargin{9-2};
end
if (nargin>7)
markeredgecolor = varargin{8-2};
end
if (nargin>6)
markersize = varargin{7-2};
end
if (nargin>5)
marker = varargin{6-2};
end
if (nargin>4)
linestyle = varargin{5-2};
end
if (nargin>3)
linewidth = varargin{4-2};
end
if (nargin>2)
color = varargin{3-2};
end
%%%%%%%%%%% clear skel_lines if necessary
npaths = size(skel.paths,1);
skel_lines = cell(npaths,1);
for k = 1:npaths
path = skel.paths{k};
nlines = length(path)-1;
px = zeros(2,1); py = zeros(2,1); pz = zeros(2,1);
px(1) = mot.jointTrajectories{path(1)}(1,current_frame);
py(1) = mot.jointTrajectories{path(1)}(2,current_frame);
pz(1) = mot.jointTrajectories{path(1)}(3,current_frame);
for j = 2:nlines % path number
px(2) = mot.jointTrajectories{path(j)}(1,current_frame);
py(2) = mot.jointTrajectories{path(j)}(2,current_frame);
pz(2) = mot.jointTrajectories{path(j)}(3,current_frame);
skel_lines{k}(j-1) = line(px,py,pz,'Color',color,'LineWidth',linewidth,'linestyle',linestyle,'Parent',gca,'marker',marker,'markersize',markersize,'markeredgecolor',markeredgecolor,'markerfacecolor',markerfacecolor);
px(1) = px(2);
py(1) = py(2);
pz(1) = pz(2);
end
px(2) = mot.jointTrajectories{path(nlines+1)}(1,current_frame);
py(2) = mot.jointTrajectories{path(nlines+1)}(2,current_frame);
pz(2) = mot.jointTrajectories{path(nlines+1)}(3,current_frame);
skel_lines{k}(nlines) = line(px,py,pz,'Color',color,'LineWidth',linewidth,'linestyle',linestyle,'Parent',gca,'marker',marker,'markersize',markersize,'markeredgecolor',markeredgecolor,'markerfacecolor',markerfacecolor);
end
|
github
|
sheldona/hessianIK-master
|
addAnimatedPatches.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/addAnimatedPatches.m
| 1,890 |
utf_8
|
18c8bb64181343ef5a4cab9f8ca774a8
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function mot = addAnimatedPatches(mot,function_name,function_params,varargin)
% mot,function_name,function_params,type,color,alpha,overwrite)
type = cell(length(function_name),1);
color = cell(length(function_name),1);
alpha = zeros(length(function_name),1);
overwrite = false;
for k=1:length(function_name)
type{k} = 'disc';
color{k} = 'blue';
alpha(k) = 1;
end
if (nargin>6)
overwrite = varargin{4};
end
if (nargin>5)
alpha = varargin{3};
end
if (nargin>4)
color = varargin{2};
end
if (nargin>3)
type = varargin{1};
end
if (overwrite | ~isfield(mot,'animated_patch_data'))
mot.animated_patch_data = animatedPatchStruct(length(function_name));
k0 = 0;
else
k0 = length(mot.animated_patch_data);
end
for k = k0+1:k0+length(function_name)
mot.animated_patch_data(k).function_name = function_name{k-k0};
mot.animated_patch_data(k).function_params = function_params{k-k0};
mot.animated_patch_data(k).type = type{k-k0};
mot.animated_patch_data(k).color = color{k-k0};
mot.animated_patch_data(k).alpha = alpha(k-k0);
end
|
github
|
sheldona/hessianIK-master
|
animatedPatchStruct.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/animatedPatchStruct.m
| 1,159 |
utf_8
|
c015eeaf7e0b0c68bfc3831e5392eb8c
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function s = animatedPatchStruct(varargin)
n = 1;
if (nargin>0)
n = varargin{1};
end
s = struct('function_name',cell(n,1),...
'function_params',cell(n,1),...
'color','blue',...
'alpha',1,...
'nsteps',64,...
'type','disc',...
'X',[],...
'Y',[],...
'Z',[]);
|
github
|
sheldona/hessianIK-master
|
updateAnimationSlider.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/updateAnimationSlider.m
| 1,053 |
utf_8
|
a26b08cbee39ea5f869d6928c9c46ba4
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function updateAnimationSlider(current_frame,slider_handle);
minimum = get(slider_handle, 'Min');
maximum = get(slider_handle, 'Max');
if (current_frame>=minimum & current_frame<=maximum)
set(slider_handle, 'Value', current_frame);
end
|
github
|
sheldona/hessianIK-master
|
createAnimatedPatches.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/createAnimatedPatches.m
| 15,395 |
utf_8
|
7eeb9dd84191ba1db207f0a95d3b56cf
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function patches = createAnimatedPatches(k,current_frame,varargin)
global VARS_GLOBAL_ANIM
patches = [];
for j=1:length(VARS_GLOBAL_ANIM.mot(k).animated_patch_data)
function_handle = str2func(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).function_name);
switch (lower(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).type))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case 'disc'
function_params = VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).function_params;
[points,normals,min_radius] = feval(function_handle,...
VARS_GLOBAL_ANIM.mot(k),...
function_params{:});
%%
if (length(function_params)>=6)
offset = function_params{6};
else
offset = [0;0;0];
end
npoints = VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).nsteps + 1;
X = zeros(npoints,VARS_GLOBAL_ANIM.mot(k).nframes);
Y = zeros(npoints,VARS_GLOBAL_ANIM.mot(k).nframes);
Z = zeros(npoints,VARS_GLOBAL_ANIM.mot(k).nframes);
for i=1:VARS_GLOBAL_ANIM.mot(k).nframes
[X(1:npoints,i),Y(1:npoints,i),Z(1:npoints,i)] = coordsDiscNormal(normals(:,i), points(:,i), 1.1*min_radius(i), VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).nsteps, offset);
end
% X(npoints+1,:) = points(1,:)+offset(1);
% Y(npoints+1,:) = points(2,:)+offset(2);
% Z(npoints+1,:) = points(3,:)+offset(3);
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).X = X;
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).Y = Y;
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).Z = Z;
if (isempty(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color))
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color = [0 0 0];
end
if (size(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color,1)==1)
C = repmat(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color,size(Z,1),1);
else
C = VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color;
end
faces = [npoints*ones(npoints-1,1) [1:npoints-1]' mod([1:npoints-1],npoints-1)'+1];
h = patch('Vertices',[X(:,current_frame) Y(:,current_frame) Z(:,current_frame)],...
'Faces',faces,...
'FaceVertexCData',C,...
'FaceColor','flat',...
'EdgeColor','none',...
'FaceLighting','none');
alpha(h,VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).alpha);
patches = [patches h];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case 'polygondisc'
function_params = VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).function_params;
[points,normals,min_radius] = feval(function_handle,...
VARS_GLOBAL_ANIM.mot(k),...
function_params{:});
%%
if (length(function_params)>=6)
offset = function_params{6};
else
offset = [0;0;0];
end
npoints = VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).nsteps + 1;
X = zeros(npoints,VARS_GLOBAL_ANIM.mot(k).nframes);
Y = zeros(npoints,VARS_GLOBAL_ANIM.mot(k).nframes);
Z = zeros(npoints,VARS_GLOBAL_ANIM.mot(k).nframes);
for i=1:VARS_GLOBAL_ANIM.mot(k).nframes
[X(1:npoints,i),Y(1:npoints,i),Z(1:npoints,i)] = coordsDiscNormal(normals(:,i), points(:,i), 1.1*min_radius(i), VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).nsteps, offset);
end
X = X(1:npoints-1,:); % get rid of midpoint
Y = Y(1:npoints-1,:);
Z = Z(1:npoints-1,:);
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).X = X;
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).Y = Y;
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).Z = Z;
if (isempty(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color))
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color = [0 0 0];
end
if (size(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color,1)==1)
C = repmat(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color,size(Z,1),1);
else
C = VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color;
end
faces = [1:npoints-1];
h = patch('Vertices',[X(:,current_frame) Y(:,current_frame) Z(:,current_frame)],...
'Faces',faces,...
'FaceVertexCData',C,...
'FaceColor','flat',...
'EdgeColor','none',...
'FaceLighting','none');
alpha(h,VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).alpha);
patches = [patches h];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case 'griddisc'
function_params = VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).function_params;
[points,normals,min_radius] = feval(function_handle,...
VARS_GLOBAL_ANIM.mot(k),...
function_params{:});
%%
if (length(function_params)>=6)
offset = function_params{6};
else
offset = [0;0;0];
end
nsteps = VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).nsteps;
nlatitude = ceil(nsteps/2);
npoints = nlatitude*nsteps+1;
X = zeros(npoints,VARS_GLOBAL_ANIM.mot(k).nframes);
Y = zeros(npoints,VARS_GLOBAL_ANIM.mot(k).nframes);
Z = zeros(npoints,VARS_GLOBAL_ANIM.mot(k).nframes);
for i=1:VARS_GLOBAL_ANIM.mot(k).nframes
[X(1:npoints,i),Y(1:npoints,i),Z(1:npoints,i)] = coordsGridDiscNormal(normals(:,i), points(:,i), 1.1*min_radius(i), nsteps, nlatitude, offset);
end
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).X = X;
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).Y = Y;
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).Z = Z;
if (isempty(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color))
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color = [0 0 0];
end
if (size(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color,1)==1)
C = repmat(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color,size(Z,1),1);
else
C = VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color;
end
faces = zeros(nsteps*nlatitude,4);
W = [[1:nsteps]' circshift([1:nsteps]',-1) circshift([nsteps+1:2*nsteps]',-1) [nsteps+1:2*nsteps]'];
o = 1;
for i=1:nlatitude-1
faces(o:o+nsteps-1,:) = W + (i-1)*nsteps;
o = o + nsteps;
end
faces(o:o+nsteps-1,:) = [[(nlatitude-1)*nsteps+1:nlatitude*nsteps]' circshift([(nlatitude-1)*nsteps+1:nlatitude*nsteps]',-1) (nsteps*nlatitude+1)*ones(nsteps,1) [(nlatitude-1)*nsteps+1:nlatitude*nsteps]'];
h = patch('Vertices',[X(:,current_frame) Y(:,current_frame) Z(:,current_frame)],...
'Faces',faces,...
'FaceVertexCData',C,...
'FaceColor','flat',...
'EdgeColor','none',...
'FaceLighting','none');
alpha(h,VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).alpha);
patches = [patches h];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case 'point'
points = feval(function_handle,...
VARS_GLOBAL_ANIM.mot(k),...
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).function_params{:});
X = points(1,:);
Y = points(2,:);
Z = points(3,:);
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).X = X;
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).Y = Y;
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).Z = Z;
if (isempty(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color))
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color = [0 0 0];
end
if (size(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color,1)==1)
C = repmat(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color,size(Z,1),1);
else
C = repmat(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color(current_frame,:),size(Z,1),1);
end
if isempty(VARS_GLOBAL_ANIM.animated_point_MarkerEdgeColor)
markeredgecolor = C;
else
markeredgecolor = repmat(VARS_GLOBAL_ANIM.animated_point_MarkerEdgeColor,size(Z,1),1);
end
faces = [1];
h = patch('Vertices',[X(:,current_frame) Y(:,current_frame) Z(:,current_frame)],...
'Faces',faces,...
'MarkerEdgeColor',markeredgecolor,...
'MarkerFaceColor',C,...
'Marker',VARS_GLOBAL_ANIM.animated_point_Marker,...
'MarkerSize',VARS_GLOBAL_ANIM.animated_point_MarkerSize);
alpha(h,VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).alpha);
patches = [patches h];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case 'cappedcylinder'
[points1,points2] = feval(function_handle,...
VARS_GLOBAL_ANIM.mot(k),...
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).function_params{:});
if (length(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).function_params)>=4)
use_caps = VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).function_params{4};
else
use_caps = [true true];
end
if (length(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).function_params)>=3)
epsilon = VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).function_params{3};
else
error('Expected epsilon parameter.');
end
nsteps = VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).nsteps;
nlatitude = ceil(nsteps/2);
npoints = 2*(nsteps + (nlatitude-1)*nsteps+1);
for i=1:VARS_GLOBAL_ANIM.mot(k).nframes
[X(:,i),Y(:,i),Z(:,i)] = coordsCappedCylinder(points1(:,i), points2(:,i), epsilon, nsteps, use_caps);
end
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).X = X;
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).Y = Y;
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).Z = Z;
if (isempty(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color))
VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color = [0 0 0];
end
if (size(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color,1)==1)
C = repmat(VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color,size(Z,1),1);
else
C = VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).color;
end
faces = zeros(nsteps*(1+2*nlatitude),4);
faces(1:nsteps,:) = [[1:nsteps]' [nsteps*nlatitude+2:nsteps*(1+nlatitude)+1]' circshift([nsteps*nlatitude+2:nsteps*(1+nlatitude)+1]',-1) circshift([1:nsteps]',-1)];
W = [[1:nsteps]' circshift([1:nsteps]',-1) circshift([nsteps+1:2*nsteps]',-1) [nsteps+1:2*nsteps]'];
o = nsteps+1;
for i=1:nlatitude-1
faces(o:o+nsteps-1,:) = W + (i-1)*nsteps;
o = o + nsteps;
end
faces(o:o+nsteps-1,:) = [[(nlatitude-1)*nsteps+1:nlatitude*nsteps]' circshift([(nlatitude-1)*nsteps+1:nlatitude*nsteps]',-1) (nsteps*nlatitude+1)*ones(nsteps,1) [(nlatitude-1)*nsteps+1:nlatitude*nsteps]'];
o = o + nsteps;
W = fliplr(W); % to get the normals pointing outwards
for i=1:nlatitude-1
faces(o:o+nsteps-1,:) = W + (i-1)*nsteps + nsteps*nlatitude+1;
o = o + nsteps;
end
faces(o:o+nsteps-1,:) = fliplr([[(nlatitude-1)*nsteps+ nsteps*nlatitude+2:nlatitude*nsteps+ nsteps*nlatitude+1]' circshift([(nlatitude-1)*nsteps+ nsteps*nlatitude+2:nlatitude*nsteps+ nsteps*nlatitude+1]',-1) npoints*ones(nsteps,1) [(nlatitude-1)*nsteps+ nsteps*nlatitude+2:nlatitude*nsteps+ nsteps*nlatitude+1]']);
o = o + nsteps;
h = patch('Vertices',[X(:,current_frame) Y(:,current_frame) Z(:,current_frame)],...
'Faces',faces,...
'FaceVertexCData',C,...
'FaceColor','flat',...
'EdgeColor','none',...
'FaceLighting','Phong');
alpha(h,VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).alpha);
patches = [patches h];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
otherwise
warning(['Unknown patch type ' VARS_GLOBAL_ANIM.mot(k).animated_patch_data(j).type]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
end
|
github
|
sheldona/hessianIK-master
|
showTrajectory.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/showTrajectory.m
| 1,785 |
utf_8
|
eb709c8dee65d22c7c903f044f51bb29
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function handle = showTrajectory(varargin)
% showTrajectory(mot,trajname,linestyle,downsampling_fac)
switch (nargin)
case 2
mot = varargin{1};
trajname = varargin{2};
linestyle = 'red o';
downsampling_fac = 1;
case 3
mot = varargin{1};
trajname = varargin{2};
linestyle = varargin{3};
downsampling_fac = 1;
case 4
mot = varargin{1};
trajname = varargin{2};
linestyle = varargin{3};
downsampling_fac = varargin{4};
otherwise
error('Wrong number of arguments!');
end
if (ischar(trajname))
ID = trajectoryID(mot,trajname);
elseif (isnum(trajname))
ID = trajname;
else
error('Expected trajectory name or numeric trajectory ID!');
end
if (~ishold)
hold;
end
handle = plot3(mot.jointTrajectories{ID}(1,1:downsampling_fac:end),mot.jointTrajectories{ID}(2,1:downsampling_fac:end),mot.jointTrajectories{ID}(3,1:downsampling_fac:end),linestyle);
|
github
|
sheldona/hessianIK-master
|
animate_initGraphics.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/animate_initGraphics.m
| 9,209 |
utf_8
|
cd70562b00aa2a26dee089385ac74678
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function animate_initGraphics
global VARS_GLOBAL_ANIM
bb = [inf -inf inf -inf inf -inf]';
ground_tile_size = -inf;
for k = 1:length(VARS_GLOBAL_ANIM.mot)
bb([2 4 6]) = max(bb([2 4 6]), VARS_GLOBAL_ANIM.mot(k).boundingBox([2 4 6]));
bb([1 3 5]) = min(bb([1 3 5]), VARS_GLOBAL_ANIM.mot(k).boundingBox([1 3 5]));
lclavicleIdx = strmatch('lshoulder', {VARS_GLOBAL_ANIM.skel(1).nameMap{:,1}}, 'exact');
if(isempty(lclavicleIdx))
lclavicleIdx = strmatch('LSHO', {VARS_GLOBAL_ANIM.skel(1).nameMap{:,1}}, 'exact');
if(isempty(lclavicleIdx))
lclavicleIdx = strmatch('lsho', {VARS_GLOBAL_ANIM.skel(1).nameMap{:,1}}, 'exact');
end
end
if isempty(lclavicleIdx)
warning('Could not find the clavicle in the nameMap. Using default size 10 [?] of the ground plane grid.');
x=10;
else
lclavicleIdx = VARS_GLOBAL_ANIM.skel(1).nameMap{lclavicleIdx, 3};
lelbowIdx = strmatch('lelbow', {VARS_GLOBAL_ANIM.skel(1).nameMap{:,1}});
if(isempty(lelbowIdx))
lelbowIdx = strmatch('LELB', {VARS_GLOBAL_ANIM.skel(1).nameMap{:,1}}, 'exact');
if(isempty(lelbowIdx))
lelbowIdx = strmatch('lelb', {VARS_GLOBAL_ANIM.skel(1).nameMap{:,1}}, 'exact');
end
end
lelbowIdx = VARS_GLOBAL_ANIM.skel(1).nameMap{lelbowIdx, 3};
x = VARS_GLOBAL_ANIM.ground_tile_size_factor*sqrt(sum((VARS_GLOBAL_ANIM.mot(1).jointTrajectories{lclavicleIdx}(:,1)-VARS_GLOBAL_ANIM.mot(1).jointTrajectories{lelbowIdx}(:,1)).^2));
end
%x = VARS_GLOBAL_ANIM.ground_tile_size_factor*VARS_GLOBAL_ANIM.skel(1).nodes(VARS_GLOBAL_ANIM.skel(1).nameMap{16,2}).length; % ground tile size will be a multiple of the length of longest lhumerus (DOF id 16)
if (x>ground_tile_size)
ground_tile_size = x;
end
end
if (sum(isinf(bb)>0))
ground_tile_size = 1;
bb_extension = zeros(6,1);
bb = [-1 1 0 1 -1 1]';
else
bb_extension = [-1 1 0 1 -1 1]'*VARS_GLOBAL_ANIM.bounding_box_border_extension*ground_tile_size;
bb = bb + bb_extension;
end
%nground_tiles = 10;
%ground_tile_size = min(bb(2) - bb(1), bb(6) - bb(5)) / nground_tiles;
create_new = false;
if (~isempty(VARS_GLOBAL_ANIM.graphics_data))
% eliminate invalid figure handles
valid_figure_handle_indices = find(ishandle(cell2mat({VARS_GLOBAL_ANIM.graphics_data.figure})));
VARS_GLOBAL_ANIM.graphics_data = VARS_GLOBAL_ANIM.graphics_data(valid_figure_handle_indices);
view_curr = view(gca);
% newplot;
current_figure = gcf;
% find current figure in graphics_data
VARS_GLOBAL_ANIM.graphics_data_index = find(cell2mat({VARS_GLOBAL_ANIM.graphics_data.figure}) == current_figure);
if (isempty(VARS_GLOBAL_ANIM.graphics_data_index)) % current figure hasn't been used for our skeleton graphics output previously
create_new = true;
VARS_GLOBAL_ANIM.graphics_data_index = length(VARS_GLOBAL_ANIM.graphics_data)+1; % create new entry in graphics_data array
VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index) = struct('figure',current_figure,...
'skel_lines',cell(1,1),...
'animated_patches',cell(1,1),...
'ground_plane',0,...
'text_handle',0,...
'view',[],...
'trace_poses',[]);
end
else % graphics_data IS empty!
create_new = true;
view_curr = view(gca);
% newplot;
current_figure = gcf;
VARS_GLOBAL_ANIM.graphics_data = struct('figure',current_figure,...
'skel_lines',cell(1,1),...
'animated_patches',cell(1,1),...
'ground_plane',-1,...
'text_handle',-1,...
'view',[],...
'trace_poses',[]);
VARS_GLOBAL_ANIM.graphics_data_index = 1;
end
i = VARS_GLOBAL_ANIM.graphics_data_index;
if (~create_new)
delete(VARS_GLOBAL_ANIM.graphics_data(i).ground_plane(find(ishandle(VARS_GLOBAL_ANIM.graphics_data(i).ground_plane))));
VARS_GLOBAL_ANIM.graphics_data(i).ground_plane = [];
delete(VARS_GLOBAL_ANIM.graphics_data(i).text_handle(find(ishandle(VARS_GLOBAL_ANIM.graphics_data(i).text_handle) & (VARS_GLOBAL_ANIM.graphics_data(i).text_handle > 0))));
VARS_GLOBAL_ANIM.graphics_data(i).text_handle = [];
for k=1:length(VARS_GLOBAL_ANIM.graphics_data(i).skel_lines)
if (~isempty(VARS_GLOBAL_ANIM.graphics_data(i).skel_lines{k}))
for j = 1:size(VARS_GLOBAL_ANIM.graphics_data(i).skel_lines{k},1)
delete(VARS_GLOBAL_ANIM.graphics_data(i).skel_lines{k}{j}(find(ishandle(VARS_GLOBAL_ANIM.graphics_data(i).skel_lines{k}{j}))));
VARS_GLOBAL_ANIM.graphics_data(i).skel_lines{k}{j} = [];
end
end
end
for k=1:length(VARS_GLOBAL_ANIM.graphics_data(i).animated_patches)
if (~isempty(VARS_GLOBAL_ANIM.graphics_data(i).animated_patches{k}))
delete(VARS_GLOBAL_ANIM.graphics_data(i).animated_patches{k}(find(ishandle(VARS_GLOBAL_ANIM.graphics_data(i).animated_patches{k}))));
VARS_GLOBAL_ANIM.graphics_data(i).animated_patches{k} = [];
end
end
end
reset(gca);
if (isempty(VARS_GLOBAL_ANIM.graphics_data(i).view))
VARS_GLOBAL_ANIM.graphics_data(i).view = [-0.9129 0.0000 1.7180 -0.4026;...
0.0461 1.6227 0.4335 -1.0511;...
0.4056 -0.1843 3.8170 21.0978;...
0 0 0 1.0000];
% VARS_GLOBAL_ANIM.graphics_data(i).view = [ 3.5244 0.0000 -0.1045 -1.7099;
% -0.1267 1.4211 -0.3401 -0.4771;
% -0.3481 -0.5172 -0.9345 20.8033;
% 0 0 0 1.0000];
else
VARS_GLOBAL_ANIM.graphics_data(i).view = view_curr;
end
hld=ishold;
set(gcf,'NextPlot','add');
set(gca,'NextPlot','add');
%%%%%%%%%%% create ground plane
%bb([1 2 5 6],:) = bb([1 2 5 6],:)*10;
%ground_tile_size=ground_tile_size*10;
if (VARS_GLOBAL_ANIM.ground_tile_size_factor > 0)
VARS_GLOBAL_ANIM.graphics_data(i).ground_plane = createGroundPlane(bb,bb_extension,ground_tile_size);
end
for k=1:length(VARS_GLOBAL_ANIM.skel)
%%%%%%%%%%% create text fields for frame number
if (~isempty(VARS_GLOBAL_ANIM.draw_labels) && VARS_GLOBAL_ANIM.draw_labels(k))
VARS_GLOBAL_ANIM.graphics_data(i).text_handle(k) = text(0,0,0,'');
set(VARS_GLOBAL_ANIM.graphics_data(i).text_handle(k),'interpreter','none');
end
%%%%%%%%%%% create lines for skeleton visualization
VARS_GLOBAL_ANIM.graphics_data(i).skel_lines{k,1} = createSkeletonLines(k,1);
%%%%%%%%%%% create patches for animated plane/cylinder/sphere/etc visualization
if (isfield(VARS_GLOBAL_ANIM.mot(k),'animated_patch_data'))
VARS_GLOBAL_ANIM.graphics_data(i).animated_patches{k,1} = createAnimatedPatches(k,1);
end
end
if (~hld)
set(gcf,'NextPlot','replace');
set(gca,'NextPlot','replace');
end
figure(VARS_GLOBAL_ANIM.graphics_data(i).figure);
set(gcf,'renderer','OpenGL','DoubleBuffer','on');
set(gcf,'Color',VARS_GLOBAL_ANIM.figure_color);
set(gca,'visible','off');
cameratoolbar('Show');
cameratoolbar('SetCoordSys','y');
cameratoolbar('SetMode','orbit');
ax = gca;
axis equal;
axis(bb+[-1 1 -1 1 -1 1]'*ground_tile_size);
view(gca, -128, 43)
camup(gca, [0 1 0]);
%view(VARS_GLOBAL_ANIM.graphics_data(i).view);
camproj('perspective');
camlight headlight;
light;
%set(gcf,'position',[5 5 512 284]);
%set(gca,'Units','centimeter')
%camva('auto');
%camva('manual');
|
github
|
sheldona/hessianIK-master
|
params_planePointNormal_hipMiddle.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/params_planePointNormal_hipMiddle.m
| 1,872 |
utf_8
|
3f364fb83a64507cc42a47f8213efe4e
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [points,n,min_radius] = params_planePointNormal_hipMiddle(mot,p3_name,q_name,d)
% The plane is defined as follows:
% The normal n is the direction vector from the point halfway between the hips to the root.
% p3 is the fixture point for the plane.
% q is the point that is tested against this plane
% d is the offset distance for the plane in the direction of n.
%
% function returns sequence of fixture points and unit normals along with
% minimum radii that make sense to visualize position of q in relation to the plane.
if (ischar(p3_name))
p3 = trajectoryID(mot,p3_name);
else
p3 = mot.nameMap{p3_name,3};
end
if (ischar(q_name))
q = trajectoryID(mot,q_name);
else
q = mot.nameMap{q_name,3};
end
p1 = 0.5*(mot.jointTrajectories{trajectoryID(mot,'lhip')}+mot.jointTrajectories{trajectoryID(mot,'rhip')});
n = mot.jointTrajectories{trajectoryID(mot,'root')} - p1;
n = n./repmat(sqrt(sum(n.^2)),3,1);
points = mot.jointTrajectories{p3} + n*d;
min_radius = sqrt(sum((mot.jointTrajectories{p3}+n*d-mot.jointTrajectories{q}).^2));
|
github
|
sheldona/hessianIK-master
|
animateD.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/animateD.m
| 1,263 |
utf_8
|
3f8a0b3675cad9797f6e4718f617edeb
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function animateD(doc_id,varargin)
global VARS_GLOBAL;
repeat_num = 1;
speed = 1;
frames = 0;
if nargin > 3
repeat_num = varargin{3};
end
if nargin > 2
speed = varargin{2};
end
if nargin > 1
frames = varargin{1};
end
[skel,mot] = readMocapD(doc_id);
if (frames == 0)
frames = 1:mot.nframes;
end
%animate_initGraphics;
figure(100);
set(gcf, 'name', [num2str(doc_id), ': ' mot.filename]);
animate(skel,mot,repeat_num,speed,frames);
|
github
|
sheldona/hessianIK-master
|
params_planePointNormal_yAxis.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/params_planePointNormal_yAxis.m
| 1,638 |
utf_8
|
0fc5e348ac7026a527e959b2667201e8
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [points,n,min_radius] = params_planePointNormal_yAxis(mot,p3_name,q_name,d)
% The plane is defined as follows:
% The normal n is the y axis
% p3 is the fixture point for the plane.
% q is the point that is tested against this plane
% d is the offset distance for the plane in the direction of n.
%
% function returns sequence of fixture points and unit normals along with
% minimum radii that make sense to visualize position of q in relation to the plane.
if (ischar(p3_name))
p3 = trajectoryID(mot,p3_name);
else
p3 = mot.nameMap{p3_name,3};
end
if (ischar(q_name))
q = trajectoryID(mot,q_name);
else
q = mot.nameMap{q_name,3};
end
n = repmat([0;1;0],1,mot.nframes);
points = mot.jointTrajectories{p3} + n*d;
min_radius = sqrt(sum((mot.jointTrajectories{p3}+n*d-mot.jointTrajectories{q}).^2));
|
github
|
sheldona/hessianIK-master
|
createGroundPlane.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/createGroundPlane.m
| 2,338 |
utf_8
|
91b0ef6feeb2d3bc384ee3701473cc4f
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function h = createGroundPlane(bb,bb_extension,ground_tile_size)
x_min = bb(1); x_max = bb(2); z_min = bb(5); z_max = bb(6);
x_width = x_max - x_min; x_rest = mod(x_width,ground_tile_size); x_min = x_min-x_rest/2; x_max = x_max+x_rest/2;
z_width = z_max - z_min; z_rest = mod(z_width,ground_tile_size); z_min = z_min-z_rest/2; z_max = z_max+z_rest/2;
[floor_x,floor_z] = meshgrid(x_min:ground_tile_size:x_max,z_min:ground_tile_size:z_max);
%h = surf(floor_x,repmat(bb(3)-bb_extension(3),size(floor_x)),floor_z);
nx = size(floor_x,1);
nz = size(floor_z,2);
X = zeros(nx*nz,1);
Y = zeros(nx*nz,1);
Z = zeros(nx*nz,1);
for k=1:nz
X((k-1)*nx+1:k*nx) = floor_x(:,k);
Z((k-1)*nx+1:k*nx) = floor_z(:,k);
end
ntiles_x = nx - 1;
ntiles_z = nz - 1;
faces = zeros(ntiles_x*ntiles_z,4);
C = zeros(ntiles_x*ntiles_z,1);
c = zeros(1,ntiles_x); c(2:2:length(c)) = 1;
for z = 1:ntiles_z
faces((z-1)*ntiles_x+1:z*ntiles_x,:) = (z-1)*nx + [1:ntiles_x; 2:nx; nx+2:nx+1+ntiles_x; nx+1:nx+ntiles_x]';
C((z-1)*ntiles_x+1:z*ntiles_x) = c;
c = 1-c;
end
% c1 = [0.5 0.5 0.5];
% c2 = [0 0 0];
%c1 = [0.75 0.75 0.75];
%c2 = [0.5 0.5 0.5];
c1 = [9.2/10 9.2/10 9.2/10];
c2 = [8/10 8/10 8/10];
Y = repmat(bb(3)-bb_extension(3),size(X));
h = patch('Vertices',[X Y Z],...
'Faces',faces,...
'FaceVertexCData',C*c1+(1-C)*c2,...
'FaceColor','flat',...
'EdgeColor','none',...
'FaceLighting','none',...
'UserData', 'GroundPlane');
% set(h,'facecolor','black');
%alpha(h,0.5);
|
github
|
sheldona/hessianIK-master
|
clearTracePoses.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/clearTracePoses.m
| 1,489 |
utf_8
|
6c8fe077512099e2b252b07c469a1c78
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function clearTracePoses
global VARS_GLOBAL_ANIM
if (isempty(VARS_GLOBAL_ANIM)||isempty(VARS_GLOBAL_ANIM.graphics_data))
return;
end
f = find(cell2mat({VARS_GLOBAL_ANIM.graphics_data.figure}) == gcf);
if (isempty(f))
return;
end
VARS_GLOBAL_ANIM.graphics_data_index = f;
num_trace_poses = size(VARS_GLOBAL_ANIM.graphics_data(f).trace_poses,2);
num_lines_per_pose = size(VARS_GLOBAL_ANIM.graphics_data(f).trace_poses,1);
for k=1:num_trace_poses
for j=1:num_lines_per_pose
delete(VARS_GLOBAL_ANIM.graphics_data(f).trace_poses{j,k}(ishandle(VARS_GLOBAL_ANIM.graphics_data(f).trace_poses{j,k})));
end
end
VARS_GLOBAL_ANIM.graphics_data(f).trace_poses = {};
|
github
|
sheldona/hessianIK-master
|
pauseAnimation.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/pauseAnimation.m
| 1,015 |
utf_8
|
6561afbd29136530c0772b4648470d34
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function pauseAnimation
global VARS_GLOBAL_ANIM
t = timerfind('Name','AnimationTimer');
if(~isempty(t))
t = t(1);
stop(t);
wait(t);
VARS_GLOBAL_ANIM.animation_paused = true;
end
|
github
|
sheldona/hessianIK-master
|
params_planePointPoint.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/params_planePointPoint.m
| 2,899 |
utf_8
|
9d0bac1f2b300efaa7b0c654811de25f
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [fixture,n,min_radius] = params_planePointPoint(mot,p1_name,p2_name,p3_name,q_name,d,varargin)
% p1, p2 and p3 define an oriented plane.
% q is the point that is tested against this plane
% p1+offset is the fixture point for the plane.
% d is the offset distance for the plane in the direction of n.
% optional argument offset is a 3-vector denoting an offset to be added to the fixture point during min_radius calculation
%
% function returns sequence of fixture points and unit normals along with
% minimum radii that make sense to visualize position of q in relation to the plane.
offset = [0;0;0];
if (nargin>6)
offset = varargin{1};
end
if (ischar(p1_name))
p1 = trajectoryID(mot,p1_name);
else
p1 = mot.nameMap{p1_name,3};
end
if (ischar(p2_name))
p2 = trajectoryID(mot,p2_name);
else
p2 = mot.nameMap{p2_name,3};
end
if (ischar(p3_name))
p3 = trajectoryID(mot,p3_name);
else
p3 = mot.nameMap{p3_name,3};
end
if (ischar(q_name))
q = trajectoryID(mot,q_name);
else
q = mot.nameMap{q_name,3};
end
n = cross(mot.jointTrajectories{p1} - mot.jointTrajectories{p3},mot.jointTrajectories{p2} - mot.jointTrajectories{p3});
n = n./repmat(sqrt(sum(n.^2)),3,1);
offset = repmat(offset,1,mot.nframes) - repmat(dot(n,repmat(offset,1,mot.nframes)),3,1).*n;
%points = mot.jointTrajectories{p1} + n*d;
fixture = mot.jointTrajectories{p1}+offset + n*d;
dist_q = dot(n,mot.jointTrajectories{q}-fixture);
dist_p1 = dot(n,mot.jointTrajectories{p1}-fixture);
dist_p2 = dot(n,mot.jointTrajectories{p2}-fixture);
dist_p3 = dot(n,mot.jointTrajectories{p3}-fixture);
q_proj = mot.jointTrajectories{q} - repmat(dist_q,3,1).*n;
p1_proj = mot.jointTrajectories{p1} - repmat(dist_p1,3,1).*n;
p2_proj = mot.jointTrajectories{p2} - repmat(dist_p2,3,1).*n;
p3_proj = mot.jointTrajectories{p3} - repmat(dist_p3,3,1).*n;
radius_q = sqrt(sum((fixture-q_proj).^2));
radius_p1 = sqrt(sum((fixture-p1_proj).^2));
radius_p2 = sqrt(sum((fixture-p2_proj).^2));
radius_p3 = sqrt(sum((fixture-p3_proj).^2));
min_radius = max([radius_q; radius_p1; radius_p2; radius_p3]);
|
github
|
sheldona/hessianIK-master
|
animate.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/animate.m
| 4,493 |
utf_8
|
482def7e4bca1a7f821115e5c91c42a3
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function animate(skel,mot,varargin)
% animate(skel,mot,num_repeats,time_stretch_factor,range,draw_labels)
% INPUT:
% - skel and mot are assumed to be struct arrays of identical length containing
% skeleton/motion pairs to be animated simultaneously. All mots are supposed to have the same samplingRate.
% - range is a cell array which is supposed to be of same length as skel/mot.
% Empty cell array entries in range indicate that the entire frame range is to be played back.
% - draw_labels is a logical vector the same length as skel indicating whether the corresponding skeleton
% is to be drawn with a frame counter label. Empty draw_labels means "draw no labels at all".
global VARS_GLOBAL_ANIM
%if (isempty(VARS_GLOBAL_ANIM))
VARS_GLOBAL_ANIM = emptyVarsGlobalAnimStruct;
%end
num_repeats = 1;
time_stretch_factor = 1;
VARS_GLOBAL_ANIM.range = cell(length(mot),1);
VARS_GLOBAL_ANIM.draw_labels = ones(length(mot),1);
if (nargin > 6)
error('Too many arguments!');
end
if (nargin > 5)
VARS_GLOBAL_ANIM.draw_labels = varargin{4};
end
if (nargin > 4)
VARS_GLOBAL_ANIM.range = varargin{3};
if (~iscell(VARS_GLOBAL_ANIM.range))
VARS_GLOBAL_ANIM.range = {VARS_GLOBAL_ANIM.range};
end
end
if (nargin > 3)
time_stretch_factor = varargin{2};
end
if (nargin > 2)
num_repeats = varargin{1};
end
VARS_GLOBAL_ANIM.skel = skel;
VARS_GLOBAL_ANIM.mot = mot;
num_frames = -inf;
for k=1:length(VARS_GLOBAL_ANIM.range)
if (isempty(VARS_GLOBAL_ANIM.range{k}))
VARS_GLOBAL_ANIM.range{k} = [1:VARS_GLOBAL_ANIM.mot(k).nframes];
end
if (length(VARS_GLOBAL_ANIM.range{k})>num_frames) % determine num_frames as maximum of range lengths
num_frames = length(VARS_GLOBAL_ANIM.range{k});
end
end
animate_initGraphics;
desired_frame_time = VARS_GLOBAL_ANIM.mot(1).frameTime;
if (~isempty(VARS_GLOBAL_ANIM.figure_camera_file))
h = str2func(VARS_GLOBAL_ANIM.figure_camera_file);
feval(h, gca);
end
if (~isempty(VARS_GLOBAL_ANIM.figure_position))
set(gcf,'position',VARS_GLOBAL_ANIM.figure_position);
end
for (i=1:num_repeats)
VARS_GLOBAL_ANIM.frame_draw_time = 0;
VARS_GLOBAL_ANIM.frames_drawn = 0;
VARS_GLOBAL_ANIM.animation_done = false;
t=timerfind('Name','AnimationTimer');
if (~isempty(t))
delete(t);
end
t = timer('Name','AnimationTimer');
try
set(t,'TimerFcn','animate_showFrame');
set(t,'ExecutionMode','fixedRate');
set(t,'TasksToExecute',num_frames);
period = round(1000*desired_frame_time/time_stretch_factor)/1000;
if (period == 0)
warning(['Requested timer period of ' num2str(desired_frame_time/time_stretch_factor) ' s is too short for Matlab! Setting period to minimum of 1 ms :-(']);
period = 0.001;
end
set(t,'Period',period);
set(t,'BusyMode','queue');
t1=clock;
start(t);
wait(t);
t2=clock;
elapsed_time = etime(t2,t1);
delete(t);
catch
delete(t);
return
end
clip_duration = desired_frame_time*num_frames/time_stretch_factor;
avg_frame_time = elapsed_time / VARS_GLOBAL_ANIM.frames_drawn;
VARS_GLOBAL_ANIM.frames_drawn;
actual_frame_rate = 1/avg_frame_time;
target_frame_rate = time_stretch_factor/desired_frame_time;
disp(['Frame rate: ' num2str(actual_frame_rate) ' fps, target frame rate was ' num2str(target_frame_rate) ' fps.']);
disp(['Clip duration: ' num2str(clip_duration) ' sec. Total frame drawing time: ' num2str(VARS_GLOBAL_ANIM.frame_draw_time) ' sec, ' num2str(100*(target_frame_rate/actual_frame_rate)*VARS_GLOBAL_ANIM.frame_draw_time/clip_duration) ' percent load.']);
end
|
github
|
sheldona/hessianIK-master
|
params_cappedCylinder.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/params_cappedCylinder.m
| 1,264 |
utf_8
|
102ad0b5fdbea7ea428a807018e318f8
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function [points1,points2] = params_cappedCylinder(mot,p1_name,p2_name,varargin)
% p1 and p2 define a line segment p1p2.
%
% function returns the two endpoints of the line segment
if (ischar(p1_name))
p1 = trajectoryID(mot,p1_name);
else
p1 = mot.nameMap{p1_name,3};
end
if (ischar(p2_name))
p2 = trajectoryID(mot,p2_name);
else
p2 = mot.nameMap{p2_name,3};
end
points1 = mot.jointTrajectories{p1};
points2 = mot.jointTrajectories{p2};
|
github
|
sheldona/hessianIK-master
|
animateVideo.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/animateVideo.m
| 6,406 |
utf_8
|
f882dde25749bf606e027581e06f1121
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function animateVideo(skel,mot,videofile,varargin)
% animateVideo(skel,mot,videofile,num_repeats,time_stretch_factor,downsampling_fac,range,draw_labels,fps)
% INPUT:
% - skel and mot are assumed to be struct arrays of identical length containing
% skeleton/motion pairs to be animated simultaneously. All mots are supposed to have the same samplingRate.
% - range is a cell array which is supposed to be of same length as skel/mot.
% Empty cell array entries in range indicate that the entire frame range is to be played back.
% - downsampling_fac is an integer indicating the desired downsampling factor.
% - draw_labels is a logical vector the same length as skel indicating whether the corresponding skeleton
% is to be drawn with a frame counter label
% - fps, frames per second, overrides the default sampling rate taken from the mot datastructure
% - videofile is the filename of the output AVI.
global VARS_GLOBAL_ANIM
if (isempty(VARS_GLOBAL_ANIM))
VARS_GLOBAL_ANIM = emptyVarsGlobalAnimStruct;
end
fps = [];
num_repeats = 1;
time_stretch_factor = 1;
downsampling_fac = 1;
hold_frames = [];
VARS_GLOBAL_ANIM.range = cell(length(mot),1);
VARS_GLOBAL_ANIM.draw_labels = ones(length(mot),1);
if (nargin > 10)
error('Too many arguments!');
end
if (nargin > 9)
hold_frames = varargin{7};
end
if (nargin > 8)
fps = varargin{6};
end
if (nargin > 7)
VARS_GLOBAL_ANIM.draw_labels = varargin{5};
end
if (nargin > 6)
VARS_GLOBAL_ANIM.range = varargin{4};
if (~iscell(VARS_GLOBAL_ANIM.range))
VARS_GLOBAL_ANIM.range = {VARS_GLOBAL_ANIM.range};
end
end
if (nargin > 5)
downsampling_fac = varargin{3};
end
if (nargin > 4)
time_stretch_factor = varargin{2};
end
if (nargin > 3)
num_repeats = varargin{1};
end
VARS_GLOBAL_ANIM.skel = skel;
VARS_GLOBAL_ANIM.mot = mot;
num_frames = -inf;
for k=1:length(VARS_GLOBAL_ANIM.range)
if (isempty(VARS_GLOBAL_ANIM.range{k}))
VARS_GLOBAL_ANIM.range{k} = [1:VARS_GLOBAL_ANIM.mot(k).nframes];
end
if (downsampling_fac > 1)
VARS_GLOBAL_ANIM.range{k} = intersect(VARS_GLOBAL_ANIM.range{k},[1:downsampling_fac:VARS_GLOBAL_ANIM.mot(k).nframes]);
end
if (length(VARS_GLOBAL_ANIM.range{k})>num_frames) % determine num_frames as maximum of range lengths
num_frames = length(VARS_GLOBAL_ANIM.range{k});
end
end
if (isempty(hold_frames))
hold_frames = ones(1,num_frames);
end
animate_initGraphics;
figure(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).figure);
if (~isempty(VARS_GLOBAL_ANIM.figure_camera_file))
h = str2func(VARS_GLOBAL_ANIM.figure_camera_file);
feval(h, gca);
else
set(gca,'CameraViewAngle',5);
end
desired_frame_time = VARS_GLOBAL_ANIM.mot(1).frameTime*downsampling_fac;
if (isempty(fps))
fps = ceil(VARS_GLOBAL_ANIM.mot(1).samplingRate/downsampling_fac);
end
aviobj = avifile(videofile,'compression',VARS_GLOBAL_ANIM.video_compression,'quality',75,'fps',fps);
%set(gcf,'units','centimeters');
%set(gcf,'paperunits','centimeters');
%set(gcf,'paperposition',get(gcf,'position'));
%set(gcf,'units','pixels');
%set(gca,'units','pixels');
if (~isempty(VARS_GLOBAL_ANIM.figure_position))
set(gcf,'position',VARS_GLOBAL_ANIM.figure_position);
end
%h = get(gca,'children');
%set(h([32:34]),'marker','none');
%axes_rect = round(get(gca,'position'));
% frame = hardcopy(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).figure, '-dzbuffer', ['-r' num2str(round(get(0,'screenp')))]);
% fy = size(frame,1);
% ayl = fy-axes_rect(2)-axes_rect(4)+1; ayh = fy-axes_rect(2); axl = axes_rect(1)+1; axh = axes_rect(1)+axes_rect(3);
%set(gca,'units','normalized');
for (i=1:num_repeats)
VARS_GLOBAL_ANIM.frame_draw_time = 0;
VARS_GLOBAL_ANIM.frames_drawn = 0;
VARS_GLOBAL_ANIM.animation_done = false;
strlen = 0;
count = 0;
for k = 1:num_frames
for j=1:hold_frames(k)
animate_showFrame(k);
% frame = getframe(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).figure,[axl ayl axh-axl+1 ayh-ayl+1]);
% frame = frame(ayl:ayh,axl:axh,:);
frame = getframe(VARS_GLOBAL_ANIM.graphics_data(VARS_GLOBAL_ANIM.graphics_data_index).figure);
if (VARS_GLOBAL_ANIM.video_flip_vert) % strcmpi(VARS_GLOBAL_ANIM.video_compression,'PNG1') |
frame.cdata = flipdim(frame.cdata,1);
end
if (VARS_GLOBAL_ANIM.video_flip_horz)
frame.cdata = flipdim(frame.cdata,2);
end
aviobj = addframe(aviobj,frame);
count = count+1;
s = [num2str(count) '/' num2str(sum(hold_frames))];
disp(char(8*ones(1,strlen+2)));
strlen = length(s);
disp(s);
end
end
clip_duration = desired_frame_time*num_frames/time_stretch_factor;
avg_frame_time = VARS_GLOBAL_ANIM.frame_draw_time / VARS_GLOBAL_ANIM.frames_drawn;
actual_frame_rate = 1/avg_frame_time;
target_frame_rate = time_stretch_factor/desired_frame_time;
disp(['Frame rate: ' num2str(actual_frame_rate) ' fps, target frame rate was ' num2str(target_frame_rate) ' fps.']);
disp(['Clip duration: ' num2str(clip_duration) ' sec. Total frame drawing time: ' num2str(VARS_GLOBAL_ANIM.frame_draw_time) ' sec, ' num2str(100*(target_frame_rate/actual_frame_rate)*VARS_GLOBAL_ANIM.frame_draw_time/clip_duration) ' percent load.']);
end
aviobj = close(aviobj);
disp(['Wrote output video file ' videofile '.']);
|
github
|
sheldona/hessianIK-master
|
params_point.m
|
.m
|
hessianIK-master/matlab/HDM05-Parser/animate/params_point.m
| 991 |
utf_8
|
7c22edf392e740c65f2843d490b0affa
|
% This code belongs to the HDM05 mocap database which can be obtained
% from the website http://www.mpi-inf.mpg.de/resources/HDM05 .
%
% If you use and publish results based on this code and data, please
% cite the following technical report:
%
% @techreport{MuellerRCEKW07_HDM05-Docu,
% author = {Meinard M{\"u}ller and Tido R{\"o}der and Michael Clausen and Bernd Eberhardt and Bj{\"o}rn Kr{\"u}ger and Andreas Weber},
% title = {Documentation: Mocap Database {HDM05}},
% institution = {Universit{\"a}t Bonn},
% number = {CG-2007-2},
% year = {2007}
% }
%
%
% THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
% KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
% PARTICULAR PURPOSE.
function points = params_point(mot,p1_name)
if (ischar(p1_name))
p1 = trajectoryID(mot,p1_name);
else
p1 = mot.nameMap{p1_name,3};
end
points = mot.jointTrajectories{p1};
|
github
|
aman432/Spam-Classifier-master
|
submit.m
|
.m
|
Spam-Classifier-master/Spam/submit.m
| 1,318 |
utf_8
|
bfa0b4ffb8a7854d8e84276e91818107
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'support-vector-machines';
conf.itemName = 'Support Vector Machines';
conf.partArrays = { ...
{ ...
'1', ...
{ 'gaussianKernel.m' }, ...
'Gaussian Kernel', ...
}, ...
{ ...
'2', ...
{ 'dataset3Params.m' }, ...
'Parameters (C, sigma) for Dataset 3', ...
}, ...
{ ...
'3', ...
{ 'processEmail.m' }, ...
'Email Preprocessing', ...
}, ...
{ ...
'4', ...
{ 'emailFeatures.m' }, ...
'Email Feature Extraction', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
x1 = sin(1:10)';
x2 = cos(1:10)';
ec = 'the quick brown fox jumped over the lazy dog';
wi = 1 + abs(round(x1 * 1863));
wi = [wi ; wi];
if partId == '1'
sim = gaussianKernel(x1, x2, 2);
out = sprintf('%0.5f ', sim);
elseif partId == '2'
load('ex6data3.mat');
[C, sigma] = dataset3Params(X, y, Xval, yval);
out = sprintf('%0.5f ', C);
out = [out sprintf('%0.5f ', sigma)];
elseif partId == '3'
word_indices = processEmail(ec);
out = sprintf('%d ', word_indices);
elseif partId == '4'
x = emailFeatures(wi);
out = sprintf('%d ', x);
end
end
|
github
|
aman432/Spam-Classifier-master
|
porterStemmer.m
|
.m
|
Spam-Classifier-master/Spam/porterStemmer.m
| 9,902 |
utf_8
|
7ed5acd925808fde342fc72bd62ebc4d
|
function stem = porterStemmer(inString)
% Applies the Porter Stemming algorithm as presented in the following
% paper:
% Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14,
% no. 3, pp 130-137
% Original code modeled after the C version provided at:
% http://www.tartarus.org/~martin/PorterStemmer/c.txt
% The main part of the stemming algorithm starts here. b is an array of
% characters, holding the word to be stemmed. The letters are in b[k0],
% b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since
% matlab begins indexing by 1 instead of 0). k is readjusted downwards as
% the stemming progresses. Zero termination is not in fact used in the
% algorithm.
% To call this function, use the string to be stemmed as the input
% argument. This function returns the stemmed word as a string.
% Lower-case string
inString = lower(inString);
global j;
b = inString;
k = length(b);
k0 = 1;
j = k;
% With this if statement, strings of length 1 or 2 don't go through the
% stemming process. Remove this conditional to match the published
% algorithm.
stem = b;
if k > 2
% Output displays per step are commented out.
%disp(sprintf('Word to stem: %s', b));
x = step1ab(b, k, k0);
%disp(sprintf('Steps 1A and B yield: %s', x{1}));
x = step1c(x{1}, x{2}, k0);
%disp(sprintf('Step 1C yields: %s', x{1}));
x = step2(x{1}, x{2}, k0);
%disp(sprintf('Step 2 yields: %s', x{1}));
x = step3(x{1}, x{2}, k0);
%disp(sprintf('Step 3 yields: %s', x{1}));
x = step4(x{1}, x{2}, k0);
%disp(sprintf('Step 4 yields: %s', x{1}));
x = step5(x{1}, x{2}, k0);
%disp(sprintf('Step 5 yields: %s', x{1}));
stem = x{1};
end
% cons(j) is TRUE <=> b[j] is a consonant.
function c = cons(i, b, k0)
c = true;
switch(b(i))
case {'a', 'e', 'i', 'o', 'u'}
c = false;
case 'y'
if i == k0
c = true;
else
c = ~cons(i - 1, b, k0);
end
end
% mseq() measures the number of consonant sequences between k0 and j. If
% c is a consonant sequence and v a vowel sequence, and <..> indicates
% arbitrary presence,
% <c><v> gives 0
% <c>vc<v> gives 1
% <c>vcvc<v> gives 2
% <c>vcvcvc<v> gives 3
% ....
function n = measure(b, k0)
global j;
n = 0;
i = k0;
while true
if i > j
return
end
if ~cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
while true
while true
if i > j
return
end
if cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
n = n + 1;
while true
if i > j
return
end
if ~cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
end
% vowelinstem() is TRUE <=> k0,...j contains a vowel
function vis = vowelinstem(b, k0)
global j;
for i = k0:j,
if ~cons(i, b, k0)
vis = true;
return
end
end
vis = false;
%doublec(i) is TRUE <=> i,(i-1) contain a double consonant.
function dc = doublec(i, b, k0)
if i < k0+1
dc = false;
return
end
if b(i) ~= b(i-1)
dc = false;
return
end
dc = cons(i, b, k0);
% cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant
% and also if the second c is not w,x or y. this is used when trying to
% restore an e at the end of a short word. e.g.
%
% cav(e), lov(e), hop(e), crim(e), but
% snow, box, tray.
function c1 = cvc(i, b, k0)
if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0))
c1 = false;
else
if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y')
c1 = false;
return
end
c1 = true;
end
% ends(s) is TRUE <=> k0,...k ends with the string s.
function s = ends(str, b, k)
global j;
if (str(length(str)) ~= b(k))
s = false;
return
end % tiny speed-up
if (length(str) > k)
s = false;
return
end
if strcmp(b(k-length(str)+1:k), str)
s = true;
j = k - length(str);
return
else
s = false;
end
% setto(s) sets (j+1),...k to the characters in the string s, readjusting
% k accordingly.
function so = setto(s, b, k)
global j;
for i = j+1:(j+length(s))
b(i) = s(i-j);
end
if k > j+length(s)
b((j+length(s)+1):k) = '';
end
k = length(b);
so = {b, k};
% rs(s) is used further down.
% [Note: possible null/value for r if rs is called]
function r = rs(str, b, k, k0)
r = {b, k};
if measure(b, k0) > 0
r = setto(str, b, k);
end
% step1ab() gets rid of plurals and -ed or -ing. e.g.
% caresses -> caress
% ponies -> poni
% ties -> ti
% caress -> caress
% cats -> cat
% feed -> feed
% agreed -> agree
% disabled -> disable
% matting -> mat
% mating -> mate
% meeting -> meet
% milling -> mill
% messing -> mess
% meetings -> meet
function s1ab = step1ab(b, k, k0)
global j;
if b(k) == 's'
if ends('sses', b, k)
k = k-2;
elseif ends('ies', b, k)
retVal = setto('i', b, k);
b = retVal{1};
k = retVal{2};
elseif (b(k-1) ~= 's')
k = k-1;
end
end
if ends('eed', b, k)
if measure(b, k0) > 0;
k = k-1;
end
elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0)
k = j;
retVal = {b, k};
if ends('at', b, k)
retVal = setto('ate', b(k0:k), k);
elseif ends('bl', b, k)
retVal = setto('ble', b(k0:k), k);
elseif ends('iz', b, k)
retVal = setto('ize', b(k0:k), k);
elseif doublec(k, b, k0)
retVal = {b, k-1};
if b(retVal{2}) == 'l' || b(retVal{2}) == 's' || ...
b(retVal{2}) == 'z'
retVal = {retVal{1}, retVal{2}+1};
end
elseif measure(b, k0) == 1 && cvc(k, b, k0)
retVal = setto('e', b(k0:k), k);
end
k = retVal{2};
b = retVal{1}(k0:k);
end
j = k;
s1ab = {b(k0:k), k};
% step1c() turns terminal y to i when there is another vowel in the stem.
function s1c = step1c(b, k, k0)
global j;
if ends('y', b, k) && vowelinstem(b, k0)
b(k) = 'i';
end
j = k;
s1c = {b, k};
% step2() maps double suffices to single ones. so -ization ( = -ize plus
% -ation) maps to -ize etc. note that the string before the suffix must give
% m() > 0.
function s2 = step2(b, k, k0)
global j;
s2 = {b, k};
switch b(k-1)
case {'a'}
if ends('ational', b, k) s2 = rs('ate', b, k, k0);
elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end;
case {'c'}
if ends('enci', b, k) s2 = rs('ence', b, k, k0);
elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end;
case {'e'}
if ends('izer', b, k) s2 = rs('ize', b, k, k0); end;
case {'l'}
if ends('bli', b, k) s2 = rs('ble', b, k, k0);
elseif ends('alli', b, k) s2 = rs('al', b, k, k0);
elseif ends('entli', b, k) s2 = rs('ent', b, k, k0);
elseif ends('eli', b, k) s2 = rs('e', b, k, k0);
elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end;
case {'o'}
if ends('ization', b, k) s2 = rs('ize', b, k, k0);
elseif ends('ation', b, k) s2 = rs('ate', b, k, k0);
elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end;
case {'s'}
if ends('alism', b, k) s2 = rs('al', b, k, k0);
elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0);
elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0);
elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end;
case {'t'}
if ends('aliti', b, k) s2 = rs('al', b, k, k0);
elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0);
elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end;
case {'g'}
if ends('logi', b, k) s2 = rs('log', b, k, k0); end;
end
j = s2{2};
% step3() deals with -ic-, -full, -ness etc. similar strategy to step2.
function s3 = step3(b, k, k0)
global j;
s3 = {b, k};
switch b(k)
case {'e'}
if ends('icate', b, k) s3 = rs('ic', b, k, k0);
elseif ends('ative', b, k) s3 = rs('', b, k, k0);
elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end;
case {'i'}
if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end;
case {'l'}
if ends('ical', b, k) s3 = rs('ic', b, k, k0);
elseif ends('ful', b, k) s3 = rs('', b, k, k0); end;
case {'s'}
if ends('ness', b, k) s3 = rs('', b, k, k0); end;
end
j = s3{2};
% step4() takes off -ant, -ence etc., in context <c>vcvc<v>.
function s4 = step4(b, k, k0)
global j;
switch b(k-1)
case {'a'}
if ends('al', b, k) end;
case {'c'}
if ends('ance', b, k)
elseif ends('ence', b, k) end;
case {'e'}
if ends('er', b, k) end;
case {'i'}
if ends('ic', b, k) end;
case {'l'}
if ends('able', b, k)
elseif ends('ible', b, k) end;
case {'n'}
if ends('ant', b, k)
elseif ends('ement', b, k)
elseif ends('ment', b, k)
elseif ends('ent', b, k) end;
case {'o'}
if ends('ion', b, k)
if j == 0
elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t'))
j = k;
end
elseif ends('ou', b, k) end;
case {'s'}
if ends('ism', b, k) end;
case {'t'}
if ends('ate', b, k)
elseif ends('iti', b, k) end;
case {'u'}
if ends('ous', b, k) end;
case {'v'}
if ends('ive', b, k) end;
case {'z'}
if ends('ize', b, k) end;
end
if measure(b, k0) > 1
s4 = {b(k0:j), j};
else
s4 = {b(k0:k), k};
end
% step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1.
function s5 = step5(b, k, k0)
global j;
j = k;
if b(k) == 'e'
a = measure(b, k0);
if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0))
k = k-1;
end
end
if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1)
k = k-1;
end
s5 = {b(k0:k), k};
|
github
|
aman432/Spam-Classifier-master
|
submitWithConfiguration.m
|
.m
|
Spam-Classifier-master/Spam/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
aman432/Spam-Classifier-master
|
savejson.m
|
.m
|
Spam-Classifier-master/Spam/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
aman432/Spam-Classifier-master
|
loadjson.m
|
.m
|
Spam-Classifier-master/Spam/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
aman432/Spam-Classifier-master
|
loadubjson.m
|
.m
|
Spam-Classifier-master/Spam/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
aman432/Spam-Classifier-master
|
saveubjson.m
|
.m
|
Spam-Classifier-master/Spam/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
sovandas/Modulation-Testing-Tool-master
|
parameterEdit.m
|
.m
|
Modulation-Testing-Tool-master/SISO OFDM/parameterEdit.m
| 4,564 |
utf_8
|
74f2193b03e8af2a1f406a0056e10c89
|
function varargout = parameterEdit(varargin)
% PARAMETEREDIT MATLAB code for parameterEdit.fig
% PARAMETEREDIT, by itself, creates a new PARAMETEREDIT or raises the existing
% singleton*.
%
% H = PARAMETEREDIT returns the handle to a new PARAMETEREDIT or the handle to
% the existing singleton*.
%
% PARAMETEREDIT('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in PARAMETEREDIT.M with the given input arguments.
%
% PARAMETEREDIT('Property','Value',...) creates a new PARAMETEREDIT or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before parameterEdit_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to parameterEdit_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help parameterEdit
% Last Modified by GUIDE v2.5 11-Nov-2013 23:20:17
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @parameterEdit_OpeningFcn, ...
'gui_OutputFcn', @parameterEdit_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before parameterEdit is made visible.
function parameterEdit_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to parameterEdit (see VARARGIN)
% Choose default command line output for parameterEdit
handles.output = hObject;
% Display Input
variableNames = whos('-file',varargin{2}); % get variable names
variableValues = load(varargin{2}); % load varaibles
tableData = {}; % initialize table
for i = 1:length(variableNames), % iterate over variables
tableData{i,1} = variableNames(i).name; % get variable name
if strcmp(variableNames(i).class, 'double'),
if length(size(variableValues.(variableNames(i).name))) > 1, % handle arrays
tableData{i,2} = num2str(variableValues.(variableNames(i).name)); % get variable value
else
tableData{i,2} = variableValues.(variableNames(i).name);
end
elseif strcmp(variableNames(i).class, 'char'),
tableData{i,2} = variableValues.(variableNames(i).name);
end
end
set(handles.uitable1,'Data',tableData); % set table to display parameters
% Update handles structure
handles.parameterFile = varargin{2}; % save file location
handles.variableNames = variableNames; % save variable data
guidata(hObject, handles);
% UIWAIT makes parameterEdit wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = parameterEdit_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in save.
function save_Callback(hObject, eventdata, handles)
% hObject handle to save (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
data = guidata(handles.figure1); %
parameterData = load(data.parameterFile);
tableData = get(handles.uitable1,'Data');
for i = 1:size(tableData,1),
if strcmp(data.variableNames(i).class,'double'),
parameterData.(tableData{i,1}) = str2num(tableData{i,2});
elseif strcmp(data.variableNames(i).class,'char'),
parameterData.(tableData{i,1}) = tableData{i,2};
end
end
save(data.parameterFile, '-struct', 'parameterData');
|
github
|
sovandas/Modulation-Testing-Tool-master
|
parameterEdit.m
|
.m
|
Modulation-Testing-Tool-master/SM OFDM/parameterEdit.m
| 4,564 |
utf_8
|
74f2193b03e8af2a1f406a0056e10c89
|
function varargout = parameterEdit(varargin)
% PARAMETEREDIT MATLAB code for parameterEdit.fig
% PARAMETEREDIT, by itself, creates a new PARAMETEREDIT or raises the existing
% singleton*.
%
% H = PARAMETEREDIT returns the handle to a new PARAMETEREDIT or the handle to
% the existing singleton*.
%
% PARAMETEREDIT('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in PARAMETEREDIT.M with the given input arguments.
%
% PARAMETEREDIT('Property','Value',...) creates a new PARAMETEREDIT or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before parameterEdit_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to parameterEdit_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help parameterEdit
% Last Modified by GUIDE v2.5 11-Nov-2013 23:20:17
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @parameterEdit_OpeningFcn, ...
'gui_OutputFcn', @parameterEdit_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before parameterEdit is made visible.
function parameterEdit_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to parameterEdit (see VARARGIN)
% Choose default command line output for parameterEdit
handles.output = hObject;
% Display Input
variableNames = whos('-file',varargin{2}); % get variable names
variableValues = load(varargin{2}); % load varaibles
tableData = {}; % initialize table
for i = 1:length(variableNames), % iterate over variables
tableData{i,1} = variableNames(i).name; % get variable name
if strcmp(variableNames(i).class, 'double'),
if length(size(variableValues.(variableNames(i).name))) > 1, % handle arrays
tableData{i,2} = num2str(variableValues.(variableNames(i).name)); % get variable value
else
tableData{i,2} = variableValues.(variableNames(i).name);
end
elseif strcmp(variableNames(i).class, 'char'),
tableData{i,2} = variableValues.(variableNames(i).name);
end
end
set(handles.uitable1,'Data',tableData); % set table to display parameters
% Update handles structure
handles.parameterFile = varargin{2}; % save file location
handles.variableNames = variableNames; % save variable data
guidata(hObject, handles);
% UIWAIT makes parameterEdit wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = parameterEdit_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in save.
function save_Callback(hObject, eventdata, handles)
% hObject handle to save (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
data = guidata(handles.figure1); %
parameterData = load(data.parameterFile);
tableData = get(handles.uitable1,'Data');
for i = 1:size(tableData,1),
if strcmp(data.variableNames(i).class,'double'),
parameterData.(tableData{i,1}) = str2num(tableData{i,2});
elseif strcmp(data.variableNames(i).class,'char'),
parameterData.(tableData{i,1}) = tableData{i,2};
end
end
save(data.parameterFile, '-struct', 'parameterData');
|
github
|
sovandas/Modulation-Testing-Tool-master
|
SM_test_est_with_ch_est_adaptive_modulation.m
|
.m
|
Modulation-Testing-Tool-master/SM OFDM/SM_test_est_with_ch_est_adaptive_modulation.m
| 12,232 |
utf_8
|
c59725a94507e3d8a4fac3a01f0ebde3
|
function [BER, BER_SM, BER_QAM, channel, estimated_channel, estimated_SNR, fitted_SNR] = SM_test_est_with_ch_est_adaptive_modulation(input_from_diode_ch1, input_from_diode_ch2, qam_dco_ch1, qam_dco_ch2, SM_bits, M, P, Frames, Nfft, cp_length, omitted_carriers, preamble_length, offset, frame_eq_mult, samples_per_symbol, filter_type, roll_off_factor, Max_Constellation_Size, number_of_pilot_frames)
for k=1:log2(Max_Constellation_Size)
demodulator{k} = modem.qamdemod('M',2^k,'SymbolOrder','Gray','OutputType','Bit'); %Creates a QAM modulator object for constellation sizes up to Max_Constellation_Size
power_rescale(k) = sqrt(demodulator{k}.Constellation()*demodulator{k}.Constellation()'/(2^k));
end
BER=[];
BER_SM=[];
BER_QAM=[];
channel_ch1=[];
estimated_channel_ch1=[];
estimated_SNR_ch1=[];
fitted_SNR_ch1=[];
for counter=1:floor(Frames/frame_eq_mult)
[channel_ch11(counter,:), estimated_channel_ch11(counter,:), estimated_SNR_ch11(counter,:), fitted_SNR_ch11(counter,:)] = SM_channel_estimation(input_from_diode_ch1, qam_dco_ch1((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)*(Nfft-2)/2+1:((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames)*(Nfft-2)/2), number_of_pilot_frames, Nfft, cp_length, omitted_carriers, preamble_length, offset+(counter-1)*(frame_eq_mult+number_of_pilot_frames*2)*(Nfft+cp_length)*samples_per_symbol, samples_per_symbol, filter_type, roll_off_factor);
[channel_ch21(counter,:), estimated_channel_ch21(counter,:), estimated_SNR_ch21(counter,:), fitted_SNR_ch21(counter,:)] = SM_channel_estimation(input_from_diode_ch2, qam_dco_ch1((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)*(Nfft-2)/2+1:((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames)*(Nfft-2)/2), number_of_pilot_frames, Nfft, cp_length, omitted_carriers, preamble_length, offset+(counter-1)*(frame_eq_mult+number_of_pilot_frames*2)*(Nfft+cp_length)*samples_per_symbol, samples_per_symbol, filter_type, roll_off_factor);
[channel_ch12(counter,:), estimated_channel_ch12(counter,:), estimated_SNR_ch12(counter,:), fitted_SNR_ch12(counter,:)] = SM_channel_estimation(input_from_diode_ch1, qam_dco_ch2(((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames)*(Nfft-2)/2+1:((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft-2)/2), number_of_pilot_frames, Nfft, cp_length, omitted_carriers, preamble_length, offset+((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames)*(Nfft+cp_length)*samples_per_symbol, samples_per_symbol, filter_type, roll_off_factor);
[channel_ch22(counter,:), estimated_channel_ch22(counter,:), estimated_SNR_ch22(counter,:), fitted_SNR_ch22(counter,:)] = SM_channel_estimation(input_from_diode_ch2, qam_dco_ch2(((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames)*(Nfft-2)/2+1:((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft-2)/2), number_of_pilot_frames, Nfft, cp_length, omitted_carriers, preamble_length, offset+((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames)*(Nfft+cp_length)*samples_per_symbol, samples_per_symbol, filter_type, roll_off_factor);
channel = [channel_ch11; channel_ch12; channel_ch21; channel_ch22];
estimated_channel = [estimated_channel_ch11; estimated_channel_ch12; estimated_channel_ch21; estimated_channel_ch22];
estimated_SNR = [estimated_SNR_ch11; estimated_SNR_ch12; estimated_SNR_ch21; estimated_SNR_ch22];
fitted_SNR = [fitted_SNR_ch11; fitted_SNR_ch12; fitted_SNR_ch21; fitted_SNR_ch22];
qam_recovered_diode_ch1 = recover_ofdm_signal(input_from_diode_ch1, preamble_length+offset+((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft+cp_length)*samples_per_symbol, filter_type, roll_off_factor, frame_eq_mult, Nfft, cp_length, samples_per_symbol);
qam_recovered_diode_ch2 = recover_ofdm_signal(input_from_diode_ch2, preamble_length+offset+((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft+cp_length)*samples_per_symbol, filter_type, roll_off_factor, frame_eq_mult, Nfft, cp_length, samples_per_symbol);
qam_recovered_diode_no_zeros_ch1=[];
for k=1:frame_eq_mult
%qam_recovered_diode_no_zeros((k-1)*(Nfft-2*(omitted_carriers+1))/2+1:k*(Nfft-2*(omitted_carriers+1))/2) = qam_recovered_diode((k-1)*(Nfft-2)/2+1+omitted_carriers:k*(Nfft-2)/2)./sqrt(P);
work_block = qam_recovered_diode_ch1((k-1)*(Nfft-2)/2+1:k*(Nfft-2)/2); %Takes a frame of symbols
qam_recovered_diode_no_zeros_ch1 = [qam_recovered_diode_no_zeros_ch1,work_block([zeros(1,omitted_carriers),M]~=0)./sqrt(P(M~=0))]; %Removes all zeros from that symbol frame and rescales by the assigned power
end
qam_recovered_diode_no_zeros_ch2=[];
for k=1:frame_eq_mult
work_block = qam_recovered_diode_ch2((k-1)*(Nfft-2)/2+1:k*(Nfft-2)/2); %Takes a frame of symbols
qam_recovered_diode_no_zeros_ch2 = [qam_recovered_diode_no_zeros_ch2,work_block([zeros(1,omitted_carriers),M]~=0)./sqrt(P(M~=0))]; %Removes all zeros from that symbol frame and rescales by the assigned power
end
qam_dco_no_zeros_ch1=[];
for k=1:frame_eq_mult
work_block = qam_dco_ch1((k-1+(counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft-2)/2+1:(k+(counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft-2)/2);
qam_dco_no_zeros_ch1 = [qam_dco_no_zeros_ch1,work_block([zeros(1,omitted_carriers),M]~=0)./sqrt(P(M~=0))];
end
qam_dco_no_zeros_ch2=[];
for k=1:frame_eq_mult
work_block = qam_dco_ch2((k-1+(counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft-2)/2+1:(k+(counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft-2)/2);
qam_dco_no_zeros_ch2 = [qam_dco_no_zeros_ch2,work_block([zeros(1,omitted_carriers),M]~=0)./sqrt(P(M~=0))];
end
% figure, plot(10*log10(abs(qam_recovered_diode_no_zeros./qam_dco_no_zeros).^2))
% xlabel('Active Carrier Index')
% ylabel('|H|^2 [dB]')
% temp_str = ['Gain in ',num2str(frame_eq_mult),' consecutive frames'];
% legend(temp_str)
%
% figure, plot(phase(qam_recovered_diode_no_zeros./qam_dco_no_zeros))
% xlabel('Active Carrier Index')
% ylabel('Phase(H) [Rad]')
% temp_str = ['Phase in ',num2str(frame_eq_mult),' consecutive frames'];
% legend(temp_str)
%qam_recovered_diode_no_zeros_equalized_ch1=qam_recovered_diode_no_zeros_ch1;
qam_recovered_diode_no_zeros_equalized_ch1=[];
current_channel_ch11 = channel_ch11(counter,:);
current_channel_ch12 = channel_ch12(counter,:);
block_length = length(qam_recovered_diode_no_zeros_ch1)/frame_eq_mult;
for k=1:frame_eq_mult
qam_recovered_diode_no_zeros_equalized_ch1 = [qam_recovered_diode_no_zeros_equalized_ch1,qam_recovered_diode_no_zeros_ch1((k-1)*block_length+1:k*block_length)./current_channel_ch11(M~=0)];
end
%qam_recovered_diode_no_zeros_equalized_ch2=qam_recovered_diode_no_zeros_ch2;
qam_recovered_diode_no_zeros_equalized_ch2=[];
current_channel_ch21 = channel_ch21(counter,:);
current_channel_ch22 = channel_ch22(counter,:);
block_length = length(qam_recovered_diode_no_zeros_ch2)/frame_eq_mult;
for k=1:frame_eq_mult
qam_recovered_diode_no_zeros_equalized_ch2 = [qam_recovered_diode_no_zeros_equalized_ch2,qam_recovered_diode_no_zeros_ch2((k-1)*block_length+1:k*block_length)./current_channel_ch22(M~=0)];
end
for k=1:log2(Max_Constellation_Size)
points_of_same_size_received{k}=[];
points_of_same_size_received_equalized{k}=[];
points_of_same_size_original{k}=[];
end
original_QAM_bits=[];
received_QAM_bits=[];
received_SM_bits=[];
M_without_zeros = M(M~=0);
for k=1:frame_eq_mult
for l=1:block_length
qam_recovered_diode_no_zeros_rescaled_ch1((k-1)*block_length+l) = qam_recovered_diode_no_zeros_ch1((k-1)*block_length+l)*power_rescale(log2(M_without_zeros(l)));
qam_recovered_diode_no_zeros_rescaled_ch2((k-1)*block_length+l) = qam_recovered_diode_no_zeros_ch2((k-1)*block_length+l)*power_rescale(log2(M_without_zeros(l)));
if SM_bits((k-1)*block_length+l) == 1
points_of_same_size_received{log2(M_without_zeros(l))} = [points_of_same_size_received{log2(M_without_zeros(l))},qam_recovered_diode_no_zeros_rescaled_ch1((k-1)*block_length+l)];
else
points_of_same_size_received{log2(M_without_zeros(l))} = [points_of_same_size_received{log2(M_without_zeros(l))},qam_recovered_diode_no_zeros_rescaled_ch2((k-1)*block_length+l)];
end
qam_recovered_diode_no_zeros_equalized_rescaled_ch1((k-1)*block_length+l) = qam_recovered_diode_no_zeros_equalized_ch1((k-1)*block_length+l)*power_rescale(log2(M_without_zeros(l)));
qam_recovered_diode_no_zeros_equalized_rescaled_ch2((k-1)*block_length+l) = qam_recovered_diode_no_zeros_equalized_ch2((k-1)*block_length+l)*power_rescale(log2(M_without_zeros(l)));
if SM_bits((k-1)*block_length+l) == 1
points_of_same_size_received_equalized{log2(M_without_zeros(l))} = [points_of_same_size_received_equalized{log2(M_without_zeros(l))},qam_recovered_diode_no_zeros_equalized_rescaled_ch1((k-1)*block_length+l)];
else
points_of_same_size_received_equalized{log2(M_without_zeros(l))} = [points_of_same_size_received_equalized{log2(M_without_zeros(l))},qam_recovered_diode_no_zeros_equalized_rescaled_ch2((k-1)*block_length+l)];
end
qam_dco_no_zeros_rescaled_ch1((k-1)*block_length+l) = qam_dco_no_zeros_ch1((k-1)*block_length+l)*power_rescale(log2(M_without_zeros(l)));
qam_dco_no_zeros_rescaled_ch2((k-1)*block_length+l) = qam_dco_no_zeros_ch2((k-1)*block_length+l)*power_rescale(log2(M_without_zeros(l)));
if SM_bits((k-1)*block_length+l) == 1
points_of_same_size_original{log2(M_without_zeros(l))} = [points_of_same_size_original{log2(M_without_zeros(l))},qam_dco_no_zeros_rescaled_ch1((k-1)*block_length+l)];
else
points_of_same_size_original{log2(M_without_zeros(l))} = [points_of_same_size_original{log2(M_without_zeros(l))},qam_dco_no_zeros_rescaled_ch2((k-1)*block_length+l)];
end
[SM_bit, QAM_bits] = SM_demodulate_2channels_with_crosstalk(qam_recovered_diode_no_zeros_rescaled_ch1((k-1)*block_length+l),qam_recovered_diode_no_zeros_rescaled_ch2((k-1)*block_length+l), M_without_zeros(l), demodulator{log2(M_without_zeros(l))}, current_channel_ch11(l), current_channel_ch12(l), current_channel_ch21(l), current_channel_ch22(l));
received_QAM_bits = [received_QAM_bits,QAM_bits];
received_SM_bits = [received_SM_bits,SM_bit];
if SM_bits((k-1)*block_length+l) == 1
original_QAM_bits = [original_QAM_bits,demodulate(demodulator{log2(M_without_zeros(l))},qam_dco_no_zeros_rescaled_ch1((k-1)*block_length+l))'];
else
original_QAM_bits = [original_QAM_bits,demodulate(demodulator{log2(M_without_zeros(l))},qam_dco_no_zeros_rescaled_ch2((k-1)*block_length+l))'];
end
end
end
for k=1:log2(Max_Constellation_Size)
if length(points_of_same_size_received{k})>0 && length(points_of_same_size_received_equalized{k})>0 && length(points_of_same_size_original{k})>0
scatterplot(points_of_same_size_received{k});
scatterplot(points_of_same_size_received_equalized{k});
scatterplot(points_of_same_size_original{k});
end
end
size(original_QAM_bits) + size(SM_bits)
BER_QAM(counter) = sum(sum(xor(original_QAM_bits, received_QAM_bits)))/length(original_QAM_bits);
BER_SM(counter) = sum(sum(xor(SM_bits, received_SM_bits)))/length(SM_bits);
BER(counter) = (BER_SM*length(SM_bits) + BER_QAM*length(original_QAM_bits))/(length(SM_bits) + length(original_QAM_bits));
end
|
github
|
sovandas/Modulation-Testing-Tool-master
|
parameterEdit.m
|
.m
|
Modulation-Testing-Tool-master/MIMO OFDM/parameterEdit.m
| 4,564 |
utf_8
|
74f2193b03e8af2a1f406a0056e10c89
|
function varargout = parameterEdit(varargin)
% PARAMETEREDIT MATLAB code for parameterEdit.fig
% PARAMETEREDIT, by itself, creates a new PARAMETEREDIT or raises the existing
% singleton*.
%
% H = PARAMETEREDIT returns the handle to a new PARAMETEREDIT or the handle to
% the existing singleton*.
%
% PARAMETEREDIT('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in PARAMETEREDIT.M with the given input arguments.
%
% PARAMETEREDIT('Property','Value',...) creates a new PARAMETEREDIT or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before parameterEdit_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to parameterEdit_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help parameterEdit
% Last Modified by GUIDE v2.5 11-Nov-2013 23:20:17
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @parameterEdit_OpeningFcn, ...
'gui_OutputFcn', @parameterEdit_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before parameterEdit is made visible.
function parameterEdit_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to parameterEdit (see VARARGIN)
% Choose default command line output for parameterEdit
handles.output = hObject;
% Display Input
variableNames = whos('-file',varargin{2}); % get variable names
variableValues = load(varargin{2}); % load varaibles
tableData = {}; % initialize table
for i = 1:length(variableNames), % iterate over variables
tableData{i,1} = variableNames(i).name; % get variable name
if strcmp(variableNames(i).class, 'double'),
if length(size(variableValues.(variableNames(i).name))) > 1, % handle arrays
tableData{i,2} = num2str(variableValues.(variableNames(i).name)); % get variable value
else
tableData{i,2} = variableValues.(variableNames(i).name);
end
elseif strcmp(variableNames(i).class, 'char'),
tableData{i,2} = variableValues.(variableNames(i).name);
end
end
set(handles.uitable1,'Data',tableData); % set table to display parameters
% Update handles structure
handles.parameterFile = varargin{2}; % save file location
handles.variableNames = variableNames; % save variable data
guidata(hObject, handles);
% UIWAIT makes parameterEdit wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = parameterEdit_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in save.
function save_Callback(hObject, eventdata, handles)
% hObject handle to save (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
data = guidata(handles.figure1); %
parameterData = load(data.parameterFile);
tableData = get(handles.uitable1,'Data');
for i = 1:size(tableData,1),
if strcmp(data.variableNames(i).class,'double'),
parameterData.(tableData{i,1}) = str2num(tableData{i,2});
elseif strcmp(data.variableNames(i).class,'char'),
parameterData.(tableData{i,1}) = tableData{i,2};
end
end
save(data.parameterFile, '-struct', 'parameterData');
|
github
|
sovandas/Modulation-Testing-Tool-master
|
MIMO_test_est_with_ch_est_adaptive_modulation.m
|
.m
|
Modulation-Testing-Tool-master/MIMO OFDM/MIMO_test_est_with_ch_est_adaptive_modulation.m
| 14,887 |
utf_8
|
dc04eabf4637c5a652f42d0a115cb9f9
|
function [BER, BER_QAM1, BER_QAM2, channel, estimated_channel, SNR1, SNR2] = MIMO_test_est_with_ch_est_adaptive_modulation(input_from_diode_ch1, input_from_diode_ch2, qam_dco_ch1, qam_dco_ch2, M, P, Frames, Nfft, cp_length, omitted_carriers, preamble_length, offset, frame_eq_mult, samples_per_symbol, filter_type, roll_off_factor, Max_Constellation_Size, number_of_pilot_frames)
for k=1:log2(Max_Constellation_Size)
demodulator{k} = modem.qamdemod('M',2^k,'SymbolOrder','Gray','OutputType','Bit'); %Creates a QAM modulator object for constellation sizes up to Max_Constellation_Size
power_rescale(k) = sqrt(demodulator{k}.Constellation()*demodulator{k}.Constellation()'/(2^k));
end
BER=[];
BER_QAM1=[];
BER_QAM2=[];
% channel_ch1=[];
% estimated_channel_ch1=[];
% estimated_SNR_ch1=[];
% fitted_SNR_ch1=[];
for counter=1:floor(Frames/frame_eq_mult)
[channel_ch11(counter,:), estimated_channel_ch11(counter,:), estimated_SNR_ch11(counter,:), fitted_SNR_ch11(counter,:)] = SM_channel_estimation(input_from_diode_ch1, qam_dco_ch1((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)*(Nfft-2)/2+1:((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames)*(Nfft-2)/2), number_of_pilot_frames, Nfft, cp_length, omitted_carriers, preamble_length, offset+(counter-1)*(frame_eq_mult+number_of_pilot_frames*2)*(Nfft+cp_length)*samples_per_symbol, samples_per_symbol, filter_type, roll_off_factor);
[channel_ch21(counter,:), estimated_channel_ch21(counter,:), estimated_SNR_ch21(counter,:), fitted_SNR_ch21(counter,:)] = SM_channel_estimation(input_from_diode_ch2, qam_dco_ch1((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)*(Nfft-2)/2+1:((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames)*(Nfft-2)/2), number_of_pilot_frames, Nfft, cp_length, omitted_carriers, preamble_length, offset+(counter-1)*(frame_eq_mult+number_of_pilot_frames*2)*(Nfft+cp_length)*samples_per_symbol, samples_per_symbol, filter_type, roll_off_factor);
[channel_ch12(counter,:), estimated_channel_ch12(counter,:), estimated_SNR_ch12(counter,:), fitted_SNR_ch12(counter,:)] = SM_channel_estimation(input_from_diode_ch1, qam_dco_ch2(((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames)*(Nfft-2)/2+1:((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft-2)/2), number_of_pilot_frames, Nfft, cp_length, omitted_carriers, preamble_length, offset+((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames)*(Nfft+cp_length)*samples_per_symbol, samples_per_symbol, filter_type, roll_off_factor);
[channel_ch22(counter,:), estimated_channel_ch22(counter,:), estimated_SNR_ch22(counter,:), fitted_SNR_ch22(counter,:)] = SM_channel_estimation(input_from_diode_ch2, qam_dco_ch2(((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames)*(Nfft-2)/2+1:((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft-2)/2), number_of_pilot_frames, Nfft, cp_length, omitted_carriers, preamble_length, offset+((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames)*(Nfft+cp_length)*samples_per_symbol, samples_per_symbol, filter_type, roll_off_factor);
channel = [channel_ch11; channel_ch12; channel_ch21; channel_ch22];
estimated_channel = [estimated_channel_ch11; estimated_channel_ch12; estimated_channel_ch21; estimated_channel_ch22];
estimated_SNR = [estimated_SNR_ch11; estimated_SNR_ch12; estimated_SNR_ch21; estimated_SNR_ch22];
fitted_SNR = [fitted_SNR_ch11; fitted_SNR_ch12; fitted_SNR_ch21; fitted_SNR_ch22];
qam_recovered_diode_ch1 = recover_ofdm_signal(input_from_diode_ch1, preamble_length+offset+((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft+cp_length)*samples_per_symbol, filter_type, roll_off_factor, frame_eq_mult, Nfft, cp_length, samples_per_symbol);
qam_recovered_diode_ch2 = recover_ofdm_signal(input_from_diode_ch2, preamble_length+offset+((counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft+cp_length)*samples_per_symbol, filter_type, roll_off_factor, frame_eq_mult, Nfft, cp_length, samples_per_symbol);
%qam_recovered_diode_no_zeros_equalized_ch1=qam_recovered_diode_no_zeros_ch1;
qam_recovered_diode_equalized_ch1=[];
qam_recovered_diode_equalized_ch2=[];
current_channel_ch11 = channel_ch11(counter,:);
current_channel_ch12 = channel_ch12(counter,:);
current_channel_ch21 = channel_ch21(counter,:);
current_channel_ch22 = channel_ch22(counter,:);
block_length = length(qam_recovered_diode_ch1)/frame_eq_mult;
for k=1:frame_eq_mult
for l=1:block_length
iH = inv([current_channel_ch11(end-block_length+l),current_channel_ch12(end-block_length+l);current_channel_ch21(end-block_length+l),current_channel_ch22(end-block_length+l)]); %Compute the inverse of the channel matrix
working_sample_equalized = iH*[qam_recovered_diode_ch1((k-1)*block_length+l);qam_recovered_diode_ch2((k-1)*block_length+l)]; % Equalize a pair of received samples. Since this is OFDM, both the spatial and the temporal channel are equalized
qam_recovered_diode_equalized_ch1 = [qam_recovered_diode_equalized_ch1,working_sample_equalized(1)];
qam_recovered_diode_equalized_ch2 = [qam_recovered_diode_equalized_ch2,working_sample_equalized(2)];
end
end
qam_recovered_diode_no_zeros_ch1=[];
for k=1:frame_eq_mult
work_block = qam_recovered_diode_ch1((k-1)*(Nfft-2)/2+1:k*(Nfft-2)/2); %Takes a frame of symbols
qam_recovered_diode_no_zeros_ch1 = [qam_recovered_diode_no_zeros_ch1,work_block([zeros(1,omitted_carriers),M(1,:)]~=0)./sqrt(P(1,M(1,:)~=0))]; %Removes all zeros from that symbol frame and rescales by the assigned power
end
qam_recovered_diode_no_zeros_ch2=[];
for k=1:frame_eq_mult
work_block = qam_recovered_diode_ch2((k-1)*(Nfft-2)/2+1:k*(Nfft-2)/2); %Takes a frame of symbols
qam_recovered_diode_no_zeros_ch2 = [qam_recovered_diode_no_zeros_ch2,work_block([zeros(1,omitted_carriers),M(2,:)]~=0)./sqrt(P(2,M(2,:)~=0))]; %Removes all zeros from that symbol frame and rescales by the assigned power
end
qam_recovered_diode_no_zeros_equalized_ch1=[];
for k=1:frame_eq_mult
work_block = qam_recovered_diode_equalized_ch1((k-1)*(Nfft-2)/2+1:k*(Nfft-2)/2); %Takes a frame of symbols
qam_recovered_diode_no_zeros_equalized_ch1 = [qam_recovered_diode_no_zeros_equalized_ch1,work_block([zeros(1,omitted_carriers),M(1,:)]~=0)./sqrt(P(1,M(1,:)~=0))]; %Removes all zeros from that symbol frame and rescales by the assigned power
end
qam_recovered_diode_no_zeros_equalized_ch2=[];
for k=1:frame_eq_mult
work_block = qam_recovered_diode_equalized_ch2((k-1)*(Nfft-2)/2+1:k*(Nfft-2)/2); %Takes a frame of symbols
qam_recovered_diode_no_zeros_equalized_ch2 = [qam_recovered_diode_no_zeros_equalized_ch2,work_block([zeros(1,omitted_carriers),M(2,:)]~=0)./sqrt(P(2,M(2,:)~=0))]; %Removes all zeros from that symbol frame and rescales by the assigned power
end
qam_dco_no_zeros_ch1=[];
for k=1:frame_eq_mult
work_block = qam_dco_ch1((k-1+(counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft-2)/2+1:(k+(counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft-2)/2);
qam_dco_no_zeros_ch1 = [qam_dco_no_zeros_ch1,work_block([zeros(1,omitted_carriers),M(1,:)]~=0)./sqrt(P(1,M(1,:)~=0))];
end
qam_dco_no_zeros_ch2=[];
for k=1:frame_eq_mult
work_block = qam_dco_ch2((k-1+(counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft-2)/2+1:(k+(counter-1)*(frame_eq_mult+number_of_pilot_frames*2)+number_of_pilot_frames*2)*(Nfft-2)/2);
qam_dco_no_zeros_ch2 = [qam_dco_no_zeros_ch2,work_block([zeros(1,omitted_carriers),M(2,:)]~=0)./sqrt(P(2,M(2,:)~=0))];
end
for k=1:log2(Max_Constellation_Size)
points_of_same_size_received{k}=[];
points_of_same_size_received_equalized{k}=[];
points_of_same_size_original{k}=[];
end
original_QAM_bits1=[];
original_QAM_bits2=[];
received_QAM_bits1=[];
received_QAM_bits2=[];
M_without_zeros1 = M(1,M(1,:)~=0);
M_without_zeros2 = M(2,M(2,:)~=0);
block_length = length(qam_recovered_diode_no_zeros_equalized_ch1)/frame_eq_mult;
for k=1:frame_eq_mult
for l=1:block_length
qam_recovered_diode_no_zeros_rescaled_ch1((k-1)*block_length+l) = qam_recovered_diode_no_zeros_ch1((k-1)*block_length+l)*power_rescale(log2(M_without_zeros1(l)));
points_of_same_size_received{log2(M_without_zeros1(l))} = [points_of_same_size_received{log2(M_without_zeros1(l))},qam_recovered_diode_no_zeros_rescaled_ch1((k-1)*block_length+l)];
qam_recovered_diode_no_zeros_equalized_rescaled_ch1((k-1)*block_length+l) = qam_recovered_diode_no_zeros_equalized_ch1((k-1)*block_length+l)*power_rescale(log2(M_without_zeros1(l)));
points_of_same_size_received_equalized{log2(M_without_zeros1(l))} = [points_of_same_size_received_equalized{log2(M_without_zeros1(l))},qam_recovered_diode_no_zeros_equalized_rescaled_ch1((k-1)*block_length+l)];
qam_dco_no_zeros_rescaled_ch1((k-1)*block_length+l) = qam_dco_no_zeros_ch1((k-1)*block_length+l)*power_rescale(log2(M_without_zeros1(l)));
points_of_same_size_original{log2(M_without_zeros1(l))} = [points_of_same_size_original{log2(M_without_zeros1(l))},qam_dco_no_zeros_rescaled_ch1((k-1)*block_length+l)];
received_QAM_bits1 = [received_QAM_bits1,demodulate(demodulator{log2(M_without_zeros1(l))}, qam_recovered_diode_no_zeros_equalized_rescaled_ch1((k-1)*block_length+l)).'];
original_QAM_bits1 = [original_QAM_bits1,demodulate(demodulator{log2(M_without_zeros1(l))},qam_dco_no_zeros_rescaled_ch1((k-1)*block_length+l))'];
end
end
% Using the demodulated data to esitmated the SNR since it is dependent on the cross-talk.
signal_energy1=zeros(1,block_length);
noise_energy1=zeros(1,block_length);
for k=1:frame_eq_mult
signal_energy1 = signal_energy1 + qam_recovered_diode_no_zeros_equalized_rescaled_ch1((k-1)*block_length+1:k*block_length).*conj(qam_recovered_diode_no_zeros_equalized_rescaled_ch1((k-1)*block_length+1:k*block_length));
noise_energy1 = noise_energy1 + (qam_recovered_diode_no_zeros_equalized_rescaled_ch1((k-1)*block_length+1:k*block_length) - qam_dco_no_zeros_rescaled_ch1((k-1)*block_length+1:k*block_length)).*...
conj(qam_recovered_diode_no_zeros_equalized_rescaled_ch1((k-1)*block_length+1:k*block_length) - qam_dco_no_zeros_rescaled_ch1((k-1)*block_length+1:k*block_length));
end
polynomial_degree=5;
SNR1(counter,:) = polyval(polyfit([1:length(signal_energy1)],signal_energy1./noise_energy1,polynomial_degree),[1:length(signal_energy1)]);
figure, plot(10*log10(SNR1(counter,:))), hold on, plot(10*log10(signal_energy1./noise_energy1),'r');
title('Channel 1 Achievable SNR');
block_length = length(qam_recovered_diode_no_zeros_equalized_ch2)/frame_eq_mult;
for k=1:frame_eq_mult
for l=1:block_length
qam_recovered_diode_no_zeros_rescaled_ch2((k-1)*block_length+l) = qam_recovered_diode_no_zeros_ch2((k-1)*block_length+l)*power_rescale(log2(M_without_zeros2(l)));
points_of_same_size_received{log2(M_without_zeros2(l))} = [points_of_same_size_received{log2(M_without_zeros2(l))},qam_recovered_diode_no_zeros_rescaled_ch2((k-1)*block_length+l)];
qam_recovered_diode_no_zeros_equalized_rescaled_ch2((k-1)*block_length+l) = qam_recovered_diode_no_zeros_equalized_ch2((k-1)*block_length+l)*power_rescale(log2(M_without_zeros2(l)));
points_of_same_size_received_equalized{log2(M_without_zeros2(l))} = [points_of_same_size_received_equalized{log2(M_without_zeros2(l))},qam_recovered_diode_no_zeros_equalized_rescaled_ch2((k-1)*block_length+l)];
qam_dco_no_zeros_rescaled_ch2((k-1)*block_length+l) = qam_dco_no_zeros_ch2((k-1)*block_length+l)*power_rescale(log2(M_without_zeros2(l)));
points_of_same_size_original{log2(M_without_zeros2(l))} = [points_of_same_size_original{log2(M_without_zeros2(l))},qam_dco_no_zeros_rescaled_ch2((k-1)*block_length+l)];
received_QAM_bits2 = [received_QAM_bits2,demodulate(demodulator{log2(M_without_zeros2(l))}, qam_recovered_diode_no_zeros_equalized_rescaled_ch2((k-1)*block_length+l)).'];
original_QAM_bits2 = [original_QAM_bits2,demodulate(demodulator{log2(M_without_zeros2(l))},qam_dco_no_zeros_rescaled_ch2((k-1)*block_length+l))'];
end
end
% Using the demodulated data to esitmated the SNR since it is dependent on the cross-talk.
signal_energy2=zeros(1,block_length);
noise_energy2=zeros(1,block_length);
for k=1:frame_eq_mult
signal_energy2 = signal_energy2 + qam_recovered_diode_no_zeros_equalized_rescaled_ch2((k-1)*block_length+1:k*block_length).*conj(qam_recovered_diode_no_zeros_equalized_rescaled_ch2((k-1)*block_length+1:k*block_length));
noise_energy2 = noise_energy2 + (qam_recovered_diode_no_zeros_equalized_rescaled_ch2((k-1)*block_length+1:k*block_length) - qam_dco_no_zeros_rescaled_ch2((k-1)*block_length+1:k*block_length)).*...
conj(qam_recovered_diode_no_zeros_equalized_rescaled_ch2((k-1)*block_length+1:k*block_length) - qam_dco_no_zeros_rescaled_ch2((k-1)*block_length+1:k*block_length));
end
polynomial_degree=5;
SNR2(counter,:) = polyval(polyfit([1:length(signal_energy2)],signal_energy2./noise_energy2,polynomial_degree),[1:length(signal_energy2)]);
figure, plot(10*log10(SNR2(counter,:))), hold on, plot(10*log10(signal_energy2./noise_energy2),'r');
title('Channel 2 Achievable SNR');
for k=1:log2(Max_Constellation_Size)
if length(points_of_same_size_received{k})>0 && length(points_of_same_size_received_equalized{k})>0 && length(points_of_same_size_original{k})>0
scatterplot(points_of_same_size_received{k});
scatterplot(points_of_same_size_received_equalized{k});
scatterplot(points_of_same_size_original{k});
end
end
BER_QAM1(counter) = sum(sum(xor(original_QAM_bits1, received_QAM_bits1)))/length(original_QAM_bits1)
BER_QAM2(counter) = sum(sum(xor(original_QAM_bits2, received_QAM_bits2)))/length(original_QAM_bits2)
BER(counter) = (BER_QAM1*length(original_QAM_bits1) + BER_QAM2*length(original_QAM_bits2))/(length(original_QAM_bits1) + length(original_QAM_bits2))
end
|
github
|
sqjin/scEpath-master
|
clusteringCells.m
|
.m
|
scEpath-master/clusteringCells.m
| 4,523 |
utf_8
|
855d58cac5df9078e81f48eb4516b78c
|
function [y, S] = clusteringCells(data,networkIfo,C,clusterRange,showFigure)
% perform unsupervised clustering of single cell data
% Inputs:
% data: single cell data (rows are genes and columns are cells)
% networkIfo: network information for the constructed gene-gene network
% C: number of clusters, by default automatically choosing based on eigengap
% clusterRange: a vector,the range of potential clusters when automatically choosing the number of clusters, default=2:10
% showFigure: boolean, to show the similarity matrix or not, default= 1 (true)
% Outputs:
% y is the cluster label of each cell
% S is the similarity matrix
if ~exist('showFigure','var') || isempty(showFigure)
showFigure = 1;
end
if ~exist('C','var')
C = [];
end
if ~exist('clusterRange','var') || isempty(clusterRange)
clusterRange = 3:10;
end
data = data(networkIfo.IDselect,:);
rng('default'); %%% for reproducibility
%% check if SIMLR has been successfully installed (https://github.com/BatzoglouLabSU/SIMLR)
try
SIMLR(data(1:min(50,size(data,1)),1:20)',2);
catch
INSTALL_SIMLR % compile external C program for the computations of SIMLR
end
%%
if isempty(C)
for c = clusterRange
[y, S] = SIMLR(data',c,10);
K1 = EstimateNumberClusters(abs(S), clusterRange,0);
if isequal(K1,c)
K1 = EstimateNumberClusters(abs(S), clusterRange,1);
break;
end
end
else
[y, S] = SIMLR(data',C,10);
end
%% visualization of similarity matrix
if showFigure
[~,labelOrdered] = sort(y);
Ssym = (abs(S)+abs(S'))/2;
SsymOrdered = Ssym(labelOrdered,labelOrdered);
SsymOrdered(logical(eye(size(SsymOrdered)))) = 0;
hFig2 = figure;
imagesc(SsymOrdered); axis square;
colormap hot;
c = colorbar;
c.Location = 'eastoutside';
% c.Label.String = 'Similarity';
% c.Label.FontSize = 8;%c.Label.FontWeight = 'bold';
c.FontSize = 8;
set(gca,'FontSize',8)
xlim([0.5 length(y)+0.5]);
xlabel('Cells','FontName','Arial','FontSize',10)
ylabel('Cells','FontName','Arial','FontSize',10)
folderName = fullfile(pwd,'results','figures');
if ~exist(folderName, 'dir')
mkdir(folderName);
end
saveas(hFig2,fullfile(folderName,'cell_similarity_matrix.pdf'))
end
function [K1, K12,eigengap] = EstimateNumberClusters(W, NUMC,showFigure)
%%%This function estimates the number of clusters using eigengap
%W is the similarity graph
%NUMC is a vector which contains the possible choices of number of clusters.
%%K1 is the estimated best number of clusters according to eigen-gaps
%%K12 is the estimated SECOND best number of clusters according to eigen-gaps
% an example would be [K1, K12,eigengap] = Estimate_Number_of_Clusters_given_graph(W, [2:5]);
%%Note that this function can only give an estimate of the number of
%%clusters. How to determine the "OPTIMAL" number of clusters, is still an
%%open question so far.
if nargin < 2
NUMC = 2:10;
end
if min(NUMC)==1
warning('Note that we always assume there are more than one cluster.');
NUMC(NUMC<=1) = [];
end
W = (W + W')/2;
W = W - diag(diag(W));
if ~isempty(NUMC)
degs = sum(W, 2);
D = sparse(1:size(W, 1), 1:size(W, 2), degs);
% compute unnormalized Laplacian
L = D - W;
degs(degs == 0) = eps;
% calculate D^(-1/2)
D = spdiags(1./(degs.^0.5), 0, size(D, 1), size(D, 2));
% calculate normalized Laplacian
L = D * L * D;
% compute the eigenvectors corresponding to the k smallest
% eigenvalues
[U, eigenvalue] = eigs(L, max(NUMC)+1, eps);
eigenvalue = diag(eigenvalue);
[a,b] = sort((eigenvalue),'ascend');
eigenvalue = (eigenvalue(b));
eigengap = abs(diff(eigenvalue));
[tt1, t1] = sort(eigengap(NUMC),'descend');K1 = NUMC(t1(1));K12 = NUMC(t1(2));
end
if ~exist('showFigure','var')
showFigure = 1;
end
if showFigure
hFig1 = figure;
plot(NUMC,eigengap(NUMC),'k-')
hold on
scatter(K1,tt1(1),20,'r','filled')
line([K1,K1],[0 tt1(1)],'Color','red','LineStyle','--')
xlabel('Number of clusters','FontName','Arial','FontSize',10)
ylabel('Eigengap','FontName','Arial','FontSize',10)
set(gca,'Xtick',NUMC)
folderName = fullfile(pwd,'results','figures');
if ~exist(folderName, 'dir')
mkdir(folderName);
end
saveas(hFig1,fullfile(folderName,'eigenGap.pdf'))
end
|
github
|
sqjin/scEpath-master
|
constructingNetwork.m
|
.m
|
scEpath-master/constructingNetwork.m
| 4,418 |
utf_8
|
07b464ae3eba9965f313e9cab6e15ed9
|
function networkIfo = constructingNetwork(data,quick_construct,thresh,thresh_percent,showFigure,fig_width,fig_height)
% construct a gene-gene co-expression network
% Inputs:
% data: single cell data (rows are cells and columns are genes)
% quick_construct: default=0,the network will be constructed by choosing the highest threshold without a significant reduction in the number of genes;
% thresh: if quick_construct=1, thresh is the threshold for constructing a network. default = 0.1
% thresh_percent: the percentage threshold for indicating a significant reduction in the number of genes
% showFigure: boolean, to show the network metrics or not, default= 1 (true)
% fig_width : the figure width, default=800
% fig_height : the figure height, default=250
% Outputs:
% networkIfo: network information for the constructed gene-gene network
% networkIfo.R: adjacency matrix (upper matrix) of the constructed network
% networkIfo.IDselect: the index of selected genes in the constructed network
% networkIfo.deg: the connectivity (degree) of each node
% networkIfo.reduction_percent; the percentage of reduction in the number of nodes with different threshold tau
% networkIfo.tau; the range of threshold tau
if ~exist('thresh_percent','var') || isempty(thresh_percent)
thresh_percent = 0.2; % 20% reduction in the number of nodes
end
if ~exist('showFigure','var') || isempty(showFigure)
showFigure = 1;
end
if ~exist('fig_width', 'var') || isempty(fig_width)
fig_width = 600;
end
if ~exist('fig_height', 'var') || isempty(fig_height)
fig_height = 180;
end
R00 = corr(data,'Type','Spearman');
R00 = triu(R00,1);
R00 = sparse(R00);
R00 = abs(R00);
total_nodes = size(R00,1);
if quick_construct || total_nodes < 50
if ~exist('thresh','var') || isempty(thresh),thresh = 0.1; end
threshSig = thresh;
[R,IDselect,deg] = calculatingAdjacencyMatrix(R00,threshSig);
num_nodes = length(IDselect);num_edges = nnz(R);
reduction_percent = (total_nodes-num_nodes)/total_nodes;
else
[thresh,num_nodes,num_edges] = calculatingNetworkMetrics(R00);
% reduction_percent = [0,-diff(num_nodes)./num_nodes(1:end-1)];
reduction_percent = (total_nodes-num_nodes)/total_nodes;
idx = find(reduction_percent > thresh_percent,1);
threshSig = thresh(idx-1);
[R,IDselect,deg] = calculatingAdjacencyMatrix(R00,threshSig);
end
networkIfo.R = R; networkIfo.IDselect = IDselect; networkIfo.deg = deg; networkIfo.reduction_percent = reduction_percent;networkIfo.tau = thresh;
if showFigure
hFig = figure('position', [600, 200, fig_width, fig_height]);
subplot(1,3,1)
plot(thresh,num_nodes,'k-o')
ylim([0 total_nodes*1.05])
xlim([0.05 0.85])
xlabel('\tau','FontName','Arial','FontSize',10);
ylabel('Number of nodes','FontName','Arial','FontSize',10);
box on
grid on
subplot(1,3,2)
plot(thresh,reduction_percent*100,'k-o')
ylim([0 100])
xlim([0.05 0.85])
xlabel('\tau','FontName','Arial','FontSize',10);
ylabel({'Percentage of reduction', 'in the number of nodes'},'FontName','Arial','FontSize',10);
ytickformat('percentage')
grid on
box on
subplot(1,3,3)
plot(thresh,num_edges,'k-o')
xlim([0.05 0.85])
xlabel('\tau','FontName','Arial','FontSize',10);
ylabel('Number of edges','FontName','Arial','FontSize',10);
box on
grid on
folderName = fullfile(pwd,'results','figures');
if ~exist(folderName, 'dir')
mkdir(folderName);
end
saveas(hFig,fullfile(folderName,'topological_metrics_gene_network.pdf'))
end
function [thresh,num_nodes,num_edges] = calculatingNetworkMetrics(R00)
thresh = 0.1:0.1:0.8;
num_nodes = zeros(1,length(thresh)); num_edges = zeros(1,length(thresh));
for i = 1:length(thresh)
[R,IDselect] = calculatingAdjacencyMatrix(R00,thresh(i));
num_edges(i) = nnz(R);
num_nodes(i) = length(IDselect);
sprintf('When tau is %.2f, the number of nodes is %d.',thresh(i),length(IDselect))
end
function [R,IDselect,deg] = calculatingAdjacencyMatrix(R,thresh)
R = R>thresh;
G = graph(R,'upper');
comp = conncomp(G,'OutputForm','cell');
[~,idx] = max(cellfun('length',comp));
IDselect = comp{idx};
R = R(IDselect,IDselect);
G = graph(R,'upper');
deg = degree(G);
|
github
|
sqjin/scEpath-master
|
optimal_SVHT_coef.m
|
.m
|
scEpath-master/optimal_SVHT_coef.m
| 4,578 |
utf_8
|
601f5430e4282be5998f855bc038b18f
|
function coef = optimal_SVHT_coef(beta, sigma_known)
% function omega = optimal_SVHT_coef(beta, sigma_known)
%
% Coefficient determining optimal location of Hard Threshold for Matrix
% Denoising by Singular Values Hard Thresholding when noise level is known or
% unknown.
%
% See D. L. Donoho and M. Gavish, "The Optimal Hard Threshold for Singular
% Values is 4/sqrt(3)", http://arxiv.org/abs/1305.5870
%
% IN:
% beta: aspect ratio m/n of the matrix to be denoised, 0<beta<=1.
% beta may be a vector
% sigma_known: 1 if noise level known, 0 if unknown
%
% OUT:
% coef: optimal location of hard threshold, up the median data singular
% value (sigma unknown) or up to sigma*sqrt(n) (sigma known);
% a vector of the same dimension as beta, where coef(i) is the
% coefficient correcponding to beta(i)
%
%
%
% Usage in unknown noise level:
%
% Given an m-by-n matrix Y known to be low rank and observed in white
% noise with mean zero and unknown variance
%
% [U D V] = svd(Y);
% y = diag(Y);
% y( y < (optimal_SVHT_coef_sigma_unknown(m/n,0) * median(y)) ) = 0;
%
% -----------------------------------------------------------------------------
% Authors: Matan Gavish and David Donoho <lastname>@stanford.edu, 2013
%
% This program is free software: you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation, either version 3 of the License, or (at your option) any later
% version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
% details.
%
% You should have received a copy of the GNU General Public License along with
% this program. If not, see <http://www.gnu.org/licenses/>.
% -----------------------------------------------------------------------------
if sigma_known
coef = optimal_SVHT_coef_sigma_known(beta);
else
coef = optimal_SVHT_coef_sigma_unknown(beta);
end
end
function lambda_star = optimal_SVHT_coef_sigma_known(beta)
assert(all(beta>0));
assert(all(beta<=1));
assert(prod(size(beta)) == length(beta)); % beta must be a vector
w = (8 * beta) ./ (beta + 1 + sqrt(beta.^2 + 14 * beta +1));
lambda_star = sqrt(2 * (beta + 1) + w);
end
function omega = optimal_SVHT_coef_sigma_unknown(beta)
warning('off','MATLAB:quadl:MinStepSize')
assert(all(beta>0));
assert(all(beta<=1));
assert(prod(size(beta)) == length(beta)); % beta must be a vector
coef = optimal_SVHT_coef_sigma_known(beta);
MPmedian = zeros(size(beta));
for i=1:length(beta)
MPmedian(i) = MedianMarcenkoPastur(beta(i));
end
omega = coef ./ sqrt(MPmedian);
end
function I = MarcenkoPasturIntegral(x,beta)
if beta <= 0 | beta > 1,
error('beta beyond')
end
lobnd = (1 - sqrt(beta))^2;
hibnd = (1 + sqrt(beta))^2;
if (x < lobnd) | (x > hibnd),
error('x beyond')
end
dens = @(t) sqrt((hibnd-t).*(t-lobnd))./(2*pi*beta.*t);
I = quadl(dens,lobnd,x);
fprintf('x=%.3f,beta=%.3f,I=%.3f\n',x,beta,I);
end
function med = MedianMarcenkoPastur(beta)
MarPas = @(x) 1-incMarPas(x,beta,0);
lobnd = (1 - sqrt(beta))^2;
hibnd = (1 + sqrt(beta))^2;
change = 1;
while change & (hibnd - lobnd > .001),
change = 0;
x = linspace(lobnd,hibnd,5);
for i=1:length(x),
y(i) = MarPas(x(i));
end
if any(y < 0.5),
lobnd = max(x(y < 0.5));
change = 1;
end
if any(y > 0.5),
hibnd = min(x(y > 0.5));
change = 1;
end
end
med = (hibnd+lobnd)./2;
end
function I = incMarPas(x0,beta,gamma)
if beta > 1,
error('betaBeyond');
end
topSpec = (1 + sqrt(beta))^2;
botSpec = (1 - sqrt(beta))^2;
MarPas = @(x) IfElse((topSpec-x).*(x-botSpec) >0, ...
sqrt((topSpec-x).*(x-botSpec))./(beta.* x)./(2 .* pi), ...
0);
if gamma ~= 0,
fun = @(x) (x.^gamma .* MarPas(x));
else
fun = @(x) MarPas(x);
end
I = quadl(fun,x0,topSpec);
function y=IfElse(Q,point,counterPoint)
y = point;
if any(~Q),
if length(counterPoint) == 1,
counterPoint = ones(size(Q)).*counterPoint;
end
y(~Q) = counterPoint(~Q);
end
end
end
|
github
|
sqjin/scEpath-master
|
distinguishable_colors.m
|
.m
|
scEpath-master/enternal/distinguishable_colors.m
| 5,753 |
utf_8
|
57960cf5d13cead2f1e291d1288bccb2
|
function colors = distinguishable_colors(n_colors,bg,func)
% DISTINGUISHABLE_COLORS: pick colors that are maximally perceptually distinct
%
% When plotting a set of lines, you may want to distinguish them by color.
% By default, Matlab chooses a small set of colors and cycles among them,
% and so if you have more than a few lines there will be confusion about
% which line is which. To fix this problem, one would want to be able to
% pick a much larger set of distinct colors, where the number of colors
% equals or exceeds the number of lines you want to plot. Because our
% ability to distinguish among colors has limits, one should choose these
% colors to be "maximally perceptually distinguishable."
%
% This function generates a set of colors which are distinguishable
% by reference to the "Lab" color space, which more closely matches
% human color perception than RGB. Given an initial large list of possible
% colors, it iteratively chooses the entry in the list that is farthest (in
% Lab space) from all previously-chosen entries. While this "greedy"
% algorithm does not yield a global maximum, it is simple and efficient.
% Moreover, the sequence of colors is consistent no matter how many you
% request, which facilitates the users' ability to learn the color order
% and avoids major changes in the appearance of plots when adding or
% removing lines.
%
% Syntax:
% colors = distinguishable_colors(n_colors)
% Specify the number of colors you want as a scalar, n_colors. This will
% generate an n_colors-by-3 matrix, each row representing an RGB
% color triple. If you don't precisely know how many you will need in
% advance, there is no harm (other than execution time) in specifying
% slightly more than you think you will need.
%
% colors = distinguishable_colors(n_colors,bg)
% This syntax allows you to specify the background color, to make sure that
% your colors are also distinguishable from the background. Default value
% is white. bg may be specified as an RGB triple or as one of the standard
% "ColorSpec" strings. You can even specify multiple colors:
% bg = {'w','k'}
% or
% bg = [1 1 1; 0 0 0]
% will only produce colors that are distinguishable from both white and
% black.
%
% colors = distinguishable_colors(n_colors,bg,rgb2labfunc)
% By default, distinguishable_colors uses the image processing toolbox's
% color conversion functions makecform and applycform. Alternatively, you
% can supply your own color conversion function.
%
% Example:
% c = distinguishable_colors(25);
% figure
% image(reshape(c,[1 size(c)]))
%
% Example using the file exchange's 'colorspace':
% func = @(x) colorspace('RGB->Lab',x);
% c = distinguishable_colors(25,'w',func);
% Copyright 2010-2011 by Timothy E. Holy
% Parse the inputs
if (nargin < 2)
bg = [1 1 1]; % default white background
else
if iscell(bg)
% User specified a list of colors as a cell aray
bgc = bg;
for i = 1:length(bgc)
bgc{i} = parsecolor(bgc{i});
end
bg = cat(1,bgc{:});
else
% User specified a numeric array of colors (n-by-3)
bg = parsecolor(bg);
end
end
% Generate a sizable number of RGB triples. This represents our space of
% possible choices. By starting in RGB space, we ensure that all of the
% colors can be generated by the monitor.
n_grid = 30; % number of grid divisions along each axis in RGB space
x = linspace(0,1,n_grid);
[R,G,B] = ndgrid(x,x,x);
rgb = [R(:) G(:) B(:)];
if (n_colors > size(rgb,1)/3)
error('You can''t readily distinguish that many colors');
end
% Convert to Lab color space, which more closely represents human
% perception
if (nargin > 2)
lab = func(rgb);
bglab = func(bg);
else
C = makecform('srgb2lab');
lab = applycform(rgb,C);
bglab = applycform(bg,C);
end
% If the user specified multiple background colors, compute distances
% from the candidate colors to the background colors
mindist2 = inf(size(rgb,1),1);
for i = 1:size(bglab,1)-1
dX = bsxfun(@minus,lab,bglab(i,:)); % displacement all colors from bg
dist2 = sum(dX.^2,2); % square distance
mindist2 = min(dist2,mindist2); % dist2 to closest previously-chosen color
end
% Iteratively pick the color that maximizes the distance to the nearest
% already-picked color
colors = zeros(n_colors,3);
lastlab = bglab(end,:); % initialize by making the "previous" color equal to background
for i = 1:n_colors
dX = bsxfun(@minus,lab,lastlab); % displacement of last from all colors on list
dist2 = sum(dX.^2,2); % square distance
mindist2 = min(dist2,mindist2); % dist2 to closest previously-chosen color
[~,index] = max(mindist2); % find the entry farthest from all previously-chosen colors
colors(i,:) = rgb(index,:); % save for output
lastlab = lab(index,:); % prepare for next iteration
end
end
function c = parsecolor(s)
if ischar(s)
c = colorstr2rgb(s);
elseif isnumeric(s) && size(s,2) == 3
c = s;
else
error('MATLAB:InvalidColorSpec','Color specification cannot be parsed.');
end
end
function c = colorstr2rgb(c)
% Convert a color string to an RGB value.
% This is cribbed from Matlab's whitebg function.
% Why don't they make this a stand-alone function?
rgbspec = [1 0 0;0 1 0;0 0 1;1 1 1;0 1 1;1 0 1;1 1 0;0 0 0];
cspec = 'rgbwcmyk';
k = find(cspec==c(1));
if isempty(k)
error('MATLAB:InvalidColorString','Unknown color string.');
end
if k~=3 || length(c)==1,
c = rgbspec(k,:);
elseif length(c)>2,
if strcmpi(c(1:3),'bla')
c = [0 0 0];
elseif strcmpi(c(1:3),'blu')
c = [0 0 1];
else
error('MATLAB:UnknownColorString', 'Unknown color string.');
end
end
end
|
github
|
sqjin/scEpath-master
|
SIMLR_LARGE.m
|
.m
|
scEpath-master/enternal/SIMLR/src/SIMLR_LARGE.m
| 3,824 |
utf_8
|
d93d9e5fe003f6e721edf44251075283
|
function [S0, F] = SIMLR_LARGE(X, c, k, ifimpute,normalize)
%%%
if nargin==2
k=10;
ifimpute = 0;
normalize = 0;
end
if nargin==3
ifimpute = 0;
normalize = 0;
end
if nargin==4
normalize = 0;
end
if ifimpute
X = X';
[I,J] = find(X==0);
Xmean = mean(X);
X(sub2ind(size(X),I,J)) = Xmean(J);
X = X';
end
if normalize
X = X';
X = X - min(X(:));
X = X / max(X(:));
X = bsxfun(@minus, X, mean(X, 1));
X = X';
end
NITER = 5;
r = -1;
beta = 0.8;
[ind, val] = mex_KNN_Annoy(X,2*k);
ind = ind + 1;
val = double((abs(val)));
%%%%construct multiple kernels
D_Kernels = mex_multipleK(val, ind,k); %D_Kernels are of size Nx(2k)x55
clear val
alphaK = 1/(size(D_Kernels,3))*ones(1,size(D_Kernels,3));
distX = mean(D_Kernels,3);
di = distX(:,2:(k+2));
rr = 0.5*(k*di(:,k+1)-sum(di(:,1:k),2));
if r <= 0
r = mean(rr);
end
lambda = max((mean(rr)),0);
clear rr di
%A(isnan(A))=0;
S0 = max(max(distX))-distX;
%S0(:,1) = S0(:,1) + sum(S0,2);
S0 = NE_dn(S0,'ave');
[F,evalues] = mex_top_eig_svd(S0, ind, c);
d = evalues/max(evalues);
d = (1-beta)*d./(1-beta*d.^2);
F =F.*repmat((d+eps)', length(F),1);
F = NE_dn(F,'ave');
F0 = F;
for iter = 1:NITER
distf = mex_L2_distance_1(F, ind);
distf = (distX+lambda*distf)/2/r;
distf = projsplx_c(-distf')';
S0 = (1-beta)*S0+(beta)*distf;
[F,evalues] = mex_top_eig_svd(S0, ind, c);
d = evalues/max(evalues);
d = (1-beta)*d./(1-beta*d.^2);
F =F.*repmat((d+eps)', length(F),1);
F = NE_dn(F,'ave');
F = (1-beta)*F0+(beta)*F;
F0 = F;
for i = 1:size(D_Kernels,3)
temp = (eps+D_Kernels(:,:,i)).*(eps+S0);
DD(i) = mean(sum(temp));
end
alphaK0 = umkl_bo(DD);
alphaK0 = alphaK0/sum(alphaK0);
alphaK = (1-beta)*alphaK + beta*alphaK0;
alphaK = alphaK/sum(alphaK);
lambda = 1.5*lambda;
r = r/1.1;
distX = Kbeta(D_Kernels,alphaK');
end;
val = S0;
I = repmat([1:size(S0,1)]',1,size(S0,2));
S0 = sparse(I(:), ind(:), S0(:)/2.0, size(S0,1),size(S0,1)) + sparse(ind(:), I(:), S0(:)/2.0, size(S0,1),size(S0,1));
ydata = [];
y = [];
end
function thisP = umkl_bo(D,beta)
if nargin<2
beta = 1/length(D);
end
tol = 1e-4;
u = 20;logU = log(u);
[H, thisP] = Hbeta(D, beta);
betamin = -Inf;
betamax = Inf;
% Evaluate whether the perplexity is within tolerance
Hdiff = H - logU;
tries = 0;
while (abs(Hdiff) > tol) && (tries < 30)
% If not, increase or decrease precision
if Hdiff > 0
betamin = beta;
if isinf(betamax)
beta = beta * 2;
else
beta = (beta + betamax) / 2;
end
else
betamax = beta;
if isinf(betamin)
beta = beta / 2;
else
beta = (beta + betamin) / 2;
end
end
% Recompute the values
[H, thisP] = Hbeta(D, beta);
Hdiff = H - logU;
tries = tries + 1;
end
end
function [H, P] = Hbeta(D, beta)
D = (D-min(D))/(max(D) - min(D)+eps);
P = exp(-D * beta);
sumP = sum(P);
H = log(sumP) + beta * sum(D .* P) / sumP;
P = P / sumP;
end
function D_kernels = mex_multipleK(val,ind,KK)
if nargin<3
KK=20;
end
val = val.*val;
sigma = [2:-0.25:1];
allk = [ceil(KK/2):ceil(KK/10):(ceil(KK*1.5))];
t = 1;
for i = 1:length(allk)
if allk(i)< size(val,2)
temp = mean(val(:,1:allk(i)),2);
temp0 = .5*(repmat(temp,1,size(val,2)) + temp(ind))+eps;
for j = 1:length(sigma)
temp = normpdf(val, 0, sigma(j)*temp0);
temptemp = temp(:,1);
temp = .5*(repmat(temptemp,1,size(val,2)) + temptemp(ind)) - temp;
D_kernels(:,:,t) = temp+eps;
t = t+1;
end
end
end
end
function distf = mex_L2_distance_1(F, ind)
[m,n] = size(ind);
I = repmat([1:m]',1,n);
temp = sum((F(I(:),:) - F(ind(:),:)).^2,2);
distf = zeros(m,n);
distf(:) = temp;
end
|
github
|
sqjin/scEpath-master
|
fast_pca.m
|
.m
|
scEpath-master/enternal/SIMLR/src/fast_pca.m
| 997 |
utf_8
|
faf27f941117e07978072249dcc5a39d
|
function X = fast_pca(in_X, K)
in_X = in_X - repmat(mean(in_X),size(in_X,1),1);
[U, S, ~] = rsvd(in_X, K);
K = min(size(S,2),K);
X = U(:,1:K)*diag(sqrt(diag(S(1:K,1:K))));
X = X./repmat(sqrt(sum(X.*X,2)),1,K);
end
function [U,S,V] = rsvd(A,K)
%-------------------------------------------------------------------------------------
% random SVD
% Extremely fast computation of the truncated Singular Value Decomposition, using
% randomized algorithms as described in Halko et al. 'finding structure with randomness
%
% usage :
%
% input:
% * A : matrix whose SVD we want
% * K : number of components to keep
%
% output:
% * U,S,V : classical output as the builtin svd matlab function
%-------------------------------------------------------------------------------------
% Antoine Liutkus (c) Inria 2014
[M,N] = size(A);
P = min(2*K,N);
X = randn(N,P);
Y = A*X;
W1 = orth(Y);
B = W1'*A;
[W2,S,V] = svd(B,'econ');
U = W1*W2;
K=min(K,size(U,2));
U = U(:,1:K);
S = S(1:K,1:K);
V=V(:,1:K);
end
|
github
|
sqjin/scEpath-master
|
L2_distance_1.m
|
.m
|
scEpath-master/enternal/SIMLR/src/L2_distance_1.m
| 508 |
utf_8
|
163a4a02852578aabe7c4660b447694b
|
% compute squared Euclidean distance
% ||A-B||^2 = ||A||^2 + ||B||^2 - 2*A'*B
function d = L2_distance_1(a,b)
% a,b: two matrices. each column is a data
% d: distance matrix of a and b
if (size(a,1) == 1)
a = [a; zeros(1,size(a,2))];
b = [b; zeros(1,size(b,2))];
end
aa=sum(a.*a); bb=sum(b.*b); ab=a'*b;
d = repmat(aa',[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) - 2*ab;
d = real(d);
d = max(d,0);
% % force 0 on the diagonal?
d = d.*(1-eye(size(d)));
%d = d/size(a,1)^2;
|
github
|
sqjin/scEpath-master
|
colorspace.m
|
.m
|
scEpath-master/enternal/SIMLR/src/colorspace.m
| 16,178 |
utf_8
|
2ca0aee9ae4d0f5c12a7028c45ef2b8d
|
function varargout = colorspace(Conversion,varargin)
%COLORSPACE Transform a color image between color representations.
% B = COLORSPACE(S,A) transforms the color representation of image A
% where S is a string specifying the conversion. The input array A
% should be a real full double array of size Mx3 or MxNx3. The output B
% is the same size as A.
%
% S tells the source and destination color spaces, S = 'dest<-src', or
% alternatively, S = 'src->dest'. Supported color spaces are
%
% 'RGB' sRGB IEC 61966-2-1
% 'YCbCr' Luma + Chroma ("digitized" version of Y'PbPr)
% 'JPEG-YCbCr' Luma + Chroma space used in JFIF JPEG
% 'YDbDr' SECAM Y'DbDr Luma + Chroma
% 'YPbPr' Luma (ITU-R BT.601) + Chroma
% 'YUV' NTSC PAL Y'UV Luma + Chroma
% 'YIQ' NTSC Y'IQ Luma + Chroma
% 'HSV' or 'HSB' Hue Saturation Value/Brightness
% 'HSL' or 'HLS' Hue Saturation Luminance
% 'HSI' Hue Saturation Intensity
% 'XYZ' CIE 1931 XYZ
% 'Lab' CIE 1976 L*a*b* (CIELAB)
% 'Luv' CIE L*u*v* (CIELUV)
% 'LCH' CIE L*C*H* (CIELCH)
% 'CAT02 LMS' CIE CAT02 LMS
%
% All conversions assume 2 degree observer and D65 illuminant.
%
% Color space names are case insensitive and spaces are ignored. When
% sRGB is the source or destination, it can be omitted. For example
% 'yuv<-' is short for 'yuv<-rgb'.
%
% For sRGB, the values should be scaled between 0 and 1. Beware that
% transformations generally do not constrain colors to be "in gamut."
% Particularly, transforming from another space to sRGB may obtain
% R'G'B' values outside of the [0,1] range. So the result should be
% clamped to [0,1] before displaying:
% image(min(max(B,0),1)); % Clamp B to [0,1] and display
%
% sRGB (Red Green Blue) is the (ITU-R BT.709 gamma-corrected) standard
% red-green-blue representation of colors used in digital imaging. The
% components should be scaled between 0 and 1. The space can be
% visualized geometrically as a cube.
%
% Y'PbPr, Y'CbCr, Y'DbDr, Y'UV, and Y'IQ are related to sRGB by linear
% transformations. These spaces separate a color into a grayscale
% luminance component Y and two chroma components. The valid ranges of
% the components depends on the space.
%
% HSV (Hue Saturation Value) is related to sRGB by
% H = hexagonal hue angle (0 <= H < 360),
% S = C/V (0 <= S <= 1),
% V = max(R',G',B') (0 <= V <= 1),
% where C = max(R',G',B') - min(R',G',B'). The hue angle H is computed on
% a hexagon. The space is geometrically a hexagonal cone.
%
% HSL (Hue Saturation Lightness) is related to sRGB by
% H = hexagonal hue angle (0 <= H < 360),
% S = C/(1 - |2L-1|) (0 <= S <= 1),
% L = (max(R',G',B') + min(R',G',B'))/2 (0 <= L <= 1),
% where H and C are the same as in HSV. Geometrically, the space is a
% double hexagonal cone.
%
% HSI (Hue Saturation Intensity) is related to sRGB by
% H = polar hue angle (0 <= H < 360),
% S = 1 - min(R',G',B')/I (0 <= S <= 1),
% I = (R'+G'+B')/3 (0 <= I <= 1).
% Unlike HSV and HSL, the hue angle H is computed on a circle rather than
% a hexagon.
%
% CIE XYZ is related to sRGB by inverse gamma correction followed by a
% linear transform. Other CIE color spaces are defined relative to XYZ.
%
% CIE L*a*b*, L*u*v*, and L*C*H* are nonlinear functions of XYZ. The L*
% component is designed to match closely with human perception of
% lightness. The other two components describe the chroma.
%
% CIE CAT02 LMS is the linear transformation of XYZ using the MCAT02
% chromatic adaptation matrix. The space is designed to model the
% response of the three types of cones in the human eye, where L, M, S,
% correspond respectively to red ("long"), green ("medium"), and blue
% ("short").
% Pascal Getreuer 2005-2010
%%% Input parsing %%%
if nargin < 2, error('Not enough input arguments.'); end
[SrcSpace,DestSpace] = parse(Conversion);
if nargin == 2
Image = varargin{1};
elseif nargin >= 3
Image = cat(3,varargin{:});
else
error('Invalid number of input arguments.');
end
FlipDims = (size(Image,3) == 1);
if FlipDims, Image = permute(Image,[1,3,2]); end
if ~isa(Image,'double'), Image = double(Image)/255; end
if size(Image,3) ~= 3, error('Invalid input size.'); end
SrcT = gettransform(SrcSpace);
DestT = gettransform(DestSpace);
if ~ischar(SrcT) && ~ischar(DestT)
% Both source and destination transforms are affine, so they
% can be composed into one affine operation
T = [DestT(:,1:3)*SrcT(:,1:3),DestT(:,1:3)*SrcT(:,4)+DestT(:,4)];
Temp = zeros(size(Image));
Temp(:,:,1) = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3) + T(10);
Temp(:,:,2) = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3) + T(11);
Temp(:,:,3) = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3) + T(12);
Image = Temp;
elseif ~ischar(DestT)
Image = rgb(Image,SrcSpace);
Temp = zeros(size(Image));
Temp(:,:,1) = DestT(1)*Image(:,:,1) + DestT(4)*Image(:,:,2) + DestT(7)*Image(:,:,3) + DestT(10);
Temp(:,:,2) = DestT(2)*Image(:,:,1) + DestT(5)*Image(:,:,2) + DestT(8)*Image(:,:,3) + DestT(11);
Temp(:,:,3) = DestT(3)*Image(:,:,1) + DestT(6)*Image(:,:,2) + DestT(9)*Image(:,:,3) + DestT(12);
Image = Temp;
else
Image = feval(DestT,Image,SrcSpace);
end
%%% Output format %%%
if nargout > 1
varargout = {Image(:,:,1),Image(:,:,2),Image(:,:,3)};
else
if FlipDims, Image = permute(Image,[1,3,2]); end
varargout = {Image};
end
return;
function [SrcSpace,DestSpace] = parse(Str)
% Parse conversion argument
if ischar(Str)
Str = lower(strrep(strrep(Str,'-',''),'=',''));
k = find(Str == '>');
if length(k) == 1 % Interpret the form 'src->dest'
SrcSpace = Str(1:k-1);
DestSpace = Str(k+1:end);
else
k = find(Str == '<');
if length(k) == 1 % Interpret the form 'dest<-src'
DestSpace = Str(1:k-1);
SrcSpace = Str(k+1:end);
else
error(['Invalid conversion, ''',Str,'''.']);
end
end
SrcSpace = alias(SrcSpace);
DestSpace = alias(DestSpace);
else
SrcSpace = 1; % No source pre-transform
DestSpace = Conversion;
if any(size(Conversion) ~= 3), error('Transformation matrix must be 3x3.'); end
end
return;
function Space = alias(Space)
Space = strrep(strrep(Space,'cie',''),' ','');
if isempty(Space)
Space = 'rgb';
end
switch Space
case {'ycbcr','ycc'}
Space = 'ycbcr';
case {'hsv','hsb'}
Space = 'hsv';
case {'hsl','hsi','hls'}
Space = 'hsl';
case {'rgb','yuv','yiq','ydbdr','ycbcr','jpegycbcr','xyz','lab','luv','lch'}
return;
end
return;
function T = gettransform(Space)
% Get a colorspace transform: either a matrix describing an affine transform,
% or a string referring to a conversion subroutine
switch Space
case 'ypbpr'
T = [0.299,0.587,0.114,0;-0.1687367,-0.331264,0.5,0;0.5,-0.418688,-0.081312,0];
case 'yuv'
% sRGB to NTSC/PAL YUV
% Wikipedia: http://en.wikipedia.org/wiki/YUV
T = [0.299,0.587,0.114,0;-0.147,-0.289,0.436,0;0.615,-0.515,-0.100,0];
case 'ydbdr'
% sRGB to SECAM YDbDr
% Wikipedia: http://en.wikipedia.org/wiki/YDbDr
T = [0.299,0.587,0.114,0;-0.450,-0.883,1.333,0;-1.333,1.116,0.217,0];
case 'yiq'
% sRGB in [0,1] to NTSC YIQ in [0,1];[-0.595716,0.595716];[-0.522591,0.522591];
% Wikipedia: http://en.wikipedia.org/wiki/YIQ
T = [0.299,0.587,0.114,0;0.595716,-0.274453,-0.321263,0;0.211456,-0.522591,0.311135,0];
case 'ycbcr'
% sRGB (range [0,1]) to ITU-R BRT.601 (CCIR 601) Y'CbCr
% Wikipedia: http://en.wikipedia.org/wiki/YCbCr
% Poynton, Equation 3, scaling of R'G'B to Y'PbPr conversion
T = [65.481,128.553,24.966,16;-37.797,-74.203,112.0,128;112.0,-93.786,-18.214,128];
case 'jpegycbcr'
% Wikipedia: http://en.wikipedia.org/wiki/YCbCr
T = [0.299,0.587,0.114,0;-0.168736,-0.331264,0.5,0.5;0.5,-0.418688,-0.081312,0.5]*255;
case {'rgb','xyz','hsv','hsl','lab','luv','lch','cat02lms'}
T = Space;
otherwise
error(['Unknown color space, ''',Space,'''.']);
end
return;
function Image = rgb(Image,SrcSpace)
% Convert to sRGB from 'SrcSpace'
switch SrcSpace
case 'rgb'
return;
case 'hsv'
% Convert HSV to sRGB
Image = huetorgb((1 - Image(:,:,2)).*Image(:,:,3),Image(:,:,3),Image(:,:,1));
case 'hsl'
% Convert HSL to sRGB
L = Image(:,:,3);
Delta = Image(:,:,2).*min(L,1-L);
Image = huetorgb(L-Delta,L+Delta,Image(:,:,1));
case {'xyz','lab','luv','lch','cat02lms'}
% Convert to CIE XYZ
Image = xyz(Image,SrcSpace);
% Convert XYZ to RGB
T = [3.2406, -1.5372, -0.4986; -0.9689, 1.8758, 0.0415; 0.0557, -0.2040, 1.057];
R = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3); % R
G = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3); % G
B = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3); % B
% Desaturate and rescale to constrain resulting RGB values to [0,1]
AddWhite = -min(min(min(R,G),B),0);
R = R + AddWhite;
G = G + AddWhite;
B = B + AddWhite;
% Apply gamma correction to convert linear RGB to sRGB
Image(:,:,1) = gammacorrection(R); % R'
Image(:,:,2) = gammacorrection(G); % G'
Image(:,:,3) = gammacorrection(B); % B'
otherwise % Conversion is through an affine transform
T = gettransform(SrcSpace);
temp = inv(T(:,1:3));
T = [temp,-temp*T(:,4)];
R = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3) + T(10);
G = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3) + T(11);
B = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3) + T(12);
Image(:,:,1) = R;
Image(:,:,2) = G;
Image(:,:,3) = B;
end
% Clip to [0,1]
Image = min(max(Image,0),1);
return;
function Image = xyz(Image,SrcSpace)
% Convert to CIE XYZ from 'SrcSpace'
WhitePoint = [0.950456,1,1.088754];
switch SrcSpace
case 'xyz'
return;
case 'luv'
% Convert CIE L*uv to XYZ
WhitePointU = (4*WhitePoint(1))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));
WhitePointV = (9*WhitePoint(2))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));
L = Image(:,:,1);
Y = (L + 16)/116;
Y = invf(Y)*WhitePoint(2);
U = Image(:,:,2)./(13*L + 1e-6*(L==0)) + WhitePointU;
V = Image(:,:,3)./(13*L + 1e-6*(L==0)) + WhitePointV;
Image(:,:,1) = -(9*Y.*U)./((U-4).*V - U.*V); % X
Image(:,:,2) = Y; % Y
Image(:,:,3) = (9*Y - (15*V.*Y) - (V.*Image(:,:,1)))./(3*V); % Z
case {'lab','lch'}
Image = lab(Image,SrcSpace);
% Convert CIE L*ab to XYZ
fY = (Image(:,:,1) + 16)/116;
fX = fY + Image(:,:,2)/500;
fZ = fY - Image(:,:,3)/200;
Image(:,:,1) = WhitePoint(1)*invf(fX); % X
Image(:,:,2) = WhitePoint(2)*invf(fY); % Y
Image(:,:,3) = WhitePoint(3)*invf(fZ); % Z
case 'cat02lms'
% Convert CAT02 LMS to XYZ
T = inv([0.7328, 0.4296, -0.1624;-0.7036, 1.6975, 0.0061; 0.0030, 0.0136, 0.9834]);
L = Image(:,:,1);
M = Image(:,:,2);
S = Image(:,:,3);
Image(:,:,1) = T(1)*L + T(4)*M + T(7)*S; % X
Image(:,:,2) = T(2)*L + T(5)*M + T(8)*S; % Y
Image(:,:,3) = T(3)*L + T(6)*M + T(9)*S; % Z
otherwise % Convert from some gamma-corrected space
% Convert to sRGB
Image = rgb(Image,SrcSpace);
% Undo gamma correction
R = invgammacorrection(Image(:,:,1));
G = invgammacorrection(Image(:,:,2));
B = invgammacorrection(Image(:,:,3));
% Convert RGB to XYZ
T = inv([3.2406, -1.5372, -0.4986; -0.9689, 1.8758, 0.0415; 0.0557, -0.2040, 1.057]);
Image(:,:,1) = T(1)*R + T(4)*G + T(7)*B; % X
Image(:,:,2) = T(2)*R + T(5)*G + T(8)*B; % Y
Image(:,:,3) = T(3)*R + T(6)*G + T(9)*B; % Z
end
return;
function Image = hsv(Image,SrcSpace)
% Convert to HSV
Image = rgb(Image,SrcSpace);
V = max(Image,[],3);
S = (V - min(Image,[],3))./(V + (V == 0));
Image(:,:,1) = rgbtohue(Image);
Image(:,:,2) = S;
Image(:,:,3) = V;
return;
function Image = hsl(Image,SrcSpace)
% Convert to HSL
switch SrcSpace
case 'hsv'
% Convert HSV to HSL
MaxVal = Image(:,:,3);
MinVal = (1 - Image(:,:,2)).*MaxVal;
L = 0.5*(MaxVal + MinVal);
temp = min(L,1-L);
Image(:,:,2) = 0.5*(MaxVal - MinVal)./(temp + (temp == 0));
Image(:,:,3) = L;
otherwise
Image = rgb(Image,SrcSpace); % Convert to sRGB
% Convert sRGB to HSL
MinVal = min(Image,[],3);
MaxVal = max(Image,[],3);
L = 0.5*(MaxVal + MinVal);
temp = min(L,1-L);
S = 0.5*(MaxVal - MinVal)./(temp + (temp == 0));
Image(:,:,1) = rgbtohue(Image);
Image(:,:,2) = S;
Image(:,:,3) = L;
end
return;
function Image = lab(Image,SrcSpace)
% Convert to CIE L*a*b* (CIELAB)
WhitePoint = [0.950456,1,1.088754];
switch SrcSpace
case 'lab'
return;
case 'lch'
% Convert CIE L*CH to CIE L*ab
C = Image(:,:,2);
Image(:,:,2) = cos(Image(:,:,3)*pi/180).*C; % a*
Image(:,:,3) = sin(Image(:,:,3)*pi/180).*C; % b*
otherwise
Image = xyz(Image,SrcSpace); % Convert to XYZ
% Convert XYZ to CIE L*a*b*
X = Image(:,:,1)/WhitePoint(1);
Y = Image(:,:,2)/WhitePoint(2);
Z = Image(:,:,3)/WhitePoint(3);
fX = f(X);
fY = f(Y);
fZ = f(Z);
Image(:,:,1) = 116*fY - 16; % L*
Image(:,:,2) = 500*(fX - fY); % a*
Image(:,:,3) = 200*(fY - fZ); % b*
end
return;
function Image = luv(Image,SrcSpace)
% Convert to CIE L*u*v* (CIELUV)
WhitePoint = [0.950456,1,1.088754];
WhitePointU = (4*WhitePoint(1))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));
WhitePointV = (9*WhitePoint(2))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));
Image = xyz(Image,SrcSpace); % Convert to XYZ
Denom = Image(:,:,1) + 15*Image(:,:,2) + 3*Image(:,:,3);
U = (4*Image(:,:,1))./(Denom + (Denom == 0));
V = (9*Image(:,:,2))./(Denom + (Denom == 0));
Y = Image(:,:,2)/WhitePoint(2);
L = 116*f(Y) - 16;
Image(:,:,1) = L; % L*
Image(:,:,2) = 13*L.*(U - WhitePointU); % u*
Image(:,:,3) = 13*L.*(V - WhitePointV); % v*
return;
function Image = lch(Image,SrcSpace)
% Convert to CIE L*ch
Image = lab(Image,SrcSpace); % Convert to CIE L*ab
H = atan2(Image(:,:,3),Image(:,:,2));
H = H*180/pi + 360*(H < 0);
Image(:,:,2) = sqrt(Image(:,:,2).^2 + Image(:,:,3).^2); % C
Image(:,:,3) = H; % H
return;
function Image = cat02lms(Image,SrcSpace)
% Convert to CAT02 LMS
Image = xyz(Image,SrcSpace);
T = [0.7328, 0.4296, -0.1624;-0.7036, 1.6975, 0.0061; 0.0030, 0.0136, 0.9834];
X = Image(:,:,1);
Y = Image(:,:,2);
Z = Image(:,:,3);
Image(:,:,1) = T(1)*X + T(4)*Y + T(7)*Z; % L
Image(:,:,2) = T(2)*X + T(5)*Y + T(8)*Z; % M
Image(:,:,3) = T(3)*X + T(6)*Y + T(9)*Z; % S
return;
function Image = huetorgb(m0,m2,H)
% Convert HSV or HSL hue to RGB
N = size(H);
H = min(max(H(:),0),360)/60;
m0 = m0(:);
m2 = m2(:);
F = H - round(H/2)*2;
M = [m0, m0 + (m2-m0).*abs(F), m2];
Num = length(m0);
j = [2 1 0;1 2 0;0 2 1;0 1 2;1 0 2;2 0 1;2 1 0]*Num;
k = floor(H) + 1;
Image = reshape([M(j(k,1)+(1:Num).'),M(j(k,2)+(1:Num).'),M(j(k,3)+(1:Num).')],[N,3]);
return;
function H = rgbtohue(Image)
% Convert RGB to HSV or HSL hue
[M,i] = sort(Image,3);
i = i(:,:,3);
Delta = M(:,:,3) - M(:,:,1);
Delta = Delta + (Delta == 0);
R = Image(:,:,1);
G = Image(:,:,2);
B = Image(:,:,3);
H = zeros(size(R));
k = (i == 1);
H(k) = (G(k) - B(k))./Delta(k);
k = (i == 2);
H(k) = 2 + (B(k) - R(k))./Delta(k);
k = (i == 3);
H(k) = 4 + (R(k) - G(k))./Delta(k);
H = 60*H + 360*(H < 0);
H(Delta == 0) = nan;
return;
function Rp = gammacorrection(R)
Rp = zeros(size(R));
i = (R <= 0.0031306684425005883);
Rp(i) = 12.92*R(i);
Rp(~i) = real(1.055*R(~i).^0.416666666666666667 - 0.055);
return;
function R = invgammacorrection(Rp)
R = zeros(size(Rp));
i = (Rp <= 0.0404482362771076);
R(i) = Rp(i)/12.92;
R(~i) = real(((Rp(~i) + 0.055)/1.055).^2.4);
return;
function fY = f(Y)
fY = real(Y.^(1/3));
i = (Y < 0.008856);
fY(i) = Y(i)*(841/108) + (4/29);
return;
function Y = invf(fY)
Y = fY.^3;
i = (Y < 0.008856);
Y(i) = (fY(i) - 4/29)*(108/841);
return;
|
github
|
sqjin/scEpath-master
|
litekmeans.m
|
.m
|
scEpath-master/enternal/SIMLR/src/litekmeans.m
| 16,583 |
utf_8
|
b74ab36bf2876c2205b06e5bb554d8d8
|
function [label, center, bCon, sumD, D] = litekmeans(X, k, varargin)
%LITEKMEANS K-means clustering, accelerated by matlab matrix operations.
%
% label = LITEKMEANS(X, K) partitions the points in the N-by-P data matrix
% X into K clusters. This partition minimizes the sum, over all
% clusters, of the within-cluster sums of point-to-cluster-centroid
% distances. Rows of X correspond to points, columns correspond to
% variables. KMEANS returns an N-by-1 vector label containing the
% cluster indices of each point.
%
% [label, center] = LITEKMEANS(X, K) returns the K cluster centroid
% locations in the K-by-P matrix center.
%
% [label, center, bCon] = LITEKMEANS(X, K) returns the bool value bCon to
% indicate whether the iteration is converged.
%
% [label, center, bCon, SUMD] = LITEKMEANS(X, K) returns the
% within-cluster sums of point-to-centroid distances in the 1-by-K vector
% sumD.
%
% [label, center, bCon, SUMD, D] = LITEKMEANS(X, K) returns
% distances from each point to every centroid in the N-by-K matrix D.
%
% [ ... ] = LITEKMEANS(..., 'PARAM1',val1, 'PARAM2',val2, ...) specifies
% optional parameter name/value pairs to control the iterative algorithm
% used by KMEANS. Parameters are:
%
% 'Distance' - Distance measure, in P-dimensional space, that KMEANS
% should minimize with respect to. Choices are:
% {'sqEuclidean'} - Squared Euclidean distance (the default)
% 'cosine' - One minus the cosine of the included angle
% between points (treated as vectors). Each
% row of X SHOULD be normalized to unit. If
% the intial center matrix is provided, it
% SHOULD also be normalized.
%
% 'Start' - Method used to choose initial cluster centroid positions,
% sometimes known as "seeds". Choices are:
% {'sample'} - Select K observations from X at random (the default)
% 'cluster' - Perform preliminary clustering phase on random 10%
% subsample of X. This preliminary phase is itself
% initialized using 'sample'. An additional parameter
% clusterMaxIter can be used to control the maximum
% number of iterations in each preliminary clustering
% problem.
% matrix - A K-by-P matrix of starting locations; or a K-by-1
% indicate vector indicating which K points in X
% should be used as the initial center. In this case,
% you can pass in [] for K, and KMEANS infers K from
% the first dimension of the matrix.
%
% 'MaxIter' - Maximum number of iterations allowed. Default is 100.
%
% 'Replicates' - Number of times to repeat the clustering, each with a
% new set of initial centroids. Default is 1. If the
% initial centroids are provided, the replicate will be
% automatically set to be 1.
%
% 'clusterMaxIter' - Only useful when 'Start' is 'cluster'. Maximum number
% of iterations of the preliminary clustering phase.
% Default is 10.
%
%
% Examples:
%
% fea = rand(500,10);
% [label, center] = litekmeans(fea, 5, 'MaxIter', 50);
%
% fea = rand(500,10);
% [label, center] = litekmeans(fea, 5, 'MaxIter', 50, 'Replicates', 10);
%
% fea = rand(500,10);
% [label, center, bCon, sumD, D] = litekmeans(fea, 5, 'MaxIter', 50);
% TSD = sum(sumD);
%
% fea = rand(500,10);
% initcenter = rand(5,10);
% [label, center] = litekmeans(fea, 5, 'MaxIter', 50, 'Start', initcenter);
%
% fea = rand(500,10);
% idx=randperm(500);
% [label, center] = litekmeans(fea, 5, 'MaxIter', 50, 'Start', idx(1:5));
%
%
% See also KMEANS
%
% [Cite] Deng Cai, "Litekmeans: the fastest matlab implementation of
% kmeans," Available at:
% http://www.zjucadcg.cn/dengcai/Data/Clustering.html, 2011.
%
% version 2.0 --December/2011
% version 1.0 --November/2011
%
% Written by Deng Cai (dengcai AT gmail.com)
if nargin < 2
error('litekmeans:TooFewInputs','At least two input arguments required.');
end
[n, p] = size(X);
pnames = { 'distance' 'start' 'maxiter' 'replicates' 'onlinephase' 'clustermaxiter'};
dflts = {'sqeuclidean' 'sample' [] [] 'off' [] };
[eid,errmsg,distance,start,maxit,reps,online,clustermaxit] = getargs(pnames, dflts, varargin{:});
if ~isempty(eid)
error(sprintf('litekmeans:%s',eid),errmsg);
end
if ischar(distance)
distNames = {'sqeuclidean','cosine'};
j = strcmpi(distance, distNames);
j = find(j);
if length(j) > 1
error('litekmeans:AmbiguousDistance', ...
'Ambiguous ''Distance'' parameter value: %s.', distance);
elseif isempty(j)
error('litekmeans:UnknownDistance', ...
'Unknown ''Distance'' parameter value: %s.', distance);
end
distance = distNames{j};
else
error('litekmeans:InvalidDistance', ...
'The ''Distance'' parameter value must be a string.');
end
center = [];
if ischar(start)
startNames = {'sample','cluster'};
j = find(strncmpi(start,startNames,length(start)));
if length(j) > 1
error(message('litekmeans:AmbiguousStart', start));
elseif isempty(j)
error(message('litekmeans:UnknownStart', start));
elseif isempty(k)
error('litekmeans:MissingK', ...
'You must specify the number of clusters, K.');
end
if j == 2
if floor(.1*n) < 5*k
j = 1;
end
end
start = startNames{j};
elseif isnumeric(start)
if size(start,2) == p
center = start;
elseif (size(start,2) == 1 || size(start,1) == 1)
center = X(start,:);
else
error('litekmeans:MisshapedStart', ...
'The ''Start'' matrix must have the same number of columns as X.');
end
if isempty(k)
k = size(center,1);
elseif (k ~= size(center,1))
error('litekmeans:MisshapedStart', ...
'The ''Start'' matrix must have K rows.');
end
start = 'numeric';
else
error('litekmeans:InvalidStart', ...
'The ''Start'' parameter value must be a string or a numeric matrix or array.');
end
% The maximum iteration number is default 100
if isempty(maxit)
maxit = 100;
end
% The maximum iteration number for preliminary clustering phase on random
% 10% subsamples is default 10
if isempty(clustermaxit)
clustermaxit = 10;
end
% Assume one replicate
if isempty(reps) || ~isempty(center)
reps = 1;
end
if ~(isscalar(k) && isnumeric(k) && isreal(k) && k > 0 && (round(k)==k))
error('litekmeans:InvalidK', ...
'X must be a positive integer value.');
elseif n < k
error('litekmeans:TooManyClusters', ...
'X must have more rows than the number of clusters.');
end
bestlabel = [];
sumD = zeros(1,k);
bCon = false;
for t=1:reps
switch start
case 'sample'
center = X(randsample(n,k),:);
case 'cluster'
Xsubset = X(randsample(n,floor(.1*n)),:);
[dump, center] = litekmeans(Xsubset, k, varargin{:}, 'start','sample', 'replicates',1 ,'MaxIter',clustermaxit);
case 'numeric'
end
last = 0;label=1;
it=0;
switch distance
case 'sqeuclidean'
while any(label ~= last) && it<maxit
last = label;
bb = full(sum(center.*center,2)');
ab = full(X*center');
D = bb(ones(1,n),:) - 2*ab;
[val,label] = min(D,[],2); % assign samples to the nearest centers
ll = unique(label);
if length(ll) < k
%disp([num2str(k-length(ll)),' clusters dropped at iter ',num2str(it)]);
missCluster = 1:k;
missCluster(ll) = [];
missNum = length(missCluster);
aa = sum(X.*X,2);
val = aa + val;
[dump,idx] = sort(val,1,'descend');
label(idx(1:missNum)) = missCluster;
end
E = sparse(1:n,label,1,n,k,n); % transform label into indicator matrix
center = full((E*spdiags(1./sum(E,1)',0,k,k))'*X); % compute center of each cluster
it=it+1;
end
if it<maxit
bCon = true;
end
if isempty(bestlabel)
bestlabel = label;
bestcenter = center;
if reps>1
if it>=maxit
aa = full(sum(X.*X,2));
bb = full(sum(center.*center,2));
ab = full(X*center');
D = bsxfun(@plus,aa,bb') - 2*ab;
D(D<0) = 0;
else
aa = full(sum(X.*X,2));
D = aa(:,ones(1,k)) + D;
D(D<0) = 0;
end
D = sqrt(D);
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
bestsumD = sumD;
bestD = D;
end
else
if it>=maxit
aa = full(sum(X.*X,2));
bb = full(sum(center.*center,2));
ab = full(X*center');
D = bsxfun(@plus,aa,bb') - 2*ab;
D(D<0) = 0;
else
aa = full(sum(X.*X,2));
D = aa(:,ones(1,k)) + D;
D(D<0) = 0;
end
D = sqrt(D);
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
if sum(sumD) < sum(bestsumD)
bestlabel = label;
bestcenter = center;
bestsumD = sumD;
bestD = D;
end
end
case 'cosine'
while any(label ~= last) && it<maxit
last = label;
W=full(X*center');
[val,label] = max(W,[],2); % assign samples to the nearest centers
ll = unique(label);
if length(ll) < k
missCluster = 1:k;
missCluster(ll) = [];
missNum = length(missCluster);
[dump,idx] = sort(val);
label(idx(1:missNum)) = missCluster;
end
E = sparse(1:n,label,1,n,k,n); % transform label into indicator matrix
center = full((E*spdiags(1./sum(E,1)',0,k,k))'*X); % compute center of each cluster
centernorm = sqrt(sum(center.^2, 2));
center = center ./ centernorm(:,ones(1,p));
it=it+1;
end
if it<maxit
bCon = true;
end
if isempty(bestlabel)
bestlabel = label;
bestcenter = center;
if reps>1
if any(label ~= last)
W=full(X*center');
end
D = 1-W;
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
bestsumD = sumD;
bestD = D;
end
else
if any(label ~= last)
W=full(X*center');
end
D = 1-W;
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
if sum(sumD) < sum(bestsumD)
bestlabel = label;
bestcenter = center;
bestsumD = sumD;
bestD = D;
end
end
end
end
label = bestlabel;
center = bestcenter;
if reps>1
sumD = bestsumD;
D = bestD;
elseif nargout > 3
switch distance
case 'sqeuclidean'
if it>=maxit
aa = full(sum(X.*X,2));
bb = full(sum(center.*center,2));
ab = full(X*center');
D = bsxfun(@plus,aa,bb') - 2*ab;
D(D<0) = 0;
else
aa = full(sum(X.*X,2));
D = aa(:,ones(1,k)) + D;
D(D<0) = 0;
end
D = sqrt(D);
case 'cosine'
if it>=maxit
W=full(X*center');
end
D = 1-W;
end
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
end
function [eid,emsg,varargout]=getargs(pnames,dflts,varargin)
%GETARGS Process parameter name/value pairs
% [EID,EMSG,A,B,...]=GETARGS(PNAMES,DFLTS,'NAME1',VAL1,'NAME2',VAL2,...)
% accepts a cell array PNAMES of valid parameter names, a cell array
% DFLTS of default values for the parameters named in PNAMES, and
% additional parameter name/value pairs. Returns parameter values A,B,...
% in the same order as the names in PNAMES. Outputs corresponding to
% entries in PNAMES that are not specified in the name/value pairs are
% set to the corresponding value from DFLTS. If nargout is equal to
% length(PNAMES)+1, then unrecognized name/value pairs are an error. If
% nargout is equal to length(PNAMES)+2, then all unrecognized name/value
% pairs are returned in a single cell array following any other outputs.
%
% EID and EMSG are empty if the arguments are valid. If an error occurs,
% EMSG is the text of an error message and EID is the final component
% of an error message id. GETARGS does not actually throw any errors,
% but rather returns EID and EMSG so that the caller may throw the error.
% Outputs will be partially processed after an error occurs.
%
% This utility can be used for processing name/value pair arguments.
%
% Example:
% pnames = {'color' 'linestyle', 'linewidth'}
% dflts = { 'r' '_' '1'}
% varargin = {{'linew' 2 'nonesuch' [1 2 3] 'linestyle' ':'}
% [eid,emsg,c,ls,lw] = statgetargs(pnames,dflts,varargin{:}) % error
% [eid,emsg,c,ls,lw,ur] = statgetargs(pnames,dflts,varargin{:}) % ok
% We always create (nparams+2) outputs:
% one each for emsg and eid
% nparams varargs for values corresponding to names in pnames
% If they ask for one more (nargout == nparams+3), it's for unrecognized
% names/values
% Original Copyright 1993-2008 The MathWorks, Inc.
% Modified by Deng Cai ([email protected]) 2011.11.27
% Initialize some variables
emsg = '';
eid = '';
nparams = length(pnames);
varargout = dflts;
unrecog = {};
nargs = length(varargin);
% Must have name/value pairs
if mod(nargs,2)~=0
eid = 'WrongNumberArgs';
emsg = 'Wrong number of arguments.';
else
% Process name/value pairs
for j=1:2:nargs
pname = varargin{j};
if ~ischar(pname)
eid = 'BadParamName';
emsg = 'Parameter name must be text.';
break;
end
i = strcmpi(pname,pnames);
i = find(i);
if isempty(i)
% if they've asked to get back unrecognized names/values, add this
% one to the list
if nargout > nparams+2
unrecog((end+1):(end+2)) = {varargin{j} varargin{j+1}};
% otherwise, it's an error
else
eid = 'BadParamName';
emsg = sprintf('Invalid parameter name: %s.',pname);
break;
end
elseif length(i)>1
eid = 'BadParamName';
emsg = sprintf('Ambiguous parameter name: %s.',pname);
break;
else
varargout{i} = varargin{j+1};
end
end
end
varargout{nparams+1} = unrecog;
|
github
|
sqjin/scEpath-master
|
SIMLR.m
|
.m
|
scEpath-master/enternal/SIMLR/src/SIMLR.m
| 9,303 |
utf_8
|
7913f20bdbdf908c5366ae37d193da4d
|
function [y, S, F, ydata,alphaK,timeOurs,converge,LF] = SIMLR(X, c, k, ifimpute,normalize)
%%%
if nargin==2
k=10;
ifimpute = 0;
normalize = 0;
end
if nargin==3
ifimpute = 0;
normalize = 0;
end
if nargin==4
normalize = 0;
end
if ifimpute
X = X';
[I,J] = find(X==0);
Xmean = mean(X);
X(sub2ind(size(X),I,J)) = Xmean(J);
X = X';
end
if normalize
X = X';
X = X - min(X(:));
X = X / max(X(:));
X = bsxfun(@minus, X, mean(X, 1));
X = X';
end
t0 = tic;
order = 2;
no_dim=c;
NITER = 30;
num = size(X,1);
r = -1;
beta = 0.8;
D_Kernels = multipleK(X);
clear X
alphaK = 1/(size(D_Kernels,3))*ones(1,size(D_Kernels,3));
distX = mean(D_Kernels,3);
[distX1, idx] = sort(distX,2);
A = zeros(num);
di = distX1(:,2:(k+2));
rr = 0.5*(k*di(:,k+1)-sum(di(:,1:k),2));
id = idx(:,2:k+2);
temp = (repmat(di(:,k+1),1,size(di,2))-di)./repmat((k*di(:,k+1)-sum(di(:,1:k),2)+eps),1,size(di,2));
a = repmat([1:num]',1,size(id,2));
A(sub2ind(size(A),a(:),id(:)))=temp(:);
if r <= 0
r = mean(rr);
end
lambda = max((mean(rr)),0);
A(isnan(A))=0;
S0 = max(max(distX))-distX;
S0 = Network_Diffusion(S0,k);
S0 = NE_dn(S0,'ave');
S= (S0 + S0')/2;
D0 = diag(sum(S,order));
L0= D0-S;
[F, temp, evs]=eig1(L0, c, 0);
F = NE_dn(F,'ave');
for iter = 1:NITER
distf = L2_distance_1(F',F');
A = zeros(num);
%b = idx(:,2:(2*k+2));
b = idx(:,2:end);
a = repmat([1:num]',1,size(b,2));
inda = sub2ind(size(A),a(:),b(:));
ad = reshape((distX(inda)+lambda*distf(inda))/2/r,num,size(b,2));
ad = projsplx_c(-ad')';
A(inda) = ad(:);
A(isnan(A))=0;
S = (1-beta)*A+beta*S;
S = Network_Diffusion(S,k);
S= (S + S')/2;
D = diag(sum(S,order));
L = D - S;
F_old = F;
[F, temp, ev]=eig1(L, c, 0);
F = NE_dn(F,'ave');
F = (1-beta)*F_old+beta*F;
evs(:,iter+1) = ev;
for i = 1:size(D_Kernels,3)
temp = (eps+D_Kernels(:,:,i)).*(eps+S);
DD(i) = mean(sum(temp));
end
alphaK0 = umkl_bo(DD);
alphaK0 = alphaK0/sum(alphaK0);
alphaK = (1-beta)*alphaK + beta*alphaK0;
alphaK = alphaK/sum(alphaK);
fn1 = sum(ev(1:c));
fn2 = sum(ev(1:c+1));
converge(iter) = fn2-fn1;
if iter<10
if (ev(end) > 0.000001)
lambda = 1.5*lambda;
r = r/1.01;
end
else
if (converge(iter)>1.01*converge(iter-1))
S = S_old;
if converge(iter-1) > 0.2
% warning('Maybe you should set a larger value of c');
end
break;
end
end
S_old = S;
distX = Kbeta(D_Kernels,alphaK');
[distX1, idx] = sort(distX,2);
end;
LF = F;
D = diag(sum(S,order));
L = D - S;
[U,D] = eig(L);
if length(no_dim)==1
F = tsne_p_bo((S),[], U(:,1:no_dim));
else
clear F;
for i = 1:length(no_dim)
F{i} = tsne_p_bo((S),[], U(:,1:no_dim(i)));
end
end
timeOurs = toc(t0);
[~,center] = litekmeans(LF, c,'replicates',20);
[~,center] = min(dist2(center,LF),[],2);
y = litekmeans(F,c,'Start',center);
ydata = tsne_p_bo(S);
end
function thisP = umkl_bo(D,beta)
if nargin<2
beta = 1/length(D);
end
tol = 1e-4;
u = 20;logU = log(u);
[H, thisP] = Hbeta(D, beta);
betamin = -Inf;
betamax = Inf;
% Evaluate whether the perplexity is within tolerance
Hdiff = H - logU;
tries = 0;
while (abs(Hdiff) > tol) && (tries < 30)
% If not, increase or decrease precision
if Hdiff > 0
betamin = beta;
if isinf(betamax)
beta = beta * 2;
else
beta = (beta + betamax) / 2;
end
else
betamax = beta;
if isinf(betamin)
beta = beta / 2;
else
beta = (beta + betamin) / 2;
end
end
% Recompute the values
[H, thisP] = Hbeta(D, beta);
Hdiff = H - logU;
tries = tries + 1;
end
end
function [H, P] = Hbeta(D, beta)
D = (D-min(D))/(max(D) - min(D)+eps);
P = exp(-D * beta);
sumP = sum(P);
H = log(sumP) + beta * sum(D .* P) / sumP;
P = P / sumP;
end
function D_Kernels = multipleK(x)
N = size(x,1);
KK = 0;
sigma = [2:-0.25:1];
Diff = (dist2(x));
[T,INDEX]=sort(Diff,2);
[m,n]=size(Diff);
allk = 10:2:30;
t=1;
for l = 1:length(allk)
if allk(l) < (size(x,1)-1)
TT=mean(T(:,2:(allk(l)+1)),2)+eps;
Sig=(repmat(TT,1,n)+repmat(TT',n,1))/2;
Sig=Sig.*(Sig>eps)+eps;
for j = 1:length(sigma)
W=normpdf(Diff,0,sigma(j)*Sig);
Kernels(:,:,KK+t) = (W + W')/2;
t = t+1;
end
end
end
for i = 1:size(Kernels,3)
K = Kernels(:,:,i);
k = 1./sqrt(diag(K)+1);
%G = K.*(k*k');
G = K;
D_Kernels(:,:,i) = (repmat(diag(G),1,length(G)) +repmat(diag(G)',length(G),1) - 2*G)/2;
D_Kernels(:,:,i) = D_Kernels(:,:,i) - diag(diag(D_Kernels(:,:,i)));
end
end
%
function W = Network_Diffusion(A, K)
%K = min(2*K, round(length(A)/10));
A = A-diag(diag(A));
P = (dominateset(double(abs(A)),min(K,length(A)-1))).*sign(A);
DD = sum(abs(P'));
P = P + (eye(length(P))+diag(sum(abs(P'))));
P = (TransitionFields(P));
[U,D] = eig(P);
d = real((diag(D))+eps);
alpha = 0.8;
beta = 2;
d = (1-alpha)*d./(1-alpha*d.^beta);
D = diag(real(d));
W = U*D*U';
W = (W.*(1-eye(length(W))))./repmat(1-diag(W),1,length(W));
D=sparse(1:length(DD),1:length(DD),DD);
W=D*(W);
W = (W+W')/2;
end
function ydata = tsne_p_bo(P, labels, no_dims)
%TSNE_P Performs symmetric t-SNE on affinity matrix P
if ~exist('labels', 'var')
labels = [];
end
if ~exist('no_dims', 'var') || isempty(no_dims)
no_dims = 2;
end
% First check whether we already have an initial solution
if numel(no_dims) > 1
initial_solution = true;
ydata = no_dims;
no_dims = size(ydata, 2);
else
initial_solution = false;
end
% Initialize some variables
n = size(P, 1); % number of instances
momentum = .08; % initial momentum
final_momentum = .1; % value to which momentum is changed
mom_switch_iter = 250; % iteration at which momentum is changed
stop_lying_iter = 100; % iteration at which lying about P-values is stopped
max_iter = 1000; % maximum number of iterations
epsilon = 500; % initial learning rate
min_gain = .01; % minimum gain for delta-bar-delta
% Make sure P-vals are set properly
P(1:n + 1:end) = 0; % set diagonal to zero
P = 0.5 * (P + P'); % symmetrize P-values
P = max(P ./ sum(P(:)), realmin); % make sure P-values sum to one
const = sum(P(:) .* log(P(:))); % constant in KL divergence
if ~initial_solution
P = P * 4; % lie about the P-vals to find better local minima
end
% Initialize the solution
if ~initial_solution
ydata = .0001 * randn(n, no_dims);
end
y_incs = zeros(size(ydata));
gains = ones(size(ydata));
% Run the iterations
for iter=1:max_iter
% Compute joint probability that point i and j are neighbors
sum_ydata = sum(ydata .^ 2, 2);
num = 1 ./ (1 + bsxfun(@plus, sum_ydata, bsxfun(@plus, sum_ydata', -2 * (ydata * ydata')))); % Student-t distribution
num(1:n+1:end) = 0; % set diagonal to zero
Q = max(num ./ sum(num(:)), realmin); % normalize to get probabilities
% Compute the gradients (faster implementation)
L = (P - Q) .* num;
y_grads = 4 * (diag(sum(L, 1)) - L) * ydata;
% Update the solution
gains = (gains + .2) .* (sign(y_grads) ~= sign(y_incs)) ... % note that the y_grads are actually -y_grads
+ (gains * .8) .* (sign(y_grads) == sign(y_incs));
gains(gains < min_gain) = min_gain;
y_incs = momentum * y_incs - epsilon * (gains .* y_grads);
ydata = ydata + y_incs;
ydata = bsxfun(@minus, ydata, mean(ydata, 1));
ydata(ydata<-100)=-100;ydata(ydata>100)=100;
% Update the momentum if necessary
if iter == mom_switch_iter
momentum = final_momentum;
end
if iter == stop_lying_iter && ~initial_solution
P = P ./ 4;
end
% Print out progress
if ~rem(iter, 10)
cost = const - sum(P(:) .* log(Q(:)));
% disp(['Iteration ' num2str(iter) ': error is ' num2str(cost)]);
end
% Display scatter plot (maximally first three dimensions)
if ~isempty(labels)
if no_dims == 1
scatter(ydata, ydata, 9, labels, 'filled');
elseif no_dims == 2
scatter(ydata(:,1), ydata(:,2), 9, labels, 'filled');
else
scatter3(ydata(:,1), ydata(:,2), ydata(:,3), 40, labels, 'filled');
end
axis equal tight
% axis off
drawnow
end
end
end
|
github
|
sqjin/scEpath-master
|
SIMLR_embedding_tsne.m
|
.m
|
scEpath-master/enternal/SIMLR/src/SIMLR_embedding_tsne.m
| 2,427 |
utf_8
|
3e805cd1014ff2298086d18d9910a372
|
function Y = SIMLR_embedding_tsne(P, do_init,DD, Y0)
%%%compute 2-D coordinates by approximae t-SNE
%
% Y = SIMLR_embedding_tsne(P, do_init)
%
% Input:
% P: N x N, pairwise (sparse) similarities or network (weighted) adjacency matrix
% do_init: boolean, do over-attraction initialization or not, default=false
%
% Output:
% Y: N x 2, 2-D coordinates
%
% All rights reserved.
if ~exist('do_init', 'var') || isempty(do_init)
do_init = false;
end
if nargin<3
DD = 2;
end
method = 'wtsne';
P = 0.5 * (P+P');
P = P / sum(sum(P));
theta = 2;
rng('default');
if nargin<4
Y0 = randn(size(P,1),DD)*1e-4;
end
check_step = 1;
tol = 1e-4;
max_time = inf;
verbose = false;
optimizer = 'fphssne';
recordYs = false;
if do_init
fprintf('===============================================\n');
fprintf('Starting Learning tSNE embeddings\n');
fprintf('===============================================\n');
attr = 4;
max_iter = 30;
Y1 = tSNE_embed(P, Y0, attr, theta, max_iter, check_step, tol, max_time, verbose, recordYs);
else
Y1 = Y0;
end
attr = 1;
max_iter = 300;
Y = tSNE_embed(P, Y1, attr, theta, max_iter, check_step, tol, max_time, verbose, recordYs);
end
function [Y, ts, Ys] = tSNE_embed(P, Y0, attr, theta, max_iter, check_step, tol, max_time, verbose, recordYs)
Y = Y0;
[I,J] = find(P);
Pnz = nonzeros(P);
weights = sum(P)';
ts(1) = 0;
t = 1;
if recordYs
Ys = cell(max_iter,1);
Ys{1} = Y;
else
Ys = [];
end
tic;
n = size(P,1);
for iter=2:max_iter
Y_old = Y;
qnz = 1./(1+sum((Y(I,:)-Y(J,:)).^2,2));
Pq = attr * sparse(I,J,Pnz.*qnz,n,n);
[~, repu] = compute_wtsne_obj_grad_repulsive_barneshut(Y, weights, theta, 2);
Y = bsxfun(@rdivide, Pq * Y - repu/4, sum(Pq,2)+eps);
if recordYs && mod(iter, check_step)==0
t = t + 1;
Ys{t} = Y;
end
ts(iter) = toc;
if ts(iter)>max_time
if verbose
fprintf('max_time exceeded\n');
end
break;
end
diffY = norm(Y-Y_old,'fro') / norm(Y_old,'fro');
if verbose && mod(iter, check_step)==0
fprintf('iter=%d/%d, collapsed_time=%.2f, diffY=%.12f, obj=%.12f\n', iter, max_iter, toc, diffY, obj);
end
if diffY<tol
if verbose
fprintf('converged after %d iterations.\n', iter);
end
break;
end
end
ts = ts(1:iter);
if recordYs
Ys = Ys(1:t);
end
end
|
github
|
Shenc0411/CS445-master
|
mask2chain.m
|
.m
|
CS445-master/mp3/mask2chain.m
| 15,323 |
utf_8
|
816e13d1228586bd4c7115c9c3075203
|
function [x, y] = mask2chain_tmp(mask)
crack_img = seg2cracks(double(mask));
fragments = cracks2fragments(crack_img, mask, 1);
x = round(fragments{1}(:, 1));
y = round(fragments{1}(:, 2));
% x = fragments{1}(:, 1);
% y = fragments{1}(:, 2);
[gy, gx] = gradient(double(mask));
epix = (gy.^2+gx.^2>0) & mask;
e = y + (x-1)*size(crack_img, 1);
ind = epix(e);
mean(ind)
x = x(ind);
y = y(ind);
figure(1), hold off, plot(x, y), axis image
%% cracks2fragments
function [fragments, junctions, neighbor_lookups] = cracks2fragments(crack_img, seg, isolation_check)
%
% [fragments, junctions, neighbor_lookups] = cracks2fragments(crack_img, seg, isolation_check)
%
if(nargin<3)
isolation_check = true;
end
[nrows,ncols] = size(crack_img);
JUNCTION_BIT = 5;
% Get a lookup table of where the image border is:
onborder = false(nrows,ncols);
onborder(:,[1 end]) = true;
onborder([1 end],:) = true;
num_neighbors_lookup = 4*ones(nrows,ncols);
num_neighbors_lookup([1 end],:) = 3;
num_neighbors_lookup(:,[1 end]) = 3;
num_neighbors_lookup([1 nrows end-nrows+1 end]) = 2;
% Neighbors: up, down, left, right
neighbor_offsets = [-1 1 -nrows nrows];
% for the up neighbor, i want to check its down bit (3); for the right
% neighbor, i want to check its left bit (4); etc...
check_bit_interior = [3 1 2 4];
% Figure out the valid neighbors on the borders
UP = 1; DOWN = 2; LEFT = 3; RIGHT = 4;
valid_border_neighbors = cell(nrows,ncols);
[valid_border_neighbors{1,:}] = deal([DOWN LEFT RIGHT]);
[valid_border_neighbors{end,:}] = deal([UP LEFT RIGHT]);
[valid_border_neighbors{:,1}] = deal([UP DOWN RIGHT]);
[valid_border_neighbors{:,end}] = deal([UP DOWN LEFT]);
valid_border_neighbors{1,1} = [DOWN RIGHT];
valid_border_neighbors{1,end} = [DOWN LEFT];
valid_border_neighbors{end,1} = [UP RIGHT];
valid_border_neighbors{end,end} = [UP LEFT];
% % Find the junctions that aren't on the image border
junction_map = bitget(crack_img, JUNCTION_BIT);
junction_index = find(junction_map);
num_junctions = length(junction_index);
junction_map = double(junction_map);
junction_map(junction_index) = 1:num_junctions;
junction_fragmentlist = cell(1,num_junctions);
fragment_junctionlist = {};
fragment_segments = {};
segment_fragments = cell(1,max(seg(:)));
[junction_y,junction_x] = ind2sub([nrows ncols], junction_index);
junctions = [junction_x(:)+0.5 junction_y(:)+0.5];
%% Fragment Chaining
not_in_fragment = true(nrows,ncols);
fragment_indices = zeros(1,nrows*ncols);
fragment_ctr = 0;
fragments = {};
% % Randomize the order we go through the starting junctions (mainly for
% % debug/display purposes):
% rand_index = randperm(num_junctions);
% for(i_rand=1:num_junctions)
% i = rand_index(i_rand);
for(i = 1:num_junctions)
% get the neighbors of the starting junction that have not already been
% made part of another fragment and whose orientation/shape match this
% junction
if(~onborder(junction_index(i)))
junction_neighbors = junction_index(i)+neighbor_offsets;
check_bit = check_bit_interior;
else
junction_neighbors = junction_index(i)+neighbor_offsets(valid_border_neighbors{junction_index(i)});
check_bit = check_bit_interior(valid_border_neighbors{junction_index(i)});
end
neighbor_bits = bitget(crack_img(junction_neighbors), check_bit);
which_junction_neighbors = find(neighbor_bits & not_in_fragment(junction_neighbors)); % ...
% & ~onborder(junction_neighbors));% & ~junction_map(junction_neighbors));
% remove any neighbors that are themselves junctions and have a lower
% index than the current starting junction. a single-crack-long
% fragment has already been chained between these two junctions in this
% case, so we don't need to do it again.
which_junction_neighbors( junction_map(junction_neighbors(which_junction_neighbors)) & ...
junction_neighbors(which_junction_neighbors) < junction_index(i) ) = [];
% create a fragment starting from this junction and heading off along
% each available neighbor
for(j = 1:length(which_junction_neighbors))
% in case we just closed a loop, don't start marching back out
% around the same loop in the opposite direction:
if(not_in_fragment(junction_neighbors(which_junction_neighbors(j))))
% prevent us from coming right back to the starting junction on
% the next step
not_in_fragment(junction_index(i)) = false;
fragment_ctr = fragment_ctr + 1;
junction_fragmentlist{i}(end+1) = fragment_ctr;
fragment_junctionlist{fragment_ctr} = i;
fragment_length = 1;
fragment_indices(1) = junction_index(i);
% record the segmentation numbers on either side of this
% fragment, store as [leftseg rightseg]
if(~onborder(junction_index(i)))
step_dir = which_junction_neighbors(j);
else
step_dir = valid_border_neighbors{junction_index(i)}(which_junction_neighbors(j));
end
switch(step_dir)
case(1) % about to move UP
fragment_segments{fragment_ctr} = [seg(junction_index(i)) seg(junction_index(i)+nrows)];
case(2) % about to move DOWN
fragment_segments{fragment_ctr} = [seg(junction_index(i)+1+nrows) seg(junction_index(i)+1)];
case(3) % about to move LEFT
fragment_segments{fragment_ctr} = [seg(junction_index(i)+1) seg(junction_index(i))];
case(4) % about to move RIGHT
fragment_segments{fragment_ctr} = [seg(junction_index(i)+nrows) seg(junction_index(i)+1+nrows)];
otherwise
error('Invalid neighbor chosen???')
end
neighbors = junction_neighbors;
which_neighbors = which_junction_neighbors(j);
while(~isempty(which_neighbors))
% add current position to fragment
fragment_length = fragment_length + 1;
fragment_indices(fragment_length) = neighbors(which_neighbors);
% once we've gone more than one step from the start, re-enable
% the possibility of ending up there, in case of a closed
% fragment around an isolated segment
if(fragment_length==3)
not_in_fragment(junction_index(i)) = true;
end
% if we've reached another junction, add that junction to this
% fragment and stop
if(junction_map(neighbors(which_neighbors)))
% Don't add this fragment if this is a closed loop and
% we already have it listed as a member of this
% junction
if(neighbors(which_neighbors) ~= junction_index(i))
junction_fragmentlist{junction_map(neighbors(which_neighbors))}(end+1) = fragment_ctr;
end
fragment_junctionlist{fragment_ctr}(2) = junction_map(neighbors(which_neighbors));
break;
end
% Otherwise, mark this position as being part of a fragment and
% continue chaining
not_in_fragment(fragment_indices(fragment_length)) = false;
% get matching neighbors from this point that aren't already
% used in another fragment
crnt = fragment_indices(fragment_length);
if(~onborder(crnt))
neighbors = crnt + neighbor_offsets;
check_bit = check_bit_interior;
else
neighbors = crnt + neighbor_offsets(valid_border_neighbors{crnt});
check_bit = check_bit_interior(valid_border_neighbors{crnt});
end
neighbor_bits = bitget(crack_img(neighbors), check_bit);
which_neighbors = find(neighbor_bits & not_in_fragment(neighbors)); % & ~onborder(neighbors));
end
% Create the fragment from the list of indices. Offset it by 0.5
% pixels in either direction to put it in image coordinates.
[y,x] = ind2sub([nrows ncols], fragment_indices(1:fragment_length));
fragments{fragment_ctr} = [x(:)+0.5 y(:)+0.5];
% If this fragment didn't end at a junction (but instead at the
% image border), add a "junction" for the end point:
if(numel(fragment_junctionlist{fragment_ctr})==1)
num_junctions = num_junctions + 1;
junctions(num_junctions,:) = fragments{fragment_ctr}(end,:);
fragment_junctionlist{fragment_ctr}(2) = num_junctions;
junction_fragmentlist{num_junctions} = fragment_ctr;
end
end
end
% Allow other fragments to end up at this junction (this _should_
% already have been set back to true in most cases, but just in
% case...)
not_in_fragment(junction_index(i)) = true;
end
%% Handle isolated regions
if(isolation_check)
% Look for any segments that have not had any fragments used yet. They
% must be surrounded entirely by one other segment meaning their boundary
% has no junctions. We need
% to add a fragment for that boundary (and some junctions) to our list.
used_segments = vertcat(fragment_segments{:});
used_segments = unique(used_segments(:));
num_segments = max(seg(:));
unused_segments = true(1,num_segments);
unused_segments(used_segments) = false;
unused_segments = find(unused_segments);
if(~isempty(unused_segments))
stats = regionprops(seg, 'PixelIdxList');
segment_indices = {stats.PixelIdxList};
isolated_seg = zeros(size(seg));
for k = 1:numel(unused_segments)
isolated_seg(segment_indices{unused_segments(k)}) = k;
end
num_isolated_seg = numel(unused_segments);
%isolated_seg(vertcat(segment_indices{unused_segments})) = true;
%[isolated_seg, num_isolated_seg] = bwlabel(isolated_seg, 8);
% Put a false junction on the border of each isolated segment:
for(i=1:num_isolated_seg)
% Get the cracks for this isolated segment
isolated_cracks = seg2cracks(isolated_seg==i);
% Put a false junction indicator on the border of the isolated
% segment
crack_index = find(isolated_cracks>0);
isolated_cracks(crack_index(1)) = bitset(isolated_cracks(crack_index(1)), JUNCTION_BIT);
% Chain the fragments around this isolated segment
[temp_fragments, temp_junctions, temp_neighbor] = ...
cracks2fragments(isolated_cracks, seg, false);
% Concatenate the results with the existing results, adjusting
% fragment and junction numbering as necessary
fragments = [fragments temp_fragments];
junctions = [junctions; temp_junctions];
for(j=1:numel(temp_neighbor.junction_fragmentlist))
temp_neighbor.junction_fragmentlist{j} = temp_neighbor.junction_fragmentlist{j} + fragment_ctr;
end
junction_fragmentlist = [junction_fragmentlist temp_neighbor.junction_fragmentlist];
for(j=1:numel(temp_neighbor.fragment_junctionlist))
temp_neighbor.fragment_junctionlist{j} = temp_neighbor.fragment_junctionlist{j} + num_junctions;
end
fragment_junctionlist = [fragment_junctionlist temp_neighbor.fragment_junctionlist];
fragment_segments = [fragment_segments temp_neighbor.fragment_segments];
update_segments = ~cellfun('isempty', temp_neighbor.segment_fragments);
for(j=find(update_segments))
segment_fragments{j} = [segment_fragments{j} temp_neighbor.segment_fragments{j}+fragment_ctr];
end
% Don't want to update these too soon!
fragment_ctr = fragment_ctr + numel(temp_fragments);
junction_ctr = num_junctions + size(temp_junctions,1);
end
end
end
%% Output
neighbor_lookups.junction_fragmentlist = junction_fragmentlist;
neighbor_lookups.fragment_junctionlist = fragment_junctionlist;
neighbor_lookups.fragment_segments = fragment_segments;
neighbor_lookups.segment_fragments = segment_fragments;
% Compute edge adjacency info
num_fragments = fragment_ctr;
FORWARD = 2; REVERSE = 1;
directed_neighbors = cell(2*num_fragments,1);
for(i=1:num_fragments)
% Get forward neighbors
directed_neighbors{i} = get_neighbors(i, neighbor_lookups, FORWARD, num_fragments);
% Get reverse neighbors
directed_neighbors{i+num_fragments} = get_neighbors(i, neighbor_lookups, REVERSE, num_fragments);
end
neighbor_lookups.directed_neighbors = directed_neighbors;
% DEBUG CODE:
% % Check that we're not still having the problem where a fragment has the
% % same superpixel listed on both sides.
% temp = vertcat(fragment_segments{:});
% if(any(temp(:,1)==temp(:,2)))
% warning('At least one fragment has the same superpixel listed for left and right!')
% keyboard
% end
return;
%% Helper: Find directed neighbors
function neighbors = get_neighbors(fragment, neighbor_data, direction, num_fragments)
% direction==2 -> forward
% direction==1? -> reverse
% Get all the foward neighbors for this fragment:
junction = neighbor_data.fragment_junctionlist{fragment}(direction);
neighbors = neighbor_data.junction_fragmentlist{junction};
neighbors(neighbors==fragment) = [];
if(~isempty(neighbors))
% Any neighbors that connect to this in the wrong direction should be
% referenced to the reverse fragment
neighbor_junctions = vertcat(neighbor_data.fragment_junctionlist{neighbors});
to_reverse = (neighbor_junctions(:,2)==junction);
neighbors(to_reverse) = neighbors(to_reverse) + num_fragments;
end
%% seg2cracks
function [crack_img] = seg2cracks(seg)
%
% [crack_img] = seg2cracks(seg)
%
% Converts a segmentation image into a crack-coded image.
%
% Bits:
% |
% | 1
% 4 ----+---- 2
% |
% | 3
% Values:
% tic
UP = 1;
RIGHT = 2;
DOWN = 3;
LEFT = 4;
JUNCTION = 5;
% dx = uint8(seg ~= image_right(seg));
% dy = uint8(seg ~= image_down(seg) );
% crack_img = dx + bitshift(dy,LEFT-1) + ...
% bitshift(image_right(dy),RIGHT-1) + bitshift(image_down(dx),DOWN-1);
% Removed dependency on image_down and image_right, to make this more
% easily packaged:
dx = uint8(seg ~= seg(:,[2:end end]));
dy = uint8(seg ~= seg([2:end end],:));
crack_img = dx + bitshift(dy,LEFT-1) + ...
bitshift(dy(:,[2:end end]),RIGHT-1) + bitshift(dx([2:end end],:),DOWN-1);
% Find interior junctions:
junction_map = (crack_img==11 | crack_img==7 | crack_img==14 | ...
crack_img==13 | crack_img==15);
% Find the junctions along the borders:
junction_map([1 end],:) = junction_map([1 end],:) | bitget(crack_img([1 end],:),UP);
junction_map(:,[1 end]) = junction_map(:,[1 end]) | bitget(crack_img(:,[1 end]),LEFT);
% set the junction bit for all these junctions in the crack_img
crack_img(junction_map) = bitset(crack_img(junction_map), JUNCTION);
|
github
|
Shenc0411/CS445-master
|
auto_homography.m
|
.m
|
CS445-master/mp5/auto_homography.m
| 1,604 |
utf_8
|
43e69b60910b0e8336b4ed782d13dcaa
|
function H=auto_homography(Ia,Ib)
% Computes a homography that maps points from Ia to Ib
%
% Input: Ia and Ib are images
% Output: H is the homography
%
% Note: to use H in maketform, use maketform('projective', H')
% Computes correspondences and matches
[fa,da] = vl_sift(im2single(rgb2gray(Ia))) ;
[fb,db] = vl_sift(im2single(rgb2gray(Ib))) ;
matches = vl_ubcmatch(da,db) ;
numMatches = size(matches,2) ;
% Xa and Xb are 3xN matrices that contain homogeneous coordinates for the N
% matching points for each image
Xa = fa(1:2,matches(1,:)) ; Xa(3,:) = 1 ;
Xb = fb(1:2,matches(2,:)) ; Xb(3,:) = 1 ;
%% RANSAC
niter = 1000;
best_score = 0;
for t = 1:niter
% estimate homograpyh
subset = vl_colsubset(1:numMatches, 4) ;
pts1 = Xa(:, subset);
pts2 = Xb(:, subset);
H_t = computeHomography(pts1, pts2); % edit helper code below
% score homography
Xb_ = H_t * Xa ; % project points from first image to second using H
du = Xb_(1,:)./Xb_(3,:) - Xb(1,:)./Xb(3,:) ;
dv = Xb_(2,:)./Xb_(3,:) - Xb(2,:)./Xb(3,:) ;
ok_t = sqrt(du.*du + dv.*dv) < 1; % you may need to play with this threshold
score_t = sum(ok_t) ;
if score_t > best_score
best_score = score_t;
H = H_t;
end
end
disp(num2str(best_score))
% Optionally, you may want to re-estimate H based on inliers
%%
function H = computeHomography(pts1, pts2)
% Compute homography that maps from pts1 to pts2 using least squares solver
%
% Input: pts1 and pts2 are 3xN matrices for N points in homogeneous
% coordinates.
%
% Output: H is a 3x3 matrix, such that pts2~=H*pts1
|
github
|
Shenc0411/CS445-master
|
vl_compile.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/vl_compile.m
| 5,060 |
utf_8
|
978f5189bb9b2a16db3368891f79aaa6
|
function vl_compile(compiler)
% VL_COMPILE Compile VLFeat MEX files
% VL_COMPILE() uses MEX() to compile VLFeat MEX files. This command
% works only under Windows and is used to re-build problematic
% binaries. The preferred method of compiling VLFeat on both UNIX
% and Windows is through the provided Makefiles.
%
% VL_COMPILE() only compiles the MEX files and assumes that the
% VLFeat DLL (i.e. the file VLFEATROOT/bin/win{32,64}/vl.dll) has
% already been built. This file is built by the Makefiles.
%
% By default VL_COMPILE() assumes that Visual C++ is the active
% MATLAB compiler. VL_COMPILE('lcc') assumes that the active
% compiler is LCC instead (see MEX -SETUP). Unfortunately LCC does
% not seem to be able to compile the latest versions of VLFeat due
% to bugs in the support of 64-bit integers. Therefore it is
% recommended to use Visual C++ instead.
%
% See also: VL_NOPREFIX(), VL_HELP().
% Authors: Andrea Vedadli, Jonghyun Choi
% Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
if nargin < 1, compiler = 'visualc' ; end
switch lower(compiler)
case 'visualc'
fprintf('%s: assuming that Visual C++ is the active compiler\n', mfilename) ;
useLcc = false ;
case 'lcc'
fprintf('%s: assuming that LCC is the active compiler\n', mfilename) ;
warning('LCC may fail to compile VLFeat. See help vl_compile.') ;
useLcc = true ;
otherwise
error('Unknown compiler ''%s''.', compiler)
end
vlDir = vl_root ;
toolboxDir = fullfile(vlDir, 'toolbox') ;
switch computer
case 'PCWIN'
fprintf('%s: compiling for PCWIN (32 bit)\n', mfilename);
mexwDir = fullfile(toolboxDir, 'mex', 'mexw32') ;
binwDir = fullfile(vlDir, 'bin', 'win32') ;
case 'PCWIN64'
fprintf('%s: compiling for PCWIN64 (64 bit)\n', mfilename);
mexwDir = fullfile(toolboxDir, 'mex', 'mexw64') ;
binwDir = fullfile(vlDir, 'bin', 'win64') ;
otherwise
error('The architecture is neither PCWIN nor PCWIN64. See help vl_compile.') ;
end
impLibPath = fullfile(binwDir, 'vl.lib') ;
libDir = fullfile(binwDir, 'vl.dll') ;
mkd(mexwDir) ;
% find the subdirectories of toolbox that we should process
subDirs = dir(toolboxDir) ;
subDirs = subDirs([subDirs.isdir]) ;
discard = regexp({subDirs.name}, '^(.|..|noprefix|mex.*)$', 'start') ;
keep = cellfun('isempty', discard) ;
subDirs = subDirs(keep) ;
subDirs = {subDirs.name} ;
% Copy support files ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if ~exist(fullfile(binwDir, 'vl.dll'))
error('The VLFeat DLL (%s) could not be found. See help vl_compile.', ...
fullfile(binwDir, 'vl.dll')) ;
end
tmp = dir(fullfile(binwDir, '*.dll')) ;
supportFileNames = {tmp.name} ;
for fi = 1:length(supportFileNames)
name = supportFileNames{fi} ;
cp(fullfile(binwDir, name), ...
fullfile(mexwDir, name) ) ;
end
% Ensure implib for LCC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if useLcc
lccImpLibDir = fullfile(mexwDir, 'lcc') ;
lccImpLibPath = fullfile(lccImpLibDir, 'VL.lib') ;
lccRoot = fullfile(matlabroot, 'sys', 'lcc', 'bin') ;
lccImpExePath = fullfile(lccRoot, 'lcc_implib.exe') ;
mkd(lccImpLibDir) ;
cp(fullfile(binwDir, 'vl.dll'), fullfile(lccImpLibDir, 'vl.dll')) ;
cmd = ['"' lccImpExePath '"', ' -u ', '"' fullfile(lccImpLibDir, 'vl.dll') '"'] ;
fprintf('Running:\n> %s\n', cmd) ;
curPath = pwd ;
try
cd(lccImpLibDir) ;
[d,w] = system(cmd) ;
if d, error(w); end
cd(curPath) ;
catch
cd(curPath) ;
error(lasterr) ;
end
end
% Compile each mex file ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
for i = 1:length(subDirs)
thisDir = fullfile(toolboxDir, subDirs{i}) ;
fileNames = ls(fullfile(thisDir, '*.c'));
for f = 1:size(fileNames,1)
fileName = fileNames(f, :) ;
sp = strfind(fileName, ' ');
if length(sp) > 0, fileName = fileName(1:sp-1); end
filePath = fullfile(thisDir, fileName);
fprintf('MEX %s\n', filePath);
dot = strfind(fileName, '.');
mexFile = fullfile(mexwDir, [fileName(1:dot) 'dll']);
if exist(mexFile)
delete(mexFile)
end
cmd = {['-I' toolboxDir], ...
['-I' vlDir], ...
'-O', ...
'-outdir', mexwDir, ...
filePath } ;
if useLcc
cmd{end+1} = lccImpLibPath ;
else
cmd{end+1} = impLibPath ;
end
mex(cmd{:}) ;
end
end
% --------------------------------------------------------------------
function cp(src,dst)
% --------------------------------------------------------------------
if ~exist(dst,'file')
fprintf('Copying ''%s'' to ''%s''.\n', src,dst) ;
copyfile(src,dst) ;
end
% --------------------------------------------------------------------
function mkd(dst)
% --------------------------------------------------------------------
if ~exist(dst, 'dir')
fprintf('Creating directory ''%s''.', dst) ;
mkdir(dst) ;
end
|
github
|
Shenc0411/CS445-master
|
vl_noprefix.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/vl_noprefix.m
| 1,875 |
utf_8
|
97d8755f0ba139ac1304bc423d3d86d3
|
function vl_noprefix
% VL_NOPREFIX Create a prefix-less version of VLFeat commands
% VL_NOPREFIX() creats prefix-less stubs for VLFeat functions
% (e.g. SIFT for VL_SIFT). This function is seldom used as the stubs
% are included in the VLFeat binary distribution anyways. Moreover,
% on UNIX platforms, the stubs are generally constructed by the
% Makefile.
%
% See also: VL_COMPILE(), VL_HELP().
% Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
root = fileparts(which(mfilename)) ;
list = listMFilesX(root);
outDir = fullfile(root, 'noprefix') ;
if ~exist(outDir, 'dir')
mkdir(outDir) ;
end
for li = 1:length(list)
name = list(li).name(1:end-2) ; % remove .m
nname = name(4:end) ; % remove vl_
stubPath = fullfile(outDir, [nname '.m']) ;
fout = fopen(stubPath, 'w') ;
fprintf('Creating stub %s for %s\n', stubPath, nname) ;
fprintf(fout, 'function varargout = %s(varargin)\n', nname) ;
fprintf(fout, '%% %s Stub for %s\n', upper(nname), upper(name)) ;
fprintf(fout, '[varargout{1:nargout}] = %s(varargin{:})\n', name) ;
fclose(fout) ;
end
end
function list = listMFilesX(root)
list = struct('name', {}, 'path', {}) ;
files = dir(root) ;
for fi = 1:length(files)
name = files(fi).name ;
if files(fi).isdir
if any(regexp(name, '^(\.|\.\.|noprefix)$'))
continue ;
else
tmp = listMFilesX(fullfile(root, name)) ;
list = [list, tmp] ;
end
end
if any(regexp(name, '^vl_(demo|test).*m$'))
continue ;
elseif any(regexp(name, '^vl_(demo|setup|compile|help|root|noprefix)\.m$'))
continue ;
elseif any(regexp(name, '\.m$'))
list(end+1) = struct(...
'name', {name}, ...
'path', {fullfile(root, name)}) ;
end
end
end
|
github
|
Shenc0411/CS445-master
|
vl_pegasos.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/misc/vl_pegasos.m
| 2,837 |
utf_8
|
d5e0915c439ece94eb5597a07090b67d
|
% VL_PEGASOS [deprecated]
% VL_PEGASOS is deprecated. Please use VL_SVMTRAIN() instead.
function [w b info] = vl_pegasos(X,Y,LAMBDA, varargin)
% Verbose not supported
if (sum(strcmpi('Verbose',varargin)))
varargin(find(strcmpi('Verbose',varargin),1))=[];
fprintf('Option VERBOSE is no longer supported.\n');
end
% DiagnosticCallRef not supported
if (sum(strcmpi('DiagnosticCallRef',varargin)))
varargin(find(strcmpi('DiagnosticCallRef',varargin),1)+1)=[];
varargin(find(strcmpi('DiagnosticCallRef',varargin),1))=[];
fprintf('Option DIAGNOSTICCALLREF is no longer supported.\n Please follow the VLFeat tutorial on SVMs for more information on diagnostics\n');
end
% different default value for MaxIterations
if (sum(strcmpi('MaxIterations',varargin)) == 0)
varargin{end+1} = 'MaxIterations';
varargin{end+1} = ceil(10/LAMBDA);
end
% different default value for BiasMultiplier
if (sum(strcmpi('BiasMultiplier',varargin)) == 0)
varargin{end+1} = 'BiasMultiplier';
varargin{end+1} = 0;
end
% parameters for vl_maketrainingset
setvarargin = {};
if (sum(strcmpi('HOMKERMAP',varargin)))
setvarargin{end+1} = 'HOMKERMAP';
setvarargin{end+1} = varargin{find(strcmpi('HOMKERMAP',varargin),1)+1};
varargin(find(strcmpi('HOMKERMAP',varargin),1)+1)=[];
varargin(find(strcmpi('HOMKERMAP',varargin),1))=[];
end
if (sum(strcmpi('KChi2',varargin)))
setvarargin{end+1} = 'KChi2';
varargin(find(strcmpi('KChi2',varargin),1))=[];
end
if (sum(strcmpi('KINTERS',varargin)))
setvarargin{end+1} = 'KINTERS';
varargin(find(strcmpi('KINTERS',varargin),1))=[];
end
if (sum(strcmpi('KL1',varargin)))
setvarargin{end+1} = 'KL1';
varargin(find(strcmpi('KL1',varargin),1))=[];
end
if (sum(strcmpi('KJS',varargin)))
setvarargin{end+1} = 'KJS';
varargin(find(strcmpi('KJS',varargin),1))=[];
end
if (sum(strcmpi('Period',varargin)))
setvarargin{end+1} = 'Period';
setvarargin{end+1} = varargin{find(strcmpi('Period',varargin),1)+1};
varargin(find(strcmpi('Period',varargin),1)+1)=[];
varargin(find(strcmpi('Period',varargin),1))=[];
end
if (sum(strcmpi('Window',varargin)))
setvarargin{end+1} = 'Window';
setvarargin{end+1} = varargin{find(strcmpi('Window',varargin),1)+1};
varargin(find(strcmpi('Window',varargin),1)+1)=[];
varargin(find(strcmpi('Window',varargin),1))=[];
end
if (sum(strcmpi('Gamma',varargin)))
setvarargin{end+1} = 'Gamma';
setvarargin{end+1} = varargin{find(strcmpi('Gamma',varargin),1)+1};
varargin(find(strcmpi('Gamma',varargin),1)+1)=[];
varargin(find(strcmpi('Gamma',varargin),1))=[];
end
setvarargin{:}
DATA = vl_maketrainingset(double(X),int8(Y),setvarargin{:});
DATA
[w b info] = vl_svmtrain(DATA,LAMBDA,varargin{:});
fprintf('\n vl_pegasos is DEPRECATED. Please use vl_svmtrain instead. \n\n');
end
|
github
|
Shenc0411/CS445-master
|
vl_svmpegasos.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/misc/vl_svmpegasos.m
| 1,178 |
utf_8
|
009c2a2b87a375d529ed1a4dbe3af59f
|
% VL_SVMPEGASOS [deprecated]
% VL_SVMPEGASOS is deprecated. Please use VL_SVMTRAIN() instead.
function [w b info] = vl_svmpegasos(DATA,LAMBDA, varargin)
% Verbose not supported
if (sum(strcmpi('Verbose',varargin)))
varargin(find(strcmpi('Verbose',varargin),1))=[];
fprintf('Option VERBOSE is no longer supported.\n');
end
% DiagnosticCallRef not supported
if (sum(strcmpi('DiagnosticCallRef',varargin)))
varargin(find(strcmpi('DiagnosticCallRef',varargin),1)+1)=[];
varargin(find(strcmpi('DiagnosticCallRef',varargin),1))=[];
fprintf('Option DIAGNOSTICCALLREF is no longer supported.\n Please follow the VLFeat tutorial on SVMs for more information on diagnostics\n');
end
% different default value for MaxIterations
if (sum(strcmpi('MaxIterations',varargin)) == 0)
varargin{end+1} = 'MaxIterations';
varargin{end+1} = ceil(10/LAMBDA);
end
% different default value for BiasMultiplier
if (sum(strcmpi('BiasMultiplier',varargin)) == 0)
varargin{end+1} = 'BiasMultiplier';
varargin{end+1} = 0;
end
[w b info] = vl_svmtrain(DATA,LAMBDA,varargin{:});
fprintf('\n vl_svmpegasos is DEPRECATED. Please use vl_svmtrain instead. \n\n');
end
|
github
|
Shenc0411/CS445-master
|
vl_override.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/misc/vl_override.m
| 4,654 |
utf_8
|
e233d2ecaeb68f56034a976060c594c5
|
function config = vl_override(config,update,varargin)
% VL_OVERRIDE Override structure subset
% CONFIG = VL_OVERRIDE(CONFIG, UPDATE) copies recursively the fileds
% of the structure UPDATE to the corresponding fields of the
% struture CONFIG.
%
% Usually CONFIG is interpreted as a list of paramters with their
% default values and UPDATE as a list of new paramete values.
%
% VL_OVERRIDE(..., 'Warn') prints a warning message whenever: (i)
% UPDATE has a field not found in CONFIG, or (ii) non-leaf values of
% CONFIG are overwritten.
%
% VL_OVERRIDE(..., 'Skip') skips fields of UPDATE that are not found
% in CONFIG instead of copying them.
%
% VL_OVERRIDE(..., 'CaseI') matches field names in a
% case-insensitive manner.
%
% Remark::
% Fields are copied at the deepest possible level. For instance,
% if CONFIG has fields A.B.C1=1 and A.B.C2=2, and if UPDATE is the
% structure A.B.C1=3, then VL_OVERRIDE() returns a strucuture with
% fields A.B.C1=3, A.B.C2=2. By contrast, if UPDATE is the
% structure A.B=4, then the field A.B is copied, and VL_OVERRIDE()
% returns the structure A.B=4 (specifying 'Warn' would warn about
% the fact that the substructure B.C1, B.C2 is being deleted).
%
% Remark::
% Two fields are matched if they correspond exactly. Specifically,
% two fileds A(IA).(FA) and B(IA).FB of two struct arrays A and B
% match if, and only if, (i) A and B have the same dimensions,
% (ii) IA == IB, and (iii) FA == FB.
%
% See also: VL_ARGPARSE(), VL_HELP().
% Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
warn = false ;
skip = false ;
err = false ;
casei = false ;
if length(varargin) == 1 & ~ischar(varargin{1})
% legacy
warn = 1 ;
end
if ~warn & length(varargin) > 0
for i=1:length(varargin)
switch lower(varargin{i})
case 'warn'
warn = true ;
case 'skip'
skip = true ;
case 'err'
err = true ;
case 'argparse'
argparse = true ;
case 'casei'
casei = true ;
otherwise
error(sprintf('Unknown option ''%s''.',varargin{i})) ;
end
end
end
% if CONFIG is not a struct array just copy UPDATE verbatim
if ~isstruct(config)
config = update ;
return ;
end
% if CONFIG is a struct array but UPDATE is not, no match can be
% established and we simply copy UPDATE verbatim
if ~isstruct(update)
config = update ;
return ;
end
% if CONFIG and UPDATE are both struct arrays, but have different
% dimensions then nom atch can be established and we simply copy
% UPDATE verbatim
if numel(update) ~= numel(config)
config = update ;
return ;
end
% if CONFIG and UPDATE are both struct arrays of the same
% dimension, we override recursively each field
for idx=1:numel(update)
fields = fieldnames(update) ;
for i = 1:length(fields)
updateFieldName = fields{i} ;
if casei
configFieldName = findFieldI(config, updateFieldName) ;
else
configFieldName = findField(config, updateFieldName) ;
end
if ~isempty(configFieldName)
config(idx).(configFieldName) = ...
vl_override(config(idx).(configFieldName), ...
update(idx).(updateFieldName)) ;
else
if warn
warning(sprintf('copied field ''%s'' which is in UPDATE but not in CONFIG', ...
updateFieldName)) ;
end
if err
error(sprintf('The field ''%s'' is in UPDATE but not in CONFIG', ...
updateFieldName)) ;
end
if skip
if warn
warning(sprintf('skipping field ''%s'' which is in UPDATE but not in CONFIG', ...
updateFieldName)) ;
end
continue ;
end
config(idx).(updateFieldName) = update(idx).(updateFieldName) ;
end
end
end
% --------------------------------------------------------------------
function field = findFieldI(S, matchField)
% --------------------------------------------------------------------
field = '' ;
fieldNames = fieldnames(S) ;
for fi=1:length(fieldNames)
if strcmpi(fieldNames{fi}, matchField)
field = fieldNames{fi} ;
end
end
% --------------------------------------------------------------------
function field = findField(S, matchField)
% --------------------------------------------------------------------
field = '' ;
fieldNames = fieldnames(S) ;
for fi=1:length(fieldNames)
if strcmp(fieldNames{fi}, matchField)
field = fieldNames{fi} ;
end
end
|
github
|
Shenc0411/CS445-master
|
vl_quickvis.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/quickshift/vl_quickvis.m
| 3,696 |
utf_8
|
27f199dad4c5b9c192a5dd3abc59f9da
|
function [Iedge dists map gaps] = vl_quickvis(I, ratio, kernelsize, maxdist, maxcuts)
% VL_QUICKVIS Create an edge image from a Quickshift segmentation.
% IEDGE = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) creates an edge
% stability image from a Quickshift segmentation. RATIO controls the tradeoff
% between color consistency and spatial consistency (See VL_QUICKSEG) and
% KERNELSIZE controls the bandwidth of the density estimator (See VL_QUICKSEG,
% VL_QUICKSHIFT). MAXDIST is the maximum distance between neighbors which
% increase the density.
%
% VL_QUICKVIS takes at most MAXCUTS thresholds less than MAXDIST, forming at
% most MAXCUTS segmentations. The edges between regions in each of these
% segmentations are labeled in IEDGE, where the label corresponds to the
% largest DIST which preserves the edge.
%
% [IEDGE,DISTS] = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) also
% returns the DIST thresholds that were chosen.
%
% IEDGE = VL_QUICKVIS(I, RATIO, KERNELSIZE, DISTS) will use the DISTS
% specified
%
% [IEDGE,DISTS,MAP,GAPS] = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS)
% also returns the MAP and GAPS from VL_QUICKSHIFT.
%
% See Also: VL_QUICKSHIFT(), VL_QUICKSEG(), VL_HELP().
% Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
if nargin == 4
dists = maxdist;
maxdist = max(dists);
[Iseg labels map gaps E] = vl_quickseg(I, ratio, kernelsize, maxdist);
else
[Iseg labels map gaps E] = vl_quickseg(I, ratio, kernelsize, maxdist);
dists = unique(floor(gaps(:)));
dists = dists(2:end-1); % remove the inf thresh and the lowest level thresh
if length(dists) > maxcuts
ind = round(linspace(1,length(dists), maxcuts));
dists = dists(ind);
end
end
[Iedge dists] = mapvis(map, gaps, dists);
function [Iedge dists] = mapvis(map, gaps, maxdist, maxcuts)
% MAPVIS Create an edge image from a Quickshift segmentation.
% IEDGE = MAPVIS(MAP, GAPS, MAXDIST, MAXCUTS) creates an edge
% stability image from a Quickshift segmentation. MAXDIST is the maximum
% distance between neighbors which increase the density.
%
% MAPVIS takes at most MAXCUTS thresholds less than MAXDIST, forming at most
% MAXCUTS segmentations. The edges between regions in each of these
% segmentations are labeled in IEDGE, where the label corresponds to the
% largest DIST which preserves the edge.
%
% [IEDGE,DISTS] = MAPVIS(MAP, GAPS, MAXDIST, MAXCUTS) also returns the DIST
% thresholds that were chosen.
%
% IEDGE = MAPVIS(MAP, GAPS, DISTS) will use the DISTS specified
%
% See Also: VL_QUICKVIS, VL_QUICKSHIFT, VL_QUICKSEG
if nargin == 3
dists = maxdist;
maxdist = max(dists);
else
dists = unique(floor(gaps(:)));
dists = dists(2:end-1); % remove the inf thresh and the lowest level thresh
% throw away min region size instead of maxdist?
ind = find(dists < maxdist);
dists = dists(ind);
if length(dists) > maxcuts
ind = round(linspace(1,length(dists), maxcuts));
dists = dists(ind);
end
end
Iedge = zeros(size(map));
for i = 1:length(dists)
s = find(gaps >= dists(i));
mapdist = map;
mapdist(s) = s;
[mapped labels] = vl_flatmap(mapdist);
fprintf('%d/%d %d regions\n', i, length(dists), length(unique(mapped)))
borders = getborders(mapped);
Iedge(borders) = dists(i);
%Iedge(borders) = Iedge(borders) + 1;
%Iedge(borders) = i;
end
%%%%%%%%% GETBORDERS
function borders = getborders(map)
dx = conv2(map, [-1 1], 'same');
dy = conv2(map, [-1 1]', 'same');
borders = find(dx ~= 0 | dy ~= 0);
|
github
|
Shenc0411/CS445-master
|
vl_demo_aib.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/demo/vl_demo_aib.m
| 2,928 |
utf_8
|
590c6db09451ea608d87bfd094662cac
|
function vl_demo_aib
% VL_DEMO_AIB Test Agglomerative Information Bottleneck (AIB)
D = 4 ;
K = 20 ;
randn('state',0) ;
rand('state',0) ;
X1 = randn(2,300) ; X1(1,:) = X1(1,:) + 2 ;
X2 = randn(2,300) ; X2(1,:) = X2(1,:) - 2 ;
X3 = randn(2,300) ; X3(2,:) = X3(2,:) + 2 ;
figure(1) ; clf ; hold on ;
vl_plotframe(X1,'color','r') ;
vl_plotframe(X2,'color','g') ;
vl_plotframe(X3,'color','b') ;
axis equal ;
xlim([-4 4]);
ylim([-4 4]);
axis off ;
rectangle('position',D*[-1 -1 2 2])
vl_demo_print('aib_basic_data', .6) ;
C = 1:K*K ;
Pcx = zeros(3,K*K) ;
f1 = quantize(X1,D,K) ;
f2 = quantize(X2,D,K) ;
f3 = quantize(X3,D,K) ;
Pcx(1,:) = vl_binsum(Pcx(1,:), ones(size(f1)), f1) ;
Pcx(2,:) = vl_binsum(Pcx(2,:), ones(size(f2)), f2) ;
Pcx(3,:) = vl_binsum(Pcx(3,:), ones(size(f3)), f3) ;
Pcx = Pcx / sum(Pcx(:)) ;
[parents, cost] = vl_aib(Pcx) ;
cutsize = [K*K, 10, 3, 2, 1] ;
for i=1:length(cutsize)
[cut,map,short] = vl_aibcut(parents, cutsize(i)) ;
parents_cut(short > 0) = parents(short(short > 0)) ;
C = short(1:K*K+1) ; [drop1,drop2,C] = unique(C) ;
figure(i+1) ; clf ;
plotquantization(D,K,C) ; hold on ;
%plottree(D,K,parents_cut) ;
axis equal ;
axis off ;
title(sprintf('%d clusters', cutsize(i))) ;
vl_demo_print(sprintf('aib_basic_clust_%d',i),.6) ;
end
% --------------------------------------------------------------------
function f = quantize(X,D,K)
% --------------------------------------------------------------------
d = 2*D / K ;
j = round((X(1,:) + D) / d) ;
i = round((X(2,:) + D) / d) ;
j = max(min(j,K),1) ;
i = max(min(i,K),1) ;
f = sub2ind([K K],i,j) ;
% --------------------------------------------------------------------
function [i,j] = plotquantization(D,K,C)
% --------------------------------------------------------------------
hold on ;
cl = [[.3 .3 .3] ; .5*hsv(max(C)-1)+.5] ;
d = 2*D / K ;
for i=0:K-1
for j=0:K-1
patch(d*(j+[0 1 1 0])-D, ...
d*(i+[0 0 1 1])-D, ...
cl(C(j*K+i+1),:)) ;
end
end
% --------------------------------------------------------------------
function h = plottree(D,K,parents)
% --------------------------------------------------------------------
d = 2*D / K ;
C = zeros(2,2*K*K-1)+NaN ;
N = zeros(1,2*K*K-1) ;
for i=0:K-1
for j=0:K-1
C(:,j*K+i+1) = [d*j-D; d*i-D]+d/2 ;
N(:,j*K+i+1) = 1 ;
end
end
for i=1:length(parents)
p = parents(i) ;
if p==0, continue ; end;
if all(isnan(C(:,i))), continue; end
if all(isnan(C(:,p)))
C(:,p) = C(:,i) / N(i) ;
else
C(:,p) = C(:,p) + C(:,i) / N(i) ;
end
N(p) = N(p) + 1 ;
end
C(1,:) = C(1,:) ./ N ;
C(2,:) = C(2,:) ./ N ;
xt = zeros(3, 2*length(parents)-1)+NaN ;
yt = zeros(3, 2*length(parents)-1)+NaN ;
for i=1:length(parents)
p = parents(i) ;
if p==0, continue ; end;
xt(1,i) = C(1,i) ; xt(2,i) = C(1,p) ;
yt(1,i) = C(2,i) ; yt(2,i) = C(2,p) ;
end
h=line(xt(:),yt(:),'linestyle','-','marker','.','linewidth',3) ;
|
github
|
Shenc0411/CS445-master
|
vl_demo_alldist.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/demo/vl_demo_alldist.m
| 5,460 |
utf_8
|
6d008a64d93445b9d7199b55d58db7eb
|
function vl_demo_alldist
%
numRepetitions = 3 ;
numDimensions = 1000 ;
numSamplesRange = [300] ;
settingsRange = {{'alldist2', 'double', 'l2', }, ...
{'alldist', 'double', 'l2', 'nosimd'}, ...
{'alldist', 'double', 'l2' }, ...
{'alldist2', 'single', 'l2', }, ...
{'alldist', 'single', 'l2', 'nosimd'}, ...
{'alldist', 'single', 'l2' }, ...
{'alldist2', 'double', 'l1', }, ...
{'alldist', 'double', 'l1', 'nosimd'}, ...
{'alldist', 'double', 'l1' }, ...
{'alldist2', 'single', 'l1', }, ...
{'alldist', 'single', 'l1', 'nosimd'}, ...
{'alldist', 'single', 'l1' }, ...
{'alldist2', 'double', 'chi2', }, ...
{'alldist', 'double', 'chi2', 'nosimd'}, ...
{'alldist', 'double', 'chi2' }, ...
{'alldist2', 'single', 'chi2', }, ...
{'alldist', 'single', 'chi2', 'nosimd'}, ...
{'alldist', 'single', 'chi2' }, ...
{'alldist2', 'double', 'hell', }, ...
{'alldist', 'double', 'hell', 'nosimd'}, ...
{'alldist', 'double', 'hell' }, ...
{'alldist2', 'single', 'hell', }, ...
{'alldist', 'single', 'hell', 'nosimd'}, ...
{'alldist', 'single', 'hell' }, ...
{'alldist2', 'double', 'kl2', }, ...
{'alldist', 'double', 'kl2', 'nosimd'}, ...
{'alldist', 'double', 'kl2' }, ...
{'alldist2', 'single', 'kl2', }, ...
{'alldist', 'single', 'kl2', 'nosimd'}, ...
{'alldist', 'single', 'kl2' }, ...
{'alldist2', 'double', 'kl1', }, ...
{'alldist', 'double', 'kl1', 'nosimd'}, ...
{'alldist', 'double', 'kl1' }, ...
{'alldist2', 'single', 'kl1', }, ...
{'alldist', 'single', 'kl1', 'nosimd'}, ...
{'alldist', 'single', 'kl1' }, ...
{'alldist2', 'double', 'kchi2', }, ...
{'alldist', 'double', 'kchi2', 'nosimd'}, ...
{'alldist', 'double', 'kchi2' }, ...
{'alldist2', 'single', 'kchi2', }, ...
{'alldist', 'single', 'kchi2', 'nosimd'}, ...
{'alldist', 'single', 'kchi2' }, ...
{'alldist2', 'double', 'khell', }, ...
{'alldist', 'double', 'khell', 'nosimd'}, ...
{'alldist', 'double', 'khell' }, ...
{'alldist2', 'single', 'khell', }, ...
{'alldist', 'single', 'khell', 'nosimd'}, ...
{'alldist', 'single', 'khell' }, ...
} ;
%settingsRange = settingsRange(end-5:end) ;
styles = {} ;
for marker={'x','+','.','*','o'}
for color={'r','g','b','k','y'}
styles{end+1} = {'color', char(color), 'marker', char(marker)} ;
end
end
for ni=1:length(numSamplesRange)
for ti=1:length(settingsRange)
tocs = [] ;
for ri=1:numRepetitions
rand('state',ri) ;
randn('state',ri) ;
numSamples = numSamplesRange(ni) ;
settings = settingsRange{ti} ;
[tocs(end+1), D] = run_experiment(numDimensions, ...
numSamples, ...
settings) ;
end
means(ni,ti) = mean(tocs) ;
stds(ni,ti) = std(tocs) ;
if mod(ti-1,3) == 0
D0 = D ;
else
err = max(abs(D(:)-D0(:))) ;
fprintf('err %f\n', err) ;
if err > 1, keyboard ; end
end
end
end
if 0
figure(1) ; clf ; hold on ;
numStyles = length(styles) ;
for ti=1:length(settingsRange)
si = mod(ti - 1, numStyles) + 1 ;
h(ti) = plot(numSamplesRange, means(:,ti), styles{si}{:}) ;
leg{ti} = sprintf('%s ', settingsRange{ti}{:}) ;
errorbar(numSamplesRange, means(:,ti), stds(:,ti), 'linestyle', 'none') ;
end
end
for ti=1:length(settingsRange)
leg{ti} = sprintf('%s ', settingsRange{ti}{:}) ;
end
figure(1) ; clf ;
barh(means(end,:)) ;
set(gca,'ytick', 1:length(leg), 'yticklabel', leg,'ydir','reverse') ;
xlabel('Time [s]') ;
function [elaps, D] = run_experiment(numDimensions, numSamples, settings)
distType = 'l2' ;
algType = 'alldist' ;
classType = 'double' ;
useSimd = true ;
for si=1:length(settings)
arg = settings{si} ;
switch arg
case {'l1', 'l2', 'chi2', 'hell', 'kl2', 'kl1', 'kchi2', 'khell'}
distType = arg ;
case {'alldist', 'alldist2'}
algType = arg ;
case {'single', 'double'}
classType = arg ;
case 'simd'
useSimd = true ;
case 'nosimd'
useSimd = false ;
otherwise
assert(false) ;
end
end
X = rand(numDimensions, numSamples) ;
X(X < .3) = 0 ;
switch classType
case 'double'
case 'single'
X = single(X) ;
end
vl_simdctrl(double(useSimd)) ;
switch algType
case 'alldist'
tic ; D = vl_alldist(X, distType) ; elaps = toc ;
case 'alldist2'
tic ; D = vl_alldist2(X, distType) ; elaps = toc ;
end
|
github
|
Shenc0411/CS445-master
|
vl_demo_ikmeans.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/demo/vl_demo_ikmeans.m
| 774 |
utf_8
|
17ff0bb7259d390fb4f91ea937ba7de0
|
function vl_demo_ikmeans()
% VL_DEMO_IKMEANS
numData = 10000 ;
dimension = 2 ;
data = uint8(255*rand(dimension,numData)) ;
numClusters = 3^3 ;
[centers, assignments] = vl_ikmeans(data, numClusters);
figure(1) ; clf ; axis off ;
plotClusters(data, centers, assignments) ;
vl_demo_print('ikmeans_2d',0.6);
[tree, assignments] = vl_hikmeans(data,3,numClusters) ;
figure(2) ; clf ; axis off ;
plotClusters(data, [], [4 2 1] * double(assignments)) ;
vl_demo_print('hikmeans_2d',0.6);
function plotClusters(data, centers, assignments)
hold on ;
cc=jet(double(max(assignments(:))));
for i=1:max(assignments(:))
plot(data(1,assignments == i),data(2,assignments == i),'.','color',cc(i,:));
end
if ~isempty(centers)
plot(centers(1,:),centers(2,:),'k.','MarkerSize',20)
end
|
github
|
Shenc0411/CS445-master
|
vl_demo_svm.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/demo/vl_demo_svm.m
| 1,235 |
utf_8
|
7cf6b3504e4fc2cbd10ff3fec6e331a7
|
% VL_DEMO_SVM Demo: SVM: 2D linear learning
function vl_demo_svm
y=[];X=[];
% Load training data X and their labels y
load('vl_demo_svm_data.mat')
Xp = X(:,y==1);
Xn = X(:,y==-1);
figure
plot(Xn(1,:),Xn(2,:),'*r')
hold on
plot(Xp(1,:),Xp(2,:),'*b')
axis equal ;
vl_demo_print('svm_training') ;
% Parameters
lambda = 0.01 ; % Regularization parameter
maxIter = 1000 ; % Maximum number of iterations
energy = [] ;
% Diagnostic function
function diagnostics(svm)
energy = [energy [svm.objective ; svm.dualObjective ; svm.dualityGap ] ] ;
end
% Training the SVM
energy = [] ;
[w b info] = vl_svmtrain(X, y, lambda,...
'MaxNumIterations',maxIter,...
'DiagnosticFunction',@diagnostics,...
'DiagnosticFrequency',1)
% Visualisation
eq = [num2str(w(1)) '*x+' num2str(w(2)) '*y+' num2str(b)];
line = ezplot(eq, [-0.9 0.9 -0.9 0.9]);
set(line, 'Color', [0 0.8 0],'linewidth', 2);
vl_demo_print('svm_training_result') ;
figure
hold on
plot(energy(1,:),'--b') ;
plot(energy(2,:),'-.g') ;
plot(energy(3,:),'r') ;
legend('Primal objective','Dual objective','Duality gap')
xlabel('Diagnostics iteration')
ylabel('Energy')
vl_demo_print('svm_energy') ;
end
|
github
|
Shenc0411/CS445-master
|
vl_demo_kdtree_sift.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/demo/vl_demo_kdtree_sift.m
| 6,832 |
utf_8
|
e676f80ac330a351f0110533c6ebba89
|
function vl_demo_kdtree_sift
% VL_DEMO_KDTREE_SIFT
% Demonstrates the use of a kd-tree forest to match SIFT
% features. If FLANN is present, this function runs a comparison
% against it.
% AUTORIGHS
rand('state',0) ;
randn('state',0);
do_median = 0 ;
do_mean = 1 ;
% try to setup flann
if ~exist('flann_search', 'file')
if exist(fullfile(vl_root, 'opt', 'flann', 'build', 'matlab'))
addpath(fullfile(vl_root, 'opt', 'flann', 'build', 'matlab')) ;
end
end
do_flann = exist('nearest_neighbors') == 3 ;
if ~do_flann
warning('FLANN not found. Comparison disabled.') ;
end
maxNumComparisonsRange = [1 10 50 100 200 300 400] ;
numTreesRange = [1 2 5 10] ;
% get data (SIFT features)
im1 = imread(fullfile(vl_root, 'data', 'roofs1.jpg')) ;
im2 = imread(fullfile(vl_root, 'data', 'roofs2.jpg')) ;
im1 = single(rgb2gray(im1)) ;
im2 = single(rgb2gray(im2)) ;
[f1,d1] = vl_sift(im1,'firstoctave',-1,'floatdescriptors','verbose') ;
[f2,d2] = vl_sift(im2,'firstoctave',-1,'floatdescriptors','verbose') ;
% add some noise to make matches unique
d1 = single(d1) + rand(size(d1)) ;
d2 = single(d2) + rand(size(d2)) ;
% match exhaustively to get the ground truth
elapsedDirect = tic ;
D = vl_alldist(d1,d2) ;
[drop, best] = min(D, [], 1) ;
elapsedDirect = toc(elapsedDirect) ;
for ti=1:length(numTreesRange)
for vi=1:length(maxNumComparisonsRange)
v = maxNumComparisonsRange(vi) ;
t = numTreesRange(ti) ;
if do_median
tic ;
kdtree = vl_kdtreebuild(d1, ...
'verbose', ...
'thresholdmethod', 'median', ...
'numtrees', t) ;
[i, d] = vl_kdtreequery(kdtree, d1, d2, ...
'verbose', ...
'maxcomparisons',v) ;
elapsedKD_median(vi,ti) = toc ;
errors_median(vi,ti) = sum(double(i) ~= best) / length(best) ;
errorsD_median(vi,ti) = mean(abs(d - drop) ./ drop) ;
end
if do_mean
tic ;
kdtree = vl_kdtreebuild(d1, ...
'verbose', ...
'thresholdmethod', 'mean', ...
'numtrees', t) ;
%kdtree = readflann(kdtree, '/tmp/flann.txt') ;
%checkx(kdtree, d1, 1, 1) ;
[i, d] = vl_kdtreequery(kdtree, d1, d2, ...
'verbose', ...
'maxcomparisons', v) ;
elapsedKD_mean(vi,ti) = toc ;
errors_mean(vi,ti) = sum(double(i) ~= best) / length(best) ;
errorsD_mean(vi,ti) = mean(abs(d - drop) ./ drop) ;
end
if do_flann
tic ;
[i, d] = flann_search(d1, d2, 1, struct('algorithm','kdtree', ...
'trees', t, ...
'checks', v));
ifla = i ;
elapsedKD_flann(vi,ti) = toc;
errors_flann(vi,ti) = sum(i ~= best) / length(best) ;
errorsD_flann(vi,ti) = mean(abs(d - drop) ./ drop) ;
end
end
end
figure(1) ; clf ;
leg = {} ;
hnd = [] ;
sty = {{'color','r'},{'color','g'},...
{'color','b'},{'color','c'},...
{'color','k'}} ;
for ti=1:length(numTreesRange)
s = sty{mod(ti,length(sty))+1} ;
if do_median
h1=loglog(elapsedDirect ./ elapsedKD_median(:,ti),100*errors_median(:,ti),'-*',s{:}) ; hold on ;
leg{end+1} = sprintf('VLFeat median (%d tr.)', numTreesRange(ti)) ;
hnd(end+1) = h1 ;
end
if do_mean
h2=loglog(elapsedDirect ./ elapsedKD_mean(:,ti), 100*errors_mean(:,ti), '-o',s{:}) ; hold on ;
leg{end+1} = sprintf('VLFeat (%d tr.)', numTreesRange(ti)) ;
hnd(end+1) = h2 ;
end
if do_flann
h3=loglog(elapsedDirect ./ elapsedKD_flann(:,ti), 100*errors_flann(:,ti), '+--',s{:}) ; hold on ;
leg{end+1} = sprintf('FLANN (%d tr.)', numTreesRange(ti)) ;
hnd(end+1) = h3 ;
end
end
set([hnd], 'linewidth', 2) ;
xlabel('speedup over linear search (log times)') ;
ylabel('percentage of incorrect matches (%)') ;
h=legend(hnd, leg{:}, 'location', 'southeast') ;
set(h,'fontsize',8) ;
grid on ;
axis square ;
vl_demo_print('kdtree_sift_incorrect',.6) ;
figure(2) ; clf ;
leg = {} ;
hnd = [] ;
for ti=1:length(numTreesRange)
s = sty{mod(ti,length(sty))+1} ;
if do_median
h1=loglog(elapsedDirect ./ elapsedKD_median(:,ti),100*errorsD_median(:,ti),'*-',s{:}) ; hold on ;
leg{end+1} = sprintf('VLFeat median (%d tr.)', numTreesRange(ti)) ;
hnd(end+1) = h1 ;
end
if do_mean
h2=loglog(elapsedDirect ./ elapsedKD_mean(:,ti), 100*errorsD_mean(:,ti), 'o-',s{:}) ; hold on ;
leg{end+1} = sprintf('VLFeat (%d tr.)', numTreesRange(ti)) ;
hnd(end+1) = h2 ;
end
if do_flann
h3=loglog(elapsedDirect ./ elapsedKD_flann(:,ti), 100*errorsD_flann(:,ti), '+--',s{:}) ; hold on ;
leg{end+1} = sprintf('FLANN (%d tr.)', numTreesRange(ti)) ;
hnd(end+1) = h3 ;
end
end
set([hnd], 'linewidth', 2) ;
xlabel('speedup over linear search (log times)') ;
ylabel('relative overestimation of minmium distannce (%)') ;
h=legend(hnd, leg{:}, 'location', 'southeast') ;
set(h,'fontsize',8) ;
grid on ;
axis square ;
vl_demo_print('kdtree_sift_distortion',.6) ;
% --------------------------------------------------------------------
function checkx(kdtree, X, t, n, mib, mab)
% --------------------------------------------------------------------
if nargin <= 4
mib = -inf * ones(size(X,1),1) ;
mab = +inf * ones(size(X,1),1) ;
end
lc = kdtree.trees(t).nodes.lowerChild(n) ;
uc = kdtree.trees(t).nodes.upperChild(n) ;
if lc < 0
for i=-lc:-uc-1
di = kdtree.trees(t).dataIndex(i) ;
if any(X(:,di) > mab)
error('a') ;
end
if any(X(:,di) < mib)
error('b') ;
end
end
return
end
i = kdtree.trees(t).nodes.splitDimension(n) ;
v = kdtree.trees(t).nodes.splitThreshold(n) ;
mab_ = mab ;
mab_(i) = min(mab(i), v) ;
checkx(kdtree, X, t, lc, mib, mab_) ;
mib_ = mib ;
mib_(i) = max(mib(i), v) ;
checkx(kdtree, X, t, uc, mib_, mab) ;
% --------------------------------------------------------------------
function kdtree = readflann(kdtree, path)
% --------------------------------------------------------------------
data = textread(path)' ;
for i=1:size(data,2)
nodeIds = data(1,:) ;
ni = find(nodeIds == data(1,i)) ;
if ~isnan(data(2,i))
% internal node
li = find(nodeIds == data(4,i)) ;
ri = find(nodeIds == data(5,i)) ;
kdtree.trees(1).nodes.lowerChild(ni) = int32(li) ;
kdtree.trees(1).nodes.upperChild(ni) = int32(ri) ;
kdtree.trees(1).nodes.splitThreshold(ni) = single(data(2,i)) ;
kdtree.trees(1).nodes.splitDimension(ni) = single(data(3,i)+1) ;
else
di = data(3,i) + 1 ;
kdtree.trees(1).nodes.lowerChild(ni) = int32(- di) ;
kdtree.trees(1).nodes.upperChild(ni) = int32(- di - 1) ;
end
kdtree.trees(1).dataIndex = uint32(1:kdtree.numData) ;
end
|
github
|
Shenc0411/CS445-master
|
vl_impattern.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/imop/vl_impattern.m
| 6,876 |
utf_8
|
1716a4d107f0186be3d11c647bc628ce
|
function im = vl_impattern(varargin)
% VL_IMPATTERN Generate an image from a stock pattern
% IM=VLPATTERN(NAME) returns an instance of the specified
% pattern. These stock patterns are useful for testing algoirthms.
%
% All generated patterns are returned as an image of class
% DOUBLE. Both gray-scale and colour images have range in [0,1].
%
% VL_IMPATTERN() without arguments shows a gallery of the stock
% patterns. The following patterns are supported:
%
% Wedge::
% The image of a wedge.
%
% Cone::
% The image of a cone.
%
% SmoothChecker::
% A checkerboard with Gaussian filtering on top. Use the
% option-value pair 'sigma', SIGMA to specify the standard
% deviation of the smoothing and the pair 'step', STEP to specfity
% the checker size in pixels.
%
% ThreeDotsSquare::
% A pattern with three small dots and two squares.
%
% UniformNoise::
% Random i.i.d. noise.
%
% Blobs:
% Gaussian blobs of various sizes and anisotropies.
%
% Blobs1:
% Gaussian blobs of various orientations and anisotropies.
%
% Blob:
% One Gaussian blob. Use the option-value pairs 'sigma',
% 'orientation', and 'anisotropy' to specify the respective
% parameters. 'sigma' is the scalar standard deviation of an
% isotropic blob (the image domain is the rectangle
% [-1,1]^2). 'orientation' is the clockwise rotation (as the Y
% axis points downards). 'anisotropy' (>= 1) is the ratio of the
% the largest over the smallest axis of the blob (the smallest
% axis length is set by 'sigma'). Set 'cut' to TRUE to cut half
% half of the blob.
%
% A stock image::
% Any of 'box', 'roofs1', 'roofs2', 'river1', 'river2', 'spotted'.
%
% All pattern accept a SIZE parameter [WIDTH,HEIGHT]. For all but
% the stock images, the default size is [128,128].
% Author: Andrea Vedaldi
% Copyright (C) 2012 Andrea Vedaldi.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
if nargin > 0
pattern=varargin{1} ;
varargin=varargin(2:end) ;
else
pattern = 'gallery' ;
end
patterns = {'wedge','cone','smoothChecker','threeDotsSquare', ...
'blob', 'blobs', 'blobs1', ...
'box', 'roofs1', 'roofs2', 'river1', 'river2'} ;
% spooling
switch lower(pattern)
case 'wedge', im = wedge(varargin) ;
case 'cone', im = cone(varargin) ;
case 'smoothchecker', im = smoothChecker(varargin) ;
case 'threedotssquare', im = threeDotSquare(varargin) ;
case 'uniformnoise', im = uniformNoise(varargin) ;
case 'blob', im = blob(varargin) ;
case 'blobs', im = blobs(varargin) ;
case 'blobs1', im = blobs1(varargin) ;
case {'box','roofs1','roofs2','river1','river2','spots'}
im = stockImage(pattern, varargin) ;
case 'gallery'
clf ;
num = numel(patterns) ;
for p = 1:num
vl_tightsubplot(num,p,'box','outer') ;
imagesc(vl_impattern(patterns{p}),[0 1]) ;
axis image off ;
title(patterns{p}) ;
end
colormap gray ;
return ;
otherwise
error('Unknown patter ''%s''.', pattern) ;
end
if nargout == 0
clf ; imagesc(im) ; hold on ;
colormap gray ; axis image off ;
title(pattern) ;
clear im ;
end
function [u,v,opts,args] = commonOpts(args)
opts.size = [128 128] ;
[opts,args] = vl_argparse(opts, args) ;
ur = linspace(-1,1,opts.size(2)) ;
vr = linspace(-1,1,opts.size(1)) ;
[u,v] = meshgrid(ur,vr);
function im = wedge(args)
[u,v,opts,args] = commonOpts(args) ;
im = abs(u) + abs(v) > (1/4) ;
im(v < 0) = 0 ;
function im = cone(args)
[u,v,opts,args] = commonOpts(args) ;
im = sqrt(u.^2+v.^2) ;
im = im / max(im(:)) ;
function im = smoothChecker(args)
opts.size = [128 128] ;
opts.step = 16 ;
opts.sigma = 2 ;
opts = vl_argparse(opts, args) ;
[u,v] = meshgrid(0:opts.size(1)-1, 0:opts.size(2)-1) ;
im = xor((mod(u,opts.step*2) < opts.step),...
(mod(v,opts.step*2) < opts.step)) ;
im = double(im) ;
im = vl_imsmooth(im, opts.sigma) ;
function im = threeDotSquare(args)
[u,v,opts,args] = commonOpts(args) ;
im = ones(size(u)) ;
im(-2/3<u & u<2/3 & -2/3<v & v<2/3) = .75 ;
im(-1/3<u & u<1/3 & -1/3<v & v<1/3) = .50 ;
[drop,i] = min(abs(v(:,1))) ;
[drop,j1] = min(abs(u(1,:)-1/6)) ;
[drop,j2] = min(abs(u(1,:))) ;
[drop,j3] = min(abs(u(1,:)+1/6)) ;
im(i,j1) = 0 ;
im(i,j2) = 0 ;
im(i,j3) = 0 ;
function im = blobs(args)
[u,v,opts,args] = commonOpts(args) ;
im = zeros(size(u)) ;
num = 5 ;
square = 2 / num ;
sigma = square / 2 / 3 ;
scales = logspace(log10(0.5), log10(1), num) ;
skews = linspace(1,2,num) ;
for i=1:num
for j=1:num
cy = (i-1) * square + square/2 - 1;
cx = (j-1) * square + square/2 - 1;
A = sigma * diag([scales(i) scales(i)/skews(j)]) * [1 -1 ; 1 1] / sqrt(2) ;
C = inv(A'*A) ;
x = u - cx ;
y = v - cy ;
im = im + exp(-0.5 *(x.*x*C(1,1) + y.*y*C(2,2) + 2*x.*y*C(1,2))) ;
end
end
im = im / max(im(:)) ;
function im = blob(args)
[u,v,opts,args] = commonOpts(args) ;
opts.sigma = 0.15 ;
opts.anisotropy = .5 ;
opts.orientation = 2/3 * pi ;
opts.cut = false ;
opts = vl_argparse(opts, args) ;
im = zeros(size(u)) ;
th = opts.orientation ;
R = [cos(th) -sin(th) ; sin(th) cos(th)] ;
A = opts.sigma * R * diag([opts.anisotropy 1]) ;
T = [0;0] ;
[x,y] = vl_waffine(inv(A),-inv(A)*T,u,v) ;
im = exp(-0.5 *(x.^2 + y.^2)) ;
if opts.cut
im = im .* double(x > 0) ;
end
function im = blobs1(args)
[u,v,opts,args] = commonOpts(args) ;
opts.number = 5 ;
opts.sigma = [] ;
opts = vl_argparse(opts, args) ;
im = zeros(size(u)) ;
square = 2 / opts.number ;
num = opts.number ;
if isempty(opts.sigma)
sigma = 1/6 * square ;
else
sigma = opts.sigma * square ;
end
rotations = linspace(0,pi,num+1) ;
rotations(end) = [] ;
skews = linspace(1,2,num) ;
for i=1:num
for j=1:num
cy = (i-1) * square + square/2 - 1;
cx = (j-1) * square + square/2 - 1;
th = rotations(i) ;
R = [cos(th) -sin(th); sin(th) cos(th)] ;
A = sigma * R * diag([1 1/skews(j)]) ;
C = inv(A*A') ;
x = u - cx ;
y = v - cy ;
im = im + exp(-0.5 *(x.*x*C(1,1) + y.*y*C(2,2) + 2*x.*y*C(1,2))) ;
end
end
im = im / max(im(:)) ;
function im = uniformNoise(args)
opts.size = [128 128] ;
opts.seed = 1 ;
opts = vl_argparse(opts, args) ;
state = vl_twister('state') ;
vl_twister('state',opts.seed) ;
im = vl_twister(opts.size([2 1])) ;
vl_twister('state',state) ;
function im = stockImage(pattern,args)
opts.size = [] ;
opts = vl_argparse(opts, args) ;
switch pattern
case 'river1', path='river1.jpg' ;
case 'river2', path='river2.jpg' ;
case 'roofs1', path='roofs1.jpg' ;
case 'roofs2', path='roofs2.jpg' ;
case 'box', path='box.pgm' ;
case 'spots', path='spots.jpg' ;
end
im = imread(fullfile(vl_root,'data',path)) ;
im = im2double(im) ;
if ~isempty(opts.size)
im = imresize(im, opts.size) ;
im = max(im,0) ;
im = min(im,1) ;
end
|
github
|
Shenc0411/CS445-master
|
vl_tpsu.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/imop/vl_tpsu.m
| 1,755 |
utf_8
|
09f36e1a707c069b375eb2817d0e5f13
|
function [U,dU,delta]=vl_tpsu(X,Y)
% VL_TPSU Compute the U matrix of a thin-plate spline transformation
% U=VL_TPSU(X,Y) returns the matrix
%
% [ U(|X(:,1) - Y(:,1)|) ... U(|X(:,1) - Y(:,N)|) ]
% [ ]
% [ U(|X(:,M) - Y(:,1)|) ... U(|X(:,M) - Y(:,N)|) ]
%
% where X is a 2xM matrix and Y a 2xN matrix of points and U(r) is
% the opposite -r^2 log(r^2) of the radial basis function of the
% thin plate spline specified by X and Y.
%
% [U,dU]=vl_tpsu(x,y) returns the derivatives of the columns of U with
% respect to the parameters Y. The derivatives are arranged in a
% Mx2xN array, one layer per column of U.
%
% See also: VL_TPS(), VL_HELP().
% Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
if exist('tpsumx')
U = tpsumx(X,Y) ;
else
M=size(X,2) ;
N=size(Y,2) ;
% Faster than repmat, but still fairly slow
r2 = ...
(X( ones(N,1), :)' - Y( ones(1,M), :)).^2 + ...
(X( 1+ones(N,1), :)' - Y(1+ones(1,M), :)).^2 ;
U = - rb(r2) ;
end
if nargout > 1
M=size(X,2) ;
N=size(Y,2) ;
dx = X( ones(N,1), :)' - Y( ones(1,M), :) ;
dy = X(1+ones(N,1), :)' - Y(1+ones(1,M), :) ;
r2 = (dx.^2 + dy.^2) ;
r = sqrt(r2) ;
coeff = drb(r)./(r+eps) ;
dU = reshape( [coeff .* dx ; coeff .* dy], M, 2, N) ;
end
% The radial basis function
function y = rb(r2)
y = zeros(size(r2)) ;
sel = find(r2 ~= 0) ;
y(sel) = - r2(sel) .* log(r2(sel)) ;
% The derivative of the radial basis function
function y = drb(r)
y = zeros(size(r)) ;
sel = find(r ~= 0) ;
y(sel) = - 4 * r(sel) .* log(r(sel)) - 2 * r(sel) ;
|
github
|
Shenc0411/CS445-master
|
vl_xyz2lab.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/imop/vl_xyz2lab.m
| 1,570 |
utf_8
|
09f95a6f9ae19c22486ec1157357f0e3
|
function J=vl_xyz2lab(I,il)
% VL_XYZ2LAB Convert XYZ color space to LAB
% J = VL_XYZ2LAB(I) converts the image from XYZ format to LAB format.
%
% VL_XYZ2LAB(I,IL) uses one of the illuminants A, B, C, E, D50, D55,
% D65, D75, D93. The default illuminatn is E.
%
% See also: VL_XYZ2LUV(), VL_HELP().
% Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
if nargin < 2
il='E' ;
end
switch lower(il)
case 'a'
xw = 0.4476 ;
yw = 0.4074 ;
case 'b'
xw = 0.3324 ;
yw = 0.3474 ;
case 'c'
xw = 0.3101 ;
yw = 0.3162 ;
case 'e'
xw = 1/3 ;
yw = 1/3 ;
case 'd50'
xw = 0.3457 ;
yw = 0.3585 ;
case 'd55'
xw = 0.3324 ;
yw = 0.3474 ;
case 'd65'
xw = 0.312713 ;
yw = 0.329016 ;
case 'd75'
xw = 0.299 ;
yw = 0.3149 ;
case 'd93'
xw = 0.2848 ;
yw = 0.2932 ;
end
J=zeros(size(I)) ;
% Reference white
Yw = 1.0 ;
Xw = xw/yw ;
Zw = (1-xw-yw)/yw * Yw ;
% XYZ components
X = I(:,:,1) ;
Y = I(:,:,2) ;
Z = I(:,:,3) ;
x = X/Xw ;
y = Y/Yw ;
z = Z/Zw ;
L = 116 * f(y) - 16 ;
a = 500*(f(x) - f(y)) ;
b = 200*(f(y) - f(z)) ;
J = cat(3,L,a,b) ;
% --------------------------------------------------------------------
function b=f(a)
% --------------------------------------------------------------------
sp = find(a > 0.00856) ;
sm = find(a <= 0.00856) ;
k = 903.3 ;
b=zeros(size(a)) ;
b(sp) = a(sp).^(1/3) ;
b(sm) = (k*a(sm) + 16)/116 ;
|
github
|
Shenc0411/CS445-master
|
vl_test_gmm.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_gmm.m
| 1,332 |
utf_8
|
76782cae6c98781c6c38d4cbf5549d94
|
function results = vl_test_gmm(varargin)
% VL_TEST_GMM
% Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
vl_test_init ;
end
function s = setup()
randn('state',0) ;
s.X = randn(128, 1000) ;
end
function test_multithreading(s)
dataTypes = {'single','double'} ;
for dataType = dataTypes
conversion = str2func(char(dataType)) ;
X = conversion(s.X) ;
vl_twister('state',0) ;
vl_threads(0) ;
[means, covariances, priors, ll, posteriors] = ...
vl_gmm(X, 10, ...
'NumRepetitions', 1, ...
'MaxNumIterations', 10, ...
'Initialization', 'rand') ;
vl_twister('state',0) ;
vl_threads(1) ;
[means_, covariances_, priors_, ll_, posteriors_] = ...
vl_gmm(X, 10, ...
'NumRepetitions', 1, ...
'MaxNumIterations', 10, ...
'Initialization', 'rand') ;
vl_assert_almost_equal(means, means_, 1e-2) ;
vl_assert_almost_equal(covariances, covariances_, 1e-2) ;
vl_assert_almost_equal(priors, priors_, 1e-2) ;
vl_assert_almost_equal(ll, ll_, 1e-2 * abs(ll)) ;
vl_assert_almost_equal(posteriors, posteriors_, 1e-2) ;
end
end
|
github
|
Shenc0411/CS445-master
|
vl_test_twister.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_twister.m
| 1,251 |
utf_8
|
2bfb5a30cbd6df6ac80c66b73f8646da
|
function results = vl_test_twister(varargin)
% VL_TEST_TWISTER
vl_test_init ;
function test_illegal_args()
vl_assert_exception(@() vl_twister(-1), 'vl:invalidArgument') ;
vl_assert_exception(@() vl_twister(1, -1), 'vl:invalidArgument') ;
vl_assert_exception(@() vl_twister([1, -1]), 'vl:invalidArgument') ;
function test_seed_by_scalar()
rand('twister',1) ; a = rand ;
vl_twister('state',1) ; b = vl_twister ;
vl_assert_equal(a,b,'seed by scalar + VL_TWISTER()') ;
function test_get_set_state()
rand('twister',1) ; a = rand('twister') ;
vl_twister('state',1) ; b = vl_twister('state') ;
vl_assert_equal(a,b,'read state') ;
a(1) = a(1) + 1 ;
vl_twister('state',a) ; b = vl_twister('state') ;
vl_assert_equal(a,b,'set state') ;
function test_multi_dimensions()
b = rand('twister') ;
rand('twister',b) ;
vl_twister('state',b) ;
a=rand([1 2 3 4 5]) ;
b=vl_twister([1 2 3 4 5]) ;
vl_assert_equal(a,b,'VL_TWISTER([M N P ...])') ;
function test_multi_multi_args()
rand('twister',1) ; a=rand(1, 2, 3, 4, 5) ;
vl_twister('state',1) ; b=vl_twister(1, 2, 3, 4, 5) ;
vl_assert_equal(a,b,'VL_TWISTER(M, N, P, ...)') ;
function test_square()
rand('twister',1) ; a=rand(10) ;
vl_twister('state',1) ; b=vl_twister(10) ;
vl_assert_equal(a,b,'VL_TWISTER(N)') ;
|
github
|
Shenc0411/CS445-master
|
vl_test_kdtree.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_kdtree.m
| 2,449 |
utf_8
|
9d7ad2b435a88c22084b38e5eb5f9eb9
|
function results = vl_test_kdtree(varargin)
% VL_TEST_KDTREE
vl_test_init ;
function s = setup()
randn('state',0) ;
s.X = single(randn(10, 1000)) ;
s.Q = single(randn(10, 10)) ;
function test_nearest(s)
for tmethod = {'median', 'mean'}
for type = {@single, @double}
conv = type{1} ;
tmethod = char(tmethod) ;
X = conv(s.X) ;
Q = conv(s.Q) ;
tree = vl_kdtreebuild(X,'ThresholdMethod', tmethod) ;
[nn, d2] = vl_kdtreequery(tree, X, Q) ;
D2 = vl_alldist2(X, Q, 'l2') ;
[d2_, nn_] = min(D2) ;
vl_assert_equal(...
nn,uint32(nn_),...
'incorrect nns: type=%s th. method=%s', func2str(conv), tmethod) ;
vl_assert_almost_equal(...
d2,d2_,...
'incorrect distances: type=%s th. method=%s', func2str(conv), tmethod) ;
end
end
function test_nearests(s)
numNeighbors = 7 ;
tree = vl_kdtreebuild(s.X) ;
[nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ...
'numNeighbors', numNeighbors) ;
D2 = vl_alldist2(s.X, s.Q, 'l2') ;
[d2_, nn_] = sort(D2) ;
d2_ = d2_(1:numNeighbors, :) ;
nn_ = nn_(1:numNeighbors, :) ;
vl_assert_equal(nn,uint32(nn_)) ;
vl_assert_almost_equal(d2,d2_) ;
function test_ann(s)
vl_twister('state', 1) ;
numNeighbors = 7 ;
maxComparisons = numNeighbors * 50 ;
tree = vl_kdtreebuild(s.X) ;
[nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ...
'numNeighbors', numNeighbors, ...
'maxComparisons', maxComparisons) ;
D2 = vl_alldist2(s.X, s.Q, 'l2') ;
[d2_, nn_] = sort(D2) ;
d2_ = d2_(1:numNeighbors, :) ;
nn_ = nn_(1:numNeighbors, :) ;
for i=1:size(s.Q,2)
overlap = numel(intersect(nn(:,i), nn_(:,i))) / ...
numel(union(nn(:,i), nn_(:,i))) ;
assert(overlap > 0.6, 'ANN did not return enough correct nearest neighbors') ;
end
function test_ann_forest(s)
vl_twister('state', 1) ;
numNeighbors = 7 ;
maxComparisons = numNeighbors * 25 ;
numTrees = 5 ;
tree = vl_kdtreebuild(s.X, 'numTrees', 5) ;
[nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ...
'numNeighbors', numNeighbors, ...
'maxComparisons', maxComparisons) ;
D2 = vl_alldist2(s.X, s.Q, 'l2') ;
[d2_, nn_] = sort(D2) ;
d2_ = d2_(1:numNeighbors, :) ;
nn_ = nn_(1:numNeighbors, :) ;
for i=1:size(s.Q,2)
overlap = numel(intersect(nn(:,i), nn_(:,i))) / ...
numel(union(nn(:,i), nn_(:,i))) ;
assert(overlap > 0.6, 'ANN did not return enough correct nearest neighbors') ;
end
|
github
|
Shenc0411/CS445-master
|
vl_test_imwbackward.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_imwbackward.m
| 514 |
utf_8
|
33baa0784c8f6f785a2951d7f1b49199
|
function results = vl_test_imwbackward(varargin)
% VL_TEST_IMWBACKWARD
vl_test_init ;
function s = setup()
s.I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ;
function test_identity(s)
xr = 1:size(s.I,2) ;
yr = 1:size(s.I,1) ;
[x,y] = meshgrid(xr,yr) ;
vl_assert_almost_equal(s.I, vl_imwbackward(xr,yr,s.I,x,y)) ;
function test_invalid_args(s)
xr = 1:size(s.I,2) ;
yr = 1:size(s.I,1) ;
[x,y] = meshgrid(xr,yr) ;
vl_assert_exception(@() vl_imwbackward(xr,yr,single(s.I),x,y), 'vl:invalidArgument') ;
|
github
|
Shenc0411/CS445-master
|
vl_test_alphanum.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_alphanum.m
| 1,624 |
utf_8
|
2da2b768c2d0f86d699b8f31614aa424
|
function results = vl_test_alphanum(varargin)
% VL_TEST_ALPHANUM
vl_test_init ;
function s = setup()
s.strings = ...
{'1000X Radonius Maximus','10X Radonius','200X Radonius','20X Radonius','20X Radonius Prime','30X Radonius','40X Radonius','Allegia 50 Clasteron','Allegia 500 Clasteron','Allegia 50B Clasteron','Allegia 51 Clasteron','Allegia 6R Clasteron','Alpha 100','Alpha 2','Alpha 200','Alpha 2A','Alpha 2A-8000','Alpha 2A-900','Callisto Morphamax','Callisto Morphamax 500','Callisto Morphamax 5000','Callisto Morphamax 600','Callisto Morphamax 6000 SE','Callisto Morphamax 6000 SE2','Callisto Morphamax 700','Callisto Morphamax 7000','Xiph Xlater 10000','Xiph Xlater 2000','Xiph Xlater 300','Xiph Xlater 40','Xiph Xlater 5','Xiph Xlater 50','Xiph Xlater 500','Xiph Xlater 5000','Xiph Xlater 58'} ;
s.sortedStrings = ...
{'10X Radonius','20X Radonius','20X Radonius Prime','30X Radonius','40X Radonius','200X Radonius','1000X Radonius Maximus','Allegia 6R Clasteron','Allegia 50 Clasteron','Allegia 50B Clasteron','Allegia 51 Clasteron','Allegia 500 Clasteron','Alpha 2','Alpha 2A','Alpha 2A-900','Alpha 2A-8000','Alpha 100','Alpha 200','Callisto Morphamax','Callisto Morphamax 500','Callisto Morphamax 600','Callisto Morphamax 700','Callisto Morphamax 5000','Callisto Morphamax 6000 SE','Callisto Morphamax 6000 SE2','Callisto Morphamax 7000','Xiph Xlater 5','Xiph Xlater 40','Xiph Xlater 50','Xiph Xlater 58','Xiph Xlater 300','Xiph Xlater 500','Xiph Xlater 2000','Xiph Xlater 5000','Xiph Xlater 10000'} ;
function test_basic(s)
sorted = vl_alphanum(s.strings) ;
assert(isequal(sorted,s.sortedStrings)) ;
|
github
|
Shenc0411/CS445-master
|
vl_test_printsize.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_printsize.m
| 1,447 |
utf_8
|
0f0b6437c648b7a2e1310900262bd765
|
function results = vl_test_printsize(varargin)
% VL_TEST_PRINTSIZE
vl_test_init ;
function s = setup()
s.fig = figure(1) ;
s.usletter = [8.5, 11] ; % inches
s.a4 = [8.26772, 11.6929] ;
clf(s.fig) ; plot(1:10) ;
function teardown(s)
close(s.fig) ;
function test_basic(s)
for sigma = [1 0.5 0.2]
vl_printsize(s.fig, sigma) ;
set(1, 'PaperUnits', 'inches') ;
siz = get(1, 'PaperSize') ;
pos = get(1, 'PaperPosition') ;
vl_assert_almost_equal(siz(1), sigma*s.usletter(1), 1e-4) ;
vl_assert_almost_equal(pos(1), 0, 1e-4) ;
vl_assert_almost_equal(pos(3), sigma*s.usletter(1), 1e-4) ;
end
function test_papertype(s)
vl_printsize(s.fig, 1, 'papertype', 'a4') ;
set(1, 'PaperUnits', 'inches') ;
siz = get(1, 'PaperSize') ;
pos = get(1, 'PaperPosition') ;
vl_assert_almost_equal(siz(1), s.a4(1), 1e-4) ;
function test_margin(s)
m = 0.5 ;
vl_printsize(s.fig, 1, 'margin', m) ;
set(1, 'PaperUnits', 'inches') ;
siz = get(1, 'PaperSize') ;
pos = get(1, 'PaperPosition') ;
vl_assert_almost_equal(siz(1), s.usletter(1) * (1 + 2*m), 1e-4) ;
vl_assert_almost_equal(pos(1), s.usletter(1) * m, 1e-4) ;
function test_reference(s)
sigma = 1 ;
vl_printsize(s.fig, 1, 'reference', 'vertical') ;
set(1, 'PaperUnits', 'inches') ;
siz = get(1, 'PaperSize') ;
pos = get(1, 'PaperPosition') ;
vl_assert_almost_equal(siz(2), sigma*s.usletter(2), 1e-4) ;
vl_assert_almost_equal(pos(2), 0, 1e-4) ;
vl_assert_almost_equal(pos(4), sigma*s.usletter(2), 1e-4) ;
|
github
|
Shenc0411/CS445-master
|
vl_test_cummax.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_cummax.m
| 838 |
utf_8
|
5e98ee1681d4823f32ecc4feaa218611
|
function results = vl_test_cummax(varargin)
% VL_TEST_CUMMAX
vl_test_init ;
function test_basic()
vl_assert_almost_equal(...
vl_cummax(1), 1) ;
vl_assert_almost_equal(...
vl_cummax([1 2 3 4], 2), [1 2 3 4]) ;
function test_multidim()
a = [1 2 3 4 3 2 1] ;
b = [1 2 3 4 4 4 4] ;
for k=1:6
dims = ones(1,6) ;
dims(k) = numel(a) ;
a = reshape(a, dims) ;
b = reshape(b, dims) ;
vl_assert_almost_equal(...
vl_cummax(a, k), b) ;
end
function test_storage_classes()
types = {@double, @single, ...
@int32, @uint32, ...
@int16, @uint16, ...
@int8, @uint8} ;
if vl_matlabversion() > 71000
types = horzcat(types, {@int64, @uint64}) ;
end
for a = types
a = a{1} ;
for b = types
b = b{1} ;
vl_assert_almost_equal(...
vl_cummax(a(eye(3))), a(toeplitz([1 1 1], [1 0 0 ]))) ;
end
end
|
github
|
Shenc0411/CS445-master
|
vl_test_imintegral.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_imintegral.m
| 1,429 |
utf_8
|
4750f04ab0ac9fc4f55df2c8583e5498
|
function results = vl_test_imintegral(varargin)
% VL_TEST_IMINTEGRAL
vl_test_init ;
function state = setup()
state.I = ones(5,6) ;
state.correct = [ 1 2 3 4 5 6 ;
2 4 6 8 10 12 ;
3 6 9 12 15 18 ;
4 8 12 16 20 24 ;
5 10 15 20 25 30 ; ] ;
function test_matlab_equivalent(s)
vl_assert_equal(slow_imintegral(s.I), s.correct) ;
function test_basic(s)
vl_assert_equal(vl_imintegral(s.I), s.correct) ;
function test_multi_dimensional(s)
vl_assert_equal(vl_imintegral(repmat(s.I, [1 1 3])), ...
repmat(s.correct, [1 1 3])) ;
function test_random(s)
numTests = 50 ;
for i = 1:numTests
I = rand(5) ;
vl_assert_almost_equal(vl_imintegral(s.I), ...
slow_imintegral(s.I)) ;
end
function test_datatypes(s)
vl_assert_equal(single(vl_imintegral(s.I)), single(s.correct)) ;
vl_assert_equal(double(vl_imintegral(s.I)), double(s.correct)) ;
vl_assert_equal(uint32(vl_imintegral(s.I)), uint32(s.correct)) ;
vl_assert_equal(int32(vl_imintegral(s.I)), int32(s.correct)) ;
vl_assert_equal(int32(vl_imintegral(-s.I)), -int32(s.correct)) ;
function integral = slow_imintegral(I)
integral = zeros(size(I));
for k = 1:size(I,3)
for r = 1:size(I,1)
for c = 1:size(I,2)
integral(r,c,k) = sum(sum(I(1:r,1:c,k)));
end
end
end
|
github
|
Shenc0411/CS445-master
|
vl_test_sift.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_sift.m
| 1,318 |
utf_8
|
806c61f9db9f2ebb1d649c9bfcf3dc0a
|
function results = vl_test_sift(varargin)
% VL_TEST_SIFT
vl_test_init ;
function s = setup()
s.I = im2single(imread(fullfile(vl_root,'data','box.pgm'))) ;
[s.ubc.f, s.ubc.d] = ...
vl_ubcread(fullfile(vl_root,'data','box.sift')) ;
function test_ubc_descriptor(s)
err = [] ;
[f, d] = vl_sift(s.I,...
'firstoctave', -1, ...
'frames', s.ubc.f) ;
D2 = vl_alldist(f, s.ubc.f) ;
[drop, perm] = min(D2) ;
f = f(:,perm) ;
d = d(:,perm) ;
error = mean(sqrt(sum((single(s.ubc.d) - single(d)).^2))) ...
/ mean(sqrt(sum(single(s.ubc.d).^2))) ;
assert(error < 0.1, ...
'sift descriptor did not produce desctiptors similar to UBC ones') ;
function test_ubc_detector(s)
[f, d] = vl_sift(s.I,...
'firstoctave', -1, ...
'peakthresh', .01, ...
'edgethresh', 10) ;
s.ubc.f(4,:) = mod(s.ubc.f(4,:), 2*pi) ;
f(4,:) = mod(f(4,:), 2*pi) ;
% scale the components so that 1 pixel erro in x,y,z is equal to a
% 10-th of angle.
S = diag([1 1 1 20/pi]);
D2 = vl_alldist(S * s.ubc.f, S * f) ;
[d2,perm] = sort(min(D2)) ;
error = sqrt(d2) ;
quant80 = round(.8 * size(f,2)) ;
% check for less than one pixel error at 80% quantile
assert(error(quant80) < 1, ...
'sift detector did not produce enough keypoints similar to UBC ones') ;
|
github
|
Shenc0411/CS445-master
|
vl_test_binsum.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_binsum.m
| 1,377 |
utf_8
|
f07f0f29ba6afe0111c967ab0b353a9d
|
function results = vl_test_binsum(varargin)
% VL_TEST_BINSUM
vl_test_init ;
function test_three_args()
vl_assert_almost_equal(...
vl_binsum([0 0], 1, 2), [0 1]) ;
vl_assert_almost_equal(...
vl_binsum([1 7], -1, 1), [0 7]) ;
vl_assert_almost_equal(...
vl_binsum([1 7], -1, [1 2 2 2 2 2 2 2]), [0 0]) ;
function test_four_args()
vl_assert_almost_equal(...
vl_binsum(eye(3), [1 1 1], [1 2 3], 1), 2*eye(3)) ;
vl_assert_almost_equal(...
vl_binsum(eye(3), [1 1 1]', [1 2 3]', 2), 2*eye(3)) ;
vl_assert_almost_equal(...
vl_binsum(eye(3), 1, [1 2 3], 1), 2*eye(3)) ;
vl_assert_almost_equal(...
vl_binsum(eye(3), 1, [1 2 3]', 2), 2*eye(3)) ;
function test_3d_one()
Z = zeros(3,3,3) ;
B = 3*ones(3,1,3) ;
R = Z ; R(:,3,:) = 17 ;
vl_assert_almost_equal(...
vl_binsum(Z, 17, B, 2), R) ;
function test_3d_two()
Z = zeros(3,3,3) ;
B = 3*ones(3,3,1) ;
X = zeros(3,3,1) ; X(:,:,1) = 17 ;
R = Z ; R(:,:,3) = 17 ;
vl_assert_almost_equal(...
vl_binsum(Z, X, B, 3), R) ;
function test_storage_classes()
types = {@double, @single, ...
@int32, @uint32, ...
@int16, @uint16, ...
@int8, @uint8} ;
if vl_matlabversion() > 71000
types = horzcat(types, {@int64, @uint64}) ;
end
for a = types
a = a{1} ;
for b = types
b = b{1} ;
vl_assert_almost_equal(...
vl_binsum(a(eye(3)), a([1 1 1]), b([1 2 3]), 1), a(2*eye(3))) ;
end
end
|
github
|
Shenc0411/CS445-master
|
vl_test_lbp.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_lbp.m
| 892 |
utf_8
|
a79c0ce0c85e25c0b1657f3a0b499538
|
function results = vl_test_lbp(varargin)
% VL_TEST_TWISTER
vl_test_init ;
function test_unfiorm_lbps(s)
% enumerate the 56 uniform lbps
q = 0 ;
for i=0:7
for j=1:7
I = zeros(3) ;
p = mod(s.pixels - i + 8, 8) + 1 ;
I(p <= j) = 1 ;
f = vl_lbp(single(I), 3) ;
q = q + 1 ;
vl_assert_equal(find(f), q) ;
end
end
% constant lbps
I = [1 1 1 ; 1 0 1 ; 1 1 1] ;
f = vl_lbp(single(I), 3) ;
vl_assert_equal(find(f), 57) ;
I = [1 1 1 ; 1 1 1 ; 1 1 1] ;
f = vl_lbp(single(I), 3) ;
vl_assert_equal(find(f), 57) ;
% other lbps
I = [1 0 1 ; 0 0 0 ; 1 0 1] ;
f = vl_lbp(single(I), 3) ;
vl_assert_equal(find(f), 58) ;
function test_fliplr(s)
randn('state',0) ;
I = randn(256,256,1,'single') ;
f = vl_lbp(fliplr(I), 8) ;
f_ = vl_lbpfliplr(vl_lbp(I, 8)) ;
vl_assert_almost_equal(f,f_,1e-3) ;
function s = setup()
s.pixels = [5 6 7 ;
4 NaN 0 ;
3 2 1] ;
|
github
|
Shenc0411/CS445-master
|
vl_test_colsubset.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_colsubset.m
| 828 |
utf_8
|
be0c080007445b36333b863326fb0f15
|
function results = vl_test_colsubset(varargin)
% VL_TEST_COLSUBSET
vl_test_init ;
function s = setup()
s.x = [5 2 3 6 4 7 1 9 8 0] ;
function test_beginning(s)
vl_assert_equal(1:5, vl_colsubset(1:10, 5, 'beginning')) ;
vl_assert_equal(1:5, vl_colsubset(1:10, .5, 'beginning')) ;
function test_ending(s)
vl_assert_equal(6:10, vl_colsubset(1:10, 5, 'ending')) ;
vl_assert_equal(6:10, vl_colsubset(1:10, .5, 'ending')) ;
function test_largest(s)
vl_assert_equal([5 6 7 9 8], vl_colsubset(s.x, 5, 'largest')) ;
vl_assert_equal([5 6 7 9 8], vl_colsubset(s.x, .5, 'largest')) ;
function test_smallest(s)
vl_assert_equal([2 3 4 1 0], vl_colsubset(s.x, 5, 'smallest')) ;
vl_assert_equal([2 3 4 1 0], vl_colsubset(s.x, .5, 'smallest')) ;
function test_random(s)
assert(numel(intersect(s.x, vl_colsubset(s.x, 5, 'random'))) == 5) ;
|
github
|
Shenc0411/CS445-master
|
vl_test_alldist.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_alldist.m
| 2,373 |
utf_8
|
9ea1a36c97fe715dfa2b8693876808ff
|
function results = vl_test_alldist(varargin)
% VL_TEST_ALLDIST
vl_test_init ;
function s = setup()
vl_twister('state', 0) ;
s.X = 3.1 * vl_twister(10,10) ;
s.Y = 4.7 * vl_twister(10,7) ;
function test_null_args(s)
vl_assert_equal(...
vl_alldist(zeros(15,12), zeros(15,0), 'kl2'), ...
zeros(12,0)) ;
vl_assert_equal(...
vl_alldist(zeros(15,0), zeros(15,0), 'kl2'), ...
zeros(0,0)) ;
vl_assert_equal(...
vl_alldist(zeros(15,0), zeros(15,12), 'kl2'), ...
zeros(0,12)) ;
vl_assert_equal(...
vl_alldist(zeros(0,15), zeros(0,12), 'kl2'), ...
zeros(15,12)) ;
function test_self(s)
vl_assert_almost_equal(...
vl_alldist(s.X, 'kl2'), ...
makedist(@(x,y) x*y, s.X, s.X), ...
1e-6) ;
function test_distances(s)
dists = {'chi2', 'l2', 'l1', 'hell', 'js', ...
'kchi2', 'kl2', 'kl1', 'khell', 'kjs'} ;
distsEquiv = { ...
@(x,y) (x-y)^2 / (x + y), ...
@(x,y) (x-y)^2, ...
@(x,y) abs(x-y), ...
@(x,y) (sqrt(x) - sqrt(y))^2, ...
@(x,y) x - x .* log2(1 + y/x) + y - y .* log2(1 + x/y), ...
@(x,y) 2 * (x*y) / (x + y), ...
@(x,y) x*y, ...
@(x,y) min(x,y), ...
@(x,y) sqrt(x.*y), ...
@(x,y) .5 * (x .* log2(1 + y/x) + y .* log2(1 + x/y))} ;
types = {'single', 'double'} ;
for simd = [0 1]
for d = 1:length(dists)
for t = 1:length(types)
vl_simdctrl(simd) ;
X = feval(str2func(types{t}), s.X) ;
Y = feval(str2func(types{t}), s.Y) ;
vl_assert_almost_equal(...
vl_alldist(X,Y,dists{d}), ...
makedist(distsEquiv{d},X,Y), ...
1e-4, ...
'alldist failed for dist=%s type=%s simd=%d', ...
dists{d}, ...
types{t}, ...
simd) ;
end
end
end
function test_distance_kernel_pairs(s)
dists = {'chi2', 'l2', 'l1', 'hell', 'js'} ;
for d = 1:length(dists)
dist = char(dists{d}) ;
X = s.X ;
Y = s.Y ;
ker = ['k' dist] ;
kxx = vl_alldist(X,X,ker) ;
kyy = vl_alldist(Y,Y,ker) ;
kxy = vl_alldist(X,Y,ker) ;
kxx = repmat(diag(kxx), 1, size(s.Y,2)) ;
kyy = repmat(diag(kyy), 1, size(s.X,1))' ;
d2 = vl_alldist(X,Y,dist) ;
vl_assert_almost_equal(d2, kxx + kyy - 2 * kxy, '1e-6') ;
end
function D = makedist(cmp,X,Y)
[d,m] = size(X) ;
[d,n] = size(Y) ;
D = zeros(m,n) ;
for i = 1:m
for j = 1:n
acc = 0 ;
for k = 1:d
acc = acc + cmp(X(k,i),Y(k,j)) ;
end
D(i,j) = acc ;
end
end
conv = str2func(class(X)) ;
D = conv(D) ;
|
github
|
Shenc0411/CS445-master
|
vl_test_ihashsum.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_ihashsum.m
| 581 |
utf_8
|
edc283062469af62056b0782b171f5fc
|
function results = vl_test_ihashsum(varargin)
% VL_TEST_IHASHSUM
vl_test_init ;
function s = setup()
rand('state',0) ;
s.data = uint8(round(16*rand(2,100))) ;
sel = find(all(s.data==0)) ;
s.data(1,sel)=1 ;
function test_hash(s)
D = size(s.data,1) ;
K = 5 ;
h = zeros(1,K,'uint32') ;
id = zeros(D,K,'uint8');
next = zeros(1,K,'uint32') ;
[h,id,next] = vl_ihashsum(h,id,next,K,s.data) ;
sel = vl_ihashfind(id,next,K,s.data) ;
count = double(h(sel)) ;
[drop,i,j] = unique(s.data','rows') ;
for k=1:size(s.data,2)
count_(k) = sum(j == j(k)) ;
end
vl_assert_equal(count,count_) ;
|
github
|
Shenc0411/CS445-master
|
vl_test_grad.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_grad.m
| 434 |
utf_8
|
4d03eb33a6a4f68659f868da95930ffb
|
function results = vl_test_grad(varargin)
% VL_TEST_GRAD
vl_test_init ;
function s = setup()
s.I = rand(150,253) ;
s.I_small = rand(2,2) ;
function test_equiv(s)
vl_assert_equal(gradient(s.I), vl_grad(s.I)) ;
function test_equiv_small(s)
vl_assert_equal(gradient(s.I_small), vl_grad(s.I_small)) ;
function test_equiv_forward(s)
Ix = diff(s.I,2,1) ;
Iy = diff(s.I,2,1) ;
vl_assert_equal(gradient(s.I_small), vl_grad(s.I_small)) ;
|
github
|
Shenc0411/CS445-master
|
vl_test_whistc.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_whistc.m
| 1,384 |
utf_8
|
81c446d35c82957659840ab2a579ec2c
|
function results = vl_test_whistc(varargin)
% VL_TEST_WHISTC
vl_test_init ;
function test_acc()
x = ones(1, 10) ;
e = 1 ;
o = 1:10 ;
vl_assert_equal(vl_whistc(x, o, e), 55) ;
function test_basic()
x = 1:10 ;
e = 1:10 ;
o = ones(1, 10) ;
vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ;
x = linspace(-1,11,100) ;
o = ones(size(x)) ;
vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ;
function test_multidim()
x = rand(10, 20, 30) ;
e = linspace(0,1,10) ;
o = ones(size(x)) ;
vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ;
vl_assert_equal(histc(x, e, 1), vl_whistc(x, o, e, 1)) ;
vl_assert_equal(histc(x, e, 2), vl_whistc(x, o, e, 2)) ;
vl_assert_equal(histc(x, e, 3), vl_whistc(x, o, e, 3)) ;
function test_nan()
x = rand(10, 20, 30) ;
e = linspace(0,1,10) ;
o = ones(size(x)) ;
x(1:7:end) = NaN ;
vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ;
vl_assert_equal(histc(x, e, 1), vl_whistc(x, o, e, 1)) ;
vl_assert_equal(histc(x, e, 2), vl_whistc(x, o, e, 2)) ;
vl_assert_equal(histc(x, e, 3), vl_whistc(x, o, e, 3)) ;
function test_no_edges()
x = rand(10, 20, 30) ;
o = ones(size(x)) ;
vl_assert_equal(histc(1, []), vl_whistc(1, 1, [])) ;
vl_assert_equal(histc(x, []), vl_whistc(x, o, [])) ;
vl_assert_equal(histc(x, [], 1), vl_whistc(x, o, [], 1)) ;
vl_assert_equal(histc(x, [], 2), vl_whistc(x, o, [], 2)) ;
vl_assert_equal(histc(x, [], 3), vl_whistc(x, o, [], 3)) ;
|
github
|
Shenc0411/CS445-master
|
vl_test_roc.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_roc.m
| 1,019 |
utf_8
|
9b2ae71c9dc3eda0fc54c65d55054d0c
|
function results = vl_test_roc(varargin)
% VL_TEST_ROC
vl_test_init ;
function s = setup()
s.scores0 = [5 4 3 2 1] ;
s.scores1 = [5 3 4 2 1] ;
s.labels = [1 1 -1 -1 -1] ;
function test_perfect_tptn(s)
[tpr,tnr] = vl_roc(s.labels,s.scores0) ;
vl_assert_almost_equal(tpr, [0 1 2 2 2 2] / 2) ;
vl_assert_almost_equal(tnr, [3 3 3 2 1 0] / 3) ;
function test_perfect_metrics(s)
[tpr,tnr,info] = vl_roc(s.labels,s.scores0) ;
vl_assert_almost_equal(info.eer, 0) ;
vl_assert_almost_equal(info.auc, 1) ;
function test_swap1_tptn(s)
[tpr,tnr] = vl_roc(s.labels,s.scores1) ;
vl_assert_almost_equal(tpr, [0 1 1 2 2 2] / 2) ;
vl_assert_almost_equal(tnr, [3 3 2 2 1 0] / 3) ;
function test_swap1_tptn_stable(s)
[tpr,tnr] = vl_roc(s.labels,s.scores1,'stable',true) ;
vl_assert_almost_equal(tpr, [1 2 1 2 2] / 2) ;
vl_assert_almost_equal(tnr, [3 2 2 1 0] / 3) ;
function test_swap1_metrics(s)
[tpr,tnr,info] = vl_roc(s.labels,s.scores1) ;
vl_assert_almost_equal(info.eer, 1/3) ;
vl_assert_almost_equal(info.auc, 1 - 1/(2*3)) ;
|
github
|
Shenc0411/CS445-master
|
vl_test_dsift.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_dsift.m
| 2,048 |
utf_8
|
fbbfb16d5a21936c1862d9551f657ccc
|
function results = vl_test_dsift(varargin)
% VL_TEST_DSIFT
vl_test_init ;
function s = setup()
I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ;
s.I = rgb2gray(single(I)) ;
function test_fast_slow(s)
binSize = 4 ; % bin size in pixels
magnif = 3 ; % bin size / keypoint scale
scale = binSize / magnif ;
windowSize = 5 ;
[f, d] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ...
'size', binSize, ...
'step', 10, ...
'bounds', [20,20,210,140], ...
'windowsize', windowSize, ...
'floatdescriptors') ;
[f_, d_] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ...
'size', binSize, ...
'step', 10, ...
'bounds', [20,20,210,140], ...
'windowsize', windowSize, ...
'floatdescriptors', ...
'fast') ;
error = std(d_(:) - d(:)) / std(d(:)) ;
assert(error < 0.1, 'dsift fast approximation not close') ;
function test_sift(s)
binSize = 4 ; % bin size in pixels
magnif = 3 ; % bin size / keypoint scale
scale = binSize / magnif ;
windowSizeRange = [1 1.2 5] ;
for wi = 1:length(windowSizeRange)
windowSize = windowSizeRange(wi) ;
[f, d] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ...
'size', binSize, ...
'step', 10, ...
'bounds', [20,20,210,140], ...
'windowsize', windowSize, ...
'floatdescriptors') ;
numKeys = size(f, 2) ;
f_ = [f ; ones(1, numKeys) * scale ; zeros(1, numKeys)] ;
[f_, d_] = vl_sift(s.I, ...
'magnif', magnif, ...
'frames', f_, ...
'firstoctave', -1, ...
'levels', 5, ...
'floatdescriptors', ...
'windowsize', windowSize) ;
error = std(d_(:) - d(:)) / std(d(:)) ;
assert(error < 0.1, 'dsift and sift equivalence') ;
end
|
github
|
Shenc0411/CS445-master
|
vl_test_alldist2.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_alldist2.m
| 2,284 |
utf_8
|
89a787e3d83516653ae8d99c808b9d67
|
function results = vl_test_alldist2(varargin)
% VL_TEST_ALLDIST
vl_test_init ;
% TODO: test integer classes
function s = setup()
vl_twister('state', 0) ;
s.X = 3.1 * vl_twister(10,10) ;
s.Y = 4.7 * vl_twister(10,7) ;
function test_null_args(s)
vl_assert_equal(...
vl_alldist2(zeros(15,12), zeros(15,0), 'kl2'), ...
zeros(12,0)) ;
vl_assert_equal(...
vl_alldist2(zeros(15,0), zeros(15,0), 'kl2'), ...
zeros(0,0)) ;
vl_assert_equal(...
vl_alldist2(zeros(15,0), zeros(15,12), 'kl2'), ...
zeros(0,12)) ;
vl_assert_equal(...
vl_alldist2(zeros(0,15), zeros(0,12), 'kl2'), ...
zeros(15,12)) ;
function test_self(s)
vl_assert_almost_equal(...
vl_alldist2(s.X, 'kl2'), ...
makedist(@(x,y) x*y, s.X, s.X), ...
1e-6) ;
function test_distances(s)
dists = {'chi2', 'l2', 'l1', 'hell', ...
'kchi2', 'kl2', 'kl1', 'khell'} ;
distsEquiv = { ...
@(x,y) (x-y)^2 / (x + y), ...
@(x,y) (x-y)^2, ...
@(x,y) abs(x-y), ...
@(x,y) (sqrt(x) - sqrt(y))^2, ...
@(x,y) 2 * (x*y) / (x + y), ...
@(x,y) x*y, ...
@(x,y) min(x,y), ...
@(x,y) sqrt(x.*y)};
types = {'single', 'double', 'sparse'} ;
for simd = [0 1]
for d = 1:length(dists)
for t = 1:length(types)
vl_simdctrl(simd) ;
X = feval(str2func(types{t}), s.X) ;
Y = feval(str2func(types{t}), s.Y) ;
a = vl_alldist2(X,Y,dists{d}) ;
b = makedist(distsEquiv{d},X,Y) ;
vl_assert_almost_equal(a,b, ...
1e-4, ...
'alldist failed for dist=%s type=%s simd=%d', ...
dists{d}, ...
types{t}, ...
simd) ;
end
end
end
function test_distance_kernel_pairs(s)
dists = {'chi2', 'l2', 'l1', 'hell'} ;
for d = 1:length(dists)
dist = char(dists{d}) ;
X = s.X ;
Y = s.Y ;
ker = ['k' dist] ;
kxx = vl_alldist2(X,X,ker) ;
kyy = vl_alldist2(Y,Y,ker) ;
kxy = vl_alldist2(X,Y,ker) ;
kxx = repmat(diag(kxx), 1, size(s.Y,2)) ;
kyy = repmat(diag(kyy), 1, size(s.X,1))' ;
d2 = vl_alldist2(X,Y,dist) ;
vl_assert_almost_equal(d2, kxx + kyy - 2 * kxy, '1e-6') ;
end
function D = makedist(cmp,X,Y)
[d,m] = size(X) ;
[d,n] = size(Y) ;
D = zeros(m,n) ;
for i = 1:m
for j = 1:n
acc = 0 ;
for k = 1:d
acc = acc + cmp(X(k,i),Y(k,j)) ;
end
D(i,j) = acc ;
end
end
conv = str2func(class(X)) ;
D = conv(D) ;
|
github
|
Shenc0411/CS445-master
|
vl_test_fisher.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_fisher.m
| 2,097 |
utf_8
|
c9afd9ab635bd412cbf8be3c2d235f6b
|
function results = vl_test_fisher(varargin)
% VL_TEST_FISHER
vl_test_init ;
function s = setup()
randn('state',0) ;
dimension = 5 ;
numData = 21 ;
numComponents = 3 ;
s.x = randn(dimension,numData) ;
s.mu = randn(dimension,numComponents) ;
s.sigma2 = ones(dimension,numComponents) ;
s.prior = ones(1,numComponents) ;
s.prior = s.prior / sum(s.prior) ;
function test_basic(s)
phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ;
phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior) ;
vl_assert_almost_equal(phi, phi_, 1e-10) ;
function test_norm(s)
phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ;
phi_ = phi_ / norm(phi_) ;
phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'normalized') ;
vl_assert_almost_equal(phi, phi_, 1e-10) ;
function test_sqrt(s)
phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ;
phi_ = sign(phi_) .* sqrt(abs(phi_)) ;
phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'squareroot') ;
vl_assert_almost_equal(phi, phi_, 1e-10) ;
function test_improved(s)
phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ;
phi_ = sign(phi_) .* sqrt(abs(phi_)) ;
phi_ = phi_ / norm(phi_) ;
phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'improved') ;
vl_assert_almost_equal(phi, phi_, 1e-10) ;
function test_fast(s)
phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior, true) ;
phi_ = sign(phi_) .* sqrt(abs(phi_)) ;
phi_ = phi_ / norm(phi_) ;
phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'improved', 'fast') ;
vl_assert_almost_equal(phi, phi_, 1e-10) ;
function enc = simple_fisher(x, mu, sigma2, pri, fast)
if nargin < 5, fast = false ; end
sigma = sqrt(sigma2) ;
for k = 1:size(mu,2)
delta{k} = bsxfun(@times, bsxfun(@minus, x, mu(:,k)), 1./sigma(:,k)) ;
q(k,:) = log(pri(k)) - 0.5 * sum(log(sigma2(:,k))) - 0.5 * sum(delta{k}.^2,1) ;
end
q = exp(bsxfun(@minus, q, max(q,[],1))) ;
q = bsxfun(@times, q, 1 ./ sum(q,1)) ;
n = size(x,2) ;
if fast
[~,i] = max(q) ;
q = zeros(size(q)) ;
q(sub2ind(size(q),i,1:n)) = 1 ;
end
for k = 1:size(mu,2)
u{k} = delta{k} * q(k,:)' / n / sqrt(pri(k)) ;
v{k} = (delta{k}.^2 - 1) * q(k,:)' / n / sqrt(2*pri(k)) ;
end
enc = cat(1, u{:}, v{:}) ;
|
github
|
Shenc0411/CS445-master
|
vl_test_imsmooth.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_imsmooth.m
| 1,837 |
utf_8
|
718235242cad61c9804ba5e881c22f59
|
function results = vl_test_imsmooth(varargin)
% VL_TEST_IMSMOOTH
vl_test_init ;
function s = setup()
I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ;
I = max(min(vl_imdown(I),1),0) ;
s.I = single(I) ;
function test_pad_by_continuity(s)
% Convolving a constant signal padded with continuity does not change
% the signal.
I = ones(3) ;
for ker = {'triangular', 'gaussian'}
ker = char(ker) ;
J = vl_imsmooth(I, 2, ...
'kernel', ker, ...
'padding', 'continuity') ;
vl_assert_almost_equal(J, I, 1e-4, ...
'padding by continutiy with kernel = %s', ker) ;
end
function test_kernels(s)
for ker = {'triangular', 'gaussian'}
ker = char(ker) ;
for type = {@single, @double}
for simd = [0 1]
for sigma = [1 2 7]
for step = [1 2 3]
vl_simdctrl(simd) ;
conv = type{1} ;
g = equivalent_kernel(ker, sigma) ;
J = vl_imsmooth(conv(s.I), sigma, ...
'kernel', ker, ...
'padding', 'zero', ...
'subsample', step) ;
J_ = conv(convolve(s.I, g, step)) ;
vl_assert_almost_equal(J, J_, 1e-4, ...
'kernel=%s sigma=%f step=%d simd=%d', ...
ker, sigma, step, simd) ;
end
end
end
end
end
function g = equivalent_kernel(ker, sigma)
switch ker
case 'gaussian'
W = ceil(4*sigma) ;
g = exp(-.5*((-W:W)/(sigma+eps)).^2) ;
case 'triangular'
W = max(round(sigma),1) ;
g = W - abs(-W+1:W-1) ;
end
g = g / sum(g) ;
function I = convolve(I, g, step)
if strcmp(class(I),'single')
g = single(g) ;
else
g = double(g) ;
end
for k=1:size(I,3)
I(:,:,k) = conv2(g,g,I(:,:,k),'same');
end
I = I(1:step:end,1:step:end,:) ;
|
github
|
Shenc0411/CS445-master
|
vl_test_svmtrain.m
|
.m
|
CS445-master/mp5/vlfeat-0.9.19/toolbox/xtest/vl_test_svmtrain.m
| 4,277 |
utf_8
|
071b7c66191a22e8236fda16752b27aa
|
function results = vl_test_svmtrain(varargin)
% VL_TEST_SVMTRAIN
vl_test_init ;
end
function s = setup()
randn('state',0) ;
Np = 10 ;
Nn = 10 ;
xp = diag([1 3])*randn(2, Np) ;
xn = diag([1 3])*randn(2, Nn) ;
xp(1,:) = xp(1,:) + 2 + 1 ;
xn(1,:) = xn(1,:) - 2 + 1 ;
s.x = [xp xn] ;
s.y = [ones(1,Np) -ones(1,Nn)] ;
s.lambda = 0.01 ;
s.biasMultiplier = 10 ;
if 0
figure(1) ; clf;
vl_plotframe(xp, 'g') ; hold on ;
vl_plotframe(xn, 'r') ;
axis equal ; grid on ;
end
% Run LibSVM as an accuate solver to compare results with. Note that
% LibSVM optimizes a slightly different cost function due to the way
% the bias is handled.
% [s.w, s.b] = accurate_solver(s.x, s.y, s.lambda, s.biasMultiplier) ;
s.w = [1.180762951236242; 0.098366470721632] ;
s.b = -1.540018443946204 ;
s.obj = obj(s, s.w, s.b) ;
end
function test_sgd_basic(s)
for conv = {@single, @double}
conv = conv{1} ;
vl_twister('state',0) ;
[w b info] = vl_svmtrain(s.x, s.y, s.lambda, ...
'Solver', 'sgd', ...
'BiasMultiplier', s.biasMultiplier, ...
'BiasLearningRate', 1/s.biasMultiplier, ...
'MaxNumIterations', 1e5, ...
'Epsilon', 1e-3) ;
% there are no absolute guarantees on the objective gap, but
% the heuristic SGD uses as stopping criterion seems reasonable
% within a factor 10 at least.
o = obj(s, w, b) ;
gap = o - s.obj ;
vl_assert_almost_equal(conv([w; b]), conv([s.w; s.b]), 0.1) ;
assert(gap <= 1e-2) ;
end
end
function test_sdca_basic(s)
for conv = {@single, @double}
conv = conv{1} ;
vl_twister('state',0) ;
[w b info] = vl_svmtrain(s.x, s.y, s.lambda, ...
'Solver', 'sdca', ...
'BiasMultiplier', s.biasMultiplier, ...
'MaxNumIterations', 1e5, ...
'Epsilon', 1e-3) ;
% the gap with the accurate solver cannot be
% greater than the duality gap.
o = obj(s, w, b) ;
gap = o - s.obj ;
vl_assert_almost_equal(conv([w; b]), conv([s.w; s.b]), 0.1) ;
assert(gap <= 1e-3) ;
end
end
function test_weights(s)
for algo = {'sgd', 'sdca'}
for conv = {@single, @double}
conv = conv{1} ;
vl_twister('state',0) ;
numRepeats = 10 ;
pos = find(s.y > 0) ;
neg = find(s.y < 0) ;
weights = ones(1, numel(s.y)) ;
weights(pos) = numRepeats ;
% simulate weighting by repeating positives
[w b info] = vl_svmtrain(...
s.x(:, [repmat(pos,1,numRepeats) neg]), ...
s.y(:, [repmat(pos,1,numRepeats) neg]), ...
s.lambda / (numel(pos) *numRepeats + numel(neg)) / (numel(pos) + numel(neg)), ...
'Solver', 'sdca', ...
'BiasMultiplier', s.biasMultiplier, ...
'MaxNumIterations', 1e6, ...
'Epsilon', 1e-4) ;
% apply weigthing
[w_ b_ info_] = vl_svmtrain(...
s.x, ...
s.y, ...
s.lambda, ...
'Solver', char(algo), ...
'BiasMultiplier', s.biasMultiplier, ...
'MaxNumIterations', 1e6, ...
'Epsilon', 1e-4, ...
'Weights', weights) ;
vl_assert_almost_equal(conv([w; b]), conv([w_; b_]), 0.05) ;
end
end
end
function test_homkermap(s)
for solver = {'sgd', 'sdca'}
for conv = {@single,@double}
conv = conv{1} ;
dataset = vl_svmdataset(conv(s.x), 'homkermap', struct('order',1)) ;
vl_twister('state',0) ;
[w_ b_] = vl_svmtrain(dataset, s.y, s.lambda) ;
x_hom = vl_homkermap(conv(s.x), 1) ;
vl_twister('state',0) ;
[w b] = vl_svmtrain(x_hom, s.y, s.lambda) ;
vl_assert_almost_equal([w; b],[w_; b_], 1e-7) ;
end
end
end
function [w,b] = accurate_solver(X, y, lambda, biasMultiplier)
addpath opt/libsvm/matlab/
N = size(X,2) ;
model = svmtrain(y', [(1:N)' X'*X], sprintf(' -c %f -t 4 -e 0.00001 ', 1/(lambda*N))) ;
w = X(:,model.SVs) * model.sv_coef ;
b = - model.rho ;
format long ;
disp('model w:')
disp(w)
disp('bias b:')
disp(b)
end
function o = obj(s, w, b)
o = (sum(w.*w) + b*b) * s.lambda / 2 + mean(max(0, 1 - s.y .* (w'*s.x + b))) ;
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.