plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
lcnhappe/happe-master
efficiency.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/bct/efficiency.m
1,888
utf_8
6f4bd3c62d773c46f3e2ac7d16e67a86
function E=efficiency(G,local) %EFFICIENCY Global efficiency, local efficiency. % % Eglob = efficiency(A); % Eloc = efficiency(A,1); % % The global efficiency is the average of inverse shortest path length, % and is inversely related to the characteristic path length. % % The local efficiency is the global efficiency computed on the % neighborhood of the node, and is related to the clustering coefficient. % % Inputs: A, binary undirected connection matrix % local, optional argument % (local=1 computes local efficiency) % % Output: Eglob, global efficiency (scalar) % Eloc, local efficiency (vector) % % % Algorithm: algebraic path count % % Reference: Latora and Marchiori (2001) Phys Rev Lett 87:198701. % % % Mika Rubinov, UNSW, 2008-2010 if ~exist('local','var') local=0; end if local %local efficiency N=length(G); %number of nodes E=zeros(N,1); %local efficiency for u=1:N V=find(G(u,:)); %neighbors k=length(V); %degree if k>=2; %degree must be at least two e=distance_inv(G(V,V)); E(u)=sum(e(:))./(k^2-k); %local efficiency end end else N=length(G); e=distance_inv(G); E=sum(e(:))./(N^2-N); %global efficiency end function D=distance_inv(g) D=eye(length(g)); n=1; nPATH=g; %n-path matrix L=(nPATH~=0); %shortest n-path matrix while find(L,1); D=D+n.*L; n=n+1; nPATH=nPATH*g; L=(nPATH~=0).*(D==0); end D(~D)=inf; %disconnected nodes are assigned d=inf; D=1./D; %invert distance D=D-eye(length(g));
github
lcnhappe/happe-master
generative_model.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/bct/generative_model.m
23,153
utf_8
dd5cd182d827c9ede9fb54855b0cafd8
function b = generative_model(A,D,m,modeltype,modelvar,params,epsilon) %GENERATIVE_MODEL run generative model code % % B = GENERATIVE_MODEL(A,D,m,modeltype,modelvar,params) % % Generates synthetic networks using the models described in the study by % Betzel et al (2016) in Neuroimage. % % Inputs: % A, binary network of seed connections % D, Euclidean distance/fiber length matrix % m, number of connections that should be present in % final synthetic network % modeltype, specifies the generative rule (see below) % modelvar, specifies whether the generative rules are based on % power-law or exponential relationship % ({'powerlaw'}|{'exponential}) % params, either a vector (in the case of the geometric % model) or a matrix (for all other models) of % parameters at which the model should be evaluated. % epsilon, the baseline probability of forming a particular % connection (should be a very small number % {default = 1e-5}). % % Output: % B, m x number of networks matrix of connections % % % Full list of model types: % (each model type realizes a different generative rule) % % 1. 'sptl' spatial model % 2. 'neighbors' number of common neighbors % 3. 'matching' matching index % 4. 'clu-avg' average clustering coeff. % 5. 'clu-min' minimum clustering coeff. % 6. 'clu-max' maximum clustering coeff. % 7. 'clu-diff' difference in clustering coeff. % 8. 'clu-prod' product of clustering coeff. % 9. 'deg-avg' average degree % 10. 'deg-min' minimum degree % 11. 'deg-max' maximum degree % 12. 'deg-diff' difference in degree % 13. 'deg-prod' product of degree % % % Example usage: % % load demo_generative_models_data % % % get number of bi-directional connections % m = nnz(A)/2; % % % get cardinality of network % n = length(A); % % % set model type % modeltype = 'neighbors'; % % % set whether the model is based on powerlaw or exponentials % modelvar = [{'powerlaw'},{'powerlaw'}]; % % % choose some model parameters % params = [-2,0.2; -5,1.2; -1,1.5]; % nparams = size(params,1); % % % generate synthetic networks % B = generative_model(Aseed,D,m,modeltype,modelvar,params); % % % store them in adjacency matrix format % Asynth = zeros(n,n,nparams); % for i = 1:nparams; % a = zeros(n); a(B(:,i)) = 1; a = a + a'; % Asynth(:,:,i) = a; % end % % Reference: Betzel et al (2016) Neuroimage 124:1054-64. % % Richard Betzel, Indiana University/University of Pennsylvania, 2015 if ~exist('epsilon','var') epsilon = 1e-5; end n = length(D); nparams = size(params,1); b = zeros(m,nparams); switch modeltype case 'clu-avg' clu = clustering_coef_bu(A); Kseed = bsxfun(@plus,clu(:,ones(1,n)),clu')/2; for iparam = 1:nparams eta = params(iparam,1); gam = params(iparam,2); b(:,iparam) = fcn_clu_avg(A,Kseed,D,m,eta,gam,modelvar,epsilon); end case 'clu-diff' clu = clustering_coef_bu(A); Kseed = abs(bsxfun(@minus,clu(:,ones(1,n)),clu')); for iparam = 1:nparams eta = params(iparam,1); gam = params(iparam,2); b(:,iparam) = fcn_clu_diff(A,Kseed,D,m,eta,gam,modelvar,epsilon); end case 'clu-max' clu = clustering_coef_bu(A); Kseed = bsxfun(@max,clu(:,ones(1,n)),clu'); for iparam = 1:nparams eta = params(iparam,1); gam = params(iparam,2); b(:,iparam) = fcn_clu_max(A,Kseed,D,m,eta,gam,modelvar,epsilon); end case 'clu-min' clu = clustering_coef_bu(A); Kseed = bsxfun(@min,clu(:,ones(1,n)),clu'); for iparam = 1:nparams eta = params(iparam,1); gam = params(iparam,2); b(:,iparam) = fcn_clu_min(A,Kseed,D,m,eta,gam,modelvar,epsilon); end case 'clu-prod' clu = clustering_coef_bu(A); Kseed = clu*clu'; for iparam = 1:nparams eta = params(iparam,1); gam = params(iparam,2); b(:,iparam) = fcn_clu_prod(A,Kseed,D,m,eta,gam,modelvar,epsilon); end case 'deg-avg' kseed = sum(A,2); Kseed = bsxfun(@plus,kseed(:,ones(1,n)),kseed')/2; for iparam = 1:nparams eta = params(iparam,1); gam = params(iparam,2); b(:,iparam) = fcn_deg_avg(A,Kseed,D,m,eta,gam,modelvar,epsilon); end case 'deg-diff' kseed = sum(A,2); Kseed = abs(bsxfun(@minus,kseed(:,ones(1,n)),kseed')); for iparam = 1:nparams eta = params(iparam,1); gam = params(iparam,2); b(:,iparam) = fcn_deg_diff(A,Kseed,D,m,eta,gam,modelvar,epsilon); end case 'deg-max' kseed = sum(A,2); Kseed = bsxfun(@max,kseed(:,ones(1,n)),kseed'); for iparam = 1:nparams eta = params(iparam,1); gam = params(iparam,2); b(:,iparam) = fcn_deg_max(A,Kseed,D,m,eta,gam,modelvar,epsilon); end case 'deg-min' kseed = sum(A,2); Kseed = bsxfun(@min,kseed(:,ones(1,n)),kseed'); for iparam = 1:nparams eta = params(iparam,1); gam = params(iparam,2); b(:,iparam) = fcn_deg_min(A,Kseed,D,m,eta,gam,modelvar,epsilon); end case 'deg-prod' kseed = sum(A,2); Kseed = (kseed*kseed').*~eye(n); for iparam = 1:nparams eta = params(iparam,1); gam = params(iparam,2); b(:,iparam) = fcn_deg_prod(A,Kseed,D,m,eta,gam,modelvar,epsilon); end case 'neighbors' Kseed = (A*A).*~eye(n); for iparam = 1:nparams eta = params(iparam,1); gam = params(iparam,2); b(:,iparam) = fcn_nghbrs(A,Kseed,D,m,eta,gam,modelvar,epsilon); end case 'matching' Kseed = matching_ind(A); Kseed = Kseed + Kseed'; for iparam = 1:nparams eta = params(iparam,1); gam = params(iparam,2); b(:,iparam) = fcn_matching(A,Kseed,D,m,eta,gam,modelvar,epsilon); end case 'sptl' for iparam = 1:nparams eta = params(iparam,1); b(:,iparam) = fcn_sptl(A,D,m,eta,modelvar{1}); end end function b = fcn_clu_avg(A,K,D,m,eta,gam,modelvar,epsilon) K = K + epsilon; n = length(D); mseed = nnz(A)/2; A = A > 0; mv1 = modelvar{1}; mv2 = modelvar{2}; switch mv1 case 'powerlaw' Fd = D.^eta; case 'exponential' Fd = exp(eta*D); end switch mv2 case 'powerlaw' Fk = K.^gam; case 'exponential' Fk = exp(gam*K); end c = clustering_coef_bu(A); k = sum(A,2); Ff = Fd.*Fk.*~A; [u,v] = find(triu(ones(n),1)); indx = (v - 1)*n + u; P = Ff(indx); for i = (mseed + 1):m C = [0; cumsum(P)]; r = sum(rand*C(end) >= C); uu = u(r); vv = v(r); A(uu,vv) = 1; A(vv,uu) = 1; k([uu,vv]) = k([uu,vv]) + 1; bu = A(uu,:); su = A(bu,bu); bv = A(vv,:); sv = A(bv,bv); bth = bu & bv; c(bth) = c(bth) + 2./(k(bth).^2 - k(bth)); c(uu) = nnz(su)/(k(uu)*(k(uu) - 1)); c(vv) = nnz(sv)/(k(vv)*(k(vv) - 1)); c(k <= 1) = 0; bth([uu,vv]) = true; K(:,bth) = bsxfun(@plus,c(:,ones(1,sum(bth))),c(bth,:)')/2 + epsilon; K(bth,:) = bsxfun(@plus,c(:,ones(1,sum(bth))),c(bth,:)')'/2 + epsilon; switch mv2 case 'powerlaw' Ff(bth,:) = Fd(bth,:).*((K(bth,:)).^gam); Ff(:,bth) = Fd(:,bth).*((K(:,bth)).^gam); case 'exponential' Ff(bth,:) = Fd(bth,:).*exp((K(bth,:))*gam); Ff(:,bth) = Fd(:,bth).*exp((K(:,bth))*gam); end Ff = Ff.*~A; P = Ff(indx); end b = find(triu(A,1)); function b = fcn_clu_diff(A,K,D,m,eta,gam,modelvar,epsilon) K = K + epsilon; n = length(D); mseed = nnz(A)/2; A = A > 0; mv1 = modelvar{1}; mv2 = modelvar{2}; switch mv1 case 'powerlaw' Fd = D.^eta; case 'exponential' Fd = exp(eta*D); end switch mv2 case 'powerlaw' Fk = K.^gam; case 'exponential' Fk = exp(gam*K); end c = clustering_coef_bu(A); k = sum(A,2); Ff = Fd.*Fk.*~A; [u,v] = find(triu(ones(n),1)); indx = (v - 1)*n + u; P = Ff(indx); for i = (mseed + 1):m C = [0; cumsum(P)]; r = sum(rand*C(end) >= C); uu = u(r); vv = v(r); A(uu,vv) = 1; A(vv,uu) = 1; k([uu,vv]) = k([uu,vv]) + 1; bu = A(uu,:); su = A(bu,bu); bv = A(vv,:); sv = A(bv,bv); bth = bu & bv; c(bth) = c(bth) + 2./(k(bth).^2 - k(bth)); c(uu) = nnz(su)/(k(uu)*(k(uu) - 1)); c(vv) = nnz(sv)/(k(vv)*(k(vv) - 1)); c(k <= 1) = 0; bth([uu,vv]) = true; K(:,bth) = abs(bsxfun(@minus,c(:,ones(1,sum(bth))),c(bth,:)')) + epsilon; K(bth,:) = abs(bsxfun(@minus,c(:,ones(1,sum(bth))),c(bth,:)'))' + epsilon; switch mv2 case 'powerlaw' Ff(bth,:) = Fd(bth,:).*((K(bth,:)).^gam); Ff(:,bth) = Fd(:,bth).*((K(:,bth)).^gam); case 'exponential' Ff(bth,:) = Fd(bth,:).*exp((K(bth,:))*gam); Ff(:,bth) = Fd(:,bth).*exp((K(:,bth))*gam); end Ff = Ff.*~A; P = Ff(indx); end b = find(triu(A,1)); function b = fcn_clu_max(A,K,D,m,eta,gam,modelvar,epsilon) K = K + epsilon; n = length(D); mseed = nnz(A)/2; A = A > 0; mv1 = modelvar{1}; mv2 = modelvar{2}; switch mv1 case 'powerlaw' Fd = D.^eta; case 'exponential' Fd = exp(eta*D); end switch mv2 case 'powerlaw' Fk = K.^gam; case 'exponential' Fk = exp(gam*K); end c = clustering_coef_bu(A); k = sum(A,2); Ff = Fd.*Fk.*~A; [u,v] = find(triu(ones(n),1)); indx = (v - 1)*n + u; P = Ff(indx); for i = (mseed + 1):m C = [0; cumsum(P)]; r = sum(rand*C(end) >= C); uu = u(r); vv = v(r); A(uu,vv) = 1; A(vv,uu) = 1; k([uu,vv]) = k([uu,vv]) + 1; bu = A(uu,:); su = A(bu,bu); bv = A(vv,:); sv = A(bv,bv); bth = bu & bv; c(bth) = c(bth) + 2./(k(bth).^2 - k(bth)); c(uu) = nnz(su)/(k(uu)*(k(uu) - 1)); c(vv) = nnz(sv)/(k(vv)*(k(vv) - 1)); c(k <= 1) = 0; bth([uu,vv]) = true; K(:,bth) = bsxfun(@max,c(:,ones(1,sum(bth))),c(bth,:)') + epsilon; K(bth,:) = bsxfun(@max,c(:,ones(1,sum(bth))),c(bth,:)')' + epsilon; switch mv2 case 'powerlaw' Ff(bth,:) = Fd(bth,:).*((K(bth,:)).^gam); Ff(:,bth) = Fd(:,bth).*((K(:,bth)).^gam); case 'exponential' Ff(bth,:) = Fd(bth,:).*exp((K(bth,:))*gam); Ff(:,bth) = Fd(:,bth).*exp((K(:,bth))*gam); end Ff = Ff.*~A; P = Ff(indx); end b = find(triu(A,1)); function b = fcn_clu_min(A,K,D,m,eta,gam,modelvar,epsilon) K = K + epsilon; n = length(D); mseed = nnz(A)/2; A = A > 0; mv1 = modelvar{1}; mv2 = modelvar{2}; switch mv1 case 'powerlaw' Fd = D.^eta; case 'exponential' Fd = exp(eta*D); end switch mv2 case 'powerlaw' Fk = K.^gam; case 'exponential' Fk = exp(gam*K); end c = clustering_coef_bu(A); k = sum(A,2); Ff = Fd.*Fk.*~A; [u,v] = find(triu(ones(n),1)); indx = (v - 1)*n + u; P = Ff(indx); for i = (mseed + 1):m C = [0; cumsum(P)]; r = sum(rand*C(end) >= C); uu = u(r); vv = v(r); A(uu,vv) = 1; A(vv,uu) = 1; k([uu,vv]) = k([uu,vv]) + 1; bu = A(uu,:); su = A(bu,bu); bv = A(vv,:); sv = A(bv,bv); bth = bu & bv; c(bth) = c(bth) + 2./(k(bth).^2 - k(bth)); c(uu) = nnz(su)/(k(uu)*(k(uu) - 1)); c(vv) = nnz(sv)/(k(vv)*(k(vv) - 1)); c(k <= 1) = 0; bth([uu,vv]) = true; K(:,bth) = bsxfun(@min,c(:,ones(1,sum(bth))),c(bth,:)') + epsilon; K(bth,:) = bsxfun(@min,c(:,ones(1,sum(bth))),c(bth,:)')' + epsilon; switch mv2 case 'powerlaw' Ff(bth,:) = Fd(bth,:).*((K(bth,:)).^gam); Ff(:,bth) = Fd(:,bth).*((K(:,bth)).^gam); case 'exponential' Ff(bth,:) = Fd(bth,:).*exp((K(bth,:))*gam); Ff(:,bth) = Fd(:,bth).*exp((K(:,bth))*gam); end Ff = Ff.*~A; P = Ff(indx); end b = find(triu(A,1)); function b = fcn_clu_prod(A,K,D,m,eta,gam,modelvar,epsilon) K = K + epsilon; n = length(D); mseed = nnz(A)/2; A = A > 0; mv1 = modelvar{1}; mv2 = modelvar{2}; switch mv1 case 'powerlaw' Fd = D.^eta; case 'exponential' Fd = exp(eta*D); end switch mv2 case 'powerlaw' Fk = K.^gam; case 'exponential' Fk = exp(gam*K); end c = clustering_coef_bu(A); k = sum(A,2); Ff = Fd.*Fk.*~A; [u,v] = find(triu(ones(n),1)); indx = (v - 1)*n + u; P = Ff(indx); for i = (mseed + 1):m C = [0; cumsum(P)]; r = sum(rand*C(end) >= C); uu = u(r); vv = v(r); A(uu,vv) = 1; A(vv,uu) = 1; k([uu,vv]) = k([uu,vv]) + 1; bu = A(uu,:); su = A(bu,bu); bv = A(vv,:); sv = A(bv,bv); bth = bu & bv; c(bth) = c(bth) + 2./(k(bth).^2 - k(bth)); c(uu) = nnz(su)/(k(uu)*(k(uu) - 1)); c(vv) = nnz(sv)/(k(vv)*(k(vv) - 1)); c(k <= 1) = 0; bth([uu,vv]) = true; K(bth,:) = (c(bth,:)*c') + epsilon; K(:,bth) = (c*c(bth,:)') + epsilon; switch mv2 case 'powerlaw' Ff(bth,:) = Fd(bth,:).*((K(bth,:)).^gam); Ff(:,bth) = Fd(:,bth).*((K(:,bth)).^gam); case 'exponential' Ff(bth,:) = Fd(bth,:).*exp((K(bth,:))*gam); Ff(:,bth) = Fd(:,bth).*exp((K(:,bth))*gam); end Ff = Ff.*~A; P = Ff(indx); end b = find(triu(A,1)); function b = fcn_deg_avg(A,K,D,m,eta,gam,modelvar,epsilon) n = length(D); mseed = nnz(A)/2; k = sum(A,2); [u,v] = find(triu(ones(n),1)); indx = (v - 1)*n + u; D = D(indx); mv1 = modelvar{1}; mv2 = modelvar{2}; switch mv1 case 'powerlaw' Fd = D.^eta; case 'exponential' Fd = exp(eta*D); end K = K + epsilon; switch mv2 case 'powerlaw' Fk = K.^gam; case 'exponential' Fk = exp(gam*K); end P = Fd.*Fk(indx).*~A(indx); b = zeros(m,1); b(1:mseed) = find(A(indx)); for i = (mseed + 1):m C = [0; cumsum(P)]; r = sum(rand*C(end) >= C); w = [u(r),v(r)]; k(w) = k(w) + 1; switch mv2 case 'powerlaw' Fk(:,w) = [((k + k(w(1)))/2) + epsilon, ((k + k(w(2)))/2) + epsilon].^gam; Fk(w,:) = ([((k + k(w(1)))/2) + epsilon, ((k + k(w(2)))/2) + epsilon].^gam)'; case 'exponential' Fk(:,w) = exp([((k + k(w(1)))/2) + epsilon, ((k + k(w(2)))/2) + epsilon]*gam); Fk(w,:) = exp([((k + k(w(1)))/2) + epsilon, ((k + k(w(2)))/2) + epsilon]*gam)'; end P = Fd.*Fk(indx); b(i) = r; P(b(1:i)) = 0; end b = indx(b); function b = fcn_deg_diff(A,K,D,m,eta,gam,modelvar,epsilon) n = length(D); mseed = nnz(A)/2; k = sum(A,2); [u,v] = find(triu(ones(n),1)); indx = (v - 1)*n + u; D = D(indx); mv1 = modelvar{1}; mv2 = modelvar{2}; switch mv1 case 'powerlaw' Fd = D.^eta; case 'exponential' Fd = exp(eta*D); end K = K + epsilon; switch mv2 case 'powerlaw' Fk = K.^gam; case 'exponential' Fk = exp(gam*K); end P = Fd.*Fk(indx).*~A(indx); b = zeros(m,1); b(1:mseed) = find(A(indx)); for i = (mseed + 1):m C = [0; cumsum(P)]; r = sum(rand*C(end) >= C); w = [u(r),v(r)]; k(w) = k(w) + 1; switch mv2 case 'powerlaw' Fk(:,w) = (abs([k - k(w(1)), k - k(w(2))]) + epsilon).^gam; Fk(w,:) = ((abs([k - k(w(1)), k - k(w(2))]) + epsilon).^gam)'; case 'exponential' Fk(:,w) = exp((abs([k - k(w(1)), k - k(w(2))]) + epsilon)*gam); Fk(w,:) = exp((abs([k - k(w(1)), k - k(w(2))]) + epsilon)*gam)'; end P = Fd.*Fk(indx); b(i) = r; P(b(1:i)) = 0; end b = indx(b); function b = fcn_deg_min(A,K,D,m,eta,gam,modelvar,epsilon) n = length(D); mseed = nnz(A)/2; k = sum(A,2); [u,v] = find(triu(ones(n),1)); indx = (v - 1)*n + u; D = D(indx); mv1 = modelvar{1}; mv2 = modelvar{2}; switch mv1 case 'powerlaw' Fd = D.^eta; case 'exponential' Fd = exp(eta*D); end K = K + epsilon; switch mv2 case 'powerlaw' Fk = K.^gam; case 'exponential' Fk = exp(gam*K); end P = Fd.*Fk(indx).*~A(indx); b = zeros(m,1); b(1:mseed) = find(A(indx)); for i = (mseed + 1):m C = [0; cumsum(P)]; r = sum(rand*C(end) >= C); w = [u(r),v(r)]; k(w) = k(w) + 1; switch mv2 case 'powerlaw' Fk(:,w) = [min(k,k(w(1))) + epsilon, min(k,k(w(2))) + epsilon].^gam; Fk(w,:) = ([min(k,k(w(1))) + epsilon, min(k,k(w(2))) + epsilon].^gam)'; case 'exponential' Fk(:,w) = exp([min(k,k(w(1))) + epsilon, min(k,k(w(2))) + epsilon]*gam); Fk(w,:) = exp([min(k,k(w(1))) + epsilon, min(k,k(w(2))) + epsilon]*gam)'; end P = Fd.*Fk(indx); b(i) = r; P(b(1:i)) = 0; end b = indx(b); function b = fcn_deg_max(A,K,D,m,eta,gam,modelvar,epsilon) n = length(D); mseed = nnz(A)/2; k = sum(A,2); [u,v] = find(triu(ones(n),1)); indx = (v - 1)*n + u; D = D(indx); mv1 = modelvar{1}; mv2 = modelvar{2}; switch mv1 case 'powerlaw' Fd = D.^eta; case 'exponential' Fd = exp(eta*D); end K = K + epsilon; switch mv2 case 'powerlaw' Fk = K.^gam; case 'exponential' Fk = exp(gam*K); end P = Fd.*Fk(indx).*~A(indx); b = zeros(m,1); b(1:mseed) = find(A(indx)); for i = (mseed + 1):m C = [0; cumsum(P)]; r = sum(rand*C(end) >= C); w = [u(r),v(r)]; k(w) = k(w) + 1; switch mv2 case 'powerlaw' Fk(:,w) = [max(k,k(w(1))) + epsilon, max(k,k(w(2))) + epsilon].^gam; Fk(w,:) = ([max(k,k(w(1))) + epsilon, max(k,k(w(2))) + epsilon].^gam)'; case 'exponential' Fk(:,w) = exp([max(k,k(w(1))) + epsilon, max(k,k(w(2))) + epsilon]*gam); Fk(w,:) = exp([max(k,k(w(1))) + epsilon, max(k,k(w(2))) + epsilon]*gam)'; end P = Fd.*Fk(indx); b(i) = r; P(b(1:i)) = 0; end b = indx(b); function b = fcn_deg_prod(A,K,D,m,eta,gam,modelvar,epsilon) n = length(D); mseed = nnz(A)/2; k = sum(A,2); [u,v] = find(triu(ones(n),1)); indx = (v - 1)*n + u; D = D(indx); mv1 = modelvar{1}; mv2 = modelvar{2}; switch mv1 case 'powerlaw' Fd = D.^eta; case 'exponential' Fd = exp(eta*D); end K = K + epsilon; switch mv2 case 'powerlaw' Fk = K.^gam; case 'exponential' Fk = exp(gam*K); end P = Fd.*Fk(indx).*~A(indx); b = zeros(m,1); b(1:mseed) = find(A(indx)); for i = (mseed + 1):m C = [0; cumsum(P)]; r = sum(rand*C(end) >= C); w = [u(r),v(r)]; k(w) = k(w) + 1; switch mv2 case 'powerlaw' Fk(:,w) = ([k*k(w(1)) + epsilon, k*k(w(2)) + epsilon].^gam); Fk(w,:) = (([k*k(w(1)) + epsilon, k*k(w(2)) + epsilon].^gam)'); case 'exponential' Fk(:,w) = exp([k*k(w(1)) + epsilon, k*k(w(2)) + epsilon]*gam); Fk(w,:) = exp([k*k(w(1)) + epsilon, k*k(w(2)) + epsilon]*gam)'; end P = Fd.*Fk(indx); b(i) = r; P(b(1:i)) = 0; end b = indx(b); function b = fcn_nghbrs(A,K,D,m,eta,gam,modelvar,epsilon) K = K + epsilon; n = length(D); mseed = nnz(A)/2; A = A > 0; mv1 = modelvar{1}; mv2 = modelvar{2}; switch mv1 case 'powerlaw' Fd = D.^eta; case 'exponential' Fd = exp(eta*D); end switch mv2 case 'powerlaw' % gam = abs(gam); Fk = K.^gam; case 'exponential' Fk = exp(gam*K); end Ff = Fd.*Fk.*~A; [u,v] = find(triu(ones(n),1)); indx = (v - 1)*n + u; P = Ff(indx); for i = (mseed + 1):m C = [0; cumsum(P)]; r = sum(rand*C(end) >= C); uu = u(r); vv = v(r); x = A(uu,:); y = A(:,vv); A(uu,vv) = 1; A(vv,uu) = 1; K(uu,y) = K(uu,y) + 1; K(y,uu) = K(y,uu) + 1; K(vv,x) = K(vv,x) + 1; K(x,vv) = K(x,vv) + 1; switch mv2 case 'powerlaw' Ff(uu,y) = Fd(uu,y).*(K(uu,y).^gam); Ff(y,uu) = Ff(uu,y)'; Ff(vv,x) = Fd(vv,x).*(K(vv,x).^gam); Ff(x,vv) = Ff(vv,x)'; case 'exponential' Ff(uu,y) = Fd(uu,y).*exp(K(uu,y)*gam); Ff(y,uu) = Ff(uu,y)'; Ff(vv,x) = Fd(vv,x).*exp(K(vv,x)*gam); Ff(x,vv) = Ff(vv,x)'; end Ff(A) = 0; P = Ff(indx); end b = find(triu(A,1)); function b = fcn_matching(A,K,D,m,eta,gam,modelvar,epsilon) K = K + epsilon; n = length(D); mseed = nnz(A)/2; mv1 = modelvar{1}; mv2 = modelvar{2}; switch mv1 case 'powerlaw' Fd = D.^eta; case 'exponential' Fd = exp(eta*D); end switch mv2 case 'powerlaw' Fk = K.^gam; case 'exponential' Fk = exp(gam*K); end Ff = Fd.*Fk.*~A; [u,v] = find(triu(ones(n),1)); indx = (v - 1)*n + u; P = Ff(indx); for ii = (mseed + 1):m C = [0; cumsum(P)]; r = sum(rand*C(end) >= C); uu = u(r); vv = v(r); A(uu,vv) = 1; A(vv,uu) = 1; updateuu = find(A*A(:,uu)); updateuu(updateuu == uu) = []; updateuu(updateuu == vv) = []; updatevv = find(A*A(:,vv)); updatevv(updatevv == uu) = []; updatevv(updatevv == vv) = []; c1 = [A(:,uu)', A(uu,:)]; for i = 1:length(updateuu) j = updateuu(i); c2 = [A(:,j)' A(j,:)]; use = ~(~c1&~c2); use(uu) = 0; use(uu+n) = 0; use(j) = 0; use(j+n) = 0; ncon = sum(c1(use))+sum(c2(use)); if (ncon==0) K(uu,j) = epsilon; K(j,uu) = epsilon; else K(uu,j) = (2*(sum(c1(use)&c2(use))/ncon)) + epsilon; K(j,uu) = K(uu,j); end end c1 = [A(:,vv)', A(vv,:)]; for i = 1:length(updatevv) j = updatevv(i); c2 = [A(:,j)' A(j,:)]; use = ~(~c1&~c2); use(vv) = 0; use(vv+n) = 0; use(j) = 0; use(j+n) = 0; ncon = sum(c1(use))+sum(c2(use)); if (ncon==0) K(vv,j) = epsilon; K(j,vv) = epsilon; else K(vv,j) = (2*(sum(c1(use)&c2(use))/ncon)) + epsilon; K(j,vv) = K(vv,j); end end switch mv2 case 'powerlaw' Fk = K.^gam; case 'exponential' Fk = exp(gam*K); end Ff = Fd.*Fk.*~A; P = Ff(indx); end b = find(triu(A,1)); function b = fcn_sptl(A,D,m,eta,modelvar) n = length(D); mseed = nnz(A)/2; switch modelvar case 'powerlaw' Fd = D.^eta; case 'exponential' Fd = exp(eta*D); end [u,v] = find(triu(ones(n),1)); indx = (v - 1)*n + u; P = Fd(indx).*~A(indx); b = zeros(m,1); b(1:mseed) = find(A(indx)); for i = (mseed + 1):m C = [0; cumsum(P)]; r = sum(rand*C(end) >= C); b(i) = r; P = Fd(indx); P(b(1:i)) = 0; end b = indx(b);
github
lcnhappe/happe-master
evaluate_generative_model.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/bct/evaluate_generative_model.m
3,625
utf_8
6c6df608db42f67c0908af434bff6aca
function [B,E,K] = evaluate_generative_model(A,Atgt,D,modeltype,modelvar,params) % EVALUATE_GENERATIVE_MODEL generate and evaluate synthetic networks % % [B,E,K] = EVALUATE_GENERATIVE_MODEL(A,Atgt,D,m,modeltype,modelvar,params) % % Generates synthetic networks and evaluates their energy function (see % below) using the models described in the study by Betzel et al (2016) % in Neuroimage. % % Inputs: % A, binary network of seed connections % Atgt, binary network against which synthetic networks are % compared % D, Euclidean distance/fiber length matrix % m, number of connections that should be present in % final synthetic network % modeltype, specifies the generative rule (see below) % modelvar, specifies whether the generative rules are based on % power-law or exponential relationship % ({'powerlaw'}|{'exponential}) % params, either a vector (in the case of the geometric % model) or a matrix (for all other models) of % parameters at which the model should be evaluated. % % Outputs: % B, m x number of networks matrix of connections % E, energy for each synthetic network % K, Kolmogorov-Smirnov statistics for each synthetic % network. % % Full list of model types: % (each model type realizes a different generative rule) % % 1. 'sptl' spatial model % 2. 'neighbors' number of common neighbors % 3. 'matching' matching index % 4. 'clu-avg' average clustering coeff. % 5. 'clu-min' minimum clustering coeff. % 6. 'clu-max' maximum clustering coeff. % 7. 'clu-diff' difference in clustering coeff. % 8. 'clu-prod' product of clustering coeff. % 9. 'deg-avg' average degree % 10. 'deg-min' minimum degree % 11. 'deg-max' maximum degree % 12. 'deg-diff' difference in degree % 13. 'deg-prod' product of degree % % Note: Energy is calculated in exactly the same way as in Betzel et % al (2016). There are four components to the energy are KS statistics % comparing degree, clustering coefficient, betweenness centrality, and % edge length distributions. Energy is calculated as the maximum across % all four statistics. % % Reference: Betzel et al (2016) Neuroimage 124:1054-64. % % Richard Betzel, Indiana University/University of Pennsylvania, 2015 m = nnz(Atgt)/2; n = length(Atgt); x = cell(4,1); x{1} = sum(Atgt,2); x{2} = clustering_coef_bu(Atgt); x{3} = betweenness_bin(Atgt)'; x{4} = D(triu(Atgt,1) > 0); B = generative_model(A,D,m,modeltype,modelvar,params); nB = size(B,2); K = zeros(nB,4); for iB = 1:nB b = zeros(n); b(B(:,iB)) = 1; b = b + b'; y = cell(4,1); y{1} = sum(b,2); y{2} = clustering_coef_bu(b); y{3} = betweenness_bin(b)'; y{4} = D(triu(b,1) > 0); for j = 1:4 K(iB,j) = fcn_ks(x{j},y{j}); end end E = max(K,[],2); function kstat = fcn_ks(x1,x2) binEdges = [-inf ; sort([x1;x2]) ; inf]; binCounts1 = histc (x1 , binEdges, 1); binCounts2 = histc (x2 , binEdges, 1); sumCounts1 = cumsum(binCounts1)./sum(binCounts1); sumCounts2 = cumsum(binCounts2)./sum(binCounts2); sampleCDF1 = sumCounts1(1:end-1); sampleCDF2 = sumCounts2(1:end-1); deltaCDF = abs(sampleCDF1 - sampleCDF2); kstat = max(deltaCDF);
github
lcnhappe/happe-master
make_motif34lib.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/bct/make_motif34lib.m
2,838
utf_8
68f4ca45316fc99ab16adbd5bda80236
function make_motif34lib %MAKE_MOTIF34LIB Auxiliary motif library function % % make_motif34lib; % % This function generates the motif34lib.mat library required for all % other motif computations. % % % Mika Rubinov, UNSW, 2007-2010 %#ok<*ASGLU> [M3,M3n,ID3,N3]=motif3generate; [M4,M4n,ID4,N4]=motif4generate; save motif34lib; function [M,Mn,ID,N]=motif3generate n=0; M=false(54,6); %isomorphs CL=zeros(54,6,'uint8'); %canonical labels (predecessors of IDs) cl=zeros(1,6,'uint8'); for i=0:2^6-1 %loop through all subgraphs m=dec2bin(i); m=[num2str(zeros(1,6-length(m)), '%d') m]; %#ok<AGROW> G=str2num ([ ... '0' ' ' m(3) ' ' m(5) ; m(1) ' ' '0' ' ' m(6) ; m(2) ' ' m(4) ' ' '0' ]); %#ok<ST2NM> Ko=sum(G,2); Ki=sum(G,1).'; if all(Ko|Ki), %if subgraph weakly-connected n=n+1; cl(:)=sortrows([Ko Ki]).'; CL(n,:)=cl; %assign motif label to isomorph M(n,:)=G([2:4 6:8]); end end [u1,u2,ID]=unique(CL,'rows'); %convert CLs into motif IDs %convert IDs into Sporns & Kotter classification id_mika= [1 3 4 6 7 8 11]; id_olaf= -[3 6 1 11 4 7 8]; for id=1:length(id_mika) ID(ID==id_mika(id))=id_olaf(id); end ID=abs(ID); [X,ind]=sortrows(ID); ID=ID(ind,:); %sort IDs M=M(ind,:); %sort isomorphs N=sum(M,2); %number of edges Mn=uint32(sum(repmat(10.^(5:-1:0),size(M,1),1).*M,2)); %M as a single number function [M,Mn,ID,N]=motif4generate n=0; M=false(3834,12); %isomorphs CL=zeros(3834,16,'uint8'); %canonical labels (predecessors of IDs) cl=zeros(1,16,'uint8'); for i=0:2^12-1 %loop through all subgraphs m=dec2bin(i); m=[num2str(zeros(1,12-length(m)), '%d') m]; %#ok<AGROW> G=str2num ([ ... '0' ' ' m(4) ' ' m(7) ' ' m(10) ; m(1) ' ' '0' ' ' m(8) ' ' m(11) ; m(2) ' ' m(5) ' ' '0' ' ' m(12) ; m(3) ' ' m(6) ' ' m(9) ' ' '0' ]); %#ok<ST2NM> Gs=G+G.'; v=Gs(1,:); for j=1:2, v=any(Gs(v~=0,:),1)+v; end if v %if subgraph weakly connected n=n+1; G2=(G*G)~=0; Ko=sum(G,2); Ki=sum(G,1).'; Ko2=sum(G2,2); Ki2=sum(G2,1).'; cl(:)=sortrows([Ki Ko Ki2 Ko2]).'; CL(n,:)=cl; %assign motif label to isomorph M(n,:)=G([2:5 7:10 12:15]); end end [u1,u2,ID]=unique(CL,'rows'); %convert CLs into motif IDs [X,ind]=sortrows(ID); ID=ID(ind,:); %sort IDs M=M(ind,:); %sort isomorphs N=sum(M,2); %number of edges Mn=uint64(sum(repmat(10.^(11:-1:0),size(M,1),1).*M,2)); %M as a single number
github
lcnhappe/happe-master
LoadBinary.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neuroscope/LoadBinary.m
9,722
iso_8859_13
ac6b47d239db8b0b4e76bb90c8d6263b
function data = LoadBinary(filename,varargin) %LoadBinary - Load data from a multiplexed binary file. % % Reading a subset of the data can be done in two different manners: either % by specifying start time and duration (more intuitive), or by indicating % the position and size of the subset in terms of number of records (more % accurate) - a 'record' is a chunk of data containing one sample for each % channel. % % LoadBinary can also deal with lists of start times and durations (or % offsets and number of records). % % USAGE % % data = LoadBinary(filename,<options>) % % filename file to read % <options> optional list of property-value pairs (see table below) % % ========================================================================= % Properties Values % ------------------------------------------------------------------------- % 'frequency' sampling rate (in Hz, default = 20kHz) % 'start' position to start reading (in s, default = 0) % 'duration' duration to read (in s, default = Inf) % 'offset' position to start reading (in records, default = 0) % 'nRecords' number of records to read (default = Inf) % 'samples' same as above (for backward compatibility reasons) % 'nChannels' number of data channels in the file (default = 1) % 'channels' channels to read (default = all) % 'precision' sample precision (default = 'int16') % 'skip' number of records to skip after each record is read % (default = 0) % ========================================================================= % Copyright (C) 2004-2013 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. % Default values nChannels = 1; precision = 'int16'; skip = 0; frequency = 20000; channels = []; start = 0; duration = Inf; offset = 0; nRecords = Inf; time = false; records = false; if nargin < 1 | mod(length(varargin),2) ~= 0, error('Incorrect number of parameters (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).'); end % Parse options for i = 1:2:length(varargin), if ~ischar(varargin{i}), error(['Parameter ' num2str(i+3) ' is not a property (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).']); end switch(lower(varargin{i})), case 'frequency', frequency = varargin{i+1}; if ~isdscalar(frequency,'>0'), error('Incorrect value for property ''frequency'' (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).'); end case 'start', start = varargin{i+1}; if ~isdvector(start), error('Incorrect value for property ''start'' (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).'); end if start < 0, start = 0; end time = true; case 'duration', duration = varargin{i+1}; if ~isdvector(duration,'>=0'), error('Incorrect value for property ''duration'' (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).'); end time = true; case 'offset', offset = varargin{i+1}; if ~isivector(offset), error('Incorrect value for property ''offset'' (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).'); end if offset < 0, offset = 0; end records = true; case {'nrecords','samples'}, nRecords = varargin{i+1}; if ~isivector(nRecords,'>=0'), error('Incorrect value for property ''nRecords'' (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).'); end if length(nRecords) > 1 && any(isinf(nRecords(1:end-1))), error('Incorrect value for property ''nRecords'' (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).'); end records = true; case 'nchannels', nChannels = varargin{i+1}; if ~isiscalar(nChannels,'>0'), error('Incorrect value for property ''nChannels'' (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).'); end case 'channels', channels = varargin{i+1}; if ~isivector(channels,'>=0'), error('Incorrect value for property ''channels'' (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).'); end case 'precision', precision = varargin{i+1}; if ~isstring(precision), error('Incorrect value for property ''precision'' (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).'); end case 'skip', skip = varargin{i+1}; if ~isiscalar(skip,'>=0'), error('Incorrect value for property ''skip'' (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).'); end otherwise, error(['Unknown property ''' num2str(varargin{i}) ''' (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).']); end end % Either start+duration, or offset+size if time && records, error(['Data subset can be specified either in time or in records, but not both (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).']); end % By default, load all channels if isempty(channels), channels = 1:nChannels; end % Check consistency between channel IDs and number of channels if any(channels>nChannels), error('Cannot load specified channels (listed channel IDs inconsistent with total number of channels).'); end % Open file if ~exist(filename), error(['File ''' filename ''' not found.']); end f = fopen(filename,'r'); if f == -1, error(['Cannot read ' filename ' (insufficient access rights?).']); end % Size of one data point (in bytes) sampleSize = 0; switch precision, case {'uchar','unsigned char','schar','signed char','int8','integer*1','uint8','integer*1'}, sampleSize = 1; case {'int16','integer*2','uint16','integer*2'}, sampleSize = 2; case {'int32','integer*4','uint32','integer*4','single','real*4','float32','real*4'}, sampleSize = 4; case {'int64','integer*8','uint64','integer*8','double','real*8','float64','real*8'}, sampleSize = 8; end % Position and number of records of the data subset if time, if length(duration) == 1, duration = repmat(duration,size(start,1),1); elseif length(duration) ~= length(start), error('Start and duration lists have different lengths (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).'); end dataOffset = floor(start*frequency)*nChannels*sampleSize; nRecords = floor(duration*frequency); else if length(nRecords) == 1, nRecords = repmat(nRecords,size(offset,1),1); elseif length(nRecords) ~= length(offset), error('Offset and number of records lists have different lengths (type ''help <a href="matlab:help LoadBinary">LoadBinary</a>'' for details).'); end dataOffset = offset*nChannels*sampleSize; end % Determine total number of records in file fileStart = ftell(f); status = fseek(f,0,'eof'); if status ~= 0, fclose(f); error('Error reading the data file (possible reasons include trying to read past the end of the file).'); end fileStop = ftell(f); % Last number of records may be infinite, compute explicit value if isinf(nRecords(end)), status = fseek(f,dataOffset(end),'bof'); if status ~= 0, fclose(f); error('Error reading the data file (possible reasons include trying to read past the end of the file).'); end lastOffset = ftell(f); lastNRecords = floor((fileStop-lastOffset)/nChannels/sampleSize); nRecords(end) = lastNRecords; end % Preallocate memory data = zeros(sum(nRecords)/(skip+1),length(channels)); % Loop through list of start+duration or offset+nRecords i = 1; for k = 1:length(dataOffset), % Position file index for reading status = fseek(f,dataOffset(k),'bof'); fileOffset = ftell(f); if status ~= 0, fclose(f); error('Could not start reading (possible reasons include trying to read past the end of the file).'); end % (floor in case all channels do not have the same number of samples) maxNRecords = floor((fileStop-fileOffset)/nChannels/sampleSize); if nRecords(k) > maxNRecords, nRecords(k) = maxNRecords; end % For large amounts of data, read chunk by chunk maxSamplesPerChunk = 10000; nSamples = nRecords(k)*nChannels; if nSamples <= maxSamplesPerChunk, d = LoadChunk(f,nChannels,channels,nRecords(k),precision,skip*sampleSize); [m,n] = size(d); if m == 0, break; end data(i:i+m-1,:) = d; i = i+m; else % Determine chunk duration and number of chunks nSamplesPerChunk = floor(maxSamplesPerChunk/nChannels)*nChannels; nChunks = floor(nSamples/nSamplesPerChunk)/(skip+1); % Read all chunks for j = 1:nChunks, d = LoadChunk(f,nChannels,channels,nSamplesPerChunk/nChannels,precision,skip*sampleSize); [m,n] = size(d); if m == 0, break; end data(i:i+m-1,:) = d; i = i+m; end % If the data size is not a multiple of the chunk size, read the remainder remainder = nSamples - nChunks*nSamplesPerChunk; if remainder ~= 0, d = LoadChunk(f,nChannels,channels,remainder/nChannels,precision,skip*sampleSize); [m,n] = size(d); if m == 0, break; end data(i:i+m-1,:) = d; i = i+m; end end end fclose(f); % --------------------------------------------------------------------------------------------------------- function data = LoadChunk(fid,nChannels,channels,nSamples,precision,skip) if skip ~= 0, data = fread(fid,[nChannels nSamples],[int2str(nChannels) '*' precision],skip*nChannels); else data = fread(fid,[nChannels nSamples],precision); end data = data'; if isempty(data), warning('No data read (trying to read past file end?)'); elseif ~isempty(channels), data = data(:,channels); end
github
lcnhappe/happe-master
isivector.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neuroscope/private/isivector.m
2,128
iso_8859_13
1468dbe277d48ba93d39a34470a2a792
%isivector - Test if parameter is a vector of integers satisfying an optional list of tests. % % USAGE % % test = isivector(x,test1,test2,...) % % x parameter to test % test1... optional list of additional tests (see examples below) % % EXAMPLES % % % Test if x is a vector of doubles % isivector(x) % % % Test if x is a vector of strictly positive doubles % isivector(x,'>0') % % % Test if x is a vector of doubles included in [2,3] % isivector(x,'>=2','<=3') % % % Special test: test if x is a vector of doubles of length 3 % isivector(x,'#3') % % % Special test: test if x is a vector of strictly ordered doubles % isivector(x,'>') % % NOTE % % The tests ignore NaNs, e.g. isivector([500 nan]), isivector([1 nan 3],'>0') and % isivector([nan -7],'<=0') all return 1. % % SEE ALSO % % See also isdmatrix, isdvector, isdscalar, isimatrix, isiscalar, isstring, % islscalar, islvector, islmatrix. % % Copyright (C) 2010 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = isivector(x,varargin) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help isivector">isivector</a>'' for details).'); end % Test: double, vector test = isa(x,'double') & isvector(x); % Ignore NaNs x = x(~isnan(x)); % Test: integers? test = test & all(round(x)==x); % Optional tests for i = 1:length(varargin), try if varargin{i}(1) == '#', if length(x) ~= str2num(varargin{i}(2:end)), test = false; return; end elseif isstring(varargin{i},'>','>=','<','<='), dx = diff(x); if ~eval(['all(0' varargin{i} 'dx);']), test = false; return; end else if ~eval(['all(x' varargin{i} ');']), test = false; return; end end catch err error(['Incorrect test ''' varargin{i} ''' (type ''help <a href="matlab:help isivector">isivector</a>'' for details).']); end end
github
lcnhappe/happe-master
isradians.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neuroscope/private/isradians.m
1,179
iso_8859_13
b6d8ed7786fab2bd646134c1424d8304
%isradians - Test if parameter is in range [0,2pi] or [-pi,pi]. % % USAGE % % test = isradians(x) % % x array to test (NaNs are ignored) % % OUTPUT % % range 0 if uncertain (issues a warning) % 1 for [-pi,pi] % 2 for [0,2pi] % SEE ALSO % % See also wrap. % % Copyright (C) 2010 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = isradians(x) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help isradians">isradians</a>'' for details).'); end if ~isa(x,'double'), test = 0; return; end % Ignore NaN x = x(~isnan(x)); if isempty(x), test = 0; return; end % Min and max x = x(:); m = min(x); M = max(x); % Range test if m >= -pi && M <= pi, test = 1; elseif m >=0 && M <= 2*pi, test = 2; else warning('Angles are neither in [0,2pi] nor in [-pi,pi] (make sure they are in radians).'); test = 0; end
github
lcnhappe/happe-master
isiscalar.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neuroscope/private/isiscalar.m
1,623
iso_8859_13
6b14f01efdb2893077da44a97760eecd
%isiscalar - Test if parameter is a scalar (integer) satisfying an optional list of tests. % % USAGE % % test = isiscalar(x,test1,test2,...) % % x parameter to test % test1... optional list of additional tests % % EXAMPLES % % % Test if x is a scalar (double) % isiscalar(x) % % % Test if x is a strictly positive scalar (double) % isiscalar(x,'>0') % % % Test if x is a scalar (double) included in [2,3] % isiscalar(x,'>=2','<=3') % % NOTE % % The tests ignore NaN, e.g. isiscalar(nan), isiscalar(nan,'>0') and isiscalar(nan,'<=0') % all return 1. % % SEE ALSO % % See also isdmatrix, isdvector, isdscalar, isimatrix, isivector, isstring, % islscalar, islvector, islmatrix. % % Copyright (C) 2010 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = isiscalar(x,varargin) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help isiscalar">isiscalar</a>'' for details).'); end % Test: double, scalar test = isa(x,'double') & isscalar(x); if ~test, return; end % Test: integers? test = test & round(x)==x; % Optional tests for i = 1:length(varargin), try if ~eval(['x' varargin{i} ';']), test = false; return; end catch err error(['Incorrect test ''' varargin{i} ''' (type ''help <a href="matlab:help isiscalar">isiscalar</a>'' for details).']); end end
github
lcnhappe/happe-master
islvector.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neuroscope/private/islvector.m
1,685
iso_8859_13
0dfac49b5831a12166d7cfbeafcd5445
%islvector - Test if parameter is a (pseudo) logical vector satisfying an optional list of tests. % % USAGE % % test = islvector(x,test1,test2,...) % % x parameter to test % test1... optional list of additional tests (see examples below) % % EXAMPLES % % % Test if x is a logical vector % islvector(x) % % % Special test: test if x is a logical vector of length 3 % islvector(x,'#3') % % NOTE % % To be considered logical, the vector should contain only values 0 and 1, but it % does not need to actually be of class 'logical' (class(x) could be e.g. 'double'). % % SEE ALSO % % See also islscalar, islmatrix, isdmatrix, isdvector, isdscalar, isimatrix, isiscalar, % isstring. % % Copyright (C) 2010-2011 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = islvector(x,varargin) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help islvector">islvector</a>'' for details).'); end % Test: logical, vector test = islogical(x) & isvector(x); % Optional tests for i = 1:length(varargin), try if varargin{i}(1) == '#', if length(x) ~= str2num(varargin{i}(2:end)), test = false; return; end end catch err error(['Incorrect test ''' varargin{i} ''' (type ''help <a href="matlab:help islvector">islvector</a>'' for details).']); end end function test = islogical(x) test = builtin('islogical',x) | all(x(:)==0|x(:)==1);
github
lcnhappe/happe-master
wrap.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neuroscope/private/wrap.m
974
iso_8859_13
9fba4315faafeb5a9184f843e7593872
%wrap - Set radian angles in range [0,2pi] or [-pi,pi]. % % USAGE % % y = wrap(x,range) % % x angles in radians % range optional: 1 for [-pi,pi] (default) % 2 for [0,2pi] % % SEE ALSO % % See also isradians. % % Copyright (C) 2010-2011 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function y = wrap(x,range) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help wrap">wrap</a>'' for details).'); end if nargin < 2, range = 1; end if ~isa(x,'double'), y = []; return; end % Determine angle in [0,2*pi] y = mod(x,2*pi); % Change range if necessary if range == 1, change = y > pi; y(change) = y(change)-2*pi; end
github
lcnhappe/happe-master
isimatrix.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neuroscope/private/isimatrix.m
1,711
iso_8859_13
301153c731a86f3cf9ab2cd3471a5d60
%isimatrix - Test if parameter is a matrix of integers (>= 2 columns). % % USAGE % % test = isimatrix(x,test1,test2,...) % % x parameter to test % test1... optional list of additional tests % % EXAMPLES % % % Test if x is a matrix of doubles % isimatrix(x) % % % Test if x is a matrix of strictly positive doubles % isimatrix(x,'>0') % % NOTE % % The tests ignore NaNs, e.g. isimatrix([500 nan;4 79]), isimatrix([1 nan 3],'>0') and % isimatrix([nan -7;nan nan;-2 -5],'<=0') all return 1. % % SEE ALSO % % See also isdmatrix, isdvector, isdscalar, isivector, isiscalar, isstring, % islscalar, islvector, islmatrix. % % Copyright (C) 2010 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = isimatrix(x,varargin) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help isimatrix">isimatrix</a>'' for details).'); end % Test: doubles, two dimensions, two or more columns? test = isa(x,'double') & length(size(x)) == 2 & size(x,2) >= 2; % Ignore NaNs (this reshapes the matrix, but it does not matter for the remaining tests) x = x(~isnan(x)); % Test: integers? test = test & all(round(x)==x); % Optional tests for i = 1:length(varargin), try if ~eval(['all(x(:)' varargin{i} ');']), test = false; return; end catch err error(['Incorrect test ''' varargin{i} ''' (type ''help <a href="matlab:help isimatrix">isimatrix</a>'' for details).']); end end
github
lcnhappe/happe-master
islscalar.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neuroscope/private/islscalar.m
1,077
iso_8859_13
af0d9269f1590dee3176575b0083aced
%islscalar - Test if parameter is a (pseudo) logical scalar. % % USAGE % % test = islscalar(x) % % x parameter to test % % NOTE % % To be considered logical, the scalar should be equal to 0 or 1, but it does % not need to actually be of class 'logical' (class(x) could be e.g. 'double'). % % SEE ALSO % % See also islvector, islmatrix, isdmatrix, isdvector, isdscalar, isimatrix, isivector, % isstring. % % Copyright (C) 2010-2011 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = islscalar(x) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help islscalar">islscalar</a>'' for details).'); end % Test: double, scalar test = islogical(x) & isscalar(x); function test = islogical(x) test = builtin('islogical',x) | all(x(:)==0|x(:)==1);
github
lcnhappe/happe-master
isdvector.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neuroscope/private/isdvector.m
2,081
iso_8859_13
5ef70521f0fa1b770ada8d42d0fe9bee
%isdvector - Test if parameter is a vector of doubles satisfying an optional list of tests. % % USAGE % % test = isdvector(x,test1,test2,...) % % x parameter to test % test1... optional list of additional tests (see examples below) % % EXAMPLES % % % Test if x is a vector of doubles % isdvector(x) % % % Test if x is a vector of strictly positive doubles % isdvector(x,'>0') % % % Test if x is a vector of doubles included in [2,3] % isdvector(x,'>=2','<=3') % % % Special test: test if x is a vector of doubles of length 3 % isdvector(x,'#3') % % % Special test: test if x is a vector of strictly ordered doubles % isdvector(x,'>') % % NOTE % % The tests ignore NaNs, e.g. isdvector([5e-3 nan]), isdvector([1.7 nan 3],'>0') and % isdvector([nan -7.4],'<=0') all return 1. % % SEE ALSO % % See also isdmatrix, isdscalar, isimatrix, isivector, isiscalar, isstring, % islscalar, islvector, islmatrix. % % Copyright (C) 2010 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = isdvector(x,varargin) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help isdvector">isdvector</a>'' for details).'); end % Test: double, vector test = isa(x,'double') & isvector(x); % Ignore NaNs x = x(~isnan(x)); % Optional tests for i = 1:length(varargin), try if varargin{i}(1) == '#', if length(x) ~= str2num(varargin{i}(2:end)), test = false; return; end elseif isstring(varargin{i},'>','>=','<','<='), dx = diff(x); if ~eval(['all(0' varargin{i} 'dx);']), test = false; return; end else if ~eval(['all(x' varargin{i} ');']), test = false; return; end end catch err error(['Incorrect test ''' varargin{i} ''' (type ''help <a href="matlab:help isdvector">isdvector</a>'' for details).']); end end
github
lcnhappe/happe-master
isstring.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neuroscope/private/isstring.m
992
iso_8859_13
3f0150034c5c2e51b50c80fc3828fd12
%isstring - Test if parameter is an (admissible) character string. % % USAGE % % test = isstring(x,string1,string2,...) % % x item to test % string1... optional list of admissible strings % % SEE ALSO % % See also isdmatrix, isdvector, isdscalar, isimatrix, isivector, isiscalar. % % Copyright (C) 2004-2010 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = isstring(x,varargin) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help isstring">isstring</a>'' for details).'); end test = true; if ~ischar(x), test = false; return; end if isempty(varargin), return; end for i = 1:length(varargin), if strcmp(x,varargin{i}), return; end end test = false;
github
lcnhappe/happe-master
islmatrix.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neuroscope/private/islmatrix.m
1,149
iso_8859_13
2e0a52b0be376a939b2c68ef383358b2
%islmatrix - Test if parameter is a logical matrix (>= 2 columns). % % USAGE % % test = islmatrix(x) % % x parameter to test % % NOTE % % To be considered logical, the matrix should contain only values 0 and 1, but it % does not need to actually be of class 'logical' (class(x) could be e.g. 'double'). % % SEE ALSO % % See also islscalar, islvector, isdmatrix, isdvector, isdscalar, isivector, isiscalar, % isstring. % % Copyright (C) 2010-2011 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = islmatrix(x) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help islmatrix">islmatrix</a>'' for details).'); end % Test: logical, two dimensions, two or more columns? test = islogical(x) & length(size(x)) == 2 & size(x,2) >= 2; function test = islogical(x) test = builtin('islogical',x) | all(x(:)==0|x(:)==1);
github
lcnhappe/happe-master
isdscalar.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neuroscope/private/isdscalar.m
1,575
iso_8859_13
01e7b8dfec919c2f708c7a25d96262e3
%isdscalar - Test if parameter is a scalar (double) satisfying an optional list of tests. % % USAGE % % test = isdscalar(x,test1,test2,...) % % x parameter to test % test1... optional list of additional tests % % EXAMPLES % % % Test if x is a scalar (double) % isdscalar(x) % % % Test if x is a strictly positive scalar (double) % isdscalar(x,'>0') % % % Test if x is a scalar (double) included in [2,3] % isdscalar(x,'>=2','<=3') % % NOTE % % The tests ignore NaN, e.g. isdscalar(nan), isdscalar(nan,'>0') and isdscalar(nan,'<=0') % all return 1. % % SEE ALSO % % See also isdmatrix, isdvector, isimatrix, isivector, isiscalar, isstring, % islscalar, islvector, islmatrix. % % Copyright (C) 2010 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = isdscalar(x,varargin) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help isdscalar">isdscalar</a>'' for details).'); end % Test: double, scalar test = isa(x,'double') & isscalar(x); if ~test, return; end % Optional tests for i = 1:length(varargin), try if ~eval(['x' varargin{i} ';']), test = false; return; end catch err error(['Incorrect test ''' varargin{i} ''' (type ''help <a href="matlab:help isdscalar">isdscalar</a>'' for details).']); end end
github
lcnhappe/happe-master
isdmatrix.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neuroscope/private/isdmatrix.m
1,656
iso_8859_13
ba7943baf9c16023dd749f34097850df
%isdmatrix - Test if parameter is a matrix of doubles (>= 2 columns). % % USAGE % % test = isdmatrix(x,test1,test2,...) % % x parameter to test % test1... optional list of additional tests % % EXAMPLES % % % Test if x is a matrix of doubles % isdmatrix(x) % % % Test if x is a matrix of strictly positive doubles % isdmatrix(x,'>0') % % NOTE % % The tests ignore NaNs, e.g. isdmatrix([5e-3 nan;4 79]), isdmatrix([1.7 nan 3],'>0') and % isdmatrix([nan -7.4;nan nan;-2.3 -5],'<=0') all return 1. % % SEE ALSO % % See also isdvector, isdscalar, isimatrix, isivector, isiscalar, isstring, % islscalar, islvector, islmatrix. % % Copyright (C) 2010 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = isdmatrix(x,varargin) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help isdmatrix">isdmatrix</a>'' for details).'); end % Test: doubles, two dimensions, two or more columns? test = isa(x,'double') & length(size(x)) == 2 & size(x,2) >= 2; % Ignore NaNs (this reshapes the matrix, but it does not matter for the tests) x = x(~isnan(x)); % Optional tests for i = 1:length(varargin), try if ~eval(['all(x(:)' varargin{i} ');']), test = false; return; end catch err error(['Incorrect test ''' varargin{i} ''' (type ''help <a href="matlab:help isdmatrix">isdmatrix</a>'' for details).']); end end
github
lcnhappe/happe-master
readneuronedata.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neurone/readneuronedata.m
3,668
utf_8
8b13da2d37c92187282b24464ba2d0cf
% readneuronedata() - Read NeurOne Binary files % % Usage: >> data = readneuronedata(dataFiles,nChannels,chans) % % =================================================================== % Inputs: % dataFiles - A cell structure containing full paths for data % files to be read. This is input argument is % required. % nChannels - Another required input argument: % the total number of channels. % chans - A vector containing the channel numbers to be % read. They have to be arranged in an ascending % order. This input argument is optional. % ==================================================================== % Output: % data - A matrix where all numerical data is stored. % The data is arranged so that the data for each % channel is stored in a row according % to its number. % % ======================================================================== % NOTE: % This file is part of the NeurOne data import plugin for EEGLAB. % ======================================================================== % % Current version: 1.0.3.4 (2016-06-17) % Author: Mega Electronics function data = readneuronedata(dataFiles,nChannels,chans) %% Parse input arguments p = inputParser; p.addRequired('dataFiles', @iscellstr); p.addRequired('nChannels', @isnumeric); p.addOptional('chans', 0, @isnumeric); p.parse(dataFiles, nChannels, chans); arglist=p.Results; %% Prepare reading data nDataFiles = numel(arglist.dataFiles); chans = arglist.chans; nChannels = arglist.nChannels; if chans==0 chans=1:nChannels; end % Get all file sizes fSize=zeros(1,nDataFiles); tmp={}; for k=1:nDataFiles tmp{k,1}=dir(dataFiles{k,1}); fSize(1,k)=tmp{k,1}.bytes; end fSizes=cumsum(fSize); % Total size of the data totalSize=sum(fSize); % Total number of data points (per channel) dataPntsTotal=(totalSize/4)/nChannels; % Number of data points in each binary file (per channel) dataPnts=(fSize./4)./nChannels; %% Read binary data fprintf('Allocating memory...\n') data=zeros(numel(chans),dataPntsTotal); % Option 1: Read all channels at once (faster method) if numel(chans)==nChannels fprintf('Reading data...'); data=data(:); readidx=[0 (fSizes/4)]; for n=1:nDataFiles fid = fopen([dataFiles{n}], 'rb'); data((1+readidx(n)):readidx(n+1),1)=fread(fid, ... fSize(n)/4,'int32'); fclose(fid); end data=reshape(data,nChannels,dataPntsTotal); fprintf('%s','Done'); else % Option 2: Read only specific channels to save memory fprintf('Reading data... 0%%'); readidx=[0 (fSizes/4)./nChannels]; % Read channels one by one for k=1:numel(chans) for n=1:nDataFiles fid = fopen([dataFiles{n}], 'rb'); fseek(fid, 4*(chans(k) - 1), 'bof'); data(k,(1+readidx(n)):readidx(n+1)) = fread(fid, ... dataPnts(n),'int32',4*(nChannels-1))'; fclose(fid); end % Print progress to the command window ii = floor(k/numel(chans)*100); if ii<10 ii = [num2str(ii) '%']; fprintf(1,'\b\b%s',ii); elseif ii==100; ii = 'Done'; fprintf(1,'\b\b\b%s',ii); else ii = [num2str(ii) '%']; fprintf(1,'\b\b\b%s',ii); end end end fprintf('\n'); %% Convert data from nanovolts to microvolts data=data./1000; end
github
lcnhappe/happe-master
pop_readneurone.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neurone/pop_readneurone.m
8,116
utf_8
c755af0f65d561b1d3adaa77368be5ff
% pop_readneurone() - A function for reading NeurOne data. % % Usage: >> [EEGOUT,command] = pop_readneurone() % Launches GUI for user input % OR % >> [EEGOUT,command] = pop_readneurone(dataPath, sessionPhaseNumber, chans) % % Please note that if this function is called without using the menu item % in EEGLAB, it will not be automatically stored in its memory. % ======================================================================== % Inputs: % dataPath - A string containing the full path for .ses % -file to be read. This input argument is % required. % sessionPhaseNumber - A number indicating the session % phase to be observed. This input argument is % optional. If the session phase number is left % empty, default value 1 will be used. % chans - Another optional input argument to indicate % the channels to be imported. Acceptable % values are strings where the channels are % in a vector form without brackets e.g. % '1,3,5' or '1:4' (when the GUI is executed, % the quotation marks should not be used). % Note that only acceptable values % are those between 1 and the total number of % channels. It should also be noted that the % number of the channel may not be the same as % its input number since when an input % number is missing, the channel numbering will % continue with next available input number. % Here is an example of the channel numbering % (note the missing input numbers 3 and 4): % % Input number Channel number % ------------ -------------- % 1 -----> 1 % 2 -----> 2 % 5 -----> 3 % 6 -----> 4 % % % Outputs: % EEGOUT - A struct with the same fields as a standard % EEG data structure under EEGLAB % (see eeg_checkset.m). % command - A string containing all the input parameters % and the command used to execute this % function. % ======================================================================== % GUI help: % % When this function is used without any input arguments, it will open % several windows to ask for required information as described above. The % first pop-up window asks the user to specify the .ses -file to be loaded. % If 'Cancel' -button is pressed at this point, the importing process will % terminate. The next window is a GUI asking for information about the % channels to be loaded and the number of the desired session phase to be % observed. When 'Ok' -button is pressed, the data is sent to readneurone.m % for further processing. Again, if 'Cancel' -button is pressed, the whole % importing process will be terminated. % % IMPORTANT NOTE: For a computer with high memory capacity it is much more % faster to import data by leaving the channel field empty % and removing unnecessary channels afterwards. However, % in case of limited memory it is recommended to first % specify the channels to be imported. % % ======================================================================== % NOTE: % This file is part of the NeurOne data import plugin for EEGLAB. % ======================================================================== % % Current version: 1.0.3.4 (2016-06-17) % Author: Mega Electronics % % see also: eegplugin_neurone.m or readneurone.m function [EEG,command] = pop_readneurone(dataPath,sessionPhaseNumber,chans) %% Initialize empty structure for the data EEG = {}; % Create empty space for data command = ''; %% Check the number of input arguments nargchk(0,1,nargin); %% Use the GUI if nargin==0 if isfield(evalin('base','EEG'),'history') history = evalin('base','EEG.history'); if ~(isempty(strfind(history,'dataPath'))) dataPathIndex = strfind(history,'dataPath='''); idx = strfind(history,''''); idx = idx(idx>dataPathIndex); dataPath = history(idx(1)+1:idx(2)-1); dataPath = fileparts(dataPath); [dataPath folder] = fileparts(dataPath); else dataPath = cd; end else dataPath = cd; end [fname dataPath] = uigetfile({'*.ses', ... 'NeurOne session file (*.ses)'}, ... 'Load NeurOne session file',dataPath); % If cancel is pressed, the import process will terminate if fname==0 return end % If ok, manipulate the filename fullpath = [dataPath fname]; a = dir(dataPath); for k = 3:numel(a) if a(k).isdir==1 if ~(isempty(regexpi(fullpath,a(k).name))) dataPath = [dataPath a(k).name filesep]; end end end fprintf('\n----------IMPORTING DATA----------\n') fprintf('File to Import: %s\n',fullpath) guifig=guireadneurone; try SETTINGS=guidata(guifig); catch return; end switch SETTINGS.loadStatus % When cancel button is pressed, the GUI terminates case 0 disp('NeurOne import cancelled') delete(guifig); return % When ok button is pressed, proceed to read the data case 1 delete(guifig); SETTINGS.dataPath=dataPath; if isempty(SETTINGS.chans) fprintf('Channels to be read: all\n'); else fprintf('Channels to be read: %s\n',SETTINGS.chans); end EEG = readneurone(SETTINGS.dataPath, ... SETTINGS.sessionPhaseNumber,SETTINGS.chans); EEG = eeg_checkset(EEG); % EEGLAB function to check consistency EEG = eeg_checkset(EEG,'eventconsistency'); % check event structure EEG = eeg_checkset(EEG,'makeur'); end % ==================================================================== % Read data using direct command else if nargin>=1 fullpath=dataPath; fprintf('\n----------IMPORTING DATA----------\n') fprintf('File to Import: %s\n',fullpath) % Manipulate the given path [dataPath fname] = fileparts(fullpath); a = dir(dataPath); for k = 3:numel(a) if a(k).isdir==1 if ~(isempty(regexpi(fullpath,a(k).name))) dataPath = [dataPath filesep a(k).name filesep]; end end end SETTINGS=struct(); SETTINGS.dataPath=dataPath; if ~(exist('sessionPhaseNumber')) SETTINGS.sessionPhaseNumber = 1; else SETTINGS.sessionPhaseNumber=sessionPhaseNumber; end if ~(exist('chans')) SETTINGS.chans = ''; else SETTINGS.chans=chans; end end EEG = readneurone(SETTINGS.dataPath,SETTINGS.sessionPhaseNumber, ... SETTINGS.chans); EEG = eeg_checkset(EEG); % check EEG data structure EEG = eeg_checkset(EEG,'eventconsistency'); % check event structure EEG = eeg_checkset(EEG,'makeur'); end comline = sprintf('dataPath=''%s'';',SETTINGS.dataPath); comline = sprintf('%s sessionPhaseNumber=''%d'';',... comline,SETTINGS.sessionPhaseNumber); comline = sprintf('%s chans=''%s'';',... comline,SETTINGS.chans); command = sprintf('%s [EEG,COM]=pop_readneurone(dataPath,sessionPhaseNumber,chans);',comline); return
github
lcnhappe/happe-master
eegplugin_neurone.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neurone/eegplugin_neurone.m
1,598
utf_8
1b5fe8ed27d31f4de4608dd4b652f905
% eegplugin_neurone() - EEGLAB plugin to import data from a NeurOne device. % % Usage: % >> eegplugin_neurone(fig,try_strings,catch_strings) % % Inputs: % fig - [integer] handle to EEGLAB figure % try_strings - [struct] "try" strings for menu callbacks. % catch_strings - [struct] "catch" strings for menu callbacks. % % NeurOne data import plugin consists of the following files: % pop_readneurone.m % guireadneurone.m % guireadneurone.fig % readneurone.m % readneuronedata.m % readneuroneevents.m % neurone_logo.png % mega_gradient_edit.png % % This plugin was created according to the instructions provided by the % creators of EEGLAB. These instructions can be found e.g. from the website: % http://sccn.ucsd.edu/wiki/A07:_Contributing_to_EEGLAB % % Current version: 1.0.3.4 (2016-06-17) % Author: Mega Electronics function vers = eegplugin_neurone(fig,try_strings,catch_strings) vers='NeurOne data import 1.0.3.4'; % Check the number of input arguments if nargin < 3 error('Not enough input arguments.'); end % Add plugin folder to path if ~exist('pop_readneurone.m') path=which('eegplugin_neurone.m'); [path filename]=fileparts(path); path=[path filesep]; addpath([path version] ); end % Find the 'Import data' -menu importmenu=findobj(fig,'tag','import data'); % Construct command cmd = [try_strings.no_check '[EEG LASTCOM]=pop_readneurone;' catch_strings.new_and_hist]; % Create the menu for NeurOne import uimenu(importmenu,'label','From a NeurOne file (.ses)',... 'Callback',cmd,'separator','on');
github
lcnhappe/happe-master
readneuroneevents.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neurone/readneuroneevents.m
4,947
utf_8
b51f19a943ed465494de552dfeb3b250
% readneuroneevents() - Read events from a Mega NeurOne device. % % Usage: >> event = readneuroneevents(dataPath) % % ======================================================================= % Input: % dataPath - Direct path for the folder containing the event % data (file 'events.bin') related to the current % session phase number. % % Output: % event - A struct created according to the event structure % under EEGLAB. The used fields are type and % latency. The field 'type' will be generated % depending on the type of the event as follows: % % Event type Value of the type field % ---------- ----------------------- % Unknown (Source port name) - Unknown % Stimulation (Source port name) - Stimulation % Video trigger (Source port name) - Video % Mute trigger (Source port name) - Mute % 8-bit trigger (8-bit trigger code, a value between % 1-255) % Comment (any user-entered comment related to % the event) % ClockSourceChange ClockSourceChange (when the source of % SyncBox clock is changed) % % ======================================================================= % Additional information: % The size of one event structure 'events.bin' file is 88 bytes. If user- % entered comments are used, they will be read from file 'eventData.bin' % which holds comment for each event in Unicode (2 bytes/character). See % 'NeurOne Data Format' documentation for more info about the event % structure. % % ======================================================================== % NOTE: % This file is part of the NeurOne data import plugin for EEGLAB. % ======================================================================== % % Current version: 1.0.3.4 (2016-06-17) % Author: Mega Electronics function event = readneuroneevents(dataPath) % Get the total number of events eventsTmp = dir([dataPath filesep 'events.bin']); nEvents = eventsTmp.bytes/88; event = {}; % empty structure for event data % Read events.bin (see NeurOne Data Format doc) events = fopen([dataPath filesep 'events.bin'],'rb'); for k = 1:nEvents % Read the whole event structure Revision = fread(events,1,'int32'); RFU = fread(events,1,'int32'); Type = fread(events,1,'int32'); SourcePort = fread(events,1,'int32'); ChannelNumber = fread(events,1,'int32'); Code = fread(events,1,'int32'); StartSampleIndex = fread(events,1,'uint64'); StopSampleIndex = fread(events,1,'uint64'); DescriptionLength = fread(events,1,'uint64'); DescriptionOffset = fread(events,1,'uint64'); DataLength = fread(events,1,'uint64'); DataOffset = fread(events,1,'uint64'); TimeStamp = fread(events,1,'double'); MainUnitIndex = fread(events,1,'int32'); RFU = fread(events,1,'int32'); % Check if the data format has changed if Revision > 6 warning(strcat('This reader does not support the revision of events.bin (', ... num2str(Revision), '). Please contact [email protected] for an update.')) end % Determine the source port switch SourcePort case 0 SourcePort = 'N/A'; case 1 SourcePort = 'A'; case 2 SourcePort = 'B'; case 3 SourcePort = 'EightBit'; case 4 SourcePort = 'Syncbox Button'; case 5 SourcePort = 'SyncBox EXT'; case 6 SourcePort = 'Software'; otherwise SourcePort = 'Unknown'; end % Determine the type of the event switch Type case 0 Type = [SourcePort ' - N/A']; case 1 Type = [SourcePort ' - Stimulation']; case 2 Type = [SourcePort ' - Video']; case 3 Type = [SourcePort ' - Mute']; case 4 Type = num2str(Code); case 5 Type = [SourcePort ' - Out' ]; case 6 % User-entered comments will be read from file eventData.bin fid = fopen([dataPath filesep 'eventData.bin'],'rb'); offset = DataOffset/2; length = DataLength/2; comments = fread(fid,[1 offset],'int16'); comments = fread(fid,[1 length],'int16'); Type = char(comments); fclose(fid); case 1001 Type = [SourcePort ' - ClockSourceChange']; otherwise Type = 'Unknown'; end % Store the obtained data event(1,k).latency = StartSampleIndex; event(1,k).type = Type; end fclose(events); end
github
lcnhappe/happe-master
readneurone.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neurone/readneurone.m
11,773
utf_8
cf4bc45088b4719e91b7b6b87c7300f1
% readneurone() - Read data from a Mega NeurOne device and arrange it % into a struct. % % Usage: >> NEURONE = readneurone(dataPath, sessionPhaseNumber, chans) % % ======================================================================= % Inputs: % dataPath - Path to directory containing NeurOne data % from a single measurement. % % Optional input arguments: % sessionPhaseNumber - Defines which session phase will be read. % Default value for sessionPhaseNumber is 1. % chans - Defines which channels will be read. The % channel numbers have to be strings containing % numeric values between 1 and the total number % of channels. In addition, they are arranged in % vector form without brackets. For example, % if the total number of channels is 64, the % 'chans' input argument can be '1,6,3,7' or % '1:12'. The default value for chans is an empty % string which indicates that all channels will % be read. The channel numbers can be arranged % in a completely random order. % % ======================================================================= % Outputs: % NEURONE is a struct with the same fields as a standard EEG % structure under EEGLAB (see eeg_checkset.m). % % Used fields are: % NEURONE.filename % NEURONE.setname % NEURONE.srate % NEURONE.pnts % NEURONE.xmin % NEURONE.xmax % NEURONE.filepath % NEURONE.trials % NEURONE.nbchan % NEURONE.data % NEURONE.ref % NEURONE.times % NEURONE.comments % NEURONE.etc % NEURONE.subject % NEURONE.event (a struct containing all event data) % NEURONE.eventdescription % NEURONE.chanlocs (will be defined by EEGLAB if channel locations exist % for used channel names) % NEURONE.chaninfo % % The following fields were added as empty to ensure proper working: % NEURONE.icawinv % NEURONE.icaweights % NEURONE.icasphere % NEURONE.icaact % % % ======================================================================== % NOTE: % This file is part of the NeurOne data import plugin for EEGLAB. % ======================================================================== % % Current version: 1.0.3.4 (2016-06-17) % Author: Mega Electronics function NEURONE = readneurone(dataPath, varargin) %% Parse input arguments p = inputParser; p.addRequired('dataPath', @ischar); p.addOptional('sessionPhaseNumber', 1 ,@isnumeric); p.addOptional('chans','', @isstr); p.parse(dataPath, varargin{:}); arglist = p.Results; %% Empty recording structure for output NEURONE = {}; %% Read Session and Protocol xml-files session = module_read_neurone_xml([dataPath 'Session.xml']); protocol = module_read_neurone_xml([dataPath 'Protocol.xml']); %% Obtain information from session and protocol % Obtain sampling frequency (it is same for all channels) srate = str2num(protocol.TableProtocol.SamplingFrequency); % Get the total number of channels nChannels = numel(protocol.TableInput); NEURONE.comments = ['Protocol: ' session.TableSession.ProtocolName]; NEURONE.etc = strvcat( ['NeurOne Version: ' protocol.TableInfo.NeurOneVersion], ... ['Protocol File Revision: ' protocol.TableInfo.Revision], ... ['Session File Revision: ' session.TableInfo.Revision]); NEURONE.subject = session.TablePerson.PersonID; NEURONE.setname = session.TableSession.ProtocolName; %% Check the session phase number % Total number of sessions in recording nSessionPhases = numel(session.TableSessionPhase); disp(['Number of session phases: ' num2str(nSessionPhases)]) disp(['Current session phase number: ' num2str(arglist.sessionPhaseNumber)]); % Check the validity of the sessionPhaseNumber taken from GUI if arglist.sessionPhaseNumber>nSessionPhases disp('Current session phase number exceeds the total number of session phases.') disp('Defaulting to 1.') sessionPhaseNumber = 1; elseif arglist.sessionPhaseNumber<=0 disp('Invalid session phase number.') disp('Defaulting to 1.') sessionPhaseNumber = 1; else sessionPhaseNumber = arglist.sessionPhaseNumber; end %% Get correct channel names and locations % Set the channels for data acquisition if isempty(arglist.chans) chans = 1:nChannels; else chans = [str2num(arglist.chans)]; chans = sort(chans); % ensure that the channels are in ascending order end % Check that no channel number exceeds the total number of channels if any(chans>nChannels) error('One or more of the given channel numbers exceeds the total number of channels. See pop_readneurone help.') elseif any(chans<1) error('One or more of the given channel numbers are invalid (zero or negative). See pop_readneurone help.') end % Get all channel names and corresponding input numbers inputNumbersAll = zeros(1,nChannels); inputNumbersAll(1) = str2num(protocol.TableInput(1).InputNumber); channelnames = protocol.TableInput(1).Name; for n = 2:nChannels inputNumbersAll(n) = str2num(protocol.TableInput(n).InputNumber); channelnames = char(channelnames,protocol.TableInput(n).Name); end channelnames = cellstr(channelnames); % The value of the highest input number maxInput = max(inputNumbersAll); channelnames = channelnames'; % Sort channel names in ascending order based on their input number for k = 1:nChannels ii = 1; while ~(any(inputNumbersAll(k)==ii)) && ii<=max(inputNumbersAll) ii = ii+1; end sortIndex(ii) = ii; % Store the indices for future data arrangements channelNames(ii) = channelnames(k); end inputNumbersTrue = 1:maxInput; inputNumbersTrue = inputNumbersTrue(find(sortIndex)); % Remove empty channel names: % Find empty cells... emptyCells = cellfun(@isempty,channelNames); % ...and remove them. channelNames(emptyCells) = []; % Take only the names of the selected channels channelNames = channelNames(chans); fprintf('Looking up channel locations...\n') chanlocs=struct('labels', channelNames'); % NEURONE.chanlocs = pop_chanedit(chanlocs); NEURONE.chanlocs = chanlocs; %% Obtain additional information about the dataset measurementMode = protocol.TableInput(1).AlternatingCurrent; deviceFilter = protocol.TableInput(1).Filter; for n = 2:nChannels measurementMode = char(measurementMode,protocol.TableInput(n).AlternatingCurrent); deviceFilter = char(deviceFilter,protocol.TableInput(n).Filter); end measurementMode = cellstr(measurementMode); deviceFilter = cellstr(deviceFilter); for k = 1:nChannels if strcmp(measurementMode(k),'true') measurementMode(k) = {'AC'}; else measurementMode(k) = {'DC'}; end end % Arrange measurementModes according to the input number ii = 1; for k = inputNumbersAll measurementMode(k) = measurementMode(ii); deviceFilter(k) = deviceFilter(ii); ii = ii+1; end measurementMode = measurementMode(inputNumbersTrue); measurementMode = measurementMode(chans); deviceFilter = deviceFilter(inputNumbersTrue); deviceFilter = deviceFilter(chans); measurementModeField = [char(channelNames(1)) ': ' char(measurementMode(1))]; deviceFilterField = [char(channelNames(1)) ': ' char(deviceFilter(1))]; for k = 2:length(chans) measurementModeField = strvcat(measurementModeField,[char(channelNames(k)) ': ' char(measurementMode(k))]); deviceFilterField = strvcat(deviceFilterField,[char(channelNames(k)) ': ' char(deviceFilter(k))]); end NEURONE.chaninfo.measurementMode = measurementModeField; NEURONE.chaninfo.deviceFilter = deviceFilterField; %% Preparing to read binary data % If the size of the measurement in each session phase has exceeded the % file size, the data may have been split into several files named as % 1.bin, 2.bin etc. Usually there exists only one file: 1.bin. However, all % this data needs to be read. dataFiles = {}; % empty structure for data files % Get all .bin files related to the chosen sessionPhaseNumber sessionData = dir([dataPath num2str(sessionPhaseNumber) filesep '*.bin']); ii = 1; for k = 1:numel(sessionData); % total number of .bin files in current session phase data folder [path,filename,ext] = fileparts(sessionData(k).name); if ~isempty(regexpi(filename,'[123456789]')) dataFiles{ii,1} = [dataPath num2str(sessionPhaseNumber) filesep sessionData(k).name]; ii = ii+1; end end %% Read NeurOne binary data and calibrate it % Read data. The data of a specific channel is arranged in a row based on its input % number. data = readneuronedata(dataFiles, nChannels, chans); % Preallocate memory to read maximum and minimum values for calibration rawMinimum = zeros(1,maxInput); rawMaximum = zeros(1,maxInput); calibratedMinimum = zeros(1,maxInput); calibratedMaximum = zeros(1,maxInput); % Get all minimum and maximum values for n = 1:nChannels rawMinimum(n) = str2num(protocol.TableInput(1,n).RangeMinimum); rawMaximum(n) = str2num(protocol.TableInput(1,n).RangeMaximum); calibratedMinimum(n) = str2num(protocol.TableInput(1,n).RangeAsCalibratedMinimum); calibratedMaximum(n) = str2num(protocol.TableInput(1,n).RangeAsCalibratedMaximum); end % Arrange them in the correct according to the input number ii = 1; for k = inputNumbersAll rawMinimum(inputNumbersAll) = rawMinimum(ii); rawMaximum(inputNumbersAll) = rawMaximum(ii); calibratedMinimum(inputNumbersAll) = calibratedMinimum(ii); calibratedMaximum(inputNumbersAll) = calibratedMaximum(ii); ii = ii+1; end % Remove unused input numbers rawMinimum = rawMinimum(inputNumbersTrue); rawMaximum = rawMaximum(inputNumbersTrue); calibratedMinimum = calibratedMinimum(inputNumbersTrue); calibratedMaximum = calibratedMaximum(inputNumbersTrue); % Calibrate channels for n = 1:numel(chans) data(n,:) = calibratedMinimum(n) + ... (data(n,:)-rawMinimum(n)) / (rawMaximum(n)-rawMinimum(n)) * (calibratedMaximum(n)-calibratedMinimum(n)); end %% Read events fprintf('Loading events...\n'); event = readneuroneevents([dataPath num2str(sessionPhaseNumber) filesep]); NEURONE.event = event; % Writing event description latency = strvcat('Latency:','The index number indicating the point in the data when the particular event has occurred'); type = strvcat('Type:','A descriptive name for the event. Will be generated depending on the type of the event as follows:',' ', ... 'Event type', ... '----------', ... '1) Unknown', ... '2) Stimulation', ... '3) Video trigger', ... '4) Mute trigger', ... '5) 8-bit trigger', ... '6) Comment', ' ', ... 'Corresponding value of the type field', ... '-----------------------', ... '1) (Source port name) - Unknown', ... '2) (Source port name) - Stimulation', ... '3) (Source port name) - Video', ... '4) (Source port name) - Mute', ... '5) (8-bit trigger code, a value between 1-255)',... '6) (any user-entered comment related to the event)'); NEURONE.eventdescription = {latency type}; %% Store rest of the data fprintf('Preparing output...\n'); % Basic dataset information: NEURONE.srate = srate; NEURONE.pnts = numel(data)/numel(chans); NEURONE.xmin = 0; NEURONE.xmax =(NEURONE.pnts-1)/srate; NEURONE.trials = 1; NEURONE.nbchan = length(chans); NEURONE.data = data; NEURONE.ref = 'common'; NEURONE.filepath = ''; % Will be generated by EEGLAB when saved NEURONE.filename = ''; % Will be generated by EEGLAB when saved % Additional dataset information: NEURONE.icawinv = []; NEURONE.icaweights = []; NEURONE.icasphere = []; NEURONE.icaact = []; end
github
lcnhappe/happe-master
guireadneurone.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/neurone/guireadneurone.m
4,818
utf_8
88c8053fef247ef0eff9f0bcd3992657
function varargout = guireadneurone(varargin) % GUIREADNEURONE Application M-file for guireadneurone.fig % FIG = GUIREADNEURONE launch guireadneurone GUI. % GUIREADNEURONE('callback_name', ...) invoke the named callback. % % ======================================================================== % NOTE: % This file is part of the NeurOne data import plugin for EEGLAB. % ======================================================================== % % Current version: 1.0.3.4 (2016-06-17) % Author: Mega Electronics % If no input arguments are used, the GUI is launched if nargin == 0 neuroneimportfig = openfig(mfilename,'new'); % Initialize a structure of handles to pass to callbacks. handles = guihandles(neuroneimportfig); % Load logos bgcolor=[0.656 0.758 1.0]; megaLogo=imread('mega_gradient_edit.png','BackgroundColor',bgcolor); axes(handles.mega_logo); image(megaLogo) axis off axis image neuroneLogo=imread('neurone_logo.png','BackgroundColor',bgcolor); axes(handles.neurone_logo); image(neuroneLogo) axis off axis image % Declare variables handles.chans=''; handles.sessionPhaseNumber=1; handles.loadStatus=0; % Store the structure guidata(neuroneimportfig, handles) % Wait for callbacks. 'Ok' or 'Cancel' to continue. uiwait(neuroneimportfig); if nargout > 0 varargout{1} = neuroneimportfig; end elseif ischar(varargin{1}) try if (nargout) [varargout{1:nargout}] = feval(varargin{:}); else feval(varargin{:}); end catch disp(lasterr); end end % --- Executes on button press in cancel_button. function varargout = cancel_button_Callback(hObject, eventdata, handles) % hObject handle to cancel_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.loadStatus=0; guidata(hObject,handles); uiresume(handles.guireadneurone_fig) function varargout = channel_area_Callback(hObject, eventdata, handles) % hObject handle to channel_area (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of channel_area as text % str2double(get(hObject,'String')) returns contents of channel_area as a double handles.chans=get(hObject,'string'); guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function varargout = channel_area_CreateFcn(hObject, eventdata, handles) % hObject handle to channel_area (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function varargout = session_area_Callback(hObject, eventdata, handles) % hObject handle to channel_area (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(h,'String') returns contents of channel_area as text % str2double(get(hObject,'String')) returns contents of channel_area as a double handles.sessionPhaseNumber=str2num(get(hObject,'String')); guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function varargout = session_area_CreateFcn(hObject, eventdata, handles) % hObject handle to channel_area (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in help_button. function varargout = help_button_Callback(hObject, eventdata, handles) % hObject handle to help_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) pophelp('pop_readneurone.m'); % --- Executes on button press in ok_button. function varargout = ok_button_Callback(hObject, eventdata, handles) % hObject handle to ok_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.loadStatus=1; guidata(hObject,handles); uiresume(handles.guireadneurone_fig);
github
lcnhappe/happe-master
floatread.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/eeglab/floatread.m
5,572
utf_8
942a49968bcce849dfc9d359ac7d2651
% floatread() - Read matrix from float file ssuming four byte floating point number % Can use fseek() to read an arbitary (continguous) submatrix. % % Usage: >> a = floatread(filename,size,'format',offset) % % Inputs: % filename - name of the file % size - determine the number of float elements to be read and % the dimensions of the resulting matrix. If the last element % of 'size' is Inf, the size of the last dimension is determined % by the file length. If size is 'square,' floatread() attempts % to read a square 2-D matrix. % % Optional inputs: % 'format' - the option FORMAT argument specifies the storage format as % defined by fopen(). Default format ([]) is 'native'. % offset - either the number of first floats to skip from the beginning of the % float file, OR a cell array containing the dimensions of the original % data matrix and a starting position vector in that data matrix. % % Example: % Read a [3 10] submatrix of a four-dimensional float matrix % >> a = floatread('mydata.fdt',[3 10],'native',{[[3 10 4 5],[1,1,3,4]}); % % Note: The 'size' and 'offset' arguments must be compatible both % % with each other and with the size and ordering of the float file. % % Author: Sigurd Enghoff, CNL / Salk Institute, La Jolla, 7/1998 % % See also: floatwrite(), fopen() % Copyright (C) Sigurd Enghoff, CNL / Salk Institute, La Jolla, 7/1998 % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % 04-26-99 modified by Sigurd Enghoff to handle variable-sized and % multi-dimensional data. % 07-08-99 modified by Sigurd Enghoff, FORMAT argument added. % 02-08-00 help updated for toolbox inclusion -sm % 02-14-00 added segment arg -sm % 08-14-00 added size 'square' option -sm % 01-25-02 reformated help & license, added links -ad function A = floatread(fname,Asize,fform,offset) if nargin<2 help floatread return end if ~exist('fform') | isempty(fform)|fform==0 fform = 'native'; end if ~exist('offset') offset = 0; end fid = fopen(fname,'rb',fform); if fid>0 if exist('offset') if iscell(offset) if length(offset) ~= 2 error('offset must be a positive integer or a 2-item cell array'); end datasize = offset{1}; startpos = offset{2}; if length(datasize) ~= length(startpos) error('offset must be a positive integer or a 2-item cell array'); end for k=1:length(datasize) if startpos(k) < 1 | startpos(k) > datasize(k) error('offset must be a positive integer or a 2-item cell array'); end end if length(Asize)> length(datasize) error('offset must be a positive integer or a 2-item cell array'); end for k=1:length(Asize)-1 if startpos(k) ~= 1 error('offset must be a positive integer or a 2-item cell array'); end end sizedim = length(Asize); if Asize(sizedim) + startpos(sizedim) - 1 > datasize(sizedim) error('offset must be a positive integer or a 2-item cell array'); end for k=1:length(Asize)-1 if Asize(k) ~= datasize(k) error('offset must be a positive integer or a 2-item cell array'); end end offset = 0; jumpfac = 1; for k=1:length(startpos) offset = offset + jumpfac * (startpos(k)-1); jumpfac = jumpfac * datasize(k); end elseif length(offset) > 1 error('offset must be a positive integer or a 2-item cell array'); end % perform the fseek() operation % ----------------------------- stts = fseek(fid,4*offset,'bof'); if stts ~= 0 error('floatread(): fseek() error.'); return end end % determine what 'square' means % ----------------------------- if ischar('Asize') if iscell(offset) if length(datasize) ~= 2 | datasize(1) ~= datasize(2) error('size ''square'' must refer to a square 2-D matrix'); end Asize = [datsize(1) datasize(2)]; elseif strcmp(Asize,'square') fseek(fid,0,'eof'); % go to end of file bytes = ftell(fid); % get byte position fseek(fid,0,'bof'); % rewind bytes = bytes/4; % nfloats froot = sqrt(bytes); if round(froot)*round(froot) ~= bytes error('floatread(): filelength is not square.') else Asize = [round(froot) round(froot)]; end end end A = fread(fid,prod(Asize),'float'); else error('floatread() fopen() error.'); return end % fprintf(' %d floats read\n',prod(size(A))); % interpret last element of Asize if 'Inf' % ---------------------------------------- if Asize(end) == Inf Asize = Asize(1:end-1); A = reshape(A,[Asize length(A)/prod(Asize)]); else A = reshape(A,Asize); end fclose(fid);
github
lcnhappe/happe-master
floatwrite.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/eeglab/floatwrite.m
3,169
utf_8
8472e61c3208f7a445ec052e9cc52b4b
% floatwrite() - Write data matrix to float file. % % Usage: >> floatwrite(data,filename, 'format') % % Inputs: % data - write matrix data to specified file as four-byte floating point numbers. % filename - name of the file % 'format' - The option FORMAT argument specifies the storage format as % defined by fopen. Default format is 'native'. % 'transp|normal' - save the data transposed (.dat files) or not. % % Author: Sigurd Enghoff, CNL / Salk Institute, La Jolla, 7/1998 % % See also: floatread(), fopen() % Copyright (C) Sigurd Enghoff, CNL / Salk Institute, La Jolla, 7/1998 % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % 07-08-99 FORMAT argument added -se % 02-08-00 new version included in toolbox -sm % 01-25-02 reformated help & license, added links -ad function A = floatwrite(A, fname, fform, transp) if ~exist('fform') fform = 'native'; end if nargin < 4 transp = 'normal'; end; if strcmpi(transp,'normal') if strcmpi(class(A), 'mmo') A = changefile(A, fname); return; elseif strcmpi(class(A), 'memmapdata') % check file to overwrite % ----------------------- [fpath1 fname1 ext1] = fileparts(fname); [fpath2 fname2 ext2] = fileparts(A.data.Filename); if isempty(fpath1), fpath1 = pwd; end; fname1 = fullfile(fpath1, [fname1 ext1]); fname2 = fullfile(fpath2, [fname2 ext2]); if ~isempty(findstr(fname1, fname2)) disp('Warning: raw data already saved in memory mapped file (no need to resave it)'); return; end; fid = fopen(fname,'wb',fform); if fid == -1, error('Cannot write output file, check permission and space'); end; if size(A,3) > 1 for ind = 1:size(A,3) tmpdata = A(:,:,ind); fwrite(fid,tmpdata,'float'); end; else blocks = [ 1:round(size(A,2)/10):size(A,2)]; if blocks(end) ~= size(A,2), blocks = [blocks size(A,2)]; end; for ind = 1:length(blocks)-1 tmpdata = A(:, blocks(ind):blocks(ind+1)); fwrite(fid,tmpdata,'float'); end; end; else fid = fopen(fname,'wb',fform); if fid == -1, error('Cannot write output file, check permission and space'); end; fwrite(fid,A,'float'); end; else % save transposed for ind = 1:size(A,1) fwrite(fid,A(ind,:),'float'); end; end; fclose(fid);
github
lcnhappe/happe-master
eeglab2fieldtrip.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/eeglab/eeglab2fieldtrip.m
5,477
utf_8
bdb52aada07dc61861584ca6a70c7482
% eeglab2fieldtrip() - do this ... % % Usage: >> data = eeglab2fieldtrip( EEG, fieldbox, transform ); % % Inputs: % EEG - [struct] EEGLAB structure % fieldbox - ['preprocessing'|'freqanalysis'|'timelockanalysis'|'companalysis'] % transform - ['none'|'dipfit'] transform channel locations for DIPFIT % using the transformation matrix in the field % 'coord_transform' of the dipfit substructure of the EEG % structure. % Outputs: % data - FIELDTRIP structure % % Author: Robert Oostenveld, F.C. Donders Centre, May, 2004. % Arnaud Delorme, SCCN, INC, UCSD % % See also: % Copyright (C) 2004 Robert Oostenveld, F.C. Donders Centre, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function data = eeglab2fieldtrip(EEG, fieldbox, transform) if nargin < 2 help eeglab2fieldtrip return; end; % start with an empty data object data = []; % add the objects that are common to all fieldboxes tmpchanlocs = EEG.chanlocs; data.label = { tmpchanlocs(EEG.icachansind).labels }; data.fsample = EEG.srate; % get the electrode positions from the EEG structure: in principle, the number of % channels can be more or less than the number of channel locations, i.e. not % every channel has a position, or the potential was not measured on every % position. This is not supported by EEGLAB, but it is supported by FIELDTRIP. if strcmpi(fieldbox, 'chanloc_withfid') % insert "no data channels" in channel structure % ---------------------------------------------- if isfield(EEG.chaninfo, 'nodatchans') && ~isempty( EEG.chaninfo.nodatchans ) chanlen = length(EEG.chanlocs); fields = fieldnames( EEG.chaninfo.nodatchans ); for index = 1:length(EEG.chaninfo.nodatchans) ind = chanlen+index; for f = 1:length( fields ) EEG.chanlocs = setfield(EEG.chanlocs, { ind }, fields{f}, ... getfield( EEG.chaninfo.nodatchans, { index }, fields{f})); end; end; end; end; data.elec.pnt = zeros(length( EEG.chanlocs ), 3); for ind = 1:length( EEG.chanlocs ) data.elec.label{ind} = EEG.chanlocs(ind).labels; if ~isempty(EEG.chanlocs(ind).X) data.elec.pnt(ind,1) = EEG.chanlocs(ind).X; data.elec.pnt(ind,2) = EEG.chanlocs(ind).Y; data.elec.pnt(ind,3) = EEG.chanlocs(ind).Z; else data.elec.pnt(ind,:) = [0 0 0]; end; end; if nargin > 2 if strcmpi(transform, 'dipfit') if ~isempty(EEG.dipfit.coord_transform) disp('Transforming electrode coordinates to match head model'); transfmat = traditionaldipfit(EEG.dipfit.coord_transform); data.elec.pnt = transfmat * [ data.elec.pnt ones(size(data.elec.pnt,1),1) ]'; data.elec.pnt = data.elec.pnt(1:3,:)'; else disp('Warning: no transformation of electrode coordinates to match head model'); end; end; end; switch fieldbox case 'preprocessing' for index = 1:EEG.trials data.trial{index} = EEG.data(:,:,index); data.time{index} = linspace(EEG.xmin, EEG.xmax, EEG.pnts); % should be checked in FIELDTRIP end; data.label = { tmpchanlocs(1:EEG.nbchan).labels }; case 'timelockanalysis' data.avg = mean(EEG.data, 3); data.var = std(EEG.data, [], 3).^2; data.time = linspace(EEG.xmin, EEG.xmax, EEG.pnts); % should be checked in FIELDTRIP data.label = { tmpchanlocs(1:EEG.nbchan).labels }; case 'componentanalysis' for index = 1:EEG.trials % the trials correspond to the raw data trials, except that they % contain the component activations try, data.trial{index} = EEG.icaact(:,:,index); catch end; data.time{index} = linspace(EEG.xmin, EEG.xmax, EEG.pnts); % should be checked in FIELDTRIP end; for comp = 1:size(EEG.icawinv,2) % the labels correspond to the component activations that are stored in data.trial data.label{comp} = sprintf('ica_%03d', comp); end % get the spatial distribution and electrode positions tmpchanlocs = EEG.chanlocs; data.topolabel = { tmpchanlocs(EEG.icachansind).labels }; data.topo = EEG.icawinv; case { 'chanloc' 'chanloc_withfid' } case 'freqanalysis' error('freqanalysis fieldbox not implemented yet') otherwise error('unsupported fieldbox') end try % get the full name of the function data.cfg.version.name = mfilename('fullpath'); catch % required for compatibility with Matlab versions prior to release 13 (6.5) [st, i] = dbstack; data.cfg.version.name = st(i); end % add the version details of this function call to the configuration data.cfg.version.id = '$Id$'; return
github
lcnhappe/happe-master
sobi.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/eeglab/sobi.m
5,094
utf_8
ce6035ad7a3d7312fee7cf1a37d8e04e
% sobi() - Second Order Blind Identification (SOBI) by joint diagonalization of % correlation matrices. THIS CODE ASSUMES TEMPORALLY CORRELATED SIGNALS, % and uses correlations across times in performing the signal separation. % Thus, estimated time delayed covariance matrices must be nonsingular % for at least some time delays. % Usage: % >> winv = sobi(data); % >> [winv,act] = sobi(data,n,p); % Inputs: % data - data matrix of size [m,N] ELSE of size [m,N,t] where % m is the number of sensors, % N is the number of samples, % t is the number of trials (avoid epoch boundaries) % n - number of sources {Default: n=m} % p - number of correlation matrices to be diagonalized % {Default: min(100, N/3)} Note that for non-ideal data, % the authors strongly recommend using at least 100 time delays. % % Outputs: % winv - Matrix of size [m,n], an estimate of the *mixing* matrix. Its % columns are the component scalp maps. NOTE: This is the inverse % of the usual ICA unmixing weight matrix. Sphering (pre-whitening), % used in the algorithm, is incorporated into winv. i.e., % % >> icaweights = pinv(winv); icasphere = eye(m); % % act - matrix of dimension [n,N] an estimate of the source activities % % >> data = winv * act; % [size m,N] [size m,n] [size n,N] % >> act = pinv(winv) * data; % % Authors: A. Belouchrani and A. Cichocki (references: See function body) % Note: Adapted by Arnaud Delorme and Scott Makeig to process data epochs by % computing covariances while respecting epoch boundaries. % REFERENCES: % A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, ``Second-order % blind separation of temporally correlated sources,'' in Proc. Int. Conf. on % Digital Sig. Proc., (Cyprus), pp. 346--351, 1993. % % A. Belouchrani and K. Abed-Meraim, ``Separation aveugle au second ordre de % sources correlees,'' in Proc. Gretsi, (Juan-les-pins), % pp. 309--312, 1993. % % A. Belouchrani, and A. Cichocki, % Robust whitening procedure in blind source separation context, % Electronics Letters, Vol. 36, No. 24, 2000, pp. 2050-2053. % % A. Cichocki and S. Amari, % Adaptive Blind Signal and Image Processing, Wiley, 2003. function [H,S,D]=sobi(X,n,p), % Authors note: For non-ideal data, use at least p=100 the time-delayed covariance matrices. DEFAULT_LAGS = 100; [m,N,ntrials]=size(X); if nargin<1 | nargin > 3 help sobi elseif nargin==1, n=m; % Source detection (hum...) p=min(DEFAULT_LAGS,ceil(N/3)); % Number of time delayed correlation matrices to be diagonalized elseif nargin==2, p=min(DEFAULT_LAGS,ceil(N/3)); % Default number of correlation matrices to be diagonalized % Use < DEFAULT_LAGS delays if necessary for short data epochs end; % % Make the data zero mean % X(:,:)=X(:,:)-kron(mean(X(:,:)')',ones(1,N*ntrials)); % % Pre-whiten the data based directly on SVD % [UU,S,VV]=svd(X(:,:)',0); Q= pinv(S)*VV'; X(:,:)=Q*X(:,:); % Alternate whitening code % Rx=(X*X')/T; % if m<n, % assumes white noise % [U,D]=eig(Rx); % [puiss,k]=sort(diag(D)); % ibl= sqrt(puiss(n-m+1:n)-mean(puiss(1:n-m))); % bl = ones(m,1) ./ ibl ; % BL=diag(bl)*U(1:n,k(n-m+1:n))'; % IBL=U(1:n,k(n-m+1:n))*diag(ibl); % else % assumes no noise % IBL=sqrtm(Rx); % Q=inv(IBL); % end; % X=Q*X; % % Estimate the correlation matrices % k=1; pm=p*m; % for convenience for u=1:m:pm, k=k+1; for t = 1:ntrials if t == 1 Rxp=X(:,k:N,t)*X(:,1:N-k+1,t)'/(N-k+1)/ntrials; else Rxp=Rxp+X(:,k:N,t)*X(:,1:N-k+1,t)'/(N-k+1)/ntrials; end; end; M(:,u:u+m-1)=norm(Rxp,'fro')*Rxp; % Frobenius norm = end; % sqrt(sum(diag(Rxp'*Rxp))) % % Perform joint diagonalization % epsil=1/sqrt(N)/100; encore=1; V=eye(m); step_n=0; while encore, encore=0; for p=1:m-1, for q=p+1:m, % Perform Givens rotation g=[ M(p,p:m:pm)-M(q,q:m:pm) ; M(p,q:m:pm)+M(q,p:m:pm) ; i*(M(q,p:m:pm)-M(p,q:m:pm)) ]; [vcp,D] = eig(real(g*g')); [la,K]=sort(diag(D)); angles=vcp(:,K(3)); angles=sign(angles(1))*angles; c=sqrt(0.5+angles(1)/2); sr=0.5*(angles(2)-j*angles(3))/c; sc=conj(sr); oui = abs(sr)>epsil ; encore=encore | oui ; if oui , % Update the M and V matrices colp=M(:,p:m:pm); colq=M(:,q:m:pm); M(:,p:m:pm)=c*colp+sr*colq; M(:,q:m:pm)=c*colq-sc*colp; rowp=M(p,:); rowq=M(q,:); M(p,:)=c*rowp+sc*rowq; M(q,:)=c*rowq-sr*rowp; temp=V(:,p); V(:,p)=c*V(:,p)+sr*V(:,q); V(:,q)=c*V(:,q)-sc*temp; end%% if end%% q loop end%% p loop step_n=step_n+1; fprintf('%d step\n',step_n); end%% while % % Estimate the mixing matrix % H = pinv(Q)*V; % % Estimate the source activities % if nargout>1 S=V'*X(:,:); % estimated source activities end
github
lcnhappe/happe-master
varimax.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/eeglab/varimax.m
4,437
utf_8
d87cb189d37524e4920c2f9ad9c41aa4
% varimax() - Perform orthogonal Varimax rotation on rows of a data % matrix. % % Usage: >> V = varimax(data); % >> [V,rotdata] = varimax(data,tol); % >> [V,rotdata] = varimax(data,tol,'noreorder') % % Inputs: % data - data matrix % tol - set the termination tolerance to tol {default: 1e-4} % 'noreorder' - Perform the rotation without component reorientation % or reordering by size. This suppression is desirable % when doing a q-mode analysis. {default|0|[] -> reorder} % Outputs: % V - orthogonal rotation matrix, hence % rotdata - rotated matrix, rotdata = V*data; % % Author: Sigurd Enghoff - CNL / Salk Institute, La Jolla 6/18/98 % % See also: runica(), pcasvd(), promax() % Copyright (C) Sigurd Enghoff - CNL / Salk Institute, La Jolla 6/18/98 % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % Reference: % Henry F. Kaiser (1958) The Varimx criterion for % analytic rotation in factor analysis. Pychometrika 23:187-200. % % modified to return V alone by Scott Makeig, 6/23/98 % 01-25-02 reformated help & license, added link -ad function [V,data] = varimax(data,tol,reorder) if nargin < 1 help varimax return end DEFAULT_TOL = 1e-4; % default tolerance, for use in stopping the iteration DEFAULT_REORDER = 1; % default to reordering the output rows by size % and adjusting their sign to be rms positive. MAX_ITERATIONS = 50; % Default qrtr = .25; % fixed value if nargin < 3 reorder = DEFAULT_REORDER; elseif isempty(reorder) | reorder == 0 reorder = 1; % set default else reorder = strcmp('reorder',reorder); end if nargin < 2 tol = 0; end if tol == 0 tol = DEFAULT_TOL; end if ischar(tol) fprintf('varimax(): tol must be a number > 0\n'); help varimax return end eps1 = tol; % varimax toler eps2 = tol; V = eye(size(data,1)); % do unto 'V' what is done to data crit = [sum(sum(data'.^4)-sum(data'.^2).^2/size(data,2)) 0]; inoim = 0; iflip = 1; ict = 0; fprintf(... 'Finding the orthogonal Varimax rotation using delta tolerance %d...\n',... eps1); while inoim < 2 & ict < MAX_ITERATIONS & iflip, iflip = 0; for j = 1:size(data,1)-1, for k = j+1:size(data,1), u = data(j,:).^2-data(k,:).^2; v = 2*data(j,:).*data(k,:); a = sum(u); b = sum(v); c = sum(u.^2-v.^2); d = sum(u.*v); fden = size(data,2)*c + b^2 - a^2; fnum = 2 * (size(data,2)*d - a*b); if abs(fnum) > eps1*abs(fden) iflip = 1; angl = qrtr*atan2(fnum,fden); tmp = cos(angl)*V(j,:)+sin(angl)*V(k,:); V(k,:) = -sin(angl)*V(j,:)+cos(angl)*V(k,:); V(j,:) = tmp; tmp = cos(angl)*data(j,:)+sin(angl)*data(k,:); data(k,:) = -sin(angl)*data(j,:)+cos(angl)*data(k,:); data(j,:) = tmp; end end end crit = [sum(sum(data'.^4)-sum(data'.^2).^2/size(data,2)) crit(1)]; inoim = inoim + 1; ict = ict + 1; fprintf('#%d - delta = %g\n',ict,(crit(1)-crit(2))/crit(1)); if (crit(1) - crit(2)) / crit(1) > eps2 inoim = 0; end end % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if reorder fprintf('Reordering rows...'); [fnorm index] = sort(sum(data'.^2)); V = V .* ((2 * (sum(data') > 0) - 1)' * ones(1, size(V,2))); data = data .* ((2 * (sum(data') > 0) - 1)' * ones(1, size(data,2))); V = V(fliplr(index),:); data = data(fliplr(index),:); fprintf('\n'); else fprintf('Not reordering rows.\n'); end
github
lcnhappe/happe-master
pcsquash.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/eeglab/pcsquash.m
2,802
utf_8
9e0a0372b72b09c731ef70785b8ce862
% pcsquash() - compress data using Principal Component Analysis (PCA) % into a principal component subspace. To project back % into the original channel space, use pcexpand() % % Usage: % >> [eigenvectors,eigenvalues] = pcsquash(data,ncomps); % >> [eigenvectors,eigenvalues,compressed,datamean] ... % = pcsquash(data,ncomps); % % Inputs: % data = (chans,frames) each row is a channel, each column a time point % ncomps = numbers of components to retain % % Outputs: % eigenvectors = square matrix of (column) eigenvectors % eigenvalues = vector of associated eigenvalues % compressed = data compressed into space of the ncomps eigenvectors % with largest eigenvalues (ncomps,frames) % Note that >> compressed = eigenvectors(:,1:ncomps)'*data; % datamean = input data channel (row) means (used internally) % % Author: Tzyy-Ping Jung & Scott Makeig, SCCN/INC/UCSD, La Jolla, 6-97 % % See also: pcexpand(), svd() % Copyright (C) 2000 Tzyy-Ping Jung & Scott Makeig, SCCN/INC/UCSD, % [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % 01-25-02 reformated help & license, added links -ad function [EigenVectors,EigenValues,Compressed,Datamean]=pcsquash(matrix,ncomps) if nargin < 1 help pcsquash return end if nargin < 2 ncomps = 0; end if ncomps == 0 ncomps = size(matrix,1); end if ncomps < 1 help pcsquash return end data = matrix'; % transpose data [n,p]=size(data); % now p chans,n time points if ncomps > p fprintf('pcsquash(): components must be <= number of data rows (%d).\n',p); return; end Datamean = mean(data,1); % remove column (channel) means data = data-ones(n,1)*Datamean; % remove column (channel) means out=data'*data/n; [V,D] = eig(out); % get eigenvectors/eigenvalues diag(D); [eigenval,index] = sort(diag(D)); index=rot90(rot90(index)); EigenValues=rot90(rot90(eigenval))'; EigenVectors=V(:,index); if nargout >= 3 Compressed = EigenVectors(:,1:ncomps)'*data'; end
github
lcnhappe/happe-master
binica.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/eeglab/binica.m
13,069
utf_8
e1bfb70b5edae53d01116b6f9cf42d51
% binica() - Run stand-alone binary version of runica() from the % Matlab command line. Saves time and memory relative % to runica(). If stored in a float file, data are not % read into Matlab, and so may be larger than Matlab % can handle owing to memory limitations. % Usage: % >> [wts,sph] = binica( datavar, 'key1', arg1, 'key2', arg2 ...); % else % >> [wts,sph] = binica('datafile', chans, frames, 'key1', arg1, ...); % % Inputs: % datavar - (chans,frames) data matrix in the Matlab workspace % datafile - quoted 'filename' of float data file multiplexed by channel % channels - number of channels in datafile (not needed for datavar) % frames - number of frames (time points) in datafile (only) % % Optional flag,argument pairs: % 'extended' - int>=0 [0 default: assume no subgaussian comps] % Search for subgaussian comps: 'extended',1 is recommended % 'pca' - int>=0 [0 default: don't reduce data dimension] % NB: 'pca' reduction not recommended unless necessary % 'sphering' - 'on'/'off' first 'sphere' the data {default: 'on'} % 'lrate' - (0<float<<1) starting learning rate {default: 1e-4} % 'blocksize' - int>=0 [0 default: heuristic, from data size] % 'maxsteps' - int>0 {default: 512} % 'stop' - (0<float<<<1) stopping learning rate {default: 1e-7} % NB: 'stop' <= 1e-7 recommended % 'weightsin' - Filename string of inital weight matrix of size % (comps,chans) floats, else a weight matrix variable % in the current Matlab workspace (copied to a local % .inwts files). You may want to reduce the starting % 'lrate' arg (above) when resuming training, and/or % to reduce the 'stop' arg (above). By default, binary % ica begins with the identity matrix after sphering. % 'verbose' - 'on'/'off' {default: 'off'} % 'filenum' - the number to be used in the name of the output files. % Otherwise chosen randomly. Will choose random number % if file with that number already exists. % % Less frequently used input flags: % 'posact' - ('on'/'off') Make maximum value for each comp positive. % NB: 'off' recommended. {default: 'off'} % 'annealstep' - (0<float<1) {default: 0.98} % 'annealdeg' - (0<n<360) {default: 60} % 'bias' - 'on'/'off' {default: 'on'} % 'momentum' - (0<float<1) {default: 0 = off] % % Outputs: % wts - output weights matrix, size (ncomps,nchans) % sph - output sphere matrix, size (nchans,nchans) % Both files are read from float files left on disk % stem - random integer used in the names of the .sc, .wts, % .sph, and if requested, .intwts files % % Author: Scott Makeig, SCCN/INC/UCSD, La Jolla, 2000 % % See also: runica() % Calls binary translation of runica() by Sigurd Enghoff % Copyright (C) 2000 Scott Makeig, SCCN/INC/UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % 08/07/00 Added warning to update icadefs.m -sm % 09/08/00 Added tmpint to script, weights and sphere files to avoid % conflicts when multiple binica sessions run in the same pwd -sm % 10/07/00 Fixed bug in reading wts when 'pca' ncomps < nchans -sm % 07/18/01 replaced var ICA with ICABINARY to try to avoid Matlab6 bug -sm % 11/06/01 add absolute path of files (lines 157-170 & 198) -ad % 01-25-02 reformated help & license, added links -ad function [wts,sph,tmpint] = binica(data,var2,var3,var4,var5,var6,var7,var8,var9,var10,var11,var12,var13,var14,var15,var16,var17,var18,var19,var20,var21,var22,var23,var24,var25) if nargin < 1 | nargin > 25 more on help binica more off return end if size(data,3) > 1, data = reshape(data, size(data,1), size(data,2)*size(data,3) ); end; icadefs % import ICABINARY and SC if ~exist('SC') fprintf('binica(): You need to update your icadefs file to include ICABINARY and SC.\n') return end; if exist(SC) ~= 2 fprintf('binica(): No ica source file ''%s'' is in your Matlab path, check...\n', SC); return else SC = which(SC); fprintf('binica: using source file ''%s''\n', SC); end if exist(ICABINARY) ~= 2 fprintf('binica(): ica binary ''%s'' is not in your Matlab path, check\n', ICABINARY); return else ICABINARYdir = which(ICABINARY); if ~isempty(ICABINARYdir) fprintf('binica(): using binary ica file ''%s''\n', ICABINARYdir); else fprintf('binica(): using binary ica file ''\?/%s''\n', ICABINARY); end; end [flags,args] = read_sc(SC); % read flags and args in master SC file % % substitute the flags/args pairs in the .sc file % tmpint=[]; if ~ischar(data) % data variable given firstarg = 2; else % data filename given firstarg = 4; end arg = firstarg; if arg > nargin fprintf('binica(): no optional (flag, argument) pairs received.\n'); else if (nargin-arg+1)/2 > 1 fprintf('binica(): processing %d (flag, arg) pairs.\n',(nargin-arg+1)/2); else fprintf('binica(): processing one (flag, arg) pair.\n'); end while arg <= nargin %%%%%%%%%%%% process flags & args %%%%%%%%%%%%%%%% eval(['OPTIONFLAG = var' int2str(arg) ';']); % NB: Found that here Matlab var 'FLAG' is (64,3) why!?!? if arg == nargin fprintf('\nbinica(): Flag %s needs an argument.\n',OPTIONFLAG) return end eval(['Arg = var' int2str(arg+1) ';']); if strcmpi(OPTIONFLAG,'pca') ncomps = Arg; % get number of components out for reading wts. end if strcmpi(OPTIONFLAG,'weightsin') wtsin = Arg; if exist('wtsin') == 2 % file fprintf(' setting %s, %s\n','weightsin',Arg); elseif exist('wtsin') == 1 % variable nchans = size(data,1); % by nima if size(wtsin,2) ~= nchans fprintf('weightsin variable must be of width %d\n',nchans); return end else fprintf('weightsin variable not found.\n'); return end end if strcmpi(OPTIONFLAG,'filenum') tmpint = Arg; % get number for name of output files if ~isnumeric(tmpint) fprintf('\nbinica(): FileNum argument needs to be a number. Will use random number instead.\n') tmpint=[]; end; tmpint=int2str(tmpint); end arg = arg+2; nflags = length(flags); for f=1:nflags % replace SC arg with Arg passed from commandline if strcmp(OPTIONFLAG,flags{f}) args{f} = num2str(Arg); fprintf(' setting %s, %s\n',flags{f},args{f}); end end end end % % select random integer 1-10000 to index the binica data files % make sure no such script file already exists in the pwd % scriptfile = ['binica' tmpint '.sc']; while exist(scriptfile) tmpint = int2str(round(rand*10000)); scriptfile = ['binica' tmpint '.sc']; end fprintf('scriptfile = %s\n',scriptfile); nchans = 0; tmpdata = []; if ~ischar(data) % data variable given if ~exist('data') fprintf('\nbinica(): Variable name data not found.\n'); return end nchans = size(data,1); nframes = size(data,2); tmpdata = ['binica' tmpint '.fdt']; if strcmpi(computer, 'MAC') floatwrite(data,tmpdata,'ieee-be'); else floatwrite(data,tmpdata); end; datafile = tmpdata; else % data filename given if ~exist(data) fprintf('\nbinica(): File data not found.\n') return end datafile = data; if nargin<3 fprintf(... '\nbinica(): Data file name must be followed by chans, frames\n'); return end nchans = var2; nframes = var3; if ischar(nchans) | ischar(nframes) fprintf(... '\nbinica(): chans, frames args must be given after data file name\n'); return end end % % insert name of data files, chans and frames % for x=1:length(flags) if strcmp(flags{x},'DataFile') datafile = [pwd '/' datafile]; args{x} = datafile; elseif strcmp(flags{x},'WeightsOutFile') weightsfile = ['binica' tmpint '.wts']; weightsfile = [pwd '/' weightsfile]; args{x} = weightsfile; elseif strcmp(flags{x},'WeightsTempFile') weightsfile = ['binicatmp' tmpint '.wts']; weightsfile = [pwd '/' weightsfile]; args{x} = weightsfile; elseif strcmp(flags{x},'SphereFile') spherefile = ['binica' tmpint '.sph']; spherefile = [pwd '/' spherefile]; args{x} = spherefile; elseif strcmp(flags{x},'chans') args{x} = int2str(nchans); elseif strcmp(flags{x},'frames') args{x} = int2str(nframes); end end % % write the new .sc file % fid = fopen(scriptfile,'w'); for x=1:length(flags) fprintf(fid,'%s %s\n',flags{x},args{x}); end if exist('wtsin') % specify WeightsInfile from 'weightsin' flag, arg if exist('wtsin') == 1 % variable winfn = [pwd '/binica' tmpint '.inwts']; if strcmpi(computer, 'MAC') floatwrite(wtsin,winfn,'ieee-be'); else floatwrite(wtsin,winfn); end; fprintf(' saving input weights:\n '); weightsinfile = winfn; % weights in file name elseif exist(wtsin) == 2 % file weightsinfile = wtsin; weightsinfile = [pwd '/' weightsinfile]; else fprintf('binica(): weightsin file|variable not found.\n'); return end eval(['!ls -l ' weightsinfile]); fprintf(fid,'%s %s\n','WeightsInFile',weightsinfile); end fclose(fid); if ~exist(scriptfile) fprintf('\nbinica(): ica script file %s not written.\n',... scriptfile); return end % % %%%%%%%%%%%%%%%%%%%%%% run binary ica %%%%%%%%%%%%%%%%%%%%%%%%% % fprintf('\nRunning ica from script file %s\n',scriptfile); if exist('ncomps') fprintf(' Finding %d components.\n',ncomps); end eval_call = ['!' ICABINARY '<' pwd '/' scriptfile]; eval(eval_call); % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % read in wts and sph results. % if ~exist('ncomps') ncomps = nchans; end if strcmpi(computer, 'MAC') wts = floatread(weightsfile,[ncomps Inf],'ieee-be',0); sph = floatread(spherefile,[nchans Inf],'ieee-be',0); else wts = floatread(weightsfile,[ncomps Inf],[],0); sph = floatread(spherefile,[nchans Inf],[],0); end; if isempty(wts) fprintf('\nbinica(): weight matrix not read.\n') return end if isempty(sph) fprintf('\nbinica(): sphere matrix not read.\n') return end fprintf('\nbinary ica files left in pwd:\n'); eval(['!ls -l ' scriptfile ' ' weightsfile ' ' spherefile]); if exist('wtsin') eval(['!ls -l ' weightsinfile]); end fprintf('\n'); if ischar(data) whos wts sph else whos data wts sph end % % If created by binica(), rm temporary data file % NOTE: doesn't remove the .sc .wts and .fdt files if ~isempty(tmpdata) eval(['!rm -f ' datafile]); end % %%%%%%%%%%%%%%%%%%% included functions %%%%%%%%%%%%%%%%%%%%%% % function sout = rmcomment(s,symb) n =1; while s(n)~=symb % discard # comments n = n+1; end if n == 1 sout = []; else sout = s(1:n-1); end function sout = rmspace(s) n=1; % discard leading whitespace while n<length(s) & isspace(s(n)) n = n+1; end if n<length(s) sout = s(n:end); else sout = []; end function [word,sout] = firstword(s) n=1; while n<=length(s) & ~isspace(s(n)) n = n+1; end if n>length(s) word = []; sout = s; else word = s(1:n-1); sout = s(n:end); end function [flags,args] = read_sc(master_sc) % % read in the master ica script file SC % flags = []; args = []; fid = fopen(master_sc,'r'); if fid < 0 fprintf('\nbinica(): Master .sc file %s not read!\n',master_sc) return end % % read SC file info into flags and args lists % s = []; f = 0; % flag number in file while isempty(s) | s ~= -1 s = fgetl(fid); if s ~= -1 if ~isempty(s) s = rmcomment(s,'#'); if ~isempty(s) f = f+1; s = rmspace(s); [w s]=firstword(s); if ~isempty(s) flags{f} = w; s = rmspace(s); [w s]=firstword(s); args{f} = w; end end end end end fclose(fid);
github
lcnhappe/happe-master
loadcnt.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/eeglab/loadcnt.m
24,511
utf_8
4c5259259e1f529ae64cfe52eec5bd9a
% loadcnt() - Load a Neuroscan continuous signal file. % % Usage: % >> cnt = loadcnt(file, varargin) % % Inputs: % filename - name of the file with extension % % Optional inputs: % 't1' - start at time t1, default 0. Warning, events latency % might be innacurate (this is an open issue). % 'sample1' - start at sample1, default 0, overrides t1. Warning, % events latency might be innacurate. % 'lddur' - duration of segment to load, default = whole file % 'ldnsamples' - number of samples to load, default = whole file, % overrides lddur % 'scale' - ['on'|'off'] scale data to microvolt (default:'on') % 'dataformat' - ['int16'|'int32'] default is 'int16' for 16-bit data. % Use 'int32' for 32-bit data. % 'blockread' - [integer] by default it is automatically determined % from the file header, though sometimes it finds an % incorect value, so you may want to enter a value manually % here (1 is the most standard value). % 'memmapfile' - ['memmapfile_name'] use this option if the .cnt file % is too large to read in conventially. The suffix of % the memmapfile_name must be .fdt. The memmapfile % functions process files based on their suffix, and an % error will occur if you use a different suffix. % % Outputs: % cnt - structure with the continuous data and other informations % cnt.header % cnt.electloc % cnt.data % cnt.tag % % Authors: Sean Fitzgibbon, Arnaud Delorme, 2000- % % Note: function original name was load_scan41.m % % Known limitations: % For more see http://www.cnl.salk.edu/~arno/cntload/index.html % Copyright (C) 2000 Sean Fitzgibbon, <[email protected]> % Copyright (C) 2003 Arnaud Delorme, Salk Institute, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [f,lab,ev2p] = loadcnt(filename,varargin) if ~isempty(varargin) r=struct(varargin{:}); else r = []; end; try, r.t1; catch, r.t1=0; end try, r.sample1; catch, r.sample1=[]; end try, r.lddur; catch, r.lddur=[]; end try, r.ldnsamples; catch, r.ldnsamples=[]; end try, r.scale; catch, r.scale='on'; end try, r.blockread; catch, r.blockread = []; end try, r.dataformat; catch, r.dataformat = 'auto'; end try, r.memmapfile; catch, r.memmapfile = ''; end sizeEvent1 = 8 ; %%% 8 bytes for Event1 sizeEvent2 = 19 ; %%% 19 bytes for Event2 sizeEvent3 = 19 ; %%% 19 bytes for Event3 type='cnt'; if nargin ==1 scan=0; end fid = fopen(filename,'r', 'l'); disp(['Loading file ' filename ' ...']) h.rev = fread(fid,12,'char'); h.nextfile = fread(fid,1,'long'); h.prevfile = fread(fid,1,'ulong'); h.type = fread(fid,1,'char'); h.id = fread(fid,20,'char'); h.oper = fread(fid,20,'char'); h.doctor = fread(fid,20,'char'); h.referral = fread(fid,20,'char'); h.hospital = fread(fid,20,'char'); h.patient = fread(fid,20,'char'); h.age = fread(fid,1,'short'); h.sex = fread(fid,1,'char'); h.hand = fread(fid,1,'char'); h.med = fread(fid,20, 'char'); h.category = fread(fid,20, 'char'); h.state = fread(fid,20, 'char'); h.label = fread(fid,20, 'char'); h.date = fread(fid,10, 'char'); h.time = fread(fid,12, 'char'); h.mean_age = fread(fid,1,'float'); h.stdev = fread(fid,1,'float'); h.n = fread(fid,1,'short'); h.compfile = fread(fid,38,'char'); h.spectwincomp = fread(fid,1,'float'); h.meanaccuracy = fread(fid,1,'float'); h.meanlatency = fread(fid,1,'float'); h.sortfile = fread(fid,46,'char'); h.numevents = fread(fid,1,'int'); h.compoper = fread(fid,1,'char'); h.avgmode = fread(fid,1,'char'); h.review = fread(fid,1,'char'); h.nsweeps = fread(fid,1,'ushort'); h.compsweeps = fread(fid,1,'ushort'); h.acceptcnt = fread(fid,1,'ushort'); h.rejectcnt = fread(fid,1,'ushort'); h.pnts = fread(fid,1,'ushort'); h.nchannels = fread(fid,1,'ushort'); h.avgupdate = fread(fid,1,'ushort'); h.domain = fread(fid,1,'char'); h.variance = fread(fid,1,'char'); h.rate = fread(fid,1,'ushort'); % A USER CLAIMS THAT SAMPLING RATE CAN BE h.scale = fread(fid,1,'double'); % FRACTIONAL IN NEUROSCAN WHICH IS h.veogcorrect = fread(fid,1,'char'); % OBVIOUSLY NOT POSSIBLE HERE (BUG 606) h.heogcorrect = fread(fid,1,'char'); h.aux1correct = fread(fid,1,'char'); h.aux2correct = fread(fid,1,'char'); h.veogtrig = fread(fid,1,'float'); h.heogtrig = fread(fid,1,'float'); h.aux1trig = fread(fid,1,'float'); h.aux2trig = fread(fid,1,'float'); h.heogchnl = fread(fid,1,'short'); h.veogchnl = fread(fid,1,'short'); h.aux1chnl = fread(fid,1,'short'); h.aux2chnl = fread(fid,1,'short'); h.veogdir = fread(fid,1,'char'); h.heogdir = fread(fid,1,'char'); h.aux1dir = fread(fid,1,'char'); h.aux2dir = fread(fid,1,'char'); h.veog_n = fread(fid,1,'short'); h.heog_n = fread(fid,1,'short'); h.aux1_n = fread(fid,1,'short'); h.aux2_n = fread(fid,1,'short'); h.veogmaxcnt = fread(fid,1,'short'); h.heogmaxcnt = fread(fid,1,'short'); h.aux1maxcnt = fread(fid,1,'short'); h.aux2maxcnt = fread(fid,1,'short'); h.veogmethod = fread(fid,1,'char'); h.heogmethod = fread(fid,1,'char'); h.aux1method = fread(fid,1,'char'); h.aux2method = fread(fid,1,'char'); h.ampsensitivity = fread(fid,1,'float'); h.lowpass = fread(fid,1,'char'); h.highpass = fread(fid,1,'char'); h.notch = fread(fid,1,'char'); h.autoclipadd = fread(fid,1,'char'); h.baseline = fread(fid,1,'char'); h.offstart = fread(fid,1,'float'); h.offstop = fread(fid,1,'float'); h.reject = fread(fid,1,'char'); h.rejstart = fread(fid,1,'float'); h.rejstop = fread(fid,1,'float'); h.rejmin = fread(fid,1,'float'); h.rejmax = fread(fid,1,'float'); h.trigtype = fread(fid,1,'char'); h.trigval = fread(fid,1,'float'); h.trigchnl = fread(fid,1,'char'); h.trigmask = fread(fid,1,'short'); h.trigisi = fread(fid,1,'float'); h.trigmin = fread(fid,1,'float'); h.trigmax = fread(fid,1,'float'); h.trigdir = fread(fid,1,'char'); h.autoscale = fread(fid,1,'char'); h.n2 = fread(fid,1,'short'); h.dir = fread(fid,1,'char'); h.dispmin = fread(fid,1,'float'); h.dispmax = fread(fid,1,'float'); h.xmin = fread(fid,1,'float'); h.xmax = fread(fid,1,'float'); h.automin = fread(fid,1,'float'); h.automax = fread(fid,1,'float'); h.zmin = fread(fid,1,'float'); h.zmax = fread(fid,1,'float'); h.lowcut = fread(fid,1,'float'); h.highcut = fread(fid,1,'float'); h.common = fread(fid,1,'char'); h.savemode = fread(fid,1,'char'); h.manmode = fread(fid,1,'char'); h.ref = fread(fid,10,'char'); h.rectify = fread(fid,1,'char'); h.displayxmin = fread(fid,1,'float'); h.displayxmax = fread(fid,1,'float'); h.phase = fread(fid,1,'char'); h.screen = fread(fid,16,'char'); h.calmode = fread(fid,1,'short'); h.calmethod = fread(fid,1,'short'); h.calupdate = fread(fid,1,'short'); h.calbaseline = fread(fid,1,'short'); h.calsweeps = fread(fid,1,'short'); h.calattenuator = fread(fid,1,'float'); h.calpulsevolt = fread(fid,1,'float'); h.calpulsestart = fread(fid,1,'float'); h.calpulsestop = fread(fid,1,'float'); h.calfreq = fread(fid,1,'float'); h.taskfile = fread(fid,34,'char'); h.seqfile = fread(fid,34,'char'); h.spectmethod = fread(fid,1,'char'); h.spectscaling = fread(fid,1,'char'); h.spectwindow = fread(fid,1,'char'); h.spectwinlength = fread(fid,1,'float'); h.spectorder = fread(fid,1,'char'); h.notchfilter = fread(fid,1,'char'); h.headgain = fread(fid,1,'short'); h.additionalfiles = fread(fid,1,'int'); h.unused = fread(fid,5,'char'); h.fspstopmethod = fread(fid,1,'short'); h.fspstopmode = fread(fid,1,'short'); h.fspfvalue = fread(fid,1,'float'); h.fsppoint = fread(fid,1,'short'); h.fspblocksize = fread(fid,1,'short'); h.fspp1 = fread(fid,1,'ushort'); h.fspp2 = fread(fid,1,'ushort'); h.fspalpha = fread(fid,1,'float'); h.fspnoise = fread(fid,1,'float'); h.fspv1 = fread(fid,1,'short'); h.montage = fread(fid,40,'char'); h.eventfile = fread(fid,40,'char'); h.fratio = fread(fid,1,'float'); h.minor_rev = fread(fid,1,'char'); h.eegupdate = fread(fid,1,'short'); h.compressed = fread(fid,1,'char'); h.xscale = fread(fid,1,'float'); h.yscale = fread(fid,1,'float'); h.xsize = fread(fid,1,'float'); h.ysize = fread(fid,1,'float'); h.acmode = fread(fid,1,'char'); h.commonchnl = fread(fid,1,'uchar'); h.xtics = fread(fid,1,'char'); h.xrange = fread(fid,1,'char'); h.ytics = fread(fid,1,'char'); h.yrange = fread(fid,1,'char'); h.xscalevalue = fread(fid,1,'float'); h.xscaleinterval = fread(fid,1,'float'); h.yscalevalue = fread(fid,1,'float'); h.yscaleinterval = fread(fid,1,'float'); h.scaletoolx1 = fread(fid,1,'float'); h.scaletooly1 = fread(fid,1,'float'); h.scaletoolx2 = fread(fid,1,'float'); h.scaletooly2 = fread(fid,1,'float'); h.port = fread(fid,1,'short'); h.numsamples = fread(fid,1,'ulong'); h.filterflag = fread(fid,1,'char'); h.lowcutoff = fread(fid,1,'float'); h.lowpoles = fread(fid,1,'short'); h.highcutoff = fread(fid,1,'float'); h.highpoles = fread(fid,1,'short'); h.filtertype = fread(fid,1,'char'); h.filterdomain = fread(fid,1,'char'); h.snrflag = fread(fid,1,'char'); h.coherenceflag = fread(fid,1,'char'); h.continuoustype = fread(fid,1,'char'); h.eventtablepos = fread(fid,1,'ulong'); h.continuousseconds = fread(fid,1,'float'); h.channeloffset = fread(fid,1,'long'); h.autocorrectflag = fread(fid,1,'char'); h.dcthreshold = fread(fid,1,'uchar'); for n = 1:h.nchannels e(n).lab = deblank(char(fread(fid,10,'char')')); e(n).reference = fread(fid,1,'char'); e(n).skip = fread(fid,1,'char'); e(n).reject = fread(fid,1,'char'); e(n).display = fread(fid,1,'char'); e(n).bad = fread(fid,1,'char'); e(n).n = fread(fid,1,'ushort'); e(n).avg_reference = fread(fid,1,'char'); e(n).clipadd = fread(fid,1,'char'); e(n).x_coord = fread(fid,1,'float'); e(n).y_coord = fread(fid,1,'float'); e(n).veog_wt = fread(fid,1,'float'); e(n).veog_std = fread(fid,1,'float'); e(n).snr = fread(fid,1,'float'); e(n).heog_wt = fread(fid,1,'float'); e(n).heog_std = fread(fid,1,'float'); e(n).baseline = fread(fid,1,'short'); e(n).filtered = fread(fid,1,'char'); e(n).fsp = fread(fid,1,'char'); e(n).aux1_wt = fread(fid,1,'float'); e(n).aux1_std = fread(fid,1,'float'); e(n).senstivity = fread(fid,1,'float'); e(n).gain = fread(fid,1,'char'); e(n).hipass = fread(fid,1,'char'); e(n).lopass = fread(fid,1,'char'); e(n).page = fread(fid,1,'uchar'); e(n).size = fread(fid,1,'uchar'); e(n).impedance = fread(fid,1,'uchar'); e(n).physicalchnl = fread(fid,1,'uchar'); e(n).rectify = fread(fid,1,'char'); e(n).calib = fread(fid,1,'float'); end % finding if 32-bits of 16-bits file % ---------------------------------- begdata = ftell(fid); if strcmpi(r.dataformat, 'auto') r.dataformat = 'int16'; if (h.nextfile > 0) fseek(fid,h.nextfile+52,'bof'); is32bit = fread(fid,1,'char'); if (is32bit == 1) r.dataformat = 'int32'; end; fseek(fid,begdata,'bof'); end; end; enddata = h.eventtablepos; % after data if strcmpi(r.dataformat, 'int16') nums = floor((enddata-begdata)/h.nchannels/2); % floor due to bug 1254 else nums = floor((enddata-begdata)/h.nchannels/4); end; % number of sample to read % ------------------------ if ~isempty(r.sample1) r.t1 = r.sample1/h.rate; else r.sample1 = r.t1*h.rate; end; if strcmpi(r.dataformat, 'int16') startpos = r.t1*h.rate*2*h.nchannels; else startpos = r.t1*h.rate*4*h.nchannels; end; if isempty(r.ldnsamples) if ~isempty(r.lddur) r.ldnsamples = round(r.lddur*h.rate); else r.ldnsamples = nums; end; end; % channel offset % -------------- if ~isempty(r.blockread) h.channeloffset = r.blockread; end; if h.channeloffset > 1 fprintf('WARNING: reading data in blocks of %d, if this fails, try using option "''blockread'', 1"\n', ... h.channeloffset); end; disp('Reading data .....') if type == 'cnt' % while (ftell(fid) +1 < h.eventtablepos) %d(:,i)=fread(fid,h.nchannels,'int16'); %end % the following chunk has been added by Jan-Mathijs to deal % with numeric accuracy issues (FieldTrip bug 2746) if startpos~=round(startpos) if abs(startpos-round(startpos))<1e-3 disp('Numeric accuracy issue with the first sample: Rounding off to the nearest integer value'); startpos = round(startpos); else error('The discrepancy between the requested sample and the nearest integer is too large'); end end fseek(fid, startpos, 0); % **** This marks the beginning of the code modified for reading % large .cnt files % Switched to r.memmapfile for continuity. Check to see if the % variable exists. If it does, then the user has indicated the % file is too large to be processed in memory. If the variable % is blank, the file is processed in memory. if (~isempty(r.memmapfile)) % open a file for writing foutid = fopen(r.memmapfile, 'w') ; % This portion of the routine reads in a section of the EEG file % and then writes it out to the harddisk. samples_left = h.nchannels * r.ldnsamples ; % the size of the data block to be read is limited to 4M % samples. This equates to 16MB and 32MB of memory for % 16 and 32 bit files, respectively. data_block = 4000000 ; max_rows = data_block / h.nchannels ; %warning off ; max_written = h.nchannels * uint32(max_rows) ; %warning on ; % This while look tracks the remaining samples. The % data is processed in chunks rather than put into % memory whole. while (samples_left > 0) % Check to see if the remaining data is smaller than % the general processing block by looking at the % remaining number of rows. to_read = max_rows ; if (data_block > samples_left) to_read = samples_left / h.nchannels ; end ; % Read data in a relatively small chunk temp_dat = fread(fid, [h.nchannels to_read], r.dataformat) ; % The data is then scaled using the original routine. % In the original routine, the entire data set was scaled % after being read in. For this version, scaling occurs % after every chunk is read. if strcmpi(r.scale, 'on') disp('Scaling data .....') %%% scaling to microvolts for i=1:h.nchannels bas=e(i).baseline;sen=e(i).senstivity;cal=e(i).calib; mf=sen*(cal/204.8); temp_dat(i,:)=(temp_dat(i,:)-bas).*mf; end end % Write out data in float32 form to the file name % supplied by the user. written = fwrite (foutid, temp_dat, 'float32') ; if (written ~= max_written) samples_left = 0 ; else samples_left = samples_left - written ; end ; end ; fclose (foutid) ; % Set the dat variable. This gets used later by other % EEGLAB functions. dat = r.memmapfile ; % This variable tracks how the data should be read. bReadIntoMemory = false ; else % The memmapfile variable is empty, read into memory. bReadIntoMemory = true ; end % This ends the modifications made to read large files. % Everything contained within the following if statement is the % original code. if (bReadIntoMemory == true) if h.channeloffset <= 1 dat=fread(fid, [h.nchannels Inf], r.dataformat); if size(dat,2) < r.ldnsamples dat=single(dat); r.ldnsamples = size(dat,2); else dat=single(dat(:,1:r.ldnsamples)); end; else h.channeloffset = h.channeloffset/2; % reading data in blocks dat = zeros( h.nchannels, r.ldnsamples, 'single'); dat(:, 1:h.channeloffset) = fread(fid, [h.channeloffset h.nchannels], r.dataformat)'; counter = 1; while counter*h.channeloffset < r.ldnsamples dat(:, counter*h.channeloffset+1:counter*h.channeloffset+h.channeloffset) = ... fread(fid, [h.channeloffset h.nchannels], r.dataformat)'; counter = counter + 1; end; end ; % ftell(fid) if strcmpi(r.scale, 'on') disp('Scaling data .....') %%% scaling to microvolts for i=1:h.nchannels bas=e(i).baseline;sen=e(i).senstivity;cal=e(i).calib; mf=sen*(cal/204.8); dat(i,:)=(dat(i,:)-bas).*mf; end % end for i=1:h.nchannels end; % end if (strcmpi(r.scale, 'on') end ; ET_offset = (double(h.prevfile) * (2^32)) + double(h.eventtablepos); % prevfile contains high order bits of event table offset, eventtablepos contains the low order bits fseek(fid, ET_offset, 'bof'); disp('Reading Event Table...') eT.teeg = fread(fid,1,'uchar'); eT.size = fread(fid,1,'ulong'); eT.offset = fread(fid,1,'ulong'); if eT.teeg==2 nevents=eT.size/sizeEvent2; if nevents > 0 ev2(nevents).stimtype = []; for i=1:nevents ev2(i).stimtype = fread(fid,1,'ushort'); ev2(i).keyboard = fread(fid,1,'char'); temp = fread(fid,1,'uint8'); ev2(i).keypad_accept = bitand(15,temp); ev2(i).accept_ev1 = bitshift(temp,-4); ev2(i).offset = fread(fid,1,'long'); ev2(i).type = fread(fid,1,'short'); ev2(i).code = fread(fid,1,'short'); ev2(i).latency = fread(fid,1,'float'); ev2(i).epochevent = fread(fid,1,'char'); ev2(i).accept = fread(fid,1,'char'); ev2(i).accuracy = fread(fid,1,'char'); end else ev2 = []; end; elseif eT.teeg==3 % type 3 is similar to type 2 except the offset field encodes the global sample frame nevents=eT.size/sizeEvent3; if nevents > 0 ev2(nevents).stimtype = []; if r.dataformat == 'int32' bytes_per_samp = 4; % I only have 32 bit data, unable to check whether this is necessary, else % perhaps there is no type 3 file with 16 bit data bytes_per_samp = 2; end for i=1:nevents ev2(i).stimtype = fread(fid,1,'ushort'); ev2(i).keyboard = fread(fid,1,'char'); temp = fread(fid,1,'uint8'); ev2(i).keypad_accept = bitand(15,temp); ev2(i).accept_ev1 = bitshift(temp,-4); os = fread(fid,1,'ulong'); ev2(i).offset = os * bytes_per_samp * h.nchannels; ev2(i).type = fread(fid,1,'short'); ev2(i).code = fread(fid,1,'short'); ev2(i).latency = fread(fid,1,'float'); ev2(i).epochevent = fread(fid,1,'char'); ev2(i).accept = fread(fid,1,'char'); ev2(i).accuracy = fread(fid,1,'char'); end else ev2 = []; end; elseif eT.teeg==1 nevents=eT.size/sizeEvent1; if nevents > 0 ev2(nevents).stimtype = []; for i=1:nevents ev2(i).stimtype = fread(fid,1,'ushort'); ev2(i).keyboard = fread(fid,1,'char'); % modified by Andreas Widmann 2005/05/12 14:15:00 %ev2(i).keypad_accept = fread(fid,1,'char'); temp = fread(fid,1,'uint8'); ev2(i).keypad_accept = bitand(15,temp); ev2(i).accept_ev1 = bitshift(temp,-4); % end modification ev2(i).offset = fread(fid,1,'long'); end; else ev2 = []; end; else disp('Skipping event table (tag != 1,2,3 ; theoritically impossible)'); ev2 = []; end fseek(fid, -1, 'eof'); t = fread(fid,'char'); f.header = h; f.electloc = e; f.data = dat; f.Teeg = eT; f.event = ev2; f.tag=t; % Surgical addition of number of samples f.ldnsamples = r.ldnsamples ; %%%% channels labels for i=1:h.nchannels plab=sprintf('%c',f.electloc(i).lab); if i>1 lab=str2mat(lab,plab); else lab=plab; end end %%%% to change offest in bytes to points if ~isempty(ev2) if r.sample1 ~= 0 fprintf(2,'Warning: events imported with a time shift might be innacurate\n'); end; ev2p=ev2; ioff=900+(h.nchannels*75); %% initial offset : header + electordes desc if strcmpi(r.dataformat, 'int16') for i=1:nevents ev2p(i).offset=(ev2p(i).offset-ioff)/(2*h.nchannels) - r.sample1; %% 2 short int end end else % 32 bits for i=1:nevents ev2p(i).offset=(ev2p(i).offset-ioff)/(4*h.nchannels) - r.sample1; %% 4 short int end end end; f.event = ev2p; end; frewind(fid); fclose(fid); end
github
lcnhappe/happe-master
runica.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/eeglab/runica.m
64,715
utf_8
6d997fa33b536afd5abe7d1cac2c0c8d
% runica() - Perform Independent Component Analysis (ICA) decomposition % of input data using the logistic infomax ICA algorithm of % Bell & Sejnowski (1995) with the natural gradient feature % of Amari, Cichocki & Yang, or optionally the extended-ICA % algorithm of Lee, Girolami & Sejnowski, with optional PCA % dimension reduction. Annealing based on weight changes is % used to automate the separation process. % Usage: % >> [weights,sphere] = runica(data); % train using defaults % else % >> [weights,sphere,compvars,bias,signs,lrates,activations] ... % = runica(data,'Key1',Value1',...); % Input: % data = input data (chans,frames*epochs). % Note that if data consists of multiple discontinuous epochs, % each epoch should be separately baseline-zero'd using % >> data = rmbase(data,frames,basevector); % % Optional keywords [argument]: % 'extended' = [N] perform tanh() "extended-ICA" with sign estimation % N training blocks. If N > 0, automatically estimate the % number of sub-Gaussian sources. If N < 0, fix number of % sub-Gaussian comps to -N [faster than N>0] (default|0 -> off) % 'pca' = [N] decompose a principal component (default -> 0=off) % subspace of the data. Value is the number of PCs to retain. % 'sphering' = ['on'/'off'] flag sphering of data (default -> 'on') % 'weights' = [W] initial weight matrix (default -> eye()) % (Note: if 'sphering' 'off', default -> spher()) % 'lrate' = [rate] initial ICA learning rate (<< 1) (default -> heuristic) % 'block' = [N] ICA block size (<< datalength) (default -> heuristic) % 'anneal' = annealing constant (0,1] (defaults -> 0.90, or 0.98, extended) % controls speed of convergence % 'annealdeg' = [N] degrees weight change for annealing (default -> 70) % 'stop' = [f] stop training when weight-change < this (default -> 1e-6 % if less than 33 channel and 1E-7 otherwise) % 'maxsteps' = [N] max number of ICA training steps (default -> 512) % 'bias' = ['on'/'off'] perform bias adjustment (default -> 'on') % 'momentum' = [0<f<1] training momentum (default -> 0) % 'specgram' = [srate loHz hiHz frames winframes] decompose a complex time/frequency % transform of the data - though not optimally. (Note: winframes must % divide frames) (defaults [srate 0 srate/2 size(data,2) size(data,2)]) % 'posact' = make all component activations net-positive(default 'off'} % Requires time and memory; posact() may be applied separately. % 'verbose' = give ascii messages ('on'/'off') (default -> 'on') % 'logfile' = [filename] save all message in a log file in addition to showing them % on screen (default -> none) % 'interput' = ['on'|'off'] draw interupt figure. Default is off. % % Outputs: [Note: RO means output in reverse order of projected mean variance % unless starting weight matrix passed ('weights' above)] % weights = ICA weight matrix (comps,chans) [RO] % sphere = data sphering matrix (chans,chans) = spher(data) % Note that unmixing_matrix = weights*sphere {if sphering off -> eye(chans)} % compvars = back-projected component variances [RO] % bias = vector of final (ncomps) online bias [RO] (default = zeros()) % signs = extended-ICA signs for components [RO] (default = ones()) % [ -1 = sub-Gaussian; 1 = super-Gaussian] % lrates = vector of learning rates used at each training step [RO] % activations = activation time courses of the output components (ncomps,frames*epochs) % % Authors: Scott Makeig with contributions from Tony Bell, Te-Won Lee, % Tzyy-Ping Jung, Sigurd Enghoff, Michael Zibulevsky, Delorme Arnaud, % CNL/The Salk Institute, La Jolla, 1996- % Uses: posact() % 'ncomps' = [N] number of ICA components to compute (default -> chans or 'pca' arg) % using rectangular ICA decomposition. This parameter may return % strange results. This is because the weight matrix is rectangular % instead of being square. Do not use except to try to fix the problem. % Reference (please cite): % % Makeig, S., Bell, A.J., Jung, T-P and Sejnowski, T.J., % "Independent component analysis of electroencephalographic data," % In: D. Touretzky, M. Mozer and M. Hasselmo (Eds). Advances in Neural % Information Processing Systems 8:145-151, MIT Press, Cambridge, MA (1996). % % Toolbox Citation: % % Makeig, Scott et al. "EEGLAB: ICA Toolbox for Psychophysiological Research". % WWW Site, Swartz Center for Computational Neuroscience, Institute of Neural % Computation, University of San Diego California % <www.sccn.ucsd.edu/eeglab/>, 2000. [World Wide Web Publication]. % % For more information: % http://www.sccn.ucsd.edu/eeglab/icafaq.html - FAQ on ICA/EEG % http://www.sccn.ucsd.edu/eeglab/icabib.html - mss. on ICA & biosignals % http://www.cnl.salk.edu/~tony/ica.html - math. mss. on ICA % Copyright (C) 1996 Scott Makeig et al, SCCN/INC/UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA %%%%%%%%%%%%%%%%%%%%%%%%%%% Edit history %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % runica() - by Scott Makeig with contributions from Tony Bell, Te-Won Lee % Tzyy-Ping Jung, Sigurd Enghoff, Michael Zibulevsky et al. % CNL / Salk Institute 1996-00 % 04-30-96 built from icatest.m and ~jung/.../wtwpwica.m -sm % 07-28-97 new runica(), adds bias (default on), momentum (default off), % extended-ICA (Lee & Sejnowski, 1997), cumulative angledelta % (until lrate drops), keywords, signcount for speeding extended-ICA % 10-07-97 put acos() outside verbose loop; verbose 'off' wasn't stopping -sm % 11-11-97 adjusted help msg -sm % 11-30-97 return eye(chans) if sphering 'off' or 'none' (undocumented option) -sm % 02-27-98 use pinv() instead of inv() to rank order comps if ncomps < chans -sm % 04-28-98 added 'posact' and 'pca' flags -sm % 07-16-98 reduced length of randperm() for kurtosis subset calc. -se & sm % 07-19-98 fixed typo in weights def. above -tl & sm % 12-21-99 added 'specgram' option suggested by Michael Zibulevsky, UNM -sm % 12-22-99 fixed rand() sizing inefficiency on suggestion of Mike Spratling, UK -sm % 01-11-00 fixed rand() sizing bug on suggestion of Jack Foucher, Strasbourg -sm % 12-18-00 test for existence of Sig Proc Tlbx function 'specgram'; improve % 'specgram' option arguments -sm % 01-25-02 reformated help & license -ad % 01-25-02 lowered default lrate and block -ad % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [weights,sphere,meanvar,bias,signs,lrates,data,y] = runica(data,varargin) % NB: Now optionally returns activations as variable 'data' -sm 7/05 if nargin < 1 help runica return end [chans frames] = size(data); % determine the data size urchans = chans; % remember original data channels datalength = frames; if chans<2 fprintf('\nrunica() - data size (%d,%d) too small.\n\n', chans,frames); return end % %%%%%%%%%%%%%%%%%%%%%% Declare defaults used below %%%%%%%%%%%%%%%%%%%%%%%% % MAX_WEIGHT = 1e8; % guess that weights larger than this have blown up DEFAULT_STOP = 0.000001; % stop training if weight changes below this DEFAULT_ANNEALDEG = 60; % when angle change reaches this value, DEFAULT_ANNEALSTEP = 0.90; % anneal by multiplying lrate by this DEFAULT_EXTANNEAL = 0.98; % or this if extended-ICA DEFAULT_MAXSTEPS = 512; % ]top training after this many steps DEFAULT_MOMENTUM = 0.0; % default momentum weight DEFAULT_BLOWUP = 1000000000.0; % = learning rate has 'blown up' DEFAULT_BLOWUP_FAC = 0.8; % when lrate 'blows up,' anneal by this fac DEFAULT_RESTART_FAC = 0.9; % if weights blowup, restart with lrate % lower by this factor MIN_LRATE = 0.000001; % if weight blowups make lrate < this, quit MAX_LRATE = 0.1; % guard against uselessly high learning rate DEFAULT_LRATE = 0.00065/log(chans); % heuristic default - may need adjustment % for large or tiny data sets! % DEFAULT_BLOCK = floor(sqrt(frames/4)); % heuristic default DEFAULT_BLOCK = ceil(min(5*log(frames),0.3*frames)); % heuristic % - may need adjustment! % Extended-ICA option: DEFAULT_EXTENDED = 0; % default off DEFAULT_EXTBLOCKS = 1; % number of blocks per kurtosis calculation DEFAULT_NSUB = 1; % initial default number of assumed sub-Gaussians % for extended-ICA DEFAULT_EXTMOMENTUM = 0.5; % momentum term for computing extended-ICA kurtosis MAX_KURTSIZE = 6000; % max points to use in kurtosis calculation MIN_KURTSIZE = 2000; % minimum good kurtosis size (flag warning) SIGNCOUNT_THRESHOLD = 25; % raise extblocks when sign vector unchanged % after this many steps SIGNCOUNT_STEP = 2; % extblocks increment factor DEFAULT_SPHEREFLAG = 'on'; % use the sphere matrix as the default % starting weight matrix DEFAULT_INTERUPT = 'off'; % figure interuption DEFAULT_PCAFLAG = 'off'; % don't use PCA reduction DEFAULT_POSACTFLAG = 'off'; % don't use posact(), to save space -sm 7/05 DEFAULT_VERBOSE = 1; % write ascii info to calling screen DEFAULT_BIASFLAG = 1; % default to using bias in the ICA update rule DEFAULT_RESETRANDOMSEED = true; % default to reset the random number generator to a 'random state' % %%%%%%%%%%%%%%%%%%%%%%% Set up keyword default values %%%%%%%%%%%%%%%%%%%%%%%%% % if nargout < 2, fprintf('runica() - needs at least two output arguments.\n'); return end epochs = 1; % do not care how many epochs in data pcaflag = DEFAULT_PCAFLAG; sphering = DEFAULT_SPHEREFLAG; % default flags posactflag = DEFAULT_POSACTFLAG; verbose = DEFAULT_VERBOSE; logfile = []; block = DEFAULT_BLOCK; % heuristic default - may need adjustment! lrate = DEFAULT_LRATE; annealdeg = DEFAULT_ANNEALDEG; annealstep = 0; % defaults declared below nochange = NaN; momentum = DEFAULT_MOMENTUM; maxsteps = DEFAULT_MAXSTEPS; weights = 0; % defaults defined below ncomps = chans; biasflag = DEFAULT_BIASFLAG; interupt = DEFAULT_INTERUPT; extended = DEFAULT_EXTENDED; extblocks = DEFAULT_EXTBLOCKS; kurtsize = MAX_KURTSIZE; signsbias = 0.02; % bias towards super-Gaussian components extmomentum= DEFAULT_EXTMOMENTUM; % exp. average the kurtosis estimates nsub = DEFAULT_NSUB; wts_blowup = 0; % flag =1 when weights too large wts_passed = 0; % flag weights passed as argument reset_randomseed = DEFAULT_RESETRANDOMSEED; % %%%%%%%%%% Collect keywords and values from argument list %%%%%%%%%%%%%%% % if (nargin> 1 & rem(nargin,2) == 0) fprintf('runica(): Even number of input arguments???') return end for i = 1:2:length(varargin) % for each Keyword Keyword = varargin{i}; Value = varargin{i+1}; if ~isstr(Keyword) fprintf('runica(): keywords must be strings') return end Keyword = lower(Keyword); % convert upper or mixed case to lower if strcmp(Keyword,'weights') | strcmp(Keyword,'weight') if isstr(Value) fprintf(... 'runica(): weights value must be a weight matrix or sphere') return else weights = Value; wts_passed =1; end elseif strcmp(Keyword,'ncomps') if isstr(Value) fprintf('runica(): ncomps value must be an integer') return end if ncomps < urchans & ncomps ~= Value fprintf('runica(): Use either PCA or ICA dimension reduction'); return end fprintf('*****************************************************************************************'); fprintf('************** WARNING: NCOMPS OPTION OFTEN DOES NOT RETURN ACCURATE RESULTS ************'); fprintf('************** WARNING: IF YOU FIND THE PROBLEM, PLEASE LET US KNOW ************'); fprintf('*****************************************************************************************'); ncomps = Value; if ~ncomps, ncomps = chans; end elseif strcmp(Keyword,'pca') if ncomps < urchans & ncomps ~= Value fprintf('runica(): Use either PCA or ICA dimension reduction'); return end if isstr(Value) fprintf(... 'runica(): pca value should be the number of principal components to retain') return end pcaflag = 'on'; ncomps = Value; if ncomps > chans | ncomps < 1, fprintf('runica(): pca value must be in range [1,%d]\n',chans) return end chans = ncomps; elseif strcmp(Keyword,'interupt') if ~isstr(Value) fprintf('runica(): interupt value must be on or off') return else Value = lower(Value); if ~strcmp(Value,'on') & ~strcmp(Value,'off'), fprintf('runica(): interupt value must be on or off') return end interupt = Value; end elseif strcmp(Keyword,'posact') if ~isstr(Value) fprintf('runica(): posact value must be on or off') return else Value = lower(Value); if ~strcmp(Value,'on') & ~strcmp(Value,'off'), fprintf('runica(): posact value must be on or off') return end posactflag = Value; end elseif strcmp(Keyword,'lrate') if isstr(Value) fprintf('runica(): lrate value must be a number') return end lrate = Value; if lrate>MAX_LRATE | lrate <0, fprintf('runica(): lrate value is out of bounds'); return end if ~lrate, lrate = DEFAULT_LRATE; end elseif strcmp(Keyword,'block') | strcmp(Keyword,'blocksize') if isstr(Value) fprintf('runica(): block size value must be a number') return end block = floor(Value); if ~block, block = DEFAULT_BLOCK; end elseif strcmp(Keyword,'stop') | strcmp(Keyword,'nochange') ... | strcmp(Keyword,'stopping') if isstr(Value) fprintf('runica(): stop wchange value must be a number') return end nochange = Value; elseif strcmp(Keyword,'logfile') if ~isstr(Value) fprintf('runica(): logfile value must be a string') return end logfile = Value; elseif strcmp(Keyword,'maxsteps') | strcmp(Keyword,'steps') if isstr(Value) fprintf('runica(): maxsteps value must be an integer') return end maxsteps = Value; if ~maxsteps, maxsteps = DEFAULT_MAXSTEPS; end if maxsteps < 0 fprintf('runica(): maxsteps value (%d) must be a positive integer',maxsteps) return end elseif strcmp(Keyword,'anneal') | strcmp(Keyword,'annealstep') if isstr(Value) fprintf('runica(): anneal step value (%2.4f) must be a number (0,1)',Value) return end annealstep = Value; if annealstep <=0 | annealstep > 1, fprintf('runica(): anneal step value (%2.4f) must be (0,1]',annealstep) return end elseif strcmp(Keyword,'annealdeg') | strcmp(Keyword,'degrees') if isstr(Value) fprintf('runica(): annealdeg value must be a number') return end annealdeg = Value; if ~annealdeg, annealdeg = DEFAULT_ANNEALDEG; elseif annealdeg > 180 | annealdeg < 0 fprintf('runica(): annealdeg (%3.1f) is out of bounds [0,180]',... annealdeg); return end elseif strcmp(Keyword,'momentum') if isstr(Value) fprintf('runica(): momentum value must be a number') return end momentum = Value; if momentum > 1.0 | momentum < 0 fprintf('runica(): momentum value is out of bounds [0,1]') return end elseif strcmp(Keyword,'sphering') | strcmp(Keyword,'sphereing') ... | strcmp(Keyword,'sphere') if ~isstr(Value) fprintf('runica(): sphering value must be on, off, or none') return else Value = lower(Value); if ~strcmp(Value,'on') & ~strcmp(Value,'off') & ~strcmp(Value,'none'), fprintf('runica(): sphering value must be on or off') return end sphering = Value; end elseif strcmp(Keyword,'bias') if ~isstr(Value) fprintf('runica(): bias value must be on or off') return else Value = lower(Value); if strcmp(Value,'on') biasflag = 1; elseif strcmp(Value,'off'), biasflag = 0; else fprintf('runica(): bias value must be on or off') return end end elseif strcmp(Keyword,'specgram') | strcmp(Keyword,'spec') if ~exist('specgram') < 2 % if ~exist or defined workspace variable fprintf(... 'runica(): MATLAB Sig. Proc. Toolbox function "specgram" not found.\n') return end if isstr(Value) fprintf('runica(): specgram argument must be a vector') return end srate = Value(1); if (srate < 0) fprintf('runica(): specgram srate (%4.1f) must be >=0',srate) return end if length(Value)>1 loHz = Value(2); if (loHz < 0 | loHz > srate/2) fprintf('runica(): specgram loHz must be >=0 and <= srate/2 (%4.1f)',srate/2) return end else loHz = 0; % default end if length(Value)>2 hiHz = Value(3); if (hiHz < loHz | hiHz > srate/2) fprintf('runica(): specgram hiHz must be >=loHz (%4.1f) and <= srate/2 (%4.1f)',loHz,srate/2) return end else hiHz = srate/2; % default end if length(Value)>3 Hzframes = Value(5); if (Hzframes<0 | Hzframes > size(data,2)) fprintf('runica(): specgram frames must be >=0 and <= data length (%d)',size(data,2)) return end else Hzframes = size(data,2); % default end if length(Value)>4 Hzwinlen = Value(4); if rem(Hzframes,Hzwinlen) % if winlen doesn't divide frames fprintf('runica(): specgram Hzinc must divide frames (%d)',Hzframes) return end else Hzwinlen = Hzframes; % default end Specgramflag = 1; % set flag to perform specgram() elseif strcmp(Keyword,'extended') | strcmp(Keyword,'extend') if isstr(Value) fprintf('runica(): extended value must be an integer (+/-)') return else extended = 1; % turn on extended-ICA extblocks = fix(Value); % number of blocks per kurt() compute if extblocks < 0 nsub = -1*fix(extblocks); % fix this many sub-Gauss comps elseif ~extblocks, extended = 0; % turn extended-ICA off elseif kurtsize>frames, % length of kurtosis calculation kurtsize = frames; if kurtsize < MIN_KURTSIZE fprintf(... 'runica() warning: kurtosis values inexact for << %d points.\n',... MIN_KURTSIZE); end end end elseif strcmp(Keyword,'verbose') if ~isstr(Value) fprintf('runica(): verbose flag value must be on or off') return elseif strcmp(Value,'on'), verbose = 1; elseif strcmp(Value,'off'), verbose = 0; else fprintf('runica(): verbose flag value must be on or off') return end elseif strcmp(Keyword,'reset_randomseed') if ischar(Value) if strcmp(Value,'yes') reset_randomseed = true; elseif strcmp(Value,'no') reset_randomseed = false; else fprintf('runica(): not using the reset_randomseed flag, it should be ''yes'',''no'',0, or 1'); end else reset_randomseed = Value; end else fprintf('runica(): unknown flag') return end end % %%%%%%%%%%%%%%%%%%%%%%%% Initialize weights, etc. %%%%%%%%%%%%%%%%%%%%%%%% % if ~annealstep, if ~extended, annealstep = DEFAULT_ANNEALSTEP; % defaults defined above else annealstep = DEFAULT_EXTANNEAL; % defaults defined above end end % else use annealstep from commandline if ~annealdeg, annealdeg = DEFAULT_ANNEALDEG - momentum*90; % heuristic if annealdeg < 0, annealdeg = 0; end end if ncomps > chans | ncomps < 1 fprintf('runica(): number of components must be 1 to %d.\n',chans); return end % %%%%%%%%%%%%%%%%%%%%% Check keyword values %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if frames<chans, fprintf('runica(): data length (%d) < data channels (%d)!\n',frames,chans) return elseif block < 2, fprintf('runica(): block size %d too small!\n',block) return elseif block > frames, fprintf('runica(): block size exceeds data length!\n'); return elseif floor(epochs) ~= epochs, fprintf('runica(): data length is not a multiple of the epoch length!\n'); return elseif nsub > ncomps fprintf('runica(): there can be at most %d sub-Gaussian components!\n',ncomps); return end; if ~isempty(logfile) fid = fopen(logfile, 'w'); if fid == -1, error('Cannot open logfile for writing'); end; else fid = []; end; verb = verbose; if weights ~= 0, % initialize weights % starting weights are being passed to runica() from the commandline if chans>ncomps & weights ~=0, [r,c]=size(weights); if r~=ncomps | c~=chans, fprintf('runica(): weight matrix must have %d rows, %d columns.\n', ... chans,ncomps); return; end end icaprintf(verb,fid,'Using starting weight matrix named in argument list ...\n'); end; % % adjust nochange if necessary % if isnan(nochange) if ncomps > 32 nochange = 1E-7; nochangeupdated = 1; % for fprinting purposes else nochangeupdated = 1; % for fprinting purposes nochange = DEFAULT_STOP; end; else nochangeupdated = 0; end; % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Process the data %%%%%%%%%%%%%%%%%%%%%%%%%% % icaprintf(verb,fid,'\nInput data size [%d,%d] = %d channels, %d frames/n', ... chans,frames,chans,frames); if strcmp(pcaflag,'on') icaprintf(verb,fid,'After PCA dimension reduction,\n finding '); else icaprintf(verb,fid,'Finding '); end if ~extended icaprintf(verb,fid,'%d ICA components using logistic ICA.\n',ncomps); else % if extended icaprintf(verb,fid,'%d ICA components using extended ICA.\n',ncomps); if extblocks > 0 icaprintf(verb,fid,'Kurtosis will be calculated initially every %d blocks using %d data points.\n',... extblocks, kurtsize); else icaprintf(verb,fid,'Kurtosis will not be calculated. Exactly %d sub-Gaussian components assumed.\n',nsub); end end icaprintf(verb,fid,'Decomposing %d frames per ICA weight ((%d)^2 = %d weights, %d frames)\n',... floor(frames/ncomps.^2),ncomps.^2,frames); icaprintf(verb,fid,'Initial learning rate will be %g, block size %d.\n',... lrate,block); if momentum>0, icaprintf(verb,fid,'Momentum will be %g.\n',momentum); end icaprintf(verb,fid,'Learning rate will be multiplied by %g whenever angledelta >= %g deg.\n', ... annealstep,annealdeg); if nochangeupdated icaprintf(verb,fid,'More than 32 channels: default stopping weight change 1E-7\n'); end; icaprintf(verb,fid,'Training will end when wchange < %g or after %d steps.\n', nochange,maxsteps); if biasflag, icaprintf(verb,fid,'Online bias adjustment will be used.\n'); else icaprintf(verb,fid,'Online bias adjustment will not be used.\n'); end % %%%%%%%%%%%%%%%%% Remove overall row means of data %%%%%%%%%%%%%%%%%%%%%%% % icaprintf(verb,fid,'Removing mean of each channel ...\n'); %BLGBLGBLG replaced % rowmeans = mean(data'); % data = data - rowmeans'*ones(1,frames); % subtract row means %BLGBLGBLG replacement starts rowmeans = mean(data,2)'; %BLG % data = data - rowmeans'*ones(1,frames); % subtract row means for iii=1:size(data,1) %avoids memory errors BLG data(iii,:)=data(iii,:)-rowmeans(iii); end %BLGBLGBLG replacement ends icaprintf(verb,fid,'Final training data range: %g to %g\n', min(min(data)),max(max(data))); % %%%%%%%%%%%%%%%%%%% Perform PCA reduction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if strcmp(pcaflag,'on') icaprintf(verb,fid,'Reducing the data to %d principal dimensions...\n',ncomps); %BLGBLGBLG replaced %[eigenvectors,eigenvalues,data] = pcsquash(data,ncomps); % make data its projection onto the ncomps-dim principal subspace %BLGBLGBLG replacement starts %[eigenvectors,eigenvalues,data] = pcsquash(data,ncomps); % no need to re-subtract row-means, it was done a few lines above! PCdat2 = data'; % transpose data [PCn,PCp]=size(PCdat2); % now p chans,n time points PCdat2=PCdat2/PCn; PCout=data*PCdat2; clear PCdat2; [PCV,PCD] = eig(PCout); % get eigenvectors/eigenvalues [PCeigenval,PCindex] = sort(diag(PCD)); PCindex=rot90(rot90(PCindex)); PCEigenValues=rot90(rot90(PCeigenval))'; PCEigenVectors=PCV(:,PCindex); %PCCompressed = PCEigenVectors(:,1:ncomps)'*data; data = PCEigenVectors(:,1:ncomps)'*data; eigenvectors=PCEigenVectors; eigenvalues=PCEigenValues; %#ok<NASGU> clear PCn PCp PCout PCV PCD PCeigenval PCindex PCEigenValues PCEigenVectors %BLGBLGBLG replacement ends end % %%%%%%%%%%%%%%%%%%% Perform specgram transformation %%%%%%%%%%%%%%%%%%%%%%% % if exist('Specgramflag') == 1 % [P F T] = SPECGRAM(A,NFFT,Fs,WINDOW,NOVERLAP) % MATLAB Sig Proc Toolbox % Hzwinlen = fix(srate/Hzinc); % CHANGED FROM THIS 12/18/00 -sm Hzfftlen = 2^(ceil(log(Hzwinlen)/log(2))); % make FFT length next higher 2^k Hzoverlap = 0; % use sequential windows % % Get freqs and times from 1st channel analysis % [tmp,freqs,tms] = specgram(data(1,:),Hzfftlen,srate,Hzwinlen,Hzoverlap); fs = find(freqs>=loHz & freqs <= hiHz); icaprintf(verb,fid,'runica(): specified frequency range too narrow, exiting!\n'); specdata = reshape(tmp(fs,:),1,length(fs)*size(tmp,2)); specdata = [real(specdata) imag(specdata)]; % fprintf(' size(fs) = %d,%d\n',size(fs,1),size(fs,2)); % fprintf(' size(tmp) = %d,%d\n',size(tmp,1),size(tmp,2)); % % Loop through remaining channels % for ch=2:chans [tmp] = specgram(data(ch,:),Hzwinlen,srate,Hzwinlen,Hzoverlap); tmp = reshape((tmp(fs,:)),1,length(fs)*size(tmp,2)); specdata = [specdata;[real(tmp) imag(tmp)]]; % channels are rows end % % Print specgram confirmation and details % icaprintf(verb,fid,'Converted data to %d channels by %d=2*%dx%d points spectrogram data.\n',... chans,2*length(fs)*length(tms),length(fs),length(tms)); if length(fs) > 1 icaprintf(verb,fid,' Low Hz %g, high Hz %g, Hz incr %g, window length %d\n',freqs(fs(1)),freqs(fs(end)),freqs(fs(2))-freqs(fs(1)),Hzwinlen); else icaprintf(verb,fid,' Low Hz %g, high Hz %g, window length %d\n',freqs(fs(1)),freqs(fs(end)),Hzwinlen); end % % Replace data with specdata % data = specdata; datalength=size(data,2); end % %%%%%%%%%%%%%%%%%%% Perform sphering %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if strcmp(sphering,'on'), %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% icaprintf(verb,fid,'Computing the sphering matrix...\n'); sphere = 2.0*inv(sqrtm(double(cov(data')))); % find the "sphering" matrix = spher() if ~weights, icaprintf(verb,fid,'Starting weights are the identity matrix ...\n'); weights = eye(ncomps,chans); % begin with the identity matrix else % weights given on commandline icaprintf(verb,fid,'Using starting weights named on commandline ...\n'); end icaprintf(verb,fid,'Sphering the data ...\n'); data = sphere*data; % decorrelate the electrode signals by 'sphereing' them elseif strcmp(sphering,'off') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~weights % is starting weights not given icaprintf(verb,fid,'Using the sphering matrix as the starting weight matrix ...\n'); icaprintf(verb,fid,'Returning the identity matrix in variable "sphere" ...\n'); sphere = 2.0*inv(sqrtm(cov(data'))); % find the "sphering" matrix = spher() weights = eye(ncomps,chans)*sphere; % begin with the identity matrix sphere = eye(chans); % return the identity matrix else % weights ~= 0 icaprintf(verb,fid,'Using starting weights from commandline ...\n'); icaprintf(verb,fid,'Returning the identity matrix in variable "sphere" ...\n'); sphere = eye(chans); % return the identity matrix end elseif strcmp(sphering,'none') sphere = eye(chans,chans);% return the identity matrix if ~weights icaprintf(verb,fid,'Starting weights are the identity matrix ...\n'); icaprintf(verb,fid,'Returning the identity matrix in variable "sphere" ...\n'); weights = eye(ncomps,chans); % begin with the identity matrix else % weights ~= 0 icaprintf(verb,fid,'Using starting weights named on commandline ...\n'); icaprintf(verb,fid,'Returning the identity matrix in variable "sphere" ...\n'); end icaprintf(verb,fid,'Returned variable "sphere" will be the identity matrix.\n'); end % %%%%%%%%%%%%%%%%%%%%%%%% Initialize ICA training %%%%%%%%%%%%%%%%%%%%%%%%% % lastt=fix((datalength/block-1)*block+1); BI=block*eye(ncomps,ncomps); delta=zeros(1,chans*ncomps); changes = []; degconst = 180./pi; startweights = weights; prevweights = startweights; oldweights = startweights; prevwtchange = zeros(chans,ncomps); oldwtchange = zeros(chans,ncomps); lrates = zeros(1,maxsteps); onesrow = ones(1,block); bias = zeros(ncomps,1); signs = ones(1,ncomps); % initialize signs to nsub -1, rest +1 for k=1:nsub signs(k) = -1; end if extended & extblocks < 0, icaprintf(verb,fid,'Fixed extended-ICA sign assignments: '); for k=1:ncomps icaprintf(verb,fid,'%d ',signs(k)); end; icaprintf(verb,fid,'\n'); end signs = diag(signs); % make a diagonal matrix oldsigns = zeros(size(signs)); signcount = 0; % counter for same-signs signcounts = []; urextblocks = extblocks; % original value, for resets old_kk = zeros(1,ncomps); % for kurtosis momemtum % %%%%%%%% ICA training loop using the logistic sigmoid %%%%%%%%%%%%%%%%%%% % icaprintf(verb,fid,'Beginning ICA training ...'); if extended, icaprintf(verb,fid,' first training step may be slow ...\n'); else icaprintf(verb,fid,'\n'); end step=0; laststep=0; blockno = 1; % running block counter for kurtosis interrupts if reset_randomseed rand('state',sum(100*clock)); % set the random number generator state to end % a position dependent on the system clock % interupt figure % --------------- if strcmpi(interupt, 'on') fig = figure('visible', 'off'); supergui( fig, {1 1}, [], {'style' 'text' 'string' 'Press button to interrupt runica()' }, ... {'style' 'pushbutton' 'string' 'Interupt' 'callback' 'setappdata(gcf, ''run'', 0);' } ); set(fig, 'visible', 'on'); setappdata(gcf, 'run', 1); if strcmpi(interupt, 'on') drawnow; end; end; %% Compute ICA Weights if biasflag & extended while step < maxsteps, %%% ICA step = pass through all the data %%%%%%%%% timeperm=randperm(datalength); % shuffle data order at each step for t=1:block:lastt, %%%%%%%%% ICA Training Block %%%%%%%%%%%%%%%%%%% if strcmpi(interupt, 'on') drawnow; flag = getappdata(fig, 'run'); if ~flag, if ~isempty(fid), fclose(fid); end; close; error('USER ABORT'); end; end; %% promote data block (only) to double to keep u and weights double u=weights*double(data(:,timeperm(t:t+block-1))) + bias*onesrow; y=tanh(u); weights = weights + lrate*(BI-signs*y*u'-u*u')*weights; bias = bias + lrate*sum((-2*y)')'; % for tanh() nonlin. if momentum > 0 %%%%%%%%% Add momentum %%%%%%%%%%%%%%%%%%%%%%%%%%%% weights = weights + momentum*prevwtchange; prevwtchange = weights-prevweights; prevweights = weights; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if max(max(abs(weights))) > MAX_WEIGHT wts_blowup = 1; change = nochange; end if ~wts_blowup % %%%%%%%%%%% Extended-ICA kurtosis estimation %%%%%%%%%%%%%%%%%%%%% %while step < maxsteps if extblocks > 0 & rem(blockno,extblocks) == 0, % recompute signs vector using kurtosis if kurtsize < frames % 12-22-99 rand() size suggestion by M. Spratling rp = fix(rand(1,kurtsize)*datalength); % pick random subset % Accout for the possibility of a 0 generation by rand ou = find(rp == 0); while ~isempty(ou) % 1-11-00 suggestion by J. Foucher rp(ou) = fix(rand(1,length(ou))*datalength); ou = find(rp == 0); end partact=weights*double(data(:,rp(1:kurtsize))); else % for small data sets, partact=weights*double(data); % use whole data end m2=mean(partact'.^2).^2; m4= mean(partact'.^4); kk= (m4./m2)-3.0; % kurtosis estimates if extmomentum kk = extmomentum*old_kk + (1.0-extmomentum)*kk; % use momentum old_kk = kk; end signs=diag(sign(kk+signsbias)); % pick component signs if signs == oldsigns, signcount = signcount+1; else signcount = 0; end oldsigns = signs; signcounts = [signcounts signcount]; if signcount >= SIGNCOUNT_THRESHOLD, extblocks = fix(extblocks * SIGNCOUNT_STEP);% make kurt() estimation signcount = 0; % less frequent if sign end % is not changing end % extblocks > 0 & . . . end % if extended & ~wts_blowup %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% blockno = blockno + 1; if wts_blowup break end end % for t=1:block:lastt %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~wts_blowup oldwtchange = weights-oldweights; step=step+1; % %%%%%%% Compute and print weight and update angle changes %%%%%%%%% % lrates(1,step) = lrate; angledelta=0.; delta=reshape(oldwtchange,1,chans*ncomps); change=delta*delta'; end % %%%%%%%%%%%%%%%%%%%%%% Restart if weights blow up %%%%%%%%%%%%%%%%%%%% % if wts_blowup | isnan(change)|isinf(change), % if weights blow up, icaprintf(verb,fid,''); step = 0; % start again change = nochange; wts_blowup = 0; % re-initialize variables blockno = 1; lrate = lrate*DEFAULT_RESTART_FAC; % with lower learning rate weights = startweights; % and original weight matrix oldweights = startweights; change = nochange; oldwtchange = zeros(chans,ncomps); delta=zeros(1,chans*ncomps); olddelta = delta; extblocks = urextblocks; prevweights = startweights; prevwtchange = zeros(chans,ncomps); lrates = zeros(1,maxsteps); bias = zeros(ncomps,1); signs = ones(1,ncomps); % initialize signs to nsub -1, rest +1 for k=1:nsub signs(k) = -1; end signs = diag(signs); % make a diagonal matrix oldsigns = zeros(size(signs));; if lrate> MIN_LRATE r = rank(data); % determine if data rank is too low if r<ncomps icaprintf(verb,fid,'Data has rank %d. Cannot compute %d components.\n',... r,ncomps); return else icaprintf(verb,fid,... 'Lowering learning rate to %g and starting again.\n',lrate); end else icaprintf(verb,fid, ... 'runica(): QUITTING - weight matrix may not be invertible!\n'); return; end else % if weights in bounds % %%%%%%%%%%%%% Print weight update information %%%%%%%%%%%%%%%%%%%%%% % if step> 2 angledelta=acos((delta*olddelta')/sqrt(change*oldchange)); end places = -floor(log10(nochange)); icaprintf(verb,fid,'step %d - lrate %5f, wchange %8.8f, angledelta %4.1f deg\n', ... step, lrate, change, degconst*angledelta); % %%%%%%%%%%%%%%%%%%%% Save current values %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % changes = [changes change]; oldweights = weights; % %%%%%%%%%%%%%%%%%%%% Anneal learning rate %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if degconst*angledelta > annealdeg, lrate = lrate*annealstep; % anneal learning rate olddelta = delta; % accumulate angledelta until oldchange = change; % annealdeg is reached elseif step == 1 % on first step only olddelta = delta; % initialize oldchange = change; end % %%%%%%%%%%%%%%%%%%%% Apply stopping rule %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if step >2 & change < nochange, % apply stopping rule laststep=step; step=maxsteps; % stop when weights stabilize elseif change > DEFAULT_BLOWUP, % if weights blow up, lrate=lrate*DEFAULT_BLOWUP_FAC; % keep trying end; % with a smaller learning rate end; % end if weights in bounds end; % end while step < maxsteps (ICA Training) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end %% Compute ICA Weights if biasflag & ~extended while step < maxsteps, %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% timeperm=randperm(datalength); % shuffle data order at each step for t=1:block:lastt, %%%%%%%%% ICA Training Block %%%%%%%%%%%%%%%%%%% if strcmpi(interupt, 'on') drawnow; flag = getappdata(fig, 'run'); if ~flag, if ~isempty(fid), fclose(fid); end; close; error('USER ABORT'); end; end; u=weights*double(data(:,timeperm(t:t+block-1))) + bias*onesrow; y=1./(1+exp(-u)); weights = weights + lrate*(BI+(1-2*y)*u')*weights; bias = bias + lrate*sum((1-2*y)')'; % for logistic nonlin. % if momentum > 0 %%%%%%%%% Add momentum %%%%%%%%%%%%%%%%%%%%%%%%%%%% weights = weights + momentum*prevwtchange; prevwtchange = weights-prevweights; prevweights = weights; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if max(max(abs(weights))) > MAX_WEIGHT wts_blowup = 1; change = nochange; end blockno = blockno + 1; if wts_blowup break end end % for t=1:block:lastt %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~wts_blowup oldwtchange = weights-oldweights; step=step+1; % %%%%%%% Compute and print weight and update angle changes %%%%%%%%% % lrates(1,step) = lrate; angledelta=0.; delta=reshape(oldwtchange,1,chans*ncomps); change=delta*delta'; end % %%%%%%%%%%%%%%%%%%%%%% Restart if weights blow up %%%%%%%%%%%%%%%%%%%% % if wts_blowup | isnan(change)|isinf(change), % if weights blow up, icaprintf(verb,fid,''); step = 0; % start again change = nochange; wts_blowup = 0; % re-initialize variables blockno = 1; lrate = lrate*DEFAULT_RESTART_FAC; % with lower learning rate weights = startweights; % and original weight matrix oldweights = startweights; change = nochange; oldwtchange = zeros(chans,ncomps); delta=zeros(1,chans*ncomps); olddelta = delta; extblocks = urextblocks; prevweights = startweights; prevwtchange = zeros(chans,ncomps); lrates = zeros(1,maxsteps); bias = zeros(ncomps,1); if lrate> MIN_LRATE r = rank(data); % determine if data rank is too low if r<ncomps icaprintf(verb,fid,'Data has rank %d. Cannot compute %d components.\n',r,ncomps); return else icaprintf(verb,fid,'Lowering learning rate to %g and starting again.\n',lrate); end else icaprintf(verb,fid,'runica(): QUITTING - weight matrix may not be invertible!\n'); return; end else % if weights in bounds % %%%%%%%%%%%%% Print weight update information %%%%%%%%%%%%%%%%%%%%%% % if step> 2 angledelta=acos((delta*olddelta')/sqrt(change*oldchange)); end places = -floor(log10(nochange)); icaprintf(verb,fid,'step %d - lrate %5f, wchange %8.8f, angledelta %4.1f deg\n', ... step, lrate, change, degconst*angledelta); % %%%%%%%%%%%%%%%%%%%% Save current values %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % changes = [changes change]; oldweights = weights; % %%%%%%%%%%%%%%%%%%%% Anneal learning rate %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if degconst*angledelta > annealdeg, lrate = lrate*annealstep; % anneal learning rate olddelta = delta; % accumulate angledelta until oldchange = change; % annealdeg is reached elseif step == 1 % on first step only olddelta = delta; % initialize oldchange = change; end % %%%%%%%%%%%%%%%%%%%% Apply stopping rule %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if step >2 & change < nochange, % apply stopping rule laststep=step; step=maxsteps; % stop when weights stabilize elseif change > DEFAULT_BLOWUP, % if weights blow up, lrate=lrate*DEFAULT_BLOWUP_FAC; % keep trying end; % with a smaller learning rate end; % end if weights in bounds end; % end while step < maxsteps (ICA Training) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end %% Compute ICA Weights if ~biasflag & extended while step < maxsteps, %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% timeperm=randperm(datalength); % shuffle data order at each step through data for t=1:block:lastt, %%%%%%%%% ICA Training Block %%%%%%%%%%%%%%%%%%% if strcmpi(interupt, 'on') drawnow; flag = getappdata(fig, 'run'); if ~flag, if ~isempty(fid), fclose(fid); end; close; error('USER ABORT'); end; end; u=weights*double(data(:,timeperm(t:t+block-1))); % promote block to dbl y=tanh(u); % weights = weights + lrate*(BI-signs*y*u'-u*u')*weights; if momentum > 0 %%%%%%%%% Add momentum %%%%%%%%%%%%%%%%%%%%%%%%%%%% weights = weights + momentum*prevwtchange; prevwtchange = weights-prevweights; prevweights = weights; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if max(max(abs(weights))) > MAX_WEIGHT wts_blowup = 1; change = nochange; end if ~wts_blowup % %%%%%%%%%%% Extended-ICA kurtosis estimation %%%%%%%%%%%%%%%%%%%%% %while step < maxsteps if extblocks > 0 & rem(blockno,extblocks) == 0, % recompute signs vector using kurtosis if kurtsize < frames % 12-22-99 rand() size suggestion by M. Spratling rp = fix(rand(1,kurtsize)*datalength); % pick random subset % Accout for the possibility of a 0 generation by rand ou = find(rp == 0); while ~isempty(ou) % 1-11-00 suggestion by J. Foucher rp(ou) = fix(rand(1,length(ou))*datalength); ou = find(rp == 0); end partact=weights*double(data(:,rp(1:kurtsize))); else % for small data sets, partact=weights*double(data); % use whole data end m2=mean(partact'.^2).^2; m4= mean(partact'.^4); kk= (m4./m2)-3.0; % kurtosis estimates if extmomentum kk = extmomentum*old_kk + (1.0-extmomentum)*kk; % use momentum old_kk = kk; end signs=diag(sign(kk+signsbias)); % pick component signs if signs == oldsigns, signcount = signcount+1; else signcount = 0; end oldsigns = signs; signcounts = [signcounts signcount]; if signcount >= SIGNCOUNT_THRESHOLD, extblocks = fix(extblocks * SIGNCOUNT_STEP);% make kurt() estimation signcount = 0; % less frequent if sign end % is not changing end % extblocks > 0 & . . . end % if ~wts_blowup %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% blockno = blockno + 1; if wts_blowup break end end % for t=1:block:lastt %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~wts_blowup oldwtchange = weights-oldweights; step=step+1; % %%%%%%% Compute and print weight and update angle changes %%%%%%%%% % lrates(1,step) = lrate; angledelta=0.; delta=reshape(oldwtchange,1,chans*ncomps); change=delta*delta'; end % %%%%%%%%%%%%%%%%%%%%%% Restart if weights blow up %%%%%%%%%%%%%%%%%%%% % if wts_blowup | isnan(change)|isinf(change), % if weights blow up, icaprintf(verb,fid,''); step = 0; % start again change = nochange; wts_blowup = 0; % re-initialize variables blockno = 1; lrate = lrate*DEFAULT_RESTART_FAC; % with lower learning rate weights = startweights; % and original weight matrix oldweights = startweights; change = nochange; oldwtchange = zeros(chans,ncomps); delta=zeros(1,chans*ncomps); olddelta = delta; extblocks = urextblocks; prevweights = startweights; prevwtchange = zeros(chans,ncomps); lrates = zeros(1,maxsteps); bias = zeros(ncomps,1); signs = ones(1,ncomps); % initialize signs to nsub -1, rest +1 for k=1:nsub signs(k) = -1; end signs = diag(signs); % make a diagonal matrix oldsigns = zeros(size(signs)); if lrate> MIN_LRATE r = rank(data); % find whether data rank is too low if r<ncomps icaprintf(verb,fid,'Data has rank %d. Cannot compute %d components.\n',... r,ncomps); return else icaprintf(verb,fid,... 'Lowering learning rate to %g and starting again.\n',lrate); end else icaprintf(verb,fid, ... 'runica(): QUITTING - weight matrix may not be invertible!\n'); return; end else % if weights in bounds % %%%%%%%%%%%%% Print weight update information %%%%%%%%%%%%%%%%%%%%%% % if step> 2 angledelta=acos((delta*olddelta')/sqrt(change*oldchange)); end places = -floor(log10(nochange)); icaprintf(verb,fid,'step %d - lrate %5f, wchange %8.8f, angledelta %4.1f deg\n', ... step, lrate, change, degconst*angledelta); % %%%%%%%%%%%%%%%%%%%% Save current values %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % changes = [changes change]; oldweights = weights; % %%%%%%%%%%%%%%%%%%%% Anneal learning rate %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if degconst*angledelta > annealdeg, lrate = lrate*annealstep; % anneal learning rate olddelta = delta; % accumulate angledelta until oldchange = change; % annealdeg is reached elseif step == 1 % on first step only olddelta = delta; % initialize oldchange = change; end % %%%%%%%%%%%%%%%%%%%% Apply stopping rule %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if step >2 & change < nochange, % apply stopping rule laststep=step; step=maxsteps; % stop when weights stabilize elseif change > DEFAULT_BLOWUP, % if weights blow up, lrate=lrate*DEFAULT_BLOWUP_FAC; % keep trying end; % with a smaller learning rate end; % end if weights in bounds end; % end while step < maxsteps (ICA Training) %%%%%%%%%%%%%%%%%%%%%%%%% end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Compute ICA Weights if ~biasflag & ~extended while step < maxsteps, %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% timeperm=randperm(datalength); % shuffle data order at each step for t=1:block:lastt, %%%%%%%%% ICA Training Block %%%%%%%%%%%%%%%%%%% if strcmpi(interupt, 'on') drawnow; flag = getappdata(fig, 'run'); if ~flag, if ~isempty(fid), fclose(fid); end; close; error('USER ABORT'); end; end; u=weights*double(data(:,timeperm(t:t+block-1))); y=1./(1+exp(-u)); % weights = weights + lrate*(BI+(1-2*y)*u')*weights; if momentum > 0 %%%%%%%%% Add momentum %%%%%%%%%%%%%%%%%%%%%%%%%%%% weights = weights + momentum*prevwtchange; prevwtchange = weights-prevweights; prevweights = weights; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if max(max(abs(weights))) > MAX_WEIGHT wts_blowup = 1; change = nochange; end blockno = blockno + 1; if wts_blowup break end end % for t=1:block:lastt %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~wts_blowup oldwtchange = weights-oldweights; step=step+1; % %%%%%%% Compute and print weight and update angle changes %%%%%%%%% % lrates(1,step) = lrate; angledelta=0.; delta=reshape(oldwtchange,1,chans*ncomps); change=delta*delta'; end % %%%%%%%%%%%%%%%%%%%%%% Restart if weights blow up %%%%%%%%%%%%%%%%%%%% % if wts_blowup | isnan(change)|isinf(change), % if weights blow up, icaprintf(verb,fid,''); step = 0; % start again change = nochange; wts_blowup = 0; % re-initialize variables blockno = 1; lrate = lrate*DEFAULT_RESTART_FAC; % with lower learning rate weights = startweights; % and original weight matrix oldweights = startweights; change = nochange; oldwtchange = zeros(chans,ncomps); delta=zeros(1,chans*ncomps); olddelta = delta; extblocks = urextblocks; prevweights = startweights; prevwtchange = zeros(chans,ncomps); lrates = zeros(1,maxsteps); bias = zeros(ncomps,1); if lrate> MIN_LRATE r = rank(data); % find whether data rank is too low if r<ncomps icaprintf(verb,fid,'Data has rank %d. Cannot compute %d components.\n',... r,ncomps); return else icaprintf(verb,fid,... 'Lowering learning rate to %g and starting again.\n',lrate); end else icaprintf(verb,fid, ... 'runica(): QUITTING - weight matrix may not be invertible!\n'); return; end else % if weights in bounds % %%%%%%%%%%%%% Print weight update information %%%%%%%%%%%%%%%%%%%%%% % if step> 2 angledelta=acos((delta*olddelta')/sqrt(change*oldchange)); end places = -floor(log10(nochange)); icaprintf(verb,fid,'step %d - lrate %5f, wchange %8.8f, angledelta %4.1f deg\n', ... step, lrate, change, degconst*angledelta); % %%%%%%%%%%%%%%%%%%%% Save current values %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % changes = [changes change]; oldweights = weights; % %%%%%%%%%%%%%%%%%%%% Anneal learning rate %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if degconst*angledelta > annealdeg, lrate = lrate*annealstep; % anneal learning rate olddelta = delta; % accumulate angledelta until oldchange = change; % annealdeg is reached elseif step == 1 % on first step only olddelta = delta; % initialize oldchange = change; end % %%%%%%%%%%%%%%%%%%%% Apply stopping rule %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if step >2 & change < nochange, % apply stopping rule laststep=step; step=maxsteps; % stop when weights stabilize elseif change > DEFAULT_BLOWUP, % if weights blow up, lrate=lrate*DEFAULT_BLOWUP_FAC; % keep trying end; % with a smaller learning rate end; % end if weights in bounds end; % end while step < maxsteps (ICA Training) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end %% Finalize Computed Data for Output if strcmpi(interupt, 'on') close(fig); end; if ~laststep laststep = step; end; lrates = lrates(1,1:laststep); % truncate lrate history vector % %%%%%%%%%%%%%% Orient components towards max positive activation %%%%%% % if nargout > 6 | strcmp(posactflag,'on') % make activations from sphered and pca'd data; -sm 7/05 % add back the row means removed from data before sphering if strcmp(pcaflag,'off') sr = sphere * rowmeans'; for r = 1:ncomps data(r,:) = data(r,:)+sr(r); % add back row means end data = weights*data; % OK in single else ser = sphere*eigenvectors(:,1:ncomps)'*rowmeans'; for r = 1:ncomps data(r,:) = data(r,:)+ser(r); % add back row means end data = weights*data; % OK in single end; end % % NOTE: Now 'data' are the component activations = weights*sphere*raw_data % % %%%%%%%%%%%%%% If pcaflag, compose PCA and ICA matrices %%%%%%%%%%%%%%% % if strcmp(pcaflag,'on') icaprintf(verb,fid,'Composing the eigenvector, weights, and sphere matrices\n'); icaprintf(verb,fid,' into a single rectangular weights matrix; sphere=eye(%d)\n'... ,chans); weights= weights*sphere*eigenvectors(:,1:ncomps)'; sphere = eye(urchans); end % %%%%%% Sort components in descending order of max projected variance %%%% % icaprintf(verb,fid,'Sorting components in descending order of mean projected variance ...\n'); % %%%%%%%%%%%%%%%%%%%% Find mean variances %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % meanvar = zeros(ncomps,1); % size of the projections if ncomps == urchans % if weights are square . . . winv = inv(weights*sphere); else icaprintf(verb,fid,'Using pseudo-inverse of weight matrix to rank order component projections.\n'); winv = pinv(weights*sphere); end % % compute variances without backprojecting to save time and memory -sm 7/05 % meanvar = sum(winv.^2).*sum((data').^2)/((chans*frames)-1); % from Rey Ramirez 8/07 % %%%%%%%%%%%%%% Sort components by mean variance %%%%%%%%%%%%%%%%%%%%%%%% % [sortvar, windex] = sort(meanvar); windex = windex(ncomps:-1:1); % order large to small meanvar = meanvar(windex); % %%%%%%%%%%%% re-orient max(abs(activations)) to >=0 ('posact') %%%%%%%% % if strcmp(posactflag,'on') % default is now off to save processing and memory icaprintf(verb,fid,'Making the max(abs(activations)) positive ...\n'); [tmp ix] = max(abs(data')); % = max abs activations signsflipped = 0; for r=1:ncomps if sign(data(r,ix(r))) < 0 if nargout>6 % if activations are to be returned (only) data(r,:) = -1*data(r,:); % flip activations so max(abs()) is >= 0 end winv(:,r) = -1*winv(:,r); % flip component maps signsflipped = 1; end end if signsflipped == 1 weights = pinv(winv)*inv(sphere); % re-invert the component maps end % [data,winvout,weights] = posact(data,weights); % overwrite data with activations % changes signs of activations (now = data) and weights % to make activations (data) net rms-positive % can call this outside of runica() - though it is inefficient! end % %%%%%%%%%%%%%%%%%%%%% Filter data using final weights %%%%%%%%%%%%%%%%%% % if nargout>6, % if activations are to be returned icaprintf(verb,fid,'Permuting the activation wave forms ...\n'); data = data(windex,:); % data is now activations -sm 7/05 else clear data end weights = weights(windex,:);% reorder the weight matrix bias = bias(windex); % reorder them signs = diag(signs); % vectorize the signs matrix signs = signs(windex); % reorder them if ~isempty(fid), fclose(fid); end; % close logfile % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % return % printing functions % ------------------ function icaprintf(verb,fid, varargin); if verb if ~isempty(fid) fprintf(fid, varargin{:}); end; fprintf(varargin{:}); end;
github
lcnhappe/happe-master
jader.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/eeglab/jader.m
11,455
utf_8
8b74fa9e0345ee0857e1e564b74dd872
% jader() - blind separation of real signals using JADE (v1.5, Dec. 1997). % % Usage: % >> B = jader(X); % >> B = jader(X,m); % % Notes: % 1) If X is an nxT data matrix (n sensors, T samples) then % B=jader(X) is a nxn separating matrix such that S=B*X is an nxT % matrix of estimated source signals. % 2) If B=jader(X,m), then B has size mxn so that only m sources are % extracted. This is done by restricting the operation of jader % to the m first principal components. % 3) Also, the rows of B are ordered such that the columns of pinv(B) % are in order of decreasing norm; this has the effect that the % `most energetically significant' components appear first in the % rows of S=B*X. % % Author: Jean-Francois Cardoso ([email protected]) % Quick notes (more at the end of this file) % % o this code is for REAL-valued signals. An implementation of JADE % for both real and complex signals is also available from % http://sig.enst.fr/~cardoso/stuff.html % % o This algorithm differs from the first released implementations of % JADE in that it has been optimized to deal more efficiently % 1) with real signals (as opposed to complex) % 2) with the case when the ICA model does not necessarily hold. % % o There is a practical limit to the number of independent % components that can be extracted with this implementation. Note % that the first step of JADE amounts to a PCA with dimensionality % reduction from n to m (which defaults to n). In practice m % cannot be `very large' (more than 40, 50, 60... depending on % available memory) % % o See more notes, references and revision history at the end of % this file and more stuff on the WEB % http://sig.enst.fr/~cardoso/stuff.html % % o This code is supposed to do a good job! Please report any % problem to [email protected] % Copyright : Jean-Francois Cardoso. [email protected] function B = jadeR(X,m) verbose = 1 ; % Set to 0 for quiet operation % Finding the number of sources [n,T] = size(X); if nargin==1, m=n ; end; % Number of sources defaults to # of sensors if m>n , fprintf('jade -> Do not ask more sources than sensors here!!!\n'), return,end if verbose, fprintf('jade -> Looking for %d sources\n',m); end ; % Self-commenting code %===================== if verbose, fprintf('jade -> Removing the mean value\n'); end X = X - mean(X')' * ones(1,T); %%% whitening & projection onto signal subspace % =========================================== if verbose, fprintf('jade -> Whitening the data\n'); end [U,D] = eig((X*X')/T) ; [puiss,k] = sort(diag(D)) ; rangeW = n-m+1:n ; % indices to the m most significant directions scales = sqrt(puiss(rangeW)) ; % scales W = diag(1./scales) * U(1:n,k(rangeW))' ; % whitener iW = U(1:n,k(rangeW)) * diag(scales) ; % its pseudo-inverse X = W*X; %%% Estimation of the cumulant matrices. % ==================================== if verbose, fprintf('jade -> Estimating cumulant matrices\n'); end dimsymm = (m*(m+1))/2; % Dim. of the space of real symm matrices nbcm = dimsymm ; % number of cumulant matrices CM = zeros(m,m*nbcm); % Storage for cumulant matrices R = eye(m); %% Qij = zeros(m); % Temp for a cum. matrix Xim = zeros(1,m); % Temp Xjm = zeros(1,m); % Temp scale = ones(m,1)/T ; % for convenience %% I am using a symmetry trick to save storage. I should write a %% short note one of these days explaining what is going on here. %% Range = 1:m ; % will index the columns of CM where to store the cum. mats. for im = 1:m Xim = X(im,:) ; Qij = ((scale* (Xim.*Xim)) .* X ) * X' - R - 2 * R(:,im)*R(:,im)' ; CM(:,Range) = Qij ; Range = Range + m ; for jm = 1:im-1 Xjm = X(jm,:) ; Qij = ((scale * (Xim.*Xjm) ) .*X ) * X' - R(:,im)*R(:,jm)' - R(:,jm)*R(:,im)' ; CM(:,Range) = sqrt(2)*Qij ; Range = Range + m ; end ; end; %%% joint diagonalization of the cumulant matrices %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Init if 1, %% Init by diagonalizing a *single* cumulant matrix. It seems to save %% some computation time `sometimes'. Not clear if initialization is %% a good idea since Jacobi rotations are very efficient. if verbose, fprintf('jade -> Initialization of the diagonalization\n'); end [V,D] = eig(CM(:,1:m)); % For instance, this one for u=1:m:m*nbcm, % updating accordingly the cumulant set given the init CM(:,u:u+m-1) = CM(:,u:u+m-1)*V ; end; CM = V'*CM; else, %% The dont-try-to-be-smart init V = eye(m) ; % la rotation initiale end; seuil = 1/sqrt(T)/100; % A statistically significant threshold encore = 1; sweep = 0; updates = 0; g = zeros(2,nbcm); gg = zeros(2,2); G = zeros(2,2); c = 0 ; s = 0 ; ton = 0 ; toff = 0 ; theta = 0 ; %% Joint diagonalization proper if verbose, fprintf('jade -> Contrast optimization by joint diagonalization\n'); end while encore, encore=0; if verbose, fprintf('jade -> Sweep #%d\n',sweep); end sweep=sweep+1; for p=1:m-1, for q=p+1:m, Ip = p:m:m*nbcm ; Iq = q:m:m*nbcm ; %%% computation of Givens angle g = [ CM(p,Ip)-CM(q,Iq) ; CM(p,Iq)+CM(q,Ip) ]; gg = g*g'; ton = gg(1,1)-gg(2,2); toff = gg(1,2)+gg(2,1); theta = 0.5*atan2( toff , ton+sqrt(ton*ton+toff*toff) ); %%% Givens update if abs(theta) > seuil, encore = 1 ; updates = updates + 1; c = cos(theta); s = sin(theta); G = [ c -s ; s c ] ; pair = [p;q] ; V(:,pair) = V(:,pair)*G ; CM(pair,:) = G' * CM(pair,:) ; CM(:,[Ip Iq]) = [ c*CM(:,Ip)+s*CM(:,Iq) -s*CM(:,Ip)+c*CM(:,Iq) ] ; %% fprintf('jade -> %3d %3d %12.8f\n',p,q,s); end%%of the if end%%of the loop on q end%%of the loop on p end%%of the while loop if verbose, fprintf('jade -> Total of %d Givens rotations\n',updates); end %%% A separating matrix % =================== B = V'*W ; %%% We permut its rows to get the most energetic components first. %%% Here the **signals** are normalized to unit variance. Therefore, %%% the sort is according to the norm of the columns of A = pinv(B) if verbose, fprintf('jade -> Sorting the components\n',updates); end A = iW*V ; [vars,keys] = sort(sum(A.*A)) ; B = B(keys,:); B = B(m:-1:1,:) ; % Is this smart ? % Signs are fixed by forcing the first column of B to have % non-negative entries. if verbose, fprintf('jade -> Fixing the signs\n',updates); end b = B(:,1) ; signs = sign(sign(b)+0.1) ; % just a trick to deal with sign=0 B = diag(signs)*B ; return ; % To do. % - Implement a cheaper/simpler whitening (is it worth it?) % % Revision history: % %- V1.5, Dec. 24 1997 % - The sign of each row of B is determined by letting the first % element be positive. % %- V1.4, Dec. 23 1997 % - Minor clean up. % - Added a verbose switch % - Added the sorting of the rows of B in order to fix in some % reasonable way the permutation indetermination. See note 2) % below. % %- V1.3, Nov. 2 1997 % - Some clean up. Released in the public domain. % %- V1.2, Oct. 5 1997 % - Changed random picking of the cumulant matrix used for % initialization to a deterministic choice. This is not because % of a better rationale but to make the ouput (almost surely) % deterministic. % - Rewrote the joint diag. to take more advantage of Matlab's % tricks. % - Created more dummy variables to combat Matlab's loose memory % management. % %- V1.1, Oct. 29 1997. % Made the estimation of the cumulant matrices more regular. This % also corrects a buglet... % %- V1.0, Sept. 9 1997. Created. % % Main reference: % @article{CS-iee-94, % title = "Blind beamforming for non {G}aussian signals", % author = "Jean-Fran\c{c}ois Cardoso and Antoine Souloumiac", % HTML = "ftp://sig.enst.fr/pub/jfc/Papers/iee.ps.gz", % journal = "IEE Proceedings-F", % month = dec, number = 6, pages = {362-370}, volume = 140, year = 1993} % % Notes: % ====== % % Note 1) % % The original Jade algorithm/code deals with complex signals in % Gaussian noise white and exploits an underlying assumption that the % model of independent components actually holds. This is a % reasonable assumption when dealing with some narrowband signals. % In this context, one may i) seriously consider dealing precisely % with the noise in the whitening process and ii) expect to use the % small number of significant eigenmatrices to efficiently summarize % all the 4th-order information. All this is done in the JADE % algorithm. % % In this implementation, we deal with real-valued signals and we do % NOT expect the ICA model to hold exactly. Therefore, it is % pointless to try to deal precisely with the additive noise and it % is very unlikely that the cumulant tensor can be accurately % summarized by its first n eigen-matrices. Therefore, we consider % the joint diagonalization of the whole set of eigen-matrices. % However, in such a case, it is not necessary to compute the % eigenmatrices at all because one may equivalently use `parallel % slices' of the cumulant tensor. This part (computing the % eigen-matrices) of the computation can be saved: it suffices to % jointly diagonalize a set of cumulant matrices. Also, since we are % dealing with reals signals, it becomes easier to exploit the % symmetries of the cumulants to further reduce the number of % matrices to be diagonalized. These considerations, together with % other cheap tricks lead to this version of JADE which is optimized % (again) to deal with real mixtures and to work `outside the model'. % As the original JADE algorithm, it works by minimizing a `good set' % of cumulants. % % Note 2) % % The rows of the separating matrix B are resorted in such a way that % the columns of the corresponding mixing matrix A=pinv(B) are in % decreasing order of (Euclidian) norm. This is a simple, `almost % canonical' way of fixing the indetermination of permutation. It % has the effect that the first rows of the recovered signals (ie the % first rows of B*X) correspond to the most energetic *components*. % Recall however that the source signals in S=B*X have unit variance. % Therefore, when we say that the observations are unmixed in order % of decreasing energy, the energetic signature is found directly as % the norm of the columns of A=pinv(B). % % Note 3) % % In experiments where JADE is run as B=jadeR(X,m) with m varying in % range of values, it is nice to be able to test the stability of the % decomposition. In order to help in such a test, the rows of B can % be sorted as described above. We have also decided to fix the sign % of each row in some arbitrary but fixed way. The convention is % that the first element of each row of B is positive. % % % Note 4) % % Contrary to many other ICA algorithms, JADE (or least this version) % does not operate on the data themselves but on a statistic (the % full set of 4th order cumulant). This is represented by the matrix % CM below, whose size grows as m^2 x m^2 where m is the number of % sources to be extracted (m could be much smaller than n). As a % consequence, (this version of) JADE will probably choke on a % `large' number of sources. Here `large' depends mainly on the % available memory and could be something like 40 or so. One of % these days, I will prepare a version of JADE taking the `data' % option rather than the `statistic' option. % % % JadeR.m ends here.
github
lcnhappe/happe-master
spm_write_sn.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/spm2/spm_write_sn.m
16,446
utf_8
c5ee1fa9a0d128de2d7e3d4522ea5ad1
function VO = spm_write_sn(V,prm,flags,extras) % Write Out Warped Images. % FORMAT VO = spm_write_sn(V,prm,flags,msk) % V - Images to transform (filenames or volume structure). % matname - Transformation information (filename or structure). % flags - flags structure, with fields... % interp - interpolation method (0-7) % wrap - wrap edges (e.g., [1 1 0] for 2D MRI sequences) % vox - voxel sizes (3 element vector - in mm) % Non-finite values mean use template vox. % bb - bounding box (2x3 matrix - in mm) % Non-finite values mean use template bb. % preserve - either 0 or 1. A value of 1 will "modulate" % the spatially normalised images so that total % units are preserved, rather than just % concentrations. % msk - An optional cell array for masking the spatially % normalised images (see below). % % Warped images are written prefixed by "w". % % Non-finite vox or bounding box suggests that values should be derived % from the template image. % % Don't use interpolation methods greater than one for data containing % NaNs. % _______________________________________________________________________ % % FORMAT msk = spm_write_sn(V,prm,flags,'mask') % V - Images to transform (filenames or volume structure). % matname - Transformation information (filename or structure). % flags - flags structure, with fields... % wrap - wrap edges (e.g., [1 1 0] for 2D MRI sequences) % vox - voxel sizes (3 element vector - in mm) % Non-finite values mean use template vox. % bb - bounding box (2x3 matrix - in mm) % Non-finite values mean use template bb. % msk - a cell array for masking a series of spatially normalised % images. % % % _______________________________________________________________________ % % FORMAT VO = spm_write_sn(V,prm,'modulate') % V - Spatially normalised images to modulate (filenames or % volume structure). % prm - Transformation information (filename or structure). % % After nonlinear spatial normalization, the relative volumes of some % brain structures will have decreased, whereas others will increase. % The resampling of the images preserves the concentration of pixel % units in the images, so the total counts from structures that have % reduced volumes after spatial normalization will be reduced by an % amount proportional to the volume reduction. % % This routine rescales images after spatial normalization, so that % the total counts from any structure are preserved. It was written % as an optional step in performing voxel based morphometry. % %_______________________________________________________________________ % @(#)spm_write_sn.m 2.20 John Ashburner 04/02/10 if isempty(V), return; end; if ischar(prm), prm = load(prm); end; if ischar(V), V = spm_vol(V); end; if nargin==3 & ischar(flags) & strcmp(lower(flags),'modulate'), if nargout==0, modulate(V,prm); else, VO = modulate(V,prm); end; return; end; def_flags = struct('interp',1,'vox',NaN,'bb',NaN,'wrap',[0 0 0],'preserve',0); [def_flags.bb, def_flags.vox] = bbvox_from_V(prm.VG(1)); if nargin < 3, flags = def_flags; else, fnms = fieldnames(def_flags); for i=1:length(fnms), if ~isfield(flags,fnms{i}), flags = setfield(flags,fnms{i},getfield(def_flags,fnms{i})); end; end; end; if ~all(isfinite(flags.vox(:))), flags.vox = def_flags.vox; end; if ~all(isfinite(flags.bb(:))), flags.bb = def_flags.bb; end; [x,y,z,mat] = get_xyzmat(prm,flags.bb,flags.vox); if nargin==4, if ischar(extras) & strcmp(lower(extras),'mask'), VO = get_snmask(V,prm,x,y,z,flags.wrap); return; end; if iscell(extras), msk = extras; end; end; if nargout>0 & length(V)>8, error('Too many images to save in memory'); end; if ~exist('msk','var') msk = get_snmask(V,prm,x,y,z,flags.wrap); end; if nargout==0, if isempty(prm.Tr), affine_transform(V,prm,x,y,z,mat,flags,msk); else, nonlin_transform(V,prm,x,y,z,mat,flags,msk); end; else, if isempty(prm.Tr), VO = affine_transform(V,prm,x,y,z,mat,flags,msk); else, VO = nonlin_transform(V,prm,x,y,z,mat,flags,msk); end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function VO = affine_transform(V,prm,x,y,z,mat,flags,msk) [X,Y] = ndgrid(x,y); d = [flags.interp*[1 1 1]' flags.wrap(:)]; spm_progress_bar('Init',prod(size(V)),'Resampling','volumes completed'); for i=1:prod(size(V)), VO = make_hdr_struct(V(i),x,y,z,mat); detAff = det(prm.VF.mat*prm.Affine/prm.VG(1).mat); if flags.preserve, VO.pinfo(1:2,:) = VO.pinfo(1:2,:)/detAff; end; if nargout>0, %Dat= zeros(VO.dim(1:3)); Dat = single(0); Dat(VO.dim(1),VO.dim(2),VO.dim(3)) = 0; else, VO = spm_create_vol(VO); end; C = spm_bsplinc(V(i),d); for j=1:length(z), % Cycle over planes [X2,Y2,Z2] = mmult(X,Y,z(j),V(i).mat\prm.VF.mat*prm.Affine); dat = spm_bsplins(C,X2,Y2,Z2,d); if flags.preserve, dat = dat*detAff; end; dat(msk{j}) = NaN; if nargout>0, Dat(:,:,j) = single(dat); else, VO = spm_write_plane(VO,dat,j); end; if prod(size(V))<5, spm_progress_bar('Set',i-1+j/length(z)); end; end; if nargout==0, VO = spm_close_vol(VO); else, VO.pinfo = [1 0]'; VO.dim(4) = spm_type('float'); VO.dat = Dat; end; spm_progress_bar('Set',i); end; spm_progress_bar('Clear'); return; %_______________________________________________________________________ %_______________________________________________________________________ function VO = nonlin_transform(V,prm,x,y,z,mat,flags,msk) [X,Y] = ndgrid(x,y); Tr = prm.Tr; BX = spm_dctmtx(prm.VG(1).dim(1),size(Tr,1),x-1); BY = spm_dctmtx(prm.VG(1).dim(2),size(Tr,2),y-1); BZ = spm_dctmtx(prm.VG(1).dim(3),size(Tr,3),z-1); if flags.preserve, DX = spm_dctmtx(prm.VG(1).dim(1),size(Tr,1),x-1,'diff'); DY = spm_dctmtx(prm.VG(1).dim(2),size(Tr,2),y-1,'diff'); DZ = spm_dctmtx(prm.VG(1).dim(3),size(Tr,3),z-1,'diff'); end; d = [flags.interp*[1 1 1]' flags.wrap(:)]; spm_progress_bar('Init',prod(size(V)),'Resampling','volumes completed'); for i=1:prod(size(V)), VO = make_hdr_struct(V(i),x,y,z,mat); detAff = det(prm.VF.mat*prm.Affine/prm.VG(1).mat); if flags.preserve | nargout>0, %Dat= zeros(VO.dim(1:3)); Dat = single(0); Dat(VO.dim(1),VO.dim(2),VO.dim(3)) = 0; else, VO = spm_create_vol(VO); end; C = spm_bsplinc(V(i),d); for j=1:length(z), % Cycle over planes % Nonlinear deformations %---------------------------------------------------------------------------- tx = get_2Dtrans(Tr(:,:,:,1),BZ,j); ty = get_2Dtrans(Tr(:,:,:,2),BZ,j); tz = get_2Dtrans(Tr(:,:,:,3),BZ,j); X1 = X + BX*tx*BY'; Y1 = Y + BX*ty*BY'; Z1 = z(j) + BX*tz*BY'; [X2,Y2,Z2] = mmult(X1,Y1,Z1,V(i).mat\prm.VF.mat*prm.Affine); dat = spm_bsplins(C,X2,Y2,Z2,d); dat(msk{j}) = NaN; if ~flags.preserve, if nargout>0, Dat(:,:,j) = single(dat); else, VO = spm_write_plane(VO,dat,j); end; else, j11 = DX*tx*BY' + 1; j12 = BX*tx*DY'; j13 = BX*get_2Dtrans(Tr(:,:,:,1),DZ,j)*BY'; j21 = DX*ty*BY'; j22 = BX*ty*DY' + 1; j23 = BX*get_2Dtrans(Tr(:,:,:,2),DZ,j)*BY'; j31 = DX*tz*BY'; j32 = BX*tz*DY'; j33 = BX*get_2Dtrans(Tr(:,:,:,3),DZ,j)*BY' + 1; % The determinant of the Jacobian reflects relative volume changes. %------------------------------------------------------------------ dat = dat .* (j11.*(j22.*j33-j23.*j32) - j21.*(j12.*j33-j13.*j32) + j31.*(j12.*j23-j13.*j22)) * detAff; Dat(:,:,j) = single(dat); end; if prod(size(V))<5, spm_progress_bar('Set',i-1+j/length(z)); end; end; if nargout==0, if flags.preserve, VO = spm_write_vol(VO,Dat); else, VO = spm_close_vol(VO); end; else, VO.pinfo = [1 0]'; VO.dim(4) = spm_type('float'); VO.dat = Dat; end; spm_progress_bar('Set',i); end; spm_progress_bar('Clear'); return; %_______________________________________________________________________ %_______________________________________________________________________ function VO = modulate(V,prm) spm_progress_bar('Init',prod(size(V)),'Modulating','volumes completed'); for i=1:prod(size(V)), VO = V(i); VO.fname = prepend(VO.fname,'m'); detAff = det(prm.VF.mat*prm.Affine/prm.VG(1).mat); %Dat = zeros(VO.dim(1:3)); Dat = single(0); Dat(VO.dim(1),VO.dim(2),VO.dim(3)) = 0; [bb, vox] = bbvox_from_V(VO); [x,y,z,mat] = get_xyzmat(prm,bb,vox); if sum((mat(:)-VO.mat(:)).^2)>1e-7, error('Orientations not compatible'); end; Tr = prm.Tr; if isempty(Tr), for j=1:length(z), % Cycle over planes dat = spm_slice_vol(V(i),spm_matrix([0 0 j]),V(i).dim(1:2),0); Dat(:,:,j) = single(dat); if prod(size(V))<5, spm_progress_bar('Set',i-1+j/length(z)); end; end; else, BX = spm_dctmtx(prm.VG(1).dim(1),size(Tr,1),x-1); BY = spm_dctmtx(prm.VG(1).dim(2),size(Tr,2),y-1); BZ = spm_dctmtx(prm.VG(1).dim(3),size(Tr,3),z-1); DX = spm_dctmtx(prm.VG(1).dim(1),size(Tr,1),x-1,'diff'); DY = spm_dctmtx(prm.VG(1).dim(2),size(Tr,2),y-1,'diff'); DZ = spm_dctmtx(prm.VG(1).dim(3),size(Tr,3),z-1,'diff'); for j=1:length(z), % Cycle over planes tx = get_2Dtrans(Tr(:,:,:,1),BZ,j); ty = get_2Dtrans(Tr(:,:,:,2),BZ,j); tz = get_2Dtrans(Tr(:,:,:,3),BZ,j); j11 = DX*tx*BY' + 1; j12 = BX*tx*DY'; j13 = BX*get_2Dtrans(Tr(:,:,:,1),DZ,j)*BY'; j21 = DX*ty*BY'; j22 = BX*ty*DY' + 1; j23 = BX*get_2Dtrans(Tr(:,:,:,2),DZ,j)*BY'; j31 = DX*tz*BY'; j32 = BX*tz*DY'; j33 = BX*get_2Dtrans(Tr(:,:,:,3),DZ,j)*BY' + 1; % The determinant of the Jacobian reflects relative volume changes. %------------------------------------------------------------------ dat = spm_slice_vol(V(i),spm_matrix([0 0 j]),V(i).dim(1:2),0); dat = dat .* (j11.*(j22.*j33-j23.*j32) - j21.*(j12.*j33-j13.*j32) + j31.*(j12.*j23-j13.*j22)) * detAff; Dat(:,:,j) = single(dat); if prod(size(V))<5, spm_progress_bar('Set',i-1+j/length(z)); end; end; end; if nargout==0, VO = spm_write_vol(VO,Dat); else, VO.pinfo = [1 0]'; VO.dim(4) = spm_type('float'); VO.dat = Dat; end; spm_progress_bar('Set',i); end; spm_progress_bar('Clear'); return; %_______________________________________________________________________ %_______________________________________________________________________ function VO = make_hdr_struct(V,x,y,z,mat) VO = V; VO.fname = prepend(V.fname,'w'); VO.mat = mat; VO.dim(1:3) = [length(x) length(y) length(z)]; VO.descrip = ['spm - 3D normalized']; return; %_______________________________________________________________________ %_______________________________________________________________________ function T2 = get_2Dtrans(T3,B,j) d = [size(T3) 1 1 1]; tmp = reshape(T3,d(1)*d(2),d(3)); T2 = reshape(tmp*B(j,:)',d(1),d(2)); return; %_______________________________________________________________________ %_______________________________________________________________________ function PO = prepend(PI,pre) [pth,nm,xt,vr] = fileparts(deblank(PI)); PO = fullfile(pth,[pre nm xt vr]); return; %_______________________________________________________________________ %_______________________________________________________________________ function Mask = getmask(X,Y,Z,dim,wrp) % Find range of slice tiny = 5e-2; Mask = logical(ones(size(X))); if ~wrp(1), Mask = Mask & (X >= (1-tiny) & X <= (dim(1)+tiny)); end; if ~wrp(2), Mask = Mask & (Y >= (1-tiny) & Y <= (dim(2)+tiny)); end; if ~wrp(3), Mask = Mask & (Z >= (1-tiny) & Z <= (dim(3)+tiny)); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function [X2,Y2,Z2] = mmult(X1,Y1,Z1,Mult); if length(Z1) == 1, X2= Mult(1,1)*X1 + Mult(1,2)*Y1 + (Mult(1,3)*Z1 + Mult(1,4)); Y2= Mult(2,1)*X1 + Mult(2,2)*Y1 + (Mult(2,3)*Z1 + Mult(2,4)); Z2= Mult(3,1)*X1 + Mult(3,2)*Y1 + (Mult(3,3)*Z1 + Mult(3,4)); else, X2= Mult(1,1)*X1 + Mult(1,2)*Y1 + Mult(1,3)*Z1 + Mult(1,4); Y2= Mult(2,1)*X1 + Mult(2,2)*Y1 + Mult(2,3)*Z1 + Mult(2,4); Z2= Mult(3,1)*X1 + Mult(3,2)*Y1 + Mult(3,3)*Z1 + Mult(3,4); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function [bb,vx] = bbvox_from_V(V) vx = sqrt(sum(V.mat(1:3,1:3).^2)); if det(V.mat(1:3,1:3))<0, vx(1) = -vx(1); end; o = V.mat\[0 0 0 1]'; o = o(1:3)'; bb = [-vx.*(o-1) ; vx.*(V.dim(1:3)-o)]; return; %_______________________________________________________________________ %_______________________________________________________________________ function msk = get_snmask(V,prm,x,y,z,wrap) % Generate a mask for where there is data for all images %----------------------------------------------------------------------- msk = cell(length(z),1); t1 = cat(3,V.mat); t2 = cat(1,V.dim); t = [reshape(t1,[16 length(V)])' t2(:,1:3)]; Tr = prm.Tr; [X,Y] = ndgrid(x,y); BX = spm_dctmtx(prm.VG(1).dim(1),size(Tr,1),x-1); BY = spm_dctmtx(prm.VG(1).dim(2),size(Tr,2),y-1); BZ = spm_dctmtx(prm.VG(1).dim(3),size(Tr,3),z-1); if prod(size(V))>1 & any(any(diff(t,1,1))), spm_progress_bar('Init',length(z),'Computing available voxels','planes completed'); for j=1:length(z), % Cycle over planes Count = zeros(length(x),length(y)); if isempty(Tr), % Generate a mask for where there is data for all images %---------------------------------------------------------------------------- for i=1:prod(size(V)), [X2,Y2,Z2] = mmult(X,Y,z(j),V(i).mat\prm.VF.mat*prm.Affine); Count = Count + getmask(X2,Y2,Z2,V(i).dim(1:3),wrap); end; else, % Nonlinear deformations %---------------------------------------------------------------------------- X1 = X + BX*get_2Dtrans(Tr(:,:,:,1),BZ,j)*BY'; Y1 = Y + BX*get_2Dtrans(Tr(:,:,:,2),BZ,j)*BY'; Z1 = z(j) + BX*get_2Dtrans(Tr(:,:,:,3),BZ,j)*BY'; % Generate a mask for where there is data for all images %---------------------------------------------------------------------------- for i=1:prod(size(V)), [X2,Y2,Z2] = mmult(X1,Y1,Z1,V(i).mat\prm.VF.mat*prm.Affine); Count = Count + getmask(X2,Y2,Z2,V(i).dim(1:3),wrap); end; end; msk{j} = uint32(find(Count ~= prod(size(V)))); spm_progress_bar('Set',j); end; spm_progress_bar('Clear'); else, for j=1:length(z), msk{j} = uint32([]); end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function [x,y,z,mat] = get_xyzmat(prm,bb,vox) % The old voxel size and origin notation is used here. % This requires that the position and orientation % of the template is transverse. It would not be % straitforward to account for templates that are % in different orientations because the basis functions % would no longer be seperable. The seperable basis % functions mean that computing the deformation field % from the parameters is much faster. % bb = sort(bb); % vox = abs(vox); msk = find(vox<0); bb = sort(bb); bb(:,msk) = flipud(bb(:,msk)); % Adjust bounding box slightly - so it rounds to closest voxel. bb(:,1) = round(bb(:,1)/vox(1))*vox(1); bb(:,2) = round(bb(:,2)/vox(2))*vox(2); bb(:,3) = round(bb(:,3)/vox(3))*vox(3); M = prm.VG(1).mat; vxg = sqrt(sum(M(1:3,1:3).^2)); if det(M(1:3,1:3))<0, vxg(1) = -vxg(1); end; ogn = M\[0 0 0 1]'; ogn = ogn(1:3)'; % Convert range into range of voxels within template image x = (bb(1,1):vox(1):bb(2,1))/vxg(1) + ogn(1); y = (bb(1,2):vox(2):bb(2,2))/vxg(2) + ogn(2); z = (bb(1,3):vox(3):bb(2,3))/vxg(3) + ogn(3); og = -vxg.*ogn; of = -vox.*(round(-bb(1,:)./vox)+1); M1 = [vxg(1) 0 0 og(1) ; 0 vxg(2) 0 og(2) ; 0 0 vxg(3) og(3) ; 0 0 0 1]; M2 = [vox(1) 0 0 of(1) ; 0 vox(2) 0 of(2) ; 0 0 vox(3) of(3) ; 0 0 0 1]; mat = prm.VG(1).mat*inv(M1)*M2; if (spm_flip_analyze_images & det(mat(1:3,1:3))>0) | (~spm_flip_analyze_images & det(mat(1:3,1:3))<0), Flp = [-1 0 0 (length(x)+1); 0 1 0 0; 0 0 1 0; 0 0 0 1]; mat = mat*Flp; x = flipud(x(:))'; end; return;
github
lcnhappe/happe-master
spm_affreg.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/spm2/spm_affreg.m
18,476
utf_8
46e5122f9bf661904177ad3e3beb09c1
function [M,scal] = spm_affreg(VG,VF,flags,M,scal) % Affine registration using least squares. % FORMAT [M,scal] = spm_affreg(VG,VF,flags,M0,scal0) % % VG - Vector of template volumes. % VF - Source volume. % flags - a structure containing various options. The fields are: % WG - Weighting volume for template image(s). % WF - Weighting volume for source image % Default to []. % sep - Approximate spacing between sampled points (mm). % Defaults to 5. % regtype - regularisation type. Options are: % 'none' - no regularisation % 'rigid' - almost rigid body % 'subj' - inter-subject registration (default). % 'mni' - registration to ICBM templates % globnorm - Global normalisation flag (1) % M0 - (optional) starting estimate. Defaults to eye(4). % scal0 - (optional) starting estimate. % % M - affine transform, such that voxels in VF map to those in % VG by VG.mat\M*VF.mat % scal - scaling factors for VG % % When only one template is used, then the cost function is approximately % symmetric, although a linear combination of templates can be used. % Regularisation is based on assuming a multi-normal distribution for the % elements of the Henckey Tensor. See: % "Non-linear Elastic Deformations". R. W. Ogden (Dover), 1984. % Weighting for the regularisation is determined approximately according % to: % "Incorporating Prior Knowledge into Image Registration" % J. Ashburner, P. Neelin, D. L. Collins, A. C. Evans & K. J. Friston. % NeuroImage 6:344-352 (1997). % %_______________________________________________________________________ % @(#)spm_affreg.m 2.3 John Ashburner 03/02/18 if nargin<5, scal = ones(length(VG),1); end; if nargin<4, M = eye(4); end; def_flags = struct('sep',5, 'regtype','subj','WG',[],'WF',[],'globnorm',1,'debug',0); if nargin < 2 | ~isstruct(flags), flags = def_flags; else, fnms = fieldnames(def_flags); for i=1:length(fnms), if ~isfield(flags,fnms{i}), flags = setfield(flags,fnms{i},getfield(def_flags,fnms{i})); end; end; end; % Check to ensure inputs are valid... % --------------------------------------------------------------- if length(VF)>1, error('Can not use more than one source image'); end; if ~isempty(flags.WF), if length(flags.WF)>1, error('Can only use one source weighting image'); end; if any(any(VF.mat-flags.WF.mat)), error('Source and its weighting image must have same orientation'); end; if any(any(VF.dim(1:3)-flags.WF.dim(1:3))), error('Source and its weighting image must have same dimensions'); end; end; if ~isempty(flags.WG), if length(flags.WG)>1, error('Can only use one template weighting image'); end; tmp = reshape(cat(3,VG(:).mat,flags.WG.mat),16,length(VG)+length(flags.WG)); else, tmp = reshape(cat(3,VG(:).mat),16,length(VG)); end; if any(any(diff(tmp,1,2))), error('Reference images must all have the same orientation'); end; if ~isempty(flags.WG), tmp = cat(1,VG(:).dim,flags.WG.dim); else, tmp = cat(1,VG(:).dim); end; if any(any(diff(tmp(:,1:3),1,1))), error('Reference images must all have the same dimensions'); end; % --------------------------------------------------------------- % Generate points to sample from, adding some jitter in order to % make the cost function smoother. % --------------------------------------------------------------- rand('state',0); % want the results to be consistant. dg = VG(1).dim(1:3); df = VF(1).dim(1:3); if length(VG)==1, skip = sqrt(sum(VG(1).mat(1:3,1:3).^2)).^(-1)*flags.sep; [x1,x2,x3]=ndgrid(1:skip(1):dg(1)-.5, 1:skip(2):dg(2)-.5, 1:skip(3):dg(3)-.5); x1 = x1 + rand(size(x1))*0.5; x1 = x1(:); x2 = x2 + rand(size(x2))*0.5; x2 = x2(:); x3 = x3 + rand(size(x3))*0.5; x3 = x3(:); end; skip = sqrt(sum(VF(1).mat(1:3,1:3).^2)).^(-1)*flags.sep; [y1,y2,y3]=ndgrid(1:skip(1):df(1)-.5, 1:skip(2):df(2)-.5, 1:skip(3):df(3)-.5); y1 = y1 + rand(size(y1))*0.5; y1 = y1(:); y2 = y2 + rand(size(y2))*0.5; y2 = y2(:); y3 = y3 + rand(size(y3))*0.5; y3 = y3(:); % --------------------------------------------------------------- if flags.globnorm, % Scale all images approximately equally % --------------------------------------------------------------- for i=1:length(VG), VG(i).pinfo(1:2,:) = VG(i).pinfo(1:2,:)/spm_global(VG(i)); end; VF(1).pinfo(1:2,:) = VF(1).pinfo(1:2,:)/spm_global(VF(1)); end; % --------------------------------------------------------------- if length(VG)==1, [G,dG1,dG2,dG3] = spm_sample_vol(VG(1),x1,x2,x3,1); if ~isempty(flags.WG), WG = abs(spm_sample_vol(flags.WG,x1,x2,x3,1))+eps; end; end; [F,dF1,dF2,dF3] = spm_sample_vol(VF(1),y1,y2,y3,1); if ~isempty(flags.WF), WF = abs(spm_sample_vol(flags.WF,y1,y2,y3,1))+eps; end; % --------------------------------------------------------------- n_main_its = 0; ss = Inf; W = [Inf Inf Inf]; est_smo = 1; % --------------------------------------------------------------- for iter=1:256, pss = ss; p0 = [0 0 0 0 0 0 1 1 1 0 0 0]; % Initialise the cost function and its 1st and second derivatives % --------------------------------------------------------------- n = 0; ss = 0; Beta = zeros(12+length(VG),1); Alpha = zeros(12+length(VG)); if length(VG)==1, % Make the cost function symmetric % --------------------------------------------------------------- % Build a matrix to rotate the derivatives by, converting from % derivatives w.r.t. changes in the overall affine transformation % matrix, to derivatives w.r.t. the parameters p. % --------------------------------------------------------------- dt = 0.0001; R = eye(13); MM0 = inv(VG.mat)*inv(spm_matrix(p0))*VG.mat; for i1=1:12, p1 = p0; p1(i1) = p1(i1)+dt; MM1 = (inv(VG.mat)*inv(spm_matrix(p1))*(VG.mat)); R(1:12,i1) = reshape((MM1(1:3,:)-MM0(1:3,:))/dt,12,1); end; % --------------------------------------------------------------- [t1,t2,t3] = coords((M*VF(1).mat)\VG(1).mat,x1,x2,x3); msk = find((t1>=1 & t1<=df(1) & t2>=1 & t2<=df(2) & t3>=1 & t3<=df(3))); if length(msk)<32, error_message; end; t1 = t1(msk); t2 = t2(msk); t3 = t3(msk); t = spm_sample_vol(VF(1), t1,t2,t3,1); % Get weights % --------------------------------------------------------------- if ~isempty(flags.WF) | ~isempty(flags.WG), if isempty(flags.WF), wt = WG(msk); else, wt = spm_sample_vol(flags.WF(1), t1,t2,t3,1)+eps; if ~isempty(flags.WG), wt = 1./(1./wt + 1./WG(msk)); end; end; wt = sparse(1:length(wt),1:length(wt),wt); else, wt = speye(length(msk)); wt = []; end; % --------------------------------------------------------------- clear t1 t2 t3 % Update the cost function and its 1st and second derivatives. % --------------------------------------------------------------- [AA,Ab,ss1,n1] = costfun(x1,x2,x3,dG1,dG2,dG3,msk,scal^(-2)*t,G(msk)-(1/scal)*t,wt); Alpha = Alpha + R'*AA*R; Beta = Beta + R'*Ab; ss = ss + ss1; n = n + n1; t = G(msk) - (1/scal)*t; end; if 1, % Build a matrix to rotate the derivatives by, converting from % derivatives w.r.t. changes in the overall affine transformation % matrix, to derivatives w.r.t. the parameters p. % --------------------------------------------------------------- dt = 0.0001; R = eye(12+length(VG)); MM0 = inv(M*VF.mat)*spm_matrix(p0)*M*VF.mat; for i1=1:12, p1 = p0; p1(i1) = p1(i1)+dt; MM1 = (inv(M*VF.mat)*spm_matrix(p1)*M*VF.mat); R(1:12,i1) = reshape((MM1(1:3,:)-MM0(1:3,:))/dt,12,1); end; % --------------------------------------------------------------- [t1,t2,t3] = coords(VG(1).mat\M*VF(1).mat,y1,y2,y3); msk = find((t1>=1 & t1<=dg(1) & t2>=1 & t2<=dg(2) & t3>=1 & t3<=dg(3))); if length(msk)<32, error_message; end; if length(msk)<32, error_message; end; t1 = t1(msk); t2 = t2(msk); t3 = t3(msk); t = zeros(length(t1),length(VG)); % Get weights % --------------------------------------------------------------- if ~isempty(flags.WF) | ~isempty(flags.WG), if isempty(flags.WG), wt = WF(msk); else, wt = spm_sample_vol(flags.WG(1), t1,t2,t3,1)+eps; if ~isempty(flags.WF), wt = 1./(1./wt + 1./WF(msk)); end; end; wt = sparse(1:length(wt),1:length(wt),wt); else, wt = speye(length(msk)); end; % --------------------------------------------------------------- if est_smo, % Compute derivatives of residuals in the space of F % --------------------------------------------------------------- [ds1,ds2,ds3] = transform_derivs(VG(1).mat\M*VF(1).mat,dF1(msk),dF2(msk),dF3(msk)); for i=1:length(VG), [t(:,i),dt1,dt2,dt3] = spm_sample_vol(VG(i), t1,t2,t3,1); ds1 = ds1 - dt1*scal(i); clear dt1 ds2 = ds2 - dt2*scal(i); clear dt2 ds3 = ds3 - dt3*scal(i); clear dt3 end; dss = [ds1'*wt*ds1 ds2'*wt*ds2 ds3'*wt*ds3]; clear ds1 ds2 ds3 else, for i=1:length(VG), t(:,i)= spm_sample_vol(VG(i), t1,t2,t3,1); end; end; clear t1 t2 t3 % Update the cost function and its 1st and second derivatives. % --------------------------------------------------------------- [AA,Ab,ss2,n2] = costfun(y1,y2,y3,dF1,dF2,dF3,msk,-t,F(msk)-t*scal,wt); Alpha = Alpha + R'*AA*R; Beta = Beta + R'*Ab; ss = ss + ss2; n = n + n2; end; if est_smo, % Compute a smoothness correction from the residuals and their % derivatives. This is analagous to the one used in: % "Analysis of fMRI Time Series Revisited" % Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SCR, % Frackowiak RSJ, Turner R. Neuroimage 2:45-53 (1995). % --------------------------------------------------------------- vx = sqrt(sum(VG(1).mat(1:3,1:3).^2)); pW = W; W = (2*dss/ss2).^(-.5).*vx; W = min(pW,W); if flags.debug, fprintf('\nSmoothness FWHM: %.3g x %.3g x %.3g mm\n', W*sqrt(8*log(2))); end; if length(VG)==1, dens=2; else, dens=1; end; smo = prod(min(dens*flags.sep/sqrt(2*pi)./W,[1 1 1])); est_smo=0; n_main_its = n_main_its + 1; end; % Update the parameter estimates % --------------------------------------------------------------- nu = n*smo; sig2 = ss/nu; [d1,d2] = reg(M,12+length(VG),flags.regtype); soln = (Alpha/sig2+d2)\(Beta/sig2-d1); scal = scal - soln(13:end); M = spm_matrix(p0 + soln(1:12)')*M; if flags.debug, fprintf('%d\t%g\n', iter, ss/n); piccies(VF,VG,M,scal,b) end; % If cost function stops decreasing, then re-estimate smoothness % and try again. Repeat a few times. % --------------------------------------------------------------- ss = ss/n; if iter>1, spm_chi2_plot('Set',ss); end; if (pss-ss)/pss < 1e-6, est_smo = 1; end; if n_main_its>3, break; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function [X1,Y1,Z1] = transform_derivs(Mat,X,Y,Z) % Given the derivatives of a scalar function, return those of the % affine transformed function %_______________________________________________________________________ t1 = Mat(1:3,1:3); t2 = eye(3); if sum((t1(:)-t2(:)).^2) < 1e-12, X1 = X;Y1 = Y; Z1 = Z; else, X1 = Mat(1,1)*X + Mat(1,2)*Y + Mat(1,3)*Z; Y1 = Mat(2,1)*X + Mat(2,2)*Y + Mat(2,3)*Z; Z1 = Mat(3,1)*X + Mat(3,2)*Y + Mat(3,3)*Z; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function [d1,d2] = reg(M,n,typ) % Analytically compute the first and second derivatives of a penalty % function w.r.t. changes in parameters. if nargin<3, typ = 'subj'; end; if nargin<2, n = 13; end; [mu,isig] = priors(typ); ds = 0.000001; d1 = zeros(n,1); d2 = zeros(n); p0 = [0 0 0 0 0 0 1 1 1 0 0 0]; h0 = penalty(p0,M,mu,isig); for i=7:12, % derivatives are zero w.r.t. rotations and translations p1 = p0; p1(i) = p1(i)+ds; h1 = penalty(p1,M,mu,isig); d1(i) = (h1-h0)/ds; % First derivative for j=7:12, p2 = p0; p2(j) = p2(j)+ds; h2 = penalty(p2,M,mu,isig); p3 = p1; p3(j) = p3(j)+ds; h3 = penalty(p3,M,mu,isig); d2(i,j) = ((h3-h2)/ds-(h1-h0)/ds)/ds; % Second derivative end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function h = penalty(p,M,mu,isig) % Return a penalty based on the elements of an affine transformation, % which is given by: % spm_matrix(p)*M % % The penalty is based on the 6 unique elements of the Hencky tensor % elements being multinormally distributed. %_______________________________________________________________________ % Unique elements of symmetric 3x3 matrix. els = [1 2 3 5 6 9]; T = spm_matrix(p)*M; T = T(1:3,1:3); T = 0.5*logm(T'*T); T = T(els)' - mu; h = T'*isig*T; return; %_______________________________________________________________________ %_______________________________________________________________________ function [mu,isig] = priors(typ) % The parameters for this distribution were derived empirically from 227 % scans, that were matched to the ICBM space. %_______________________________________________________________________ mu = zeros(6,1); isig = zeros(6); switch deblank(lower(typ)), case 'mni', % For registering with MNI templates... mu = [0.0667 0.0039 0.0008 0.0333 0.0071 0.1071]'; isig = 1e4 * [ 0.0902 -0.0345 -0.0106 -0.0025 -0.0005 -0.0163 -0.0345 0.7901 0.3883 0.0041 -0.0103 -0.0116 -0.0106 0.3883 2.2599 0.0113 0.0396 -0.0060 -0.0025 0.0041 0.0113 0.0925 0.0471 -0.0440 -0.0005 -0.0103 0.0396 0.0471 0.2964 -0.0062 -0.0163 -0.0116 -0.0060 -0.0440 -0.0062 0.1144]; case 'rigid', % Constrained to be almost rigid... mu = zeros(6,1); isig = eye(6)*1e9; case 'isochoric', % Volume preserving... error('Not implemented'); case 'isotropic', % Isotropic zoom in all directions... error('Not implemented'); case 'subj', % For inter-subject registration... mu = zeros(6,1); isig = 1e3 * [ 0.8876 0.0784 0.0784 -0.1749 0.0784 -0.1749 0.0784 5.3894 0.2655 0.0784 0.2655 0.0784 0.0784 0.2655 5.3894 0.0784 0.2655 0.0784 -0.1749 0.0784 0.0784 0.8876 0.0784 -0.1749 0.0784 0.2655 0.2655 0.0784 5.3894 0.0784 -0.1749 0.0784 0.0784 -0.1749 0.0784 0.8876]; case 'none', % No regularisation... mu = zeros(6,1); isig = zeros(6); otherwise, error(['"' typ '" not recognised as type of regularisation.']); end; return; %_______________________________________________________________________ function [y1,y2,y3]=coords(M,x1,x2,x3) % Affine transformation of a set of coordinates. %_______________________________________________________________________ y1 = M(1,1)*x1 + M(1,2)*x2 + M(1,3)*x3 + M(1,4); y2 = M(2,1)*x1 + M(2,2)*x2 + M(2,3)*x3 + M(2,4); y3 = M(3,1)*x1 + M(3,2)*x2 + M(3,3)*x3 + M(3,4); return; %_______________________________________________________________________ %_______________________________________________________________________ function A = make_A(x1,x2,x3,dG1,dG2,dG3,t) % Generate part of a design matrix using the chain rule... % df/dm = df/dy * dy/dm % where % df/dm is the rate of change of intensity w.r.t. affine parameters % df/dy is the gradient of the image f % dy/dm crange of position w.r.t. change of parameters %_______________________________________________________________________ A = [x1.*dG1 x1.*dG2 x1.*dG3 ... x2.*dG1 x2.*dG2 x2.*dG3 ... x3.*dG1 x3.*dG2 x3.*dG3 ... dG1 dG2 dG3 t]; return; %_______________________________________________________________________ %_______________________________________________________________________ function [AA,Ab,ss,n] = costfun(x1,x2,x3,dG1,dG2,dG3,msk,lastcols,b,wt) chunk = 10240; lm = length(msk); AA = zeros(12+size(lastcols,2)); Ab = zeros(12+size(lastcols,2),1); ss = 0; n = 0; for i=1:ceil(lm/chunk), ind = (((i-1)*chunk+1):min(i*chunk,lm))'; msk1 = msk(ind); A1 = make_A(x1(msk1),x2(msk1),x3(msk1),dG1(msk1),dG2(msk1),dG3(msk1),lastcols(ind,:)); b1 = b(ind); if ~isempty(wt), wt1 = wt(ind,ind); AA = AA + A1'*wt1*A1; %Ab = Ab + A1'*wt1*b1; Ab = Ab + (b1'*wt1*A1)'; ss = ss + b1'*wt1*b1; n = n + trace(wt1); clear wt1 else, AA = AA + spm_atranspa(A1); %Ab = Ab + A1'*b1; Ab = Ab + (b1'*A1)'; ss = ss + b1'*b1; n = n + length(msk1); end; clear A1 b1 msk1 ind end; return; %_______________________________________________________________________ %_______________________________________________________________________ function error_message % Display an error message for when things go wrong. str = { 'There is not enough overlap in the images',... 'to obtain a solution.',... ' ',... 'Please check that your header information is OK.'}; spm('alert*',str,mfilename,sqrt(-1)); error('insufficient image overlap') return %_______________________________________________________________________ %_______________________________________________________________________ function piccies(VF,VG,M,scal,b) % This is for debugging purposes. % It shows the linear combination of template images, the affine % transformed source image, the residual image and a histogram of the % residuals. %_______________________________________________________________________ figure(2); Mt = spm_matrix([0 0 (VG(1).dim(3)+1)/2]); M = (M*VF(1).mat)\VG(1).mat; t = zeros(VG(1).dim(1:2)); for i=1:length(VG); t = t + spm_slice_vol(VG(i), Mt,VG(1).dim(1:2),1)*scal(i); end; u = spm_slice_vol(VF(1),M*Mt,VG(1).dim(1:2),1); subplot(2,2,1);imagesc(t');axis image xy off subplot(2,2,2);imagesc(u');axis image xy off subplot(2,2,3);imagesc(u'-t');axis image xy off subplot(2,2,4);hist(b,50); % Entropy of residuals may be a nice cost function? drawnow; return; %_______________________________________________________________________
github
lcnhappe/happe-master
spm_vol.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/spm2/spm_vol.m
3,510
utf_8
fe778e6a833de2a9f5466018c571d5a6
function V = spm_vol(P) % Get header information etc for images. % FORMAT V = spm_vol(P) % P - a matrix of filenames. % V - a vector of structures containing image volume information. % The elements of the structures are: % V.fname - the filename of the image. % V.dim - the x, y and z dimensions of the volume, and the % datatype of the image. % V.mat - a 4x4 affine transformation matrix mapping from % voxel coordinates to real world coordinates. % V.pinfo - plane info for each plane of the volume. % V.pinfo(1,:) - scale for each plane % V.pinfo(2,:) - offset for each plane % The true voxel intensities of the jth image are given % by: val*V.pinfo(1,j) + V.pinfo(2,j) % V.pinfo(3,:) - offset into image (in bytes). % If the size of pinfo is 3x1, then the volume is assumed % to be contiguous and each plane has the same scalefactor % and offset. %____________________________________________________________________________ % % The fields listed above are essential for the mex routines, but other % fields can also be incorporated into the structure. % % The images are not memory mapped at this step, but are mapped when % the mex routines using the volume information are called. % % This is a replacement for the spm_map_vol and spm_unmap_vol stuff of % MatLab4 SPMs (SPM94-97), which is now obsolete. %_______________________________________________________________________ % @(#)spm_vol.m 2.16 John Ashburner 03/05/23 % If is already a vol structure then just return; if isstruct(P), V = P; return; end; V = subfunc2(P); return; function V = subfunc2(P) if iscell(P), V = cell(size(P)); for j=1:prod(size(P)), if iscell(P{j}), V{j} = subfunc2(P{j}); else, V{j} = subfunc1(P{j}); end; end; else V = subfunc1(P); end; return; function V = subfunc1(P) if size(P,1)==0, V=[]; else, V(size(P,1),1) = struct('fname','', 'dim', [0 0 0 0], 'mat',eye(4), 'pinfo', [1 0 0]'); end; for i=1:size(P,1), v = subfunc(P(i,:)); if isempty(v), hread_error_message(P(i,:)); error(['Can''t get volume information for ''' P(i,:) '''']); end; f = fieldnames(v); for j=1:size(f,1), eval(['V(i).' f{j} ' = v.' f{j} ';']); %V(i) = setfield(V(i),f{j},getfield(v,f{j})); end; end; return; function V = subfunc(p) p = deblank(p); [pth,nam,ext] = fileparts(deblank(p)); t = find(ext==','); n = []; if ~isempty(t), if length(t)==1, n1 = ext((t+1):end); if ~isempty(n1), n = str2num(n1); ext = ext(1:(t-1)); end; end; end; p = fullfile(pth,[nam ext]); if strcmp(ext,'.img') & exist(fullfile(pth,[nam '.hdr'])) == 2, if isempty(n), V = spm_vol_ana(p); else, V = spm_vol_ana(p,n); end; if ~isempty(V), return; end; else, % Try other formats % Try MINC format if isempty(n), V=spm_vol_minc(p); else, V=spm_vol_minc(p,n); end; if ~isempty(V), return; end; % Try Ecat 7 if isempty(n), V=spm_vol_ecat7(p); else, V=spm_vol_ecat7(p,n); end; if ~isempty(V), return; end; end; return; %_______________________________________________________________________ function hread_error_message(q) str = {... 'Error reading information on:',... [' ',spm_str_manip(q,'k40d')],... ' ',... 'Please check that it is in the correct format.'}; spm('alert*',str,mfilename,sqrt(-1)); return; %_______________________________________________________________________
github
lcnhappe/happe-master
spm_read_netcdf.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/spm2/spm_read_netcdf.m
3,640
utf_8
9339212a576f5d67662107cebb087054
function cdf = spm_read_netcdf(fname) % Read the header information from a NetCDF file into a data structure. % FORMAT cdf = spm_read_netcdf(fname) % fname - name of NetCDF file % cdf - data structure % % See: http://www.unidata.ucar.edu/packages/netcdf/ % _______________________________________________________________________ % @(#)spm_read_netcdf.m 2.1 John Ashburner 02/07/30 dsiz = [1 1 2 4 4 8]; fp=fopen(fname,'r','ieee-be'); if fp==-1, cdf = []; return; end; % Return null if not a CDF file. %----------------------------------------------------------------------- mgc = fread(fp,4,'uchar')'; if ~all(['CDF' 1] == mgc), cdf = []; fclose(fp); return; end % I've no idea what this is for numrecs = fread(fp,1,'uint32'); cdf = struct('numrecs',numrecs,'dim_array',[], 'gatt_array',[], 'var_array', []); dt = fread(fp,1,'uint32'); if dt == 10, % Dimensions nelem = fread(fp,1,'uint32'); for j=1:nelem, str = readname(fp); dim_length = fread(fp,1,'uint32'); cdf.dim_array(j).name = str; cdf.dim_array(j).dim_length = dim_length; end; dt = fread(fp,1,'uint32'); end while ~dt, dt = fread(fp,1,'uint32'); end; if dt == 12, % Attributes nelem = fread(fp,1,'uint32'); for j=1:nelem, str = readname(fp); nc_type= fread(fp,1,'uint32'); nnelem = fread(fp,1,'uint32'); val = fread(fp,nnelem,dtypestr(nc_type)); if nc_type == 2, val = deblank([val' ' ']); end padding= fread(fp,ceil(nnelem*dsiz(nc_type)/4)*4-nnelem*dsiz(nc_type),'uchar'); cdf.gatt_array(j).name = str; cdf.gatt_array(j).nc_type = nc_type; cdf.gatt_array(j).val = val; end; dt = fread(fp,1,'uint32'); end while ~dt, dt = fread(fp,1,'uint32'); end; if dt == 11, % Variables nelem = fread(fp,1,'uint32'); for j=1:nelem, str = readname(fp); nnelem = fread(fp,1,'uint32'); val = fread(fp,nnelem,'uint32'); cdf.var_array(j).name = str; cdf.var_array(j).dimid = val+1; cdf.var_array(j).nc_type = 0; cdf.var_array(j).vsize = 0; cdf.var_array(j).begin = 0; dt0 = fread(fp,1,'uint32'); if dt0 == 12, nelem0 = fread(fp,1,'uint32'); for jj=1:nelem0, str = readname(fp); nc_type= fread(fp,1,'uint32'); nnelem = fread(fp,1,'uint32'); val = fread(fp,nnelem,dtypestr(nc_type)); if nc_type == 2, val = deblank([val' ' ']); end padding= fread(fp,... ceil(nnelem*dsiz(nc_type)/4)*4-nnelem*dsiz(nc_type),'uchar'); cdf.var_array(j).vatt_array(jj).name = str; cdf.var_array(j).vatt_array(jj).nc_type = nc_type; cdf.var_array(j).vatt_array(jj).val = val; end; dt0 = fread(fp,1,'uint32'); end; cdf.var_array(j).nc_type = dt0; cdf.var_array(j).vsize = fread(fp,1,'uint32'); cdf.var_array(j).begin = fread(fp,1,'uint32'); end; dt = fread(fp,1,'uint32'); end; fclose(fp); return; %_______________________________________________________________________ %_______________________________________________________________________ function str = dtypestr(i) % Returns a string appropriate for reading or writing the CDF data-type. types = str2mat('uint8','uint8','int16','int32','float','double'); str = deblank(types(i,:)); return; %_______________________________________________________________________ %_______________________________________________________________________ function name = readname(fp) % Extracts a name from a CDF file pointed to at the right location by % fp. stlen = fread(fp,1,'uint32'); name = deblank([fread(fp,stlen,'uchar')' ' ']); padding= fread(fp,ceil(stlen/4)*4-stlen,'uchar'); return; %_______________________________________________________________________
github
lcnhappe/happe-master
spm_figure.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/spm2/spm_figure.m
30,750
utf_8
93a783638e6b9249e4ea8bb6377a5308
function varargout=spm_figure(varargin) % Setup and callback functions for Graphics window % FORMAT varargout=spm_figure(varargin) % - An embedded callback, multi-function function % - For detailed programmers comments, see format specifications % in main body of code %_______________________________________________________________________ % % spm_figure creates and manages the 'Graphics' window. This window and % these facilities may be used independently of SPM, and any number of % Graphics windows my be used within the same MatLab session. (Though % only one SPM 'Graphics' 'Tag'ed window is permitted. % % The Graphics window is provided with a menu bar at the top that % facilitates editing and printing of the current graphic display, % enabling interactive editing of graphic output prior to printing % (e.g. selection of color maps, deleting, moving and editing graphics % objects or adding text). (This menu is also provided as a figure % background "ContextMenu" - right-clicking on the figure background % should bring up the menu.) % % Print: Creates a footnote (detailing the SPM version, user & date) % and evaluates defaults.printstr (see spm_defaults.m). Graphics windows with % multi-page axes are printed page by page. % % Clear: Clears the Graphics window. If in SPM usage (figure 'Tag'ed as % 'Graphics') then all SPM windows are cleared and reset. % % Colormap options: % * gray, hot, pink: Sets the colormap to its default values and loads % either a grayscale, 'hot metal' or color map. % * gray-hot, etc: Creates a 'split' colormap {128 x 3 matrix}. % The lower half is a gray scale and the upper half % is 'hot metal' or 'pink'. This color map is used for % viewing 'rendered' SPMs on a PET, MRI or other background images % % Colormap effects: % * Invert: Inverts (flips) the current color map. % * Brighten and Darken: Brighten and Darken the current colourmap % using the MatLab BRIGHTEN command, with beta's of +0.2 and -0.2 % respectively. % % Editing: Right button ('alt' button) cancels operations % * Cut : Deletes the graphics object next selected (if deletable) % Select with middle mouse button to delete blocks of text, % or to delete individual elements from a plot. % * Move : To re-position a text, uicontrol or axis object using a % 'drag and drop' implementation (i.e. depress - move - release) % Using the middle 'extend' mouse button on a text object moves % the axes containing the text - i.e. blocks of text. % * Size : Re-sizes the text, uicontrol or axis object next selected % {left button - decrease, middle button - increase} by a factor % of 1.24 (or increase/decrease FontSize by 2 dpi) % * Text : Creates an editable text widget that produces a text object as % its CallBack. % The text object is provided with a ContextMenu, obtained by % right-clicking ('alt') on the text, allowing text attributes % to be changed. Alternatively, the edit facilities on the window % menu bar or ContextMenu can be used. % * Edit : To edit text, select a text object with the circle cursor, % and edit the text in the editable text widget that appears. % A middle 'extend' mouse click places a context menu on the text % object, facilitating easy modification of text atributes. % % For SPM usage, the figure should be 'Tag'ed as 'Graphics'. % % For SPM power users, and programmers, spm_figure provides utility % routines for using the SPM graphics interface. Of particular use are % the GetWin, FindWin and Clear functions See the embedded callback % reference in the main body of spm_figure, below the help text. % % See also: spm_print, spm_clf % %_______________________________________________________________________ % @(#)spm_figure.m 2.39 Andrew Holmes 03/05/16 %======================================================================= % - FORMAT specifications for embedded CallBack functions %======================================================================= %( This is a multi function function, the first argument is an action ) %( string, specifying the particular action function to take. Recall ) %( MatLab's command-function duality: `spm_figure Create` is ) %( equivalent to `spm_figure('Create')`. ) % % FORMAT F = spm_figure % [ShortCut] Defaults to Action 'Create' % % FORMAT F = spm_figure(F) - numeric F % [ShortCut] Defaults to spm_figure('CreateBar',F) % % FORMAT F = spm_figure('Create',Tag,Name,Visible) % Create a full length WhiteBg figure 'Tag'ed Tag (if specified), % with a ToolBar and background context menu. % Equivalent to spm_figure('CreateWin','Tag') and spm_figure('CreateBar') % Tag - 'Tag' string for figure. % Name - Name for window % Visible - 'on' or 'off' % F - Figure used % % FORMAT F = spm_figure('FindWin',F) % Finds window with 'Tag' or figure numnber F - returns empty F if not found % F - (Input) Figure to use [Optional] - 'Tag' string or figure number. % - Defaults to 'Graphics' % F - (Output) Figure number (if found) or empty (if not). % % FORMAT F = spm_figure('GetWin',Tag) % Like spm_figure('FindWin',Tag), except that if 'Tag' is 'Graphics' or % 'Interactive' and no such 'Tag'ged figure is found, one is created. Further, % the "got" window is made current. % Tag - Figure 'Tag' to get, defaults to 'Graphics' % F - Figure number (if found/created) or empty (if not). % % FORMAT F = spm_figure('ParentFig',h) % Finds window containing the object whose handle is specified % h - Handle of object whose parent figure is required % - If a vector, then first object handle is used % F - Number or parent figure % % FORMAT spm_figure('Clear',F,Tags) % Clears figure, leaving ToolBar (& other objects with invisible handles) % Optional third argument specifies 'Tag's of objects to delete. % If figure F is 'Tag'ged 'Interactive' (SPM usage), then the window % name and pointer are reset. % F - 'Tag' string or figure number of figure to clear, defaults to gcf % Tags - 'Tag's (string matrix or cell array of strings) of objects to delete % *regardless* of 'HandleVisibility'. Only these objects are deleted. % '!all' denotes all objects % % FORMAT str = spm_figure('DefPrintCmd') % Returns default print command for SPM, as a string % % FORMAT spm_figure('Print',F) % SPM print function: Appends footnote & executes PRINTSTR % F - [Optional] Figure to print. ('Tag' or figure number) % Defaults to figure 'Tag'ed as 'Graphics'. % If none found, uses CurrentFigure if avaliable. % defaults.printstr - global variable holding print command to be evaluated % Defaults to 'print -dps2 fig.ps' % If objects 'Tag'ed 'NextPage' and 'PrevPage' are found, then the % pages are shown and printed in order. In breif, pages are held as % seperate axes, with ony one 'Visible' at any one time. The handles of % the "page" axes are stored in the 'UserData' of the 'NextPage' % object, while the 'PrevPage' object holds the current page number. % See spm_help('!Disp') for details on setting up paging axes. % % FORMAT [hNextPage, hPrevPage, hPageNo] = spm_figure('NewPage',hPage) % SPM pagination function: Makes objects with handles hPage paginated % Creates pagination buttons if necessary. % hPage - Handles of objects to stick to this page % hNextPage, hPrevPage, hPageNo - Handles of pagination controls % % FORMAT spm_figure('TurnPage',move,F) % SPM pagination function: Turn to specified page % % FORMAT spm_figure('DeletePageControls',F) % SPM pagination function: Deletes page controls % F - [Optional] Figure in which to attempt to turn the page % Defaults to 'Graphics' 'Tag'ged window % % FORMAT n = spm_figure('#page') % Returns the current page number. % % FORMAT spm_figure('WaterMark',F,str,Tag,Angle,Perm) % Adds watermark to figure windows. % F - Figure for watermark. Defaults to gcf % str - Watermark string. Defaults (missing or empty) to SPM % Tag - Tag for watermark axes. Defaults to '' % Angle - Angle for watermark. Defaults to -45 % Perm - If specified, then watermark is permanent (HandleVisibility 'off') % % FORMAT F = spm_figure('CreateWin',Tag,Name,Visible) % Creates a full length WhiteBg figure 'Tag'ged Tag (if specified). % F - Figure created % Tag - Tag for window % Name - Name for window % Visible - 'on' or 'off' % % FORMAT WS = spm_figure('GetWinScale') % Returns ratios of current display dimensions to that of a 1152 x 900 % Sun display. WS=[Xratio,Yratio,Xratio,Yratio]. Used for scaling other % GUI elements. % (Function duplicated in spm.m, repeated to reduce inter-dependencies.) % % FORMAT FS = spm_figure('FontSizes',FS) % Returns fontsizes FS scaled for the current display. % FS - (vector of) Font sizes to scale % [default [08,09,11,13,14,6:36]] % % FORMAT spm_figure('CreateBar',F) % Creates toolbar in figure F (defaults to gcf). F can be a 'Tag' % If the figure is 'Tag'ed as 'Graphics' (SPM usage), then the Print button % callback is set to attempt to clear an 'Interactive' figure too. % % FORMAT spm_figure('ColorMap') % Callback for "ColorMap" buttons % % FORMAT h = spm_figure('GraphicsHandle',F) % GUI choose object for handle identification. LeftMouse 'normal' returns % handle, MiddleMouse 'extend' returns parents handle, RightMouse 'alt' cancels. % F - figure to do a GUI "handle ID" in [Default gcbf] %_______________________________________________________________________ %-Condition arguments %----------------------------------------------------------------------- if (nargin==0), Action = 'Create'; else, Action = varargin{1}; end switch lower(Action), case 'create' %======================================================================= % F = spm_figure('Create',Tag,Name,Visible) %-Condition arguments if nargin<4, Visible='on'; else, Visible=varargin{4}; end if nargin<3, Name=''; else, Name=varargin{3}; end if nargin<2, Tag=''; else, Tag=varargin{2}; end F = spm_figure('CreateWin',Tag,Name,Visible); spm_figure('CreateBar',F); spm_figure('FigContextMenu',F); varargout = {F}; case 'findwin' %======================================================================= % F=spm_figure('FindWin',F) % F=spm_figure('FindWin',Tag) %-Find window: Find window with FigureNumber# / 'Tag' attribute %-Returns empty if window cannot be found - deletes multiple tagged figs. if nargin<2, F='Graphics'; else, F=varargin{2}; end if isempty(F) % Leave F empty elseif ischar(F) % Finds Graphics window with 'Tag' string - delete multiples Tag=F; F = findobj(get(0,'Children'),'Flat','Tag',Tag); if length(F) > 1 % Multiple Graphics windows - close all but most recent close(F(2:end)) F = F(1); end else % F is supposed to be a figure number - check it if ~any(F==get(0,'Children')), F=[]; end end varargout = {F}; case 'getwin' %======================================================================= % F=spm_figure('GetWin',Tag) if nargin<2, Tag='Graphics'; else, Tag=varargin{2}; end F = spm_figure('FindWin',Tag); if isempty(F) if ischar(Tag) switch Tag, case 'Graphics' F = spm_figure('Create','Graphics','Graphics'); case 'Interactive' F = spm('CreateIntWin'); end end else set(0,'CurrentFigure',F); end varargout = {F}; case 'parentfig' %======================================================================= % F=spm_figure('ParentFig',h) if nargin<2, error('No object specified'), else, h=varargin{2}; end F = get(h(1),'Parent'); while ~strcmp(get(F,'Type'),'figure'), F=get(F,'Parent'); end varargout = {F}; case 'clear' %======================================================================= % spm_figure('Clear',F,Tags) %-Sort out arguments %----------------------------------------------------------------------- if nargin<3, Tags=[]; else, Tags=varargin{3}; end if nargin<2, F=get(0,'CurrentFigure'); else, F=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), return, end %-Clear figure %----------------------------------------------------------------------- if isempty(Tags) %-Clear figure of objects with 'HandleVisibility' 'on' pos = get(F,'Position'); delete(findobj(get(F,'Children'),'flat','HandleVisibility','on')); drawnow set(F,'Position',pos); %-Reset figures callback functions set(F,'KeyPressFcn','',... 'WindowButtonDownFcn','',... 'WindowButtonMotionFcn','',... 'WindowButtonUpFcn','') %-If this is the 'Interactive' window, reset name & UserData if strcmp(get(F,'Tag'),'Interactive') set(F,'Name','','UserData',[]), end else %-Clear specified objects from figure cSHH = get(0,'ShowHiddenHandles'); set(0,'ShowHiddenHandles','on') if ischar(Tags); Tags=cellstr(Tags); end if any(strcmp(Tags(:),'!all')) delete(get(F,'Children')) else for tag = Tags(:)' delete(findobj(get(F,'Children'),'flat','Tag',tag{:})); end end set(0,'ShowHiddenHandles',cSHH) end set(F,'Pointer','Arrow') case 'defprintcmd' %======================================================================= % spm_figure('DefPrintCmd') varargout = {'print -dpsc2 -painters -append -noui '}; case 'print' %======================================================================= % spm_figure('Print',F) %-Arguments & defaults if nargin<2, F='Graphics'; else, F=varargin{2}; end %-Find window to print, default to gcf if specified figure not found % Return if no figures F=spm_figure('FindWin',F); if isempty(F), F = get(0,'CurrentFigure'); end if isempty(F), return, end %-Note current figure, & switch to figure to print cF = get(0,'CurrentFigure'); set(0,'CurrentFigure',F) %-See if window has paging controls hNextPage = findobj(F,'Tag','NextPage'); hPrevPage = findobj(F,'Tag','PrevPage'); hPageNo = findobj(F,'Tag','PageNo'); iPaged = ~isempty(hNextPage); %-Construct print command %----------------------------------------------------------------------- global defaults if ~isempty(defaults), PRINTSTR = defaults.printstr; else, PRINTSTR = [spm_figure('DefPrintCmd'),'spm2.ps']; end %-Create footnote with SPM version, username, date and time. %----------------------------------------------------------------------- FNote = sprintf('%s%s: %s',spm('ver'),spm('GetUser',' (%s)'),spm('time')); %-Delete old tag lines, and print new one delete(findobj(F,'Tag','SPMprintFootnote')); axes('Position',[0.005,0.005,0.1,0.1],... 'Visible','off',... 'Tag','SPMprintFootnote') text(0,0,FNote,'FontSize',6); %-Temporarily change all units to normalized prior to printing % (Fixes bizzarre problem with stuff jumping around!) %----------------------------------------------------------------------- H = findobj(get(F,'Children'),'flat','Type','axes'); un = cellstr(get(H,'Units')); set(H,'Units','normalized') %-Print %----------------------------------------------------------------------- err = 0; if ~iPaged printstr = clean_PRINTSTR(PRINTSTR); try, eval(printstr), catch, err=1; end else hPg = get(hNextPage,'UserData'); Cpage = get(hPageNo, 'UserData'); nPages = size(hPg,1); set([hNextPage,hPrevPage,hPageNo],'Visible','off') if Cpage~=1 set(hPg{Cpage,1},'Visible','off'), end for p = 1:nPages set(hPg{p,1},'Visible','on'); printstr = clean_PRINTSTR(PRINTSTR); try, eval(printstr), catch, err=1; end set(hPg{p,1},'Visible','off') end set(hPg{Cpage,1},'Visible','on') set([hNextPage,hPrevPage,hPageNo],'Visible','on') end if err errstr = lasterr; tmp = [find(abs(errstr)==10),length(errstr)+1]; str = {errstr(1:tmp(1)-1)}; for i = 1:length(tmp)-1 if tmp(i)+1 < tmp(i+1) str = [str, {errstr(tmp(i)+1:tmp(i+1)-1)}]; end end str = {str{:}, '','- print command is:',[' ',printstr],... '','- current directory is:',[' ',pwd],... '',' * nothing has been printed *'}; spm('alert!',str,'printing problem...',sqrt(-1)); end set(H,{'Units'},un) set(0,'CurrentFigure',cF) case 'newpage' %======================================================================= % [hNextPage, hPrevPage, hPageNo] = spm_figure('NewPage',h) if nargin<2 | isempty(varargin{2}), error('No handles to paginate') else, h=varargin{2}(:)'; end %-Work out which figure we're in F = spm_figure('ParentFig',h(1)); hNextPage = findobj(F,'Tag','NextPage'); hPrevPage = findobj(F,'Tag','PrevPage'); hPageNo = findobj(F,'Tag','PageNo'); %-Create pagination widgets if required %----------------------------------------------------------------------- if isempty(hNextPage) WS = spm('WinScale'); FS = spm('FontSizes'); SatFig = findobj('Tag','Satellite'); if ~isempty(SatFig) SatFigPos = get(SatFig,'Position'); hNextPagePos = [SatFigPos(3)-25 15 15 15]; hPrevPagePos = [SatFigPos(3)-40 15 15 15]; hPageNo = [SatFigPos(3)-40 5 30 10]; else hNextPagePos = [580 022 015 015].*WS; hPrevPagePos = [565 022 015 015].*WS; hPageNo = [550 005 060 015].*WS; end hNextPage = uicontrol(F,'Style','Pushbutton',... 'HandleVisibility','on',... 'String','>','FontSize',FS(10),... 'ToolTipString','next page',... 'Callback','spm_figure(''TurnPage'',''+1'',gcbf)',... 'Position',hNextPagePos,... 'ForegroundColor',[0 0 0],... 'Tag','NextPage','UserData',[]); hPrevPage = uicontrol(F,'Style','Pushbutton',... 'HandleVisibility','on',... 'String','<','FontSize',FS(10),... 'ToolTipString','previous page',... 'Callback','spm_figure(''TurnPage'',''-1'',gcbf)',... 'Position',hPrevPagePos,... 'Visible','on',... 'Enable','off',... 'Tag','PrevPage'); hPageNo = uicontrol(F,'Style','Text',... 'HandleVisibility','on',... 'String','1',... 'FontSize',FS(6),... 'HorizontalAlignment','center',... 'BackgroundColor','w',... 'Position',hPageNo,... 'Visible','on',... 'UserData',1,... 'Tag','PageNo','UserData',1); end %-Add handles for this page to UserData of hNextPage %-Make handles for this page invisible if PageNo>1 %----------------------------------------------------------------------- mVis = strcmp('on',get(h,'Visible')); hPg = get(hNextPage,'UserData'); if isempty(hPg) hPg = {h(mVis), h(~mVis)}; else hPg = [hPg; {h(mVis), h(~mVis)}]; set(h(mVis),'Visible','off') end set(hNextPage,'UserData',hPg) %-Return handles to pagination controls if requested if nargout>0, varargout = {[hNextPage, hPrevPage, hPageNo]}; end case 'turnpage' %======================================================================= % spm_figure('TurnPage',move,F) if nargin<3, F='Graphics'; else, F=varargin{3}; end if nargin<2, move=1; else, move=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), error('No Graphics window'), end hNextPage = findobj(F,'Tag','NextPage'); hPrevPage = findobj(F,'Tag','PrevPage'); hPageNo = findobj(F,'Tag','PageNo'); if isempty(hNextPage), return, end hPg = get(hNextPage,'UserData'); Cpage = get(hPageNo, 'UserData'); nPages = size(hPg,1); %-Sort out new page number if ischar(move), Npage = Cpage+eval(move); else, Npage = move; end Npage = max(min(Npage,nPages),1); %-Make current page invisible, new page visible, set page number string set(hPg{Cpage,1},'Visible','off') set(hPg{Npage,1},'Visible','on') set(hPageNo,'UserData',Npage,'String',sprintf('%d / %d',Npage,nPages)) %-Disable appropriate page turning control if on first/last page (for neatness) if Npage==1, set(hPrevPage,'Enable','off') else, set(hPrevPage,'Enable','on'), end if Npage==nPages, set(hNextPage,'Enable','off') else, set(hNextPage,'Enable','on'), end case 'deletepagecontrols' %======================================================================= % spm_figure('DeletePageControls',F) if nargin<2, F='Graphics'; else, F=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), error('No Graphics window'), end hNextPage = findobj(F,'Tag','NextPage'); hPrevPage = findobj(F,'Tag','PrevPage'); hPageNo = findobj(F,'Tag','PageNo'); delete([hNextPage hPrevPage hPageNo]) case '#page' %======================================================================= % n = spm_figure('#Page',F) if nargin<2, F='Graphics'; else, F=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), error('No Graphics window'), end hNextPage = findobj(F,'Tag','NextPage'); if isempty(hNextPage) n = 1; else n = size(get(hNextPage,'UserData'),1)+1; end varargout = {n}; case 'watermark' %======================================================================= % spm_figure('WaterMark',F,str,Tag,Angle,Perm) if nargin<6, HVis='on'; else, HVis='off'; end if nargin<5, Angle=-45; else, Angle=varargin{5}; end if nargin<4 | isempty(varargin{4}), Tag = 'WaterMark'; else, Tag=varargin{4}; end if nargin<3 | isempty(varargin{3}), str = 'SPM'; else, str=varargin{3}; end if nargin<2, if any(get(0,'Children')), F=gcf; else, F=''; end else, F=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), return, end %-Specify watermark color from background colour %----------------------------------------------------------------------- Colour = get(F,'Color'); %-Only mess with grayscale backgrounds if ~all(Colour==Colour(1)), return, end %-Work out colour - lighter unless grey value > 0.9 Colour = Colour+(2*(Colour(1)<0.9)-1)*0.02; cF = get(0,'CurrentFigure'); set(0,'CurrentFigure',F) Units=get(F,'Units'); set(F,'Units','normalized'); h = axes('Position',[0.45,0.5,0.1,0.1],... 'Units','normalized',... 'Visible','off',... 'Tag',Tag); set(F,'Units',Units) text(0.5,0.5,str,... 'FontSize',spm('FontSize',80),... 'FontWeight','Bold',... 'FontName',spm_platform('Font','times'),... 'Rotation',Angle,... 'HorizontalAlignment','Center',... 'VerticalAlignment','middle',... 'EraseMode','normal',... 'Color',Colour,... 'ButtonDownFcn',[... 'if strcmp(get(gcbf,''SelectionType''),''open''),',... 'delete(get(gcbo,''Parent'')),',... 'end']) set(h,'HandleVisibility',HVis) set(0,'CurrentFigure',cF) case 'createwin' %======================================================================= % F=spm_figure('CreateWin',Tag,Name,Visible) %-Condition arguments %----------------------------------------------------------------------- if nargin<4 | isempty(varargin{4}), Visible='on'; else, Visible=varargin{4}; end if nargin<3, Name=''; else, Name = varargin{3}; end if nargin<2, Tag=''; else, Tag = varargin{2}; end WS = spm('WinScale'); %-Window scaling factors FS = spm('FontSizes'); %-Scaled font sizes PF = spm_platform('fonts'); %-Font names (for this platform) Rect = spm('WinSize','Graphics','raw').*WS; %-Graphics window rectangle F = figure(... 'Tag',Tag,... 'Position',Rect,... 'Resize','off',... 'Color','w',... 'ColorMap',gray(64),... 'DefaultTextColor','k',... 'DefaultTextInterpreter','none',... 'DefaultTextFontName',PF.helvetica,... 'DefaultTextFontSize',FS(10),... 'DefaultAxesColor','w',... 'DefaultAxesXColor','k',... 'DefaultAxesYColor','k',... 'DefaultAxesZColor','k',... 'DefaultAxesFontName',PF.helvetica,... 'DefaultPatchFaceColor','k',... 'DefaultPatchEdgeColor','k',... 'DefaultSurfaceEdgeColor','k',... 'DefaultLineColor','k',... 'DefaultUicontrolFontName',PF.helvetica,... 'DefaultUicontrolFontSize',FS(10),... 'DefaultUicontrolInterruptible','on',... 'PaperType','A4',... 'PaperUnits','normalized',... 'PaperPosition',[.0726 .0644 .854 .870],... 'InvertHardcopy','off',... 'Renderer','zbuffer',... 'Visible','off'); if ~isempty(Name) set(F,'Name',sprintf('%s%s: %s',spm('ver'),... spm('GetUser',' (%s)'),Name),'NumberTitle','off') end set(F,'Visible',Visible) varargout = {F}; case 'getwinscale' %======================================================================= % WS = spm_figure('GetWinScale') warning('spm_figure(''GetWinScale''... is Grandfathered: use spm(''WinScale''') varargout = {spm('WinScale')}; case 'fontsizes' %======================================================================= % FS = spm_figure('FontSizes',FS) warning('spm_figure(''FontSizes''... is Grandfathered: use spm(''FontSizes''') if nargin<2, FS=[08,09,11,13,14,6:36]; else, FS=varargin{2}; end varargout = {round(FS*min(spm('WinScale')))}; %======================================================================= case 'createbar' %======================================================================= % spm_figure('CreateBar',F) if nargin<2, if any(get(0,'Children')), F=gcf; else, F=''; end else, F=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), return, end cSHH = get(0,'ShowHiddenHandles'); set(0,'ShowHiddenHandles','on') t0 = findobj(get(F,'Children'),'Flat','Label','&Help'); if isempty(t0), t0 = uimenu( F,'Label','&Help'); end; set(findobj(t0,'Position',1),'Separator','on'); t1 = uimenu(t0,'Position',1,... 'Label','SPM web',... 'CallBack','web(''http://www.fil.ion.ucl.ac.uk/spm'');'); t1 = uimenu(t0,'Position',1,... 'Label','SPM help','ForegroundColor',[0 1 0],... 'CallBack','spm_help'); t0=uimenu( F,'Label','Colours','HandleVisibility','off'); t1=uimenu(t0,'Label','ColorMap'); t2=uimenu(t1,'Label','Gray','CallBack','spm_figure(''ColorMap'',''gray'')'); t2=uimenu(t1,'Label','Hot','CallBack','spm_figure(''ColorMap'',''hot'')'); t2=uimenu(t1,'Label','Pink','CallBack','spm_figure(''ColorMap'',''pink'')'); t2=uimenu(t1,'Label','Gray-Hot','CallBack','spm_figure(''ColorMap'',''gray-hot'')'); t2=uimenu(t1,'Label','Gray-Pink','CallBack','spm_figure(''ColorMap'',''gray-pink'')'); t1=uimenu(t0,'Label','Effects'); t2=uimenu(t1,'Label','Invert','CallBack','spm_figure(''ColorMap'',''invert'')'); t2=uimenu(t1,'Label','Brighten','CallBack','spm_figure(''ColorMap'',''brighten'')'); t2=uimenu(t1,'Label','Darken','CallBack','spm_figure(''ColorMap'',''darken'')'); t0=uimenu( F,'Label','Clear','HandleVisibility','off','CallBack','spm_figure(''Clear'',gcbf)'); t0=uimenu( F,'Label','SPM-Print','HandleVisibility','off','CallBack','spm_figure(''Print'',gcbf)'); % ### CODE FOR SATELLITE FIGURE ### % Code checks if there is a satellite window and if results are currently displayed % It assumes that if hReg is invalid then there are no results currently displayed % Modified by DRG to display a satellite figure 02/14/01. cb = ['global SatWindow,',... 'try,',... 'tmp = get(hReg);,',... 'ResFlag = 1;',... 'catch,',... 'ResFlag = 0;',... 'end,',... 'if SatWindow,',... 'figure(SatWindow),',... 'else,',... 'if ResFlag,',... 'spm_setup_satfig,',... 'end,',... 'end']; t0=uimenu( F,'Label','Results-Fig','HandleVisibility','off','Callback',cb); % ### END NEW CODE ### set(0,'ShowHiddenHandles',cSHH) %======================================================================= case 'figcontextmenu' %======================================================================= % h = spm_figure('FigContextMenu',F) if nargin<2 F = get(0,'CurrentFigure'); if isempty(F), error('no figure'), end else F = spm_figure('FindWin',varargin{2}); if isempty(F), error('no such figure'), end end h = uicontextmenu('Parent',F,'HandleVisibility','CallBack'); cSHH = get(0,'ShowHiddenHandles'); set(0,'ShowHiddenHandles','on') copy_menu(F,h); set(0,'ShowHiddenHandles',cSHH) set(F,'UIContextMenu',h) varargout = {h}; case 'colormap' %======================================================================= % spm_figure('ColorMap',ColAction,h) if nargin<3, h=[]; else, h=varargin{3}; end if nargin<2, ColAction='gray'; else, ColAction=varargin{2}; end switch lower(ColAction), case 'gray' colormap(gray(64)) case 'hot' colormap(hot(64)) case 'pink' colormap(pink(64)) case 'gray-hot' tmp = hot(64 + 16); tmp = tmp([1:64] + 16,:); colormap([gray(64); tmp]) case 'gray-pink' tmp = pink(64 + 16); tmp = tmp([1:64] + 16,:); colormap([gray(64); tmp]) case 'invert' colormap(flipud(colormap)) case 'brighten' colormap(brighten(colormap, 0.2)) case 'darken' colormap(brighten(colormap, -0.2)) otherwise error('Illegal ColAction specification') end case 'graphicshandle' %======================================================================= % h = spm_figure('GraphicsHandle',F) if nargin<2, F=gcbf; else, F=spm_figure('FindWin',varargin{2}); end if isempty(F), return, end tmp = get(F,'Name'); set(F,'Name',... 'Handle: Select item to identify, MiddleMouse=parent, RightMouse=cancel...'); set(F,'Pointer','CrossHair') waitforbuttonpress; h = gco(F); hType = get(h,'Type'); SelnType = get(gcf,'SelectionType'); set(F,'Pointer','Arrow','Name',tmp) if ~strcmp(SelnType,'alt') & ~isempty(h) & gcf==F str = sprintf('Selected (%s) object',get(h,'Type')); if strcmp(SelnType,'normal') str = sprintf('%s: handle',str); else h = get(h,'Parent'); str = sprintf('%s: handle of parent (%s) object',str,get(h,'Type')); end if nargout==0 assignin('base','ans',h) fprintf('\n%s: \n',str) ans = h else varargout={h}; end else varargout={[]}; end otherwise %======================================================================= warning(['Illegal Action string: ',Action]) end return; %======================================================================= %======================================================================= function copy_menu(F,G) %======================================================================= handles = findobj(get(F,'Children'),'Flat','Type','uimenu','Visible','on'); if length(handles)==0, return; end; for F1=handles', if ~strcmp(get(F1,'Label'),'&Window'), G1 = uimenu(G,'Label',get(F1,'Label'),... 'CallBack',get(F1,'CallBack'),... 'Position',get(F1,'Position'),... 'Separator',get(F1,'Separator')); copy_menu(F1,G1); end; end; return; %======================================================================= %======================================================================= function PRINTSTR = clean_PRINTSTR(PRINTSTR) %======================================================================= % Matlab 6.5 printing doesn't like the -append option if the file does % not already exist %----------------------------------------------------------------------- off = findstr('-append',PRINTSTR); if ~isempty(off), bl = [0 find(isspace(PRINTSTR)) (length(PRINTSTR)+1)]; for i=1:(length(bl)-1), ca{i} = PRINTSTR((bl(i)+1):(bl(i+1)-1)); end; ca = strvcat(ca); off1 = find(ca(:,1)~='-'); % either 'print' or a filename if length(off1)>1, fname = deblank(ca(off1(end),:)); % If there is no path to the file, then make it the % current directory [pth,nam,ext] = fileparts(fname); if isempty(pth), fname = ['.' filesep nam ext]; end; fd = fopen(fname,'r'); if fd~=-1, % File exists, so -append can be used fclose(fd); else, % File does not exist, so remove -append option PRINTSTR(off:(off+7))=''; end; end; end;
github
lcnhappe/happe-master
spm_smoothto8bit.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/spm2/spm_smoothto8bit.m
2,262
utf_8
b2475a56514dcda30f94612977b6f68a
function VO = spm_smoothto8bit(V,fwhm) % 3 dimensional convolution of an image to 8bit data in memory % FORMAT VO = spm_smoothto8bit(V,fwhm) % V - mapped image to be smoothed % fwhm - FWHM of Guassian filter width in mm % VO - smoothed volume in a form that can be used by the % spm_*_vol.mex* functions. %_______________________________________________________________________ % %_______________________________________________________________________ % @(#)spm_smoothto8bit.m 2.2 John Ashburner 03/03/04 if nargin>1 & fwhm>0, VO = smoothto8bit(V,fwhm); else, VO = V; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function VO = smoothto8bit(V,fwhm) % 3 dimensional convolution of an image to 8bit data in memory % FORMAT VO = smoothto8bit(V,fwhm) % V - mapped image to be smoothed % fwhm - FWHM of Guassian filter width in mm % VO - smoothed volume in a form that can be used by the % spm_*_vol.mex* functions. %_______________________________________________________________________ vx = sqrt(sum(V.mat(1:3,1:3).^2)); s = (fwhm./vx./sqrt(8*log(2)) + eps).^2; r = cell(1,3); for i=1:3, r{i}.s = ceil(3.5*sqrt(s(i))); x = -r{i}.s:r{i}.s; r{i}.k = exp(-0.5 * (x.*x)/s(i))/sqrt(2*pi*s(i)); r{i}.k = r{i}.k/sum(r{i}.k); end; buff = zeros([V.dim(1:2) r{3}.s*2+1]); VO = V; VO.dim(4) = spm_type('uint8'); V0.dat = uint8(0); V0.dat(VO.dim(1:3)) = uint8(0); VO.pinfo = []; for i=1:V.dim(3)+r{3}.s, if i<=V.dim(3), img = spm_slice_vol(V,spm_matrix([0 0 i]),V.dim(1:2),0); msk = find(~isfinite(img)); img(msk) = 0; buff(:,:,rem(i-1,r{3}.s*2+1)+1) = ... conv2(conv2(img,r{1}.k,'same'),r{2}.k','same'); else, buff(:,:,rem(i-1,r{3}.s*2+1)+1) = 0; end; if i>r{3}.s, kern = zeros(size(r{3}.k')); kern(rem((i:(i+r{3}.s*2))',r{3}.s*2+1)+1) = r{3}.k'; img = reshape(buff,[prod(V.dim(1:2)) r{3}.s*2+1])*kern; img = reshape(img,V.dim(1:2)); ii = i-r{3}.s; mx = max(img(:)); mn = min(img(:)); if mx==mn, mx=mn+eps; end; VO.pinfo(1:2,ii) = [(mx-mn)/255 mn]'; VO.dat(:,:,ii) = uint8(round((img-mn)*(255/(mx-mn)))); end; end;
github
lcnhappe/happe-master
spm_platform.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/spm2/spm_platform.m
7,715
utf_8
c43c4cc00de257f7ef7f8f9e79552a22
function varargout=spm_platform(varargin) % Platform specific configuration parameters for SPM % % FORMAT ans = spm_platform(arg) % arg - optional string argument, can be % - 'bigend' - return whether this architecture is bigendian % - Inf - is not IEEE floating point % - 0 - is little end % - 1 - big end % - 'filesys' - type of filesystem % - 'unx' - UNIX % - 'win' - DOS % - 'mac' - Macintosh % - 'vms' - VMS % - 'sepchar' - returns directory separator % - 'rootlen' - returns number of chars in root directory name % - 'user' - returns username % - 'tempdir' - returns name of temp directory % % FORMAT PlatFontNames = spm_platform('fonts') % Returns structure with fields named after the generic (UNIX) fonts, the % field containing the name of the platform specific font. % % FORMAT PlatFontName = spm_platform('font',GenFontName) % Maps generic (UNIX) FontNames to platform specific FontNames % % FORMAT PLATFORM = spm_platform('init',comp) % Initialises platform specific parameters in persistent PLATFORM % (External gateway to init_platform(comp) subfunction) % comp - computer to use [defaults to MatLab's `computer`] % PLATFORM - copy of persistent PLATFORM % % FORMAT spm_platform % Initialises platform specific parameters in persistent PLATFORM % (External gateway to init_platform(computer) subfunction) % % ---------------- % SUBFUNCTIONS: % % FORMAT init_platform(comp) % Initialise platform specific parameters in persistent PLATFORM % comp - computer to use [defaults to MatLab's `computer`] % %----------------------------------------------------------------------- % % Since calls to spm_platform will be made frequently, most platform % specific parameters are stored as a structure in the persistent variable % PLATFORM. Subsequent calls use the information from this persistent % variable, if it exists. % % Platform specific difinitions are contained in the data structures at % the beginning of the init_platform subfunction at the end of this % file. %_______________________________________________________________________ % Copyright (C) 2005 Wellcome Department of Imaging Neuroscience % Matthew Brett % $Id$ %-Initialise %----------------------------------------------------------------------- persistent PLATFORM if isempty(PLATFORM), PLATFORM = init_platform; end if nargin==0, return, end switch lower(varargin{1}), case 'init' %-(re)initialise %======================================================================= init_platform(varargin{2:end}) varargout = {PLATFORM}; case 'bigend' %-Return endian for this architecture %======================================================================= varargout = {PLATFORM.bigend}; if ~isfinite(PLATFORM.bigend), if isnan(PLATFORM.bigend) error(['I don''t know if "',computer,'" is big-endian.']) else error(['I don''t think that "',computer,... '" uses IEEE floating point ops.']) end end case 'filesys' %-Return file system %======================================================================= varargout = {PLATFORM.filesys}; case 'sepchar' %-Return file separator character %======================================================================= warning('use filesep instead (supported by MathWorks)') varargout = {PLATFORM.sepchar}; case 'rootlen' %-Return length in chars of root directory name %======================================================================= varargout = {PLATFORM.rootlen}; case 'user' %-Return user string %======================================================================= varargout = {PLATFORM.user}; case 'tempdir' %-Return temporary directory %======================================================================= twd = getenv('SPMTMP'); if isempty(twd) twd = tempdir; end varargout = {twd}; case {'font','fonts'} %-Map default font names to platform font names %======================================================================= if nargin<2, varargout={PLATFORM.font}; return, end switch lower(varargin{2}) case 'times' varargout = {PLATFORM.font.times}; case 'courier' varargout = {PLATFORM.font.courier}; case 'helvetica' varargout = {PLATFORM.font.helvetica}; case 'symbol' varargout = {PLATFORM.font.symbol}; otherwise warning(['Unknown font ',varargin{2},', using default']) varargout = {PLATFORM.font.helvetica}; end otherwise %-Unknown Action string %======================================================================= error('Unknown Action string') %======================================================================= end %======================================================================= %- S U B - F U N C T I O N S %======================================================================= function PLATFORM = init_platform(comp) %-Initialise platform variables %======================================================================= if nargin<1, comp=computer; end %-Platform definitions %----------------------------------------------------------------------- PDefs = { 'PCWIN', 'win', 0;... 'MAC', 'unx', 1;... 'SUN4', 'unx', 1;... 'SOL2', 'unx', 1;... 'HP700', 'unx', 1;... 'SGI', 'unx', 1;... 'SGI64', 'unx', 1;... 'IBM_RS', 'unx', 1;... 'ALPHA', 'unx', 0;... 'AXP_VMSG', 'vms', Inf;... 'AXP_VMSIEEE', 'vms', 0;... 'LNX86', 'unx', 0;... 'GLNX86', 'unx', 0;... 'GLNXA64', 'unx', 0;... 'VAX_VMSG', 'vms', Inf;... 'VAX_VMSD', 'vms', Inf }; PDefs = cell2struct(PDefs,{'computer','filesys','endian'},2); %-Which computer? %----------------------------------------------------------------------- ci = find(strcmp({PDefs.computer},comp)); if isempty(ci), error([comp,' not supported architecture for SPM']), end %-Set bigend %----------------------------------------------------------------------- PLATFORM.bigend = PDefs(ci).endian; %-Set filesys %----------------------------------------------------------------------- PLATFORM.filesys = PDefs(ci).filesys; %-Set filesystem dependent stuff %----------------------------------------------------------------------- %-File separators character %-Length of root directory strings %-User name finding %-(mouse button labels?) switch (PLATFORM.filesys) case 'unx' PLATFORM.sepchar = '/'; PLATFORM.rootlen = 1; PLATFORM.user = getenv('USER'); case 'win' PLATFORM.sepchar = '\'; PLATFORM.rootlen = 3; PLATFORM.user = getenv('USERNAME'); if isempty(PLATFORM.user) PLATFORM.user = spm_win32utils('username'); end otherwise error(['Don''t know filesystem ',PLATFORM.filesys]) end %-Fonts %----------------------------------------------------------------------- switch comp case {'SOL2'} %-Some Sol2 platforms give segmentation violations with Helvetica PLATFORM.font.helvetica = 'Lucida'; PLATFORM.font.times = 'Times'; PLATFORM.font.courier = 'Courier'; PLATFORM.font.symbol = 'Symbol'; case {'SUN4','SOL2','HP700','SGI','SGI64','IBM_RS','ALPHA','LNX86','GLNX86','GLNXA64','MAC'} PLATFORM.font.helvetica = 'Helvetica'; PLATFORM.font.times = 'Times'; PLATFORM.font.courier = 'Courier'; PLATFORM.font.symbol = 'Symbol'; case {'PCWIN'} PLATFORM.font.helvetica = 'Arial Narrow'; PLATFORM.font.times = 'Times New Roman'; PLATFORM.font.courier = 'Courier New'; PLATFORM.font.symbol = 'Symbol'; end
github
lcnhappe/happe-master
spm_read_hdr.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/spm2/spm_read_hdr.m
5,294
utf_8
674302bc6310dd07e5c76a9cc58fc5ce
function [hdr,otherendian] = spm_read_hdr(fname) % Read (SPM customised) Analyze header % FORMAT [hdr,otherendian] = spm_read_hdr(fname) % fname - .hdr filename % hdr - structure containing Analyze header % otherendian - byte swapping necessary flag %_______________________________________________________________________ % @(#)spm_read_hdr.m 2.2 John Ashburner 03/07/17 fid = fopen(fname,'r','native'); otherendian = 0; if (fid > 0) dime = read_dime(fid); if dime.dim(1)<0 | dime.dim(1)>15, % Appears to be other-endian % Re-open other-endian fclose(fid); if spm_platform('bigend'), fid = fopen(fname,'r','ieee-le'); else, fid = fopen(fname,'r','ieee-be'); end; otherendian = 1; dime = read_dime(fid); end; hk = read_hk(fid); hist = read_hist(fid); hdr.hk = hk; hdr.dime = dime; hdr.hist = hist; % SPM specific bit - unused %if hdr.hk.sizeof_hdr > 348, % spmf = read_spmf(fid,dime.dim(5)); % if ~isempty(spmf), % hdr.spmf = spmf; % end; %end; fclose(fid); else, hdr = []; otherendian = NaN; %error(['Problem opening header file (' fopen(fid) ').']); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function hk = read_hk(fid) % read (struct) header_key %----------------------------------------------------------------------- fseek(fid,0,'bof'); hk.sizeof_hdr = fread(fid,1,'int32'); hk.data_type = mysetstr(fread(fid,10,'uchar'))'; hk.db_name = mysetstr(fread(fid,18,'uchar'))'; hk.extents = fread(fid,1,'int32'); hk.session_error = fread(fid,1,'int16'); hk.regular = mysetstr(fread(fid,1,'uchar'))'; hk.hkey_un0 = mysetstr(fread(fid,1,'uchar'))'; if isempty(hk.hkey_un0), error(['Problem reading "hk" of header file (' fopen(fid) ').']); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function dime = read_dime(fid) % read (struct) image_dimension %----------------------------------------------------------------------- fseek(fid,40,'bof'); dime.dim = fread(fid,8,'int16')'; dime.vox_units = mysetstr(fread(fid,4,'uchar'))'; dime.cal_units = mysetstr(fread(fid,8,'uchar'))'; dime.unused1 = fread(fid,1,'int16'); dime.datatype = fread(fid,1,'int16'); dime.bitpix = fread(fid,1,'int16'); dime.dim_un0 = fread(fid,1,'int16'); dime.pixdim = fread(fid,8,'float')'; dime.vox_offset = fread(fid,1,'float'); dime.funused1 = fread(fid,1,'float'); dime.funused2 = fread(fid,1,'float'); dime.funused3 = fread(fid,1,'float'); dime.cal_max = fread(fid,1,'float'); dime.cal_min = fread(fid,1,'float'); dime.compressed = fread(fid,1,'int32'); dime.verified = fread(fid,1,'int32'); dime.glmax = fread(fid,1,'int32'); dime.glmin = fread(fid,1,'int32'); if isempty(dime.glmin), error(['Problem reading "dime" of header file (' fopen(fid) ').']); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function hist = read_hist(fid) % read (struct) data_history %----------------------------------------------------------------------- fseek(fid,148,'bof'); hist.descrip = mysetstr(fread(fid,80,'uchar'))'; hist.aux_file = mysetstr(fread(fid,24,'uchar'))'; hist.orient = fread(fid,1,'uchar'); hist.origin = fread(fid,5,'int16')'; hist.generated = mysetstr(fread(fid,10,'uchar'))'; hist.scannum = mysetstr(fread(fid,10,'uchar'))'; hist.patient_id = mysetstr(fread(fid,10,'uchar'))'; hist.exp_date = mysetstr(fread(fid,10,'uchar'))'; hist.exp_time = mysetstr(fread(fid,10,'uchar'))'; hist.hist_un0 = mysetstr(fread(fid,3,'uchar'))'; hist.views = fread(fid,1,'int32'); hist.vols_added = fread(fid,1,'int32'); hist.start_field= fread(fid,1,'int32'); hist.field_skip = fread(fid,1,'int32'); hist.omax = fread(fid,1,'int32'); hist.omin = fread(fid,1,'int32'); hist.smax = fread(fid,1,'int32'); hist.smin = fread(fid,1,'int32'); if isempty(hist.smin), error(['Problem reading "hist" of header file (' fopen(fid) ').']); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function spmf = read_spmf(fid,n) % Read SPM specific fields % This bit may be used in the future for extending the Analyze header. fseek(fid,348,'bof'); mgc = fread(fid,1,'int32'); % Magic number if mgc ~= 20020417, spmf = []; return; end; for j=1:n, spmf(j).mat = fread(fid,16,'double'); % Orientation information spmf(j).unused = fread(fid,384,'uchar'); % Extra unused stuff if length(spmf(j).unused)<384, error(['Problem reading "spmf" of header file (' fopen(fid) ').']); end; spmf(j).mat = reshape(spmf(j).mat,[4 4]); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function out = mysetstr(in) tmp = find(in == 0); tmp = min([min(tmp) length(in)]); out = setstr([in(1:tmp)' zeros(1,length(in)-(tmp))])'; return; %_______________________________________________________________________ %_______________________________________________________________________
github
lcnhappe/happe-master
spm_write_plane.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/spm2/spm_write_plane.m
4,446
utf_8
4112c03c69d90f524531bf05dc467067
function V = spm_write_plane(V,A,p) % Write a transverse plane of image data. % FORMAT V = spm_write_plane(V,A,p) % V - data structure containing image information. % - see spm_vol for a description. % A - the two dimensional image to write. % p - the plane number (beginning from 1). % % VO - (possibly) modified data structure containing image information. % It is possible that future versions of spm_write_plane may % modify scalefactors (for example). % %_______________________________________________________________________ % @(#)spm_write_plane.m 2.19 John Ashburner 03/07/16 if any(V.dim(1:2) ~= size(A)), error('Incompatible image dimensions'); end; if p>V.dim(3), error('Plane number too high'); end; % Write Analyze image by default V = write_analyze_plane(V,A,p); return; %_______________________________________________________________________ %_______________________________________________________________________ function V = write_analyze_plane(V,A,p) types = [ 2 4 8 16 64 130 132 136, 512 1024 2048 4096 16384 33280 33792 34816]; maxval = [2^8-1 2^15-1 2^31-1 Inf Inf 2^7-1 2^16-1 2^32-1, 2^8-1 2^15-1 2^31-1 Inf Inf 2^8-1 2^16-1 2^32-1]; minval = [ 0 -2^15 -2^31 -Inf -Inf -2^7 0 0, 0 -2^15 -2^31 -Inf -Inf -2^7 0 0]; intt = [ 1 1 1 0 0 1 1 1, 1 1 1 0 0 1 1 1]; prec = str2mat('uint8','int16','int32','float','double','int8','uint16','uint32','uint8','int16','int32','float','double','int8','uint16','uint32'); swapped = [ 0 0 0 0 0 0 0 0, 1 1 1 1 1 1 1 1]; bits = [ 8 16 32 32 64 8 16 32, 8 16 32 32 64 8 16 32]; dt = find(types==V.dim(4)); if isempty(dt), error('Unknown datatype'); end; A = double(A); % Rescale to fit appropriate range if intt(dt), A(isnan(A)) = 0; mxv = maxval(dt); mnv = minval(dt); A = round(A*(1/V.pinfo(1)) - V.pinfo(2)); A(A > mxv) = mxv; A(A < mnv) = mnv; end; if ~isfield(V,'private') | ~isfield(V.private,'fid') | isempty(V.private.fid), mach = 'native'; if swapped(dt), if spm_platform('bigend'), mach = 'ieee-le'; else, mach = 'ieee-be'; end; end; [pth,nam,ext] = fileparts(V.fname); fname = fullfile(pth,[nam, '.img']); fid = fopen(fname,'r+',mach); if fid == -1, fid = fopen(fname,'w',mach); if fid == -1, error(['Error opening ' fname '. Check that you have write permission.']); end; end; else, if isempty(fopen(V.private.fid)), mach = 'native'; if swapped(dt), if spm_platform('bigend'), mach = 'ieee-le'; else, mach = 'ieee-be'; end; end; V.private.fid = fopen(fname,'r+',mach); if V.private.fid == -1, error(['Error opening ' fname '. Check that you have write permission.']); end; end; fid = V.private.fid; end; % Seek to the appropriate offset datasize = bits(dt)/8; off = (p-1)*datasize*prod(V.dim(1:2)) + V.pinfo(3,1); fseek(fid,0,'bof'); % A bug in Matlab 6.5 means that a rewind is needed if fseek(fid,off,'bof')==-1, % Need this because fseek in Matlab does not seek past the EOF fseek(fid,0,'bof'); % A bug in Matlab 6.5 means that a rewind is needed fseek(fid,0,'eof'); curr_off = ftell(fid); blanks = zeros(off-curr_off,1); if fwrite(fid,blanks,'uchar') ~= prod(size(blanks)), write_error_message(V.fname); error(['Error writing ' V.fname '.']); end; fseek(fid,0,'bof'); % A bug in Matlab 6.5 means that a rewind is needed if fseek(fid,off,'bof') == -1, write_error_message(V.fname); error(['Error writing ' V.fname '.']); return; end; end; if fwrite(fid,A,deblank(prec(dt,:))) ~= prod(size(A)), write_error_message(V.fname); error(['Error writing ' V.fname '.']); end; if ~isfield(V,'private') | ~isfield(V.private,'fid') | isempty(V.private.fid), fclose(fid); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function write_error_message(q) str = {... 'Error writing:',... ' ',... [' ',spm_str_manip(q,'k40d')],... ' ',... 'Check disk space / disk quota.'}; spm('alert*',str,mfilename,sqrt(-1)); return; %_______________________________________________________________________
github
lcnhappe/happe-master
spm_normalise.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/spm2/spm_normalise.m
12,887
utf_8
e8649290b7272eb0337aeae86fb737c0
function params = spm_normalise(VG,VF,matname,VWG,VWF,flags) % Spatial (stereotactic) normalization % % FORMAT params = spm_normalise(VG,VF,matname,VWG,VWF,flags) % VG - template handle(s) % VF - handle of image to estimate params from % matname - name of file to store deformation definitions % VWG - template weighting image % VWF - source weighting image % flags - flags. If any field is not passed, then defaults are assumed. % smosrc - smoothing of source image (FWHM of Gaussian in mm). % Defaults to 8. % smoref - smoothing of template image (defaults to 0). % regtype - regularisation type for affine registration % See spm_affreg.m (default = 'mni'). % cutoff - Cutoff of the DCT bases. Lower values mean more % basis functions are used (default = 30mm). % nits - number of nonlinear iterations (default=16). % reg - amount of regularisation (default=0.1) % ___________________________________________________________________________ % % This module spatially (stereotactically) normalizes MRI, PET or SPECT % images into a standard space defined by some ideal model or template % image[s]. The template images supplied with SPM conform to the space % defined by the ICBM, NIH P-20 project, and approximate that of the % the space described in the atlas of Talairach and Tournoux (1988). % The transformation can also be applied to any other image that has % been coregistered with these scans. % % % Mechanism % Generally, the algorithms work by minimising the sum of squares % difference between the image which is to be normalised, and a linear % combination of one or more template images. For the least squares % registration to produce an unbiased estimate of the spatial % transformation, the image contrast in the templates (or linear % combination of templates) should be similar to that of the image from % which the spatial normalization is derived. The registration simply % searches for an optimum solution. If the starting estimates are not % good, then the optimum it finds may not find the global optimum. % % The first step of the normalization is to determine the optimum % 12-parameter affine transformation. Initially, the registration is % performed by matching the whole of the head (including the scalp) to % the template. Following this, the registration proceeded by only % matching the brains together, by appropriate weighting of the template % voxels. This is a completely automated procedure (that does not % require ``scalp editing'') that discounts the confounding effects of % skull and scalp differences. A Bayesian framework is used, such that % the registration searches for the solution that maximizes the a % posteriori probability of it being correct. i.e., it maximizes the % product of the likelihood function (derived from the residual squared % difference) and the prior function (which is based on the probability % of obtaining a particular set of zooms and shears). % % The affine registration is followed by estimating nonlinear deformations, % whereby the deformations are defined by a linear combination of three % dimensional discrete cosine transform (DCT) basis functions. % The parameters represent coefficients of the deformations in % three orthogonal directions. The matching involved simultaneously % minimizing the bending energies of the deformation fields and the % residual squared difference between the images and template(s). % % An option is provided for allowing weighting images (consisting of pixel % values between the range of zero to one) to be used for registering % abnormal or lesioned brains. These images should match the dimensions % of the image from which the parameters are estimated, and should contain % zeros corresponding to regions of abnormal tissue. % % % Uses % Primarily for stereotactic normalization to facilitate inter-subject % averaging and precise characterization of functional anatomy. It is % not necessary to spatially normalise the data (this is only a % pre-requisite for intersubject averaging or reporting in the % Talairach space). % % Inputs % The first input is the image which is to be normalised. This image % should be of the same modality (and MRI sequence etc) as the template % which is specified. The same spatial transformation can then be % applied to any other images of the same subject. These files should % conform to the SPM data format (See 'Data Format'). Many subjects can % be entered at once, and there is no restriction on image dimensions % or voxel size. % % Providing that the images have a correct ".mat" file associated with % them, which describes the spatial relationship between them, it is % possible to spatially normalise the images without having first % resliced them all into the same space. The ".mat" files are generated % by "spm_realign" or "spm_coregister". % % Default values of parameters pertaining to the extent and sampling of % the standard space can be changed, including the model or template % image[s]. % % % Outputs % All normalized *.img scans are written to the same subdirectory as % the original *.img, prefixed with a 'n' (i.e. n*.img). The details % of the transformations are displayed in the results window, and the % parameters are saved in the "*_sn.mat" file. % % %____________________________________________________________________________ % Refs: % K.J. Friston, J. Ashburner, C.D. Frith, J.-B. Poline, % J.D. Heather, and R.S.J. Frackowiak % Spatial Registration and Normalization of Images. % Human Brain Mapping 2:165-189(1995) % % J. Ashburner, P. Neelin, D.L. Collins, A.C. Evans and K. J. Friston % Incorporating Prior Knowledge into Image Registration. % NeuroImage 6:344-352 (1997) % % J. Ashburner and K. J. Friston % Nonlinear Spatial Normalization using Basis Functions. % Human Brain Mapping 7(4):in press (1999) %_______________________________________________________________________ % @(#)spm_normalise.m 2.10 John Ashburner 04/01/27 if nargin<2, error('Incorrect usage.'); end; if ischar(VF), VF = spm_vol(VF); end; if ischar(VG), VG = spm_vol(VG); end; if nargin<3, if nargout==0, [pth,nm,xt,vr] = fileparts(deblank(VF(1).fname)); matname = fullfile(pth,[nm '_sn.mat']); else, matname = ''; end; end; if nargin<4, VWG = ''; end; if nargin<5, VWF = ''; end; if ischar(VWG), VWG=spm_vol(VWG); end; if ischar(VWF), VWF=spm_vol(VWF); end; def_flags = struct('smosrc',8,'smoref',0,'regtype','mni',... 'cutoff',30,'nits',16,'reg',0.1,'graphics',1); if nargin < 6, flags = def_flags; else, fnms = fieldnames(def_flags); for i=1:length(fnms), if ~isfield(flags,fnms{i}), flags = setfield(flags,fnms{i},getfield(def_flags,fnms{i})); end; end; end; fprintf('Smoothing by %g & %gmm..\n', flags.smoref, flags.smosrc); VF1 = spm_smoothto8bit(VF,flags.smosrc); % Rescale images so that globals are better conditioned VF1.pinfo(1:2,:) = VF1.pinfo(1:2,:)/spm_global(VF1); for i=1:prod(size(VG)), VG1(i) = spm_smoothto8bit(VG(i),flags.smoref); VG1(i).pinfo(1:2,:) = VG1(i).pinfo(1:2,:)/spm_global(VG(i)); end; % Affine Normalisation %----------------------------------------------------------------------- fprintf('Coarse Affine Registration..\n'); aflags = struct('sep',max(flags.smoref,flags.smosrc), 'regtype',flags.regtype,... 'WG',[],'WF',[],'globnorm',0); M = eye(4); %spm_matrix(prms'); spm_chi2_plot('Init','Affine Registration','Mean squared difference','Iteration'); [M,scal] = spm_affreg(VG1, VF1, aflags, M); fprintf('Fine Affine Registration..\n'); aflags.WG = VWG; aflags.WF = VWF; aflags.sep = max(flags.smoref,flags.smosrc)/2; [M,scal] = spm_affreg(VG1, VF1, aflags, M,scal); Affine = inv(VG(1).mat\M*VF1(1).mat); spm_chi2_plot('Clear'); % Basis function Normalisation %----------------------------------------------------------------------- fov = VF1(1).dim(1:3).*sqrt(sum(VF1(1).mat(1:3,1:3).^2)); if any(fov<60), fprintf('Field of view too small for nonlinear registration\n'); Tr = []; elseif isfinite(flags.cutoff) & flags.nits & ~isinf(flags.reg), fprintf('3D CT Norm...\n'); Tr = snbasis(VG1,VF1,VWG,VWF,Affine,... max(flags.smoref,flags.smosrc),flags.cutoff,flags.nits,flags.reg); else, Tr = []; end; clear VF1 VG1 flags.version = '@(#)spm_normalise.m 2.10 04/01/27'; flags.date = date; params = struct('Affine',Affine, 'Tr',Tr, 'VF',VF, 'VG',VG, 'flags',flags); if flags.graphics, spm_normalise_disp(params,VF); end; % Remove dat fields before saving %----------------------------------------------------------------------- if isfield(VF,'dat'), VF = rmfield(VF,'dat'); end; if isfield(VG,'dat'), VG = rmfield(VG,'dat'); end; if ~isempty(matname), fprintf('Saving Parameters..\n'); save(matname,'Affine','Tr','VF','VG','flags'); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function Tr = snbasis(VG,VF,VWG,VWF,Affine,fwhm,cutoff,nits,reg) % 3D Basis Function Normalization % FORMAT Tr = snbasis(VG,VF,VWG,VWF,Affine,fwhm,cutoff,nits,reg) % VG - Template volumes (see spm_vol). % VF - Volume to normalize. % VWG - weighting Volume - for template. % VWF - weighting Volume - for object. % Affine - A 4x4 transformation (in voxel space). % fwhm - smoothness of images. % cutoff - frequency cutoff of basis functions. % nits - number of iterations. % reg - regularisation. % Tr - Discrete cosine transform of the warps in X, Y & Z. % % snbasis performs a spatial normalization based upon a 3D % discrete cosine transform. % %______________________________________________________________________ % @(#)spm_normalise.m 2.10 John Ashburner FIL (& Matthew Brett MRCCU) 04/01/27 fwhm = [fwhm 30]; % Number of basis functions for x, y & z %----------------------------------------------------------------------- tmp = sqrt(sum(VG(1).mat(1:3,1:3).^2)); k = max(round((VG(1).dim(1:3).*tmp)/cutoff),[1 1 1]); % Scaling is to improve stability. %----------------------------------------------------------------------- stabilise = 8; basX = spm_dctmtx(VG(1).dim(1),k(1))*stabilise; basY = spm_dctmtx(VG(1).dim(2),k(2))*stabilise; basZ = spm_dctmtx(VG(1).dim(3),k(3))*stabilise; dbasX = spm_dctmtx(VG(1).dim(1),k(1),'diff')*stabilise; dbasY = spm_dctmtx(VG(1).dim(2),k(2),'diff')*stabilise; dbasZ = spm_dctmtx(VG(1).dim(3),k(3),'diff')*stabilise; vx1 = sqrt(sum(VG(1).mat(1:3,1:3).^2)); vx2 = vx1; kx = (pi*((1:k(1))'-1)/VG(1).dim(1)/vx1(1)).^2; ox=ones(k(1),1); ky = (pi*((1:k(2))'-1)/VG(1).dim(2)/vx1(2)).^2; oy=ones(k(2),1); kz = (pi*((1:k(3))'-1)/VG(1).dim(3)/vx1(3)).^2; oz=ones(k(3),1); if 1, % BENDING ENERGY REGULARIZATION % Estimate a suitable sparse diagonal inverse covariance matrix for % the parameters (IC0). %----------------------------------------------------------------------- IC0 = (1*kron(kz.^2,kron(ky.^0,kx.^0)) +... 1*kron(kz.^0,kron(ky.^2,kx.^0)) +... 1*kron(kz.^0,kron(ky.^0,kx.^2)) +... 2*kron(kz.^1,kron(ky.^1,kx.^0)) +... 2*kron(kz.^1,kron(ky.^0,kx.^1)) +... 2*kron(kz.^0,kron(ky.^1,kx.^1)) ); IC0 = reg*IC0*stabilise^6; IC0 = [IC0*vx2(1)^4 ; IC0*vx2(2)^4 ; IC0*vx2(3)^4 ; zeros(prod(size(VG))*4,1)]; IC0 = sparse(1:length(IC0),1:length(IC0),IC0,length(IC0),length(IC0)); else, % MEMBRANE ENERGY (LAPLACIAN) REGULARIZATION %----------------------------------------------------------------------- IC0 = kron(kron(oz,oy),kx) + kron(kron(oz,ky),ox) + kron(kron(kz,oy),ox); IC0 = reg*IC0*stabilise^6; IC0 = [IC0*vx2(1)^2 ; IC0*vx2(2)^2 ; IC0*vx2(3)^2 ; zeros(prod(size(VG))*4,1)]; IC0 = sparse(1:length(IC0),1:length(IC0),IC0,length(IC0),length(IC0)); end; % Generate starting estimates. %----------------------------------------------------------------------- s1 = 3*prod(k); s2 = s1 + prod(size(VG))*4; T = zeros(s2,1); T(s1+(1:4:prod(size(VG))*4)) = 1; pVar = Inf; for iter=1:nits, fprintf(' iteration %2d: ', iter); [Alpha,Beta,Var,fw] = spm_brainwarp(VG,VF,Affine,basX,basY,basZ,dbasX,dbasY,dbasZ,T,fwhm,VWG, VWF); if Var>pVar, scal = pVar/Var ; Var = pVar; else, scal = 1; end; pVar = Var; T = (Alpha + IC0*scal)\(Alpha*T + Beta); fwhm(2) = min([fw fwhm(2)]); fprintf(' FWHM = %6.4g Var = %g\n', fw,Var); end; % Values of the 3D-DCT - for some bizarre reason, this needs to be done % as two seperate statements in Matlab 6.5... %----------------------------------------------------------------------- Tr = reshape(T(1:s1),[k 3]); drawnow; Tr = Tr*stabilise.^3; return;
github
lcnhappe/happe-master
spm_create_vol.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/spm2/spm_create_vol.m
11,434
utf_8
f18edbf50d6186af1c5108b814690894
function V = spm_create_vol(V,varargin) % Create an image file. % FORMAT Vo = spm_create_vol(Vi,['noopen']) % Vi - data structure containing image information. % - see spm_vol for a description. % 'noopen' - optional flag to say "don't open/create the image file". % Vo - data structure after modification for writing. %_______________________________________________________________________ % @(#)spm_create_vol.m 2.14 John Ashburner 03/07/31 for i=1:prod(size(V)), if nargin>1, v = create_vol(V(i),varargin{:}); else, v = create_vol(V(i)); end; f = fieldnames(v); for j=1:size(f,1), %eval(['V(i).' f{j} ' = v.' f{j} ';']); V = setfield(V,{i},f{j},getfield(v,f{j})); end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function V = create_vol(V,varargin) if ~isfield(V,'n') | isempty(V.n), V.n = 1; end; if ~isfield(V,'descrip') | isempty(V.descrip), V.descrip = 'SPM2 compatible'; end; V.private = struct('hdr',[]); % Orientation etc... M = V.mat; if spm_flip_analyze_images, M = diag([-1 1 1 1])*M; end; vx = sqrt(sum(M(1:3,1:3).^2)); if det(M(1:3,1:3))<0, vx(1) = -vx(1); end; origin = M\[0 0 0 1]'; origin = round(origin(1:3)); [pth,nam,ext] = fileparts(V.fname); fname = fullfile(pth,[nam, '.hdr']); try, [hdr,swapped] = spm_read_hdr(fname); catch, warning(['Could not read "' fname '"']); swapped = 0; hdr = []; end; if ~isempty(hdr) & (hdr.dime.dim(5)>1 | V.n>1), % cannot simply overwrite the header hdr.dime.dim(5) = max(V.n,hdr.dime.dim(5)); if any(V.dim(1:3) ~= hdr.dime.dim(2:4)) error('Incompatible image dimensions'); end; if sum((vx-hdr.dime.pixdim(2:4)).^2)>1e-6, error('Incompatible voxel sizes'); end; V.dim(4) = spm_type(spm_type(hdr.dime.datatype)); mach = 'native'; if swapped, V.dim(4) = V.dim(4)*256; if spm_platform('bigend'), mach = 'ieee-le'; else, mach = 'ieee-be'; end; end; if isfinite(hdr.dime.funused1) & hdr.dime.funused1, scal = hdr.dime.funused1; if isfinite(hdr.dime.funused2), dcoff = hdr.dime.funused2; else, dcoff = 0; end; else if hdr.dime.glmax-hdr.dime.glmin & hdr.dime.cal_max-hdr.dime.cal_min, scal = (hdr.dime.cal_max-hdr.dime.cal_min)/(hdr.dime.glmax-hdr.dime.glmin); dcoff = hdr.dime.cal_min - scal*hdr.dime.glmin; else, scal = 1; dcoff = 0; warning(['Assuming a scalefactor of 1 for "' V.fname '".']); end; end; V.pinfo(1:2) = [scal dcoff]'; V.private.hdr = hdr; else, V.private.hdr = create_defaults; swapped = spm_type(V.dim(4),'swapped'); dt = spm_type(spm_type(V.dim(4))); if any(dt == [128+2 128+4 128+8]), % Convert to a form that Analyze will support dt = dt - 128; end; V.dim(4) = dt; mach = 'native'; if swapped, V.dim(4) = V.dim(4)*256; if spm_platform('bigend'), mach = 'ieee-le'; else, mach = 'ieee-be'; end; end; V.private.hdr.dime.datatype = dt; V.private.hdr.dime.bitpix = spm_type(dt,'bits'); if spm_type(dt,'intt'), V.private.hdr.dime.glmax = spm_type(dt,'maxval'); V.private.hdr.dime.glmin = spm_type(dt,'minval'); if 0, % Allow DC offset V.private.hdr.dime.cal_max = max(V.private.hdr.dime.glmax*V.pinfo(1,:) + V.pinfo(2,:)); V.private.hdr.dime.cal_min = min(V.private.hdr.dime.glmin*V.pinfo(1,:) + V.pinfo(2,:)); V.private.hdr.dime.funused1 = 0; scal = (V.private.hdr.dime.cal_max - V.private.hdr.dime.cal_min)/... (V.private.hdr.dime.glmax - V.private.hdr.dime.glmin); dcoff = V.private.hdr.dime.cal_min - V.private.hdr.dime.glmin*scal; V.pinfo = [scal dcoff 0]'; else, % Don't allow DC offset cal_max = max(V.private.hdr.dime.glmax*V.pinfo(1,:) + V.pinfo(2,:)); cal_min = min(V.private.hdr.dime.glmin*V.pinfo(1,:) + V.pinfo(2,:)); V.private.hdr.dime.funused1 = cal_max/V.private.hdr.dime.glmax; if V.private.hdr.dime.glmin, V.private.hdr.dime.funused1 = max(V.private.hdr.dime.funused1,... cal_min/V.private.hdr.dime.glmin); end; V.private.hdr.dime.cal_max = V.private.hdr.dime.glmax*V.private.hdr.dime.funused1; V.private.hdr.dime.cal_min = V.private.hdr.dime.glmin*V.private.hdr.dime.funused1; V.pinfo = [V.private.hdr.dime.funused1 0 0]'; end; else, V.private.hdr.dime.glmax = 1; V.private.hdr.dime.glmin = 0; V.private.hdr.dime.cal_max = 1; V.private.hdr.dime.cal_min = 0; V.private.hdr.dime.funused1 = 1; end; V.private.hdr.dime.pixdim(2:4) = vx; V.private.hdr.dime.dim(2:4) = V.dim(1:3); V.private.hdr.dime.dim(5) = V.n; V.private.hdr.hist.origin(1:3) = origin; d = 1:min([length(V.descrip) 79]); V.private.hdr.hist.descrip = char(zeros(1,80)); V.private.hdr.hist.descrip(d) = V.descrip(d); V.private.hdr.hk.db_name = char(zeros(1,18)); [pth,nam,ext] = fileparts(V.fname); d = 1:min([length(nam) 17]); V.private.hdr.hk.db_name(d) = nam(d); end; V.pinfo(3) = prod(V.private.hdr.dime.dim(2:4))*V.private.hdr.dime.bitpix/8*(V.n-1); fid = fopen(fname,'w',mach); if (fid == -1), error(['Error opening ' fname '. Check that you have write permission.']); end; write_hk(fid,V.private.hdr.hk); write_dime(fid,V.private.hdr.dime); write_hist(fid,V.private.hdr.hist); fclose(fid); fname = fullfile(pth,[nam, '.mat']); off = -vx'.*origin; mt = [vx(1) 0 0 off(1) ; 0 vx(2) 0 off(2) ; 0 0 vx(3) off(3) ; 0 0 0 1]; if spm_flip_analyze_images, mt = diag([-1 1 1 1])*mt; end; if sum((V.mat(:) - mt(:)).*(V.mat(:) - mt(:))) > eps*eps*12 | exist(fname)==2, if exist(fname)==2, clear mat str = load(fname); if isfield(str,'mat'), mat = str.mat; elseif isfield(str,'M'), mat = str.M; if spm_flip_analyze_images, for i=1:size(mat,3), mat(:,:,i) = diag([-1 1 1 1])*mat(:,:,i); end; end; end; mat(:,:,V.n) = V.mat; mat = fill_empty(mat,mt); M = mat(:,:,1); if spm_flip_analyze_images, M = diag([-1 1 1 1])*M; end; try, save(fname,'mat','M','-append'); catch, % Mat-file was probably Matlab 4 save(fname,'mat','M'); end; else, clear mat mat(:,:,V.n) = V.mat; mat = fill_empty(mat,mt); M = mat(:,:,1); if spm_flip_analyze_images, M = diag([-1 1 1 1])*M; end; save(fname,'mat','M'); end; end; if nargin==1 | ~strcmp(varargin{1},'noopen'), fname = fullfile(pth,[nam, '.img']); V.private.fid = fopen(fname,'r+',mach); if (V.private.fid == -1), V.private.fid = fopen(fname,'w',mach); if (V.private.fid == -1), error(['Error opening ' fname '. Check that you have write permission.']); end; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function Mo = fill_empty(Mo,Mfill) todo = []; for i=1:size(Mo,3), if ~any(any(Mo(:,:,i))), todo = [todo i]; end; end; if ~isempty(todo), for i=1:length(todo), Mo(:,:,todo(i)) = Mfill; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function write_hk(fid,hk) % write (struct) header_key %----------------------------------------------------------------------- fseek(fid,0,'bof'); fwrite(fid,hk.sizeof_hdr, 'int32'); fwrite(fid,hk.data_type, 'char' ); fwrite(fid,hk.db_name, 'char' ); fwrite(fid,hk.extents, 'int32'); fwrite(fid,hk.session_error,'int16'); fwrite(fid,hk.regular, 'char' ); if fwrite(fid,hk.hkey_un0, 'char' )~= 1, error(['Error writing ' fopen(fid) '. Check your disk space.']); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function write_dime(fid,dime) % write (struct) image_dimension %----------------------------------------------------------------------- fseek(fid,40,'bof'); fwrite(fid,dime.dim, 'int16'); fwrite(fid,dime.vox_units, 'uchar' ); fwrite(fid,dime.cal_units, 'uchar' ); fwrite(fid,dime.unused1, 'int16' ); fwrite(fid,dime.datatype, 'int16'); fwrite(fid,dime.bitpix, 'int16'); fwrite(fid,dime.dim_un0, 'int16'); fwrite(fid,dime.pixdim, 'float'); fwrite(fid,dime.vox_offset, 'float'); fwrite(fid,dime.funused1, 'float'); fwrite(fid,dime.funused2, 'float'); fwrite(fid,dime.funused2, 'float'); fwrite(fid,dime.cal_max, 'float'); fwrite(fid,dime.cal_min, 'float'); fwrite(fid,dime.compressed, 'int32'); fwrite(fid,dime.verified, 'int32'); fwrite(fid,dime.glmax, 'int32'); if fwrite(fid,dime.glmin, 'int32')~=1, error(['Error writing ' fopen(fid) '. Check your disk space.']); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function write_hist(fid,hist) % write (struct) data_history %----------------------------------------------------------------------- fseek(fid,148,'bof'); fwrite(fid,hist.descrip, 'uchar'); fwrite(fid,hist.aux_file, 'uchar'); fwrite(fid,hist.orient, 'uchar'); fwrite(fid,hist.origin, 'int16'); fwrite(fid,hist.generated, 'uchar'); fwrite(fid,hist.scannum, 'uchar'); fwrite(fid,hist.patient_id, 'uchar'); fwrite(fid,hist.exp_date, 'uchar'); fwrite(fid,hist.exp_time, 'uchar'); fwrite(fid,hist.hist_un0, 'uchar'); fwrite(fid,hist.views, 'int32'); fwrite(fid,hist.vols_added, 'int32'); fwrite(fid,hist.start_field,'int32'); fwrite(fid,hist.field_skip, 'int32'); fwrite(fid,hist.omax, 'int32'); fwrite(fid,hist.omin, 'int32'); fwrite(fid,hist.smax, 'int32'); if fwrite(fid,hist.smin, 'int32')~=1, error(['Error writing ' fopen(fid) '. Check your disk space.']); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function hdr = create_defaults hk.sizeof_hdr = 348; hk.data_type = ['dsr ' 0]; hk.db_name = char(zeros(1,18)); hk.extents = 0; hk.session_error= 0; hk.regular = 'r'; hk.hkey_un0 = 0; dime.dim = [4 0 0 0 1 0 0 0]; dime.vox_units = ['mm ' 0]; dime.cal_units = char(zeros(1,8)); dime.unused1 = 0; dime.datatype = -1; dime.bitpix = 0; dime.dim_un0 = 0; dime.pixdim = [0 1 1 1 1 0 0 0]; dime.vox_offset = 0; dime.funused1 = 1; dime.funused2 = 0; dime.funused3 = 0; dime.cal_max = 1; dime.cal_min = 0; dime.compressed = 0; dime.verified = 0; dime.glmax = 1; dime.glmin = 0; hist.descrip = char(zeros(1,80)); hist.descrip(1:length('SPM2 compatible')) = 'SPM2 compatible'; hist.aux_file = char(zeros(1,24)); hist.orient = char(0); hist.origin = [0 0 0 0 0]; hist.generated = char(zeros(1,10)); hist.scannum = char(zeros(1,10)); hist.patient_id = char(zeros(1,10)); hist.exp_date = char(zeros(1,10)); hist.exp_time = char(zeros(1,10)); hist.hist_un0 = char(zeros(1,3)); hist.generated(1:5) = 'today'; hist.views = 0; hist.vols_added = 0; hist.start_field= 0; hist.field_skip = 0; hist.omax = 0; hist.omin = 0; hist.smax = 0; hist.smin = 0; hdr.hk = hk; hdr.dime = dime; hdr.hist = hist; return; %_______________________________________________________________________ %_______________________________________________________________________
github
lcnhappe/happe-master
spm_segment.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/spm2/spm_segment.m
23,496
utf_8
9a46c30048feeec44530aa433c773546
function VO = spm_segment(VF,PG,flags) % Segment an MR image into Gray, White & CSF. % % FORMAT VO = spm_segment(PF,PG,flags) % PF - name(s) of image(s) to segment (must have same dimensions). % PG - name(s) of template image(s) for realignment. % - or a 4x4 transformation matrix which maps from the image to % the set of templates. % flags - a structure normally based on defaults.segment % VO - optional output volume % % The algorithm is four step: % % 1) Determine the affine transform which best matches the image with a % template image. If the name of more than one image is passed, then % the first image is used in this step. This step is not performed if % no template images are specified. % % 2) Perform Cluster Analysis with a modified Mixture Model and a-priori % information about the likelihoods of each voxel being one of a % number of different tissue types. If more than one image is passed, % then they they are all assumed to be in register, and the voxel % values are fitted to multi-normal distributions. % % 3) Perform morphometric operations on the grey and white partitions % in order to more accurately identify brain tissue. This is then used % to clean up the grey and white matter segments. % % 4) If no output argument is specified, then the segmented images are % written to disk. The names of these images have "_seg1", "_seg2" % & "_seg3" appended to the name of the first image passed. % %_______________________________________________________________________ % Refs: % % Ashburner J & Friston KJ (1997) Multimodal Image Coregistration and % Partitioning - a Unified Framework. NeuroImage 6:209-217 % %_______________________________________________________________________ % % The template image, and a-priori likelihood images are modified % versions of those kindly supplied by Alan Evans, MNI, Canada % (ICBM, NIH P-20 project, Principal Investigator John Mazziotta). %_______________________________________________________________________ % @(#)spm_segment.m 2.28a John Ashburner 04/04/01 % Create some suitable default values %----------------------------------------------------------------------- def_flags.estimate.priors = str2mat(... fullfile(spm('Dir'),'apriori','gray.mnc'),... fullfile(spm('Dir'),'apriori','white.mnc'),... fullfile(spm('Dir'),'apriori','csf.mnc')); def_flags.estimate.reg = 0.01; def_flags.estimate.cutoff = 30; def_flags.estimate.samp = 3; def_flags.estimate.bb = [[-88 88]' [-122 86]' [-60 95]']; def_flags.estimate.affreg.smosrc = 8; def_flags.estimate.affreg.regtype = 'mni'; def_flags.estimate.affreg.weight = ''; def_flags.write.cleanup = 1; def_flags.write.wrt_cor = 1; def_flags.graphics = 1; if nargin<3, flags = def_flags; end; if ~isfield(flags,'estimate'), flags.estimate = def_flags.estimate; end; if ~isfield(flags.estimate,'priors'), flags.estimate.priors = def_flags.estimate.priors; end; if ~isfield(flags.estimate,'reg'), flags.estimate.reg = def_flags.estimate.reg; end; if ~isfield(flags.estimate,'cutoff'), flags.estimate.cutoff = def_flags.estimate.cutoff; end; if ~isfield(flags.estimate,'samp'), flags.estimate.samp = def_flags.estimate.samp; end; if ~isfield(flags.estimate,'bb'), flags.estimate.bb = def_flags.estimate.bb; end; if ~isfield(flags.estimate,'affreg'), flags.estimate.affreg = def_flags.estimate.affreg; end; if ~isfield(flags.estimate.affreg,'smosrc'), flags.estimate.affreg.smosrc = def_flags.estimate.affreg.smosrc; end; if ~isfield(flags.estimate.affreg,'regtype'), flags.estimate.affreg.regtype = def_flags.estimate.affreg.regtype; end; if ~isfield(flags.estimate.affreg,'weight'), flags.estimate.affreg.weight = def_flags.estimate.affreg.weight; end; if ~isfield(flags,'write'), flags.write = def_flags.write; end; if ~isfield(flags.write,'cleanup'), flags.write.cleanup = def_flags.write.cleanup; end; if ~isfield(flags.write,'wrt_cor'), flags.write.wrt_cor = def_flags.write.wrt_cor; end; if ~isfield(flags,'graphics'), flags.graphics = def_flags.graphics; end; %----------------------------------------------------------------------- if ischar(VF), VF= spm_vol(VF); end; SP = init_sp(flags.estimate,VF,PG); [x1,x2,x3] = get_sampling(SP.MM,VF,flags.estimate.samp,flags.estimate.bb); BP = init_bp(VF, flags.estimate.cutoff, flags.estimate.reg); CP = init_cp(VF,x3); sums = zeros(8,1); for pp=1:length(x3), [raw,msk] = get_raw(VF,x1,x2,x3(pp)); s = get_sp(SP,x1,x2,x3(pp)); CP = update_cp_est(CP,s,raw,msk,pp); sums = sums + reshape(sum(sum(s,1),2),8,1); end; sums = sums/sum(sums); CP = shake_cp(CP); [CP,BP,SP] = run_segment(CP,BP,SP,VF,sums,x1,x2,x3); %save segmentation_results.mat CP BP SP VF sums [g,w,c] = get_gwc(VF,BP,SP,CP,sums,flags.write.wrt_cor); if flags.write.cleanup, [g,w,c] = clean_gwc(g,w,c); end; % Create the segmented images. %----------------------------------------------------------------------- %offs = cumsum(repmat(prod(VF(1).dim(1:2)),1,VF(1).dim(3)))-prod(VF(1).dim(1:2)); %pinfo = [repmat([1/255 0]',1,VF(1).dim(3)) ; offs]; [pth,nm,xt] = fileparts(deblank(VF(1).fname)); for j=1:3, tmp = fullfile(pth,[nm '_seg' num2str(j) xt]); VO(j) = struct(... 'fname',tmp,... 'dim', [VF(1).dim(1:3) 2],... 'mat', VF(1).mat,... 'pinfo', [1/255 0 0]',... 'descrip','Segmented image'); end; if nargout==0, VO = spm_create_vol(VO); spm_progress_bar('Init',VF(1).dim(3),'Writing Segmented','planes completed'); for pp=1:VF(1).dim(3), VO(1) = spm_write_plane(VO(1),double(g(:,:,pp))/255,pp); VO(2) = spm_write_plane(VO(2),double(w(:,:,pp))/255,pp); VO(3) = spm_write_plane(VO(3),double(c(:,:,pp))/255,pp); spm_progress_bar('Set',pp); end; VO = spm_close_vol(VO); spm_progress_bar('Clear'); end; VO(1).dat = g; VO(1).pinfo = VO(1).pinfo(1:2,:); VO(2).dat = w; VO(2).pinfo = VO(2).pinfo(1:2,:); VO(3).dat = c; VO(3).pinfo = VO(3).pinfo(1:2,:); if flags.graphics, display_graphics(VF,VO,CP.mn,CP.cv,CP.mg); end; return; %======================================================================= %======================================================================= function [y1,y2,y3] = affine_transform(x1,x2,x3,M) y1 = M(1,1)*x1 + M(1,2)*x2 + M(1,3)*x3 + M(1,4); y2 = M(2,1)*x1 + M(2,2)*x2 + M(2,3)*x3 + M(2,4); y3 = M(3,1)*x1 + M(3,2)*x2 + M(3,3)*x3 + M(3,4); return; %======================================================================= %======================================================================= function display_graphics(VF,VS,mn,cv,mg) % Do the graphics nb = 3; spm_figure('Clear','Graphics'); fg = spm_figure('FindWin','Graphics'); if ~isempty(fg), % Show some text %----------------------------------------------------------------------- ax = axes('Position',[0.05 0.8 0.9 0.2],'Visible','off','Parent',fg); text(0.5,0.80, 'Segmentation','FontSize',16,'FontWeight','Bold',... 'HorizontalAlignment','center','Parent',ax); text(0,0.65, ['Image: ' spm_str_manip(VF(1).fname,'k50d')],... 'FontSize',14,'FontWeight','Bold','Parent',ax); text(0,0.40, 'Means:','FontSize',12,'FontWeight','Bold','Parent',ax); text(0,0.30, 'Std devs:' ,'FontSize',12,'FontWeight','Bold','Parent',ax); text(0,0.20, 'N vox:','FontSize',12,'FontWeight','Bold','Parent',ax); for j=1:nb, text((j+0.5)/(nb+1),0.40, num2str(mn(1,j)),... 'FontSize',12,'FontWeight','Bold',... 'HorizontalAlignment','center','Parent',ax); text((j+0.5)/(nb+1),0.30, num2str(sqrt(cv(1,1,j))),... 'FontSize',12,'FontWeight','Bold',... 'HorizontalAlignment','center','Parent',ax); text((j+0.5)/(nb+1),0.20, num2str(mg(1,j)/sum(mg(1,:))),... 'FontSize',12,'FontWeight','Bold',... 'HorizontalAlignment','center','Parent',ax); end; if length(VF) > 1, text(0,0.10,... 'Note: only means and variances for the first image are shown',... 'Parent',ax,'FontSize',12); end; M1 = VS(1).mat; M2 = VF(1).mat; for i=1:5, M = spm_matrix([0 0 i*VF(1).dim(3)/6]); img = spm_slice_vol(VF(1),M,VF(1).dim(1:2),1); img(1,1) = eps; ax = axes('Position',... [0.05 0.75*(1-i/5)+0.05 0.9/(nb+1) 0.75/5],... 'Visible','off','Parent',fg); imagesc(rot90(img), 'Parent', ax); set(ax,'Visible','off','DataAspectRatio',[1 1 1]); for j=1:3, img = spm_slice_vol(VS(j),M2\M1*M,VF(1).dim(1:2),1); ax = axes('Position',... [0.05+j*0.9/(nb+1) 0.75*(1-i/5)+0.05 0.9/(nb+1) 0.75/5],... 'Visible','off','Parent',fg); image(rot90(img*64), 'Parent', ax); set(ax,'Visible','off','DataAspectRatio',[1 1 1]); end; end; spm_print; drawnow; end; return; %======================================================================= %======================================================================= function M = get_affine_mapping(VF,VG,aflags) if ~isempty(VG) & ischar(VG), VG = spm_vol(VG); end; if ~isempty(VG) & isstruct(VG), % Affine registration so that a priori images match the image to % be segmented. %----------------------------------------------------------------------- VFS = spm_smoothto8bit(VF(1),aflags.smosrc); % Scale all images approximately equally % --------------------------------------------------------------- for i=1:length(VG), VG(i).pinfo(1:2,:) = VG(i).pinfo(1:2,:)/spm_global(VG(i)); end; VFS(1).pinfo(1:2,:) = VFS(1).pinfo(1:2,:)/spm_global(VFS(1)); spm_chi2_plot('Init','Affine Registration','Mean squared difference','Iteration'); flags = struct('sep',aflags.smosrc, 'regtype',aflags.regtype,'WG',[],'globnorm',0,'debug',0); M = eye(4); [M,scal] = spm_affreg(VG, VFS, flags, M); if ~isempty(aflags.weight), flags.WG = spm_vol(aflags.weight); end; flags.sep = aflags.smosrc/2; M = spm_affreg(VG, VFS, flags, M,scal); spm_chi2_plot('Clear'); elseif all(size(VG) == [4 4]) % Assume that second argument is a matrix that will do the job %----------------------------------------------------------------------- M = VG; else % Assume that image is normalized %----------------------------------------------------------------------- M = eye(4); end return; %======================================================================= %======================================================================= function [x1,x2,x3] = get_sampling(MM,VF,samp,bb1) % Voxels to sample during the cluster analysis %----------------------------------------------------------------------- % A bounding box for the brain in Talairach space. %bb = [ [-88 88]' [-122 86]' [-60 95]']; %c = [bb(1,1) bb(1,2) bb(1,3) 1 % bb(1,1) bb(1,2) bb(2,3) 1 % bb(1,1) bb(2,2) bb(1,3) 1 % bb(1,1) bb(2,2) bb(2,3) 1 % bb(2,1) bb(1,2) bb(1,3) 1 % bb(2,1) bb(1,2) bb(2,3) 1 % bb(2,1) bb(2,2) bb(1,3) 1 % bb(2,1) bb(2,2) bb(2,3) 1]'; %tc = MM\c; %tc = tc(1:3,:)'; %mx = max(tc); %mn = min(tc); %bb = [mn ; mx]; %vx = sqrt(sum(VF(1).mat(1:3,1:3).^2)); %samp = round(max(abs([4 4 4]./vx), [1 1 1])); %x1 = bb(1,1):samp(1):bb(2,1); %x2 = bb(1,2):samp(2):bb(2,2); %x3 = bb(1,3):samp(3):bb(2,3); %return; % A bounding box for the brain in Talairach space. if nargin<4, bb1 = [ [-88 88]' [-122 86]' [-60 95]']; end; % A mapping from a unit radius sphere to a hyper-ellipse % that is just enclosed by the bounding box in Talairach % space. M0 = [diag(diff(bb1)/2) mean(bb1)';[0 0 0 1]]; % The mapping from voxels to Talairach space is MM, % so the ellipse in the space of the image becomes: M0 = MM\M0; % So to work out the bounding box in the space of the % image that just encloses the hyper-ellipse. tmp = M0(1:3,1:3); tmp = diag(tmp*tmp'/diag(sqrt(diag(tmp*tmp')))); bb = round([M0(1:3,4)-tmp M0(1:3,4)+tmp])'; bb = min(max(bb,[1 1 1 ; 1 1 1]),[VF(1).dim(1:3) ; VF(1).dim(1:3)]); % Want to sample about every 3mm tmp = sqrt(sum(VF(1).mat(1:3,1:3).^2))'; samp = round(max(abs(tmp.^(-1)*samp), [1 1 1]')); x1 = bb(1,1):samp(1):bb(2,1); x2 = bb(1,2):samp(2):bb(2,2); x3 = bb(1,3):samp(3):bb(2,3); return; %======================================================================= %======================================================================= function [CP,BP,SP] = run_segment(CP,BP,SP,VF,sums,x1,x2,x3) oll = -Inf; spm_chi2_plot('Init','Segmenting','Log-likelihood','Iteration #'); for iter = 1:64, ll= 0; for pp = 1:length(x3), % Loop over planes bf = get_bp(BP,x1,x2,x3(pp)); [raw,msk] = get_raw(VF,x1,x2,x3(pp)); s = get_sp(SP,x1,x2,x3(pp)); cor = bf.*raw; [P,ll0] = get_p(cor,msk,s,sums,CP,bf); ll = ll + ll0; CP = update_cp_est(CP,P,cor,msk,pp); BP = update_bp_est(BP,P,cor,CP,msk,x1,x2,x3(pp)); end; BP = update_bp(BP); if iter>1, spm_chi2_plot('Set',ll); end; %fprintf('\t%g\n', ll); % Stopping criterion %----------------------------------------------------------------------- if iter == 2, ll2 = ll; elseif iter > 2 & abs((ll-oll)/(ll-ll2)) < 0.0001 break; end; oll = ll; end; spm_chi2_plot('Clear'); return; %======================================================================= %======================================================================= function BP = init_bp(VF,co,reg) m = length(VF); tmp = sqrt(sum(VF(1).mat(1:3,1:3).^2)); BP.nbas = max(round((VF(1).dim(1:3).*tmp)/co),[1 1 1]); BP.B1 = spm_dctmtx(VF(1).dim(1),BP.nbas(1)); BP.B2 = spm_dctmtx(VF(1).dim(2),BP.nbas(2)); BP.B3 = spm_dctmtx(VF(1).dim(3),BP.nbas(3)); nbas = BP.nbas; if prod(BP.nbas)>1, % Set up a priori covariance matrix vx = sqrt(sum(VF(1).mat(1:3,1:3).^2)); kx=(pi*((1:nbas(1))'-1)*pi/vx(1)/VF(1).dim(1)*10).^2; ky=(pi*((1:nbas(2))'-1)*pi/vx(2)/VF(1).dim(2)*10).^2; kz=(pi*((1:nbas(3))'-1)*pi/vx(3)/VF(1).dim(3)*10).^2; % Cost function based on sum of squares of 4th derivatives IC0 = (1*kron(kz.^4,kron(ky.^0,kx.^0)) +... 1*kron(kz.^0,kron(ky.^4,kx.^0)) +... 1*kron(kz.^0,kron(ky.^0,kx.^4)) +... 4*kron(kz.^3,kron(ky.^1,kx.^0)) +... 4*kron(kz.^3,kron(ky.^0,kx.^1)) +... 4*kron(kz.^1,kron(ky.^3,kx.^0)) +... 4*kron(kz.^0,kron(ky.^3,kx.^1)) +... 4*kron(kz.^1,kron(ky.^0,kx.^3)) +... 4*kron(kz.^0,kron(ky.^1,kx.^3)) +... 6*kron(kz.^2,kron(ky.^2,kx.^0)) +... 6*kron(kz.^2,kron(ky.^0,kx.^2)) +... 6*kron(kz.^0,kron(ky.^2,kx.^2)) +... 12*kron(kz.^2,kron(ky.^1,kx.^1)) +... 12*kron(kz.^1,kron(ky.^2,kx.^1)) +... 12*kron(kz.^1,kron(ky.^1,kx.^2)) )*reg; %IC0(1) = max(IC0); BP.IC0 = diag(IC0(2:end)); % Initial estimate for intensity modulation field BP.T = zeros(nbas(1),nbas(2),nbas(3),length(VF)); %----------------------------------------------------------------------- else BP.T = zeros([1 1 1 length(VF)]); BP.IC0 = []; end; BP.Alpha = zeros(prod(BP.nbas(1:3)),prod(BP.nbas(1:3)),m); BP.Beta = zeros(prod(BP.nbas(1:3)),m); return; %======================================================================= %======================================================================= function BP = update_bp_est(BP,p,cor,CP,msk,x1,x2,x3) if prod(BP.nbas)<=1, return; end; B1 = BP.B1(x1,:); B2 = BP.B2(x2,:); B3 = BP.B3(x3,:); for j=1:size(BP.Alpha,3), cr = cor(:,:,j); w1 = zeros(size(cr)); w2 = zeros(size(cr)); for i=[1 2 3 4 5 6 7 8], tmp = p(:,:,i)*CP.cv(j,j,i)^(-1); w1 = w1 + tmp.*(CP.mn(j,i) - cr); w2 = w2 + tmp; end; wt1 = 1 + cr.*w1; wt2 = cr.*(cr.*w2 - w1); wt1(~msk) = 0; wt2(~msk) = 0; BP.Beta(:,j) = BP.Beta(:,j) + kron(B3',spm_krutil(wt1,B1,B2,0)); BP.Alpha(:,:,j) = BP.Alpha(:,:,j) + kron(B3'*B3,spm_krutil(wt2,B1,B2,1)); end; return; %======================================================================= %======================================================================= function BP = update_bp(BP) if prod(BP.nbas)<=1, return; end; for j=1:size(BP.Alpha,3), x = BP.T(:,:,:,j); x = x(:); x = x(2:end); Alpha = BP.Alpha(2:end,2:end,j); Beta = BP.Beta(2:end,j); x = (Alpha + BP.IC0)\(Alpha*x + Beta); BP.T(:,:,:,j) = reshape([0 ; x],BP.nbas(1:3)); BP.Alpha = zeros(size(BP.Alpha)); BP.Beta = zeros(size(BP.Beta)); end; return; %======================================================================= %======================================================================= function bf = get_bp(BP,x1,x2,x3) bf = ones(length(x1),length(x2),size(BP.Alpha,3)); if prod(BP.nbas)<=1, return; end; B1 = BP.B1(x1,:); B2 = BP.B2(x2,:); B3 = BP.B3(x3,:); for i=1:size(BP.Alpha,3), t = reshape(reshape(BP.T(:,:,:,i),... BP.nbas(1)*BP.nbas(2),BP.nbas(3))*B3', BP.nbas(1), BP.nbas(2)); bf(:,:,i) = exp(B1*t*B2'); end; return; %======================================================================= %======================================================================= function [dat,msk] = get_raw(VF,x1,x2,x3) [X1,X2,X3] = ndgrid(x1,x2,x3); for i=1:length(VF), [Y1,Y2,Y3] = affine_transform(X1,X2,X3,VF(i).mat\VF(1).mat); dat(:,:,i) = spm_sample_vol(VF(i),Y1,Y2,Y3,1); end; msk = all(dat,3) & all(isfinite(double(dat)),3); return; %======================================================================= %======================================================================= function CP = init_cp(VF,x3) n = 8; m = length(VF); p = length(x3); CP.mom0 = zeros(1,n,p)+eps; CP.mom1 = zeros(m,n,p); CP.mom2 = zeros(m,m,n,p)+eps; % Occasionally the dynamic range of the images is such that many voxels % all have the same intensity. Adding cv0 is an attempt to improve the % stability of the algorithm if this occurs. The value 0.083 was obtained % from var(rand(1000000,1)). It prbably isn't the best way of doing % things, but it appears to work. CP.cv0 = zeros(m,m); for i=1:m, if spm_type(VF(i).dim(4),'intt'), CP.cv0(i,i)=0.083*mean(VF(i).pinfo(1,:)); end; end; return; %======================================================================= %======================================================================= function CP = shake_cp(CP) CP.mom0(:,5,:) = CP.mom0(:,1,:); CP.mom0(:,6,:) = CP.mom0(:,2,:); CP.mom0(:,7,:) = CP.mom0(:,3,:); CP.mom1(:,5,:) = CP.mom1(:,1,:); CP.mom1(:,6,:) = CP.mom1(:,2,:); CP.mom1(:,7,:) = CP.mom1(:,3,:); CP.mom1(:,8,:) = 0; CP.mom2(:,:,5,:) = CP.mom2(:,:,1,:); CP.mom2(:,:,6,:) = CP.mom2(:,:,2,:); CP.mom2(:,:,7,:) = CP.mom2(:,:,3,:); return; %======================================================================= %======================================================================= function CP = update_cp_est(CP,P,dat,msk,p) m = size(dat,3); d = size(P); P = reshape(P,[d(1)*d(2),d(3)]); dat = reshape(dat,[d(1)*d(2),m]); P(~msk(:),:) = []; dat(~msk(:),:) = []; for i=1:size(CP.mom0,2), CP.mom0(1,i,p) = sum(P(:,i)); CP.mom1(:,i,p) = sum((P(:,i)*ones(1,m)).*dat)'; CP.mom2(:,:,i,p) = ((P(:,i)*ones(1,m)).*dat)'*dat; end; for i=1:size(CP.mom0,2), CP.mg(1,i) = sum(CP.mom0(1,i,:),3); CP.mn(:,i) = sum(CP.mom1(:,i,:),3)/CP.mg(1,i); tmp = (CP.mg(1,i).*CP.mn(:,i))*CP.mn(:,i)'; tmp = tmp-eye(size(tmp))*eps*10000; CP.cv(:,:,i) = (sum(CP.mom2(:,:,i,:),4) - tmp)/CP.mg(1,i) + CP.cv0; end; CP.mg = CP.mg/sum(CP.mg); return; %======================================================================= %======================================================================= function [p,ll] = get_p(cor,msk,s,sums,CP,bf) d = [size(cor) 1 1]; n = size(CP.mg,2); cor = reshape(cor,d(1)*d(2),d(3)); cor = cor(msk,:); p = zeros(d(1)*d(2),n); if ~any(msk), p = reshape(p,d(1),d(2),n); ll=0; return; end; for i=1:n, amp = 1/sqrt((2*pi)^d(3) * det(CP.cv(:,:,i))); dst = (cor-ones(size(cor,1),1)*CP.mn(:,i)')/sqrtm(CP.cv(:,:,i)); dst = sum(dst.*dst,2); tmp = s(:,:,i); p(msk,i) = (amp*CP.mg(1,i)/sums(i))*exp(-0.5*dst).*tmp(msk) +eps; end; sp = sum(p,2); ll = sum(log(sp(msk).*bf(msk)+eps)); sp(~msk) = Inf; for i=1:n, p(:,i) = p(:,i)./sp; end; p = reshape(p,d(1),d(2),n); return; %======================================================================= %======================================================================= function SP = init_sp(flags,VF,PG) SP.VB = spm_vol(flags.priors); MM = get_affine_mapping(VF,PG,flags.affreg); %VF = spm_vol(PF); SP.MM = MM*VF(1).mat; SP.w = 0.98; return; %======================================================================= %======================================================================= function s = get_sp(SP,x1,x2,x3) [X1,X2,X3] = ndgrid(x1,x2,x3); [Y1,Y2,Y3] = affine_transform(X1,X2,X3,SP.VB(1).mat\SP.MM); w1 = SP.w; w2 = (1-w1)/2; s = zeros([size(Y1),4]); for i=1:3, s(:,:,i) = spm_sample_vol(SP.VB(i),Y1,Y2,Y3,1)*w1+w2; end; s(:,:,4:8) = repmat(abs(1-sum(s(:,:,1:3),3))/5,[1 1 5]); return; %======================================================================= %======================================================================= function [g,w,c] = get_gwc(VF,BP,SP,CP,sums,wc) if wc, VC = VF; for j=1:length(VF), [pth,nm,xt,vr] = fileparts(deblank(VF(j).fname)); VC(j).fname = fullfile(pth,['m' nm xt vr]); VC(j).descrip = 'Bias corrected image'; end; VC = spm_create_vol(VC); end; spm_progress_bar('Init',VF(1).dim(3),'Creating Segmented','planes completed'); x1 = 1:VF(1).dim(1); x2 = 1:VF(1).dim(2); x3 = 1:VF(1).dim(3); g = uint8(0); g(VF(1).dim(1),VF(1).dim(2),VF(1).dim(3)) = 0; w = uint8(0); w(VF(1).dim(1),VF(1).dim(2),VF(1).dim(3)) = 0; c = uint8(0); c(VF(1).dim(1),VF(1).dim(2),VF(1).dim(3)) = 0; for pp=1:length(x3), bf = get_bp(BP,x1,x2,x3(pp)); [raw,msk] = get_raw(VF,x1,x2,x3(pp)); cor = raw.*bf; if wc, for j=1:length(VC), VC(j) = spm_write_plane(VC(j),cor(:,:,j),pp); end; end; s = get_sp(SP,x1,x2,x3(pp)); p = get_p(cor,msk,s,sums,CP,bf); g(:,:,pp) = uint8(round(p(:,:,1)*255)); w(:,:,pp) = uint8(round(p(:,:,2)*255)); c(:,:,pp) = uint8(round(p(:,:,3)*255)); spm_progress_bar('Set',pp); end; spm_progress_bar('Clear'); if wc, spm_close_vol(VC); end; return; %======================================================================= %======================================================================= function [g,w,c] = clean_gwc(g,w,c) b = w; b(1) = w(1); % Build a 3x3x3 seperable smoothing kernel %----------------------------------------------------------------------- kx=[0.75 1 0.75]; ky=[0.75 1 0.75]; kz=[0.75 1 0.75]; sm=sum(kron(kron(kz,ky),kx))^(1/3); kx=kx/sm; ky=ky/sm; kz=kz/sm; % Erosions and conditional dilations %----------------------------------------------------------------------- niter = 32; spm_progress_bar('Init',niter,'Extracting Brain','Iterations completed'); for j=1:niter, if j>2, th=0.15; else th=0.6; end; % Dilate after two its of erosion. for i=1:size(b,3), gp = double(g(:,:,i)); wp = double(w(:,:,i)); bp = double(b(:,:,i))/255; bp = (bp>th).*(wp+gp); b(:,:,i) = uint8(round(bp)); end; spm_conv_vol(b,b,kx,ky,kz,-[1 1 1]); spm_progress_bar('Set',j); end; th = 0.05; for i=1:size(b,3), gp = double(g(:,:,i))/255; wp = double(w(:,:,i))/255; cp = double(c(:,:,i))/255; bp = double(b(:,:,i))/255; bp = ((bp>th).*(wp+gp))>th; g(:,:,i) = uint8(round(255*gp.*bp./(gp+wp+cp+eps))); w(:,:,i) = uint8(round(255*wp.*bp./(gp+wp+cp+eps))); c(:,:,i) = uint8(round(255*(cp.*bp./(gp+wp+cp+eps)+cp.*(1-bp)))); end; spm_progress_bar('Clear'); return;
github
lcnhappe/happe-master
spm_vol_ecat7.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/spm2/spm_vol_ecat7.m
16,814
utf_8
7c015c4444d187b46b81134cf388711c
function V = spm_vol_ecat7(fname,required) % Get header information etc. for ECAT 7 images. % FORMAT V = spm_vol_ecat7(fname,required) % P - an ECAT 7 filename. % fname - a structure containing image volume information. % required - an optional text argument specifying which volumes to % use. The default is '1010001'. Also, the argument % 'all' will result in all matrices being extracted. % % The elements of V are described by the help for spm_vol, except for % additional fields (V.mh and V.sh) that contains the main- and sub- % header information. % % _______________________________________________________________________ % @(#)spm_vol_ecat7.m 2.12 John Ashburner and Roger Gunn 03/05/23 V = []; if nargin==1, required = '1010001'; elseif ischar(required), else, if isfinite(required), required = sprintf('%.7x',16842752+required); else, required = 'all'; end; end; fp = fopen(fname,'r','ieee-be'); if (fp == -1) fname = [spm_str_manip(fname,'sr') '.v']; fp = fopen(fname,'r','ieee-be'); if (fp == -1) return; end; end mh = ECAT7_mheader(fp); if ~strcmp(mh.MAGIC_NUMBER,'MATRIX70v') & ~strcmp(mh.MAGIC_NUMBER,'MATRIX71v') & ~strcmp(mh.MAGIC_NUMBER,'MATRIX72v'), fclose(fp); return; % Quietly return. end if (mh.FILE_TYPE ~= 7) error(['"' spm_str_manip(fname,'k20d') '" isn''t an image.']); fclose(fp); return; end list = s7_matlist(fp); if strcmp(required(1,:),'all'), matches = find((list(:,4) == 1) | (list(:,4) == 2)); llist = list(matches,:); else, for i=1:size(required,1), matnum = sscanf(required(i,:),'%x'); matches = find( (list(:,1) == matnum) & ((list(:,4) == 1) | (list(:,4) == 2))); if (size(matches,1) ~= 1) Error(['"' spm_str_manip(fname,'k20d') '" doesn''t have the required image.']); fclose(fp); end; llist(i,:) = list(matches,:); end; end; frame_num = sscanf(required,'%x')-16842752; private = struct('mh',[],'sh',[]); V = struct('fname','','dim',[],'pinfo',[],'mat',[], 'descrip','','n',[],'private',private); V(:) = []; for i=1:size(llist,1), sh = ECAT7_sheader(fp,llist(i,2)); dim = [sh.X_DIMENSION sh.Y_DIMENSION sh.Z_DIMENSION 4]; if ~spm_platform('bigend') & dim(4)~=2, dim(4) = dim(4)*256; end; pinfo = [sh.SCALE_FACTOR*mh.ECAT_CALIBRATION_FACTOR ; 0 ; 512*llist(i,2)]; dircos = diag([-1 -1 -1]); step = ([sh.X_PIXEL_SIZE sh.Y_PIXEL_SIZE sh.Z_PIXEL_SIZE]*10); start = -(dim(1:3)'/2).*step'; mat = [[dircos*diag(step) dircos*start] ; [0 0 0 1]]; [pth,nam,ext] = fileparts(fname); matname = fullfile(pth,[nam '.mat']); if exist(matname) == 2, str=load(matname); if isfield(str,'mat'), mat = str.mat; elseif isfield(str,'M'), mat = str.M; end; end; V(i).fname = fname; V(i).dim = dim; V(i).mat = mat; V(i).pinfo = pinfo; V(i).n = llist(i,1)-16842752; V(i).descrip = sh.ANNOTATION; V(i).private.mh = mh; V(i).private.sh = sh; end; fclose(fp); return; %_______________________________________________________________________ %_______________________________________________________________________ %S7_MATLIST List the available matrixes in an ECAT 7 file. % LIST = S7_MATLIST(FP) lists the available matrixes % in the file specified by FP. % % Columns in LIST: % 1 - Matrix identifier. % 2 - Matrix subheader record number % 3 - Last record number of matrix data block. % 4 - Matrix status: % 1 - exists - rw % 2 - exists - ro % 3 - matrix deleted % function list = s7_matlist(fp); % I believe fp should be opened with: % fp = fopen(filename,'r','ieee-be'); fseek(fp,512,'bof'); block = fread(fp,128,'int'); if (size(block,1) ~= 128) list = []; return; end; block = reshape(block,4,32); list = []; while (block(2,1) ~= 2) if (block(1,1)+block(4,1) ~= 31) list = []; return; end list = [list block(:,2:32)]; fseek(fp,512*(block(2,1)-1),'bof'); block = fread(fp,128,'int'); if (size(block,1) ~= 128) list = []; return; end; block = reshape(block,4,32); end list = [list block(:,2:(block(4,1)+1))]; list = list'; return; %_______________________________________________________________________ %_______________________________________________________________________ function SHEADER=ECAT7_sheader(fid,record) % % Sub header read routine for ECAT 7 image files % % Roger Gunn, 260298 off = (record-1)*512; status = fseek(fid, off,'bof'); data_type = fread(fid,1,'uint16',0); num_dimensions = fread(fid,1,'uint16',0); x_dimension = fread(fid,1,'uint16',0); y_dimension = fread(fid,1,'uint16',0); z_dimension = fread(fid,1,'uint16',0); x_offset = fread(fid,1,'float32',0); y_offset = fread(fid,1,'float32',0); z_offset = fread(fid,1,'float32',0); recon_zoom = fread(fid,1,'float32',0); scale_factor = fread(fid,1,'float32',0); image_min = fread(fid,1,'int16',0); image_max = fread(fid,1,'int16',0); x_pixel_size = fread(fid,1,'float32',0); y_pixel_size = fread(fid,1,'float32',0); z_pixel_size = fread(fid,1,'float32',0); frame_duration = fread(fid,1,'uint32',0); frame_start_time = fread(fid,1,'uint32',0); filter_code = fread(fid,1,'uint16',0); x_resolution = fread(fid,1,'float32',0); y_resolution = fread(fid,1,'float32',0); z_resolution = fread(fid,1,'float32',0); num_r_elements = fread(fid,1,'float32',0); num_angles = fread(fid,1,'float32',0); z_rotation_angle = fread(fid,1,'float32',0); decay_corr_fctr = fread(fid,1,'float32',0); corrections_applied = fread(fid,1,'uint32',0); gate_duration = fread(fid,1,'uint32',0); r_wave_offset = fread(fid,1,'uint32',0); num_accepted_beats = fread(fid,1,'uint32',0); filter_cutoff_frequency = fread(fid,1,'float32',0); filter_resolution = fread(fid,1,'float32',0); filter_ramp_slope = fread(fid,1,'float32',0); filter_order = fread(fid,1,'uint16',0); filter_scatter_fraction = fread(fid,1,'float32',0); filter_scatter_slope = fread(fid,1,'float32',0); annotation = fread(fid,40,'char',0); mt_1_1 = fread(fid,1,'float32',0); mt_1_2 = fread(fid,1,'float32',0); mt_1_3 = fread(fid,1,'float32',0); mt_2_1 = fread(fid,1,'float32',0); mt_2_2 = fread(fid,1,'float32',0); mt_2_3 = fread(fid,1,'float32',0); mt_3_1 = fread(fid,1,'float32',0); mt_3_2 = fread(fid,1,'float32',0); mt_3_3 = fread(fid,1,'float32',0); rfilter_cutoff = fread(fid,1,'float32',0); rfilter_resolution = fread(fid,1,'float32',0); rfilter_code = fread(fid,1,'uint16',0); rfilter_order = fread(fid,1,'uint16',0); zfilter_cutoff = fread(fid,1,'float32',0); zfilter_resolution = fread(fid,1,'float32',0); zfilter_code = fread(fid,1,'uint16',0); zfilter_order = fread(fid,1,'uint16',0); mt_4_1 = fread(fid,1,'float32',0); mt_4_2 = fread(fid,1,'float32',0); mt_4_3 = fread(fid,1,'float32',0); scatter_type = fread(fid,1,'uint16',0); recon_type = fread(fid,1,'uint16',0); recon_views = fread(fid,1,'uint16',0); fill = fread(fid,1,'uint16',0); annotation = deblank(char(annotation.*(annotation>0))'); SHEADER = struct('DATA_TYPE', data_type, ... 'NUM_DIMENSIONS', num_dimensions, ... 'X_DIMENSION', x_dimension, ... 'Y_DIMENSION', y_dimension, ... 'Z_DIMENSION', z_dimension, ... 'X_OFFSET', x_offset, ... 'Y_OFFSET', y_offset, ... 'Z_OFFSET', z_offset, ... 'RECON_ZOOM', recon_zoom, ... 'SCALE_FACTOR', scale_factor, ... 'IMAGE_MIN', image_min, ... 'IMAGE_MAX', image_max, ... 'X_PIXEL_SIZE', x_pixel_size, ... 'Y_PIXEL_SIZE', y_pixel_size, ... 'Z_PIXEL_SIZE', z_pixel_size, ... 'FRAME_DURATION', frame_duration, ... 'FRAME_START_TIME', frame_start_time, ... 'FILTER_CODE', filter_code, ... 'X_RESOLUTION', x_resolution, ... 'Y_RESOLUTION', y_resolution, ... 'Z_RESOLUTION', z_resolution, ... 'NUM_R_ELEMENTS', num_r_elements, ... 'NUM_ANGLES', num_angles, ... 'Z_ROTATION_ANGLE', z_rotation_angle, ... 'DECAY_CORR_FCTR', decay_corr_fctr, ... 'CORRECTIONS_APPLIED', corrections_applied, ... 'GATE_DURATION', gate_duration, ... 'R_WAVE_OFFSET', r_wave_offset, ... 'NUM_ACCEPTED_BEATS', num_accepted_beats, ... 'FILTER_CUTOFF_FREQUENCY', filter_cutoff_frequency, ... 'FILTER_RESOLUTION', filter_resolution, ... 'FILTER_RAMP_SLOPE', filter_ramp_slope, ... 'FILTER_ORDER', filter_order, ... 'FILTER_SCATTER_CORRECTION', filter_scatter_fraction, ... 'FILTER_SCATTER_SLOPE', filter_scatter_slope, ... 'ANNOTATION', annotation, ... 'MT_1_1', mt_1_1, ... 'MT_1_2', mt_1_2, ... 'MT_1_3', mt_1_3, ... 'MT_2_1', mt_2_1, ... 'MT_2_2', mt_2_2, ... 'MT_2_3', mt_2_3, ... 'MT_3_1', mt_3_1, ... 'MT_3_2', mt_3_2, ... 'MT_3_3', mt_3_3, ... 'RFILTER_CUTOFF', rfilter_cutoff, ... 'RFILTER_RESOLUTION', rfilter_resolution, ... 'RFILTER_CODE', rfilter_code, ... 'RFILTER_ORDER', rfilter_order, ... 'ZFILTER_CUTOFF', zfilter_cutoff, ... 'ZFILTER_RESOLUTION', zfilter_resolution, ... 'ZFILTER_CODE', zfilter_code, ... 'ZFILTER_ORDER', zfilter_order, ... 'MT_4_1', mt_4_1, ... 'MT_4_2', mt_4_2, ... 'MT_4_3', mt_4_3, ... 'SCATTER_TYPE', scatter_type, ... 'RECON_TYPE', recon_type, ... 'RECON_VIEWS', recon_views, ... 'FILL', fill); return; %_______________________________________________________________________ function [MHEADER]=ECAT7_mheader(fid) % % Main header read routine for ECAT 7 image files % % Roger Gunn, 260298 status = fseek(fid, 0,'bof'); magic_number = fread(fid,14,'char',0); original_file_name = fread(fid,32,'char',0); sw_version = fread(fid,1,'uint16',0); system_type = fread(fid,1,'uint16',0); file_type = fread(fid,1,'uint16',0); serial_number = fread(fid,10,'char',0); scan_start_time = fread(fid,1,'uint32',0); isotope_name = fread(fid,8,'char',0); isotope_halflife = fread(fid,1,'float32',0); radiopharmaceutical = fread(fid,32,'char',0); gantry_tilt = fread(fid,1,'float32',0); gantry_rotation = fread(fid,1,'float32',0); bed_elevation = fread(fid,1,'float32',0); intrinsic_tilt = fread(fid,1,'float32',0); wobble_speed = fread(fid,1,'uint16',0); transm_source_type = fread(fid,1,'uint16',0); distance_scanned = fread(fid,1,'float32',0); transaxial_fov = fread(fid,1,'float32',0); angular_compression = fread(fid,1,'uint16',0); coin_samp_mode = fread(fid,1,'uint16',0); axial_samp_mode = fread(fid,1,'uint16',0); ecat_calibration_factor = fread(fid,1,'float32',0); calibration_units = fread(fid,1,'uint16',0); calibration_units_type = fread(fid,1,'uint16',0); compression_code = fread(fid,1,'uint16',0); study_type = fread(fid,12,'char',0); patient_id = fread(fid,16,'char',0); patient_name = fread(fid,32,'char',0); patient_sex = fread(fid,1,'char',0); patient_dexterity = fread(fid,1,'char',0); patient_age = fread(fid,1,'float32',0); patient_height = fread(fid,1,'float32',0); patient_weight = fread(fid,1,'float32',0); patient_birth_date = fread(fid,1,'uint32',0); physician_name = fread(fid,32,'char',0); operator_name = fread(fid,32,'char',0); study_description = fread(fid,32,'char',0); acquisition_type = fread(fid,1,'uint16',0); patient_orientation = fread(fid,1,'uint16',0); facility_name = fread(fid,20,'char',0); num_planes = fread(fid,1,'uint16',0); num_frames = fread(fid,1,'uint16',0); num_gates = fread(fid,1,'uint16',0); num_bed_pos = fread(fid,1,'uint16',0); init_bed_position = fread(fid,1,'float32',0); bed_position = zeros(15,1); for bed=1:15, bed_position(bed) = fread(fid,1,'float32',0); end; plane_separation = fread(fid,1,'float32',0); lwr_sctr_thres = fread(fid,1,'uint16',0); lwr_true_thres = fread(fid,1,'uint16',0); upr_true_thres = fread(fid,1,'uint16',0); user_process_code = fread(fid,10,'char',0); acquisition_mode = fread(fid,1,'uint16',0); bin_size = fread(fid,1,'float32',0); branching_fraction = fread(fid,1,'float32',0); dose_start_time = fread(fid,1,'uint32',0); dosage = fread(fid,1,'float32',0); well_counter_corr_factor = fread(fid,1,'float32',0); data_units = fread(fid,32,'char',0); septa_state = fread(fid,1,'uint16',0); fill = fread(fid,1,'uint16',0); magic_number = deblank(char(magic_number.*(magic_number>32))'); original_file_name = deblank(char(original_file_name.*(original_file_name>0))'); serial_number = deblank(char(serial_number.*(serial_number>0))'); isotope_name = deblank(char(isotope_name.*(isotope_name>0))'); radiopharmaceutical = deblank(char(radiopharmaceutical.*(radiopharmaceutical>0))'); study_type = deblank(char(study_type.*(study_type>0))'); patient_id = deblank(char(patient_id.*(patient_id>0))'); patient_name = deblank(char(patient_name.*(patient_name>0))'); patient_sex = deblank(char(patient_sex.*(patient_sex>0))'); patient_dexterity = deblank(char(patient_dexterity.*(patient_dexterity>0))'); physician_name = deblank(char(physician_name.*(physician_name>0))'); operator_name = deblank(char(operator_name.*(operator_name>0))'); study_description = deblank(char(study_description.*(study_description>0))'); facility_name = deblank(char(facility_name.*(facility_name>0))'); user_process_code = deblank(char(user_process_code.*(user_process_code>0))'); data_units = deblank(char(data_units.*(data_units>0))'); MHEADER = struct('MAGIC_NUMBER', magic_number, ... 'ORIGINAL_FILE_NAME', original_file_name, ... 'SW_VERSION', sw_version, ... 'SYSTEM_TYPE', system_type, ... 'FILE_TYPE', file_type, ... 'SERIAL_NUMBER', serial_number, ... 'SCAN_START_TIME', scan_start_time, ... 'ISOTOPE_NAME', isotope_name, ... 'ISOTOPE_HALFLIFE', isotope_halflife, ... 'RADIOPHARMACEUTICAL', radiopharmaceutical, ... 'GANTRY_TILT', gantry_tilt, ... 'GANTRY_ROTATION', gantry_rotation, ... 'BED_ELEVATION', bed_elevation, ... 'INTRINSIC_TILT', intrinsic_tilt, ... 'WOBBLE_SPEED', wobble_speed, ... 'TRANSM_SOURCE_TYPE', transm_source_type, ... 'DISTANCE_SCANNED', distance_scanned, ... 'TRANSAXIAL_FOV', transaxial_fov, ... 'ANGULAR_COMPRESSION', angular_compression, ... 'COIN_SAMP_MODE', coin_samp_mode, ... 'AXIAL_SAMP_MODE', axial_samp_mode, ... 'ECAT_CALIBRATION_FACTOR', ecat_calibration_factor, ... 'CALIBRATION_UNITS', calibration_units, ... 'CALIBRATION_UNITS_TYPE', calibration_units_type, ... 'COMPRESSION_CODE', compression_code, ... 'STUDY_TYPE', study_type, ... 'PATIENT_ID', patient_id, ... 'PATIENT_NAME', patient_name, ... 'PATIENT_SEX', patient_sex, ... 'PATIENT_DEXTERITY', patient_dexterity, ... 'PATIENT_AGE', patient_age, ... 'PATIENT_HEIGHT', patient_height, ... 'PATIENT_WEIGHT', patient_weight, ... 'PATIENT_BIRTH_DATE', patient_birth_date, ... 'PHYSICIAN_NAME', physician_name, ... 'OPERATOR_NAME', operator_name, ... 'STUDY_DESCRIPTION', study_description, ... 'ACQUISITION_TYPE', acquisition_type, ... 'PATIENT_ORIENTATION', patient_orientation, ... 'FACILITY_NAME', facility_name, ... 'NUM_PLANES', num_planes, ... 'NUM_FRAMES', num_frames, ... 'NUM_GATES', num_gates, ... 'NUM_BED_POS', num_bed_pos, ... 'INIT_BED_POSITION', init_bed_position, ... 'BED_POSITION', bed_position, ... 'PLANE_SEPARATION', plane_separation, ... 'LWR_SCTR_THRES', lwr_sctr_thres, ... 'LWR_TRUE_THRES', lwr_true_thres, ... 'UPR_TRUE_THRES', upr_true_thres, ... 'USER_PROCESS_CODE', user_process_code, ... 'ACQUISITION_MODE', acquisition_mode, ... 'BIN_SIZE', bin_size, ... 'BRANCHING_FRACTION', branching_fraction, ... 'DOSE_START_TIME', dose_start_time, ... 'DOSAGE', dosage, ... 'WELL_COUNTER_CORR_FACTOR', well_counter_corr_factor, ... 'DATA_UNITS', data_units, ... 'SEPTA_STATE', septa_state, ... 'FILL', fill); return; %_______________________________________________________________________
github
lcnhappe/happe-master
read_wobj.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/wavefront/read_wobj.m
14,065
utf_8
9ba67412c5fae158393557fd39a68306
function OBJ=read_wobj(fullfilename) % Read the objects from a Wavefront OBJ file % % OBJ=read_wobj(filename); % % OBJ struct containing: % % OBJ.vertices : Vertices coordinates % OBJ.vertices_texture: Texture coordinates % OBJ.vertices_normal : Normal vectors % OBJ.vertices_point : Vertice data used for points and lines % OBJ.material : Parameters from external .MTL file, will contain parameters like % newmtl, Ka, Kd, Ks, illum, Ns, map_Ka, map_Kd, map_Ks, % example of an entry from the material object: % OBJ.material(i).type = newmtl % OBJ.material(i).data = 'vase_tex' % OBJ.objects : Cell object with all objects in the OBJ file, % example of a mesh object: % OBJ.objects(i).type='f' % OBJ.objects(i).data.vertices: [n x 3 double] % OBJ.objects(i).data.texture: [n x 3 double] % OBJ.objects(i).data.normal: [n x 3 double] % % Example, % OBJ=read_wobj('examples\example10.obj'); % FV.vertices=OBJ.vertices; % FV.faces=OBJ.objects(3).data.vertices; % figure, patch(FV,'facecolor',[1 0 0]); camlight % % Function is written by D.Kroon University of Twente (June 2010) verbose=true; if(exist('fullfilename','var')==0) [filename, filefolder] = uigetfile('*.obj', 'Read obj-file'); fullfilename = [filefolder filename]; end filefolder = fileparts( fullfilename); if(verbose),disp(['Reading Object file : ' fullfilename]); end % Read the DI3D OBJ textfile to a cell array file_words = file2cellarray( fullfilename); % Remove empty cells, merge lines split by "\" and convert strings with values to double [ftype fdata]= fixlines(file_words); % Vertex data vertices=[]; nv=0; vertices_texture=[]; nvt=0; vertices_point=[]; nvp=0; vertices_normal=[]; nvn=0; material=[]; % Surface data no=0; % Loop through the Wavefront object file for iline=1:length(ftype) if(mod(iline,10000)==0), if(verbose),disp(['Lines processed : ' num2str(iline)]); end end type=ftype{iline}; data=fdata{iline}; % Switch on data type line switch(type) case{'mtllib'} if(iscell(data)) datanew=[]; for i=1:length(data) datanew=[datanew data{i}]; if(i<length(data)), datanew=[datanew ' ']; end end data=datanew; end filename_mtl=fullfile(filefolder,data); material=readmtl(filename_mtl,verbose); case('v') % vertices nv=nv+1; if(length(data)==3) % Reserve block of memory if(mod(nv,10000)==1), vertices(nv+1:nv+10001,1:3)=0; end % Add to vertices list X Y Z vertices(nv,1:3)=data; else % Reserve block of memory if(mod(nv,10000)==1), vertices(nv+1:nv+10001,1:4)=0; end % Add to vertices list X Y Z W vertices(nv,1:4)=data; end case('vp') % Specifies a point in the parameter space of curve or surface nvp=nvp+1; if(length(data)==1) % Reserve block of memory if(mod(nvp,10000)==1), vertices_point(nvp+1:nvp+10001,1)=0; end % Add to vertices point list U vertices_point(nvp,1)=data; elseif(length(data)==2) % Reserve block of memory if(mod(nvp,10000)==1), vertices_point(nvp+1:nvp+10001,1:2)=0; end % Add to vertices point list U V vertices_point(nvp,1:2)=data; else % Reserve block of memory if(mod(nvp,10000)==1), vertices_point(nvp+1:nvp+10001,1:3)=0; end % Add to vertices point list U V W vertices_point(nvp,1:3)=data; end case('vn') % A normal vector nvn=nvn+1; if(mod(nvn,10000)==1), vertices_normal(nvn+1:nvn+10001,1:3)=0; end % Add to vertices list I J K vertices_normal(nvn,1:3)=data; case('vt') % Vertices Texture Coordinate in photo % U V W nvt=nvt+1; if(length(data)==1) % Reserve block of memory if(mod(nvt,10000)==1), vertices_texture(nvt+1:nvt+10001,1)=0; end % Add to vertices texture list U vertices_texture(nvt,1)=data; elseif(length(data)==2) % Reserve block of memory if(mod(nvt,10000)==1), vertices_texture(nvt+1:nvt+10001,1:2)=0; end % Add to vertices texture list U V vertices_texture(nvt,1:2)=data; else % Reserve block of memory if(mod(nvt,10000)==1), vertices_texture(nvt+1:nvt+10001,1:3)=0; end % Add to vertices texture list U V W vertices_texture(nvt,1:3)=data; end case('l') no=no+1; if(mod(no,10000)==1), objects(no+10001).data=0; end array_vertices=[]; array_texture=[]; for i=1:length(data), switch class(data) case 'cell' tvals=str2double(stringsplit(data{i},'/')); case 'string' tvals=str2double(stringsplit(data,'/')); otherwise tvals=data(i); end val=tvals(1); if(val<0), val=val+1+nv; end array_vertices(i)=val; if(length(tvals)>1), val=tvals(2); if(val<0), val=val+1+nvt; end array_texture(i)=val; end end objects(no).type='l'; objects(no).data.vertices=array_vertices; objects(no).data.texture=array_texture; case('f') no=no+1; if(mod(no,10000)==1), objects(no+10001).data=0; end array_vertices=[]; array_texture=[]; array_normal=[]; for i=1:length(data); switch class(data) case 'cell' tvals=str2double(stringsplit(data{i},'/')); case 'string' tvals=str2double(stringsplit(data,'/')); otherwise tvals=data(i); end val=tvals(1); if(val<0), val=val+1+nv; end array_vertices(i)=val; if(length(tvals)>1), if(isfinite(tvals(2))) val=tvals(2); if(val<0), val=val+1+nvt; end array_texture(i)=val; end end if(length(tvals)>2), val=tvals(3); if(val<0), val=val+1+nvn; end array_normal(i)=val; end end % A face of more than 3 indices is always split into % multiple faces of only 3 indices. objects(no).type='f'; findex=1:min (3,length(array_vertices)); objects(no).data = []; objects(no).data.vertices=array_vertices(findex); if(~isempty(array_texture)),objects(no).data.texture=array_texture(findex); end if(~isempty(array_normal)),objects(no).data.normal=array_normal(findex); end for i=1:length(array_vertices)-3; no=no+1; if(mod(no,10000)==1), objects(no+10001).data=0; end findex=[1 2+i 3+i]; findex(findex>length(array_vertices))=findex(findex>length(array_vertices))-length(array_vertices); objects(no).type='f'; objects(no).data.vertices=array_vertices(findex); if(~isempty(array_texture)),objects(no).data.texture=array_texture(findex); end if(~isempty(array_normal)),objects(no).data.normal=array_normal(findex); end end case{'#','$'} % Comment tline=' %'; if(iscell(data)) for i=1:length(data), tline=[tline ' ' data{i}]; end else tline=[tline data]; end if(verbose), disp(tline); end case{''} otherwise no=no+1; if(mod(no,10000)==1), objects(no+10001).data=0; end objects(no).type=type; objects(no).data=data; end end % Initialize new object list, which will contain the "collapsed" objects objects2(no).data=0; index=0; i=0; while (i<no), i=i+1; type=objects(i).type; % First face found if((length(type)==1)&&(type(1)=='f')) % Get number of faces for j=i:no type=objects(j).type; if((length(type)~=1)||(type(1)~='f')) j=j-1; break; end end numfaces=(j-i)+1; index=index+1; objects2(index).type='f'; % Process last face first to allocate memory objects2(index).data.vertices(numfaces,:)= objects(i).data.vertices; if(isfield(objects(i).data,'texture')) objects2(index).data.texture(numfaces,:) = objects(i).data.texture; else objects2(index).data.texture=[]; end if(isfield(objects(i).data,'normal')) objects2(index).data.normal(numfaces,:) = objects(i).data.normal; else objects2(index).data.normal=[]; end % All faces to arrays for k=1:numfaces objects2(index).data.vertices(k,:)= objects(i+k-1).data.vertices; if(isfield(objects(i).data,'texture')) objects2(index).data.texture(k,:) = objects(i+k-1).data.texture; end if(isfield(objects(i).data,'normal')) objects2(index).data.normal(k,:) = objects(i+k-1).data.normal; end end i=j; else index=index+1; objects2(index).type=objects(i).type; objects2(index).data=objects(i).data; end end % Add all data to output struct OBJ.objects=objects2(1:index); OBJ.material=material; OBJ.vertices=vertices(1:nv,:); OBJ.vertices_point=vertices_point(1:nvp,:); OBJ.vertices_normal=vertices_normal(1:nvn,:); OBJ.vertices_texture=vertices_texture(1:nvt,:); if(verbose),disp('Finished Reading Object file'); end function twords=stringsplit(tline,tchar) % Get start and end position of all "words" separated by a char i=find(tline(2:end-1)==tchar)+1; i_start=[1 i+1]; i_end=[i-1 length(tline)]; % Create a cell array of the words twords=cell(1,length(i_start)); for j=1:length(i_start), twords{j}=tline(i_start(j):i_end(j)); end function file_words=file2cellarray(filename) % Open a DI3D OBJ textfile fid=fopen(filename,'r'); file_text=fread(fid, inf, 'uint8=>char')'; fclose(fid); file_lines = regexp(file_text, '\n+', 'split'); file_words = regexp(file_lines, '\s+', 'split'); function [ftype fdata]=fixlines(file_words) ftype=cell(size(file_words)); fdata=cell(size(file_words)); iline=0; jline=0; while(iline<length(file_words)) iline=iline+1; twords=removeemptycells(file_words{iline}); if(~isempty(twords)) % Add next line to current line when line end with '\' while(strcmp(twords{end},'\')&&iline<length(file_words)) iline=iline+1; twords(end)=[]; twords=[twords removeemptycells(file_words{iline})]; end % Values to double type=twords{1}; stringdold=true; j=0; switch(type) case{'#','$'} for i=2:length(twords) j=j+1; twords{j}=twords{i}; end otherwise for i=2:length(twords) str=twords{i}; if strcmpi(str, 'nan') val=NaN; stringd=false; else val=str2double(str); stringd=~isfinite(val); end if(stringd) j=j+1; twords{j}=str; else if(stringdold) j=j+1; twords{j}=val; else twords{j}=[twords{j} val]; end end stringdold=stringd; end end twords(j+1:end)=[]; jline=jline+1; ftype{jline}=type; if(length(twords)==1), twords=twords{1}; end fdata{jline}=twords; end end ftype(jline+1:end)=[]; fdata(jline+1:end)=[]; function b=removeemptycells(a) j=0; b={}; for i=1:length(a); if(~isempty(a{i})),j=j+1; b{j}=a{i}; end; end function objects=readmtl(filename_mtl,verbose) if(verbose),disp(['Reading Material file : ' filename_mtl]); end file_words=file2cellarray(filename_mtl); % Remove empty cells, merge lines split by "\" and convert strings with values to double [ftype fdata]= fixlines(file_words); % Surface data objects.type(length(ftype))=0; objects.data(length(ftype))=0; no=0; % Loop through the Wavefront object file for iline=1:length(ftype) type=ftype{iline}; data=fdata{iline}; % Switch on data type line switch(type) case{'#','$'} % Comment tline=' %'; if(iscell(data)) for i=1:length(data), tline=[tline ' ' data{i}]; end else tline=[tline data]; end if(verbose), disp(tline); end case{''} otherwise no=no+1; if(mod(no,10000)==1), objects(no+10001).data=0; end objects(no).type=type; objects(no).data=data; end end objects=objects(1:no); if(verbose),disp('Finished Reading Material file'); end
github
lcnhappe/happe-master
write_wobj.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/wavefront/write_wobj.m
7,933
utf_8
96f334af246b0a305d8e8d354ddc7bba
function write_wobj(OBJ,fullfilename) % Write objects to a Wavefront OBJ file % % write_wobj(OBJ,filename); % % OBJ struct containing: % % OBJ.vertices : Vertices coordinates % OBJ.vertices_texture: Texture coordinates % OBJ.vertices_normal : Normal vectors % OBJ.vertices_point : Vertice data used for points and lines % OBJ.material : Parameters from external .MTL file, will contain parameters like % newmtl, Ka, Kd, Ks, illum, Ns, map_Ka, map_Kd, map_Ks, % example of an entry from the material object: % OBJ.material(i).type = newmtl % OBJ.material(i).data = 'vase_tex' % OBJ.objects : Cell object with all objects in the OBJ file, % example of a mesh object: % OBJ.objects(i).type='f' % OBJ.objects(i).data.vertices: [n x 3 double] % OBJ.objects(i).data.texture: [n x 3 double] % OBJ.objects(i).data.normal: [n x 3 double] % % example reading/writing, % % OBJ=read_wobj('examples\example10.obj'); % write_wobj(OBJ,'test.obj'); % % example isosurface to obj-file, % % % Load MRI scan % load('mri','D'); D=smooth3(squeeze(D)); % % Make iso-surface (Mesh) of skin % FV=isosurface(D,1); % % Calculate Iso-Normals of the surface % N=isonormals(D,FV.vertices); % L=sqrt(N(:,1).^2+N(:,2).^2+N(:,3).^2)+eps; % N(:,1)=N(:,1)./L; N(:,2)=N(:,2)./L; N(:,3)=N(:,3)./L; % % Display the iso-surface % figure, patch(FV,'facecolor',[1 0 0],'edgecolor','none'); view(3);camlight % % Invert Face rotation % FV.faces=[FV.faces(:,3) FV.faces(:,2) FV.faces(:,1)]; % % % Make a material structure % material(1).type='newmtl'; % material(1).data='skin'; % material(2).type='Ka'; % material(2).data=[0.8 0.4 0.4]; % material(3).type='Kd'; % material(3).data=[0.8 0.4 0.4]; % material(4).type='Ks'; % material(4).data=[1 1 1]; % material(5).type='illum'; % material(5).data=2; % material(6).type='Ns'; % material(6).data=27; % % % Make OBJ structure % clear OBJ % OBJ.vertices = FV.vertices; % OBJ.vertices_normal = N; % OBJ.material = material; % OBJ.objects(1).type='g'; % OBJ.objects(1).data='skin'; % OBJ.objects(2).type='usemtl'; % OBJ.objects(2).data='skin'; % OBJ.objects(3).type='f'; % OBJ.objects(3).data.vertices=FV.faces; % OBJ.objects(3).data.normal=FV.faces; % write_wobj(OBJ,'skinMRI.obj'); % % Function is written by D.Kroon University of Twente (June 2010) if(exist('fullfilename','var')==0) [filename, filefolder] = uiputfile('*.obj', 'Write obj-file'); fullfilename = [filefolder filename]; end [filefolder,filename] = fileparts( fullfilename); comments=cell(1,4); comments{1}=' Produced by Matlab Write Wobj exporter '; comments{2}=''; fid = fopen(fullfilename,'w'); write_comment(fid,comments); if(isfield(OBJ,'material')&&~isempty(OBJ.material)) filename_mtl=fullfile(filefolder,[filename '.mtl']); fprintf(fid,'mtllib %s\n',filename_mtl); write_MTL_file(filename_mtl,OBJ.material) end if(isfield(OBJ,'vertices')&&~isempty(OBJ.vertices)) write_vertices(fid,OBJ.vertices,'v'); end if(isfield(OBJ,'vertices_point')&&~isempty(OBJ.vertices_point)) write_vertices(fid,OBJ.vertices_point,'vp'); end if(isfield(OBJ,'vertices_normal')&&~isempty(OBJ.vertices_normal)) write_vertices(fid,OBJ.vertices_normal,'vn'); end if(isfield(OBJ,'vertices_texture')&&~isempty(OBJ.vertices_texture)) write_vertices(fid,OBJ.vertices_texture,'vt'); end for i=1:length(OBJ.objects) type=OBJ.objects(i).type; data=OBJ.objects(i).data; switch(type) case 'usemtl' fprintf(fid,'usemtl %s\n',data); case 'f' check1=(isfield(OBJ,'vertices_texture')&&~isempty(OBJ.vertices_texture)); check2=(isfield(OBJ,'vertices_normal')&&~isempty(OBJ.vertices_normal)); if(check1&&check2) for j=1:size(data.vertices,1) fprintf(fid,'f %d/%d/%d',data.vertices(j,1),data.texture(j,1),data.normal(j,1)); fprintf(fid,' %d/%d/%d', data.vertices(j,2),data.texture(j,2),data.normal(j,2)); fprintf(fid,' %d/%d/%d\n', data.vertices(j,3),data.texture(j,3),data.normal(j,3)); end elseif(check1) for j=1:size(data.vertices,1) fprintf(fid,'f %d/%d',data.vertices(j,1),data.texture(j,1)); fprintf(fid,' %d/%d', data.vertices(j,2),data.texture(j,2)); fprintf(fid,' %d/%d\n', data.vertices(j,3),data.texture(j,3)); end elseif(check2) for j=1:size(data.vertices,1) fprintf(fid,'f %d//%d',data.vertices(j,1),data.normal(j,1)); fprintf(fid,' %d//%d', data.vertices(j,2),data.normal(j,2)); fprintf(fid,' %d//%d\n', data.vertices(j,3),data.normal(j,3)); end else for j=1:size(data.vertices,1) fprintf(fid,'f %d %d %d\n',data.vertices(j,1),data.vertices(j,2),data.vertices(j,3)); end end otherwise fprintf(fid,'%s ',type); if(iscell(data)) for j=1:length(data) if(ischar(data{j})) fprintf(fid,'%s ',data{j}); else fprintf(fid,'%0.5g ',data{j}); end end elseif(ischar(data)) fprintf(fid,'%s ',data); else for j=1:length(data) fprintf(fid,'%0.5g ',data(j)); end end fprintf(fid,'\n'); end end fclose(fid); function write_MTL_file(filename,material) fid = fopen(filename,'w'); comments=cell(1,2); comments{1}=' Produced by Matlab Write Wobj exporter '; comments{2}=''; write_comment(fid,comments); for i=1:length(material) type=material(i).type; data=material(i).data; switch(type) case('newmtl') fprintf(fid,'%s ',type); fprintf(fid,'%s\n',data); case{'Ka','Kd','Ks'} fprintf(fid,'%s ',type); fprintf(fid,'%5.5f %5.5f %5.5f\n',data); case('illum') fprintf(fid,'%s ',type); fprintf(fid,'%d\n',data); case {'Ns','Tr','d'} fprintf(fid,'%s ',type); fprintf(fid,'%5.5f\n',data); otherwise fprintf(fid,'%s ',type); if(iscell(data)) for j=1:length(data) if(ischar(data{j})) fprintf(fid,'%s ',data{j}); else fprintf(fid,'%0.5g ',data{j}); end end elseif(ischar(data)) fprintf(fid,'%s ',data); else for j=1:length(data) fprintf(fid,'%0.5g ',data(j)); end end fprintf(fid,'\n'); end end comments=cell(1,2); comments{1}=''; comments{2}=' EOF'; write_comment(fid,comments); fclose(fid); function write_comment(fid,comments) for i=1:length(comments), fprintf(fid,'# %s\n',comments{i}); end function write_vertices(fid,V,type) switch size(V,2) case 1 for i=1:size(V,1) fprintf(fid,'%s %5.5f\n', type, V(i,1)); end case 2 for i=1:size(V,1) fprintf(fid,'%s %5.5f %5.5f\n', type, V(i,1), V(i,2)); end case 3 for i=1:size(V,1) fprintf(fid,'%s %5.5f %5.5f %5.5f\n', type, V(i,1), V(i,2), V(i,3)); end otherwise end switch(type) case 'v' fprintf(fid,'# %d vertices \n', size(V,1)); case 'vt' fprintf(fid,'# %d texture verticies \n', size(V,1)); case 'vn' fprintf(fid,'# %d normals \n', size(V,1)); otherwise fprintf(fid,'# %d\n', size(V,1)); end
github
lcnhappe/happe-master
mne_load_coil_def.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/mne/mne_load_coil_def.m
8,714
utf_8
27f6f7c6a6d28610885a9c1be788e73a
function [CoilDef,Header] = mne_load_coil_def(fname); % % % [CoilDef,Header] = mne_load_coil_def(fname); % CoilDef = mne_load_coil_def(fname); % % If file name is not specified, the standard coil definition file % $MNE_ROOT/setup/mne/coil_def.dat or $MNE_ROOT/share/mne/coil_def.dat is read % % The content of the coil definition file is described in % section 5.6 of the MNE manual % % This routine is modified from the original BrainStorm routine % created by John C. Mosher % % % John C. Mosher % Los Alamos National Laboratory % % Author : Matti Hamalainen, MGH Martinos Center % License : BSD 3-clause % % Copyright (c) 2005 BrainStorm MMIV by the University of Southern California % Principal Investigator: % ** Professor Richard M. Leahy, USC Signal & Image Processing Institute % % % Revision 1.5 2006/09/08 19:27:13 msh % Added KIT coil type to mne_load_coil_def % Allow reading of measurement info by specifying just a file name. % % Revision 1.4 2006/04/25 12:29:10 msh % Added Magnes and CTF reference coil drawings. % % Revision 1.3 2006/04/23 15:29:40 msh % Added MGH to the copyright % % Revision 1.2 2006/04/17 15:01:34 msh % More small improvements. % % Revision 1.1 2006/04/17 11:52:15 msh % Added coil definition stuff % % me='MNE:mne_load_coil_def'; %% Setup the default inputs if nargin == 0 fname = mne_file_name('setup/mne/coil_def.dat'); if ~exist(fname,'file') fname = mne_file_name('share/mne/coil_def.dat'); if ~exist(fname,'file') error(me,'The standard coil definition file was not found'); end end end % Read in the coil_def information %% Open, Read in entire file, close fid = fopen(fname,'rt'); if fid < 0 error(me,'Could not open coil definition file %s',fname); end istr = 1; % string indexer str_array = cell(1000,1); % preallocate str_array{istr} = fgetl(fid); % get first string while ischar(str_array{istr}), istr = istr + 1; str_array{istr} = fgetl(fid); % get next string end fclose(fid); str_array = str_array(1:(istr-1)); % trim allocation %% Read the Header, find the structure % Gather the header lines HeaderLines = strmatch('#',str_array); % lines that begin with a comment % where are the structure lines StructureLines = strmatch('# struct',str_array); % subset of header lines % should be two if length(StructureLines) ~= 2, error(me,'%s anticipates two lines of structures',mfilename) end % with each structure line is a format line FormatLines = strmatch('# format',str_array); % subset of header lines % assume there are also two FieldNames = cell(1,2); Format = cell(1,2); % first structure is the coil information % won't actually use the second structure, just its format for i = 1:2, FieldNames{i} = strread(str_array{StructureLines(i)},'%s'); FieldNames{i}(1:2) = []; % strip the comment symbol and struct keyword [ignore,Format{i}] = strtok(str_array{FormatLines(i)},''''); Format{i} = strrep(Format{i},'''',''); % strip the single quotes end %% Allocate the arrays for loading % interleave every fieldname with a null value struct_arg = [FieldNames{1} cell(length(FieldNames{1}),1)]'; % each column an argument pair % Preallocate a structure [CoilDef(1:100)] = deal(struct(struct_arg{:})); % Convert the rest of the string array to a structure iCoil = 0; % counter iLine = HeaderLines(end); % next line after header while iLine < length(str_array), % number of lines in file iCoil = iCoil + 1; % next coil definition iLine = iLine + 1; % next line % first read the integer information on the coil % begin by breaking the line into two parts, numeric and description [numeric_items, description] = strtok(str_array{iLine},'"'); temp = sscanf(numeric_items,Format{1}); % extra %s doesn't matter % assign temp in the order of the fields for i = 1:(length(FieldNames{1})-1), CoilDef(iCoil).(FieldNames{1}{i}) = temp(i); end % then assign the description % let's strip the quotes first description = strrep(description,'"',''); CoilDef(iCoil).(FieldNames{1}{end}) = description; % now read the coil definition CoilDef(iCoil).coildefs = zeros(CoilDef(iCoil).num_points,7); for i = 1:CoilDef(iCoil).num_points, iLine = iLine + 1; CoilDef(iCoil).coildefs(i,:) = sscanf(str_array{iLine},... Format{2})'; end % now draw it % local subfunction below CoilDef(iCoil).FV = draw_sensor(CoilDef(iCoil)); end CoilDef = CoilDef(1:iCoil); % trim allocation Header = str_array(HeaderLines); function FV = draw_sensor(CoilDef); % create a patch based on the sensor type % The definitions as of 14 October 2005: % for i = 1:3:length(CoilDef),fprintf('%d %s\n',CoilDef(i).id,CoilDef(i).description);end % 2 Neuromag-122 planar gradiometer size = 27.89 mm base = 16.20 mm % 2000 Point magnetometer % 3012 Vectorview planar gradiometer T1 size = 26.39 mm base = 16.80 mm % 3013 Vectorview planar gradiometer T2 size = 26.39 mm base = 16.80 mm % 3022 Vectorview magnetometer T1 size = 25.80 mm % 3023 Vectorview magnetometer T2 size = 25.80 mm % 3024 Vectorview magnetometer T3 size = 21.00 mm % 4001 Magnes WH2500 magnetometer size = 11.50 mm % 4002 Magnes WH3600 gradiometer size = 18.00 mm base = 50.00 mm % 5001 CTF axial gradiometer size = 18.00 mm base = 50.00 mm % 7001 BabySQUID I axial gradiometer size = 6.0 mm base = 50 mm FV = struct('faces',[],'vertices',[]); % standard convention % recall that vertices are 1 per ROW, not column, of matrix switch CoilDef.id case {2,3012,3013,3011} % square figure eight % wound by right hand rule such that +x side is "up" (+z) LongSide = CoilDef.size*1000; % length of long side in mm Offset = 2.5; % mm offset of the center portion of planar grad coil FV.vertices = [0 0 0; Offset 0 0; ... Offset -LongSide/2 0; LongSide/2 -LongSide/2 0; ... LongSide/2 LongSide/2 0; ... Offset LongSide/2 0; Offset 0 0; ... 0 0 0; -Offset 0 0; -Offset -LongSide/2 0; ... -LongSide/2 -LongSide/2 0; ... -LongSide/2 LongSide/2 0; ... -Offset LongSide/2 0; -Offset 0 0]/1000; FV.faces = [1:length(FV.vertices)]; case 2000 % point source LongSide = 2; % mm, tiny square FV.vertices = [-1 1 0;1 1 0;1 -1 0; -1 -1 0]*LongSide/1000/2; FV.faces = [1:length(FV.vertices)]; case {3022, 3023, 3024} % square magnetometer LongSide = CoilDef.size*1000; % mm, length of one side FV.vertices = [-1 1 0;1 1 0;1 -1 0; -1 -1 0]*LongSide/1000/2; FV.faces = [1:length(FV.vertices)]; case {4001,4003,5002} % round magnetometer Radius = CoilDef.size*1000/2; % mm, radius of coil Len_cir = 15; % number of points for circle circle = cos(2*pi*[0:(Len_cir-1)]/Len_cir) + ... sqrt(-1)*sin(2*pi*[0:(Len_cir-1)]/Len_cir); % complex circle unit FV.vertices = ... [real(circle)' imag(circle)' zeros(Len_cir,1)]*Radius/1000; FV.faces = [1:length(FV.vertices)]; case {4002, 5001, 5003, 4004, 6001, 7001} % round coil 1st order gradiometer Radius = CoilDef.size*1000/2; % mm radius Baseline = CoilDef.baseline*1000; % axial separation Len_cir = 15; % number of points for circle % This time, go all the way around circle to close it fully circle = cos(2*pi*[0:Len_cir]/Len_cir) + ... sqrt(-1)*sin(2*pi*[0:Len_cir]/Len_cir); % complex circle unit circle = circle*Radius; % scaled FV.vertices = ... [[real(circle)' imag(circle)' zeros(Len_cir+1,1)];... % first coil [real(circle)' -imag(circle)' zeros(Len_cir+1,1)+Baseline]]/1000; % 2nd coil FV.faces = [1:length(FV.vertices)]; case {5004,4005} % round coil 1st order off-diagonal gradiometer Radius = CoilDef.size*1000/2; % mm radius Baseline = CoilDef.baseline*1000; % axial separation Len_cir = 15; % number of points for circle % This time, go all the way around circle to close it fully circle = cos(2*pi*[0:Len_cir]/Len_cir) + ... sqrt(-1)*sin(2*pi*[0:Len_cir]/Len_cir); % complex circle unit circle = circle*Radius; % scaled FV.vertices = ... [[real(circle)'+Baseline/2.0 imag(circle)' zeros(Len_cir+1,1)];... % first coil [real(circle)'-Baseline/2.0 -imag(circle)' zeros(Len_cir+1,1)]]/1000; % 2nd coil FV.faces = [1:length(FV.vertices)]; otherwise FV = []; end
github
lcnhappe/happe-master
fiff_find_evoked.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/mne/fiff_find_evoked.m
2,846
utf_8
f7c5e4fd4395754f0e87d3fe6e984d62
function [data_sets] = fiff_find_evoked(fname) % % [data_sets] = fiff_find_evoked(fname) % % Find all evoked data sets in a fif file and create a list of descriptors % % % Author : Matti Hamalainen, MGH Martinos Center % License : BSD 3-clause % global FIFF; if isempty(FIFF) FIFF = fiff_define_constants(); end me = 'MNE:fiff_find_evoked'; % % Open the file % [ fid, tree ] = fiff_open(fname); data_sets = struct('comment',{},'aspect_kind',{},'aspect_name',{}); % % Find all evoked data sets % evoked = fiff_dir_tree_find(tree, FIFF.FIFFB_EVOKED); if length(evoked) == 0 fclose(fid); return end % % Identify the aspects % naspect = 0; for k = 1:length(evoked) sets(k).aspects = fiff_dir_tree_find(evoked(k), FIFF.FIFFB_ASPECT); sets(k).naspect = length(sets(k).aspects); naspect = naspect + sets(k).naspect; end % % Collect the desired information % count = 1; for k = 1:length(evoked) evoked_comment = find_tag(evoked(k), FIFF.FIFF_COMMENT); for a = 1:sets(k).naspect aspect_comment = find_tag(sets(k).aspects(a), FIFF.FIFF_COMMENT); aspect_kind = find_tag(sets(k).aspects(a), FIFF.FIFF_ASPECT_KIND); if ~isempty(aspect_comment) data_sets(count).comment = aspect_comment.data; elseif ~isempty(evoked_comment) data_sets(count).comment = evoked_comment.data; else data_sets(count).comment = 'No comment'; end if ~isempty(aspect_kind) data_sets(count).aspect_kind = aspect_kind.data; else data_sets(count).aspect_kind = -1; end switch data_sets(count).aspect_kind case FIFF.FIFFV_ASPECT_AVERAGE data_sets(count).aspect_name = 'Average'; case FIFF.FIFFV_ASPECT_STD_ERR data_sets(count).aspect_name = 'Standard error'; case FIFF.FIFFV_ASPECT_SINGLE data_sets(count).aspect_name = 'Single'; case FIFF.FIFFV_ASPECT_SUBAVERAGE data_sets(count).aspect_name = 'Subaverage'; case FIFF.FIFFV_ASPECT_ALTAVERAGE data_sets(count).aspect_name = 'Alt. subaverage'; case FIFF.FIFFV_ASPECT_SAMPLE data_sets(count).aspect_name = 'Sample'; case FIFF.FIFFV_ASPECT_POWER_DENSITY data_sets(count).aspect_name = 'Power density spectrum'; case FIFF.FIFFV_ASPECT_DIPOLE_WAVE data_sets(count).aspect_name = 'Dipole source waveform'; otherwise data_sets(count).aspect_name = 'Unknown'; end count = count + 1; end end fclose(fid); return function [tag] = find_tag(node, findkind) for p = 1:node.nent kind = node.dir(p).kind; pos = node.dir(p).pos; if kind == findkind tag = fiff_read_tag(fid, pos); return end end tag = []; return end end
github
lcnhappe/happe-master
load_dicom_series.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/freesurfer/load_dicom_series.m
3,258
utf_8
b4de6c347c9d4453d512c9f0b5cfa58a
function [vol, M, tmpdcminfo, mr_parms] = load_dicom_series(seriesno,dcmdir,dcmfile) % [vol, M, dcminfo] = load_dicom_series(seriesno,<dcmdir>,<dcmfile>) % % Reads in a dicom series given: % 1. The series number and directory, or % 2. A dicom file from the desired series % % If the series number is given but no dcmdir is given, then the % current directory is assumed. All files in the dcmdir are examined % and the dicom files for the given series are then loaded. % % If a dicom file is given, then seriesno and dcmdir are determined % from the file and file name. % % mr_parms = [tr flipangle te ti] % % Bugs: will not load multiple frames or mosaics properly. % % % load_dicom_series.m % % Original Author: Doug Greve % CVS Revision Info: % $Author: nicks $ % $Date: 2011/03/02 00:04:12 $ % $Revision$ % % Copyright © 2011 The General Hospital Corporation (Boston, MA) "MGH" % % Terms and conditions for use, reproduction, distribution and contribution % are found in the 'FreeSurfer Software License Agreement' contained % in the file 'LICENSE' found in the FreeSurfer distribution, and here: % % https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferSoftwareLicense % % Reporting: [email protected] % if(nargin < 1 | nargin > 3) fprintf('[vol, M, dcminfo] = load_dicom_series(seriesno,<dcmdir>,<dcmfile>)\n'); return; end if(nargin == 1) dcmdir = '.'; end if(nargin == 3) [isdcm dcminfo] = isdicomfile(dcmfile); if(~isdcm) fprintf('ERROR: %s is not a dicomfile \n',dcmfile); return; end if(~isfield(dcminfo,'SeriesNumber')) fprintf('ERROR: %s does not have a series number \n',dcmfile); return; end seriesno = dcminfo.SeriesNumber; dcmdir = getdcmdir(dcmfile); end % Get a list of files in the directory % flist = dir(dcmdir); nfiles = length(flist); fprintf('INFO: Found %d files in %s\n',nfiles,dcmdir); if(nfiles == 0) fprintf('ERROR: no files in %s\n',dcmdir); return; end % Determine which ones belong to series % seriesflist = []; nth = 1; fprintf('INFO: searching files for dicom, series %d\n',seriesno); tic; for n = 1:nfiles %if(n==1 | rem(n,20)==0) fprintf('n = %4d, t = %g\n',n,toc); end pathname = sprintf('%s/%s',dcmdir,flist(n).name); [isdcm dcminfo] = isdicomfile(pathname); if(isdcm) if(isfield(dcminfo,'SeriesNumber')) if(dcminfo.SeriesNumber == seriesno) seriesflist = strvcat(seriesflist,pathname); dcminfolist(nth) = dcminfo; dcminfo0 = dcminfo; nth = nth+1; end end end end if(nth==1) fprintf('ERROR: could not find any dicom files in %s or none in series %d\n',dcmdir,seriesno); return; end dcminfo = dcminfo0; fprintf('INFO: search time %g sec\n',toc); nfilesseries = size(seriesflist,1); fprintf('INFO: Found %d files in series %d\n',nfilesseries,seriesno); if(nfilesseries == 0) fprintf('ERROR: no files in series\n'); return; end % Load the volume % [vol M tmpdcminfo mr_parms] = load_dicom_fl(seriesflist); return; %---------------------------------------------------% function dcmdir = getdcmdir(dcmfile) ind = findstr(dcmfile,filesep); if(~isempty(ind)) if(max(ind)~=1) dcmdir = dcmfile(1:max(ind)-1); else dcmdir = filesep; end else dcmdir = '.'; end return;
github
lcnhappe/happe-master
load_dicom_fl.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/freesurfer/load_dicom_fl.m
5,504
utf_8
a1b99a4d200049ebdb809c0b684b98a1
function [vol, M, dcminfo, mr_parms] = load_dicom_fl(flist) % [vol, M, dcminfo, mr_parms] = load_dicom_fl(flist) % % Loads a volume from the dicom files in flist. % % The volume dimensions are arranged such that the % readout dimension is first, followed by the phase-encode, % followed by the slices (this is not implemented yet) % % M is the 4x4 vox2ras transform such that % vol(i1,i2,i3), xyz1 = M*[i1 i2 i3 1] where the % indicies are 0-based. % % mr_parms = [tr flipangle te ti] % % Does not handle multiple frames correctly yet. % % % load_dicom_fl.m % % Original Author: Doug Greve % CVS Revision Info: % $Author: nicks $ % $Date: 2011/03/02 00:04:12 $ % $Revision$ % % Copyright ?? 2011 The General Hospital Corporation (Boston, MA) "MGH" % % Terms and conditions for use, reproduction, distribution and contribution % are found in the 'FreeSurfer Software License Agreement' contained % in the file 'LICENSE' found in the FreeSurfer distribution, and here: % % https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferSoftwareLicense % % Reporting: [email protected] % vol=[]; M=[]; if(nargin ~= 1) fprintf('[vol, M] = load_dicom_fl(flist)\n'); return; end nfiles = size(flist,1); tic fprintf('Loading dicom info foreach file \n'); for n = 1:nfiles fname = deblank(flist(n,:)); % fprintf('n = %d/%d, %s %g\n',n,nfiles,fname,toc); tmpinfo = dicominfo(fname); if(isempty(tmpinfo)) fprintf('ERROR: reading %s\n',fname); return; end if(n > 1) % Check that the nth series number agrees with the first if(tmpinfo.SeriesNumber ~= dcminfo0(1).SeriesNumber) fprintf('ERROR: series number inconsistency (%s)\n',fname); return; end end tmpinfo.fname = fname; dcminfo0(n) = tmpinfo; end % Sort by slice location % dcminfo = sort_by_sliceloc(dcminfo0); % Slice direction cosine % sdc = dcminfo(nfiles).ImagePositionPatient-dcminfo(1).ImagePositionPatient; sdc = sdc /sqrt(sum(sdc.^2)); % Distance between slices % dslice = sqrt(sum((dcminfo(2).ImagePositionPatient-dcminfo(1).ImagePositionPatient).^2)); % Matrix of direction cosines % Mdc = zeros(3,3); Mdc(:,1) = dcminfo(1).ImageOrientationPatient(1:3); Mdc(:,2) = dcminfo(1).ImageOrientationPatient(4:6); Mdc(:,3) = sdc; % Voxel resolution % delta = [dcminfo(1).PixelSpacing; dslice]; D = diag(delta); % XYZ of first voxel in first slice % P0 = dcminfo(1).ImagePositionPatient; % Change Siemens to be RAS % % GE is also LPS - change it to be RAS, too - ebeth % try Manufacturer = dcminfo(1).Manufacturer; catch Manufacturer = 'unknown'; end if(strcmpi(Manufacturer,'Siemens') | strcmpi(Manufacturer,'ge medical systems')) % Change to RAS Mdc(1,:) = -Mdc(1,:); Mdc(2,:) = -Mdc(2,:); P0(1) = -P0(1); P0(2) = -P0(2); end % Compute vox2ras transform % M = [Mdc*D P0; 0 0 0 1]; if (0&strcmpi(Manufacturer,'Siemens')) % Correcting for P0 being at corner of % the first voxel instead of at the center M = M*[[eye(3) [0.5 0.5 0]']; 0 0 0 1]; %' end % Pre-allocate vol. Note: column and row designations do % not really mean anything. The "column" is the fastest % dimension. The "row" is the next fastest, etc. ndim1 = dcminfo(1).Columns; ndim2 = dcminfo(1).Rows; ndim3 = nfiles; vol = zeros(ndim1,ndim2,ndim3); fprintf('Loading data from each file.\n'); for n = 1:nfiles %fprintf('n = %d, %g\n',n,toc); fname = dcminfo(n).fname; x = dicomread(fname); if(isempty(x)) fprintf('ERROR: could not load pixel data from %s\n',fname); return; end % Note: dicomread will transposed the image. This is supposed % to help. Anyway, to make the vox2ras transform agree with % the volume, the image is transposed back. vol(:,:,n) = x'; %' end % Reorder dimensions so that ReadOut dim is first % if(0 & ~strcmpi(dcminfo(1).PhaseEncodingDirection,'ROW')) % This does not work fprintf('INFO: permuting vol so that ReadOut is first dim\n'); vol = permute(vol,[2 1 3]); Mtmp = M; M(:,1) = Mtmp(:,2); M(:,2) = Mtmp(:,1); end % Lines below correct for the Z-offset in GE machines - ebeth % % We're told ge machines recenter along superior/inferior axis but % don't update c_ras - but now c_s should be zero. if(strcmpi(Manufacturer,'ge medical systems')) % Lines below correct for the Z-offset in GE machines firstZ = dcminfo(1).ImagePositionPatient(3); lastXYZ = M*[size(vol)';1]; %' % size(imvol) = number of slices in all 3 dirs lastZ = lastXYZ(3); offsetZ = (lastZ + firstZ)/2.0; % Z0 = Z + offsetZ; [XYZ1]' = M*[CRS1]', need to add to M(3,4)(?) M(3,4) = M(3,4) - offsetZ; end % if(strcmpi(Manufacturer,'ge medical systems')) % M(3,4) = 0; % Wow - that was actually completely wrong! % end % Pull out some info from the header % if(isfield(dcminfo(1),'FlipAngle')) FlipAngle = pi*dcminfo(1).FlipAngle/180; else FlipAngle = 0; end if(isfield(dcminfo(1),'EchoTime')) EchoTime = dcminfo(1).EchoTime; else EchoTime = 0; end if(isfield(dcminfo(1),'RepetitionTime')) RepetitionTime = dcminfo(1).RepetitionTime; else RepetitionTime = 0; end InversionTime = 0; mr_parms = [RepetitionTime FlipAngle EchoTime InversionTime]; return; %----------------------------------------------------------% function dcminfo2 = sort_by_sliceloc(dcminfo) nslices = length(dcminfo); sliceloc = zeros(nslices,1); for n = 1:nslices sliceloc(n) = dcminfo(n).SliceLocation; end [tmp ind] = sort(sliceloc); dcminfo2 = dcminfo(ind); return; %----------------------------------------------------------%
github
lcnhappe/happe-master
tukeywin.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/tukeywin.m
2,102
utf_8
92cee22ee44a0bf1650a07edd3ef943a
% Copyright (C) 2007 Laurent Mazet <[email protected]> % % This program is free software; you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free Software % Foundation; either version 3 of the License, or (at your option) any later % version. % % This program is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or % FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more % details. % % You should have received a copy of the GNU General Public License along with % this program; if not, see <http://www.gnu.org/licenses/>. % % -*- texinfo -*- % @deftypefn {Function File} {@var{w} =} tukeywin (@var{L}, @var{r}) % Return the filter coefficients of a Tukey window (also known as the % cosine-tapered window) of length @var{L}. @var{r} defines the ratio % between the constant section and and the cosine section. It has to be % between 0 and 1. The function returns a Hanning window for @var{r} % egals 0 and a full box for @var{r} egals 1. By default @var{r} is set % to 1/2. % % For a definition of the Tukey window, see e.g. Fredric J. Harris, % 'On the Use of Windows for Harmonic Analysis with the Discrete Fourier % Transform, Proceedings of the IEEE', Vol. 66, No. 1, January 1978, % Page 67, Equation 38. % @end deftypefn function w = tukeywin (L, r) if nargin<2 r = 1/2; end if (nargin < 1 || nargin > 2) help(mfilename); elseif (nargin == 2) % check that 0 < r < 1 if r > 1 r = 1; elseif r < 0 r = 0; end % if end % if % generate window switch r case 0, % full box w = ones (L, 1); case 1, % Hanning window w = hanning (L); otherwise % cosine-tapered window t = linspace(0,1,L); t = t(1:end/2)'; w = (1 + cos(pi*(2*t/r-1)))/2; w(floor(r*(L-1)/2)+2:end) = 1; w = [w; ones(mod(L,2)); flipud(w)]; end % switch end %!demo %! L = 100; %! r = 1/3; %! w = tukeywin (L, r); %! title(sprintf('%d-point Tukey window, R = %d/%d', L, [p, q] = rat(r), q)); %! plot(w);
github
lcnhappe/happe-master
rectwin.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/rectwin.m
990
utf_8
6fcae9032382b3785fa1a5fc7d35d0bd
% Copyright (C) 2007 Sylvain Pelissier <[email protected]> % % This program is free software; you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free Software % Foundation; either version 3 of the License, or (at your option) any later % version. % % This program is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or % FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more % details. % % You should have received a copy of the GNU General Public License along with % this program; if not, see <http://www.gnu.org/licenses/>. % % -*- texinfo -*- % @deftypefn {Function File} {[@var{w}] =} rectwin(@var{L}) % Return the filter coefficients of a rectangle window of length L. % @seealso{hamming, hanning} % @end deftypefn function w = rectwin(L) if (nargin < 1); help(mfilename); end w = ones(round(L),1); end
github
lcnhappe/happe-master
triang.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/triang.m
2,254
utf_8
922302c6c872d9c51d61c97a76761328
% Copyright (C) 2000-2002 Paul Kienzle <[email protected]> % % This program is free software; you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free Software % Foundation; either version 3 of the License, or (at your option) any later % version. % % This program is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or % FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more % details. % % You should have received a copy of the GNU General Public License along with % this program; if not, see <http://www.gnu.org/licenses/>. % % usage: w = triang (L) % % Returns the filter coefficients of a triangular window of length L. % Unlike the bartlett window, triang does not go to zero at the edges % of the window. For odd L, triang(L) is equal to bartlett(L+2) except % for the zeros at the edges of the window. function w = triang(L) if (nargin ~= 1) help(mfilename); elseif (~isscalar(L) || L ~= fix (L) || L < 1) error('triang: L has to be an integer > 0'); end % if w = 1 - abs ([-(L-1):2:(L-1)]' / (L+rem(L,2))); end %!error triang %!error triang(1,2) %!error triang([1,2]); %!assert (triang(1), 1) %!assert (triang(2), [1; 1]/2) %!assert (triang(3), [1; 2; 1]/2); %!assert (triang(4), [1; 3; 3; 1]/4); %!test %! x = bartlett(5); %! assert (triang(3), x(2:4)); %!demo %! subplot(221); axis([-1, 1, 0, 1.3]); grid('on'); %! title('comparison with continuous for odd n'); %! n=7; k=(n-1)/2; t=[-k:0.1:k]/(k+1); %! plot(t,1-abs(t),';continuous;',[-k:k]/(k+1),triang(n),'g*;discrete;'); %! %! subplot(222); axis([-1, 1, 0, 1.3]); grid('on'); %! n=8; k=(n-1)/2; t=[-k:0.1:k]/(k+1/2); %! title('note the higher peak for even n'); %! plot(t,1+1/n-abs(t),';continuous;',[-k:k]/(k+1/2),triang(n),'g*;discrete;'); %! %! subplot(223); axis; grid('off'); %! title('n odd, triang(n)==bartlett(n+2)'); %! n=7; %! plot(0:n+1,bartlett(n+2),'g-*;bartlett;',triang(n),'r-+;triang;'); %! %! subplot(224); axis; grid('off'); %! title('n even, triang(n)!=bartlett(n+2)'); %! n=8; %! plot(0:n+1,bartlett(n+2),'g-*;bartlett;',triang(n),'r-+;triang;'); %! %! subplot(111); title('');
github
lcnhappe/happe-master
bohmanwin.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/bohmanwin.m
1,381
utf_8
b837d6f243c8cd46b91ac9846a12da56
% Copyright (C) 2007 Sylvain Pelissier <[email protected]> % % This program is free software; you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free Software % Foundation; either version 3 of the License, or (at your option) any later % version. % % This program is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or % FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more % details. % % You should have received a copy of the GNU General Public License along with % this program; if not, see <http://www.gnu.org/licenses/>. % % -*- texinfo -*- % @deftypefn {Function File} {[@var{w}] =} bohmanwin(@var{L}) % Compute the Bohman window of lenght L. % @seealso{rectwin, bartlett} % @end deftypefn function [w] = bohmanwin(L) if (nargin < 1) help(mfilename) elseif(~ isscalar(L)) error('L must be a number'); elseif(L < 0) error('L must be positive'); end if(L ~= floor(L)) L = round(L); warning('L rounded to the nearest integer.'); end if(L == 0) w = []; elseif(L == 1) w = 1; else N = L-1; n = -N/2:N/2; w = (1-2.*abs(n)./N).*cos(2.*pi.*abs(n)./N) + (1./pi).*sin(2.*pi.*abs(n)./N); w(1) = 0; w(length(w))=0; w = w'; end end
github
lcnhappe/happe-master
hanning.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/hanning.m
1,970
utf_8
78215b654e6e105faa447902fa6cc81c
function [tap] = hanning(n, str) %HANNING Hanning window. % HANNING(N) returns the N-point symmetric Hanning window in a column % vector. Note that the first and last zero-weighted window samples % are not included. % % HANNING(N,'symmetric') returns the same result as HANNING(N). % % HANNING(N,'periodic') returns the N-point periodic Hanning window, % and includes the first zero-weighted window sample. % % NOTE: Use the HANN function to get a Hanning window which has the % first and last zero-weighted samples. % % See also BARTLETT, BLACKMAN, BOXCAR, CHEBWIN, HAMMING, HANN, KAISER % and TRIANG. % % This is a drop-in replacement to bypass the signal processing toolbox % Copyright (c) 2010, Jan-Mathijs Schoffelen, DCCN Nijmegen % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if nargin==1, str = 'symmetric'; end switch str, case 'periodic' % Includes the first zero sample tap = [0; hanningX(n-1)]; case 'symmetric' % Does not include the first and last zero sample tap = hanningX(n); end function tap = hanningX(n) % compute taper N = n+1; tap = 0.5*(1-cos((2*pi*(1:n))./N))'; % make symmetric halfn = floor(n/2); tap( (n+1-halfn):n ) = flipud(tap(1:halfn));
github
lcnhappe/happe-master
filtfilt.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/filtfilt.m
3,297
iso_8859_1
d01a26a827bc3379f05bbc57f46ac0a9
% Copyright (C) 1999 Paul Kienzle % Copyright (C) 2007 Francesco Potortì % Copyright (C) 2008 Luca Citi % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; If not, see <http://www.gnu.org/licenses/>. % usage: y = filtfilt(b, a, x) % % Forward and reverse filter the signal. This corrects for phase % distortion introduced by a one-pass filter, though it does square the % magnitude response in the process. That's the theory at least. In % practice the phase correction is not perfect, and magnitude response % is distorted, particularly in the stop band. %% % Example % [b, a]=butter(3, 0.1); % 10 Hz low-pass filter % t = 0:0.01:1.0; % 1 second sample % x=sin(2*pi*t*2.3)+0.25*randn(size(t)); % 2.3 Hz sinusoid+noise % y = filtfilt(b,a,x); z = filter(b,a,x); % apply filter % plot(t,x,';data;',t,y,';filtfilt;',t,z,';filter;') % Changelog: % 2000 02 [email protected] % - pad with zeros to load up the state vector on filter reverse. % - add example % 2007 12 [email protected] % - use filtic to compute initial and final states % - work for multiple columns as well % 2008 12 [email protected] % - fixed instability issues with IIR filters and noisy inputs % - initial states computed according to Likhterov & Kopeika, 2003 % - use of a "reflection method" to reduce end effects % - added some basic tests % TODO: (pkienzle) My version seems to have similar quality to matlab, % but both are pretty bad. They do remove gross lag errors, though. function y = filtfilt(b, a, x) if (nargin ~= 3) usage('y=filtfilt(b,a,x)'); end rotate = (size(x, 1)==1); if rotate % a row vector x = x(:); % make it a column vector end lx = size(x,1); a = a(:).'; b = b(:).'; lb = length(b); la = length(a); n = max(lb, la); lrefl = 3 * (n - 1); if la < n, a(n) = 0; end if lb < n, b(n) = 0; end % Compute a the initial state taking inspiration from % Likhterov & Kopeika, 2003. "Hardware-efficient technique for % minimizing startup transients in Direct Form II digital filters" kdc = sum(b) / sum(a); if (abs(kdc) < inf) % neither NaN nor +/- Inf si = fliplr(cumsum(fliplr(b - kdc * a))); else si = zeros(size(a)); % fall back to zero initialization end si(1) = []; y = zeros(size(x)); for c = 1:size(x, 2) % filter all columns, one by one v = [2*x(1,c)-x((lrefl+1):-1:2,c); x(:,c); 2*x(end,c)-x((end-1):-1:end-lrefl,c)]; % a column vector % Do forward and reverse filtering v = filter(b,a,v,si*v(1)); % forward filter v = flipud(filter(b,a,flipud(v),si*v(end))); % reverse filter y(:,c) = v((lrefl+1):(lx+lrefl)); end if (rotate) % x was a row vector y = rot90(y); % rotate it back end
github
lcnhappe/happe-master
nuttallwin.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/nuttallwin.m
1,316
utf_8
2a8b412e307f23d07700757c675abcc1
% Copyright (C) 2007 Sylvain Pelissier <[email protected]> % % This program is free software; you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free Software % Foundation; either version 3 of the License, or (at your option) any later % version. % % This program is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or % FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more % details. % % You should have received a copy of the GNU General Public License along with % this program; if not, see <http://www.gnu.org/licenses/>. % % -*- texinfo -*- % @deftypefn {Function File} {[@var{w}] =} nuttallwin(@var{L}) % Compute the Blackman-Harris window defined by Nuttall of length L. % @seealso{blackman, blackmanharris} % @end deftypefn function [w] = nuttallwin(L) if (nargin ~= 1); help(mfilename); end if(L < 0) error('L must be positive'); end if(L ~= floor(L)) L = round(L); warning('L rounded to the nearest integer.'); end N = L-1; a0 = 0.355768; a1 = 0.487396; a2 = 0.144232; a3 = 0.012604; n = -N/2:N/2; w = a0 + a1.*cos(2.*pi.*n./N) + a2.*cos(4.*pi.*n./N) + a3.*cos(6.*pi.*n./N); w = w'; end
github
lcnhappe/happe-master
hann.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/hann.m
66
utf_8
779d38839745c5c57530f4c470cc1352
% w = hann(n) % see hanning function w = hann(n), w=hanning(n);
github
lcnhappe/happe-master
kaiser.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/kaiser.m
1,745
utf_8
bae51aff1f9eb7c65b82a58fb3049d34
% Copyright (C) 1995, 1996, 1997 Kurt Hornik <[email protected]> % Copyright (C) 2000 Paul Kienzle <[email protected]> % % This program is free software; you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free Software % Foundation; either version 3 of the License, or (at your option) any later % version. % % This program is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or % FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more % details. % % You should have received a copy of the GNU General Public License along with % this program; if not, see <http://www.gnu.org/licenses/>. % % usage: kaiser (L, beta) % % Returns the filter coefficients of the L-point Kaiser window with % parameter beta. % % For the definition of the Kaiser window, see A. V. Oppenheim & % R. W. Schafer, 'Discrete-Time Signal Processing'. % % The continuous version of width L centered about x=0 is: % % besseli(0, beta * sqrt(1-(2*x/L).^2)) % k(x) = -------------------------------------, L/2 <= x <= L/2 % besseli(0, beta) % % See also: kaiserord function w = kaiser (L, beta) if nargin<2 beta = 0.5; end if (nargin < 1) help(mfilename); elseif ~(isscalar (L) && (L == round (L)) && (L > 0)) error ('kaiser: L has to be a positive integer'); elseif ~(isscalar (beta) && (beta == real (beta))) error ('kaiser: beta has to be a real scalar'); end % if if (L == 1) w = 1; else m = L - 1; k = (0 : m)'; k = 2 * beta / m * sqrt (k .* (m - k)); w = besseli (0, k) / besseli (0, beta); end % if end %!demo %! % use demo('kaiserord');
github
lcnhappe/happe-master
window.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/window.m
1,240
utf_8
a1ed726ea9ff030e26b60e47cd280d12
% Copyright (C) 2008 David Bateman % % This program is free software; you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free Software % Foundation; either version 3 of the License, or (at your option) any later % version. % % This program is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or % FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more % details. % % You should have received a copy of the GNU General Public License along with % this program; if not, see <http://www.gnu.org/licenses/>. % % -*- texinfo -*- % @deftypefn {Function File} {@var{w} =} window (@var{f}, @var{n}, @var{opts}) % Create a @var{n}-point windowing from the function @var{f}. The % function @var{f} can be for example @code{@@blackman}. Any additional % arguments @var{opt} are passed to the windowing function. % @end deftypefn function wout = window (f, n, varargin) if (nargin == 0) error ('window: UI tool not supported'); elseif (nargin > 1) w = feval (f, n, varargin{:}); if (nargout > 0) wout = w; end % if else help(mfilename); end % if end
github
lcnhappe/happe-master
blackmanharris.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/blackmanharris.m
1,188
utf_8
58ad36fc97b524266d6a9db98fb6e6ee
% Copyright (C) 2007 Sylvain Pelissier <[email protected]> % % This program is free software; you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free Software % Foundation; either version 3 of the License, or (at your option) any later % version. % % This program is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or % FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more % details. % % You should have received a copy of the GNU General Public License along with % this program; if not, see <http://www.gnu.org/licenses/>. % % -*- texinfo -*- % @deftypefn {Function File} {[@var{w}] =} blackmanharris(@var{L}) % Compute the Blackman-Harris window. % @seealso{rectwin, bartlett} % @end deftypefn function [w] = blackmanharris (L) if (nargin < 1) help(mfilename); elseif(~ isscalar(L)) error('L must be a number'); end % if N = L-1; a0 = 0.35875; a1 = 0.48829; a2 = 0.14128; a3 = 0.01168; n = 0:N; w = a0 - a1.*cos(2.*pi.*n./N) + a2.*cos(4.*pi.*n./N) - a3.*cos(6.*pi.*n./N); end
github
lcnhappe/happe-master
butter.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/butter.m
3,578
utf_8
696de0a27da88cbdd29b04aed067dbce
% Copyright (C) 1999 Paul Kienzle % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; If not, see <http://www.gnu.org/licenses/>. % Generate a butterworth filter. % Default is a discrete space (Z) filter. % % [b,a] = butter(n, Wc) % low pass filter with cutoff pi*Wc radians % % [b,a] = butter(n, Wc, 'high') % high pass filter with cutoff pi*Wc radians % % [b,a] = butter(n, [Wl, Wh]) % band pass filter with edges pi*Wl and pi*Wh radians % % [b,a] = butter(n, [Wl, Wh], 'stop') % band reject filter with edges pi*Wl and pi*Wh radians % % [z,p,g] = butter(...) % return filter as zero-pole-gain rather than coefficients of the % numerator and denominator polynomials. % % [...] = butter(...,'s') % return a Laplace space filter, W can be larger than 1. % % [a,b,c,d] = butter(...) % return state-space matrices % % References: % % Proakis & Manolakis (1992). Digital Signal Processing. New York: % Macmillan Publishing Company. % Author: Paul Kienzle <[email protected]> % Modified by: Doug Stewart <[email protected]> Feb, 2003 function [a, b, c, d] = butter (n, W, varargin) if (nargin>4 || nargin<2) || (nargout>4 || nargout<2) error ('usage: [b, a] or [z, p, g] or [a,b,c,d] = butter (n, W [, "ftype"][,"s"])'); end % interpret the input parameters if (~(length(n)==1 && n == round(n) && n > 0)) error ('butter: filter order n must be a positive integer'); end stop = 0; digital = 1; for i=1:length(varargin) switch varargin{i} case 's', digital = 0; case 'z', digital = 1; case { 'high', 'stop' }, stop = 1; case { 'low', 'pass', 'bandpass' }, stop = 0; otherwise, error ('butter: expected [high|stop] or [s|z]'); end end [r, c]=size(W); if (~(length(W)<=2 && (r==1 || c==1))) error ('butter: frequency must be given as w0 or [w0, w1]'); elseif (~(length(W)==1 || length(W) == 2)) error ('butter: only one filter band allowed'); elseif (length(W)==2 && ~(W(1) < W(2))) error ('butter: first band edge must be smaller than second'); end if ( digital && ~all(W >= 0 & W <= 1)) error ('butter: critical frequencies must be in (0 1)'); elseif ( ~digital && ~all(W >= 0 )) error ('butter: critical frequencies must be in (0 inf)'); end % Prewarp to the band edges to s plane if digital T = 2; % sampling frequency of 2 Hz W = 2/T*tan(pi*W/T); end % Generate splane poles for the prototype butterworth filter % source: Kuc C = 1; % default cutoff frequency pole = C*exp(1i*pi*(2*[1:n] + n - 1)/(2*n)); if mod(n,2) == 1, pole((n+1)/2) = -1; end % pure real value at exp(i*pi) zero = []; gain = C^n; % splane frequency transform [zero, pole, gain] = sftrans(zero, pole, gain, W, stop); % Use bilinear transform to convert poles to the z plane if digital [zero, pole, gain] = bilinear(zero, pole, gain, T); end % convert to the correct output form if nargout==2, a = real(gain*poly(zero)); b = real(poly(pole)); elseif nargout==3, a = zero; b = pole; c = gain; else % output ss results [a, b, c, d] = zp2ss (zero, pole, gain); end
github
lcnhappe/happe-master
parzenwin.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/parzenwin.m
1,301
utf_8
5e0e2262856d9c53bb520b02b54f2653
% Copyright (C) 2007 Sylvain Pelissier <[email protected]> % % This program is free software; you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free Software % Foundation; either version 3 of the License, or (at your option) any later % version. % % This program is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or % FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more % details. % % You should have received a copy of the GNU General Public License along with % this program; if not, see <http://www.gnu.org/licenses/>. % % -*- texinfo -*- % @deftypefn {Function File} {[@var{w}] =} parzenwin(@var{L}) % Compute the Parzen window of lenght L. % @seealso{rectwin, bartlett} % @end deftypefn function w = parzenwin (L) if(nargin ~= 1) help(mfilename); elseif(L < 0) error('L must be positive'); end if(L ~= floor(L)) L = round(L); end N = L-1; n = -(N/2):N/2; n1 = n(find(abs(n) <= N/4)); n2 = n(find(n > N/4)); n3 = n(find(n < -N/4)); w1 = 1 -6.*(abs(n1)./(L/2)).^2 + 6*(abs(n1)./(L/2)).^3; w2 = 2.*(1-abs(n2)./(L/2)).^3; w3 = 2.*(1-abs(n3)./(L/2)).^3; w = [w3 w1 w2]'; end
github
lcnhappe/happe-master
gausswin.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/gausswin.m
1,116
utf_8
17daab2749d4ce5c84bb5e676271e8f0
% Copyright (C) 1999 Paul Kienzle <[email protected]> % % This program is free software; you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free Software % Foundation; either version 3 of the License, or (at your option) any later % version. % % This program is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or % FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more % details. % % You should have received a copy of the GNU General Public License along with % this program; if not, see <http://www.gnu.org/licenses/>. % % usage: w = gausswin(L, a) % % Generate an L-point gaussian window of the given width. Use larger a % for a narrow window. Use larger L for a smoother curve. % % w = exp ( -(a*x)^2/2 ) % % for x = linspace(-(L-1)/L, (L-1)/L, L) function x = gausswin(L, w) if nargin < 1 || nargin > 2 help(mfilename); end if nargin == 1, w = 2.5; end % if x = exp ( -0.5 * ( w/L * [ -(L-1) : 2 : L-1 ]' ) .^ 2 ); end
github
lcnhappe/happe-master
barthannwin.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/barthannwin.m
1,173
utf_8
c90d57c40549a232f05664d193b8cb7a
% Copyright (C) 2007 Sylvain Pelissier <[email protected]> % % This program is free software; you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free Software % Foundation; either version 3 of the License, or (at your option) any later % version. % % This program is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or % FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more % details. % % You should have received a copy of the GNU General Public License along with % this program; if not, see <http://www.gnu.org/licenses/>. % % -*- texinfo -*- % @deftypefn {Function File} {[@var{w}] =} barthannwin(@var{L}) % Compute the modified Bartlett-Hann window of lenght L. % @seealso{rectwin, bartlett} % @end deftypefn function [w] = barthannwin(L) if (nargin < 1) help(mfilename); elseif (~ isscalar(L) || L < 0) error('L must be a positive integer'); end % if L = round(L); N = L-1; n = 0:N; w = 0.62 -0.48.*abs(n./(L-1) - 0.5)+0.38*cos(2.*pi*(n./(L-1)-0.5)); w = w'; end
github
lcnhappe/happe-master
postpad.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/private/postpad.m
2,013
utf_8
2c9539d77ff0f85c9f89108f4dc811e0
% Copyright (C) 1994, 1995, 1996, 1997, 1998, 2000, 2002, 2004, 2005, % 2006, 2007, 2008, 2009 John W. Eaton % % This file is part of Octave. % % Octave is free software; you can redistribute it and/or modify it % under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or (at % your option) any later version. % % Octave is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Octave; see the file COPYING. If not, see % <http://www.gnu.org/licenses/>. % -*- texinfo -*- % @deftypefn {Function File} {} postpad (@var{x}, @var{l}, @var{c}) % @deftypefnx {Function File} {} postpad (@var{x}, @var{l}, @var{c}, @var{dim}) % @seealso{prepad, resize} % @end deftypefn % Author: Tony Richardson <[email protected]> % Created: June 1994 function y = postpad (x, l, c, dim) if nargin < 2 || nargin > 4 %print_usage (); error('wrong number of input arguments, should be between 2 and 4'); end if nargin < 3 || isempty(c) c = 0; else if ~isscalar(c) error ('postpad: third argument must be empty or a scalar'); end end nd = ndims(x); sz = size(x); if nargin < 4 % Find the first non-singleton dimension dim = 1; while dim < nd+1 && sz(dim)==1 dim = dim + 1; end if dim > nd dim = 1; elseif ~(isscalar(dim) && dim == round(dim)) && dim > 0 && dim< nd+1 error('postpad: dim must be an integer and valid dimension'); end end if ~isscalar(l) || l<0 error ('second argument must be a positive scalar'); end if dim > nd sz(nd+1:dim) = 1; end d = sz(dim); if d >= l idx = cell(1,nd); for i = 1:nd idx{i} = 1:sz(i); end idx{dim} = 1:l; y = x(idx{:}); else sz(dim) = l-d; y = cat(dim, x, c * ones(sz)); end
github
lcnhappe/happe-master
sftrans.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/private/sftrans.m
7,947
utf_8
f64cb2e7d19bcdc6232b39d8a6d70e7c
% Copyright (C) 1999 Paul Kienzle % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; If not, see <http://www.gnu.org/licenses/>. % usage: [Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop) % % Transform band edges of a generic lowpass filter (cutoff at W=1) % represented in splane zero-pole-gain form. W is the edge of the % target filter (or edges if band pass or band stop). Stop is true for % high pass and band stop filters or false for low pass and band pass % filters. Filter edges are specified in radians, from 0 to pi (the % nyquist frequency). % % Theory: Given a low pass filter represented by poles and zeros in the % splane, you can convert it to a low pass, high pass, band pass or % band stop by transforming each of the poles and zeros individually. % The following table summarizes the transformation: % % Transform Zero at x Pole at x % ---------------- ------------------------- ------------------------ % Low Pass zero: Fc x/C pole: Fc x/C % S -> C S/Fc gain: C/Fc gain: Fc/C % ---------------- ------------------------- ------------------------ % High Pass zero: Fc C/x pole: Fc C/x % S -> C Fc/S pole: 0 zero: 0 % gain: -x gain: -1/x % ---------------- ------------------------- ------------------------ % Band Pass zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl) % S^2+FhFl pole: 0 zero: 0 % S -> C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C % S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2 % ---------------- ------------------------- ------------------------ % Band Stop zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl) % S(Fh-Fl) pole: ?sqrt(-FhFl) zero: ?sqrt(-FhFl) % S -> C -------- gain: -x gain: -1/x % S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2 % ---------------- ------------------------- ------------------------ % Bilinear zero: (2+xT)/(2-xT) pole: (2+xT)/(2-xT) % 2 z-1 pole: -1 zero: -1 % S -> - --- gain: (2-xT)/T gain: (2-xT)/T % T z+1 % ---------------- ------------------------- ------------------------ % % where C is the cutoff frequency of the initial lowpass filter, Fc is % the edge of the target low/high pass filter and [Fl,Fh] are the edges % of the target band pass/stop filter. With abundant tedious algebra, % you can derive the above formulae yourself by substituting the % transform for S into H(S)=S-x for a zero at x or H(S)=1/(S-x) for a % pole at x, and converting the result into the form: % % H(S)=g prod(S-Xi)/prod(S-Xj) % % The transforms are from the references. The actual pole-zero-gain % changes I derived myself. % % Please note that a pole and a zero at the same place exactly cancel. % This is significant for High Pass, Band Pass and Band Stop filters % which create numerous extra poles and zeros, most of which cancel. % Those which do not cancel have a 'fill-in' effect, extending the % shorter of the sets to have the same number of as the longer of the % sets of poles and zeros (or at least split the difference in the case % of the band pass filter). There may be other opportunistic % cancellations but I will not check for them. % % Also note that any pole on the unit circle or beyond will result in % an unstable filter. Because of cancellation, this will only happen % if the number of poles is smaller than the number of zeros and the % filter is high pass or band pass. The analytic design methods all % yield more poles than zeros, so this will not be a problem. % % References: % % Proakis & Manolakis (1992). Digital Signal Processing. New York: % Macmillan Publishing Company. % Author: Paul Kienzle <[email protected]> % 2000-03-01 [email protected] % leave transformed Sg as a complex value since cheby2 blows up % otherwise (but only for odd-order low-pass filters). bilinear % will return Zg as real, so there is no visible change to the % user of the IIR filter design functions. % 2001-03-09 [email protected] % return real Sg; don't know what to do for imaginary filters function [Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop) if (nargin ~= 5) usage('[Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop)'); end; C = 1; p = length(Sp); z = length(Sz); if z > p || p == 0 error('sftrans: must have at least as many poles as zeros in s-plane'); end if length(W)==2 Fl = W(1); Fh = W(2); if stop % ---------------- ------------------------- ------------------------ % Band Stop zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl) % S(Fh-Fl) pole: ?sqrt(-FhFl) zero: ?sqrt(-FhFl) % S -> C -------- gain: -x gain: -1/x % S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2 % ---------------- ------------------------- ------------------------ if (isempty(Sz)) Sg = Sg * real (1./ prod(-Sp)); elseif (isempty(Sp)) Sg = Sg * real(prod(-Sz)); else Sg = Sg * real(prod(-Sz)/prod(-Sp)); end b = (C*(Fh-Fl)/2)./Sp; Sp = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)]; extend = [sqrt(-Fh*Fl), -sqrt(-Fh*Fl)]; if isempty(Sz) Sz = [extend(1+rem([1:2*p],2))]; else b = (C*(Fh-Fl)/2)./Sz; Sz = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)]; if (p > z) Sz = [Sz, extend(1+rem([1:2*(p-z)],2))]; end end else % ---------------- ------------------------- ------------------------ % Band Pass zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl) % S^2+FhFl pole: 0 zero: 0 % S -> C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C % S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2 % ---------------- ------------------------- ------------------------ Sg = Sg * (C/(Fh-Fl))^(z-p); b = Sp*((Fh-Fl)/(2*C)); Sp = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)]; if isempty(Sz) Sz = zeros(1,p); else b = Sz*((Fh-Fl)/(2*C)); Sz = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)]; if (p>z) Sz = [Sz, zeros(1, (p-z))]; end end end else Fc = W; if stop % ---------------- ------------------------- ------------------------ % High Pass zero: Fc C/x pole: Fc C/x % S -> C Fc/S pole: 0 zero: 0 % gain: -x gain: -1/x % ---------------- ------------------------- ------------------------ if (isempty(Sz)) Sg = Sg * real (1./ prod(-Sp)); elseif (isempty(Sp)) Sg = Sg * real(prod(-Sz)); else Sg = Sg * real(prod(-Sz)/prod(-Sp)); end Sp = C * Fc ./ Sp; if isempty(Sz) Sz = zeros(1,p); else Sz = [C * Fc ./ Sz]; if (p > z) Sz = [Sz, zeros(1,p-z)]; end end else % ---------------- ------------------------- ------------------------ % Low Pass zero: Fc x/C pole: Fc x/C % S -> C S/Fc gain: C/Fc gain: Fc/C % ---------------- ------------------------- ------------------------ Sg = Sg * (C/Fc)^(z-p); Sp = Fc * Sp / C; Sz = Fc * Sz / C; end end
github
lcnhappe/happe-master
bilinear.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/signal/private/bilinear.m
4,339
utf_8
17250db27826cad87fa3384823e1242f
% Copyright (C) 1999 Paul Kienzle % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; If not, see <http://www.gnu.org/licenses/>. % usage: [Zz, Zp, Zg] = bilinear(Sz, Sp, Sg, T) % [Zb, Za] = bilinear(Sb, Sa, T) % % Transform a s-plane filter specification into a z-plane % specification. Filters can be specified in either zero-pole-gain or % transfer function form. The input form does not have to match the % output form. 1/T is the sampling frequency represented in the z plane. % % Note: this differs from the bilinear function in the signal processing % toolbox, which uses 1/T rather than T. % % Theory: Given a piecewise flat filter design, you can transform it % from the s-plane to the z-plane while maintaining the band edges by % means of the bilinear transform. This maps the left hand side of the % s-plane into the interior of the unit circle. The mapping is highly % non-linear, so you must design your filter with band edges in the % s-plane positioned at 2/T tan(w*T/2) so that they will be positioned % at w after the bilinear transform is complete. % % The following table summarizes the transformation: % % +---------------+-----------------------+----------------------+ % | Transform | Zero at x | Pole at x | % | H(S) | H(S) = S-x | H(S)=1/(S-x) | % +---------------+-----------------------+----------------------+ % | 2 z-1 | zero: (2+xT)/(2-xT) | zero: -1 | % | S -> - --- | pole: -1 | pole: (2+xT)/(2-xT) | % | T z+1 | gain: (2-xT)/T | gain: (2-xT)/T | % +---------------+-----------------------+----------------------+ % % With tedious algebra, you can derive the above formulae yourself by % substituting the transform for S into H(S)=S-x for a zero at x or % H(S)=1/(S-x) for a pole at x, and converting the result into the % form: % % H(Z)=g prod(Z-Xi)/prod(Z-Xj) % % Please note that a pole and a zero at the same place exactly cancel. % This is significant since the bilinear transform creates numerous % extra poles and zeros, most of which cancel. Those which do not % cancel have a 'fill-in' effect, extending the shorter of the sets to % have the same number of as the longer of the sets of poles and zeros % (or at least split the difference in the case of the band pass % filter). There may be other opportunistic cancellations but I will % not check for them. % % Also note that any pole on the unit circle or beyond will result in % an unstable filter. Because of cancellation, this will only happen % if the number of poles is smaller than the number of zeros. The % analytic design methods all yield more poles than zeros, so this will % not be a problem. % % References: % % Proakis & Manolakis (1992). Digital Signal Processing. New York: % Macmillan Publishing Company. % Author: Paul Kienzle <[email protected]> function [Zz, Zp, Zg] = bilinear(Sz, Sp, Sg, T) if nargin==3 T = Sg; [Sz, Sp, Sg] = tf2zp(Sz, Sp); elseif nargin~=4 usage('[Zz, Zp, Zg]=bilinear(Sz,Sp,Sg,T) or [Zb, Za]=blinear(Sb,Sa,T)'); end; p = length(Sp); z = length(Sz); if z > p || p==0 error('bilinear: must have at least as many poles as zeros in s-plane'); end % ---------------- ------------------------- ------------------------ % Bilinear zero: (2+xT)/(2-xT) pole: (2+xT)/(2-xT) % 2 z-1 pole: -1 zero: -1 % S -> - --- gain: (2-xT)/T gain: (2-xT)/T % T z+1 % ---------------- ------------------------- ------------------------ Zg = real(Sg * prod((2-Sz*T)/T) / prod((2-Sp*T)/T)); Zp = (2+Sp*T)./(2-Sp*T); if isempty(Sz) Zz = -ones(size(Zp)); else Zz = [(2+Sz*T)./(2-Sz*T)]; Zz = postpad(Zz, p, -1); end if nargout==2, [Zz, Zp] = zp2tf(Zz, Zp, Zg); end
github
lcnhappe/happe-master
fns_region_write.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/fns/fns_region_write.m
1,267
utf_8
45ac73e5dd89386923a808a25a65dc99
%% TODO: Need to remove this routine. function fns_region_write(rgnfile,rgn) % % This routine write the region information to the HDF5 file % % rgnfile The output region file. % rgn The region of interest data structure. % @author Hung Dang, July 13, 2010 % Write the description of stored data to the output file hdf5write(rgnfile,'/region/info',rgn.info); % Write the locations matrix to the /region/locations dataset hdf5write(rgnfile,'/region/locations',rgn.locations,'WriteMode', ... 'append'); % Write the gridlocs matrix to the /region/gridlocs dataset hdf5write(rgnfile,'/region/gridlocs',rgn.gridlocs,'WriteMode', ... 'append'); % Write the voxel_sizes vector to the /region/voxel_sizes dataset hdf5write(rgnfile,'/region/voxel_sizes',rgn.voxel_sizes, ... 'WriteMode','append'); % Write the node_sizes vector to the /region/node_sizes dataset hdf5write(rgnfile,'/region/node_sizes',rgn.node_sizes,'WriteMode', ... 'append'); % Write the status vector to the /region/status dataset hdf5write(rgnfile,'/region/status',rgn.status,'WriteMode', ... 'append'); % Write the values vector to the /region/status dataset hdf5write(rgnfile,'/region/values',rgn.values,'WriteMode', ... 'append');
github
lcnhappe/happe-master
fns_contable_write.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/fns/fns_contable_write.m
2,490
utf_8
3a266284afc0ca72cdb64b914acdf643
function cond = fns_contable_write(varargin) % Creates the default conductivity table % % Use as % cond = fns_contable_write % % The FNS convention for tissue types is the following: % 0 "Clear Label" % 1 "CSF" % 2 "Gray Matter" % 3 "White Matter" % 4 "Fat" % 5 "Muscle" % 6 "Muscle/Skin" % 7 "Skull" % 8 "Vessels" % 9 "Around Fat" % 10 "Dura Matter" % 11 "Bone Marrow" % 12 "Eyes" % % Copyright (C) 2011, Hung Dang, Cristiano Micheli tissue = ft_getopt(varargin, 'tissue', []); tissueval = ft_getopt(varargin, 'tissueval', []); tissuecond = ft_getopt(varargin, 'tissuecond', []); if isempty(tissue) && isempty(tissueval) && isempty(tissuecond) cond = createCondMat; elseif isempty(tissueval) || isempty(tissuecond) error('Both tissue value and conductivity inputs are necessary') else cond = zeros(9,numel(tissueval)); for i=1:numel(tissueval) cond([1,5,9],i) = tissuecond(i); end end function cond = createCondMat cond = zeros(9,13); % Brain tissues index HH_OUTSIDE = 0; HH_CSF = 1; HH_GRAY_MATTER = 2; HH_WHITE_MATTER = 3; HH_FAT = 4; HH_MUSCLE = 5; HH_SKIN = 6; HH_SKULL = 7; HH_VESSELS = 8; HH_AROUND_FAT = 9; HH_DURA = 10; HH_BONE_MARROW = 11; HH_EYES = 12; % Brain tissue conductivities HH_OUTSIDE_CON = 0.00; HH_CSF_CON = 1.79; HH_WHITE_MATTER_CON = 0.14; HH_GRAY_MATTER_CON = 0.33; HH_FAT_CON = 0.04; HH_MUSCLE_CON = 0.11; HH_SKIN_CON = 0.44; HH_SKULL_CON = 0.018; HH_VESSELS_CON = 0.68; HH_AROUND_FAT_CON = 0.22; HH_DURA_CON = 0.17; HH_BONE_MARROW_CON = 0.085; HH_EYES_CON = 0.5; % $$$ Create the conductivity table cond([1,5,9],HH_OUTSIDE + 1) = HH_OUTSIDE_CON; cond([1,5,9],HH_CSF + 1) = HH_CSF_CON; cond([1,5,9],HH_WHITE_MATTER + 1) = HH_WHITE_MATTER_CON; cond([1,5,9],HH_GRAY_MATTER + 1) = HH_GRAY_MATTER_CON; cond([1,5,9],HH_FAT + 1) = HH_FAT_CON; cond([1,5,9],HH_MUSCLE + 1) = HH_MUSCLE_CON; cond([1,5,9],HH_SKULL + 1) = HH_SKULL_CON; cond([1,5,9],HH_SKIN + 1) = HH_SKIN_CON; cond([1,5,9],HH_VESSELS + 1) = HH_VESSELS_CON; cond([1,5,9],HH_AROUND_FAT + 1) = HH_AROUND_FAT_CON; cond([1,5,9],HH_DURA + 1) = HH_DURA_CON; cond([1,5,9],HH_BONE_MARROW + 1) = HH_BONE_MARROW_CON; cond([1,5,9],HH_EYES + 1) = HH_EYES_CON;
github
lcnhappe/happe-master
denoise_energy.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dss/denoise_energy.m
2,548
utf_8
276746592d3b53d810d56acb6c3c952f
function [params, s_new] = denoise_energy(params, s, state) % Energy based DSS denoising function % [params, s_new] = denoise_energy(params, s, state) % params Function specific modifiable parameters % params.usepow ... (default: 1.3) % params.c ... (default: ?) % params.var_noise Initial noise variance estimate (default: constant) % state DSS algorithm state % s Source signal estimate, matrix of row vector signals % s_new Denoised signal estimate % Copyright (C) 2004, 2005 DSS MATLAB package team ([email protected]). % Distributed by Laboratory of Computer and Information Science, % Helsinki University of Technology. http://www.cis.hut.fi/projects/dss/. % $Id$ if nargin<3 | ~isstruct(state) params.name = 'Energy based denoising'; params.description = ''; params.param = {'iternoise', 'usepow', 'var_noise'}; params.param_value ={1, 1.3, 1}; params.param_type = {'scalar', 'scalar', 'scalar'}; params.param_desc = {'Number of iterations for noise estimate', '', 'Initial noise variance estimate.'}; params.approach = {'defl'}; params.beta = {'beta_global'}; return; end if ~isfield(params, 'initialized') % -- Initialize parameters once params.initialized = 1; if ~isfield(params,'iternoise') params.iternoise = 1; end if ~isfield(params,'usepow') params.usepow = 1.3; end if ~isfield(params,'gamma') [p, var_smooth] = denoise_filter(params, randn(1, length(s)).^2, state); noise_var = est_noise_var(var_smooth, 0); params.c = 1 / noise_var; %fprintf('Noise variance: %f', noise_var); end if ~isfield(params,'var_noise') % Initial value for noise variance estimate is 1 params.var_noise = 1; end end [p, var_totsm] = denoise_filter(params, s.^2, state); for i = 1 : params.iternoise params.var_noise = est_noise_var(var_totsm, params.var_noise)*params.c; end noise_stretched = repmat(params.var_noise, 1, size(var_totsm, 2)); var_sig = sqrt(noise_stretched.^2 + var_totsm.^2) - noise_stretched; mask = var_sig.^params.usepow ./ var_totsm; % TODO: is saturation necessary? (test if ever above 4) % saturation -> 4 %mask = mask .* (mask < 4) + 4 * (mask >= 4); if max(mask)>5 fprintf('[denoise_energy.m] Denoise energy mask saturation: %d\n', max(mask)); end %mask = mask ./ repmat(mean(mask, 2), 1, size(mask, 2)); s_new = mask .* s; % -------- function noise_var = est_noise_var(var_tot, var_noise) noise_var = exp(mean(log(var_tot+repmat(var_noise,1,size(var_tot,2))),2))-var_noise;
github
lcnhappe/happe-master
denoise_filter.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dss/denoise_filter.m
2,143
utf_8
ae3a9902113a9f9a705cf8295dce183c
function [params, s_new] = denoise_filter(params, s, state) % Generic filter function. Can be used as DSS denoising function. % [params, s_new] = denoise_filter(params, s, state) % params Defines the used filter % params.filter_conv Inpulse response for convolution filter % params.filter_dct Mask for DCT filter % params.filter_fft Mask for FFT filter % none of above Pass the signal unfiltered % state DSS algorithm state (not used) % s Source signal, matrix of row vector signals % s_new Filtered signal % Copyright (C) 2004, 2005 DSS MATLAB package team ([email protected]). % Distributed by Laboratory of Computer and Information Science, % Helsinki University of Technology. http://www.cis.hut.fi/projects/dss/. % $Id$ if nargin<3 params.name = 'Generic filter'; params.description = 'Generic filter function for convolutive, DCT and FFT filtering'; params.param = {'filter_conv', 'filter_dct', 'filter_fft'}; params.param_value ={[], [], []}; params.param_type = {'vector', 'vector', 'vector'}; params.param_desc = {'Convolution coefficients', 'DCT filter coefficients', 'FFT filter coefficients.'}; params.approach = {'pca', 'defl', 'symm'}; params.beta = {'beta_global'}; return; end if isfield(params, 'filter_conv') % -- Filter with impulse response %s_new = conv(s, repmat(params.filter_conv, size(s, 1), 1)); %s_new = s_new(round(length(params.filter_conv)/2)+[1:length(s)]); s_new = convolution(s, repmat(params.filter_conv, size(s, 1), 1)); elseif isfield(params, 'filter_dct') % DCT filtering s_new = idct(repmat(params.filter_dct, size(s,1), 1)' .* dct(s'))'; elseif isfield(params, 'filter_fft') % FFT filtering s_new = real(ifft(repmat(params.filter_fft, size(s,1), 1)' .* fft(s'))'); else % -- No filtering s_new = s; end % -------- % Calculate convolution for multiple row vector pairs and % cut tails based on length of B. function R = convolution(A, B) R = zeros(size(A, 1), size(A,2)+size(B,2)-1); for i=1:size(A,1) R(i,:) = conv(A(i,:), B(i,:)); end R = R(:,round(size(B,2)/2)+[1:size(A,2)]);
github
lcnhappe/happe-master
report_convergence.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dss/report_convergence.m
1,476
utf_8
e97824a6b7f960c982c55b90b63cc8cf
function [report_data] = report_convergence(report_data, state) % Report convergence of the algorithm % Copyright (C) 2004, 2005 DSS MATLAB package team ([email protected]). % Distributed by Laboratory of Computer and Information Science, % Helsinki University of Technology. http://www.cis.hut.fi/projects/dss/. % $Id$ if ~isfield(report_data, 'report_interval') report_data.report_interval = 5; dss_message(state, 2, sprintf('Setting default report interval to %d (report_data.report_interval)\n', report_data.report_interval)); end % deflation if state.iteration==1 % -- first iteration if state.algorithm=='defl' % deflation report_data.change(state.component,1)=0; report_data.deltaw_old=state.w; else % symmetric report_data.change = zeros(size(state.W, 1),1); report_data.dW_old = zeros(size(state.W)); report_data.W_old = state.W; end else % -- iterations 2-> if (mod(state.iteration, report_data.report_interval)==0) if state.algorithm=='defl' % deflation change = acos(state.w' * state.w_old/norm(state.w)/norm(state.w_old)) / pi * 180; else % symmetric change = abs(angle(state.W, state.W_old)) / pi * 180; end message(state,1,sprintf('Change (angles): %d\n', change)); end end % ----------------------------------- function rad = angle(A, B) sum_cross = sum(A .* B, 2); sum_A = sum(A .* A, 2); sum_B = sum(B .* B, 2); rad = acos(sum_cross ./ sum_A.^(-1/2) ./ sum_B.^(-1/2));
github
lcnhappe/happe-master
denss.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dss/denss.m
3,216
utf_8
6682365eb0d33779435c21332112ad78
function [state, B, A] = denss(X_or_state, parameters) % Main DSS algorithm % [state, B, A] = denss(X or state) % [state, B, A] = denss(X or state, [params]) % [state, B, A] = denss(X or state, {param1, 'value1', param2, 'value2', ...}) % X Mixed signals % state Existing or new algorithm state structure % parameters Optional parameters % B Unmixing matrix S = B * X % A Mixing matrix X = A * S % % Main entry point for DSS algorithm. When called with mixed % signals (X) creates state structure. Given optional parameters % are inserted into new or existing state structure. % Calls algorithm core defined by 'algorithm' state/param % variable. % % See dss_create_state for description of state and parameter % variables. % Copyright (C) 2004, 2005 DSS MATLAB package team ([email protected]). % Distributed by Laboratory of Computer and Information Science, % Helsinki University of Technology. http://www.cis.hut.fi/projects/dss/. % $Id$ % -- Initialize state if nargin>=2 | ~isstruct(X_or_state) % -- user gave X or parameters, initialize state if nargin<2; parameters = []; end state = dss_create_state(X_or_state, parameters); else state = X_or_state; end % -- Contract input dimensions state = contract_dim(state, 'X'); state = contract_dim(state, 'Y'); state = contract_dim(state, 'S'); % read the version information VERSION = fopen('VERSION','r'); if VERSION ~= -1 version = fgets(VERSION); version = version(1:end-1); dss_message(state,1,sprintf('Calculating DSS (release v%s)\n',version)); else dss_message(state,1,'Calculating DSS (unknown release version)\n'); end % -- Preprocessing if ~isfield(state, 'Y') state = dss_preprocess(state.X, state); else % Sphered data is already available, set sphering to identity dss_message(state,2,'Sphered data exists, using it.'); if ~isfield(state, 'V') | ~isfield(state, 'dV') state.V = diag(ones(size(state.Y,1),1)); state.dV = state.V; dss_message(state,2,' No sphering matrix given. Assuming identity matrix.\n'); else % using given sphering matrix dss_message(state,2,'\n'); end end state.wdim = size(state.Y, 1); if ~isfield(state, 'sdim'); state.sdim = state.wdim; end % -- Call correct DSS algorithm implementation state = feval(['dss_core_' state.algorithm], state); % -- return the results state.B = state.W * state.V; B = state.B; state.A = state.dV * state.W'; A = state.A; %---------------------- function state = contract_dim(state, field_name) if isfield(state, field_name) % for ML65+: dims = size(state.(field_name)); dims = size(getfield(state, field_name)); if length(dims)>2 if isfield(state, 'input_dims') if state.input_dims ~= dims error('Input signal dimension mismatch'); end; end; state.input_dims = dims(2:length(dims)); % for ML65+: state.(field_name) = reshape(state.(field_name), dims(1), []); state = setfield(state, field_name, reshape(getfield(state, field_name), dims(1), [])); dss_message(state,1,sprintf('Contracting [%s] dimensional input %s to [%s] dimension.\n', tostring(dims), field_name, tostring(size(getfield(state,field_name))))); end end
github
lcnhappe/happe-master
default_stop.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dss/default_stop.m
1,441
utf_8
219744b4c15669056f70c9575f12440a
function [stop, params] = default_stop(params, state) % Default stopping criteria function. % [stop, params] = default_stop(params, state) % params Function specific modifiable parameters % params.maxiters Maximum number of allowed iterations % params.epsilon Treshold angle, iteration is stopped when % angle beween consecutive iteration % projection vectors goes below treshold. % state DSS algorithm state % stop Boolean, true when stopping criteria has been met % Copyright (C) 2004, 2005 DSS MATLAB package team ([email protected]). % Distributed by Laboratory of Computer and Information Science, % Helsinki University of Technology. http://www.cis.hut.fi/projects/dss/. % $Id$ if ~isfield(params, 'maxiters') & ... (~isfield(params, 'epsilon') | ~isfield(state, 'w')) error('Either ''maxiters'' or ''epsilon'' must be defined as stopping criteria'); end stop = 0; if isfield(params, 'maxiters') if state.iteration>=params.maxiters stop = 1; return; end end if isfield(params, 'epsilon') if isfield(state, 'w') change = angle(state.w_old, state.w) / pi * 180; else change = angle(state.W_old, state.W) / pi * 180; end stop = all(change < params.epsilon); end % -------- function rad = angle(A, B) sum_cross = sum(A .* B); sum_A = sum(A .* A); sum_B = sum(B .* B); rad = acos(sum_cross .* sum_A.^(-1/2) .* sum_B.^(-1/2));
github
lcnhappe/happe-master
estimate_mask.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dss/estimate_mask.m
1,695
utf_8
2147549d4388aa7913a35d434f4aa692
function [mask] = estimate_mask(s, filter_params, iterations) % Creates binary mask based on SNR estimate of the signal % [mask] = estimate_mask(s, filter_params, iterations) % s Source signal % filter_params Filter parameters for smoothing variance estimate % iterations Number of iterations for estimating noise variance % Copyright (C) 2004, 2005 DSS MATLAB package team ([email protected]). % Distributed by Laboratory of Computer and Information Science, % Helsinki University of Technology. http://www.cis.hut.fi/projects/dss/. % $Id$ filter_h = @denoise_filter; if nargin<2; % default filtering is lowpass DCT T = length(s); t = 1:T; filter_params.filter_dct = exp(-0.5*(t-1).^2 / (T/64).^2 ); end if nargin<3; iterations = 8; end % noise variance estimate for gaussian noise [p, var_smooth] = feval(filter_h, filter_params, randn(1, length(s)).^2, []); noise_var = est_noise_var(var_smooth, 0); normalization_c = 1 / noise_var; % smoothed variance [p, var_totsm] = feval(filter_h, filter_params, s.^2, []); % iterate signal noise variance estimate var_noise = 1; for i = 1 : iterations var_noise = est_noise_var(var_totsm, var_noise)*normalization_c; end % create binary mask mask = var_totsm>var_noise; %DEBUG %fprintf('Noise: %d\n', var_noise); %clf %subplot(3, 1, 1); %plot(s); %subplot(3, 1, 2); %plot(var_totsm); %subplot(3, 1, 3); %plot(mask); %axis([0 length(s) -0.5 1.5]) % -------- function noise_var = est_noise_var(var_tot, var_noise) % Estimates noise variance based on total variance estimate and % previous noise variance estimate. noise_var = exp(mean(log(var_tot+repmat(var_noise,1,size(var_tot,2))),2))-var_noise;
github
lcnhappe/happe-master
pcamat.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/fastica/pcamat.m
12,028
utf_8
b597f6c30d7c0ad437ab6a408e0cc1fb
function [E, D] = pcamat(vectors, firstEig, lastEig, s_interactive, ... s_verbose); %PCAMAT - Calculates the pca for data % % [E, D] = pcamat(vectors, firstEig, lastEig, ... % interactive, verbose); % % Calculates the PCA matrices for given data (row) vectors. Returns % the eigenvector (E) and diagonal eigenvalue (D) matrices containing the % selected subspaces. Dimensionality reduction is controlled with % the parameters 'firstEig' and 'lastEig' - but it can also be done % interactively by setting parameter 'interactive' to 'on' or 'gui'. % % ARGUMENTS % % vectors Data in row vectors. % firstEig Index of the largest eigenvalue to keep. % Default is 1. % lastEig Index of the smallest eigenvalue to keep. % Default is equal to dimension of vectors. % interactive Specify eigenvalues to keep interactively. Note that if % you set 'interactive' to 'on' or 'gui' then the values % for 'firstEig' and 'lastEig' will be ignored, but they % still have to be entered. If the value is 'gui' then the % same graphical user interface as in FASTICAG will be % used. Default is 'off'. % verbose Default is 'on'. % % % EXAMPLE % [E, D] = pcamat(vectors); % % Note % The eigenvalues and eigenvectors returned by PCAMAT are not sorted. % % This function is needed by FASTICA and FASTICAG % For historical reasons this version does not sort the eigenvalues or % the eigen vectors in any ways. Therefore neither does the FASTICA or % FASTICAG. Generally it seams that the components returned from % whitening is almost in reversed order. (That means, they usually are, % but sometime they are not - depends on the EIG-command of matlab.) % @(#)$Id$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Default values: if nargin < 5, s_verbose = 'on'; end if nargin < 4, s_interactive = 'off'; end if nargin < 3, lastEig = size(vectors, 1); end if nargin < 2, firstEig = 1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Check the optional parameters; switch lower(s_verbose) case 'on' b_verbose = 1; case 'off' b_verbose = 0; otherwise error(sprintf('Illegal value [ %s ] for parameter: ''verbose''\n', s_verbose)); end switch lower(s_interactive) case 'on' b_interactive = 1; case 'off' b_interactive = 0; case 'gui' b_interactive = 2; otherwise error(sprintf('Illegal value [ %s ] for parameter: ''interactive''\n', ... s_interactive)); end oldDimension = size (vectors, 1); if ~(b_interactive) if lastEig < 1 | lastEig > oldDimension error(sprintf('Illegal value [ %d ] for parameter: ''lastEig''\n', lastEig)); end if firstEig < 1 | firstEig > lastEig error(sprintf('Illegal value [ %d ] for parameter: ''firstEig''\n', firstEig)); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Calculate PCA % Calculate the covariance matrix. if b_verbose, fprintf ('Calculating covariance...\n'); end covarianceMatrix = cov(vectors', 1); % Calculate the eigenvalues and eigenvectors of covariance % matrix. [E, D] = eig (covarianceMatrix); % The rank is determined from the eigenvalues - and not directly by % using the function rank - because function rank uses svd, which % in some cases gives a higher dimensionality than what can be used % with eig later on (eig then gives negative eigenvalues). rankTolerance = 1e-7; maxLastEig = sum (diag (D) > rankTolerance); if maxLastEig == 0, fprintf (['Eigenvalues of the covariance matrix are' ... ' all smaller than tolerance [ %g ].\n' ... 'Please make sure that your data matrix contains' ... ' nonzero values.\nIf the values are very small,' ... ' try rescaling the data matrix.\n'], rankTolerance); error ('Unable to continue, aborting.'); end % Sort the eigenvalues - decending. eigenvalues = flipud(sort(diag(D))); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Interactive part - command-line if b_interactive == 1 % Show the eigenvalues to the user hndl_win=figure; bar(eigenvalues); title('Eigenvalues'); % ask the range from the user... % ... and keep on asking until the range is valid :-) areValuesOK=0; while areValuesOK == 0 firstEig = input('The index of the largest eigenvalue to keep? (1) '); lastEig = input(['The index of the smallest eigenvalue to keep? (' ... int2str(oldDimension) ') ']); % Check the new values... % if they are empty then use default values if isempty(firstEig), firstEig = 1;end if isempty(lastEig), lastEig = oldDimension;end % Check that the entered values are within the range areValuesOK = 1; if lastEig < 1 | lastEig > oldDimension fprintf('Illegal number for the last eigenvalue.\n'); areValuesOK = 0; end if firstEig < 1 | firstEig > lastEig fprintf('Illegal number for the first eigenvalue.\n'); areValuesOK = 0; end end % close the window close(hndl_win); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Interactive part - GUI if b_interactive == 2 % Show the eigenvalues to the user hndl_win = figure('Color',[0.8 0.8 0.8], ... 'PaperType','a4letter', ... 'Units', 'normalized', ... 'Name', 'FastICA: Reduce dimension', ... 'NumberTitle','off', ... 'Tag', 'f_eig'); h_frame = uicontrol('Parent', hndl_win, ... 'BackgroundColor',[0.701961 0.701961 0.701961], ... 'Units', 'normalized', ... 'Position',[0.13 0.05 0.775 0.17], ... 'Style','frame', ... 'Tag','f_frame'); b = uicontrol('Parent',hndl_win, ... 'Units','normalized', ... 'BackgroundColor',[0.701961 0.701961 0.701961], ... 'HorizontalAlignment','left', ... 'Position',[0.142415 0.0949436 0.712077 0.108507], ... 'String','Give the indices of the largest and smallest eigenvalues of the covariance matrix to be included in the reduced data.', ... 'Style','text', ... 'Tag','StaticText1'); e_first = uicontrol('Parent',hndl_win, ... 'Units','normalized', ... 'Callback',[ ... 'f=round(str2num(get(gcbo, ''String'')));' ... 'if (f < 1), f=1; end;' ... 'l=str2num(get(findobj(''Tag'',''e_last''), ''String''));' ... 'if (f > l), f=l; end;' ... 'set(gcbo, ''String'', int2str(f));' ... ], ... 'BackgroundColor',[1 1 1], ... 'HorizontalAlignment','right', ... 'Position',[0.284831 0.0678168 0.12207 0.0542535], ... 'Style','edit', ... 'String', '1', ... 'Tag','e_first'); b = uicontrol('Parent',hndl_win, ... 'Units','normalized', ... 'BackgroundColor',[0.701961 0.701961 0.701961], ... 'HorizontalAlignment','left', ... 'Position',[0.142415 0.0678168 0.12207 0.0542535], ... 'String','Range from', ... 'Style','text', ... 'Tag','StaticText2'); e_last = uicontrol('Parent',hndl_win, ... 'Units','normalized', ... 'Callback',[ ... 'l=round(str2num(get(gcbo, ''String'')));' ... 'lmax = get(gcbo, ''UserData'');' ... 'if (l > lmax), l=lmax; fprintf([''The selected value was too large, or the selected eigenvalues were close to zero\n'']); end;' ... 'f=str2num(get(findobj(''Tag'',''e_first''), ''String''));' ... 'if (l < f), l=f; end;' ... 'set(gcbo, ''String'', int2str(l));' ... ], ... 'BackgroundColor',[1 1 1], ... 'HorizontalAlignment','right', ... 'Position',[0.467936 0.0678168 0.12207 0.0542535], ... 'Style','edit', ... 'String', int2str(maxLastEig), ... 'UserData', maxLastEig, ... 'Tag','e_last'); % in the first version oldDimension was used instead of % maxLastEig, but since the program would automatically % drop the eigenvalues afte maxLastEig... b = uicontrol('Parent',hndl_win, ... 'Units','normalized', ... 'BackgroundColor',[0.701961 0.701961 0.701961], ... 'HorizontalAlignment','left', ... 'Position',[0.427246 0.0678168 0.0406901 0.0542535], ... 'String','to', ... 'Style','text', ... 'Tag','StaticText3'); b = uicontrol('Parent',hndl_win, ... 'Units','normalized', ... 'Callback','uiresume(gcbf)', ... 'Position',[0.630697 0.0678168 0.12207 0.0542535], ... 'String','OK', ... 'Tag','Pushbutton1'); b = uicontrol('Parent',hndl_win, ... 'Units','normalized', ... 'Callback',[ ... 'gui_help(''pcamat'');' ... ], ... 'Position',[0.767008 0.0678168 0.12207 0.0542535], ... 'String','Help', ... 'Tag','Pushbutton2'); h_axes = axes('Position' ,[0.13 0.3 0.775 0.6]); set(hndl_win, 'currentaxes',h_axes); bar(eigenvalues); title('Eigenvalues'); uiwait(hndl_win); firstEig = str2num(get(e_first, 'String')); lastEig = str2num(get(e_last, 'String')); % close the window close(hndl_win); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % See if the user has reduced the dimension enought if lastEig > maxLastEig lastEig = maxLastEig; if b_verbose fprintf('Dimension reduced to %d due to the singularity of covariance matrix\n',... lastEig-firstEig+1); end else % Reduce the dimensionality of the problem. if b_verbose if oldDimension == (lastEig - firstEig + 1) fprintf ('Dimension not reduced.\n'); else fprintf ('Reducing dimension...\n'); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Drop the smaller eigenvalues if lastEig < oldDimension lowerLimitValue = (eigenvalues(lastEig) + eigenvalues(lastEig + 1)) / 2; else lowerLimitValue = eigenvalues(oldDimension) - 1; end lowerColumns = diag(D) > lowerLimitValue; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Drop the larger eigenvalues if firstEig > 1 higherLimitValue = (eigenvalues(firstEig - 1) + eigenvalues(firstEig)) / 2; else higherLimitValue = eigenvalues(1) + 1; end higherColumns = diag(D) < higherLimitValue; % Combine the results from above selectedColumns = lowerColumns & higherColumns; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % print some info for the user if b_verbose fprintf ('Selected [ %d ] dimensions.\n', sum (selectedColumns)); end if sum (selectedColumns) ~= (lastEig - firstEig + 1), error ('Selected a wrong number of dimensions.'); end if b_verbose fprintf ('Smallest remaining (non-zero) eigenvalue [ %g ]\n', eigenvalues(lastEig)); fprintf ('Largest remaining (non-zero) eigenvalue [ %g ]\n', eigenvalues(firstEig)); fprintf ('Sum of removed eigenvalues [ %g ]\n', sum(diag(D) .* ... (~selectedColumns))); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Select the colums which correspond to the desired range % of eigenvalues. E = selcol(E, selectedColumns); D = selcol(selcol(D, selectedColumns)', selectedColumns); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Some more information if b_verbose sumAll=sum(eigenvalues); sumUsed=sum(diag(D)); retained = (sumUsed / sumAll) * 100; fprintf('[ %g ] %% of (non-zero) eigenvalues retained.\n', retained); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function newMatrix = selcol(oldMatrix, maskVector); % newMatrix = selcol(oldMatrix, maskVector); % % Selects the columns of the matrix that marked by one in the given vector. % The maskVector is a column vector. % 15.3.1998 if size(maskVector, 1) ~= size(oldMatrix, 2), error ('The mask vector and matrix are of uncompatible size.'); end numTaken = 0; for i = 1 : size (maskVector, 1), if maskVector(i, 1) == 1, takingMask(1, numTaken + 1) = i; numTaken = numTaken + 1; end end newMatrix = oldMatrix(:, takingMask);
github
lcnhappe/happe-master
icaplot.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/fastica/icaplot.m
13,211
utf_8
066670e2905b35f198920d743c74faf5
function icaplot(mode, varargin); %ICAPLOT - plot signals in various ways % % ICAPLOT is mainly for plottinf and comparing the mixed signals and % separated ica-signals. % % ICAPLOT has many different modes. The first parameter of the function % defines the mode. Other parameters and their order depends on the % mode. The explanation for the more common parameters is in the end. % % Classic % icaplot('classic', s1, n1, range, xrange, titlestr) % % Plots the signals in the same manner as the FASTICA and FASTICAG % programs do. All the signals are plotted in their own axis. % % Complot % icaplot('complot', s1, n1, range, xrange, titlestr) % % The signals are plotted on the same axis. This is good for % visualization of the shape of the signals. The scale of the signals % has been altered so that they all fit nicely. % % Histogram % icaplot('histogram', s1, n1, range, bins, style) % % The histogram of the signals is plotted. The number of bins can be % specified with 'bins'-parameter. The style for the histograms can % be either 'bar' (default) of 'line'. % % Scatter % icaplot('scatter', s1, n1, s2, n2, range, titlestr, s1label, % s2label, markerstr) % % A scatterplot is plotted so that the signal 1 is the 'X'-variable % and the signal 2 is the 'Y'-variable. The 'markerstr' can be used % to specify the maker used in the plot. The format for 'markerstr' % is the same as for Matlab's PLOT. % % Compare % icaplot('compare', s1, n1, s2, n2, range, xrange, titlestr, % s1label, s2label) % % This for for comparing two signals. The main used in this context % would probably be to see how well the separated ICA-signals explain % the observed mixed signals. The s2 signals are first scaled with % REGRESS function. % % Compare - Sum % icaplot('sum', s1, n1, s2, n2, range, xrange, titlestr, s1label, % s2label) % % The same as Compare, but this time the signals in s2 (specified by % n2) are summed together. % % Compare - Sumerror % icaplot('sumerror', s1, n1, s2, n2, range, xrange, titlestr, % s1label, s2label) % % The same as Compare - Sum, but also the 'error' between the signal % 1 and the summed IC's is plotted. % % % More common parameters % The signals to be plotted are in matrices s1 and s2. The n1 and n2 % are used to tell the index of the signal or signals to be plotted % from s1 or s2. If n1 or n2 has a value of 0, then all the signals % from corresponding matrix will be plotted. The values for n1 and n2 % can also be vectors (like: [1 3 4]) In some casee if there are more % than 1 signal to be plotted from s1 or s2 then the plot will % contain as many subplots as are needed. % % The range of the signals to be plotted can be limited with % 'range'-parameter. It's value is a vector ( 10000:15000 ). If range % is 0, then the whole range will be plotted. % % The 'xrange' is used to specify only the labels used on the % x-axis. The value of 'xrange' is a vector containing the x-values % for the plots or [start end] for begin and end of the range % ( 10000:15000 or [10 15] ). If xrange is 0, then value of range % will be used for x-labels. % % You can give a title for the plot with 'titlestr'. Also the % 's1label' and 's2label' are used to give more meaningfull label for % the signals. % % Lastly, you can omit some of the arguments from the and. You will % have to give values for the signal matrices (s1, s2) and the % indexes (n1, n2) % @(#)$Id$ switch mode %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 'dispsig' is to replace the old DISPSIG % '' & 'classic' are just another names - '' quite short one :-) case {'', 'classic', 'dispsig'} % icaplot(mode, s1, n1, range, xrange, titlestr) if length(varargin) < 1, error('Not enough arguments.'); end if length(varargin) < 5, titlestr = '';else titlestr = varargin{5}; end if length(varargin) < 4, xrange = 0;else xrange = varargin{4}; end if length(varargin) < 3, range = 0;else range = varargin{3}; end if length(varargin) < 2, n1 = 0;else n1 = varargin{2}; end s1 = varargin{1}; range=chkrange(range, s1); xrange=chkxrange(xrange, range); n1=chkn(n1, s1); clf; numSignals = size(n1, 2); for i = 1:numSignals, subplot(numSignals, 1, i); plot(xrange, s1(n1(i), range)); end subplot(numSignals,1, 1); if (~isempty(titlestr)) title(titlestr); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case 'complot' % icaplot(mode, s1, n1, range, xrange, titlestr) if length(varargin) < 1, error('Not enough arguments.'); end if length(varargin) < 5, titlestr = '';else titlestr = varargin{5}; end if length(varargin) < 4, xrange = 0;else xrange = varargin{4}; end if length(varargin) < 3, range = 0;else range = varargin{3}; end if length(varargin) < 2, n1 = 0;else n1 = varargin{2}; end s1 = remmean(varargin{1}); range=chkrange(range, s1); xrange=chkxrange(xrange, range); n1=chkn(n1, s1); for i = 1:size(n1, 2) S1(i, :) = s1(n1(i), range); end alpha = mean(max(S1')-min(S1')); for i = 1:size(n1,2) S2(i,:) = S1(i,:) - alpha*(i-1)*ones(size(S1(1,:))); end plot(xrange, S2'); axis([min(xrange) max(xrange) min(min(S2)) max(max(S2)) ]); set(gca,'YTick',(-size(S1,1)+1)*alpha:alpha:0); set(gca,'YTicklabel',fliplr(n1)); if (~isempty(titlestr)) title(titlestr); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case 'histogram' % icaplot(mode, s1, n1, range, bins, style) if length(varargin) < 1, error('Not enough arguments.'); end if length(varargin) < 5, style = 'bar';else style = varargin{5}; end if length(varargin) < 4, bins = 10;else bins = varargin{4}; end if length(varargin) < 3, range = 0;else range = varargin{3}; end if length(varargin) < 2, n1 = 0;else n1 = varargin{2}; end s1 = varargin{1}; range = chkrange(range, s1); n1 = chkn(n1, s1); numSignals = size(n1, 2); rows = floor(sqrt(numSignals)); columns = ceil(sqrt(numSignals)); while (rows * columns < numSignals) columns = columns + 1; end switch style case {'', 'bar'} for i = 1:numSignals, subplot(rows, columns, i); hist(s1(n1(i), range), bins); title(int2str(n1(i))); drawnow; end case 'line' for i = 1:numSignals, subplot(rows, columns, i); [Y, X]=hist(s1(n1(i), range), bins); plot(X, Y); title(int2str(n1(i))); drawnow; end otherwise fprintf('Unknown style.\n') end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case 'scatter' % icaplot(mode, s1, n1, s2, n2, range, titlestr, xlabelstr, ylabelstr, markerstr) if length(varargin) < 4, error('Not enough arguments.'); end if length(varargin) < 9, markerstr = '.';else markerstr = varargin{9}; end if length(varargin) < 8, ylabelstr = 'Signal 2';else ylabelstr = varargin{8}; end if length(varargin) < 7, xlabelstr = 'Signal 1';else xlabelstr = varargin{7}; end if length(varargin) < 6, titlestr = '';else titlestr = varargin{6}; end if length(varargin) < 5, range = 0;else range = varargin{5}; end n2 = varargin{4}; s2 = varargin{3}; n1 = varargin{2}; s1 = varargin{1}; range = chkrange(range, s1); n1 = chkn(n1, s1); n2 = chkn(n2, s2); rows = size(n1, 2); columns = size(n2, 2); for r = 1:rows for c = 1:columns subplot(rows, columns, (r-1)*columns + c); plot(s1(n1(r), range),s2(n2(c), range),markerstr); if (~isempty(titlestr)) title(titlestr); end if (rows*columns == 1) xlabel(xlabelstr); ylabel(ylabelstr); else xlabel([xlabelstr ' (' int2str(n1(r)) ')']); ylabel([ylabelstr ' (' int2str(n2(c)) ')']); end drawnow; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case {'compare', 'sum', 'sumerror'} % icaplot(mode, s1, n1, s2, n2, range, xrange, titlestr, s1label, s2label) if length(varargin) < 4, error('Not enough arguments.'); end if length(varargin) < 9, s2label = 'IC';else s2label = varargin{9}; end if length(varargin) < 8, s1label = 'Mix';else s1label = varargin{8}; end if length(varargin) < 7, titlestr = '';else titlestr = varargin{7}; end if length(varargin) < 6, xrange = 0;else xrange = varargin{6}; end if length(varargin) < 5, range = 0;else range = varargin{5}; end s1 = varargin{1}; n1 = varargin{2}; s2 = varargin{3}; n2 = varargin{4}; range = chkrange(range, s1); xrange = chkxrange(xrange, range); n1 = chkn(n1, s1); n2 = chkn(n2, s2); numSignals = size(n1, 2); if (numSignals > 1) externalLegend = 1; else externalLegend = 0; end rows = floor(sqrt(numSignals+externalLegend)); columns = ceil(sqrt(numSignals+externalLegend)); while (rows * columns < (numSignals+externalLegend)) columns = columns + 1; end clf; for j = 1:numSignals subplot(rows, columns, j); switch mode case 'compare' plotcompare(s1, n1(j), s2,n2, range, xrange); [legendtext,legendstyle]=legendcompare(n1(j),n2,s1label,s2label,externalLegend); case 'sum' plotsum(s1, n1(j), s2,n2, range, xrange); [legendtext,legendstyle]=legendsum(n1(j),n2,s1label,s2label,externalLegend); case 'sumerror' plotsumerror(s1, n1(j), s2,n2, range, xrange); [legendtext,legendstyle]=legendsumerror(n1(j),n2,s1label,s2label,externalLegend); end if externalLegend title([titlestr ' (' s1label ' ' int2str(n1(j)) ')']); else legend(char(legendtext)); if (~isempty(titlestr)) title(titlestr); end end end if (externalLegend) subplot(rows, columns, numSignals+1); legendsize = size(legendtext, 2); hold on; for i=1:legendsize plot([0 1],[legendsize-i legendsize-i], char(legendstyle(i))); text(1.5, legendsize-i, char(legendtext(i))); end hold off; axis([0 6 -1 legendsize]); axis off; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function plotcompare(s1, n1, s2, n2, range, xrange); style=getStyles; K = regress(s1(n1,:)',s2'); plot(xrange, s1(n1,range), char(style(1))); hold on for i=1:size(n2,2) plotstyle=char(style(i+1)); plot(xrange, K(n2(i))*s2(n2(i),range), plotstyle); end hold off function [legendText, legendStyle]=legendcompare(n1, n2, s1l, s2l, externalLegend); style=getStyles; if (externalLegend) legendText(1)={[s1l ' (see the titles)']}; else legendText(1)={[s1l ' ', int2str(n1)]}; end legendStyle(1)=style(1); for i=1:size(n2, 2) legendText(i+1) = {[s2l ' ' int2str(n2(i))]}; legendStyle(i+1) = style(i+1); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function plotsum(s1, n1, s2, n2, range, xrange); K = diag(regress(s1(n1,:)',s2')); sigsum = sum(K(:,n2)*s2(n2,:)); plot(xrange, s1(n1, range),'k-', ... xrange, sigsum(range), 'b-'); function [legendText, legendStyle]=legendsum(n1, n2, s1l, s2l, externalLegend); if (externalLegend) legendText(1)={[s1l ' (see the titles)']}; else legendText(1)={[s1l ' ', int2str(n1)]}; end legendText(2)={['Sum of ' s2l ': ', int2str(n2)]}; legendStyle={'k-';'b-'}; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function plotsumerror(s1, n1, s2, n2, range, xrange); K = diag(regress(s1(n1,:)',s2')); sigsum = sum(K(:,n2)*s2(n2,:)); plot(xrange, s1(n1, range),'k-', ... xrange, sigsum(range), 'b-', ... xrange, s1(n1, range)-sigsum(range), 'r-'); function [legendText, legendStyle]=legendsumerror(n1, n2, s1l, s2l, externalLegend); if (externalLegend) legendText(1)={[s1l ' (see the titles)']}; else legendText(1)={[s1l ' ', int2str(n1)]}; end legendText(2)={['Sum of ' s2l ': ', int2str(n2)]}; legendText(3)={'"Error"'}; legendStyle={'k-';'b-';'r-'}; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function style=getStyles; color = {'k','r','g','b','m','c','y'}; line = {'-',':','-.','--'}; for i = 0:size(line,2)-1 for j = 1:size(color, 2) style(j + i*size(color, 2)) = strcat(color(j), line(i+1)); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function range=chkrange(r, s) if r == 0 range = 1:size(s, 2); else range = r; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xrange=chkxrange(xr,r); if xr == 0 xrange = r; elseif size(xr, 2) == 2 xrange = xr(1):(xr(2)-xr(1))/(size(r,2)-1):xr(2); elseif size(xr, 2)~=size(r, 2) error('Xrange and range have different sizes.'); else xrange = xr; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function n=chkn(n,s) if n == 0 n = 1:size(s, 1); end
github
lcnhappe/happe-master
cond_indep_fisher_z.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMstats/cond_indep_fisher_z.m
3,635
utf_8
74e2c5c915700e2f7a672113e333f813
function [CI, r, p] = cond_indep_fisher_z(X, Y, S, C, N, alpha) % COND_INDEP_FISHER_Z Test if X indep Y given Z using Fisher's Z test % CI = cond_indep_fisher_z(X, Y, S, C, N, alpha) % % C is the covariance (or correlation) matrix % N is the sample size % alpha is the significance level (default: 0.05) % % See p133 of T. Anderson, "An Intro. to Multivariate Statistical Analysis", 1984 if nargin < 6, alpha = 0.05; end r = partial_corr_coef(C, X, Y, S); z = 0.5*log( (1+r)/(1-r) ); z0 = 0; W = sqrt(N - length(S) - 3)*(z-z0); % W ~ N(0,1) cutoff = norminv(1 - 0.5*alpha); % P(|W| <= cutoff) = 0.95 %cutoff = mynorminv(1 - 0.5*alpha); % P(|W| <= cutoff) = 0.95 if abs(W) < cutoff CI = 1; else % reject the null hypothesis that rho = 0 CI = 0; end p = normcdf(W); %p = mynormcdf(W); %%%%%%%%% function p = normcdf(x,mu,sigma) %NORMCDF Normal cumulative distribution function (cdf). % P = NORMCDF(X,MU,SIGMA) computes the normal cdf with mean MU and % standard deviation SIGMA at the values in X. % % The size of P is the common size of X, MU and SIGMA. A scalar input % functions as a constant matrix of the same size as the other inputs. % % Default values for MU and SIGMA are 0 and 1 respectively. % References: % [1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical % Functions", Government Printing Office, 1964, 26.2. % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision$ $Date: 2004/02/10 18:58:56 $ if nargin < 3, sigma = 1; end if nargin < 2; mu = 0; end [errorcode x mu sigma] = distchck(3,x,mu,sigma); if errorcode > 0 error('Requires non-scalar arguments to match in size.'); end % Initialize P to zero. p = zeros(size(x)); % Return NaN if SIGMA is not positive. k1 = find(sigma <= 0); if any(k1) tmp = NaN; p(k1) = tmp(ones(size(k1))); end % Express normal CDF in terms of the error function. k = find(sigma > 0); if any(k) p(k) = 0.5 * erfc( - (x(k) - mu(k)) ./ (sigma(k) * sqrt(2))); end % Make sure that round-off errors never make P greater than 1. k2 = find(p > 1); if any(k2) p(k2) = ones(size(k2)); end %%%%%%%% function x = norminv(p,mu,sigma); %NORMINV Inverse of the normal cumulative distribution function (cdf). % X = NORMINV(P,MU,SIGMA) finds the inverse of the normal cdf with % mean, MU, and standard deviation, SIGMA. % % The size of X is the common size of the input arguments. A scalar input % functions as a constant matrix of the same size as the other inputs. % % Default values for MU and SIGMA are 0 and 1 respectively. % References: % [1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical % Functions", Government Printing Office, 1964, 7.1.1 and 26.2.2 % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision$ $Date: 2004/02/10 18:58:56 $ if nargin < 3, sigma = 1; end if nargin < 2; mu = 0; end [errorcode p mu sigma] = distchck(3,p,mu,sigma); if errorcode > 0 error('Requires non-scalar arguments to match in size.'); end % Allocate space for x. x = zeros(size(p)); % Return NaN if the arguments are outside their respective limits. k = find(sigma <= 0 | p < 0 | p > 1); if any(k) tmp = NaN; x(k) = tmp(ones(size(k))); end % Put in the correct values when P is either 0 or 1. k = find(p == 0); if any(k) tmp = Inf; x(k) = -tmp(ones(size(k))); end k = find(p == 1); if any(k) tmp = Inf; x(k) = tmp(ones(size(k))); end % Compute the inverse function for the intermediate values. k = find(p > 0 & p < 1 & sigma > 0); if any(k), x(k) = sqrt(2) * sigma(k) .* erfinv(2 * p(k) - 1) + mu(k); end
github
lcnhappe/happe-master
logistK.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMstats/logistK.m
7,253
utf_8
9539c8105ebca14d632373f5f9f4b70d
function [beta,post,lli] = logistK(x,y,w,beta) % [beta,post,lli] = logistK(x,y,beta,w) % % k-class logistic regression with optional sample weights % % k = number of classes % n = number of samples % d = dimensionality of samples % % INPUT % x dxn matrix of n input column vectors % y kxn vector of class assignments % [w] 1xn vector of sample weights % [beta] dxk matrix of model coefficients % % OUTPUT % beta dxk matrix of fitted model coefficients % (beta(:,k) are fixed at 0) % post kxn matrix of fitted class posteriors % lli log likelihood % % Let p(i,j) = exp(beta(:,j)'*x(:,i)), % Class j posterior for observation i is: % post(j,i) = p(i,j) / (p(i,1) + ... p(i,k)) % % See also logistK_eval. % % David Martin <[email protected]> % May 3, 2002 % Copyright (C) 2002 David R. Martin <[email protected]> % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA % 02111-1307, USA, or see http://www.gnu.org/copyleft/gpl.html. % TODO - this code would be faster if x were transposed error(nargchk(2,4,nargin)); debug = 0; if debug>0, h=figure(1); set(h,'DoubleBuffer','on'); end % get sizes [d,nx] = size(x); [k,ny] = size(y); % check sizes if k < 2, error('Input y must encode at least 2 classes.'); end if nx ~= ny, error('Inputs x,y not the same length.'); end n = nx; % make sure class assignments have unit L1-norm sumy = sum(y,1); if abs(1-sumy) > eps, sumy = sum(y,1); for i = 1:k, y(i,:) = y(i,:) ./ sumy; end end clear sumy; % if sample weights weren't specified, set them to 1 if nargin < 3, w = ones(1,n); end % normalize sample weights so max is 1 w = w / max(w); % if starting beta wasn't specified, initialize randomly if nargin < 4, beta = 1e-3*rand(d,k); beta(:,k) = 0; % fix beta for class k at zero else if sum(beta(:,k)) ~= 0, error('beta(:,k) ~= 0'); end end stepsize = 1; minstepsize = 1e-2; post = computePost(beta,x); lli = computeLogLik(post,y,w); for iter = 1:100, %disp(sprintf(' logist iter=%d lli=%g',iter,lli)); vis(x,y,beta,lli,d,k,iter,debug); % gradient and hessian [g,h] = derivs(post,x,y,w); % make sure Hessian is well conditioned if rcond(h) < eps, % condition with Levenberg-Marquardt method for i = -16:16, h2 = h .* ((1 + 10^i)*eye(size(h)) + (1-eye(size(h)))); if rcond(h2) > eps, break, end end if rcond(h2) < eps, warning(['Stopped at iteration ' num2str(iter) ... ' because Hessian can''t be conditioned']); break end h = h2; end % save lli before update lli_prev = lli; % Newton-Raphson with step-size halving while stepsize >= minstepsize, % Newton-Raphson update step step = stepsize * (h \ g); beta2 = beta; beta2(:,1:k-1) = beta2(:,1:k-1) - reshape(step,d,k-1); % get the new log likelihood post2 = computePost(beta2,x); lli2 = computeLogLik(post2,y,w); % if the log likelihood increased, then stop if lli2 > lli, post = post2; lli = lli2; beta = beta2; break end % otherwise, reduce step size by half stepsize = 0.5 * stepsize; end % stop if the average log likelihood has gotten small enough if 1-exp(lli/n) < 1e-2, break, end % stop if the log likelihood changed by a small enough fraction dlli = (lli_prev-lli) / lli; if abs(dlli) < 1e-3, break, end % stop if the step size has gotten too small if stepsize < minstepsize, brea, end % stop if the log likelihood has decreased; this shouldn't happen if lli < lli_prev, warning(['Stopped at iteration ' num2str(iter) ... ' because the log likelihood decreased from ' ... num2str(lli_prev) ' to ' num2str(lli) '.' ... ' This may be a bug.']); break end end if debug>0, vis(x,y,beta,lli,d,k,iter,2); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% class posteriors function post = computePost(beta,x) [d,n] = size(x); [d,k] = size(beta); post = zeros(k,n); bx = zeros(k,n); for j = 1:k, bx(j,:) = beta(:,j)'*x; end for j = 1:k, post(j,:) = 1 ./ sum(exp(bx - repmat(bx(j,:),k,1)),1); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% log likelihood function lli = computeLogLik(post,y,w) [k,n] = size(post); lli = 0; for j = 1:k, lli = lli + sum(w.*y(j,:).*log(post(j,:)+eps)); end if isnan(lli), error('lli is nan'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% gradient and hessian %% These are computed in what seems a verbose manner, but it is %% done this way to use minimal memory. x should be transposed %% to make it faster. function [g,h] = derivs(post,x,y,w) [k,n] = size(post); [d,n] = size(x); % first derivative of likelihood w.r.t. beta g = zeros(d,k-1); for j = 1:k-1, wyp = w .* (y(j,:) - post(j,:)); for ii = 1:d, g(ii,j) = x(ii,:) * wyp'; end end g = reshape(g,d*(k-1),1); % hessian of likelihood w.r.t. beta h = zeros(d*(k-1),d*(k-1)); for i = 1:k-1, % diagonal wt = w .* post(i,:) .* (1 - post(i,:)); hii = zeros(d,d); for a = 1:d, wxa = wt .* x(a,:); for b = a:d, hii_ab = wxa * x(b,:)'; hii(a,b) = hii_ab; hii(b,a) = hii_ab; end end h( (i-1)*d+1 : i*d , (i-1)*d+1 : i*d ) = -hii; end for i = 1:k-1, % off-diagonal for j = i+1:k-1, wt = w .* post(j,:) .* post(i,:); hij = zeros(d,d); for a = 1:d, wxa = wt .* x(a,:); for b = a:d, hij_ab = wxa * x(b,:)'; hij(a,b) = hij_ab; hij(b,a) = hij_ab; end end h( (i-1)*d+1 : i*d , (j-1)*d+1 : j*d ) = hij; h( (j-1)*d+1 : j*d , (i-1)*d+1 : i*d ) = hij; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% debug/visualization function vis (x,y,beta,lli,d,k,iter,debug) if debug<=0, return, end disp(['iter=' num2str(iter) ' lli=' num2str(lli)]); if debug<=1, return, end if d~=3 | k>10, return, end figure(1); res = 100; r = abs(max(max(x))); dom = linspace(-r,r,res); [px,py] = meshgrid(dom,dom); xx = px(:); yy = py(:); points = [xx' ; yy' ; ones(1,res*res)]; func = zeros(k,res*res); for j = 1:k, func(j,:) = exp(beta(:,j)'*points); end [mval,ind] = max(func,[],1); hold off; im = reshape(ind,res,res); imagesc(xx,yy,im); hold on; syms = {'w.' 'wx' 'w+' 'wo' 'w*' 'ws' 'wd' 'wv' 'w^' 'w<'}; for j = 1:k, [mval,ind] = max(y,[],1); ind = find(ind==j); plot(x(1,ind),x(2,ind),syms{j}); end pause(0.1); % eof
github
lcnhappe/happe-master
dhmm_em.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/hmm/dhmm_em.m
3,862
utf_8
83f088af19f326cf34ba80629cff4d01
function [LL, prior, transmat, obsmat] = dhmm_em(data, prior, transmat, obsmat, varargin) % LEARN_DHMM Find the ML/MAP parameters of an HMM with discrete outputs using EM. % [ll_trace, prior, transmat, obsmat] = learn_dhmm(data, prior0, transmat0, obsmat0, ...) % % Notation: Q(t) = hidden state, Y(t) = observation % % INPUTS: % data{ex} or data(ex,:) if all sequences have the same length % prior(i) % transmat(i,j) % obsmat(i,o) % % Optional parameters may be passed as 'param_name', param_value pairs. % Parameter names are shown below; default values in [] - if none, argument is mandatory. % % 'max_iter' - max number of EM iterations [10] % 'thresh' - convergence threshold [1e-4] % 'verbose' - if 1, print out loglik at every iteration [1] % 'obs_prior_weight' - weight to apply to uniform dirichlet prior on observation matrix [0] % % To clamp some of the parameters, so learning does not change them: % 'adj_prior' - if 0, do not change prior [1] % 'adj_trans' - if 0, do not change transmat [1] % 'adj_obs' - if 0, do not change obsmat [1] [max_iter, thresh, verbose, obs_prior_weight, adj_prior, adj_trans, adj_obs] = ... process_options(varargin, 'max_iter', 10, 'thresh', 1e-4, 'verbose', 1, ... 'obs_prior_weight', 0, 'adj_prior', 1, 'adj_trans', 1, 'adj_obs', 1); previous_loglik = -inf; loglik = 0; converged = 0; num_iter = 1; LL = []; if ~iscell(data) data = num2cell(data, 2); % each row gets its own cell end while (num_iter <= max_iter) & ~converged % E step [loglik, exp_num_trans, exp_num_visits1, exp_num_emit] = ... compute_ess_dhmm(prior, transmat, obsmat, data, obs_prior_weight); % M step if adj_prior prior = normalise(exp_num_visits1); end if adj_trans & ~isempty(exp_num_trans) transmat = mk_stochastic(exp_num_trans); end if adj_obs obsmat = mk_stochastic(exp_num_emit); end if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end num_iter = num_iter + 1; converged = em_converged(loglik, previous_loglik, thresh); previous_loglik = loglik; LL = [LL loglik]; end %%%%%%%%%%%%%%%%%%%%%%% function [loglik, exp_num_trans, exp_num_visits1, exp_num_emit, exp_num_visitsT] = ... compute_ess_dhmm(startprob, transmat, obsmat, data, dirichlet) % COMPUTE_ESS_DHMM Compute the Expected Sufficient Statistics for an HMM with discrete outputs % function [loglik, exp_num_trans, exp_num_visits1, exp_num_emit, exp_num_visitsT] = ... % compute_ess_dhmm(startprob, transmat, obsmat, data, dirichlet) % % INPUTS: % startprob(i) % transmat(i,j) % obsmat(i,o) % data{seq}(t) % dirichlet - weighting term for uniform dirichlet prior on expected emissions % % OUTPUTS: % exp_num_trans(i,j) = sum_l sum_{t=2}^T Pr(X(t-1) = i, X(t) = j| Obs(l)) % exp_num_visits1(i) = sum_l Pr(X(1)=i | Obs(l)) % exp_num_visitsT(i) = sum_l Pr(X(T)=i | Obs(l)) % exp_num_emit(i,o) = sum_l sum_{t=1}^T Pr(X(t) = i, O(t)=o| Obs(l)) % where Obs(l) = O_1 .. O_T for sequence l. numex = length(data); [S O] = size(obsmat); exp_num_trans = zeros(S,S); exp_num_visits1 = zeros(S,1); exp_num_visitsT = zeros(S,1); exp_num_emit = dirichlet*ones(S,O); loglik = 0; for ex=1:numex obs = data{ex}; T = length(obs); %obslik = eval_pdf_cond_multinomial(obs, obsmat); obslik = multinomial_prob(obs, obsmat); [alpha, beta, gamma, current_ll, xi] = fwdback(startprob, transmat, obslik); loglik = loglik + current_ll; exp_num_trans = exp_num_trans + sum(xi,3); exp_num_visits1 = exp_num_visits1 + gamma(:,1); exp_num_visitsT = exp_num_visitsT + gamma(:,T); % loop over whichever is shorter if T < O for t=1:T o = obs(t); exp_num_emit(:,o) = exp_num_emit(:,o) + gamma(:,t); end else for o=1:O ndx = find(obs==o); if ~isempty(ndx) exp_num_emit(:,o) = exp_num_emit(:,o) + sum(gamma(:, ndx), 2); end end end end
github
lcnhappe/happe-master
mhmm_em.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/hmm/mhmm_em.m
5,562
utf_8
5a337291416185ebcf567e46e08a3d09
function [LL, prior, transmat, mu, Sigma, mixmat] = ... mhmm_em(data, prior, transmat, mu, Sigma, mixmat, varargin); % LEARN_MHMM Compute the ML parameters of an HMM with (mixtures of) Gaussians output using EM. % [ll_trace, prior, transmat, mu, sigma, mixmat] = learn_mhmm(data, ... % prior0, transmat0, mu0, sigma0, mixmat0, ...) % % Notation: Q(t) = hidden state, Y(t) = observation, M(t) = mixture variable % % INPUTS: % data{ex}(:,t) or data(:,t,ex) if all sequences have the same length % prior(i) = Pr(Q(1) = i), % transmat(i,j) = Pr(Q(t+1)=j | Q(t)=i) % mu(:,j,k) = E[Y(t) | Q(t)=j, M(t)=k ] % Sigma(:,:,j,k) = Cov[Y(t) | Q(t)=j, M(t)=k] % mixmat(j,k) = Pr(M(t)=k | Q(t)=j) : set to [] or ones(Q,1) if only one mixture component % % Optional parameters may be passed as 'param_name', param_value pairs. % Parameter names are shown below; default values in [] - if none, argument is mandatory. % % 'max_iter' - max number of EM iterations [10] % 'thresh' - convergence threshold [1e-4] % 'verbose' - if 1, print out loglik at every iteration [1] % 'cov_type' - 'full', 'diag' or 'spherical' ['full'] % % To clamp some of the parameters, so learning does not change them: % 'adj_prior' - if 0, do not change prior [1] % 'adj_trans' - if 0, do not change transmat [1] % 'adj_mix' - if 0, do not change mixmat [1] % 'adj_mu' - if 0, do not change mu [1] % 'adj_Sigma' - if 0, do not change Sigma [1] % % If the number of mixture components differs depending on Q, just set the trailing % entries of mixmat to 0, e.g., 2 components if Q=1, 3 components if Q=2, % then set mixmat(1,3)=0. In this case, B2(1,3,:)=1.0. if ~isstr(varargin{1}) % catch old syntax error('optional arguments should be passed as string/value pairs') end [max_iter, thresh, verbose, cov_type, adj_prior, adj_trans, adj_mix, adj_mu, adj_Sigma] = ... process_options(varargin, 'max_iter', 10, 'thresh', 1e-4, 'verbose', 1, ... 'cov_type', 'full', 'adj_prior', 1, 'adj_trans', 1, 'adj_mix', 1, ... 'adj_mu', 1, 'adj_Sigma', 1); previous_loglik = -inf; loglik = 0; converged = 0; num_iter = 1; LL = []; if ~iscell(data) data = num2cell(data, [1 2]); % each elt of the 3rd dim gets its own cell end numex = length(data); O = size(data{1},1); Q = length(prior); if isempty(mixmat) mixmat = ones(Q,1); end M = size(mixmat,2); if M == 1 adj_mix = 0; end while (num_iter <= max_iter) & ~converged % E step [loglik, exp_num_trans, exp_num_visits1, postmix, m, ip, op] = ... ess_mhmm(prior, transmat, mixmat, mu, Sigma, data); % M step if adj_prior prior = normalise(exp_num_visits1); end if adj_trans transmat = mk_stochastic(exp_num_trans); end if adj_mix mixmat = mk_stochastic(postmix); end if adj_mu | adj_Sigma [mu2, Sigma2] = mixgauss_Mstep(postmix, m, op, ip, 'cov_type', cov_type); if adj_mu mu = reshape(mu2, [O Q M]); end if adj_Sigma Sigma = reshape(Sigma2, [O O Q M]); end end if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end num_iter = num_iter + 1; converged = em_converged(loglik, previous_loglik, thresh); previous_loglik = loglik; LL = [LL loglik]; end %%%%%%%%% function [loglik, exp_num_trans, exp_num_visits1, postmix, m, ip, op] = ... ess_mhmm(prior, transmat, mixmat, mu, Sigma, data) % ESS_MHMM Compute the Expected Sufficient Statistics for a MOG Hidden Markov Model. % % Outputs: % exp_num_trans(i,j) = sum_l sum_{t=2}^T Pr(Q(t-1) = i, Q(t) = j| Obs(l)) % exp_num_visits1(i) = sum_l Pr(Q(1)=i | Obs(l)) % % Let w(i,k,t,l) = P(Q(t)=i, M(t)=k | Obs(l)) % where Obs(l) = Obs(:,:,l) = O_1 .. O_T for sequence l % Then % postmix(i,k) = sum_l sum_t w(i,k,t,l) (posterior mixing weights/ responsibilities) % m(:,i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l) % ip(i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l)' * Obs(:,t,l) % op(:,:,i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l) * Obs(:,t,l)' verbose = 0; %[O T numex] = size(data); numex = length(data); O = size(data{1},1); Q = length(prior); M = size(mixmat,2); exp_num_trans = zeros(Q,Q); exp_num_visits1 = zeros(Q,1); postmix = zeros(Q,M); m = zeros(O,Q,M); op = zeros(O,O,Q,M); ip = zeros(Q,M); mix = (M>1); loglik = 0; if verbose, fprintf(1, 'forwards-backwards example # '); end for ex=1:numex if verbose, fprintf(1, '%d ', ex); end %obs = data(:,:,ex); obs = data{ex}; T = size(obs,2); if mix [B, B2] = mixgauss_prob(obs, mu, Sigma, mixmat); [alpha, beta, gamma, current_loglik, xi, gamma2] = ... fwdback(prior, transmat, B, 'obslik2', B2, 'mixmat', mixmat); else B = mixgauss_prob(obs, mu, Sigma); [alpha, beta, gamma, current_loglik, xi] = fwdback(prior, transmat, B); end loglik = loglik + current_loglik; if verbose, fprintf(1, 'll at ex %d = %f\n', ex, loglik); end exp_num_trans = exp_num_trans + sum(xi,3); exp_num_visits1 = exp_num_visits1 + gamma(:,1); if mix postmix = postmix + sum(gamma2,3); else postmix = postmix + sum(gamma,2); gamma2 = reshape(gamma, [Q 1 T]); % gamma2(i,m,t) = gamma(i,t) end for i=1:Q for k=1:M w = reshape(gamma2(i,k,:), [1 T]); % w(t) = w(i,k,t,l) wobs = obs .* repmat(w, [O 1]); % wobs(:,t) = w(t) * obs(:,t) m(:,i,k) = m(:,i,k) + sum(wobs, 2); % m(:) = sum_t w(t) obs(:,t) op(:,:,i,k) = op(:,:,i,k) + wobs * obs'; % op(:,:) = sum_t w(t) * obs(:,t) * obs(:,t)' ip(i,k) = ip(i,k) + sum(sum(wobs .* obs, 2)); % ip = sum_t w(t) * obs(:,t)' * obs(:,t) end end end if verbose, fprintf(1, '\n'); end
github
lcnhappe/happe-master
subv2ind.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/subv2ind.m
1,574
utf_8
e85d0bab88fc0d35b803436fa1dc0e15
function ndx = subv2ind(siz, subv) % SUBV2IND Like the built-in sub2ind, but the subscripts are given as row vectors. % ind = subv2ind(siz,subv) % % siz can be a row or column vector of size d. % subv should be a collection of N row vectors of size d. % ind will be of size N * 1. % % Example: % subv = [1 1 1; % 2 1 1; % ... % 2 2 2]; % subv2ind([2 2 2], subv) returns [1 2 ... 8]' % i.e., the leftmost digit toggles fastest. % % See also IND2SUBV. if isempty(subv) ndx = []; return; end if isempty(siz) ndx = 1; return; end [ncases ndims] = size(subv); %if length(siz) ~= ndims % error('length of subscript vector and sizes must be equal'); %end if all(siz==2) %rbits = subv(:,end:-1:1)-1; % read from right to left, convert to 0s/1s %ndx = bitv2dec(rbits)+1; twos = pow2(0:ndims-1); ndx = ((subv-1) * twos(:)) + 1; %ndx = sum((subv-1) .* twos(ones(ncases,1), :), 2) + 1; % equivalent to matrix * vector %ndx = sum((subv-1) .* repmat(twos, ncases, 1), 2) + 1; % much slower than ones %ndx = ndx(:)'; else %siz = siz(:)'; cp = [1 cumprod(siz(1:end-1))]'; %ndx = ones(ncases, 1); %for i = 1:ndims % ndx = ndx + (subv(:,i)-1)*cp(i); %end ndx = (subv-1)*cp + 1; end %%%%%%%%%%% function d = bitv2dec(bits) % BITV2DEC Convert a bit vector to a decimal integer % d = butv2dec(bits) % % This is just like the built-in bin2dec, except the argument is a vector, not a string. % If bits is an array, each row will be converted. [m n] = size(bits); twos = pow2(n-1:-1:0); d = sum(bits .* twos(ones(m,1),:),2);
github
lcnhappe/happe-master
zipload.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/zipload.m
1,611
utf_8
67412c21b14bebb640784443e9e3bbd8
%ZIPLOAD Load compressed data file created with ZIPSAVE % % [data] = zipload( filename ) % filename: string variable that contains the name of the % compressed file (do not include '.zip' extension) % Use only with files created with 'zipsave' % pkzip25.exe has to be in the matlab path. This file is a compression utility % made by Pkware, Inc. It can be dowloaded from: http://www.pkware.com % Or directly from ftp://ftp.pkware.com/pk250c32.exe, for the Windows 95/NT version. % This function was tested using 'PKZIP 2.50 Command Line for Windows 9x/NT' % It is important to use version 2.5 of the utility. Otherwise the command line below % has to be changed to include the proper options of the compression utility you % wish to use. % This function was tested in MATLAB Version 5.3 under Windows NT. % Fernando A. Brucher - May/25/1999 % % Example: % [loadedData] = zipload('testfile'); %-------------------------------------------------------------------- function [data] = zipload( filename ) %--- Decompress data file by calling pkzip (comand line command) --- % Options used: % 'extract' = decompress file % 'silent' = no console output % 'over=all' = overwrite files %eval( ['!pkzip25 -extract -silent -over=all ', filename, '.zip'] ) eval( ['!pkzip25 -extract -silent -over=all ', filename, '.zip'] ) %--- Load data from decompressed file --- % try, catch takes care of cases when pkzip fails to decompress a % valid matlab format file try tmpStruc = load( filename ); data = tmpStruc.data; catch, return, end %--- Delete decompressed file --- delete( [filename,'.mat'] )
github
lcnhappe/happe-master
plot_ellipse.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/plot_ellipse.m
507
utf_8
3a27bbd5c1bdfe99983171e96789da6d
% PLOT_ELLIPSE % h=plot_ellipse(x,y,theta,a,b) % % This routine plots an ellipse with centre (x,y), axis lengths a,b % with major axis at an angle of theta radians from the horizontal. % % Author: P. Fieguth % Jan. 98 % %http://ocho.uwaterloo.ca/~pfieguth/Teaching/372/plot_ellipse.m function h=plot_ellipse(x,y,theta,a,b) np = 100; ang = [0:np]*2*pi/np; R = [cos(theta) -sin(theta); sin(theta) cos(theta)]; pts = [x;y]*ones(size(ang)) + R*[cos(ang)*a; sin(ang)*b]; h=plot( pts(1,:), pts(2,:) );
github
lcnhappe/happe-master
conf2mahal.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/conf2mahal.m
2,424
utf_8
682226ca8c1183325f4204e0c22de0a7
% CONF2MAHAL - Translates a confidence interval to a Mahalanobis % distance. Consider a multivariate Gaussian % distribution of the form % % p(x) = 1/sqrt((2 * pi)^d * det(C)) * exp((-1/2) * MD(x, m, inv(C))) % % where MD(x, m, P) is the Mahalanobis distance from x % to m under P: % % MD(x, m, P) = (x - m) * P * (x - m)' % % A particular Mahalanobis distance k identifies an % ellipsoid centered at the mean of the distribution. % The confidence interval associated with this ellipsoid % is the probability mass enclosed by it. Similarly, % a particular confidence interval uniquely determines % an ellipsoid with a fixed Mahalanobis distance. % % If X is an d dimensional Gaussian-distributed vector, % then the Mahalanobis distance of X is distributed % according to the Chi-squared distribution with d % degrees of freedom. Thus, the Mahalanobis distance is % determined by evaluating the inverse cumulative % distribution function of the chi squared distribution % up to the confidence value. % % Usage: % % m = conf2mahal(c, d); % % Inputs: % % c - the confidence interval % d - the number of dimensions of the Gaussian distribution % % Outputs: % % m - the Mahalanobis radius of the ellipsoid enclosing the % fraction c of the distribution's probability mass % % See also: MAHAL2CONF % Copyright (C) 2002 Mark A. Paskin % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function m = conf2mahal(c, d) m = chi2inv(c, d);
github
lcnhappe/happe-master
plotgauss2d.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/plotgauss2d.m
970
utf_8
768501b0264c4510e2724b15b5be4e97
function h=plotgauss2d(mu, Sigma, plot_cross) % PLOTGAUSS2D Plot a 2D Gaussian as an ellipse with optional cross hairs % h=plotgauss2(mu, Sigma) % % h=plotgauss2(mu, Sigma, 1) also plots the major and minor axes % % Example % clf; S=[2 1; 1 2]; plotgauss2d([0;0], S, 1); axis equal h = plotcov2(mu, Sigma); return; %%%%%%%%%%%%%%%%%%%%%%%% function old if nargin < 3, plot_cross = 0; end [V,D]=eig(Sigma); lam1 = D(1,1); lam2 = D(2,2); v1 = V(:,1); v2 = V(:,2); %assert(approxeq(v1' * v2, 0)) if v1(1)==0 theta = 0; % horizontal else theta = atan(v1(2)/v1(1)); end a = sqrt(lam1); b = sqrt(lam2); h=plot_ellipse(mu(1), mu(2), theta, a,b); if plot_cross mu = mu(:); held = ishold; hold on minor1 = mu-a*v1; minor2 = mu+a*v1; hminor = line([minor1(1) minor2(1)], [minor1(2) minor2(2)]); major1 = mu-b*v2; major2 = mu+b*v2; hmajor = line([major1(1) major2(1)], [major1(2) major2(2)]); %set(hmajor,'color','r') if ~held hold off end end
github
lcnhappe/happe-master
zipsave.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/zipsave.m
1,480
utf_8
cc543374345b9e369d147c452008bc36
%ZIPSAVE Save data in compressed format % % zipsave( filename, data ) % filename: string variable that contains the name of the resulting % compressed file (do not include '.zip' extension) % pkzip25.exe has to be in the matlab path. This file is a compression utility % made by Pkware, Inc. It can be dowloaded from: http://www.pkware.com % This function was tested using 'PKZIP 2.50 Command Line for Windows 9x/NT' % It is important to use version 2.5 of the utility. Otherwise the command line below % has to be changed to include the proper options of the compression utility you % wish to use. % This function was tested in MATLAB Version 5.3 under Windows NT. % Fernando A. Brucher - May/25/1999 % % Example: % testData = [1 2 3; 4 5 6; 7 8 9]; % zipsave('testfile', testData); % % Modified by Kevin Murphy, 26 Feb 2004, to use winzip %------------------------------------------------------------------------ function zipsave( filename, data ) %--- Save data in a temporary file in matlab format (.mat)--- eval( ['save ''', filename, ''' data'] ) %--- Compress data by calling pkzip (comand line command) --- % Options used: % 'add' = add compressed files to the resulting zip file % 'silent' = no console output % 'over=all' = overwrite files %eval( ['!pkzip25 -silent -add -over=all ', filename, '.zip ', filename,'.mat'] ) eval( ['!zip ', filename, '.zip ', filename,'.mat'] ) %--- Delete temporary matlab format file --- delete( [filename,'.mat'] )
github
lcnhappe/happe-master
matprint.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/matprint.m
1,020
utf_8
e92a96dad0e0b9f25d2fe56280ba6393
% MATPRINT - prints a matrix with specified format string % % Usage: matprint(a, fmt, fid) % % a - Matrix to be printed. % fmt - C style format string to use for each value. % fid - Optional file id. % % Eg. matprint(a,'%3.1f') will print each entry to 1 decimal place % Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk @ csse uwa edu au % http://www.csse.uwa.edu.au/~pk % % March 2002 function matprint(a, fmt, fid) if nargin < 3 fid = 1; end [rows,cols] = size(a); % Construct a format string for each row of the matrix consisting of % 'cols' copies of the number formating specification fmtstr = []; for c = 1:cols fmtstr = [fmtstr, ' ', fmt]; end fmtstr = [fmtstr '\n']; % Add a line feed fprintf(fid, fmtstr, a'); % Print the transpose of the matrix because % fprintf runs down the columns of a matrix.
github
lcnhappe/happe-master
plotcov3.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/plotcov3.m
4,040
utf_8
1f186acd56002148a3da006a9fc8b6a2
% PLOTCOV3 - Plots a covariance ellipsoid with axes for a trivariate % Gaussian distribution. % % Usage: % [h, s] = plotcov3(mu, Sigma[, OPTIONS]); % % Inputs: % mu - a 3 x 1 vector giving the mean of the distribution. % Sigma - a 3 x 3 symmetric positive semi-definite matrix giving % the covariance of the distribution (or the zero matrix). % % Options: % 'conf' - a scalar between 0 and 1 giving the confidence % interval (i.e., the fraction of probability mass to % be enclosed by the ellipse); default is 0.9. % 'num-pts' - if the value supplied is n, then (n + 1)^2 points % to be used to plot the ellipse; default is 20. % 'plot-opts' - a cell vector of arguments to be handed to PLOT3 % to contol the appearance of the axes, e.g., % {'Color', 'g', 'LineWidth', 1}; the default is {} % 'surf-opts' - a cell vector of arguments to be handed to SURF % to contol the appearance of the ellipsoid % surface; a nice possibility that yields % transparency is: {'EdgeAlpha', 0, 'FaceAlpha', % 0.1, 'FaceColor', 'g'}; the default is {} % % Outputs: % h - a vector of handles on the axis lines % s - a handle on the ellipsoid surface object % % See also: PLOTCOV2 % Copyright (C) 2002 Mark A. Paskin % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [h, s] = plotcov3(mu, Sigma, varargin) if size(Sigma) ~= [3 3], error('Sigma must be a 3 by 3 matrix'); end if length(mu) ~= 3, error('mu must be a 3 by 1 vector'); end [p, ... n, ... plot_opts, ... surf_opts] = process_options(varargin, 'conf', 0.9, ... 'num-pts', 20, ... 'plot-opts', {}, ... 'surf-opts', {}); h = []; holding = ishold; if (Sigma == zeros(3, 3)) z = mu; else % Compute the Mahalanobis radius of the ellipsoid that encloses % the desired probability mass. k = conf2mahal(p, 3); % The axes of the covariance ellipse are given by the eigenvectors of % the covariance matrix. Their lengths (for the ellipse with unit % Mahalanobis radius) are given by the square roots of the % corresponding eigenvalues. if (issparse(Sigma)) [V, D] = eigs(Sigma); else [V, D] = eig(Sigma); end if (any(diag(D) < 0)) error('Invalid covariance matrix: not positive semi-definite.'); end % Compute the points on the surface of the ellipsoid. t = linspace(0, 2*pi, n); [X, Y, Z] = sphere(n); u = [X(:)'; Y(:)'; Z(:)']; w = (k * V * sqrt(D)) * u; z = repmat(mu(:), [1 (n + 1)^2]) + w; % Plot the axes. L = k * sqrt(diag(D)); h = plot3([mu(1); mu(1) + L(1) * V(1, 1)], ... [mu(2); mu(2) + L(1) * V(2, 1)], ... [mu(3); mu(3) + L(1) * V(3, 1)], plot_opts{:}); hold on; h = [h; plot3([mu(1); mu(1) + L(2) * V(1, 2)], ... [mu(2); mu(2) + L(2) * V(2, 2)], ... [mu(3); mu(3) + L(2) * V(3, 2)], plot_opts{:})]; h = [h; plot3([mu(1); mu(1) + L(3) * V(1, 3)], ... [mu(2); mu(2) + L(3) * V(2, 3)], ... [mu(3); mu(3) + L(3) * V(3, 3)], plot_opts{:})]; end s = surf(reshape(z(1, :), [(n + 1) (n + 1)]), ... reshape(z(2, :), [(n + 1) (n + 1)]), ... reshape(z(3, :), [(n + 1) (n + 1)]), ... surf_opts{:}); if (~holding) hold off; end
github
lcnhappe/happe-master
exportfig.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/exportfig.m
30,663
utf_8
838a8ee93ca6a9b6a85a90fa68976617
function varargout = exportfig(varargin) %EXPORTFIG Export a figure. % EXPORTFIG(H, FILENAME) writes the figure H to FILENAME. H is % a figure handle and FILENAME is a string that specifies the % name of the output file. % % EXPORTFIG(H, FILENAME, OPTIONS) writes the figure H to FILENAME % with options initially specified by the structure OPTIONS. The % field names of OPTIONS must be legal parameters listed below % and the field values must be legal values for the corresponding % parameter. Default options can be set in releases prior to R12 % by storing the OPTIONS structure in the root object's appdata % with the command % setappdata(0,'exportfigdefaults', OPTIONS) % and for releases after R12 by setting the preference with the % command % setpref('exportfig', 'defaults', OPTIONS) % % EXPORTFIG(...,PARAM1,VAL1,PARAM2,VAL2,...) specifies % parameters that control various characteristics of the output % file. Any parameter value can be the string 'auto' which means % the parameter uses the default factory behavior, overriding % any other default for the parameter. % % Format Paramter: % 'Format' a string % specifies the output format. Defaults to 'eps'. For a % list of export formats type 'help print'. % 'Preview' one of the strings 'none', 'tiff' % specifies a preview for EPS files. Defaults to 'none'. % % Size Parameters: % 'Width' a positive scalar % specifies the width in the figure's PaperUnits % 'Height' a positive scalar % specifies the height in the figure's PaperUnits % 'Bounds' one of the strings 'tight', 'loose' % specifies a tight or loose bounding box. Defaults to 'tight'. % 'Reference' an axes handle or a string % specifies that the width and height parameters % are relative to the given axes. If a string is % specified then it must evaluate to an axes handle. % % Specifying only one dimension sets the other dimension % so that the exported aspect ratio is the same as the % figure's or reference axes' current aspect ratio. % If neither dimension is specified the size defaults to % the width and height from the figure's or reference % axes' size. Tight bounding boxes are only computed for % 2-D views and in that case the computed bounds enclose all % text objects. % % Rendering Parameters: % 'Color' one of the strings 'bw', 'gray', 'cmyk' % 'bw' specifies that lines and text are exported in % black and all other objects in grayscale % 'gray' specifies that all objects are exported in grayscale % 'rgb' specifies that all objects are exported in color % using the RGB color space % 'cmyk' specifies that all objects are exported in color % using the CMYK color space % 'Renderer' one of 'painters', 'zbuffer', 'opengl' % specifies the renderer to use % 'Resolution' a positive scalar % specifies the resolution in dots-per-inch. % 'LockAxes' one of 0 or 1 % specifies that all axes limits and ticks should be fixed % while exporting. % % The default color setting is 'bw'. % % Font Parameters: % 'FontMode' one of the strings 'scaled', 'fixed' % 'FontSize' a positive scalar % in 'scaled' mode multiplies with the font size of each % text object to obtain the exported font size % in 'fixed' mode specifies the font size of all text % objects in points % 'DefaultFixedFontSize' a positive scalar % in 'fixed' mode specified the default font size in % points % 'FontSizeMin' a positive scalar % specifies the minimum font size allowed after scaling % 'FontSizeMax' a positive scalar % specifies the maximum font size allowed after scaling % 'FontEncoding' one of the strings 'latin1', 'adobe' % specifies the character encoding of the font % 'SeparateText' one of 0 or 1 % specifies that the text objects are stored in separate % file as EPS with the base filename having '_t' appended. % % If FontMode is 'scaled' but FontSize is not specified then a % scaling factor is computed from the ratio of the size of the % exported figure to the size of the actual figure. % % The default 'FontMode' setting is 'scaled'. % % Line Width Parameters: % 'LineMode' one of the strings 'scaled', 'fixed' % 'LineWidth' a positive scalar % 'DefaultFixedLineWidth' a positive scalar % 'LineWidthMin' a positive scalar % specifies the minimum line width allowed after scaling % 'LineWidthMax' a positive scalar % specifies the maximum line width allowed after scaling % The semantics of 'Line' parameters are exactly the % same as the corresponding 'Font' parameters, except that % they apply to line widths instead of font sizes. % % Style Map Parameter: % 'LineStyleMap' one of [], 'bw', or a function name or handle % specifies how to map line colors to styles. An empty % style map means styles are not changed. The style map % 'bw' is a built-in mapping that maps lines with the same % color to the same style and otherwise cycles through the % available styles. A user-specified map is a function % that takes as input a cell array of line objects and % outputs a cell array of line style strings. The default % map is []. % % Examples: % exportfig(gcf,'fig1.eps','height',3); % Exports the current figure to the file named 'fig1.eps' with % a height of 3 inches (assuming the figure's PaperUnits is % inches) and an aspect ratio the same as the figure's aspect % ratio on screen. % % opts = struct('FontMode','fixed','FontSize',10,'height',3); % exportfig(gcf, 'fig2.eps', opts, 'height', 5); % Exports the current figure to 'fig2.eps' with all % text in 10 point fonts and with height 5 inches. % % See also PREVIEWFIG, APPLYTOFIG, RESTOREFIG, PRINT. % Copyright 2000 Ben Hinkle % Email bug reports and comments to [email protected] if (nargin < 2) error('Too few input arguments'); end % exportfig(H, filename, [options,] ...) H = varargin{1}; if ~LocalIsHG(H,'figure') error('First argument must be a handle to a figure.'); end filename = varargin{2}; if ~ischar(filename) error('Second argument must be a string.'); end paramPairs = {varargin{3:end}}; if nargin > 2 if isstruct(paramPairs{1}) pcell = LocalToCell(paramPairs{1}); paramPairs = {pcell{:}, paramPairs{2:end}}; end end verstr = version; majorver = str2num(verstr(1)); defaults = []; if majorver > 5 if ispref('exportfig','defaults') defaults = getpref('exportfig','defaults'); end elseif exist('getappdata') defaults = getappdata(0,'exportfigdefaults'); end if ~isempty(defaults) dcell = LocalToCell(defaults); paramPairs = {dcell{:}, paramPairs{:}}; end % Do some validity checking on param-value pairs if (rem(length(paramPairs),2) ~= 0) error(['Invalid input syntax. Optional parameters and values' ... ' must be in pairs.']); end auto.format = 'eps'; auto.preview = 'none'; auto.width = -1; auto.height = -1; auto.color = 'bw'; auto.defaultfontsize=10; auto.fontsize = -1; auto.fontmode='scaled'; auto.fontmin = 8; auto.fontmax = 60; auto.defaultlinewidth = 1.0; auto.linewidth = -1; auto.linemode=[]; auto.linemin = 0.5; auto.linemax = 100; auto.fontencoding = 'latin1'; auto.renderer = []; auto.resolution = []; auto.stylemap = []; auto.applystyle = 0; auto.refobj = -1; auto.bounds = 'tight'; explicitbounds = 0; auto.lockaxes = 1; auto.separatetext = 0; opts = auto; % Process param-value pairs args = {}; for k = 1:2:length(paramPairs) param = lower(paramPairs{k}); if ~ischar(param) error('Optional parameter names must be strings'); end value = paramPairs{k+1}; switch (param) case 'format' opts.format = LocalCheckAuto(lower(value),auto.format); if strcmp(opts.format,'preview') error(['Format ''preview'' no longer supported. Use PREVIEWFIG' ... ' instead.']); end case 'preview' opts.preview = LocalCheckAuto(lower(value),auto.preview); if ~strcmp(opts.preview,{'none','tiff'}) error('Preview must be ''none'' or ''tiff''.'); end case 'width' opts.width = LocalToNum(value, auto.width); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.width) error('Width must be a numeric scalar > 0'); end end case 'height' opts.height = LocalToNum(value, auto.height); if ~ischar(value) | ~strcmp(value,'auto') if(~LocalIsPositiveScalar(opts.height)) error('Height must be a numeric scalar > 0'); end end case 'color' opts.color = LocalCheckAuto(lower(value),auto.color); if ~strcmp(opts.color,{'bw','gray','rgb','cmyk'}) error('Color must be ''bw'', ''gray'',''rgb'' or ''cmyk''.'); end case 'fontmode' opts.fontmode = LocalCheckAuto(lower(value),auto.fontmode); if ~strcmp(opts.fontmode,{'scaled','fixed'}) error('FontMode must be ''scaled'' or ''fixed''.'); end case 'fontsize' opts.fontsize = LocalToNum(value,auto.fontsize); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.fontsize) error('FontSize must be a numeric scalar > 0'); end end case 'defaultfixedfontsize' opts.defaultfontsize = LocalToNum(value,auto.defaultfontsize); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.defaultfontsize) error('DefaultFixedFontSize must be a numeric scalar > 0'); end end case 'fontsizemin' opts.fontmin = LocalToNum(value,auto.fontmin); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.fontmin) error('FontSizeMin must be a numeric scalar > 0'); end end case 'fontsizemax' opts.fontmax = LocalToNum(value,auto.fontmax); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.fontmax) error('FontSizeMax must be a numeric scalar > 0'); end end case 'fontencoding' opts.fontencoding = LocalCheckAuto(lower(value),auto.fontencoding); if ~strcmp(opts.fontencoding,{'latin1','adobe'}) error('FontEncoding must be ''latin1'' or ''adobe''.'); end case 'linemode' opts.linemode = LocalCheckAuto(lower(value),auto.linemode); if ~strcmp(opts.linemode,{'scaled','fixed'}) error('LineMode must be ''scaled'' or ''fixed''.'); end case 'linewidth' opts.linewidth = LocalToNum(value,auto.linewidth); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.linewidth) error('LineWidth must be a numeric scalar > 0'); end end case 'defaultfixedlinewidth' opts.defaultlinewidth = LocalToNum(value,auto.defaultlinewidth); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.defaultlinewidth) error(['DefaultFixedLineWidth must be a numeric scalar >' ... ' 0']); end end case 'linewidthmin' opts.linemin = LocalToNum(value,auto.linemin); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.linemin) error('LineWidthMin must be a numeric scalar > 0'); end end case 'linewidthmax' opts.linemax = LocalToNum(value,auto.linemax); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.linemax) error('LineWidthMax must be a numeric scalar > 0'); end end case 'linestylemap' opts.stylemap = LocalCheckAuto(value,auto.stylemap); case 'renderer' opts.renderer = LocalCheckAuto(lower(value),auto.renderer); if ~ischar(value) | ~strcmp(value,'auto') if ~strcmp(opts.renderer,{'painters','zbuffer','opengl'}) error(['Renderer must be ''painters'', ''zbuffer'' or' ... ' ''opengl''.']); end end case 'resolution' opts.resolution = LocalToNum(value,auto.resolution); if ~ischar(value) | ~strcmp(value,'auto') if ~(isnumeric(value) & (prod(size(value)) == 1) & (value >= 0)); error('Resolution must be a numeric scalar >= 0'); end end case 'applystyle' % means to apply the options and not export opts.applystyle = 1; case 'reference' if ischar(value) if strcmp(value,'auto') opts.refobj = auto.refobj; else opts.refobj = eval(value); end else opts.refobj = value; end if ~LocalIsHG(opts.refobj,'axes') error('Reference object must evaluate to an axes handle.'); end case 'bounds' opts.bounds = LocalCheckAuto(lower(value),auto.bounds); explicitbounds = 1; if ~strcmp(opts.bounds,{'tight','loose'}) error('Bounds must be ''tight'' or ''loose''.'); end case 'lockaxes' opts.lockaxes = LocalToNum(value,auto.lockaxes); case 'separatetext' opts.separatetext = LocalToNum(value,auto.separatetext); otherwise error(['Unrecognized option ' param '.']); end end % make sure figure is up-to-date drawnow; allLines = findall(H, 'type', 'line'); allText = findall(H, 'type', 'text'); allAxes = findall(H, 'type', 'axes'); allImages = findall(H, 'type', 'image'); allLights = findall(H, 'type', 'light'); allPatch = findall(H, 'type', 'patch'); allSurf = findall(H, 'type', 'surface'); allRect = findall(H, 'type', 'rectangle'); allFont = [allText; allAxes]; allColor = [allLines; allText; allAxes; allLights]; allMarker = [allLines; allPatch; allSurf]; allEdge = [allPatch; allSurf]; allCData = [allImages; allPatch; allSurf]; old.objs = {}; old.prop = {}; old.values = {}; % Process format if strncmp(opts.format,'eps',3) & ~strcmp(opts.preview,'none') args = {args{:}, ['-' opts.preview]}; end hadError = 0; oldwarn = warning; try % lock axes limits, ticks and labels if requested if opts.lockaxes old = LocalManualAxesMode(old, allAxes, 'TickMode'); old = LocalManualAxesMode(old, allAxes, 'TickLabelMode'); old = LocalManualAxesMode(old, allAxes, 'LimMode'); end % Process size parameters figurePaperUnits = get(H, 'PaperUnits'); oldFigureUnits = get(H, 'Units'); oldFigPos = get(H,'Position'); set(H, 'Units', figurePaperUnits); figPos = get(H,'Position'); refsize = figPos(3:4); if opts.refobj ~= -1 oldUnits = get(opts.refobj, 'Units'); set(opts.refobj, 'Units', figurePaperUnits); r = get(opts.refobj, 'Position'); refsize = r(3:4); set(opts.refobj, 'Units', oldUnits); end aspectRatio = refsize(1)/refsize(2); if (opts.width == -1) & (opts.height == -1) opts.width = refsize(1); opts.height = refsize(2); elseif (opts.width == -1) opts.width = opts.height * aspectRatio; elseif (opts.height == -1) opts.height = opts.width / aspectRatio; end wscale = opts.width/refsize(1); hscale = opts.height/refsize(2); sizescale = min(wscale,hscale); old = LocalPushOldData(old,H,'PaperPositionMode', ... get(H,'PaperPositionMode')); set(H, 'PaperPositionMode', 'auto'); newPos = [figPos(1) figPos(2)+figPos(4)*(1-hscale) ... wscale*figPos(3) hscale*figPos(4)]; set(H, 'Position', newPos); set(H, 'Units', oldFigureUnits); % process line-style map if ~isempty(opts.stylemap) & ~isempty(allLines) oldlstyle = LocalGetAsCell(allLines,'LineStyle'); old = LocalPushOldData(old, allLines, {'LineStyle'}, ... oldlstyle); newlstyle = oldlstyle; if ischar(opts.stylemap) & strcmpi(opts.stylemap,'bw') newlstyle = LocalMapColorToStyle(allLines); else try newlstyle = feval(opts.stylemap,allLines); catch warning(['Skipping stylemap. ' lasterr]); end end set(allLines,{'LineStyle'},newlstyle); end % Process rendering parameters switch (opts.color) case {'bw', 'gray'} if ~strcmp(opts.color,'bw') & strncmp(opts.format,'eps',3) opts.format = [opts.format 'c']; end args = {args{:}, ['-d' opts.format]}; %compute and set gray colormap oldcmap = get(H,'Colormap'); newgrays = 0.30*oldcmap(:,1) + 0.59*oldcmap(:,2) + 0.11*oldcmap(:,3); newcmap = [newgrays newgrays newgrays]; old = LocalPushOldData(old, H, 'Colormap', oldcmap); set(H, 'Colormap', newcmap); %compute and set ColorSpec and CData properties old = LocalUpdateColors(allColor, 'color', old); old = LocalUpdateColors(allAxes, 'xcolor', old); old = LocalUpdateColors(allAxes, 'ycolor', old); old = LocalUpdateColors(allAxes, 'zcolor', old); old = LocalUpdateColors(allMarker, 'MarkerEdgeColor', old); old = LocalUpdateColors(allMarker, 'MarkerFaceColor', old); old = LocalUpdateColors(allEdge, 'EdgeColor', old); old = LocalUpdateColors(allEdge, 'FaceColor', old); old = LocalUpdateColors(allCData, 'CData', old); case {'rgb','cmyk'} if strncmp(opts.format,'eps',3) opts.format = [opts.format 'c']; args = {args{:}, ['-d' opts.format]}; if strcmp(opts.color,'cmyk') args = {args{:}, '-cmyk'}; end else args = {args{:}, ['-d' opts.format]}; end otherwise error('Invalid Color parameter'); end if (~isempty(opts.renderer)) args = {args{:}, ['-' opts.renderer]}; end if (~isempty(opts.resolution)) | ~strncmp(opts.format,'eps',3) if isempty(opts.resolution) opts.resolution = 0; end args = {args{:}, ['-r' int2str(opts.resolution)]}; end % Process font parameters if ~isempty(opts.fontmode) oldfonts = LocalGetAsCell(allFont,'FontSize'); oldfontunits = LocalGetAsCell(allFont,'FontUnits'); set(allFont,'FontUnits','points'); switch (opts.fontmode) case 'fixed' if (opts.fontsize == -1) set(allFont,'FontSize',opts.defaultfontsize); else set(allFont,'FontSize',opts.fontsize); end case 'scaled' if (opts.fontsize == -1) scale = sizescale; else scale = opts.fontsize; end newfonts = LocalScale(oldfonts,scale,opts.fontmin,opts.fontmax); set(allFont,{'FontSize'},newfonts); otherwise error('Invalid FontMode parameter'); end old = LocalPushOldData(old, allFont, {'FontSize'}, oldfonts); old = LocalPushOldData(old, allFont, {'FontUnits'}, oldfontunits); end if strcmp(opts.fontencoding,'adobe') & strncmp(opts.format,'eps',3) args = {args{:}, '-adobecset'}; end % Process line parameters if ~isempty(opts.linemode) oldlines = LocalGetAsCell(allMarker,'LineWidth'); old = LocalPushOldData(old, allMarker, {'LineWidth'}, oldlines); switch (opts.linemode) case 'fixed' if (opts.linewidth == -1) set(allMarker,'LineWidth',opts.defaultlinewidth); else set(allMarker,'LineWidth',opts.linewidth); end case 'scaled' if (opts.linewidth == -1) scale = sizescale; else scale = opts.linewidth; end newlines = LocalScale(oldlines, scale, opts.linemin, opts.linemax); set(allMarker,{'LineWidth'},newlines); end end % adjust figure bounds to surround axes if strcmp(opts.bounds,'tight') if (~strncmp(opts.format,'eps',3) & LocalHas3DPlot(allAxes)) | ... (strncmp(opts.format,'eps',3) & opts.separatetext) if (explicitbounds == 1) warning(['Cannot compute ''tight'' bounds. Using ''loose''' ... ' bounds.']); end opts.bounds = 'loose'; end end warning('off'); if ~isempty(allAxes) if strncmp(opts.format,'eps',3) if strcmp(opts.bounds,'loose') args = {args{:}, '-loose'}; end old = LocalPushOldData(old,H,'Position', oldFigPos); elseif strcmp(opts.bounds,'tight') oldaunits = LocalGetAsCell(allAxes,'Units'); oldapos = LocalGetAsCell(allAxes,'Position'); oldtunits = LocalGetAsCell(allText,'units'); oldtpos = LocalGetAsCell(allText,'Position'); set(allAxes,'units','points'); apos = LocalGetAsCell(allAxes,'Position'); oldunits = get(H,'Units'); set(H,'units','points'); origfr = get(H,'position'); fr = []; for k=1:length(allAxes) if ~strcmpi(get(allAxes(k),'Tag'),'legend') axesR = apos{k}; r = LocalAxesTightBoundingBox(axesR, allAxes(k)); r(1:2) = r(1:2) + axesR(1:2); fr = LocalUnionRect(fr,r); end end if isempty(fr) fr = [0 0 origfr(3:4)]; end for k=1:length(allAxes) ax = allAxes(k); r = apos{k}; r(1:2) = r(1:2) - fr(1:2); set(ax,'Position',r); end old = LocalPushOldData(old, allAxes, {'Position'}, oldapos); old = LocalPushOldData(old, allText, {'Position'}, oldtpos); old = LocalPushOldData(old, allText, {'Units'}, oldtunits); old = LocalPushOldData(old, allAxes, {'Units'}, oldaunits); old = LocalPushOldData(old, H, 'Position', oldFigPos); old = LocalPushOldData(old, H, 'Units', oldFigureUnits); r = [origfr(1) origfr(2)+origfr(4)-fr(4) fr(3:4)]; set(H,'Position',r); else args = {args{:}, '-loose'}; old = LocalPushOldData(old,H,'Position', oldFigPos); end end % Process text in a separate file if needed if opts.separatetext & ~opts.applystyle % First hide all text and export oldtvis = LocalGetAsCell(allText,'visible'); set(allText,'visible','off'); oldax = LocalGetAsCell(allAxes,'XTickLabel',1); olday = LocalGetAsCell(allAxes,'YTickLabel',1); oldaz = LocalGetAsCell(allAxes,'ZTickLabel',1); null = cell(length(oldax),1); [null{:}] = deal([]); set(allAxes,{'XTickLabel'},null); set(allAxes,{'YTickLabel'},null); set(allAxes,{'ZTickLabel'},null); print(H, filename, args{:}); set(allText,{'Visible'},oldtvis); set(allAxes,{'XTickLabel'},oldax); set(allAxes,{'YTickLabel'},olday); set(allAxes,{'ZTickLabel'},oldaz); % Now hide all non-text and export as eps in painters [path, name, ext] = fileparts(filename); tfile = fullfile(path,[name '_t.eps']); tfile2 = fullfile(path,[name '_t2.eps']); foundRenderer = 0; for k=1:length(args) if strncmp('-d',args{k},2) args{k} = '-deps'; elseif strncmp('-zbuffer',args{k},8) | ... strncmp('-opengl', args{k},6) args{k} = '-painters'; foundRenderer = 1; end end if ~foundRenderer args = {args{:}, '-painters'}; end allNonText = [allLines; allLights; allPatch; ... allImages; allSurf; allRect]; oldvis = LocalGetAsCell(allNonText,'visible'); oldc = LocalGetAsCell(allAxes,'color'); oldaxg = LocalGetAsCell(allAxes,'XGrid'); oldayg = LocalGetAsCell(allAxes,'YGrid'); oldazg = LocalGetAsCell(allAxes,'ZGrid'); [null{:}] = deal('off'); set(allAxes,{'XGrid'},null); set(allAxes,{'YGrid'},null); set(allAxes,{'ZGrid'},null); set(allNonText,'Visible','off'); set(allAxes,'Color','none'); print(H, tfile2, args{:}); set(allNonText,{'Visible'},oldvis); set(allAxes,{'Color'},oldc); set(allAxes,{'XGrid'},oldaxg); set(allAxes,{'YGrid'},oldayg); set(allAxes,{'ZGrid'},oldazg); %hack up the postscript file fid1 = fopen(tfile,'w'); fid2 = fopen(tfile2,'r'); line = fgetl(fid2); while ischar(line) if strncmp(line,'%%Title',7) fprintf(fid1,'%s\n',['%%Title: ', tfile]); elseif (length(line) < 3) fprintf(fid1,'%s\n',line); elseif ~strcmp(line(end-2:end),' PR') & ... ~strcmp(line(end-1:end),' L') fprintf(fid1,'%s\n',line); end line = fgetl(fid2); end fclose(fid1); fclose(fid2); delete(tfile2); elseif ~opts.applystyle drawnow; print(H, filename, args{:}); end warning(oldwarn); catch warning(oldwarn); hadError = 1; end % Restore figure settings if opts.applystyle varargout{1} = old; else for n=1:length(old.objs) if ~iscell(old.values{n}) & iscell(old.prop{n}) old.values{n} = {old.values{n}}; end set(old.objs{n}, old.prop{n}, old.values{n}); end end if hadError error(deblank(lasterr)); end % % Local Functions % function outData = LocalPushOldData(inData, objs, prop, values) outData.objs = {objs, inData.objs{:}}; outData.prop = {prop, inData.prop{:}}; outData.values = {values, inData.values{:}}; function cellArray = LocalGetAsCell(fig,prop,allowemptycell); cellArray = get(fig,prop); if nargin < 3 allowemptycell = 0; end if ~iscell(cellArray) & (allowemptycell | ~isempty(cellArray)) cellArray = {cellArray}; end function newArray = LocalScale(inArray, scale, minv, maxv) n = length(inArray); newArray = cell(n,1); for k=1:n newArray{k} = min(maxv,max(minv,scale*inArray{k}(1))); end function gray = LocalMapToGray1(color) gray = color; if ischar(color) switch color(1) case 'y' color = [1 1 0]; case 'm' color = [1 0 1]; case 'c' color = [0 1 1]; case 'r' color = [1 0 0]; case 'g' color = [0 1 0]; case 'b' color = [0 0 1]; case 'w' color = [1 1 1]; case 'k' color = [0 0 0]; end end if ~ischar(color) gray = 0.30*color(1) + 0.59*color(2) + 0.11*color(3); end function newArray = LocalMapToGray(inArray); n = length(inArray); newArray = cell(n,1); for k=1:n color = inArray{k}; if ~isempty(color) color = LocalMapToGray1(color); end if isempty(color) | ischar(color) newArray{k} = color; else newArray{k} = [color color color]; end end function newArray = LocalMapColorToStyle(inArray); inArray = LocalGetAsCell(inArray,'Color'); n = length(inArray); newArray = cell(n,1); styles = {'-','--',':','-.'}; uniques = []; nstyles = length(styles); for k=1:n gray = LocalMapToGray1(inArray{k}); if isempty(gray) | ischar(gray) | gray < .05 newArray{k} = '-'; else if ~isempty(uniques) & any(gray == uniques) ind = find(gray==uniques); else uniques = [uniques gray]; ind = length(uniques); end newArray{k} = styles{mod(ind-1,nstyles)+1}; end end function newArray = LocalMapCData(inArray); n = length(inArray); newArray = cell(n,1); for k=1:n color = inArray{k}; if (ndims(color) == 3) & isa(color,'double') gray = 0.30*color(:,:,1) + 0.59*color(:,:,2) + 0.11*color(:,:,3); color(:,:,1) = gray; color(:,:,2) = gray; color(:,:,3) = gray; end newArray{k} = color; end function outData = LocalUpdateColors(inArray, prop, inData) value = LocalGetAsCell(inArray,prop); outData.objs = {inData.objs{:}, inArray}; outData.prop = {inData.prop{:}, {prop}}; outData.values = {inData.values{:}, value}; if (~isempty(value)) if strcmp(prop,'CData') value = LocalMapCData(value); else value = LocalMapToGray(value); end set(inArray,{prop},value); end function bool = LocalIsPositiveScalar(value) bool = isnumeric(value) & ... prod(size(value)) == 1 & ... value > 0; function value = LocalToNum(value,auto) if ischar(value) if strcmp(value,'auto') value = auto; else value = str2num(value); end end %convert a struct to {field1,val1,field2,val2,...} function c = LocalToCell(s) f = fieldnames(s); v = struct2cell(s); opts = cell(2,length(f)); opts(1,:) = f; opts(2,:) = v; c = {opts{:}}; function c = LocalIsHG(obj,hgtype) c = 0; if (length(obj) == 1) & ishandle(obj) c = strcmp(get(obj,'type'),hgtype); end function c = LocalHas3DPlot(a) zticks = LocalGetAsCell(a,'ZTickLabel'); c = 0; for k=1:length(zticks) if ~isempty(zticks{k}) c = 1; return; end end function r = LocalUnionRect(r1,r2) if isempty(r1) r = r2; elseif isempty(r2) r = r1; elseif max(r2(3:4)) > 0 left = min(r1(1),r2(1)); bot = min(r1(2),r2(2)); right = max(r1(1)+r1(3),r2(1)+r2(3)); top = max(r1(2)+r1(4),r2(2)+r2(4)); r = [left bot right-left top-bot]; else r = r1; end function c = LocalLabelsMatchTicks(labs,ticks) c = 0; try t1 = num2str(ticks(1)); n = length(ticks); tend = num2str(ticks(n)); c = strncmp(labs(1),t1,length(labs(1))) & ... strncmp(labs(n),tend,length(labs(n))); end function r = LocalAxesTightBoundingBox(axesR, a) r = []; atext = findall(a,'type','text','visible','on'); if ~isempty(atext) set(atext,'units','points'); res=LocalGetAsCell(atext,'extent'); for n=1:length(atext) r = LocalUnionRect(r,res{n}); end end if strcmp(get(a,'visible'),'on') r = LocalUnionRect(r,[0 0 axesR(3:4)]); oldunits = get(a,'fontunits'); set(a,'fontunits','points'); label = text(0,0,'','parent',a,... 'units','points',... 'fontsize',get(a,'fontsize'),... 'fontname',get(a,'fontname'),... 'fontweight',get(a,'fontweight'),... 'fontangle',get(a,'fontangle'),... 'visible','off'); fs = get(a,'fontsize'); % handle y axis tick labels ry = [0 -fs/2 0 axesR(4)+fs]; ylabs = get(a,'yticklabels'); yticks = get(a,'ytick'); maxw = 0; if ~isempty(ylabs) for n=1:size(ylabs,1) set(label,'string',ylabs(n,:)); ext = get(label,'extent'); maxw = max(maxw,ext(3)); end if ~LocalLabelsMatchTicks(ylabs,yticks) & ... strcmp(get(a,'xaxislocation'),'bottom') ry(4) = ry(4) + 1.5*ext(4); end if strcmp(get(a,'yaxislocation'),'left') ry(1) = -(maxw+5); else ry(1) = axesR(3); end ry(3) = maxw+5; r = LocalUnionRect(r,ry); end % handle x axis tick labels rx = [0 0 0 fs+5]; xlabs = get(a,'xticklabels'); xticks = get(a,'xtick'); if ~isempty(xlabs) if strcmp(get(a,'xaxislocation'),'bottom') rx(2) = -(fs+5); if ~LocalLabelsMatchTicks(xlabs,xticks); rx(4) = rx(4) + 2*fs; rx(2) = rx(2) - 2*fs; end else rx(2) = axesR(4); % exponent is still below axes if ~LocalLabelsMatchTicks(xlabs,xticks); rx(4) = rx(4) + axesR(4) + 2*fs; rx(2) = -2*fs; end end set(label,'string',xlabs(1,:)); ext1 = get(label,'extent'); rx(1) = -ext1(3)/2; set(label,'string',xlabs(size(xlabs,1),:)); ext2 = get(label,'extent'); rx(3) = axesR(3) + (ext2(3) + ext1(3))/2; r = LocalUnionRect(r,rx); end set(a,'fontunits',oldunits); delete(label); end function c = LocalManualAxesMode(old, allAxes, base) xs = ['X' base]; ys = ['Y' base]; zs = ['Z' base]; oldXMode = LocalGetAsCell(allAxes,xs); oldYMode = LocalGetAsCell(allAxes,ys); oldZMode = LocalGetAsCell(allAxes,zs); old = LocalPushOldData(old, allAxes, {xs}, oldXMode); old = LocalPushOldData(old, allAxes, {ys}, oldYMode); old = LocalPushOldData(old, allAxes, {zs}, oldZMode); set(allAxes,xs,'manual'); set(allAxes,ys,'manual'); set(allAxes,zs,'manual'); c = old; function val = LocalCheckAuto(val, auto) if ischar(val) & strcmp(val,'auto') val = auto; end
github
lcnhappe/happe-master
plotcov2.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/plotcov2.m
3,013
utf_8
4305f11ba0280ef8ebcad4c8a4c4013c
% PLOTCOV2 - Plots a covariance ellipse with major and minor axes % for a bivariate Gaussian distribution. % % Usage: % h = plotcov2(mu, Sigma[, OPTIONS]); % % Inputs: % mu - a 2 x 1 vector giving the mean of the distribution. % Sigma - a 2 x 2 symmetric positive semi-definite matrix giving % the covariance of the distribution (or the zero matrix). % % Options: % 'conf' - a scalar between 0 and 1 giving the confidence % interval (i.e., the fraction of probability mass to % be enclosed by the ellipse); default is 0.9. % 'num-pts' - the number of points to be used to plot the % ellipse; default is 100. % % This function also accepts options for PLOT. % % Outputs: % h - a vector of figure handles to the ellipse boundary and % its major and minor axes % % See also: PLOTCOV3 % Copyright (C) 2002 Mark A. Paskin % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = plotcov2(mu, Sigma, varargin) if size(Sigma) ~= [2 2], error('Sigma must be a 2 by 2 matrix'); end if length(mu) ~= 2, error('mu must be a 2 by 1 vector'); end [p, ... n, ... plot_opts] = process_options(varargin, 'conf', 0.9, ... 'num-pts', 100); h = []; holding = ishold; if (Sigma == zeros(2, 2)) z = mu; else % Compute the Mahalanobis radius of the ellipsoid that encloses % the desired probability mass. k = conf2mahal(p, 2); % The major and minor axes of the covariance ellipse are given by % the eigenvectors of the covariance matrix. Their lengths (for % the ellipse with unit Mahalanobis radius) are given by the % square roots of the corresponding eigenvalues. if (issparse(Sigma)) [V, D] = eigs(Sigma); else [V, D] = eig(Sigma); end % Compute the points on the surface of the ellipse. t = linspace(0, 2*pi, n); u = [cos(t); sin(t)]; w = (k * V * sqrt(D)) * u; z = repmat(mu, [1 n]) + w; % Plot the major and minor axes. L = k * sqrt(diag(D)); h = plot([mu(1); mu(1) + L(1) * V(1, 1)], ... [mu(2); mu(2) + L(1) * V(2, 1)], plot_opts{:}); hold on; h = [h; plot([mu(1); mu(1) + L(2) * V(1, 2)], ... [mu(2); mu(2) + L(2) * V(2, 2)], plot_opts{:})]; end h = [h; plot(z(1, :), z(2, :), plot_opts{:})]; if (~holding) hold off; end
github
lcnhappe/happe-master
ind2subv.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/ind2subv.m
1,206
utf_8
5c2e8689803ece8fca091e60c913809d
function sub = ind2subv(siz, ndx) % IND2SUBV Like the built-in ind2sub, but returns the answer as a row vector. % sub = ind2subv(siz, ndx) % % siz and ndx can be row or column vectors. % sub will be of size length(ndx) * length(siz). % % Example % ind2subv([2 2 2], 1:8) returns % [1 1 1 % 2 1 1 % ... % 2 2 2] % That is, the leftmost digit toggle fastest. % % See also SUBV2IND n = length(siz); if n==0 sub = ndx; return; end if all(siz==2) sub = dec2bitv(ndx-1, n); sub = sub(:,n:-1:1)+1; return; end cp = [1 cumprod(siz(:)')]; ndx = ndx(:) - 1; sub = zeros(length(ndx), n); for i = n:-1:1 % i'th digit sub(:,i) = floor(ndx/cp(i))+1; ndx = rem(ndx,cp(i)); end %%%%%%%%%% function bits = dec2bitv(d,n) % DEC2BITV Convert a decimal integer to a bit vector. % bits = dec2bitv(d,n) is just like the built-in dec2bin, except the answer is a vector, not a string. % n is an optional minimum length on the bit vector. % If d is a vector, each row of the output array will be a bit vector. if (nargin<2) n=1; % Need at least one digit even for 0. end d = d(:); [f,e]=log2(max(d)); % How many digits do we need to represent the numbers? bits=rem(floor(d*pow2(1-max(n,e):0)),2);
github
lcnhappe/happe-master
process_options.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/process_options.m
4,385
utf_8
bb0450331cd2e6af72679b642ca38e24
% PROCESS_OPTIONS - Processes options passed to a Matlab function. % This function provides a simple means of % parsing attribute-value options. Each option is % named by a unique string and is given a default % value. % % Usage: [var1, var2, ..., varn[, unused]] = ... % process_options(args, ... % str1, def1, str2, def2, ..., strn, defn) % % Arguments: % args - a cell array of input arguments, such % as that provided by VARARGIN. Its contents % should alternate between strings and % values. % str1, ..., strn - Strings that are associated with a % particular variable % def1, ..., defn - Default values returned if no option % is supplied % % Returns: % var1, ..., varn - values to be assigned to variables % unused - an optional cell array of those % string-value pairs that were unused; % if this is not supplied, then a % warning will be issued for each % option in args that lacked a match. % % Examples: % % Suppose we wish to define a Matlab function 'func' that has % required parameters x and y, and optional arguments 'u' and 'v'. % With the definition % % function y = func(x, y, varargin) % % [u, v] = process_options(varargin, 'u', 0, 'v', 1); % % calling func(0, 1, 'v', 2) will assign 0 to x, 1 to y, 0 to u, and 2 % to v. The parameter names are insensitive to case; calling % func(0, 1, 'V', 2) has the same effect. The function call % % func(0, 1, 'u', 5, 'z', 2); % % will result in u having the value 5 and v having value 1, but % will issue a warning that the 'z' option has not been used. On % the other hand, if func is defined as % % function y = func(x, y, varargin) % % [u, v, unused_args] = process_options(varargin, 'u', 0, 'v', 1); % % then the call func(0, 1, 'u', 5, 'z', 2) will yield no warning, % and unused_args will have the value {'z', 2}. This behaviour is % useful for functions with options that invoke other functions % with options; all options can be passed to the outer function and % its unprocessed arguments can be passed to the inner function. % Copyright (C) 2002 Mark A. Paskin % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [varargout] = process_options(args, varargin) % Check the number of input arguments n = length(varargin); if (mod(n, 2)) error('Each option must be a string/value pair.'); end % Check the number of supplied output arguments if (nargout < (n / 2)) error('Insufficient number of output arguments given'); elseif (nargout == (n / 2)) warn = 1; nout = n / 2; else warn = 0; nout = n / 2 + 1; end % Set outputs to be defaults varargout = cell(1, nout); for i=2:2:n varargout{i/2} = varargin{i}; end % Now process all arguments nunused = 0; for i=1:2:length(args) found = 0; for j=1:2:n if strcmpi(args{i}, varargin{j}) varargout{(j + 1)/2} = args{i + 1}; found = 1; break; end end if (~found) if (warn) warning('Option ''%s'' not used.', args{i}); args{i} else nunused = nunused + 1; unused{2 * nunused - 1} = args{i}; unused{2 * nunused} = args{i + 1}; end end end % Assign the unused arguments if (~warn) if (nunused) varargout{nout} = unused; else varargout{nout} = cell(0); end end
github
lcnhappe/happe-master
nonmaxsup.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/nonmaxsup.m
1,708
utf_8
ad451680a9d414f907da2969e0809c22
% NONMAXSUP - Non-maximal Suppression % % Usage: cim = nonmaxsup(im, radius) % % Arguments: % im - image to be processed. % radius - radius of region considered in non-maximal % suppression (optional). Typical values to use might % be 1-3. Default is 1. % % Returns: % cim - image with pixels that are not maximal within a % square neighborhood zeroed out. % Copyright (C) 2002 Mark A. Paskin % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cim = nonmaxsup(m, radius) if (nargin == 1) radius = 1; end % Extract local maxima by performing a grey scale morphological % dilation and then finding points in the corner strength image that % match the dilated image and are also greater than the threshold. sze = 2 * radius + 1; % Size of mask. mx = ordfilt2(m, sze^2, ones(sze)); % Grey-scale dilate. cim = sparse(m .* (m == mx));
github
lcnhappe/happe-master
laplacedegenerate_ep.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/bayesianlogreg/laplacedegenerate_ep.m
18,982
utf_8
f7c41d02425138606269031927275e33
function [Gauss,terms,logp,comptime] = laplacedegenerate_ep(y,X,K,varargin) % specialized version of our fast variant of % Expectation Propagation for Logistic Regression (2 classes) with a (correlated) Laplace prior % in the degenerate case, i.e., when the number of features >> number of samples % (also works when number of samples > number of features, but then less stable!!!) % % input: % labels = an N x 1 vector of class labels [1,2] % examples = an N x M matrix of input data % K = the prior precision matrix of size M x M % % Note: the bias term should be explicitly added to K and the examples! % % regression parameters refers to betas % auxiliary variables refers to u and v whose precision matrix auxK = inv(Lambda) couples the features. % % we have a precision matrix of the form % % | K_beta | % | K_u | % | K_v | % % priorGauss: struct with fields % % hatK diagonal of precision matrix (number of samples x 1); % (initially zero) % diagK diagonal of precision matrix (number of features x 1) % (initially zero) % % precision matrix of regression parameters K_beta = A' hatK A + diagK % % h canonical mean (number of features x 1) % (initially zero) % % auxK precision matrix of auxiliary variables (number of features x number of features; sparse) % (contains the covariance structure of interest) % % A feature matrix (number of samples x number of features) % % terms: struct with fields % % hatK as priorGauss % diagK as priorGauss % hath canonical mean (number of samples x 1) % h canonical mean (number of features x 1) % canonical mean of regression parameters = h + A' hath % auxK as priorGauss, but then only diagonal elements (number of features x 1) % % opt: struct with fields (all optional, defaults in brackets) % % maxstepsize maximum step size [1] % fraction fraction or power for fractional/power EP [1] % niter maximum number of iterations [100] % tol convergence criterion [1e-5] % nweights number of points for numerical integration [20] % temperature temperature for simulated annealing [1] % verbose give output during run [1] % % Gauss: struct with fields as in priorGauss plus % % hatB diagonal of projected covariance (number of samples x 1) % hatB = A Covariance A' % hatn projected mean (number of samples x 1) % hatn = A m % diagC diagonal of covariance matrix of regression parameters (number of features x 1) % auxC diagonal of covariance matrix of auxiliary variables (number of features x 1) % % % logp: estimated marginal loglikelihood (implementation doubtful...) % % comptime: computation time %% initialization % parse opt opt = []; for i=1:2:length(varargin) opt.(varargin{i}) = varargin{i+1}; end if ~isfield(opt,'maxstepsize'), opt.maxstepsize = 1; end if ~isfield(opt,'fraction'), opt.fraction = 0.95; end if ~isfield(opt,'niter'), opt.niter = 1000; end if ~isfield(opt,'tol'), opt.tol = 1e-5; end if ~isfield(opt,'nweights'), opt.nweights = 50; end if ~isfield(opt,'temperature'), opt.temperature = 1; end if ~isfield(opt,'lambda'), opt.lambda = 1; end if ~isfield(opt,'verbose'), opt.verbose = 1; end if opt.verbose fprintf('starting EP\n'); end tic [nsamples,nfeatures] = size(X); %% create priorGauss and terms A = X.*repmat(y,1,nfeatures); % construct Gaussian representation priorGauss.A = A; priorGauss.hatK = zeros(nsamples,1); priorGauss.h = zeros(nfeatures,1); priorGauss.diagK = zeros(nfeatures,1); priorGauss.auxK = K; % compute additional terms for the EP free energy [cholK,dummy,S] = chol(K,'lower'); LogPriorRestAux2 = (2*sum(log(full(diag(cholK))))); % -nfeatures*log(2*pi)); % redundant MvG % construct term representation terms.hatK = ones(nsamples,1)/10; terms.hath = zeros(nsamples,1); terms.diagK = ones(nfeatures,1)./(10*opt.lambda); terms.auxK = zeros(nfeatures,1); terms.h = zeros(nfeatures,1); %% precompute points and weights for numerical integration [xhermite,whermite] = gausshermite(opt.nweights); xhermite = xhermite(:); % nhermite x 1 whermite = whermite(:); % nhermite x 1 [xlaguerre,wlaguerre] = gausslaguerre(opt.nweights); xlaguerre = xlaguerre(:); % nlaguerre x 1 wlaguerre = wlaguerre(:); % nlaguerre x 1 % divide all canonical parameters by the temperature if opt.temperature ~= 1, [priorGauss,terms] = correct_for_temperature(priorGauss,terms,opt.temperature); end %% build initial Gauss % add terms to prior Gauss = update_Gauss(priorGauss,terms); Gauss = canonical_to_moments(Gauss); [myGauss,ok] = project_all(Gauss,terms,opt.fraction); if ~ok, error('improper cavity distributions\n'); end prior = Gauss; % save prior Gauss %% enter the iterations logp = 0; logpold = 2*opt.tol; change = 0; teller = 0; stepsize = opt.maxstepsize; while abs(logp-logpold) > stepsize*opt.tol && teller < opt.niter, teller = teller+1; logpold = logp; oldchange = change; % compute the new term approximation by applying an adf update on all the cavity approximations [fullterms,logreglogz,crosslogz] = ... adfupdate_all(myGauss,terms,xhermite,whermite,xlaguerre,wlaguerre,opt.fraction,opt.temperature); ok = 0; ok1 = 1; ok2 = 1; while ~ok, % try to replace the old term approximations by the new term approximations and check whether the new Gauss is still fine [newGauss,newterms,ok1] = try_update(Gauss,fullterms,terms,stepsize); %[newGauss,newterms,ok1] = try_update(Gauss,fullterms,terms,0.5); if ok1, % compute all cavity approximations needed for the next EP updates and check whether they are all fine [newGauss,myGauss,logZappx,ok2] = try_project(newGauss,newterms,opt.fraction); end ok = (ok1 & ok2); if ok, % accept terms = newterms; Gauss = newGauss; stepsize = min(opt.maxstepsize,stepsize*1.9); else % try with smaller stepsize stepsize = stepsize/2; if ~ok1, fprintf('improper full covariance: lowering stepsize to %g\n',stepsize'); elseif ~ok2, fprintf('improper cavity covariance: lowering stepsize to %g\n',stepsize'); end if stepsize < 1e-10, warning('Cannot find an update that leads to proper cavity approximations'); teller = opt.niter; break; end end end % compute marginal moments if ok, % compute marginal loglikelihood %logp = sum(logz) + sum(crosslogz) + logdet/2 + contribQ; % CorrTermCross1 = (myGauss.m.^2)./myGauss.diagC - (newGauss.m.^2)./newGauss.diagC + log(myGauss.diagC/newGauss.diagC); % CorrTermCross2 = log(myGauss.auxC/newGauss.auxC); % CorrTerm = 0.5*CorrTermCross1 + 0.5*(CorrTermCross2 + CorrTermCross2); logp = (sum(crosslogz) + sum(logreglogz))./opt.fraction + logZappx + LogPriorRestAux2; if opt.verbose fprintf('%d: %g (stepsize: %g)\n',teller,logp,stepsize); end % check whether marginal loglikelihood is going up and down, if so, lower stepsize change = logp-logpold; if change*oldchange < 0, % possibly cycling stepsize = stepsize/2; end oldchange = change; end end comptime = toc; if opt.verbose fprintf('EP finished in %s seconds\n',num2str(comptime)); end Gauss.prior = prior; %%% END MAIN %%%%%%%%% % % compute the cavity approximations that result when subtracting a fraction of the term approximations function [myGauss,ok] = project_all(Gauss,terms,fraction) if nargin < 3, fraction = 1; end % take out and project in moment form % (1) regression parameters [myGauss.hatB,myGauss.hatn] = ... rank_one_update(Gauss.hatB,Gauss.hatn,-fraction*terms.hatK,-fraction*terms.hath); % (2) cross terms between regression parameters and auxiliary parameters [myGauss.diagC,myGauss.m] = ... rank_one_update(Gauss.diagC,Gauss.m,-fraction*terms.diagK,-fraction*terms.h); myGauss.auxC = rank_one_update(Gauss.auxC,[],-fraction*terms.auxK); % check whether all precision matrices are strictly positive definite if nargout > 1, ok = (all(myGauss.hatB > 0) & all(myGauss.diagC > 0) & all(myGauss.auxC > 0)); end %%%%%%%%% % % compute the new term approximation by applying an adf update on all the cavity approximations function [fullterms,logreglogz,crosslogz] = ... adfupdate_all(myGauss,terms,xhermite,whermite,xlaguerre,wlaguerre,fraction,temperature) if nargin < 8, temperature = 1; end if nargin < 7, fraction = 1; end %% (1) regression parameters oldm = myGauss.hatn; oldC = myGauss.hatB; sqrtC = sqrt(oldC); nsamples = length(oldm); nhermite = length(whermite); % translate and scale the sample points to get the correct mean and variance x = repmat(oldm,1,nhermite) + sqrtC*xhermite'; % compute the terms at the sample points g = logist(x); % returns - log (1 + exp(-x)) with special attention for very small and very large x % correct for fraction and temperature and incorporate the sample weights g = fraction*g/temperature + log(repmat(whermite',nsamples,1)); maxg = max(g,[],2); g = g-repmat(maxg,1,nhermite); expg = exp(g); denominator = sum(expg,2); neww = expg./repmat(denominator,1,nhermite); % compute the moments Ex = sum(x.*neww,2); Exx = sum(x.^2.*neww,2); newm = Ex; newC = Exx-Ex.^2; % derive the term approximation from the change in mean and variance [fullterms.hatK,fullterms.hath,logzextra] = compute_termproxy(newC,newm,oldC,oldm,fraction); % contributions to marginal loglikelihood logreglogz = maxg + log(denominator) + logzextra; %% (2) cross terms between regression parameters and auxiliary variables oldm = myGauss.m; oldC = myGauss.diagC; oldlambda = myGauss.auxC; nfeatures = length(oldm); nlaguerre = length(wlaguerre); % this part heavily relies on the accompanying note % basic idea: % - the cavity approximation on U is an exponential distribution % - we have analytical formulas for the moments of x conditioned upon U % - marginal moments can then be computed through numerical integration with Gauss-Laguerre % translate and scale the sample points to get the correct mean U = 2*oldlambda*xlaguerre'; % nfeatures x nlaguerre mm = repmat(oldm,1,nlaguerre); CC = repmat(oldC,1,nlaguerre); % compute the partition function (integral over x) given U and turn this into weights required for computing the marginal moments g = (1-fraction)*log(U)/2 - fraction*mm.^2./(U + fraction*CC)/2 - log(U+ fraction*CC)/2; g = bsxfun(@plus,g,log(wlaguerre')); maxg = max(g,[],2); g = bsxfun(@minus,g,maxg); expg = exp(g); denominator = sum(expg,2); neww = bsxfun(@rdivide,expg,denominator); % compute the marginal moments through numerical integration ExgU = mm.*U./(U + fraction*CC); Ex = sum(ExgU.*neww,2); ExxgU = ExgU.^2 + CC.*U./(U+fraction*CC); Exx = sum(ExxgU.*neww,2); EU = sum(U.*neww,2); newm = Ex; newC = Exx-Ex.^2; newlambda = EU/2; % derive the term approximation from the change in mean and variance [fullterms.diagK,fullterms.h,logzextra1] = compute_termproxy(newC,newm,oldC,oldm,fraction); [fullterms.auxK,dummy,logzextra2] = compute_termproxy(newlambda,zeros(nfeatures,1),oldlambda,zeros(nfeatures,1),fraction); crosslogz = maxg + log(denominator) + logzextra1 + 2*logzextra2; % multiplied the last term by two %%%%%%%%%% % % compute the moments corresponding to the canonical parameters function [Gauss,logp] = canonical_to_moments(Gauss) [nsamples,nfeatures] = size(Gauss.A); %% (1) regression parameters if nsamples > nfeatures, % in the non-degenerate case, this direct route is more stable and faster scaledA = Gauss.A.*(repmat(Gauss.hatK,1,nfeatures)); K = Gauss.A'*scaledA + diag(Gauss.diagK); [C,logdet1] = invert_chol(K); Gauss.m = C*Gauss.h; Gauss.hatB = zeros(nsamples,1); % only need diagonal for k=1:nsamples, Gauss.hatB(k) = Gauss.A(k,:)*C*Gauss.A(k,:)'; end Gauss.diagC = diag(C); Gauss.hatn = Gauss.A*Gauss.m; else % this part heavily relies on the appendix of the accompanying note % basic idea: % - the precision matrix K is of the form A' hatK A + diagK, where both hatK and diagK are diagonal matrices % - apply Woodbury's formula to replace inverting an (nfeat x nfeat) matrix by an (nsample x nsample) alternative % - projections of the covariance matrix and the mean onto the feature matrix then follow immediately scaledA = bsxfun(@rdivide,Gauss.A,Gauss.diagK'); W = Gauss.A*scaledA'; W = (W + W')/2; % make symmetric [Q,logdet1] = invert_chol(diag(1./Gauss.hatK) + W); Gauss.hatB = zeros(nsamples,1); for k=1:nsamples, Gauss.hatB(k) = W(k,k) - W(k,:)*Q*W(:,k); end Gauss.m = Gauss.h./Gauss.diagK - scaledA'*(Q*(scaledA*Gauss.h)); Gauss.hatn = Gauss.A*Gauss.m; Gauss.diagC = 1./Gauss.diagK; % for i=1:nfeatures, % Gauss.diagC(i) = Gauss.diagC(i) - scaledA(:,i)'*Q*scaledA(:,i); % end % adriana's recipe z = scaledA' * Q; for i=1:size(z), Gauss.diagC(i) = Gauss.diagC(i) - z(i,:) * scaledA(:,i); end logdet1 = logdet1 + sum(log(Gauss.diagK)) + sum(log(Gauss.hatK)); end % compute quadratic term (BC) qterm = sum(Gauss.m .* Gauss.diagK .* Gauss.m); % = m' * diagK * m qterm = qterm + sum(Gauss.hatn .* Gauss.hatK .* Gauss.hatn); logp1 = 0.5*(qterm - logdet1); %% (2) auxiliary variables; i.e., wrt scale mixture representation of % Laplace prior % this is (by far) the most expensive step when nsamples << nfeatures % and the precision matrix of the auxiliary variables is non-diagonal [auxC,logdet2] = invert_chol(Gauss.auxK); % only need diagonal terms Gauss.auxC = full(diag(auxC)); % turn into full vector logp2 = 0.5*( - logdet2); logp = logp1 + 2*logp2; %%%%%%%%%% % % take out the old term proxies and add the new termproxies and check whether the resulting Gaussian is still normalizable function [newGauss,newterms,ok] = try_update(Gauss,fullterms,terms,stepsize) if nargin < 4, stepsize = 1; end % take out the old term proxies newGauss = update_Gauss(Gauss,terms,-1); % compute the new term proxies as a weighted combi of the old ones and the "full" (stepsize 1) term proxies newterms = combine_terms(fullterms,terms,stepsize); % add the new term proxies newGauss = update_Gauss(newGauss,newterms,1); [L,check,dummy] = chol(newGauss.auxK,'lower'); % check whether full covariance matrix is ok % note that this is bit inefficient, since we redo the Cholesky later when everything is fine ok = (check == 0 & all(newGauss.hatK > 0) & all(newGauss.diagK > 0)); % perhaps a bit too strong??? %%%%%%%%%%%% % % compute the moment form of the current Gauss and all cavity approximations and check whether they are fine function [Gauss,myGauss,logdet,ok] = try_project(Gauss,terms,fraction) if nargin < 3, fraction = 1; end [Gauss,logdet] = canonical_to_moments(Gauss); [myGauss,ok] = project_all(Gauss,terms,fraction); %%%%%%%%%% % % if we use a temperature < 1, to get closer to the MAP solution, we have to change the prior and initial term proxies accordingly function [Gauss,terms] = correct_for_temperature(Gauss,terms,temperature) % note: choose temperature small to implement MAP-like behavior Gauss.hatK = Gauss.hatK/temperature; Gauss.h = Gauss.h/temperature; Gauss.auxK = Gauss.auxK/temperature; Gauss.diagK = Gauss.diagK/temperature; terms.hatK = terms.hatK/temperature; terms.hath = terms.hath/temperature; terms.diagK = terms.diagK/temperature; terms.auxK = terms.auxK/temperature; terms.h = terms.h/temperature; %%%%%%%%%% % % invert a positive definite matrix using Cholesky factorization function [invA,logdet] = invert_chol(A) if issparse(A) if 0 % matlab version; slower but useful in case of mex problems [L,dummy,S] = chol(sparse(A),'lower'); % now A = S*(L*L')*S' and (L*L') = S'*A*S n = length(L); invdiagL2 = 1./spdiags(L,0).^2; invA = A; for i=n:-1:1, I = i+find(L(i+1:n,i)); invA(I,i) = -(invA(I,I)*L(I,i))/L(i,i); invA(i,I) = invA(I,i)'; invA(i,i) = invdiagL2(i) - (invA(i,I)*L(I,i))/L(i,i); end invA = S*invA*S'; else [L,dummy,S] = chol(sparse(A),'lower'); % now A = S*(L*L')*S' and (L*L') = S'*A*S if dummy error('matrix is not p.d.'); end invA = fastinvc(L); invA = S*invA*S'; end else [L,dummy] = chol(A,'lower'); if dummy error('matrix is not p.d.'); end invA = inv(A); end if nargout > 1, logdet = 2*sum(log(full(diag(L)))); end %%%%%%%%%% % % compute the term proxy when [oldC,oldm] changes to [newC,newm] function [K,h,logz] = compute_termproxy(newC,newm,oldC,oldm,fraction) if nargin < 5, fraction = 1; end K = (1./newC - 1./oldC)/fraction; h = (newm./newC - oldm./oldC)/fraction; logz = oldm.^2./oldC/2 - newm.^2./newC/2 + log(full(oldC./newC))/2 ; %%%%%%%%%% % % Sherman-Morrison formula to compute the change from [oldC,oldm] to [newC,newm] when we add [K,h] to the corresponding canonical parameters function [newC,newm] = rank_one_update(oldC,oldm,K,h) dummy = K.*oldC; oneminusdelta = 1./(1+dummy); newC = oneminusdelta.*oldC; if nargout > 1, newm = oneminusdelta.*(oldm + h.*oldC); end %%%%%%%%%%% % % general procedure for a weighted combi of the fields of two structures function terms = combine_terms(terms1,terms2,stepsize) names1 = fieldnames(terms1); names2 = fieldnames(terms2); names = intersect(names1,names2); terms = struct; for i=1:length(names) terms.(names{i}) = stepsize*terms1.(names{i}) + (1-stepsize)*terms2.(names{i}); end %%%%%%%%%%% % % updates the Gaussian representation with new term proxies function Gauss = update_Gauss(Gauss,terms,const) if nargin < 3, const = 1; end Gauss.h = Gauss.h + const*Gauss.A'*terms.hath + const*terms.h; Gauss.hatK = Gauss.hatK + const*terms.hatK; Gauss.diagK = Gauss.diagK + const*terms.diagK; % get diagonal elements diagidx = 1:(size(Gauss.auxK,1)+1):numel(Gauss.auxK); Gauss.auxK(diagidx) = Gauss.auxK(diagidx) + const*terms.auxK';
github
lcnhappe/happe-master
bayesianlinreg_ep.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/bayesianlogreg/bayesianlinreg_ep.m
17,556
utf_8
64edf12e5451aa53b2d6ab3ff064778f
function [Gauss,terms,logp,comptime] = bayesianlinreg_ep(labels,examples,K,varargin) % Bayesian linear regression with a multivariate Laplace prior using a fast % variant of EP. %HERE % input: % labels = an N x 1 vector of class labels [1,2] % examples = an N x M matrix of input data % K = the prior precision matrix of size M x M % % Note: the bias term should be explicitly added to K and the examples! % % regression parameters refers to betas % auxiliary variables refers to u and v whose precision matrix auxK = inv(Lambda) couples the features. % % we have a precision matrix of the form % % | K_beta | % | K_u | % | K_v | % % priorGauss: struct with fields % % hatK diagonal of precision matrix (number of samples x 1); % (initially zero) % diagK diagonal of precision matrix (number of features x 1) % (initially zero) % % precision matrix of regression parameters K_beta = A' hatK A + diagK % % h canonical mean (number of features x 1) % (initially zero) % % auxK precision matrix of auxiliary variables (number of features x number of features; sparse) % (contains the covariance structure of interest) % % A feature matrix (number of samples x number of features) % % terms: struct with fields % % hatK as priorGauss % diagK as priorGauss % hath canonical mean (number of samples x 1) % h canonical mean (number of features x 1) % canonical mean of regression parameters = h + A' hath % auxK as priorGauss, but then only diagonal elements (number of features x 1) % % opt: struct with fields (all optional, defaults in brackets) % % maxstepsize maximum step size [1] % fraction fraction or power for fractional/power EP [1] % niter maximum number of iterations [100] % tol convergence criterion [1e-5] % nweights number of points for numerical integration [20] % temperature temperature for simulated annealing [1] % % Gauss: struct with fields as in priorGauss plus % % hatB diagonal of projected covariance (number of samples x 1) % hatB = A Covariance A' % hatn projected mean (number of samples x 1) % hatn = A m % diagC diagonal of covariance matrix of regression parameters (number of features x 1) % auxC diagonal of covariance matrix of auxiliary variables (number of features x 1) % % % logp: estimated marginal loglikelihood (implementation doubtful...) % % comptime: computation time fprintf('starting EP\n'); tic %% initialization % parse opt opt = []; for i=1:2:length(varargin) opt.(varargin{i}) = varargin{i+1}; end if ~isfield(opt,'maxstepsize'), opt.maxstepsize = 1; end if ~isfield(opt,'fraction'), opt.fraction = 0.99; end if ~isfield(opt,'niter'), opt.niter = 100; end if ~isfield(opt,'tol'), opt.tol = 1e-5; end if ~isfield(opt,'nweights'), opt.nweights = 50; end if ~isfield(opt,'temperature'), opt.temperature = 1; end if ~isfield(opt,'lambda'), opt.lambda = 0.001; end stepsize = opt.maxstepsize; [nsamples,nfeatures] = size(examples); %% create priorGauss and terms % transform data to +1/-1 representation A = examples; y = 3-2*labels; A = A.*repmat(y,1,nfeatures); % construct Gaussian representation priorGauss.A = A; priorGauss.hatK = zeros(nsamples,1); priorGauss.h = zeros(nfeatures,1); priorGauss.diagK = zeros(nfeatures,1); priorGauss.auxK = K; % construct term representation terms.hatK = ones(nsamples,1)/10; terms.hath = zeros(nsamples,1); terms.diagK = ones(nfeatures,1)/opt.lambda/10; terms.auxK = zeros(nfeatures,1); terms.h = zeros(nfeatures,1); %% precompute points and weights for numerical integration [xhermite,whermite] = gausshermite(opt.nweights); xhermite = xhermite(:); % nhermite x 1 whermite = whermite(:); % nhermite x 1 [xlaguerre,wlaguerre] = gausslaguerre(opt.nweights); xlaguerre = xlaguerre(:); % nlaguerre x 1 wlaguerre = wlaguerre(:); % nlaguerre x 1 % divide all canonical parameters by the temperature if opt.temperature ~= 1, [priorGauss,terms] = correct_for_temperature(priorGauss,terms,opt.temperature); end % compute cholesky of the prior precision matrix % used when computing the model evidence [cholK,dummy,S] = chol(K,'lower'); contribQ = sum(log(diag(cholK).^2)); %% build initial Gauss % add terms to prior Gauss = update_Gauss(priorGauss,terms); %% convert from canonical to moment form Gauss = canonical_to_moments(Gauss); %% compute all cavity approximations needed for the EP updates and check whether they are all fine [myGauss,ok] = project_all(Gauss,terms,opt.fraction); if ~ok, error('improper cavity distributions\n'); end %% enter the iterations logp = 0; logpold = 2*opt.tol; change = 0; teller = 0; while abs(logp-logpold) > stepsize*opt.tol && teller < opt.niter, teller = teller+1; logpold = logp; oldchange = change; % compute the new term approximation by applying an adf update on all the cavity approximations [fullterms,logz,crosslogz] = ... adfupdate_all(myGauss,terms,xhermite,whermite,xlaguerre,wlaguerre,opt.fraction,opt.temperature); ok = 0; while ~ok, % try to replace the old term approximations by the new term approximations and check whether the new Gauss is still fine [newGauss,newterms,ok1] = try_update(Gauss,fullterms,terms,stepsize); if ok1, % compute all cavity approximations needed for the next EP updates and check whether they are all fine [newGauss,myGauss,logdet,ok2] = try_project(newGauss,newterms,opt.fraction); end ok = (ok1 & ok2); if ok, % accept terms = newterms; Gauss = newGauss; stepsize = min(opt.maxstepsize,stepsize*1.9); else % try with smaller stepsize stepsize = stepsize/2; if ~ok1, fprintf('improper full covariance: lowering stepsize to %g\n',stepsize'); elseif ~ok2, fprintf('improper cavity covariance: lowering stepsize to %g\n',stepsize'); end if stepsize < 1e-10, warning('Cannot find an update that leads to proper cavity approximations\ldots'); teller = opt.niter; break; end end end % compute marginal moments if ok, % compute marginal loglikelihood %logp = sum(logz) + sum(crosslogz) + logdet/2 + contribQ; logp = sum(logz)./opt.fraction + sum(crosslogz)./opt.fraction + logdet/2 + contribQ; % note: % % logdet/2 = 1/2 log |K| for the posterior K % contribQ = log |Q| for the prior Q (MvG) % quadratic term added (BC) % don't trust the calculation anyway, in particular for fractional updates... fprintf('%d: %g (stepsize: %g)\n',teller,logp,stepsize); % check whether marginal loglikelihood is going up and down, if so, lower stepsize change = logp-logpold; if change*oldchange < 0, % possibly cycling stepsize = stepsize/2; end oldchange = change; end end comptime = toc; fprintf('EP finished in %s seconds\n',num2str(comptime)); %%% END MAIN %%%%%%%%% % % compute the cavity approximations that result when subtracting a fraction of the term approximations function [myGauss,ok] = project_all(Gauss,terms,fraction) if nargin < 3, fraction = 1; end % take out and project in moment form % (1) regression parameters [myGauss.hatB,myGauss.hatn] = ... rank_one_update(Gauss.hatB,Gauss.hatn,-fraction*terms.hatK,-fraction*terms.hath); % (2) cross terms between regression parameters and auxiliary parameters [myGauss.diagC,myGauss.m] = ... rank_one_update(Gauss.diagC,Gauss.m,-fraction*terms.diagK,-fraction*terms.h); myGauss.auxC = rank_one_update(Gauss.auxC,[],-fraction*terms.auxK); % check whether all precision matrices are strictly positive definite if nargout > 1, ok = (all(myGauss.hatB > 0) & all(myGauss.diagC > 0) & all(myGauss.auxC > 0)); end %%%%%%%%% % % compute the new term approximation by applying an adf update on all the cavity approximations function [fullterms,logz,crosslogz] = ... adfupdate_all(myGauss,terms,xhermite,whermite,xlaguerre,wlaguerre,fraction,temperature) if nargin < 8, temperature = 1; end if nargin < 7, fraction = 1; end %% (1) regression parameters oldm = myGauss.hatn; oldC = myGauss.hatB; sqrtC = sqrt(oldC); nsamples = length(oldm); nhermite = length(whermite); % translate and scale the sample points to get the correct mean and variance x = repmat(oldm,1,nhermite) + sqrtC*xhermite'; % compute the terms at the sample points g = logistic(x); % returns - log (1 + exp(-x)) with special attention for very small and very large x % correct for fraction and temperature and incorporate the sample weights g = fraction*g/temperature + log(repmat(whermite',nsamples,1)); % some care take for numerical stability maxg = max(g,[],2); g = g-repmat(maxg,1,nhermite); expg = exp(g); denominator = sum(expg,2); neww = expg./repmat(denominator,1,nhermite); % compute the moments Ex = sum(x.*neww,2); Exx = sum(x.^2.*neww,2); newm = Ex; newC = Exx-Ex.^2; % derive the term approximation from the change in mean and variance [fullterms.hatK,fullterms.hath,logzextra] = ... compute_termproxy(newC,newm,oldC,oldm,fraction); % contributions to marginal loglikelihood logz = maxg + log(denominator) + logzextra; %% (2) cross terms between regression parameters and auxiliary variables oldm = myGauss.m; oldC = myGauss.diagC; oldlambda = myGauss.auxC; nfeatures = length(oldm); nlaguerre = length(wlaguerre); % this part heavily relies on the accompanying note % basic idea: % - the cavity approximation on U is an exponential distribution % - we have analytical formulas for the moments of x conditioned upon U % - marginal moments can then be computed through numerical integration with Gauss-Laguerre % translate and scale the sample points to get the correct mean U = 2*oldlambda*xlaguerre'; % nfeatures x nlaguerre mm = repmat(oldm,1,nlaguerre); CC = repmat(oldC,1,nlaguerre); % compute the partition function (integral over x) given U and turn this into weights required for computing the marginal moments g = -mm.^2./(U+CC)/2 - log(U+CC)/2 - log(2*pi)/2; g = fraction*g + log(repmat(wlaguerre',nfeatures,1)); maxg = max(g,[],2); g = g-repmat(maxg,1,nlaguerre); expg = exp(g); denominator = sum(expg,2); neww = expg./repmat(denominator,1,nlaguerre); % compute the marginal moments through numerical integration ExgU = mm.*U./(U+CC); Ex = sum(ExgU.*neww,2); ExxgU = ExgU.^2 + CC.*U./(U+CC); Exx = sum(ExxgU.*neww,2); EU = sum(U.*neww,2); newm = Ex; newC = Exx-Ex.^2; newlambda = EU/2; % derive the term approximation from the change in mean and variance [fullterms.diagK,fullterms.h,logzextra1] = ... compute_termproxy(newC,newm,oldC,oldm,fraction); % same for the auxiliary variables, where we note that the mean will always be zero [fullterms.auxK,dummy,logzextra2] = ... compute_termproxy(newlambda,zeros(nfeatures,1),oldlambda,zeros(nfeatures,1),fraction); crosslogz = maxg + log(denominator) + logzextra1 + logzextra2; %%%%%%%%%% % % compute the moments corresponding to the canonical parameters function [Gauss,logdet] = canonical_to_moments(Gauss) [nsamples,nfeatures] = size(Gauss.A); %% (1) regression parameters if nsamples > nfeatures, % in the non-degenerate case, this direct route is more stable and faster scaledA = Gauss.A.*(repmat(Gauss.hatK,1,nfeatures)); K = Gauss.A'*scaledA + diag(Gauss.diagK); [C,logdet1] = invert_chol(K); Gauss.m = C*Gauss.h; Gauss.hatB = zeros(nsamples,1); % only need diagonal for k=1:nsamples, Gauss.hatB(k) = Gauss.A(k,:)*C*Gauss.A(k,:)'; end Gauss.diagC = diag(C); Gauss.hatn = Gauss.A*Gauss.m; %logdet1 = 2*sum(log(diag(L))); else % this part heavily relies on the appendix of the accompanying note % basic idea: % - the precision matrix K is of the form A' hatK A + diagK, where both hatK and diagK are diagonal matrices % - apply Woodbury's formula to replace inverting an (nfeat x nfeat) matrix by an (nsample x nsample) alternative % - projections of the covariance matrix and the mean onto the feature matrix then follow immediately scaledA = Gauss.A./(repmat(Gauss.diagK',nsamples,1)); W = Gauss.A*scaledA'; W = (W + W')/2; % make symmetric [Q,logdet1] = invert_chol(diag(1./Gauss.hatK) + W); Gauss.hatB = zeros(nsamples,1); for k=1:nsamples, Gauss.hatB(k) = W(k,k) - W(k,:)*Q*W(:,k); end Gauss.m = Gauss.h./Gauss.diagK - scaledA'*(Q*(scaledA*Gauss.h)); Gauss.hatn = Gauss.A*Gauss.m; Gauss.diagC = 1./Gauss.diagK; for i=1:nfeatures, Gauss.diagC(i) = Gauss.diagC(i) - scaledA(:,i)'*Q*scaledA(:,i); end logdet1 = logdet1 + sum(log(Gauss.diagK)) + sum(log(Gauss.hatK)); % compute quadratic term (BC) qterm = sum(Gauss.m .* Gauss.diagK .* Gauss.m); % = m' * diagK * m qterm = qterm + sum(Gauss.hatn .* Gauss.hatK .* Gauss.hatn); logdet1 = -logdet1 + qterm; end %% (2) auxiliary variables; i.e., wrt scale mixture representation of % Laplace prior % this is (by far) the most expensive step when nsamples << nfeatures % and the precision matrix of the auxiliary variables is non-diagonal [auxC,logdet2] = invert_chol(Gauss.auxK); % only need diagonal terms Gauss.auxC = full(diag(auxC)); % turn into full vector logdet = logdet1 - 2*logdet2; % added 2*logdet2 %%%%%%%%%% % % take out the old term proxies and add the new termproxies and check whether the resulting Gaussian is still normalizable function [newGauss,newterms,ok] = try_update(Gauss,fullterms,terms,stepsize) if nargin < 4, stepsize = 1; end % take out the old term proxies newGauss = update_Gauss(Gauss,terms,-1); % compute the new term proxies as a weighted combi of the old ones and the "full" (stepsize 1) term proxies newterms = combine_terms(fullterms,terms,stepsize); % add the new term proxies newGauss = update_Gauss(newGauss,newterms,1); [L,check,dummy] = chol(newGauss.auxK,'lower'); % check whether full covariance matrix is ok % note that this is bit inefficient, since we redo the Cholesky later when everything is fine ok = (check == 0 & all(newGauss.hatK > 0) & all(newGauss.diagK > 0)); % perhaps a bit too strong??? %%%%%%%%%%%% % % compute the moment form of the current Gauss and all cavity approximations and check whether they are fine function [Gauss,myGauss,logdet,ok] = try_project(Gauss,terms,fraction) if nargin < 3, fraction = 1; end [Gauss,logdet] = canonical_to_moments(Gauss); [myGauss,ok] = project_all(Gauss,terms,fraction); %%%%%%%%%% % % if we use a temperature < 1, to get closer to the MAP solution, we have to change the prior and initial term proxies accordingly function [Gauss,terms] = correct_for_temperature(Gauss,terms,temperature) % note: choose temperature small to implement MAP-like behavior Gauss.hatK = Gauss.hatK/temperature; Gauss.h = Gauss.h/temperature; Gauss.auxK = Gauss.auxK/temperature; Gauss.diagK = Gauss.diagK/temperature; terms.hatK = terms.hatK/temperature; terms.hath = terms.hath/temperature; terms.diagK = terms.diagK/temperature; terms.auxK = terms.auxK/temperature; terms.h = terms.h/temperature; %%%%%%%%%% % % invert a positive definite matrix using Cholesky factorization function [invA,logdet] = invert_chol(A) [L,dummy,S] = chol(sparse(A),'lower'); % now A = S*(L*L')*S' and (L*L') = S'*A*S invA = fastinvc(L); invA = S*invA*S'; if nargout > 1, logdet = 2*sum(log(diag(L))); end %%%%%%%%%% % % compute the term proxy when [oldC,oldm] changes to [newC,newm] function [K,h,logz] = compute_termproxy(newC,newm,oldC,oldm,fraction) if nargin < 5, fraction = 1; end K = (1./newC - 1./oldC)/fraction; h = (newm./newC - oldm./oldC)/fraction; logz = - log(newC./oldC)/2 + oldm.^2./oldC/2 - newm.^2./newC/2; %%%%%%%%%% % % Sherman-Morrison formula to compute the change from [oldC,oldm] to [newC,newm] when we add [K,h] to the corresponding canonical parameters function [newC,newm] = rank_one_update(oldC,oldm,K,h) dummy = K.*oldC; oneminusdelta = 1./(1+dummy); newC = oneminusdelta.*oldC; if nargout > 1, newm = oneminusdelta.*(oldm + h.*oldC); end %%%%%%%%%%% % % general procedure for a weighted combi of the fields of two structures function terms = combine_terms(terms1,terms2,stepsize) names1 = fieldnames(terms1); names2 = fieldnames(terms2); names = intersect(names1,names2); terms = struct; for i=1:length(names) terms.(names{i}) = stepsize*terms1.(names{i}) + (1-stepsize)*terms2.(names{i}); end %%%%%%%%%%% % % updates the Gaussian representation with new term proxies function Gauss = update_Gauss(Gauss,terms,const) if nargin < 3, const = 1; end Gauss.h = Gauss.h + const*Gauss.A'*terms.hath + const*terms.h; Gauss.hatK = Gauss.hatK + const*terms.hatK; Gauss.diagK = Gauss.diagK + const*terms.diagK; % get diagonal elements diagidx = 1:(size(Gauss.auxK,1)+1):numel(Gauss.auxK); Gauss.auxK(diagidx) = Gauss.auxK(diagidx) + const*terms.auxK';
github
lcnhappe/happe-master
LinRegLaplaceEP.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/external/dmlt/external/bayesianlogreg/LinRegLaplaceEP.m
16,909
utf_8
1182837ca7d49d2ab0cd9588f826fffb
function [Gauss,terms,logp,EP_ERR,logphist] = LinRegLaplaceEP(y,X,K,sig2,varargin) % specialized version of our fast variant of % Expectation Propagation for Logistic Regression (2 classes) with a (correlated) Laplace prior % in the degenerate case, i.e., when the number of features >> number of samples % (also works when number of samples > number of features, but then less stable!!!) % % input: % labels = an N x 1 vector of class labels [1,2] % examples = an N x M matrix of input data % K = the prior precision matrix of size M x M % % Note: the bias term should be explicitly added to K and the examples! % % regression parameters refers to betas % auxiliary variables refers to u and v whose precision matrix auxK = inv(Lambda) couples the features. % % we have a precision matrix of the form % % | K_beta | % | K_u | % | K_v | % % priorGauss: struct with fields % % hatK diagonal of precision matrix (number of samples x 1); % (initially zero) % diagK diagonal of precision matrix (number of features x 1) % (initially zero) % % precision matrix of regression parameters K_beta = A' hatK A + diagK % % h canonical mean (number of features x 1) % (initially zero) % % auxK precision matrix of auxiliary variables (number of features x number of features; sparse) % (contains the covariance structure of interest) % % A feature matrix (number of samples x number of features) % % terms: struct with fields % % hatK as priorGauss % diagK as priorGauss % hath canonical mean (number of samples x 1) % h canonical mean (number of features x 1) % canonical mean of regression parameters = h + A' hath % auxK as priorGauss, but then only diagonal elements (number of features x 1) % % opt: struct with fields (all optional, defaults in brackets) % % maxstepsize maximum step size [1] % fraction fraction or power for fractional/power EP [1] % niter maximum number of iterations [100] % tol convergence criterion [1e-5] % nweights number of points for numerical integration [20] % temperature temperature for simulated annealing [1] % % Gauss: struct with fields as in priorGauss plus % % hatB diagonal of projected covariance (number of samples x 1) % hatB = A Covariance A' % hatn projected mean (number of samples x 1) % hatn = A m % diagC diagonal of covariance matrix of regression parameters (number of features x 1) % auxC diagonal of covariance matrix of auxiliary variables (number of features x 1) % % % logp: estimated marginal loglikelihood (implementation doubtful...) % % comptime: computation time fprintf('starting EP\n'); EP_ERR = 0; tic %% initialization % parse opt %disp(varargin{:}) %length(varargin{:}) opt = []; for i=1:2:(length(varargin)-1) opt.(varargin{i}) = varargin{i+1}; end if ~isfield(opt,'maxstepsize'), opt.maxstepsize = 1; end if ~isfield(opt,'fraction'), opt.fraction = 0.95; end if ~isfield(opt,'niter'), opt.niter = 1000; end if ~isfield(opt,'tol'), opt.tol = 1e-5; end if ~isfield(opt,'nweights'), opt.nweights = 50; end if ~isfield(opt,'temperature'), opt.temperature = 1; end if ~isfield(opt,'lambda'), opt.lambda = 1; end stepsize = opt.maxstepsize; [nobs,nfeatures] = size(X); %% create priorGauss and terms % construct Gaussian representation v = 1./sig2; priorGauss.A = X; priorGauss.hatK = v*ones(nobs,1); priorGauss.h = v*X'*y; priorGauss.diagK = zeros(nfeatures,1); priorGauss.auxK = K; % compute the additional terms coming form the prior for the evidence cholK = chol(priorGauss.auxK,'lower'); LogPriorRestAux2 = (2*sum(log(full(diag(cholK))))-nfeatures*log(2*pi)); % no half because we need it two times LogPriorRestLL = 0.5*(-v*y'*y - nobs*log(2*pi) + nobs*log(v) ); % construct term representation %terms.hatK = zeros(nobs,1); %terms.hath = zeros(nobs,1); terms.diagK = ones(nfeatures,1)*opt.lambda/10; terms.auxK = zeros(nfeatures,1); terms.h = zeros(nfeatures,1); %% precompute points and weights for numerical integration [xhermite,whermite] = gausshermite(opt.nweights); xhermite = xhermite(:); % nhermite x 1 whermite = whermite(:); % nhermite x 1 [xlaguerre,wlaguerre] = gausslaguerre(opt.nweights); xlaguerre = xlaguerre(:); % nlaguerre x 1 wlaguerre = wlaguerre(:); % nlaguerre x 1 % divide all canonical parameters by the temperature if opt.temperature ~= 1, [priorGauss,terms] = correct_for_temperature(priorGauss,terms,opt.temperature); end %% build initial Gauss Gauss = update_Gauss(priorGauss,terms); Gauss = canonical_to_moments(Gauss); [myGauss,ok] = project_all(Gauss,terms,opt.fraction); if ~ok, error('improper cavity distributions\n'); end %% enter the iterations logp = 0; logpold = 2*opt.tol; change = 0; teller = 0; logphist = zeros(1,opt.niter); while abs(logp-logpold) > stepsize*opt.tol && teller < opt.niter, teller = teller+1; logpold = logp; oldchange = change; % compute the new term approximation by applying an adf update on all the cavity approximations [fullterms,crosslogz] = ... adfupdate_all(myGauss,terms,xhermite,whermite,xlaguerre,wlaguerre,opt.fraction,opt.temperature); ok = 0; ok1 = 1; ok2 = 1; while ~ok, % try to replace the old term approximations by the new term approximations and check whether the new Gauss is still fine % !!! THIS IS THE ORIGINAL LINE !!! % [newGauss,newterms,ok1] = try_update(Gauss,fullterms,terms,stepsize); % you might use this instead - sometimes it works better [newGauss,newterms,ok1] = try_update(Gauss,fullterms,terms,0.1); if ok1, % compute all cavity approximations needed for the next EP updates and check whether they are all fine [newGauss,myGauss,logZappx,ok2] = try_project(newGauss,newterms,opt.fraction); end ok = (ok1 & ok2); if ok, % accept terms = newterms; Gauss = newGauss; stepsize = min(opt.maxstepsize,stepsize*1.9); else % try with smaller stepsize stepsize = stepsize/2; if ~ok1, fprintf('improper full covariance: lowering stepsize to %g\n',stepsize'); elseif ~ok2, fprintf('improper cavity covariance: lowering stepsize to %g\n',stepsize'); end if stepsize < 1e-10, warning('Cannot find an update that leads to proper cavity approximations.'); EP_ERR = 1; teller = opt.niter; break; end end end % compute marginal moments if ok, % compute marginal loglikelihood %logp = sum(crosslogz) + logdet/2 + rest CorrTerm1 = (myGauss.m.^2)./myGauss.diagC + log(full(myGauss.diagC)) - (newGauss.m.^2)./newGauss.diagC - log(full(newGauss.diagC)); CorrTerm2 = log(myGauss.auxC) - log(newGauss.auxC); CorrTerm = 0.5*CorrTerm1 + 0.5*(CorrTerm2 + CorrTerm2); logp = sum(crosslogz + CorrTerm)./opt.fraction + logZappx + (LogPriorRestLL + LogPriorRestAux2); logphist(teller) = logp; % don't trust the calculation anyway, in particular for fractional updates... fprintf('%d: %g (stepsize: %g)\n',teller,logp,stepsize); % check whether marginal loglikelihood is going up and down, if so, lower stepsize change = logp-logpold; if change*oldchange < 0, % possibly cycling stepsize = stepsize/2; end oldchange = change; end end if teller == opt.niter EP_ERR = 2; warning('Maximum number of iterations exceeded!\n'); end logphist = logphist(1:teller); comptime = toc; fprintf('EP finished in %s seconds with EP_ERR=%d \n',num2str(comptime),EP_ERR); %%% END MAIN %%%%%%%%% % % compute the cavity approximations that result when subtracting a fraction of the term approximations function [myGauss,ok] = project_all(Gauss,terms,fraction) if nargin < 3, fraction = 1; end % take out and project in moment form % (2) cross terms between regression parameters and auxiliary parameters [myGauss.diagC,myGauss.m] = ... rank_one_update(Gauss.diagC,Gauss.m,-fraction*terms.diagK,-fraction*terms.h); myGauss.auxC = rank_one_update(Gauss.auxC,[],-fraction*terms.auxK); % check whether all precision matrices are strictly positive definite if nargout > 1, ok = (all(myGauss.diagC > 0) & all(myGauss.auxC > 0)); end %%%%%%%%% % % compute the new term approximation by applying an adf update on all the cavity approximations function [fullterms,crosslogz] = ... adfupdate_all(myGauss,terms,xhermite,whermite,xlaguerre,wlaguerre,fraction,temperature) if nargin < 8, temperature = 1; end if nargin < 7, fraction = 1; end %% (2) cross terms between regression parameters and auxiliary variables oldm = myGauss.m; oldC = myGauss.diagC; oldlambda = myGauss.auxC; nfeatures = length(oldm); nlaguerre = length(wlaguerre); % this part heavily relies on the accompanying note % basic idea: % - the cavity approximation on U is an exponential distribution % - we have analytical formulas for the moments of x conditioned upon U % - marginal moments can then be computed through numerical integration with Gauss-Laguerre % translate and scale the sample points to get the correct mean U = 2*oldlambda*xlaguerre'; % nfeatures x nlaguerre mm = repmat(oldm,1,nlaguerre); CC = repmat(oldC,1,nlaguerre); % compute the partition function (integral over x) given U and turn this into weights required for computing the marginal moments g = (1-fraction)*log(U)/2 - fraction*mm.^2./(U + fraction*CC)/2 - log(U+ fraction*CC)/2 - (1+2*fraction)*log(2*pi)/2; g = g + log(repmat(wlaguerre',nfeatures,1)); maxg = max(g,[],2); g = g-repmat(maxg,1,nlaguerre); expg = exp(g); denominator = sum(expg,2); neww = expg./repmat(denominator,1,nlaguerre); % compute the marginal moments through numerical integration ExgU = mm.*U./(U + fraction*CC); Ex = sum(ExgU.*neww,2); ExxgU = ExgU.^2 + CC.*U./(U+fraction*CC); Exx = sum(ExxgU.*neww,2); EU = sum(U.*neww,2); newm = Ex; newC = Exx-Ex.^2; newlambda = EU/2; % derive the term approximation from the change in mean and variance [fullterms.diagK,fullterms.h,logzextra1] = ... compute_termproxy(newC,newm,oldC,oldm,fraction); % same for the auxiliary variables, where we note that the mean will always be zero [fullterms.auxK,dummy,logzextra2] = ... compute_termproxy(newlambda,zeros(nfeatures,1),oldlambda,zeros(nfeatures,1),fraction); %crosslogz = maxg + log(denominator) + logzextra1 + (logzextra2 + logzextra2); crosslogz = maxg + log(denominator); %%%%%%%%%% % % compute the moments corresponding to the canonical parameters function [Gauss,logp] = canonical_to_moments(Gauss) [nsamples,nfeatures] = size(Gauss.A); %% (1) regression parameters if nsamples > nfeatures, % in the non-degenerate case, this direct route is more stable and faster scaledA = Gauss.A.*(repmat(Gauss.hatK,1,nfeatures)); K = Gauss.A'*scaledA + diag(Gauss.diagK); [C,logdet1] = invert_chol(K); Gauss.m = C*Gauss.h; Gauss.diagC = diag(C); else % this part heavily relies on the appendix of the accompanying note % basic idea: % - the precision matrix K is of the form A' hatK A + diagK, where both hatK and diagK are diagonal matrices % - apply Woodbury's formula to replace inverting an (nfeat x nfeat) matrix by an (nsample x nsample) alternative % - projections of the covariance matrix and the mean onto the feature matrix then follow immediately scaledA = Gauss.A./(repmat(Gauss.diagK',nsamples,1)); W = Gauss.A*scaledA'; W = (W + W')/2; % make symmetric [Q,logdet1] = invert_chol(diag(1./Gauss.hatK) + W); logdet1 = logdet1 + sum(log(Gauss.diagK)) + sum(log(Gauss.hatK)); Gauss.diagC = 1./Gauss.diagK; for i=1:nfeatures, Gauss.diagC(i) = Gauss.diagC(i) - scaledA(:,i)'*Q*scaledA(:,i); end Gauss.m = Gauss.h./Gauss.diagK - scaledA'*(Q*(scaledA*Gauss.h)); end Gauss.hatn = Gauss.A*Gauss.m; qterm = sum(Gauss.m .* Gauss.diagK .* Gauss.m); % = m' * diagK * m qterm = qterm + sum(Gauss.hatn .* Gauss.hatK .* Gauss.hatn); % = m'*A'*K_hat*A*m logp1 = 0.5*(qterm - logdet1); %% (2) auxiliary variables; i.e., wrt scale mixture representation of % Laplace prior % this is (by far) the most expensive step when nsamples << nfeatures % and the precision matrix of the auxiliary variables is non-diagonal [auxC,logdet2] = invert_chol(Gauss.auxK); % only need diagonal terms Gauss.auxC = full(diag(auxC)); % turn into full vector logp2 = 0.5*( - logdet2); logp = logp1 + 2*logp2; %%%%%%%%%% % % take out the old term proxies and add the new termproxies and check whether the resulting Gaussian is still normalizable function [newGauss,newterms,ok] = try_update(Gauss,fullterms,terms,stepsize) if nargin < 4, stepsize = 1; end % take out the old term proxies newGauss = update_Gauss(Gauss,terms,-1); % compute the new term proxies as a weighted combi of the old ones and the "full" (stepsize 1) term proxies newterms = combine_terms(fullterms,terms,stepsize); % add the new term proxies newGauss = update_Gauss(newGauss,newterms,1); [L,check] = chol(newGauss.auxK,'lower'); % check whether full covariance matrix is ok % note that this is bit inefficient, since we redo the Cholesky later when everything is fine ok = (check == 0 & all(newGauss.hatK > 0) & all(newGauss.diagK > 0)); % perhaps a bit too strong??? %%%%%%%%%%%% % % compute the moment form of the current Gauss and all cavity approximations and check whether they are fine function [Gauss,myGauss,logdet,ok] = try_project(Gauss,terms,fraction) if nargin < 3, fraction = 1; end [Gauss,logdet] = canonical_to_moments(Gauss); [myGauss,ok] = project_all(Gauss,terms,fraction); %%%%%%%%%% % % if we use a temperature < 1, to get closer to the MAP solution, we have to change the prior and initial term proxies accordingly function [Gauss,terms] = correct_for_temperature(Gauss,terms,temperature) % note: choose temperature small to implement MAP-like behavior Gauss.hatK = Gauss.hatK/temperature; Gauss.h = Gauss.h/temperature; Gauss.auxK = Gauss.auxK/temperature; Gauss.diagK = Gauss.diagK/temperature; % terms.hatK = terms.hatK/temperature; % terms.hath = terms.hath/temperature; terms.diagK = terms.diagK/temperature; terms.auxK = terms.auxK/temperature; terms.h = terms.h/temperature; %%%%%%%%%% % % invert a positive definite matrix using Cholesky factorization function [invA,logdet] = invert_chol(A) [L,CHOL_ERR,S] = chol(sparse(A),'lower'); % now A = S*(L*L')*S' and (L*L') = S'*A*S if CHOL_ERR error('Matrix not p.d.!'); end invA = fastinvc(L); invA = S*invA*S'; if nargout > 1, logdet = 2*sum(log(full(diag(L)))); end %%%%%%%%%% % % compute the term proxy when [oldC,oldm] changes to [newC,newm] function [K,h,logz] = compute_termproxy(newC,newm,oldC,oldm,fraction) if nargin < 5, fraction = 1; end K = (1./newC - 1./oldC)/fraction; h = (newm./newC - oldm./oldC)/fraction; logz = - log(newC./oldC)/2 + oldm.^2./oldC/2 - newm.^2./newC/2; %%%%%%%%%% % % Sherman-Morrison formula to compute the change from [oldC,oldm] to [newC,newm] when we add [K,h] to the corresponding canonical parameters function [newC,newm] = rank_one_update(oldC,oldm,K,h) dummy = K.*oldC; oneminusdelta = 1./(1+dummy); newC = oneminusdelta.*oldC; if nargout > 1, newm = oneminusdelta.*(oldm + h.*oldC); end %%%%%%%%%%% % % general procedure for a weighted combi of the fields of two structures function terms = combine_terms(terms1,terms2,stepsize) names1 = fieldnames(terms1); names2 = fieldnames(terms2); names = intersect(names1,names2); terms = struct; for i=1:length(names) terms.(names{i}) = stepsize*terms1.(names{i}) + (1-stepsize)*terms2.(names{i}); end %%%%%%%%%%% % % updates the Gaussian representation with new term proxies function Gauss = update_Gauss(Gauss,terms,const) if nargin < 3, const = 1; end Gauss.h = Gauss.h + const*terms.h; Gauss.diagK = Gauss.diagK + const*terms.diagK; % get diagonal elements diagidx = 1:(size(Gauss.auxK,1)+1):numel(Gauss.auxK); Gauss.auxK(diagidx) = Gauss.auxK(diagidx) + const*terms.auxK';