plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
lcnhappe/happe-master
arrayfilter.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/arrayfilter.m
488
utf_8
a2649b876169e3d850372917e57a8b68
% Filter elements of array that meet a condition. % Copyright 2010 Levente Hunyadi function array = arrayfilter(fun, array) validateattributes(fun, {'function_handle'}, {'scalar'}); if isobject(array) filter = false(size(array)); for k = 1 : numel(filter) filter(k) = fun(array(k)); end else filter = arrayfun(fun, array); % logical indicator array of elements that satisfy condition end array = array(filter); % array of elements that meet condition
github
lcnhappe/happe-master
example_propertygrid.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/example_propertygrid.m
4,929
utf_8
f1e5d6dc7fc518cdb070956ff714353c
% Demonstrates how to use the property pane. % % See also: PropertyGrid % Copyright 2010 Levente Hunyadi function example_propertygrid properties = [ ... PropertyGridField('double', pi, ... 'Category', 'Primitive types', ... 'DisplayName', 'real double', ... 'Description', 'Standard MatLab type.') ... PropertyGridField('single', pi, ... 'Category', 'Primitive types', ... 'DisplayName', 'real single', ... 'Description', 'Single-precision floating point number.') ... PropertyGridField('integer', int32(23), ... 'Category', 'Primitive types', ... 'DisplayName', 'int32', ... 'Description', 'A 32-bit integer value.') ... PropertyGridField('interval', int32(2), ... 'Type', PropertyType('int32', 'scalar', [0 6]), ... 'Category', 'Primitive types', ... 'DisplayName', 'int32', ... 'Description', 'A 32-bit integer value with an interval domain.') ... PropertyGridField('enumerated', int32(-1), ... 'Type', PropertyType('int32', 'scalar', {int32(-1), int32(0), int32(1)}), ... 'Category', 'Primitive types', ... 'DisplayName', 'int32', ... 'Description', 'A 32-bit integer value with an enumerated domain.') ... PropertyGridField('logical', true, ... 'Category', 'Primitive types', ... 'DisplayName', 'logical', ... 'Description', 'A Boolean value that takes either true or false.') ... PropertyGridField('doublematrix', [], ... 'Type', PropertyType('denserealdouble', 'matrix'), ... 'Category', 'Compound types', ... 'DisplayName', 'real double matrix', ... 'Description', 'Matrix of standard MatLab type with empty initial value.') ... PropertyGridField('string', 'a sample string', ... 'Category', 'Compound types', ... 'DisplayName', 'string', ... 'Description', 'A row vector of characters.') ... PropertyGridField('rowcellstr', {'a sample string','spanning multiple','lines'}, ... 'Category', 'Compound types', ... 'DisplayName', 'cell row of strings', ... 'Description', 'A row cell array whose every element is a string (char array).') ... PropertyGridField('colcellstr', {'a sample string';'spanning multiple';'lines'}, ... 'Category', 'Compound types', ... 'DisplayName', 'cell column of strings', ... 'Description', 'A column cell array whose every element is a string (char array).') ... PropertyGridField('season', 'spring', ... 'Type', PropertyType('char', 'row', {'spring','summer','fall','winter'}), ... 'Category', 'Compound types', ... 'DisplayName', 'string', ... 'Description', 'A row vector of characters that can take any of the predefined set of values.') ... PropertyGridField('set', [true false true], ... 'Type', PropertyType('logical', 'row', {'A','B','C'}), ... 'Category', 'Compound types', ... 'DisplayName', 'set', ... 'Description', 'A logical vector that serves an indicator of which elements from a universe are included in the set.') ... PropertyGridField('root', [], ... % [] (and no type explicitly set) indicates that value is not editable 'Category', 'Compound types', ... 'DisplayName', 'root node') ... PropertyGridField('root.parent', int32(23), ... 'Category', 'Compound types', ... 'DisplayName', 'parent node') ... PropertyGridField('root.parent.child', int32(2007), ... 'Category', 'Compound types', ... 'DisplayName', 'child node') ... ]; % arrange flat list into a hierarchy based on qualified names properties = properties.GetHierarchy(); % create figure f = figure( ... 'MenuBar', 'none', ... 'Name', 'Property grid demo - Copyright 2010 Levente Hunyadi', ... 'NumberTitle', 'off', ... 'Toolbar', 'none'); % procedural usage g = PropertyGrid(f, ... % add property pane to figure 'Properties', properties, ... % set properties explicitly 'Position', [0 0 0.5 1]); h = PropertyGrid(f, ... 'Position', [0.5 0 0.5 1]); % declarative usage, bind object to grid obj = SampleObject; % a value object h.Item = obj; % bind object, discards any previously set properties % update the type of a property assigned with type autodiscovery userproperties = PropertyGridField.GenerateFrom(obj); userproperties.FindByName('IntegerMatrix').Type = PropertyType('denserealdouble', 'matrix'); disp(userproperties.FindByName('IntegerMatrix').Type); h.Bind(obj, userproperties); % wait for figure to close uiwait(f); % display all properties and their values on screen disp('Left-hand property grid'); disp(g.GetPropertyValues()); disp('Right-hand property grid'); disp(h.GetPropertyValues()); disp('SampleObject (modified)'); disp(h.Item); disp('SampleNestedObject (modified)'); disp(h.Item.NestedObject);
github
lcnhappe/happe-master
constructor.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/constructor.m
2,078
utf_8
c67e647ec8055710896666c9e83b45e0
% Sets public properties of a MatLab object using a name-value list. % Properties are traversed in the order they occur in the class definition. % Copyright 2008-2009 Levente Hunyadi function obj = constructor(obj, varargin) assert(isobject(obj), ... 'Function operates on MatLab new-style objects only.'); if nargin <= 1 return; end if isa(obj, 'hgsetget') set(obj, varargin{:}); return; end assert(is_name_value_list(varargin), ... 'constructor:ArgumentTypeMismatch', ... 'A list of property name--value pairs is expected.'); % instantiate input parser object parser = inputParser; % query class properties using meta-class facility metaobj = metaclass(obj); properties = metaobj.Properties; for i = 1 : numel(properties) property = properties{i}; if is_public_property(property) parser.addParamValue(property.Name, obj.(property.Name)); end end % set property values according to name-value list parser.parse(varargin{:}); for i = 1 : numel(properties) property = properties{i}; if is_public_property(property) && ~is_string_in_vector(property.Name, parser.UsingDefaults) % do not set defaults obj.(property.Name) = parser.Results.(property.Name); end end function tf = is_name_value_list(list) % True if the specified list is a name-value list. % % Input arguments: % list: % a name-value list as a cell array. validateattributes(list, {'cell'}, {'vector'}); n = numel(list); if mod(n, 2) ~= 0 % a name-value list has an even number of elements tf = false; else for i = 1 : 2 : n if ~ischar(list{i}) % each odd element in a name-value list must be a char array tf = false; return; end end tf = true; end function tf = is_string_in_vector(str, vector) tf = any(strcmp(str, vector)); function tf = is_public_property(property) % True if the property designates a public, accessible property. tf = ~property.Abstract && ~property.Hidden && strcmp(property.GetAccess, 'public') && strcmp(property.SetAccess, 'public');
github
lcnhappe/happe-master
nestedassign.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/nestedassign.m
1,457
utf_8
12d661bb4df3c64a0707a06f7e3e6afc
% Assigns the given value to the named property of an object or structure. % This function can deal with nested properties. % % Input arguments: % obj: % the structure, handle or value object the value should be assigned to % name: % a property name with dot (.) separating property names at % different hierarchy levels % value: % the value to assign to the property at the deepest hierarchy % level % % Output arguments: % obj: % the updated object or structure, optional for handle objects % % Example: % obj = struct('surface', struct('nested', 10)); % obj = nestedassign(obj, 'surface.nested', 23); % disp(obj.surface.nested); % prints 23 % % See also: nestedfetch % Copyright 2010 Levente Hunyadi function obj = nestedassign(obj, name, value) if ~iscell(name) nameparts = strsplit(name, '.'); else nameparts = name; end obj = nestedassign_recurse(obj, nameparts, value); end function obj = nestedassign_recurse(obj, name, value) % Assigns the given value to the named property of an object. % % Input arguments: % obj: % the handle or value object the value should be assigned to % name: % a cell array of the composite property name % value: % the value to assign to the property at the deepest hierarchy % level if numel(name) > 1 obj.(name{1}) = nestedassign_recurse(obj.(name{1}), name(2:end), value); else obj.(name{1}) = value; end end
github
lcnhappe/happe-master
javaArrayList.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/dependencies/PropertyGrid-2010-09-16-mod/javaArrayList.m
740
utf_8
cb4ad03c4e0fc536bc1ae024bfb8920a
% Converts a MatLab array into a java.util.ArrayList. % % Input arguments: % array: % a MatLab row or column vector (with elements of any type) % % Output arguments: % list: % a java.util.ArrayList instance % % See also: javaArray % Copyright 2010 Levente Hunyadi function list = javaArrayList(array) list = java.util.ArrayList; if ~isempty(array) assert(isvector(array), 'javaArrayList:DimensionMismatch', ... 'Row or column vector expected.'); if iscell(array) % convert cell array into ArrayList for k = 1 : numel(array) list.add(array{k}); end else % convert (numeric) array into ArrayList for k = 1 : numel(array) list.add(array(k)); end end end
github
lcnhappe/happe-master
hlp_scope.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_scope.m
3,366
utf_8
4544c2a11f66464cc00f860f36646304
function varargout = hlp_scope(assignments, f, varargin) % Execute a function within a dynamic scope of values assigned to symbols. % Results... = hlp_scope(Assignments, Function, Arguments...) % % This is the only completely reliable way in MATLAB to ensure that symbols that should be assigned % while a function is running get cleared after the function returns orderly, crashes, segfaults, % the user slams Ctrl+C, and so on. Symbols can be looked up via hlp_resolve(). % % In: % Assignments : Cell array of name-value pairs or a struct. Values are associated with symbols of % the given names. The names should be valid MATLAB identifiers. These assigments % form a dynamic scope for the execution of the function; scopes can also be % nested, and assignments in inner scopes override those of outer scopes. % % Function : a function handle to invoke % % Arguments... : arguments to pass to the function % % Out: % Results... : return value(s) of the function % % See also: % hlp_resolve % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-05-03 % add a new stack frame with the evaluated assignments & get its unique id id = make_stackframe(assignments); % also take care that it gets reclaimed after we're done reclaimer = onCleanup(@()return_stackframe(id)); % make a function that is tagged by id func = make_func(id); % evaluate the function with the id introduced into MATLAB's own stack [varargout{1:nargout}] = func(f,varargin); function func = make_func(id) persistent funccache; % (cached, since the eval() below is a bit slow) try func = funccache.(id); catch func = eval(['@(f,a,frame__' id ')feval(f,a{:})']); funccache.(id) = func; end function id = make_stackframe(assignments) % put the assignments into a struct if iscell(assignments) assignments = cell2struct(assignments(2:2:end),assignments(1:2:end),2); end % get a fresh frame id global tracking; try id = tracking.stack.frameids.removeLast(); catch if ~isfield(tracking,'stack') || ~isfield(tracking.stack,'frameids') % need to create the id repository first tracking.stack.frameids = java.util.concurrent.LinkedBlockingDeque(); for k=50000:-1:1 tracking.stack.frameids.addLast(sprintf('f%d',k)); end else if tracking.stack.frameids.size() == 0 % if this happens then either you have 10.000s of parallel executions of hlp_scope(), % or you have a very deep recursion level (the MATLAB default is 500), or your function % has crashed 10.000s of times in a way that keeps onCleanup from doing its job, or you have % substituted onCleanup by a dummy class or function that doesn't actually work (e.g. on % pre-2008a systems). error('We ran out of stack frame ids. This should not happen under normal conditions. Please make sure that your onCleanup implementation is not consistently failing to execute.'); end end id = tracking.stack.frameids.removeLast(); end % and store the assignments under it tracking.stack.frames.(id) = assignments; function return_stackframe(id) % finally return the frame id again... global tracking; tracking.stack.frameids.addLast(id);
github
lcnhappe/happe-master
hlp_fingerprint.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_fingerprint.m
7,085
utf_8
ebeb87c5f5aa958473e853a153d261f9
function fp = hlp_fingerprint(data) % Make a fingerprint (hash) of the given data structure. % Fingerprint = hlp_fingerprint(Data) % % This includes all contents; however, large arrays (such as EEG.data) are only spot-checked. For % thorough checking, use hlp_cryptohash. % % In: % Data : some data structure % % Out: % Fingerprint : an integer that identifies the data % % Notes: % The fingerprint is not unique and identifies the data set only with a certain (albeit high) % probability. % % On MATLAB versions prior to 2008b, hlp_fingerprint cannot be used concurrently from timers, % and also may alter the random generator's state if cancelled via Ctrl+C. % % Examples: % % calculate the hash of a large data structure % hash = hlp_fingerprint(data); % % See also: % hlp_cryptohash % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-02 warning off MATLAB:structOnObject if hlp_matlab_version >= 707 fp = fingerprint(data,RandStream('swb2712','Seed',5183)); else try % save & override random state randstate = rand('state'); %#ok<*RAND> rand('state',5183); % make the fingerprint fp = fingerprint(data,0); % restore random state rand('state',randstate); catch e % restore random state in case of an error... rand('state',randstate); rethrow(e); end end % make a fingerprint of the given data structure function fp = fingerprint(data,rs) % convert data into a string representation data = summarize(data,rs); % make sure that it does not contain 0's data(data==0) = 'x'; % obtain a hash code via Java (MATLAB does not support proper integer arithmetic...) str = java.lang.String(data); fp = str.hashCode()+2^31; % get a recursive string summary of arbitrary data function x = summarize(x,rs) if isnumeric(x) % numeric array if ~isreal(x) x = [real(x) imag(x)]; end if issparse(x) x = [find(x) nonzeros(x)]; end if numel(x) <= 4096 % small matrices are hashed completely try x = ['n' typecast([size(x) x(:)'],'uint8')]; catch if hlp_matlab_version <= 702 x = ['n' typecast([size(x) double(x(:))'],'uint8')]; end end else % large matrices are spot-checked ne = numel(x); count = floor(256 + (ne-256)/1000); if hlp_matlab_version < 707 indices = 1+floor((ne-1)*rand(1,count)); else indices = 1+floor((ne-1)*rand(rs,1,count)); end if size(x,2) == 1 % x is a column vector: reindexed expression needs to be transposed x = ['n' typecast([size(x) x(indices)'],'uint8')]; else % x is a matrix or row vector: shape follows that of indices x = ['n' typecast([size(x) x(indices)],'uint8')]; end end elseif iscell(x) % cell array sizeprod = cellfun('prodofsize',x(:)); if all(sizeprod <= 1) && any(sizeprod) % all scalar elements (some empty, but not all) if all(cellfun('isclass',x(:),'double')) || all(cellfun('isclass',x(:),'single')) % standard floating-point scalars if cellfun('isreal',x) % all real x = ['cdr' typecast([size(x) x{:}],'uint8')]; else % some complex x = ['cdc' typecast([size(x) real([x{:}]) imag([x{:}])],'uint8')]; end elseif cellfun('isclass',x(:),'logical') % all logical x = ['cl' typecast(uint32(size(x)),'uint8') uint8([x{:}])]; elseif cellfun('isclass',x(:),'char') % all single chars x = ['ccs' typecast(uint32(size(x)),'uint8') x{:}]; else % generic types (structs, cells, integers, handles, ...) tmp = cellfun(@summarize,x,repmat({rs},size(x)),'UniformOutput',false); x = ['cg' typecast(uint32(size(x)),'uint8') tmp{:}]; end elseif isempty(x) % empty cell array x = ['ce' typecast(uint32(size(x)),'uint8')]; else % some non-scalar elements dims = cellfun('ndims',x(:)); size1 = cellfun('size',x(:),1); size2 = cellfun('size',x(:),2); if all((size1+size2 == 0) & (dims == 2)) % all empty and nondegenerate elements if all(cellfun('isclass',x(:),'double')) % []'s x = ['ced' typecast(uint32(size(x)),'uint8')]; elseif all(cellfun('isclass',x(:),'cell')) % {}'s x = ['cec' typecast(uint32(size(x)),'uint8')]; elseif all(cellfun('isclass',x(:),'struct')) % struct()'s x = ['ces' typecast(uint32(size(x)),'uint8')]; elseif length(unique(cellfun(@class,x(:),'UniformOutput',false))) == 1 % same class x = ['cex' class(x{1}) typecast(uint32(size(x)),'uint8')]; else % arbitrary class... tmp = cellfun(@summarize,x,repmat({rs},size(x)),'UniformOutput',false); x = ['cg' typecast(uint32(size(x)),'uint8') tmp{:}]; end elseif all((cellfun('isclass',x(:),'char') & size1 <= 1) | (sizeprod==0 & cellfun('isclass',x(:),'double'))) % all horizontal strings or proper empty strings, possibly some []'s x = ['cch' [x{:}] typecast(uint32(size2'),'uint8')]; else % arbitrary sizes... if all(cellfun('isclass',x(:),'double')) || all(cellfun('isclass',x(:),'single')) % all standard floating-point types... tmp = cellfun(@vectorize,x,'UniformOutput',false); % treat as a big vector... x = ['cn' typecast(uint32(size(x)),'uint8') summarize([tmp{:}],rs)]; else tmp = cellfun(@summarize,x,repmat({rs},size(x)),'UniformOutput',false); x = ['cg' typecast(uint32(size(x)),'uint8') tmp{:}]; end end end elseif ischar(x) % char array x = ['c' x(:)']; elseif isstruct(x) % struct fn = fieldnames(x)'; if numel(x) > length(fn) % summarize over struct fields to expose homogeneity x = cellfun(@(f)summarize({x.(f)},rs),fn,'UniformOutput',false); x = ['s' [fn{:}] ':' [x{:}]]; else % summarize over struct elements x = ['s' [fn{:}] ':' summarize(struct2cell(x),rs)]; end elseif islogical(x) % logical array x = ['l' typecast(uint32(size(x)),'uint8') uint8(x(:)')]; elseif isa(x,'function_handle') x = ['f ' char(x)]; elseif isobject(x) x = ['o' class(x) ':' summarize(struct(x),rs)]; else try x = ['u' class(x) ':' summarize(struct(x),rs)]; catch warning('BCILAB:hlp_fingerprint:unsupported_type','Unsupported type: %s',class(x)); error; %#ok<LTARG> end end function x = vectorize(x) x = x(:)';
github
lcnhappe/happe-master
hlp_flattensearch.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_flattensearch.m
4,217
utf_8
9f21976c4c355a8c0ac9432e74a4d31d
function x = hlp_flattensearch(x,form) % Flatten search() clauses in a nested data structure into a flat search() clause. % Result = hlp_flattensearch(Expression, Output-Form) % % Internal tool used by utl_gridsearch to enable the specification of search parameters using % search() clauses. % % In: % Expression : some data structure, usually an argument to utl_gridsearch, may or may not contain % nested search clauses. % % Output-Form : form of the output (default: 'search') % * 'search': the output shall be a flattened search clause (or a plain value if no % search) % * 'cell': the output shall be a cell array of elements to search over % % Out: % Result : a flattened search clause (or plain value), or a cell array of search possibilities. % % See also: % search, utl_gridsearch % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-06-29 x = flatten(x); if ~exist('form','var') || isempty(form) || strcmp(form,'search') % turn from cell format into search format if isscalar(x) % just one option: return the plain value x = x{1}; else % multiple options: return a search expression x = struct('head',{@search},'parts',{x}); end elseif ~strcmp(form,'cell') error(['Unsupported output form: ' form]); end % recursively factor search expressions out of a data structure, to give an overall search % expression (output format is cell array of search options) function parts = flatten(x) if isstruct(x) if isfield(x,{'data','srate','chanlocs','event','epoch'}) % data set? do not descend further parts = {x}; elseif all(isfield(x,{'head','parts'})) && numel(x)==1 && strcmp(char(x.head),'search') % search expression: flatten any nested searches... parts = cellfun(@flatten,x.parts,'UniformOutput',false); % ... and splice their parts in parts = [parts{:}]; else % generic structure: create a cartesian product over field-wise searches if isscalar(x) parts = {x}; % flatten per-field contents fields = cellfun(@flatten,struct2cell(x),'UniformOutput',false); lengths = cellfun('length',fields); % was any one a search? if any(lengths>1) fnames = fieldnames(x); % for each field that is a search... for k=find(lengths>1)' % replicate all parts once for each search item in the current field partnum = length(parts); parts = repmat(parts,1,lengths(k)); % and fill each item into the appropriate place for j=1:length(parts) parts{j}.(fnames{k}) = fields{k}{ceil(j/partnum)}; end end end elseif ~isempty(x) % struct array (either with nested searches or a concatenation of search() expressions): % handle as a cell array of structs parts = flatten(arrayfun(@(s){s},x)); % got a search? if ~isscalar(parts) % re-concatenate the cell contents of each part of the search expression into % struct arrays for i=1:length(parts) parts{i} = reshape([parts{i}{:}],size(parts{i})); end else parts = {x}; end else parts = {x}; end end elseif iscell(x) % cell array: create a cartesian product over cell-wise searches parts = {x}; x = cellfun(@flatten,x,'UniformOutput',false); % for each cell that is a search... for c=find(cellfun('length',x(:)')>1) % replicate all parts once for each search item in the current cell partnum = length(parts); parts = repmat(parts,1,length(x{c})); % and fill in the new item in the appropriate place for j=1:length(parts) parts{j}{c} = x{c}{ceil(j/partnum)}; end end else % anything else: wrap parts = {x}; end
github
lcnhappe/happe-master
hlp_tostring.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_tostring.m
6,536
utf_8
7c374a9f8a1954f5289b4e446ea1a30d
function str = hlp_tostring(v) % Get an human-readable string representation of a data structure. % String = hlp_tostring(Data) % % The resulting string representations are usually executable, but there are corner cases (e.g., % certain anonymous function handles and large data sets), which are not supported. For % general-purpose serialization, see hlp_serialize/hlp_deserialize. % % In: % Data : a data structure % % Out: % String : string form of the data structure % % Notes: % hlp_tostring has builtin support for displaying expression data structures. % % Examples: % % get a string representation of a data structure % hlp_tostring({'test',[1 2 3], struct('field','value')}) % % See also: % hlp_serialize % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-15 % % adapted from serialize.m % (C) 2006 Joger Hansegord ([email protected]) n = 15; str = serializevalue(v,n); % % Main hub for serializing values % function val = serializevalue(v, n) if isnumeric(v) || islogical(v) val = serializematrix(v, n); elseif ischar(v) val = serializestring(v, n); elseif isa(v,'function_handle') val = serializefunction(v, n); elseif is_impure_expression(v) val = serializevalue(v.tracking.expression, n); elseif has_canonical_representation(v) val = serializeexpression(v, n); elseif is_dataset(v) val = serializedataset(v, n); elseif isstruct(v) val = serializestruct(v, n); elseif iscell(v) val = serializecell(v, n); elseif isobject(v) val = serializeobject(v, n); else try val = serializeobject(v, n); catch error('Unhandled type %s', class(v)); end end % % Serialize a string % function val = serializestring(v,n) if any(v == '''') val = ['''' strrep(v,'''','''''') '''']; try if ~isequal(eval(val),v) val = ['char(' serializevalue(uint8(v), n) ')']; end catch val = ['char(' serializevalue(uint8(v), n) ')']; end else val = ['''' v '''']; end % % Serialize a matrix and apply correct class and reshape if required % function val = serializematrix(v, n) if ndims(v) < 3 if isa(v, 'double') if size(v,1) == 1 && length(v) > 3 && isequal(v,v(1):v(2)-v(1):v(end)) % special case: colon sequence if v(2)-v(1) == 1 val = ['[' num2str(v(1)) ':' num2str(v(end)) ']']; else val = ['[' num2str(v(1)) ':' num2str(v(2)-v(1)) ':' num2str(v(end)) ']']; end elseif size(v,2) == 1 && length(v) > 3 && isequal(v',v(1):v(2)-v(1):v(end)) % special case: colon sequence if v(2)-v(1) == 1 val = ['[' num2str(v(1)) ':' num2str(v(end)) ']''']; else val = ['[' num2str(v(1)) ':' num2str(v(2)-v(1)) ':' num2str(v(end)) ']''']; end else val = mat2str(v, n); end else val = mat2str(v, n, 'class'); end else if isa(v, 'double') val = mat2str(v(:), n); else val = mat2str(v(:), n, 'class'); end val = sprintf('reshape(%s, %s)', val, mat2str(size(v))); end % % Serialize a cell % function val = serializecell(v, n) if isempty(v) val = '{}'; return end cellSep = ', '; if isvector(v) && size(v,1) > 1 cellSep = '; '; end % Serialize each value in the cell array, and pad the string with a cell % separator. vstr = cellfun(@(val) [serializevalue(val, n) cellSep], v, 'UniformOutput', false); vstr{end} = vstr{end}(1:end-2); % Concatenate the elements and add a reshape if requied val = [ '{' vstr{:} '}']; if ~isvector(v) val = ['reshape(' val sprintf(', %s)', mat2str(size(v)))]; end % % Serialize an expression % function val = serializeexpression(v, n) if numel(v) > 1 val = ['[']; for k = 1:numel(v) val = [val serializevalue(v(k), n), ', ']; end val = [val(1:end-2) ']']; else if numel(v.parts) > 0 val = [char(v.head) '(']; for fieldNo = 1:numel(v.parts) val = [val serializevalue(v.parts{fieldNo}, n), ', ']; end val = [val(1:end-2) ')']; else val = char(v.head); end end % % Serialize a data set % function val = serializedataset(v, n) %#ok<INUSD> val = '<EEGLAB data set>'; % % Serialize a struct by converting the field values using struct2cell % function val = serializestruct(v, n) fieldNames = fieldnames(v); fieldValues = struct2cell(v); if ndims(fieldValues) > 6 error('Structures with more than six dimensions are not supported'); end val = 'struct('; for fieldNo = 1:numel(fieldNames) val = [val serializevalue( fieldNames{fieldNo}, n) ', ']; val = [val serializevalue( permute(fieldValues(fieldNo, :,:,:,:,:,:), [2:ndims(fieldValues) 1]) , n) ]; val = [val ', ']; end if numel(fieldNames)==0 val = [val ')']; else val = [val(1:end-2) ')']; end if ~isvector(v) val = sprintf('reshape(%s, %s)', val, mat2str(size(v))); end % % Serialize an object by converting to struct and add a call to the copy % contstructor % function val = serializeobject(v, n) val = sprintf('%s(%s)', class(v), serializevalue(struct(v), n)); function val = serializefunction(v, n) %#ok<INUSD> try val = ['@' char(get_function_symbol(v))]; catch val = char(v); end function result___ = get_function_symbol(expression___) % internal: some function_handle expressions have a function symbol (an @name expression), and this function obtains it % note: we are using funny names here to bypass potential name conflicts within the eval() clause further below if ~isa(expression___,'function_handle') error('the expression has no associated function symbol.'); end string___ = char(expression___); if string___(1) == '@' % we are dealing with a lambda function if is_symbolic_lambda(expression___) result___ = eval(string___(27:end-21)); else error('cannot derive a function symbol from a non-symbolic lambda function.'); end else % we are dealing with a regular function handle result___ = expression___; end function res = is_symbolic_lambda(x) % internal: a symbolic lambda function is one which generates expressions when invoked with arguments (this is what exp_symbol generates) res = isa(x,'function_handle') && ~isempty(regexp(char(x),'@\(varargin\)struct\(''head'',\{.*\},''parts'',\{varargin\}\)','once'));
github
lcnhappe/happe-master
hlp_config.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_config.m
12,881
utf_8
7b49f69371781d0161c3a842064a43d0
function result = hlp_config(configname, operation, varargin) % helper function to process human-readable config scripts. % Result = hlp_config(FileName,Operation,VariableName,Value,NVPs...) % % Config scripts consist of assignments of the form name = value; to set configuration options. In % addition, there may be any type of comments, conditional control flow, etc - e.g., setting certain % values on some platforms and others on others. This function allows to get or set the value % assigned to a variable in the place of the script where it is actually assigned on the current % platform. Note that the respective variable has to be already in the config file for this function % to work. % % In: % FileName : name of the configuration file to process % % Operation : operation to perform on the config file % 'get' : get the currently defined value of a given variable % 'set' : replace the current defintion of a given variable % % VariableName : name of the variable to be affected (must be a MATLAB identifier) % % Value : the new value to be assigned, if the operation is 'set', as a string % note that most data structures can be converted into a string via hlp_tostring % % NVPs... : list of further name-value pairs, where each name denotes a config variables and the subsequent % value is the string expression that should be written into the config file. It is % generally a good idea to use hlp_tostring() to turn a data structure into such a string % representation. % % Out: % Result : the current value of the variable of interest, when using the 'get' % operation % % Notes: % There can be multiple successive variable name / value pairs for the set mode. % If an error occurs during a set operation, any changes will be rolled back. % % Examples: % % read out the value of the 'data' config variable from a config file % data = hlp_config('/home/christian/myconfig.m','get','data') % % % override the values of the 'files' and 'capacity' config variables in the given config script % hlp_config('/home/christian/myconfig.m', 'set', 'files',myfiles, 'capacity',1000) % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-11-19 if ~exist(configname,'file') error('hlp_config:file_not_found','The specified config file was not found.'); end switch operation case 'get' varname = varargin{1}; if ~isvarname(varname) error('hlp_config:bad_varname','The variable name must be a valid MATLAB identifier.'); end % get the currently defined value of a variable... result = get_value(configname,varname); case 'set' backupfile = []; try % apply first assignment backupfile = set_value(configname,varargin{1},varargin{2},true); for k = 4:2:length(varargin) % apply all other assignments set_value(configname,varargin{k-1},varargin{k},false); end catch e % got an error; roll back changes if necessary if ~isempty(backupfile) try movefile(backupfile,configname); catch disp(['Could not roll back changes. You can manually revert changes by replacing ' configname ' by ' backupfile '.']); end end rethrow(e); end otherwise error('hlp_config:unsupported_option','Unsupported config operation.'); end % run the given config script and obtain the current value of the given variable... function res = get_value(filename__,varname__) try run_script(filename__); catch e error('hlp_config:erroneous_file',['The config file is erroneous; Error message: ' e.message]); end if ~exist(varname__,'var') error('hlp_config:var_not_found','The variable is not being defined in the config file.'); end res = eval(varname__); function backup_name = set_value(filename,varname,newvalue,makebackup) backup_name = []; if ~exist(filename,'file') error('hlp_config:file_not_found','The config file was not found.'); end if ~isvarname(varname) error('hlp_config:incorrect_value','The variable name must be a valid MATLAB identifier.'); end if ~ischar(newvalue) error('hlp_config:incorrect_value','The value to be assigned must be given as a string.'); end try % read the config file contents contents = {}; f = fopen(filename,'r'); while 1 l = fgetl(f); if ~ischar(l) break; end contents{end+1} = [l 10]; end fclose(f); % turn it into one str contents = [contents{:}]; catch e try fclose(f); catch,end error('hlp_config:cannot_read_config',['Cannot read the config file; Error message: ' e.message]); end % now check if the file is actually writable try f = fopen(filename,'r+'); if f ~= -1 fclose(f); else error('hlp_config:permissions_error','Could not update the config file %s. Please check file permissions and try again.',filename); end catch error('hlp_config:permissions_error','Could not update the config file %s. Please check file permissions and try again.',filename); end % temporarily replace stray semicolons by a special character and contract ellipses, % so that the subsequent assignment regex matching will not get derailed) evalstr = contents; comment_flag = false; string_flag = false; bracket_level = 0; ellipsis_flag = false; substitute = false(1,length(evalstr)); % this mask indicates where we have to subsitute reversibly by special characters spaceout = false(1,length(evalstr)); % this mask indicates where we can substitute irreversibly by whitespace characters... for k=1:length(evalstr) if ellipsis_flag % everything that follows an ellipsis will be spaced out (including the subsequent newline that resets it) spaceout(k) = true; end switch evalstr(k) case ';' % semicolon % in strs, brackets or comments: indicate need for substitution if string_flag || bracket_level>0 || comment_flag substitute(k) = true; end case '''' % quotes % flip str flag, unless in comment if ~comment_flag string_flag = ~string_flag; end case 10 % newline % reset bracket level, unless in ellipsis if ~ellipsis_flag bracket_level = 0; end % reset comment flag, str flag and ellipsis flag comment_flag = false; string_flag = false; ellipsis_flag = false; case {'[','{'} % opening array bracket % if not in str nor comment, increase bracket level if ~string_flag && ~comment_flag bracket_level = bracket_level+1; end case {']','}'} % closing array bracket % if not in str nor comment, decrease bracket level if ~string_flag && ~comment_flag bracket_level = bracket_level-1; end case '%' % comment character % if not in str, switch on comment flag if ~string_flag comment_flag = true; end case '.' % potential ellipsis character % if not in comment nor in str, turn on ellipsis and comment if ~string_flag && ~comment_flag && k>2 && strcmp(evalstr(k-2:k),'...') ellipsis_flag = true; comment_flag = true; % we want to replace the ellipsis and everything that follows up to and including the next newline spaceout(k-2:k) = true; end end end % replace the characters that need to be substituted (by the bell character) evalstr(substitute) = 7; evalstr(spaceout) = ' '; % replace all assignments of the form "varname = *;" by "varname{end+1} = num;" [starts,ends] = regexp(evalstr,[varname '\s*=[^;\n]*;']); for k=length(starts):-1:1 evalstr = [evalstr(1:starts(k)-1) varname '{end+1} = struct(''assignment'',' num2str(k) ');' evalstr(ends(k)+1:end)]; end % add initial assignment evalstr = [sprintf('%s = {};\n',varname) evalstr]; % back-substitute the special character by semicolons evalstr(evalstr==7) = ';'; % evaluate contents and get the matching assignment id's ids = run_protected(evalstr,varname); % check validity of the updated value, and of the updated config file try % check if the value str can in fact be evaluated newvalue_eval = eval(newvalue); catch error('hlp_config:incorrect_value','The value "%s" (to be assigned to variable "%s") cannot be evaluated properly. Note that, for example, string values need to be quoted.',newvalue,varname); end % evaluate the original config script and record the full variable assignment [dummy,wspace_old] = run_protected(contents); %#ok<ASGLU> % splice the new value into the config file contents, for the last assignment in ids id = ids{end}.assignment; contents = [contents(1:starts(id)-1) varname ' = ' newvalue ';' contents(ends(id)+1:end)]; % evaluate the new config script and record the full variable assignment [dummy,wspace_new] = run_protected(contents); %#ok<ASGLU> % make sure that the only thing that has changed is the assignment to the variable of interest wspace_old.(varname) = newvalue_eval; if ~isequalwithequalnans(wspace_old,wspace_new) error('hlp_config:update_failed','The config file can not be properly updated.'); end % apparently, everything went well, except for the following possibilities % * the newly assigned value makes no sense (--> usage error) % * the settings were changed for unanticipated platforms (--> this needs to be documented properly) if makebackup try % make a backup of the original config file using a fresh name (.bak00X) [p,n,x] = fileparts(filename); files = dir([p filesep n '*.bak*']); backup_numbers = cellfun(@(n)str2num(n(end-2:end)),{files.name},'UniformOutput',false); backup_numbers = [backup_numbers{:}]; if ~isempty(backup_numbers) new_number = 1 + max(backup_numbers); else new_number = 1; end backup_name = [p filesep n '.bak' sprintf('%03i',new_number)]; copyfile(filename,backup_name); % set read permissions warning off MATLAB:FILEATTRIB:SyntaxWarning fileattrib(backup_name,'+w','a'); catch error('hlp_config:permissions_error','Could not create a backup of the original config file %s. Please check file permissions and try again.',filename); end end % split the contents into lines again contents = strsplit(contents,10); try % re-create the file, line by line f = fopen(filename,'w+'); for k=1:length(contents) fwrite(f,contents{k}); fprintf(f,'\n'); end fclose(f); % set file attributes warning off MATLAB:FILEATTRIB:SyntaxWarning fileattrib(filename,'+w','a'); catch try fclose(f); catch,end error('hlp_config:permissions_error','Could not override the config file %s. Please check file permissions and try again.',filename); end % run the given config script and obtain the current value of the given variable... function [res,wspace] = run_protected(code__,varname__) try eval(code__); % collect all variables into a workspace struct infos = whos(); for n = {infos.name} if ~any(strcmp(n{1},{'code__','varname__'})) wspace.(n{1}) = eval(n{1}); end end if exist('varname__','var') % if a specific variable was to be inspected... res = eval(varname__); if ~iscell(res) || length(res) < 1 || ~all(cellfun('isclass',res,'struct')) || ~all(cellfun(@(x)isfield(x,'assignment'),res)) error('Not all assignments to the variable were correctly identified.'); end else res = []; end catch e error('hlp_config:update_error',['The config file could not be parsed (probably it is ill-formed); Debug message: ' e.message]); end % split a string without fusing delimiters (unlike hlp_split) function strs = strsplit(str, delim) idx = strfind(str, delim); strs = cell(numel(idx)+1, 1); idx = [0 idx numel(str)+1]; for k = 2:numel(idx) strs{k-1} = str(idx(k-1)+1:idx(k)-1); end % for old MATLABs that can't properly move files... function movefile(src,dst) try builtin('movefile',src,dst); catch e if any([src dst]=='$') && hlp_matlab_version <= 705 if ispc [errcode,text] = system(sprintf('move ''%s'' ''%s''',src,dst)); %#ok<NASGU> else [errcode,text] = system(sprintf('mv ''%s'' ''%s''',src,dst)); %#ok<NASGU> end if errcode error('Failed to move %s to %s.',src,dst); end else rethrow(e); end end
github
lcnhappe/happe-master
hlp_deserialize.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_deserialize.m
12,045
utf_8
5973cf16c3a0b718e9f334724d312870
function v = hlp_deserialize(m) % Convert a serialized byte vector back into the corresponding MATLAB data structure. % Data = hlp_deserialize(Bytes) % % In: % Bytes : a representation of the original data as a byte stream % % Out: % Data : some MATLAB data structure % % % See also: % hlp_serialize % % Examples: % bytes = hlp_serialize(mydata); % ... e.g. transfer the 'bytes' array over the network ... % mydata = hlp_deserialize(bytes); % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-02 % % adapted from deserialize.m % (C) 2010 Tim Hutt % wrap dispatcher v = deserialize_value(uint8(m(:)),1); end % dispatch function [v,pos] = deserialize_value(m,pos) switch m(pos) case {0,200} [v,pos] = deserialize_string(m,pos); case 128 [v,pos] = deserialize_struct(m,pos); case {33,34,35,36,37,38,39} [v,pos] = deserialize_cell(m,pos); case {1,2,3,4,5,6,7,8,9,10} [v,pos] = deserialize_scalar(m,pos); case 133 [v,pos] = deserialize_logical(m,pos); case {151,152,153} [v,pos] = deserialize_handle(m,pos); case {17,18,19,20,21,22,23,24,25,26} [v,pos] = deserialize_numeric_simple(m,pos); case 130 [v,pos] = deserialize_sparse(m,pos); case 131 [v,pos] = deserialize_complex(m,pos); case 132 [v,pos] = deserialize_char(m,pos); case 134 [v,pos] = deserialize_object(m,pos); otherwise error('Unknown class'); end end % individual scalar function [v,pos] = deserialize_scalar(m,pos) classes = {'double','single','int8','uint8','int16','uint16','int32','uint32','int64','uint64'}; sizes = [8,4,1,1,2,2,4,4,8,8]; sz = sizes(m(pos)); % Data. v = typecast(m(pos+1:pos+sz),classes{m(pos)}); pos = pos + 1 + sz; end % standard string function [v,pos] = deserialize_string(m,pos) if m(pos) == 0 % horizontal string: tag pos = pos + 1; % length (uint32) nbytes = double(typecast(m(pos:pos+3),'uint32')); pos = pos + 4; % data (chars) v = char(m(pos:pos+nbytes-1))'; pos = pos + nbytes; else % proper empty string: tag [v,pos] = deal('',pos+1); end end % general char array function [v,pos] = deserialize_char(m,pos) pos = pos + 1; % Number of dims ndms = double(m(pos)); pos = pos + 1; % Dimensions dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')'); pos = pos + ndms*4; nbytes = prod(dms); % Data. v = char(m(pos:pos+nbytes-1)); pos = pos + nbytes; v = reshape(v,[dms 1 1]); end % general logical array function [v,pos] = deserialize_logical(m,pos) pos = pos + 1; % Number of dims ndms = double(m(pos)); pos = pos + 1; % Dimensions dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')'); pos = pos + ndms*4; nbytes = prod(dms); % Data. v = logical(m(pos:pos+nbytes-1)); pos = pos + nbytes; v = reshape(v,[dms 1 1]); end % simple numerical matrix function [v,pos] = deserialize_numeric_simple(m,pos) classes = {'double','single','int8','uint8','int16','uint16','int32','uint32','int64','uint64'}; sizes = [8,4,1,1,2,2,4,4,8,8]; cls = classes{m(pos)-16}; sz = sizes(m(pos)-16); pos = pos + 1; % Number of dims ndms = double(m(pos)); pos = pos + 1; % Dimensions dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')'); pos = pos + ndms*4; nbytes = prod(dms) * sz; % Data. v = typecast(m(pos:pos+nbytes-1),cls); pos = pos + nbytes; v = reshape(v,[dms 1 1]); end % complex matrix function [v,pos] = deserialize_complex(m,pos) pos = pos + 1; [re,pos] = deserialize_numeric_simple(m,pos); [im,pos] = deserialize_numeric_simple(m,pos); v = complex(re,im); end % sparse matrix function [v,pos] = deserialize_sparse(m,pos) pos = pos + 1; % matrix dims u = double(typecast(m(pos:pos+7),'uint64')); pos = pos + 8; v = double(typecast(m(pos:pos+7),'uint64')); pos = pos + 8; % index vectors [i,pos] = deserialize_numeric_simple(m,pos); [j,pos] = deserialize_numeric_simple(m,pos); if m(pos) % real pos = pos+1; [s,pos] = deserialize_numeric_simple(m,pos); else % complex pos = pos+1; [re,pos] = deserialize_numeric_simple(m,pos); [im,pos] = deserialize_numeric_simple(m,pos); s = complex(re,im); end v = sparse(i,j,s,u,v); end % struct array function [v,pos] = deserialize_struct(m,pos) pos = pos + 1; % Number of field names. nfields = double(typecast(m(pos:pos+3),'uint32')); pos = pos + 4; % Field name lengths fnLengths = double(typecast(m(pos:pos+nfields*4-1),'uint32')); pos = pos + nfields*4; % Field name char data fnChars = char(m(pos:pos+sum(fnLengths)-1)).'; pos = pos + length(fnChars); % Number of dims ndms = double(typecast(m(pos:pos+3),'uint32')); pos = pos + 4; % Dimensions dms = typecast(m(pos:pos+ndms*4-1),'uint32')'; pos = pos + ndms*4; % Field names. fieldNames = cell(length(fnLengths),1); splits = [0; cumsum(double(fnLengths))]; for k=1:length(splits)-1 fieldNames{k} = fnChars(splits(k)+1:splits(k+1)); end % Content. v = reshape(struct(),[dms 1 1]); if m(pos) % using struct2cell pos = pos + 1; [contents,pos] = deserialize_cell(m,pos); v = cell2struct(contents,fieldNames,1); else % using per-field cell arrays pos = pos + 1; for ff = 1:nfields [contents,pos] = deserialize_cell(m,pos); [v.(fieldNames{ff})] = deal(contents{:}); end end end % cell array function [v,pos] = deserialize_cell(m,pos) kind = m(pos); pos = pos + 1; switch kind case 33 % arbitrary/heterogenous cell array % Number of dims ndms = double(m(pos)); pos = pos + 1; % Dimensions dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')'); pos = pos + ndms*4; % Contents v = cell([dms,1,1]); for ii = 1:numel(v) [v{ii},pos] = deserialize_value(m,pos); end case 34 % cell scalars [content,pos] = deserialize_value(m,pos); v = cell(size(content)); for k=1:numel(v) v{k} = content(k); end case 35 % mixed-real cell scalars [content,pos] = deserialize_value(m,pos); v = cell(size(content)); for k=1:numel(v) v{k} = content(k); end [reality,pos] = deserialize_value(m,pos); v(reality) = real(v(reality)); case 36 % cell array with horizontal or empty strings [chars,pos] = deserialize_string(m,pos); [lengths,pos] = deserialize_numeric_simple(m,pos); [empty,pos] = deserialize_logical(m,pos); v = cell(size(lengths)); splits = [0 cumsum(double(lengths(:)))']; for k=1:length(lengths) v{k} = chars(splits(k)+1:splits(k+1)); end [v{empty}] = deal(''); case 37 % empty,known type tag = m(pos); pos = pos + 1; switch tag case 1 % double - [] prot = []; case 33 % cell - {} prot = {}; case 128 % struct - struct() prot = struct(); otherwise error('Unsupported type tag.'); end % Number of dims ndms = double(m(pos)); pos = pos + 1; % Dimensions dms = typecast(m(pos:pos+ndms*4-1),'uint32')'; pos = pos + ndms*4; % Create content v = repmat({prot},dms); case 38 % empty, prototype available % Prototype. [prot,pos] = deserialize_value(m,pos); % Number of dims ndms = double(m(pos)); pos = pos + 1; % Dimensions dms = typecast(m(pos:pos+ndms*4-1),'uint32')'; pos = pos + ndms*4; % Create content v = repmat({prot},dms); case 39 % boolean flags [content,pos] = deserialize_logical(m,pos); v = cell(size(content)); for k=1:numel(v) v{k} = content(k); end otherwise error('Unsupported cell array type.'); end end % object function [v,pos] = deserialize_object(m,pos) pos = pos + 1; % Get class name. [cls,pos] = deserialize_string(m,pos); % Get contents [conts,pos] = deserialize_value(m,pos); % construct object try % try to use the loadobj function v = eval([cls '.loadobj(conts)']); catch try % pass the struct directly to the constructor v = eval([cls '(conts)']); catch try % try to set the fields manually v = feval(cls); for fn=fieldnames(conts)' try set(v,fn{1},conts.(fn{1})); catch % Note: if this happens, your deserialized object might not be fully identical % to the original (if you are lucky, it didn't matter, through). Consider % relaxing the access rights to this property or add support for loadobj from % a struct. warn_once('hlp_deserialize:restricted_access','No permission to set property %s in object of type %s.',fn{1},cls); end end catch v = conts; v.hlp_deserialize_failed = ['could not construct class: ' cls]; end end end end % function handle function [v,pos] = deserialize_handle(m,pos) % Tag kind = m(pos); pos = pos + 1; switch kind case 151 % simple function persistent db_simple; %#ok<TLEV> % database of simple functions (indexed by name) % Name [name,pos] = deserialize_string(m,pos); try % look up from table v = db_simple.(name); catch % otherwise generate & fill table v = str2func(name); db_simple.(name) = v; end case 152 % anonymous function % Function code [code,pos] = deserialize_string(m,pos); % Workspace [wspace,pos] = deserialize_struct(m,pos); % Construct v = restore_function(code,wspace); case 153 % scoped or nested function persistent db_nested; %#ok<TLEV> % database of nested functions (indexed by name) % Parents [parentage,pos] = deserialize_cell(m,pos); try key = sprintf('%s_',parentage{:}); % look up from table v = db_nested.(key); catch % recursively look up from parents, assuming that these support the arg system v = parentage{end}; for k=length(parentage)-1:-1:1 % Note: if you get an error here, you are trying to deserialize a function handle % to a nested function. This is not natively supported by MATLAB and can only be made % to work if your function's parent implements some mechanism to return such a handle. % The below call assumes that your function uses the BCILAB arg system to do this. v = arg_report('handle',v,parentage{k}); end db_nested.(key) = v; end end end % helper for deserialize_handle function f = restore_function(decl__,workspace__) % create workspace for fn__=fieldnames(workspace__)' % we use underscore names here to not run into conflicts with names defined in the workspace eval([fn__{1} ' = workspace__.(fn__{1}) ;']); end clear workspace__ fn__; % evaluate declaration f = eval(decl__); end % emit a specific warning only once (per MATLAB session) function warn_once(varargin) persistent displayed_warnings; % determine the message content if length(varargin) > 1 && any(varargin{1}==':') && ~any(varargin{1}==' ') && ischar(varargin{2}) message_content = [varargin{1} sprintf(varargin{2:end})]; else message_content = sprintf(varargin{1:end}); end % generate a hash of of the message content str = java.lang.String(message_content); message_id = sprintf('x%.0f',str.hashCode()+2^31); % and check if it had been displayed before if ~isfield(displayed_warnings,message_id) % emit the warning warning(varargin{:}); % remember to not display the warning again displayed_warnings.(message_id) = true; end end
github
lcnhappe/happe-master
hlp_aggregatestructs.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_aggregatestructs.m
7,805
utf_8
bab3d7ea8549fc71419a8fa5cb42447f
function res = hlp_aggregatestructs(structs,defaultop,varargin) % Aggregate structs (recursively), using the given combiner operations. % Result = hlp_aggregatestructs(Structs,Default-Op,Field-Ops...) % % This results in a single 1x1 struct which has aggregated values in its fields (e.g., arrays, % averages, etc.). For a different use case, see hlp_superimposedata. % % In: % Structs : cell array of structs to be aggregated (recursively) into a single struct % % Default-Op : optional default combiner operation to execute for every field that is not itself a % struct; see notes for the format. % % Field-Ops : name-value pairs of field-specific ops; names can have dots to denote operations % that apply to subfields. field-specific ops that apply to fields that are % themselves structures become the default op for that sub-structure % % Out: % recursively merged structure. % % Notes: % If an operation cannot be applied, a sequence of fall-backs is silently applied. First, % concatenation is tried, then, replacement is tried (which never fails). Therefore, % function_handles are being concatenated up to 2008a, and replaced starting with 2008b. % Operations are specified in one of the following formats: % * 'cat': concatenate values horizontally using [] % * 'replace': replace values by those of later structs (noncommutative) % * 'sum': sum up values % * 'mean': compute the mean value % * 'std': compute the standard deviation % * 'median': compute the median value % * 'random': pick a random value % * 'fillblanks': replace [] by values of later structs % * binary function: apply the function to aggregate pairs of values; applied in this order % f(f(f(first,second),third),fourth)... % * cell array of binary and unary function: apply the binary function to aggregate pairs of % values, then apply the unary function to finalize the result: functions {b,u} are applied in % the following order: u(b(b(b(first,second),third),fourth)) % % Examples: % % calc the average of the respective field values, across structs % hlp_aggregatestructs({result1,result2,result3},'mean') % % % calc the std deviation of the respective field values, across structs % hlp_aggregatestructs({result1,result2,result3},'std') % % % concatenate the field values across structs % hlp_aggregatestructs({result1,result2,result3},'cat') % % % as before, but use different operations for a few fields % hlp_aggregatestructs({result1,result2,result3},'cat','myfield1','mean','myfield2.subfield','median') % % % use a custom combiner operation (here: product) % hlp_aggregatestructs({result1,result2,result3},@times) % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-05-04 warning off MATLAB:warn_r14_function_handle_transition if ~exist('defaultop','var') defaultop = 'cat'; end if ~iscell(structs) structs = {structs}; end fieldops = hlp_varargin2struct(varargin); % translate all ops (if they are specified as strings) defaultop = translateop(defaultop); fieldops = translateop(fieldops); % aggregate, then finalize res = finalize(aggregate(structs,defaultop,fieldops),defaultop,fieldops); function res = aggregate(structs,defaultop,fieldops) % we skip empty records structs = structs(~cellfun('isempty',structs)); % for any struct array in the input, we first merge it recursively as if it were a cell array for k=find(cellfun('length',structs)>1) structs{k} = hlp_aggregatestructs(structarray2cellarray(structs{k}),defaultop,fieldops); end % at this point, we should have a cell array of structs if ~isempty(structs) % we begin with the first struct res = structs{1}; % and aggregate the remaining ones onto it for i=2:length(structs) si = structs{i}; % proceeding field by field... for fn=fieldnames(si)' f = fn{1}; % figure out which operation applies if isfield(fieldops,f) % a field-specific op applies if isstruct(fieldops.(f)) % ... which is itself a struct fop = fieldops.(f); else op = fieldops.(f); end else % the default op applies op = defaultop; fop = fieldops; end % now process the field if ~isfield(res,f) % field is not yet in the aggregate: just assign res.(f) = si.(f); else % need to aggregate it if isstruct(res.(f)) && isstruct(si.(f)) % both are a struct: recursively aggregate res.(f) = aggregate({res.(f),si.(f)},op,fop); else % they are not both structus try % try to apply the combiner op res.(f) = op{1}(res.(f),si.(f)); catch % didn't work: try to concatenate as fallback try res.(f) = [res.(f),si.(f)]; catch % didn't work: try to assign as fallback (dropping previous field) res.(f) = si.(f); end end end end end end else % nothing to aggregate res = []; end function x = finalize(x,defaultop,fieldops) % proceed field by field... for fn=fieldnames(x)' f = fn{1}; % figure out which operation applies if ~isempty(fieldops) && isfield(fieldops,f) % a field-specific op applies if isstruct(fieldops.(f)) % ... which is itself a struct fop = fieldops.(f); else op = fieldops.(f); end else % the default op applies op = defaultop; fop = fieldops; end try % now apply the finalizer if isstruct(x.(f)) % we have a sub-struct: recurse x.(f) = finalize(x.(f),op,fop); else % we have a regular element: apply finalizer x.(f) = op{2}(x.(f)); end catch % for empty structs, x.(f) produces no output end end % translate string ops into actual ops, add the default finalizer if missing function op = translateop(op) if isstruct(op) % recurse op = structfun(@translateop,op,'UniformOutput',false); else % remap strings if ischar(op) switch op case 'cat' op = @(a,b)[a b]; case 'replace' op = @(a,b)b; case 'sum' op = @(a,b)a+b; case 'mean' op = {@(a,b)[a b], @(x)mean(x)}; case 'median' op = {@(a,b)[a b], @(x)median(x)}; case 'std' op = {@(a,b)[a b], @(x)std(x)}; case 'random' op = {@(a,b)[a b], @(x) x(min(length(x),ceil(eps+rand(1)*length(x))))}; case 'fillblanks' op = @(a,b)fastif(isempty(a),b,a); otherwise error('unsupported combiner op specified'); end end % add finalizer if missing if ~iscell(op) op = {op,@(x)x}; end end % inefficiently turn a struct array into a cell array of structs function res = structarray2cellarray(arg) res = {}; for k=1:numel(arg) res = [res {arg(k)}]; end % for the 'fillblanks' translate op function val = fastif(cond,trueval,falseval) if cond val = trueval; else val = falseval; end
github
lcnhappe/happe-master
hlp_matlab_version.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_matlab_version.m
642
utf_8
56356c36dd8e15038caa4dc7b15b62b5
function v = hlp_matlab_version() % Get the MATLAB version in a numeric format that can be compared with <, >, etc. persistent vers; try v = vers(1); catch v = strsplit(version,'.'); v = str2num(v{1})*100 + str2num(v{2}); vers = v; end % Split a string according to some delimiter(s). Not as fast as hlp_split (and doesn't fuse % delimiters), but doesn't need bsxfun(). function strings = strsplit(string, splitter) ix = strfind(string, splitter); strings = cell(1,numel(ix)+1); ix = [0 ix numel(string)+1]; for k = 2 : numel(ix) strings{k-1} = string(ix(k-1)+1:ix(k)-1); end strings = strings(~cellfun('isempty',strings));
github
lcnhappe/happe-master
hlp_trycompile.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_trycompile.m
50,690
utf_8
cef0c2f78d5b912954b1826f6352d9e1
function ok = hlp_trycompile(varargin) % Try to auto-compile a set of binary files in a folder, and return the status. % OK = hlp_trycompile(Options...) % % This function tries to ensure that a given set of functions or classes (specified by their % MATLAB identifier), whose source files are assumed to be located in a given directory, are % properly compiled. % % The Style parameter determines how the function proceeds: Either compilation is always done % ('force'), or only if necessary ('eager', e.g. if invalid file or changed source code). The check % for re-compilation may be done on every call ('eager'), or once per MATLAB session ('lazy'). % % The most common use case is specifying a given directory (and omitting the identifiers). In this % case, all source files that have a mexFunction declaration are compiled, and all other source % files are also supplied to the compiler as additional files. In case of compilation errors, % hlp_trycompile also tries to omit all additional files during compilation. Both the list of % additional files (or their file name patterns) or the considered file types can be specified. The % list of identifiers to consider can also be specified. % % Another possible use case is to omit both the identifiers and the directory. In this case, % hlp_trycompile assumes that a mex file with the same identifier (and path) as the calling function % shall be compiled. This is would be used in .m files which directly implement some fallback code % in case that the compilation fails (or which are just stubs to trigger the on-demand compilation). % % % Since there can be many different versions of a mex binary under Linux (even with the same name), % .mex files are by default moved into a sub-directory (named according to the hostname) after % compilation. This does not apply to .class files, which are not platform-specific. % % The function supports nearly all features of the underlying MEX compiler, and can thus be used % to compile a large variety of mex packages found in the wild (in some cases with custom defines, % libraries, or include directories). % % If you are debugging code with it, it is best to set Verbose to true, so that you get compilation % output. % % Additional features of this function include: % * Figures out whether the -largeArrayDims switch should be used. % * Repeated calls of this function are very fast if used in 'lazy' mode (so that it can be used in % an inner loop). % * Automatically rebuilds if the mex source has changed (does not apply to misc dependency files), % if used in 'eager' mode. % * By default uses the Mathworks versions of BLAS and LAPACK (if these libraries are pulled in). % * Supports both '/' and '\' in directory names. % * Behaves reasonably in deployed mode (i.e. gives warnings if files are missing). % * Also compiles .java files where appropriate. % * Supports test code. % % If this function produces errors for some mex package, the most common causes are: % * If the platform has never been used to compile code, an appropriate compiler may have to be % selected using "mex -setup". If no supported compiler is installed (e.g. on Win64), it must % first be doenloaded and installed (there is a free standard compiler for every platform). % * Some unused source files are in the directory which produce errors when they are automatically % pulled in. % --> turn on verbose output and identify & remove these (or check the supplied make file for % what files are actually needed) % * The functions require a custom define switch to work. % --> Check the make file, and add the switch(es) using the 'Defines' parameter. % * The functions use non-standard C code (e.g. // comments). % --> Tentatively rename the offending .c files into .cpp. % * The functions require a specific library to work. % --> Check the make file, and add the libraries using the 'Libaries' parameter. % * The functions require specific include directories to work. % --> Check the make file, and add the directories using the 'IncludeDirectories' parameter. % * The functions require additional files that are in a different directory. % --> Check the make file, and add these files using the 'SupportFiles' parameter. Wildcards are % allowed (in particular the special '*' string, which translates into all source files in % the Directory). % * The package assumes that mex is used with the -output option to use a custom identifier name % --> This type of make acrobatic is not supported by hlp_trycompile; instead, rename the source % file which has the mexFunction definition such that it matches the target identifier. % * The functions require specific library directories to work. % --> Check the make file, and add the directories using the 'LibraryDirectories' parameter. % % % In: % Style : execution style, can be one of the following (default: 'lazy') % 'force' : force compilation (regardless of whether the binaries are already there) % 'eager' : compile only if necessary, check every time that this function is called % 'lazy' : compile only if necessary, and don't check again during this MATLAB session % % --- target files --- % % Directory : directory in which the source files are located % (default: directory of the calling function) % % Identifiers : identifier of the target function/class, or cell array of identifiers that should % be compiled (default: Calling function, if no directory given, or names of all % compilable source files in the directory, if a directory is given.) % % FileTypes : file type patterns to consider as sources files for the Identifiers % (default: {'*.f','*.c','*.cpp','*.java'}) % % % --- testing conditions --- % % TestCode : MATLAB code (string) which evaluates to true if the compiled code is behaving % correctly (and false otherwise), or alternatively a function handle which does the % same % % % --- additional compiler inputs --- % % SupportFiles : cell array of additional / supporting source filenames to include in the compilation of all % Identifiers (default: '*') % Note: Any file listed here will not be considered part of the Identifiers, when % all contents of a directory are to be compiled. % Note: If there are support source files in sub-directories, include the full path % to them. % Note: If this is '*', all source files that are not mex files in the given % directory are used as support files. % % Libraries : names of libraries to include in the compilation % (default: {}) % % IncludeDirectories : additional directories in which to search for included source files. % (default: {}) % % LibraryDirectories : additional directories in which to search for referenced library files. % (default: {}) % % Defines : list of defined symbols (either 'name' or 'name=value' strings) % (default: {}) % % Renaming : cell array of {sourcefile,identifier,sourcefile,identifier, ...} indicating that % the MEX functions generated from the respective source files should be renamed to % the given identifiers. Corresponds to MEX's -output option; does not apply to Java files. % (default: {}) % % Arguments : miscellaneous compiler arguments (default: {}) % For possible arguments, type "help mex" in the command line % % DebugBuild : whether to build binaries in debug mode (default: false) % % % --- user messages --- % % ErrorMessage : the detail error message to display which describes what type of functionality % will not be available (if any). % Note: If you have a MATLAB fallback, mention this in the error message. % % PreparationMessage : the message that will be displayed before compilation begins. % (default: {}) % % Verbose : whether to display verbose compiler outputs (default: false) % % % --- misc options --- % % MathworksLibs : whether to use the Mathworks versions of std. libraries instead of OS-supplied % ones, if present (applies to blas and lapack) (default: true) % % DebugCompile : debug the compilation process; halts in the directory prior to invoking mex % (default: false) % % % Examples: % % try to compile all mex / Java files in a given directory: % hlp_trycompile('Directory','/Extern/MySources'); % % % as before, but restrict the set of identifiers to compile to a given set % hlp_trycompile('Directory','/Extern/MySources','Identifiers',{'svmtrain','svmpredict'}); % % % try to compile mex / Java files in a given directory, and include 2 libraries in the compilation % hlp_trycompile('Directory','/Extern/MySources','Libraries',{'blas','lapack'}); % % % like before, but this time include additional source files from two other directories % % (the single '*' means: include non-mex sources in the specified directory) % hlp_trycompile('Directory','/Extern/MySources','SupportFiles',{'*','../blas/*.c','../*.cpp'}); % % % like before, but this time add an include directory, a library directory, and some library % hlp_trycompile('Directory','/Extern/MySources', 'IncludeDirectories','/boost/include','LibraryDirectories','/boost/lib','Libraries','boost_date_time-1.44'); % % % like before, this time specifying some custom #define's % hlp_trycompile('Directory','/Extern/MySources','Defines',{'DEBUG','MAX=((a)>(b)?(a):(b))'}); % % % Use cases: % 1) In addition to a source file mysvd.c (compiling into mysvd.mex*), a stub .m file of the same % name can be placed in the same directory, which contains code to compile the binary when needed. % % function [U,S,V] = mysvd(X) % if hlp_trycompile % [U,S,V] = mysvd(X); % else % % either display an error message or implement some fallback code. % end % % 2) In a MATLAB function which makes use of a few mex files, ensure compilation of these files. % function myprocessing(X,y) % if ~hlp_trycompile('Identifiers',{'svmtrain.c','svmpredict.c'}) % error('Your binary files could not be compiled.'); % else % m = svmtrain(X,y); % l = svmpredict(X,m); % ... % end % % 3) In a startup script. % hlp_trycompile('Directory','/Extern/MySources'); % % See also: % mex % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2011-03-09 persistent results; % a map of result-tag to OK value persistent compiler_selected; % whether a compiler has been selected (true/false, or [] if uncertain) % read options o = hlp_varargin2struct(varargin, ... ... % overall behavior {'style','Style'}, 'lazy', ... ... % target files {'dir','Directory'}, [], ... {'idents','Identifiers'}, [], ... {'types','FileTypes'}, {'*.c','*.C','*.cpp','*.CPP','*.f','*.F','*.java','*.Java'}, ... ... % test condition {'test','TestCode'},'', ... ... % additional compiler inputs {'support','SupportFiles'}, {'*'}, ... {'libs','Libraries'}, {}, ... {'includedirs','IncludeDirectories'}, {}, ... {'libdirs','LibraryDirectories'}, {}, ... {'defines','Defines'}, {}, ... {'args','Arguments'}, '', ... {'renaming','Renaming'}, {}, ... {'debug','DebugBuild'}, false, ... ... % messages {'errmsg','ErrorMessage'}, {'Some BCILAB functionality will likely not be available.'}, ... {'prepmsg','PreparationMessage'}, {}, ... {'verbose','Verbose'}, false, ... ... % misc {'mwlibs','MathworksLibs'}, true, ... {'debugcompile','DebugCompile'}, false ... ); % support for parameterless calls if isempty(o.dir) % if no dir given, use the calling function's directory [name,file] = hlp_getcaller(); o.dir = fileparts(file); if isempty(file) error('If hlp_trycompile is called without a directory, it must be called from within a file.'); end % if neither idents nor dir given, use the calling function's identifier if isempty(o.idents) o.idents = name; end end % uniformize ident format if isa(o.idents,'function_handle') o.idents = char(o.idents); end if ischar(o.idents) o.idents = {o.idents}; end if isempty(o.idents) o.idents = {}; end % decide whether a re-check can be skipped based on identifiers and directory if strcmp(o.style,'lazy') || isdeployed str = java.lang.String(sprintf('%s:',o.dir,o.idents{:})); tag = sprintf('x%.0f',str.hashCode()+3^31); if isfield(results,tag) ok = results.(tag); return; end end % uniformize directory format o.dir = path_normalize(o.dir); % verify style if ~any(strcmp(o.style,{'force','eager','lazy'})) error('Unsupported style: %s',o.style); end % uniformize test condition if isa(o.test,'function_handle') o.test = char(o.test); end % uniformize user messages if ischar(o.errmsg) o.errmsg = {o.errmsg}; end if ischar(o.prepmsg) o.prepmsg = {o.prepmsg}; end % uniformize types if ischar(o.types) o.types = {o.types}; end for t=1:length(o.types) if o.types{t}(1) ~= '*' o.types{t} = ['*' o.types{t}]; end end % uniformize compiler inputs if ischar(o.support) o.support = {o.support}; end if ischar(o.includedirs) o.includedirs = {o.includedirs}; end if ischar(o.libdirs) o.libdirs = {o.libdirs}; end if ischar(o.libs) o.libs = {o.libs}; end if ischar(o.defines) o.defines = {o.defines}; end if ischar(o.args) o.args = {o.args}; end for i=1:length(o.support) o.support{i} = path_normalize(o.support{i}); end for i=1:length(o.includedirs) o.includedirs{i} = path_normalize(o.includedirs{i}); end for i=1:length(o.libdirs) o.libdirs{i} = path_normalize(o.libdirs{i}); end % if a support is given as '*' starred = strcmp('*',o.support); if any(starred) % list all in the given directory that are not mex files infos = []; for t = 1:length(o.types) if ~isempty(infos) infos = [infos; dir([o.dir filesep o.types{t}])]; else infos = dir([o.dir filesep o.types{t}]); end end fnames = {infos.name}; supportfiles = ~cellfun(@(n)is_primary([o.dir filesep n]),fnames); o.support = [fnames(supportfiles) o.support(~starred)]; end % infer directory, if not given (take it from the calling function) if isempty(o.idents) && ~isempty(o.dir) % get all the source files in the given direcctory infos = []; for t = 1:length(o.types) if ~isempty(infos) infos = [infos; dir([o.dir filesep o.types{t}])]; else infos = dir([o.dir filesep o.types{t}]); end end fnames = {infos.name}; % ... but exclude the support files fnames = setdiff(fnames,o.support); % and apply any renamings to get the corresponding identifiers if ~isempty(o.renaming) for n=1:length(fnames) fnames{n} = hlp_rewrite(fnames{n},o.renaming{:}); end end % ... and strip off the extensions for n=1:length(fnames) fnames{n} = hlp_getresult(2,@fileparts,fnames{n}); end o.idents = fnames; end ok = false; missingid = []; % indices of missing identifiers (for dont-retry-next-time beacon files) if isdeployed % --- deployed mode --- % Can not compile, but figure out whether everything needed is present. A special consideration % is that both the mex files calling functions are in a mounted .ctf archive. % check if all identifiers are present (either as mex or class) for i=1:length(o.idents) if ~any(exist(o.idents{i}) == [2 3 8]) missingid(end+1) = i; end end ok = isempty(missingid); if ~isempty(missingid) % not all identifiers are compiled for this platform disp(['Note: The MEX functions/identifiers ' format_cellstr(o.idents(missingid)) ' are not included for your platform.']); elseif strcmp(o.style,'force') % in force mode, we remark that everything is already compiled disp_once(['The functions ' format_cellstr(o.idents) ' are properly compiled.']); end else % --- regular mode --- % here, we *do* compile what needs to be compiled % find out a key configuration settings is64bit = ~isempty(strfind(computer,'64')); has_largearrays = is64bit && hlp_matlab_version >= 703; if ispc warning off MATLAB:FILEATTRIB:SyntaxWarning; end % add a few missing defines if hlp_matlab_version < 703 o.defines = [o.defines {'mwIndex=int','mwSize=int','mwSignedIndex=int'}]; end % rewrite blas & lapack libs.... if o.mwlibs % for each type of library for l={'blas','lapack'} lib = l{1}; % note: this code is based on SeDuMi's compile script (by Michael C. Grant) in_use = strcmp(o.libs,lib); if any(in_use) if ispc if is64bit osdir = 'win64'; else osdir = 'win32'; end libpath = [matlabroot '\extern\lib\' osdir '\microsoft\libmw' lib '.lib']; if ~exist(libpath,'file') libpath = [matlabroot '\extern\lib\' osdir '\microsoft\msvc60\libmw' lib '.lib']; end if exist(libpath,'file') o.libs{in_use} = libpath; else disp_once('Note: The Mathworks library %s was assumed to be in %s, but not found.',lib,libpath); end else o.libs{in_use} = ['mw' lib]; end end end end try % remember the current directory & enter the target directory olddir = pwd; if hlp_matlab_version >= 706 go_back = onCleanup(@()cd(olddir)); end if ~exist(o.dir,'dir') error(['The target directory ' o.dir ' does not exist.']); end cd(o.dir); % expand regex patterns in o.support for i=length(o.support):-1:1 if any(o.support{i} == '*') found = dir(o.support{i}); if ~isempty(found) % ... and splice the results in basepath = fileparts(o.support{i}); items = cellfun(@(x)[basepath filesep x],{found.name},'UniformOutput',false); o.support = [o.support(1:i-1) items o.support(i+1:end)]; end end end % find all source & target files for the respective identifiers... % (note that there might be multiple source files for each one) sources = cell(1,length(o.idents)); % list of all source file names for the corresponding identifiers (indexed like idents) targets = cell(1,length(o.idents)); % list of all target file names for the corresponding identifiers (indexed like idents) for i=1:length(o.idents) if ~isempty(o.renaming) % the renaming may yield additional source file names for the given identifiers idx = strcmp(o.idents{i},o.renaming(2:2:end)); if any(idx) % the identifier is a renaming target: add the corresponding source file name filename = o.renaming{find(idx)*2-1}; % if a source file with this ident & type is present if exist([o.dir filesep filename],'file') % remember it & derive its respective target file name sources{i}{end+1} = filename; targets{i}{end+1} = [o.idents{i} '.' mexext]; end end end for t=1:length(o.types) filename = [o.idents{i} o.types{t}(2:end)]; % if a source file with this ident & type is present if exist([o.dir filesep filename],'file') % remember it sources{i}{end+1} = filename; % and also derive its respective target file name if strcmp(o.types{t},'*.java') targets{i}{end+1} = [o.idents{i} '.class']; else targets{i}{end+1} = [o.idents{i} '.' mexext]; end end end % check whether we have all necessary source files if isempty(sources{i}) error('Did not find source file for %s',o.idents{i}); end if isempty(targets{i}) error('Could not determine target file for %s',o.idents{i}); end end % check for existence (either .mex* or class) of all identifiers % and make a list of missing & present binary files; do this in a different directory, % to not shadow the mex files of interest with whatever .m files live in this directory cd .. binaries = {}; % table of existing binary file paths (indexed like idents) for i=1:length(o.idents) % get current file reference to this identifier binaries{i} = which(o.idents{i}); % if it doesn't point to a .mex or .class file, ignore it if ~any(exist(o.idents{i}) == [3 8]) binaries{i} = []; end if ~isempty(binaries{i}) % check whether it is correct file path if ~any(binaries{i} == filesep) error(['Could not determine the location of the mex file for: ' o.idents{i}]); end % check whether the referenced file actually exists in the file system if isempty(dir(binaries{i})) binaries{i} = []; end end % if no binary found, record it as missing if isempty(binaries{i}) missingid(end+1) = i; end end cd(o.dir); % check which of the existing binaries need to be re-compiled (if out of date) outdatedid = []; % indices of identifiers (in o.idents) that need to be recompiled for i=1:length(binaries) if ~isempty(binaries{i}) % get the date of the binary file bininfo = dir(binaries{i}); % find all corresponding source files srcinfo = []; for s=1:length(sources{i}) srcinfo = [srcinfo; dir([o.dir filesep sources{i}{s}])]; end if ~isfield(bininfo,'datenum') [bininfo.datenum] = celldeal(cellfun(@datenum,{bininfo.date},'UniformOutput',false)); end if ~isfield(srcinfo,'datenum') [srcinfo.datenum] = celldeal(cellfun(@datenum,{srcinfo.date},'UniformOutput',false)); end % if any of the source files has been changed if bininfo.datenum < max([srcinfo.datenum]) % check if their md5 hash is still the same... if exist([binaries{i} '.md5'],'file') try contents = load([binaries{i} '.md5'],'-mat','srchash'); % need to do that over all source files... srchash = []; sorted_sources = sort(sources{i}); for s=1:length(sorted_sources) srchash = [srchash hlp_cryptohash([o.dir filesep sorted_sources{s}],true)]; end if ~isequal(srchash,contents.srchash) % hash is different: mark binary as outdated outdatedid(end+1) = i; end catch % there was a probblem: mark as outdated outdatedid(end+1) = i; end else % no md5 present: mark as outdated outdatedid(end+1) = i; end end end end % we try to recompile both what's missing and what's outdated recompileid = [missingid outdatedid]; javainvolved = false; % for final error/help message generation mexinvolved = false; % same if ~isempty(recompileid) % need to recompile something -- display a few preparatory messages... for l=1:length(o.prepmsg) disp(o.prepmsg{l}); end failedid = []; % list of indices of identifier that failed the build % for each identifier, try to compile it % and record whether it failed for i=recompileid success = false; fprintf(['Compiling the function/class ' o.idents{i} '...']); % for each source file mapping to that identifier for s=1:length(sources{i}) % check type of source if ~isempty(strfind(sources{i}{s},'.java')) % we have a Java source file: compile [errcode,result] = system(['javac ' javac_options(o) sources{i}{s}]); if errcode javainvolved = true; % problem: show display output fprintf('\n'); disp(result); else success = true; break; end else % generate MEX options opts = mex_options(o); supp = sprintf(' %s',o.support{:}); if isempty(compiler_selected) % not clear whether a compiler has been selected yet if hlp_matlab_version >= 708 % we can find it out programmatically try cconf = mex.getCompilerConfigurations; %#ok<NASGU> compiler_selected = true; catch % no compiler has been selected yet... try % display a few useful hints to the user disp(' to compile this feature, you first need to select'); disp('which compiler should be used on your platform.'); if ispc if is64bit disp_once('As you are on 64-bit windows, you may find that no compiler is installed.'); else disp_once('On 32-bit Windows, MATLAB supplies a built-in compiler (LLC), which should'); disp_once('faithfully compile most C code. For broader support across C dialects (as well as C++), '); disp_once('you should make sure that a better compiler is installed on your system and selected in the following.'); end disp_once('A good choice is the free Microsoft Visual Studio 2005/2008/2010 Express compiler suite'); disp_once('together with the Microsoft Platform SDK (6.1 for 2008, 7.1 for 2010) for your Windows Version.'); disp_once('See also: http://argus-home.coas.oregonstate.edu/forums/development/core-software-development/compiling-64-bit-mex-files'); disp_once(' http://www.mathworks.com/support/compilers/R2010b/win64.html'); disp_once('The installation is easier if a professional Intel or Microsoft compiler is used.'); elseif isunix disp_once('On Linux/UNIX, the best choice is usually a supported version of the GCC compiler suite.'); else disp_once('On Mac OS, you need to have a supported version of Xcode/GCC installed.'); end % start the compiler selection tool mex -setup % verify that a compiler has been selected cconf = mex.getCompilerConfigurations; %#ok<NASGU> compiler_selected = true; catch compiler_selected = false; end end else disp(' you may be prompted to select a compiler in the following'); disp('(as BCILAB cannot auto-determine whether one is selected on your platform).'); end end if ~compiler_selected fprintf('skipped (no compiler selected).\n'); else if o.verbose || isempty(compiler_selected) % this variant will also be brought up if not sure whether a compiler % has already been selected... doeval = @eval; else doeval = @evalc; end % try to build the file try mexinvolved = true; % check if a renaming applies... idx = strcmp(sources{i}{s},o.renaming); if any(idx) rename = [' -output ' o.renaming{find(idx,1)+1} ' ']; else rename = ''; end if o.debugcompile % display a debug console to allow the user to debug how their file compiles fprintf('\nExecution has been paused immediately before running mex.\n'); disp(['You are in the directory "' pwd '".']); disp('The mex command that will be invoked in the following is:'); if has_largearrays disp([' mex ' opts ' -largeArrayDims ' rename sources{i}{s} supp]); else disp([' mex ' opts rename sources{i}{s} supp]); end fprintf('\n\nTo proceed normally, type "dbcont".\n'); keyboard; end if has_largearrays try % -largeArrayDims enabled try doeval(['mex ' opts ' -largeArrayDims ' rename sources{i}{s} supp]); % with supporting libaries catch doeval(['mex ' opts ' -largeArrayDims ' rename sources{i}{s}]); % without supporting libraries end catch % -largeArrayDims disabled try doeval(['mex ' opts rename sources{i}{s} supp]); % with supporting libaries catch doeval(['mex ' opts rename sources{i}{s}]); % without supporting libraries end end else % -largeArrayDims disabled try doeval(['mex ' opts rename sources{i}{s} supp]); % with supporting libaries catch doeval(['mex ' opts rename sources{i}{s}]); % without supporting libraries end end % compilation succeeded... if any(i==outdatedid) % there is an outdated binary, which needs to be deleted try delete(binaries{i}); catch disp(['Could not delete outdated binary ' binaries{i}]); end end % check whether the file is being found now if exist(o.idents{i}) == 3 success = true; compiler_selected = true; break; end catch % build failed end end end end % check if compilation of this identifier was successful if success % if so, we sign off the binary with an md5 hash of the sources... newbinary = which(o.idents{i}); try srchash = []; sorted_sources = sort(sources{i}); for s=1:length(sorted_sources) srchash = [srchash hlp_cryptohash([o.dir filesep sorted_sources{s}],true)]; end save([newbinary '.md5'],'srchash','-mat'); fprintf('success.\n'); catch disp('could not create md5 hash for the source files; other than that, successful.'); end else fprintf('failed.\n'); failedid(end+1) = i; end end embed_test = false; if isempty(failedid) % all worked: now run the test code - if any - to verify the correctness of the build if length(recompileid) > 1 if ~isempty(o.test) fprintf('All files in %s compiled successfully; now testing the build outputs...',o.dir); else fprintf('All files in %s compiled successfully.\n',o.dir); end elseif ~isempty(o.test) fprintf('Now testing the build outputs...'); end % test the output try ans = true; %#ok<NOANS> eval(o.test); catch ans = false; %#ok<NOANS> end if ans %#ok<NOANS> % the test was successful; now copy the files into a platform-specific directory if ~isempty(o.test) % only if we have a succeeding non-empty test embed_test = true; fprintf('success.\n'); end retainid = recompileid; eraseid = []; ok = true; else % the test was unsuccessful: remove all newly-compiled files... if ~isempty(o.test) fprintf('failed.\n'); end disp('The code compiled correctly but failed the build tests. Reverting the build...'); disp('If this is unmodified BCILAB code, please consider reporting this issue.'); retainid = []; eraseid = recompileid; end else if length(recompileid) > 1 if isempty(setdiff(recompileid,failedid)) fprintf('All files in %s failed to build; this indicates a problem in your build environment/settings.\n',o.dir); else fprintf('Some files in %s failed to build. Please make sure that you have a supported compiler; otherwise, please report this issue.\n',o.dir); end else disp('Please make sure that you have a supported compiler and that your build environment is set up correctly.'); disp('Also, please consider reporting this issue.'); end % compilation failed; only a part of the binaries may be available... retainid = setdiff(recompileid,failedid); eraseid = []; end % move the mex files into their own directory moveid = retainid(cellfun(@exist,o.idents(retainid)) == 3); if ~isempty(moveid) % some files to be moved dest_path = [o.dir filesep 'build-' hlp_hostname filesep]; % create a new directory if ~exist(dest_path,'dir') if ~mkdir(o.dir,['build-' hlp_hostname]) error(['unable to create directory ' dest_path]); end % set permissions try fileattrib(dest_path,'+w','a'); catch disp(['Note: There are permission problems for the directory ' dest_path]); end end % create a new env_add.m there try filename = [dest_path 'env_add.m']; fid = fopen(filename,'w+'); if embed_test % if we had a successful test, we use this to control inclusion of the mex files fprintf(fid,o.test); else % otherwise we check whether any one of the identifiers is recognized by % MATLAB as a mex function fprintf(fid,'any(cellfun(@exist,%s)==3)',hlp_tostring(o.idents(moveid))); end fclose(fid); fileattrib(filename,'+w','a'); catch disp(['Note: There were write permission problems for the file ' filename]); end % move the targets over there... movefiles = unique(o.idents(moveid)); for t = 1:length(movefiles) [d,n,x] = fileparts(which(movefiles{t})); movefile([d filesep n x],[dest_path n x]); try movefile([d filesep n x '.md5'],[dest_path n x '.md5']); catch end end % add the destination path addpath(dest_path); % and to be entirely sure, CD into that directory to verify that the files are being recognized... % (and don't get shadowed by whatever is in the directory below) cd(dest_path); all_ok = all(strncmp(dest_path,cellfun(@which,o.idents(moveid),'UniformOutput',false),length(dest_path))); cd(o.dir); % make sure that they are still being found... if ~all_ok error('It could not be verified that the MEX file records in %s were successfully updated to their new sub-directories.',o.dir); end end % move the java class files into their own directory infos = dir([o.dir filesep '*.class']); movefiles = {infos.name}; moveid = retainid(cellfun(@exist,o.idents(retainid)) ~= 3); if ~isempty(movefiles) % some files to be moved dest_path = [o.dir filesep 'build-javaclasses' filesep]; % create a new directory if ~exist(dest_path,'dir') if ~mkdir(o.dir,'build-javaclasses') error(['unable to create directory ' dest_path]); end % set permissions try fileattrib(dest_path,'+w','a'); catch disp(['Note: There are permission problems for the directory ' dest_path]); end end % create a new env_add.m there try filename = [dest_path 'env_add.m']; fid = fopen(filename,'w+'); fclose(fid); fileattrib(filename,'+w','a'); catch disp(['Note: There were write permission problems for the file ' filename]); end % move the targets over there... for t = 1:length(movefiles) movefile([o.dir filesep movefiles{t}],[dest_path movefiles{t}]); try movefile([o.dir filesep movefiles{t} '.md5'],[dest_path movefiles{t} '.md5']); catch end end % add the destination path if isdeployed warning off MATLAB:javaclasspath:jarAlreadySpecified; end javaaddpath(dest_path); % check whether the class is found if ~all(cellfun(@exist,o.idents(moveid)) == 8) disp_once('Not all Java binaries in %s could be recognized by MATLAB.',dest_path); end end if ~isempty(eraseid) % some files need to be erased... for k=eraseid for t=1:length(targets{k}) if exist([o.dir filesep targets{k}{t}]) try delete(targets{k}{t}); catch disp(['Could not delete broken binary ' binaries{i}{s}]); end end end end end else % nothing to recompile ok = true; if strcmp(o.style,'eager') && ~isempty(o.idents) && o.verbose disp_once(['The functions ' format_cellstr(o.idents) ' are already compiled.']); end end % go back to the old directory if hlp_matlab_version < 706 cd(olddir); end catch e ok = false; %#ok<NASGU> % go back to the old path in case of an error if hlp_matlab_version < 706 cd(olddir); end rethrow(e); end end % store the OK flag in the results if strcmp(o.style,'lazy') || isdeployed results.(tag) = ok; end if ~ok if ~isdeployed % regular error summary if mexinvolved disp_once('\nIn case you need to use a better / fully supported compiler, please have a look at:'); try v=version; releasename = v(find(v=='(')+1 : find(v==')')-1); if length(releasename) > 3 && releasename(1) == 'R' releasename = releasename(2:end); end site = ['http://www.google.com/search?q=matlab+supported+compilers+' releasename]; catch site = 'http://www.google.com/search?q=matlab+supported+compilers'; end disp_once(' <a href="%s">%s</a>\n',site,site); if ispc if is64bit disp_once('On 64-bit Windows, MATLAB comes with no built-in compiler, so you need to have one installed.'); else disp_once('On 32-bit Windows, MATLAB supplies a built-in compiler (LLC), which is, however, not very good.'); end disp_once('A good choice is the free Microsoft Visual Studio 2005/2008/2010 Express compiler suite'); disp_once('together with the Microsoft Platform SDK (6.1 for 2008, 7.1 for 2010) for your Windows Version.'); disp_once('See also: http://argus-home.coas.oregonstate.edu/forums/development/core-software-development/compiling-64-bit-mex-files'); disp_once(' http://www.mathworks.com/support/compilers/R2010b/win64.html'); disp_once('The installation is easier if a professional Intel or Microsoft compiler is used.'); elseif isunix disp_once('On Linux/UNIX, the best choice is usually a supported version of the GCC compiler suite.'); else disp_once('On Mac OS, you need to have a supported version of Xcode/GCC installed.'); end end if javainvolved disp_once('Please make sure that your system''s java configuration matches the one used by MATLAB (see "ver" command).'); end end end % create javac options string from options struct function opts = javac_options(o) verbosity = hlp_rewrite(o.verbose,true,'-verbose',false,''); if ~isempty(o.libdirs) cpath = ['-classpath ' sprintf('%s;',o.libdirs{:})]; cpath(end) = []; else cpath = ''; end if ~isempty(o.includedirs) ipath = ['-sourcepath ' sprintf('%s;',o.includedirs{:})]; ipath(end) = []; else ipath = ''; end debugness = hlp_rewrite(o.debug,true,'-g',false,'-g:none'); targetsource = '-target 1.6 -source 1.6'; opts = [sprintf(' %s',verbosity,cpath,ipath,debugness,targetsource) ' ']; % create mex options string from options struct function opts = mex_options(o) if ~isempty(o.defines) defs = sprintf(' -D%s',o.defines{:}); else defs = ''; end debugness = hlp_rewrite(o.debug,true,'-g',false,''); if ~isempty(o.includedirs) incdirs = sprintf(' -I"%s"',o.includedirs{:}); else incdirs = ''; end if ~isempty(o.libs) if ispc libs = sprintf(' -l"%s"',o.libs{:}); else libs = sprintf(' -l%s',o.libs{:}); end else libs = ''; end if ~isempty(o.libdirs) libdirs = sprintf(' -L"%s"',o.libdirs{:}); else libdirs = ''; end verbosity = hlp_rewrite(o.verbose,true,'-v',false,''); opts = [sprintf(' %s',defs,debugness,incdirs,libs,libdirs,verbosity) ' ']; % format a non-empty cell-string array into a string function x = format_cellstr(x) if isempty(x) x = ''; else x = ['{' sprintf('%s, ',x{1:end-1}) x{end} '}']; end % check whether a given identifier is frozen in a ctf archive function tf = in_ctf(ident) %#ok<DEFNU> tf = isdeployed && strncmp(ctfroot,which(ident),length(ctfroot)); % normalize a directory path function dir = path_normalize(dir) if filesep == '\'; dir(dir == '/') = filesep; else dir(dir == '\') = filesep; end if dir(end) == filesep dir = dir(1:end-1); end % determine if a given file is a mex source file or a java source file % (and compiles into an identifier that is seen by MATLAB) function tf = is_primary(filename) if length(filename)>5 && strcmp(filename(end-4:end),'.java') tf = true; return; else tf = false; end fid = fopen(filename); if fid ~= -1 try contents = fread(fid); tf = ~isempty(strfind(char(contents)','mexFunction')); %#ok<FREAD> fclose(fid); catch fclose(fid); end end % act like deal, but with a single cell array as input function varargout = celldeal(argin) varargout = argin; % for old MATLABs that can't properly move files... function movefile(src,dst) try builtin('movefile',src,dst); catch e if any([src dst]=='$') && hlp_matlab_version <= 705 if ispc [errcode,text] = system(sprintf('move ''%s'' ''%s''',src,dst)); %#ok<NASGU> else [errcode,text] = system(sprintf('mv ''%s'' ''%s''',src,dst)); %#ok<NASGU> end if errcode error('Failed to move %s to %s.',src,dst); end else rethrow(e); end end % for old MATLABs that don't handle Java classes on the dynamic path... function res = exist(obj,type) if nargin > 1 res = builtin('exist',obj,type); if ~res && (hlp_matlab_version <= 704) && strcmp(type,'class') && builtin('exist',[obj '.class'],'file') res = 8; end else res = builtin('exist',obj); if ~res && (hlp_matlab_version <= 704) && builtin('exist',[obj '.class']) res = 8; end end % for old MATLABs that don't handle Java classes on the dynamic path... function res = which(ident) res = builtin('which',ident); if ~any(res == filesep) if hlp_matlab_version <= 704 if isempty(res) || ~isempty(strfind(res,'not found')) res = builtin('which',[ident '.class']); end else if ~isempty(strfind(res,'Java')) res = builtin('which',[ident '.class']); end end end
github
lcnhappe/happe-master
hlp_serialize.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_serialize.m
15,821
utf_8
90ee89875e34a4a84c3e58d9657c04f1
function m = hlp_serialize(v) % Convert a MATLAB data structure into a compact byte vector. % Bytes = hlp_serialize(Data) % % The original data structure can be recovered from the byte vector via hlp_deserialize. % % In: % Data : some MATLAB data structure % % Out: % Bytes : a representation of the original data as a byte stream % % Notes: % The code is a rewrite of Tim Hutt's serialization code. Support has been added for correct % recovery of sparse, complex, single, (u)intX, function handles, anonymous functions, objects, % and structures with unlimited field count. Serialize/deserialize performance is ~10x higher. % % Limitations: % * Java objects cannot be serialized % * Arrays with more than 255 dimensions have their last dimensions clamped % * Handles to nested/scoped functions can only be deserialized when their parent functions % support the BCILAB argument reporting protocol (e.g., by using arg_define). % * New MATLAB objects need to be reasonably friendly to serialization; either they support % construction from a struct, or they support saveobj/loadobj(struct), or all their important % properties can be set via set(obj,'name',value) % * In anonymous functions, accessing unreferenced variables in the workspace of the original % declaration via eval(in) works only if manually enabled via the global variable % tracking.serialize_anonymous_fully (possibly at a significant performance hit). % note: this feature is currently not rock solid and can be broken either by Ctrl+C'ing % in the wrong moment or by concurrently serializing from MATLAB timers. % % See also: % hlp_deserialize % % Examples: % bytes = hlp_serialize(mydata); % ... e.g. transfer the 'bytes' array over the network ... % mydata = hlp_deserialize(bytes); % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-02 % % adapted from serialize.m % (C) 2010 Tim Hutt % dispatch according to type if isnumeric(v) m = serialize_numeric(v); elseif ischar(v) m = serialize_string(v); elseif iscell(v) m = serialize_cell(v); elseif isstruct(v) m = serialize_struct(v); elseif isa(v,'function_handle') m = serialize_handle(v); elseif islogical(v) m = serialize_logical(v); elseif isobject(v) m = serialize_object(v); elseif isjava(v) warn_once('hlp_serialize:cannot_serialize_java','Cannot properly serialize Java class %s; using a placeholder instead.',class(v)); m = serialize_string(['<<hlp_serialize: ' class(v) ' unsupported>>']); else try m = serialize_object(v); catch warn_once('hlp_serialize:unknown_type','Cannot properly serialize object of unknown type "%s"; using a placeholder instead.',class(v)); m = serialize_string(['<<hlp_serialize: ' class(v) ' unsupported>>']); end end end % single scalar function m = serialize_scalar(v) % Data type & data m = [class2tag(class(v)); typecast(v,'uint8').']; end % char arrays function m = serialize_string(v) if size(v,1) == 1 % horizontal string: Type, Length, and Data m = [uint8(0); typecast(uint32(length(v)),'uint8').'; uint8(v(:))]; elseif sum(size(v)) == 0 % '': special encoding m = uint8(200); else % general char array: Tag & Number of dimensions, Dimensions, Data m = [uint8(132); ndims(v); typecast(uint32(size(v)),'uint8').'; uint8(v(:))]; end end % logical arrays function m = serialize_logical(v) % Tag & Number of dimensions, Dimensions, Data m = [uint8(133); ndims(v); typecast(uint32(size(v)),'uint8').'; uint8(v(:))]; end % non-complex and non-sparse numerical matrix function m = serialize_numeric_simple(v) % Tag & Number of dimensions, Dimensions, Data m = [16+class2tag(class(v)); ndims(v); typecast(uint32(size(v)),'uint8').'; typecast(v(:).','uint8').']; end % Numeric Matrix: can be real/complex, sparse/full, scalar function m = serialize_numeric(v) if issparse(v) % Data Type & Dimensions m = [uint8(130); typecast(uint64(size(v,1)), 'uint8').'; typecast(uint64(size(v,2)), 'uint8').']; % vectorize % Index vectors [i,j,s] = find(v); % Real/Complex if isreal(v) m = [m; serialize_numeric_simple(i); serialize_numeric_simple(j); 1; serialize_numeric_simple(s)]; else m = [m; serialize_numeric_simple(i); serialize_numeric_simple(j); 0; serialize_numeric_simple(real(s)); serialize_numeric_simple(imag(s))]; end elseif ~isreal(v) % Data type & contents m = [uint8(131); serialize_numeric_simple(real(v)); serialize_numeric_simple(imag(v))]; elseif isscalar(v) % Scalar m = serialize_scalar(v); else % Simple matrix m = serialize_numeric_simple(v); end end % Struct array. function m = serialize_struct(v) % Tag, Field Count, Field name lengths, Field name char data, #dimensions, dimensions fieldNames = fieldnames(v); fnLengths = [length(fieldNames); cellfun('length',fieldNames)]; fnChars = [fieldNames{:}]; dims = [ndims(v) size(v)]; m = [uint8(128); typecast(uint32(fnLengths(:)).','uint8').'; uint8(fnChars(:)); typecast(uint32(dims), 'uint8').']; % Content. if numel(v) > length(fieldNames) % more records than field names; serialize each field as a cell array to expose homogenous content tmp = cellfun(@(f)serialize_cell({v.(f)}),fieldNames,'UniformOutput',false); m = [m; 0; vertcat(tmp{:})]; else % more field names than records; use struct2cell m = [m; 1; serialize_cell(struct2cell(v))]; end end % Cell array of heterogenous contents function m = serialize_cell_heterogenous(v) contents = cellfun(@hlp_serialize,v,'UniformOutput',false); m = [uint8(33); ndims(v); typecast(uint32(size(v)),'uint8').'; vertcat(contents{:})]; end % Cell array of homogenously-typed contents function m = serialize_cell_typed(v,serializer) contents = cellfun(serializer,v,'UniformOutput',false); m = [uint8(33); ndims(v); typecast(uint32(size(v)),'uint8').'; vertcat(contents{:})]; end % Cell array function m = serialize_cell(v) sizeprod = cellfun('prodofsize',v); if sizeprod == 1 % all scalar elements if (all(cellfun('isclass',v(:),'double')) || all(cellfun('isclass',v(:),'single'))) && all(~cellfun(@issparse,v(:))) % uniformly typed floating-point scalars (and non-sparse) reality = cellfun('isreal',v); if reality % all real m = [uint8(34); serialize_numeric_simple(reshape([v{:}],size(v)))]; elseif ~reality % all complex m = [uint8(34); serialize_numeric(reshape([v{:}],size(v)))]; else % mixed reality m = [uint8(35); serialize_numeric(reshape([v{:}],size(v))); serialize_logical(reality(:))]; end else % non-float types if cellfun('isclass',v,'struct') % structs m = serialize_cell_typed(v,@serialize_struct); elseif cellfun('isclass',v,'cell') % cells m = serialize_cell_typed(v,@serialize_cell); elseif cellfun('isclass',v,'logical') % bool flags m = [uint8(39); serialize_logical(reshape([v{:}],size(v)))]; elseif cellfun('isclass',v,'function_handle') % function handles m = serialize_cell_typed(v,@serialize_handle); else % arbitrary / mixed types m = serialize_cell_heterogenous(v); end end elseif isempty(v) % empty cell array m = [uint8(33); ndims(v); typecast(uint32(size(v)),'uint8').']; else % some non-scalar elements dims = cellfun('ndims',v); size1 = cellfun('size',v,1); size2 = cellfun('size',v,2); if cellfun('isclass',v,'char') & size1 <= 1 %#ok<AND2> % all horizontal strings or proper empty strings m = [uint8(36); serialize_string([v{:}]); serialize_numeric_simple(uint32(size2)); serialize_logical(size1(:)==0)]; elseif (size1+size2 == 0) & (dims == 2) %#ok<AND2> % all empty and non-degenerate elements if all(cellfun('isclass',v(:),'double')) || all(cellfun('isclass',v(:),'cell')) || all(cellfun('isclass',v(:),'struct')) % of standard data types: Tag, Type Tag, #Dims, Dims m = [uint8(37); class2tag(class(v{1})); ndims(v); typecast(uint32(size(v)),'uint8').']; elseif length(unique(cellfun(@class,v(:),'UniformOutput',false))) == 1 % of uniform class with prototype m = [uint8(38); hlp_serialize(class(v{1})); ndims(v); typecast(uint32(size(v)),'uint8').']; else % of arbitrary classes m = serialize_cell_heterogenous(v); end else % arbitrary sizes (and types, etc.) m = serialize_cell_heterogenous(v); end end end % Object / class function m = serialize_object(v) try % try to use the saveobj method first to get the contents conts = saveobj(v); if isstruct(conts) || iscell(conts) || isnumeric(conts) || ischar(conts) || islogical(conts) || isa(conts,'function_handle') % contents is something that we can readily serialize conts = hlp_serialize(conts); else % contents is still an object: turn into a struct now conts = serialize_struct(struct(conts)); end catch % saveobj failed for this object: turn into a struct conts = serialize_struct(struct(v)); end % Tag, Class name and Contents m = [uint8(134); serialize_string(class(v)); conts]; end % Function handle function m = serialize_handle(v) % get the representation rep = functions(v); switch rep.type case 'simple' % simple function: Tag & name m = [uint8(151); serialize_string(rep.function)]; case 'anonymous' global tracking; %#ok<TLEV> if isfield(tracking,'serialize_anonymous_fully') && tracking.serialize_anonymous_fully % serialize anonymous function with their entire variable environment (for complete % eval and evalin support). Requires a stack of function id's, as function handles % can reference themselves in their full workspace. persistent handle_stack; %#ok<TLEV> % Tag and Code m = [uint8(152); serialize_string(char(v))]; % take care of self-references str = java.lang.String(rep.function); func_id = str.hashCode(); if ~any(handle_stack == func_id) try % push the function id handle_stack(end+1) = func_id; % now serialize workspace m = [m; serialize_struct(rep.workspace{end})]; % pop the ID again handle_stack(end) = []; catch e % note: Ctrl-C can mess up the handle stack handle_stack(end) = []; %#ok<NASGU> rethrow(e); end else % serialize the empty workspace m = [m; serialize_struct(struct())]; end if length(m) > 2^18 % If you are getting this warning, it is likely that one of your anonymous functions % was created in a scope that contained large variables; MATLAB will implicitly keep % these variables around (referenced by the function) just in case you refer to them. % To avoid this, you can create the anonymous function instead in a sub-function % to which you only pass the variables that you actually need. warn_once('hlp_serialize:large_handle','The function handle with code %s references variables of more than 256k bytes; this is likely very slow.',rep.function); end else % anonymous function: Tag, Code, and reduced workspace if ~isempty(rep.workspace) m = [uint8(152); serialize_string(char(v)); serialize_struct(rep.workspace{1})]; else m = [uint8(152); serialize_string(char(v)); serialize_struct(struct())]; end end case {'scopedfunction','nested'} % scoped function: Tag and Parentage m = [uint8(153); serialize_cell(rep.parentage)]; otherwise warn_once('hlp_serialize:unknown_handle_type','A function handle with unsupported type "%s" was encountered; using a placeholder instead.',rep.type); m = serialize_string(['<<hlp_serialize: function handle of type ' rep.type ' unsupported>>']); end end % *container* class to byte function b = class2tag(cls) switch cls case 'string' b = uint8(0); case 'double' b = uint8(1); case 'single' b = uint8(2); case 'int8' b = uint8(3); case 'uint8' b = uint8(4); case 'int16' b = uint8(5); case 'uint16' b = uint8(6); case 'int32' b = uint8(7); case 'uint32' b = uint8(8); case 'int64' b = uint8(9); case 'uint64' b = uint8(10); % other tags are as follows: % % offset by +16: scalar variants of these... % case 'cell' % b = uint8(33); % case 'cellscalars' % b = uint8(34); % case 'cellscalarsmixed' % b = uint8(35); % case 'cellstrings' % b = uint8(36); % case 'cellempty' % b = uint8(37); % case 'cellemptyprot' % b = uint8(38); % case 'cellbools' % b = uint8(39); % case 'struct' % b = uint8(128); % case 'sparse' % b = uint8(130); % case 'complex' % b = uint8(131); % case 'char' % b = uint8(132); % case 'logical' % b = uint8(133); % case 'object' % b = uint8(134); % case 'function_handle' % b = uint8(150); % case 'function_simple' % b = uint8(151); % case 'function_anon' % b = uint8(152); % case 'function_scoped' % b = uint8(153); % case 'emptystring' % b = uint8(200); otherwise error('Unknown class'); end end % emit a specific warning only once (per MATLAB session) function warn_once(varargin) persistent displayed_warnings; % determine the message content if length(varargin) > 1 && any(varargin{1}==':') && ~any(varargin{1}==' ') && ischar(varargin{2}) message_content = [varargin{1} sprintf(varargin{2:end})]; else message_content = sprintf(varargin{1:end}); end % generate a hash of of the message content str = java.lang.String(message_content); message_id = sprintf('x%.0f',str.hashCode()+2^31); % and check if it had been displayed before if ~isfield(displayed_warnings,message_id) % emit the warning warning(varargin{:}); % remember to not display the warning again displayed_warnings.(message_id) = true; end end
github
lcnhappe/happe-master
hlp_varargin2struct.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_varargin2struct.m
6,267
utf_8
a185d699c488adb84cda30f6db5facda
function res = hlp_varargin2struct(args, varargin) % Convert a list of name-value pairs into a struct with values assigned to names. % struct = hlp_varargin2struct(Varargin, Defaults) % % In: % Varargin : cell array of name-value pairs and/or structs (with values assigned to names) % % Defaults : optional list of name-value pairs, encoding defaults; multiple alternative names may % be specified in a cell array % % Example: % function myfunc(x,y,z,varargin) % % parse options, and give defaults for some of them: % options = hlp_varargin2struct(varargin, 'somearg',10, 'anotherarg',{1 2 3}); % % Notes: % * mandatory args can be expressed by specifying them as ..., 'myparam',mandatory, ... in the defaults % an error is raised when any of those is left unspecified % % * the following two parameter lists are equivalent (note that the struct is specified where a name would be expected, % and that it replaces the entire name-value pair): % ..., 'xyz',5, 'a',[], 'test','toast', 'xxx',{1}. ... % ..., 'xyz',5, struct( 'a',{[]},'test',{'toast'} ), 'xxx',{1}, ... % % * names with dots are allowed, i.e.: ..., 'abc',5, 'xxx.a',10, 'xxx.yyy',20, ... % % * some parameters may have multiple alternative names, which shall be remapped to the % standard name within opts; alternative names are given together with the defaults, % by specifying a cell array of names instead of the name in the defaults, as in the following example: % ... ,{'standard_name','alt_name_x','alt_name_y'}, 20, ... % % Out: % Result : a struct with fields corresponding to the passed arguments (plus the defaults that were % not overridden); if the caller function does not retrieve the struct, the variables are % instead copied into the caller's workspace. % % Examples: % % define a function which takes some of its arguments as name-value pairs % function myfunction(myarg1,myarg2,varargin) % opts = hlp_varargin2struct(varargin, 'myarg3',10, 'myarg4',1001, 'myarg5','test'); % % % as before, but this time allow an alternative name for myarg3 % function myfunction(myarg1,myarg2,varargin) % opts = hlp_varargin2struct(varargin, {'myarg3','legacyargXY'},10, 'myarg4',1001, 'myarg5','test'); % % % as before, but this time do not return arguments in a struct, but assign them directly to the % % function's workspace % function myfunction(myarg1,myarg2,varargin) % hlp_varargin2struct(varargin, {'myarg3','legacyargXY'},10, 'myarg4',1001, 'myarg5','test'); % % See also: % hlp_struct2varargin, arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-05 % a struct was specified as first argument if isstruct(args) args = {args}; end % --- handle defaults --- if ~isempty(varargin) % splice substructs into the name-value list if any(cellfun('isclass',varargin(1:2:end),'struct')) varargin = flatten_structs(varargin); end defnames = varargin(1:2:end); defvalues = varargin(2:2:end); % make a remapping table for alternative default names... for k=find(cellfun('isclass',defnames,'cell')) for l=2:length(defnames{k}) name_for_alternative.(defnames{k}{l}) = defnames{k}{1}; end defnames{k} = defnames{k}{1}; end % create default struct if [defnames{:}]~='.' % use only the last assignment for each name [s,indices] = sort(defnames(:)); indices( strcmp(s((1:end-1)'),s((2:end)'))) = []; % and make the struct res = cell2struct(defvalues(indices),defnames(indices),2); else % some dot-assignments are contained in the defaults try res = struct(); for k=1:length(defnames) if any(defnames{k}=='.') eval(['res.' defnames{k} ' = defvalues{k};']); else res.(defnames{k}) = defvalues{k}; end end catch error(['invalid field name specified in defaults: ' defnames{k}]); end end else res = struct(); end % --- handle overrides --- if ~isempty(args) % splice substructs into the name-value list if any(cellfun('isclass',args(1:2:end),'struct')) args = flatten_structs(args); end % rewrite alternative names into their standard form... if exist('name_for_alternative','var') for k=1:2:length(args) if isfield(name_for_alternative,args{k}) args{k} = name_for_alternative.(args{k}); end end end % override defaults with arguments... try if [args{1:2:end}]~='.' for k=1:2:length(args) res.(args{k}) = args{k+1}; end else % some dot-assignments are contained in the overrides for k=1:2:length(args) if any(args{k}=='.') eval(['res.' args{k} ' = args{k+1};']); else res.(args{k}) = args{k+1}; end end end catch if ischar(args{k}) error(['invalid field name specified in arguments: ' args{k}]); else error(['invalid field name specified for the argument at position ' num2str(k)]); end end end % check for missing but mandatory args % note: the used string needs to match mandatory.m missing_entries = strcmp('__arg_mandatory__',struct2cell(res)); if any(missing_entries) fn = fieldnames(res)'; fn = fn(missing_entries); error(['The parameters {' sprintf('%s, ',fn{1:end-1}) fn{end} '} were unspecified but are mandatory.']); end % copy to the caller's workspace if no output requested if nargout == 0 for fn=fieldnames(res)' assignin('caller',fn{1},res.(fn{1})); end end % substitute any structs in place of a name-value pair into the name-value list function args = flatten_structs(args) k = 1; while k <= length(args) if isstruct(args{k}) tmp = [fieldnames(args{k}) struct2cell(args{k})]'; args = [args(1:k-1) tmp(:)' args(k+1:end)]; k = k+numel(tmp); else k = k+2; end end
github
lcnhappe/happe-master
hlp_worker.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_worker.m
5,701
utf_8
912f4bd9ba397e3e40f05b77f7bf1fb5
function hlp_worker(varargin) % Act as a lightweight worker process for use with hlp_schedule. % hlp_worker(Options...) % % Receives commands (string expressions) from the network, evaluate them, and send off the result to % some collector (again as a string). Processing is done in a single thread. % % In: % Options... : optional name-value pairs, with possible names: % 'port': port number on which to listen for requests (default: 23547) % if the port is already in use, the next free one will be chosen, % until port+portrange is exceeded; then, a free one will be chosen % if specified as 0, a free one is chosen directly % % 'portrange': number of ports to try following the default/supplied port (default: 16) % % 'backlog': backlog of queued incoming connections (default: 0) % % 'timeout_accept': timeout for accepting connections, in seconds (default: 3) % % 'timeout_send': timeout for sending results, in seconds (default: 10) % % 'timeout_recv': timeout for receiving data, in seconds (default: 5) % % Notes: % * use multiple workers to make use of multiple cores % * use only ports that are not accessible from the internet % * request format: <task_id><collectoraddress_length><collectoraddress><body_length><body> % <task_id>: identifier of the task (needs to be forwarded, with the result, % to a some data collector upon task completion) (int) % <collectoraddress_length>: length, in bytes, of the data collector's address (int) % <collectoraddress>: where to send the result for collection (string, formatted as host:port) % <body_length>: length, in bytes, of the message body (int) % <body>: a MATLAB command that yields, when evaluated, some result in ans (string, as MATLAB expression) % if an exception occurs, the exception struct (as from lasterror) replaces ans % * response format: <task_id><body_length><body> % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-08-26 import java.io.* import java.net.* % read options opts = hlp_varargin2struct(varargin, 'port',23547, 'portrange',16, 'backlog',1, 'timeout_accept',3, ... 'timeout_send',10, 'timeout_recv',5, 'receive_buffer',64000); % open a new server socket (first trying the specified portrange, then falling back to 0) for port = [opts.port:opts.port+opts.portrange 0] try serv = ServerSocket(port, opts.backlog); break; catch,end end disp(['This is ' hlp_hostname ' (' hlp_hostip '). Listening on port ' num2str(serv.getLocalPort())]); % set socket properties (e.g., making the function interruptible) serv.setReceiveBufferSize(opts.receive_buffer); serv.setSoTimeout(round(1000*opts.timeout_accept)); % make sure that the server socket will be closed when this function is terminated cleaner = onCleanup(@()serv.close()); tasknum = 1; disp('waiting for connections...'); while 1 try % wait for an incoming request conn = serv.accept(); conn.setSoTimeout(round(1000*opts.timeout_recv)); conn.setTcpNoDelay(1); disp('connected.'); try % parse request in = DataInputStream(conn.getInputStream()); cr = ChunkReader(in); taskid = in.readInt(); collector = char(cr.readFully(in.readInt())'); task = char(cr.readFully(in.readInt())'); disp('received data; replying.'); out = DataOutputStream(conn.getOutputStream()); out.writeInt(taskid+length(collector)+length(task)); out.flush(); conn.close(); % evaluate task & serialize result disp(['running task ' num2str(taskid) ' (' num2str(tasknum) ') ...']); tasknum = tasknum+1; result = hlp_serialize(evaluate(task)); disp('done with task; opening back link...'); try % send off the result idx = find(collector==':',1); outconn = Socket(collector(1:idx-1), str2num(collector(idx+1:end))); disp('connected; now sending...'); outconn.setTcpNoDelay(1); outconn.setSoTimeout(round(1000*opts.timeout_recv)); out = DataOutputStream(outconn.getOutputStream()); out.writeInt(taskid); out.writeInt(length(result)); out.writeBytes(result); out.flush(); outconn.close(); disp('done.'); disp('waiting for connections...'); catch e = lasterror; %#ok<LERR> if isempty(strfind(e.message,'timed out')) disp(['Exception during result forwarding: ' e.message]); end end catch conn.close(); e = lasterror; %#ok<LERR> if ~isempty(strfind(e.message,'EOFException')) disp(['cancelled.']); elseif isempty(strfind(e.message,'timed out')) disp(['Exception during task receive: ' e.message]); end end catch e = lasterror; %#ok<LERR> if isempty(strfind(e.message,'timed out')) disp(['Exception during accept: ' e.message]); end end end function result = evaluate(task) % evaluate a task try ans = []; %#ok<NOANS> eval([task ';']); result = ans; %#ok<NOANS> catch result = lasterror; %#ok<LERR> end
github
lcnhappe/happe-master
hlp_superimposedata.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/helpers/hlp_superimposedata.m
5,438
utf_8
512675e236e6e374f99cf433a05bb974
function res = hlp_superimposedata(varargin) % Merge multiple partially populated data structures into one fully populated one. % Result = hlp_superimposedata(Data1, Data2, Data3, ...) % % The function is applicable when you have cell arrays or structs/struct arrays with non-overlapping % patterns of non-empty entries, where all entries should be merged into a single data structure % which retains their original positions. If entries exist in multiple data structures at the same % location, entries of later items will be ignored (i.e. earlier data structures take precedence). % % In: % DataK : a data structure that should be super-imposed with the others to form a single data % structure % % Out: % Result : the resulting data structure % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2011-08-19 % first, compactify the data by removing the empty items compact = varargin(~cellfun('isempty',varargin)); % start with the last data structure, then merge the remaining data structures into it (in reverse % order as this avoids having to grow arrays incrementally in typical cases) res = compact{end}; for k=length(compact)-1:-1:1 res = merge(res,compact{k}); end % merge data structures A and B function A = merge(A,B) if iscell(A) && iscell(B) % make sure that both have the same number of dimensions if ndims(A) > ndims(B) B = grow_cell(B,size(A)); elseif ndims(A) < ndims(B) A = grow_cell(A,size(B)); end % make sure that both have the same size if all(size(B)==size(A)) % we're fine elseif all(size(B)>=size(A)) % A is a minor of B: grow A A = grow_cell(A,size(B)); elseif all(size(A)>=size(B)) % B is a minor of A: grow B B = grow_cell(B,size(A)); else % A and B have mixed sizes... grow both as necessary M = max(size(A),size(B)); A = grow_cell(A,M); B = grow_cell(B,M); end % find all non-empty elements in B idx = find(~cellfun(@(x)isequal(x,[]),B)); if ~isempty(idx) % check if any of these is occupied in A clean = cellfun('isempty',A(idx)); if ~all(clean) % merge all conflicting items recursively conflicts = idx(~clean); for k=conflicts(:)' A{k} = merge(A{k},B{k}); end % and transfer the rest if any(clean) A(idx(clean)) = B(idx(clean)); end else % transfer all to A A(idx) = B(idx); end end elseif isstruct(A) && isstruct(B) % first make sure that both have the same fields fnA = fieldnames(A); fnB = fieldnames(B); if isequal(fnA,fnB) % we're fine elseif isequal(sort(fnA),sort(fnB)) % order doesn't match -- impose A's order on B B = orderfields(B,fnA); elseif isempty(setdiff(fnA,fnB)) % B has a superset of A's fields: add the remaining fields to A, and order them according to B remaining = setdiff(fnB,fnA); for fn = remaining' A(1).(fn{1}) = []; end A = orderfields(A,fnB); elseif isempty(setdiff(fnB,fnA)) % A has a superset of B's fields: add the remaining fields to B, and order them according to A remaining = setdiff(fnA,fnB); for fn = remaining' B(1).(fn{1}) = []; end B = orderfields(B,fnA); else % A and B have incommensurable fields; add B's fields to A's fields, add A's fields to B's % and order according to A's fields remainingB = setdiff(fnB,fnA); for fn = remainingB' A(1).(fn{1}) = []; end remainingA = setdiff(fnA,fnB); for fn = remainingA' B(1).(fn{1}) = []; end B = orderfields(B,A); end % that being established, convert them to cell arrays, merge their cell arrays, and convert back to structs merged = merge(struct2cell(A),struct2cell(B)); A = cell2struct(merged,fieldnames(A),1); elseif isstruct(A) && ~isstruct(B) if ~isempty(B) error('One of the sub-items is a struct, and the other one is of a non-struct type.'); else % we retain A end elseif isstruct(B) && ~isstruct(A) if ~isempty(A) error('One of the sub-items is a struct, and the other one is of a non-struct type.'); else % we retain B A = B; end elseif iscell(A) && ~iscell(B) if ~isempty(B) error('One of the sub-items is a cell array, and the other one is of a non-cell type.'); else % we retain A end elseif iscell(B) && ~iscell(A) if ~isempty(A) error('One of the sub-items is a cell array, and the other one is of a non-cell type.'); else % we retain B A = B; end elseif isempty(A) && ~isempty(B) % we retain B A = B; elseif isempty(B) && ~isempty(A) % we retain A elseif ~isequal_weak(A,B) % we retain A and warn about dropping B warn_once('Two non-empty (and non-identical) sub-elements occupied the same index; one was dropped. This warning will only be displayed once.'); end % grow a cell array to accomodate a particular index % (assuming that this index is not contained in the cell array yet) function C = grow_cell(C,idx) tmp = sprintf('%i,',idx); eval(['C{' tmp(1:end-1) '} = [];']);
github
lcnhappe/happe-master
arg_guidialog.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_guidialog.m
10,844
utf_8
9a3feeb49fd1fa36ac5971ebb38d1ab9
function varargout = arg_guidialog(func,varargin) % Create an input dialog that displays input fields for a Function and Parameters. % Parameters = arg_guidialog(Function, Options...) % % The Parameters that are passed to the function can be used to override some of its defaults. The % function must declare its arguments via arg_define. In addition, only a Subset of the function's % specified arguments can be displayed. % % In: % Function : the function for which to display arguments % % Options... : optional name-value pairs; possible names are: % 'Parameters' : cell array of parameters to the Function to override some of its % defaults. % % 'Subset' : Cell array of argument names to which the dialog shall be restricted; % these arguments may contain . notation to index into arg_sub and the % selected branch(es) of arg_subswitch/arg_subtoggle specifiers. Empty % cells show up in the dialog as empty rows. % % 'Title' : title of the dialog (by default: functionname()) % % 'Invoke' : whether to invoke the function directly; in this case, the output % arguments are those of the function (default: true, unless called in % the form g = arg_guidialog; e.g., from within some function) % % Out: % Parameters : a struct that is a valid input to the Function. % % Examples: % % bring up a configuration dialog for the given function % settings = arg_guidialog(@myfunction) % % % bring up a config dialog with some pre-specified defaults % settings = arg_guidialog(@myfunction,'Parameters',{4,20,'test'}) % % % bring up a config dialog which displays only a subset of the function's arguments (in a particular order) % settings = arg_guidialog(@myfunction,'Subset',{'blah','xyz',[],'flag'}) % % % bring up a dialog, and invoke the function with the selected settings after the user clicks OK % settings = arg_guidialog(@myfunction,'Invoke',true) % % See also: % arg_guidialog_ex, arg_guipanel, arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-10-24 if ~exist('func','var') % called with no arguments, from inside a function: open function dialog func = hlp_getcaller; varargin = {'Parameters',evalin('caller','varargin'),'Invoke',nargout==0}; end % parse arguments... hlp_varargin2struct(varargin,{'params','Parameters','parameters'},{}, {'subset','Subset'},{}, {'dialogtitle','title','Title'}, [char(func) '()'], {'buttons','Buttons'},[],{'invoke','Invoke'},true); oldparams = params; % obtain the argument specification for the function rawspec = arg_report('rich', func, params); %#ok<*NODEF> % extract a list of sub arguments... if ~isempty(subset) && subset{1}==-1 % user specified a set of items to *exclude* % convert subset to setdiff(all-arguments,subset) allnames = fieldnames(arg_tovals(rawspec)); subset(1) = []; subset = allnames(~ismember(allnames,[subset 'arg_direct'])); end [spec,subset] = obtain_items(rawspec,subset); % create an inputgui() dialog... geometry = repmat({[0.6 0.35]},1,length(spec)+length(buttons)/2); geomvert = ones(1,length(spec)+length(buttons)/2); % turn the spec into a UI list... uilist = {}; for k = 1:length(spec) s = spec{k}; if isempty(s) uilist(end+1:end+2) = {{} {}}; else if isempty(s.help) error(['Cannot display the argument ' subset{k} ' because it contains no description.']); else tag = subset{k}; uilist{end+1} = {'Style','text', 'string',s.help{1}, 'fontweight','bold'}; % depending on the type, we introduce different types of input widgets here... if iscell(s.range) && strcmp(s.type,'char') % string popup menu uilist{end+1} = {'Style','popupmenu', 'string',s.range,'value',find(strcmp(s.value,s.range)),'tag',tag}; elseif strcmp(s.type,'logical') if length(s.range)>1 % multiselect uilist{end+1} = {'Style','listbox', 'string',s.range, 'value',find(ismember(s.range,s.value)),'tag',tag,'min',1,'max',100000}; geomvert(k) = min(3.5,length(s.range)); else % checkbox uilist{end+1} = {'Style','checkbox', 'string','(set)', 'value',double(s.value),'tag',tag}; end elseif strcmp(s.type,'char') % string edit uilist{end+1} = {'Style','edit', 'string', s.value,'tag',tag}; else % expression edit if isinteger(s.value) s.value = double(s.value); end uilist{end+1} = {'Style','edit', 'string', hlp_tostring(s.value),'tag',tag}; end % append the tooltip string if length(s.help) > 1 uilist{end} = [uilist{end} 'tooltipstring', regexprep(s.help{2},'\.\s+(?=[A-Z])','.\n')]; end end end if ~isempty(buttons) && k==buttons{1} % render a command button uilist(end+1:end+2) = {{} buttons{2}}; buttons(1:2) = []; end end % invoke the GUI, obtaining a list of output values... helptopic = char(func); try if helptopic(1) == '@' fn = functions(func); tmp = struct2cell(fn.workspace{1}); helptopic = class(tmp{1}); end catch disp('Cannot deduce help topic.'); end [outs,dummy,okpressed] = inputgui('geometry',geometry, 'uilist',uilist,'helpcom',['env_doc ' helptopic], 'title',dialogtitle,'geomvert',geomvert); %#ok<ASGLU> if ~isempty(okpressed) % remove blanks from the spec spec = spec(~cellfun('isempty',spec)); subset = subset(~cellfun('isempty',subset)); % turn the raw specification into a parameter struct (a non-direct one, since we will mess with % it) params = arg_tovals(rawspec,false); % for each parameter produced by the GUI... for k = 1:length(outs) s = spec{k}; % current specifier v = outs{k}; % current raw value % do type conversion according to spec if iscell(s.range) && strcmp(s.type,'char') v = s.range{v}; elseif strcmp(s.type,'expression') v = eval(v); elseif strcmp(s.type,'logical') if length(s.range)>1 v = s.range(v); else v = logical(v); end elseif strcmp(s.type,'char') % noting to do else if ~isempty(v) v = eval(v); % convert back to numeric (or object, or cell) value end end % assign the converted value to params struct... params = assign(params,subset{k},v); end % now send the result through the function to check for errors and obtain a values structure... params = arg_report('rich',func,{params}); params = arg_tovals(params,false); % invoke the function, if so desired if ischar(func) func = str2func(func); end if invoke [varargout{1:nargout(func)}] = func(oldparams{:},params); else varargout = {params}; end else varargout = {[]}; end % obtain a cell array of spec entries by name from the given specification function [items,ids] = obtain_items(rawspec,requested,prefix) if ~exist('prefix','var') prefix = ''; end items = {}; ids = {}; % determine what subset of (possibly nested) items is requested if isempty(requested) % look for a special argument/property arg_dialogsel, which defines the standard dialog % representation for the given specification dialog_sel = find(cellfun(@(x)any(strcmp(x,'arg_dialogsel')),{rawspec.names})); if ~isempty(dialog_sel) requested = rawspec(dialog_sel).value; end end if isempty(requested) % empty means that all items are requested for k=1:length(rawspec) items{k} = rawspec(k); ids{k} = [prefix rawspec(k).names{1}]; end else % otherwise we need to obtain those items for k=1:length(requested) if ~isempty(requested{k}) try [items{k},subid] = obtain(rawspec,requested{k}); catch error(['The specified identifier (' prefix requested{k} ') could not be found in the function''s declared arguments.']); end ids{k} = [prefix subid]; end end end % splice items that have children (recursively) into this list for k = length(items):-1:1 % special case: switch arguments are not spliced, but instead the argument that defines the % option popupmenu will be retained if ~isempty(items{k}) && ~isempty(items{k}.children) && (~iscellstr(items{k}.range) || isempty(requested)) [subitems, subids] = obtain_items(items{k}.children,{},[ids{k} '.']); if ~isempty(subitems) % and introduce blank rows around them items = [items(1:k-1) {{}} subitems {{}} items(k+1:end)]; ids = [ids(1:k-1) {{}} subids {{}} ids(k+1:end)]; end end end % remove items that cannot be displayed retain = cellfun(@(x)isempty(x)||x.displayable,items); items = items(retain); ids = ids(retain); % remove double blank rows empties = cellfun('isempty',ids); items(empties(1:end-1) & empties(2:end)) = []; ids(empties(1:end-1) & empties(2:end)) = []; % obtain a spec entry by name from the given specification function [item,id] = obtain(rawspec,identifier,prefix) if ~exist('prefix','var') prefix = ''; end % parse the . notation dot = find(identifier=='.',1); if ~isempty(dot) [head,rest] = deal(identifier(1:dot-1), identifier(dot+1:end)); else head = identifier; rest = []; end % search for the identifier at this level names = {rawspec.names}; for k=1:length(names) if any(strcmp(names{k},head)) % found a match! if isempty(rest) % return it item = rawspec(k); id = [prefix names{k}{1}]; else % obtain the rest of the identifier [item,id] = obtain(rawspec(k).children,rest,[prefix names{k}{1} '.']); end return; end end error(['The given identifier (' head ') was not found among the function''s declared arguments.']); % assign a field with dot notation in a struct function s = assign(s,id,v) % parse the . notation dot = find(id=='.',1); if ~isempty(dot) [head,rest] = deal(id(1:dot-1), id(dot+1:end)); if ~isfield(s,head) s.(head) = struct(); end s.(head) = assign(s.(head),rest,v); else s.(id) = v; end
github
lcnhappe/happe-master
arg_define.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_define.m
28,888
utf_8
79e413010787b04cc5fec2c1d1aa0d04
function res = arg_define(vals,varargin) % Declare function arguments with optional defaults and built-in GUI support. % Struct = arg_define(Values, Specification...) % Struct = arg_define(Format, Values, Specification...) % % This is essentially an improved replacement for the parameter declaration line of a function. % Assigns Values (a cell array of values, typically the "varargin" of the calling function, % henceforth named the "Function") to fields in the output Struct, with parsing implemented % according to a Specification of argument names and their order (optionally with a custom argument % Format description). % % By default, values can be a list of a fixed number of positional arguments (i.e., the typical % MATLAB calling format), optionally followed by a list of name-value pairs (NVPs, e.g., as the % format accepted by figure()), in which, as well, instead of any given NVP, a struct may be % passed (thus, one may pass a mix of 'name',value,struct,'name',value,'name',value, ... % parameters). Alternatively, by default the entire list of positional arguments can instead be be % specified as a list of NVPs/structs. Only names that are allowed by the Specification may be used, % if positional syntax is allowed by the Format (which is the default). % % The special feature over hlp_varargin2struct()-like functionality is that arguments defined via % arg_define can be reported to outside functions (if triggered by arg_report()). The resulting % specification can be rendered in a GUI or be processed otherwise. % % In: % Format : Optional format description (default: [0 Inf]): % * If this is a number (say, k), it indicates that the first k arguments are specified % in a positional manner, and the following arguments are specified as list of % name-value pairs and/or structs. % * If this is a vector of two numbers [0 k], it indicates that the first k arguments MAY % be specified in a positional manner (the following arguments must be be specified as % NVPs/structs) OR alternatively, all arguments can be specified as NVPs / structs. % Only names that are listed in the specification may be used as names (in NVPs and % structs) in this case. % * If this is a function handle, the function is used to transform the Values prior to % any other processing into a new Values cell array. The function may specify a new % (numeric) Format as its second output argument (if not specified, this is 0). % % Values : A cell array of values passed to the function (usually the calling function's % "varargin"). Interpreted according to the Format and the Specification. % % Specification... : The specification of the calling function's arguments; this is a sequence of % arg(), arg_norep(), arg_nogui(), arg_sub(), arg_subswitch(), arg_subtoggle() % specifiers. The special keywords mandatory and unassigned can be used in the % declaration of default values, where "mandatory" declares that this argument % must be assigned some value via Values (otherwise, an error is raised before % the arg is passed to the Function) and "unassigned" declares that the % variable will not be assigned unless passed as an argument (akin to the % default behavior of regular MATLAB function arguments). % % Out: % Struct : A struct with values assigned to fields, according to the Specification and Format. % % If this is not captured by the Function in a variable, the contents of Struct are % instead assigned to the Function's workspace (default practice) -- but note that this % only works for variable names are *not& also names of functions in the path (due to a % flaw in MATLAB's treatment of identifiers). Thus, it is good advice to use long/expressive % variable names to avoid this situation, or possibly CamelCase names. % % See also: % arg, arg_nogui, arg_norep, arg_sub, arg_subswitch, arg_subtoggle % % Notes: % 1) If the Struct output argument is omitted by the user, the arguments are not returned as a % struct but instead directly copied into the Function's workspace. % % 2) Someone may call the user's Function with the request to deliver the parameter specification, % instead of following the normal execution flow. arg_define() automatically handles this task % by throwing an exception of the type 'BCILAB:arg:report_args' using arg_issuereport(), which % is to be caught by the requesting function. % % Performance Tips: % 1) If a struct with a field named 'arg_direct' is passed (and is set to true), or a name-value % pair 'arg_direct',true is passed, then all type checking, specification parsing, fallback to % default values and reporting functionality are skipped. This is a fast path to call a function, % and it usually requires that all of its arguments are passed. The function arg_report allows % to get a struct of all function arguments that can be used subsequently as part of a direct % call. % % Please make sure not to pass multiple occurrences of 'arg_direct' with conflicting values to % arg_define, as the behavior will then be undefined. % % 2) The function is about 2x as fast (in direct mode) if arguments are returned as a struct instead % of being written into the caller's workspace. % % Examples: % function myfunction(varargin) % % % begin a default argument declaration and declare a few arguments; The arguments can be passed either: % % - by position: myfunction(4,20); including the option to leave some values at their defaults, e.g. myfunction(4) or myfunction() % % - by name: myfunction('test',4,'blah',20); myfunction('blah',21,'test',4); myfunction('blah',22); % % - as a struct: myfunction(struct('test',4,'blah',20)) % % - as a sequence of either name-value pairs or structs: myfunction('test',4,struct('blah',20)) (note that this is not ambiguous, as the struct would come in a place where only a name could show up otherwise % arg_define(varargin, ... % arg('test',3,[],'A test.'), ... % arg('blah',25,[],'Blah.')); % % % a special syntax that is allowed is passing a particular parameter multiple times - in which case only the last specification is effective % % myfunction('test',11, 'blah',21, 'test',3, struct('blah',15,'test',5), 'test',10) --> test will be 10, blah will be 15 % % % begin an argument declaration which allows 0 positional arguments (i.e. everything must be passed by name % arg_define(0,varargin, ... % % % begin an argument declaration which allows exactly 1 positional arguments, i.e. the first one must be passed by position and the other one by name (or struct) % % valid calls would be: myfunction(3,'blah',25); myfunction(3); myfunction(); (the last one assumes the default for both) % arg_define(1,varargin, ... % arg('test',3,[],'A test.'), ... % arg('blah',25,[],'Blah.')); % % % begin an argument decalration which allows either 2 positional arguments or 0 positional arguments (i.e. either the first two are passed by position, or all are passed by name) % % some valid calls are: myfunction(4,20,'flag',true); myfunction(4,20); myfunction(4,20,'xyz','test','flag',true); myfunction(4); myfunction('flag',true,'test',4,'blah',21); myfunction('flag',true) % arg_define([0 2],varargin, ... % arg('test',3,[],'A test.'), ... % arg('blah',25,[],'Blah.'), ... % arg('xyz','defaultstr',[],'XYZ.'), ... % arg('flag',false,[],'Some flag.')); % % % begin an argument declaration in which the formatting of arguments is completely arbitrary, and a custom function takes care of bringing them into a form understood by % % the arg_define implementation. This function takes a cell array of arguments (in any formatting), and returns a cell array of a standard formatting (e.g. name-value pairs, or structs) % arg_define(@myparser,varargin, ... % arg('test',3,[],'A test.'), ... % arg('blah',25,[],'Blah.')); % % % return the arguments as fields in a struct (here: opts), instead of directly in the workspace % opts = arg_define(varargin, ... % arg('test',3,[],'A test.'), ... % arg('blah',25,[],'Blah.')); % % % note: in the current implementation, the only combinations of allowed argument numbers are: arg_define(...); arg_define(0, ...); arg_define(X, ...); arg_define([0 X], ...); arg_define(@somefunc, ...); % % the implicit default is arg_define([0 Inf], ...) % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-09-24 % --- get Format, Values and Specification --- if iscell(vals) % no Format specifier was given: use default fmt = [0 Inf]; spec = varargin; try % quick checks for direct (fast) mode if isfield(vals{end},'arg_direct') direct_mode = vals{end}.arg_direct; elseif strcmp(vals{1},'arg_direct') direct_mode = vals{2}; else % figure it out later direct_mode = false; end structs = cellfun('isclass',vals,'struct'); catch % vals was empty: default behavior direct_mode = false; end else % a Format specifier was given as the first argument (instead of vals as the first argument) ... if isempty(vals) % ... but it was empty: use default behavior fmt = [0 Inf]; else % ... and was nonempty: use it fmt = vals; end % shift the remaining two args vals = varargin{1}; spec = varargin(2:end); if isa(fmt,'function_handle') % Format was a function: run it if nargout(fmt) == 1 vals = fmt(vals); fmt = 0; else [vals,fmt] = feval(fmt,vals); end end direct_mode = false; end % --- if not yet known, determine conclusively if we are in direct mode (specificationless and therefore fast) --- % this mode is only applicable when all arguments can be passed as NVPs/structs if ~direct_mode && any(fmt == 0) % search for an arg_direct argument structs = cellfun('isclass',vals,'struct'); indices = find(structs | strcmp(vals,'arg_direct')); for k = indices(end:-1:1) if ischar(vals{k}) && k<length(vals) % found it in the NVPs direct_mode = vals{k+1}; break; elseif isfield(vals{k},'arg_direct') % found it in a struct direct_mode = vals{k}.arg_direct; break; end end end if direct_mode % --- direct mode: quickly collect NVPs from the arguments and produce a result --- % obtain flat NVP list if any(structs(1:2:end)) vals = flatten_structs(vals); end if nargout % get names & values names = vals(1:2:end); values = vals(2:2:end); % use only the last assignment for each name [s,indices] = sort(names); indices(strcmp(s(1:end-1),s(2:end))) = []; % build & return a struct res = cell2struct(values(indices),names(indices),2); else % place the arguments in the caller's workspace for k=1:2:length(vals) assignin('caller',vals{k},vals{k+1}); end end try % also return the arguments in NVP form assignin('caller','arg_nvps',vals); catch % this operation might be disallowed under some circumstances end else % --- full parsing mode: determine the reporting type --- % usually, the reporting type is 'none', except if called (possibly indirectly) by % arg_report('type', ...): in this case, the reporting type is 'type' reporting is a special way to % call arg_define, which requests the argument specification, so that it can be displayed by GUIs, % etc. % % * 'none' normal execution: arg_define returns a Struct of Values to the Function or assigns the % Struct's fields to the Function's workspace % * 'rich' arg_define yields a rich specifier list to arg_report(), basically an array of specifier % structs (see arg_specifier for the field names) % * 'lean' arg_define yields a lean specifier list to arg_report(), basically an array of specifier % structs but without alternatives for multi-option specifiers % * 'vals' arg_define yields a struct of values to arg_report(), wich can subsequently be used as % the full specification of arguments to pass to the Function try throw; %#ok<LTARG> % faster than error() catch context names = {context.stack(3:min(6,end)).name}; % function names at the considered levels of indirection... matches = find(strncmp(names,'arg_report_',11)); % ... which start with 'arg_report_' if isempty(matches) reporting_type = 'none'; % no report requested (default case) else % the reporting type is the suffix of the deepest arg_report_* function in the call stack reporting_type = names{matches(end)}(11+1:end); end end % --- deal with 'handle' and 'properties' reports --- if strcmp(reporting_type,'handle') % very special report type: 'handle'--> this asks for function handles to nested / scoped % functions. unfortunately, these cannot be obtained using standard MATLAB functionality. if ~iscellstr(vals) error('The arguments passed for handle report must denote function names.'); end unresolved = {}; for f=1:length(vals) % resolve each function name in the caller scope funcs{f} = evalin('caller',['@' vals{f}]); % check if the function could be retrieved tmp = functions(funcs{f}); if isempty(tmp.file) unresolved{f} = vals{f}; end end if ~isempty(unresolved) % search the remaining ones in the specification for f=find(~cellfun('isempty',unresolved)) funcs{f} = hlp_microcache('findfunction',@find_function_cached,spec,vals{f}); end end % report it if length(funcs) == 1 funcs = funcs{1}; end arg_issuereport(funcs); elseif strcmp(reporting_type,'properties') % 'properties' report, but no properties were declared arg_issuereport(struct()); end % --- one-time evaluation of the Specification list into a struct array --- % evaluate the specification or retrieve it from cache [spec,all_names,joint_names,remap] = hlp_microcache('spec',@evaluate_spec,spec,reporting_type,nargout==0); % --- transform vals to a pure list of name-value pairs (NVPs) --- if length(fmt) == 2 if fmt(1) ~= 0 || fmt(2) <= 0 % This error is thrown when the first parameter to arg_define() was not a cell array (i.e., not varargin), % so that it is taken to denote the optional Format parameter. % Format is usually a numeric array that specifies the number of positional arguments that are % accepted by the function, and if numeric, it can only be either a number or a two-element array % that contains 0 and a non-zero number. error('For two-element formats, the first entry must be 0 and the second entry must be > 0.'); end % there are two possible options: either 0 arguments are positional, or k arguments are % positional; assuming at first that 0 arguments are positional, splice substructs into one % uniform NVP list (this is because structs are allowed instead of individual NVPs) if any(cellfun('isclass',vals(1:2:end),'struct')) nvps = flatten_structs(vals); else nvps = vals; end % check if all the resulting names are in the set of allowed names (a disambiguation % condition in this case) if iscellstr(nvps(1:2:end)) try disallowed_nvp = fast_setdiff(nvps(1:2:end),[joint_names {'arg_selection','arg_direct'}]); catch disallowed_nvp = setdiff(nvps(1:2:end),[joint_names {'arg_selection','arg_direct'}]); end else disallowed_nvp = {'or the sequence of names and values was confused'}; end if isempty(disallowed_nvp) % the assumption was correct: 0 arguments are positional fmt = 0; else % the assumption was violated: k arguments are positional, and we enfore strict naming % for the remaining ones (i.e. names must be in the Specification). strict_names = true; fmt = fmt(2); end elseif fmt == 0 % 0 arguments are positional nvps = flatten_structs(vals); elseif fmt > 0 % k arguments are positional, the rest are NVPs (no need to enforce strict naming here) strict_names = false; else % This error refers to the optional Format argument. error('Negative or NaN formats are not allowed.'); end % (from now on fmt holds the determined # of positional arguments) if fmt > 0 % the first k arguments are positional % Find out if we are being called by another arg_define; in this case, this definition % appears inside an arg_sub/arg_*, and the values passed to the arg_define are part of the % defaults declaration of one of these. If these defaults are specified positionally, the % first k arg_norep() arguments in Specification are implicitly skipped. if ~strcmp(reporting_type,'none') && any(strcmp('arg_define',{context.stack(2:end).name})); % we implicitly skip the leading non-reportable arguments in the case of positional % assignment (assuming that these are supplied by the outer function), by shifting the % name/value assignment by the appropriate number of places shift_positionals = min(fmt,find([spec.reportable],1)-1); else shift_positionals = 0; end % get the effective number of positional arguments fmt = min(fmt,length(vals)+shift_positionals); % the NVPs begin only after the k'th argument (defined by the Format) nvps = vals(fmt+1-shift_positionals:end); % splice in any structs if any(cellfun('isclass',nvps(1:2:end),'struct')) nvps = flatten_structs(nvps); end % do minimal error checking... if ~iscellstr(nvps(1:2:end)) % If you are getting this error, the order of names and values passed as name-value pairs % to the function in question was likely mixed up. The error mentions structs because it % is also allowed to pass in a struct in place of any 'name',value pair. error('Some of the specified arguments that should be names or structs, are not.'); end if strict_names % enforce strict names try disallowed_pos = fast_setdiff(nvps(1:2:end),[joint_names {'arg_selection','arg_direct'}]); catch disallowed_pos = setdiff(nvps(1:2:end),[joint_names {'arg_selection','arg_direct'}]); end if ~isempty(disallowed_pos) % If you are getting this error, it is most likely due to a mis-typed argument name % in the list of name-value pairs passed to the function in question. % % Because some functions may support also positional arguments, it is also possible % that something that was supposed to be the value for one of the positional % arguments was interpreted as part of the name-value pairs lit that may follow the % positional arguments of the function. This error is likely because the wrong number % of positional arguments was passed (a safer alternative is to instead pass everything % by name). error(['Some of the specified arguments do not appear in the argument specification; ' format_cellstr(disallowed_pos) '.']); end end try % remap the positionals (everything up to the k'th argument) into an NVP list, using the % code names poss = [cellfun(@(x)x{1},all_names(shift_positionals+1:fmt),'UniformOutput',false); vals(1:fmt-shift_positionals)]; catch if strict_names % maybe the user intended to pass 0 positionals, but used some disallowed names error(['Apparently, some of the used argument names are not known to the function: ' format_cellstr(disallowed_nvp) '.']); else error(['The first ' fmt ' arguments must be passed by position, and the remaining ones must be passed by name (either in name-value pairs or structs).']); end end % ... and concatenate them with the remaining NVPs into one big NVP list nvps = [poss(:)' nvps]; end % --- assign values to names using the assigner functions of the spec --- for k=1:2:length(nvps) if isfield(remap,nvps{k}) idx = remap.(nvps{k}); spec(idx) = spec(idx).assigner(spec(idx),nvps{k+1}); else % append it to the spec (note: this might need some optimization... it would be better % if the spec automatically contained the arg_selection field) tmp = arg_nogui(nvps{k},nvps{k+1}); spec(end+1) = tmp{1}([],tmp{2}{:}); end end % --- if requested, yield a 'vals', 'lean' or 'rich' report --- if ~strcmp(reporting_type,'none') % but deliver only the reportable arguments, and only if the values are not unassigned tmp = spec([spec.reportable] & ~strcmp(unassigned,{spec.value})); if strcmp(reporting_type,'vals') tmp = arg_tovals(tmp); end arg_issuereport(tmp); end % --- otherwise post-process the outputs and create a result struct to pass to the Function --- % generate errors for mandatory arguments that were not assigned missing_entries = strcmp(mandatory,{spec.value}); if any(missing_entries) missing_names = cellfun(@(x)x{1},{spec(missing_entries).names},'UniformOutput',false); error(['The arguments ' format_cellstr(missing_names) ' were unspecified but are mandatory.']); end % strip non-returned arguments, and convert it all to a struct of values res = arg_tovals(spec); % also emit a final NVPs list tmp = [fieldnames(res) struct2cell(res)]'; try assignin('caller','arg_nvps',tmp(:)'); catch % this operation might be disallowed under some circumstances end % if requested, place the arguments in the caller's workspace if nargout==0 for fn=fieldnames(res)' assignin('caller',fn{1},res.(fn{1})); end end end % substitute any structs in place of a name-value pair into the name-value list function args = flatten_structs(args) k = 1; while k <= length(args) if isstruct(args{k}) tmp = [fieldnames(args{k}) struct2cell(args{k})]'; args = [args(1:k-1) tmp(:)' args(k+1:end)]; k = k+numel(tmp); else k = k+2; end end % evaluate a specification into a struct array function [spec,all_names,joint_names,remap] = evaluate_spec(spec,reporting_type,require_namecheck) if strcmp(reporting_type,'rich') subreport_type = 'rich'; else subreport_type = 'lean'; end % evaluate the functions to get (possibly arrays of) specifier structs for k=1:length(spec) spec{k} = spec{k}{1}(subreport_type,spec{k}{2}{:}); end % concatenate the structs to one big struct array spec = [spec{:}]; % make sure that spec has the correct fields, even if empty if isempty(spec) spec = arg_specifier; spec = spec([]); end % obtain the argument names and the joined names all_names = {spec.names}; joint_names = [all_names{:}]; % create a name/index remapping table remap = struct(); for n=1:length(all_names) for k=1:length(all_names{n}) remap.(all_names{n}{k}) = n; end end % check for duplicate argument names in the Specification sorted_names = sort(joint_names); duplicates = joint_names(strcmp(sorted_names(1:end-1),sorted_names(2:end))); if ~isempty(duplicates) error(['The names ' format_cellstr(duplicates) ' refer to multiple arguments.']); end % if required, check for name clashes with functions on the path % (this is due to a glitch in MATLAB's handling of variables that were assigned to a function's scope % from the outside, which are prone to clashes with functions on the path...) if require_namecheck && strcmp(reporting_type,'none') try check_names(cellfun(@(x)x{1},all_names,'UniformOutput',false)); catch e disp_once('The function check_names failed; reason: %s',e.message); end end % check for name clashes (once) function check_names(code_names) persistent name_table; if ~isstruct(name_table) name_table = struct(); end for name_cell = fast_setdiff(code_names,fieldnames(name_table)) current_name = name_cell{1}; existing_func = which(current_name); if ~isempty(existing_func) if ~exist('function_caller','var') function_caller = hlp_getcaller(4); if function_caller(1) == '@' function_caller = hlp_getcaller(14); end end if isempty(strfind(existing_func,'Java method')) [path_part,file_part,ext_part] = fileparts(existing_func); if ~any(strncmp('@',hlp_split(path_part,filesep),1)) % If this happens, it means that there is a function in one of the directories in % MATLAB's path which has the same name as an argument of the specification. If this % argument variable is copied into the function's workspace by arg_define, most MATLAB % versions will (incorrectly) try to call that function instead of accessing the % variable. I hope that they handle this issue at some point. One workaround is to use % a longer argument name (that is less likely to clash) and, if it should still be % usable for parameter passing, to retain the old name as a secondary or ternary % argument name (using a cell array of names in arg()). The only really good % solution at this point is to generally assign the output of arg_define to a % struct. disp([function_caller ': The argument name "' current_name '" clashes with the function "' [file_part ext_part] '" in directory "' path_part '"; it is strongly recommended that you either rename the function or remove it from the path.']); end else % these Java methods are probably spurious "false positives" of the which() function disp([function_caller ': There is a Java method named "' current_name '" on your path; if you experience any name clash with it, please report this issue.']); end end name_table.(current_name) = existing_func; end % recursively find a function handle by name in a specification % the first occurrence of a handle to a function with the given name is returned function r = find_function(spec,name) r = []; for k=1:length(spec) if isa(spec(k).value,'function_handle') && strcmp(char(spec(k).value),name) r = spec(k).value; return; elseif ~isempty(spec(k).alternatives) for n = 1:length(spec(k).alternatives) r = find_function(spec(k).alternatives{n},name); if ~isempty(r) return; end end elseif ~isempty(spec(k).children) r = find_function(spec(k).children,name); if ~isempty(r) return; end end end % find a function handle by name in a specification function f = find_function_cached(spec,name) % evaluate the functions to get (possibly arrays of) specifier structs for k=1:length(spec) spec{k} = spec{k}{1}('rich',spec{k}{2}{:}); end % concatenate the structs to one big struct array spec = [spec{:}]; % now search the function in it f = find_function(spec,name); % format a non-empty cell-string array into a string function x = format_cellstr(x) x = ['{' sprintf('%s, ',x{1:end-1}) x{end} '}'];
github
lcnhappe/happe-master
arg_guidialog_old.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_guidialog_old.m
8,955
utf_8
4da1a90f92312aea4043460655d5f6aa
function params = arg_guidialog(func,varargin) % Create an input dialog that displays input fields for a Function and Parameters. % Parameters = arg_guidialog(Function, Options...) % % The Parameters that are passed to the function can be used to override some of its defaults. % The function must declare its arguments via arg_define. In addition, only a Subset of the function's specified arguments can be displayed. % % In: % Function : the function for which to display arguments % % Options... : optional name-value pairs; possible names are: % 'Parameters' : cell array of parameters to the Function to override some of its defaults. % % 'Subset' : Cell array of argument names to which the dialog shall be restricted; these arguments may contain . notation to index % into arg_sub and the selected branch(es) of arg_subswitch/arg_subtoggle specifiers. % Empty cells show up in the dialog as empty rows. % % 'Title' : title of the dialog (by default: functionname()) % % Out: % Parameters : a struct that is a valid input to the Function. % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-10-24 % parse arguments... hlp_varargin2struct(varargin,{'params','Parameters'},{}, {'subset','Subset'},{}, {'dialogtitle','title','Title'}, [char(func) '()'], {'buttons','Buttons'},[]); % obtain the argument specification for the function rawspec = arg_report('rich', func, params); %#ok<*NODEF> % extract a list of sub arguments... if ~isempty(subset) && subset{1}==-1 % user specified a set of items to *exclude* % convert subset to setdiff(all-arguments,subset) allnames = fieldnames(arg_tovals(rawspec)); subset(1) = []; subset = allnames(~ismember(allnames,[subset 'arg_direct'])); end [spec,subset] = obtain_items(rawspec,subset); % create an inputgui() dialog... geometry = repmat({[0.6 0.35]},1,length(spec)+length(buttons)/2); geomvert = ones(1,length(spec)+length(buttons)/2); % turn the spec into a UI list... uilist = {}; for k = 1:length(spec) s = spec{k}; if isempty(s) uilist(end+1:end+2) = {{} {}}; else if isempty(s.help) error(['Cannot display the argument ' subset{k} ' because it contains no description.']); else tag = subset{k}; uilist{end+1} = {'Style','text', 'string',s.help{1}, 'fontweight','bold'}; % depending on the type, we introduce different types of input widgets here... if iscell(s.range) && strcmp(s.type,'char') % string popup menu uilist{end+1} = {'Style','popupmenu', 'string',s.range,'value',find(strcmp(s.value,s.range)),'tag',tag}; elseif strcmp(s.type,'logical') if length(s.range)>1 % multiselect uilist{end+1} = {'Style','listbox', 'string',s.range, 'value',find(ismember(s.range,s.value)),'tag',tag,'min',1,'max',100000}; geomvert(k) = min(3.5,length(s.range)); else % checkbox uilist{end+1} = {'Style','checkbox', 'string','(set)', 'value',double(s.value),'tag',tag}; end elseif strcmp(s.type,'char') % string edit uilist{end+1} = {'Style','edit', 'string', s.value,'tag',tag}; else % expression edit if isinteger(s.value) s.value = double(s.value); end uilist{end+1} = {'Style','edit', 'string', hlp_tostring(s.value),'tag',tag}; end % append the tooltip string if length(s.help) > 1 uilist{end} = [uilist{end} 'tooltipstring', regexprep(s.help{2},'\.\s+(?=[A-Z])','.\n')]; end end end if ~isempty(buttons) && k==buttons{1} % render a command button uilist(end+1:end+2) = {{} buttons{2}}; buttons(1:2) = []; end end % invoke the GUI, obtaining a list of output values... [outs,dummy,okpressed] = inputgui('geometry',geometry, 'uilist',uilist,'helpcom','disp(''coming soon...'')', 'title',dialogtitle,'geomvert',geomvert); if ~isempty(okpressed) % remove blanks from the spec spec = spec(~cellfun('isempty',spec)); subset = subset(~cellfun('isempty',subset)); % turn the raw specification into a parameter struct (a non-direct one, since we will mess with it) params = arg_tovals(rawspec,false); % for each parameter produced by the GUI... for k = 1:length(outs) s = spec{k}; % current specifier v = outs{k}; % current raw value % do type conversion according to spec if iscell(s.range) && strcmp(s.type,'char') v = s.range{v}; elseif strcmp(s.type,'expression') v = eval(v); elseif strcmp(s.type,'logical') if length(s.range)>1 v = s.range(v); else v = logical(v); end elseif strcmp(s.type,'char') % noting to do else if ~isempty(v) v = eval(v); % convert back to numeric (or object, or cell) value end end % assign the converted value to params struct... params = assign(params,subset{k},v); end % now send the result through the function to check for errors and obtain a values structure... params = arg_report('rich',func,{params}); params = arg_tovals(params,false); else params = []; end % obtain a cell array of spec entries by name from the given specification function [items,ids] = obtain_items(rawspec,requested,prefix) if ~exist('prefix','var') prefix = ''; end items = {}; ids = {}; % determine what subset of (possibly nested) items is requested if isempty(requested) % look for a special argument/property arg_dialogsel, which defines the standard dialog representation for the given specification dialog_sel = find(cellfun(@(x)any(strcmp(x,'arg_dialogsel')),{rawspec.names})); if ~isempty(dialog_sel) requested = rawspec(dialog_sel).value; end end if isempty(requested) % empty means that all items are requested for k=1:length(rawspec) items{k} = rawspec(k); ids{k} = [prefix rawspec(k).names{1}]; end else % otherwise we need to obtain those items for k=1:length(requested) if ~isempty(requested{k}) try items{k} = obtain(rawspec,requested{k}); catch error(['The specified identifier (' prefix requested{k} ') could not be found in the function''s declared arguments.']); end ids{k} = [prefix requested{k}]; end end end % splice items that have children (recursively) into this list for k = length(items):-1:1 % special case: switch arguments are not spliced, but instead the argument that defines the option popupmenu will be retained if ~isempty(items{k}) && ~isempty(items{k}.children) && (~iscellstr(items{k}.range) || isempty(requested)) [subitems, subids] = obtain_items(items{k}.children,{},[ids{k} '.']); if ~isempty(subitems) % and introduce blank rows around them items = [items(1:k-1) {{}} subitems {{}} items(k+1:end)]; ids = [ids(1:k-1) {{}} subids {{}} ids(k+1:end)]; end end end % remove items that cannot be displayed retain = cellfun(@(x)isempty(x)||x.displayable,items); items = items(retain); ids = ids(retain); % remove double blank rows empties = cellfun('isempty',ids); items(empties(1:end-1) & empties(2:end)) = []; ids(empties(1:end-1) & empties(2:end)) = []; % obtain a spec entry by name from the given specification function item = obtain(rawspec,identifier) % parse the . notation dot = find(identifier=='.',1); if ~isempty(dot) [head,rest] = deal(identifier(1:dot-1), identifier(dot+1:end)); else head = identifier; rest = []; end % search for the identifier at this level names = {rawspec.names}; for k=1:length(names) if any(strcmp(names{k},head)) % found a match! if isempty(rest) % return it item = rawspec(k); else % obtain the rest of the identifier item = obtain(rawspec(k).children,rest); end return; end end error(['The given identifier (' head ') was not found among the function''s declared arguments.']); % assign a field with dot notation in a struct function s = assign(s,id,v) % parse the . notation dot = find(id=='.',1); if ~isempty(dot) [head,rest] = deal(id(1:dot-1), id(dot+1:end)); if ~isfield(s,head) s.(head) = struct(); end s.(head) = assign(s.(head),rest,v); else s.(id) = v; end
github
lcnhappe/happe-master
arg_guidialog_ex.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_guidialog_ex.m
8,675
utf_8
82a7c00e1dfc74a921a596040b742fd9
function params = arg_guidialog(func,varargin) % Create an input dialog that displays input fields for a Function and Parameters. % Parameters = arg_guidialog(Function, Options...) % % The Parameters that are passed to the function can be used to override some of its defaults. % The function must declare its arguments via arg_define. In addition, only a Subset of the function's specified arguments can be displayed. % % In: % Function : the function for which to display arguments % % Options... : optional name-value pairs; possible names are: % 'Parameters' : cell array of parameters to the Function to override some of its defaults. % % 'Subset' : Cell array of argument names to which the dialog shall be restricted; these arguments may contain . notation to index % into arg_sub and the selected branch(es) of arg_subswitch/arg_subtoggle specifiers. % Empty cells show up in the dialog as empty rows. % % 'Title' : title of the dialog (by default: functionname()) % % Out: % Parameters : a struct that is a valid input to the Function. % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-10-24 % parse arguments... hlp_varargin2struct(varargin,{'params','Parameters'},{}, {'subset','Subset'},{}, {'dialogtitle','title','Title'}, [char(func) '()'], {'buttons','Buttons'},[]); % obtain the argument specification for the function rawspec = arg_report('rich', func, params); %#ok<*NODEF> % extract a list of sub arguments... [spec,subset] = obtain_items(rawspec,subset); % create an inputgui() dialog... geometry = repmat({[0.6 0.35]},1,length(spec)+length(buttons)/2); geomvert = ones(1,length(spec)+length(buttons)/2); % turn the spec into a UI list... uilist = {}; for k = 1:length(spec) s = spec{k}; if isempty(s) uilist(end+1:end+2) = {{} {}}; else if isempty(s.help) error(['Cannot display the argument ' subset{k} ' because it contains no description.']); else tag = subset{k}; uilist{end+1} = {'Style','text', 'string',s.help{1}, 'fontweight','bold'}; % depending on the type, we introduce different types of input widgets here... if iscell(s.range) && strcmp(s.type,'char') % string popup menu uilist{end+1} = {'Style','popupmenu', 'string',s.range,'value',find(strcmp(s.value,s.range)),'tag',tag}; elseif strcmp(s.type,'logical') if length(s.range)>1 % multiselect uilist{end+1} = {'Style','listbox', 'string',s.range, 'value',find(strcmp(s.value,s.range)),'tag',tag,'min',1,'max',100000}; geomvert(k) = min(3.5,length(s.range)); else % checkbox uilist{end+1} = {'Style','checkbox', 'string','(set)', 'value',double(s.value),'tag',tag}; end elseif strcmp(s.type,'char') % string edit uilist{end+1} = {'Style','edit', 'string', s.value,'tag',tag}; else % expression edit if isinteger(s.value) s.value = double(s.value); end uilist{end+1} = {'Style','edit', 'string', hlp_tostring(s.value),'tag',tag}; end % append the tooltip string if length(s.help) > 1 uilist{end} = [uilist{end} 'tooltipstring', regexprep(s.help{2},'\.\s+(?=[A-Z])','.\n')]; end end end if ~isempty(buttons) && k==buttons{1} % render a command button uilist(end+1:end+2) = {{} buttons{2}}; buttons(1:2) = []; end end % invoke the GUI, obtaining a list of output values... [outs,dummy,okpressed] = inputgui('geometry',geometry, 'uilist',uilist,'helpcom','disp(''coming soon...'')', 'title',dialogtitle,'geomvert',geomvert); if ~isempty(okpressed) % remove blanks from the spec spec = spec(~cellfun('isempty',spec)); subset = subset(~cellfun('isempty',subset)); % turn the raw specification into a parameter struct (a non-direct one, since we will mess with it) params = arg_tovals(rawspec,false); % for each parameter produced by the GUI... for k = 1:length(outs) s = spec{k}; % current specifier v = outs{k}; % current raw value % do type conversion according to spec if iscell(s.range) && strcmp(s.type,'char') v = s.range{v}; elseif strcmp(s.type,'expression') v = eval(v); elseif strcmp(s.type,'logical') if length(s.range)>1 v = s.range(v); else v = logical(v); end elseif strcmp(s.type,'char') % noting to do else if ~isempty(v) v = eval(v); % convert back to numeric (or object, or cell) value end end % assign the converted value to params struct... params = assign(params,subset{k},v); end % now send the result through the function to check for errors and obtain a values structure... params = arg_report('rich',func,{params}); params = arg_tovals(params,false); else params = []; end % obtain a cell array of spec entries by name from the given specification function [items,ids] = obtain_items(rawspec,requested,prefix) if ~exist('prefix','var') prefix = ''; end items = {}; ids = {}; % determine what subset of (possibly nested) items is requested if isempty(requested) % look for a special argument/property arg_dialogsel, which defines the standard dialog representation for the given specification dialog_sel = find(cellfun(@(x)any(strcmp(x,'arg_dialogsel')),{rawspec.names})); if ~isempty(dialog_sel) requested = rawspec(dialog_sel).value; end end if isempty(requested) % empty means that all items are requested for k=1:length(rawspec) items{k} = rawspec(k); ids{k} = [prefix rawspec(k).names{1}]; end else % otherwise we need to obtain those items for k=1:length(requested) if ~isempty(requested{k}) try items{k} = obtain(rawspec,requested{k}); catch error(['The specified identifier (' prefix requested{k} ') could not be found in the function''s declared arguments.']); end ids{k} = [prefix requested{k}]; end end end % splice items that have children (recursively) into this list for k = length(items):-1:1 % special case: switch arguments are not spliced, but instead the argument that defines the option popupmenu will be retained if ~isempty(items{k}) && ~isempty(items{k}.children) && (~iscellstr(items{k}.range) || isempty(requested)) [subitems, subids] = obtain_items(items{k}.children,{},[ids{k} '.']); if ~isempty(subitems) % and introduce blank rows around them items = [items(1:k-1) {{}} subitems {{}} items(k+1:end)]; ids = [ids(1:k-1) {{}} subids {{}} ids(k+1:end)]; end end end % remove items that cannot be displayed retain = cellfun(@(x)isempty(x)||x.displayable,items); items = items(retain); ids = ids(retain); % remove double blank rows empties = cellfun('isempty',ids); items(empties(1:end-1) & empties(2:end)) = []; ids(empties(1:end-1) & empties(2:end)) = []; % obtain a spec entry by name from the given specification function item = obtain(rawspec,identifier) % parse the . notation dot = find(identifier=='.',1); if ~isempty(dot) [head,rest] = deal(identifier(1:dot-1), identifier(dot+1:end)); else head = identifier; rest = []; end % search for the identifier at this level names = {rawspec.names}; for k=1:length(names) if any(strcmp(names{k},head)) % found a match! if isempty(rest) % return it item = rawspec(k); else % obtain the rest of the identifier item = obtain(rawspec(k).children,rest); end return; end end error(['The given identifier (' head ') was not found among the function''s declared arguments.']); % assign a field with dot notation in a struct function s = assign(s,id,v) % parse the . notation dot = find(id=='.',1); if ~isempty(dot) [head,rest] = deal(id(1:dot-1), id(dot+1:end)); if ~isfield(s,head) s.(head) = struct(); end s.(head) = assign(s.(head),rest,v); else s.(id) = v; end
github
lcnhappe/happe-master
invoke_arg_internal.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/invoke_arg_internal.m
4,456
utf_8
cde8b4f57b2bc16a8b03c45c255fe35d
function spec = invoke_arg_internal(reptype,varargin) %#ok<INUSL> % same type of invoke function as in arg_sub, arg_subswitch, etc. - but shared between % arg, arg_norep, and arg_nogui spec = hlp_microcache('arg',@invoke_arg,varargin{:}); % the function that does the actual work of building the argument specifier function spec = invoke_arg(names,default,range,help,varargin) % start with a base specification spec = arg_specifier('head',@arg); % override properties if exist('names','var') spec.names = names; end if exist('default','var') spec.value = default; end if exist('range','var') spec.range = range; end if exist('help','var') spec.help = help; end for k=1:2:length(varargin) if isfield(spec,varargin{k}) spec.(varargin{k}) = varargin{k+1}; else error('BCILAB:arg:no_new_fields','It is not allowed to introduce fields into a specifier that are not declared in arg_specifier.'); end end % do fixups & checking if ~iscell(spec.names) spec.names = {spec.names}; end if isempty(spec.names) || ~iscellstr(spec.names) error('The argument must have a name or cell array of names.'); end % parse the help if ~isempty(spec.help) try spec.help = parse_help(spec.help); catch e disp(['Problem with the help text for argument ' spec.names{1} ': ' e.message]); spec.help = {}; end elseif spec.reportable && spec.displayable disp(['Please specify a description for argument ' spec.names{1} ', or specify it via arg_nogui() instead.']); end % do type inference [spec.type,spec.shape,spec.range,spec.value] = infer_type(spec.type,spec.shape,spec.range,spec.value); % infer the type & range of the argument, based on provided info (note: somewhat messy) function [type,shape,range,value] = infer_type(type,shape,range,value) try if isempty(type) % try to auto-discover the type (or leave empty, if impossible) if ~isempty(value) type = PropertyType.AutoDiscoverType(value); elseif ~isempty(range) if isnumeric(range) type = PropertyType.AutoDiscoverType(range); elseif iscell(range) types = cellfun(@PropertyType.AutoDiscoverType,range,'UniformOutput',false); if length(unique(types)) == 1 type = types{1}; end end end end if isempty(shape) % try to auto-discover the shape if ~isempty(value) shape = PropertyType.AutoDiscoverShape(value); elseif ~isempty(range) if isnumeric(range) shape = 'scalar'; elseif iscell(range) shapes = cellfun(@PropertyType.AutoDiscoverShape,range,'UniformOutput',false); if length(unique(shapes)) == 1 shape = shapes{1}; end end end end catch end % rule: if in doubt, fall back to denserealdouble and/or matrix if isempty(type) type = 'denserealdouble'; end if isempty(shape) shape = 'matrix'; end % rule: if both the value and the range are cell-string arrays, the type is 'logical'; % this means that the value is a subset of the range if iscellstr(value) && iscellstr(range) type = 'logical'; end % rule: if the value is empty, but the range is a cell-string array and the type is not 'logical', % the value is the first range element; here, the value is exactly one out of the possible % strings in range (and cannot be empty) if isempty(value) && iscellstr(range) && ~strcmp(type,'logical') value = range{1}; end % rule: if the value is an empty char array, the shape is by default 'row' if isequal(value,'') && ischar(value) shape = 'row'; end % rule: if the value is []; convert to the appropriate MATLAB type (e.g., int, etc.) if isequal(value,[]) if strcmp(type,'cellstr') value = {}; else try pt = PropertyType(type,shape,range); value = pt.ConvertFromMatLab(value); catch end end end % rule: if the value is a logical scalar and the type is logical, and the range is a cell-string % array (i.e. a set of strings), the value is mapped to either the entire set or the empty set % (i.e. either all elements are in, or none) if isscalar(value) && islogical(value) && strcmp(type,'logical') && iscell(range) if value value = range; else value = {}; end end
github
lcnhappe/happe-master
arg_report.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_report.m
6,925
utf_8
eb8f94b9fd0693dbde5cbfa2824b7e8d
function res = arg_report(type,func,args) % Report information of a certain Type from the given Function. % Result = arg_report(Type,Function,Arguments) % % Functions that declare their arguments via arg_define() make their parameter specification % accessible to outside functions. This can be used to display auto-generated settings dialogs, to % record function calls, and so on. % % Varying amounts of meta-data can be obtained in addition to the raw parameter values, including % just the bare-bones value struct ('vals'), the meta-data associated with the passed arguments, % and the full set of meta-data for all possible options (for multi-option parameters), even if these % options were not actually prompted by the Arguments. % % In: % Type : Type of information to report, can be one of the following: % 'rich' : Report a rich declaration of the function's arguments as a struct array, with % fields as in arg_specifier. % 'lean' : Report a lean declaration of the function's arguments as a struct array, with % fields as in arg_specifier, like rich, but excluding the alternatives field. % 'vals' : Report the values of the function's arguments as a struct, possibly with % sub-structs. % % 'properties' : Report properties of the function, if any (these can be declared via % declare_properties) % % 'handle': Report function handles to scoped functions within the Function (i.e., % subfunctions). The named of those functions are listed as a cell string array % in place of Arguments, unless there is exactly one returned function. Then, % this function is returned as-is. This functionality is a nice-to-have feature % for some use cases but not essential to the operation of the argument system. % % Function : a function handle to a function which defines some arguments (via arg_define) % % Arguments : cell array of parameters to be passed to the function; depending on the function's % implementation, this can affect the current value assignment (or structure) of the % parameters being returned If this is not a cell, it is automatically wrapped inside % one (note: to specify the first positional argument as [] to the function, always % pass it as {[]}; this is only relevant if the first argument's default is non-[]). % % Out: % Result : the reported data. % % Notes: % In all cases except 'properties', the Function must use arg_define() to define its arguments. % % Examples: % % for a function call with some arguments assigned, obtain a struct with all parameter % % names and values, including defaults % params = arg_report('vals',@myfunction,{4,10,true,'option1','xxx','option5',10}) % % % obtain a specification of all function arguments, with defaults, help text, type, shape, and other % % meta-data (with a subset of settings customized according to arguments) % spec = arg_report('rich',@myfunction,myarguments) % % % obtain a report of properties of the function (declared via declared_properties() within the % % function) % props = arg_report('properties',@myfunction) % % See also: % arg_define, declare_properties % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-09-24 % uniformize arguments if ~exist('args','var') args = {}; end if isequal(args,[]) args = {}; end if ~iscell(args) args = {args}; end if ischar(func) func = str2func(func); end % make sure that the direct mode is disabled for the function being called (because in direct mode % it doesn't report) indices = find(cellfun('isclass',args,'struct') | strcmp(args,'arg_direct')); for k = indices(end:-1:1) if ischar(args{k}) && k<length(args) % found it in the NVPs args{k+1} = false; break; elseif isfield(args{k},'arg_direct') % found it in a struct args{k}.arg_direct = false; break; end end if any(strcmpi(type,{'rich','lean','vals','handle'})) % issue the report res = do_report(type,func,args); elseif strcmpi(type,'properties') if isempty(args) % without arguments we can do a quick hash map lookup % (based on the MD5 hash of the file in question) info = functions(func); hash = ['h' utl_fileinfo(info.file,char(func))]; try % try lookup persistent cached_properties; %#ok<TLEV> res = cached_properties.(hash); catch % fall back to actually reporting it res = do_report('properties',func,args); % and store it for the next time cached_properties.(hash) = res; end else % with arguments we don't try to cache (as the properties might be argument-dependent) res = do_report('properties',func,args); end end function res = do_report(type,func,args) global tracking; persistent have_expeval; if isempty(have_expeval) have_expeval = exist('exp_eval','file'); end try % the presence of one of the arg_report_*** functions in the stack communicates to the receiver % that a report is requested and what type of report... feval(['arg_report_' lower(type)],func,args,have_expeval); catch report if strcmp(report.identifier,'BCILAB:arg:report_args') % get the ticket of the report ticket = sscanf(report.message((find(report.message=='=',1,'last')+1):end),'%f'); % read out the payload res = tracking.arg_sys.reports{ticket}; % and return the ticket tracking.arg_sys.tickets.addLast(ticket); else % other error: if strcmp(type,'properties') % almost certainly no properties clause defined res = {}; else % genuine error: pass it on rethrow(report); end end end % --- a bit of boilerplate below (as the caller's name is relevant here) --- function arg_report_rich(func,args,have_expeval) %#ok<DEFNU> if have_expeval && nargout(func) > 0 exp_eval(func(args{:})); else func(args{:}); end function arg_report_lean(func,args,have_expeval) %#ok<DEFNU> if have_expeval && nargout(func) > 0 exp_eval(func(args{:})); else func(args{:}); end function arg_report_vals(func,args,have_expeval) %#ok<DEFNU> if have_expeval && nargout(func) > 0 exp_eval(func(args{:})); else func(args{:}); end function arg_report_handle(func,args,have_expeval) %#ok<DEFNU> if have_expeval && nargout(func) > 0 exp_eval(func(args{:})); else func(args{:}); end function arg_report_properties(func,args,have_expeval) %#ok<DEFNU> if have_expeval && nargout(func) > 0 exp_eval(func(args{:})); else func(args{:}); end
github
lcnhappe/happe-master
arg_subswitch.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_subswitch.m
17,047
utf_8
f8e71db07aba22fedb0dce863f122c40
function res = arg_subswitch(varargin) % Specify a function argument that can be one of several alternative structs. % Spec = arg_subswitch(Names,Defaults,Alternatives,Help,Options...) % % The correct struct is chosen according to a selection rule (the mapper). Accessible to the % function as a struct, and visible in the GUI as an expandable sub-list of arguments (with a % drop-down list of alternative options). The chosen option (usually one out of a set of strings) is % delivered to the Function as the special struct field 'arg_selection'. % % In: % Names : The name(s) of the argument. At least one must be specified, and if multiple are % specified, they must be passed in a cell array. % * The first name specified is the argument's "code" name, as it should appear in the % function's code (= the name under which arg_define() returns it to the function). % * The second name, if specified, is the "Human-readable" name, which is exposed in the % GUIs (if omitted, the code name is displayed). % * Further specified names are alternative names for the argument (e.g., for backwards % compatibility with older function syntaxes/parameter names). % % Defaults : A cell array of arguments to override defaults for the Source (sources declared as % part of Alternatives); all syntax accepted by the (selected) Source is allowed here, % whereas in the case of positional arguments, the leading arg_norep() arguments of the % source are implicitly skipped. Note: Which one out of the several alternatives should % be selected is determined via the 'mapper' (which can be overridden in form of an % optional parameter). By default, the mapper maps the first argument to the Selector, % and assigns the rest to the matching Source. % % Alternatives : Definition of the switchable option groups. This is a cell array of the form: % {{'selector', Source}, {'selector', Source}, {'selector', Source}, ...} Each % Source is either a function handle (referring to a function that exposes % arguments via an arg_define() clause), or an in-line cell array of argument % specifications, analogously to the more detailed explanation in arg_sub(). In the % latter case (Source is a cell array), the option group may also be a 3-element % cell array of the form {'selector',Source,Format} ... where Format is a format % specifier as explained in arg_define(). % % Help : The help text for this argument (displayed inside GUIs), optional. (default: []). % (Developers: Please do *not* omit this, as it is the key bridge between ease of use and % advanced functionality.) % % The first sentence should be the executive summary (max. 60 chars), any further sentences % are a detailed explanation (examples, units, considerations). The end of the first % sentence is indicated by a '. ' followed by a capital letter (beginning of the next % sentence). If ambiguous, the help can also be specified as a cell array of 2 cells. % % Options... : Optional name-value pairs to denote additional properties: % 'cat' : The human-readable category of this argument, helpful to present a list % of many parameters in a categorized list, and to separate "Core % Parameters" from "Miscellaneous" arguments. Developers: When choosing % names, every bit of consistency with other function in the toolbox helps % the uses find their way (default: []). % % 'mapper' : A function that maps the value (cell array of arguments like Defaults) % to a value in the domain of selectors (first output), and a potentially % updated argument list (second output). The mapper is applied to the % argument list prior to any parsing (i.e. it faces the raw argument % list) to determine the current selection, and its second output (the % potentially updated argument list) is forwarded to the Source that was % selected, for further parsing. % % The default mapper takes the first argument in the argument list as the % Selector and passes the remaining list entries to the Source. If there % is only a single argument that is a struct with a field % 'arg_selection', this field's value is taken as the Selector, and the % struct is passed as-is to the Source. % % 'merge': Whether a value (cell array of arguments) assigned to this argument % should completely replace all arguments of the default, or whether it % should instead the two cell arrays should be concatenated ('merged'), so % that defaults are only selectively overridden. Note that for % concatenation to make sense, the cell array of Defaults cannot be some % subset of all allowed positional arguments, but must instead either be % the full set of positional arguments (and possibly some NVPs) or be % specified as NVPs in the first place. % % Out: % Spec : A cell array, that, when called as spec{1}(reptype,spec{2}{:}), yields a specification of % the argument, for use by arg_define. Technical note: Upon assignment with a value (via % the assigner field), the 'children' field of the specifier struct is populated according % to how the selected (by the mapper) Source (from Alternatives) parses the value into % arguments. The additional struct field 'arg_selection 'is introduced at this point. % % Examples: % % define a function with a multiple-choice argument, with different sub-arguments for each choice % % (where the default is 'kmeans'; some valid calls are: % % myfunction('method','em','flagXY',true) % % myfunction('flagXY',true, 'method',{'em', 'myarg',1001}) % % myfunction({'vb', 'myarg1',1001, 'myarg2','test'},false) % % myfunction({'kmeans', struct('arg2','test')}) % function myfunction(varargin) % arg_define(varargin, ... % arg_subswitch('method','kmeans',{ ... % {'kmeans', {arg('arg1',10,[],'argument for kmeans.'), arg('arg2','test',[],'another argument for it.')}, ... % {'em', {arg('myarg',1000,[],'argument for the EM method.')}, ... % {'vb', {arg('myarg1',test',[],'argument for the VB method.'), arg('myarg2','xyz',[],'another argument for VB.')} ... % }, 'Method to use. Three methods are supported: k-means, EM and VB, and each method has optional parameters that can be specified if chosen.'), ... % arg('flagXY',false,[],'And some flag.')); % % % define a function with a multiple-choice argument, where the arguments for the choices come % % from a different function each % function myfunction(varargin) % arg_define(varargin, ... % arg_subswitch('method','kmeans',{{'kmeans', @kmeans},{'em', @expectation_maximization},{'vb',@variational_bayes}}, 'Method to use. Each has optional parameters that can be specified if chosen.'), ... % arg('flagXY',false,[],'And some flag.')); % % % as before, but specify a different default and override some of the arguments for that default % function myfunction(varargin) % arg_define(varargin, ... % arg_subswitch('method',{'vb','myarg1','toast'},{{'kmeans', @kmeans},{'em', @expectation_maximization},{'vb',@variational_bayes}}, 'Method to use. Each has optional parameters that can be specified if chosen.'), ... % arg('flagXY',false,[],'And some flag.')); % % % specify a custom function to determine the format of the argument (and in particular the % % mapping of assigned value to chosen selection % arg_subswitch('method','kmeans',{{'kmeans', @kmeans},{'em',@expectation_maximization},{'vb',@variational_bayes}}, ... % 'Method to use. Each has optional parameters that can be specified if chosen.', 'mapper',@mymapper), ... % % See also: % arg, arg_nogui, arg_norep, arg_sub, arg_subtoggle, arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-09-24 % we return a function that an be invoked to yield a specification (its output is cached for % efficiency) packed in a cell array together with the remaining arguments res = {@invoke_argsubswitch_cached,varargin}; function spec = invoke_argsubswitch_cached(varargin) spec = hlp_microcache('arg',@invoke_argsubswitch,varargin{:}); % the function that does the actual work of building the argument specifier function spec = invoke_argsubswitch(reptype,names,defaults,alternatives,help,varargin) suppressNames = {}; % start with a base specification spec = arg_specifier('head',@arg_subswitch, 'type','char', 'shape','row', 'mapper',@map_argsubswitch); % override properties if exist('names','var') spec.names = names; end if exist('help','var') spec.help = help; end for k=1:2:length(varargin) if isfield(spec,varargin{k}) spec.(varargin{k}) = varargin{k+1}; elseif strcmpi(varargin{k},'suppress') suppressNames = varargin{k+1}; else error(['BCILAB:arg:no_new_fields','It is not allowed to introduce fields (here: ' varargin{k} ') into a specifier that are not declared in arg_specifier.']); end end % do checking if ~iscell(spec.names) spec.names = {spec.names}; end if isempty(spec.names) || ~iscellstr(spec.names) error('The argument must have a name or cell array of names.'); end if isempty(alternatives) error('BCILAB:args:no_options','The Alternatives argument for arg_subswitch() may not be omitted.'); end %#ok<*NODEF> if nargin(spec.mapper) == 1 spec.mapper = @(x,y,z) spec.mapper(x); end % parse the help if ~isempty(spec.help) try spec.help = parse_help(spec.help,100); catch e disp(['Problem with the help text for argument ' spec.names{1} ': ' e.message]); spec.help = {}; end elseif spec.reportable && spec.displayable disp(['Please specify a description for argument ' spec.names{1} ', or specify it via arg_nogui() instead.']); end % uniformize Alternatives syntax into {{'selector1',@function1, ...}, {'selector2',@function2, ...}, ...} if iscellstr(alternatives(1:2:end)) && all(cellfun(@(x)iscell(x)||isa(x,'function_handle'),alternatives(2:2:end))) alternatives = mat2cell(alternatives,1,repmat(2,length(alternatives)/2,1)); end % derive range spec.range = cellfun(@(c)c{1},alternatives,'UniformOutput',false); % turn Alternatives into a cell array of Source functions for k=1:length(alternatives) sel = alternatives{k}; selector = sel{1}; source = sel{2}; if ~ischar(selector) error('In arg_subswitch, each selector must be a string.'); end if length(sel) > 2 fmt = sel{3}; else fmt = []; end % uniformize Source syntax... if iscell(source) % args is a cell array instead of a function: we effectively turn this into a regular % arg_define-using function (taking & parsing values) source = @(varargin) arg_define(fmt,varargin,source{:}); else % args is a function: was a custom format specified? if isa(fmt,'function_handle') source = @(varargin) source(fmt(varargin)); elseif ~isempty(fmt) error('The only allowed form in which the Format of a Source that is a function may be overridden is as a pre-parser (given as a function handle)'); end end alternatives{k} = source; end sources = alternatives; % wrap the defaults into a cell if necessary (note: this is convenience syntax) if ~iscell(defaults) if ~(isstruct(defaults) || ischar(defaults)) error(['It is not allowed to use anything other than a cell, a struct, or a (selector) string as default for an arg_subswitch argument (here:' spec.names{1} ')']); end defaults = {defaults}; end % find out what index and value set the default configuration maps to; this is relevant for the % merging option: in this case, we need to pull up the correct default and merge it with the passed % value [default_sel,default_val] = spec.mapper(defaults,spec.range,spec.names); default_idx = find(strcmp(default_sel,spec.range)); % create the regular assigner... spec.assigner = @(spec,value) assign_argsubswitch(spec,value,reptype,sources,default_idx,default_val,suppressNames); % and assign the default itself if strcmp(reptype,'rich') spec = assign_argsubswitch(spec,defaults,'build',sources,0,{},suppressNames); else spec = assign_argsubswitch(spec,defaults,'lean',sources,0,{},suppressNames); end function spec = assign_argsubswitch(spec,value,reptype,sources,default_idx,default_val,suppressNames) % for convenience (in scripts calling the function), also support values that are not cell arrays if ~iscell(value) if ~(isstruct(value) || ischar(value)) error(['It is not allowed to assign anything other than a cell, a struct, or a (selector) string to an arg_subswitch argument (here:' spec.names{1} ')']); end value = {value}; end % run the mapper to get the selection according to the value (selectors is here for error checking); % also update the value [selection,value] = spec.mapper(value,spec.range,spec.names); % find the appropriate index in the selections... idx = find(strcmp(selection,spec.range)); % if we should build the set of alternatives, do so now.... if strcmp(reptype,'build') for n=setdiff(1:length(sources),idx) arg_sel = arg_nogui('arg_selection',spec.range{n}); spec.alternatives{n} = [arg_report('rich',sources{n}) arg_sel{1}([],arg_sel{2}{:})]; end reptype = 'rich'; end % build children and override the appropriate item in the aternatives arg_sel = arg_nogui('arg_selection',spec.range{idx}); if spec.merge && idx == default_idx spec.children = [arg_report(reptype,sources{idx},[default_val value]) arg_sel{1}([],arg_sel{2}{:})]; else spec.children = [arg_report(reptype,sources{idx},value) arg_sel{1}([],arg_sel{2}{:})]; end % toggle the displayable option for children which should be suppressed if ~isempty(suppressNames) % identify which children we want to suppress display hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.children.names},'UniformOutput',false))); % set display flag to false for k=hidden(:)' spec.children(k).displayable = false; end % identify which alternatives we want to suppress display for alt_idx = 1:length(spec.alternatives) if isempty(spec.alternatives{alt_idx}) continue; end hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.alternatives{alt_idx}.names},'UniformOutput',false))); % set display flag to false for k=hidden(:)' spec.alternatives{alt_idx}(k).displayable = false; end end end spec.alternatives{idx} = spec.children; % and set the value of the selector field itself to the current selection spec.value = selection; function [selection,args] = map_argsubswitch(args,selectors,names) if isempty(args) selection = selectors{1}; elseif isfield(args{1},'arg_selection') selection = args{1}.arg_selection; elseif any(strcmp(args{1},selectors)) [selection,args] = deal(args{1},args(2:end)); else % find the arg_selection in the cell array pos = find(strcmp('arg_selection',args(1:end-1)),1,'last'); [selection,args] = deal(args{pos+1},args([1:pos-1 pos+2:end])); end % Note: If this error is triggered, an value was passed for an argument which has a flexible structure (chosen out of a set of possibilities), but the possibility % which was chosen according to the passed value does not match any of the specified ones. For a value that is a cell array of arguments, the choice is % made based on the first element in the cell. For a value that is a structure of arguments, the choice is made based on the 'arg_selection' field. % The error is usually resolved by reviewing the argument specification of the offending function carefully, and comparing the passed value to the Alternatives % declared in the arg_subswitch() clause in which the offending argument is declared. if ~any(strcmpi(selection,selectors)) error(['The chosen selector argument (' selection ') does not match any of the possible options (' sprintf('%s, ',selectors{1:end-1}) selectors{end} ') in the function argument ' names{1} '.']); end
github
lcnhappe/happe-master
arg_sub.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_sub.m
12,136
utf_8
579d06548d7bb9eba5580ea1d6d33322
function res = arg_sub(varargin) % Specify an argument of a function which is a structure of sub-arguments. % Spec = arg_sub(Names,Defaults,Source,Help,Options...) % % Delivered to the function as a struct, and visible in the GUI as a an expandable sub-list of % arguments. A function may have an argument which itself consists of several arguments. For % example, a function may be passing the contents of this struct as arguments to another function, % or may just collect several arguments into sub-fields of a single struct. Differs from the default % arg() function by allowing, instead of the Range, either a Source function which exposes a list of % arguments (itself using arg_define), or a cell array with argument specifications, identical in % format to the Specification part of an arg_define() clause. % % In: % Names : The name(s) of the argument. At least one must be specified, and if multiple are % specified, they must be passed in a cell array. % * The first name specified is the argument's "code" name, as it should appear in the % function's code (= the name under which arg_define() returns it to the function). % * The second name, if specified, is the "Human-readable" name, which is exposed in the % GUIs (if omitted, the code name is displayed). % * Further specified names are alternative names for the argument (e.g., for backwards % compatibility with older function syntaxes/parameter names). % % Defaults : A cell array of arguments to override defaults for the Source; all syntax accepted by % the Source is allowed here, whereas in the case of positional arguments, the leading % arg_norep() arguments of the source are implicitly skipped. If empty, the defaults of % the Source are unaffected. % % Source : A source of argument specifications, usually a function handle (referring to a function % which defines arguments via arg_define()). % % For convenience, a cell array with a list of argument declarations, formatted like the % Specification part of an arg_define() clause can be given, instead. In this case, the % effect is the same as specifying @some_function, for a function implemented as: % % function some_function(varargin) arg_define(Format,varargin,Source{:}); % % Help : The help text for this argument (displayed inside GUIs), optional. (default: []). % (Developers: Please do *not* omit this, as it is the key bridge between ease of use and % advanced functionality.) % % The first sentence should be the executive summary (max. 60 chars), any further sentences % are a detailed explanation (examples, units, considerations). The end of the first % sentence is indicated by a '. ' followed by a capital letter (beginning of the next % sentence). If ambiguous, the help can also be specified as a cell array of 2 cells. % % Options... : Optional name-value pairs to denote additional properties: % 'cat' : The human-readable category of this argument, helpful to present a list % of many parameters in a categorized list, and to separate "Core % Parameters" from "Miscellaneous" arguments. Developers: When choosing % names, every bit of consistency with other function in the toolbox helps % the uses find their way (default: []). % % 'fmt' : Optional format specification for the Source (if it is a cell array) % (default: []). See arg_define() for a detailed explanation. % % 'merge': Whether a value (cell array of arguments) assigned to this argument % should completely replace all arguments of the default, or whether % instead the two cell arrays should be concatenated ('merged'), so that % defaults are only selectively overridden. Note that for concatenation to % make sense, the cell array of Defaults cannot be some subset of all % allowed positional arguments, but must instead either be the full set of % positional arguments (and possibly some NVPs) or be specified as NVPs in % the first place. (default: true) % % Out: % Spec : A cell array, that, when called as spec{1}(reptype,spec{2}{:}), yields a specification of % the argument, for use by arg_define. Technical note: Upon assignment with a value (via % the assigner field), the 'children' field of the specifier struct is populated according % to how the Source parses the value into arguments. % % Notes: % for MATLAB versions older than 2008a, type and shape checking is not necessarily enforced. % % Examples: % % define 3 arguments for a function, including one which is a struct of two other arguments. % % some valid calls to the function are: % % myfunction('somearg',false, 'anotherarg',10, 'structarg',{'myarg1',5,'myarg2','xyz'}) % % myfunction(false, 10, {'myarg1',5,'myarg2','xyz'}) % % myfunction('structarg',{'myarg2','xyz'}, 'somearg',false) % % myfunction('structarg',struct('myarg2','xyz','myarg1',10), 'somearg',false) % function myfunction(varargin) % arg_define(varargin, ... % arg('somearg',true,[],'Some argument.'),... % arg_sub('structarg',{},{ ... % arg('myarg1',4,[],'Some sub-argument. This is a sub-argument of the argument named structarg in the function'), ... % arg('myarg2','test',[],'Another sub-argument. This, too, is a sub-argument of structarg.') % }, 'Struct argument. This argument has sub-structure. It can generally be assigned a cell array of name-value pairs, or a struct.'), ... % arg('anotherarg',5,[],'Another argument. This is a regular numeric argument of myfunction again.)); % % % define a struct argument with some overridden defaults % arg_sub('structarg',{'myarg2','toast'},{ ... % arg('myarg1',4,[],'Some sub-argument. This is a sub-argument of the argument named structarg in the function'), ... % arg('myarg2','test',[],'Another sub-argument. This, too, is a sub-argument of structarg.') % }, 'Struct argument. This argument has sub-structure. It can generally be assigned a cell array of name-value pairs, or a struct.'), ... % % % define an arguments including one whose sub-parameters match those that are declared in some % % other function (@myotherfunction), which uses arg_define itself % function myfunction(varargin) % arg_define(varargin, ... % arg('somearg',[],[],'Some help text.'), ... % arg_sub('structarg',{},@myotherfunction, 'A struct argument. Arguments are as in myotherfunction(), can be assigned as a cell array of name-value pairs or structs.')); % % % define an argument with sub-parameters sourced from some other function, but with partially overridden defaults % arg_sub('structarg',{'myarg1',1001},@myotherfunction, 'A struct argument. Arguments are as in myotherfunction(), can be assigned as a cell array of name-value pairs or structs.')); % % % define an argument with sub-parameters sourced from some other function, with a particular set of custom defaults % % which are jointly replaced when a value is assigned to structarg (including an empty cell array) % arg_sub('structarg',{'myarg1',1001},@myotherfunction, 'A struct argument. Arguments are as in myotherfunction().', 'merge',false)); % % % define a struct argument with a custom formatting function (analogously to the optional Format function in arg_define) % % myparser shall be a function that takes a string and returns a cell array of name-value pairs (names compatible to the sub-argument names) % arg_sub('structarg',{},{ ... % arg('myarg1',4,[],'Some sub-argument. This is a sub-argument of the argument named structarg in the function'), ... % arg('myarg2','test',[],'Another sub-argument. This, too, is a sub-argument of structarg.') % }, 'Struct argument. This argument has sub-structure. Assign it as a string of the form ''name=value; name=value;''.', 'fmt',@myparser), ... % % See also: % arg, arg_nogui, arg_norep, arg_subswitch, arg_subtoggle, arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-09-24 % we return a function that an be invoked to yield a specification (its output is cached for % efficiency) packed in a cell array together with the remaining arguments res = {@invoke_argsub_cached,varargin}; function spec = invoke_argsub_cached(varargin) spec = hlp_microcache('arg',@invoke_argsub,varargin{:}); % the function that does the actual work of building the argument specifier function spec = invoke_argsub(reptype,names,defaults,source,help,varargin) % start with a base specification spec = arg_specifier('head',@arg_sub,'fmt',[], 'value','', 'type','char', 'shape','row'); suppressNames = {}; % override properties if exist('names','var') spec.names = names; end if exist('help','var') spec.help = help; end for k=1:2:length(varargin) if isfield(spec,varargin{k}) spec.(varargin{k}) = varargin{k+1}; elseif strcmpi(varargin{k},'suppress') suppressNames = varargin{k+1}; else error('BCILAB:arg:no_new_fields','It is not allowed to introduce fields into a specifier that are not declared in arg_specifier.'); end end % do checking if ~iscell(spec.names) spec.names = {spec.names}; end if isempty(spec.names) || ~iscellstr(spec.names) error('The argument must have a name or cell array of names.'); end if ~exist('source','var') || isequal(source,[]) error('BCILAB:args:no_source','The Source argument for arg_sub() may not be omitted.'); end %#ok<*NODEF> % parse the help if ~isempty(spec.help) try spec.help = parse_help(spec.help,100); catch e disp(['Problem with the help text for argument ' spec.names{1} ': ' e.message]); spec.help = {}; end elseif spec.reportable && spec.displayable disp(['Please specify a description for argument ' spec.names{1} ', or specify it via arg_nogui() instead.']); end if ~isempty(source) % uniformize Source syntax if iscell(source) % args is a cell array instead of a function: we effectively turn this into a regular % arg_define-using function (taking & parsing values) source = @(varargin) arg_define(spec.fmt,varargin,source{:}); else % args is a function: was a custom format specified? if isa(spec.fmt,'function_handle') source = @(varargin) source(spec.fmt(varargin)); elseif ~isempty(spec.fmt) error('The only allowed form in which the Format of a Source that is a function may be overridden is as a pre-parser (given as a function handle)'); end end end spec = rmfield(spec,'fmt'); % assignment to this object does not touch the value, but instead creates a new children structure spec.assigner = @(spec,value) assign_argsub(spec,value,reptype,source,defaults,suppressNames); % assign the default spec = assign_argsub(spec,defaults,reptype,source,[],suppressNames); % function to do the value assignment function spec = assign_argsub(spec,value,reptype,source,default,suppressNames) if ~isempty(source) if spec.merge spec.children = arg_report(reptype,source,[default,value]); else spec.children = arg_report(reptype,source,value); end end % toggle the displayable option for children which should be suppressed if ~isempty(suppressNames) % identify which children we want to suppress display hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.children.names},'UniformOutput',false))); % set display flag to false for k=hidden(:)' spec.children(k).displayable = false; end end
github
lcnhappe/happe-master
arg_subtoggle.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_subtoggle.m
15,337
utf_8
6bfc9dc025de4ebf873f2152b77f7ee4
function res = arg_subtoggle(varargin) % Specify an argument of a function which is a struct of sub-arguments that can be disabled. % Spec = arg_subtoggle(Names,Default,Source,Help,Options...) % % Accessible to the function as a struct, and visible in the GUI as a an expandable sub-list of % arguments (with a checkbox to toggle). The special field 'arg_selection' (true/false) indicates % whether the argument is enabled or not. The value assigned to the argument determines whether it % is turned on or off, as determined by the mapper option. % % In: % Names : The name(s) of the argument. At least one must be specified, and if multiple are % specified, they must be passed in a cell array. % * The first name specified is the argument's "code" name, as it should appear in the % function's code (= the name under which arg_define() returns it to the function). % * The second name, if specified, is the "Human-readable" name, which is exposed in the % GUIs (if omitted, the code name is displayed). % * Further specified names are alternative names for the argument (e.g., for backwards % compatibility with older function syntaxes/parameter names). % % Defaults : A cell array of arguments to override defaults for the Source; all syntax accepted by % the (selected) Source is allowed here, whereas in the case of positional arguments, % the leading arg_norep() arguments of the source are implicitly skipped. Note: Whether % the argument is turned on or off is determined via the 'mapper' option. By default, % [] and 'off' are mapped to off, whereas {}, non-empty cell arrays and structs are % mapped to on. % % Source : A source of argument specifications, usually a function handle (referring to a function % which defines arguments via arg_define()). % % For convenience, a cell array with a list of argument declarations, formatted like the % Specification part of an arg_define() clause can be given, instead. In this case, the % effect is the same as specifying @some_function, for a function implemented as: % % function some_function(varargin) arg_define(Format,varargin,Source{:}); % % Help : The help text for this argument (displayed inside GUIs), optional. (default: []). % (Developers: Please do *not* omit this, as it is the key bridge between ease of use and % advanced functionality.) % % The first sentence should be the executive summary (max. 60 chars), any further sentences % are a detailed explanation (examples, units, considerations). The end of the first % sentence is indicated by a '. ' followed by a capital letter (beginning of the next % sentence). If ambiguous, the help can also be specified as a cell array of 2 cells. % % Options... : Optional name-value pairs to denote additional properties: % 'cat' : The human-readable category of this argument, helpful to present a list % of many parameters in a categorized list, and to separate % "Core Parameters" from "Miscellaneous" arguments. Developers: When % choosing names, every bit of consistency with other function in the % toolbox helps the uses find their way (default: []). % % 'fmt' : Optional format specification for the Source (if it is a cell array) % (default: []). See arg_define() for a detailed explanation. % % 'mapper' : A function that maps the argument list (e.g., Defaults) to a value in % the domain of selectors, and a potentially updated argument list. The % mapper is applied to the argument list prior to any parsing (i.e. it % faces the raw argument list) to determine the current selection, and % its its second output (the potentially updated argument list) is % forwarded to the Source that was selected, for further parsing. % % The default mapper maps [] and 'off' to off, whereas 'on', empty or % non-empty cell arrays and structs are mapped to on. % % 'merge': Whether a value (cell array of arguments) assigned to this argument % should completely replace all arguments of the default, or whether it % should instead the two cell arrays should be concatenated ('merged'), so % that defaults are only selectively overridden. Note that for % concatenation to make sense, the cell array of Defaults cannot be some % subset of all allowed positional arguments, but must instead either be % the full set of positional arguments (and possibly some NVPs) or be % specified as NVPs in the first place. % % % Out: % Spec : A cell array, that, when called as spec{1}(reptype,spec{2}{:}), yields a specification of % the argument, for use by arg_define. Technical note: Upon assignment with a value (via % the assigner field), the 'children' field of the specifier struct is populated according % to how the selected (by the mapper) Source parses the value into arguments. The % additional struct field 'arg_selection 'is introduced at this point. % % Examples: % % define a function with an argument that can be turned on or off, and which has sub-arguments % % that are effective if the argument is turned on (default: on); some valid calls are: % % myfunction('somearg','testtest', 'myoption','off') % % myfunction('somearg','testtest', 'myoption',[]) % alternative for: off % % myfunction('somearg','testtest', 'myoption','on') % % myfunction('somearg','testtest', 'myoption',{}) % alternatie for: on % % myfunction('somearg','testtest', 'myoption',{'param1','test','param2',10}) % % myfunction('somearg','testtest', 'myoption',{'param2',10}) % % myfunction('testtest', {'param2',10}) % % myfunction('myoption', {'param2',10}) % function myfunction(varargin) % arg_define(varargin, ... % arg('somearg','test',[],'Some help.'), ... % arg_subtoggle('myoption',},{},{ ... % arg('param1',[],[],'Parameter 1.'), ... % arg('param2',5,[],'Parameter 2.') ... % }, 'Optional processing step. If selected, several sub-argument can be specified.')); % % % define a function with an argument that can be turned on or off, and whose sub-arguments match % % those of some other function (there declared via arg_define) % function myfunction(varargin) % arg_define(varargin, ... % arg_subtoggle('myoption',},{},@someotherfunction, 'Optional processing step. If selected, several sub-argument can be specified.')); % % % as before, but override some of the defaults of someotherfunction % function myfunction(varargin) % arg_define(varargin, ... % arg_subtoggle('myoption',},{'param1',10},@someotherfunction, 'Optional processing step. If selected, several sub-argument can be specified.')); % % % as before, but specify a custom mapper function that determines how myoption is passed, and % % what forms map to 'on' and 'off' % function myfunction(varargin) % arg_define(varargin, ... % arg_subtoggle('myoption',},{},@someotherfunction, 'Optional processing step. If selected, several sub-argument can be specified.'.'mapper',@mymapper)); % % % as before, but specify a custom formatting function that determines the arguments in myoption % % may be passed (keeping the defaults regarding what forms map to 'on' and 'off') % function myfunction(varargin) % arg_define(varargin, ... % arg_subtoggle('myoption',},{},@someotherfunction, 'Optional processing step. If selected, several sub-argument can be specified.'.'fmt',@myparser)); % % See also: % arg, arg_nogui, arg_norep, arg_sub, arg_subswitch, arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-09-24 % we return a function that an be invoked to yield a specification (its output is cached for % efficiency) packed in a cell array together with the remaining arguments res = {@invoke_argsubtoggle_cached,varargin}; function spec = invoke_argsubtoggle_cached(varargin) spec = hlp_microcache('arg',@invoke_argsubtoggle,varargin{:}); % the function that does the actual work of building the argument specifier function spec = invoke_argsubtoggle(reptype,names,defaults,source,help,varargin) % start with a base specification spec = arg_specifier('head',@arg_subtoggle, 'fmt',[], 'type','logical', 'shape','scalar', 'mapper',@map_argsubtoggle); suppressNames = {}; % override properties if exist('names','var') spec.names = names; end if exist('help','var') spec.help = help; end for k=1:2:length(varargin) if isfield(spec,varargin{k}) spec.(varargin{k}) = varargin{k+1}; elseif strcmpi(varargin{k},'suppress') suppressNames = varargin{k+1}; else error('BCILAB:arg:no_new_fields','It is not allowed to introduce fields into a specifier that are not declared in arg_specifier.'); end end % do checking if ~iscell(spec.names) spec.names = {spec.names}; end if isempty(spec.names) || ~iscellstr(spec.names) error('The argument must have a name or cell array of names.'); end if ~exist('source','var') || isempty(source) error('BCILAB:args:no_options','The Source argument for arg_subtoggle() may not be omitted.'); end %#ok<*NODEF> if nargin(spec.mapper) == 1 spec.mapper = @(x,y,z) spec.mapper(x); end % parse the help if ~isempty(spec.help) try spec.help = parse_help(spec.help,100); catch e disp(['Problem with the help text for argument ' spec.names{1} ': ' e.message]); spec.help = {}; end elseif spec.reportable && spec.displayable disp(['Please specify a description for argument ' spec.names{1} ', or specify it via arg_nogui() instead.']); end % uniformize Source syntax if iscell(source) % args is a cell array instead of a function: we effectively turn this into a regular % arg_define-using function (taking & parsing values) source = @(varargin) arg_define(spec.fmt,varargin,source{:}); else % args is a function: was a custom format specified? if isa(spec.fmt,'function_handle') source = @(varargin) source(spec.fmt(varargin)); elseif ~isempty(spec.fmt) error('The only allowed form in which the Format of a Source that is a function may be overridden is as a pre-parser (given as a function handle)'); end end spec = rmfield(spec,'fmt'); % wrap the default into a cell if necessary (note: this is convenience syntax) if isstruct(defaults) defaults = {defaults}; elseif strcmp(defaults,'off') defaults = []; elseif strcmp(defaults,'on') defaults = {}; elseif ~iscell(defaults) && ~isequal(defaults,[]) error(['It is not allowed to use anything other than a cell array, a struct, [] or ''off'' and ''on'' as defaults of an arg_subtoggle argument (here:' spec.names{1} ')']); end % resolve the default configuration into the boolean flag and value set; this is relevant for % the merging option: in this case, we need to pull up the currect default and merge it with the % passed value [default_sel,default_val] = spec.mapper(defaults); % set up the regular assigner spec.assigner = @(spec,value) assign_argsubtoggle(spec,value,reptype,source,default_sel,default_val,suppressNames); % assign the default if strcmp(reptype,'rich') spec = assign_argsubtoggle(spec,defaults,'build',source,NaN,{},suppressNames); else spec = assign_argsubtoggle(spec,defaults,'lean',source,NaN,{},suppressNames); end function spec = assign_argsubtoggle(spec,value,reptype,source,default_sel,default_val,suppressNames) % precompute things that we might need later persistent arg_sel arg_desel; if isempty(arg_sel) || isempty(arg_sel) arg_sel = arg_nogui('arg_selection',true); arg_sel = arg_sel{1}([],arg_sel{2}{:}); arg_desel = arg_nogui('arg_selection',false); arg_desel = arg_desel{1}([],arg_desel{2}{:}); end % wrap the value into a cell if necessary (note: this is convenience syntax) if isstruct(value) value = {value}; elseif ~iscell(value) && ~isequal(value,[]) && ~isempty(default_val) error(['For an arg_subtoggle argument that has non-empty defaults (here:' spec.names{1} '), it is not allowed to assign anything other than a cell array, a struct, or [] to it.']); end % retrieve the values for the realized switch option... [selected,value] = spec.mapper(value); % build the complementary alternative, if requested if strcmp(reptype,'build') if selected spec.alternatives{1} = arg_desel; else spec.alternatives{2} = [arg_report('rich',source,{}) arg_sel]; end reptype = 'rich'; end % obtain the children if ~selected spec.children = arg_desel; elseif spec.merge && (default_sel==true) spec.children = [arg_report(reptype,source,[default_val value]) arg_sel]; else spec.children = [arg_report(reptype,source,value) arg_sel]; end % toggle the displayable option for children which should be suppressed if ~isempty(suppressNames) % identify which children we want to suppress display hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.children.names},'UniformOutput',false))); % set display flag to false for k=hidden(:)' spec.children(k).displayable = false; end % identify which alternatives we want to suppress display for alt_idx = 1:length(spec.alternatives) if isempty(spec.alternatives{alt_idx}) continue; end hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.alternatives{alt_idx}.names},'UniformOutput',false))); % set display flag to false for k=hidden(:)' spec.alternatives{alt_idx}(k).displayable = false; end end end spec.alternatives{selected+1} = spec.children; % and set the cell's value spec.value = selected; % this function maps an argument list onto a binary flag (enabled status) plus value set to assign function [selected,args] = map_argsubtoggle(args) if isequal(args,'on') selected = true; args = {}; elseif isequal(args,'off') || isequal(args,[]) selected = false; args = []; elseif length(args) == 1 && isfield(args,'arg_selection') selected = args.arg_selection; elseif length(args) == 1 && iscell(args) && isstruct(args{1}) && isfield(args{1},'arg_selection') selected = args{1}.arg_selection; elseif isequal(args,{'arg_selection',0}) selected = false; args = {}; elseif isequal(args,{'arg_selection',1}) selected = true; args = {}; elseif iscell(args) % find the arg_selection in the cell array pos = find(strcmp('arg_selection',args(1:end-1)),1,'last'); if isempty(pos) selected = true; else [selected,args] = deal(args{pos+1},args([1:pos-1 pos+2:end])); end else selected = true; end
github
lcnhappe/happe-master
arg_tovals.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_tovals.m
2,531
utf_8
d6b62007b294e20f330fd415633ef2ad
function res = arg_tovals(spec,direct) % Convert a 'rich' argument report into a 'vals' report. % Vals = arg_tovals(Rich) % % In: % Rich : a 'rich' argument report, as obtained via arg_report('rich',some_function) % % Direct : whether to endow the result with an 'arg_direct' flag set to true, which indicates to % the function taking the Vals struct that the contents of the struct directly correspond % to workspace variables of the function. If enabled, contents of Vals must be changed % with care - for example, removing/renaming fields will likely lead to errors in the % function. (default: true) % % Out: % Vals : a 'vals' argument report, as obtained via arg_report('vals',some_function) this data % structure can be used as a valid argument to some_function. % % Examples: % % report arguments of myfunction % report = arg_report('rich',@myfunction) % % convert the report to a valid argument to the function % values = arg_tovals(report); % % See also: % arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-10-18 if ~exist('direct','var') direct = false; end % remove unassigned specifiers spec = spec(~strcmp(unassigned,{spec.value})); % evaluate expressions expressions = strcmp('expression',{spec.type}) & cellfun('isclass',{spec.value},'char'); if any(expressions) try [spec(expressions).value] = dealout(evalin('base',format_cellstr({spec(expressions).value}))); catch for e=find(expressions) try spec(e).value = evalin('base',spec(e).value); catch end end end end % and replace by structs res = struct('arg_direct',{direct}); for k=1:length(spec) if isstruct(spec(k).children) % has children: replace by struct val = arg_tovals(spec(k).children,direct); else % no children: take value (and possibly convert to double) val = spec(k).value; if spec(k).to_double && isinteger(val) val = double(val); end end % and assign the value res.(spec(k).names{1}) = val; end res.arg_direct = direct; % like deal(), except that the inputs are given as a cell array instead of a comma-separated list function varargout = dealout(argin) varargout = argin; % format a non-empty cell-string array into a string function x = format_cellstr(x) x = ['{' sprintf('%s, ',x{1:end-1}) x{end} '}'];
github
lcnhappe/happe-master
arg_specifier.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/arguments/arg_specifier.m
2,714
utf_8
45a0f0bbe159b1d73d533fcbbf4c2576
function spec = arg_specifier(varargin) % Internal: create a base specifier struct for an argument. % Specifier = arg_specifier(Overrides...) % % In: % Overrides... : name-value pairs of fields that should be overridden % % Out: % A specifier that is recognized by arg_define. % % See also: % arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-09-25 spec = struct(... ... % core properties 'head',{@arg_specifier},...% the expression type that generated this specifier (@arg, @arg_sub, ...) 'names',{{}}, ... % cell array of argument names; first is the "code" name (reported to the function), second (if present) is the human-readable name (reported to the GUI) 'value',{[]}, ... % the assigned value of the argument; can be any data structure 'assigner',{@assign},...% function to be invoked in order to assign a new value the specifier ... % properties for (possibly dependent) child arguments 'children',{{}}, ... % cell array of child arguments (returned to the function in a struct, and made available to the GUI in a subgroup) 'mapper',@(x)x, ... % mapping function: maps a value into the index space of alternatives (possibly via range) 'alternatives',{{}}, ...% cell array of alternative children structures; only used for arg_subtoggle, arg_subswitch 'merge',{true},... % whether the value (a cell array of arguments) should completely replace the default, or be merged with it, such that sub-arguments are only selectively overridden ... % type-related properties 'range',{[]}, ... % the allowed range of the argument (for type checking in GUI and elsewhere); can be [], [lo hi], {'option1','option2','option3',...} 'type',{[]}, ... % the type of the argument: string, only touches the type-checking system & GUI 'shape',{[]}, ... % the shape of the argument: empty. scalar, row, column, matrix ... % user interface properties 'help',{''}, ... % the help text / description for the argument 'cat',{''}, ... % the human-readable category of the argument ... % misc attributes 'to_double',{true}, ... % convert numeric values to double before returning them to the function 'reportable',{true},... % whether the argument can be reported to outer function (given that it is assigned), or not (true/false) 'displayable',{true}... % whether the argument may be displayed by GUIs (true/false) ); % selectively override fields for k=1:2:length(varargin) spec.(varargin{k}) = varargin{k+1}; end function spec = assign(spec,value) spec.value = value;
github
lcnhappe/happe-master
is_needing_search.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/queries/is_needing_search.m
808
utf_8
b4e0ea02b09d80b71d7e2970b648578f
function res = is_needing_search(argform,args) % test whether some argument pack requires a search or not (according to the specified argument format) if strcmp(argform,'direct') % a search is specified by multielement arguments res = prod(max(1,cellfun(@length,args))) > 1; elseif strcmp(argform,'clauses') % a search is specified by (possibly nested) search clauses res = contains_search(args); else error('unsupported argument form.'); end % test whether the given data structure contains a search clause function res = contains_search(x) if has_canonical_representation(x) && isequal(x.head,@search) res = true; elseif iscell(x) res = any(cellfun(@contains_search,x)); elseif isstruct(x) && numel(x) == 1 res = contains_search(struct2cell(x)); else res = false; end
github
lcnhappe/happe-master
is_raw_dataset.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/bcilab_partial/queries/is_raw_dataset.m
184
utf_8
6bcaef74ea534a299898aa10b68af85a
% determine whether some object is a raw EEGLAB data set with no BCILAB constituents function res = is_raw_dataset(x) res = all(isfield(x,{'data','srate'})) && ~isfield(x,'tracking');
github
lcnhappe/happe-master
shadowplot.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/tmullen-cleanline-696a7181b7d0/external/shadowplot/shadowplot.m
7,604
utf_8
ae6097ee1343157565bb24e6a5f27a32
function varargout = shadowplot(varargin) % SHADOWPLOT Add a shadow to an existing surface or patch plot % % For some surface plots, it can be helpful to visualize the shadow (2D % projection) of the surface. This can give a quick perspective on the % data's variance. % % SHADOWPLOT PLANE Adds a shadow plot on the PLANE boundary % PLANE can be: % x, y, or z: Plots on back/top wall of x, y or z % 1 .. 6 : Plots on Nth wall, numbered as in AXIS: % [xmin xmax ymin ymax zmin zmax] % % SHADOWPLOT(HAX,PLANE) Adds a shadow plot on the Nth wall on axes HAX % HS = SHADOWPLOT(...) Returns a handle to the shadow (a patch) % % Examples: % figure % surf(peaks) % shading interp % shadowplot x % Back X Wall % shadowplot y % Back Y Wall % % figure % surf(peaks);hold on % surf(peaks+10) % shading interp % hs = shadowplot(1); % set(hs,'FaceColor','r'); % Red shadow % alpha(hs,.1) % More transparent % set(hs(1),'XData',get(hs(1),'XData')*.9) % Move farther away % % UPDATE (9/07): Now includes limited support for data encapsulated in % HGTRANSFORMS, thanks to Patrick Barney ([email protected]). % Scott Hirsch % [email protected] % Copyright 2004-2007 The MathWorks, Inc %% We define three dimensions. 1=x, 2=y, 3=z % dimplane - dimension that's constant in the projection plane (user-specified) % dimvar - dimension in which data varies (typically 3) % dimother - the other dimension (couldn't come up with a good name!). %% Parse input arguments. if nargin==1 hAx = gca; plane = lower(varargin{1}); elseif nargin==2 hAx = varargin{1}; plane = lower(varargin{2}); end; %% Convert plane to numeric dimension % plane can be specified as a string (x,y,z) or as a number (1..6) if ~isstr(plane) dimplane = ceil(plane/2); axind = plane; % Index into AXIS to get boundary plane else % string switch plane case 'x' dimplane = 1; axind = 2; % Index into AXIS to get boundary plane case 'y' dimplane = 2; axind = 4; case 'z' dimplane = 3; axind = 6; otherwise error('Plane must be one of: ''x'', ''y'', or ''z'' or a number between 1 and 6'); end; end; %% Get coordinates for placing surface from axis limits ax = axis; % ============ force axis into 3d mode ============= if length(axis==4) % axis problem. get the current view, rotate it, then % redo the axis and return to the original view. [az,el] = view; view(45,45) ax = axis; view(az,el) end planecoord = ax(axind); % Plane Coordinate - back wall %% Turn hold on hold_current = ishold(hAx); if hold_current == 0 hold_current = 'off'; else hold_current = 'on'; end; hold(hAx,'on') %% Get handles to all surfaces kids = findobj(hAx,'Type','surface'); h = []; % Also get handles to all patch objects kidsp = findobj(hAx,'Type','patch'); hp = []; for ii=1:length(kids) % Do separately for each surface hSurf = kids(ii); % Current surface % We do everything with the X, Y, and ZData of the surface surfdata = get(hSurf,{'XData','YData','ZData'}); % XData and YData might be vectors or matrices. Force them to be % matrices (a la griddata) [Ny,Nx] = size(surfdata{3}); if isvector(surfdata{1}) surfdata{1} = repmat(surfdata{1},Ny,1); end; if isvector(surfdata{2}) surfdata{2} = repmat(surfdata{2},1,Nx); end; % Figure out which two axes are independent (i.e., monotonic) grids = [ismeshgrid(surfdata{1}) ismeshgrid(surfdata{2}) ismeshgrid(surfdata{3})]; if sum(grids)<2, error('Surface must have at least 2 monotonically increasing dimensions');end % The remaining dimension is the one along which data varies dimvar = find(~grids); % Dimension where data varies if isempty(dimvar) % All 3 dimensions are monotonic. not sure what to do dimvar = max(setdiff(1:3,dimplane));% pick largest value that isn't dimplane end; if dimvar==dimplane error('Can not project data in the dimension that varies. Try another plane') end; %dimdiff: dimension for taking difference (figure out through trial and error) % dimplane=1, dimvar=3: 2 % dimplane=1, dimvar=2: 2 % dimplane=2, dimvar=1: 2 % dimplane=2, dimvar=3: 1 % dimplane=3, dimvar=2: 1 % dimplane=3, dimvar=1: 1 dimdiff = 2; % Most cases if (dimplane==2&&dimvar==3) | (dimplane==3) dimdiff = 1; end; % Compute projection dmin = min(surfdata{dimvar},[],dimdiff); % Min of data projected onto this plane dmax = max(surfdata{dimvar},[],dimdiff); % Max of data projected onto this plane dmin = dmin(:); % Force into row vector dmax = dmax(:); nval = length(dmin)*2 + 1; % Total number of values we'll use for shadow % Compute shadow coordinates % Pull out independent variable dimother = setxor([dimvar dimplane],1:3); % Remaining dimension d1 = surfdata{dimother}(:,1); % Not sure if should take row or col. find the dimension that varies d2 = surfdata{dimother}(1,:); if d1(1) ~= d1(end) dind = d1; else dind = d2'; end; shadow{dimplane} = repmat(planecoord,nval,1); % In the plane shadow{dimother} = [dind;flipud(dind);dind(1)]; % Independent variable shadow{dimvar} = [dmin;flipud(dmax);dmin(1)]; % the varying data h(ii) = patch(shadow{1},shadow{2},shadow{3},[.3 .3 .3]); alpha(h(ii),.3) set(h(ii),'LineStyle','none') % set a tag, so that a shadow will not try to cast a shadow set(h(ii),'Tag','Shadow') end; %% Shadow any patches, unless they are already shadows. hp = []; for ii=1:length(kidsp) % Do separately for each patch object hPat = kidsp(ii); % Current patch % Is this patch already tagged as a Shadow? if ~strcmpi(get(hPat,'Tag'),'Shadow') % We do everything with the X, Y, and ZData of the surface patdata = get(hPat,{'XData','YData','ZData'}); switch get(get(hPat,'par'),'Type') case 'hgtransform' M=get(get(hPat,'par'),'Matrix'); try switch get(get(get(hPat,'par'),'par'),'type') case 'hgtransform' M2=get(get(get(hPat,'par'),'par'),'Matrix'); M=M2*M; end end M=M(1:3,1:3); xyz=[patdata{1}(:),patdata{2}(:),patdata{3}(:)]*M'; [n,m]=size(patdata{1}); patdata{1}=reshape(xyz(:,1),n,m); patdata{2}=reshape(xyz(:,2),n,m); patdata{3}=reshape(xyz(:,3),n,m); otherwise end % Just replace the x, y, or z coordinate as indicated by dimplane patdata{dimplane} = repmat(planecoord,size(patdata{dimplane})); % then its just a call to patch hp(ii) = patch(patdata{1},patdata{2},patdata{3},[.3 .3 .3]); alpha(hp(ii),.3) set(hp(ii),'LineStyle','none') % set a tag, so that a shadow will not try to cast a shadow set(hp(ii),'Tag','Shadow') end end; h=[h,hp]; hold(hAx,hold_current) % Return to original state if nargout varargout{1} = h; end; function isgrid = ismeshgrid(d) % Check if d looks like it came from griddata dd = diff(d); ddt = diff(d'); if all(~dd(:)) | all(~ddt(:)) isgrid = 1; else isgrid = 0; end; % if ~any(d(:,1) - d(:,end)) | ~any(d(1,:) - d(end,:)) % isgrid = 1; % else % isgrid = 0; % end;
github
lcnhappe/happe-master
eegplugin_MARA.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/MARA-master/eegplugin_MARA.m
2,770
utf_8
7619f29fb825e45ca839265d7d4046e0
% eegplugin_MARA() - EEGLab plugin to classify artifactual ICs based on % 6 features from the time domain, the frequency domain, % and the pattern % % Inputs: % fig - [integer] EEGLAB figure % try_strings - [struct] "try" strings for menu callbacks. % catch_strings - [struct] "catch" strings for menu callbacks. % % See also: pop_processMARA(), processMARA(), MARA() % Copyright (C) 2013 Irene Winkler and Eric Waldburger % Berlin Institute of Technology, Germany % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function eegplugin_MARA( fig, try_strings, catch_strings) toolsmenu = findobj(fig, 'tag', 'tools'); h = uimenu(toolsmenu, 'label', 'IC Artifact Classification (MARA)'); uimenu(h, 'label', 'MARA Classification', 'callback', ... [try_strings.no_check ... '[ALLEEG,EEG,CURRENTSET,LASTCOM]= pop_processMARA( ALLEEG ,EEG ,CURRENTSET );' ... catch_strings.add_to_hist ]); uimenu(h, 'label', 'Visualize Components', 'tag', 'MARAviz', 'Enable', ... 'off', 'callback', [try_strings.no_check ... 'EEG = pop_selectcomps_MARA(EEG); pop_visualizeMARAfeatures(EEG.reject.gcompreject, EEG.reject.MARAinfo); ' ... catch_strings.add_to_hist ]); uimenu(h, 'label', 'About', 'Separator', 'on', 'Callback', ... ['warndlg2(sprintf([''MARA automatizes the process of hand-labeling independent components for ', ... 'artifact rejection. It is a supervised machine learning algorithm that learns from ', ... 'expert ratings of 1290 components. Features were optimized to solve the binary classification problem ', ... 'reject vs. accept.\n \n', ... 'If you have questions or suggestions about the toolbox, please contact \n ', ... 'Irene Winkler, TU Berlin [email protected] \n \n ', ... 'Reference: \nI. Winkler, S. Haufe, and M. Tangermann, Automatic classification of artifactual', ... 'ICA-components for artifact removal in EEG signals, Behavioral and Brain Functions, 7, 2011.''])', ... ',''About MARA'');']);
github
lcnhappe/happe-master
pop_visualizeMARAfeatures.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/MARA-master/pop_visualizeMARAfeatures.m
4,558
utf_8
c888a9b58c7e7893d090883d152d5e09
% pop_visualizeMARAfeatures() - Display features that MARA's decision % for artifact rejection is based on % % Usage: % >> pop_visualizeMARAfeatures(gcompreject, MARAinfo); % % Inputs: % gcompreject - array <1 x nIC> containing 1 if component was rejected % MARAinfo - struct containing more information about MARA classification % (output of function <MARA>) % .posterior_artefactprob : posterior probability for each % IC of being an artefact according to % .normfeats : <6 x nIC > features computed by MARA for each IC, % normalized by the training data % The features are: (1) Current Density Norm, (2) Range % in Pattern, (3) Local Skewness of the Time Series, % (4) Lambda, (5) 8-13 Hz, (6) FitError. % % See also: MARA(), processMARA(), pop_selectcomps_MARA() % Copyright (C) 2013 Irene Winkler and Eric Waldburger % Berlin Institute of Technology, Germany % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function pop_visualizeMARAfeatures(gcompreject, MARAinfo) %try set(0,'units','pixels'); resolution = get(0, 'Screensize'); width = resolution(3); height = resolution(4); panelsettings.rowsize = 200; panelsettings.columnsize = 200; panelsettings.columns = floor(width/(2*panelsettings.columnsize)); panelsettings.rows = floor(height/panelsettings.rowsize); panelsettings.numberPerPage = panelsettings.columns * panelsettings.rows; panelsettings.pages = ceil(length(gcompreject)/ panelsettings.numberPerPage); % display components on a number of different pages for page=1:panelsettings.pages selectcomps_1page(page, panelsettings, gcompreject, MARAinfo); end; %catch % eeglab_error %end function EEG = selectcomps_1page(page, panelsettings, gcompreject, MARAinfo) try, icadefs; catch, BACKCOLOR = [0.8 0.8 0.8]; GUIBUTTONCOLOR = [0.8 0.8 0.8]; end; % set up the figure % %%%%%%%%%%%%%%%% if ~exist('fig') mainFig = figure('name', 'Visualize MARA features', 'numbertitle', 'off'); set(mainFig, 'Color', BACKCOLOR) set(gcf,'MenuBar', 'none'); pos = get(gcf,'Position'); set(gcf,'Position', [20 20 panelsettings.columnsize*panelsettings.columns panelsettings.rowsize*panelsettings.rows]); end; % compute range of components to display if page < panelsettings.pages range = (1 + (panelsettings.numberPerPage * (page-1))) : (panelsettings.numberPerPage + ( panelsettings.numberPerPage * (page-1))); else range = (1 + (panelsettings.numberPerPage * (page-1))) : length(gcompreject); end % draw each component % %%%%%%%%%%%%%%%% for i = 1:length(range) subplot(panelsettings.rows, panelsettings.columns, i) for j = 1:6 h = barh(j, MARAinfo.normfeats(j, range(i))); hold on; if j <= 4 && MARAinfo.normfeats(j, range(i)) > 0 set(h, 'FaceColor', [0.4 0 0]); end if j > 4 && MARAinfo.normfeats(j, range(i)) < 0 set(h, 'FaceColor', [0.4 0 0]); end end axis square; if mod(i, panelsettings.columns) == 1 set(gca,'YTick', 1:6, 'YTickLabel', {'Current Density Norm', ... 'Range in Pattern', 'Local Skewness', 'lambda', '8-13Hz', 'FitError'}) else set(gca,'YTick', 1:6, 'YTickLabel', cell(1,6)) end if gcompreject(range(i)) == 1 title(sprintf('IC %d, p-artifact = %1.2f', range(i),MARAinfo.posterior_artefactprob(range(i))),... 'Color', [0.4 0 0]); set(gca, 'Color', [1 0.7 0.7]) %keyboard else title(sprintf('IC %d, p-artifact = %1.2f', range(i),MARAinfo.posterior_artefactprob(range(i)))); end end
github
lcnhappe/happe-master
processMARA.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/MARA-master/processMARA.m
6,510
utf_8
896a41c6475ec80bf7706cc7166ce7a8
% processMARA() - Processing for Automatic Artifact Classification with MARA. % processMARA() calls MACA and saves the identified artifactual components % in EEG.reject.gcompreject. % The functions optionally filters the data, runs ICA, plots components or % reject artifactual components immediately. % % Usage: % >> [ALLEEG,EEG,CURRENTSET] = processMARA(ALLEEG,EEG,CURRENTSET,options) % % Inputs and Outputs: % ALLEEG - array of EEG dataset structures % EEG - current dataset structure or structure array % (EEG.reject.gcompreject will be updated) % CURRENTSET - index(s) of the current EEG dataset(s) in ALLEEG % % % Optional Input: % options - 1x5 array specifing optional operations, default is [0,0,0,0,0] % - option(1) = 1 => filter the data before MARA classification % - option(2) = 1 => run ica before MARA classification % - option(3) = 1 => plot components to label them for rejection after MARA classification % (for rejection) % - option(4) = 1 => plot MARA features for each IC % - option(4) = 1 => automatically reject MARA's artifactual % components without inspecting them % % See also: pop_eegfilt(), pop_runica, MARA(), pop_selectcomps_MARA(), pop_subcomp % Copyright (C) 2013 Irene Winkler and Eric Waldburger % Berlin Institute of Technology, Germany % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ALLEEG,EEG,CURRENTSET] = processMARA(ALLEEG,EEG,CURRENTSET,varargin) if isempty(EEG.chanlocs) try error('No channel locations. Aborting MARA.') catch eeglab_error; return; end end if not(isempty(varargin)) options = varargin{1}; else options = [0 0 0 0 0]; end %% filter the data if options(1) == 1 disp('Filtering data'); [EEG, LASTCOM] = pop_eegfilt(EEG); eegh(LASTCOM); [ALLEEG EEG CURRENTSET, LASTCOM] = pop_newset(ALLEEG, EEG, CURRENTSET); eegh(LASTCOM); end %% run ica if options(2) == 1 disp('Run ICA'); [EEG, LASTCOM] = pop_runica(EEG); [ALLEEG EEG CURRENTSET, LASTCOM] = pop_newset(ALLEEG, EEG, CURRENTSET); eegh(LASTCOM); end %% check if ica components are present [EEG LASTCOM] = eeg_checkset(EEG, 'ica'); if LASTCOM < 0 disp('There are no ICA components present. Aborting classification.'); return else eegh(LASTCOM); end %% classify artifactual components with MARA [artcomps, MARAinfo] = MARA(EEG); EEG.reject.MARAinfo = MARAinfo; disp('MARA marked the following components for rejection: ') if isempty(artcomps) disp('None') else disp(artcomps) disp(' ') end if isempty(EEG.reject.gcompreject) EEG.reject.gcompreject = zeros(1,size(EEG.icawinv,2)); gcompreject_old = EEG.reject.gcompreject; else % if gcompreject present check whether labels differ from MARA if and(length(EEG.reject.gcompreject) == size(EEG.icawinv,2), ... not(isempty(find(EEG.reject.gcompreject)))) tmp = zeros(1,size(EEG.icawinv,2)); tmp(artcomps) = 1; if not(isequal(tmp, EEG.reject.gcompreject)) answer = questdlg(... 'Some components are already labeled for rejection. What do you want to do?',... 'Labels already present','Merge artifactual labels','Overwrite old labels', 'Cancel','Cancel'); switch answer, case 'Overwrite old labels', gcompreject_old = EEG.reject.gcompreject; EEG.reject.gcompreject = zeros(1,size(EEG.icawinv,2)); disp('Overwrites old labels') case 'Merge artifactual labels' disp('Merges MARA''s and old labels') gcompreject_old = EEG.reject.gcompreject; case 'Cancel', return; end else gcompreject_old = EEG.reject.gcompreject; end else EEG.reject.gcompreject = zeros(1,size(EEG.icawinv,2)); gcompreject_old = EEG.reject.gcompreject; end end EEG.reject.gcompreject(artcomps) = 1; try EEGLABfig = findall(0, 'tag', 'EEGLAB'); MARAvizmenu = findobj(EEGLABfig, 'tag', 'MARAviz'); set(MARAvizmenu, 'Enable', 'on'); catch keyboard end %% display components with checkbox to label them for artifact rejection if options(3) == 1 if isempty(artcomps) answer = questdlg2(... 'MARA identied no artifacts. Do you still want to visualize components?',... 'No artifacts identified','Yes', 'No', 'No'); if strcmp(answer,'No') return; end end [EEG, LASTCOM] = pop_selectcomps_MARA(EEG, gcompreject_old); eegh(LASTCOM); if options(4) == 1 pop_visualizeMARAfeatures(EEG.reject.gcompreject, EEG.reject.MARAinfo); end end %% automatically remove artifacts if and(and(options(5) == 1, not(options(3) == 1)), not(isempty(artcomps))) try [EEG LASTCOM] = pop_subcomp(EEG); eegh(LASTCOM); catch eeglab_error end [ALLEEG EEG CURRENTSET LASTCOM] = pop_newset(ALLEEG, EEG, CURRENTSET); eegh(LASTCOM); disp('Artifact rejection done.'); end
github
lcnhappe/happe-master
MARA.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/MARA-master/MARA.m
12,568
utf_8
5127d8f931932b5c0760a9a61a0d0b6e
% MARA() - Automatic classification of multiple artifact components % Classies artifactual ICs based on 6 features from the time domain, % the frequency domain, and the pattern % % Usage: % >> [artcomps, info] = MARA(EEG); % % Inputs: % EEG - input EEG structure % % Outputs: % artcomps - array containing the numbers of the artifactual % components % info - struct containing more information about MARA classification % .posterior_artefactprob : posterior probability for each % IC of being an artefact % .normfeats : <6 x nIC > features computed by MARA for each IC, % normalized by the training data % The features are: (1) Current Density Norm, (2) Range % in Pattern, (3) Local Skewness of the Time Series, % (4) Lambda, (5) 8-13 Hz, (6) FitError. % % For more information see: % I. Winkler, S. Haufe, and M. Tangermann, Automatic classification of artifactual ICA-components % for artifact removal in EEG signals, Behavioral and Brain Functions, 7, 2011. % % See also: processMARA() % Copyright (C) 2013 Irene Winkler and Eric Waldburger % Berlin Institute of Technology, Germany % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [artcomps, info] = MARA(EEG) try %%%%%%%%%%%%%%%%%%%% %% Calculate features from the pattern (component map) %%%%%%%%%%%%%%%%%%%% % extract channel labels clab = {}; for i=1:length(EEG.chanlocs) clab{i} = EEG.chanlocs(i).labels; end % cut to channel labels common with training data load('fv_training_MARA'); %load struct fv_tr [clab_common i_te i_tr ] = intersect(upper(clab), upper(fv_tr.clab)); clab_common = fv_tr.clab(i_tr); if length(clab_common) == 0 error(['There were no matching channeldescriptions found.' , ... 'MARA needs channel labels of the form Cz, Oz, F3, F4, Fz, etc. Aborting.']) end patterns = (EEG.icawinv(i_te,:)); [M100 idx] = get_M100_ADE(clab_common); %needed for Current Density Norm disp('MARA is computing features. Please wait'); %standardize patterns patterns = patterns./repmat(std(patterns,0,1),length(patterns(:,1)),1); %compute current density norm feats(1,:) = log(sqrt(sum((M100*patterns(idx,:)).^2))); %compute spatial range feats(2,:) = log(max(patterns) - min(patterns)); %%%%%%%%%%%%%%%%%%%% %% Calculate time and frequency features %%%%%%%%%%%%%%%%%%%% %compute time and frequency features (Current Density Norm, Range Within Pattern, %Average Local Skewness, Band Power 8 - 13 Hz) feats(3:6,:) = extract_time_freq_features(EEG); disp('Features ready'); %%%%%%%%%%%%%%%%%%%%%% %% Adapt train features to clab %%%%%%%%%%%%%%%%%%%% fv_tr.pattern = fv_tr.pattern(i_tr, :); fv_tr.pattern = fv_tr.pattern./repmat(std(fv_tr.pattern,0,1),length(fv_tr.pattern(:,1)),1); fv_tr.x(2,:) = log(max(fv_tr.pattern) - min(fv_tr.pattern)); fv_tr.x(1,:) = log(sqrt(sum((M100 * fv_tr.pattern).^2))); %%%%%%%%%%%%%%%%%%%% %% Classification %%%%%%%%%%%%%%%%%%%% [C, foo, posterior] = classify(feats',fv_tr.x',fv_tr.labels(1,:)); artcomps = find(C == 0)'; info.posterior_artefactprob = posterior(:, 1)'; info.normfeats = (feats - repmat(mean(fv_tr.x, 2), 1, size(feats, 2)))./ ... repmat(std(fv_tr.x,0, 2), 1, size(feats, 2)); catch eeglab_error; artcomps = []; end end function features = extract_time_freq_features(EEG) % - 1st row: Average Local Skewness % - 2nd row: lambda % - 3rd row: Band Power 8 - 13 Hz % - 4rd row: Fit Error % data = EEG.data; fs = EEG.srate; %sampling frequency % transform epoched data into continous data if length(size(data)) == 3 s = size(data); data = reshape(data, [EEG.nbchan, prod(s(2:3))]); end %downsample (to 100-200Hz) factor = max(floor(EEG.srate/100),1); data = data(:, 1:factor:end); fs = round(fs/factor); %compute icaactivation and standardise variance to 1 icacomps = (EEG.icaweights * EEG.icasphere * data)'; icacomps = icacomps./repmat(std(icacomps,0,1),length(icacomps(:,1)),1); icacomps = icacomps'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Calculate featues %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for ic=1:length(icacomps(:,1)) %for each component fprintf('.'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Proc Spectrum for Channel %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [pxx, freq] = pwelch(icacomps(ic,:), ones(1, fs), [], fs, fs); pxx = 10*log10(pxx * fs/2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The average log band power between 8 and 13 Hz %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p = 0; for i = 8:13 p = p + pxx(find(freq == i,1)); end Hz8_13 = p / (13-8+1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % lambda and FitError: deviation of a component's spectrum from % a protoptypical 1/frequency curve %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p1.x = 2; %first point: value at 2 Hz p1.y = pxx(find(freq == p1.x,1)); p2.x = 3; %second point: value at 3 Hz p2.y = pxx(find(freq == p2.x,1)); %third point: local minimum in the band 5-13 Hz p3.y = min(pxx(find(freq == 5,1):find(freq == 13,1))); p3.x = freq(find(pxx == p3.y,1)); %fourth point: min - 1 in band 5-13 Hz p4.x = p3.x - 1; p4.y = pxx(find(freq == p4.x,1)); %fifth point: local minimum in the band 33-39 Hz p5.y = min(pxx(find(freq == 33,1):find(freq == 39,1))); p5.x = freq(find(pxx == p5.y,1)); %sixth point: min + 1 in band 33-39 Hz p6.x = p5.x + 1; p6.y = pxx(find(freq == p6.x,1)); pX = [p1.x; p2.x; p3.x; p4.x; p5.x; p6.x]; pY = [p1.y; p2.y; p3.y; p4.y; p5.y; p6.y]; myfun = @(x,xdata)(exp(x(1))./ xdata.^exp(x(2))) - x(3); xstart = [4, -2, 54]; try fittedmodel = lsqcurvefit(myfun,xstart,double(pX),double(pY), [], [], optimset('Display', 'off')); catch try % If the optimization toolbox is missing we try with the CurveFit toolbox opt = fitoptions('Method','NonlinearLeastSquares','Startpoint',xstart); myfun = fittype('exp(x1)./x.^exp(x2) - x3;','options',opt); fitobject = fit(double(pX),double(pY),myfun); fittedmodel = [fitobject.x1, fitobject.x2, fitobject.x3]; catch % If the CurveFit toolbox is also missing we try with the Statistitcs toolbox myfun = @(p,xdata)(exp(p(1))./ xdata.^exp(p(2))) - p(3); mdl = NonLinearModel.fit(double(pX),double(pY),myfun,xstart); fittedmodel = mdl.Coefficients.Estimate(:)'; end end %FitError: mean squared error of the fit to the real spectrum in the band 2-40 Hz. ts_8to15 = freq(find(freq == 8) : find(freq == 15)); fs_8to15 = pxx(find(freq == 8) : find(freq == 15)); fiterror = log(norm(myfun(fittedmodel, ts_8to15)-fs_8to15)^2); %lambda: parameter of the fit lambda = fittedmodel(2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Averaged local skewness 15s %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% interval = 15; abs_local_scewness = []; for i=1:interval:length(icacomps(ic,:))/fs-interval abs_local_scewness = [abs_local_scewness, abs(skewness(icacomps(ic, i * fs:(i+interval) * fs)))]; end if isempty(abs_local_scewness) error('MARA needs at least 15ms long ICs to compute its features.') else mean_abs_local_scewness_15 = log(mean(abs_local_scewness)); end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Append Features %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% features(:,ic)= [mean_abs_local_scewness_15, lambda, Hz8_13, fiterror]; end disp('.'); end function [M100, idx_clab_desired] = get_M100_ADE(clab_desired) % [M100, idx_clab_desired] = get_M100_ADEC(clab_desired) % % IN clab_desired - channel setup for which M100 should be calculated % OUT M100 % idx_clab_desired % M100 is the matrix such that feature = norm(M100*ica_pattern(idx_clab_desired), 'fro') % % (c) Stefan Haufe lambda = 100; load inv_matrix_icbm152; %L (forward matrix 115 x 2124 x 3), clab (channel labels) [cl_ ia idx_clab_desired] = intersect(clab, clab_desired); F = L(ia, :, :); %forward matrix for desired channels labels [n_channels m foo] = size(F); %m = 2124, number of dipole locations F = reshape(F, n_channels, 3*m); %H - matrix that centralizes the pattern, i.e. mean(H*pattern) = 0 H = eye(n_channels) - ones(n_channels, n_channels)./ n_channels; %W - inverse of the depth compensation matrix Lambda W = sloreta_invweights(L); L = H*F*W; %We have inv(L'L +lambda eye(size(L'*L))* L' = L'*inv(L*L' + lambda %eye(size(L*L')), which is easier to calculate as number of dimensions is %much smaller %calulate the inverse of L*L' + lambda * eye(size(L*L') [U D] = eig(L*L'); d = diag(D); di = d+lambda; di = 1./di; di(d < 1e-10) = 0; inv1 = U*diag(di)*U'; %inv1 = inv(L*L' + lambda *eye(size(L*L')) %get M100 M100 = L'*inv1*H; end function W = sloreta_invweights(LL) % inverse sLORETA-based weighting % % Synopsis: % W = sloreta_invweights(LL); % % Arguments: % LL: [M N 3] leadfield tensor % % Returns: % W: [3*N 3*N] block-diagonal matrix of weights % % Stefan Haufe, 2007, 2008 % % License % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see http://www.gnu.org/licenses/. [M N NDUM]=size(LL); L=reshape(permute(LL, [1 3 2]), M, N*NDUM); L = L - repmat(mean(L, 1), M, 1); T = L'*pinv(L*L'); W = spalloc(N*NDUM, N*NDUM, N*NDUM*NDUM); for ivox = 1:N W(NDUM*(ivox-1)+(1:NDUM), NDUM*(ivox-1)+(1:NDUM)) = (T(NDUM*(ivox-1)+(1:NDUM), :)*L(:, NDUM*(ivox-1)+(1:NDUM)))^-.5; end ind = []; for idum = 1:NDUM ind = [ind idum:NDUM:N*NDUM]; end W = W(ind, ind); end function [i_te, i_tr] = findconvertedlabels(pos_3d, chanlocs) % IN pos_3d - 3d-positions of training channel labels % chanlocs - EEG.chanlocs structure of data to be classified %compute spherical coordinates theta and phi for the training channel %label [theta, phi, r] = cart2sph(pos_3d(1,:),pos_3d(2,:), pos_3d(3,:)); theta = theta - pi/2; theta(theta < -pi) = theta(theta < -pi) + 2*pi; theta = theta*180/pi; phi = phi * 180/pi; theta(find(pos_3d(1,:) == 0 & pos_3d(2,:) == 0)) = 0; %exception for Cz clab_common = {}; i_te = []; i_tr = []; %For each channel in EEG.chanlocs, try to find matching channel in %training data for chan = 1:length(chanlocs) if not(isempty(chanlocs(chan).sph_phi)) idx = find((theta <= chanlocs(chan).sph_theta + 6) ... & (theta >= chanlocs(chan).sph_theta - 6) ... & (phi <= chanlocs(chan).sph_phi + 6) ... & (phi >= chanlocs(chan).sph_phi - 6)); if not(isempty(idx)) i_tr = [i_tr, idx(1)]; i_te = [i_te, chan]; end end end end
github
lcnhappe/happe-master
pop_selectcomps_MARA.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/MARA-master/pop_selectcomps_MARA.m
7,617
utf_8
3df13de5291a735a3ae902eb9b7b4349
% pop_selectcomps_MARA() - Display components with checkbox to label % them for artifact rejection % % Usage: % >> EEG = pop_selectcomps_MARA(EEG, gcompreject_old); % % Inputs: % EEG - Input dataset with rejected components (saved in % EEG.reject.gcompreject) % % Optional Input: % gcompreject_old - gcompreject to revert to in case the "Cancel" % button is pressed % % Output: % EEG - Output dataset with updated rejected components % % See also: processMARA(), pop_selectcomps() % Copyright (C) 2013 Irene Winkler and Eric Waldburger % Berlin Institute of Technology, Germany % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [EEG, com] = pop_selectcomps_MARA(EEG, varargin) if isempty(EEG.reject.gcompreject) EEG.reject.gcompreject = zeros(size(EEG.icawinv,2)); end if not(isempty(varargin)) gcompreject_old = varargin{1}; com = [ 'pop_selectcomps_MARA(' inputname(1) ',' inputname(2) ');']; else gcompreject_old = EEG.reject.gcompreject; com = [ 'pop_selectcomps_MARA(' inputname(1) ');']; end try set(0,'units','pixels'); resolution = get(0, 'Screensize'); width = resolution(3); height = resolution(4); panelsettings = {}; panelsettings.completeNumber = length(EEG.reject.gcompreject); panelsettings.rowsize = 250; panelsettings.columnsize = 300; panelsettings.column = floor(width/panelsettings.columnsize); panelsettings.rows = floor(height/panelsettings.rowsize); panelsettings.numberPerPage = panelsettings.column * panelsettings.rows; panelsettings.pages = ceil(length(EEG.reject.gcompreject)/ panelsettings.numberPerPage); panelsettings.incy = 110; panelsettings.incx = 110; % display components on a number of different pages for page=1:panelsettings.pages EEG = selectcomps_1page(EEG, page, panelsettings, gcompreject_old); end; checks = findall(0, 'style', 'checkbox'); for i = 1: length(checks) set(checks(i), 'Enable', 'on') end catch eeglab_error end function EEG = selectcomps_1page(EEG, page, panelsettings, gcompreject_old) % Display components with checkbox to label them for artifact rejection try, icadefs; catch, BACKCOLOR = [0.8 0.8 0.8]; GUIBUTTONCOLOR = [0.8 0.8 0.8]; end; % compute components (for plotting the spectrum) if length(size(EEG.data)) == 3 s = size(EEG.data); data = reshape(EEG.data, [EEG.nbchan, prod(s(2:3))]); icacomps = EEG.icaweights * EEG.icasphere * data; else icacomps = EEG.icaweights * EEG.icasphere * EEG.data; end % set up the figure % %%%%%%%%%%%%%%%% if ~exist('fig') mainFig = figure('name', [ 'MARA on dataset: ' EEG.setname ''], 'numbertitle', 'off', 'tag', 'ADEC - Plot'); set(mainFig, 'Color', BACKCOLOR) set(gcf,'MenuBar', 'none'); pos = get(gcf,'Position'); set(gcf,'Position', [20 20 panelsettings.columnsize*panelsettings.column panelsettings.rowsize*panelsettings.rows]); panelsettings.sizewx = 50/panelsettings.column; panelsettings.sizewy = 80/panelsettings.rows; pos = get(gca,'position'); % plot relative to current axes hh = gca; panelsettings.q = [pos(1) pos(2) 0 0]; panelsettings.s = [pos(3) pos(4) pos(3) pos(4)]./100; axis off; end; % compute range of components to display if page < panelsettings.pages range = (1 + (panelsettings.numberPerPage * (page-1))) : (panelsettings.numberPerPage + ( panelsettings.numberPerPage * (page-1))); else range = (1 + (panelsettings.numberPerPage * (page-1))) : panelsettings.completeNumber; end data = struct; data.gcompreject = EEG.reject.gcompreject; data.gcompreject_old = gcompreject_old; guidata(gcf, data); % draw each component % %%%%%%%%%%%%%%%% count = 1; for ri = range % compute coordinates X = mod(count-1, panelsettings.column)/panelsettings.column * panelsettings.incx-10; Y = (panelsettings.rows-floor((count-1)/panelsettings.column))/panelsettings.rows * panelsettings.incy - panelsettings.sizewy*1.3; % plot the head if ~strcmp(get(gcf, 'tag'), 'ADEC - Plot'); disp('Aborting plot'); return; end; ha = axes('Units','Normalized', 'Position',[X Y panelsettings.sizewx*0.85 panelsettings.sizewy*0.85].*panelsettings.s+panelsettings.q); topoplot( EEG.icawinv(:,ri), EEG.chanlocs, 'verbose', 'off', 'style' , 'fill'); axis square; % plot the spectrum ha = axes('Units','Normalized', 'Position',[X+1.05*panelsettings.sizewx Y-1 (panelsettings.sizewx*1.15)-1 panelsettings.sizewy-1].*panelsettings.s+panelsettings.q); [pxx, freq] = pwelch(icacomps(ri,:), ones(1, EEG.srate), [], EEG.srate, EEG.srate); pxx = 10*log10(pxx * EEG.srate/2); plot(freq, pxx, 'LineWidth', 2) xlim([0 50]); grid on; xlabel('Hz') set(gca, 'Xtick', 0:10:50) if isfield(EEG.reject, 'MARAinfo') title(sprintf('Artifact Probability = %1.2f', ... EEG.reject.MARAinfo.posterior_artefactprob(ri))); end uicontrol(gcf, 'Style', 'checkbox', 'Units','Normalized', 'Position',... [X+panelsettings.sizewx*0.5 Y+panelsettings.sizewy panelsettings.sizewx, ... panelsettings.sizewy*0.2].*panelsettings.s+panelsettings.q, ... 'Enable', 'off','tag', ['check_' num2str(ri)], 'Value', EEG.reject.gcompreject(ri), ... 'String', ['IC' num2str(ri) ' - Artifact?'], ... 'Callback', {@callback_checkbox, ri}); drawnow; count = count +1; end; % draw the botton buttons % %%%%%%%%%%%%%%%% if ~exist('fig') % cancel button cancelcommand = ['openplots = findall(0, ''tag'', ''ADEC - Plot'');', ... 'data = guidata(openplots(1)); close(openplots);', ... 'EEG.reject.gcompreject = data.gcompreject_old;']; hh = uicontrol(gcf, 'Style', 'pushbutton', 'string', 'Cancel', ... 'Units','Normalized', 'BackgroundColor', GUIBUTTONCOLOR, ... 'Position',[-10 -11 15 panelsettings.sizewy*0.25].*panelsettings.s+panelsettings.q, ... 'callback', cancelcommand ); okcommand = ['data = guidata(gcf); EEG.reject.gcompreject = data.gcompreject; ' ... '[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET); '... 'eegh(''[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);''); '... 'close(gcf);' ]; % ok button hh = uicontrol(gcf, 'Style', 'pushbutton', 'string', 'OK', ... 'Units','Normalized', 'BackgroundColor', GUIBUTTONCOLOR, ... 'Position',[10 -11 15 panelsettings.sizewy*0.25].*panelsettings.s+panelsettings.q, ... 'callback', okcommand); end; function callback_checkbox(hObject,eventdata, position) openplots = findall(0, 'tag', 'ADEC - Plot'); data = guidata(openplots(1)); data.gcompreject(position) = mod(data.gcompreject(position) + 1, 2); %save changes in every plot for i = 1: length(openplots) guidata(openplots(i), data); end
github
lcnhappe/happe-master
pop_processMARA.m
.m
happe-master/Packages/eeglab14_0_0b/plugins/MARA-master/pop_processMARA.m
5,095
utf_8
7932742793cce3ca7b8caeb78ae22d82
% pop_processMARA() - graphical interface to select MARA's actions % % Usage: % >> [ALLEEG,EEG,CURRENTSET,com] = pop_processMARA(ALLEEG,EEG,CURRENTSET ); % % Inputs and Outputs: % ALLEEG - array of EEG dataset structures % EEG - current dataset structure or structure array % (EEG.reject.gcompreject will be updated) % CURRENTSET - index(s) of the current EEG dataset(s) in ALLEEG % % % Output: % com - last command, call to itself % % See also: processMARA(), pop_selectcomps_MARA(), MARA() % Copyright (C) 2013 Irene Winkler and Eric Waldburger % Berlin Institute of Technology, Germany % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ALLEEG,EEG,CURRENTSET,com] = pop_processMARA (ALLEEG,EEG,CURRENTSET ) com = 'pop_processMARA ( ALLEEG,EEG,CURRENTSET )'; try, icadefs; catch, BACKCOLOR = [0.8 0.8 0.8]; GUIBUTTONCOLOR = [0.8 0.8 0.8]; end; % set up the figure % %%%%%%%%%%%%%%%%% figure('name', 'MARA', ... 'numbertitle', 'off', 'tag', 'ADEC - Init'); set(gcf,'MenuBar', 'none', 'Color', BACKCOLOR); pos = get(gcf,'Position'); set(gcf,'Position', [pos(1) 350 350 350]); if ~strcmp(get(gcf, 'tag'), 'ADEC - Init'); disp('Aborting plot'); return; end; % set standards for options and store them with guidata() % order: filter, run_ica, plot data, remove automatically options = [0, 0, 0, 0, 0]; guidata(gcf, options); % text % %%%%%%%%%%%%%%%%% text = uicontrol(gcf, 'Style', 'text', 'Units','Normalized', 'Position',... [0 0.85 0.75 0.06],'BackGroundColor', BACKCOLOR, 'FontWeight', 'bold', ... 'String', 'Select preprocessing operations:'); text = uicontrol(gcf, 'Style', 'text', 'Units','Normalized', 'Position',... [0 0.55 0.75 0.06],'BackGroundColor', BACKCOLOR, 'FontWeight', 'bold', ... 'String', 'After MARA classification:'); % checkboxes % %%%%%%%%%%%%%%%%% filterBox = uicontrol(gcf, 'Style', 'checkbox', 'Units','Normalized', 'Position',... [0.075 0.75 0.75 0.075], 'String', 'Filter the data', 'Callback', ... 'options = guidata(gcf); options(1) = mod(options(1) + 1, 2); guidata(gcf,options);'); icaBox = uicontrol(gcf, 'Style', 'checkbox', 'Units','Normalized', 'Position',... [0.075 0.65 0.75 0.075], 'String', 'Run ICA', 'Callback', ... 'options = guidata(gcf); options(2) = mod(options(2) + 1, 2); guidata(gcf,options);'); % radio button group % %%%%%%%%%%%%%%%%% vizBox = uicontrol(gcf, 'Style', 'checkbox', 'Units','Normalized', 'Position',... [0.2 0.2 0.9 0.2], 'String', 'Visualize Classifcation Features', 'Enable', 'Off', ... 'tag', 'vizBox'); h = uibuttongroup('visible','off','Units','Normalized','Position',[0.075 0.15 0.9 0.35]); % Create two radio buttons in the button group. radNothing = uicontrol('Style','radiobutton','String','Continue using EEGLab functions',... 'Units','Normalized','Position',[0.02 0.8 0.9 0.2],'parent',h,'HandleVisibility','off','tag', 'radNothing'); radPlot = uicontrol('Style','radiobutton','String','Plot and select components for removal',... 'Units','Normalized','Position',[0.02 0.5 0.9 0.2],'parent',h,'HandleVisibility','off',... 'tag', 'radPlot'); radAuto = uicontrol('Style','radiobutton','String','Automatically remove components',... 'Units','Normalized','Position',[0.02 0.1 0.9 0.2],'parent',h,'HandleVisibility','off','tag', 'radAuto'); set(h,'SelectedObject',radNothing,'Visible','on', 'tag', 'h','BackGroundColor', BACKCOLOR); set(h, 'SelectionChangeFcn',['s = guihandles(gcf); if get(s.h, ''SelectedObject'') == s.radPlot; ' ... 'set(s.vizBox,''Enable'', ''on''); else; set(s.vizBox,''Enable'', ''off''); end;']); % bottom buttons % %%%%%%%%%%%%%%%%% cancel = uicontrol(gcf, 'Style', 'pushbutton', 'Units','Normalized', 'Position',... [0.075 0.05 0.4 0.08],'String', 'Cancel','BackgroundColor', GUIBUTTONCOLOR,... 'Callback', 'close(gcf);'); ok = uicontrol(gcf, 'Style', 'pushbutton', 'Units','Normalized', 'Position',... [0.5 0.05 0.4 0.08],'String', 'Ok','BackgroundColor', GUIBUTTONCOLOR, ... 'Callback', ['options = guidata(gcf);' ... 's = guihandles(gcf); if get(s.h, ''SelectedObject'') == s.radPlot; options(3) = 1; end; '... 'options(4) = get(s.vizBox, ''Value''); ' ... 'if get(s.h, ''SelectedObject'') == s.radAuto; options(5) = 1; end;' ... 'close(gcf); pause(eps); [ALLEEG, EEG, CURRENTSET] = processMARA(ALLEEG,EEG,CURRENTSET, options);']);
github
lcnhappe/happe-master
eegplugin_MARA.m
.m
happe-master/Packages/MARA-master/eegplugin_MARA.m
2,770
utf_8
7619f29fb825e45ca839265d7d4046e0
% eegplugin_MARA() - EEGLab plugin to classify artifactual ICs based on % 6 features from the time domain, the frequency domain, % and the pattern % % Inputs: % fig - [integer] EEGLAB figure % try_strings - [struct] "try" strings for menu callbacks. % catch_strings - [struct] "catch" strings for menu callbacks. % % See also: pop_processMARA(), processMARA(), MARA() % Copyright (C) 2013 Irene Winkler and Eric Waldburger % Berlin Institute of Technology, Germany % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function eegplugin_MARA( fig, try_strings, catch_strings) toolsmenu = findobj(fig, 'tag', 'tools'); h = uimenu(toolsmenu, 'label', 'IC Artifact Classification (MARA)'); uimenu(h, 'label', 'MARA Classification', 'callback', ... [try_strings.no_check ... '[ALLEEG,EEG,CURRENTSET,LASTCOM]= pop_processMARA( ALLEEG ,EEG ,CURRENTSET );' ... catch_strings.add_to_hist ]); uimenu(h, 'label', 'Visualize Components', 'tag', 'MARAviz', 'Enable', ... 'off', 'callback', [try_strings.no_check ... 'EEG = pop_selectcomps_MARA(EEG); pop_visualizeMARAfeatures(EEG.reject.gcompreject, EEG.reject.MARAinfo); ' ... catch_strings.add_to_hist ]); uimenu(h, 'label', 'About', 'Separator', 'on', 'Callback', ... ['warndlg2(sprintf([''MARA automatizes the process of hand-labeling independent components for ', ... 'artifact rejection. It is a supervised machine learning algorithm that learns from ', ... 'expert ratings of 1290 components. Features were optimized to solve the binary classification problem ', ... 'reject vs. accept.\n \n', ... 'If you have questions or suggestions about the toolbox, please contact \n ', ... 'Irene Winkler, TU Berlin [email protected] \n \n ', ... 'Reference: \nI. Winkler, S. Haufe, and M. Tangermann, Automatic classification of artifactual', ... 'ICA-components for artifact removal in EEG signals, Behavioral and Brain Functions, 7, 2011.''])', ... ',''About MARA'');']);
github
lcnhappe/happe-master
pop_visualizeMARAfeatures.m
.m
happe-master/Packages/MARA-master/pop_visualizeMARAfeatures.m
4,558
utf_8
c888a9b58c7e7893d090883d152d5e09
% pop_visualizeMARAfeatures() - Display features that MARA's decision % for artifact rejection is based on % % Usage: % >> pop_visualizeMARAfeatures(gcompreject, MARAinfo); % % Inputs: % gcompreject - array <1 x nIC> containing 1 if component was rejected % MARAinfo - struct containing more information about MARA classification % (output of function <MARA>) % .posterior_artefactprob : posterior probability for each % IC of being an artefact according to % .normfeats : <6 x nIC > features computed by MARA for each IC, % normalized by the training data % The features are: (1) Current Density Norm, (2) Range % in Pattern, (3) Local Skewness of the Time Series, % (4) Lambda, (5) 8-13 Hz, (6) FitError. % % See also: MARA(), processMARA(), pop_selectcomps_MARA() % Copyright (C) 2013 Irene Winkler and Eric Waldburger % Berlin Institute of Technology, Germany % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function pop_visualizeMARAfeatures(gcompreject, MARAinfo) %try set(0,'units','pixels'); resolution = get(0, 'Screensize'); width = resolution(3); height = resolution(4); panelsettings.rowsize = 200; panelsettings.columnsize = 200; panelsettings.columns = floor(width/(2*panelsettings.columnsize)); panelsettings.rows = floor(height/panelsettings.rowsize); panelsettings.numberPerPage = panelsettings.columns * panelsettings.rows; panelsettings.pages = ceil(length(gcompreject)/ panelsettings.numberPerPage); % display components on a number of different pages for page=1:panelsettings.pages selectcomps_1page(page, panelsettings, gcompreject, MARAinfo); end; %catch % eeglab_error %end function EEG = selectcomps_1page(page, panelsettings, gcompreject, MARAinfo) try, icadefs; catch, BACKCOLOR = [0.8 0.8 0.8]; GUIBUTTONCOLOR = [0.8 0.8 0.8]; end; % set up the figure % %%%%%%%%%%%%%%%% if ~exist('fig') mainFig = figure('name', 'Visualize MARA features', 'numbertitle', 'off'); set(mainFig, 'Color', BACKCOLOR) set(gcf,'MenuBar', 'none'); pos = get(gcf,'Position'); set(gcf,'Position', [20 20 panelsettings.columnsize*panelsettings.columns panelsettings.rowsize*panelsettings.rows]); end; % compute range of components to display if page < panelsettings.pages range = (1 + (panelsettings.numberPerPage * (page-1))) : (panelsettings.numberPerPage + ( panelsettings.numberPerPage * (page-1))); else range = (1 + (panelsettings.numberPerPage * (page-1))) : length(gcompreject); end % draw each component % %%%%%%%%%%%%%%%% for i = 1:length(range) subplot(panelsettings.rows, panelsettings.columns, i) for j = 1:6 h = barh(j, MARAinfo.normfeats(j, range(i))); hold on; if j <= 4 && MARAinfo.normfeats(j, range(i)) > 0 set(h, 'FaceColor', [0.4 0 0]); end if j > 4 && MARAinfo.normfeats(j, range(i)) < 0 set(h, 'FaceColor', [0.4 0 0]); end end axis square; if mod(i, panelsettings.columns) == 1 set(gca,'YTick', 1:6, 'YTickLabel', {'Current Density Norm', ... 'Range in Pattern', 'Local Skewness', 'lambda', '8-13Hz', 'FitError'}) else set(gca,'YTick', 1:6, 'YTickLabel', cell(1,6)) end if gcompreject(range(i)) == 1 title(sprintf('IC %d, p-artifact = %1.2f', range(i),MARAinfo.posterior_artefactprob(range(i))),... 'Color', [0.4 0 0]); set(gca, 'Color', [1 0.7 0.7]) %keyboard else title(sprintf('IC %d, p-artifact = %1.2f', range(i),MARAinfo.posterior_artefactprob(range(i)))); end end
github
lcnhappe/happe-master
processMARA.m
.m
happe-master/Packages/MARA-master/processMARA.m
6,510
utf_8
896a41c6475ec80bf7706cc7166ce7a8
% processMARA() - Processing for Automatic Artifact Classification with MARA. % processMARA() calls MACA and saves the identified artifactual components % in EEG.reject.gcompreject. % The functions optionally filters the data, runs ICA, plots components or % reject artifactual components immediately. % % Usage: % >> [ALLEEG,EEG,CURRENTSET] = processMARA(ALLEEG,EEG,CURRENTSET,options) % % Inputs and Outputs: % ALLEEG - array of EEG dataset structures % EEG - current dataset structure or structure array % (EEG.reject.gcompreject will be updated) % CURRENTSET - index(s) of the current EEG dataset(s) in ALLEEG % % % Optional Input: % options - 1x5 array specifing optional operations, default is [0,0,0,0,0] % - option(1) = 1 => filter the data before MARA classification % - option(2) = 1 => run ica before MARA classification % - option(3) = 1 => plot components to label them for rejection after MARA classification % (for rejection) % - option(4) = 1 => plot MARA features for each IC % - option(4) = 1 => automatically reject MARA's artifactual % components without inspecting them % % See also: pop_eegfilt(), pop_runica, MARA(), pop_selectcomps_MARA(), pop_subcomp % Copyright (C) 2013 Irene Winkler and Eric Waldburger % Berlin Institute of Technology, Germany % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ALLEEG,EEG,CURRENTSET] = processMARA(ALLEEG,EEG,CURRENTSET,varargin) if isempty(EEG.chanlocs) try error('No channel locations. Aborting MARA.') catch eeglab_error; return; end end if not(isempty(varargin)) options = varargin{1}; else options = [0 0 0 0 0]; end %% filter the data if options(1) == 1 disp('Filtering data'); [EEG, LASTCOM] = pop_eegfilt(EEG); eegh(LASTCOM); [ALLEEG EEG CURRENTSET, LASTCOM] = pop_newset(ALLEEG, EEG, CURRENTSET); eegh(LASTCOM); end %% run ica if options(2) == 1 disp('Run ICA'); [EEG, LASTCOM] = pop_runica(EEG); [ALLEEG EEG CURRENTSET, LASTCOM] = pop_newset(ALLEEG, EEG, CURRENTSET); eegh(LASTCOM); end %% check if ica components are present [EEG LASTCOM] = eeg_checkset(EEG, 'ica'); if LASTCOM < 0 disp('There are no ICA components present. Aborting classification.'); return else eegh(LASTCOM); end %% classify artifactual components with MARA [artcomps, MARAinfo] = MARA(EEG); EEG.reject.MARAinfo = MARAinfo; disp('MARA marked the following components for rejection: ') if isempty(artcomps) disp('None') else disp(artcomps) disp(' ') end if isempty(EEG.reject.gcompreject) EEG.reject.gcompreject = zeros(1,size(EEG.icawinv,2)); gcompreject_old = EEG.reject.gcompreject; else % if gcompreject present check whether labels differ from MARA if and(length(EEG.reject.gcompreject) == size(EEG.icawinv,2), ... not(isempty(find(EEG.reject.gcompreject)))) tmp = zeros(1,size(EEG.icawinv,2)); tmp(artcomps) = 1; if not(isequal(tmp, EEG.reject.gcompreject)) answer = questdlg(... 'Some components are already labeled for rejection. What do you want to do?',... 'Labels already present','Merge artifactual labels','Overwrite old labels', 'Cancel','Cancel'); switch answer, case 'Overwrite old labels', gcompreject_old = EEG.reject.gcompreject; EEG.reject.gcompreject = zeros(1,size(EEG.icawinv,2)); disp('Overwrites old labels') case 'Merge artifactual labels' disp('Merges MARA''s and old labels') gcompreject_old = EEG.reject.gcompreject; case 'Cancel', return; end else gcompreject_old = EEG.reject.gcompreject; end else EEG.reject.gcompreject = zeros(1,size(EEG.icawinv,2)); gcompreject_old = EEG.reject.gcompreject; end end EEG.reject.gcompreject(artcomps) = 1; try EEGLABfig = findall(0, 'tag', 'EEGLAB'); MARAvizmenu = findobj(EEGLABfig, 'tag', 'MARAviz'); set(MARAvizmenu, 'Enable', 'on'); catch keyboard end %% display components with checkbox to label them for artifact rejection if options(3) == 1 if isempty(artcomps) answer = questdlg2(... 'MARA identied no artifacts. Do you still want to visualize components?',... 'No artifacts identified','Yes', 'No', 'No'); if strcmp(answer,'No') return; end end [EEG, LASTCOM] = pop_selectcomps_MARA(EEG, gcompreject_old); eegh(LASTCOM); if options(4) == 1 pop_visualizeMARAfeatures(EEG.reject.gcompreject, EEG.reject.MARAinfo); end end %% automatically remove artifacts if and(and(options(5) == 1, not(options(3) == 1)), not(isempty(artcomps))) try [EEG LASTCOM] = pop_subcomp(EEG); eegh(LASTCOM); catch eeglab_error end [ALLEEG EEG CURRENTSET LASTCOM] = pop_newset(ALLEEG, EEG, CURRENTSET); eegh(LASTCOM); disp('Artifact rejection done.'); end
github
lcnhappe/happe-master
MARA.m
.m
happe-master/Packages/MARA-master/MARA.m
12,568
utf_8
5127d8f931932b5c0760a9a61a0d0b6e
% MARA() - Automatic classification of multiple artifact components % Classies artifactual ICs based on 6 features from the time domain, % the frequency domain, and the pattern % % Usage: % >> [artcomps, info] = MARA(EEG); % % Inputs: % EEG - input EEG structure % % Outputs: % artcomps - array containing the numbers of the artifactual % components % info - struct containing more information about MARA classification % .posterior_artefactprob : posterior probability for each % IC of being an artefact % .normfeats : <6 x nIC > features computed by MARA for each IC, % normalized by the training data % The features are: (1) Current Density Norm, (2) Range % in Pattern, (3) Local Skewness of the Time Series, % (4) Lambda, (5) 8-13 Hz, (6) FitError. % % For more information see: % I. Winkler, S. Haufe, and M. Tangermann, Automatic classification of artifactual ICA-components % for artifact removal in EEG signals, Behavioral and Brain Functions, 7, 2011. % % See also: processMARA() % Copyright (C) 2013 Irene Winkler and Eric Waldburger % Berlin Institute of Technology, Germany % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [artcomps, info] = MARA(EEG) try %%%%%%%%%%%%%%%%%%%% %% Calculate features from the pattern (component map) %%%%%%%%%%%%%%%%%%%% % extract channel labels clab = {}; for i=1:length(EEG.chanlocs) clab{i} = EEG.chanlocs(i).labels; end % cut to channel labels common with training data load('fv_training_MARA'); %load struct fv_tr [clab_common i_te i_tr ] = intersect(upper(clab), upper(fv_tr.clab)); clab_common = fv_tr.clab(i_tr); if length(clab_common) == 0 error(['There were no matching channeldescriptions found.' , ... 'MARA needs channel labels of the form Cz, Oz, F3, F4, Fz, etc. Aborting.']) end patterns = (EEG.icawinv(i_te,:)); [M100 idx] = get_M100_ADE(clab_common); %needed for Current Density Norm disp('MARA is computing features. Please wait'); %standardize patterns patterns = patterns./repmat(std(patterns,0,1),length(patterns(:,1)),1); %compute current density norm feats(1,:) = log(sqrt(sum((M100*patterns(idx,:)).^2))); %compute spatial range feats(2,:) = log(max(patterns) - min(patterns)); %%%%%%%%%%%%%%%%%%%% %% Calculate time and frequency features %%%%%%%%%%%%%%%%%%%% %compute time and frequency features (Current Density Norm, Range Within Pattern, %Average Local Skewness, Band Power 8 - 13 Hz) feats(3:6,:) = extract_time_freq_features(EEG); disp('Features ready'); %%%%%%%%%%%%%%%%%%%%%% %% Adapt train features to clab %%%%%%%%%%%%%%%%%%%% fv_tr.pattern = fv_tr.pattern(i_tr, :); fv_tr.pattern = fv_tr.pattern./repmat(std(fv_tr.pattern,0,1),length(fv_tr.pattern(:,1)),1); fv_tr.x(2,:) = log(max(fv_tr.pattern) - min(fv_tr.pattern)); fv_tr.x(1,:) = log(sqrt(sum((M100 * fv_tr.pattern).^2))); %%%%%%%%%%%%%%%%%%%% %% Classification %%%%%%%%%%%%%%%%%%%% [C, foo, posterior] = classify(feats',fv_tr.x',fv_tr.labels(1,:)); artcomps = find(C == 0)'; info.posterior_artefactprob = posterior(:, 1)'; info.normfeats = (feats - repmat(mean(fv_tr.x, 2), 1, size(feats, 2)))./ ... repmat(std(fv_tr.x,0, 2), 1, size(feats, 2)); catch eeglab_error; artcomps = []; end end function features = extract_time_freq_features(EEG) % - 1st row: Average Local Skewness % - 2nd row: lambda % - 3rd row: Band Power 8 - 13 Hz % - 4rd row: Fit Error % data = EEG.data; fs = EEG.srate; %sampling frequency % transform epoched data into continous data if length(size(data)) == 3 s = size(data); data = reshape(data, [EEG.nbchan, prod(s(2:3))]); end %downsample (to 100-200Hz) factor = max(floor(EEG.srate/100),1); data = data(:, 1:factor:end); fs = round(fs/factor); %compute icaactivation and standardise variance to 1 icacomps = (EEG.icaweights * EEG.icasphere * data)'; icacomps = icacomps./repmat(std(icacomps,0,1),length(icacomps(:,1)),1); icacomps = icacomps'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Calculate featues %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for ic=1:length(icacomps(:,1)) %for each component fprintf('.'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Proc Spectrum for Channel %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [pxx, freq] = pwelch(icacomps(ic,:), ones(1, fs), [], fs, fs); pxx = 10*log10(pxx * fs/2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The average log band power between 8 and 13 Hz %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p = 0; for i = 8:13 p = p + pxx(find(freq == i,1)); end Hz8_13 = p / (13-8+1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % lambda and FitError: deviation of a component's spectrum from % a protoptypical 1/frequency curve %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p1.x = 2; %first point: value at 2 Hz p1.y = pxx(find(freq == p1.x,1)); p2.x = 3; %second point: value at 3 Hz p2.y = pxx(find(freq == p2.x,1)); %third point: local minimum in the band 5-13 Hz p3.y = min(pxx(find(freq == 5,1):find(freq == 13,1))); p3.x = freq(find(pxx == p3.y,1)); %fourth point: min - 1 in band 5-13 Hz p4.x = p3.x - 1; p4.y = pxx(find(freq == p4.x,1)); %fifth point: local minimum in the band 33-39 Hz p5.y = min(pxx(find(freq == 33,1):find(freq == 39,1))); p5.x = freq(find(pxx == p5.y,1)); %sixth point: min + 1 in band 33-39 Hz p6.x = p5.x + 1; p6.y = pxx(find(freq == p6.x,1)); pX = [p1.x; p2.x; p3.x; p4.x; p5.x; p6.x]; pY = [p1.y; p2.y; p3.y; p4.y; p5.y; p6.y]; myfun = @(x,xdata)(exp(x(1))./ xdata.^exp(x(2))) - x(3); xstart = [4, -2, 54]; try fittedmodel = lsqcurvefit(myfun,xstart,double(pX),double(pY), [], [], optimset('Display', 'off')); catch try % If the optimization toolbox is missing we try with the CurveFit toolbox opt = fitoptions('Method','NonlinearLeastSquares','Startpoint',xstart); myfun = fittype('exp(x1)./x.^exp(x2) - x3;','options',opt); fitobject = fit(double(pX),double(pY),myfun); fittedmodel = [fitobject.x1, fitobject.x2, fitobject.x3]; catch % If the CurveFit toolbox is also missing we try with the Statistitcs toolbox myfun = @(p,xdata)(exp(p(1))./ xdata.^exp(p(2))) - p(3); mdl = NonLinearModel.fit(double(pX),double(pY),myfun,xstart); fittedmodel = mdl.Coefficients.Estimate(:)'; end end %FitError: mean squared error of the fit to the real spectrum in the band 2-40 Hz. ts_8to15 = freq(find(freq == 8) : find(freq == 15)); fs_8to15 = pxx(find(freq == 8) : find(freq == 15)); fiterror = log(norm(myfun(fittedmodel, ts_8to15)-fs_8to15)^2); %lambda: parameter of the fit lambda = fittedmodel(2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Averaged local skewness 15s %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% interval = 15; abs_local_scewness = []; for i=1:interval:length(icacomps(ic,:))/fs-interval abs_local_scewness = [abs_local_scewness, abs(skewness(icacomps(ic, i * fs:(i+interval) * fs)))]; end if isempty(abs_local_scewness) error('MARA needs at least 15ms long ICs to compute its features.') else mean_abs_local_scewness_15 = log(mean(abs_local_scewness)); end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Append Features %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% features(:,ic)= [mean_abs_local_scewness_15, lambda, Hz8_13, fiterror]; end disp('.'); end function [M100, idx_clab_desired] = get_M100_ADE(clab_desired) % [M100, idx_clab_desired] = get_M100_ADEC(clab_desired) % % IN clab_desired - channel setup for which M100 should be calculated % OUT M100 % idx_clab_desired % M100 is the matrix such that feature = norm(M100*ica_pattern(idx_clab_desired), 'fro') % % (c) Stefan Haufe lambda = 100; load inv_matrix_icbm152; %L (forward matrix 115 x 2124 x 3), clab (channel labels) [cl_ ia idx_clab_desired] = intersect(clab, clab_desired); F = L(ia, :, :); %forward matrix for desired channels labels [n_channels m foo] = size(F); %m = 2124, number of dipole locations F = reshape(F, n_channels, 3*m); %H - matrix that centralizes the pattern, i.e. mean(H*pattern) = 0 H = eye(n_channels) - ones(n_channels, n_channels)./ n_channels; %W - inverse of the depth compensation matrix Lambda W = sloreta_invweights(L); L = H*F*W; %We have inv(L'L +lambda eye(size(L'*L))* L' = L'*inv(L*L' + lambda %eye(size(L*L')), which is easier to calculate as number of dimensions is %much smaller %calulate the inverse of L*L' + lambda * eye(size(L*L') [U D] = eig(L*L'); d = diag(D); di = d+lambda; di = 1./di; di(d < 1e-10) = 0; inv1 = U*diag(di)*U'; %inv1 = inv(L*L' + lambda *eye(size(L*L')) %get M100 M100 = L'*inv1*H; end function W = sloreta_invweights(LL) % inverse sLORETA-based weighting % % Synopsis: % W = sloreta_invweights(LL); % % Arguments: % LL: [M N 3] leadfield tensor % % Returns: % W: [3*N 3*N] block-diagonal matrix of weights % % Stefan Haufe, 2007, 2008 % % License % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see http://www.gnu.org/licenses/. [M N NDUM]=size(LL); L=reshape(permute(LL, [1 3 2]), M, N*NDUM); L = L - repmat(mean(L, 1), M, 1); T = L'*pinv(L*L'); W = spalloc(N*NDUM, N*NDUM, N*NDUM*NDUM); for ivox = 1:N W(NDUM*(ivox-1)+(1:NDUM), NDUM*(ivox-1)+(1:NDUM)) = (T(NDUM*(ivox-1)+(1:NDUM), :)*L(:, NDUM*(ivox-1)+(1:NDUM)))^-.5; end ind = []; for idum = 1:NDUM ind = [ind idum:NDUM:N*NDUM]; end W = W(ind, ind); end function [i_te, i_tr] = findconvertedlabels(pos_3d, chanlocs) % IN pos_3d - 3d-positions of training channel labels % chanlocs - EEG.chanlocs structure of data to be classified %compute spherical coordinates theta and phi for the training channel %label [theta, phi, r] = cart2sph(pos_3d(1,:),pos_3d(2,:), pos_3d(3,:)); theta = theta - pi/2; theta(theta < -pi) = theta(theta < -pi) + 2*pi; theta = theta*180/pi; phi = phi * 180/pi; theta(find(pos_3d(1,:) == 0 & pos_3d(2,:) == 0)) = 0; %exception for Cz clab_common = {}; i_te = []; i_tr = []; %For each channel in EEG.chanlocs, try to find matching channel in %training data for chan = 1:length(chanlocs) if not(isempty(chanlocs(chan).sph_phi)) idx = find((theta <= chanlocs(chan).sph_theta + 6) ... & (theta >= chanlocs(chan).sph_theta - 6) ... & (phi <= chanlocs(chan).sph_phi + 6) ... & (phi >= chanlocs(chan).sph_phi - 6)); if not(isempty(idx)) i_tr = [i_tr, idx(1)]; i_te = [i_te, chan]; end end end end
github
lcnhappe/happe-master
pop_selectcomps_MARA.m
.m
happe-master/Packages/MARA-master/pop_selectcomps_MARA.m
7,617
utf_8
3df13de5291a735a3ae902eb9b7b4349
% pop_selectcomps_MARA() - Display components with checkbox to label % them for artifact rejection % % Usage: % >> EEG = pop_selectcomps_MARA(EEG, gcompreject_old); % % Inputs: % EEG - Input dataset with rejected components (saved in % EEG.reject.gcompreject) % % Optional Input: % gcompreject_old - gcompreject to revert to in case the "Cancel" % button is pressed % % Output: % EEG - Output dataset with updated rejected components % % See also: processMARA(), pop_selectcomps() % Copyright (C) 2013 Irene Winkler and Eric Waldburger % Berlin Institute of Technology, Germany % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [EEG, com] = pop_selectcomps_MARA(EEG, varargin) if isempty(EEG.reject.gcompreject) EEG.reject.gcompreject = zeros(size(EEG.icawinv,2)); end if not(isempty(varargin)) gcompreject_old = varargin{1}; com = [ 'pop_selectcomps_MARA(' inputname(1) ',' inputname(2) ');']; else gcompreject_old = EEG.reject.gcompreject; com = [ 'pop_selectcomps_MARA(' inputname(1) ');']; end try set(0,'units','pixels'); resolution = get(0, 'Screensize'); width = resolution(3); height = resolution(4); panelsettings = {}; panelsettings.completeNumber = length(EEG.reject.gcompreject); panelsettings.rowsize = 250; panelsettings.columnsize = 300; panelsettings.column = floor(width/panelsettings.columnsize); panelsettings.rows = floor(height/panelsettings.rowsize); panelsettings.numberPerPage = panelsettings.column * panelsettings.rows; panelsettings.pages = ceil(length(EEG.reject.gcompreject)/ panelsettings.numberPerPage); panelsettings.incy = 110; panelsettings.incx = 110; % display components on a number of different pages for page=1:panelsettings.pages EEG = selectcomps_1page(EEG, page, panelsettings, gcompreject_old); end; checks = findall(0, 'style', 'checkbox'); for i = 1: length(checks) set(checks(i), 'Enable', 'on') end catch eeglab_error end function EEG = selectcomps_1page(EEG, page, panelsettings, gcompreject_old) % Display components with checkbox to label them for artifact rejection try, icadefs; catch, BACKCOLOR = [0.8 0.8 0.8]; GUIBUTTONCOLOR = [0.8 0.8 0.8]; end; % compute components (for plotting the spectrum) if length(size(EEG.data)) == 3 s = size(EEG.data); data = reshape(EEG.data, [EEG.nbchan, prod(s(2:3))]); icacomps = EEG.icaweights * EEG.icasphere * data; else icacomps = EEG.icaweights * EEG.icasphere * EEG.data; end % set up the figure % %%%%%%%%%%%%%%%% if ~exist('fig') mainFig = figure('name', [ 'MARA on dataset: ' EEG.setname ''], 'numbertitle', 'off', 'tag', 'ADEC - Plot'); set(mainFig, 'Color', BACKCOLOR) set(gcf,'MenuBar', 'none'); pos = get(gcf,'Position'); set(gcf,'Position', [20 20 panelsettings.columnsize*panelsettings.column panelsettings.rowsize*panelsettings.rows]); panelsettings.sizewx = 50/panelsettings.column; panelsettings.sizewy = 80/panelsettings.rows; pos = get(gca,'position'); % plot relative to current axes hh = gca; panelsettings.q = [pos(1) pos(2) 0 0]; panelsettings.s = [pos(3) pos(4) pos(3) pos(4)]./100; axis off; end; % compute range of components to display if page < panelsettings.pages range = (1 + (panelsettings.numberPerPage * (page-1))) : (panelsettings.numberPerPage + ( panelsettings.numberPerPage * (page-1))); else range = (1 + (panelsettings.numberPerPage * (page-1))) : panelsettings.completeNumber; end data = struct; data.gcompreject = EEG.reject.gcompreject; data.gcompreject_old = gcompreject_old; guidata(gcf, data); % draw each component % %%%%%%%%%%%%%%%% count = 1; for ri = range % compute coordinates X = mod(count-1, panelsettings.column)/panelsettings.column * panelsettings.incx-10; Y = (panelsettings.rows-floor((count-1)/panelsettings.column))/panelsettings.rows * panelsettings.incy - panelsettings.sizewy*1.3; % plot the head if ~strcmp(get(gcf, 'tag'), 'ADEC - Plot'); disp('Aborting plot'); return; end; ha = axes('Units','Normalized', 'Position',[X Y panelsettings.sizewx*0.85 panelsettings.sizewy*0.85].*panelsettings.s+panelsettings.q); topoplot( EEG.icawinv(:,ri), EEG.chanlocs, 'verbose', 'off', 'style' , 'fill'); axis square; % plot the spectrum ha = axes('Units','Normalized', 'Position',[X+1.05*panelsettings.sizewx Y-1 (panelsettings.sizewx*1.15)-1 panelsettings.sizewy-1].*panelsettings.s+panelsettings.q); [pxx, freq] = pwelch(icacomps(ri,:), ones(1, EEG.srate), [], EEG.srate, EEG.srate); pxx = 10*log10(pxx * EEG.srate/2); plot(freq, pxx, 'LineWidth', 2) xlim([0 50]); grid on; xlabel('Hz') set(gca, 'Xtick', 0:10:50) if isfield(EEG.reject, 'MARAinfo') title(sprintf('Artifact Probability = %1.2f', ... EEG.reject.MARAinfo.posterior_artefactprob(ri))); end uicontrol(gcf, 'Style', 'checkbox', 'Units','Normalized', 'Position',... [X+panelsettings.sizewx*0.5 Y+panelsettings.sizewy panelsettings.sizewx, ... panelsettings.sizewy*0.2].*panelsettings.s+panelsettings.q, ... 'Enable', 'off','tag', ['check_' num2str(ri)], 'Value', EEG.reject.gcompreject(ri), ... 'String', ['IC' num2str(ri) ' - Artifact?'], ... 'Callback', {@callback_checkbox, ri}); drawnow; count = count +1; end; % draw the botton buttons % %%%%%%%%%%%%%%%% if ~exist('fig') % cancel button cancelcommand = ['openplots = findall(0, ''tag'', ''ADEC - Plot'');', ... 'data = guidata(openplots(1)); close(openplots);', ... 'EEG.reject.gcompreject = data.gcompreject_old;']; hh = uicontrol(gcf, 'Style', 'pushbutton', 'string', 'Cancel', ... 'Units','Normalized', 'BackgroundColor', GUIBUTTONCOLOR, ... 'Position',[-10 -11 15 panelsettings.sizewy*0.25].*panelsettings.s+panelsettings.q, ... 'callback', cancelcommand ); okcommand = ['data = guidata(gcf); EEG.reject.gcompreject = data.gcompreject; ' ... '[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET); '... 'eegh(''[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);''); '... 'close(gcf);' ]; % ok button hh = uicontrol(gcf, 'Style', 'pushbutton', 'string', 'OK', ... 'Units','Normalized', 'BackgroundColor', GUIBUTTONCOLOR, ... 'Position',[10 -11 15 panelsettings.sizewy*0.25].*panelsettings.s+panelsettings.q, ... 'callback', okcommand); end; function callback_checkbox(hObject,eventdata, position) openplots = findall(0, 'tag', 'ADEC - Plot'); data = guidata(openplots(1)); data.gcompreject(position) = mod(data.gcompreject(position) + 1, 2); %save changes in every plot for i = 1: length(openplots) guidata(openplots(i), data); end
github
lcnhappe/happe-master
pop_processMARA.m
.m
happe-master/Packages/MARA-master/pop_processMARA.m
5,095
utf_8
7932742793cce3ca7b8caeb78ae22d82
% pop_processMARA() - graphical interface to select MARA's actions % % Usage: % >> [ALLEEG,EEG,CURRENTSET,com] = pop_processMARA(ALLEEG,EEG,CURRENTSET ); % % Inputs and Outputs: % ALLEEG - array of EEG dataset structures % EEG - current dataset structure or structure array % (EEG.reject.gcompreject will be updated) % CURRENTSET - index(s) of the current EEG dataset(s) in ALLEEG % % % Output: % com - last command, call to itself % % See also: processMARA(), pop_selectcomps_MARA(), MARA() % Copyright (C) 2013 Irene Winkler and Eric Waldburger % Berlin Institute of Technology, Germany % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ALLEEG,EEG,CURRENTSET,com] = pop_processMARA (ALLEEG,EEG,CURRENTSET ) com = 'pop_processMARA ( ALLEEG,EEG,CURRENTSET )'; try, icadefs; catch, BACKCOLOR = [0.8 0.8 0.8]; GUIBUTTONCOLOR = [0.8 0.8 0.8]; end; % set up the figure % %%%%%%%%%%%%%%%%% figure('name', 'MARA', ... 'numbertitle', 'off', 'tag', 'ADEC - Init'); set(gcf,'MenuBar', 'none', 'Color', BACKCOLOR); pos = get(gcf,'Position'); set(gcf,'Position', [pos(1) 350 350 350]); if ~strcmp(get(gcf, 'tag'), 'ADEC - Init'); disp('Aborting plot'); return; end; % set standards for options and store them with guidata() % order: filter, run_ica, plot data, remove automatically options = [0, 0, 0, 0, 0]; guidata(gcf, options); % text % %%%%%%%%%%%%%%%%% text = uicontrol(gcf, 'Style', 'text', 'Units','Normalized', 'Position',... [0 0.85 0.75 0.06],'BackGroundColor', BACKCOLOR, 'FontWeight', 'bold', ... 'String', 'Select preprocessing operations:'); text = uicontrol(gcf, 'Style', 'text', 'Units','Normalized', 'Position',... [0 0.55 0.75 0.06],'BackGroundColor', BACKCOLOR, 'FontWeight', 'bold', ... 'String', 'After MARA classification:'); % checkboxes % %%%%%%%%%%%%%%%%% filterBox = uicontrol(gcf, 'Style', 'checkbox', 'Units','Normalized', 'Position',... [0.075 0.75 0.75 0.075], 'String', 'Filter the data', 'Callback', ... 'options = guidata(gcf); options(1) = mod(options(1) + 1, 2); guidata(gcf,options);'); icaBox = uicontrol(gcf, 'Style', 'checkbox', 'Units','Normalized', 'Position',... [0.075 0.65 0.75 0.075], 'String', 'Run ICA', 'Callback', ... 'options = guidata(gcf); options(2) = mod(options(2) + 1, 2); guidata(gcf,options);'); % radio button group % %%%%%%%%%%%%%%%%% vizBox = uicontrol(gcf, 'Style', 'checkbox', 'Units','Normalized', 'Position',... [0.2 0.2 0.9 0.2], 'String', 'Visualize Classifcation Features', 'Enable', 'Off', ... 'tag', 'vizBox'); h = uibuttongroup('visible','off','Units','Normalized','Position',[0.075 0.15 0.9 0.35]); % Create two radio buttons in the button group. radNothing = uicontrol('Style','radiobutton','String','Continue using EEGLab functions',... 'Units','Normalized','Position',[0.02 0.8 0.9 0.2],'parent',h,'HandleVisibility','off','tag', 'radNothing'); radPlot = uicontrol('Style','radiobutton','String','Plot and select components for removal',... 'Units','Normalized','Position',[0.02 0.5 0.9 0.2],'parent',h,'HandleVisibility','off',... 'tag', 'radPlot'); radAuto = uicontrol('Style','radiobutton','String','Automatically remove components',... 'Units','Normalized','Position',[0.02 0.1 0.9 0.2],'parent',h,'HandleVisibility','off','tag', 'radAuto'); set(h,'SelectedObject',radNothing,'Visible','on', 'tag', 'h','BackGroundColor', BACKCOLOR); set(h, 'SelectionChangeFcn',['s = guihandles(gcf); if get(s.h, ''SelectedObject'') == s.radPlot; ' ... 'set(s.vizBox,''Enable'', ''on''); else; set(s.vizBox,''Enable'', ''off''); end;']); % bottom buttons % %%%%%%%%%%%%%%%%% cancel = uicontrol(gcf, 'Style', 'pushbutton', 'Units','Normalized', 'Position',... [0.075 0.05 0.4 0.08],'String', 'Cancel','BackgroundColor', GUIBUTTONCOLOR,... 'Callback', 'close(gcf);'); ok = uicontrol(gcf, 'Style', 'pushbutton', 'Units','Normalized', 'Position',... [0.5 0.05 0.4 0.08],'String', 'Ok','BackgroundColor', GUIBUTTONCOLOR, ... 'Callback', ['options = guidata(gcf);' ... 's = guihandles(gcf); if get(s.h, ''SelectedObject'') == s.radPlot; options(3) = 1; end; '... 'options(4) = get(s.vizBox, ''Value''); ' ... 'if get(s.h, ''SelectedObject'') == s.radAuto; options(5) = 1; end;' ... 'close(gcf); pause(eps); [ALLEEG, EEG, CURRENTSET] = processMARA(ALLEEG,EEG,CURRENTSET, options);']);
github
stefanos1316/Rosetta_Code_Research_MSR-master
haversine-formula.m
.m
Rosetta_Code_Research_MSR-master/Scripts/Task/haversine-formula/matlab/haversine-formula.m
544
utf_8
4d8ed7ec87e14b539dc6bba3595059d9
function rad = radians(degree) % degrees to radians rad = degree .* pi / 180; end; function [a,c,dlat,dlon]=haversine(lat1,lon1,lat2,lon2) % HAVERSINE_FORMULA.AWK - converted from AWK dlat = radians(lat2-lat1); dlon = radians(lon2-lon1); lat1 = radians(lat1); lat2 = radians(lat2); a = (sin(dlat./2)).^2 + cos(lat1) .* cos(lat2) .* (sin(dlon./2)).^2; c = 2 .* asin(sqrt(a)); arrayfun(@(x) printf("distance: %.4f km\n",6372.8 * x), c); end; [a,c,dlat,dlon] = haversine(36.12,-86.67,33.94,-118.40); % BNA to LAX
github
stefanos1316/Rosetta_Code_Research_MSR-master
bulls-and-cows-player.m
.m
Rosetta_Code_Research_MSR-master/Scripts/Task/bulls-and-cows-player/matlab/bulls-and-cows-player.m
2,012
utf_8
df5a15858fa8b7b20809a1d6267363fa
function BullsAndCowsPlayer % Plays the game Bulls and Cows as the player % Generate list of all possible numbers nDigits = 4; lowVal = 1; highVal = 9; combs = nchoosek(lowVal:highVal, nDigits); nCombs = size(combs, 1); nPermsPerComb = factorial(nDigits); gList = zeros(nCombs.*nPermsPerComb, nDigits); for k = 1:nCombs gList(nPermsPerComb*(k-1)+1:nPermsPerComb*k, :) = perms(combs(k, :)); end % Prompt user fprintf('Think of a number with:\n') fprintf(' %d digits\n', nDigits) fprintf(' Each digit between %d and %d inclusive\n', lowVal, highVal) fprintf(' No repeated digits\n') fprintf('I''ll try to guess that number and you score me:\n') fprintf(' 1 Bull per correct digit in the correct place\n') fprintf(' 1 Cow per correct digit in the wrong place\n') fprintf('Think of your number and press Enter when ready\n') pause % Play game until all digits are correct nBulls = 0; nGuesses = 0; while nBulls < 4 && ~isempty(gList) nList = size(gList, 1); g = gList(randi(nList), :); % Random guess from list fprintf('My guess: %s?\n', sprintf('%d', g)) nBulls = input('How many bulls? '); if nBulls < 4 nCows = input('How many cows? '); del = false(nList, 1); for k = 1:nList del(k) = any([nBulls nCows] ~= CountBullsCows(g, gList(k, :))); end gList(del, :) = []; end nGuesses = nGuesses+1; end if isempty(gList) fprintf('That''s bull! You messed up your scoring.\n') else fprintf('Yay, I won! Only took %d guesses.\n', nGuesses) end end function score = CountBullsCows(guess, correct) % Checks the guessed array of digits against the correct array to find the score % Assumes arrays of same length and valid numbers bulls = guess == correct; cows = ismember(guess(~bulls), correct); score = [sum(bulls) sum(cows)]; end
github
stefanos1316/Rosetta_Code_Research_MSR-master
honeycombs.m
.m
Rosetta_Code_Research_MSR-master/Scripts/Task/honeycombs/matlab/honeycombs.m
2,850
utf_8
8ecce457b119ea563b391513719558d8
function Honeycombs nRows = 4; % Number of rows nCols = 5; % Number of columns nHexs = nRows*nCols; % Number of hexagons rOuter = 1; % Circumradius startX = 0; % x-coordinate of upper left hexagon startY = 0; % y-coordinate of upper left hexagon delX = rOuter*1.5; % Horizontal distance between hexagons delY = rOuter*sqrt(3); % Vertical distance between hexagons offY = delY/2; % Vertical offset between columns genHexX = rOuter.*cos(2.*pi.*(0:5).'./6); % x-coords of general hexagon genHexY = rOuter.*sin(2.*pi.*(0:5).'./6); % y-coords of general hexagon centX = zeros(1, nHexs); % x-coords of hexagon centers centY = zeros(1, nHexs); % y-coords of hexagon centers for c = 1:nCols idxs = (c-1)*nRows+1:c*nRows; % Indeces of hexagons in that column if mod(c, 2) % Odd numbered column - higher y-values centY(idxs) = startY:-delY:startY-delY*(nRows-1); else % Even numbered column - lower y-values centY(idxs) = startY-offY:-delY:startY-offY-delY*(nRows-1); end centX(idxs) = (startX+(c-1)*delX).*ones(1, nRows); end [MCentX, MGenHexX] = meshgrid(centX, genHexX); [MCentY, MGenHexY] = meshgrid(centY, genHexY); HexX = MCentX+MGenHexX; % x-coords of hexagon vertices HexY = MCentY+MGenHexY; % y-coords of hexagon vertices figure hold on letters = char([65:90 97:122]); randIdxs = randperm(26); letters = [letters(randIdxs) letters(26+randIdxs)]; hexH = zeros(1, nHexs); for k = 1:nHexs % Create patches individually hexH(k) = patch(HexX(:, k), HexY(:, k), [1 1 0]); textH = text(centX(k), centY(k), letters(mod(k, length(letters))), ... 'HorizontalAlignment', 'center', 'FontSize', 14, ... 'FontWeight', 'bold', 'Color', [1 0 0], 'HitTest', 'off'); set(hexH(k), 'UserData', textH) % Save to object for easy access end axis equal axis off set(gca, 'UserData', '') % List of clicked patch labels set(hexH, 'ButtonDownFcn', @onClick) end function onClick(obj, event) axesH = get(obj, 'Parent'); textH = get(obj, 'UserData'); set(obj, 'FaceColor', [1 0 1]) % Change color set(textH, 'Color', [0 0 0]) % Change label color set(obj, 'HitTest', 'off') % Ignore future clicks currList = get(axesH, 'UserData'); % Hexs already clicked newList = [currList get(textH, 'String')]; % Update list set(axesH, 'UserData', newList) title(newList) end
github
stefanos1316/Rosetta_Code_Research_MSR-master
image-convolution.m
.m
Rosetta_Code_Research_MSR-master/Scripts/Task/image-convolution/matlab/image-convolution.m
7,433
utf_8
d070d20a112b6e944d34feac79521dd3
function testConvImage Im = [1 2 1 5 5 ; ... 1 2 7 9 9 ; ... 5 5 5 5 5 ; ... 5 2 2 2 2 ; ... 1 1 1 1 1 ]; % Sample image for example illustration only Ker = [1 2 1 ; ... 2 4 2 ; ... 1 2 1 ]; % Gaussian smoothing (without normalizing) fprintf('Original image:\n') disp(Im) fprintf('Original kernal:\n') disp(Ker) fprintf('Padding with zeroes:\n') disp(convImage(Im, Ker, 'zeros')) fprintf('Padding with fives:\n') disp(convImage(Im, Ker, 'value', 5)) fprintf('Duplicating border pixels to pad image:\n') disp(convImage(Im, Ker, 'extend')) fprintf('Renormalizing kernal and using only values within image:\n') disp(convImage(Im, Ker, 'partial')) fprintf('Only processing inner (non-border) pixels:\n') disp(convImage(Im, Ker, 'none')) % Ker = [1 2 1 ; ... % 2 4 2 ; ... % 1 2 1 ]./16; % Im = imread('testConvImageTestImage.png', 'png'); % figure % imshow(imresize(Im, 10)) % title('Original image') % figure % imshow(imresize(convImage(Im, Ker, 'zeros'), 10)) % title('Padding with zeroes') % figure % imshow(imresize(convImage(Im, Ker, 'value', 50), 10)) % title('Padding with fifty: 50') % figure % imshow(imresize(convImage(Im, Ker, 'extend'), 10)) % title('Duplicating border pixels to pad image') % figure % imshow(imresize(convImage(Im, Ker, 'partial'), 10)) % title('Renormalizing kernal and using only values within image') % figure % imshow(imresize(convImage(Im, Ker, 'none'), 10)) % title('Only processing inner (non-border) pixels') end function ImOut = convImage(Im, Ker, varargin) % ImOut = convImage(Im, Ker) % Filters an image using sliding-window kernal convolution. % Convolution is done layer-by-layer. Use rgb2gray if single-layer needed. % Zero-padding convolution will be used if no border handling is specified. % Im - Array containing image data (output from imread) % Ker - 2-D array to convolve image, needs odd number of rows and columns % ImOut - Filtered image, same dimensions and datatype as Im % % ImOut = convImage(Im, Ker, 'zeros') % Image will be padded with zeros when calculating convolution % (useful for magnitude calculations). % % ImOut = convImage(Im, Ker, 'value', padVal) % Image will be padded with padVal when calculating convolution % (possibly useful for emphasizing certain data with unusual kernal) % % ImOut = convImage(Im, Ker, 'extend') % Image will be padded with the value of the closest image pixel % (useful for smoothing or blurring filters). % % ImOut = convImage(Im, Ker, 'partial') % Image will not be padded. Borders will be convoluted with only valid pixels, % and convolution matrix will be renormalized counting only the pixels within % the image (also useful for smoothing or blurring filters). % % ImOut = convImage(Im, Ker, 'none') % Image will not be padded. Convolution will only be applied to inner pixels % (useful for edge and corner detection filters) % Handle input if mod(size(Ker, 1), 2) ~= 1 || mod(size(Ker, 2), 2) ~= 1 eid = sprintf('%s:evenRowsCols', mfilename); error(eid,'''Ker'' parameter must have odd number of rows and columns.') elseif nargin > 4 eid = sprintf('%s:maxrhs', mfilename); error(eid, 'Too many input arguments.'); elseif nargin == 4 && ~strcmp(varargin{1}, 'value') eid = sprintf('%s:invalidParameterCombination', mfilename); error(eid, ['The ''padVal'' parameter is only valid with the ' ... '''value'' option.']) elseif nargin < 4 && strcmp(varargin{1}, 'value') eid = sprintf('%s:minrhs', mfilename); error(eid, 'Not enough input arguments.') elseif nargin < 3 method = 'zeros'; else method = lower(varargin{1}); if ~any(strcmp(method, {'zeros' 'value' 'extend' 'partial' 'none'})) eid = sprintf('%s:invalidParameter', mfilename); error(eid, 'Invalid option parameter. Must be one of:%s', ... sprintf('\n\t\t%s', ... 'zeros', 'value', 'extend', 'partial', 'none')) end end % Gather information and prepare for convolution [nImRows, nImCols, nImLayers] = size(Im); classIm = class(Im); Im = double(Im); ImOut = zeros(nImRows, nImCols, nImLayers); [nKerRows, nKerCols] = size(Ker); nPadRows = nImRows+nKerRows-1; nPadCols = nImCols+nKerCols-1; padH = (nKerRows-1)/2; padW = (nKerCols-1)/2; % Convolute on a layer-by-layer basis for k = 1:nImLayers if strcmp(method, 'zeros') ImOut(:, :, k) = conv2(Im(:, :, k), Ker, 'same'); elseif strcmp(method, 'value') padding = varargin{2}.*ones(nPadRows, nPadCols); padding(padH+1:end-padH, padW+1:end-padW) = Im(:, :, k); ImOut(:, :, k) = conv2(padding, Ker, 'valid'); elseif strcmp(method, 'extend') padding = zeros(nPadRows, nPadCols); padding(padH+1:end-padH, padW+1:end-padW) = Im(:, :, k); % Middle padding(1:padH, 1:padW) = Im(1, 1, k); % TopLeft padding(end-padH+1:end, 1:padW) = Im(end, 1, k); % BotLeft padding(1:padH, end-padW+1:end) = Im(1, end, k); % TopRight padding(end-padH+1:end, end-padW+1:end) = Im(end, end, k);% BotRight padding(padH+1:end-padH, 1:padW) = ... repmat(Im(:, 1, k), 1, padW); % Left padding(padH+1:end-padH, end-padW+1:end) = ... repmat(Im(:, end, k), 1, padW); % Right padding(1:padH, padW+1:end-padW) = ... repmat(Im(1, :, k), padH, 1); % Top padding(end-padH+1:end, padW+1:end-padW) = ... repmat(Im(end, :, k), padH, 1); % Bottom ImOut(:, :, k) = conv2(padding, Ker, 'valid'); elseif strcmp(method, 'partial') ImOut(padH+1:end-padH, padW+1:end-padW, k) = ... conv2(Im(:, :, k), Ker, 'valid'); % Middle unprocessed = true(nImRows, nImCols); unprocessed(padH+1:end-padH, padW+1:end-padW) = false; % Border for r = 1:nImRows for c = 1:nImCols if unprocessed(r, c) limitedIm = Im(max(1, r-padH):min(nImRows, r+padH), ... max(1, c-padW):min(nImCols, c+padW), k); limitedKer = Ker(max(1, 2-r+padH): ... min(nKerRows, nKerRows+nImRows-r-padH), ... max(1, 2-c+padW):... min(nKerCols, nKerCols+nImCols-c-padW)); limitedKer = limitedKer.*sum(Ker(:))./ ... sum(limitedKer(:)); ImOut(r, c, k) = sum(sum(limitedIm.*limitedKer)); end end end else % method is 'none' ImOut(:, :, k) = Im(:, :, k); ImOut(padH+1:end-padH, padW+1:end-padW, k) = ... conv2(Im(:, :, k), Ker, 'valid'); end end % Convert back to former image data type ImOut = cast(ImOut, classIm); end
github
stefanos1316/Rosetta_Code_Research_MSR-master
bitmap-bresenhams-line-algorithm-1.m
.m
Rosetta_Code_Research_MSR-master/Scripts/Task/bitmap-bresenhams-line-algorithm/matlab/bitmap-bresenhams-line-algorithm-1.m
1,186
utf_8
73849f70792c46a646e103935a779958
%screen = Bitmap object %startPoint = [x0,y0] %endPoint = [x1,y1] %color = [red,green,blue] function bresenhamLine(screen,startPoint,endPoint,color) if( any(color > 255) ) error 'RGB colors must be between 0 and 255'; end %Check for vertical line, x0 == x1 if( startPoint(1) == endPoint(1) ) %Draw vertical line for i = (startPoint(2):endPoint(2)) setPixel(screen,[startPoint(1) i],color); end end %Simplified Bresenham algorithm dx = abs(endPoint(1) - startPoint(1)); dy = abs(endPoint(2) - startPoint(2)); if(startPoint(1) < endPoint(1)) sx = 1; else sx = -1; end if(startPoint(2) < endPoint(2)) sy = 1; else sy = -1; end err = dx - dy; pixel = startPoint; while(true) screen.setPixel(pixel,color); %setPixel(x0,y0) if( pixel == endPoint ) break; end e2 = 2*err; if( e2 > -dy ) err = err - dy; pixel(1) = pixel(1) + sx; end if( e2 < dx ) err = err + dx; pixel(2) = pixel(2) + sy; end end assignin('caller',inputname(1),screen); %saves the changes to the object end
github
stefanos1316/Rosetta_Code_Research_MSR-master
flipping-bits-game.m
.m
Rosetta_Code_Research_MSR-master/Scripts/Task/flipping-bits-game/matlab/flipping-bits-game.m
2,733
utf_8
b5225ac55b751f26e68d02d1049f2829
function FlippingBitsGame(n) % Play the flipping bits game on an n x n array % Generate random target array fprintf('Welcome to the Flipping Bits Game!\n') if nargin < 1 n = input('What dimension array should we use? '); end Tar = logical(randi([0 1], n)); % Generate starting array by randomly flipping rows or columns Cur = Tar; while all(Cur(:) == Tar(:)) nFlips = randi([3*n max(10*n, 100)]); randDim = randi([0 1], nFlips, 1); randIdx = randi([1 n], nFlips, 1); for k = 1:nFlips if randDim(k) Cur(randIdx(k), :) = ~Cur(randIdx(k), :); else Cur(:, randIdx(k)) = ~Cur(:, randIdx(k)); end end end % Print rules fprintf('Given a %d x %d logical array,\n', n, n) fprintf('and a target array configuration,\n') fprintf('attempt to transform the array to the target\n') fprintf('by inverting the bits in a whole row or column\n') fprintf('at once in as few moves as possible.\n') fprintf('Enter the corresponding letter to invert a column,\n') fprintf('or the corresponding number to invert a row.\n') fprintf('0 will reprint the target array, and no entry quits.\n\n') fprintf('Target:\n') PrintArray(Tar) % Play until player wins or quits move = true; nMoves = 0; while ~isempty(move) && any(Cur(:) ~= Tar(:)) fprintf('Move %d:\n', nMoves) PrintArray(Cur) move = lower(input('Enter move: ', 's')); if length(move) > 1 fprintf('Invalid move, try again\n') elseif move r = str2double(move); if isnan(r) c = move-96; if c > n || c < 1 fprintf('Invalid move, try again\n') else Cur(:, c) = ~Cur(:, c); nMoves = nMoves+1; end else if r > n || r < 0 fprintf('Invalid move, try again\n') elseif r == 0 fprintf('Target:\n') PrintArray(Tar) else Cur(r, :) = ~Cur(r, :); nMoves = nMoves+1; end end end end if all(Cur(:) == Tar(:)) fprintf('You win in %d moves! Try not to flip out!\n', nMoves) else fprintf('Quitting? The challenge a bit much for you?\n') end end function PrintArray(A) [nRows, nCols] = size(A); fprintf(' ') fprintf(' %c', (1:nCols)+96) fprintf('\n') for r = 1:nRows fprintf('%8d%s\n', r, sprintf(' %d', A(r, :))) end fprintf('\n') end
github
stefanos1316/Rosetta_Code_Research_MSR-master
abc-problem.m
.m
Rosetta_Code_Research_MSR-master/Scripts/Task/abc-problem/matlab/abc-problem.m
790
utf_8
81f2c22e2247a71e1dafda16915f99f4
function testABC combos = ['BO' ; 'XK' ; 'DQ' ; 'CP' ; 'NA' ; 'GT' ; 'RE' ; 'TG' ; 'QD' ; ... 'FS' ; 'JW' ; 'HU' ; 'VI' ; 'AN' ; 'OB' ; 'ER' ; 'FS' ; 'LY' ; ... 'PC' ; 'ZM']; words = {'A' 'BARK' 'BOOK' 'TREAT' 'COMMON' 'SQUAD' 'CONFUSE'}; for k = 1:length(words) possible = canMakeWord(words{k}, combos); fprintf('Can%s make word %s.\n', char(~possible.*'NOT'), words{k}) end end function isPossible = canMakeWord(word, combos) word = lower(word); combos = lower(combos); isPossible = true; k = 1; while isPossible && k <= length(word) [r, c] = find(combos == word(k), 1); if ~isempty(r) combos(r, :) = ''; else isPossible = false; end k = k+1; end end
github
stefanos1316/Rosetta_Code_Research_MSR-master
iban-1.m
.m
Rosetta_Code_Research_MSR-master/Scripts/Task/iban/matlab/iban-1.m
1,028
utf_8
b5dcb998fd69d25b80748f43f2a8697f
function valid = validateIBAN(iban) % Determine if International Bank Account Number is valid IAW ISO 13616 % iban - string containing account number if length(iban) < 5 valid = false; else iban(iban == ' ') = ''; % Remove spaces iban = lower([iban(5:end) iban(1:4)])+0; % Rearrange and convert iban(iban > 96 & iban < 123) = iban(iban > 96 & iban < 123)-87; % Letters iban(iban > 47 & iban < 58) = iban(iban > 47 & iban < 58)-48; % Numbers valid = piecewiseMod97(iban) == 1; end end function result = piecewiseMod97(x) % Conduct a piecewise version of mod(x, 97) to support large integers % x is a vector of integers x = sprintf('%d', x); % Get to single-digits per index nDig = length(x); i1 = 1; i2 = min(9, nDig); prefix = ''; while i1 <= nDig y = str2double([prefix x(i1:i2)]); result = mod(y, 97); prefix = sprintf('%d', result); i1 = i2+1; i2 = min(i1+8, nDig); end end
github
stefanos1316/Rosetta_Code_Research_MSR-master
classes-3.m
.m
Rosetta_Code_Research_MSR-master/Scripts/Task/classes/matlab/classes-3.m
140
utf_8
9f9ed312eb6b69f944bc51a63731d8c9
%Set function function GenericClassInstance = setValue(GenericClassInstance,newValue) GenericClassInstance.classVariable = newValue; end
github
stefanos1316/Rosetta_Code_Research_MSR-master
classes-7.m
.m
Rosetta_Code_Research_MSR-master/Scripts/Task/classes/matlab/classes-7.m
114
utf_8
e170f5bcd0eb8257d26831dfd9d76f38
%Get function function value = getValue(GenericClassInstance) value = GenericClassInstance.classVariable; end
github
stefanos1316/Rosetta_Code_Research_MSR-master
classes-2.m
.m
Rosetta_Code_Research_MSR-master/Scripts/Task/classes/matlab/classes-2.m
114
utf_8
e170f5bcd0eb8257d26831dfd9d76f38
%Get function function value = getValue(GenericClassInstance) value = GenericClassInstance.classVariable; end
github
stefanos1316/Rosetta_Code_Research_MSR-master
ethiopian-multiplication-3.m
.m
Rosetta_Code_Research_MSR-master/Scripts/Task/ethiopian-multiplication/matlab/ethiopian-multiplication-3.m
144
utf_8
eca009509a1c505dcdfbd6a65357e247
%Returns a logical 1 if the number is even, 0 otherwise. function trueFalse = isEven(number) trueFalse = logical( mod(number,2)==0 ); end
github
stefanos1316/Rosetta_Code_Research_MSR-master
bulls-and-cows.m
.m
Rosetta_Code_Research_MSR-master/Scripts/Task/bulls-and-cows/matlab/bulls-and-cows.m
2,359
utf_8
c763a0feaf16bec664158452df37a237
function BullsAndCows % Plays the game Bulls and Cows as the "game master" % Create a secret number nDigits = 4; lowVal = 1; highVal = 9; digitList = lowVal:highVal; secret = zeros(1, 4); for k = 1:nDigits idx = randi(length(digitList)); secret(k) = digitList(idx); digitList(idx) = []; end % Give game information fprintf('Welcome to Bulls and Cows!\n') fprintf('Try to guess the %d-digit number (no repeated digits).\n', nDigits) fprintf('Digits are between %d and %d (inclusive).\n', lowVal, highVal) fprintf('Score: 1 Bull per correct digit in correct place.\n') fprintf(' 1 Cow per correct digit in incorrect place.\n') fprintf('The number has been chosen. Now it''s your moooooove!\n') gs = input('Guess: ', 's'); % Loop until user guesses right or quits (no guess) nGuesses = 1; while gs gn = str2double(gs); if isnan(gn) || length(gn) > 1 % Not a scalar fprintf('Malformed guess. Keep to valid scalars.\n') gs = input('Try again: ', 's'); else g = sprintf('%d', gn) - '0'; if length(g) ~= nDigits || any(g < lowVal) || any(g > highVal) || ... length(unique(g)) ~= nDigits % Invalid number for game fprintf('Malformed guess. Remember:\n') fprintf(' %d digits\n', nDigits) fprintf(' Between %d and %d inclusive\n', lowVal, highVal) fprintf(' No repeated digits\n') gs = input('Try again: ', 's'); else score = CountBullsCows(g, secret); if score(1) == nDigits fprintf('You win! Bully for you! Only %d guesses.\n', nGuesses) gs = ''; else fprintf('Score: %d Bulls, %d Cows\n', score) gs = input('Guess: ', 's'); end end end nGuesses = nGuesses+1; % Counts malformed guesses end end function score = CountBullsCows(guess, correct) % Checks the guessed array of digits against the correct array to find the score % Assumes arrays of same length and valid numbers bulls = guess == correct; cows = ismember(guess(~bulls), correct); score = [sum(bulls) sum(cows)]; end
github
stefanos1316/Rosetta_Code_Research_MSR-master
happy-numbers.m
.m
Rosetta_Code_Research_MSR-master/Scripts/Task/happy-numbers/matlab/happy-numbers.m
441
utf_8
b439e5762f0d9c6de15ca3d2169f6028
function findHappyNumbers nHappy = 0; k = 1; while nHappy < 8 if isHappyNumber(k, []) fprintf('%d ', k) nHappy = nHappy+1; end k = k+1; end fprintf('\n') end function hap = isHappyNumber(k, prev) if k == 1 hap = true; elseif ismember(k, prev) hap = false; else hap = isHappyNumber(sum((sprintf('%d', k)-'0').^2), [prev k]); end end
github
lcarasik/TORCHE-master
StaggeredPressureDrop.m
.m
TORCHE-master/LEGACY/MATLAB/StaggeredPressureDrop.m
3,356
utf_8
f7d830d90a37536111a52f19052983fc
%Original Author: Jonah Haefner %Last Modified: 10/27/2015 %Most Reecent Author: Jonah Haefner %References: Julien Clayton, Lane Carasik, ... %%%Units%%% %a = dimensionless transverse pitch %b = dimensionless longitudinal pitch %v = the free stream fluid velocity in m/s %rho = density in kg/m^3 %u = dynamic viscosity in pa*s %N = number of rows in the tube bundle %D_tube = The diamter of the tubes in the bundle in m %Will work for values of b = 1.25, 1.5, or 2 %Reynolds number needs to be below 150000 and greater than E2 %coefficients for Euler number (calculated using the power series) %coefficients come from here: http://www.thermopedia.com/content/1211/#TUBE_BANKS_CROSSFLOW_OVER_FIG2 % These are valid for Reynolds numbers between 2E3 and 2E6 % function [dP_total, Re, v_mean,Eu] = StaggeredPressureDrop(a,b,v,rho,u,N,D_tube, Re) x = double((a)./(b)); %Used for correction factor k_1 which I don't have data for. %Mean Velocity Calculations. Found on same website as above if a <= (2*b^2 -.5) v_mean = v.*(a./(a-1)); elseif a > (2*b^2 -.5) v_mean = v.*(a./(sqrt(4*b^2+a^2)-2)) end % Coefficients, c_i, to generate pressure drop coefficients for equilateral triangle banks. if Re < 1E3 c_0 = [.795,.683,.343]; %b = 1.25, 1.5, and 2 c_1 = [.247E3,.111E3,.303E3]; %b = 1.25, 1.5, and 2 c_2 = [.335E3,-.973E2,-.717E5]; %b = 1.25, 1.5, and 2 c_3 = [-.155E4,-.426E3,.88E7]; %b = 1.25, 1.5, and 2 c_4 = [.241E4,.574E3,-.38E9]; %b = 1.25, 1.5, and 2 elseif Re >= 1E3 && Re < 1E4 c_0 = [.245,.203,.343]; %b = 1.25, 1.5, and 2 c_1 = [.339E4, .248E4, .303E3 ]; %b = 1.25, 1.5, and 2 c_2 = [-.984E7, -.758E7, -.717E5]; %b = 1.25, 1.5, and 2 c_3 = [.132E11, .104E11, .88E7]; %b = 1.25, 1.5, and 2 c_4 = [-.599E13, -.482E13, -.38E9]; %b = 1.25, 1.5, and 2 elseif Re >= 1E4 c_0 = [.245, .203, .162 ]; %b = 1.25, 1.5, and 2 c_1 = [.339E4, .248E4, .181E4 ]; %b = 1.25, 1.5, and 2 c_2 = [-.984E7, -.758E7, .792E8]; %b = 1.25, 1.5, and 2 c_3 = [.132E11, .104E11, -.165E13]; %b = 1.25, 1.5, and 2 c_4 = [-.599E13, -.482E13, .872E16]; %b = 1.25, 1.5, and 2 end % Assigning correct values to each tube spacing if (b == 1.25) i = 1; else if (b == 1.5) i = 2; else if (b == 2) i = 3; end end end %%%%%%%%% Correction Factors %%%%%%%%%% %k_1 is the influence of pitch ratio %Will add later if data can be found %k_2 = Influence of Temperature on Fluid properties. Neglected % k_3 is Entry length effects %Entry loss coefficients (Re < 1E2 but < 1E4) el_1 = [1.4, 1.3, 1.2, 1.1, 1, 1, 1]; %Entry loss coefficients (Re > 1E4 but < 1E6) el_2 = [1.1, 1.05, 1, 1, 1, 1, 1]; %Entry loss coefficients (Re > 1E6) el_3 = [.25, .45, .6, .65, .7, .75, .8]; k_3 = 1; %Setting for tubes > 7 if (N < 7 && N > 0 && Re < 1E4 && Re > 1E2) k_3 = el_1(N); elseif (N < 7 && N > 0 && Re < 1E6 && Re >= 1E4) k_3 = el_2(N); elseif (N < 7 && N > 0 && Re > 1E6) k_3 = el_3(N); end %Power series for Euler number per row. From same website as above. Eu_p = (c_0(i)./Re.^0)+(c_1(i)./Re.^1)+(c_2(i)./Re.^2)+(c_3(i)./Re.^3)+(c_4(i)./Re.^4); %%%Corrected Euler Number Eu = Eu_p.*k_3; %.*k_1; %Using the relation Eu = dP/((1/2)*rho*v^2) dP = Eu.*((rho.*v_mean.^2)./2); %Pressure drop per row dP_total = dP.*N/1000; %pressure drop across 10 rows expressed in kPa end
github
lcarasik/TORCHE-master
InlinePressureDrop.m
.m
TORCHE-master/LEGACY/MATLAB/InlinePressureDrop.m
3,484
utf_8
8101bcce59d041d275ebc71899c2eacc
%Original Author: Julien Clayton %Last Modified: 7/9/2016 %Most Recent Author: Jonah Haefner %All Authors: Jonah Haefner, Julien Clayton, Lane Carasik, ... %%%Units%%% %a = dimensionless transverse pitch %b = dimensionless longitudinal pitch %v = the free stream fluid velocity in m/s %rho = density in g/cm^3 %u = dynamic viscosity in pa*s %N = number of rows in the tube bundle %D_tube = The diamter of the tubes in the bundle in m %Will work for values of b = 1.25, 1.5, or 2 %Reynolds number needs to be below 150000 function [dP_total, Re, v_mean,Eu] = InlinePressureDrop(a,b,v,rho,u,N,D_tube, Re) x = double((a-1)./(b-1)); rho = rho*1000; %g/cm^3 ---> kg/m^3(density) v_mean = v.*(a./(a-1)); %mean flow velocity in min XSection of tube bank (Zukauska's book assumes avg flow velocity is approx. max velocity) %Re = double((rho.*D_tube.*v_mean)./u); %MinXS Reynolds number (if not already known) %coefficients for Euler number (calculated using the power series) %coefficients come from here: http://www.thermopedia.com/content/1211/#TUBE_BANKS_CROSSFLOW_OVER_FIG2 % These are valid for Reynolds numbers between 2E3 and 2E6 % if Re > 2E3 c_0 = [.267, .235, .247]; %b = 1.25, 1.5, and 2 c_1 = [.249E4, .197E4, -.595]; %b = 1.25, 1.5, and 2 c_2 = [-.927E7, -.124E8, .15]; %b = 1.25, 1.5, and 2 c_3 = [.1E11, .312E11, -.137]; %b = 1.25, 1.5, and 2 c_4 = [0, -.274E14, .396]; %b = 1.25, 1.5, and 2 elseif Re <= 800 && Re > 3 c_0 = [.272, .263, .188]; %b = 1.25, 1.5, and 2 c_1 = [.207E3, .867E2, 56.6]; %b = 1.25, 1.5, and 2 c_2 = [.102E3, -.202, -646]; %b = 1.25, 1.5, and 2 c_3 = [-.286E3, 0, 6010]; %b = 1.25, 1.5, and 2 c_4 = [0, 0, -18300]; %b = 1.25, 1.5, and 2 elseif Re <= 2E3 && Re > 800 c_0 = [.272, .263, .247]; %b = 1.25, 1.5, and 2 c_1 = [.207E3, .867E2, 56.6-(4.766E-2*Re)]; %b = 1.25, 1.5, and 2 c_2 = [.102E3, -.202, .15]; %b = 1.25, 1.5, and 2 c_3 = [-.286E3, 0, -.137]; %b = 1.25, 1.5, and 2 c_4 = [0, 0, .396]; %b = 1.25, 1.5, and 2 %There may be errors when b=2 and Re < 800 but didn't input for code %simplicity. end %%%%%%%%% Correction Factors %%%%%%%%%% % Non-rectangular bundle % (valid up to Reynolds numbers of 150000) k_1 = 1; if x ~= 1.00 if (Re >= 1000 && Re < 10000) k_1 = .9849.*x.^(-.8129); else if (Re >= 10000 && Re < 70000) k_1 = .9802.*x.^(-.7492); else if (Re >= 70000 && Re < 150000) k_1 = .988.*x.^(-.6388); end end end end %%% Entry losses %%% %Entry loss coefficients (Re > 1E4 but < 1E6) el_1 = [1.9, 1.1, 1, 1, 1, 1, 1]; %Entry loss coefficients (Re > 1E6) el_2 = [2.7, 1.8, 1.5, 1.4, 1.3, 1.2, 1.2]; if (b == 1.25) i = 1; else if (b == 1.5) i = 2; else if (b == 2) i = 3; end end end k_3 = 1; if (N < 7 && N > 0 && Re < 1E6 && Re > 1E2) k_3 = el_1(N); else if (N < 7 && N > 0 && Re >= 1E6) k_3 = el_2(N); else if (Re <= 1E2) disp('Reynolds number needs to be greater than 100') %break end end end %Power series for Euler number per row. From same website as above. Eu_p = (c_0(i)./Re.^0)+(c_1(i)./Re.^1)+(c_2(i)./Re.^2)+(c_3(i)./Re.^3)+(c_4(i)./Re.^4); %%%Corrected Euler Number%%% Eu = Eu_p.*k_3.*k_1; %Using the relation Eu = dP/((1/2)*rho*v^2) dP = Eu.*((rho.*v_mean.^2)./2); %Pressure drop per row dP_total = dP.*N/1000; %pressure drop across 10 rows expressed in kPa end
github
ubiquiti/ubnt_libjingle-main
readDetection.m
.m
ubnt_libjingle-main/modules/audio_processing/transient/test/readDetection.m
927
utf_8
f6af5020971d028a50a4d19a31b33bcb
% % Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. % % Use of this source code is governed by a BSD-style license % that can be found in the LICENSE file in the root of the source % tree. An additional intellectual property rights grant can be found % in the file PATENTS. All contributing project authors may % be found in the AUTHORS file in the root of the source tree. % function [d, t] = readDetection(file, fs, chunkSize) %[d, t] = readDetection(file, fs, chunkSize) % %Reads a detection signal from a DAT file. % %d: The detection signal. %t: The respective time vector. % %file: The DAT file where the detection signal is stored in float format. %fs: The signal sample rate in Hertz. %chunkSize: The chunk size used for the detection in seconds. fid = fopen(file); d = fread(fid, inf, 'float'); fclose(fid); t = 0:(1 / fs):(length(d) * chunkSize - 1 / fs); d = d(floor(t / chunkSize) + 1);
github
ubiquiti/ubnt_libjingle-main
readPCM.m
.m
ubnt_libjingle-main/modules/audio_processing/transient/test/readPCM.m
821
utf_8
76b2955e65258ada1c1e549a4fc9bf79
% % Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. % % Use of this source code is governed by a BSD-style license % that can be found in the LICENSE file in the root of the source % tree. An additional intellectual property rights grant can be found % in the file PATENTS. All contributing project authors may % be found in the AUTHORS file in the root of the source tree. % function [x, t] = readPCM(file, fs) %[x, t] = readPCM(file, fs) % %Reads a signal from a PCM file. % %x: The read signal after normalization. %t: The respective time vector. % %file: The PCM file where the signal is stored in int16 format. %fs: The signal sample rate in Hertz. fid = fopen(file); x = fread(fid, inf, 'int16'); fclose(fid); x = x - mean(x); x = x / max(abs(x)); t = 0:(1 / fs):((length(x) - 1) / fs);
github
ubiquiti/ubnt_libjingle-main
plotDetection.m
.m
ubnt_libjingle-main/modules/audio_processing/transient/test/plotDetection.m
923
utf_8
e8113bdaf5dcfe4f50200a3ca29c3846
% % Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. % % Use of this source code is governed by a BSD-style license % that can be found in the LICENSE file in the root of the source % tree. An additional intellectual property rights grant can be found % in the file PATENTS. All contributing project authors may % be found in the AUTHORS file in the root of the source tree. % function [] = plotDetection(PCMfile, DATfile, fs, chunkSize) %[] = plotDetection(PCMfile, DATfile, fs, chunkSize) % %Plots the signal alongside the detection values. % %PCMfile: The file of the input signal in PCM format. %DATfile: The file containing the detection values in binary float format. %fs: The sample rate of the signal in Hertz. %chunkSize: The chunk size used to compute the detection values in seconds. [x, tx] = readPCM(PCMfile, fs); [d, td] = readDetection(DATfile, fs, chunkSize); plot(tx, x, td, d);
github
ubiquiti/ubnt_libjingle-main
apmtest.m
.m
ubnt_libjingle-main/modules/audio_processing/test/apmtest.m
9,874
utf_8
17ad6af59f6daa758d983dd419e46ff0
% % Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. % % Use of this source code is governed by a BSD-style license % that can be found in the LICENSE file in the root of the source % tree. An additional intellectual property rights grant can be found % in the file PATENTS. All contributing project authors may % be found in the AUTHORS file in the root of the source tree. % function apmtest(task, testname, filepath, casenumber, legacy) %APMTEST is a tool to process APM file sets and easily display the output. % APMTEST(TASK, TESTNAME, CASENUMBER) performs one of several TASKs: % 'test' Processes the files to produce test output. % 'list' Prints a list of cases in the test set, preceded by their % CASENUMBERs. % 'show' Uses spclab to show the test case specified by the % CASENUMBER parameter. % % using a set of test files determined by TESTNAME: % 'all' All tests. % 'apm' The standard APM test set (default). % 'apmm' The mobile APM test set. % 'aec' The AEC test set. % 'aecm' The AECM test set. % 'agc' The AGC test set. % 'ns' The NS test set. % 'vad' The VAD test set. % % FILEPATH specifies the path to the test data files. % % CASENUMBER can be used to select a single test case. Omit CASENUMBER, % or set to zero, to use all test cases. % if nargin < 5 || isempty(legacy) % Set to true to run old VQE recordings. legacy = false; end if nargin < 4 || isempty(casenumber) casenumber = 0; end if nargin < 3 || isempty(filepath) filepath = 'data/'; end if nargin < 2 || isempty(testname) testname = 'all'; end if nargin < 1 || isempty(task) task = 'test'; end if ~strcmp(task, 'test') && ~strcmp(task, 'list') && ~strcmp(task, 'show') error(['TASK ' task ' is not recognized']); end if casenumber == 0 && strcmp(task, 'show') error(['CASENUMBER must be specified for TASK ' task]); end inpath = [filepath 'input/']; outpath = [filepath 'output/']; refpath = [filepath 'reference/']; if strcmp(testname, 'all') tests = {'apm','apmm','aec','aecm','agc','ns','vad'}; else tests = {testname}; end if legacy progname = './test'; else progname = './process_test'; end global farFile; global nearFile; global eventFile; global delayFile; global driftFile; if legacy farFile = 'vqeFar.pcm'; nearFile = 'vqeNear.pcm'; eventFile = 'vqeEvent.dat'; delayFile = 'vqeBuf.dat'; driftFile = 'vqeDrift.dat'; else farFile = 'apm_far.pcm'; nearFile = 'apm_near.pcm'; eventFile = 'apm_event.dat'; delayFile = 'apm_delay.dat'; driftFile = 'apm_drift.dat'; end simulateMode = false; nErr = 0; nCases = 0; for i=1:length(tests) simulateMode = false; if strcmp(tests{i}, 'apm') testdir = ['apm/']; outfile = ['out']; if legacy opt = ['-ec 1 -agc 2 -nc 2 -vad 3']; else opt = ['--no_progress -hpf' ... ' -aec --drift_compensation -agc --fixed_digital' ... ' -ns --ns_moderate -vad']; end elseif strcmp(tests{i}, 'apm-swb') simulateMode = true; testdir = ['apm-swb/']; outfile = ['out']; if legacy opt = ['-fs 32000 -ec 1 -agc 2 -nc 2']; else opt = ['--no_progress -fs 32000 -hpf' ... ' -aec --drift_compensation -agc --adaptive_digital' ... ' -ns --ns_moderate -vad']; end elseif strcmp(tests{i}, 'apmm') testdir = ['apmm/']; outfile = ['out']; opt = ['-aec --drift_compensation -agc --fixed_digital -hpf -ns ' ... '--ns_moderate']; else error(['TESTNAME ' tests{i} ' is not recognized']); end inpathtest = [inpath testdir]; outpathtest = [outpath testdir]; refpathtest = [refpath testdir]; if ~exist(inpathtest,'dir') error(['Input directory ' inpathtest ' does not exist']); end if ~exist(refpathtest,'dir') warning(['Reference directory ' refpathtest ' does not exist']); end [status, errMsg] = mkdir(outpathtest); if (status == 0) error(errMsg); end [nErr, nCases] = recurseDir(inpathtest, outpathtest, refpathtest, outfile, ... progname, opt, simulateMode, nErr, nCases, task, casenumber, legacy); if strcmp(task, 'test') || strcmp(task, 'show') system(['rm ' farFile]); system(['rm ' nearFile]); if simulateMode == false system(['rm ' eventFile]); system(['rm ' delayFile]); system(['rm ' driftFile]); end end end if ~strcmp(task, 'list') if nErr == 0 fprintf(1, '\nAll files are bit-exact to reference\n', nErr); else fprintf(1, '\n%d files are NOT bit-exact to reference\n', nErr); end end function [nErrOut, nCases] = recurseDir(inpath, outpath, refpath, ... outfile, progname, opt, simulateMode, nErr, nCases, task, casenumber, ... legacy) global farFile; global nearFile; global eventFile; global delayFile; global driftFile; dirs = dir(inpath); nDirs = 0; nErrOut = nErr; for i=3:length(dirs) % skip . and .. nDirs = nDirs + dirs(i).isdir; end if nDirs == 0 nCases = nCases + 1; if casenumber == nCases || casenumber == 0 if strcmp(task, 'list') fprintf([num2str(nCases) '. ' outfile '\n']) else vadoutfile = ['vad_' outfile '.dat']; outfile = [outfile '.pcm']; % Check for VAD test vadTest = 0; if ~isempty(findstr(opt, '-vad')) vadTest = 1; if legacy opt = [opt ' ' outpath vadoutfile]; else opt = [opt ' --vad_out_file ' outpath vadoutfile]; end end if exist([inpath 'vqeFar.pcm']) system(['ln -s -f ' inpath 'vqeFar.pcm ' farFile]); elseif exist([inpath 'apm_far.pcm']) system(['ln -s -f ' inpath 'apm_far.pcm ' farFile]); end if exist([inpath 'vqeNear.pcm']) system(['ln -s -f ' inpath 'vqeNear.pcm ' nearFile]); elseif exist([inpath 'apm_near.pcm']) system(['ln -s -f ' inpath 'apm_near.pcm ' nearFile]); end if exist([inpath 'vqeEvent.dat']) system(['ln -s -f ' inpath 'vqeEvent.dat ' eventFile]); elseif exist([inpath 'apm_event.dat']) system(['ln -s -f ' inpath 'apm_event.dat ' eventFile]); end if exist([inpath 'vqeBuf.dat']) system(['ln -s -f ' inpath 'vqeBuf.dat ' delayFile]); elseif exist([inpath 'apm_delay.dat']) system(['ln -s -f ' inpath 'apm_delay.dat ' delayFile]); end if exist([inpath 'vqeSkew.dat']) system(['ln -s -f ' inpath 'vqeSkew.dat ' driftFile]); elseif exist([inpath 'vqeDrift.dat']) system(['ln -s -f ' inpath 'vqeDrift.dat ' driftFile]); elseif exist([inpath 'apm_drift.dat']) system(['ln -s -f ' inpath 'apm_drift.dat ' driftFile]); end if simulateMode == false command = [progname ' -o ' outpath outfile ' ' opt]; else if legacy inputCmd = [' -in ' nearFile]; else inputCmd = [' -i ' nearFile]; end if exist([farFile]) if legacy inputCmd = [' -if ' farFile inputCmd]; else inputCmd = [' -ir ' farFile inputCmd]; end end command = [progname inputCmd ' -o ' outpath outfile ' ' opt]; end % This prevents MATLAB from using its own C libraries. shellcmd = ['bash -c "unset LD_LIBRARY_PATH;']; fprintf([command '\n']); [status, result] = system([shellcmd command '"']); fprintf(result); fprintf(['Reference file: ' refpath outfile '\n']); if vadTest == 1 equal_to_ref = are_files_equal([outpath vadoutfile], ... [refpath vadoutfile], ... 'int8'); if ~equal_to_ref nErr = nErr + 1; end end [equal_to_ref, diffvector] = are_files_equal([outpath outfile], ... [refpath outfile], ... 'int16'); if ~equal_to_ref nErr = nErr + 1; end if strcmp(task, 'show') % Assume the last init gives the sample rate of interest. str_idx = strfind(result, 'Sample rate:'); fs = str2num(result(str_idx(end) + 13:str_idx(end) + 17)); fprintf('Using %d Hz\n', fs); if exist([farFile]) spclab(fs, farFile, nearFile, [refpath outfile], ... [outpath outfile], diffvector); %spclab(fs, diffvector); else spclab(fs, nearFile, [refpath outfile], [outpath outfile], ... diffvector); %spclab(fs, diffvector); end end end end else for i=3:length(dirs) if dirs(i).isdir [nErr, nCases] = recurseDir([inpath dirs(i).name '/'], outpath, ... refpath,[outfile '_' dirs(i).name], progname, opt, ... simulateMode, nErr, nCases, task, casenumber, legacy); end end end nErrOut = nErr; function [are_equal, diffvector] = ... are_files_equal(newfile, reffile, precision, diffvector) are_equal = false; diffvector = 0; if ~exist(newfile,'file') warning(['Output file ' newfile ' does not exist']); return end if ~exist(reffile,'file') warning(['Reference file ' reffile ' does not exist']); return end fid = fopen(newfile,'rb'); new = fread(fid,inf,precision); fclose(fid); fid = fopen(reffile,'rb'); ref = fread(fid,inf,precision); fclose(fid); if length(new) ~= length(ref) warning('Reference is not the same length as output'); minlength = min(length(new), length(ref)); new = new(1:minlength); ref = ref(1:minlength); end diffvector = new - ref; if isequal(new, ref) fprintf([newfile ' is bit-exact to reference\n']); are_equal = true; else if isempty(new) warning([newfile ' is empty']); return end snr = snrseg(new,ref,80); fprintf('\n'); are_equal = false; end
github
ubiquiti/ubnt_libjingle-main
parse_delay_file.m
.m
ubnt_libjingle-main/modules/audio_coding/neteq/test/delay_tool/parse_delay_file.m
6,405
utf_8
4cc70d6f90e1ca5901104f77a7e7c0b3
% % Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. % % Use of this source code is governed by a BSD-style license % that can be found in the LICENSE file in the root of the source % tree. An additional intellectual property rights grant can be found % in the file PATENTS. All contributing project authors may % be found in the AUTHORS file in the root of the source tree. % function outStruct = parse_delay_file(file) fid = fopen(file, 'rb'); if fid == -1 error('Cannot open file %s', file); end textline = fgetl(fid); if ~strncmp(textline, '#!NetEQ_Delay_Logging', 21) error('Wrong file format'); end ver = sscanf(textline, '#!NetEQ_Delay_Logging%d.%d'); if ~all(ver == [2; 0]) error('Wrong version of delay logging function') end start_pos = ftell(fid); fseek(fid, -12, 'eof'); textline = fgetl(fid); if ~strncmp(textline, 'End of file', 21) error('File ending is not correct. Seems like the simulation ended abnormally.'); end fseek(fid,-12-4, 'eof'); Npackets = fread(fid, 1, 'int32'); fseek(fid, start_pos, 'bof'); rtpts = zeros(Npackets, 1); seqno = zeros(Npackets, 1); pt = zeros(Npackets, 1); plen = zeros(Npackets, 1); recin_t = nan*ones(Npackets, 1); decode_t = nan*ones(Npackets, 1); playout_delay = zeros(Npackets, 1); optbuf = zeros(Npackets, 1); fs_ix = 1; clock = 0; ts_ix = 1; ended = 0; late_packets = 0; fs_now = 8000; last_decode_k = 0; tot_expand = 0; tot_accelerate = 0; tot_preemptive = 0; while not(ended) signal = fread(fid, 1, '*int32'); switch signal case 3 % NETEQ_DELAY_LOGGING_SIGNAL_CLOCK clock = fread(fid, 1, '*float32'); % keep on reading batches of M until the signal is no longer "3" % read int32 + float32 in one go % this is to save execution time temp = [3; 0]; M = 120; while all(temp(1,:) == 3) fp = ftell(fid); temp = fread(fid, [2 M], '*int32'); end % back up to last clock event fseek(fid, fp - ftell(fid) + ... (find(temp(1,:) ~= 3, 1 ) - 2) * 2 * 4 + 4, 'cof'); % read the last clock value clock = fread(fid, 1, '*float32'); case 1 % NETEQ_DELAY_LOGGING_SIGNAL_RECIN temp_ts = fread(fid, 1, 'uint32'); if late_packets > 0 temp_ix = ts_ix - 1; while (temp_ix >= 1) && (rtpts(temp_ix) ~= temp_ts) % TODO(hlundin): use matlab vector search instead? temp_ix = temp_ix - 1; end if temp_ix >= 1 % the ts was found in the vector late_packets = late_packets - 1; else temp_ix = ts_ix; ts_ix = ts_ix + 1; end else temp_ix = ts_ix; ts_ix = ts_ix + 1; end rtpts(temp_ix) = temp_ts; seqno(temp_ix) = fread(fid, 1, 'uint16'); pt(temp_ix) = fread(fid, 1, 'int32'); plen(temp_ix) = fread(fid, 1, 'int16'); recin_t(temp_ix) = clock; case 2 % NETEQ_DELAY_LOGGING_SIGNAL_FLUSH % do nothing case 4 % NETEQ_DELAY_LOGGING_SIGNAL_EOF ended = 1; case 5 % NETEQ_DELAY_LOGGING_SIGNAL_DECODE last_decode_ts = fread(fid, 1, 'uint32'); temp_delay = fread(fid, 1, 'uint16'); k = find(rtpts(1:(ts_ix - 1))==last_decode_ts,1,'last'); if ~isempty(k) decode_t(k) = clock; playout_delay(k) = temp_delay + ... 5 * fs_now / 8000; % add overlap length last_decode_k = k; end case 6 % NETEQ_DELAY_LOGGING_SIGNAL_CHANGE_FS fsvec(fs_ix) = fread(fid, 1, 'uint16'); fschange_ts(fs_ix) = last_decode_ts; fs_now = fsvec(fs_ix); fs_ix = fs_ix + 1; case 7 % NETEQ_DELAY_LOGGING_SIGNAL_MERGE_INFO playout_delay(last_decode_k) = playout_delay(last_decode_k) ... + fread(fid, 1, 'int32'); case 8 % NETEQ_DELAY_LOGGING_SIGNAL_EXPAND_INFO temp = fread(fid, 1, 'int32'); if last_decode_k ~= 0 tot_expand = tot_expand + temp / (fs_now / 1000); end case 9 % NETEQ_DELAY_LOGGING_SIGNAL_ACCELERATE_INFO temp = fread(fid, 1, 'int32'); if last_decode_k ~= 0 tot_accelerate = tot_accelerate + temp / (fs_now / 1000); end case 10 % NETEQ_DELAY_LOGGING_SIGNAL_PREEMPTIVE_INFO temp = fread(fid, 1, 'int32'); if last_decode_k ~= 0 tot_preemptive = tot_preemptive + temp / (fs_now / 1000); end case 11 % NETEQ_DELAY_LOGGING_SIGNAL_OPTBUF optbuf(last_decode_k) = fread(fid, 1, 'int32'); case 12 % NETEQ_DELAY_LOGGING_SIGNAL_DECODE_ONE_DESC last_decode_ts = fread(fid, 1, 'uint32'); k = ts_ix - 1; while (k >= 1) && (rtpts(k) ~= last_decode_ts) % TODO(hlundin): use matlab vector search instead? k = k - 1; end if k < 1 % packet not received yet k = ts_ix; rtpts(ts_ix) = last_decode_ts; late_packets = late_packets + 1; end decode_t(k) = clock; playout_delay(k) = fread(fid, 1, 'uint16') + ... 5 * fs_now / 8000; % add overlap length last_decode_k = k; end end fclose(fid); outStruct = struct(... 'ts', rtpts, ... 'sn', seqno, ... 'pt', pt,... 'plen', plen,... 'arrival', recin_t,... 'decode', decode_t,... 'fs', fsvec(:),... 'fschange_ts', fschange_ts(:),... 'playout_delay', playout_delay,... 'tot_expand', tot_expand,... 'tot_accelerate', tot_accelerate,... 'tot_preemptive', tot_preemptive,... 'optbuf', optbuf);
github
ubiquiti/ubnt_libjingle-main
plot_neteq_delay.m
.m
ubnt_libjingle-main/modules/audio_coding/neteq/test/delay_tool/plot_neteq_delay.m
5,967
utf_8
cce342fed6406ef0f12d567fe3ab6eef
% % Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. % % Use of this source code is governed by a BSD-style license % that can be found in the LICENSE file in the root of the source % tree. An additional intellectual property rights grant can be found % in the file PATENTS. All contributing project authors may % be found in the AUTHORS file in the root of the source tree. % function [delay_struct, delayvalues] = plot_neteq_delay(delayfile, varargin) % InfoStruct = plot_neteq_delay(delayfile) % InfoStruct = plot_neteq_delay(delayfile, 'skipdelay', skip_seconds) % % Henrik Lundin, 2006-11-17 % Henrik Lundin, 2011-05-17 % try s = parse_delay_file(delayfile); catch error(lasterr); end delayskip=0; noplot=0; arg_ptr=1; delaypoints=[]; s.sn=unwrap_seqno(s.sn); while arg_ptr+1 <= nargin switch lower(varargin{arg_ptr}) case {'skipdelay', 'delayskip'} % skip a number of seconds in the beginning when calculating delays delayskip = varargin{arg_ptr+1}; arg_ptr = arg_ptr + 2; case 'noplot' noplot=1; arg_ptr = arg_ptr + 1; case {'get_delay', 'getdelay'} % return a vector of delay values for the points in the given vector delaypoints = varargin{arg_ptr+1}; arg_ptr = arg_ptr + 2; otherwise warning('Unknown switch %s\n', varargin{arg_ptr}); arg_ptr = arg_ptr + 1; end end % find lost frames that were covered by one-descriptor decoding one_desc_ix=find(isnan(s.arrival)); for k=1:length(one_desc_ix) ix=find(s.ts==max(s.ts(s.ts(one_desc_ix(k))>s.ts))); s.sn(one_desc_ix(k))=s.sn(ix)+1; s.pt(one_desc_ix(k))=s.pt(ix); s.arrival(one_desc_ix(k))=s.arrival(ix)+s.decode(one_desc_ix(k))-s.decode(ix); end % remove duplicate received frames that were never decoded (RED codec) if length(unique(s.ts(isfinite(s.ts)))) < length(s.ts(isfinite(s.ts))) ix=find(isfinite(s.decode)); s.sn=s.sn(ix); s.ts=s.ts(ix); s.arrival=s.arrival(ix); s.playout_delay=s.playout_delay(ix); s.pt=s.pt(ix); s.optbuf=s.optbuf(ix); plen=plen(ix); s.decode=s.decode(ix); end % find non-unique sequence numbers [~,un_ix]=unique(s.sn); nonun_ix=setdiff(1:length(s.sn),un_ix); if ~isempty(nonun_ix) warning('RTP sequence numbers are in error'); end % sort vectors [s.sn,sort_ix]=sort(s.sn); s.ts=s.ts(sort_ix); s.arrival=s.arrival(sort_ix); s.decode=s.decode(sort_ix); s.playout_delay=s.playout_delay(sort_ix); s.pt=s.pt(sort_ix); send_t=s.ts-s.ts(1); if length(s.fs)<1 warning('No info about sample rate found in file. Using default 8000.'); s.fs(1)=8000; s.fschange_ts(1)=min(s.ts); elseif s.fschange_ts(1)>min(s.ts) s.fschange_ts(1)=min(s.ts); end end_ix=length(send_t); for k=length(s.fs):-1:1 start_ix=find(s.ts==s.fschange_ts(k)); send_t(start_ix:end_ix)=send_t(start_ix:end_ix)/s.fs(k)*1000; s.playout_delay(start_ix:end_ix)=s.playout_delay(start_ix:end_ix)/s.fs(k)*1000; s.optbuf(start_ix:end_ix)=s.optbuf(start_ix:end_ix)/s.fs(k)*1000; end_ix=start_ix-1; end tot_time=max(send_t)-min(send_t); seq_ix=s.sn-min(s.sn)+1; send_t=send_t+max(min(s.arrival-send_t),0); plot_send_t=nan*ones(max(seq_ix),1); plot_send_t(seq_ix)=send_t; plot_nw_delay=nan*ones(max(seq_ix),1); plot_nw_delay(seq_ix)=s.arrival-send_t; cng_ix=find(s.pt~=13); % find those packets that are not CNG/SID if noplot==0 h=plot(plot_send_t/1000,plot_nw_delay); set(h,'color',0.75*[1 1 1]); hold on if any(s.optbuf~=0) peak_ix=find(s.optbuf(cng_ix)<0); % peak mode is labeled with negative values no_peak_ix=find(s.optbuf(cng_ix)>0); %setdiff(1:length(cng_ix),peak_ix); h1=plot(send_t(cng_ix(peak_ix))/1000,... s.arrival(cng_ix(peak_ix))+abs(s.optbuf(cng_ix(peak_ix)))-send_t(cng_ix(peak_ix)),... 'r.'); h2=plot(send_t(cng_ix(no_peak_ix))/1000,... s.arrival(cng_ix(no_peak_ix))+abs(s.optbuf(cng_ix(no_peak_ix)))-send_t(cng_ix(no_peak_ix)),... 'g.'); set([h1, h2],'markersize',1) end %h=plot(send_t(seq_ix)/1000,s.decode+s.playout_delay-send_t(seq_ix)); h=plot(send_t(cng_ix)/1000,s.decode(cng_ix)+s.playout_delay(cng_ix)-send_t(cng_ix)); set(h,'linew',1.5); hold off ax1=axis; axis tight ax2=axis; axis([ax2(1:3) ax1(4)]) end % calculate delays and other parameters delayskip_ix = find(send_t-send_t(1)>=delayskip*1000, 1 ); use_ix = intersect(cng_ix,... % use those that are not CNG/SID frames... intersect(find(isfinite(s.decode)),... % ... that did arrive ... (delayskip_ix:length(s.decode))')); % ... and are sent after delayskip seconds mean_delay = mean(s.decode(use_ix)+s.playout_delay(use_ix)-send_t(use_ix)); neteq_delay = mean(s.decode(use_ix)+s.playout_delay(use_ix)-s.arrival(use_ix)); Npack=max(s.sn(delayskip_ix:end))-min(s.sn(delayskip_ix:end))+1; nw_lossrate=(Npack-length(s.sn(delayskip_ix:end)))/Npack; neteq_lossrate=(length(s.sn(delayskip_ix:end))-length(use_ix))/Npack; delay_struct=struct('mean_delay',mean_delay,'neteq_delay',neteq_delay,... 'nw_lossrate',nw_lossrate,'neteq_lossrate',neteq_lossrate,... 'tot_expand',round(s.tot_expand),'tot_accelerate',round(s.tot_accelerate),... 'tot_preemptive',round(s.tot_preemptive),'tot_time',tot_time,... 'filename',delayfile,'units','ms','fs',unique(s.fs)); if not(isempty(delaypoints)) delayvalues=interp1(send_t(cng_ix),... s.decode(cng_ix)+s.playout_delay(cng_ix)-send_t(cng_ix),... delaypoints,'nearest',NaN); else delayvalues=[]; end % SUBFUNCTIONS % function y=unwrap_seqno(x) jumps=find(abs((diff(x)-1))>65000); while ~isempty(jumps) n=jumps(1); if x(n+1)-x(n) < 0 % negative jump x(n+1:end)=x(n+1:end)+65536; else % positive jump x(n+1:end)=x(n+1:end)-65536; end jumps=find(abs((diff(x(n+1:end))-1))>65000); end y=x; return;
github
ubiquiti/ubnt_libjingle-main
rtpAnalyze.m
.m
ubnt_libjingle-main/tools_webrtc/matlab/rtpAnalyze.m
7,892
utf_8
46e63db0fa96270c14a0c205bbab42e4
function rtpAnalyze( input_file ) %RTP_ANALYZE Analyze RTP stream(s) from a txt file % The function takes the output from the command line tool rtp_analyze % and analyzes the stream(s) therein. First, process your rtpdump file % through rtp_analyze (from command line): % $ out/Debug/rtp_analyze my_file.rtp my_file.txt % Then load it with this function (in Matlab): % >> rtpAnalyze('my_file.txt') % Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. % % Use of this source code is governed by a BSD-style license % that can be found in the LICENSE file in the root of the source % tree. An additional intellectual property rights grant can be found % in the file PATENTS. All contributing project authors may % be found in the AUTHORS file in the root of the source tree. [SeqNo,TimeStamp,ArrTime,Size,PT,M,SSRC] = importfile(input_file); %% Filter out RTCP packets. % These appear as RTP packets having payload types 72 through 76. ix = not(ismember(PT, 72:76)); fprintf('Removing %i RTCP packets\n', length(SeqNo) - sum(ix)); SeqNo = SeqNo(ix); TimeStamp = TimeStamp(ix); ArrTime = ArrTime(ix); Size = Size(ix); PT = PT(ix); M = M(ix); SSRC = SSRC(ix); %% Find streams. [uSSRC, ~, uix] = unique(SSRC); % If there are multiple streams, select one and purge the other % streams from the data vectors. If there is only one stream, the % vectors are good to use as they are. if length(uSSRC) > 1 for i=1:length(uSSRC) uPT = unique(PT(uix == i)); fprintf('%i: %s (%d packets, pt: %i', i, uSSRC{i}, ... length(find(uix==i)), uPT(1)); if length(uPT) > 1 fprintf(', %i', uPT(2:end)); end fprintf(')\n'); end sel = input('Select stream number: '); if sel < 1 || sel > length(uSSRC) error('Out of range'); end ix = find(uix == sel); % This is where the data vectors are trimmed. SeqNo = SeqNo(ix); TimeStamp = TimeStamp(ix); ArrTime = ArrTime(ix); Size = Size(ix); PT = PT(ix); M = M(ix); SSRC = SSRC(ix); end %% Unwrap SeqNo and TimeStamp. SeqNoUW = maxUnwrap(SeqNo, 65535); TimeStampUW = maxUnwrap(TimeStamp, 4294967295); %% Generate some stats for the stream. fprintf('Statistics:\n'); fprintf('SSRC: %s\n', SSRC{1}); uPT = unique(PT); if length(uPT) > 1 warning('This tool cannot yet handle changes in codec sample rate'); end fprintf('Payload type(s): %i', uPT(1)); if length(uPT) > 1 fprintf(', %i', uPT(2:end)); end fprintf('\n'); fprintf('Packets: %i\n', length(SeqNo)); SortSeqNo = sort(SeqNoUW); fprintf('Missing sequence numbers: %i\n', ... length(find(diff(SortSeqNo) > 1))); fprintf('Duplicated packets: %i\n', length(find(diff(SortSeqNo) == 0))); reorderIx = findReorderedPackets(SeqNoUW); fprintf('Reordered packets: %i\n', length(reorderIx)); tsdiff = diff(TimeStampUW); tsdiff = tsdiff(diff(SeqNoUW) == 1); [utsdiff, ~, ixtsdiff] = unique(tsdiff); fprintf('Common packet sizes:\n'); for i = 1:length(utsdiff) fprintf(' %i samples (%i%%)\n', ... utsdiff(i), ... round(100 * length(find(ixtsdiff == i))/length(ixtsdiff))); end %% Trying to figure out sample rate. fs_est = (TimeStampUW(end) - TimeStampUW(1)) / (ArrTime(end) - ArrTime(1)); fs_vec = [8, 16, 32, 48]; fs = 0; for f = fs_vec if abs((fs_est-f)/f) < 0.05 % 5% margin fs = f; break; end end if fs == 0 fprintf('Cannot determine sample rate. I get it to %.2f kHz\n', ... fs_est); fs = input('Please, input a sample rate (in kHz): '); else fprintf('Sample rate estimated to %i kHz\n', fs); end SendTimeMs = (TimeStampUW - TimeStampUW(1)) / fs; fprintf('Stream duration at sender: %.1f seconds\n', ... (SendTimeMs(end) - SendTimeMs(1)) / 1000); fprintf('Stream duration at receiver: %.1f seconds\n', ... (ArrTime(end) - ArrTime(1)) / 1000); fprintf('Clock drift: %.2f%%\n', ... 100 * ((ArrTime(end) - ArrTime(1)) / ... (SendTimeMs(end) - SendTimeMs(1)) - 1)); fprintf('Sent average bitrate: %i kbps\n', ... round(sum(Size) * 8 / (SendTimeMs(end)-SendTimeMs(1)))); fprintf('Received average bitrate: %i kbps\n', ... round(sum(Size) * 8 / (ArrTime(end)-ArrTime(1)))); %% Plots. delay = ArrTime - SendTimeMs; delay = delay - min(delay); delayOrdered = delay; delayOrdered(reorderIx) = nan; % Set reordered packets to NaN. delayReordered = delay(reorderIx); % Pick the reordered packets. sendTimeMsReordered = SendTimeMs(reorderIx); % Sort time arrays in packet send order. [~, sortix] = sort(SeqNoUW); SendTimeMs = SendTimeMs(sortix); Size = Size(sortix); delayOrdered = delayOrdered(sortix); figure plot(SendTimeMs / 1000, delayOrdered, ... sendTimeMsReordered / 1000, delayReordered, 'r.'); xlabel('Send time [s]'); ylabel('Relative transport delay [ms]'); title(sprintf('SSRC: %s', SSRC{1})); SendBitrateKbps = 8 * Size(1:end-1) ./ diff(SendTimeMs); figure plot(SendTimeMs(1:end-1)/1000, SendBitrateKbps); xlabel('Send time [s]'); ylabel('Send bitrate [kbps]'); end %% Subfunctions. % findReorderedPackets returns the index to all packets that are considered % old compared with the largest seen sequence number. The input seqNo must % be unwrapped for this to work. function reorderIx = findReorderedPackets(seqNo) largestSeqNo = seqNo(1); reorderIx = []; for i = 2:length(seqNo) if seqNo(i) < largestSeqNo reorderIx = [reorderIx; i]; %#ok<AGROW> else largestSeqNo = seqNo(i); end end end %% Auto-generated subfunction. function [SeqNo,TimeStamp,SendTime,Size,PT,M,SSRC] = ... importfile(filename, startRow, endRow) %IMPORTFILE Import numeric data from a text file as column vectors. % [SEQNO,TIMESTAMP,SENDTIME,SIZE,PT,M,SSRC] = IMPORTFILE(FILENAME) Reads % data from text file FILENAME for the default selection. % % [SEQNO,TIMESTAMP,SENDTIME,SIZE,PT,M,SSRC] = IMPORTFILE(FILENAME, % STARTROW, ENDROW) Reads data from rows STARTROW through ENDROW of text % file FILENAME. % % Example: % [SeqNo,TimeStamp,SendTime,Size,PT,M,SSRC] = % importfile('rtpdump_recv.txt',2, 123); % % See also TEXTSCAN. % Auto-generated by MATLAB on 2015/05/28 09:55:50 %% Initialize variables. if nargin<=2 startRow = 2; endRow = inf; end %% Format string for each line of text: % column1: double (%f) % column2: double (%f) % column3: double (%f) % column4: double (%f) % column5: double (%f) % column6: double (%f) % column7: text (%s) % For more information, see the TEXTSCAN documentation. formatSpec = '%5f%11f%11f%6f%6f%3f%s%[^\n\r]'; %% Open the text file. fileID = fopen(filename,'r'); %% Read columns of data according to format string. % This call is based on the structure of the file used to generate this % code. If an error occurs for a different file, try regenerating the code % from the Import Tool. dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, ... 'Delimiter', '', 'WhiteSpace', '', 'HeaderLines', startRow(1)-1, ... 'ReturnOnError', false); for block=2:length(startRow) frewind(fileID); dataArrayBlock = textscan(fileID, formatSpec, ... endRow(block)-startRow(block)+1, 'Delimiter', '', 'WhiteSpace', ... '', 'HeaderLines', startRow(block)-1, 'ReturnOnError', false); for col=1:length(dataArray) dataArray{col} = [dataArray{col};dataArrayBlock{col}]; end end %% Close the text file. fclose(fileID); %% Post processing for unimportable data. % No unimportable data rules were applied during the import, so no post % processing code is included. To generate code which works for % unimportable data, select unimportable cells in a file and regenerate the % script. %% Allocate imported array to column variable names SeqNo = dataArray{:, 1}; TimeStamp = dataArray{:, 2}; SendTime = dataArray{:, 3}; Size = dataArray{:, 4}; PT = dataArray{:, 5}; M = dataArray{:, 6}; SSRC = dataArray{:, 7}; end
github
italogsfernandes/imagens-medicas-2-master
medianFilter.m
.m
imagens-medicas-2-master/toolbox/matlab/medianFilter.m
1,257
utf_8
0b72b3acb2875c12e7bbffaab80de4c7
%% Ronaldo Sena % [email protected] % December 2017 % Use it as you please. If we meet some day, and you think % this stuff was helpful, you can buy me a beer % Shout out to professor Ana Claudia, for the inspiring code % % Median filter implementation using MATLAB's processing toolbox % % [outputImage] = medianFilter(inputImage, windowSize, plotResult) % % Parameters % inputImage: input image (any type) % windowSize: mask size % plotResult: 'yes' or 'no'. Plot input and output images with % respective frequency spectrogram % % Outputs % outputImage: output image (same type as inputImage) % function [outputImage] = medianFilter(inputImage, windowSize, plotResult) %Using processing toolbox outputImage = medfilt2(inputImage,[windowSize windowSize]); %Same type guaranteed outputImage = cast(outputImage,class(inputImage)); if ~exist('plotResult','var') plotResult = 'no'; end if strcmp(plotResult,'yes') figure (); im1 = subplot (1,2,1); imshow (inputImage); title 'Input Image' im2 = subplot (1,2,2); imshow (outputImage); title 'Output Image' linkaxes([im1,im2],'xy') end end
github
italogsfernandes/imagens-medicas-2-master
gaussianFilter.m
.m
imagens-medicas-2-master/toolbox/matlab/gaussianFilter.m
2,259
utf_8
ca917db62ab616e6c91bb43b33d93bf0
%% Ronaldo Sena % [email protected] % December 2017 % Use it as you please. If we meet some day, and you think % this stuff was helpful, you can buy me a beer % % Gaussian filter. Takes an image and the mask radius and % oupts the filtered image in same type % % [outputImage] = gaussianFilter(inputImage,type,radius,order,plotResult) % % Parameters % inputImage------: input image (any type) % type------------: 'low' for low-pass or 'high' for high-pass % radius----------: filter radius % order-----------: radius of ideal filter % plotResult------: 'yes' or 'no'. Plot input and output images with % respective frequency spectrogram % % Outputs % outputImage-----: output image (same type as inputImage) % function [outputImage] = gaussianFilter(inputImage,type, radius,plotResult) [rows, cols] = size (inputImage); if radius > min(rows,cols) radius = min(rows,cols); end [x,y] = meshgrid(-floor(cols/2):floor(cols-1)/2, ... -floor(rows/2):floor(rows-1)/2); %Gaussian filter transfer function % mask = (1./(2*pi*radius^2)).*(exp((-(x.^2+y.^2))./(2.*radius^2))); mask = (exp((-(x.^2+y.^2))./(2.*radius^2))); mask = mask - min(mask(:)); mask = mask ./ max(mask(:)); if strcmp(type,'high') mask = 1 - mask; elseif strcmp(type,'low') mask = mask; end DFT = fft2(inputImage); DFTC = fftshift(DFT); GC = mask .* DFTC; G = ifftshift(GC); outputImage = real(ifft2(G)); %Same type guaranteed outputImage = cast(outputImage,class(inputImage)); if ~exist('plotResult','var') plotResult = 'no'; end if strcmp(plotResult,'yes') figure() imshow(mask) title 'Mask used' figure (); im1 = subplot (2,2,1); imshow (inputImage); title 'Input Image' subplot (2,2,2); imshow (log(1+abs(DFTC)) , [3, 10]); title 'Input Image FFT' im2 = subplot (2,2,3); imshow (outputImage); title 'Output Image' subplot (2,2,4); imshow (log(1+abs(GC)) , [3, 10]); title 'Output Image FFT' linkaxes([im1,im2],'xy') end end
github
italogsfernandes/imagens-medicas-2-master
quadTreeSegmentation.m
.m
imagens-medicas-2-master/toolbox/matlab/quadTreeSegmentation.m
3,239
utf_8
3274f9ad9bc68bf061743b266ae4ddb0
%% Ronaldo Sena % [email protected] % December 2017 % Use it as you please. If we meet some day, and you think % this stuff was helpful, you can buy me a beer % % quadTreeSegmentation performs a tree segmentation on input image. Tree % segmentation segments the input image in squares with similar pixels % % [outputImage] = quadTreeSegmentation(inputImage,plotResult) % % Parameters % inputImage------: input image (any type) % threshold-------: higher value means bigger segmentation % plotResult------: 'yes' or 'no'. Plot input and output images. % % Outputs % outputImage-----: output image (same type as inputImage) % function [outputImage] = quadTreeSegmentation(inputImage,threshold,plotResult) %This is really bad implementation, but in order to do quadtree %segmentation, one must assure that the image is a power of 2. So... if %anyone ever read this, please, do it in a more elegant way. [rows, cols] = size (inputImage); if rows > cols disp('Not square image'); toPad = rows - cols; padding = zeros(rows,round(toPad/2)); inputImage = [padding,inputImage,padding]; elseif cols > rows disp('Not square image'); toPad = cols - rows; padding = zeros(round(toPad/2),cols); inputImage = [padding;inputImage;padding]; end %triming excess [rows, cols] = size (inputImage); if rows>cols inputImage = inputImage(1:end-1,:); elseif cols>rows inputImage = inputImage(:,1:end-1); end %at this point, the image is a square r = rem(sqrt(length(inputImage)),2); %if not a perfect square if r ~= 0 toPad = abs(pow2(nextpow2(length(inputImage))) - length(inputImage)); padding = zeros(ceil(toPad/2),length(inputImage)); inputImage = [padding;inputImage;padding]; padding = zeros(length(inputImage),ceil(toPad/2)); inputImage = [padding,inputImage,padding]; %triming excess [rows, cols] = size (inputImage); if rem(rows,2) ~= 0 inputImage = inputImage(1:end-1,1:end-1); end end %So, I belive this code will run for every image size S = qtdecomp(inputImage,threshold); outputImage = repmat(uint8(0),size(S)); %potential problem: what if the image is really big, like over 9000!! %generate an array with all pow2. Challenge proposed! %hint: pow2(length(inputImage))-1 recursively will do it for dim = [512 256 128 64 32 16 8 4 2 1]; numblocks = length(find(S==dim)); if (numblocks > 0) values = repmat(uint8(1),[dim dim numblocks]); values(2:dim,2:dim,:) = 0; outputImage = qtsetblk(outputImage,S,dim,values); end end outputImage(end,1:end) = 1; outputImage(1:end,end) = 1; if ~exist('plotResult','var') plotResult = 'no'; end if strcmp(plotResult,'yes') figure (); im1 = subplot (1,2,1); imshow (inputImage); title 'Input Image' im2 = subplot (1,2,2); imshow(outputImage,[]); title 'Output Image' linkaxes([im1,im2],'xy') end end
github
italogsfernandes/imagens-medicas-2-master
butterworthFilter.m
.m
imagens-medicas-2-master/toolbox/matlab/butterworthFilter.m
2,213
utf_8
f1d44f573adf23a13c9e0f0e81480220
%% Ronaldo Sena % [email protected] % December 2017 % Use it as you please. If we meet some day, and you think % this stuff was helpful, you can buy me a beer % % Butterworth filter. Takes an image and the mask radius and % oupts the filtered image in same type % % [outputImage] = butterworhtFilter(inputImage,type,radius,order,plotResult) % % Parameters % inputImage------: input image (any type) % type------------: 'low' for low-pass or 'high' for high-pass % radius----------: filter radius % order-----------: radius of ideal filter % plotResult------: 'yes' or 'no'. Plot input and output images with % respective frequency spectrogram % % Outputs % outputImage-----: output image (same type as inputImage) % function [outputImage] = butterworthFilter(inputImage,type, radius,... order,plotResult) [rows, cols] = size (inputImage); if radius > min(rows,cols) radius = min(rows,cols); end [x,y] = meshgrid(-floor(cols/2):floor(cols-1)/2, ... -floor(rows/2):floor(rows-1)/2); %Butterworth transfer function if strcmp(type,'high') mask = 1./(1.+((radius./(x.^2+y.^2).^0.5).^(2*order))); elseif strcmp(type,'low') mask = 1./(1.+(((x.^2+y.^2).^0.5./radius).^(2*order))); end DFT = fft2(inputImage); DFTC = fftshift(DFT); GC = mask .* DFTC; G = ifftshift(GC); outputImage = real(ifft2(G)); %Same type guaranteed outputImage = cast(outputImage,class(inputImage)); if ~exist('plotResult','var') plotResult = 'no'; end if strcmp(plotResult,'yes') figure() imshow(mask) title 'Mask used' figure (); im1 = subplot (2,2,1); imshow (inputImage); title 'Input Image' subplot (2,2,2); imshow (log(1+abs(DFTC)) , [3, 10]); title 'Input Image FFT' im2 = subplot (2,2,3); imshow (outputImage); title 'Output Image' subplot (2,2,4); imshow (log(1+abs(GC)) , [3, 10]); title 'Output Image FFT' linkaxes([im1,im2],'xy') end end
github
italogsfernandes/imagens-medicas-2-master
idealFilter.m
.m
imagens-medicas-2-master/toolbox/matlab/idealFilter.m
2,287
utf_8
73e9c1c7813ad2acb176585d59cb8aab
%% Ronaldo Sena % [email protected] % December 2017 % Use it as you please. If we meet some day, and you think % this stuff was helpful, you can buy me a beer % Shout out to professor Ana Claudia, for the inspiring code % % Ideal low pass filter. Takes an image and the mask radius and % oupts the filtered image in same type % % [outputImage] = idealFilter(inputImage, type, radius, plotResult) % % Parameters % inputImage: input image (any type) % type: 'low' for low-pass or 'high' for high-pass % radius: radius of ideal filter % plotResult: 'yes' or 'no'. Plot input and output images with % respective frequency spectrogram % % Outputs % outputImage: output image (same type as inputImage) % function [outputImage] = idealFilter(inputImage, type, radius, plotResult) [rows, cols] = size (inputImage); if radius > min(rows,cols) radius = min(rows,cols); end mask = zeros(rows,cols); %'Drawing' a circle radius = radius^2; centerX = rows/2; centerY = cols/2; for i = 1 : rows for j = 1 : cols dx = i - centerX; dx = dx^2; dy = j - centerY; dy = dy^2; if strcmp(type,'low') mask(i, j) = dx + dy <= radius; elseif strcmp(type,'high') mask(i, j) = dx + dy >= radius; end end; end; DFT = fft2(inputImage); DFTC = fftshift(DFT); GC = mask .* DFTC; G = ifftshift(GC); outputImage = real(ifft2(G)); %Same type guaranteed outputImage = cast(outputImage,class(inputImage)); if ~exist('plotResult','var') plotResult = 'no'; end if strcmp(plotResult,'yes') figure() imshow(mask) title 'Mask used' figure (); im1 = subplot (2,2,1); imshow (inputImage); title 'Input Image' subplot (2,2,2); imshow (log(1+abs(DFTC)) , [3, 10]); title 'Input Image FFT' im2 = subplot (2,2,3); imshow (outputImage); title 'Output Image' subplot (2,2,4); imshow (log(1+abs(GC)) , [3, 10]); title 'Output Image FFT' linkaxes([im1,im2],'xy') end end
github
italogsfernandes/imagens-medicas-2-master
k_means.m
.m
imagens-medicas-2-master/toolbox/matlab/k_means.m
1,591
utf_8
0946d0bdb704d4adc3796ad0a8efb53e
%% Ronaldo Sena % [email protected] % December 2017 % Use it as you please. If we meet some day, and you think % this stuff was helpful, you can buy me a beer % This script is the one mentioned during the Computerphile's Image % Segmentation video by Dr. Mike Pound. % % Takes a gray-scale input image and performs k-means algorithm on it. % % [outputImage] = averageFilter(inputImage, windowSize, plotResult) % % Parameters % inputImage: input image (any type) % classes: split the image in that many classes % plotResult: 'yes' or 'no'. % % Outputs % outputImage: output image (same type as inputImage) % % Note: maximum iterations was set to 100, so don't try to run this using % more than a few classes. The output won't be accurate. % function [ outputImage ] = k_means( inputImage, classes, plotResult ) im=inputImage; imflat = double(reshape(im, size(im,1) * size(im,2), 1)); [kIDs] = kmeans(imflat,classes, 'Display', 'iter', 'MaxIter', 100,... 'Start', 'sample'); outputImage = reshape(uint8(kIDs), size(im,1), size(im,2)); outputImage = histeq(outputImage); %Same type guaranteed outputImage = cast(outputImage,class(inputImage)); if ~exist('plotResult','var') plotResult = 'no'; end if strcmp(plotResult,'yes') figure (); im1 = subplot (1,2,1); imshow (inputImage); title 'Input Image' im2 = subplot (1,2,2); imshow (outputImage); title 'Output Image' linkaxes([im1,im2],'xy') end end
github
italogsfernandes/imagens-medicas-2-master
geoAverageFilter.m
.m
imagens-medicas-2-master/toolbox/matlab/geoAverageFilter.m
1,480
utf_8
30906f3ec1bbcea31846b337cbd915aa
%% Ronaldo Sena % [email protected] % December 2017 % Use it as you please. If we meet some day, and you think % this stuff was helpful, you can buy me a beer % Shout out to professor Ana Claudia, for the inspiring code. % Also to Steve Eddins @ Mathworks! % % Geometric average filter implementation using MATLAB's processing toolbox % % [outputImage] = geoAverageFilter(inputImage, windowSize, plotResult) % % Parameters % inputImage: input image (any type) % windowSize: mask size % plotResult: 'yes' or 'no'. Plot input and output images with % respective frequency spectrogram % % Outputs % outputImage: output image (same type as inputImage) % function [outputImage] = geoAverageFilter(inputImage, windowSize, plotResult) %Using processing toolbox %For geometric average, it requires double type image = double(inputImage); geo_mean = imfilter(log(image), windowSize, 'replicate'); geo_mean = exp(geo_mean); outputImage = geo_mean .^ (1/numel(windowSize)); %Same type guaranteed outputImage = cast(outputImage,class(inputImage)); if ~exist('plotResult','var') plotResult = 'no'; end if strcmp(plotResult,'yes') figure (); im1 = subplot (1,2,1); imshow (inputImage); title 'Input Image' im2 = subplot (1,2,2); imshow (outputImage); title 'Output Image' linkaxes([im1,im2],'xy') end end
github
italogsfernandes/imagens-medicas-2-master
averageFilter.m
.m
imagens-medicas-2-master/toolbox/matlab/averageFilter.m
1,290
utf_8
a1c9d731983b078ec2bfc1447531b091
%% Ronaldo Sena % [email protected] % December 2017 % Use it as you please. If we meet some day, and you think % this stuff was helpful, you can buy me a beer % Shout out to professor Ana Claudia, for the inspiring code % % Average filter implementation using MATLAB's processing toolbox % % [outputImage] = averageFilter(inputImage, windowSize, plotResult) % % Parameters % inputImage: input image (any type) % windowSize: Mask size % plotResult: 'yes' or 'no'. Plot input and output images with % respective frequency spectrogram % % Outputs % outputImage: output image (same type as inputImage) % function [outputImage] = averageFilter(inputImage, windowSize, plotResult) %Using processing toolbox h = ones(windowSize,windowSize) / windowSize^2; outputImage = imfilter(inputImage,h); %Same type guaranteed outputImage = cast(outputImage,class(inputImage)); if ~exist('plotResult','var') plotResult = 'no'; end if strcmp(plotResult,'yes') figure (); im1 = subplot (1,2,1); imshow (inputImage); title 'Input Image' im2 = subplot (1,2,2); imshow (outputImage); title 'Output Image' linkaxes([im1,im2],'xy') end end
github
italogsfernandes/imagens-medicas-2-master
minimumFilter.m
.m
imagens-medicas-2-master/toolbox/matlab/minimumFilter.m
1,253
utf_8
dc2c5c1b743521123a571dd059341a37
%% Ronaldo Sena % [email protected] % December 2017 % Use it as you please. If we meet some day, and you think % this stuff was helpful, you can buy me a beer % Shout out to professor Ana Claudia, for the inspiring code % % Minimum filter implementation using MATLAB's processing toolbox % % [outputImage] = maximumFilter(inputImage, windowSize, plotResult) % % Parameters % inputImage: input image (any type) % windowSize: mask size % plotResult: 'yes' or 'no'. Plot input and output images with % respective frequency spectrogram % % Outputs % outputImage: output image (same type as inputImage) % function [outputImage] = minimumFilter(inputImage, windowSize, plotResult) %Using processing toolbox outputImage = imerode(inputImage, true(windowSize)); %Same type guaranteed outputImage = cast(outputImage,class(inputImage)); if ~exist('plotResult','var') plotResult = 'no'; end if strcmp(plotResult,'yes') figure (); im1 = subplot (1,2,1); imshow (inputImage); title 'Input Image' im2 = subplot (1,2,2); imshow (outputImage); title 'Output Image' linkaxes([im1,im2],'xy') end end
github
italogsfernandes/imagens-medicas-2-master
maximumFilter.m
.m
imagens-medicas-2-master/toolbox/matlab/maximumFilter.m
1,254
utf_8
bbdd97b8ef7a62d5967dfd13de04083f
%% Ronaldo Sena % [email protected] % December 2017 % Use it as you please. If we meet some day, and you think % this stuff was helpful, you can buy me a beer % Shout out to professor Ana Claudia, for the inspiring code % % Maximum filter implementation using MATLAB's processing toolbox % % [outputImage] = maximumFilter(inputImage, windowSize, plotResult) % % Parameters % inputImage: input image (any type) % windowSize: mask size % plotResult: 'yes' or 'no'. Plot input and output images with % respective frequency spectrogram % % Outputs % outputImage: output image (same type as inputImage) % function [outputImage] = maximumFilter(inputImage, windowSize, plotResult) %Using processing toolbox outputImage = imdilate(inputImage, true(windowSize)); %Same type guaranteed outputImage = cast(outputImage,class(inputImage)); if ~exist('plotResult','var') plotResult = 'no'; end if strcmp(plotResult,'yes') figure (); im1 = subplot (1,2,1); imshow (inputImage); title 'Input Image' im2 = subplot (1,2,2); imshow (outputImage); title 'Output Image' linkaxes([im1,im2],'xy') end end
github
italogsfernandes/imagens-medicas-2-master
insertNoise.m
.m
imagens-medicas-2-master/toolbox/matlab/insertNoise.m
4,556
utf_8
77f090eeef512021c89243525ec982d0
%% Ronaldo Sena % [email protected] % December 2017 % Use it as you please. If we meet some day, and you think % this stuff was helpful, you can buy me a beer % Shout out to professor Ana Claudia, for the inspiring code % % Ideal high pass filter. Takes in an image and a mask size and % oupts the filtered image in same type as original one % % [outputImage] = idealHighPass(inputImage, radius, plotResult) % % Parameters % inputImage: Input image (any type) % noiseType: Select one of % 'Uniform' % 'Gaussian' % 'Rayleight' % 'Exponential' % 'Gamma' % 'SaltAndPepper' % par: Optional. Cell array with noise specific parameters % plotResult: Optional. 'yes' or 'no'. Plot input and output images with % respective frequency spectrogram % % Outputs % outputImage: output image (same type as inputImage) % % Use example: % Insert 2% of noise in the image, (1% salt and 1% pepper) % outputImage = insertNoise(inputImage, 'SaltAndPepper', 'yes',{0.01}); % % By default, insert 10% of noise in the image, (5% salt and 5% pepper) % outputImage = insertNoise(inputImage, 'SaltAndPepper'); % function [outputImage] = insertNoise(inputImage, noiseType, plotResult, par) %Same type guaranteed outputImage = inputImage; outputImage = cast(outputImage,class(inputImage)); switch noiseType case 'Uniform' if ~exist('par','var') par = {0,80}; end try uniformNoise = unifrnd(par{1},par{2},size(inputImage)); uniformNoise = cast(uniformNoise,class(inputImage)); outputImage = inputImage + uniformNoise; catch disp('Invalid noise parameters'); end case 'Gaussian' if ~exist('par','var') par = {5,30}; end try gaussianNoise = normrnd(par{1},par{2},size(inputImage)); gaussianNoise = cast(gaussianNoise,class(inputImage)); outputImage = inputImage + gaussianNoise; catch disp('Invalid noise parameters'); end case 'Rayleight' if ~exist('par','var') par = {20}; end try rayleightNoise = raylrnd(par{1},size(inputImage)); rayleightNoise = cast(rayleightNoise,class(inputImage)); outputImage = inputImage + rayleightNoise; catch disp('Invalid noise parameters'); end case 'Exponential' if ~exist('par','var') par = {5}; end try exponentialNoise = exprnd(par{1},size(inputImage)); exponentialNoise = cast(exponentialNoise,class(inputImage)); outputImage = inputImage + exponentialNoise; catch disp('Invalid noise parameters'); end case 'Gamma' if ~exist('par','var') par = {1,8}; end try gammalNoise = gamrnd(par{1},par{2},size(inputImage)); gammalNoise = cast(gammalNoise,class(inputImage)); outputImage = inputImage + gammalNoise; catch disp('Invalid noise parameters'); end case 'SaltAndPepper' if ~exist('par','var') par = {0.05}; end try SaltAndPepperNoise = rand(size(inputImage)); pepperProportion = par{1}; saltProportion = 1 - pepperProportion; pepper = find(SaltAndPepperNoise <= pepperProportion); outputImage(pepper) = 0; salt = find(SaltAndPepperNoise >= saltProportion); %Max value of variable type outputImage(salt) = intmax(class(inputImage)); catch disp('Invalid noise parameters'); end otherwise disp('Not valid type'); end if ~exist('plotResult','var') plotResult = 'no'; end if strcmp(plotResult,'yes') figure (); im1 = subplot (1,2,1); imshow (inputImage); title 'Input Image' im2 = subplot (1,2,2); imshow (outputImage); title 'Output Image' linkaxes([im1,im2],'xy') end end
github
italogsfernandes/imagens-medicas-2-master
IM2_app.m
.m
imagens-medicas-2-master/Apps/mIM2_app/IM2_app.m
13,520
utf_8
80c70f2ad2b7d9634737a578730ca7fc
%% Ronaldo Sena % [email protected] % December 2017 % Use it as you please. If we meet some day, and you think % this stuff was helpful, you can buy me a beer % Shout out to professor Ana Claudia, for the inspiring code % % GUI to process medical images % % % CONFIGURAÇÕES INCIAIS % % function varargout = IM2_app(varargin) % IM2_APP MATLAB code for IM2_app.fig % IM2_APP, by itself, creates a new IM2_APP or raises the existing % singleton*. % % H = IM2_APP returns the handle to a new IM2_APP or the handle to % the existing singleton*. % % IM2_APP('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in IM2_APP.M with the given input arguments. % % IM2_APP('Property','Value',...) creates a new IM2_APP or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before IM2_app_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to IM2_app_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help IM2_app % Last Modified by GUIDE v2.5 25-Dec-2017 21:40:39 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @IM2_app_OpeningFcn, ... 'gui_OutputFcn', @IM2_app_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before IM2_app is made visible. function IM2_app_OpeningFcn(hObject, eventdata, handles, varargin) global raio ordem limiarArvore limiarCrescimento limiarKmeans ... mascara seeds comparar segmentar filtrar Kclasses seedsInv; handles.output = hObject; % set(handles.panel_filtros,'visible','off') % set(handles.panel_segmentacao,'visible','on') raio = str2double(handles.text_raio.String); ordem = str2double(handles.text_ordem.String); comparar = 0; segmentar = 0; filtrar = 1; limiarArvore = 0.27; limiarCrescimento = 0.27; limiarKmeans = 0.27; mascara = str2double(handles.text_mascara.String); Kclasses = 3; seeds = []; seedsInv = []; handles.panel_filtros.Visible = 'on'; handles.panel_segmentacao.Visible = 'off'; % Caminho a partir desta pasta para a pasta onde estão as imagens % utilizadas addpath('../../toolbox/matlab') % Update handles structure guidata(hObject, handles); function varargout = IM2_app_OutputFcn(hObject, eventdata, handles) varargout{1} = handles.output; function edit2_CreateFcn(hObject, eventdata, handles) if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % % % CONFIGURAÇÕES INCIAIS % % % % % INSERIR RUIDOS % % function pushbutton_salEpimenta_Callback(hObject, eventdata, handles) global imagemSaida comparar; if comparar == 0 plotResult = 'no'; else plotResult = 'yes'; end imagemSaida = insertNoise(imagemSaida,'SaltAndPepper',plotResult); axes(handles.axes_saida); imshow(imagemSaida); function pushbutton_gamma_Callback(hObject, eventdata, handles) global imagemSaida comparar; if comparar == 0 plotResult = 'no'; else plotResult = 'yes'; end imagemSaida = insertNoise(imagemSaida,'Gamma',plotResult); axes(handles.axes_saida); imshow(imagemSaida); function pushbutton_exponential_Callback(hObject, eventdata, handles) global imagemSaida comparar; if comparar == 0 plotResult = 'no'; else plotResult = 'yes'; end imagemSaida = insertNoise(imagemSaida,'Exponential',plotResult); axes(handles.axes_saida); imshow(imagemSaida); function pushbutton_rayleight_Callback(hObject, eventdata, handles) global imagemSaida comparar; if comparar == 0 plotResult = 'no'; else plotResult = 'yes'; end imagemSaida = insertNoise(imagemSaida,'Rayleight',plotResult); axes(handles.axes_saida); imshow(imagemSaida); function pushbutton_gaussiano_Callback(hObject, eventdata, handles) global imagemSaida comparar; if comparar == 0 plotResult = 'no'; else plotResult = 'yes'; end imagemSaida = insertNoise(imagemSaida,'Gaussian',plotResult); axes(handles.axes_saida); imshow(imagemSaida); function pushbutton_uniforme_Callback(hObject, eventdata, handles) global imagemSaida comparar; if comparar == 0 plotResult = 'no'; else plotResult = 'yes'; end imagemSaida = insertNoise(imagemSaida,'Uniform',plotResult); axes(handles.axes_saida); imshow(imagemSaida); % % % INSERIR RUIDOS % % % % % FILTROS ESPACIAIS % % function pushbutton_media_Callback(hObject, eventdata, handles) global imagemSaida comparar mascara; if comparar == 0 plotResult = 'no'; else plotResult = 'yes'; end [imagemSaida] = averageFilter(imagemSaida, mascara,plotResult); axes(handles.axes_saida); imshow(imagemSaida); function pushbutton_mediana_Callback(hObject, eventdata, handles) global imagemSaida comparar mascara; if comparar == 0 plotResult = 'no'; else plotResult = 'yes'; end [imagemSaida] = medianFilter(imagemSaida, mascara,plotResult); axes(handles.axes_saida); imshow(imagemSaida); function pushbutton_minimo_Callback(hObject, eventdata, handles) global imagemSaida comparar mascara; if comparar == 0 plotResult = 'no'; else plotResult = 'yes'; end [imagemSaida] = minimumFilter(imagemSaida, mascara,plotResult); axes(handles.axes_saida); imshow(imagemSaida); function pushbutton_maximo_Callback(hObject, eventdata, handles) global imagemSaida comparar mascara; if comparar == 0 plotResult = 'no'; else plotResult = 'yes'; end [imagemSaida] = maximumFilter(imagemSaida, mascara,plotResult); axes(handles.axes_saida); imshow(imagemSaida); % % % FILTROS ESPACIAIS % % % % % CONFIGURAÇÕES % % function text_mascara_Callback(hObject, eventdata, handles) global mascara; mascara = str2double(get(hObject,'String')); function text_mascara_CreateFcn(hObject, eventdata, handles) if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function pushbutton_carregar_Callback(hObject, eventdata, handles) global imagemSaida imagemEntrada; [FileName,PathName] = uigetfile({'*.*', 'All Files (*.*)'}, ... 'Escolha uma imagem'); imagemEntrada = imread([PathName FileName]); imagemSaida = imagemEntrada; axes(handles.axes_saida); imshow(imagemSaida); axes(handles.axes_original); imshow(imagemEntrada); linkaxes([handles.axes_original,handles.axes_saida],'xy') function pushbutton_reset_Callback(hObject, eventdata, handles) global imagemEntrada imagemSaida seeds seedsInv; imagemSaida = imagemEntrada; axes(handles.axes_saida); cla axes(handles.axes_original); cla axes(handles.axes_saida); imshow(imagemSaida); axes(handles.axes_original); imshow(imagemEntrada); seeds = []; seedsInv = []; function radiobutton_filtragem_Callback(hObject, eventdata, handles) if get(hObject,'Value') handles.panel_segmentacao.Visible = 'off'; handles.panel_filtros.Visible = 'on'; end function radiobutton_segmentacao_Callback(hObject, eventdata, handles) if get(hObject,'Value') set(handles.panel_filtros,'visible','off') set(handles.panel_segmentacao,'visible','on') end function radiobutton_comparar_Callback(hObject, eventdata, handles) global comparar; comparar = get(hObject,'Value'); % % % CONFIGURAÇÕES % % % % % FILTROS DE FREQUÊNCIA % % function pushbutton_ideal_Callback(hObject, eventdata, handles) global raio imagemSaida comparar; if comparar == 0 plotResult = 'no'; else plotResult = 'yes'; end if handles.radiobutton_passaAlta.Value tipo = 'high'; elseif handles.radiobutton_passaBaixa.Value tipo = 'low'; end [imagemSaida] = idealFilter(imagemSaida, tipo, raio, plotResult); axes(handles.axes_saida); imshow(imagemSaida); function pushbutton_butter_Callback(hObject, eventdata, handles) global raio ordem imagemSaida comparar; if comparar == 0 plotResult = 'no'; else plotResult = 'yes'; end if handles.radiobutton_passaAlta.Value tipo = 'high'; elseif handles.radiobutton_passaBaixa.Value tipo = 'low'; end [imagemSaida] = butterworthFilter(imagemSaida,tipo,raio,ordem,plotResult); axes(handles.axes_saida); imshow(imagemSaida); function pushbutton_gauss_Callback(hObject, eventdata, handles) global raio imagemSaida comparar; if comparar == 0 plotResult = 'no'; else plotResult = 'yes'; end if handles.radiobutton_passaAlta.Value tipo = 'high'; elseif handles.radiobutton_passaBaixa.Value tipo = 'low'; end [imagemSaida] = gaussianFilter(imagemSaida,tipo,raio,plotResult); axes(handles.axes_saida); imshow(imagemSaida); function text_raio_Callback(hObject, eventdata, handles) global raio; raio = str2double(get(hObject,'String')); function text_raio_CreateFcn(hObject, eventdata, handles) if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function text_ordem_Callback(hObject, eventdata, handles) global ordem; ordem = str2double(get(hObject,'String')); function text_ordem_CreateFcn(hObject, eventdata, handles) if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % % % FILTROS DE FREQUÊNCIA % % % % % SEGMENTAÇÃO % % % --- Executes on button press in pushbutton_lancarSementes. function pushbutton_lancarSementes_Callback(hObject, eventdata, handles) global seeds seedsInv imagemSaida imagemMarcada; imagemMarcada = []; % Hint: get(hObject,'Value') returns toggle state of checkbox_sementes p = ginput(1); y = round(axes2pix(size(imagemSaida, 2), get(handles.axes_original.Children, 'XData'), p(2))); x = round(axes2pix(size(imagemSaida, 1), get(handles.axes_original.Children, 'YData'), p(1))); seeds = [seeds; [x y]]; disp('xablaus'); imagemMarcada = insertMarker(imagemSaida,seeds); % inverte para proxima funcao seedsInv = [seedsInv; [y x]]; axes(handles.axes_saida); imshow(imagemMarcada); function pushbutton_arvore_Callback(hObject, eventdata, handles) global imagemSaida limiarArvore; quadTreeSegmentation(imagemSaida',limiarArvore,'yes'); function pushbutton_crescimento_Callback(hObject, eventdata, handles) global seedsInv imagemSaida limiar; limiarCrescimento = round(limiar*255); % imagemMarcada = handles.axes_input.Children.CData; axes(handles.axes_saida); cla imshow(imagemSaida); for i=1:size(seedsInv,1); poly = regionGrowing(imagemSaida, [seedsInv(i,:) 1], limiarCrescimento); hold on plot(poly(:,1), poly(:,2), 'LineWidth', 2) end hold off function pushbutton_kmeans_Callback(hObject, eventdata, handles) global Kclasses imagemSaida; k_means(imagemSaida,Kclasses,'yes'); function slider_arvore_Callback(hObject, eventdata, handles) global limiarArvore; limiarArvore = get(hObject,'Value'); set(handles.label_arvore,'String',num2str(limiarArvore)); function slider_arvore_CreateFcn(hObject, eventdata, handles) if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end function slider_kmeans_Callback(hObject, eventdata, handles) global limiarKmeans; limiarKmeans = get(hObject,'Value'); set(handles.label_kmeans,'String',num2str(limiarKmeans)); function slider_kmeans_CreateFcn(hObject, eventdata, handles) if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end function slider_crescimento_Callback(hObject, eventdata, handles) global limiarCrescimento; limiarCrescimento = get(hObject,'Value'); set(handles.label_crescimento,'String',num2str(limiarCrescimento)); function slider_crescimento_CreateFcn(hObject, eventdata, handles) if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end function text_classes_Callback(hObject, eventdata, handles) global Kclasses; Kclasses = str2double(get(hObject,'String')); function text_classes_CreateFcn(hObject, eventdata, handles) if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % % % SEGMENTAÇÃO % % function pushbutton_histograma_Callback(hObject, eventdata, handles) global imagemEntrada imagemSaida; figure (); im1 = subplot (1,2,1); imhist(imagemEntrada); title 'Input Image' im2 = subplot (1,2,2); imhist(imagemSaida); title 'Output Image' linkaxes([im1,im2],'xy') function pushbutton_equalizar_Callback(hObject, eventdata, handles) global imagemSaida; imagemSaida = histeq(imagemSaida); axes(handles.axes_saida); imshow(imagemSaida);
github
namanUIUC/NonlinearComponentAnalysis-master
swap.m
.m
NonlinearComponentAnalysis-master/src/KPCA-projectcode/swap.m
203
utf_8
6a8e44f4608a6dbb307c50c538b7eb4e
%%FUNCTION USED TO SWAP WHILE SORTING (Not relevent for pca) function x = swap(x,i,j) % Swap x(i) and x(j) % Note: In practice, x should be passed by reference val = x(i); x(i) = x(j); x(j) = val; end
github
namanUIUC/NonlinearComponentAnalysis-master
kpca_code.m
.m
NonlinearComponentAnalysis-master/src/KPCA-projectcode/kpca_code.m
2,884
utf_8
defa54c6d19a8a59ee48eaee69be9ead
clear all; clc; % loading data load('usps_all') % TEST DATA : M(observation/sample points) x N(features/dimensions) X_test = double(data(:, 1:800, 1)'); % Center Data mu = mean(X_test); X_centered = bsxfun(@minus, X_test, mu); % Define kernel kernel = 'linear'; n= 3; %Def: M and N M = size(X_centered,1); N = size(X_centered,2); % Create matrix K switch kernel case 'poly' K = (X_centered*X_centered').^n; case 'linear' K = X_centered*X_centered'; case 'gauss' % Using the Gaussian Kernel to construct the Kernel K % K(x,y) = -exp((x-y)^2/(sigma)^2) % K is a symmetric Kernel K = zeros(M,M); for row = 1:(M) for col = 1:row temp = sum(((X_centered(row,:) - X_centered(col,:)).^2)); K(row,col) = exp(-temp); % sigma = 1 end end K = K + K'; % Dividing the diagonal element by 2 since it has been added to itself for row = 1:(M) K(row,row) = K(row,row)/2; end otherwise error('Unknown kernel function.'); end % Centering of K in F space one_mat = ones(size(K))./M; K_center = K - one_mat*K - K*one_mat + one_mat*K*one_mat; % Eigen values and vectors for K_centered (i.e. lamda.M and alpha) [V_K,D_K] = eig(K_center); eigval_K = real(diag(D_K)); eigvec_K = real(V_K); % Sorting Eigen Vectors w.r.t Eigen Values of K % (Bubble sort) Sorted_eigval_K=eigval_K; Sorted_eigvec_K=eigvec_K; n = length(Sorted_eigval_K); while (n > 0) % Iterate through x nnew = 0; for i = 2:n % Swap elements in wrong order if (Sorted_eigval_K(i) > Sorted_eigval_K(i - 1)) Sorted_eigval_K = swap(Sorted_eigval_K,i,i - 1); Sorted_eigvec_K(:,[i-1 i]) = Sorted_eigvec_K(:,[i i-1]); nnew = i; end end n = nnew; end % Calculate lamda lamda = (Sorted_eigval_K)./M; % Select 99 percent of the cumulative eigen values (dim = dimensions k) dim = 0; percent = 0; for indx=1:size(lamda) if percent < 0.90 dim = dim + 1; else break; end percent = sum(lamda(1:indx))/sum(lamda); end % Normalize all the alpha (i.e. normalizing all significant sorted eigen vectors of K ) lamda = lamda(1:dim); alpha = Sorted_eigvec_K(:,1:dim); for indx=1:dim alpha(:,indx)=alpha(:,indx)./dot(alpha(:,indx),alpha(:,indx)); alpha(:,indx)=alpha(:,indx)./sqrt(lamda(indx)); end % Project data data_out = zeros(dim,M); for count = 1:dim data_out(count,:) = alpha(:,count)'*K_center'; end data_out = data_out'; % FUNCTION USED TO SWAP WHILE SORTING (Not relevent for pca) function x = swap(x,i,j) % Swap x(i) and x(j) % Note: In practice, x should be passed by reference val = x(i); x(i) = x(j); x(j) = val; end
github
andrewwarrington/vesicle-cnn-2-master
pr_evaluate_voxel_logit.m
.m
vesicle-cnn-2-master/evaluation/pr_evaluate_voxel_logit.m
3,951
utf_8
1a0b911f8f934aa2eefb05476c76396d
function [metrics] = pr_evaluate_voxel_logit(path, h5File, channel, pp, fileOut) % Takes inputs of the predicted volume (matrix or location) and the truth % volume (matrix or location) and sweeps through thresholds of probability, % evalating F1 (and F1 related metrics) at each bin. Then saves this data % to saveloc. evaluation_bins = 500; test = false; val = false; train = false; state = ''; detectFileOnes = h5read(strcat(path, h5File), strcat('/', channel, '/ones')); detectFileZeros = h5read(strcat(path, h5File), strcat('/', channel, '/zeros')); sDataTest = h5read(strcat(path, h5File), strcat('/', channel, '/truth')); % Are we test? in which case load the preoptimized. if contains(h5File, 'test') % Load optimized settings. load(strcat(path, '/', channel, '_voxel_metrics_optimized_val.mat')) metrics.thresholds = thresholds; test = true; state = 'test'; evaluation_bins = 1; echo_to_file(sprintf('Beginning application of optimized parameters to test set (pr_evaluation_voxel_logit.m; test).\n'), fileOut); else metrics.thresholds = linspace(-10,10,evaluation_bins); echo_to_file(sprintf('Beginning voxel-level hyperparameter optimization (pr_evaluation_voxel_logit.m; val).\n'), fileOut); if contains(h5File, 'train') train = true; state = 'train'; else val = true; state = 'val'; end end st = tic; precision = zeros(evaluation_bins,1); recall = zeros(evaluation_bins,1); TP = zeros(evaluation_bins,1); FP = zeros(evaluation_bins,1); FN = zeros(evaluation_bins,1); F1 = zeros(evaluation_bins,1); parfor i = 1:evaluation_bins metricsTemp = pr_voxel(detectFileOnes>detectFileZeros+metrics.thresholds(i), sDataTest); precision(i) = metricsTemp.precision; recall(i) = metricsTemp.recall; TP(i) = metricsTemp.TP; FP(i) = metricsTemp.FP; FN(i) = metricsTemp.FN; F1(i) = metricsTemp.F1; end metrics.precision = precision; metrics.recall = recall; metrics.TP = TP; metrics.FP = FP; metrics.FN = FN; metrics.F1 = F1; t = toc(st); save(strcat(path, '/', channel, '_voxel_metrics_full_', state), 'metrics') if val echo_to_file(sprintf('Voxel-level hyperparameter optimization complete, time elapsed: %0.2f.\n', t), fileOut); [~, optimalBin] = max(metrics.F1); thresholds = [metrics.thresholds(optimalBin)]; precision = [metrics.precision(optimalBin)]; recall = [metrics.recall(optimalBin)]; TP = [metrics.TP(optimalBin)]; FP = [metrics.FP(optimalBin)]; FN = [metrics.FN(optimalBin)]; F1 = [metrics.F1(optimalBin)]; echo_to_file(sprintf('Validation complete.\n F1: %f\n Precision: %f\n Recall: %f\n Threshold %f\n\n\n',F1,precision,recall, thresholds), fileOut); save(strcat(path, '/', channel, '_voxel_metrics_optimized_val'), 'thresholds', 'precision', 'recall', 'F1'); end if test [~, optimalBin] = max(metrics.F1); thresholds = [metrics.thresholds(optimalBin)]; precision = [metrics.precision(optimalBin)]; recall = [metrics.recall(optimalBin)]; TP = [metrics.TP(optimalBin)]; FP = [metrics.FP(optimalBin)]; FN = [metrics.FN(optimalBin)]; F1 = [metrics.F1(optimalBin)]; echo_to_file(sprintf('Application to test set complete.\n F1: %f\n Precision: %f\n Recall: %f\n Threshold %f\n\n\n',F1,precision,recall, thresholds), fileOut); end function [metrics] = pr_voxel(detectVol, truthVol) % Adapted from W. Gray Roncal - 02.12.2015 % Feedback welcome and encouraged. Let's make this better! % Other options (size filters, morphological priors, etc. can be added. % TP = sum(sum(sum((detectVol ~= 0) & (truthVol ~= 0)))); FP = sum(sum(sum((detectVol ~= 0) & (truthVol == 0)))); FN = sum(sum(sum((detectVol == 0) & (truthVol ~= 0)))); metrics.precision = TP./(TP+FP); metrics.recall = TP./(TP+FN); metrics.TP = TP; metrics.FP = FP; metrics.FN = FN; metrics.F1 = 2*metrics.precision*metrics.recall/(metrics.precision+metrics.recall);
github
andrewwarrington/vesicle-cnn-2-master
bwdistsc1.m
.m
vesicle-cnn-2-master/Prior_art/vesicle/packages/vesiclerf/tools/bwdistsc/bwdistsc1.m
19,630
utf_8
003a8729f0ccdb35a49d8429ea605c64
function D=bwdistsc1(bw,aspect,maxval) % D=BWDISTSC1(BW,ASPECT,MAXVAL) % BWDISTSC1 computes Euclidean distance transform of a binary 3D image % BW out to a specified value MAXVAL. This allows accelerating the % calculations in some cases with strongly nonconvex geometries, if the % distance transform only needs to be calculated out to a specific value. % The distance transform assigns to each pixel in BW a number that is % the distance from that pixel to the nearest nonzero pixel in BW. BW may % be a 3D array or a cell array of 2D slices. BWDISTSC1 can also accept % regular 2D images. ASPECT is a 3-component vector defining the aspect % ratios to use when calculating the distances in BW. If ASPECT is not set, % isotropic aspect ratio [1 1 1] is used. If MAXVAL is specified, the % distance transform will be only calculated out to the value MAXVAL. % % BWDISTSC1 uses the same algorithm as BWDISTSC but without forward- % backward scan. % % BWDISTSC1 tries to use MATLAB's bwdist for 2D scans if possible, which % is faster. Otherwise BWDISTSC1 will use its own algorithm for 2D scans. % Also incorporates the fix for Matlab version detection bug in the % original BWDISTSC contributed by Tudor Dima. % %(c) Yuriy Mishchenko HHMI JFRC Chklovskii Lab JUL 2007 % This function written Yuriy Mishchenko JUL 2011 % This function updated Yuriy Mishchenko SEP 2013 % This code is free for use or modifications, just please give credit where % appropriate. If you modify the code or fix bugs, please drop me a message % at [email protected]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Scan algorithms below use the following Lema: % % LEMA: let F(X,z) be lower envelope of a family of parabola: % % F(X,z)=min_{k} [G(X)+(z-k)^2]; % % and let H_k(X,z)=A(X)+(z-k)^2 be a parabola. % % Then for H_k(X,z)==F(X,z) at each X there exist at most % % two solutions k1<k2 such that H_k12(X,z)=F(X,z), and % % H_k(X,z)<F(X,z) is restricted to at most k1<k2. % % Here X is any-dimensional coordinate. % % % % Thus, simply scan away from any z such that H_k(X,z)<F(X,z) % % in either direction as long as H_k(X,z)<F(X,z) and update % % F(X,z). Note that need to properly choose starting point; % % starting point is any z such that H_k(X,z)<F(X,z); z==k is % % usually, but not always the starting point! % % % % Citation: % % Mishchenko Y. (2013) A function for fastcomputation of large % % discrete Euclidean distance transforms in three or more % % dimensions in Matlab. Signal, Image and Video Processing % % DOI: 10.1007/s11760-012-0419-9. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parse inputs if(nargin<2 || isempty(aspect)) aspect=[1 1 1]; end if(nargin<3 || isempty(maxval)) maxval=Inf; end % establish (once) whether we will use the "regionprops"; % on Matlab versions earlier than 7.3 regionprops is too slow for simply % collecting regions, as we want, and internal algorithm will be faster UseRegionProps = exist('regionprops', 'file') && VersionNewerThan(7.3); % need this to remove pixels from consideration in the scan if current % distance becomes greater than MAXVAL maxval2=maxval^2; % determine geometry of the data if(iscell(bw)) shape=[size(bw{1}),length(bw)]; else shape=size(bw); end % correct this for 2D data if(length(shape)==2) shape=[shape,1]; end if(length(aspect)==2) aspect=[aspect,1]; end % allocate internal memory D=cell(1,shape(3)); for k=1:shape(3) D{k}=zeros(shape(1:2)); end %%%%%%%%%%%%% scan along XY %%%%%%%%%%%%%%%% for k=1:shape(3) if(iscell(bw)) bwXY=bw{k}; else bwXY=bw(:,:,k); end DXY=zeros(shape(1:2)); % if can, use 2D bwdist from image processing toolbox if(exist('bwdist') && aspect(1)==aspect(2)) DXY=aspect(1)^2*bwdist(bwXY).^2; DXY(DXY>maxval2)=Inf; else % if not, use full XY-scan %%%%%%%%%%%%%%% X-SCAN %%%%%%%%%%%%%%% % reference nearest bwXY "on"-pixel in x direction downward: % scan bottow-up, copy x-reference from previous row unless % there is bwXY "on"-pixel in that point in current row xlower=repmat(Inf,shape(1:2)); xlower(1,find(bwXY(1,:)))=1; % fill in first row for i=2:shape(1) xlower(i,:)=xlower(i-1,:); % copy previous row xlower(i,find(bwXY(i,:)))=i;% unless there is pixel end % reference nearest bwXY "on"-pixel in x direction upward: xupper=repmat(Inf,shape(1:2)); xupper(end,find(bwXY(end,:)))=shape(1); for i=shape(1)-1:-1:1 xupper(i,:)=xupper(i+1,:); xupper(i,find(bwXY(i,:)))=i; end % find pixels for which distance needs to be updated idx=find(~bwXY); [x,y]=ind2sub(shape(1:2),idx); % set distance as the shortest to upward or to downward DXY(idx)=aspect(1)^2*min((x-xlower(idx)).^2,(x-xupper(idx)).^2); DXY(DXY>maxval2)=Inf; %%%%%%%%%%%%%%% Y-SCAN %%%%%%%%%%%%%%% % this will be the envelop D1=repmat(Inf,shape(1:2)); % these will be the references to parabolas defining the envelop DK=repmat(Inf,shape(1:2)); for i=1:shape(2) % need to select starting point for each X: % * starting point should be below current envelop % * i0==i is not necessarily a starting point % * there is at most one starting point % * there may be no starting point % i0 is the starting points for each X: i0(X) is the first % y-index such that parabola from line i is below the envelop % first guess is the current y-line i0=repmat(i,shape(1),1); % some auxiliary datasets d0=DXY(:,i); x=(1:shape(1))'; % L0 indicates for which X starting point had been fixed L0=isinf(d0); while(~isempty(find(~L0,1))) % reference starting points in DXY idx=sub2ind(shape(1:2),x(~L0),i0(~L0)); % these are current best parabolas for starting points ik=DK(idx); % these are new values from parabola from line #i dtmp=d0(~L0)+aspect(2)^2*(i0(~L0)-i).^2; dtmp(dtmp>maxval2)=Inf; % these starting points are OK - below the envelop L=D1(idx)>dtmp; D1(idx(L))=dtmp(L); % points which are still above the envelop but ik==i0, % will not get any better, so fix them as well L=isinf(dtmp) | L | (ik==i0(~L0)); % all other points are not OK, need new starting point: % starting point should be at least below parabola % beating us at current choice of i0 % solve quadratic equation to find where this happens ik=(ik-i); di=(D1(idx(~L))-dtmp(~L))./ik(~L)/2/aspect(2)^2; % should select next highest index to the equality di=fix(di)+sign(di); % the new starting points idx=find(~L0); i0(idx(~L))=i0(idx(~L))+di; % update L0 to indicate which points we've fixed L0(~L0)=L; L0(idx(~L))=(di==0); % points that went out can't get better; % fix them as well L=(i0<1) | (i0>shape(2)); i0(L)=i; L0(L)=1; end % will keep track along which X should keep updating distance map_lower=true(shape(1),1); map_upper=true(shape(1),1); % scan from starting points for each X i0 in increments of 1 di=0; % distance from current y-line eols=2; % end-of-line-scan flag while(eols) eols=2; di=di+1; dtmp=repmat(Inf,shape(1),1); % select X which can be updated for di<0; % i.e. X which had been below envelop all way till now x=find(map_lower); if(~isempty(x)) % prevent index dropping below 1st L=i0(map_lower)-di>=1; map_lower(map_lower)=L; % select pixels (X,i0(X)-di) idx=sub2ind(shape(1:2),x(L),i0(map_lower)-di); if(~isempty(idx)) dtmp=d0(map_lower)+... aspect(2)^2*(i0(map_lower)-di-i).^2; dtmp(dtmp>maxval2)=Inf; % these pixels are to be updated with i0-di L=D1(idx)>dtmp; map_lower(map_lower)=L; D1(idx(L))=dtmp(L); DK(idx(L))=i; end else % if this is empty, get ready to quit eols=eols-1; end % select X which can be updated for di>0; % i.e. X which had been below envelop all way till now x=find(map_upper); if(~isempty(x)) % prevent index from going over array limits L=i0(map_upper)+di<=shape(2); map_upper(map_upper)=L; % select pixels (X,i0(X)+di) idx=sub2ind(shape(1:2),x(L),i0(map_upper)+di); if(~isempty(idx)) dtmp=d0(map_upper)+... aspect(2)^2*(i0(map_upper)+di-i).^2; dtmp(dtmp>maxval2)=Inf; % check which pixels are to be updated with i0+di L=D1(idx)>dtmp; map_upper(map_upper)=L; D1(idx(L))=dtmp(L); DK(idx(L))=i; end else % if this is empty, get ready to quit eols=eols-1; end end end DXY=D1; end D{k}=DXY; end %%%%%%%%%%%%% scan along Z %%%%%%%%%%%%%%%% % this will be the envelop of the parabolas centered on different Z points D1=cell(size(D)); for k=1:shape(3) D1{k}=repmat(Inf,shape(1:2)); end % these will be the Z-references for the parabolas forming the envelop DK=cell(size(D)); for k=1:shape(3) DK{k}=repmat(Inf,shape(1:2)); end % start building the envelope for k=1:shape(3) % need to select starting point for each XY: % * starting point should be below already existing current envelop % * k0==k is not necessarily a starting point % * there may be no starting point % j0 is the starting points for each XY: k0(XY) is the first % z-index such that the parabola from slice k gets below the envelop % for initial starting point, guess the current slice k k0=repmat(k,shape(1:2)); % L0 indicates which starting points had been found so far L0=isinf(D{k}); while(~isempty(find(~L0,1))) % because of using cells, need to explicitly scan in Z % to avoid repetitious searches in k0, parse first ss = getregions(k0, UseRegionProps); for kk=1:shape(3) % these are starting points @kk which had not been set yet if(kk<=length(ss)) idx=ss(kk).PixelIdxList; else idx=[]; end idx=idx(~L0(idx)); if(isempty(idx)) continue; end % these are currently the best parabolas for slice kk ik=DK{kk}(idx); % these are new distances for points in kk from parabolas in k dtmp=D{k}(idx)+aspect(3)^2*(kk-k)^2; dtmp(dtmp>maxval2)=Inf; % these points are below current envelop, OK starting points L=D1{kk}(idx)>dtmp; D1{kk}(idx(L))=dtmp(L); % these points are not OK, but since ik==k0 % can't get any better, so remove them as well from search L=L | (ik==kk) | isinf(dtmp); % all other points are not OK, need new starting point: % starting point should be at least below the parabola % beating us at current choice of k0, thus make new guess for k ik=(ik-k); dk=(D1{kk}(idx(~L))-dtmp(~L))./ik(~L)/2/aspect(3)^2; dk=fix(dk)+sign(dk); k0(idx(~L))=k0(idx(~L))+dk; % update starting points that had been fixed in this pass L0(idx)=L; L0(idx(~L))=(dk==0); % points that went out of boundaries can't get better, fix them L=(k0<1) | (k0>shape(3)); L0(L)=1; k0(L)=k; end end % map_lower/map_upper keeps track of which pixels yet can be updated % with new distances, i.e., all such XY that had been below envelop % for all dk up to now, for dk<0/dk>0 respectively map_lower=true(shape(1:2)); map_upper=true(shape(1:2)); % parse different values in k0 to avoid repetitious searching below ss = getregions(k0, UseRegionProps); % scan away from starting points in increments of 1 dk=0; % distance from current xy-slice eols=2; % end-of-scan flag while(eols) eols=2; dk=dk+1; dtmp=repmat(Inf,shape(1:2)); if(~isempty(find(map_lower,1))) % prevent index from going over the boundaries L=k0(map_lower)-dk>=1; map_lower(map_lower)=L; % need to explicitly scan in Z because of using cell-arrays for kk=1:shape(3) % get all XY such that k0-dk==kk if(kk+dk<=length(ss) & kk+dk>=1) idx=ss(kk+dk).PixelIdxList; else idx=[]; end idx=idx(map_lower(idx)); if(~isempty(idx)) dtmp=D{k}(idx)+aspect(3)^2*(kk-k)^2; dtmp(dtmp>maxval2)=Inf; % these pixels are to be updated with new % distances at k0-dk L=D1{kk}(idx)>dtmp; map_lower(idx)=L; D1{kk}(idx(L))=dtmp(L); DK{kk}(idx(L))=k; end end else eols=eols-1; end if(~isempty(find(map_upper,1))) % prevent index from going over the boundaries L=k0(map_upper)+dk<=shape(3); map_upper(map_upper)=L; % need to explicitly scan in Z because of using cell-arrays for kk=1:shape(3) % get all XY such that k0+dk==kk if(kk-dk<=length(ss) && kk-dk>=1) idx=ss(kk-dk).PixelIdxList; else idx=[]; end idx=idx(map_upper(idx)); if(~isempty(idx)) dtmp=D{k}(idx)+aspect(3)^2*(kk-k)^2; dtmp(dtmp>maxval2)=Inf; % these pixels are to be updated with new % distances at k0+dk L=D1{kk}(idx)>dtmp; map_upper(idx)=L; D1{kk}(idx(L))=dtmp(L); DK{kk}(idx(L))=k; end end else eols=eols-1; end end end % prepare the answer, limit distances to MAXVAL for k=1:shape(3) D1{k}(D1{k}>maxval2)=maxval2; end % prepare the answer, convert to output format matching the input if(iscell(bw)) D=cell(size(bw)); for k=1:shape(3) D{k}=sqrt(D1{k}); end else D=zeros(shape); for k=1:shape(3) D(:,:,k)=sqrt(D1{k}); end end end function s=getregions(map, UseRegionProps) % this function is replacer for regionprops(map,'PixelIdxList); % it produces the list of different values along with the list of % indexes of the pixels in the map with these values; s is struct-array % such that s(i).PixelIdxList contains list of pixels in map % with value i. % enable using regionprops if available on Matlab versions 7.3 and later, % regionprops is faster than this code at these versions % version control for using regionprops is now outside (Turod Dima) if UseRegionProps s=regionprops(map,'PixelIdxList'); return end idx=(1:prod(size(map)))'; dtmp=double(map(:)); [dtmp,ind]=sort(dtmp); idx=idx(ind); ind=[0;find([diff(dtmp(:));1])]; s=[]; for i=2:length(ind) if(dtmp(ind(i)))==0 continue; end s(dtmp(ind(i))).PixelIdxList=idx(ind(i-1)+1:ind(i)); end end % --- VersionNewerThan and str2numarray added lower --- function vn = VersionNewerThan(v_ref, AllowEqual) % V_isNewer = VersionNewerThan(V_REF, AllowEqual) % % compare current Matlab version V_CURR with V_REF % returns TRUE when current version is newer than V_REF (or as new when AllowEqual) % % V_REF - string or number % AllowEqual- boolean (dafault TRUE) % % V_CURR vs. V_REF | AllowEqual | V_isNewer % newer | any | true % same | true | true % same | false | false % older | any | false % % 26.12.2011 - new, Tudor for Yuriy > bwdistsc1 if nargin < 2, AllowEqual = true; end if nargin < 1, v_ref = 7.3; end if isnumeric(v_ref) v_ref = num2str(v_ref); end v = version; % compare version numbers group-by-group % i.e. 7.11.0.584 later than 7.3.1, etc % this works when v and v_ref are strings of unequal lengths % containing any number of dots % split version strings into numerical arrays VerSeparator = '.'; vd = str2numarray(v, VerSeparator); % installed vrd = str2numarray(v_ref, VerSeparator); % reference nG = min(numel(vd),numel(vrd)); % start comparison at most significant group iG = 1; while (iG <= nG) vn = sign(vd(iG) - vrd(iG)); % -1 0 1 iG = iG+1; if vn ~= 0 break end end if vn == 0 % set the longer of {vd, vrd} as 'the latest vn = numel(vd) -numel(vrd); end vn = vn > 0 || (AllowEqual && vn == 0); % was hard '>=' end function vd = str2numarray(vs, VerSeparator) % > split version string into array of double % > also strip chars trailing 1st ' ' or '(' % i.e. both '7.11.0.584' and '7.11.0.584 (R2010b)' % will be converted to [7 11 0 584] iC = 0; iPrev = 0; iS = 0; sL = numel(vs); vd = zeros(1,sL); while iS < sL iS = iS+1; if vs(iS) == VerSeparator iC = iC + 1; vd(iC) = str2double(vs(iPrev+1:iS-1)); iPrev = iS; elseif (vs(iS) == ' ') || (vs(iS) == '(') sL = iS-1; break end end % also store the last section, '.' to end % (or the only section when no VerSeparator is present) iC = iC + 1; vd(iC) = str2double(vs(iPrev+1:sL)); vd = vd(1:iC); end
github
andrewwarrington/vesicle-cnn-2-master
classRF_predict.m
.m
vesicle-cnn-2-master/Prior_art/vesicle/packages/vesiclerf/tools/Random Forest/classRF_predict.m
2,166
utf_8
7e026fb9b31f99feae58d36b9cf6c2e0
%************************************************************** %* mex interface to Andy Liaw et al.'s C code (used in R package randomForest) %* Added by Abhishek Jaiantilal ( [email protected] ) %* License: GPLv2 %* Version: 0.02 % % Calls Classification Random Forest % A wrapper matlab file that calls the mex file % This does prediction given the data and the model file % Options depicted in predict function in http://cran.r-project.org/web/packages/randomForest/randomForest.pdf %************************************************************** %function [Y_hat votes] = classRF_predict(X,model, extra_options) % requires 2 arguments % X: data matrix % model: generated via classRF_train function % extra_options.predict_all = predict_all if set will send all the prediction. % % % Returns % Y_hat - prediction for the data % votes - unnormalized weights for the model % prediction_per_tree - per tree prediction. the returned object . % If predict.all=TRUE, then the individual component of the returned object is a character % matrix where each column contains the predicted class by a tree in the forest. % % % Not yet implemented % proximity function [Y_new, votes, prediction_per_tree] = classRF_predict(X,model, extra_options) if nargin<2 error('need atleast 2 parameters,X matrix and model'); end if exist('extra_options','var') if isfield(extra_options,'predict_all') predict_all = extra_options.predict_all; end end if ~exist('predict_all','var'); predict_all=0;end [Y_hat,prediction_per_tree,votes] = mexClassRF_predict(X',model.nrnodes,model.ntree,model.xbestsplit,model.classwt,model.cutoff,model.treemap,model.nodestatus,model.nodeclass,model.bestvar,model.ndbigtree,model.nclass, predict_all); %keyboard votes = votes'; clear mexClassRF_predict Y_new = double(Y_hat); new_labels = model.new_labels; orig_labels = model.orig_labels; for i=1:length(orig_labels) Y_new(find(Y_hat==new_labels(i)))=Inf; Y_new(isinf(Y_new))=orig_labels(i); end 1;
github
andrewwarrington/vesicle-cnn-2-master
classRF_train.m
.m
vesicle-cnn-2-master/Prior_art/vesicle/packages/vesiclerf/tools/Random Forest/classRF_train.m
14,829
utf_8
82a321d0a7c77f33b104acec4394c6ee
%************************************************************** %* mex interface to Andy Liaw et al.'s C code (used in R package randomForest) %* Added by Abhishek Jaiantilal ( [email protected] ) %* License: GPLv2 %* Version: 0.02 % % Calls Classification Random Forest % A wrapper matlab file that calls the mex file % This does training given the data and labels % Documentation copied from R-packages pdf % http://cran.r-project.org/web/packages/randomForest/randomForest.pdf % Tutorial on getting this working in tutorial_ClassRF.m %************************************************************** % function model = classRF_train(X,Y,ntree,mtry, extra_options) % %___Options % requires 2 arguments and the rest 3 are optional % X: data matrix % Y: target values % ntree (optional): number of trees (default is 500). also if set to 0 % will default to 500 % mtry (default is floor(sqrt(size(X,2))) D=number of features in X). also if set to 0 % will default to 500 % % % Note: TRUE = 1 and FALSE = 0 below % extra_options represent a structure containing various misc. options to % control the RF % extra_options.replace = 0 or 1 (default is 1) sampling with or without % replacement % extra_options.classwt = priors of classes. Here the function first gets % the labels in ascending order and assumes the % priors are given in the same order. So if the class % labels are [-1 1 2] and classwt is [0.1 2 3] then % there is a 1-1 correspondence. (ascending order of % class labels). Once this is set the freq of labels in % train data also affects. % extra_options.cutoff (Classification only) = A vector of length equal to number of classes. The ?winning? % class for an observation is the one with the maximum ratio of proportion % of votes to cutoff. Default is 1/k where k is the number of classes (i.e., majority % vote wins). % extra_options.strata = (not yet stable in code) variable that is used for stratified % sampling. I don't yet know how this works. Disabled % by default % extra_options.sampsize = Size(s) of sample to draw. For classification, % if sampsize is a vector of the length the number of strata, then sampling is stratified by strata, % and the elements of sampsize indicate the numbers to be % drawn from the strata. % extra_options.nodesize = Minimum size of terminal nodes. Setting this number larger causes smaller trees % to be grown (and thus take less time). Note that the default values are different % for classification (1) and regression (5). % extra_options.importance = Should importance of predictors be assessed? % extra_options.localImp = Should casewise importance measure be computed? (Setting this to TRUE will % override importance.) % extra_options.proximity = Should proximity measure among the rows be calculated? % extra_options.oob_prox = Should proximity be calculated only on 'out-of-bag' data? % extra_options.do_trace = If set to TRUE, give a more verbose output as randomForest is run. If set to % some integer, then running output is printed for every % do_trace trees. % extra_options.keep_inbag Should an n by ntree matrix be returned that keeps track of which samples are % 'in-bag' in which trees (but not how many times, if sampling with replacement) % % Options eliminated % corr_bias which happens only for regression ommitted % norm_votes - always set to return total votes for each class. % %___Returns model which has % importance = a matrix with nclass + 2 (for classification) or two (for regression) columns. % For classification, the first nclass columns are the class-specific measures % computed as mean decrease in accuracy. The nclass + 1st column is the % mean decrease in accuracy over all classes. The last column is the mean decrease % in Gini index. For Regression, the first column is the mean decrease in % accuracy and the second the mean decrease in MSE. If importance=FALSE, % the last measure is still returned as a vector. % importanceSD = The ?standard errors? of the permutation-based importance measure. For classification, % a p by nclass + 1 matrix corresponding to the first nclass + 1 % columns of the importance matrix. For regression, a length p vector. % localImp = a p by n matrix containing the casewise importance measures, the [i,j] element % of which is the importance of i-th variable on the j-th case. NULL if % localImp=FALSE. % ntree = number of trees grown. % mtry = number of predictors sampled for spliting at each node. % votes (classification only) a matrix with one row for each input data point and one % column for each class, giving the fraction or number of ?votes? from the random % forest. % oob_times number of times cases are 'out-of-bag' (and thus used in computing OOB error % estimate) % proximity if proximity=TRUE when randomForest is called, a matrix of proximity % measures among the input (based on the frequency that pairs of data points are % in the same terminal nodes). % errtr = first column is OOB Err rate, second is for class 1 and so on function model=classRF_train(X,Y,ntree,mtry, extra_options) DEFAULTS_ON =0; %DEBUG_ON=0; TRUE=1; FALSE=0; orig_labels = sort(unique(Y)); Y_new = Y; new_labels = 1:length(orig_labels); for i=1:length(orig_labels) Y_new(find(Y==orig_labels(i)))=Inf; Y_new(isinf(Y_new))=new_labels(i); end Y = Y_new; if exist('extra_options','var') if isfield(extra_options,'DEBUG_ON'); DEBUG_ON = extra_options.DEBUG_ON; end if isfield(extra_options,'replace'); replace = extra_options.replace; end if isfield(extra_options,'classwt'); classwt = extra_options.classwt; end if isfield(extra_options,'cutoff'); cutoff = extra_options.cutoff; end if isfield(extra_options,'strata'); strata = extra_options.strata; end if isfield(extra_options,'sampsize'); sampsize = extra_options.sampsize; end if isfield(extra_options,'nodesize'); nodesize = extra_options.nodesize; end if isfield(extra_options,'importance'); importance = extra_options.importance; end if isfield(extra_options,'localImp'); localImp = extra_options.localImp; end if isfield(extra_options,'nPerm'); nPerm = extra_options.nPerm; end if isfield(extra_options,'proximity'); proximity = extra_options.proximity; end if isfield(extra_options,'oob_prox'); oob_prox = extra_options.oob_prox; end %if isfield(extra_options,'norm_votes'); norm_votes = extra_options.norm_votes; end if isfield(extra_options,'do_trace'); do_trace = extra_options.do_trace; end %if isfield(extra_options,'corr_bias'); corr_bias = extra_options.corr_bias; end if isfield(extra_options,'keep_inbag'); keep_inbag = extra_options.keep_inbag; end end keep_forest=1; %always save the trees :) %set defaults if not already set if ~exist('DEBUG_ON','var') DEBUG_ON=FALSE; end if ~exist('replace','var'); replace = TRUE; end %if ~exist('classwt','var'); classwt = []; end %will handle these three later %if ~exist('cutoff','var'); cutoff = 1; end %if ~exist('strata','var'); strata = 1; end if ~exist('sampsize','var'); if (replace) sampsize = size(X,1); else sampsize = ceil(0.632*size(X,1)); end; end if ~exist('nodesize','var'); nodesize = 1; end %classification=1, regression=5 if ~exist('importance','var'); importance = FALSE; end if ~exist('localImp','var'); localImp = FALSE; end if ~exist('nPerm','var'); nPerm = 1; end %if ~exist('proximity','var'); proximity = 1; end %will handle these two later %if ~exist('oob_prox','var'); oob_prox = 1; end %if ~exist('norm_votes','var'); norm_votes = TRUE; end if ~exist('do_trace','var'); do_trace = FALSE; end %if ~exist('corr_bias','var'); corr_bias = FALSE; end if ~exist('keep_inbag','var'); keep_inbag = FALSE; end if ~exist('ntree','var') | ntree<=0 ntree=500; DEFAULTS_ON=1; end if ~exist('mtry','var') | mtry<=0 | mtry>size(X,2) mtry =floor(sqrt(size(X,2))); end addclass =isempty(Y); if (~addclass && length(unique(Y))<2) error('need atleast two classes for classification'); end [N D] = size(X); if N==0; error(' data (X) has 0 rows');end if (mtry <1 || mtry > D) DEFAULTS_ON=1; end mtry = max(1,min(D,round(mtry))); if DEFAULTS_ON fprintf('\tSetting to defaults %d trees and mtry=%d\n',ntree,mtry); end if ~isempty(Y) if length(Y)~=N, error('Y size is not the same as X size'); end addclass = FALSE; else if ~addclass, addclass=TRUE; end error('have to fill stuff here') end if ~isempty(find(isnan(X))); error('NaNs in X'); end if ~isempty(find(isnan(Y))); error('NaNs in Y'); end %now handle categories. Problem is that categories in R are more %enhanced. In this i ask the user to specify the column/features to %consider as categories, 1 if all the values are real values else %specify the number of categories here if exist ('extra_options','var') && isfield(extra_options,'categories') ncat = extra_options.categories; else ncat = ones(1,D); end maxcat = max(ncat); if maxcat>32 error('Can not handle categorical predictors with more than 32 categories'); end %classRF - line 88 in randomForest.default.R nclass = length(unique(Y)); if ~exist('cutoff','var') cutoff = ones(1,nclass)* (1/nclass); else if sum(cutoff)>1 || sum(cutoff)<0 || length(find(cutoff<=0))>0 || length(cutoff)~=nclass error('Incorrect cutoff specified'); end end if ~exist('classwt','var') classwt = ones(1,nclass); ipi=0; else if length(classwt)~=nclass error('Length of classwt not equal to the number of classes') end if ~isempty(find(classwt<=0)) error('classwt must be positive'); end ipi=1; end if ~exist('proximity','var') proximity = addclass; oob_prox = proximity; end if ~exist('oob_prox','var') oob_prox = proximity; end %i handle the below in the mex file % if proximity % prox = zeros(N,N); % proxts = 1; % else % prox = 1; % proxts = 1; % end %i handle the below in the mex file if localImp importance = TRUE; % impmat = zeors(D,N); else % impmat = 1; end if importance if (nPerm<1) nPerm = int32(1); else nPerm = int32(nPerm); end %classRF % impout = zeros(D,nclass+2); % impSD = zeros(D,nclass+1); else % impout = zeros(D,1); % impSD = 1; end %i handle the below in the mex file %somewhere near line 157 in randomForest.default.R if addclass % nsample = 2*n; else % nsample = n; end Stratify = (length(sampsize)>1); if (~Stratify && sampsize>N) error('Sampsize too large') end if Stratify if ~exist('strata','var') strata = Y; end nsum = sum(sampsize); if ( ~isempty(find(sampsize<=0)) || nsum==0) error('Bad sampsize specification'); end else nsum = sampsize; end %i handle the below in the mex file %nrnodes = 2*floor(nsum/nodesize)+1; %xtest = 1; %ytest = 1; %ntest = 1; %labelts = FALSE; %nt = ntree; %[ldau,rdau,nodestatus,nrnodes,upper,avnode,mbest,ndtree]= %keyboard if Stratify strata = int32(strata); else strata = int32(1); end Options = int32([addclass, importance, localImp, proximity, oob_prox, do_trace, keep_forest, replace, Stratify, keep_inbag]); if DEBUG_ON %print the parameters that i am sending in fprintf('size(x) %d\n',size(X)); fprintf('size(y) %d\n',size(Y)); fprintf('nclass %d\n',nclass); fprintf('size(ncat) %d\n',size(ncat)); fprintf('maxcat %d\n',maxcat); fprintf('size(sampsize) %d\n',size(sampsize)); fprintf('sampsize[0] %d\n',sampsize(1)); fprintf('Stratify %d\n',Stratify); fprintf('Proximity %d\n',proximity); fprintf('oob_prox %d\n',oob_prox); fprintf('strata %d\n',strata); fprintf('ntree %d\n',ntree); fprintf('mtry %d\n',mtry); fprintf('ipi %d\n',ipi); fprintf('classwt %f\n',classwt); fprintf('cutoff %f\n',cutoff); fprintf('nodesize %f\n',nodesize); end [nrnodes,ntree,xbestsplit,classwt,cutoff,treemap,nodestatus,nodeclass,bestvar,ndbigtree,mtry ... outcl, counttr, prox, impmat, impout, impSD, errtr, inbag] ... = mexClassRF_train(X',int32(Y_new),length(unique(Y)),ntree,mtry,int32(ncat), ... int32(maxcat), int32(sampsize), strata, Options, int32(ipi), ... classwt, cutoff, int32(nodesize),int32(nsum)); model.nrnodes=nrnodes; model.ntree=ntree; model.xbestsplit=xbestsplit; model.classwt=classwt; model.cutoff=cutoff; model.treemap=treemap; model.nodestatus=nodestatus; model.nodeclass=nodeclass; model.bestvar = bestvar; model.ndbigtree = ndbigtree; model.mtry = mtry; model.orig_labels=orig_labels; model.new_labels=new_labels; model.nclass = length(unique(Y)); model.outcl = outcl; model.counttr = counttr; if proximity model.proximity = prox; else model.proximity = []; end model.localImp = impmat; model.importance = impout; model.importanceSD = impSD; model.errtr = errtr'; model.inbag = inbag; model.votes = counttr'; model.oob_times = sum(counttr)'; clear mexClassRF_train %keyboard 1;
github
andrewwarrington/vesicle-cnn-2-master
structureTensorImage2.m
.m
vesicle-cnn-2-master/Prior_art/vesicle/packages/vesiclerf/tools/structure_tensor/structureTensorImage2.m
2,078
utf_8
a9f4eb4f44095b9695bc66b79eca3cbd
%[eig1, eig2, cw] = structureTensorImage2(im, s, sg) %s: smoothing sigma %sg: sigma gaussian for summation weights %window size is adapted function [eig1, eig2, cw] = structureTensorImage2(im, s, sg) w = 2*sg; [gx,gy,mag] = gradientImg(double(im),s); clear mag; S_0_x = gx.*gx; S_0_xy = gx.*gy; S_0_y = gy.*gy; clear gx clear gy sum_x = 1/(2*pi*sg^2) * S_0_x; sum_y = 1/(2*pi*sg^2) *S_0_y; sum_xy = 1/(2*pi*sg^2) *S_0_xy; %sum_x sl = sum_x; sr = sum_x; su = sum_x; sd = sum_x; for m = 1:w mdiag = sqrt(2*m^2); sl = shiftLeft(sl); sr = shiftRight(sr); su = shiftUp(su); sd = shiftDown(sd); sum_x = sum_x + 1/(2*pi*sg^2)*exp(-(-m^2)/(2*sg^2))*(sl + sr + su + sd) + 1/(2*pi*sg^2)*exp(-(mdiag^2+mdiag^2)/(2*sg^2))*(shiftLeft(su) + shiftRight(su) + shiftLeft(sd) + shiftRight(sd)); end %sum_y sl = sum_y; sr = sum_y; su = sum_y; sd = sum_y; for m = 1:w mdiag = sqrt(2*m^2); sl = shiftLeft(sl); sr = shiftRight(sr); su = shiftUp(su); sd = shiftDown(sd); sum_y = sum_y + 1/(2*pi*sg^2)*exp(-(-m^2)/(2*sg^2))*(sl + sr + su + sd) + 1/(2*pi*sg^2)*exp(-(mdiag^2+mdiag^2)/(2*sg^2))*(shiftLeft(su) + shiftRight(su) + shiftLeft(sd) + shiftRight(sd)); end %sum_xy sl = sum_xy; sr = sum_xy; su = sum_xy; sd = sum_xy; for m = 1:w mdiag = sqrt(2*m^2); sl = shiftLeft(sl); sr = shiftRight(sr); su = shiftUp(su); sd = shiftDown(sd); sum_xy = sum_xy + 1/(2*pi*sg^2)*exp(-(-m^2)/(2*sg^2))*(sl + sr + su + sd) + 1/(2*pi*sg^2)*exp(-(mdiag^2+mdiag^2)/(2*sg^2))*(shiftLeft(su) + shiftRight(su) + shiftLeft(sd) + shiftRight(sd)); end clear sl clear sr clear su clear sd eig1 = zeros(size(im)); eig2 = zeros(size(im)); for i=1:length(im(:)) e2 = (sum_x(i) + sum_y(i))/2 + sqrt(4*sum_xy(i)*sum_xy(i)+(sum_x(i)-sum_y(i))^2)/2; e1 = (sum_x(i) + sum_y(i))/2 - sqrt(4*sum_xy(i)*sum_xy(i)+(sum_x(i)-sum_y(i))^2)/2; eig1(i) = e1; eig2(i) = e2; end cw = ((eig1-eig2)./(eig1+eig2)).^2; cw(isnan(cw)) = 0;
github
andrewwarrington/vesicle-cnn-2-master
gradientImg.m
.m
vesicle-cnn-2-master/Prior_art/vesicle/packages/vesiclerf/tools/structure_tensor/gradientImg.m
413
utf_8
caa4df879004f65177163e8185112940
%function [gx, gy, mag] = gradientImg(im, s) function [gx, gy, mag] = gradientImg(im, s) % $$$ fg = fspecial('gaussian',4*s,s); % $$$ fs = fspecial('sobel'); % $$$ % $$$ fgy = filter2(fs,fg); % $$$ fgx = filter2(fs',fg); % $$$ % $$$ fgm = sqrt(fgx.^2 + fgy.^2); % $$$ % $$$ gy = filter2(fgy,im); % $$$ gx = filter2(fgx,im); im = imsmooth_st(double(im),s); [gx,gy] = gradient(im); mag = sqrt(gx.^2 + gy.^2);
github
andrewwarrington/vesicle-cnn-2-master
bwdistsc1.m
.m
vesicle-cnn-2-master/vesiclerf-2/tools/bwdistsc/bwdistsc1.m
19,630
utf_8
003a8729f0ccdb35a49d8429ea605c64
function D=bwdistsc1(bw,aspect,maxval) % D=BWDISTSC1(BW,ASPECT,MAXVAL) % BWDISTSC1 computes Euclidean distance transform of a binary 3D image % BW out to a specified value MAXVAL. This allows accelerating the % calculations in some cases with strongly nonconvex geometries, if the % distance transform only needs to be calculated out to a specific value. % The distance transform assigns to each pixel in BW a number that is % the distance from that pixel to the nearest nonzero pixel in BW. BW may % be a 3D array or a cell array of 2D slices. BWDISTSC1 can also accept % regular 2D images. ASPECT is a 3-component vector defining the aspect % ratios to use when calculating the distances in BW. If ASPECT is not set, % isotropic aspect ratio [1 1 1] is used. If MAXVAL is specified, the % distance transform will be only calculated out to the value MAXVAL. % % BWDISTSC1 uses the same algorithm as BWDISTSC but without forward- % backward scan. % % BWDISTSC1 tries to use MATLAB's bwdist for 2D scans if possible, which % is faster. Otherwise BWDISTSC1 will use its own algorithm for 2D scans. % Also incorporates the fix for Matlab version detection bug in the % original BWDISTSC contributed by Tudor Dima. % %(c) Yuriy Mishchenko HHMI JFRC Chklovskii Lab JUL 2007 % This function written Yuriy Mishchenko JUL 2011 % This function updated Yuriy Mishchenko SEP 2013 % This code is free for use or modifications, just please give credit where % appropriate. If you modify the code or fix bugs, please drop me a message % at [email protected]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Scan algorithms below use the following Lema: % % LEMA: let F(X,z) be lower envelope of a family of parabola: % % F(X,z)=min_{k} [G(X)+(z-k)^2]; % % and let H_k(X,z)=A(X)+(z-k)^2 be a parabola. % % Then for H_k(X,z)==F(X,z) at each X there exist at most % % two solutions k1<k2 such that H_k12(X,z)=F(X,z), and % % H_k(X,z)<F(X,z) is restricted to at most k1<k2. % % Here X is any-dimensional coordinate. % % % % Thus, simply scan away from any z such that H_k(X,z)<F(X,z) % % in either direction as long as H_k(X,z)<F(X,z) and update % % F(X,z). Note that need to properly choose starting point; % % starting point is any z such that H_k(X,z)<F(X,z); z==k is % % usually, but not always the starting point! % % % % Citation: % % Mishchenko Y. (2013) A function for fastcomputation of large % % discrete Euclidean distance transforms in three or more % % dimensions in Matlab. Signal, Image and Video Processing % % DOI: 10.1007/s11760-012-0419-9. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parse inputs if(nargin<2 || isempty(aspect)) aspect=[1 1 1]; end if(nargin<3 || isempty(maxval)) maxval=Inf; end % establish (once) whether we will use the "regionprops"; % on Matlab versions earlier than 7.3 regionprops is too slow for simply % collecting regions, as we want, and internal algorithm will be faster UseRegionProps = exist('regionprops', 'file') && VersionNewerThan(7.3); % need this to remove pixels from consideration in the scan if current % distance becomes greater than MAXVAL maxval2=maxval^2; % determine geometry of the data if(iscell(bw)) shape=[size(bw{1}),length(bw)]; else shape=size(bw); end % correct this for 2D data if(length(shape)==2) shape=[shape,1]; end if(length(aspect)==2) aspect=[aspect,1]; end % allocate internal memory D=cell(1,shape(3)); for k=1:shape(3) D{k}=zeros(shape(1:2)); end %%%%%%%%%%%%% scan along XY %%%%%%%%%%%%%%%% for k=1:shape(3) if(iscell(bw)) bwXY=bw{k}; else bwXY=bw(:,:,k); end DXY=zeros(shape(1:2)); % if can, use 2D bwdist from image processing toolbox if(exist('bwdist') && aspect(1)==aspect(2)) DXY=aspect(1)^2*bwdist(bwXY).^2; DXY(DXY>maxval2)=Inf; else % if not, use full XY-scan %%%%%%%%%%%%%%% X-SCAN %%%%%%%%%%%%%%% % reference nearest bwXY "on"-pixel in x direction downward: % scan bottow-up, copy x-reference from previous row unless % there is bwXY "on"-pixel in that point in current row xlower=repmat(Inf,shape(1:2)); xlower(1,find(bwXY(1,:)))=1; % fill in first row for i=2:shape(1) xlower(i,:)=xlower(i-1,:); % copy previous row xlower(i,find(bwXY(i,:)))=i;% unless there is pixel end % reference nearest bwXY "on"-pixel in x direction upward: xupper=repmat(Inf,shape(1:2)); xupper(end,find(bwXY(end,:)))=shape(1); for i=shape(1)-1:-1:1 xupper(i,:)=xupper(i+1,:); xupper(i,find(bwXY(i,:)))=i; end % find pixels for which distance needs to be updated idx=find(~bwXY); [x,y]=ind2sub(shape(1:2),idx); % set distance as the shortest to upward or to downward DXY(idx)=aspect(1)^2*min((x-xlower(idx)).^2,(x-xupper(idx)).^2); DXY(DXY>maxval2)=Inf; %%%%%%%%%%%%%%% Y-SCAN %%%%%%%%%%%%%%% % this will be the envelop D1=repmat(Inf,shape(1:2)); % these will be the references to parabolas defining the envelop DK=repmat(Inf,shape(1:2)); for i=1:shape(2) % need to select starting point for each X: % * starting point should be below current envelop % * i0==i is not necessarily a starting point % * there is at most one starting point % * there may be no starting point % i0 is the starting points for each X: i0(X) is the first % y-index such that parabola from line i is below the envelop % first guess is the current y-line i0=repmat(i,shape(1),1); % some auxiliary datasets d0=DXY(:,i); x=(1:shape(1))'; % L0 indicates for which X starting point had been fixed L0=isinf(d0); while(~isempty(find(~L0,1))) % reference starting points in DXY idx=sub2ind(shape(1:2),x(~L0),i0(~L0)); % these are current best parabolas for starting points ik=DK(idx); % these are new values from parabola from line #i dtmp=d0(~L0)+aspect(2)^2*(i0(~L0)-i).^2; dtmp(dtmp>maxval2)=Inf; % these starting points are OK - below the envelop L=D1(idx)>dtmp; D1(idx(L))=dtmp(L); % points which are still above the envelop but ik==i0, % will not get any better, so fix them as well L=isinf(dtmp) | L | (ik==i0(~L0)); % all other points are not OK, need new starting point: % starting point should be at least below parabola % beating us at current choice of i0 % solve quadratic equation to find where this happens ik=(ik-i); di=(D1(idx(~L))-dtmp(~L))./ik(~L)/2/aspect(2)^2; % should select next highest index to the equality di=fix(di)+sign(di); % the new starting points idx=find(~L0); i0(idx(~L))=i0(idx(~L))+di; % update L0 to indicate which points we've fixed L0(~L0)=L; L0(idx(~L))=(di==0); % points that went out can't get better; % fix them as well L=(i0<1) | (i0>shape(2)); i0(L)=i; L0(L)=1; end % will keep track along which X should keep updating distance map_lower=true(shape(1),1); map_upper=true(shape(1),1); % scan from starting points for each X i0 in increments of 1 di=0; % distance from current y-line eols=2; % end-of-line-scan flag while(eols) eols=2; di=di+1; dtmp=repmat(Inf,shape(1),1); % select X which can be updated for di<0; % i.e. X which had been below envelop all way till now x=find(map_lower); if(~isempty(x)) % prevent index dropping below 1st L=i0(map_lower)-di>=1; map_lower(map_lower)=L; % select pixels (X,i0(X)-di) idx=sub2ind(shape(1:2),x(L),i0(map_lower)-di); if(~isempty(idx)) dtmp=d0(map_lower)+... aspect(2)^2*(i0(map_lower)-di-i).^2; dtmp(dtmp>maxval2)=Inf; % these pixels are to be updated with i0-di L=D1(idx)>dtmp; map_lower(map_lower)=L; D1(idx(L))=dtmp(L); DK(idx(L))=i; end else % if this is empty, get ready to quit eols=eols-1; end % select X which can be updated for di>0; % i.e. X which had been below envelop all way till now x=find(map_upper); if(~isempty(x)) % prevent index from going over array limits L=i0(map_upper)+di<=shape(2); map_upper(map_upper)=L; % select pixels (X,i0(X)+di) idx=sub2ind(shape(1:2),x(L),i0(map_upper)+di); if(~isempty(idx)) dtmp=d0(map_upper)+... aspect(2)^2*(i0(map_upper)+di-i).^2; dtmp(dtmp>maxval2)=Inf; % check which pixels are to be updated with i0+di L=D1(idx)>dtmp; map_upper(map_upper)=L; D1(idx(L))=dtmp(L); DK(idx(L))=i; end else % if this is empty, get ready to quit eols=eols-1; end end end DXY=D1; end D{k}=DXY; end %%%%%%%%%%%%% scan along Z %%%%%%%%%%%%%%%% % this will be the envelop of the parabolas centered on different Z points D1=cell(size(D)); for k=1:shape(3) D1{k}=repmat(Inf,shape(1:2)); end % these will be the Z-references for the parabolas forming the envelop DK=cell(size(D)); for k=1:shape(3) DK{k}=repmat(Inf,shape(1:2)); end % start building the envelope for k=1:shape(3) % need to select starting point for each XY: % * starting point should be below already existing current envelop % * k0==k is not necessarily a starting point % * there may be no starting point % j0 is the starting points for each XY: k0(XY) is the first % z-index such that the parabola from slice k gets below the envelop % for initial starting point, guess the current slice k k0=repmat(k,shape(1:2)); % L0 indicates which starting points had been found so far L0=isinf(D{k}); while(~isempty(find(~L0,1))) % because of using cells, need to explicitly scan in Z % to avoid repetitious searches in k0, parse first ss = getregions(k0, UseRegionProps); for kk=1:shape(3) % these are starting points @kk which had not been set yet if(kk<=length(ss)) idx=ss(kk).PixelIdxList; else idx=[]; end idx=idx(~L0(idx)); if(isempty(idx)) continue; end % these are currently the best parabolas for slice kk ik=DK{kk}(idx); % these are new distances for points in kk from parabolas in k dtmp=D{k}(idx)+aspect(3)^2*(kk-k)^2; dtmp(dtmp>maxval2)=Inf; % these points are below current envelop, OK starting points L=D1{kk}(idx)>dtmp; D1{kk}(idx(L))=dtmp(L); % these points are not OK, but since ik==k0 % can't get any better, so remove them as well from search L=L | (ik==kk) | isinf(dtmp); % all other points are not OK, need new starting point: % starting point should be at least below the parabola % beating us at current choice of k0, thus make new guess for k ik=(ik-k); dk=(D1{kk}(idx(~L))-dtmp(~L))./ik(~L)/2/aspect(3)^2; dk=fix(dk)+sign(dk); k0(idx(~L))=k0(idx(~L))+dk; % update starting points that had been fixed in this pass L0(idx)=L; L0(idx(~L))=(dk==0); % points that went out of boundaries can't get better, fix them L=(k0<1) | (k0>shape(3)); L0(L)=1; k0(L)=k; end end % map_lower/map_upper keeps track of which pixels yet can be updated % with new distances, i.e., all such XY that had been below envelop % for all dk up to now, for dk<0/dk>0 respectively map_lower=true(shape(1:2)); map_upper=true(shape(1:2)); % parse different values in k0 to avoid repetitious searching below ss = getregions(k0, UseRegionProps); % scan away from starting points in increments of 1 dk=0; % distance from current xy-slice eols=2; % end-of-scan flag while(eols) eols=2; dk=dk+1; dtmp=repmat(Inf,shape(1:2)); if(~isempty(find(map_lower,1))) % prevent index from going over the boundaries L=k0(map_lower)-dk>=1; map_lower(map_lower)=L; % need to explicitly scan in Z because of using cell-arrays for kk=1:shape(3) % get all XY such that k0-dk==kk if(kk+dk<=length(ss) & kk+dk>=1) idx=ss(kk+dk).PixelIdxList; else idx=[]; end idx=idx(map_lower(idx)); if(~isempty(idx)) dtmp=D{k}(idx)+aspect(3)^2*(kk-k)^2; dtmp(dtmp>maxval2)=Inf; % these pixels are to be updated with new % distances at k0-dk L=D1{kk}(idx)>dtmp; map_lower(idx)=L; D1{kk}(idx(L))=dtmp(L); DK{kk}(idx(L))=k; end end else eols=eols-1; end if(~isempty(find(map_upper,1))) % prevent index from going over the boundaries L=k0(map_upper)+dk<=shape(3); map_upper(map_upper)=L; % need to explicitly scan in Z because of using cell-arrays for kk=1:shape(3) % get all XY such that k0+dk==kk if(kk-dk<=length(ss) && kk-dk>=1) idx=ss(kk-dk).PixelIdxList; else idx=[]; end idx=idx(map_upper(idx)); if(~isempty(idx)) dtmp=D{k}(idx)+aspect(3)^2*(kk-k)^2; dtmp(dtmp>maxval2)=Inf; % these pixels are to be updated with new % distances at k0+dk L=D1{kk}(idx)>dtmp; map_upper(idx)=L; D1{kk}(idx(L))=dtmp(L); DK{kk}(idx(L))=k; end end else eols=eols-1; end end end % prepare the answer, limit distances to MAXVAL for k=1:shape(3) D1{k}(D1{k}>maxval2)=maxval2; end % prepare the answer, convert to output format matching the input if(iscell(bw)) D=cell(size(bw)); for k=1:shape(3) D{k}=sqrt(D1{k}); end else D=zeros(shape); for k=1:shape(3) D(:,:,k)=sqrt(D1{k}); end end end function s=getregions(map, UseRegionProps) % this function is replacer for regionprops(map,'PixelIdxList); % it produces the list of different values along with the list of % indexes of the pixels in the map with these values; s is struct-array % such that s(i).PixelIdxList contains list of pixels in map % with value i. % enable using regionprops if available on Matlab versions 7.3 and later, % regionprops is faster than this code at these versions % version control for using regionprops is now outside (Turod Dima) if UseRegionProps s=regionprops(map,'PixelIdxList'); return end idx=(1:prod(size(map)))'; dtmp=double(map(:)); [dtmp,ind]=sort(dtmp); idx=idx(ind); ind=[0;find([diff(dtmp(:));1])]; s=[]; for i=2:length(ind) if(dtmp(ind(i)))==0 continue; end s(dtmp(ind(i))).PixelIdxList=idx(ind(i-1)+1:ind(i)); end end % --- VersionNewerThan and str2numarray added lower --- function vn = VersionNewerThan(v_ref, AllowEqual) % V_isNewer = VersionNewerThan(V_REF, AllowEqual) % % compare current Matlab version V_CURR with V_REF % returns TRUE when current version is newer than V_REF (or as new when AllowEqual) % % V_REF - string or number % AllowEqual- boolean (dafault TRUE) % % V_CURR vs. V_REF | AllowEqual | V_isNewer % newer | any | true % same | true | true % same | false | false % older | any | false % % 26.12.2011 - new, Tudor for Yuriy > bwdistsc1 if nargin < 2, AllowEqual = true; end if nargin < 1, v_ref = 7.3; end if isnumeric(v_ref) v_ref = num2str(v_ref); end v = version; % compare version numbers group-by-group % i.e. 7.11.0.584 later than 7.3.1, etc % this works when v and v_ref are strings of unequal lengths % containing any number of dots % split version strings into numerical arrays VerSeparator = '.'; vd = str2numarray(v, VerSeparator); % installed vrd = str2numarray(v_ref, VerSeparator); % reference nG = min(numel(vd),numel(vrd)); % start comparison at most significant group iG = 1; while (iG <= nG) vn = sign(vd(iG) - vrd(iG)); % -1 0 1 iG = iG+1; if vn ~= 0 break end end if vn == 0 % set the longer of {vd, vrd} as 'the latest vn = numel(vd) -numel(vrd); end vn = vn > 0 || (AllowEqual && vn == 0); % was hard '>=' end function vd = str2numarray(vs, VerSeparator) % > split version string into array of double % > also strip chars trailing 1st ' ' or '(' % i.e. both '7.11.0.584' and '7.11.0.584 (R2010b)' % will be converted to [7 11 0 584] iC = 0; iPrev = 0; iS = 0; sL = numel(vs); vd = zeros(1,sL); while iS < sL iS = iS+1; if vs(iS) == VerSeparator iC = iC + 1; vd(iC) = str2double(vs(iPrev+1:iS-1)); iPrev = iS; elseif (vs(iS) == ' ') || (vs(iS) == '(') sL = iS-1; break end end % also store the last section, '.' to end % (or the only section when no VerSeparator is present) iC = iC + 1; vd(iC) = str2double(vs(iPrev+1:sL)); vd = vd(1:iC); end
github
andrewwarrington/vesicle-cnn-2-master
classRF_predict.m
.m
vesicle-cnn-2-master/vesiclerf-2/tools/Random Forest/classRF_predict.m
2,166
utf_8
7e026fb9b31f99feae58d36b9cf6c2e0
%************************************************************** %* mex interface to Andy Liaw et al.'s C code (used in R package randomForest) %* Added by Abhishek Jaiantilal ( [email protected] ) %* License: GPLv2 %* Version: 0.02 % % Calls Classification Random Forest % A wrapper matlab file that calls the mex file % This does prediction given the data and the model file % Options depicted in predict function in http://cran.r-project.org/web/packages/randomForest/randomForest.pdf %************************************************************** %function [Y_hat votes] = classRF_predict(X,model, extra_options) % requires 2 arguments % X: data matrix % model: generated via classRF_train function % extra_options.predict_all = predict_all if set will send all the prediction. % % % Returns % Y_hat - prediction for the data % votes - unnormalized weights for the model % prediction_per_tree - per tree prediction. the returned object . % If predict.all=TRUE, then the individual component of the returned object is a character % matrix where each column contains the predicted class by a tree in the forest. % % % Not yet implemented % proximity function [Y_new, votes, prediction_per_tree] = classRF_predict(X,model, extra_options) if nargin<2 error('need atleast 2 parameters,X matrix and model'); end if exist('extra_options','var') if isfield(extra_options,'predict_all') predict_all = extra_options.predict_all; end end if ~exist('predict_all','var'); predict_all=0;end [Y_hat,prediction_per_tree,votes] = mexClassRF_predict(X',model.nrnodes,model.ntree,model.xbestsplit,model.classwt,model.cutoff,model.treemap,model.nodestatus,model.nodeclass,model.bestvar,model.ndbigtree,model.nclass, predict_all); %keyboard votes = votes'; clear mexClassRF_predict Y_new = double(Y_hat); new_labels = model.new_labels; orig_labels = model.orig_labels; for i=1:length(orig_labels) Y_new(find(Y_hat==new_labels(i)))=Inf; Y_new(isinf(Y_new))=orig_labels(i); end 1;
github
andrewwarrington/vesicle-cnn-2-master
classRF_train.m
.m
vesicle-cnn-2-master/vesiclerf-2/tools/Random Forest/classRF_train.m
14,829
utf_8
82a321d0a7c77f33b104acec4394c6ee
%************************************************************** %* mex interface to Andy Liaw et al.'s C code (used in R package randomForest) %* Added by Abhishek Jaiantilal ( [email protected] ) %* License: GPLv2 %* Version: 0.02 % % Calls Classification Random Forest % A wrapper matlab file that calls the mex file % This does training given the data and labels % Documentation copied from R-packages pdf % http://cran.r-project.org/web/packages/randomForest/randomForest.pdf % Tutorial on getting this working in tutorial_ClassRF.m %************************************************************** % function model = classRF_train(X,Y,ntree,mtry, extra_options) % %___Options % requires 2 arguments and the rest 3 are optional % X: data matrix % Y: target values % ntree (optional): number of trees (default is 500). also if set to 0 % will default to 500 % mtry (default is floor(sqrt(size(X,2))) D=number of features in X). also if set to 0 % will default to 500 % % % Note: TRUE = 1 and FALSE = 0 below % extra_options represent a structure containing various misc. options to % control the RF % extra_options.replace = 0 or 1 (default is 1) sampling with or without % replacement % extra_options.classwt = priors of classes. Here the function first gets % the labels in ascending order and assumes the % priors are given in the same order. So if the class % labels are [-1 1 2] and classwt is [0.1 2 3] then % there is a 1-1 correspondence. (ascending order of % class labels). Once this is set the freq of labels in % train data also affects. % extra_options.cutoff (Classification only) = A vector of length equal to number of classes. The ?winning? % class for an observation is the one with the maximum ratio of proportion % of votes to cutoff. Default is 1/k where k is the number of classes (i.e., majority % vote wins). % extra_options.strata = (not yet stable in code) variable that is used for stratified % sampling. I don't yet know how this works. Disabled % by default % extra_options.sampsize = Size(s) of sample to draw. For classification, % if sampsize is a vector of the length the number of strata, then sampling is stratified by strata, % and the elements of sampsize indicate the numbers to be % drawn from the strata. % extra_options.nodesize = Minimum size of terminal nodes. Setting this number larger causes smaller trees % to be grown (and thus take less time). Note that the default values are different % for classification (1) and regression (5). % extra_options.importance = Should importance of predictors be assessed? % extra_options.localImp = Should casewise importance measure be computed? (Setting this to TRUE will % override importance.) % extra_options.proximity = Should proximity measure among the rows be calculated? % extra_options.oob_prox = Should proximity be calculated only on 'out-of-bag' data? % extra_options.do_trace = If set to TRUE, give a more verbose output as randomForest is run. If set to % some integer, then running output is printed for every % do_trace trees. % extra_options.keep_inbag Should an n by ntree matrix be returned that keeps track of which samples are % 'in-bag' in which trees (but not how many times, if sampling with replacement) % % Options eliminated % corr_bias which happens only for regression ommitted % norm_votes - always set to return total votes for each class. % %___Returns model which has % importance = a matrix with nclass + 2 (for classification) or two (for regression) columns. % For classification, the first nclass columns are the class-specific measures % computed as mean decrease in accuracy. The nclass + 1st column is the % mean decrease in accuracy over all classes. The last column is the mean decrease % in Gini index. For Regression, the first column is the mean decrease in % accuracy and the second the mean decrease in MSE. If importance=FALSE, % the last measure is still returned as a vector. % importanceSD = The ?standard errors? of the permutation-based importance measure. For classification, % a p by nclass + 1 matrix corresponding to the first nclass + 1 % columns of the importance matrix. For regression, a length p vector. % localImp = a p by n matrix containing the casewise importance measures, the [i,j] element % of which is the importance of i-th variable on the j-th case. NULL if % localImp=FALSE. % ntree = number of trees grown. % mtry = number of predictors sampled for spliting at each node. % votes (classification only) a matrix with one row for each input data point and one % column for each class, giving the fraction or number of ?votes? from the random % forest. % oob_times number of times cases are 'out-of-bag' (and thus used in computing OOB error % estimate) % proximity if proximity=TRUE when randomForest is called, a matrix of proximity % measures among the input (based on the frequency that pairs of data points are % in the same terminal nodes). % errtr = first column is OOB Err rate, second is for class 1 and so on function model=classRF_train(X,Y,ntree,mtry, extra_options) DEFAULTS_ON =0; %DEBUG_ON=0; TRUE=1; FALSE=0; orig_labels = sort(unique(Y)); Y_new = Y; new_labels = 1:length(orig_labels); for i=1:length(orig_labels) Y_new(find(Y==orig_labels(i)))=Inf; Y_new(isinf(Y_new))=new_labels(i); end Y = Y_new; if exist('extra_options','var') if isfield(extra_options,'DEBUG_ON'); DEBUG_ON = extra_options.DEBUG_ON; end if isfield(extra_options,'replace'); replace = extra_options.replace; end if isfield(extra_options,'classwt'); classwt = extra_options.classwt; end if isfield(extra_options,'cutoff'); cutoff = extra_options.cutoff; end if isfield(extra_options,'strata'); strata = extra_options.strata; end if isfield(extra_options,'sampsize'); sampsize = extra_options.sampsize; end if isfield(extra_options,'nodesize'); nodesize = extra_options.nodesize; end if isfield(extra_options,'importance'); importance = extra_options.importance; end if isfield(extra_options,'localImp'); localImp = extra_options.localImp; end if isfield(extra_options,'nPerm'); nPerm = extra_options.nPerm; end if isfield(extra_options,'proximity'); proximity = extra_options.proximity; end if isfield(extra_options,'oob_prox'); oob_prox = extra_options.oob_prox; end %if isfield(extra_options,'norm_votes'); norm_votes = extra_options.norm_votes; end if isfield(extra_options,'do_trace'); do_trace = extra_options.do_trace; end %if isfield(extra_options,'corr_bias'); corr_bias = extra_options.corr_bias; end if isfield(extra_options,'keep_inbag'); keep_inbag = extra_options.keep_inbag; end end keep_forest=1; %always save the trees :) %set defaults if not already set if ~exist('DEBUG_ON','var') DEBUG_ON=FALSE; end if ~exist('replace','var'); replace = TRUE; end %if ~exist('classwt','var'); classwt = []; end %will handle these three later %if ~exist('cutoff','var'); cutoff = 1; end %if ~exist('strata','var'); strata = 1; end if ~exist('sampsize','var'); if (replace) sampsize = size(X,1); else sampsize = ceil(0.632*size(X,1)); end; end if ~exist('nodesize','var'); nodesize = 1; end %classification=1, regression=5 if ~exist('importance','var'); importance = FALSE; end if ~exist('localImp','var'); localImp = FALSE; end if ~exist('nPerm','var'); nPerm = 1; end %if ~exist('proximity','var'); proximity = 1; end %will handle these two later %if ~exist('oob_prox','var'); oob_prox = 1; end %if ~exist('norm_votes','var'); norm_votes = TRUE; end if ~exist('do_trace','var'); do_trace = FALSE; end %if ~exist('corr_bias','var'); corr_bias = FALSE; end if ~exist('keep_inbag','var'); keep_inbag = FALSE; end if ~exist('ntree','var') | ntree<=0 ntree=500; DEFAULTS_ON=1; end if ~exist('mtry','var') | mtry<=0 | mtry>size(X,2) mtry =floor(sqrt(size(X,2))); end addclass =isempty(Y); if (~addclass && length(unique(Y))<2) error('need atleast two classes for classification'); end [N D] = size(X); if N==0; error(' data (X) has 0 rows');end if (mtry <1 || mtry > D) DEFAULTS_ON=1; end mtry = max(1,min(D,round(mtry))); if DEFAULTS_ON fprintf('\tSetting to defaults %d trees and mtry=%d\n',ntree,mtry); end if ~isempty(Y) if length(Y)~=N, error('Y size is not the same as X size'); end addclass = FALSE; else if ~addclass, addclass=TRUE; end error('have to fill stuff here') end if ~isempty(find(isnan(X))); error('NaNs in X'); end if ~isempty(find(isnan(Y))); error('NaNs in Y'); end %now handle categories. Problem is that categories in R are more %enhanced. In this i ask the user to specify the column/features to %consider as categories, 1 if all the values are real values else %specify the number of categories here if exist ('extra_options','var') && isfield(extra_options,'categories') ncat = extra_options.categories; else ncat = ones(1,D); end maxcat = max(ncat); if maxcat>32 error('Can not handle categorical predictors with more than 32 categories'); end %classRF - line 88 in randomForest.default.R nclass = length(unique(Y)); if ~exist('cutoff','var') cutoff = ones(1,nclass)* (1/nclass); else if sum(cutoff)>1 || sum(cutoff)<0 || length(find(cutoff<=0))>0 || length(cutoff)~=nclass error('Incorrect cutoff specified'); end end if ~exist('classwt','var') classwt = ones(1,nclass); ipi=0; else if length(classwt)~=nclass error('Length of classwt not equal to the number of classes') end if ~isempty(find(classwt<=0)) error('classwt must be positive'); end ipi=1; end if ~exist('proximity','var') proximity = addclass; oob_prox = proximity; end if ~exist('oob_prox','var') oob_prox = proximity; end %i handle the below in the mex file % if proximity % prox = zeros(N,N); % proxts = 1; % else % prox = 1; % proxts = 1; % end %i handle the below in the mex file if localImp importance = TRUE; % impmat = zeors(D,N); else % impmat = 1; end if importance if (nPerm<1) nPerm = int32(1); else nPerm = int32(nPerm); end %classRF % impout = zeros(D,nclass+2); % impSD = zeros(D,nclass+1); else % impout = zeros(D,1); % impSD = 1; end %i handle the below in the mex file %somewhere near line 157 in randomForest.default.R if addclass % nsample = 2*n; else % nsample = n; end Stratify = (length(sampsize)>1); if (~Stratify && sampsize>N) error('Sampsize too large') end if Stratify if ~exist('strata','var') strata = Y; end nsum = sum(sampsize); if ( ~isempty(find(sampsize<=0)) || nsum==0) error('Bad sampsize specification'); end else nsum = sampsize; end %i handle the below in the mex file %nrnodes = 2*floor(nsum/nodesize)+1; %xtest = 1; %ytest = 1; %ntest = 1; %labelts = FALSE; %nt = ntree; %[ldau,rdau,nodestatus,nrnodes,upper,avnode,mbest,ndtree]= %keyboard if Stratify strata = int32(strata); else strata = int32(1); end Options = int32([addclass, importance, localImp, proximity, oob_prox, do_trace, keep_forest, replace, Stratify, keep_inbag]); if DEBUG_ON %print the parameters that i am sending in fprintf('size(x) %d\n',size(X)); fprintf('size(y) %d\n',size(Y)); fprintf('nclass %d\n',nclass); fprintf('size(ncat) %d\n',size(ncat)); fprintf('maxcat %d\n',maxcat); fprintf('size(sampsize) %d\n',size(sampsize)); fprintf('sampsize[0] %d\n',sampsize(1)); fprintf('Stratify %d\n',Stratify); fprintf('Proximity %d\n',proximity); fprintf('oob_prox %d\n',oob_prox); fprintf('strata %d\n',strata); fprintf('ntree %d\n',ntree); fprintf('mtry %d\n',mtry); fprintf('ipi %d\n',ipi); fprintf('classwt %f\n',classwt); fprintf('cutoff %f\n',cutoff); fprintf('nodesize %f\n',nodesize); end [nrnodes,ntree,xbestsplit,classwt,cutoff,treemap,nodestatus,nodeclass,bestvar,ndbigtree,mtry ... outcl, counttr, prox, impmat, impout, impSD, errtr, inbag] ... = mexClassRF_train(X',int32(Y_new),length(unique(Y)),ntree,mtry,int32(ncat), ... int32(maxcat), int32(sampsize), strata, Options, int32(ipi), ... classwt, cutoff, int32(nodesize),int32(nsum)); model.nrnodes=nrnodes; model.ntree=ntree; model.xbestsplit=xbestsplit; model.classwt=classwt; model.cutoff=cutoff; model.treemap=treemap; model.nodestatus=nodestatus; model.nodeclass=nodeclass; model.bestvar = bestvar; model.ndbigtree = ndbigtree; model.mtry = mtry; model.orig_labels=orig_labels; model.new_labels=new_labels; model.nclass = length(unique(Y)); model.outcl = outcl; model.counttr = counttr; if proximity model.proximity = prox; else model.proximity = []; end model.localImp = impmat; model.importance = impout; model.importanceSD = impSD; model.errtr = errtr'; model.inbag = inbag; model.votes = counttr'; model.oob_times = sum(counttr)'; clear mexClassRF_train %keyboard 1;
github
andrewwarrington/vesicle-cnn-2-master
structureTensorImage2.m
.m
vesicle-cnn-2-master/vesiclerf-2/tools/structure_tensor/structureTensorImage2.m
2,078
utf_8
a9f4eb4f44095b9695bc66b79eca3cbd
%[eig1, eig2, cw] = structureTensorImage2(im, s, sg) %s: smoothing sigma %sg: sigma gaussian for summation weights %window size is adapted function [eig1, eig2, cw] = structureTensorImage2(im, s, sg) w = 2*sg; [gx,gy,mag] = gradientImg(double(im),s); clear mag; S_0_x = gx.*gx; S_0_xy = gx.*gy; S_0_y = gy.*gy; clear gx clear gy sum_x = 1/(2*pi*sg^2) * S_0_x; sum_y = 1/(2*pi*sg^2) *S_0_y; sum_xy = 1/(2*pi*sg^2) *S_0_xy; %sum_x sl = sum_x; sr = sum_x; su = sum_x; sd = sum_x; for m = 1:w mdiag = sqrt(2*m^2); sl = shiftLeft(sl); sr = shiftRight(sr); su = shiftUp(su); sd = shiftDown(sd); sum_x = sum_x + 1/(2*pi*sg^2)*exp(-(-m^2)/(2*sg^2))*(sl + sr + su + sd) + 1/(2*pi*sg^2)*exp(-(mdiag^2+mdiag^2)/(2*sg^2))*(shiftLeft(su) + shiftRight(su) + shiftLeft(sd) + shiftRight(sd)); end %sum_y sl = sum_y; sr = sum_y; su = sum_y; sd = sum_y; for m = 1:w mdiag = sqrt(2*m^2); sl = shiftLeft(sl); sr = shiftRight(sr); su = shiftUp(su); sd = shiftDown(sd); sum_y = sum_y + 1/(2*pi*sg^2)*exp(-(-m^2)/(2*sg^2))*(sl + sr + su + sd) + 1/(2*pi*sg^2)*exp(-(mdiag^2+mdiag^2)/(2*sg^2))*(shiftLeft(su) + shiftRight(su) + shiftLeft(sd) + shiftRight(sd)); end %sum_xy sl = sum_xy; sr = sum_xy; su = sum_xy; sd = sum_xy; for m = 1:w mdiag = sqrt(2*m^2); sl = shiftLeft(sl); sr = shiftRight(sr); su = shiftUp(su); sd = shiftDown(sd); sum_xy = sum_xy + 1/(2*pi*sg^2)*exp(-(-m^2)/(2*sg^2))*(sl + sr + su + sd) + 1/(2*pi*sg^2)*exp(-(mdiag^2+mdiag^2)/(2*sg^2))*(shiftLeft(su) + shiftRight(su) + shiftLeft(sd) + shiftRight(sd)); end clear sl clear sr clear su clear sd eig1 = zeros(size(im)); eig2 = zeros(size(im)); for i=1:length(im(:)) e2 = (sum_x(i) + sum_y(i))/2 + sqrt(4*sum_xy(i)*sum_xy(i)+(sum_x(i)-sum_y(i))^2)/2; e1 = (sum_x(i) + sum_y(i))/2 - sqrt(4*sum_xy(i)*sum_xy(i)+(sum_x(i)-sum_y(i))^2)/2; eig1(i) = e1; eig2(i) = e2; end cw = ((eig1-eig2)./(eig1+eig2)).^2; cw(isnan(cw)) = 0;
github
andrewwarrington/vesicle-cnn-2-master
gradientImg.m
.m
vesicle-cnn-2-master/vesiclerf-2/tools/structure_tensor/gradientImg.m
413
utf_8
caa4df879004f65177163e8185112940
%function [gx, gy, mag] = gradientImg(im, s) function [gx, gy, mag] = gradientImg(im, s) % $$$ fg = fspecial('gaussian',4*s,s); % $$$ fs = fspecial('sobel'); % $$$ % $$$ fgy = filter2(fs,fg); % $$$ fgx = filter2(fs',fg); % $$$ % $$$ fgm = sqrt(fgx.^2 + fgy.^2); % $$$ % $$$ gy = filter2(fgy,im); % $$$ gx = filter2(fgx,im); im = imsmooth_st(double(im),s); [gx,gy] = gradient(im); mag = sqrt(gx.^2 + gy.^2);
github
mariajantz/kalmanGUI-master
test_dist_plot.m
.m
kalmanGUI-master/test_dist_plot.m
2,536
utf_8
caffe3cf8576dac3aef5983900c6bae9
close all; mcell = {[1 0] [0 0] [5 .5]}; pcell = {[1 .1; .1 1], [.5 0; 0 1], [1 .1; .1 .5]}; %MUST BE SQUARE POSITIVE MATRIX plot_dist(mcell, pcell); function plot_dist(mu_cell, phi_cell) %define colors for the signal, model, and combined distributions redcolors = [184 6 0; 229 136 125]/255; %dark, then light bluecolors = [12 48 181; 134 154 219]/255; greencolors = [35 97 15; 112 176 83]/255; colors = {redcolors, bluecolors, greencolors}; for i=1:3 mu = mu_cell{i}; phi = phi_cell{i}; ell_cell = calc_ellpr(mu, phi); figure(10); hold on; plot(ell_cell{1}(:, 1), ell_cell{1}(:, 2), 'Linewidth', 2, 'Color', colors{i}(1, :)); plot(ell_cell{2}(:, 1), ell_cell{2}(:, 2), 'Linewidth', 2, 'Color', colors{i}(2, :)); axis equal; end end function ellipse_pr = calc_ellpr(mu, phi) %calculate F, midpt, sd, inds for sd1 and sd2 %call function to return ellipse array %TODO: set this according to actual values %should use mu + 2* sqrt of variance to determine limits %choose the range of the plot varmat = sqrt(phi)*2.5; %calculate the std dev matrix nsamples = 200; x = (mu(1)-varmat(1, 1)):(2*varmat(1, 1)/nsamples):(mu(1)+varmat(1, 1)); y = (mu(2)-varmat(2, 2)):(2*varmat(2, 2)/nsamples):(mu(2)+varmat(2, 2)); [X,Y] = meshgrid(x,y); %calculate multivariate normal distribution F = mvnpdf([X(:) Y(:)],mu,phi); F = reshape(F,length(y),length(x)); %find high middle point [midpt, idx] = max(F(:)); [row, col] = ind2sub(size(F), idx); %find 1, 2 std dev sdev = std(F(:, col)); %discrimination value = how selectively it finds circle discval = .01; sd1inds = not(abs(sign(sign(midpt-sdev-discval - F) + sign(midpt-sdev+discval - F)))); sd2inds = not(abs(sign(sign(midpt-2*sdev-discval - F) + sign(midpt-2*sdev+discval - F)))); %assign values and center on zero %and normalize back to mu location ell_vals1 = (calc_ell(sd1inds)-[row,col]).*([range(x) range(y)]/nsamples) + mu; ell_vals2 = (calc_ell(sd2inds)-[row,col]).*([range(x) range(y)]/nsamples) + mu; ellipse_pr = {ell_vals1, ell_vals2}; end function ellipse_arr = calc_ell(inds) %switch these values to the correct coordinate system for normal plotting %and normalize to the correct scale [row, col]=find(inds>0); %for each row, find the extreme columns vals1 = []; vals2 = []; for x=1:length(col) xidx = find(col==col(x)); vals1(end+1, :) = [row(min(xidx)), col(x)]; vals2(end+1, :) = [row(max(xidx)), col(x)]; end ellipse_arr = [[vals1(:, 1); flipud(vals2(:, 1)); vals1(1, 1)], ... [vals1(:, 2); flipud(vals2(:, 2)); vals1(1, 2)]]; end
github
acados/qpOASES-master
make.m
.m
qpOASES-master/interfaces/simulink/make.m
8,234
utf_8
38b8382423ef0ca7023a8d6912f0416b
function [] = make( varargin ) %MAKE Compiles the Simulink interface of qpOASES_e. % %Type make to compile all interfaces that % have been modified, %type make clean to delete all compiled interfaces, %type make clean all to first delete and then compile % all interfaces, %type make 'name' to compile only the interface with % the given name (if it has been modified), %type make 'opt' to compile all interfaces using the % given compiler options % %Copyright (C) 2013-2015 by Hans Joachim Ferreau, Andreas Potschka, %Christian Kirches et al. All rights reserved. %% %% This file is part of qpOASES. %% %% qpOASES -- An Implementation of the Online Active Set Strategy. %% Copyright (C) 2007-2015 by Hans Joachim Ferreau, Andreas Potschka, %% Christian Kirches et al. All rights reserved. %% %% qpOASES is free software; you can redistribute it and/or %% modify it under the terms of the GNU Lesser General Public %% License as published by the Free Software Foundation; either %% version 2.1 of the License, or (at your option) any later version. %% %% qpOASES is distributed in the hope that it will be useful, %% but WITHOUT ANY WARRANTY; without even the implied warranty of %% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. %% See the GNU Lesser General Public License for more details. %% %% You should have received a copy of the GNU Lesser General Public %% License along with qpOASES; if not, write to the Free Software %% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA %% %% %% Filename: interfaces/simulink/make.m %% Author: Hans Joachim Ferreau, Andreas Potschka, Christian Kirches %% Version: 3.1embedded %% Date: 2007-2015 %% %% consistency check if ( exist( [pwd, '/make.m'],'file' ) == 0 ) error( ['ERROR (',mfilename '.m): Run this make script directly within the directory', ... '<qpOASES-inst-dir>/interfaces/simulink, please.'] ); end if ( nargin > 2 ) error( ['ERROR (',mfilename '.m): At most two make arguments supported!'] ); else [ doClean,fcnNames,userFlags ] = analyseMakeArguments( nargin,varargin ); end %% define compiler settings QPOASESPATH = '../../'; DEBUGFLAGS = ' '; %DEBUGFLAGS = ' -g CXXDEBUGFLAGS=''$CXXDEBUGFLAGS -Wall -pedantic -Wshadow'' '; IFLAGS = [ '-I. -I',QPOASESPATH,'include',' -I',QPOASESPATH,'src',' ' ]; CFLAGS = [ IFLAGS, DEBUGFLAGS, '-largeArrayDims -D__MATLAB__ -D__SINGLE_OBJECT__ -Dinline="" -Dsnprintf="_snprintf"',' ' ]; defaultFlags = '-O -D__NO_COPYRIGHT__ '; %% -D__NO_COPYRIGHT__ -D__SUPPRESSANYOUTPUT__ -D__MANY_CONSTRAINTS__ if ( ispc == 0 ) CFLAGS = [ CFLAGS, '-DLINUX ',' ' ]; else CFLAGS = [ CFLAGS, '-DWIN32 ',' ' ]; end if ( isempty(userFlags) > 0 ) CFLAGS = [ CFLAGS, defaultFlags,' ' ]; else CFLAGS = [ CFLAGS, userFlags,' ' ]; end mexExt = eval('mexext'); %% ensure copyright notice is displayed if ~isempty( strfind( CFLAGS,'-D__NO_COPYRIGHT__' ) ) printCopyrightNotice( ); end %% clean if desired if ( doClean > 0 ) eval( 'delete *.o;' ); eval( ['delete *.',mexExt,'*;'] ); disp( [ 'INFO (',mfilename '.m): Cleaned all compiled files.'] ); pause( 0.2 ); end if ( ~isempty(userFlags) ) disp( [ 'INFO (',mfilename '.m): Compiling all files with user-defined compiler flags (''',userFlags,''')...'] ); end %% call mex compiler for ii=1:length(fcnNames) cmd = [ 'mex -output ', fcnNames{ii}, ' ', CFLAGS, [fcnNames{ii},'.c'] ]; if ( exist( [fcnNames{ii},'.',mexExt],'file' ) == 0 ) eval( cmd ); disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' successfully created.'] ); else % check modification time of source/Make files and compiled mex file cppFile = dir( [pwd,'/',fcnNames{ii},'.c'] ); cppFileTimestamp = getTimestamp( cppFile ); makeFile = dir( [pwd,'/make.m'] ); makeFileTimestamp = getTimestamp( makeFile ); mexFile = dir( [pwd,'/',fcnNames{ii},'.',mexExt] ); if ( isempty(mexFile) == 0 ) mexFileTimestamp = getTimestamp( mexFile ); else mexFileTimestamp = 0; end if ( ( cppFileTimestamp >= mexFileTimestamp ) || ... ( makeFileTimestamp >= mexFileTimestamp ) ) eval( cmd ); disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' successfully created.'] ); else disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' already exists.'] ); end end end %% add qpOASES directory to path path( path,pwd ); end function [ doClean,fcnNames,userIFlags ] = analyseMakeArguments( nArgs,args ) doClean = 0; fcnNames = []; userIFlags = []; switch ( nArgs ) case 1 if ( strcmp( args{1},'all' ) > 0 ) fcnNames = { 'qpOASES_e_QProblemB','qpOASES_e_QProblem' }; elseif ( strcmp( args{1},'qpOASES_e_QProblemB' ) > 0 ) fcnNames = { 'qpOASES_e_QProblemB' }; elseif ( strcmp( args{1},'qpOASES_e_QProblem' ) > 0 ) fcnNames = { 'qpOASES_e_QProblem' }; elseif ( strcmp( args{1},'clean' ) > 0 ) doClean = 1; elseif ( strcmp( args{1}(1),'-' ) > 0 ) % make clean all with user-specified compiler flags userIFlags = args{1}; doClean = 1; fcnNames = { 'qpOASES_e_QProblemB','qpOASES_e_QProblem' }; else error( ['ERROR (',mfilename '.m): Invalid first argument (''',args{1},''')!'] ); end case 2 if ( strcmp( args{1},'clean' ) > 0 ) doClean = 1; else error( ['ERROR (',mfilename '.m): First argument must be ''clean'' if two arguments are provided!'] ); end if ( strcmp( args{2},'all' ) > 0 ) fcnNames = { 'qpOASES_e_QProblemB','qpOASES_e_QProblem' }; elseif ( strcmp( args{2},'qpOASES_e_QProblemB' ) > 0 ) fcnNames = { 'qpOASES_e_QProblemB' }; elseif ( strcmp( args{2},'qpOASES_e_QProblem' ) > 0 ) fcnNames = { 'qpOASES_e_QProblem' }; else error( ['ERROR (',mfilename '.m): Invalid second argument (''',args{2},''')!'] ); end otherwise doClean = 0; fcnNames = { 'qpOASES_e_QProblemB','qpOASES_e_QProblem' }; userIFlags = []; end end function [ timestamp ] = getTimestamp( dateString ) try timestamp = dateString.datenum; catch timestamp = Inf; end end function [ ] = printCopyrightNotice( ) disp( ' ' ); disp( 'qpOASES -- An Implementation of the Online Active Set Strategy.' ); disp( 'Copyright (C) 2007-2015 by Hans Joachim Ferreau, Andreas Potschka,' ); disp( 'Christian Kirches et al. All rights reserved.' ); disp( ' ' ); disp( 'qpOASES is distributed under the terms of the' ); disp( 'GNU Lesser General Public License 2.1 in the hope that it will be' ); disp( 'useful, but WITHOUT ANY WARRANTY; without even the implied warranty' ); disp( 'of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.' ); disp( 'See the GNU Lesser General Public License for more details.' ); disp( ' ' ); disp( ' ' ); end %% %% end of file %%
github
acados/qpOASES-master
qpOASES_e_auxInput.m
.m
qpOASES-master/interfaces/matlab/qpOASES_e_auxInput.m
4,464
utf_8
3cda1474246b8abd61a797cea451dbd1
%qpOASES -- An Implementation of the Online Active Set Strategy. %Copyright (C) 2007-2015 by Hans Joachim Ferreau, Andreas Potschka, %Christian Kirches et al. All rights reserved. % %qpOASES is distributed under the terms of the %GNU Lesser General Public License 2.1 in the hope that it will be %useful, but WITHOUT ANY WARRANTY; without even the implied warranty %of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. %See the GNU Lesser General Public License for more details. % %--------------------------------------------------------------------------------- % %Returns a struct containing all possible auxiliary inputs to be passed %to qpOASES_e. % %Call % auxInput = qpOASES_e_auxInput(); %to obtain a struct with all auxiliary inputs empty. % %Call % auxInput = qpOASES_e_auxInput( 'input1',value1,'input2',value2,... ) %to obtain a struct with 'input1' set to value1 etc. and all remaining %auxiliary inputs empty. % %Call % auxInput = qpOASES_e_auxInput( oldInputs,'input1',value1,... ) %to obtain a copy of the options struct oldInputs but with 'input1' set to %value1 etc. % % %qpOASES_e features the following auxiliary inputs: % hessianType - Provide information on Hessian matrix: % 0: Hessian is zero matrix (i.e. LP formulation) % 1: Hessian is identity matrix % 2: Hessian is (strictly) positive definite % 3: Hessian is positive definite on null space % of active bounds/constraints % 4: Hessian is positive semi-definite. % 5: Hessian is indefinite % Leave hessianType empty if Hessian type is unknown. % x0 - Initial guess for optimal primal solution. % guessedWorkingSetB - Initial guess for working set of bounds at % optimal solution (nV elements or empty). % guessedWorkingSetC - Initial guess for working set of constraints at % optimal solution (nC elements or empty). % The working sets needs to be encoded as follows: % 1: bound/constraint at its upper bound % 0: bound/constraint not at any bound % -1: bound/constraint at its lower bound % R - Cholesky factor of Hessian matrix (upper-triangular); % only used if both guessedWorkingSets are empty % and option initialStatusBounds is set to 0. % % %See also QPOASES, QPOASES_SEQUENCE, QPOASES_OPTIONS % % %For additional information see the qpOASES User's Manual or %visit http://www.qpOASES.org/. % %Please send remarks and questions to [email protected]! function [ auxInput ] = qpOASES_e_auxInput( varargin ) firstIsStruct = 0; if ( nargin == 0 ) auxInput = qpOASES_e_emptyAuxInput(); else if ( isstruct( varargin{1} ) ) if ( mod( nargin,2 ) ~= 1 ) error('ERROR (qpOASES_e_auxInput): Auxiliary inputs must be specified in pairs!'); end auxInput = varargin{1}; firstIsStruct = 1; else if ( mod( nargin,2 ) ~= 0 ) error('ERROR (qpOASES_e_auxInput): Auxiliary inputs must be specified in pairs!'); end auxInput = qpOASES_e_emptyAuxInput(); end end % set options to user-defined values for i=(1+firstIsStruct):2:nargin argName = varargin{i}; argValue = varargin{i+1}; if ( ( isempty( argName ) ) || ( ~ischar( argName ) ) ) error('ERROR (qpOASES_e_auxInput): Argmument no. %d has to be a non-empty string!',i ); end if ( ( ischar(argValue) ) || ( ~isnumeric( argValue ) ) ) error('ERROR (qpOASES_e_auxInput): Argmument no. %d has to be a numerical constant!',i+1 ); end if ( ~isfield( auxInput,argName ) ) error('ERROR (qpOASES_e_auxInput): Argmument no. %d is not a valid auxiliary input!',i ); end eval( ['auxInput.',argName,' = argValue;'] ); end end function [ auxInput ] = qpOASES_e_emptyAuxInput( ) % setup auxiliary input struct with all entries empty auxInput = struct( 'hessianType', [], ... 'x0', [], ... 'guessedWorkingSetB', [], ... 'guessedWorkingSetC', [], ... 'R', [] ... ); end
github
acados/qpOASES-master
make.m
.m
qpOASES-master/interfaces/matlab/make.m
8,288
utf_8
3f51786f16fadf166e502ca7a1ea2538
function [] = make( varargin ) %MAKE Compiles the Matlab interface of qpOASES_e. % %Type make to compile all interfaces that % have been modified, %type make clean to delete all compiled interfaces, %type make clean all to first delete and then compile % all interfaces, %type make 'name' to compile only the interface with % the given name (if it has been modified), %type make 'opt' to compile all interfaces using the % given compiler options % %Copyright (C) 2013-2015 by Hans Joachim Ferreau, Andreas Potschka, %Christian Kirches et al. All rights reserved. %% %% This file is part of qpOASES. %% %% qpOASES -- An Implementation of the Online Active Set Strategy. %% Copyright (C) 2007-2015 by Hans Joachim Ferreau, Andreas Potschka, %% Christian Kirches et al. All rights reserved. %% %% qpOASES is free software; you can redistribute it and/or %% modify it under the terms of the GNU Lesser General Public %% License as published by the Free Software Foundation; either %% version 2.1 of the License, or (at your option) any later version. %% %% qpOASES is distributed in the hope that it will be useful, %% but WITHOUT ANY WARRANTY; without even the implied warranty of %% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. %% See the GNU Lesser General Public License for more details. %% %% You should have received a copy of the GNU Lesser General Public %% License along with qpOASES; if not, write to the Free Software %% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA %% %% %% Filename: interfaces/matlab/make.m %% Author: Hans Joachim Ferreau, Andreas Potschka, Christian Kirches %% Version: 3.1embedded %% Date: 2007-2015 %% %% consistency check if ( exist( [pwd, '/make.m'],'file' ) == 0 ) error( ['ERROR (',mfilename '.m): Run this make script directly within the directory', ... '<qpOASES-inst-dir>/interfaces/matlab, please.'] ); end if ( nargin > 2 ) error( ['ERROR (',mfilename '.m): At most two make arguments supported!'] ); else [ doClean,fcnNames,userFlags ] = analyseMakeArguments( nargin,varargin ); end %% define compiler settings QPOASESPATH = '../../'; DEBUGFLAGS = ' '; %DEBUGFLAGS = ' -g CXXDEBUGFLAGS=''$CXXDEBUGFLAGS -Wall -pedantic -Wshadow'' '; IFLAGS = [ '-I. -I',QPOASESPATH,'include',' -I',QPOASESPATH,'src',' ' ]; CFLAGS = [ IFLAGS, DEBUGFLAGS, '-largeArrayDims -D__MATLAB__ -D__SINGLE_OBJECT__ -Dinline="" -Dsnprintf="_snprintf"',' ' ]; defaultFlags = '-O -D__NO_COPYRIGHT__ '; %% -D__NO_COPYRIGHT__ -D__SUPPRESSANYOUTPUT__ -D__DEBUG__ if ( ispc == 0 ) CFLAGS = [ CFLAGS, '-DLINUX ',' ' ]; else CFLAGS = [ CFLAGS, '-DWIN32 ',' ' ]; end if ( isempty(userFlags) > 0 ) CFLAGS = [ CFLAGS, defaultFlags,' ' ]; else CFLAGS = [ CFLAGS, userFlags,' ' ]; end mexExt = eval('mexext'); %% ensure copyright notice is displayed if ~isempty( strfind( CFLAGS,'-D__NO_COPYRIGHT__' ) ) printCopyrightNotice( ); end %% clean if desired if ( doClean > 0 ) eval( 'delete *.o;' ); eval( ['delete *.',mexExt,'*;'] ); disp( [ 'INFO (',mfilename '.m): Cleaned all compiled files.'] ); pause( 0.2 ); end if ( ~isempty(userFlags) ) disp( [ 'INFO (',mfilename '.m): Compiling all files with user-defined compiler flags (''',userFlags,''')...'] ); end %% call mex compiler for ii=1:length(fcnNames) cmd = [ 'mex -output ', fcnNames{ii}, ' ', CFLAGS, [fcnNames{ii},'.c'] ]; if ( exist( [fcnNames{ii},'.',mexExt],'file' ) == 0 ) eval( cmd ); disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' successfully created.'] ); else % check modification time of source/Make files and compiled mex file cppFile = dir( [pwd,'/',fcnNames{ii},'.c'] ); cppFileTimestamp = getTimestamp( cppFile ); utilsFile = dir( [pwd,'/qpOASES_matlab_utils.c'] ); utilsFileTimestamp = getTimestamp( utilsFile ); makeFile = dir( [pwd,'/make.m'] ); makeFileTimestamp = getTimestamp( makeFile ); mexFile = dir( [pwd,'/',fcnNames{ii},'.',mexExt] ); if ( isempty(mexFile) == 0 ) mexFileTimestamp = getTimestamp( mexFile ); else mexFileTimestamp = 0; end if ( ( cppFileTimestamp >= mexFileTimestamp ) || ... ( utilsFileTimestamp >= mexFileTimestamp ) || ... ( makeFileTimestamp >= mexFileTimestamp ) ) eval( cmd ); disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' successfully created.'] ); else disp( [ 'INFO (',mfilename '.m): ', fcnNames{ii},'.',mexExt, ' already exists.'] ); end end end %% add qpOASES directory to path path( path,pwd ); end function [ doClean,fcnNames,userIFlags ] = analyseMakeArguments( nArgs,args ) doClean = 0; fcnNames = []; userIFlags = []; switch ( nArgs ) case 1 if ( strcmp( args{1},'all' ) > 0 ) fcnNames = { 'qpOASES_e','qpOASES_e_sequence' }; elseif ( strcmp( args{1},'qpOASES_e' ) > 0 ) fcnNames = { 'qpOASES_e' }; elseif ( strcmp( args{1},'qpOASES_e_sequence' ) > 0 ) fcnNames = { 'qpOASES_e_sequence' }; elseif ( strcmp( args{1},'clean' ) > 0 ) doClean = 1; elseif ( strcmp( args{1}(1),'-' ) > 0 ) % make clean all with user-specified compiler flags userIFlags = args{1}; doClean = 1; fcnNames = { 'qpOASES_e','qpOASES_e_sequence' }; else error( ['ERROR (',mfilename '.m): Invalid first argument (''',args{1},''')!'] ); end case 2 if ( strcmp( args{1},'clean' ) > 0 ) doClean = 1; else error( ['ERROR (',mfilename '.m): First argument must be ''clean'' if two arguments are provided!'] ); end if ( strcmp( args{2},'all' ) > 0 ) fcnNames = { 'qpOASES_e','qpOASES_e_sequence' }; elseif ( strcmp( args{2},'qpOASES_e' ) > 0 ) fcnNames = { 'qpOASES_e' }; elseif ( strcmp( args{2},'qpOASES_e_sequence' ) > 0 ) fcnNames = { 'qpOASES_e_sequence' }; else error( ['ERROR (',mfilename '.m): Invalid second argument (''',args{2},''')!'] ); end otherwise fcnNames = { 'qpOASES_e','qpOASES_e_sequence' }; end end function [ timestamp ] = getTimestamp( dateString ) try timestamp = dateString.datenum; catch timestamp = Inf; end end function [ ] = printCopyrightNotice( ) disp( ' ' ); disp( 'qpOASES -- An Implementation of the Online Active Set Strategy.' ); disp( 'Copyright (C) 2007-2015 by Hans Joachim Ferreau, Andreas Potschka,' ); disp( 'Christian Kirches et al. All rights reserved.' ); disp( ' ' ); disp( 'qpOASES is distributed under the terms of the' ); disp( 'GNU Lesser General Public License 2.1 in the hope that it will be' ); disp( 'useful, but WITHOUT ANY WARRANTY; without even the implied warranty' ); disp( 'of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.' ); disp( 'See the GNU Lesser General Public License for more details.' ); disp( ' ' ); disp( ' ' ); end %% %% end of file %%
github
acados/qpOASES-master
qpOASES_e_options.m
.m
qpOASES-master/interfaces/matlab/qpOASES_e_options.m
10,413
utf_8
7094632bf1ee692f7c7d22ac38754401
%qpOASES -- An Implementation of the Online Active Set Strategy. %Copyright (C) 2007-2015 by Hans Joachim Ferreau, Andreas Potschka, %Christian Kirches et al. All rights reserved. % %qpOASES is distributed under the terms of the %GNU Lesser General Public License 2.1 in the hope that it will be %useful, but WITHOUT ANY WARRANTY; without even the implied warranty %of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. %See the GNU Lesser General Public License for more details. % %--------------------------------------------------------------------------------- % %Returns a struct containing values for all options to be used within qpOASES_e. % %Call % options = qpOASES_e_options( 'default' ); % options = qpOASES_e_options( 'reliable' ); % options = qpOASES_e_options( 'MPC' ); %to obtain a set of default options or a pre-defined set of options tuned %for reliable or fast QP solution, respectively. % %Call % options = qpOASES_e_options( 'option1',value1,'option2',value2,... ) %to obtain a set of default options but with 'option1' set to value1 etc. % %Call % options = qpOASES_e_options( oldOptions,'option1',value1,... ) %to obtain a copy of the options struct oldOptions but with 'option1' set %to value1 etc. % %Call % options = qpOASES_e_options( 'default', 'option1',value1,... ) % options = qpOASES_e_options( 'reliable','option1',value1,... ) % options = qpOASES_e_options( 'MPC', 'option1',value1,... ) %to obtain a set of default options or a pre-defined set of options tuned %for reliable or fast QP solution, respectively, but with 'option1' set to %value1 etc. % % %qpOASES_e features the following options: % maxIter - Maximum number of iterations (if set % to -1, a value is chosen heuristically) % maxCpuTime - Maximum CPU time in seconds (if set % to -1, only iteration limit is used) % printLevel - 0: no printed output, % 1: only error messages are printed, % 2: iterations and error messages are printed, % 3: all available messages are printed. % % enableRamping - Enables (1) or disables (0) ramping. % enableFarBounds - Enables (1) or disables (0) the use of % far bounds. % enableFlippingBounds - Enables (1) or disables (0) the use of % flipping bounds. % enableRegularisation - Enables (1) or disables (0) automatic % Hessian regularisation. % enableFullLITests - Enables (1) or disables (0) condition-hardened % (but more expensive) LI test. % enableNZCTests - Enables (1) or disables (0) nonzero curvature % tests. % enableDriftCorrection - Specifies the frequency of drift corrections: % 0: turns them off, % 1: uses them at each iteration etc. % enableCholeskyRefactorisation - Specifies the frequency of a full re- % factorisation of projected Hessian matrix: % 0: turns them off, % 1: uses them at each iteration etc. % enableEqualities - Specifies whether equalities should be treated % as always active (1) or not (0) % % terminationTolerance - Relative termination tolerance to stop homotopy. % boundTolerance - If upper and lower bounds differ less than this % tolerance, they are regarded equal, i.e. as % equality constraint. % boundRelaxation - Initial relaxation of bounds to start homotopy % and initial value for far bounds. % epsNum - Numerator tolerance for ratio tests. % epsDen - Denominator tolerance for ratio tests. % maxPrimalJump - Maximum allowed jump in primal variables in % nonzero curvature tests. % maxDualJump - Maximum allowed jump in dual variables in % linear independence tests. % % initialRamping - Start value for ramping strategy. % finalRamping - Final value for ramping strategy. % initialFarBounds - Initial size for far bounds. % growFarBounds - Factor to grow far bounds. % initialStatusBounds - Initial status of bounds at first iteration: % 0: all bounds inactive, % -1: all bounds active at their lower bound, % +1: all bounds active at their upper bound. % epsFlipping - Tolerance of squared Cholesky diagonal factor % which triggers flipping bound. % numRegularisationSteps - Maximum number of successive regularisation steps. % epsRegularisation - Scaling factor of identity matrix used for % Hessian regularisation. % numRefinementSteps - Maximum number of iterative refinement steps. % epsIterRef - Early termination tolerance for iterative % refinement. % epsLITests - Tolerance for linear independence tests. % epsNZCTests - Tolerance for nonzero curvature tests. % % %See also QPOASES, QPOASES_SEQUENCE, QPOASES_AUXINPUT % % %For additional information see the qpOASES User's Manual or %visit http://www.qpOASES.org/. % %Please send remarks and questions to [email protected]! function [ options ] = qpOASES_e_options( varargin ) firstIsStructOrScheme = 0; if ( nargin == 0 ) options = qpOASES_e_default_options(); else if ( isstruct( varargin{1} ) ) if ( mod( nargin,2 ) ~= 1 ) error('ERROR (qpOASES_e_options): Options must be specified in pairs!'); end options = varargin{1}; firstIsStructOrScheme = 1; else if ( ischar( varargin{1} ) ) if ( mod( nargin,2 ) == 0 ) options = qpOASES_e_default_options(); else if ( ( nargin > 1 ) && ( ischar( varargin{nargin} ) ) ) error('ERROR (qpOASES_e_options): Options must be specified in pairs!'); end switch ( varargin{1} ) case 'default' options = qpOASES_e_default_options(); case 'reliable' options = qpOASES_e_reliable_options(); case {'MPC','mpc','fast'} options = qpOASES_e_MPC_options(); otherwise error( ['ERROR (qpOASES_e_options): Only the following option schemes are defined: ''default'', ''reliable'', ''MPC''!'] ); end firstIsStructOrScheme = 1; end else error('ERROR (qpOASES_e_options): First argument needs to be a string or an options struct!'); end end end % set options to user-defined values for i=(1+firstIsStructOrScheme):2:nargin argName = varargin{i}; argValue = varargin{i+1}; if ( ( isempty( argName ) ) || ( ~ischar( argName ) ) ) error('ERROR (qpOASES_e_options): Argmument no. %d has to be a non-empty string!',i ); end if ( ( ischar(argValue) ) || ( ~isscalar( argValue ) ) ) error('ERROR (qpOASES_e_options): Argmument no. %d has to be a scalar constant!',i+1 ); end if ( ~isfield( options,argName ) ) error('ERROR (qpOASES_e_options): Argmument no. %d is an invalid option!',i ); end eval( ['options.',argName,' = ',num2str(argValue),';'] ); end end function [ options ] = qpOASES_e_default_options( ) % setup options struct with default values options = struct( 'maxIter', -1, ... 'maxCpuTime', -1, ... 'printLevel', 1, ... ... 'enableRamping', 1, ... 'enableFarBounds', 1, ... 'enableFlippingBounds', 1, ... 'enableRegularisation', 0, ... 'enableFullLITests', 0, ... 'enableNZCTests', 1, ... 'enableDriftCorrection', 1, ... 'enableCholeskyRefactorisation', 0, ... 'enableEqualities', 0, ... ... 'terminationTolerance', 5.0e6*eps, ... 'boundTolerance', 1.0e6*eps, ... 'boundRelaxation', 1.0e4, ... 'epsNum', -1.0e3*eps, ... 'epsDen', 1.0e3*eps, ... 'maxPrimalJump', 1.0e8, ... 'maxDualJump', 1.0e8, ... ... 'initialRamping', 0.5, ... 'finalRamping', 1.0, ... 'initialFarBounds', 1.0e6, ... 'growFarBounds', 1.0e3, ... 'initialStatusBounds', -1, ... 'epsFlipping', 1.0e3*eps, ... 'numRegularisationSteps', 0, ... 'epsRegularisation', 1.0e3*eps, ... 'numRefinementSteps', 1, ... 'epsIterRef', 1.0e2*eps, ... 'epsLITests', 1.0e5*eps, ... 'epsNZCTests', 3.1e3*eps ); end function [ options ] = qpOASES_e_reliable_options( ) % setup options struct with values for most reliable QP solution options = qpOASES_e_default_options( ); options.enableFullLITests = 1; options.enableCholeskyRefactorisation = 1; options.numRefinementSteps = 2; end function [ options ] = qpOASES_e_MPC_options( ) % setup options struct with values for most reliable QP solution options = qpOASES_e_default_options( ); options.enableRamping = 0; options.enableFarBounds = 1; options.enableFlippingBounds = 0; options.enableRegularisation = 1; options.enableNZCTests = 0; options.enableDriftCorrection = 0; options.enableEqualities = 1; options.terminationTolerance = 1.0e9*eps; options.initialStatusBounds = 0; options.numRegularisationSteps = 1; options.numRefinementSteps = 0; end
github
joe-of-all-trades/OCT_Analysis-master
datainterp.m
.m
OCT_Analysis-master/datainterp.m
582
utf_8
bbf962dc7fa6305d14a041e5016ea8a5
% This script is written by Chao-yuan Yeh. All copyrights reserved. function output = datainterp( input, varargin) if strcmpi(varargin, '45') temp = diff(round(input(:,1)/sin(pi/4))); elseif strcmpi(varargin, 'x') temp = diff(round(input(:,1))); elseif strcmpi(varargin, 'y') temp = diff(round(input(:,2))); end index = find(abs(temp)==2); index = index + (1:length(index))'; temp2 = zeros(size(input,1)+length(index), size(input,2)); temp2(index,:) = nan; temp2(~isnan(temp2)) = input; temp2(index,:) = (temp2(index-1,:) + temp2(index+1,:))/2; output = temp2; end
github
joe-of-all-trades/OCT_Analysis-master
OCT_process_file.m
.m
OCT_Analysis-master/OCT_process_file.m
2,548
utf_8
40998a86705277ee1ce8757e6041a103
% This script is written by Chao-Yuan Yeh. All copyrights reserved. function OCT_process_file_pub root_folder = uigetdir('', 'select root folder containing all OCT data'); recur_proc(root_folder) % Consider alternative implementation using built-in genpath function matlab_path = strsplit(matlabpath, ';'); home_path = matlab_path{1}; cd(home_path) disp('task completed') end function recur_proc(foldername) % function that goes through folder structure resursively and process OCT % files along the way cd(foldername) folderlist = dir; sublist = folderlist([folderlist(:).isdir] &... ~strcmp({folderlist(:).name}, '.') &... ~strcmp({folderlist(:).name}, '..')); if ~exist('filename_proccesed.log', 'file') fID = fopen('filename_proccesed.log','w'); fclose(fID); filelist = dir('*.OCT'); % Shorten file name(removing ID number) so filename can be handled by % downstream process. for jj = 1 : length(filelist) movefile(filelist(jj).name,regexprep(filelist(jj).name,... ',\s[A-Z]\d{9}\s_\d*_','_')); end clear filelist % Convert Cross Line OCT files into tif filelist = dir('*Cross Line*.OCT'); for jj = 1:length(filelist) tempstr = filelist(jj).name; fID = fopen(fullfile(pwd,tempstr)); temp = fread(fID,'single'); % Image size is specified by "OCT Window Height=768" and "XY Scan Length= 1019" temp = uint16(reshape(temp,768,1019,4)); img1 = flip(temp(:,:,1),1); img2 = flip(temp(:,:,2),1); imwrite(img1,[tempstr(1:end-4),'_1.tif']); imwrite(img2,[tempstr(1:end-4),'_2.tif']); fclose(fID); clearvars tempstr fID temp img1 img2 end clear filelist % Convert Line OCT files into tif filelist = dir('*_Line*.OCT'); for jj = 1:length(filelist) tempstr = filelist(jj).name; fID = fopen(fullfile(pwd,tempstr)); temp = fread(fID,'single'); % Image size is specified by "OCT Window Height=956" and "XY Scan Length= 1019" temp = uint16(reshape(temp,956,1019,2)); img1 = flip(temp(:,:,1),1); imwrite(img1,[tempstr(1:end-4),'.tif']); fclose(fID); clearvars tempstr fID temp img1 end clear filelist end if ~isempty(sublist) for ii = 1:length(sublist) sublist(ii).abspath = fullfile(pwd,sublist(ii).name); end end if ~isempty(sublist) for ii = 1:length(sublist) recur_proc(sublist(ii).abspath) end end end
github
yasharhezaveh/Ensai-master
Lensing_TrainingImage_Generator.m
.m
Ensai-master/src/Lensing_TrainingImage_Generator.m
27,698
utf_8
480cbc2902655c7cbff9cd903edf1d2b
function [IMS,PARAMS,src_pars,log_kappa] = Lensing_TrainingImage_Generator(nsample,random_seed, WRITE , test_or_train) %WRITE = 1 %test_or_train = 'test' if ~exist('WRITE','var') WRITE = 0; end rng(random_seed) zLENS = 0.5; zSOURCE = 2.00; h=0.71; OmegaC=0.222; OmegaLambda=0.734; sigNORM=0.801; OmegaBaryon=0.0449; OmegaM=OmegaC+OmegaBaryon; c = 2.998E8; G = 6.67259E-11; Msun= 1.98892e30; pc = 3.0857E16; kpc=1e3*pc; Mpc=1e6*pc; H0=100*h*(1000/Mpc); %in units of 1/s rhocrit=(3*H0^2)/(8*pi*G); %SI: kg/m^3 H=100*h; Ds = (1e-6) * AngularDiameter(0,zSOURCE); %in Mpc Dd = (1e-6) * AngularDiameter(0,zLENS); %in Mpc Dds = (1e-6) * AngularDiameter(zLENS,zSOURCE); %in Mpc extend_ratio = 1.6; num_im_pix = 400; num_im_output_pix = 192; imside = extend_ratio * num_im_output_pix * 0.04; imside_out = num_im_output_pix * 0.04; [XIM , YIM]=meshgrid(linspace(-imside/2,imside/2,num_im_pix).*pi./180./3600,linspace(-imside/2,imside/2,num_im_pix).*pi./180./3600); [X_out , Y_out]=meshgrid(linspace(-imside_out/2,imside_out/2,num_im_output_pix).*pi./180./3600,linspace(-imside_out/2,imside_out/2,num_im_output_pix).*pi./180./3600); R_ein = zeros(nsample,1); elp = zeros(nsample,1); angle = zeros(nsample,1); elp_x = zeros(nsample,1); elp_y = zeros(nsample,1); shear = zeros(nsample,1); shear_angle = zeros(nsample,1); xsource = zeros(nsample,1); ysource = zeros(nsample,1); XLENS = zeros(nsample,1); YLENS = zeros(nsample,1); src_pars = zeros(nsample,4); magnification = zeros(nsample,1); % datapath = getenv('Ensai_lens_training_dataset_path'); datapath = [getenv('LOCAL_SCRATCH') '/SAURON/ARCS_2/']; galaxy_image_path = [getenv('LOCAL_SCRATCH') '/Small_Galaxy_Zoo/']; mkdir(datapath) file_list = ls(galaxy_image_path); file_names = strsplit(file_list); file_names = sortrows(file_names.',1); file_names(1)=[]; n_GalZoo_sample = numel(file_names); file_inds = 1:numel(file_names); src_numpix = 212; n_source_sample = n_GalZoo_sample; %load([getenv('SCRATCH') '/GREAT_gal_ims.mat'],'gal_ims'); %n_source_sample = numel(gal_ims); disp('loading...') load([getenv('LOCAL_SCRATCH') '/GREAT_IMS30.mat'],'GREAT_IMS'); n_source_sample = size(GREAT_IMS,1) disp('done') [xsrc , ysrc] = meshgrid(linspace(-1,1,src_numpix).*pi./180./3600); rfilt = sqrt(xsrc.^2+ysrc.^2); taper = 1./(1+(rfilt./(0.6.*pi./180./3600)).^6); taper = taper./max(taper(:)); if random_seed==-1 rng('shuffle') else rng(random_seed) end max_R_ein = 3.0 * (num_im_output_pix/192); max_elp = 0.9; IMS = zeros(num_im_output_pix,num_im_output_pix); log_kappa = zeros(num_im_output_pix,num_im_output_pix); for i = 1:nsample if mod(i,200)==0 disp(i./nsample) end newflux = 0; oldflux = 1.0; magnification(i) = 0; SKY_IM = 0; while newflux<(0.99 * oldflux) || (magnification(i)<2.0) || max(SKY_IM(:))==0 R_ein(i) = 0.1 + rand(1) .* (max_R_ein-0.1); elp(i) = rand(1) * max_elp ; angle(i) = rand(1).*360; XLENS(i) = (rand(1)-0.5) .* 0.1; YLENS(i) = (rand(1)-0.5) .* 0.1; shear(i) = rand(1) .* 0.0 ; shear_angle(i) = rand(1) .* 0.0; image_ind = ceil(rand(1).*n_source_sample); size_scale = rand(1).*0.8+0.2; src_rad = 0.5.*size_scale; [XS ,YS , ~ ,sigma_n ,MSIS] = SIE_RayTrace_fromRein(XIM,YIM,XIM,YIM,R_ein(i),elp(i),shear(i),shear_angle(i),zLENS,zSOURCE,angle(i),[XLENS(i) YLENS(i)]); % kappa_map = get_SIE_kappa( XIM , YIM , sigma_n , elp(i) , angle(i) , XLENS(i) , YLENS(i) , zLENS , zSOURCE ); % kappa_map = imresize(kappa_map,[num_im_output_pix num_im_output_pix],'box'); % log_kappa(:,:,i) = log10(kappa_map); [~,~,X1,Y1,X2,Y2] = Caustic_Analytical(MSIS,elp(i),'arcsec','r',0.5,2.0,angle(i),1,[XLENS(i) YLENS(i)]); SKY_IM = 0; xsource(i) = 10; ysource(i) = 10; if rand(1)<0.5 xCen = mean(X2(:)); yCen = mean(Y2(:)); [THET,RHO]=cart2pol(X2-xCen,Y2-yCen); [X2_UP,Y2_UP]=pol2cart(THET,RHO+0.15); X2_UP = X2_UP + xCen; Y2_UP = Y2_UP + yCen; max_source_xy_range = max(max(X2_UP(:))-min(X2_UP(:)) , max(Y2_UP(:))-min(Y2_UP(:))) .* 1; while ~inpolygon(xsource(i),ysource(i),X2_UP,Y2_UP) xsource(i) = (rand(1)-0.5).* max_source_xy_range + xCen; ysource(i) = (rand(1)-0.5).* max_source_xy_range + yCen; end else xCen = mean(X1(:)); yCen = mean(Y1(:)); X1 = (X1-xCen).*0.7 + xCen; Y1 = (Y1-yCen).*0.7 + yCen; max_source_xy_range = max(max(X1(:))-min(X1(:)) , max(Y1(:))-min(Y1(:))) .* 1; while ~inpolygon(xsource(i),ysource(i),X1,Y1) xsource(i) = random('norm',xCen,max_source_xy_range./5); ysource(i) = random('norm',yCen,max_source_xy_range./5); end end src_pars(i,:) = [image_ind xsource(i) ysource(i) size_scale]; %scurr = rng; %Nclump=ceil(rand(1).*5); %rndmat = rand(2); %cov=rndmat.'*rndmat; %cov = cov./((cov(1,1)+cov(2,2))./2) .* (src_rad./4)^2; %COORDS = mvnrnd(zeros(Nclump,2),cov); %temp_src_im = clumpy_source(COORDS(:,1),COORDS(:,2),0.01+rand(1,Nclump).*0.1,src_numpix,2.0,rand(1,Nclump)); %rng(scurr) temp_src_im = GREAT_IMS{image_ind}; imindx = ceil( rand(1) * size(temp_src_im,3) ); temp_src_im = temp_src_im(:,:,imindx); %temp_src_im = gal_ims{image_ind}; %temp_src_im = double(imread([galaxy_image_path file_names{file_inds(image_ind)}]))./255; temp_src_im = imresize(temp_src_im,[src_numpix src_numpix]); temp_src_im = temp_src_im./max(temp_src_im(:)); source_image = temp_src_im .* taper; SKY_IM_L = interp2(xsrc.*size_scale+(xsource(i)).*pi./180./3600,ysrc.*size_scale+(ysource(i)).*pi./180./3600,source_image,XS,YS,'linear',0); unlensed_flux = sum(source_image(:))./numel(source_image)./ (imside/(2*size_scale))^2 .* numel(SKY_IM_L); magnification(i) = sum(SKY_IM_L(:)) ./ unlensed_flux; SKY_IM = interp2(XIM,YIM,SKY_IM_L, X_out , Y_out , 'linear', 0); newflux = sum(SKY_IM(:))./extend_ratio^2 .* (num_im_pix/num_im_output_pix)^2; oldflux = sum(SKY_IM_L(:)); end if max(SKY_IM(:))~=0 SKY_IM = SKY_IM./max(SKY_IM(:)); end IMS = SKY_IM; % imshow(SKY_IM,[],'xdata',[-3 3],'ydata',[-3 3]); % pause; if WRITE==1 imwrite(SKY_IM,[datapath test_or_train '_' num2str(i,'%.7d') '.png'],'bitdepth',16); end end Q = [R_ein elp angle XLENS YLENS shear shear_angle]; PARAMS = [map_parameters(Q,'code') magnification]; if WRITE==1 dlmwrite([datapath 'parameters_' test_or_train '.txt'],PARAMS,' ') dlmwrite([datapath 'parameters_source_' test_or_train '.txt'],src_pars,' ') end end function p = map_parameters(q,code_or_decode) SCALE_SHEAR = 5; if strcmp(code_or_decode,'code') Rein = q(:,1); elp_x = q(:,2).* cos(q(:,3).*pi./180); elp_y = q(:,2).* sin(q(:,3).*pi./180); xlens = q(:,4); ylens = q(:,5); shear_x = SCALE_SHEAR .* q(:,6).* cos(q(:,7).*pi./180); shear_y = SCALE_SHEAR .* q(:,6).* sin(q(:,7).*pi./180); p = [Rein elp_x elp_y xlens ylens shear_x shear_y]; elseif strcmp(code_or_decode,'decode') Rein = q(:,1); elp = sqrt(q(:,2).^2+q(:,3).^2) ; angle = atan2(q(:,3),q(:,2)) .* 180./pi; xlens = q(:,4); ylens = q(:,5); shear = sqrt(q(:,6).^2+q(:,7).^2) ./ SCALE_SHEAR; shear_angle = atan2(q(:,7),q(:,6)).* 180./pi; p = [Rein elp angle xlens ylens shear shear_angle]; end end function [xsource ysource R_ein sigma_cent Minterior]=SIE_RayTrace_fromRein(ximage,yimage,xsource0,ysource0,REIN,elpSIS,Ext_Shear,Shear_angle,zLENS,zSOURCE,theta,offsets) h=0.71; OmegaC=0.222; OmegaLambda=0.734; sigNORM=0.801; OmegaBaryon=0.0449; OmegaM=OmegaC+OmegaBaryon; c = 2.998E8; G = 6.67259E-11; Msun= 1.98892e30; pc = 3.0857E16; kpc=1e3*pc; Mpc=1e6*pc; H0=100*h*(1000/Mpc); %in units of 1/s rhocrit=(3*H0^2)/(8*pi*G); %SI: kg/m^3 H=100*h; Ds = (1e-6) * AngularDiameter(0,zSOURCE); %in Mpc Dd = (1e-6) * AngularDiameter(0,zLENS); %in Mpc Dds = (1e-6) * AngularDiameter(zLENS,zSOURCE); %in Mpc sigma_cent = sqrt(299800000^2/(4*pi).* REIN .*pi./180./3600 .* AngularDiameter(0,zSOURCE)/AngularDiameter(zLENS,zSOURCE)); MSIS = (pi*(sigma_cent^2)*(REIN.*pi./180./3600)*Dd*Mpc)/G/Msun; if isempty(xsource0) || isempty(ysource0) xsource0=ximage; ysource0=yimage; end if Ext_Shear==0 Ext_Shear=1e-15; end % xoffset=-offsets(1); yoffset=-offsets(2); xoffset=-offsets(1)*(pi/3600/180); yoffset=-offsets(2)*(pi/3600/180); COX=xsource0-ximage; COY=ysource0-yimage; % A=0; B=0; C=0; D=0; %Ray trace an SIE based on analytical deflection. field: in arcsec theta=theta*(pi/180); Shear_angle=Shear_angle*(pi/180); xsource=zeros(size(ximage)); ysource=zeros(size(yimage)); % Potential=zeros(size(yimage)); f=1-elpSIS; fp=sqrt(1-f^2); % sigma_cent=sigma(MSIS,zLENS); sigma_cent = ((MSIS*G*Msun*Ds)/(4*pi^2*Dd*Dds*Mpc))^(1/4)*sqrt(c); % sigma_cent = MSIS; R_ein = 4 * pi * (sigma_cent/c)^2 *(Dds/Ds); % Minterior=(pi*(sigma_cent^2)*R_ein*Dd*Mpc)/G/Msun; ZXI_0 = 4 * pi * (sigma_cent/c)^2 *(Dd*Dds/Ds); % R_ein=4 * pi * (sigma_cent/c)^2 *(Dds/Ds); % R_ein*(60*60*180/pi) % return ximage=ximage+xoffset; yimage=yimage+yoffset; if theta~=0 [TH RHO]=cart2pol(ximage,yimage); [ximage,yimage] = pol2cart(TH-theta,RHO); end Shear_angle=Shear_angle-theta; g1=Ext_Shear*(-cos(2*Shear_angle)); g2=Ext_Shear*(-sin(2*Shear_angle)); g3=Ext_Shear*(-sin(2*Shear_angle)); g4=Ext_Shear*( cos(2*Shear_angle)); par=atan2(yimage,ximage); xsource=((Dd.*ximage./ZXI_0-(sqrt(f)/fp).*asinh(cos(par).*fp./f)).*ZXI_0./Dd)-((g1.*ximage)+(g2.*yimage)); ysource=((Dd.*yimage./ZXI_0-(sqrt(f)/fp).*asin(fp.*sin(par))).*ZXI_0./Dd)-((g3.*ximage)+(g4.*yimage)); % subplot(2,2,1) % imshow(abs((sqrt(f)/fp).*asinh(cos(par).*fp./f)).*ZXI_0./Dd,[]);colormap(jet);colorbar % subplot(2,2,2) % imshow(abs((sqrt(f)/fp).*asin(fp.*sin(par))).*ZXI_0./Dd,[]);colormap(jet);colorbar % parfor i=1:numel(ximage) % par=atan2(yimage(i),ximage(i)); % xsource(i)=((Dd.*ximage(i)./ZXI_0-(sqrt(f)/fp)*asinh(cos(par)*fp/f))*ZXI_0/Dd)-((g1.*ximage(i))+(g2.*yimage(i))); % ysource(i)=((Dd.*yimage(i)./ZXI_0-(sqrt(f)/fp)*asin(fp*sin(par)))*ZXI_0/Dd)-((g3.*ximage(i))+(g4.*yimage(i))); % xsource(i)=((Dd.*ximage(i)./ZXI_0-(sqrt(f)/fp)*asinh(cos(par)*fp/f))*ZXI_0/Dd); % ysource(i)=((Dd.*yimage(i)./ZXI_0-(sqrt(f)/fp)*asin(fp*sin(par)))*ZXI_0/Dd); % xalpha(i)=((sqrt(f)/fp)*asinh(cos(par)*fp/f))*ZXI_0/Dd; % yalpha(i)=((sqrt(f)/fp)*asin(fp*sin(par)))*ZXI_0/Dd; % DeltA=sqrt(cos(par)^2+(f^2*sin(par)^2)); % x1=(Dd.*ximage(i)./ZXI_0); x2=(Dd.*yimage(i)./ZXI_0); % x=sqrt(x1^2+(f^2*x2^2))/DeltA; % Potential(i)=(sqrt(f)/fp)*x*((abs(sin(par))*acos(DeltA))+(abs(cos(par))*acosh(DeltA/f))); % end; if theta~=0 [TH RHO]=cart2pol(ximage,yimage); [ximage,yimage] = pol2cart(TH+theta,RHO); [TH RHO]=cart2pol(xsource,ysource); [xsource,ysource] = pol2cart(TH+theta,RHO); end ximage=ximage-xoffset; yimage=yimage-yoffset; xsource=xsource-xoffset+COX; ysource=ysource-yoffset+COY; % if strcmp(action,'plot') % [xsource ysource]=TrianGulate(xsource,ysource); % [ximage yimage]=TrianGulate(ximage,yimage); % hold on % plot(ximage,yimage,'color',[0.3 0.3 0.3]); % plot(xsource,ysource,'b') % axis equal % elseif strcmp(action,'save') % if strcmp(Del,'delaunay') % [xsource ysource]=TrianGulate(xsource,ysource); % [ximage yimage]=TrianGulate(ximage,yimage); % end % % save([SavePath '/SIE_RayTracedXY.mat'],'ximage','yimage','xsource','ysource','Nmat','MSIS','elpSIS','R_ein'); % save(SavePath,'ximage','yimage','xsource','ysource','Nmat','MSIS','elpSIS','R_ein','zLENS','zSOURCE','theta'); % elseif strcmp(action,'pass') % if strcmp(Del,'delaunay') % [xsource ysource]=TrianGulate(xsource,ysource); % [ximage yimage]=TrianGulate(ximage,yimage); % end % % % A=xsource; B=ysource; % end Minterior=(pi*(sigma_cent^2)*R_ein*Dd*Mpc)/G/Msun; % if nargin==16 % if strcmp(displ,'display') % disp(['Einstein Radius = ' num2str(R_ein*(180/pi)*3600,'%3.2f') ' [arcsec]']); % disp(['Mass inside the Einstein Radius = ' num2str(Minterior,'%3.2e') ' [M_sun]']); % end % end R_ein=R_ein.*3600*180/pi; end function I = LumProfile(xsource,ysource,prof_type,SourcePars) if strcmpi(prof_type,'disk') FLUX=SourcePars(1); B=SourcePars(2).*(pi/180/3600); xsr=SourcePars(3).*(pi/180/3600); ysr=SourcePars(4).*(pi/180/3600); srelp=1e-8; r=sqrt(((xsource-xsr).^2./(1-srelp))+((ysource-ysr).^2).*(1-srelp)); % A=FLUX/(2*pi*B^2); I= (r<=B); elseif strcmpi(prof_type,'sersic') if numel(SourcePars)==5 xsource=xsource./(pi/180/3600); ysource=ysource./(pi/180/3600); I0=SourcePars(1); n=SourcePars(2); Reff=SourcePars(3); k = 2.*n-1./3+4./(405.*n)+46/(25515.*n^2); % srelp=SourcePars(4); % theta=SourcePars(5); theta=0; srelp=0.000001; % xsr=SourcePars(6).*(pi/180/3600); % ysr=SourcePars(7).*(pi/180/3600); xsr=SourcePars(4); ysr=SourcePars(5); theta=theta.*(pi/180); [TH RHO]=cart2pol(xsource,ysource); [xsource,ysource] = pol2cart(TH-theta,RHO); [TH RHO]=cart2pol(xsr,ysr); [xsr,ysr] = pol2cart(TH-theta,RHO); r=sqrt(((xsource-xsr).^2./(1-srelp))+((ysource-ysr).^2).*(1-srelp)); r = r./Reff; I= I0 .* exp(-k.* (r.^(1./n)) ); elseif numel(SourcePars)==7 xsource=xsource./(pi/180/3600); ysource=ysource./(pi/180/3600); I0=SourcePars(1); n=SourcePars(2); Reff=SourcePars(3); k = 2.*n-1./3+4./(405.*n)+46/(25515.*n^2); srelp=SourcePars(4); theta=SourcePars(5); xsr=SourcePars(6); ysr=SourcePars(7); theta=theta.*(pi/180); [TH RHO]=cart2pol(xsource,ysource); [xsource,ysource] = pol2cart(TH-theta,RHO); [TH RHO]=cart2pol(xsr,ysr); [xsr,ysr] = pol2cart(TH-theta,RHO); r=sqrt(((xsource-xsr).^2./(1-srelp))+((ysource-ysr).^2).*(1-srelp)); r = r./Reff; I= I0 .* exp(-k.* (r.^(1./n)) ); end elseif strcmpi(prof_type,'gaussian') if numel(SourcePars)==4 FLUX=SourcePars(1); B=SourcePars(2).*(pi/180/3600); theta=0; srelp=1e-9; xsr=SourcePars(3).*(pi/180/3600); ysr=SourcePars(4).*(pi/180/3600); r=sqrt(((xsource-xsr).^2./(1-srelp))+((ysource-ysr).^2).*(1-srelp)); A=FLUX/(2*pi*B^2); I=A.*exp(-0.5.*(r./B).^2); elseif numel(SourcePars)==6 FLUX=SourcePars(1); B=SourcePars(2).*(pi/180/3600); srelp=SourcePars(3); theta=SourcePars(4); xsr=SourcePars(5).*(pi/180/3600); ysr=SourcePars(6).*(pi/180/3600); theta=theta.*(pi/180); [TH RHO]=cart2pol(xsource,ysource); [xsource,ysource] = pol2cart(TH-theta,RHO); [TH RHO]=cart2pol(xsr,ysr); [xsr,ysr] = pol2cart(TH-theta,RHO); r=sqrt(((xsource-xsr).^2./(1-srelp))+((ysource-ysr).^2).*(1-srelp)); A=FLUX/(2*pi*B^2); I=A.*exp(-0.5.*(r./B).^2); end end end function out_vec = AngularDiameter(Zd,z) %Return the angular diameter distance in parsecs NLENGTH = max(length(Zd),length(z)); out_vec = zeros(NLENGTH,1); if length(Zd)==1 & length(z)~=1 Zd = ones(size(z)).*Zd; elseif length(Zd)~=1 & length(z)==1 z = ones(size(Zd)).*z; end h=0.71; OmegaC=0.222; OmegaLambda=0.734; sigNORM=0.801; OmegaBaryon=0.0449; OmegaM=OmegaC+OmegaBaryon; c = 2.998E8; G = 6.67259E-11; Msun= 1.98892e30; pc = 3.0857E16; kpc=1e3*pc; Mpc=1e6*pc; H0=100*h*(1000/Mpc); %in units of 1/s rhocrit=(3*H0^2)/(8*pi*G); %SI: kg/m^3 H=100*h; H0 = 100*h; % Hubble constant WM = OmegaM; % Omega(matter) WV = OmegaLambda; % Omega(vacuum) or lambda % initialize constants c = 299792.458; % velocity of light in km/sec DTT = 0.5; % time from z to now in units of 1/H0 DCMR = 0.0; % comoving radial distance in units of c/H0 for iJ=1:NLENGTH h = H0/100.; WR = 4.165E-5/(h*h); % # includes 3 massless neutrino species, T0 = 2.72528 WK = 1-WM-WR-WV; az = 1.0/(1+1.0*z(iJ)); aZd = 1.0/(1+1.0*Zd(iJ)); n=2e4; % # number of points in integrals %# do integral over a=1/(1+z) from az to 1 in n steps, midpoint rule for a=az:(1-az)/n:aZd, adot = sqrt(WK+(WM/a)+(WR/(a*a))+(WV*a*a)); DTT = DTT + 1./adot; DCMR = DCMR + 1./(a*adot); end; DCMR = (1.-az)*DCMR/n; x = sqrt(abs(WK))*DCMR; if x > 0.1 if WK > 0 ratio = 0.5*(exp(x)-exp(-x))/x; else ratio = sin(x)/x; end; else y = x*x; if WK < 0 y = -y; end; ratio = 1. + y/6. + y*y/120.; end; DCMT = ratio*DCMR; DA = az*DCMT; DA_Mpc = (c/H0)*DA; DA = DA_Mpc * 1e6; out = DA; %in Parsecs if (Zd(iJ)==z(iJ)) out=0; end; out_vec(iJ) = out; end end function kappa = get_SIE_kappa( XIM , YIM , sigma_n , elp , angle , XLENS , YLENS , zLENS , zSOURCE ) h=0.71; OmegaC=0.222; OmegaLambda=0.734; sigNORM=0.801; OmegaBaryon=0.0449; OmegaM=OmegaC+OmegaBaryon; c = 2.998E8; G = 6.67259E-11; Msun= 1.98892e30; pc = 3.0857E16; kpc=1e3*pc; Mpc=1e6*pc; H0=100*h*(1000/Mpc); %in units of 1/s rhocrit=(3*H0^2)/(8*pi*G); %SI: kg/m^3 H=100*h; Ds = AngularDiameter(0,zSOURCE); Dds = AngularDiameter(zLENS,zSOURCE); theta = angle.*pi./180; [TH , RHO]=cart2pol(XIM,YIM); [XIM,YIM] = pol2cart(TH-theta,RHO); [TH , RHO]=cart2pol(XLENS,YLENS); [XLENS,YLENS] = pol2cart(TH-theta,RHO); r = sqrt((XIM-XLENS.*pi./180./3600).^2+((YIM-YLENS.*pi./180./3600).*(1-elp)).^2) ; R_ein = 4.*pi .* (sigma_n/c).^2 * Dds./Ds; kappa = sqrt(1-elp) .* R_ein./(2.*r); end function [alphaX , alphaY]=RayTraceMap(kappa,ximage,yimage) h = waitbar(0,'Ray tracing...'); dx = yimage(2) - yimage(1); alphaX=zeros(size(ximage)); alphaY=zeros(size(ximage)); % smoothing_length = 1e-14 .* pi./180./3600; % inds=find(mask==1).'; n=0; % for i=inds for i=1:numel(ximage) n=n+1; n % i if mod(i,200)==0 waitbar(i./numel(ximage),h,sprintf('%4.0f %% Completed',i./numel(ximage)*100)) end xp=ximage-ximage(i); yp=yimage-yimage(i); % rp=sqrt((xp+smoothing_length).^2+(yp+smoothing_length).^2); rp=sqrt((xp).^2+(yp).^2); AX = -(1./pi) .* kappa .* (xp)./(rp.^2) .*dx^2 ; AY = -(1./pi) .* kappa .* (yp)./(rp.^2) .*dx^2 ; AX(rp==0)=0; AY(rp==0)=0; alphaX(i) = sum( AX(:) ); alphaY(i) = sum( AY(:) ); % alphaX(i) = -(1./pi) .* sum(sum( kappa .* (xp)./(rp.^2) .*dx^2 )); % alphaY(i) = -(1./pi) .* sum(sum( kappa .* (yp)./(rp.^2) .*dx^2 )); end close(h) xsource = ximage - alphaX; ysource = yimage - alphaY; end function [ h1 , h2 , X1 , Y1 , X2 , Y2 ]=Caustic_Analytical(LensM,elp,units,CoL,zLENS,zSOURCE,theta,scale_me,offsets) h1=0; h2=0; X1 = 0; Y1 = 0; X2 = 0; Y2 = 0; theta=-theta+90; h=0.71; OmegaC=0.222; OmegaLambda=0.734; sigNORM=0.801; OmegaBaryon=0.0449; OmegaM=OmegaC+OmegaBaryon; c = 2.998E8; G = 6.67259E-11; Msun= 1.98892e30; pc = 3.0857E16; kpc=1e3*pc; Mpc=1e6*pc; H0=100*h*(1000/Mpc); %in units of 1/s rhocrit=(3*H0^2)/(8*pi*G); %SI: kg/m^3 H=100*h; Dd =AngularDiameter(0,zLENS)*1e-6; Dds=AngularDiameter(zLENS,zSOURCE)*1e-6; Ds =AngularDiameter(0,zSOURCE)*1e-6; % sig=sigma(LensM,zLENS); sig=((LensM*G*Msun*Ds)/(4*pi^2*Dd*Dds*Mpc))^(1/4)*sqrt(c); xoff=offsets(1); yoff=offsets(2); ZXI_0 = 4 * pi * (sig/c)^2 *(Dd*Dds/Ds); f=1-elp; fp=sqrt(1-f^2); par=linspace(0,2*pi,200); x=(-sqrt(f)/fp).*asinh(cos(par).*fp./f); y=(-sqrt(f)/fp).*asin(sin(par).*fp); delta=sqrt(cos(par).^2+f^2.*sin(par).^2); x1=((sqrt(f)./delta).*cos(par))-((sqrt(f)/fp).*asinh(cos(par).*fp./f)); y1=((sqrt(f)./delta).*sin(par))-((sqrt(f)/fp).*asin(sin(par).*fp)); % xCrit1=((sqrt(f)./delta).*cos(par))-((sqrt(f)/fp).*asinh(cos(par).*fp./f)); % yCrit1=((sqrt(f)./delta).*sin(par))-((sqrt(f)/fp).*asin(sin(par).*fp)); % cr=(4*pi/(mu^2))+((16*sqrt(6)/15)*((1+f)/fp)*(1/(mu^(5/2)))); % cr=cr*((ZXI_0*Ds/Dd)^2); %cross section in physical units in the source plane % disp(['Cross-section on steradians: ' num2str(cr/(Ds^2))]); % con=180*3600/pi; % con=1; if nargin<8 scale_me=1; end x=x*ZXI_0; y=y*ZXI_0; x1=x1*ZXI_0; y1=y1*ZXI_0; % clf % hold on if strcmpi(units,'kpc') plot(1e3*y,1e3*x,'m','LineWidth',2); plot(1e3*y1,1e3*x1,'m','LineWidth',2); elseif strcmpi(units,'pc') plot(1e6*y,1e6*x,'m','LineWidth',2); plot(1e6*y1,1e6*x1,'m','LineWidth',2); elseif strcmpi(units,'rad') % plot(y/Ds,x/Ds,'--y','LineWidth',2); % plot(y1/Ds,x1/Ds,'--y','LineWidth',2); % plot(y/Dd,x/Dd,CoL,'LineWidth',2); % plot(y1/Dd,x1/Dd,CoL,'LineWidth',2); % plot(y/Dd,x/Dd,CoL,'LineWidth',1); % plot(y1/Dd,x1/Dd,CoL,'LineWidth',1); if nargin>7 theta=theta*(pi/180); [t r]=cart2pol(x,y); [x,y] = pol2cart(t+theta,r); [t r]=cart2pol(x1,y1); [x1,y1] = pol2cart(t+theta,r); x=scale_me.*x; y=scale_me.*y; x1=scale_me.*x1; y1=scale_me.*y1; X1 = ((y/Dd)+xoff); Y1 = ((x/Dd)+yoff); X2 = ((y1/Dd)+xoff); Y2 = ((x1/Dd)+yoff); h1=plot(y/Dd+xoff,x/Dd+yoff,'Color',CoL,'LineWidth',3,'linestyle','-'); hold on h2=plot(y1/Dd+xoff,x1/Dd+yoff,'Color',CoL,'LineWidth',3,'linestyle','-'); else x=scale_me.*x; y=scale_me.*y; x1=scale_me.*x1; y1=scale_me.*y1; h1=plot(y/Dd,x/Dd,'Color',CoL,'LineWidth',1.5,'linestyle','-'); hold on h2=plot(y1/Dd,x1/Dd,'Color',CoL,'LineWidth',1.5,'linestyle','-'); end elseif strcmpi(units,'arcsec') theta=theta*(pi/180); [t , r]=cart2pol(x,y); [x,y] = pol2cart(t+theta,r); [t , r]=cart2pol(x1,y1); [x1,y1] = pol2cart(t+theta,r); scale_me=(3600*180/pi); x=scale_me.*x; y=scale_me.*y; x1=scale_me.*x1; y1=scale_me.*y1; X1 = ((y/Dd)+xoff); Y1 = ((x/Dd)+yoff); X2 = ((y1/Dd)+xoff); Y2 = ((x1/Dd)+yoff); % h1=plot(((y/Dd)+xoff),((x/Dd)+yoff),'Color',CoL,'LineWidth',1,'linestyle','--'); % h2=plot(((y1/Dd)+xoff),((x1/Dd)+yoff),'Color',CoL,'LineWidth',1,'linestyle','--'); end % axis equal end % %% % disp('Simulating data ...') % rng(1) % nsample = 9999; % logM = zeros(nsample,1); % elp = zeros(nsample,1); % angle = zeros(nsample,1); % xsource = zeros(nsample,1); % ysource = zeros(nsample,1); % for i=1:nsample % i % logM(i) = rand(1).*(11.8-10.5)+10.5; % elp(i) = rand(1).*0.6; % angle(i) = rand(1).*90; % % XY = datasample([0.1 0.1; -0.1 0.1 ; 0.1 -0.1; -0.1 -0.1],1); % % [XY(1),XY(2)] = pol2cart(rand(1).*2*pi,0.1.*sqrt(2)); % xsource(i) = (rand(1)-0.5).*0.4; % ysource(i) = (rand(1)-0.5).*0.4; %datasample([-0.1 0.1],1); %(rand(1)-0.5).*0.1; % % % % [XS ,YS ,R_ein ,sigma_cent ,Minterior]=SIE_SUB_RayTrace(XIM,YIM,XIM,YIM,10^logM(i),elp(i),1e-20,0,zLENS,zSOURCE,angle(i),[0 0]); % SKY_IM = LumProfile(XS,YS,'gaussian',[1 0.05 xsource(i) ysource(i)]); % SKY_IM = SKY_IM./max(SKY_IM(:)); % % % FFT_IM = fftshift(fft2(fftshift(SKY_IM))); % % mAx = max([real(FFT_IM(:)); imag(FFT_IM(:))]); % % imwrite(real(FFT_IM)./mAx,[datapath 'FFT_real_lens_im96__' num2str(i,'%.4d') '.png']); % % imwrite(imag(FFT_IM)./mAx,[datapath 'FFT_imag_lens_im96__' num2str(i,'%.4d') '.png']); % % % imshow(SKY_IM,[],'xdata',[min(XIM(:)) max(XIM(:))].*3600.*180./pi,'ydata',[min(YIM(:)) max(YIM(:))].*3600.*180./pi); colormap(jet) % % pause(0.05) % % imwrite(SKY_IM,[datapath 'lens_im96__' num2str(i,'%.4d') '.png']); % end % dlmwrite([datapath 'logM96.txt'],(logM-10.5)./1.3,' ') % dlmwrite([datapath 'elp96.txt'],elp./0.6,' ') % dlmwrite([datapath 'angle96.txt'],angle.*0.01./0.9,' ') % % hold on % % plot(subhalo_pars(3),subhalo_pars(4),' +r','markersize',10) % % % %% % % disp('Simulating data ...') % rng(2) % nsample = 999; % logM = zeros(nsample,1); % elp = zeros(nsample,1); % angle = zeros(nsample,1); % xsource = zeros(nsample,1); % ysource = zeros(nsample,1); % % for i=1:nsample % i % logM(i) = rand(1).*(11.8-10.5)+10.5; % elp(i) = rand(1).*0.6; % angle(i) = rand(1).*90; % % XY = datasample([0.1 0.1; -0.1 0.1 ; 0.1 -0.1; -0.1 -0.1],1); % % [XY(1),XY(2)] = pol2cart(rand(1).*2*pi,0.1.*sqrt(2)); % xsource(i) = (rand(1)-0.5).*0.4; % ysource(i) = (rand(1)-0.5).*0.4; %datasample([-0.1 0.1],1); %(rand(1)-0.5).*0.1; % % % % [XS ,YS ,R_ein ,sigma_cent ,Minterior]=SIE_SUB_RayTrace(XIM,YIM,XIM,YIM,10^logM(i),elp(i),1e-20,0,zLENS,zSOURCE,angle(i),[0 0]); % SKY_IM1 = LumProfile(XS,YS,'gaussian',[1 0.02 xsource(i) ysource(i)]); % SKY_IM2 = LumProfile(XS,YS,'gaussian',[1 0.02 xsource(i)+0.06 ysource(i)+0.06]); % SKY_IM3 = LumProfile(XS,YS,'gaussian',[1 0.02 xsource(i)+0.06 ysource(i)-0.06]); % SKY_IM = SKY_IM1 + SKY_IM2 + SKY_IM3; % SKY_IM = SKY_IM./max(SKY_IM(:)); % % % FFT_IM = fftshift(fft2(fftshift(SKY_IM))); % % mAx = max([real(FFT_IM(:)); imag(FFT_IM(:))]); % % imwrite(real(FFT_IM)./mAx,[datapath 'FFT_test_lens_im96__' num2str(i,'%.4d') '.png']); % % imwrite(imag(FFT_IM)./mAx,[datapath 'FFT_test_lens_im96__' num2str(i,'%.4d') '.png']); % % imshow(SKY_IM,[],'xdata',[min(XIM(:)) max(XIM(:))].*3600.*180./pi,'ydata',[min(YIM(:)) max(YIM(:))].*3600.*180./pi); colormap(jet) % pause; % % % imwrite(SKY_IM,[datapath 'test_lens_im96__' num2str(i,'%.4d') '.png']); % end % % dlmwrite([datapath 'test_logM96.txt'],(logM-10.5)./1.3,' ') % % dlmwrite([datapath 'test_elp96.txt'],elp./0.6,' ') % % dlmwrite([datapath 'test_angle96.txt'],angle.*0.01./0.9,' ') % % hold on % % plot(subhalo_pars(3),subhalo_pars(4),' +r','markersize',10) % % % %% % figure % logM = load([datapath 'logM96.txt']); % elp = load([datapath 'elp96.txt']); % angle = load([datapath 'angle96.txt']); % predict=load([datapath 'predict_mea.txt']); % clf % s(1) = subplot(3,1,1); % plot(predict(:,1)) % hold on % plot(logM,'--') % % s(2) = subplot(3,1,2); % plot(predict(:,2)) % hold on % plot(elp,'--') % % s(3) = subplot(3,1,3); % plot(predict(:,3)) % hold on % plot(angle,'--') % % linkaxes(s,'x'); % % %% % % figure % logM=load([datapath 'test_logM96.txt']); % elp=load([datapath 'test_elp96.txt']); % angle=load([datapath 'test_angle96.txt']); % predict=load([datapath 'test_predict_mea.txt']); % clf % s(1) = subplot(3,1,1); % plot(predict(:,1)) % hold on % plot(logM,'--') % % s(2) = subplot(3,1,2); % plot(predict(:,2)) % hold on % plot(elp,'--') % % s(3) = subplot(3,1,3); % plot(predict(:,3)) % hold on % plot(angle,'--') % % linkaxes(s,'x');