plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
lcnhappe/happe-master
test_ft_preprocessing.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_ft_preprocessing.m
2,987
utf_8
b83998ddf8d5db1bb3dbea7d4905cd8f
function test_ft_preprocessing(datainfo, writeflag, version) % MEM 1500mb % WALLTIME 00:10:00 % TEST test_ft_preprocessing % TEST ft_preprocessing ref_datasets % writeflag determines whether the output should be saved to disk % version determines the output directory if nargin<1 datainfo = ref_datasets; end if nargin<2 writeflag = 0; end if nargin<3 version = 'latest'; end for k = 1:numel(datainfo) datanew = preprocessing10trials(datainfo(k), writeflag, version); fname = fullfile(datainfo(k).origdir,version,'raw',datainfo(k).type,['preproc_',datainfo(k).datatype]); load(fname); % these are per construction different if writeflag = 0; datanew = rmfield(datanew, 'cfg'); data = rmfield(data, 'cfg'); % these can have subtle differences eg. in hdr.orig.FID data.hdr = []; datanew2 = datanew; datanew2.hdr = []; % do the comparison with the header removed, the output argument still contains the header assert(isequaln(data, datanew2)); end %---------------------------------------------------------- % subfunction to read in 10 trials of data %---------------------------------------------------------- function [data] = preprocessing10trials(dataset, writeflag, version) % --- HISTORICAL --- attempt forward compatibility with function handles if ~exist('ft_preprocessing') && exist('preprocessing') eval('ft_preprocessing = @preprocessing;'); end if ~exist('ft_read_header') && exist('read_header') eval('ft_read_header = @read_header;'); elseif ~exist('ft_read_header') && exist('read_fcdc_header') eval('ft_read_header = @read_fcdc_header;'); end if ~exist('ft_read_event') && exist('read_event') eval('ft_read_event = @read_event;'); elseif ~exist('ft_read_event') && exist('read_fcdc_event') eval('ft_read_event = @read_fcdc_event;'); end cfg = []; cfg.dataset = fullfile(dataset.origdir,'original',dataset.type,dataset.datatype,'/',dataset.filename); if writeflag, cfg.outputfile = fullfile(dataset.origdir,version,'raw',dataset.type,['preproc_',dataset.datatype '.mat']); end % get header and event information if ~isempty(dataset.dataformat) hdr = ft_read_header(cfg.dataset, 'headerformat', dataset.dataformat); event = ft_read_event(cfg.dataset, 'eventformat', dataset.dataformat); cfg.dataformat = dataset.dataformat; cfg.headerformat = dataset.dataformat; else hdr = ft_read_header(cfg.dataset); event = ft_read_event(cfg.dataset); end % create 10 1-second trials to be used as test-case begsample = ((1:10)-1)*round(hdr.Fs) + 1; endsample = ((1:10) )*round(hdr.Fs); offset = zeros(1,10); cfg.trl = [begsample(:) endsample(:) offset(:)]; sel = cfg.trl(:,2)<=hdr.nSamples*hdr.nTrials; cfg.trl = cfg.trl(sel,:); cfg.continuous = 'yes'; data = ft_preprocessing(cfg); if ~strcmp(version, 'latest') && str2num(version)<20100000 % -- HISTORICAL --- older FieldTrip versions don't support outputfile save(cfg.outputfile, 'data'); end
github
lcnhappe/happe-master
test_bug2377b.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_bug2377b.m
3,684
utf_8
6609cf02d809a7ed643457946040bee9
function test_bug2377b % MEM 1500mb % WALLTIME 00:10:00 % TEST test_bug2377b % TEST ft_senslabel ft_senstype ft_chantype ft_chanunit ft_datatype_sens [pnt, tri] = icosahedron162; pnt = pnt .* 10; % convert to cm sel = find(pnt(:,3)>0); % take the upper hemisphere nchan = length(sel); % there are 71 channels remaining sens = []; sens.elecpos = pnt(sel,:); sens.unit = 'cm'; lab = ft_senslabel('eeg1010'); % take the channel names from this set % perform the test sequence for a sensor array with 10-20 channel labels sens.label = lab(1:nchan); perform_actual_test(sens) for i=1:nchan lab{i} = sprintf('ch%02d', i); end % perform the test sequence for a sensor array with unkown labels sens.label = lab(1:nchan); perform_actual_test(sens) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function perform_actual_test(sens) nchan = length(sens.label); % without most new fields sens0 = sens; % with manual chantype sens.chantype = repmat({'eeg'}, nchan, 1); sens1 = sens; % with automatic chantype sens.chantype = ft_chantype(sens); sens2 = sens; % with manual chanunit sens.chanunit = repmat({'V'}, nchan, 1); sens3 = sens; % with automatic chanunit sens.chanunit = ft_chanunit(sens); sens4 = sens; % with a tra sens.tra = eye(numel(sens.label)); sens5 = sens; %% sens0a = ft_datatype_sens(sens0, 'version', 'upcoming'); sens1a = ft_datatype_sens(sens1, 'version', 'upcoming'); sens2a = ft_datatype_sens(sens2, 'version', 'upcoming'); sens3a = ft_datatype_sens(sens3, 'version', 'upcoming'); sens4a = ft_datatype_sens(sens4, 'version', 'upcoming'); sens5a = ft_datatype_sens(sens5, 'version', 'upcoming'); % not all of them have the tra field assert(isequal(tryrmfield(sens0a, 'tra'), tryrmfield(sens1a, 'tra'))); assert(isequal(tryrmfield(sens0a, 'tra'), tryrmfield(sens2a, 'tra'))); assert(isequal(tryrmfield(sens0a, 'tra'), tryrmfield(sens3a, 'tra'))); assert(isequal(tryrmfield(sens0a, 'tra'), tryrmfield(sens4a, 'tra'))); assert(isequal(tryrmfield(sens0a, 'tra'), tryrmfield(sens5a, 'tra'))); %% montage = []; montage.labelorg = sens.label; montage.labelnew = montage.labelorg; montage.tra = detrend(eye(nchan), 'constant'); sens0b = ft_apply_montage(sens0, montage); sens1b = ft_apply_montage(sens1, montage); sens2b = ft_apply_montage(sens2, montage); sens3b = ft_apply_montage(sens3, montage); sens4b = ft_apply_montage(sens4, montage); sens5b = ft_apply_montage(sens5, montage); %% sens0c = ft_datatype_sens(sens0b, 'version', 'upcoming', 'amplitude', 'uV', 'distance', 'mm'); sens1c = ft_datatype_sens(sens1b, 'version', 'upcoming', 'amplitude', 'uV', 'distance', 'mm'); sens2c = ft_datatype_sens(sens2b, 'version', 'upcoming', 'amplitude', 'uV', 'distance', 'mm'); sens3c = ft_datatype_sens(sens3b, 'version', 'upcoming', 'amplitude', 'uV', 'distance', 'mm'); sens4c = ft_datatype_sens(sens4b, 'version', 'upcoming', 'amplitude', 'uV', 'distance', 'mm'); sens5c = ft_datatype_sens(sens5b, 'version', 'upcoming', 'amplitude', 'uV', 'distance', 'mm'); % they should have all fields by now assert(isequal(sens0c, sens1c)); assert(isequal(sens0c, sens2c)); assert(isequal(sens0c, sens3c)); assert(isequal(sens0c, sens4c)); assert(isequal(sens0c, sens5c)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function s = tryrmfield(s, f) if isfield(s, f) s = rmfield(s, f); end
github
lcnhappe/happe-master
test_bug1786.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_bug1786.m
28,790
utf_8
888eea2bc9b55eb9bbd83a5d3f474e8d
function test_bug1786 % MEM 1500mb % WALLTIME 00:10:00 % TEST test_bug1786 % TEST ft_channelrepair ft_prepare_neighbours % Original report: % Hello, % % When I run sphericalSplineInterpolate.m on my data it gets stuck on line 55 at: % "iC = pinv(C);". % % Thanks % Yoel % % http://bugzilla.fcdonders.nl/show_bug.cgi?id=1786 % EEG bad electrode repair % requires fieldtrip % % input format: % labels - 1XN cell array % badchans - 1XB cell array eg. {'O2', 'Fp2'} % data - MXN array % function fixedelec = fixelec(labels, badchans,data) % error(nargchk(3, 3, nargin)); load /home/common/matlab/fieldtrip/data/test/bug1786.mat labels = electrodes_names_to_keep; badchans = interpolate_at_z; data = z1; % transpose data to lab style data = data'; badchans = badchans'; eeglabels = {'Fp1','Fp2','F7','F3','Fz','F4','F8','T3','C3','Cz','C4','T4','T5','P3','Pz','P4','T6','O1','O2'}; % generating neighbours map (only locations are needed for spline) [s,elec.elecpos] = elec_1020select(eeglabels); elec.label = eeglabels; elec.chanpos = elec.elecpos; elec.tra = eye(length(eeglabels)); cfg.method = 'triangulation'; cfg.elec = elec; %ndata = data; ndata.label = eeglabels; neighbours = ft_prepare_neighbours(cfg, ndata); % converting data to proper format % l = length(data); % for i=1:length(eeglabels) % trial(i,:) = data(find(cell2mat(cellfun(@ (x) strcmp(x,eeglabels(i)),labels,'UniformOutput',0))),:); % end % data = []; % data.trial = {trial}; % data.elec = elec; % data.label = eeglabels; % data.time = {[1:l]}; ft_data.trial{1} = data; ft_data.elec = elec; ft_data.label = eeglabels; ft_data.time = {[1:length(data)]}; % fixing bad channels cfg = []; cfg.method = 'spline'; cfg.badchannel = badchans; cfg.neighbours = neighbours; repaired = ft_channelrepair(cfg, ft_data); fixedelec = cell2mat(repaired.trial); end function [elec] = elec_1020all_cart % elec_1020all_cart - all 10-20 electrode Cartesian coordinates % % [elec] = elec_1020all_cart % % elec is a struct array with fields: % % elec.labels % elec.X % elec.Y % elec.Z % % We gratefully acknowledge the provision of this data from % Robert Oostenveld. The elec struct contains all channel names and % locations for the International 10-20 electrode placement system, please % see details in: % % Oostenveld, R. & Praamstra, P. (2001). The five percent electrode system % for high-resolution EEG and ERP measurements. Clinical Neurophysiology, % 112:713-719. % % $Revision$ $Date: 2009-01-30 03:49:27 $ % Copyright (C) 2005 Darren L. Weber % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. % Modified: 02/2004, Darren.Weber_at_radiology.ucsf.edu % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ver = '$Revision$ $Date: 2009-01-30 03:49:27 $'; fprintf('\nELEC_1020ALL_CART [v %s]\n',ver(11:15)); names = {'LPA','RPA','Nz','Fp1','Fpz','Fp2','AF9','AF7','AF5','AF3',... 'AF1','AFz','AF2','AF4','AF6','AF8','AF10','F9','F7','F5','F3','F1',... 'Fz','F2','F4','F6','F8','F10','FT9','FT7','FC5','FC3','FC1','FCz',... 'FC2','FC4','FC6','FT8','FT10','T9','T7','C5','C3','C1','Cz','C2',... 'C4','C6','T8','T10','TP9','TP7','CP5','CP3','CP1','CPz','CP2','CP4',... 'CP6','TP8','TP10','P9','P7','P5','P3','P1','Pz','P2','P4','P6','P8',... 'P10','PO9','PO7','PO5','PO3','PO1','POz','PO2','PO4','PO6','PO8',... 'PO10','O1','Oz','O2','I1','Iz','I2','AFp9h','AFp7h','AFp5h','AFp3h',... 'AFp1h','AFp2h','AFp4h','AFp6h','AFp8h','AFp10h','AFF9h','AFF7h',... 'AFF5h','AFF3h','AFF1h','AFF2h','AFF4h','AFF6h','AFF8h','AFF10h',... 'FFT9h','FFT7h','FFC5h','FFC3h','FFC1h','FFC2h','FFC4h','FFC6h',... 'FFT8h','FFT10h','FTT9h','FTT7h','FCC5h','FCC3h','FCC1h','FCC2h',... 'FCC4h','FCC6h','FTT8h','FTT10h','TTP9h','TTP7h','CCP5h','CCP3h',... 'CCP1h','CCP2h','CCP4h','CCP6h','TTP8h','TTP10h','TPP9h','TPP7h',... 'CPP5h','CPP3h','CPP1h','CPP2h','CPP4h','CPP6h','TPP8h','TPP10h',... 'PPO9h','PPO7h','PPO5h','PPO3h','PPO1h','PPO2h','PPO4h','PPO6h',... 'PPO8h','PPO10h','POO9h','POO7h','POO5h','POO3h','POO1h','POO2h',... 'POO4h','POO6h','POO8h','POO10h','OI1h','OI2h','Fp1h','Fp2h','AF9h',... 'AF7h','AF5h','AF3h','AF1h','AF2h','AF4h','AF6h','AF8h','AF10h',... 'F9h','F7h','F5h','F3h','F1h','F2h','F4h','F6h','F8h','F10h','FT9h',... 'FT7h','FC5h','FC3h','FC1h','FC2h','FC4h','FC6h','FT8h','FT10h',... 'T9h','T7h','C5h','C3h','C1h','C2h','C4h','C6h','T8h','T10h','TP9h',... 'TP7h','CP5h','CP3h','CP1h','CP2h','CP4h','CP6h','TP8h','TP10h',... 'P9h','P7h','P5h','P3h','P1h','P2h','P4h','P6h','P8h','P10h','PO9h',... 'PO7h','PO5h','PO3h','PO1h','PO2h','PO4h','PO6h','PO8h','PO10h','O1h',... 'O2h','I1h','I2h','AFp9','AFp7','AFp5','AFp3','AFp1','AFpz','AFp2',... 'AFp4','AFp6','AFp8','AFp10','AFF9','AFF7','AFF5','AFF3','AFF1',... 'AFFz','AFF2','AFF4','AFF6','AFF8','AFF10','FFT9','FFT7','FFC5',... 'FFC3','FFC1','FFCz','FFC2','FFC4','FFC6','FFT8','FFT10','FTT9',... 'FTT7','FCC5','FCC3','FCC1','FCCz','FCC2','FCC4','FCC6','FTT8',... 'FTT10','TTP9','TTP7','CCP5','CCP3','CCP1','CCPz','CCP2','CCP4',... 'CCP6','TTP8','TTP10','TPP9','TPP7','CPP5','CPP3','CPP1','CPPz',... 'CPP2','CPP4','CPP6','TPP8','TPP10','PPO9','PPO7','PPO5','PPO3',... 'PPO1','PPOz','PPO2','PPO4','PPO6','PPO8','PPO10','POO9','POO7',... 'POO5','POO3','POO1','POOz','POO2','POO4','POO6','POO8','POO10',... 'OI1','OIz','OI2','T3','T5','T4','T6'}; xyz = [ ... 0.0000 0.9237 -0.3826 ; 0.0000 -0.9237 -0.3826 ; 0.9230 0.0000 -0.3824 ; 0.9511 0.3090 0.0001 ; 1.0000 0.0000 0.0001 ; 0.9511 -0.3091 0.0000 ; 0.7467 0.5425 -0.3825 ; 0.8090 0.5878 0.0000 ; 0.8553 0.4926 0.1552 ; 0.8920 0.3554 0.2782 ; 0.9150 0.1857 0.3558 ; 0.9230 0.0000 0.3824 ; 0.9150 -0.1857 0.3558 ; 0.8919 -0.3553 0.2783 ; 0.8553 -0.4926 0.1552 ; 0.8090 -0.5878 0.0000 ; 0.7467 -0.5425 -0.3825 ; 0.5430 0.7472 -0.3826 ; 0.5878 0.8090 0.0000 ; 0.6343 0.7210 0.2764 ; 0.6726 0.5399 0.5043 ; 0.6979 0.2888 0.6542 ; 0.7067 0.0000 0.7067 ; 0.6979 -0.2888 0.6542 ; 0.6726 -0.5399 0.5043 ; 0.6343 -0.7210 0.2764 ; 0.5878 -0.8090 0.0000 ; 0.5429 -0.7472 -0.3826 ; 0.2852 0.8777 -0.3826 ; 0.3090 0.9511 0.0000 ; 0.3373 0.8709 0.3549 ; 0.3612 0.6638 0.6545 ; 0.3770 0.3581 0.8532 ; 0.3826 0.0000 0.9233 ; 0.3770 -0.3581 0.8532 ; 0.3612 -0.6638 0.6545 ; 0.3373 -0.8709 0.3549 ; 0.3090 -0.9511 0.0000 ; 0.2852 -0.8777 -0.3826 ; -0.0001 0.9237 -0.3826 ; 0.0000 1.0000 0.0000 ; 0.0001 0.9237 0.3826 ; 0.0001 0.7066 0.7066 ; 0.0002 0.3824 0.9231 ; 0.0002 0.0000 1.0000 ; 0.0001 -0.3824 0.9231 ; 0.0001 -0.7066 0.7066 ; 0.0001 -0.9237 0.3826 ; 0.0000 -1.0000 0.0000 ; 0.0000 -0.9237 -0.3826 ; -0.2852 0.8777 -0.3826 ; -0.3090 0.9511 -0.0001 ; -0.3372 0.8712 0.3552 ; -0.3609 0.6635 0.6543 ; -0.3767 0.3580 0.8534 ; -0.3822 0.0000 0.9231 ; -0.3767 -0.3580 0.8534 ; -0.3608 -0.6635 0.6543 ; -0.3372 -0.8712 0.3552 ; -0.3090 -0.9511 -0.0001 ; -0.2853 -0.8777 -0.3826 ; -0.5429 0.7472 -0.3826 ; -0.5878 0.8090 -0.0001 ; -0.6342 0.7211 0.2764 ; -0.6724 0.5401 0.5045 ; -0.6975 0.2889 0.6545 ; -0.7063 0.0000 0.7065 ; -0.6975 -0.2889 0.6545 ; -0.6724 -0.5401 0.5045 ; -0.6342 -0.7211 0.2764 ; -0.5878 -0.8090 -0.0001 ; -0.5429 -0.7472 -0.3826 ; -0.7467 0.5425 -0.3825 ; -0.8090 0.5878 0.0000 ; -0.8553 0.4929 0.1555 ; -0.8918 0.3549 0.2776 ; -0.9151 0.1858 0.3559 ; -0.9230 0.0000 0.3824 ; -0.9151 -0.1859 0.3559 ; -0.8918 -0.3549 0.2776 ; -0.8553 -0.4929 0.1555 ; -0.8090 -0.5878 0.0000 ; -0.7467 -0.5425 -0.3825 ; -0.9511 0.3090 0.0000 ; -1.0000 0.0000 0.0000 ; -0.9511 -0.3090 0.0000 ; -0.8785 0.2854 -0.3824 ; -0.9230 0.0000 -0.3823 ; -0.8785 -0.2854 -0.3824 ; 0.8732 0.4449 -0.1949 ; 0.9105 0.4093 0.0428 ; 0.9438 0.3079 0.1159 ; 0.9669 0.1910 0.1666 ; 0.9785 0.0647 0.1919 ; 0.9785 -0.0647 0.1919 ; 0.9669 -0.1910 0.1666 ; 0.9438 -0.3079 0.1159 ; 0.9105 -0.4093 0.0428 ; 0.8732 -0.4449 -0.1949 ; 0.6929 0.6929 -0.1949 ; 0.7325 0.6697 0.1137 ; 0.7777 0.5417 0.3163 ; 0.8111 0.3520 0.4658 ; 0.8289 0.1220 0.5452 ; 0.8289 -0.1220 0.5452 ; 0.8111 -0.3520 0.4658 ; 0.7777 -0.5417 0.3163 ; 0.7325 -0.6697 0.1138 ; 0.6929 -0.6929 -0.1949 ; 0.4448 0.8730 -0.1950 ; 0.4741 0.8642 0.1647 ; 0.5107 0.7218 0.4651 ; 0.5384 0.4782 0.6925 ; 0.5533 0.1672 0.8148 ; 0.5533 -0.1672 0.8148 ; 0.5384 -0.4782 0.6925 ; 0.5107 -0.7218 0.4651 ; 0.4741 -0.8642 0.1647 ; 0.4448 -0.8730 -0.1950 ; 0.1533 0.9678 -0.1950 ; 0.1640 0.9669 0.1915 ; 0.1779 0.8184 0.5448 ; 0.1887 0.5466 0.8154 ; 0.1944 0.1919 0.9615 ; 0.1944 -0.1919 0.9615 ; 0.1887 -0.5466 0.8154 ; 0.1779 -0.8184 0.5448 ; 0.1640 -0.9669 0.1915 ; 0.1533 -0.9678 -0.1950 ; -0.1532 0.9678 -0.1950 ; -0.1639 0.9669 0.1915 ; -0.1778 0.8185 0.5449 ; -0.1883 0.5465 0.8153 ; -0.1940 0.1918 0.9611 ; -0.1940 -0.1918 0.9611 ; -0.1884 -0.5465 0.8153 ; -0.1778 -0.8185 0.5449 ; -0.1639 -0.9669 0.1915 ; -0.1533 -0.9678 -0.1950 ; -0.4448 0.8731 -0.1950 ; -0.4740 0.8639 0.1646 ; -0.5106 0.7220 0.4653 ; -0.5384 0.4786 0.6933 ; -0.5532 0.1673 0.8155 ; -0.5532 -0.1673 0.8155 ; -0.5384 -0.4786 0.6933 ; -0.5106 -0.7220 0.4653 ; -0.4740 -0.8638 0.1646 ; -0.4449 -0.8731 -0.1950 ; -0.6928 0.6928 -0.1950 ; -0.7324 0.6700 0.1139 ; -0.7776 0.5420 0.3167 ; -0.8108 0.3520 0.4659 ; -0.8284 0.1220 0.5453 ; -0.8284 -0.1220 0.5453 ; -0.8108 -0.3519 0.4659 ; -0.7775 -0.5421 0.3167 ; -0.7324 -0.6700 0.1139 ; -0.6928 -0.6928 -0.1950 ; -0.8730 0.4448 -0.1950 ; -0.9106 0.4097 0.0430 ; -0.9438 0.3080 0.1160 ; -0.9665 0.1908 0.1657 ; -0.9783 0.0647 0.1918 ; -0.9783 -0.0647 0.1918 ; -0.9665 -0.1908 0.1657 ; -0.9438 -0.3080 0.1160 ; -0.9106 -0.4097 0.0430 ; -0.8730 -0.4448 -0.1950 ; -0.9679 0.1533 -0.1950 ; -0.9679 -0.1533 -0.1950 ; 0.9877 0.1564 0.0001 ; 0.9877 -0.1564 0.0001 ; 0.7928 0.5759 -0.1949 ; 0.8332 0.5463 0.0810 ; 0.8750 0.4284 0.2213 ; 0.9053 0.2735 0.3231 ; 0.9211 0.0939 0.3758 ; 0.9210 -0.0939 0.3758 ; 0.9053 -0.2735 0.3231 ; 0.8750 -0.4284 0.2212 ; 0.8332 -0.5463 0.0810 ; 0.7927 -0.5759 -0.1949 ; 0.5761 0.7929 -0.1949 ; 0.6117 0.7772 0.1420 ; 0.6549 0.6412 0.3987 ; 0.6872 0.4214 0.5906 ; 0.7045 0.1468 0.6933 ; 0.7045 -0.1468 0.6933 ; 0.6872 -0.4214 0.5906 ; 0.6549 -0.6412 0.3987 ; 0.6117 -0.7772 0.1420 ; 0.5761 -0.7929 -0.1949 ; 0.3027 0.9317 -0.1950 ; 0.3235 0.9280 0.1813 ; 0.3500 0.7817 0.5146 ; 0.3703 0.5207 0.7687 ; 0.3811 0.1824 0.9054 ; 0.3811 -0.1824 0.9054 ; 0.3703 -0.5207 0.7687 ; 0.3500 -0.7817 0.5146 ; 0.3235 -0.9280 0.1813 ; 0.3028 -0.9317 -0.1950 ; 0.0000 0.9801 -0.1950 ; 0.0000 0.9801 0.1949 ; 0.0001 0.8311 0.5552 ; 0.0002 0.5550 0.8306 ; 0.0001 0.1950 0.9801 ; 0.0002 -0.1950 0.9801 ; 0.0002 -0.5550 0.8306 ; 0.0001 -0.8311 0.5552 ; 0.0000 -0.9801 0.1949 ; 0.0000 -0.9801 -0.1950 ; -0.3028 0.9319 -0.1949 ; -0.3234 0.9278 0.1813 ; -0.3498 0.7818 0.5148 ; -0.3699 0.5206 0.7688 ; -0.3808 0.1825 0.9059 ; -0.3808 -0.1825 0.9059 ; -0.3699 -0.5206 0.7688 ; -0.3498 -0.7818 0.5148 ; -0.3234 -0.9278 0.1813 ; -0.3028 -0.9319 -0.1949 ; -0.5761 0.7929 -0.1950 ; -0.6116 0.7771 0.1420 ; -0.6546 0.6411 0.3985 ; -0.6869 0.4217 0.5912 ; -0.7041 0.1469 0.6934 ; -0.7041 -0.1469 0.6934 ; -0.6870 -0.4216 0.5912 ; -0.6546 -0.6411 0.3985 ; -0.6116 -0.7771 0.1420 ; -0.5761 -0.7929 -0.1950 ; -0.7926 0.5759 -0.1950 ; -0.8331 0.5459 0.0809 ; -0.8752 0.4292 0.2219 ; -0.9054 0.2737 0.3233 ; -0.9210 0.0939 0.3757 ; -0.9210 -0.0940 0.3757 ; -0.9054 -0.2737 0.3233 ; -0.8752 -0.4292 0.2219 ; -0.8331 -0.5459 0.0809 ; -0.7926 -0.5758 -0.1950 ; -0.9877 0.1564 0.0000 ; -0.9877 -0.1564 0.0000 ; -0.9118 0.1444 -0.3824 ; -0.9118 -0.1444 -0.3824 ; 0.8225 0.4190 -0.3825 ; 0.8910 0.4540 0.0000 ; 0.9282 0.3606 0.0817 ; 0.9565 0.2508 0.1438 ; 0.9743 0.1287 0.1828 ; 0.9799 0.0000 0.1949 ; 0.9743 -0.1287 0.1828 ; 0.9565 -0.2508 0.1437 ; 0.9282 -0.3606 0.0817 ; 0.8910 -0.4540 0.0000 ; 0.8225 -0.4191 -0.3825 ; 0.6527 0.6527 -0.3825 ; 0.7071 0.7071 0.0000 ; 0.7564 0.6149 0.2206 ; 0.7962 0.4535 0.3990 ; 0.8221 0.2404 0.5148 ; 0.8312 0.0000 0.5554 ; 0.8221 -0.2404 0.5148 ; 0.7962 -0.4535 0.3990 ; 0.7564 -0.6149 0.2206 ; 0.7071 -0.7071 0.0000 ; 0.6527 -0.6527 -0.3825 ; 0.4192 0.8226 -0.3826 ; 0.4540 0.8910 0.0000 ; 0.4932 0.8072 0.3215 ; 0.5260 0.6110 0.5905 ; 0.5477 0.3286 0.7685 ; 0.5553 0.0000 0.8310 ; 0.5477 -0.3286 0.7685 ; 0.5260 -0.6110 0.5905 ; 0.4932 -0.8072 0.3216 ; 0.4540 -0.8910 0.0000 ; 0.4192 -0.8226 -0.3826 ; 0.1444 0.9119 -0.3826 ; 0.1565 0.9877 0.0000 ; 0.1713 0.9099 0.3754 ; 0.1838 0.6957 0.6933 ; 0.1922 0.3764 0.9059 ; 0.1951 0.0000 0.9804 ; 0.1922 -0.3764 0.9059 ; 0.1838 -0.6957 0.6933 ; 0.1713 -0.9099 0.3754 ; 0.1564 -0.9877 0.0000 ; 0.1444 -0.9119 -0.3826 ; -0.1444 0.9117 -0.3826 ; -0.1564 0.9877 -0.0001 ; -0.1711 0.9100 0.3754 ; -0.1836 0.6959 0.6936 ; -0.1918 0.3763 0.9056 ; -0.1948 0.0000 0.9800 ; -0.1919 -0.3763 0.9056 ; -0.1836 -0.6959 0.6936 ; -0.1711 -0.9100 0.3754 ; -0.1564 -0.9877 -0.0001 ; -0.1444 -0.9117 -0.3826 ; -0.4191 0.8225 -0.3826 ; -0.4540 0.8910 -0.0001 ; -0.4931 0.8073 0.3216 ; -0.5259 0.6109 0.5904 ; -0.5476 0.3285 0.7685 ; -0.5551 0.0000 0.8311 ; -0.5475 -0.3286 0.7685 ; -0.5258 -0.6109 0.5904 ; -0.4931 -0.8073 0.3216 ; -0.4540 -0.8910 -0.0001 ; -0.4191 -0.8225 -0.3826 ; -0.6529 0.6529 -0.3825 ; -0.7071 0.7071 0.0000 ; -0.7561 0.6147 0.2205 ; -0.7960 0.4537 0.3995 ; -0.8218 0.2405 0.5152 ; -0.8306 0.0000 0.5551 ; -0.8218 -0.2405 0.5152 ; -0.7960 -0.4537 0.3995 ; -0.7562 -0.6147 0.2205 ; -0.7071 -0.7071 0.0000 ; -0.6529 -0.6529 -0.3825 ; -0.8228 0.4191 -0.3824 ; -0.8910 0.4540 0.0000 ; -0.9283 0.3608 0.0818 ; -0.9567 0.2511 0.1442 ; -0.9739 0.1285 0.1822 ; -0.9797 0.0000 0.1949 ; -0.9739 -0.1286 0.1822 ; -0.9567 -0.2511 0.1442 ; -0.9283 -0.3608 0.0818 ; -0.8910 -0.4540 0.0000 ; -0.8228 -0.4191 -0.3824 ; -0.9322 0.3029 -0.1949 ; -0.9799 0.0000 -0.1949 ; -0.9322 -0.3029 -0.1949 ; 0.0000 1.0000 0.0000 ; -0.5878 0.8090 -0.0001 ; 0.0000 -1.0000 0.0000 ; -0.5878 -0.8090 -0.0001 ]'; elec = struct(... 'labels',names,... 'X',xyz(1,:),... 'Y',xyz(2,:),... 'Z',xyz(3,:)); return % LPA 0.0000 0.9237 -0.3826 % RPA 0.0000 -0.9237 -0.3826 % Nz 0.9230 0.0000 -0.3824 % Fp1 0.9511 0.3090 0.0001 % Fpz 1.0000 -0.0000 0.0001 % Fp2 0.9511 -0.3091 0.0000 % AF9 0.7467 0.5425 -0.3825 % AF7 0.8090 0.5878 0.0000 % AF5 0.8553 0.4926 0.1552 % AF3 0.8920 0.3554 0.2782 % AF1 0.9150 0.1857 0.3558 % AFz 0.9230 0.0000 0.3824 % AF2 0.9150 -0.1857 0.3558 % AF4 0.8919 -0.3553 0.2783 % AF6 0.8553 -0.4926 0.1552 % AF8 0.8090 -0.5878 0.0000 % AF10 0.7467 -0.5425 -0.3825 % F9 0.5430 0.7472 -0.3826 % F7 0.5878 0.8090 0.0000 % F5 0.6343 0.7210 0.2764 % F3 0.6726 0.5399 0.5043 % F1 0.6979 0.2888 0.6542 % Fz 0.7067 0.0000 0.7067 % F2 0.6979 -0.2888 0.6542 % F4 0.6726 -0.5399 0.5043 % F6 0.6343 -0.7210 0.2764 % F8 0.5878 -0.8090 0.0000 % F10 0.5429 -0.7472 -0.3826 % FT9 0.2852 0.8777 -0.3826 % FT7 0.3090 0.9511 0.0000 % FC5 0.3373 0.8709 0.3549 % FC3 0.3612 0.6638 0.6545 % FC1 0.3770 0.3581 0.8532 % FCz 0.3826 0.0000 0.9233 % FC2 0.3770 -0.3581 0.8532 % FC4 0.3612 -0.6638 0.6545 % FC6 0.3373 -0.8709 0.3549 % FT8 0.3090 -0.9511 0.0000 % FT10 0.2852 -0.8777 -0.3826 % T9 -0.0001 0.9237 -0.3826 % T7 0.0000 1.0000 0.0000 % C5 0.0001 0.9237 0.3826 % C3 0.0001 0.7066 0.7066 % C1 0.0002 0.3824 0.9231 % Cz 0.0002 0.0000 1.0000 % C2 0.0001 -0.3824 0.9231 % C4 0.0001 -0.7066 0.7066 % C6 0.0001 -0.9237 0.3826 % T8 0.0000 -1.0000 0.0000 % T10 0.0000 -0.9237 -0.3826 % TP9 -0.2852 0.8777 -0.3826 % TP7 -0.3090 0.9511 -0.0001 % CP5 -0.3372 0.8712 0.3552 % CP3 -0.3609 0.6635 0.6543 % CP1 -0.3767 0.3580 0.8534 % CPz -0.3822 0.0000 0.9231 % CP2 -0.3767 -0.3580 0.8534 % CP4 -0.3608 -0.6635 0.6543 % CP6 -0.3372 -0.8712 0.3552 % TP8 -0.3090 -0.9511 -0.0001 % TP10 -0.2853 -0.8777 -0.3826 % P9 -0.5429 0.7472 -0.3826 % P7 -0.5878 0.8090 -0.0001 % P5 -0.6342 0.7211 0.2764 % P3 -0.6724 0.5401 0.5045 % P1 -0.6975 0.2889 0.6545 % Pz -0.7063 0.0000 0.7065 % P2 -0.6975 -0.2889 0.6545 % P4 -0.6724 -0.5401 0.5045 % P6 -0.6342 -0.7211 0.2764 % P8 -0.5878 -0.8090 -0.0001 % P10 -0.5429 -0.7472 -0.3826 % PO9 -0.7467 0.5425 -0.3825 % PO7 -0.8090 0.5878 0.0000 % PO5 -0.8553 0.4929 0.1555 % PO3 -0.8918 0.3549 0.2776 % PO1 -0.9151 0.1858 0.3559 % POz -0.9230 -0.0000 0.3824 % PO2 -0.9151 -0.1859 0.3559 % PO4 -0.8918 -0.3549 0.2776 % PO6 -0.8553 -0.4929 0.1555 % PO8 -0.8090 -0.5878 0.0000 % PO10 -0.7467 -0.5425 -0.3825 % O1 -0.9511 0.3090 0.0000 % Oz -1.0000 0.0000 0.0000 % O2 -0.9511 -0.3090 0.0000 % I1 -0.8785 0.2854 -0.3824 % Iz -0.9230 0.0000 -0.3823 % I2 -0.8785 -0.2854 -0.3824 % AFp9h 0.8732 0.4449 -0.1949 % AFp7h 0.9105 0.4093 0.0428 % AFp5h 0.9438 0.3079 0.1159 % AFp3h 0.9669 0.1910 0.1666 % AFp1h 0.9785 0.0647 0.1919 % AFp2h 0.9785 -0.0647 0.1919 % AFp4h 0.9669 -0.1910 0.1666 % AFp6h 0.9438 -0.3079 0.1159 % AFp8h 0.9105 -0.4093 0.0428 % AFp10h 0.8732 -0.4449 -0.1949 % AFF9h 0.6929 0.6929 -0.1949 % AFF7h 0.7325 0.6697 0.1137 % AFF5h 0.7777 0.5417 0.3163 % AFF3h 0.8111 0.3520 0.4658 % AFF1h 0.8289 0.1220 0.5452 % AFF2h 0.8289 -0.1220 0.5452 % AFF4h 0.8111 -0.3520 0.4658 % AFF6h 0.7777 -0.5417 0.3163 % AFF8h 0.7325 -0.6697 0.1138 % AFF10h 0.6929 -0.6929 -0.1949 % FFT9h 0.4448 0.8730 -0.1950 % FFT7h 0.4741 0.8642 0.1647 % FFC5h 0.5107 0.7218 0.4651 % FFC3h 0.5384 0.4782 0.6925 % FFC1h 0.5533 0.1672 0.8148 % FFC2h 0.5533 -0.1672 0.8148 % FFC4h 0.5384 -0.4782 0.6925 % FFC6h 0.5107 -0.7218 0.4651 % FFT8h 0.4741 -0.8642 0.1647 % FFT10h 0.4448 -0.8730 -0.1950 % FTT9h 0.1533 0.9678 -0.1950 % FTT7h 0.1640 0.9669 0.1915 % FCC5h 0.1779 0.8184 0.5448 % FCC3h 0.1887 0.5466 0.8154 % FCC1h 0.1944 0.1919 0.9615 % FCC2h 0.1944 -0.1919 0.9615 % FCC4h 0.1887 -0.5466 0.8154 % FCC6h 0.1779 -0.8184 0.5448 % FTT8h 0.1640 -0.9669 0.1915 % FTT10h 0.1533 -0.9678 -0.1950 % TTP9h -0.1532 0.9678 -0.1950 % TTP7h -0.1639 0.9669 0.1915 % CCP5h -0.1778 0.8185 0.5449 % CCP3h -0.1883 0.5465 0.8153 % CCP1h -0.1940 0.1918 0.9611 % CCP2h -0.1940 -0.1918 0.9611 % CCP4h -0.1884 -0.5465 0.8153 % CCP6h -0.1778 -0.8185 0.5449 % TTP8h -0.1639 -0.9669 0.1915 % TTP10h -0.1533 -0.9678 -0.1950 % TPP9h -0.4448 0.8731 -0.1950 % TPP7h -0.4740 0.8639 0.1646 % CPP5h -0.5106 0.7220 0.4653 % CPP3h -0.5384 0.4786 0.6933 % CPP1h -0.5532 0.1673 0.8155 % CPP2h -0.5532 -0.1673 0.8155 % CPP4h -0.5384 -0.4786 0.6933 % CPP6h -0.5106 -0.7220 0.4653 % TPP8h -0.4740 -0.8638 0.1646 % TPP10h -0.4449 -0.8731 -0.1950 % PPO9h -0.6928 0.6928 -0.1950 % PPO7h -0.7324 0.6700 0.1139 % PPO5h -0.7776 0.5420 0.3167 % PPO3h -0.8108 0.3520 0.4659 % PPO1h -0.8284 0.1220 0.5453 % PPO2h -0.8284 -0.1220 0.5453 % PPO4h -0.8108 -0.3519 0.4659 % PPO6h -0.7775 -0.5421 0.3167 % PPO8h -0.7324 -0.6700 0.1139 % PPO10h -0.6928 -0.6928 -0.1950 % POO9h -0.8730 0.4448 -0.1950 % POO7h -0.9106 0.4097 0.0430 % POO5h -0.9438 0.3080 0.1160 % POO3h -0.9665 0.1908 0.1657 % POO1h -0.9783 0.0647 0.1918 % POO2h -0.9783 -0.0647 0.1918 % POO4h -0.9665 -0.1908 0.1657 % POO6h -0.9438 -0.3080 0.1160 % POO8h -0.9106 -0.4097 0.0430 % POO10h -0.8730 -0.4448 -0.1950 % OI1h -0.9679 0.1533 -0.1950 % OI2h -0.9679 -0.1533 -0.1950 % Fp1h 0.9877 0.1564 0.0001 % Fp2h 0.9877 -0.1564 0.0001 % AF9h 0.7928 0.5759 -0.1949 % AF7h 0.8332 0.5463 0.0810 % AF5h 0.8750 0.4284 0.2213 % AF3h 0.9053 0.2735 0.3231 % AF1h 0.9211 0.0939 0.3758 % AF2h 0.9210 -0.0939 0.3758 % AF4h 0.9053 -0.2735 0.3231 % AF6h 0.8750 -0.4284 0.2212 % AF8h 0.8332 -0.5463 0.0810 % AF10h 0.7927 -0.5759 -0.1949 % F9h 0.5761 0.7929 -0.1949 % F7h 0.6117 0.7772 0.1420 % F5h 0.6549 0.6412 0.3987 % F3h 0.6872 0.4214 0.5906 % F1h 0.7045 0.1468 0.6933 % F2h 0.7045 -0.1468 0.6933 % F4h 0.6872 -0.4214 0.5906 % F6h 0.6549 -0.6412 0.3987 % F8h 0.6117 -0.7772 0.1420 % F10h 0.5761 -0.7929 -0.1949 % FT9h 0.3027 0.9317 -0.1950 % FT7h 0.3235 0.9280 0.1813 % FC5h 0.3500 0.7817 0.5146 % FC3h 0.3703 0.5207 0.7687 % FC1h 0.3811 0.1824 0.9054 % FC2h 0.3811 -0.1824 0.9054 % FC4h 0.3703 -0.5207 0.7687 % FC6h 0.3500 -0.7817 0.5146 % FT8h 0.3235 -0.9280 0.1813 % FT10h 0.3028 -0.9317 -0.1950 % T9h 0.0000 0.9801 -0.1950 % T7h 0.0000 0.9801 0.1949 % C5h 0.0001 0.8311 0.5552 % C3h 0.0002 0.5550 0.8306 % C1h 0.0001 0.1950 0.9801 % C2h 0.0002 -0.1950 0.9801 % C4h 0.0002 -0.5550 0.8306 % C6h 0.0001 -0.8311 0.5552 % T8h 0.0000 -0.9801 0.1949 % T10h 0.0000 -0.9801 -0.1950 % TP9h -0.3028 0.9319 -0.1949 % TP7h -0.3234 0.9278 0.1813 % CP5h -0.3498 0.7818 0.5148 % CP3h -0.3699 0.5206 0.7688 % CP1h -0.3808 0.1825 0.9059 % CP2h -0.3808 -0.1825 0.9059 % CP4h -0.3699 -0.5206 0.7688 % CP6h -0.3498 -0.7818 0.5148 % TP8h -0.3234 -0.9278 0.1813 % TP10h -0.3028 -0.9319 -0.1949 % P9h -0.5761 0.7929 -0.1950 % P7h -0.6116 0.7771 0.1420 % P5h -0.6546 0.6411 0.3985 % P3h -0.6869 0.4217 0.5912 % P1h -0.7041 0.1469 0.6934 % P2h -0.7041 -0.1469 0.6934 % P4h -0.6870 -0.4216 0.5912 % P6h -0.6546 -0.6411 0.3985 % P8h -0.6116 -0.7771 0.1420 % P10h -0.5761 -0.7929 -0.1950 % PO9h -0.7926 0.5759 -0.1950 % PO7h -0.8331 0.5459 0.0809 % PO5h -0.8752 0.4292 0.2219 % PO3h -0.9054 0.2737 0.3233 % PO1h -0.9210 0.0939 0.3757 % PO2h -0.9210 -0.0940 0.3757 % PO4h -0.9054 -0.2737 0.3233 % PO6h -0.8752 -0.4292 0.2219 % PO8h -0.8331 -0.5459 0.0809 % PO10h -0.7926 -0.5758 -0.1950 % O1h -0.9877 0.1564 0.0000 % O2h -0.9877 -0.1564 0.0000 % I1h -0.9118 0.1444 -0.3824 % I2h -0.9118 -0.1444 -0.3824 % AFp9 0.8225 0.4190 -0.3825 % AFp7 0.8910 0.4540 0.0000 % AFp5 0.9282 0.3606 0.0817 % AFp3 0.9565 0.2508 0.1438 % AFp1 0.9743 0.1287 0.1828 % AFpz 0.9799 -0.0000 0.1949 % AFp2 0.9743 -0.1287 0.1828 % AFp4 0.9565 -0.2508 0.1437 % AFp6 0.9282 -0.3606 0.0817 % AFp8 0.8910 -0.4540 0.0000 % AFp10 0.8225 -0.4191 -0.3825 % AFF9 0.6527 0.6527 -0.3825 % AFF7 0.7071 0.7071 0.0000 % AFF5 0.7564 0.6149 0.2206 % AFF3 0.7962 0.4535 0.3990 % AFF1 0.8221 0.2404 0.5148 % AFFz 0.8312 0.0000 0.5554 % AFF2 0.8221 -0.2404 0.5148 % AFF4 0.7962 -0.4535 0.3990 % AFF6 0.7564 -0.6149 0.2206 % AFF8 0.7071 -0.7071 0.0000 % AFF10 0.6527 -0.6527 -0.3825 % FFT9 0.4192 0.8226 -0.3826 % FFT7 0.4540 0.8910 0.0000 % FFC5 0.4932 0.8072 0.3215 % FFC3 0.5260 0.6110 0.5905 % FFC1 0.5477 0.3286 0.7685 % FFCz 0.5553 0.0000 0.8310 % FFC2 0.5477 -0.3286 0.7685 % FFC4 0.5260 -0.6110 0.5905 % FFC6 0.4932 -0.8072 0.3216 % FFT8 0.4540 -0.8910 0.0000 % FFT10 0.4192 -0.8226 -0.3826 % FTT9 0.1444 0.9119 -0.3826 % FTT7 0.1565 0.9877 0.0000 % FCC5 0.1713 0.9099 0.3754 % FCC3 0.1838 0.6957 0.6933 % FCC1 0.1922 0.3764 0.9059 % FCCz 0.1951 0.0000 0.9804 % FCC2 0.1922 -0.3764 0.9059 % FCC4 0.1838 -0.6957 0.6933 % FCC6 0.1713 -0.9099 0.3754 % FTT8 0.1564 -0.9877 0.0000 % FTT10 0.1444 -0.9119 -0.3826 % TTP9 -0.1444 0.9117 -0.3826 % TTP7 -0.1564 0.9877 -0.0001 % CCP5 -0.1711 0.9100 0.3754 % CCP3 -0.1836 0.6959 0.6936 % CCP1 -0.1918 0.3763 0.9056 % CCPz -0.1948 0.0000 0.9800 % CCP2 -0.1919 -0.3763 0.9056 % CCP4 -0.1836 -0.6959 0.6936 % CCP6 -0.1711 -0.9100 0.3754 % TTP8 -0.1564 -0.9877 -0.0001 % TTP10 -0.1444 -0.9117 -0.3826 % TPP9 -0.4191 0.8225 -0.3826 % TPP7 -0.4540 0.8910 -0.0001 % CPP5 -0.4931 0.8073 0.3216 % CPP3 -0.5259 0.6109 0.5904 % CPP1 -0.5476 0.3285 0.7685 % CPPz -0.5551 0.0000 0.8311 % CPP2 -0.5475 -0.3286 0.7685 % CPP4 -0.5258 -0.6109 0.5904 % CPP6 -0.4931 -0.8073 0.3216 % TPP8 -0.4540 -0.8910 -0.0001 % TPP10 -0.4191 -0.8225 -0.3826 % PPO9 -0.6529 0.6529 -0.3825 % PPO7 -0.7071 0.7071 0.0000 % PPO5 -0.7561 0.6147 0.2205 % PPO3 -0.7960 0.4537 0.3995 % PPO1 -0.8218 0.2405 0.5152 % PPOz -0.8306 0.0000 0.5551 % PPO2 -0.8218 -0.2405 0.5152 % PPO4 -0.7960 -0.4537 0.3995 % PPO6 -0.7562 -0.6147 0.2205 % PPO8 -0.7071 -0.7071 0.0000 % PPO10 -0.6529 -0.6529 -0.3825 % POO9 -0.8228 0.4191 -0.3824 % POO7 -0.8910 0.4540 0.0000 % POO5 -0.9283 0.3608 0.0818 % POO3 -0.9567 0.2511 0.1442 % POO1 -0.9739 0.1285 0.1822 % POOz -0.9797 -0.0000 0.1949 % POO2 -0.9739 -0.1286 0.1822 % POO4 -0.9567 -0.2511 0.1442 % POO6 -0.9283 -0.3608 0.0818 % POO8 -0.8910 -0.4540 0.0000 % POO10 -0.8228 -0.4191 -0.3824 % OI1 -0.9322 0.3029 -0.1949 % OIz -0.9799 0.0000 -0.1949 % OI2 -0.9322 -0.3029 -0.1949 % T3 0.0000 1.0000 0.0000 % T5 -0.5878 0.8090 -0.0001 % T4 0.0000 -1.0000 0.0000 % T6 -0.5878 -0.8090 -0.0001 end function [CHAN1020,XYZ1020] = elec_1020select(CHAN) % elec_1020select - select 10-20 locations % % [labels,xyz] = elec_1020select(CHAN) % % where CHAN input is a cell array of channel names from the International % 10-20 nomenclature for EEG electrode placement. For a list of the 10-20 % electrode names, see the elec_1020all_cart function, which is based on: % % Oostenveld, R. & Praamstra, P. (2001). The five percent electrode system % for high-resolution EEG and ERP measurements. Clinical Neurophysiology, % 112:713-719. % % $Revision$ $Date: 2009-01-30 03:49:28 $ % Copyright (C) 2005 Darren L. Weber % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. % Modified: 01/2005, Darren.Weber_at_radiology.ucsf.edu % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ver = '$Revision$ $Date: 2009-01-30 03:49:28 $'; fprintf('\nELEC_1020SELECT [v %s]\n',ver(11:15)); % get the 1020 data elec = elec_1020all_cart; elec = struct2cell(elec); labels = squeeze(elec(1,:,:))'; x = squeeze(elec(2,:,:)); x = x{1}; y = squeeze(elec(3,:,:)); y = y{1}; z = squeeze(elec(4,:,:)); z = z{1}; clear elec % find all the electrode names in elec.labels that match CHAN CHAN1020 = zeros(1,length(CHAN)); XYZ1020 = zeros(length(CHAN),3); for c = 1:length(CHAN), chan = CHAN{c}; index = find(strcmp(lower(chan), lower(labels))); if ~isempty(index), CHAN1020(c) = index; XYZ1020(c,:) = [ x(index), y(index), z(index) ]; else msg = sprintf('No match for channel: %s\n',chan) error(msg) end end CHAN1020 = labels(CHAN1020); return end
github
lcnhappe/happe-master
test_bug2761.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_bug2761.m
516
utf_8
40e8c6fcd9af682c490acf41bf40d317
function test_bug2761 % WALLTIME 00:10:00 % MEM 1GB % TEST test_bug2761 % TEST ft_connectivityanalysis ft_connectivity_corr data = []; for i=1:5 data.label{i} = num2str(i); end for i=1:13 data.trial{i} = randn(5,300); data.time{i} = (1:300)/300; end cfg = []; cfg.covariance = 'yes'; timelock = ft_timelockanalysis(cfg, data); cfg = []; cfg.method = 'corr'; connectivity = ft_connectivityanalysis(cfg, timelock); % this failed at the time of reporting this bug assert(~isfield(connectivity, 'time'));
github
lcnhappe/happe-master
test_csp.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_csp.m
2,280
utf_8
6749925fb2418cf2a37607668d16c4c7
function test_suite = test_csp % MEM 1500mb % WALLTIME 00:10:00 % TEST test_csp % TEST ft_component_analysis % Please beware of notations mistakes in [1]. For example equation (1) does not % compute the t by t channel covariance, but an n by n time covariance matrix. % % [1] Zoltan J. Koles. The quantitative extraction and topographic mapping of % the abnormal components in the clinical EEG. Electroencephalography and % Clinical Neurophysiology, 79(6):440--447, December 1991. % add xunit to path ft_hastoolbox('xunit',1); initTestSuite; % for xUnit function test_csp_integration % create data struct with two trials p = 6; n = 100; data = []; data.label = {'c1', 'c2', 'c3', 'c4', 'c5', 'c6'}; data.trial = {randn(p, n), randn(p, n)}; data.time = {1:n, 1:n}; % HACK: prescale that data so that ft_component_analysis does not do so. % Should add an option to disable scaling in ft_component_analysis. scale = norm((data.trial{1}*data.trial{1}')./size(data.trial{1},2))^.5; for trial=1:2 data.trial{trial} = data.trial{trial} ./ scale; end % run CSP through ft_component_analysis cfg = []; cfg.method = 'csp'; cfg.csp.numfilters = 4; cfg.demean = 'false'; cfg.csp.classlabels = [1 2]; comp = ft_componentanalysis(cfg, data); % check CSP properties C1 = cov(data.trial{1}'); C2 = cov(data.trial{2}'); W = csp(C1, C2, cfg.csp.numfilters); assert(norm(comp.unmixing - W) < 1e-10, ... 'CSP in ft_component_analysis does not match bare CSP.') function test_csp_base % Create signals with different variance. We use a degenerate covariance % structure to stress the whitening. p = 6; n = 100; m = 4; S1 = diag([0 1 1 1 1 3]) * randn(p, n); S2 = diag([0 1 1 1 1 .1]) * randn(p, n); % randomly mix signals A = randn(p, p); X1 = A * S1; X2 = A * S2; % get covariance C1 = cov(X1'); C2 = cov(X2'); % find unmixing matrix W = csp(C1, C2, m); % test CSP properties D1 = W * C1 * W'; D2 = W * C2 * W'; assert(all(diff(diag(D1)) <= 0), ... 'CSP variance is not descending for condition 1.'); assert(norm(D1 + D2 - eye(m)) < 1e-10, ... 'CSP does not whiten correctly.'); assert(norm(diag(diag(D1)) - D1) < 1e-10, ... 'CSP does not diagonalize correctly.');
github
lcnhappe/happe-master
test_bug1925.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_bug1925.m
1,259
utf_8
3822edac5639686e3eb5ab751e54276d
function test_bug1925 % MEM 1500mb % WALLTIME 00:10:00 % TEST test_bug1925 % TEST surface_nesting ft_headmodel_bemcp [ftver, ftpath] = ft_version; cd(fullfile(ftpath, 'forward/private')); % this is where the surface_nesting function is located [pos, tri] = icosahedron162; bnd10.id = 10; bnd10.pos = pos*10; bnd10.tri = tri; bnd20.id = 20; bnd20.pos = pos*20; bnd20.tri = tri; bnd30.id = 30; bnd30.pos = pos*30; bnd30.tri = tri; bnd40.id = 40; bnd40.pos = pos*40; bnd40.tri = tri; bnd50.id = 50; bnd50.pos = pos*50; bnd50.tri = tri; bnd = bnd10; bnd(2) = bnd20; bnd(3) = bnd30; bnd(4) = bnd40; bnd(5) = bnd50; assert(equalorder(surface_nesting(bnd, 'insidefirst'), 1:5)); assert(equalorder(surface_nesting(bnd, 'outsidefirst'), fliplr(1:5))); bnd = bnd10; bnd(3) = bnd20; bnd(2) = bnd30; bnd(5) = bnd40; bnd(4) = bnd50; assert(equalorder(surface_nesting(bnd, 'insidefirst'), [1 3 2 5 4])); assert(equalorder(surface_nesting(bnd, 'outsidefirst'), fliplr([1 3 2 5 4]))); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to deal with row and column comparisons %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function bool = equalorder(a, b) bool = isequal(a(:), b(:));
github
lcnhappe/happe-master
test_ft_timelockanalysis_new.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_ft_timelockanalysis_new.m
15,554
utf_8
25776f063c3317b6ed7bb48c417064d8
function test_ft_timelockanalysis_new(datainfo,writeflag) % MEM 1500mb % WALLTIME 00:10:00 % TEST test_ft_timelockanalysis_new % ft_timelockanalysis_new ft_timelockanalysis ref_datasets % this is a function for testing ft_timelockanalysis_new, which is not official yet % the optional writeflag determines whether the output should be saved to % disk %% % This function is testing a new ft_timelockanalysis_new which is something % Johanna is working on and not in SVN yet. return; %% if nargin<2 writeflag = 0; end if nargin<1 datainfo = ref_datasets; end % for k = 1:numel(datainfo) for k = 1:10 datanew = timelockanalysis10trials(datainfo(k), writeflag); fname = fullfile(datainfo(k).origdir,'latest/timelock',datainfo(k).type,'timelock_',datainfo(k).datatype); tmp = load(fname); if isfield(tmp, 'data') data = tmp.data; elseif isfield(tmp, 'datanew') data = tmp.datanew; else isfield(tmp, 'timelock') data = tmp.timelock; end datanew = rmfield(datanew, 'cfg'); % these are per construction different if writeflag = 0; data = rmfield(data, 'cfg'); assert(isequaln(data, datanew)); end test_cfg_options; function [tlck] = timelockanalysis10trials(dataset, writeflag) cfg = []; cfg.inputfile = fullfile(dataset.origdir,'latest/raw',dataset.type,['preproc_',dataset.datatype]); if writeflag cfg.outputfile = fullfile(dataset.origdir,'latest/timelock',dataset.type,'timelock_',dataset.datatype); end tlck = ft_timelockanalysis(cfg); tlck1 = ft_timelockanalysis_new(cfg); return function test_cfg_options load /home/common/matlab/fieldtrip/data/ftp/tutorial/eventrelatedaveraging/dataFC_LP.mat data=dataFC_LP; clear dataFC_LP; data.time{2}=data.time{2}+.5; % purposely add some jitter to time window data.time{3}=data.time{3}-.5; cfg=[]; try tlock=ft_timelockanalysis_new(cfg,data); catch me % if ~strcmp(me.message,'the option "output" was not specified or was empty'); error(me.message) % end end cfg=[]; cfg.output='rubbish'; try tlock=ft_timelockanalysis_new(cfg,data); catch me if ~strcmp(me.message,'the value of cfg.output is not set correctly'); error(me.message) end end % no latency or covlatency given, use defaults cfg=[]; cfg.output='avg'; cfg.feedback='none'; cfg.preproc.feedback='textbar'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; % cfg.vartrllength=1; % tlocko=ft_timelockanalysis(cfg,data); cfg=[]; cfg.output='cov'; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.keeptrials='no'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg=[]; cfg.output='avgandcov'; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.keeptrials='no'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end % cfg.covariance='yes'; % cfg.vartrllength=1; % tlocko=ft_timelockanalysis(cfg,data); cfg=[]; cfg.output='avg'; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.keeptrials='yes'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end % cfg.vartrllength=1; % tlocko=ft_timelockanalysis(cfg,data); cfg=[]; cfg.output='cov'; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.keeptrials='yes'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg=[]; cfg.output='avgandcov'; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.keeptrials='yes'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end % cfg.covariance='yes'; % cfg.vartrllength=1; % tlocko=ft_timelockanalysis(cfg,data); % options with .latency and .covlatency specified cfg=[]; cfg.output='avg'; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.keeptrials='no'; cfg.latency=[min(data.time{1}) max(data.time{1})]; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end % cfg.vartrllength=1; % tlocko=ft_timelockanalysis(cfg,data); cfg.latency='maxperlength'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg.latency='minperlength'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg.latency='prestim'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg.latency='poststim'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg=[]; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.output='avg'; cfg.keeptrials='yes'; cfg.latency=[min(data.time{1}) max(data.time{1})]; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg.latency='maxperlength'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg.latency='minperlength'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg.latency='prestim'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg.latency='poststim'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg=[]; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.output='avgandcov'; cfg.keeptrials='no'; cfg.latency=[min(data.time{1}) max(data.time{1})]; cfg.covlatency=[min(data.time{1}) max(data.time{1})]; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end % cfg.covariance='yes'; % cfg.vartrllength=1; % tlocko=ft_timelockanalysis(cfg,data); cfg.latency='maxperlength'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg=[]; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.output='avgandcov'; cfg.keeptrials='yes'; cfg.latency=[min(data.time{1}) max(data.time{1})]; cfg.covlatency=[min(data.time{1}) max(data.time{1})]; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end % cfg.covariance='yes'; % cfg.vartrllength=1; % tlocko=ft_timelockanalysis(cfg,data); cfg=[]; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.output='cov'; cfg.keeptrials='no'; cfg.latency=[min(data.time{1}) max(data.time{1})]; cfg.covlatency=[min(data.time{1}) max(data.time{1})]; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg=[]; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.output='cov'; cfg.keeptrials='yes'; cfg.latency=[min(data.time{1}) max(data.time{1})]; cfg.covlatency=[min(data.time{1}) max(data.time{1})]; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end % check toi options cfg=[]; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.output='cov'; cfg.latency=[min(data.time{1}) max(data.time{1})]; cfg.covlatency='minperlength'; cfg.toi=[-0.5 0.7]; cfg.timwin=1; cfg.equatenumtrials='yes'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg=[]; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.output='cov'; cfg.covlatency='minperlength'; cfg.toi=[-.8:.3:0.1]; cfg.timwin=1; cfg.equatenumtrials='no'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg=[]; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.output='cov'; cfg.covlatency='minperlength'; cfg.toi=[-.8:.3:0.1]; cfg.timwin=1; cfg.equatenumtrials='no'; cfg.keeptrials='yes'; try tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end catch me if ~strcmp(me.message,'sorry, if keeping trials and computing cov, cfg.equatenumtrials should be yes') error(me.message) end end cfg=[]; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.output='cov'; cfg.covlatency='minperlength'; cfg.toi=[-.8:.3:0.1]; cfg.timwin=1; cfg.equatenumtrials='yes'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end cfg=[]; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.output='cov'; cfg.covlatency='minperlength'; cfg.toi=[-.8:.3:0.1]; cfg.timwin=1; cfg.equatenumtrials='yes'; cfg.keeptrials='yes'; tlock=ft_timelockanalysis_new(cfg,data); if ~strmatch(ft_datatype(tlock),'timelock'),error('datatype');end; if ~strcmp(ft_datatype(ft_checkdata(tlock,'datatype','raw')),'raw') || ~strcmp(ft_datatype(ft_checkdata(tlock)),'timelock'),error('checkdata');end %% ignore for svn testing, but used to test output of new function in further functions % test ft_sourceanalysis versus MNE event related tutorial if 0 cfg=[]; cfg.output='avg'; cfg.feedback='none'; cfg.preproc.feedback='textbar'; tlock=ft_timelockanalysis_new(cfg,data); cfg=[]; cfg.method='lcmv'; cfg.hdmfile=['/home/common/matlab/fieldtrip/data/Subject01.hdm']; cfg.grad=data.grad; source=ft_sourceanalysis(cfg,tlock); cfg = []; cfg.covariance = 'yes'; cfg.vartrllength=1; cfg.covariancewindow = [-inf 0]; %it will calculate the covariance matrix % on the timepoints that are % before the zero-time point in the trials tlckFC = ft_timelockanalysis(cfg, data); % tlckFIC = ft_timelockanalysis(cfg, dataFIC_LP); save tlck tlckFC tlckFIC; cfg=[]; cfg.method='lcmv'; cfg.hdmfile=['/home/common/matlab/fieldtrip/data/Subject01.hdm']; cfg.grad=data.grad; sourceFC=ft_sourceanalysis(cfg,tlckFC); end % spin off of beamformer tutorial but in time-domain, results won't match exactly if 0 cfg=[]; cfg.output='cov'; cfg.feedback='none'; cfg.preproc.feedback='textbar'; cfg.covlatency=[0.8 1.3]; cfg.preproc.bpfilter='yes'; cfg.preproc.bpfreq=[16 20]; tlock=ft_timelockanalysis_new(cfg,data); load /home/common/matlab/fieldtrip/data/ftp/tutorial/beamformer/segmentedmri.mat cfg=[]; vol=ft_prepare_singleshell(cfg,segmentedmri); cfg=[]; cfg.vol=vol; cfg.reducerank = 2; cfg.grad=tlock.grad; cfg.grid.resolution=1; cfg.channel={'MEG','-MLP31','-MLO12'}; grid=ft_prepare_leadfield(cfg); cfg=[]; cfg.method='lcmv'; cfg.projectnoise='yes'; cfg.grid=grid; cfg.vol=vol; source=ft_sourceanalysis(cfg,tlock); mri=ft_read_mri('/home/common/matlab/fieldtrip/data/Subject01.mri'); sourcediff=source; % sourcediff.avg.pow=(source.avg.pow-source.avg.noise)./source.avg.noise; sourcediff.avg.pow=(source.avg.pow)./source.avg.noise; cfg=[]; cfg.downsample=2; sourcediffint=ft_sourceinterpolate(cfg,sourcediff,mri); cfg=[]; cfg.method='slice'; cfg.funparameter='avg.pow'; cfg.maskparameter=cfg.funparameter; cfg.funcolorlim=[5 6.2]; cfg.opacitylim=[5 6.2]; cfg.opacitymap='rampup'; figure;ft_sourceplot(cfg,sourcediffint); %ok cfg=[]; cfg.downsample=2; sourceint=ft_sourceinterpolate(cfg,source,mri); cfg=[]; cfg.method='slice'; cfg.funparameter='avg.pow'; % cfg.maskparameter=cfg.funparameter; % cfg.funcolorlim=[5 6.2]; % cfg.opacitylim=[5 6.2]; % cfg.opacitymap='rampup'; figure;ft_sourceplot(cfg,sourceint); %ok end % test ft_timelockstatistics if 0 cfg=[]; cfg.output='cov'; cfg.feedback='none'; cfg.keeptrials='yes'; cfg.preproc.feedback='textbar'; tlock=ft_timelockanalysis_new(cfg,data); tlock1 = ft_selectdata(tlock, 'rpt',1:36) tlock2 = ft_selectdata(tlock, 'rpt',37:72) cfg=[]; cfg.method='analytic'; cfg.statistic='ft_statfun_indepsamplesT' ; stat=ft_timelockstatistics(cfg,tlock1,tlock2); end
github
lcnhappe/happe-master
test_bug2225.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_bug2225.m
219
utf_8
cd5a86e01c4737d10a1bf2c4f91cde09
function test_bug2225 % WALLTIME 00:10:00 % MEM 1gb tic for i=1:10000 issue_warning end % for toc end % main function function issue_warning ft_warning('this warning should not show too often'); end % subfunction
github
lcnhappe/happe-master
test_tutorial_coherence.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_tutorial_coherence.m
7,081
utf_8
a00ebdbf1a5ecf3f6ec67bfaa67876d8
function test_tutorial_coherence % MEM 4500mb % WALLTIME 00:20:00 % TEST test_tutorial_coherence % TEST ft_freqanalysis ft_connectivityanalysis ft_multiplotER ft_singleplotER ft_topoplotER ft_sourceanalysis ft_sourceinterpolate ft_prepare_sourcemodel headsurface addpath('/home/common/matlab/fieldtrip/data/ftp/tutorial/coherence'); addpath('/home/common/matlab/fieldtrip/data/'); % find the interesting epochs of data cfg = []; cfg.trialfun = 'trialfun_left'; cfg.dataset = '/home/common/matlab/fieldtrip/data/SubjectCMC.ds'; cfg = ft_definetrial(cfg); % detect EOG artifacts in the MEG data cfg.continuous = 'yes'; cfg.artfctdef.eog.padding = 0; cfg.artfctdef.eog.bpfilter = 'no'; cfg.artfctdef.eog.detrend = 'yes'; cfg.artfctdef.eog.hilbert = 'no'; cfg.artfctdef.eog.rectify = 'yes'; cfg.artfctdef.eog.cutoff = 2.5; cfg.artfctdef.eog.interactive = 'no'; cfg = ft_artifact_eog(cfg); % detect jump artifacts in the MEG data cfg.artfctdef.jump.interactive = 'no'; cfg.padding = 5; cfg = ft_artifact_jump(cfg); % detect muscle artifacts in the MEG data cfg.artfctdef.muscle.cutoff = 8; cfg.artfctdef.muscle.interactive = 'no'; cfg = ft_artifact_muscle(cfg); % reject the epochs that contain artifacts cfg.artfctdef.reject = 'complete'; cfg = ft_rejectartifact(cfg); % preprocess the MEG data cfg.demean = 'yes'; cfg.dftfilter = 'yes'; cfg.channel = {'MEG'}; cfg.continuous = 'yes'; meg = ft_preprocessing(cfg); % preprocess the EMG data cfg = []; cfg.dataset = meg.cfg.dataset; cfg.trl = meg.cfg.trl; cfg.continuous = 'yes'; cfg.demean = 'yes'; cfg.dftfilter = 'yes'; cfg.channel = {'EMGlft' 'EMGrgt'}; cfg.hpfilter = 'yes'; cfg.hpfreq = 10; cfg.rectify = 'yes'; emg = ft_preprocessing(cfg); % concatenate the two data-structures into one structure data = ft_appenddata([], meg, emg); % visualisation figure subplot(2,1,1); plot(data.time{1},data.trial{1}(77,:)); axis tight; legend(data.label(77)); subplot(2,1,2); plot(data.time{1},data.trial{1}(152:153,:)); axis tight; legend(data.label(152:153)); % spectral analysis: fourier cfg = []; cfg.output = 'fourier'; cfg.method = 'mtmfft'; cfg.foilim = [5 100]; cfg.tapsmofrq = 5; cfg.keeptrials = 'yes'; cfg.channel = {'MEG' 'EMGlft' 'EMGrgt'}; freqfourier = ft_freqanalysis(cfg, data); % spectral analysis: powandcsd cfg = []; cfg.output = 'powandcsd'; cfg.method = 'mtmfft'; cfg.foilim = [5 100]; cfg.tapsmofrq = 5; cfg.keeptrials = 'yes'; cfg.channel = {'MEG' 'EMGlft' 'EMGrgt'}; cfg.channelcmb = {'MEG' 'EMGlft'; 'MEG' 'EMGrgt'}; freq = ft_freqanalysis(cfg, data); % compute coherence cfg = []; cfg.method = 'coh'; cfg.channelcmb = {'MEG' 'EMG'}; fd = ft_connectivityanalysis(cfg, freq); fdfourier = ft_connectivityanalysis(cfg, freqfourier); % visualisation cfg = []; cfg.parameter = 'cohspctrm'; cfg.xlim = [5 80]; cfg.refchannel = 'EMGlft'; cfg.layout = 'CTF151.lay'; cfg.showlabels = 'yes'; figure; ft_multiplotER(cfg, fd) cfg.channel = 'MRC21'; figure; ft_singleplotER(cfg, fd); cfg = []; cfg.parameter = 'cohspctrm'; cfg.xlim = [15 20]; cfg.zlim = [0 0.1]; cfg.refchannel = 'EMGlft'; cfg.layout = 'CTF151.lay'; figure; ft_topoplotER(cfg, fd) % 2 Hz smoothing cfg = []; cfg.output = 'powandcsd'; cfg.method = 'mtmfft'; cfg.foilim = [5 100]; cfg.tapsmofrq = 2; cfg.keeptrials = 'yes'; cfg.channel = {'MEG' 'EMGlft'}; cfg.channelcmb = {'MEG' 'EMGlft'}; freq2 = ft_freqanalysis(cfg,data); cfg = []; cfg.method = 'coh'; cfg.channelcmb = {'MEG' 'EMG'}; fd2 = ft_connectivityanalysis(cfg,freq2); cfg = []; cfg.parameter = 'cohspctrm'; cfg.refchannel = 'EMGlft'; cfg.xlim = [5 80]; cfg.channel = 'MRC21'; figure; ft_singleplotER(cfg, fd, fd2); % 10 Hz smoothing cfg = []; cfg.output = 'powandcsd'; cfg.method = 'mtmfft'; cfg.foilim = [5 100]; cfg.keeptrials = 'yes'; cfg.channel = {'MEG' 'EMGlft'}; cfg.channelcmb = {'MEG' 'EMGlft'}; cfg.tapsmofrq = 10; freq10 = ft_freqanalysis(cfg,data); cfg = []; cfg.method = 'coh'; cfg.channelcmb = {'MEG' 'EMG'}; fd10 = ft_connectivityanalysis(cfg,freq10); cfg = []; cfg.parameter = 'cohspctrm'; cfg.xlim = [5 80]; cfg.ylim = [0 0.2]; cfg.refchannel = 'EMGlft'; cfg.channel = 'MRC21'; figure;ft_singleplotER(cfg, fd, fd2, fd10); % 50 trials cfg = []; cfg.output = 'powandcsd'; cfg.method = 'mtmfft'; cfg.foilim = [5 100]; cfg.tapsmofrq = 5; cfg.keeptrials = 'yes'; cfg.channel = {'MEG' 'EMGlft'}; cfg.channelcmb = {'MEG' 'EMGlft'}; cfg.trials = 1:50; freq50 = ft_freqanalysis(cfg,data); cfg = []; cfg.method = 'coh'; cfg.channelcmb = {'MEG' 'EMG'}; fd50 = ft_connectivityanalysis(cfg,freq50); cfg = []; cfg.parameter = 'cohspctrm'; cfg.xlim = [5 100]; cfg.ylim = [0 0.2]; cfg.refchannel = 'EMGlft'; cfg.channel = 'MRC21'; figure; ft_singleplotER(cfg, fd, fd50); % source reconstruction cfg = []; cfg.method = 'mtmfft'; cfg.output = 'powandcsd'; cfg.foilim = [18 18]; cfg.tapsmofrq = 5; cfg.keeptrials = 'yes'; cfg.channelcmb = {'MEG' 'MEG';'MEG' 'EMGlft'}; freq = ft_freqanalysis(cfg, data); cfg = []; cfg.method = 'dics'; cfg.refchan = 'EMGlft'; cfg.frequency = 18; cfg.hdmfile = 'SubjectCMC.hdm'; cfg.inwardshift = 1; cfg.grid.resolution = 1; cfg.grid.unit = 'cm'; source = ft_sourceanalysis(cfg, freq); mri = ft_read_mri('SubjectCMC.mri'); mri = ft_volumereslice([], mri); cfg = []; cfg.parameter = 'coh'; cfg.downsample = 2; interp = ft_sourceinterpolate(cfg, source, mri); cfg = []; cfg.method = 'ortho'; %cfg.interactive = 'yes'; cfg.funparameter = 'coh'; figure; ft_sourceplot(cfg, interp); %-------------------------------- % subfunction function trl = trialfun_left(cfg) % read in the triggers and create a trial-matrix % consisting of 1-second data segments, in which % left ECR-muscle is active. event = ft_read_event(cfg.dataset); trig = [event(find(strcmp('backpanel trigger', {event.type}))).value]; indx = [event(find(strcmp('backpanel trigger', {event.type}))).sample]; %left-condition sel = [find(trig==1028):find(trig==1029)]; trig = trig(sel); indx = indx(sel); trl = []; for j = 1:length(trig)-1 trg1 = trig(j); trg2 = trig(j+1); if trg1<=100 & trg2==2080, trlok = [[indx(j)+1:1200:indx(j+1)-1200]' [indx(j)+1200:1200:indx(j+1)]']; trlok(:,3) = [0:-1200:-1200*(size(trlok,1)-1)]'; trl = [trl; trlok]; end end
github
lcnhappe/happe-master
inspect_qsubcellfun3.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/inspect_qsubcellfun3.m
1,266
utf_8
34dab50806cd673f776e8cd5752e5702
function inspect_qsubcellfun3 % MEM 1500mb % WALLTIME 00:10:00 % TEST test_qsubcellfun3 % TEST qsubcellfun qsubfeval qsubget % this should not run in the automated batch, because the torque queue % will be completely full with other jobs, causing this job to timeout if isempty(which('qsubcellfun')) [ftver, ftpath] = ft_version; addpath(fullfile(ftpath, 'qsub')); end result1 = cellfun(@subfunction, {1, 2, 3}, 'UniformOutput', false); result2 = qsubcellfun(@subfunction, {1, 2, 3}, 'memreq', 1e8, 'timreq', 300, 'backend', 'local'); assert(isequal(result1, result2)); % % the following does not work, which is the correct behaviour % % the subfunction cannot be located if passed as a string % result2 = qsubcellfun('subfunction', {1, 2, 3}, 'memreq', 1e8, 'timreq', 300, 'backend', 'local'); % assert(isequal(result1, result2)); % this section was confirmed to work on 14 October 2012 result3 = qsubcellfun(@subfunction, {1, 2, 3}, 'memreq', 1e8, 'timreq', 300); assert(isequal(result1, result3)); % this section fails on 14 October 2012 % result4 = qsubcellfun(@subsubfunction, {1, 2, 3}, 'memreq', 1e8, 'timreq', 300); % assert(isequal(result1, result4)); function y = subfunction(x) y = x.^2; function y = subsubfunction(x) y = subfunction(x);
github
lcnhappe/happe-master
test_printstruct.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_printstruct.m
2,606
utf_8
a851c70161c6ff3f6b68993939ce7bca
function test_printstruct % MEM 4096mb % WALLTIME 00:20:00 % the above requirements are quite big, but this script is inherently % unpredictable numtests = 10; fprintf('generating %d random deep nested structures to test printstruct() serialization\n', numtests); for k = 1:numtests % generate some deep structure mystruct = randomval('struct'); % get string version, assign new name % FIXME think about whether printstruct itself should contain % initialization to empty [] newstruct = []; printversion = printstruct('newstruct', mystruct); % eval() it eval(printversion); % check equality % use abstol here because we know all floating point numeric values are % generated from standard normal distribution [ok,msg] = identical(mystruct, newstruct, 'abstol', 1e-6); if ok fprintf('printstruct() behaves as expected for random structure %d\n', k); else fprintf('printstruct() DOES NOT behave as expected for random structure %d\n', k); fprintf('%s\n', msg{:}); error('test failed, see above for details'); end end end %%%%%%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%% function myval = randomval(type, depth) if nargin < 2 depth = 0; end if depth > 3 && any(strcmp(type, {'struct' 'cell'})) % don't nest too far (unnecessarily slows down the test) myval = []; return; end % the 64-bit int/uint types are not supported by matlab's randi(), so we % don't test them here types = {'double' 'double_complex' 'single' 'int8' 'int16' 'int32' 'uint8' 'uint16' 'uint32' 'logical' 'struct' 'cell'}; switch(type) case 'struct' numfields = 5 + randi(10); for k = 1:numfields name = sprintf('x%d', randi(intmax)); myval.(name) = randomval(types{randi(numel(types))}, depth + 1); end case 'cell' numelem = randi(200); alldepths = repmat({depth+1}, [1 numelem]); alltypes = types(randi(numel(types), 1, numelem)); % structs and cells cannot be within a cell as far as printstruct is concerned alltypes(strcmp(alltypes, 'struct') | strcmp(alltypes, 'cell')) = {'double'}; myval = cellfun(@randomval, alltypes, alldepths, 'uniformoutput', false); case 'logical' if rand() < 0.5 myval = false(randi(100),randi(100)); else myval = true(randi(100),randi(100)); end case 'double_complex' siz = [randi(100), randi(100)]; myval = randn(siz) + 1i .* randn(siz); case {'double' 'single'} myval = randn(randi(100), randi(100)); case {'int8' 'int16' 'int32' 'uint8' 'uint16' 'uint32' 'uint64'} myval = randi(200, randi(100), randi(100), type); end end
github
lcnhappe/happe-master
test_bug2639.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_bug2639.m
5,224
utf_8
c9dcca414ad6ef237af60845013ff6f9
function test_bug2639 % TEST test_bug2639 % TEST ft_checkdata % MEM 2gb % WALLTIME 00:10:00 shufflechan = [1 3 2]'; channelcmb = { '1' '2' '1' '3' '2' '3' }; %% freq1o = []; freq1o.freq = 1; freq1o.label = {'1', '2', '3'}'; freq1o.dimord = 'chan_freq'; freq1o.powspctrm = reshape([1 2 3], [3 1]); freq1r = freq1o; freq1r.label = freq1o.label(shufflechan); freq1r.powspctrm = freq1o.powspctrm(shufflechan,:); freq2o = ft_checkdata(freq1o); freq2r = ft_checkdata(freq1r); [selo, selr] = match_str(freq2o.label, freq2r.label); assert(isequal(freq2o.powspctrm(selo,:), freq2r.powspctrm(selr,:))); %% freq1o = []; freq1o.freq = 1; freq1o.cumtapcnt = 1; freq1o.label = {'1', '2', '3'}'; freq1o.dimord = 'rpt_chan_freq'; freq1o.fourierspctrm = reshape([1 2 3], [1 3 1]); freq1r = freq1o; freq1r.label = freq1o.label(shufflechan); freq1r.fourierspctrm = freq1o.fourierspctrm(:,shufflechan,:); freq2o = ft_checkdata(freq1o); freq2r = ft_checkdata(freq1r); [selo, selr] = match_str(freq2o.label, freq2r.label); assert(isequal(freq2o.fourierspctrm(:,selo,:), freq2r.fourierspctrm(:,selr,:))); %% full, sparse, fourier, sparsewithpow, fullfast freq2o = ft_checkdata(freq1o, 'cmbrepresentation', 'fourier'); freq2r = ft_checkdata(freq1r, 'cmbrepresentation', 'fourier'); [selo, selr] = match_str(freq2o.label, freq2r.label); assert(isequal(freq2o.fourierspctrm(:,selo,:), freq2r.fourierspctrm(:,selr,:))); assert( isequal(freq1r.label,freq2r.label)); assert(~isequal(freq2o.label,freq2r.label)); freq2o = ft_checkdata(freq1o, 'cmbrepresentation', 'full'); freq2r = ft_checkdata(freq1r, 'cmbrepresentation', 'full'); [selo, selr] = match_str(freq2o.label, freq2r.label); assert(isequal(freq2o.crsspctrm(selo,selo), freq2r.crsspctrm(selr,selr))); assert( isequal(freq1r.label,freq2r.label)); assert(~isequal(freq2o.label,freq2r.label)); freq2o = ft_checkdata(freq1o, 'cmbrepresentation', 'fullfast'); freq2r = ft_checkdata(freq1r, 'cmbrepresentation', 'fullfast'); [selo, selr] = match_str(freq2o.label, freq2r.label); assert(isequal(freq2o.crsspctrm(selo,selo), freq2r.crsspctrm(selr,selr))); assert( isequal(freq1r.label,freq2r.label)); assert(~isequal(freq2o.label,freq2r.label)); freq2o = ft_checkdata(freq1o, 'cmbrepresentation', 'sparse', 'channelcmb', channelcmb); freq2r = ft_checkdata(freq1r, 'cmbrepresentation', 'sparse', 'channelcmb', channelcmb); [selo, selr] = match_strcmb(freq2o.labelcmb, freq2r.labelcmb); assert(isequal(freq2o.crsspctrm(selo,:), freq2r.crsspctrm(selr,:))); assert( isequal(freq2o.labelcmb,freq2r.labelcmb)); freq2o = ft_checkdata(freq1o, 'cmbrepresentation', 'sparsewithpow', 'channelcmb', channelcmb); freq2r = ft_checkdata(freq1r, 'cmbrepresentation', 'sparsewithpow', 'channelcmb', channelcmb); [selo, selr] = match_strcmb(freq2o.labelcmb, freq2r.labelcmb); assert(isequal(freq2o.crsspctrm(selo,:), freq2r.crsspctrm(selr,:))); [selo, selr] = match_str(freq2o.label, freq2r.label); assert(isequal(freq2o.powspctrm(:,selo,:), freq2r.powspctrm(:,selr,:))); assert( isequal(freq1r.label,freq2r.label)); assert(~isequal(freq2o.label,freq2r.label)); assert( isequal(freq2o.labelcmb,freq2r.labelcmb)); %% freq1o = []; freq1o.freq = 1; freq1o.cumtapcnt = 1; freq1o.dimord = 'chancmb_freq'; freq1o.label = {'1', '2', '3'}'; freq1o.powspctrm = [1 2 3]'; freq1o.labelcmb = { '1' '2' '1' '3' '2' '3' }; freq1o.crsspctrm = [ 2 3 6 ]; freq1r = freq1o; freq1r.label = freq1o.label(shufflechan); freq1r.labelcmb = freq1o.labelcmb(shufflechan,:); freq1r.powspctrm = freq1o.powspctrm(shufflechan,:); freq1r.crsspctrm = freq1o.crsspctrm(shufflechan,:); freq2o = ft_checkdata(freq1o); freq2r = ft_checkdata(freq1r); [selo, selr] = match_str(freq2o.label, freq2r.label); assert(isequal(freq2o.powspctrm(selo,:), freq2r.powspctrm(selr,:))); [selo, selr] = match_strcmb(freq2o.labelcmb, freq2r.labelcmb); assert(isequal(freq2o.crsspctrm(selo,:), freq2r.crsspctrm(selr,:))); freq2o = ft_checkdata(freq1o, 'cmbrepresentation', 'full'); freq2r = ft_checkdata(freq1r, 'cmbrepresentation', 'full'); [selo, selr] = match_str(freq2o.label, freq2r.label); assert(isequal(freq2o.crsspctrm(selo,selo), freq2r.crsspctrm(selr,selr))); % assert( isequal(freq1r.label,freq2r.label)); % this is where the channel reordering becomes clear % assert(~isequal(freq2o.label,freq2r.label)); % this is where the channel reordering becomes clear freq2o = ft_checkdata(freq1o, 'cmbrepresentation', 'fullfast'); freq2r = ft_checkdata(freq1r, 'cmbrepresentation', 'fullfast'); [selo, selr] = match_str(freq2o.label, freq2r.label); assert(isequal(freq2o.crsspctrm(selo,selo), freq2r.crsspctrm(selr,selr))); % this is where another problem appears %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [sel1, sel2] = match_strcmb(chancmb1, chancmb2) for i=1:size(chancmb1,1) chan1{i} = sprintf('%s_%s', chancmb1{i,:}); end for i=1:size(chancmb2,1) chan2{i} = sprintf('%s_%s', chancmb2{i,:}); end [sel1, sel2] = match_str(chan1, chan2);
github
lcnhappe/happe-master
test_tutorial_headmodel_meg.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_tutorial_headmodel_meg.m
1,927
utf_8
8075bf65196420c5b808e6585988c6ee
function test_tutorial_headmodel_meg(datadir) % MEM 2000mb % WALLTIME 00:45:00 % TEST test_tutorial_headmodel_meg % TEST ft_read_mri ft_volumesegment ft_prepare_headmodel ft_plot_vol % TEST ft_convert_units ft_read_sens ft_plot_sens % intial version by Lilla Magyari if nargin==0 datadir = '/home/common/matlab/fieldtrip/data/'; end mri = ft_read_mri([datadir,'ftp/tutorial/beamformer/Subject01.mri']); cfg = []; cfg.output = 'brain'; segmentedmri = ft_volumesegment(cfg, mri); % check if segmentation is equivalent with segmentation on the ftp site segmentedmri2 = load([datadir,'ftp/tutorial/headmodel_meg/segmentedmri']); segmentedmri=rmfield(segmentedmri,'cfg'); segmentedmri2=rmfield(segmentedmri2.segmentedmri,'cfg'); assert(isequal(segmentedmri2,segmentedmri),'The segmentation does not match the segmentation stored on the ftp site'); % cfg = []; cfg.method='singleshell'; vol = ft_prepare_headmodel(cfg, segmentedmri); % check if vol is equivalent with vol on the ftp site vol2 = load([datadir,'ftp/tutorial/headmodel_meg/vol']); vol2 = vol2.vol; % copy it over vol = tryrmfield(vol, 'cfg'); vol2 = tryrmfield(vol2,'cfg'); % it is presently (Dec 2013) a bit messy where the cfg and unit are being stored after ft_prepare_mesh vol = tryrmsubfield(vol, 'bnd.unit'); vol2 = tryrmsubfield(vol2, 'bnd.unit'); vol = tryrmsubfield(vol, 'bnd.cfg'); vol2 = tryrmsubfield(vol2, 'bnd.cfg'); vol = ft_convert_units(vol, 'mm'); vol2 = ft_convert_units(vol2,'mm'); assert(identical(vol,vol2,'abstol',0.0001),'The headmodel does not match the headmodel stored on the ftp site.'); % sens = ft_read_sens([datadir,'/Subject01.ds']); vol = ft_convert_units(vol,'cm'); figure ft_plot_sens(sens, 'style', '*b'); hold on ft_plot_vol(vol); function s = tryrmfield(s, f) if isfield(s, f) s = rmfield(s, f); end function s = tryrmsubfield(s, f) if issubfield(s, f) s = rmsubfield(s, f); end
github
lcnhappe/happe-master
test_ft_freqanalysis.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_ft_freqanalysis.m
8,404
utf_8
1befb77d0d1d1b8a05ebc8a98d591d04
function test_ft_freqanalysis(datainfo, writeflag, version) % MEM 8000mb % WALLTIME 01:30:00 % TEST test_ft_freqanalysis % TEST ft_freqanalysis ref_datasets % writeflag determines whether the output should be saved to disk % version determines the output directory if nargin<1 datainfo = ref_datasets; end if nargin<2 writeflag = 0; end if nargin<3 version = 'latest'; end for k = 1:numel(datainfo) datanew = freqanalysisMtmfft(datainfo(k), writeflag, version, 'fourier', 'yes'); fname = fullfile(datainfo(k).origdir,version,'freq',datainfo(k).type,['freq_mtmfft_fourier_trl_',datainfo(k).datatype]); load(fname); datanew = rmfield(datanew, 'cfg'); freq = rmfield(freq, 'cfg'); [ok,msg] = identical(freq, datanew, 'reltol', 1e-6); if ~ok, error('stored and computed data not identical: %s', msg{:}); end datanew = freqanalysisMtmfft(datainfo(k), writeflag, version, 'powandcsd', 'yes'); fname = fullfile(datainfo(k).origdir,version,'freq',datainfo(k).type,['freq_mtmfft_powandcsd_trl_',datainfo(k).datatype]); load(fname); datanew = rmfield(datanew, 'cfg'); freq = rmfield(freq, 'cfg'); [ok,msg] = identical(freq, datanew, 'reltol', 1e-6); if ~ok, error('stored and computed data not identical: %s', msg{:}); end datanew = freqanalysisMtmfft(datainfo(k), writeflag, version, 'pow', 'yes'); % fname = fullfile(datainfo(k).origdir,version,'freq',datainfo(k).type,['freq_mtmfft_pow_trl_',datainfo(k).datatype]); % load(fname); datanew = rmfield(datanew, 'cfg'); freq = rmfield(freq, 'cfg'); % [ok,msg] = identical(freq, datanew, 'reltol', 1e-6); % if ~ok, error('stored and computed data not identical: %s', msg{:}); end datanew = freqanalysisMtmfft(datainfo(k), writeflag, version, 'powandcsd', 'no'); fname = fullfile(datainfo(k).origdir,version,'freq',datainfo(k).type,['freq_mtmfft_powandcsd_',datainfo(k).datatype]); load(fname); datanew = rmfield(datanew, 'cfg'); freq = rmfield(freq, 'cfg'); [ok,msg] = identical(freq, datanew, 'reltol', 1e-6); if ~ok, error('stored and computed data not identical: %s', msg{:}); end datanew = freqanalysisMtmfft(datainfo(k), writeflag, version, 'pow', 'no'); fname = fullfile(datainfo(k).origdir,version,'freq',datainfo(k).type,['freq_mtmfft_',datainfo(k).datatype]); load(fname); datanew = rmfield(datanew, 'cfg'); % these are per construction different if writeflag = 0; freq = rmfield(freq, 'cfg'); [ok,msg] = identical(freq, datanew,'reltol',1e-6); if ~ok error('stored and computed data not identical: %s', msg{:}); end end for k = 1:numel(datainfo) datanew = freqanalysisMtmconvol(datainfo(k), writeflag, version, 'fourier', 'yes'); fname = fullfile(datainfo(k).origdir,version,'freq',datainfo(k).type,['freq_mtmconvol_fourier_trl_',datainfo(k).datatype]); load(fname); datanew = rmfield(datanew, 'cfg'); freq = rmfield(freq, 'cfg'); [ok,msg] = identical(freq, datanew, 'reltol', 1e-6); if ~ok, error('stored and computed data not identical: %s', msg{:}); end datanew = freqanalysisMtmconvol(datainfo(k), writeflag, version, 'powandcsd', 'yes'); fname = fullfile(datainfo(k).origdir,version,'freq',datainfo(k).type,['freq_mtmconvol_powandcsd_trl_',datainfo(k).datatype]); load(fname); datanew = rmfield(datanew, 'cfg'); freq = rmfield(freq, 'cfg'); [ok,msg] = identical(freq, datanew, 'reltol', 1e-6); if ~ok, error('stored and computed data not identical: %s', msg{:}); end datanew = freqanalysisMtmconvol(datainfo(k), writeflag, version, 'pow', 'yes'); datanew = freqanalysisMtmconvol(datainfo(k), writeflag, version, 'powandcsd', 'no'); fname = fullfile(datainfo(k).origdir,version,'freq',datainfo(k).type,['freq_mtmconvol_powandcsd_',datainfo(k).datatype]); load(fname); datanew = rmfield(datanew, 'cfg'); freq = rmfield(freq, 'cfg'); [ok,msg] = identical(freq, datanew, 'reltol', 1e-6); if ~ok, error('stored and computed data not identical: %s', msg{:}); end datanew = freqanalysisMtmconvol(datainfo(k), writeflag, version, 'pow', 'no'); fname = fullfile(datainfo(k).origdir,version,'freq',datainfo(k).type,['freq_mtmconvol_',datainfo(k).datatype]); load(fname); datanew = rmfield(datanew, 'cfg'); % these are per construction different if writeflag = 0; freq = rmfield(freq, 'cfg'); [ok,msg] = identical(freq, datanew,'reltol',eps*1e6); if ~ok error('stored and computed data not identical: %s', msg{:}); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [freq] = freqanalysisMtmconvol(dataset, writeflag, version, output, keeptrials) if isempty(output) output = 'pow'; % output = 'powandcsd'; % output = 'fourier'; end if isempty(keeptrials) output = 'no'; % output = 'yes'; end % the file names should distinguish between the cfg.output and cfg.keeptrials option postfix = ''; switch output case 'pow' % don't change case 'powandcsd' postfix = [postfix 'powandcsd_']; case 'fourier' postfix = [postfix 'fourier_']; otherwise error('unexpected output'); end % the file names should distinguish between the cfg.output and cfg.keeptrials option switch keeptrials case 'no' % don't change case 'yes' postfix = [postfix 'trl_']; otherwise error('unexpected keeptrials'); end % --- HISTORICAL --- attempt forward compatibility with function handles if ~exist('ft_freqanalysis') && exist('freqanalysis') eval('ft_freqanalysis = @freqanalysis;'); end fprintf('testing mtmconvol with datatype=%s, output=%s, keeptrials=%s...\n',... dataset.datatype, output, keeptrials); cfg = []; cfg.method = 'mtmconvol'; cfg.output = output; cfg.keeptrials = keeptrials; cfg.foi = 2:2:30; cfg.taper = 'hanning'; cfg.t_ftimwin = ones(1,numel(cfg.foi)).*0.5; cfg.toi = (250:50:750)./1000; cfg.polyremoval= 0; cfg.inputfile = fullfile(dataset.origdir,version,'raw',dataset.type,['preproc_',dataset.datatype]); if writeflag, cfg.outputfile = fullfile(dataset.origdir,version,'freq',dataset.type,['freq_mtmconvol_',postfix,dataset.datatype]); end if ~strcmp(version, 'latest') && str2num(version)<20100000 % -- HISTORICAL --- older FieldTrip versions don't support inputfile and outputfile load(cfg.inputfile, 'data'); freq = ft_freqanalysis(cfg, data); save(cfg.outputfile, 'freq'); else freq = ft_freqanalysis(cfg); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [freq] = freqanalysisMtmfft(dataset, writeflag, version, output, keeptrials) % --- HISTORICAL --- attempt forward compatibility with function handles if ~exist('ft_freqanalysis') && exist('freqanalysis') eval('ft_freqanalysis = @freqanalysis;'); end if isempty(output) output = 'pow'; % output = 'powandcsd'; % output = 'fourier'; end if isempty(keeptrials) keeptrials = 'no'; % keeptrials = 'yes'; end % the file names should distinguish between the cfg.output and cfg.keeptrials option postfix = ''; switch output case 'pow' % don't change case 'powandcsd' postfix = [postfix 'powandcsd_']; case 'fourier' postfix = [postfix 'fourier_']; otherwise error('unexpected output'); end % the file names should distinguish between the cfg.output and cfg.keeptrials option switch keeptrials case 'no' % don't change case 'yes' postfix = [postfix 'trl_']; otherwise error('unexpected keeptrials'); end fprintf('testing mtmfft with datatype=%s, output=%s, keeptrials=%s...\n',... dataset.datatype, output, keeptrials); cfg = []; cfg.method = 'mtmfft'; cfg.output = output; cfg.keeptrials = keeptrials; cfg.foilim = [0 100]; cfg.taper = 'hanning'; cfg.polyremoval= 0; cfg.inputfile = fullfile(dataset.origdir,version,'raw',dataset.type,['preproc_',dataset.datatype]); if writeflag, cfg.outputfile = fullfile(dataset.origdir,version,'freq',dataset.type,['freq_mtmfft_',postfix,dataset.datatype]); end if ~strcmp(version, 'latest') && str2num(version)<20100000 % -- HISTORICAL --- older FieldTrip versions don't support inputfile and outputfile load(cfg.inputfile, 'data'); freq = ft_freqanalysis(cfg, data); save(cfg.outputfile, 'freq'); else freq = ft_freqanalysis(cfg); end
github
lcnhappe/happe-master
test_warning_once.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_warning_once.m
1,458
utf_8
2b8f09a3ad31a7f8ae5279e661006211
function test_warning_once % MEM 1500mb % WALLTIME 00:10:00 ft_warning('-clear'); warning1 = 'hululu'; warning2 = 'aloah hey'; for i=1:2 [output] = evalc(['warning_caller(warning1, warning2)']); w1size = strfind(output, warning1); w2size = strfind(output, warning2); if numel(w1size)~=2 || numel(w2size)~=2 error('too few warnings thrown at iteration %d', i); end ft_warning('-clear'); end [output] = evalc(['warning_caller(warning1, warning2)']); w1size = strfind(output, warning1); w2size = strfind(output, warning2); if numel(w1size)~=2 || numel(w2size)~=2 error('too few warnings thrown at iteration %d', i); end % no clearing to verify whether these warnings stay! % check some ft_ functions, therefore get dummy data datainfo = ref_datasets; dataset = datainfo(1); load(fullfile(dataset.origdir,'latest','raw',dataset.type,['preproc_',dataset.datatype])); cfg = []; cfg.method = 'mtmconvol'; cfg.foi = 1:.01:2; cfg.taper = 'hanning'; cfg.t_ftimwin = ones(1,numel(cfg.foi)).*0.5; cfg.toi = (250:50:750)./1000; cfg.polyremoval= 0; % one warning should be thrown ft_freqanalysis(cfg, data); % again! ft_freqanalysis(cfg, data); end function warning_caller(warning1, warning2) for i=1:10 ft_warning(warning1); ft_warning('FieldTrip:TEST', warning2); end % these warnings should be thrown now !again! for i=1:10 ft_warning(warning1); ft_warning('FieldTrip:TEST', warning2); end end
github
lcnhappe/happe-master
test_ft_connectivity_powcorr_ortho.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_ft_connectivity_powcorr_ortho.m
985
utf_8
ab81c598019efd18451700831a55be59
function test_ft_connectivity_powcorr_ortho % MEM 1500mb % WALLTIME 00:10:00 % TEST: test_ft_connectivity_powcorr_ortho % TEST: ft_connectivity_powcorr_ortho mom1 = randn(1,100)+1i*randn(1,100); mom2 = randn(1,100)+1i*randn(1,100); c = ft_connectivity_powcorr_ortho([mom1;mom2], 'refindx', 1); c = c(2,:); [c1, c2] = hipp_testfunction(mom1, mom2); %assert(all(abs(c-[c1 c2])<10*eps)); assert(all(abs(c-(c1+c2)./2)<10*eps)); % subfunction that does the computation according to the paper % Nat Neuro 2012 Hipp et al. function [c1, c2] = hipp_testfunction(mom1, mom2) % normalise the amplitudes mom1n = mom1./abs(mom1); mom2n = mom2./abs(mom2); % rotate mom12 = mom1.*conj(mom2n); mom21 = mom2.*conj(mom1n); % take the projection along the imaginary axis mom12i = abs(imag(mom12)); mom21i = abs(imag(mom21)); % compute the correlation on the log transformed power values c1 = corr(log10(mom12i.^2'), log10(abs(mom2).^2')); c2 = corr(log10(mom21i.^2'), log10(abs(mom1).^2'));
github
lcnhappe/happe-master
test_ft_timelockanalysis.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_ft_timelockanalysis.m
2,917
utf_8
544f3d9ad6b049dc2e929a3fd9bf8ec1
function test_ft_timelockanalysis(datainfo, writeflag, version) % MEM 1500mb % WALLTIME 00:10:00 % TEST test_ft_timelockanalysis % ft_timelockanalysis ref_datasets % writeflag determines whether the output should be saved to disk % version determines the output directory if nargin<1 datainfo = ref_datasets; end if nargin<2 writeflag = 0; end if nargin<3 version = 'latest'; end for k = 1:numel(datainfo) datanew = timelockanalysis10trials(datainfo(k), writeflag, version, 'yes', 'yes'); datanew = timelockanalysis10trials(datainfo(k), writeflag, version, 'yes', 'no'); datanew = timelockanalysis10trials(datainfo(k), writeflag, version, 'no', 'yes'); datanew = timelockanalysis10trials(datainfo(k), writeflag, version, 'no', 'no'); % should be the latest fname = fullfile(datainfo(k).origdir,version,'timelock',datainfo(k).type,['timelock_',datainfo(k).datatype]); tmp = load(fname); if isfield(tmp, 'data') data = tmp.data; elseif isfield(tmp, 'datanew') data = tmp.datanew; else isfield(tmp, 'timelock') data = tmp.timelock; end datanew = removefields(datanew, 'cfg'); % these are per construction different if writeflag = 0; data = removefields(data, 'cfg'); [ok,msg] = identical(data, datanew,'reltol',eps*1e6); disp(['now you are in k=' num2str(k)]); if ~ok error('stored and computed data not identical: %s', msg{:}); end end function [timelock] = timelockanalysis10trials(dataset, writeflag, version, covariance, keeptrials) % --- HISTORICAL --- attempt forward compatibility with function handles if ~exist('ft_timelockanalysis') && exist('timelockanalysis') eval('ft_timelockanalysis = @timelockanalysis;'); end if isempty(covariance) covariance = 'no'; % covariance = 'yes'; end if isempty(keeptrials) keeptrials = 'no'; % keeptrials = 'yes'; end % the file names should distinguish between the cfg.covariance and cfg.keeptrials option postfix = ''; switch covariance case 'no' % don't change case 'yes' postfix = [postfix 'cov_']; otherwise error('unexpected keeptrials'); end % the file names should distinguish between the cfg.covariance and cfg.keeptrials option switch keeptrials case 'no' % don't change case 'yes' postfix = [postfix 'trl_']; otherwise error('unexpected keeptrials'); end cfg = []; cfg.keeptrials = keeptrials; cfg.covariance = covariance; cfg.inputfile = fullfile(dataset.origdir,version,'raw',dataset.type,['preproc_',dataset.datatype]); if writeflag cfg.outputfile = fullfile(dataset.origdir,version,'timelock',dataset.type,['timelock_',postfix,dataset.datatype]); end if ~strcmp(version, 'latest') && str2num(version)<20100000 % -- HISTORICAL --- older FieldTrip versions don't support inputfile and outputfile load(cfg.inputfile, 'data'); timelock = ft_timelockanalysis(cfg, data); save(cfg.outputfile, 'timelock'); else timelock = ft_timelockanalysis(cfg); end
github
lcnhappe/happe-master
test_ft_prepare_mesh.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_ft_prepare_mesh.m
6,496
utf_8
1509c54e1eea7cffc5bf32566f1d1a85
function test_ft_prepare_mesh % MEM 1500mb % WALLTIME 00:10:00 % test ft_prepare_mesh also used for constructing SIMBIO FEM head models % see also http://bugzilla.fcdonders.nl/show_bug.cgi?id=1815 % TEST test_ft_prepare_mesh % TEST ft_prepare_mesh ft_datatype_segmentation ft_plot_mesh %% segmentations example.dim = [30 29 31]; % slightly different numbers example.transform = eye(4); example.coordsys = 'ctf'; example.unit = 'mm'; example.seg = zeros(example.dim); % adjusting transformation matrix: center of the head-coordinates [0 0 0] should % be the center of volume % center of volume in voxel coordinates x = round(example.dim(1)/2); y = round(example.dim(2)/2); z = round(example.dim(3)/2); x = round(x); y = round(y); z = round(z); origin = [x y z]; example.transform(1:4,4) = [-origin(:); 1]; % head-coordinate [0 0 0] is in the center of % the volume (x y z in voxel-coordinates) % compute position for each voxel in voxelspace and in headspace [X, Y, Z] = ndgrid(1:example.dim(1), 1:example.dim(2), 1:example.dim(3)); voxelpos = [X(:) Y(:) Z(:)]; headpos = ft_warp_apply(example.transform, voxelpos); % create 5 spheres radius1 = 14; radius2 = 12; radius3 = 10; radius4 = 8; radius5 = 6; for i=1:size(headpos,1) % from small to large if norm(headpos(i,:))<radius5 example.seg(i) = 5; elseif norm(headpos(i,:))<radius4 example.seg(i) = 4; elseif norm(headpos(i,:))<radius3 example.seg(i) = 3; elseif norm(headpos(i,:))<radius2 example.seg(i) = 2; elseif norm(headpos(i,:))<radius1 example.seg(i) = 1; end end clear X Y Z headpos origin radius1 radius2 radius3 voxelpos x y z % indexed segmentation % 5 tissue-types seg5 = example; clear example; close all; figure; imagesc(seg5.seg(:,:,15)); % 3 tissue-types seg3 = seg5; seg3.seg(seg5.seg(:)==4)=3; seg3.seg(seg5.seg(:)==5)=3; figure; imagesc(seg3.seg(:,:,15)); % 1 tissue-types seg1 = seg3; seg1.seg(seg3.seg(:)==2)=1; seg1.seg(seg3.seg(:)==3)=1; figure; imagesc(seg1.seg(:,:,15)); % probablistic segmentations seg5p = ft_datatype_segmentation(seg5,'segmentationstyle','probabilistic'); seg3p = ft_datatype_segmentation(seg3,'segmentationstyle','probabilistic'); seg1p = ft_datatype_segmentation(seg1,'segmentationstyle','probabilistic'); %% mesh %%%%%%%%%%%%%%%%% %% default: triangulation cfg=[]; cfg.numvertices = 1000; meshA = ft_prepare_mesh(cfg,seg1p); meshB = ft_prepare_mesh(cfg,seg1); assert(isequalwithoutcfg(meshA,meshB),'error: 01'); assert(isfield(meshA,'pnt') && isfield(meshA,'tri') && isfield(meshA,'unit'), 'Missing field(s) in mesh structure'); assert((cfg.numvertices == size(meshA.pnt,1)) , 'Number of points is not equal to required'); cfg=[]; cfg.numvertices = 1000; meshA = ft_prepare_mesh(cfg,seg3p); meshB = ft_prepare_mesh(cfg,seg3); assert(isequalwithoutcfg(meshA,meshB),'error: 02'); assert(isfield(meshA(1),'pnt') && isfield(meshA(1),'tri') && isfield(meshA(1),'unit'), 'Missing field(s) in mesh structure'); assert((cfg.numvertices == size(meshA(1).pnt,1)) && (cfg.numvertices == size(meshA(2).pnt,1)) && (cfg.numvertices == size(meshA(3).pnt,1)), 'Number of points is not equal to required'); cfg=[]; cfg.numvertices = 1000; meshA = ft_prepare_mesh(cfg,seg5p); meshB = ft_prepare_mesh(cfg,seg5); assert(isequalwithoutcfg(meshA,meshB),'error: 03'); assert(isfield(meshA(1),'pnt') && isfield(meshA(1),'tri') && isfield(meshA(1),'unit'), 'Missing field(s) in mesh structure'); assert((cfg.numvertices == size(meshA(1).pnt,1)) && (cfg.numvertices == size(meshA(2).pnt,1)) && (cfg.numvertices == size(meshA(3).pnt,1)) && (cfg.numvertices == size(meshA(4).pnt,1)) && (cfg.numvertices == size(meshA(5).pnt,1)), 'Number of points is not equal to required'); figure; ft_plot_mesh(meshA,'facecolor','none'); %% method: hexahedral cfg=[]; cfg.method = 'hexahedral'; cfg.numvertices = 1000; meshA = ft_prepare_mesh(cfg,seg1p); meshB = ft_prepare_mesh(cfg,seg1); assert(isequalwithoutcfg(meshA,meshB),'error: 04'); assert(isfield(meshA,'pnt') && isfield(meshA,'hex') && isfield(meshA,'unit'), 'Missing field(s) in mesh structure'); cfg=[]; cfg.method = 'hexahedral'; cfg.numvertices = 1000; meshA = ft_prepare_mesh(cfg,seg3p); meshB = ft_prepare_mesh(cfg,seg3); meshA=rmfield(meshA,'tissuelabel'); meshB=rmfield(meshB,'tissuelabel'); assert(isequalwithoutcfg(meshA,meshB),'error: 05'); assert(isfield(meshA,'pnt') && isfield(meshA,'hex') && isfield(meshA,'unit'), 'Missing field(s) in mesh structure'); cfg=[]; cfg.method = 'hexahedral'; cfg.numvertices = 1000; meshA = ft_prepare_mesh(cfg,seg5p); meshB = ft_prepare_mesh(cfg,seg5); meshA=rmfield(meshA,'tissuelabel'); meshB=rmfield(meshB,'tissuelabel'); assert(isequalwithoutcfg(meshA,meshB),'error: 06'); assert(isfield(meshA,'pnt') && isfield(meshA,'hex') && isfield(meshA,'unit'), 'Missing field(s) in mesh structure'); figure; ft_plot_mesh(meshA,'surfaceonly','yes') %% tissue specified cfg=[]; cfg.tissue='tissue_1'; cfg.numvertices=3000; meshA=ft_prepare_mesh(cfg,seg3) meshB=ft_prepare_mesh(cfg,seg3p) assert(isequalwithoutcfg(meshA,meshB),'error: 07'); assert(isfield(meshA,'pnt') && isfield(meshA,'tri') && isfield(meshA,'unit'), 'Missing field(s) in mesh structure'); cfg.method='hexahedral'; meshA=ft_prepare_mesh(cfg,seg3) meshB=ft_prepare_mesh(cfg,seg3p) assert(isequalwithoutcfg(meshA,meshB),'error: 08'); assert(isfield(meshA,'pnt') && isfield(meshA,'hex') && isfield(meshA,'unit'), 'Missing field(s) in mesh structure'); assert(isequalwithoutcfg(meshA.tissuelabel, {'tissue_1'}), 'error:09'); cfg.tissue='tissue_2'; meshB=ft_prepare_mesh(cfg,seg3) assert(isequalwithoutcfg(meshB.tissuelabel, {'tissue_2'}), 'error:10'); meshA=rmfield(meshA,'tissuelabel'); meshB=rmfield(meshB,'tissuelabel'); assert(~(isequalwithoutcfg(meshA,meshB)),'error: 11'); cfg.tissue={'tissue_2' 'tissue_1'}; meshC=ft_prepare_mesh(cfg,seg3); assert(isequalwithoutcfg(meshC.tissuelabel, cfg.tissue), 'error:12'); meshC=rmfield(meshC,'tissuelabel'); assert(~(isequalwithoutcfg(meshA,meshC)),'error: 13'); assert(~(isequalwithoutcfg(meshB,meshC)),'error: 14'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function c = isequalwithoutcfg(a, b) if isfield(a, 'cfg') a = rmfield(a, 'cfg'); end if isfield(b, 'cfg') b = rmfield(b, 'cfg'); end c = isequal(a, b);
github
lcnhappe/happe-master
trialfun_affcog.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/trialfun_affcog.m
1,267
utf_8
559386a8dcd6b0a2b6966552240ca5f9
function [trl, event] = trialfun_affcog(cfg) %% the first part is common to all trial functions % read the header (needed for the samping rate) and the events hdr = ft_read_header(cfg.headerfile); event = ft_read_event(cfg.headerfile); %% from here on it becomes specific to the experiment and the data format % for the events of interest, find the sample numbers (these are integers) % for the events of interest, find the trigger values (these are strings in the case of BrainVision) EVsample = [event.sample]'; EVvalue = {event.value}'; % select the target stimuli Word = find(strcmp('S141', EVvalue)==1); % for each word find the condition for w = 1:length(Word) % code for the judgement task: 1 => Affective; 2 => Ontological; if strcmp('S131', EVvalue{Word(w)+1}) == 1 task(w,1) = 1; elseif strcmp('S132', EVvalue{Word(w)+1}) == 1 task(w,1) = 2; end end PreTrig = round(0.2 * hdr.Fs); PostTrig = round(1 * hdr.Fs); begsample = EVsample(Word) - PreTrig; endsample = EVsample(Word) + PostTrig; offset = -PreTrig*ones(size(endsample)); %% the last part is again common to all trial functions % return the trl matrix (required) and the event structure (optional) trl = [begsample endsample offset task]; end % function
github
lcnhappe/happe-master
test_bug1397.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_bug1397.m
3,150
utf_8
0a032e78d8becf9f7f3c7c25f069b8b3
function test_bug1397 % MEM 1500mb % WALLTIME 00:10:00 % TEST test_bug1397 % TEST ft_preprocessing ft_appenddata % the following code was obtained from http://www.fieldtriptoolbox.org/tutorial/coherence % on Wed Mar 28 15:36:40 CEST 2012 % find the interesting epochs of data cfg = []; % MODIFICATION, use trialfun handle and other path to the data cfg.trialfun = @trialfun_left; cfg.dataset = '/home/common/matlab/fieldtrip/data/SubjectCMC.ds'; cfg = ft_definetrial(cfg); % MODIFICATION, use only 10 trials cfg.trl = cfg.trl(1:10,:); % MODIFICATION, the following should not affect the problem % % % detect EOG artifacts in the MEG data % cfg.continuous = 'yes'; % cfg.artfctdef.eog.padding = 0; % cfg.artfctdef.eog.bpfilter = 'no'; % cfg.artfctdef.eog.detrend = 'yes'; % cfg.artfctdef.eog.hilbert = 'no'; % cfg.artfctdef.eog.rectify = 'yes'; % cfg.artfctdef.eog.cutoff = 2.5; % cfg.artfctdef.eog.interactive = 'no'; % cfg = ft_artifact_eog(cfg); % % % detect jump artifacts in the MEG data % cfg.artfctdef.jump.interactive = 'no'; % cfg.padding = 5; % cfg = ft_artifact_jump(cfg); % % % detect muscle artifacts in the MEG data % cfg.artfctdef.muscle.cutoff = 8; % cfg.artfctdef.muscle.interactive = 'no'; % cfg = ft_artifact_muscle(cfg); % % % reject the epochs that contain artifacts % cfg.artfctdef.reject = 'complete'; % cfg = ft_rejectartifact(cfg); % preprocess the MEG data cfg.demean = 'yes'; cfg.dftfilter = 'yes'; cfg.channel = {'MEG'}; cfg.continuous = 'yes'; meg = ft_preprocessing(cfg); cfg = []; cfg.dataset = meg.cfg.dataset; cfg.trl = meg.cfg.trl; cfg.continuous = 'yes'; cfg.demean = 'yes'; cfg.dftfilter = 'yes'; cfg.channel = {'EMGlft' 'EMGrgt'}; cfg.hpfilter = 'yes'; cfg.hpfreq = 10; cfg.rectify = 'yes'; emg = ft_preprocessing(cfg); % see http://bugzilla.fcdonders.nl/show_bug.cgi?id=1397 % the reported problem in fieldtrip-20120302 was % % ??? Error using ==> ft_appenddata at 266 % there is a difference in the time axes of the input data data = ft_appenddata([], meg, emg); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to avoid external dependencies of this test %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function trl = trialfun_left(cfg) % read in the triggers and create a trial-matrix % consisting of 1-second data segments, in which % left ECR-muscle is active. event = ft_read_event(cfg.dataset); trig = [event(find(strcmp('backpanel trigger', {event.type}))).value]; indx = [event(find(strcmp('backpanel trigger', {event.type}))).sample]; %left-condition sel = [find(trig==1028):find(trig==1029)]; trig = trig(sel); indx = indx(sel); trl = []; for j = 1:length(trig)-1 trg1 = trig(j); trg2 = trig(j+1); if trg1<=100 & trg2==2080, trlok = [[indx(j)+1:1200:indx(j+1)-1200]' [indx(j)+1200:1200:indx(j+1)]']; trlok(:,3) = [0:-1200:-1200*(size(trlok,1)-1)]'; trl = [trl; trlok]; end end
github
lcnhappe/happe-master
test_bug1618.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_bug1618.m
449
utf_8
76ec9df5e64a5bca83b6011dbde758b8
function test_suite = test_bug1618 % MEM 1500mb % WALLTIME 00:10:00 % TEST test_bug1618 % add xunit to path ft_hastoolbox('xunit',1); initTestSuite; % for xUnit function test_no_nan % TODO: load example data, test for absence of NAN. h = ft_read_header('data_bug1618/bug1618.dat'); h h.chanunit h.chantype X = ft_read_data('data_bug1618/bug1618.dat'); assert(~any(isnan(X(:))), 'NaN values are not expected for this dataset!');
github
lcnhappe/happe-master
test_ft_crossfrequencyanalysis.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_ft_crossfrequencyanalysis.m
6,513
utf_8
d38e768a1f5937af96f9a351237c54a5
function test_ft_crossfrequencyanalysis % MEM 2gb % WALLTIME 0:15:00 % TEST test_ft_crossfrequencyanalysis % TEST ft_crossfrequencyanalysis clear all; close all; %%%%%% generate simulation data %%%%%%%%%%%%% % channels N = 2; s = zeros(N,4000); for i = 1:N num = 45; % number of alpha cycles fs = 1000; % sampling frequency hf = 70; % gamma frequency shift ='lead'; timdiff = 10; % for directionality only a = 10; c = 6; % a(slope)/c(threshold) : Sigmoid function parameter sigmf(x, [a, c]) = 1./(1 + exp(-a*(x-c))) n1 = rand(1); % Gaussian white noise level n2 = rand(1); % pink noise level [sig,T] = inhibition(num,fs,shift,timdiff,hf,a,c,n1,n2); s(i,:) = sig(4,1:4000); end % trials M = 20; ftdata = zeros(M,N,4000); % M trials *N Channels*times for j = 1:M ftdata(j,:,:) = s+rand(N,4000); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % stored in FieldTrip fashion data = []; data.time = cell(1,M); data.trial = cell(1,M); for i =1:M data.time{1,i} = T(1:4000); data.trial{1,i} = squeeze(ftdata(i,:,:)); end data.fsample = 1000; data.label = cell(N,1); for j = 1:N data.label{j,1} = strcat('chan',num2str(j)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f1 = 4:1:20; % interest low frequency range of CFC f2 = 30:10:150; % interest high frequency range of CFC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % extract low frquency signal %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cfg = []; cfg.output = 'fourier'; cfg.channel = 'all'; cfg.method = 'mtmconvol'; cfg.taper = 'hanning'; cfg.foi = f1; cfg.t_ftimwin = ones(length(cfg.foi),1).*0.5; cfg.toi = 0.5:1/data.fsample:3.5; LFsig = ft_freqanalysis(cfg, data); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % extract high frquency evelope signal %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cfg = []; cfg.output = 'fourier'; cfg.channel = 'all'; cfg.method = 'mtmconvol'; cfg.taper = 'hanning'; cfg.foi = f2; cfg.t_ftimwin = 5./cfg.foi; cfg.toi = 0.5:1/data.fsample:3.5; HFsig = ft_freqanalysis(cfg, data); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % do the actual testing %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cfg = []; cfg.method = 'plv'; cfg.keeptrials = 'no'; CFC = ft_crossfrequencyanalysis(cfg,LFsig,HFsig); subplot(311) MI = squeeze(CFC.crsspctrm(1,:,:)); imagesc(f1, f2, MI'); % set(gca, 'Fontsize',20) axis xy; xlabel('Low frequency (Hz)'); ylabel('High frequency (Hz)'); title('Phase locking value') axis xy; colorbar cfg =[]; cfg.method ='mvl'; cfg.keeptrials = 'no'; CFC = ft_crossfrequencyanalysis(cfg,LFsig,HFsig); subplot(312) MI = squeeze(CFC.crsspctrm(1,:,:)); imagesc(f1, f2, MI'); % set(gca, 'Fontsize',20) axis xy; xlabel('Low frequency (Hz)'); ylabel('High frequency (Hz)'); title('mean vector length') axis xy; colorbar cfg =[]; cfg.method = 'mi'; cfg.keeptrials = 'no'; CFC = ft_crossfrequencyanalysis(cfg,LFsig,HFsig); subplot(313) MI = squeeze(CFC.crsspctrm(1,:,:)); imagesc(f1, f2, MI'); % set(gca, 'Fontsize',20) axis xy; xlabel('Low frequency (Hzrand(2,4000))'); ylabel('High frequency (Hz)'); title('Modulation index') axis xy; colorbar end % main function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [sigs, T2]=inhibition(num,fs,shift,timdiff,hf,a,c,n1,n2) % generate simulation data % input: % num: number of alpha cycles % fs: sampling frequency % hf: gamma frequency % shift: create directionality either alpha leads gamma or alpha lags gamma % timdiff: alpha and gamma time lag % a(slope)/c(threshold) : Sigmoid function parameter sigmf(x, [a, c]) = 1./(1 + exp(-a*(x-c))) % n1 : Gaussian white noise level % n2 : pinck noise level % output: % sigs: four signals {alpha0;alphas;gamma;mix} 4*T2 we are looking CFC at mix channel sigs(4,:) % T2 time series index % copyright @Haiteng Jiang dt = 1/fs; Time = 0.1 + 0.02.*randn(num,1); % alpha range cycle length 80-120 ms amps = 2 + 0.5.*randn(num,1); % fluctuated alpha amplitude alpha = []; alpha2 = []; % generate fluctuated amplitude alpha signal for i = 1:num T = Time(i); t = 0:dt:T-dt; N = length(t); sig = (1+sin(1/T* 2*pi*t+1.5*pi)); alpha2 = [alpha2 sig]; sig = amps(i)*sig; % fluctuated alpha amplitude alpha = [alpha sig]; end alpha = 6* alpha; % enhanced amplitude to be more real T1 = 0:dt:length(alpha)*dt-dt; T2 = 0:dt:(length(alpha)-timdiff)*dt-dt; % sigmoid threshold gamma gammas = (1-1./(1 + exp(-a*(alpha-c)))).*(sin(2*pi*hf*T1)+1); % shift to creat directionality not mean for CFC switch shift case {'lead'} % alpha leads gamma alphastemp = zeros(1,length(alpha)); for i = 1:length(alpha)-timdiff alphastemp(i) = alpha(i+timdiff); end alphas = alphastemp(1:end-timdiff); gamma = gammas(1:end-timdiff); case{'delay'} % alpha lags gamma alphastemp = zeros(1,length(alpha)); for i = timdiff+1:length(alpha) alphastemp(i) = alpha(i-timdiff); end alphas(1:length(T2))= alphastemp(timdiff+1:length(alpha)); gamma = gammas(timdiff+1:end); otherwise % no directionality alphas = alpha(1:end-timdiff); gamma = gammas(1:end-timdiff); end alpha0 = alpha2(1:length(T2)); mix = alphas+gamma+n1*randn([1,length(T2)])+n2*pinknoise(numel(T2)); % signal we analysis sigs = [alpha0;alphas;gamma;mix]; function x = pinknoise(Nx) % pink noise B = [0.049922035 -0.095993537 0.050612699 -0.004408786]; A = [1 -2.494956002 2.017265875 -0.522189400]; nT60 = round(log(1000)/(1-max(abs(roots(A))))); % T60 est. v = randn(1,Nx+nT60); % Gaussian white noise: N(0,1) x = filter(B,A,v); % Apply 1/F roll-off to PSD x = x(nT60+1:end); % Skip transient response end end
github
lcnhappe/happe-master
test_ft_selectdata.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_ft_selectdata.m
25,710
utf_8
8c3047968d7baeba558f3d6580c426e9
function test_ft_selectdata % MEM 1500mb % WALLTIME 00:10:00 % TEST test_ft_selectdata % TEST ft_selectdata ft_selectdata_old ft_selectdata_new ft_appendfreq timelock1 = []; timelock1.label = {'1' '2'}; timelock1.time = 1:5; timelock1.dimord = 'chan_time'; timelock1.avg = randn(2,5); cfg = []; cfg.channel = 1; timelock1a = ft_selectdata(cfg, timelock1); assert(isequal(size(timelock1a.avg), [1 5])); cfg = []; timelock2 = ft_appendtimelock(cfg, timelock1, timelock1, timelock1); cfg = []; cfg.channel = 1; timelock2a = ft_selectdata(cfg, timelock2); assert(isequal(size(timelock2a.trial), [3 1 5])); cfg = []; cfg.trials = [1 2]; timelock2b = ft_selectdata(cfg, timelock2); assert(isequal(size(timelock2b.trial), [2 2 5])); % The one that follows is a degenerate case. By selecting only one trial, % the output is not really trial-based any more, but still contains one trial. cfg = []; cfg.trials = 1; timelock2c = ft_selectdata(cfg, timelock2); assert(isequal(size(timelock2c.trial), [1 2 5])); % assert(isequal(size(timelock2c.trial), [2 5])); %------------------------------------- %generate data data = []; data.fsample = 1000; data.cfg = []; nsmp = 1000; nchan = 80; for k = 1:10 data.trial{k} = randn(nchan,nsmp); data.time{k} = ((1:nsmp)-1)./data.fsample; end % create grad-structure and add to data grad.pnt = randn(nchan,3); grad.ori = randn(nchan,3); grad.tra = eye(nchan); for k = 1:nchan grad.label{k,1} = ['chan',num2str(k,'%03d')]; end data.grad = ft_datatype_sens(grad); data.label = grad.label; data.trialinfo = (1:10)'; data = ft_checkdata(data, 'hassampleinfo', 'yes'); %% this part of the script tests the functionality of ft_selectdata with respect % to raw data. compare_outputs(data, 'channel', data.label([5 8 12 38])); % compare_outputs(data, 'channel', {}); % works neither with new nor old compare_outputs(data, 'channel', 'all'); compare_outputs(data, 'trials', [3 4 6 9]); compare_outputs(data, 'trials', []); compare_outputs(data, 'trials', 'all'); % FIXME also test latency %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% this part of the script tests the functionality of ft_selectdata with respect % to selecting the primary or a secondary dimord freq = []; freq.powspctrm = randn(3, 4, 5); freq.dimord = 'chan_freq_time'; freq.crsspctrm = randn(3, 3, 4, 5); freq.crsspctrmdimord = 'chan_chan_freq_time'; freq.label = {'1', '2', '3'}; freq.freq = 1:4; freq.time = 1:5; cfg = []; freqpow = ft_selectdata(cfg, freq) cfg = []; cfg.parameter = 'powspctrm'; freqpow = ft_selectdata(cfg, freq) cfg = []; cfg.parameter = 'crsspctrm'; freqcrs = ft_selectdata(cfg, freq) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% this part of the script tests the functionality of ft_selectdata with respect % to averaging over each dimension % rpt_chan_freq_time freq = []; freq.dimord = 'rpt_chan_freq_time'; freq.label = {'1', '2', '3'}; freq.freq = 1:4; freq.time = 1:5; freq.powspctrm = randn(2, 3, 4, 5); cfg = []; cfg.avgoverrpt = 'yes'; cfg.keeprptdim = 'yes'; freq_avgoverrpt = ft_selectdata(cfg, freq) cfg.keeprptdim = 'no'; freq_avgoverrpt = ft_selectdata(cfg, freq) cfg = []; cfg.avgoverchan = 'yes'; cfg.keepchandim = 'yes'; freq_avgoverchan = ft_selectdata(cfg, freq) cfg.keepchandim = 'no'; freq_avgoverchan = ft_selectdata(cfg, freq) cfg = []; cfg.avgoverfreq = 'yes'; cfg.keepfreqdim = 'yes'; freq_avgoverfreq = ft_selectdata(cfg, freq) cfg.keepfreqdim = 'no'; freq_avgoverfreq = ft_selectdata(cfg, freq) cfg = []; cfg.avgovertime = 'yes'; cfg.keeptimedim = 'yes'; freq_avgovertime = ft_selectdata(cfg, freq) cfg.keeptimedim = 'no'; freq_avgovertime = ft_selectdata(cfg, freq) cfg = []; cfg.avgoverrpt = 'yes'; cfg.avgoverchan = 'yes'; cfg.avgoverfreq = 'yes'; cfg.avgovertime = 'yes'; freq_avgoverall = ft_selectdata(cfg, freq) % rpt_chan_time timelock = []; timelock.dimord = 'rpt_chan_time'; timelock.label = {'1', '2', '3'}; timelock.time = 1:4; timelock.avg = randn(2, 3, 4); cfg = []; cfg.avgoverrpt = 'yes'; timelock_avgoverrpt = ft_selectdata(cfg, timelock) cfg = []; cfg.avgoverchan = 'yes'; timelock_avgoverchan = ft_selectdata(cfg, timelock) cfg = []; cfg.avgoverrpt = 'yes'; cfg.avgoverchan = 'yes'; cfg.avgovertime = 'yes'; timelock_avgoverall = ft_selectdata(cfg, timelock) % rpt_chan_time cfg = []; cfg.avgovertime = 'yes'; timelock_avgovertime = ft_selectdata(cfg, timelock) timelock = []; timelock.dimord = 'chan_time'; timelock.label = {'1', '2', '3'}; timelock.time = 1:4; timelock.avg = randn(3, 4); cfg = []; cfg.avgoverchan = 'yes'; timelock_avgoverchan = ft_selectdata(cfg, timelock) cfg = []; cfg.avgovertime = 'yes'; timelock_avgovertime = ft_selectdata(cfg, timelock) cfg = []; cfg.avgoverchan = 'yes'; cfg.avgovertime = 'yes'; timelock_avgoverall = ft_selectdata(cfg, timelock) source = []; source.dim = [10 11 12]; source.transform = eye(4); source.avg.pow = rand(10*11*12,1); source.inside = 1:660; source.outside = 661:1320; cfg = []; cfg.avgoverpos = 'yes'; output = ft_selectdata(cfg, source) assert(output.pos(1)==5.5); assert(output.pos(2)==6.0); assert(output.pos(3)==6.5); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% this part of the script tests the functionality of ft_selectdata with respect % to freqdata. it implements the (old) test_ft_selectdata_freqdata % do spectral analysis cfg = []; cfg.method = 'mtmfft'; cfg.output = 'fourier'; cfg.foilim = [2 100]; cfg.pad = 1; cfg.tapsmofrq = 3; freq = ft_freqanalysis(cfg, data); cfg.output = 'pow'; cfg.keeptrials = 'yes'; freqp = ft_freqanalysis(cfg, data); cfg.output = 'powandcsd'; cfg.channelcmb = ft_channelcombination([data.label(1) {'all'};data.label(2) {'all'}], data.label); freqc = ft_freqanalysis(cfg, data); cfg = []; cfg.method = 'mtmconvol'; cfg.foi = [20:20:100]; % there are 10 repetitions, so let's use 5 frequencies cfg.toi = [0.4 0.5 0.6]; cfg.t_ftimwin = ones(1,numel(cfg.foi)).*0.2; cfg.taper = 'hanning'; cfg.output = 'pow'; cfg.keeptrials = 'yes'; freqtf = ft_freqanalysis(cfg, data); %% select channels, compare ft_selectdata_old with ft_selectdata_new and % compare ft_selectdata_new with what would be expected % make a selection of channels [data_old, data_new] = compare_outputs(freq, 'channel', freq.label(5:10)); assert(isequal(data_old.fourierspctrm, freq.fourierspctrm(:,5:10,:))); assert(isequal(data_new.fourierspctrm, freq.fourierspctrm(:,5:10,:))); [data_old, data_new] = compare_outputs(freqp, 'channel', freq.label(5:10)); assert(isequal(data_old.powspctrm, freqp.powspctrm(:,5:10,:))); assert(isequal(data_new.powspctrm, freqp.powspctrm(:,5:10,:))); try [data_old, data_new] = compare_outputs(freqc, 'channel', freq.label(5:10)); assert(isequal(data_old.powspctrm, freqc.powspctrm(:,5:10,:))); assert(isequal(data_new.powspctrm, freqc.powspctrm(:,5:10,:))); catch fprintf('selecting channels with csd in input does not work'); end [data_old, data_new] = compare_outputs(freqtf, 'channel', freq.label(5:10)); assert(isequal(data_old.powspctrm, freqtf.powspctrm(:,5:10,:,:))); assert(isequal(data_new.powspctrm, freqtf.powspctrm(:,5:10,:,:))); % make a selection of all channels [data_old, data_new] = compare_outputs(freq, 'channel', 'all'); assert(isequal(data_old.fourierspctrm, freq.fourierspctrm)); assert(isequal(data_new.fourierspctrm, freq.fourierspctrm)); [data_old, data_new] = compare_outputs(freqp, 'channel', 'all'); assert(isequal(data_old.powspctrm, freqp.powspctrm)); assert(isequal(data_new.powspctrm, freqp.powspctrm)); try [data_old, data_new] = compare_outputs(freqc, 'channel', 'all'); assert(isequal(data_old.powspctrm, freqc.powspctrm)); assert(isequal(data_new.powspctrm, freqc.powspctrm)); catch fprintf('selecting channels with csd in input does not work'); end [data_old, data_new] = compare_outputs(freqtf, 'channel', 'all'); assert(isequal(data_old.powspctrm, freqtf.powspctrm)); assert(isequal(data_new.powspctrm, freqtf.powspctrm)); % make a selection of no channels [data_old, data_new] = compare_outputs(freq, 'channel', {}); assert(isequal(data_old.label,{})); assert(isequal(data_new.label,{})); [data_old, data_new] = compare_outputs(freqp, 'channel', {}); assert(isequal(data_old.label,{})); assert(isequal(data_new.label,{})); try [data_old, data_new] = compare_outputs(freqc, 'channel', {}); assert(isequal(data_old.label,{})); assert(isequal(data_new.label,{})); catch fprintf('selecting channels with csd in input does not work'); end [data_old, data_new] = compare_outputs(freqtf, 'channel', {}); assert(isequal(data_old.label,{})); assert(isequal(data_new.label,{})); %% select frequencies [data_old, data_new] = compare_outputs(freq, 'frequency', freq.freq([9 39])); assert(isequal(data_old.fourierspctrm, freq.fourierspctrm(:,:,9:39))); assert(isequal(data_new.fourierspctrm, freq.fourierspctrm(:,:,9:39))); [data_old, data_new] = compare_outputs(freqp, 'frequency', freqp.freq([9 39])); assert(isequal(data_old.powspctrm, freqp.powspctrm(:,:,9:39))); assert(isequal(data_new.powspctrm, freqp.powspctrm(:,:,9:39))); try [data_old, data_new] = compare_outputs(freqc, 'frequency', freqc.freq([9 39])); assert(isequal(data_old.powspctrm, freqp.powspctrm(:,5:10,:))); assert(isequal(data_new.powspctrm, freqp.powspctrm(:,5:10,:))); catch fprintf('selecting channels with csd in input does not work'); end [data_old, data_new] = compare_outputs(freqtf, 'frequency', freqtf.freq([1 4])); assert(isequal(data_old.powspctrm, freqtf.powspctrm(:,:,1:4,:))); assert(isequal(data_new.powspctrm, freqtf.powspctrm(:,:,1:4,:))); % make a selection of all channels [data_old, data_new] = compare_outputs(freq, 'frequency', 'all'); assert(isequal(data_old.fourierspctrm, freq.fourierspctrm)); assert(isequal(data_new.fourierspctrm, freq.fourierspctrm)); [data_old, data_new] = compare_outputs(freqp, 'frequency', 'all'); assert(isequal(data_old.powspctrm, freqp.powspctrm)); assert(isequal(data_new.powspctrm, freqp.powspctrm)); try [data_old, data_new] = compare_outputs(freqp, 'frequency', 'all'); assert(isequal(data_old.powspctrm, freqp.powspctrm)); assert(isequal(data_new.powspctrm, freqp.powspctrm)); catch fprintf('selecting channels with csd in input does not work'); end [data_old, data_new] = compare_outputs(freqtf, 'frequency', 'all'); assert(isequal(data_old.powspctrm, freqtf.powspctrm)); assert(isequal(data_new.powspctrm, freqtf.powspctrm)); % make a selection of no channels compare_outputs(freq, 'frequency', []); compare_outputs(freqp, 'frequency', []); try compare_outputs(freqp, 'frequency', []); catch fprintf('selecting channels with csd in input does not work'); end compare_outputs(freqtf, 'frequency', []); %% select time % subselection [data_old, data_new] = compare_outputs(freqtf, 'latency', [0.5 0.6]); assert(isequal(data_old.powspctrm, freqtf.powspctrm(:,:,:,[2 3]))); assert(isequal(data_new.powspctrm, freqtf.powspctrm(:,:,:,[2 3])));% compare_outputs(freqtf, 'latency', 'all'); % all compare_outputs(freqtf, 'latency', []); % nothing %% select trials % do a subselection compare_outputs(freq, 'trials', 3:5); compare_outputs(freqp, 'trials', 3:5); try compare_outputs(freqc, 'trials', 3:5); catch warning('assertion failed, because ft_selectdata_new cannot deal with crsspctrm in input yet'); end compare_outputs(freqtf, 'trials', 3:5); % do an empty selection compare_outputs(freq, 'trials', []); compare_outputs(freqp, 'trials', []); try compare_outputs(freqc, 'trials', []); catch warning('assertion failed, because ft_selectdata_new cannot deal with crsspctrm in input yet'); end compare_outputs(freqtf, 'trials', []); % select all compare_outputs(freq, 'trials', 'all'); compare_outputs(freqp, 'trials', 'all'); try compare_outputs(freqc, 'trials', 'all'); catch warning('assertion failed, because ft_selectdata_new cannot deal with crsspctrm in input yet'); end compare_outputs(freqtf, 'trials', 'all'); %% avgover channels % Old snippet: not needed anymore % fx4 = ft_selectdata(freq, 'avgoverchan', 'yes'); % fp4 = ft_selectdata(freqp, 'avgoverchan', 'yes'); % fc4 = ft_selectdata(freqc, 'avgoverchan', 'yes'); % ftf4 = ft_selectdata(freqtf, 'avgoverchan', 'yes'); % % % assessing label after averaging: see bug 2191 -> this seems OK % cfg = []; % cfg.avgoverchan = 'yes'; % fx42 = ft_selectdata(cfg,freq); % fp42 = ft_selectdata(cfg,freqp); % fc42 = ft_selectdata(cfg,freqc); % ftf42 = ft_selectdata(cfg,freqtf); % % if ~strcmp(fx4.label{:},fx42.label{:});error('mismatch on label field');end % if ~strcmp(fp4.label{:},fp42.label{:});error('mismatch on label field');end % if ~strcmp(fc4.label{:},fc42.label{:});error('mismatch on label field');end % if ~strcmp(ftf4.label{:},ftf42.label{:});error('mismatch on label field');end compare_outputs(freq, 'avgoverchan'); compare_outputs(freqp, 'avgoverchan'); % compare_outputs(freqc, 'avgoverchan'); % FIXME why is this commented out? compare_outputs(freqtf, 'avgoverchan'); %% avgover frequencies compare_outputs(freq, 'avgoverfreq'); compare_outputs(freqp, 'avgoverfreq'); % compare_outputs(freqc, 'avgoverfreq'); % FIXME why is this commented out? compare_outputs(freqtf, 'avgoverfreq'); %% avgover trials compare_outputs(freq, 'avgoverrpt'); compare_outputs(freqp, 'avgoverrpt'); % compare_outputs(freqc, 'avgoverrpt'); % FIXME why is this commented out? compare_outputs(freqtf, 'avgoverrpt'); %% leaveoneout % FIXME: to be looked into % % fx7 = ft_selectdata(freq, 'jackknife', 'yes'); % FAILS due to 'rpttap' % fp7 = ft_selectdata(freqp, 'jackknife', 'yes'); % fc7 = ft_selectdata(freqc, 'jackknife', 'yes'); % ftf7 = ft_selectdata(freqtf, 'jackknife', 'yes'); %% this part tests the functionality of ft_appendfreq whos clear freq* % make some dummy frequency structures freq1.label = {'1' '2'}; freq1.freq = 1:10; freq1.time = 1:5; freq1.dimord = 'chan_freq_time'; freq1.powspctrm = randn(2,10,5); freq1.cfg = []; cfg = []; cfg.parameter = 'powspctrm'; freq2 = ft_appendfreq(cfg, freq1, freq1); freq2 = rmfield(freq2, 'cfg'); freq2a = ft_selectdata(freq1, freq1, 'param', 'powspctrm'); % this should append the power spectrum assert(isequal(freq2, freq2a)); freq4a = ft_selectdata(freq2, freq2, 'param', 'powspctrm'); assert(isequal(size(freq4a.powspctrm), [4 2 10 5])); clear freq* freq3.label = {'1' '2'}; freq3.freq = 1:10; freq3.dimord = 'chan_freq'; freq3.powspctrm = randn(2,10); cfg = []; cfg.parameter = 'powspctrm'; freq4 = ft_appendfreq(cfg, freq3, freq3); freq4 = rmfield(freq4, 'cfg'); freq4a = ft_selectdata(freq3, freq3, 'param', 'powspctrm'); % this should append the power spectrum assert(isequal(freq4, freq4a)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% this part of the function tests the functionality of ft_selectdata with respect to timelock data % create timelocked data cfg = []; cfg.keeptrials = 'yes'; tlck = ft_timelockanalysis(cfg, data); cfg.covariance = 'yes'; tlckc = ft_timelockanalysis(cfg, data); cfg.keeptrials = 'no'; tlckcavg = ft_timelockanalysis(cfg, data); cfg.covariance = 'no'; tlckavg = ft_timelockanalysis(cfg, data); %% select trials compare_outputs(tlck, 'trials', [4 5 6]); compare_outputs(tlckc, 'trials', [4 5 6]); compare_outputs(tlck, 'trials', []); compare_outputs(tlckc, 'trials', []); compare_outputs(tlck, 'trials', 'all'); compare_outputs(tlckc, 'trials', 'all'); %% select latency compare_outputs(tlck, 'latency', [-0.1 0.1]); compare_outputs(tlckc, 'latency', [-0.1 0.1]); compare_outputs(tlckavg, 'latency', [-0.1 0.1]); compare_outputs(tlckcavg, 'latency', [-0.1 0.1]); compare_outputs(tlck, 'latency', []); compare_outputs(tlckc, 'latency', []); compare_outputs(tlckavg, 'latency', []); compare_outputs(tlckcavg, 'latency', []); compare_outputs(tlck, 'latency', 'all'); compare_outputs(tlckc, 'latency', 'all'); compare_outputs(tlckavg, 'latency', 'all'); compare_outputs(tlckcavg, 'latency', 'all'); %% select channels compare_outputs(tlck, 'channel', tlck.label(11:20)); compare_outputs(tlckc, 'channel', tlckc.label(11:20)); compare_outputs(tlckavg, 'channel', tlckavg.label(11:20)); % compare_outputs(tlckcavg, 'channel', tlckcavg.label(11:20));% the old and new implementation differ in the selection of channels in cov compare_outputs(tlck, 'channel', []); compare_outputs(tlckc, 'channel', []); compare_outputs(tlckavg, 'channel', []); % compare_outputs(tlckcavg, 'channel', []);% the old and new implementation differ in the selection of channels compare_outputs(tlck, 'channel', 'all'); compare_outputs(tlckc, 'channel', 'all'); compare_outputs(tlckavg, 'channel', 'all'); compare_outputs(tlckcavg, 'channel', 'all'); %% avgoverrpt compare_outputs(tlck, 'avgoverrpt'); compare_outputs(tlckc, 'avgoverrpt'); %% avgoverchan compare_outputs(tlck, 'avgoverchan'); compare_outputs(tlckc, 'avgoverchan'); compare_outputs(tlckavg, 'avgoverchan'); compare_outputs(tlckcavg, 'avgoverchan'); %% avgovertime compare_outputs(tlck, 'avgovertime'); % compare_outputs(tlckc, 'avgovertime'); % % FIXME why are the implementations inconsistent if both trials and cov are present? compare_outputs(tlckavg, 'avgovertime'); compare_outputs(tlckcavg, 'avgovertime'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% this part of the script tests the functionality of ft_selectdata with selections % that are made into multiple fields present in the data if false % this section does not yet work on 5 April 2014, so no point in testing freq = []; freq.powspctrm = randn(3, 4, 5); freq.dimord = 'chan_freq_time'; freq.crsspctrm = randn(3, 3, 4, 5); freq.crsspctrmdimord = 'chan_chan_freq_time'; freq.label = {'1', '2', '3'}; freq.freq = 1:4; freq.time = 1:5; cfg = []; cfg.channel = {'1', '2'}; cfg.foilim = [1 3]; output = ft_selectdata(cfg, freq); assert(isfield(output, 'powspctrm'), 'field missing'); assert(isfield(output, 'crsspctrm'), 'field missing'); assert(size(output.powspctrm, 1)==2, 'incorrect size'); % chan assert(size(output.powspctrm, 2)==3, 'incorrect size'); % freq assert(size(output.crsspctrm, 1)==2, 'incorrect size'); % chan assert(size(output.crsspctrm, 2)==2, 'incorrect size'); % chan assert(size(output.crsspctrm, 3)==3, 'incorrect size'); % freq end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION used for testing %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data_old, data_new] = compare_outputs(data, key, value) switch key case 'trials' keyold = 'rpt'; case 'frequency' keyold = 'foilim'; case 'latency' keyold = 'toilim'; otherwise keyold = key; end if nargin>2 % there has been a key and a value cfg = []; cfg.(key) = value; data_new = ft_selectdata(cfg, data); data_old = ft_selectdata(data, keyold, value); % don't include the cfg data_new = rmfield(data_new, 'cfg'); data_old = rmfield(data_old, 'cfg'); % don't include the cumtapcnt if present (ft_selectdata_old might be incorrect) if isfield(data_new, 'cumtapcnt'), data_new = rmfield(data_new, 'cumtapcnt'); end if isfield(data_old, 'cumtapcnt'), data_old = rmfield(data_old, 'cumtapcnt'); end if isfield(data_new, 'cov') && ~isfield(data_old, 'cov') % skip this comparison, because ft_selectdata_old could not deal with this correctly: this is not something to be asserted here data_new = rmfield(data_new, 'cov'); end if isfield(data, 'trial') && isfield(data_new, 'avg') && ~isfield(data_old, 'avg') % skip this comparison, because ft_selectdata_old could not deal with this correctly: this is not something to be asserted here data_new = rmfield(data_new, 'avg'); end if isfield(data, 'trial') && isfield(data_new, 'var') && ~isfield(data_old, 'var') % skip this comparison, because ft_selectdata_old could not deal with this correctly: this is not something to be asserted here data_new = rmfield(data_new, 'var'); end if isfield(data, 'trial') && isfield(data_new, 'dof') && ~isfield(data_old, 'dof') % skip this comparison, because ft_selectdata_old could not deal with this correctly: this is not something to be asserted here data_new = rmfield(data_new, 'dof'); end fn = {'trial', 'time', 'freq', 'trialinfo', 'sampleinfo'}; for i=1:length(fn) if isfield(data_old, fn{i}) && isfield(data_new, fn{i}) && numel(data_old.(fn{i}))==0 && numel(data_new.(fn{i}))==0 % this is needed because these two comparisons return false % isequal(zeros(0,0), zeros(1,0)) % isequal(cell(0,0), cell(1,0)) data_old.(fn{i}) = data_new.(fn{i}); end end if isfield(data_old, 'fsample') && ~isfield(data_new, 'fsample') data_old = rmfield(data_old, 'fsample'); end % ensure the empty fields to have the same 'size', i.e. % assert(isequal )) chokes on comparing [] with zeros(0,1) fnnew = fieldnames(data_new); for k = 1:numel(fnnew) if numel(data_new.(fnnew{k}))==0, if iscell(data_new.(fnnew{k})), data_new.(fnnew{k})={}; else data_new.(fnnew{k})=[]; end end end fnold = fieldnames(data_old); for k = 1:numel(fnold) if numel(data_old.(fnold{k}))==0, if iscell(data_old.(fnold{k})), data_old.(fnold{k})={}; else data_old.(fnold{k})=[]; end end end %if numel(data_old.label)==0, data_old.label = {}; end %if numel(data_new.label)==0, data_new.label = {}; end assert(isequal(data_old, data_new)); % check whether the output is the same as the input if ischar(value) && strcmp(value, 'all') dataorig = data; try, if isfield(dataorig, 'trial'), data = rmfield(dataorig, {'avg', 'var', 'dof'}); end ; end % only remove when trial try, if isfield(data, 'cov') && ~isfield(data_old, 'cov'), data = rmfield(data, 'cov'); end; end data = rmfield(data, 'cfg'); if isfield(data, 'cumtapcnt'), data = rmfield(data, 'cumtapcnt'); end assert(isequal(data, data_old)); data = dataorig; try, if isfield(dataorig, 'trial'), data = rmfield(dataorig, {'avg', 'var', 'dof'}); end ; end % only remove when trial try, if isfield(data, 'cov') && ~isfield(data_new, 'cov'), data = rmfield(data, 'cov'); end; end data = rmfield(data, 'cfg'); if isfield(data, 'cumtapcnt'), data = rmfield(data, 'cumtapcnt'); end assert(isequal(data, data_new)); end else % assume the avgoverXXX is tested cfg = []; cfg.(key) = 'yes'; data_new = ft_selectdata(cfg, data); data_old = ft_selectdata(data, keyold, 'yes'); % don't include the cfg data_new = rmfield(data_new, 'cfg'); data_old = rmfield(data_old, 'cfg'); if isfield(data_new, 'cov') && ~isfield(data_old, 'cov') % skip this comparison, because ft_selectdata_old could not deal with this correctly: this is not something to be asserted here data_new = rmfield(data_new, 'cov'); end if isfield(data, 'trial') && isfield(data_new, 'avg') && ~isfield(data_old, 'avg') % skip this comparison, because ft_selectdata_old could not deal with this correctly: this is not something to be asserted here data_new = rmfield(data_new, 'avg'); end if isfield(data, 'trial') && isfield(data_new, 'var') && ~isfield(data_old, 'var') % skip this comparison, because ft_selectdata_old could not deal with this correctly: this is not something to be asserted here data_new = rmfield(data_new, 'var'); end if isfield(data, 'trial') && isfield(data_new, 'dof') && ~isfield(data_old, 'dof') % skip this comparison, because ft_selectdata_old could not deal with this correctly: this is not something to be asserted here data_new = rmfield(data_new, 'dof'); end if strcmp(key, 'avgoverfreq') || strcmp(key, 'avgoverrpt') % apparently something may be wrong with the data_old.dimord % don't spend time on fixing this here data_old.dimord = data_new.dimord; % also, the cumtapcnt is inconsistent in ft_selectdata_old if isfield(data_old, 'cumtapcnt'), data_old = rmfield(data_old, 'cumtapcnt'); end if isfield(data_new, 'cumtapcnt'), data_new = rmfield(data_new, 'cumtapcnt'); end end if strcmp(key, 'avgoverrpt') % ft_selectdata_old does something inconsistent, don't bother to fix it if isfield(data_old, 'cumtapcnt'), data_old = rmfield(data_old, 'cumtapcnt'); end if isfield(data_old, 'cumsumcnt'), data_old = rmfield(data_old, 'cumsumcnt'); end if isfield(data_old, 'trialinfo'), data_old = rmfield(data_old, 'trialinfo'); end % ft_selectdata_new tries to keep the cov, but ft_selectdata doesn't, % don't bother to fix ft_selectdata_old if isfield(data_new, 'cov'), data_new = rmfield(data_new, 'cov'); end end if strcmp(key, 'avgoverchan') % ft_selectdata_old sometimes keeps the cov (without averaging), don't % bother to fix it if isfield(data_old, 'cov'), data_old = rmfield(data_old, 'cov'); end if isfield(data_old, 'cumtapcnt'), data_old = rmfield(data_old, 'cumtapcnt'); end if isfield(data_new, 'cumtapcnt'), data_new = rmfield(data_new, 'cumtapcnt'); end % ft_selectdata_new tries to keep the cov, but ft_selectdata doesn't, % don't bother to fix ft_selectdata_old if isfield(data_new, 'cov'), data_new = rmfield(data_new, 'cov'); end end assert(isequal(data_old, data_new)); end
github
lcnhappe/happe-master
test_ft_channelcombination.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_ft_channelcombination.m
7,145
utf_8
92126b1e575f43f578016080f381e561
function test_ft_channelcombination % MEM 1500mb % WALLTIME 00:10:00 % TEST test_ft_channelcombination % TEST ft_channelcombination % this function tests the new implementation of ft_channelcombination load(fullfile(dccnpath('/home/common/matlab/fieldtrip/data/test/latest/raw/meg'),'preproc_ctf151.mat')); label = data.label; clear data; x = ft_channelcombination({'all' 'all'}, label); y = ft_channelcombination_old({'all' 'all'}, label); assert(isequal(x,y)); x = ft_channelcombination({'MLT' 'all'}, label); y = ft_channelcombination_old({'MLT' 'all'}, label); assert(isequal(x,y)); x = ft_channelcombination({'MLT' 'MRC'}, label); y = ft_channelcombination_old({'MLT' 'MRC'}, label); assert(isequal(x,y)); x = ft_channelcombination({{'MLC12' 'MLC13'} {'MRO11' 'MRO12' 'MRO21'}}, label); y = ft_channelcombination_old({{'MLC12' 'MLC13'} {'MRO11' 'MRO12' 'MRO21'}}, label); assert(isequal(x,y)); % test the new functionality x = ft_channelcombination({'MLT' 'MRC'}, label, 0, 0); y = ft_channelcombination({'MLT' 'MRC'}, label, 0, 1); z = ft_channelcombination({'MLT' 'MRC'}, label, 0, 2); assert(isequal(x, y(:,[2 1]))); % the columns should be swapped assert(numel(z)==2*numel(x)); %%%%%%%%%% % Below is the old code function [collect] = ft_channelcombination_old(channelcmb, datachannel, includeauto) % FT_CHANNELCOMBINATION creates a cell-array with combinations of EEG/MEG % channels for subsequent cross-spectral-density and coherence analysis % % You should specify channel combinations as a two-column cell array, % cfg.channelcmb = { 'EMG' 'MLF31' % 'EMG' 'MLF32' % 'EMG' 'MLF33' }; % to compare EMG with these three sensors, or % cfg.channelcmb = { 'MEG' 'MEG' }; % to make all MEG combinations, or % cfg.channelcmb = { 'EMG' 'MEG' }; % to make all combinations between the EMG and all MEG channels. % % For each column, you can specify a mixture of real channel labels % and of special strings that will be replaced by the corresponding % channel labels. Channels that are not present in the raw datafile % are automatically removed from the channel list. % % Please note that the default behaviour is to exclude symetric % pairs and auto-combinations. % % See also FT_CHANNELSELECTION % Undocumented local options: optional third input argument includeauto, % specifies to include the auto-combinations % Copyright (C) 2003-2011, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_channelcombination.m 10449 2015-06-10 18:34:02Z roboos $ if nargin==2, includeauto = 0; end if ischar(channelcmb) && strcmp(channelcmb, 'all') % make all possible combinations of all channels channelcmb = {'all' 'all'}; end % it should have a selection of two channels or channelgroups in each row if size(channelcmb,1)==2 && size(channelcmb,2)~=2 warning('transposing channelcombination matrix'); channelcmb = channelcmb'; end % this will hold the output collect = {}; % allow for channelcmb to be a 1x2 cell-array containing cells if numel(channelcmb)==2 && iscell(channelcmb{1}) && iscell(channelcmb{2}) channelcmb{1} = ft_channelselection(channelcmb{1}, datachannel); channelcmb{2} = ft_channelselection(channelcmb{2}, datachannel); n1 = numel(channelcmb{1}); n2 = numel(channelcmb{2}); tmp = cell(n1*n2+n1+n2,2); for k = 1:n1 tmp((k-1)*n2+(1:n2), 1) = channelcmb{1}(k); tmp((k-1)*n2+(1:n2), 2) = channelcmb{2}; tmp(n2*k+(1:n1), 1) = channelcmb{1}; tmp(n2*k+(1:n1), 2) = channelcmb{1}; tmp(n2*k+n1+(1:n2), 1) = channelcmb{2}; tmp(n2*k+n1+(1:n2), 2) = channelcmb{2}; end collect = tmp; return; end if isempty(setdiff(channelcmb(:), datachannel)) % there is nothing to do, since there are no channelgroups with special names % each element of the input therefore already contains a proper channel name collect = channelcmb; if includeauto for ch=1:numel(datachannel) collect{end+1,1} = datachannel{ch}; collect{end, 2} = datachannel{ch}; end end else % a combination is made for each row of the input selection after % translating the channel group (such as 'all') to the proper channel names % and within each set, double occurences and autocombinations are removed for sel=1:size(channelcmb,1) % translate both columns and subsequently make all combinations channelcmb1 = ft_channelselection(channelcmb(sel,1), datachannel); channelcmb2 = ft_channelselection(channelcmb(sel,2), datachannel); % compute indices of channelcmb1 and channelcmb2 relative to datachannel [dum,indx,indx1]=intersect(channelcmb1,datachannel); [dum,indx,indx2]=intersect(channelcmb2,datachannel); % remove double occurrences of channels in either set of signals indx1 = unique(indx1); indx2 = unique(indx2); % create a matrix in which all possible combinations are set to one cmb = zeros(length(datachannel)); for ch1=1:length(indx1) for ch2=1:length(indx2) cmb(indx1(ch1),indx2(ch2))=1; end end % remove auto-combinations cmb = cmb & ~eye(size(cmb)); % remove double occurences cmb = cmb & ~tril(cmb, -1)'; [indx1,indx2] = find(cmb); % extend the previously allocated cell-array to also hold the new % channel combinations (this is done to prevent memory allocation and % copying in each iteration in the for-loop below) num = size(collect,1); % count the number of existing combinations dum = cell(num + length(indx1), 2); % allocate space for the existing+new combinations if num>0 dum(1:num,:) = collect(:,:); % copy the exisisting combinations into the new array end collect = dum; clear dum % convert to channel-names for ch=1:length(indx1) collect{num+ch,1}=datachannel{indx1(ch)}; collect{num+ch,2}=datachannel{indx2(ch)}; end end if includeauto cmb = eye(length(datachannel)); [indx1,indx2] = find(cmb); num = size(collect,1); dum = cell(num + length(indx1), 2); if num>0, dum(1:num,:) = collect(:,:); end collect = dum; clear dum % convert to channel-names for the auto-combinations for ch=1:length(indx1) collect{num+ch,1} = datachannel{indx1(ch)}; collect{num+ch,2} = datachannel{indx2(ch)}; end end end
github
lcnhappe/happe-master
test_ft_analysispipeline.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_ft_analysispipeline.m
2,685
utf_8
9466e08ec41682a2c6b7afc284babec1
function test_ft_analysispipeline % MEM 1500mb % WALLTIME 02:53:11 % TEST test_ft_analysispipeline % TEST ft_analysispipeline % the style of this test script is also used in test_ft_datatype and test_bug2185 global ft_default ft_default.trackusage = 'no'; % this calls ft_analysispipeline more than 6000 times, those should not all be tracked dirlist = { '/home/common/matlab/fieldtrip/data/test/latest' '/home/common/matlab/fieldtrip/data/test/20131231' '/home/common/matlab/fieldtrip/data/test/20130630' '/home/common/matlab/fieldtrip/data/test/20121231' '/home/common/matlab/fieldtrip/data/test/20120630' '/home/common/matlab/fieldtrip/data/test/20111231' '/home/common/matlab/fieldtrip/data/test/20110630' '/home/common/matlab/fieldtrip/data/test/20101231' '/home/common/matlab/fieldtrip/data/test/20100630' '/home/common/matlab/fieldtrip/data/test/20091231' '/home/common/matlab/fieldtrip/data/test/20090630' '/home/common/matlab/fieldtrip/data/test/20081231' '/home/common/matlab/fieldtrip/data/test/20080630' '/home/common/matlab/fieldtrip/data/test/20071231' '/home/common/matlab/fieldtrip/data/test/20070630' '/home/common/matlab/fieldtrip/data/test/20061231' '/home/common/matlab/fieldtrip/data/test/20060630' '/home/common/matlab/fieldtrip/data/test/20051231' '/home/common/matlab/fieldtrip/data/test/20050630' '/home/common/matlab/fieldtrip/data/test/20040623' '/home/common/matlab/fieldtrip/data/test/20031128' }; for j=1:length(dirlist) filelist = hcp_filelist(dirlist{j}); [dummy, dummy, x] = cellfun(@fileparts, filelist, 'uniformoutput', false); sel = strcmp(x, '.mat'); filelist = filelist(sel); clear p f x for i=1:length(filelist) % skip the large files d = dir(filelist{i}); if d.bytes>50000000 continue end try fprintf('processing data structure from %s\n', filelist{i}); var = loadvar(filelist{i}); disp(var) catch % some of the mat files are corrupt, this should not spoil the test disp(lasterr); continue end cfg = []; cfg.showcallinfo = 'no'; ft_analysispipeline(cfg, var); set(gcf, 'Name', shortname(filelist{i})); drawnow close all end % for filelist end % for dirlist end % main function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function str = shortname(str) len = 50; if length(str)>len begchar = length(str)-len+4; endchar = length(str); str = ['...' str(begchar:endchar)]; end end % function shortname
github
lcnhappe/happe-master
test_ft_componentanalysis.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_ft_componentanalysis.m
3,273
utf_8
b0c2b5a3a4fc97828c4305a836bde27c
function test_ft_componentanalysis(datainfo, writeflag, version) % MEM 2gb % WALLTIME 00:10:00 % TEST test_ft_componentanalysis % ft_componentanalysis ref_datasets % writeflag determines whether the output should be saved to disk % version determines the output directory if nargin<1 datainfo = ref_datasets; end if nargin<2 writeflag = 0; end if nargin<3 version = 'latest'; end for k = 1:numel(datainfo) datanew = componentanalysis(datainfo(k), writeflag, version); fname = fullfile(datainfo(k).origdir,version,'comp',datainfo(k).type,['comp_',datainfo(k).datatype]); tmp = load(fname); if isfield(tmp, 'comp') data = tmp.comp; end datanew = rmfield(datanew, 'cfg'); % these are per construction different if writeflag = 0; data = rmfield(data, 'cfg'); % if data is rank-deficient, the last columns of the mixing/unmixing % matrices are arbitrary, and should thus not be compared rankDiff = size(data.trial{1},1) - rank(data.trial{1}); if rankDiff == size(data.trial{1},1) % massive rank deficiency (i.e., identical data in all channels) % best to just not test the mixing matrices at all, just surrogate test % data data = rmfield(data, 'topo'); data = rmfield(data, 'unmixing'); datanew = rmfield(datanew, 'topo'); datanew = rmfield(datanew, 'unmixing'); elseif rankDiff > 0 data.topo(:,end-rankDiff:end) = 0; data.unmixing(end-rankDiff:end,:) = 0; datanew.topo(:,end-rankDiff:end) = 0; datanew.unmixing(end-rankDiff:end,:) = 0; end [ok,msg] = identical(data, datanew,'abstol',1e-7,'diffabs',1); disp(['now you are in k=' num2str(k)]); if ~ok disp(msg); error('there were differences between reference and new data, see above for details'); end end function [comp] = componentanalysis(dataset, writeflag, version) % --- HISTORICAL --- attempt forward compatibility with function handles if ~exist('ft_componentanalysis') && exist('componentanalysis') eval('ft_componentanalysis = @componentanalysis;'); end cfg = []; cfg.method = 'pca'; switch dataset.datatype case {'bti148' 'bti248' 'bti248grad' 'ctf151' 'ctf275' 'ctf64' 'itab153' 'neuromag122' 'neuromag306' 'yokogawa160'} cfg.channel = 'MEG'; otherwise cfg.channel = 'all'; end cfg.inputfile = fullfile(dataset.origdir,version,'raw',dataset.type,['preproc_',dataset.datatype]); outputfile = fullfile(dataset.origdir,version,'comp',dataset.type,['comp_',dataset.datatype]) if writeflag cfg.outputfile = outputfile; end if ~strcmp(version, 'latest') && str2double(version)<20100000 % -- HISTORICAL --- older FieldTrip versions don't support inputfile and outputfile try % use the previous random seed load(outputfile, 'comp'); if isfield(comp.cfg.callinfo, 'randomseed') cfg.randomseed = comp.cfg.callinfo.randomseed; end catch % use a new random seed end load(cfg.inputfile, 'data'); comp = ft_componentanalysis(cfg, data); save(cfg.outputfile, 'comp'); else try % use the previous random seed load(outputfile, 'comp'); if isfield(comp.cfg.callinfo, 'randomseed') cfg.randomseed = comp.cfg.callinfo.randomseed; end catch % use a new random seed end comp = ft_componentanalysis(cfg); end
github
lcnhappe/happe-master
test_prepare_freq_matrices.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_prepare_freq_matrices.m
15,003
utf_8
08bea5d768d5aeaaa4ad0938cac4ce3b
function test_prepare_freq_matrices % WALLTIME 00:10:00 % MEM 1000mb % TEST test_prepare_freq_matrices % TEST prepare_freq_matrices % TEST ft_sourceanalysis datadir = dccnpath('/home/common/matlab/fieldtrip/data/test/latest/freq/meg'); curdir = pwd; cd(dccnpath('/home/common/matlab/fieldtrip')); % fourier data, multiple trials load(fullfile(datadir,'freq_mtmfft_fourier_trl_ctf275.mat')); cfg = []; cfg.frequency = 5; cfg.channel = ft_channelselection('MEG',freq.label); [a1,a2,a3,a4] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); cfg.frequency = 5.4; [a1,a2,a3,a4,cfg1] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4,cfg2] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); cfg.frequency = 10; cfg.refchan = 'BR1'; [a1,a2,a3,a4,cfg1] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4,cfg2] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); assert(isequal(a2,b2)); assert(isequal(a3,b3)); cfg.frequency = 10.6; cfg.refchan = 'BR1'; [a1,a2,a3,a4,cfg1] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4,cfg2] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); assert(isequal(a2,b2)); assert(isequal(a3,b3)); % powandcsd data, multiple trials load(fullfile(datadir,'freq_mtmfft_powandcsd_trl_ctf275.mat')); cfg = []; cfg.frequency = 5; cfg.channel = ft_channelselection('MEG',freq.label); [a1,a2,a3,a4] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); cfg.frequency = 5.4; [a1,a2,a3,a4,cfg1] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4,cfg2] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); cfg.frequency = 10; cfg.refchan = 'BR1'; [a1,a2,a3,a4,cfg1] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4,cfg2] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); assert(isequal(a2,b2)); assert(isequal(a3,b3)); cfg.frequency = 10.6; cfg.refchan = 'BR1'; [a1,a2,a3,a4,cfg1] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4,cfg2] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); assert(isequal(a2,b2)); assert(isequal(a3,b3)); % powandcsd data, multiple trials and time load(fullfile(datadir,'freq_mtmconvol_powandcsd_trl_ctf275.mat')); cfg = []; cfg.frequency = 6; cfg.latency = 0.5; cfg.channel = ft_channelselection('MEG',freq.label); [a1,a2,a3,a4] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); cfg.frequency = 5.5; [a1,a2,a3,a4,cfg1] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4,cfg2] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); cfg.frequency = 6; cfg.latency = 0.54; [a1,a2,a3,a4,cfg1] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4,cfg2] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); cfg.frequency = 10; cfg.refchan = 'BR1'; [a1,a2,a3,a4,cfg1] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4,cfg2] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); assert(isequal(a2,b2)); assert(isequal(a3,b3)); cfg.frequency = 10.6; cfg.refchan = 'BR1'; [a1,a2,a3,a4,cfg1] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4,cfg2] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); assert(isequal(a2,b2)); assert(isequal(a3,b3)); % fourier data, multiple trials and time load(fullfile(datadir,'freq_mtmconvol_fourier_trl_ctf275.mat')); cfg = []; cfg.frequency = 6; cfg.latency = 0.5; cfg.channel = ft_channelselection('MEG',freq.label); [a1,a2,a3,a4] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); cfg.frequency = 5.5; [a1,a2,a3,a4,cfg1] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4,cfg2] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); cfg.frequency = 6; cfg.latency = 0.54; [a1,a2,a3,a4,cfg1] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4,cfg2] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); cfg.frequency = 10; cfg.refchan = 'BR1'; [a1,a2,a3,a4,cfg1] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4,cfg2] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); assert(isequal(a2,b2)); assert(isequal(a3,b3)); cfg.frequency = 10.6; cfg.refchan = 'BR1'; [a1,a2,a3,a4,cfg1] = prepare_freq_matrices(cfg, freq); [b1,b2,b3,b4,cfg2] = prepare_freq_matrices_old(cfg, freq); assert(isequal(a1,b1)); assert(isequal(a2,b2)); assert(isequal(a3,b3)); cd(curdir); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % BELOW IS THE OLD CODE function [Cf, Cr, Pr, Ntrials, cfg] = prepare_freq_matrices_old(cfg, freq) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION that converts a freq structure into Cf, Cr and Pr % this is used in sourecanalysis % % This function returns data matrices with a channel order that is consistent % with the original channel order in the data. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % set the defaults if ~isfield(cfg, 'dicsfix'), cfg.dicsfix = 'yes'; end if ~isfield(cfg, 'quickflag'), cfg.quickflag = 0; end if ~isfield(cfg, 'refchan'), cfg.refchan = []; end quickflag = cfg.quickflag==1; Cf = []; Cr = []; Pr = []; % select the latency of interest for time-frequency data if strcmp(freq.dimord, 'chan_freq_time') tbin = nearest(freq.time, cfg.latency); fprintf('selecting timeslice %d\n', tbin); freq.time = freq.time(tbin); % remove all other latencies from the data structure and reduce the number of dimensions if isfield(freq, 'powspctrm'), freq.powspctrm = squeeze(freq.powspctrm(:,:,tbin)); end; if isfield(freq, 'crsspctrm'), freq.crsspctrm = squeeze(freq.crsspctrm(:,:,tbin)); end; if isfield(freq, 'fourierspctrm'), freq.fourierspctrm = squeeze(freq.fourierspctrm(:,:,tbin)); end; freq.dimord = freq.dimord(1:(end-5)); % remove the '_time' part elseif strcmp(freq.dimord, 'rpt_chan_freq_time') || strcmp(freq.dimord, 'rpttap_chan_freq_time') tbin = nearest(freq.time, cfg.latency); fprintf('selecting timeslice %d\n', tbin); freq.time = freq.time(tbin); % remove all other latencies from the data structure and reduce the number of dimensions if isfield(freq, 'powspctrm'), freq.powspctrm = squeeze(freq.powspctrm(:,:,:,tbin)); end; if isfield(freq, 'crsspctrm'), freq.crsspctrm = squeeze(freq.crsspctrm(:,:,:,tbin)); end; if isfield(freq, 'fourierspctrm') freq.fourierspctrm = squeeze(freq.fourierspctrm(:,:,:,tbin)); end; freq.dimord = freq.dimord(1:(end-5)); % remove the '_time' part else tbin = []; end % the time-frequency latency has already been squeezed away (see above) if strcmp(freq.dimord, 'chan_freq') || strcmp(freq.dimord, 'chancmb_freq') || strcmp(freq.dimord, 'chan_chan_freq') || strcmp(freq.dimord, 'chan_chan_freq_time') Ntrials = 1; elseif strcmp(freq.dimord, 'rpt_chan_freq') || strcmp(freq.dimord, 'rpt_chancmb_freq') || strcmp(freq.dimord, 'rpt_chan_chan_freq') Ntrials = size(freq.cumtapcnt,1); elseif strcmp(freq.dimord, 'rpttap_chan_freq') || strcmp(freq.dimord, 'rpttap_chancmb_freq') || strcmp(freq.dimord, 'rpttap_chan_chan_freq') Ntrials = size(freq.cumtapcnt,1); elseif strcmp(freq.dimord, 'rpttap_chan_freq_time') || strcmp(freq.dimord, 'rpttap_chancmb_freq_time') || strcmp(freq.dimord, 'rpttap_chan_chan_freq_time') Ntrials = size(freq.cumtapcnt,1); else error('unrecognized dimord for frequency data'); end % find the frequency of interest fbin = nearest(freq.freq, cfg.frequency); if isfield(freq, 'powspctrm') && isfield(freq, 'crsspctrm') % use the power and cross spectrum and construct a square matrix % find the index of each sensor channel into powspctrm % keep the channel order of the cfg [dum, powspctrmindx] = match_str(cfg.channel, freq.label); Nchans = length(powspctrmindx); % find the index of each sensor channel combination into crsspctrm % keep the channel order of the cfg crsspctrmindx = zeros(Nchans); for sgncmblop=1:size(freq.labelcmb,1) ch1 = find(strcmp(cfg.channel, freq.labelcmb(sgncmblop,1))); ch2 = find(strcmp(cfg.channel, freq.labelcmb(sgncmblop,2))); if ~isempty(ch1) && ~isempty(ch2) % this square matrix contains the indices into the signal combinations crsspctrmindx(ch1,ch2) = sgncmblop; end end % this complex rearrangement of channel indices transforms the CSDs into a square matrix if strcmp(freq.dimord, 'chan_freq') || strcmp(freq.dimord, 'chancmb_freq') % FIXME this fails in case dimord=rpt_chan_freq and only 1 trial Cf = complex(nan(Nchans,Nchans)); % first use the complex conjugate for all reversed signal combinations Cf(find(crsspctrmindx)) = freq.crsspctrm(crsspctrmindx(find(crsspctrmindx)), fbin); Cf = ctranspose(Cf); % and then get get the csd for all signal combinations Cf(find(crsspctrmindx)) = freq.crsspctrm(crsspctrmindx(find(crsspctrmindx)), fbin); % put the power on the diagonal Cf(find(eye(Nchans))) = freq.powspctrm(powspctrmindx, fbin); else Cf = complex(nan(Ntrials,Nchans,Nchans)); tmp = complex(nan(Nchans,Nchans)); for trial=1:Ntrials % first use the complex conjugate for all signal combinations reversed tmp(find(crsspctrmindx)) = freq.crsspctrm(trial, crsspctrmindx(find(crsspctrmindx)), fbin); tmp = ctranspose(tmp); % and then get get the csd for all signal combinations tmp(find(crsspctrmindx)) = freq.crsspctrm(trial, crsspctrmindx(find(crsspctrmindx)), fbin); % put the power on the diagonal tmp(find(eye(Nchans))) = freq.powspctrm(trial, powspctrmindx, fbin); Cf(trial,:,:) = tmp; end end % do a sanity check on the cross-spectral-density matrix if any(isnan(Cf(:))) error('The cross-spectral-density matrix is not complete'); end if isfield(cfg, 'refchan') && ~isempty(cfg.refchan) % contruct the cross-spectral-density vector of the reference channel with all MEG channels tmpindx = match_str(freq.labelcmb(:,1), cfg.refchan); refindx = match_str(freq.labelcmb(tmpindx,2), cfg.channel); refindx = tmpindx(refindx); flipref = 0; if isempty(refindx) % first look in the second column, then in the first tmpindx = match_str(freq.labelcmb(:,2), cfg.refchan); refindx = match_str(freq.labelcmb(tmpindx,1), cfg.channel); refindx = tmpindx(refindx); flipref = 1; end if length(refindx)~=Nchans error('The cross-spectral-density with the reference channel is not complete'); end if Ntrials==1 Cr = freq.crsspctrm(refindx, fbin); else for trial=1:Ntrials Cr(trial,:) = freq.crsspctrm(trial, refindx, fbin); end end if flipref Cr = conj(Cr); end % obtain the power of the reference channel refindx = match_str(freq.label, cfg.refchan); if length(refindx)<1 error('The reference channel was not found in powspctrm'); elseif length(refindx)>1 error('Multiple occurences of the reference channel found in powspctrm'); end if Ntrials==1 Pr = freq.powspctrm(refindx, fbin); else for trial=1:Ntrials Pr(trial) = freq.powspctrm(trial, refindx, fbin); end Pr = Pr(:); % ensure that the first dimension contains the trials end end if strcmp(cfg.dicsfix, 'yes') Cr = conj(Cr); end elseif isfield(freq, 'crsspctrm') % this is from JMs version hastime = isfield(freq, 'time'); hasrefchan = ~isempty(cfg.refchan); % select time-frequency window of interest if hastime freq = ft_selectdata(freq, 'foilim', cfg.frequency, 'toilim', cfg.latency); fbin = 1; tbin = 1:numel(freq.time); else freq = ft_selectdata(freq, 'foilim', cfg.frequency); fbin = 1; end % convert to square csd matrix % think of incorporating 'quickflag' to speed up the % computation from fourierspectra when single trial % estimates are not required... freq = ft_checkdata(freq, 'cmbrepresentation', 'full'); [dum, sensindx] = match_str(cfg.channel, freq.label); powspctrmindx = sensindx; if isempty(strfind(freq.dimord, 'rpt')) Ntrials = 1; Cf = freq.crsspctrm(sensindx,sensindx,:,:); if hasrefchan, refindx = match_str(freq.label, cfg.refchan); Cr = freq.crsspctrm(sensindx,refindx,:,:); Pr = freq.crsspctrm(refindx,refindx,:,:); else Cr = []; Pr = []; end elseif ~isempty(strfind(freq.dimord, 'rpt')), Ntrials = length(freq.cumtapcnt); Cf = freq.crsspctrm(:,sensindx,sensindx,:,:); if hasrefchan, refindx = match_str(freq.label, cfg.refchan); Cr = freq.crsspctrm(:,sensindx,refindx,:,:); Pr = freq.crsspctrm(:,refindx,refindx,:,:); else Cr = []; Pr = []; end end else fprintf('computing cross-spectrum from fourier\n'); [dum, powspctrmindx] = match_str(cfg.channel, freq.label); % use the fourier spectrum to compute the complete cross spectrum matrix Nchans = length(powspctrmindx); if strcmp(freq.dimord, 'chan_freq') error('incompatible dimord for computing CSD matrix from fourier'); elseif strcmp(freq.dimord, 'rpt_chan_freq') error('incompatible dimord for computing CSD matrix from fourier'); elseif strcmp(freq.dimord, 'rpttap_chan_freq'), if quickflag, Ntrials = 1; end Cf = zeros(Ntrials,Nchans,Nchans); refindx = match_str(freq.label, cfg.refchan); if ~isempty(refindx) Cr = zeros(Ntrials,Nchans,1); Pr = zeros(Ntrials,1,1); end if quickflag, ntap = sum(freq.cumtapcnt); dat = transpose(freq.fourierspctrm(:, powspctrmindx, fbin)); Cf(1,:,:) = (dat * ctranspose(dat)) ./ ntap; if ~isempty(refindx) ref = transpose(freq.fourierspctrm(:, refindx, fbin)); Cr(1,:,1) = dat * ctranspose(ref) ./ ntap; Pr(1,1,1) = ref * ctranspose(ref) ./ ntap; end else freq.cumtapcnt = freq.cumtapcnt(:)'; for k=1:Ntrials tapbeg = 1 + sum([0 freq.cumtapcnt(1:(k-1))]); tapend = sum([0 freq.cumtapcnt(1:(k ))]); ntap = freq.cumtapcnt(k); dat = transpose(freq.fourierspctrm(tapbeg:tapend, powspctrmindx, fbin)); Cf(k,:,:) = (dat * ctranspose(dat)) ./ ntap; if ~isempty(refindx) ref = transpose(freq.fourierspctrm(tapbeg:tapend, refindx, fbin)); Cr(k,:,1) = dat * ctranspose(ref) ./ ntap; Pr(k,1,1) = ref * ctranspose(ref) ./ ntap; end end end else error('unsupported dimord for fourier cross-spectrum computation'); end end % update the configuration, so that the calling function exactly knows what was selected if ~isempty(tbin), % a single latency was selected in the freq structure cfg.latency = freq.time; else cfg.latency = []; end cfg.frequency = freq.freq(fbin); cfg.channel = freq.label(powspctrmindx);
github
lcnhappe/happe-master
test_ft_checkdata.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/test_ft_checkdata.m
7,907
utf_8
342cc383141a15f393ff7aedcbb493a4
function test_ft_checkdata % MEM 1500mb % WALLTIME 00:20:00 % TEST test_ft_checkdata % TEST ft_checkdata %% converting raw data to timelock data % make some raw data with unequal time-axis, excluding 0 data = []; data.label = {'1', '2'}; for m=[eps exp(1) pi 1:20] for n=.1:.1:m data.time{1} = -.5:(n/m):-.1; data.time{2} = -.5:(n/m):-.1; fsample = mean(diff(data.time{1})); if fsample <= 0 || isnan(fsample) continue; end for i=1:numel(data.time) data.trial{i} = rand(size(data.label, 2), size(data.time{i}, 2)); end tmp = ft_checkdata(data, 'datatype', 'timelock'); if (mean(diff(tmp.time)) - fsample > 12e-17) error('estimation of fsample does not match!') end end end for m=[eps exp(1) pi 1:20] for n=.1:.1:m data.time{1} = .1:(n/m):.5; data.time{2} = .1:(n/m):.5; fsample = mean(diff(data.time{1})); if fsample <= 0 || isnan(fsample) continue; end for i=1:numel(data.time) data.trial{i} = rand(size(data.label, 2), size(data.time{i}, 2)); end tmp = ft_checkdata(data, 'datatype', 'timelock'); if (mean(diff(tmp.time)) - fsample > 12e-17) error('estimation of fsample does not match!') end end end % make some raw data with strange time-axis data = []; data.label = {'1', '2'}; for m=[eps exp(1) pi 1:20] for n=.1:.1:m data.time{1} = [-(n.^2/m) -(n/m)]; data.time{2} = [-(n.^2/m) -(n/m)]; fsample = mean(diff(data.time{1})); if fsample <= 0 || isnan(fsample) continue; end for i=1:numel(data.time) data.trial{i} = rand(size(data.label, 2), size(data.time{i}, 2)); end tmp = ft_checkdata(data, 'datatype', 'timelock'); if (mean(diff(tmp.time)) - fsample > 12e-17) error('estimation of fsample does not match!') end end for n=eps^1.1:eps^1.1:eps data.time{1} = [-(n.^2/m) -(n/m)]; data.time{2} = [-(n.^2/m) -(n/m)]; fsample = mean(diff(data.time{1})); if fsample <= 0 || isnan(fsample) continue; end for i=1:numel(data.time) data.trial{i} = rand(size(data.label, 2), size(data.time{i}, 2)); end tmp = ft_checkdata(data, 'datatype', 'timelock'); if (mean(diff(tmp.time)) - fsample > 12e-17) error('estimation of fsample does not match!') end end end for m=[eps exp(1) pi 1:20] for n=eps:1:m data.time{1} = [-m -n]; data.time{2} = [-m -n]; fsample = mean(diff(data.time{1})); if fsample <= 0 || isnan(fsample) continue; end for i=1:numel(data.time) data.trial{i} = rand(size(data.label, 2), size(data.time{i}, 2)); end if (n==eps) try tmp = ft_checkdata(data, 'datatype', 'timelock'); if (mean(diff(tmp.time)) - fsample > 12e-17) warning('estimation of fsample does not match, but we''re near eps!') end catch warning('checkdata crashed, but we''re near eps!') end else tmp = ft_checkdata(data, 'datatype', 'timelock'); if (mean(diff(tmp.time)) - fsample > 12e-17) error('estimation of fsample does not match!') end end end for n=eps^1.1:eps^1.1:eps data.time{1} = [-(n.^2/m) -(n/m)]; data.time{2} = [-(n.^2/m) -(n/m)]; fsample = mean(diff(data.time{1})); if fsample <= 0 || isnan(fsample) continue; end for i=1:numel(data.time) data.trial{i} = rand(size(data.label, 2), size(data.time{i}, 2)); end tmp = ft_checkdata(data, 'datatype', 'timelock'); if (mean(diff(tmp.time)) - fsample > 12e-17) error('estimation of fsample does not match!') end end end % make some raw data with unequal time-axis, excluding 0 data = []; data.label = {'1', '2'}; data.time{1} = [-1.5 -1.28]; data.time{2} = [2.68 2.9]; for i=1:numel(data.time) data.trial{i} = rand(size(data.label, 2), size(data.time{i}, 2)); end tmp = ft_checkdata(data, 'datatype', 'timelock'); if sum(tmp.time-[-1.5:0.22:3]) > 12e-17 | numel(tmp.time) ~= 21 error('time axis is wrong'); end % make some raw data with unequal time-axis, including 0 implicitly data = []; data.label = {'1', '2'}; data.time{1} = [-2 -1]; data.time{2} = [3 4]; for i=1:numel(data.time) data.trial{i} = rand(size(data.label, 2), size(data.time{i}, 2)); end tmp = ft_checkdata(data, 'datatype', 'timelock'); if ~isequal(tmp.time, [-2:4]) error('time axis is wrong'); end % make some raw data with unequal time-axis, strictly < 0 % see bug 1477 data = []; data.label = {'1', '2'}; data.time{1} = [-5 -4]; data.time{2} = [-3 -2]; for i=1:numel(data.time) data.trial{i} = rand(size(data.label, 2), size(data.time{i}, 2)); end tmp = ft_checkdata(data, 'datatype', 'timelock'); if ~isequal(tmp.time, [-5:-2]) error('time axis is wrong'); end % make some raw data with unequal time-axis, strictly > 0 % related to bug 1477 data = []; data.label = {'1', '2'}; data.time{1} = [4 5]; data.time{2} = [2 3]; for i=1:numel(data.time) data.trial{i} = rand(size(data.label, 2), size(data.time{i}, 2)); end tmp = ft_checkdata(data, 'datatype', 'timelock'); if ~isequal(tmp.time, [2:5]) error('time axis is wrong'); end % make some raw data with unequal time-axis, including 0, with some jitter success = 0; attempts = 5; % this might not work if the RNG sucks while ~success try data = []; data.label = {'1', '2'}; data.time{1} = -.5:.25:1; data.time{2} = -.25:.25:.25; data.time{3} = .25:.25:1; data.time{4} = -.5:.25:-.25; for i=1:numel(data.time) data.time{i} = data.time{i} + (rand-0.5)/1000; data.trial{i} = rand(size(data.label, 2), size(data.time{i}, 2)); end tmp = ft_checkdata(data, 'datatype', 'timelock'); success = 1; end end %% converting raw data to timelock data % make some raw data with unequal time-axis, including 0 data = []; data.label = {'1', '2'}; data.time{1} = -.5:.25:1; data.time{2} = -.25:.25:.25; data.time{3} = .25:.25:1; data.time{4} = -.5:.25:-.25; for i=1:numel(data.time) data.trial{i} = rand(size(data.label, 2), size(data.time{i}, 2)); end tmp = ft_checkdata(data, 'datatype', 'timelock'); sanityCheck(tmp); %% shift time axis to be strictly positive for i=1:numel(data.time) data.time{i} = data.time{i} + 0.6; end tmp = ft_checkdata(data, 'datatype', 'timelock'); sanityCheck(tmp); %% shift time axis to be strictly negative for i=1:numel(data.time) data.time{i} = data.time{i} - .6 - 1.1; end tmp = ft_checkdata(data, 'datatype', 'timelock'); sanityCheck(tmp); %% make time-axis incredibly small data.time{1} = -.5:.25:1; data.time{2} = -.25:.25:.25; data.time{3} = .25:.25:1; data.time{4} = -.5:.25:-.25; for i=1:numel(data.time) data.time{i} = (data.time{i}) ./ (10^-12); end tmp = ft_checkdata(data, 'datatype', 'timelock'); sanityCheck(tmp); %% make time-axis awesomly huge data.time{1} = -.5:.25:1; data.time{2} = -.25:.25:.25; data.time{3} = .25:.25:1; data.time{4} = -.5:.25:-.25; for i=1:numel(data.time) data.time{i} = data.time{i} .* (10^12); end tmp = ft_checkdata(data, 'datatype', 'timelock'); sanityCheck(tmp); end function sanityCheck(tmp) % sanity checks if ~isequal(size(tmp.sampleinfo), [4,2]) error('sampleinfo is wrong'); end if ~isequal(tmp.time, [-.5:.25:1]) && ... ~isequal(tmp.time, [-.5:.25:1]+ 0.6) && ... ~isequal(tmp.time, [-.5:.25:1]- 1.1) && ... ~isequal(tmp.time, [-.5:.25:1]./ 10^-12) && ... ~isequal(tmp.time, [-.5:.25:1].* 10^-12) error('time axis is wrong'); end % check individual trials % note that we handle two channels here if any(isnan(tmp.trial(1, :))) ... || any(isnan(tmp.trial(2, 3:8))) || any(~isnan(tmp.trial(2, [1 2 9:14]))) ... || any(isnan(tmp.trial(3, 7:14))) || any(~isnan(tmp.trial(3, [1:6]))) ... || any(isnan(tmp.trial(4, 1:4))) || any(~isnan(tmp.trial(4, [5:14]))) error('nans are misplaced in .trial'); end end
github
lcnhappe/happe-master
getdimord.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/private/getdimord.m
20,107
utf_8
706f4f45a5d4ae7535c204b8c010f76b
function dimord = getdimord(data, field, varargin) % GETDIMORD % % Use as % dimord = getdimord(data, field) % % See also GETDIMSIZ, GETDATFIELD if ~isfield(data, field) && isfield(data, 'avg') && isfield(data.avg, field) field = ['avg.' field]; elseif ~isfield(data, field) && isfield(data, 'trial') && isfield(data.trial, field) field = ['trial.' field]; elseif ~isfield(data, field) error('field "%s" not present in data', field); end if strncmp(field, 'avg.', 4) prefix = ''; field = field(5:end); % strip the avg data.(field) = data.avg.(field); % copy the avg into the main structure data = rmfield(data, 'avg'); elseif strncmp(field, 'trial.', 6) prefix = '(rpt)_'; field = field(7:end); % strip the trial data.(field) = data.trial(1).(field); % copy the first trial into the main structure data = rmfield(data, 'trial'); else prefix = ''; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ATTEMPT 1: the specific dimord is simply present %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isfield(data, [field 'dimord']) dimord = data.([field 'dimord']); return end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if not present, we need some additional information about the data strucure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % nan means that the value is not known and might remain unknown % inf means that the value is not known but should be known ntime = inf; nfreq = inf; nchan = inf; nchancmb = inf; nsubj = nan; nrpt = nan; nrpttap = nan; npos = inf; nori = nan; % this will be 3 in many cases ntopochan = inf; nspike = inf; % this is only for the first spike channel nlag = nan; ndim1 = nan; ndim2 = nan; ndim3 = nan; % use an anonymous function assign = @(var, val) assignin('caller', var, val); % it is possible to pass additional ATTEMPTs such as nrpt, nrpttap, etc for i=1:2:length(varargin) assign(varargin{i}, varargin{i+1}); end % try to determine the size of each possible dimension in the data if isfield(data, 'label') nchan = length(data.label); end if isfield(data, 'labelcmb') nchancmb = size(data.labelcmb, 1); end if isfield(data, 'time') if iscell(data.time) && ~isempty(data.time) tmp = getdimsiz(data, 'time'); ntime = tmp(3); % raw data may contain variable length trials else ntime = length(data.time); end end if isfield(data, 'freq') nfreq = length(data.freq); end if isfield(data, 'trial') && ft_datatype(data, 'raw') nrpt = length(data.trial); end if isfield(data, 'trialtime') && ft_datatype(data, 'spike') nrpt = size(data.trialtime,1); end if isfield(data, 'cumtapcnt') nrpt = size(data.cumtapcnt,1); if numel(data.cumtapcnt)==length(data.cumtapcnt) % it is a vector, hence it only represents repetitions nrpttap = sum(data.cumtapcnt); else % it is a matrix, hence it is repetitions by frequencies % this happens after mtmconvol with keeptrials nrpttap = sum(data.cumtapcnt,2); if any(nrpttap~=nrpttap(1)) warning('unexpected variation of the number of tapers over trials') nrpttap = nan; else nrpttap = nrpttap(1); end end end if isfield(data, 'pos') npos = size(data.pos,1); elseif isfield(data, 'dim') npos = prod(data.dim); end if isfield(data, 'dim') ndim1 = data.dim(1); ndim2 = data.dim(2); ndim3 = data.dim(3); end if isfield(data, 'csdlabel') % this is used in PCC beamformers if length(data.csdlabel)==npos % each position has its own labels len = cellfun(@numel, data.csdlabel); len = len(len~=0); if all(len==len(1)) % they all have the same length nori = len(1); end else % one list of labels for all positions nori = length(data.csdlabel); end elseif isfinite(npos) % assume that there are three dipole orientations per source nori = 3; end if isfield(data, 'topolabel') % this is used in ICA and PCA decompositions ntopochan = length(data.topolabel); end if isfield(data, 'timestamp') && iscell(data.timestamp) nspike = length(data.timestamp{1}); % spike data: only for the first channel end if ft_datatype(data, 'mvar') && isfield(data, 'coeffs') nlag = size(data.coeffs,3); end % determine the size of the actual data datsiz = getdimsiz(data, field); tok = {'subj' 'rpt' 'rpttap' 'chan' 'chancmb' 'freq' 'time' 'pos' 'ori' 'topochan' 'lag' 'dim1' 'dim2' 'dim3'}; siz = [nsubj nrpt nrpttap nchan nchancmb nfreq ntime npos nori ntopochan nlag ndim1 ndim2 ndim3]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ATTEMPT 2: a general dimord is present and might apply %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isfield(data, 'dimord') dimtok = tokenize(data.dimord, '_'); if length(dimtok)>length(datsiz) && check_trailingdimsunitlength(data, dimtok((length(datsiz)+1):end)) % add the trailing singleton dimensions to datsiz, if needed datsiz = [datsiz ones(1,max(0,length(dimtok)-length(datsiz)))]; end if length(dimtok)==length(datsiz) || (length(dimtok)==(length(datsiz)-1) && datsiz(end)==1) success = false(size(dimtok)); for i=1:length(dimtok) sel = strcmp(tok, dimtok{i}); if any(sel) && datsiz(i)==siz(sel) success(i) = true; elseif strcmp(dimtok{i}, 'subj') % the number of subjects cannot be determined, and will be indicated as nan success(i) = true; elseif strcmp(dimtok{i}, 'rpt') % the number of trials is hard to determine, and might be indicated as nan success(i) = true; end end % for if all(success) dimord = data.dimord; return end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ATTEMPT 3: look at the size of some common fields that are known %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch field % the logic for this code is to first check whether the size of a field % has an exact match to a potential dimensionality, if not, check for a % partial match (ignoring nans) % note that the case for a cell dimension (typically pos) is handled at % the end of this section case {'pos'} if isequalwithoutnans(datsiz, [npos 3]) dimord = 'pos_unknown'; end case {'individual'} if isequalwithoutnans(datsiz, [nsubj nchan ntime]) dimord = 'subj_chan_time'; end case {'avg' 'var' 'dof'} if isequal(datsiz, [nrpt nchan ntime]) dimord = 'rpt_chan_time'; elseif isequal(datsiz, [nchan ntime]) dimord = 'chan_time'; elseif isequalwithoutnans(datsiz, [nrpt nchan ntime]) dimord = 'rpt_chan_time'; elseif isequalwithoutnans(datsiz, [nchan ntime]) dimord = 'chan_time'; end case {'powspctrm' 'fourierspctrm'} if isequal(datsiz, [nrpt nchan nfreq ntime]) dimord = 'rpt_chan_freq_time'; elseif isequal(datsiz, [nrpt nchan nfreq]) dimord = 'rpt_chan_freq'; elseif isequal(datsiz, [nchan nfreq ntime]) dimord = 'chan_freq_time'; elseif isequal(datsiz, [nchan nfreq]) dimord = 'chan_freq'; elseif isequalwithoutnans(datsiz, [nrpt nchan nfreq ntime]) dimord = 'rpt_chan_freq_time'; elseif isequalwithoutnans(datsiz, [nrpt nchan nfreq]) dimord = 'rpt_chan_freq'; elseif isequalwithoutnans(datsiz, [nchan nfreq ntime]) dimord = 'chan_freq_time'; elseif isequalwithoutnans(datsiz, [nchan nfreq]) dimord = 'chan_freq'; end case {'crsspctrm' 'cohspctrm'} if isequal(datsiz, [nrpt nchancmb nfreq ntime]) dimord = 'rpt_chancmb_freq_time'; elseif isequal(datsiz, [nrpt nchancmb nfreq]) dimord = 'rpt_chancmb_freq'; elseif isequal(datsiz, [nchancmb nfreq ntime]) dimord = 'chancmb_freq_time'; elseif isequal(datsiz, [nchancmb nfreq]) dimord = 'chancmb_freq'; elseif isequal(datsiz, [nrpt nchan nchan nfreq ntime]) dimord = 'rpt_chan_chan_freq_time'; elseif isequal(datsiz, [nrpt nchan nchan nfreq]) dimord = 'rpt_chan_chan_freq'; elseif isequal(datsiz, [nchan nchan nfreq ntime]) dimord = 'chan_chan_freq_time'; elseif isequal(datsiz, [nchan nchan nfreq]) dimord = 'chan_chan_freq'; elseif isequal(datsiz, [npos nori]) dimord = 'pos_ori'; elseif isequal(datsiz, [npos 1]) dimord = 'pos'; elseif isequalwithoutnans(datsiz, [nrpt nchancmb nfreq ntime]) dimord = 'rpt_chancmb_freq_time'; elseif isequalwithoutnans(datsiz, [nrpt nchancmb nfreq]) dimord = 'rpt_chancmb_freq'; elseif isequalwithoutnans(datsiz, [nchancmb nfreq ntime]) dimord = 'chancmb_freq_time'; elseif isequalwithoutnans(datsiz, [nchancmb nfreq]) dimord = 'chancmb_freq'; elseif isequalwithoutnans(datsiz, [nrpt nchan nchan nfreq ntime]) dimord = 'rpt_chan_chan_freq_time'; elseif isequalwithoutnans(datsiz, [nrpt nchan nchan nfreq]) dimord = 'rpt_chan_chan_freq'; elseif isequalwithoutnans(datsiz, [nchan nchan nfreq ntime]) dimord = 'chan_chan_freq_time'; elseif isequalwithoutnans(datsiz, [nchan nchan nfreq]) dimord = 'chan_chan_freq'; elseif isequalwithoutnans(datsiz, [npos nori]) dimord = 'pos_ori'; elseif isequalwithoutnans(datsiz, [npos 1]) dimord = 'pos'; end case {'cov' 'coh' 'csd' 'noisecov' 'noisecsd'} % these occur in timelock and in source structures if isequal(datsiz, [nrpt nchan nchan]) dimord = 'rpt_chan_chan'; elseif isequal(datsiz, [nchan nchan]) dimord = 'chan_chan'; elseif isequal(datsiz, [npos nori nori]) dimord = 'pos_ori_ori'; elseif isequal(datsiz, [npos nrpt nori nori]) dimord = 'pos_rpt_ori_ori'; elseif isequalwithoutnans(datsiz, [nrpt nchan nchan]) dimord = 'rpt_chan_chan'; elseif isequalwithoutnans(datsiz, [nchan nchan]) dimord = 'chan_chan'; elseif isequalwithoutnans(datsiz, [npos nori nori]) dimord = 'pos_ori_ori'; elseif isequalwithoutnans(datsiz, [npos nrpt nori nori]) dimord = 'pos_rpt_ori_ori'; end case {'tf'} if isequal(datsiz, [npos nfreq ntime]) dimord = 'pos_freq_time'; end case {'pow'} if isequal(datsiz, [npos ntime]) dimord = 'pos_time'; elseif isequal(datsiz, [npos nfreq]) dimord = 'pos_freq'; elseif isequal(datsiz, [npos nrpt]) dimord = 'pos_rpt'; elseif isequal(datsiz, [nrpt npos ntime]) dimord = 'rpt_pos_time'; elseif isequal(datsiz, [nrpt npos nfreq]) dimord = 'rpt_pos_freq'; elseif isequal(datsiz, [npos 1]) % in case there are no repetitions dimord = 'pos'; elseif isequalwithoutnans(datsiz, [npos ntime]) dimord = 'pos_time'; elseif isequalwithoutnans(datsiz, [npos nfreq]) dimord = 'pos_freq'; elseif isequalwithoutnans(datsiz, [npos nrpt]) dimord = 'pos_rpt'; elseif isequalwithoutnans(datsiz, [nrpt npos ntime]) dimord = 'rpt_pos_time'; elseif isequalwithoutnans(datsiz, [nrpt npos nfreq]) dimord = 'rpt_pos_freq'; end case {'mom','itc','aa','stat','pval','statitc','pitc'} if isequal(datsiz, [npos nori nrpt]) dimord = 'pos_ori_rpt'; elseif isequal(datsiz, [npos nori ntime]) dimord = 'pos_ori_time'; elseif isequal(datsiz, [npos nori nfreq]) dimord = 'pos_ori_nfreq'; elseif isequal(datsiz, [npos ntime]) dimord = 'pos_time'; elseif isequal(datsiz, [npos nfreq]) dimord = 'pos_freq'; elseif isequal(datsiz, [npos 3]) dimord = 'pos_ori'; elseif isequal(datsiz, [npos 1]) dimord = 'pos'; elseif isequal(datsiz, [npos nrpt]) dimord = 'pos_rpt'; elseif isequalwithoutnans(datsiz, [npos nori nrpt]) dimord = 'pos_ori_rpt'; elseif isequalwithoutnans(datsiz, [npos nori ntime]) dimord = 'pos_ori_time'; elseif isequalwithoutnans(datsiz, [npos nori nfreq]) dimord = 'pos_ori_nfreq'; elseif isequalwithoutnans(datsiz, [npos ntime]) dimord = 'pos_time'; elseif isequalwithoutnans(datsiz, [npos nfreq]) dimord = 'pos_freq'; elseif isequalwithoutnans(datsiz, [npos 3]) dimord = 'pos_ori'; elseif isequalwithoutnans(datsiz, [npos 1]) dimord = 'pos'; elseif isequalwithoutnans(datsiz, [npos nrpt]) dimord = 'pos_rpt'; elseif isequalwithoutnans(datsiz, [npos nrpt nori ntime]) dimord = 'pos_rpt_ori_time'; elseif isequalwithoutnans(datsiz, [npos nrpt 1 ntime]) dimord = 'pos_rpt_ori_time'; elseif isequal(datsiz, [npos nfreq ntime]) dimord = 'pos_freq_time'; end case {'filter'} if isequalwithoutnans(datsiz, [npos nori nchan]) || (isequal(datsiz([1 2]), [npos nori]) && isinf(nchan)) dimord = 'pos_ori_chan'; end case {'leadfield'} if isequalwithoutnans(datsiz, [npos nchan nori]) || (isequal(datsiz([1 3]), [npos nori]) && isinf(nchan)) dimord = 'pos_chan_ori'; end case {'ori' 'eta'} if isequal(datsiz, [npos nori]) || isequal(datsiz, [npos 3]) dimord = 'pos_ori'; end case {'csdlabel'} if isequal(datsiz, [npos nori]) || isequal(datsiz, [npos 3]) dimord = 'pos_ori'; end case {'trial'} if ~iscell(data.(field)) && isequalwithoutnans(datsiz, [nrpt nchan ntime]) dimord = 'rpt_chan_time'; elseif isequalwithoutnans(datsiz, [nrpt nchan ntime]) dimord = '{rpt}_chan_time'; elseif isequalwithoutnans(datsiz, [nchan nspike]) || isequalwithoutnans(datsiz, [nchan 1 nspike]) dimord = '{chan}_spike'; end case {'sampleinfo' 'trialinfo' 'trialtime'} if isequalwithoutnans(datsiz, [nrpt nan]) dimord = 'rpt_other'; end case {'cumtapcnt' 'cumsumcnt'} if isequalwithoutnans(datsiz, [nrpt nan]) dimord = 'rpt_other'; end case {'topo'} if isequalwithoutnans(datsiz, [ntopochan nchan]) dimord = 'topochan_chan'; end case {'unmixing'} if isequalwithoutnans(datsiz, [nchan ntopochan]) dimord = 'chan_topochan'; end case {'inside'} if isequalwithoutnans(datsiz, [npos]) dimord = 'pos'; end case {'timestamp' 'time'} if ft_datatype(data, 'spike') && iscell(data.(field)) && datsiz(1)==nchan dimord = '{chan}_spike'; elseif ft_datatype(data, 'raw') && iscell(data.(field)) && datsiz(1)==nrpt dimord = '{rpt}_time'; elseif isvector(data.(field)) && isequal(datsiz, [1 ntime ones(1,numel(datsiz)-2)]) dimord = 'time'; end case {'freq'} if isvector(data.(field)) && isequal(datsiz, [1 nfreq]) dimord = 'freq'; end otherwise if isfield(data, 'dim') && isequal(datsiz, data.dim) dimord = 'dim1_dim2_dim3'; end end % switch field % deal with possible first pos which is a cell if exist('dimord', 'var') && strcmp(dimord(1:3), 'pos') && iscell(data.(field)) dimord = ['{pos}' dimord(4:end)]; end if ~exist('dimord', 'var') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ATTEMPT 4: there is only one way that the dimensions can be interpreted %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dimtok = cell(size(datsiz)); for i=1:length(datsiz) sel = find(siz==datsiz(i)); if length(sel)==1 % there is exactly one corresponding dimension dimtok{i} = tok{sel}; else % there are zero or multiple corresponding dimensions dimtok{i} = []; end end if all(~cellfun(@isempty, dimtok)) if iscell(data.(field)) dimtok{1} = ['{' dimtok{1} '}']; end dimord = sprintf('%s_', dimtok{:}); dimord = dimord(1:end-1); return end end % if dimord does not exist if ~exist('dimord', 'var') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ATTEMPT 5: compare the size with the known size of each dimension %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sel = ~isnan(siz) & ~isinf(siz); % nan means that the value is not known and might remain unknown % inf means that the value is not known and but should be known if length(unique(siz(sel)))==length(siz(sel)) % this should only be done if there is no chance of confusing dimensions dimtok = cell(size(datsiz)); dimtok(datsiz==npos) = {'pos'}; dimtok(datsiz==nori) = {'ori'}; dimtok(datsiz==nrpttap) = {'rpttap'}; dimtok(datsiz==nrpt) = {'rpt'}; dimtok(datsiz==nsubj) = {'subj'}; dimtok(datsiz==nchancmb) = {'chancmb'}; dimtok(datsiz==nchan) = {'chan'}; dimtok(datsiz==nfreq) = {'freq'}; dimtok(datsiz==ntime) = {'time'}; dimtok(datsiz==ndim1) = {'dim1'}; dimtok(datsiz==ndim2) = {'dim2'}; dimtok(datsiz==ndim3) = {'dim3'}; if isempty(dimtok{end}) && datsiz(end)==1 % remove the unknown trailing singleton dimension dimtok = dimtok(1:end-1); elseif isequal(dimtok{1}, 'pos') && isempty(dimtok{2}) && datsiz(2)==1 % remove the unknown leading singleton dimension dimtok(2) = []; end if all(~cellfun(@isempty, dimtok)) if iscell(data.(field)) dimtok{1} = ['{' dimtok{1} '}']; end dimord = sprintf('%s_', dimtok{:}); dimord = dimord(1:end-1); return end end end % if dimord does not exist if ~exist('dimord', 'var') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ATTEMPT 6: check whether it is a 3-D volume %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isequal(datsiz, [ndim1 ndim2 ndim3]) dimord = 'dim1_dim2_dim3'; end end % if dimord does not exist %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % FINAL RESORT: return "unknown" for all unknown dimensions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~exist('dimord', 'var') % this should not happen % if it does, it might help in diagnosis to have a very informative warning message % since there have been problems with trials not being selected correctly due to the warning going unnoticed % it is better to throw an error than a warning warning('could not determine dimord of "%s" in the following data', field) disp(data); dimtok(cellfun(@isempty, dimtok)) = {'unknown'}; if all(~cellfun(@isempty, dimtok)) if iscell(data.(field)) dimtok{1} = ['{' dimtok{1} '}']; end dimord = sprintf('%s_', dimtok{:}); dimord = dimord(1:end-1); end end % add '(rpt)' in case of source.trial dimord = [prefix dimord]; end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ok = isequalwithoutnans(a, b) % this is *only* used to compare matrix sizes, so we can ignore any singleton last dimension numdiff = numel(b)-numel(a); if numdiff > 0 % assume singleton dimensions missing in a a = [a(:); ones(numdiff, 1)]; b = b(:); elseif numdiff < 0 % assume singleton dimensions missing in b b = [b(:); ones(abs(numdiff), 1)]; a = a(:); end c = ~isnan(a(:)) & ~isnan(b(:)); ok = isequal(a(c), b(c)); end % function isequalwithoutnans %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ok = check_trailingdimsunitlength(data, dimtok) ok = false; for k = 1:numel(dimtok) switch dimtok{k} case 'chan' ok = numel(data.label)==1; otherwise if isfield(data, dimtok{k}); % check whether field exists ok = numel(data.(dimtok{k}))==1; end; end if ok, break; end end end % function check_trailingdimsunitlength
github
lcnhappe/happe-master
normals.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/private/normals.m
2,528
utf_8
96701c7ebda7e6efca8095b3adb6081c
function [nrm] = normals(pnt, tri, opt) % NORMALS compute the surface normals of a triangular mesh % for each triangle or for each vertex % % [nrm] = normals(pnt, tri, opt) % where opt is either 'vertex' or 'triangle' % Copyright (C) 2002-2007, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if nargin<3 opt='vertex'; elseif (opt(1)=='v' | opt(1)=='V') opt='vertex'; elseif (opt(1)=='t' | opt(1)=='T') opt='triangle'; else error('invalid optional argument'); end npnt = size(pnt,1); ntri = size(tri,1); % shift to center pnt(:,1) = pnt(:,1)-mean(pnt(:,1),1); pnt(:,2) = pnt(:,2)-mean(pnt(:,2),1); pnt(:,3) = pnt(:,3)-mean(pnt(:,3),1); % compute triangle normals % nrm_tri = zeros(ntri, 3); % for i=1:ntri % v2 = pnt(tri(i,2),:) - pnt(tri(i,1),:); % v3 = pnt(tri(i,3),:) - pnt(tri(i,1),:); % nrm_tri(i,:) = cross(v2, v3); % end % vectorized version of the previous part v2 = pnt(tri(:,2),:) - pnt(tri(:,1),:); v3 = pnt(tri(:,3),:) - pnt(tri(:,1),:); nrm_tri = cross(v2, v3); if strcmp(opt, 'vertex') % compute vertex normals nrm_pnt = zeros(npnt, 3); for i=1:ntri nrm_pnt(tri(i,1),:) = nrm_pnt(tri(i,1),:) + nrm_tri(i,:); nrm_pnt(tri(i,2),:) = nrm_pnt(tri(i,2),:) + nrm_tri(i,:); nrm_pnt(tri(i,3),:) = nrm_pnt(tri(i,3),:) + nrm_tri(i,:); end % normalise the direction vectors to have length one nrm = nrm_pnt ./ (sqrt(sum(nrm_pnt.^2, 2)) * ones(1,3)); else % normalise the direction vectors to have length one nrm = nrm_tri ./ (sqrt(sum(nrm_tri.^2, 2)) * ones(1,3)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % fast cross product to replace the MATLAB standard version function [c] = cross(a,b) c = [a(:,2).*b(:,3)-a(:,3).*b(:,2) a(:,3).*b(:,1)-a(:,1).*b(:,3) a(:,1).*b(:,2)-a(:,2).*b(:,1)];
github
lcnhappe/happe-master
csp.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/private/csp.m
1,702
utf_8
3eb6c73192bc8163344c9b5e70a04877
function [W] = csp(C1, C2, m) % CSP calculates the common spatial pattern (CSP) projection. % % Use as: % [W] = csp(C1, C2, m) % % This function implements the intents of the CSP algorithm described in [1]. % Specifically, CSP finds m spatial projections that maximize the variance (or % band power) in one condition (described by the [p x p] channel-covariance % matrix C1), and simultaneously minimizes the variance in the other (C2): % % W C1 W' = D % % and % % W (C1 + C2) W' = I, % % Where D is a diagonal matrix with decreasing values on it's diagonal, and I % is the identity matrix of matching shape. % The resulting [m x p] matrix can be used to project a zero-centered [p x n] % trial matrix X: % % S = W X. % % % Although the CSP is the de facto standard method for feature extraction for % motor imagery induced event-related desynchronization, it is not strictly % necessary [2]. % % [1] Zoltan J. Koles. The quantitative extraction and topographic mapping of % the abnormal components in the clinical EEG. Electroencephalography and % Clinical Neurophysiology, 79(6):440--447, December 1991. % % [2] Jason Farquhar. A linear feature space for simultaneous learning of % spatio-spectral filters in BCI. Neural Networks, 22:1278--1285, 2009. % Copyright (c) 2012, Boris Reuderink P = whiten(C1 + C2, 1e-14); % decorrelate over conditions [B, Lamb, B2] = svd(P * C1 * P'); % rotation to decorrelate within condition. W = B' * P; % keep m projections at ends keep = circshift(1:size(W, 1) <= m, [0, -m/2]); W = W(keep,:); function P = whiten(C, rtol) [U, l, U2] = svd(C); l = diag(l); keep = l > max(l) * rtol; P = diag(l(keep).^(-.5)) * U(:,keep)';
github
lcnhappe/happe-master
hcp_dirlist.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/private/hcp_dirlist.m
1,228
utf_8
b0501179c448a08e78e771ff578fa072
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [list, numdirs, numfiles] = hcp_dirlist(basedir, recursive) if nargin<2 recursive = true; end if ~isdir(basedir) error('directory "%s" does not exist', basedir) end list = dir(basedir); % remove all non-directories and hidden directories list = list([list.isdir]); hidden = false(size(list)); for i=1:length(list) hidden(i) = list(i).name(1)=='.'; end list = list(~hidden); % convert to cell-array list = {list.name}; list = list(:); for i=1:length(list) list{i} = fullfile(basedir, list{i}); end list = sort(list); numdirs = nan(size(list)); numfiles = nan(size(list)); for i=1:length(list) content = dir(list{i}); numdirs(i) = sum([content.isdir]) - 2; numfiles(i) = length(content) - numdirs(i) - 2; end if recursive sub_list = cell(size(list)); sub_numdirs = cell(size(list)); sub_numfiles = cell(size(list)); for i=1:length(list) [sub_list{i}, sub_numdirs{i}, sub_numfiles{i}] = hcp_dirlist(list{i}, recursive); end list = cat(1, list, sub_list{:}); numdirs = cat(1, numdirs, sub_numdirs{:}); numfiles = cat(1, numfiles, sub_numfiles{:}); end
github
lcnhappe/happe-master
ft_platform_supports.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/private/ft_platform_supports.m
9,557
utf_8
eb0e55d84d57e6873cce8df6cad90d96
function tf = ft_platform_supports(what,varargin) % FT_PLATFORM_SUPPORTS returns a boolean indicating whether the current platform % supports a specific capability % % Usage: % tf = ft_platform_supports(what) % tf = ft_platform_supports('matlabversion', min_version, max_version) % % The following values are allowed for the 'what' parameter: % value means that the following is supported: % % 'which-all' which(...,'all') % 'exists-in-private-directory' exists(...) will look in the /private % subdirectory to see if a file exists % 'onCleanup' onCleanup(...) % 'alim' alim(...) % 'int32_logical_operations' bitand(a,b) with a, b of type int32 % 'graphics_objects' graphics sysem is object-oriented % 'libmx_c_interface' libmx is supported through mex in the % C-language (recent Matlab versions only % support C++) % 'stats' all statistical functions in % FieldTrip's external/stats directory % 'program_invocation_name' program_invocation_name() (GNU Octave) % 'singleCompThread' start Matlab with -singleCompThread % 'nosplash' -nosplash % 'nodisplay' -nodisplay % 'nojvm' -nojvm % 'no-gui' start GNU Octave with --no-gui % 'RandStream.setGlobalStream' RandStream.setGlobalStream(...) % 'RandStream.setDefaultStream' RandStream.setDefaultStream(...) % 'rng' rng(...) % 'rand-state' rand('state') % 'urlread-timeout' urlread(..., 'Timeout', t) % 'griddata-vector-input' griddata(...,...,...,a,b) with a and b % vectors % 'griddata-v4' griddata(...,...,...,...,...,'v4'), % that is v4 interpolation support % 'uimenu' uimenu(...) if ~ischar(what) error('first argument must be a string'); end switch what case 'matlabversion' tf = is_matlab() && matlabversion(varargin{:}); case 'exists-in-private-directory' tf = is_matlab(); case 'which-all' tf = is_matlab(); case 'onCleanup' tf = is_octave() || matlabversion(7.8, Inf); case 'alim' tf = is_matlab(); case 'int32_logical_operations' % earlier version of Matlab don't support bitand (and similar) % operations on int32 tf = is_octave() || ~matlabversion(-inf, '2012a'); case 'graphics_objects' % introduced in Matlab 2014b, graphics is handled through objects; % previous versions use numeric handles tf = is_matlab() && matlabversion('2014b', Inf); case 'libmx_c_interface' % removed after 2013b tf = matlabversion(-Inf, '2013b'); case 'stats' root_dir=fileparts(which('ft_defaults')); external_stats_dir=fullfile(root_dir,'external','stats'); % these files are only used by other functions in the external/stats % directory exclude_mfiles={'common_size.m',... 'iscomplex.m',... 'lgamma.m'}; tf = has_all_functions_in_dir(external_stats_dir,exclude_mfiles); case 'program_invocation_name' % Octave supports program_invocation_name, which returns the path % of the binary that was run to start Octave tf = is_octave(); case 'singleCompThread' tf = is_matlab() && matlabversion(7.8, inf); case {'nosplash','nodisplay','nojvm'} % Only on Matlab tf = is_matlab(); case 'no-gui' % Only on Octave tf = is_octave(); case 'RandStream.setDefaultStream' tf = is_matlab() && matlabversion('2008b', '2011b'); case 'RandStream.setGlobalStream' tf = is_matlab() && matlabversion('2012a', inf); case 'randomized_PRNG_on_startup' tf = is_octave() || ~matlabversion(-Inf,'7.3'); case 'rng' % recent Matlab versions tf = is_matlab() && matlabversion('7.12',Inf); case 'rand-state' % GNU Octave tf = is_octave(); case 'urlread-timeout' tf = is_matlab() && matlabversion('2012b',Inf); case 'griddata-vector-input' tf = is_matlab(); case 'griddata-v4' tf = is_matlab() && matlabversion('2009a',Inf); case 'uimenu' tf = is_matlab(); otherwise error('unsupported value for first argument: %s', what); end % switch end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function tf = is_matlab() tf = ~is_octave(); end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function tf = is_octave() persistent cached_tf; if isempty(cached_tf) cached_tf = logical(exist('OCTAVE_VERSION', 'builtin')); end tf = cached_tf; end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function tf = has_all_functions_in_dir(in_dir, exclude_mfiles) % returns true if all functions in in_dir are already provided by the % platform m_files=dir(fullfile(in_dir,'*.m')); n=numel(m_files); for k=1:n m_filename=m_files(k).name; if isempty(which(m_filename)) && ... isempty(strmatch(m_filename,exclude_mfiles)) tf=false; return; end end tf=true; end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [inInterval] = matlabversion(min, max) % MATLABVERSION checks if the current MATLAB version is within the interval % specified by min and max. % % Use, e.g., as: % if matlabversion(7.0, 7.9) % % do something % end % % Both strings and numbers, as well as infinities, are supported, eg.: % matlabversion(7.1, 7.9) % is version between 7.1 and 7.9? % matlabversion(6, '7.10') % is version between 6 and 7.10? (note: '7.10', not 7.10) % matlabversion(-Inf, 7.6) % is version <= 7.6? % matlabversion('2009b') % exactly 2009b % matlabversion('2008b', '2010a') % between two versions % matlabversion('2008b', Inf) % from a version onwards % etc. % % See also VERSION, VER, VERLESSTHAN % Copyright (C) 2006, Robert Oostenveld % Copyright (C) 2010, Eelke Spaak % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % this does not change over subsequent calls, making it persistent speeds it up persistent curVer if nargin<2 max = min; end if isempty(curVer) curVer = version(); end if ((ischar(min) && isempty(str2num(min))) || (ischar(max) && isempty(str2num(max)))) % perform comparison with respect to release string ind = strfind(curVer, '(R'); [year, ab] = parseMatlabRelease(curVer((ind + 2):(numel(curVer) - 1))); [minY, minAb] = parseMatlabRelease(min); [maxY, maxAb] = parseMatlabRelease(max); inInterval = orderedComparison(minY, minAb, maxY, maxAb, year, ab); else % perform comparison with respect to version number [major, minor] = parseMatlabVersion(curVer); [minMajor, minMinor] = parseMatlabVersion(min); [maxMajor, maxMinor] = parseMatlabVersion(max); inInterval = orderedComparison(minMajor, minMinor, maxMajor, maxMinor, major, minor); end end % function function [year, ab] = parseMatlabRelease(str) if (str == Inf) year = Inf; ab = Inf; elseif (str == -Inf) year = -Inf; ab = -Inf; else year = str2num(str(1:4)); ab = str(5); end end % function function [major, minor] = parseMatlabVersion(ver) if (ver == Inf) major = Inf; minor = Inf; elseif (ver == -Inf) major = -Inf; minor = -Inf; elseif (isnumeric(ver)) major = floor(ver); minor = int8((ver - floor(ver)) * 10); else % ver is string (e.g. '7.10'), parse accordingly [major, rest] = strtok(ver, '.'); major = str2num(major); minor = str2num(strtok(rest, '.')); end end % function % checks if testA is in interval (lowerA,upperA); if at edges, checks if testB is in interval (lowerB,upperB). function inInterval = orderedComparison(lowerA, lowerB, upperA, upperB, testA, testB) if (testA < lowerA || testA > upperA) inInterval = false; else inInterval = true; if (testA == lowerA) inInterval = inInterval && (testB >= lowerB); end if (testA == upperA) inInterval = inInterval && (testB <= upperB); end end end % function
github
lcnhappe/happe-master
ft_warning.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/private/ft_warning.m
7,789
utf_8
d832a7ad5e2f9bb42995e6e5d4caa198
function [ws, warned] = ft_warning(varargin) % FT_WARNING will throw a warning for every unique point in the % stacktrace only, e.g. in a for-loop a warning is thrown only once. % % Use as one of the following % ft_warning(string) % ft_warning(id, string) % Alternatively, you can use ft_warning using a timeout % ft_warning(string, timeout) % ft_warning(id, string, timeout) % where timeout should be inf if you don't want to see the warning ever % again. % % Use as ft_warning('-clear') to clear old warnings from the current % stack % % It can be used instead of the MATLAB built-in function WARNING, thus as % s = ft_warning(...) % or as % ft_warning(s) % where s is a structure with fields 'identifier' and 'state', storing the % state information. In other words, ft_warning accepts as an input the % same structure it returns as an output. This returns or restores the % states of warnings to their previous values. % % It can also be used as % [s w] = ft_warning(...) % where w is a boolean that indicates whether a warning as been thrown or not. % % Please note that you can NOT use it like this % ft_warning('the value is %d', 10) % instead you should do % ft_warning(sprintf('the value is %d', 10)) % Copyright (C) 2012-2016, Robert Oostenveld, J?rn M. Horschig % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ global ft_default warned = false; ws = []; stack = dbstack; if any(strcmp({stack(2:end).file}, 'ft_warning.m')) % don't call FT_WARNING recursively, see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3068 return; end if nargin < 1 error('You need to specify at least a warning message'); end if isstruct(varargin{1}) warning(varargin{1}); return; end if ~isfield(ft_default, 'warning') ft_default.warning = []; end if ~isfield(ft_default.warning, 'stopwatch') ft_default.warning.stopwatch = []; end if ~isfield(ft_default.warning, 'identifier') ft_default.warning.identifier = []; end if ~isfield(ft_default.warning, 'ignore') ft_default.warning.ignore = {}; end % put the arguments we will pass to warning() in this cell array warningArgs = {}; if nargin==3 % calling syntax (id, msg, timeout) warningArgs = varargin(1:2); msg = warningArgs{2}; timeout = varargin{3}; fname = [warningArgs{1} '_' warningArgs{2}]; elseif nargin==2 && isnumeric(varargin{2}) % calling syntax (msg, timeout) warningArgs = varargin(1); msg = warningArgs{1}; timeout = varargin{2}; fname = warningArgs{1}; elseif nargin==2 && isequal(varargin{1}, 'off') ft_default.warning.ignore = union(ft_default.warning.ignore, varargin{2}); return elseif nargin==2 && isequal(varargin{1}, 'on') ft_default.warning.ignore = setdiff(ft_default.warning.ignore, varargin{2}); return elseif nargin==2 && ~isnumeric(varargin{2}) % calling syntax (id, msg) warningArgs = varargin(1:2); msg = warningArgs{2}; timeout = inf; fname = [warningArgs{1} '_' warningArgs{2}]; elseif nargin==1 % calling syntax (msg) warningArgs = varargin(1); msg = warningArgs{1}; timeout = inf; % default timeout in seconds fname = [warningArgs{1}]; end if ismember(msg, ft_default.warning.ignore) % do not show this warning return; end if isempty(timeout) error('Timeout ill-specified'); end if timeout ~= inf fname = fixname(fname); % make a nice string that is allowed as fieldname in a structures line = []; else % here, we create the fieldname functionA.functionB.functionC... [tmpfname, ft_default.warning.identifier, line] = fieldnameFromStack(ft_default.warning.identifier); if ~isempty(tmpfname), fname = tmpfname; clear tmpfname; end end if nargin==1 && ischar(varargin{1}) && strcmp('-clear', varargin{1}) if strcmp(fname, '-clear') % reset all fields if called outside a function ft_default.warning.identifier = []; ft_default.warning.stopwatch = []; else if issubfield(ft_default.warning.identifier, fname) ft_default.warning.identifier = rmsubfield(ft_default.warning.identifier, fname); end end return; end % and add the line number to make this unique for the last function fname = horzcat(fname, line); if ~issubfield('ft_default.warning.stopwatch', fname) ft_default.warning.stopwatch = setsubfield(ft_default.warning.stopwatch, fname, tic); end now = toc(getsubfield(ft_default.warning.stopwatch, fname)); % measure time since first function call if ~issubfield(ft_default.warning.identifier, fname) || ... (issubfield(ft_default.warning.identifier, fname) && now>getsubfield(ft_default.warning.identifier, [fname '.timeout'])) % create or reset field ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, fname, []); % warning never given before or timed out ws = warning(warningArgs{:}); ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.timeout'], now+timeout); ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.ws'], msg); warned = true; else % the warning has been issued before, but has not timed out yet ws = getsubfield(ft_default.warning.identifier, [fname '.ws']); end end % function ft_warning %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [fname, ft_previous_warnings, line] = fieldnameFromStack(ft_previous_warnings) % stack(1) is this function, stack(2) is ft_warning stack = dbstack('-completenames'); if size(stack) < 3 fname = []; line = []; return; end i0 = 3; % ignore ft_preamble while strfind(stack(i0).name, 'ft_preamble') i0=i0+1; end fname = horzcat(fixname(stack(end).name)); if ~issubfield(ft_previous_warnings, fixname(stack(end).name)) ft_previous_warnings.(fixname(stack(end).name)) = []; % iteratively build up structure fields end for i=numel(stack)-1:-1:(i0) % skip postamble scripts if strncmp(stack(i).name, 'ft_postamble', 12) break; end fname = horzcat(fname, '.', horzcat(fixname(stack(i).name))); % , stack(i).file if ~issubfield(ft_previous_warnings, fname) % iteratively build up structure fields setsubfield(ft_previous_warnings, fname, []); end end % line of last function call line = ['.line', int2str(stack(i0).line)]; end % function outcome = issubfield(strct, fname) % substrindx = strfind(fname, '.'); % if numel(substrindx) > 0 % % separate the last fieldname from all former % outcome = eval(['isfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']); % else % % there is only one fieldname % outcome = isfield(strct, fname); % end % end % function strct = rmsubfield(strct, fname) % substrindx = strfind(fname, '.'); % if numel(substrindx) > 0 % % separate the last fieldname from all former % strct = eval(['rmfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']); % else % % there is only one fieldname % strct = rmfield(strct, fname); % end % end
github
lcnhappe/happe-master
benchmark.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/private/benchmark.m
3,925
utf_8
c57855145ed5e0e6dcce46f2eac7ad03
function benchmark(funname, argname, argval, m_array, n_array, niter, varargin) % BENCHMARK a given function % % Use as % benchmark(funname, argname, argval, m_array, n_array, niter, ...) % % Optional input arguments should come in key-value pairs and may include % feedback = none, figure, text, table, all % tableheader = true, false % tabledata = true, false % selection = 3x2 array with nchans and nsamples to be used for the table % Copyright (C) 2009, Robert Oostenveld % % Subversion does not use the Log keyword, use 'svn log <filename>' or 'svn -v log | less' to get detailled information % get the optional input arguments feedback = keyval('feedback', varargin); % none, figure, text, table, all tableheader = keyval('tableheader', varargin); % true, false tabledata = keyval('tabledata', varargin); % true, false selection = keyval('selection', varargin); % 3x2 array with nchans and nsamples to be used for the table % set the defaults if isempty(feedback) feedback = 'all'; end if isempty(tableheader) tableheader = true; end if isempty(tabledata) tabledata = true; end if isempty(selection) selection = [ 8 100 8 500 64 500 ]; end % convert the function from a string to a handle funhandle = str2func(funname); % this will hold the time that all computations took t_array = nan(length(m_array), length(n_array)); % do the actual benchmarking for m_indx=1:length(m_array) for n_indx=1:length(n_array) m = m_array(m_indx); n = n_array(n_indx); if strcmp(feedback, 'table') if ~any(selection(:,1)==m & selection(:,2)==n) continue end end % create some random data dat = randn(m, n); elapsed = zeros(1,niter); for iteration=1:niter tic; funhandle(dat, argval{:}); elapsed(iteration) = toc*1000; % convert from s into ms end % remember the amount of time spent on the computation for this M and N t_array(m_indx, n_indx) = robustmean(elapsed); % give some feedback on screen if strcmp(feedback, 'text') || strcmp(feedback, 'all') fprintf('nchans = %d, nsamples = %d, time = %f ms\n', m, n, t_array(m_indx, n_indx)); end end end if strcmp(feedback, 'figure') || strcmp(feedback, 'all') % give some output in a figure figure surf(n_array, m_array, t_array); end if strcmp(feedback, 'table') || strcmp(feedback, 'all') % give some output to screen that can be copied and pasted into the wiki m1 = find(m_array==selection(1,1)); % channels n1 = find(n_array==selection(1,2)); % samples m2 = find(m_array==selection(2,1)); % channels n2 = find(n_array==selection(2,2)); % samples m3 = find(m_array==selection(3,1)); % channels n3 = find(n_array==selection(3,2)); % samples if tableheader fprintf('^function name and algorithm details ^ %dch x %dsmp ^ %dch x %dsmp ^ %dch x %dsmp ^\n', ... m_array(m1), n_array(n1), ... m_array(m2), n_array(n2), ... m_array(m3), n_array(n3)); end if tabledata str = []; dum = sprintf('%s;\n', funname); str = cat(2, str, dum); for i=1:length(argval) dum = printstruct(argname{i}, argval{i}); str = cat(2, str, dum); end str(str==10) = ' '; fprintf('|%s | %.2f ms | %.2f ms | %.2f ms |\n', str, ... t_array(m1, n1), ... t_array(m2, n2), ... t_array(m3, n3)); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION for robust estimation of mean, removing outliers on both sides % select the central part of the sorted vector, a quarter of the values is removed from both sides %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = robustmean(x) x = sort(x); n = length(x); trim = round(0.25*n); sel = (trim+1):(n-trim); y = mean(x(sel));
github
lcnhappe/happe-master
identical.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/private/identical.m
6,335
utf_8
75a144da8012630d9a34dca990228677
function [ok, message] = identical2(a, b, varargin) % IDENTICAL compares two input variables and returns 1/0 % and a message containing the details on the observed difference. % % Use as % [ok, message] = identical(a, b) % [ok, message] = identical(a, b, ...) % % This works for all possible input variables a and b, like % numerical arrays, string arrays, cell arrays, structures % and nested data types. % % Optional input arguments come in key-value pairs, supported are % 'depth' number, for nested structures % 'abstol' number, absolute tolerance for numerical comparison % 'reltol' number, relative tolerance for numerical comparison % 'diffabs' boolean, check difference between absolute values for % numericals (useful for e.g. mixing matrices which have % arbitrary signs) % Copyright (C) 2004-2012, Robert Oostenveld & Markus Siegel % % $Id$ if nargin==3 % for backward compatibility depth = varargin{1}; else depth = keyval('depth', varargin); if isempty(depth) % set the default depth = inf; end end message = {}; location = ''; [message] = do_work(a, b, depth, location, message, varargin{:}); message = message(:); ok = isempty(message); if ~nargout disp(message); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [message] = do_work(a, b, depth, location, message, varargin) knowntypes = { 'double' % Double precision floating point numeric array 'logical' % Logical array 'char' % Character array 'cell' % Cell array 'struct' % Structure array 'numeric' % Integer or floating-point array 'single' % Single precision floating-point numeric array 'int8' % 8-bit signed integer array 'uint8' % 8-bit unsigned integer array 'int16' % 16-bit signed integer array 'uint16' % 16-bit unsigned integer array 'int32' % 32-bit signed integer array 'uint32' % 32-bit unsigned integer array }; for type=knowntypes(:)' if isa(a, type{:}) && ~isa(b, type{:}) message{end+1} = sprintf('different data type in %s', location); return end end if isempty(location) location = 'array'; end if isa(a, 'numeric') || isa(a, 'char') || isa(a, 'logical') % perform numerical comparison if length(size(a))~=length(size(b)) message{end+1} = sprintf('different number of dimensions in %s', location); return; end if any(size(a)~=size(b)) message{end+1} = sprintf('different size in %s', location); return; end if ~all(isnan(a(:)) == isnan(b(:))) message{end+1} = sprintf('different occurence of NaNs in %s', location); return; end % replace the NaNs, since we cannot compare them numerically a = a(~isnan(a(:))); b = b(~isnan(b(:))); % continue with numerical comparison if ischar(a) && any(a~=b) message{end+1} = sprintf('different string in %s: %s ~= %s', location, a, b); else % use the desired tolerance reltol = keyval('reltol', varargin{:}); % any value, relative to the mean abstol = keyval('abstol', varargin{:}); % any value relnormtol = keyval('relnormtol', varargin{:}); % the matrix norm, relative to the mean norm absnormtol = keyval('absnormtol', varargin{:}); % the matrix norm diffabs = keyval('diffabs', varargin{:}); if ~isempty(diffabs) && diffabs a = abs(a); b = abs(b); end if ~isempty(abstol) && any(abs(a-b)>abstol) message{end+1} = sprintf('different values in %s', location); elseif ~isempty(reltol) && any((abs(a-b)./(0.5*(a+b)))>reltol) message{end+1} = sprintf('different values in %s', location); elseif isempty(abstol) && isempty(reltol) && any(a~=b) message{end+1} = sprintf('different values in %s', location); elseif ~isempty(relnormtol) && (norm(a-b)/(0.5*(norm(a)+norm(b)))>relnormtol) message{end+1} = sprintf('different values in %s', location); elseif ~isempty(absnormtol) && norm(a-b)>absnormtol message{end+1} = sprintf('different values in %s', location); end end elseif isa(a, 'struct') && all(size(a)==1) % perform recursive comparison of all fields of the structure fna = fieldnames(a); fnb = fieldnames(b); if ~all(ismember(fna, fnb)) tmp = fna(~ismember(fna, fnb)); for i=1:length(tmp) message{end+1} = sprintf('field missing in the 2nd argument in %s: {%s}', location, tmp{i}); end end if ~all(ismember(fnb, fna)) tmp = fnb(~ismember(fnb, fna)); for i=1:length(tmp) message{end+1} = sprintf('field missing in the 1st argument in %s: {%s}', location, tmp{i}); end end fna = intersect(fna, fnb); if depth>0 % warning, this is a recursive call to transverse nested structures for i=1:length(fna) fn = fna{i}; ra = getfield(a, fn); rb = getfield(b, fn); [message] = do_work(ra, rb, depth-1, [location '.' fn], message, varargin{:}); end end elseif isa(a, 'struct') && ~all(size(a)==1) % perform recursive comparison of all array elements if any(size(a)~=size(b)) message{end+1} = sprintf('different size of struct-array in %s', location); return; end siz = size(a); dim = ndims(a); a = a(:); b = b(:); for i=1:length(a) ra = a(i); rb = b(i); tmp = sprintf('%s(%s)', location, my_ind2sub(siz, i)); [message] = do_work(ra, rb, depth-1, tmp, message, varargin{:}); end elseif isa(a, 'cell') % perform recursive comparison of all array elements if any(size(a)~=size(b)) message{end+1} = sprintf('different size of cell-array in %s', location); return; end siz = size(a); dim = ndims(a); a = a(:); b = b(:); for i=1:length(a) ra = a{i}; rb = b{i}; tmp = sprintf('%s{%s}', location, my_ind2sub(siz, i)); [message] = do_work(ra, rb, depth-1, tmp, message, varargin{:}); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % return a string with the formatted subscript function [str] = my_ind2sub(siz,ndx) n = length(siz); k = [1 cumprod(siz(1:end-1))]; ndx = ndx - 1; for i = n:-1:1, tmp(i) = floor(ndx/k(i))+1; ndx = rem(ndx,k(i)); end str = ''; for i=1:n str = [str ',' num2str(tmp(i))]; end str = str(2:end);
github
lcnhappe/happe-master
getdimsiz.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/private/getdimsiz.m
2,235
utf_8
340d495a654f2f6752aa1af7ac915390
function dimsiz = getdimsiz(data, field) % GETDIMSIZ % % Use as % dimsiz = getdimsiz(data, field) % % If the length of the vector that is returned is smaller than the % number of dimensions that you would expect from GETDIMORD, you % should assume that it has trailing singleton dimensions. % % Example use % dimord = getdimord(datastructure, fieldname); % dimtok = tokenize(dimord, '_'); % dimsiz = getdimsiz(datastructure, fieldname); % dimsiz(end+1:length(dimtok)) = 1; % there can be additional trailing singleton dimensions % % See also GETDIMORD, GETDATFIELD if ~isfield(data, field) && isfield(data, 'avg') && isfield(data.avg, field) field = ['avg.' field]; elseif ~isfield(data, field) && isfield(data, 'trial') && isfield(data.trial, field) field = ['trial.' field]; elseif ~isfield(data, field) error('field "%s" not present in data', field); end if strncmp(field, 'avg.', 4) prefix = []; field = field(5:end); % strip the avg data.(field) = data.avg.(field); % move the avg into the main structure data = rmfield(data, 'avg'); elseif strncmp(field, 'trial.', 6) prefix = numel(data.trial); field = field(7:end); % strip the trial data.(field) = data.trial(1).(field); % move the first trial into the main structure data = rmfield(data, 'trial'); else prefix = []; end dimsiz = cellmatsize(data.(field)); % add nrpt in case of source.trial dimsiz = [prefix dimsiz]; end % main function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to determine the size of data representations like {pos}_ori_time % FIXME this will fail for {xxx_yyy}_zzz %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function siz = cellmatsize(x) if iscell(x) if isempty(x) siz = 0; return % nothing else to do elseif isvector(x) cellsize = numel(x); % the number of elements in the cell-array else cellsize = size(x); x = x(:); % convert to vector for further size detection end [dum, indx] = max(cellfun(@numel, x)); matsize = size(x{indx}); % the size of the content of the cell-array siz = [cellsize matsize]; % concatenate the two else siz = size(x); end end % function cellmatsize
github
lcnhappe/happe-master
hcp_filelist.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/test/private/hcp_filelist.m
447
utf_8
71aed91ab0ef231e13aba8c62e7b1661
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function list = hcp_filelist(basedir) dirlist = hcp_dirlist(basedir, true); dirlist{end+1} = basedir; list = {}; for i=1:length(dirlist) f = dir(dirlist{i}); f = f(~[f.isdir]); f = {f.name}; for j=1:length(f) f{j} = fullfile(dirlist{i}, f{j}); end list = cat(1, list, f(:)); end list = sort(list);
github
lcnhappe/happe-master
beamformer_pcc.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/inverse/beamformer_pcc.m
13,262
utf_8
c6189828cfd87b980fb6d6c6f69ae63d
function [dipout] = beamformer_pcc(dip, grad, headmodel, dat, Cf, varargin) % BEAMFORMER_PCC implements an experimental beamformer based on partial % canonical correlations or coherences. Dipole locations that are outside % the head will return a NaN value. % % Use as % [dipout] = beamformer_pcc(dipin, grad, headmodel, dat, cov, ...) % where % dipin is the input dipole model % grad is the gradiometer definition % headmodel is the volume conductor definition % dat is the data matrix with the ERP or ERF % cov is the data covariance or cross-spectral density matrix % and % dipout is the resulting dipole model with all details % % The input dipole model consists of % dipin.pos positions for dipole, e.g. regular grid, Npositions x 3 % dipin.mom dipole orientation (optional), 3 x Npositions % and can additionally contain things like a precomputed filter. % % Additional options should be specified in key-value pairs and can be % refchan % refdip % supchan % supdip % reducerank % normalize % normalizeparam % feedback % keepcsd % keepfilter % keepleadfield % keepmom % lambda % projectnoise % realfilter % fixedori % Copyright (C) 2005-2014, Robert Oostenveld & Jan-Mathijs Schoffelen % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if mod(nargin-5,2) % the first 5 arguments are fixed, the other arguments should come in pairs error('invalid number of optional arguments'); end % these optional settings do not have defaults refchan = ft_getopt(varargin, 'refchan', []); refdip = ft_getopt(varargin, 'refdip', []); supchan = ft_getopt(varargin, 'supchan', []); supdip = ft_getopt(varargin, 'supdip', []); % these settings pertain to the forward model, the defaults are set in compute_leadfield reducerank = ft_getopt(varargin, 'reducerank', []); normalize = ft_getopt(varargin, 'normalize', []); normalizeparam = ft_getopt(varargin, 'normalizeparam', []); % these optional settings have defaults feedback = ft_getopt(varargin, 'feedback', 'text'); keepcsd = ft_getopt(varargin, 'keepcsd', 'no'); keepfilter = ft_getopt(varargin, 'keepfilter', 'no'); keepleadfield = ft_getopt(varargin, 'keepleadfield', 'no'); keepmom = ft_getopt(varargin, 'keepmom', 'yes'); lambda = ft_getopt(varargin, 'lambda', 0); projectnoise = ft_getopt(varargin, 'projectnoise', 'yes'); realfilter = ft_getopt(varargin, 'realfilter', 'yes'); fixedori = ft_getopt(varargin, 'fixedori', 'no'); % convert the yes/no arguments to the corresponding logical values fixedori = strcmp(fixedori, 'yes'); keepcsd = strcmp(keepcsd, 'yes'); % see below keepfilter = strcmp(keepfilter, 'yes'); keepleadfield = strcmp(keepleadfield, 'yes'); keepmom = strcmp(keepmom, 'yes'); projectnoise = strcmp(projectnoise, 'yes'); realfilter = strcmp(realfilter, 'yes'); % the postprocessing of the pcc beamformer always requires the csd matrix keepcsd = 1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % find the dipole positions that are inside/outside the brain %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(dip, 'inside') dip.inside = ft_inside_vol(dip.pos, headmodel); end if any(dip.inside>1) % convert to logical representation tmp = false(size(dip.pos,1),1); tmp(dip.inside) = true; dip.inside = tmp; end % keep the original details on inside and outside positions originside = dip.inside; origpos = dip.pos; % select only the dipole positions inside the brain for scanning dip.pos = dip.pos(originside,:); dip.inside = true(size(dip.pos,1),1); if isfield(dip, 'mom') dip.mom = dip.mom(:, originside); end needleadfield = 1; if isfield(dip, 'leadfield') fprintf('using precomputed leadfields\n'); dip.leadfield = dip.leadfield(originside); end if isfield(dip, 'filter') fprintf('using precomputed filters\n'); dip.filter = dip.filter(originside); needleadfield = 0; end if ~isempty(refdip) rf = ft_compute_leadfield(refdip, grad, headmodel, 'reducerank', reducerank, 'normalize', normalize); else rf = []; end if ~isempty(supdip) sf = ft_compute_leadfield(supdip, grad, headmodel, 'reducerank', reducerank, 'normalize', normalize); else sf = []; end % sanity check if (~isempty(rf) || ~isempty(sf)) && isfield(dip, 'filter') error('precomputed filters cannot be used in combination with a refdip or supdip') end refchan = refchan; % these can be passed as optional inputs supchan = supchan; % these can be passed as optional inputs megchan = setdiff(1:size(Cf,1), [refchan supchan]); Nrefchan = length(refchan); Nsupchan = length(supchan); Nmegchan = length(megchan); Nchan = size(Cf,1); % should equal Nmegchan + Nrefchan + Nsupchan Cmeg = Cf(megchan,megchan); % the filter uses the csd between all MEG channels isrankdeficient = (rank(Cmeg)<size(Cmeg,1)); % it is difficult to give a quantitative estimate of lambda, therefore also % support relative (percentage) measure that can be specified as string (e.g. '10%') if ~isempty(lambda) && ischar(lambda) && lambda(end)=='%' ratio = sscanf(lambda, '%f%%'); ratio = ratio/100; lambda = ratio * trace(Cmeg)/size(Cmeg,1); end if projectnoise % estimate the noise power, which is further assumed to be equal and uncorrelated over channels if isrankdeficient % estimated noise floor is equal to or higher than lambda noise = lambda; else % estimate the noise level in the covariance matrix by the smallest singular value noise = svd(Cmeg); noise = noise(end); % estimated noise floor is equal to or higher than lambda noise = max(noise, lambda); end end if realfilter % construct the filter only on the real part of the CSD matrix, i.e. filter is real invCmeg = pinv(real(Cmeg) + lambda*eye(Nmegchan)); else % construct the filter on the complex CSD matrix, i.e. filter contains imaginary component as well % this results in a phase rotation of the channel data if the filter is applied to the data invCmeg = pinv(Cmeg + lambda*eye(Nmegchan)); end % start the scanning with the proper metric ft_progress('init', feedback, 'beaming sources'); for i=1:size(dip.pos,1) if needleadfield if isfield(dip, 'leadfield') && isfield(dip, 'mom') && size(dip.mom, 1)==size(dip.leadfield{i}, 2) % reuse the leadfield that was previously computed and project lf = dip.leadfield{i} * dip.mom(:,i); elseif isfield(dip, 'leadfield') && isfield(dip, 'mom') % reuse the leadfield that was previously computed but don't project lf = dip.leadfield{i}; elseif isfield(dip, 'leadfield') && ~isfield(dip, 'mom'), % reuse the leadfield that was previously computed lf = dip.leadfield{i}; elseif ~isfield(dip, 'leadfield') && isfield(dip, 'mom') % compute the leadfield for a fixed dipole orientation lf = ft_compute_leadfield(dip.pos(i,:), grad, headmodel, 'reducerank', reducerank, 'normalize', normalize, 'normalizeparam', normalizeparam) * dip.mom(:,i); else % compute the leadfield lf = ft_compute_leadfield(dip.pos(i,:), grad, headmodel, 'reducerank', reducerank, 'normalize', normalize, 'normalizeparam', normalizeparam); end % concatenate scandip, refdip and supdip lfa = [lf rf sf]; Ndip = size(lfa,2); else Ndip = size(dip.filter{i},1); end if fixedori if isempty(refdip) && isempty(supdip) && isempty(refchan) && isempty(supchan) % compute the leadfield for the optimal dipole orientation % subsequently the leadfield for only that dipole orientation will % be used for the final filter computation if isfield(dip, 'filter') && size(dip.filter{i},1)==1 % nothing to do ft_warning('Ignoring ''fixedori''. The fixedori option is supported only if there is ONE dipole for location.') else if isfield(dip, 'filter') && size(dip.filter{i},1)~=1 filt = dip.filter{i}; else filt = pinv(lfa' * invCmeg * lfa) * lfa' * invCmeg; end [u, s, v] = svd(real(filt * Cmeg * ctranspose(filt))); maxpowori = u(:,1); if numel(s)>1, eta = s(1,1)./s(2,2); else eta = nan; end lfa = lfa * maxpowori; dipout.ori{i} = maxpowori; dipout.eta(i) = eta; % update the number of dipole components Ndip = size(lfa,2); end else ft_warning('Ignoring ''fixedori''. The fixedori option is supported only if there is ONE dipole for location.') end end if isfield(dip, 'filter') % use the provided filter filt = dip.filter{i}; else % construct the spatial filter filt = pinv(lfa' * invCmeg * lfa) * lfa' * invCmeg; % use PINV/SVD to cover rank deficient leadfield end % concatenate the source filters with the channel filters filtn = zeros(Ndip+Nrefchan+Nsupchan, Nmegchan+Nrefchan+Nsupchan); % this part of the filter relates to the sources filtn(1:Ndip,megchan) = filt; % this part of the filter relates to the channels filtn((Ndip+1):end,setdiff(1:(Nmegchan+Nrefchan+Nsupchan), megchan)) = eye(Nrefchan+Nsupchan); filt = filtn; clear filtn if keepcsd dipout.csd{i,1} = filt * Cf * ctranspose(filt); end if projectnoise dipout.noisecsd{i,1} = noise * (filt * ctranspose(filt)); end if keepmom && ~isempty(dat) dipout.mom{i,1} = filt * dat; end if keepfilter dipout.filter{i,1} = filt; end if keepleadfield && needleadfield dipout.leadfield{i,1} = lf; end ft_progress(i/size(dip.pos,1), 'beaming source %d from %d\n', i, size(dip.pos,1)); % remember how all components in the output csd should be interpreted %scandiplabel = repmat({'scandip'}, 1, size(lf, 2)); % based on last leadfield scandiplabel = repmat({'scandip'}, 1, size(filt, 1)-size(rf, 2)-size(sf, 2)-Nrefchan-Nsupchan); % robust if lf does not exist refdiplabel = repmat({'refdip'}, 1, size(rf, 2)); supdiplabel = repmat({'supdip'}, 1, size(sf, 2)); refchanlabel = repmat({'refchan'}, 1, Nrefchan); supchanlabel = repmat({'supchan'}, 1, Nsupchan); % concatenate all the labels dipout.csdlabel{i,1} = [scandiplabel refdiplabel supdiplabel refchanlabel supchanlabel]; end % for all dipoles ft_progress('close'); % wrap it all up, prepare the complete output dipout.inside = originside; dipout.pos = origpos; % reassign the scan values over the inside and outside grid positions if isfield(dipout, 'leadfield') dipout.leadfield( originside) = dipout.leadfield; dipout.leadfield(~originside) = {[]}; end if isfield(dipout, 'filter') dipout.filter( originside) = dipout.filter; dipout.filter(~originside) = {[]}; end if isfield(dipout, 'mom') dipout.mom( originside) = dipout.mom; dipout.mom(~originside) = {[]}; end if isfield(dipout, 'csd') dipout.csd( originside) = dipout.csd; dipout.csd(~originside) = {[]}; end if isfield(dipout, 'noisecsd') dipout.noisecsd( originside) = dipout.noisecsd; dipout.noisecsd(~originside) = {[]}; end if isfield(dipout, 'csdlabel') dipout.csdlabel( originside) = dipout.csdlabel; dipout.csdlabel(~originside) = {[]}; end if isfield(dipout, 'ori') dipout.ori( originside) = dipout.ori; dipout.ori(~originside) = {[]}; end if isfield(dipout, 'eta') dipout.eta( originside) = dipout.eta; dipout.eta(~originside) = nan; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to compute the pseudo inverse. This is the same as the % standard MATLAB function, except that the default tolerance is twice as % high. % Copyright 1984-2004 The MathWorks, Inc. % $Revision$ $Date: 2009/01/07 13:12:03 $ % default tolerance increased by factor 2 (Robert Oostenveld, 7 Feb 2004) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function X = pinv(A,varargin) [m,n] = size(A); if n > m X = pinv(A',varargin{:})'; else [U,S,V] = svd(A,0); if m > 1, s = diag(S); elseif m == 1, s = S(1); else s = 0; end if nargin == 2 tol = varargin{1}; else tol = 10 * max(m,n) * max(s) * eps; end r = sum(s > tol); if (r == 0) X = zeros(size(A'),class(A)); else s = diag(ones(r,1)./s(1:r)); X = V(:,1:r)*s*U(:,1:r)'; end end
github
lcnhappe/happe-master
beamformer_dics.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/inverse/beamformer_dics.m
26,041
utf_8
d4c1f578b6725dbeb67c9a09c2ae2dd0
function [dipout] = beamformer_dics(dip, grad, headmodel, dat, Cf, varargin) % BEAMFORMER_DICS scans on pre-defined dipole locations with a single dipole % and returns the beamformer spatial filter output for a dipole on every % location. Dipole locations that are outside the head will return a % NaN value. % % Use as % [dipout] = beamformer_dics(dipin, grad, headmodel, dat, cov, varargin) % where % dipin is the input dipole model % grad is the gradiometer definition % headmodel is the volume conductor definition % dat is the data matrix with the ERP or ERF % cov is the data covariance or cross-spectral density matrix % and % dipout is the resulting dipole model with all details % % The input dipole model consists of % dipin.pos positions for dipole, e.g. regular grid, Npositions x 3 % dipin.mom dipole orientation (optional), 3 x Npositions % and can additionally contain things like a precomputed filter. % % Additional options should be specified in key-value pairs and can be % 'Pr' = power of the external reference channel % 'Cr' = cross spectral density between all data channels and the external reference channel % 'refdip' = location of dipole with which coherence is computed % 'lambda' = regularisation parameter % 'powmethod' = can be 'trace' or 'lambda1' % 'feedback' = give ft_progress indication, can be 'text', 'gui' or 'none' % 'fixedori' = use fixed or free orientation, can be 'yes' or 'no' % 'projectnoise' = project noise estimate through filter, can be 'yes' or 'no' % 'realfilter' = construct a real-valued filter, can be 'yes' or 'no' % 'keepfilter' = remember the beamformer filter, can be 'yes' or 'no' % 'keepleadfield' = remember the forward computation, can be 'yes' or 'no' % 'keepcsd' = remember the estimated cross-spectral density, can be 'yes' or 'no' % % These options influence the forward computation of the leadfield % 'reducerank' = reduce the leadfield rank, can be 'no' or a number (e.g. 2) % 'normalize' = normalize the leadfield % 'normalizeparam' = parameter for depth normalization (default = 0.5) % % If the dipole definition only specifies the dipole location, a rotating % dipole (regional source) is assumed on each location. If a dipole moment % is specified, its orientation will be used and only the strength will % be fitted to the data. % Copyright (C) 2003-2008, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if mod(nargin-5,2) % the first 5 arguments are fixed, the other arguments should come in pairs error('invalid number of optional arguments'); end % these optional settings do not have defaults Pr = ft_getopt(varargin, 'Pr'); Cr = ft_getopt(varargin, 'Cr'); refdip = ft_getopt(varargin, 'refdip'); powmethod = ft_getopt(varargin, 'powmethod'); % the default for this is set below realfilter = ft_getopt(varargin, 'realfilter'); % the default for this is set below subspace = ft_getopt(varargin, 'subspace'); % these settings pertain to the forward model, the defaults are set in compute_leadfield reducerank = ft_getopt(varargin, 'reducerank'); normalize = ft_getopt(varargin, 'normalize'); normalizeparam = ft_getopt(varargin, 'normalizeparam'); % these optional settings have defaults feedback = ft_getopt(varargin, 'feedback', 'text'); keepcsd = ft_getopt(varargin, 'keepcsd', 'no'); keepfilter = ft_getopt(varargin, 'keepfilter', 'no'); keepleadfield = ft_getopt(varargin, 'keepleadfield', 'no'); lambda = ft_getopt(varargin, 'lambda', 0); projectnoise = ft_getopt(varargin, 'projectnoise', 'yes'); fixedori = ft_getopt(varargin, 'fixedori', 'no'); % convert the yes/no arguments to the corresponding logical values keepcsd = strcmp(keepcsd, 'yes'); keepfilter = strcmp(keepfilter, 'yes'); keepleadfield = strcmp(keepleadfield, 'yes'); projectnoise = strcmp(projectnoise, 'yes'); fixedori = strcmp(fixedori, 'yes'); dofeedback = ~strcmp(feedback, 'none'); % FIXME besides regular/complex lambda1, also implement a real version % default is to use the largest singular value of the csd matrix, see Gross 2001 if isempty(powmethod) powmethod = 'lambda1'; end % default is to be consistent with the original description of DICS in Gross 2001 if isempty(realfilter) realfilter = 'no'; end % use these two logical flags instead of doing the string comparisons each time again powtrace = strcmp(powmethod, 'trace'); powlambda1 = strcmp(powmethod, 'lambda1'); if ~isempty(Cr) % ensure that the cross-spectral density with the reference signal is a column matrix Cr = Cr(:); end if isfield(dip, 'mom') && fixedori error('you cannot specify a dipole orientation and fixedmom simultaneously'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % find the dipole positions that are inside/outside the brain %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(dip, 'inside') dip.inside = ft_inside_vol(dip.pos, headmodel); end if any(dip.inside>1) % convert to logical representation tmp = false(size(dip.pos,1),1); tmp(dip.inside) = true; dip.inside = tmp; end % keep the original details on inside and outside positions originside = dip.inside; origpos = dip.pos; % flags to avoid calling isfield repeatedly in the loop over grid positions (saves a lot of time) hasmom = false; hasleadfield = false; hasfilter = false; hassubspace = false; % select only the dipole positions inside the brain for scanning dip.pos = dip.pos(originside,:); dip.inside = true(size(dip.pos,1),1); if isfield(dip, 'mom') hasmom = 1; dip.mom = dip.mom(:,originside); end if isfield(dip, 'leadfield') hasleadfield = 1; if dofeedback fprintf('using precomputed leadfields\n'); end dip.leadfield = dip.leadfield(originside); end if isfield(dip, 'filter') hasfilter = 1; if dofeedback fprintf('using precomputed filters\n'); end dip.filter = dip.filter(originside); end if isfield(dip, 'subspace') hassubspace = 1; if dofeedback fprintf('using subspace projection\n'); end dip.subspace = dip.subspace(originside); end % dics has the following sub-methods, which depend on the function input arguments % power only, cortico-muscular coherence and cortico-cortical coherence if ~isempty(Cr) && ~isempty(Pr) && isempty(refdip) % compute cortico-muscular coherence, using reference cross spectral density submethod = 'dics_refchan'; elseif isempty(Cr) && isempty(Pr) && ~isempty(refdip) % compute cortico-cortical coherence with a dipole at the reference position submethod = 'dics_refdip'; elseif isempty(Cr) && isempty(Pr) && isempty(refdip) % only compute power of a dipole at the grid positions submethod = 'dics_power'; else error('invalid combination of input arguments for dics'); end isrankdeficient = (rank(Cf)<size(Cf,1)); % it is difficult to give a quantitative estimate of lambda, therefore also % support relative (percentage) measure that can be specified as string (e.g. '10%') if ~isempty(lambda) && ischar(lambda) && lambda(end)=='%' ratio = sscanf(lambda, '%f%%'); ratio = ratio/100; lambda = ratio * trace(Cf)/size(Cf,1); end if projectnoise % estimate the noise power, which is further assumed to be equal and uncorrelated over channels if isrankdeficient % estimated noise floor is equal to or higher than lambda noise = lambda; else % estimate the noise level in the covariance matrix by the smallest singular value noise = svd(Cf); noise = noise(end); % estimated noise floor is equal to or higher than lambda noise = max(noise, lambda); end end % the inverse only has to be computed once for all dipoles if strcmp(realfilter, 'yes') % the filter is computed using only the leadfield and the inverse covariance or CSD matrix % therefore using the real-valued part of the CSD matrix here ensures a real-valued filter invCf = pinv(real(Cf) + lambda * eye(size(Cf))); else invCf = pinv(Cf + lambda * eye(size(Cf))); end if hassubspace if dofeedback fprintf('using source-specific subspace projection\n'); end % remember the original data prior to the voxel dependent subspace projection dat_pre_subspace = dat; Cf_pre_subspace = Cf; if strcmp(submethod, 'dics_refchan') Cr_pre_subspace = Cr; Pr_pre_subspace = Pr; end elseif ~isempty(subspace) if dofeedback fprintf('using data-specific subspace projection\n'); end % TODO implement an "eigenspace beamformer" as described in Sekihara et al. 2002 in HBM if numel(subspace)==1, % interpret this as a truncation of the eigenvalue-spectrum % if <1 it is a fraction of the largest eigenvalue % if >=1 it is the number of largest eigenvalues dat_pre_subspace = dat; Cf_pre_subspace = Cf; [u, s, v] = svd(real(Cf)); if subspace<1, sel = find(diag(s)./s(1,1) > subspace); subspace = max(sel); end Cf = s(1:subspace,1:subspace); % this is equivalent to subspace*Cf*subspace' but behaves well numerically % by construction. invCf = diag(1./diag(Cf)); subspace = u(:,1:subspace)'; if ~isempty(dat), dat = subspace*dat; end if strcmp(submethod, 'dics_refchan') Cr = subspace*Cr; end else Cf_pre_subspace = Cf; Cf = subspace*Cf*subspace'; % here the subspace can be different from % the singular vectors of Cy, so we have to do the sandwiching as opposed % to line 216 if strcmp(realfilter, 'yes') invCf = pinv(real(Cf)); else invCf = pinv(Cf); end if strcmp(submethod, 'dics_refchan') Cr = subspace*Cr; end end end % start the scanning with the proper metric ft_progress('init', feedback, 'scanning grid'); switch submethod %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % dics_power %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case 'dics_power' % only compute power of a dipole at the grid positions for i=1:size(dip.pos,1) if hasleadfield && hasmom && size(dip.mom, 1)==size(dip.leadfield{i}, 2) % reuse the leadfield that was previously computed and project lf = dip.leadfield{i} * dip.mom(:,i); elseif hasleadfield && hasmom % reuse the leadfield that was previously computed but don't project lf = dip.leadfield{i}; elseif hasleadfield && ~hasmom % reuse the leadfield that was previously computed lf = dip.leadfield{i}; elseif ~hasleadfield && hasmom % compute the leadfield for a fixed dipole orientation lf = ft_compute_leadfield(dip.pos(i,:), grad, headmodel, 'reducerank', reducerank, 'normalize', normalize, 'normalizeparam', normalizeparam) * dip.mom(:,i); else % compute the leadfield lf = ft_compute_leadfield(dip.pos(i,:), grad, headmodel, 'reducerank', reducerank, 'normalize', normalize, 'normalizeparam', normalizeparam); end if hassubspace % do subspace projection of the forward model lf = dip.subspace{i} * lf; % the cross-spectral density becomes voxel dependent due to the projection Cf = dip.subspace{i} * Cf_pre_subspace * dip.subspace{i}'; if strcmp(realfilter, 'yes') invCf = pinv(dip.subspace{i} * (real(Cf_pre_subspace) + lambda * eye(size(Cf_pre_subspace))) * dip.subspace{i}'); else invCf = pinv(dip.subspace{i} * (Cf_pre_subspace + lambda * eye(size(Cf_pre_subspace))) * dip.subspace{i}'); end elseif ~isempty(subspace) % do subspace projection of the forward model only lforig = lf; lf = subspace * lf; % according to Kensuke's paper, the eigenspace bf boils down to projecting % the 'traditional' filter onto the subspace % spanned by the first k eigenvectors [u,s,v] = svd(Cy); filt = ESES*filt; % ESES = u(:,1:k)*u(:,1:k)'; % however, even though it seems that the shape of the filter is identical to % the shape it is obtained with the following code, the w*lf=I does not % hold. end if hasfilter % use precomputed filter filt = dip.filter{i}; else % compute filter filt = pinv(lf' * invCf * lf) * lf' * invCf; % Gross eqn. 3, use PINV/SVD to cover rank deficient leadfield end if fixedori % use single dipole orientation if hasfilter && size(filt,1) == 1 % provided precomputed filter already projects to one % orientation, nothing to be done here else % find out the optimal dipole orientation [u, s, v] = svd(real(filt * Cf * ctranspose(filt))); maxpowori = u(:,1); eta = s(1,1)./s(2,2); % and compute the leadfield for that orientation lf = lf * maxpowori; dipout.ori{i} = maxpowori; dipout.eta(i) = eta; if ~isempty(subspace), lforig = lforig * maxpowori; end % recompute the filter to only use that orientation filt = pinv(lf' * invCf * lf) * lf' * invCf; end elseif hasfilter && size(filt,1) == 1 error('the precomputed filter you provided projects to a single dipole orientation, but you request fixedori=''no''; this is invalid. Either provide a filter with the three orientations retained, or specify fixedori=''yes''.'); end csd = filt * Cf * ctranspose(filt); % Gross eqn. 4 and 5 if powlambda1 if size(csd,1) == 1 % only 1 orientation, no need to do svd dipout.pow(i,1) = real(csd); else dipout.pow(i,1) = lambda1(csd); % compute the power at the dipole location, Gross eqn. 8 end elseif powtrace dipout.pow(i,1) = real(trace(csd)); % compute the power at the dipole location end if keepcsd dipout.csd{i,1} = csd; end if projectnoise if powlambda1 dipout.noise(i,1) = noise * lambda1(filt * ctranspose(filt)); elseif powtrace dipout.noise(i,1) = noise * real(trace(filt * ctranspose(filt))); end if keepcsd dipout.noisecsd{i,1} = noise * filt * ctranspose(filt); end end if keepfilter if ~isempty(subspace) dipout.filter{i,1} = filt*subspace; %FIXME should this be subspace, or pinv(subspace)? else dipout.filter{i,1} = filt; end end if keepleadfield if ~isempty(subspace) dipout.leadfield{i,1} = lforig; else dipout.leadfield{i,1} = lf; end end ft_progress(i/size(dip.pos,1), 'scanning grid %d/%d\n', i, size(dip.pos,1)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % dics_refchan %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case 'dics_refchan' % compute cortico-muscular coherence, using reference cross spectral density for i=1:size(dip.pos,1) if hasleadfield % reuse the leadfield that was previously computed lf = dip.leadfield{i}; elseif hasmom % compute the leadfield for a fixed dipole orientation lf = ft_compute_leadfield(dip.pos(i,:), grad, headmodel, 'reducerank', reducerank, 'normalize', normalize) .* dip.mom(i,:)'; else % compute the leadfield lf = ft_compute_leadfield(dip.pos(i,:), grad, headmodel, 'reducerank', reducerank, 'normalize', normalize); end if hassubspace % do subspace projection of the forward model lforig = lf; lf = dip.subspace{i} * lf; % the cross-spectral density becomes voxel dependent due to the projection Cf = dip.subspace{i} * Cf_pre_subspace * dip.subspace{i}'; invCf = pinv(dip.subspace{i} * (Cf_pre_subspace + lambda * eye(size(Cf))) * dip.subspace{i}'); elseif ~isempty(subspace) % do subspace projection of the forward model only lforig = lf; lf = subspace * lf; % according to Kensuke's paper, the eigenspace bf boils down to projecting % the 'traditional' filter onto the subspace % spanned by the first k eigenvectors [u,s,v] = svd(Cy); filt = ESES*filt; % ESES = u(:,1:k)*u(:,1:k)'; % however, even though it seems that the shape of the filter is identical to % the shape it is obtained with the following code, the w*lf=I does not % hold. end if hasfilter % use precomputed filter filt = dip.filter{i}; else % compute filter filt = pinv(lf' * invCf * lf) * lf' * invCf; % Gross eqn. 3, use PINV/SVD to cover rank deficient leadfield end if fixedori % use single dipole orientation if hasfilter && size(filt,1) == 1 % provided precomputed filter already projects to one % orientation, nothing to be done here else % find out the optimal dipole orientation [u, s, v] = svd(real(filt * Cf * ctranspose(filt))); maxpowori = u(:,1); % compute the leadfield for that orientation lf = lf * maxpowori; dipout.ori{i,1} = maxpowori; % recompute the filter to only use that orientation filt = pinv(lf' * invCf * lf) * lf' * invCf; end elseif hasfilter && size(filt,1) == 1 error('the precomputed filter you provided projects to a single dipole orientation, but you request fixedori=''no''; this is invalid. Either provide a filter with the three orientations retained, or specify fixedori=''yes''.'); end if powlambda1 [pow, ori] = lambda1(filt * Cf * ctranspose(filt)); % compute the power and orientation at the dipole location, Gross eqn. 4, 5 and 8 elseif powtrace pow = real(trace(filt * Cf * ctranspose(filt))); % compute the power at the dipole location end csd = filt*Cr; % Gross eqn. 6 if powlambda1 % FIXME this should use the dipole orientation with maximum power coh = lambda1(csd)^2 / (pow * Pr); % Gross eqn. 9 elseif powtrace coh = norm(csd)^2 / (pow * Pr); end dipout.pow(i,1) = pow; dipout.coh(i,1) = coh; if keepcsd dipout.csd{i,1} = csd; end if projectnoise if powlambda1 dipout.noise(i,1) = noise * lambda1(filt * ctranspose(filt)); elseif powtrace dipout.noise(i,1) = noise * real(trace(filt * ctranspose(filt))); end if keepcsd dipout.noisecsd{i,1} = noise * filt * ctranspose(filt); end end if keepfilter dipout.filter{i,1} = filt; end if keepleadfield if ~isempty(subspace) dipout.leadfield{i,1} = lforig; else dipout.leadfield{i,1} = lf; end end ft_progress(i/size(dip.pos,1), 'scanning grid %d/%d\n', i, size(dip.pos,1)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % dics_refdip %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case 'dics_refdip' if hassubspace || ~isempty(subspace) error('subspace projections are not supported for beaming cortico-cortical coherence'); end if fixedori error('fixed orientations are not supported for beaming cortico-cortical coherence'); end % compute cortio-cortical coherence with a dipole at the reference position lf1 = ft_compute_leadfield(refdip, grad, headmodel, 'reducerank', reducerank, 'normalize', normalize); % construct the spatial filter for the first (reference) dipole location filt1 = pinv(lf1' * invCf * lf1) * lf1' * invCf; % use PINV/SVD to cover rank deficient leadfield if powlambda1 Pref = lambda1(filt1 * Cf * ctranspose(filt1)); % compute the power at the first dipole location, Gross eqn. 8 elseif powtrace Pref = real(trace(filt1 * Cf * ctranspose(filt1))); % compute the power at the first dipole location end for i=1:size(dip.pos,1) if hasleadfield % reuse the leadfield that was previously computed lf2 = dip.leadfield{i}; elseif hasmom % compute the leadfield for a fixed dipole orientation lf2 = ft_compute_leadfield(dip.pos(i,:), grad, headmodel, 'reducerank', reducerank, 'normalize', normalize) .* dip.mom(i,:)'; else % compute the leadfield lf2 = ft_compute_leadfield(dip.pos(i,:), grad, headmodel, 'reducerank', reducerank, 'normalize', normalize); end if hasfilter % use the provided filter filt2 = dip.filter{i}; else % construct the spatial filter for the second dipole location filt2 = pinv(lf2' * invCf * lf2) * lf2' * invCf; % use PINV/SVD to cover rank deficient leadfield end csd = filt1 * Cf * ctranspose(filt2); % compute the cross spectral density between the two dipoles, Gross eqn. 4 if powlambda1 pow = lambda1(filt2 * Cf * ctranspose(filt2)); % compute the power at the second dipole location, Gross eqn. 8 elseif powtrace pow = real(trace(filt2 * Cf * ctranspose(filt2))); % compute the power at the second dipole location end if powlambda1 coh = lambda1(csd)^2 / (pow * Pref); % compute the coherence between the first and second dipole elseif powtrace coh = real(trace((csd)))^2 / (pow * Pref); % compute the coherence between the first and second dipole end dipout.pow(i,1) = pow; dipout.coh(i,1) = coh; if keepcsd dipout.csd{i,1} = csd; end if projectnoise if powlambda1 dipout.noise(i,1) = noise * lambda1(filt2 * ctranspose(filt2)); elseif powtrace dipout.noise(i,1) = noise * real(trace(filt2 * ctranspose(filt2))); end if keepcsd dipout.noisecsd{i,1} = noise * filt2 * ctranspose(filt2); end end if keepleadfield dipout.leadfield{i,1} = lf2; end ft_progress(i/size(dip.pos,1), 'scanning grid %d/%d\n', i, size(dip.pos,1)); end end % switch submethod ft_progress('close'); % wrap it all up, prepare the complete output dipout.inside = originside; dipout.pos = origpos; % reassign the scan values over the inside and outside grid positions if isfield(dipout, 'leadfield') dipout.leadfield( originside) = dipout.leadfield; dipout.leadfield(~originside) = {[]}; end if isfield(dipout, 'filter') dipout.filter( originside) = dipout.filter; dipout.filter(~originside) = {[]}; end if isfield(dipout, 'ori') dipout.ori( originside) = dipout.ori; dipout.ori(~originside) = {[]}; end if isfield(dipout, 'eta') dipout.eta( originside) = dipout.eta; dipout.eta(~originside) = nan; end if isfield(dipout, 'pow') dipout.pow( originside) = dipout.pow; dipout.pow(~originside) = nan; end if isfield(dipout, 'noise') dipout.noise( originside) = dipout.noise; dipout.noise(~originside) = nan; end if isfield(dipout, 'coh') dipout.coh( originside) = dipout.coh; dipout.coh(~originside) = nan; end if isfield(dipout, 'csd') dipout.csd( originside) = dipout.csd; dipout.csd(~originside) = {[]}; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to obtain the largest singular value %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [s, ori] = lambda1(x) % determine the largest singular value, which corresponds to the power along the dominant direction [u, s, v] = svd(x); s = s(1); ori = u(:,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to compute the pseudo inverse. This is the same as the % standard MATLAB function, except that the default tolerance is twice as % high. % Copyright 1984-2004 The MathWorks, Inc. % $Revision$ $Date: 2009/06/17 13:40:37 $ % default tolerance increased by factor 2 (Robert Oostenveld, 7 Feb 2004) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function X = pinv(A,varargin) [m,n] = size(A); if n > m X = pinv(A',varargin{:})'; else [U,S,V] = svd(A,0); if m > 1, s = diag(S); elseif m == 1, s = S(1); else s = 0; end if nargin == 2 tol = varargin{1}; else tol = 10 * max(m,n) * max(s) * eps; end r = sum(s > tol); if (r == 0) X = zeros(size(A'),class(A)); else s = diag(ones(r,1)./s(1:r)); X = V(:,1:r)*s*U(:,1:r)'; end end
github
lcnhappe/happe-master
ft_sloreta.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/inverse/ft_sloreta.m
16,166
utf_8
80ba97c0f6bbf9828825f37d58664d9f
function [dipout] = ft_sloreta(dip, grad, headmodel, dat, Cy, varargin) % ft_sloreta scans on pre-defined dipole locations with a single dipole % and returns the sLORETA spatial filter output for a dipole on every % location. Dipole locations that are outside the head will return a % NaN value. Adapted from beamformer_lcmv.m % % Use as % [dipout] = beamformer_lcmv(dipin, grad, headmodel, dat, cov, varargin) % where % dipin is the input dipole model % grad is the gradiometer definition % headmodel is the volume conductor definition % dat is the data matrix with the ERP or ERF % cov is the data covariance or cross-spectral density matrix % and % dipout is the resulting dipole model with all details % % The input dipole model consists of % dipin.pos positions for dipole, e.g. regular grid, Npositions x 3 % dipin.mom dipole orientation (optional), 3 x Npositions % % Additional options should be specified in key-value pairs and can be % 'lambda' = regularisation parameter % 'powmethod' = can be 'trace' or 'lambda1' % 'feedback' = give ft_progress indication, can be 'text', 'gui' or 'none' (default) % 'fixedori' = use fixed or free orientation, can be 'yes' or 'no' % 'projectnoise' = project noise estimate through filter, can be 'yes' or 'no' % 'projectmom' = project the dipole moment timecourse on the direction of maximal power, can be 'yes' or 'no' % 'keepfilter' = remember the beamformer filter, can be 'yes' or 'no' % 'keepleadfield' = remember the forward computation, can be 'yes' or 'no' % 'keepmom' = remember the estimated dipole moment timeseries, can be 'yes' or 'no' % 'keepcov' = remember the estimated dipole covariance, can be 'yes' or 'no' % 'kurtosis' = compute the kurtosis of the dipole timeseries, can be 'yes' or 'no' % % These options influence the forward computation of the leadfield % 'reducerank' = reduce the leadfield rank, can be 'no' or a number (e.g. 2) % 'normalize' = normalize the leadfield % 'normalizeparam' = parameter for depth normalization (default = 0.5) % % If the dipole definition only specifies the dipole location, a rotating % dipole (regional source) is assumed on each location. If a dipole moment % is specified, its orientation will be used and only the strength will % be fitted to the data. % Copyright (C) 2016, Sarang Dalal % based on code Copyright (C) 2003-2014, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % if mod(nargin-5,2) % the first 5 arguments are fixed, the other arguments should come in pairs error('invalid number of optional arguments'); end % these optional settings do not have defaults powmethod = ft_getopt(varargin, 'powmethod'); % the default for this is set below subspace = ft_getopt(varargin, 'subspace'); % used to implement an "eigenspace beamformer" as described in Sekihara et al. 2002 in HBM % these settings pertain to the forward model, the defaults are set in compute_leadfield reducerank = ft_getopt(varargin, 'reducerank'); normalize = ft_getopt(varargin, 'normalize'); normalizeparam = ft_getopt(varargin, 'normalizeparam'); % these optional settings have defaults feedback = ft_getopt(varargin, 'feedback', 'text'); keepfilter = ft_getopt(varargin, 'keepfilter', 'no'); keepleadfield = ft_getopt(varargin, 'keepleadfield', 'no'); keepcov = ft_getopt(varargin, 'keepcov', 'no'); keepmom = ft_getopt(varargin, 'keepmom', 'yes'); lambda = ft_getopt(varargin, 'lambda', 0); projectnoise = ft_getopt(varargin, 'projectnoise', 'yes'); projectmom = ft_getopt(varargin, 'projectmom', 'no'); fixedori = ft_getopt(varargin, 'fixedori', 'no'); computekurt = ft_getopt(varargin, 'kurtosis', 'no'); weightnorm = ft_getopt(varargin, 'weightnorm', 'no'); % convert the yes/no arguments to the corresponding logical values keepfilter = istrue(keepfilter); keepleadfield = istrue(keepleadfield); keepcov = istrue(keepcov); keepmom = istrue(keepmom); projectnoise = istrue(projectnoise); projectmom = istrue(projectmom); fixedori = istrue(fixedori); computekurt = istrue(computekurt); % default is to use the trace of the covariance matrix, see Van Veen 1997 if isempty(powmethod) powmethod = 'trace'; end % use these two logical flags instead of doing the string comparisons each time again powtrace = strcmp(powmethod, 'trace'); powlambda1 = strcmp(powmethod, 'lambda1'); if isfield(dip, 'mom') && fixedori error('you cannot specify a dipole orientation and fixedmom simultaneously'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % find the dipole positions that are inside/outside the brain %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(dip, 'inside') dip.inside = ft_inside_vol(dip.pos, headmodel); end if any(dip.inside>1) % convert to logical representation tmp = false(size(dip.pos,1),1); tmp(dip.inside) = true; dip.inside = tmp; end % keep the original details on inside and outside positions originside = dip.inside; origpos = dip.pos; % select only the dipole positions inside the brain for scanning dip.pos = dip.pos(originside,:); dip.inside = true(size(dip.pos,1),1); if isfield(dip, 'mom') dip.mom = dip.mom(:, originside); end if isfield(dip, 'leadfield') fprintf('using precomputed leadfields\n'); dip.leadfield = dip.leadfield(originside); end if isfield(dip, 'filter') fprintf('using precomputed filters\n'); dip.filter = dip.filter(originside); end if isfield(dip, 'subspace') fprintf('using subspace projection\n'); dip.subspace = dip.subspace(originside); end isrankdeficient = (rank(Cy)<size(Cy,1)); % it is difficult to give a quantitative estimate of lambda, therefore also % support relative (percentage) measure that can be specified as string (e.g. '10%') if ~isempty(lambda) && ischar(lambda) && lambda(end)=='%' ratio = sscanf(lambda, '%f%%'); ratio = ratio/100; lambda = ratio * trace(Cy)/size(Cy,1); end if projectnoise % estimate the noise power, which is further assumed to be equal and uncorrelated over channels if isrankdeficient % estimated noise floor is equal to or higher than lambda noise = lambda; else % estimate the noise level in the covariance matrix by the smallest singular value noise = svd(Cy); noise = noise(end); % estimated noise floor is equal to or higher than lambda noise = max(noise, lambda); end end % the inverse only has to be computed once for all dipoles invCy = pinv(Cy + lambda * eye(size(Cy))); if isfield(dip, 'subspace') fprintf('using source-specific subspace projection\n'); % remember the original data prior to the voxel dependent subspace projection dat_pre_subspace = dat; Cy_pre_subspace = Cy; elseif ~isempty(subspace) % TODO implement an "eigenspace beamformer" as described in Sekihara et al. 2002 in HBM fprintf('using data-specific subspace projection\n'); if numel(subspace)==1, % interpret this as a truncation of the eigenvalue-spectrum % if <1 it is a fraction of the largest eigenvalue % if >=1 it is the number of largest eigenvalues dat_pre_subspace = dat; Cy_pre_subspace = Cy; [u, s, v] = svd(real(Cy)); if subspace<1, subspace = find(diag(s)./s(1,1) > subspace, 1, 'last'); end Cy = s(1:subspace,1:subspace); % this is equivalent to subspace*Cy*subspace' but behaves well numerically by construction. invCy = diag(1./diag(Cy + lambda * eye(size(Cy)))); subspace = u(:,1:subspace)'; dat = subspace*dat; else dat_pre_subspace = dat; Cy_pre_subspace = Cy; Cy = subspace*Cy*subspace'; % here the subspace can be different from the singular vectors of Cy, so we % have to do the sandwiching as opposed to line 216 invCy = pinv(Cy); dat = subspace*dat; end end % start the scanning with the proper metric ft_progress('init', feedback, 'scanning grid'); for i=1:size(dip.pos,1) if isfield(dip, 'leadfield') && isfield(dip, 'mom') && size(dip.mom, 1)==size(dip.leadfield{i}, 2) % reuse the leadfield that was previously computed and project lf = dip.leadfield{i} * dip.mom(:,i); elseif isfield(dip, 'leadfield') && isfield(dip, 'mom') % reuse the leadfield that was previously computed but don't project lf = dip.leadfield{i}; elseif isfield(dip, 'leadfield') && ~isfield(dip, 'mom') % reuse the leadfield that was previously computed lf = dip.leadfield{i}; elseif ~isfield(dip, 'leadfield') && isfield(dip, 'mom') % compute the leadfield for a fixed dipole orientation lf = ft_compute_leadfield(dip.pos(i,:), grad, headmodel, 'reducerank', reducerank, 'normalize', normalize, 'normalizeparam', normalizeparam) * dip.mom(:,i); else % compute the leadfield lf = ft_compute_leadfield(dip.pos(i,:), grad, headmodel, 'reducerank', reducerank, 'normalize', normalize, 'normalizeparam', normalizeparam); end if isfield(dip, 'subspace') % do subspace projection of the forward model lf = dip.subspace{i} * lf; % the data and the covariance become voxel dependent due to the projection dat = dip.subspace{i} * dat_pre_subspace; Cy = dip.subspace{i} * (Cy_pre_subspace + lambda * eye(size(Cy_pre_subspace))) * dip.subspace{i}'; invCy = pinv(dip.subspace{i} * (Cy_pre_subspace + lambda * eye(size(Cy_pre_subspace))) * dip.subspace{i}'); elseif ~isempty(subspace) % do subspace projection of the forward model only lforig = lf; lf = subspace * lf; % according to Kensuke's paper, the eigenspace bf boils down to projecting % the 'traditional' filter onto the subspace % spanned by the first k eigenvectors [u,s,v] = svd(Cy); filt = ESES*filt; % ESES = u(:,1:k)*u(:,1:k)'; % however, even though it seems that the shape of the filter is identical to % the shape it is obtained with the following code, the w*lf=I does not hold. end G = lf * lf'; % Gram matrix invG = inv(G + lambda * eye(size(G))); % regularized G^-1 if fixedori [vv, dd] = eig(pinv(lf' * invG * lf) * lf' * invG * Cy * invG * lf); % eqn 13.22 from Sekihara & Nagarajan 2008 for sLORETA [~,maxeig]=max(diag(dd)); eta = vv(:,maxeig); lf = lf * eta; if ~isempty(subspace), lforig = lforig * eta; end dipout.ori{i} = eta; end if isfield(dip, 'filter') % use the provided filter filt = dip.filter{i}; else % construct the spatial filter % sLORETA: if orthogonal components are retained (i.e., fixedori = 'no') % then weight for each lead field column must be calculated separately for ii=1:size(lf,2) filt(ii,:) = pinv(sqrt(lf(:,ii)' * invG * lf(:,ii))) * lf(:,ii)' * invG; end end if(any(~isreal(filt))) error('spatial filter has complex values -- did you set lambda properly?'); end if projectmom [u, s, v] = svd(filt * Cy * ctranspose(filt)); mom = u(:,1); % dominant dipole direction filt = (mom') * filt; end if powlambda1 % dipout.pow(i) = lambda1(pinv(lf' * invCy * lf)); % this is more efficient if the filters are not present dipout.pow(i,1) = lambda1(filt * Cy * ctranspose(filt)); % this is more efficient if the filters are present elseif powtrace % dipout.pow(i) = trace(pinv(lf' * invCy * lf)); % this is more efficient if the filters are not present, van Veen eqn. 24 dipout.pow(i,1) = trace(filt * Cy * ctranspose(filt)); % this is more efficient if the filters are present end if keepcov % compute the source covariance matrix dipout.cov{i,1} = filt * Cy * ctranspose(filt); end if keepmom && ~isempty(dat) % estimate the instantaneous dipole moment at the current position dipout.mom{i,1} = filt * dat; end if computekurt && ~isempty(dat) % compute the kurtosis of the dipole time series dipout.kurtosis(i,:) = kurtosis((filt*dat)'); end if projectnoise % estimate the power of the noise that is projected through the filter if powlambda1 dipout.noise(i,1) = noise * lambda1(filt * ctranspose(filt)); elseif powtrace dipout.noise(i,1) = noise * trace(filt * ctranspose(filt)); end if keepcov dipout.noisecov{i,1} = noise * filt * ctranspose(filt); end end if keepfilter if ~isempty(subspace) dipout.filter{i,1} = filt*subspace; %dipout.filter{i} = filt*pinv(subspace); else dipout.filter{i,1} = filt; end end if keepleadfield if ~isempty(subspace) dipout.leadfield{i,1} = lforig; else dipout.leadfield{i,1} = lf; end end ft_progress(i/size(dip.pos,1), 'scanning grid %d/%d\n', i, size(dip.pos,1)); end ft_progress('close'); % reassign the scan values over the inside and outside grid positions dipout.pos = origpos; dipout.inside = originside; if isfield(dipout, 'leadfield') dipout.leadfield( originside) = dipout.leadfield; dipout.leadfield(~originside) = {[]}; end if isfield(dipout, 'filter') dipout.filter( originside) = dipout.filter; dipout.filter(~originside) = {[]}; end if isfield(dipout, 'mom') dipout.mom( originside) = dipout.mom; dipout.mom(~originside) = {[]}; end if isfield(dipout, 'ori') dipout.ori( originside) = dipout.ori; dipout.ori(~originside) = {[]}; end if isfield(dipout, 'cov') dipout.cov( originside) = dipout.cov; dipout.cov(~originside) = {[]}; end if isfield(dipout, 'noisecov') dipout.noisecov( originside) = dipout.noisecov; dipout.noisecov(~originside) = {[]}; end if isfield(dipout, 'pow') dipout.pow( originside) = dipout.pow; dipout.pow(~originside) = nan; end if isfield(dipout, 'noise') dipout.noise( originside) = dipout.noise; dipout.noise(~originside) = nan; end if isfield(dipout, 'kurtosis') dipout.kurtosis( originside) = dipout.kurtosis; dipout.kurtosis(~originside) = nan; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to obtain the largest singular value %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function s = lambda1(x) % determine the largest singular value, which corresponds to the power along the dominant direction s = svd(x); s = s(1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to compute the pseudo inverse. This is the same as the % standard MATLAB function, except that the default tolerance is twice as % high. % Copyright 1984-2004 The MathWorks, Inc. % $Revision: 10541 $ $Date: 2009/03/23 21:14:42 $ % default tolerance increased by factor 2 (Robert Oostenveld, 7 Feb 2004) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function X = pinv(A,varargin) [m,n] = size(A); if n > m X = pinv(A',varargin{:})'; else [U,S,V] = svd(A,0); if m > 1, s = diag(S); elseif m == 1, s = S(1); else s = 0; end if nargin == 2 tol = varargin{1}; else tol = 10 * max(m,n) * max(s) * eps; end r = sum(s > tol); if (r == 0) X = zeros(size(A'),class(A)); else s = diag(ones(r,1)./s(1:r)); X = V(:,1:r)*s*U(:,1:r)'; end end
github
lcnhappe/happe-master
beamformer_lcmv.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/inverse/beamformer_lcmv.m
17,369
utf_8
2cfd8f53b59635586786d35fb121f695
function [dipout] = beamformer_lcmv(dip, grad, headmodel, dat, Cy, varargin) % BEAMFORMER_LCMV scans on pre-defined dipole locations with a single dipole % and returns the beamformer spatial filter output for a dipole on every % location. Dipole locations that are outside the head will return a % NaN value. % % Use as % [dipout] = beamformer_lcmv(dipin, grad, headmodel, dat, cov, varargin) % where % dipin is the input dipole model % grad is the gradiometer definition % headmodel is the volume conductor definition % dat is the data matrix with the ERP or ERF % cov is the data covariance or cross-spectral density matrix % and % dipout is the resulting dipole model with all details % % The input dipole model consists of % dipin.pos positions for dipole, e.g. regular grid, Npositions x 3 % dipin.mom dipole orientation (optional), 3 x Npositions % % Additional options should be specified in key-value pairs and can be % 'lambda' = regularisation parameter % 'powmethod' = can be 'trace' or 'lambda1' % 'feedback' = give ft_progress indication, can be 'text', 'gui' or 'none' (default) % 'fixedori' = use fixed or free orientation, can be 'yes' or 'no' % 'projectnoise' = project noise estimate through filter, can be 'yes' or 'no' % 'projectmom' = project the dipole moment timecourse on the direction of maximal power, can be 'yes' or 'no' % 'keepfilter' = remember the beamformer filter, can be 'yes' or 'no' % 'keepleadfield' = remember the forward computation, can be 'yes' or 'no' % 'keepmom' = remember the estimated dipole moment timeseries, can be 'yes' or 'no' % 'keepcov' = remember the estimated dipole covariance, can be 'yes' or 'no' % 'kurtosis' = compute the kurtosis of the dipole timeseries, can be 'yes' or 'no' % % These options influence the forward computation of the leadfield % 'reducerank' = reduce the leadfield rank, can be 'no' or a number (e.g. 2) % 'normalize' = normalize the leadfield % 'normalizeparam' = parameter for depth normalization (default = 0.5) % % If the dipole definition only specifies the dipole location, a rotating % dipole (regional source) is assumed on each location. If a dipole moment % is specified, its orientation will be used and only the strength will % be fitted to the data. % Copyright (C) 2003-2014, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ if mod(nargin-5,2) % the first 5 arguments are fixed, the other arguments should come in pairs error('invalid number of optional arguments'); end % these optional settings do not have defaults powmethod = ft_getopt(varargin, 'powmethod'); % the default for this is set below subspace = ft_getopt(varargin, 'subspace'); % used to implement an "eigenspace beamformer" as described in Sekihara et al. 2002 in HBM % these settings pertain to the forward model, the defaults are set in compute_leadfield reducerank = ft_getopt(varargin, 'reducerank'); normalize = ft_getopt(varargin, 'normalize'); normalizeparam = ft_getopt(varargin, 'normalizeparam'); % these optional settings have defaults feedback = ft_getopt(varargin, 'feedback', 'text'); keepfilter = ft_getopt(varargin, 'keepfilter', 'no'); keepleadfield = ft_getopt(varargin, 'keepleadfield', 'no'); keepcov = ft_getopt(varargin, 'keepcov', 'no'); keepmom = ft_getopt(varargin, 'keepmom', 'yes'); lambda = ft_getopt(varargin, 'lambda', 0); projectnoise = ft_getopt(varargin, 'projectnoise', 'yes'); projectmom = ft_getopt(varargin, 'projectmom', 'no'); fixedori = ft_getopt(varargin, 'fixedori', 'no'); computekurt = ft_getopt(varargin, 'kurtosis', 'no'); weightnorm = ft_getopt(varargin, 'weightnorm', 'no'); % convert the yes/no arguments to the corresponding logical values keepfilter = istrue(keepfilter); keepleadfield = istrue(keepleadfield); keepcov = istrue(keepcov); keepmom = istrue(keepmom); projectnoise = istrue(projectnoise); projectmom = istrue(projectmom); fixedori = istrue(fixedori); computekurt = istrue(computekurt); % default is to use the trace of the covariance matrix, see Van Veen 1997 if isempty(powmethod) powmethod = 'trace'; end % use these two logical flags instead of doing the string comparisons each time again powtrace = strcmp(powmethod, 'trace'); powlambda1 = strcmp(powmethod, 'lambda1'); if isfield(dip, 'mom') && fixedori error('you cannot specify a dipole orientation and fixedmom simultaneously'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % find the dipole positions that are inside/outside the brain %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(dip, 'inside') dip.inside = ft_inside_vol(dip.pos, headmodel); end if any(dip.inside>1) % convert to logical representation tmp = false(size(dip.pos,1),1); tmp(dip.inside) = true; dip.inside = tmp; end % keep the original details on inside and outside positions originside = dip.inside; origpos = dip.pos; % select only the dipole positions inside the brain for scanning dip.pos = dip.pos(originside,:); dip.inside = true(size(dip.pos,1),1); if isfield(dip, 'mom') dip.mom = dip.mom(:, originside); end if isfield(dip, 'leadfield') fprintf('using precomputed leadfields\n'); dip.leadfield = dip.leadfield(originside); end if isfield(dip, 'filter') fprintf('using precomputed filters\n'); dip.filter = dip.filter(originside); end if isfield(dip, 'subspace') fprintf('using subspace projection\n'); dip.subspace = dip.subspace(originside); end isrankdeficient = (rank(Cy)<size(Cy,1)); % it is difficult to give a quantitative estimate of lambda, therefore also % support relative (percentage) measure that can be specified as string (e.g. '10%') if ~isempty(lambda) && ischar(lambda) && lambda(end)=='%' ratio = sscanf(lambda, '%f%%'); ratio = ratio/100; lambda = ratio * trace(Cy)/size(Cy,1); end if projectnoise % estimate the noise power, which is further assumed to be equal and uncorrelated over channels if isrankdeficient % estimated noise floor is equal to or higher than lambda noise = lambda; else % estimate the noise level in the covariance matrix by the smallest singular value noise = svd(Cy); noise = noise(end); % estimated noise floor is equal to or higher than lambda noise = max(noise, lambda); end end % the inverse only has to be computed once for all dipoles invCy = pinv(Cy + lambda * eye(size(Cy))); if isfield(dip, 'subspace') fprintf('using source-specific subspace projection\n'); % remember the original data prior to the voxel dependent subspace projection dat_pre_subspace = dat; Cy_pre_subspace = Cy; elseif ~isempty(subspace) % TODO implement an "eigenspace beamformer" as described in Sekihara et al. 2002 in HBM fprintf('using data-specific subspace projection\n'); if numel(subspace)==1, % interpret this as a truncation of the eigenvalue-spectrum % if <1 it is a fraction of the largest eigenvalue % if >=1 it is the number of largest eigenvalues dat_pre_subspace = dat; Cy_pre_subspace = Cy; [u, s, v] = svd(real(Cy)); if subspace<1, subspace = find(diag(s)./s(1,1) > subspace, 1, 'last'); end Cy = s(1:subspace,1:subspace); % this is equivalent to subspace*Cy*subspace' but behaves well numerically by construction. invCy = diag(1./diag(Cy + lambda * eye(size(Cy)))); subspace = u(:,1:subspace)'; dat = subspace*dat; else dat_pre_subspace = dat; Cy_pre_subspace = Cy; Cy = subspace*Cy*subspace'; % here the subspace can be different from the singular vectors of Cy, so we % have to do the sandwiching as opposed to line 216 invCy = pinv(Cy); dat = subspace*dat; end end % start the scanning with the proper metric ft_progress('init', feedback, 'scanning grid'); for i=1:size(dip.pos,1) if isfield(dip, 'leadfield') && isfield(dip, 'mom') && size(dip.mom, 1)==size(dip.leadfield{i}, 2) % reuse the leadfield that was previously computed and project lf = dip.leadfield{i} * dip.mom(:,i); elseif isfield(dip, 'leadfield') && isfield(dip, 'mom') % reuse the leadfield that was previously computed but don't project lf = dip.leadfield{i}; elseif isfield(dip, 'leadfield') && ~isfield(dip, 'mom') % reuse the leadfield that was previously computed lf = dip.leadfield{i}; elseif ~isfield(dip, 'leadfield') && isfield(dip, 'mom') % compute the leadfield for a fixed dipole orientation lf = ft_compute_leadfield(dip.pos(i,:), grad, headmodel, 'reducerank', reducerank, 'normalize', normalize, 'normalizeparam', normalizeparam) * dip.mom(:,i); else % compute the leadfield lf = ft_compute_leadfield(dip.pos(i,:), grad, headmodel, 'reducerank', reducerank, 'normalize', normalize, 'normalizeparam', normalizeparam); end if isfield(dip, 'subspace') % do subspace projection of the forward model lf = dip.subspace{i} * lf; % the data and the covariance become voxel dependent due to the projection dat = dip.subspace{i} * dat_pre_subspace; Cy = dip.subspace{i} * (Cy_pre_subspace + lambda * eye(size(Cy_pre_subspace))) * dip.subspace{i}'; invCy = pinv(dip.subspace{i} * (Cy_pre_subspace + lambda * eye(size(Cy_pre_subspace))) * dip.subspace{i}'); elseif ~isempty(subspace) % do subspace projection of the forward model only lforig = lf; lf = subspace * lf; % according to Kensuke's paper, the eigenspace bf boils down to projecting % the 'traditional' filter onto the subspace % spanned by the first k eigenvectors [u,s,v] = svd(Cy); filt = ESES*filt; % ESES = u(:,1:k)*u(:,1:k)'; % however, even though it seems that the shape of the filter is identical to % the shape it is obtained with the following code, the w*lf=I does not hold. end if fixedori switch(weightnorm) case {'unitnoisegain','nai'}; % optimal orientation calculation for unit-noise gain beamformer, % (also applies to similar NAI), based on equation 4.47 from Sekihara & Nagarajan (2008) [vv, dd] = eig(pinv(lf' * invCy^2 *lf)*(lf' * invCy *lf)); [~,maxeig]=max(diag(dd)); eta = vv(:,maxeig); lf = lf * eta; if ~isempty(subspace), lforig = lforig * eta; end dipout.ori{i} = eta; otherwise % compute the leadfield for the optimal dipole orientation % subsequently the leadfield for only that dipole orientation will be used for the final filter computation % filt = pinv(lf' * invCy * lf) * lf' * invCy; % [u, s, v] = svd(real(filt * Cy * ctranspose(filt))); % in this step the filter computation is not necessary, use the quick way to compute the voxel level covariance (cf. van Veen 1997) [u, s, v] = svd(real(pinv(lf' * invCy *lf))); eta = u(:,1); lf = lf * eta; if ~isempty(subspace), lforig = lforig * eta; end dipout.ori{i} = eta; end end if isfield(dip, 'filter') % use the provided filter filt = dip.filter{i}; elseif strcmp(weightnorm,'nai') % Van Veen's Neural Activity Index % below equation is equivalent to following: % filt = pinv(lf' * invCy * lf) * lf' * invCy; % filt = filt/sqrt(noise*filt*filt'); filt = pinv(sqrt(noise * lf' * invCy^2 * lf)) * lf' *invCy; % based on Sekihara & Nagarajan 2008 eqn. 4.15 elseif strcmp(weightnorm,'unitnoisegain') % Unit-noise gain minimum variance (aka Borgiotti-Kaplan) beamformer % below equation is equivalent to following: % filt = pinv(lf' * invCy * lf) * lf' * invCy; % filt = filt/sqrt(filt*filt'); filt = pinv(sqrt(lf' * invCy^2 * lf)) * lf' *invCy; % Sekihara & Nagarajan 2008 eqn. 4.15 else % construct the spatial filter filt = pinv(lf' * invCy * lf) * lf' * invCy; % van Veen eqn. 23, use PINV/SVD to cover rank deficient leadfield end if projectmom [u, s, v] = svd(filt * Cy * ctranspose(filt)); mom = u(:,1); % dominant dipole direction filt = (mom') * filt; end if powlambda1 % dipout.pow(i) = lambda1(pinv(lf' * invCy * lf)); % this is more efficient if the filters are not present dipout.pow(i,1) = lambda1(filt * Cy * ctranspose(filt)); % this is more efficient if the filters are present elseif powtrace % dipout.pow(i) = trace(pinv(lf' * invCy * lf)); % this is more efficient if the filters are not present, van Veen eqn. 24 dipout.pow(i,1) = trace(filt * Cy * ctranspose(filt)); % this is more efficient if the filters are present end if keepcov % compute the source covariance matrix dipout.cov{i,1} = filt * Cy * ctranspose(filt); end if keepmom && ~isempty(dat) % estimate the instantaneous dipole moment at the current position dipout.mom{i,1} = filt * dat; end if computekurt && ~isempty(dat) % compute the kurtosis of the dipole time series dipout.kurtosis(i,:) = kurtosis((filt*dat)'); end if projectnoise % estimate the power of the noise that is projected through the filter if powlambda1 dipout.noise(i,1) = noise * lambda1(filt * ctranspose(filt)); elseif powtrace dipout.noise(i,1) = noise * trace(filt * ctranspose(filt)); end if keepcov dipout.noisecov{i,1} = noise * filt * ctranspose(filt); end end if keepfilter if ~isempty(subspace) dipout.filter{i,1} = filt*subspace; %dipout.filter{i} = filt*pinv(subspace); else dipout.filter{i,1} = filt; end end if keepleadfield if ~isempty(subspace) dipout.leadfield{i,1} = lforig; else dipout.leadfield{i,1} = lf; end end ft_progress(i/size(dip.pos,1), 'scanning grid %d/%d\n', i, size(dip.pos,1)); end ft_progress('close'); % reassign the scan values over the inside and outside grid positions dipout.pos = origpos; dipout.inside = originside; if isfield(dipout, 'leadfield') dipout.leadfield( originside) = dipout.leadfield; dipout.leadfield(~originside) = {[]}; end if isfield(dipout, 'filter') dipout.filter( originside) = dipout.filter; dipout.filter(~originside) = {[]}; end if isfield(dipout, 'mom') dipout.mom( originside) = dipout.mom; dipout.mom(~originside) = {[]}; end if isfield(dipout, 'ori') dipout.ori( originside) = dipout.ori; dipout.ori(~originside) = {[]}; end if isfield(dipout, 'cov') dipout.cov( originside) = dipout.cov; dipout.cov(~originside) = {[]}; end if isfield(dipout, 'noisecov') dipout.noisecov( originside) = dipout.noisecov; dipout.noisecov(~originside) = {[]}; end if isfield(dipout, 'pow') dipout.pow( originside) = dipout.pow; dipout.pow(~originside) = nan; end if isfield(dipout, 'noise') dipout.noise( originside) = dipout.noise; dipout.noise(~originside) = nan; end if isfield(dipout, 'kurtosis') dipout.kurtosis( originside) = dipout.kurtosis; dipout.kurtosis(~originside) = nan; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to obtain the largest singular value %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function s = lambda1(x) % determine the largest singular value, which corresponds to the power along the dominant direction s = svd(x); s = s(1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to compute the pseudo inverse. This is the same as the % standard MATLAB function, except that the default tolerance is twice as % high. % Copyright 1984-2004 The MathWorks, Inc. % $Revision$ $Date: 2009/03/23 21:14:42 $ % default tolerance increased by factor 2 (Robert Oostenveld, 7 Feb 2004) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function X = pinv(A,varargin) [m,n] = size(A); if n > m X = pinv(A',varargin{:})'; else [U,S,V] = svd(A,0); if m > 1, s = diag(S); elseif m == 1, s = S(1); else s = 0; end if nargin == 2 tol = varargin{1}; else tol = 10 * max(m,n) * max(s) * eps; end r = sum(s > tol); if (r == 0) X = zeros(size(A'),class(A)); else s = diag(ones(r,1)./s(1:r)); X = V(:,1:r)*s*U(:,1:r)'; end end
github
lcnhappe/happe-master
dipole_fit.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/inverse/dipole_fit.m
14,489
utf_8
b89f3d077a26265e017c4fd90d2fb7ac
function [dipout] = dipole_fit(dip, sens, headmodel, dat, varargin) % DIPOLE_FIT performs an equivalent current dipole fit with a single % or a small number of dipoles to explain an EEG or MEG scalp topography. % % Use as % [dipout] = dipole_fit(dip, sens, headmodel, dat, ...) % % Additional input arguments should be specified as key-value pairs and can include % 'constr' = Structure with constraints % 'display' = Level of display [ off | iter | notify | final ] % 'optimfun' = Function to use [fminsearch | fminunc ] % 'maxiter' = Maximum number of function evaluations allowed [ positive integer ] % 'metric' = Error measure to be minimised [ rv | var | abs ] % 'checkinside' = Boolean flag to check whether dipole is inside source compartment [ 0 | 1 ] % 'weight' = weight matrix for maximum likelihood estimation, e.g. inverse noise covariance % % The following optional input arguments relate to the computation of the leadfields % 'reducerank' = 'no' or number % 'normalize' = 'no', 'yes' or 'column' % 'normalizeparam' = parameter for depth normalization (default = 0.5) % % The constraints on the source model are specified in a structure % constr.symmetry = boolean, dipole positions are symmetrically coupled to each other % constr.fixedori = boolean, keep dipole orientation fixed over whole data window % constr.rigidbody = boolean, keep relative position of multiple dipoles fixed % constr.mirror = vector, used for symmetric dipole models % constr.reduce = vector, used for symmetric dipole models % constr.expand = vector, used for symmetric dipole models % constr.sequential = boolean, fit different dipoles to sequential slices of the data % % The maximum likelihood estimation implements % Lutkenhoner B. "Dipole source localization by means of maximum % likelihood estimation I. Theory and simulations" Electroencephalogr Clin % Neurophysiol. 1998 Apr;106(4):314-21. % Copyright (C) 2003-2016, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % It is neccessary to provide backward compatibility support for the old function call % in case people want to use it in conjunction with EEGLAB and the dipfit1 plugin. % old style: function [dipout] = dipole_fit(dip, dat, sens, headmodel, constr), where constr is optional % new style: function [dipout] = dipole_fit(dip, sens, headmodel, dat, varargin), where varargin is in key-value pairs if nargin==4 && ~isstruct(sens) && isstruct(dat) % looks like old style, the order of the input arguments has to be changed warning('converting from old style input\n'); olddat = sens; oldsens = headmodel; oldhdm = dat; dat = olddat; sens = oldsens; headmodel = oldhdm; elseif nargin==5 && ~isstruct(sens) && isstruct(dat) % looks like old style, the order of the input arguments has to be changed % furthermore the additional constraint has to be fixed warning('converting from old style input\n'); olddat = sens; oldsens = headmodel; oldhdm = dat; dat = olddat; sens = oldsens; headmodel = oldhdm; varargin = {'constr', varargin{1}}; % convert into a key-value pair else % looks like new style, i.e. with optional key-value arguments % this is dealt with below end constr = ft_getopt(varargin, 'constr' ); % default is not to have constraints metric = ft_getopt(varargin, 'metric', 'rv'); checkinside = ft_getopt(varargin, 'checkinside', false); display = ft_getopt(varargin, 'display', 'iter'); optimfun = ft_getopt(varargin, 'optimfun' ); if isa(optimfun, 'char'), optimfun = str2func(optimfun); end maxiter = ft_getopt(varargin, 'maxiter' ); reducerank = ft_getopt(varargin, 'reducerank' ); % for leadfield computation normalize = ft_getopt(varargin, 'normalize' ); % for leadfield computation normalizeparam = ft_getopt(varargin, 'normalizeparam' ); % for leadfield computation weight = ft_getopt(varargin, 'weight' ); % for maximum likelihood estimation if isfield(constr, 'mirror') % for backward compatibility constr.symmetry = true; end constr.symmetry = ft_getopt(constr, 'symmetry', false); constr.fixedori = ft_getopt(constr, 'fixedori', false); constr.rigidbody = ft_getopt(constr, 'rigidbody', false); constr.sequential = ft_getopt(constr, 'sequential', false); if isempty(optimfun) % determine whether the MATLAB Optimization toolbox is available and can be used if ft_hastoolbox('optim') optimfun = @fminunc; else optimfun = @fminsearch; end end if isempty(maxiter) % set a default for the maximum number of iterations, depends on the optimization function if isequal(optimfun, @fminunc) maxiter = 1000; else maxiter = 3000; end end % determine whether it is EEG or MEG iseeg = ft_senstype(sens, 'eeg'); ismeg = ft_senstype(sens, 'meg'); if ismeg && iseeg % this is something that I might implement in the future error('simultaneous EEG and MEG not supported'); elseif iseeg % ensure that the potential data is average referenced, just like the model potential dat = avgref(dat); end % ensure correct dipole position and moment specification dip = fixdipole(dip); % convert the dipole model parameters into the non-linear parameter vector that will be optimized [param, constr] = dipolemodel2param(dip.pos, dip.mom, constr); % determine the scale scale = ft_scalingfactor(sens.unit, 'cm'); % set the parameters for the optimization function if isequal(optimfun, @fminunc) options = optimset(... 'TolFun',1e-9,... 'TypicalX',scale*ones(size(param)),... 'LargeScale','off',... 'HessUpdate','bfgs',... 'MaxIter',maxiter,... 'MaxFunEvals',2*maxiter*length(param),... 'Display',display); elseif isequal(optimfun, @fminsearch) options = optimset(... 'MaxIter',maxiter,... 'MaxFunEvals',2*maxiter*length(param),... 'Display',display); else warning('unknown optimization function "%s", using default parameters', func2str(optimfun)); end % perform the optimization with either the fminsearch or fminunc function [param, fval, exitflag, output] = optimfun(@dipfit_error, param, options, dat, sens, headmodel, constr, metric, checkinside, reducerank, normalize, normalizeparam, weight); if exitflag==0 error('Maximum number of iterations exceeded before reaching the minimum, please try with another initial guess.') end % do the linear optimization of the dipole moment parameters % the error is not interesting any more, only the dipole moment is relevant [err, mom] = dipfit_error(param, dat, sens, headmodel, constr, metric, checkinside, reducerank, normalize, normalizeparam, weight); % convert the non-linear parameter vector into the dipole model parameters [pos, ori] = param2dipolemodel(param, constr); % return the optimal dipole parameters dipout.pos = pos; % return the optimal dipole moment and (optionally) the orientation if ~isempty(ori) dipout.mom = ori; % dipole orientation as vector dipout.ampl = mom; % dipole strength else dipout.mom = mom; % dipole moment as vector or matrix, which represents both the orientation and strength as vector end % ensure correct dipole position and moment specification dipout = fixdipole(dipout); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DIPOLEMODEL2PARAM takes the initial guess for the diople model and converts it % to a set of parameters that needs to be optimized %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [param, constr] = dipolemodel2param(pos, ori, constr) % reformat the position parameters in case of multiple dipoles, this % should result in the matrix changing from [x1 y1 z1; x2 y2 z2] to % [x1 y1 z1 x2 y2 z2] for the constraints to work param = reshape(pos', 1, numel(pos)); % add the orientation to the nonlinear parameters if constr.fixedori numdip = size(pos,1); for i=1:numdip % add the orientation to the list of parameters [th, phi, r] = cart2sph(ori(1,i), ori(2,i), ori(3,i)); param = [param th phi]; end end if constr.symmetry && constr.rigidbody error('simultaneous symmetry and rigidbody constraints are not supported') elseif constr.symmetry % reduce the number of parameters to be fitted according to the constraints % select a subset, the other sources will be re-added by the const.mirror field param = param(constr.reduce); elseif constr.rigidbody constr.coilpos = param; % store the head localizer coil positions param = [0 0 0 0 0 0]; % start with an initial translation and rotation of zero end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % PARAM2DIPOLEMODEL takes the parameters and constraints and converts them into a % diople model for which the leadfield and residual error can be computed %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [pos, ori] = param2dipolemodel(param, constr) if constr.symmetry && constr.rigidbody error('simultaneous symmetry and rigidbody constraints are not supported') elseif constr.symmetry param = constr.mirror .* param(constr.expand); elseif constr.rigidbody numdip = numel(constr.coilpos)/3; pos = reshape(constr.coilpos, 3, numdip); % convert from vector into 3xN matrix pos(4,:) = 1; transform = rigidbody(param); % this is a 4x4 homogenous transformation matrix pos = transform * pos; % apply the homogenous transformation matrix param = reshape(pos(1:3,:), 1, 3*numdip); clear pos % the actual pos will be constructed from param further down end if constr.fixedori numdip = numel(param)/5; ori = zeros(3,numdip); for i=1:numdip th = param(end-(2*i)+1); phi = param(end-(2*i)+2); [ori(1,i), ori(2,i), ori(3,i)] = sph2cart(th, phi, 1); end pos = reshape(param(1:(numdip*3)), 3, numdip)'; % convert into a Ndip*3 matrix else numdip = numel(param)/3; pos = reshape(param, 3, numdip)'; % convert into a Ndip*3 matrix ori = []; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DIPFIT_ERROR computes the error between measured and model data % and can be used for non-linear fitting of dipole position %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [err, mom] = dipfit_error(param, dat, sens, headmodel, constr, metric, checkinside, reducerank, normalize, normalizeparam, weight) % flush pending graphics events, ensure that fitting is interruptible drawnow; if ~isempty(get(0, 'currentfigure')) && strcmp(get(gcf, 'tag'), 'stop') % interrupt the fitting close; error('USER ABORT'); end; % convert the non-linear parameter vector into the dipole model parameters [pos, ori] = param2dipolemodel(param, constr); % check whether the dipole is inside the source compartment if checkinside inside = ft_inside_vol(pos, headmodel); if ~all(inside) error('Dipole is outside the source compartment'); end end % construct the leadfield matrix for all dipoles lf = ft_compute_leadfield(pos, sens, headmodel, 'reducerank', reducerank, 'normalize', normalize, 'normalizeparam', normalizeparam); if ~isempty(ori) lf = lf * ori; end % compute the optimal dipole moment and the model error if ~isempty(weight) % maximum likelihood estimation using the weigth matrix if constr.sequential error('not supported'); else mom = pinv(lf'*weight*lf)*lf'*weight*dat; % Lutkenhoner equation 5 dif = dat - lf*mom; end % compute the generalized goodness-of-fit measure switch metric case 'rv' % relative residual variance num = dif' * weight * dif; denom = dat' * weight * dat; err = sum(num(:)) ./ sum(denom(:)); % Lutkenhonner equation 7, except for the gof=1-rv case 'var' % residual variance num = dif' * weight * dif; err = sum(num(:)); otherwise error('Unsupported error metric for maximum likelihood dipole fitting'); end else % ordinary least squares, this is the same as MLE with weight=eye(nchans,nchans) if constr.sequential % the number of slices is the same as the number of dipoles % each slice has a number of frames (time points) in it % so the data can be nchan*ndip or nchan*(ndip*nframe) numdip = numel(pos)/3; numframe = size(dat,2)/numdip; % do a sainty check on the number of frames, see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=3119 assert(numframe>0 && numframe==round(numframe), 'the number of frames should be a positive integer'); mom = zeros(3*numdip, numdip*numframe); for i=1:numdip dipsel = (1:3) + 3*(i-1); % 1:3 for the first dipole, 4:6 for the second dipole, ... framesel = (1:numframe) + numframe*(i-1); % 1:numframe for the first, (numframe+1):(2*numframe) for the second, ... mom(dipsel,framesel) = pinv(lf(:,dipsel))*dat(:,framesel); end else mom = pinv(lf)*dat; end dif = dat - lf*mom; % compute the ordinary goodness-of-fit measures switch metric case 'rv' % relative residual variance err = sum(dif(:).^2) / sum(dat(:).^2); case 'var' % residual variance err = sum(dif(:).^2); case 'abs' % absolute difference err = sum(abs(dif)); otherwise error('Unsupported error metric for dipole fitting'); end end if ~isreal(err) % this happens for complex valued data, i.e. when fitting a dipole to spectrally decomposed data % the error function should return a positive valued real number, otherwise fminunc fails err = abs(err); end
github
lcnhappe/happe-master
mesh_spectrum.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/inverse/private/mesh_spectrum.m
1,370
utf_8
94ec5a0ad9c740bd99c6d6a415702be9
% Mesh spectrum function [L,H,d] = mesh_spectrum(S,n,varargin) %[L,H,d] = ct_mesh_spectrum(S,n,mode) % Compute the mesh laplace matrix and its spectrum % input, % S: mesh file, it has to have a pnt and a tri field % n: number of mesh harmonic functions % mode: 'full' for the full graph, 'half' if you want to do the first and % the second half independently (this is useful if your graph is composed % by two connected components) % output, % L: mesh laplacian matrix % H: matrix containing a mesh harmonic functions per column % d: spectrum of the negative Laplacian matrix, its units are 1/space^2 % (spatial frequencies are obtained as sqrt(d)) if nargin==2||varargin{1}==1 pnt{1} = S.pos; tri{1} = S.tri; elseif varargin{1}==2 pnt{1} = S.pos(1:end/2,:); tri{1} = S.tri(1:end/2,:); pnt{2} = S.pos(end/2+1:end,:); tri{2} = S.tri(end/2+1:end,:) - size(pnt{1},1); end for j = 1:length(pnt) if length(pnt)==2&&j == 1 disp('Computing the spectrum of the the first hemisphere') elseif length(pnt)==2&&j == 2 disp('Computing the spectrum of the the second hemisphere') end [L{j},~] = mesh_laplacian(pnt{j},tri{j}); L{j} = (L{j} + L{j}')/2; disp('Computing the spectrum of the negative Laplacian matrix') [H{j},D] = eigs(L{j},n,'sm'); d{j} = diag(D); disp('Diagonalization completed') end
github
lcnhappe/happe-master
ft_hastoolbox.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/inverse/private/ft_hastoolbox.m
24,831
utf_8
43bae19e25ce108f013f1c401e497630
function [status] = ft_hastoolbox(toolbox, autoadd, silent) % FT_HASTOOLBOX tests whether an external toolbox is installed. Optionally % it will try to determine the path to the toolbox and install it % automatically. % % Use as % [status] = ft_hastoolbox(toolbox, autoadd, silent) % % autoadd = 0 means that it will not be added % autoadd = 1 means that give an error if it cannot be added % autoadd = 2 means that give a warning if it cannot be added % autoadd = 3 means that it remains silent if it cannot be added % % silent = 0 means that it will give some feedback about adding the toolbox % silent = 1 means that it will not give feedback % Copyright (C) 2005-2013, Robert Oostenveld % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % this function is called many times in FieldTrip and associated toolboxes % use efficient handling if the same toolbox has been investigated before % persistent previous previouspath % % if ~isequal(previouspath, path) % previous = []; % end % % if isempty(previous) % previous = struct; % elseif isfield(previous, fixname(toolbox)) % status = previous.(fixname(toolbox)); % return % end if isdeployed % it is not possible to check the presence of functions or change the path in a compiled application status = 1; return end % this points the user to the website where he/she can download the toolbox url = { 'AFNI' 'see http://afni.nimh.nih.gov' 'DSS' 'see http://www.cis.hut.fi/projects/dss' 'EEGLAB' 'see http://www.sccn.ucsd.edu/eeglab' 'NWAY' 'see http://www.models.kvl.dk/source/nwaytoolbox' 'SPM99' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM2' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM5' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM8' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM12' 'see http://www.fil.ion.ucl.ac.uk/spm' 'MEG-PD' 'see http://www.kolumbus.fi/kuutela/programs/meg-pd' 'MEG-CALC' 'this is a commercial toolbox from Neuromag, see http://www.neuromag.com' 'BIOSIG' 'see http://biosig.sourceforge.net' 'EEG' 'see http://eeg.sourceforge.net' 'EEGSF' 'see http://eeg.sourceforge.net' % alternative name 'MRI' 'see http://eeg.sourceforge.net' % alternative name 'NEUROSHARE' 'see http://www.neuroshare.org' 'BESA' 'see http://www.besa.de/downloads/matlab/ and get the "BESA MATLAB Readers"' 'MATLAB2BESA' 'see http://www.besa.de/downloads/matlab/ and get the "MATLAB to BESA Export functions"' 'EEPROBE' 'see http://www.ant-neuro.com, or contact Maarten van der Velde' 'YOKOGAWA' 'this is deprecated, please use YOKOGAWA_MEG_READER instead' 'YOKOGAWA_MEG_READER' 'see http://www.yokogawa.com/me/me-login-en.htm' 'BEOWULF' 'see http://robertoostenveld.nl, or contact Robert Oostenveld' 'MENTAT' 'see http://robertoostenveld.nl, or contact Robert Oostenveld' 'SON2' 'see http://www.kcl.ac.uk/depsta/biomedical/cfnr/lidierth.html, or contact Malcolm Lidierth' '4D-VERSION' 'contact Christian Wienbruch' 'COMM' 'see http://www.mathworks.com/products/communications' 'SIGNAL' 'see http://www.mathworks.com/products/signal' 'OPTIM' 'see http://www.mathworks.com/products/optim' 'IMAGE' 'see http://www.mathworks.com/products/image' % Mathworks refers to this as IMAGES 'SPLINES' 'see http://www.mathworks.com/products/splines' 'DISTCOMP' 'see http://www.mathworks.nl/products/parallel-computing/' 'COMPILER' 'see http://www.mathworks.com/products/compiler' 'FASTICA' 'see http://www.cis.hut.fi/projects/ica/fastica' 'BRAINSTORM' 'see http://neuroimage.ucs.edu/brainstorm' 'FILEIO' 'see http://www.fieldtriptoolbox.org' 'PREPROC' 'see http://www.fieldtriptoolbox.org' 'FORWARD' 'see http://www.fieldtriptoolbox.org' 'INVERSE' 'see http://www.fieldtriptoolbox.org' 'SPECEST' 'see http://www.fieldtriptoolbox.org' 'REALTIME' 'see http://www.fieldtriptoolbox.org' 'PLOTTING' 'see http://www.fieldtriptoolbox.org' 'SPIKE' 'see http://www.fieldtriptoolbox.org' 'CONNECTIVITY' 'see http://www.fieldtriptoolbox.org' 'PEER' 'see http://www.fieldtriptoolbox.org' 'PLOTTING' 'see http://www.fieldtriptoolbox.org' 'DENOISE' 'see http://lumiere.ens.fr/Audition/adc/meg, or contact Alain de Cheveigne' 'BCI2000' 'see http://bci2000.org' 'NLXNETCOM' 'see http://www.neuralynx.com' 'DIPOLI' 'see ftp://ftp.fcdonders.nl/pub/fieldtrip/external' 'MNE' 'see http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php' 'TCP_UDP_IP' 'see http://www.mathworks.com/matlabcentral/fileexchange/345, or contact Peter Rydesaeter' 'BEMCP' 'contact Christophe Phillips' 'OPENMEEG' 'see http://gforge.inria.fr/projects/openmeeg and http://gforge.inria.fr/frs/?group_id=435' 'PRTOOLS' 'see http://www.prtools.org' 'ITAB' 'contact Stefania Della Penna' 'BSMART' 'see http://www.brain-smart.org' 'PEER' 'see http://www.fieldtriptoolbox.org/development/peer' 'FREESURFER' 'see http://surfer.nmr.mgh.harvard.edu/fswiki' 'SIMBIO' 'see https://www.mrt.uni-jena.de/simbio/index.php/Main_Page' 'VGRID' 'see http://www.rheinahrcampus.de/~medsim/vgrid/manual.html' 'FNS' 'see http://hhvn.nmsu.edu/wiki/index.php/FNS' 'GIFTI' 'see http://www.artefact.tk/software/matlab/gifti' 'XML4MAT' 'see http://www.mathworks.com/matlabcentral/fileexchange/6268-xml4mat-v2-0' 'SQDPROJECT' 'see http://www.isr.umd.edu/Labs/CSSL/simonlab' 'BCT' 'see http://www.brain-connectivity-toolbox.net/' 'CCA' 'see http://www.imt.liu.se/~magnus/cca or contact Magnus Borga' 'EGI_MFF' 'see http://www.egi.com/ or contact either Phan Luu or Colin Davey at EGI' 'TOOLBOX_GRAPH' 'see http://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph or contact Gabriel Peyre' 'NETCDF' 'see http://www.mathworks.com/matlabcentral/fileexchange/15177' 'MYSQL' 'see http://www.mathworks.com/matlabcentral/fileexchange/8663-mysql-database-connector' 'ISO2MESH' 'see http://iso2mesh.sourceforge.net/cgi-bin/index.cgi?Home or contact Qianqian Fang' 'DATAHASH' 'see http://www.mathworks.com/matlabcentral/fileexchange/31272' 'IBTB' 'see http://www.ibtb.org' 'ICASSO' 'see http://www.cis.hut.fi/projects/ica/icasso' 'XUNIT' 'see http://www.mathworks.com/matlabcentral/fileexchange/22846-matlab-xunit-test-framework' 'PLEXON' 'available from http://www.plexon.com/assets/downloads/sdk/ReadingPLXandDDTfilesinMatlab-mexw.zip' 'MISC' 'various functions that were downloaded from http://www.mathworks.com/matlabcentral/fileexchange and elsewhere' '35625-INFORMATION-THEORY-TOOLBOX' 'see http://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox' '29046-MUTUAL-INFORMATION' 'see http://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox' '14888-MUTUAL-INFORMATION-COMPUTATION' 'see http://www.mathworks.com/matlabcentral/fileexchange/14888-mutual-information-computation' 'PLOT2SVG' 'see http://www.mathworks.com/matlabcentral/fileexchange/7401-scalable-vector-graphics-svg-export-of-figures' 'BRAINSUITE' 'see http://brainsuite.bmap.ucla.edu/processing/additional-tools/' 'BRAINVISA' 'see http://brainvisa.info' 'FILEEXCHANGE' 'see http://www.mathworks.com/matlabcentral/fileexchange/' 'NEURALYNX_V6' 'see http://neuralynx.com/research_software/file_converters_and_utilities/ and take the version from Neuralynx (windows only)' 'NEURALYNX_V3' 'see http://neuralynx.com/research_software/file_converters_and_utilities/ and take the version from Ueli Rutishauser' 'NPMK' 'see https://github.com/BlackrockMicrosystems/NPMK' 'VIDEOMEG' 'see https://github.com/andreyzhd/VideoMEG' 'WAVEFRONT' 'see http://mathworks.com/matlabcentral/fileexchange/27982-wavefront-obj-toolbox' 'NEURONE' 'see http://www.megaemg.com/support/unrestricted-downloads' }; if nargin<2 % default is not to add the path automatically autoadd = 0; end if nargin<3 % default is not to be silent silent = 0; end % determine whether the toolbox is installed toolbox = upper(toolbox); % In case SPM8 or higher not available, allow to use fallback toolbox fallback_toolbox=''; switch toolbox case 'AFNI' dependency={'BrikLoad', 'BrikInfo'}; case 'DSS' dependency={'denss', 'dss_create_state'}; case 'EEGLAB' dependency = 'runica'; case 'NWAY' dependency = 'parafac'; case 'SPM' dependency = 'spm'; % any version of SPM is fine case 'SPM99' dependency = {'spm', get_spm_version()==99}; case 'SPM2' dependency = {'spm', get_spm_version()==2}; case 'SPM5' dependency = {'spm', get_spm_version()==5}; case 'SPM8' dependency = {'spm', get_spm_version()==8}; case 'SPM8UP' % version 8 or later, but not SPM 9X dependency = {'spm', get_spm_version()>=8, get_spm_version()<95}; %This is to avoid crashes when trying to add SPM to the path fallback_toolbox = 'SPM8'; case 'SPM12' dependency = {'spm', get_spm_version()==12}; case 'MEG-PD' dependency = {'rawdata', 'channames'}; case 'MEG-CALC' dependency = {'megmodel', 'megfield', 'megtrans'}; case 'BIOSIG' dependency = {'sopen', 'sread'}; case 'EEG' dependency = {'ctf_read_res4', 'ctf_read_meg4'}; case 'EEGSF' % alternative name dependency = {'ctf_read_res4', 'ctf_read_meg4'}; case 'MRI' % other functions in the mri section dependency = {'avw_hdr_read', 'avw_img_read'}; case 'NEUROSHARE' dependency = {'ns_OpenFile', 'ns_SetLibrary', ... 'ns_GetAnalogData'}; case 'ARTINIS' dependency = {'read_artinis_oxy3'}; case 'BESA' dependency = {'readBESAavr', 'readBESAelp', 'readBESAswf'}; case 'MATLAB2BESA' dependency = {'besa_save2Avr', 'besa_save2Elp', 'besa_save2Swf'}; case 'EEPROBE' dependency = {'read_eep_avr', 'read_eep_cnt'}; case 'YOKOGAWA' dependency = @()hasyokogawa('16bitBeta6'); case 'YOKOGAWA12BITBETA3' dependency = @()hasyokogawa('12bitBeta3'); case 'YOKOGAWA16BITBETA3' dependency = @()hasyokogawa('16bitBeta3'); case 'YOKOGAWA16BITBETA6' dependency = @()hasyokogawa('16bitBeta6'); case 'YOKOGAWA_MEG_READER' dependency = @()hasyokogawa('1.4'); case 'BEOWULF' dependency = {'evalwulf', 'evalwulf', 'evalwulf'}; case 'MENTAT' dependency = {'pcompile', 'pfor', 'peval'}; case 'SON2' dependency = {'SONFileHeader', 'SONChanList', 'SONGetChannel'}; case '4D-VERSION' dependency = {'read4d', 'read4dhdr'}; case {'STATS', 'STATISTICS'} dependency = has_license('statistics_toolbox'); % check the availability of a toolbox license case {'OPTIM', 'OPTIMIZATION'} dependency = has_license('optimization_toolbox'); % check the availability of a toolbox license case {'SPLINES', 'CURVE_FITTING'} dependency = has_license('curve_fitting_toolbox'); % check the availability of a toolbox license case 'COMM' dependency = {has_license('communication_toolbox'), 'de2bi'}; % also check the availability of a toolbox license case 'SIGNAL' dependency = {has_license('signal_toolbox'), 'window'}; % also check the availability of a toolbox license case 'IMAGE' dependency = has_license('image_toolbox'); % check the availability of a toolbox license case {'DCT', 'DISTCOMP'} dependency = has_license('distrib_computing_toolbox'); % check the availability of a toolbox license case 'COMPILER' dependency = has_license('compiler'); % check the availability of a toolbox license case 'FASTICA' dependency = 'fpica'; case 'BRAINSTORM' dependency = 'bem_xfer'; case 'DENOISE' dependency = {'tsr', 'sns'}; case 'CTF' dependency = {'getCTFBalanceCoefs', 'getCTFdata'}; case 'BCI2000' dependency = {'load_bcidat'}; case 'NLXNETCOM' dependency = {'MatlabNetComClient', 'NlxConnectToServer', ... 'NlxGetNewCSCData'}; case 'DIPOLI' dependency = {'dipoli.maci', 'file'}; case 'MNE' dependency = {'fiff_read_meas_info', 'fiff_setup_read_raw'}; case 'TCP_UDP_IP' dependency = {'pnet', 'pnet_getvar', 'pnet_putvar'}; case 'BEMCP' dependency = {'bem_Cij_cog', 'bem_Cij_lin', 'bem_Cij_cst'}; case 'OPENMEEG' dependency = {'om_save_tri'}; case 'PRTOOLS' dependency = {'prversion', 'dataset', 'svc'}; case 'ITAB' dependency = {'lcReadHeader', 'lcReadData'}; case 'BSMART' dependency = 'bsmart'; case 'FREESURFER' dependency = {'MRIread', 'vox2ras_0to1'}; case 'FNS' dependency = 'elecsfwd'; case 'SIMBIO' dependency = {'calc_stiff_matrix_val', 'sb_transfer'}; case 'VGRID' dependency = 'vgrid'; case 'GIFTI' dependency = 'gifti'; case 'XML4MAT' dependency = {'xml2struct', 'xml2whos'}; case 'SQDPROJECT' dependency = {'sqdread', 'sqdwrite'}; case 'BCT' dependency = {'macaque71.mat', 'motif4funct_wei'}; case 'CCA' dependency = {'ccabss'}; case 'EGI_MFF' dependency = {'mff_getObject', 'mff_getSummaryInfo'}; case 'TOOLBOX_GRAPH' dependency = 'toolbox_graph'; case 'NETCDF' dependency = {'netcdf'}; case 'MYSQL' % not sure if 'which' would work fine here, so use 'exist' dependency = has_mex('mysql'); % this only consists of a single mex file case 'ISO2MESH' dependency = {'vol2surf', 'qmeshcut'}; case 'QSUB' dependency = {'qsubfeval', 'qsubcellfun'}; case 'ENGINE' dependency = {'enginefeval', 'enginecellfun'}; case 'DATAHASH' dependency = {'DataHash'}; case 'IBTB' dependency = {'make_ibtb','binr'}; case 'ICASSO' dependency = {'icassoEst'}; case 'XUNIT' dependency = {'initTestSuite', 'runtests'}; case 'PLEXON' dependency = {'plx_adchan_gains', 'mexPlex'}; case '35625-INFORMATION-THEORY-TOOLBOX' dependency = {'conditionalEntropy', 'entropy', 'jointEntropy',... 'mutualInformation' 'nmi' 'nvi' 'relativeEntropy'}; case '29046-MUTUAL-INFORMATION' dependency = {'MI', 'license.txt'}; case '14888-MUTUAL-INFORMATION-COMPUTATION' dependency = {'condentropy', 'demo_mi', 'estcondentropy.cpp',... 'estjointentropy.cpp', 'estpa.cpp', ... 'findjointstateab.cpp', 'makeosmex.m',... 'mutualinfo.m', 'condmutualinfo.m',... 'entropy.m', 'estentropy.cpp',... 'estmutualinfo.cpp', 'estpab.cpp',... 'jointentropy.m' 'mergemultivariables.m' }; case 'PLOT2SVG' dependency = {'plot2svg.m', 'simulink2svg.m'}; case 'BRAINSUITE' dependency = {'readdfs.m', 'writedfc.m'}; case 'BRAINVISA' dependency = {'loadmesh.m', 'plotmesh.m', 'savemesh.m'}; case 'NEURALYNX_V6' dependency = has_mex('Nlx2MatCSC'); case 'NEURALYNX_V3' dependency = has_mex('Nlx2MatCSC_v3'); case 'NPMK' dependency = {'OpenNSx' 'OpenNEV'}; case 'VIDEOMEG' dependency = {'comp_tstamps' 'load_audio0123', 'load_video123'}; case 'WAVEFRONT' dependency = {'write_wobj' 'read_wobj'}; case 'NEURONE' dependency = {'readneurone' 'readneuronedata' 'readneuroneevents'}; % the following are FieldTrip modules/toolboxes case 'FILEIO' dependency = {'ft_read_header', 'ft_read_data', ... 'ft_read_event', 'ft_read_sens'}; case 'FORWARD' dependency = {'ft_compute_leadfield', 'ft_prepare_vol_sens'}; case 'PLOTTING' dependency = {'ft_plot_topo', 'ft_plot_mesh', 'ft_plot_matrix'}; case 'PEER' dependency = {'peerslave', 'peermaster'}; case 'CONNECTIVITY' dependency = {'ft_connectivity_corr', 'ft_connectivity_granger'}; case 'SPIKE' dependency = {'ft_spiketriggeredaverage', 'ft_spiketriggeredspectrum'}; case 'FILEEXCHANGE' dependency = is_subdir_in_fieldtrip_path('/external/fileexchange'); case {'INVERSE', 'REALTIME', 'SPECEST', 'PREPROC', ... 'COMPAT', 'STATFUN', 'TRIALFUN', 'UTILITIES/COMPAT', ... 'FILEIO/COMPAT', 'PREPROC/COMPAT', 'FORWARD/COMPAT', ... 'PLOTTING/COMPAT', 'TEMPLATE/LAYOUT', 'TEMPLATE/ANATOMY' ,... 'TEMPLATE/HEADMODEL', 'TEMPLATE/ELECTRODE', ... 'TEMPLATE/NEIGHBOURS', 'TEMPLATE/SOURCEMODEL'} dependency = is_subdir_in_fieldtrip_path(toolbox); otherwise if ~silent, warning('cannot determine whether the %s toolbox is present', toolbox); end dependency = false; end status = is_present(dependency); if ~status && ~isempty(fallback_toolbox) % in case of SPM8UP toolbox = fallback_toolbox; end % try to determine the path of the requested toolbox if autoadd>0 && ~status % for core FieldTrip modules prefix = fileparts(which('ft_defaults')); if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % for external FieldTrip modules prefix = fullfile(fileparts(which('ft_defaults')), 'external'); if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); licensefile = [lower(toolbox) '_license']; if status && exist(licensefile, 'file') % this will execute openmeeg_license and mne_license % which display the license on screen for three seconds feval(licensefile); end end % for contributed FieldTrip extensions prefix = fullfile(fileparts(which('ft_defaults')), 'contrib'); if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); licensefile = [lower(toolbox) '_license']; if status && exist(licensefile, 'file') % this will execute openmeeg_license and mne_license % which display the license on screen for three seconds feval(licensefile); end end % for linux computers in the Donders Centre for Cognitive Neuroimaging prefix = '/home/common/matlab'; if ~status && isdir(prefix) status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % for windows computers in the Donders Centre for Cognitive Neuroimaging prefix = 'h:\common\matlab'; if ~status && isdir(prefix) status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % use the MATLAB subdirectory in your homedirectory, this works on linux and mac prefix = fullfile(getenv('HOME'), 'matlab'); if ~status && isdir(prefix) status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end if ~status % the toolbox is not on the path and cannot be added sel = find(strcmp(url(:,1), toolbox)); if ~isempty(sel) msg = sprintf('the %s toolbox is not installed, %s', toolbox, url{sel, 2}); else msg = sprintf('the %s toolbox is not installed', toolbox); end if autoadd==1 error(msg); elseif autoadd==2 ft_warning(msg); else % fail silently end end end % this function is called many times in FieldTrip and associated toolboxes % use efficient handling if the same toolbox has been investigated before if status previous.(fixname(toolbox)) = status; end % remember the previous path, allows us to determine on the next call % whether the path has been modified outise of this function previouspath = path; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = myaddpath(toolbox, silent) if isdeployed warning('cannot change path settings for %s in a compiled application', toolbox); status = 1; elseif exist(toolbox, 'dir') if ~silent, ws = warning('backtrace', 'off'); warning('adding %s toolbox to your MATLAB path', toolbox); warning(ws); % return to the previous warning level end addpath(toolbox); status = 1; elseif (~isempty(regexp(toolbox, 'spm5$', 'once')) || ~isempty(regexp(toolbox, 'spm8$', 'once')) || ~isempty(regexp(toolbox, 'spm12$', 'once'))) && exist([toolbox 'b'], 'dir') status = myaddpath([toolbox 'b'], silent); else status = 0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function path = unixpath(path) %path(path=='\') = '/'; % replace backward slashes with forward slashes path = strrep(path,'\','/'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = hasfunction(funname, toolbox) try % call the function without any input arguments, which probably is inapropriate feval(funname); % it might be that the function without any input already works fine status = true; catch % either the function returned an error, or the function is not available % availability is influenced by the function being present and by having a % license for the function, i.e. in a concurrent licensing setting it might % be that all toolbox licenses are in use m = lasterror; if strcmp(m.identifier, 'MATLAB:license:checkouterror') if nargin>1 warning('the %s toolbox is available, but you don''t have a license for it', toolbox); else warning('the function ''%s'' is available, but you don''t have a license for it', funname); end status = false; elseif strcmp(m.identifier, 'MATLAB:UndefinedFunction') status = false; else % the function seems to be available and it gave an unknown error, % which is to be expected with inappropriate input arguments status = true; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = is_subdir_in_fieldtrip_path(toolbox_name) fttrunkpath = unixpath(fileparts(which('ft_defaults'))); fttoolboxpath = fullfile(fttrunkpath, lower(toolbox_name)); needle=[pathsep fttoolboxpath pathsep]; haystack = [pathsep path() pathsep]; status = ~isempty(findstr(needle, haystack)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = has_mex(name) full_name=[name '.' mexext]; status = (exist(full_name, 'file')==3); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function v = get_spm_version() if ~is_present('spm') v=NaN; return end version_str = spm('ver'); token = regexp(version_str,'(\d*)','tokens'); v = str2num([token{:}{:}]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = has_license(toolbox_name) status = license('checkout', toolbox_name)==1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = is_present(dependency) if iscell(dependency) % use recursion status = all(cellfun(@is_present,dependency)); elseif islogical(dependency) % boolean status = all(dependency); elseif ischar(dependency) % name of a function status = is_function_present_in_search_path(dependency); elseif isa(dependency, 'function_handle') status = dependency(); else assert(false,'this should not happen'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = is_function_present_in_search_path(function_name) w = which(function_name); % must be in path and not a variable status = ~isempty(w) && ~isequal(w, 'variable');
github
lcnhappe/happe-master
ft_inverse_beamformer_dics.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/fieldtrip-20160917/inverse/new/ft_inverse_beamformer_dics.m
13,353
utf_8
79c230d4fcdc8529ee9f1f03b205f5fd
function [estimate] = ft_inverse_beamformer_dics(leadfield, Cf, varargin) % FT_INVERSE_BEAMFORMER_DICS estimates the source power or source % coherence according to the Dynamic Imaging of Coherent Sources % method. % % Use as % estimate = ft_inverse_beamformer_dics(leadfield, Cf, ...) % where % leadfield = leadfield of the source of interest or a cell-array with leadfields for multiple sources % Cf = cross-spectral density matrix of the data % and % estimate = structure with the estimated source parameters % % Additional options should be specified in key-value pairs and can be % 'Pr' = power of the external reference channel % 'Cr' = cross spectral density between all data channels and the external reference channel % 'refdip' = location of dipole with which coherence is computed % 'lambda' = regularisation parameter % 'powmethod' = can be 'trace' or 'lambda1' % 'feedback' = give ft_progress indication, can be 'text', 'gui' or 'none' % 'fixedori' = use fixed or free orientation, can be 'yes' or 'no' % 'projectnoise' = project noise estimate through filter, can be 'yes' or 'no' % 'realfilter' = construct a real-valued filter, can be 'yes' or 'no' % 'keepfilter' = remember the beamformer filter, can be 'yes' or 'no' % 'keepleadfield' = remember the forward computation, can be 'yes' or 'no' % 'keepcsd' = remember the estimated cross-spectral density, can be 'yes' or 'no' % % This implements Joachim Gross et al. 2001 % Copyright (C) 2003-2010, Robert Oostenveld % these optional settings do not have defaults Pr = keyval('Pr', varargin); Cr = keyval('Cr', varargin); refdip = keyval('refdip', varargin); powmethod = keyval('powmethod', varargin); % the default for this is set below realfilter = keyval('realfilter', varargin); % the default for this is set below % these optional settings have defaults feedback = keyval('feedback', varargin); if isempty(feedback), feedback = 'text'; end keepcsd = keyval('keepcsd', varargin); if isempty(keepcsd), keepcsd = 'no'; end keepfilter = keyval('keepfilter', varargin); if isempty(keepfilter), keepfilter = 'no'; end keepleadfield = keyval('keepleadfield', varargin); if isempty(keepleadfield), keepleadfield = 'no'; end lambda = keyval('lambda', varargin); if isempty(lambda ), lambda = 0; end projectnoise = keyval('projectnoise', varargin); if isempty(projectnoise), projectnoise = 'yes'; end fixedori = keyval('fixedori', varargin); if isempty(fixedori), fixedori = 'no'; end % convert the yes/no arguments to the corresponding logical values % FIXME use istrue keepcsd = strcmp(keepcsd, 'yes'); keepfilter = strcmp(keepfilter, 'yes'); keepleadfield = strcmp(keepleadfield, 'yes'); projectnoise = strcmp(projectnoise, 'yes'); fixedori = strcmp(fixedori, 'yes'); % FIXME besides regular/complex lambda1, also implement a real version % default is to use the largest singular value of the csd matrix, see Gross 2001 if isempty(powmethod) powmethod = 'lambda1'; end % default is to be consistent with the original description of DICS in Gross 2001 if isempty(realfilter) realfilter = 'no'; end % use these two logical flags instead of doing the string comparisons each time again powtrace = strcmp(powmethod, 'trace'); powlambda1 = strcmp(powmethod, 'lambda1'); % dics has the following sub-methods, which depend on the additional input arguments if ~isempty(Cr) && ~isempty(Pr) && isempty(refdip) % compute cortico-muscular coherence, using reference cross spectral density submethod = 'dics_refchan'; elseif isempty(Cr) && isempty(Pr) && ~isempty(refdip) % compute cortico-cortical coherence with a dipole at the reference position submethod = 'dics_refdip'; elseif isempty(Cr) && isempty(Pr) && isempty(refdip) % only compute power of a dipole at the grid positions submethod = 'dics_power'; else error('invalid combination of input arguments for dics'); end if ~iscell(leadfield) % the leadfield specifies a single source leadfield = {leadfield}; end ndipoles = length(leadfield); if ~isempty(Cr) % ensure that the cross-spectral density with the reference signal is a column matrix Cr = Cr(:); end isrankdeficient = (rank(Cf)<size(Cf,1)); if isrankdeficient warning('cross-spectral density matrix is rank deficient') end % it is difficult to give a quantitative estimate of lambda, therefore also % support relative (percentage) measure that can be specified as string (e.g. '10%') if ~isempty(lambda) && ischar(lambda) && lambda(end)=='%' ratio = sscanf(lambda, '%f%%'); ratio = ratio/100; lambda = ratio * trace(Cf)/size(Cf,1); end if projectnoise % estimate the noise power, which is further assumed to be equal and uncorrelated over channels if isrankdeficient % estimated noise floor is equal to or higher than lambda noise = lambda; else % estimate the noise level in the covariance matrix by the smallest singular value noise = svd(Cf); noise = noise(end); % estimated noise floor is equal to or higher than lambda noise = max(noise, lambda); end end % the inverse only has to be computed once for all dipoles if strcmp(realfilter, 'yes') % the filter is computed using only the leadfield and the inverse covariance or CSD matrix % therefore using the real-valued part of the CSD matrix here ensures a real-valued filter invCf = pinv(real(Cf) + lambda * eye(size(Cf))); else invCf = pinv(Cf + lambda * eye(size(Cf))); end % start the scanning with the proper metric ft_progress('init', feedback, 'scanning grid'); switch submethod case 'dics_power' % only compute power of a dipole at the grid positions for i=1:ndipoles lf = leadfield{i}; if fixedori % compute the leadfield for the optimal dipole orientation % subsequently the leadfield for only that dipole orientation will be used for the final filter computation filt = pinv(lf' * invCf * lf) * lf' * invCf; [u, s, v] = svd(real(filt * Cf * ctranspose(filt))); maxpowori = u(:,1); eta = s(1,1)./s(2,2); lf = lf * maxpowori; estimate.ori{i} = maxpowori; estimate.eta{i} = eta; end % construct the spatial filter filt = pinv(lf' * invCf * lf) * lf' * invCf; % Gross eqn. 3, use PINV/SVD to cover rank deficient leadfield csd = filt * Cf * ctranspose(filt); % Gross eqn. 4 and 5 % assign the output values if powlambda1 estimate.pow(i) = lambda1(csd); % compute the power at the dipole location, Gross eqn. 8 elseif powtrace estimate.pow(i) = real(trace(csd)); % compute the power at the dipole location end if keepcsd estimate.csd{i} = csd; end if projectnoise if powlambda1 estimate.noise(i) = noise * lambda1(filt * ctranspose(filt)); elseif powtrace estimate.noise(i) = noise * real(trace(filt * ctranspose(filt))); end if keepcsd estimate.noisecsd{i} = noise * filt * ctranspose(filt); end end if keepfilter estimate.filter{i} = filt; end if keepleadfield estimate.leadfield{i} = lf; end ft_progress(i/ndipoles, 'scanning grid %d/%d\n', i, ndipoles); end case 'dics_refchan' % compute cortico-muscular coherence, using reference cross spectral density for i=1:ndipoles % get the leadfield for this source lf = leadfield{i}; if fixedori % compute the leadfield for the optimal dipole orientation % subsequently the leadfield for only that dipole orientation will be used for the final filter computation filt = pinv(lf' * invCf * lf) * lf' * invCf; [u, s, v] = svd(real(filt * Cf * ctranspose(filt))); maxpowori = u(:,1); lf = lf * maxpowori; estimate.ori{i} = maxpowori; end % construct the spatial filter filt = pinv(lf' * invCf * lf) * lf' * invCf; % use PINV/SVD to cover rank deficient leadfield if powlambda1 [pow, ori] = lambda1(filt * Cf * ctranspose(filt)); % compute the power and orientation at the dipole location, Gross eqn. 4, 5 and 8 elseif powtrace pow = real(trace(filt * Cf * ctranspose(filt))); % compute the power at the dipole location end csd = filt*Cr; % Gross eqn. 6 if powlambda1 % FIXME this should use the dipole orientation with maximum power coh = lambda1(csd)^2 / (pow * Pr); % Gross eqn. 9 elseif powtrace coh = norm(csd)^2 / (pow * Pr); end estimate.pow(i) = pow; estimate.coh(i) = coh; if keepcsd estimate.csd{i} = csd; end if projectnoise if powlambda1 estimate.noise(i) = noise * lambda1(filt * ctranspose(filt)); elseif powtrace estimate.noise(i) = noise * real(trace(filt * ctranspose(filt))); end if keepcsd estimate.noisecsd{i} = noise * filt * ctranspose(filt); end end if keepfilter estimate.filter{i} = filt; end ft_progress(i/ndipoles, 'scanning grid %d/%d\n', i, ndipoles); end case 'dics_refdip' if fixedori error('fixed orientations are not supported for beaming cortico-cortical coherence'); end % get the leadfield of the reference source lf1 = refdip; % construct the spatial filter for the first (reference) dipole location filt1 = pinv(lf1' * invCf * lf1) * lf1' * invCf; % use PINV/SVD to cover rank deficient leadfield if powlambda1 Pref = lambda1(filt1 * Cf * ctranspose(filt1)); % compute the power at the first dipole location, Gross eqn. 8 elseif powtrace Pref = real(trace(filt1 * Cf * ctranspose(filt1))); % compute the power at the first dipole location end for i=1:ndipoles % get the leadfield for the second source, i.e. the one that is being scanned lf2 = leadfield{i}; % construct the spatial filter for the second source filt2 = pinv(lf2' * invCf * lf2) * lf2' * invCf; % use PINV/SVD to cover rank deficient leadfield csd = filt1 * Cf * ctranspose(filt2); % compute the cross spectral density between the two dipoles, Gross eqn. 4 if powlambda1 pow = lambda1(filt2 * Cf * ctranspose(filt2)); % compute the power at the second dipole location, Gross eqn. 8 elseif powtrace pow = real(trace(filt2 * Cf * ctranspose(filt2))); % compute the power at the second dipole location end if powlambda1 coh = lambda1(csd)^2 / (pow * Pref); % compute the coherence between the first and second dipole elseif powtrace coh = real(trace((csd)))^2 / (pow * Pref); % compute the coherence between the first and second dipole end estimate.pow(i) = pow; estimate.coh(i) = coh; if keepcsd estimate.csd{i} = csd; end if projectnoise if powlambda1 estimate.noise(i) = noise * lambda1(filt2 * ctranspose(filt2)); elseif powtrace estimate.noise(i) = noise * real(trace(filt2 * ctranspose(filt2))); end if keepcsd estimate.noisecsd{i} = noise * filt2 * ctranspose(filt2); end end ft_progress(i/ndipoles, 'scanning grid %d/%d\n', i, ndipoles); end end % switch submethod ft_progress('close'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to obtain the largest singular value %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [s, ori] = lambda1(x) % determine the largest singular value, which corresponds to the power along the dominant direction [u, s, v] = svd(x); s = s(1); ori = u(:,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to compute the pseudo inverse. This is the same as the % standard Matlab function, except that the default tolerance is twice as % high. % Copyright 1984-2004 The MathWorks, Inc. % $Revision$ $Date: 2009/06/17 13:40:37 $ % default tolerance increased by factor 2 (Robert Oostenveld, 7 Feb 2004) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function X = pinv(A,varargin) [m,n] = size(A); if n > m X = pinv(A',varargin{:})'; else [U,S,V] = svd(A,0); if m > 1, s = diag(S); elseif m == 1, s = S(1); else s = 0; end if nargin == 2 tol = varargin{1}; else tol = 10 * max(m,n) * max(s) * eps; end r = sum(s > tol); if (r == 0) X = zeros(size(A'),class(A)); else s = diag(ones(r,1)./s(1:r)); X = V(:,1:r)*s*U(:,1:r)'; end end
github
lcnhappe/happe-master
firfiltdcpadded.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/firfiltdcpadded.m
2,137
utf_8
b21b4207bf032e32cc6f0597db3cb4fe
% firfiltdcpadded() - Pad data with DC constant and filter % % Usage: % >> data = firfiltdcpadded(data, b, causal); % % Inputs: % data - raw data % b - vector of filter coefficients % causal - boolean perform causal filtering {default 0} % % Outputs: % data - smoothed data % % Note: % firfiltdcpadded always operates (pads, filters) along first dimension. % Not memory optimized. % % Author: Andreas Widmann, University of Leipzig, 2013 % % See also: % firfiltsplit %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2013 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ data ] = firfiltdcpadded(b, data, causal) % Defaults if nargin < 3 || isempty(causal) causal = 0; end % Check arguments if nargin < 2 error('Not enough input arguments.'); end % Filter's group delay if mod(length(b), 2) ~= 1 error('Filter order is not even.'); end groupDelay = (length(b) - 1) / 2; b = double(b); % Filter with double precision % Pad data with DC constant if causal startPad = repmat(data(1, :), [2 * groupDelay 1]); endPad = []; else startPad = repmat(data(1, :), [groupDelay 1]); endPad = repmat(data(end, :), [groupDelay 1]); end % Filter data data = filter(b, 1, double([startPad; data; endPad])); % Pad and filter with double precision % Remove padded data data = data(2 * groupDelay + 1:end, :); end
github
lcnhappe/happe-master
minphaserceps.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/minphaserceps.m
1,275
utf_8
7b751637e7eed71e29f91a4ef6b586e6
% rcepsminphase() - Convert FIR filter coefficient to minimum phase % % Usage: % >> b = minphaserceps(b); % % Inputs: % b - FIR filter coefficients % % Outputs: % bMinPhase - minimum phase FIR filter coefficients % % Author: Andreas Widmann, University of Leipzig, 2013 % % References: % [1] Smith III, O. J. (2007). Introduction to Digital Filters with Audio % Applications. W3K Publishing. Retrieved Nov 11 2013, from % https://ccrma.stanford.edu/~jos/fp/Matlab_listing_mps_m.html % [2] Vetter, K. (2013, Nov 11). Long FIR filters with low latency. % Retrieved Nov 11 2013, from % http://www.katjaas.nl/minimumphase/minimumphase.html function [bMinPhase] = minphaserceps(b) % Line vector b = b(:)'; n = length(b); upsamplingFactor = 1e3; % Impulse response upsampling/zero padding to reduce time-aliasing nFFT = 2^ceil(log2(n * upsamplingFactor)); % Power of 2 clipThresh = 1e-8; % -160 dB % Spectrum s = abs(fft(b, nFFT)); s(s < clipThresh) = clipThresh; % Clip spectrum to reduce time-aliasing % Real cepstrum c = real(ifft(log(s))); % Fold c = [c(1) [c(2:nFFT / 2) 0] + conj(c(nFFT:-1:nFFT / 2 + 1)) zeros(1, nFFT / 2 - 1)]; % Minimum phase bMinPhase = real(ifft(exp(fft(c)))); % Remove zero-padding bMinPhase = bMinPhase(1:n);
github
lcnhappe/happe-master
firws.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/firws.m
3,219
utf_8
0ab4c517238d31712ba1d97ab2497f45
%firws() - Designs windowed sinc type I linear phase FIR filter % % Usage: % >> b = firws(m, f); % >> b = firws(m, f, w); % >> b = firws(m, f, t); % >> b = firws(m, f, t, w); % % Inputs: % m - filter order (mandatory even) % f - vector or scalar of cutoff frequency/ies (-6 dB; % pi rad / sample) % % Optional inputs: % w - vector of length m + 1 defining window {default blackman} % t - 'high' for highpass, 'stop' for bandstop filter {default low-/ % bandpass} % % Output: % b - filter coefficients % % Example: % fs = 500; cutoff = 0.5; tbw = 1; % m = pop_firwsord('hamming', fs, tbw); % b = firws(m, cutoff / (fs / 2), 'high', windows('hamming', m + 1)); % % References: % Smith, S. W. (1999). The scientist and engineer's guide to digital % signal processing (2nd ed.). San Diego, CA: California Technical % Publishing. % % Author: Andreas Widmann, University of Leipzig, 2005 % % See also: % pop_firws, pop_firwsord, pop_kaiserbeta, windows %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [b a] = firws(m, f, t, w) a = 1; if nargin < 2 error('Not enough input arguments'); end if length(m) > 1 || ~isnumeric(m) || ~isreal(m) || mod(m, 2) ~= 0 || m < 2 error('Filter order must be a real, even, positive integer.'); end f = f / 2; if any(f <= 0) || any(f >= 0.5) error('Frequencies must fall in range between 0 and 1.'); end if nargin < 3 || isempty(t) t = ''; end if nargin < 4 || isempty(w) if ~isempty(t) && ~ischar(t) w = t; t = ''; else w = windows('blackman', (m + 1)); end end w = w(:)'; % Make window row vector b = fkernel(m, f(1), w); if length(f) == 1 && strcmpi(t, 'high') b = fspecinv(b); end if length(f) == 2 b = b + fspecinv(fkernel(m, f(2), w)); if isempty(t) || ~strcmpi(t, 'stop') b = fspecinv(b); end end % Compute filter kernel function b = fkernel(m, f, w) m = -m / 2 : m / 2; b(m == 0) = 2 * pi * f; % No division by zero b(m ~= 0) = sin(2 * pi * f * m(m ~= 0)) ./ m(m ~= 0); % Sinc b = b .* w; % Window b = b / sum(b); % Normalization to unity gain at DC % Spectral inversion function b = fspecinv(b) b = -b; b(1, (length(b) - 1) / 2 + 1) = b(1, (length(b) - 1) / 2 + 1) + 1;
github
lcnhappe/happe-master
pop_firma.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/pop_firma.m
3,356
utf_8
e6d49147b8406a5ac3fed31ab0809194
% pop_firma() - Filter data using moving average FIR filter % % Usage: % >> [EEG, com] = pop_firma(EEG); % pop-up window mode % >> [EEG, com] = pop_firma(EEG, 'forder', order); % % Inputs: % EEG - EEGLAB EEG structure % 'forder' - scalar filter order. Mandatory even % % Outputs: % EEG - filtered EEGLAB EEG structure % com - history string % % Author: Andreas Widmann, University of Leipzig, 2005 % % See also: % firfilt, plotfresp %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [EEG, com] = pop_firma(EEG, varargin) com = ''; if nargin < 1 help pop_firma; return; end if isempty(EEG.data) error('Cannot process empty dataset'); end if nargin < 2 drawnow; uigeom = {[1 1 1] [1] [1 1 1]}; uilist = {{'style' 'text' 'string' 'Filter order (mandatory even):'} ... {'style' 'edit' 'string' '' 'tag' 'forderedit'} {} ... {} ... {} {} {'Style' 'pushbutton' 'string' 'Plot filter responses' 'callback' {@complot, EEG.srate}}}; result = inputgui(uigeom, uilist, 'pophelp(''pop_firma'')', 'Filter the data -- pop_firma()'); if length(result) == 0, return; end if ~isempty(result{1}) args = [{'forder'} {str2num(result{1})}]; else error('Not enough input arguments'); end else args = varargin; end % Convert args to structure args = struct(args{:}); % Filter coefficients b = ones(1, args.forder + 1) / (args.forder + 1); % Filter disp('pop_firma() - filtering the data'); EEG = firfilt(EEG, b); % History string com = sprintf('%s = pop_firma(%s', inputname(1), inputname(1)); for c = fieldnames(args)' if ischar(args.(c{:})) com = [com sprintf(', ''%s'', ''%s''', c{:}, args.(c{:}))]; else com = [com sprintf(', ''%s'', %s', c{:}, mat2str(args.(c{:})))]; end end com = [com ');']; % Callback plot filter properties function complot(obj, evt, srate) args.forder = str2num(get(findobj(gcbf, 'tag', 'forderedit'), 'string')); if isempty(args.forder) error('Not enough input arguments'); end b = ones(1, args.forder + 1) / (args.forder + 1); H = findobj('tag', 'filter responses', 'type', 'figure'); if ~isempty(H) figure(H); else H = figure; set(H, 'color', [.93 .96 1], 'tag', 'filter responses'); end plotfresp(b, 1, [], srate);
github
lcnhappe/happe-master
pop_firpm.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/pop_firpm.m
7,885
utf_8
c7719de703135804f12c5877e899956b
% pop_firpm() - Filter data using Parks-McClellan FIR filter % % Usage: % >> [EEG, com, b] = pop_firpm(EEG); % pop-up window mode % >> [EEG, com, b] = pop_firpm(EEG, 'key1', value1, 'key2', ... % value2, 'keyn', valuen); % % Inputs: % EEG - EEGLAB EEG structure % 'fcutoff' - vector or scalar of cutoff frequency/ies (~-6 dB; Hz) % 'ftrans' - scalar transition band width % 'ftype' - char array filter type. 'bandpass', 'highpass', % 'lowpass', or 'bandstop' % 'forder' - scalar filter order. Mandatory even % % Optional inputs: % 'wtpass' - scalar passband weight % 'wtstop' - scalar stopband weight % % Outputs: % EEG - filtered EEGLAB EEG structure % com - history string % b - filter coefficients % % Note: % Requires the signal processing toolbox. % % Author: Andreas Widmann, University of Leipzig, 2005 % % See also: % firfilt, pop_firpmord, plotfresp, firpm, firpmord %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [EEG, com, b] = pop_firpm(EEG, varargin) if ~(exist('firpm', 'file') == 2 || exist('firpm', 'file') == 6) error('Requires the signal processing toolbox.'); end com = ''; if nargin < 1 help pop_firpm; return; end if isempty(EEG.data) error('Cannot process empty dataset'); end if nargin < 2 drawnow; ftypes = {'bandpass' 'highpass' 'lowpass' 'bandstop'}; uigeom = {[1 0.75 0.75] [1 0.75 0.75] [1 0.75 0.75] 1 [1 0.75 0.75] [1 0.75 0.75] [1 0.75 0.75] 1 [1 0.75 0.75]}; uilist = {{'Style' 'text' 'String' 'Cutoff frequency(ies) [hp lp] (~-6 dB; Hz):'} ... {'Style' 'edit' 'String' '' 'Tag' 'fcutoffedit'} {} ... {'Style' 'text' 'String' 'Transition band width:'} ... {'Style' 'edit' 'String' '' 'Tag' 'ftransedit'} {} ... {'Style' 'text' 'String' 'Filter type:'} ... {'Style' 'popupmenu' 'String' ftypes 'Tag' 'ftypepop'} {} ... {} ... {'Style' 'text' 'String' 'Passband weight:'} ... {'Style' 'edit' 'String' '' 'Tag' 'wtpassedit'} {} ... {'Style' 'text' 'String' 'Stopband weight:'} ... {'Style' 'edit' 'String' '' 'Tag' 'wtstopedit'} {} ... {'Style' 'text' 'String' 'Filter order (mandatory even):'} ... {'Style' 'edit' 'String' '' 'Tag' 'forderedit'} ... {'Style' 'pushbutton' 'String' 'Estimate' 'Tag' 'orderpush' 'Callback' {@comcb, ftypes, EEG.srate}} ... {} ... {} {} {'Style' 'pushbutton' 'String', 'Plot filter responses' 'Tag' 'plotpush' 'Callback' {@comcb, ftypes, EEG.srate}}}; result = inputgui(uigeom, uilist, 'pophelp(''pop_firpm'')', 'Filter the data -- pop_firpm()'); if isempty(result), return; end args = {}; if ~isempty(result{1}) args = [args {'fcutoff'} {str2num(result{1})}]; end if ~isempty(result{2}) args = [args {'ftrans'} {str2double(result{2})}]; end args = [args {'ftype'} ftypes(result{3})]; if ~isempty(result{4}) args = [args {'wtpass'} {str2double(result{4})}]; end if ~isempty(result{5}) args = [args {'wtstop'} {str2double(result{5})}]; end if ~isempty(result{6}) args = [args {'forder'} {str2double(result{6})}]; end else args = varargin; end % Convert args to structure args = struct(args{:}); c = parseargs(args, EEG.srate); if ~isfield(args, 'forder') || isempty(args.forder) error('Not enough input arguments'); end b = firpm(args.forder, c{:}); % Filter disp('pop_firpm() - filtering the data'); EEG = firfilt(EEG, b); % History string com = sprintf('%s = pop_firpm(%s', inputname(1), inputname(1)); for c = fieldnames(args)' if ischar(args.(c{:})) com = [com sprintf(', ''%s'', ''%s''', c{:}, args.(c{:}))]; else com = [com sprintf(', ''%s'', %s', c{:}, mat2str(args.(c{:})))]; end end com = [com ');']; % Convert structure args to cell array firpm parameters function c = parseargs(args, srate) if ~isfield(args, 'fcutoff') || ~isfield(args, 'ftype') || ~isfield(args, 'ftrans') || isempty(args.fcutoff) || isempty(args.ftype) || isempty(args.ftrans) error('Not enough input arguments.'); end % Cutoff frequencies args.fcutoff = [args.fcutoff - args.ftrans / 2 args.fcutoff + args.ftrans / 2]; args.fcutoff = sort(args.fcutoff / (srate / 2)); % Sorting and normalization if any(args.fcutoff < 0) error('Cutoff frequencies - transition band width / 2 must not be < DC'); elseif any(args.fcutoff > 1) error('Cutoff frequencies + transition band width / 2 must not be > Nyquist'); end c = {[0 args.fcutoff 1]}; % Filter type switch args.ftype case 'bandpass' c = [c {[0 0 1 1 0 0]}]; case 'bandstop' c = [c {[1 1 0 0 1 1]}]; case 'highpass' c = [c {[0 0 1 1]}]; case 'lowpass' c = [c {[1 1 0 0]}]; end %Filter weights if all(isfield(args, {'wtpass', 'wtstop'})) && ~isempty(args.wtpass) && ~isempty(args.wtstop) w = [args.wtstop args.wtpass]; c{3} = w(c{2}(1:2:end) + 1); end % Callback function comcb(obj, evt, ftypes, srate) args.fcutoff = str2num(get(findobj(gcbf, 'Tag', 'fcutoffedit'), 'String')); args.ftype = ftypes{get(findobj(gcbf, 'Tag', 'ftypepop'), 'Value')}; args.ftrans = str2double(get(findobj(gcbf, 'Tag', 'ftransedit'), 'String')); args.wtpass = str2double(get(findobj(gcbf, 'Tag', 'wtpassedit'), 'String')); args.wtstop = str2double(get(findobj(gcbf, 'Tag', 'wtstopedit'), 'String')); c = parseargs(args, srate); switch get(obj, 'Tag') case 'orderpush' [args.forder, args.wtpass, args.wtstop] = pop_firpmord(c{1}(2:end - 1), c{2}(1:2:end)); if ~isempty(args.forder) || ~isempty(args.wtpass) || ~isempty(args.wtstop) set(findobj(gcbf, 'Tag', 'forderedit'), 'String', ceil(args.forder / 2) * 2); set(findobj(gcbf, 'Tag', 'wtpassedit'), 'String', args.wtpass); set(findobj(gcbf, 'Tag', 'wtstopedit'), 'String', args.wtstop); end case 'plotpush' args.forder = str2double(get(findobj(gcbf, 'Tag', 'forderedit'), 'String')); if isempty(args.forder) error('Not enough input arguments'); end b = firpm(args.forder, c{:}); H = findobj('Tag', 'filter responses', 'Type', 'figure'); if ~isempty(H) figure(H); else H = figure; set(H, 'color', [.93 .96 1], 'Tag', 'filter responses'); end plotfresp(b, 1, [], srate); end
github
lcnhappe/happe-master
pop_eegfiltnew.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/pop_eegfiltnew.m
8,458
utf_8
568c652401a53a0b370d55e248775e5a
% pop_eegfiltnew() - Filter data using Hamming windowed sinc FIR filter % % Usage: % >> [EEG, com, b] = pop_eegfiltnew(EEG); % pop-up window mode % >> [EEG, com, b] = pop_eegfiltnew(EEG, locutoff, hicutoff, filtorder, % revfilt, usefft, plotfreqz, minphase); % % Inputs: % EEG - EEGLAB EEG structure % locutoff - lower edge of the frequency pass band (Hz) % {[]/0 -> lowpass} % hicutoff - higher edge of the frequency pass band (Hz) % {[]/0 -> highpass} % % Optional inputs: % filtorder - filter order (filter length - 1). Mandatory even % revfilt - [0|1] invert filter (from bandpass to notch filter) % {default 0 (bandpass)} % usefft - ignored (backward compatibility only) % plotfreqz - [0|1] plot filter's frequency and phase response % {default 0} % minphase - scalar boolean minimum-phase converted causal filter % {default false} % % Outputs: % EEG - filtered EEGLAB EEG structure % com - history string % b - filter coefficients % % Note: % pop_eegfiltnew is intended as a replacement for the deprecated % pop_eegfilt function. Required filter order/transition band width is % estimated with the following heuristic in default mode: transition band % width is 25% of the lower passband edge, but not lower than 2 Hz, where % possible (for bandpass, highpass, and bandstop) and distance from % passband edge to critical frequency (DC, Nyquist) otherwise. Window % type is hardcoded to Hamming. Migration to windowed sinc FIR filters % (pop_firws) is recommended. pop_firws allows user defined window type % and estimation of filter order by user defined transition band width. % % Author: Andreas Widmann, University of Leipzig, 2012 % % See also: % firfilt, firws, windows %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2008 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [EEG, com, b] = pop_eegfiltnew(EEG, locutoff, hicutoff, filtorder, revfilt, usefft, plotfreqz, minphase) com = ''; if nargin < 1 help pop_eegfiltnew; return end if isempty(EEG.data) error('Cannot filter empty dataset.'); end % GUI if nargin < 2 geometry = {[3, 1], [3, 1], [3, 1], 1, 1, 1, 1}; geomvert = [1 1 1 2 1 1 1]; uilist = {{'style', 'text', 'string', 'Lower edge of the frequency pass band (Hz)'} ... {'style', 'edit', 'string', ''} ... {'style', 'text', 'string', 'Higher edge of the frequency pass band (Hz)'} ... {'style', 'edit', 'string', ''} ... {'style', 'text', 'string', 'FIR Filter order (Mandatory even. Default is automatic*)'} ... {'style', 'edit', 'string', ''} ... {'style', 'text', 'string', {'*See help text for a description of the default filter order heuristic.', 'Manual definition is recommended.'}} ... {'style', 'checkbox', 'string', 'Notch filter the data instead of pass band', 'value', 0} ... {'Style', 'checkbox', 'String', 'Use minimum-phase converted causal filter (non-linear!; beta)', 'Value', 0} ... {'style', 'checkbox', 'string', 'Plot frequency response', 'value', 1}}; result = inputgui('geometry', geometry, 'geomvert', geomvert, 'uilist', uilist, 'title', 'Filter the data -- pop_eegfiltnew()', 'helpcom', 'pophelp(''pop_eegfiltnew'')'); if isempty(result), return; end locutoff = str2num(result{1}); hicutoff = str2num(result{2}); filtorder = str2num(result{3}); revfilt = result{4}; minphase = result{5}; plotfreqz = result{6}; usefft = []; else if nargin < 3 hicutoff = []; end if nargin < 4 filtorder = []; end if nargin < 5 || isempty(revfilt) revfilt = 0; end if nargin < 6 usefft = []; elseif usefft == 1 error('FFT filtering not supported. Argument is provided for backward compatibility in command line mode only.') end if nargin < 7 || isempty(plotfreqz) plotfreqz = 0; end if nargin < 8 || isempty(minphase) minphase = 0; end end % Constants TRANSWIDTHRATIO = 0.25; fNyquist = EEG.srate / 2; % Check arguments if locutoff == 0, locutoff = []; end if hicutoff == 0, hicutoff = []; end if isempty(hicutoff) % Convert highpass to inverted lowpass hicutoff = locutoff; locutoff = []; revfilt = ~revfilt; end edgeArray = sort([locutoff hicutoff]); if isempty(edgeArray) error('Not enough input arguments.'); end if any(edgeArray < 0 | edgeArray >= fNyquist) error('Cutoff frequency out of range'); end if ~isempty(filtorder) && (filtorder < 2 || mod(filtorder, 2) ~= 0) error('Filter order must be a real, even, positive integer.') end % Max stop-band width maxTBWArray = edgeArray; % Band-/highpass if revfilt == 0 % Band-/lowpass maxTBWArray(end) = fNyquist - edgeArray(end); elseif length(edgeArray) == 2 % Bandstop maxTBWArray = diff(edgeArray) / 2; end maxDf = min(maxTBWArray); % Transition band width and filter order if isempty(filtorder) % Default filter order heuristic if revfilt == 1 % Highpass and bandstop df = min([max([maxDf * TRANSWIDTHRATIO 2]) maxDf]); else % Lowpass and bandpass df = min([max([edgeArray(1) * TRANSWIDTHRATIO 2]) maxDf]); end filtorder = 3.3 / (df / EEG.srate); % Hamming window filtorder = ceil(filtorder / 2) * 2; % Filter order must be even. else df = 3.3 / filtorder * EEG.srate; % Hamming window filtorderMin = ceil(3.3 ./ ((maxDf * 2) / EEG.srate) / 2) * 2; filtorderOpt = ceil(3.3 ./ (maxDf / EEG.srate) / 2) * 2; if filtorder < filtorderMin error('Filter order too low. Minimum required filter order is %d. For better results a minimum filter order of %d is recommended.', filtorderMin, filtorderOpt) elseif filtorder < filtorderOpt warning('firfilt:filterOrderLow', 'Transition band is wider than maximum stop-band width. For better results a minimum filter order of %d is recommended. Reported might deviate from effective -6dB cutoff frequency.', filtorderOpt) end end filterTypeArray = {'lowpass', 'bandpass'; 'highpass', 'bandstop (notch)'}; fprintf('pop_eegfiltnew() - performing %d point %s filtering.\n', filtorder + 1, filterTypeArray{revfilt + 1, length(edgeArray)}) fprintf('pop_eegfiltnew() - transition band width: %.4g Hz\n', df) fprintf('pop_eegfiltnew() - passband edge(s): %s Hz\n', mat2str(edgeArray)) % Passband edge to cutoff (transition band center; -6 dB) dfArray = {df, [-df, df]; -df, [df, -df]}; cutoffArray = edgeArray + dfArray{revfilt + 1, length(edgeArray)} / 2; fprintf('pop_eegfiltnew() - cutoff frequency(ies) (-6 dB): %s Hz\n', mat2str(cutoffArray)) % Window winArray = windows('hamming', filtorder + 1); % Filter coefficients if revfilt == 1 filterTypeArray = {'high', 'stop'}; b = firws(filtorder, cutoffArray / fNyquist, filterTypeArray{length(cutoffArray)}, winArray); else b = firws(filtorder, cutoffArray / fNyquist, winArray); end if minphase disp('pop_eegfiltnew() - converting filter to minimum-phase (non-linear!)'); b = minphaserceps(b); end % Plot frequency response if plotfreqz freqz(b, 1, 8192, EEG.srate); end % Filter if minphase disp('pop_eegfiltnew() - filtering the data (causal)'); EEG = firfiltsplit(EEG, b, 1); else disp('pop_eegfiltnew() - filtering the data (zero-phase)'); EEG = firfilt(EEG, b); end % History string com = sprintf('%s = pop_eegfiltnew(%s, %s);', inputname(1), inputname(1), vararg2str({locutoff, hicutoff, filtorder, revfilt, usefft, plotfreqz})); end
github
lcnhappe/happe-master
pop_xfirws.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/pop_xfirws.m
10,425
utf_8
d0777a1329eeb3b766e505a0b61242c9
% pop_xfirws() - Design and export xfir compatible windowed sinc FIR filter % % Usage: % >> pop_xfirws; % pop-up window mode % >> [b, a] = pop_xfirws; % pop-up window mode % >> pop_xfirws('key1', value1, 'key2', value2, 'keyn', valuen); % >> [b, a] = pop_xfirws('key1', value1, 'key2', value2, 'keyn', valuen); % % Inputs: % 'srate' - scalar sampling rate (Hz) % 'fcutoff' - vector or scalar of cutoff frequency/ies (-6 dB; Hz) % 'forder' - scalar filter order. Mandatory even % % Optional inputs: % 'ftype' - char array filter type. 'bandpass', 'highpass', % 'lowpass', or 'bandstop' {default 'bandpass' or % 'lowpass', depending on number of cutoff frequencies} % 'wtype' - char array window type. 'rectangular', 'bartlett', % 'hann', 'hamming', 'blackman', or 'kaiser' {default % 'blackman'} % 'warg' - scalar kaiser beta % 'filename' - char array export filename % 'pathname' - char array export pathname {default '.'} % % Outputs: % b - filter coefficients % a - filter coefficients % % Note: % Window based filters' transition band width is defined by filter % order and window type/parameters. Stopband attenuation equals % passband ripple and is defined by the window type/parameters. Refer % to table below for typical parameters. (Windowed sinc) FIR filters % are zero phase in passband when shifted by the filters group delay % (what firfilt does). Pi phase jumps noticable in the phase reponse % reflect a negative frequency response and only occur in the % stopband. % % Beta Max stopband Max passband Max passband Transition width Mainlobe width % attenuation deviation ripple (dB) (normalized freq) (normalized rad freq) % (dB) % Rectangular -21 0.0891 1.552 0.9 / m* 4 * pi / m % Bartlett -25 0.0562 0.977 (2.9** / m) 8 * pi / m % Hann -44 0.0063 0.109 3.1 / m 8 * pi / m % Hamming -53 0.0022 0.038 3.3 / m 8 * pi / m % Blackman -74 0.0002 0.003 5.5 / m 12 * pi / m % Kaiser 5.653 -60 0.001 0.017 3.6 / m % Kaiser 7.857 -80 0.0001 0.002 5.0 / m % * m = filter order % ** estimate for higher m only % % Example: % fs = 500; tbw = 2; dev = 0.001; % beta = pop_kaiserbeta(dev); % m = pop_firwsord('kaiser', fs, tbw, dev); % pop_xfirws('srate', fs, 'fcutoff', [1 25], 'ftype', 'bandpass', 'wtype', 'kaiser', 'warg', beta, 'forder', m, 'filename', 'foo.fir') % % Author: Andreas Widmann, University of Leipzig, 2011 % % See also: % firfilt, firws, pop_firwsord, pop_kaiserbeta, plotfresp, windows %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2011 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [varargout] = pop_xfirws(varargin) % Pop-up window mode if nargin < 1 drawnow; ftypes = {'bandpass' 'highpass' 'lowpass' 'bandstop'}; wtypes = {'rectangular' 'bartlett' 'hann' 'hamming' 'blackman' 'kaiser'}; uigeom = {[1 0.75 0.75] 1 [1 0.75 0.75] [1 0.75 0.75] 1 [1 0.75 0.75] [1 0.75 0.75] [1 0.75 0.75] 1 [1 0.75 0.75]}; uilist = {{'Style' 'text' 'String' 'Sampling frequency (Hz):'} ... {'Style' 'edit' 'String' '2' 'Tag' 'srateedit'} {} ... {} ... {'Style' 'text' 'String' 'Cutoff frequency(ies) [hp lp] (-6 dB; Hz):'} ... {'Style' 'edit' 'String' '' 'Tag' 'fcutoffedit'} {} ... {'Style' 'text' 'String' 'Filter type:'} ... {'Style' 'popupmenu' 'String' ftypes 'Tag' 'ftypepop'} {} ... {} ... {'Style' 'text' 'String' 'Window type:'} ... {'Style' 'popupmenu' 'String' wtypes 'Tag' 'wtypepop' 'Value' 5 'Callback' 'temp = {''off'', ''on''}; set(findobj(gcbf, ''-regexp'', ''Tag'', ''^warg''), ''Enable'', temp{double(get(gcbo, ''Value'') == 6) + 1}), set(findobj(gcbf, ''Tag'', ''wargedit''), ''String'', '''')'} {} ... {'Style' 'text' 'String' 'Kaiser window beta:' 'Tag' 'wargtext' 'Enable' 'off'} ... {'Style' 'edit' 'String' '' 'Tag' 'wargedit' 'Enable' 'off'} ... {'Style' 'pushbutton' 'String' 'Estimate' 'Tag' 'wargpush' 'Enable' 'off' 'Callback' @comwarg} ... {'Style' 'text' 'String' 'Filter order (mandatory even):'} ... {'Style' 'edit' 'String' '' 'Tag' 'forderedit'} ... {'Style' 'pushbutton' 'String' 'Estimate' 'Callback' {@comforder, wtypes}} ... {'Style' 'edit' 'Tag' 'devedit' 'Visible' 'off'} ... {} {} {'Style' 'pushbutton' 'String', 'Plot filter responses' 'Callback' {@comfresp, wtypes, ftypes}}}; result = inputgui(uigeom, uilist, 'pophelp(''pop_firws'')', 'Filter the data -- pop_firws()'); if isempty(result), return; end Arg = struct; Arg.srate = str2double(result{1}); Arg.fcutoff = str2num(result{2}); Arg.ftype = ftypes{result{3}}; Arg.wtype = wtypes{result{4}}; Arg.warg = str2num(result{5}); Arg.forder = str2double(result{6}); % Command line mode else Arg = struct(varargin{:}); end % Sampling rate if ~isfield(Arg, 'srate') || isempty(Arg.srate) % Use default Arg.srate = 2; end % Filter order and cutoff frequencies if ~isfield(Arg, 'fcutoff') || ~isfield(Arg, 'forder') || isempty(Arg.fcutoff) || isempty(Arg.forder) error('Not enough input arguments.'); end firwsArgArray = {Arg.forder sort(Arg.fcutoff / Arg.srate * 2)}; % Sorting and normalization % Filter type if ~isfield(Arg, 'ftype') || isempty(Arg.ftype) % Use default switch length(Arg.fcutoff) case 1 Arg.ftype = 'lowpass'; case 2 Arg.ftype = 'bandpass'; otherwise error('Wrong number of arguments.') end else if any(strcmpi(Arg.ftype, {'bandpass' 'bandstop'})) && length(Arg.fcutoff) ~= 2 error('Not enough input arguments.'); elseif any(strcmpi(Arg.ftype, {'highpass' 'lowpass'})) && length(Arg.fcutoff) ~= 1 error('Too many input arguments.'); end switch Arg.ftype case 'bandstop' firwsArgArray(end + 1) = {'stop'}; case 'highpass' firwsArgArray(end + 1) = {'high'}; end end % Window type if ~isfield(Arg, 'wtype') || isempty(Arg.wtype) % Use default Arg.wtype = 'blackman'; end % Window parameter if ~isfield(Arg, 'warg') || isempty(Arg.warg) Arg.warg = []; firwsArgArray(end + 1) = {windows(Arg.wtype, Arg.forder + 1)}; else firwsArgArray(end + 1) = {windows(Arg.wtype, Arg.forder + 1, Arg.warg)}; end b = firws(firwsArgArray{:}); a = 1; if nargout == 0 || isfield(Arg, 'filename') % Open file if ~isfield(Arg, 'filename') || isempty(Arg.filename) [Arg.filename Arg.pathname] = uiputfile('*.fir', 'Save filter -- pop_xfirws'); end if ~isfield(Arg, 'pathname') || isempty(Arg.pathname) Arg.pathname = '.'; end [fid message] = fopen(fullfile(Arg.pathname, Arg.filename), 'w', 'l'); if fid == -1 error(message) end % Author fprintf(fid, '[author]\n'); fprintf(fid, '%s\n\n', 'pop_xfirws 1.5.1'); % FIR design fprintf(fid, '[fir design]\n'); fprintf(fid, 'method %s\n', 'fourier'); fprintf(fid, 'type %s\n', Arg.ftype); fprintf(fid, 'fsample %f\n', Arg.srate); fprintf(fid, 'length %d\n', Arg.forder + 1); fprintf(fid, 'fcrit%d %f\n', [1:length(Arg.fcutoff); Arg.fcutoff]); fprintf(fid, 'window %s %s\n\n', Arg.wtype, num2str(Arg.warg)); % fprintf bug % FIR fprintf(fid, '[fir]\n'); fprintf(fid, '%d\n', Arg.forder + 1); fprintf(fid, '% 18.10e\n', b); % Close file fclose(fid); end if nargout > 0 varargout = {b a}; end % Callback estimate Kaiser beta function comwarg(varargin) [warg, dev] = pop_kaiserbeta; set(findobj(gcbf, 'Tag', 'wargedit'), 'String', warg); set(findobj(gcbf, 'Tag', 'devedit'), 'String', dev); % Callback estimate filter order function comforder(obj, evt, wtypes) srate = str2double(get(findobj(gcbf, 'Tag', 'srateedit'), 'String')); wtype = wtypes{get(findobj(gcbf, 'Tag', 'wtypepop'), 'Value')}; dev = str2double(get(findobj(gcbf, 'Tag', 'devedit'), 'String')); [forder, dev] = pop_firwsord(wtype, srate, [], dev); set(findobj(gcbf, 'Tag', 'forderedit'), 'String', forder); set(findobj(gcbf, 'Tag', 'devedit'), 'String', dev); % Callback plot filter responses function comfresp(obj, evt, wtypes, ftypes) Arg.srate = str2double(get(findobj(gcbf, 'Tag', 'srateedit'), 'String')); Arg.fcutoff = str2num(get(findobj(gcbf, 'Tag', 'fcutoffedit'), 'String')); Arg.ftype = ftypes{get(findobj(gcbf, 'Tag', 'ftypepop'), 'Value')}; Arg.wtype = wtypes{get(findobj(gcbf, 'Tag', 'wtypepop'), 'Value')}; Arg.warg = str2num(get(findobj(gcbf, 'Tag', 'wargedit'), 'String')); Arg.forder = str2double(get(findobj(gcbf, 'Tag', 'forderedit'), 'String')); xfirwsArgArray(1, :) = fieldnames(Arg); xfirwsArgArray(2, :) = struct2cell(Arg); [b a] = pop_xfirws(xfirwsArgArray{:}); H = findobj('Tag', 'filter responses', 'type', 'figure'); if ~isempty(H) figure(H); else H = figure; set(H, 'color', [.93 .96 1], 'Tag', 'filter responses'); end plotfresp(b, a, [], Arg.srate);
github
lcnhappe/happe-master
firfiltsplit.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/firfiltsplit.m
2,363
utf_8
8e58b4fa2694a8b1d55b8fcddcf94b4f
% firfiltsplit() - Split data at discontinuities and forward to dc padded % filter function % % Usage: % >> EEG = firfiltsplit(EEG, b); % % Inputs: % EEG - EEGLAB EEG structure % b - vector of filter coefficients % causal - scalar boolean perform causal filtering {default 0} % % Outputs: % EEG - EEGLAB EEG structure % % Note: % This function is (in combination with firfiltdcpadded) just a % non-memory optimized version of the firfilt function allowing causal % filtering. Will possibly replace firfilt in the future. % % Author: Andreas Widmann, University of Leipzig, 2013 % % See also: % firfiltdcpadded, findboundaries %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2013 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function EEG = firfiltsplit(EEG, b, causal) if nargin < 3 || isempty(causal) causal = 0; end if nargin < 2 error('Not enough input arguments.'); end % Find data discontinuities and reshape epoched data if EEG.trials > 1 % Epoched data EEG.data = reshape(EEG.data, [EEG.nbchan EEG.pnts * EEG.trials]); dcArray = 1 : EEG.pnts : EEG.pnts * (EEG.trials + 1); else % Continuous data dcArray = [findboundaries(EEG.event) EEG.pnts + 1]; end % Loop over continuous segments for iDc = 1:(length(dcArray) - 1) % Filter segment EEG.data(:, dcArray(iDc):dcArray(iDc + 1) - 1) = firfiltdcpadded(b, EEG.data(:, dcArray(iDc):dcArray(iDc + 1) - 1)', causal)'; end % Reshape epoched data if EEG.trials > 1 EEG.data = reshape(EEG.data, [EEG.nbchan EEG.pnts EEG.trials]); end end
github
lcnhappe/happe-master
eegplugin_firfilt.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/eegplugin_firfilt.m
2,667
utf_8
681ba5e0933cafd6bb95672f910816cd
% eegplugin_firfilt() - EEGLAB plugin for filtering data using linear- % phase FIR filters % % Usage: % >> eegplugin_firfilt(fig, trystrs, catchstrs); % % Inputs: % fig - [integer] EEGLAB figure % trystrs - [struct] "try" strings for menu callbacks. % catchstrs - [struct] "catch" strings for menu callbacks. % % Author: Andreas Widmann, University of Leipzig, Germany, 2005 %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function vers = eegplugin_firfilt(fig, trystrs, catchstrs) vers = 'firfilt1.6.1'; if nargin < 3 error('eegplugin_firfilt requires 3 arguments'); end % add folder to path % ----------------------- if ~exist('pop_firws') p = which('eegplugin_firfilt'); p = p(1:findstr(p,'eegplugin_firfilt.m')-1); addpath([p vers]); end % find import data menu % --------------------- menu = findobj(fig, 'tag', 'filter'); % menu callbacks % -------------- comfirfiltnew = [trystrs.no_check '[EEG LASTCOM] = pop_eegfiltnew(EEG);' catchstrs.new_and_hist]; comfirws = [trystrs.no_check '[EEG LASTCOM] = pop_firws(EEG);' catchstrs.new_and_hist]; comfirpm = [trystrs.no_check '[EEG LASTCOM] = pop_firpm(EEG);' catchstrs.new_and_hist]; comfirma = [trystrs.no_check '[EEG LASTCOM] = pop_firma(EEG);' catchstrs.new_and_hist]; % create menus if necessary % ------------------------- uimenu( menu, 'Label', 'Basic FIR filter (new, default)', 'CallBack', comfirfiltnew, 'Separator', 'on', 'position', 1); uimenu( menu, 'Label', 'Windowed sinc FIR filter', 'CallBack', comfirws, 'position', 2); uimenu( menu, 'Label', 'Parks-McClellan (equiripple) FIR filter', 'CallBack', comfirpm, 'position', 3); uimenu( menu, 'Label', 'Moving average FIR filter', 'CallBack', comfirma, 'position', 4);
github
lcnhappe/happe-master
windows.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/windows.m
2,876
utf_8
581c2f660f641935667a234f9b024f3a
% windows() - Returns handle to window function or window % % Usage: % >> h = windows(t); % >> h = windows(t, m); % >> h = windows(t, m, a); % % Inputs: % t - char array 'rectangular', 'bartlett', 'hann', 'hamming', % 'blackman', 'blackmanharris', or 'kaiser' % % Optional inputs: % m - scalar window length % a - scalar or vector with window parameter(s) % % Output: % h - function handle or column vector window % % Author: Andreas Widmann, University of Leipzig, 2005 %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function h = windows(t, m, a) if nargin < 1 error('Not enough input arguments.'); end h = str2func(t); switch nargin case 2 h = h(m); case 3 h = h(m, a); end end function w = rectangular(m) w = ones(m, 1); end function w = bartlett(m) w = 1 - abs(-1:2 / (m - 1):1)'; end % von Hann function w = hann(m); w = hamming(m, 0.5); end % Hamming function w = hamming(m, a) if nargin < 2 || isempty(a) a = 25 / 46; end m = [0:1 / (m - 1):1]'; w = a - (1 - a) * cos(2 * pi * m); end % Blackman function w = blackman(m, a) if nargin < 2 || isempty(a) a = [0.42 0.5 0.08 0]; end m = [0:1 / (m - 1):1]'; w = a(1) - a(2) * cos (2 * pi * m) + a(3) * cos(4 * pi * m) - a(4) * cos(6 * pi * m); end % Blackman-Harris function w = blackmanharris(m) w = blackman(m, [0.35875 0.48829 0.14128 0.01168]); end % Kaiser function w = kaiser(m, a) if nargin < 2 || isempty(a) a = 0.5; end m = [-1:2 / (m - 1):1]'; w = besseli(0, a * sqrt(1 - m.^2)) / besseli(0, a); end % Tukey function w = tukey(m, a) if nargin < 2 || isempty(a) a = 0.5; end if a <= 0 w = ones(m, 1); elseif a >= 1 w = hann(m); else a = (m - 1) / 2 * a; tapArray = (0:a)' / a; w = [0.5 - 0.5 * cos(pi * tapArray); ... ones(m - 2 * length(tapArray), 1); ... 0.5 - 0.5 * cos(pi * tapArray(end:-1:1))]; end end
github
lcnhappe/happe-master
pop_firpmord.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/pop_firpmord.m
3,145
utf_8
f4dae3b8e73f8ab3d73c2d207506ddd8
% pop_firpmord() - Estimate Parks-McClellan filter order and weights % % Usage: % >> [m, wtpass, wtstop] = pop_firpmord(f, a); % pop-up window mode % >> [m, wtpass, wtstop] = pop_firpmord(f, a, dev); % >> [m, wtpass, wtstop] = pop_firpmord(f, a, dev, fs); % % Inputs: % f - vector frequency band edges % a - vector desired amplitudes on bands defined by f % dev - vector allowable deviations on bands defined by f % % Optional inputs: % fs - scalar sampling frequency {default 2} % % Output: % m - scalar estimated filter order % wtpass - scalar passband weight % wtstop - scalar stopband weight % % Note: % Requires the signal processing toolbox. Convert passband ripple from % dev to peak-to-peak dB: rp = 20 * log10((1 + dev) / (1 - dev)). % Convert stopband attenuation from dev to dB: rs = 20 * log10(dev). % % Author: Andreas Widmann, University of Leipzig, 2005 % % See also: % pop_firpm, firpm, firpmord %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [m, wtpass, wtstop] = pop_firpmord(f, a, dev, fs) m = []; wtpass = []; wtstop = []; if exist('firpmord') ~= 2 error('Requires the signal processing toolbox.'); end if nargin < 2 || isempty(f) || isempty(a) error('Not enough input arguments'); end % Sampling frequency if nargin < 4 || isempty(fs) fs = 2; end % GUI if nargin < 3 || isempty(dev) drawnow; uigeom = {[1 1] [1 1]}; uilist = {{'style' 'text' 'string' 'Peak-to-peak passband ripple (dB):'} ... {'style' 'edit'} ... {'style' 'text' 'string' 'Stopband attenuation (dB):'} ... {'style' 'edit'}}; result = inputgui(uigeom, uilist, 'pophelp(''pop_firpmord'')', 'Estimate filter order and weights -- pop_firpmord()'); if length(result) == 0, return, end if ~isempty(result{1}) rp = str2num(result{1}); rp = (10^(rp / 20) - 1) / (10^(rp / 20) + 1); dev(find(a == 1)) = rp; else error('Not enough input arguments.'); end if ~isempty(result{2}) rs = str2num(result{2}); rs = 10^(-abs(rs) / 20); dev(find(a == 0)) = rs; else error('Not enough input arguments.'); end end [m, fo, ao, w] = firpmord(f, a, dev, fs); wtpass = w(find(a == 1, 1)); wtstop = w(find(a == 0, 1));
github
lcnhappe/happe-master
firfilt.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/firfilt.m
4,262
utf_8
d5703bbd52180bfb0661e6db5e649967
% firfilt() - Pad data with DC constant, filter data with FIR filter, % and shift data by the filter's group delay % % Usage: % >> EEG = firfilt(EEG, b, nFrames); % % Inputs: % EEG - EEGLAB EEG structure % b - vector of filter coefficients % % Optional inputs: % nFrames - number of frames to filter per block {default 1000} % % Outputs: % EEG - EEGLAB EEG structure % % Note: % Higher values for nFrames increase speed and working memory % requirements. % % Author: Andreas Widmann, University of Leipzig, 2005 % % See also: % filter, findboundaries %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function EEG = firfilt(EEG, b, nFrames) if nargin < 2 error('Not enough input arguments.'); end if nargin < 3 || isempty(nFrames) nFrames = 1000; end % Filter's group delay if mod(length(b), 2) ~= 1 error('Filter order is not even.'); end groupDelay = (length(b) - 1) / 2; % Find data discontinuities and reshape epoched data if EEG.trials > 1 % Epoched data EEG.data = reshape(EEG.data, [EEG.nbchan EEG.pnts * EEG.trials]); dcArray = 1 : EEG.pnts : EEG.pnts * (EEG.trials + 1); else % Continuous data dcArray = [findboundaries(EEG.event) EEG.pnts + 1]; end % Initialize progress indicator nSteps = 20; step = 0; fprintf(1, 'firfilt(): |'); strLength = fprintf(1, [repmat(' ', 1, nSteps - step) '| 0%%']); tic for iDc = 1:(length(dcArray) - 1) % Pad beginning of data with DC constant and get initial conditions ziDataDur = min(groupDelay, dcArray(iDc + 1) - dcArray(iDc)); [temp, zi] = filter(b, 1, double([EEG.data(:, ones(1, groupDelay) * dcArray(iDc)) ... EEG.data(:, dcArray(iDc):(dcArray(iDc) + ziDataDur - 1))]), [], 2); blockArray = [(dcArray(iDc) + groupDelay):nFrames:(dcArray(iDc + 1) - 1) dcArray(iDc + 1)]; for iBlock = 1:(length(blockArray) - 1) % Filter the data [EEG.data(:, (blockArray(iBlock) - groupDelay):(blockArray(iBlock + 1) - groupDelay - 1)), zi] = ... filter(b, 1, double(EEG.data(:, blockArray(iBlock):(blockArray(iBlock + 1) - 1))), zi, 2); % Update progress indicator [step, strLength] = mywaitbar((blockArray(iBlock + 1) - groupDelay - 1), size(EEG.data, 2), step, nSteps, strLength); end % Pad end of data with DC constant temp = filter(b, 1, double(EEG.data(:, ones(1, groupDelay) * (dcArray(iDc + 1) - 1))), zi, 2); EEG.data(:, (dcArray(iDc + 1) - ziDataDur):(dcArray(iDc + 1) - 1)) = ... temp(:, (end - ziDataDur + 1):end); % Update progress indicator [step, strLength] = mywaitbar((dcArray(iDc + 1) - 1), size(EEG.data, 2), step, nSteps, strLength); end % Reshape epoched data if EEG.trials > 1 EEG.data = reshape(EEG.data, [EEG.nbchan EEG.pnts EEG.trials]); end % Deinitialize progress indicator fprintf(1, '\n') end function [step, strLength] = mywaitbar(compl, total, step, nSteps, strLength) progStrArray = '/-\|'; tmp = floor(compl / total * nSteps); if tmp > step fprintf(1, [repmat('\b', 1, strLength) '%s'], repmat('=', 1, tmp - step)) step = tmp; ete = ceil(toc / step * (nSteps - step)); strLength = fprintf(1, [repmat(' ', 1, nSteps - step) '%s %3d%%, ETE %02d:%02d'], progStrArray(mod(step - 1, 4) + 1), floor(step * 100 / nSteps), floor(ete / 60), mod(ete, 60)); end end
github
lcnhappe/happe-master
pop_firws.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/pop_firws.m
10,634
utf_8
830347cf85c318140462a11e9257b53b
% pop_firws() - Filter data using windowed sinc FIR filter % % Usage: % >> [EEG, com, b] = pop_firws(EEG); % pop-up window mode % >> [EEG, com, b] = pop_firws(EEG, 'key1', value1, 'key2', ... % value2, 'keyn', valuen); % % Inputs: % EEG - EEGLAB EEG structure % 'fcutoff' - vector or scalar of cutoff frequency/ies (-6 dB; Hz) % 'forder' - scalar filter order. Mandatory even % % Optional inputs: % 'ftype' - char array filter type. 'bandpass', 'highpass', % 'lowpass', or 'bandstop' {default 'bandpass' or % 'lowpass', depending on number of cutoff frequencies} % 'wtype' - char array window type. 'rectangular', 'bartlett', % 'hann', 'hamming', 'blackman', or 'kaiser' {default % 'blackman'} % 'warg' - scalar kaiser beta % 'minphase' - scalar boolean minimum-phase converted causal filter % {default false} % % Outputs: % EEG - filtered EEGLAB EEG structure % com - history string % b - filter coefficients % % Note: % Window based filters' transition band width is defined by filter % order and window type/parameters. Stopband attenuation equals % passband ripple and is defined by the window type/parameters. Refer % to table below for typical parameters. (Windowed sinc) symmetric FIR % filters have linear phase and can be made zero phase (non-causal) by % shifting the data by the filters group delay (what firfilt does by % default). Pi phase jumps noticable in the phase reponse reflect a % negative frequency response and only occur in the stopband. pop_firws % also allows causal filtering with minimum-phase (non-linear!) converted % filter coefficients with similar properties. Non-linear causal % filtering is NOT recommended for most use cases. % % Beta Max stopband Max passband Max passband Transition width Mainlobe width % attenuation deviation ripple (dB) (normalized freq) (normalized rad freq) % (dB) % Rectangular -21 0.0891 1.552 0.9 / m* 4 * pi / m % Bartlett -25 0.0562 0.977 8 * pi / m % Hann -44 0.0063 0.109 3.1 / m 8 * pi / m % Hamming -53 0.0022 0.038 3.3 / m 8 * pi / m % Blackman -74 0.0002 0.003 5.5 / m 12 * pi / m % Kaiser 5.653 -60 0.001 0.017 3.6 / m % Kaiser 7.857 -80 0.0001 0.002 5.0 / m % * m = filter order % % Author: Andreas Widmann, University of Leipzig, 2005 % % See also: % firfilt, firws, pop_firwsord, pop_kaiserbeta, plotfresp, windows %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [EEG, com, b] = pop_firws(EEG, varargin) com = ''; if nargin < 1 help pop_firws; return; end if isempty(EEG.data) error('Cannot process empty dataset'); end if nargin < 2 drawnow; ftypes = {'bandpass', 'highpass', 'lowpass', 'bandstop'}; ftypesStr = {'Bandpass', 'Highpass', 'Lowpass', 'Bandstop'}; wtypes = {'rectangular', 'bartlett', 'hann', 'hamming', 'blackman', 'kaiser'}; wtypesStr = {'Rectangular (PB dev=0.089, SB att=-21dB)', 'Bartlett (PB dev=0.056, SB att=-25dB)', 'Hann (PB dev=0.006, SB att=-44dB)', 'Hamming (PB dev=0.002, SB att=-53dB)', 'Blackman (PB dev=0.0002, SB att=-74dB)', 'Kaiser'}; uigeom = {[1 0.75 0.75] [1 0.75 0.75] 1 [1 0.75 0.75] [1 0.75 0.75] [1 0.75 0.75] [1 1.5] 1 [1 0.75 0.75]}; uilist = {{'Style' 'text' 'String' 'Cutoff frequency(ies) [hp lp] (-6 dB; Hz):'} ... {'Style' 'edit' 'String' '' 'Tag' 'fcutoffedit'} {} ... {'Style' 'text' 'String' 'Filter type:'} ... {'Style' 'popupmenu' 'String' ftypesStr 'Tag' 'ftypepop'} {} ... {} ... {'Style' 'text' 'String' 'Window type:'} ... {'Style' 'popupmenu' 'String' wtypesStr 'Tag' 'wtypepop' 'Value' 5 'Callback' 'temp = {''off'', ''on''}; set(findobj(gcbf, ''-regexp'', ''Tag'', ''^warg''), ''Enable'', temp{double(get(gcbo, ''Value'') == 6) + 1}), set(findobj(gcbf, ''Tag'', ''wargedit''), ''String'', '''')'} {} ... {'Style' 'text' 'String' 'Kaiser window beta:' 'Tag' 'wargtext' 'Enable' 'off'} ... {'Style' 'edit' 'String' '' 'Tag' 'wargedit' 'Enable' 'off'} ... {'Style' 'pushbutton' 'String' 'Estimate' 'Tag' 'wargpush' 'Enable' 'off' 'Callback' @comwarg} ... {'Style' 'text' 'String' 'Filter order (mandatory even):'} ... {'Style' 'edit' 'String' '' 'Tag' 'forderedit'} ... {'Style' 'pushbutton' 'String' 'Estimate' 'Callback' {@comforder, wtypes, EEG.srate}} ... {} {'Style' 'checkbox', 'String', 'Use minimum-phase converted causal filter (non-linear!; beta)', 'Tag' 'minphase', 'Value', 0} ... {'Style' 'edit' 'Tag' 'devedit' 'Visible' 'off'} ... {} {} {'Style' 'pushbutton' 'String', 'Plot filter responses' 'Callback' {@comfresp, wtypes, ftypes, EEG.srate}}}; result = inputgui(uigeom, uilist, 'pophelp(''pop_firws'')', 'Filter the data -- pop_firws()'); if isempty(result), return; end args = {}; if ~isempty(result{1}) args = [args {'fcutoff'} {str2num(result{1})}]; end args = [args {'ftype'} ftypes(result{2})]; args = [args {'wtype'} wtypes(result{3})]; if ~isempty(result{4}) args = [args {'warg'} {str2double(result{4})}]; end if ~isempty(result{5}) args = [args {'forder'} {str2double(result{5})}]; end args = [args {'minphase'} result{6}]; else args = varargin; end % Convert args to structure args = struct(args{:}); c = parseargs(args, EEG.srate); b = firws(c{:}); % Check arguments if ~isfield(args, 'minphase') || isempty(args.minphase) args.minphase = 0; end % Filter disp('pop_firws() - filtering the data'); if args.minphase b = minphaserceps(b); EEG = firfiltsplit(EEG, b, 1); else EEG = firfilt(EEG, b); end % History string com = sprintf('%s = pop_firws(%s', inputname(1), inputname(1)); for c = fieldnames(args)' if ischar(args.(c{:})) com = [com sprintf(', ''%s'', ''%s''', c{:}, args.(c{:}))]; else com = [com sprintf(', ''%s'', %s', c{:}, mat2str(args.(c{:})))]; end end com = [com ');']; % Convert structure args to cell array firws parameters function c = parseargs(args, srate) % Filter order and cutoff frequencies if ~isfield(args, 'fcutoff') || ~isfield(args, 'forder') || isempty(args.fcutoff) || isempty(args.forder) error('Not enough input arguments.'); end c = [{args.forder} {sort(args.fcutoff / (srate / 2))}]; % Sorting and normalization % Filter type if isfield(args, 'ftype') && ~isempty(args.ftype) if (strcmpi(args.ftype, 'bandpass') || strcmpi(args.ftype, 'bandstop')) && length(args.fcutoff) ~= 2 error('Not enough input arguments.'); elseif (strcmpi(args.ftype, 'highpass') || strcmpi(args.ftype, 'lowpass')) && length(args.fcutoff) ~= 1 error('Too many input arguments.'); end switch args.ftype case 'bandstop' c = [c {'stop'}]; case 'highpass' c = [c {'high'}]; end end % Window type if isfield(args, 'wtype') && ~isempty(args.wtype) if strcmpi(args.wtype, 'kaiser') if isfield(args, 'warg') && ~isempty(args.warg) c = [c {windows(args.wtype, args.forder + 1, args.warg)'}]; else error('Not enough input arguments.'); end else c = [c {windows(args.wtype, args.forder + 1)'}]; end end % Callback estimate Kaiser beta function comwarg(varargin) [warg, dev] = pop_kaiserbeta; set(findobj(gcbf, 'Tag', 'wargedit'), 'String', warg); set(findobj(gcbf, 'Tag', 'devedit'), 'String', dev); % Callback estimate filter order function comforder(obj, evt, wtypes, srate) wtype = wtypes{get(findobj(gcbf, 'Tag', 'wtypepop'), 'Value')}; dev = get(findobj(gcbf, 'Tag', 'devedit'), 'String'); [forder, dev] = pop_firwsord(wtype, srate, [], dev); set(findobj(gcbf, 'Tag', 'forderedit'), 'String', forder); set(findobj(gcbf, 'Tag', 'devedit'), 'String', dev); % Callback plot filter responses function comfresp(obj, evt, wtypes, ftypes, srate) args.fcutoff = str2num(get(findobj(gcbf, 'Tag', 'fcutoffedit'), 'String')); args.ftype = ftypes{get(findobj(gcbf, 'Tag', 'ftypepop'), 'Value')}; args.wtype = wtypes{get(findobj(gcbf, 'Tag', 'wtypepop'), 'Value')}; args.warg = str2num(get(findobj(gcbf, 'Tag', 'wargedit'), 'String')); args.forder = str2double(get(findobj(gcbf, 'Tag', 'forderedit'), 'String')); args.minphase = get(findobj(gcbf, 'Tag', 'minphase'), 'Value'); causal = args.minphase; c = parseargs(args, srate); b = firws(c{:}); if args.minphase b = minphaserceps(b); end H = findobj('Tag', 'filter responses', 'type', 'figure'); if ~isempty(H) figure(H); else H = figure; set(H, 'color', [.93 .96 1], 'Tag', 'filter responses'); end plotfresp(b, 1, [], srate, causal);
github
lcnhappe/happe-master
plotfresp.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/plotfresp.m
3,898
utf_8
71a74a912328b37353e1523b662840fa
% plotfresp() - Plot FIR filter's impulse, step, frequency, magnitude, % and phase response % % Usage: % >> plotfresp(b, a, n, fs); % % Inputs: % b - vector filter coefficients % % Optional inputs: % a - currently unused, reserved for future compatibility with IIR % filters {default 1} % n - scalar number of points % fs - scalar sampling frequency % % Author: Andreas Widmann, University of Leipzig, 2005 % % See also: % pop_firws, pop_firpm, pop_firma %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function plotfresp(b, a, nfft, fs, causal) if nargin < 5 || isempty(causal) causal = 0; end if nargin < 4 || isempty(fs) fs = 1; end if nargin < 3 || isempty(nfft) nfft = 2^fix(log2(length(b))); if nfft < 512 nfft = 512; end end if nargin < 1 error('Not enough input arguments.'); end n = length(b); f = (0:1 / nfft:1) * fs / 2; % Impulse resonse if causal, xval = 0:n-1; else xval = -(n - 1) / 2:(n - 1) / 2; end ax(1) = subplot(2, 3, 1); stem(xval, b, 'fill') title('Impulse response'); ylabel('Amplitude'); % Step response ax(4) = subplot(2, 3, 4); stem(xval, cumsum(b), 'fill'); title('Step response'); foo = ylim; if foo(2) < -foo(1) + 1; foo(2) = -foo(1) + 1; ylim(foo); end xMin = []; xMax = []; children = get(ax(4), 'Children'); for child =1:length(children) xData = get(children(child), 'XData'); xMin = min([xMin min(xData)]); xMax = max([xMax max(xData)]); end set(ax([1 4]), 'xlim', [xMin xMax]); ylabel('Amplitude'); % Frequency response ax(2) = subplot(2, 3, 2); m = fix((length(b) - 1) / 2); % Filter order z = fft(b, nfft * 2); z = z(1:fix(length(z) / 2) + 1); % foo = real(abs(z) .* exp(-i * (angle(z) + [0:1 / nfft:1] * m * pi))); % needs further testing plot(f, abs(z)); title('Frequency response'); ylabel('Amplitude'); % Magnitude response ax(5) = subplot(2, 3, 5); db = abs(z); db(db < eps^(2 / 3)) = eps^(2 / 3); % Log of zero warning plot(f, 20 * log10(db)); title('Magnitude response'); foo = ylim; if foo(1) < 20 * log10(eps^(2 / 3)) foo(1) = 20 * log10(eps^(2 / 3)); end ylabel('Magnitude (dB)'); ylim(foo); % Phase response ax(3) = subplot(2, 3, 3); z(abs(z) < eps^(2 / 3)) = NaN; % Phase is undefined for magnitude zero phi = angle(z); if causal phi = unwrap(phi); else delay = -mod((0:1 / nfft:1) * m * pi + pi, 2 * pi) + pi; % Zero-phase phi = phi - delay; phi = phi + 2 * pi * (phi <= -pi + eps ^ (1/3)); % Unwrap end plot(f, phi); title('Phase response'); ylabel('Phase (rad)'); % ylim([-pi / 2 1.5 * pi]); set(ax(1:5), 'ygrid', 'on', 'xgrid', 'on', 'box', 'on'); titles = get(ax(1:5), 'title'); set([titles{:}], 'fontweight', 'bold'); xlabels = get(ax(1:5), 'xlabel'); if fs == 1 set([xlabels{[2 3 5]}], 'String', 'Normalized frequency (2 pi rad / sample)'); else set([xlabels{[2 3 5]}], 'String', 'Frequency (Hz)'); end set([xlabels{[1 4]}], 'String', 'Sample'); set(ax([2 3 5]), 'xlim', [0 fs / 2]); set(ax(1:5), 'colororder', circshift(get(ax(1), 'colororder'), -1)); set(ax(1:5), 'nextplot', 'add');
github
lcnhappe/happe-master
pop_firwsord.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/pop_firwsord.m
5,354
utf_8
5150d668b377feb0d9e95b49486978ca
% pop_firwsord() - Estimate windowed sinc filter order depending on % window type and requested transition band width % % Usage: % >> [m, dev] = pop_firwsord; % pop-up window mode % >> m = pop_firwsord(wtype, fs, df); % >> m = pop_firwsord('kaiser', fs, df, dev); % % Inputs: % wtype - char array window type. 'rectangular', 'bartlett', 'hann', % 'hamming', {'blackman'}, or 'kaiser' % fs - scalar sampling frequency {default 2} % df - scalar requested transition band width % dev - scalar maximum passband deviation/ripple (Kaiser window % only) % % Output: % m - scalar estimated filter order % dev - scalar maximum passband deviation/ripple % % References: % [1] Smith, S. W. (1999). The scientist and engineer's guide to % digital signal processing (2nd ed.). San Diego, CA: California % Technical Publishing. % [2] Proakis, J. G., & Manolakis, D. G. (1996). Digital Signal % Processing: Principles, Algorithms, and Applications (3rd ed.). % Englewood Cliffs, NJ: Prentice-Hall % [3] Ifeachor E. C., & Jervis B. W. (1993). Digital Signal % Processing: A Practical Approach. Wokingham, UK: Addison-Wesley % % Author: Andreas Widmann, University of Leipzig, 2005 % % See also: % pop_firws, firws, pop_kaiserbeta, windows %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [m, dev] = pop_firwsord(wtype, fs, df, dev) m = []; wtypes = {'rectangular' 'bartlett' 'hann' 'hamming' 'blackman' 'kaiser'}; % Window type if nargin < 1 || isempty(wtype) wtype = 5; elseif ~ischar(wtype) || isempty(strmatch(wtype, wtypes)) error('Unknown window type'); else wtype = strmatch(wtype, wtypes); end % Sampling frequency if nargin < 2 || isempty(fs) fs = 2; end % Transition band width if nargin < 3 df = []; end % Maximum passband deviation/ripple if nargin < 4 || isempty(dev) devs = {0.089 0.056 0.0063 0.0022 0.0002 []}; dev = devs{wtype}; end % GUI if nargin < 3 || isempty(df) || (wtype == 6 && isempty(dev)) drawnow; uigeom = {[1 1] [1 1] [1 1] [1 1]}; uilist = {{'style' 'text' 'string' 'Sampling frequency:'} ... {'style' 'edit' 'string' fs} ... {'style' 'text' 'string' 'Window type:'} ... {'style' 'popupmenu' 'string' wtypes 'tag' 'wtypepop' 'value' wtype 'callback' {@comwtype, dev}} ... {'style' 'text' 'string' 'Transition bandwidth (Hz):'} ... {'style' 'edit' 'string' df} ... {'style' 'text' 'string' 'Max passband deviation/ripple:' 'tag' 'devtext'} ... {'style' 'edit' 'tag' 'devedit' 'createfcn' {@comwtype, dev}}}; result = inputgui(uigeom, uilist, 'pophelp(''pop_firwsord'')', 'Estimate filter order -- pop_firwsord()'); if length(result) == 0, return, end if ~isempty(result{1}) fs = str2num(result{1}); else fs = 2; end wtype = result{2}; if ~isempty(result{3}) df = str2num(result{3}); else error('Not enough input arguments.'); end if ~isempty(result{4}) dev = str2num(result{4}); elseif wtype == 6 error('Not enough input arguments.'); end end if length(fs) > 1 || ~isnumeric(fs) || ~isreal(fs) || fs <= 0 error('Sampling frequency must be a positive real scalar.'); end if length(df) > 1 || ~isnumeric(df) || ~isreal(df) || fs <= 0 error('Transition bandwidth must be a positive real scalar.'); end df = df / fs; % Normalize transition band width if wtype == 6 if length(dev) > 1 || ~isnumeric(dev) || ~isreal(dev) || dev <= 0 error('Passband deviation/ripple must be a positive real scalar.'); end devdb = -20 * log10(dev); m = 1 + (devdb - 8) / (2.285 * 2 * pi * df); else dfs = [0.9 2.9 3.1 3.3 5.5]; m = dfs(wtype) / df; end m = ceil(m / 2) * 2; % Make filter order even (type 1) function comwtype(obj, evt, dev) enable = {'off' 'off' 'off' 'off' 'off' 'on'}; devs = {0.089 0.056 0.0063 0.0022 0.0002 dev}; wtype = get(findobj(gcbf, 'tag', 'wtypepop'), 'value'); set(findobj(gcbf, 'tag', 'devtext'), 'enable', enable{wtype}); set(findobj(gcbf, 'tag', 'devedit'), 'enable', enable{wtype}, 'string', devs{wtype});
github
lcnhappe/happe-master
pop_kaiserbeta.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/pop_kaiserbeta.m
2,315
utf_8
9a8a6636653865493068a0e901deeda6
% pop_kaiserbeta() - Estimate Kaiser window beta % % Usage: % >> [beta, dev] = pop_kaiserbeta; % pop-up window mode % >> beta = pop_kaiserbeta(dev); % % Inputs: % dev - scalar maximum passband deviation/ripple % % Output: % beta - scalar Kaiser window beta % dev - scalar maximum passband deviation/ripple % % References: % [1] Proakis, J. G., & Manolakis, D. G. (1996). Digital Signal % Processing: Principles, Algorithms, and Applications (3rd ed.). % Englewood Cliffs, NJ: Prentice-Hall % % Author: Andreas Widmann, University of Leipzig, 2005 % % See also: % pop_firws, firws, pop_firwsord, windows %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [beta, dev] = pop_kaiserbeta(dev) beta = []; if nargin < 1 || isempty(dev) drawnow; uigeom = {[1 1]}; uilist = {{'style' 'text' 'string' 'Max passband deviation/ripple:'} ... {'style' 'edit' 'string' ''}}; result = inputgui(uigeom, uilist, 'pophelp(''pop_kaiserbeta'')', 'Estimate Kaiser window beta -- pop_kaiserbeta()'); if length(result) == 0, return, end if ~isempty(result{1}) dev = str2num(result{1}); else error('Not enough input arguments.'); end end devdb = -20 * log10(dev); if devdb > 50 beta = 0.1102 * (devdb - 8.7); elseif devdb >= 21 beta = 0.5842 * (devdb - 21)^0.4 + 0.07886 * (devdb - 21); else beta = 0; end end
github
lcnhappe/happe-master
findboundaries.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/firfilt1.6.2/findboundaries.m
1,867
utf_8
b4b28dadb5f28c802c41266f791d942c
% findboundaries() - Find boundaries (data discontinuities) in event % structure of continuous EEG dataset % % Usage: % >> boundaries = findboundaries(EEG.event); % % Inputs: % EEG.event - EEGLAB EEG event structure % % Outputs: % boundaries - scalar or vector of boundary event latencies % % Author: Andreas Widmann, University of Leipzig, 2005 %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2005 Andreas Widmann, University of Leipzig, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function boundaries = findboundaries(event) if isfield(event, 'type') & isfield(event, 'latency') & cellfun('isclass', {event.type}, 'char') % Boundary event indices boundaries = strmatch('boundary', {event.type}); % Boundary event latencies boundaries = [event(boundaries).latency]; % Shift boundary events to epoch onset boundaries = fix(boundaries + 0.5); % Remove duplicate boundary events boundaries = unique(boundaries); % Epoch onset at first sample? if isempty(boundaries) || boundaries(1) ~= 1 boundaries = [1 boundaries]; end else boundaries = 1; end
github
lcnhappe/happe-master
pop_dipfit_manual.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/pop_dipfit_manual.m
1,755
utf_8
eba5714bbc90a749dad3cbbf6d51a4d7
% pop_dipfit_manual() - interactively do dipole fit of selected ICA components % Function deprecated. Use pop_dipfit_nonlinear() % instead % Usage: % >> OUTEEG = pop_dipfit_manual( INEEG ) % % Inputs: % INEEG input dataset % % Outputs: % OUTEEG output dataset % % Author: Robert Oostenveld, SMI/FCDC, Nijmegen 2003 % Arnaud Delorme, SCCN, La Jolla 2003 % SMI, University Aalborg, Denmark http://www.smi.auc.dk/ % FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl/ % Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [OUTEEG, com] = pop_dipfit_manual( varargin ) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargin<1 help pop_dipfit_manual; return else disp('Warning: pop_dipfit_manual is outdated. Use pop_dipfit_nonlinear instead'); [OUTEEG, com] = pop_dipfit_nonlinear( varargin{:} ); end;
github
lcnhappe/happe-master
eeglab2fieldtrip.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/eeglab2fieldtrip.m
5,810
utf_8
bebbd3c516538fee4fe6182dcd06e54c
% eeglab2fieldtrip() - do this ... % % Usage: >> data = eeglab2fieldtrip( EEG, fieldbox, transform ); % % Inputs: % EEG - [struct] EEGLAB structure % fieldbox - ['preprocessing'|'freqanalysis'|'timelockanalysis'|'companalysis'] % transform - ['none'|'dipfit'] transform channel locations for DIPFIT % using the transformation matrix in the field % 'coord_transform' of the dipfit substructure of the EEG % structure. % Outputs: % data - FIELDTRIP structure % % Author: Robert Oostenveld, F.C. Donders Centre, May, 2004. % Arnaud Delorme, SCCN, INC, UCSD % % See also: % Copyright (C) 2004 Robert Oostenveld, F.C. Donders Centre, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function data = eeglab2fieldtrip(EEG, fieldbox, transform) if nargin < 2 help eeglab2fieldtrip return; end; % start with an empty data object data = []; % add the objects that are common to all fieldboxes tmpchanlocs = EEG.chanlocs; data.label = { tmpchanlocs(EEG.icachansind).labels }; data.fsample = EEG.srate; % get the electrode positions from the EEG structure: in principle, the number of % channels can be more or less than the number of channel locations, i.e. not % every channel has a position, or the potential was not measured on every % position. This is not supported by EEGLAB, but it is supported by FIELDTRIP. if strcmpi(fieldbox, 'chanloc_withfid') % insert "no data channels" in channel structure % ---------------------------------------------- if isfield(EEG.chaninfo, 'nodatchans') && ~isempty( EEG.chaninfo.nodatchans ) chanlen = length(EEG.chanlocs); fields = fieldnames( EEG.chaninfo.nodatchans ); for index = 1:length(EEG.chaninfo.nodatchans) ind = chanlen+index; for f = 1:length( fields ) EEG.chanlocs = setfield(EEG.chanlocs, { ind }, fields{f}, ... getfield( EEG.chaninfo.nodatchans, { index }, fields{f})); end; end; end; end; data.elec.pnt = zeros(length( EEG.chanlocs ), 3); for ind = 1:length( EEG.chanlocs ) data.elec.label{ind} = EEG.chanlocs(ind).labels; if ~isempty(EEG.chanlocs(ind).X) data.elec.pnt(ind,1) = EEG.chanlocs(ind).X; data.elec.pnt(ind,2) = EEG.chanlocs(ind).Y; data.elec.pnt(ind,3) = EEG.chanlocs(ind).Z; else data.elec.pnt(ind,:) = [0 0 0]; end; end; if nargin > 2 if strcmpi(transform, 'dipfit') if ~isempty(EEG.dipfit.coord_transform) disp('Transforming electrode coordinates to match head model'); transfmat = traditionaldipfit(EEG.dipfit.coord_transform); data.elec.pnt = transfmat * [ data.elec.pnt ones(size(data.elec.pnt,1),1) ]'; data.elec.pnt = data.elec.pnt(1:3,:)'; else disp('Warning: no transformation of electrode coordinates to match head model'); end; end; end; switch fieldbox case 'preprocessing' for index = 1:EEG.trials data.trial{index} = EEG.data(:,:,index); data.time{index} = linspace(EEG.xmin, EEG.xmax, EEG.pnts); % should be checked in FIELDTRIP end; data.label = { tmpchanlocs(1:EEG.nbchan).labels }; case 'timelockanalysis' data.avg = mean(EEG.data, 3); data.var = std(EEG.data, [], 3).^2; data.time = linspace(EEG.xmin, EEG.xmax, EEG.pnts); % should be checked in FIELDTRIP data.label = { tmpchanlocs(1:EEG.nbchan).labels }; case 'componentanalysis' if isempty(EEG.icaact) icaacttmp = eeg_getica(EEG); end for index = 1:EEG.trials % the trials correspond to the raw data trials, except that they % contain the component activations try if isempty(EEG.icaact) data.trial{index} = icaacttmp(:,:,index); % Using icaacttmp to not change EEG structure else data.trial{index} = EEG.icaact(:,:,index); end catch end; data.time{index} = linspace(EEG.xmin, EEG.xmax, EEG.pnts); % should be checked in FIELDTRIP end; data.label = []; for comp = 1:size(EEG.icawinv,2) % the labels correspond to the component activations that are stored in data.trial data.label{comp} = sprintf('ica_%03d', comp); end % get the spatial distribution and electrode positions tmpchanlocs = EEG.chanlocs; data.topolabel = { tmpchanlocs(EEG.icachansind).labels }; data.topo = EEG.icawinv; case { 'chanloc' 'chanloc_withfid' } case 'freqanalysis' error('freqanalysis fieldbox not implemented yet') otherwise error('unsupported fieldbox') end try % get the full name of the function data.cfg.version.name = mfilename('fullpath'); catch % required for compatibility with Matlab versions prior to release 13 (6.5) [st, i] = dbstack; data.cfg.version.name = st(i); end % add the version details of this function call to the configuration data.cfg.version.id = '$Id: eeglab2fieldtrip.m,v 1.6 2009-07-02 23:39:29 arno Exp $'; return
github
lcnhappe/happe-master
dipfit_reject.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/dipfit_reject.m
1,823
utf_8
7d157ab7d3da320a78bb851d5d3b5669
% dipfit_reject() - remove dipole models with a poor fit % % Usage: % >> dipout = dipfit_reject( model, reject ) % % Inputs: % model struct array with a dipole model for each component % % Outputs: % dipout struct array with a dipole model for each component % % Author: Robert Oostenveld, SMI/FCDC, Nijmegen 2003 % SMI, University Aalborg, Denmark http://www.smi.auc.dk/ % FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl/ % Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [dipout] = dipfit_reject(model, reject) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargin < 1 help dipfit_reject; return; end; for i=1:length(model) if model(i).rv>reject % reject this dipole model by replacing it by an empty model dipout(i).posxyz = []; dipout(i).momxyz = []; dipout(i).rv = 1; else dipout(i).posxyz = model(i).posxyz; dipout(i).momxyz = model(i).momxyz; dipout(i).rv = model(i).rv; end end
github
lcnhappe/happe-master
pop_dipplot.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/pop_dipplot.m
8,649
utf_8
f0e67d40c3bd34a95443673ebb76b95b
% pop_dipplot() - plot dipoles. % % Usage: % >> pop_dipplot( EEG ); % pop up interactive window % >> pop_dipplot( EEG, comps, 'key1', 'val1', 'key2', 'val2', ...); % % Graphic interface: % "Components" - [edit box] enter component number to plot. By % all the localized components are plotted. Command % line equivalent: components. % "Background image" - [edit box] MRI background image. This image % has to be normalized to the MNI brain using SPM2 for % instance. Dipplot() command line equivalent: 'image'. % "Summary mode" - [Checkbox] when checked, plot the 3 views of the % head model and dipole locations. Dipplot() equivalent % is 'summary' and 'num'. % "Plot edges" - [Checkbox] plot edges at the intersection between % MRI slices. Diplot() equivalent is 'drawedges'. % "Plot closest MRI slide" - [Checkbox] plot closest MRI slice to % dipoles although not using the 'tight' view mode. % Dipplot() equivalent is 'cornermri' and 'axistight'. % "Plot dipole's 2-D projections" - [Checkbox] plot a dimed dipole % projection on each 2-D MRI slice. Dipplot() equivalent % is 'projimg'. % "Plot projection lines" - [Checkbox] plot lines originating from % dipoles and perpendicular to each 2-D MRI slice. % Dipplot() equivalent is 'projline'. % "Make all dipole point out" - [Checkbox] make all dipole point % toward outside the brain. Dipplot() equivalent is % 'pointout'. % "Normalized dipole length" - [Checkbox] normalize the length of % all dipoles. Dipplot() command line equivalent: 'normlen'. % "Additionnal dipfit() options" - [checkbox] enter additionnal % sequence of 'key', 'val' argument in this edit box. % % Inputs: % EEG - Input dataset % comps - [integer array] plot component indices. If empty % all the localized components are plotted. % % Optional inputs: % 'key','val' - same as dipplot() % % Author: Arnaud Delorme, CNL / Salk Institute, 26 Feb 2003- % % See also: dipplot() % "Use dipoles from" - [list box] use dipoles from BESA or from the % DIPFIT toolbox. Command line equivalent: type. % Copyright (C) 2003 Arnaud Delorme, Salk Institute, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [com] = pop_dipplot( EEG, comps, varargin); com =''; if nargin < 1 help pop_dipplot; return; end; % check input structure % --------------------- if ~isfield(EEG, 'dipfit') & ~isfield(EEG, 'sources') if ~isfield(EEG.dipfit.hdmfile) & ~isfield(EEG, 'sources') error('No dipole information in dataset'); end; error('No dipole information in dataset'); end; if ~isfield(EEG.dipfit, 'model') error('No dipole information in dataset'); end; typedip = 'nonbesa'; if nargin < 2 % popup window parameters % ----------------------- commandload = [ '[filename, filepath] = uigetfile(''*'', ''Select a text file'');' ... 'if filename ~=0,' ... ' set(findobj(''parent'', gcbf, ''tag'', ''mrifile''), ''string'', [ filepath filename ]);' ... 'end;' ... 'clear filename filepath tagtest;' ]; geometry = { [2 1] [2 1] [0.8 0.3 1.5] [2.05 0.26 .75] [2.05 0.26 .75] [2.05 0.26 .75] ... [2.05 0.26 .75] [2.05 0.26 .75] [2.05 0.26 .75] [2.05 0.26 .75] [2 1] }; uilist = { { 'style' 'text' 'string' 'Components indices ([]=all avaliable)' } ... { 'style' 'edit' 'string' '' } ... { 'style' 'text' 'string' 'Plot dipoles within RV (%) range ([min max])' } ... { 'style' 'edit' 'string' '' } ... { 'style' 'text' 'string' 'Background image' } ... { 'style' 'pushbutton' 'string' '...' 'callback' commandload } ... { 'style' 'edit' 'string' EEG.dipfit.mrifile 'tag' 'mrifile' } ... { 'style' 'text' 'string' 'Plot summary mode' } ... { 'style' 'checkbox' 'string' '' } {} ... { 'style' 'text' 'string' 'Plot edges' } ... { 'style' 'checkbox' 'string' '' } {} ... { 'style' 'text' 'string' 'Plot closest MRI slide' } ... { 'style' 'checkbox' 'string' '' } {} ... { 'style' 'text' 'string' 'Plot dipole''s 2-D projections' } ... { 'style' 'checkbox' 'string' '' } {} ... { 'style' 'text' 'string' 'Plot projection lines' } ... { 'style' 'checkbox' 'string' '' 'value' 0 } {} ... { 'style' 'text' 'string' 'Make all dipoles point out' } ... { 'style' 'checkbox' 'string' '' } {} ... { 'style' 'text' 'string' 'Normalized dipole length' } ... { 'style' 'checkbox' 'string' '' 'value' 1 } {} ... { 'style' 'text' 'string' 'Additionnal dipplot() options' } ... { 'style' 'edit' 'string' '' } }; result = inputgui( geometry, uilist, 'pophelp(''pop_dipplot'')', 'Plot dipoles - pop_dipplot'); if length(result) == 0 return; end; % decode parameters % ----------------- options = {}; if ~isempty(result{1}), comps = eval( [ '[' result{1} ']' ] ); else comps = []; end; if ~isempty(result{2}), options = { options{:} 'rvrange' eval( [ '[' result{2} ']' ] ) }; end; options = { options{:} 'mri' result{3} }; if result{4} == 1, options = { options{:} 'summary' 'on' 'num' 'on' }; end; if result{5} == 1, options = { options{:} 'drawedges' 'on' }; end; if result{6} == 1, options = { options{:} 'cornermri' 'on' 'axistight' 'on' }; end; if result{7} == 1, options = { options{:} 'projimg' 'on' }; end; if result{8} == 1, options = { options{:} 'projlines' 'on' }; end; if result{9} == 1, options = { options{:} 'pointout' 'on' }; end; if result{10} == 1, options = { options{:} 'normlen' 'on' }; end; if ~isempty( result{11} ), tmpopt = eval( [ '{' result{11} '}' ] ); options = { options{:} tmpopt{:} }; end; else if isstr(comps) typedip = comps; options = varargin(2:end); comps = varargin{1}; else options = varargin; end; end; if strcmpi(typedip, 'besa') if ~isfield(EEG, 'sources'), error('No BESA dipole information in dataset');end; if ~isempty(comps) [tmp1 int] = intersect( [ EEG.sources.component ], comps); if isempty(int), error ('Localization not found for selected components'); end; dipplot(EEG.sources(int), 'sphere', 1, options{:}); else dipplot(EEG.sources, options{:}); end; else if ~isfield(EEG, 'dipfit'), error('No DIPFIT dipole information in dataset');end; % components to plot % ------------------ if ~isempty(comps) if ~isfield(EEG.dipfit.model, 'component') for index = double(comps(:)') EEG.dipfit.model(index).component = index; end; end; else % find localized dipoles comps = []; for index2 = 1:length(EEG.dipfit.model) if ~isempty(EEG.dipfit.model(index2).posxyz) ~= 0 comps = [ comps index2 ]; EEG.dipfit.model(index2).component = index2; end; end; end; % plotting % -------- tmpoptions = { options{:} 'coordformat', EEG.dipfit.coordformat }; if strcmpi(EEG.dipfit.coordformat, 'spherical') dipplot(EEG.dipfit.model(comps), tmpoptions{:}); elseif strcmpi(EEG.dipfit.coordformat, 'CTF') dipplot(EEG.dipfit.model(comps), tmpoptions{:}); else dipplot(EEG.dipfit.model(comps), 'meshdata', EEG.dipfit.hdmfile, tmpoptions{:}); end; end; if nargin < 3 com = sprintf('pop_dipplot( %s,%s);', inputname(1), vararg2str({ comps options{:}})); end; return;
github
lcnhappe/happe-master
dipplot.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/dipplot.m
61,455
utf_8
1bc351e760494d6b9df714acf3a089ed
% dipplot() - Visualize EEG equivalent-dipole locations and orientations % in the MNI average MRI head or in the BESA spherical head model. % Usage: % >> dipplot( sources, 'key', 'val', ...); % >> [sources X Y Z XE YE ZE] = dipplot( sources, 'key', 'val', ...); % % Inputs: % sources - structure array of dipole information: can contain % either BESA or DIPFIT dipole information. BESA dipole % information are still supported but may disapear in the % future. For DIPFIT % sources.posxyz: contains 3-D location of dipole in each % column. 2 rows indicate 2 dipoles. % sources.momxyz: contains 3-D moments for dipoles above. % sources.rv : residual variance from 0 to 1. % other fields : used for graphic interface. % % Optional input: % 'rvrange' - [min max] or [max] Only plot dipoles with residual variace % within the given range. Default: plot all dipoles. % 'summary' - ['on'|'off'|'3d'] Build a summary plot with three views (top, % back, side). {default: 'off'} % 'mri' - Matlab file containing an MRI volume and a 4-D transformation % matrix to go from voxel space to electrode space: % mri.anatomy contains a 3-D anatomical data array % mri.transfrom contains a 4-D homogenous transformation matrix. % 'coordformat' - ['MNI'|'spherical'] Consider that dipole coordinates are in % MNI or spherical coordinates (for spherical, the radius of the % head is assumed to be 85 (mm)). See also function sph2spm(). % 'transform' - [real array] traditional transformation matrix to convert % dipole coordinates to MNI space. Default is assumed from % 'coordformat' input above. Type help traditional for more % information. % 'image' - ['besa'|'mri'] Background image. % 'mri' (or 'fullmri') uses mean-MRI brain images from the Montreal % Neurological Institute. This option can also contain a 3-D MRI % volume (dim 1: left to right; dim 2: anterior-posterior; dim 3: % superior-inferior). Use 'coregist' to coregister electrodes % with the MRI. {default: 'mri'} % 'verbose' - ['on'|'off'] comment on operations on command line {default: % 'on'}. % 'plot' - ['on'|'off'] only return outputs {default: 'off'}. % % Plotting options: % 'color' - [cell array of color strings or (1,3) color arrays]. For % exemple { 'b' 'g' [1 0 0] } gives blue, green and red. % Dipole colors will rotate through the given colors if % the number given is less than the number of dipoles to plot. % A single number will be used as color index in the jet colormap. % 'view' - 3-D viewing angle in cartesian coords., % [0 0 1] gives a sagittal view, [0 -1 0] a view from the rear; % [1 0 0] gives a view from the side of the head. % 'mesh' - ['on'|'off'] Display spherical mesh. {Default is 'on'} % 'meshdata' - [cell array|'file_name'] Mesh data in a cell array { 'vertices' % data 'faces' data } or a boundary element model filename (the % function will plot the 3rd mesh in the 'bnd' sub-structure). % 'axistight' - ['on'|'off'] For MRI only, display the closest MRI % slide. {Default is 'off'} % 'gui' - ['on'|'off'] Display controls. {Default is 'on'} If gui 'off', % a new figure is not created. Useful for incomporating a dipplot % into a complex figure. % 'num' - ['on'|'off'] Display component number. Take into account % dipole size. {Default: 'off'} % 'cornermri' - ['on'|'off'] force MRI images to the corner of the MRI volume % (usefull when background is not black). Default: 'off'. % 'drawedges' - ['on'|'off'] draw edges of the 3-D MRI (black in axistight, % white otherwise.) Default is 'off'. % 'projimg' - ['on'|'off'] Project dipole(s) onto the 2-D images, for use % in making 3-D plots {Default 'off'} % 'projlines' - ['on'|'off'] Plot lines connecting dipole with 2-D projection. % Color is dashed black for BESA head and dashed black for the % MNI brain {Default 'off'} % 'projcol' - [color] color for the projected line {Default is same as dipole} % 'dipolesize' - Size of the dipole sphere(s). This option may also contain one % value per dipole {Default: 30} % 'dipolelength' - Length of the dipole bar(s) {Default: 1} % 'pointout' - ['on'|'off'] Point the dipoles outward. {Default: 'off'} % 'sphere' - [float] radius of sphere corresponding to the skin. Default is 1. % 'spheres' - ['on'|'off'] {default: 'off'} plot dipole markers as 3-D spheres. % Does not yet interact with gui buttons, produces non-gui mode. % 'spheresize' - [real>0] size of spheres (if 'on'). {default: 5} % 'normlen' - ['on'|'off'] Normalize length of all dipoles. {Default: 'off'} % 'dipnames' - [cell array] cell array of string with a name for each dipole (or % pair of dipole). % 'holdon' - ['on'|'off'] create a new dipplot figure or plot dipoles within an % an existing figure. Default is 'off'. % 'camera' - ['auto'|'set'] camera position. 'auto' is the default and % an option using camera zoom. 'set' is a fixed view that % does not depend on the content being plotted. % % Outputs: % sources - EEG.source structure with two extra fiels 'mnicoord' and 'talcoord' % containing the MNI and talairach coordinates of the dipoles. Note % that for the BEM model, dipoles are already in MNI coordinates. % X,Y,Z - Locations of dipole heads (Cartesian coordinates in MNI space). % If there is more than one dipole per components, the last dipole % is returned. % XE,YE,ZE - Locations of dipole ends (Cartesian coordinates). The same % remark as above applies. % % Author: Arnaud Delorme, CNL / Salk Institute, 1st July 2002 % % Notes: See DIPFIT web tutorial at sccn.ucsd.edu/eeglab/dipfittut/dipfit.html % for more details about MRI co-registration etc... % % Example: % % define dipoles % sources(1).posxyz = [-59 48 -28]; % position for the first dipole % sources(1).momxyz = [ 0 58 -69]; % orientation for the first dipole % sources(1).rv = 0.036; % residual variance for the first dipole % sources(2).posxyz = [74 -4 -38]; % position for the second dipole % sources(2).momxyz = [43 -38 -16]; % orientation for the second dipole % sources(2).rv = 0.027; % residual variance for the second dipole % % % plot of the two dipoles (first in green, second in blue) % dipplot( sources, 'color', { 'g' 'b' }); % % % To make a stereographic plot % figure( 'position', [153 553 1067 421]; % subplot(1,3,1); dipplot( sources, 'view', [43 10], 'gui', 'off'); % subplot(1,3,3); dipplot( sources, 'view', [37 10], 'gui', 'off'); % % % To make a summary plot % dipplot( sources, 'summary', 'on', 'num', 'on'); % % See also: eeglab(), dipfit() % old options % ----------- % 'std' - [cell array] plot standard deviation of dipoles. i.e. % { [1:6] [7:12] } plot two elipsoids that best fit all the dipoles % from 1 to 6 and 7 to 12 with radius 1 standard deviation. % { { [1:6] 2 'linewidth' 2 } [7:12] } do the same but now the % first elipsoid is 2 standard-dev and the lines are thicker. % Copyright (C) 2002 Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % README -- Plotting strategy: % - All buttons have a tag 'tmp' so they can be removed % - The component-number buttons have 'userdata' equal to 'editor' and % can be found easily by other buttons find('userdata', 'editor') % - All dipoles have a tag 'dipoleX' (X=their number) and can be made % visible/invisible % - The gcf object 'userdat' field stores the handle of the dipole that % is currently being modified % - Gca 'userdata' stores imqge names and position function [outsources, XX, YY, ZZ, XO, YO, ZO] = dipplot( sourcesori, varargin ) DEFAULTVIEW = [0 0 1]; if nargin < 1 help dipplot; return; end; % reading and testing arguments % ----------------------------- sources = sourcesori; if ~isstruct(sources) updatedipplot(sources(1)); % sources countain the figure handler return end; % key type range default g = finputcheck( varargin, { 'color' '' [] []; 'axistight' 'string' { 'on' 'off' } 'off'; 'camera' 'string' { 'auto' 'set' } 'auto'; 'coordformat' 'string' { 'MNI' 'spherical' 'CTF' 'auto' } 'auto'; 'drawedges' 'string' { 'on' 'off' } 'off'; 'mesh' 'string' { 'on' 'off' } 'off'; 'gui' 'string' { 'on' 'off' } 'on'; 'summary' 'string' { 'on2' 'on' 'off' '3d' } 'off'; 'verbose' 'string' { 'on' 'off' } 'on'; 'view' 'real' [] [0 0 1]; 'rvrange' 'real' [0 Inf] []; 'transform' 'real' [0 Inf] []; 'normlen' 'string' { 'on' 'off' } 'off'; 'num' 'string' { 'on' 'off' } 'off'; 'cornermri' 'string' { 'on' 'off' } 'off'; 'mri' { 'string' 'struct' } [] ''; 'dipnames' 'cell' [] {}; 'projimg' 'string' { 'on' 'off' } 'off'; 'projcol' '' [] []; 'projlines' 'string' { 'on' 'off' } 'off'; 'pointout' 'string' { 'on' 'off' } 'off'; 'holdon' 'string' { 'on' 'off' } 'off'; 'dipolesize' 'real' [0 Inf] 30; 'dipolelength' 'real' [0 Inf] 1; 'sphere' 'real' [0 Inf] 1; 'spheres' 'string' {'on' 'off'} 'off'; 'links' 'real' [] []; 'image' { 'string' 'real' } [] 'mri'; 'plot' 'string' { 'on' 'off' } 'on'; 'meshdata' { 'string' 'cell' } [] '' }, 'dipplot'); % 'std' 'cell' [] {}; % 'coreg' 'real' [] []; if isstr(g), error(g); end; if strcmpi(g.holdon, 'on'), g.gui = 'off'; end; if length(g.dipolesize) == 1, g.dipolesize = repmat(g.dipolesize, [1 length(sourcesori)]); end; g.zoom = 1500; if strcmpi(g.image, 'besa') error('BESA image not supported any more. Use EEGLAB version 4.512 or earlier. (BESA dipoles can still be plotted in MNI brain.)'); end; % trying to determine coordformat % ------------------------------- if ~isfield(sources, 'momxyz') g.coordformat = 'spherical'; end; if strcmpi(g.coordformat, 'auto') if ~isempty(g.meshdata) g.coordformat = 'MNI'; if strcmpi(g.verbose, 'on'), disp('Coordinate format unknown: using ''MNI'' since mesh data was provided as input'); end else maxdiplen = 0; for ind = 1:length(sourcesori) maxdiplen = max(maxdiplen, max(abs(sourcesori(ind).momxyz(:)))); end; if maxdiplen>2000 if strcmpi(g.verbose, 'on'), disp('Coordinate format unknown: using ''MNI'' because of large dipole moments'); end else g.coordformat = 'spherical'; if strcmpi(g.verbose, 'on'), disp('Coordinate format unknown: using ''spherical'' since no mesh data was provided as input'); end end; end; end; % axis image and limits % --------------------- dat.axistight = strcmpi(g.axistight, 'on'); dat.drawedges = g.drawedges; dat.cornermri = strcmpi(g.cornermri, 'on'); radius = 85; % look up an MRI file if necessary % -------------------------------- if isempty(g.mri) if strcmpi(g.verbose, 'on'), disp('No MRI file given as input. Looking up one.'); end dipfitdefs; g.mri = template_models(1).mrifile; end; % read anatomical MRI using Fieldtrip and SPM2 functons % ----------------------------------------------------- if isstr(g.mri); try, g.mri = load('-mat', g.mri); g.mri = g.mri.mri; catch, disp('Failed to read Matlab file. Attempt to read MRI file using function ft_read_mri'); try, warning off; g.mri = ft_read_mri(g.mri); %g.mri.anatomy(find(g.mri.anatomy > 255)) = 255; %g.mri.anatomy = uint8(g.mri.anatomy); g.mri.anatomy = round(gammacorrection( g.mri.anatomy, 0.8)); g.mri.anatomy = uint8(round(g.mri.anatomy/max(reshape(g.mri.anatomy, prod(g.mri.dim),1))*255)); % WARNING: if using double instead of int8, the scaling is different % [-128 to 128 and 0 is not good] % WARNING: the transform matrix is not 1, 1, 1 on the diagonal, some slices may be % misplaced warning on; catch, error('Cannot load file using ft_read_mri'); end; end; end; if strcmpi(g.coordformat, 'spherical') dat.sph2spm = sph2spm; elseif strcmpi(g.coordformat, 'CTF') dat.sph2spm = traditionaldipfit([0 0 0 0 0 0 10 -10 10]); else dat.sph2spm = []; %traditional([0 0 0 0 0 pi 1 1 1]); end; if ~isempty(g.transform), dat.sph2spm = traditionaldipfit(g.transform); end; if isfield(g.mri, 'anatomycol') dat.imgs = g.mri.anatomycol; else dat.imgs = g.mri.anatomy; end; dat.transform = g.mri.transform; % MRI coordinates for slices % -------------------------- if ~isfield(g.mri, 'xgrid') g.mri.xgrid = [1:size(dat.imgs,1)]; g.mri.ygrid = [1:size(dat.imgs,2)]; g.mri.zgrid = [1:size(dat.imgs,3)]; end; if strcmpi(g.coordformat, 'CTF') g.mri.zgrid = g.mri.zgrid(end:-1:1); end; dat.imgcoords = { g.mri.xgrid g.mri.ygrid g.mri.zgrid }; dat.maxcoord = [max(dat.imgcoords{1}) max(dat.imgcoords{2}) max(dat.imgcoords{3})]; COLORMESH = 'w'; BACKCOLOR = 'k'; % point 0 % ------- [xx yy zz] = transform(0, 0, 0, dat.sph2spm); % nothing happens for BEM since dat.sph2spm is empty dat.zeroloc = [ xx yy zz ]; % conversion % ---------- if strcmpi(g.normlen, 'on') if isfield(sources, 'besaextori') sources = rmfield(sources, 'besaextori'); end; end; if ~isfield(sources, 'besathloc') & strcmpi(g.image, 'besa') & ~is_sccn error(['For copyright reasons, it is not possible to use the BESA ' ... 'head model to plot non-BESA dipoles']); end; if isfield(sources, 'besathloc') sources = convertbesaoldformat(sources); end; if ~isfield(sources, 'posxyz') sources = computexyzforbesa(sources); end; if ~isfield(sources, 'component') if strcmpi(g.verbose, 'on'), disp('No component indices, making incremental ones...'); end for index = 1:length(sources) sources(index).component = index; end; end; % find non-empty sources % ---------------------- noempt = cellfun('isempty', { sources.posxyz } ); sources = sources( find(~noempt) ); % transform coordinates % --------------------- outsources = sources; for index = 1:length(sources) sources(index).momxyz = sources(index).momxyz/1000; end; % remove 0 second dipoles if any % ------------------------------ for index = 1:length(sources) if size(sources(index).momxyz,1) == 2 if all(sources(index).momxyz(2,:) == 0) sources(index).momxyz = sources(index).momxyz(1,:); sources(index).posxyz = sources(index).posxyz(1,:); end; end; end; % remove sources with out of bound Residual variance % -------------------------------------------------- if isfield(sources, 'rv') & ~isempty(g.rvrange) if length(g.rvrange) == 1, g.rvrange = [ 0 g.rvrange ]; end; for index = length(sources):-1:1 if sources(index).rv < g.rvrange(1)/100 | sources(index).rv > g.rvrange(2)/100 sources(index) = []; end; end; end; % color array % ----------- if isempty(g.color) g.color = { 'g' 'b' 'r' 'm' 'c' 'y' }; if strcmp(BACKCOLOR, 'w'), g.color = { g.color{:} 'k' }; end; end; g.color = g.color(mod(0:length(sources)-1, length(g.color)) +1); if ~isempty(g.color) g.color = strcol2real( g.color, jet(64) ); end; if ~isempty(g.projcol) g.projcol = strcol2real( g.projcol, jet(64) ); g.projcol = g.projcol(mod(0:length(sources)-1, length(g.projcol)) +1); else g.projcol = g.color; for index = 1:length(g.color) g.projcol{index} = g.projcol{index}/2; end; end; % build summarized figure % ----------------------- if strcmpi(g.summary, 'on') | strcmpi(g.summary, 'on2') figure; options = { 'gui', 'off', 'dipolesize', g.dipolesize/1.5,'dipolelength', g.dipolelength, 'sphere', g.sphere ... 'color', g.color, 'mesh', g.mesh, 'num', g.num, 'image', g.image 'normlen' g.normlen ... 'coordformat' g.coordformat 'mri' g.mri 'meshdata' g.meshdata 'axistight' g.axistight }; pos1 = [0 0 0.5 0.5]; pos2 = [0 0.5 0.5 .5]; pos3 = [.5 .5 0.5 .5]; if strcmp(g.summary, 'on2'), tmp = pos1; pos1 =pos3; pos3 = tmp; end; axes('position', pos1); newsources = dipplot(sourcesori, 'view', [1 0 0] , options{:}); axis off; axes('position', pos2); newsources = dipplot(sourcesori, 'view', [0 0 1] , options{:}); axis off; axes('position', pos3); newsources = dipplot(sourcesori, 'view', [0 -1 0], options{:}); axis off; axes('position', [0.5 0 0.5 0.5]); colorcount = 1; if isfield(newsources, 'component') for index = 1:length(newsources) if isempty(g.dipnames), tmpname = sprintf( 'Comp. %d', newsources(index).component); else tmpname = char(g.dipnames{index}); end; talpos = newsources(index).talcoord; if strcmpi(g.coordformat, 'CTF') textforgui(colorcount) = { sprintf( [ tmpname ' (RV:%3.2f%%)' ], 100*newsources(index).rv) }; elseif size(talpos,1) == 1 textforgui(colorcount) = { sprintf( [ tmpname ' (RV:%3.2f%%; Tal:%d,%d,%d)' ], ... 100*newsources(index).rv, ... round(talpos(1,1)), round(talpos(1,2)), round(talpos(1,3))) }; else textforgui(colorcount) = { sprintf( [ tmpname ' (RV:%3.2f%%; Tal:%d,%d,%d & %d,%d,%d)' ], ... 100*newsources(index).rv, ... round(talpos(1,1)), round(talpos(1,2)), round(talpos(1,3)), ... round(talpos(2,1)), round(talpos(2,2)), round(talpos(2,3))) }; end; colorcount = colorcount+1; end; colorcount = colorcount-1; allstr = strvcat(textforgui{:}); h = text(0,0.45, allstr); if colorcount >= 15, set(h, 'fontsize', 8);end; if colorcount >= 20, set(h, 'fontsize', 6);end; if strcmp(BACKCOLOR, 'k'), set(h, 'color', 'w'); end; end; axis off; return; elseif strcmpi(g.summary, '3d') options = { 'gui', 'off', 'dipolesize', g.dipolesize/1.5,'dipolelength', g.dipolelength, 'sphere', g.sphere, 'spheres', g.spheres ... 'color', g.color, 'mesh', g.mesh, 'num', g.num, 'image', g.image 'normlen' g.normlen ... 'coordformat' g.coordformat 'mri' g.mri 'meshdata' g.meshdata 'axistight' g.axistight }; figure('position', [ 100 600 600 200 ]); axes('position', [-0.1 -0.1 1.2 1.2], 'color', 'k'); axis off; blackimg = zeros(10,10,3); image(blackimg); axes('position', [0 0 1/3 1], 'tag', 'rear'); dipplot(sourcesori, options{:}, 'holdon', 'on'); view([0 -1 0]); axes('position', [1/3 0 1/3 1], 'tag', 'top' ); dipplot(sourcesori, options{:}, 'holdon', 'on'); view([0 0 1]); axes('position', [2/3 0 1/3 1], 'tag', 'side'); dipplot(sourcesori, options{:}, 'holdon', 'on'); view([1 -0.01 0]); set(gcf, 'paperpositionmode', 'auto'); return; end; % plot head graph in 3D % --------------------- if strcmp(g.gui, 'on') fig = figure('visible', g.plot); pos = get(gca, 'position'); set(gca, 'position', [pos(1)+0.05 pos(2:end)]); end; indx = ceil(dat.imgcoords{1}(end)/2); indy = ceil(dat.imgcoords{2}(end)/2); indz = ceil(dat.imgcoords{3}(end)/2); if strcmpi(g.holdon, 'off') plotimgs( dat, [indx indy indz], dat.transform); set(gca, 'color', BACKCOLOR); %warning off; a = imread('besaside.pcx'); warning on; % BECAUSE OF A BUG IN THE WARP FUNCTION, THIS DOES NOT WORK (11/02) %hold on; warp([], wy, wz, a); % set camera target % ----------------- % format axis (BESA or MRI) axis equal; set(gca, 'cameraviewanglemode', 'manual'); % disable change size camzoom(1.2^2); if strcmpi(g.coordformat, 'CTF'), g.view(2:3) = -g.view(2:3); end; view(g.view); %set(gca, 'cameratarget', dat.zeroloc); % disable change size %set(gca, 'cameraposition', dat.zeroloc+g.view*g.zoom); % disable change size axis off; end; % plot sphere mesh and nose % ------------------------- if strcmpi(g.holdon, 'off') if isempty(g.meshdata) SPHEREGRAIN = 20; % 20 is also Matlab default [x y z] = sphere(SPHEREGRAIN); hold on; [xx yy zz] = transform(x*0.085, y*0.085, z*0.085, dat.sph2spm); [xx yy zz] = transform(x*85 , y*85 , z*85 , dat.sph2spm); %xx = x*100; %yy = y*100; %zz = z*100; if strcmpi(COLORMESH, 'w') hh = mesh(xx, yy, zz, 'cdata', ones(21,21,3), 'tag', 'mesh'); hidden off; else hh = mesh(xx, yy, zz, 'cdata', zeros(21,21,3), 'tag', 'mesh'); hidden off; end; else try, if isstr(g.meshdata) tmp = load('-mat', g.meshdata); g.meshdata = { 'vertices' tmp.vol.bnd(1).pnt 'faces' tmp.vol.bnd(1).tri }; end; hh = patch(g.meshdata{:}, 'facecolor', 'none', 'edgecolor', COLORMESH, 'tag', 'mesh'); catch, disp('Unrecognize model file (probably CTF)'); end; end; end; %x = x*100*scaling; y = y*100*scaling; z=z*100*scaling; %h = line(xx,yy,zz); set(h, 'color', COLORMESH, 'linestyle', '--', 'tag', 'mesh'); %h = line(xx,zz,yy); set(h, 'color', COLORMESH, 'linestyle', '--', 'tag', 'mesh'); %h = line([0 0;0 0],[-1 -1.2; -1.2 -1], [-0.3 -0.7; -0.7 -0.7]); %set(h, 'color', COLORMESH, 'linewidth', 3, 'tag', 'noze'); % determine max length if besatextori exist % ----------------------------------------- sizedip = []; for index = 1:length(sources) sizedip = [ sizedip sources(index).momxyz(3) ]; end; maxlength = max(sizedip); % diph = gca; % DEBUG % colormap('jet'); % cbar % axes(diph); for index = 1:length(sources) nbdip = 1; if size(sources(index).posxyz, 1) > 1 & any(sources(index).posxyz(2,:)) nbdip = 2; end; % reorder dipoles for plotting if nbdip == 2 if sources(index).posxyz(1,1) > sources(index).posxyz(2,1) tmp = sources(index).posxyz(2,:); sources(index).posxyz(2,:) = sources(index).posxyz(1,:); sources(index).posxyz(1,:) = tmp; tmp = sources(index).momxyz(2,:); sources(index).momxyz(2,:) = sources(index).momxyz(1,:); sources(index).momxyz(1,:) = tmp; end; if isfield(sources, 'active'), nbdip = length(sources(index).active); end; end; % dipole length % ------------- multfactor = 1; if strcmpi(g.normlen, 'on') if nbdip == 1 len = sqrt(sum(sources(index).momxyz(1,:).^2)); else len1 = sqrt(sum(sources(index).momxyz(1,:).^2)); len2 = sqrt(sum(sources(index).momxyz(2,:).^2)); len = mean([len1 len2]); end; if strcmpi(g.coordformat, 'CTF'), len = len*10; end; if len ~= 0, multfactor = 15/len; end; else if strcmpi(g.coordformat, 'spherical') multfactor = 100; else multfactor = 1.5; end; end; for dip = 1:nbdip x = sources(index).posxyz(dip,1); y = sources(index).posxyz(dip,2); z = sources(index).posxyz(dip,3); xo = sources(index).momxyz(dip,1)*g.dipolelength*multfactor; yo = sources(index).momxyz(dip,2)*g.dipolelength*multfactor; zo = sources(index).momxyz(dip,3)*g.dipolelength*multfactor; xc = 0; yc = 0; zc = 0; centvec = [xo-xc yo-yc zo-zc]; % vector pointing into center dipole_orient = [x+xo y+yo z+zo]/norm([x+xo y+yo z+zo]); c = dot(centvec, dipole_orient); if strcmpi(g.pointout,'on') if (c < 0) | (abs([x+xo,y+yo,z+zo]) < abs([x,y,z])) xo1 = x-xo; % make dipole point outward from head center yo1 = y-yo; zo1 = z-zo; %fprintf('invert because: %e \n', c); else xo1 = x+xo; yo1 = y+yo; zo1 = z+zo; %fprintf('NO invert because: %e \n', c); end else xo1 = x+xo; yo1 = y+yo; zo1 = z+zo; %fprintf('NO invert because: %e \n', c); end % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% draw dipole bar %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % tag = [ 'dipole' num2str(index) ]; % from spherical to electrode space % --------------------------------- [xx yy zz] = transform(x, y, z, dat.sph2spm); % nothing happens for BEM [xxo1 yyo1 zzo1] = transform(xo1, yo1, zo1, dat.sph2spm); % because dat.sph2spm = [] if ~strcmpi(g.spheres,'on') % plot dipole direction lines h1 = line( [xx xxo1]', [yy yyo1]', [zz zzo1]'); elseif g.dipolelength>0 % plot dipole direction cylinders with end cap patch [xc yc zc] = cylinder( 2, 10); [xs ys zs] = sphere(10); xc = [ xc; -xs(7:11,:)*2 ]; yc = [ yc; -ys(7:11,:)*2 ]; zc = [ zc; zs(7:11,:)/5+1 ]; colorarray = repmat(reshape(g.color{index}, 1,1,3), [size(zc,1) size(zc,2) 1]); handles = surf(xc, yc, zc, colorarray, 'tag', tag, 'edgecolor', 'none', ... 'backfacelighting', 'lit', 'facecolor', 'interp', 'facelighting', ... 'phong', 'ambientstrength', 0.3); [xc yc zc] = adjustcylinder2( handles, [xx yy zz], [xxo1 yyo1 zzo1] ); cx = mean(xc,2); %cx = [(3*cx(1)+cx(2))/4; (cx(1)+3*cx(2))/4]; cy = mean(yc,2); %cy = [(3*cy(1)+cy(2))/4; (cy(1)+3*cy(2))/4]; cz = mean(zc,2); %cz = [(3*cz(1)+cz(2))/4; (cz(1)+3*cz(2))/4]; tmpx = xc - repmat(cx, [1 size(xc, 2)]); tmpy = yc - repmat(cy, [1 size(xc, 2)]); tmpz = zc - repmat(cz, [1 size(xc, 2)]); l=sqrt(tmpx.^2+tmpy.^2+tmpz.^2); warning('off', 'MATLAB:divideByZero'); % this is due to a Matlab 2008b (or later) normals = reshape([tmpx./l tmpy./l tmpz./l],[size(tmpx) 3]); % in the rotate function in adjustcylinder2 warning('off', 'MATLAB:divideByZero'); % one of the z (the last row is not rotated) set( handles, 'vertexnormals', normals); end [xxmri yymri zzmri ] = transform(xx, yy, zz, pinv(dat.transform)); [xxmrio1 yymrio1 zzmrio1] = transform(xxo1, yyo1, zzo1, pinv(dat.transform)); dipstruct.mricoord = [xxmri yymri zzmri]; % Coordinates in MRI space dipstruct.eleccoord = [ xx yy zz ]; % Coordinates in elec space dipstruct.posxyz = sources(index).posxyz; % Coordinates in spherical space outsources(index).eleccoord(dip,:) = [xx yy zz]; outsources(index).mnicoord(dip,:) = [xx yy zz]; outsources(index).mricoord(dip,:) = [xxmri yymri zzmri]; outsources(index).talcoord(dip,:) = mni2tal([xx yy zz]')'; dipstruct.talcoord = mni2tal([xx yy zz]')'; % copy for output % --------------- XX(index) = xxmri; YY(index) = yymri; ZZ(index) = zzmri; XO(index) = xxmrio1; YO(index) = yymrio1; ZO(index) = zzmrio1; if isempty(g.dipnames) dipstruct.rv = sprintf('%3.2f', sources(index).rv*100); dipstruct.name = sources(index).component; else dipstruct.rv = sprintf('%3.2f', sources(index).rv*100); dipstruct.name = g.dipnames{index}; end; if ~strcmpi(g.spheres,'on') % plot disk markers set(h1,'userdata',dipstruct,'tag',tag,'color','k','linewidth',g.dipolesize(index)/7.5); if strcmp(BACKCOLOR, 'k'), set(h1, 'color', g.color{index}); end; end % %%%%%%%%%%%%%%%%%%%%%%%%%%%%% draw sphere or disk marker %%%%%%%%%%%%%%%%%%%%%%%%% % hold on; if strcmpi(g.spheres,'on') % plot spheres if strcmpi(g.projimg, 'on') if strcmpi(g.verbose, 'on'), disp('Warning: projections cannot be plotted for 3-D sphere'); end %tmpcolor = g.color{index} / 2; %h = plotsphere([xx yy zz], g.dipolesize/6, 'color', g.color{index}, 'proj', ... % [dat.imgcoords{1}(1) dat.imgcoords{2}(end) dat.imgcoords{3}(1)]*97/100, 'projcol', tmpcolor); %set(h(2:end), 'userdata', 'proj', 'tag', tag); else %h = plotsphere([xx yy zz], g.dipolesize/6, 'color', g.color{index}); end; h = plotsphere([xx yy zz], g.dipolesize(index)/6, 'color', g.color{index}); set(h(1), 'userdata', dipstruct, 'tag', tag); else % plot dipole markers h = plot3(xx, yy, zz); set(h, 'userdata', dipstruct, 'tag', tag, ... 'marker', '.', 'markersize', g.dipolesize(index), 'color', g.color{index}); end % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% project onto images %%%%%%%%%%%%%%%%%%%%%%%%% % [tmp1xx tmp1yy tmp1zz ] = transform( xxmri , yymri , dat.imgcoords{3}(1), dat.transform); [tmp1xxo1 tmp1yyo1 tmp1zzo1] = transform( xxmrio1, yymrio1, dat.imgcoords{3}(1), dat.transform); [tmp2xx tmp2yy tmp2zz ] = transform( xxmri , dat.imgcoords{2}(end), zzmri , dat.transform); [tmp2xxo1 tmp2yyo1 tmp2zzo1] = transform( xxmrio1, dat.imgcoords{2}(end), zzmrio1, dat.transform); [tmp3xx tmp3yy tmp3zz ] = transform( dat.imgcoords{1}(1), yymri , zzmri , dat.transform); [tmp3xxo1 tmp3yyo1 tmp3zzo1] = transform( dat.imgcoords{1}(1), yymrio1, zzmrio1, dat.transform); if strcmpi(g.projimg, 'on') & strcmpi(g.spheres, 'off') tmpcolor = g.projcol{index}; % project onto z axis tag = [ 'dipole' num2str(index) ]; if ~strcmpi(g.image, 'besa') h = line( [tmp1xx tmp1xxo1]', [tmp1yy tmp1yyo1]', [tmp1zz tmp1zzo1]'); set(h, 'userdata', 'proj', 'tag', tag, 'color','k', 'linewidth', g.dipolesize(index)/7.5); end; if strcmp(BACKCOLOR, 'k'), set(h, 'color', tmpcolor); end; h = plot3(tmp1xx, tmp1yy, tmp1zz); set(h, 'userdata', 'proj', 'tag', tag, ... 'marker', '.', 'markersize', g.dipolesize(index), 'color', tmpcolor); % project onto y axis tag = [ 'dipole' num2str(index) ]; if ~strcmpi(g.image, 'besa') h = line( [tmp2xx tmp2xxo1]', [tmp2yy tmp2yyo1]', [tmp2zz tmp2zzo1]'); set(h, 'userdata', 'proj', 'tag', tag, 'color','k', 'linewidth', g.dipolesize(index)/7.5); end; if strcmp(BACKCOLOR, 'k'), set(h, 'color', tmpcolor); end; h = plot3(tmp2xx, tmp2yy, tmp2zz); set(h, 'userdata', 'proj', 'tag', tag, ... 'marker', '.', 'markersize', g.dipolesize(index), 'color', tmpcolor); % project onto x axis tag = [ 'dipole' num2str(index) ]; if ~strcmpi(g.image, 'besa') h = line( [tmp3xx tmp3xxo1]', [tmp3yy tmp3yyo1]', [tmp3zz tmp3zzo1]'); set(h, 'userdata', 'proj', 'tag', tag, 'color','k', 'linewidth', g.dipolesize(index)/7.5); end; if strcmp(BACKCOLOR, 'k'), set(h, 'color', tmpcolor); end; h = plot3(tmp3xx, tmp3yy, tmp3zz); set(h, 'userdata', 'proj', 'tag', tag, ... 'marker', '.', 'markersize', g.dipolesize(index), 'color', tmpcolor); end; % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% project onto axes %%%%%%%%%%%%%%%%%%%%%%%%% % if strcmpi(g.projlines, 'on') clear h; % project onto z axis tag = [ 'dipole' num2str(index) ]; h(1) = line( [xx tmp1xx]', [yy tmp1yy]', [zz tmp1zz]); set(h(1), 'userdata', 'proj', 'linestyle', '--', ... 'tag', tag, 'color', g.color{index}, 'linewidth', g.dipolesize(index)/7.5/5); % project onto x axis tag = [ 'dipole' num2str(index) ]; h(2) = line( [xx tmp2xx]', [yy tmp2yy]', [zz tmp2zz]); set(h(2), 'userdata', 'proj', 'linestyle', '--', ... 'tag', tag, 'color', g.color{index}, 'linewidth', g.dipolesize(index)/7.5/5); % project onto y axis tag = [ 'dipole' num2str(index) ]; h(3) = line( [xx tmp3xx]', [yy tmp3yy]', [zz tmp3zz]); set(h(3), 'userdata', 'proj', 'linestyle', '--', ... 'tag', tag, 'color', g.color{index}, 'linewidth', g.dipolesize(index)/7.5/5); if ~isempty(g.projcol) set(h, 'color', g.projcol{index}); end; end; % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% draw text %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if isfield(sources, 'component') if strcmp(g.num, 'on') h = text(xx, yy, zz, [ ' ' int2str(sources(index).component)]); set(h, 'userdata', dipstruct, 'tag', tag, 'fontsize', g.dipolesize(index)/2 ); if ~strcmpi(g.image, 'besa'), set(h, 'color', 'w'); end; end; end; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3-D settings if strcmpi(g.spheres, 'on') lighting phong; material shiny; camlight left; camlight right; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% draw elipse for group of dipoles %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % does not work because of new scheme, have to be reprogrammed %if ~isempty(g.std) % for index = 1:length(g.std) % if ~iscell(g.std{index}) % plotellipse(sources, g.std{index}, 1, dat.tcparams, dat.coreg); % else % sc = plotellipse(sources, g.std{index}{1}, g.std{index}{2}, dat.tcparams, dat.coreg); % if length( g.std{index} ) > 2 % set(sc, g.std{index}{3:end}); % end; % end; % end; % end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% buttons %%%%%%%%%%%%%%%%%%%%%%%%%%%%% nbsrc = int2str(length(sources)); cbmesh = [ 'if get(gcbo, ''userdata''), ' ... ' set(findobj(''parent'', gca, ''tag'', ''mesh''), ''visible'', ''off'');' ... ' set(gcbo, ''string'', ''Mesh on'');' ... ' set(gcbo, ''userdata'', 0);' ... 'else,' ... ' set(findobj(''parent'', gca, ''tag'', ''mesh''), ''visible'', ''on'');' ... ' set(gcbo, ''string'', ''Mesh off'');' ... ' set(gcbo, ''userdata'', 1);' ... 'end;' ]; cbplot = [ 'if strcmpi(get(gcbo, ''string''), ''plot one''),' ... ' for tmpi = 1:' nbsrc ',' ... ' set(findobj(''parent'', gca, ''tag'', [ ''dipole'' int2str(tmpi) ]), ''visible'', ''off'');' ... ' end; clear tmpi;' ... ' dipplot(gcbf);' ... ' set(gcbo, ''string'', ''Plot all'');' ... 'else,' ... ' for tmpi = 1:' nbsrc ',' ... ' set(findobj(''parent'', gca, ''tag'', [ ''dipole'' int2str(tmpi) ]), ''visible'', ''on'');' ... ' end; clear tmpi;' ... ' set(gcbo, ''string'', ''Plot one'');' ... 'end;' ]; cbview = [ 'tmpuserdat = get(gca, ''userdata'');' ... 'if tmpuserdat.axistight, ' ... ' set(gcbo, ''string'', ''Tight view'');' ... 'else,' ... ' set(gcbo, ''string'', ''Loose view'');' ... 'end;' ... 'tmpuserdat.axistight = ~tmpuserdat.axistight;' ... 'set(gca, ''userdata'', tmpuserdat);' ... 'clear tmpuserdat;' ... 'dipplot(gcbf);' ]; viewstring = fastif(dat.axistight, 'Loose view', 'Tight view'); enmesh = fastif(isempty(g.meshdata) & strcmpi(g.coordformat, 'MNI'), 'off', 'on'); if strcmpi(g.coordformat, 'CTF'), viewcor = 'view([0 1 0]);'; viewtop = 'view([0 0 -1]);'; vis = 'off'; else viewcor = 'view([0 -1 0]);'; viewtop = 'view([0 0 1]);'; vis = 'on'; end; h = uicontrol( 'unit', 'normalized', 'position', [0 0 .15 1], 'tag', 'tmp', ... 'style', 'text', 'string',' '); h = uicontrol( 'unit', 'normalized', 'position', [0 0 .15 .05], 'tag', 'tmp', ... 'style', 'pushbutton', 'fontweight', 'bold', 'string', 'No controls', 'callback', ... 'set(findobj(''parent'', gcbf, ''tag'', ''tmp''), ''visible'', ''off'');'); h = uicontrol( 'unit', 'normalized', 'position', [0 0.05 .15 .05], 'tag', 'tmp', ... 'style', 'pushbutton', 'string', 'Top view', 'callback', viewtop); h = uicontrol( 'unit', 'normalized', 'position', [0 0.1 .15 .05], 'tag', 'tmp', ... 'style', 'pushbutton', 'string', 'Coronal view', 'callback', viewcor); h = uicontrol( 'unit', 'normalized', 'position', [0 0.15 .15 .05], 'tag', 'tmp', ... 'style', 'pushbutton', 'string', 'Sagittal view', 'callback', 'view([1 0 0]);'); h = uicontrol( 'unit', 'normalized', 'position', [0 0.2 .15 .05], 'tag', 'tmp', ... 'style', 'pushbutton', 'string', viewstring, 'callback', cbview); h = uicontrol( 'unit', 'normalized', 'position', [0 0.25 .15 .05], 'tag', 'tmp', ... 'style', 'pushbutton', 'string', 'Mesh on', 'userdata', 0, 'callback', ... cbmesh, 'enable', enmesh, 'visible', vis ); h = uicontrol( 'unit', 'normalized', 'position', [0 0.3 .15 .05], 'tag', 'tmp', ... 'style', 'text', 'string', 'Display:','fontweight', 'bold' ); h = uicontrol( 'unit', 'normalized', 'position', [0 0.35 .15 .02], 'tag', 'tmp',... 'style', 'text', 'string', ''); h = uicontrol( 'unit', 'normalized', 'position', [0 0.37 .15 .05], 'tag', 'tmp','userdata', 'z',... 'style', 'text', 'string', 'Z:', 'visible', vis ); h = uicontrol( 'unit', 'normalized', 'position', [0 0.42 .15 .05], 'tag', 'tmp','userdata', 'y', ... 'style', 'text', 'string', 'Y:', 'visible', vis ); h = uicontrol( 'unit', 'normalized', 'position', [0 0.47 .15 .05], 'tag', 'tmp', 'userdata', 'x',... 'style', 'text', 'string', 'X:', 'visible', vis ); h = uicontrol( 'unit', 'normalized', 'position', [0 0.52 .15 .05], 'tag', 'tmp', 'userdata', 'rv',... 'style', 'text', 'string', 'RV:' ); h = uicontrol( 'unit', 'normalized', 'position', [0 0.57 .15 .05], 'tag', 'tmp', 'userdata', 'comp', ... 'style', 'text', 'string', ''); h = uicontrol( 'unit', 'normalized', 'position', [0 0.62 .15 .05], 'tag', 'tmp', 'userdata', 'editor', ... 'style', 'edit', 'string', '1', 'callback', ... [ 'dipplot(gcbf);' ] ); h = uicontrol( 'unit', 'normalized', 'position', [0 0.67 .15 .05], 'tag', 'tmp', ... 'style', 'pushbutton', 'string', 'Keep|Prev', 'callback', ... [ 'editobj = findobj(''parent'', gcf, ''userdata'', ''editor'');' ... 'set(editobj, ''string'', num2str(str2num(get(editobj, ''string''))-1));' ... 'tmpobj = get(gcf, ''userdata'');' ... 'eval(get(editobj, ''callback''));' ... 'set(tmpobj, ''visible'', ''on'');' ... 'clear editobj tmpobj;' ]); h = uicontrol( 'unit', 'normalized', 'position', [0 0.72 .15 .05], 'tag', 'tmp', ... 'style', 'pushbutton', 'string', 'Prev', 'callback', ... [ 'editobj = findobj(''parent'', gcf, ''userdata'', ''editor'');' ... 'set(editobj, ''string'', num2str(str2num(get(editobj, ''string''))-1));' ... 'eval(get(editobj, ''callback''));' ... 'clear editobj;' ]); h = uicontrol( 'unit', 'normalized', 'position', [0 0.77 .15 .05], 'tag', 'tmp', ... 'style', 'pushbutton', 'string', 'Next', 'callback', ... [ 'editobj = findobj(''parent'', gcf, ''userdata'', ''editor'');' ... 'set(editobj, ''string'', num2str(str2num(get(editobj, ''string''))+1));' ... 'dipplot(gcbf);' ... 'clear editobj;' ]); h = uicontrol( 'unit', 'normalized', 'position', [0 0.82 .15 .05], 'tag', 'tmp', ... 'style', 'pushbutton', 'string', 'Keep|Next', 'callback', ... [ 'editobj = findobj(''parent'', gcf, ''userdata'', ''editor'');' ... 'set(editobj, ''string'', num2str(str2num(get(editobj, ''string''))+1));' ... 'tmpobj = get(gcf, ''userdata'');' ... 'dipplot(gcbf);' ... 'set(tmpobj, ''visible'', ''on'');' ... 'clear editobj tmpobj;' ]); h = uicontrol( 'unit', 'normalized', 'position', [0 0.87 .15 .05], 'tag', 'tmp', ... 'style', 'pushbutton', 'string', 'Plot one', 'callback', cbplot); h = uicontrol( 'unit', 'normalized', 'position', [0 0.92 .15 .05], 'tag', 'tmp', ... 'style', 'text', 'string', [num2str(length(sources)) ' dipoles:'], 'fontweight', 'bold' ); h = uicontrol( 'unit', 'normalized', 'position', [0 0.97 .15 .05], 'tag', 'tmp', ... 'style', 'text', 'string', ''); set(gcf, 'userdata', findobj('parent', gca, 'tag', 'dipole1')); dat.nbsources = length(sources); set(gca, 'userdata', dat ); % last param=1 for MRI view tight/loose set(gcf, 'color', BACKCOLOR); if strcmp(g.gui, 'off') | strcmpi(g.holdon, 'on') set(findobj('parent', gcf, 'tag', 'tmp'), 'visible', 'off'); end; if strcmp(g.mesh, 'off') set(findobj('parent', gca, 'tag', 'mesh'), 'visible', 'off'); end; updatedipplot(gcf); rotate3d on; % close figure if necessary if strcmpi(g.plot, 'off') try, close(fig); catch, end; end; if strcmpi(g.holdon, 'on') box off; axis equal; axis off; end; % set camera positon if strcmpi(g.camera, 'set') set(gca, 'CameraPosition', [2546.94 -894.981 689.613], ... 'CameraPositionMode', 'manual', ... 'CameraTarget', [0 -18 18], ... 'CameraTargetMode', 'manual', ... 'CameraUpVector', [0 0 1], ... 'CameraUpVectorMode', 'manual', ... 'CameraViewAngle', [3.8815], ... 'CameraViewAngleMode', 'manual'); end; return; % electrode space to MRI space % ============================ function [x,y,z] = transform(x, y, z, transmat); if isempty(transmat), return; end; for i = 1:size(x,1) for j = 1:size(x,2) tmparray = transmat * [ x(i,j) y(i,j) z(i,j) 1 ]'; x(i,j) = tmparray(1); y(i,j) = tmparray(2); z(i,j) = tmparray(3); end; end; % does not work any more % ---------------------- function sc = plotellipse(sources, ind, nstd, TCPARAMS, coreg); for i = 1:length(ind) tmpval(1,i) = -sources(ind(i)).posxyz(1); tmpval(2,i) = -sources(ind(i)).posxyz(2); tmpval(3,i) = sources(ind(i)).posxyz(3); [tmpval(1,i) tmpval(2,i) tmpval(3,i)] = transform(tmpval(1,i), tmpval(2,i), tmpval(3,i), TCPARAMS); end; % mean and covariance C = cov(tmpval'); M = mean(tmpval,2); [U,L] = eig(C); % For N standard deviations spread of data, the radii of the eliipsoid will % be given by N*SQRT(eigenvalues). radii = nstd*sqrt(diag(L)); % generate data for "unrotated" ellipsoid [xc,yc,zc] = ellipsoid(0,0,0,radii(1),radii(2),radii(3), 10); % rotate data with orientation matrix U and center M a = kron(U(:,1),xc); b = kron(U(:,2),yc); c = kron(U(:,3),zc); data = a+b+c; n = size(data,2); x = data(1:n,:)+M(1); y = data(n+1:2*n,:)+M(2); z = data(2*n+1:end,:)+M(3); % now plot the rotated ellipse c = ones(size(z)); sc = mesh(x,y,z); alpha(0.5) function newsrc = convertbesaoldformat(src); newsrc = []; count = 1; countdip = 1; if ~isfield(src, 'besaextori'), src(1).besaextori = []; end; for index = 1:length(src) % convert format % -------------- if isempty(src(index).besaextori), src(index).besaextori = 300; end; % 20 mm newsrc(count).possph(countdip,:) = [ src(index).besathloc src(index).besaphloc src(index).besaexent]; newsrc(count).momsph(countdip,:) = [ src(index).besathori src(index).besaphori src(index).besaextori/300]; % copy other fields % ----------------- if isfield(src, 'stdX') newsrc(count).stdX = -src(index).stdY; newsrc(count).stdY = src(index).stdX; newsrc(count).stdZ = src(index).stdZ; end; if isfield(src, 'rv') newsrc(count).rv = src(index).rv; end; if isfield(src, 'elecrv') newsrc(count).rvelec = src(index).elecrv; end; if isfield(src, 'component') newsrc(count).component = src(index).component; if index ~= length(src) & src(index).component == src(index+1).component countdip = countdip + 1; else count = count + 1; countdip = 1; end; else count = count + 1; countdip = 1; end; end; function src = computexyzforbesa(src); for index = 1:length( src ) for index2 = 1:size( src(index).possph, 1 ) % compute coordinates % ------------------- postmp = src(index).possph(index2,:); momtmp = src(index).momsph(index2,:); phi = postmp(1)+90; %% %%%%%%%%%%%%%%% USE BESA COORDINATES %%%%% theta = postmp(2); %% %%%%%%%%%%%%%%% USE BESA COORDINATES %%%%% phiori = momtmp(1)+90; %% %%%%%%%%%%%% USE BESA COORDINATES %%%%% thetaori = momtmp(2); %% %%%%%%%%%%%% USE BESA COORDINATES %%%%% % exentricities are in % of the radius of the head sphere [x y z] = sph2cart(theta/180*pi, phi/180*pi, postmp(3)/1.2); [xo yo zo] = sph2cart(thetaori/180*pi, phiori/180*pi, momtmp(3)*5); % exentricity scaled for compatibility with DIPFIT src(index).posxyz(index2,:) = [-y x z]; src(index).momxyz(index2,:) = [-yo xo zo]; end; end; % update dipplot (callback call) % ------------------------------ function updatedipplot(fig) % find current dipole index and test for authorized range % ------------------------------------------------------- dat = get(gca, 'userdata'); editobj = findobj('parent', fig, 'userdata', 'editor'); tmpnum = str2num(get(editobj(end), 'string')); if tmpnum < 1, tmpnum = 1; end; if tmpnum > dat.nbsources, tmpnum = dat.nbsources; end; set(editobj(end), 'string', num2str(tmpnum)); % hide current dipole, find next dipole and show it % ------------------------------------------------- set(get(gcf, 'userdata'), 'visible', 'off'); newdip = findobj('parent', gca, 'tag', [ 'dipole' get(editobj(end), 'string')]); set(newdip, 'visible', 'on'); set(gcf, 'userdata', newdip); % find all dipolar structures % --------------------------- index = 1; count = 1; for index = 1:length(newdip) if isstruct( get(newdip(index), 'userdata') ) dip_mricoord(count,:) = getfield(get(newdip(index), 'userdata'), 'mricoord'); count = count+1; foundind = index; end; end; % get residual variance % --------------------- if exist('foundind') tmp = get(newdip(foundind), 'userdata'); tal = tmp.talcoord; if ~isstr( tmp.name ) tmprvobj = findobj('parent', fig, 'userdata', 'comp'); set( tmprvobj(end), 'string', [ 'Comp: ' int2str(tmp.name) ] ); else tmprvobj = findobj('parent', fig, 'userdata', 'comp'); set( tmprvobj(end), 'string', tmp.name ); end; tmprvobj = findobj('parent', fig, 'userdata', 'rv'); set( tmprvobj(end), 'string', [ 'RV: ' tmp.rv '%' ] ); tmprvobj = findobj('parent', fig, 'userdata', 'x'); set( tmprvobj(end), 'string', [ 'X tal: ' int2str(round(tal(1))) ]); tmprvobj = findobj('parent', fig, 'userdata', 'y'); set( tmprvobj(end), 'string', [ 'Y tal: ' int2str(round(tal(2))) ]); tmprvobj = findobj('parent', fig, 'userdata', 'z'); set( tmprvobj(end), 'string', [ 'Z tal: ' int2str(round(tal(3))) ]); end % adapt the MRI to the dipole depth % --------------------------------- delete(findobj('parent', gca, 'tag', 'img')); tmpdiv1 = dat.imgcoords{1}(2)-dat.imgcoords{1}(1); tmpdiv2 = dat.imgcoords{2}(2)-dat.imgcoords{2}(1); tmpdiv3 = dat.imgcoords{3}(2)-dat.imgcoords{3}(1); if ~dat.axistight [xx yy zz] = transform(0,0,0, pinv(dat.transform)); % elec -> MRI space indx = minpos(dat.imgcoords{1}-zz); indy = minpos(dat.imgcoords{2}-yy); indz = minpos(dat.imgcoords{3}-xx); else if ~dat.cornermri indx = minpos(dat.imgcoords{1} - mean(dip_mricoord(:,1))) - 3*tmpdiv1; indy = minpos(dat.imgcoords{2} - mean(dip_mricoord(:,2))) + 3*tmpdiv2; indz = minpos(dat.imgcoords{3} - mean(dip_mricoord(:,3))) - 3*tmpdiv3; else % no need to shift slice if not ploted close to the dipole indx = minpos(dat.imgcoords{1} - mean(dip_mricoord(:,1))); indy = minpos(dat.imgcoords{2} - mean(dip_mricoord(:,2))); indz = minpos(dat.imgcoords{3} - mean(dip_mricoord(:,3))); end; end; % middle of the brain % ------------------- plotimgs( dat,min(max([indx indy indz],1),size(dat.imgs)), dat.transform); %end; % plot images (transmat is the uniform matrix MRI coords -> elec coords) % ---------------------------------------------------------------------- function plotimgs(dat, mricoord, transmat); % loading images % -------------- if ndims(dat.imgs) == 4 % true color data img1(:,:,3) = rot90(squeeze(dat.imgs(mricoord(1),:,:,3))); img2(:,:,3) = rot90(squeeze(dat.imgs(:,mricoord(2),:,3))); img3(:,:,3) = rot90(squeeze(dat.imgs(:,:,mricoord(3),3))); img1(:,:,2) = rot90(squeeze(dat.imgs(mricoord(1),:,:,2))); img2(:,:,2) = rot90(squeeze(dat.imgs(:,mricoord(2),:,2))); img3(:,:,2) = rot90(squeeze(dat.imgs(:,:,mricoord(3),2))); img1(:,:,1) = rot90(squeeze(dat.imgs(mricoord(1),:,:,1))); img2(:,:,1) = rot90(squeeze(dat.imgs(:,mricoord(2),:,1))); img3(:,:,1) = rot90(squeeze(dat.imgs(:,:,mricoord(3),1))); else img1 = rot90(squeeze(dat.imgs(mricoord(1),:,:))); img2 = rot90(squeeze(dat.imgs(:,mricoord(2),:))); img3 = rot90(squeeze(dat.imgs(:,:,mricoord(3)))); if ndims(img1) == 2, img1(:,:,3) = img1; img1(:,:,2) = img1(:,:,1); end; if ndims(img2) == 2, img2(:,:,3) = img2; img2(:,:,2) = img2(:,:,1); end; if ndims(img3) == 2, img3(:,:,3) = img3; img3(:,:,2) = img3(:,:,1); end; end; % computing coordinates for planes % -------------------------------- wy1 = [min(dat.imgcoords{2}) max(dat.imgcoords{2}); min(dat.imgcoords{2}) max(dat.imgcoords{2})]; wz1 = [min(dat.imgcoords{3}) min(dat.imgcoords{3}); max(dat.imgcoords{3}) max(dat.imgcoords{3})]; wx2 = [min(dat.imgcoords{1}) max(dat.imgcoords{1}); min(dat.imgcoords{1}) max(dat.imgcoords{1})]; wz2 = [min(dat.imgcoords{3}) min(dat.imgcoords{3}); max(dat.imgcoords{3}) max(dat.imgcoords{3})]; wx3 = [min(dat.imgcoords{1}) max(dat.imgcoords{1}); min(dat.imgcoords{1}) max(dat.imgcoords{1})]; wy3 = [min(dat.imgcoords{2}) min(dat.imgcoords{2}); max(dat.imgcoords{2}) max(dat.imgcoords{2})]; if dat.axistight & ~dat.cornermri wx1 = [ 1 1; 1 1]*dat.imgcoords{1}(mricoord(1)); wy2 = [ 1 1; 1 1]*dat.imgcoords{2}(mricoord(2)); wz3 = [ 1 1; 1 1]*dat.imgcoords{3}(mricoord(3)); else wx1 = [ 1 1; 1 1]*dat.imgcoords{1}(1); wy2 = [ 1 1; 1 1]*dat.imgcoords{2}(end); wz3 = [ 1 1; 1 1]*dat.imgcoords{3}(1); end; % transform MRI coordinates to electrode space % -------------------------------------------- [ elecwx1 elecwy1 elecwz1 ] = transform( wx1, wy1, wz1, transmat); [ elecwx2 elecwy2 elecwz2 ] = transform( wx2, wy2, wz2, transmat); [ elecwx3 elecwy3 elecwz3 ] = transform( wx3, wy3, wz3, transmat); % ploting surfaces % ---------------- options = { 'FaceColor','texturemap', 'EdgeColor','none', 'CDataMapping', ... 'direct','tag','img', 'facelighting', 'none' }; hold on; surface(elecwx1, elecwy1, elecwz1, img1(end:-1:1,:,:), options{:}); surface(elecwx2, elecwy2, elecwz2, img2(end:-1:1,:,:), options{:}); surface(elecwx3, elecwy3, elecwz3, img3(end:-1:1,:,:), options{:}); %xlabel('x'); ylabel('y'); zlabel('z'); axis equal; dsaffd if strcmpi(dat.drawedges, 'on') % removing old edges if any delete(findobj( gcf, 'tag', 'edges')); if dat.axistight & ~dat.cornermri, col = 'k'; else col = [0.5 0.5 0.5]; end; h(1) = line([elecwx3(1) elecwx3(2)]', [elecwy3(1) elecwy2(1)]', [elecwz1(1) elecwz1(2)]'); % sagittal-transverse h(2) = line([elecwx3(1) elecwx2(3)]', [elecwy2(1) elecwy2(2)]', [elecwz1(1) elecwz1(2)]'); % coronal-tranverse h(3) = line([elecwx3(1) elecwx3(2)]', [elecwy2(1) elecwy2(2)]', [elecwz3(1) elecwz1(1)]'); % sagittal-coronal set(h, 'color', col, 'linewidth', 2, 'tag', 'edges'); end; %%fill3([-2 -2 2 2], [-2 2 2 -2], wz(:)-1, BACKCOLOR); %%fill3([-2 -2 2 2], wy(:)-1, [-2 2 2 -2], BACKCOLOR); rotate3d on function index = minpos(vals); vals(find(vals < 0)) = inf; [tmp index] = min(vals); function scalegca(multfactor) xl = xlim; xf = ( xl(2) - xl(1) ) * multfactor; yl = ylim; yf = ( yl(2) - yl(1) ) * multfactor; zl = zlim; zf = ( zl(2) - zl(1) ) * multfactor; xlim( [ xl(1)-xf xl(2)+xf ]); ylim( [ yl(1)-yf yl(2)+yf ]); zlim( [ zl(1)-zf zl(2)+zf ]); function color = strcol2real(colorin, colmap) if ~iscell(colorin) for index = 1:length(colorin) color{index} = colmap(colorin(index),:); end; else color = colorin; for index = 1:length(colorin) if isstr(colorin{index}) switch colorin{index} case 'r', color{index} = [1 0 0]; case 'g', color{index} = [0 1 0]; case 'b', color{index} = [0 0 1]; case 'c', color{index} = [0 1 1]; case 'm', color{index} = [1 0 1]; case 'y', color{index} = [1 1 0]; case 'k', color{index} = [0 0 0]; case 'w', color{index} = [1 1 1]; otherwise, error('Unknown color'); end; end; end; end; function x = gammacorrection(x, gammaval); x = 255 * (double(x)/255).^ gammaval; % image is supposed to be scaled from 0 to 255 % gammaval = 1 is identity of course
github
lcnhappe/happe-master
fieldtripchan2eeglab.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/fieldtripchan2eeglab.m
1,612
utf_8
0328813bbaaba65a3bcfde10ecb26e8b
% fieldtripchan2eeglab() - convert Fieldtrip channel location structure % to EEGLAB channel location structure % % Usage: % >> chanlocs = fieldtripchan2eeglab( fieldlocs ); % % Inputs: % fieldlocs - Fieldtrip channel structure. See help readlocs() % % Outputs: % chanlocs - EEGLAB channel location structure. % % Author: Arnaud Delorme, SCCN, INC, UCSD, 2006- % % See also: readlocs() % Copyright (C) 2003 Arnaud Delorme, Salk Institute, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function chanlocs = fieldtripchan2eeglab( loc ); if nargin < 1 help fieldtripchan2eeglab; return; end; chanlocs = struct('labels', loc.label(:)', 'X', mattocell(loc.pnt(:,1)'), ... 'Y', mattocell(loc.pnt(:,2)'), ... 'Z', mattocell(loc.pnt(:,3)')); chanlocs = convertlocs(chanlocs, 'cart2all');
github
lcnhappe/happe-master
sph2spm.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/sph2spm.m
3,331
utf_8
67c8de53ef88fdbaa69eea504e17997b
% sph2spm() - compute homogenous transformation matrix from % BESA spherical coordinates to SPM 3-D coordinate % % Usage: % >> trans = sph2spm; % % Outputs: % trans - homogenous transformation matrix % % Note: head radius for spherical model is assumed to be 85 mm. % % Author: Robert Oostenveld, SMI/FCDC, Nijmegen 2005 % Arnaud Delorme, SCCN, La Jolla 2005 % SMI, University Aalborg, Denmark http://www.smi.auc.dk/ % FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl/ % Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function besa2SPM_result = besa2SPM; if 0 % original transformation: problem occipital part of the haed did not % fit % NAS, Left EAR, Right EAR coordinates in BESA besa_NAS = [0.0000 0.0913 -0.0407]; besa_LPA = [-0.0865 0.0000 -0.0500]; besa_RPA = [0.0865 0.0000 -0.0500]; % NAS, Left EAR, Right EAR coordinates in SPM average SPM_NAS = [0 84 -48]; SPM_LPA = [-82 -32 -54]; SPM_RPA = [82 -32 -54]; % transformation to CTF coordinate system % --------------------------------------- SPM2common = headcoordinates(SPM_NAS , SPM_LPA , SPM_RPA, 0); besa2common = headcoordinates(besa_NAS, besa_LPA, besa_RPA, 0); nazcommon1 = besa2common * [ besa_NAS 1]'; nazcommon2 = SPM2common * [ SPM_NAS 1]'; ratiox = nazcommon1(1)/nazcommon2(1); lpacommon1 = besa2common * [ besa_LPA 1]'; lpacommon2 = SPM2common * [ SPM_LPA 1]'; ratioy = lpacommon1(2)/lpacommon2(2); scaling = eye(4); scaling(1,1) = 1/ratiox; scaling(2,2) = 1/ratioy; scaling(3,3) = mean([ 1/ratioy 1/ratiox]); besa2SPM_result = inv(SPM2common) * scaling * besa2common; end; if 0 % using electrodenormalize to fit standard BESA electrode (haed radius % has to be 85) to BEM electrodes % problem: fit not optimal for temporal electrodes % traditional takes as input the .m field returned in the output from % electrodenormalize besa2SPM_result = traditionaldipfit([0.5588 -14.5541 1.8045 0.0004 0.0000 -1.5623 1.1889 1.0736 132.6198]) end; % adapted manualy from above for temporal electrodes (see factor 0.94 % instead of 1.1889 and x shift of -18.0041 instead of -14.5541) %traditionaldipfit([0.5588 -18.0041 1.8045 0.0004 0.0000 -1.5623 1.1889 0.94 132.6198]) besa2SPM_result = [ 0.0101 -0.9400 0 0.5588 1.1889 0.0080 0.0530 -18.0041 -0.0005 -0.0000 1.1268 1.8045 0 0 0 1.0000 ];
github
lcnhappe/happe-master
homogenous2traditional.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/homogenous2traditional.m
5,576
utf_8
1cd0a7b795501f24b35360ecec62e420
function f = homogenous2traditional(H) % HOMOGENOUS2TRADITIONAL estimates the traditional translation, rotation % and scaling parameters from a homogenous transformation matrix. It will % give an error if the homogenous matrix also describes a perspective % transformation. % % Use as % f = homogenous2traditional(H) % where H is a 4x4 homogenous transformation matrix and f is a vector with % nine elements describing % x-shift % y-shift % z-shift % followed by the % pitch (rotation around x-axis) % roll (rotation around y-axis) % yaw (rotation around z-axis) % followed by the % x-rescaling factor % y-rescaling factor % z-rescaling factor % % The order in which the transformations would be done is exactly opposite % as the list above, i.e. first z-rescale ... and finally x-shift. % Copyright (C) 2005, Robert Oostenveld % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % remember the input homogenous transformation matrix Horg = H; % The homogenous transformation matrix is built up according to % H = T * R * S % where % R = Rx * Ry * Rz % estimate the translation tx = H(1,4); ty = H(2,4); tz = H(3,4); T = [ 1 0 0 tx 0 1 0 ty 0 0 1 tz 0 0 0 1 ]; % recompute the homogenous matrix excluding the translation H = inv(T) * H; % estimate the scaling sx = norm(H(1:3,1)); sy = norm(H(1:3,2)); sz = norm(H(1:3,3)); S = [ sx 0 0 0 0 sy 0 0 0 0 sz 0 0 0 0 1 ]; % recompute the homogenous matrix excluding the scaling H = H * inv(S); % the difficult part is to determine the rotations % the order of the rotations matters % compute the rotation using a probe point on the z-axis p = H * [0 0 1 0]'; % the rotation around the y-axis is resulting in an offset in the positive x-direction ry = asin(p(1)); % the rotation around the x-axis can be estimated by the projection on the yz-plane if abs(p(2))<eps && abs(p(2))<eps % the rotation around y was pi/2 or -pi/2, therefore I cannot estimate the rotation around x any more error('need another estimate, not implemented yet'); elseif abs(p(3))<eps % this is an unstable situation for using atan, but the rotation around x is either pi/2 or -pi/2 if p(2)<0 rx = pi/2 else rx = -pi/2; end else % this is the default equation for determining the rotation rx = -atan(p(2)/p(3)); end % recompute the individual rotation matrices Rx = rotate([rx 0 0]); Ry = rotate([0 ry 0]); Rz = inv(Ry) * inv(Rx) * H; % use left side multiplication % compute the remaining rotation using a probe point on the x-axis p = Rz * [1 0 0 0]'; rz = asin(p(2)); % the complete rotation matrix was R = rotate([rx ry rz]); % compare the original translation with the one that was estimated H = T * R * S; %fprintf('remaining difference\n'); %disp(Horg - H); f = [tx ty tz rx ry rz sx sy sz]; function [output] = rotate(R, input); % ROTATE performs a 3D rotation on the input coordinates % around the x, y and z-axis. The direction of the rotation % is according to the right-hand rule. The rotation is first % done around the x-, then the y- and finally the z-axis. % % Use as % [output] = rotate(R, input) % where % R [rx, ry, rz] rotations around each of the axes in degrees % input Nx3 matrix with the points before rotation % output Nx3 matrix with the points after rotation % % Or as % [Tr] = rotate(R) % where % R [rx, ry, rz] in degrees % Tr corresponding homogenous transformation matrix % Copyright (C) 2000-2004, Robert Oostenveld % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA rotx = eye(3); roty = eye(3); rotz = eye(3); rx = pi*R(1) / 180; ry = pi*R(2) / 180; rz = pi*R(3) / 180; if rx~=0 % rotation around x-axis rotx(2,:) = [ 0 cos(rx) -sin(rx) ]; rotx(3,:) = [ 0 sin(rx) cos(rx) ]; end if ry~=0 % rotation around y-axis roty(1,:) = [ cos(ry) 0 sin(ry) ]; roty(3,:) = [ -sin(ry) 0 cos(ry) ]; end if rz~=0 % rotation around z-axis rotz(1,:) = [ cos(rz) -sin(rz) 0 ]; rotz(2,:) = [ sin(rz) cos(rz) 0 ]; end if nargin==1 % compute and return the homogenous transformation matrix rotx(4,4) = 1; roty(4,4) = 1; rotz(4,4) = 1; output = rotz * roty * rotx; else % apply the transformation on the input points output = ((rotz * roty * rotx) * input')'; end
github
lcnhappe/happe-master
electroderealign.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/electroderealign.m
26,943
utf_8
c09b21089e582b6d28a1fc065011b317
function [norm] = electroderealign(cfg); % ELECTRODEREALIGN rotates and translates electrode positions to % template electrode positions or towards the head surface. It can % either perform a rigid body transformation, in which only the % coordinate system is changed, or it can apply additional deformations % to the input electrodes. % % Use as % [elec] = electroderealign(cfg) % % Three different methods for aligning the input electrodes are implemented: % based on a warping method, based on the fiducials or interactive with a % graphical user interface. Each of these approaches is described below. % % 1) You can apply a spatial deformation method (i.e. 'warp') that % automatically minimizes the distance between the electrodes and the % averaged standard. The warping methods use a non-linear search to % optimize the error between input and template electrodes or the % head surface. % % 2) You can apply a rigid body realignment based on three fiducial locations. % Realigning using the fiducials only ensures that the fiducials (typically % nose, left and right ear) are along the same axes in the input electrode % set as in the template electrode set. % % 3) You can display the electrode positions together with the skin surface, % and manually (using the graphical user interface) adjust the rotation, % translation and scaling parameters, so that the two match. % % The configuration can contain the following options % cfg.method = different methods for aligning the electrodes % 'rigidbody' apply a rigid-body warp % 'globalrescale' apply a rigid-body warp with global rescaling % 'traditional' apply a rigid-body warp with individual axes rescaling % 'nonlin1' apply a 1st order non-linear warp % 'nonlin2' apply a 2nd order non-linear warp % 'nonlin3' apply a 3rd order non-linear warp % 'nonlin4' apply a 4th order non-linear warp % 'nonlin5' apply a 5th order non-linear warp % 'realignfiducial' realign the fiducials % 'interactive' manually using graphical user interface % cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), % see CHANNELSELECTION for details % cfg.fiducial = cell-array with the name of three fiducials used for % realigning (default = {'nasion', 'lpa', 'rpa'}) % cfg.casesensitive = 'yes' or 'no', determines whether string comparisons % between electrode labels are case sensitive (default = 'yes') % cfg.feedback = 'yes' or 'no' (default = 'no') % % The electrode set that will be realigned is specified as % cfg.elecfile = string with filename, or alternatively % cfg.elec = structure with electrode definition % % If you want to align the electrodes to a single template electrode set % or to multiple electrode sets (which will be averaged), you should % specify the template electrode sets as % cfg.template = single electrode set that serves as standard % or % cfg.template{1..N} = list of electrode sets that are averaged into the standard % The template electrode sets can be specified either as electrode % structures (i.e. when they are already read in memory) or as electrode % files. % % If you want to align the electrodes to the head surface as obtained from % an anatomical MRI (using one of the warping methods), you should specify % the head surface % cfg.headshape = a filename containing headshape, a structure containing a % single triangulated boundary, or a Nx3 matrix with surface % points % % In case you only want to realign the fiducials, the template electrode % set only has to contain the three fiducials, e.g. % cfg.template.pnt(1,:) = [110 0 0] % location of the nose % cfg.template.pnt(2,:) = [0 90 0] % left ear % cfg.template.pnt(3,:) = [0 -90 0] % right ear % cfg.template.label = {''nasion', 'lpa', 'rpa'} % % See also READ_FCDC_ELEC, VOLUMEREALIGN % Copyright (C) 2005-2006, Robert Oostenveld % % $Log: electroderealign.m,v $ % Revision 1.1 2009/01/30 04:02:02 arno % *** empty log message *** % % Revision 1.6 2007/08/06 09:20:14 roboos % added support for bti_hs % % Revision 1.5 2007/07/26 08:00:09 roboos % also deal with cfg.headshape if specified as surface, set of points or ctf_hs file. % the construction of the tri is now done consistently for all headshapes if tri is missing % % Revision 1.4 2007/02/13 15:12:51 roboos % removed cfg.plot3d option % % Revision 1.3 2006/12/12 11:28:33 roboos % moved projecttri subfunction into seperate function % % Revision 1.2 2006/10/04 07:10:07 roboos % updated documentation % % Revision 1.1 2006/09/13 07:20:06 roboos % renamed electrodenormalize to electroderealign, added "deprecated"-warning to the old function % % Revision 1.10 2006/09/13 07:09:24 roboos % Implemented support for cfg.method=interactive, using GUI for specifying and showing transformations. Sofar only for electrodes+headsurface. % % Revision 1.9 2006/09/12 15:26:06 roboos % implemented support for aligning electrodes to the skin surface, extended and improved documentation % % Revision 1.8 2006/04/20 09:58:34 roboos % updated documentation % % Revision 1.7 2006/04/19 15:42:53 roboos % replaced call to warp_pnt with new function name warp_optim % % Revision 1.6 2006/03/14 08:16:00 roboos % changed function call to warp3d into warp_apply (thanks to Arno) % % Revision 1.5 2005/05/17 17:50:37 roboos % changed all "if" occurences of & and | into && and || % this makes the code more compatible with Octave and also seems to be in closer correspondence with Matlab documentation on shortcircuited evaluation of sequential boolean constructs % % Revision 1.4 2005/03/21 15:49:43 roboos % added cfg.casesensitive for string comparison of electrode labels % added cfg.feedback and cfg.plot3d option for debugging % changed output: now ALL electrodes of the input are rerurned, after applying the specified transformation % fixed small bug in feedback regarding distarnce prior/after realignfiducials) % added support for various warping strategies, a.o. traditional, rigidbody, nonlin1-5, etc. % % Revision 1.3 2005/03/16 09:18:56 roboos % fixed bug in fprintf feedback, instead of giving mean squared distance it should give mean distance before and after normalization % % Revision 1.2 2005/01/18 12:04:39 roboos % improved error handling of missing fiducials % added other default fiducials % changed debugging output % % Revision 1.1 2005/01/17 14:56:06 roboos % new implementation % % set the defaults if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'feedback'), cfg.feedback = 'no'; end if ~isfield(cfg, 'casesensitive'), cfg.casesensitive = 'yes'; end if ~isfield(cfg, 'headshape'), cfg.headshape = []; end if ~isfield(cfg, 'template'), cfg.template = []; end % this is a common mistake which can be accepted if strcmp(cfg.method, 'realignfiducials') cfg.method = 'realignfiducial'; end if strcmp(cfg.method, 'warp') % rename the default warp to one of the method recognized by the warping toolbox cfg.method = 'traditional'; end if strcmp(cfg.feedback, 'yes') % use the global fb field to tell the warping toolbox to print feedback global fb fb = 1; else global fb fb = 0; end usetemplate = isfield(cfg, 'template') && ~isempty(cfg.template); useheadshape = isfield(cfg, 'headshape') && ~isempty(cfg.headshape); if usetemplate % get the template electrode definitions if ~iscell(cfg.template) cfg.template = {cfg.template}; end Ntemplate = length(cfg.template); for i=1:Ntemplate if isstruct(cfg.template{i}) template(i) = cfg.template{i}; else template(i) = read_fcdc_elec(cfg.template{i}); end end elseif useheadshape % get the surface describing the head shape if isstruct(cfg.headshape) && isfield(cfg.headshape, 'pnt') % use the headshape surface specified in the configuration headshape = cfg.headshape; elseif isnumeric(cfg.headshape) && size(cfg.headshape,2)==3 % use the headshape points specified in the configuration headshape.pnt = cfg.headshape; elseif ischar(cfg.headshape) && filetype(cfg.headshape, 'ctf_shape') % read the headshape from file headshape = read_ctf_shape(cfg.headshape); elseif ischar(cfg.headshape) && filetype(cfg.headshape, '4d_hs') % read the headshape from file headshape = []; headshape.pnt = read_bti_hs(cfg.headshape); else error('cfg.headshape is not specified correctly') end if ~isfield(headshape, 'tri') % generate a closed triangulation from the surface points headshape.tri = projecttri(headshape.pnt); end else error('you should either specify template electrode positions, template fiducials or a head shape'); end % get the electrode definition that should be warped if isfield(cfg, 'elec') elec = cfg.elec; else elec = read_fcdc_elec(cfg.elecfile); end % remember the original electrode locations and labels orig = elec; % convert all labels to lower case for string comparisons % this has to be done AFTER keeping the original labels and positions if strcmp(cfg.casesensitive, 'no') for i=1:length(elec.label) elec.label{i} = lower(elec.label{i}); end for j=1:length(template) for i=1:length(template(j).label) template(j).label{i} = lower(template(j).label{i}); end end end if strcmp(cfg.feedback, 'yes') % create an empty figure, continued below... figure axis equal axis vis3d hold on xlabel('x') ylabel('y') zlabel('z') end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if usetemplate && any(strcmp(cfg.method, {'rigidbody', 'globalrescale', 'traditional', 'nonlin1', 'nonlin2', 'nonlin3', 'nonlin4', 'nonlin5'})) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % determine electrode selection and overlapping subset for warping cfg.channel = channelselection(cfg.channel, elec.label); for i=1:Ntemplate cfg.channel = channelselection(cfg.channel, template(i).label); end % make subselection of electrodes [cfgsel, datsel] = match_str(cfg.channel, elec.label); elec.label = elec.label(datsel); elec.pnt = elec.pnt(datsel,:); for i=1:Ntemplate [cfgsel, datsel] = match_str(cfg.channel, template(i).label); template(i).label = template(i).label(datsel); template(i).pnt = template(i).pnt(datsel,:); end % compute the average of the template electrode positions all = []; for i=1:Ntemplate all = cat(3, all, template(i).pnt); end avg = mean(all,3); stderr = std(all, [], 3); fprintf('warping electrodes to template... '); % the newline comes later [norm.pnt, norm.m] = warp_optim(elec.pnt, avg, cfg.method); norm.label = elec.label; dpre = mean(sqrt(sum((avg - elec.pnt).^2, 2))); dpost = mean(sqrt(sum((avg - norm.pnt).^2, 2))); fprintf('mean distance prior to warping %f, after warping %f\n', dpre, dpost); if strcmp(cfg.feedback, 'yes') % plot all electrodes before warping my_plot3(elec.pnt, 'r.'); my_plot3(elec.pnt(1,:), 'r*'); my_plot3(elec.pnt(2,:), 'r*'); my_plot3(elec.pnt(3,:), 'r*'); my_text3(elec.pnt(1,:), elec.label{1}, 'color', 'r'); my_text3(elec.pnt(2,:), elec.label{2}, 'color', 'r'); my_text3(elec.pnt(3,:), elec.label{3}, 'color', 'r'); % plot all electrodes after warping my_plot3(norm.pnt, 'm.'); my_plot3(norm.pnt(1,:), 'm*'); my_plot3(norm.pnt(2,:), 'm*'); my_plot3(norm.pnt(3,:), 'm*'); my_text3(norm.pnt(1,:), norm.label{1}, 'color', 'm'); my_text3(norm.pnt(2,:), norm.label{2}, 'color', 'm'); my_text3(norm.pnt(3,:), norm.label{3}, 'color', 'm'); % plot the template electrode locations my_plot3(avg, 'b.'); my_plot3(avg(1,:), 'b*'); my_plot3(avg(2,:), 'b*'); my_plot3(avg(3,:), 'b*'); my_text3(avg(1,:), norm.label{1}, 'color', 'b'); my_text3(avg(2,:), norm.label{2}, 'color', 'b'); my_text3(avg(3,:), norm.label{3}, 'color', 'b'); % plot lines connecting the input/warped electrode locations with the template locations my_line3(elec.pnt, avg, 'color', 'r'); my_line3(norm.pnt, avg, 'color', 'm'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif useheadshape && any(strcmp(cfg.method, {'rigidbody', 'globalrescale', 'traditional', 'nonlin1', 'nonlin2', 'nonlin3', 'nonlin4', 'nonlin5'})) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % determine electrode selection and overlapping subset for warping cfg.channel = channelselection(cfg.channel, elec.label); % make subselection of electrodes [cfgsel, datsel] = match_str(cfg.channel, elec.label); elec.label = elec.label(datsel); elec.pnt = elec.pnt(datsel,:); fprintf('warping electrodes to head shape... '); % the newline comes later [norm.pnt, norm.m] = warp_optim(elec.pnt, headshape, cfg.method); norm.label = elec.label; dpre = warp_error([], elec.pnt, headshape, cfg.method); dpost = warp_error(norm.m, elec.pnt, headshape, cfg.method); fprintf('mean distance prior to warping %f, after warping %f\n', dpre, dpost); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(cfg.method, 'realignfiducial') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % try to determine the fiducials automatically if not specified option1 = {'nasion' 'left' 'right'}; option2 = {'nasion' 'lpa' 'rpa'}; option3 = {'nz' 'lpa' 'rpa'}; if ~isfield(cfg, 'fiducial') if length(match_str(elec.label, option1))==3 cfg.fiducial = option1; elseif length(match_str(elec.label, option2))==3 cfg.fiducial = option2; elseif length(match_str(elec.label, option3))==3 cfg.fiducial = option3; else error('could not determine three fiducials, please specify cfg.fiducial') end end fprintf('using fiducials {''%s'', ''%s'', ''%s''}\n', cfg.fiducial{1}, cfg.fiducial{2}, cfg.fiducial{3}); % determine electrode selection cfg.channel = channelselection(cfg.channel, elec.label); [cfgsel, datsel] = match_str(cfg.channel, elec.label); elec.label = elec.label(datsel); elec.pnt = elec.pnt(datsel,:); if length(cfg.fiducial)~=3 error('you must specify three fiducials'); end % do case-insensitive search for fiducial locations nas_indx = match_str(lower(elec.label), lower(cfg.fiducial{1})); lpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{2})); rpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{3})); if length(nas_indx)~=1 || length(lpa_indx)~=1 || length(rpa_indx)~=1 error('not all fiducials were found in the electrode set'); end elec_nas = elec.pnt(nas_indx,:); elec_lpa = elec.pnt(lpa_indx,:); elec_rpa = elec.pnt(rpa_indx,:); % find the matching fiducials in the template and average them templ_nas = []; templ_lpa = []; templ_rpa = []; for i=1:Ntemplate nas_indx = match_str(lower(template(i).label), lower(cfg.fiducial{1})); lpa_indx = match_str(lower(template(i).label), lower(cfg.fiducial{2})); rpa_indx = match_str(lower(template(i).label), lower(cfg.fiducial{3})); if length(nas_indx)~=1 || length(lpa_indx)~=1 || length(rpa_indx)~=1 error(sprintf('not all fiducials were found in template %d', i)); end templ_nas(end+1,:) = template(i).pnt(nas_indx,:); templ_lpa(end+1,:) = template(i).pnt(lpa_indx,:); templ_rpa(end+1,:) = template(i).pnt(rpa_indx,:); end templ_nas = mean(templ_nas,1); templ_lpa = mean(templ_lpa,1); templ_rpa = mean(templ_rpa,1); % realign both to a common coordinate system elec2common = headcoordinates(elec_nas, elec_lpa, elec_rpa); templ2common = headcoordinates(templ_nas, templ_lpa, templ_rpa); % compute the combined transform and realign the electrodes to the template norm = []; norm.m = elec2common * inv(templ2common); norm.pnt = warp_apply(norm.m, elec.pnt, 'homogeneous'); norm.label = elec.label; nas_indx = match_str(lower(elec.label), lower(cfg.fiducial{1})); lpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{2})); rpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{3})); dpre = mean(sqrt(sum((elec.pnt([nas_indx lpa_indx rpa_indx],:) - [templ_nas; templ_lpa; templ_rpa]).^2, 2))); nas_indx = match_str(lower(norm.label), lower(cfg.fiducial{1})); lpa_indx = match_str(lower(norm.label), lower(cfg.fiducial{2})); rpa_indx = match_str(lower(norm.label), lower(cfg.fiducial{3})); dpost = mean(sqrt(sum((norm.pnt([nas_indx lpa_indx rpa_indx],:) - [templ_nas; templ_lpa; templ_rpa]).^2, 2))); fprintf('mean distance between fiducials prior to realignment %f, after realignment %f\n', dpre, dpost); if strcmp(cfg.feedback, 'yes') % plot the first three electrodes before transformation my_plot3(elec.pnt(1,:), 'r*'); my_plot3(elec.pnt(2,:), 'r*'); my_plot3(elec.pnt(3,:), 'r*'); my_text3(elec.pnt(1,:), elec.label{1}, 'color', 'r'); my_text3(elec.pnt(2,:), elec.label{2}, 'color', 'r'); my_text3(elec.pnt(3,:), elec.label{3}, 'color', 'r'); % plot the template fiducials my_plot3(templ_nas, 'b*'); my_plot3(templ_lpa, 'b*'); my_plot3(templ_rpa, 'b*'); my_text3(templ_nas, ' nas', 'color', 'b'); my_text3(templ_lpa, ' lpa', 'color', 'b'); my_text3(templ_rpa, ' rpa', 'color', 'b'); % plot all electrodes after transformation my_plot3(norm.pnt, 'm.'); my_plot3(norm.pnt(1,:), 'm*'); my_plot3(norm.pnt(2,:), 'm*'); my_plot3(norm.pnt(3,:), 'm*'); my_text3(norm.pnt(1,:), norm.label{1}, 'color', 'm'); my_text3(norm.pnt(2,:), norm.label{2}, 'color', 'm'); my_text3(norm.pnt(3,:), norm.label{3}, 'color', 'm'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(cfg.method, 'interactive') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % open a figure fig = figure; % add the data to the figure set(fig, 'CloseRequestFcn', @cb_close); setappdata(fig, 'elec', elec); setappdata(fig, 'transform', eye(4)); if useheadshape setappdata(fig, 'surf', headshape); end if usetemplate % FIXME interactive realigning to template electrodes is not yet supported % this requires a consistent handling of channel selection etc. setappdata(fig, 'template', template); end % add the GUI elements cb_creategui(gca); cb_redraw(gca); rotate3d on waitfor(fig); % get the data from the figure that was left behind as global variable global norm tmp = norm; clear global norm norm = tmp; clear tmp else error('unknown method'); end % apply the spatial transformation to all electrodes, and replace the % electrode labels by their case-sensitive original values if any(strcmp(cfg.method, {'rigidbody', 'globalrescale', 'traditional', 'nonlin1', 'nonlin2', 'nonlin3', 'nonlin4', 'nonlin5'})) norm.pnt = warp_apply(norm.m, orig.pnt, cfg.method); else norm.pnt = warp_apply(norm.m, orig.pnt, 'homogenous'); end norm.label = orig.label; % add version information to the configuration try % get the full name of the function cfg.version.name = mfilename('fullpath'); catch % required for compatibility with Matlab versions prior to release 13 (6.5) [st, i] = dbstack; cfg.version.name = st(i); end cfg.version.id = '$Id: electroderealign.m,v 1.1 2009/01/30 04:02:02 arno Exp $'; % remember the configuration norm.cfg = cfg; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % some simple SUBFUNCTIONs that facilitate 3D plotting %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = my_plot3(xyz, varargin) h = plot3(xyz(:,1), xyz(:,2), xyz(:,3), varargin{:}); function h = my_text3(xyz, varargin) h = text(xyz(:,1), xyz(:,2), xyz(:,3), varargin{:}); function my_line3(xyzB, xyzE, varargin) for i=1:size(xyzB,1) line([xyzB(i,1) xyzE(i,1)], [xyzB(i,2) xyzE(i,2)], [xyzB(i,3) xyzE(i,3)], varargin{:}) end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to layout a moderately complex graphical user interface %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = layoutgui(fig, geometry, position, style, string, value, tag, callback); horipos = geometry(1); % lower left corner of the GUI part in the figure vertpos = geometry(2); % lower left corner of the GUI part in the figure width = geometry(3); % width of the GUI part in the figure height = geometry(4); % height of the GUI part in the figure horidist = 0.05; vertdist = 0.05; options = {'units', 'normalized', 'HorizontalAlignment', 'center'}; % 'VerticalAlignment', 'middle' Nrow = size(position,1); h = cell(Nrow,1); for i=1:Nrow if isempty(position{i}) continue; end position{i} = position{i} ./ sum(position{i}); Ncol = size(position{i},2); ybeg = (Nrow-i )/Nrow + vertdist/2; yend = (Nrow-i+1)/Nrow - vertdist/2; for j=1:Ncol xbeg = sum(position{i}(1:(j-1))) + horidist/2; xend = sum(position{i}(1:(j ))) - horidist/2; pos(1) = xbeg*width + horipos; pos(2) = ybeg*height + vertpos; pos(3) = (xend-xbeg)*width; pos(4) = (yend-ybeg)*height; h{i}{j} = uicontrol(fig, ... options{:}, ... 'position', pos, ... 'style', style{i}{j}, ... 'string', string{i}{j}, ... 'tag', tag{i}{j}, ... 'value', value{i}{j}, ... 'callback', callback{i}{j} ... ); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_creategui(hObject, eventdata, handles); % define the position of each GUI element position = { [2 1 1 1] [2 1 1 1] [2 1 1 1] [1] [1] [1] [1] [1 1] }; % define the style of each GUI element style = { {'text' 'edit' 'edit' 'edit'} {'text' 'edit' 'edit' 'edit'} {'text' 'edit' 'edit' 'edit'} {'pushbutton'} {'pushbutton'} {'toggle'} {'toggle'} {'text' 'edit'} }; % define the descriptive string of each GUI element string = { {'rotate' 0 0 0} {'translate' 0 0 0} {'scale' 1 1 1} {'redisplay'} {'apply'} {'toggle grid'} {'toggle axes'} {'alpha' 0.7} }; % define the value of each GUI element value = { {[] [] [] []} {[] [] [] []} {[] [] [] []} {[]} {[]} {0} {0} {[] []} }; % define a tag for each GUI element tag = { {'' 'rx' 'ry' 'rz'} {'' 'tx' 'ty' 'tz'} {'' 'sx' 'sy' 'sz'} {''} {''} {'toggle grid'} {'toggle axes'} {'' 'alpha'} }; % define the callback function of each GUI element callback = { {[] @cb_redraw @cb_redraw @cb_redraw} {[] @cb_redraw @cb_redraw @cb_redraw} {[] @cb_redraw @cb_redraw @cb_redraw} {@cb_redraw} {@cb_apply} {@cb_redraw} {@cb_redraw} {[] @cb_redraw} }; fig = get(hObject, 'parent'); layoutgui(fig, [0.7 0.05 0.25 0.50], position, style, string, value, tag, callback); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_redraw(hObject, eventdata, handles); fig = get(hObject, 'parent'); surf = getappdata(fig, 'surf'); elec = getappdata(fig, 'elec'); template = getappdata(fig, 'template'); % get the transformation details rx = str2num(get(findobj(fig, 'tag', 'rx'), 'string')); ry = str2num(get(findobj(fig, 'tag', 'ry'), 'string')); rz = str2num(get(findobj(fig, 'tag', 'rz'), 'string')); tx = str2num(get(findobj(fig, 'tag', 'tx'), 'string')); ty = str2num(get(findobj(fig, 'tag', 'ty'), 'string')); tz = str2num(get(findobj(fig, 'tag', 'tz'), 'string')); sx = str2num(get(findobj(fig, 'tag', 'sx'), 'string')); sy = str2num(get(findobj(fig, 'tag', 'sy'), 'string')); sz = str2num(get(findobj(fig, 'tag', 'sz'), 'string')); R = rotate ([rx ry rz]); T = translate([tx ty tz]); S = scale ([sx sy sz]); H = S * T * R; elec.pnt = warp_apply(H, elec.pnt); axis vis3d; cla xlabel('x') ylabel('y') zlabel('z') if ~isempty(surf) triplot(surf.pnt, surf.tri, [], 'faces_skin'); alpha(str2num(get(findobj(fig, 'tag', 'alpha'), 'string'))); end if ~isempty(template) triplot(template.pnt, [], [], 'nodes_blue') end triplot(elec.pnt, [], [], 'nodes'); if isfield(elec, 'line') triplot(elec.pnt, elec.line, [], 'edges'); end if get(findobj(fig, 'tag', 'toggle axes'), 'value') axis on else axis off end if get(findobj(fig, 'tag', 'toggle grid'), 'value') grid on else grid off end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_apply(hObject, eventdata, handles); fig = get(hObject, 'parent'); elec = getappdata(fig, 'elec'); transform = getappdata(fig, 'transform'); % get the transformation details rx = str2num(get(findobj(fig, 'tag', 'rx'), 'string')); ry = str2num(get(findobj(fig, 'tag', 'ry'), 'string')); rz = str2num(get(findobj(fig, 'tag', 'rz'), 'string')); tx = str2num(get(findobj(fig, 'tag', 'tx'), 'string')); ty = str2num(get(findobj(fig, 'tag', 'ty'), 'string')); tz = str2num(get(findobj(fig, 'tag', 'tz'), 'string')); sx = str2num(get(findobj(fig, 'tag', 'sx'), 'string')); sy = str2num(get(findobj(fig, 'tag', 'sy'), 'string')); sz = str2num(get(findobj(fig, 'tag', 'sz'), 'string')); R = rotate ([rx ry rz]); T = translate([tx ty tz]); S = scale ([sx sy sz]); H = S * T * R; elec.pnt = warp_apply(H, elec.pnt); transform = H * transform; set(findobj(fig, 'tag', 'rx'), 'string', 0); set(findobj(fig, 'tag', 'ry'), 'string', 0); set(findobj(fig, 'tag', 'rz'), 'string', 0); set(findobj(fig, 'tag', 'tx'), 'string', 0); set(findobj(fig, 'tag', 'ty'), 'string', 0); set(findobj(fig, 'tag', 'tz'), 'string', 0); set(findobj(fig, 'tag', 'sx'), 'string', 1); set(findobj(fig, 'tag', 'sy'), 'string', 1); set(findobj(fig, 'tag', 'sz'), 'string', 1); setappdata(fig, 'elec', elec); setappdata(fig, 'transform', transform); cb_redraw(hObject); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_close(hObject, eventdata, handles); % make the current transformation permanent and subsequently allow deleting the figure cb_apply(gca); % get the updated electrode from the figure fig = hObject; % hmmm, this is ugly global norm norm = getappdata(fig, 'elec'); norm.m = getappdata(fig, 'transform'); set(fig, 'CloseRequestFcn', @delete); delete(fig);
github
lcnhappe/happe-master
pop_dipfit_nonlinear.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/pop_dipfit_nonlinear.m
19,264
utf_8
38b5b9d5f0129b1a4aaf3230c2578eac
% pop_dipfit_nonlinear() - interactively do dipole fit of selected ICA components % % Usage: % >> EEGOUT = pop_dipfit_nonlinear( EEGIN ) % % Inputs: % EEGIN input dataset % % Outputs: % EEGOUT output dataset % % Author: Robert Oostenveld, SMI/FCDC, Nijmegen 2003 % Arnaud Delorme, SCCN, La Jolla 2003 % Thanks to Nicolas Robitaille for his help on the CTF MEG % implementation % SMI, University Aalborg, Denmark http://www.smi.auc.dk/ % FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl/ % Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [EEGOUT, com] = pop_dipfit_nonlinear( EEG, subfunction, parent, dipnum ) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % the code for this interactive dialog has 4 major parts % - draw the graphical user interface % - synchronize the gui with the data % - synchronize the data with the gui % - execute the actual dipole analysis % the subfunctions that perform handling of the gui are % - dialog_selectcomponent % - dialog_checkinput % - dialog_setvalue % - dialog_getvalue % - dialog_plotmap % - dialog_plotcomponent % - dialog_flip % the subfunctions that perform the fitting are % - dipfit_position % - dipfit_moment if ~plugin_askinstall('Fieldtrip-lite', 'ft_sourceanalysis'), return; end; if nargin<1 help pop_dipfit_nonlinear; return elseif nargin==1 EEGOUT = EEG; com = ''; if ~isfield(EEG, 'chanlocs') error('No electrodes present'); end if ~isfield(EEG, 'icawinv') error('No ICA components to fit'); end if ~isfield(EEG, 'dipfit') error('General dipolefit settings not specified'); end if ~isfield(EEG.dipfit, 'vol') & ~isfield(EEG.dipfit, 'hdmfile') error('Dipolefit volume conductor model not specified'); end % select all ICA components as 'fitable' select = 1:size(EEG.icawinv,2); if ~isfield(EEG.dipfit, 'current') % select the first component as the current component EEG.dipfit.current = 1; end % verify the presence of a dipole model if ~isfield(EEG.dipfit, 'model') % create empty dipole model for each component for i=select EEG.dipfit.model(i).posxyz = zeros(2,3); EEG.dipfit.model(i).momxyz = zeros(2,3); EEG.dipfit.model(i).rv = 1; EEG.dipfit.model(i).select = [1]; end end % verify the size of each dipole model for i=select if ~isfield(EEG.dipfit.model, 'posxyz') | length(EEG.dipfit.model) < i | isempty(EEG.dipfit.model(i).posxyz) % replace all empty dipole models with a two dipole model, of which one is active EEG.dipfit.model(i).select = [1]; EEG.dipfit.model(i).rv = 1; EEG.dipfit.model(i).posxyz = zeros(2,3); EEG.dipfit.model(i).momxyz = zeros(2,3); elseif size(EEG.dipfit.model(i).posxyz,1)==1 % replace all one dipole models with a two dipole model EEG.dipfit.model(i).select = [1]; EEG.dipfit.model(i).posxyz = [EEG.dipfit.model(i).posxyz; [0 0 0]]; EEG.dipfit.model(i).momxyz = [EEG.dipfit.model(i).momxyz; [0 0 0]]; elseif size(EEG.dipfit.model(i).posxyz,1)>2 % replace all more-than-two dipole models with a two dipole model warning('pruning dipole model to two dipoles'); EEG.dipfit.model(i).select = [1]; EEG.dipfit.model(i).posxyz = EEG.dipfit.model(i).posxyz(1:2,:); EEG.dipfit.model(i).momxyz = EEG.dipfit.model(i).momxyz(1:2,:); end end % default is not to use symmetry constraint constr = []; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % construct the graphical user interface %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % define the callback functions for the interface elements cb_plotmap = 'pop_dipfit_nonlinear(EEG, ''dialog_plotmap'', gcbf);'; cb_selectcomponent = 'pop_dipfit_nonlinear(EEG, ''dialog_selectcomponent'', gcbf);'; cb_checkinput = 'pop_dipfit_nonlinear(EEG, ''dialog_checkinput'', gcbf);'; cb_fitposition = 'pop_dipfit_nonlinear(EEG, ''dialog_getvalue'', gcbf); pop_dipfit_nonlinear(EEG, ''dipfit_position'', gcbf); pop_dipfit_nonlinear(EEG, ''dialog_setvalue'', gcbf);'; cb_fitmoment = 'pop_dipfit_nonlinear(EEG, ''dialog_getvalue'', gcbf); pop_dipfit_nonlinear(EEG, ''dipfit_moment'' , gcbf); pop_dipfit_nonlinear(EEG, ''dialog_setvalue'', gcbf);'; cb_close = 'close(gcbf)'; cb_help = 'pophelp(''pop_dipfit_nonlinear'');'; cb_ok = 'uiresume(gcbf);'; cb_plotdip = 'pop_dipfit_nonlinear(EEG, ''dialog_plotcomponent'', gcbf);'; cb_flip1 = 'pop_dipfit_nonlinear(EEG, ''dialog_flip'', gcbf, 1);'; cb_flip2 = 'pop_dipfit_nonlinear(EEG, ''dialog_flip'', gcbf, 2);'; cb_sym = [ 'set(findobj(gcbf, ''tag'', ''dip2sel''), ''value'', 1);' cb_checkinput ]; % vertical layout for each line geomvert = [1 1 1 1 1 1 1 1 1]; % horizontal layout for each line geomhoriz = { [0.8 0.5 0.8 1 1] [1] [0.7 0.7 2 2 1] [0.7 0.5 0.2 2 2 1] [0.7 0.5 0.2 2 2 1] [1] [1 1 1] [1] [1 1 1] }; % define each individual graphical user element elements = { ... { 'style' 'text' 'string' 'Component to fit' } ... { 'style' 'edit' 'string' 'dummy' 'tag' 'component' 'callback' cb_selectcomponent } ... { 'style' 'pushbutton' 'string' 'Plot map' 'callback' cb_plotmap } ... { 'style' 'text' 'string' 'Residual variance = ' } ... { 'style' 'text' 'string' 'dummy' 'tag' 'relvar' } ... { } ... { 'style' 'text' 'string' 'dipole' } ... { 'style' 'text' 'string' 'fit' } ... { 'style' 'text' 'string' 'position' } ... { 'style' 'text' 'string' 'moment' } ... { } ... ... { 'style' 'text' 'string' '#1' 'tag' 'dip1' } ... { 'style' 'checkbox' 'string' '' 'tag' 'dip1sel' 'callback' cb_checkinput } { } ... { 'style' 'edit' 'string' '' 'tag' 'dip1pos' 'callback' cb_checkinput } ... { 'style' 'edit' 'string' '' 'tag' 'dip1mom' 'callback' cb_checkinput } ... { 'style' 'pushbutton' 'string' 'Flip (in|out)' 'callback' cb_flip1 } ... ... { 'style' 'text' 'string' '#2' 'tag' 'dip2' } ... { 'style' 'checkbox' 'string' '' 'tag' 'dip2sel' 'callback' cb_checkinput } { } ... { 'style' 'edit' 'string' '' 'tag' 'dip2pos' 'callback' cb_checkinput } ... { 'style' 'edit' 'string' '' 'tag' 'dip2mom' 'callback' cb_checkinput } ... { 'style' 'pushbutton' 'string' 'Flip (in|out)' 'callback' cb_flip2 } ... ... { } { 'style' 'checkbox' 'string' 'Symmetry constrain for dipole #2' 'tag' 'dip2sym' 'callback' cb_sym 'value' 1 } ... { } { } { } ... { 'style' 'pushbutton' 'string' 'Fit dipole(s)'' position & moment' 'callback' cb_fitposition } ... { 'style' 'pushbutton' 'string' 'OR fit only dipole(s)'' moment' 'callback' cb_fitmoment } ... { 'style' 'pushbutton' 'string' 'Plot dipole(s)' 'callback' cb_plotdip } ... }; % add the cancel, help and ok buttons at the bottom geomvert = [geomvert 1 1]; geomhoriz = {geomhoriz{:} [1] [1 1 1]}; elements = { elements{:} ... { } ... { 'Style', 'pushbutton', 'string', 'Cancel', 'callback', cb_close } ... { 'Style', 'pushbutton', 'string', 'Help', 'callback', cb_help } ... { 'Style', 'pushbutton', 'string', 'OK', 'callback', cb_ok } ... }; % activate the graphical interface supergui(0, geomhoriz, geomvert, elements{:}); dlg = gcf; set(gcf, 'name', 'Manual dipole fit -- pop_dipfit_nonlinear()'); set(gcf, 'userdata', EEG); pop_dipfit_nonlinear(EEG, 'dialog_setvalue', dlg); uiwait(dlg); if ishandle(dlg) pop_dipfit_nonlinear(EEG, 'dialog_getvalue', dlg); % FIXME, rv is undefined since the user may have changed dipole parameters % FIXME, see also dialog_getvalue subfucntion EEGOUT = get(dlg, 'userdata'); close(dlg); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % implement all subfunctions through a switch-yard %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif nargin>=3 %disp(subfunction) EEG = get(parent, 'userdata'); switch subfunction case 'dialog_selectcomponent' current = get(findobj(parent, 'tag', 'component'), 'string'); current = str2num(current); current = current(1); current = min(current, size(EEG.icaweights,1)); current = max(current, 1); set(findobj(parent, 'tag', 'component'), 'string', int2str(current)); EEG.dipfit.current = current; % reassign the global EEG object back to the dialogs userdata set(parent, 'userdata', EEG); % redraw the dialog with the current model pop_dipfit_nonlinear(EEG, 'dialog_setvalue', parent); case 'dialog_plotmap' current = str2num(get(findobj(parent, 'tag', 'component'), 'string')); figure; pop_topoplot(EEG, 0, current, [ 'IC ' num2str(current) ], [1 1], 1); title([ 'IC ' int2str(current) ]); case 'dialog_plotcomponent' current = get(findobj(parent, 'tag', 'component'), 'string'); EEG.dipfit.current = str2num(current); if ~isempty( EEG.dipfit.current ) pop_dipplot(EEG, 'DIPFIT', EEG.dipfit.current, 'normlen', 'on', 'projlines', 'on', 'mri', EEG.dipfit.mrifile); end; case 'dialog_checkinput' if get(findobj(parent, 'tag', 'dip1sel'), 'value') & ~get(findobj(parent, 'tag', 'dip1act'), 'value') set(findobj(parent, 'tag', 'dip1act'), 'value', 1); end if get(findobj(parent, 'tag', 'dip2sel'), 'value') & ~get(findobj(parent, 'tag', 'dip2act'), 'value') set(findobj(parent, 'tag', 'dip2act'), 'value', 1); end if ~all(size(str2num(get(findobj(parent, 'tag', 'dip1pos'), 'string')))==[1 3]) set(findobj(parent, 'tag', 'dip1pos'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).posxyz(1,:))); else EEG.dipfit.model(EEG.dipfit.current).posxyz(1,:) = str2num(get(findobj(parent, 'tag', 'dip1pos'), 'string')); end if ~all(size(str2num(get(findobj(parent, 'tag', 'dip2pos'), 'string')))==[1 3]) set(findobj(parent, 'tag', 'dip2pos'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).posxyz(2,:))); else EEG.dipfit.model(EEG.dipfit.current).posxyz(2,:) = str2num(get(findobj(parent, 'tag', 'dip2pos'), 'string')); end if ~all(size(str2num(get(findobj(parent, 'tag', 'dip1mom'), 'string')))==[1 3]) set(findobj(parent, 'tag', 'dip1mom'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).momxyz(1,:))); else EEG.dipfit.model(EEG.dipfit.current).momxyz(1,:) = str2num(get(findobj(parent, 'tag', 'dip1mom'), 'string')); end if ~all(size(str2num(get(findobj(parent, 'tag', 'dip2mom'), 'string')))==[1 3]) set(findobj(parent, 'tag', 'dip2mom'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).momxyz(2,:))); else EEG.dipfit.model(EEG.dipfit.current).momxyz(2,:) = str2num(get(findobj(parent, 'tag', 'dip2mom'), 'string')); end if get(findobj(parent, 'tag', 'dip2sel'), 'value') & get(findobj(parent, 'tag', 'dip2sym'), 'value') & ~get(findobj(parent, 'tag', 'dip1sel'), 'value') set(findobj(parent, 'tag', 'dip2sel'), 'value', 0); end set(parent, 'userdata', EEG); case 'dialog_setvalue' % synchronize the gui with the data set(findobj(parent, 'tag', 'component'), 'string', EEG.dipfit.current); set(findobj(parent, 'tag', 'relvar' ), 'string', sprintf('%0.2f%%', EEG.dipfit.model(EEG.dipfit.current).rv * 100)); set(findobj(parent, 'tag', 'dip1sel'), 'value', ismember(1, EEG.dipfit.model(EEG.dipfit.current).select)); set(findobj(parent, 'tag', 'dip2sel'), 'value', ismember(2, EEG.dipfit.model(EEG.dipfit.current).select)); set(findobj(parent, 'tag', 'dip1pos'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).posxyz(1,:))); if strcmpi(EEG.dipfit.coordformat, 'CTF') set(findobj(parent, 'tag', 'dip1mom'), 'string', sprintf('%f %f %f', EEG.dipfit.model(EEG.dipfit.current).momxyz(1,:))); else set(findobj(parent, 'tag', 'dip1mom'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).momxyz(1,:))); end; Ndipoles = size(EEG.dipfit.model(EEG.dipfit.current).posxyz, 1); if Ndipoles>=2 set(findobj(parent, 'tag', 'dip2pos'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).posxyz(2,:))); if strcmpi(EEG.dipfit.coordformat, 'CTF') set(findobj(parent, 'tag', 'dip2mom'), 'string', sprintf('%f %f %f', EEG.dipfit.model(EEG.dipfit.current).momxyz(2,:))); else set(findobj(parent, 'tag', 'dip2mom'), 'string', sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(EEG.dipfit.current).momxyz(2,:))); end; end case 'dialog_getvalue' % synchronize the data with the gui if get(findobj(parent, 'tag', 'dip1sel'), 'value'); select = [1]; else select = []; end; if get(findobj(parent, 'tag', 'dip2sel'), 'value'); select = [select 2]; end; posxyz(1,:) = str2num(get(findobj(parent, 'tag', 'dip1pos'), 'string')); posxyz(2,:) = str2num(get(findobj(parent, 'tag', 'dip2pos'), 'string')); momxyz(1,:) = str2num(get(findobj(parent, 'tag', 'dip1mom'), 'string')); momxyz(2,:) = str2num(get(findobj(parent, 'tag', 'dip2mom'), 'string')); % assign the local values to the global EEG object EEG.dipfit.model(EEG.dipfit.current).posxyz = posxyz; EEG.dipfit.model(EEG.dipfit.current).momxyz = momxyz; EEG.dipfit.model(EEG.dipfit.current).select = select; % FIXME, rv is undefined after a manual change of parameters % FIXME, this should either be undated continuously or upon OK buttonpress % EEG.dipfit.model(EEG.dipfit.current).rv = nan; % reassign the global EEG object back to the dialogs userdata set(parent, 'userdata', EEG); case 'dialog_flip' % flip the orientation of the dipole current = EEG.dipfit.current; moment = EEG.dipfit.model(current).momxyz; EEG.dipfit.model(current).momxyz(dipnum,:) = [ -moment(dipnum,1) -moment(dipnum,2) -moment(dipnum,3)]; set(findobj(parent, 'tag', ['dip' int2str(dipnum) 'mom']), 'string', ... sprintf('%0.3f %0.3f %0.3f', EEG.dipfit.model(current).momxyz(dipnum,:))); set(parent, 'userdata', EEG); case {'dipfit_moment', 'dipfit_position'} % determine the selected dipoles and components current = EEG.dipfit.current; select = find([get(findobj(parent, 'tag', 'dip1sel'), 'value') get(findobj(parent, 'tag', 'dip2sel'), 'value')]); if isempty(select) warning('no dipoles selected for fitting'); return end % remove the dipoles from the model that are not selected, but keep % the original dipole model (to keep the GUI consistent) model_before_fitting = EEG.dipfit.model(current); EEG.dipfit.model(current).posxyz = EEG.dipfit.model(current).posxyz(select,:); EEG.dipfit.model(current).momxyz = EEG.dipfit.model(current).momxyz(select,:); if strcmp(subfunction, 'dipfit_moment') % the default is 'yes' which should only be overruled for fitting dipole moment cfg.nonlinear = 'no'; end dipfitdefs; if get(findobj(parent, 'tag', 'dip2sym'), 'value') & get(findobj(parent, 'tag', 'dip2sel'), 'value') if strcmpi(EEG.dipfit.coordformat,'MNI') cfg.symmetry = 'x'; else cfg.symmetry = 'y'; end; else cfg.symmetry = []; end cfg.component = current; % convert structure into list of input arguments arg = [fieldnames(cfg)' ; struct2cell(cfg)']; arg = arg(:)'; % make a dialog to interrupt the fitting procedure fig = figure('visible', 'off'); supergui( fig, {1 1}, [], ... {'style' 'text' 'string' 'Press button below to stop fitting' }, ... {'style' 'pushbutton' 'string' 'Interupt' 'callback' 'figure(gcbf); set(gcbf, ''tag'', ''stop'');' } ); drawnow; % start the dipole fitting try warning backtrace off; EEG = dipfit_nonlinear(EEG, arg{:}); warning backtrace on; catch, disp('Dipole localization failed'); end; % should the following string be put into com? ->NOT SUPPORTED % -------------------------------------------------------- com = sprintf('%s = dipfit_nonlinear(%s,%s)\n', inputname(1), inputname(1), vararg2str(arg)); % this GUI always requires two sources in the dipole model % first put the original model back in and then replace the dipole parameters that have been fitted model_after_fitting = EEG.dipfit.model(current); newfields = fieldnames( EEG.dipfit.model ); for index = 1:length(newfields) eval( ['EEG.dipfit.model(' int2str(current) ').' newfields{index} ' = model_after_fitting.' newfields{index} ';' ]); end; EEG.dipfit.model(current).posxyz(select,:) = model_after_fitting.posxyz; EEG.dipfit.model(current).momxyz(select,:) = model_after_fitting.momxyz; EEG.dipfit.model(current).rv = model_after_fitting.rv; %EEG.dipfit.model(current).diffmap = model_after_fitting.diffmap; % reassign the global EEG object back to the dialogs userdata set(parent, 'userdata', EEG); % close the interrupt dialog if ishandle(fig) close(fig); end otherwise error('unknown subfunction for pop_dipfit_nonlinear'); end % switch subfunction end % if nargin
github
lcnhappe/happe-master
dipfit_1_to_2.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/dipfit_1_to_2.m
2,252
utf_8
1a1a49c9adb0d94ff59b4a2206a3f2f4
% dipfit_1_to_2() - convert dipfit 1 structure to dipfit 2 structure. % % Usage: % >> EEG.dipfit = dipfit_1_to_2(EEG.dipfit); % % Note: % For non-standard BESA models (where the radii or the conductances % have been modified, users must create a new model in Dipfit2 from % the default BESA model. % % Author: Arnaud Delorme, SCCN, La Jolla 2005 % Copyright (C) Arnaud Delorme, SCCN, La Jolla 2005 % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function newdipfit = dipfit_1_to_2( dipfit ); if isfield( dipfit, 'model') newdipfit.model = dipfit.model; end; if isfield( dipfit, 'chansel') newdipfit.chansel = dipfit.chansel; end; ind = 1; % use first template (BESA) newdipfit.coordformat = template_models(ind).coordformat; newdipfit.mrifile = template_models(ind).mrifile; newdipfit.chanfile = template_models(ind).chanfile; if ~isfield(dipfit, 'vol') newdipfit.hdmfile = template_models(ind).hdmfile; else newdipfit.vol = dipfit.vol; %if length(dipfit.vol) == 4 %if ~all(dipfit.vol == [85-6-7-1 85-6-7 85-6 85]) | ... % ~all(dipfit.c == [0.33 1.00 0.0042 0.33]) | ... % ~all(dipfit.o = [0 0 0]) % disp('Warning: Conversion from dipfit 1 to dipfit 2 can only deal'); % disp(' with standard (not modified) BESA model'); % disp(' See "help dipfit_1_to_2" to convert this model'); % newdipfit = []; %end; %end; end;
github
lcnhappe/happe-master
dipfit_gridsearch.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/dipfit_gridsearch.m
4,519
utf_8
cc77806c9d0a7de350e540a72dc1c033
% dipfit_gridsearch() - do initial batch-like dipole scan and fit to all % data components and return a dipole model with a % single dipole for each component. % % Usage: % >> EEGOUT = dipfit_gridsearch( EEGIN, varargin) % % Inputs: % ... % % Optional inputs: % 'component' - vector with integers, ICA components to scan % 'xgrid' - vector with floats, grid positions along x-axis % 'ygrid' - vector with floats, grid positions along y-axis % 'zgrid' - vector with floats, grid positions along z-axis % % Output: % ... % % Author: Robert Oostenveld, SMI/FCDC, Nijmegen 2003, load/save by % Arnaud Delorme % Thanks to Nicolas Robitaille for his help on the CTF MEG % implementation % SMI, University Aalborg, Denmark http://www.smi.auc.dk/ % FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl % Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [EEGOUT] = dipfit_gridsearch(EEG, varargin) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert the optional arguments into a configuration structure that can be % understood by FIELDTRIPs dipolefitting function if nargin>2 cfg = struct(varargin{:}); else help dipfit_gridsearch return end % specify the FieldTrip DIPOLEFITTING configuration cfg.model = 'moving'; cfg.gridsearch = 'yes'; cfg.nonlinear = 'no'; % add some additional settings from EEGLAB to the configuration tmpchanlocs = EEG.chanlocs; cfg.channel = { tmpchanlocs(EEG.dipfit.chansel).labels }; if isfield(EEG.dipfit, 'vol') cfg.vol = EEG.dipfit.vol; elseif isfield(EEG.dipfit, 'hdmfile') cfg.hdmfile = EEG.dipfit.hdmfile; else error('no head model in EEG.dipfit') end if isfield(EEG.dipfit, 'elecfile') & ~isempty(EEG.dipfit.elecfile) cfg.elecfile = EEG.dipfit.elecfile; end if isfield(EEG.dipfit, 'gradfile') & ~isempty(EEG.dipfit.gradfile) cfg.gradfile = EEG.dipfit.gradfile; end % convert the EEGLAB data structure into a structure that looks as if it % was computed using FIELDTRIPs componentanalysis function comp = eeglab2fieldtrip(EEG, 'componentanalysis', 'dipfit'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Added code to handle CTF data with multipleSphere head model % % This code is copy-pasted in dipfit_gridSearch, dipfit_nonlinear % % The flag .isMultiSphere is used by dipplot % % Nicolas Robitaille, January 2007. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Do some trick to force fieldtrip to use the multiple sphere model if strcmpi(EEG.dipfit.coordformat, 'CTF') cfg = rmfield(cfg, 'channel'); comp = rmfield(comp, 'elec'); cfg.gradfile = EEG.dipfit.chanfile; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % END % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(cfg, 'component') % default is to scan all components cfg.component = 1:size(comp.topo,2); end % for each component scan the whole brain with dipoles using FIELDTRIPs % dipolefitting function source = ft_dipolefitting(cfg, comp); % reformat the output dipole sources into EEGLABs data structure for i=1:length(cfg.component) EEG.dipfit.model(cfg.component(i)).posxyz = source.dip(i).pos; EEG.dipfit.model(cfg.component(i)).momxyz = reshape(source.dip(i).mom, 3, length(source.dip(i).mom)/3)'; EEG.dipfit.model(cfg.component(i)).rv = source.dip(i).rv; end EEGOUT = EEG;
github
lcnhappe/happe-master
eegplugin_dipfit.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/eegplugin_dipfit.m
4,444
utf_8
2bcef6898d8184014480e6ed4f2e170b
% eegplugin_dipfit() - DIPFIT plugin version 2.0 for EEGLAB menu. % DIPFIT is the dipole fitting Matlab Toolbox of % Robert Oostenveld (in collaboration with A. Delorme). % % Usage: % >> eegplugin_dipfit(fig, trystrs, catchstrs); % % Inputs: % fig - [integer] eeglab figure. % trystrs - [struct] "try" strings for menu callbacks. % catchstrs - [struct] "catch" strings for menu callbacks. % % Notes: % To create a new plugin, simply create a file beginning with "eegplugin_" % and place it in your eeglab folder. It will then be automatically % detected by eeglab. See also this source code internal comments. % For eeglab to return errors and add the function's results to % the eeglab history, menu callback must be nested into "try" and % a "catch" strings. For more information on how to create eeglab % plugins, see http://www.sccn.ucsd.edu/eeglab/contrib.html % % Author: Arnaud Delorme, CNL / Salk Institute, 22 February 2003 % % See also: eeglab() % Copyright (C) 2003 Arnaud Delorme, Salk Institute, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1.07 USA function vers = eegplugin_dipfit(fig, trystrs, catchstrs) vers = 'dipfit2.2'; if nargin < 3 error('eegplugin_dipfit requires 3 arguments'); end; % find tools menu % --------------- menu = findobj(fig, 'tag', 'tools'); % tag can be % 'import data' -> File > import data menu % 'import epoch' -> File > import epoch menu % 'import event' -> File > import event menu % 'export' -> File > export % 'tools' -> tools menu % 'plot' -> plot menu % command to check that the '.source' is present in the EEG structure % ------------------------------------------------------------------- check_dipfit = [trystrs.no_check 'if ~isfield(EEG, ''dipfit''), error(''Run the dipole setting first''); end;' ... 'if isempty(EEG.dipfit), error(''Run the dipole setting first''); end;' ]; check_dipfitnocheck = [ trystrs.no_check 'if ~isfield(EEG, ''dipfit''), error(''Run the dipole setting first''); end; ' ]; check_chans = [ '[EEG tmpres] = eeg_checkset(EEG, ''chanlocs_homogeneous'');' ... 'if ~isempty(tmpres), eegh(tmpres), end; clear tmpres;' ]; % menu callback commands % ---------------------- comsetting = [ trystrs.check_ica check_chans '[EEG LASTCOM]=pop_dipfit_settings(EEG);' catchstrs.store_and_hist ]; combatch = [ check_dipfit check_chans '[EEG LASTCOM] = pop_dipfit_gridsearch(EEG);' catchstrs.store_and_hist ]; comfit = [ check_dipfitnocheck check_chans [ 'EEG = pop_dipfit_nonlinear(EEG); ' ... 'LASTCOM = ''% === History not supported for manual dipole fitting ==='';' ] catchstrs.store_and_hist ]; comauto = [ check_dipfit check_chans '[EEG LASTCOM] = pop_multifit(EEG);' catchstrs.store_and_hist ]; % preserve the '=" sign in the comment above: it is used by EEGLAB to detect appropriate LASTCOM complot = [ check_dipfit check_chans 'LASTCOM = pop_dipplot(EEG);' catchstrs.add_to_hist ]; % create menus % ------------ submenu = uimenu( menu, 'Label', 'Locate dipoles using DIPFIT 2.x', 'separator', 'on'); uimenu( submenu, 'Label', 'Head model and settings' , 'CallBack', comsetting); uimenu( submenu, 'Label', 'Coarse fit (grid scan)' , 'CallBack', combatch); uimenu( submenu, 'Label', 'Fine fit (iterative)' , 'CallBack', comfit); uimenu( submenu, 'Label', 'Autofit (coarse fit, fine fit & plot)', 'CallBack', comauto); uimenu( submenu, 'Label', 'Plot component dipoles' , 'CallBack', complot, 'separator', 'on');
github
lcnhappe/happe-master
pop_multifit.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/pop_multifit.m
10,370
utf_8
dd98129d0df98fcdfc6532ff87983696
% pop_multifit() - fit multiple component dipoles using DIPFIT % % Usage: % >> EEG = pop_multifit(EEG); % pop-up graphical interface % >> EEG = pop_multifit(EEG, comps, 'key', 'val', ...); % % Inputs: % EEG - input EEGLAB dataset. % comps - indices component to fit. Empty is all components. % % Optional inputs: % 'dipoles' - [1|2] use either 1 dipole or 2 dipoles contrain in % symmetry. Default is 1. % 'dipplot' - ['on'|'off'] plot dipoles. Default is 'off'. % 'plotopt' - [cell array] dipplot() 'key', 'val' options. Default is % 'normlen', 'on', 'image', 'fullmri' % 'rmout' - ['on'|'off'] remove dipoles outside the head. Artifactual % component often localize outside the head. Default is 'off'. % 'threshold' - [float] rejection threshold during component scan. % Default is 40 (residual variance above 40%). % % Outputs: % EEG - output dataset with updated "EEG.dipfit" field % % Note: residual variance is set to NaN if DIPFIT does not converge % % Author: Arnaud Delorme, SCCN/INC/UCSD, La Jolla, Oct. 2003 % Copyright (C) 9/2003 Arnaud Delorme, SCCN/INC/UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [EEG, com] = pop_multifit(EEG, comps, varargin); if nargin < 1 help pop_multifit; return; end; com = []; ncomps = size(EEG.icaweights,1); if ncomps == 0, error('you must run ICA first'); end; if nargin<2 cb_chans = 'tmplocs = EEG.chanlocs; set(findobj(gcbf, ''tag'', ''chans''), ''string'', int2str(pop_chansel({tmplocs.labels}))); clear tmplocs;'; uilist = { { 'style' 'text' 'string' 'Component indices' } ... { 'style' 'edit' 'string' [ '1:' int2str(ncomps) ] } ... { 'style' 'text' 'string' 'Rejection threshold RV (%)' } ... { 'style' 'edit' 'string' '100' } ... { 'style' 'text' 'string' 'Remove dipoles outside the head' } ... { 'style' 'checkbox' 'string' '' 'value' 0 } {} ... { 'style' 'text' 'string' 'Fit bilateral dipoles (check)' } ... { 'style' 'checkbox' 'string' '' 'value' 0 } {} ... { 'style' 'text' 'string' 'Plot resulting dipoles (check)' } ... { 'style' 'checkbox' 'string' '' 'value' 0 } {} ... { 'style' 'text' 'string' 'dipplot() plotting options' } ... { 'style' 'edit' 'string' '''normlen'' ''on''' } ... { 'style' 'pushbutton' 'string' 'Help' 'callback' 'pophelp(''dipplot'')' } }; results = inputgui( { [1.91 2.8] [1.91 2.8] [3.1 0.8 1.6] [3.1 0.8 1.6] [3.1 0.8 1.6] [2.12 2.2 0.8]}, ... uilist, 'pophelp(''pop_multifit'')', ... 'Fit multiple ICA components -- pop_multifit()'); if length(results) == 0 return; end; comps = eval( [ '[' results{1} ']' ] ); % selecting model % --------------- options = {}; if ~isempty(results{2}) options = { options{:} 'threshold' eval( results{2} ) }; end; if results{3}, options = { options{:} 'rmout' 'on' }; end; if results{4}, options = { options{:} 'dipoles' 2 }; end; if results{5}, options = { options{:} 'dipplot' 'on' }; end; options = { options{:} 'plotopt' eval( [ '{ ' results{6} ' }' ]) }; else options = varargin; end; % checking parameters % ------------------- if isempty(comps), comps = [1:size(EEG.icaweights,1)]; end; g = finputcheck(options, { 'settings' { 'cell' 'struct' } [] {}; % deprecated 'dipoles' 'integer' [1 2] 1; 'threshold' 'float' [0 100] 40; 'dipplot' 'string' { 'on' 'off' } 'off'; 'rmout' 'string' { 'on' 'off' } 'off'; 'plotopt' 'cell' {} {'normlen' 'on' }}); if isstr(g), error(g); end; EEG = eeg_checkset(EEG, 'chanlocs_homogeneous'); % dipfit settings % --------------- if isstruct(g.settings) EEG.dipfit = g.settings; elseif ~isempty(g.settings) EEG = pop_dipfit_settings( EEG, g.settings{:}); % will probably not work but who knows end; % Scanning dipole locations % ------------------------- dipfitdefs; skipscan = 0; try alls = cellfun('size', { EEG.dipfit.model.posxyz }, 2); if length(alls) == ncomps if all(alls == 3) skipscan = 1; end; end; catch, end; if skipscan disp('Skipping scanning since all dipoles have non-null starting positions.'); else disp('Scanning dipolar grid to find acceptable starting positions...'); xg = linspace(-floor(meanradius), floor(meanradius),11); yg = linspace(-floor(meanradius), floor(meanradius),11); zg = linspace(0 , floor(meanradius), 6); EEG = pop_dipfit_gridsearch( EEG, [1:ncomps], ... eval(xgridstr), eval(ygridstr), eval(zgridstr), 100); disp('Scanning terminated. Refining dipole locations...'); end; % set symmetry constraint % ---------------------- if strcmpi(EEG.dipfit.coordformat,'MNI') defaultconstraint = 'x'; else defaultconstraint = 'y'; end; % Searching dipole localization % ----------------------------- disp('Searching dipoles locations...'); chansel = EEG.dipfit.chansel; %elc = getelecpos(EEG.chanlocs, EEG.dipfit); plotcomps = []; for i = comps(:)' if i <= length(EEG.dipfit.model) & ~isempty(EEG.dipfit.model(i).posxyz) if g.dipoles == 2, % try to find a good origin for automatic dipole localization EEG.dipfit.model(i).active = [1 2]; EEG.dipfit.model(i).select = [1 2]; if isempty(EEG.dipfit.model(i).posxyz) EEG.dipfit.model(i).posxyz = zeros(1,3); EEG.dipfit.model(i).momxyz = zeros(2,3); else EEG.dipfit.model(i).posxyz(2,:) = EEG.dipfit.model(i).posxyz; if strcmpi(EEG.dipfit.coordformat, 'MNI') EEG.dipfit.model(i).posxyz(:,1) = [-40;40]; else EEG.dipfit.model(i).posxyz(:,2) = [-40;40]; end; EEG.dipfit.model(i).momxyz(2,:) = EEG.dipfit.model(i).momxyz; end; else EEG.dipfit.model(i).active = [1]; EEG.dipfit.model(i).select = [1]; end; warning backtrace off; try, if g.dipoles == 2, EEG = dipfit_nonlinear(EEG, 'component', i, 'symmetry', defaultconstraint); else EEG = dipfit_nonlinear(EEG, 'component', i, 'symmetry', []); end; catch, EEG.dipfit.model(i).rv = NaN; disp('Maximum number of iterations reached. Fitting failed'); end; warning backtrace on; plotcomps = [ plotcomps i ]; end; end; % set RV to 1 for dipole with higher than 40% residual variance % ------------------------------------------------------------- EEG.dipfit.model = dipfit_reject(EEG.dipfit.model, g.threshold/100); % removing dipoles outside the head % --------------------------------- if strcmpi(g.rmout, 'on') & strcmpi(EEG.dipfit.coordformat, 'spherical') rmdip = []; for index = plotcomps if ~isempty(EEG.dipfit.model(index).posxyz) if any(sqrt(sum(EEG.dipfit.model(index).posxyz.^2,2)) > 85) rmdip = [ rmdip index]; EEG.dipfit.model(index).posxyz = []; EEG.dipfit.model(index).momxyz = []; EEG.dipfit.model(index).rv = 1; end; end; end; plotcomps = setdiff(plotcomps, rmdip); if length(rmdip) > 0 fprintf('%d out of cortex dipoles removed (usually artifacts)\n', length(rmdip)); end; end; % plotting dipoles % ---------------- if strcmpi(g.dipplot, 'on') pop_dipplot(EEG, 'DIPFIT', plotcomps, g.plotopt{:}); end; com = sprintf('%s = pop_multifit(%s, %s);', inputname(1), inputname(1), vararg2str({ comps options{:}})); return; % get electrode positions from eeglag % ----------------------------------- function elc = getelecpos(chanlocs, dipfitstruct); try, elc = [ [chanlocs.X]' [chanlocs.Y]' [chanlocs.Z]' ]; catch disp('No 3-D carthesian coordinates; re-computing them from 2-D polar coordinates'); EEG.chanlocs = convertlocs(EEG.chanlocs, 'topo2all'); elc = [ [chanlocs.X]' [chanlocs.Y]' [chanlocs.Z]' ]; end; % constrain electrode to sphere % ----------------------------- disp('Constraining electrodes to sphere'); elc = elc - repmat( dipfitstruct.vol.o, [size(elc,1) 1]); % recenter % (note the step above is not needed since the origin should always be 0) elc = elc ./ repmat( sqrt(sum(elc.*elc,2)), [1 3]); % normalize elc = elc * max(dipfitstruct.vol.r); % head size %for index= 1:size(elc,1) % elc(index,:) = max(dipfitstruct.vol.r) * elc(index,:) /norm(elc(index,:)); %end;
github
lcnhappe/happe-master
pop_dipfit_gridsearch.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/pop_dipfit_gridsearch.m
4,833
utf_8
39566131e1f04827a5eaf4dd7994f07f
% pop_dipfit_gridsearch() - scan all ICA components with a single dipole % on a regular grid spanning the whole brain. Any dipoles that explains % a component with a too large relative residual variance is removed. % % Usage: % >> EEGOUT = pop_dipfit_gridsearch( EEGIN ); % pop up interactive window % >> EEGOUT = pop_dipfit_gridsearch( EEGIN, comps ); % >> EEGOUT = pop_dipfit_gridsearch( EEGIN, comps, xgrid, ygrid, zgrid, thresh ) % % Inputs: % EEGIN - input dataset % comps - [integer array] component indices % xgrid - [float array] x-grid. Default is 10 elements between % -1 and 1. % ygrid - [float array] y-grid. Default is 10 elements between % -1 and 1. % zgrid - [float array] z-grid. Default is 10 elements between % -1 and 1. % thresh - [float] threshold in percent. Default 40. % % Outputs: % EEGOUT output dataset % % Authors: Robert Oostenveld, SMI/FCDC, Nijmegen 2003 % Arnaud Delorme, SCCN, La Jolla 2003 % Thanks to Nicolas Robitaille for his help on the CTF MEG % implementation % SMI, University Aalborg, Denmark http://www.smi.auc.dk/ % FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl/ % Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [EEGOUT, com] = pop_dipfit_gridsearch(EEG, select, xgrid, ygrid, zgrid, reject ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargin < 1 help pop_dipfit_gridsearch; return; end; if ~plugin_askinstall('Fieldtrip-lite', 'ft_sourceanalysis'), return; end; EEGOUT = EEG; com = ''; if ~isfield(EEG, 'chanlocs') error('No electrodes present'); end if ~isfield(EEG, 'icawinv') error('No ICA components to fit'); end if ~isfield(EEG, 'dipfit') error('General dipolefit settings not specified'); end if ~isfield(EEG.dipfit, 'vol') & ~isfield(EEG.dipfit, 'hdmfile') error('Dipolefit volume conductor model not specified'); end dipfitdefs if strcmpi(EEG.dipfit.coordformat, 'CTF') maxrad = 8.5; xgridstr = sprintf('linspace(-%2.1f,%2.1f,11)', maxrad, maxrad); ygridstr = sprintf('linspace(-%2.1f,%2.1f,11)', maxrad, maxrad); zgridstr = sprintf('linspace(0,%2.1f,6)', maxrad); end; if nargin < 2 % get the default values and filenames promptstr = { 'Component(s) (not faster if few comp.)', ... 'Grid in X-direction', ... 'Grid in Y-direction', ... 'Grid in Z-direction', ... 'Rejection threshold RV(%)' }; inistr = { [ '1:' int2str(size(EEG.icawinv,2)) ], ... xgridstr, ... ygridstr, ... zgridstr, ... rejectstr }; result = inputdlg2( promptstr, 'Batch dipole fit -- pop_dipfit_gridsearch()', 1, inistr, 'pop_dipfit_gridsearch'); if length(result)==0 % user pressed cancel return end select = eval( [ '[' result{1} ']' ]); xgrid = eval( result{2} ); ygrid = eval( result{3} ); zgrid = eval( result{4} ); reject = eval( result{5} ) / 100; % string is in percent options = { }; else if nargin < 2 select = [1:size(EEG.icawinv,2)]; end; if nargin < 3 xgrid = eval( xgridstr ); end; if nargin < 4 ygrid = eval( ygridstr ); end; if nargin < 5 zgrid = eval( zgridstr ); end; if nargin < 6 reject = eval( rejectstr ); end; options = { 'waitbar' 'none' }; end; % perform batch fit with single dipole for all selected channels and components % warning off; warning backtrace off; EEGOUT = dipfit_gridsearch(EEG, 'component', select, 'xgrid', xgrid, 'ygrid', ygrid, 'zgrid', zgrid, options{:}); warning backtrace on; EEGOUT.dipfit.model = dipfit_reject(EEGOUT.dipfit.model, reject); % FIXME reject is not being used at the moment disp('Done'); com = sprintf('%s = pop_dipfit_gridsearch(%s, %s);', ... inputname(1), inputname(1), vararg2str( { select xgrid, ygrid, zgrid reject }));
github
lcnhappe/happe-master
dipfit_erpeeg.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/dipfit_erpeeg.m
3,634
utf_8
c387b5b84e9f4ee03b832f289837c1a2
% dipfit_erpeeg - fit multiple component dipoles using DIPFIT % % Usage: % >> [ dipole model EEG] = dipfit_erpeeg(data, chanlocs, 'key', 'val', ...); % % Inputs: % data - input data [channel x point]. One dipole per point is % returned. % chanlocs - channel location structure (returned by readlocs()). % % Optional inputs: % 'settings' - [cell array] dipfit settings (arguments to the % pop_dipfit_settings() function). Default is none. % 'dipoles' - [1|2] use either 1 dipole or 2 dipoles contrain in % symetry. Default is 1. % 'dipplot' - ['on'|'off'] plot dipoles. Default is 'off'. % 'plotopt' - [cell array] dipplot() 'key', 'val' options. Default is % 'normlen', 'on', 'image', 'fullmri' % % Outputs: % dipole - dipole structure ('posxyz' field is the position; 'momxyz' % field is the moment and 'rv' the residual variance) % model - structure containing model information ('vol.r' field is % radius, 'vol.c' conductances, 'vol.o' the 3-D origin and % 'chansel', the selected channels). % EEG - faked EEG structure containing erp activation at the place % of ICA components but allowing to plot ERP dipoles. % % Note: residual variance is set to NaN if Dipfit does not converge % % Author: Arnaud Delorme, SCCN/INC/UCSD, La Jolla, Nov. 2003 % Copyright (C) 10/2003 Arnaud Delorme, SCCN/INC/UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [dipoles, model, EEG] = dipfit_erpeeg(DATA, chanlocs, varargin); if nargin < 1 help dipfit_erpeeg; return; end; ncomps = size(DATA,2); if size(DATA,1) ~= length(chanlocs) error('# of row in ''DATA'' must equal # of channels in ''chanlocs'''); end; % faking an EEG dataset % --------------------- EEG = eeg_emptyset; EEG.data = rand(size(DATA,1), 1000); EEG.nbchan = size(DATA,1); EEG.pnts = 1000; EEG.trials = 1; EEG.chanlocs = chanlocs; EEG.icawinv = [ DATA DATA ]; EEG.icaweights = zeros(size([ DATA DATA ]))'; EEG.icasphere = zeros(size(DATA,1), size(DATA,1)); %EEG = eeg_checkset(EEG); EEG.icaact = EEG.icaweights*EEG.icasphere*EEG.data(:,:); EEG.icaact = reshape( EEG.icaact, size(EEG.icaact,1), size(EEG.data,2), size(EEG.data,3)); % uses mutlifit to fit dipoles % ---------------------------- EEG = pop_multifit(EEG, [1:ncomps], varargin{:}); % process outputs % --------------- dipoles = EEG.dipfit.model; if isfield(dipoles, 'active') dipoles = rmfield(dipoles, 'active'); end; if isfield(dipoles, 'select') dipoles = rmfield(dipoles, 'select'); end; model = EEG.dipfit; if isfield(model, 'model') model = rmfield(model, 'model'); end; return;
github
lcnhappe/happe-master
pop_dipfit_batch.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/pop_dipfit_batch.m
2,342
utf_8
349fbd140a3ba8c11fce24b8db9fa20c
% pop_dipfit_batch() - interactively do batch scan of all ICA components % with a single dipole % Function deprecated. Use pop_dipfit_gridsearch() % instead % % Usage: % >> OUTEEG = pop_dipfit_batch( INEEG ); % pop up interactive window % >> OUTEEG = pop_dipfit_batch( INEEG, comps ); % >> OUTEEG = pop_dipfit_batch( INEEG, comps, xgrid, ygrid, zgrid, thresh ) % % Inputs: % INEEG - input dataset % comps - [integer array] component indices % xgrid - [float array] x-grid. Default is 10 elements between % -1 and 1. % ygrid - [float array] y-grid. Default is 10 elements between % -1 and 1. % zgrid - [float array] z-grid. Default is 10 elements between % -1 and 1. % threshold - [float] threshold in percent. Default 40. % % Outputs: % OUTEEG output dataset % % Authors: Robert Oostenveld, SMI/FCDC, Nijmegen 2003 % Arnaud Delorme, SCCN, La Jolla 2003 % SMI, University Aalborg, Denmark http://www.smi.auc.dk/ % FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl/ % Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [OUTEEG, com] = pop_dipfit_batch( varargin ) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargin<1 help pop_dipfit_batch; return else disp('Warning: pop_dipfit_manual is outdated. Use pop_dipfit_nonlinear instead'); [OUTEEG, com] = pop_dipfit_gridsearch( varargin{:} ); end;
github
lcnhappe/happe-master
dipfit_nonlinear.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/dipfit_nonlinear.m
4,979
utf_8
74c08245e5fcd0c004b5c7b3357238cf
% dipfit_nonlinear() - perform nonlinear dipole fit on one of the components % to improve the initial dipole model. Only selected dipoles % will be fitted. % % Usage: % >> EEGOUT = dipfit_nonlinear( EEGIN, optarg) % % Inputs: % ... % % Optional inputs are specified in key/value pairs and can be: % ... % % Output: % ... % % Author: Robert Oostenveld, SMI/FCDC, Nijmegen 2003 % Thanks to Nicolas Robitaille for his help on the CTF MEG % implementation % SMI, University Aalborg, Denmark http://www.smi.auc.dk/ % FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl % Copyright (C) 2003 Robert Oostenveld, SMI/FCDC [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [EEGOUT] = dipfit_nonlinear( EEG, varargin ) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert the optional arguments into a configuration structure that can be % understood by FIELDTRIPs dipolefitting function if nargin>2 cfg = struct(varargin{:}); else help dipfit_nonlinear return end % specify the FieldTrip DIPOLEFITTING configuration cfg.model = 'moving'; cfg.gridsearch = 'no'; if ~isfield(cfg, 'nonlinear') % if this flag is set to 'no', only the dipole moment will be fitted cfg.nonlinear = 'yes'; end % add some additional settings from EEGLAB to the configuration tmpchanlocs = EEG.chanlocs; cfg.channel = { tmpchanlocs(EEG.dipfit.chansel).labels }; if isfield(EEG.dipfit, 'vol') cfg.vol = EEG.dipfit.vol; elseif isfield(EEG.dipfit, 'hdmfile') cfg.hdmfile = EEG.dipfit.hdmfile; else error('no head model in EEG.dipfit') end if isfield(EEG.dipfit, 'elecfile') & ~isempty(EEG.dipfit.elecfile) cfg.elecfile = EEG.dipfit.elecfile; end if isfield(EEG.dipfit, 'gradfile') & ~isempty(EEG.dipfit.gradfile) cfg.gradfile = EEG.dipfit.gradfile; end % set up the initial dipole model based on the one in the EEG structure cfg.dip.pos = EEG.dipfit.model(cfg.component).posxyz; cfg.dip.mom = EEG.dipfit.model(cfg.component).momxyz'; cfg.dip.mom = cfg.dip.mom(:); % convert the EEGLAB data structure into a structure that looks as if it % was computed using FIELDTRIPs componentanalysis function comp = eeglab2fieldtrip(EEG, 'componentanalysis', 'dipfit'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Added code to handle CTF data with multipleSphere head model % % This code is copy-pasted in dipfit_gridSearch, dipfit_nonlinear % % The flag .isMultiSphere is used by dipplot % % Nicolas Robitaille, January 2007. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Do some trick to force fieldtrip to use the multiple sphere model if strcmpi(EEG.dipfit.coordformat, 'CTF') cfg = rmfield(cfg, 'channel'); comp = rmfield(comp, 'elec'); cfg.gradfile = EEG.dipfit.chanfile; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % END % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % fit the dipoles to the ICA component(s) of interest using FIELDTRIPs % dipolefitting function currentPath = pwd; ptmp = which('ft_prepare_vol_sens'); ptmp = fileparts(ptmp); if isempty(ptmp), error('Path to "forward" folder of Fieldtrip missing'); end; cd(fullfile(ptmp, 'private')); try, source = ft_dipolefitting(cfg, comp); catch, cd(currentPath); lasterr error(lasterr); end; cd(currentPath); % reformat the output dipole sources into EEGLABs data structure EEG.dipfit.model(cfg.component).posxyz = source.dip.pos; EEG.dipfit.model(cfg.component).momxyz = reshape(source.dip.mom, 3, length(source.dip.mom)/3)'; EEG.dipfit.model(cfg.component).diffmap = source.Vmodel - source.Vdata; EEG.dipfit.model(cfg.component).sourcepot = source.Vmodel; EEG.dipfit.model(cfg.component).datapot = source.Vdata; EEG.dipfit.model(cfg.component).rv = source.dip.rv; %EEG.dipfit.model(cfg.component).rv = sum((source.Vdata - source.Vmodel).^2) / sum( source.Vdata.^2 ); EEGOUT = EEG;
github
lcnhappe/happe-master
adjustcylinder2.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/adjustcylinder2.m
2,197
utf_8
34ff5cb12c3fc11a2456e7d82aedd980
% adjustcylinder() - Adjust 3d object coordinates to match a pair of points % % Usage: % >> [x y z] = adjustcylinder( x, y, z, pos1, pos2); % % Inputs: % x,y,z - 3-D point coordinates % pos1 - position of first point [x y z] % pos2 - position of second point [x y z] % % Outputs: % x,y,z - updated 3-D point coordinates % % Author: Arnaud Delorme, CNL / Salk Institute, 30 Mai 2003 % Copyright (C) 2003 Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [x, y, z] = adjustcylinder2( h, pos1, pos2); % figure; plot3(x(2,:),y(2,:),z(2,:)); [ x(2,:)' y(2,:)' z(2,:)'] % stretch z coordinates to match for vector length % ------------------------------------------------ dist = sqrt(sum((pos1-pos2).^2)); z = get(h, 'zdata'); zrange = max(z(:)) - min(z(:)); set(h, 'zdata', get(h, 'zdata') /zrange*dist); % rotate in 3-D to match vector angle [0 0 1] -> vector angle) % only have to rotate in the x-z and y-z plane % -------------------------------------------- vectrot = [ pos2(1)-pos1(1) pos2(2)-pos1(2) pos2(3)-pos1(3)]; [thvect phivect] = cart2sph( vectrot(1), vectrot(2), vectrot(3) ); rotatematlab(h, [0 0 1], thvect/pi*180, [0 0 0]); rotatematlab(h, [thvect+pi/2 0]/pi*180, (pi/2-phivect)/pi*180, [0 0 0]); x = get(h, 'xdata') + pos1(1); y = get(h, 'ydata') + pos1(2); z = get(h, 'zdata') + pos1(3); set(h, 'xdata', x); set(h, 'ydata', y); set(h, 'zdata', z); return;
github
lcnhappe/happe-master
pop_dipfit_settings.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/dipfit2.3/pop_dipfit_settings.m
20,001
utf_8
7ef22305183621c09beb2691d0250fd9
% pop_dipfit_settings() - select global settings for dipole fitting through a pop up window % % Usage: % >> OUTEEG = pop_dipfit_settings ( INEEG ); % pop up window % >> OUTEEG = pop_dipfit_settings ( INEEG, 'key1', 'val1', 'key2', 'val2' ... ) % % Inputs: % INEEG input dataset % % Optional inputs: % 'hdmfile' - [string] file containing a head model compatible with % the Fieldtrip dipolefitting() function ("vol" entry) % 'mrifile' - [string] file containing an anatomical MR head image. % The MRI must be normalized to the MNI brain. See the .mat % files used by the sphere and boundary element models % (For instance, select the sphere model and study 'EEG.dipfit'). % If SPM2 software is installed, dipfit will be able to read % most MRI file formats for plotting purposes (.mnc files, etc...). % To plot dipoles in a subject MRI, first normalize the MRI % to the MNI brain using SPM2. % 'coordformat' - ['MNI'|'Spherical'] Coordinates returned by the selected % head model. May be MNI coordinates or spherical coordinates % (For spherical coordinates, the head radius is assumed to be 85 mm. % 'chanfile' - [string] template channel locations file. (This function will % check whether your channel locations file is compatible with % your selected head model). % 'chansel' - [integer vector] indices of channels to use for dipole fitting. % {default: all} % 'coord_transform' - [float array] Talairach transformation matrix for % aligning the dataset channel locations to the selected % head model. % 'electrodes' - [integer array] indices of channels to include % in the dipole model. {default: all} % Outputs: % OUTEEG output dataset % % Author: Arnaud Delorme, SCCN, La Jolla 2003- % Robert Oostenveld, SMI/FCDC, Nijmegen 2003 % MEG flag: % 'gradfile' - [string] file containing gradiometer locations % ("gradfile" parameter in Fieldtrip dipolefitting() function) % SMI, University Aalborg, Denmark http://www.smi.auc.dk/ % FC Donders Centre, University Nijmegen, the Netherlands http://www.fcdonders.kun.nl % Copyright (C) 2003 [email protected], Arnaud Delorme, SCCN, La Jolla 2003-2005 % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [OUTEEG, com] = pop_dipfit_settings ( EEG, varargin ) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargin < 1 help pop_dipfit_settings; return; end; if ~plugin_askinstall('Fieldtrip-lite', 'ft_sourceanalysis'), return; end; OUTEEG = EEG; com = ''; % get the default values and filenames dipfitdefs; if nargin < 2 if isstr(EEG) % setmodel tmpdat = get(gcf, 'userdata'); chanfile = tmpdat.chanfile; tmpdat = tmpdat.template_models; tmpval = get(findobj(gcf, 'tag', 'listmodels'), 'value'); set(findobj(gcf, 'tag', 'model'), 'string', char(tmpdat(tmpval).hdmfile)); set(findobj(gcf, 'tag', 'coord'), 'value' , fastif(strcmpi(tmpdat(tmpval).coordformat,'MNI'),2, ... fastif(strcmpi(tmpdat(tmpval).coordformat,'CTF'),3,1))); set(findobj(gcf, 'tag', 'mri' ), 'string', char(tmpdat(tmpval).mrifile)); set(findobj(gcf, 'tag', 'meg'), 'string', char(tmpdat(tmpval).chanfile)); set(findobj(gcf, 'tag', 'coregcheckbox'), 'value', 0); if tmpval < 3, set(findobj(gcf, 'userdata', 'editable'), 'enable', 'off'); else, set(findobj(gcf, 'userdata', 'editable'), 'enable', 'on'); end; if tmpval == 3, set(findobj(gcf, 'tag', 'headstr'), 'string', 'Subject CTF head model file (default.htm)'); set(findobj(gcf, 'tag', 'mristr'), 'string', 'Subject MRI (coregistered with CTF head)'); set(findobj(gcf, 'tag', 'chanstr'), 'string', 'CTF Res4 file'); set(findobj(gcf, 'tag', 'manualcoreg'), 'enable', 'off'); set(findobj(gcf, 'userdata', 'coreg'), 'enable', 'off'); else, set(findobj(gcf, 'tag', 'headstr'), 'string', 'Head model file'); set(findobj(gcf, 'tag', 'mristr'), 'string', 'MRI file'); set(findobj(gcf, 'tag', 'chanstr'), 'string', 'Model template channel locations file'); set(findobj(gcf, 'tag', 'manualcoreg'), 'enable', 'on'); set(findobj(gcf, 'userdata', 'coreg'), 'enable', 'on'); end; tmpl = tmpdat(tmpval).coord_transform; set(findobj(gcf, 'tag', 'coregtext'), 'string', ''); set(findobj(gcf, 'tag', 'coregcheckbox'), 'value', 0); [allkeywordstrue transform] = lookupchantemplate(chanfile, tmpl); if allkeywordstrue, set(findobj(gcf, 'tag', 'coregtext'), 'string', char(vararg2str({ transform }))); if isempty(transform) set(findobj(gcf, 'tag', 'coregcheckbox'), 'value', 1); else set(findobj(gcf, 'tag', 'coregcheckbox'), 'value', 0); end; end; return; end; % detect DIPFIT1.0x structure % --------------------------- if isfield(EEG.dipfit, 'vol') str = [ 'Dipole information structure from DIPFIT v1.02 detected.' ... 'Keep or erase the old dipole information including dipole locations? ' ... 'In either case, a new dipole model can be constructed.' ]; tmpButtonName=questdlg2( strmultiline(str, 60), 'Old DIPFIT structure', 'Keep', 'Erase', 'Keep'); if strcmpi(tmpButtonName, 'Keep'), return; end; elseif isfield(EEG.dipfit, 'hdmfile') % detect previous DIPFIT structure % -------------------------------- str = [ 'Dipole information and settings are present in the dataset. ' ... 'Keep or erase this information?' ]; tmpButtonName=questdlg2( strmultiline(str, 60), 'Old DIPFIT structure', 'Keep', 'Erase', 'Keep'); if strcmpi(tmpButtonName, 'Keep'), return; end; end; % define the callbacks for the buttons % ------------------------------------- cb_selectelectrodes = [ 'tmplocs = EEG.chanlocs; tmp = select_channel_list({tmplocs.label}, ' ... 'eval(get(findobj(gcbf, ''tag'', ''elec''), ''string'')));' ... 'set(findobj(gcbf, ''tag'', ''elec''), ''string'',[''['' num2str(tmp) '']'']); clear tmplocs;' ]; % did not work cb_selectelectrodes = 'tmplocs = EEG.chanlocs; set(findobj(gcbf, ''tag'', ''elec''), ''string'', int2str(pop_chansel({tmplocs.labels}))); clear tmplocs;'; cb_volmodel = [ 'tmpdat = get(gcbf, ''userdata'');' ... 'tmpind = get(gcbo, ''value'');' ... 'set(findobj(gcbf, ''tag'', ''radii''), ''string'', num2str(tmpdat{tmpind}.r,3));' ... 'set(findobj(gcbf, ''tag'', ''conduct''), ''string'', num2str(tmpdat{tmpind}.c,3));' ... 'clear tmpdat tmpind;' ]; cb_changeradii = [ 'tmpdat = get(gcbf, ''userdata'');' ... 'tmpdat.vol.r = str2num(get(gcbo, ''string''));' ... 'set(gcf, ''userdata'', tmpdat)' ]; cb_changeconduct = [ 'tmpdat = get(gcbf, ''userdata'');' ... 'tmpdat.vol.c = str2num(get(gcbo, ''string''));' ... 'set(gcf, ''userdata'', tmpdat)' ]; cb_changeorigin = [ 'tmpdat = get(gcbf, ''userdata'');' ... 'tmpdat.vol.o = str2num(get(gcbo, ''string''));' ... 'set(gcf, ''userdata'', tmpdat)' ]; % cb_fitelec = [ 'if get(gcbo, ''value''),' ... % ' set(findobj(gcbf, ''tag'', ''origin''), ''enable'', ''off'');' ... % 'else' ... % ' set(findobj(gcbf, ''tag'', ''origin''), ''enable'', ''on'');' ... % 'end;' ]; valmodel = 1; userdata = []; if isfield(EEG.chaninfo, 'filename') if ~isempty(findstr(lower(EEG.chaninfo.filename), 'standard-10-5-cap385')), valmodel = 1; end; if ~isempty(findstr(lower(EEG.chaninfo.filename), 'standard_1005')), valmodel = 2; end; end; geomvert = [3 1 1 1 1 1 1 1 1 1 1]; geomhorz = { [1 2] [1] [1 1.3 0.5 0.5 ] [1 1.3 0.9 0.1 ] [1 1.3 0.5 0.5 ] [1 1.3 0.5 0.5 ] [1 1.3 0.5 0.5 ] [1 1.3 0.5 0.5 ] [1] [1] [1] }; % define each individual graphical user element comhelp1 = [ 'warndlg2(strvcat(''The two default head models are in ''standard_BEM'' and ''standard_BESA'''',' ... ''' sub-folders in the DIPFIT2 plugin folder, and may be modified there.''), ''Model type'');' ]; comhelp3 = [ 'warndlg2(strvcat(''Any MR image normalized to the MNI brain model may be used for plotting'',' ... '''(see the DIPFIT 2.0 tutorial for more information)''), ''Model type'');' ]; comhelp2 = [ 'warndlg2(strvcat(''The template location file associated with the head model'',' ... '''you are using must be entered (see tutorial).''), ''Template location file'');' ]; commandload1 = [ '[filename, filepath] = uigetfile(''*'', ''Select a text file'');' ... 'if filename ~=0,' ... ' set(findobj(''parent'', gcbf, ''tag'', ''model''), ''string'', [ filepath filename ]);' ... 'end;' ... 'clear filename filepath tagtest;' ]; commandload2 = [ '[filename, filepath] = uigetfile(''*'', ''Select a text file'');' ... 'if filename ~=0,' ... ' set(findobj(''parent'', gcbf, ''tag'', ''meg''), ''string'', [ filepath filename ]);' ... 'end;' ... 'clear filename filepath tagtest;' ]; commandload3 = [ '[filename, filepath] = uigetfile(''*'', ''Select a text file'');' ... 'if filename ~=0,' ... ' set(findobj(''parent'', gcbf, ''tag'', ''mri''), ''string'', [ filepath filename ]);' ... 'end;' ... 'clear filename filepath tagtest;' ]; cb_selectcoreg = [ 'tmpmodel = get( findobj(gcbf, ''tag'', ''model''), ''string'');' ... 'tmploc2 = get( findobj(gcbf, ''tag'', ''meg'') , ''string'');' ... 'tmploc1 = get( gcbo, ''userdata'');' ... 'tmptransf = get( findobj(gcbf, ''tag'', ''coregtext''), ''string'');' ... '[tmp tmptransf] = coregister(tmploc1{1}, tmploc2, ''mesh'', tmpmodel,' ... ' ''transform'', str2num(tmptransf), ''chaninfo1'', tmploc1{2}, ''helpmsg'', ''on'');' ... 'if ~isempty(tmptransf), set( findobj(gcbf, ''tag'', ''coregtext''), ''string'', num2str(tmptransf)); end;' ... 'clear tmpmodel tmploc2 tmploc1 tmp tmptransf;' ]; setmodel = [ 'pop_dipfit_settings(''setmodel'');' ]; dipfitdefs; % contains template_model templatenames = { template_models.name }; elements = { ... { 'style' 'text' 'string' [ 'Head model (click to select)' 10 '' ] } ... { 'style' 'listbox' 'string' strvcat(templatenames{:}) ... 'callback' setmodel 'value' valmodel 'tag' 'listmodels' } { } ... { 'style' 'text' 'string' '________' 'tag' 'headstr' } ... { 'style' 'edit' 'string' '' 'tag' 'model' 'userdata' 'editable' 'enable' 'off'} ... { 'style' 'pushbutton' 'string' 'Browse' 'callback' commandload1 'userdata' 'editable' 'enable' 'off' } ... { 'style' 'pushbutton' 'string' 'Help' 'callback' comhelp1 } ... { 'style' 'text' 'string' 'Output coordinates' } ... { 'style' 'popupmenu' 'string' 'spherical (head radius 85 mm)|MNI|CTF' 'tag' 'coord' ... 'value' 1 'userdata' 'editable' 'enable' 'off'} ... { 'style' 'text' 'string' 'Click to select' } { } ... { 'style' 'text' 'string' '________' 'tag' 'mristr' } ... { 'style' 'edit' 'string' '' 'tag' 'mri' } ... { 'style' 'pushbutton' 'string' 'Browse' 'callback' commandload3 } ... { 'style' 'pushbutton' 'string' 'Help' 'callback' comhelp3 } ... { 'style' 'text' 'string' '________', 'tag', 'chanstr' } ... { 'style' 'edit' 'string' '' 'tag' 'meg' 'userdata' 'editable' 'enable' 'off'} ... { 'style' 'pushbutton' 'string' 'Browse' 'callback' commandload2 'userdata' 'editable' 'enable' 'off'} ... { 'style' 'pushbutton' 'string' 'Help' 'callback' comhelp2 } ... { 'style' 'text' 'string' 'Co-register chan. locs. with head model' 'userdata' 'coreg' } ... { 'style' 'edit' 'string' '' 'tag' 'coregtext' 'userdata' 'coreg' } ... { 'style' 'pushbutton' 'string' 'Manual Co-Reg.' 'tag' 'manualcoreg' 'callback' cb_selectcoreg 'userdata' { EEG.chanlocs,EEG.chaninfo } } ... { 'style' 'checkbox' 'string' 'No Co-Reg.' 'tag' 'coregcheckbox' 'value' 0 'userdata' 'coreg' } ... { 'style' 'text' 'string' 'Channels to omit from dipole fitting' } ... { 'style' 'edit' 'string' '' 'tag' 'elec' } ... { 'style' 'pushbutton' 'string' 'List' 'callback' cb_selectelectrodes } { } ... { } ... { 'style' 'text' 'string' 'Note: For EEG, check that the channel locations are on the surface of the head model' } ... { 'style' 'text' 'string' '(To do this: ''Set head radius'' to about 85 in the channel editor).' } ... }; % plot GUI and protect parameters % ------------------------------- userdata.template_models = template_models; if isfield(EEG.chaninfo, 'filename') userdata.chanfile = lower(EEG.chaninfo.filename); else userdata.chanfile = ''; end; optiongui = { 'geometry', geomhorz, 'uilist', elements, 'helpcom', 'pophelp(''pop_dipfit_settings'')', ... 'title', 'Dipole fit settings - pop_dipfit_settings()', ... 'userdata', userdata, 'geomvert', geomvert 'eval' 'pop_dipfit_settings(''setmodel'');' }; [result, userdat2, strhalt, outstruct] = inputgui( 'mode', 'noclose', optiongui{:}); if isempty(result), return; end; if ~isempty(get(0, 'currentfigure')) currentfig = gcf; else return; end; while test_wrong_parameters(currentfig) [result, userdat2, strhalt, outstruct] = inputgui( 'mode', currentfig, optiongui{:}); if isempty(result), return; end; end; close(currentfig); % decode GUI inputs % ----------------- options = {}; options = { options{:} 'hdmfile' result{2} }; options = { options{:} 'coordformat' fastif(result{3} == 2, 'MNI', fastif(result{3} == 1, 'Spherical', 'CTF')) }; options = { options{:} 'mrifile' result{4} }; options = { options{:} 'chanfile' result{5} }; if ~result{7}, options = { options{:} 'coord_transform' str2num(result{6}) }; end; options = { options{:} 'chansel' setdiff(1:EEG.nbchan, str2num(result{8})) }; else options = varargin; end g = finputcheck(options, { 'hdmfile' 'string' [] ''; 'mrifile' 'string' [] ''; 'chanfile' 'string' [] ''; 'chansel' 'integer' [] [1:EEG.nbchan]; 'electrodes' 'integer' [] []; 'coord_transform' 'real' [] []; 'coordformat' 'string' { 'MNI','spherical','CTF' } 'MNI' }); if isstr(g), error(g); end; OUTEEG = rmfield(OUTEEG, 'dipfit'); OUTEEG.dipfit.hdmfile = g.hdmfile; OUTEEG.dipfit.mrifile = g.mrifile; OUTEEG.dipfit.chanfile = g.chanfile; OUTEEG.dipfit.chansel = g.chansel; OUTEEG.dipfit.coordformat = g.coordformat; OUTEEG.dipfit.coord_transform = g.coord_transform; if ~isempty(g.electrodes), OUTEEG.dipfit.chansel = g.electrodes; end; % removing channels with no coordinates % ------------------------------------- [tmpeloc labels Th Rd indices] = readlocs(EEG.chanlocs); if length(indices) < length(EEG.chanlocs) disp('Warning: Channels removed from dipole fitting no longer have location coordinates!'); OUTEEG.dipfit.chansel = intersect( OUTEEG.dipfit.chansel, indices); end; % checking electrode configuration % -------------------------------- if 0 disp('Checking the electrode configuration'); tmpchan = readlocs(OUTEEG.dipfit.chanfile); [tmp1 ind1 ind2] = intersect( lower({ tmpchan.labels }), lower({ OUTEEG.chanlocs.labels })); if isempty(tmp1) disp('No channel labels in common found between template and dataset channels'); if ~isempty(findstr(OUTEEG.dipfit.hdmfile, 'BESA')) disp('Use the channel editor to fit a head sphere to your channel locations.'); disp('Check for inconsistency in dipole info.'); else disp('Results using standard BEM model are INACCURATE when the chan locations are not on the head surface!'); end; else % common channels: performing best transformation TMP = OUTEEG; elec1 = eeglab2fieldtrip(TMP, 'elec'); elec1 = elec1.elec; TMP.chanlocs = tmpchan; elec2 = eeglab2fieldtrip(TMP, 'elec'); elec2 = elec2.elec; cfg.elec = elec1; cfg.template = elec2; cfg.method = 'warp'; elec3 = electrodenormalize(cfg); % convert back to EEGLAB format OUTEEG.chanlocs = struct( 'labels', elec3.label, ... 'X' , mat2cell(elec3.pnt(:,1)'), ... 'Y' , mat2cell(elec3.pnt(:,2)'), ... 'Z' , mat2cell(elec3.pnt(:,3)') ); OUTEEG.chanlocs = convertlocs(OUTEEG.chanlocs, 'cart2all'); end; end; com = sprintf('%s = pop_dipfit_settings( %s, %s);', inputname(1), inputname(1), vararg2str(options)); % test for wrong parameters % ------------------------- function bool = test_wrong_parameters(hdl) coreg1 = get( findobj( hdl, 'tag', 'coregtext') , 'string' ); coreg2 = get( findobj( hdl, 'tag', 'coregcheckbox'), 'value' ); meg = get( findobj( hdl, 'tag', 'coord'), 'value' ); bool = 0; if meg == 3, return; end; if coreg2 == 0 & isempty(coreg1) bool = 1; warndlg2(strvcat('You must co-register your channel locations', ... 'with the head model (Press buttun, "Manual Co-Reg".', ... 'and follow instructions); To bypass co-registration,', ... 'check the checkbox " No Co-Reg".'), 'Error'); end;
github
lcnhappe/happe-master
eegplugin_cleanline.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/eegplugin_cleanline.m
2,154
utf_8
00012f272d3f6c21e4885de250f6e0ef
% eegplugin_cleanline() - EEGLAB plugin for removing line noise % % Usage: % >> eegplugin_cleanline(fig, trystrs, catchstrs); % % Inputs: % fig - [integer] EEGLAB figure % trystrs - [struct] "try" strings for menu callbacks. % catchstrs - [struct] "catch" strings for menu callbacks. % % Notes: % This plugins consist of the following Matlab files: % % Create a plugin: % For more information on how to create an EEGLAB plugin see the % help message of eegplugin_besa() or visit http://www.sccn.ucsd.edu/eeglab/contrib.html % % % See also: pop_cleanline(), cleanline() % Copyright (C) 2011 Tim Mullen, SCCN/INC/UCSD % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function vers = eegplugin_cleanline(fig, trystrs, catchstrs) vers = 'cleanline'; if nargin < 3 error('eegplugin_cleanline requires 3 arguments'); end; % add folder to path % ------------------ if exist('cleanline', 'file') p = which('eegplugin_cleanline.m'); p = p(1:findstr(p,'eegplugin_cleanline.m')-1); addpath(genpath(p)); end; % find import data menu % --------------------- menu = findobj(fig, 'tag', 'tools'); % menu callbacks % -------------- comcnt = [ trystrs.no_check '[EEG LASTCOM] = pop_cleanline(EEG);' catchstrs.new_and_hist ]; % create menus % ------------ uimenu( menu, 'label', 'CleanLine', 'callback', comcnt,'separator', 'on', 'position',length(get(menu,'children'))+1);
github
lcnhappe/happe-master
cleanline.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/cleanline.m
27,439
utf_8
db2d5fa2e56fb92bf9e5165018650537
function [EEG, Sorig, Sclean, f, amps, freqs, g] = cleanline(varargin) % Mandatory Information % -------------------------------------------------------------------------------------------------- % EEG EEGLAB data structure % -------------------------------------------------------------------------------------------------- % % Optional Information % -------------------------------------------------------------------------------------------------- % LineFrequencies: Line noise frequencies to remove % Input Range : Unrestricted % Default value: 60 120 % Input Data Type: real number (double) % % ScanForLines: Scan for line noise % This will scan for the exact line frequency in a narrow range around the specified LineFrequencies % Input Range : Unrestricted % Default value: 1 % Input Data Type: boolean % % LineAlpha: p-value for detection of significant sinusoid % Input Range : [0 1] % Default value: 0.01 % Input Data Type: real number (double) % % Bandwidth: Bandwidth (Hz) % This is the width of a spectral peak for a sinusoid at fixed frequency. As such, this defines the % multi-taper frequency resolution. % Input Range : Unrestricted % Default value: 1 % Input Data Type: real number (double) % % SignalType: Type of signal to clean % Cleaned ICA components will be backprojected to channels. If channels are cleaned, ICA activations % are reconstructed based on clean channels. % Possible values: 'Components','Channels' % Default value : 'Components' % Input Data Type: string % % ChanCompIndices: IDs of Chans/Comps to clean % Input Range : Unrestricted % Default value: 1:152 % Input Data Type: any evaluable Matlab expression. % % SlidingWinLength: Sliding window length (sec) % Default is the epoch length. % Input Range : [0 4] % Default value: 4 % Input Data Type: real number (double) % % SlidingWinStep: Sliding window step size (sec) % This determines the amount of overlap between sliding windows. Default is window length (no % overlap). % Input Range : [0 4] % Default value: 4 % Input Data Type: real number (double) % % SmoothingFactor: Window overlap smoothing factor % A value of 1 means (nearly) linear smoothing between adjacent sliding windows. A value of Inf means % no smoothing. Intermediate values produce sigmoidal smoothing between adjacent windows. % Input Range : [1 Inf] % Default value: 100 % Input Data Type: real number (double) % % PaddingFactor: FFT padding factor % Signal will be zero-padded to the desired power of two greater than the sliding window length. The % formula is NFFT = 2^nextpow2(SlidingWinLen*(PadFactor+1)). e.g. For SlidingWinLen = 500, if PadFactor = -1, we % do not pad; if PadFactor = 0, we pad the FFT to 512 points, if PadFactor=1, we pad to 1024 points etc. % Input Range : [-1 Inf] % Default value: 2 % Input Data Type: real number (double) % % ComputeSpectralPower: Visualize Original and Cleaned Spectra % Original and clean spectral power will be computed and visualized at end % Input Range : Unrestricted % Default value: true % Input Data Type: boolean % % NormalizeSpectrum: Normalize log spectrum by detrending (not generally recommended) % Input Range : Unrestricted % Default value: 0 % Input Data Type: boolean % % VerboseOutput: Produce verbose output % Input Range : [true false] % Default value: true % Input Data Type: boolean % % PlotFigures: Plot Individual Figures % This will generate figures of F-statistic, spectrum, etc for each channel/comp while processing % Input Range : Unrestricted % Default value: 0 % Input Data Type: boolean % % -------------------------------------------------------------------------------------------------- % Output Information % -------------------------------------------------------------------------------------------------- % EEG Cleaned EEG dataset % Sorig Original multitaper spectrum for each component/channel % Sclean Cleaned multitaper spectrum for each component/channel % f Frequencies at which spectrum is estimated in Sorig, Sclean % amps Complex amplitudes of sinusoidal lines for each % window (line time-series for window i can be % reconstructed by creating a sinudoid with frequency f{i} and complex % amplitude amps{i}) % freqs Exact frequencies at which lines were removed for % each window (cell array) % g Parameter structure. Function call can be % replicated exactly by calling >> cleanline(EEG,g); % % Usage Example: % EEG = pop_cleanline(EEG, 'Bandwidth',2,'ChanCompIndices',[1:EEG.nbchan], ... % 'SignalType','Channels','ComputeSpectralPower',true, ... % 'LineFrequencies',[60 120] ,'NormalizeSpectrum',false, ... % 'LineAlpha',0.01,'PaddingFactor',2,'PlotFigures',false, ... % 'ScanForLines',true,'SmoothingFactor',100,'VerboseOutput',1, ... % 'SlidingWinLength',EEG.pnts/EEG.srate,'SlidingWinStep',EEG.pnts/EEG.srate); % % See Also: % pop_cleanline() % Author: Tim Mullen, SCCN/INC/UCSD Copyright (C) 2011 % Date: Nov 20, 2011 % % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA EEG = arg_extract(varargin,'EEG',[],[]); if isempty(EEG) EEG = eeg_emptyset; end if ~isempty(EEG.icawinv); defSigType = {'Components','Channels'}; else defSigType = {'Channels'}; end g = arg_define([0 1], varargin, ... arg_norep('EEG',mandatory), ... arg({'linefreqs','LineFrequencies'},[60 120],[],'Line noise frequencies to remove.'),... arg({'scanforlines','ScanForLines'},true,[],'Scan for line noise. This will scan for the exact line frequency in a narrow range around the specified LineFrequencies'),... arg({'p','LineAlpha','alpha'},0.01,[0 1],'p-value for detection of significant sinusoid'), ... arg({'bandwidth','Bandwidth'},2,[],'Bandwidth (Hz). This is the width of a spectral peak for a sinusoid at fixed frequency. As such, this defines the multi-taper frequency resolution.'), ... arg({'sigtype','SignalType','chantype'},defSigType{1},defSigType,'Type of signal to clean. Cleaned ICA components will be backprojected to channels. If channels are cleaned, ICA activations are reconstructed based on clean channels.'), ... arg({'chanlist','ChanCompIndices','ChanComps'},sprintf('1:%d',EEG.nbchan),[1 EEG.nbchan],'Indices of Channels/Components to clean.','type','expression'),... arg({'winsize','SlidingWinLength'},fastif(EEG.trials==1,4,EEG.pnts/EEG.srate),[0 EEG.pnts/EEG.srate],'Sliding window length (sec). Default for epoched data is the epoch length. Default for continuous data is 4 seconds'), ... arg({'winstep','SlidingWinStep'},fastif(EEG.trials==1,1,EEG.pnts/EEG.srate),[0 EEG.pnts/EEG.srate],'Sliding window step size (sec). This determines the amount of overlap between sliding windows. Default for epoched data is window length (no overlap). Default for continuous data is 1 second.'), ... arg({'tau','SmoothingFactor'},100,[1 Inf],'Window overlap smoothing factor. A value of 1 means (nearly) linear smoothing between adjacent sliding windows. A value of Inf means no smoothing. Intermediate values produce sigmoidal smoothing between adjacent windows.'), ... arg({'pad','PaddingFactor'},2,[-1 Inf],'FFT padding factor. Signal will be zero-padded to the desired power of two greater than the sliding window length. The formula is NFFT = 2^nextpow2(SlidingWinLen*(PadFactor+1)). e.g. For N = 500, if PadFactor = -1, we do not pad; if PadFactor = 0, we pad the FFT to 512 points, if PadFactor=1, we pad to 1024 points etc.'), ... arg({'computepower','ComputeSpectralPower'},true,[],'Visualize Original and Cleaned Spectra. Original and clean spectral power will be computed and visualized at end'), ... arg({'normSpectrum','NormalizeSpectrum'},false,[],'Normalize log spectrum by detrending. Not generally recommended.'), ... arg({'verb','VerboseOutput','VerbosityLevel'},true,[],'Produce verbose output.'), ... arg({'plotfigures','PlotFigures'},false,[],'Plot Individual Figures. This will generate figures of F-statistic, spectrum, etc for each channel/comp while processing') ... ); if any(g.chanlist > fastif(strcmpi(g.sigtype,'channels'),EEG.nbchan,size(EEG.icawinv,1))) error('''ChanCompIndices'' contains indices of channels or components that are not present in the dataset!'); end arg_toworkspace(g); % defaults [Sorig, Sclean, f, amps, freqs] = deal([]); hasica = ~isempty(EEG.icawinv); % set up multi-taper parameters hbw = g.bandwidth/2; % half-bandwidth params.tapers = [hbw, g.winsize, 1]; params.Fs = EEG.srate; params.g.pad = g.pad; movingwin = [g.winsize g.winstep]; % NOTE: params.tapers = [W, T, p] where: % T==frequency range in Hz over which the spectrum is maximally concentrated % on either side of a center frequency (half of the spectral bandwidth) % W==time resolution (seconds) % p is used for num_tapers = 2TW-p (usually p=1). SlidingWinLen = movingwin(1)*params.Fs; if params.g.pad>=0 NFFT = 2^nextpow2(SlidingWinLen*(params.g.pad+1)); else NFFT = SlidingWinLen; end if isempty(EEG.data) && isempty(EEG.icaact) fprintf('Hey! Where''s your EEG data?\n'); return; end if g.verb fprintf('\n\nWelcome to the CleanLine line noise removal toolbox!\n'); fprintf('CleanLine is written by Tim Mullen ([email protected]) and uses multi-taper routines modified from the Chronux toolbox (www.chronux.org)\n'); fprintf('\nTsk Tsk, you''ve allowed your data to get very dirty!\n'); fprintf('Let''s roll up our sleeves and do some cleaning!\n'); fprintf('Today we''re going to be cleaning your %s\n',g.sigtype); if EEG.trials>1 if g.winsize~=g.winstep fprintf('\n[!] Yikes! I noticed you have multiple trials, but you''ve selected overlapping windows.\n'); fprintf(' This probably means one or more of your windows will span two trials, which can be bad news (discontinuities)!\n'); resp = input('\n Are you sure you want to continue? (''y'',''n''): ','s'); if ~strcmpi(resp,'y') return; end end if g.winsize > EEG.pnts/EEG.srate fprintf('\n[!] Yikes! I noticed you have multiple trials, but your window length (%0.4g sec) is greater than the epoch length (%0.4g sec).\n',g.winsize,EEG.pnts/EEG.srate); fprintf(' This means each window will span multiple trials, which can be bad news!\n'); fprintf(' Ideally, your windows should be less than or equal to the epoch length\n'); resp = input('\n Are you sure you want to continue? (''y'',''n''): ','s'); if ~strcmpi(resp,'y') return; end end if g.winsize~=g.winstep || g.winsize > EEG.pnts/EEG.srate fprintf('\nFine, have it your way, but if results are sub-optimal try selecting window length and step size so your windows don''t span multiple trials.\n\n'); pause(2); end end ndiff = rem(EEG.pnts,(g.winsize*EEG.srate)); if ndiff>0 fprintf('\n[!] Please note that because the selected window length does not divide the data length, \n'); fprintf(' %0.4g seconds of data at the end of the record will not be cleaned.\n\n',ndiff/EEG.srate); end fprintf('Multi-taper parameters follow:\n'); fprintf('\tTime-bandwidth product:\t %0.4g\n',hbw*g.winsize); fprintf('\tNumber of tapers:\t %0.4g\n',2*hbw*g.winsize-1); fprintf('\tNumber of FFT points:\t %d\n',NFFT); if ~isempty(g.linefreqs) fprintf('I''m going try to remove lines at these frequencies: [%s] Hz\n',strtrim(num2str(g.linefreqs))); if g.scanforlines fprintf('I''m going to scan the range +/-%0.4g Hz around each of the above frequencies for the exact line frequency.\n',params.tapers(1)); fprintf('I''ll do this by selecting the frequency that maximizes Thompson''s F-statistic above a threshold of p=%0.4g.\n',g.p); end else fprintf('You didn''t specify any lines (Hz) to remove, so I''ll try to find them using Thompson''s F-statistic.\n'); fprintf('I''ll use a p-value threshold of %0.4g.\n',g.p) end fprintf('\nOK, now stand back and let The Maid show you how it''s done!\n\n'); end EEGLAB_backcolor = getbackcolor; if g.plotfigures % plot the overlap smoothing function overlap = g.winsize-g.winstep; toverlap = -overlap/2:(1/EEG.srate):overlap/2; % specify the smoothing function foverlap = 1-1./(1+exp(-g.tau.*toverlap/overlap)); % define some colours yellow = [255, 255, 25]/255; red = [255 0 0]/255; % plot the figure figure('color',EEGLAB_backcolor); axis([-g.winsize+overlap/2 g.winsize-overlap/2 0 1]); set(gca,'ColorOrder',[0 0 0; 0.7 0 0.8; 0 0 1],'fontsize',11); hold on h(1)=hlp_vrect([-g.winsize+overlap/2 -overlap/2], 'yscale',[0 1],'patchProperties',{'FaceColor',yellow, 'FaceAlpha',1,'EdgeColor','none','EdgeAlpha',0.5}); h(2)=hlp_vrect([overlap/2 g.winsize-overlap/2], 'yscale',[0 1],'patchProperties',{'FaceColor',red, 'FaceAlpha',1,'EdgeColor','none','EdgeAlpha',0.5}); h(3)=hlp_vrect([-overlap/2 overlap/2], 'yscale',[0 1],'patchProperties',{'FaceColor',(yellow+red)/2,'FaceAlpha',1,'EdgeColor','none','EdgeAlpha',0.5}); plot(toverlap,foverlap,'linewidth',2); plot(toverlap,1-foverlap,'linewidth',1,'linestyle','--'); hold off; xlabel('Time (sec)'); ylabel('Smoothing weight'); title({'Plot of window overlap smoothing function vs. time',['Smoothing factor is \g.tau = ' num2str(g.tau)]}); legend(h,{'Window 1','Window 2','Overlap'}); end if hasica && isempty(EEG.icaact) EEG = eeg_checkset(EEG,'ica'); end k=0; for ch=g.chanlist if g.verb, fprintf('Cleaning %s %d...\n',fastif(strcmpi(g.sigtype,'Components'),'IC','Chan'),ch); end % extract data as [chans x frames*trials] if strcmpi(g.sigtype,'components') data = squeeze(EEG.icaact(ch,:)); else data = squeeze(EEG.data(ch,:)); end if g.plotfigures % estimate the sinusoidal lines [Fval sig f] = ftestmovingwinc(data,movingwin,params,g.p); % plot the F-statistics [F T] = meshgrid(f,1:size(Fval,1)); figure('color',EEGLAB_backcolor); subplot(311); surf(F,T,Fval); shading interp; caxis([0 prctile(Fval(:),99)]); axis tight sigplane = ones(size(Fval))*sig; hold on; surf(F,T,sigplane,'FaceColor','b','FaceAlpha',0.5); xlabel('Frequency'); ylabel('Window'); zlabel('F-value'); title({[sprintf('%s %d: ',fastif(strcmpi(g.sigtype,'components'),'IC ','Chan '), ch) 'Thompson F-statistic for sinusoid'],sprintf('Black plane is p<%0.4g thresh',g.p)}); shadowplot x shadowplot y axcopy(gca); subplot(312); plot(F,mean(Fval,1),'k'); axis tight hold on plot(get(gca,'xlim'),[sig sig],'r:','linewidth',2); xlabel('Frequency'); ylabel('Thompson F-stat'); title('F-statistic averaged over windows'); legend('F-val',sprintf('p=%0.4g',g.p)); hold off axcopy(gca); end if g.plotfigures subplot(313) end % DO THE MAGIC! [datac,datafit,amps,freqs]=rmlinesmovingwinc(data,movingwin,g.tau,params,g.p,fastif(g.plotfigures,'y','n'),g.linefreqs,fastif(g.scanforlines,params.tapers(1),[])); % append to clean dataset any remaining samples that were not cleaned % due to sliding window and step size not dividing the data length ndiff = length(data)-length(datac); if ndiff>0 datac(end:end+ndiff) = data(end-ndiff:end); end if g.plotfigures axis tight legend('original','cleaned'); xlabel('Frequency (Hz)'); ylabel('Power (dB)'); title(sprintf('Power spectrum for %s %d',fastif(strcmpi(g.sigtype,'components'),'IC','Chan'),ch)); axcopy(gca); end if g.computepower k = k+1; if g.verb, fprintf('Computing spectral power...\n'); end [Sorig(k,:) f] = mtspectrumsegc(data,movingwin(1),params); [Sclean(k,:) f] = mtspectrumsegc(datac,movingwin(1),params); if g.verb && ~isempty(g.linefreqs) fprintf('Average noise reduction: '); for fk=1:length(g.linefreqs) [dummy fidx] = min(abs(f-g.linefreqs(fk))); fprintf('%0.4g Hz: %0.4g dB %s ',f(fidx),10*log10(Sorig(k,fidx))-10*log10(Sclean(k,fidx)),fastif(fk<length(g.linefreqs),'|','')); end fprintf('\n'); end if ch==g.chanlist(1) % First run, so allocate memory for remaining spectra in % Nchans x Nfreqs spectral matrix Sorig = cat(1,Sorig,zeros(length(g.chanlist)-1,length(f))); Sclean = cat(1,Sclean,zeros(length(g.chanlist)-1,length(f))); end end if strcmpi(g.sigtype,'components') EEG.icaact(ch,:) = datac'; else EEG.data(ch,:) = datac'; end end if g.computepower if g.verb, fprintf('Converting spectra to dB...\n'); end % convert to log spectrum Sorig = 10*log10(Sorig); Sclean = 10*log10(Sclean); if g.normSpectrum if g.verb, fprintf('Normalizing log spectra...\n'); end % normalize spectrum by standarization % Sorig = (Sorig-repmat(mean(Sorig,2),1,size(Sorig,2)))./repmat(std(Sorig,[],2),1,size(Sorig,2)); % Sclean = (Sclean-repmat(mean(Sclean,2),1,size(Sclean,2)))./repmat(std(Sclean,[],2),1,size(Sclean,2)); % normalize the spectrum by detrending Sorig = detrend(Sorig')'; Sclean = detrend(Sclean')'; end end if strcmpi(g.sigtype,'components') if g.verb, fprintf('Backprojecting cleaned components to channels...\n'); end try EEG.data = EEG.icawinv*EEG.icaact(1:end,:); catch e % low memory, so back-project channels one by one if g.verb, fprintf('Insufficient memory for fast back-projection. Back-projecting each channel individually...\n'); end EEG.data = zeros(size(EEG.icaact)); for k=1:size(EEG.icaact,1) EEG.data(k,:) = EEG.icawinv(:,k)*EEG.icaact(k,:); end end EEG.data = reshape(EEG.data,EEG.nbchan,EEG.pnts*EEG.trials); elseif hasica if g.verb, fprintf('Recomputing component activations from cleaned channel data...\n'); end EEG.icaact = []; EEG = eeg_checkset(EEG,'ica'); end function BACKCOLOR = getbackcolor BACKCOLOR = 'w'; try, icadefs; catch, end;
github
lcnhappe/happe-master
para_dataflow.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/para_dataflow.m
15,079
utf_8
bdf197e6b019efdde172f215e4e5933b
function result = para_dataflow(varargin) % Generic Signal Processing -> Feature Extraction -> Machine Learning BCI framework. % Result = para_dataflow(FilterSetup, FeatureExtractionArguments, FeatureExtractionSetup, MachineLearningSetup, DialogSetup, ForwardedParameters...) % % Most BCI paradigms are implemented as a sequence of three major stages: Signal Processing, Feature Extraction and Machine Learning (see also bci_train). % The Signal Processing stage operates on time series (plus meta-data), represented as EEGLAB datasets, and may contain multiple sub-stages, which together % form a filter graph. The data passed from node to node in this graph is either continuous or epoched EEGLAB datasets, and may contain rich annotations, such as % channel locations, ICA decompositions, DIPFIT models, etc. The nodes are filter components which are shared among many paradigms, and most of them % are found in filters/flt_* and dataset_ops/set_*. For almost all paradigms, a default order of these stages can be defined, because several filters % can be arbitrarily ordered w.r.t. each other (linear operators), and most other filters make sense only when executed before or after certain other stages. % The default signal processing pipeline is implemented in flt_pipeline; its parameters allow to selectively enable processing stages. Paradims derived from % para_dataflow usually set their own defaults for flt_pipeline (i.e., enable and configure various stages by default), which can be further modified by the user. % % The simplest filter components are stateless (such as a surface laplacian filter) and operate on each sample individually, while other filters are % stateful (and have a certain "memory" of past data), such as FIR and IIR filters. Some of the stateful filters are time-variant (such as signal % standardization) and some of those are adaptive (such as ICA). Some adaptive filters may be unsupervised, and others may depend on the target variable. % The majority of filters is causal (i.e. does not need data from future samples to compute the transformed version of some sample) and can therefore be % applied online, while some filters are non-causal (e.g., the signal envelope and zero-phase FIR filter), and can only be used for offline analyses % (e.g. for neuroscience). Finally, most filters operate on continuous data, while some filters operate on epoched/segmented data (such as time window % selection or fourier transform). All of these filter components are written against a unified framework. % % Following the Signal Processing stage, most paradigms implement the Feature Extraction stage (especially those paradigms which do not implement % adaptive statistical signal processing), in which signals are transformed into sets of feature vectors. At this stage, signal meta-data is % largely stripped off. The feature extraction performed by some paradigms is non-adaptive (such as windowed means or log-variance), while it is % adaptive (and usually supervised) for others (e.g., CSP). Feature vectors can be viewed as (labeled) points in a high-dimensional space, the % feature space, which serves as the representation on which the last stage, the machine learning, operates. % % The machine learning stage defines a standardized computational framework: it is practically always adaptive, and thus involves a 'learn' case % and a 'predict' case. In the learning case, labeled sets of feature vectors are received, processed & analyzed, their distribution w.r.t. the % target variables (labels) is estimated, and a predictive model (or prediction function) incorporating these relations is generated. In the prediction case, % the previously computed predictive model is applied to individual feature vectors to predict their label/target value (or a probability distribution % over possible label/target values). % % Likewise, a paradigm can be applied to data in a 'learn' mode, in which data is received, feature-extraction is possibly adapted, and a predictive model % is computed (which is an arbitrary data structure that incorporates the state of all adaptive stages), and a 'predict' mode, in which a previously % computed predictive model is used to map data to a prediction by sending it through all of the paradigm's stages. Finally, a paradigm has a 'preprocess' % mode, in which all the signal processing steps take place. Separating the preprocessing from the other two stages leaves more control to the framework % (bci_train, onl_predict), for example to control the granularity (block size) of data that is fed through the processing stages, buffering, % caching of intermediate results, partitioning of datasets (for cross-validation, nested cross-validation and other resampling techniques) and % various optimizations (such as common subexpression elimination and lazy evaluation). This functionality is invisible to the paradigms. % % The function para_dataflow represents a small sub-framework for the convenient implementation of paradigms that adhere to this overall three-stage system. % Paradigms may implement their functionality by calling into para_dataflow, setting some of its parameters in order to customize its standard system. % Therefore, para_dataflow exposes a set of named parameters for each of the three stages. For signal processing, it exposes all the parameters of % flt_pipeline, the default signal processing pipeline, allowing paradims to enable various pipeline stages without having to care about their relative % order or efficient execution. For feature extraction, it exposes the 'featureextract' and 'featureadapt' parameters, which are function handles which % implement the feature extraction and feature adaption (if any) step of this processing phase; the 'featurevote' parameter specifies whether the 'featureadapt' % stages requires a voting procedure in cases where more than two classes are present in the data. Very few constraints are imposed on the type of % inputs, outputs and internal processing of these functions, or on the type of data that is passed through it (EEGLAB datasets or STUDY sets, for example). % For the machine learning stage, the 'learner' parameter of ml_train is exposed, allowing to specify one of the ml_train*** / ml_predict*** functions % for learning and prediction, respectively. See ml_train for more explanations of the options. % % Paradigms making use of para_dataflow typically pass all user-specified parameters down to para_dataflow (so that the user has maximum control with no % interference from the paradigm), and set up their own characteristic parameterization of para_dataflow as defaults for these user parameters. % % In: % Parameters... : parameters of the paradigm: % * 'op' : one of the modes in which the paradigm can be applied to data: % * 'preprocess', to pre-process the InputSet according to the paradigm (and parameters) % * 'learn', to learn a predictive model from a pre-processed InputSet (and parameters) % * 'predict', to make predictions given a pre-processed InputSet and a predictive model % % * 'data' : some data (usually an EEGLAB dataset) % % if op == 'preprocess': % * all parameters of flt_pipeline can be supplied for preprocessing; (defaults: no defaults are imposed by para_dataflow itself) % % if op == 'learn' % * 'featureadapt': the adaption stage of the feature extraction; function_handle, % receives the preprocessed data and returns a model of feature-extraction parameters (default: returns []) % * 'featureextract': the feature extraction stage; function_handle, receives the preprocessed data and % the model from the featureadapt stage, and returns a NxF array of N feature vectors (for F features) % (default: vectorizes each data epoch) % * 'featurevote': true if the 'featureadapt' function supports only two classes, so that voting is necessary when three % or more classes are in the data (default: false) % * 'learner': parameter of ml_train; defines the machine-learning step that is applied to the features (default: 'lda') % % if op == 'predict' % * 'model': the predictive model (as produced during the learning) % % Out: % Result : depends on the op; % * if 'preprocess', this is the preprocessed dataset % * if 'learn', this is the learned model % * if 'predict', this is the predictions produced by the model, given the data % % Notes: % Pre-processing is usually a purely symbolic operation (i.e. symbolic data processing steps are added to the data expression); the framework % evaluates this expression (and potentially transforms it prior to that, for example for cross-validation) and passes the evaluated expression % back to the paradigm for 'learning' and/or 'prediction' modes. % % Name: % Data-Flow Framework % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-29 if length(varargin) > 1 && iscell(varargin{1}) % the paradigm is being invoked via a user function (which sets flt_defaults, etc.) [flt_defaults,fex_declaration,fex_defaults,ml_defaults,dialog_default] = deal(varargin{1:5}); varargin = varargin(6:end); else % the paradigm is being invoked directly [flt_defaults,fex_declaration,fex_defaults,ml_defaults,dialog_default] = deal({}); end cfg = arg_define(varargin, ... ... % core arguments for the paradigm framework (passed by the framework) arg_norep('op',[],{'preprocess','learn','predict'},'Operation to execute on the data. Preprocess the raw data, learn a predictive model, or predict outputs given a model.'), ... arg_norep('data',[],[],'Data to be processed by the paradigm.'), ... arg_norep('model',[],[],'Model according to which to predict.'), ... ... % signal processing arguments (sourced from flt_pipeline) arg_sub({'flt','SignalProcessing'},flt_defaults,@flt_pipeline,'Signal processing stages. These can be enabled, disabled and configured for the given paradigm. The result of this stage flows into the feature extraction stage','cat','Signal Processing'), ... ... % arguments for the feature-extraction plugins (passed by the user paradigms) arg_sub({'fex','FeatureExtraction'},{},fex_declaration,'Parameters for the feature-extraction stage.','cat','Feature Extraction'), ... ... % feature-extraction plugin definitions (passed by the user paradigms) arg_sub({'plugs','PluginFunctions'},fex_defaults,{ ... arg({'adapt','FeatureAdaptor'},@default_feature_adapt,[],'The adaption function of the feature extraction. Function_handle, receives the preprocessed data, an options struct (with feature-extraction), and returns a model (which may just re-represent options).'),... arg({'extract','FeatureExtractor'},@default_feature_extract,[],'The feature extraction function. Function_handle, receives the preprocessed data and the model from the featureadapt stage, and returns a NxF array of N feature vectors (for F features).'), ... arg({'vote','FeatureAdaptorNeedsVoting'},false,[],'Feature-adaption function requires voting. Only relevant if the data contains three or more classes.') ... },'The feature-extraction functions','cat','Feature Extraction'), ... ... % machine learning arguments (sourced from ml_train) arg_sub({'ml','MachineLearning'},ml_defaults,@ml_train,'Machine learning stage of the paradigm. Operates on the feature vectors that are produced by the feature-extraction stage.','cat','Machine Learning'), ... ... % configuration dialog layout arg({'arg_dialogsel','ConfigLayout'},dialog_default,[],'Parameters displayed in the config dialog. Cell array of parameter names to display (dot-notation allowed); blanks are translated into empty rows in the dialog. Referring to a structure argument lists all parameters of that struture, except if it is a switchable structure - in this case, a pulldown menu with switch options is displayed.','type','cellstr','shape','row')); % map all of cfg's fields into the function's workspace, for convenience arg_toworkspace(cfg,true); switch op case 'preprocess' % apply default signal processing result = flt_pipeline('signal',data,flt); case 'learn' classes = unique(set_gettarget(data)); if ~(plugs.vote && numel(classes) > 2) % learn a model [result.featuremodel,result.predictivemodel] = learn_model(data,cfg); else % binary stage and more than two classes: learn 1-vs-1 models for voting result.classes = classes; for i=1:length(classes) for j=i+1:length(classes) [result.voting{i,j}.featuremodel,result.voting{i,j}.predictivemodel] = learn_model(exp_eval(set_picktrials(data,'rank',{i,j})),cfg); end end end result.plugs = plugs; case 'predict' if ~isfield(model,'voting') % predict given the extracted features and the model result = ml_predict(model.plugs.extract(data,model.featuremodel), model.predictivemodel); else % 1-vs-1 voting is necessary, construct the aggregate result trialcount = exp_eval(set_partition(data,[])); result = {'disc' , zeros(trialcount,length(model.classes)), model.classes}; % vote, adding up the probabilities from each vote for i=1:length(model.classes) for j=i+1:length(model.classes) outcome = ml_predict(model.plugs.extract(data,model.voting{i,j}.featuremodel), model.voting{i,j}.predictivemodel); result{2}(:,[i j]) = result{2}(:,[i j]) + outcome{2}; end end % renormalize probabilities result{2} = result{2} ./ repmat(sum(result{2},2),1,size(result{2},2)); end end function [featuremodel,predictivemodel] = learn_model(data,cfg) % adapt the feature extractor switch nargin(cfg.plugs.adapt) case 1 featuremodel = cfg.plugs.adapt(data); case 2 featuremodel = cfg.plugs.adapt(data,cfg.fex); otherwise featuremodel = cfg.plugs.adapt(data,cfg.fex,cfg); end % extract features & learn a predictive model predictivemodel = ml_train('data',{cfg.plugs.extract(data,featuremodel),set_gettarget(data)},'learner',cfg.ml.learner); function mdl = default_feature_adapt(data,args) mdl = args; function data = default_feature_extract(data,mdl) data = squeeze(reshape(data.data,[],1,size(data.data,3)))';
github
lcnhappe/happe-master
env_showmenu.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/environment/env_showmenu.m
16,401
utf_8
e922dbf8b0926a434e2012cc7cf148ee
function env_showmenu(varargin) % Links the BCILAB menu into another menu, or creates a new root menu if necessary. % env_showmenu(Options...) % % In: % Options... : optional name-value pairs; names are: % 'parent': parent menu to link into % % 'shortcuts': whether to enable keyboard shortcuts % % 'forcenew': whether to force creation of a new menu % % Example: % % bring up the BCILAB main menu if it had been closed % env_showmenu; % % See also: % env_startup % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-10-29 % parse options... hlp_varargin2struct(varargin,'parent',[], 'shortcuts',true,'forcenew',false); % check if we're an EEGLAB plugin folders = hlp_split(fileparts(mfilename('fullpath')),filesep); within_eeglab = length(folders) >= 5 && strcmp(folders{end-3},'plugins') && ~isempty(strfind(folders{end-4},'eeglab')); % don't open the menu twice if ~isempty(findobj('Tag','bcilab_menu')) && ~forcenew return; end if isempty(parent) %#ok<NODEF> if within_eeglab && ~forcenew % try to link into the EEGLAB main menu try toolsmenu = findobj(0,'tag','tools'); if ~isempty(toolsmenu) parent = uimenu(toolsmenu, 'Label','BCILAB'); set(toolsmenu,'Enable','on'); end catch disp('Unable to link BCILAB menu into EEGLAB menu.'); end end if isempty(parent) % create new root menu, if no parent from_left = 100; from_top = 150; width = 500; height = 1; % determine position on primary monitor import java.awt.GraphicsEnvironment ge = GraphicsEnvironment.getLocalGraphicsEnvironment(); gd = ge.getDefaultScreenDevice(); scrheight = gd.getDisplayMode().getHeight(); pos = [from_left, scrheight-from_top, width, height]; % create figure figtitle = ['BCILAB ' env_version ' (on ' hlp_hostname ')']; parent = figure('DockControls','off','NumberTitle','off','Name',figtitle,'Resize','off','MenuBar','none','Position',pos,'Tag','bcilab_toolwnd'); end end % Data Source menu source = uimenu(parent, 'Label','Data Source','Tag','bcilab_menu'); uimenu(source,'Label','Load recording(s)...','Accelerator',char(shortcuts*'l'),'Callback','gui_loadset'); wspace = uimenu(source,'Label','Workspace','Separator','on'); uimenu(wspace,'Label','Load...','Callback','io_loadworkspace'); uimenu(wspace,'Label','Save...','Callback','io_saveworkspace'); uimenu(wspace,'Label','Clear...','Callback','clear'); uimenu(source,'Label','Run script...','Separator','on','Callback',@invoke_script); if isdeployed uimenu(source,'Label','Quit','Separator','on','Callback','exit'); end % Offline Analysis menu offline = uimenu(parent, 'Label','Offline Analysis'); uimenu(offline,'Label','New approach...','Accelerator',char(shortcuts*'n'),'Callback','gui_newapproach'); uimenu(offline,'Label','Modify approach...','Accelerator',char(shortcuts*'m'),'Callback','gui_configapproach([],true);'); uimenu(offline,'Label','Review/edit approach...','Accelerator',char(shortcuts*'r'),'Callback','gui_reviewapproach([],true);'); uimenu(offline,'Label','Save approach...','Accelerator',char(shortcuts*'s'),'Callback','gui_saveapproach'); uimenu(offline,'Label','Train new model...','Accelerator',char(shortcuts*'t'),'Callback','gui_calibratemodel','Separator','on'); uimenu(offline,'Label','Apply model to data...','Accelerator',char(shortcuts*'a'),'Callback','gui_applymodel'); uimenu(offline,'Label','Visualize model...','Accelerator',char(shortcuts*'v'),'Callback','gui_visualizemodel'); uimenu(offline,'Label','Run batch analysis...','Accelerator',char(shortcuts*'b'),'Callback','gui_batchanalysis','Separator','on'); uimenu(offline,'Label','Review results...','Accelerator',char(shortcuts*'i'),'Callback','gui_selectresults','Separator','on'); % Online Analysis menu online = uimenu(parent,'Label','Online Analysis'); pipe = uimenu(online,'Label','Process data within...'); read = uimenu(online,'Label','Read input from...'); write = uimenu(online,'Label','Write output to...'); cm_read = uicontextmenu('Tag','bcilab_cm_read'); cm_write = uicontextmenu('Tag','bcilab_cm_write'); % for each plugin sub-directory... dirs = dir(env_translatepath('functions:/online_plugins')); for d={dirs(3:end).name} % find all files, their names, identifiers, and function handles files = dir(env_translatepath(['functions:/online_plugins/' d{1} '/run_*.m'])); names = {files.name}; idents = cellfun(@(n)n(1:end-2),names,'UniformOutput',false); % for each entry... for f=1:length(idents) try if ~exist(idents{f},'file') && ~isdeployed addpath(env_translatepath(['functions:/online_plugins/' d{1}])); end % get properties... props = arg_report('properties',str2func(idents{f})); % get category if strncmp(idents{f},'run_read',8); cats = [read,cm_read]; elseif strncmp(idents{f},'run_write',9); cats = [write,cm_write]; elseif strncmp(idents{f},'run_pipe',8); cats = pipe; end if isfield(props,'name') % add menu entry for cat=cats uimenu(cat,'Label',[props.name '...'],'Callback',['arg_guidialog(@' idents{f} ');'],'Enable','on'); end else warning('env_showmenu:missing_guiname','The online plugin %s does not declare a GUI name; ignoring...',idents{f}); end catch disp(['Could not integrate the online plugin ' idents{f} '.']); end end end uimenu(online,'Label','Clear all online processing','Callback','onl_clear','Separator','on'); % Settings menu settings = uimenu(parent, 'Label','Settings'); uimenu(settings,'Label','Directory settings...','Callback','gui_configpaths'); uimenu(settings,'Label','Cache settings...','Callback','gui_configcache'); uimenu(settings,'Label','Cluster settings...','Callback','gui_configcluster'); uimenu(settings,'Label','Clear memory cache','Callback','env_clear_memcaches','Separator','on'); % Help menu helping = uimenu(parent,'Label','Help'); uimenu(helping,'Label','BCI Paradigms...','Callback','env_doc code/paradigms'); uimenu(helping,'Label','Filters...','Callback','env_doc code/filters'); uimenu(helping,'Label','Machine Learning...','Callback','env_doc code/machine_learning'); scripting = uimenu(helping,'Label','Scripting'); uimenu(scripting,'Label','File input/output...','Callback','env_doc code/io'); uimenu(scripting,'Label','Dataset editing...','Callback','env_doc code/dataset_editing'); uimenu(scripting,'Label','Offline scripting...','Callback','env_doc code/offline_analysis'); uimenu(scripting,'Label','Online scripting...','Callback','env_doc code/online_analysis'); uimenu(scripting,'Label','BCILAB environment...','Callback','env_doc code/environment'); uimenu(scripting,'Label','Cluster handling...','Callback','env_doc code/parallel'); uimenu(scripting,'Label','Keywords...','Separator','on','Callback','env_doc code/keywords'); uimenu(scripting,'Label','Helpers...','Callback','env_doc code/helpers'); uimenu(scripting,'Label','Internals...','Callback','env_doc code/utils'); authoring = uimenu(helping,'Label','Plugin authoring'); uimenu(authoring,'Label','Argument declaration...','Callback','env_doc code/arguments'); uimenu(authoring,'Label','Expression functions...','Callback','env_doc code/expressions'); uimenu(authoring,'Label','Online processing...','Callback','env_doc code/online_analysis'); uimenu(helping,'Label','About...','Separator','on','Callback',@about); uimenu(helping,'Label','Save bug report...','Separator','on','Callback','io_saveworkspace([],true)'); uimenu(helping,'Label','File bug report...','Callback','arg_guidialog(@env_bugreport);'); % toolbar (if not linked into the EEGLAB menu) if ~(within_eeglab && ~forcenew) global tracking; cluster_requested = isfield(tracking,'cluster_requested') && ~isempty(tracking.cluster_requested); cluster_requested = hlp_rewrite(cluster_requested,false,'off',true,'on'); ht = uitoolbar(parent,'HandleVisibility','callback'); uipushtool(ht,'TooltipString','Load recording(s)',... 'CData',load_icon('bcilab:/resources/icons/file_open.png'),... 'HandleVisibility','callback','ClickedCallback','gui_loadset'); uipushtool(ht,'TooltipString','New approach',... 'CData',load_icon('bcilab:/resources/icons/approach_new.png'),... 'HandleVisibility','callback','ClickedCallback','gui_newapproach','Separator','on'); uipushtool(ht,'TooltipString','Load Approach',... 'CData',load_icon('bcilab:/resources/icons/approach_load.png'),... 'HandleVisibility','callback','ClickedCallback',@load_approach); uipushtool(ht,'TooltipString','Save approach',... 'CData',load_icon('bcilab:/resources/icons/approach_save.png'),... 'HandleVisibility','callback','ClickedCallback','gui_saveapproach'); uipushtool(ht,'TooltipString','Modify approach',... 'CData',load_icon('bcilab:/resources/icons/approach_edit.png'),... 'HandleVisibility','callback','ClickedCallback','gui_configapproach([],true);'); uipushtool(ht,'TooltipString','Review/edit approach',... 'CData',load_icon('bcilab:/resources/icons/approach_review.png'),... 'HandleVisibility','callback','ClickedCallback','gui_reviewapproach([],true);'); uipushtool(ht,'TooltipString','Train new model',... 'CData',load_icon('bcilab:/resources/icons/model_new.png'),... 'HandleVisibility','callback','ClickedCallback','gui_calibratemodel','Separator','on'); uipushtool(ht,'TooltipString','Load Model',... 'CData',load_icon('bcilab:/resources/icons/model_load.png'),... 'HandleVisibility','callback','ClickedCallback',@load_model); uipushtool(ht,'TooltipString','Save Model',... 'CData',load_icon('bcilab:/resources/icons/model_save.png'),... 'HandleVisibility','callback','ClickedCallback','gui_savemodel'); uipushtool(ht,'TooltipString','Apply model to data',... 'CData',load_icon('bcilab:/resources/icons/model_apply.png'),... 'HandleVisibility','callback','ClickedCallback','gui_applymodel'); uipushtool(ht,'TooltipString','Visualize model',... 'CData',load_icon('bcilab:/resources/icons/model_visualize.png'),... 'HandleVisibility','callback','ClickedCallback','gui_visualizemodel'); uipushtool(ht,'TooltipString','Run batch analysis',... 'CData',load_icon('bcilab:/resources/icons/batch_analysis.png'),... 'HandleVisibility','callback','ClickedCallback','gui_batchanalysis'); uipushtool(ht,'TooltipString','Read input from (online)',... 'CData',load_icon('bcilab:/resources/icons/online_in.png'),... 'HandleVisibility','callback','Separator','on','ClickedCallback',@click_read); uipushtool(ht,'TooltipString','Write output to (online)',... 'CData',load_icon('bcilab:/resources/icons/online_out.png'),... 'HandleVisibility','callback','ClickedCallback',@click_write); uipushtool(ht,'TooltipString','Clear online processing',... 'CData',load_icon('bcilab:/resources/icons/online_clear.png'),... 'HandleVisibility','callback','ClickedCallback','onl_clear'); uitoggletool(ht,'TooltipString','Request cluster availability',... 'CData',load_icon('bcilab:/resources/icons/acquire_cluster.png'),'HandleVisibility','callback','Separator','on','State',cluster_requested,'OnCallback','env_acquire_cluster','OffCallback','env_release_cluster'); uipushtool(ht,'TooltipString','About BCILAB',... 'CData',load_icon('bcilab:/resources/icons/help.png'),'HandleVisibility','callback','Separator','on','ClickedCallback',@about); end if within_eeglab && forcenew mainmenu = findobj('Tag','EEGLAB'); % make the EEGLAB menu current again if ~isempty(mainmenu) figure(mainmenu); end end function about(varargin) infotext = strvcat(... 'BCILAB is an open-source toolbox for Brain-Computer Interfacing research.', ... 'It is being developed by Christian Kothe at the Swartz Center for Computational Neuroscience,',... 'Institute for Neural Computation (University of California San Diego).', ... ' ',... 'Development of this software was supported by the Army Research Laboratories under', ... 'Cooperative Agreement Number W911NF-10-2-0022, as well as by a gift from the Swartz Foundation.', ... ' ',... 'The design was inspired by the preceding PhyPA toolbox, written by C. Kothe and T. Zander', ... 'at the Berlin Institute of Technology, Chair Human-Machine Systems.', ... ' ',... 'BCILAB connects to the following toolboxes/libraries:', ... '* AWS SDK (Amazon)', ... '* Amica (SCCN/UCSD)', ... '* Chronux (Mitra Lab, Cold Spring Harbor)', ... '* CVX (Stanford)', ... '* DAL (U. Tokyo)', ... '* DataSuite (SCCN/UCSD)', ... '* EEGLAB (SCCN/UCSD)', ... '* BCI2000import (www.bci2000.org)', ... '* Logreg (Jan Drugowitsch)', ... '* FastICA (Helsinki UT)', ... '* glm-ie (Max Planck Institute for Biological Cybernetics, Tuebingen)', ... '* glmnet (Stanford)', ... '* GMMBayes (Helsinki UT)', ... '* HKL (Francis Bach, INRIA)', ... '* KernelICA (Francis Bach, Berkeley)', ... '* LIBLINEAR (National Taiwan University)', ... '* matlabcontrol (Joshua Kaplan)', ... '* mlUnit (Thomas Dohmke)', ... '* NESTA (Caltech)', ... '* OSC (Andy Schmeder) and LibLO (Steve Harris)', ... '* PROPACK (Stanford)', ... '* PropertyGrid (Levente Hunyadi)', ... '* SparseBayes (Vector Anomaly)', ... '* SVMlight (Thorsten Joachims)', ... '* SVMperf (Thorsten Joachims)', ... '* Talairach (UTHSCSA)', ... '* Time-frequency toolbox (CRNS / Rice University)', ... '* t-SNE (TU Delft)', ... '* VDPGM (Kenichi Kurihara)'); %#ok<REMFF1> warndlg2(infotext,'About'); function click_read(varargin) % pop up a menu when clicking the "read input from" toolbar button tw = findobj('tag','bcilab_toolwnd'); cm = findobj('tag','bcilab_cm_read'); tpos = get(tw,'Position'); ppos = get(0,'PointerLocation'); set(cm,'Position',ppos - tpos(1:2), 'Visible', 'on'); set(cm,'Position',ppos - tpos(1:2), 'Visible', 'on'); function click_write(varargin) % pop up a menu when clicking the "write output to" toolbar button tw = findobj('tag','bcilab_toolwnd'); cm = findobj('tag','bcilab_cm_write'); tpos = get(tw,'Position'); ppos = get(0,'PointerLocation'); set(cm,'Position',ppos - tpos(1:2), 'Visible', 'on'); set(cm,'Position',ppos - tpos(1:2), 'Visible', 'on'); % run a script function invoke_script(varargin) [filename,filepath] = uigetfile({'*.m', 'MATLAB file'},'Select script to run',env_translatepath('bcilab:/')); if ~isnumeric(filename) run_script([filepath filename],true); end % load a toolbar icon function cols = load_icon(filename) [cols,palette,alpha] = imread(env_translatepath(filename)); if ~isempty(palette) error('This function does not handle palettized icons.'); end cls = class(cols); cols = double(cols); cols = cols/double(intmax(cls)); cols([alpha,alpha,alpha]==0) = NaN; % load a BCI model from disk function load_model(varargin) [filename,filepath] = uigetfile({'*.mdl', 'BCI Model'},'Select BCI model to load',env_translatepath('home:/.bcilab/models')); if ~isnumeric(filename) contents = io_load([filepath filename],'-mat'); for fld=fieldnames(contents)' tmp = contents.(fld{1}); if isstruct(tmp) && isfield(tmp,'timestamp') tmp.timestamp = now; assignin('base',fld{1},tmp); end end end % load a BCI approach from disk function load_approach(varargin) [filename,filepath] = uigetfile({'*.apr', 'BCI Approach'},'Select BCI approach to load',env_translatepath('home:/.bcilab/approaches')); if ~isnumeric(filename) contents = io_load([filepath filename],'-mat'); for fld=fieldnames(contents)' tmp = contents.(fld{1}); if isstruct(tmp) && isfield(tmp,'paradigm') tmp.timestamp = now; assignin('base',fld{1},tmp); end end end
github
lcnhappe/happe-master
env_startup.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/environment/env_startup.m
21,807
utf_8
100127e2a96b4156d68b8af7fec6c1ef
function env_startup(varargin) % Start the BCILAB toolbox, i.e. set up global data structures and load dependency toolboxes. % env_startup(Options...) % % Does all steps necessary for loading the toolbox -- the functions bcilab.m and eegplugin_bcilab.m % are wrappers around this function which provide a higher level of convenience (configuration files % in particular). Directly calling this function is not recommended. % % In: % Options... : optional name-value pairs; allowed names are: % % --- directory settings --- % % 'data': Path where data sets are stored, used by data loading/saving routines. % (default: path/to/bcilab/userdata) % Note: this may also be a cell array of directories, in which case references % to data:/ are looked up in all of the specified directories, and the % best match is taken. % % 'store': Path in which data shall be stored. Write permissions necessary (by default % identical to the data path) % % 'temp': temp directory (for misc outputs, e.g., AMICA models and dipole fits) % (default: path/to/bcilab-temp, or path/to/cache/bcilab_temp if a cache % directory was specified) % % --- caching settings --- % % 'cache': Path where intermediate data sets are cached. Should be located on a fast % (local) drive with sufficient free capacity. % * if this is left unspecified or empty, the cache is disabled % * if this is a directory, it is used as the default cache location % * a fine-grained cache setup can be defined by specifying a cell array of % cache locations, where each cache location is a cell array of name-value % pairs, with possible names: % 'dir': directory of the cache location (e.g. '/tmp/bcilab_tmp/'), mandatory % 'time': only computations taking more than this many seconds may be stored % in this location, but if a computation takes so long that another % cache location with a higher time applies, that other location is % preferred. For example, the /tmp directory may take computations % that take at least a minute, the home directory may take % computations that take at least an hour, the shared /data/results % location of the lab may take computations that take at least 12 % hours (default: 30 seconds) % 'free': minimum amount of space to keep free on the given location, in GiB, % or, if smaller than 1, free is taken as the fraction of total % space to keep free (default: 0.1) % 'tag': arbitrary identifier for the cache location (default: 'location_i', % for the i'th location) must be a valid MATLAB struct field name, % only for display purposes % % 'mem_capacity': capacity of the memory cache (default: 2) % if this is smaller than 1, it is taken as a fraction of the total % free physical memory at startup time, otherwise it is in GB % % 'data_reuses' : estimated number of reuses of a data set being computed (default: 3) % ... depending on disk access speeds, this determines whether it makes % sense to cache the data set % % --- parallel computing settings --- % % 'parallel' : parallelization options; cell array of name-value pairs, with names: % 'engine': parallelization engine to use, can be 'local', % 'ParallelComputingToolbox', or 'BLS' (BCILAB Scheduler) % (default: 'local') % 'pool': node pool, cell array of 'host:port' strings; necessary for the % BLS scheduler (default: {'localhost:23547','localhost:23548', % ..., 'localhost:23554'}) % 'policy': scheduling policy function; necessary for the BLS scheduler % (default: 'par_reschedule_policy') % % note: Parallel processing has so far received only relatively little % testing. Please use this facility at your own risk and report % any issues (e.g., starving jobs) that you may encounter. % % 'aquire_options' : Cell array of arguments as expected by par_getworkers_ssh % (with bcilab-specific defaults for unspecified arguments) % (default: {}) % % 'worker' : whether this toolbox instance is started as a worker process or not; if % false, diary logging and GUI menus and popups are enabled. If given as a % cell array, the cell contents are passed on to the function par_worker, % which lets the toolbox act as a commandline-less worker (waiting to % receive jobs over the network) (default: false) % % --- misc settings --- % % 'menu' : create a menu bar (default: true) -- if this is set to 'separate', the BCILAB % menu will be detached from the EEGLAB menu, even if run as a plugin. % % 'autocompile' : whether to try to auto-compile mex/java files (default: true) % % Examples: % Note that env_startup is usually not being called directly; instead the bcilab.m function in the % bcilab root directory forwards its arguments (and variables declared in a config script) to this % function. % % % start BCILAB with a custom data directory, and a custom cache directory % env_startup('data','C:\Data', 'cache','C:\Data\Temp'); % % % as before, but specify multiple data paths that are being fused into a common directory view % % where possible (in case of ambiguities, the earlier directories take precedence) % env_startup('data',{'C:\Data','F:\Data2'}, 'cache','C:\Data\Temp'); % % % start BCILAB with a custom data and storage directory, and specify a cache location with some % % additional meta-data (namely: only cache there if a computation takes at least 60 seconds, and % % reserve 15GB free space % env_startup('data','/media/data', 'store','/media/data/results', 'cache',{{'dir','/tmp/tracking','time',60,'free',15}}); % % % as before, but make sure that the free space does not fall below 20% of the disk % env_startup('data','/media/data', 'store','/media/data/results', 'cache',{{'dir','/tmp/tracking','time',60,'free',0.2}}); % % % start BCILAB and set up a very big in-memory cache for working with large data sets (of 16GB) % env_startup('mem_capacity',16) % % % start BCILAB but prevent the main menu from popping up % env_startup('menu',false) % % % start BCILAB and specify which parallel computation resources to use; this assumes that the % % respective hostnames are reachable from this computer, and are running MATLAB sessions which % % execute a command similar to: cd /your/path/to/bcilab; bcilab('worker',true); par_worker; % env_startup('parallel',{'engine','BLS', 'pool',{'computer1','computer2','computer3'}} % % % % start the toolbox as a worker % env_startup('worker',true) % % % start the toolbox as worker, and pass some arguments to par_worker (making it listen on port % % 15456, using a portrange of 0, and using some custom update-checking arguments % env_startup('worker',{15456,0,'update_check',{'/data/bcilab-0.9-beta2b/build/bcilab','/mnt/remote/bcilab-build/bcilab'}}) % % See also: % env_load_dependencies, env_translatepath % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-03-28 % determine the BCILAB core directories if ~isdeployed tmpdir = path_normalize(fileparts(mfilename('fullpath'))); delims = strfind(tmpdir,filesep); base_dir = tmpdir(1:delims(end-1)); else % in deployed mode, we walk up until we find the BCILAB base directory tmpdir = pwd; delims = strfind(tmpdir,filesep); disp(['Launching from directory ' tmpdir ' ...']); for k=length(delims):-1:1 base_dir = tmpdir(1:delims(k)); if exist([base_dir filesep 'code'],'dir') success = true; %#ok<NASGU> break; end end if ~exist('success','var') error('Could not find the ''code'' directory; make sure that the binary is in a sub-directory of a full BCILAB distribution.'); end end function_dir = [base_dir 'code']; dependency_dir = [base_dir 'dependencies']; resource_dir = [base_dir 'resources']; script_dir = [base_dir 'userscripts']; build_dir = [base_dir 'build']; % add them all to the MATLAB path (except for dependencies, which are loaded separately) if ~isdeployed % remove existing BCILAB path references ea = which('env_add'); if ~isempty(ea) % get the bcilab root directory that's currently in the path bad_path = ea(1:strfind(ea,'dependencies')-2); % remove all references paths = strsplit(path,pathsep); retain = cellfun('isempty',strfind(paths,bad_path)); path(sprintf(['%s' pathsep],paths{retain})); if ~all(retain) disp(' BCILAB sub-directories have been detected in the MATLAB path, removing them.'); end end % add core function paths addpath(genpath(function_dir)); if exist(build_dir,'dir') addpath(build_dir); end evalc('addpath(genpath(script_dir))'); evalc('addpath([base_dir ''userdata''])'); % remove existing eeglab path references, if BCILAB is not itself contained as a plugin in this % EEGLAB distribution ep = which('eeglab'); if ~isempty(ep) && isempty(strfind(mfilename('fullpath'),fileparts(which('eeglab')))) paths = strsplit(path,pathsep); ep = strsplit(ep,filesep); retain = cellfun('isempty',strfind(paths,ep{end-1})); path(sprintf(['%s' pathsep],paths{retain})); if ~all(retain) disp(' The previously loaded EEGLAB path has been replaced.'); end end end if hlp_matlab_version < 706 disp('Note: Your version of MATLAB is not supported by BCILAB any more. You may try BCILAB version 0.9, which supports old MATLAB''s back to version 2006a.'); end % get options opts = hlp_varargin2struct(varargin,'data',[],'store',[],'cache',[],'temp',[],'mem_capacity',2,'data_reuses',3,'parallel',{'use','local'}, 'menu',true, 'configscript','', 'worker',false, 'autocompile',true, 'acquire_options',{}); % load all dependencies, recursively... disp('Loading BCILAB dependencies...'); env_load_dependencies(dependency_dir,opts.autocompile); if ischar(opts.worker) try disp(['Evaluating worker argument: ' opts.worker]); opts.worker = eval(opts.worker); catch disp('Failed to evaluate worker; setting it to false.'); opts.worker = false; end elseif ~isequal(opts.worker,false) fprintf('Worker was given as a %s with value %s\n',class(opts.worker),hlp_tostring(opts.worker)); end if ischar(opts.parallel) try disp(['Evaluating parallel argument: ' opts.parallel]); opts.parallel = eval(opts.parallel); catch disp('Failed to evaluate worker; setting it to empty.'); opts.parallel = {}; end end % process data directories if isempty(opts.data) opts.data = {}; end if ~iscell(opts.data) opts.data = {opts.data}; end for d = 1:length(opts.data) opts.data{d} = path_normalize(opts.data{d}); end if isempty(opts.data) || ~any(cellfun(@exist,opts.data)) opts.data = {[base_dir 'userdata']}; end % process store directory if isempty(opts.store) opts.store = opts.data{1}; end opts.store = path_normalize(opts.store); % process cache directories if isempty(opts.cache) opts.cache = {}; end if ischar(opts.cache) opts.cache = {{'dir',opts.cache}}; end if iscell(opts.cache) && ~isempty(opts.cache) && ~iscell(opts.cache{1}) opts.cache = {opts.cache}; end for d=1:length(opts.cache) opts.cache{d} = hlp_varargin2struct(opts.cache{d},'dir','','tag',['location_' num2str(d)],'time',30,'free',0.1); end % remove entries with empty dir opts.cache = opts.cache(cellfun(@(e)~isempty(e.dir),opts.cache)); for d=1:length(opts.cache) % make sure that the BCILAB cache is in its own proper sub-directory opts.cache{d}.dir = [path_normalize(opts.cache{d}.dir) filesep 'bcilab_cache']; % create the directory if necessary if ~isempty(opts.cache{d}.dir) && ~exist(opts.cache{d}.dir,'dir') try io_mkdirs([opts.cache{d}.dir filesep],{'+w','a'}); catch disp(['cache directory ' opts.cache{d}.dir ' does not exist and could not be created']); end end end % process temp directory if isempty(opts.temp) if ~isempty(opts.cache) opts.temp = [fileparts(opts.cache{1}.dir) filesep 'bcilab_temp']; else opts.temp = [base_dir(1:end-1) '-temp']; end end opts.temp = path_normalize(opts.temp); try io_mkdirs([opts.temp filesep],{'+w','a'}); catch disp(['temp directory ' opts.temp ' does not exist and could not be created.']); end % set global variables global tracking tracking.paths = struct('bcilab_path',{base_dir(1:end-1)}, 'function_path',{function_dir}, 'data_paths',{opts.data}, 'store_path',{opts.store}, 'dependency_path',{dependency_dir},'resource_path',{resource_dir},'temp_path',{opts.temp}); for d=1:length(opts.cache) location = rmfield(opts.cache{d},'tag'); % convert GiB to bytes if location.free >= 1 location.free = location.free*1024*1024*1024; end try warning off MATLAB:DELETE:Permission; % probe the cache locations... import java.io.*; % try to add a free space checker (Java File object), which we use to check the quota, etc. location.space_checker = File(opts.cache{d}.dir); filename = [opts.cache{d}.dir filesep '__probe_cache_ ' num2str(round(rand*2^32)) '__.mat']; if exist(filename,'file') delete(filename); end oldvalue = location.space_checker.getFreeSpace; testdata = double(rand(1024)); %#ok<NASGU> objinfo = whos('testdata'); % do a quick read/write test t0=tic; save(filename,'testdata'); location.writestats = struct('size',{0 objinfo.bytes},'time',{0 toc(t0)}); t0=tic; load(filename); location.readstats = struct('size',{0 objinfo.bytes},'time',{0 toc(t0)}); newvalue = location.space_checker.getFreeSpace; if exist(filename,'file') delete(filename); end % test if the space checker works, and also get some quick measurements of disk read/write speeds if newvalue >= oldvalue location = rmfield(location,'space_checker'); end % and turn the free space ratio into an absolute value if location.free < 1 location.free = location.free*location.space_checker.getTotalSpace; end catch e disp(['Could not probe cache file system speed; reason: ' e.message]); end tracking.cache.disk_paths.(opts.cache{d}.tag) = location; end if opts.mem_capacity < 1 free_mem = hlp_memavail(); tracking.cache.capacity = round(opts.mem_capacity * free_mem); if free_mem < 1024*1024*1024 sprintf('Warning: You have less than 1 GB of free memory (reserving %.0f%% = %.0fMB for data caches).\n',100*opts.mem_capacity,tracking.cache.capacity/(1024*1024)); sprintf(' This will severely impact the offline processing speed of BCILAB.\n'); sprintf(' You may force a fixed amount of cache cacpacity by assinging a value greater than 1 (in GB) to the ''mem_capacity'' variable in your bcilab_config.m.'); end else tracking.cache.capacity = opts.mem_capacity*1024*1024*1024; end tracking.cache.reuses = opts.data_reuses; tracking.cache.data = struct(); tracking.cache.sizes = struct(); tracking.cache.times = struct(); if ~isfield(tracking.cache,'disk_paths') tracking.cache.disk_paths = struct(); end % initialize stack mechanisms tracking.stack.base = struct('disable_expressions',false); % set parallelization settings tracking.parallel = hlp_varargin2struct(opts.parallel, ... 'engine','local', ... 'pool',{'localhost:23547','localhost:23548','localhost:23549','localhost:23550','localhost:23551','localhost:23552','localhost:23553','localhost:23554'}, ... 'policy','par_reschedule_policy'); tracking.acquire_options = opts.acquire_options; tracking.configscript = opts.configscript; try cd(script_dir); catch end % set up some microcache properties hlp_microcache('arg','lambda_equality','proper'); hlp_microcache('spec','group_size',5); hlp_microcache('findfunction','lambda_equality','fast','group_size',5); % show toolbox status fprintf('\n'); disp(['code is in ' function_dir]); datalocs = []; for d = opts.data datalocs = [datalocs d{1} ', ']; end %#ok<AGROW> disp(['data is in ' datalocs(1:end-2)]); disp(['results are in ' opts.store]); if ~isempty(opts.cache) fnames = fieldnames(tracking.cache.disk_paths); for f = 1:length(fnames) if f == 1 disp(['cache is in ' tracking.cache.disk_paths.(fnames{f}).dir ' (' fnames{f} ')']); else disp([' ' tracking.cache.disk_paths.(fnames{f}).dir ' (' fnames{f} ')']); end end else disp('cache is disabled'); end disp(['temp is in ' opts.temp]); fprintf('\n'); % turn off a few nasty warnings warning off MATLAB:log:logOfZero warning off MATLAB:divideByZero %#ok<RMWRN> warning off MATLAB:RandStream:ReadingInactiveLegacyGeneratorState % for GMMs.... if isequal(opts.worker,false) || isequal(opts.worker,0) % --- regular mode --- % set up logfile if ~exist([hlp_homedir filesep '.bcilab'],'dir') if ~mkdir(hlp_homedir,'.bcilab'); disp('Cannot create directory .bcilab in your home folder.'); end end tracking.logfile = env_translatepath('home:/.bcilab/logs/bcilab_console.log'); try if ~exist([hlp_homedir filesep '.bcilab' filesep 'logs'],'dir') mkdir([hlp_homedir filesep '.bcilab' filesep 'logs']); end if exist(tracking.logfile,'file') warning off MATLAB:DELETE:Permission delete(tracking.logfile); warning on MATLAB:DELETE:Permission end catch,end try diary(tracking.logfile); catch,end if ~exist([hlp_homedir filesep '.bcilab' filesep 'models'],'dir') mkdir([hlp_homedir filesep '.bcilab' filesep 'models']); end if ~exist([hlp_homedir filesep '.bcilab' filesep 'approaches'],'dir') mkdir([hlp_homedir filesep '.bcilab' filesep 'approaches']); end % create a menu if ~(isequal(opts.menu,false) || isequal(opts.menu,0)) try env_showmenu('forcenew',strcmp(opts.menu,'separate')); catch e disp('Could not open the BCILAB menu; traceback: '); env_handleerror(e); end end % display a version reminder bpath = hlp_split(env_translatepath('bcilab:/'),filesep); if ~isempty(strfind(bpath{end},'-stable')) if isdeployed disp(' This is the stable version.'); else disp(' This is the stable version - please keep this in mind when editing.'); end elseif ~isempty(strfind(bpath{end},'-devel')) if isdeployed disp(' This is the DEVELOPER version.'); else try cprintf([0 0.4 1],'This is the DEVELOPER version.\n'); catch disp(' This is the DEVELOPER version.'); end end end disp([' Welcome to the BCILAB toolbox on ' hlp_hostname '!']) fprintf('\n'); else disp('Now entering worker mode...'); % -- worker mode --- if ~isdeployed % disable standard dialogs in the workers addpath(env_translatepath('dependencies:/disabled_dialogs')); end % close EEGLAB main menu mainmenu = findobj('Tag','EEGLAB'); if ~isempty(mainmenu) close(mainmenu); end drawnow; % translate the options if isequal(opts.worker,true) opts.worker = {}; end if ~iscell(opts.worker) opts.worker = {opts.worker}; end % start! par_worker(opts.worker{:}); end try % pretend to invoke the dependency list so that the compiler finds it... dependency_list; catch end % normalize a directory path function dir = path_normalize(dir) dir = strrep(strrep(dir,'\',filesep),'/',filesep); if dir(end) == filesep dir = dir(1:end-1); end % Split a string according to some delimiter(s). % Not as fast as hlp_split (and doesn't fuse % delimiters), but works without bsxfun. function strings = strsplit(string, splitter) ix = strfind(string, splitter); strings = cell(1,numel(ix)+1); ix = [0 ix numel(string)+1]; for k = 2 : numel(ix) strings{k-1} = string(ix(k-1)+1:ix(k)-1); end
github
lcnhappe/happe-master
strsetmatch.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/strsetmatch.m
928
utf_8
73f5541ad337bbbc7179cf71004b7062
% Indicator of which elements of a universal set are in a particular set. % % Input arguments: % strset: % the particular set as a cell array of strings % struniversal: % the universal set as a cell array of strings, all elements in the % particular set are expected to be in the universal set % % Output arguments: % ind: % a logical vector of which elements of the universal set are found in % the particular set % Copyright 2010 Levente Hunyadi function ind = strsetmatch(strset, struniversal) assert(iscellstr(strset), 'strsetmatch:ArgumentTypeMismatch', ... 'The particular set is expected to be a cell array of strings.'); assert(iscellstr(struniversal), 'strsetmatch:ArgumentTypeMismatch', ... 'The particular set is expected to be a cell array of strings.'); ind = false(size(struniversal)); for k = 1 : numel(struniversal) ind(k) = ~isempty(strmatch(struniversal{k}, strset, 'exact')); end
github
lcnhappe/happe-master
helptext.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/helptext.m
1,593
utf_8
bd49205fc50aeae5a909c8b58a47be6d
% Help text associated with a function, class, property or method. % Spaces are removed as necessary. % % See also: helpdialog % Copyright 2008-2010 Levente Hunyadi function text = helptext(obj) if ischar(obj) text = gethelptext(obj); else text = gethelptext(class(obj)); end text = texttrim(text); function text = gethelptext(key) persistent dict; if isempty(dict) && usejava('jvm') dict = java.util.Properties(); end if ~isempty(dict) text = char(dict.getProperty(key)); % look up key in cache if ~isempty(text) % help text found in cache return; end text = help(key); if ~isempty(text) % help text returned by help call, save it into cache dict.setProperty(key, text); end else text = help(key); end function lines = texttrim(text) % Trims leading and trailing whitespace characters from lines of text. % The number of leading whitespace characters to trim is determined by % inspecting all lines of text. loc = strfind(text, sprintf('\n')); n = numel(loc); loc = [ 0 loc ]; lines = cell(n,1); if ~isempty(loc) for k = 1 : n lines{k} = text(loc(k)+1 : loc(k+1)); end end lines = deblank(lines); % determine maximum leading whitespace count f = ~cellfun(@isempty, lines); % filter for non-empty lines firstchar = cellfun(@(line) find(~isspace(line), 1), lines(f)); % index of first non-whitespace character if isempty(firstchar) indent = 1; else indent = min(firstchar); end % trim leading whitespace lines(f) = cellfun(@(line) line(min(indent,numel(line)):end), lines(f), 'UniformOutput', false);
github
lcnhappe/happe-master
javaclass.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/javaclass.m
3,635
utf_8
7165e1fd27bd4f5898132023dc04662b
% Return java.lang.Class instance for MatLab type. % % Input arguments: % mtype: % the MatLab name of the type for which to return the java.lang.Class % instance % ndims: % the number of dimensions of the MatLab data type % % See also: class % Copyright 2009-2010 Levente Hunyadi function jclass = javaclass(mtype, ndims) validateattributes(mtype, {'char'}, {'nonempty','row'}); if nargin < 2 ndims = 0; else validateattributes(ndims, {'numeric'}, {'nonnegative','integer','scalar'}); end if ndims == 1 && strcmp(mtype, 'char'); % a character vector converts into a string jclassname = 'java.lang.String'; elseif ndims > 0 jclassname = javaarrayclass(mtype, ndims); else % The static property .class applied to a Java type returns a string in % MatLab rather than an instance of java.lang.Class. For this reason, % use a string and java.lang.Class.forName to instantiate a % java.lang.Class object; the syntax java.lang.Boolean.class will not % do so. switch mtype case 'logical' % logical vaule (true or false) jclassname = 'java.lang.Boolean'; case 'char' % a singe character jclassname = 'java.lang.Character'; case {'int8','uint8'} % 8-bit signed and unsigned integer jclassname = 'java.lang.Byte'; case {'int16','uint16'} % 16-bit signed and unsigned integer jclassname = 'java.lang.Short'; case {'int32','uint32'} % 32-bit signed and unsigned integer jclassname = 'java.lang.Integer'; case {'int64','uint64'} % 64-bit signed and unsigned integer jclassname = 'java.lang.Long'; case 'single' % single-precision floating-point number jclassname = 'java.lang.Float'; case 'double' % double-precision floating-point number jclassname = 'java.lang.Double'; case 'cellstr' % a single cell or a character array jclassname = 'java.lang.String'; otherwise error('java:javaclass:InvalidArgumentValue', ... 'MatLab type "%s" is not recognized or supported in Java.', mtype); end end % Note: When querying a java.lang.Class object by name with the method % jclass = java.lang.Class.forName(jclassname); % MatLab generates an error. For the Class.forName method to work, MatLab % requires class loader to be specified explicitly. jclass = java.lang.Class.forName(jclassname, true, java.lang.Thread.currentThread().getContextClassLoader()); function jclassname = javaarrayclass(mtype, ndims) % Returns the type qualifier for a multidimensional Java array. switch mtype case 'logical' % logical array of true and false values jclassid = 'Z'; case 'char' % character array jclassid = 'C'; case {'int8','uint8'} % 8-bit signed and unsigned integer array jclassid = 'B'; case {'int16','uint16'} % 16-bit signed and unsigned integer array jclassid = 'S'; case {'int32','uint32'} % 32-bit signed and unsigned integer array jclassid = 'I'; case {'int64','uint64'} % 64-bit signed and unsigned integer array jclassid = 'J'; case 'single' % single-precision floating-point number array jclassid = 'F'; case 'double' % double-precision floating-point number array jclassid = 'D'; case 'cellstr' % cell array of strings jclassid = 'Ljava.lang.String;'; otherwise error('java:javaclass:InvalidArgumentValue', ... 'MatLab type "%s" is not recognized or supported in Java.', mtype); end jclassname = [repmat('[',1,ndims), jclassid];
github
lcnhappe/happe-master
helpdialog.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/helpdialog.m
3,397
utf_8
f16f23c1b608a247bc5298f5ebc6d321
% Displays a dialog to give help information on an object. % % Examples: % helpdialog char % gives information of character arrays % helpdialog plot % gives help on the plot command % helpdialog(obj) % gives help on the MatLab object obj % % See also: helptext, msgbox % Copyright 2008-2010 Levente Hunyadi function helpdialog(obj) if nargin < 1 obj = 'helpdialog'; end if ischar(obj) key = obj; else key = class(obj); end title = [key ' - Quick help']; text = helptext(key); if isempty(text) text = {'No help available.'}; end if 0 % standard MatLab message dialog box createmode = struct( ... 'WindowStyle', 'replace', ... 'Interpreter', 'none'); msgbox(text, title, 'help', createmode); else fig = figure( ... 'MenuBar', 'none', ... 'Name', title, ... 'NumberTitle', 'off', ... 'Position', [0 0 480 160], ... 'Toolbar', 'none', ... 'Visible', 'off', ... 'ResizeFcn', @helpdialog_resize); % information icon icons = load('dialogicons.mat'); icons.helpIconMap(256,:) = get(fig, 'Color'); iconaxes = axes( ... 'Parent', fig, ... 'Units', 'pixels', ... 'Tag', 'IconAxes'); try iconimg = image('CData', icons.helpIconData, 'Parent', iconaxes); set(fig, 'Colormap', icons.helpIconMap); catch me delete(fig); rethrow(me) end if ~isempty(get(iconimg,'XData')) && ~isempty(get(iconimg,'YData')) set(iconaxes, ... 'XLim', get(iconimg,'XData')+[-0.5 0.5], ... 'YLim', get(iconimg,'YData')+[-0.5 0.5]); end set(iconaxes, ... 'Visible', 'off', ... 'YDir', 'reverse'); % help text rgb = get(fig, 'Color'); text = cellfun(@(line) helpdialog_html(line), text, 'UniformOutput', false); html = ['<html>' strjoin(sprintf('\n'), text) '</html>']; jtext = javax.swing.JLabel(html); jcolor = java.awt.Color(rgb(1), rgb(2), rgb(3)); jtext.setBackground(jcolor); jtext.setVerticalAlignment(1); jscrollpane = javax.swing.JScrollPane(jtext, javax.swing.JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED, javax.swing.JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED); jscrollpane.getViewport().setBackground(jcolor); jscrollpane.setBorder(javax.swing.border.EmptyBorder(0,0,0,0)); [jcontrol,jcontainer] = javacomponent(jscrollpane, [0 0 100 100]); set(jcontainer, 'Tag', 'HelpText'); movegui(fig, 'center'); % center figure on screen set(fig, 'Visible', 'on'); end function helpdialog_resize(fig, event) %#ok<INUSD> position = getpixelposition(fig); width = position(3); height = position(4); iconaxes = findobj(fig, 'Tag', 'IconAxes'); helptext = findobj(fig, 'Tag', 'HelpText'); bottom = 7*height/12; set(iconaxes, 'Position', [12 bottom 51 51]); set(helptext, 'Position', [75 12 width-75-12 height-24]); function html = helpdialog_html(line) preline = deblank(line); % trailing spaces removed line = strtrim(preline); % leading spaces removed leadingspace = repmat('&nbsp;', 1, numel(preline)-numel(line)); % add leading spaces as non-breaking space ix = strfind(line, 'See also'); if ~isempty(ix) ix = ix(1) + numel('See also'); line = [ line(1:ix-1) regexprep(line(ix:end), '(\w[\d\w]+)', '<a href="matlab:helpdialog $1">$1</a>') ]; end html = ['<p>' leadingspace line '</p>'];
github
lcnhappe/happe-master
getdependentproperties.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/getdependentproperties.m
907
utf_8
5f87bb7115d9bcacd8556d89a4492c44
% Publicly accessible dependent properties of an object. % % See also: meta.property % Copyright 2010 Levente Hunyadi function dependent = getdependentproperties(obj) dependent = {}; if isstruct(obj) % structures have no dependent properties return; end try clazz = metaclass(obj); catch %#ok<CTCH> return; % old-style class (i.e. not defined with the classdef keyword) have no dependent properties end k = 0; % number of dependent properties found n = numel(clazz.Properties); % maximum number of properties dependent = cell(n, 1); for i = 1 : n property = clazz.Properties{i}; if property.Abstract || property.Hidden || ~strcmp(property.GetAccess, 'public') || ~property.Dependent continue; % skip abstract, hidden, inaccessible and independent properties end k = k + 1; dependent{k} = property.Name; end dependent(k+1:end) = []; % drop unused cells
github
lcnhappe/happe-master
example_matrixeditor.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/example_matrixeditor.m
471
utf_8
637b619421d215e7270f8502574e4ff7
% Demonstrates how to use the matrix editor. % % See also: MatrixEditor % Copyright 2010 Levente Hunyadi function example_matrixeditor fig = figure( ... 'MenuBar', 'none', ... 'Name', 'Matrix editor demo - Copyright 2010 Levente Hunyadi', ... 'NumberTitle', 'off', ... 'Toolbar', 'none'); editor = MatrixEditor(fig, ... 'Item', [1,2,3,4;5,6,7,8;9,10,11,12], ... 'Type', PropertyType('denserealdouble','matrix')); uiwait(fig); disp(editor.Item);
github
lcnhappe/happe-master
example_propertyeditor.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/example_propertyeditor.m
473
utf_8
49faa2989b2f9c32c26f366e77eaf0b2
% Demonstrates how to use the property editor. % % See also: PropertyEditor % Copyright 2010 Levente Hunyadi function example_propertyeditor % create figure f = figure( ... 'MenuBar', 'none', ... 'Name', 'Property editor demo - Copyright 2010 Levente Hunyadi', ... 'NumberTitle', 'off', ... 'Toolbar', 'none'); items = { SampleObject SampleObject }; editor = PropertyEditor(f, 'Items', items); editor.AddItem(SampleNestedObject, 1); editor.RemoveItem(1);
github
lcnhappe/happe-master
nestedfetch.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/nestedfetch.m
1,000
utf_8
1f3b58597c8ee6879bc2650defb0799d
% Fetches the value of the named property of an object or structure. % This function can deal with nested properties. % % Input arguments: % obj: % the handle or value object the value should be assigned to % name: % a property name with dot (.) separating property names at % different hierarchy levels % value: % the value to assign to the property at the deepest hierarchy % level % % Example: % obj = struct('surface', struct('nested', 23)); % value = nestedfetch(obj, 'surface.nested'); % disp(value); % prints 23 % % See also: nestedassign % Copyright 2010 Levente Hunyadi function value = nestedfetch(obj, name) if ~iscell(name) nameparts = strsplit(name, '.'); else nameparts = name; end value = nestedfetch_recurse(obj, nameparts); end function value = nestedfetch_recurse(obj, name) if numel(name) > 1 value = nestedfetch_recurse(obj.(name{1}), name(2:end)); else value = obj.(name{1}); end end
github
lcnhappe/happe-master
findobjuser.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/findobjuser.m
1,391
utf_8
3275be54ee6c453c85fd950bb6ac56b5
% Find handle graphics object with user data check. % Retrieves those handle graphics objects (HGOs) that have the specified % Tag property and whose UserData property satisfies the given predicate. % % Input arguments: % fcn: % a predicate (a function that returns a logical value) to test against % the HGO's UserData property % tag (optional): % a string tag to restrict the set of controls to investigate % % See also: findobj % Copyright 2010 Levente Hunyadi function h = findobjuser(fcn, tag) validateattributes(fcn, {'function_handle'}, {'scalar'}); if nargin < 2 || isempty(tag) tag = ''; else validateattributes(tag, {'char'}, {'row'}); end %hh = get(0, 'ShowHiddenHandles'); %cleanup = onCleanup(@() set(0, 'ShowHiddenHandles', hh)); % restore visibility on exit or exception if ~isempty(tag) % look among all handles (incl. hidden handles) to help findobj locate the object it seeks h = findobj(findall(0), '-property', 'UserData', '-and', 'Tag', tag); % more results if multiple matching HGOs exist else h = findobj(findall(0), '-property', 'UserData'); end h = unique(h); try for k=1:length(h) pred = fcn(get(h(k), 'UserData')); if isempty(pred) pred = false; end f(k) = pred; end %f = arrayfun(@(handle) fcn(get(handle, 'UserData')), h, 'UniformOutput',false); catch 1 end h = h(f);
github
lcnhappe/happe-master
javaStringArray.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/javaStringArray.m
628
utf_8
fe0389e3b0d1933d49c1a78c416a279c
% Converts a MatLab cell array of strings into a java.lang.String array. % % Input arguments: % str: % a cell array of strings (i.e. a cell array of char row vectors) % % Output arguments: % arr: % a java.lang.String array instance (i.e. java.lang.String[]) % % See also: javaArray % Copyright 2009-2010 Levente Hunyadi function arr = javaStringArray(str) assert(iscellstr(str) && isvector(str), ... 'java:StringArray:InvalidArgumentType', ... 'Cell row or column vector of strings expected.'); arr = javaArray('java.lang.String', length(str)); for k = 1 : numel(str); arr(k) = java.lang.String(str{k}); end
github
lcnhappe/happe-master
var2str.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/var2str.m
441
utf_8
5588acb0d18dcfac8183caf10a3b5675
% Textual representation of any MatLab value. % Copyright 2009 Levente Hunyadi function s = var2str(value) if islogical(value) || isnumeric(value) s = num2str(value); elseif ischar(value) && isvector(value) s = reshape(value, 1, numel(value)); elseif isjava(value) s = char(value); % calls java.lang.Object.toString() else try s = char(value); catch %#ok<CTCH> s = '[no preview available]'; end end
github
lcnhappe/happe-master
getclassfield.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/getclassfield.m
376
utf_8
e3b87866af8da4dd40243e750a7e53f6
% Field value of each object in an array or cell array. % % See also: getfield % Copyright 2010 Levente Hunyadi function values = getclassfield(objects, field) values = cell(size(objects)); if iscell(objects) for k = 1 : numel(values) values{k} = objects{k}.(field); end else for k = 1 : numel(values) values{k} = objects(k).(field); end end