plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
lcnhappe/happe-master
ft_platform_supports.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/ft_platform_supports.m
9,557
utf_8
eb0e55d84d57e6873cce8df6cad90d96
function tf = ft_platform_supports(what,varargin) % FT_PLATFORM_SUPPORTS returns a boolean indicating whether the current platform % supports a specific capability % % Usage: % tf = ft_platform_supports(what) % tf = ft_platform_supports('matlabversion', min_version, max_version) % % The following values are allowed for the 'what' parameter: % value means that the following is supported: % % 'which-all' which(...,'all') % 'exists-in-private-directory' exists(...) will look in the /private % subdirectory to see if a file exists % 'onCleanup' onCleanup(...) % 'alim' alim(...) % 'int32_logical_operations' bitand(a,b) with a, b of type int32 % 'graphics_objects' graphics sysem is object-oriented % 'libmx_c_interface' libmx is supported through mex in the % C-language (recent Matlab versions only % support C++) % 'stats' all statistical functions in % FieldTrip's external/stats directory % 'program_invocation_name' program_invocation_name() (GNU Octave) % 'singleCompThread' start Matlab with -singleCompThread % 'nosplash' -nosplash % 'nodisplay' -nodisplay % 'nojvm' -nojvm % 'no-gui' start GNU Octave with --no-gui % 'RandStream.setGlobalStream' RandStream.setGlobalStream(...) % 'RandStream.setDefaultStream' RandStream.setDefaultStream(...) % 'rng' rng(...) % 'rand-state' rand('state') % 'urlread-timeout' urlread(..., 'Timeout', t) % 'griddata-vector-input' griddata(...,...,...,a,b) with a and b % vectors % 'griddata-v4' griddata(...,...,...,...,...,'v4'), % that is v4 interpolation support % 'uimenu' uimenu(...) if ~ischar(what) error('first argument must be a string'); end switch what case 'matlabversion' tf = is_matlab() && matlabversion(varargin{:}); case 'exists-in-private-directory' tf = is_matlab(); case 'which-all' tf = is_matlab(); case 'onCleanup' tf = is_octave() || matlabversion(7.8, Inf); case 'alim' tf = is_matlab(); case 'int32_logical_operations' % earlier version of Matlab don't support bitand (and similar) % operations on int32 tf = is_octave() || ~matlabversion(-inf, '2012a'); case 'graphics_objects' % introduced in Matlab 2014b, graphics is handled through objects; % previous versions use numeric handles tf = is_matlab() && matlabversion('2014b', Inf); case 'libmx_c_interface' % removed after 2013b tf = matlabversion(-Inf, '2013b'); case 'stats' root_dir=fileparts(which('ft_defaults')); external_stats_dir=fullfile(root_dir,'external','stats'); % these files are only used by other functions in the external/stats % directory exclude_mfiles={'common_size.m',... 'iscomplex.m',... 'lgamma.m'}; tf = has_all_functions_in_dir(external_stats_dir,exclude_mfiles); case 'program_invocation_name' % Octave supports program_invocation_name, which returns the path % of the binary that was run to start Octave tf = is_octave(); case 'singleCompThread' tf = is_matlab() && matlabversion(7.8, inf); case {'nosplash','nodisplay','nojvm'} % Only on Matlab tf = is_matlab(); case 'no-gui' % Only on Octave tf = is_octave(); case 'RandStream.setDefaultStream' tf = is_matlab() && matlabversion('2008b', '2011b'); case 'RandStream.setGlobalStream' tf = is_matlab() && matlabversion('2012a', inf); case 'randomized_PRNG_on_startup' tf = is_octave() || ~matlabversion(-Inf,'7.3'); case 'rng' % recent Matlab versions tf = is_matlab() && matlabversion('7.12',Inf); case 'rand-state' % GNU Octave tf = is_octave(); case 'urlread-timeout' tf = is_matlab() && matlabversion('2012b',Inf); case 'griddata-vector-input' tf = is_matlab(); case 'griddata-v4' tf = is_matlab() && matlabversion('2009a',Inf); case 'uimenu' tf = is_matlab(); otherwise error('unsupported value for first argument: %s', what); end % switch end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function tf = is_matlab() tf = ~is_octave(); end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function tf = is_octave() persistent cached_tf; if isempty(cached_tf) cached_tf = logical(exist('OCTAVE_VERSION', 'builtin')); end tf = cached_tf; end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function tf = has_all_functions_in_dir(in_dir, exclude_mfiles) % returns true if all functions in in_dir are already provided by the % platform m_files=dir(fullfile(in_dir,'*.m')); n=numel(m_files); for k=1:n m_filename=m_files(k).name; if isempty(which(m_filename)) && ... isempty(strmatch(m_filename,exclude_mfiles)) tf=false; return; end end tf=true; end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [inInterval] = matlabversion(min, max) % MATLABVERSION checks if the current MATLAB version is within the interval % specified by min and max. % % Use, e.g., as: % if matlabversion(7.0, 7.9) % % do something % end % % Both strings and numbers, as well as infinities, are supported, eg.: % matlabversion(7.1, 7.9) % is version between 7.1 and 7.9? % matlabversion(6, '7.10') % is version between 6 and 7.10? (note: '7.10', not 7.10) % matlabversion(-Inf, 7.6) % is version <= 7.6? % matlabversion('2009b') % exactly 2009b % matlabversion('2008b', '2010a') % between two versions % matlabversion('2008b', Inf) % from a version onwards % etc. % % See also VERSION, VER, VERLESSTHAN % Copyright (C) 2006, Robert Oostenveld % Copyright (C) 2010, Eelke Spaak % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % this does not change over subsequent calls, making it persistent speeds it up persistent curVer if nargin<2 max = min; end if isempty(curVer) curVer = version(); end if ((ischar(min) && isempty(str2num(min))) || (ischar(max) && isempty(str2num(max)))) % perform comparison with respect to release string ind = strfind(curVer, '(R'); [year, ab] = parseMatlabRelease(curVer((ind + 2):(numel(curVer) - 1))); [minY, minAb] = parseMatlabRelease(min); [maxY, maxAb] = parseMatlabRelease(max); inInterval = orderedComparison(minY, minAb, maxY, maxAb, year, ab); else % perform comparison with respect to version number [major, minor] = parseMatlabVersion(curVer); [minMajor, minMinor] = parseMatlabVersion(min); [maxMajor, maxMinor] = parseMatlabVersion(max); inInterval = orderedComparison(minMajor, minMinor, maxMajor, maxMinor, major, minor); end end % function function [year, ab] = parseMatlabRelease(str) if (str == Inf) year = Inf; ab = Inf; elseif (str == -Inf) year = -Inf; ab = -Inf; else year = str2num(str(1:4)); ab = str(5); end end % function function [major, minor] = parseMatlabVersion(ver) if (ver == Inf) major = Inf; minor = Inf; elseif (ver == -Inf) major = -Inf; minor = -Inf; elseif (isnumeric(ver)) major = floor(ver); minor = int8((ver - floor(ver)) * 10); else % ver is string (e.g. '7.10'), parse accordingly [major, rest] = strtok(ver, '.'); major = str2num(major); minor = str2num(strtok(rest, '.')); end end % function % checks if testA is in interval (lowerA,upperA); if at edges, checks if testB is in interval (lowerB,upperB). function inInterval = orderedComparison(lowerA, lowerB, upperA, upperB, testA, testB) if (testA < lowerA || testA > upperA) inInterval = false; else inInterval = true; if (testA == lowerA) inInterval = inInterval && (testB >= lowerB); end if (testA == upperA) inInterval = inInterval && (testB <= upperB); end end end % function
github
lcnhappe/happe-master
ft_warning.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/ft_warning.m
7,789
utf_8
d832a7ad5e2f9bb42995e6e5d4caa198
function [ws, warned] = ft_warning(varargin) % FT_WARNING will throw a warning for every unique point in the % stacktrace only, e.g. in a for-loop a warning is thrown only once. % % Use as one of the following % ft_warning(string) % ft_warning(id, string) % Alternatively, you can use ft_warning using a timeout % ft_warning(string, timeout) % ft_warning(id, string, timeout) % where timeout should be inf if you don't want to see the warning ever % again. % % Use as ft_warning('-clear') to clear old warnings from the current % stack % % It can be used instead of the MATLAB built-in function WARNING, thus as % s = ft_warning(...) % or as % ft_warning(s) % where s is a structure with fields 'identifier' and 'state', storing the % state information. In other words, ft_warning accepts as an input the % same structure it returns as an output. This returns or restores the % states of warnings to their previous values. % % It can also be used as % [s w] = ft_warning(...) % where w is a boolean that indicates whether a warning as been thrown or not. % % Please note that you can NOT use it like this % ft_warning('the value is %d', 10) % instead you should do % ft_warning(sprintf('the value is %d', 10)) % Copyright (C) 2012-2016, Robert Oostenveld, J?rn M. Horschig % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ global ft_default warned = false; ws = []; stack = dbstack; if any(strcmp({stack(2:end).file}, 'ft_warning.m')) % don't call FT_WARNING recursively, see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3068 return; end if nargin < 1 error('You need to specify at least a warning message'); end if isstruct(varargin{1}) warning(varargin{1}); return; end if ~isfield(ft_default, 'warning') ft_default.warning = []; end if ~isfield(ft_default.warning, 'stopwatch') ft_default.warning.stopwatch = []; end if ~isfield(ft_default.warning, 'identifier') ft_default.warning.identifier = []; end if ~isfield(ft_default.warning, 'ignore') ft_default.warning.ignore = {}; end % put the arguments we will pass to warning() in this cell array warningArgs = {}; if nargin==3 % calling syntax (id, msg, timeout) warningArgs = varargin(1:2); msg = warningArgs{2}; timeout = varargin{3}; fname = [warningArgs{1} '_' warningArgs{2}]; elseif nargin==2 && isnumeric(varargin{2}) % calling syntax (msg, timeout) warningArgs = varargin(1); msg = warningArgs{1}; timeout = varargin{2}; fname = warningArgs{1}; elseif nargin==2 && isequal(varargin{1}, 'off') ft_default.warning.ignore = union(ft_default.warning.ignore, varargin{2}); return elseif nargin==2 && isequal(varargin{1}, 'on') ft_default.warning.ignore = setdiff(ft_default.warning.ignore, varargin{2}); return elseif nargin==2 && ~isnumeric(varargin{2}) % calling syntax (id, msg) warningArgs = varargin(1:2); msg = warningArgs{2}; timeout = inf; fname = [warningArgs{1} '_' warningArgs{2}]; elseif nargin==1 % calling syntax (msg) warningArgs = varargin(1); msg = warningArgs{1}; timeout = inf; % default timeout in seconds fname = [warningArgs{1}]; end if ismember(msg, ft_default.warning.ignore) % do not show this warning return; end if isempty(timeout) error('Timeout ill-specified'); end if timeout ~= inf fname = fixname(fname); % make a nice string that is allowed as fieldname in a structures line = []; else % here, we create the fieldname functionA.functionB.functionC... [tmpfname, ft_default.warning.identifier, line] = fieldnameFromStack(ft_default.warning.identifier); if ~isempty(tmpfname), fname = tmpfname; clear tmpfname; end end if nargin==1 && ischar(varargin{1}) && strcmp('-clear', varargin{1}) if strcmp(fname, '-clear') % reset all fields if called outside a function ft_default.warning.identifier = []; ft_default.warning.stopwatch = []; else if issubfield(ft_default.warning.identifier, fname) ft_default.warning.identifier = rmsubfield(ft_default.warning.identifier, fname); end end return; end % and add the line number to make this unique for the last function fname = horzcat(fname, line); if ~issubfield('ft_default.warning.stopwatch', fname) ft_default.warning.stopwatch = setsubfield(ft_default.warning.stopwatch, fname, tic); end now = toc(getsubfield(ft_default.warning.stopwatch, fname)); % measure time since first function call if ~issubfield(ft_default.warning.identifier, fname) || ... (issubfield(ft_default.warning.identifier, fname) && now>getsubfield(ft_default.warning.identifier, [fname '.timeout'])) % create or reset field ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, fname, []); % warning never given before or timed out ws = warning(warningArgs{:}); ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.timeout'], now+timeout); ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.ws'], msg); warned = true; else % the warning has been issued before, but has not timed out yet ws = getsubfield(ft_default.warning.identifier, [fname '.ws']); end end % function ft_warning %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [fname, ft_previous_warnings, line] = fieldnameFromStack(ft_previous_warnings) % stack(1) is this function, stack(2) is ft_warning stack = dbstack('-completenames'); if size(stack) < 3 fname = []; line = []; return; end i0 = 3; % ignore ft_preamble while strfind(stack(i0).name, 'ft_preamble') i0=i0+1; end fname = horzcat(fixname(stack(end).name)); if ~issubfield(ft_previous_warnings, fixname(stack(end).name)) ft_previous_warnings.(fixname(stack(end).name)) = []; % iteratively build up structure fields end for i=numel(stack)-1:-1:(i0) % skip postamble scripts if strncmp(stack(i).name, 'ft_postamble', 12) break; end fname = horzcat(fname, '.', horzcat(fixname(stack(i).name))); % , stack(i).file if ~issubfield(ft_previous_warnings, fname) % iteratively build up structure fields setsubfield(ft_previous_warnings, fname, []); end end % line of last function call line = ['.line', int2str(stack(i0).line)]; end % function outcome = issubfield(strct, fname) % substrindx = strfind(fname, '.'); % if numel(substrindx) > 0 % % separate the last fieldname from all former % outcome = eval(['isfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']); % else % % there is only one fieldname % outcome = isfield(strct, fname); % end % end % function strct = rmsubfield(strct, fname) % substrindx = strfind(fname, '.'); % if numel(substrindx) > 0 % % separate the last fieldname from all former % strct = eval(['rmfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']); % else % % there is only one fieldname % strct = rmfield(strct, fname); % end % end
github
lcnhappe/happe-master
ft_hastoolbox.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/ft_hastoolbox.m
24,831
utf_8
43bae19e25ce108f013f1c401e497630
function [status] = ft_hastoolbox(toolbox, autoadd, silent) % FT_HASTOOLBOX tests whether an external toolbox is installed. Optionally % it will try to determine the path to the toolbox and install it % automatically. % % Use as % [status] = ft_hastoolbox(toolbox, autoadd, silent) % % autoadd = 0 means that it will not be added % autoadd = 1 means that give an error if it cannot be added % autoadd = 2 means that give a warning if it cannot be added % autoadd = 3 means that it remains silent if it cannot be added % % silent = 0 means that it will give some feedback about adding the toolbox % silent = 1 means that it will not give feedback % Copyright (C) 2005-2013, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % this function is called many times in FieldTrip and associated toolboxes % use efficient handling if the same toolbox has been investigated before % persistent previous previouspath % % if ~isequal(previouspath, path) % previous = []; % end % % if isempty(previous) % previous = struct; % elseif isfield(previous, fixname(toolbox)) % status = previous.(fixname(toolbox)); % return % end if isdeployed % it is not possible to check the presence of functions or change the path in a compiled application status = 1; return end % this points the user to the website where he/she can download the toolbox url = { 'AFNI' 'see http://afni.nimh.nih.gov' 'DSS' 'see http://www.cis.hut.fi/projects/dss' 'EEGLAB' 'see http://www.sccn.ucsd.edu/eeglab' 'NWAY' 'see http://www.models.kvl.dk/source/nwaytoolbox' 'SPM99' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM2' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM5' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM8' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM12' 'see http://www.fil.ion.ucl.ac.uk/spm' 'MEG-PD' 'see http://www.kolumbus.fi/kuutela/programs/meg-pd' 'MEG-CALC' 'this is a commercial toolbox from Neuromag, see http://www.neuromag.com' 'BIOSIG' 'see http://biosig.sourceforge.net' 'EEG' 'see http://eeg.sourceforge.net' 'EEGSF' 'see http://eeg.sourceforge.net' % alternative name 'MRI' 'see http://eeg.sourceforge.net' % alternative name 'NEUROSHARE' 'see http://www.neuroshare.org' 'BESA' 'see http://www.besa.de/downloads/matlab/ and get the "BESA MATLAB Readers"' 'MATLAB2BESA' 'see http://www.besa.de/downloads/matlab/ and get the "MATLAB to BESA Export functions"' 'EEPROBE' 'see http://www.ant-neuro.com, or contact Maarten van der Velde' 'YOKOGAWA' 'this is deprecated, please use YOKOGAWA_MEG_READER instead' 'YOKOGAWA_MEG_READER' 'see http://www.yokogawa.com/me/me-login-en.htm' 'BEOWULF' 'see http://robertoostenveld.nl, or contact Robert Oostenveld' 'MENTAT' 'see http://robertoostenveld.nl, or contact Robert Oostenveld' 'SON2' 'see http://www.kcl.ac.uk/depsta/biomedical/cfnr/lidierth.html, or contact Malcolm Lidierth' '4D-VERSION' 'contact Christian Wienbruch' 'COMM' 'see http://www.mathworks.com/products/communications' 'SIGNAL' 'see http://www.mathworks.com/products/signal' 'OPTIM' 'see http://www.mathworks.com/products/optim' 'IMAGE' 'see http://www.mathworks.com/products/image' % Mathworks refers to this as IMAGES 'SPLINES' 'see http://www.mathworks.com/products/splines' 'DISTCOMP' 'see http://www.mathworks.nl/products/parallel-computing/' 'COMPILER' 'see http://www.mathworks.com/products/compiler' 'FASTICA' 'see http://www.cis.hut.fi/projects/ica/fastica' 'BRAINSTORM' 'see http://neuroimage.ucs.edu/brainstorm' 'FILEIO' 'see http://www.fieldtriptoolbox.org' 'PREPROC' 'see http://www.fieldtriptoolbox.org' 'FORWARD' 'see http://www.fieldtriptoolbox.org' 'INVERSE' 'see http://www.fieldtriptoolbox.org' 'SPECEST' 'see http://www.fieldtriptoolbox.org' 'REALTIME' 'see http://www.fieldtriptoolbox.org' 'PLOTTING' 'see http://www.fieldtriptoolbox.org' 'SPIKE' 'see http://www.fieldtriptoolbox.org' 'CONNECTIVITY' 'see http://www.fieldtriptoolbox.org' 'PEER' 'see http://www.fieldtriptoolbox.org' 'PLOTTING' 'see http://www.fieldtriptoolbox.org' 'DENOISE' 'see http://lumiere.ens.fr/Audition/adc/meg, or contact Alain de Cheveigne' 'BCI2000' 'see http://bci2000.org' 'NLXNETCOM' 'see http://www.neuralynx.com' 'DIPOLI' 'see ftp://ftp.fcdonders.nl/pub/fieldtrip/external' 'MNE' 'see http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php' 'TCP_UDP_IP' 'see http://www.mathworks.com/matlabcentral/fileexchange/345, or contact Peter Rydesaeter' 'BEMCP' 'contact Christophe Phillips' 'OPENMEEG' 'see http://gforge.inria.fr/projects/openmeeg and http://gforge.inria.fr/frs/?group_id=435' 'PRTOOLS' 'see http://www.prtools.org' 'ITAB' 'contact Stefania Della Penna' 'BSMART' 'see http://www.brain-smart.org' 'PEER' 'see http://www.fieldtriptoolbox.org/development/peer' 'FREESURFER' 'see http://surfer.nmr.mgh.harvard.edu/fswiki' 'SIMBIO' 'see https://www.mrt.uni-jena.de/simbio/index.php/Main_Page' 'VGRID' 'see http://www.rheinahrcampus.de/~medsim/vgrid/manual.html' 'FNS' 'see http://hhvn.nmsu.edu/wiki/index.php/FNS' 'GIFTI' 'see http://www.artefact.tk/software/matlab/gifti' 'XML4MAT' 'see http://www.mathworks.com/matlabcentral/fileexchange/6268-xml4mat-v2-0' 'SQDPROJECT' 'see http://www.isr.umd.edu/Labs/CSSL/simonlab' 'BCT' 'see http://www.brain-connectivity-toolbox.net/' 'CCA' 'see http://www.imt.liu.se/~magnus/cca or contact Magnus Borga' 'EGI_MFF' 'see http://www.egi.com/ or contact either Phan Luu or Colin Davey at EGI' 'TOOLBOX_GRAPH' 'see http://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph or contact Gabriel Peyre' 'NETCDF' 'see http://www.mathworks.com/matlabcentral/fileexchange/15177' 'MYSQL' 'see http://www.mathworks.com/matlabcentral/fileexchange/8663-mysql-database-connector' 'ISO2MESH' 'see http://iso2mesh.sourceforge.net/cgi-bin/index.cgi?Home or contact Qianqian Fang' 'DATAHASH' 'see http://www.mathworks.com/matlabcentral/fileexchange/31272' 'IBTB' 'see http://www.ibtb.org' 'ICASSO' 'see http://www.cis.hut.fi/projects/ica/icasso' 'XUNIT' 'see http://www.mathworks.com/matlabcentral/fileexchange/22846-matlab-xunit-test-framework' 'PLEXON' 'available from http://www.plexon.com/assets/downloads/sdk/ReadingPLXandDDTfilesinMatlab-mexw.zip' 'MISC' 'various functions that were downloaded from http://www.mathworks.com/matlabcentral/fileexchange and elsewhere' '35625-INFORMATION-THEORY-TOOLBOX' 'see http://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox' '29046-MUTUAL-INFORMATION' 'see http://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox' '14888-MUTUAL-INFORMATION-COMPUTATION' 'see http://www.mathworks.com/matlabcentral/fileexchange/14888-mutual-information-computation' 'PLOT2SVG' 'see http://www.mathworks.com/matlabcentral/fileexchange/7401-scalable-vector-graphics-svg-export-of-figures' 'BRAINSUITE' 'see http://brainsuite.bmap.ucla.edu/processing/additional-tools/' 'BRAINVISA' 'see http://brainvisa.info' 'FILEEXCHANGE' 'see http://www.mathworks.com/matlabcentral/fileexchange/' 'NEURALYNX_V6' 'see http://neuralynx.com/research_software/file_converters_and_utilities/ and take the version from Neuralynx (windows only)' 'NEURALYNX_V3' 'see http://neuralynx.com/research_software/file_converters_and_utilities/ and take the version from Ueli Rutishauser' 'NPMK' 'see https://github.com/BlackrockMicrosystems/NPMK' 'VIDEOMEG' 'see https://github.com/andreyzhd/VideoMEG' 'WAVEFRONT' 'see http://mathworks.com/matlabcentral/fileexchange/27982-wavefront-obj-toolbox' 'NEURONE' 'see http://www.megaemg.com/support/unrestricted-downloads' }; if nargin<2 % default is not to add the path automatically autoadd = 0; end if nargin<3 % default is not to be silent silent = 0; end % determine whether the toolbox is installed toolbox = upper(toolbox); % In case SPM8 or higher not available, allow to use fallback toolbox fallback_toolbox=''; switch toolbox case 'AFNI' dependency={'BrikLoad', 'BrikInfo'}; case 'DSS' dependency={'denss', 'dss_create_state'}; case 'EEGLAB' dependency = 'runica'; case 'NWAY' dependency = 'parafac'; case 'SPM' dependency = 'spm'; % any version of SPM is fine case 'SPM99' dependency = {'spm', get_spm_version()==99}; case 'SPM2' dependency = {'spm', get_spm_version()==2}; case 'SPM5' dependency = {'spm', get_spm_version()==5}; case 'SPM8' dependency = {'spm', get_spm_version()==8}; case 'SPM8UP' % version 8 or later, but not SPM 9X dependency = {'spm', get_spm_version()>=8, get_spm_version()<95}; %This is to avoid crashes when trying to add SPM to the path fallback_toolbox = 'SPM8'; case 'SPM12' dependency = {'spm', get_spm_version()==12}; case 'MEG-PD' dependency = {'rawdata', 'channames'}; case 'MEG-CALC' dependency = {'megmodel', 'megfield', 'megtrans'}; case 'BIOSIG' dependency = {'sopen', 'sread'}; case 'EEG' dependency = {'ctf_read_res4', 'ctf_read_meg4'}; case 'EEGSF' % alternative name dependency = {'ctf_read_res4', 'ctf_read_meg4'}; case 'MRI' % other functions in the mri section dependency = {'avw_hdr_read', 'avw_img_read'}; case 'NEUROSHARE' dependency = {'ns_OpenFile', 'ns_SetLibrary', ... 'ns_GetAnalogData'}; case 'ARTINIS' dependency = {'read_artinis_oxy3'}; case 'BESA' dependency = {'readBESAavr', 'readBESAelp', 'readBESAswf'}; case 'MATLAB2BESA' dependency = {'besa_save2Avr', 'besa_save2Elp', 'besa_save2Swf'}; case 'EEPROBE' dependency = {'read_eep_avr', 'read_eep_cnt'}; case 'YOKOGAWA' dependency = @()hasyokogawa('16bitBeta6'); case 'YOKOGAWA12BITBETA3' dependency = @()hasyokogawa('12bitBeta3'); case 'YOKOGAWA16BITBETA3' dependency = @()hasyokogawa('16bitBeta3'); case 'YOKOGAWA16BITBETA6' dependency = @()hasyokogawa('16bitBeta6'); case 'YOKOGAWA_MEG_READER' dependency = @()hasyokogawa('1.4'); case 'BEOWULF' dependency = {'evalwulf', 'evalwulf', 'evalwulf'}; case 'MENTAT' dependency = {'pcompile', 'pfor', 'peval'}; case 'SON2' dependency = {'SONFileHeader', 'SONChanList', 'SONGetChannel'}; case '4D-VERSION' dependency = {'read4d', 'read4dhdr'}; case {'STATS', 'STATISTICS'} dependency = has_license('statistics_toolbox'); % check the availability of a toolbox license case {'OPTIM', 'OPTIMIZATION'} dependency = has_license('optimization_toolbox'); % check the availability of a toolbox license case {'SPLINES', 'CURVE_FITTING'} dependency = has_license('curve_fitting_toolbox'); % check the availability of a toolbox license case 'COMM' dependency = {has_license('communication_toolbox'), 'de2bi'}; % also check the availability of a toolbox license case 'SIGNAL' dependency = {has_license('signal_toolbox'), 'window'}; % also check the availability of a toolbox license case 'IMAGE' dependency = has_license('image_toolbox'); % check the availability of a toolbox license case {'DCT', 'DISTCOMP'} dependency = has_license('distrib_computing_toolbox'); % check the availability of a toolbox license case 'COMPILER' dependency = has_license('compiler'); % check the availability of a toolbox license case 'FASTICA' dependency = 'fpica'; case 'BRAINSTORM' dependency = 'bem_xfer'; case 'DENOISE' dependency = {'tsr', 'sns'}; case 'CTF' dependency = {'getCTFBalanceCoefs', 'getCTFdata'}; case 'BCI2000' dependency = {'load_bcidat'}; case 'NLXNETCOM' dependency = {'MatlabNetComClient', 'NlxConnectToServer', ... 'NlxGetNewCSCData'}; case 'DIPOLI' dependency = {'dipoli.maci', 'file'}; case 'MNE' dependency = {'fiff_read_meas_info', 'fiff_setup_read_raw'}; case 'TCP_UDP_IP' dependency = {'pnet', 'pnet_getvar', 'pnet_putvar'}; case 'BEMCP' dependency = {'bem_Cij_cog', 'bem_Cij_lin', 'bem_Cij_cst'}; case 'OPENMEEG' dependency = {'om_save_tri'}; case 'PRTOOLS' dependency = {'prversion', 'dataset', 'svc'}; case 'ITAB' dependency = {'lcReadHeader', 'lcReadData'}; case 'BSMART' dependency = 'bsmart'; case 'FREESURFER' dependency = {'MRIread', 'vox2ras_0to1'}; case 'FNS' dependency = 'elecsfwd'; case 'SIMBIO' dependency = {'calc_stiff_matrix_val', 'sb_transfer'}; case 'VGRID' dependency = 'vgrid'; case 'GIFTI' dependency = 'gifti'; case 'XML4MAT' dependency = {'xml2struct', 'xml2whos'}; case 'SQDPROJECT' dependency = {'sqdread', 'sqdwrite'}; case 'BCT' dependency = {'macaque71.mat', 'motif4funct_wei'}; case 'CCA' dependency = {'ccabss'}; case 'EGI_MFF' dependency = {'mff_getObject', 'mff_getSummaryInfo'}; case 'TOOLBOX_GRAPH' dependency = 'toolbox_graph'; case 'NETCDF' dependency = {'netcdf'}; case 'MYSQL' % not sure if 'which' would work fine here, so use 'exist' dependency = has_mex('mysql'); % this only consists of a single mex file case 'ISO2MESH' dependency = {'vol2surf', 'qmeshcut'}; case 'QSUB' dependency = {'qsubfeval', 'qsubcellfun'}; case 'ENGINE' dependency = {'enginefeval', 'enginecellfun'}; case 'DATAHASH' dependency = {'DataHash'}; case 'IBTB' dependency = {'make_ibtb','binr'}; case 'ICASSO' dependency = {'icassoEst'}; case 'XUNIT' dependency = {'initTestSuite', 'runtests'}; case 'PLEXON' dependency = {'plx_adchan_gains', 'mexPlex'}; case '35625-INFORMATION-THEORY-TOOLBOX' dependency = {'conditionalEntropy', 'entropy', 'jointEntropy',... 'mutualInformation' 'nmi' 'nvi' 'relativeEntropy'}; case '29046-MUTUAL-INFORMATION' dependency = {'MI', 'license.txt'}; case '14888-MUTUAL-INFORMATION-COMPUTATION' dependency = {'condentropy', 'demo_mi', 'estcondentropy.cpp',... 'estjointentropy.cpp', 'estpa.cpp', ... 'findjointstateab.cpp', 'makeosmex.m',... 'mutualinfo.m', 'condmutualinfo.m',... 'entropy.m', 'estentropy.cpp',... 'estmutualinfo.cpp', 'estpab.cpp',... 'jointentropy.m' 'mergemultivariables.m' }; case 'PLOT2SVG' dependency = {'plot2svg.m', 'simulink2svg.m'}; case 'BRAINSUITE' dependency = {'readdfs.m', 'writedfc.m'}; case 'BRAINVISA' dependency = {'loadmesh.m', 'plotmesh.m', 'savemesh.m'}; case 'NEURALYNX_V6' dependency = has_mex('Nlx2MatCSC'); case 'NEURALYNX_V3' dependency = has_mex('Nlx2MatCSC_v3'); case 'NPMK' dependency = {'OpenNSx' 'OpenNEV'}; case 'VIDEOMEG' dependency = {'comp_tstamps' 'load_audio0123', 'load_video123'}; case 'WAVEFRONT' dependency = {'write_wobj' 'read_wobj'}; case 'NEURONE' dependency = {'readneurone' 'readneuronedata' 'readneuroneevents'}; % the following are FieldTrip modules/toolboxes case 'FILEIO' dependency = {'ft_read_header', 'ft_read_data', ... 'ft_read_event', 'ft_read_sens'}; case 'FORWARD' dependency = {'ft_compute_leadfield', 'ft_prepare_vol_sens'}; case 'PLOTTING' dependency = {'ft_plot_topo', 'ft_plot_mesh', 'ft_plot_matrix'}; case 'PEER' dependency = {'peerslave', 'peermaster'}; case 'CONNECTIVITY' dependency = {'ft_connectivity_corr', 'ft_connectivity_granger'}; case 'SPIKE' dependency = {'ft_spiketriggeredaverage', 'ft_spiketriggeredspectrum'}; case 'FILEEXCHANGE' dependency = is_subdir_in_fieldtrip_path('/external/fileexchange'); case {'INVERSE', 'REALTIME', 'SPECEST', 'PREPROC', ... 'COMPAT', 'STATFUN', 'TRIALFUN', 'UTILITIES/COMPAT', ... 'FILEIO/COMPAT', 'PREPROC/COMPAT', 'FORWARD/COMPAT', ... 'PLOTTING/COMPAT', 'TEMPLATE/LAYOUT', 'TEMPLATE/ANATOMY' ,... 'TEMPLATE/HEADMODEL', 'TEMPLATE/ELECTRODE', ... 'TEMPLATE/NEIGHBOURS', 'TEMPLATE/SOURCEMODEL'} dependency = is_subdir_in_fieldtrip_path(toolbox); otherwise if ~silent, warning('cannot determine whether the %s toolbox is present', toolbox); end dependency = false; end status = is_present(dependency); if ~status && ~isempty(fallback_toolbox) % in case of SPM8UP toolbox = fallback_toolbox; end % try to determine the path of the requested toolbox if autoadd>0 && ~status % for core FieldTrip modules prefix = fileparts(which('ft_defaults')); if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % for external FieldTrip modules prefix = fullfile(fileparts(which('ft_defaults')), 'external'); if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); licensefile = [lower(toolbox) '_license']; if status && exist(licensefile, 'file') % this will execute openmeeg_license and mne_license % which display the license on screen for three seconds feval(licensefile); end end % for contributed FieldTrip extensions prefix = fullfile(fileparts(which('ft_defaults')), 'contrib'); if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); licensefile = [lower(toolbox) '_license']; if status && exist(licensefile, 'file') % this will execute openmeeg_license and mne_license % which display the license on screen for three seconds feval(licensefile); end end % for linux computers in the Donders Centre for Cognitive Neuroimaging prefix = '/home/common/matlab'; if ~status && isdir(prefix) status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % for windows computers in the Donders Centre for Cognitive Neuroimaging prefix = 'h:\common\matlab'; if ~status && isdir(prefix) status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % use the MATLAB subdirectory in your homedirectory, this works on linux and mac prefix = fullfile(getenv('HOME'), 'matlab'); if ~status && isdir(prefix) status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end if ~status % the toolbox is not on the path and cannot be added sel = find(strcmp(url(:,1), toolbox)); if ~isempty(sel) msg = sprintf('the %s toolbox is not installed, %s', toolbox, url{sel, 2}); else msg = sprintf('the %s toolbox is not installed', toolbox); end if autoadd==1 error(msg); elseif autoadd==2 ft_warning(msg); else % fail silently end end end % this function is called many times in FieldTrip and associated toolboxes % use efficient handling if the same toolbox has been investigated before if status previous.(fixname(toolbox)) = status; end % remember the previous path, allows us to determine on the next call % whether the path has been modified outise of this function previouspath = path; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = myaddpath(toolbox, silent) if isdeployed warning('cannot change path settings for %s in a compiled application', toolbox); status = 1; elseif exist(toolbox, 'dir') if ~silent, ws = warning('backtrace', 'off'); warning('adding %s toolbox to your MATLAB path', toolbox); warning(ws); % return to the previous warning level end addpath(toolbox); status = 1; elseif (~isempty(regexp(toolbox, 'spm5$', 'once')) || ~isempty(regexp(toolbox, 'spm8$', 'once')) || ~isempty(regexp(toolbox, 'spm12$', 'once'))) && exist([toolbox 'b'], 'dir') status = myaddpath([toolbox 'b'], silent); else status = 0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function path = unixpath(path) %path(path=='\') = '/'; % replace backward slashes with forward slashes path = strrep(path,'\','/'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = hasfunction(funname, toolbox) try % call the function without any input arguments, which probably is inapropriate feval(funname); % it might be that the function without any input already works fine status = true; catch % either the function returned an error, or the function is not available % availability is influenced by the function being present and by having a % license for the function, i.e. in a concurrent licensing setting it might % be that all toolbox licenses are in use m = lasterror; if strcmp(m.identifier, 'MATLAB:license:checkouterror') if nargin>1 warning('the %s toolbox is available, but you don''t have a license for it', toolbox); else warning('the function ''%s'' is available, but you don''t have a license for it', funname); end status = false; elseif strcmp(m.identifier, 'MATLAB:UndefinedFunction') status = false; else % the function seems to be available and it gave an unknown error, % which is to be expected with inappropriate input arguments status = true; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = is_subdir_in_fieldtrip_path(toolbox_name) fttrunkpath = unixpath(fileparts(which('ft_defaults'))); fttoolboxpath = fullfile(fttrunkpath, lower(toolbox_name)); needle=[pathsep fttoolboxpath pathsep]; haystack = [pathsep path() pathsep]; status = ~isempty(findstr(needle, haystack)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = has_mex(name) full_name=[name '.' mexext]; status = (exist(full_name, 'file')==3); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function v = get_spm_version() if ~is_present('spm') v=NaN; return end version_str = spm('ver'); token = regexp(version_str,'(\d*)','tokens'); v = str2num([token{:}{:}]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = has_license(toolbox_name) status = license('checkout', toolbox_name)==1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = is_present(dependency) if iscell(dependency) % use recursion status = all(cellfun(@is_present,dependency)); elseif islogical(dependency) % boolean status = all(dependency); elseif ischar(dependency) % name of a function status = is_function_present_in_search_path(dependency); elseif isa(dependency, 'function_handle') status = dependency(); else assert(false,'this should not happen'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = is_function_present_in_search_path(function_name) w = which(function_name); % must be in path and not a variable status = ~isempty(w) && ~isequal(w, 'variable');
github
lcnhappe/happe-master
read_yokogawa_data_new.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_yokogawa_data_new.m
5,623
utf_8
521f307689398a9963b8d12d779650dd
function [dat] = read_yokogawa_data_new(filename, hdr, begsample, endsample, chanindx) % READ_YOKAGAWA_DATA_NEW reads continuous, epoched or averaged MEG data % that has been generated by the Yokogawa MEG system and software % and allows that data to be used in combination with FieldTrip. % % Use as % [dat] = read_yokogawa_data_new(filename, hdr, begsample, endsample, chanindx) % % This is a wrapper function around the function % getYkgwData % % See also READ_YOKOGAWA_HEADER_NEW, READ_YOKOGAWA_EVENT % Copyright (C) 2005, Robert Oostenveld and 2010, Tilmann Sander-Thoemmes % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if ~ft_hastoolbox('yokogawa_meg_reader') error('cannot determine whether Yokogawa toolbox is present'); end % hdr = read_yokogawa_header(filename); hdr = hdr.orig; % use the original Yokogawa header, not the FieldTrip header % default is to select all channels if nargin<5 chanindx = 1:hdr.channel_count; end handles = definehandles; switch hdr.acq_type case handles.AcqTypeEvokedAve % dat is returned as double start_sample = begsample - 1; % samples start at 0 sample_length = endsample - begsample + 1; epoch_count = 1; start_epoch = 0; dat = getYkgwData(filename, start_sample, sample_length); case handles.AcqTypeContinuousRaw % dat is returned as double start_sample = begsample - 1; % samples start at 0 sample_length = endsample - begsample + 1; epoch_count = 1; start_epoch = 0; dat = getYkgwData(filename, start_sample, sample_length); case handles.AcqTypeEvokedRaw % dat is returned as double begtrial = ceil(begsample/hdr.sample_count); endtrial = ceil(endsample/hdr.sample_count); if begtrial<1 error('cannot read before the begin of the file'); elseif endtrial>hdr.actual_epoch_count error('cannot read beyond the end of the file'); end epoch_count = endtrial-begtrial+1; start_epoch = begtrial-1; % read all the neccessary trials that contain the desired samples dat = getYkgwData(filename, start_epoch, epoch_count); if size(dat,2)~=epoch_count*hdr.sample_count error('could not read all epochs'); end rawbegsample = begsample - (begtrial-1)*hdr.sample_count; rawendsample = endsample - (begtrial-1)*hdr.sample_count; sample_length = rawendsample - rawbegsample + 1; % select the desired samples from the complete trials dat = dat(:,rawbegsample:rawendsample); otherwise error('unknown data type'); end if size(dat,1)~=hdr.channel_count error('could not read all channels'); elseif size(dat,2)~=(endsample-begsample+1) error('could not read all samples'); end % select only the desired channels dat = dat(chanindx,:); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this defines some usefull constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function handles = definehandles handles.output = []; handles.sqd_load_flag = false; handles.mri_load_flag = false; handles.NullChannel = 0; handles.MagnetoMeter = 1; handles.AxialGradioMeter = 2; handles.PlannerGradioMeter = 3; handles.RefferenceChannelMark = hex2dec('0100'); handles.RefferenceMagnetoMeter = bitor( handles.RefferenceChannelMark, handles.MagnetoMeter ); handles.RefferenceAxialGradioMeter = bitor( handles.RefferenceChannelMark, handles.AxialGradioMeter ); handles.RefferencePlannerGradioMeter = bitor( handles.RefferenceChannelMark, handles.PlannerGradioMeter ); handles.TriggerChannel = -1; handles.EegChannel = -2; handles.EcgChannel = -3; handles.EtcChannel = -4; handles.NonMegChannelNameLength = 32; handles.DefaultMagnetometerSize = (4.0/1000.0); % Square of 4.0mm in length handles.DefaultAxialGradioMeterSize = (15.5/1000.0); % Circle of 15.5mm in diameter handles.DefaultPlannerGradioMeterSize = (12.0/1000.0); % Square of 12.0mm in length handles.AcqTypeContinuousRaw = 1; handles.AcqTypeEvokedAve = 2; handles.AcqTypeEvokedRaw = 3; handles.sqd = []; handles.sqd.selected_start = []; handles.sqd.selected_end = []; handles.sqd.axialgradiometer_ch_no = []; handles.sqd.axialgradiometer_ch_info = []; handles.sqd.axialgradiometer_data = []; handles.sqd.plannergradiometer_ch_no = []; handles.sqd.plannergradiometer_ch_info = []; handles.sqd.plannergradiometer_data = []; handles.sqd.eegchannel_ch_no = []; handles.sqd.eegchannel_data = []; handles.sqd.nullchannel_ch_no = []; handles.sqd.nullchannel_data = []; handles.sqd.selected_time = []; handles.sqd.sample_rate = []; handles.sqd.sample_count = []; handles.sqd.pretrigger_length = []; handles.sqd.matching_info = []; handles.sqd.source_info = []; handles.sqd.mri_info = []; handles.mri = [];
github
lcnhappe/happe-master
read_plexon_nex.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_plexon_nex.m
7,574
utf_8
0034c1c75c81e41e90e48c678ed2ca9e
function [varargout] = read_plexon_nex(filename, varargin) % READ_PLEXON_NEX reads header or data from a Plexon *.nex file, which % is a file containing action-potential (spike) timestamps and waveforms % (spike channels), event timestamps (event channels), and continuous % variable data (continuous A/D channels). % % LFP and spike waveform data that is returned by this function is % expressed in microVolt. % % Use as % [hdr] = read_plexon_nex(filename) % [dat] = read_plexon_nex(filename, ...) % [dat1, dat2, dat3, hdr] = read_plexon_nex(filename, ...) % % Optional arguments should be specified in key-value pairs and can be % header structure with header information % feedback 0 or 1 % tsonly 0 or 1, read only the timestamps and not the waveforms % channel number, or list of numbers (that will result in multiple outputs) % begsample number (for continuous only) % endsample number (for continuous only) % % See also READ_PLEXON_PLX, READ_PLEXON_DDT % Copyright (C) 2007, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % parse the optional input arguments hdr = ft_getopt(varargin, 'header'); channel = ft_getopt(varargin, 'channel'); feedback = ft_getopt(varargin, 'feedback', false); tsonly = ft_getopt(varargin, 'tsonly', false); begsample = ft_getopt(varargin, 'begsample', 1); endsample = ft_getopt(varargin, 'endsample', inf); % start with empty return values and empty data varargout = {}; % read header info from file, use Matlabs for automatic byte-ordering fid = fopen(filename, 'r', 'ieee-le'); fseek(fid, 0, 'eof'); siz = ftell(fid); fseek(fid, 0, 'bof'); if isempty(hdr) if feedback, fprintf('reading header from %s\n', filename); end % a NEX file consists of a file header, followed by a number of variable headers % sizeof(NexFileHeader) = 544 % sizeof(NexVarHeader) = 208 hdr.FileHeader = NexFileHeader(fid); if hdr.FileHeader.NumVars<1 error('no channels present in file'); end hdr.VarHeader = NexVarHeader(fid, hdr.FileHeader.NumVars); end for i=1:length(channel) chan = channel(i); vh = hdr.VarHeader(chan); clear buf fseek(fid, vh.DataOffset, 'bof'); switch vh.Type case 0 % Neurons, only timestamps buf.ts = fread(fid, [1 vh.Count], 'int32=>int32'); case 1 % Events, only timestamps buf.ts = fread(fid, [1 vh.Count], 'int32=>int32'); case 2 % Interval variables buf.begs = fread(fid, [1 vh.Count], 'int32=>int32'); buf.ends = fread(fid, [1 vh.Count], 'int32=>int32'); case 3 % Waveform variables buf.ts = fread(fid, [1 vh.Count], 'int32=>int32'); if ~tsonly buf.dat = fread(fid, [vh.NPointsWave vh.Count], 'int16'); % convert the AD values to miliVolt, subsequently convert from miliVolt to microVolt buf.dat = buf.dat * (vh.ADtoMV * 1000); end case 4 % Population vector error('population vectors are not supported'); case 5 % Continuously recorded variables buf.ts = fread(fid, [1 vh.Count], 'int32=>int32'); buf.indx = fread(fid, [1 vh.Count], 'int32=>int32'); if vh.Count>1 && (begsample~=1 || endsample~=inf) error('reading selected samples from multiple AD segments is not supported'); end if ~tsonly numsample = min(endsample - begsample + 1, vh.NPointsWave); fseek(fid, (begsample-1)*2, 'cof'); buf.dat = fread(fid, [1 numsample], 'int16'); % convert the AD values to miliVolt, subsequently convert from miliVolt to microVolt buf.dat = buf.dat * (vh.ADtoMV * 1000); end case 6 % Markers buf.ts = fread(fid, [1 vh.Count], 'int32=>int32'); for j=1:vh.NMarkers buf.MarkerNames{j,1} = fread(fid, [1 64], 'uint8=>char'); for k=1:vh.Count buf.MarkerValues{j,k} = fread(fid, [1 vh.MarkerLength], 'uint8=>char'); end end otherwise error('incorrect channel type'); end % switch channel type % return the data of this channel varargout{i} = buf; end % for channel % always return the header as last varargout{end+1} = hdr; fclose(fid); return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = NexFileHeader(fid) hdr.NexFileHeader = fread(fid,4,'uint8=>char')'; % string NEX1 hdr.Version = fread(fid,1,'int32'); hdr.Comment = fread(fid,256,'uint8=>char')'; hdr.Frequency = fread(fid,1,'double'); % timestamped freq. - tics per second hdr.Beg = fread(fid,1,'int32'); % usually 0 hdr.End = fread(fid,1,'int32'); % maximum timestamp + 1 hdr.NumVars = fread(fid,1,'int32'); % number of variables in the first batch hdr.NextFileHeader = fread(fid,1,'int32'); % position of the next file header in the file, not implemented yet Padding = fread(fid,256,'uint8=>char')'; % future expansion %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = NexVarHeader(fid, numvar) for varlop=1:numvar hdr(varlop).Type = fread(fid,1,'int32'); % 0 - neuron, 1 event, 2- interval, 3 - waveform, 4 - pop. vector, 5 - continuously recorded hdr(varlop).Version = fread(fid,1,'int32'); % 100 hdr(varlop).Name = fread(fid,64,'uint8=>char')'; % variable name hdr(varlop).DataOffset = fread(fid,1,'int32'); % where the data array for this variable is located in the file hdr(varlop).Count = fread(fid,1,'int32'); % number of events, intervals, waveforms or weights hdr(varlop).WireNumber = fread(fid,1,'int32'); % neuron only, not used now hdr(varlop).UnitNumber = fread(fid,1,'int32'); % neuron only, not used now hdr(varlop).Gain = fread(fid,1,'int32'); % neuron only, not used now hdr(varlop).Filter = fread(fid,1,'int32'); % neuron only, not used now hdr(varlop).XPos = fread(fid,1,'double'); % neuron only, electrode position in (0,100) range, used in 3D hdr(varlop).YPos = fread(fid,1,'double'); % neuron only, electrode position in (0,100) range, used in 3D hdr(varlop).WFrequency = fread(fid,1,'double'); % waveform and continuous vars only, w/f sampling frequency hdr(varlop).ADtoMV = fread(fid,1,'double'); % waveform continuous vars only, coeff. to convert from A/D values to Millivolts hdr(varlop).NPointsWave = fread(fid,1,'int32'); % waveform only, number of points in each wave hdr(varlop).NMarkers = fread(fid,1,'int32'); % how many values are associated with each marker hdr(varlop).MarkerLength = fread(fid,1,'int32'); % how many characters are in each marker value Padding = fread(fid,68,'uint8=>char')'; end
github
lcnhappe/happe-master
read_bti_m4d.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_bti_m4d.m
5,780
utf_8
744eebbd1eba1a856943c7ce24600bc4
function [msi] = read_bti_m4d(filename) % READ_BTI_M4D % % Use as % msi = read_bti_m4d(filename) % Copyright (C) 2007, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ [p, f, x] = fileparts(filename); if ~strcmp(x, '.m4d') % add the extension of the header filename = [filename '.m4d']; end fid = fopen(filename, 'r'); if fid==-1 error(sprintf('could not open file %s', filename)); end % start with an empty header structure msi = struct; % these header elements contain strings and should be converted in a cell-array strlist = { 'MSI.ChannelOrder' }; % these header elements contain numbers and should be converted in a numeric array % 'MSI.ChannelScale' % 'MSI.ChannelGain' % 'MSI.FileType' % 'MSI.TotalChannels' % 'MSI.TotalEpochs' % 'MSI.SamplePeriod' % 'MSI.SampleFrequency' % 'MSI.FirstLatency' % 'MSI.SlicesPerEpoch' % the conversion to numeric arrays is implemented in a general fashion % and all the fields above are automatically converted numlist = {}; line = ''; msi.grad.label = {}; msi.grad.coilpos = zeros(0,3); msi.grad.coilori = zeros(0,3); while ischar(line) line = cleanline(fgetl(fid)); if isempty(line) || (length(line)==1 && all(line==-1)) continue end sep = strfind(line, ':'); if length(sep)==1 key = line(1:(sep-1)); val = line((sep+1):end); elseif length(sep)>1 % assume that the first separator is the relevant one, and that the % next ones are part of the value string (e.g. a channel with a ':' in % its name sep = sep(1); key = line(1:(sep-1)); val = line((sep+1):end); elseif length(sep)<1 % this is not what I would expect error('unexpected content in m4d file'); end if ~isempty(strfind(line, 'Begin')) && (~isempty(strfind(line, 'Meg_Position_Information')) || ~isempty(strfind(line, 'Ref_Position_Information'))) % jansch added the second ~isempty() to accommodate for when the % block is about Eeg_Position_Information, which does not pertain to % gradiometers, and moreover can be empty (added: Aug 03, 2013) sep = strfind(key, '.'); sep = sep(end); key = key(1:(sep-1)); % if the key ends with begin and there is no value, then there is a block % of numbers following that relates to the magnetometer/gradiometer information. % All lines in that Begin-End block should be treated separately val = {}; lab = {}; num = {}; ind = 0; while isempty(strfind(line, 'End')) line = cleanline(fgetl(fid)); if isempty(line) || (length(line)==1 && all(line==-1)) || ~isempty(strfind(line, 'End')) continue end ind = ind+1; % remember the line itself, and also cut it into pieces val{ind} = line; % the line is tab-separated and looks like this % A68 0.0873437 -0.075789 0.0891512 0.471135 -0.815532 0.336098 sep = find(line==9); % the ascii value of a tab is 9 sep = sep(1); lab{ind} = line(1:(sep-1)); num{ind} = str2num(line((sep+1):end)); end % parsing Begin-End block val = val(:); lab = lab(:); num = num(:); num = cell2mat(num); % the following is FieldTrip specific if size(num,2)==6 msi.grad.label = [msi.grad.label; lab(:)]; % the numbers represent position and orientation of each magnetometer coil msi.grad.coilpos = [msi.grad.coilpos; num(:,1:3)]; msi.grad.coilori = [msi.grad.coilori; num(:,4:6)]; else error('unknown gradiometer design') end end % the key looks like 'MSI.fieldname.subfieldname' fieldname = key(5:end); % remove spaces from the begin and end of the string val = strtrim(val); % try to convert the value string into something more usefull if ~iscell(val) % the value can contain a variety of elements, only some of which are decoded here if ~isempty(strfind(key, 'Index')) || ~isempty(strfind(key, 'Count')) || any(strcmp(key, numlist)) % this contains a single number or a comma-separated list of numbers val = str2num(val); elseif ~isempty(strfind(key, 'Names')) || any(strcmp(key, strlist)) % this contains a comma-separated list of strings val = tokenize(val, ','); else tmp = str2num(val); if ~isempty(tmp) val = tmp; end end end % assign this header element to the structure msi = setsubfield(msi, fieldname, val); end % while ischar(line) % each coil weighs with a value of 1 into each channel msi.grad.tra = eye(size(msi.grad.coilpos,1)); msi.grad.unit = 'm'; fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to remove spaces from the begin and end % and to remove comments from the lines %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function line = cleanline(line) if isempty(line) || (length(line)==1 && all(line==-1)) return end comment = findstr(line, '//'); if ~isempty(comment) line(min(comment):end) = ' '; end line = strtrim(line);
github
lcnhappe/happe-master
read_asa.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_asa.m
3,803
utf_8
290f06e1b51f627f99d257a5f1b49465
function [val] = read_asa(filename, elem, format, number, token) % READ_ASA reads a specified element from an ASA file % % val = read_asa(filename, element, type, number) % % where the element is a string such as % NumberSlices % NumberPositions % Rows % Columns % etc. % % and format specifies the datatype according to % %d (integer value) % %f (floating point value) % %s (string) % % number is optional to specify how many lines of data should be read % The default is 1 for strings and Inf for numbers. % % token is optional to specifiy a character that separates the values from % anything not wanted. % Copyright (C) 2002-2012, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ fid = fopen(filename, 'rt'); if fid==-1 error(sprintf('could not open file %s', filename)); end if nargin<4 if strcmp(format, '%s') number = 1; else number = Inf; end end if nargin<5 token = ''; end val = []; elem = strtrim(lower(elem)); while (1) line = fgetl(fid); if ~isempty(line) && isequal(line, -1) % prematurely reached end of file fclose(fid); return end line = strtrim(line); lower_line = lower(line); if strmatch(elem, lower_line) data = line((length(elem)+1):end); break end end while isempty(data) line = fgetl(fid); if isequal(line, -1) % prematurely reached end of file fclose(fid); return end data = strtrim(line); end if strcmp(format, '%s') if number==1 % interpret the data as a single string, create char-array val = detoken(strtrim(data), token); if val(1)=='=' val = val(2:end); % remove the trailing = end fclose(fid); return end % interpret the data as a single string, create cell-array val{1} = detoken(strtrim(data), token); count = 1; % read the remaining strings while count<number line = fgetl(fid); if ~isempty(line) && isequal(line, -1) fclose(fid); return end tmp = sscanf(line, format); if isempty(tmp) fclose(fid); return else count = count + 1; val{count} = detoken(strtrim(line), token); end end else % interpret the data as numeric, create numeric array count = 1; data = sscanf(detoken(data, token), format)'; if isempty(data), fclose(fid); return else val(count,:) = data; end % read remaining numeric data while count<number line = fgetl(fid); if ~isempty(line) && isequal(line, -1) fclose(fid); return end data = sscanf(detoken(line, token), format)'; if isempty(data) fclose(fid); return else count = count+1; val(count,:) = data; end end end fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [out] = detoken(in, token) if isempty(token) out = in; return; end [tok rem] = strtok(in, token); if isempty(rem) out = in; return; else out = strtok(rem, token); return end
github
lcnhappe/happe-master
ft_checkdata.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/ft_checkdata.m
57,523
utf_8
361ae795581b786433b88af3f624763d
function [data] = ft_checkdata(data, varargin) % FT_CHECKDATA checks the input data of the main FieldTrip functions, e.g. whether % the type of data strucure corresponds with the required data. If neccessary % and possible, this function will adjust the data structure to the input % requirements (e.g. change dimord, average over trials, convert inside from % index into logical). % % If the input data does NOT correspond to the requirements, this function % is supposed to give a elaborate warning message and if applicable point % the user to external documentation (link to website). % % Use as % [data] = ft_checkdata(data, ...) % % Optional input arguments should be specified as key-value pairs and can include % feedback = yes, no % datatype = raw, freq, timelock, comp, spike, source, dip, volume, segmentation, parcellation % dimord = any combination of time, freq, chan, refchan, rpt, subj, chancmb, rpttap, pos % senstype = ctf151, ctf275, ctf151_planar, ctf275_planar, neuromag122, neuromag306, bti148, bti248, bti248_planar, magnetometer, electrode % inside = logical, index % ismeg = yes, no % isnirs = yes, no % hasunit = yes, no % hascoordsys = yes, no % hassampleinfo = yes, no, ifmakessense (only applies to raw data) % hascumtapcnt = yes, no (only applies to freq data) % hasdim = yes, no % hasdof = yes, no % cmbrepresentation = sparse, full (applies to covariance and cross-spectral density) % fsample = sampling frequency to use to go from SPIKE to RAW representation % segmentationstyle = indexed, probabilistic (only applies to segmentation) % parcellationstyle = indexed, probabilistic (only applies to parcellation) % hasbrain = yes, no (only applies to segmentation) % % For some options you can specify multiple values, e.g. % [data] = ft_checkdata(data, 'senstype', {'ctf151', 'ctf275'}), e.g. in megrealign % [data] = ft_checkdata(data, 'datatype', {'timelock', 'freq'}), e.g. in sourceanalysis % Copyright (C) 2007-2015, Robert Oostenveld % Copyright (C) 2010-2012, Martin Vinck % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % in case of an error this function could use dbstack for more detailled % user feedback % % this function should replace/encapsulate % fixdimord % fixinside % fixprecision % fixvolume % data2raw % raw2data % grid2transform % transform2grid % fourier2crsspctrm % freq2cumtapcnt % sensortype % time2offset % offset2time % fixsens -> this is kept a separate function because it should also be % called from other modules % % other potential uses for this function: % time -> offset in freqanalysis % average over trials % csd as matrix % FIXME the following is difficult, if not impossible, to support without knowing the parameter % FIXME it is presently (dec 2014) not being used anywhere in FT, so can be removed % hastrials = yes, no % get the optional input arguments feedback = ft_getopt(varargin, 'feedback', 'no'); dtype = ft_getopt(varargin, 'datatype'); % should not conflict with the ft_datatype function dimord = ft_getopt(varargin, 'dimord'); stype = ft_getopt(varargin, 'senstype'); % senstype is a function name which should not be masked ismeg = ft_getopt(varargin, 'ismeg'); isnirs = ft_getopt(varargin, 'isnirs'); inside = ft_getopt(varargin, 'inside'); % can be 'logical' or 'index' hastrials = ft_getopt(varargin, 'hastrials'); hasunit = ft_getopt(varargin, 'hasunit', 'no'); hascoordsys = ft_getopt(varargin, 'hascoordsys', 'no'); hassampleinfo = ft_getopt(varargin, 'hassampleinfo', 'ifmakessense'); hasdim = ft_getopt(varargin, 'hasdim'); hascumtapcnt = ft_getopt(varargin, 'hascumtapcnt'); hasdof = ft_getopt(varargin, 'hasdof'); cmbrepresentation = ft_getopt(varargin, 'cmbrepresentation'); channelcmb = ft_getopt(varargin, 'channelcmb'); fsample = ft_getopt(varargin, 'fsample'); segmentationstyle = ft_getopt(varargin, 'segmentationstyle'); % this will be passed on to the corresponding ft_datatype_xxx function parcellationstyle = ft_getopt(varargin, 'parcellationstyle'); % this will be passed on to the corresponding ft_datatype_xxx function hasbrain = ft_getopt(varargin, 'hasbrain'); % check whether people are using deprecated stuff depHastrialdef = ft_getopt(varargin, 'hastrialdef'); if (~isempty(depHastrialdef)) ft_warning('ft_checkdata option ''hastrialdef'' is deprecated; use ''hassampleinfo'' instead'); hassampleinfo = depHastrialdef; end % determine the type of input data % this can be raw, freq, timelock, comp, spike, source, volume, dip israw = ft_datatype(data, 'raw'); isfreq = ft_datatype(data, 'freq'); istimelock = ft_datatype(data, 'timelock'); iscomp = ft_datatype(data, 'comp'); isspike = ft_datatype(data, 'spike'); isvolume = ft_datatype(data, 'volume'); issegmentation = ft_datatype(data, 'segmentation'); isparcellation = ft_datatype(data, 'parcellation'); issource = ft_datatype(data, 'source'); isdip = ft_datatype(data, 'dip'); ismvar = ft_datatype(data, 'mvar'); isfreqmvar = ft_datatype(data, 'freqmvar'); ischan = ft_datatype(data, 'chan'); ismesh = ft_datatype(data, 'mesh'); % FIXME use the istrue function on ismeg and hasxxx options if ~isequal(feedback, 'no') if iscomp % it can be comp and raw/timelock/freq at the same time, therefore this has to go first nchan = size(data.topo,1); ncomp = size(data.topo,2); fprintf('the input is component data with %d components and %d original channels\n', ncomp, nchan); end if israw nchan = length(data.label); ntrial = length(data.trial); fprintf('the input is raw data with %d channels and %d trials\n', nchan, ntrial); elseif istimelock nchan = length(data.label); ntime = length(data.time); fprintf('the input is timelock data with %d channels and %d timebins\n', nchan, ntime); elseif isfreq if isfield(data, 'label') nchan = length(data.label); nfreq = length(data.freq); if isfield(data, 'time'), ntime = num2str(length(data.time)); else ntime = 'no'; end fprintf('the input is freq data with %d channels, %d frequencybins and %s timebins\n', nchan, nfreq, ntime); elseif isfield(data, 'labelcmb') nchan = length(data.labelcmb); nfreq = length(data.freq); if isfield(data, 'time'), ntime = num2str(length(data.time)); else ntime = 'no'; end fprintf('the input is freq data with %d channel combinations, %d frequencybins and %s timebins\n', nchan, nfreq, ntime); else error('cannot infer freq dimensions'); end elseif isspike nchan = length(data.label); fprintf('the input is spike data with %d channels\n', nchan); elseif isvolume if issegmentation subtype = 'segmented volume'; else subtype = 'volume'; end fprintf('the input is %s data with dimensions [%d %d %d]\n', subtype, data.dim(1), data.dim(2), data.dim(3)); clear subtype elseif issource data = fixpos(data); % ensure that positions are in pos, not in pnt nsource = size(data.pos, 1); if isparcellation subtype = 'parcellated source'; else subtype = 'source'; end if isfield(data, 'dim') fprintf('the input is %s data with %d brainordinates on a [%d %d %d] grid\n', subtype, nsource, data.dim(1), data.dim(2), data.dim(3)); elseif isfield(data, 'tri') fprintf('the input is %s data with %d vertex positions and %d triangles\n', subtype, nsource, size(data.tri, 1)); else fprintf('the input is %s data with %d brainordinates\n', subtype, nsource); end clear subtype elseif isdip fprintf('the input is dipole data\n'); elseif ismvar fprintf('the input is mvar data\n'); elseif isfreqmvar fprintf('the input is freqmvar data\n'); elseif ischan nchan = length(data.label); if isfield(data, 'brainordinate') fprintf('the input is parcellated data with %d parcels\n', nchan); else fprintf('the input is chan data with %d channels\n', nchan); end end elseif ismesh data = fixpos(data); if numel(data)==1 if isfield(data,'tri') fprintf('the input is mesh data with %d vertices and %d triangles\n', size(data.pos,1), size(data.tri,1)); elseif isfield(data,'hex') fprintf('the input is mesh data with %d vertices and %d hexahedrons\n', size(data.pos,1), size(data.hex,1)); elseif isfield(data,'tet') fprintf('the input is mesh data with %d vertices and %d tetrahedrons\n', size(data.pos,1), size(data.tet,1)); else fprintf('the input is mesh data with %d vertices', size(data.pos,1)); end else fprintf('the input is mesh data multiple surfaces\n'); end end % give feedback if issource && isvolume % it should be either one or the other: the choice here is to represent it as volume description since that is simpler to handle % the conversion is done by removing the grid positions data = rmfield(data, 'pos'); issource = false; end % the ft_datatype_XXX functions ensures the consistency of the XXX datatype % and provides a detailed description of the dataformat and its history if iscomp % this should go before israw/istimelock/isfreq data = ft_datatype_comp(data, 'hassampleinfo', hassampleinfo); elseif israw data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo); elseif istimelock data = ft_datatype_timelock(data); elseif isfreq data = ft_datatype_freq(data); elseif isspike data = ft_datatype_spike(data); elseif issegmentation % this should go before isvolume data = ft_datatype_segmentation(data, 'segmentationstyle', segmentationstyle, 'hasbrain', hasbrain); elseif isvolume data = ft_datatype_volume(data); elseif isparcellation % this should go before issource data = ft_datatype_parcellation(data, 'parcellationstyle', parcellationstyle); elseif issource data = ft_datatype_source(data); elseif isdip data = ft_datatype_dip(data); elseif ismvar || isfreqmvar data = ft_datatype_mvar(data); end if ~isempty(dtype) if ~isa(dtype, 'cell') dtype = {dtype}; end okflag = 0; for i=1:length(dtype) % check that the data matches with one or more of the required ft_datatypes switch dtype{i} case 'raw+comp' okflag = okflag + (israw & iscomp); case 'freq+comp' okflag = okflag + (isfreq & iscomp); case 'timelock+comp' okflag = okflag + (istimelock & iscomp); case 'raw' okflag = okflag + (israw & ~iscomp); case 'freq' okflag = okflag + (isfreq & ~iscomp); case 'timelock' okflag = okflag + (istimelock & ~iscomp); case 'comp' okflag = okflag + (iscomp & ~(israw | istimelock | isfreq)); case 'spike' okflag = okflag + isspike; case 'volume' okflag = okflag + isvolume; case 'source' okflag = okflag + issource; case 'dip' okflag = okflag + isdip; case 'mvar' okflag = okflag + ismvar; case 'freqmvar' okflag = okflag + isfreqmvar; case 'chan' okflag = okflag + ischan; case 'segmentation' okflag = okflag + issegmentation; case 'parcellation' okflag = okflag + isparcellation; case 'mesh' okflag = okflag + ismesh; end % switch dtype end % for dtype % try to convert the data if needed for iCell = 1:length(dtype) if okflag % the requested datatype is specified in descending order of % preference (if there is a preference at all), so don't bother % checking the rest of the requested data types if we already % succeeded in converting break; end if isequal(dtype(iCell), {'parcellation'}) && issegmentation data = volume2source(data); % segmentation=volume, parcellation=source data = ft_datatype_parcellation(data); issegmentation = 0; isvolume = 0; isparcellation = 1; issource = 1; okflag = 1; elseif isequal(dtype(iCell), {'segmentation'}) && isparcellation data = source2volume(data); % segmentation=volume, parcellation=source data = ft_datatype_segmentation(data); isparcellation = 0; issource = 0; issegmentation = 1; isvolume = 1; okflag = 1; elseif isequal(dtype(iCell), {'source'}) && isvolume data = volume2source(data); data = ft_datatype_source(data); isvolume = 0; issource = 1; okflag = 1; elseif isequal(dtype(iCell), {'volume'}) && (ischan || istimelock || isfreq) data = parcellated2source(data); data = ft_datatype_volume(data); ischan = 0; isvolume = 1; okflag = 1; elseif isequal(dtype(iCell), {'source'}) && (ischan || istimelock || isfreq) data = parcellated2source(data); data = ft_datatype_source(data); ischan = 0; issource = 1; okflag = 1; elseif isequal(dtype(iCell), {'volume'}) && issource data = source2volume(data); data = ft_datatype_volume(data); isvolume = 1; issource = 0; okflag = 1; elseif isequal(dtype(iCell), {'raw+comp'}) && istimelock && iscomp data = timelock2raw(data); data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo); istimelock = 0; iscomp = 1; israw = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && issource data = source2raw(data); data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo); issource = 0; israw = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && istimelock if iscomp data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired iscomp = 0; end data = timelock2raw(data); data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo); istimelock = 0; israw = 1; okflag = 1; elseif isequal(dtype(iCell), {'comp'}) && israw data = keepfields(data, {'label', 'topo', 'topolabel', 'unmixing', 'elec', 'grad', 'cfg'}); % these are the only relevant fields data = ft_datatype_comp(data); israw = 0; iscomp = 1; okflag = 1; elseif isequal(dtype(iCell), {'comp'}) && istimelock data = keepfields(data, {'label', 'topo', 'topolabel', 'unmixing', 'elec', 'grad', 'cfg'}); % these are the only relevant fields data = ft_datatype_comp(data); istimelock = 0; iscomp = 1; okflag = 1; elseif isequal(dtype(iCell), {'comp'}) && isfreq data = keepfields(data, {'label', 'topo', 'topolabel', 'unmixing', 'elec', 'grad', 'cfg'}); % these are the only relevant fields data = ft_datatype_comp(data); isfreq = 0; iscomp = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && israw if iscomp data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired iscomp = 0; end data = ft_datatype_raw(data); okflag = 1; elseif isequal(dtype(iCell), {'timelock'}) && istimelock if iscomp data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired iscomp = 0; end data = ft_datatype_timelock(data); okflag = 1; elseif isequal(dtype(iCell), {'freq'}) && isfreq if iscomp data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired iscomp = 0; end data = ft_datatype_freq(data); okflag = 1; elseif isequal(dtype(iCell), {'timelock'}) && israw if iscomp data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired iscomp = 0; end data = raw2timelock(data); data = ft_datatype_timelock(data); israw = 0; istimelock = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && isfreq if iscomp data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired iscomp = 0; end data = freq2raw(data); data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo); isfreq = 0; israw = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && ischan data = chan2timelock(data); data = timelock2raw(data); data = ft_datatype_raw(data); ischan = 0; israw = 1; okflag = 1; elseif isequal(dtype(iCell), {'timelock'}) && ischan data = chan2timelock(data); data = ft_datatype_timelock(data); ischan = 0; istimelock = 1; okflag = 1; elseif isequal(dtype(iCell), {'freq'}) && ischan data = chan2freq(data); data = ft_datatype_freq(data); ischan = 0; isfreq = 1; okflag = 1; elseif isequal(dtype(iCell), {'spike'}) && israw data = raw2spike(data); data = ft_datatype_spike(data); israw = 0; isspike = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && isspike data = spike2raw(data,fsample); data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo); isspike = 0; israw = 1; okflag = 1; end end % for iCell if ~okflag % construct an error message if length(dtype)>1 str = sprintf('%s, ', dtype{1:(end-2)}); str = sprintf('%s%s or %s', str, dtype{end-1}, dtype{end}); else str = dtype{1}; end error('This function requires %s data as input.', str); end % if okflag end if ~isempty(dimord) if ~isa(dimord, 'cell') dimord = {dimord}; end if isfield(data, 'dimord') okflag = any(strcmp(data.dimord, dimord)); else okflag = 0; end if ~okflag % construct an error message if length(dimord)>1 str = sprintf('%s, ', dimord{1:(end-2)}); str = sprintf('%s%s or %s', str, dimord{end-1}, dimord{end}); else str = dimord{1}; end error('This function requires data with a dimord of %s.', str); end % if okflag end if ~isempty(stype) if ~isa(stype, 'cell') stype = {stype}; end if isfield(data, 'grad') || isfield(data, 'elec') || isfield(data, 'opto') if any(strcmp(ft_senstype(data), stype)) okflag = 1; elseif any(cellfun(@ft_senstype, repmat({data}, size(stype)), stype)) % this is required to detect more general types, such as "meg" or "ctf" rather than "ctf275" okflag = 1; else okflag = 0; end end if ~okflag % construct an error message if length(stype)>1 str = sprintf('%s, ', stype{1:(end-2)}); str = sprintf('%s%s or %s', str, stype{end-1}, stype{end}); else str = stype{1}; end error('This function requires %s data as input, but you are giving %s data.', str, ft_senstype(data)); end % if okflag end if ~isempty(ismeg) if isequal(ismeg, 'yes') okflag = isfield(data, 'grad'); elseif isequal(ismeg, 'no') okflag = ~isfield(data, 'grad'); end if ~okflag && isequal(ismeg, 'yes') error('This function requires MEG data with a ''grad'' field'); elseif ~okflag && isequal(ismeg, 'no') error('This function should not be given MEG data with a ''grad'' field'); end % if okflag end if ~isempty(isnirs) if isequal(isnirs, 'yes') okflag = isfield(data, 'opto'); elseif isequal(isnirs, 'no') okflag = ~isfield(data, 'opto'); end if ~okflag && isequal(isnirs, 'yes') error('This function requires NIRS data with an ''opto'' field'); elseif ~okflag && isequal(isnirs, 'no') error('This function should not be given NIRS data with an ''opto'' field'); end % if okflag end if ~isempty(inside) if strcmp(inside, 'index') warning('the indexed representation of inside/outside source locations is deprecated'); end % TODO absorb the fixinside function into this code data = fixinside(data, inside); okflag = isfield(data, 'inside'); if ~okflag % construct an error message error('This function requires data with an ''inside'' field.'); end % if okflag end if istrue(hasunit) && ~isfield(data, 'unit') % calling convert_units with only the input data adds the units without converting data = ft_convert_units(data); end % if hasunit if istrue(hascoordsys) && ~isfield(data, 'coordsys') data = ft_determine_coordsys(data); end % if hascoordsys if isequal(hastrials, 'yes') okflag = isfield(data, 'trial'); if ~okflag && isfield(data, 'dimord') % instead look in the dimord for rpt or subj okflag = ~isempty(strfind(data.dimord, 'rpt')) || ... ~isempty(strfind(data.dimord, 'rpttap')) || ... ~isempty(strfind(data.dimord, 'subj')); end if ~okflag error('This function requires data with a ''trial'' field'); end % if okflag end if strcmp(hasdim, 'yes') && ~isfield(data, 'dim') data.dim = pos2dim(data.pos); elseif strcmp(hasdim, 'no') && isfield(data, 'dim') data = rmfield(data, 'dim'); end % if hasdim if strcmp(hascumtapcnt, 'yes') && ~isfield(data, 'cumtapcnt') error('This function requires data with a ''cumtapcnt'' field'); elseif strcmp(hascumtapcnt, 'no') && isfield(data, 'cumtapcnt') data = rmfield(data, 'cumtapcnt'); end % if hascumtapcnt if strcmp(hasdof, 'yes') && ~isfield(data, 'dof') error('This function requires data with a ''dof'' field'); elseif strcmp(hasdof, 'no') && isfield(data, 'dof') data = rmfield(data, 'dof'); end % if hasdof if ~isempty(cmbrepresentation) if istimelock data = fixcov(data, cmbrepresentation); elseif isfreq data = fixcsd(data, cmbrepresentation, channelcmb); elseif isfreqmvar data = fixcsd(data, cmbrepresentation, channelcmb); else error('This function requires data with a covariance, coherence or cross-spectrum'); end end % cmbrepresentation if isfield(data, 'grad') % ensure that the gradiometer structure is up to date data.grad = ft_datatype_sens(data.grad); end if isfield(data, 'elec') % ensure that the electrode structure is up to date data.elec = ft_datatype_sens(data.elec); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % represent the covariance matrix in a particular manner %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = fixcov(data, desired) if any(isfield(data, {'cov', 'corr'})) if ~isfield(data, 'labelcmb') current = 'full'; else current = 'sparse'; end else error('Could not determine the current representation of the covariance matrix'); end if isequal(current, desired) % nothing to do elseif strcmp(current, 'full') && strcmp(desired, 'sparse') % FIXME should be implemented error('not yet implemented'); elseif strcmp(current, 'sparse') && strcmp(desired, 'full') % FIXME should be implemented error('not yet implemented'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % represent the cross-spectral density matrix in a particular manner %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = fixcsd(data, desired, channelcmb) % FIXCSD converts univariate frequency domain data (fourierspctrm) into a bivariate % representation (crsspctrm), or changes the representation of bivariate frequency % domain data (sparse/full/sparsewithpow, sparsewithpow only works for crsspctrm or % fourierspctrm) % Copyright (C) 2010, Jan-Mathijs Schoffelen, Robert Oostenveld if isfield(data, 'crsspctrm') && isfield(data, 'powspctrm') current = 'sparsewithpow'; elseif isfield(data, 'powspctrm') current = 'sparsewithpow'; elseif isfield(data, 'fourierspctrm') && ~isfield(data, 'labelcmb') current = 'fourier'; elseif ~isfield(data, 'labelcmb') current = 'full'; elseif isfield(data, 'labelcmb') current = 'sparse'; else error('Could not determine the current representation of the %s matrix', param); end % first go from univariate fourier to the required bivariate representation if isequal(current, desired) % nothing to do elseif strcmp(current, 'fourier') && strcmp(desired, 'sparsewithpow') dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpttap', dimtok)), nrpt = size(data.cumtapcnt,1); flag = 0; else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end fastflag = all(data.cumtapcnt(:)==data.cumtapcnt(1)); flag = nrpt==1; % needed to truncate the singleton dimension upfront %create auto-spectra nchan = length(data.label); if fastflag % all trials have the same amount of tapers powspctrm = zeros(nrpt,nchan,nfrq,ntim); ntap = data.cumtapcnt(1); for p = 1:ntap powspctrm = powspctrm + abs(data.fourierspctrm(p:ntap:end,:,:,:,:)).^2; end powspctrm = powspctrm./ntap; else % different amount of tapers powspctrm = zeros(nrpt,nchan,nfrq,ntim)+i.*zeros(nrpt,nchan,nfrq,ntim); sumtapcnt = [0;cumsum(data.cumtapcnt(:))]; for p = 1:nrpt indx = (sumtapcnt(p)+1):sumtapcnt(p+1); tmpdat = data.fourierspctrm(indx,:,:,:); powspctrm(p,:,:,:) = (sum(tmpdat.*conj(tmpdat),1))./data.cumtapcnt(p); end end %create cross-spectra if ~isempty(channelcmb), ncmb = size(channelcmb,1); cmbindx = zeros(ncmb,2); labelcmb = cell(ncmb,2); for k = 1:ncmb ch1 = find(strcmp(data.label, channelcmb(k,1))); ch2 = find(strcmp(data.label, channelcmb(k,2))); if ~isempty(ch1) && ~isempty(ch2), cmbindx(k,:) = [ch1 ch2]; labelcmb(k,:) = data.label([ch1 ch2])'; end end crsspctrm = zeros(nrpt,ncmb,nfrq,ntim)+i.*zeros(nrpt,ncmb,nfrq,ntim); if fastflag for p = 1:ntap tmpdat1 = data.fourierspctrm(p:ntap:end,cmbindx(:,1),:,:,:); tmpdat2 = data.fourierspctrm(p:ntap:end,cmbindx(:,2),:,:,:); crsspctrm = crsspctrm + tmpdat1.*conj(tmpdat2); end crsspctrm = crsspctrm./ntap; else for p = 1:nrpt indx = (sumtapcnt(p)+1):sumtapcnt(p+1); tmpdat1 = data.fourierspctrm(indx,cmbindx(:,1),:,:); tmpdat2 = data.fourierspctrm(indx,cmbindx(:,2),:,:); crsspctrm(p,:,:,:) = (sum(tmpdat1.*conj(tmpdat2),1))./data.cumtapcnt(p); end end data.crsspctrm = crsspctrm; data.labelcmb = labelcmb; end data.powspctrm = powspctrm; data = rmfield(data, 'fourierspctrm'); if ntim>1, data.dimord = 'chan_freq_time'; else data.dimord = 'chan_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end if flag, siz = size(data.powspctrm); data.powspctrm = reshape(data.powspctrm, [siz(2:end) 1]); if isfield(data, 'crsspctrm') siz = size(data.crsspctrm); data.crsspctrm = reshape(data.crsspctrm, [siz(2:end) 1]); end end elseif strcmp(current, 'fourier') && strcmp(desired, 'sparse') if isempty(channelcmb), error('no channel combinations are specified'); end dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpttap', dimtok)), nrpt = size(data.cumtapcnt,1); flag = 0; else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end flag = nrpt==1; % flag needed to squeeze first dimension if singleton ncmb = size(channelcmb,1); cmbindx = zeros(ncmb,2); labelcmb = cell(ncmb,2); for k = 1:ncmb ch1 = find(strcmp(data.label, channelcmb(k,1))); ch2 = find(strcmp(data.label, channelcmb(k,2))); if ~isempty(ch1) && ~isempty(ch2), cmbindx(k,:) = [ch1 ch2]; labelcmb(k,:) = data.label([ch1 ch2])'; end end sumtapcnt = [0;cumsum(data.cumtapcnt(:))]; fastflag = all(data.cumtapcnt(:)==data.cumtapcnt(1)); if fastflag && nrpt>1 ntap = data.cumtapcnt(1); % compute running sum across tapers siz = [size(data.fourierspctrm) 1]; for p = 1:ntap indx = p:ntap:nrpt*ntap; if p==1. tmpc = zeros(numel(indx), size(cmbindx,1), siz(3), siz(4)) + ... 1i.*zeros(numel(indx), size(cmbindx,1), siz(3), siz(4)); end for k = 1:size(cmbindx,1) tmpc(:,k,:,:) = data.fourierspctrm(indx,cmbindx(k,1),:,:).* ... conj(data.fourierspctrm(indx,cmbindx(k,2),:,:)); end if p==1 crsspctrm = tmpc; else crsspctrm = tmpc + crsspctrm; end end crsspctrm = crsspctrm./ntap; else crsspctrm = zeros(nrpt, ncmb, nfrq, ntim); for p = 1:nrpt indx = (sumtapcnt(p)+1):sumtapcnt(p+1); tmpdat1 = data.fourierspctrm(indx,cmbindx(:,1),:,:); tmpdat2 = data.fourierspctrm(indx,cmbindx(:,2),:,:); crsspctrm(p,:,:,:) = (sum(tmpdat1.*conj(tmpdat2),1))./data.cumtapcnt(p); end end data.crsspctrm = crsspctrm; data.labelcmb = labelcmb; data = rmfield(data, 'fourierspctrm'); data = rmfield(data, 'label'); if ntim>1, data.dimord = 'chancmb_freq_time'; else data.dimord = 'chancmb_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end if flag, % deal with the singleton 'rpt', i.e. remove it siz = size(data.powspctrm); data.powspctrm = reshape(data.powspctrm, [siz(2:end) 1]); if isfield(data,'crsspctrm') % this conditional statement is needed in case there's a single channel siz = size(data.crsspctrm); data.crsspctrm = reshape(data.crsspctrm, [siz(2:end) 1]); end end elseif strcmp(current, 'fourier') && strcmp(desired, 'full') % this is how it is currently and the desired functionality of prepare_freq_matrices dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpttap', dimtok)), nrpt = size(data.cumtapcnt, 1); flag = 0; else nrpt = 1; flag = 1; end if ~isempty(strmatch('rpttap',dimtok)), nrpt=size(data.cumtapcnt, 1); else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end if any(data.cumtapcnt(1,:) ~= data.cumtapcnt(1,1)), error('this only works when all frequencies have the same number of tapers'); end nchan = length(data.label); crsspctrm = zeros(nrpt,nchan,nchan,nfrq,ntim); sumtapcnt = [0;cumsum(data.cumtapcnt(:,1))]; for k = 1:ntim for m = 1:nfrq for p = 1:nrpt %FIXME speed this up in the case that all trials have equal number of tapers indx = (sumtapcnt(p)+1):sumtapcnt(p+1); tmpdat = transpose(data.fourierspctrm(indx,:,m,k)); crsspctrm(p,:,:,m,k) = (tmpdat*tmpdat')./data.cumtapcnt(p); clear tmpdat; end end end data.crsspctrm = crsspctrm; data = rmfield(data, 'fourierspctrm'); if ntim>1, data.dimord = 'chan_chan_freq_time'; else data.dimord = 'chan_chan_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end % remove first singleton dimension if flag || nrpt==1, siz = size(data.crsspctrm); data.crsspctrm = reshape(data.crsspctrm, siz(2:end)); end elseif strcmp(current, 'fourier') && strcmp(desired, 'fullfast'), dimtok = tokenize(data.dimord, '_'); nrpt = size(data.fourierspctrm, 1); nchn = numel(data.label); nfrq = numel(data.freq); if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end data.fourierspctrm = reshape(data.fourierspctrm, [nrpt nchn nfrq*ntim]); data.fourierspctrm(~isfinite(data.fourierspctrm)) = 0; crsspctrm = complex(zeros(nchn,nchn,nfrq*ntim)); for k = 1:nfrq*ntim tmp = transpose(data.fourierspctrm(:,:,k)); n = sum(tmp~=0,2); crsspctrm(:,:,k) = tmp*tmp'./n(1); end data = rmfield(data, 'fourierspctrm'); data.crsspctrm = reshape(crsspctrm, [nchn nchn nfrq ntim]); if isfield(data, 'time'), data.dimord = 'chan_chan_freq_time'; else data.dimord = 'chan_chan_freq'; end if isfield(data, 'trialinfo'), data = rmfield(data, 'trialinfo'); end; if isfield(data, 'sampleinfo'), data = rmfield(data, 'sampleinfo'); end; if isfield(data, 'cumsumcnt'), data = rmfield(data, 'cumsumcnt'); end; if isfield(data, 'cumtapcnt'), data = rmfield(data, 'cumtapcnt'); end; end % convert to the requested bivariate representation % from one bivariate representation to another if isequal(current, desired) % nothing to do elseif (strcmp(current, 'full') && strcmp(desired, 'fourier')) || ... (strcmp(current, 'sparse') && strcmp(desired, 'fourier')) || ... (strcmp(current, 'sparsewithpow') && strcmp(desired, 'fourier')) % this is not possible error('converting the cross-spectrum into a Fourier representation is not possible'); elseif strcmp(current, 'full') && strcmp(desired, 'sparsewithpow') error('not yet implemented'); elseif strcmp(current, 'sparse') && strcmp(desired, 'sparsewithpow') % convert back to crsspctrm/powspctrm representation: useful for plotting functions etc indx = labelcmb2indx(data.labelcmb); autoindx = indx(indx(:,1)==indx(:,2), 1); cmbindx = setdiff([1:size(indx,1)]', autoindx); if strcmp(data.dimord(1:3), 'rpt') data.powspctrm = data.crsspctrm(:, autoindx, :, :); data.crsspctrm = data.crsspctrm(:, cmbindx, :, :); else data.powspctrm = data.crsspctrm(autoindx, :, :); data.crsspctrm = data.crsspctrm(cmbindx, :, :); end data.label = data.labelcmb(autoindx,1); data.labelcmb = data.labelcmb(cmbindx, :); if isempty(cmbindx) data = rmfield(data, 'crsspctrm'); data = rmfield(data, 'labelcmb'); end elseif strcmp(current, 'full') && strcmp(desired, 'sparse') dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end nchan = length(data.label); ncmb = nchan*nchan; labelcmb = cell(ncmb, 2); cmbindx = zeros(nchan, nchan); k = 1; for j=1:nchan for m=1:nchan labelcmb{k, 1} = data.label{m}; labelcmb{k, 2} = data.label{j}; cmbindx(m,j) = k; k = k+1; end end % reshape all possible fields fn = fieldnames(data); for ii=1:numel(fn) if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim; if nrpt>1, data.(fn{ii}) = reshape(data.(fn{ii}), nrpt, ncmb, nfrq, ntim); else data.(fn{ii}) = reshape(data.(fn{ii}), ncmb, nfrq, ntim); end end end % remove obsolete fields data = rmfield(data, 'label'); try data = rmfield(data, 'dof'); end % replace updated fields data.labelcmb = labelcmb; if ntim>1, data.dimord = 'chancmb_freq_time'; else data.dimord = 'chancmb_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end elseif strcmp(current, 'sparsewithpow') && strcmp(desired, 'sparse') % this representation for sparse data contains autospectra as e.g. {'A' 'A'} in labelcmb if isfield(data, 'crsspctrm'), dimtok = tokenize(data.dimord, '_'); catdim = match_str(dimtok, {'chan' 'chancmb'}); data.crsspctrm = cat(catdim, data.powspctrm, data.crsspctrm); data.labelcmb = [data.label(:) data.label(:); data.labelcmb]; data = rmfield(data, 'powspctrm'); data.dimord = strrep(data.dimord, 'chan_', 'chancmb_'); else data.crsspctrm = data.powspctrm; data.labelcmb = [data.label(:) data.label(:)]; data = rmfield(data, 'powspctrm'); data.dimord = strrep(data.dimord, 'chan_', 'chancmb_'); end data = rmfield(data, 'label'); elseif strcmp(current, 'sparse') && strcmp(desired, 'full') dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end if ~isfield(data, 'label') % ensure that the bivariate spectral factorization results can be % processed. FIXME this is experimental and will not work if the user % did something weird before for k = 1:numel(data.labelcmb) tmp = tokenize(data.labelcmb{k}, '['); data.labelcmb{k} = tmp{1}; end data.label = unique(data.labelcmb(:)); end nchan = length(data.label); ncmb = size(data.labelcmb,1); cmbindx = zeros(nchan,nchan); for k = 1:size(data.labelcmb,1) ch1 = find(strcmp(data.label, data.labelcmb(k,1))); ch2 = find(strcmp(data.label, data.labelcmb(k,2))); if ~isempty(ch1) && ~isempty(ch2), cmbindx(ch1,ch2) = k; end end complete = all(cmbindx(:)~=0); % remove obsolete fields try data = rmfield(data, 'powspctrm'); end try data = rmfield(data, 'labelcmb'); end try data = rmfield(data, 'dof'); end fn = fieldnames(data); for ii=1:numel(fn) if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim; if nrpt==1, data.(fn{ii}) = reshape(data.(fn{ii}), [nrpt ncmb nfrq ntim]); end tmpall = nan(nrpt,nchan,nchan,nfrq,ntim); for j = 1:nrpt for k = 1:ntim for m = 1:nfrq tmpdat = nan(nchan,nchan); indx = find(cmbindx); if ~complete % this realizes the missing combinations to be represented as the % conjugate of the corresponding combination across the diagonal tmpdat(indx) = reshape(data.(fn{ii})(j,cmbindx(indx),m,k),[numel(indx) 1]); tmpdat = ctranspose(tmpdat); end tmpdat(indx) = reshape(data.(fn{ii})(j,cmbindx(indx),m,k),[numel(indx) 1]); tmpall(j,:,:,m,k) = tmpdat; end % for m end % for k end % for j % replace the data in the old representation with the new representation if nrpt>1, data.(fn{ii}) = tmpall; else data.(fn{ii}) = reshape(tmpall, [nchan nchan nfrq ntim]); end end % if numel end % for ii if ntim>1, data.dimord = 'chan_chan_freq_time'; else data.dimord = 'chan_chan_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end elseif strcmp(current, 'sparse') && strcmp(desired, 'fullfast') dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end if ~isfield(data, 'label') data.label = unique(data.labelcmb(:)); end nchan = length(data.label); ncmb = size(data.labelcmb,1); cmbindx = zeros(nchan,nchan); for k = 1:size(data.labelcmb,1) ch1 = find(strcmp(data.label, data.labelcmb(k,1))); ch2 = find(strcmp(data.label, data.labelcmb(k,2))); if ~isempty(ch1) && ~isempty(ch2), cmbindx(ch1,ch2) = k; end end complete = all(cmbindx(:)~=0); fn = fieldnames(data); for ii=1:numel(fn) if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim; if nrpt==1, data.(fn{ii}) = reshape(data.(fn{ii}), [nrpt ncmb nfrq ntim]); end tmpall = nan(nchan,nchan,nfrq,ntim); for k = 1:ntim for m = 1:nfrq tmpdat = nan(nchan,nchan); indx = find(cmbindx); if ~complete % this realizes the missing combinations to be represented as the % conjugate of the corresponding combination across the diagonal tmpdat(indx) = reshape(nanmean(data.(fn{ii})(:,cmbindx(indx),m,k)),[numel(indx) 1]); tmpdat = ctranspose(tmpdat); end tmpdat(indx) = reshape(nanmean(data.(fn{ii})(:,cmbindx(indx),m,k)),[numel(indx) 1]); tmpall(:,:,m,k) = tmpdat; end % for m end % for k % replace the data in the old representation with the new representation if nrpt>1, data.(fn{ii}) = tmpall; else data.(fn{ii}) = reshape(tmpall, [nchan nchan nfrq ntim]); end end % if numel end % for ii % remove obsolete fields try data = rmfield(data, 'powspctrm'); end try data = rmfield(data, 'labelcmb'); end try data = rmfield(data, 'dof'); end if ntim>1, data.dimord = 'chan_chan_freq_time'; else data.dimord = 'chan_chan_freq'; end elseif strcmp(current, 'sparsewithpow') && any(strcmp(desired, {'full', 'fullfast'})) % recursively call ft_checkdata, but ensure channel order to be the same % as the original input. origlabelorder = data.label; % keep track of the original order of the channels data = ft_checkdata(data, 'cmbrepresentation', 'sparse'); data.label = origlabelorder; % this avoids the labels to be alphabetized in the next call data = ft_checkdata(data, 'cmbrepresentation', 'full'); end % convert from one to another bivariate representation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [source] = parcellated2source(data) if ~isfield(data, 'brainordinate') error('projecting parcellated data onto the full brain model geometry requires the specification of brainordinates'); end % the main structure contains the functional data on the parcels % the brainordinate sub-structure contains the original geometrical model source = data.brainordinate; data = rmfield(data, 'brainordinate'); if isfield(data, 'cfg') source.cfg = data.cfg; end fn = fieldnames(data); fn = setdiff(fn, {'label', 'time', 'freq', 'hdr', 'cfg', 'grad', 'elec', 'dimord', 'unit'}); % remove irrelevant fields fn(~cellfun(@isempty, regexp(fn, 'dimord$'))) = []; % remove irrelevant (dimord) fields sel = false(size(fn)); for i=1:numel(fn) try sel(i) = ismember(getdimord(data, fn{i}), {'chan', 'chan_time', 'chan_freq', 'chan_freq_time', 'chan_chan'}); end end parameter = fn(sel); fn = fieldnames(source); sel = false(size(fn)); for i=1:numel(fn) tmp = source.(fn{i}); sel(i) = iscell(tmp) && isequal(tmp(:), data.label(:)); end parcelparam = fn(sel); if numel(parcelparam)~=1 error('cannot determine which parcellation to use'); else parcelparam = parcelparam{1}(1:(end-5)); % minus the 'label' end for i=1:numel(parameter) source.(parameter{i}) = unparcellate(data, source, parameter{i}, parcelparam); end % copy over fields (these are necessary for visualising the data in ft_sourceplot) source = copyfields(data, source, {'time', 'freq'}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = volume2source(data) if isfield(data, 'dimord') % it is a modern source description else % it is an old-fashioned source description xgrid = 1:data.dim(1); ygrid = 1:data.dim(2); zgrid = 1:data.dim(3); [x y z] = ndgrid(xgrid, ygrid, zgrid); data.pos = ft_warp_apply(data.transform, [x(:) y(:) z(:)]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = source2volume(data) if isfield(data, 'dimord') % it is a modern source description %this part depends on the assumption that the list of positions is describing a full 3D volume in %an ordered way which allows for the extraction of a transformation matrix %i.e. slice by slice try if isfield(data, 'dim'), data.dim = pos2dim(data.pos, data.dim); else data.dim = pos2dim(data); end catch end end if isfield(data, 'dim') && length(data.dim)>=3, data.transform = pos2transform(data.pos, data.dim); end % remove the unwanted fields data = removefields(data, {'pos', 'xgrid', 'ygrid', 'zgrid', 'tri', 'tet', 'hex'}); % make inside a volume data = fixinside(data, 'logical'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = freq2raw(freq) if isfield(freq, 'powspctrm') param = 'powspctrm'; elseif isfield(freq, 'fourierspctrm') param = 'fourierspctrm'; else error('not supported for this data representation'); end if strcmp(freq.dimord, 'rpt_chan_freq_time') || strcmp(freq.dimord, 'rpttap_chan_freq_time') dat = freq.(param); elseif strcmp(freq.dimord, 'chan_freq_time') dat = freq.(param); dat = reshape(dat, [1 size(dat)]); % add a singleton dimension else error('not supported for dimord %s', freq.dimord); end nrpt = size(dat,1); nchan = size(dat,2); nfreq = size(dat,3); ntime = size(dat,4); data = []; % create the channel labels like "MLP11@12Hz"" k = 0; for i=1:nfreq for j=1:nchan k = k+1; data.label{k} = sprintf('%s@%dHz', freq.label{j}, freq.freq(i)); end end % reshape and copy the data as if it were timecourses only for i=1:nrpt data.time{i} = freq.time; data.trial{i} = reshape(dat(i,:,:,:), nchan*nfreq, ntime); if any(isnan(data.trial{i}(1,:))), tmp = data.trial{i}(1,:); begsmp = find(isfinite(tmp),1, 'first'); endsmp = find(isfinite(tmp),1, 'last' ); data.trial{i} = data.trial{i}(:, begsmp:endsmp); data.time{i} = data.time{i}(begsmp:endsmp); end end if isfield(freq, 'trialinfo'), data.trialinfo = freq.trialinfo; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = raw2timelock(data) nsmp = cellfun('size',data.time,2); data = ft_checkdata(data, 'hassampleinfo', 'yes'); ntrial = numel(data.trial); nchan = numel(data.label); if ntrial==1 data.time = data.time{1}; data.avg = data.trial{1}; data = rmfield(data, 'trial'); data.dimord = 'chan_time'; else % code below tries to construct a general time-axis where samples of all trials can fall on % find earliest beginning and latest ending begtime = min(cellfun(@min,data.time)); endtime = max(cellfun(@max,data.time)); % find 'common' sampling rate fsample = 1./mean(cellfun(@mean,cellfun(@diff,data.time,'uniformoutput',false))); % estimate number of samples nsmp = round((endtime-begtime)*fsample) + 1; % numerical round-off issues should be dealt with by this round, as they will/should never cause an extra sample to appear % construct general time-axis time = linspace(begtime,endtime,nsmp); % concatenate all trials tmptrial = nan(ntrial, nchan, length(time)); begsmp = nan(ntrial, 1); endsmp = nan(ntrial, 1); for i=1:ntrial begsmp(i) = nearest(time, data.time{i}(1)); endsmp(i) = nearest(time, data.time{i}(end)); tmptrial(i,:,begsmp(i):endsmp(i)) = data.trial{i}; end % update the sampleinfo begpad = begsmp - min(begsmp); endpad = max(endsmp) - endsmp; if isfield(data, 'sampleinfo') data.sampleinfo = data.sampleinfo + [-begpad(:) endpad(:)]; end % construct the output timelocked data % data.avg = reshape(nanmean(tmptrial, 1), nchan, length(tmptime)); % data.var = reshape(nanvar (tmptrial, [], 1), nchan, length(tmptime)) % data.dof = reshape(sum(~isnan(tmptrial), 1), nchan, length(tmptime)); data.trial = tmptrial; data.time = time; data.dimord = 'rpt_chan_time'; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = timelock2raw(data) switch data.dimord case 'chan_time' data.trial{1} = data.avg; data.time = {data.time}; data = rmfield(data, 'avg'); case 'rpt_chan_time' tmptrial = {}; tmptime = {}; ntrial = size(data.trial,1); nchan = size(data.trial,2); ntime = size(data.trial,3); for i=1:ntrial tmptrial{i} = reshape(data.trial(i,:,:), [nchan, ntime]); tmptime{i} = data.time; end data = rmfield(data, 'trial'); data.trial = tmptrial; data.time = tmptime; case 'subj_chan_time' tmptrial = {}; tmptime = {}; ntrial = size(data.individual,1); nchan = size(data.individual,2); ntime = size(data.individual,3); for i=1:ntrial tmptrial{i} = reshape(data.individual(i,:,:), [nchan, ntime]); tmptime{i} = data.time; end data = rmfield(data, 'individual'); data.trial = tmptrial; data.time = tmptime; otherwise error('unsupported dimord'); end % remove the unwanted fields if isfield(data, 'avg'), data = rmfield(data, 'avg'); end if isfield(data, 'var'), data = rmfield(data, 'var'); end if isfield(data, 'cov'), data = rmfield(data, 'cov'); end if isfield(data, 'dimord'), data = rmfield(data, 'dimord'); end if isfield(data, 'numsamples'), data = rmfield(data, 'numsamples'); end if isfield(data, 'dof'), data = rmfield(data, 'dof'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = chan2freq(data) data.dimord = [data.dimord '_freq']; data.freq = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = chan2timelock(data) data.dimord = [data.dimord '_time']; data.time = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [spike] = raw2spike(data) fprintf('converting raw data into spike data\n'); nTrials = length(data.trial); [spikelabel] = detectspikechan(data); spikesel = match_str(data.label, spikelabel); nUnits = length(spikesel); if nUnits==0 error('cannot convert raw data to spike format since the raw data structure does not contain spike channels'); end trialTimes = zeros(nTrials,2); for iUnit = 1:nUnits unitIndx = spikesel(iUnit); spikeTimes = []; % we dont know how large it will be, so use concatenation inside loop trialInds = []; for iTrial = 1:nTrials % read in the spike times [spikeTimesTrial] = getspiketimes(data, iTrial, unitIndx); nSpikes = length(spikeTimesTrial); spikeTimes = [spikeTimes; spikeTimesTrial(:)]; trialInds = [trialInds; ones(nSpikes,1)*iTrial]; % get the begs and ends of trials hasNum = find(~isnan(data.time{iTrial})); if iUnit==1, trialTimes(iTrial,:) = data.time{iTrial}([hasNum(1) hasNum(end)]); end end spike.label{iUnit} = data.label{unitIndx}; spike.waveform{iUnit} = []; spike.time{iUnit} = spikeTimes(:)'; spike.trial{iUnit} = trialInds(:)'; if iUnit==1, spike.trialtime = trialTimes; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = spike2raw(spike, fsample) if nargin<2 || isempty(fsample) timeDiff = abs(diff(sort([spike.time{:}]))); fsample = 1/min(timeDiff(timeDiff>0)); warning('Desired sampling rate for spike data not specified, automatically resampled to %f', fsample); end % get some sizes nUnits = length(spike.label); nTrials = size(spike.trialtime,1); % preallocate data.trial(1:nTrials) = {[]}; data.time(1:nTrials) = {[]}; for iTrial = 1:nTrials % make bins: note that the spike.time is already within spike.trialtime x = [spike.trialtime(iTrial,1):(1/fsample):spike.trialtime(iTrial,2)]; timeBins = [x x(end)+1/fsample] - (0.5/fsample); time = (spike.trialtime(iTrial,1):(1/fsample):spike.trialtime(iTrial,2)); % convert to continuous trialData = zeros(nUnits,length(time)); for iUnit = 1:nUnits % get the timestamps and only select those timestamps that are in the trial ts = spike.time{iUnit}; hasTrial = spike.trial{iUnit}==iTrial; ts = ts(hasTrial); N = histc(ts,timeBins); if isempty(N) N = zeros(1,length(timeBins)-1); else N(end) = []; end % store it in a matrix trialData(iUnit,:) = N; end data.trial{iTrial} = trialData; data.time{iTrial} = time; end % for all trials % create the associated labels and other aspects of data such as the header data.label = spike.label; data.fsample = fsample; if isfield(spike,'hdr'), data.hdr = spike.hdr; end if isfield(spike,'cfg'), data.cfg = spike.cfg; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = source2raw(source) fn = fieldnames(source); fn = setdiff(fn, {'pos', 'dim', 'transform', 'time', 'freq', 'cfg'}); for i=1:length(fn) dimord{i} = getdimord(source, fn{i}); end sel = strcmp(dimord, 'pos_time'); assert(sum(sel)>0, 'the source structure does not contain a suitable field to represent as raw channel-level data'); assert(sum(sel)<2, 'the source structure contains multiple fields that can be represented as raw channel-level data'); fn = fn{sel}; dimord = dimord{sel}; switch dimord case 'pos_time' % add fake raw channel data to the original data structure data.trial{1} = source.(fn); data.time{1} = source.time; % add fake channel labels data.label = {}; for i=1:size(source.pos,1) data.label{i} = sprintf('source%d', i); end data.label = data.label(:); data.cfg = source.cfg; otherwise % FIXME other formats could be implemented as well end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION for detection of channels %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [spikelabel, eeglabel] = detectspikechan(data) maxRate = 2000; % default on what we still consider a neuronal signal: this firing rate should never be exceeded % autodetect the spike channels ntrial = length(data.trial); nchans = length(data.label); spikechan = zeros(nchans,1); for i=1:ntrial for j=1:nchans hasAllInts = all(isnan(data.trial{i}(j,:)) | data.trial{i}(j,:) == round(data.trial{i}(j,:))); hasAllPosInts = all(isnan(data.trial{i}(j,:)) | data.trial{i}(j,:)>=0); T = nansum(diff(data.time{i}),2); % total time fr = nansum(data.trial{i}(j,:),2) ./ T; spikechan(j) = spikechan(j) + double(hasAllInts & hasAllPosInts & fr<=maxRate); end end spikechan = (spikechan==ntrial); spikelabel = data.label(spikechan); eeglabel = data.label(~spikechan); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [spikeTimes] = getspiketimes(data, trial, unit) spikeIndx = logical(data.trial{trial}(unit,:)); spikeCount = data.trial{trial}(unit,spikeIndx); spikeTimes = data.time{trial}(spikeIndx); if isempty(spikeTimes), return; end multiSpikes = find(spikeCount>1); % get the additional samples and spike times, we need only loop through the bins [addSamples, addTimes] = deal([]); for iBin = multiSpikes(:)' % looping over row vector addTimes = [addTimes ones(1,spikeCount(iBin))*spikeTimes(iBin)]; addSamples = [addSamples ones(1,spikeCount(iBin))*spikeIndx(iBin)]; end % before adding these times, first remove the old ones spikeTimes(multiSpikes) = []; spikeTimes = sort([spikeTimes(:); addTimes(:)]);
github
lcnhappe/happe-master
read_yokogawa_data.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_yokogawa_data.m
10,974
utf_8
493fda2552516eab52e525c3387a7397
function [dat] = read_yokogawa_data(filename, hdr, begsample, endsample, chanindx) % READ_YOKAGAWA_DATA reads continuous, epoched or averaged MEG data % that has been generated by the Yokogawa MEG system and software % and allows that data to be used in combination with FieldTrip. % % Use as % [dat] = read_yokogawa_data(filename, hdr, begsample, endsample, chanindx) % % This is a wrapper function around the functions % GetMeg160ContinuousRawDataM % GetMeg160EvokedAverageDataM % GetMeg160EvokedRawDataM % % See also READ_YOKOGAWA_HEADER, READ_YOKOGAWA_EVENT % Copyright (C) 2005, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if ~ft_hastoolbox('yokogawa') error('cannot determine whether Yokogawa toolbox is present'); end % hdr = read_yokogawa_header(filename); hdr = hdr.orig; % use the original Yokogawa header, not the FieldTrip header % default is to select all channels if nargin<5 chanindx = 1:hdr.channel_count; end handles = definehandles; fid = fopen(filename, 'rb', 'ieee-le'); switch hdr.acq_type case handles.AcqTypeEvokedAve % Data is returned by double. start_sample = begsample - 1; % samples start at 0 sample_length = endsample - begsample + 1; epoch_count = 1; start_epoch = 0; dat = double(GetMeg160EvokedAverageDataM( fid, start_sample, sample_length )); % the first extra sample is the channel number channum = dat(:,1); dat = dat(:,2:end); case handles.AcqTypeContinuousRaw % Data is returned by int16. start_sample = begsample - 1; % samples start at 0 sample_length = endsample - begsample + 1; epoch_count = 1; start_epoch = 0; dat = double(GetMeg160ContinuousRawDataM( fid, start_sample, sample_length )); % the first extra sample is the channel number channum = dat(:,1); dat = dat(:,2:end); case handles.AcqTypeEvokedRaw % Data is returned by int16. begtrial = ceil(begsample/hdr.sample_count); endtrial = ceil(endsample/hdr.sample_count); if begtrial<1 error('cannot read before the begin of the file'); elseif endtrial>hdr.actual_epoch_count error('cannot read beyond the end of the file'); end epoch_count = endtrial-begtrial+1; start_epoch = begtrial-1; % read all the neccessary trials that contain the desired samples dat = double(GetMeg160EvokedRawDataM( fid, start_epoch, epoch_count )); % the first extra sample is the channel number channum = dat(:,1); dat = dat(:,2:end); if size(dat,2)~=epoch_count*hdr.sample_count error('could not read all epochs'); end rawbegsample = begsample - (begtrial-1)*hdr.sample_count; rawendsample = endsample - (begtrial-1)*hdr.sample_count; sample_length = rawendsample - rawbegsample + 1; % select the desired samples from the complete trials dat = dat(:,rawbegsample:rawendsample); otherwise error('unknown data type'); end fclose(fid); if size(dat,1)~=hdr.channel_count error('could not read all channels'); elseif size(dat,2)~=(endsample-begsample+1) error('could not read all samples'); end % Count of AxialGradioMeter ch_type = hdr.channel_info(:,2); index = find(ch_type==[handles.AxialGradioMeter]); axialgradiometer_index_tmp = index; axialgradiometer_ch_count = length(index); % Count of PlannerGradioMeter ch_type = hdr.channel_info(:,2); index = find(ch_type==[handles.PlannerGradioMeter]); plannergradiometer_index_tmp = index; plannergradiometer_ch_count = length(index); % Count of EegChannel ch_type = hdr.channel_info(:,2); index = find(ch_type==[handles.EegChannel]); eegchannel_index_tmp = index; eegchannel_ch_count = length(index); % Count of NullChannel ch_type = hdr.channel_info(:,2); index = find(ch_type==[handles.NullChannel]); nullchannel_index_tmp = index; nullchannel_ch_count = length(index); %%% Pulling out AxialGradioMeter and value conversion to physical units. if ~isempty(axialgradiometer_index_tmp) % Acquisition of channel information axialgradiometer_index = axialgradiometer_index_tmp; ch_info = hdr.channel_info; axialgradiometer_ch_info = ch_info(axialgradiometer_index, :); % Value conversion % B = ( ADValue * VoltRange / ADRange - Offset ) * Sensitivity / FLLGain calib = hdr.calib_info; amp_gain = hdr.amp_gain(1); tmp_ch_no = channum(axialgradiometer_index, 1); tmp_data = dat(axialgradiometer_index, 1:sample_length); tmp_offset = calib(axialgradiometer_index, 3) * ones(1,sample_length); ad_range = 5/2^(hdr.ad_bit-1); tmp_data = ( tmp_data * ad_range - tmp_offset ); clear tmp_offset; tmp_gain = calib(axialgradiometer_index, 2) * ones(1,sample_length); tmp_data = tmp_data .* tmp_gain / amp_gain; dat(axialgradiometer_index, 1:sample_length) = tmp_data; clear tmp_gain; % Deletion of Inf row index = find(axialgradiometer_ch_info(1,:) == Inf); axialgradiometer_ch_info(:,index) = []; % Deletion of channel_type row axialgradiometer_ch_info(:,2) = []; % Outputs to the global variable handles.sqd.axialgradiometer_ch_info = axialgradiometer_ch_info; handles.sqd.axialgradiometer_ch_no = tmp_ch_no; handles.sqd.axialgradiometer_data = [ tmp_ch_no tmp_data]; clear tmp_data; end %%% Pulling out PlannerGradioMeter and value conversion to physical units. if ~isempty(plannergradiometer_index_tmp) % Acquisition of channel information plannergradiometer_index = plannergradiometer_index_tmp; ch_info = hdr.channel_info; plannergradiometer_ch_info = ch_info(plannergradiometer_index, :); % Value conversion % B = ( ADValue * VoltRange / ADRange - Offset ) * Sensitivity / FLLGain calib = hdr.calib_info; amp_gain = hdr.amp_gain(1); tmp_ch_no = channum(plannergradiometer_index, 1); tmp_data = dat(plannergradiometer_index, 1:sample_length); tmp_offset = calib(plannergradiometer_index, 3) * ones(1,sample_length); ad_range = 5/2^(hdr.ad_bit-1); tmp_data = ( tmp_data * ad_range - tmp_offset ); clear tmp_offset; tmp_gain = calib(plannergradiometer_index, 2) * ones(1,sample_length); tmp_data = tmp_data .* tmp_gain / amp_gain; dat(plannergradiometer_index, 1:sample_length) = tmp_data; clear tmp_gain; % Deletion of Inf row index = find(plannergradiometer_ch_info(1,:) == Inf); plannergradiometer_ch_info(:,index) = []; % Deletion of channel_type row plannergradiometer_ch_info(:,2) = []; % Outputs to the global variable handles.sqd.plannergradiometer_ch_info = plannergradiometer_ch_info; handles.sqd.plannergradiometer_ch_no = tmp_ch_no; handles.sqd.plannergradiometer_data = [ tmp_ch_no tmp_data]; clear tmp_data; end %%% Pulling out EegChannel Channel and value conversion to Volt units. if ~isempty(eegchannel_index_tmp) % Acquisition of channel information eegchannel_index = eegchannel_index_tmp; % Value conversion % B = ADValue * VoltRange / ADRange tmp_ch_no = channum(eegchannel_index, 1); tmp_data = dat(eegchannel_index, 1:sample_length); ad_range = 5/2^(hdr.ad_bit-1); tmp_data = tmp_data * ad_range; dat(eegchannel_index, 1:sample_length) = tmp_data; % Outputs to the global variable handles.sqd.eegchannel_ch_no = tmp_ch_no; handles.sqd.eegchannel_data = [ tmp_ch_no tmp_data]; clear tmp_data; end %%% Pulling out Null Channel and value conversion to Volt units. if ~isempty(nullchannel_index_tmp) % Acquisition of channel information nullchannel_index = nullchannel_index_tmp; % Value conversion % B = ADValue * VoltRange / ADRange tmp_ch_no = channum(nullchannel_index, 1); tmp_data = dat(nullchannel_index, 1:sample_length); ad_range = 5/2^(hdr.ad_bit-1); tmp_data = tmp_data * ad_range; dat(nullchannel_index, 1:sample_length) = tmp_data; % Outputs to the global variable handles.sqd.nullchannel_ch_no = tmp_ch_no; handles.sqd.nullchannel_data = [ tmp_ch_no tmp_data]; clear tmp_data; end % select only the desired channels dat = dat(chanindx,:); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this defines some usefull constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function handles = definehandles handles.output = []; handles.sqd_load_flag = false; handles.mri_load_flag = false; handles.NullChannel = 0; handles.MagnetoMeter = 1; handles.AxialGradioMeter = 2; handles.PlannerGradioMeter = 3; handles.RefferenceChannelMark = hex2dec('0100'); handles.RefferenceMagnetoMeter = bitor( handles.RefferenceChannelMark, handles.MagnetoMeter ); handles.RefferenceAxialGradioMeter = bitor( handles.RefferenceChannelMark, handles.AxialGradioMeter ); handles.RefferencePlannerGradioMeter = bitor( handles.RefferenceChannelMark, handles.PlannerGradioMeter ); handles.TriggerChannel = -1; handles.EegChannel = -2; handles.EcgChannel = -3; handles.EtcChannel = -4; handles.NonMegChannelNameLength = 32; handles.DefaultMagnetometerSize = (4.0/1000.0); % Square of 4.0mm in length handles.DefaultAxialGradioMeterSize = (15.5/1000.0); % Circle of 15.5mm in diameter handles.DefaultPlannerGradioMeterSize = (12.0/1000.0); % Square of 12.0mm in length handles.AcqTypeContinuousRaw = 1; handles.AcqTypeEvokedAve = 2; handles.AcqTypeEvokedRaw = 3; handles.sqd = []; handles.sqd.selected_start = []; handles.sqd.selected_end = []; handles.sqd.axialgradiometer_ch_no = []; handles.sqd.axialgradiometer_ch_info = []; handles.sqd.axialgradiometer_data = []; handles.sqd.plannergradiometer_ch_no = []; handles.sqd.plannergradiometer_ch_info = []; handles.sqd.plannergradiometer_data = []; handles.sqd.eegchannel_ch_no = []; handles.sqd.eegchannel_data = []; handles.sqd.nullchannel_ch_no = []; handles.sqd.nullchannel_data = []; handles.sqd.selected_time = []; handles.sqd.sample_rate = []; handles.sqd.sample_count = []; handles.sqd.pretrigger_length = []; handles.sqd.matching_info = []; handles.sqd.source_info = []; handles.sqd.mri_info = []; handles.mri = [];
github
lcnhappe/happe-master
decode_fif.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/decode_fif.m
5,978
utf_8
d33206202f4aa5a18ba3ada03de48664
function [info] = decode_fif(orig) % DECODE_FIF is a helper function for real-time processing of Neuromag data. This % function is used to decode the content of the optional neuromag_fif chunk(s). % % See also DECODE_RES4, DECODE_NIFTI1, SAP2MATLAB % Copyright (C) 2013 Arjen Stolk & Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % check that the required low-level toolbox is available ft_hastoolbox('mne', 1); global FIFF if isempty(FIFF) FIFF = fiff_define_constants(); end if isfield(orig, 'neuromag_header') % The binary blob was created on the little-endian Intel Linux acquisition % computer, whereas the default for fiff files is that they are stored in % big-endian byte order. MATLAB is able to swap the bytes on the fly by specifying % 'le" or "be" to fopen. The normal MNE fiff_open function assumes that it is big % endian, hence here we have to open it as little endian. filename = tempname; % write the binary blob to disk, byte-by-byte to avoid any swapping between little and big-endian content F = fopen(filename, 'w'); fwrite(F, orig.neuromag_header, 'uint8'); fclose(F); % read the content of the file using the standard reading functions [info, meas] = read_header(filename); % clean up the temporary file delete(filename); end % Typically, at the end of acquisition, the isotrak and hpiresult information % is stored in the neuromag fiff container which can then (offline) be read by % fiff_read_meas_info. However, for the purpose of head position monitoring % (see Stolk et al., Neuroimage 2013) during acquisition, this crucial % information requires to be accessible online. read_isotrak and read_hpiresult % can extract information from the additionally chunked (neuromag2ft) files. if isfield(orig, 'neuromag_isotrak') filename = tempname; % write the binary blob to disk, byte-by-byte to avoid any swapping between little and big-endian content F = fopen(filename, 'w'); fwrite(F, orig.neuromag_isotrak, 'uint8'); fclose(F); % read the content of the file using the standard reading functions [info.dig] = read_isotrak(filename); % clean up the temporary file delete(filename); end if isfield(orig, 'neuromag_hpiresult') filename = tempname; % write the binary blob to disk, byte-by-byte to avoid any swapping between little and big-endian content F = fopen(filename, 'w'); fwrite(F, orig.neuromag_hpiresult, 'uint8'); fclose(F); % read the content of the file using the standard reading functions [info.dev_head_t, info.ctf_head_t] = read_hpiresult(filename); % clean up the temporary file delete(filename); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [info, meas] = read_header(filename) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % open and read the file as little endian [fid, tree] = fiff_open_le(filename); % open as little endian [info, meas] = fiff_read_meas_info(fid, tree); fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [dig] = read_isotrak(filename) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% global FIFF % open the isotrak file (big endian) % (typically stored in meas_info dir during acquisition, no fif extension required) [fid, tree] = fiff_open(filename); % locate the Polhemus data isotrak = fiff_dir_tree_find(tree,FIFF.FIFFB_ISOTRAK); dig=struct('kind',{},'ident',{},'r',{},'coord_frame',{}); coord_frame = FIFF.FIFFV_COORD_HEAD; if length(isotrak) == 1 p = 0; for k = 1:isotrak.nent kind = isotrak.dir(k).kind; pos = isotrak.dir(k).pos; if kind == FIFF.FIFF_DIG_POINT p = p + 1; tag = fiff_read_tag(fid,pos); dig(p) = tag.data; else if kind == FIFF.FIFF_MNE_COORD_FRAME tag = fiff_read_tag(fid,pos); coord_frame = tag.data; elseif kind == FIFF.FIFF_COORD_TRANS tag = fiff_read_tag(fid,pos); dig_trans = tag.data; end end end end for k = 1:length(dig) dig(k).coord_frame = coord_frame; end if exist('dig_trans','var') if (dig_trans.from ~= coord_frame && dig_trans.to ~= coord_frame) clear('dig_trans'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [dev_head_t, ctf_head_t] = read_hpiresult(filename) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% global FIFF % open the hpiresult file (big endian) % (typically stored in meas_info dir during acquisition, no fif extension required) [fid, tree] = fiff_open(filename); % locate the transformation matrix dev_head_t=[]; ctf_head_t=[]; hpi_result = fiff_dir_tree_find(tree,FIFF.FIFFB_HPI_RESULT); if length(hpi_result) == 1 for k = 1:hpi_result.nent kind = hpi_result.dir(k).kind; pos = hpi_result.dir(k).pos; if kind == FIFF.FIFF_COORD_TRANS tag = fiff_read_tag(fid,pos); cand = tag.data; if cand.from == FIFF.FIFFV_COORD_DEVICE && ... cand.to == FIFF.FIFFV_COORD_HEAD dev_head_t = cand; elseif cand.from == FIFF.FIFFV_MNE_COORD_CTF_HEAD && ... cand.to == FIFF.FIFFV_COORD_HEAD ctf_head_t = cand; end end end end
github
lcnhappe/happe-master
read_biff.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_biff.m
5,799
utf_8
78a82ce91f8383fd0f478b921280d6bb
function [this] = read_biff(filename, opt) % READ_BIFF reads data and header information from a BIFF file % % This is a attemt for a reference implementation to read the BIFF % file format as defined by the Clinical Neurophysiology department of % the University Medical Centre, Nijmegen. % % read all data and information % [data] = read_biff(filename) % or read a selected top-level chunk % [chunk] = read_biff(filename, chunkID) % % known top-level chunk id's are % data : measured data (matrix) % dati : information on data (struct) % expi : information on experiment (struct) % pati : information on patient (struct) % evnt : event markers (struct) % Copyright (C) 2000, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ define_biff; this = []; fid = fopen(filename, 'r'); fseek(fid,0,'eof'); eof = ftell(fid); fseek(fid,0,'bof'); [id, siz] = chunk_header(fid); switch id case 'SEMG' child = subtree(BIFF, id); this = read_biff_chunk(fid, id, siz, child); case 'LIST' fprintf('skipping unimplemented chunk id="%s" size=%4d\n', id, siz); case 'CAT ' fprintf('skipping unimplemented chunk id="%s" size=%4d\n', id, siz); otherwise fprintf('skipping unrecognized chunk id="%s" size=%4d\n', id, siz); fseek(fid, siz, 'cof'); end % switch fclose(fid); % close file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION read_biff_chunk %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function this = read_biff_chunk(fid, id, siz, chunk) % start with empty structure this = []; if strcmp(id, 'null') % this is an empty chunk fprintf('skipping empty chunk id="%s" size=%4d\n', id, siz); assert(~feof(fid)); fseek(fid, siz, 'cof'); elseif isempty(chunk) % this is an unrecognized chunk fprintf('skipping unrecognized chunk id="%s" size=%4d\n', id, siz); assert(~feof(fid)); fseek(fid, siz, 'cof'); else eoc = ftell(fid) + siz; name = char(chunk.desc(2)); type = char(chunk.desc(3)); fprintf('reading chunk id= "%s" size=%4d name="%s"\n', id, siz, name); switch type case 'group' while ~feof(fid) & ftell(fid)<eoc % read all subchunks [id, siz] = chunk_header(fid); child = subtree(chunk, id); if ~isempty(child) % read data and add subchunk data to chunk structure name = char(child.desc(2)); val = read_biff_chunk(fid, id, siz, child); this = setfield(this, name, val); else fprintf('skipping unrecognized chunk id="%s" size=%4d\n', id, siz); fseek(fid, siz, 'cof'); end end % while case 'string' this = char(fread(fid, siz, 'uchar')'); case {'char', 'uchar', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'float32', 'float64'} this = fread(fid, 1, type); case {'char', 'uchar', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'float32', 'float64'} this = fread(fid, 1, type); case {'int8vec', 'int16vec', 'int32vec', 'int64vec', 'uint8vec', 'uint16vec', 'uint32vec', 'float32vec', 'float64vec'} ncol = fread(fid, 1, 'uint32'); this = fread(fid, ncol, type(1:(length(type)-3))); case {'int8mat', 'int16mat', 'int32mat', 'int64mat', 'uint8mat', 'uint16mat', 'uint32mat', 'float32mat', 'float64mat'} nrow = fread(fid, 1, 'uint32'); ncol = fread(fid, 1, 'uint32'); this = fread(fid, [nrow, ncol], type(1:(length(type)-3))); otherwise fseek(fid, siz, 'cof'); % skip this chunk sprintf('unimplemented data type "%s" in chunk "%s"', type, id); % warning(ans); end % switch chunk type end % else %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION subtree %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function child = subtree(parent, id) blank = findstr(id, ' '); while ~isempty(blank) id(blank) = '_'; blank = findstr(id, ' '); end elem = fieldnames(parent); % list of all subitems num = find(strcmp(elem, id)); % number in parent tree if size(num) == [1,1] child = getfield(parent, char(elem(num))); % child subtree else child = []; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION chunk_header %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [id, siz] = chunk_header(fid) id = char(fread(fid, 4, 'uchar')'); % read chunk ID siz = fread(fid, 1, 'uint32'); % read chunk size if strcmp(id, 'GRP ') | strcmp(id, 'BIFF') id = char(fread(fid, 4, 'uchar')'); % read real chunk ID siz = siz - 4; % reduce size by 4 end
github
lcnhappe/happe-master
read_eeglabheader.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_eeglabheader.m
2,267
utf_8
f76d1bbb9aa657b05643502ef19fdb10
% read_eeglabheader() - import EEGLAB dataset files % % Usage: % >> header = read_eeglabheader(filename); % % Inputs: % filename - [string] file name % % Outputs: % header - FILEIO toolbox type structure % % Author: Arnaud Delorme, SCCN, INC, UCSD, 2008- %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2008 Arnaud Delorme, SCCN, INC, UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function header = read_eeglabheader(filename) if nargin < 1 help read_eeglabheader; return; end; if ~isstruct(filename) load('-mat', filename); else EEG = filename; end; header.Fs = EEG.srate; header.nChans = EEG.nbchan; header.nSamples = EEG.pnts; header.nSamplesPre = -EEG.xmin*EEG.srate; header.nTrials = EEG.trials; try header.label = { EEG.chanlocs.labels }'; catch warning('creating default channel names'); for i=1:header.nChans header.label{i} = sprintf('chan%03d', i); end end ind = 1; for i = 1:length( EEG.chanlocs ) if isfield(EEG.chanlocs(i), 'X') && ~isempty(EEG.chanlocs(i).X) header.elec.label{ind, 1} = EEG.chanlocs(i).labels; % this channel has a position header.elec.elecpos(ind,1) = EEG.chanlocs(i).X; header.elec.elecpos(ind,2) = EEG.chanlocs(i).Y; header.elec.elecpos(ind,3) = EEG.chanlocs(i).Z; ind = ind+1; end; end; % remove data % ----------- %if isfield(EEG, 'datfile') % if ~isempty(EEG.datfile) % EEG.data = EEG.datfile; % end; %else % EEG.data = 'in set file'; %end; EEG.icaact = []; header.orig = EEG;
github
lcnhappe/happe-master
read_ctf_svl.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_ctf_svl.m
3,812
utf_8
d3442d0a013cf5e0a8d4277d99e45206
% [data, hdr] = opensvl(filename) % % Reads a CTF SAM (.svl) file. function [data, hdr] = read_ctf_svl(filename) fid = fopen(filename, 'rb', 'ieee-be', 'ISO-8859-1'); if fid <= 0 error('Could not open SAM file: %s\n', filename); end % ---------------------------------------------------------------------- % Read header. hdr.identity = fread(fid, 8, '*char')'; % 'SAMIMAGE' hdr.version = fread(fid, 1, 'int32'); % SAM file version. hdr.setName = fread(fid, 256, '*char')'; % Dataset name. hdr.numChans = fread(fid, 1, 'int32'); hdr.numWeights = fread(fid, 1, 'int32'); % 0 for static image. if(hdr.numWeights ~= 0) warning('hdr.numWeights ~= 0'); end fread(fid,1,'int32'); % Padding to next 8 byte boundary. hdr.xmin = fread(fid, 1, 'double'); % Bounding box coordinates (m). hdr.xmax = fread(fid, 1, 'double'); hdr.ymin = fread(fid, 1, 'double'); hdr.ymax = fread(fid, 1, 'double'); hdr.zmin = fread(fid, 1, 'double'); hdr.zmax = fread(fid, 1, 'double'); hdr.stepSize = fread(fid, 1, 'double'); % m hdr.hpFreq = fread(fid, 1, 'double'); % High pass filtering frequency (Hz). hdr.lpFreq = fread(fid, 1, 'double'); % Low pass. hdr.bwFreq = fread(fid, 1, 'double'); % Bandwidth hdr.meanNoise = fread(fid, 1, 'double'); % Sensor noise (T). hdr.mriName = fread(fid, 256, '*char')'; hdr.fiducial.mri.nas = fread(fid, 3, 'int32'); % CTF MRI voxel coordinates? hdr.fiducial.mri.rpa = fread(fid, 3, 'int32'); hdr.fiducial.mri.lpa = fread(fid, 3, 'int32'); hdr.SAMType = fread(fid, 1, 'int32'); % 0: image, 1: weights array, 2: weights list. hdr.SAMUnit = fread(fid, 1, 'int32'); % Possible values: 0 coefficients Am/T, 1 moment Am, 2 power (Am)^2, 3 Z, % 4 F, 5 T, 6 probability, 7 MUSIC. fread(fid, 1, 'int32'); % Padding to next 8 byte boundary. if hdr.version > 1 % Version 2 has extra fields. hdr.fiducial.head.nas = fread(fid, 3, 'double'); % CTF head coordinates? hdr.fiducial.head.rpa = fread(fid, 3, 'double'); hdr.fiducial.head.lpa = fread(fid, 3, 'double'); hdr.SAMUnitName = fread(fid, 32, '*char')'; % Possible values: 'Am/T' SAM coefficients, 'Am' source strength, % '(Am)^2' source power, ('Z', 'F', 'T') statistics, 'P' probability. end % ---------------------------------------------------------------------- % Read image data. data = fread(fid, inf, 'double'); fclose(fid); % Raw image data is ordered as a C array with indices: [x][y][z], meaning % z changes fastest and x slowest. These x, y, z axes point to ALS % (anterior, left, superior) respectively in real world coordinates, % which means the voxels are in SLA order. % ---------------------------------------------------------------------- % Post processing. % Change from m to mm. hdr.xmin = hdr.xmin * 1000; hdr.ymin = hdr.ymin * 1000; hdr.zmin = hdr.zmin * 1000; hdr.xmax = hdr.xmax * 1000; hdr.ymax = hdr.ymax * 1000; hdr.zmax = hdr.zmax * 1000; hdr.stepSize = hdr.stepSize * 1000; % Number of voxels in each dimension. hdr.dim = [round((hdr.xmax - hdr.xmin)/hdr.stepSize) + 1, ... round((hdr.ymax - hdr.ymin)/hdr.stepSize) + 1, ... round((hdr.zmax - hdr.zmin)/hdr.stepSize) + 1]; data = reshape(data, hdr.dim([3, 2, 1])); % Build transformation matrix from raw voxel coordinates (indexed from 1) % to head coordinates in mm. Note that the bounding box is given in % these coordinates (in m, but converted above). % Apply scaling. hdr.transform = diag([hdr.stepSize * ones(1, 3), 1]); % Reorder directions. hdr.transform = hdr.transform(:, [3, 2, 1, 4]); % Apply translation. hdr.transform(1:3, 4) = [hdr.xmin; hdr.ymin; hdr.zmin] - hdr.stepSize; % -step is needed since voxels are indexed from 1. end
github
lcnhappe/happe-master
read_erplabevent.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_erplabevent.m
1,786
utf_8
40ece49ff6bd2afd6024b46f210e65fa
% read_erplabevent() - import ERPLAB dataset events % % Usage: % >> event = read_erplabevent(filename, ...); % % Inputs: % filename - [string] file name % % Optional inputs: % 'header' - FILEIO structure header % % Outputs: % event - FILEIO toolbox event structure % % Modified from read_eeglabevent %123456789012345678901234567890123456789012345678901234567890123456789012 % % Copyright (C) 2008 Arnaud Delorme, SCCN, INC, UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function event = read_erplabevent(filename, varargin) if nargin < 1 help read_erplabheader; return; end; hdr = ft_getopt(varargin, 'header'); if isempty(hdr) hdr = read_erplabheader(filename); end event = []; % these will be the output in FieldTrip format oldevent = hdr.orig.bindescr; % these are in ERPLAB format for index = 1:length(oldevent) event(end+1).type = 'trial'; event(end ).sample = (index-1)*hdr.nSamples + 1; event(end ).value = oldevent{index}; event(end ).offset = -hdr.nSamplesPre; event(end ).duration = hdr.nSamples; end;
github
lcnhappe/happe-master
read_yokogawa_header_new.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_yokogawa_header_new.m
8,887
utf_8
70f6185e29007e7790efc5a8cb91bf23
function hdr = read_yokogawa_header_new(filename) % READ_YOKOGAWA_HEADER_NEW reads the header information from continuous, % epoched or averaged MEG data that has been generated by the Yokogawa % MEG system and software and allows that data to be used in combination % with FieldTrip. % % Use as % [hdr] = read_yokogawa_header_new(filename) % % This is a wrapper function around the functions % getYkgwHdrSystem % getYkgwHdrChannel % getYkgwHdrAcqCond % getYkgwHdrCoregist % getYkgwHdrDigitize % getYkgwHdrSource % % See also READ_YOKOGAWA_DATA_NEW, READ_YOKOGAWA_EVENT % ** % Copyright (C) 2005, Robert Oostenveld and 2010, Tilmann Sander-Thoemmes % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % FIXED % txt -> m % fopen iee-le if ~ft_hastoolbox('yokogawa_meg_reader') error('cannot determine whether Yokogawa toolbox is present'); end handles = definehandles; sys_info = getYkgwHdrSystem(filename); id = sys_info.system_id; ver = sys_info.version; rev = sys_info.revision; sys_name = sys_info.system_name; model_name = sys_info.model_name; clear('sys_info'); % remove structure as local variables are collected in the end channel_info = getYkgwHdrChannel(filename); channel_count = channel_info.channel_count; acq_cond = getYkgwHdrAcqCond(filename); acq_type = acq_cond.acq_type; % these depend on the data type sample_rate = []; sample_count = []; pretrigger_length = []; averaged_count = []; actual_epoch_count = []; switch acq_type case handles.AcqTypeContinuousRaw sample_rate = acq_cond.sample_rate; sample_count = acq_cond.sample_count; if isempty(sample_rate) | isempty(sample_count) error('invalid sample rate or sample count in ', filename); return; end pretrigger_length = 0; averaged_count = 1; case handles.AcqTypeEvokedAve sample_rate = acq_cond.sample_rate; sample_count = acq_cond.frame_length; pretrigger_length = acq_cond.pretrigger_length; averaged_count = acq_cond.average_count; if isempty(sample_rate) | isempty(sample_count) | isempty(pretrigger_length) | isempty(averaged_count) error('invalid sample rate or sample count or pretrigger length or average count in ', filename); return; end if acq_cond.multi_trigger.enable error('multi trigger mode not supported for ', filename); return; end case handles.AcqTypeEvokedRaw sample_rate = acq_cond.sample_rate; sample_count = acq_cond.frame_length; pretrigger_length = acq_cond.pretrigger_length; actual_epoch_count = acq_cond.average_count; if isempty(sample_rate) | isempty(sample_count) | isempty(pretrigger_length) | isempty(actual_epoch_count) error('invalid sample rate or sample count or pretrigger length or epoch count in ', filename); return; end if acq_cond.multi_trigger.enable error('multi trigger mode not supported for ', filename); return; end otherwise error('unknown data type'); end clear('acq_cond'); % remove structure as local variables are collected in the end coregist = getYkgwHdrCoregist(filename); digitize = getYkgwHdrDigitize(filename); source = getYkgwHdrSource(filename); % put all local variables into a structure, this is a bit unusual matlab programming style tmp = whos; orig = []; for i=1:length(tmp) if isempty(strmatch(tmp(i).name, {'tmp', 'ans', 'handles'})) orig = setfield(orig, tmp(i).name, eval(tmp(i).name)); end end % convert the original header information into something that FieldTrip understands hdr = []; hdr.orig = orig; % also store the original full header information hdr.Fs = orig.sample_rate; % sampling frequency hdr.nChans = orig.channel_count; % number of channels hdr.nSamples = []; % number of samples per trial hdr.nSamplesPre = []; % number of pre-trigger samples in each trial hdr.nTrials = []; % number of trials switch orig.acq_type case handles.AcqTypeEvokedAve hdr.nSamples = orig.sample_count; hdr.nSamplesPre = orig.pretrigger_length; hdr.nTrials = 1; % only the average, which can be considered as a single trial case handles.AcqTypeContinuousRaw hdr.nSamples = orig.sample_count; hdr.nSamplesPre = 0; % there is no fixed relation between triggers and data hdr.nTrials = 1; % the continuous data can be considered as a single very long trial case handles.AcqTypeEvokedRaw hdr.nSamples = orig.sample_count; hdr.nSamplesPre = orig.pretrigger_length; hdr.nTrials = orig.actual_epoch_count; otherwise error('unknown acquisition type'); end % construct a cell-array with labels of each channel for i=1:hdr.nChans % this should be consistent with the predefined list in ft_senslabel, % with yokogawa2grad_new and with ft_channelselection if hdr.orig.channel_info.channel(i).type == handles.NullChannel prefix = ''; elseif hdr.orig.channel_info.channel(i).type == handles.MagnetoMeter prefix = 'M'; elseif hdr.orig.channel_info.channel(i).type == handles.AxialGradioMeter prefix = 'AG'; elseif hdr.orig.channel_info.channel(i).type == handles.PlannerGradioMeter prefix = 'PG'; elseif hdr.orig.channel_info.channel(i).type == handles.RefferenceMagnetoMeter prefix = 'RM'; elseif hdr.orig.channel_info.channel(i).type == handles.RefferenceAxialGradioMeter prefix = 'RAG'; elseif hdr.orig.channel_info.channel(i).type == handles.RefferencePlannerGradioMeter prefix = 'RPG'; elseif hdr.orig.channel_info.channel(i).type == handles.TriggerChannel prefix = 'TRIG'; elseif hdr.orig.channel_info.channel(i).type == handles.EegChannel prefix = 'EEG'; elseif hdr.orig.channel_info.channel(i).type == handles.EcgChannel prefix = 'ECG'; elseif hdr.orig.channel_info.channel(i).type == handles.EtcChannel prefix = 'ETC'; end hdr.label{i} = sprintf('%s%03d', prefix, i); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this defines some usefull constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function handles = definehandles handles.output = []; handles.sqd_load_flag = false; handles.mri_load_flag = false; handles.NullChannel = 0; handles.MagnetoMeter = 1; handles.AxialGradioMeter = 2; handles.PlannerGradioMeter = 3; handles.RefferenceChannelMark = hex2dec('0100'); handles.RefferenceMagnetoMeter = bitor( handles.RefferenceChannelMark, handles.MagnetoMeter ); handles.RefferenceAxialGradioMeter = bitor( handles.RefferenceChannelMark, handles.AxialGradioMeter ); handles.RefferencePlannerGradioMeter = bitor( handles.RefferenceChannelMark, handles.PlannerGradioMeter ); handles.TriggerChannel = -1; handles.EegChannel = -2; handles.EcgChannel = -3; handles.EtcChannel = -4; handles.NonMegChannelNameLength = 32; handles.DefaultMagnetometerSize = (4.0/1000.0); % Square of 4.0mm in length handles.DefaultAxialGradioMeterSize = (15.5/1000.0); % Circle of 15.5mm in diameter handles.DefaultPlannerGradioMeterSize = (12.0/1000.0); % Square of 12.0mm in length handles.AcqTypeContinuousRaw = 1; handles.AcqTypeEvokedAve = 2; handles.AcqTypeEvokedRaw = 3; handles.sqd = []; handles.sqd.selected_start = []; handles.sqd.selected_end = []; handles.sqd.axialgradiometer_ch_no = []; handles.sqd.axialgradiometer_ch_info = []; handles.sqd.axialgradiometer_data = []; handles.sqd.plannergradiometer_ch_no = []; handles.sqd.plannergradiometer_ch_info = []; handles.sqd.plannergradiometer_data = []; handles.sqd.eegchannel_ch_no = []; handles.sqd.eegchannel_data = []; handles.sqd.nullchannel_ch_no = []; handles.sqd.nullchannel_data = []; handles.sqd.selected_time = []; handles.sqd.sample_rate = []; handles.sqd.sample_count = []; handles.sqd.pretrigger_length = []; handles.sqd.matching_info = []; handles.sqd.source_info = []; handles.sqd.mri_info = []; handles.mri = [];
github
lcnhappe/happe-master
ft_datatype_raw.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/ft_datatype_raw.m
11,070
utf_8
aff8ada66bf72bd5975e10ea4d2a3648
function [data] = ft_datatype_raw(data, varargin) % FT_DATATYPE_RAW describes the FieldTrip MATLAB structure for raw data % % The raw datatype represents sensor-level time-domain data typically % obtained after calling FT_DEFINETRIAL and FT_PREPROCESSING. It contains % one or multiple segments of data, each represented as Nchan X Ntime % arrays. % % An example of a raw data structure with 151 MEG channels is % % label: {151x1 cell} the channel labels (e.g. 'MRC13') % time: {1x266 cell} the timeaxis [1*Ntime double] per trial % trial: {1x266 cell} the numeric data [151*Ntime double] per trial % sampleinfo: [266x2 double] the begin and endsample of each trial relative to the recording on disk % trialinfo: [266x1 double] optional trigger or condition codes for each trial % hdr: [1x1 struct] the full header information of the original dataset on disk % grad: [1x1 struct] information about the sensor array (for EEG it is called elec) % cfg: [1x1 struct] the configuration used by the function that generated this data structure % % Required fields: % - time, trial, label % % Optional fields: % - sampleinfo, trialinfo, grad, elec, hdr, cfg % % Deprecated fields: % - fsample % % Obsoleted fields: % - offset % % Historical fields: % - cfg, elec, fsample, grad, hdr, label, offset, sampleinfo, time, % trial, trialdef, see bug2513 % % Revision history: % % (2011/latest) The description of the sensors has changed, see FT_DATATYPE_SENS % for further information. % % (2010v2) The trialdef field has been replaced by the sampleinfo and % trialinfo fields. The sampleinfo corresponds to trl(:,1:2), the trialinfo % to trl(4:end). % % (2010v1) In 2010/Q3 it shortly contained the trialdef field which was a copy % of the trial definition (trl) is generated by FT_DEFINETRIAL. % % (2007) It used to contain the offset field, which correcponds to trl(:,3). % Since the offset field is redundant with the time axis, the offset field is % from now on not present any more. It can be recreated if needed. % % (2003) The initial version was defined % % See also FT_DATATYPE, FT_DATATYPE_COMP, FT_DATATYPE_TIMELOCK, FT_DATATYPE_FREQ, % FT_DATATYPE_SPIKE, FT_DATATYPE_SENS % Copyright (C) 2011, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % get the optional input arguments, which should be specified as key-value pairs version = ft_getopt(varargin, 'version', 'latest'); hassampleinfo = ft_getopt(varargin, 'hassampleinfo', 'ifmakessense'); % can be yes/no/ifmakessense hastrialinfo = ft_getopt(varargin, 'hastrialinfo', 'ifmakessense'); % can be yes/no/ifmakessense % do some sanity checks assert(isfield(data, 'trial') && isfield(data, 'time') && isfield(data, 'label'), 'inconsistent raw data structure, some field is missing'); assert(length(data.trial)==length(data.time), 'inconsistent number of trials in raw data structure'); for i=1:length(data.trial) assert(size(data.trial{i},2)==length(data.time{i}), 'inconsistent number of samples in trial %d', i); assert(size(data.trial{i},1)==length(data.label), 'inconsistent number of channels in trial %d', i); end if isequal(hassampleinfo, 'ifmakessense') hassampleinfo = 'no'; % default to not adding it if isfield(data, 'sampleinfo') && size(data.sampleinfo,1)~=numel(data.trial) % it does not make sense, so don't keep it hassampleinfo = 'no'; end if isfield(data, 'sampleinfo') hassampleinfo = 'yes'; % if it's already there, consider keeping it numsmp = data.sampleinfo(:,2)-data.sampleinfo(:,1)+1; for i=1:length(data.trial) if size(data.trial{i},2)~=numsmp(i); % it does not make sense, so don't keep it hassampleinfo = 'no'; % the actual removal will be done further down warning('removing inconsistent sampleinfo'); break; end end end end if isequal(hastrialinfo, 'ifmakessense') hastrialinfo = 'no'; if isfield(data, 'trialinfo') hastrialinfo = 'yes'; if size(data.trialinfo,1)~=numel(data.trial) % it does not make sense, so don't keep it hastrialinfo = 'no'; warning('removing inconsistent trialinfo'); end end end % convert it into true/false hassampleinfo = istrue(hassampleinfo); hastrialinfo = istrue(hastrialinfo); if strcmp(version, 'latest') version = '2011'; end if isempty(data) return; end switch version case '2011' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isfield(data, 'grad') % ensure that the gradiometer structure is up to date data.grad = ft_datatype_sens(data.grad); end if isfield(data, 'elec') % ensure that the electrode structure is up to date data.elec = ft_datatype_sens(data.elec); end if ~isfield(data, 'fsample') for i=1:length(data.time) if length(data.time{i})>1 data.fsample = 1/mean(diff(data.time{i})); break else data.fsample = nan; end end if isnan(data.fsample) warning('cannot determine sampling frequency'); end end if isfield(data, 'offset') data = rmfield(data, 'offset'); end % the trialdef field should be renamed into sampleinfo if isfield(data, 'trialdef') data.sampleinfo = data.trialdef; data = rmfield(data, 'trialdef'); end if (hassampleinfo && ~isfield(data, 'sampleinfo')) || (hastrialinfo && ~isfield(data, 'trialinfo')) % try to reconstruct the sampleinfo and trialinfo data = fixsampleinfo(data); end if ~hassampleinfo && isfield(data, 'sampleinfo') data = rmfield(data, 'sampleinfo'); end if ~hastrialinfo && isfield(data, 'trialinfo') data = rmfield(data, 'trialinfo'); end case '2010v2' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(data, 'fsample') data.fsample = 1/mean(diff(data.time{1})); end if isfield(data, 'offset') data = rmfield(data, 'offset'); end % the trialdef field should be renamed into sampleinfo if isfield(data, 'trialdef') data.sampleinfo = data.trialdef; data = rmfield(data, 'trialdef'); end if (hassampleinfo && ~isfield(data, 'sampleinfo')) || (hastrialinfo && ~isfield(data, 'trialinfo')) % try to reconstruct the sampleinfo and trialinfo data = fixsampleinfo(data); end if ~hassampleinfo && isfield(data, 'sampleinfo') data = rmfield(data, 'sampleinfo'); end if ~hastrialinfo && isfield(data, 'trialinfo') data = rmfield(data, 'trialinfo'); end case {'2010v1' '2010'} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(data, 'fsample') data.fsample = 1/mean(diff(data.time{1})); end if isfield(data, 'offset') data = rmfield(data, 'offset'); end if ~isfield(data, 'trialdef') && hascfg % try to find it in the nested configuration history data.trialdef = ft_findcfg(data.cfg, 'trl'); end case '2007' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(data, 'fsample') data.fsample = 1/mean(diff(data.time{1})); end if isfield(data, 'offset') data = rmfield(data, 'offset'); end case '2003' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(data, 'fsample') data.fsample = 1/mean(diff(data.time{1})); end if ~isfield(data, 'offset') data.offset = zeros(length(data.time),1); for i=1:length(data.time); data.offset(i) = round(data.time{i}(1)*data.fsample); end end otherwise %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% error('unsupported version "%s" for raw datatype', version); end % Numerical inaccuracies in the binary representations of floating point % values may accumulate. The following code corrects for small inaccuracies % in the time axes of the trials. See http://bugzilla.fcdonders.nl/show_bug.cgi?id=1390 data = fixtimeaxes(data); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = fixtimeaxes(data) if ~isfield(data, 'fsample') fsample = 1/mean(diff(data.time{1})); else fsample = data.fsample; end begtime = zeros(1, length(data.time)); endtime = zeros(1, length(data.time)); numsample = zeros(1, length(data.time)); for i=1:length(data.time) begtime(i) = data.time{i}(1); endtime(i) = data.time{i}(end); numsample(i) = length(data.time{i}); end % compute the differences over trials and the tolerance tolerance = 0.01*(1/fsample); begdifference = abs(begtime-begtime(1)); enddifference = abs(endtime-endtime(1)); % check whether begin and/or end are identical, or close to identical begidentical = all(begdifference==0); endidentical = all(enddifference==0); begsimilar = all(begdifference < tolerance); endsimilar = all(enddifference < tolerance); % Compute the offset of each trial relative to the first trial, and express % that in samples. Non-integer numbers indicate that there is a slight skew % in the time over trials. This works in case of variable length trials. offset = fsample * (begtime-begtime(1)); skew = abs(offset - round(offset)); % try to determine all cases where a correction is needed % note that this does not yet address all possible cases where a fix might be needed needfix = false; needfix = needfix || ~begidentical && begsimilar; needfix = needfix || ~endidentical && endsimilar; needfix = needfix || ~all(skew==0) && all(skew<0.01); % if the skew is less than 1% it will be corrected if needfix ft_warning('correcting numerical inaccuracy in the time axes'); for i=1:length(data.time) % reconstruct the time axis of each trial, using the begin latency of % the first trial and the integer offset in samples of each trial data.time{i} = begtime(1) + ((1:numsample(i)) - 1 + round(offset(i)))/fsample; end end
github
lcnhappe/happe-master
getdimsiz.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/getdimsiz.m
2,235
utf_8
340d495a654f2f6752aa1af7ac915390
function dimsiz = getdimsiz(data, field) % GETDIMSIZ % % Use as % dimsiz = getdimsiz(data, field) % % If the length of the vector that is returned is smaller than the % number of dimensions that you would expect from GETDIMORD, you % should assume that it has trailing singleton dimensions. % % Example use % dimord = getdimord(datastructure, fieldname); % dimtok = tokenize(dimord, '_'); % dimsiz = getdimsiz(datastructure, fieldname); % dimsiz(end+1:length(dimtok)) = 1; % there can be additional trailing singleton dimensions % % See also GETDIMORD, GETDATFIELD if ~isfield(data, field) && isfield(data, 'avg') && isfield(data.avg, field) field = ['avg.' field]; elseif ~isfield(data, field) && isfield(data, 'trial') && isfield(data.trial, field) field = ['trial.' field]; elseif ~isfield(data, field) error('field "%s" not present in data', field); end if strncmp(field, 'avg.', 4) prefix = []; field = field(5:end); % strip the avg data.(field) = data.avg.(field); % move the avg into the main structure data = rmfield(data, 'avg'); elseif strncmp(field, 'trial.', 6) prefix = numel(data.trial); field = field(7:end); % strip the trial data.(field) = data.trial(1).(field); % move the first trial into the main structure data = rmfield(data, 'trial'); else prefix = []; end dimsiz = cellmatsize(data.(field)); % add nrpt in case of source.trial dimsiz = [prefix dimsiz]; end % main function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to determine the size of data representations like {pos}_ori_time % FIXME this will fail for {xxx_yyy}_zzz %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function siz = cellmatsize(x) if iscell(x) if isempty(x) siz = 0; return % nothing else to do elseif isvector(x) cellsize = numel(x); % the number of elements in the cell-array else cellsize = size(x); x = x(:); % convert to vector for further size detection end [dum, indx] = max(cellfun(@numel, x)); matsize = size(x{indx}); % the size of the content of the cell-array siz = [cellsize matsize]; % concatenate the two else siz = size(x); end end % function cellmatsize
github
lcnhappe/happe-master
read_yokogawa_header.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_yokogawa_header.m
8,273
utf_8
ce0d6dbecc09597da7bbb311519c6c84
function hdr = read_yokogawa_header(filename) % READ_YOKOGAWA_HEADER reads the header information from continuous, % epoched or averaged MEG data that has been generated by the Yokogawa % MEG system and software and allows that data to be used in combination % with FieldTrip. % % Use as % [hdr] = read_yokogawa_header(filename) % % This is a wrapper function around the functions % GetMeg160SystemInfoM % GetMeg160ChannelCountM % GetMeg160ChannelInfoM % GetMeg160CalibInfoM % GetMeg160AmpGainM % GetMeg160DataAcqTypeM % GetMeg160ContinuousAcqCondM % GetMeg160EvokedAcqCondM % % See also READ_YOKOGAWA_DATA, READ_YOKOGAWA_EVENT % this function also calls % GetMeg160MriInfoM % GetMeg160MatchingInfoM % GetMeg160SourceInfoM % but I don't know whether to use the information provided by those % Copyright (C) 2005, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % FIXED % txt -> m % fopen iee-le if ~ft_hastoolbox('yokogawa') error('cannot determine whether Yokogawa toolbox is present'); end handles = definehandles; fid = fopen(filename, 'rb', 'ieee-le'); % these are always present [id ver rev sys_name] = GetMeg160SystemInfoM(fid); channel_count = GetMeg160ChannelCountM(fid); channel_info = GetMeg160ChannelInfoM(fid); calib_info = GetMeg160CalibInfoM(fid); amp_gain = GetMeg160AmpGainM(fid); acq_type = GetMeg160DataAcqTypeM(fid); ad_bit = GetMeg160ADbitInfoM(fid); % these depend on the data type sample_rate = []; sample_count = []; pretrigger_length = []; averaged_count = []; actual_epoch_count = []; switch acq_type case handles.AcqTypeContinuousRaw [sample_rate, sample_count] = GetMeg160ContinuousAcqCondM(fid); if isempty(sample_rate) | isempty(sample_count) fclose(fid); return; end pretrigger_length = 0; averaged_count = 1; case handles.AcqTypeEvokedAve [sample_rate, sample_count, pretrigger_length, averaged_count] = GetMeg160EvokedAcqCondM( fid ); if isempty(sample_rate) | isempty(sample_count) | isempty(pretrigger_length) | isempty(averaged_count) fclose(fid); return; end case handles.AcqTypeEvokedRaw [sample_rate, sample_count, pretrigger_length, actual_epoch_count] = GetMeg160EvokedAcqCondM( fid ); if isempty(sample_rate) | isempty(sample_count) | isempty(pretrigger_length) | isempty(actual_epoch_count) fclose(fid); return; end otherwise error('unknown data type'); end % these are always present mri_info = GetMeg160MriInfoM(fid); matching_info = GetMeg160MatchingInfoM(fid); source_info = GetMeg160SourceInfoM(fid); fclose(fid); % put all local variables into a structure, this is a bit unusual matlab programming style tmp = whos; orig = []; for i=1:length(tmp) if isempty(strmatch(tmp(i).name, {'tmp', 'fid', 'ans', 'handles'})) orig = setfield(orig, tmp(i).name, eval(tmp(i).name)); end end % convert the original header information into something that FieldTrip understands hdr = []; hdr.orig = orig; % also store the original full header information hdr.Fs = orig.sample_rate; % sampling frequency hdr.nChans = orig.channel_count; % number of channels hdr.nSamples = []; % number of samples per trial hdr.nSamplesPre = []; % number of pre-trigger samples in each trial hdr.nTrials = []; % number of trials switch orig.acq_type case handles.AcqTypeEvokedAve hdr.nSamples = orig.sample_count; hdr.nSamplesPre = orig.pretrigger_length; hdr.nTrials = 1; % only the average, which can be considered as a single trial case handles.AcqTypeContinuousRaw hdr.nSamples = orig.sample_count; hdr.nSamplesPre = 0; % there is no fixed relation between triggers and data hdr.nTrials = 1; % the continuous data can be considered as a single very long trial case handles.AcqTypeEvokedRaw hdr.nSamples = orig.sample_count; hdr.nSamplesPre = orig.pretrigger_length; hdr.nTrials = orig.actual_epoch_count; otherwise error('unknown acquisition type'); end % construct a cell-array with labels of each channel for i=1:hdr.nChans % this should be consistent with the predefined list in ft_senslabel, % with yokogawa2grad and with ft_channelselection if hdr.orig.channel_info(i, 2) == handles.NullChannel prefix = ''; elseif hdr.orig.channel_info(i, 2) == handles.MagnetoMeter prefix = 'M'; elseif hdr.orig.channel_info(i, 2) == handles.AxialGradioMeter prefix = 'AG'; elseif hdr.orig.channel_info(i, 2) == handles.PlannerGradioMeter prefix = 'PG'; elseif hdr.orig.channel_info(i, 2) == handles.RefferenceMagnetoMeter prefix = 'RM'; elseif hdr.orig.channel_info(i, 2) == handles.RefferenceAxialGradioMeter prefix = 'RAG'; elseif hdr.orig.channel_info(i, 2) == handles.RefferencePlannerGradioMeter prefix = 'RPG'; elseif hdr.orig.channel_info(i, 2) == handles.TriggerChannel prefix = 'TRIG'; elseif hdr.orig.channel_info(i, 2) == handles.EegChannel prefix = 'EEG'; elseif hdr.orig.channel_info(i, 2) == handles.EcgChannel prefix = 'ECG'; elseif hdr.orig.channel_info(i, 2) == handles.EtcChannel prefix = 'ETC'; end hdr.label{i} = sprintf('%s%03d', prefix, i); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this defines some usefull constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function handles = definehandles handles.output = []; handles.sqd_load_flag = false; handles.mri_load_flag = false; handles.NullChannel = 0; handles.MagnetoMeter = 1; handles.AxialGradioMeter = 2; handles.PlannerGradioMeter = 3; handles.RefferenceChannelMark = hex2dec('0100'); handles.RefferenceMagnetoMeter = bitor( handles.RefferenceChannelMark, handles.MagnetoMeter ); handles.RefferenceAxialGradioMeter = bitor( handles.RefferenceChannelMark, handles.AxialGradioMeter ); handles.RefferencePlannerGradioMeter = bitor( handles.RefferenceChannelMark, handles.PlannerGradioMeter ); handles.TriggerChannel = -1; handles.EegChannel = -2; handles.EcgChannel = -3; handles.EtcChannel = -4; handles.NonMegChannelNameLength = 32; handles.DefaultMagnetometerSize = (4.0/1000.0); % Square of 4.0mm in length handles.DefaultAxialGradioMeterSize = (15.5/1000.0); % Circle of 15.5mm in diameter handles.DefaultPlannerGradioMeterSize = (12.0/1000.0); % Square of 12.0mm in length handles.AcqTypeContinuousRaw = 1; handles.AcqTypeEvokedAve = 2; handles.AcqTypeEvokedRaw = 3; handles.sqd = []; handles.sqd.selected_start = []; handles.sqd.selected_end = []; handles.sqd.axialgradiometer_ch_no = []; handles.sqd.axialgradiometer_ch_info = []; handles.sqd.axialgradiometer_data = []; handles.sqd.plannergradiometer_ch_no = []; handles.sqd.plannergradiometer_ch_info = []; handles.sqd.plannergradiometer_data = []; handles.sqd.eegchannel_ch_no = []; handles.sqd.eegchannel_data = []; handles.sqd.nullchannel_ch_no = []; handles.sqd.nullchannel_data = []; handles.sqd.selected_time = []; handles.sqd.sample_rate = []; handles.sqd.sample_count = []; handles.sqd.pretrigger_length = []; handles.sqd.matching_info = []; handles.sqd.source_info = []; handles.sqd.mri_info = []; handles.mri = [];
github
lcnhappe/happe-master
encode_nifti1.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/encode_nifti1.m
4,870
utf_8
9cf92a03587c511a5cec2c8c76a3c2c3
function blob = encode_nifti1(H) %function blob = encode_nifti1(H) % % Encodes a NIFTI-1 header (=> raw 348 bytes (uint8)) from a Matlab structure % that matches the C struct defined in nifti1.h. % % WARNING: This function currently ignores endianness !!! % (C) 2010 S.Klanke blob = uint8(zeros(1,348)); if ~isstruct(H) error 'Input must be a structure'; end % see nift1.h for information on structure sizeof_hdr = int32(348); blob(1:4) = typecast(sizeof_hdr, 'uint8'); blob = setString(blob, 5, 14, H, 'data_type'); blob = setString(blob, 15, 32, H, 'db_name'); blob = setInt32( blob, 33, 36, H, 'extents'); blob = setInt16( blob, 37, 38, H, 'session_error'); blob = setInt8( blob, 39, 39, H, 'regular'); blob = setInt8( blob, 40, 40, H, 'dim_info'); dim = int16(H.dim(:)'); ndim = numel(dim); if ndim<1 || ndim>7 error 'Field "dim" must have 1..7 elements'; end dim = [int16(ndim) dim]; blob(41:(42+2*ndim)) = typecast(dim,'uint8'); blob = setSingle(blob, 57, 60, H, 'intent_p1'); blob = setSingle(blob, 61, 64, H, 'intent_p2'); blob = setSingle(blob, 65, 68, H, 'intent_p3'); blob = setInt16( blob, 69, 70, H, 'intent_code'); blob = setInt16( blob, 71, 72, H, 'datatype'); blob = setInt16( blob, 73, 74, H, 'bitpix'); blob = setInt16( blob, 75, 76, H, 'slice_start'); blob = setSingle(blob, 77, 80, H, 'qfac'); if isfield(H,'pixdim') pixdim = single(H.pixdim(:)'); ndim = numel(pixdim); if ndim<1 || ndim>7 error 'Field "pixdim" must have 1..7 elements'; end blob(81:(80+4*ndim)) = typecast(pixdim,'uint8'); end blob = setSingle(blob, 109, 112, H, 'vox_offset'); blob = setSingle(blob, 113, 116, H, 'scl_scope'); blob = setSingle(blob, 117, 120, H, 'scl_inter'); blob = setInt16( blob, 121, 122, H, 'slice_end'); blob = setInt8( blob, 123, 123, H, 'slice_code'); blob = setInt8( blob, 124, 124, H, 'xyzt_units'); blob = setSingle(blob, 125, 128, H, 'cal_max'); blob = setSingle(blob, 129, 132, H, 'cal_min'); blob = setSingle(blob, 133, 136, H, 'slice_duration'); blob = setSingle(blob, 137, 140, H, 'toffset'); blob = setInt32( blob, 141, 144, H, 'glmax'); blob = setInt32( blob, 145, 148, H, 'glmin'); blob = setString(blob, 149, 228, H, 'descrip'); blob = setString(blob, 229, 252, H, 'aux_file'); blob = setInt16( blob, 253, 254, H, 'qform_code'); blob = setInt16( blob, 255, 256, H, 'sform_code'); blob = setSingle(blob, 257, 260, H, 'quatern_b'); blob = setSingle(blob, 261, 264, H, 'quatern_c'); blob = setSingle(blob, 265, 268, H, 'quatern_d'); blob = setSingle(blob, 269, 272, H, 'quatern_x'); blob = setSingle(blob, 273, 276, H, 'quatern_y'); blob = setSingle(blob, 277, 280, H, 'quatern_z'); blob = setSingle(blob, 281, 296, H, 'srow_x'); blob = setSingle(blob, 297, 312, H, 'srow_y'); blob = setSingle(blob, 313, 328, H, 'srow_z'); blob = setString(blob, 329, 344, H, 'intent_name'); if ~isfield(H,'magic') blob(345:347) = uint8('ni1'); else blob = setString(blob, 345, 347, H, 'magic'); end function blob = setString(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = getfield(H, fieldname); ne = numel(F); mx = endidx - begidx +1; if ne > 0 if ~ischar(F) || ne > mx errmsg = sprintf('Field "data_type" must be a string of maximally %i characters.', mx); error(errmsg); end blob(begidx:(begidx+ne-1)) = uint8(F(:)'); end % set 32-bit integers (check #elements) function blob = setInt32(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = int32(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1) / 4; if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+4*ne-1)) = typecast(F(:)', 'uint8'); % set 16-bit integers (check #elements) function blob = setInt16(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = int16(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1) / 2; if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+2*ne-1)) = typecast(F(:)', 'uint8'); % just 8-bit integers (check #elements) function blob = setInt8(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = int8(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1); if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+ne-1)) = typecast(F(:)', 'uint8'); % single precision floats function blob = setSingle(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = single(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1) / 4; if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+4*ne-1)) = typecast(F(:)', 'uint8');
github
lcnhappe/happe-master
read_nervus_header.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_nervus_header.m
30,014
utf_8
a7e8259eae22c5af14fb48467f95f2b7
function output = read_nervus_header(filename) % read_nervus_header Returns header information from Nicolet file. % % FILENAME is the file name of a file in the Natus/Nicolet/Nervus(TM) % format (originally designed by Taugagreining HF in Iceland) % % Based on ieeg-portal/Nicolet-Reader % at https://github.com/ieeg-portal/Nicolet-Reader % % Copyright (C) 2016, Jan Brogger and Joost Wagenaar % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: $ %--Constants-- LABELSIZE = 32; TSLABELSIZE = 64; UNITSIZE = 16; ITEMNAMESIZE = 64; % ---------------- Opening File------------------ h = fopen(filename,'rb','ieee-le'); if h==-1 error('Can''t open Nervus EEG file') end nrvHdr = struct(); nrvHdr.filename = filename; nrvHdr.misc1 = fread(h,5, 'uint32'); nrvHdr.unknown = fread(h,1,'uint32'); nrvHdr.indexIdx = fread(h,1,'uint32'); [nrvHdr.NrStaticPackets, nrvHdr.StaticPackets] = read_nervus_header_staticpackets(h); nrvHdr.QIIndex = read_nervus_header_Qi(h, nrvHdr.NrStaticPackets); nrvHdr.QIIndex2 = read_nervus_header_Qi2(h, nrvHdr.QIIndex); nrvHdr.MainIndex = read_nervus_header_main(h, nrvHdr.indexIdx, nrvHdr.QIIndex.nrEntries); nrvHdr.allIndexIDs = [nrvHdr.MainIndex.sectionIdx]; nrvHdr.infoGuids = read_nervus_header_infoGuids(h, nrvHdr.StaticPackets, nrvHdr.MainIndex); nrvHdr.DynamicPackets = read_nervus_header_dynamicpackets(h, nrvHdr.StaticPackets, nrvHdr.MainIndex); nrvHdr.PatientInfo = read_nervus_header_patient(h, nrvHdr.StaticPackets, nrvHdr.MainIndex); nrvHdr.SigInfo = read_nervus_header_SignalInfo(h, nrvHdr.StaticPackets, nrvHdr.MainIndex, ITEMNAMESIZE, LABELSIZE, UNITSIZE); nrvHdr.ChannelInfo = read_nervus_header_ChannelInfo(h, nrvHdr.StaticPackets, nrvHdr.MainIndex, ITEMNAMESIZE, LABELSIZE); nrvHdr.TSInfo = read_nervus_header_TSInfo(h, nrvHdr.DynamicPackets, nrvHdr.MainIndex, ITEMNAMESIZE, TSLABELSIZE, LABELSIZE); nrvHdr.Segments = read_nervus_header_Segments(h, nrvHdr.StaticPackets, nrvHdr.MainIndex, nrvHdr.TSInfo); nrvHdr.Events = read_nervus_header_events(h, nrvHdr.StaticPackets, nrvHdr.MainIndex); nrvHdr.MontageInfo = read_nervus_header_montage(h, nrvHdr.StaticPackets, nrvHdr.MainIndex); reference = unique(nrvHdr.Segments(1).refName(cellfun(@length, [nrvHdr.Segments(1).refName])>0)); if strcmp(reference, 'REF') nrvHdr.reference = 'common'; else nrvHdr.reference = 'unknown'; end fclose(h); %Calculate sample count across segments % - some channels have lower sampling rates, so we for each segments we % choose the channel with the highest sampling rate totalNSamples = 0; for i=1:size(nrvHdr.Segments,2) totalNSamples = totalNSamples + max(nrvHdr.Segments(i).samplingRate*nrvHdr.Segments(i).duration); end output = struct(); output.Fs = max([nrvHdr.Segments.samplingRate]); output.nChans = size([nrvHdr.Segments(1).chName],2); output.label = nrvHdr.Segments(1).chName; output.nSamples = totalNSamples; output.nSamplesPre = 0; output.nTrials = 1; %size(nrvHdr.Segments,2); output.reference = nrvHdr.reference; output.filename = nrvHdr.filename; output.orig = nrvHdr; end function [NrStaticPackets, StaticPackets] = read_nervus_header_staticpackets(h) % Get StaticPackets structure and Channel IDS fseek(h, 172,'bof'); NrStaticPackets = fread(h,1, 'uint32'); StaticPackets = struct(); for i = 1:NrStaticPackets StaticPackets(i).tag = deblank(cast(fread(h, 40, 'uint16'),'char')'); StaticPackets(i).index = fread(h,1,'uint32'); switch StaticPackets(i).tag case 'ExtraDataStaticPackets' StaticPackets(i).IDStr = 'ExtraDataStaticPackets'; case 'SegmentStream' StaticPackets(i).IDStr = 'SegmentStream'; case 'DataStream' StaticPackets(i).IDStr = 'DataStream'; case 'InfoChangeStream' StaticPackets(i).IDStr = 'InfoChangeStream'; case 'InfoGuids' StaticPackets(i).IDStr = 'InfoGuids'; case '{A271CCCB-515D-4590-B6A1-DC170C8D6EE2}' StaticPackets(i).IDStr = 'TSGUID'; case '{8A19AA48-BEA0-40D5-B89F-667FC578D635}' StaticPackets(i).IDStr = 'DERIVATIONGUID'; case '{F824D60C-995E-4D94-9578-893C755ECB99}' StaticPackets(i).IDStr = 'FILTERGUID'; case '{02950361-35BB-4A22-9F0B-C78AAA5DB094}' StaticPackets(i).IDStr = 'DISPLAYGUID'; case '{8E9421-70F5-11D3-8F72-00105A9AFD56}' StaticPackets(i).IDStr = 'FILEINFOGUID'; case '{E4138BC0-7733-11D3-8685-0050044DAAB1}' StaticPackets(i).IDStr = 'SRINFOGUID'; case '{C728E565-E5A0-4419-93D2-F6CFC69F3B8F}' StaticPackets(i).IDStr = 'EVENTTYPEINFOGUID'; case '{D01B34A0-9DBD-11D3-93D3-00500400C148}' StaticPackets(i).IDStr = 'AUDIOINFOGUID'; case '{BF7C95EF-6C3B-4E70-9E11-779BFFF58EA7}' StaticPackets(i).IDStr = 'CHANNELGUID'; case '{2DEB82A1-D15F-4770-A4A4-CF03815F52DE}' StaticPackets(i).IDStr = 'INPUTGUID'; case '{5B036022-2EDC-465F-86EC-C0A4AB1A7A91}' StaticPackets(i).IDStr = 'INPUTSETTINGSGUID'; case '{99A636F2-51F7-4B9D-9569-C7D45058431A}' StaticPackets(i).IDStr = 'PHOTICGUID'; case '{55C5E044-5541-4594-9E35-5B3004EF7647}' StaticPackets(i).IDStr = 'ERRORGUID'; case '{223A3CA0-B5AC-43FB-B0A8-74CF8752BDBE}' StaticPackets(i).IDStr = 'VIDEOGUID'; case '{0623B545-38BE-4939-B9D0-55F5E241278D}' StaticPackets(i).IDStr = 'DETECTIONPARAMSGUID'; case '{CE06297D-D9D6-4E4B-8EAC-305EA1243EAB}' StaticPackets(i).IDStr = 'PAGEGUID'; case '{782B34E8-8E51-4BB9-9701-3227BB882A23}' StaticPackets(i).IDStr = 'ACCINFOGUID'; case '{3A6E8546-D144-4B55-A2C7-40DF579ED11E}' StaticPackets(i).IDStr = 'RECCTRLGUID'; case '{D046F2B0-5130-41B1-ABD7-38C12B32FAC3}' StaticPackets(i).IDStr = 'GUID TRENDINFOGUID'; case '{CBEBA8E6-1CDA-4509-B6C2-6AC2EA7DB8F8}' StaticPackets(i).IDStr = 'HWINFOGUID'; case '{E11C4CBA-0753-4655-A1E9-2B2309D1545B}' StaticPackets(i).IDStr = 'VIDEOSYNCGUID'; case '{B9344241-7AC1-42B5-BE9B-B7AFA16CBFA5}' StaticPackets(i).IDStr = 'SLEEPSCOREINFOGUID'; case '{15B41C32-0294-440E-ADFF-DD8B61C8B5AE}' StaticPackets(i).IDStr = 'FOURIERSETTINGSGUID'; case '{024FA81F-6A83-43C8-8C82-241A5501F0A1}' StaticPackets(i).IDStr = 'SPECTRUMGUID'; case '{8032E68A-EA3E-42E8-893E-6E93C59ED515}' StaticPackets(i).IDStr = 'SIGNALINFOGUID'; case '{30950D98-C39C-4352-AF3E-CB17D5B93DED}' StaticPackets(i).IDStr = 'SENSORINFOGUID'; case '{F5D39CD3-A340-4172-A1A3-78B2CDBCCB9F}' StaticPackets(i).IDStr = 'DERIVEDSIGNALINFOGUID'; case '{969FBB89-EE8E-4501-AD40-FB5A448BC4F9}' StaticPackets(i).IDStr = 'ARTIFACTINFOGUID'; case '{02948284-17EC-4538-A7FA-8E18BD65E167}' StaticPackets(i).IDStr = 'STUDYINFOGUID'; case '{D0B3FD0B-49D9-4BF0-8929-296DE5A55910}' StaticPackets(i).IDStr = 'PATIENTINFOGUID'; case '{7842FEF5-A686-459D-8196-769FC0AD99B3}' StaticPackets(i).IDStr = 'DOCUMENTINFOGUID'; case '{BCDAEE87-2496-4DF4-B07C-8B4E31E3C495}' StaticPackets(i).IDStr = 'USERSINFOGUID'; case '{B799F680-72A4-11D3-93D3-00500400C148}' StaticPackets(i).IDStr = 'EVENTGUID'; case '{AF2B3281-7FCE-11D2-B2DE-00104B6FC652}' StaticPackets(i).IDStr = 'SHORTSAMPLESGUID'; case '{89A091B3-972E-4DA2-9266-261B186302A9}' StaticPackets(i).IDStr = 'DELAYLINESAMPLESGUID'; case '{291E2381-B3B4-44D1-BB77-8CF5C24420D7}' StaticPackets(i).IDStr = 'GENERALSAMPLESGUID'; case '{5F11C628-FCCC-4FDD-B429-5EC94CB3AFEB}' StaticPackets(i).IDStr = 'FILTERSAMPLESGUID'; case '{728087F8-73E1-44D1-8882-C770976478A2}' StaticPackets(i).IDStr = 'DATEXDATAGUID'; case '{35F356D9-0F1C-4DFE-8286-D3DB3346FD75}' StaticPackets(i).IDStr = 'TESTINFOGUID'; otherwise if isstrprop(StaticPackets(i).tag, 'digit') StaticPackets(i).IDStr = num2str(StaticPackets(i).tag); else StaticPackets(i).IDStr = 'UNKNOWN'; end end end end function QIIndex = read_nervus_header_Qi(h, nrStaticPackets) %% QI index fseek(h, 172208,'bof'); QIIndex =struct(); QIIndex.nrEntries = fread(h,1,'uint32'); QIIndex.misc1 = fread(h,1,'uint32'); QIIndex.indexIdx = fread(h,1,'uint32'); QIIndex.misc3 = fread(h,1,'uint32'); QIIndex.LQi = fread(h,1,'uint64')'; QIIndex.firstIdx = fread(h,nrStaticPackets,'uint64'); end function QIIndex2 = read_nervus_header_Qi2(h, QIIndex) fseek(h, 188664,'bof'); QIIndex2 = struct(); for i = 1:QIIndex.LQi QIIndex2(i).ftel = ftell(h); QIIndex2(i).index = fread(h,2,'uint16')'; %4 QIIndex2(i).misc1 = fread(h,1,'uint32'); %8 QIIndex2(i).indexIdx = fread(h,1,'uint32'); %12 QIIndex2(i).misc2 = fread(h,3,'uint32')'; %24 QIIndex2(i).sectionIdx = fread(h,1,'uint32');%28 QIIndex2(i).misc3 = fread(h,1,'uint32'); %32 QIIndex2(i).offset = fread(h,1,'uint64'); % 40 QIIndex2(i).blockL = fread(h,1,'uint32');%44 QIIndex2(i).dataL = fread(h,1,'uint32')';%48 end end function MainIndex = read_nervus_header_main(h, indexIdx, nrEntries) %% Get Main Index: % Index consists of multiple blocks, after each block is the pointer % to the next block. Total number of entries is in obj.Qi.nrEntries MainIndex = struct(); curIdx = 0; nextIndexPointer = indexIdx; curIdx2 = 1; while curIdx < nrEntries fseek(h, nextIndexPointer, 'bof'); nrIdx = fread(h,1, 'uint64'); MainIndex(curIdx + nrIdx).sectionIdx = 0; % Preallocate next set of indices var = fread(h,3*nrIdx, 'uint64'); for i = 1: nrIdx MainIndex(curIdx + i).sectionIdx = var(3*(i-1)+1); MainIndex(curIdx + i).offset = var(3*(i-1)+2); MainIndex(curIdx + i).blockL = mod(var(3*(i-1)+3),2^32); MainIndex(curIdx + i).sectionL = round(var(3*(i-1)+3)/2^32); end nextIndexPointer = fread(h,1, 'uint64'); curIdx = curIdx + i; curIdx2=curIdx2+1; end end function infoGuids = read_nervus_header_infoGuids(h, StaticPackets, MainIndex) infoIdx = StaticPackets(find(strcmp({StaticPackets.IDStr},'InfoGuids'),1)).index; indexInstance = MainIndex(find([MainIndex.sectionIdx]==infoIdx,1)); nrInfoGuids = indexInstance.sectionL/16; infoGuids = struct(); fseek(h, indexInstance.offset,'bof'); for i = 1:nrInfoGuids guidmixed = fread(h,16, 'uint8')'; guidnonmixed = [guidmixed(04), guidmixed(03), guidmixed(02), guidmixed(01), ... guidmixed(06), guidmixed(05), guidmixed(08), guidmixed(07), ... guidmixed(09), guidmixed(10), guidmixed(11), guidmixed(12), ... guidmixed(13), guidmixed(15), guidmixed(15), guidmixed(16)]; infoGuids(i).guid = num2str(guidnonmixed,'%02X'); end end function dynamicPackets = read_nervus_header_dynamicpackets(h, StaticPackets, MainIndex) dynamicPackets = struct(); indexIdx = StaticPackets(find(strcmp({StaticPackets.IDStr},'InfoChangeStream'),1)).index; offset = MainIndex(indexIdx).offset; nrDynamicPackets = MainIndex(indexIdx).sectionL / 48; fseek(h, offset, 'bof'); %Read first only the dynamic packets structure without actual data for i = 1: nrDynamicPackets dynamicPackets(i).offset = offset+i*48; guidmixed = fread(h,16, 'uint8')'; guidnonmixed = [guidmixed(04), guidmixed(03), guidmixed(02), guidmixed(01), ... guidmixed(06), guidmixed(05), guidmixed(08), guidmixed(07), ... guidmixed(09), guidmixed(10), guidmixed(11), guidmixed(12), ... guidmixed(13), guidmixed(14), guidmixed(15), guidmixed(16)]; dynamicPackets(i).guid = num2str(guidnonmixed, '%02X'); dynamicPackets(i).guidAsStr = sprintf('{%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X}', guidnonmixed); dynamicPackets(i).date = datenum(1899,12,31) + fread(h,1,'double'); dynamicPackets(i).datefrac = fread(h,1,'double'); dynamicPackets(i).internalOffsetStart = fread(h,1, 'uint64')'; dynamicPackets(i).packetSize = fread(h,1, 'uint64')'; dynamicPackets(i).data = zeros(0, 1,'uint8'); switch dynamicPackets(i).guid case 'BF7C95EF6C3B4E709E11779BFFF58EA7' dynamicPackets(i).IDStr = 'CHANNELGUID'; case '8A19AA48BEA040D5B89F667FC578D635' dynamicPackets(i).IDStr = 'DERIVATIONGUID'; case 'F824D60C995E4D949578893C755ECB99' dynamicPackets(i).IDStr = 'FILTERGUID'; case '0295036135BB4A229F0BC78AAA5DB094' dynamicPackets(i).IDStr = 'DISPLAYGUID'; case '782B34E88E514BB997013227BB882A23' dynamicPackets(i).IDStr = 'ACCINFOGUID'; case 'A271CCCB515D4590B6A1DC170C8D6EE2' dynamicPackets(i).IDStr = 'TSGUID'; case 'D01B34A09DBD11D393D300500400C148' dynamicPackets(i).IDStr = 'AUDIOINFOGUID'; otherwise dynamicPackets(i).IDStr = 'UNKNOWN'; end end %Then read the actual data from the pointers above for i = 1: nrDynamicPackets %Look up the GUID of this dynamic packet in the static packets % to find the section index infoIdx = StaticPackets(find(strcmp({StaticPackets.tag},dynamicPackets(i).guidAsStr),1)).index; %Matching index segments indexInstances = MainIndex([MainIndex.sectionIdx] == infoIdx); %Then, treat all these sections as one contiguous memory block % and grab this packet across these instances internalOffset = 0; remainingDataToRead = dynamicPackets(i).packetSize; %disp(['Target packet ' dynamicPackets(i).IDStr ' : ' num2str(dynamicPackets(i).internalOffsetStart) ' to ' num2str(dynamicPackets(i).internalOffsetStart+dynamicPackets(i).packetSize) ' target read length ' num2str(remainingDataToRead)]); currentTargetStart = dynamicPackets(i).internalOffsetStart; for j = 1: size(indexInstances,2) currentInstance = indexInstances(j); %hitInThisSegment = ''; if (internalOffset <= currentTargetStart) && (internalOffset+currentInstance.sectionL) >= currentTargetStart startAt = currentTargetStart; stopAt = min(startAt+remainingDataToRead, internalOffset+currentInstance.sectionL); readLength = stopAt-startAt; filePosStart = currentInstance.offset+startAt-internalOffset; fseek(h,filePosStart, 'bof'); dataPart = fread(h,readLength,'uint8=>uint8'); dynamicPackets(i).data = cat(1, dynamicPackets(i).data, dataPart); %hitInThisSegment = ['HIT at ' num2str(startAt) ' to ' num2str(stopAt)]; %if (readLength < remainingDataToRead) % hitInThisSegment = [hitInThisSegment ' (partial ' num2str(readLength) ' )']; %else % hitInThisSegment = [hitInThisSegment ' (finished - this segment contributed ' num2str(readLength) ' )']; %end %hitInThisSegment = [hitInThisSegment ' abs file pos ' num2str(filePosStart) ' - ' num2str(filePosStart+readLength)]; remainingDataToRead = remainingDataToRead-readLength; currentTargetStart = currentTargetStart + readLength; end %disp([' Index ' num2str(j) ' Offset: ' num2str(internalOffset) ' to ' num2str(internalOffset+currentInstance.sectionL) ' ' num2str(hitInThisSegment)]); internalOffset = internalOffset + currentInstance.sectionL; end end end function PatientInfo = read_nervus_header_patient(h, StaticPackets, Index) %% Get PatientGUID PatientInfo = struct(); infoProps = { 'patientID', 'firstName','middleName','lastName',... 'altID','mothersMaidenName','DOB','DOD','street','sexID','phone',... 'notes','dominance','siteID','suffix','prefix','degree','apartment',... 'city','state','country','language','height','weight','race','religion',... 'maritalStatus'}; infoIdx = StaticPackets(find(strcmp({StaticPackets.IDStr},'PATIENTINFOGUID'),1)).index; indexInstance = Index(find([Index.sectionIdx]==infoIdx,1)); fseek(h, indexInstance.offset,'bof'); guid = fread(h, 16, 'uint8'); lSection = fread(h, 1, 'uint64'); % reserved = fread(h, 3, 'uint16'); nrValues = fread(h,1,'uint64'); nrBstr = fread(h,1,'uint64'); for i = 1:nrValues id = fread(h,1,'uint64'); switch id case {7,8} unix_time = (fread(h,1, 'double')*(3600*24)) - 2209161600;% 2208988800; %8 obj.segments(i).dateStr = datestr(unix_time/86400 + datenum(1970,1,1)); value = datevec( obj.segments(i).dateStr ); value = value([3 2 1]); case {23,24} value = fread(h,1,'double'); otherwise value = 0; end PatientInfo.(infoProps{id}) = value; end strSetup = fread(h,nrBstr*2,'uint64'); for i=1:2:(nrBstr*2) id = strSetup(i); value = deblank(cast(fread(h, strSetup(i+1) + 1, 'uint16'),'char')'); info.(infoProps{id}) = value; end end function sigInfo = read_nervus_header_SignalInfo(h, StaticPackets, Index, ITEMNAMESIZE, LABELSIZE, UNITSIZE) infoIdx = StaticPackets(find(strcmp({StaticPackets.IDStr},'InfoGuids'),1)).index; indexInstance = Index(find([Index.sectionIdx]==infoIdx,1)); fseek(h, indexInstance.offset,'bof'); sigInfo = struct(); SIG_struct = struct(); sensorIdx = StaticPackets(find(strcmp({StaticPackets.IDStr},'SIGNALINFOGUID'),1)).index; indexInstance = Index(find([Index.sectionIdx]==sensorIdx,1)); fseek(h, indexInstance.offset,'bof'); SIG_struct.guid = fread(h, 16, 'uint8'); SIG_struct.name = fread(h, ITEMNAMESIZE, '*char'); unkown = fread(h, 152, '*char'); %#ok<NASGU> fseek(h, 512, 'cof'); nrIdx = fread(h,1, 'uint16'); %783 misc1 = fread(h,3, 'uint16'); %#ok<NASGU> for i = 1: nrIdx sigInfo(i).sensorName = deblank(cast(fread(h, LABELSIZE, 'uint16'),'char')'); sigInfo(i).transducer = deblank(cast(fread(h, UNITSIZE, 'uint16'),'char')'); sigInfo(i).guid = fread(h, 16, '*uint8'); sigInfo(i).bBiPolar = logical(fread(h, 1 ,'uint32')); sigInfo(i).bAC = logical(fread(h, 1 ,'uint32')); sigInfo(i).bHighFilter = logical(fread(h, 1 ,'uint32')); sigInfo(i).color = fread(h, 1 ,'uint32'); reserved = fread(h, 256, '*char'); %#ok<NASGU> end end function channelInfo = read_nervus_header_ChannelInfo(h, StaticPackets, Index, ITEMNAMESIZE, LABELSIZE) %% Get CHANNELINFO (CHANNELGUID) CH_struct = struct(); sensorIdx = StaticPackets(find(strcmp({StaticPackets.IDStr},'CHANNELGUID'),1)).index; indexInstance = Index(find([Index.sectionIdx]==sensorIdx,1)); fseek(h, indexInstance.offset,'bof'); CH_struct.guid = fread(h, 16, 'uint8'); CH_struct.name = fread(h, ITEMNAMESIZE, '*char'); fseek(h, 152, 'cof'); CH_struct.reserved = fread(h, 16, 'uint8'); CH_struct.deviceID = fread(h, 16, 'uint8'); fseek(h, 488, 'cof'); nrIdx = fread(h,2, 'uint32'); %783 channelInfo = struct(); for i = 1: nrIdx(2) channelInfo(i).sensor = deblank(cast(fread(h, LABELSIZE, 'uint16'),'char')'); channelInfo(i).samplingRate = fread(h,1,'double'); channelInfo(i).bOn = logical(fread(h, 1 ,'uint32')); channelInfo(i).lInputID = fread(h, 1 ,'uint32'); channelInfo(i).lInputSettingID = fread(h,1,'uint32'); channelInfo(i).reserved = fread(h,4,'char'); fseek(h, 128, 'cof'); end curIdx = 0; for i = 1: length(channelInfo) if channelInfo(i).bOn channelInfo(i).indexID = curIdx; curIdx = curIdx+1; else channelInfo(i).indexID = -1; end end end function [TSInfo] = read_nervus_header_TSInfo(h, DynamicPackets, Index, ITEMNAMESIZE, TSLABELSIZE, LABELSIZE) tsPackets = DynamicPackets(strcmp({DynamicPackets.IDStr},'TSGUID')); if length(tsPackets) > 1 warning(['Multiple TSinfo packets detected; using first instance ' ... ' ac for all segments. See documentation for info.']); elseif isempty(tsPackets) warning(['No TSINFO found']); else tsPacket = tsPackets(1); TSInfo = struct(); elems = typecast(tsPacket.data(753:756),'uint32'); alloc = typecast(tsPacket.data(757:760),'uint32'); offset = 761; for i = 1:elems internalOffset = 0; TSInfo(i).label = deblank(char(typecast(tsPacket.data(offset:(offset+TSLABELSIZE-1))','uint16'))); internalOffset = internalOffset + TSLABELSIZE*2; TSInfo(i).activeSensor = deblank(char(typecast(tsPacket.data(offset+internalOffset:(offset+internalOffset-1+LABELSIZE))','uint16'))); internalOffset = internalOffset + TSLABELSIZE; TSInfo(i).refSensor = deblank(char(typecast(tsPacket.data(offset+internalOffset:(offset+internalOffset-1+8))','uint16'))); internalOffset = internalOffset + 8; internalOffset = internalOffset + 56; TSInfo(i).lowcut = typecast(tsPacket.data(offset+internalOffset:(offset+internalOffset-1+8))','double'); internalOffset = internalOffset + 8; TSInfo(i).hiCut = typecast(tsPacket.data(offset+internalOffset:(offset+internalOffset-1+8))','double'); internalOffset = internalOffset + 8; TSInfo(i).samplingRate = typecast(tsPacket.data(offset+internalOffset:(offset+internalOffset-1+8))','double'); internalOffset = internalOffset + 8; TSInfo(i).resolution = typecast(tsPacket.data(offset+internalOffset:(offset+internalOffset-1+8))','double'); internalOffset = internalOffset + 8; TSInfo(i).specialMark = typecast(tsPacket.data(offset+internalOffset:(offset+internalOffset-1+2))','uint16'); internalOffset = internalOffset + 2; TSInfo(i).notch = typecast(tsPacket.data(offset+internalOffset:(offset+internalOffset-1+2))','uint16'); internalOffset = internalOffset + 2; TSInfo(i).eeg_offset = typecast(tsPacket.data(offset+internalOffset:(offset+internalOffset-1+8))','double'); offset = offset + 552; %disp([num2str(i) ' : ' TSInfo(i).label ' : ' TSInfo(i).activeSensor ' : ' TSInfo(i).refSensor ' : ' num2str(TSInfo(i).samplingRate)]); end end end function [segments] = read_nervus_header_Segments(h, StaticPackets, Index, TSInfo) %% Get Segment Start Times segmentIdx = StaticPackets(find(strcmp({StaticPackets.IDStr}, 'SegmentStream'),1)).index; indexIdx = find([Index.sectionIdx] == segmentIdx, 1); segmentInstance = Index(indexIdx); nrSegments = segmentInstance.sectionL/152; fseek(h, segmentInstance.offset,'bof'); segments = struct(); for i = 1: nrSegments dateOLE = fread(h,1, 'double'); segments(i).dateOLE = dateOLE; unix_time = (dateOLE*(3600*24)) - 2209161600;% 2208988800; %8 segments(i).dateStr = datestr(unix_time/86400 + datenum(1970,1,1)); datev = datevec( segments(i).dateStr ); segments(i).startDate = datev(1:3); segments(i).startTime = datev(4:6); fseek(h, 8 , 'cof'); %16 segments(i).duration = fread(h,1, 'double');%24 fseek(h, 128 , 'cof'); %152 end % Get nrValues per segment and channel for iSeg = 1:length(segments) % Add Channel Names to segments segments(iSeg).chName = {TSInfo.label}; segments(iSeg).refName = {TSInfo.refSensor}; segments(iSeg).samplingRate = [TSInfo.samplingRate]; segments(iSeg).scale = [TSInfo.resolution]; segments(iSeg).sampleCount = max(segments(iSeg).samplingRate*segments(iSeg).duration); end end function [eventMarkers] = read_nervus_header_events(h, StaticPackets, Index) %% Get events - Andrei Barborica, Dec 2015 % Find sequence of events, that are stored in the section tagged 'Events' eventsSection = strcmp({StaticPackets.tag}, 'Events'); idxSection = find(eventsSection); indexIdx = find([Index.sectionIdx] == StaticPackets(idxSection).index); offset = Index(indexIdx).offset; ePktLen = 272; % Event packet length, see EVENTPACKET definition eMrkLen = 240; % Event marker length, see EVENTMARKER definition evtPktGUID = hex2dec({'80', 'F6', '99', 'B7', 'A4', '72', 'D3', '11', '93', 'D3', '00', '50', '04', '00', 'C1', '48'}); % GUID for event packet header HCEVENT_ANNOTATION = '{A5A95612-A7F8-11CF-831A-0800091B5BDA}'; HCEVENT_SEIZURE = '{A5A95646-A7F8-11CF-831A-0800091B5BDA}'; HCEVENT_FORMATCHANGE = '{08784382-C765-11D3-90CE-00104B6F4F70}'; HCEVENT_PHOTIC = '{6FF394DA-D1B8-46DA-B78F-866C67CF02AF}'; HCEVENT_POSTHYPERVENT = '{481DFC97-013C-4BC5-A203-871B0375A519}'; HCEVENT_REVIEWPROGRESS = '{725798BF-CD1C-4909-B793-6C7864C27AB7}'; HCEVENT_EXAMSTART = '{96315D79-5C24-4A65-B334-E31A95088D55}'; HCEVENT_HYPERVENTILATION = '{A5A95608-A7F8-11CF-831A-0800091B5BDA}'; HCEVENT_IMPEDANCE = '{A5A95617-A7F8-11CF-831A-0800091B5BDA}'; DAYSECS = 86400.0; % From nrvdate.h fseek(h,offset,'bof'); pktGUID = fread(h,16,'uint8'); pktLen = fread(h,1,'uint64'); eventMarkers = struct(); i = 0; % Event counter while (pktGUID == evtPktGUID) i = i + 1; % Please refer to EVENTMARKER structure in the Nervus file documentation fseek(h,8,'cof'); % Skip eventID, not used evtDate = fread(h,1,'double'); evtDateFraction = fread(h,1,'double'); eventMarkers(i).dateOLE = evtDate; eventMarkers(i).dateFraction = evtDateFraction; evtPOSIXTime = evtDate*DAYSECS + evtDateFraction - 2209161600;% 2208988800; %8 eventMarkers(i).dateStr = datestr(evtPOSIXTime/DAYSECS + datenum(1970,1,1),'dd-mmmm-yyyy HH:MM:SS.FFF'); % Save fractions of seconds, as well eventMarkers(i).duration = fread(h,1,'double'); fseek(h,48,'cof'); evtUser = fread(h,12,'uint16'); eventMarkers(i).user = deblank(char(evtUser).'); evtTextLen = fread(h,1,'uint64'); evtGUID = fread(h,16,'uint8'); eventMarkers(i).GUID = sprintf('{%.2X%.2X%.2X%.2X-%.2X%.2X-%.2X%.2X-%.2X%.2X-%.2X%.2X%.2X%.2X%.2X%.2X}',evtGUID([4 3 2 1 6 5 8 7 9:16])); fseek(h,16,'cof'); % Skip Reserved4 array evtLabel = fread(h,32,'uint16'); % LABELSIZE = 32; evtLabel = deblank(char(evtLabel).'); % Not used eventMarkers(i).label = evtLabel; % Only a subset of all event types are dealt with switch eventMarkers(i).GUID case HCEVENT_SEIZURE eventMarkers(i).IDStr = 'Seizure'; %disp(' Seizure event'); case HCEVENT_ANNOTATION eventMarkers(i).IDStr = 'Annotation'; fseek(h,32,'cof'); % Skip Reserved5 array evtAnnotation = fread(h,evtTextLen,'uint16'); eventMarkers(i).annotation = deblank(char(evtAnnotation).'); %disp(sprintf(' Annotation:%s',evtAnnotation)); case HCEVENT_FORMATCHANGE eventMarkers(i).IDStr = 'Format change'; case HCEVENT_PHOTIC eventMarkers(i).IDStr = 'Photic'; case HCEVENT_POSTHYPERVENT eventMarkers(i).IDStr = 'Posthyperventilation'; case HCEVENT_REVIEWPROGRESS eventMarkers(i).IDStr = 'Review progress'; case HCEVENT_EXAMSTART eventMarkers(i).IDStr = 'Exam start'; case HCEVENT_HYPERVENTILATION eventMarkers(i).IDStr = 'Hyperventilation'; case HCEVENT_IMPEDANCE eventMarkers(i).IDStr = 'Impedance'; otherwise eventMarkers(i).IDStr = 'UNKNOWN'; end % Next packet offset = offset + pktLen; fseek(h,offset,'bof'); pktGUID = fread(h,16,'uint8'); pktLen = fread(h,1,'uint64'); end end function [montage] = read_nervus_header_montage(h, StaticPackets, Index) %% Get montage - Andrei Barborica, Dec 2015 % Derivation (montage) mtgIdx = StaticPackets(find(strcmp({StaticPackets.IDStr},'DERIVATIONGUID'),1)).index; indexIdx = find([Index.sectionIdx]==mtgIdx,1); fseek(h,Index(indexIdx(1)).offset + 40,'bof'); % Beginning of current montage name mtgName = deblank(char(fread(h,32,'uint16')).'); fseek(h,640,'cof'); % Number of traces in the montage numDerivations = fread(h,1,'uint32'); numDerivations2 = fread(h,1,'uint32'); montage = struct(); for i = 1:numDerivations montage(i).derivationName = deblank(char(fread(h,64,'uint16')).'); montage(i).signalName1 = deblank(char(fread(h,32,'uint16')).'); montage(i).signalName2 = deblank(char(fread(h,32,'uint16')).'); fseek(h,264,'cof'); % Skip additional info end % Display properties dispIdx = StaticPackets(find(strcmp({StaticPackets.IDStr},'DISPLAYGUID'),1)).index; indexIdx = find([Index.sectionIdx]==dispIdx,1); fseek(h,Index(indexIdx(1)).offset + 40,'bof'); % Beginning of current montage name displayName = deblank(char(fread(h,32,'uint16')).'); fseek(h,640,'cof'); % Number of traces in the montage numTraces = fread(h,1,'uint32'); numTraces2 = fread(h,1,'uint32'); if (numTraces == numDerivations) for i = 1:numTraces fseek(h,32,'cof'); montage(i).color = fread(h,1,'uint32'); % Use typecast(uint32(montage(i).color),'uint8') to convert to RGB array fseek(h,136-4,'cof'); end else disp('Could not match montage derivations with display color table'); end end
github
lcnhappe/happe-master
avw_hdr_read.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/avw_hdr_read.m
16,654
utf_8
f63f3dbd244a89c6108eff59453680c3
function [ avw, machine ] = avw_hdr_read(fileprefix, machine, verbose) % avw_hdr_read - read Analyze format data header (*.hdr) % % [ avw, machine ] = avw_hdr_read(fileprefix, [machine], [verbose]) % % fileprefix - string filename (without .hdr); the file name % can be given as a full path or relative to the % current directory. % % machine - a string, see machineformat in fread for details. % The default here is 'ieee-le' but the routine % will automatically switch between little and big % endian to read any such Analyze header. It % reports the appropriate machine format and can % return the machine value. % % avw.hdr - a struct, all fields returned from the header. % For details, find a good description on the web % or see the Analyze File Format pdf in the % mri_toolbox doc folder or read this .m file. % % verbose - the default is to output processing information to the command % window. If verbose = 0, this will not happen. % % This function is called by avw_img_read % % See also avw_hdr_write, avw_hdr_make, avw_view_hdr, avw_view % % $Revision$ $Date: 2009/01/14 09:24:45 $ % Licence: GNU GPL, no express or implied warranties % History: 05/2002, [email protected] % The Analyze format and c code below is copyright % (c) Copyright, 1986-1995 % Biomedical Imaging Resource, Mayo Foundation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~exist('verbose','var'), verbose = 1; end if verbose, version = '[$Revision$]'; fprintf('\nAVW_HDR_READ [v%s]\n',version(12:16)); tic; end if ~exist('fileprefix','var'), msg = sprintf('...no input fileprefix - see help avw_hdr_read\n\n'); error(msg); end if ~exist('machine','var'), machine = 'ieee-le'; end if findstr('.hdr',fileprefix), % fprintf('...removing .hdr extension from ''%s''\n',fileprefix); fileprefix = strrep(fileprefix,'.hdr',''); end if findstr('.img',fileprefix), % fprintf('...removing .img extension from ''%s''\n',fileprefix); fileprefix = strrep(fileprefix,'.img',''); end file = sprintf('%s.hdr',fileprefix); if exist(file), if verbose, fprintf('...reading %s Analyze format',machine); end fid = fopen(file,'r',machine); avw.hdr = read_header(fid,verbose); avw.fileprefix = fileprefix; fclose(fid); if ~isequal(avw.hdr.hk.sizeof_hdr,348), if verbose, fprintf('...failed.\n'); end % first try reading the opposite endian to 'machine' switch machine, case 'ieee-le', machine = 'ieee-be'; case 'ieee-be', machine = 'ieee-le'; end if verbose, fprintf('...reading %s Analyze format',machine); end fid = fopen(file,'r',machine); avw.hdr = read_header(fid,verbose); avw.fileprefix = fileprefix; fclose(fid); end if ~isequal(avw.hdr.hk.sizeof_hdr,348), % Now throw an error if verbose, fprintf('...failed.\n'); end msg = sprintf('...size of header not equal to 348 bytes!\n\n'); error(msg); end else msg = sprintf('...cannot find file %s.hdr\n\n',file); error(msg); end if verbose, t=toc; fprintf('...done (%5.2f sec).\n',t); end return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [ dsr ] = read_header(fid,verbose) % Original header structures - ANALYZE 7.5 %struct dsr % { % struct header_key hk; /* 0 + 40 */ % struct image_dimension dime; /* 40 + 108 */ % struct data_history hist; /* 148 + 200 */ % }; /* total= 348 bytes*/ dsr.hk = header_key(fid); dsr.dime = image_dimension(fid,verbose); dsr.hist = data_history(fid); return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [hk] = header_key(fid) % The required elements in the header_key substructure are: % % int sizeof_header Must indicate the byte size of the header file. % int extents Should be 16384, the image file is created as % contiguous with a minimum extent size. % char regular Must be 'r' to indicate that all images and % volumes are the same size. % Original header structures - ANALYZE 7.5 % struct header_key /* header key */ % { /* off + size */ % int sizeof_hdr /* 0 + 4 */ % char data_type[10]; /* 4 + 10 */ % char db_name[18]; /* 14 + 18 */ % int extents; /* 32 + 4 */ % short int session_error; /* 36 + 2 */ % char regular; /* 38 + 1 */ % char hkey_un0; /* 39 + 1 */ % }; /* total=40 bytes */ fseek(fid,0,'bof'); hk.sizeof_hdr = fread(fid, 1,'*int32'); % should be 348! hk.data_type = fread(fid,10,'*char')'; hk.db_name = fread(fid,18,'*char')'; hk.extents = fread(fid, 1,'*int32'); hk.session_error = fread(fid, 1,'*int16'); hk.regular = fread(fid, 1,'*char')'; % might be uint8 hk.hkey_un0 = fread(fid, 1,'*uint8')'; % check if this value was a char zero if hk.hkey_un0 == 48, hk.hkey_un0 = 0; end return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [ dime ] = image_dimension(fid,verbose) %struct image_dimension % { /* off + size */ % short int dim[8]; /* 0 + 16 */ % /* % dim[0] Number of dimensions in database; usually 4. % dim[1] Image X dimension; number of *pixels* in an image row. % dim[2] Image Y dimension; number of *pixel rows* in slice. % dim[3] Volume Z dimension; number of *slices* in a volume. % dim[4] Time points; number of volumes in database % */ % char vox_units[4]; /* 16 + 4 */ % char cal_units[8]; /* 20 + 8 */ % short int unused1; /* 28 + 2 */ % short int datatype; /* 30 + 2 */ % short int bitpix; /* 32 + 2 */ % short int dim_un0; /* 34 + 2 */ % float pixdim[8]; /* 36 + 32 */ % /* % pixdim[] specifies the voxel dimensions: % pixdim[1] - voxel width, mm % pixdim[2] - voxel height, mm % pixdim[3] - slice thickness, mm % pixdim[4] - volume timing, in msec % ..etc % */ % float vox_offset; /* 68 + 4 */ % float roi_scale; /* 72 + 4 */ % float funused1; /* 76 + 4 */ % float funused2; /* 80 + 4 */ % float cal_max; /* 84 + 4 */ % float cal_min; /* 88 + 4 */ % int compressed; /* 92 + 4 */ % int verified; /* 96 + 4 */ % int glmax; /* 100 + 4 */ % int glmin; /* 104 + 4 */ % }; /* total=108 bytes */ dime.dim = fread(fid,8,'*int16')'; dime.vox_units = fread(fid,4,'*char')'; dime.cal_units = fread(fid,8,'*char')'; dime.unused1 = fread(fid,1,'*int16'); dime.datatype = fread(fid,1,'*int16'); dime.bitpix = fread(fid,1,'*int16'); dime.dim_un0 = fread(fid,1,'*int16'); dime.pixdim = fread(fid,8,'*float')'; dime.vox_offset = fread(fid,1,'*float'); dime.roi_scale = fread(fid,1,'*float'); dime.funused1 = fread(fid,1,'*float'); dime.funused2 = fread(fid,1,'*float'); dime.cal_max = fread(fid,1,'*float'); dime.cal_min = fread(fid,1,'*float'); dime.compressed = fread(fid,1,'*int32'); dime.verified = fread(fid,1,'*int32'); dime.glmax = fread(fid,1,'*int32'); dime.glmin = fread(fid,1,'*int32'); if dime.dim(1) < 4, % Number of dimensions in database; usually 4. if verbose, fprintf('...ensuring 4 dimensions in avw.hdr.dime.dim\n'); end dime.dim(1) = int16(4); end if dime.dim(5) < 1, % Time points; number of volumes in database if verbose, fprintf('...ensuring at least 1 volume in avw.hdr.dime.dim(5)\n'); end dime.dim(5) = int16(1); end return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [ hist ] = data_history(fid) % Original header structures - ANALYZE 7.5 %struct data_history % { /* off + size */ % char descrip[80]; /* 0 + 80 */ % char aux_file[24]; /* 80 + 24 */ % char orient; /* 104 + 1 */ % char originator[10]; /* 105 + 10 */ % char generated[10]; /* 115 + 10 */ % char scannum[10]; /* 125 + 10 */ % char patient_id[10]; /* 135 + 10 */ % char exp_date[10]; /* 145 + 10 */ % char exp_time[10]; /* 155 + 10 */ % char hist_un0[3]; /* 165 + 3 */ % int views /* 168 + 4 */ % int vols_added; /* 172 + 4 */ % int start_field; /* 176 + 4 */ % int field_skip; /* 180 + 4 */ % int omax; /* 184 + 4 */ % int omin; /* 188 + 4 */ % int smax; /* 192 + 4 */ % int smin; /* 196 + 4 */ % }; /* total=200 bytes */ hist.descrip = fread(fid,80,'*char')'; hist.aux_file = fread(fid,24,'*char')'; hist.orient = fread(fid, 1,'*uint8'); % see note below on char hist.originator = fread(fid,10,'*char')'; hist.generated = fread(fid,10,'*char')'; hist.scannum = fread(fid,10,'*char')'; hist.patient_id = fread(fid,10,'*char')'; hist.exp_date = fread(fid,10,'*char')'; hist.exp_time = fread(fid,10,'*char')'; hist.hist_un0 = fread(fid, 3,'*char')'; hist.views = fread(fid, 1,'*int32'); hist.vols_added = fread(fid, 1,'*int32'); hist.start_field = fread(fid, 1,'*int32'); hist.field_skip = fread(fid, 1,'*int32'); hist.omax = fread(fid, 1,'*int32'); hist.omin = fread(fid, 1,'*int32'); hist.smax = fread(fid, 1,'*int32'); hist.smin = fread(fid, 1,'*int32'); % check if hist.orient was saved as ascii char value switch hist.orient, case 48, hist.orient = uint8(0); case 49, hist.orient = uint8(1); case 50, hist.orient = uint8(2); case 51, hist.orient = uint8(3); case 52, hist.orient = uint8(4); case 53, hist.orient = uint8(5); end return % Note on using char: % The 'char orient' field in the header is intended to % hold simply an 8-bit unsigned integer value, not the ASCII representation % of the character for that value. A single 'char' byte is often used to % represent an integer value in Analyze if the known value range doesn't % go beyond 0-255 - saves a byte over a short int, which may not mean % much in today's computing environments, but given that this format % has been around since the early 1980's, saving bytes here and there on % older systems was important! In this case, 'char' simply provides the % byte of storage - not an indicator of the format for what is stored in % this byte. Generally speaking, anytime a single 'char' is used, it is % probably meant to hold an 8-bit integer value, whereas if this has % been dimensioned as an array, then it is intended to hold an ASCII % character string, even if that was only a single character. % Denny <[email protected]> % Comments % The header format is flexible and can be extended for new % user-defined data types. The essential structures of the header % are the header_key and the image_dimension. % % The required elements in the header_key substructure are: % % int sizeof_header Must indicate the byte size of the header file. % int extents Should be 16384, the image file is created as % contiguous with a minimum extent size. % char regular Must be 'r' to indicate that all images and % volumes are the same size. % % The image_dimension substructure describes the organization and % size of the images. These elements enable the database to reference % images by volume and slice number. Explanation of each element follows: % % short int dim[ ]; /* Array of the image dimensions */ % % dim[0] Number of dimensions in database; usually 4. % dim[1] Image X dimension; number of pixels in an image row. % dim[2] Image Y dimension; number of pixel rows in slice. % dim[3] Volume Z dimension; number of slices in a volume. % dim[4] Time points; number of volumes in database. % dim[5] Undocumented. % dim[6] Undocumented. % dim[7] Undocumented. % % char vox_units[4] Specifies the spatial units of measure for a voxel. % char cal_units[8] Specifies the name of the calibration unit. % short int unused1 /* Unused */ % short int datatype /* Datatype for this image set */ % /*Acceptable values for datatype are*/ % #define DT_NONE 0 % #define DT_UNKNOWN 0 /*Unknown data type*/ % #define DT_BINARY 1 /*Binary ( 1 bit per voxel)*/ % #define DT_UNSIGNED_CHAR 2 /*Unsigned character ( 8 bits per voxel)*/ % #define DT_SIGNED_SHORT 4 /*Signed short (16 bits per voxel)*/ % #define DT_SIGNED_INT 8 /*Signed integer (32 bits per voxel)*/ % #define DT_FLOAT 16 /*Floating point (32 bits per voxel)*/ % #define DT_COMPLEX 32 /*Complex (64 bits per voxel; 2 floating point numbers)/* % #define DT_DOUBLE 64 /*Double precision (64 bits per voxel)*/ % #define DT_RGB 128 /*A Red-Green-Blue datatype*/ % #define DT_ALL 255 /*Undocumented*/ % % short int bitpix; /* Number of bits per pixel; 1, 8, 16, 32, or 64. */ % short int dim_un0; /* Unused */ % % float pixdim[]; Parallel array to dim[], giving real world measurements in mm and ms. % pixdim[0]; Pixel dimensions? % pixdim[1]; Voxel width in mm. % pixdim[2]; Voxel height in mm. % pixdim[3]; Slice thickness in mm. % pixdim[4]; timeslice in ms (ie, TR in fMRI). % pixdim[5]; Undocumented. % pixdim[6]; Undocumented. % pixdim[7]; Undocumented. % % float vox_offset; Byte offset in the .img file at which voxels start. This value can be % negative to specify that the absolute value is applied for every image % in the file. % % float roi_scale; Specifies the Region Of Interest scale? % float funused1; Undocumented. % float funused2; Undocumented. % % float cal_max; Specifies the upper bound of the range of calibration values. % float cal_min; Specifies the lower bound of the range of calibration values. % % int compressed; Undocumented. % int verified; Undocumented. % % int glmax; The maximum pixel value for the entire database. % int glmin; The minimum pixel value for the entire database. % %
github
lcnhappe/happe-master
read_stl.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_stl.m
4,432
utf_8
6aec08043b6655fd9efe5194e20bf28f
function [pnt, tri, nrm] = read_stl(filename) % READ_STL reads a triangulation from an ascii or binary *.stl file, which % is a file format native to the stereolithography CAD software created by % 3D Systems. % % Use as % [pnt, tri, nrm] = read_stl(filename) % % The format is described at http://en.wikipedia.org/wiki/STL_(file_format) % % See also WRITE_STL % Copyright (C) 2006-2011, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ fid = fopen(filename, 'rt'); % read a small section to determine whether it is ascii or binary % a binary STL file has an 80 byte asci header, followed by non-printable characters section = fread(fid, 160, 'uint8'); fseek(fid, 0, 'bof'); if printableascii(section) % the first 160 characters are printable ascii, so assume it is an ascii format % solid testsphere % facet normal -0.13 -0.13 -0.98 % outer loop % vertex 1.50000 1.50000 0.00000 % vertex 1.50000 1.11177 0.05111 % vertex 1.11177 1.50000 0.05111 % endloop % endfacet % ... ntri = 0; while ~feof(fid) line = fgetl(fid); ntri = ntri + ~isempty(findstr('facet normal', line)); end fseek(fid, 0, 'bof'); tri = zeros(ntri,3); nrm = zeros(ntri,3); pnt = zeros(ntri*3,3); line = fgetl(fid); name = sscanf(line, 'solid %s'); for i=1:ntri line1 = fgetl(fid); line2 = fgetl(fid); % outer loop line3 = fgetl(fid); line4 = fgetl(fid); line5 = fgetl(fid); line6 = fgetl(fid); % endloop line7 = fgetl(fid); % endfacet i1 = (i-1)*3+1; i2 = (i-1)*3+2; i3 = (i-1)*3+3; tri(i,:) = [i1 i2 i3]; dum = sscanf(strtrim(line1), 'facet normal %f %f %f'); nrm(i,:) = dum(:)'; dum = sscanf(strtrim(line3), 'vertex %f %f %f'); pnt(i1,:) = dum(:)'; dum = sscanf(strtrim(line4), 'vertex %f %f %f'); pnt(i2,:) = dum(:)'; dum = sscanf(strtrim(line5), 'vertex %f %f %f'); pnt(i3,:) = dum(:)'; end else % reopen the file in binary mode, which does not make a difference on % UNIX but it does on windows fclose(fid); fid = fopen(filename, 'rb'); fseek(fid, 80, 'bof'); % skip the ascii header ntri = fread(fid, 1, 'uint32'); tri = reshape(1:(ntri*3),[3 ntri])'; tmp = fread(fid, [12 ntri], '12*float32', 2); % read 12 floats at a time, and skip 2 bytes. nrm = tmp(1:3,:)'; tmp = reshape(tmp(4:end,:),[3 3 ntri]); % position info tmp = permute(tmp,[2 3 1]); pnt = reshape(tmp, [], 3); % the above replaces the below, which is much slower, because it is using % a for loop across triangles % tri = zeros(ntri,3); % nrm = zeros(ntri,3); % pnt = zeros(ntri*3,3); % attr = zeros(ntri,1); % for i=1:ntri % i1 = (i-1)*3+1; % i2 = (i-1)*3+2; % i3 = (i-1)*3+3; % tri(i,:) = [i1 i2 i3]; % nrm(i,:) = fread(fid, 3, 'float32'); % pnt(i1,:) = fread(fid, 3, 'float32'); % pnt(i2,:) = fread(fid, 3, 'float32'); % pnt(i3,:) = fread(fid, 3, 'float32'); % attr(i) = fread(fid, 1, 'uint16'); % Attribute byte count, don't know what it is % end % for each triangle end fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function retval = printableascii(num) % Codes 20hex (32dec) to 7Ehex (126dec), known as the printable characters, % represent letters, digits, punctuation marks, and a few miscellaneous % symbols. There are 95 printable characters in total. num = double(num); num(num==double(sprintf('\n'))) = double(sprintf(' ')); num(num==double(sprintf('\r'))) = double(sprintf(' ')); num(num==double(sprintf('\t'))) = double(sprintf(' ')); retval = all(num>=32 & num<=126);
github
lcnhappe/happe-master
read_itab_mhd.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_itab_mhd.m
12,518
utf_8
d0ebd0b4e1de627d76cb523010d16ec7
function mhd = read_itab_mhd(filename) fid = fopen(filename, 'rb'); % Name of structure mhd.stname = fread(fid, [1 10], 'uint8=>char'); % Header identifier (VP_BIOMAG) mhd.stver = fread(fid, [1 8], 'uint8=>char'); % Header version mhd.stendian = fread(fid, [1 4], 'uint8=>char'); % LE (little endian) or BE (big endian) format % Subject's INFOs mhd.first_name = fread(fid, [1 32], 'uint8=>char'); % Subject's first name mhd.last_name = fread(fid, [1 32], 'uint8=>char'); % Subject's family name mhd.id = fread(fid, [1 32], 'uint8=>char'); % Subject's id mhd.notes = fread(fid, [1 256], 'uint8=>char'); % Notes on measurement % Other subj infos mhd.subj_info.sex = fread(fid, [1 1], 'uint8=>char'); % Sex (M or F) pad = fread(fid, [1 5], 'uint8'); mhd.subj_info.notes = fread(fid, [1 256], 'uint8=>char'); % Notes on subject mhd.subj_info.height = fread(fid, [1 1], 'float'); % Height in cm mhd.subj_info.weight = fread(fid, [1 1], 'float'); % Weight in kg mhd.subj_info.birthday = fread(fid, [1 1], 'int32'); % Birtday (1-31) mhd.subj_info.birthmonth = fread(fid, [1 1], 'int32'); % Birthmonth (1-12) mhd.subj_info.birthyear = fread(fid, [1 1], 'int32'); % Birthyear (1900-2002) % Data acquisition INFOs mhd.time = fread(fid, [1 12], 'uint8=>char'); % time (ascii) mhd.date = fread(fid, [1 16], 'uint8=>char'); % date (ascii) mhd.nchan = fread(fid, [1 1], 'int32'); % total number of channels mhd.nelech = fread(fid, [1 1], 'int32'); % number of electric channels mhd.nelerefch = fread(fid, [1 1], 'int32'); % number of electric reference channels mhd.nmagch = fread(fid, [1 1], 'int32'); % number of magnetic channels mhd.nmagrefch = fread(fid, [1 1], 'int32'); % number of magnetic reference channels mhd.nauxch = fread(fid, [1 1], 'int32'); % number of auxiliary channels mhd.nparamch = fread(fid, [1 1], 'int32'); % number of parameter channels mhd.ndigitch = fread(fid, [1 1], 'int32'); % number of digit channels mhd.nflagch = fread(fid, [1 1], 'int32'); % number of flag channels mhd.data_type = fread(fid, [1 1], 'int32'); % 0 - BE_SHORT (HP-PA, big endian) % 1 - BE_LONG (HP-PA, big endian) % 2 - BE_FLOAT (HP-PA, big endian) % 3 - LE_SHORT (Intel, little endian) % 4 - LE_LONG (Intel, little endian) % 5 - LE_FLOAT (Intel, little endian) % 6 - RTE_A_SHORT (HP-A900, big endian) % 7 - RTE_A_FLOAT (HP-A900, big endian) % 8 - ASCII mhd.smpfq = fread(fid, [1 1], 'single'); % sampling frequency in Hz mhd.hw_low_fr = fread(fid, [1 1], 'single'); % hw data acquisition low pass filter mhd.hw_hig_fr = fread(fid, [1 1], 'single'); % hw data acquisition high pass filter mhd.hw_comb = fread(fid, [1 1], 'int32'); % hw data acquisition 50 Hz filter (1-TRUE) mhd.sw_hig_tc = fread(fid, [1 1], 'single'); % sw data acquisition high pass time constant mhd.compensation= fread(fid, [1 1], 'int32'); % 0 - no compensation 1 - compensation mhd.ntpdata = fread(fid, [1 1], 'int32'); % total number of time points in data mhd.no_segments = fread(fid, [1 1], 'int32'); % Number of segments described in the segment structure % INFOs on different segments for i=1:5 mhd.sgmt(i).start = fread(fid, [1 1], 'int32'); % Starting time point from beginning of data mhd.sgmt(i).ntptot = fread(fid, [1 1], 'int32'); % Total number of time points mhd.sgmt(i).type = fread(fid, [1 1], 'int32'); mhd.sgmt(i).no_samples = fread(fid, [1 1], 'int32'); mhd.sgmt(i).st_sample = fread(fid, [1 1], 'int32'); end mhd.nsmpl = fread(fid, [1 1], 'int32'); % Overall number of samples % INFOs on different samples for i=1:4096 mhd.smpl(i).start = fread(fid, [1 1], 'int32'); % Starting time point from beginning of data mhd.smpl(i).ntptot = fread(fid, [1 1], 'int32'); % Total number of time points mhd.smpl(i).ntppre = fread(fid, [1 1], 'int32'); % Number of points in pretrigger mhd.smpl(i).type = fread(fid, [1 1], 'int32'); mhd.smpl(i).quality = fread(fid, [1 1], 'int32'); end mhd.nrefchan = fread(fid, [1 1], 'int32'); % number of reference channels mhd.ref_ch = fread(fid, [1 640], 'int32'); % reference channel list mhd.ntpref = fread(fid, [1 1], 'int32'); % total number of time points in reference % Header INFOs mhd.raw_header_type = fread(fid, [1 1], 'int32'); % 0 - Unknown header % 2 - rawfile (A900) % 3 - GE runfile header % 31 - ATB runfile header version 1.0 % 41 - IFN runfile header version 1.0 % 51 - BMDSys runfile header version 1.0 mhd.header_type = fread(fid, [1 1], 'int32'); % 0 - Unknown header % 2 - rawfile (A900) % 3 - GE runfile header % 4 - old header % 10 - 256ch normal header % 11 - 256ch master header % 20 - 640ch normal header % 21 - 640ch master header % 31 - ATB runfile header version 1.0 % 41 - IFN runfile header version 1.0 % 51 - BMDSys runfile header version 1.0 mhd.conf_file = fread(fid, [1 64], 'uint8=>char'); % Filename used for data acquisition configuration mhd.header_size = fread(fid, [1 1], 'int32'); % sizeof(header) at the time of file creation mhd.start_reference = fread(fid, [1 1], 'int32'); % start reference mhd.start_data = fread(fid, [1 1], 'int32'); % start data mhd.rawfile = fread(fid, [1 1], 'int32'); % 0 - not a rawfile 1 - rawfile mhd.multiplexed_data = fread(fid, [1 1], 'int32'); % 0 - FALSE 1 - TRUE mhd.isns = fread(fid, [1 1], 'int32'); % sensor code 1 - Single channel % 28 - Original Rome 28 ch. % 29 - .............. % .. - .............. % 45 - Updated Rome 28 ch. (spring 2009) % .. - .............. % .. - .............. % 55 - Original Chieti 55 ch. flat % 153 - Original Chieti 153 ch. helmet % 154 - Chieti 153 ch. helmet from Jan 2002 % Channel's INFOs for i=1:640 mhd.ch(i).type = fread(fid, [1 1], 'uint8'); pad = fread(fid, [1 3], 'uint8'); % type 0 - unknown % 1 - ele % 2 - mag % 4 - ele ref % 8 - mag ref % 16 - aux % 32 - param % 64 - digit % 128 - flag mhd.ch(i).number = fread(fid, [1 1], 'int32'); % number mhd.ch(i).label = fixstr(fread(fid, [1 16], 'uint8=>char')); % label mhd.ch(i).flag = fread(fid, [1 1], 'uint8'); pad = fread(fid, [1 3], 'uint8'); % on/off flag 0 - working channel % 1 - noisy channel % 2 - very noisy channel % 3 - broken channel mhd.ch(i).amvbit = fread(fid, [1 1], 'float'); % calibration from LSB to mV mhd.ch(i).calib = fread(fid, [1 1], 'float'); % calibration from mV to unit mhd.ch(i).unit = fread(fid, [1 6], 'uint8=>char'); % unit label (fT, uV, ...) pad = fread(fid, [1 2], 'uint8'); mhd.ch(i).ncoils = fread(fid, [1 1], 'int32'); % number of coils building up one channel mhd.ch(i).wgt = fread(fid, [1 10], 'float'); % weight of coils % position and orientation of coils for j=1:10 mhd.ch(i).position(j).r_s = fread(fid, [1 3], 'float'); mhd.ch(i).position(j).u_s = fread(fid, [1 3], 'float'); end end % Sensor position INFOs mhd.r_center = fread(fid, [1 3], 'float'); % sensor position in convenient format mhd.u_center = fread(fid, [1 3], 'float'); mhd.th_center = fread(fid, [1 1], 'float'); % sensor orientation as from markers fit mhd.fi_center= fread(fid, [1 1], 'float'); mhd.rotation_angle= fread(fid, [1 1], 'float'); mhd.cosdir = fread(fid, [3 3], 'float'); % for compatibility only mhd.irefsys = fread(fid, [1 1], 'int32'); % reference system 0 - sensor reference system % 1 - Polhemus % 2 - head3 % 3 - MEG % Marker positions for MRI integration mhd.num_markers = fread(fid, [1 1], 'int32'); % Total number of markers mhd.i_coil = fread(fid, [1 64], 'int32'); % Markers to be used to find sensor position mhd.marker = fread(fid, [3 64], 'float'); % Position of all the markers - MODIFIED VP mhd.best_chi = fread(fid, [1 1], 'float'); % Best chi_square value obtained in finding sensor position mhd.cup_vertex_center = fread(fid, [1 1], 'float'); % dist anc sensor cente vertex (as entered % from keyboard) mhd.cup_fi_center = fread(fid, [1 1], 'float'); % fi angle of sensor center mhd.cup_rotation_angle = fread(fid, [1 1], 'float'); % rotation angle of sensor center axis mhd.dist_a1_a2 = fread(fid, [1 1], 'float'); % head informations % (used to find subject's head dimensions) mhd.dist_inion_nasion = fread(fid, [1 1], 'float'); mhd.max_circ = fread(fid, [1 1], 'float'); mhd.nasion_vertex_inion = fread(fid, [1 1], 'float'); % Data analysis INFOs mhd.security = fread(fid, [1 1], 'int32'); % security flag mhd.ave_alignement = fread(fid, [1 1], 'int32'); % average data alignement 0 - FALSE % 1 - TRUE mhd.itri = fread(fid, [1 1], 'int32'); % trigger channel number mhd.ntpch = fread(fid, [1 1], 'int32'); % no. of time points per channel mhd.ntppre = fread(fid, [1 1], 'int32'); % no. of time points of pretrigger mhd.navrg = fread(fid, [1 1], 'int32'); % no. of averages mhd.nover = fread(fid, [1 1], 'int32'); % no. of discarded averages mhd.nave_filt = fread(fid, [1 1], 'int32'); % no. of applied filters % Filters used before average for i=1:15 mhd.ave_filt(i).type = fread(fid, [1 1], 'int32'); % type 0 - no filter % 1 - bandpass - param[0]: highpass freq % - param[1]: lowpass freq % 2 - notch - param[0]: notch freq 1 % param[1]: notch freq 2 % param[2]: notch freq 3 % param[3]: notch freq 4 % param[4]: span % 3 - artifact - param[0]: True/False % 4 - adaptive - param[0]: True/False % 5 - rectifier - param[0]: True/False % 6 - heart - param[0]: True/False % 7 - evoked - param[0]: True/False % 8 - derivate - param[0]: True/False % 9 - polarity - param[0]: True/False mhd.ave_filt(i).param = fread(fid, [1 5], 'float'); % up to 5 filter parameters end mhd.stdev = fread(fid, [1 1], 'int32'); % 0 - not present mhd.bas_start = fread(fid, [1 1], 'int32'); % starting data points for baseline mhd.bas_end = fread(fid, [1 1], 'int32'); % ending data points for baseline mhd.source_files = fread(fid, [1 32], 'int32'); % Progressive number of files (if more than one) % template INFOs mhd.ichtpl = fread(fid, [1 1], 'int32'); mhd.ntptpl = fread(fid, [1 1], 'int32'); mhd.ifitpl = fread(fid, [1 1], 'int32'); mhd.corlim = fread(fid, [1 1], 'float'); % Filters used before template for i=1:15 mhd.tpl_filt(i).type = fread(fid, [1 1], 'int32'); % type 0 - no filter % 1 - bandpass - param[0]: highpass freq % - param[1]: lowpass freq % 2 - notch - param[0]: notch freq 1 % param[1]: notch freq 2 % param[2]: notch freq 3 % param[3]: notch freq 4 % param[4]: span % 3 - artifact - param[0]: True/False % 4 - adaptive - param[0]: True/False % 5 - rectifier - param[0]: True/False % 6 - heart - param[0]: True/False % 7 - evoked - param[0]: True/False % 8 - derivate - param[0]: True/False % 9 - polarity - param[0]: True/False mhd.tpl_filt(i).param = fread(fid, [1 5], 'float'); % up to 5 filter parameters end % Just in case info mhd.dummy = fread(fid, [1 64], 'int32'); % there seems to be more dummy data at the end... fclose(fid); function str = fixstr(str) sel = find(str==0, 1, 'first'); if ~isempty(sel) str = str(1:sel-1); end
github
lcnhappe/happe-master
read_plexon_plx.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_plexon_plx.m
20,283
utf_8
ec115cb91003e60359655fdd73fdfdb6
function [varargout] = read_plexon_plx(filename, varargin) % READ_PLEXON_PLX reads header or data from a Plexon *.plx file, which % is a file containing action-potential (spike) timestamps and waveforms % (spike channels), event timestamps (event channels), and continuous % variable data (continuous A/D channels). % % Use as % [hdr] = read_plexon_plx(filename) % [dat] = read_plexon_plx(filename, ...) % [dat1, dat2, dat3, hdr] = read_plexon_plx(filename, ...) % % Optional input arguments should be specified in key-value pairs % 'header' = structure with header information % 'memmap' = 0 or 1 % 'feedback' = 0 or 1 % 'ChannelIndex' = number, or list of numbers (that will result in multiple outputs) % 'SlowChannelIndex' = number, or list of numbers (that will result in multiple outputs) % 'EventIndex' = number, or list of numbers (that will result in multiple outputs) % Copyright (C) 2007-2013, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % parse the optional input arguments hdr = ft_getopt(varargin, 'header'); memmap = ft_getopt(varargin, 'memmap', false); feedback = ft_getopt(varargin, 'feedback', true); ChannelIndex = ft_getopt(varargin, 'ChannelIndex'); % type 1 EventIndex = ft_getopt(varargin, 'EventIndex'); % type 4 SlowChannelIndex = ft_getopt(varargin, 'SlowChannelIndex'); % type 5 needhdr = isempty(hdr); % start with empty return values varargout = {}; % the datafile is little endian, hence it may be neccessary to swap bytes in % the memory mapped data stream depending on the CPU type of this computer if littleendian swapFcn = @(x) x; else swapFcn = @(x) swapbytes(x); end % read header info from file, use Matlabs for automatic byte-ordering fid = fopen(filename, 'r', 'ieee-le'); fseek(fid, 0, 'eof'); siz = ftell(fid); fseek(fid, 0, 'bof'); if needhdr if feedback, fprintf('reading header from %s\n', filename); end % a PLX file consists of a file header, channel headers, and data blocks hdr = PL_FileHeader(fid); for i=1:hdr.NumDSPChannels hdr.ChannelHeader(i) = PL_ChannelHeader(fid); end for i=1:hdr.NumEventChannels hdr.EventHeader(i) = PL_EventHeader(fid); end for i=1:hdr.NumSlowChannels hdr.SlowChannelHeader(i) = PL_SlowChannelHeader(fid); end hdr.DataOffset = ftell(fid); if memmap % open the file as meory mapped object, note that byte swapping may be needed mm = memmapfile(filename, 'offset', hdr.DataOffset, 'format', 'int16'); end dum = struct(... 'Type', [],... 'UpperByteOf5ByteTimestamp', [],... 'TimeStamp', [],... 'Channel', [],... 'Unit', [],... 'NumberOfWaveforms', [],... 'NumberOfWordsInWaveform', [] ... ); % read the header of each data block and remember its data offset in bytes Nblocks = 0; offset = hdr.DataOffset; % only used when reading from memmapped file hdr.DataBlockOffset = []; hdr.DataBlockHeader = dum; while offset<siz if Nblocks>=length(hdr.DataBlockOffset); % allocate another 1000 elements, this prevents continuous reallocation hdr.DataBlockOffset(Nblocks+10000) = 0; hdr.DataBlockHeader(Nblocks+10000) = dum; if feedback, fprintf('reading DataBlockHeader %4.1f%%\n', 100*(offset-hdr.DataOffset)/(siz-hdr.DataOffset)); end end Nblocks = Nblocks+1; if memmap % get the header information from the memory mapped file hdr.DataBlockOffset(Nblocks) = offset; hdr.DataBlockHeader(Nblocks) = PL_DataBlockHeader(mm, offset-hdr.DataOffset, swapFcn); % skip the header (16 bytes) and the data (int16 words) offset = offset + 16 + 2 * double(hdr.DataBlockHeader(Nblocks).NumberOfWordsInWaveform * hdr.DataBlockHeader(Nblocks).NumberOfWaveforms); else % read the header information from the file the traditional way hdr.DataBlockOffset(Nblocks) = offset; hdr.DataBlockHeader(Nblocks) = PL_DataBlockHeader(fid, [], swapFcn); fseek(fid, 2 * double(hdr.DataBlockHeader(Nblocks).NumberOfWordsInWaveform * hdr.DataBlockHeader(Nblocks).NumberOfWaveforms), 'cof'); % data consists of short integers offset = ftell(fid); end % if memmap end % this prints the final 100% if feedback, fprintf('reading DataBlockHeader %4.1f%%\n', 100*(offset-hdr.DataOffset)/(siz-hdr.DataOffset)); end % remove the allocated space that was not needed hdr.DataBlockOffset = hdr.DataBlockOffset(1:Nblocks); hdr.DataBlockHeader = hdr.DataBlockHeader(1:Nblocks); end % if needhdr %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % read the spike channel data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(ChannelIndex) if feedback, fprintf('reading spike data from %s\n', filename); end if memmap % open the file as meory mapped object, note that byte swapping may be needed mm = memmapfile(filename, 'offset', hdr.DataOffset, 'format', 'int16'); end type = [hdr.DataBlockHeader.Type]; chan = [hdr.DataBlockHeader.Channel]; ts = [hdr.DataBlockHeader.TimeStamp]; for i=1:length(ChannelIndex) % determine the data blocks with continuous data belonging to this channel sel = (type==1 & chan==hdr.ChannelHeader(ChannelIndex(i)).Channel); sel = find(sel); if isempty(sel) warning('spike channel %d contains no data', ChannelIndex(i)); varargin{end+1} = []; continue; end % the number of samples can potentially be different in each block num = double([hdr.DataBlockHeader(sel).NumberOfWordsInWaveform]) .* double([hdr.DataBlockHeader(sel).NumberOfWaveforms]); % check whether the number of samples per block makes sense if any(num~=num(1)) error('spike channel blocks with diffent number of samples'); end % allocate memory to hold the data buf = zeros(num(1), length(sel), 'int16'); if memmap % get the header information from the memory mapped file datbeg = double(hdr.DataBlockOffset(sel) - hdr.DataOffset)/2 + 8 + 1; % expressed in 2-byte words, minus the file header, skip the 16 byte block header datend = datbeg + num - 1; for j=1:length(sel) buf(:,j) = mm.Data(datbeg(j):datend(j)); end % optionally swap the bytes to correct for the endianness buf = swapFcn(buf); else % read the data from the file in the traditional way offset = double(hdr.DataBlockOffset(sel)) + 16; % expressed in bytes, skip the 16 byte block header for j=1:length(sel) fseek(fid, offset(j), 'bof'); buf(:,j) = fread(fid, num(j), 'int16'); end end % if memmap % remember the data for this channel varargout{i} = buf; end %for ChannelIndex end % if ChannelIndex %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % read the continuous channel data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(SlowChannelIndex) if feedback, fprintf('reading continuous data from %s\n', filename); end if memmap % open the file as meory mapped object, note that byte swapping may be needed mm = memmapfile(filename, 'offset', hdr.DataOffset, 'format', 'int16'); end type = [hdr.DataBlockHeader.Type]; chan = [hdr.DataBlockHeader.Channel]; ts = [hdr.DataBlockHeader.TimeStamp]; for i=1:length(SlowChannelIndex) % determine the data blocks with continuous data belonging to this channel sel = (type==5 & chan==hdr.SlowChannelHeader(SlowChannelIndex(i)).Channel); sel = find(sel); if isempty(sel) error(sprintf('Continuous channel %d contains no data', SlowChannelIndex(i))); % warning('Continuous channel %d contains no data', SlowChannelIndex(i)); % varargin{end+1} = []; % continue; end % the number of samples can be different in each block num = double([hdr.DataBlockHeader(sel).NumberOfWordsInWaveform]) .* double([hdr.DataBlockHeader(sel).NumberOfWaveforms]); cumnum = cumsum([0 num]); % allocate memory to hold the data buf = zeros(1, cumnum(end), 'int16'); if memmap % get the header information from the memory mapped file datbeg = double(hdr.DataBlockOffset(sel) - hdr.DataOffset)/2 + 8 + 1; % expressed in 2-byte words, minus the file header, skip the 16 byte block header datend = datbeg + num - 1; for j=1:length(sel) bufbeg = cumnum(j)+1; bufend = cumnum(j+1); % copy the data from the memory mapped file into the continuous buffer buf(bufbeg:bufend) = mm.Data(datbeg(j):datend(j)); end % optionally swap the bytes to correct for the endianness buf = swapFcn(buf); else % read the data from the file in the traditional way offset = double(hdr.DataBlockOffset(sel)) + 16; % expressed in bytes, skip the 16 byte block header for j=1:length(sel) bufbeg = cumnum(j)+1; bufend = cumnum(j+1); % copy the data from the file into the continuous buffer fseek(fid, offset(j), 'bof'); buf(bufbeg:bufend) = fread(fid, num(j), 'int16'); end end % if memmap % remember the data for this channel varargout{i} = buf; end %for SlowChannelIndex end % if SlowChannelIndex %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % read the event channel data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(EventIndex) if feedback, fprintf('reading events from %s\n', filename); end type = [hdr.DataBlockHeader.Type]; unit = [hdr.DataBlockHeader.Unit]; chan = [hdr.DataBlockHeader.Channel]; ts = [hdr.DataBlockHeader.TimeStamp]; for i=1:length(EventIndex) % determine the data blocks with continuous data belonging to this channel sel = (type==4 & chan==hdr.EventHeader(EventIndex(i)).Channel); sel = find(sel); % all information is already contained in the DataBlockHeader, i.e. there is nothing to read if isempty(sel) warning('event channel %d contains no data', EventIndex(i)); end event.TimeStamp = ts(sel); event.Channel = chan(sel); event.Unit = unit(sel); varargout{i} = event; end % for EventIndex end % if EventIndex fclose(fid); % always return the header as last varargout{end+1} = hdr; return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTIONS for reading the different header elements %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = PL_FileHeader(fid) hdr.MagicNumber = fread(fid, 1, 'uint32=>uint32'); % = 0x58454c50; hdr.Version = fread(fid, 1, 'int32' ); % Version of the data format; determines which data items are valid hdr.Comment = fread(fid, [1 128], 'uint8=>char' ); % User-supplied comment hdr.ADFrequency = fread(fid, 1, 'int32' ); % Timestamp frequency in hertz hdr.NumDSPChannels = fread(fid, 1, 'int32' ); % Number of DSP channel headers in the file hdr.NumEventChannels = fread(fid, 1, 'int32' ); % Number of Event channel headers in the file hdr.NumSlowChannels = fread(fid, 1, 'int32' ); % Number of A/D channel headers in the file hdr.NumPointsWave = fread(fid, 1, 'int32' ); % Number of data points in waveform hdr.NumPointsPreThr = fread(fid, 1, 'int32' ); % Number of data points before crossing the threshold hdr.Year = fread(fid, 1, 'int32' ); % Time/date when the data was acquired hdr.Month = fread(fid, 1, 'int32' ); hdr.Day = fread(fid, 1, 'int32' ); hdr.Hour = fread(fid, 1, 'int32' ); hdr.Minute = fread(fid, 1, 'int32' ); hdr.Second = fread(fid, 1, 'int32' ); hdr.FastRead = fread(fid, 1, 'int32' ); % reserved hdr.WaveformFreq = fread(fid, 1, 'int32' ); % waveform sampling rate; ADFrequency above is timestamp freq hdr.LastTimestamp = fread(fid, 1, 'double'); % duration of the experimental session, in ticks % The following 6 items are only valid if Version >= 103 hdr.Trodalness = fread(fid, 1, 'char' ); % 1 for single, 2 for stereotrode, 4 for tetrode hdr.DataTrodalness = fread(fid, 1, 'char' ); % trodalness of the data representation hdr.BitsPerSpikeSample = fread(fid, 1, 'char' ); % ADC resolution for spike waveforms in bits (usually 12) hdr.BitsPerSlowSample = fread(fid, 1, 'char' ); % ADC resolution for slow-channel data in bits (usually 12) hdr.SpikeMaxMagnitudeMV = fread(fid, 1, 'uint16'); % the zero-to-peak voltage in mV for spike waveform adc values (usually 3000) hdr.SlowMaxMagnitudeMV = fread(fid, 1, 'uint16'); % the zero-to-peak voltage in mV for slow-channel waveform adc values (usually 5000); Only valid if Version >= 105 (usually either 1000 or 500) % The following item is only valid if Version >= 105 hdr.SpikePreAmpGain = fread(fid, 1, 'uint16'); % so that this part of the header is 256 bytes hdr.Padding = fread(fid, 46, 'char' ); % so that this part of the header is 256 bytes % Counters for the number of timestamps and waveforms in each channel and unit. % Note that these only record the counts for the first 4 units in each channel. % channel numbers are 1-based - array entry at [0] is unused hdr.TSCounts = fread(fid, [5 130], 'int32' ); % number of timestamps[channel][unit] hdr.WFCounts = fread(fid, [5 130], 'int32' ); % number of waveforms[channel][unit] % Starting at index 300, the next array also records the number of samples for the % continuous channels. Note that since EVCounts has only 512 entries, continuous % channels above channel 211 do not have sample counts. hdr.EVCounts = fread(fid, 512, 'int32' ); % number of timestamps[event_number] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = PL_ChannelHeader(fid) hdr.Name = fread(fid, [1 32], 'uint8=>char' ); % Name given to the DSP channel hdr.SIGName = fread(fid, [1 32], 'uint8=>char' ); % Name given to the corresponding SIG channel hdr.Channel = fread(fid, 1, 'int32' ); % DSP channel number, 1-based hdr.WFRate = fread(fid, 1, 'int32' ); % When MAP is doing waveform rate limiting, this is limit w/f per sec divided by 10 hdr.SIG = fread(fid, 1, 'int32' ); % SIG channel associated with this DSP channel 1 - based hdr.Ref = fread(fid, 1, 'int32' ); % SIG channel used as a Reference signal, 1- based hdr.Gain = fread(fid, 1, 'int32' ); % actual gain divided by SpikePreAmpGain. For pre version 105, actual gain divided by 1000. hdr.Filter = fread(fid, 1, 'int32' ); % 0 or 1 hdr.Threshold = fread(fid, 1, 'int32' ); % Threshold for spike detection in a/d values hdr.Method = fread(fid, 1, 'int32' ); % Method used for sorting units, 1 - boxes, 2 - templates hdr.NUnits = fread(fid, 1, 'int32' ); % number of sorted units hdr.Template = fread(fid, [64 5], 'int16' ); % Templates used for template sorting, in a/d values hdr.Fit = fread(fid, 5, 'int32' ); % Template fit hdr.SortWidth = fread(fid, 1, 'int32' ); % how many points to use in template sorting (template only) hdr.Boxes = reshape(fread(fid, 4*2*5, 'int16' ), [4 2 5]); % the boxes used in boxes sorting hdr.SortBeg = fread(fid, 1, 'int32' ); % beginning of the sorting window to use in template sorting (width defined by SortWidth) hdr.Comment = fread(fid, [1 128], 'uint8=>char' ); hdr.Padding = fread(fid, 11, 'int32' ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = PL_EventHeader(fid) hdr.Name = fread(fid, [1 32], 'uint8=>char' ); % name given to this event hdr.Channel = fread(fid, 1, 'int32' ); % event number, 1-based hdr.Comment = fread(fid, [1 128], 'uint8=>char' ); hdr.Padding = fread(fid, 33, 'int32' ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = PL_SlowChannelHeader(fid) hdr.Name = fread(fid, [1 32], 'uint8=>char' ); % name given to this channel hdr.Channel = fread(fid, 1, 'int32' ); % channel number, 0-based hdr.ADFreq = fread(fid, 1, 'int32' ); % digitization frequency hdr.Gain = fread(fid, 1, 'int32' ); % gain at the adc card hdr.Enabled = fread(fid, 1, 'int32' ); % whether this channel is enabled for taking data, 0 or 1 hdr.PreAmpGain = fread(fid, 1, 'int32' ); % gain at the preamp % As of Version 104, this indicates the spike channel (PL_ChannelHeader.Channel) of % a spike channel corresponding to this continuous data channel. % <=0 means no associated spike channel. hdr.SpikeChannel = fread(fid, 1, 'int32' ); hdr.Comment = fread(fid, [1 128], 'uint8=>char' ); hdr.Padding = fread(fid, 28, 'int32' ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = PL_DataBlockHeader(fid, offset, swapFcn) % % this is the conventional code, it has been replaced by code that works % % with both regular and memmapped files % hdr.Type = fread(fid, 1, 'int16=>int16' ); % Data type; 1=spike, 4=Event, 5=continuous % hdr.UpperByteOf5ByteTimestamp = fread(fid, 1, 'uint16=>uint16' ); % Upper 8 bits of the 40 bit timestamp % hdr.TimeStamp = fread(fid, 1, 'uint32=>uint32' ); % Lower 32 bits of the 40 bit timestamp % hdr.Channel = fread(fid, 1, 'int16=>int16' ); % Channel number % hdr.Unit = fread(fid, 1, 'int16=>int16' ); % Sorted unit number; 0=unsorted % hdr.NumberOfWaveforms = fread(fid, 1, 'int16=>int16' ); % Number of waveforms in the data to folow, usually 0 or 1 % hdr.NumberOfWordsInWaveform = fread(fid, 1, 'int16=>int16' ); % Number of samples per waveform in the data to follow if isa(fid, 'memmapfile') mm = fid; datbeg = offset/2 + 1; % the offset is in bytes (minus the file header), the memory mapped file is indexed in int16 words datend = offset/2 + 8; buf = mm.Data(datbeg:datend); else buf = fread(fid, 8, 'int16=>int16'); end hdr.Type = swapFcn(buf(1)); hdr.UpperByteOf5ByteTimestamp = swapFcn(uint16(buf(2))); hdr.TimeStamp = swapFcn(typecast(buf([3 4]), 'uint32')); hdr.Channel = swapFcn(buf(5)); hdr.Unit = swapFcn(buf(6)); hdr.NumberOfWaveforms = swapFcn(buf(7)); hdr.NumberOfWordsInWaveform = swapFcn(buf(8));
github
lcnhappe/happe-master
read_neurosim_evolution.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_neurosim_evolution.m
4,493
utf_8
611253a932a6acc90c0b61a442dc58a5
function [hdr, dat] = read_neurosim_evolution(filename, varargin) % READ_NEUROSIM_EVOLUTION reads the "evolution" file that is written % by Jan van der Eerden's NeuroSim software. When a directory is used % as input, the default filename 'evolution' is read. % % Use as % [hdr, dat] = read_neurosim_evolution(filename, ...) % where additional options should come in key-value pairs and can include % Vonly = 0 or 1, only give the membrane potentials as output % headerOnly = 0 or 1, only read the header information (skip the data), automatically set to 1 if nargout==1 % % See also FT_READ_HEADER, FT_READ_DATA % Copyright (C) 2012 Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if isdir(filename) filename = fullfile(filename, 'evolution'); end Vonly = ft_getopt(varargin, 'Vonly',0); headerOnly = ft_getopt(varargin, 'headerOnly',0); if nargout<2 % make sure that when only one output is requested the header is returned headerOnly=true; end label = {}; orig = {}; fid = fopen(filename, 'rb'); % read the header line = '#'; ishdr=1; while ishdr==1 % find temporal information if strfind(lower(line),'start time') dum= regexp(line, 'time\s+(\d+.\d+E[+-]\d+)', 'tokens'); hdr.FirstTimeStamp = str2double(dum{1}{1}); end if strfind(lower(line),'time bin') dum= regexp(line, 'bin\s+(\d+.\d+E[+-]\d+)', 'tokens'); dt=str2double(dum{1}{1}); hdr.Fs= 1e3/dt; hdr.TimeStampPerSample=dt; end if strfind(lower(line),'end time') dum= regexp(line, 'time\s+(\d+.\d+E[+-]\d+)', 'tokens'); hdr.LastTimeStamp = str2double(dum{1}{1}); hdr.nSamples=int64((hdr.LastTimeStamp-hdr.FirstTimeStamp)/dt+1); end % parse the content of the line, determine the label for each column colid = sscanf(line, '# column %d:', 1); if ~isempty(colid) label{colid} = [num2str(colid) rmspace(line(find(line==':'):end))]; end offset = ftell(fid); % remember the file pointer position line = fgetl(fid); % get the next line if ~isempty(line) && line(1)~='#' && ~isempty(str2num(line)) % the data starts here, rewind the last line fseek(fid, offset, 'bof'); line = []; ishdr=0; else orig{end+1} = line; end end timelab=find(~cellfun('isempty',regexp(lower(label), 'time', 'match'))); if ~headerOnly % read the complete data dat = fscanf(fid, '%f', [length(label), inf]); hdr.nSamples = length(dat(timelab, :)); %overwrites the value written in the header with the actual number of samples found hdr.LastTimeStamp = dat(1,end); end fclose(fid); % only extract V_membrane if wanted if Vonly matchLab=regexp(label,'V of (\S+) neuron','start'); idx=find(~cellfun(@isempty,matchLab)); if isempty(idx) % most likely a multi compartment simulation matchLab=regexp(label,'V\S+ of (\S+) neuron','start'); idx=find(~cellfun(@isempty,matchLab)); end if ~headerOnly dat=dat([timelab idx],:); end label=label([timelab idx]); for n=2:length(label) % renumbering of the labels label{n}=[num2str(n) label{n}(regexp(label{n},': V'):end)]; end end % convert the header into FieldTrip style hdr.label = label(:); hdr.nChans = length(label); hdr.nSamplesPre = 0; hdr.nTrials = 1; % also store the original ascii header details hdr.orig = orig(:); [hdr.chanunit hdr.chantype] = deal(cell(length(label),1)); hdr.chantype(:) = {'evolution (neurosim)'}; hdr.chanunit(:) = {'unknown'}; function y=rmspace(x) % remove double spaces from string % (c) Bart Gips 2012 y=strtrim(x); [sbeg send]=regexp(y,' \s+'); for n=1:length(sbeg) y(sbeg(n):send(n)-1)=[]; end
github
lcnhappe/happe-master
read_eeglabevent.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_eeglabevent.m
3,698
utf_8
d48c0efc8368b120e96562164a153a88
% read_eeglabevent() - import EEGLAB dataset events % % Usage: % >> event = read_eeglabevent(filename, ...); % % Inputs: % filename - [string] file name % % Optional inputs: % 'header' - FILEIO structure header % % Outputs: % event - FILEIO toolbox event structure % % Author: Arnaud Delorme, SCCN, INC, UCSD, 2008- %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2008 Arnaud Delorme, SCCN, INC, UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function event = read_eeglabevent(filename, varargin) if nargin < 1 help read_eeglabheader; return; end; hdr = ft_getopt(varargin, 'header'); if isempty(hdr) hdr = read_eeglabheader(filename); end event = []; % these will be the output in FieldTrip format oldevent = hdr.orig.event; % these are in EEGLAB format if ~isempty(oldevent) nameList=fieldnames(oldevent); else nameList=[]; end; nameList=setdiff(nameList,{'type','value','sample','offset','duration','latency'}); for index = 1:length(oldevent) if isfield(oldevent,'code') type = oldevent(index).code; elseif isfield(oldevent,'value') type = oldevent(index).value; else type = 'trigger'; end; % events can have a numeric or a string value if isfield(oldevent,'type') value = oldevent(index).type; else value = 'default'; end; % this is the sample number of the concatenated data to which the event corresponds sample = oldevent(index).latency; % a non-zero offset only applies to trial-events, i.e. in case the data is % segmented and each data segment needs to be represented as event. In % that case the offset corresponds to the baseline duration (times -1). offset = 0; if isfield(oldevent, 'duration') duration = oldevent(index).duration; else duration = 0; end; % add the current event in FieldTrip format event(index).type = type; % this is usually a string, e.g. 'trigger' or 'trial' event(index).value = value; % in case of a trigger, this is the value event(index).sample = sample; % this is the sample in the datafile at which the event happens event(index).offset = offset; % some events should be represented with a shifted time-axix, e.g. a trial with a baseline period event(index).duration = duration; % some events have a duration, such as a trial %add custom fields for iField=1:length(nameList) eval(['event(index).' nameList{iField} '=oldevent(index).' nameList{iField} ';']); end; end; if hdr.nTrials>1 % add the trials to the event structure for i=1:hdr.nTrials event(end+1).type = 'trial'; event(end ).sample = (i-1)*hdr.nSamples + 1; if isfield(oldevent,'setname') && (length(oldevent) == hdr.nTrials) event(end ).value = oldevent(i).setname; %accommodate Widmann's pop_grandaverage function else event(end ).value = []; end; event(end ).offset = -hdr.nSamplesPre; event(end ).duration = hdr.nSamples; end end
github
lcnhappe/happe-master
read_bti_ascii.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/read_bti_ascii.m
2,240
utf_8
560f3413b1fc96661f8ed42823efdc13
function [file] = read_bti_ascii(filename) % READ_BTI_ASCII reads general data from a BTI configuration file % % The file should be formatted like % Group: % item1 : value1a value1b value1c % item2 : value2a value2b value2c % item3 : value3a value3b value3c % item4 : value4a value4b value4c % % Copyright (C) 2004, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ fid = fopen(filename, 'r'); if fid==-1 error(sprintf('could not open file %s', filename)); end line = ''; while ischar(line) line = cleanline(fgetl(fid)) if isempty(line) | line==-1 | isempty(findstr(line, ':')) continue end % the line is not empty, which means that we have encountered a chunck of information if findstr(line, ':')~=length(line) [item, value] = strtok(line, ':'); value(1) = ' '; % remove the : value = strtrim(value); item = strtrim(item); item(findstr(item, '.')) = '_'; item(findstr(item, ' ')) = '_'; if ischar(item) eval(sprintf('file.%s = ''%s'';', item, value)); else eval(sprintf('file.%s = %s;', item, value)); end else subline = cleanline(fgetl(fid)); error, the rest has not been implemented (yet) end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function line = cleanline(line) if isempty(line) | line==-1 return end comment = findstr(line, '//'); if ~isempty(comment) line(min(comment):end) = ' '; end line = strtrim(line);
github
lcnhappe/happe-master
openbdf.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/fileio/private/openbdf.m
6,812
utf_8
cb49358a2a955b165a5c50127c25e3d8
% openbdf() - Opens an BDF File (European Data Format for Biosignals) in MATLAB (R) % % Usage: % >> EDF=openedf(FILENAME) % % Note: About EDF -> www.biosemi.com/faq/file_format.htm % % Author: Alois Schloegl, 5.Nov.1998 % % See also: readedf() % Copyright (C) 1997-1998 by Alois Schloegl % [email protected] % Ver 2.20 18.Aug.1998 % Ver 2.21 10.Oct.1998 % Ver 2.30 5.Nov.1998 % % For use under Octave define the following function % function s=upper(s); s=toupper(s); end; % V2.12 Warning for missing Header information % V2.20 EDF.AS.* changed % V2.30 EDF.T0 made Y2K compatible until Year 2090 % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. % Name changed for bdf files Sept 6,2002 T.S. Lorig % Header updated for EEGLAB format (update web link too) - Arnaud Delorme 14 Oct 2002 function [DAT,H1]=openbdf(FILENAME) SLASH='/'; % defines Seperator for Subdirectories BSLASH=char(92); cname=computer; if cname(1:2)=='PC' SLASH=BSLASH; end; fid=fopen(FILENAME,'r','ieee-le'); if fid<0 fprintf(2,['Error LOADEDF: File ' FILENAME ' not found\n']); return; end; EDF.FILE.FID=fid; EDF.FILE.OPEN = 1; EDF.FileName = FILENAME; PPos=min([max(find(FILENAME=='.')) length(FILENAME)+1]); SPos=max([0 find((FILENAME=='/') | (FILENAME==BSLASH))]); EDF.FILE.Ext = FILENAME(PPos+1:length(FILENAME)); EDF.FILE.Name = FILENAME(SPos+1:PPos-1); if SPos==0 EDF.FILE.Path = pwd; else EDF.FILE.Path = FILENAME(1:SPos-1); end; EDF.FileName = [EDF.FILE.Path SLASH EDF.FILE.Name '.' EDF.FILE.Ext]; H1=char(fread(EDF.FILE.FID,256,'char')'); % EDF.VERSION=H1(1:8); % 8 Byte Versionsnummer %if 0 fprintf(2,'LOADEDF: WARNING Version EDF Format %i',ver); end; EDF.PID = deblank(H1(9:88)); % 80 Byte local patient identification EDF.RID = deblank(H1(89:168)); % 80 Byte local recording identification %EDF.H.StartDate = H1(169:176); % 8 Byte %EDF.H.StartTime = H1(177:184); % 8 Byte EDF.T0=[str2num(H1(168+[7 8])) str2num(H1(168+[4 5])) str2num(H1(168+[1 2])) str2num(H1(168+[9 10])) str2num(H1(168+[12 13])) str2num(H1(168+[15 16])) ]; % Y2K compatibility until year 2090 if EDF.VERSION(1)=='0' if EDF.T0(1) < 91 EDF.T0(1)=2000+EDF.T0(1); else EDF.T0(1)=1900+EDF.T0(1); end; else ; % in a future version, this is hopefully not needed end; EDF.HeadLen = str2num(H1(185:192)); % 8 Byte Length of Header % reserved = H1(193:236); % 44 Byte EDF.NRec = str2num(H1(237:244)); % 8 Byte # of data records EDF.Dur = str2num(H1(245:252)); % 8 Byte # duration of data record in sec EDF.NS = str2num(H1(253:256)); % 8 Byte # of signals EDF.Label = char(fread(EDF.FILE.FID,[16,EDF.NS],'char')'); EDF.Transducer = char(fread(EDF.FILE.FID,[80,EDF.NS],'char')'); EDF.PhysDim = char(fread(EDF.FILE.FID,[8,EDF.NS],'char')'); EDF.PhysMin= str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')')); EDF.PhysMax= str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')')); EDF.DigMin = str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')')); % EDF.DigMax = str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')')); % % check validity of DigMin and DigMax if (length(EDF.DigMin) ~= EDF.NS) fprintf(2,'Warning OPENEDF: Failing Digital Minimum\n'); EDF.DigMin = -(2^15)*ones(EDF.NS,1); end if (length(EDF.DigMax) ~= EDF.NS) fprintf(2,'Warning OPENEDF: Failing Digital Maximum\n'); EDF.DigMax = (2^15-1)*ones(EDF.NS,1); end if (any(EDF.DigMin >= EDF.DigMax)) fprintf(2,'Warning OPENEDF: Digital Minimum larger than Maximum\n'); end % check validity of PhysMin and PhysMax if (length(EDF.PhysMin) ~= EDF.NS) fprintf(2,'Warning OPENEDF: Failing Physical Minimum\n'); EDF.PhysMin = EDF.DigMin; end if (length(EDF.PhysMax) ~= EDF.NS) fprintf(2,'Warning OPENEDF: Failing Physical Maximum\n'); EDF.PhysMax = EDF.DigMax; end if (any(EDF.PhysMin >= EDF.PhysMax)) fprintf(2,'Warning OPENEDF: Physical Minimum larger than Maximum\n'); EDF.PhysMin = EDF.DigMin; EDF.PhysMax = EDF.DigMax; end EDF.PreFilt= char(fread(EDF.FILE.FID,[80,EDF.NS],'char')'); % tmp = fread(EDF.FILE.FID,[8,EDF.NS],'char')'; % samples per data record EDF.SPR = str2num(char(tmp)); % samples per data record fseek(EDF.FILE.FID,32*EDF.NS,0); EDF.Cal = (EDF.PhysMax-EDF.PhysMin)./ ... (EDF.DigMax-EDF.DigMin); EDF.Off = EDF.PhysMin - EDF.Cal .* EDF.DigMin; tmp = find(EDF.Cal < 0); EDF.Cal(tmp) = ones(size(tmp)); EDF.Off(tmp) = zeros(size(tmp)); EDF.Calib=[EDF.Off';(diag(EDF.Cal))]; %EDF.Calib=sparse(diag([1; EDF.Cal])); %EDF.Calib(1,2:EDF.NS+1)=EDF.Off'; EDF.SampleRate = EDF.SPR / EDF.Dur; EDF.FILE.POS = ftell(EDF.FILE.FID); if EDF.NRec == -1 % unknown record size, determine correct NRec fseek(EDF.FILE.FID, 0, 'eof'); endpos = ftell(EDF.FILE.FID); EDF.NRec = floor((endpos - EDF.FILE.POS) / (sum(EDF.SPR) * 2)); fseek(EDF.FILE.FID, EDF.FILE.POS, 'bof'); H1(237:244)=sprintf('%-8i',EDF.NRec); % write number of records end; EDF.Chan_Select=(EDF.SPR==max(EDF.SPR)); for k=1:EDF.NS if EDF.Chan_Select(k) EDF.ChanTyp(k)='N'; else EDF.ChanTyp(k)=' '; end; if findstr(upper(EDF.Label(k,:)),'ECG') EDF.ChanTyp(k)='C'; elseif findstr(upper(EDF.Label(k,:)),'EKG') EDF.ChanTyp(k)='C'; elseif findstr(upper(EDF.Label(k,:)),'EEG') EDF.ChanTyp(k)='E'; elseif findstr(upper(EDF.Label(k,:)),'EOG') EDF.ChanTyp(k)='O'; elseif findstr(upper(EDF.Label(k,:)),'EMG') EDF.ChanTyp(k)='M'; end; end; EDF.AS.spb = sum(EDF.SPR); % Samples per Block bi=[0;cumsum(EDF.SPR)]; idx=[];idx2=[]; for k=1:EDF.NS, idx2=[idx2, (k-1)*max(EDF.SPR)+(1:EDF.SPR(k))]; end; maxspr=max(EDF.SPR); idx3=zeros(EDF.NS*maxspr,1); for k=1:EDF.NS, idx3(maxspr*(k-1)+(1:maxspr))=bi(k)+ceil((1:maxspr)'/maxspr*EDF.SPR(k));end; %EDF.AS.bi=bi; EDF.AS.IDX2=idx2; %EDF.AS.IDX3=idx3; DAT.Head=EDF; DAT.MX.ReRef=1; %DAT.MX=feval('loadxcm',EDF); return;
github
lcnhappe/happe-master
ft_trialfun_general.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/trialfun/ft_trialfun_general.m
13,804
utf_8
24b04b8f0e079fd37494db20f8d6a99a
function [trl, event] = ft_trialfun_general(cfg) % FT_TRIALFUN_GENERAL determines trials/segments in the data that are % interesting for analysis, using the general event structure returned % by read_event. This function is independent of the dataformat % % The trialdef structure can contain the following specifications % cfg.trialdef.eventtype = 'string' % cfg.trialdef.eventvalue = number, string or list with numbers or strings % cfg.trialdef.prestim = latency in seconds (optional) % cfg.trialdef.poststim = latency in seconds (optional) % % If you want to read all data from a continous file in segments, you can specify % cfg.trialdef.triallength = duration in seconds (can be Inf) % cfg.trialdef.ntrials = number of trials % % If you specify % cfg.trialdef.eventtype = '?' % a list with the events in your datafile will be displayed on screen. % % If you specify % cfg.trialdef.eventtype = 'gui' % a graphical user interface will allow you to select events of interest. % % See also FT_DEFINETRIAL, FT_PREPROCESSING % Copyright (C) 2005-2012, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % some events do not require the specification a type, pre or poststim period % in that case it is more convenient not to have them, instead of making them empty if ~isfield(cfg, 'trialdef') cfg.trialdef = []; end if isfield(cfg.trialdef, 'eventvalue') && isempty(cfg.trialdef.eventvalue ), cfg.trialdef = rmfield(cfg.trialdef, 'eventvalue' ); end if isfield(cfg.trialdef, 'prestim') && isempty(cfg.trialdef.prestim ), cfg.trialdef = rmfield(cfg.trialdef, 'prestim' ); end if isfield(cfg.trialdef, 'poststim') && isempty(cfg.trialdef.poststim ), cfg.trialdef = rmfield(cfg.trialdef, 'poststim' ); end if isfield(cfg.trialdef, 'triallength') && isempty(cfg.trialdef.triallength ), cfg.trialdef = rmfield(cfg.trialdef, 'triallength'); end if isfield(cfg.trialdef, 'ntrials') && isempty(cfg.trialdef.ntrials ), cfg.trialdef = rmfield(cfg.trialdef, 'ntrials' ); end if isfield(cfg.trialdef, 'triallength') % reading all segments from a continuous file is incompatible with any other option try, cfg.trialdef = rmfield(cfg.trialdef, 'eventvalue'); end try, cfg.trialdef = rmfield(cfg.trialdef, 'prestim' ); end try, cfg.trialdef = rmfield(cfg.trialdef, 'poststim' ); end if ~isfield(cfg.trialdef, 'ntrials') if isinf(cfg.trialdef.triallength) cfg.trialdef.ntrials = 1; else cfg.trialdef.ntrials = inf; end end end % default rejection parameter if ~isfield(cfg, 'eventformat'), cfg.eventformat = []; end if ~isfield(cfg, 'headerformat'), cfg.headerformat = []; end if ~isfield(cfg, 'dataformat'), cfg.dataformat = []; end % read the header, contains the sampling frequency hdr = ft_read_header(cfg.headerfile, 'headerformat', cfg.headerformat); % read the events if isfield(cfg, 'event') fprintf('using the events from the configuration structure\n'); event = cfg.event; else fprintf('reading the events from ''%s''\n', cfg.headerfile); event = ft_read_event(cfg.headerfile, 'headerformat', cfg.headerformat, 'eventformat', cfg.eventformat, 'dataformat', cfg.dataformat); end % for the following, the trials do not depend on the events in the data if isfield(cfg.trialdef, 'triallength') if isinf(cfg.trialdef.triallength) % make one long trial with the complete continuous data in it trl = [1 hdr.nSamples*hdr.nTrials 0]; elseif isinf(cfg.trialdef.ntrials) % cut the continous data into as many segments as possible nsamples = round(cfg.trialdef.triallength*hdr.Fs); trlbeg = 1:nsamples:(hdr.nSamples*hdr.nTrials - nsamples + 1); trlend = trlbeg + nsamples - 1; offset = zeros(size(trlbeg)); trl = [trlbeg(:) trlend(:) offset(:)]; else % make the pre-specified number of trials nsamples = round(cfg.trialdef.triallength*hdr.Fs); trlbeg = (0:(cfg.trialdef.ntrials-1))*nsamples + 1; trlend = trlbeg + nsamples - 1; offset = zeros(size(trlbeg)); trl = [trlbeg(:) trlend(:) offset(:)]; end return end trl = []; val = []; if isfield(cfg.trialdef, 'eventtype') if strcmp(cfg.trialdef.eventtype, '?') % no trials should be added, show event information using subfunction and exit show_event(event); return elseif strcmp(cfg.trialdef.eventtype, 'gui') || (isfield(cfg.trialdef, 'eventvalue') && length(cfg.trialdef.eventvalue)==1 && strcmp(cfg.trialdef.eventvalue, 'gui')) cfg.trialdef = select_event(event, cfg.trialdef); usegui = 1; else usegui = 0; end else usegui = 0; end % start by selecting all events sel = true(1, length(event)); % this should be a row vector % select all events of the specified type if isfield(cfg.trialdef, 'eventtype') && ~isempty(cfg.trialdef.eventtype) for i=1:numel(event) sel(i) = sel(i) && ismatch(event(i).type, cfg.trialdef.eventtype); end elseif ~isfield(cfg.trialdef, 'eventtype') || isempty(cfg.trialdef.eventtype) % search for trial events for i=1:numel(event) sel(i) = sel(i) && ismatch(event(i).type, 'trial'); end end % select all events with the specified value if isfield(cfg.trialdef, 'eventvalue') && ~isempty(cfg.trialdef.eventvalue) for i=1:numel(event) sel(i) = sel(i) && ismatch(event(i).value, cfg.trialdef.eventvalue); end end % convert from boolean vector into a list of indices sel = find(sel); if usegui % Checks whether offset and duration are defined for all the selected % events and/or prestim/poststim are defined in trialdef. if (any(cellfun('isempty', {event(sel).offset})) || ... any(cellfun('isempty', {event(sel).duration}))) && ... ~(isfield(cfg.trialdef, 'prestim') && isfield(cfg.trialdef, 'poststim')) % If at least some of offset/duration values and prestim/poststim % values are missing tries to ask the user for prestim/poststim answer = inputdlg({'Prestimulus latency (sec)','Poststimulus latency (sec)'}, 'Enter borders'); if isempty(answer) || any(cellfun('isempty', answer)) error('The information in the data and cfg is insufficient to define trials.'); else cfg.trialdef.prestim=str2double(answer{1}); cfg.trialdef.poststim=str2double(answer{2}); if isnan(cfg.trialdef.prestim) || isnan(cfg.trialdef.poststim) error('Illegal input for trial borders'); end end end % if specification is not complete end % if usegui for i=sel % catch empty fields in the event table and interpret them meaningfully if isempty(event(i).offset) % time axis has no offset relative to the event event(i).offset = 0; end if isempty(event(i).duration) % the event does not specify a duration event(i).duration = 0; end % determine where the trial starts with respect to the event if ~isfield(cfg.trialdef, 'prestim') trloff = event(i).offset; trlbeg = event(i).sample; else % override the offset of the event trloff = round(-cfg.trialdef.prestim*hdr.Fs); % also shift the begin sample with the specified amount trlbeg = event(i).sample + trloff; end % determine the number of samples that has to be read (excluding the begin sample) if ~isfield(cfg.trialdef, 'poststim') trldur = max(event(i).duration - 1, 0); else % this will not work if prestim was not defined, the code will then crash trldur = round((cfg.trialdef.poststim+cfg.trialdef.prestim)*hdr.Fs) - 1; end trlend = trlbeg + trldur; % add the beginsample, endsample and offset of this trial to the list % if all samples are in the dataset if trlbeg>0 && trlend<=hdr.nSamples*hdr.nTrials, trl = [trl; [trlbeg trlend trloff]]; if isnumeric(event(i).value), val = [val; event(i).value]; elseif ischar(event(i).value) && numel(event(i).value)>1 && (event(i).value(1)=='S'|| event(i).value(1)=='R') % on brainvision these are called 'S 1' for stimuli or 'R 1' for responses val = [val; str2double(event(i).value(2:end))]; else val = [val; nan]; end end end % append the vector with values if ~isempty(val) && ~all(isnan(val)) && size(trl,1)==size(val,1) trl = [trl val]; end if usegui && ~isempty(trl) % This complicated line just computes the trigger times in seconds and % converts them to a cell array of strings to use in the GUI eventstrings = cellfun(@num2str, mat2cell((trl(:, 1)- trl(:, 3))./hdr.Fs , ones(1, size(trl, 1))), 'UniformOutput', 0); % Let us start with handling at least the completely unsegmented case % semi-automatically. The more complicated cases are better left % to the user. if hdr.nTrials==1 selected = find(trl(:,1)>0 & trl(:,2)<=hdr.nSamples); else selected = find(trl(:,1)>0); end indx = select_channel_list(eventstrings, selected , 'Select events'); trl=trl(indx, :); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION that shows event table %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function show_event(event) if isempty(event) fprintf('no events were found in the datafile\n'); return end eventtype = unique({event.type}); Neventtype = length(eventtype); if Neventtype==0 fprintf('no events were found in the datafile\n'); else fprintf('the following events were found in the datafile\n'); for i=1:Neventtype sel = find(strcmp(eventtype{i}, {event.type})); try eventvalue = unique({event(sel).value}); % cell-array with string value eventvalue = sprintf('''%s'' ', eventvalue{:}); % translate into a single string catch eventvalue = unique(cell2mat({event(sel).value})); % array with numeric values or empty eventvalue = num2str(eventvalue); % translate into a single string end fprintf('event type: ''%s'' ', eventtype{i}); fprintf('with event values: %s', eventvalue); fprintf('\n'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION that allows the user to select an event using gui %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function trialdef = select_event(event, trialdef) if isempty(event) fprintf('no events were found in the datafile\n'); return end if strcmp(trialdef.eventtype, 'gui') eventtype = unique({event.type}); else eventtype ={trialdef.eventtype}; end Neventtype = length(eventtype); if Neventtype==0 fprintf('no events were found in the datafile\n'); else % Two lists are built in parallel settings={}; % The list of actual values to be used later strsettings={}; % The list of strings to show in the GUI for i=1:Neventtype sel = find(strcmp(eventtype{i}, {event.type})); emptyval = find(cellfun('isempty', {event(sel).value})); if all(cellfun(@isnumeric, {event(sel).value})) [event(sel(emptyval)).value]=deal(Inf); eventvalue = unique([event(sel).value]); else if ~isempty(find(strcmp('Inf', {event(sel).value}))) % It's a very unlikely scenario but ... warning('Event value''Inf'' cannot be handled by GUI selection. Mistakes are possible.') end [event(sel(emptyval)).value]=deal('Inf'); eventvalue = unique({event(sel).value}); if ~iscell(eventvalue) eventvalue = {eventvalue}; end end for j=1:length(eventvalue) if (isnumeric(eventvalue(j)) && eventvalue(j)~=Inf) || ... (iscell(eventvalue(j)) && ischar(eventvalue{j}) && ~strcmp(eventvalue{j}, 'Inf')) settings = [settings; [eventtype(i), eventvalue(j)]]; else settings = [settings; [eventtype(i), {[]}]]; end if isa(eventvalue, 'numeric') strsettings = [strsettings; {['Type: ' eventtype{i} ' ; Value: ' num2str(eventvalue(j))]}]; else strsettings = [strsettings; {['Type: ' eventtype{i} ' ; Value: ' eventvalue{j}]}]; end end end if isempty(strsettings) fprintf('no events of the selected type were found in the datafile\n'); return end [selection, ok] = listdlg('ListString',strsettings, 'SelectionMode', 'multiple', 'Name', 'Select event', 'ListSize', [300 300]); if ok trialdef.eventtype = settings(selection,1); trialdef.eventvalue = settings(selection,2); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION returns true if x is a member of array y, regardless of the class of x and y %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function s = ismatch(x, y) if isempty(x) || isempty(y) s = false; elseif ischar(x) && ischar(y) s = strcmp(x, y); elseif isnumeric(x) && isnumeric(y) s = ismember(x, y); elseif ischar(x) && iscell(y) y = y(strcmp(class(x), cellfun(@class, y, 'UniformOutput', false))); s = ismember(x, y); elseif isnumeric(x) && iscell(y) && all(cellfun(@isnumeric, y)) s = false; for i=1:numel(y) s = s || ismember(x, y{i}); end else s = false; end
github
lcnhappe/happe-master
ft_trialfun_realtime.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/trialfun/ft_trialfun_realtime.m
4,420
utf_8
d7133e3da082881a031513a257c0a2d9
function trl = ft_trialfun_realtime(cfg) % FT_TRIALFUN_REALTIME can be used to segment a continuous stream of % data in real-time. Trials are defined as [begsample endsample offset % condition] % % The configuration structure can contain the following specifications % cfg.minsample = the last sample number that was already considered (passed from rt_process) % cfg.blocksize = in seconds. In case of events, offset is % wrt the trigger. % cfg.offset = the offset wrt the 0 point. In case of no events, offset is wrt % prevSample. E.g., [-0.9 1] will read 1 second blocks with % 0.9 second overlap % cfg.bufferdata = {'first' 'last'}. If 'last' then only the last block of % interest is read. Otherwise, all well-defined blocks are read (default = 'first') % Copyright (C) 2009, Marcel van Gerven % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if ~isfield(cfg,'minsample'), cfg.minsample = 0; end if ~isfield(cfg,'blocksize'), cfg.blocksize = 0.1; end if ~isfield(cfg,'offset'), cfg.offset = 0; end if ~isfield(cfg,'bufferdata'), cfg.bufferdata = 'first'; end if ~isfield(cfg,'triggers'), cfg.triggers = []; end % blocksize and offset in terms of samples cfg.blocksize = round(cfg.blocksize * cfg.hdr.Fs); cfg.offset = round(cfg.offset * cfg.hdr.Fs); % retrieve trials of interest if isempty(cfg.event) % asynchronous mode trl = trialfun_asynchronous(cfg); else % synchronous mode trl = trialfun_synchronous(cfg); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function trl = trialfun_asynchronous(cfg) trl = []; prevSample = cfg.minsample; if strcmp(cfg.bufferdata, 'last') % only get last block % begsample starts blocksize samples before the end begsample = cfg.hdr.nSamples*cfg.hdr.nTrials - cfg.blocksize; % begsample should be offset samples away from the previous read if begsample >= (prevSample + cfg.offset) endsample = cfg.hdr.nSamples*cfg.hdr.nTrials; if begsample < endsample && begsample > 0 trl = [begsample endsample 0 nan]; end end else % get all blocks while true % see whether new samples are available newsamples = (cfg.hdr.nSamples*cfg.hdr.nTrials-prevSample); % if newsamples exceeds the offset plus length specified in blocksize if newsamples >= (cfg.offset+cfg.blocksize) % we do not consider samples < 1 begsample = max(1,prevSample+cfg.offset); endsample = max(1,prevSample+cfg.offset+cfg.blocksize); if begsample < endsample && endsample <= cfg.hdr.nSamples*cfg.hdr.nTrials trl = [trl; [begsample endsample 0 nan]]; end prevSample = endsample; else break; end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function trl = trialfun_synchronous(cfg) trl = []; % process all events for j=1:length(cfg.event) if isempty(cfg.triggers) curtrig = cfg.event(j).value; else [m1,curtrig] = ismember(cfg.event(j).value,cfg.triggers); end if isempty(curtrig), curtrig = nan; end if isempty(cfg.triggers) || (~isempty(m1) && m1) % catched a trigger of interest % we do not consider samples < 1 begsample = max(1,cfg.event(j).sample + cfg.offset); endsample = max(1,begsample + cfg.blocksize); trl = [trl; [begsample endsample cfg.offset curtrig]]; end end
github
lcnhappe/happe-master
select_channel_list.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/trialfun/private/select_channel_list.m
5,924
utf_8
94982b0a4829981930c1c446e459ca7c
function [select] = select_channel_list(label, select, titlestr) % SELECT_CHANNEL_LIST presents a dialog for selecting multiple elements % from a cell array with strings, such as the labels of EEG channels. % The dialog presents two columns with an add and remove mechanism. % % select = select_channel_list(label, initial, titlestr) % % with % initial indices of channels that are initially selected % label cell array with channel labels (strings) % titlestr title for dialog (optional) % and % select indices of selected channels % % If the user presses cancel, the initial selection will be returned. % Copyright (C) 2003, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if nargin<3 titlestr = 'Select'; end pos = get(0,'DefaultFigurePosition'); pos(3:4) = [290 300]; dlg = dialog('Name', titlestr, 'Position', pos); set(gca, 'Visible', 'off'); % explicitly turn the axis off, as it sometimes appears select = select(:)'; % ensure that it is a row array userdata.label = label; userdata.select = select; userdata.unselect = setdiff(1:length(label), select); set(dlg, 'userdata', userdata); uicontrol(dlg, 'style', 'text', 'position', [ 10 240+20 80 20], 'string', 'unselected'); uicontrol(dlg, 'style', 'text', 'position', [200 240+20 80 20], 'string', 'selected '); uicontrol(dlg, 'style', 'listbox', 'position', [ 10 40+20 80 200], 'min', 0, 'max', 2, 'tag', 'lbunsel') uicontrol(dlg, 'style', 'listbox', 'position', [200 40+20 80 200], 'min', 0, 'max', 2, 'tag', 'lbsel') uicontrol(dlg, 'style', 'pushbutton', 'position', [105 175+20 80 20], 'string', 'add all >' , 'callback', @label_addall); uicontrol(dlg, 'style', 'pushbutton', 'position', [105 145+20 80 20], 'string', 'add >' , 'callback', @label_add); uicontrol(dlg, 'style', 'pushbutton', 'position', [105 115+20 80 20], 'string', '< remove' , 'callback', @label_remove); uicontrol(dlg, 'style', 'pushbutton', 'position', [105 85+20 80 20], 'string', '< remove all', 'callback', @label_removeall); uicontrol(dlg, 'style', 'pushbutton', 'position', [ 55 10 80 20], 'string', 'Cancel', 'callback', 'close'); uicontrol(dlg, 'style', 'pushbutton', 'position', [155 10 80 20], 'string', 'OK', 'callback', 'uiresume'); label_redraw(dlg); % wait untill the dialog is closed or the user presses OK/Cancel uiwait(dlg); if ishandle(dlg) % the user pressed OK, return the selection from the dialog userdata = get(dlg, 'userdata'); select = userdata.select; close(dlg); return else % the user pressed Cancel or closed the dialog, return the initial selection return end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function label_redraw(h) userdata = get(h, 'userdata'); set(findobj(h, 'tag', 'lbsel' ), 'string', userdata.label(userdata.select)); set(findobj(h, 'tag', 'lbunsel'), 'string', userdata.label(userdata.unselect)); % set the active element in the select listbox, based on the previous active element tmp = min(get(findobj(h, 'tag', 'lbsel'), 'value')); tmp = min(tmp, length(get(findobj(h, 'tag', 'lbsel'), 'string'))); if isempty(tmp) | tmp==0 tmp = 1; end set(findobj(h, 'tag', 'lbsel' ), 'value', tmp); % set the active element in the unselect listbox, based on the previous active element tmp = min(get(findobj(h, 'tag', 'lbunsel'), 'value')); tmp = min(tmp, length(get(findobj(h, 'tag', 'lbunsel'), 'string'))); if isempty(tmp) | tmp==0 tmp = 1; end set(findobj(h, 'tag', 'lbunsel' ), 'value', tmp); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function label_addall(h, eventdata, handles, varargin) h = get(h, 'parent'); userdata = get(h, 'userdata'); userdata.select = 1:length(userdata.label); userdata.unselect = []; set(findobj(h, 'tag', 'lbunsel' ), 'value', 1); set(h, 'userdata', userdata); label_redraw(h); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function label_removeall(h, eventdata, handles, varargin) h = get(h, 'parent'); userdata = get(h, 'userdata'); userdata.unselect = 1:length(userdata.label); userdata.select = []; set(findobj(h, 'tag', 'lbsel' ), 'value', 1); set(h, 'userdata', userdata); label_redraw(h); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function label_add(h, eventdata, handles, varargin) h = get(h, 'parent'); userdata = get(h, 'userdata'); if ~isempty(userdata.unselect) add = userdata.unselect(get(findobj(h, 'tag', 'lbunsel' ), 'value')); userdata.select = sort([userdata.select add]); userdata.unselect = sort(setdiff(userdata.unselect, add)); set(h, 'userdata', userdata); label_redraw(h); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function label_remove(h, eventdata, handles, varargin); h = get(h, 'parent'); userdata = get(h, 'userdata'); if ~isempty(userdata.select) remove = userdata.select(get(findobj(h, 'tag', 'lbsel' ), 'value')); userdata.select = sort(setdiff(userdata.select, remove)); userdata.unselect = sort([userdata.unselect remove]); set(h, 'userdata', userdata); label_redraw(h); end
github
lcnhappe/happe-master
ft_headmodel_fns.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/ft_headmodel_fns.m
5,517
utf_8
f2babb12e0dbf26d42ff2aa1a9791792
function headmodel = ft_headmodel_fns(seg, varargin) % FT_HEADMODEL_FNS creates the volume conduction structure to be used % in the FNS forward solver. % % Use as % headmodel = ft_headmodel_fns(seg, ...) % % Optional input arguments should be specified in key-value pairs and % can include % tissuecond = matrix C [9XN tissue types]; where N is the number of % tissues and a 3x3 tensor conductivity matrix is stored % in each column. % tissue = see fns_contable_write % tissueval = match tissues of segmentation input % transform = 4x4 transformation matrix (default eye(4)) % sens = sensor information (for which ft_datatype(sens,'sens')==1) % deepelec = used in the case of deep voxel solution % tolerance = scalar (default 1e-8) % % Standard default values for conductivity matrix C are derived from % Saleheen HI, Ng KT. New finite difference formulations for general % inhomogeneous anisotropic bioelectric problems. IEEE Trans Biomed Eng. % 1997 % % Additional documentation available at: % http://hunghienvn.nmsu.edu/wiki/index.php/FNS % % See also FT_PREPARE_VOL_SENS, FT_COMPUTE_LEADFIELD % Copyright (C) 2011, Cristiano Micheli and Hung Dang % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ ft_hastoolbox('fns', 1); % get the optional arguments tissue = ft_getopt(varargin, 'tissue', []); tissueval = ft_getopt(varargin, 'tissueval', []); tissuecond = ft_getopt(varargin, 'tissuecond', []); transform = ft_getopt(varargin, 'transform', eye(4)); unit = ft_getopt(varargin, 'unit', 'mm'); sens = ft_getopt(varargin, 'sens', []); deepelec = ft_getopt(varargin, 'deepelec', []); % used in the case of deep voxel solution tolerance = ft_getopt(varargin, 'tolerance', 1e-8); if isempty(sens) error('A set of sensors is required') end if ispc error('FNS only works on Linux and OS X') end % check the consistency between tissue values and the segmentation vecval = ismember(tissueval,unique(seg(:))); if any(vecval)==0 warning('Some of the tissue values are not in the segmentation') end % create the files to be written try tmpfolder = pwd; cd(tempdir) [tmp,tname] = fileparts(tempname); segfile = [tname]; [tmp,tname] = fileparts(tempname); confile = [tname '.csv']; [tmp,tname] = fileparts(tempname); elecfile = [tname '.h5']; [tmp,tname] = fileparts(tempname); exefile = [tname '.sh']; [tmp,tname] = fileparts(tempname); datafile = [tname '.h5']; % this requires the fieldtrip/fileio toolbox ft_hastoolbox('fileio', 1); % create a fake mri structure and write the segmentation on disk disp('writing the segmentation file...') mri = []; mri.dim = size(seg); mri.transform = eye(4); mri.seg = uint8(seg); cfg = []; cfg.datatype = 'uint8'; cfg.coordsys = 'ctf'; cfg.parameter = 'seg'; cfg.filename = segfile; cfg.filetype = 'analyze'; ft_volumewrite(cfg, mri); % write the cond matrix on disk, load the default cond matrix in case not specified disp('writing the conductivity file...') condmatrix = fns_contable_write('tissue',tissue,'tissueval',tissueval,'tissuecond',tissuecond); csvwrite(confile,condmatrix); % write the positions of the electrodes on disk disp('writing the electrodes file...') pos = ft_warp_apply(inv(transform),sens.elecpos); % in voxel coordinates! % convert pos into int32 datatype. hdf5write(elecfile, '/electrodes/gridlocs', int32(pos)); % Exe file efid = fopen(exefile, 'w'); if ~ispc fprintf(efid,'#!/usr/bin/env bash\n'); fprintf(efid,['elecsfwd1 -img ' segfile ' -electrodes ./' elecfile ' -data ./', ... datafile ' -contable ./' confile ' -TOL ' num2str(tolerance) ' \n']);%2>&1 > /dev/null end fclose(efid); % run the shell instructions dos(sprintf('chmod +x %s', exefile)); dos(['./' exefile]); % FIXME: find a cleverer way to store the huge transfer matrix (vista?) [transfer,status] = fns_read_transfer(datafile); cleaner(segfile,confile,elecfile,exefile,datafile) catch ME disp('The transfer matrix was not written') cleaner(segfile,confile,elecfile,exefile,datafile) cd(tmpfolder) rethrow(ME) end % start with an empty volume conductor headmodel = []; headmodel.tissue = tissue; headmodel.tissueval = tissueval; headmodel.transform = transform; headmodel.unit = unit; headmodel.segdim = size(seg); headmodel.type = 'fns'; headmodel.transfer = transfer; if ~isempty(deepelec) headmodel.deepelec = deepelec; end function cleaner(segfile,confile,elecfile,exefile,datafile) delete([segfile '.hdr']); delete([segfile '.img']); delete(confile); delete(elecfile); delete(exefile); delete(datafile);
github
lcnhappe/happe-master
ft_convert_units.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/ft_convert_units.m
10,207
utf_8
d3c04f1222517baf2f069d68e3dd6abe
function [obj] = ft_convert_units(obj, target, varargin) % FT_CONVERT_UNITS changes the geometrical dimension to the specified SI unit. % The units of the input object is determined from the structure field % object.unit, or is estimated based on the spatial extend of the structure, % e.g. a volume conduction model of the head should be approximately 20 cm large. % % Use as % [object] = ft_convert_units(object, target) % % The following geometrical objects are supported as inputs % electrode or gradiometer array, see FT_DATATYPE_SENS % volume conductor, see FT_DATATYPE_HEADMODEL % anatomical mri, see FT_DATATYPE_VOLUME % segmented mri, see FT_DATATYPE_SEGMENTATION % dipole grid definition, see FT_DATATYPE_SOURCE % % Possible target units are 'm', 'dm', 'cm ' or 'mm'. If no target units % are specified, this function will only determine the native geometrical % units of the object. % % See also FT_ESTIMATE_UNITS, FT_READ_VOL, FT_READ_SENS % Copyright (C) 2005-2016, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % This function consists of three parts: % 1) determine the input units % 2) determine the requested scaling factor to obtain the output units % 3) try to apply the scaling to the known geometrical elements in the input object feedback = ft_getopt(varargin, 'feedback', false); if isstruct(obj) && numel(obj)>1 % deal with a structure array for i=1:numel(obj) if nargin>1 tmp(i) = ft_convert_units(obj(i), target, varargin{:}); else tmp(i) = ft_convert_units(obj(i)); end end obj = tmp; return elseif iscell(obj) && numel(obj)>1 % deal with a cell array % this might represent combined EEG, ECoG and/or MEG for i=1:numel(obj) obj{i} = ft_convert_units(obj{i}, target, varargin{:}); end return end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % determine the unit-of-dimension of the input object %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isfield(obj, 'unit') && ~isempty(obj.unit) % use the units specified in the object unit = obj.unit; elseif isfield(obj, 'bnd') && isfield(obj.bnd, 'unit') unit = unique({obj.bnd.unit}); if ~all(strcmp(unit, unit{1})) error('inconsistent units in the individual boundaries'); else unit = unit{1}; end % keep one representation of the units rather than keeping it with each boundary % the units will be reassigned further down obj.bnd = rmfield(obj.bnd, 'unit'); else % try to determine the units by looking at the size of the object if isfield(obj, 'chanpos') && ~isempty(obj.chanpos) siz = norm(idrange(obj.chanpos)); unit = ft_estimate_units(siz); elseif isfield(obj, 'elecpos') && ~isempty(obj.elecpos) siz = norm(idrange(obj.elecpos)); unit = ft_estimate_units(siz); elseif isfield(obj, 'coilpos') && ~isempty(obj.coilpos) siz = norm(idrange(obj.coilpos)); unit = ft_estimate_units(siz); elseif isfield(obj, 'pnt') && ~isempty(obj.pnt) siz = norm(idrange(obj.pnt)); unit = ft_estimate_units(siz); elseif isfield(obj, 'pos') && ~isempty(obj.pos) siz = norm(idrange(obj.pos)); unit = ft_estimate_units(siz); elseif isfield(obj, 'transform') && ~isempty(obj.transform) % construct the corner points of the volume in voxel and in head coordinates [pos_voxel, pos_head] = cornerpoints(obj.dim, obj.transform); siz = norm(idrange(pos_head)); unit = ft_estimate_units(siz); elseif isfield(obj, 'fid') && isfield(obj.fid, 'pnt') && ~isempty(obj.fid.pnt) siz = norm(idrange(obj.fid.pnt)); unit = ft_estimate_units(siz); elseif isfield(obj, 'fid') && isfield(obj.fid, 'pos') && ~isempty(obj.fid.pos) siz = norm(idrange(obj.fid.pos)); unit = ft_estimate_units(siz); elseif ft_voltype(obj, 'infinite') % this is an infinite medium volume conductor, which does not care about units unit = 'm'; elseif ft_voltype(obj,'singlesphere') siz = obj.r; unit = ft_estimate_units(siz); elseif ft_voltype(obj,'localspheres') siz = median(obj.r); unit = ft_estimate_units(siz); elseif ft_voltype(obj,'concentricspheres') siz = max(obj.r); unit = ft_estimate_units(siz); elseif isfield(obj, 'bnd') && isstruct(obj.bnd) && isfield(obj.bnd(1), 'pnt') && ~isempty(obj.bnd(1).pnt) siz = norm(idrange(obj.bnd(1).pnt)); unit = ft_estimate_units(siz); elseif isfield(obj, 'bnd') && isstruct(obj.bnd) && isfield(obj.bnd(1), 'pos') && ~isempty(obj.bnd(1).pos) siz = norm(idrange(obj.bnd(1).pos)); unit = ft_estimate_units(siz); elseif isfield(obj, 'nas') && isfield(obj, 'lpa') && isfield(obj, 'rpa') pnt = [obj.nas; obj.lpa; obj.rpa]; siz = norm(idrange(pnt)); unit = ft_estimate_units(siz); else error('cannot determine geometrical units'); end % recognized type of volume conduction model or sensor array end % determine input units if nargin<2 || isempty(target) % just remember the units in the output and return obj.unit = unit; return elseif strcmp(unit, target) % no conversion is needed obj.unit = unit; return end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute the scaling factor from the input units to the desired ones %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% scale = ft_scalingfactor(unit, target); if istrue(feedback) % give some information about the conversion fprintf('converting units from ''%s'' to ''%s''\n', unit, target) end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % apply the scaling factor %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % volume conductor model if isfield(obj, 'r'), obj.r = scale * obj.r; end if isfield(obj, 'o'), obj.o = scale * obj.o; end if isfield(obj, 'bnd') && isfield(obj.bnd, 'pnt') for i=1:length(obj.bnd) obj.bnd(i).pnt = scale * obj.bnd(i).pnt; end end if isfield(obj, 'bnd') && isfield(obj.bnd, 'pos') for i=1:length(obj.bnd) obj.bnd(i).pos = scale * obj.bnd(i).pos; end end % old-fashioned gradiometer array if isfield(obj, 'pnt1'), obj.pnt1 = scale * obj.pnt1; end if isfield(obj, 'pnt2'), obj.pnt2 = scale * obj.pnt2; end if isfield(obj, 'prj'), obj.prj = scale * obj.prj; end % gradiometer array, electrode array, head shape or dipole grid if isfield(obj, 'pnt'), obj.pnt = scale * obj.pnt; end if isfield(obj, 'pos'), obj.pos = scale * obj.pos; end if isfield(obj, 'chanpos'), obj.chanpos = scale * obj.chanpos; end if isfield(obj, 'chanposorg'), obj.chanposold = scale * obj.chanposorg; end % pre-2016 version if isfield(obj, 'chanposold'), obj.chanposold = scale * obj.chanposold; end % 2016 version and later if isfield(obj, 'coilpos'), obj.coilpos = scale * obj.coilpos; end if isfield(obj, 'elecpos'), obj.elecpos = scale * obj.elecpos; end % gradiometer array that combines multiple coils in one channel if isfield(obj, 'tra') && isfield(obj, 'chanunit') % find the gradiometer channels that are expressed as unit of field strength divided by unit of distance, e.g. T/cm for i=1:length(obj.chanunit) tok = tokenize(obj.chanunit{i}, '/'); if ~isempty(regexp(obj.chanunit{i}, 'm$', 'once')) % assume that it is T/m or so obj.tra(i,:) = obj.tra(i,:) / scale; obj.chanunit{i} = [tok{1} '/' target]; elseif ~isempty(regexp(obj.chanunit{i}, '[T|V]$', 'once')) % assume that it is T or V, don't do anything elseif strcmp(obj.chanunit{i}, 'unknown') % assume that it is T or V, don't do anything else error('unexpected units %s', obj.chanunit{i}); end end % for end % if % fiducials if isfield(obj, 'fid') && isfield(obj.fid, 'pnt'), obj.fid.pnt = scale * obj.fid.pnt; end if isfield(obj, 'fid') && isfield(obj.fid, 'pos'), obj.fid.pos = scale * obj.fid.pos; end % dipole grid if isfield(obj, 'resolution'), obj.resolution = scale * obj.resolution; end % x,y,zgrid can also be 'auto' if isfield(obj, 'xgrid') && ~ischar(obj.xgrid), obj.xgrid = scale * obj.xgrid; end if isfield(obj, 'ygrid') && ~ischar(obj.ygrid), obj.ygrid = scale * obj.ygrid; end if isfield(obj, 'zgrid') && ~ischar(obj.zgrid), obj.zgrid = scale * obj.zgrid; end % anatomical MRI or functional volume if isfield(obj, 'transform'), H = diag([scale scale scale 1]); obj.transform = H * obj.transform; end if isfield(obj, 'transformorig'), H = diag([scale scale scale 1]); obj.transformorig = H * obj.transformorig; end % sourcemodel obtained through mne also has a orig-field with the high % number of vertices if isfield(obj, 'orig') if isfield(obj.orig, 'pnt') obj.orig.pnt = scale * obj.orig.pnt; end if isfield(obj.orig, 'pos') obj.orig.pos = scale * obj.orig.pos; end end % remember the unit obj.unit = target; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % IDRANGE interdecile range for more robust range estimation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function r = idrange(x) keeprow=true(size(x,1),1); for l=1:size(x,2) keeprow = keeprow & isfinite(x(:,l)); end sx = sort(x(keeprow,:), 1); ii = round(interp1([0, 1], [1, size(x(keeprow,:), 1)], [.1, .9])); % indices for 10 & 90 percentile r = diff(sx(ii, :));
github
lcnhappe/happe-master
ft_apply_montage.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/ft_apply_montage.m
21,632
utf_8
44431986d20b2a03b833ec06858af91d
function [input] = ft_apply_montage(input, montage, varargin) % FT_APPLY_MONTAGE changes the montage of an electrode or gradiometer array. A % montage can be used for EEG rereferencing, MEG synthetic gradients, MEG % planar gradients or unmixing using ICA. This function applies the montage % to the input EEG or MEG sensor array, which can subsequently be used for % forward computation and source reconstruction of the data. % % Use as % [sens] = ft_apply_montage(sens, montage, ...) % [data] = ft_apply_montage(data, montage, ...) % [freq] = ft_apply_montage(freq, montage, ...) % [montage] = ft_apply_montage(montage1, montage2, ...) % % A montage is specified as a structure with the fields % montage.tra = MxN matrix % montage.labelold = Nx1 cell-array % montage.labelnew = Mx1 cell-array % % As an example, a bipolar montage could look like this % bipolar.labelold = {'1', '2', '3', '4'} % bipolar.labelnew = {'1-2', '2-3', '3-4'} % bipolar.tra = [ % +1 -1 0 0 % 0 +1 -1 0 % 0 0 +1 -1 % ]; % % The montage can optionally also specify the channel type and unit of the input % and output data with % montage.chantypeold = Nx1 cell-array % montage.chantypenew = Mx1 cell-array % montage.chanunitold = Nx1 cell-array % montage.chanunitnew = Mx1 cell-array % % Additional options should be specified in key-value pairs and can be % 'keepunused' string, 'yes' or 'no' (default = 'no') % 'inverse' string, 'yes' or 'no' (default = 'no') % 'balancename' string, name of the montage (default = '') % 'feedback' string, see FT_PROGRESS (default = 'text') % 'warning' boolean, whether to show warnings (default = true) % % If the first input is a montage, then the second input montage will be % applied to the first. In effect, the output montage will first do % montage1, then montage2. % % See also FT_READ_SENS, FT_TRANSFORM_SENS % Copyright (C) 2008-2016, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if iscell(input) && iscell(input) % this represents combined EEG, ECoG and/or MEG for i=1:numel(input) input{i} = ft_apply_montage(input{i}, montage, varargin{:}); end return end % use "old/new" instead of "org/new" montage = fixmontage(montage); input = fixmontage(input); % the input might also be a montage % get optional input arguments keepunused = ft_getopt(varargin, 'keepunused', 'no'); inverse = ft_getopt(varargin, 'inverse', 'no'); feedback = ft_getopt(varargin, 'feedback', 'text'); showwarning = ft_getopt(varargin, 'warning', true); bname = ft_getopt(varargin, 'balancename', ''); if istrue(showwarning) warningfun = @warning; else warningfun = @nowarning; end % these are optional, at the end we will clean up the output in case they did not exist haschantype = (isfield(input, 'chantype') || isfield(input, 'chantypenew')) && all(isfield(montage, {'chantypeold', 'chantypenew'})); haschanunit = (isfield(input, 'chanunit') || isfield(input, 'chanunitnew')) && all(isfield(montage, {'chanunitold', 'chanunitnew'})); % make sure they always exist to facilitate the remainder of the code if ~isfield(montage, 'chantypeold') montage.chantypeold = repmat({'unknown'}, size(montage.labelold)); if isfield(input, 'chantype') && ~istrue(inverse) warning('copying input chantype to montage'); [sel1, sel2] = match_str(montage.labelold, input.label); montage.chantypeold(sel1) = input.chantype(sel2); end end if ~isfield(montage, 'chantypenew') montage.chantypenew = repmat({'unknown'}, size(montage.labelnew)); if isfield(input, 'chantype') && istrue(inverse) warning('copying input chantype to montage'); [sel1, sel2] = match_str(montage.labelnew, input.label); montage.chantypenew(sel1) = input.chantype(sel2); end end if ~isfield(montage, 'chanunitold') montage.chanunitold = repmat({'unknown'}, size(montage.labelold)); if isfield(input, 'chanunit') && ~istrue(inverse) warning('copying input chanunit to montage'); [sel1, sel2] = match_str(montage.labelold, input.label); montage.chanunitold(sel1) = input.chanunit(sel2); end end if ~isfield(montage, 'chanunitnew') montage.chanunitnew = repmat({'unknown'}, size(montage.labelnew)); if isfield(input, 'chanunit') && istrue(inverse) warning('copying input chanunit to montage'); [sel1, sel2] = match_str(montage.labelnew, input.label); montage.chanunitnew(sel1) = input.chanunit(sel2); end end if ~isfield(input, 'label') && isfield(input, 'labelnew') % the input data structure is also a montage inputlabel = input.labelnew; if isfield(input, 'chantypenew') inputchantype = input.chantypenew; else inputchantype = repmat({'unknown'}, size(input.labelnew)); end if isfield(input, 'chanunitnew') inputchanunit = input.chanunitnew; else inputchanunit = repmat({'unknown'}, size(input.labelnew)); end else % the input should describe the channel labels, and optionally the type and unit inputlabel = input.label; if isfield(input, 'chantype') inputchantype = input.chantype; else inputchantype = repmat({'unknown'}, size(input.label)); end if isfield(input, 'chanunit') inputchanunit = input.chanunit; else inputchanunit = repmat({'unknown'}, size(input.label)); end end % check the consistency of the montage if ~iscell(montage.labelold) || ~iscell(montage.labelnew) error('montage labels need to be specified in cell-arrays'); end % check the consistency of the montage if ~all(isfield(montage, {'tra', 'labelold', 'labelnew'})) error('the second input argument does not correspond to a montage'); end % check the consistency of the montage if size(montage.tra,1)~=length(montage.labelnew) error('the number of channels in the montage is inconsistent'); elseif size(montage.tra,2)~=length(montage.labelold) error('the number of channels in the montage is inconsistent'); end % use a default unit transfer from sensors to channels if not otherwise specified if ~isfield(input, 'tra') && isfield(input, 'label') if isfield(input, 'elecpos') && length(input.label)==size(input.elecpos, 1) nchan = length(input.label); input.tra = eye(nchan); elseif isfield(input, 'coilpos') && length(input.label)==size(input.coilpos, 1) nchan = length(input.label); input.tra = eye(nchan); elseif isfield(input, 'chanpos') && length(input.label)==size(input.chanpos, 1) nchan = length(input.label); input.tra = eye(nchan); end end if istrue(inverse) % swap the role of the original and new channels tmp.labelnew = montage.labelold; tmp.labelold = montage.labelnew; tmp.chantypenew = montage.chantypeold; tmp.chantypeold = montage.chantypenew; tmp.chanunitnew = montage.chanunitold; tmp.chanunitold = montage.chanunitnew; % apply the inverse montage, this can be used to undo a previously % applied montage tmp.tra = full(montage.tra); if rank(tmp.tra) < length(tmp.tra) warningfun('the linear projection for the montage is not full-rank, the resulting data will have reduced dimensionality'); tmp.tra = pinv(tmp.tra); else tmp.tra = inv(tmp.tra); end montage = tmp; end % select and keep the columns that are non-empty, i.e. remove the empty columns selcol = find(~all(montage.tra==0, 1)); montage.tra = montage.tra(:,selcol); montage.labelold = montage.labelold(selcol); montage.chantypeold = montage.chantypeold(selcol); montage.chanunitold = montage.chanunitold(selcol); clear selcol % select and remove the columns corresponding to channels that are not present in the % original data remove = setdiff(montage.labelold, intersect(montage.labelold, inputlabel)); selcol = match_str(montage.labelold, remove); % we cannot just remove the colums, all rows that depend on it should also be removed selrow = false(length(montage.labelnew),1); for i=1:length(selcol) selrow = selrow & (montage.tra(:,selcol(i))~=0); end % convert from indices to logical vector selcol = indx2logical(selcol, length(montage.labelold)); % remove rows and columns montage.labelold = montage.labelold(~selcol); montage.labelnew = montage.labelnew(~selrow); montage.chantypeold = montage.chantypeold(~selcol); montage.chantypenew = montage.chantypenew(~selrow); montage.chanunitold = montage.chanunitold(~selcol); montage.chanunitnew = montage.chanunitnew(~selrow); montage.tra = montage.tra(~selrow, ~selcol); clear remove selcol selrow i % add columns for channels that are present in the input data but not specified in % the montage, stick to the original order in the data [dum, ix] = setdiff(inputlabel, montage.labelold); addlabel = inputlabel(sort(ix)); addchantype = inputchantype(sort(ix)); addchanunit = inputchanunit(sort(ix)); m = size(montage.tra,1); n = size(montage.tra,2); k = length(addlabel); % check for NaNs in unused channels; these will be mixed in with the rest % of the channels and result in NaNs in the output even when multiplied % with zeros or identity if k > 0 && isfield(input, 'trial') % check for raw data now only cfg = []; cfg.channel = addlabel; data_unused = ft_selectdata(cfg, input); % use an anonymous function to test for the presence of NaNs in the input data hasnan = @(x) any(isnan(x(:))); if any(cellfun(hasnan, data_unused.trial)) error('FieldTrip:NaNsinInputData', ['Your input data contains NaNs in channels that are unused '... 'in the supplied montage. This would result in undesired NaNs in the '... 'output data. Please remove these channels from the input data (using '... 'ft_selectdata) before attempting to apply the montage.']); end end if istrue(keepunused) % add the channels that are not rereferenced to the input and output of the % montage montage.tra((m+(1:k)),(n+(1:k))) = eye(k); montage.labelold = cat(1, montage.labelold(:), addlabel(:)); montage.labelnew = cat(1, montage.labelnew(:), addlabel(:)); montage.chantypeold = cat(1, montage.chantypeold(:), addchantype(:)); montage.chantypenew = cat(1, montage.chantypenew(:), addchantype(:)); montage.chanunitold = cat(1, montage.chanunitold(:), addchanunit(:)); montage.chanunitnew = cat(1, montage.chanunitnew(:), addchanunit(:)); else % add the channels that are not rereferenced to the input of the montage only montage.tra(:,(n+(1:k))) = zeros(m,k); montage.labelold = cat(1, montage.labelold(:), addlabel(:)); montage.chantypeold = cat(1, montage.chantypeold(:), addchantype(:)); montage.chanunitold = cat(1, montage.chanunitold(:), addchanunit(:)); end clear addlabel addchantype addchanunit m n k % determine whether all channels are unique m = size(montage.tra,1); n = size(montage.tra,2); if length(unique(montage.labelnew))~=m error('not all output channels of the montage are unique'); end if length(unique(montage.labelold))~=n error('not all input channels of the montage are unique'); end % determine whether all channels that have to be rereferenced are available if length(intersect(inputlabel, montage.labelold))~=length(montage.labelold) error('not all channels that are required in the montage are available in the data'); end % reorder the columns of the montage matrix [selinput, selmontage] = match_str(inputlabel, montage.labelold); montage.tra = montage.tra(:,selmontage); montage.labelold = montage.labelold(selmontage); montage.chantypeold = montage.chantypeold(selmontage); montage.chanunitold = montage.chanunitold(selmontage); % ensure that the montage is double precision montage.tra = double(montage.tra); % making the tra matrix sparse will speed up subsequent multiplications, but should % not result in a sparse matrix % note that this only makes sense for matrices with a lot of zero elements, for dense % matrices keeping it full will be much quicker if size(montage.tra,1)>1 && nnz(montage.tra)/numel(montage.tra) < 0.3 montage.tra = sparse(montage.tra); else montage.tra = full(montage.tra); end % update the channel scaling if the input has different units than the montage expects if isfield(input, 'chanunit') && ~isequal(input.chanunit, montage.chanunitold) scale = ft_scalingfactor(input.chanunit, montage.chanunitold); montage.tra = montage.tra * diag(scale); montage.chanunitold = input.chanunit; elseif isfield(input, 'chanunitnew') && ~isequal(input.chanunitnew, montage.chanunitold) scale = ft_scalingfactor(input.chanunitnew, montage.chanunitold); montage.tra = montage.tra * diag(scale); montage.chanunitold = input.chanunitnew; end if isfield(input, 'chantype') && ~isequal(input.chantype, montage.chantypeold) error('inconsistent chantype in data and montage'); elseif isfield(input, 'chantypenew') && ~isequal(input.chantypenew, montage.chantypeold) error('inconsistent chantype in data and montage'); end if isfield(input, 'labelold') && isfield(input, 'labelnew') inputtype = 'montage'; elseif isfield(input, 'tra') inputtype = 'sens'; elseif isfield(input, 'trial') inputtype = 'raw'; elseif isfield(input, 'fourierspctrm') inputtype = 'freq'; else inputtype = 'unknown'; end switch inputtype case 'montage' % apply the montage on top of the other montage if isa(input.tra, 'single') % sparse matrices and single precision do not match input.tra = full(montage.tra) * input.tra; else input.tra = montage.tra * input.tra; end input.labelnew = montage.labelnew; input.chantypenew = montage.chantypenew; input.chanunitnew = montage.chanunitnew; case 'sens' % apply the montage to an electrode or gradiometer description sens = input; clear input % apply the montage to the inputor array if isa(sens.tra, 'single') % sparse matrices and single precision do not match sens.tra = full(montage.tra) * sens.tra; else sens.tra = montage.tra * sens.tra; end % The montage operates on the coil weights in sens.tra, but the output channels % can be different. If possible, we want to keep the original channel positions % and orientations. [sel1, sel2] = match_str(montage.labelnew, inputlabel); keepchans = length(sel1)==length(montage.labelnew); if isfield(sens, 'chanpos') if keepchans sens.chanpos = sens.chanpos(sel2,:); else if ~isfield(sens, 'chanposold') % add a chanposold only if it is not there yet sens.chanposold = sens.chanpos; end sens.chanpos = nan(numel(montage.labelnew),3); end end if isfield(sens, 'chanori') if keepchans sens.chanori = sens.chanori(sel2,:); else if ~isfield(sens, 'chanoriold') sens.chanoriold = sens.chanori; end sens.chanori = nan(numel(montage.labelnew),3); end end sens.label = montage.labelnew; sens.chantype = montage.chantypenew; sens.chanunit = montage.chanunitnew; % keep the % original label, % type and unit % for reference if ~isfield(sens, 'labelold') sens.labelold = inputlabel; end if ~isfield(sens, 'chantypeold') sens.chantypeold = inputchantype; end if ~isfield(sens, 'chanunitold') sens.chanunitold = inputchanunit; end % keep track of the order of the balancing and which one is the current one if istrue(inverse) if isfield(sens, 'balance')% && isfield(sens.balance, 'previous') if isfield(sens.balance, 'previous') && numel(sens.balance.previous)>=1 sens.balance.current = sens.balance.previous{1}; sens.balance.previous = sens.balance.previous(2:end); elseif isfield(sens.balance, 'previous') sens.balance.current = 'none'; sens.balance = rmfield(sens.balance, 'previous'); else sens.balance.current = 'none'; end end elseif ~istrue(inverse) && ~isempty(bname) if isfield(sens, 'balance'), % check whether a balancing montage with name bname already exist, % and if so, how many mnt = fieldnames(sens.balance); sel = strmatch(bname, mnt); if numel(sel)==0, % bname can stay the same elseif numel(sel)==1 % the original should be renamed to 'bname1' and the new one should % be 'bname2' sens.balance.([bname, '1']) = sens.balance.(bname); sens.balance = rmfield(sens.balance, bname); if isfield(sens.balance, 'current') && strcmp(sens.balance.current, bname) sens.balance.current = [bname, '1']; end if isfield(sens.balance, 'previous') sel2 = strmatch(bname, sens.balance.previous); if ~isempty(sel2) sens.balance.previous{sel2} = [bname, '1']; end end bname = [bname, '2']; else bname = [bname, num2str(length(sel)+1)]; end end if isfield(sens, 'balance') && isfield(sens.balance, 'current') if ~isfield(sens.balance, 'previous') sens.balance.previous = {}; end sens.balance.previous = [{sens.balance.current} sens.balance.previous]; sens.balance.current = bname; sens.balance.(bname) = montage; end end % rename the output variable input = sens; clear sens case 'raw'; % apply the montage to the raw data that was preprocessed using fieldtrip data = input; clear input Ntrials = numel(data.trial); ft_progress('init', feedback, 'processing trials'); for i=1:Ntrials ft_progress(i/Ntrials, 'processing trial %d from %d\n', i, Ntrials); if isa(data.trial{i}, 'single') % sparse matrices and single % precision do not match data.trial{i} = full(montage.tra) * data.trial{i}; else data.trial{i} = montage.tra * data.trial{i}; end end ft_progress('close'); data.label = montage.labelnew; data.chantype = montage.chantypenew; data.chanunit = montage.chanunitnew; % rename the output variable input = data; clear data case 'freq' % apply the montage to the spectrally decomposed data freq = input; clear input if strcmp(freq.dimord, 'rpttap_chan_freq') siz = size(freq.fourierspctrm); nrpt = siz(1); nchan = siz(2); nfreq = siz(3); output = zeros(nrpt, size(montage.tra,1), nfreq); for foilop=1:nfreq output(:,:,foilop) = freq.fourierspctrm(:,:,foilop) * montage.tra'; end freq.fourierspctrm = output; % replace the original Fourier spectrum elseif strcmp(freq.dimord, 'rpttap_chan_freq_time') siz = size(freq.fourierspctrm); nrpt = siz(1); nchan = siz(2); nfreq = siz(3); ntime = siz(4); output = zeros(nrpt, size(montage.tra,1), nfreq, ntime); for foilop=1:nfreq for toilop = 1:ntime output(:,:,foilop,toilop) = freq.fourierspctrm(:,:,foilop,toilop) * montage.tra'; end end freq.fourierspctrm = output; % replace the original Fourier spectrum else error('unsupported dimord in frequency data (%s)', freq.dimord); end freq.label = montage.labelnew; freq.chantype = montage.chantypenew; freq.chanunit = montage.chanunitnew; % rename the output variable input = freq; clear freq otherwise error('unrecognized input'); end % switch inputtype % only retain the chantype and/or chanunit if they were present in the input if ~haschantype input = removefields(input, {'chantype', 'chantypeold', 'chantypenew'}); end if ~haschanunit input = removefields(input, {'chanunit', 'chanunitold', 'chanunitnew'}); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % HELPER FUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = indx2logical(x, n) y = false(1,n); y(x) = true; function nowarning(varargin) return function s = removefields(s, fn) for i=1:length(fn) if isfield(s, fn{i}) s = rmfield(s, fn{i}); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % HELPER FUNCTION use "old/new" instead of "org/new" %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function montage = fixmontage(montage) if isfield(montage, 'labelorg') montage.labelold = montage.labelorg; montage = rmfield(montage, 'labelorg'); end if isfield(montage, 'chantypeorg') montage.chantypeold = montage.chantypeorg; montage = rmfield(montage, 'chantypeorg'); end if isfield(montage, 'chanunitorg') montage.chanunitold = montage.chanunitorg; montage = rmfield(montage, 'chanunitorg'); end
github
lcnhappe/happe-master
ft_headmodel_slab.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/ft_headmodel_slab.m
3,563
utf_8
a25dc7acd56e431b9a85280512392362
function headmodel = ft_headmodel_slab(mesh1, mesh2, Pc, varargin) % FT_HEADMODEL_SLAB creates an EEG volume conduction model that % is described with an infinite conductive slab. You can think % of this as two parallel planes containing a mass of conductive % material (e.g. water) and externally to them a non-conductive material % (e.g. air). % % Use as % headmodel = ft_headmodel_slab(mesh1, mesh2, Pc, varargin) % where % mesh1.pos = Nx3 vector specifying N points through which the 'upper' plane is fitted % mesh2.pos = Nx3 vector specifying N points through which the 'lower' plane is fitted % Pc = 1x3 vector specifying the spatial position of a point lying in the conductive slab % (this determines the plane's normal's direction) % % Optional arguments should be specified in key-value pairs and can include % 'sourcemodel' = 'monopole' % 'conductivity' = number , conductivity value of the conductive halfspace (default = 1) % % See also FT_PREPARE_VOL_SENS, FT_COMPUTE_LEADFIELD % Copyright (C) 2012, Donders Centre for Cognitive Neuroimaging, Nijmegen, NL % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ model = ft_getopt(varargin, 'sourcemodel', 'monopole'); cond = ft_getopt(varargin, 'conductivity'); if isempty(cond) warning('Conductivity was not specified, using 1'); cond = 1; end % the description of this volume conduction model consists of the % description of the plane, and a point in the void halfspace % replace pnt with pos mesh1 = fixpos(mesh1); mesh2 = fixpos(mesh2); if isstruct(mesh1) && isfield(mesh1,'pos') pos1 = mesh1.pos; pos2 = mesh2.pos; elseif size(mesh1,2)==3 pos1 = mesh1; pos2 = mesh2; else error('incorrect specification of the geometry'); end % fit a plane to the points [N1,P1] = fit_plane(pos1); [N2,P2] = fit_plane(pos2); % checks if Pc is in the conductive part. If not, flip incond = acos(dot(N1,(Pc-P1)./norm(Pc-P1))) > pi/2; if ~incond N1 = -N1; end incond = acos(dot(N2,(Pc-P2)./norm(Pc-P2))) > pi/2; if ~incond N2 = -N2; end headmodel = []; headmodel.cond = cond; headmodel.pos1 = P1(:)'; % a point that lies on the plane that separates the conductive tissue from the air headmodel.ori1 = N1(:)'; % a unit vector pointing towards the air headmodel.ori1 = headmodel.ori1/norm(headmodel.ori1); headmodel.pos2 = P2(:)'; headmodel.ori2 = N2(:)'; headmodel.ori2 = headmodel.ori2/norm(headmodel.ori2); if strcmpi(model,'monopole') headmodel.type = 'slab_monopole'; else error('unknow method') end function [N,P] = fit_plane(X) % Fits a plane through a number of points in 3D cartesian coordinates P = mean(X,1); % the plane is spanned by this point and by a normal vector X = bsxfun(@minus,X,P); [u, s, v] = svd(X, 0); N = v(:,3); % orientation of the plane, can be in either direction
github
lcnhappe/happe-master
ft_prepare_vol_sens.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/ft_prepare_vol_sens.m
26,259
utf_8
225596851f014058749908d3367e615b
function [headmodel, sens] = ft_prepare_vol_sens(headmodel, sens, varargin) % FT_PREPARE_VOL_SENS does some bookkeeping to ensure that the volume % conductor model and the sensor array are ready for subsequent forward % leadfield computations. It takes care of some pre-computations that can % be done efficiently prior to the leadfield calculations. % % Use as % [headmodel, sens] = ft_prepare_vol_sens(headmodel, sens, ...) % with input arguments % headmodel structure with volume conductor definition % sens structure with gradiometer or electrode definition % % The headmodel structure represents a volume conductor model of the head, % its contents depend on the type of model. The sens structure represents a % sensor array, i.e. EEG electrodes or MEG gradiometers. % % Additional options should be specified in key-value pairs and can be % 'channel' cell-array with strings (default = 'all') % 'order' number, for single shell "Nolte" model (default = 10) % % The detailed behaviour of this function depends on whether the input % consists of EEG or MEG and furthermoree depends on the type of volume % conductor model: % - in case of EEG single and concentric sphere models, the electrodes are % projected onto the skin surface. % - in case of EEG boundary element models, the electrodes are projected on % the surface and a blilinear interpoaltion matrix from vertices to % electrodes is computed. % - in case of MEG and a localspheres model, a local sphere is determined % for each coil in the gradiometer definition. % - in case of MEG with a singleshell Nolte model, the volume conduction % model is initialized % In any case channel selection and reordering will be done. The channel % order returned by this function corresponds to the order in the 'channel' % option, or if not specified, to the order in the input sensor array. % % See also FT_COMPUTE_LEADFIELD, FT_READ_VOL, FT_READ_SENS, FT_TRANSFORM_VOL, % FT_TRANSFORM_SENS % Copyright (C) 2004-2015, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if iscell(headmodel) && iscell(sens) % this represents combined EEG, ECoG and/or MEG for i=1:numel(headmodel) [headmodel{i}, sens{i}] = ft_prepare_vol_sens(headmodel{i}, sens{i}, varargin{:}); end return end % get the optional input arguments % fileformat = ft_getopt(varargin, 'fileformat'); channel = ft_getopt(varargin, 'channel', sens.label); % cell-array with channel labels, default is all order = ft_getopt(varargin, 'order', 10); % order of expansion for Nolte method; 10 should be enough for real applications; in simulations it makes sense to go higher % ensure that the sensor description is up-to-date (Aug 2011) sens = ft_datatype_sens(sens); % this is to support volumes saved in mat-files, particularly interpolated if ischar(headmodel) vpath = fileparts(headmodel); % remember the path to the file headmodel = ft_read_vol(headmodel); % replace the filename with the content of the file end % ensure that the volume conduction description is up-to-date (Jul 2012) headmodel = ft_datatype_headmodel(headmodel); % determine whether the input contains EEG or MEG sensors iseeg = ft_senstype(sens, 'eeg'); ismeg = ft_senstype(sens, 'meg'); % determine the skin compartment if ~isfield(headmodel, 'skin_surface') if isfield(headmodel, 'bnd') headmodel.skin_surface = find_outermost_boundary(headmodel.bnd); elseif isfield(headmodel, 'r') && length(headmodel.r)<=4 [dum, headmodel.skin_surface] = max(headmodel.r); end end % determine the inner_skull_surface compartment if ~isfield(headmodel, 'inner_skull_surface') if isfield(headmodel, 'bnd') headmodel.inner_skull_surface = find_innermost_boundary(headmodel.bnd); elseif isfield(headmodel, 'r') && length(headmodel.r)<=4 [dum, headmodel.inner_skull_surface] = min(headmodel.r); end end % otherwise the voltype assignment to an empty struct below won't work if isempty(headmodel) headmodel = []; end % this makes them easier to recognise sens.type = ft_senstype(sens); headmodel.type = ft_voltype(headmodel); if isfield(headmodel, 'unit') && isfield(sens, 'unit') && ~strcmp(headmodel.unit, sens.unit) error('inconsistency in the units of the volume conductor and the sensor array'); end if ismeg && iseeg % this is something that could be implemented relatively easily error('simultaneous EEG and MEG not yet supported'); elseif ~ismeg && ~iseeg error('the input does not look like EEG, nor like MEG'); elseif ismeg % always ensure that there is a linear transfer matrix for combining the coils into gradiometers if ~isfield(sens, 'tra'); Nchans = length(sens.label); Ncoils = size(sens.coilpos,1); if Nchans~=Ncoils error('inconsistent number of channels and coils'); end sens.tra = eye(Nchans, Ncoils); end if ~ft_voltype(headmodel, 'localspheres') % select the desired channels from the gradiometer array [selchan, selsens] = match_str(channel, sens.label); % only keep the desired channels, order them according to the users specification try, sens.chantype = sens.chantype(selsens,:); end try, sens.chanunit = sens.chanunit(selsens,:); end try, sens.chanpos = sens.chanpos (selsens,:); end try, sens.chanori = sens.chanori (selsens,:); end sens.label = sens.label(selsens); sens.tra = sens.tra(selsens,:); else % for the localspheres model it is done further down end % remove the coils that do not contribute to any channel output selcoil = any(sens.tra~=0,1); sens.coilpos = sens.coilpos(selcoil,:); sens.coilori = sens.coilori(selcoil,:); sens.tra = sens.tra(:,selcoil); switch ft_voltype(headmodel) case {'infinite' 'infinite_monopole' 'infinite_currentdipole' 'infinite_magneticdipole'} % nothing to do case 'singlesphere' % nothing to do case 'concentricspheres' % nothing to do case 'neuromag' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if the forward model is computed using the external Neuromag toolbox, % we have to add a selection of the channels so that the channels % in the forward model correspond with those in the data. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [selchan, selsens] = match_str(channel, sens.label); headmodel.chansel = selsens; case 'localspheres' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % If the volume conduction model consists of multiple spheres then we % have to match the channels in the gradiometer array and the volume % conduction model. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % the initial localspheres volume conductor has a local sphere per % channel, whereas it should have a local sphere for each coil if size(headmodel.r,1)==size(sens.coilpos,1) && ~isfield(headmodel, 'label') % it appears that each coil already has a sphere, which suggests % that the volume conductor already has been prepared to match the % sensor array return elseif size(headmodel.r,1)==size(sens.coilpos,1) && isfield(headmodel, 'label') if ~isequal(headmodel.label(:), sens.label(:)) % if only the order is different, it would be possible to reorder them error('the coils in the volume conduction model do not correspond to the sensor array'); else % the coil-specific spheres in the volume conductor should not have a label % because the label is already specified for the coils in the % sensor array headmodel = rmfield(headmodel, 'label'); end return end % the CTF way of representing the headmodel is one-sphere-per-channel % whereas the FieldTrip way of doing the forward computation is one-sphere-per-coil Nchans = size(sens.tra,1); Ncoils = size(sens.tra,2); Nspheres = size(headmodel.label); if isfield(headmodel, 'orig') % these are present in a CTF *.hdm file singlesphere.o(1,1) = headmodel.orig.MEG_Sphere.ORIGIN_X; singlesphere.o(1,2) = headmodel.orig.MEG_Sphere.ORIGIN_Y; singlesphere.o(1,3) = headmodel.orig.MEG_Sphere.ORIGIN_Z; singlesphere.r = headmodel.orig.MEG_Sphere.RADIUS; % ensure consistent units singlesphere = ft_convert_units(singlesphere, headmodel.unit); % determine the channels that do not have a corresponding sphere % and use the globally fitted single sphere for those missing = setdiff(sens.label, headmodel.label); if ~isempty(missing) warning('using the global fitted single sphere for %d channels that do not have a local sphere', length(missing)); end for i=1:length(missing) headmodel.label(end+1) = missing(i); headmodel.r(end+1,:) = singlesphere.r; headmodel.o(end+1,:) = singlesphere.o; end end % make a new structure that only holds the local spheres, one per coil localspheres = []; localspheres.type = headmodel.type; localspheres.unit = headmodel.unit; % for each coil in the MEG helmet, determine the corresponding channel and from that the corresponding local sphere for i=1:Ncoils coilindex = find(sens.tra(:,i)~=0); % to which channel does this coil belong if length(coilindex)>1 % this indicates that there are multiple channels to which this coil contributes, % which happens if the sensor array represents a synthetic higher-order gradient. [dum, coilindex] = max(abs(sens.tra(:,i))); end coillabel = sens.label{coilindex}; % what is the label of this channel chanindex = find(strcmp(coillabel, headmodel.label)); % what is the index of this channel in the list of local spheres localspheres.r(i,:) = headmodel.r(chanindex); localspheres.o(i,:) = headmodel.o(chanindex,:); end headmodel = localspheres; % finally do the selection of channels and coils % order them according to the users specification [selchan, selsens] = match_str(channel, sens.label); % first only modify the linear combination of coils into channels try, sens.chantype = sens.chantype(selsens,:); end try, sens.chanunit = sens.chanunit(selsens,:); end try, sens.chanpos = sens.chanpos (selsens,:); end try, sens.chanori = sens.chanori (selsens,:); end sens.label = sens.label(selsens); sens.tra = sens.tra(selsens,:); % subsequently remove the coils that do not contribute to any sensor output selcoil = find(sum(sens.tra,1)~=0); sens.coilpos = sens.coilpos(selcoil,:); sens.coilori = sens.coilori(selcoil,:); sens.tra = sens.tra(:,selcoil); % make the same selection of coils in the localspheres model headmodel.r = headmodel.r(selcoil); headmodel.o = headmodel.o(selcoil,:); case 'singleshell' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if the forward model is computed using the code from Guido Nolte, we % have to initialize the volume model using the gradiometer coil % locations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute the surface normals for each vertex point if ~isfield(headmodel.bnd, 'nrm') fprintf('computing surface normals\n'); headmodel.bnd.nrm = normals(headmodel.bnd.pos, headmodel.bnd.tri); end % estimate center and radius [center,radius] = fitsphere(headmodel.bnd.pos); % initialize the forward calculation (only if coils are available) if size(sens.coilpos,1)>0 && ~isfield(headmodel, 'forwpar') s = ft_scalingfactor(headmodel.unit, 'cm'); headmodel.forwpar = meg_ini([s*headmodel.bnd.pos headmodel.bnd.nrm], s*center', order, [s*sens.coilpos sens.coilori]); headmodel.forwpar.scale = s; end case 'openmeeg' if isfield(headmodel,'mat') & ~isempty(headmodel.mat) warning('MEG with openmeeg only supported with NEMO lab pipeline. Please omit the mat matrix from the headmodel structure.'); end case 'simbio' error('MEG not yet supported with simbio'); otherwise error('unsupported volume conductor model for MEG'); end elseif iseeg % the electrodes are used, the channel positions are not relevant any more % channel positinos need to be recomputed after projecting the electrodes on the skin if isfield(sens, 'chanpos'); sens = rmfield(sens, 'chanpos'); end % select the desired channels from the electrode array % order them according to the users specification [selchan, selsens] = match_str(channel, sens.label); Nchans = length(sens.label); sens.label = sens.label(selsens); try, sens.chantype = sens.chantype(selsens); end; try, sens.chanunit = sens.chanunit(selsens); end; if isfield(sens, 'tra') % first only modify the linear combination of electrodes into channels sens.tra = sens.tra(selsens,:); % subsequently remove the electrodes that do not contribute to any channel output selelec = any(sens.tra~=0,1); sens.elecpos = sens.elecpos(selelec,:); sens.tra = sens.tra(:,selelec); else % the electrodes and channels are identical sens.elecpos = sens.elecpos(selsens,:); end switch ft_voltype(headmodel) case {'infinite' 'infinite_monopole' 'infinite_currentdipole'} % nothing to do case {'halfspace', 'halfspace_monopole'} % electrodes' all-to-all distances numelec = size(sens.elecpos,1); ref_el = sens.elecpos(1,:); md = dist( (sens.elecpos-repmat(ref_el,[numelec 1]))' ); % take the min distance as reference md = min(md(1,2:end)); pos = sens.elecpos; % scan the electrodes and reposition the ones which are in the % wrong halfspace (projected on the plane)... if not too far away! for i=1:size(pos,1) P = pos(i,:); is_in_empty = acos(dot(headmodel.ori,(P-headmodel.pos)./norm(P-headmodel.pos))) < pi/2; if is_in_empty dPplane = abs(dot(headmodel.ori, headmodel.pos-P, 2)); if dPplane>md error('Some electrodes are too distant from the plane: consider repositioning them') else % project point on plane Ppr = pointproj(P,[headmodel.pos headmodel.ori]); pos(i,:) = Ppr; end end end sens.elecpos = pos; case {'slab_monopole'} % electrodes' all-to-all distances numelc = size(sens.elecpos,1); ref_elc = sens.elecpos(1,:); md = dist( (sens.elecpos-repmat(ref_elc,[numelc 1]))' ); % choose min distance between electrodes md = min(md(1,2:end)); pos = sens.elecpos; % looks for contacts outside the strip which are not too far away % and projects them on the nearest plane for i=1:size(pos,1) P = pos(i,:); instrip1 = acos(dot(headmodel.ori1,(P-headmodel.pos1)./norm(P-headmodel.pos1))) > pi/2; instrip2 = acos(dot(headmodel.ori2,(P-headmodel.pos2)./norm(P-headmodel.pos2))) > pi/2; is_in_empty = ~(instrip1&instrip2); if is_in_empty dPplane1 = abs(dot(headmodel.ori1, headmodel.pos1-P, 2)); dPplane2 = abs(dot(headmodel.ori2, headmodel.pos2-P, 2)); if dPplane1>md && dPplane2>md error('Some electrodes are too distant from the planes: consider repositioning them') elseif dPplane2>dPplane1 % project point on nearest plane Ppr = pointproj(P,[headmodel.pos1 headmodel.ori1]); pos(i,:) = Ppr; else % project point on nearest plane Ppr = pointproj(P,[headmodel.pos2 headmodel.ori2]); pos(i,:) = Ppr; end end end sens.elecpos = pos; case {'singlesphere', 'concentricspheres'} % ensure that the electrodes ly on the skin surface radius = max(headmodel.r); pos = sens.elecpos; if isfield(headmodel, 'o') % shift the the centre of the sphere to the origin pos(:,1) = pos(:,1) - headmodel.o(1); pos(:,2) = pos(:,2) - headmodel.o(2); pos(:,3) = pos(:,3) - headmodel.o(3); end distance = sqrt(sum(pos.^2,2)); % to the center of the sphere if any((abs(distance-radius)/radius)>0.005) warning('electrodes do not lie on skin surface -> using radial projection') end pos = pos * radius ./ [distance distance distance]; if isfield(headmodel, 'o') % shift the center back to the original location pos(:,1) = pos(:,1) + headmodel.o(1); pos(:,2) = pos(:,2) + headmodel.o(2); pos(:,3) = pos(:,3) + headmodel.o(3); end sens.elecpos = pos; case {'bem', 'dipoli', 'asa', 'bemcp', 'openmeeg'} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % do postprocessing of volume and electrodes in case of BEM model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % project the electrodes on the skin and determine the bilinear interpolation matrix % HACK - use NEMO lab pipeline if mat field is absent for openmeeg (i.e. don't do anything) if ~isfield(headmodel, 'tra') && (isfield(headmodel, 'mat') && ~isempty(headmodel.mat)) % determine boundary corresponding with skin and inner_skull_surface if ~isfield(headmodel, 'skin_surface') headmodel.skin_surface = find_outermost_boundary(headmodel.bnd); fprintf('determining skin compartment (%d)\n', headmodel.skin_surface); end if ~isfield(headmodel, 'source') headmodel.source = find_innermost_boundary(headmodel.bnd); fprintf('determining source compartment (%d)\n', headmodel.source); end if size(headmodel.mat,1)~=size(headmodel.mat,2) && size(headmodel.mat,1)==length(sens.elecpos) fprintf('electrode transfer and system matrix were already combined\n'); else fprintf('projecting electrodes on skin surface\n'); % compute linear interpolation from triangle vertices towards electrodes [el, prj] = project_elec(sens.elecpos, headmodel.bnd(headmodel.skin_surface).pos, headmodel.bnd(headmodel.skin_surface).tri); tra = transfer_elec(headmodel.bnd(headmodel.skin_surface).pos, headmodel.bnd(headmodel.skin_surface).tri, el); % replace the original electrode positions by the projected positions sens.elecpos = prj; if size(headmodel.mat,1)==size(headmodel.bnd(headmodel.skin_surface).pos,1) % construct the transfer from only the skin vertices towards electrodes interp = tra; else % construct the transfer from all vertices (also inner_skull_surface/outer_skull_surface) towards electrodes interp = []; for i=1:length(headmodel.bnd) if i==headmodel.skin_surface interp = [interp, tra]; else interp = [interp, zeros(size(el,1), size(headmodel.bnd(i).pos,1))]; end end end % incorporate the linear interpolation matrix and the system matrix into one matrix % this speeds up the subsequent repeated leadfield computations fprintf('combining electrode transfer and system matrix\n'); if strcmp(ft_voltype(headmodel), 'openmeeg') % check that the external toolbox is present ft_hastoolbox('openmeeg', 1); nb_points_external_surface = size(headmodel.bnd(headmodel.skin_surface).pos,1); headmodel.mat = headmodel.mat((end-nb_points_external_surface+1):end,:); headmodel.mat = interp(:,1:nb_points_external_surface) * headmodel.mat; else % convert to sparse matrix to speed up the subsequent multiplication interp = sparse(interp); headmodel.mat = interp * headmodel.mat; % ensure that the model potential will be average referenced avg = mean(headmodel.mat, 1); headmodel.mat = headmodel.mat - repmat(avg, size(headmodel.mat,1), 1); end end end case 'fns' if isfield(headmodel,'bnd') [el, prj] = project_elec(sens.elecpos, headmodel.bnd.pos, headmodel.bnd.tri); sens.tra = transfer_elec(headmodel.bnd.pos, headmodel.bnd.tri, el); % replace the original electrode positions by the projected positions sens.elecpos = prj; end case 'simbio' % check that the external toolbox is present ft_hastoolbox('simbio', 1); % extract the outer surface bnd = mesh2edge(headmodel); for j=1:length(sens.label) d = bsxfun(@minus, bnd.pos, sens.elecpos(j,:)); [d, i] = min(sum(d.^2, 2)); % replace the position of each electrode by the closest vertex sens.elecpos(j,:) = bnd.pos(i,:); end headmodel.transfer = sb_transfer(headmodel,sens); case 'interpolate' % this is to allow moving leadfield files if ~exist(headmodel.filename{1}, 'file') for i = 1:length(headmodel.filename) [p, f, x] = fileparts(headmodel.filename{i}); headmodel.filename{i} = fullfile(vpath, [f x]); end end matchlab = isequal(sens.label, headmodel.sens.label); matchpos = isequal(sens.elecpos, headmodel.sens.elecpos); matchtra = (~isfield(sens, 'tra') && ~isfield(headmodel.sens, 'tra')) || isequal(sens.tra, headmodel.sens.tra); if matchlab && matchpos && matchtra % the input sensor array matches precisely with the forward model % no further interpolation is needed else % interpolate the channels in the forward model to the desired channels filename = tempname; headmodel = ft_headmodel_interpolate(filename, sens, headmodel); % update the sensor array with the one from the volume conductor sens = headmodel.sens; end % if recomputing interpolation % for the leadfield computations the @nifti object is used to map the image data into memory ft_hastoolbox('spm8up', 1); for i=1:length(headmodel.sens.label) % map each of the leadfield files into memory headmodel.chan{i} = nifti(headmodel.filename{i}); end otherwise error('unsupported volume conductor model for EEG'); end % FIXME this needs careful thought to ensure that the average referencing which is now done here and there, and that the linear interpolation in case of BEM are all dealt with consistently % % always ensure that there is a linear transfer matrix for % % rereferencing the EEG potential % if ~isfield(sens, 'tra'); % sens.tra = eye(length(sens.label)); % end % update the channel positions as the electrodes were projected to the skin surface [pos, ori, lab] = channelposition(sens); [selsens, selpos] = match_str(sens.label, lab); sens.chanpos = nan(length(sens.label),3); sens.chanpos(selsens,:) = pos(selpos,:); end % if iseeg or ismeg if isfield(sens, 'tra') if issparse(sens.tra) && size(sens.tra, 1)==1 % this multiplication would result in a sparse leadfield, which is not what we want % the effect can be demonstrated as sparse(1)*rand(1,10), see also http://bugzilla.fcdonders.nl/show_bug.cgi?id=1169#c7 sens.tra = full(sens.tra); elseif ~issparse(sens.tra) && size(sens.tra, 1)>1 % the multiplication of the "sensor" leadfield (electrode or coil) with the tra matrix to get the "channel" leadfield % is faster for most cases if the pre-multiplying weighting matrix is made sparse sens.tra = sparse(sens.tra); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Ppr = pointproj(P,plane) % projects a point on a plane % plane(1:3) is a point on the plane % plane(4:6) is the ori of the plane Ppr = []; ori = plane(4:6); line = [P ori]; % get indices of line and plane which are parallel par = abs(dot(plane(4:6), line(:,4:6), 2))<1e-14; % difference between origins of plane and line dp = plane(1:3) - line(:, 1:3); % Divide only for non parallel vectors (DL) t = dot(ori(~par,:), dp(~par,:), 2)./dot(ori(~par,:), line(~par,4:6), 2); % compute coord of intersection point Ppr(~par, :) = line(~par,1:3) + repmat(t,1,3).*line(~par,4:6); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % This function serves as a replacement for the dist function in the Neural % Networks toolbox. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [d] = dist(x) n = size(x,2); d = zeros(n,n); for i=1:n for j=(i+1):n d(i,j) = sqrt(sum((x(:,i)-x(:,j)).^2)); d(j,i) = d(i,j); end end
github
lcnhappe/happe-master
ft_headmodel_halfspace.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/ft_headmodel_halfspace.m
3,238
utf_8
1c182d8deabdfeefe195129d7faa2b2d
function headmodel = ft_headmodel_halfspace(mesh, Pc, varargin) % FT_HEADMODEL_HALFSPACE creates an EEG volume conduction model that % is described with an infinite conductive halfspace. You can think % of this as a plane with on one side a infinite mass of conductive % material (e.g. water) and on the other side non-conductive material % (e.g. air). % % Use as % headmodel = ft_headmodel_halfspace(mesh, Pc, ...) % where % mesh.pos = Nx3 vector specifying N points through which a plane is fitted % Pc = 1x3 vector specifying the spatial position of a point lying in the conductive halfspace % (this determines the plane normal's direction) % % Additional optional arguments should be specified as key-value pairs and can include % 'sourcemodel' = string, 'monopole' or 'dipole' (default = 'dipole') % 'conductivity' = number, conductivity value of the conductive halfspace (default = 1) % % See also FT_PREPARE_VOL_SENS, FT_COMPUTE_LEADFIELD % Copyright (C) 2012, Donders Centre for Cognitive Neuroimaging, Nijmegen, NL % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ model = ft_getopt(varargin, 'sourcemodel', 'dipole'); cond = ft_getopt(varargin, 'conductivity'); if isempty(cond) warning('Conductivity was not specified, using 1'); cond = 1; end % the description of this volume conduction model consists of the % description of the plane, and a point in the void halfspace if isstruct(mesh) && isfield(mesh,'pos') pos = mesh.pos; elseif size(mesh,2)==3 pos = mesh; else error('incorrect specification of the geometry'); end % fit a plane to the points [N,P] = fit_plane(pos); % checks if Pc is in the conductive part. If not, flip incond = acos(dot(N,(Pc-P)./norm(Pc-P))) > pi/2; if ~incond N = -N; end headmodel = []; headmodel.cond = cond; headmodel.pos = P(:)'; % a point that lies on the plane that separates the conductive tissue from the air headmodel.ori = N(:)'; % a unit vector pointing towards the air headmodel.ori = headmodel.ori/norm(headmodel.ori); if strcmpi(model,'dipole') headmodel.type = 'halfspace'; elseif strcmpi(model,'monopole') headmodel.type = 'halfspace_monopole'; else error('unknow method') end function [N,P] = fit_plane(X) % Fits a plane through a number of points in 3D cartesian coordinates P = mean(X,1); % the plane is spanned by this point and by a normal vector X = bsxfun(@minus,X,P); [u, s, v] = svd(X, 0); N = v(:,3); % orientation of the plane, can be in either direction
github
lcnhappe/happe-master
ft_headmodel_dipoli.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/ft_headmodel_dipoli.m
7,156
utf_8
aa51271ac3c67c39dcc78a6d6937d469
function headmodel = ft_headmodel_dipoli(mesh, varargin) % FT_HEADMODEL_DIPOLI creates a volume conduction model of the head % using the boundary element method (BEM) for EEG. This function takes % as input the triangulated surfaces that describe the boundaries and % returns as output a volume conduction model which can be used to % compute leadfields. % % This implements % Oostendorp TF, van Oosterom A. "Source parameter estimation in % inhomogeneous volume conductors of arbitrary shape." IEEE Trans % Biomed Eng. 1989 Mar;36(3):382-91. % % The implementation of this function uses an external command-line % executable with the name "dipoli" which is provided by Thom Oostendorp. % % Use as % headmodel = ft_headmodel_dipoli(mesh, ...) % % The mesh is given as a boundary or a struct-array of boundaries (surfaces) % % Optional input arguments should be specified in key-value pairs and can % include % isolatedsource = string, 'yes' or 'no' % conductivity = vector, conductivity of each compartment % % See also FT_PREPARE_VOL_SENS, FT_COMPUTE_LEADFIELD % $Id$ ft_hastoolbox('dipoli', 1); % get the optional arguments isolatedsource = ft_getopt(varargin, 'isolatedsource'); conductivity = ft_getopt(varargin, 'conductivity'); if isfield(mesh, 'bnd') mesh = mesh.bnd; end % replace pnt with pos mesh = fixpos(mesh); % start with an empty volume conductor headmodel = []; headmodel.bnd = mesh; % determine the number of compartments numboundaries = numel(headmodel.bnd); % % The following checks can in principle be performed, but are too % % time-consuming. Instead the code here relies on the calling function to % % feed in the correct geometry. % % % % if ~all(surface_closed(headmodel.bnd)) % % error('...'); % % end % % if any(surface_intersection(headmodel.bnd)) % % error('...'); % % end % % if any(surface_selfintersection(headmodel.bnd)) % % error('...'); % % end % % % The following checks should always be done. % headmodel.bnd = surface_orientation(headmodel.bnd, 'outwards'); % might have to be inwards % % order = surface_nesting(headmodel.bnd, 'outsidefirst'); % might have to be insidefirst % headmodel.bnd = headmodel.bnd(order); % FIXME also the cond % if isempty(isolatedsource) if numboundaries>1 % the isolated source compartment is by default the most inner one isolatedsource = true; else isolatedsource = false; end else % convert into a boolean isolatedsource = istrue(isolatedsource); end if isolatedsource fprintf('using isolated source approach\n'); else fprintf('not using isolated source approach\n'); end % determine the desired nesting of the compartments order = surface_nesting(headmodel.bnd, 'outsidefirst'); % rearrange boundaries and conductivities if numel(headmodel.bnd)>1 fprintf('reordering the boundaries to: '); fprintf('%d ', order); fprintf('\n'); % update the order of the compartments headmodel.bnd = headmodel.bnd(order); end if isempty(conductivity) warning('No conductivity is declared, Assuming standard values\n') if numboundaries == 1 conductivity = 1; elseif numboundaries == 3 % skin/skull/brain conductivity = [1 1/80 1] * 0.33; elseif numboundaries == 4 %FIXME: check for better default values here % skin / outer skull / inner skull / brain conductivity = [1 1/80 1 1] * 0.33; else error('Conductivity values are required!') end headmodel.cond = conductivity; else if numel(conductivity)~=numboundaries error('a conductivity value should be specified for each compartment'); end headmodel.cond = conductivity(order); end headmodel.skin_surface = 1; headmodel.source = numboundaries; % this is now the last one if isolatedsource fprintf('using compartment %d for the isolated source approach\n', headmodel.source); else fprintf('not using the isolated source approach\n'); end % find the location of the dipoli binary str = which('dipoli.maci'); [p, f, x] = fileparts(str); dipoli = fullfile(p, f); % without the .m extension switch mexext case {'mexmaci' 'mexmaci64'} % apple computer dipoli = [dipoli '.maci']; case {'mexglnx86' 'mexa64'} % linux computer dipoli = [dipoli '.glnx86']; otherwise error('there is no dipoli executable for your platform'); end fprintf('using the executable "%s"\n', dipoli); % write the triangulations to file prefix = tempname; bndfile = cell(1,numboundaries); bnddip = headmodel.bnd; for i=1:numboundaries bndfile{i} = sprintf('%s_%d.tri', prefix, i); % checks if normals are inwards oriented otherwise flips them ok = checknormals(bnddip(i)); if ~ok fprintf('flipping normals'' direction\n') bnddip(i).tri = fliplr(bnddip(i).tri); end write_tri(bndfile{i}, bnddip(i).pos, bnddip(i).tri); end % these will hold the shell script and the inverted system matrix exefile = [tempname '.sh']; amafile = [tempname '.ama']; fid = fopen(exefile, 'w'); fprintf(fid, '#!/bin/sh\n'); fprintf(fid, '\n'); fprintf(fid, '%s -i %s << EOF\n', dipoli, amafile); for i=1:numboundaries if isolatedsource && headmodel.source==i % the isolated potential approach should be applied using this compartment fprintf(fid, '!%s\n', bndfile{i}); else fprintf(fid, '%s\n', bndfile{i}); end fprintf(fid, '%g\n', headmodel.cond(i)); end fprintf(fid, '\n'); fprintf(fid, '\n'); fprintf(fid, 'EOF\n'); fclose(fid); % ensure that the temporary shell script can be executed dos(sprintf('chmod +x %s', exefile)); try % execute dipoli and read the resulting file dos(exefile); ama = loadama(amafile); headmodel = ama2vol(ama); % This is to maintain the headmodel.bnd convention (outward oriented), whereas % in terms of further calculation it shuold not really matter. % The calculation fo the head model is done with inward normals % (sometimes flipped from the original input). This assures that the % outward oriented mesh is saved outward oriiented in the headmodel structure for i=1:numel(headmodel.bnd) isinw = checknormals(headmodel.bnd(i)); fprintf('flipping the normals outwards, after head matrix calculation\n') if isinw headmodel.bnd(i).tri = fliplr(headmodel.bnd(i).tri); end end catch error('an error ocurred while running the dipoli executable - please look at the screen output'); end % delete the temporary files for i=1:numboundaries delete(bndfile{i}) end delete(amafile); delete(exefile); % remember that it is a dipoli model headmodel.type = 'dipoli'; function ok = checknormals(bnd) % checks if the normals are inward oriented ok = 0; pos = bnd.pos; tri = bnd.tri; % translate to the center org = median(pos,1); pos(:,1) = pos(:,1) - org(1); pos(:,2) = pos(:,2) - org(2); pos(:,3) = pos(:,3) - org(3); w = sum(solid_angle(pos, tri)); if w<0 && (abs(w)-4*pi)<1000*eps % FIXME: this method is rigorous only for star shaped surfaces warning('your normals are outwards oriented\n') ok = 0; elseif w>0 && (abs(w)-4*pi)<1000*eps % warning('your normals are inwards oriented\n') ok = 1; else fprintf('attention: your surface probably is irregular!') ok = 1; end
github
lcnhappe/happe-master
ft_headmodel_openmeeg.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/ft_headmodel_openmeeg.m
6,801
utf_8
88866540a84637e828c25e8c1d20d1ed
function headmodel = ft_headmodel_openmeeg(mesh, varargin) % FT_HEADMODEL_OPENMEEG creates a volume conduction model of the % head using the boundary element method (BEM). This function takes % as input the triangulated surfaces that describe the boundaries and % returns as output a volume conduction model which can be used to % compute leadfields. % % This function implements % Gramfort et al. OpenMEEG: opensource software for quasistatic % bioelectromagnetics. Biomedical engineering online (2010) vol. 9 (1) pp. 45 % http://www.biomedical-engineering-online.com/content/9/1/45 % doi:10.1186/1475-925X-9-45 % and % Kybic et al. Generalized head models for MEG/EEG: boundary element method % beyond nested volumes. Phys. Med. Biol. (2006) vol. 51 pp. 1333-1346 % doi:10.1088/0031-9155/51/5/021 % % The implementation in this function is derived from the the OpenMEEG project % and uses external command-line executables. See http://gforge.inria.fr/projects/openmeeg % and http://gforge.inria.fr/frs/?group_id=435. % % Use as % headmodel = ft_headmodel_openmeeg(mesh, ...) % % Optional input arguments should be specified in key-value pairs and can % include % conductivity = vector, conductivity of each compartment % % See also FT_PREPARE_VOL_SENS, FT_COMPUTE_LEADFIELD %$Id$ ft_hastoolbox('openmeeg', 1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % the first part is largely shared with the dipoli and bemcp implementation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % get the optional arguments conductivity = ft_getopt(varargin, 'conductivity'); % copy the boundaries from the mesh into the volume conduction model if isfield(mesh,'bnd') mesh = mesh.bnd; end % start with an empty volume conductor headmodel = []; headmodel.bnd = mesh; % determine the number of compartments numboundaries = length(headmodel.bnd); % determine the desired nesting of the compartments order = surface_nesting(headmodel.bnd, 'outsidefirst'); % rearrange boundaries and conductivities if numel(headmodel.bnd)>1 fprintf('reordering the boundaries to: '); fprintf('%d ', order); fprintf('\n'); % update the order of the compartments headmodel.bnd = headmodel.bnd(order); end if isempty(conductivity) warning('No conductivity is declared, Assuming standard values\n') if numboundaries == 1 conductivity = 1; elseif numboundaries == 3 % skin/skull/brain conductivity = [1 1/80 1] * 0.33; else error('Conductivity values are required for 2 shells. More than 3 shells not allowed') end headmodel.cond = conductivity; else if numel(conductivity)~=numboundaries error('a conductivity value should be specified for each compartment'); end % update the order of the compartments headmodel.cond = conductivity(order); end headmodel.skin_surface = 1; headmodel.source = numboundaries; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this uses an implementation that was contributed by INRIA Odyssee Team %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % show the license once % openmeeg_license % check that the binaries are ok om_checkombin; % store the current path and change folder to the temporary one tmpfolder = cd; bndom = headmodel.bnd; try cd(tempdir) % write the triangulations to file bndfile = {}; for ii=1:length(bndom) % check if vertices' normals are inward oriented ok = checknormals(bndom(ii)); if ~ok % Flip faces for openmeeg convention (inwards normals) fprintf('flipping normals'' direction\n') bndom(ii).tri = fliplr(bndom(ii).tri); end end for ii=1:length(headmodel.bnd) [junk,tname] = fileparts(tempname); bndfile{ii} = [tname '.tri']; om_save_tri(bndfile{ii}, bndom(ii).pos, bndom(ii).tri); end % these will hold the shell script and the inverted system matrix [tmp,tname] = fileparts(tempname); if ~ispc exefile = [tname '.sh']; else exefile = [tname '.bat']; end [tmp,tname] = fileparts(tempname); condfile = [tname '.cond']; [tmp,tname] = fileparts(tempname); geomfile = [tname '.mesh']; [tmp,tname] = fileparts(tempname); hmfile = [tname '.bin']; [tmp,tname] = fileparts(tempname); hminvfile = [tname '.bin']; % write conductivity and mesh files om_write_geom(geomfile,bndfile); om_write_cond(condfile,headmodel.cond); % Exe file efid = fopen(exefile, 'w'); omp_num_threads = feature('numCores'); if ~ispc fprintf(efid,'#!/usr/bin/env bash\n'); fprintf(efid,['export OMP_NUM_THREADS=',num2str(omp_num_threads),'\n']); fprintf(efid,['om_assemble -HM ./' geomfile ' ./' condfile ' ./' hmfile ' 2>&1 > /dev/null\n']); fprintf(efid,['om_minverser ./' hmfile ' ./' hminvfile ' 2>&1 > /dev/null\n']); else fprintf(efid,['om_assemble -HM ./' geomfile ' ./' condfile ' ./' hmfile '\n']); fprintf(efid,['om_minverser ./' hmfile ' ./' hminvfile '\n']); end fclose(efid); if ~ispc dos(sprintf('chmod +x %s', exefile)); end catch cd(tmpfolder) rethrow(lasterror) end try % execute OpenMEEG and read the resulting file if ispc dos([exefile]); else version = om_getgccversion; if version>3 dos(['./' exefile]); else error('non suitable GCC compiler version (must be superior to gcc3)'); end end headmodel.mat = om_load_sym(hminvfile,'binary'); cleaner(headmodel,bndfile,condfile,geomfile,hmfile,hminvfile,exefile) cd(tmpfolder) catch warning('an error ocurred while running OpenMEEG'); disp(lasterr); cleaner(headmodel,bndfile,condfile,geomfile,hmfile,hminvfile,exefile) cd(tmpfolder) end % remember the type of volume conduction model headmodel.type = 'openmeeg'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cleaner(headmodel,bndfile,condfile,geomfile,hmfile,hminvfile,exefile) % delete the temporary files for i=1:length(headmodel.bnd) delete(bndfile{i}) end delete(condfile); delete(geomfile); delete(hmfile); delete(hminvfile); delete(exefile); function ok = checknormals(bnd) % FIXME: this method is rigorous only for star shaped surfaces ok = 0; pos = bnd.pos; tri = bnd.tri; % translate to the center org = mean(pos,1); pos(:,1) = pos(:,1) - org(1); pos(:,2) = pos(:,2) - org(2); pos(:,3) = pos(:,3) - org(3); w = sum(solid_angle(pos, tri)); if w<0 && (abs(w)-4*pi)<1000*eps ok = 0; warning('your normals are outwards oriented\n') elseif w>0 && (abs(w)-4*pi)<1000*eps ok = 1; % warning('your normals are inwards oriented') else error('your surface probably is irregular\n') ok = 0; end
github
lcnhappe/happe-master
ft_datatype_sens.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/ft_datatype_sens.m
22,743
utf_8
fab01996ef9a98c643827fb2767fbaf3
function [sens] = ft_datatype_sens(sens, varargin) % FT_DATATYPE_SENS describes the FieldTrip structure that represents an EEG, ECoG, or % MEG sensor array. This structure is commonly called "elec" for EEG, "grad" for MEG, % "opto" for NIRS, or general "sens" for either one. % % For all sensor types a distinction should be made between the channel (i.e. the % output of the transducer that is A/D converted) and the sensor, which may have some % spatial extent. E.g. with EEG you can have a bipolar channel, where the position of % the channel can be represented as in between the position of the two electrodes. % % The structure for MEG gradiometers and/or magnetometers contains % sens.label = Mx1 cell-array with channel labels % sens.chanpos = Mx3 matrix with channel positions % sens.chanori = Mx3 matrix with channel orientations, used for synthetic planar gradient computation % sens.tra = MxN matrix to combine coils into channels % sens.coilpos = Nx3 matrix with coil positions % sens.coilori = Nx3 matrix with coil orientations % sens.balance = structure containing info about the balancing, See FT_APPLY_MONTAGE % and optionally % sens.chanposold = Mx3 matrix with original channel positions (in case % sens.chanpos has been updated to contain NaNs, e.g. % after ft_componentanalysis) % sens.chanoriold = Mx3 matrix with original channel orientations % sens.labelold = Mx1 cell-array with original channel labels % % The structure for EEG or ECoG channels contains % sens.label = Mx1 cell-array with channel labels % sens.elecpos = Nx3 matrix with electrode positions % sens.chanpos = Mx3 matrix with channel positions (often the same as electrode positions) % sens.tra = MxN matrix to combine electrodes into channels % In case sens.tra is not present in the EEG sensor array, the channels % are assumed to be average referenced. % % The structure for NIRS channels contains % sens.optopos = contains information about the position of the optodes % sens.optotype = contains information about the type of optode (receiver or transmitter) % sens.chanpos = contains information about the position of the channels (i.e. average of optopos) % sens.tra = NxC matrix, boolean, contains information about how receiver and transmitter form channels % sens.wavelength = 1xM vector of all wavelengths that were used % sens.transmits = NxM matrix, boolean, where N is the number of optodes and M the number of wavelengths per transmitter. Specifies what optode is transmitting at what wavelength (or nothing at all, which indicates that it is a receiver) % sens.laserstrength = 1xM vector of the strength of the emitted light of the lasers % % The following fields apply to MEG and EEG % sens.chantype = Mx1 cell-array with the type of the channel, see FT_CHANTYPE % sens.chanunit = Mx1 cell-array with the units of the channel signal, e.g. 'V', 'fT' or 'T/cm', see FT_CHANUNIT % % The following fields are optional % sens.type = string with the type of acquisition system, see FT_SENSTYPE % sens.fid = structure with fiducial information % % Historical fields: % pnt, pos, ori, pnt1, pnt2 % % Revision history: % (2016/latest) The chantype and chanunit have become required fields. % Original channel details are specified with the suffix "old" rather than "org". % All numeric values are represented in double precision. % It is possible to convert the amplitude and distance units (e.g. from T to fT and % from m to mm) and it is possible to express planar and axial gradiometer channels % either in units of amplitude or in units of amplitude/distance (i.e. proper % gradient). % % (2011v2) The chantype and chanunit have been added for MEG. % % (2011v1) To facilitate determining the position of channels (e.g. for plotting) % in case of balanced MEG or bipolar EEG, an explicit distinction has been made % between chanpos+chanori and coilpos+coilori (for MEG) and chanpos and elecpos % (for EEG). The pnt and ori fields are removed % % (2010) Added support for bipolar or otherwise more complex linear combinations % of EEG electrodes using sens.tra, similar to MEG. % % (2009) Noice reduction has been added for MEG systems in the balance field. % % (2006) The optional fields sens.type and sens.unit were added. % % (2003) The initial version was defined, which looked like this for EEG % sens.pnt = Mx3 matrix with electrode positions % sens.label = Mx1 cell-array with channel labels % and like this for MEG % sens.pnt = Nx3 matrix with coil positions % sens.ori = Nx3 matrix with coil orientations % sens.tra = MxN matrix to combine coils into channels % sens.label = Mx1 cell-array with channel labels % % See also FT_READ_SENS, FT_SENSTYPE, FT_CHANTYPE, FT_APPLY_MONTAGE, CTF2GRAD, FIF2GRAD, % BTI2GRAD, YOKOGAWA2GRAD, ITAB2GRAD % Copyright (C) 2011-2016, Robert Oostenveld & Jan-Mathijs Schoffelen % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % undocumented options for the 2016 format % amplitude = string, can be 'T' or 'fT' % distance = string, can be 'm', 'cm' or 'mm' % scaling = string, can be 'amplitude' or 'amplitude/distance' % these are for remembering the type on subsequent calls with the same input arguments persistent previous_argin previous_argout current_argin = [{sens} varargin]; if isequal(current_argin, previous_argin) % don't do the whole cheking again, but return the previous output from cache sens = previous_argout{1}; return end % get the optional input arguments, which should be specified as key-value pairs version = ft_getopt(varargin, 'version', 'latest'); amplitude = ft_getopt(varargin, 'amplitude'); % should be 'V' 'uV' 'T' 'mT' 'uT' 'nT' 'pT' 'fT' distance = ft_getopt(varargin, 'distance'); % should be 'm' 'dm' 'cm' 'mm' scaling = ft_getopt(varargin, 'scaling'); % should be 'amplitude' or 'amplitude/distance', the default depends on the senstype if ~isempty(amplitude) && ~any(strcmp(amplitude, {'V' 'uV' 'T' 'mT' 'uT' 'nT' 'pT' 'fT'})) error('unsupported unit of amplitude "%s"', amplitude); end if ~isempty(distance) && ~any(strcmp(distance, {'m' 'dm' 'cm' 'mm'})) error('unsupported unit of distance "%s"', distance); end if strcmp(version, 'latest') version = '2016'; end if isempty(sens) return; end % this is needed further down nchan = length(sens.label); % there are many cases which deal with either eeg or meg ismeg = ft_senstype(sens, 'meg'); switch version %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case '2016' % update it to the previous standard version sens = ft_datatype_sens(sens, 'version', '2011v2'); % ensure that all numbers are represented in double precision sens = ft_struct2double(sens); % use "old/new" rather than "org/new" if isfield(sens, 'labelorg') sens.labelold = sens.labelorg; sens = rmfield(sens, 'labelorg'); end if isfield(sens, 'chantypeorg') sens.chantypeold = sens.chantypeorg; sens = rmfield(sens, 'chantypeorg'); end if isfield(sens, 'chanuniteorg') sens.chanunitold = sens.chanunitorg; sens = rmfield(sens, 'chanunitorg'); end if isfield(sens, 'chanposorg') sens.chanposold = sens.chanposorg; sens = rmfield(sens, 'chanposorg'); end if isfield(sens, 'chanoriorg') sens.chanoriold = sens.chanoriorg; sens = rmfield(sens, 'chanoriorg'); end % in version 2011v2 this was optional, now it is required if ~isfield(sens, 'chantype') || all(strcmp(sens.chantype, 'unknown')) sens.chantype = ft_chantype(sens); end % in version 2011v2 this was optional, now it is required if ~isfield(sens, 'chanunit') || all(strcmp(sens.chanunit, 'unknown')) sens.chanunit = ft_chanunit(sens); end if ~isempty(distance) % update the units of distance, this also updates the tra matrix sens = ft_convert_units(sens, distance); else % determine the default, this may be needed to set the scaling distance = sens.unit; end if ~isempty(amplitude) && isfield(sens, 'tra') % update the tra matrix for the units of amplitude, this ensures that % the leadfield values remain consistent with the units for i=1:nchan if ~isempty(regexp(sens.chanunit{i}, 'm$', 'once')) % this channel is expressed as amplitude per distance sens.tra(i,:) = sens.tra(i,:) * ft_scalingfactor(sens.chanunit{i}, [amplitude '/' distance]); sens.chanunit{i} = [amplitude '/' distance]; elseif ~isempty(regexp(sens.chanunit{i}, '[T|V]$', 'once')) % this channel is expressed as amplitude sens.tra(i,:) = sens.tra(i,:) * ft_scalingfactor(sens.chanunit{i}, amplitude); sens.chanunit{i} = amplitude; else error('unexpected channel unit "%s" in channel %d', sens.chanunit{i}, i); end end else % determine the default amplityde, this may be needed to set the scaling if any(~cellfun(@isempty, regexp(sens.chanunit, '^T'))) % one of the channel units starts with T amplitude = 'T'; elseif any(~cellfun(@isempty, regexp(sens.chanunit, '^fT'))) % one of the channel units starts with fT amplitude = 'fT'; elseif any(~cellfun(@isempty, regexp(sens.chanunit, '^V'))) % one of the channel units starts with V amplitude = 'V'; elseif any(~cellfun(@isempty, regexp(sens.chanunit, '^uV'))) % one of the channel units starts with uV amplitude = 'uV'; else % this unknown amplitude will cause a problem if the scaling needs to be changed between amplitude and amplitude/distance amplitude = 'unknown'; end end % perform some sanity checks if ismeg sel_m = ~cellfun(@isempty, regexp(sens.chanunit, '/m$')); sel_dm = ~cellfun(@isempty, regexp(sens.chanunit, '/dm$')); sel_cm = ~cellfun(@isempty, regexp(sens.chanunit, '/cm$')); sel_mm = ~cellfun(@isempty, regexp(sens.chanunit, '/mm$')); if strcmp(sens.unit, 'm') && (any(sel_dm) || any(sel_cm) || any(sel_mm)) error('inconsistent units in input gradiometer'); elseif strcmp(sens.unit, 'dm') && (any(sel_m) || any(sel_cm) || any(sel_mm)) error('inconsistent units in input gradiometer'); elseif strcmp(sens.unit, 'cm') && (any(sel_m) || any(sel_dm) || any(sel_mm)) error('inconsistent units in input gradiometer'); elseif strcmp(sens.unit, 'mm') && (any(sel_m) || any(sel_dm) || any(sel_cm)) error('inconsistent units in input gradiometer'); end % the default should be amplitude/distance for neuromag and amplitude for all others if isempty(scaling) if ft_senstype(sens, 'neuromag') scaling = 'amplitude/distance'; elseif ft_senstype(sens, 'yokogawa440') warning('asuming that the default scaling should be amplitude rather than amplitude/distance'); scaling = 'amplitude'; else scaling = 'amplitude'; end end % update the gradiometer scaling if strcmp(scaling, 'amplitude') && isfield(sens, 'tra') for i=1:nchan if strcmp(sens.chanunit{i}, [amplitude '/' distance]) % this channel is expressed as amplitude per distance coil = find(abs(sens.tra(i,:))~=0); if length(coil)~=2 error('unexpected number of coils contributing to channel %d', i); end baseline = norm(sens.coilpos(coil(1),:) - sens.coilpos(coil(2),:)); sens.tra(i,:) = sens.tra(i,:)*baseline; % scale with the baseline distance sens.chanunit{i} = amplitude; elseif strcmp(sens.chanunit{i}, amplitude) % no conversion needed else % see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3144 ft_warning(sprintf('unexpected channel unit "%s" in channel %d', sens.chanunit{i}, i)); end % if end % for elseif strcmp(scaling, 'amplitude/distance') && isfield(sens, 'tra') for i=1:nchan if strcmp(sens.chanunit{i}, amplitude) % this channel is expressed as amplitude coil = find(abs(sens.tra(i,:))~=0); if length(coil)==1 || strcmp(sens.chantype{i}, 'megmag') % this is a magnetometer channel, no conversion needed continue elseif length(coil)~=2 error('unexpected number of coils (%d) contributing to channel %s (%d)', length(coil), sens.label{i}, i); end baseline = norm(sens.coilpos(coil(1),:) - sens.coilpos(coil(2),:)); sens.tra(i,:) = sens.tra(i,:)/baseline; % scale with the baseline distance sens.chanunit{i} = [amplitude '/' distance]; elseif strcmp(sens.chanunit{i}, [amplitude '/' distance]) % no conversion needed else % see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3144 ft_warning(sprintf('unexpected channel unit "%s" in channel %d', sens.chanunit{i}, i)); end % if end % for end % if strcmp scaling else sel_m = ~cellfun(@isempty, regexp(sens.chanunit, '/m$')); sel_dm = ~cellfun(@isempty, regexp(sens.chanunit, '/dm$')); sel_cm = ~cellfun(@isempty, regexp(sens.chanunit, '/cm$')); sel_mm = ~cellfun(@isempty, regexp(sens.chanunit, '/mm$')); if any(sel_m | sel_dm | sel_cm | sel_mm) error('scaling of amplitude/distance has not been considered yet for EEG'); end end % if iseeg or ismeg %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case '2011v2' if ~isempty(amplitude) || ~isempty(distance) || ~isempty(scaling) warning('amplitude, distance and scaling are not supported for version "%s"', version); end % This speeds up subsequent calls to ft_senstype and channelposition. % However, if it is not more precise than MEG or EEG, don't keep it in % the output (see further down). if ~isfield(sens, 'type') sens.type = ft_senstype(sens); end if isfield(sens, 'pnt') if ismeg % sensor description is a MEG sensor-array, containing oriented coils sens.coilpos = sens.pnt; sens = rmfield(sens, 'pnt'); sens.coilori = sens.ori; sens = rmfield(sens, 'ori'); else % sensor description is something else, EEG/ECoG etc sens.elecpos = sens.pnt; sens = rmfield(sens, 'pnt'); end end if ~isfield(sens, 'chanpos') if ismeg % sensor description is a MEG sensor-array, containing oriented coils [chanpos, chanori, lab] = channelposition(sens); % the channel order can be different in the two representations [selsens, selpos] = match_str(sens.label, lab); sens.chanpos = nan(length(sens.label), 3); sens.chanori = nan(length(sens.label), 3); % insert the determined position/orientation on the appropriate rows sens.chanpos(selsens,:) = chanpos(selpos,:); sens.chanori(selsens,:) = chanori(selpos,:); if length(selsens)~=length(sens.label) warning('cannot determine the position and orientation for all channels'); end else % sensor description is something else, EEG/ECoG etc % note that chanori will be all NaNs [chanpos, chanori, lab] = channelposition(sens); % the channel order can be different in the two representations [selsens, selpos] = match_str(sens.label, lab); sens.chanpos = nan(length(sens.label), 3); % insert the determined position/orientation on the appropriate rows sens.chanpos(selsens,:) = chanpos(selpos,:); if length(selsens)~=length(sens.label) warning('cannot determine the position and orientation for all channels'); end end end if ~isfield(sens, 'chantype') || all(strcmp(sens.chantype, 'unknown')) if ismeg sens.chantype = ft_chantype(sens); else % for EEG it is not required end end if ~isfield(sens, 'unit') % this should be done prior to calling ft_chanunit, since ft_chanunit uses this for planar neuromag channels sens = ft_convert_units(sens); end if ~isfield(sens, 'chanunit') || all(strcmp(sens.chanunit, 'unknown')) if ismeg sens.chanunit = ft_chanunit(sens); else % for EEG it is not required end end if any(strcmp(sens.type, {'meg', 'eeg', 'magnetometer', 'electrode', 'unknown'})) % this is not sufficiently informative, so better remove it % see also http://bugzilla.fcdonders.nl/show_bug.cgi?id=1806 sens = rmfield(sens, 'type'); end if size(sens.chanpos,1)~=length(sens.label) || ... isfield(sens, 'tra') && size(sens.tra,1)~=length(sens.label) || ... isfield(sens, 'tra') && isfield(sens, 'elecpos') && size(sens.tra,2)~=size(sens.elecpos,1) || ... isfield(sens, 'tra') && isfield(sens, 'coilpos') && size(sens.tra,2)~=size(sens.coilpos,1) || ... isfield(sens, 'tra') && isfield(sens, 'coilori') && size(sens.tra,2)~=size(sens.coilori,1) || ... isfield(sens, 'chanpos') && size(sens.chanpos,1)~=length(sens.label) || ... isfield(sens, 'chanori') && size(sens.chanori,1)~=length(sens.label) error('inconsistent number of channels in sensor description'); end if ismeg % ensure that the magnetometer/gradiometer balancing is specified if ~isfield(sens, 'balance') || ~isfield(sens.balance, 'current') sens.balance.current = 'none'; end % try to add the chantype and chanunit to the CTF G1BR montage if isfield(sens, 'balance') && isfield(sens.balance, 'G1BR') && ~isfield(sens.balance.G1BR, 'chantype') sens.balance.G1BR.chantypeorg = repmat({'unknown'}, size(sens.balance.G1BR.labelorg)); sens.balance.G1BR.chanunitorg = repmat({'unknown'}, size(sens.balance.G1BR.labelorg)); sens.balance.G1BR.chantypenew = repmat({'unknown'}, size(sens.balance.G1BR.labelnew)); sens.balance.G1BR.chanunitnew = repmat({'unknown'}, size(sens.balance.G1BR.labelnew)); % the synthetic gradient montage does not fundamentally change the chantype or chanunit [sel1, sel2] = match_str(sens.balance.G1BR.labelorg, sens.label); sens.balance.G1BR.chantypeorg(sel1) = sens.chantype(sel2); sens.balance.G1BR.chanunitorg(sel1) = sens.chanunit(sel2); [sel1, sel2] = match_str(sens.balance.G1BR.labelnew, sens.label); sens.balance.G1BR.chantypenew(sel1) = sens.chantype(sel2); sens.balance.G1BR.chanunitnew(sel1) = sens.chanunit(sel2); end % idem for G2BR if isfield(sens, 'balance') && isfield(sens.balance, 'G2BR') && ~isfield(sens.balance.G2BR, 'chantype') sens.balance.G2BR.chantypeorg = repmat({'unknown'}, size(sens.balance.G2BR.labelorg)); sens.balance.G2BR.chanunitorg = repmat({'unknown'}, size(sens.balance.G2BR.labelorg)); sens.balance.G2BR.chantypenew = repmat({'unknown'}, size(sens.balance.G2BR.labelnew)); sens.balance.G2BR.chanunitnew = repmat({'unknown'}, size(sens.balance.G2BR.labelnew)); % the synthetic gradient montage does not fundamentally change the chantype or chanunit [sel1, sel2] = match_str(sens.balance.G2BR.labelorg, sens.label); sens.balance.G2BR.chantypeorg(sel1) = sens.chantype(sel2); sens.balance.G2BR.chanunitorg(sel1) = sens.chanunit(sel2); [sel1, sel2] = match_str(sens.balance.G2BR.labelnew, sens.label); sens.balance.G2BR.chantypenew(sel1) = sens.chantype(sel2); sens.balance.G2BR.chanunitnew(sel1) = sens.chanunit(sel2); end % idem for G3BR if isfield(sens, 'balance') && isfield(sens.balance, 'G3BR') && ~isfield(sens.balance.G3BR, 'chantype') sens.balance.G3BR.chantypeorg = repmat({'unknown'}, size(sens.balance.G3BR.labelorg)); sens.balance.G3BR.chanunitorg = repmat({'unknown'}, size(sens.balance.G3BR.labelorg)); sens.balance.G3BR.chantypenew = repmat({'unknown'}, size(sens.balance.G3BR.labelnew)); sens.balance.G3BR.chanunitnew = repmat({'unknown'}, size(sens.balance.G3BR.labelnew)); % the synthetic gradient montage does not fundamentally change the chantype or chanunit [sel1, sel2] = match_str(sens.balance.G3BR.labelorg, sens.label); sens.balance.G3BR.chantypeorg(sel1) = sens.chantype(sel2); sens.balance.G3BR.chanunitorg(sel1) = sens.chanunit(sel2); [sel1, sel2] = match_str(sens.balance.G3BR.labelnew, sens.label); sens.balance.G3BR.chantypenew(sel1) = sens.chantype(sel2); sens.balance.G3BR.chanunitnew(sel1) = sens.chanunit(sel2); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% otherwise error('converting to version %s is not supported', version); end % switch % this makes the display with the "disp" command look better sens = sortfieldnames(sens); % remember the current input and output arguments, so that they can be % reused on a subsequent call in case the same input argument is given current_argout = {sens}; previous_argin = current_argin; previous_argout = current_argout; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function b = sortfieldnames(a) fn = sort(fieldnames(a)); for i=1:numel(fn) b.(fn{i}) = a.(fn{i}); end
github
lcnhappe/happe-master
pinvNx2.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/pinvNx2.m
1,116
utf_8
a10c4b3cf66f4a8756fdb95d62b5e04a
function y = pinvNx2(x) % PINVNX2 computes a pseudo-inverse of the slices of an Nx2xM real-valued matrix. % Output has dimensionality 2xNxM. This implementation is generally faster % than calling pinv in a for-loop, once M > 2 siz = [size(x) 1]; xtx = zeros([2,2,siz(3:end)]); xtx(1,1,:,:) = sum(x(:,1,:,:).^2,1); xtx(2,2,:,:) = sum(x(:,2,:,:).^2,1); tmp = sum(x(:,1,:,:).*x(:,2,:,:),1); xtx(1,2,:,:) = tmp; xtx(2,1,:,:) = tmp; ixtx = inv2x2(xtx); y = mtimes2xN(ixtx, permute(x, [2 1 3:ndims(x)])); function [d] = inv2x2(x) % INV2X2 computes inverse of matrix x, where x = 2x2xN, using explicit analytic definition adjx = [x(2,2,:,:) -x(1,2,:,:); -x(2,1,:,:) x(1,1,:,:)]; denom = x(1,1,:,:).*x(2,2,:,:) - x(1,2,:,:).*x(2,1,:,:); d = adjx./denom([1 1],[1 1],:,:); function [z] = mtimes2xN(x, y) % MTIMES2XN computes x*y where x = 2x2xM and y = 2xNxM % and output dimensionatity is 2xNxM siz = size(y); z = zeros(siz); for k = 1:siz(2) z(1,k,:,:) = x(1,1,:,:).*y(1,k,:,:) + x(1,2,:,:).*y(2,k,:,:); z(2,k,:,:) = x(2,1,:,:).*y(1,k,:,:) + x(2,2,:,:).*y(2,k,:,:); end
github
lcnhappe/happe-master
normals.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/normals.m
2,528
utf_8
96701c7ebda7e6efca8095b3adb6081c
function [nrm] = normals(pnt, tri, opt) % NORMALS compute the surface normals of a triangular mesh % for each triangle or for each vertex % % [nrm] = normals(pnt, tri, opt) % where opt is either 'vertex' or 'triangle' % Copyright (C) 2002-2007, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if nargin<3 opt='vertex'; elseif (opt(1)=='v' | opt(1)=='V') opt='vertex'; elseif (opt(1)=='t' | opt(1)=='T') opt='triangle'; else error('invalid optional argument'); end npnt = size(pnt,1); ntri = size(tri,1); % shift to center pnt(:,1) = pnt(:,1)-mean(pnt(:,1),1); pnt(:,2) = pnt(:,2)-mean(pnt(:,2),1); pnt(:,3) = pnt(:,3)-mean(pnt(:,3),1); % compute triangle normals % nrm_tri = zeros(ntri, 3); % for i=1:ntri % v2 = pnt(tri(i,2),:) - pnt(tri(i,1),:); % v3 = pnt(tri(i,3),:) - pnt(tri(i,1),:); % nrm_tri(i,:) = cross(v2, v3); % end % vectorized version of the previous part v2 = pnt(tri(:,2),:) - pnt(tri(:,1),:); v3 = pnt(tri(:,3),:) - pnt(tri(:,1),:); nrm_tri = cross(v2, v3); if strcmp(opt, 'vertex') % compute vertex normals nrm_pnt = zeros(npnt, 3); for i=1:ntri nrm_pnt(tri(i,1),:) = nrm_pnt(tri(i,1),:) + nrm_tri(i,:); nrm_pnt(tri(i,2),:) = nrm_pnt(tri(i,2),:) + nrm_tri(i,:); nrm_pnt(tri(i,3),:) = nrm_pnt(tri(i,3),:) + nrm_tri(i,:); end % normalise the direction vectors to have length one nrm = nrm_pnt ./ (sqrt(sum(nrm_pnt.^2, 2)) * ones(1,3)); else % normalise the direction vectors to have length one nrm = nrm_tri ./ (sqrt(sum(nrm_tri.^2, 2)) * ones(1,3)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % fast cross product to replace the MATLAB standard version function [c] = cross(a,b) c = [a(:,2).*b(:,3)-a(:,3).*b(:,2) a(:,3).*b(:,1)-a(:,1).*b(:,3) a(:,1).*b(:,2)-a(:,2).*b(:,1)];
github
lcnhappe/happe-master
meg_ini.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/meg_ini.m
5,362
utf_8
57aac4444f8347f1d9de9ff52daf0147
function forwpar=meg_ini(vc,center,order,sens,refs,gradlocs,weights) % initializes MEG-forward calculation % usage: forwpar=meg_ini(vc,center,order,sens,refs,gradlocs,weights) % % input: % vc: Nx6 matrix; N is the number of surface points % the first three numbers in each row are the location % and the second three are the orientation of the surface % normal % center: 3x1 vector denoting the center of volume the conductor % order: desired order of spherical spherical harmonics; % for 'real' realistic volume conductors order=10 is o.k % sens: Mx6 matrix containing sensor location and orientation, % format as for vc % refs: optional argument. If provided, refs contains the location and oriantion % (format as sens) of additional sensors which are subtracted from the original % ones. This makes a gradiometer. One can also do this with the % magnetometer version of this program und do the subtraction outside this program, % but the gradiometer version is faster. % gradlocs, weights: optional two arguments (they must come together!). % gradlocs are the location of additional channels (e.g. to calculate % a higher order gradiometer) and weights. The i.th row in weights contains % the weights to correct if the i.th cannel. These extra fields are added! % (has historical reasons). % % output: % forpwar: structure containing all parameters needed for forward calculation % % note: it is assumed that locations are in cm. % Copyright (C) 2003, Guido Nolte % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if nargin==4 if order>0; coeff_sens=getcoeffs(sens,vc,center,order); forwpar=struct('device_sens',sens,'coeff_sens',coeff_sens,'center',center,'order',order); else forwpar=struct('device_sens',sens,'center',center,'order',order); end elseif nargin==5 if order>0; coeff_sens=getcoeffs(sens,vc,center,order); coeff_refs=getcoeffs(refs,vc,center,order); forwpar=struct('device_sens',sens,'device_ref',refs,'coeff_sens',coeff_sens,'coeff_ref',coeff_refs,'center',center,'order',order); else forwpar=struct('device_sens',sens,'device_ref',refs,'center',center,'order',order); end elseif nargin==7; if order>0; coeff_sens=getcoeffs(sens,vc,center,order); coeff_refs=getcoeffs(refs,vc,center,order); coeff_weights=getcoeffs(gradlocs,vc,center,order); forwpar=struct('device_sens',sens,'device_ref',refs,'coeff_sens',coeff_sens,'coeff_ref',coeff_refs,'center',center,'order',order,'device_weights',gradlocs,'coeff_weights',coeff_weights,'weights',weights); else forwpar=struct('device_sens',sens,'device_ref',refs,'center',center,'order',order,'device_weights',gradlocs,'weights',weights); end else error('you must provide 4,5 or 7 arguments'); end return % main function function coeffs=getcoeffs(device,vc,center,order) [ndip,ndum]=size(vc); [nchan,ndum]=size(device); x1=vc(:,1:3)-repmat(center',ndip,1); n1=vc(:,4:6); x2=device(:,1:3)-repmat(center',nchan,1); n2=device(:,4:6); scale=10; nbasis=(order+1)^2-1; [bas,gradbas]=legs(x1,n1,order,scale); bt=leadsphere_all(x1',x2',n2'); n1rep=reshape(repmat(n1',1,nchan),3,ndip,nchan); b=dotproduct(n1rep,bt); ctc=gradbas'*gradbas; warning('OFF', 'MATLAB:nearlySingularMatrix'); coeffs=inv(ctc)*gradbas'*b; warning('ON', 'MATLAB:nearlySingularMatrix'); return function field=getfield(source,device,coeffs,center,order) [ndip,ndum]=size(source); [nchan,ndum]=size(device); x1=source(:,1:3)-repmat(center',ndip,1); n1=source(:,4:6); x2=device(:,1:3)-repmat(center',nchan,1); n2=device(:,4:6); %spherical bt=leadsphere_all(x1',x2',n2'); n1rep=reshape(repmat(n1',1,nchan),3,ndip,nchan); b=dotproduct(n1rep,bt); field=b'; %correction if order>0 scale=10; [bas,gradbas]=legs(x1,n1,order,scale); nbasis=(order+1)^2-1; coeffs=coeffs(1:nbasis,:); fcorr=gradbas*coeffs; field=field-fcorr'; end return function out=crossproduct(x,y) % usage: out=testprog(x,y) % testprog calculates the cross-product of vector x and y [n,m,k]=size(x); out=zeros(3,m,k); out(1,:,:)=x(2,:,:).*y(3,:,:)-x(3,:,:).*y(2,:,:); out(2,:,:)=x(3,:,:).*y(1,:,:)-x(1,:,:).*y(3,:,:); out(3,:,:)=x(1,:,:).*y(2,:,:)-x(2,:,:).*y(1,:,:); return function out=dotproduct(x,y) % usage: out=dotproduct(x,y) % testprog calculates the dotproduct of vector x and y [n,m,k]=size(x); outb=x(1,:,:).*y(1,:,:)+x(2,:,:).*y(2,:,:)+x(3,:,:).*y(3,:,:); out=reshape(outb,m,k); return function result=norms(x) [n,m,k]=size(x); resultb=sqrt(x(1,:,:).^2+x(2,:,:).^2+x(3,:,:).^2); result=reshape(resultb,m,k); return
github
lcnhappe/happe-master
eeg_halfspace_monopole.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/eeg_halfspace_monopole.m
3,463
utf_8
20c31956ac04fd0bf5615016a9aec23e
function [lf] = eeg_halfspace_monopole(rd, elc, vol) % EEG_HALFSPACE_MONOPOLE calculate the halfspace medium leadfield % on positions pnt for a monopole at position rd and conductivity cond % The halfspace solution requires a plane dividing a conductive zone of % conductivity cond, from a non coductive zone (cond = 0) % % [lf] = eeg_halfspace_monopole(rd, elc, cond) % % Implemented from Malmivuo J, Plonsey R, Bioelectromagnetism (1993) % http://www.bem.fi/book/index.htm % Copyright (C) 2011, Cristiano Micheli % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ siz = size(rd); if any(siz==1) % positions are specified as a single vector Npoles = prod(siz)/3; rd = rd(:)'; % ensure that it is a row vector elseif siz(2)==3 % positions are specified as a Nx3 matrix -> reformat to a single vector Npoles = siz(1); rd = rd'; rd = rd(:)'; % ensure that it is a row vector else error('incorrect specification of dipole locations'); end Nelc = size(elc,1); lf = zeros(Nelc,Npoles); for i=1:Npoles % this is the position of dipole "i" pole1 = rd((1:3) + 3*(i-1)); % distances electrodes - corrent poles r1 = elc - ones(Nelc,1) * pole1; % Method of mirror charges: % Defines the position of mirror charge being symmetric to the plane pole2 = get_mirror_pos(pole1,vol); % distances electrodes - mirror charge r2 = elc - ones(Nelc,1) * pole2; % denominator R1 = (4*pi*vol.cond) * (sum(r1' .^2 ) )'; % denominator, mirror term R2 = -(4*pi*vol.cond) * (sum(r2' .^2 ) )'; % condition of poles falling in the non conductive halfspace invacuum = acos(dot(vol.ori,(pole1-vol.pnt)./norm(pole1-vol.pnt))) < pi/2; if invacuum warning('a pole lies on the vacuum side of the plane'); lf(:,i) = NaN(Nelc,1); elseif any(R1)==0 warning('a pole coincides with one of the electrodes'); lf(:,i) = NaN(Nelc,1); else lf(:,i) = (1 ./ R1) + (1 ./ R2); end end function P2 = get_mirror_pos(P1,vol) % calculates the position of a point symmetric to pnt with respect to a plane P2 = []; % define the plane pnt = vol.pnt; ori = vol.ori; % already normalized if abs(dot(P1-pnt,ori))<eps warning(sprintf ('point %f %f %f lies in the symmetry plane',P1(1),P1(2),P1(3))) P2 = P1; else % define the plane in parametric form % define a non colinear vector vc with respect to the plane normal vc = [1 0 0]; if abs(cross(ori, vc, 2))<eps vc = [0 1 0]; end % define plane's direction vectors v1 = cross(ori, vc, 2); v1 = v1/norm(v1); v2 = cross(pnt, ori, 2); v2 = v2/norm(v2); plane = [pnt v1 v2]; % distance plane-point P1 d = abs(dot(ori, plane(:,1:3)-P1(:,1:3), 2)); % symmetric point P2 = P1 + 2*d*ori; end
github
lcnhappe/happe-master
eeg_halfspace_medium_leadfield.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/eeg_halfspace_medium_leadfield.m
3,463
utf_8
b68f2792331216de0c239ced9734fe42
function [lf] = eeg_halfspace_medium_leadfield(rd, elc, vol) % HALFSPACE_MEDIUM_LEADFIELD calculate the halfspace medium leadfield % on positions pnt for a dipole at position rd and conductivity cond % The halfspace solution requires a plane dividing a conductive zone of % conductivity cond, from a non coductive zone (cond = 0) % % [lf] = halfspace_medium_leadfield(rd, elc, cond) % Copyright (C) 2011, Cristiano Micheli and Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ siz = size(rd); if any(siz==1) % positions are specified as a single vector Ndipoles = prod(siz)/3; rd = rd(:)'; % ensure that it is a row vector elseif siz(2)==3 % positions are specified as a Nx3 matrix -> reformat to a single vector Ndipoles = siz(1); rd = rd'; rd = rd(:)'; % ensure that it is a row vector else error('incorrect specification of dipole locations'); end Nelc = size(elc,1); lf = zeros(Nelc,3*Ndipoles); for i=1:Ndipoles % this is the position of dipole "i" dip1 = rd((1:3) + 3*(i-1)); % distances electrodes - dipole r1 = elc - ones(Nelc,1) * dip1; % Method of mirror dipoles: % Defines the position of mirror dipoles being symmetric to the plane dip2 = get_mirror_pos(dip1,vol); % distances electrodes - mirror dipole r2 = elc - ones(Nelc,1) * dip2; % denominator R1 = (4*pi*vol.cond) * (sum(r1' .^2 ) .^ 1.5)'; % denominator, mirror term R2 = -(4*pi*vol.cond) * (sum(r2' .^2 ) .^ 1.5)'; % condition of dipoles falling in the non conductive halfspace invacuum = acos(dot(vol.ori,(dip1-vol.pnt)./norm(dip1-vol.pnt))) < pi/2; if invacuum warning('dipole lies on the vacuum side of the plane'); lf(:,(1:3) + 3*(i-1)) = NaN(Nelc,3); elseif any(R1)==0 warning('dipole coincides with one of the electrodes'); lf(:,(1:3) + 3*(i-1)) = NaN(Nelc,3); else lf(:,(1:3) + 3*(i-1)) = (r1 ./ [R1 R1 R1]) + (r2 ./ [R2 R2 R2]); end end function P2 = get_mirror_pos(P1,vol) % calculates the position of a point symmetric to pnt with respect to a plane P2 = []; % define the plane pnt = vol.pnt; ori = vol.ori; % already normalized if abs(dot(P1-pnt,ori))<eps warning(sprintf ('point %f %f %f lies in the symmetry plane',P1(1),P1(2),P1(3))) P2 = P1; else % define the plane in parametric form % define a non colinear vector vc with respect to the plane normal vc = [1 0 0]; if abs(cross(ori, vc, 2))<eps vc = [0 1 0]; end % define plane's direction vectors v1 = cross(ori, vc, 2); v1 = v1/norm(v1); v2 = cross(pnt, ori, 2); v2 = v2/norm(v2); plane = [pnt v1 v2]; % distance plane-point P1 d = abs(dot(ori, plane(:,1:3)-P1(:,1:3), 2)); % symmetric point P2 = P1 + 2*d*ori; end
github
lcnhappe/happe-master
ft_warning.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/ft_warning.m
7,789
utf_8
d832a7ad5e2f9bb42995e6e5d4caa198
function [ws, warned] = ft_warning(varargin) % FT_WARNING will throw a warning for every unique point in the % stacktrace only, e.g. in a for-loop a warning is thrown only once. % % Use as one of the following % ft_warning(string) % ft_warning(id, string) % Alternatively, you can use ft_warning using a timeout % ft_warning(string, timeout) % ft_warning(id, string, timeout) % where timeout should be inf if you don't want to see the warning ever % again. % % Use as ft_warning('-clear') to clear old warnings from the current % stack % % It can be used instead of the MATLAB built-in function WARNING, thus as % s = ft_warning(...) % or as % ft_warning(s) % where s is a structure with fields 'identifier' and 'state', storing the % state information. In other words, ft_warning accepts as an input the % same structure it returns as an output. This returns or restores the % states of warnings to their previous values. % % It can also be used as % [s w] = ft_warning(...) % where w is a boolean that indicates whether a warning as been thrown or not. % % Please note that you can NOT use it like this % ft_warning('the value is %d', 10) % instead you should do % ft_warning(sprintf('the value is %d', 10)) % Copyright (C) 2012-2016, Robert Oostenveld, J?rn M. Horschig % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ global ft_default warned = false; ws = []; stack = dbstack; if any(strcmp({stack(2:end).file}, 'ft_warning.m')) % don't call FT_WARNING recursively, see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3068 return; end if nargin < 1 error('You need to specify at least a warning message'); end if isstruct(varargin{1}) warning(varargin{1}); return; end if ~isfield(ft_default, 'warning') ft_default.warning = []; end if ~isfield(ft_default.warning, 'stopwatch') ft_default.warning.stopwatch = []; end if ~isfield(ft_default.warning, 'identifier') ft_default.warning.identifier = []; end if ~isfield(ft_default.warning, 'ignore') ft_default.warning.ignore = {}; end % put the arguments we will pass to warning() in this cell array warningArgs = {}; if nargin==3 % calling syntax (id, msg, timeout) warningArgs = varargin(1:2); msg = warningArgs{2}; timeout = varargin{3}; fname = [warningArgs{1} '_' warningArgs{2}]; elseif nargin==2 && isnumeric(varargin{2}) % calling syntax (msg, timeout) warningArgs = varargin(1); msg = warningArgs{1}; timeout = varargin{2}; fname = warningArgs{1}; elseif nargin==2 && isequal(varargin{1}, 'off') ft_default.warning.ignore = union(ft_default.warning.ignore, varargin{2}); return elseif nargin==2 && isequal(varargin{1}, 'on') ft_default.warning.ignore = setdiff(ft_default.warning.ignore, varargin{2}); return elseif nargin==2 && ~isnumeric(varargin{2}) % calling syntax (id, msg) warningArgs = varargin(1:2); msg = warningArgs{2}; timeout = inf; fname = [warningArgs{1} '_' warningArgs{2}]; elseif nargin==1 % calling syntax (msg) warningArgs = varargin(1); msg = warningArgs{1}; timeout = inf; % default timeout in seconds fname = [warningArgs{1}]; end if ismember(msg, ft_default.warning.ignore) % do not show this warning return; end if isempty(timeout) error('Timeout ill-specified'); end if timeout ~= inf fname = fixname(fname); % make a nice string that is allowed as fieldname in a structures line = []; else % here, we create the fieldname functionA.functionB.functionC... [tmpfname, ft_default.warning.identifier, line] = fieldnameFromStack(ft_default.warning.identifier); if ~isempty(tmpfname), fname = tmpfname; clear tmpfname; end end if nargin==1 && ischar(varargin{1}) && strcmp('-clear', varargin{1}) if strcmp(fname, '-clear') % reset all fields if called outside a function ft_default.warning.identifier = []; ft_default.warning.stopwatch = []; else if issubfield(ft_default.warning.identifier, fname) ft_default.warning.identifier = rmsubfield(ft_default.warning.identifier, fname); end end return; end % and add the line number to make this unique for the last function fname = horzcat(fname, line); if ~issubfield('ft_default.warning.stopwatch', fname) ft_default.warning.stopwatch = setsubfield(ft_default.warning.stopwatch, fname, tic); end now = toc(getsubfield(ft_default.warning.stopwatch, fname)); % measure time since first function call if ~issubfield(ft_default.warning.identifier, fname) || ... (issubfield(ft_default.warning.identifier, fname) && now>getsubfield(ft_default.warning.identifier, [fname '.timeout'])) % create or reset field ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, fname, []); % warning never given before or timed out ws = warning(warningArgs{:}); ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.timeout'], now+timeout); ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.ws'], msg); warned = true; else % the warning has been issued before, but has not timed out yet ws = getsubfield(ft_default.warning.identifier, [fname '.ws']); end end % function ft_warning %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [fname, ft_previous_warnings, line] = fieldnameFromStack(ft_previous_warnings) % stack(1) is this function, stack(2) is ft_warning stack = dbstack('-completenames'); if size(stack) < 3 fname = []; line = []; return; end i0 = 3; % ignore ft_preamble while strfind(stack(i0).name, 'ft_preamble') i0=i0+1; end fname = horzcat(fixname(stack(end).name)); if ~issubfield(ft_previous_warnings, fixname(stack(end).name)) ft_previous_warnings.(fixname(stack(end).name)) = []; % iteratively build up structure fields end for i=numel(stack)-1:-1:(i0) % skip postamble scripts if strncmp(stack(i).name, 'ft_postamble', 12) break; end fname = horzcat(fname, '.', horzcat(fixname(stack(i).name))); % , stack(i).file if ~issubfield(ft_previous_warnings, fname) % iteratively build up structure fields setsubfield(ft_previous_warnings, fname, []); end end % line of last function call line = ['.line', int2str(stack(i0).line)]; end % function outcome = issubfield(strct, fname) % substrindx = strfind(fname, '.'); % if numel(substrindx) > 0 % % separate the last fieldname from all former % outcome = eval(['isfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']); % else % % there is only one fieldname % outcome = isfield(strct, fname); % end % end % function strct = rmsubfield(strct, fname) % substrindx = strfind(fname, '.'); % if numel(substrindx) > 0 % % separate the last fieldname from all former % strct = eval(['rmfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']); % else % % there is only one fieldname % strct = rmfield(strct, fname); % end % end
github
lcnhappe/happe-master
leadsphere_all.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/leadsphere_all.m
2,291
utf_8
3d513e7f5d8a9f4a12ced5392ee85220
function out=leadsphere_chans(xloc,sensorloc,sensorori) % usage: out=leadsphere_chans(xloc,sensorloc,sensorori) % Copyright (C) 2003, Guido Nolte % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ [n,nsens]=size(sensorloc); %n=3 m=? [n,ndip]=size(xloc); xlocrep=reshape(repmat(xloc,1,nsens),3,ndip,nsens); sensorlocrep=reshape(repmat(sensorloc,ndip,1),3,ndip,nsens); sensororirep=reshape(repmat(sensorori,ndip,1),3,ndip,nsens); r2=norms(sensorlocrep); veca=sensorlocrep-xlocrep; a=norms(veca); adotr2=dotproduct(veca,sensorlocrep); gradf1=scal2vec(1./r2.*(a.^2)+adotr2./a+2*a+2*r2); gradf2=scal2vec(a+2*r2+adotr2./a); gradf=gradf1.*sensorlocrep-gradf2.*xlocrep; F=a.*(r2.*a+adotr2); A1=scal2vec(1./F); A2=A1.^2; A3=crossproduct(xlocrep,sensororirep); A4=scal2vec(dotproduct(gradf,sensororirep)); A5=crossproduct(xlocrep,sensorlocrep); out=1e-7*(A3.*A1-(A4.*A2).*A5); %%GRB change return; function out=crossproduct(x,y) [n,m,k]=size(x); out=zeros(3,m,k); out(1,:,:)=x(2,:,:).*y(3,:,:)-x(3,:,:).*y(2,:,:); out(2,:,:)=x(3,:,:).*y(1,:,:)-x(1,:,:).*y(3,:,:); out(3,:,:)=x(1,:,:).*y(2,:,:)-x(2,:,:).*y(1,:,:); return; function out=dotproduct(x,y) [n,m,k]=size(x); outb=x(1,:,:).*y(1,:,:)+x(2,:,:).*y(2,:,:)+x(3,:,:).*y(3,:,:); out=reshape(outb,m,k); return; function result=norms(x) [n,m,k]=size(x); resultb=sqrt(x(1,:,:).^2+x(2,:,:).^2+x(3,:,:).^2); result=reshape(resultb,m,k); return; function result=scal2vec(x) [m,k]=size(x); % result=zeros(3,m,k); % for i=1:3 % result(i,:,:)=x; % end result=reshape(repmat(x(:)', [3 1]), [3 m k]); return
github
lcnhappe/happe-master
ft_hastoolbox.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/ft_hastoolbox.m
24,831
utf_8
43bae19e25ce108f013f1c401e497630
function [status] = ft_hastoolbox(toolbox, autoadd, silent) % FT_HASTOOLBOX tests whether an external toolbox is installed. Optionally % it will try to determine the path to the toolbox and install it % automatically. % % Use as % [status] = ft_hastoolbox(toolbox, autoadd, silent) % % autoadd = 0 means that it will not be added % autoadd = 1 means that give an error if it cannot be added % autoadd = 2 means that give a warning if it cannot be added % autoadd = 3 means that it remains silent if it cannot be added % % silent = 0 means that it will give some feedback about adding the toolbox % silent = 1 means that it will not give feedback % Copyright (C) 2005-2013, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % this function is called many times in FieldTrip and associated toolboxes % use efficient handling if the same toolbox has been investigated before % persistent previous previouspath % % if ~isequal(previouspath, path) % previous = []; % end % % if isempty(previous) % previous = struct; % elseif isfield(previous, fixname(toolbox)) % status = previous.(fixname(toolbox)); % return % end if isdeployed % it is not possible to check the presence of functions or change the path in a compiled application status = 1; return end % this points the user to the website where he/she can download the toolbox url = { 'AFNI' 'see http://afni.nimh.nih.gov' 'DSS' 'see http://www.cis.hut.fi/projects/dss' 'EEGLAB' 'see http://www.sccn.ucsd.edu/eeglab' 'NWAY' 'see http://www.models.kvl.dk/source/nwaytoolbox' 'SPM99' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM2' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM5' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM8' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM12' 'see http://www.fil.ion.ucl.ac.uk/spm' 'MEG-PD' 'see http://www.kolumbus.fi/kuutela/programs/meg-pd' 'MEG-CALC' 'this is a commercial toolbox from Neuromag, see http://www.neuromag.com' 'BIOSIG' 'see http://biosig.sourceforge.net' 'EEG' 'see http://eeg.sourceforge.net' 'EEGSF' 'see http://eeg.sourceforge.net' % alternative name 'MRI' 'see http://eeg.sourceforge.net' % alternative name 'NEUROSHARE' 'see http://www.neuroshare.org' 'BESA' 'see http://www.besa.de/downloads/matlab/ and get the "BESA MATLAB Readers"' 'MATLAB2BESA' 'see http://www.besa.de/downloads/matlab/ and get the "MATLAB to BESA Export functions"' 'EEPROBE' 'see http://www.ant-neuro.com, or contact Maarten van der Velde' 'YOKOGAWA' 'this is deprecated, please use YOKOGAWA_MEG_READER instead' 'YOKOGAWA_MEG_READER' 'see http://www.yokogawa.com/me/me-login-en.htm' 'BEOWULF' 'see http://robertoostenveld.nl, or contact Robert Oostenveld' 'MENTAT' 'see http://robertoostenveld.nl, or contact Robert Oostenveld' 'SON2' 'see http://www.kcl.ac.uk/depsta/biomedical/cfnr/lidierth.html, or contact Malcolm Lidierth' '4D-VERSION' 'contact Christian Wienbruch' 'COMM' 'see http://www.mathworks.com/products/communications' 'SIGNAL' 'see http://www.mathworks.com/products/signal' 'OPTIM' 'see http://www.mathworks.com/products/optim' 'IMAGE' 'see http://www.mathworks.com/products/image' % Mathworks refers to this as IMAGES 'SPLINES' 'see http://www.mathworks.com/products/splines' 'DISTCOMP' 'see http://www.mathworks.nl/products/parallel-computing/' 'COMPILER' 'see http://www.mathworks.com/products/compiler' 'FASTICA' 'see http://www.cis.hut.fi/projects/ica/fastica' 'BRAINSTORM' 'see http://neuroimage.ucs.edu/brainstorm' 'FILEIO' 'see http://www.fieldtriptoolbox.org' 'PREPROC' 'see http://www.fieldtriptoolbox.org' 'FORWARD' 'see http://www.fieldtriptoolbox.org' 'INVERSE' 'see http://www.fieldtriptoolbox.org' 'SPECEST' 'see http://www.fieldtriptoolbox.org' 'REALTIME' 'see http://www.fieldtriptoolbox.org' 'PLOTTING' 'see http://www.fieldtriptoolbox.org' 'SPIKE' 'see http://www.fieldtriptoolbox.org' 'CONNECTIVITY' 'see http://www.fieldtriptoolbox.org' 'PEER' 'see http://www.fieldtriptoolbox.org' 'PLOTTING' 'see http://www.fieldtriptoolbox.org' 'DENOISE' 'see http://lumiere.ens.fr/Audition/adc/meg, or contact Alain de Cheveigne' 'BCI2000' 'see http://bci2000.org' 'NLXNETCOM' 'see http://www.neuralynx.com' 'DIPOLI' 'see ftp://ftp.fcdonders.nl/pub/fieldtrip/external' 'MNE' 'see http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php' 'TCP_UDP_IP' 'see http://www.mathworks.com/matlabcentral/fileexchange/345, or contact Peter Rydesaeter' 'BEMCP' 'contact Christophe Phillips' 'OPENMEEG' 'see http://gforge.inria.fr/projects/openmeeg and http://gforge.inria.fr/frs/?group_id=435' 'PRTOOLS' 'see http://www.prtools.org' 'ITAB' 'contact Stefania Della Penna' 'BSMART' 'see http://www.brain-smart.org' 'PEER' 'see http://www.fieldtriptoolbox.org/development/peer' 'FREESURFER' 'see http://surfer.nmr.mgh.harvard.edu/fswiki' 'SIMBIO' 'see https://www.mrt.uni-jena.de/simbio/index.php/Main_Page' 'VGRID' 'see http://www.rheinahrcampus.de/~medsim/vgrid/manual.html' 'FNS' 'see http://hhvn.nmsu.edu/wiki/index.php/FNS' 'GIFTI' 'see http://www.artefact.tk/software/matlab/gifti' 'XML4MAT' 'see http://www.mathworks.com/matlabcentral/fileexchange/6268-xml4mat-v2-0' 'SQDPROJECT' 'see http://www.isr.umd.edu/Labs/CSSL/simonlab' 'BCT' 'see http://www.brain-connectivity-toolbox.net/' 'CCA' 'see http://www.imt.liu.se/~magnus/cca or contact Magnus Borga' 'EGI_MFF' 'see http://www.egi.com/ or contact either Phan Luu or Colin Davey at EGI' 'TOOLBOX_GRAPH' 'see http://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph or contact Gabriel Peyre' 'NETCDF' 'see http://www.mathworks.com/matlabcentral/fileexchange/15177' 'MYSQL' 'see http://www.mathworks.com/matlabcentral/fileexchange/8663-mysql-database-connector' 'ISO2MESH' 'see http://iso2mesh.sourceforge.net/cgi-bin/index.cgi?Home or contact Qianqian Fang' 'DATAHASH' 'see http://www.mathworks.com/matlabcentral/fileexchange/31272' 'IBTB' 'see http://www.ibtb.org' 'ICASSO' 'see http://www.cis.hut.fi/projects/ica/icasso' 'XUNIT' 'see http://www.mathworks.com/matlabcentral/fileexchange/22846-matlab-xunit-test-framework' 'PLEXON' 'available from http://www.plexon.com/assets/downloads/sdk/ReadingPLXandDDTfilesinMatlab-mexw.zip' 'MISC' 'various functions that were downloaded from http://www.mathworks.com/matlabcentral/fileexchange and elsewhere' '35625-INFORMATION-THEORY-TOOLBOX' 'see http://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox' '29046-MUTUAL-INFORMATION' 'see http://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox' '14888-MUTUAL-INFORMATION-COMPUTATION' 'see http://www.mathworks.com/matlabcentral/fileexchange/14888-mutual-information-computation' 'PLOT2SVG' 'see http://www.mathworks.com/matlabcentral/fileexchange/7401-scalable-vector-graphics-svg-export-of-figures' 'BRAINSUITE' 'see http://brainsuite.bmap.ucla.edu/processing/additional-tools/' 'BRAINVISA' 'see http://brainvisa.info' 'FILEEXCHANGE' 'see http://www.mathworks.com/matlabcentral/fileexchange/' 'NEURALYNX_V6' 'see http://neuralynx.com/research_software/file_converters_and_utilities/ and take the version from Neuralynx (windows only)' 'NEURALYNX_V3' 'see http://neuralynx.com/research_software/file_converters_and_utilities/ and take the version from Ueli Rutishauser' 'NPMK' 'see https://github.com/BlackrockMicrosystems/NPMK' 'VIDEOMEG' 'see https://github.com/andreyzhd/VideoMEG' 'WAVEFRONT' 'see http://mathworks.com/matlabcentral/fileexchange/27982-wavefront-obj-toolbox' 'NEURONE' 'see http://www.megaemg.com/support/unrestricted-downloads' }; if nargin<2 % default is not to add the path automatically autoadd = 0; end if nargin<3 % default is not to be silent silent = 0; end % determine whether the toolbox is installed toolbox = upper(toolbox); % In case SPM8 or higher not available, allow to use fallback toolbox fallback_toolbox=''; switch toolbox case 'AFNI' dependency={'BrikLoad', 'BrikInfo'}; case 'DSS' dependency={'denss', 'dss_create_state'}; case 'EEGLAB' dependency = 'runica'; case 'NWAY' dependency = 'parafac'; case 'SPM' dependency = 'spm'; % any version of SPM is fine case 'SPM99' dependency = {'spm', get_spm_version()==99}; case 'SPM2' dependency = {'spm', get_spm_version()==2}; case 'SPM5' dependency = {'spm', get_spm_version()==5}; case 'SPM8' dependency = {'spm', get_spm_version()==8}; case 'SPM8UP' % version 8 or later, but not SPM 9X dependency = {'spm', get_spm_version()>=8, get_spm_version()<95}; %This is to avoid crashes when trying to add SPM to the path fallback_toolbox = 'SPM8'; case 'SPM12' dependency = {'spm', get_spm_version()==12}; case 'MEG-PD' dependency = {'rawdata', 'channames'}; case 'MEG-CALC' dependency = {'megmodel', 'megfield', 'megtrans'}; case 'BIOSIG' dependency = {'sopen', 'sread'}; case 'EEG' dependency = {'ctf_read_res4', 'ctf_read_meg4'}; case 'EEGSF' % alternative name dependency = {'ctf_read_res4', 'ctf_read_meg4'}; case 'MRI' % other functions in the mri section dependency = {'avw_hdr_read', 'avw_img_read'}; case 'NEUROSHARE' dependency = {'ns_OpenFile', 'ns_SetLibrary', ... 'ns_GetAnalogData'}; case 'ARTINIS' dependency = {'read_artinis_oxy3'}; case 'BESA' dependency = {'readBESAavr', 'readBESAelp', 'readBESAswf'}; case 'MATLAB2BESA' dependency = {'besa_save2Avr', 'besa_save2Elp', 'besa_save2Swf'}; case 'EEPROBE' dependency = {'read_eep_avr', 'read_eep_cnt'}; case 'YOKOGAWA' dependency = @()hasyokogawa('16bitBeta6'); case 'YOKOGAWA12BITBETA3' dependency = @()hasyokogawa('12bitBeta3'); case 'YOKOGAWA16BITBETA3' dependency = @()hasyokogawa('16bitBeta3'); case 'YOKOGAWA16BITBETA6' dependency = @()hasyokogawa('16bitBeta6'); case 'YOKOGAWA_MEG_READER' dependency = @()hasyokogawa('1.4'); case 'BEOWULF' dependency = {'evalwulf', 'evalwulf', 'evalwulf'}; case 'MENTAT' dependency = {'pcompile', 'pfor', 'peval'}; case 'SON2' dependency = {'SONFileHeader', 'SONChanList', 'SONGetChannel'}; case '4D-VERSION' dependency = {'read4d', 'read4dhdr'}; case {'STATS', 'STATISTICS'} dependency = has_license('statistics_toolbox'); % check the availability of a toolbox license case {'OPTIM', 'OPTIMIZATION'} dependency = has_license('optimization_toolbox'); % check the availability of a toolbox license case {'SPLINES', 'CURVE_FITTING'} dependency = has_license('curve_fitting_toolbox'); % check the availability of a toolbox license case 'COMM' dependency = {has_license('communication_toolbox'), 'de2bi'}; % also check the availability of a toolbox license case 'SIGNAL' dependency = {has_license('signal_toolbox'), 'window'}; % also check the availability of a toolbox license case 'IMAGE' dependency = has_license('image_toolbox'); % check the availability of a toolbox license case {'DCT', 'DISTCOMP'} dependency = has_license('distrib_computing_toolbox'); % check the availability of a toolbox license case 'COMPILER' dependency = has_license('compiler'); % check the availability of a toolbox license case 'FASTICA' dependency = 'fpica'; case 'BRAINSTORM' dependency = 'bem_xfer'; case 'DENOISE' dependency = {'tsr', 'sns'}; case 'CTF' dependency = {'getCTFBalanceCoefs', 'getCTFdata'}; case 'BCI2000' dependency = {'load_bcidat'}; case 'NLXNETCOM' dependency = {'MatlabNetComClient', 'NlxConnectToServer', ... 'NlxGetNewCSCData'}; case 'DIPOLI' dependency = {'dipoli.maci', 'file'}; case 'MNE' dependency = {'fiff_read_meas_info', 'fiff_setup_read_raw'}; case 'TCP_UDP_IP' dependency = {'pnet', 'pnet_getvar', 'pnet_putvar'}; case 'BEMCP' dependency = {'bem_Cij_cog', 'bem_Cij_lin', 'bem_Cij_cst'}; case 'OPENMEEG' dependency = {'om_save_tri'}; case 'PRTOOLS' dependency = {'prversion', 'dataset', 'svc'}; case 'ITAB' dependency = {'lcReadHeader', 'lcReadData'}; case 'BSMART' dependency = 'bsmart'; case 'FREESURFER' dependency = {'MRIread', 'vox2ras_0to1'}; case 'FNS' dependency = 'elecsfwd'; case 'SIMBIO' dependency = {'calc_stiff_matrix_val', 'sb_transfer'}; case 'VGRID' dependency = 'vgrid'; case 'GIFTI' dependency = 'gifti'; case 'XML4MAT' dependency = {'xml2struct', 'xml2whos'}; case 'SQDPROJECT' dependency = {'sqdread', 'sqdwrite'}; case 'BCT' dependency = {'macaque71.mat', 'motif4funct_wei'}; case 'CCA' dependency = {'ccabss'}; case 'EGI_MFF' dependency = {'mff_getObject', 'mff_getSummaryInfo'}; case 'TOOLBOX_GRAPH' dependency = 'toolbox_graph'; case 'NETCDF' dependency = {'netcdf'}; case 'MYSQL' % not sure if 'which' would work fine here, so use 'exist' dependency = has_mex('mysql'); % this only consists of a single mex file case 'ISO2MESH' dependency = {'vol2surf', 'qmeshcut'}; case 'QSUB' dependency = {'qsubfeval', 'qsubcellfun'}; case 'ENGINE' dependency = {'enginefeval', 'enginecellfun'}; case 'DATAHASH' dependency = {'DataHash'}; case 'IBTB' dependency = {'make_ibtb','binr'}; case 'ICASSO' dependency = {'icassoEst'}; case 'XUNIT' dependency = {'initTestSuite', 'runtests'}; case 'PLEXON' dependency = {'plx_adchan_gains', 'mexPlex'}; case '35625-INFORMATION-THEORY-TOOLBOX' dependency = {'conditionalEntropy', 'entropy', 'jointEntropy',... 'mutualInformation' 'nmi' 'nvi' 'relativeEntropy'}; case '29046-MUTUAL-INFORMATION' dependency = {'MI', 'license.txt'}; case '14888-MUTUAL-INFORMATION-COMPUTATION' dependency = {'condentropy', 'demo_mi', 'estcondentropy.cpp',... 'estjointentropy.cpp', 'estpa.cpp', ... 'findjointstateab.cpp', 'makeosmex.m',... 'mutualinfo.m', 'condmutualinfo.m',... 'entropy.m', 'estentropy.cpp',... 'estmutualinfo.cpp', 'estpab.cpp',... 'jointentropy.m' 'mergemultivariables.m' }; case 'PLOT2SVG' dependency = {'plot2svg.m', 'simulink2svg.m'}; case 'BRAINSUITE' dependency = {'readdfs.m', 'writedfc.m'}; case 'BRAINVISA' dependency = {'loadmesh.m', 'plotmesh.m', 'savemesh.m'}; case 'NEURALYNX_V6' dependency = has_mex('Nlx2MatCSC'); case 'NEURALYNX_V3' dependency = has_mex('Nlx2MatCSC_v3'); case 'NPMK' dependency = {'OpenNSx' 'OpenNEV'}; case 'VIDEOMEG' dependency = {'comp_tstamps' 'load_audio0123', 'load_video123'}; case 'WAVEFRONT' dependency = {'write_wobj' 'read_wobj'}; case 'NEURONE' dependency = {'readneurone' 'readneuronedata' 'readneuroneevents'}; % the following are FieldTrip modules/toolboxes case 'FILEIO' dependency = {'ft_read_header', 'ft_read_data', ... 'ft_read_event', 'ft_read_sens'}; case 'FORWARD' dependency = {'ft_compute_leadfield', 'ft_prepare_vol_sens'}; case 'PLOTTING' dependency = {'ft_plot_topo', 'ft_plot_mesh', 'ft_plot_matrix'}; case 'PEER' dependency = {'peerslave', 'peermaster'}; case 'CONNECTIVITY' dependency = {'ft_connectivity_corr', 'ft_connectivity_granger'}; case 'SPIKE' dependency = {'ft_spiketriggeredaverage', 'ft_spiketriggeredspectrum'}; case 'FILEEXCHANGE' dependency = is_subdir_in_fieldtrip_path('/external/fileexchange'); case {'INVERSE', 'REALTIME', 'SPECEST', 'PREPROC', ... 'COMPAT', 'STATFUN', 'TRIALFUN', 'UTILITIES/COMPAT', ... 'FILEIO/COMPAT', 'PREPROC/COMPAT', 'FORWARD/COMPAT', ... 'PLOTTING/COMPAT', 'TEMPLATE/LAYOUT', 'TEMPLATE/ANATOMY' ,... 'TEMPLATE/HEADMODEL', 'TEMPLATE/ELECTRODE', ... 'TEMPLATE/NEIGHBOURS', 'TEMPLATE/SOURCEMODEL'} dependency = is_subdir_in_fieldtrip_path(toolbox); otherwise if ~silent, warning('cannot determine whether the %s toolbox is present', toolbox); end dependency = false; end status = is_present(dependency); if ~status && ~isempty(fallback_toolbox) % in case of SPM8UP toolbox = fallback_toolbox; end % try to determine the path of the requested toolbox if autoadd>0 && ~status % for core FieldTrip modules prefix = fileparts(which('ft_defaults')); if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % for external FieldTrip modules prefix = fullfile(fileparts(which('ft_defaults')), 'external'); if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); licensefile = [lower(toolbox) '_license']; if status && exist(licensefile, 'file') % this will execute openmeeg_license and mne_license % which display the license on screen for three seconds feval(licensefile); end end % for contributed FieldTrip extensions prefix = fullfile(fileparts(which('ft_defaults')), 'contrib'); if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); licensefile = [lower(toolbox) '_license']; if status && exist(licensefile, 'file') % this will execute openmeeg_license and mne_license % which display the license on screen for three seconds feval(licensefile); end end % for linux computers in the Donders Centre for Cognitive Neuroimaging prefix = '/home/common/matlab'; if ~status && isdir(prefix) status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % for windows computers in the Donders Centre for Cognitive Neuroimaging prefix = 'h:\common\matlab'; if ~status && isdir(prefix) status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % use the MATLAB subdirectory in your homedirectory, this works on linux and mac prefix = fullfile(getenv('HOME'), 'matlab'); if ~status && isdir(prefix) status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end if ~status % the toolbox is not on the path and cannot be added sel = find(strcmp(url(:,1), toolbox)); if ~isempty(sel) msg = sprintf('the %s toolbox is not installed, %s', toolbox, url{sel, 2}); else msg = sprintf('the %s toolbox is not installed', toolbox); end if autoadd==1 error(msg); elseif autoadd==2 ft_warning(msg); else % fail silently end end end % this function is called many times in FieldTrip and associated toolboxes % use efficient handling if the same toolbox has been investigated before if status previous.(fixname(toolbox)) = status; end % remember the previous path, allows us to determine on the next call % whether the path has been modified outise of this function previouspath = path; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = myaddpath(toolbox, silent) if isdeployed warning('cannot change path settings for %s in a compiled application', toolbox); status = 1; elseif exist(toolbox, 'dir') if ~silent, ws = warning('backtrace', 'off'); warning('adding %s toolbox to your MATLAB path', toolbox); warning(ws); % return to the previous warning level end addpath(toolbox); status = 1; elseif (~isempty(regexp(toolbox, 'spm5$', 'once')) || ~isempty(regexp(toolbox, 'spm8$', 'once')) || ~isempty(regexp(toolbox, 'spm12$', 'once'))) && exist([toolbox 'b'], 'dir') status = myaddpath([toolbox 'b'], silent); else status = 0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function path = unixpath(path) %path(path=='\') = '/'; % replace backward slashes with forward slashes path = strrep(path,'\','/'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = hasfunction(funname, toolbox) try % call the function without any input arguments, which probably is inapropriate feval(funname); % it might be that the function without any input already works fine status = true; catch % either the function returned an error, or the function is not available % availability is influenced by the function being present and by having a % license for the function, i.e. in a concurrent licensing setting it might % be that all toolbox licenses are in use m = lasterror; if strcmp(m.identifier, 'MATLAB:license:checkouterror') if nargin>1 warning('the %s toolbox is available, but you don''t have a license for it', toolbox); else warning('the function ''%s'' is available, but you don''t have a license for it', funname); end status = false; elseif strcmp(m.identifier, 'MATLAB:UndefinedFunction') status = false; else % the function seems to be available and it gave an unknown error, % which is to be expected with inappropriate input arguments status = true; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = is_subdir_in_fieldtrip_path(toolbox_name) fttrunkpath = unixpath(fileparts(which('ft_defaults'))); fttoolboxpath = fullfile(fttrunkpath, lower(toolbox_name)); needle=[pathsep fttoolboxpath pathsep]; haystack = [pathsep path() pathsep]; status = ~isempty(findstr(needle, haystack)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = has_mex(name) full_name=[name '.' mexext]; status = (exist(full_name, 'file')==3); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function v = get_spm_version() if ~is_present('spm') v=NaN; return end version_str = spm('ver'); token = regexp(version_str,'(\d*)','tokens'); v = str2num([token{:}{:}]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = has_license(toolbox_name) status = license('checkout', toolbox_name)==1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = is_present(dependency) if iscell(dependency) % use recursion status = all(cellfun(@is_present,dependency)); elseif islogical(dependency) % boolean status = all(dependency); elseif ischar(dependency) % name of a function status = is_function_present_in_search_path(dependency); elseif isa(dependency, 'function_handle') status = dependency(); else assert(false,'this should not happen'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = is_function_present_in_search_path(function_name) w = which(function_name); % must be in path and not a variable status = ~isempty(w) && ~isequal(w, 'variable');
github
lcnhappe/happe-master
mesh2edge.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/mesh2edge.m
3,713
utf_8
410baaa2ca114acab82443de9a844a68
function [newbnd] = mesh2edge(bnd) % MESH2EDGE finds the edge lines from a triangulated mesh or the edge % surfaces from a tetrahedral or hexahedral mesh. An edge is defined as an % element that does not border any other element. This also implies that a % closed triangulated surface has no edges. % % Use as % [edge] = mesh2edge(mesh) % % See also POLY2TRI % Copyright (C) 2013-2015, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if isfield(bnd, 'tri') % make a list of all edges edge1 = bnd.tri(:, [1 2]); edge2 = bnd.tri(:, [2 3]); edge3 = bnd.tri(:, [3 1]); edge = cat(1, edge1, edge2, edge3); elseif isfield(bnd, 'tet') % make a list of all triangles that form the tetraheder tri1 = bnd.tet(:, [1 2 3]); tri2 = bnd.tet(:, [2 3 4]); tri3 = bnd.tet(:, [3 4 1]); tri4 = bnd.tet(:, [4 1 2]); edge = cat(1, tri1, tri2, tri3, tri4); elseif isfield(bnd, 'hex') % make a list of all "squares" that form the cube/hexaheder % FIXME should be checked, this is impossible without a drawing square1 = bnd.hex(:, [1 2 3 4]); square2 = bnd.hex(:, [5 6 7 8]); square3 = bnd.hex(:, [1 2 6 5]); square4 = bnd.hex(:, [2 3 7 6]); square5 = bnd.hex(:, [3 4 8 7]); square6 = bnd.hex(:, [4 1 5 8]); edge = cat(1, square1, square2, square3, square4, square5, square6); end % isfield(bnd) % soort all polygons in the same direction % keep the original as "edge" and the sorted one as "sedge" sedge = sort(edge, 2); % % find the edges that are not shared -> count the number of occurences % n = size(sedge,1); % occurences = ones(n,1); % for i=1:n % for j=(i+1):n % if all(sedge(i,:)==sedge(j,:)) % occurences(i) = occurences(i)+1; % occurences(j) = occurences(j)+1; % end % end % end % % % make the selection in the original, not the sorted version of the edges % % otherwise the orientation of the edges might get flipped % edge = edge(occurences==1,:); % find the edges that are not shared indx = findsingleoccurringrows(sedge); edge = edge(indx, :); % replace pnt by pos bnd = fixpos(bnd); % the naming of the output edges depends on what they represent newbnd.pos = bnd.pos; if isfield(bnd, 'tri') % these have two vertices in each edge element newbnd.line = edge; elseif isfield(bnd, 'tet') % these have three vertices in each edge element newbnd.tri = edge; elseif isfield(bnd, 'hex') % these have four vertices in each edge element newbnd.poly = edge; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION, see http://bugzilla.fcdonders.nl/show_bug.cgi?id=1833#c12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function indx = findsingleoccurringrows(X) [X, indx] = sortrows(X); sel = any(diff([X(1,:)-1; X],1),2) & any(diff([X; X(end,:)+1],1),2); indx = indx(sel); function indx = finduniquerows(X) [X, indx] = sortrows(X); sel = any(diff([X(1,:)-1; X],1),2); indx = indx(sel);
github
lcnhappe/happe-master
project_elec.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/project_elec.m
3,791
utf_8
61bc3f095e4ced1311048c06823bb037
function [el, prj] = project_elec(elc, pnt, tri) % PROJECT_ELEC projects electrodes on a triangulated surface % and returns triangle index, la/mu parameters and distance % % Use as % [el, prj] = project_elec(elc, pnt, tri) % which returns % el = Nx4 matrix with [tri, la, mu, dist] for each electrode % prj = Nx3 matrix with the projected electrode position % % See also TRANSFER_ELEC % Copyright (C) 1999-2013, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ Nelc = size(elc,1); el = zeros(Nelc, 4); % this is a work-around for http://bugzilla.fcdonders.nl/show_bug.cgi?id=2369 elc = double(elc); pnt = double(pnt); tri = double(tri); for i=1:Nelc [proj,dist] = ptriprojn(pnt(tri(:,1),:), pnt(tri(:,2),:), pnt(tri(:,3),:), elc(i,:), 1); [mindist, minindx] = min(abs(dist)); [la, mu] = lmoutr(pnt(tri(minindx,1),:), pnt(tri(minindx,2),:), pnt(tri(minindx,3),:), proj(minindx,:)); smallest_dist = dist(minindx); smallest_tri = minindx; smallest_la = la; smallest_mu = mu; % the following can be done faster, because the smallest_dist can be % directly selected % Ntri = size(tri,1); % for j=1:Ntri % %[proj, dist] = ptriproj(pnt(tri(j,1),:), pnt(tri(j,2),:), pnt(tri(j,3),:), elc(i,:), 1); % if dist(j)<smallest_dist % % remember the triangle index, distance and la/mu % [la, mu] = lmoutr(pnt(tri(j,1),:), pnt(tri(j,2),:), pnt(tri(j,3),:), proj(j,:)); % smallest_dist = dist(j); % smallest_tri = j; % smallest_la = la; % smallest_mu = mu; % end % end % store the projection for this electrode el(i,:) = [smallest_tri smallest_la smallest_mu smallest_dist]; end if nargout>1 prj = zeros(size(elc)); for i=1:Nelc v1 = pnt(tri(el(i,1),1),:); v2 = pnt(tri(el(i,1),2),:); v3 = pnt(tri(el(i,1),3),:); la = el(i,2); mu = el(i,3); prj(i,:) = routlm(v1, v2, v3, la, mu); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION this is an alternative implementation that will also work for % polygons %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function prj = polyproj(elc,pnt) % projects a point on a plane, e.g. an electrode on a polygon % pnt is a Nx3 matrix with multiple vertices that span the plane % these vertices can be slightly off the plane center = mean(pnt,1); % shift the vertices to have zero mean pnt(:,1) = pnt(:,1) - center(1); pnt(:,2) = pnt(:,2) - center(2); pnt(:,3) = pnt(:,3) - center(3); elc(:,1) = elc(:,1) - center(1); elc(:,2) = elc(:,2) - center(2); elc(:,3) = elc(:,3) - center(3); pnt = pnt'; elc = elc'; [u, s, v] = svd(pnt); % The vertices are assumed to ly in plane, at least reasonably. That means % that from the three eigenvectors there is one which is very small, i.e. % the one orthogonal to the plane. Project the electrodes along that % direction. u(:,3) = 0; prj = u * u' * elc; prj = prj'; prj(:,1) = prj(:,1) + center(1); prj(:,2) = prj(:,2) + center(2); prj(:,3) = prj(:,3) + center(3);
github
lcnhappe/happe-master
eeg_slab_monopole.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/eeg_slab_monopole.m
4,375
utf_8
1ffef5225bbeaf47b2a91906c7df7b3a
function [lf] = eeg_slab_monopole(rd, elc, vol) % EEG_SLAB_MONOPOLE calculate the strip medium leadfield % on positions pnt for a monopole at position rd and conductivity cond % The halfspace solution requires a plane dividing a conductive zone of % conductivity cond, from a non coductive zone (cond = 0) % % [lf] = eeg_slab_monopole(rd, elc, cond) % % Implemented from Malmivuo J, Plonsey R, Bioelectromagnetism (1993) % http://www.bem.fi/book/index.htm % Copyright (C) 2011, Cristiano Micheli % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ siz = size(rd); if any(siz==1) % positions are specified as a single vector Npoles = prod(siz)/3; rd = rd(:)'; % ensure that it is a row vector elseif siz(2)==3 % positions are specified as a Nx3 matrix -> reformat to a single vector Npoles = siz(1); rd = rd'; rd = rd(:)'; % ensure that it is a row vector else error('incorrect specification of pole locations'); end Nelc = size(elc,1); lf = zeros(Nelc,Npoles); for i=1:Npoles % this is the position of dipole "i" pole1 = rd((1:3) + 3*(i-1)); % distances electrodes - corrent poles r1 = elc - ones(Nelc,1) * pole1; % Method of mirror charges: % Defines the position of mirror charge being symmetric to the plane [pole2,pole3,pole4] = get_mirror_pos(pole1,vol); % distances electrodes - mirror charge r2 = elc - ones(Nelc,1) * pole2; r3 = elc - ones(Nelc,1) * pole3; r4 = elc - ones(Nelc,1) * pole4; % denominator R1 = (4*pi*vol.cond) * sqrt(sum(r1' .^2 ) )'; % denominator, mirror term R2 = -(4*pi*vol.cond) * sqrt(sum(r2' .^2 ) )'; % denominator, mirror term of P1, plane 2 R3 = -(4*pi*vol.cond) * sqrt(sum(r3' .^2 ) )'; % denominator, mirror term of P2, plane 2 R4 = (4*pi*vol.cond) * sqrt(sum(r4' .^2 ) )'; % condition of poles falling in the non conductive halfspace instrip1 = acos(dot(vol.ori1,(pole1-vol.pnt1)./norm(pole1-vol.pnt1))) > pi/2; instrip2 = acos(dot(vol.ori2,(pole1-vol.pnt2)./norm(pole1-vol.pnt2))) > pi/2; invacuum = ~(instrip1&instrip2); if invacuum warning('a pole lies on the vacuum side of the plane'); lf(:,i) = NaN(Nelc,1); elseif any(R1)==0 warning('a pole coincides with one of the electrodes'); lf(:,i) = NaN(Nelc,1); else lf(:,i) = (1 ./ R1) + (1 ./ R2) + (1 ./ R3);% + (1 ./ R4); end end function [P2,P3,P4] = get_mirror_pos(P1,vol) % calculates the position of a point symmetric to the pole, with respect to plane1 % and two points symmetric to the last ones, with respect to plane2 P2 = []; P3 = []; P4 = []; % define the planes pnt1 = vol.pnt1; ori1 = vol.ori1; pnt2 = vol.pnt2; ori2 = vol.ori2; if abs(dot(P1-pnt1,ori1))<eps || abs(dot(P1-pnt2,ori2))<eps warning(sprintf ('point %f %f %f lies on the plane',P1(1),P1(2),P1(3))) P2 = P1; else % define the planes plane1 = def_plane(pnt1,ori1); plane2 = def_plane(pnt2,ori2); % distance plane1-point P1 d = abs(dot(ori1, plane1(:,1:3)-P1(:,1:3), 2)); % symmetric point P2 = P1 + 2*d*ori1; % distance plane2-point P1 d = abs(dot(ori2, plane2(:,1:3)-P1(:,1:3), 2)); % symmetric point P3 = P1 + 2*d*ori2; % distance plane2-point P2 d = abs(dot(ori2, plane2(:,1:3)-P2(:,1:3), 2)); % symmetric point P4 = P2 + 2*d*ori2; end function plane = def_plane(pnt,ori) % define the plane in parametric form % define a non colinear vector vc with respect to the plane normal vc = [1 0 0]; if abs(cross(ori, vc, 2))<eps vc = [0 1 0]; end % define plane's direction vectors v1 = cross(ori, vc, 2); v1 = v1/norm(v1); v2 = cross(pnt, ori, 2); v2 = v2/norm(v2); plane = [pnt v1 v2];
github
lcnhappe/happe-master
eeg_leadfield1.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/eeg_leadfield1.m
3,868
utf_8
84a91d4f1daf6dc32450398058ef4c3c
function lf = eeg_leadfield1(R, elc, vol) % EEG_LEADFIELD1 electric leadfield for a dipole in a single sphere % % [lf] = eeg_leadfield1(R, elc, vol) % % with input arguments % R position dipole (vector of length 3) % elc position electrodes % and vol being a structure with the elements % vol.r radius of sphere % vol.cond conductivity of sphere % % The center of the sphere should be at the origin. % % This implementation is adapted from % Luetkenhoener, Habilschrift '92 % The original reference is % R. Kavanagh, T. M. Darccey, D. Lehmann, and D. H. Fender. Evaluation of methods for three-dimensional localization of electric sources in the human brain. IEEE Trans Biomed Eng, 25:421-429, 1978. % Copyright (C) 2002, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ Nchans = size(elc, 1); lf = zeros(Nchans,3); % always take the outermost sphere, this makes comparison with the 4-sphere computation easier [vol.r, indx] = max(vol.r); vol.cond = vol.cond(indx); % check whether the electrode ly on the sphere, allowing 0.5% tolerance dist = sqrt(sum(elc.^2,2)); if any(abs(dist-vol.r)>vol.r*0.005) warning('electrodes do not ly on sphere surface -> using projection') end elc = vol.r * elc ./ [dist dist dist]; % check whether the dipole is inside the brain [disabled for EEGLAB] % if sqrt(sum(R.^2))>=vol.r % error('dipole is outside the brain compartment'); % end c0 = norm(R); c1 = vol.r; c2 = 4*pi*c0^2*vol.cond; if c0==0 % the dipole is in the origin, this can and should be handeled as an exception [phi, el] = cart2sph(elc(:,1), elc(:,2), elc(:,3)); theta = pi/2 - el; lf(:,1) = sin(theta).*cos(phi); lf(:,2) = sin(theta).*sin(phi); lf(:,3) = cos(theta); % the potential in a homogenous sphere is three times the infinite medium potential lf = 3/(c1^2*4*pi*vol.cond)*lf; else for i=1:Nchans % use another name for the electrode, in accordance with lutkenhoner1992 r = elc(i,:); c3 = r-R; c4 = norm(c3); c5 = c1^2 * c0^2 - dot(r,R)^2; % lutkenhoner A.11 c6 = c0^2*r - dot(r,R)*R; % lutkenhoner, just after A.17 % the original code reads (cf. lutkenhoner1992 equation A.17) % lf(i,:) = ((dot(R, r/norm(r) - (r-R)/norm(r-R))/(norm(cross(r,R))^2) + 2/(norm(r-R)^3)) * cross(R, cross(r, R)) + ((norm(r)^2-norm(R)^2)/(norm(r-R)^3) - 1/norm(r)) * R) / (4*pi*vol.cond(1)*norm(R)^2); % but more efficient execution of the code is achieved by some precomputations if c5<1000*eps % the dipole lies on a single line with the electrode lf(i,:) = (2/c4^3 * c6 + ((c1^2-c0^2)/c4^3 - 1/c1) * R) / c2; else % nothing wrong, do the complete computation lf(i,:) = ((dot(R, r/c1 - c3/c4)/c5 + 2/c4^3) * c6 + ((c1^2-c0^2)/c4^3 - 1/c1) * R) / c2; end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % fast cross product function [c] = cross(a,b) c = [a(2)*b(3)-a(3)*b(2) a(3)*b(1)-a(1)*b(3) a(1)*b(2)-a(2)*b(1)]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % fast dot product function [c] = dot(a,b) c = sum(a.*b);
github
lcnhappe/happe-master
meg_forward.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/meg_forward.m
3,954
utf_8
e674beba8b799e44fadd7b5e0ee82b9a
function field=meg_forward(dip_par,forwpar) % calculates the magnetic field of n dipoles % in a realistic volume conductor % usage: field=meg_forward(dip_par,forwpar) % % input: % dip_par nx6 matrix where each row contains location (first 3 numbers) % and moment (second 3 numbers) of a dipole % forwpar structure containing all information relevant for this % calculation; forwpar is calculated with meg_ini % You have here an option to include linear transformations in % the forward model by specifying forpwar.lintrafo=A % where A is an NxM matrix. Then field -> A field % You can use that, e.g., if you can write the forward model % with M magnetometer-channels plus a matrix multiplication % transforming this to a (eventually higher order) gradiometer. % % output: % field mxn matrix where the i.th column is the field in m channels % of the i.th dipole % % note: No assumptions about units are made (i.e. no scaling factors) % % Copyright (C) 2003, Guido Nolte % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ device_sens=forwpar.device_sens; field_sens_sphere=getfield_sphere(dip_par,forwpar.device_sens,forwpar.center); field=field_sens_sphere;clear field_sens_sphere; if isfield(forwpar,'device_ref') field=field-getfield_sphere(dip_par,forwpar.device_ref,forwpar.center); end if isfield(forwpar,'device_weights') field=field+forwpar.weights*getfield_sphere(dip_par,forwpar.device_weights,forwpar.center); end if forwpar.order>0 coeff=forwpar.coeff_sens; if isfield(forwpar,'device_ref') coeff=coeff-forwpar.coeff_ref; end if isfield(forwpar,'device_weights') coeff=coeff+forwpar.coeff_weights*forwpar.weights'; end field=field+getfield_corr(dip_par,coeff,forwpar.center,forwpar.order); end if isfield(forwpar,'lintrafo'); field=forwpar.lintrafo*field; end return % main function function field=getfield_sphere(source,device,center) [ndip,ndum]=size(source); [nchan,ndum]=size(device); x1=source(:,1:3)-repmat(center',ndip,1); n1=source(:,4:6); x2=device(:,1:3)-repmat(center',nchan,1); n2=device(:,4:6); %spherical bt=leadsphere_all(x1',x2',n2'); n1rep=reshape(repmat(n1',1,nchan),3,ndip,nchan); b=dotproduct(n1rep,bt); field=b'; return function field=getfield_corr(source,coeffs,center,order) [ndip,ndum]=size(source); x1=source(:,1:3)-repmat(center',ndip,1); n1=source(:,4:6); %correction if order>0 scale=10; [bas,gradbas]=legs(x1,n1,order,scale); nbasis=(order+1)^2-1; coeffs=coeffs(1:nbasis,:); field=-(gradbas*coeffs)'; end return function out=crossproduct(x,y) % usage: out=testprog(x,y) % testprog calculates the cross-product of vector x and y [n,m,k]=size(x); out=zeros(3,m,k); out(1,:,:)=x(2,:,:).*y(3,:,:)-x(3,:,:).*y(2,:,:); out(2,:,:)=x(3,:,:).*y(1,:,:)-x(1,:,:).*y(3,:,:); out(3,:,:)=x(1,:,:).*y(2,:,:)-x(2,:,:).*y(1,:,:); return function out=dotproduct(x,y) % usage: out=dotproduct(x,y) % testprog calculates the dotproduct of vector x and y [n,m,k]=size(x); outb=x(1,:,:).*y(1,:,:)+x(2,:,:).*y(2,:,:)+x(3,:,:).*y(3,:,:); out=reshape(outb,m,k); return function result=norms(x) [n,m,k]=size(x); resultb=sqrt(x(1,:,:).^2+x(2,:,:).^2+x(3,:,:).^2); result=reshape(resultb,m,k); return
github
lcnhappe/happe-master
leadfield_openmeeg.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/forward/private/leadfield_openmeeg.m
16,073
utf_8
59380282979799a30ccf58093f1bc3d8
function [lp, voxels_in] = leadfield_openmeeg ( voxels, vol, sens, varargin ) % FT_OM_COMPUTE_LEAD uses OpenMEEG to compute the lead fields / potentials % using the boundary element method (BEM). % The inputs are as follows: % voxels = an [Nx3] array of voxel locations. % vol = the volume structure containing bnd and cond fields. In % order to save the matrices computed by OpenMEEG, the % fields 'path' and 'basefile' should also be provided. % Matrices will be stored under the directory specified by % 'path' and 'basefile' will be used to generate the % filename. If FT_OM_COMPUTE_LEAD is run with the same % 'path' and 'basefile' parameters and detects the % corresponding files from the OpenMEEG process, it will % use those files for further processing rather than % creating/calculating them again. % sens = the sens structure (elec for EEG or grad for MEG) % % Additional parameters can be specified by setting the following vol % fields: % vol.ecog = "yes"/["no"] allows the computation of lead potentials % for ECoG grids. (sens must be an EEG elec structure) % vol.method = ["hminv"]/"adjoint" to use the adjoint method instead of % the inverse head matrix. % % By default, the BEM will be computed using the inverse head matrix % method. This is slower than the adjoint method, but more efficient if the % BEM needs to be computed multiple times when sensor positions have % moved relative to fixed head coordinates. To implement this type of % computation: % 1) vol.path and vol.basefile should be specified so that OpenMEEG % matrices will be saved. % 2) Once the first BEM is computed, copy the following files to a second % working directory: % - *_hm.bin % - *_hminv.bin % - *_dsm#.bin (where # is a number) % 3) vol.path should be changed to the second working directory and % vol.basefile should remain the same. % 4) Recompute the BEM with the new set of sensor positions and/or voxels. % % Copyright (C) 2013, Daniel D.E. Wong, Sarang S. Dalal % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % vol = fixpos(vol); % renames old subfield 'pnt' to 'pos', if necessary % Variable declarations CPU_LIM = feature('numCores'); VOXCHUNKSIZE = 30000; % if OpenMEEG uses too much memory for a given computer, try reducing VOXCHUNKSIZE om_format = 'binary'; % note that OpenMEEG's mat-file supported is limited in file size (2GB?) switch(om_format) case 'matlab' om_ext = '.mat'; case 'binary' om_ext = '.bin'; otherwise error('invalid OpenMEEG output type requested'); end OPENMEEG_PATH = []; % '/usr/local/bin/'; % In case OpenMEEG executables omitted from PATH variable persistent ldLibraryPath0; if ispc warning('Sorry, Windows is not yet tested'); elseif isunix setenv('OMP_NUM_THREADS',num2str(CPU_LIM)); if(~ismac) % MacOS doesn't use LD_LIBRARY_PATH; in case of problems, look into "DYLD_LIBRARY_PATH" if isempty(ldLibraryPath0) ldLibraryPath0 = getenv('LD_LIBRARY_PATH'); % We'll restore this at the end end UNIX_LDLIBRARYPATH = '/usr/lib:/usr/local/lib'; setenv('LD_LIBRARY_PATH',UNIX_LDLIBRARYPATH); % MATLAB changes the default LD_LIBRARY_PATH variable end end [om_status,om_errmsg] = system(fullfile(OPENMEEG_PATH,'om_assemble')); % returns 0 if om_assemble is not happy if(om_status ~= 0) error([om_errmsg 'Unable to properly execute OpenMEEG. Please configure variable declarations and paths in this file as needed.']); else clear om_status end % Extra options method = ft_getopt(vol,'method','hminv'); ecog = ft_getopt(vol,'ecog','no'); % Use basefile and basepath for saving files if isfield(vol,'basefile') basefile = vol.basefile; else basefile = tempname; end if isfield(vol,'path') path = vol.path; cleanup_flag = false; else path = fullfile(tempdir,'ft-om'); cleanup_flag = true; end mkdir(path); sensorFile = fullfile(path, [basefile '_sensorcoords.txt']); if exist(sensorFile,'file') disp('Sensor coordinate file already exists. Skipping...') else disp('Writing sensor coordinates...') fid = fopen(sensorFile,'w'); if ft_senstype(sens, 'eeg') for ii=1:size(sens.chanpos,1) fprintf(fid,'%s\t%.15f\t%.15f\t%.15f\n', sens.label{ii}, sens.chanpos(ii,:)); end else % MEG % Find channel labels for each coil -- non-trivial for MEG gradiometers! % Note that each coil in a gradiometer pair will receive the same label [chanlabel_idx,coilpos_idx]=find(abs(sens.tra)==1); newchanlabelmethod = true if(newchanlabelmethod) for ii=1:size(sens.coilpos,1) fprintf(fid,'%.15f\t%.15f\t%.15f\t%.15f\t%.15f\t%.15f\n',sens.coilpos(ii,:),sens.coilori(ii,:)); end else if(size(sens.tra,1) < max(chanlabel_idx) | size(sens.tra,2) ~= length(coilpos_idx) | length(coilpos_idx) ~= size(sens.coilpos,1)) % These dimensions should match; if not, some channels may have been % removed, or there's unexpected handling of MEG reference coils error('Mismatch between number of rows in sens.tra and number of channels... possibly some channels removed or unexpected MEG reference coil configuration'); end for ii=1:length(coilpos_idx) coilpair_idx = find(chanlabel_idx(ii) == chanlabel_idx); if(length(coilpair_idx)==2) whichcoil = find(ii == coilpair_idx); switch(whichcoil) case 1 labelsuffix = 'A'; case 2 labelsuffix = 'B'; end else labelsuffix = ''; end label = [sens.label{chanlabel_idx(ii)} labelsuffix]; fprintf(fid,'%s\t%.15f\t%.15f\t%.15f\t%.15f\t%.15f\t%.15f\n',label,sens.coilpos(ii,:),sens.coilori(ii,:)); end end end fclose(fid); end condFile = fullfile(path, [basefile '.cond']); if exist(condFile,'file') disp('Conductivity file already exists. Skipping...') else disp('Writing conductivity file...') write_cond(vol,condFile); end geomFile = fullfile(path, [basefile '.geom']); if exist(geomFile,'file') disp('Geometry descriptor file already exists. Skipping...') else disp('Writing geometry descriptor file...') write_geom(vol,geomFile,basefile); end disp('Writing OpenMEEG mesh files...') write_mesh(vol,path,basefile); disp('Validating mesh...') [om_status om_msg] = system([fullfile(OPENMEEG_PATH, 'om_check_geom'), ' -g ', geomFile]) if(om_status ~= 0) % status = 0 if successful error([om_msg, 'Aborting OpenMEEG pipeline due to above error.']); end disp('Writing dipole file...') chunks = ceil(size(voxels,1)/VOXCHUNKSIZE); dipFile = cell(chunks,1); for ii = 1:chunks dipFile{ii} = fullfile(path, [basefile '_voxels' num2str(ii) om_ext]); if exist(dipFile{ii},'file') fprintf('\t%s already exists. Skipping...\n', dipFile{ii}); else voxidx = ((ii-1)*VOXCHUNKSIZE + 1) : (min((ii)*VOXCHUNKSIZE,size(voxels,1))); writevoxels = [kron(voxels(voxidx,:),ones(3,1)) , kron(ones(length(voxidx),1),eye(3))]; om_save_full(writevoxels,dipFile{ii},om_format); end end hmFile = fullfile(path, [basefile '_hm' om_ext]); if exist(hmFile,'file') disp('Head matrix already exists. Skipping...') else disp('Building head matrix') [om_status, om_msg] = system([fullfile(OPENMEEG_PATH, 'om_assemble'), ' -hm ', geomFile, ' ', condFile, ' ', hmFile]) if(om_status ~= 0) % status = 0 if successful error([om_msg, 'Aborting OpenMEEG pipeline due to above error.']); end end if strcmp(method,'hminv') hminvFile = fullfile(path, [basefile '_hminv' om_ext]); if exist(hminvFile,'file') disp('Inverse head matrix already exists. Skipping...'); else disp('Computing inverse head matrix'); if(CPU_LIM >= 4) % Matlab's inverse function is multithreaded and performs faster with at least 4 cores om_save_sym(inv(om_load_sym(hmFile,om_format)),hminvFile,om_format); else [om_status, om_msg] = system([fullfile(OPENMEEG_PATH, 'om_minverser'), ' ', hmFile, ' ', hminvFile]) if(om_status ~= 0) % status = 0 if successful error([om_msg, 'Aborting OpenMEEG pipeline due to above error.']); end end end end dsmFile = cell(chunks,1); for ii = 1:chunks dsmFile{ii} = fullfile(path, [basefile '_dsm' num2str(ii) om_ext]); if exist(dsmFile{ii},'file') fprintf('\t%s already exists. Skipping...\n', dsmFile{ii}); else disp('Assembling source matrix'); [om_status, om_msg] = system([fullfile(OPENMEEG_PATH, 'om_assemble'), ' -dsm ', geomFile, ' ', condFile, ' ', dipFile{ii}, ' ' dsmFile{ii}]) if(om_status ~= 0) % status = 0 if successful error([om_msg, 'Aborting OpenMEEG pipeline due to above error. If 4-layer BEM attempted, try 3-layer BEM (scalp, skull, brain).']); end end end disp('--------------------------------------') if ft_senstype(sens, 'eeg') if strcmp(ecog,'yes') ohmicFile = fullfile(path, [basefile '_h2ecogm']); cmd = '-h2ecogm'; else ohmicFile = fullfile(path, [basefile '_h2em' om_ext]); cmd = '-h2em'; end else ohmicFile = fullfile(path, [basefile '_h2mm' om_ext]); cmd = '-h2mm'; end if exist(ohmicFile,'file') disp('Ohmic current file already exists. Skipping...') else disp('Calculating Contribution of Ohmic Currents') [om_status, om_msg] = system([fullfile(OPENMEEG_PATH, 'om_assemble'), ' ', cmd, ' ', geomFile, ' ', condFile, ' ' , sensorFile, ' ' , ohmicFile]) if(om_status ~= 0) % status = 0 if successful error([om_msg, 'Aborting OpenMEEG pipeline due to above error.']); end end if ft_senstype(sens, 'meg') disp('Contribution of all sources to the MEG sensors') scFile = cell(chunks,1); for ii = 1:chunks scFile{ii} = fullfile(path, [basefile '_ds2mm' num2str(ii) om_ext]); if exist(scFile{ii},'file') fprintf('\t%s already exists. Skipping...\n',scFile{ii}) else [om_status, om_msg] = system([fullfile(OPENMEEG_PATH, 'om_assemble'), ' -ds2mm ', dipFile{ii} ,' ', sensorFile, ' ' , scFile{ii}]) if(om_status ~= 0) % status = 0 if successful error([om_msg, 'Aborting OpenMEEG pipeline due to above error.']); end end end end disp('Putting it all together.') bemFile = cell(chunks,1); for ii = 1:chunks if ft_senstype(sens, 'eeg') bemFile{ii} = fullfile(path, [basefile '_eeggain' num2str(ii) om_ext]); else bemFile{ii} = fullfile(path, [basefile '_meggain' num2str(ii) om_ext]); end if exist(bemFile{ii},'file') fprintf('/t%s already exists. Skipping...\n', bemFile{ii}); continue; end if strcmp(method,'hminv') if ft_senstype(sens, 'eeg') [om_status, om_msg] = system([fullfile(OPENMEEG_PATH, 'om_gain'), ' -EEG ', hminvFile, ' ', dsmFile{ii}, ' ', ohmicFile, ' ', bemFile{ii}]); else [om_status, om_msg] = system([fullfile(OPENMEEG_PATH, 'om_gain'), ' -MEG ', hminvFile, ' ', dsmFile{ii}, ' ', ohmicFile,' ', scFile{ii}, ' ',bemFile{ii}]); end else % Adjoint method if ft_senstype(sens, 'eeg') [om_status, om_msg] = system([fullfile(OPENMEEG_PATH, 'om_gain'), ' -EEGadjoint ', geomFile, ' ', condFile, ' ', dipFile{ii},' ', hmFile, ' ', ohmicFile, ' ', bemFile{ii}]); else [om_status, om_msg] = system([fullfile(OPENMEEG_PATH, 'om_gain'), ' -MEGadjoint ', geomFile, ' ', condFile, ' ', dipFile{ii},' ', hmFile, ' ', ohmicFile, ' ', scFile{ii}, ' ',bemFile{ii}]); end end if(om_status ~= 0) % status = 0 if successful error([om_msg, 'Aborting OpenMEEG pipeline due to above error.']); end end % Import lead field/potential [g, voxels_in] = import_gain(path, basefile, ft_senstype(sens, 'eeg')); if (voxels_in ~= voxels) & (nargout == 1); warning('Imported voxels from OpenMEEG process not the same as function input.'); end; lp = sens.tra*g; % Mchannels x (3 orientations x Nvoxels) % Cleanup if cleanup_flag rmdir(basepath,'s') end if (isunix & ~ismac) setenv('LD_LIBRARY_PATH',ldLibraryPath0); end function write_cond(vol,filename) fid=fopen(filename,'w'); fprintf(fid,'# Properties Description 1.0 (Conductivities)\n'); tissues = {'Scalp\t%f\n'; 'Skull\t%f\n'; 'CSF\t%f\n'; 'Brain\t%f\n'}; if length(vol.cond)==3; tissues = tissues([1 2 4]); end; fprintf(fid,'Air\t0\n'); for ii=1:length(vol.cond) fprintf(fid,tissues{ii},vol.cond(ii)); end fclose(fid); function write_geom(vol,filename,basepathfile) fid=fopen(filename,'w'); fprintf(fid,'# Domain Description 1.0\n'); fprintf(fid,'Interfaces %i Mesh\n',length(vol.cond)); tissues={'_scalp.tri\n'; '_skull.tri\n'; '_csf.tri\n'; '_brain.tri\n'}; if length(vol.cond)==3; tissues = tissues([1 2 4]); end; for ii = 1:length(vol.cond) fprintf(fid,[basepathfile tissues{ii}]); end fprintf('\n'); fprintf(fid,'Domains %i\n',length(vol.cond)+1); domains={'Scalp'; 'Skull'; 'CSF'; 'Brain'}; if length(vol.cond)==3; domains = domains([1 2 4]); end; fprintf(fid,'Domain Air %i\n',1); for ii = 1:length(vol.cond) if ii < length(vol.cond) fprintf(fid,['Domain ' domains{ii} ' %i -%i\n'],ii+1,ii); else fprintf(fid,['Domain ' domains{ii} ' -%i\n'],ii); end end fclose(fid); function write_mesh(vol,path,basefile) tissues={'_scalp'; '_skull'; '_csf'; '_brain'}; if length(vol.cond)==3; tissues = tissues([1 2 4]); end; for ii = 1:length(vol.cond) meshFile = fullfile(path, [basefile tissues{ii} '.tri']); if exist(meshFile,'file') fprintf('\t%s already exists. Skipping...\n', meshFile); break; else om_save_tri(fullfile(path, [basefile tissues{ii} '.tri']),vol.bnd(ii).pos,vol.bnd(ii).tri); %savemesh([path basefile tissues{ii} '.mesh'],vol.bnd(ii).vertices/1000,vol.bnd(ii).faces-1,-vol.bnd(ii).normals); end end function [g, voxels] = import_gain(path, basefile, eegflag) om_format = 'binary'; switch(om_format) case 'matlab' om_ext = '.mat'; case 'binary' om_ext = '.bin'; otherwise error('invalid OpenMEEG output type requested'); end if eegflag omgainfiles = dir(fullfile(path, [basefile '_eeggain*' om_ext])); else omgainfiles = dir(fullfile(path, [basefile '_meggain*' om_ext])); end omvoxfiles = dir(fullfile(path, [basefile '_voxels*' om_ext])); g=[]; voxels=[]; % join gain/voxel files % [openmeeg calculation may have been split for memory reasons] for ii=1:length(omgainfiles) g = [g om_load_full(fullfile(path, omgainfiles(ii).name),om_format)]; voxels = [voxels;om_load_full(fullfile(path, omvoxfiles(ii).name),om_format)]; end voxels = voxels(1:3:end,1:3);
github
lcnhappe/happe-master
firwsord.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/preproc/private/firwsord.m
2,973
utf_8
a2d4fcfe22b1570834add343cd9b6bc0
% firwsord() - Estimate windowed sinc FIR filter order depending on % window type and requested transition band width % % Usage: % >> [m, dev] = firwsord(wtype, fs, df); % >> m = firwsord('kaiser', fs, df, dev); % % Inputs: % wtype - char array window type. 'rectangular', 'bartlett', 'hann', % 'hamming', 'blackman', or 'kaiser' % fs - scalar sampling frequency % df - scalar requested transition band width % dev - scalar maximum passband deviation/ripple (Kaiser window % only) % % Output: % m - scalar estimated filter order % dev - scalar maximum passband deviation/ripple % % References: % [1] Smith, S. W. (1999). The scientist and engineer's guide to % digital signal processing (2nd ed.). San Diego, CA: California % Technical Publishing. % [2] Proakis, J. G., & Manolakis, D. G. (1996). Digital Signal % Processing: Principles, Algorithms, and Applications (3rd ed.). % Englewood Cliffs, NJ: Prentice-Hall % [3] Ifeachor E. C., & Jervis B. W. (1993). Digital Signal % Processing: A Practical Approach. Wokingham, UK: Addison-Wesley % % Author: Andreas Widmann, University of Leipzig, 2005 % % See also: % firws, invfirwsord %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005-2014 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % % $Id$ function [ m, dev ] = firwsord(wintype, fs, df, dev) winTypeArray = {'rectangular', 'bartlett', 'hann', 'hamming', 'blackman', 'kaiser'}; winDfArray = [0.9 2.9 3.1 3.3 5.5]; winDevArray = [0.089 0.056 0.0063 0.0022 0.0002]; % Check arguments if nargin < 3 || isempty(fs) || isempty(df) || isempty(wintype) error('Not enough input arguments.') end % Window type wintype = find(strcmp(wintype, winTypeArray)); if isempty(wintype) error('Unknown window type.') end df = df / fs; % Normalize transition band width if wintype == 6 % Kaiser window if nargin < 4 || isempty(dev) error('Not enough input arguments.') end devdb = -20 * log10(dev); m = 1 + (devdb - 8) / (2.285 * 2 * pi * df); else m = winDfArray(wintype) / df; dev = winDevArray(wintype); end m = ceil(m / 2) * 2; % Make filter order even (FIR type I) end
github
lcnhappe/happe-master
minphaserceps.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/preproc/private/minphaserceps.m
2,151
utf_8
57715581f54dbcadc7e0a0bda70ce5c9
% rcepsminphase() - Convert FIR filter coefficient to minimum phase % % Usage: % >> b = minphaserceps(b); % % Inputs: % b - FIR filter coefficients % % Outputs: % bMinPhase - minimum phase FIR filter coefficients % % Author: Andreas Widmann, University of Leipzig, 2013 % % References: % [1] Smith III, O. J. (2007). Introduction to Digital Filters with Audio % Applications. W3K Publishing. Retrieved Nov 11 2013, from % https://ccrma.stanford.edu/~jos/fp/Matlab_listing_mps_m.html % [2] Vetter, K. (2013, Nov 11). Long FIR filters with low latency. % Retrieved Nov 11 2013, from % http://www.katjaas.nl/minimumphase/minimumphase.html %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2013 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % % $Id$ function [bMinPhase] = minphaserceps(b) % Line vector b = b(:)'; n = length(b); upsamplingFactor = 1e3; % Impulse response upsampling/zero padding to reduce time-aliasing nFFT = 2^ceil(log2(n * upsamplingFactor)); % Power of 2 clipThresh = 1e-8; % -160 dB % Spectrum s = abs(fft(b, nFFT)); s(s < clipThresh) = clipThresh; % Clip spectrum to reduce time-aliasing % Real cepstrum c = real(ifft(log(s))); % Fold c = [c(1) [c(2:nFFT / 2) 0] + conj(c(nFFT:-1:nFFT / 2 + 1)) zeros(1, nFFT / 2 - 1)]; % Minimum phase bMinPhase = real(ifft(exp(fft(c)))); % Remove zero-padding bMinPhase = bMinPhase(1:n); end
github
lcnhappe/happe-master
firws.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/preproc/private/firws.m
3,217
utf_8
c683c72e05eaadd0e53428ab481f880a
%firws() - Designs windowed sinc type I linear phase FIR filter % % Usage: % >> b = firws(m, f); % >> b = firws(m, f, w); % >> b = firws(m, f, t); % >> b = firws(m, f, t, w); % % Inputs: % m - filter order (mandatory even) % f - vector or scalar of cutoff frequency/ies (-6 dB; % pi rad / sample) % % Optional inputs: % w - vector of length m + 1 defining window {default blackman} % t - 'high' for highpass, 'stop' for bandstop filter {default low-/ % bandpass} % % Output: % b - filter coefficients % % Example: % fs = 500; cutoff = 0.5; df = 1; % m = firwsord('hamming', fs, df); % b = firws(m, cutoff / (fs / 2), 'high', windows('hamming', m + 1)); % % References: % Smith, S. W. (1999). The scientist and engineer's guide to digital % signal processing (2nd ed.). San Diego, CA: California Technical % Publishing. % % Author: Andreas Widmann, University of Leipzig, 2005 % % See also: % firwsord, invfirwsord, kaiserbeta, windows %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % % $Id$ function [b, a] = firws(m, f, t, w) a = 1; if nargin < 2 error('Not enough input arguments'); end if length(m) > 1 || ~isnumeric(m) || ~isreal(m) || mod(m, 2) ~= 0 || m < 2 error('Filter order must be a real, even, positive integer.'); end f = f / 2; if any(f <= 0) || any(f >= 0.5) error('Frequencies must fall in range between 0 and 1.'); end if nargin < 3 || isempty(t) t = ''; end if nargin < 4 || isempty(w) if ~isempty(t) && ~ischar(t) w = t; t = ''; else w = windows('blackman', (m + 1)); end end w = w(:)'; % Make window row vector b = fkernel(m, f(1), w); if length(f) == 1 && strcmpi(t, 'high') b = fspecinv(b); end if length(f) == 2 b = b + fspecinv(fkernel(m, f(2), w)); if isempty(t) || ~strcmpi(t, 'stop') b = fspecinv(b); end end % Compute filter kernel function b = fkernel(m, f, w) m = -m / 2 : m / 2; b(m == 0) = 2 * pi * f; % No division by zero b(m ~= 0) = sin(2 * pi * f * m(m ~= 0)) ./ m(m ~= 0); % Sinc b = b .* w; % Window b = b / sum(b); % Normalization to unity gain at DC % Spectral inversion function b = fspecinv(b) b = -b; b(1, (length(b) - 1) / 2 + 1) = b(1, (length(b) - 1) / 2 + 1) + 1;
github
lcnhappe/happe-master
kaiserbeta.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/preproc/private/kaiserbeta.m
1,569
utf_8
18e3b152604b8dd8d1bb7052e720f3a6
% kaiserbeta() - Estimate Kaiser window beta % % Usage: % >> beta = pop_kaiserbeta(dev); % % Inputs: % dev - scalar maximum passband deviation/ripple % % Output: % beta - scalar Kaiser window beta % % References: % [1] Proakis, J. G., & Manolakis, D. G. (1996). Digital Signal % Processing: Principles, Algorithms, and Applications (3rd ed.). % Englewood Cliffs, NJ: Prentice-Hall % % Author: Andreas Widmann, University of Leipzig, 2005 %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005-2014 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % % $Id$ function [ beta ] = kaiserbeta(dev) devdb = -20 * log10(dev); if devdb > 50 beta = 0.1102 * (devdb - 8.7); elseif devdb >= 21 beta = 0.5842 * (devdb - 21)^0.4 + 0.07886 * (devdb - 21); else beta = 0; end end
github
lcnhappe/happe-master
invfirwsord.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/preproc/private/invfirwsord.m
2,900
utf_8
1ede4ed306eda03dcaa8daffa9426079
% invfirwsord() - Estimate windowed sinc FIR filter transition band width % depending on filter order and window type % % Usage: % >> [df, dev] = invfirwsord(wtype, fs, m); % >> df = invfirwsord('kaiser', fs, m, dev); % % Inputs: % wtype - char array window type. 'rectangular', 'bartlett', 'hann', % 'hamming', 'blackman', or 'kaiser' % fs - scalar sampling frequency} % m - scalar filter order % dev - scalar maximum passband deviation/ripple (Kaiser window % only) % % Output: % df - scalar estimated transition band width % dev - scalar maximum passband deviation/ripple % % References: % [1] Smith, S. W. (1999). The scientist and engineer's guide to % digital signal processing (2nd ed.). San Diego, CA: California % Technical Publishing. % [2] Proakis, J. G., & Manolakis, D. G. (1996). Digital Signal % Processing: Principles, Algorithms, and Applications (3rd ed.). % Englewood Cliffs, NJ: Prentice-Hall % [3] Ifeachor E. C., & Jervis B. W. (1993). Digital Signal % Processing: A Practical Approach. Wokingham, UK: Addison-Wesley % % Author: Andreas Widmann, University of Leipzig, 2005 % % See also: % firws, firwsord %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005-2014 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % % $Id$ function [ df, dev ] = invfirwsord(wintype, fs, m, dev) winTypeArray = {'rectangular', 'bartlett', 'hann', 'hamming', 'blackman', 'kaiser'}; winDfArray = [0.9 2.9 3.1 3.3 5.5]; winDevArray = [0.089 0.056 0.0063 0.0022 0.0002]; % Check arguments if nargin < 3 || isempty(fs) || isempty(m) || isempty(wintype) error('Not enough input arguments.') end % Window type wintype = find(strcmp(wintype, winTypeArray)); if isempty(wintype) error('Unknown window type.') end if wintype == 6 % Kaiser window if nargin < 4 || isempty(dev) error('Not enough input arguments.') end devdb = -20 * log10(dev); df = (devdb - 8) / (2.285 * 2 * pi * (m - 1)); else df = winDfArray(wintype) / m; dev = winDevArray(wintype); end % df is normalized df = df * fs; end
github
lcnhappe/happe-master
windows.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/preproc/private/windows.m
3,152
utf_8
13d9e2d7d608f7550b77f84278c89184
% windows() - Symmetric window functions % % Usage: % >> h = windows(t, m); % >> h = windows(t, m, a); % % Inputs: % t - char array 'rectangular', 'bartlett', 'hann', 'hamming', % 'blackman', 'blackmanharris', 'kaiser', or 'tukey' % m - scalar window length % % Optional inputs: % a - scalar or vector with window parameter(s) % % Output: % w - column vector window % % Author: Andreas Widmann, University of Leipzig, 2014 %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2014 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % % $Id$ function w = windows(t, m, a) if nargin < 2 || isempty(t) || isempty(m) error('Not enough input arguments.'); end % Check window length if m ~= round(m) m = round(m); warning('firws:nonIntegerWindowLength', 'Non-integer window length. Rounding to integer.') end if m < 1 error('Invalid window length.') end % Length 1 if m == 1 w = 1; return; end % Even/odd? isOddLength = mod(m, 2); if isOddLength x = (0:(m - 1) / 2)' / (m - 1); else x = (0:m / 2 - 1)' / (m - 1); end switch t case 'rectangular' w = ones(length(x), 1); case 'bartlett' w = 2 * x; case 'hann' a = 0.5; w = a - (1 - a) * cos(2 * pi * x); case 'hamming' a = 0.54; w = a - (1 - a) * cos(2 * pi * x); case 'blackman' a = [0.42 0.5 0.08 0]; w = a(1) - a(2) * cos (2 * pi * x) + a(3) * cos(4 * pi * x) - a(4) * cos(6 * pi * x); case 'blackmanharris' a = [0.35875 0.48829 0.14128 0.01168]; w = a(1) - a(2) * cos (2 * pi * x) + a(3) * cos(4 * pi * x) - a(4) * cos(6 * pi * x); case 'kaiser' if nargin < 3 || isempty(a) a = 0.5; end w = besseli(0, a * sqrt(1 - (2 * x - 1).^2)) / besseli(0, a); case 'tukey' if nargin < 3 || isempty(a) a = 0.5; end if a <= 0 % Rectangular w = ones(length(x), 1); elseif a >= 1 % Hann w = 0.5 - (1 - 0.5) * cos(2 * pi * x); else mTaper = floor((m - 1) * a / 2) + 1; xTaper = 2 * (0:mTaper - 1)' / (a * (m - 1)) - 1; w = [0.5 * (1 + cos(pi * xTaper)); ones(length(x) - mTaper, 1)]; end otherwise error('Unkown window type') end % Make symmetric if isOddLength w = [w; w(end - 1:-1:1)]; else w = [w; w(end:-1:1)]; end end
github
lcnhappe/happe-master
ft_warning.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/preproc/private/ft_warning.m
7,789
utf_8
d832a7ad5e2f9bb42995e6e5d4caa198
function [ws, warned] = ft_warning(varargin) % FT_WARNING will throw a warning for every unique point in the % stacktrace only, e.g. in a for-loop a warning is thrown only once. % % Use as one of the following % ft_warning(string) % ft_warning(id, string) % Alternatively, you can use ft_warning using a timeout % ft_warning(string, timeout) % ft_warning(id, string, timeout) % where timeout should be inf if you don't want to see the warning ever % again. % % Use as ft_warning('-clear') to clear old warnings from the current % stack % % It can be used instead of the MATLAB built-in function WARNING, thus as % s = ft_warning(...) % or as % ft_warning(s) % where s is a structure with fields 'identifier' and 'state', storing the % state information. In other words, ft_warning accepts as an input the % same structure it returns as an output. This returns or restores the % states of warnings to their previous values. % % It can also be used as % [s w] = ft_warning(...) % where w is a boolean that indicates whether a warning as been thrown or not. % % Please note that you can NOT use it like this % ft_warning('the value is %d', 10) % instead you should do % ft_warning(sprintf('the value is %d', 10)) % Copyright (C) 2012-2016, Robert Oostenveld, J?rn M. Horschig % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ global ft_default warned = false; ws = []; stack = dbstack; if any(strcmp({stack(2:end).file}, 'ft_warning.m')) % don't call FT_WARNING recursively, see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3068 return; end if nargin < 1 error('You need to specify at least a warning message'); end if isstruct(varargin{1}) warning(varargin{1}); return; end if ~isfield(ft_default, 'warning') ft_default.warning = []; end if ~isfield(ft_default.warning, 'stopwatch') ft_default.warning.stopwatch = []; end if ~isfield(ft_default.warning, 'identifier') ft_default.warning.identifier = []; end if ~isfield(ft_default.warning, 'ignore') ft_default.warning.ignore = {}; end % put the arguments we will pass to warning() in this cell array warningArgs = {}; if nargin==3 % calling syntax (id, msg, timeout) warningArgs = varargin(1:2); msg = warningArgs{2}; timeout = varargin{3}; fname = [warningArgs{1} '_' warningArgs{2}]; elseif nargin==2 && isnumeric(varargin{2}) % calling syntax (msg, timeout) warningArgs = varargin(1); msg = warningArgs{1}; timeout = varargin{2}; fname = warningArgs{1}; elseif nargin==2 && isequal(varargin{1}, 'off') ft_default.warning.ignore = union(ft_default.warning.ignore, varargin{2}); return elseif nargin==2 && isequal(varargin{1}, 'on') ft_default.warning.ignore = setdiff(ft_default.warning.ignore, varargin{2}); return elseif nargin==2 && ~isnumeric(varargin{2}) % calling syntax (id, msg) warningArgs = varargin(1:2); msg = warningArgs{2}; timeout = inf; fname = [warningArgs{1} '_' warningArgs{2}]; elseif nargin==1 % calling syntax (msg) warningArgs = varargin(1); msg = warningArgs{1}; timeout = inf; % default timeout in seconds fname = [warningArgs{1}]; end if ismember(msg, ft_default.warning.ignore) % do not show this warning return; end if isempty(timeout) error('Timeout ill-specified'); end if timeout ~= inf fname = fixname(fname); % make a nice string that is allowed as fieldname in a structures line = []; else % here, we create the fieldname functionA.functionB.functionC... [tmpfname, ft_default.warning.identifier, line] = fieldnameFromStack(ft_default.warning.identifier); if ~isempty(tmpfname), fname = tmpfname; clear tmpfname; end end if nargin==1 && ischar(varargin{1}) && strcmp('-clear', varargin{1}) if strcmp(fname, '-clear') % reset all fields if called outside a function ft_default.warning.identifier = []; ft_default.warning.stopwatch = []; else if issubfield(ft_default.warning.identifier, fname) ft_default.warning.identifier = rmsubfield(ft_default.warning.identifier, fname); end end return; end % and add the line number to make this unique for the last function fname = horzcat(fname, line); if ~issubfield('ft_default.warning.stopwatch', fname) ft_default.warning.stopwatch = setsubfield(ft_default.warning.stopwatch, fname, tic); end now = toc(getsubfield(ft_default.warning.stopwatch, fname)); % measure time since first function call if ~issubfield(ft_default.warning.identifier, fname) || ... (issubfield(ft_default.warning.identifier, fname) && now>getsubfield(ft_default.warning.identifier, [fname '.timeout'])) % create or reset field ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, fname, []); % warning never given before or timed out ws = warning(warningArgs{:}); ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.timeout'], now+timeout); ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.ws'], msg); warned = true; else % the warning has been issued before, but has not timed out yet ws = getsubfield(ft_default.warning.identifier, [fname '.ws']); end end % function ft_warning %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [fname, ft_previous_warnings, line] = fieldnameFromStack(ft_previous_warnings) % stack(1) is this function, stack(2) is ft_warning stack = dbstack('-completenames'); if size(stack) < 3 fname = []; line = []; return; end i0 = 3; % ignore ft_preamble while strfind(stack(i0).name, 'ft_preamble') i0=i0+1; end fname = horzcat(fixname(stack(end).name)); if ~issubfield(ft_previous_warnings, fixname(stack(end).name)) ft_previous_warnings.(fixname(stack(end).name)) = []; % iteratively build up structure fields end for i=numel(stack)-1:-1:(i0) % skip postamble scripts if strncmp(stack(i).name, 'ft_postamble', 12) break; end fname = horzcat(fname, '.', horzcat(fixname(stack(i).name))); % , stack(i).file if ~issubfield(ft_previous_warnings, fname) % iteratively build up structure fields setsubfield(ft_previous_warnings, fname, []); end end % line of last function call line = ['.line', int2str(stack(i0).line)]; end % function outcome = issubfield(strct, fname) % substrindx = strfind(fname, '.'); % if numel(substrindx) > 0 % % separate the last fieldname from all former % outcome = eval(['isfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']); % else % % there is only one fieldname % outcome = isfield(strct, fname); % end % end % function strct = rmsubfield(strct, fname) % substrindx = strfind(fname, '.'); % if numel(substrindx) > 0 % % separate the last fieldname from all former % strct = eval(['rmfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']); % else % % there is only one fieldname % strct = rmfield(strct, fname); % end % end
github
lcnhappe/happe-master
fir_filterdcpadded.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/preproc/private/fir_filterdcpadded.m
2,934
utf_8
a5287ea8667b904280539687a04797ca
% fir_filterdcpadded() - Pad data with DC constant and filter % % Usage: % >> data = fir_filterdcpadded(b, a, data, causal); % % Inputs: % b - vector of filter coefficients % a - 1 % data - raw data (times x chans) % causal - boolean perform causal filtering {default 0} % usefftfilt - boolean use fftfilt instead of filter % % Outputs: % data - smoothed data % % Note: % firfiltdcpadded always operates (pads, filters) along first dimension. % Not memory optimized. % % Author: Andreas Widmann, University of Leipzig, 2014 %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2013 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % % $Id$ function [ data ] = fir_filterdcpadded(b, a, data, causal, usefftfilt) % Defaults if nargin < 4 || isempty(usefftfilt) usefftfilt = 0; end if nargin < 3 || isempty(causal) causal = 0; end % Check arguments if nargin < 2 error('Not enough input arguments.'); end % Is FIR? if ~isscalar(a) || a ~= 1 error('Not a FIR filter. onepass-zerophase and onepass-minphase filtering is available for FIR filters only.') end % Group delay if mod(length(b), 2) ~= 1 error('Filter order is not even.'); end groupDelay = (length(b) - 1) / 2; % Filter symmetry isSym = all(b(1:groupDelay) == b(end:-1:groupDelay + 2)); isAntisym = all([b(1:groupDelay) == -b(end:-1:groupDelay + 2) b(groupDelay + 1) == 0]); if causal == 0 && ~(isSym || isAntisym) error('Filter is not anti-/symmetric. For onepass-zerophase filtering the filter must be anti-/symmetric.') end % Padding if causal startPad = repmat(data(1, :), [2 * groupDelay 1]); endPad = []; else startPad = repmat(data(1, :), [groupDelay 1]); endPad = repmat(data(end, :), [groupDelay 1]); end % Filter data (with double precision) isSingle = isa(data, 'single'); if usefftfilt data = fftfilt(double(b), double([startPad; data; endPad])); else data = filter(double(b), 1, double([startPad; data; endPad])); % Pad and filter with double precision end % Convert to single if isSingle data = single(data); end % Remove padded data data = data(2 * groupDelay + 1:end, :); end
github
lcnhappe/happe-master
plotfresp.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/preproc/private/plotfresp.m
5,213
utf_8
02ff3bdc63f5c3410460734e2a7378fe
% plotfresp() - Plot a filter's impulse, step, magnitude, and phase response % % Usage: % >> plotfresp(b, a, nfft, fs, causal); % % Inputs: % b - vector numerator coefficients % % Optional inputs: % a - scalar or vector denominator coefficients (IIR support is % experimental!) {default 1} % nfft - scalar number of points {default 512} % fs - scalar sampling frequency {default 1} % dir - string filter direction {default 'onepass'} % % Author: Andreas Widmann, University of Leipzig, 2005 % % See also: % firws %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005-2014 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % % $Id$ function plotfresp(b, a, nfft, fs, dir) if nargin < 5 || isempty(dir) dir = 'onepass'; end if nargin < 4 || isempty(fs) fs = 1; end if nargin < 3 || isempty(nfft) nfft = 512; end if nargin < 2 || isempty(a) a = 1; end if nargin < 1 error('Not enough input arguments.'); end % FIR? if isscalar(a) && a == 1 isFIR = true; else isFIR = false; end % Linear phase FIR if isFIR && all(b(:)' == fliplr(b(:)')) % TODO: antisymmetric isLinPhaseFir = true; else isLinPhaseFir = false; end % Twopass/zerophase? if strncmp('twopass', dir, 7) isTwopass = true; isZerophase = true; elseif strcmp('onepass-zerophase', dir) if ~isLinPhaseFir error('Onepass-zerophase filtering is only allowed for linear-phase FIR filters.') end isTwopass = false; isZerophase = true; else isTwopass = false; isZerophase = false; end % Impulse response if isFIR impresp = b(:)'; else if ~exist('impz', 'file') warning('Plotting IIR filter responses requires signal processing toolbox.') return end impresp = impz(b, a)'; end % Twopass if isTwopass impresp = conv(impresp, fliplr(impresp)); end n = length(impresp); % Zerophase if isZerophase groupdelay = (n - 1) / 2; x = -groupdelay:groupdelay; else x = 0:n - 1; end nfft = max([2^ceil(log2(n)) nfft]); % Do not truncate impulse response f = linspace(0, fs / 2, nfft / 2 + 1); z = fft(impresp, nfft); z = z(1:nfft / 2 + 1); % Find open figure window H = findobj('Tag', 'plotfiltresp', 'type', 'figure'); if ~isempty(H) figure(H); else H = figure; set(H, 'Tag', 'plotfiltresp'); posArray = get(H, 'Position'); posArray(3) = posArray(4) * 1.6; set(H, 'Position', posArray); end % Formatting titlePropArray = {'Fontweight', 'bold'}; axisPropArray = {'NextPlot', 'add', 'XGrid', 'on', 'YGrid', 'on', 'Box', 'on'}; % Impulse resonse ax(1) = subplot(2, 3, 1, axisPropArray{:}); stem(x, impresp, 'fill') title('Impulse response', titlePropArray{:}); ylabel('Amplitude'); % Step response ax(4) = subplot(2, 3, 4, axisPropArray{:}); stem(x, cumsum(impresp), 'fill'); title('Step response', titlePropArray{:}); ylimArray = ylim; if ylimArray(2) < -ylimArray(1) + 1; ylimArray(2) = -ylimArray(1) + 1; ylim(ylimArray); end xMin = []; xMax = []; childrenArray = get(ax(4), 'Children'); for iChild =1:length(childrenArray) xData = get(childrenArray(iChild), 'XData'); xMin = min([xMin min(xData)]); xMax = max([xMax max(xData)]); end set(ax([1 4]), 'XLim', [xMin xMax]); ylabel('Amplitude'); % Magnitude response ax(2) = subplot(2, 3, 2, axisPropArray{:}); plot(f, abs(z)); title('Magnitude response', titlePropArray{:}); ylabel('Magnitude (linear)'); ax(5) = subplot(2, 3, 5, axisPropArray{:}); plot(f, 20 * log10(abs(z))); title('Magnitude response', titlePropArray{:}); ylimArray = ylim; if ylimArray(1) < -200 ylimArray(1) = -200; ylim(ylimArray); end ylabel('Magnitude (dB)'); % Phase response ax(3) = subplot(2, 3, 3, axisPropArray{:}); phaseresp = unwrap(angle(z)); if isZerophase % Correct delay for zero-phase FIR filter? delay = -f / fs * groupdelay * 2 * pi; phaseresp = phaseresp - delay; phaseresp = mod(round(phaseresp / pi), 2) * pi; % Avoid rounding errors; linear-phase FIR only! end plot(f, phaseresp); title('Phase response', titlePropArray{:}); ylabel('Phase (rad)'); % Formatting xlabelArray = get(ax(1:5), 'XLabel'); if fs == 1 set([xlabelArray{[2 3 5]}], 'String', 'Normalized frequency (2 \pi rad / sample)'); else set([xlabelArray{[2 3 5]}], 'String', 'Frequency (Hz)'); end set([xlabelArray{[1 4]}], 'String', 'n (samples)'); set(ax([2 3 5]), 'XLim', [0 fs / 2]); set(ax(1:5), 'ColorOrder', circshift(get(ax(1), 'ColorOrder'), -1)); end
github
lcnhappe/happe-master
qsublist.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/qsub/qsublist.m
8,076
utf_8
d9f7d454a9f8d6bc5991aa409e239c11
function retval = qsublist(cmd, jobid, pbsid) % QSUBLIST is a helper function that is used to keep track of all the jobs in a % submitted batch. specifically, it is used to maintain the mapping between the % job identifier in the batch queueing system and MATLAB. % % Use as % qsublist('list') % qsublist('killall') % qsublist('kill', jobid) % qsublist('getjobid', pbsid) % qsublist('getpbsid', jobid) % % The jobid is the identifier that is used within MATLAB for the file names, % for example 'roboos_mentat242_p4376_b2_j453'. % % The pbsid is the identifier that is used within the batch queueing system, % for example '15260.torque'. % % The following commands can be used by the end-user. % 'list' display all jobs % 'kill' kill a specific job, based on the jobid % 'killall' kill all jobs % 'getjobid' return the mathing jobid, given the pbsid % 'getpbsid' return the mathing pbsid, given the jobid % % The following low-level commands are used by QSUBFEVAL and QSUBGET for job % maintenance and monitoring. % 'add' % 'del' % 'completed' % % See also QSUBCELLFUN, QSUBFEVAL, QSUBGET % ----------------------------------------------------------------------- % Copyright (C) 2011-2015, Robert Oostenveld % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/ % % $Id$ % ----------------------------------------------------------------------- persistent list_jobid list_pbsid % this function should stay in memory to keep the persistent variables for a long time % locking it ensures that it does not accidentally get cleared if the m-file on disk gets updated mlock if ~isempty(list_jobid) && isequal(list_jobid, list_pbsid) % it might also be system, but torque, sge, slurm and lsf will have other job identifiers backend = 'local'; else % use the environment variables to determine the backend backend = defaultbackend; end if nargin<1 cmd = 'list'; end if nargin<2 jobid = []; end if nargin<3 pbsid = []; end if isempty(jobid) && ~isempty(pbsid) % get it from the persistent list sel = find(strcmp(pbsid, list_pbsid)); if length(sel)==1 jobid = list_jobid{sel}; else warning('cannot determine the jobid that corresponds to pbsid %s', pbsid); end end if isempty(pbsid) && ~isempty(jobid) % get it from the persistent list sel = find(strcmp(jobid, list_jobid)); if length(sel)==1 pbsid = list_pbsid{sel}; else warning('cannot determine the pbsid that corresponds to jobid %s', jobid); end end switch cmd case 'add' % add it to the persistent lists list_jobid{end+1} = jobid; list_pbsid{end+1} = pbsid; case 'del' sel = strcmp(jobid, list_jobid); % remove the job from the persistent lists list_jobid(sel) = []; list_pbsid(sel) = []; case 'kill' sel = strcmp(jobid, list_jobid); if any(sel) % remove it from the batch queue switch backend case 'torque' system(sprintf('qdel %s', pbsid)); case 'sge' system(sprintf('qdel %s', pbsid)); case 'slurm' system(sprintf('scancel --name %s', jobid)); case 'lsf' system(sprintf('bkill %s', pbsid)); case 'local' % cleaning up of local jobs is not supported case 'system' % cleaning up of system jobs is not supported end % remove the corresponing files from the shared storage system(sprintf('rm -f %s*', jobid)); % remove it from the persistent lists list_jobid(sel) = []; list_pbsid(sel) = []; end case 'killall' if ~isempty(list_jobid) % give an explicit warning, because chances are that the user will see messages from qdel % about jobs that have just completed and hence cannot be deleted any more fprintf('cleaning up all scheduled and running jobs, don''t worry if you see warnings from "qdel"\n'); end % start at the end, work towards the begin of the list for i=length(list_jobid):-1:1 qsublist('kill', list_jobid{i}, list_pbsid{i}); end case 'completed' % cmd = 'completed' returns whether the job is completed as a boolean % % It first determines whether the output files exist. If so, it might be that the % batch queueing system is still writing to them, hence the next system-specific % check also polls the status of the job. First checking the files and then the % job status ensures that we don't saturate the torque server with job-status % requests. curPwd = getcustompwd(); outputfile = fullfile(curPwd, sprintf('%s_output.mat', jobid)); % if the job is aborted to a resource violation, there will not be an output file logout = fullfile(curPwd, sprintf('%s.o*', jobid)); % note the wildcard in the file name logerr = fullfile(curPwd, sprintf('%s.e*', jobid)); % note the wildcard in the file name % poll the job status to confirm that the job truely completed if isfile(logout) && isfile(logerr) && ~isempty(pbsid) % only perform the more expensive check once the log files exist switch backend case 'torque' [dum, jobstatus] = system(['qstat ' pbsid ' -f1 | grep job_state | grep -o "= [A-Z]" | grep -o "[A-Z]"']); if isempty(jobstatus) warning('cannot determine the status for pbsid %s', pbsid); retval = 1; else retval = strcmp(strtrim(jobstatus) ,'C'); end case 'lsf' [dum, jobstatus] = system(['bjobs ' pbsid ' | awk ''NR==2'' | awk ''{print $3}'' ']); retval = strcmp(strtrim(jobstatus), 'DONE'); case 'sge' [dum, jobstatus] = system(['qstat -s z | grep ' pbsid ' | awk ''{print $5}''']); retval = strcmp(strtrim(jobstatus), 'z') | strcmp(strtrim(jobstatus), 'qw'); case 'slurm' % only return the status based on the presence of the output files % FIXME it would be good to implement a proper check for slurm as well retval = 1; case {'local','system'} % only return the status based on the presence of the output files % there is no way polling the batch execution system retval = 1; end elseif isfile(logout) && isfile(logerr) && isempty(pbsid) % we cannot locate the job in the PBS/torque backend (weird, but it happens), hence we have to rely on the e and o files % note that the mat file still might be missing, e.g. when the job was killed due to a resource violation retval = 1; else retval = 0; end case 'list' for i=1:length(list_jobid) fprintf('%s %s\n', list_jobid{i}, list_pbsid{i}); end case 'getjobid' % return the mathing jobid, given the pbsid retval = jobid; case 'getpbsid' % return the mathing pbsid, given the jobid retval = pbsid; otherwise error('unsupported command (%s)', cmd); end % switch if length(list_jobid)~=length(list_pbsid) error('jobid and pbsid lists are inconsistent'); end if mislocked && isempty(list_jobid) && isempty(list_pbsid) % it is now safe to unload the function and persistent variables from memory munlock end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function that detects a file, even with a wildcard in the filename %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = isfile(name) tmp = dir(name); status = length(tmp)==1 && ~tmp.isdir;
github
lcnhappe/happe-master
qsubcellfun.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/qsub/qsubcellfun.m
19,264
utf_8
ed7719203341c9d8668d006d2ffc44bb
function varargout = qsubcellfun(fname, varargin) % QSUBCELLFUN applies a function to each element of a cell-array. The % function execution is done in parallel using the Torque, SGE, PBS or % SLURM batch queue system. % % Use as % argout = qsubcellfun(fname, x1, x2, ...) % % This function has a number of optional arguments that have to passed % as key-value pairs at the end of the list of input arguments. All other % input arguments (including other key-value pairs) will be passed to the % function to be evaluated. % UniformOutput = boolean (default = false) % StopOnError = boolean (default = true) % diary = string, can be 'always', 'never', 'warning', 'error' (default = 'error') % timreq = number, the time in seconds required to run a single job % timoverhead = number in seconds, how much time to allow MATLAB to start (default = 180 seconds) % memreq = number, the memory in bytes required to run a single job % memoverhead = number in bytes, how much memory to account for MATLAB itself (default = 1024^3, i.e. 1GB) % stack = number, stack multiple jobs in a single qsub job (default = 'auto') % backend = string, can be 'torque', 'sge', 'slurm', 'lsf', 'system', 'local' (default is automatic) % batchid = string, to identify the jobs in the queue (default is user_host_pid_batch) % compile = string, can be 'auto', 'yes', 'no' (default = 'no') % queue = string, which queue to submit the job in (default is empty) % options = string, additional options that will be passed to qsub/srun (default is empty) % matlabcmd = string, the Linux command line to start MATLAB on the compute nodes (default is automatic % display = 'yes' or 'no', whether the nodisplay option should be passed to MATLAB (default = 'no', meaning nodisplay) % jvm = 'yes' or 'no', whether the nojvm option should be passed to MATLAB (default = 'yes', meaning with jvm) % rerunable = 'yes' or 'no', whether the job can be restarted on a torque/maui/moab cluster (default = 'no') % % It is required to give an estimate of the time and memory requirements of % the individual jobs. The memory requirement of the MATLAB executable % itself will automatically be added, just as the time required to start % up a new MATLAB process. If you don't know what the memory and time % requirements of your job are, you can get an estimate for them using % TIC/TOC and MEMTIC/MEMTOC around a single execution of one of the jobs in % your interactive MATLAB session. You can also start with very large % estimates, e.g. 4*1024^3 bytes for the memory (which is 4GB) and 28800 % seconds for the time (which is 8 hours) and then run a single job through % qsubcellfun. When the job returns, it will print the memory and time it % required. % % Example % fname = 'power'; % x1 = {1, 2, 3, 4, 5}; % x2 = {2, 2, 2, 2, 2}; % y = qsubcellfun(fname, x1, x2, 'memreq', 1024^3, 'timreq', 300); % % Using the compile=yes or compile=auto option, you can compile your % function into a stand-alone executable that can be executed on the cluster % without requiring additional MATLAB licenses. You can also call the % QSUBCOMPILE function prior to calling QSUBCELLFUN. If you plan multiple % batches of the same function, compiling it prior to QSUBCELLFUN is more % efficient. In that case you will have to delete the compiled executable % yourself once you are done. % % In case you abort your call to qsubcellfun by pressing ctrl-c, % the already submitted jobs will be canceled. Some small temporary % files might remain in your working directory. % % To check the the status and healthy execution of the jobs on the Torque % batch queuing system, you can use % qstat % qstat -an1 % qstat -Q % comands on the linux command line. To delete jobs from the Torque batch % queue and to abort already running jobs, you can use % qdel <jobnumber> % qdel all % % See also QSUBCOMPILE, QSUBFEVAL, CELLFUN, PEERCELLFUN, FEVAL, DFEVAL, DFEVALASYNC % ----------------------------------------------------------------------- % Copyright (C) 2011-2015, Robert Oostenveld % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/ % % $Id$ % ----------------------------------------------------------------------- if ft_platform_supports('onCleanup') % switch to zombie when finished or when Ctrl-C gets pressed % the onCleanup function does not exist for older versions onCleanup(@cleanupfun); end % remove the persistent lists with job and pbs identifiers clear qsublist stopwatch = tic; % locate the begin of the optional key-value arguments optbeg = find(cellfun(@ischar, varargin)); optarg = varargin(optbeg:end); % get the optional input arguments UniformOutput = ft_getopt(optarg, 'UniformOutput', false ); StopOnError = ft_getopt(optarg, 'StopOnError', true ); diary = ft_getopt(optarg, 'diary', 'error' ); % 'always', 'never', 'warning', 'error' timreq = ft_getopt(optarg, 'timreq'); memreq = ft_getopt(optarg, 'memreq'); timoverhead = ft_getopt(optarg, 'timoverhead', 180); % allow some overhead to start up the MATLAB executable memoverhead = ft_getopt(optarg, 'memoverhead', 1024*1024*1024); % allow some overhead for the MATLAB executable in memory stack = ft_getopt(optarg, 'stack', 'auto'); % 'auto' or a number compile = ft_getopt(optarg, 'compile', 'no'); % can be 'auto', 'yes' or 'no' backend = ft_getopt(optarg, 'backend', []); % the default will be determined by qsubfeval queue = ft_getopt(optarg, 'queue', []); submitoptions = ft_getopt(optarg, 'options', []); batch = ft_getopt(optarg, 'batch', getbatch()); % this is a number that is automatically incremented batchid = ft_getopt(optarg, 'batchid', generatebatchid(batch)); % this is a string like user_host_pid_batch display = ft_getopt(optarg, 'display', 'no'); matlabcmd = ft_getopt(optarg, 'matlabcmd', []); jvm = ft_getopt(optarg, 'jvm', 'yes'); whichfunction = ft_getopt(optarg, 'whichfunction'); % the complete filename to the function, including path rerunable = ft_getopt(optarg, 'rerunable'); % the default is determined in qsubfeval % skip the optional key-value arguments if ~isempty(optbeg) varargin = varargin(1:(optbeg-1)); end if isstruct(fname) % the function has been compiled by qsubcompile fcomp = fname; % continue with the original function name fname = fcomp.fname; else fcomp = []; end % determine which function it is if isempty(whichfunction) if ischar(fname) whichfunction = which(fname); elseif isa(fname, 'function_handle') whichfunction = which(func2str(fname)); end end % if the first attempt failed, it might be due a function that is private to the calling function if isempty(whichfunction) s = dbstack('-completenames'); s = s(2); % qsubcellfun is the first, the calling function is the second if ischar(fname) whichfunction = which(fullfile(fileparts(s.file), 'private', fname)); elseif isa(fname, 'function_handle') whichfunction = which(fullfile(fileparts(s.file), 'private', func2str(fname))); end if ~isempty(whichfunction) warning('assuming %s as full function name', whichfunction); end clear s end % there are potentially errors to catch from the which() function if isempty(whichfunction) && ischar(fname) error('Not a valid M-file (%s).', fname); end % determine the number of input arguments and the number of jobs numargin = numel(varargin); numjob = numel(varargin{1}); % determine the number of MATLAB jobs to "stack" together into seperate qsub jobs if isequal(stack, 'auto') if ~isempty(timreq) stack = floor(180/timreq); else stack = 1; end end % ensure that the stacking is not higher than the number of jobs stack = min(stack, numjob); % give some feedback about the stacking if stack>1 fprintf('stacking %d MATLAB jobs in each qsub job\n', stack); end % prepare some arrays that are used for bookkeeping jobid = cell(1, numjob); puttime = nan(1, numjob); timused = nan(1, numjob); memused = nan(1, numjob); submitted = false(1, numjob); collected = false(1, numjob); submittime = inf(1, numjob); collecttime = inf(1, numjob); % it can be difficult to determine the number of output arguments try if isequal(fname, 'cellfun') || isequal(fname, @cellfun) if isa(varargin{1}{1}, 'char') || isa(varargin{1}{1}, 'function_handle') numargout = nargout(varargin{1}{1}); elseif isa(varargin{1}{1}, 'struct') % the function to be executed has been compiled fcomp = varargin{1}{1}; numargout = nargout(fcomp.fname); end else numargout = nargout(fname); end catch % the "catch me" syntax is broken on MATLAB74, this fixes it nargout_err = lasterror; if strcmp(nargout_err.identifier, 'MATLAB:narginout:doesNotApply') % e.g. in case of nargin('plus') numargout = 1; else rethrow(nargout_err); end end if numargout<0 % the nargout function returns -1 in case of a variable number of output arguments numargout = 1; elseif numargout>nargout % the number of output arguments is constrained by the users' call to this function numargout = nargout; elseif nargout>numargout error('Too many output arguments.'); end % running a compiled version in parallel takes no MATLAB licenses % auto compilation will be attempted if the total batch takes more than 30 minutes if (strcmp(compile, 'auto') && (numjob*timreq/3600)>0.5) || istrue(compile) try % try to compile into a stand-allone application fcomp = qsubcompile(fname, 'batch', batch, 'batchid', batchid); catch if istrue(compile) % the error that was caught is critical rethrow(lasterror); elseif strcmp(compile, 'auto') % compilation was only optional, the caught error is not critical warning(lasterr); end end % try-catch end % if compile if stack>1 % combine multiple jobs in one, the idea is to use recursion like this % a = {{@plus, @plus}, {{1}, {2}}, {{3}, {4}}} % b = cellfun(@cellfun, a{:}) % these options will be passed to the recursive call after being modified further down if ~any(strcmpi(optarg, 'timreq')) optarg{end+1} = 'timreq'; optarg{end+1} = timreq; end if ~any(strcmpi(optarg, 'stack')) optarg{end+1} = 'stack'; optarg{end+1} = stack; end if ~any(strcmpi(optarg, 'UniformOutput')) optarg{end+1} = 'UniformOutput'; optarg{end+1} = UniformOutput; end if ~any(strcmpi(optarg, 'whichfunction')) optarg{end+1} = 'whichfunction'; optarg{end+1} = whichfunction; end if ~any(strcmpi(optarg, 'compile')) optarg{end+1} = 'compile'; optarg{end+1} = compile; end % update these settings for the recursive call optarg{find(strcmpi(optarg, 'timreq'))+1} = timreq*stack; optarg{find(strcmpi(optarg, 'stack'))+1} = 1; optarg{find(strcmpi(optarg, 'UniformOutput'))+1} = false; optarg{find(strcmpi(optarg, 'compile'))+1} = false; % FIXME the partitioning can be further perfected partition = floor((0:numjob-1)/stack)+1; numpartition = partition(end); stackargin = cell(1,numargin+3); % include the fname, uniformoutput, false if istrue(compile) if ischar(fcomp.fname) % it should contain function handles, not strings stackargin{1} = repmat({str2func(fcomp.fname)}, 1, numpartition); else stackargin{1} = repmat({fcomp.fname}, 1, numpartition); end else if ischar(fname) % it should contain function handles, not strings stackargin{1} = repmat({str2func(fname)}, 1, numpartition); else stackargin{1} = repmat({fname}, 1, numpartition); end end stackargin{end-1} = repmat({'uniformoutput'},1,numpartition); % uniformoutput stackargin{end} = repmat({false},1,numpartition); % false % reorganize the original input into the stacked format for i=1:numargin tmp = cell(1,numpartition); for j=1:numpartition tmp{j} = {varargin{i}{partition==j}}; end stackargin{i+1} = tmp; % note that the first element is the fname clear tmp end stackargout = cell(1,numargout); [stackargout{:}] = qsubcellfun(@cellfun, stackargin{:}, optarg{:}); % reorganise the stacked output into the original format for i=1:numargout tmp = cell(size(varargin{1})); for j=1:numpartition tmp(partition==j) = stackargout{i}{j}; end varargout{i} = tmp; clear tmp end if numargout>0 && UniformOutput [varargout{:}] = makeuniform(varargout{:}); end return; end % check the input arguments for i=1:numargin if ~isa(varargin{i}, 'cell') error('input argument #%d should be a cell-array', i+1); end if numel(varargin{i})~=numjob error('inconsistent number of elements in input #%d', i+1); end end for submit=1:numjob % redistribute the input arguments argin = cell(1, numargin); for j=1:numargin argin{j} = varargin{j}{submit}; end % submit the job if ~isempty(fcomp) % use the compiled version [curjobid curputtime] = qsubfeval(fcomp, argin{:}, 'memreq', memreq, 'timreq', timreq, 'memoverhead', memoverhead, 'timoverhead', timoverhead, 'diary', diary, 'batch', batch, 'batchid', batchid, 'backend', backend, 'options', submitoptions, 'queue', queue, 'matlabcmd', matlabcmd, 'display', display, 'jvm', jvm, 'nargout', numargout, 'whichfunction', whichfunction, 'rerunable', rerunable); else % use the non-compiled version [curjobid curputtime] = qsubfeval(fname, argin{:}, 'memreq', memreq, 'timreq', timreq, 'memoverhead', memoverhead, 'timoverhead', timoverhead, 'diary', diary, 'batch', batch, 'batchid', batchid, 'backend', backend, 'options', submitoptions, 'queue', queue, 'matlabcmd', matlabcmd, 'display', display, 'jvm', jvm, 'nargout', numargout, 'whichfunction', whichfunction, 'rerunable', rerunable); end % fprintf('submitted job %d\n', submit); jobid{submit} = curjobid; puttime(submit) = curputtime; submitted(submit) = true; submittime(submit) = toc(stopwatch); clear curjobid curputtime end % for while (~all(collected)) % try to collect the jobs that have finished for collect=find(~collected) % this will return empty arguments if the job has not finished ws = warning('off', 'FieldTrip:qsub:jobNotAvailable'); [argout, options] = qsubget(jobid{collect}, 'output', 'cell', 'diary', diary, 'StopOnError', StopOnError); warning(ws); if ~isempty(argout) || ~isempty(options) % fprintf('collected job %d\n', collect); collected(collect) = true; collecttime(collect) = toc(stopwatch); if isempty(argout) && StopOnError==false % this happens if an error was detected in qsubget and StopOnError is false % replace the output of the failed jobs with [] argout = repmat({[]}, 1, numargout); end % redistribute the output arguments for j=1:numargout varargout{j}{collect} = argout{j}; end % gather the job statistics % these are empty in case an error happened during remote evaluation, therefore the default value of NaN is specified timused(collect) = ft_getopt(options, 'timused', nan); memused(collect) = ft_getopt(options, 'memused', nan); end % if end % for pausejava(0.1); end % while % ensure the output to have the same size/dimensions as the input for i=1:numargout varargout{i} = reshape(varargout{i}, size(varargin{1})); end if numargout>0 && UniformOutput [varargout{:}] = makeuniform(varargout{:}); end % clean up the remains of the compilation if (strcmp(compile, 'yes') || strcmp(compile, 'auto')) && ~isempty(fcomp) % the extension might be .app or .exe or none system(sprintf('rm -rf %s', fcomp.batchid)); % on Linux system(sprintf('rm -rf %s.app', fcomp.batchid)); % on Apple OS X system(sprintf('rm -rf %s.exe', fcomp.batchid)); % on Windows system(sprintf('rm -rf run_%s*.sh', fcomp.batchid)); end % compare the time used inside this function with the total execution time fprintf('computational time = %.1f sec, elapsed = %.1f sec, speedup %.1f x\n', nansum(timused), toc(stopwatch), nansum(timused)/toc(stopwatch)); if all(puttime>timused) warning('the job submission took more time than the actual execution'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = makeuniform(varargin) varargout = varargin; numargout = numel(varargin); % check whether the output can be converted to a uniform one for i=1:numel(varargout) for j=1:numel(varargout{i}) if numel(varargout{i}{j})~=1 % this error message is consistent with the one from cellfun error('Non-scalar in Uniform output, at index %d, output %d. Set ''UniformOutput'' to false.', j, i); end end end % convert the output to a uniform one for i=1:numargout varargout{i} = [varargout{i}{:}]; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = nanmax(x) y = max(x(~isnan(x(:)))); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = nanmin(x) y = min(x(~isnan(x(:)))); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = nanmean(x) x = x(~isnan(x(:))); y = mean(x); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = nanstd(x) x = x(~isnan(x(:))); y = std(x); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = nansum(x) x = x(~isnan(x(:))); y = sum(x); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cleanupfun % the qsublist function maintains a persistent list with all jobs % request it to kill all the jobs and to cleanup all the files qsublist('killall');
github
lcnhappe/happe-master
qsublisten.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/qsub/qsublisten.m
4,326
utf_8
6ac189cba48025bdbd36f682f9b258cc
function num = qsublisten(callback, varargin) % QSUBLISTEN checks whether jobs, submitted by qsubfeval, have been % completed. Whenever a job returns, it executes the provided callback function % (should be a function handle), with the job ID as an input argument. Results % can then be retrieved by calling QSUBGET. If a cell array is provided as % a the 'filter' option (see below), the second input argument passed to the % callback function will be an index into this cell array (to facilitate % checking which job returned in the callback function). % % Note that this function is blocking; i.e., it only returns after a % certain criterion has been met. % % Arguments can be supplied with key-value pairs: % maxnum = maximum number of jobs to collect, function will return % after this is reached. Default = Inf; so it is highly % recommended you provide something here, since with % maxnum=Inf the function will never return. % filter = regular expression filter for job IDs to respond to. % The default tests for jobs generated from the current % MATLAB process. A cell array of strings can be % provided; in that case, exact match is required. % sleep = number of seconds to sleep between checks (default=0) % % This function returns the number of jobs that were collected and for % which the callback function was called. % Copyright (C) 2012, Eelke Spaak % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ maxnum = ft_getopt(varargin, 'maxnum', Inf); filter = ft_getopt(varargin, 'filter', [generatesessionid '.*']); sleep = ft_getopt(varargin, 'sleep', 0); if ischar(filter) regexpFilt = 1; elseif iscellstr(filter) regexpFilt = 0; else error('filter should either be a regexp string or cell array of exact-match strings'); end % keep track of which job IDs we have already recognized and fired the callback for foundJobs = []; curPwd = getcustompwd(); num = 0; while (num < maxnum) files = dir(); for k = 1:numel(files) % preliminary filter to get just the qsub-specific output files jobid = regexp(files(k).name, '^(.*)\.o.*$', 'tokens'); if ~isempty(jobid) && isempty(findstr(foundJobs, jobid{1}{1})) jobid = jobid{1}{1}; % wait until not only the stdout file exists, but also the stderr and % _output.mat. If we fire the callback before all three files are % present, a subsequent call to qsubget will fail outputfile = fullfile(curPwd, sprintf('%s_output.mat', jobid)); logerr = fullfile(curPwd, sprintf('%s.e*', jobid)); while ~exist(outputfile,'file') || ~isfile(logerr) pausejava(0.01); end if (regexpFilt && ~isempty(regexp(jobid, filter, 'once'))) || (~regexpFilt && ~isempty(find(strcmp(jobid, filter)))) if (~regexpFilt && nargin(callback)>1) % also provide an index into the filter array callback(jobid, find(strcmp(jobid, filter))); else callback(jobid); end num = num+1; foundJobs = [foundJobs '|' jobid]; end end end if (sleep > 0) pausejava(sleep); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function that detects a file, even with a wildcard in the filename %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = isfile(name) tmp = dir(name); status = length(tmp)==1 && ~tmp.isdir; end end
github
lcnhappe/happe-master
ft_platform_supports.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/qsub/private/ft_platform_supports.m
9,557
utf_8
eb0e55d84d57e6873cce8df6cad90d96
function tf = ft_platform_supports(what,varargin) % FT_PLATFORM_SUPPORTS returns a boolean indicating whether the current platform % supports a specific capability % % Usage: % tf = ft_platform_supports(what) % tf = ft_platform_supports('matlabversion', min_version, max_version) % % The following values are allowed for the 'what' parameter: % value means that the following is supported: % % 'which-all' which(...,'all') % 'exists-in-private-directory' exists(...) will look in the /private % subdirectory to see if a file exists % 'onCleanup' onCleanup(...) % 'alim' alim(...) % 'int32_logical_operations' bitand(a,b) with a, b of type int32 % 'graphics_objects' graphics sysem is object-oriented % 'libmx_c_interface' libmx is supported through mex in the % C-language (recent Matlab versions only % support C++) % 'stats' all statistical functions in % FieldTrip's external/stats directory % 'program_invocation_name' program_invocation_name() (GNU Octave) % 'singleCompThread' start Matlab with -singleCompThread % 'nosplash' -nosplash % 'nodisplay' -nodisplay % 'nojvm' -nojvm % 'no-gui' start GNU Octave with --no-gui % 'RandStream.setGlobalStream' RandStream.setGlobalStream(...) % 'RandStream.setDefaultStream' RandStream.setDefaultStream(...) % 'rng' rng(...) % 'rand-state' rand('state') % 'urlread-timeout' urlread(..., 'Timeout', t) % 'griddata-vector-input' griddata(...,...,...,a,b) with a and b % vectors % 'griddata-v4' griddata(...,...,...,...,...,'v4'), % that is v4 interpolation support % 'uimenu' uimenu(...) if ~ischar(what) error('first argument must be a string'); end switch what case 'matlabversion' tf = is_matlab() && matlabversion(varargin{:}); case 'exists-in-private-directory' tf = is_matlab(); case 'which-all' tf = is_matlab(); case 'onCleanup' tf = is_octave() || matlabversion(7.8, Inf); case 'alim' tf = is_matlab(); case 'int32_logical_operations' % earlier version of Matlab don't support bitand (and similar) % operations on int32 tf = is_octave() || ~matlabversion(-inf, '2012a'); case 'graphics_objects' % introduced in Matlab 2014b, graphics is handled through objects; % previous versions use numeric handles tf = is_matlab() && matlabversion('2014b', Inf); case 'libmx_c_interface' % removed after 2013b tf = matlabversion(-Inf, '2013b'); case 'stats' root_dir=fileparts(which('ft_defaults')); external_stats_dir=fullfile(root_dir,'external','stats'); % these files are only used by other functions in the external/stats % directory exclude_mfiles={'common_size.m',... 'iscomplex.m',... 'lgamma.m'}; tf = has_all_functions_in_dir(external_stats_dir,exclude_mfiles); case 'program_invocation_name' % Octave supports program_invocation_name, which returns the path % of the binary that was run to start Octave tf = is_octave(); case 'singleCompThread' tf = is_matlab() && matlabversion(7.8, inf); case {'nosplash','nodisplay','nojvm'} % Only on Matlab tf = is_matlab(); case 'no-gui' % Only on Octave tf = is_octave(); case 'RandStream.setDefaultStream' tf = is_matlab() && matlabversion('2008b', '2011b'); case 'RandStream.setGlobalStream' tf = is_matlab() && matlabversion('2012a', inf); case 'randomized_PRNG_on_startup' tf = is_octave() || ~matlabversion(-Inf,'7.3'); case 'rng' % recent Matlab versions tf = is_matlab() && matlabversion('7.12',Inf); case 'rand-state' % GNU Octave tf = is_octave(); case 'urlread-timeout' tf = is_matlab() && matlabversion('2012b',Inf); case 'griddata-vector-input' tf = is_matlab(); case 'griddata-v4' tf = is_matlab() && matlabversion('2009a',Inf); case 'uimenu' tf = is_matlab(); otherwise error('unsupported value for first argument: %s', what); end % switch end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function tf = is_matlab() tf = ~is_octave(); end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function tf = is_octave() persistent cached_tf; if isempty(cached_tf) cached_tf = logical(exist('OCTAVE_VERSION', 'builtin')); end tf = cached_tf; end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function tf = has_all_functions_in_dir(in_dir, exclude_mfiles) % returns true if all functions in in_dir are already provided by the % platform m_files=dir(fullfile(in_dir,'*.m')); n=numel(m_files); for k=1:n m_filename=m_files(k).name; if isempty(which(m_filename)) && ... isempty(strmatch(m_filename,exclude_mfiles)) tf=false; return; end end tf=true; end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [inInterval] = matlabversion(min, max) % MATLABVERSION checks if the current MATLAB version is within the interval % specified by min and max. % % Use, e.g., as: % if matlabversion(7.0, 7.9) % % do something % end % % Both strings and numbers, as well as infinities, are supported, eg.: % matlabversion(7.1, 7.9) % is version between 7.1 and 7.9? % matlabversion(6, '7.10') % is version between 6 and 7.10? (note: '7.10', not 7.10) % matlabversion(-Inf, 7.6) % is version <= 7.6? % matlabversion('2009b') % exactly 2009b % matlabversion('2008b', '2010a') % between two versions % matlabversion('2008b', Inf) % from a version onwards % etc. % % See also VERSION, VER, VERLESSTHAN % Copyright (C) 2006, Robert Oostenveld % Copyright (C) 2010, Eelke Spaak % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % this does not change over subsequent calls, making it persistent speeds it up persistent curVer if nargin<2 max = min; end if isempty(curVer) curVer = version(); end if ((ischar(min) && isempty(str2num(min))) || (ischar(max) && isempty(str2num(max)))) % perform comparison with respect to release string ind = strfind(curVer, '(R'); [year, ab] = parseMatlabRelease(curVer((ind + 2):(numel(curVer) - 1))); [minY, minAb] = parseMatlabRelease(min); [maxY, maxAb] = parseMatlabRelease(max); inInterval = orderedComparison(minY, minAb, maxY, maxAb, year, ab); else % perform comparison with respect to version number [major, minor] = parseMatlabVersion(curVer); [minMajor, minMinor] = parseMatlabVersion(min); [maxMajor, maxMinor] = parseMatlabVersion(max); inInterval = orderedComparison(minMajor, minMinor, maxMajor, maxMinor, major, minor); end end % function function [year, ab] = parseMatlabRelease(str) if (str == Inf) year = Inf; ab = Inf; elseif (str == -Inf) year = -Inf; ab = -Inf; else year = str2num(str(1:4)); ab = str(5); end end % function function [major, minor] = parseMatlabVersion(ver) if (ver == Inf) major = Inf; minor = Inf; elseif (ver == -Inf) major = -Inf; minor = -Inf; elseif (isnumeric(ver)) major = floor(ver); minor = int8((ver - floor(ver)) * 10); else % ver is string (e.g. '7.10'), parse accordingly [major, rest] = strtok(ver, '.'); major = str2num(major); minor = str2num(strtok(rest, '.')); end end % function % checks if testA is in interval (lowerA,upperA); if at edges, checks if testB is in interval (lowerB,upperB). function inInterval = orderedComparison(lowerA, lowerB, upperA, upperB, testA, testB) if (testA < lowerA || testA > upperA) inInterval = false; else inInterval = true; if (testA == lowerA) inInterval = inInterval && (testB >= lowerB); end if (testA == upperA) inInterval = inInterval && (testB <= upperB); end end end % function
github
lcnhappe/happe-master
ft_warning.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/qsub/private/ft_warning.m
7,789
utf_8
d832a7ad5e2f9bb42995e6e5d4caa198
function [ws, warned] = ft_warning(varargin) % FT_WARNING will throw a warning for every unique point in the % stacktrace only, e.g. in a for-loop a warning is thrown only once. % % Use as one of the following % ft_warning(string) % ft_warning(id, string) % Alternatively, you can use ft_warning using a timeout % ft_warning(string, timeout) % ft_warning(id, string, timeout) % where timeout should be inf if you don't want to see the warning ever % again. % % Use as ft_warning('-clear') to clear old warnings from the current % stack % % It can be used instead of the MATLAB built-in function WARNING, thus as % s = ft_warning(...) % or as % ft_warning(s) % where s is a structure with fields 'identifier' and 'state', storing the % state information. In other words, ft_warning accepts as an input the % same structure it returns as an output. This returns or restores the % states of warnings to their previous values. % % It can also be used as % [s w] = ft_warning(...) % where w is a boolean that indicates whether a warning as been thrown or not. % % Please note that you can NOT use it like this % ft_warning('the value is %d', 10) % instead you should do % ft_warning(sprintf('the value is %d', 10)) % Copyright (C) 2012-2016, Robert Oostenveld, J?rn M. Horschig % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ global ft_default warned = false; ws = []; stack = dbstack; if any(strcmp({stack(2:end).file}, 'ft_warning.m')) % don't call FT_WARNING recursively, see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3068 return; end if nargin < 1 error('You need to specify at least a warning message'); end if isstruct(varargin{1}) warning(varargin{1}); return; end if ~isfield(ft_default, 'warning') ft_default.warning = []; end if ~isfield(ft_default.warning, 'stopwatch') ft_default.warning.stopwatch = []; end if ~isfield(ft_default.warning, 'identifier') ft_default.warning.identifier = []; end if ~isfield(ft_default.warning, 'ignore') ft_default.warning.ignore = {}; end % put the arguments we will pass to warning() in this cell array warningArgs = {}; if nargin==3 % calling syntax (id, msg, timeout) warningArgs = varargin(1:2); msg = warningArgs{2}; timeout = varargin{3}; fname = [warningArgs{1} '_' warningArgs{2}]; elseif nargin==2 && isnumeric(varargin{2}) % calling syntax (msg, timeout) warningArgs = varargin(1); msg = warningArgs{1}; timeout = varargin{2}; fname = warningArgs{1}; elseif nargin==2 && isequal(varargin{1}, 'off') ft_default.warning.ignore = union(ft_default.warning.ignore, varargin{2}); return elseif nargin==2 && isequal(varargin{1}, 'on') ft_default.warning.ignore = setdiff(ft_default.warning.ignore, varargin{2}); return elseif nargin==2 && ~isnumeric(varargin{2}) % calling syntax (id, msg) warningArgs = varargin(1:2); msg = warningArgs{2}; timeout = inf; fname = [warningArgs{1} '_' warningArgs{2}]; elseif nargin==1 % calling syntax (msg) warningArgs = varargin(1); msg = warningArgs{1}; timeout = inf; % default timeout in seconds fname = [warningArgs{1}]; end if ismember(msg, ft_default.warning.ignore) % do not show this warning return; end if isempty(timeout) error('Timeout ill-specified'); end if timeout ~= inf fname = fixname(fname); % make a nice string that is allowed as fieldname in a structures line = []; else % here, we create the fieldname functionA.functionB.functionC... [tmpfname, ft_default.warning.identifier, line] = fieldnameFromStack(ft_default.warning.identifier); if ~isempty(tmpfname), fname = tmpfname; clear tmpfname; end end if nargin==1 && ischar(varargin{1}) && strcmp('-clear', varargin{1}) if strcmp(fname, '-clear') % reset all fields if called outside a function ft_default.warning.identifier = []; ft_default.warning.stopwatch = []; else if issubfield(ft_default.warning.identifier, fname) ft_default.warning.identifier = rmsubfield(ft_default.warning.identifier, fname); end end return; end % and add the line number to make this unique for the last function fname = horzcat(fname, line); if ~issubfield('ft_default.warning.stopwatch', fname) ft_default.warning.stopwatch = setsubfield(ft_default.warning.stopwatch, fname, tic); end now = toc(getsubfield(ft_default.warning.stopwatch, fname)); % measure time since first function call if ~issubfield(ft_default.warning.identifier, fname) || ... (issubfield(ft_default.warning.identifier, fname) && now>getsubfield(ft_default.warning.identifier, [fname '.timeout'])) % create or reset field ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, fname, []); % warning never given before or timed out ws = warning(warningArgs{:}); ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.timeout'], now+timeout); ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.ws'], msg); warned = true; else % the warning has been issued before, but has not timed out yet ws = getsubfield(ft_default.warning.identifier, [fname '.ws']); end end % function ft_warning %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [fname, ft_previous_warnings, line] = fieldnameFromStack(ft_previous_warnings) % stack(1) is this function, stack(2) is ft_warning stack = dbstack('-completenames'); if size(stack) < 3 fname = []; line = []; return; end i0 = 3; % ignore ft_preamble while strfind(stack(i0).name, 'ft_preamble') i0=i0+1; end fname = horzcat(fixname(stack(end).name)); if ~issubfield(ft_previous_warnings, fixname(stack(end).name)) ft_previous_warnings.(fixname(stack(end).name)) = []; % iteratively build up structure fields end for i=numel(stack)-1:-1:(i0) % skip postamble scripts if strncmp(stack(i).name, 'ft_postamble', 12) break; end fname = horzcat(fname, '.', horzcat(fixname(stack(i).name))); % , stack(i).file if ~issubfield(ft_previous_warnings, fname) % iteratively build up structure fields setsubfield(ft_previous_warnings, fname, []); end end % line of last function call line = ['.line', int2str(stack(i0).line)]; end % function outcome = issubfield(strct, fname) % substrindx = strfind(fname, '.'); % if numel(substrindx) > 0 % % separate the last fieldname from all former % outcome = eval(['isfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']); % else % % there is only one fieldname % outcome = isfield(strct, fname); % end % end % function strct = rmsubfield(strct, fname) % substrindx = strfind(fname, '.'); % if numel(substrindx) > 0 % % separate the last fieldname from all former % strct = eval(['rmfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']); % else % % there is only one fieldname % strct = rmfield(strct, fname); % end % end
github
lcnhappe/happe-master
ft_checkopt.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/qsub/private/ft_checkopt.m
5,085
utf_8
c8bce4359cc4a8be5591788b5984166d
function opt = ft_checkopt(opt, key, allowedtype, allowedval) % FT_CHECKOPT does a validity test on the types and values of a configuration % structure or cell-array with key-value pairs. % % Use as % opt = ft_checkopt(opt, key) % opt = ft_checkopt(opt, key, allowedtype) % opt = ft_checkopt(opt, key, allowedtype, allowedval) % % For allowedtype you can specify a string or a cell-array with multiple % strings. All the default MATLAB types can be specified, such as % 'double' % 'logical' % 'char' % 'single' % 'float' % 'int16' % 'cell' % 'struct' % 'function_handle' % Furthermore, the following custom types can be specified % 'doublescalar' % 'doublevector' % 'doublebivector' i.e. [1 1] or [1 2] % 'ascendingdoublevector' i.e. [1 2 3 4 5], but not [1 3 2 4 5] % 'ascendingdoublebivector' i.e. [1 2], but not [2 1] % 'doublematrix' % 'numericscalar' % 'numericvector' % 'numericmatrix' % 'charcell' % % For allowedval you can specify a single value or a cell-array % with multiple values. % % This function will give an error or it returns the input configuration % structure or cell-array without modifications. A match on any of the % allowed types and any of the allowed values is sufficient to let this % function pass. % % See also FT_GETOPT, FT_SETOPT % Copyright (C) 2011-2012, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if nargin<3 allowedtype = {}; end if ~iscell(allowedtype) allowedtype = {allowedtype}; end if nargin<4 allowedval = {}; end if ~iscell(allowedval) allowedval = {allowedval}; end % get the value that belongs to this key val = ft_getopt(opt, key); % the default will be [] if isempty(val) && ~any(strcmp(allowedtype, 'empty')) if isnan(ft_getopt(opt, key, nan)) error('the option "%s" was not specified or was empty', key); end end % check that the type of the option is allowed ok = isempty(allowedtype); for i=1:length(allowedtype) switch allowedtype{i} case 'empty' ok = isempty(val); case 'charcell' ok = isa(val, 'cell') && all(cellfun(@ischar, val(:))); case 'doublescalar' ok = isa(val, 'double') && numel(val)==1; case 'doublevector' ok = isa(val, 'double') && sum(size(val)>1)==1; case 'ascendingdoublevector' ok = isa(val,'double') && issorted(val); case 'doublebivector' ok = isa(val,'double') && sum(size(val)>1)==1 && length(val)==2; case 'ascendingdoublebivector' ok = isa(val,'double') && sum(size(val)>1)==1 && length(val)==2 && val(2)>val(1); case 'doublematrix' ok = isa(val, 'double') && sum(size(val)>1)>1; case 'numericscalar' ok = isnumeric(val) && numel(val)==1; case 'numericvector' ok = isnumeric(val) && sum(size(val)>1)==1; case 'numericmatrix' ok = isnumeric(val) && sum(size(val)>1)>1; otherwise ok = isa(val, allowedtype{i}); end if ok % no reason to do additional checks break end end % for allowedtype % construct a string that describes the type of the input variable if isnumeric(val) && numel(val)==1 valtype = sprintf('%s scalar', class(val)); elseif isnumeric(val) && numel(val)==length(val) valtype = sprintf('%s vector', class(val)); elseif isnumeric(val) && length(size(val))==2 valtype = sprintf('%s matrix', class(val)); elseif isnumeric(val) valtype = sprintf('%s array', class(val)); else valtype = class(val); end if ~ok if length(allowedtype)==1 error('the type of the option "%s" is invalid, it should be "%s" instead of "%s"', key, allowedtype{1}, valtype); else error('the type of the option "%s" is invalid, it should be any of %s instead of "%s"', key, printcell(allowedtype), valtype); end end % check that the type of the option is allowed ok = isempty(allowedval); for i=1:length(allowedval) ok = isequal(val, allowedval{i}); if ok % no reason to do additional checks break end end % for allowedtype if ~ok error('the value of the option "%s" is invalid', key); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [s] = printcell(c) if ~isempty(c) s = sprintf('%s, ', c{:}); s = sprintf('{%s}', s(1:end-2)); else s = '{}'; end
github
lcnhappe/happe-master
ft_statfun_roc.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/statfun/ft_statfun_roc.m
5,415
utf_8
a8e88fc1a733545abfe4d0608e309d53
function [s, cfg] = ft_statfun_roc(cfg, dat, design) % FT_STATFUN_ROC computes the area under the curve (AUC) of the % Receiver Operator Characteristic (ROC). This is a measure of the % separability of the data divided over two conditions. The AUC can % be used to test statistical significance of being able to predict % on a single observation basis to which condition the observation % belongs. % % Use this function by calling one of the high-level statistics % functions as % [stat] = ft_timelockstatistics(cfg, timelock1, timelock2, ...) % [stat] = ft_freqstatistics(cfg, freq1, freq2, ...) % [stat] = ft_sourcestatistics(cfg, source1, source2, ...) % with the following configuration option % cfg.statistic = 'ft_statfun_roc' % % Configuration options that are relevant for this function are % cfg.ivar = number, index into the design matrix with the independent variable % cfg.logtransform = 'yes' or 'no' (default = 'no') % % Note that this statfun performs a one sided test in which condition "1" % is assumed to be larger than condition "2". % A low-level example for this function is % a = randn(1,1000) + 1; % b = randn(1,1000); % design = [1*ones(1,1000) 2*ones(1,1000)]; % auc = ft_statfun_roc([], [a b], design); % Copyright (C) 2008, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if ~isfield(cfg, 'ivar'), cfg.ivar = 1; end if ~isfield(cfg, 'logtransform'), cfg.logtransform = 'no'; end if strcmp(cfg.logtransform, 'yes'), dat = log10(dat); end if isfield(cfg, 'numbins') % this function was completely reimplemented on 21 July 2008 by Robert Oostenveld % the old function had a positive bias in the AUC (i.e. the expected value was not 0.5) error('the option cfg.numbins is not supported any more'); end % start with a quick test to see whether there appear to be NaNs if any(isnan(dat(1,:))) % exclude trials that contain NaNs for all observed data points sel = all(isnan(dat),1); dat = dat(:,~sel); design = design(:,~sel); end % logical indexing is faster than using find(...) selA = (design(cfg.ivar,:)==1); selB = (design(cfg.ivar,:)==2); % select the data in the two classes datA = dat(:, selA); datB = dat(:, selB); nobs = size(dat,1); na = size(datA,2); nb = size(datB,2); auc = zeros(nobs, 1); for k = 1:nobs % compute the area under the curve for each channel/time/frequency a = datA(k,:); b = datB(k,:); % to speed up the AUC, the critical value is determined by the actual % values in class B, which also ensures a regular sampling of the False Alarms b = sort(b); ca = zeros(nb+1,1); ib = zeros(nb+1,1); % cb = zeros(nb+1,1); % ia = zeros(nb+1,1); for i=1:nb % for the first approach below, the critval could also be choosen based on e.g. linspace(min,max,n) critval = b(i); % for each of the two distributions, determine the number of correct and incorrect assignments given the critical value % ca(i) = sum(a>=critval); % ib(i) = sum(b>=critval); % cb(i) = sum(b<critval); % ia(i) = sum(a<critval); % this is a much faster approach, which works due to using the sorted values in b as the critical values ca(i) = sum(a>=critval); % correct assignments to class A ib(i) = nb-i+1; % incorrect assignments to class B end % add the end point ca(end) = 0; ib(end) = 0; % cb(end) = nb; % ia(end) = na; hits = ca/na; fa = ib/nb; % the numerical integration is faster if the points are sorted hits = fliplr(hits); fa = fliplr(fa); if false % this part is optional and should only be used when exploring the data figure plot(fa, hits, '.-') xlabel('false positive'); ylabel('true positive'); title('ROC-curve'); end % compute the area under the curve using numerical integration auc(k) = numint(fa, hits); end % return the area under the curve as the statistic of interest s = struct('auc', auc); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NUMINT computes a numerical integral of a set of sampled points using % linear interpolation. Alugh the algorithm works for irregularly sampled points % along the x-axis, it will perform best for regularly sampled points % % Use as % z = numint(x, y) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function z = numint(x, y) if ~all(diff(x)>=0) % ensure that the points are sorted along the x-axis [x, i] = sort(x); y = y(i); end n = length(x); z = 0; for i=1:(n-1) x0 = x(i); y0 = y(i); dx = x(i+1)-x(i); dy = y(i+1)-y(i); z = z + (y0 * dx) + (dy*dx/2); end
github
lcnhappe/happe-master
ft_warning.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/statfun/private/ft_warning.m
7,789
utf_8
d832a7ad5e2f9bb42995e6e5d4caa198
function [ws, warned] = ft_warning(varargin) % FT_WARNING will throw a warning for every unique point in the % stacktrace only, e.g. in a for-loop a warning is thrown only once. % % Use as one of the following % ft_warning(string) % ft_warning(id, string) % Alternatively, you can use ft_warning using a timeout % ft_warning(string, timeout) % ft_warning(id, string, timeout) % where timeout should be inf if you don't want to see the warning ever % again. % % Use as ft_warning('-clear') to clear old warnings from the current % stack % % It can be used instead of the MATLAB built-in function WARNING, thus as % s = ft_warning(...) % or as % ft_warning(s) % where s is a structure with fields 'identifier' and 'state', storing the % state information. In other words, ft_warning accepts as an input the % same structure it returns as an output. This returns or restores the % states of warnings to their previous values. % % It can also be used as % [s w] = ft_warning(...) % where w is a boolean that indicates whether a warning as been thrown or not. % % Please note that you can NOT use it like this % ft_warning('the value is %d', 10) % instead you should do % ft_warning(sprintf('the value is %d', 10)) % Copyright (C) 2012-2016, Robert Oostenveld, J?rn M. Horschig % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ global ft_default warned = false; ws = []; stack = dbstack; if any(strcmp({stack(2:end).file}, 'ft_warning.m')) % don't call FT_WARNING recursively, see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3068 return; end if nargin < 1 error('You need to specify at least a warning message'); end if isstruct(varargin{1}) warning(varargin{1}); return; end if ~isfield(ft_default, 'warning') ft_default.warning = []; end if ~isfield(ft_default.warning, 'stopwatch') ft_default.warning.stopwatch = []; end if ~isfield(ft_default.warning, 'identifier') ft_default.warning.identifier = []; end if ~isfield(ft_default.warning, 'ignore') ft_default.warning.ignore = {}; end % put the arguments we will pass to warning() in this cell array warningArgs = {}; if nargin==3 % calling syntax (id, msg, timeout) warningArgs = varargin(1:2); msg = warningArgs{2}; timeout = varargin{3}; fname = [warningArgs{1} '_' warningArgs{2}]; elseif nargin==2 && isnumeric(varargin{2}) % calling syntax (msg, timeout) warningArgs = varargin(1); msg = warningArgs{1}; timeout = varargin{2}; fname = warningArgs{1}; elseif nargin==2 && isequal(varargin{1}, 'off') ft_default.warning.ignore = union(ft_default.warning.ignore, varargin{2}); return elseif nargin==2 && isequal(varargin{1}, 'on') ft_default.warning.ignore = setdiff(ft_default.warning.ignore, varargin{2}); return elseif nargin==2 && ~isnumeric(varargin{2}) % calling syntax (id, msg) warningArgs = varargin(1:2); msg = warningArgs{2}; timeout = inf; fname = [warningArgs{1} '_' warningArgs{2}]; elseif nargin==1 % calling syntax (msg) warningArgs = varargin(1); msg = warningArgs{1}; timeout = inf; % default timeout in seconds fname = [warningArgs{1}]; end if ismember(msg, ft_default.warning.ignore) % do not show this warning return; end if isempty(timeout) error('Timeout ill-specified'); end if timeout ~= inf fname = fixname(fname); % make a nice string that is allowed as fieldname in a structures line = []; else % here, we create the fieldname functionA.functionB.functionC... [tmpfname, ft_default.warning.identifier, line] = fieldnameFromStack(ft_default.warning.identifier); if ~isempty(tmpfname), fname = tmpfname; clear tmpfname; end end if nargin==1 && ischar(varargin{1}) && strcmp('-clear', varargin{1}) if strcmp(fname, '-clear') % reset all fields if called outside a function ft_default.warning.identifier = []; ft_default.warning.stopwatch = []; else if issubfield(ft_default.warning.identifier, fname) ft_default.warning.identifier = rmsubfield(ft_default.warning.identifier, fname); end end return; end % and add the line number to make this unique for the last function fname = horzcat(fname, line); if ~issubfield('ft_default.warning.stopwatch', fname) ft_default.warning.stopwatch = setsubfield(ft_default.warning.stopwatch, fname, tic); end now = toc(getsubfield(ft_default.warning.stopwatch, fname)); % measure time since first function call if ~issubfield(ft_default.warning.identifier, fname) || ... (issubfield(ft_default.warning.identifier, fname) && now>getsubfield(ft_default.warning.identifier, [fname '.timeout'])) % create or reset field ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, fname, []); % warning never given before or timed out ws = warning(warningArgs{:}); ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.timeout'], now+timeout); ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.ws'], msg); warned = true; else % the warning has been issued before, but has not timed out yet ws = getsubfield(ft_default.warning.identifier, [fname '.ws']); end end % function ft_warning %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [fname, ft_previous_warnings, line] = fieldnameFromStack(ft_previous_warnings) % stack(1) is this function, stack(2) is ft_warning stack = dbstack('-completenames'); if size(stack) < 3 fname = []; line = []; return; end i0 = 3; % ignore ft_preamble while strfind(stack(i0).name, 'ft_preamble') i0=i0+1; end fname = horzcat(fixname(stack(end).name)); if ~issubfield(ft_previous_warnings, fixname(stack(end).name)) ft_previous_warnings.(fixname(stack(end).name)) = []; % iteratively build up structure fields end for i=numel(stack)-1:-1:(i0) % skip postamble scripts if strncmp(stack(i).name, 'ft_postamble', 12) break; end fname = horzcat(fname, '.', horzcat(fixname(stack(i).name))); % , stack(i).file if ~issubfield(ft_previous_warnings, fname) % iteratively build up structure fields setsubfield(ft_previous_warnings, fname, []); end end % line of last function call line = ['.line', int2str(stack(i0).line)]; end % function outcome = issubfield(strct, fname) % substrindx = strfind(fname, '.'); % if numel(substrindx) > 0 % % separate the last fieldname from all former % outcome = eval(['isfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']); % else % % there is only one fieldname % outcome = isfield(strct, fname); % end % end % function strct = rmsubfield(strct, fname) % substrindx = strfind(fname, '.'); % if numel(substrindx) > 0 % % separate the last fieldname from all former % strct = eval(['rmfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']); % else % % there is only one fieldname % strct = rmfield(strct, fname); % end % end
github
lcnhappe/happe-master
ft_realtime_ouunpod.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/realtime/online_eeg/ft_realtime_ouunpod.m
20,299
utf_8
e7df0f8c5ebb142a8a4f339bb345f448
function ft_realtime_ouunpod(cfg) % FT_REALTIME_OUUNPOD is an example realtime application for online power % estimation and visualisation. It is designed for use with the OuUnPod, an % OpenEEG based low cost EEG system with two channels, but in principle % should work for any EEG or MEG system. % % Use as % ft_realtime_ouunpod(cfg) % with the following configuration options % cfg.channel = cell-array, see FT_CHANNELSELECTION (default = 'all') % cfg.foilim = [Flow Fhigh] (default = [1 45]) % cfg.blocksize = number, size of the blocks/chuncks that are processed (default = 1 second) % cfg.bufferdata = whether to start on the 'first or 'last' data that is available (default = 'last') % % The source of the data is configured as % cfg.dataset = string % or alternatively to obtain more low-level control as % cfg.datafile = string % cfg.headerfile = string % cfg.eventfile = string % cfg.dataformat = string, default is determined automatic % cfg.headerformat = string, default is determined automatic % cfg.eventformat = string, default is determined automatic % % To stop the realtime function, you have to press Ctrl-C % % See also http://ouunpod.blogspot.com % Copyright (C) 2008-2012, Robert Oostenveld % Copyright (C) 2012-2014, Stephen Whitmarsh % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % set the default configuration options if ~isfield(cfg, 'dataformat'), cfg.dataformat = []; end % default is detected automatically if ~isfield(cfg, 'headerformat'), cfg.headerformat = []; end % default is detected automatically if ~isfield(cfg, 'eventformat'), cfg.eventformat = []; end % default is detected automatically if ~isfield(cfg, 'blocksize'), cfg.blocksize = 0.05; end % stepsize, in seconds if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'bufferdata'), cfg.bufferdata = 'last'; end % first or last if ~isfield(cfg, 'dataset'), cfg.dataset = 'buffer:\\localhost:1972'; end; if ~isfield(cfg, 'foilim'), cfg.foilim = [1 45]; end if ~isfield(cfg, 'windowsize'), cfg.windowsize = 2; end % length of sliding window, in seconds if ~isfield(cfg, 'scale'), cfg.scale = 1; end % can be used to fix the calibration if ~isfield(cfg, 'feedback'), cfg.feedback = 'no'; end % use neurofeedback with MIDI, yes or no % translate dataset into datafile+headerfile cfg = ft_checkconfig(cfg, 'dataset2files', 'yes'); cfg = ft_checkconfig(cfg, 'required', {'datafile' 'headerfile'}); if strcmp(cfg.feedback, 'yes') % setup MIDI, see http://en.wikipedia.org/wiki/General_MIDI beatdrum = true; m = midiOut; % Microsoft GS Wavetable Synth = device number 2 midiOut('O', 2); % o for output; 2 for device nr 2 midiOut('.', 1); % all off midiOut('.', 2); % all off % midiOut('P', 2, 20); organ midiOut('P', 1, 53); midiOut('P', 2, 53); midiOut('+', 1, [64 65], [127 127]); % command, channelnr, key, velocity midiOut('+', 2, [64 65 67], [127 127 127]); % command, channelnr, key, velocity midiOut(uint8([175+1, 7, 0])); % change volume midiOut(uint8([175+2, 7, 0])); end % if MIDI feedback % these are used by the GUI callbacks clear global vaxis hdr chanindx global vaxis hdr chanindx % this specifies the vertical axis for each of the 6 subplots vaxis = [ -300 300 -300 300 0 1000 0 1000 0 1000 0 1000 ]; b2clicked = false; % schemerlamp = Lamp('com9'); % ensure that the persistent variables related to caching are cleared clear ft_read_header % start by reading the header from the realtime buffer hdr = ft_read_header(cfg.headerfile, 'cache', true, 'retry', true); % define a subset of channels for reading cfg.channel = ft_channelselection(cfg.channel, hdr.label); chanindx = match_str(hdr.label, cfg.channel); nchan = length(chanindx); if nchan>2 chanindx = [1 2]; nchan = 2; warning('exactly two channels should be selected'); end if nchan<2 error('exactly two channels should be selected'); end nhistory = 100; % determine the size of blocks to process blocksize = round(cfg.blocksize * hdr.Fs); prevSample = 0; count = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this is the general BCI loop where realtime incoming data is handled %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% left_thresh_ampl = -100; left_thresh_time = nan; % [cfg.blockmem*blocksize-blocksize*4 cfg.blockmem*blocksize]; % FIXME these are hardcoded, but might be incompatible with the cfg and data settings right_freq = [40 45]; right_offset = 0.5; right_mult = 127/0.5; TFR = zeros(2, (cfg.foilim(2)-cfg.foilim(1)+1), 100); f1 = nan; % these are handles used in drawing u1=[]; u2=[]; u3=[]; u4=[]; u5=[]; u6=[]; p1=[]; p2=[]; p3=[]; p4=[]; p5=[]; p6=[]; c1=[]; c2=[]; b2=[]; while true if isempty(f1) || ~ishandle(f1) close all; f1 = figure; set(f1, 'resizeFcn', 'u1=[]; u2=[]; u3=[]; u4=[]; u5=[]; u6=[]; p1=[]; p2=[]; p3=[]; p4=[]; p5=[]; p6=[]; c1=[]; c2=[]; b2=[];'); u1=[]; u2=[]; u3=[]; u4=[]; u5=[]; u6=[]; p1=[]; p2=[]; p3=[]; p4=[]; p5=[]; p6=[]; c1=[]; c2=[]; b2=[]; end % determine number of samples available in buffer hdr = ft_read_header(cfg.headerfile, 'cache', true); % see whether new samples are available newsamples = (hdr.nSamples*hdr.nTrials-prevSample); if newsamples>=blocksize && (hdr.nSamples*hdr.nTrials/hdr.Fs)>cfg.windowsize % determine the samples to process if strcmp(cfg.bufferdata, 'last') begsample = hdr.nSamples*hdr.nTrials - round(cfg.windowsize*hdr.Fs) + 1; endsample = hdr.nSamples*hdr.nTrials; elseif strcmp(cfg.bufferdata, 'first') begsample = prevSample+1; endsample = prevSample+blocksize ; else error('unsupported value for cfg.bufferdata'); end % remember up to where the data was read prevSample = endsample; count = count + 1; fprintf('processing segment %d from sample %d to %d\n', count, begsample, endsample); % read the data segment from buffer dat = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx, 'checkboundary', false); dat = cfg.scale * dat; % construct a matching time axis time = ((begsample:endsample)-1)/hdr.Fs; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % from here onward it is specific to the power estimation from the data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % apply some preprocessing to the data dat = ft_preproc_polyremoval(dat, 1); dat = ft_preproc_highpassfilter(dat, hdr.Fs, 3, 1, 'but', 'twopass'); dat = ft_preproc_lowpassfilter (dat, hdr.Fs, 35, 3, 'but', 'twopass'); if hdr.Fs<11025 % sampling range is low, assume it is EEG if hdr.Fs>110 % apply line noise filter dat = ft_preproc_bandstopfilter(dat, hdr.Fs, [45 55], 4, 'but', 'twopass'); end if hdr.Fs>230 % apply line noise filter dat = ft_preproc_bandstopfilter(dat, hdr.Fs, [95 115], 4, 'but', 'twopass'); end [spec, ntaper, freqoi] = ft_specest_mtmfft(dat, time, 'taper', 'dpss', 'tapsmofrq', 2, 'freqoi', cfg.foilim(1):cfg.foilim(2)); else % sampling range is high, assume it is audio [spec, ntaper, freqoi] = ft_specest_mtmfft(dat, time, 'taper', 'hanning', 'freqoi', cfg.foilim(1):cfg.foilim(2)); end pow = squeeze(mean(abs(spec.^2), 1)); % compute power, average over tapers if ~exist('TFR', 'var') TFR = nan(length(chanindx), length(freqoi), nhistory); end TFR(:,:,1:nhistory-1) = TFR(:,:,2:nhistory); TFR(:,:,end) = pow; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % translate channel 1 into a neurofeedback command %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if strcmp(cfg.feedback, 'yes') % compute the average power in the specified frequency range fbeg = nearest(freqoi, cfg.feedback1.foilim(1)); fend = nearest(freqoi, cfg.feedback1.foilim(2)); value1 = mean(pow(1, fbeg:fend)); % scale the value between 0 and 1 historicalmean = mean(nanmean(TFR(1,fbeg:fend,:),3),2); historicalmin = min (nanmin (TFR(1,fbeg:fend,:),3),2); historicalmax = max (nanmax (TFR(1,fbeg:fend,:),3),2); % the value can be larger than expected from the history value1 = (value1 - historicalmin) ./ (historicalmax - historicalmin); controlfunction(cfg.feedback1, value1); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % translate channel 2 into a neurofeedback command %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if strcmp(cfg.feedback, 'yes') % if value2>threshold % controlfunction(cfg.feedback2); % end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % make the GUI elements %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% try if isempty(c1) || ~ishandle(c1) pos = [0.25 0.95 0.1 0.05]; c1 = uicontrol('style', 'edit', 'units', 'normalized', 'callback', @update_channel, 'BackgroundColor', 'white'); set(c1, 'position', pos); set(c1, 'string', chanindx(1)); set(c1, 'tag', 'c1'); end if isempty(c2) || ~ishandle(c2) pos = [0.70 0.95 0.1 0.05]; c2 = uicontrol('style', 'edit', 'units', 'normalized', 'callback', @update_channel, 'BackgroundColor', 'white'); set(c2, 'position', pos); set(c2, 'string', chanindx(2)); set(c2, 'tag', 'c2'); end if isempty(u1) || ~ishandle(u1) pos = get(p1, 'position'); % link the position to the subplot pos(1) = pos(1)-0.1; pos(2) = pos(2)-0.05; pos(3) = 0.1; pos(4) = 0.05; u1 = uicontrol('style', 'edit', 'units', 'normalized', 'callback', @update_axis, 'BackgroundColor', 'white'); set(u1, 'position', pos); set(u1, 'string', num2str(vaxis(1,2))); set(u1, 'tag', 'u1'); end if isempty(u2) || ~ishandle(u2) pos = get(p2, 'position'); % link the position to the subplot pos(1) = pos(1)-0.1; pos(2) = pos(2)-0.05; pos(3) = 0.1; pos(4) = 0.05; u2 = uicontrol('style', 'edit', 'units', 'normalized', 'callback', @update_axis, 'BackgroundColor', 'white'); set(u2, 'position', pos); set(u2, 'string', num2str(vaxis(2,2))); set(u2, 'tag', 'u2'); end if isempty(u3) || ~ishandle(u3) pos = get(p3, 'position'); % link the position to the subplot pos(1) = pos(1)-0.1; pos(2) = pos(2)-0.05; pos(3) = 0.1; pos(4) = 0.05; u3 = uicontrol('style', 'edit', 'units', 'normalized', 'callback', @update_axis, 'BackgroundColor', 'white'); set(u3, 'position', pos); set(u3, 'position', pos); set(u3, 'string', num2str(vaxis(3,2))); set(u3, 'tag', 'u3'); end if isempty(u4) || ~ishandle(u4) pos = get(p4, 'position'); % link the position to the subplot pos(1) = pos(1)-0.1; pos(2) = pos(2)-0.05; pos(3) = 0.1; pos(4) = 0.05; u4 = uicontrol('style', 'edit', 'units', 'normalized', 'callback', @update_axis, 'BackgroundColor', 'white'); set(u4, 'position', pos); set(u4, 'string', num2str(vaxis(4,2))); set(u4, 'tag', 'u4'); end if isempty(u5) || ~ishandle(u5) pos = get(p5, 'position'); % link the position to the subplot pos(1) = pos(1)-0.1; pos(2) = pos(2)-0.05; pos(3) = 0.1; pos(4) = 0.05; u5 = uicontrol('style', 'edit', 'units', 'normalized', 'callback', @update_axis, 'BackgroundColor', 'white'); set(u5, 'position', pos); set(u5, 'string', num2str(vaxis(5,2))); set(u5, 'tag', 'u5'); end if isempty(u6) || ~ishandle(u6) pos = get(p6, 'position'); % link the position to the subplot pos(1) = pos(1)-0.1; pos(2) = pos(2)-0.05; pos(3) = 0.1; pos(4) = 0.05; u6 = uicontrol('style', 'edit', 'units', 'normalized', 'callback', @update_axis, 'BackgroundColor', 'white'); set(u6, 'position', pos); set(u6, 'string', num2str(vaxis(6,2))); set(u6, 'tag', 'u6'); end if isempty(b2) || ~ishandle(b2) pos = [0.88 0.01 0.1 0.05]; b2 = uicontrol('style', 'pushbutton', 'units', 'normalized', 'callback', 'evalin(''caller'', ''b2clicked = true;'')'); set(b2, 'position', pos); set(b2, 'string', 'quit'); set(b2, 'tag', 'b2'); end end % try if b2clicked close all return end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % visualize the data in 2*3 subplots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% try if isempty(p1) || ~ishandle(p1) p1 = subplot(3, 2, 1); else subplot(p1); h1 = plot(time, dat(1, :)); axis([min(time) max(time) vaxis(1, 1) vaxis(1, 2)]); set(p1, 'XTickLabel', []); ylabel('amplitude (uV)'); xlabel(sprintf('time: %d seconds', cfg.windowsize)); grid on if strcmp(cfg.feedback, 'yes') ax = axis; line([ax(1) ax(2)], [left_thresh_ampl left_thresh_ampl], 'color', 'red'); line([ax(1) + left_thresh_time(1)/hdr.Fs ax(1) + left_thresh_time(1)/hdr.Fs], [-300 300], 'color', 'green'); line([ax(1) + left_thresh_time(2)/hdr.Fs ax(1) + left_thresh_time(2)/hdr.Fs], [-300 300], 'color', 'green'); end end if isempty(p2) || ~ishandle(p2) p2 = subplot(3, 2, 2); else subplot(p2); h2 = plot(time, dat(2, :)); axis([min(time) max(time) vaxis(2, 1) vaxis(2, 2)]); set(p2, 'XTickLabel', []); ylabel('amplitude (uV)'); xlabel(sprintf('time: %d seconds', cfg.windowsize)); grid on end if isempty(p3) || ~ishandle(p3) p3 = subplot(3, 2, 3); else subplot(p3) h3 = bar(1:length(freqoi), pow(1, :), 0.5); % plot(pow(1).Frequencies, pow(1).Data); % bar(pow(1).Frequencies, pow(1).Data); axis([cfg.foilim(1) cfg.foilim(2) vaxis(3, 1) vaxis(3, 2)]); % str = sprintf('time = %d s\n', round(mean(time))); % title(str); xlabel('frequency (Hz)'); ylabel('power'); end if isempty(p4) || ~ishandle(p4) p4 = subplot(3, 2, 4); else subplot(p4) h4 = bar(1:length(freqoi), pow(2, :), 0.5); % plot(pow(2).Frequencies, pow(2).Data); % bar(pow(2).Frequencies, pow(2).Data); ax = axis; axis([cfg.foilim(1) cfg.foilim(2) vaxis(4, 1) vaxis(4, 2)]); if strcmp(cfg.feedback, 'yes') line([right_freq(1) right_freq(1)], [ax(3) ax(4)]); line([right_freq(2) right_freq(2)], [ax(3) ax(4)]); line([right_freq(1) right_freq(2)], [right_offset right_offset]); end xlabel('frequency (Hz)'); ylabel('power'); end if isempty(p5) || ~ishandle(p5) p5 = subplot(3, 2, 5); else subplot(p5) h5 = surf(squeeze(TFR(1, :, :))); axis([1 100 cfg.foilim(1) cfg.foilim(2) vaxis(5, 1) vaxis(5, 2)]); view(110, 45); xlabel(''); % this is the historical time ylabel('frequency (Hz)'); zlabel('power'); set(p5, 'XTickLabel', []); set(h5, 'EdgeColor', 'none'); shading interp box off end if isempty(p6) || ~ishandle(p6) p6 = subplot(3, 2, 6); else subplot(p6) h6 = surf(squeeze(TFR(2, :, :))); axis([1 100 cfg.foilim(1) cfg.foilim(2) vaxis(6, 1) vaxis(6, 2)]); view(110, 45); xlabel(''); % this is the historical time ylabel('frequency (Hz)'); zlabel('power'); set(p6, 'XTickLabel', []); set(h6, 'EdgeColor', 'none'); shading interp box off end end % try %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % present MIDI feedback if the data exceeds the specified limits %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if strcmp(cfg.feedback, 'yes') if left_thresh_ampl < 0 if min((dat(1, left_thresh_time(1):left_thresh_time(2)))) < left_thresh_ampl if beatdrum == true % midiOut('+', 10, 64, 127); beatdrum = false; else % midiOut('+', 10, 31, 127); beatdrum = true; end else midiOut('.', 1); end; elseif max((dat(left_thresh_time(1):left_thresh_time(2)))) > left_thresh_ampl if beatdrum == true % midiOut('+', 10, 64, 127); beatdrum = false; else % midiOut('+', 10, 31, 127); beatdrum = true; end else % midiOut('.', 1); end; % schemerlamp.setLevel(round(TFR(1, 60, end) / mean(TFR(1, 60, :)))*5); volume_right = round((mean(TFR(2, right_freq, end)) - right_offset) * right_mult); % midiOut(uint8([175+1, 7, volume_left])); % midiOut(uint8([16*14+1-1, 0, volume_left])); % ptich midiOut(uint8([175+2, 7, volume_right])); midiOut(uint8([16*14+2-1, 0, volume_right])); % ptich % schemerlamp.setLevel(9); end % if MIDI feedback % force an update of the figure drawnow end % if enough new samples end % while true %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function update_channel(h, varargin) global hdr chanindx val = abs(str2num(get(h, 'string'))); val = max(1, min(val, hdr.nChans)); if ~isempty(val) switch get(h, 'tag') case 'c1' chanindx(1) = val; set(h, 'string', num2str(val)); case 'c2' chanindx(2) = val; set(h, 'string', num2str(val)); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function update_axis(h, varargin) global vaxis val = abs(str2num(get(h, 'string'))); if ~isempty(val) switch get(h, 'tag') case 'u1' vaxis(1,:) = [-val val]; case 'u2' vaxis(2,:) = [-val val]; case 'u3' vaxis(3,:) = [0 val]; case 'u4' vaxis(4,:) = [0 val]; case 'u5' vaxis(5,:) = [0 val]; case 'u6' vaxis(6,:) = [0 val]; end end
github
lcnhappe/happe-master
ft_realtime_oddball.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/realtime/online_eeg/ft_realtime_oddball.m
13,163
utf_8
d5a3400a1168a9e53bccbb79f889bebb
function ft_realtime_oddball(cfg) % FT_REALTIME_ODDBALL is an realtime application that computes an online % average for a standard and deviant condition. The ERPs/ERFs are plotted, % together with the difference as t-values. It should work both for EEG and % MEG, as long as there are two triggers present % % Use as % ft_realtime_oddball(cfg) % with the following configuration options % cfg.channel = cell-array, see FT_CHANNELSELECTION (default = 'all') % cfg.trialfun = string with the trial function % % The source of the data is configured as % cfg.dataset = string % or alternatively to obtain more low-level control as % cfg.datafile = string % cfg.headerfile = string % cfg.eventfile = string % cfg.dataformat = string, default is determined automatic % cfg.headerformat = string, default is determined automatic % cfg.eventformat = string, default is determined automatic % % To stop the realtime function, you have to press Ctrl-C % Copyright (C) 2008-2012, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % set the default configuration options if ~isfield(cfg, 'dataformat'), cfg.dataformat = []; end % default is detected automatically if ~isfield(cfg, 'headerformat'), cfg.headerformat = []; end % default is detected automatically if ~isfield(cfg, 'eventformat'), cfg.eventformat = []; end % default is detected automatically if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'bufferdata'), cfg.bufferdata = 'last'; end % first or last if ~isfield(cfg, 'jumptoeof'), cfg.jumptoeof = 'no'; end % jump to end of file at initialization % translate dataset into datafile+headerfile cfg = ft_checkconfig(cfg, 'dataset2files', 'yes'); cfg = ft_checkconfig(cfg, 'required', {'datafile' 'headerfile'}); % these are used by the GUI callbacks clear global chansel chanindx vaxis hdr global chansel chanindx vaxis hdr b1clicked = false; b2clicked = false; chansel = 1; % this is the subselection out of chanindx vaxis = [ -6 6 -3 3 ]; % ensure that the persistent variables related to caching are cleared clear ft_read_header % start by reading the header from the realtime buffer hdr = ft_read_header(cfg.headerfile, 'cache', true); % define a subset of channels for reading cfg.channel = ft_channelselection(cfg.channel, hdr.label); chanindx = match_str(hdr.label, cfg.channel); nchan = length(chanindx); if nchan==0 error('no channels were selected'); end if strcmp(cfg.jumptoeof, 'yes') prevSample = hdr.nSamples * hdr.nTrials; else prevSample = 0; end count = 0; f1 = nan; % initialize the timelock cell-array, each cell will hold the average in one condition timelock = {}; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this is the general BCI loop where realtime incoming data is handled %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% while true % determine latest header and event information event = ft_read_event(cfg.dataset, 'minsample', prevSample+1); % only consider events that are later than the data processed sofar hdr = ft_read_header(cfg.dataset, 'cache', true); % the trialfun might want to use this, but it is not required cfg.event = event; % store it in the configuration, so that it can be passed on to the trialfun cfg.hdr = hdr; % store it in the configuration, so that it can be passed on to the trialfun % evaluate the trialfun, note that the trialfun should not re-read the events and header fprintf('evaluating ''%s'' based on %d events\n', cfg.trialfun, length(event)); trl = feval(cfg.trialfun, cfg); % the code below assumes that the 4th column of the trl matrix contains the condition index % set the default condition to one if no condition index was given if size(trl,1)>0 && size(trl,2)<4 trl(:,4) = 1; end fprintf('processing %d trials\n', size(trl,1)); for trllop=1:size(trl,1) begsample = trl(trllop,1); endsample = trl(trllop,2); offset = trl(trllop,3); condition = trl(trllop,4); % it is important that the 4th column is returned with the condition number % remember up to where the data was read prevSample = endsample; count = count + 1; fprintf('processing segment %d from sample %d to %d, condition = %d\n', count, begsample, endsample, condition); while (hdr.nSamples*hdr.nTrials < endsample) % wait until all data up to the endsample has arrived hdr = ft_read_header(cfg.headerfile, 'cache', true); end % read the selected data segment from the buffer dat = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx, 'checkboundary', false); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % from here onward it is specific to the processing of the data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % apply some preprocessing options dat = ft_preproc_lowpassfilter(dat, hdr.Fs, 45); dat = ft_preproc_baselinecorrect(dat, 1, -offset); % put the data in a fieldtrip-like raw structure data.trial{1} = dat; data.time{1} = offset2time(offset, hdr.Fs, endsample-begsample+1); data.label = hdr.label(chanindx); data.hdr = hdr; data.fsample = hdr.Fs; if length(timelock)<condition || isempty(timelock{condition}) % this is the first occurence of this condition, initialize an empty timelock structure timelock{condition}.label = data.label; timelock{condition}.time = data.time{1}; timelock{condition}.avg = []; timelock{condition}.var = []; timelock{condition}.dimord = 'chan_time'; nchans = size(data.trial{1}, 1); nsamples = size(data.trial{1}, 2); % the following elements are for the cumulative computation timelock{condition}.n = 0; % number of trials timelock{condition}.s = zeros(nchans, nsamples); % sum timelock{condition}.ss = zeros(nchans, nsamples); % sum of squares end % add the new data to the accumulated data timelock{condition}.n = timelock{condition}.n + 1; timelock{condition}.s = timelock{condition}.s + data.trial{1}; timelock{condition}.ss = timelock{condition}.ss + data.trial{1}.^2; % compute the average and variance on the fly timelock{condition}.avg = timelock{condition}.s ./ timelock{condition}.n; timelock{condition}.var = (timelock{condition}.ss - (timelock{condition}.s.^2)./timelock{condition}.n) ./ (timelock{condition}.n-1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % from here onward the GUI is constructed %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% try if ~ishandle(f1) close all; f1 = figure; clear u1 u2 clear p1 p2 clear c1 set(f1, 'resizeFcn', 'clear u1 u2 p1 p2 c1 b1 b2') end if ~exist('p1') p1 = subplot(2,1,1); end if ~exist('p2') p2 = subplot(2,1,2); end if ~exist('c1') pos = [0.75 0.93 0.1 0.05]; c1 = uicontrol('style', 'edit', 'units', 'normalized', 'callback', @update_channel, 'BackgroundColor', 'white'); set(c1, 'position', pos); set(c1, 'string', chanindx(chansel)); set(c1, 'tag', 'c1'); end if ~exist('u1') pos = get(p1, 'position'); % link the position to the subplot pos(1) = pos(1)-0.1; pos(2) = pos(2)-0.05; pos(3) = 0.1; pos(4) = 0.05; u1 = uicontrol('style', 'edit', 'units', 'normalized', 'callback', @update_axis, 'BackgroundColor', 'white'); set(u1, 'position', pos); set(u1, 'string', num2str(vaxis(1,2))); set(u1, 'tag', 'u1'); end if ~exist('u2') pos = get(p2, 'position'); % link the position to the subplot pos(1) = pos(1)-0.1; pos(2) = pos(2)-0.05; pos(3) = 0.1; pos(4) = 0.05; u2 = uicontrol('style', 'edit', 'units', 'normalized', 'callback', @update_axis, 'BackgroundColor', 'white'); set(u2, 'position', pos); set(u2, 'string', num2str(vaxis(2,2))); set(u2, 'tag', 'u1'); end if ~exist('b1') pos = [0.75 0.01 0.1 0.05]; b1 = uicontrol('style', 'pushbutton', 'units', 'normalized', 'callback', 'evalin(''caller'', ''b1clicked = true'')'); set(b1, 'position', pos); set(b1, 'string', 'reset'); set(b1, 'tag', 'b1'); end if ~exist('b2') pos = [0.88 0.01 0.1 0.05]; b2 = uicontrol('style', 'pushbutton', 'units', 'normalized', 'callback', 'evalin(''caller'', ''b2clicked = true'')'); set(b2, 'position', pos); set(b2, 'string', 'quit'); set(b2, 'tag', 'b2'); end end % try if b1clicked timelock = {}; try, cla(p1); end try, cla(p2); end b1clicked = false; end if b2clicked return b2clicked = false; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % from here onward the data is plotted %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% try if length(timelock)>1 sel = ~cellfun(@isempty, timelock); sel = find(sel, 2, 'first'); if length(sel)~=2 break end standard = timelock{sel(1)}; deviant = timelock{sel(2)}; tscore = (deviant.avg - standard.avg) ./ sqrt(standard.var./standard.n + deviant.var./deviant.n); time = standard.time; % deviant is the same if exist('p1') subplot(p1) cla hold on hs = plot(time, standard.avg(chansel,:), 'b-'); hd = plot(time, deviant.avg(chansel,:), 'r-'); set(hs, 'lineWidth', 1.5) set(hd, 'lineWidth', 1.5) grid on axis([time(1) time(end) vaxis(1,1) vaxis(1,2)]) legend(sprintf('standard (n=%d)', standard.n), sprintf('deviant (n=%d)', deviant.n)); xlabel('time (s)'); ylabel('amplitude (uV)'); title(sprintf('channel "%s"', hdr.label{chanindx(chansel)})); end if exist('p2') subplot(p2) cla hold on ht = plot(time, tscore(chansel,:), 'g-'); set(ht, 'lineWidth', 1.5) grid on axis([time(1) time(end) vaxis(2,1) vaxis(2,2)]) legend('difference'); xlabel('time (s)'); ylabel('t-score (a.u.)'); end end % two conditions are available end % try % force matlab to redraw the figure drawnow end % looping over new trials end % while true %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [time] = offset2time(offset, fsample, nsamples) offset = double(offset); nsamples = double(nsamples); time = (offset + (0:(nsamples-1)))/fsample; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function update_channel(h, varargin) global chansel chanindx hdr val = abs(str2num(get(h, 'string'))); val = max(1, min(val, length(chanindx))); if ~isempty(val) switch get(h, 'tag') case 'c1' chansel = val; set(h, 'string', num2str(val)); fprintf('switching to channel "%s"', hdr.label{chanindx(chansel)}); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function update_axis(h, varargin) global vaxis val = abs(str2num(get(h, 'string'))); if ~isempty(val) switch get(h, 'tag') case 'u1' vaxis(1,:) = [-val val]; case 'u2' vaxis(2,:) = [-val val]; end end
github
lcnhappe/happe-master
ft_omri_info_from_header.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/realtime/online_mri/ft_omri_info_from_header.m
4,361
utf_8
97589ff2ee8f9fa7ee376b4b628de647
function S = ft_omri_info_from_header(hdr) % function S = ft_omri_info_from_header(hdr) % % Convenience function to retrieve most important MR information % from a given header (H) as retrieved from a FieldTrip buffer. % Will look at both NIFTI-1 and SiemensAP fields, if present, and % give preference to SiemensAP info. % % Returns empty array if no information could be found. % Copyright (C) 2012, Stefan Klanke % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ SNif = []; SSap = []; if isfield(hdr,'nifti_1') try SNif = mri_info_from_nifti(hdr.nifti_1); catch warning('Errors occured while inspecting NIFTI-1 header.'); end end if isfield(hdr,'siemensap') try SSap = mri_info_from_sap(hdr.siemensap); catch warning('Errors occured while inspecting SiemensAP header.'); end end if ~isempty(SSap) S = SSap; if ~isempty(SNif) if ~isequal(SNif.voxels,SSap.voxels) warning('Conflicting information in NIFTI and SiemensAP - trusting SiemensAP...'); end S.mat0 = SNif.mat0; end else if ~isempty(SNif) S = SNif; else S = []; end end function S = mri_info_from_nifti(NH) S.vx = double(NH.dim(1)); S.vy = double(NH.dim(2)); S.vz = double(NH.dim(3)); S.voxels = [S.vx S.vy S.vz]; S.voxdim = double(NH.pixdim(1:3)); S.size = S.voxels .* S.voxdim; VoxToWorld = double([NH.srow_x; NH.srow_y; NH.srow_z]); M = VoxToWorld(1:3,1:3); P = VoxToWorld(1:3,4); % correct Mat0 in the same way SPM does (voxel index starts at 1) S.mat0 = [M (P-M*[1;1;1]); 0 0 0 1]; S.numEchos = 1; % can't detect this from NIFTI :-( switch NH.slice_code % Long-term TODO: look at slice_start and slice_end for padded slices case 1 % NIFTI_SLICE_SEQ_INC inds = 1:S.vz; case 2 % NIFTI_SLICE_SEQ_DEC inds = S.vz:-1:1; case 3 % NIFTI_SLICE_ALT_INC inds = [(1:2:S.vz) (2:2:S.vz)]; case 4 % NIFTI_SLICE_ALT_DEC inds = [(S.vz:-2:1) ((S.vz-1):-2:1)]; case 5 % NIFTI_SLICE_ALT_INC2 inds = [(2:2:S.vz) (1:2:S.vz)]; case 6 % NIFTI_SLICE_ALT_DEC2 inds = [((S.vz-1):-2:1) (S.vz:-2:1)]; otherwise warning('Unrecognized slice order - using default'); inds = 1:S.vz; end if NH.slice_duration > 0 S.TR = double(NH.slice_duration * S.vz); % first set up linear S.deltaT = (0:(S.vz-1))*double(NH.slice_duration) % then re-shuffle S.deltaT(inds) = S.deltaT; else % what can we do here? S.TR = 2; S.deltaT = (0:(S.vz-1))*S.TR/S.vz; S.deltaT(inds) = S.deltaT; end function S = mri_info_from_sap(SP) phaseFOV = SP.sSliceArray.asSlice{1}.dPhaseFOV; readoutFOV = SP.sSliceArray.asSlice{1}.dReadoutFOV; sliceThick = SP.sSliceArray.asSlice{1}.dThickness; distFactor = SP.sGroupArray.asGroup{1}.dDistFact; S.vx = double(SP.sKSpace.lBaseResolution); S.vy = S.vx * phaseFOV / readoutFOV; S.vz = double(SP.sSliceArray.lSize); S.voxels = [S.vx S.vy S.vz]; % this only takes care of the scaling, not the proper orientation sx = readoutFOV/S.vx; sy = phaseFOV/S.vy; % should always be == sx sz = sliceThick * (1.0 + distFactor); S.size = [readoutFOV phaseFOV S.vz*sz]; S.mat0 = [sx 0 0 0; 0 sy 0 0; 0 0 sz 0; 0 0 0 1]; S.voxdim = [sx sy sz]; S.numEchos = double(SP.lContrasts); S.TR = double(SP.alTR) * 1e-6; % originally in microseconds switch SP.sSliceArray.ucMode case 1 % == NIFTI_SLICE_SEQ_INC inds = 1:S.vz; case 2 % == NIFTI_SLICE_SEQ_DEC inds = S.vz:-1:1; case 4 % odd:ALT_INC or even:ALT_INC2 if mod(S.vz,2) == 1 inds = [(1:2:S.vz) (2:2:S.vz)]; else inds = [(2:2:S.vz) (1:2:S.vz)]; end otherwise warning('Unrecognized slice order - using default'); inds = 1:S.vz; end % first set up linear S.deltaT = (0:(S.vz-1))*S.TR/S.vz % then re-shuffle S.deltaT(inds) = S.deltaT;
github
lcnhappe/happe-master
encode_nifti1.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/realtime/online_mri/private/encode_nifti1.m
4,870
utf_8
9cf92a03587c511a5cec2c8c76a3c2c3
function blob = encode_nifti1(H) %function blob = encode_nifti1(H) % % Encodes a NIFTI-1 header (=> raw 348 bytes (uint8)) from a Matlab structure % that matches the C struct defined in nifti1.h. % % WARNING: This function currently ignores endianness !!! % (C) 2010 S.Klanke blob = uint8(zeros(1,348)); if ~isstruct(H) error 'Input must be a structure'; end % see nift1.h for information on structure sizeof_hdr = int32(348); blob(1:4) = typecast(sizeof_hdr, 'uint8'); blob = setString(blob, 5, 14, H, 'data_type'); blob = setString(blob, 15, 32, H, 'db_name'); blob = setInt32( blob, 33, 36, H, 'extents'); blob = setInt16( blob, 37, 38, H, 'session_error'); blob = setInt8( blob, 39, 39, H, 'regular'); blob = setInt8( blob, 40, 40, H, 'dim_info'); dim = int16(H.dim(:)'); ndim = numel(dim); if ndim<1 || ndim>7 error 'Field "dim" must have 1..7 elements'; end dim = [int16(ndim) dim]; blob(41:(42+2*ndim)) = typecast(dim,'uint8'); blob = setSingle(blob, 57, 60, H, 'intent_p1'); blob = setSingle(blob, 61, 64, H, 'intent_p2'); blob = setSingle(blob, 65, 68, H, 'intent_p3'); blob = setInt16( blob, 69, 70, H, 'intent_code'); blob = setInt16( blob, 71, 72, H, 'datatype'); blob = setInt16( blob, 73, 74, H, 'bitpix'); blob = setInt16( blob, 75, 76, H, 'slice_start'); blob = setSingle(blob, 77, 80, H, 'qfac'); if isfield(H,'pixdim') pixdim = single(H.pixdim(:)'); ndim = numel(pixdim); if ndim<1 || ndim>7 error 'Field "pixdim" must have 1..7 elements'; end blob(81:(80+4*ndim)) = typecast(pixdim,'uint8'); end blob = setSingle(blob, 109, 112, H, 'vox_offset'); blob = setSingle(blob, 113, 116, H, 'scl_scope'); blob = setSingle(blob, 117, 120, H, 'scl_inter'); blob = setInt16( blob, 121, 122, H, 'slice_end'); blob = setInt8( blob, 123, 123, H, 'slice_code'); blob = setInt8( blob, 124, 124, H, 'xyzt_units'); blob = setSingle(blob, 125, 128, H, 'cal_max'); blob = setSingle(blob, 129, 132, H, 'cal_min'); blob = setSingle(blob, 133, 136, H, 'slice_duration'); blob = setSingle(blob, 137, 140, H, 'toffset'); blob = setInt32( blob, 141, 144, H, 'glmax'); blob = setInt32( blob, 145, 148, H, 'glmin'); blob = setString(blob, 149, 228, H, 'descrip'); blob = setString(blob, 229, 252, H, 'aux_file'); blob = setInt16( blob, 253, 254, H, 'qform_code'); blob = setInt16( blob, 255, 256, H, 'sform_code'); blob = setSingle(blob, 257, 260, H, 'quatern_b'); blob = setSingle(blob, 261, 264, H, 'quatern_c'); blob = setSingle(blob, 265, 268, H, 'quatern_d'); blob = setSingle(blob, 269, 272, H, 'quatern_x'); blob = setSingle(blob, 273, 276, H, 'quatern_y'); blob = setSingle(blob, 277, 280, H, 'quatern_z'); blob = setSingle(blob, 281, 296, H, 'srow_x'); blob = setSingle(blob, 297, 312, H, 'srow_y'); blob = setSingle(blob, 313, 328, H, 'srow_z'); blob = setString(blob, 329, 344, H, 'intent_name'); if ~isfield(H,'magic') blob(345:347) = uint8('ni1'); else blob = setString(blob, 345, 347, H, 'magic'); end function blob = setString(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = getfield(H, fieldname); ne = numel(F); mx = endidx - begidx +1; if ne > 0 if ~ischar(F) || ne > mx errmsg = sprintf('Field "data_type" must be a string of maximally %i characters.', mx); error(errmsg); end blob(begidx:(begidx+ne-1)) = uint8(F(:)'); end % set 32-bit integers (check #elements) function blob = setInt32(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = int32(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1) / 4; if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+4*ne-1)) = typecast(F(:)', 'uint8'); % set 16-bit integers (check #elements) function blob = setInt16(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = int16(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1) / 2; if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+2*ne-1)) = typecast(F(:)', 'uint8'); % just 8-bit integers (check #elements) function blob = setInt8(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = int8(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1); if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+ne-1)) = typecast(F(:)', 'uint8'); % single precision floats function blob = setSingle(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = single(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1) / 4; if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+4*ne-1)) = typecast(F(:)', 'uint8');
github
lcnhappe/happe-master
reslice_vol.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/realtime/online_mri/private/reslice_vol.m
942
utf_8
081ab7897d7a4e33ecb3ade31f6263c0
function [Va, Mask] = reslice_vol(Vo, M, interp) % function [Va, Mask] = reslice_vol(Vo, M, interp) % Ripped out of SPM 8 and modified (2010, S.Klanke) dim = size(Vo); wrap = [1;1;0]; d = [interp*[1;1;1] wrap]; [x1,x2] = ndgrid(1:dim(1), 1:dim(2)); C = spm_bsplinc(Vo, d); Va = zeros(dim); Mask = zeros(dim); for x3 = 1:dim(3) [msk_x3,y1,y2,y3] = getmask(M,x1,x2,x3,dim,wrap); Mask(:,:,x3) = msk_x3; Va(:,:,x3) = spm_bsplins(C, y1,y2,y3, d); end return; function [Mask,y1,y2,y3] = getmask(M,x1,x2,x3,dim,wrp) tiny = 5e-2; % From spm_vol_utils.c y1 = M(1,1)*x1+M(1,2)*x2+(M(1,3)*x3+M(1,4)); y2 = M(2,1)*x1+M(2,2)*x2+(M(2,3)*x3+M(2,4)); y3 = M(3,1)*x1+M(3,2)*x2+(M(3,3)*x3+M(3,4)); Mask = true(size(y1)); if ~wrp(1), Mask = Mask & (y1 >= (1-tiny) & y1 <= (dim(1)+tiny)); end; if ~wrp(2), Mask = Mask & (y2 >= (1-tiny) & y2 <= (dim(2)+tiny)); end; if ~wrp(3), Mask = Mask & (y3 >= (1-tiny) & y3 <= (dim(3)+tiny)); end; return;
github
lcnhappe/happe-master
ft_realtime_signalviewer.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/realtime/example/ft_realtime_signalviewer.m
9,980
utf_8
80b047f2f1e4ef4fbb3c7f3a8124588a
function ft_realtime_signalviewer(cfg) % FT_REALTIME_SIGNALVIEWER is an example realtime application for online viewing of % the data. It should work both for EEG and MEG. % % Use as % ft_realtime_signalviewer(cfg) % with the following configuration options % cfg.blocksize = number, size of the blocks/chuncks that are processed (default = 1 second) % cfg.channel = cell-array, see FT_CHANNELSELECTION (default = 'all') % cfg.jumptoeof = whether to skip to the end of the stream/file at startup (default = 'yes') % cfg.bufferdata = whether to start on the 'first or 'last' data that is available (default = 'first') % cfg.readevent = whether or not to copy events (default = 'no') % cfg.demean = 'no' or 'yes', whether to apply baseline correction (default = 'yes') % % The source of the data is configured as % cfg.dataset = string % or alternatively to obtain more low-level control as % cfg.datafile = string % cfg.headerfile = string % cfg.eventfile = string % cfg.dataformat = string, default is determined automatic % cfg.headerformat = string, default is determined automatic % cfg.eventformat = string, default is determined automatic % % Some notes about skipping data and catching up with the data stream: % % cfg.jumptoeof='yes' causes the realtime function to jump to the end when the % function _starts_. It causes all data acquired prior to starting the realtime % function to be skipped. % % cfg.bufferdata='last' causes the realtime function to jump to the last available data % while _running_. If the realtime loop is not fast enough, it causes some data to be % dropped. % % If you want to skip all data that was acquired before you start the RT function, % but don't want to miss any data that was acquired while the realtime function is % started, then you should use jumptoeof=yes and bufferdata=first. If you want to % analyse data from a file, then you should use jumptoeof=no and bufferdata=first. % % To stop this realtime function, you have to press Ctrl-C % Copyright (C) 2008, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % set the default configuration options cfg.dataformat = ft_getopt(cfg, 'dataformat', []); % default is detected automatically cfg.headerformat = ft_getopt(cfg, 'headerformat', []); % default is detected automatically cfg.eventformat = ft_getopt(cfg, 'eventformat', []); % default is detected automatically cfg.blocksize = ft_getopt(cfg, 'blocksize', 1); % in seconds cfg.overlap = ft_getopt(cfg, 'overlap', 0); % in seconds cfg.channel = ft_getopt(cfg, 'channel', 'all'); cfg.readevent = ft_getopt(cfg, 'readevent', 'no'); % capture events? cfg.bufferdata = ft_getopt(cfg, 'bufferdata', 'first'); % first or last cfg.jumptoeof = ft_getopt(cfg, 'jumptoeof', 'yes'); % jump to end of file at initialization cfg.demean = ft_getopt(cfg, 'demean', 'yes'); % baseline correction cfg.detrend = ft_getopt(cfg, 'detrend', 'no'); cfg.olfilter = ft_getopt(cfg, 'olfilter', 'no'); % continuous online filter cfg.olfiltord = ft_getopt(cfg, 'olfiltord', 4); cfg.olfreq = ft_getopt(cfg, 'olfreq', [2 45]); cfg.offset = ft_getopt(cfg, 'offset', []); % in units of the data, e.g. uV for the OpenBCI board cfg.dftfilter = ft_getopt(cfg, 'dftfilter', 'no'); cfg.dftfreq = ft_getopt(cfg, 'dftfreq', [50 100 150]); if ~isfield(cfg, 'dataset') && ~isfield(cfg, 'header') && ~isfield(cfg, 'datafile') cfg.dataset = 'buffer://localhost:1972'; end % translate dataset into datafile+headerfile cfg = ft_checkconfig(cfg, 'dataset2files', 'yes'); cfg = ft_checkconfig(cfg, 'required', {'datafile' 'headerfile'}); % ensure that the persistent variables related to caching are cleared clear ft_read_header % start by reading the header from the realtime buffer hdr = ft_read_header(cfg.headerfile, 'headerformat', cfg.headerformat, 'cache', true, 'retry', true); % define a subset of channels for reading cfg.channel = ft_channelselection(cfg.channel, hdr.label); chanindx = match_str(hdr.label, cfg.channel); nchan = length(chanindx); if nchan==0 error('no channels were selected'); end if numel(cfg.offset)==0 % it will be determined on the first data segment elseif numel(cfg.offset)==1 cfg.offset = repmat(cfg.offset, size(cfg.channel)); end % determine the size of blocks to process blocksize = round(cfg.blocksize * hdr.Fs); overlap = round(cfg.overlap*hdr.Fs); if strcmp(cfg.jumptoeof, 'yes') prevSample = hdr.nSamples * hdr.nTrials; else prevSample = 0; end count = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this is the general BCI loop where realtime incoming data is handled %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% while true % determine the samples to process if strcmp(cfg.bufferdata, 'last') % determine number of samples available in buffer hdr = ft_read_header(cfg.headerfile, 'headerformat', cfg.headerformat, 'cache', true); begsample = hdr.nSamples*hdr.nTrials - blocksize + 1; endsample = hdr.nSamples*hdr.nTrials; elseif strcmp(cfg.bufferdata, 'first') begsample = prevSample+1; endsample = prevSample+blocksize ; else error('unsupported value for cfg.bufferdata'); end % this allows overlapping data segments if overlap && (begsample>overlap) begsample = begsample - overlap; endsample = endsample - overlap; end % remember up to where the data was read prevSample = endsample; count = count + 1; fprintf('processing segment %d from sample %d to %d\n', count, begsample, endsample); % read data segment from buffer dat = ft_read_data(cfg.datafile, 'header', hdr, 'dataformat', cfg.dataformat, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx, 'checkboundary', false, 'blocking', true); % make a matching time axis time = ((begsample:endsample)-1)/hdr.Fs; % it only makes sense to read those events associated with the currently processed data if strcmp(cfg.readevent, 'yes') evt = ft_read_event(cfg.eventfile, 'header', hdr, 'minsample', begsample, 'maxsample', endsample); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % from here onward it is specific to the display of the data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert the data to a FieldTrip-like raw structure % data = []; % data.trial{1} = double(dat); % data.time{1} = time; % data.label = hdr.label(chanindx); % data.hdr = hdr; % data.fsample = hdr.Fs; % apply some preprocessing options if strcmp(cfg.demean, 'yes') % demean using the first sample dat = ft_preproc_baselinecorrect(dat, 1, 1); end if strcmp(cfg.detrend, 'yes') dat = ft_preproc_detrend(dat); end if strcmp(cfg.dftfilter, 'yes') dat = ft_preproc_dftfilter(dat, hdr.Fs, cfg.dftfreq); end if strcmp(cfg.olfilter, 'yes') if count==1 if cfg.olfreq(1)==0 fprintf('using online low-pass filter\n'); [B, A] = butter(cfg.olfiltord, cfg.olfreq(2)/hdr.Fs); elseif cfg.olfreq(2)>=hdr.Fs/2 fprintf('using online high-pass filter\n'); [B, A] = butter(cfg.olfiltord, cfg.olfreq(1)/hdr.Fs, 'high'); else fprintf('using online band-pass filter\n'); [B, A] = butter(cfg.olfiltord, cfg.olfreq/hdr.Fs); end % use one sample to initialize FM = ft_preproc_online_filter_init(B, A, dat(:,1)); end [FM, dat] = ft_preproc_online_filter_apply(FM, dat); end if isempty(cfg.offset) cfg.offset = ((1:nchan)-1) .* mean(max(abs(dat),[],2)); end % shift each of the channels with a given offset nchan = size(dat,1); for i=1:nchan dat(i,:) = dat(i,:) + (nchan-i-1)*cfg.offset(i); end % plot the data plot(time, dat); xlim([time(1) time(end)]); if strcmp(cfg.readevent, 'yes') for i=1:length(evt) % draw a line and some text to indicate the event time = offset2time(evt(i).sample, hdr.Fs, 1); if ischar(evt(i).type) && isempty(evt(i).type) description = sprintf('%s', evt(i).type); elseif ischar(evt(i).type) && ischar(evt(i).type) description = sprintf('%s %s', evt(i).type, evt(i).value); elseif ischar(evt(i).type) && isnumeric(evt(i).type) description = sprintf('%s %s', evt(i).type, num2str(evt(i).value)); else description = 'event'; end h = line([time time], ylim); set(h, 'LineWidth', 2, 'LineStyle', ':', 'Color', 'k'); y = ylim; y = y(1); h = text(time, y, description, 'VerticalAlignment', 'bottom'); end end % force Matlab to update the figure drawnow end % while true %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [time] = offset2time(offset, fsample, nsamples) offset = double(offset); nsamples = double(nsamples); time = (offset + (0:(nsamples-1)))/fsample;
github
lcnhappe/happe-master
ft_realtime_packettimer.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/realtime/example/ft_realtime_packettimer.m
2,522
utf_8
ce7334780040a70c9e396dd0e8aa858d
function ft_realtime_packettimer(cfg) % FT_REALTIME_PACKETTIMER can be used to time the rate at which data can be processed % % Use as % ft_realtime_packettimer(cfg) % with the following configuration options % cfg.bcifun = processing of the data (default = @bcifun_timer) % cfg.npackets = the number of packets shown in one plot (default=1000) % after reaching the end % cfg.saveplot = if path is specified, first plot is saved (default=[]); % cfg.rellim = y limits of subplot 1 (default = [-100 100]) % % SEE ALSO: % FT_REALTIME_PROCESS % TO DO: % jitter in het binnenhalen van de data; scatterplot! % triggers sturen en herhalen (loop closen) % tijd schatten waarin matlab nog kan processen % Copyright (C) 2009, Marcel van Gerven % % $Id$ if ~isfield(cfg,'bcifun'), cfg.bcifun = @bcifun_timer; end if ~isfield(cfg,'npackets'), cfg.npackets = 10^2; end if ~isfield(cfg,'rellim'), cfg.rellim = [-1 1]; end if ~isfield(cfg,'saveplot'), cfg.saveplot= []; end close all; f1 = figure(); set(f1,'units','normalized','outerposition',[0 0 1 1]); % reset persistent variables cfg.bcifun(); try ft_realtime_process(cfg); catch fprintf('%s\n',lasterr); close; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % BCIFUN_TIMER plots real time versus packet time %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function bcifun_timer(cfg,data) persistent startsample; persistent olddf; persistent idx; if nargin == 0 idx = []; % reset persistent return; end if isempty(idx) tic; startsample = data.endsample; idx = 1; olddf = 0; return; end if mod(idx,cfg.npackets) == 1 xl = [floor(idx/cfg.npackets)*cfg.npackets+1 (floor(idx/cfg.npackets)+1)*cfg.npackets]; hold off plot(xl,[0 0],'k--'); xlim(xl); ylim(cfg.rellim); xlabel('packet number'); ylabel('delay (sample time - real time)'); hold on; end cursample = data.endsample; curtime = toc; smptime = (cursample - startsample)/data.fsample; df = smptime - curtime; if df < 0 plot([idx-1 idx],[olddf df],'r'); else plot([idx-1 idx],[olddf df],'g'); end olddf = df; title(sprintf('packet timing for %g s blocks in %d channels at sample frequency %d; sample time = %g, real time = %g, delay = %g',... data.blocksize/data.fsample,length(data.label),data.fsample,smptime,curtime,smptime - curtime)); idx = idx + 1; drawnow; if idx==cfg.npackets && strcmp(cfg.saveplot,'yes') saveas(gcf,cfg.saveplot,'jpg'); end
github
lcnhappe/happe-master
ft_realtime_topography.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/realtime/example/ft_realtime_topography.m
7,588
utf_8
a80a1641c2aa67f4120d9f7bd114d8c8
function ft_realtime_topography(cfg) % FT_REALTIME_TOPOGRAPHY reads continuous data from a file or from a data stream, % estimates the power and plots the scalp topography in real time. % % Use as % ft_realtime_topography(cfg) % with the following configuration options % cfg.blocksize = number, size of the blocks/chuncks that are processed (default = 1 second) % cfg.overlap = number, amojunt of overlap between chunks (default = 0 seconds) % cfg.layout = specification of the layout, see FT_PREPARE_LAYOUT % % The source of the data is configured as % cfg.dataset = string % or alternatively to obtain more low-level control as % cfg.datafile = string % cfg.headerfile = string % cfg.eventfile = string % cfg.dataformat = string, default is determined automatic % cfg.headerformat = string, default is determined automatic % cfg.eventformat = string, default is determined automatic % % To stop this realtime function, you have to press Ctrl-C % % Example use % cfg = []; % cfg.dataset = 'PW02_ingnie_20061212_01.ds'; % cfg.layout = 'CTF151.lay'; % cfg.channel = 'MEG'; % cfg.blocksize = 0.5; % cfg.overlap = 0.25; % cfg.demean = 'yes'; % cfg.bpfilter = [15 25]; % cfg.bpfreq = 'yes'; % ft_realtime_topography(cfg); % Copyright (C) 2008, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % set the defaults if ~isfield(cfg, 'dataformat'), cfg.dataformat = []; end % default is detected automatically if ~isfield(cfg, 'headerformat'), cfg.headerformat = []; end % default is detected automatically if ~isfield(cfg, 'eventformat'), cfg.eventformat = []; end % default is detected automatically if ~isfield(cfg, 'blocksize'), cfg.blocksize = 1; end % in seconds if ~isfield(cfg, 'overlap'), cfg.overlap = 0; end % in seconds if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end % translate dataset into datafile+headerfile cfg = ft_checkconfig(cfg, 'dataset2files', 'yes'); cfg = ft_checkconfig(cfg, 'required', {'datafile' 'headerfile'}); % ensure that the persistent variables related to caching are cleared clear ft_read_header % read the header for the first time hdr = ft_read_header(cfg.headerfile); fprintf('updating the header information, %d samples available\n', hdr.nSamples*hdr.nTrials); cfg.channel = ft_channelselection(cfg.channel, hdr.label); chanindx = match_str(hdr.label, cfg.channel); % prepare the layout, also implements channel selection lay = ft_prepare_layout(cfg); % determine the size of blocks to process blocksize = round(cfg.blocksize*hdr.Fs); overlap = round(cfg.overlap*hdr.Fs); % initialize some stuff cmin = -1; cmax = 1; clear recurz recurz; % initialize the persistent variables % open a new figure h = figure; prevSample = 0; count = 0; lay = ft_prepare_layout(cfg); [laysel, datsel] = match_str(lay.label, hdr.label); % get the 2D position of the channels x = lay.pos(laysel,1); y = lay.pos(laysel,2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this is the general BCI loop where realtime incoming data is handled %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% while true % determine number of samples available in buffer hdr = ft_read_header(cfg.headerfile, 'cache', true); % see whether new samples are available newsamples = (hdr.nSamples*hdr.nTrials-prevSample); if newsamples>=(blocksize-overlap) % determine the samples to process if strcmp(cfg.bufferdata, 'last') begsample = hdr.nSamples*hdr.nTrials - blocksize + 1; endsample = hdr.nSamples*hdr.nTrials; elseif strcmp(cfg.bufferdata, 'first') begsample = prevSample + 1; endsample = prevSample + blocksize ; else error('unsupported value for cfg.bufferdata'); end % this allows overlapping data segments if overlap && (begsample>overlap) begsample = begsample - overlap; endsample = endsample - overlap; end % remember up to where the data was read prevSample = endsample; count = count + 1; fprintf('processing segment %d from sample %d to %d\n', count, begsample, endsample); % read data segment dat = ft_read_data(cfg.datafile, 'dataformat', cfg.dataformat, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx, 'checkboundary', false); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % from here onward it is specific to the power estimation from the data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % put the data in a fieldtrip-like raw structure data = []; data.trial{1} = dat; data.time{1} = offset2time(begsample, hdr.Fs, endsample-begsample+1); data.label = hdr.label(chanindx); data.hdr = hdr; data.fsample = hdr.Fs; % apply preprocessing options data = ft_preprocessing(cfg, data); % estimate power powest = sum(data.trial{1}.^2, 2); if ~ishandle(h) % re-initialize some stuff cmin = -1; cmax = 1; % open a new figure h = figure; end % compute z-transformed powest = recurz(powest); % plot the topography ft_plot_topo(x, y, powest(datsel), 'outline', lay.outline, 'mask', lay.mask); hold on plot(x, y, 'k.'); hold off c = caxis; cmin = min(cmin, c(1)); cmax = max(cmax, c(2)); c = [cmin cmax]; caxis(c); drawnow end % if enough new samples end % while true %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function time = offset2time(offset, fsample, nsamples) time = (offset + (0:(nsamples-1)))/fsample; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION recursive computation of z-transformed data by means of persistent variables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function z = recurz(x) persistent n persistent s persistent ss if nargin==0 || isempty(x) % re-initialize n = []; s = []; ss = []; return end if isempty(n) n = 1; else n = n + 1; end if isempty(s) s = x; else s = s + x; end if isempty(ss) ss = x.^2; else ss = ss + x.^2; end if n==1 % standard deviation cannot be computed yet z = zeros(size(x)); elseif all(s(:)==ss(:)) % standard deviation is zero anyway z = zeros(size(x)); else % compute standard deviation and z-transform of the input data sd = sqrt((ss - (s.^2)./n) ./ (n-1)); z = (x-s/n)./ sd; end
github
lcnhappe/happe-master
ft_realtime_heartbeatdetect.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/realtime/example/ft_realtime_heartbeatdetect.m
9,725
utf_8
a64cf7e75558cb8c89ea26c459849f8f
function ft_realtime_heartbeatdetect(cfg) % FT_REALTIME_HEARTBEATDETECT is an example realtime application for online % detection of heart beats. It should work both for EEG and MEG. % % Use as % ft_realtime_heartbeatdetect(cfg) % with the following configuration options % cfg.blocksize = number, size of the blocks/chuncks that are processed (default = 1 second) % cfg.channel = cell-array, see FT_CHANNELSELECTION (default = 'all') % cfg.jumptoeof = whether to skip to the end of the stream/file at startup (default = 'yes') % cfg.bufferdata = whether to start on the 'first or 'last' data that is available (default = 'first') % cfg.threshold = value, after normalization (default = 3) % % The source of the data is configured as % cfg.dataset = string % or alternatively to obtain more low-level control as % cfg.datafile = string % cfg.headerfile = string % cfg.eventfile = string % cfg.dataformat = string, default is determined automatic % cfg.headerformat = string, default is determined automatic % cfg.eventformat = string, default is determined automatic % % To stop the realtime function, you have to press Ctrl-C % Copyright (C) 2009-2015, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % set the default configuration options cfg.dataformat = ft_getopt(cfg, 'dataformat'); % default is detected automatically cfg.headerformat = ft_getopt(cfg, 'headerformat'); % default is detected automatically cfg.eventformat = ft_getopt(cfg, 'eventformat'); % default is detected automatically cfg.blocksize = ft_getopt(cfg, 'blocksize', 0.1); % in seconds cfg.threshold = ft_getopt(cfg, 'threshold', 3); % after normalization cfg.mindist = ft_getopt(cfg, 'mindist', 0.1); % in seconds cfg.channel = ft_getopt(cfg, 'channel', 'all'); cfg.jumptoeof = ft_getopt(cfg, 'jumptoeof', 'yes'); % jump to end of file at initialization cfg.bufferdata = ft_getopt(cfg, 'bufferdata', 'first'); % first or last cfg.demean = ft_getopt(cfg, 'demean', 'yes'); % baseline correction cfg.detrend = ft_getopt(cfg, 'detrend', 'no'); cfg.olfilter = ft_getopt(cfg, 'olfilter', 'no'); % continuous online filter cfg.olfiltord = ft_getopt(cfg, 'olfiltord', 4); cfg.olfreq = ft_getopt(cfg, 'olfreq', [2 45]); cfg.dftfilter = ft_getopt(cfg, 'dftfilter', 'yes'); % filter using discrete Fourier transform cfg.dftfreq = ft_getopt(cfg, 'dftfreq', 50); % line noise frequency if ~isfield(cfg, 'dataset') && ~isfield(cfg, 'datafile') && ~isfield(cfg, 'headerfile') cfg.dataset = 'buffer://localhost:1972'; end % translate dataset into datafile+headerfile cfg = ft_checkconfig(cfg, 'dataset2files', 'yes'); cfg = ft_checkconfig(cfg, 'required', {'datafile' 'headerfile'}); % ensure that the persistent variables related to caching are cleared clear ft_read_header % start by reading the header from the realtime buffer hdr = ft_read_header(cfg.headerfile, 'headerformat', cfg.headerformat, 'cache', true, 'retry', true); % define a subset of channels for reading cfg.channel = ft_channelselection(cfg.channel, hdr.label); chanindx = match_str(hdr.label, cfg.channel); nchan = length(chanindx); if nchan==0 error('no channels were selected'); elseif nchan>1 error('this function expects that you select a single channel'); end % determine the size of blocks to process blocksize = round(cfg.blocksize * hdr.Fs); if strcmp(cfg.jumptoeof, 'yes') prevSample = hdr.nSamples * hdr.nTrials; else prevSample = 0; end prevState = []; count = 0; tpl = []; ws_noPeaks = warning('off', 'signal:findpeaks:noPeaks'); ws_PeakHeight = warning('off', 'signal:findpeaks:largeMinPeakHeight'); % start the timer tic t0 = toc; n0 = 0; t1 = t0; n1 = n0; % this will keep the time of each heart beat heartbeat = []; % these are for the feedback close all h1f = figure; plot(nan); h1a = get(h1f, 'children'); h1c = get(h1a, 'children'); set(h1f, 'Position', [010 300 560 420]); xlabel('time (s)'); ylim([-6 6]); h2f = figure; plot(nan, '.'); h2a = get(h2f, 'children'); h2c = get(h2a, 'children'); set(h2f, 'Position', [580 300 560 420]); title('heartbeat'); xlabel('time (s)'); ylabel('beats per minute'); c = onCleanup(@cleanup_cb); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this is the general BCI loop where realtime incoming data is handled %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% while true % determine the samples to process if strcmp(cfg.bufferdata, 'last') % determine number of samples available in buffer hdr = ft_read_header(cfg.headerfile, 'headerformat', cfg.headerformat, 'cache', true); begsample = hdr.nSamples*hdr.nTrials - blocksize + 1; endsample = hdr.nSamples*hdr.nTrials; elseif strcmp(cfg.bufferdata, 'first') endsample = min(prevSample+blocksize, hdr.nSamples*hdr.nTrials); begsample = endsample - blocksize + 1; else error('unsupported value for cfg.bufferdata'); end % remember up to where the data was read prevSample = endsample; count = count + 1; % fprintf('processing segment %d from sample %d to %d\n', count, begsample, endsample); % read data segment from buffer dat = ft_read_data(cfg.datafile, 'header', hdr, 'dataformat', cfg.dataformat, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx, 'checkboundary', false, 'blocking', true); dat = double(dat); % fprintf('time between subsequent reads is %f seconds\n', toc-t1); % keep track of the timing t1 = toc; n1 = n1 + size(dat,2); % fprintf('read %d samples in %f seconds, realtime ratio = %f\n', n1-n0, t1-t0, ((n1-n0)/(t1-t0))/hdr.Fs); % fprintf('time lag %6.3f seconds\n', (n1-n0)/hdr.Fs - (t1-t0)); % fprintf('estimated sampling rate %.2f Hz\n', (n1-n0)/(t1-t0)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % from here onward it is specific to the display of the data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample = begsample:endsample; time = sample./hdr.Fs; % apply some preprocessing options if strcmp(cfg.demean, 'yes') dat = ft_preproc_baselinecorrect(dat); end if strcmp(cfg.detrend, 'yes') dat = ft_preproc_detrend(dat); end if strcmp(cfg.dftfilter, 'yes') dat = ft_preproc_dftfilter(dat, hdr.Fs, cfg.dftfreq); end if strcmp(cfg.olfilter, 'yes') if ~exist('FM', 'var') % initialize online filter if cfg.olfreq(1)==0 fprintf('using online low-pass filter\n'); [B, A] = butter(cfg.olfiltord, cfg.olfreq(2)/hdr.Fs); elseif cfg.olfreq(2)>=hdr.Fs/2 fprintf('using online high-pass filter\n'); [B, A] = butter(cfg.olfiltord, cfg.olfreq(1)/hdr.Fs, 'high'); else fprintf('using online band-pass filter\n'); [B, A] = butter(cfg.olfiltord, cfg.olfreq/hdr.Fs); end % use one sample to initialize FM = ft_preproc_online_filter_init(B, A, dat(:,1)); end % apply online filter [FM, dat] = ft_preproc_online_filter_apply(FM, dat); end [dat, prevState] = ft_preproc_standardize(dat, [], [], prevState); if cfg.threshold<0 % detect negative peaks [peakval, peakind] = findpeaks(-dat, 'minpeakheight', -cfg.threshold); peakval = -peakval; else % detect positive peaks [peakval, peakind] = findpeaks(dat, 'minpeakheight', cfg.threshold); end if numel(peakind)/(blocksize/hdr.Fs)>3 % heartbeat cannot be above 180 bpm warning('skipping due to noise'); peakval = []; peakind = []; end % FIXME having the heartbeat vector growing is not a very good idea heartbeat = [heartbeat time(peakind)]; if ishandle(h1f) set(h1c, 'xdata', time, 'ydata', dat); set(h1a, 'xlim', time([1 end])); end if numel(heartbeat)>5 && ishandle(h2f) % skip the first heartbeat for the axes set(h2c, 'xdata', heartbeat(2:end), 'ydata', 60./diff(heartbeat)); set(h2a, 'xlim', heartbeat([2 end]) + [0 1]); set(h2a, 'ylim', [0 160]); end % if numel(heartbeat)>3 % event.type = 'heartrate'; % event.value = heartbeat(end) - heartbeat(end-1); % event.sample = []; % event.offset = 0; % event.duration = 0; % ft_write_event(cfg.dataset, event); % end % force Matlab to redraw the figures drawnow end % while true %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION that gives a beep as feedback %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function feedback_beep(varargin) beep = audioplayer(0.05*sin(1000*2*pi*(1:1024)/8192), 8192); play(beep); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cleanup_cb(varargin) delete(timerfindall)
github
lcnhappe/happe-master
ft_realtime_powerestimate.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/realtime/example/ft_realtime_powerestimate.m
6,443
utf_8
361c8a8f141a0cc16b24d8c40614a42f
function ft_realtime_powerestimate(cfg) % FT_REALTIME_POWERESTIMATE is an example realtime application for online % power estimation. It should work both for EEG and MEG. % % Use as % ft_realtime_powerestimate(cfg) % with the following configuration options % cfg.channel = cell-array, see FT_CHANNELSELECTION (default = 'all') % cfg.foilim = [Flow Fhigh] (default = [0 120]) % cfg.blocksize = number, size of the blocks/chuncks that are processed (default = 1 second) % cfg.bufferdata = whether to start on the 'first or 'last' data that is available (default = 'last') % % The source of the data is configured as % cfg.dataset = string % or alternatively to obtain more low-level control as % cfg.datafile = string % cfg.headerfile = string % cfg.eventfile = string % cfg.dataformat = string, default is determined automatic % cfg.headerformat = string, default is determined automatic % cfg.eventformat = string, default is determined automatic % % To stop the realtime function, you have to press Ctrl-C % Copyright (C) 2008, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % set the default configuration options if ~isfield(cfg, 'dataformat'), cfg.dataformat = []; end % default is detected automatically if ~isfield(cfg, 'headerformat'), cfg.headerformat = []; end % default is detected automatically if ~isfield(cfg, 'eventformat'), cfg.eventformat = []; end % default is detected automatically if ~isfield(cfg, 'blocksize'), cfg.blocksize = 1; end % in seconds if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'foilim'), cfg.foilim = [0 120]; end if ~isfield(cfg, 'bufferdata'), cfg.bufferdata = 'last'; end % first or last % translate dataset into datafile+headerfile if ~isfield(cfg, 'dataset') && ~isfield(cfg, 'header') && ~isfield(cfg, 'datafile') cfg.dataset = 'buffer://localhost:1972'; end cfg = ft_checkconfig(cfg, 'dataset2files', 'yes'); cfg = ft_checkconfig(cfg, 'required', {'datafile' 'headerfile'}); % ensure that the persistent variables related to caching are cleared clear ft_read_header % start by reading the header from the realtime buffer hdr = ft_read_header(cfg.headerfile, 'cache', true, 'retry', true); % define a subset of channels for reading cfg.channel = ft_channelselection(cfg.channel, hdr.label); chanindx = match_str(hdr.label, cfg.channel); nchan = length(chanindx); if nchan==0 error('no channels were selected'); end % determine the size of blocks to process blocksize = round(cfg.blocksize * hdr.Fs); % this is used for scaling the figure powmax = 0; % set up the spectral estimator specest = spectrum.welch('Hamming', min(hdr.Fs, blocksize)); prevSample = 0; count = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this is the general BCI loop where realtime incoming data is handled %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% while true % determine number of samples available in buffer hdr = ft_read_header(cfg.headerfile, 'cache', true); % see whether new samples are available newsamples = (hdr.nSamples*hdr.nTrials-prevSample); if newsamples>=blocksize % determine the samples to process if strcmp(cfg.bufferdata, 'last') begsample = hdr.nSamples*hdr.nTrials - blocksize + 1; endsample = hdr.nSamples*hdr.nTrials; elseif strcmp(cfg.bufferdata, 'first') begsample = prevSample+1; endsample = prevSample+blocksize ; else error('unsupported value for cfg.bufferdata'); end % remember up to where the data was read prevSample = endsample; count = count + 1; fprintf('processing segment %d from sample %d to %d\n', count, begsample, endsample); % read data segment from buffer dat = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx, 'checkboundary', false); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % from here onward it is specific to the power estimation from the data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % put the data in a fieldtrip-like raw structure data.trial{1} = dat; data.time{1} = offset2time(begsample, hdr.Fs, endsample-begsample+1); data.label = hdr.label(chanindx); data.hdr = hdr; data.fsample = hdr.Fs; % apply preprocessing options data.trial{1} = ft_preproc_baselinecorrect(data.trial{1}); figure(1) h = get(gca, 'children'); hold on if ~isempty(h) % done on every iteration delete(h); end if isempty(h) % done only once powmax = 0; grid on end for i=1:nchan est = psd(specest, data.trial{1}(i,:), 'Fs', data.fsample); if i==1 pow = est.Data; else pow = pow + est.Data; end end pow = pow/nchan; powmax = max(max(pow), powmax); % this keeps a history plot(est.Frequencies, pow); axis([cfg.foilim(1) cfg.foilim(2) 0 powmax]); str = sprintf('time = %d s\n', round(mean(data.time{1}))); title(str); xlabel('frequency (Hz)'); ylabel('power'); % force Matlab to update the figure drawnow end % if enough new samples end % while true %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [time] = offset2time(offset, fsample, nsamples) offset = double(offset); nsamples = double(nsamples); time = (offset + (0:(nsamples-1)))/fsample;
github
lcnhappe/happe-master
ft_realtime_average.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/realtime/example/ft_realtime_average.m
5,663
utf_8
b0174ada31b4f5780645667fbe5b9251
function ft_realtime_average(cfg) % FT_REALTIME_AVERAGE is an example realtime application for online % averaging of the data. It should work both for EEG and MEG. % % Use as % ft_realtime_average(cfg) % with the following configuration options % cfg.channel = cell-array, see FT_CHANNELSELECTION (default = 'all') % cfg.trialfun = string with the trial function % % The source of the data is configured as % cfg.dataset = string % or alternatively to obtain more low-level control as % cfg.datafile = string % cfg.headerfile = string % cfg.eventfile = string % cfg.dataformat = string, default is determined automatic % cfg.headerformat = string, default is determined automatic % cfg.eventformat = string, default is determined automatic % % To stop the realtime function, you have to press Ctrl-C % Copyright (C) 2009, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % set the default configuration options if ~isfield(cfg, 'dataformat'), cfg.dataformat = []; end % default is detected automatically if ~isfield(cfg, 'headerformat'), cfg.headerformat = []; end % default is detected automatically if ~isfield(cfg, 'eventformat'), cfg.eventformat = []; end % default is detected automatically if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'bufferdata'), cfg.bufferdata = 'last'; end % first or last % translate dataset into datafile+headerfile cfg = ft_checkconfig(cfg, 'dataset2files', 'yes'); cfg = ft_checkconfig(cfg, 'required', {'datafile' 'headerfile'}); % ensure that the persistent variables related to caching are cleared clear ft_read_header % start by reading the header from the realtime buffer hdr = ft_read_header(cfg.headerfile, 'cache', true); % define a subset of channels for reading cfg.channel = ft_channelselection(cfg.channel, hdr.label); chanindx = match_str(hdr.label, cfg.channel); nchan = length(chanindx); if nchan==0 error('no channels were selected'); end prevSample = 0; count = 0; % initialize the average, it will be filled on the first iteration avgsum = []; avgnum = []; % open a figure in which the average will be plotted figure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this is the general BCI loop where realtime incoming data is handled %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% while true % determine latest header and event information event = ft_read_event(cfg.dataset, 'minsample', prevSample+1); % only consider events that are later than the data processed sofar hdr = ft_read_header(cfg.dataset, 'cache', true); % the trialfun might want to use this, but it is not required cfg.event = event; % store it in the configuration, so that it can be passed on to the trialfun cfg.hdr = hdr; % store it in the configuration, so that it can be passed on to the trialfun % evaluate the trialfun, note that the trialfun should not re-read the events and header fprintf('evaluating ''%s'' based on %d events\n', cfg.trialfun, length(event)); trl = feval(cfg.trialfun, cfg); fprintf('processing %d trials\n', size(trl,1)); for trllop=1:size(trl,1) begsample = trl(trllop,1); endsample = trl(trllop,2); offset = trl(trllop,3); % remember up to where the data was read prevSample = endsample; count = count + 1; fprintf('processing segment %d from sample %d to %d\n', count, begsample, endsample); % read data segment from buffer dat = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx, 'checkboundary', false); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % from here onward it is specific to the processing of the data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % apply some preprocessing options dat = ft_preproc_baselinecorrect(dat); if isempty(average) % initialize the accumulating variables on the first call avgsum = dat; avgnum = 1; else avgsum = avgsum + dat; avgnum = avgnum + 1; end % compute the average avg = avgsum ./ avgnum; % create a time-axis and plot the average time = offset2time(offset, hdr.Fs, endsample-begsample+1); plot(time, avg); % force matlab to redraw the figure drawnow end % looping over new trials end % while true %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [time] = offset2time(offset, fsample, nsamples) offset = double(offset); nsamples = double(nsamples); time = (offset + (0:(nsamples-1)))/fsample;
github
lcnhappe/happe-master
ft_realtime_selectiveaverage.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/realtime/example/ft_realtime_selectiveaverage.m
7,947
utf_8
2d90d2683d30fc029fd00490a76696c1
function ft_realtime_selectiveaverage(cfg) % FT_REALTIME_SELECTIVEAVERAGE is an example realtime application for online % averaging of the data. It should work both for EEG and MEG. % % Use as % ft_realtime_selectiveaverage(cfg) % with the following configuration options % cfg.channel = cell-array, see FT_CHANNELSELECTION (default = 'all') % cfg.trialfun = string with the trial function % % The source of the data is configured as % cfg.dataset = string % or alternatively to obtain more low-level control as % cfg.datafile = string % cfg.headerfile = string % cfg.eventfile = string % cfg.dataformat = string, default is determined automatic % cfg.headerformat = string, default is determined automatic % cfg.eventformat = string, default is determined automatic % % To stop the realtime function, you have to press Ctrl-C % Copyright (C) 2008, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % set the default configuration options if ~isfield(cfg, 'dataformat'), cfg.dataformat = []; end % default is detected automatically if ~isfield(cfg, 'headerformat'), cfg.headerformat = []; end % default is detected automatically if ~isfield(cfg, 'eventformat'), cfg.eventformat = []; end % default is detected automatically if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'bufferdata'), cfg.bufferdata = 'last'; end % first or last if ~isfield(cfg, 'jumptoeof'), cfg.jumptoeof = 'no'; end % jump to end of file at initialization % translate dataset into datafile+headerfile cfg = ft_checkconfig(cfg, 'dataset2files', 'yes'); cfg = ft_checkconfig(cfg, 'required', {'datafile' 'headerfile'}); % ensure that the persistent variables related to caching are cleared clear ft_read_header % start by reading the header from the realtime buffer hdr = ft_read_header(cfg.headerfile, 'cache', true); % define a subset of channels for reading cfg.channel = ft_channelselection(cfg.channel, hdr.label); chanindx = match_str(hdr.label, cfg.channel); nchan = length(chanindx); if nchan==0 error('no channels were selected'); end if strcmp(cfg.jumptoeof, 'yes') prevSample = hdr.nSamples * hdr.nTrials; else prevSample = 0; end count = 0; % initialize the timelock cell-array, each cell will hold the average in one condition timelock = {}; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this is the general BCI loop where realtime incoming data is handled %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% while true % determine latest header and event information event = ft_read_event(cfg.dataset, 'minsample', prevSample+1); % only consider events that are later than the data processed sofar hdr = ft_read_header(cfg.dataset, 'cache', true); % the trialfun might want to use this, but it is not required cfg.event = event; % store it in the configuration, so that it can be passed on to the trialfun cfg.hdr = hdr; % store it in the configuration, so that it can be passed on to the trialfun % evaluate the trialfun, note that the trialfun should not re-read the events and header fprintf('evaluating ''%s'' based on %d events\n', cfg.trialfun, length(event)); trl = feval(cfg.trialfun, cfg); % the code below assumes that the 4th column of the trl matrix contains the condition index % set the default condition to one if no condition index was given if size(trl,1)>0 && size(trl,2)<4 trl(:,4) = 1; end fprintf('processing %d trials\n', size(trl,1)); for trllop=1:size(trl,1) begsample = trl(trllop,1); endsample = trl(trllop,2); offset = trl(trllop,3); condition = trl(trllop,4); % remember up to where the data was read prevSample = endsample; count = count + 1; fprintf('processing segment %d from sample %d to %d, condition = %d\n', count, begsample, endsample, condition); % read data segment from buffer dat = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx, 'checkboundary', false); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % from here onward it is specific to the processing of the data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % put the data in a fieldtrip-like raw structure data.trial{1} = dat; data.time{1} = offset2time(offset, hdr.Fs, endsample-begsample+1); data.label = hdr.label(chanindx); data.hdr = hdr; data.fsample = hdr.Fs; % apply some preprocessing options data.trial{1} = ft_preproc_baselinecorrect(data.trial{1}); if length(timelock)<condition || isempty(timelock{condition}) % this is the first occurence of this condition, initialize an empty timelock structure timelock{condition}.label = data.label; timelock{condition}.time = data.time{1}; timelock{condition}.avg = []; timelock{condition}.var = []; timelock{condition}.dimord = 'chan_time'; nchans = size(data.trial{1}, 1); nsamples = size(data.trial{1}, 2); % the following elements are for the cumulative computation timelock{condition}.n = 0; % number of trials timelock{condition}.s = zeros(nchans, nsamples); % sum timelock{condition}.ss = zeros(nchans, nsamples); % sum of squares end % add the new data to the accumulated data timelock{condition}.n = timelock{condition}.n + 1; timelock{condition}.s = timelock{condition}.s + data.trial{1}; timelock{condition}.ss = timelock{condition}.ss + data.trial{1}.^2; % compute the average and variance on the fly timelock{condition}.avg = timelock{condition}.s ./ timelock{condition}.n; timelock{condition}.var = (timelock{condition}.ss - (timelock{condition}.s.^2)./timelock{condition}.n) ./ (timelock{condition}.n-1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % from here onward additional processing of the selective averages could be done % as an example here the ERP of each condition is plotted in its own figure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute the t-score versus zero by dividing the average by the standard error of mean tscore = timelock{condition}.avg ./ (sqrt(timelock{condition}.var)./(timelock{condition}.n - 1)); figure(condition) plot(timelock{condition}.time, tscore); title(sprintf('condition %d, ntrials = %d', condition, timelock{condition}.n)); % force matlab to redraw the figure drawnow end % looping over new trials end % while true %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [time] = offset2time(offset, fsample, nsamples) offset = double(offset); nsamples = double(nsamples); time = (offset + (0:(nsamples-1)))/fsample;
github
lcnhappe/happe-master
encode_nifti1.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/realtime/example/private/encode_nifti1.m
4,870
utf_8
9cf92a03587c511a5cec2c8c76a3c2c3
function blob = encode_nifti1(H) %function blob = encode_nifti1(H) % % Encodes a NIFTI-1 header (=> raw 348 bytes (uint8)) from a Matlab structure % that matches the C struct defined in nifti1.h. % % WARNING: This function currently ignores endianness !!! % (C) 2010 S.Klanke blob = uint8(zeros(1,348)); if ~isstruct(H) error 'Input must be a structure'; end % see nift1.h for information on structure sizeof_hdr = int32(348); blob(1:4) = typecast(sizeof_hdr, 'uint8'); blob = setString(blob, 5, 14, H, 'data_type'); blob = setString(blob, 15, 32, H, 'db_name'); blob = setInt32( blob, 33, 36, H, 'extents'); blob = setInt16( blob, 37, 38, H, 'session_error'); blob = setInt8( blob, 39, 39, H, 'regular'); blob = setInt8( blob, 40, 40, H, 'dim_info'); dim = int16(H.dim(:)'); ndim = numel(dim); if ndim<1 || ndim>7 error 'Field "dim" must have 1..7 elements'; end dim = [int16(ndim) dim]; blob(41:(42+2*ndim)) = typecast(dim,'uint8'); blob = setSingle(blob, 57, 60, H, 'intent_p1'); blob = setSingle(blob, 61, 64, H, 'intent_p2'); blob = setSingle(blob, 65, 68, H, 'intent_p3'); blob = setInt16( blob, 69, 70, H, 'intent_code'); blob = setInt16( blob, 71, 72, H, 'datatype'); blob = setInt16( blob, 73, 74, H, 'bitpix'); blob = setInt16( blob, 75, 76, H, 'slice_start'); blob = setSingle(blob, 77, 80, H, 'qfac'); if isfield(H,'pixdim') pixdim = single(H.pixdim(:)'); ndim = numel(pixdim); if ndim<1 || ndim>7 error 'Field "pixdim" must have 1..7 elements'; end blob(81:(80+4*ndim)) = typecast(pixdim,'uint8'); end blob = setSingle(blob, 109, 112, H, 'vox_offset'); blob = setSingle(blob, 113, 116, H, 'scl_scope'); blob = setSingle(blob, 117, 120, H, 'scl_inter'); blob = setInt16( blob, 121, 122, H, 'slice_end'); blob = setInt8( blob, 123, 123, H, 'slice_code'); blob = setInt8( blob, 124, 124, H, 'xyzt_units'); blob = setSingle(blob, 125, 128, H, 'cal_max'); blob = setSingle(blob, 129, 132, H, 'cal_min'); blob = setSingle(blob, 133, 136, H, 'slice_duration'); blob = setSingle(blob, 137, 140, H, 'toffset'); blob = setInt32( blob, 141, 144, H, 'glmax'); blob = setInt32( blob, 145, 148, H, 'glmin'); blob = setString(blob, 149, 228, H, 'descrip'); blob = setString(blob, 229, 252, H, 'aux_file'); blob = setInt16( blob, 253, 254, H, 'qform_code'); blob = setInt16( blob, 255, 256, H, 'sform_code'); blob = setSingle(blob, 257, 260, H, 'quatern_b'); blob = setSingle(blob, 261, 264, H, 'quatern_c'); blob = setSingle(blob, 265, 268, H, 'quatern_d'); blob = setSingle(blob, 269, 272, H, 'quatern_x'); blob = setSingle(blob, 273, 276, H, 'quatern_y'); blob = setSingle(blob, 277, 280, H, 'quatern_z'); blob = setSingle(blob, 281, 296, H, 'srow_x'); blob = setSingle(blob, 297, 312, H, 'srow_y'); blob = setSingle(blob, 313, 328, H, 'srow_z'); blob = setString(blob, 329, 344, H, 'intent_name'); if ~isfield(H,'magic') blob(345:347) = uint8('ni1'); else blob = setString(blob, 345, 347, H, 'magic'); end function blob = setString(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = getfield(H, fieldname); ne = numel(F); mx = endidx - begidx +1; if ne > 0 if ~ischar(F) || ne > mx errmsg = sprintf('Field "data_type" must be a string of maximally %i characters.', mx); error(errmsg); end blob(begidx:(begidx+ne-1)) = uint8(F(:)'); end % set 32-bit integers (check #elements) function blob = setInt32(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = int32(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1) / 4; if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+4*ne-1)) = typecast(F(:)', 'uint8'); % set 16-bit integers (check #elements) function blob = setInt16(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = int16(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1) / 2; if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+2*ne-1)) = typecast(F(:)', 'uint8'); % just 8-bit integers (check #elements) function blob = setInt8(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = int8(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1); if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+ne-1)) = typecast(F(:)', 'uint8'); % single precision floats function blob = setSingle(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = single(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1) / 4; if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+4*ne-1)) = typecast(F(:)', 'uint8');
github
lcnhappe/happe-master
ft_realtime_headlocalizer.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/realtime/online_meg/ft_realtime_headlocalizer.m
34,879
utf_8
da6be976bfcbd763152dc11de64b3c1b
function ft_realtime_headlocalizer(cfg) % FT_REALTIME_HEADLOCALIZER is a realtime application for online visualization of the % head position indicator (HPI) coils in CTF275 and Elekta/Neuromag systems. % % Repositioning within a recording session can be achieved by marking the HPI % coil positions at an arbitrary point, i.e. by clicking the 'Update' button. % Black unfilled markers should appear which indicate the positions of the coils % at the moment of buttonpress. Distance to these marked positions then % become colorcoded, i.e. green, orange, or red. % % Repositioning between a recording session, i.e. to a previous recording session, % can be achieved by specifying a template; e.g. by pointing to another dataset; % e.g. cfg.template = 'subject01xxx.ds' (CTF only), or by pointing to a textfile % created during a previous recording; e.g. cfg.template = '29-Apr-2013-xxx.txt'. % The latter textfile is created automatically with each 'Update' buttonpress. % % Use as % ft_realtime_headlocalizer(cfg) % with the following configuration options % cfg.dataset = string, name or location of a dataset/buffer (default = 'buffer://odin:1972') % cfg.template = string, name of a template dataset for between-session repositioning (default = []) % cfg.bufferdata = whether to start on the 'first or 'last' data that is available (default = 'last') % cfg.coilfreq = single number in Hz or list of numbers (Neuromag default = [293, 307, 314, 321, 328]) % cfg.blocksize = number, size of the blocks/chuncks that are processed (default = 1 second) % cfg.accuracy_green = distance from fiducial coordinate; green when within limits (default = 0.15 cm) % cfg.accuracy_orange = orange when within limits, red when out (default = 0.3 cm) % % This method is described in Stolk A, Todorovic A, Schoffelen JM, Oostenveld R. % "Online and offline tools for head movement compensation in MEG." % Neuroimage. 2013 Mar;68:39-48. doi: 10.1016/j.neuroimage.2012.11.047. % Copyright (C) 2008-2013, Arjen Stolk & Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ agreement = { 'By using this realtime headlocalizer tool in your research, you agree to citing the publication below.' '' 'Stolk A, Todorovic A, Schoffelen JM, Oostenveld R.' '"Online and offline tools for head movement compensation in MEG."' 'Neuroimage. 2013 Mar;68:39-48.' }; if ~strcmp(questdlg(agreement,'User agreement', 'Yes', 'Cancel', 'Cancel'), 'Yes') return end % do the general setup of the function ft_defaults % set the defaults cfg.dataset = ft_getopt(cfg, 'dataset', 'buffer://odin:1972'); % location of the buffer/dataset cfg.accuracy_green = ft_getopt(cfg, 'accuracy_green', .15); % green when within this distance from reference cfg.accuracy_orange = ft_getopt(cfg, 'accuracy_orange', .3); % orange when within this distance from reference cfg.template = ft_getopt(cfg, 'template', []); % template dataset containing the references cfg.blocksize = ft_getopt(cfg, 'blocksize', 1); % in seconds cfg.bufferdata = ft_getopt(cfg, 'bufferdata', 'last'); % first (replay) or last (real-time) cfg.coilfreq = ft_getopt(cfg, 'coilfreq', [293, 307, 314, 321, 328]); % Hz, Neuromag % ensure pesistent variables are cleared clear ft_read_header % start by reading the header from the realtime buffer cfg = ft_checkconfig(cfg, 'dataset2files', 'yes'); % translate dataset into datafile+headerfile hdr = ft_read_header(cfg.headerfile, 'cache', true, 'coordsys', 'dewar'); % determine the size of blocks to process blocksize = round(cfg.blocksize * hdr.Fs); prevSample = 0; count = 0; % determine MEG system type isneuromag = ft_senstype(hdr.grad, 'neuromag'); isctf = ft_senstype(hdr.grad, 'ctf275'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % read template head position, to reposition to, if template file is specified %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isctf if ~isempty(cfg.template) [p, f, x]=fileparts(cfg.template); if strcmp(x, '.ds') shape = ft_read_headshape(cfg.template, 'coordsys', 'dewar', 'format', 'ctf_ds'); template(1,:) = [shape.fid.pos(1,1), shape.fid.pos(1,2), shape.fid.pos(1,3)]; % chan X pos template(2,:) = [shape.fid.pos(2,1), shape.fid.pos(2,2), shape.fid.pos(2,3)]; template(3,:) = [shape.fid.pos(3,1), shape.fid.pos(3,2), shape.fid.pos(3,3)]; elseif strcmp(x, '.txt') template = dlmread(cfg.template); else error('incorrect template file specified'); end else template = []; end % remove CTF REF sensors, for plotting purposes chansel = match_str(hdr.grad.chantype,'meggrad'); hdr.grad.chanpos = hdr.grad.chanpos(chansel,:); hdr.grad.chanori = hdr.grad.chanori(chansel,:); hdr.grad.chantype = hdr.grad.chantype(chansel,:); hdr.grad.label = hdr.grad.label(chansel,:); hdr.grad.tra = hdr.grad.tra(chansel,:); elseif isneuromag if ~isempty(cfg.template) template = dlmread(cfg.template); else template = []; end else error('the data does not resemble ctf, nor neuromag') end % if ctf or neuromag %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % read digitized head position (for dipole fitting) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isctf sens = hdr.grad; % not needed for CTF275 systems dip = []; vol = []; coilsignal = []; elseif isneuromag shape = ft_read_headshape(cfg.headerfile, 'coordsys', 'dewar', 'format', 'neuromag_fif','unit','m'); % ensure SI units for i = 1:min(size(shape.pos,1),length(cfg.coilfreq)) % for as many digitized or specified coils if ~isempty(strfind(shape.label{i},'hpi')) dip(i).pos = shape.pos(i,:); % chan X pos, initial guess for each of the dipole/coil positions dip(i).mom = [0 0 0]'; end end if ~exist('dip', 'var') error('head localization requires digitized positions for Neuromag systems') end % prepare the forward model and the sensor array for subsequent fitting % note that the forward model is a magnetic dipole in an infinite vacuum %cfg.channel = ft_channelselection('MEG', hdr.label); % because we want to planars as well (previously only magnetometers) cfg.channel = ft_channelselection('MEGMAG', hdr.label); % old %cfg.channel = setdiff(ft_channelselection('MEG', hdr.label),ft_channelselection('MEGMAG', hdr.label)); % just trying out (planar mags) %cfg.channel = ft_channelselection('IAS*',hdr.label); % internal active shielding [vol, sens] = ft_prepare_vol_sens([], hdr.grad, 'channel', cfg.channel); sens = ft_datatype_sens(sens, 'version', 'upcoming', 'scaling', 'amplitude/distance', 'distance', 'm'); % ensure SI units coilsignal = []; % update distances, given that sensor units are m an not cm cfg.accuracy_green = cfg.accuracy_green/100; cfg.accuracy_orange = cfg.accuracy_orange/100; else error('the data does not resemble ctf, nor neuromag') end % if ctf or neuromag %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % define a subset of channels for reading %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isctf [dum, chanindx] = match_str('headloc', hdr.chantype); elseif isneuromag % 102 magnetometers [dum, chanindx] = match_str('megmag', hdr.chantype); % all 306 %[dum, chanindx1] = match_str('megmag', hdr.chantype); %[dum, chanindx2] = match_str('megplanar', hdr.chantype); % because we want to planars as well %chanindx = sort([chanindx1; chanindx2],1); % because we want to planars as well % 204 planar gradiometers %[dum, chanindx] = match_str('megplanar', hdr.chantype); % 11 IAS % chanindx = 1:11; end if isempty(chanindx) error('the data does not seem to have head localization channels'); end % this information is passed between the GUI callback functions info = []; info.hdr = hdr; info.blocksize = blocksize; info.isctf = isctf; info.isneuromag = isneuromag; info.cfg = cfg; info.template = template; info.sens = sens; info.vol = vol; info.dip = dip; info.continue = true; clear hdr blocksize isctf isneuromag cfg template sens vol dip % initiate main figure hMainFig = figure; % attach the info in the figure guidata(hMainFig, info); % initiate gui controls uicontrol_sub(hMainFig); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this is the general BCI loop where realtime incoming data is handled %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% while ishandle(hMainFig) && info.continue % while the flag is one, the loop continues % get the potentially updated information from the main window info = guidata(hMainFig); % determine number of samples available in buffer info.hdr = ft_read_header(info.cfg.headerfile, 'cache', true, 'coordsys', 'dewar'); % see whether new samples are available newsamples = (info.hdr.nSamples*info.hdr.nTrials-prevSample); if newsamples>=info.blocksize if strcmp(info.cfg.bufferdata, 'last') begsample = info.hdr.nSamples*info.hdr.nTrials - info.blocksize + 1; endsample = info.hdr.nSamples*info.hdr.nTrials; elseif strcmp(info.cfg.bufferdata, 'first') begsample = prevSample + 1; endsample = prevSample + info.blocksize ; else error('unsupported value for cfg.bufferdata'); end % remember up to where the data was read prevSample = endsample; count = count + 1; fprintf('processing segment %d from sample %d to %d\n', count, begsample, endsample); % read data segment from buffer dat = ft_read_data(info.cfg.datafile, 'header', info.hdr, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx, 'checkboundary', false); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % from here onward it is specific to the head localization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % put the data in a fieldtrip-like raw structure data.trial{1} = double(dat); data.time{1} = offset2time(begsample, info.hdr.Fs, endsample-begsample+1); data.label = info.hdr.label(chanindx); data.hdr = info.hdr; data.fsample = info.hdr.Fs; if info.isneuromag && size(coilsignal,2)~=info.blocksize % construct the reference signal for each of the coils % this needs to be updated if the blocksize changes ncoil = length(info.cfg.coilfreq); if ncoil==0 error('no coil frequencies were specified'); else time = (1:info.blocksize)./info.hdr.Fs; coilsignal = zeros(ncoil, info.blocksize); for i=1:ncoil coilsignal(i,:) = exp(time*info.cfg.coilfreq(i)*1i*2*pi); coilsignal(i,:) = coilsignal(i,:) / norm(coilsignal(i,:)); end end end % compute the HPI coil positions, this takes some time [hpi, info.dip] = data2hpi(data, info.dip, info.vol, info.sens, coilsignal, info.isctf, info.isneuromag); % for neuromag datasets this is relatively slow if ~ishandle(hMainFig) % the figure has been closed break end % get the potentially updated information from the main window info = guidata(hMainFig); % update the info info.hpi = hpi; % store the updated gui variables guidata(hMainFig, info); % DRAW LEFT PANEL - TOP VIEW a = subplot(1,2,1); h = get(a, 'children'); hold on; if ~isempty(h) % done on every iteration delete(h); end % draw the color-coded head and distances from the templates draw_sub(hMainFig); % show current timesample title(sprintf('top view, runtime = %d s\n', round(mean(data.time{1})))); % not needed any more clear data; % viewing angle if info.isctf view(-45, 90) elseif info.isneuromag view(0, 90) end % DRAW RIGHT PANEL - FRONT/REAR VIEW b = subplot(1,2,2); i = get(b, 'children'); hold on; if ~isempty(i) % done on every iteration delete(i); end % draw the color-coded head and distances from the templates draw_sub(hMainFig); % viewing angle if get(info.hViewRadioButton1,'Value') == 1 if info.isctf view(135, 0) elseif info.isneuromag view(180, 0) end title(sprintf('anterior view, clock time %s', datestr(now))); % show current data & time elseif get(info.hViewRadioButton2,'Value') == 1 if info.isctf view(-45, 0) elseif info.isneuromag view(0, 0) end title(sprintf('posterior view, clock time %s', datestr(now))); % show current data & time end % force Matlab to update the figure drawnow end % if enough new samples end % while true close(hMainFig); % close the figure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION that initiates the figure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function uicontrol_sub(handle, eventdata) % get the info info = guidata(handle); % initiate figure set(handle, 'KeyPressFcn', {@key_sub}); hUpdateButton = uicontrol(... 'Parent', handle,... 'Style', 'pushbutton',... 'String', 'Update',... 'Units', 'normalized',... 'Position', [.65 .0875 .15 .075],... 'FontSize', 12,... 'Callback', {@update_ButtonDownFcn}); hQuitButton = uicontrol(... 'Parent', handle,... 'Style', 'pushbutton',... 'String', 'Quit',... 'Units', 'normalized',... 'Position', [.8 .0875 .15 .075],... 'FontSize', 12,... 'Callback', {@quit_ButtonDownFcn}); hCoilCheckBox = uicontrol(... 'Parent', handle,... 'Style', 'checkbox',... 'String', 'Coils',... 'Units', 'normalized',... 'Position', [.05 .1 .075 .05],... 'FontSize', 8,... 'BackgroundColor', [.8 .8 .8],... 'Value', 1,... 'Callback', {@coil_CheckBox}); hHeadCheckBox = uicontrol(... 'Parent', handle,... 'Style', 'checkbox',... 'String', 'Head',... 'Units', 'normalized',... 'Position', [.125 .1 .075 .05],... 'FontSize', 8,... 'BackgroundColor', [.8 .8 .8],... 'Value', 1,... 'Callback', {@head_CheckBox}); hSensorCheckBox = uicontrol(... 'Parent', handle,... 'Style', 'checkbox',... 'String', 'Sensors',... 'Units', 'normalized',... 'Position', [.2 .1 .075 .05],... 'FontSize', 8,... 'BackgroundColor', [.8 .8 .8],... 'Value', 0,... 'Callback', {@sensor_CheckBox}); hViewRadioButton1 = uicontrol(... 'Parent', handle,... 'Style', 'radiobutton',... 'String', 'Anterior view',... 'Units', 'normalized',... 'Position', [.275 .1 .1 .05],... 'FontSize', 8,... 'BackgroundColor', [.8 .8 .8],... 'Value', 0,... % by default switched off 'Callback', {@view_RadioButton1}); hViewRadioButton2 = uicontrol(... 'Parent', handle,... 'Style', 'radiobutton',... 'String', 'Posterior view',... 'Units', 'normalized',... 'Position', [.375 .1 .1 .05],... 'FontSize', 8,... 'BackgroundColor', [.8 .8 .8],... 'Value', 1,... % by default switched on 'Callback', {@view_RadioButton2}); hBlocksizeMenu = uicontrol(... 'Parent', handle,... 'Style', 'popupmenu',... 'String', {'.1 second','.2 second','.5 second','1 second','1.5 second','2 seconds','5 seconds','10 seconds','30 seconds'},... 'Units', 'normalized',... 'Position', [.475 .0925 .1 .05],... 'FontSize', 8,... 'BackgroundColor', [.8 .8 .8],... 'Value', 4,... % default 'Callback', {@blocksize_Menu}); info.hQuitButton = hQuitButton; info.hCoilCheckBox = hCoilCheckBox; info.hHeadCheckBox = hHeadCheckBox; info.hSensorCheckBox = hSensorCheckBox; info.hViewRadioButton1 = hViewRadioButton1; info.hViewRadioButton2 = hViewRadioButton2; info.hBlocksizeMenu = hBlocksizeMenu; % put the info back guidata(handle, info); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION that computes the HPI coil positions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [hpi, dip] = data2hpi(data, dip, vol, sens, coilsignal, isctf, isneuromag) % The CTF275 system localizes the HPI coil positions online, and writes them % to the dataset. For the Neuromag systems the signals evoked by the HPI coils % are superimposed on the other signals. This requires additional online % dipolefitting of those HPI coils. if isctf % assign the channels to the resp. coil coordinates [dum, x1] = match_str('HLC0011', data.label); [dum, y1] = match_str('HLC0012', data.label); [dum, z1] = match_str('HLC0013', data.label); [dum, x2] = match_str('HLC0021', data.label); [dum, y2] = match_str('HLC0022', data.label); [dum, z2] = match_str('HLC0023', data.label); [dum, x3] = match_str('HLC0031', data.label); [dum, y3] = match_str('HLC0032', data.label); [dum, z3] = match_str('HLC0033', data.label); % convert from meter to cm and assign to the resp. coil hpi{1} = data.trial{1}([x1 y1 z1],end) * 100; hpi{2} = data.trial{1}([x2 y2 z2],end) * 100; hpi{3} = data.trial{1}([x3 y3 z3],end) * 100; elseif isneuromag % estimate the complex-valued MEG topography for each coil % this implements a discrete Fourier transform (DFT) topo = []; %[x, ut] = svdfft( data.trial{1} ); %data.trial{1} = x; topo = ft_preproc_detrend(data.trial{1}) * ctranspose(coilsignal); % ignore the out-of-phase spectral component in the topography topo = real(topo); % THIS SEEMS TO BE CRUCIAL % fit a magnetic dipole to each of the topographies constr.sequential = true; % for BTI systems this would be 'false' as all coils have the same frequency constr.rigidbody = true; % fit the coils together dipall = []; ncoil = numel(dip); for i=1:ncoil dipall.pos(i,:) = dip(i).pos; end dipall = dipole_fit(dipall, sens, vol, topo, 'constr', constr, 'display', 'off'); for i=1:ncoil sel = (1:3) + 3*(i-1); dip(i).pos = dipall.pos(i,:); dip(i).mom = real(dipall.mom(sel,i)); % ignore the complex phase information hpi{i} = dip(i).pos; end else error('the data does not resemble ctf, nor neuromag') end % if ctf or neuromag %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION that does the timing %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [time] = offset2time(offset, fsample, nsamples) offset = double(offset); nsamples = double(nsamples); time = (offset + (0:(nsamples-1)))/fsample; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which computes the circumcenter(x,y,z) of the 3D triangle (3 coils) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [cc] = circumcenter(hpi) % use coordinates relative to point `a' of the triangle xba = hpi{2}(1) - hpi{1}(1); yba = hpi{2}(2) - hpi{1}(2); zba = hpi{2}(3) - hpi{1}(3); xca = hpi{3}(1) - hpi{1}(1); yca = hpi{3}(2) - hpi{1}(2); zca = hpi{3}(3) - hpi{1}(3); % squares of lengths of the edges incident to `a' balength = xba * xba + yba * yba + zba * zba; calength = xca * xca + yca * yca + zca * zca; % cross product of these edges xcrossbc = yba * zca - yca * zba; ycrossbc = zba * xca - zca * xba; zcrossbc = xba * yca - xca * yba; % calculate the denominator of the formulae denominator = 0.5 / (xcrossbc * xcrossbc + ycrossbc * ycrossbc + zcrossbc * zcrossbc); % calculate offset (from `a') of circumcenter xcirca = ((balength * yca - calength * yba) * zcrossbc - (balength * zca - calength * zba) * ycrossbc) * denominator; ycirca = ((balength * zca - calength * zba) * xcrossbc - (balength * xca - calength * xba) * zcrossbc) * denominator; zcirca = ((balength * xca - calength * xba) * ycrossbc - (balength * yca - calength * yba) * xcrossbc) * denominator; cc(1) = xcirca + hpi{1}(1,end); cc(2) = ycirca + hpi{1}(2,end); cc(3) = zcirca + hpi{1}(3,end); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which draws the color-coded head and distances to the template %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function draw_sub(handle) % get the info info = guidata(handle); if get(info.hSensorCheckBox, 'Value') && ~isempty(info.sens) % plot the sensors hold on; ft_plot_sens(info.sens, 'style', 'k.'); end % plot the template fiducial positions if ~isempty(info.template) if info.isctf plot3(info.template(1,1), info.template(1,2), info.template(1,3), 'k^', 'MarkerSize', 27, 'LineWidth', 2); % chan X pos plot3(info.template(2,1), info.template(2,2), info.template(2,3), 'ko', 'MarkerSize', 27, 'LineWidth', 2); plot3(info.template(3,1), info.template(3,2), info.template(3,3), 'ko', 'MarkerSize', 27, 'LineWidth', 2); text(-8,8, info.template(2,3), 'Left', 'FontSize', 15); text(6,-6, info.template(3,3), 'Right', 'FontSize', 15); elseif info.isneuromag for j = 1:size(info.template,1) plot3(info.template(j,1), info.template(j,2), info.template(j,3), 'ko', 'MarkerSize', 27, 'LineWidth', 2); % chan X pos end end end % plot the HPI coil positions for j = 1:numel(info.hpi) plot3(info.hpi{j}(1), info.hpi{j}(2), info.hpi{j}(3), 'ko', 'LineWidth', 1,'MarkerSize', 5) end if get(info.hCoilCheckBox, 'Value') if info.isctf % draw nasion position if ~isempty(info.template) if abs(info.template(1,1))-info.cfg.accuracy_green < abs(info.hpi{1}(1)) && abs(info.hpi{1}(1)) < abs(info.template(1,1))+info.cfg.accuracy_green ... && abs(info.template(1,2))-info.cfg.accuracy_green < abs(info.hpi{1}(2)) && abs(info.hpi{1}(2)) < abs(info.template(1,2))+info.cfg.accuracy_green ... && abs(info.template(1,3))-info.cfg.accuracy_green < abs(info.hpi{1}(3)) && abs(info.hpi{1}(3)) < abs(info.template(1,3))+info.cfg.accuracy_green plot3(info.hpi{1}(1),info.hpi{1}(2),info.hpi{1}(3),'g^', 'MarkerFaceColor',[.5 1 .5],'MarkerSize',25) head1 = true; elseif abs(info.template(1,1))-info.cfg.accuracy_orange < abs(info.hpi{1}(1)) && abs(info.hpi{1}(1)) < abs(info.template(1,1))+info.cfg.accuracy_orange ... && abs(info.template(1,2))-info.cfg.accuracy_orange < abs(info.hpi{1}(2)) && abs(info.hpi{1}(2)) < abs(info.template(1,2))+info.cfg.accuracy_orange ... && abs(info.template(1,3))-info.cfg.accuracy_orange < abs(info.hpi{1}(3)) && abs(info.hpi{1}(3)) < abs(info.template(1,3))+info.cfg.accuracy_orange plot3(info.hpi{1}(1),info.hpi{1}(2),info.hpi{1}(3),'y^', 'MarkerFaceColor',[1 .5 0],'MarkerEdgeColor',[1 .5 0],'MarkerSize',25) head1 = false; else % when not in correct position plot3(info.hpi{1}(1),info.hpi{1}(2), info.hpi{1}(3),'r^', 'MarkerFaceColor',[1 0 0],'MarkerSize',25) head1 = false; end else plot3(info.hpi{1}(1),info.hpi{1}(2), info.hpi{1}(3),'r^', 'MarkerFaceColor',[1 0 0],'MarkerSize',25) head1 = false; end % draw left ear position if ~isempty(info.template) if abs(info.template(2,1))-info.cfg.accuracy_green < abs(info.hpi{2}(1)) && abs(info.hpi{2}(1)) < abs(info.template(2,1))+info.cfg.accuracy_green ... && abs(info.template(2,2))-info.cfg.accuracy_green < abs(info.hpi{2}(2)) && abs(info.hpi{2}(2)) < abs(info.template(2,2))+info.cfg.accuracy_green ... && abs(info.template(2,3))-info.cfg.accuracy_green < abs(info.hpi{2}(3)) && abs(info.hpi{2}(3)) < abs(info.template(2,3))+info.cfg.accuracy_green plot3(info.hpi{2}(1),info.hpi{2}(2),info.hpi{2}(3),'go', 'MarkerFaceColor',[.5 1 .5],'MarkerSize',25) head2 = true; elseif abs(info.template(2,1))-info.cfg.accuracy_orange < abs(info.hpi{2}(1)) && abs(info.hpi{2}(1)) < abs(info.template(2,1))+info.cfg.accuracy_orange ... && abs(info.template(2,2))-info.cfg.accuracy_orange < abs(info.hpi{2}(2)) && abs(info.hpi{2}(2)) < abs(info.template(2,2))+info.cfg.accuracy_orange ... && abs(info.template(2,3))-info.cfg.accuracy_orange < abs(info.hpi{2}(3)) && abs(info.hpi{2}(3)) < abs(info.template(2,3))+info.cfg.accuracy_orange plot3(info.hpi{2}(1),info.hpi{2}(2),info.hpi{2}(3),'yo', 'MarkerFaceColor',[1 .5 0],'MarkerEdgeColor',[1 .5 0],'MarkerSize',25) head2 = false; else % when not in correct position plot3(info.hpi{2}(1),info.hpi{2}(2), info.hpi{2}(3),'ro', 'MarkerFaceColor',[1 0 0],'MarkerSize',25) head2 = false; end else plot3(info.hpi{2}(1),info.hpi{2}(2), info.hpi{2}(3),'ro', 'MarkerFaceColor',[1 0 0],'MarkerSize',25) head2 = false; end % draw right ear position if ~isempty(info.template) if abs(info.template(3,1))-info.cfg.accuracy_green < abs(info.hpi{3}(1)) && abs(info.hpi{3}(1)) < abs(info.template(3,1))+info.cfg.accuracy_green ... && abs(info.template(3,2))-info.cfg.accuracy_green < abs(info.hpi{3}(2)) && abs(info.hpi{3}(2)) < abs(info.template(3,2))+info.cfg.accuracy_green ... && abs(info.template(3,3))-info.cfg.accuracy_green < abs(info.hpi{3}(3)) && abs(info.hpi{3}(3)) < abs(info.template(3,3))+info.cfg.accuracy_green plot3(info.hpi{3}(1),info.hpi{3}(2),info.hpi{3}(3),'go', 'MarkerFaceColor',[.5 1 .5],'MarkerSize',25) head3 = true; elseif abs(info.template(3,1))-info.cfg.accuracy_orange < abs(info.hpi{3}(1)) && abs(info.hpi{3}(1)) < abs(info.template(3,1))+info.cfg.accuracy_orange ... && abs(info.template(3,2))-info.cfg.accuracy_orange < abs(info.hpi{3}(2)) && abs(info.hpi{3}(2)) < abs(info.template(3,2))+info.cfg.accuracy_orange ... && abs(info.template(3,3))-info.cfg.accuracy_orange < abs(info.hpi{3}(3)) && abs(info.hpi{3}(3)) < abs(info.template(3,3))+info.cfg.accuracy_orange plot3(info.hpi{3}(1),info.hpi{3}(2),info.hpi{3}(3),'yo', 'MarkerFaceColor',[1 .5 0],'MarkerEdgeColor',[1 .5 0],'MarkerSize',25) head3 = false; else % when not in correct position plot3(info.hpi{3}(1),info.hpi{3}(2), info.hpi{3}(3),'ro', 'MarkerFaceColor',[1 0 0],'MarkerSize',25) head3 = false; end else plot3(info.hpi{3}(1),info.hpi{3}(2), info.hpi{3}(3),'ro', 'MarkerFaceColor',[1 0 0],'MarkerSize',25) head3 = false; end if get(info.hHeadCheckBox, 'Value') % draw 3d head cc = circumcenter(info.hpi); x_radius = sqrt((info.hpi{2}(1) - cc(1))^2 + (info.hpi{2}(2) - cc(2))^2); y_radius = sqrt((info.hpi{3}(1) - cc(1))^2 + (info.hpi{3}(2) - cc(2))^2); [xe, ye, ze] = ellipsoid(cc(1),cc(2),cc(3),x_radius,y_radius,11); hh = surfl(xe, ye, ze); shading interp if get(info.hCoilCheckBox, 'Value') % this only works if 'coils' are updated if head1 == true && head2 == true && head3 == true colormap cool else colormap hot end end alpha(.15) end elseif info.isneuromag % plot fitted positions of each coil if ~isempty(info.template) for j = 1:size(info.template,1) if abs(info.template(j,1))-info.cfg.accuracy_green < abs(info.hpi{j}(1)) && abs(info.hpi{j}(1)) < abs(info.template(j,1))+info.cfg.accuracy_green ... && abs(info.template(j,2))-info.cfg.accuracy_green < abs(info.hpi{j}(2)) && abs(info.hpi{j}(2)) < abs(info.template(j,2))+info.cfg.accuracy_green ... && abs(info.template(j,3))-info.cfg.accuracy_green < abs(info.hpi{j}(3)) && abs(info.hpi{j}(3)) < abs(info.template(j,3))+info.cfg.accuracy_green plot3(info.hpi{j}(1),info.hpi{j}(2),info.hpi{j}(3),'go', 'MarkerFaceColor',[.5 1 .5],'MarkerSize',25) elseif abs(info.template(j,1))-info.cfg.accuracy_orange < abs(info.hpi{j}(1,end)) && abs(info.hpi{j}(1)) < abs(info.template(j,1))+info.cfg.accuracy_orange ... && abs(info.template(j,2))-info.cfg.accuracy_orange < abs(info.hpi{j}(2)) && abs(info.hpi{j}(2)) < abs(info.template(j,2))+info.cfg.accuracy_orange ... && abs(info.template(j,3))-info.cfg.accuracy_orange < abs(info.hpi{j}(3)) && abs(info.hpi{j}(3)) < abs(info.template(j,3))+info.cfg.accuracy_orange plot3(info.hpi{j}(1),info.hpi{j}(2),info.hpi{j}(3),'yo', 'MarkerFaceColor',[1 .5 0],'MarkerEdgeColor',[1 .5 0],'MarkerSize',25) else % when not in correct position plot3(info.hpi{j}(1,end),info.hpi{j}(2), info.hpi{j}(3),'ro', 'MarkerFaceColor',[1 0 0],'MarkerSize',25); end end else for j = 1:numel(info.hpi) plot3(info.hpi{j}(1),info.hpi{j}(2), info.hpi{j}(3),'ro', 'MarkerFaceColor',[1 0 0],'MarkerSize',25); end end end end % axis grid on xlabel('x (cm)'); ylabel('y (cm)'); zlabel('z (cm)'); set(gca, 'xtick', -10:2:10) set(gca, 'ytick', -10:2:10) set(gca, 'ztick', -40:2:-10) % note the different scaling axis square % put the info back guidata(handle, info); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which handles hot keys in the current plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function key_sub(handle, eventdata) % get the info info = guidata(handle); switch eventdata.Key case 'u' % update the template positions fprintf('updating template coordinates \n') for j = 1:numel(info.hpi) info.template(j,:) = info.hpi{j}(:); % chan X pos end % write template position to text file for later re-positioning template_time = [date datestr(now,'-HH-MM-SS')]; fprintf('writing to %s.txt \n', template_time); dlmwrite([template_time '.txt'], info.template, ' '); case 'q' % stop the application fprintf('stopping the application \n') info.continue = false; case 'c' % display the sensors/dewar if get(info.hCoilCheckBox,'Value') == 0; fprintf('displaying coils \n') set(info.hCoilCheckBox, 'Value', 1); % toggle on elseif get(info.hCoilCheckBox,'Value') == 1; set(info.hCoilCheckBox, 'Value', 0); % toggle off end case 'h' % display the sensors/dewar if get(info.hHeadCheckBox,'Value') == 0; fprintf('displaying head \n') set(info.hHeadCheckBox, 'Value', 1); % toggle on elseif get(info.hHeadCheckBox,'Value') == 1; set(info.hHeadCheckBox, 'Value', 0); % toggle off end case 's' % display the sensors/dewar if get(info.hSensorCheckBox,'Value') == 0; fprintf('displaying sensors/dewar \n') set(info.hSensorCheckBox, 'Value', 1); % toggle on elseif get(info.hSensorCheckBox,'Value') == 1; set(info.hSensorCheckBox, 'Value', 0); % toggle off end otherwise fprintf('no command executed \n') end % put the info back guidata(handle, info); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTIONs which handle button presses %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function update_ButtonDownFcn(handle, eventdata) % get the info info = guidata(handle); % update the template positions fprintf('updating template coordinates \n') for j = 1:numel(info.hpi) info.template(j,:) = info.hpi{j}(:); % chan X pos end % write template position to text file for later re-positioning template_time = [date datestr(now,'-HH-MM-SS')]; fprintf('writing to %s.txt \n', template_time); dlmwrite([template_time '.txt'], info.template, ' '); % put the info back guidata(handle, info); function quit_ButtonDownFcn(handle, eventdata) % get the info info = guidata(handle); % stop the application fprintf('stopping the application \n') info.continue = false; % put the info back guidata(handle, info); function coil_CheckBox(hObject, eventdata) % toggle coils display function head_CheckBox(hObject, eventdata) % toggle head display function sensor_CheckBox(hObject, eventdata) % toggle sensors display function view_RadioButton1(handle, eventdata) % get the info info = guidata(handle); % toggle front view - in combination with view_RadioButton2 if get(info.hViewRadioButton1,'Value') == 1; set(info.hViewRadioButton2, 'Value', 0); % toggle off radiobutton 2 set(info.hViewRadioButton1, 'Value', 1); % toggle on radiobutton 1 elseif get(info.hViewRadioButton1,'Value') == 0; set(info.hViewRadioButton2, 'Value', 1); % toggle on radiobutton 2 set(info.hViewRadioButton1, 'Value', 0); % toggle off radiobutton 1 end % put the info back guidata(handle, info); function view_RadioButton2(handle, eventdata) % get the info info = guidata(handle); % toggle back view - in combination with view_RadioButton1 if get(info.hViewRadioButton2,'Value') == 1; set(info.hViewRadioButton1, 'Value', 0); % toggle off radiobutton 1 set(info.hViewRadioButton2, 'Value', 1); % toggle on radiobutton 2 elseif get(info.hViewRadioButton2,'Value') == 0; set(info.hViewRadioButton1, 'Value', 1); % toggle on radiobutton 1 set(info.hViewRadioButton2, 'Value', 0); % toggle off radiobutton 2 end % put the info back guidata(handle, info); function blocksize_Menu(handle, eventdata) % get the info info = guidata(handle); val = get(info.hBlocksizeMenu, 'Value'); switch val case 1 info.blocksize = round(0.1 * info.hdr.Fs); % 0.1 s case 2 info.blocksize = round(0.2 * info.hdr.Fs); case 3 info.blocksize = round(0.5 * info.hdr.Fs); case 4 info.blocksize = round(1 * info.hdr.Fs); case 5 info.blocksize = round(1.5 * info.hdr.Fs); case 6 info.blocksize = round(2 * info.hdr.Fs); case 7 info.blocksize = round(5 * info.hdr.Fs); case 8 info.blocksize = round(10 * info.hdr.Fs); case 9 info.blocksize = round(30 * info.hdr.Fs); end fprintf('changing blocksize to %d samples\n', info.blocksize); % put the info back guidata(handle, info);
github
lcnhappe/happe-master
readBESAimage.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/besa/readBESAimage.m
8,358
utf_8
4969e3fff82f74a3094d9595d66499e3
function image = readBESAimage(filename) % readBESAimage reads information from exported BESA images (Beamformer, % LAURA, sLORETA, swLORETA, LORETA, sSLOFO, User-Defined image, surface % minimum norm, Probe scan, Sensitivity). The function poutput is a struct % with fields containing all relevant information from the image file. % % Use as % image = readBESAimage(filename) % Modified April 26, 2006 Robert Oostenveld % Modified November 6, 2006 Karsten Hoechstetter % Modified January 2, 2008 Karsten Hoechstetter if isempty(findstr(filename,'.')) filename = [filename,'.dat']; end fp = fopen(filename); ImageVersion = fgetl(fp); % Check Version Number version = str2num(ImageVersion(findstr(ImageVersion,':')+1:length(ImageVersion))); switch version case 1 image=import_v1(ImageVersion,fp); case 2 image=import_v2(fp); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Image Version 1.0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function image=import_v1(ImageVersion,fp) % Check type of Image if ~isempty(findstr(ImageVersion,'MN')) image.Imagetype = 'Minimum Norm'; image.Imagemode = 'Time'; else fgetl(fp); ImageInfo = fgetl(fp); if ~isempty(findstr(ImageInfo,'Sens.')) image.Imagetype = 'Sensitivity'; elseif ~isempty(findstr(ImageInfo,'MSBF')) image.Imagetype = 'MSBF'; image.Imagemode = 'Time-Frequency'; elseif ~isempty(findstr(ImageInfo,'MSPS')) image.Imagetype = 'MSPS'; if ~isempty(findstr(ImageInfo,'Image (TF)')) image.Imagemode = 'Time-Frequency'; else image.Imagemode = 'Time'; end end if strcmp(ImageInfo(end-3:end),'[dB]') image.Units = 'dB'; else image.Units = '%'; end end % Extract additional information (time and frequency, source, MN Info) if strcmp(image.Imagemode,'Time-Frequency') TimeSeparator = findstr(ImageInfo,' : '); Blanks = findstr(ImageInfo,' '); [x,Index] = min(abs(Blanks-TimeSeparator)); TimeIndex=Blanks(Index-1); image.Time = sscanf(ImageInfo(TimeIndex:end),'%s',4); image.Frequency = sscanf(ImageInfo(findstr(ImageInfo,'ms')+3:end),'%s',2); elseif strcmp(image.Imagetype,'Sensitivity') image.Source = ImageInfo(findstr(ImageInfo,' - ')+3:end); elseif strcmp(image.Imagetype,'Minimum Norm') fgetl(fp); h = fgetl(fp); image.DataFile = h(21:end); h = fgetl(fp); image.Condition = h(21:end); h = fgetl(fp); if(~isempty(h)) image.DataType = h(21:end); h = fgetl(fp); image.Method = h(21:end); fgetl(fp); % Empty line end if(strcmp(image.Method,'Surface Minimum Norm')) h = fgetl(fp); image.DepthWeighting = h(21:end); h = fgetl(fp); image.SpTmpWeighting = h(21:end); h = fgetl(fp); image.SpTmpWeightingType = h(21:end); h = fgetl(fp); image.Dimension = str2num(h(21:end)); h = fgetl(fp); image.NoiseEstimation = h(21:end); h = fgetl(fp); image.NoiseWeighting = h(21:end); h = fgetl(fp); image.NoiseScaleFactor = str2num(h(21:end)); h = fgetl(fp); image.SelMeanNoise = h(21:end); elseif(strcmp(image.Method,'Cortical LORETA')) h = fgetl(fp); image.DepthWeighting = h(25:end); h = fgetl(fp); image.RegularizationType = h(25:end); h = fgetl(fp); image.RegularizationValue = h(25:end); h = fgetl(fp); image.LaplacianType = h(25:end); end fgetl(fp); h = fgetl(fp); image.Locations = str2num(h(21:end)); h = fgetl(fp); image.TimeSamples = str2num(h(21:end)); fgetl(fp); fgetl(fp); fgetl(fp); end % Get Coordinates and Data if ~isempty(strmatch(image.Imagetype,strvcat('MSPS','MSBF','Sensitivity'))) % Get Coordinates fgetl(fp); fgetl(fp); h = fgetl(fp); hx = sscanf(h,'X: %f %f %d'); xmin = hx(1); xmax = hx(2); xnum = hx(3); h = fgetl(fp); hy = sscanf(h,'Y: %f %f %d'); ymin = hy(1); ymax = hy(2); ynum = hy(3); h = fgetl(fp); hz = sscanf(h,'Z: %f %f %d'); zmin = hz(1); zmax = hz(2); znum = hz(3); fgetl(fp); image.Coordinates=struct('X',{[xmin:floor((xmax-xmin)/(xnum-1)*10000)/10000:xmax]},... 'Y',{[ymin:floor((ymax-ymin)/(ynum-1)*10000)/10000:ymax]},... 'Z',{[zmin:floor((zmax-zmin)/(znum-1)*10000)/10000:zmax]}); % Get Data image.Data = zeros(xnum,ynum,znum); for z=1:znum fgetl(fp); a=fscanf(fp,'%f',[xnum,ynum]); for x=1:xnum for y=1:ynum image.Data(x,y,z)=a(x,y); end end fgetl(fp);fgetl(fp); end % Minimum Norm Image elseif ~isempty(strmatch(image.Imagetype,('Minimum Norm'))) fscanf(fp,'Latency (milliseconds):'); image.Latency = fscanf(fp,'%f',[1,image.TimeSamples]); image.Coordinates = zeros(image.Locations,3); image.Data = zeros(image.Locations,image.TimeSamples); for i=1:image.Locations h=fscanf(fp,'%f',[1,3]); image.Coordinates(i,:) = h; image.Data(i,:)=fscanf(fp,'%f',[1,image.TimeSamples]); end end fclose(fp); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Image Version 2.0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function image=import_v2(fp) fgetl(fp); c=fgetl(fp); image.DataFile = c(21:end); c=fgetl(fp); image.Condition = c(21:end); c=fgetl(fp); if strfind(c,'Method') image.Imagetype = c(21:end); image.Imagemode = 'Time'; c=fgetl(fp); image.Regularization = c(21:end); c=fgetl(fp); t=findstr(c,' ms'); if t image.Latency = c(1:t-1); else t=0; end image.Units = strtrim(c(t+3:end)); elseif ~isempty(findstr(c,'MSBF')) image.Imagetype = 'MSBF'; image.Imagemode = 'Time-Frequency'; if strcmp(c(end-3:end),'[dB]') image.Units = 'dB'; else image.Units = '%'; end elseif ~isempty(findstr(c,'MSPS')) image.Imagetype = 'MSPS'; if ~isempty(findstr(c,'Image (TF)')) image.Imagemode = 'Time-Frequency'; else image.Imagemode = 'Time'; image.Latency = c(1:findstr(c,' ms')-1); end if strcmp(c(end-3:end),'[dB]') image.Units = 'dB'; else image.Units = '%'; end elseif ~isempty(findstr(c,'Sens')) image.Imagemode = 'Sensitivity'; image.Units = '%'; image.Source = sscanf(c,'Src. %i'); end fgetl(fp);fgetl(fp); c=fgetl(fp); X=sscanf(c,'X: %f %f %f'); c=fgetl(fp); Y=sscanf(c,'Y: %f %f %f'); c=fgetl(fp); Z=sscanf(c,'Z: %f %f %f'); image.Coordinates=struct('X',{[X(1):floor((X(2)-X(1))/(X(3)-1)*10000)/10000:X(2)]},... 'Y',{[Y(1):floor((Y(2)-Y(1))/(Y(3)-1)*10000)/10000:Y(2)]},... 'Z',{[Z(1):floor((Z(2)-Z(1))/(Z(3)-1)*10000)/10000:Z(2)]}); fgetl(fp); c=fgetl(fp); if strfind(c,'Voxel locations') image.Coordinates.X = zeros(1,X(3)*Y(3)*Z(3)); image.Coordinates.Y = zeros(1,X(3)*Y(3)*Z(3)); image.Coordinates.Z = zeros(1,X(3)*Y(3)*Z(3)); for i=1:X(3)*Y(3)*Z(3) try c=fgetl(fp); C = sscanf(c,'%f %f %f %f %f %f'); image.Coordinates.X(i)=C(4); image.Coordinates.Y(i)=C(5); image.Coordinates.Z(i)=C(6); catch image.Coordinates.X=image.Coordinates.X(1:i-1); image.Coordinates.Y=image.Coordinates.Y(1:i-1); image.Coordinates.Z=image.Coordinates.Z(1:i-1); break end end for t=1:1000000 try temp=fscanf(fp,'%f',[3,length(image.Coordinates.X)]); image.Data(:,:,t)=temp'; fgetl(fp); fgetl(fp); catch break end end elseif strfind(c,'Sample') % Time Series for zindex=1:Z(3) % Fehlt noch: Latenz mit auslesen for t=1:100000 try for zindex=1:Z(3) fgetl(fp); image.Data(:,:,zindex,t)=fscanf(fp,'%f',[X(3),Y(3)]); fgetl(fp); fgetl(fp); end fgetl(fp); catch break end end end else % Single Image image.Data=zeros(X(3),Y(3),Z(3)); image.Data(:,:,1)=fscanf(fp,'%f',[X(3),Y(3)]); for zindex=2:Z(3) fgetl(fp); fgetl(fp); fgetl(fp); image.Data(:,:,zindex)=fscanf(fp,'%f',[X(3),Y(3)]); end end fclose(fp); function matrix=getblock(fp,no_rows,no_columns) matrix = zeros(no_rows,no_columns); for row=1:no_rows fgetl(fp) matrix(row,:)=str2double(fgetl(fp)); end
github
lcnhappe/happe-master
load_audio0123.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/videomeg/load_audio0123.m
3,277
utf_8
010d2cece743343ca3b509e44403cb33
function [ts, ids, offset, data, srate, site_id, is_sender] = load_audio0123(filename) % Read an audio file from the disk. %-------------------------------------------------------------------------- % Copyright (C) 2015 BioMag Laboratory, Helsinki University Central Hospital % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, version 3. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. %-------------------------------------------------------------------------- MAGIC_STR = 'ELEKTA_AUDIO_FILE'; h = fopen(filename, 'rb'); header_str = fread(h, length(MAGIC_STR), 'uchar'); % make sure the file is a valid audio file assert(strcmp(char(header_str'), MAGIC_STR)); ver = fread(h, 1, 'uint32'); assert(ver==0 || ver==1 || ver==2 || ver==3); if ver==3 site_id = fread(h, 1, 'uint8'); sender_flag = fread(h, 1, 'uint8'); is_sender = (sender_flag==1); else site_id = -1; is_sender = false; end srate = fread(h, 1, 'uint32'); nchans = fread(h, 1, 'uint32'); % get the size of the data part of the file in bytes dt_start = ftell(h); fseek(h, 0 ,'eof'); dt_end = ftell(h); fseek(h, dt_start, 'bof'); % read the buffer size from the first data chunk [t, id, buflen] = read_attrib(h, ver); frames_per_buf = buflen/(2*nchans); if(ver==0 || ver==1) attrib_sz = 8 + 4; end if(ver==2 || ver==3) attrib_sz = 8 + 8 + 4; end assert(mod((dt_end - dt_start), (attrib_sz + buflen)) == 0) numof_chunks = (dt_end - dt_start) / (attrib_sz + buflen); % allocate the memory ts = zeros(numof_chunks, 1, 'uint64'); ids = zeros(numof_chunks, 1, 'uint64'); data = zeros(frames_per_buf*nchans, numof_chunks); % compute offset offset = [1 : frames_per_buf : frames_per_buf*numof_chunks]'; % read the data fprintf('load_audio_0123: reading audio data from %s...\n',filename); fseek(h, dt_start, 'bof'); for i = 1 : numof_chunks PRINT_INTERVAL=1e6; % print status messages at this interval [ts(i), ids(i), blen] = read_attrib(h, ver); assert(blen == buflen); data(:,i) = fread(h, buflen/2, 'int16'); if mod(i, PRINT_INTERVAL) == 0 fprintf('load_audio_0123: loaded %g buffers of %i bytes\n', i, buflen); end end fclose(h); data = reshape(data, nchans, frames_per_buf*numof_chunks)'; end function [t, id, blen] = read_attrib(h, ver) assert(ver==0 || ver==1 || ver==2 || ver==3); t = fread(h, 1, 'uint64=>uint64'); if(ver==2 || ver==3) id = fread(h, 1, 'uint64=>uint64'); else id = -1; end blen = fread(h, 1, 'uint32'); end
github
lcnhappe/happe-master
comp_tstamps.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/videomeg/comp_tstamps.m
3,190
utf_8
f9969e0dd7f6d27c544b26a34bf20649
function data_tstamps = comp_tstamps(inp, sfreq) % COMP_TSTAMPS - extract timestamps from a trigger channel % INP - vector of samples for the trigger channel % SFREQ - sampling frequency % Return the vector of the same length as INP, containing timestamps for % each entry of INP. For detecting timestamps use parameters defined % below (should match the parameters used for generating the timing % sequence). % % TODO: this function does not handle the boundary case for the first train % of pulses correctly. This is because there is no trigger before the train % and there will be no dtrigs value before the first trigger of the train. % Thus the first pulse train will always be ignored. It would be neat to fix % this. %-------------------------------------------------------------------------- % Copyright (C) 2015 BioMag Laboratory, Helsinki University Central Hospital % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, version 3. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. %-------------------------------------------------------------------------- THRESH = 3; BASELINE = 5; % seconds TRAIN_STEP = 0.015; % seconds NBITS = 43; % including the parity bit % find the upgoing flank of all triggers (threshold crossings) trigs = find([0 diff(inp>THRESH)>0]); % determine the duration of each trigger d = trigs(2:end) - trigs(1:end-1); samps = []; tss = []; % iterate over all timestamp candidates for i = find(d > BASELINE * sfreq) ts = read_timestamp(d, i, TRAIN_STEP*sfreq, NBITS); if ts ~= -1 samps(end+1) = trigs(i+1); tss(end+1) = ts; end end % fit timestamps to samples with linear regression p = polyfit(samps, tss, 1); data_tstamps = [1:length(inp)] * p(1) + p(2); % DEBUG %figure; %title('Fit accuracy'); %plot(samps/sfreq, p(1)*samps+p(2) - tss); %xlabel('time, seconds'); %ylabel('linear fit error, msec'); % ~DEBUG function ts = read_timestamp(dtrigs, cur, step, nbits) % READ_TIMESTAMP - read and decode one timestamp ts = 0; parity = false; for i = 1 : nbits % end of input reached before NBITS bits read if cur+i > length(dtrigs) warning('end of input reached before NBITS bits read'); ts = -1; return; end % invalid interval between two triggers if (dtrigs(cur+i) < step*1.5) | (dtrigs(cur+i) > step*4.5) warning('invalid interval between two triggers'); ts = -1; return; end if dtrigs(cur+i) > step*3 parity = ~parity; if i < nbits % don't read the parity bit into the timestamp ts = ts + 2^(i-1); end end end if parity warning('parity check failed'); ts = -1; end
github
lcnhappe/happe-master
mff_micros2Sample.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/egi_mff/mff_micros2Sample.m
527
utf_8
97dfab73c9d72c1615c28404bc7ca63a
%% mff_micros2Sample.m % Matlab File % author Colin Davey % date 3/2/2012 % Copyright 2012, 2013 EGI. All rights reserved. % Support routine for MFF Matlab code. Not intended to be called directly. % % Converts from microseconds to samples, given the sampling rate. %% function [sampleNum, remainder] = mff_micros2Sample(microsecs, sampRate) microsecs = double(microsecs); sampDuration = 1000000/sampRate; sampleNum = microsecs/sampDuration; remainder = uint64(rem(microsecs, sampDuration)); sampleNum = fix(sampleNum);
github
lcnhappe/happe-master
mff_valid.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/egi_mff/mff_valid.m
2,663
utf_8
04a88daab90374c3cfc10d82a25c9c9e
%% mff_valid.m % Matlab File % author Colin Davey % date 12/3/2013 % Copyright 2013 EGI. All rights reserved. % Support routine for MFF Matlab code. Not intended to be called directly. % % Tests whether a file is valid, and throws an exception if not. Gives an % informational warning if filename doesn't end in '.mff'. %% function mff_valid(filePath) valid = false; filePathExist = exist(filePath); % Check that filePath exists. if filePathExist == 0 theException = MException('EGI_MFF:MFF_NO_EXIST', 'MFF does not exist.'); % Check that filePath isn't a regular file. elseif filePathExist == 2 theException = MException('EGI_MFF:MFF_NOT_DIR', 'MFF is not a folder or package.'); % Check that filePath is a directory. elseif filePathExist ~= 7 theException = MException('EGI_MFF:MFF_NOT_DIR_OR_FILE', 'MFF is not a folder, package or file.'); else % Check that filePath/info.xml exists and is a file. if exist([filePath filesep 'info.xml']) ~= 2 theException = MException('EGI_MFF:INVALID_NO_INFO', 'MFF is not valid. There is no info.xml file.'); % Check that filePath/info1.xml exists and is a file. elseif exist([filePath filesep 'info1.xml']) ~= 2 theException = MException('EGI_MFF:INVALID_NO_INFO1', 'MFF is not valid. There is no info1.xml file.'); % Check that filePath/signal1.bin exists and is a file. elseif exist([filePath filesep 'signal1.bin']) ~= 2 theException = MException('EGI_MFF:INVALID_NO_SIGNAL1', 'MFF is not valid. There is no signal1.bin file.'); % Check the version. else infoObj = mff_getObject(com.egi.services.mff.api.MFFResourceType.kMFF_RT_Info, 'info.xml', filePath); ver = infoObj.getMFFVersion; if ver ~= 3; theException = MException('EGI_MFF:WRONG_VER', 'MFF is not version 3. Please convert using EGI''s MFF File Converter. Contact [email protected] form more information.'); else valid = true; end end end if ~valid throw(theException); end % Delete DS_Store file that gets generated when moving to a PC. fullDS_StorePath = [filePath filesep '._.DSStore']; if exist(fullDS_StorePath, 'file') == 2 delete(fullDS_StorePath); end % Give a warning if name doesn't end in '.mff'. mff_warning = '*** Filename does not end in ''.mff''. This can cause a problem for some versions of NetStation. ***'; if size(filePath,2) < size('.mff',2) + 1 % warning('EGI_MFF:EXT_WARNING', mff_warning); fprintf('%s\n', mff_warning); elseif ~(strcmp(lower(filePath(end-3:end)), '.mff')) % warning('EGI_MFF:EXT_WARNING', mff_warning); fprintf('%s\n', mff_warning); end
github
lcnhappe/happe-master
read_mff_header.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/egi_mff/read_mff_header.m
2,673
utf_8
3709cd08e3c235fbeeed3cc7e8419f1e
%% read_mff_header.m % Matlab File % author Colin Davey % date 3/2/2012, 4/15/2014 % Copyright 2012, 2014 EGI. All rights reserved. % % Takes the path to the data and returns the header in the structure % described at http://www.fieldtriptoolbox.org/reference/ft_read_header. % % filePath ? The path to the .mff file. % % Return a Field Trip header. Pulls most of the information from the % summary info returned by mff_getSummaryInfo. Stores the summary info in % the .orig field. Gets the sensor label info from the sensor layout % object. Gets the pib channel info from the pns set object. %% function header = read_mff_header(filePath) summaryInfo = mff_getSummaryInfo(filePath); % Pull header info from the summary info. header.Fs = summaryInfo.sampRate; header.nChans = summaryInfo.nChans; header.nSamplesPre = 0; if strcmp(summaryInfo.epochType, 'seg') header.nSamples = summaryInfo.epochNumSamps(1); header.nTrials = size(summaryInfo.epochBeginSamps,2); % if Time0 is the same for all segments... if size(unique(summaryInfo.epochTime0),2) == 1 header.nSamplesPre = summaryInfo.epochTime0(1); end else header.nSamples = sum(summaryInfo.epochNumSamps); header.nTrials = 1; end % Add the sensor info. sensorLayoutObj = mff_getObject(com.egi.services.mff.api.MFFResourceType.kMFF_RT_SensorLayout, 'sensorLayout.xml', filePath); sensors = sensorLayoutObj.getSensors(); nChans = 0; for p = 1:sensors.size sensorObj = sensors.get(p-1); % sensors 0 based sensorType = sensorObj.getType; if sensorType == 0 || sensorType == 1 tmpLabel = sensorObj.getName; if strcmp(tmpLabel,'') tmpLabel = sprintf('E%d', sensorObj.getNumber); else tmpLabel = char(tmpLabel); end header.label{p} = tmpLabel; header.chantype{p} = 'eeg'; % hard-coded for now. header.chanunit{p} = 'uV'; % hard-coded for now. nChans = nChans + 1; end end if nChans ~= header.nChans %Error. Should never occur. todo?: error handling end % Add the pib channel info. if summaryInfo.pibNChans > 0 pnsSetObj = mff_getObject(com.egi.services.mff.api.MFFResourceType.kMFF_RT_PNSSet, 'pnsSet.xml', filePath); pnsSensors = pnsSetObj.getPNSSensors; for p = 1:summaryInfo.pibNChans tmpLabel = sprintf('pib%d', p); header.label{nChans + p} = tmpLabel; pnsSensorObj = pnsSensors.get(p-1); header.chantype{nChans + p} = char(pnsSensorObj.getName); header.chanunit{nChans + p} = char(pnsSensorObj.getUnit); end end header.nChans = header.nChans + summaryInfo.pibNChans; header.orig = summaryInfo;
github
lcnhappe/happe-master
write_mff_data.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/egi_mff/write_mff_data.m
4,329
utf_8
6446ec1b98cec6e10279f1c1891567ed
%% write_mff_data.m % Matlab File % author Colin Davey % date 3/2/2012, 4/15/2014 % Copyright 2012, 2014 EGI. All rights reserved. % % Writes channel data (newData) in newData to an MFF file. NewData is a 2-D % matrix of size Nchans*Nsamples as described at % http://www.fieldtriptoolbox.org/reference/ft_read_data. % % If dstMFFPath is empty, or the same as srcMFFPath, then the data gets % overwritten, otherwise, the srcMFFPath is copied to dstMFFPath, and the % data is written to dstMFFPath. In the later case, hdr is ignored. % % hdr ? FieldTrip header. You have the option of passing in the header, or % []. If you pass in the header, it pulls data out of it, rather than % recomputing them. % % This function has the following limitations: It requires a source data % file (srcMFFPath), in other words, it doesn?t allow you to create % synthetic data and create a new MFF file. Also, it assumes that the data % is in the same structure as the srcFile in terms of number of channels, % number of samples, number of epochs and sizes of epochs. So, it doesn?t % support processes that change any of those items, for example, channel % downsampling, or segmentation. % % This function doesn't modify the MFF file's history data. To do that, % call mff_write_history. %% function write_mff_data(srcMFFPath, dstMFFPath, newData, hdr) if isempty(dstMFFPath) dstMFFPath = srcMFFPath; end if strcmp(dstMFFPath, srcMFFPath) if isempty(hdr) srcSummaryInfo = mff_getSummaryInfo(dstMFFPath); else srcSummaryInfo = hdr.orig; end else if exist(dstMFFPath, 'dir') == 7 fullDS_StorePath = [dstMFFPath filesep '._.DS_Store']; if exist(fullDS_StorePath, 'file') == 2 delete(fullDS_StorePath); end rmdir(dstMFFPath, 's'); end copyfile(srcMFFPath, dstMFFPath); srcSummaryInfo = mff_getSummaryInfo(dstMFFPath); end if ~strcmp(class(newData), 'single') newData = single(newData); end write_mff_signal(srcSummaryInfo.eegFilename, srcSummaryInfo.javaObjs.blocks, dstMFFPath, newData(1:srcSummaryInfo.nChans,:)); if srcSummaryInfo.pibNChans ~= 0 pibData = newData(srcSummaryInfo.nChans+1:srcSummaryInfo.nChans+srcSummaryInfo.pibNChans,:); if srcSummaryInfo.pibHasRef numSamples = size(newData, 2); pibData = [pibData ; zeros(1, numSamples)]; end write_mff_signal(srcSummaryInfo.pibFilename, srcSummaryInfo.javaObjs.pibBlocks, dstMFFPath, pibData); end function write_mff_signal(signalFilename, blocks, dstMFFPath, newData) dstSignalFile = [signalFilename 'Tmp']; dstURI = [dstMFFPath filesep dstSignalFile]; delegate = javaObject('com.egi.services.mff.api.LocalMFFFactoryDelegate'); factory = javaObject('com.egi.services.mff.api.MFFFactory', delegate); resourceType = javaObject('com.egi.services.mff.api.MFFResourceType', com.egi.services.mff.api.MFFResourceType.kMFF_RT_Signal); factory.createResourceAtURI(dstURI, resourceType); dstBinObj = mff_getObject(com.egi.services.mff.api.MFFResourceType.kMFF_RT_Signal, dstSignalFile, dstMFFPath); for p=0:blocks.size - 1 aBlock = blocks.get(p); numChannels = aBlock.numberOfSignals; % number of 4 byte floats is 1/4 the data block size % That is divided by channel count to get data for each channel: samplesTimesChannels = aBlock.dataBlockSize/4; numSamples = samplesTimesChannels / numChannels; if p == 0 beginSamp = 1; else beginSamp = endSamp + 1; end endSamp = (beginSamp + numSamples)-1; % if p > 0 % beginSamp = sum(srcSummaryInfo.epochNumSamps(1:p)) + 1; % end % % beginSamp = srcSummaryInfo.epochBeginSamps(p+1)+1; % endSamp = (beginSamp + srcSummaryInfo.epochNumSamps(p+1))-1; % fprintf('%d: %d %d %d\n', p, beginSamp, endSamp, size(newData,2)); newDataEpoch = newData(:,beginSamp:endSamp); newDataEpoch = reshape(newDataEpoch', size(newDataEpoch,1) * size(newDataEpoch,2), 1); newDataEpoch = typecast(newDataEpoch, 'int8'); aBlock.data = newDataEpoch; dstBinObj.writeSignalBlock(aBlock); aBlock.data = []; java.lang.Runtime.getRuntime.freeMemory; end factory.closeResource(dstBinObj); % delete the EEG file % rename the written file to the EEG filename movefile(dstURI, [dstMFFPath filesep signalFilename]);
github
lcnhappe/happe-master
read_mff_data.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/egi_mff/read_mff_data.m
8,057
utf_8
dec75b9fc9150ef62661f59c76e781b1
%% read_mff_data.m % Matlab File % author Colin Davey % date 3/2/2012, 4/15/2014 % Copyright 2012, 2014 EGI. All rights reserved. % % Takes the path to the data and returns the 2-D matrix of size % Nchans*Nsamples as described at % http://www.fieldtriptoolbox.org/reference/ft_read_data. % % filePath ? The path to the .mff file. % % indType ? Indicates how to interpret the next two parameters. There are % two possible values: % % -- 'epoch', which interprets the following two parameters as epoch % numbers. % -- 'sample', which interprets the following two parameters as % sample numbers. % % chanInds ? Indicates which channels to include. If you pass in [] % (MATLAB?s equivalent of NULL), you get all the channels. You can pass in % lists of channels in MATLAB format, such as [1 2 3] or [1:3], and so on. % % hdr ? FieldTrip header. You have the option of passing in the header, or % []. If you pass in the header, it pulls data out of it, rather than % recomputing them. %% function data = read_mff_data(filePath, indType, beginInd, endInd, chanInds, hdr) if isempty(hdr) % try summaryInfo = mff_getSummaryInfo(filePath); % catch theException % throw(theException) % end else summaryInfo = hdr.orig; end % If the begin and end are specified in epochs, then need the begin and end % blocks corresponding to the epochs. Otherwise, it's specified in samples, % in which case, we also need the begin and end samples. if strcmp(indType, 'sample') [beginBlock beginSample] = blockSample2BlockAndSample(beginInd, summaryInfo.blockNumSamps); [endBlock endSample] = blockSample2BlockAndSample(endInd, summaryInfo.blockNumSamps); else beginBlock = summaryInfo.epochFirstBlocks(beginInd); endBlock = summaryInfo.epochLastBlocks(endInd); end dataNumSamples = (summaryInfo.blockBeginSamps(endBlock) - summaryInfo.blockBeginSamps(beginBlock)) + summaryInfo.blockNumSamps(endBlock); pibNChans = 0; if ~isempty(summaryInfo.javaObjs.pibBinObj) pibNChans = summaryInfo.pibNChans; if summaryInfo.pibHasRef pibNChans = pibNChans + 1; end end eegNChans = summaryInfo.nChans; data = zeros(eegNChans + pibNChans, dataNumSamples); % Get the data from the blocks. % EEG data... % Call to function replaced by inline code for speed purposes. % data(1:eegNChans,:) = read_mff_data_blocks(summaryInfo.binObj, summaryInfo.blocks, beginBlock, endBlock, eegNChans, dataNumSamples, summaryInfo.blockNumSamps); %% binObj = summaryInfo.javaObjs.binObj; blocks = summaryInfo.javaObjs.blocks; startChan = 1; endChan = eegNChans; sampleInd = 1; for blockInd = beginBlock-1:endBlock-1 % fprintf('blockInd %d\n', blockInd); %!!! lastSampleInd = sampleInd + summaryInfo.blockNumSamps(blockInd+1) - 1; data(startChan:endChan,sampleInd:lastSampleInd) = read_mff_data_block(binObj, blocks, blockInd); sampleInd = lastSampleInd + 1; end % PIB data if any... if ~isempty(summaryInfo.javaObjs.pibBinObj) % Call to function replaced by inline code for speed purposes. % data(eegNChans+1:end,:) = read_mff_data_blocks(summaryInfo.pibBinObj, summaryInfo.pibBlocks, beginBlock, endBlock, pibNChans, dataNumSamples, summaryInfo.blockNumSamps); binObj = summaryInfo.javaObjs.pibBinObj; blocks = summaryInfo.javaObjs.pibBlocks; startChan = eegNChans + 1; endChan = eegNChans + pibNChans; sampleInd = 1; for blockInd = beginBlock-1:endBlock-1 % fprintf('blockInd %d\n', blockInd); %!!! lastSampleInd = sampleInd + summaryInfo.blockNumSamps(blockInd+1) - 1; data(startChan:endChan,sampleInd:lastSampleInd) = read_mff_data_block(binObj, blocks, blockInd); sampleInd = lastSampleInd + 1; end end % if channel indeces were provided, downsample to the requested channels if size(chanInds,1) ~= 0 data = data(chanInds,:); end % If begin and end are specified in samples, trim the data down to the % specified samples. if strcmp(indType, 'sample') if (beginSample ~= 1) || (beginSample + (endInd-beginInd) ~= size(data,2)) data = data(:,beginSample:beginSample + (endInd-beginInd)); end % Otherwise, if the data are segmented, reshape into trials. elseif strcmp(summaryInfo.epochType, 'seg') nChans = size(data, 1); nSamples = summaryInfo.epochNumSamps(1); nTrials = (endInd - beginInd) + 1; data = reshape(data,nChans, nSamples, nTrials); end %% Gets the data from the blocks. % Three versions of this routine, from fastest to slowest (newest to % oldest), preserved for informational purposes. Ultimately not used % because it's much faster to insert these lines inline in the caller. % function data = read_mff_data_blocks(binObj, blocks, beginBlock, endBlock, numChans, numSamples, blockNumSamps) % data = zeros(numChans, numSamples); % sampleInd = 1; % for blockInd = beginBlock-1:endBlock-1 % % fprintf('blockInd %d\n', blockInd); %!!! % lastSampleInd = sampleInd + blockNumSamps(blockInd+1) - 1; % data(:,sampleInd:lastSampleInd) = read_mff_data_block(binObj, blocks, blockInd); % sampleInd = lastSampleInd + 1; % end % function data = read_mff_data_blocks(binObj, blocks, beginBlock, endBlock, numChans, numSamples, blockNumSamps) % for blockInd = beginBlock-1:endBlock-1 % % fprintf('blockInd %d\n', blockInd); %!!! % tmpdata = read_mff_data_block(binObj, blocks, blockInd); % lastSampleInd = sampleInd + size(tmpdata,2) - 1; % data(:,sampleInd:lastSampleInd) = tmpdata; % sampleInd = lastSampleInd + 1; % end % function data = read_mff_data_blocks(binObj, blocks, beginBlock, endBlock, numChans, numSamples, blockNumSamps) % for blockInd = beginBlock-1:endBlock-1 % % fprintf('blockInd %d\n', blockInd); % tmpdata = read_mff_data_block(binObj, blocks, blockInd); % if blockInd == beginBlock-1 % data = tmpdata; % else % if size(data,1) == size(tmpdata,1) % data = [data tmpdata]; % else % % Error: blocks disagree on number of channels. Should never % % occur, especially given the checking performed by this point. % % todo?: Add error handling? % end % end % end %% Gets one block of data. function data = read_mff_data_block(binObj, blocks, blockInd) % Load a block blockObj = blocks.get(blockInd); blockObj = binObj.loadSignalBlockData(blockObj); % The data is stored as bytes. Need numbers for reshaping. numChannels = blockObj.numberOfSignals; % number of 4 byte floats is 1/4 the data block size % That is divided by channel count to get data for each channel: samplesTimesChannels = blockObj.dataBlockSize/4; numSamples = samplesTimesChannels / numChannels; % get block, returned as bytes. data = blockObj.data; % free up memory in java space. blockObj.data = []; java.lang.Runtime.getRuntime.freeMemory; % convert bytes to equivalent floating point values data = typecast(data,'single'); % reshape as an epoch. data = reshape(data, numSamples, numChannels)'; %% Given a sample number within the complete data, return an epoch number, % and a sample number within that epoch. % epochNumSamps contains an element for each epoch - the number of samples % in that epoch. function [epochNum sample] = epochSample2EpochAndSample(sampleNum, epochNumSamps) epochNum = 1; numSamps = epochNumSamps(epochNum); while sampleNum > numSamps epochNum = epochNum + 1; numSamps = numSamps + epochNumSamps(epochNum); end numSamps = numSamps - epochNumSamps(epochNum); sample = sampleNum - numSamps; %% Given a sample number within the complete data, return a block number, % and a sample number within that block. % blockNumSamps contains an element for each block - the number of samples % in that block. function [blockNum sample] = blockSample2BlockAndSample(sampleNum, blockNumSamps) blockNum = 1; numSamps = blockNumSamps(blockNum); while sampleNum > numSamps blockNum = blockNum + 1; numSamps = numSamps + blockNumSamps(blockNum); end numSamps = numSamps - blockNumSamps(blockNum); sample = sampleNum - numSamps;
github
lcnhappe/happe-master
write_mff_event.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/egi_mff/write_mff_event.m
6,173
utf_8
a2125898d8e7a7d9b5d0b39224e9575b
%% write_mff_event.m % Matlab File % author Colin Davey % date 3/2/2012, 4/15/2014 % Copyright 2012, 2014 EGI. All rights reserved. % % Writes an events structure (as described at % http://www.fieldtriptoolbox.org/reference/ft_read_event) to an event-track % file in an existing MFF file (filePath). % % filePath ? The path to the .mff file. % % trackName ? the name of the track as it will appear in Net Station. % % replace ? a boolean that indicates what the code should do if the track % already exists. If set to ?true?, the existing track will get % overwritten. If set to ?false?, the code will end with an error message. % % hdr ? FieldTrip header. You have the option of passing in the header, or % []. If you pass in the header, it pulls data out of it, rather than % recomputing them. % % This function doesn't modify the MFF file's history data. To do that, % call mff_write_history, described below. %% function write_mff_event(filePath, trackName, events, replace, hdr) if isempty(hdr) summaryInfo = mff_getSummaryInfo(filePath); else summaryInfo = hdr.orig; end infoObj = mff_getObject(com.egi.services.mff.api.MFFResourceType.kMFF_RT_Info, 'info.xml', filePath); beginTimeStr = infoObj.getRecordTime(); MFFUtil = javaObject('com.egi.services.mff.utility.MFFUtil'); dstURI = [filePath filesep 'Events_' pathSafe(trackName) '.xml']; if ~replace if exist(dstURI, 'file') == 2 theException = MException('EGI_MFF:EVENTTRACK_EXISTS', 'Specified event track exists. If you want to overwrite, set 4th parameter to true.'); throw(theException); end end hasDurationRemainders = false; hasSampleRemainders = false; fields = fieldnames(events(1)); if ~isempty(find(strcmp(fields, 'orig'), 1)); if ~isempty(find(strcmp(fields, 'durationRemainder'), 1)); hasDurationRemainders = true; end if ~isempty(find(strcmp(fields, 'sampleRemainder'), 1)); hasSampleRemainders = true; end else end %% newEventList = javaObject('java.util.ArrayList'); numEvents = size(events,2); for p = 1:numEvents if isempty(events(p).value) event = javaObject('com.egi.services.mff.api.Event'); type = events(p).type; typeLen = size(type, 2); if typeLen > 4 typeOrig = type; type = type(1:4); fprintf('*** Event type field ''%s'' is over 4 characters. Truncating to ''%s''. ***\n', typeOrig, type); elseif typeLen < 4 typeOrig = type; for q = typeLen+1:4 type = [type '_']; end fprintf('*** Event type field ''%s'' is under 4 characters. Padding to ''%s''. ***\n', typeOrig, type); end event.setCode(type); doDurationRemainder = false; if hasDurationRemainders if events(p).orig.durationRemainder ~= 0 doDurationRemainder = true; end end duration = events(p).duration; if doDurationRemainder duration = samples2Micros(duration - 1, summaryInfo.sampRate) + events(p).orig.durationRemainder; else duration = samples2Micros(events(p).duration, summaryInfo.sampRate); end event.setDuration(duration); % get begin time in microsecs % convert from epoch sample (as if no time went by during breaks) % to sample of continuous. epochSample = events(p).sample; sample = epochSample2Sample(epochSample, summaryInfo.epochBeginSamps, summaryInfo.epochNumSamps); % Convert from samples to microsecs microsecs = samples2Micros(sample, summaryInfo.sampRate); if hasSampleRemainders microsecs = microsecs + events(p).orig.sampleRemainder; end % String timeInStringForm; % long timeMicrosecondForm; % long newTime = timeMicrosecondForm + MFFUtil.getTimeInMicroseconds(timeInStringForm); beginTimeMicrosecs = uint64(MFFUtil.getTimeInMicroseconds(beginTimeStr)); microsecsDate = uint64(microsecs + beginTimeMicrosecs); % String newTimeInStringForm = MFFUtil.getDateTime(newTime, null); % Note that the null argument will give you the default time zone. If you want a timezone from the source, then do: % String newTimeInStringForm = MFFUtil.getDateTime(newTime, MFFUtil.getTimeZone(timeInStringForm)); dateTimeStr = MFFUtil.getDateTime(microsecsDate, MFFUtil.getTimeZone(beginTimeStr)); event.setBeginTime(dateTimeStr); newEventList.add(event); end end % add events to event object delegate = javaObject('com.egi.services.mff.api.LocalMFFFactoryDelegate'); factory = javaObject('com.egi.services.mff.api.MFFFactory', delegate); resourceVal = com.egi.services.mff.api.MFFResourceType.kMFF_RT_EventTrack; resourceType = javaObject('com.egi.services.mff.api.MFFResourceType', resourceVal); % fprintf('%s %s\n', char(URI), char(resourceType)); factory.createResourceAtURI(dstURI, resourceType); newEventTrackObj = factory.openResourceAtURI(dstURI, resourceType); if ~isempty(newEventTrackObj) newEventTrackObj.setEvents(newEventList); newEventTrackObj.setTrackType('EVNT'); newEventTrackObj.setName(trackName); newEventTrackObj.saveResource(); else fprintf('Could not create event track.\n'); end function micros = samples2Micros(samples, sampRate) sampDuration = 1000000/sampRate; micros = uint64(samples*sampDuration); function sampleNum = epochSample2Sample(epochSampleNum, epochBeginSamps, epochNumSamps) epoch = 1; while (epochSampleNum > sum(epochNumSamps(1:epoch))) epoch = epoch + 1; end sampleNum = ((epochSampleNum - sum(epochNumSamps(1:epoch-1))) + epochBeginSamps(epoch)) - 1; % Unsafe Chars: <space>:/\?%*|\"<> function pathSafeFile = pathSafe(inFile) unsafeInds = find(... inFile == ' ' |... inFile == ':' |... inFile == '/' |... inFile == '\' |... inFile == '?' |... inFile == '%' |... inFile == '*' |... inFile == '|' |... inFile == '\' |... inFile == '"' |... inFile == '<' |... inFile == '>'... ); pathSafeFile = inFile; pathSafeFile(unsafeInds) = '_';
github
lcnhappe/happe-master
write_mff_history.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/egi_mff/write_mff_history.m
4,440
utf_8
c40dcab28c29f1f1502200d38126b463
%% write_mff_history.m % Matlab File % author Colin Davey % date 4/15/2014 % Copyright 2014 EGI. All rights reserved. % % This function adds an item to the list of history items. It is intended % to be run after running code that either a) creates a new mff file based % on an existing one, or b) modifies an existing one. The history item can % be seen in Net Station through the File Info->History feature. % % filePath ? The path to the .mff file. % % entryStruct has the following elements: % % name - string that corresponds to the name of the tool specification in % NetStation. For example, if you create a segmentation specification for % a VTD experiment, and call it "VTD Seg", then the string "VTD Seg" would % go here. % % method - The name of the tool (not the tool specification.) In the above % example, the string "Segmentation" would go here. % % version - The version of the tool, eg "1.0". % % beginTime - The time the tool started running. The following matlab % command creates a time in the proper format: % sprintf('%d-%02d-%02dT%02d:%02d:%02.5f',clock); % % endTime - The time the tool finished running. See beginTime, above, for % the matlab command that creates a time in the proper format. % % sourceFileList - The list of files that were processed by the tool to % generate the resulting file. For example, a tool that filters a single % file to create a filtered version of the data would have just one item in % this list. A tool that creates a grand average by averaging multiple % single-subject files would have multiple items in this list. % % settingList - A cell array of zero or more strings that express the % settings/parameters for the tool. These are optional, and are intended to % be read by humans, not machines. % % resultList - A cell array of zero or more strings that express the % results of the tool. These are optional, and are intended to be read by % humans, not machines. %% function write_mff_history(filePath, entryStruct) try mff_valid(filePath); catch theException throw(theException); end %% 1) Read in history resource. histObj = mff_getObject(com.egi.services.mff.api.MFFResourceType.kMFF_RT_History, 'history.xml', filePath); %% 2) Get the list of current entires (it might be null, in which case % create a new one and set it). if isempty(histObj) delegate = javaObject('com.egi.services.mff.api.LocalMFFFactoryDelegate'); factory = javaObject('com.egi.services.mff.api.MFFFactory', delegate); resourceVal = com.egi.services.mff.api.MFFResourceType.kMFF_RT_History; resourceType = javaObject('com.egi.services.mff.api.MFFResourceType', resourceVal); factory.createResourceAtURI([filePath filesep 'history.xml'], resourceType); histObj = factory.openResourceAtURI([filePath filesep 'history.xml'], resourceType); entryList = javaObject('java.util.ArrayList'); histObj.setEntries(entryList); else entryList = histObj.getEntries; if isempty(entryList) % Is this feasible? ie history exists, but entryList is empty? entryList = javaObject('java.util.ArrayList'); histObj.setEntries(entryList); end end %% 3) Add an Entry object to the list. entry = javaObject('com.egi.services.mff.api.Entry'); tool = javaObject('com.egi.services.mff.api.Tool'); tool.setName(entryStruct.name); tool.setKind('Transformation'); tool.setMethod(entryStruct.method); tool.setVersion(entryStruct.version); tool.setBeginTime(entryStruct.beginTime); tool.setEndTime(entryStruct.endTime); sourceFileList = javaObject('java.util.ArrayList'); for p=1:size(entryStruct.sourceFileList,2) filePathObj = javaObject('com.egi.services.mff.api.FilePath'); filePathObj.setFilePath(entryStruct.sourceFileList{p}); sourceFileList.add(filePathObj); filePathObj = []; end java.lang.Runtime.getRuntime.freeMemory; tool.setSourceFiles(sourceFileList); settingList = javaObject('java.util.ArrayList'); for p=1:size(entryStruct.settingList,2) settingList.add(entryStruct.settingList{p}); end tool.setSettings(settingList); resultList = javaObject('java.util.ArrayList'); for p=1:size(entryStruct.resultList,2) resultList.add(entryStruct.resultList{p}); end tool.setResults(resultList); entry.setEntry(tool); entry.setType('tool'); entryList.add(entry); %% 4) Save the history resource in the standard way all resources are saved. histObj.setEntries(entryList); histObj.saveResource;
github
lcnhappe/happe-master
read_mff_event.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/egi_mff/read_mff_event.m
8,001
utf_8
8f54b92417702a6bde1b09e9ea67c6a0
%% read_mff_event.m % Matlab File % author Colin Davey % date 3/2/2012, 4/15/2014 % Copyright 2012, 2014 EGI. All rights reserved. % % Takes the path to the data and returns the events in the structure % described at http://www.fieldtriptoolbox.org/reference/ft_read_event. % % filePath ? The path to the .mff file. % % hdr ? FieldTrip header. You have the option of passing in the header, or % []. If you pass in the header, it pulls data out of it, rather than % recomputing them. %% function events = read_mff_event(filePath, hdr) if isempty(hdr) summaryInfo = mff_getSummaryInfo(filePath); else summaryInfo = hdr.orig; end % Pull the information about the epochs out of the summary info epochBeginSamps = summaryInfo.epochBeginSamps; epochNumSamps = summaryInfo.epochNumSamps; epochFirstBlocks = summaryInfo.epochFirstBlocks; epochLastBlocks = summaryInfo.epochLastBlocks; % Get the start time of the recording infoObj = mff_getObject(com.egi.services.mff.api.MFFResourceType.kMFF_RT_Info, 'info.xml', filePath); beginTime = infoObj.getRecordTime(); events = []; eventInd = 0; % Create the meta data events, ie epoch breaks and time 0 events. for p = 1:size(summaryInfo.epochBeginSamps,2) eventInd = eventInd + 1; events(eventInd).type = ['break ' summaryInfo.epochType]; events(eventInd).sample = samples2EpochSample(summaryInfo.epochBeginSamps(p), epochBeginSamps, epochNumSamps); events(eventInd).value = summaryInfo.epochLabels{p}; events(eventInd).offset = []; events(eventInd).duration = summaryInfo.epochNumSamps(p); events(eventInd).timestamp = []; events(eventInd).orig.sampleRemainder = 0; events(eventInd).orig.durationRemainder = 0; events(eventInd).orig.trackname = 'metadata'; events(eventInd).orig.keys = {}; eventInds(eventInd,1) = events(eventInd).sample; eventInds(eventInd,2) = eventInd; if strcmp(summaryInfo.epochType, 'var') eventInd = eventInd + 1; events(eventInd).type = 't0'; events(eventInd).sample = samples2EpochSample((summaryInfo.epochTime0(p) + summaryInfo.epochBeginSamps(p)) - 1, epochBeginSamps, epochNumSamps); events(eventInd).value = 't0'; events(eventInd).offset = []; events(eventInd).duration = 1; events(eventInd).timestamp = []; % or calculate string events(eventInd).orig.sampleRemainder = 0; events(eventInd).orig.durationRemainder = 0; events(eventInd).orig.trackname = 'metadata'; events(eventInd).orig.keys = {}; eventInds(eventInd,1) = events(eventInd).sample; eventInds(eventInd,2) = eventInd; end end % Go through all the event tracks, if any... eventtracknamelist = summaryInfo.javaObjs.mfffileObj.getEventTrackList(false); eventtrackcount = eventtracknamelist.size(); if eventtrackcount > 0 % MFFUtil is used to for operations on string-based timestamp MFFUtil = javaObject('com.egi.services.mff.utility.MFFUtil'); for tracknum = 0:eventtrackcount-1 trackname = eventtracknamelist.get(tracknum); tracknameL = lower(trackname); if strcmp(tracknameL(end-3:end), '.xml') trackname = trackname(1:end-4); eventTrackObj = mff_getObject(com.egi.services.mff.api.MFFResourceType.kMFF_RT_EventTrack, tracknameL, filePath); eventList = eventTrackObj.getEvents; numEvents = eventList.size; for p = 0:numEvents-1 % Java arrays are 0 based theEvent = eventList.get(p); eventTime = theEvent.getBeginTime; %Need to convert to samples (get sampling rate up above) eventTimeInMicros = uint64(MFFUtil.getTimeDifferenceInMicroseconds(eventTime , beginTime)); [eventTimeInSamples, sampleRemainder] = mff_micros2Sample(eventTimeInMicros, summaryInfo.sampRate); eventTimeInEpochSamples = samples2EpochSample(eventTimeInSamples, epochBeginSamps, epochNumSamps); if eventTimeInEpochSamples < 1 % Error: invalid sample number else eventInd = eventInd + 1; % fprintf('%d %d %d\n', eventTimeInSamples, eventTimeInEpochSamples, eventTimeInSamples-eventTimeInEpochSamples); % Matlab arrays are 1 based events(eventInd).type = char(theEvent.getCode); events(eventInd).sample = eventTimeInEpochSamples; events(eventInd).orig.sampleRemainder = sampleRemainder; events(eventInd).value = []; events(eventInd).offset = []; [events(eventInd).duration, events(eventInd).orig.durationRemainder] = mff_micros2Sample(theEvent.getDuration, summaryInfo.sampRate); if events(eventInd).orig.durationRemainder > 0 events(eventInd).duration = events(eventInd).duration + 1; end events(eventInd).timestamp = []; %eventTime; events(eventInd).orig.trackname = trackname; % New code for keys. Java arrays are 0 based. keylist = theEvent.getKeys; eventkeycount = keylist.size; % events(eventInd).keys = cell(eventkeycount, 4); % Create an empty keylist in case there are no keys, % e.g. DINs. events(eventInd).orig.keys = {}; for q = 0:eventkeycount-1 theKey = keylist.get(q); theKeyCode = char(theKey.getCode); theKeyData = char(theKey.getData); theKeyDataType = char(theKey.getDataType); theKeyDescription = char(theKey.getDescription); events(eventInd).orig.keys{q+1}.code = theKeyCode; events(eventInd).orig.keys{q+1}.data = theKeyData; events(eventInd).orig.keys{q+1}.datatype = theKeyDataType; events(eventInd).orig.keys{q+1}.description = theKeyDescription; % events(eventInd).keys(q+1).code = theKeyCode; % events(eventInd).keys(q+1).data = theKeyData; % events(eventInd).keys(q+1).datatype = theKeyDataType; % events(eventInd).keys(q+1).description = theKeyDescription; % events(eventInd).keys{q+1, 1} = theKeyCode; % events(eventInd).keys{q+1, 2} = theKeyData; % events(eventInd).keys{q+1, 3} = theKeyDataType; % events(eventInd).keys{q+1, 4} = theKeyDescription; end eventInds(eventInd,1) = events(eventInd).sample; eventInds(eventInd,2) = eventInd; end end end end % Sort events, which includes metadata events and events that have come % from different tracks, by time. eventInds = sortrows(eventInds); for p = 1:eventInd nextEventInd = eventInds(p,2); sortedEvents(p) = events(nextEventInd); end events = sortedEvents; end % Converts from samples since start of recording (as if there were no % breaks) to samples in file. function epochSampleNum = samples2EpochSample(sampleNum, epochBeginSamps, epochNumSamps) numEpochs = size(epochBeginSamps,2); p = 1; epochSampleNum = 0; while (sampleNum > (epochBeginSamps(p) + epochNumSamps(p) - 1)) && (p < numEpochs) epochSampleNum = epochSampleNum + epochNumSamps(p); p = p+1; end if p <= numEpochs if sampleNum >= epochBeginSamps(p) epochSampleNum = epochSampleNum + ((sampleNum - epochBeginSamps(p))+1); else epochSampleNum = -1; % Error: sample falls between epochs end else epochSampleNum = -2; % Error: sample is after last epoch end
github
lcnhappe/happe-master
efficiency_bin.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/bct/efficiency_bin.m
2,700
utf_8
276bfa775a0cb36ac38e13fcb06ff32a
function E=efficiency_bin(A,local) %EFFICIENCY_BIN Global efficiency, local efficiency. % % Eglob = efficiency_bin(A); % Eloc = efficiency_bin(A,1); % % The global efficiency is the average of inverse shortest path length, % and is inversely related to the characteristic path length. % % The local efficiency is the global efficiency computed on the % neighborhood of the node, and is related to the clustering coefficient. % % Inputs: A, binary undirected or directed connection matrix % local, optional argument % local=0 computes global efficiency (default) % local=1 computes local efficiency % % Output: Eglob, global efficiency (scalar) % Eloc, local efficiency (vector) % % % Algorithm: algebraic path count % % Reference: Latora and Marchiori (2001) Phys Rev Lett 87:198701. % Fagiolo (2007) Phys Rev E 76:026107. % Rubinov M, Sporns O (2010) NeuroImage 52:1059-69 % % % Mika Rubinov, U Cambridge % Jonathan Clayden, UCL % 2008-2013 % Modification history: % 2008: Original (MR) % 2013: Bug fix, enforce zero distance for self-connections (JC) % 2013: Local efficiency generalized to directed networks n=length(A); %number of nodes A(1:n+1:end)=0; %clear diagonal A=double(A~=0); %enforce double precision if exist('local','var') && local %local efficiency E=zeros(n,1); for u=1:n V=find(A(u,:)|A(:,u).'); %neighbors sa=A(u,V)+A(V,u).'; %symmetrized adjacency vector e=distance_inv(A(V,V)); %inverse distance matrix se=e+e.'; %symmetrized inverse distance matrix numer=sum(sum((sa.'*sa).*se))/2; %numerator if numer~=0 denom=sum(sa).^2 - sum(sa.^2); %denominator E(u)=numer/denom; %local efficiency end end else %global efficiency e=distance_inv(A); E=sum(e(:))./(n^2-n); end function D=distance_inv(A_) l=1; %path length Lpath=A_; %matrix of paths l D=A_; %distance matrix n_=length(A_); Idx=true; while any(Idx(:)) l=l+1; Lpath=Lpath*A_; Idx=(Lpath~=0)&(D==0); D(Idx)=l; end D(~D | eye(n_))=inf; %assign inf to disconnected nodes and to diagonal D=1./D; %invert distance
github
lcnhappe/happe-master
reachdist.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/bct/reachdist.m
1,995
utf_8
fe609993c33b1602c328e2a662f2f8a5
function [R,D] = reachdist(CIJ) %REACHDIST Reachability and distance matrices % % [R,D] = reachdist(CIJ); % % The binary reachability matrix describes reachability between all pairs % of nodes. An entry (u,v)=1 means that there exists a path from node u % to node v; alternatively (u,v)=0. % % The distance matrix contains lengths of shortest paths between all % pairs of nodes. An entry (u,v) represents the length of shortest path % from node u to node v. The average shortest path length is the % characteristic path length of the network. % % Input: CIJ, binary (directed/undirected) connection matrix % % Outputs: R, reachability matrix % D, distance matrix % % Note: faster but more memory intensive than "breadthdist.m". % % Algorithm: algebraic path count. % % % Olaf Sporns, Indiana University, 2002/2007/2008 % initialize R = CIJ; D = CIJ; powr = 2; N = size(CIJ,1); CIJpwr = CIJ; % Check for vertices that have no incoming or outgoing connections. % These are "ignored" by 'reachdist'. id = sum(CIJ,1); % indegree = column sum of CIJ od = sum(CIJ,2)'; % outdegree = row sum of CIJ id_0 = find(id==0); % nothing goes in, so column(R) will be 0 od_0 = find(od==0); % nothing comes out, so row(R) will be 0 % Use these columns and rows to check for reachability: col = setxor(1:N,id_0); row = setxor(1:N,od_0); [R,D,powr] = reachdist2(CIJ,CIJpwr,R,D,N,powr,col,row); % "invert" CIJdist to get distances D = powr - D+1; % Put 'Inf' if no path found D(D==(N+2)) = Inf; D(:,id_0) = Inf; D(od_0,:) = Inf; %---------------------------------------------------------------------------- function [R,D,powr] = reachdist2(CIJ,CIJpwr,R,D,N,powr,col,row) % Olaf Sporns, Indiana University, 2002/2008 CIJpwr = CIJpwr*CIJ; R = double(R | ((CIJpwr)~=0)); D = D+R; if ((powr<=N)&&(~isempty(nonzeros(R(row,col)==0)))) powr = powr+1; [R,D,powr] = reachdist2(CIJ,CIJpwr,R,D,N,powr,col,row); end;
github
lcnhappe/happe-master
consensus_und.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/bct/consensus_und.m
3,133
utf_8
2399e05c584d7327bb19ba25e2c89812
function ciu = consensus_und(d,tau,reps) %CONSENSUS consensus clustering % % CIU = CONSENSUS(D,TAU,REPS) seeks a consensus partition of the % agreement matrix D. The algorithm used here is almost identical to the % one introduced in Lancichinetti & Fortunato (2012): The agreement % matrix D is thresholded at a level TAU to remove an weak elements. The % resulting matrix is then partitions REPS number of times using the % Louvain algorithm (in principle, any clustering algorithm that can % handle weighted matrixes is a suitable alternative to the Louvain % algorithm and can be substituted in its place). This clustering % produces a set of partitions from which a new agreement is built. If % the partitions have not converged to a single representative partition, % the above process repeats itself, starting with the newly built % agreement matrix. % % NOTE: In this implementation, the elements of the agreement matrix must % be converted into probabilities. % % NOTE: This implementation is slightly different from the original % algorithm proposed by Lanchichinetti & Fortunato. In its original % version, if the thresholding produces singleton communities, those % nodes are reconnected to the network. Here, we leave any singleton % communities disconnected. % % Inputs: D, agreement matrix with entries between 0 and 1 % denoting the probability of finding node i in the % same cluster as node j % TAU, threshold which controls the resolution of the % reclustering % REPS, number of times that the clustering algorithm is % reapplied % % Outputs: CIU, consensus partition % % References: Lancichinetti & Fortunato (2012). Consensus clustering in % complex networks. Scientific Reports 2, Article number: 336. % % Richard Betzel, Indiana University, 2012 % % modified on 3/2014 to include "unique_partitions" n = length(d); flg = 1; while flg == 1 flg = 0; dt = d.*(d >= tau).*~eye(n); if nnz(dt) == 0 ciu = (1:n)'; else ci = zeros(n,reps); for iter = 1:reps ci(:,iter) = community_louvain(dt); end ci = relabel_partitions(ci); ciu = unique_partitions(ci); nu = size(ciu,2); if nu > 1 flg = 1; d = agreement(ci)./reps; end end end function cinew = relabel_partitions(ci) [n,m] = size(ci); cinew = zeros(n,m); for i = 1:m c = ci(:,i); d = zeros(size(c)); count = 0; while sum(d ~= 0) < n count = count + 1; ind = find(c,1,'first'); tgt = c(ind); rep = c == tgt; d(rep) = count; c(rep) = 0; end cinew(:,i) = d; end function ciu = unique_partitions(ci) ci = relabel_partitions(ci); ciu = []; count = 0; c = 1:size(ci,2); while ~isempty(ci) count = count + 1; tgt = ci(:,1); ciu = [ciu,tgt]; %#ok<AGROW> dff = sum(abs(bsxfun(@minus,ci,tgt))) == 0; ci(:,dff) = []; c(dff) = []; end
github
lcnhappe/happe-master
efficiency_wei.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/bct/efficiency_wei.m
4,166
utf_8
d7b86059eb2ec0a923ab289c876fd9b0
function E=efficiency_wei(W,local) %EFFICIENCY_WEI Global efficiency, local efficiency. % % Eglob = efficiency_wei(W); % Eloc = efficiency_wei(W,1); % % The global efficiency is the average of inverse shortest path length, % and is inversely related to the characteristic path length. % % The local efficiency is the global efficiency computed on the % neighborhood of the node, and is related to the clustering coefficient. % % Inputs: W, weighted undirected or directed connection matrix % (all weights in W must be between 0 and 1) % local, optional argument % local=0 computes global efficiency (default) % local=1 computes local efficiency % % Output: Eglob, global efficiency (scalar) % Eloc, local efficiency (vector) % % Notes: % The efficiency is computed using an auxiliary connection-length % matrix L, defined as L_ij = 1/W_ij for all nonzero L_ij; This has an % intuitive interpretation, as higher connection weights intuitively % correspond to shorter lengths. % The weighted local efficiency broadly parallels the weighted % clustering coefficient of Onnela et al. (2005) and distinguishes the % influence of different paths based on connection weights of the % corresponding neighbors to the node in question. In other words, a path % between two neighbors with strong connections to the node in question % contributes more to the local efficiency than a path between two weakly % connected neighbors. Note that this weighted variant of the local % efficiency is hence not a strict generalization of the binary variant. % % Algorithm: Dijkstra's algorithm % % References: Latora and Marchiori (2001) Phys Rev Lett 87:198701. % Onnela et al. (2005) Phys Rev E 71:065103 % Fagiolo (2007) Phys Rev E 76:026107. % Rubinov M, Sporns O (2010) NeuroImage 52:1059-69 % % % Mika Rubinov, U Cambridge, 2011-2012 %Modification history % 2011: Original (based on efficiency.m and distance_wei.m) % 2013: Local efficiency generalized to directed networks n=length(W); %number of nodes L = W; A = W~=0; ind = L~=0; L(ind) = 1./L(ind); %connection-length matrix if exist('local','var') && local %local efficiency E=zeros(n,1); for u=1:n V=find(A(u,:)|A(:,u).'); %neighbors sw=W(u,V).^(1/3)+W(V,u).^(1/3).'; %symmetrized weights vector e=distance_inv_wei(L(V,V)); %inverse distance matrix se=e.^(1/3)+e.'.^(1/3); %symmetrized inverse distance matrix numer=(sum(sum((sw.'*sw).*se)))/2; %numerator if numer~=0 sa=A(u,V)+A(V,u).'; %symmetrized adjacency vector denom=sum(sa).^2 - sum(sa.^2); %denominator E(u)=numer/denom; %local efficiency end end else e=distance_inv_wei(L); E=sum(e(:))./(n^2-n); %global efficiency end function D=distance_inv_wei(W_) n_=length(W_); D=inf(n_); %distance matrix D(1:n_+1:end)=0; for u=1:n_ S=true(1,n_); %distance permanence (true is temporary) W1_=W_; V=u; while 1 S(V)=0; %distance u->V is now permanent W1_(:,V)=0; %no in-edges as already shortest for v=V T=find(W1_(v,:)); %neighbours of shortest nodes D(u,T)=min([D(u,T);D(u,v)+W1_(v,T)]);%smallest of old/new path lengths end minD=min(D(u,S)); if isempty(minD)||isinf(minD), %isempty: all nodes reached; break, %isinf: some nodes cannot be reached end; V=find(D(u,:)==minD); end end D=1./D; %invert distance D(1:n_+1:end)=0;