plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
uoguelph-mlrg/vlr-master
reslice_nii.m
.m
vlr-master/utils/nii/nifti_DL/reslice_nii.m
9,817
utf_8
05783cd4f127a22486db67a9cc89ad2a
% The basic application of the 'reslice_nii.m' program is to perform % any 3D affine transform defined by a NIfTI format image. % % In addition, the 'reslice_nii.m' program can also be applied to % generate an isotropic image from either a NIfTI format image or % an ANALYZE format image. % % The resliced NIfTI file will always be in RAS orientation. % % This program only supports real integer or floating-point data type. % For other data type, the program will exit with an error message % "Transform of this NIFTI data is not supported by the program". % % Usage: reslice_nii(old_fn, new_fn, [voxel_size], [verbose], [bg], ... % [method], [img_idx], [preferredForm]); % % old_fn - filename for original NIfTI file % % new_fn - filename for resliced NIfTI file % % voxel_size (optional) - size of a voxel in millimeter along x y z % direction for resliced NIfTI file. 'voxel_size' will use % the minimum voxel_size in original NIfTI header, % if it is default or empty. % % verbose (optional) - 1, 0 % 1: show transforming progress in percentage % 2: progress will not be displayed % 'verbose' is 1 if it is default or empty. % % bg (optional) - background voxel intensity in any extra corner that % is caused by 3D interpolation. 0 in most cases. 'bg' % will be the average of two corner voxel intensities % in original image volume, if it is default or empty. % % method (optional) - 1, 2, or 3 % 1: for Trilinear interpolation % 2: for Nearest Neighbor interpolation % 3: for Fischer's Bresenham interpolation % 'method' is 1 if it is default or empty. % % img_idx (optional) - a numerical array of image volume indices. Only % the specified volumes will be loaded. All available image % volumes will be loaded, if it is default or empty. % % The number of images scans can be obtained from get_nii_frame.m, % or simply: hdr.dime.dim(5). % % preferredForm (optional) - selects which transformation from voxels % to RAS coordinates; values are s,q,S,Q. Lower case s,q indicate % "prefer sform or qform, but use others if preferred not present". % Upper case indicate the program is forced to use the specificied % tranform or fail loading. 'preferredForm' will be 's', if it is % default or empty. - Jeff Gunter % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function reslice_nii(old_fn, new_fn, voxel_size, verbose, bg, method, img_idx, preferredForm) if ~exist('old_fn','var') | ~exist('new_fn','var') error('Usage: reslice_nii(old_fn, new_fn, [voxel_size], [verbose], [bg], [method], [img_idx])'); end if ~exist('method','var') | isempty(method) method = 1; end if ~exist('img_idx','var') | isempty(img_idx) img_idx = []; end if ~exist('verbose','var') | isempty(verbose) verbose = 1; end if ~exist('preferredForm','var') | isempty(preferredForm) preferredForm= 's'; % Jeff end nii = load_nii_no_xform(old_fn, img_idx, 0, preferredForm); if ~ismember(nii.hdr.dime.datatype, [2,4,8,16,64,256,512,768]) error('Transform of this NIFTI data is not supported by the program.'); end if ~exist('voxel_size','var') | isempty(voxel_size) voxel_size = abs(min(nii.hdr.dime.pixdim(2:4)))*ones(1,3); elseif length(voxel_size) < 3 voxel_size = abs(voxel_size(1))*ones(1,3); end if ~exist('bg','var') | isempty(bg) bg = mean([nii.img(1) nii.img(end)]); end old_M = nii.hdr.hist.old_affine; if nii.hdr.dime.dim(5) > 1 for i = 1:nii.hdr.dime.dim(5) if verbose fprintf('Reslicing %d of %d volumes.\n', i, nii.hdr.dime.dim(5)); end [img(:,:,:,i) M] = ... affine(nii.img(:,:,:,i), old_M, voxel_size, verbose, bg, method); end else [img M] = affine(nii.img, old_M, voxel_size, verbose, bg, method); end new_dim = size(img); nii.img = img; nii.hdr.dime.dim(2:4) = new_dim(1:3); nii.hdr.dime.datatype = 16; nii.hdr.dime.bitpix = 32; nii.hdr.dime.pixdim(2:4) = voxel_size(:)'; nii.hdr.dime.glmax = max(img(:)); nii.hdr.dime.glmin = min(img(:)); nii.hdr.hist.qform_code = 0; nii.hdr.hist.sform_code = 1; nii.hdr.hist.srow_x = M(1,:); nii.hdr.hist.srow_y = M(2,:); nii.hdr.hist.srow_z = M(3,:); nii.hdr.hist.new_affine = M; save_nii(nii, new_fn); return; % reslice_nii %-------------------------------------------------------------------- function [nii] = load_nii_no_xform(filename, img_idx, old_RGB, preferredForm) if ~exist('filename','var'), error('Usage: [nii] = load_nii(filename, [img_idx], [old_RGB])'); end if ~exist('img_idx','var'), img_idx = []; end if ~exist('old_RGB','var'), old_RGB = 0; end if ~exist('preferredForm','var'), preferredForm= 's'; end % Jeff v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); elseif strcmp(filename(end-6:end), '.img.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.hdr.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.hdr.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.img.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.nii.gz') tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename = gunzip(filename, tmpDir); filename = char(filename); % convert from cell to string end end % Read the dataset header % [nii.hdr,nii.filetype,nii.fileprefix,nii.machine] = load_nii_hdr(filename); % Read the header extension % % nii.ext = load_nii_ext(filename); % Read the dataset body % [nii.img,nii.hdr] = ... load_nii_img(nii.hdr,nii.filetype,nii.fileprefix,nii.machine,img_idx,'','','',old_RGB); % Perform some of sform/qform transform % % nii = xform_nii(nii, preferredForm); % Clean up after gunzip % if exist('gzFileName', 'var') % fix fileprefix so it doesn't point to temp location % nii.fileprefix = gzFileName(1:end-7); rmdir(tmpDir,'s'); end hdr = nii.hdr; % NIFTI can have both sform and qform transform. This program % will check sform_code prior to qform_code by default. % % If user specifys "preferredForm", user can then choose the % priority. - Jeff % useForm=[]; % Jeff if isequal(preferredForm,'S') if isequal(hdr.hist.sform_code,0) error('User requires sform, sform not set in header'); else useForm='s'; end end % Jeff if isequal(preferredForm,'Q') if isequal(hdr.hist.qform_code,0) error('User requires sform, sform not set in header'); else useForm='q'; end end % Jeff if isequal(preferredForm,'s') if hdr.hist.sform_code > 0 useForm='s'; elseif hdr.hist.qform_code > 0 useForm='q'; end end % Jeff if isequal(preferredForm,'q') if hdr.hist.qform_code > 0 useForm='q'; elseif hdr.hist.sform_code > 0 useForm='s'; end end % Jeff if isequal(useForm,'s') R = [hdr.hist.srow_x(1:3) hdr.hist.srow_y(1:3) hdr.hist.srow_z(1:3)]; T = [hdr.hist.srow_x(4) hdr.hist.srow_y(4) hdr.hist.srow_z(4)]; nii.hdr.hist.old_affine = [ [R;[0 0 0]] [T;1] ]; elseif isequal(useForm,'q') b = hdr.hist.quatern_b; c = hdr.hist.quatern_c; d = hdr.hist.quatern_d; if 1.0-(b*b+c*c+d*d) < 0 if abs(1.0-(b*b+c*c+d*d)) < 1e-5 a = 0; else error('Incorrect quaternion values in this NIFTI data.'); end else a = sqrt(1.0-(b*b+c*c+d*d)); end qfac = hdr.dime.pixdim(1); i = hdr.dime.pixdim(2); j = hdr.dime.pixdim(3); k = qfac * hdr.dime.pixdim(4); R = [a*a+b*b-c*c-d*d 2*b*c-2*a*d 2*b*d+2*a*c 2*b*c+2*a*d a*a+c*c-b*b-d*d 2*c*d-2*a*b 2*b*d-2*a*c 2*c*d+2*a*b a*a+d*d-c*c-b*b]; T = [hdr.hist.qoffset_x hdr.hist.qoffset_y hdr.hist.qoffset_z]; nii.hdr.hist.old_affine = [ [R * diag([i j k]);[0 0 0]] [T;1] ]; elseif nii.filetype == 0 & exist([nii.fileprefix '.mat'],'file') load([nii.fileprefix '.mat']); % old SPM affine matrix R=M(1:3,1:3); T=M(1:3,4); T=R*ones(3,1)+T; M(1:3,4)=T; nii.hdr.hist.old_affine = M; else M = diag(hdr.dime.pixdim(2:5)); M(1:3,4) = -M(1:3,1:3)*(hdr.hist.originator(1:3)-1)'; M(4,4) = 1; nii.hdr.hist.old_affine = M; end return % load_nii_no_xform
github
uoguelph-mlrg/vlr-master
save_untouch_nii.m
.m
vlr-master/utils/nii/nifti_DL/save_untouch_nii.m
6,494
utf_8
50fa95cbb847654356241a853328f912
% Save NIFTI or ANALYZE dataset that is loaded by "load_untouch_nii.m". % The output image format and file extension will be the same as the % input one (NIFTI.nii, NIFTI.img or ANALYZE.img). Therefore, any file % extension that you specified will be ignored. % % Usage: save_untouch_nii(nii, filename) % % nii - nii structure that is loaded by "load_untouch_nii.m" % % filename - NIFTI or ANALYZE file name. % % - Jimmy Shen ([email protected]) % function save_untouch_nii(nii, filename) if ~exist('nii','var') | isempty(nii) | ~isfield(nii,'hdr') | ... ~isfield(nii,'img') | ~exist('filename','var') | isempty(filename) error('Usage: save_untouch_nii(nii, filename)'); end if ~isfield(nii,'untouch') | nii.untouch == 0 error('Usage: please use ''save_nii.m'' for the modified structure.'); end if isfield(nii.hdr.hist,'magic') & strcmp(nii.hdr.hist.magic(1:3),'ni1') filetype = 1; elseif isfield(nii.hdr.hist,'magic') & strcmp(nii.hdr.hist.magic(1:3),'n+1') filetype = 2; else filetype = 0; end v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); else gzFile = 1; filename = filename(1:end-3); end end [p,f] = fileparts(filename); fileprefix = fullfile(p, f); write_nii(nii, filetype, fileprefix); % gzip output file if requested % if exist('gzFile', 'var') if filetype == 1 gzip([fileprefix, '.img']); delete([fileprefix, '.img']); gzip([fileprefix, '.hdr']); delete([fileprefix, '.hdr']); elseif filetype == 2 gzip([fileprefix, '.nii']); delete([fileprefix, '.nii']); end; end; % % So earlier versions of SPM can also open it with correct originator % % % if filetype == 0 % M=[[diag(nii.hdr.dime.pixdim(2:4)) -[nii.hdr.hist.originator(1:3).*nii.hdr.dime.pixdim(2:4)]'];[0 0 0 1]]; % save(fileprefix, 'M'); % elseif filetype == 1 % M=[]; % save(fileprefix, 'M'); %end return % save_untouch_nii %----------------------------------------------------------------------------------- function write_nii(nii, filetype, fileprefix) hdr = nii.hdr; if isfield(nii,'ext') & ~isempty(nii.ext) ext = nii.ext; [ext, esize_total] = verify_nii_ext(ext); else ext = []; end switch double(hdr.dime.datatype), case 1, hdr.dime.bitpix = int16(1 ); precision = 'ubit1'; case 2, hdr.dime.bitpix = int16(8 ); precision = 'uint8'; case 4, hdr.dime.bitpix = int16(16); precision = 'int16'; case 8, hdr.dime.bitpix = int16(32); precision = 'int32'; case 16, hdr.dime.bitpix = int16(32); precision = 'float32'; case 32, hdr.dime.bitpix = int16(64); precision = 'float32'; case 64, hdr.dime.bitpix = int16(64); precision = 'float64'; case 128, hdr.dime.bitpix = int16(24); precision = 'uint8'; case 256 hdr.dime.bitpix = int16(8 ); precision = 'int8'; case 512 hdr.dime.bitpix = int16(16); precision = 'uint16'; case 768 hdr.dime.bitpix = int16(32); precision = 'uint32'; case 1024 hdr.dime.bitpix = int16(64); precision = 'int64'; case 1280 hdr.dime.bitpix = int16(64); precision = 'uint64'; case 1792, hdr.dime.bitpix = int16(128); precision = 'float64'; otherwise error('This datatype is not supported'); end % hdr.dime.glmax = round(double(max(nii.img(:)))); % hdr.dime.glmin = round(double(min(nii.img(:)))); if filetype == 2 fid = fopen(sprintf('%s.nii',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.nii.',fileprefix); error(msg); end hdr.dime.vox_offset = 352; if ~isempty(ext) hdr.dime.vox_offset = hdr.dime.vox_offset + esize_total; end hdr.hist.magic = 'n+1'; save_untouch_nii_hdr(hdr, fid); if ~isempty(ext) save_nii_ext(ext, fid); end elseif filetype == 1 fid = fopen(sprintf('%s.hdr',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.hdr.',fileprefix); error(msg); end hdr.dime.vox_offset = 0; hdr.hist.magic = 'ni1'; save_untouch_nii_hdr(hdr, fid); if ~isempty(ext) save_nii_ext(ext, fid); end fclose(fid); fid = fopen(sprintf('%s.img',fileprefix),'w'); else fid = fopen(sprintf('%s.hdr',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.hdr.',fileprefix); error(msg); end save_untouch0_nii_hdr(hdr, fid); fclose(fid); fid = fopen(sprintf('%s.img',fileprefix),'w'); end ScanDim = double(hdr.dime.dim(5)); % t SliceDim = double(hdr.dime.dim(4)); % z RowDim = double(hdr.dime.dim(3)); % y PixelDim = double(hdr.dime.dim(2)); % x SliceSz = double(hdr.dime.pixdim(4)); RowSz = double(hdr.dime.pixdim(3)); PixelSz = double(hdr.dime.pixdim(2)); x = 1:PixelDim; if filetype == 2 & isempty(ext) skip_bytes = double(hdr.dime.vox_offset) - 348; else skip_bytes = 0; end if double(hdr.dime.datatype) == 128 % RGB planes are expected to be in the 4th dimension of nii.img % if(size(nii.img,4)~=3) error(['The NII structure does not appear to have 3 RGB color planes in the 4th dimension']); end nii.img = permute(nii.img, [4 1 2 3 5 6 7 8]); end % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 real_img = real(nii.img(:))'; nii.img = imag(nii.img(:))'; nii.img = [real_img; nii.img]; end if skip_bytes fwrite(fid, zeros(1,skip_bytes), 'uint8'); end fwrite(fid, nii.img, precision); % fwrite(fid, nii.img, precision, skip_bytes); % error using skip fclose(fid); return; % write_nii
github
uoguelph-mlrg/vlr-master
view_nii.m
.m
vlr-master/utils/nii/nifti_DL/view_nii.m
139,608
utf_8
74f9dea7539a45a7993beb22becf2fa2
% VIEW_NII: Create or update a 3-View (Front, Top, Side) of the % brain data that is specified by nii structure % % Usage: status = view_nii([h], nii, [option]) or % status = view_nii(h, [option]) % % Where, h is the figure on which the 3-View will be plotted; % nii is the brain data in NIFTI format; % option is a struct that configures the view plotted, can be: % % option.command = 'init' % option.command = 'update' % option.command = 'clearnii' % option.command = 'updatenii' % option.command = 'updateimg' (nii is nii.img here) % % option.usecolorbar = 0 | [1] % option.usepanel = 0 | [1] % option.usecrosshair = 0 | [1] % option.usestretch = 0 | [1] % option.useimagesc = 0 | [1] % option.useinterp = [0] | 1 % % option.setarea = [x y w h] | [0.05 0.05 0.9 0.9] % option.setunit = ['vox'] | 'mm' % option.setviewpoint = [x y z] | [origin] % option.setscanid = [t] | [1] % option.setcrosshaircolor = [r g b] | [1 0 0] % option.setcolorindex = From 1 to 9 (default is 2 or 3) % option.setcolormap = (Mx3 matrix, 0 <= val <= 1) % option.setcolorlevel = No more than 256 (default 256) % option.sethighcolor = [] % option.setcbarminmax = [] % option.setvalue = [] % option.glblocminmax = [] % option.setbuttondown = '' % option.setcomplex = [0] | 1 | 2 % % Options description in detail: % ============================== % % 1. command: A char string that can control program. % % init: If option.command='init', the program will display % a 3-View plot on the figure specified by figure h % or on a new figure. If there is already a 3-View % plot on the figure, please use option.command = % 'updatenii' (see detail below); otherwise, the % new 3-View plot will superimpose on the old one. % If there is no option provided, the program will % assume that this is an initial plot. If the figure % handle is omitted, the program knows that it is % an initial plot. % % update: If there is no command specified, and a figure % handle of the existing 3-View plot is provided, % the program will choose option.command='update' % to update the 3-View plot with some new option % items. % % clearnii: Clear 3-View plot on specific figure % % updatenii: If a new nii is going to be loaded on a fig % that has already 3-View plot on it, use this % command to clear existing 3-View plot, and then % display with new nii. So, the new nii will not % superimpose on the existing one. All options % for 'init' can be used for 'updatenii'. % % updateimg: If a new 3D matrix with the same dimension % is going to be loaded, option.command='updateimg' % can be used as a light-weighted 'updatenii, since % it only updates the 3 slices with new values. % inputing argument nii should be a 3D matrix % (nii.img) instead of nii struct. No other option % should be used together with 'updateimg' to keep % this command as simple as possible. % % % 2. usecolorbar: If specified and usecolorbar=0, the program % will not include the colorbar in plot area; otherwise, % a colorbar will be included in plot area. % % 3. usepanel: If specified and usepanel=0, the control panel % at lower right cornor will be invisible; otherwise, % it will be visible. % % 4. usecrosshair: If specified and usecrosshair=0, the crosshair % will be invisible; otherwise, it will be visible. % % 5. usestretch: If specified and usestretch=0, the 3 slices will % not be stretched, and will be displayed according to % the actual voxel size; otherwise, the 3 slices will be % stretched to the edge. % % 6. useimagesc: If specified and useimagesc=0, images data will % be used directly to match the colormap (like 'image' % command); otherwise, image data will be scaled to full % colormap with 'imagesc' command in Matlab. % % 7. useinterp: If specified and useinterp=1, the image will be % displayed using interpolation. Otherwise, it will be % displayed like mosaic, and each tile stands for a % pixel. This option does not apply to 'setvalue' option % is set. % % % 8. setarea: 3-View plot will be displayed on this specific % region. If it is not specified, program will set the % plot area to [0.05 0.05 0.9 0.9]. % % 9. setunit: It can be specified to setunit='voxel' or 'mm' % and the view will change the axes unit of [X Y Z] % accordingly. % % 10. setviewpoint: If specified, [X Y Z] values will be used % to set the viewpoint of 3-View plot. % % 11. setscanid: If specified, [t] value will be used to display % the specified image scan in NIFTI data. % % 12. setcrosshaircolor: If specified, [r g b] value will be used % for Crosshair Color. Otherwise, red will be the default. % % 13. setcolorindex: If specified, the 3-View will choose the % following colormap: 2 - Bipolar; 3 - Gray; 4 - Jet; % 5 - Cool; 6 - Bone; 7 - Hot; 8 - Copper; 9 - Pink; % If not specified, it will choose 3 - Gray if all data % values are not less than 0; otherwise, it will choose % 2 - Bipolar if there is value less than 0. (Contrast % control can only apply to 3 - Gray colormap. % % 14. setcolormap: 3-View plot will use it as a customized colormap. % It is a 3-column matrix with value between 0 and 1. If % using MS-Windows version of Matlab, the number of rows % can not be more than 256, because of Matlab limitation. % When colormap is used, setcolorlevel option will be % disabled automatically. % % 15. setcolorlevel: If specified (must be no more than 256, and % cannot be used for customized colormap), row number of % colormap will be squeezed down to this level; otherwise, % it will assume that setcolorlevel=256. % % 16. sethighcolor: If specified, program will squeeze down the % colormap, and allocate sethighcolor (an Mx3 matrix) % to high-end portion of the colormap. The sum of M and % setcolorlevel should be less than 256. If setcolormap % option is used, sethighcolor will be inserted on top % of the setcolormap, and the setcolorlevel option will % be disabled automatically. % % 17. setcbarminmax: if specified, the [min max] will be used to % set the min and max of the colorbar, which does not % include any data for highcolor. % % 18. setvalue: If specified, setvalue.val (with the same size as % the source data on solution points) in the source area % setvalue.idx will be superimposed on the current nii % image. So, the size of setvalue.val should be equal to % the size of setvalue.idx. To use this feature, it needs % single or double nii structure for background image. % % 19. glblocminmax: If specified, pgm will use glblocminmax to % calculate the colormap, instead of minmax of image. % % 20. setbuttondown: If specified, pgm will evaluate the command % after a click or slide action is invoked to the new % view point. % % 21. setcomplex: This option will decide how complex data to be % displayed: 0 - Real part of complex data; 1 - Imaginary % part of complex data; 2 - Modulus (magnitude) of complex % data; If not specified, it will be set to 0 (Real part % of complex data as default option. This option only apply % when option.command is set to 'init or 'updatenii'. % % % Additional Options for 'update' command: % ======================================= % % option.enablecursormove = [1] | 0 % option.enableviewpoint = 0 | [1] % option.enableorigin = 0 | [1] % option.enableunit = 0 | [1] % option.enablecrosshair = 0 | [1] % option.enablehistogram = 0 | [1] % option.enablecolormap = 0 | [1] % option.enablecontrast = 0 | [1] % option.enablebrightness = 0 | [1] % option.enableslider = 0 | [1] % option.enabledirlabel = 0 | [1] % % % e.g.: % nii = load_nii('T1'); % T1.img/hdr % view_nii(nii); % % or % % h = figure('unit','normal','pos', [0.18 0.08 0.64 0.85]); % opt.setarea = [0.05 0.05 0.9 0.9]; % view_nii(h, nii, opt); % % % Part of this file is copied and modified from: % http://www.mathworks.com/matlabcentral/fileexchange/1878-mri-analyze-tools % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function status = view_nii(varargin) if nargin < 1 error('Please check inputs using ''help view_nii'''); end; nii = ''; opt = ''; command = ''; usecolorbar = []; usepanel = []; usecrosshair = ''; usestretch = []; useimagesc = []; useinterp = []; setarea = []; setunit = ''; setviewpoint = []; setscanid = []; setcrosshaircolor = []; setcolorindex = ''; setcolormap = 'NA'; setcolorlevel = []; sethighcolor = 'NA'; setcbarminmax = []; setvalue = []; glblocminmax = []; setbuttondown = ''; setcomplex = 0; status = []; if ishandle(varargin{1}) % plot on top of this figure fig = varargin{1}; if nargin < 2 command = 'update'; % just to get 3-View status end if nargin == 2 if ~isstruct(varargin{2}) error('2nd parameter should be either nii struct or option struct'); end opt = varargin{2}; if isfield(opt,'hdr') & isfield(opt,'img') nii = opt; elseif isfield(opt, 'command') & (strcmpi(opt.command,'init') ... | strcmpi(opt.command,'updatenii') ... | strcmpi(opt.command,'updateimg') ) error('Option here cannot contain "init", "updatenii", or "updateimg" comand'); end end if nargin == 3 nii = varargin{2}; opt = varargin{3}; if ~isstruct(opt) error('3rd parameter should be option struct'); end if ~isfield(opt,'command') | ~strcmpi(opt.command,'updateimg') if ~isstruct(nii) | ~isfield(nii,'hdr') | ~isfield(nii,'img') error('2nd parameter should be nii struct'); end if isfield(nii,'untouch') & nii.untouch == 1 error('Usage: please use ''load_nii.m'' to load the structure.'); end end end set(fig, 'menubar', 'none'); elseif ischar(varargin{1}) % call back by event command = lower(varargin{1}); fig = gcbf; else % start nii with a new figure nii = varargin{1}; if ~isstruct(nii) | ~isfield(nii,'hdr') | ~isfield(nii,'img') error('1st parameter should be either a figure handle or nii struct'); end if isfield(nii,'untouch') & nii.untouch == 1 error('Usage: please use ''load_nii.m'' to load the structure.'); end if nargin > 1 opt = varargin{2}; if isfield(opt, 'command') & ~strcmpi(opt.command,'init') error('Option here must use "init" comand'); end end command = 'init'; fig = figure('unit','normal','position',[0.15 0.08 0.70 0.85]); view_nii_menu(fig); rri_file_menu(fig); end if ~isempty(opt) if isfield(opt,'command') command = lower(opt.command); end if isempty(command) command = 'update'; end if isfield(opt,'usecolorbar') usecolorbar = opt.usecolorbar; end if isfield(opt,'usepanel') usepanel = opt.usepanel; end if isfield(opt,'usecrosshair') usecrosshair = opt.usecrosshair; end if isfield(opt,'usestretch') usestretch = opt.usestretch; end if isfield(opt,'useimagesc') useimagesc = opt.useimagesc; end if isfield(opt,'useinterp') useinterp = opt.useinterp; end if isfield(opt,'setarea') setarea = opt.setarea; end if isfield(opt,'setunit') setunit = opt.setunit; end if isfield(opt,'setviewpoint') setviewpoint = opt.setviewpoint; end if isfield(opt,'setscanid') setscanid = opt.setscanid; end if isfield(opt,'setcrosshaircolor') setcrosshaircolor = opt.setcrosshaircolor; if ~isempty(setcrosshaircolor) & (~isnumeric(setcrosshaircolor) | ~isequal(size(setcrosshaircolor),[1 3]) | min(setcrosshaircolor(:))<0 | max(setcrosshaircolor(:))>1) error('Crosshair Color should be a 1x3 matrix with value between 0 and 1'); end end if isfield(opt,'setcolorindex') setcolorindex = round(opt.setcolorindex); if ~isnumeric(setcolorindex) | setcolorindex < 1 | setcolorindex > 9 error('Colorindex should be a number between 1 and 9'); end end if isfield(opt,'setcolormap') setcolormap = opt.setcolormap; if ~isempty(setcolormap) & (~isnumeric(setcolormap) | size(setcolormap,2) ~= 3 | min(setcolormap(:))<0 | max(setcolormap(:))>1) error('Colormap should be a Mx3 matrix with value between 0 and 1'); end end if isfield(opt,'setcolorlevel') setcolorlevel = round(opt.setcolorlevel); if ~isnumeric(setcolorlevel) | setcolorlevel > 256 | setcolorlevel < 1 error('Colorlevel should be a number between 1 and 256'); end end if isfield(opt,'sethighcolor') sethighcolor = opt.sethighcolor; if ~isempty(sethighcolor) & (~isnumeric(sethighcolor) | size(sethighcolor,2) ~= 3 | min(sethighcolor(:))<0 | max(sethighcolor(:))>1) error('Highcolor should be a Mx3 matrix with value between 0 and 1'); end end if isfield(opt,'setcbarminmax') setcbarminmax = opt.setcbarminmax; if isempty(setcbarminmax) | ~isnumeric(setcbarminmax) | length(setcbarminmax) ~= 2 error('Colorbar MinMax should contain 2 values: [min max]'); end end if isfield(opt,'setvalue') setvalue = opt.setvalue; if isempty(setvalue) | ~isstruct(setvalue) | ... ~isfield(opt.setvalue,'idx') | ~isfield(opt.setvalue,'val') error('setvalue should be a struct contains idx and val'); end if length(opt.setvalue.idx(:)) ~= length(opt.setvalue.val(:)) error('length of idx and val fields should be the same'); end if ~strcmpi(class(opt.setvalue.idx),'single') opt.setvalue.idx = single(opt.setvalue.idx); end if ~strcmpi(class(opt.setvalue.val),'single') opt.setvalue.val = single(opt.setvalue.val); end end if isfield(opt,'glblocminmax') glblocminmax = opt.glblocminmax; end if isfield(opt,'setbuttondown') setbuttondown = opt.setbuttondown; end if isfield(opt,'setcomplex') setcomplex = opt.setcomplex; end end switch command case {'init'} set(fig, 'InvertHardcopy','off'); set(fig, 'PaperPositionMode','auto'); fig = init(nii, fig, setarea, setunit, setviewpoint, setscanid, setbuttondown, ... setcolorindex, setcolormap, setcolorlevel, sethighcolor, setcbarminmax, ... usecolorbar, usepanel, usecrosshair, usestretch, useimagesc, useinterp, ... setvalue, glblocminmax, setcrosshaircolor, setcomplex); % get status % status = get_status(fig); case {'update'} nii_view = getappdata(fig,'nii_view'); h = fig; if isempty(nii_view) error('The figure should already contain a 3-View plot.'); end if ~isempty(opt) % Order of the following update matters. % update_shape(h, setarea, usecolorbar, usestretch, useimagesc); update_useinterp(h, useinterp); update_useimagesc(h, useimagesc); update_usepanel(h, usepanel); update_colorindex(h, setcolorindex); update_colormap(h, setcolormap); update_highcolor(h, sethighcolor, setcolorlevel); update_cbarminmax(h, setcbarminmax); update_unit(h, setunit); update_viewpoint(h, setviewpoint); update_scanid(h, setscanid); update_buttondown(h, setbuttondown); update_crosshaircolor(h, setcrosshaircolor); update_usecrosshair(h, usecrosshair); % Enable/Disable object % update_enable(h, opt); end % get status % status = get_status(h); case {'updateimg'} if ~exist('nii','var') msg = sprintf('Please input a 3D matrix brain data'); error(msg); end % Note: nii is not nii, nii should be a 3D matrix here % if ~isnumeric(nii) msg = sprintf('2nd parameter should be a 3D matrix, not nii struct'); error(msg); end nii_view = getappdata(fig,'nii_view'); if isempty(nii_view) error('The figure should already contain a 3-View plot.'); end img = nii; update_img(img, fig, opt); % get status % status = get_status(fig); case {'updatenii'} nii_view = getappdata(fig,'nii_view'); if isempty(nii_view) error('The figure should already contain a 3-View plot.'); end if ~isstruct(nii) | ~isfield(nii,'hdr') | ~isfield(nii,'img') error('2nd parameter should be nii struct'); end if isfield(nii,'untouch') & nii.untouch == 1 error('Usage: please use ''load_nii.m'' to load the structure.'); end opt.command = 'clearnii'; view_nii(fig, opt); opt.command = 'init'; view_nii(fig, nii, opt); % get status % status = get_status(fig); case {'clearnii'} nii_view = getappdata(fig,'nii_view'); handles = struct2cell(nii_view.handles); for i=1:length(handles) if ishandle(handles{i}) % in case already del by parent delete(handles{i}); end end rmappdata(fig,'nii_view'); buttonmotion = get(fig,'windowbuttonmotion'); mymotion = '; view_nii(''move_cursor'');'; buttonmotion = strrep(buttonmotion, mymotion, ''); set(fig, 'windowbuttonmotion', buttonmotion); case {'axial_image','coronal_image','sagittal_image'} switch command case 'axial_image', view = 'axi'; axi = 0; cor = 1; sag = 1; case 'coronal_image', view = 'cor'; axi = 1; cor = 0; sag = 1; case 'sagittal_image', view = 'sag'; axi = 1; cor = 1; sag = 0; end nii_view = getappdata(fig,'nii_view'); nii_view = get_slice_position(nii_view,view); if isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end % CData must be double() for Matlab 6.5 for Windows % if axi, if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) & nii_view.useinterp Saxi = squeeze(nii_view.bgimg(:,:,nii_view.slices.axi)); set(nii_view.handles.axial_bg,'CData',double(Saxi)'); end if isfield(nii_view.handles,'axial_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Saxi = squeeze(img(:,:,nii_view.slices.axi,:,nii_view.scanid)); Saxi = permute(Saxi, [2 1 3]); else Saxi = squeeze(img(:,:,nii_view.slices.axi,nii_view.scanid)); Saxi = Saxi'; end set(nii_view.handles.axial_image,'CData',double(Saxi)); end if isfield(nii_view.handles,'axial_slider'), set(nii_view.handles.axial_slider,'Value',nii_view.slices.axi); end; end if cor, if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) & nii_view.useinterp Scor = squeeze(nii_view.bgimg(:,nii_view.slices.cor,:)); set(nii_view.handles.coronal_bg,'CData',double(Scor)'); end if isfield(nii_view.handles,'coronal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Scor = squeeze(img(:,nii_view.slices.cor,:,:,nii_view.scanid)); Scor = permute(Scor, [2 1 3]); else Scor = squeeze(img(:,nii_view.slices.cor,:,nii_view.scanid)); Scor = Scor'; end set(nii_view.handles.coronal_image,'CData',double(Scor)); end if isfield(nii_view.handles,'coronal_slider'), slider_val = nii_view.dims(2) - nii_view.slices.cor + 1; set(nii_view.handles.coronal_slider,'Value',slider_val); end; end; if sag, if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) & nii_view.useinterp Ssag = squeeze(nii_view.bgimg(nii_view.slices.sag,:,:)); set(nii_view.handles.sagittal_bg,'CData',double(Ssag)'); end if isfield(nii_view.handles,'sagittal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Ssag = squeeze(img(nii_view.slices.sag,:,:,:,nii_view.scanid)); Ssag = permute(Ssag, [2 1 3]); else Ssag = squeeze(img(nii_view.slices.sag,:,:,nii_view.scanid)); Ssag = Ssag'; end set(nii_view.handles.sagittal_image,'CData',double(Ssag)); end if isfield(nii_view.handles,'sagittal_slider'), set(nii_view.handles.sagittal_slider,'Value',nii_view.slices.sag); end; end; update_nii_view(nii_view); if ~isempty(nii_view.buttondown) eval(nii_view.buttondown); end case {'axial_slider','coronal_slider','sagittal_slider'}, switch command case 'axial_slider', view = 'axi'; axi = 1; cor = 0; sag = 0; case 'coronal_slider', view = 'cor'; axi = 0; cor = 1; sag = 0; case 'sagittal_slider', view = 'sag'; axi = 0; cor = 0; sag = 1; end nii_view = getappdata(fig,'nii_view'); nii_view = get_slider_position(nii_view); if isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end if axi, if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) & nii_view.useinterp Saxi = squeeze(nii_view.bgimg(:,:,nii_view.slices.axi)); set(nii_view.handles.axial_bg,'CData',double(Saxi)'); end if isfield(nii_view.handles,'axial_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Saxi = squeeze(img(:,:,nii_view.slices.axi,:,nii_view.scanid)); Saxi = permute(Saxi, [2 1 3]); else Saxi = squeeze(img(:,:,nii_view.slices.axi,nii_view.scanid)); Saxi = Saxi'; end set(nii_view.handles.axial_image,'CData',double(Saxi)); end if isfield(nii_view.handles,'axial_slider'), set(nii_view.handles.axial_slider,'Value',nii_view.slices.axi); end end if cor, if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) & nii_view.useinterp Scor = squeeze(nii_view.bgimg(:,nii_view.slices.cor,:)); set(nii_view.handles.coronal_bg,'CData',double(Scor)'); end if isfield(nii_view.handles,'coronal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Scor = squeeze(img(:,nii_view.slices.cor,:,:,nii_view.scanid)); Scor = permute(Scor, [2 1 3]); else Scor = squeeze(img(:,nii_view.slices.cor,:,nii_view.scanid)); Scor = Scor'; end set(nii_view.handles.coronal_image,'CData',double(Scor)); end if isfield(nii_view.handles,'coronal_slider'), slider_val = nii_view.dims(2) - nii_view.slices.cor + 1; set(nii_view.handles.coronal_slider,'Value',slider_val); end end if sag, if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) & nii_view.useinterp Ssag = squeeze(nii_view.bgimg(nii_view.slices.sag,:,:)); set(nii_view.handles.sagittal_bg,'CData',double(Ssag)'); end if isfield(nii_view.handles,'sagittal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Ssag = squeeze(img(nii_view.slices.sag,:,:,:,nii_view.scanid)); Ssag = permute(Ssag, [2 1 3]); else Ssag = squeeze(img(nii_view.slices.sag,:,:,nii_view.scanid)); Ssag = Ssag'; end set(nii_view.handles.sagittal_image,'CData',double(Ssag)); end if isfield(nii_view.handles,'sagittal_slider'), set(nii_view.handles.sagittal_slider,'Value',nii_view.slices.sag); end end update_nii_view(nii_view); if ~isempty(nii_view.buttondown) eval(nii_view.buttondown); end case {'impos_edit'} nii_view = getappdata(fig,'nii_view'); impos = str2num(get(nii_view.handles.impos,'string')); if isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end if isempty(impos) | ~all(size(impos) == [1 3]) msg = 'Please use 3 numbers to represent X,Y and Z'; msgbox(msg,'Error'); return; end slices.sag = round(impos(1)); slices.cor = round(impos(2)); slices.axi = round(impos(3)); nii_view = convert2voxel(nii_view,slices); nii_view = check_slices(nii_view); impos(1) = nii_view.slices.sag; impos(2) = nii_view.dims(2) - nii_view.slices.cor + 1; impos(3) = nii_view.slices.axi; if isfield(nii_view.handles,'sagittal_slider'), set(nii_view.handles.sagittal_slider,'Value',impos(1)); end if isfield(nii_view.handles,'coronal_slider'), set(nii_view.handles.coronal_slider,'Value',impos(2)); end if isfield(nii_view.handles,'axial_slider'), set(nii_view.handles.axial_slider,'Value',impos(3)); end nii_view = get_slider_position(nii_view); update_nii_view(nii_view); if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) & nii_view.useinterp Saxi = squeeze(nii_view.bgimg(:,:,nii_view.slices.axi)); set(nii_view.handles.axial_bg,'CData',double(Saxi)'); end if isfield(nii_view.handles,'axial_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Saxi = squeeze(img(:,:,nii_view.slices.axi,:,nii_view.scanid)); Saxi = permute(Saxi, [2 1 3]); else Saxi = squeeze(img(:,:,nii_view.slices.axi,nii_view.scanid)); Saxi = Saxi'; end set(nii_view.handles.axial_image,'CData',double(Saxi)); end if isfield(nii_view.handles,'axial_slider'), set(nii_view.handles.axial_slider,'Value',nii_view.slices.axi); end if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) & nii_view.useinterp Scor = squeeze(nii_view.bgimg(:,nii_view.slices.cor,:)); set(nii_view.handles.coronal_bg,'CData',double(Scor)'); end if isfield(nii_view.handles,'coronal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Scor = squeeze(img(:,nii_view.slices.cor,:,:,nii_view.scanid)); Scor = permute(Scor, [2 1 3]); else Scor = squeeze(img(:,nii_view.slices.cor,:,nii_view.scanid)); Scor = Scor'; end set(nii_view.handles.coronal_image,'CData',double(Scor)); end if isfield(nii_view.handles,'coronal_slider'), slider_val = nii_view.dims(2) - nii_view.slices.cor + 1; set(nii_view.handles.coronal_slider,'Value',slider_val); end if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) & nii_view.useinterp Ssag = squeeze(nii_view.bgimg(nii_view.slices.sag,:,:)); set(nii_view.handles.sagittal_bg,'CData',double(Ssag)'); end if isfield(nii_view.handles,'sagittal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Ssag = squeeze(img(nii_view.slices.sag,:,:,:,nii_view.scanid)); Ssag = permute(Ssag, [2 1 3]); else Ssag = squeeze(img(nii_view.slices.sag,:,:,nii_view.scanid)); Ssag = Ssag'; end set(nii_view.handles.sagittal_image,'CData',double(Ssag)); end if isfield(nii_view.handles,'sagittal_slider'), set(nii_view.handles.sagittal_slider,'Value',nii_view.slices.sag); end axes(nii_view.handles.axial_axes); axes(nii_view.handles.coronal_axes); axes(nii_view.handles.sagittal_axes); if ~isempty(nii_view.buttondown) eval(nii_view.buttondown); end case 'coordinates', nii_view = getappdata(fig,'nii_view'); set_image_value(nii_view); case 'crosshair', nii_view = getappdata(fig,'nii_view'); if get(nii_view.handles.xhair,'value') == 2 % off set(nii_view.axi_xhair.lx,'visible','off'); set(nii_view.axi_xhair.ly,'visible','off'); set(nii_view.cor_xhair.lx,'visible','off'); set(nii_view.cor_xhair.ly,'visible','off'); set(nii_view.sag_xhair.lx,'visible','off'); set(nii_view.sag_xhair.ly,'visible','off'); else set(nii_view.axi_xhair.lx,'visible','on'); set(nii_view.axi_xhair.ly,'visible','on'); set(nii_view.cor_xhair.lx,'visible','on'); set(nii_view.cor_xhair.ly,'visible','on'); set(nii_view.sag_xhair.lx,'visible','on'); set(nii_view.sag_xhair.ly,'visible','on'); set(nii_view.handles.axial_axes,'selected','on'); set(nii_view.handles.axial_axes,'selected','off'); set(nii_view.handles.coronal_axes,'selected','on'); set(nii_view.handles.coronal_axes,'selected','off'); set(nii_view.handles.sagittal_axes,'selected','on'); set(nii_view.handles.sagittal_axes,'selected','off'); end case 'xhair_color', old_color = get(gcbo,'user'); new_color = uisetcolor(old_color); update_crosshaircolor(fig, new_color); case {'color','contrast_def'} nii_view = getappdata(fig,'nii_view'); if nii_view.numscan == 1 if get(nii_view.handles.colorindex,'value') == 2 set(nii_view.handles.contrast,'value',128); elseif get(nii_view.handles.colorindex,'value') == 3 set(nii_view.handles.contrast,'value',1); end end [custom_color_map, custom_colorindex] = change_colormap(fig); if strcmpi(command, 'color') setcolorlevel = nii_view.colorlevel; if ~isempty(custom_color_map) % isfield(nii_view, 'color_map') setcolormap = custom_color_map; % nii_view.color_map; else setcolormap = []; end if isfield(nii_view, 'highcolor') sethighcolor = nii_view.highcolor; else sethighcolor = []; end redraw_cbar(fig, setcolorlevel, setcolormap, sethighcolor); if nii_view.numscan == 1 & ... (custom_colorindex < 2 | custom_colorindex > 3) contrastopt.enablecontrast = 0; else contrastopt.enablecontrast = 1; end update_enable(fig, contrastopt); end case {'neg_color','brightness','contrast'} change_colormap(fig); case {'brightness_def'} nii_view = getappdata(fig,'nii_view'); set(nii_view.handles.brightness,'value',0); change_colormap(fig); case 'hist_plot' hist_plot(fig); case 'hist_eq' hist_eq(fig); case 'move_cursor' move_cursor(fig); case 'edit_change_scan' change_scan('edit_change_scan'); case 'slider_change_scan' change_scan('slider_change_scan'); end return; % view_nii %---------------------------------------------------------------- function fig = init(nii, fig, area, setunit, setviewpoint, setscanid, buttondown, ... colorindex, color_map, colorlevel, highcolor, cbarminmax, ... usecolorbar, usepanel, usecrosshair, usestretch, useimagesc, ... useinterp, setvalue, glblocminmax, setcrosshaircolor, ... setcomplex) % Support data type COMPLEX64 & COMPLEX128 % if nii.hdr.dime.datatype == 32 | nii.hdr.dime.datatype == 1792 switch setcomplex, case 0, nii.img = real(nii.img); case 1, nii.img = imag(nii.img); case 2, if isa(nii.img, 'double') nii.img = abs(double(nii.img)); else nii.img = single(abs(double(nii.img))); end end end if isempty(area) area = [0.05 0.05 0.9 0.9]; end if isempty(setscanid) setscanid = 1; else setscanid = round(setscanid); if setscanid < 1 setscanid = 1; end if setscanid > nii.hdr.dime.dim(5) setscanid = nii.hdr.dime.dim(5); end end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 usecolorbar = 0; elseif isempty(usecolorbar) usecolorbar = 1; end if isempty(usepanel) usepanel = 1; end if isempty(usestretch) usestretch = 1; end if isempty(useimagesc) useimagesc = 1; end if isempty(useinterp) useinterp = 0; end if isempty(colorindex) tmp = min(nii.img(:,:,:,setscanid)); if min(tmp(:)) < 0 colorindex = 2; setcrosshaircolor = [1 1 0]; else colorindex = 3; end end if isempty(color_map) | ischar(color_map) color_map = []; else colorindex = 1; end bgimg = []; if ~isempty(glblocminmax) minvalue = glblocminmax(1); maxvalue = glblocminmax(2); else minvalue = nii.img(:,:,:,setscanid); minvalue = double(minvalue(:)); minvalue = min(minvalue(~isnan(minvalue))); maxvalue = nii.img(:,:,:,setscanid); maxvalue = double(maxvalue(:)); maxvalue = max(maxvalue(~isnan(maxvalue))); end if ~isempty(setvalue) if ~isempty(glblocminmax) minvalue = glblocminmax(1); maxvalue = glblocminmax(2); else minvalue = double(min(setvalue.val)); maxvalue = double(max(setvalue.val)); end bgimg = double(nii.img); minbg = double(min(bgimg(:))); maxbg = double(max(bgimg(:))); bgimg = scale_in(bgimg, minbg, maxbg, 55) + 200; % scale to 201~256 % 56 level for brain structure % % highcolor = [zeros(1,3);gray(55)]; highcolor = gray(56); cbarminmax = [minvalue maxvalue]; if useinterp % scale signal data to 1~200 % nii.img = repmat(nan, size(nii.img)); nii.img(setvalue.idx) = setvalue.val; % 200 level for source image % bgimg = single(scale_out(bgimg, cbarminmax(1), cbarminmax(2), 199)); else bgimg(setvalue.idx) = NaN; minbg = double(min(bgimg(:))); maxbg = double(max(bgimg(:))); bgimg(setvalue.idx) = minbg; % bgimg must be normalized to [201 256] % bgimg = 55 * (bgimg-min(bgimg(:))) / (max(bgimg(:))-min(bgimg(:))) + 201; bgimg(setvalue.idx) = 0; % scale signal data to 1~200 % nii.img = zeros(size(nii.img)); nii.img(setvalue.idx) = scale_in(setvalue.val, minvalue, maxvalue, 199); nii.img = nii.img + bgimg; bgimg = []; nii.img = scale_out(nii.img, cbarminmax(1), cbarminmax(2), 199); minvalue = double(nii.img(:)); minvalue = min(minvalue(~isnan(minvalue))); maxvalue = double(nii.img(:)); maxvalue = max(maxvalue(~isnan(maxvalue))); if ~isempty(glblocminmax) % maxvalue is gray minvalue = glblocminmax(1); end end colorindex = 2; setcrosshaircolor = [1 1 0]; end if isempty(highcolor) | ischar(highcolor) highcolor = []; num_highcolor = 0; else num_highcolor = size(highcolor,1); end if isempty(colorlevel) colorlevel = 256 - num_highcolor; end if usecolorbar cbar_area = area; cbar_area(1) = area(1) + area(3)*0.93; cbar_area(3) = area(3)*0.04; area(3) = area(3)*0.9; % 90% used for main axes else cbar_area = []; end % init color (gray) scaling to make sure the slice clim take the % global clim [min(nii.img(:)) max(nii.img(:))] % if isempty(bgimg) clim = [minvalue maxvalue]; else clim = [minvalue double(max(bgimg(:)))]; end if clim(1) == clim(2) clim(2) = clim(1) + 0.000001; end if isempty(cbarminmax) cbarminmax = [minvalue maxvalue]; end xdim = size(nii.img, 1); ydim = size(nii.img, 2); zdim = size(nii.img, 3); dims = [xdim ydim zdim]; voxel_size = abs(nii.hdr.dime.pixdim(2:4)); % vol in mm if any(voxel_size <= 0) voxel_size(find(voxel_size <= 0)) = 1; end origin = abs(nii.hdr.hist.originator(1:3)); if isempty(origin) | all(origin == 0) % according to SPM origin = (dims+1)/2; end; origin = round(origin); if any(origin > dims) % simulate fMRI origin(find(origin > dims)) = dims(find(origin > dims)); end if any(origin <= 0) origin(find(origin <= 0)) = 1; end nii_view.dims = dims; nii_view.voxel_size = voxel_size; nii_view.origin = origin; nii_view.slices.sag = 1; nii_view.slices.cor = 1; nii_view.slices.axi = 1; if xdim > 1, nii_view.slices.sag = origin(1); end if ydim > 1, nii_view.slices.cor = origin(2); end if zdim > 1, nii_view.slices.axi = origin(3); end nii_view.area = area; nii_view.fig = fig; nii_view.nii = nii; % image data nii_view.bgimg = bgimg; % background nii_view.setvalue = setvalue; nii_view.minvalue = minvalue; nii_view.maxvalue = maxvalue; nii_view.numscan = nii.hdr.dime.dim(5); nii_view.scanid = setscanid; Font.FontUnits = 'point'; Font.FontSize = 12; % create axes for colorbar % [cbar_axes cbarminmax_axes] = create_cbar_axes(fig, cbar_area); if isempty(cbar_area) nii_view.cbar_area = []; else nii_view.cbar_area = cbar_area; end % create axes for top/front/side view % vol_size = voxel_size .* dims; [top_ax, front_ax, side_ax] ... = create_ax(fig, area, vol_size, usestretch); top_pos = get(top_ax,'position'); front_pos = get(front_ax,'position'); side_pos = get(side_ax,'position'); % Sagittal Slider % x = side_pos(1); y = top_pos(2) + top_pos(4); w = side_pos(3); h = (front_pos(2) - y) / 2; y = y + h; pos = [x y w h]; if xdim > 1, slider_step(1) = 1/(xdim); slider_step(2) = 1.00001/(xdim); handles.sagittal_slider = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment','center',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Sagittal slice navigation',... 'Min',1,'Max',xdim,'SliderStep',slider_step, ... 'Value',nii_view.slices.sag,... 'Callback','view_nii(''sagittal_slider'');'); set(handles.sagittal_slider,'position',pos); % linux66 end % Coronal Slider % x = top_pos(1); y = top_pos(2) + top_pos(4); w = top_pos(3); h = (front_pos(2) - y) / 2; y = y + h; pos = [x y w h]; if ydim > 1, slider_step(1) = 1/(ydim); slider_step(2) = 1.00001/(ydim); slider_val = nii_view.dims(2) - nii_view.slices.cor + 1; handles.coronal_slider = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment','center',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Coronal slice navigation',... 'Min',1,'Max',ydim,'SliderStep',slider_step, ... 'Value',slider_val,... 'Callback','view_nii(''coronal_slider'');'); set(handles.coronal_slider,'position',pos); % linux66 end % Axial Slider % % x = front_pos(1) + front_pos(3); % y = front_pos(2); % w = side_pos(1) - x; % h = front_pos(4); x = top_pos(1); y = area(2); w = top_pos(3); h = top_pos(2) - y; pos = [x y w h]; if zdim > 1, slider_step(1) = 1/(zdim); slider_step(2) = 1.00001/(zdim); handles.axial_slider = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment','center',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Axial slice navigation',... 'Min',1,'Max',zdim,'SliderStep',slider_step, ... 'Value',nii_view.slices.axi,... 'Callback','view_nii(''axial_slider'');'); set(handles.axial_slider,'position',pos); % linux66 end % plot info view % % info_pos = [side_pos([1,3]); top_pos([2,4])]; % info_pos = info_pos(:); gap = side_pos(1)-(top_pos(1)+top_pos(3)); info_pos(1) = side_pos(1) + gap; info_pos(2) = area(2); info_pos(3) = side_pos(3) - gap; info_pos(4) = top_pos(2) + top_pos(4) - area(2) - gap; num_inputline = 10; inputline_space =info_pos(4) / num_inputline; % for any info_area change, update_usestretch should also be changed % Image Intensity Value at Cursor % x = info_pos(1); y = info_pos(2); w = info_pos(3)*0.5; h = inputline_space*0.6; pos = [x y w h]; handles.Timvalcur = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Value at cursor:'); if usepanel set(handles.Timvalcur, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; handles.imvalcur = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String',' '); if usepanel set(handles.imvalcur, 'visible', 'on'); end % Position at Cursor % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; handles.Timposcur = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','[X Y Z] at cursor:'); if usepanel set(handles.Timposcur, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; handles.imposcur = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String',' ','Value',[0 0 0]); if usepanel set(handles.imposcur, 'visible', 'on'); end % Image Intensity Value at Mouse Click % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; handles.Timval = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Value at crosshair:'); if usepanel set(handles.Timval, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; handles.imval = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String',' '); if usepanel set(handles.imval, 'visible', 'on'); end % Viewpoint Position at Mouse Click % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; handles.Timpos = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','[X Y Z] at crosshair:'); if usepanel set(handles.Timpos, 'visible', 'on'); end x = x + w + 0.005; y = y - 0.008; w = info_pos(3)*0.5; h = inputline_space*0.9; pos = [x y w h]; handles.impos = uicontrol('Parent',fig,'Style','edit', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'Callback','view_nii(''impos_edit'');', ... 'TooltipString','Viewpoint Location in Axes Unit', ... 'visible','off', ... 'String',' ','Value',[0 0 0]); if usepanel set(handles.impos, 'visible', 'on'); end % Origin Position % x = info_pos(1); y = y + inputline_space*1.2; w = info_pos(3)*0.5; h = inputline_space*0.6; pos = [x y w h]; handles.Torigin = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','[X Y Z] at origin:'); if usepanel set(handles.Torigin, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; handles.origin = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String',' ','Value',[0 0 0]); if usepanel set(handles.origin, 'visible', 'on'); end if 0 % Voxel Unit % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; handles.Tcoord = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Axes Unit:'); if usepanel set(handles.Tcoord, 'visible', 'on'); end x = x + w + 0.005; w = info_pos(3)*0.5 - 0.005; pos = [x y w h]; Font.FontSize = 8; handles.coord = uicontrol('Parent',fig,'Style','popupmenu', ... 'Units','Normalized', Font, ... 'Position',pos, ... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'TooltipString','Choose Voxel or Millimeter',... 'String',{'Voxel','Millimeter'},... 'visible','off', ... 'Callback','view_nii(''coordinates'');'); % 'TooltipString','Choose Voxel, MNI or Talairach Coordinates',... % 'String',{'Voxel','MNI (mm)','Talairach (mm)'},... Font.FontSize = 12; if usepanel set(handles.coord, 'visible', 'on'); end end % Crosshair % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.4; pos = [x y w h]; handles.Txhair = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Crosshair:'); if usepanel set(handles.Txhair, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.2; h = inputline_space*0.7; pos = [x y w h]; Font.FontSize = 8; handles.xhair_color = uicontrol('Parent',fig,'Style','push', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Crosshair Color',... 'User',[1 0 0],... 'String','Color',... 'visible','off', ... 'Callback','view_nii(''xhair_color'');'); if usepanel set(handles.xhair_color, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.7; w = info_pos(3)*0.3; pos = [x y w h]; handles.xhair = uicontrol('Parent',fig,'Style','popupmenu', ... 'Units','Normalized', Font, ... 'Position',pos, ... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'TooltipString','Display or Hide Crosshair',... 'String',{'On','Off'},... 'visible','off', ... 'Callback','view_nii(''crosshair'');'); if usepanel set(handles.xhair, 'visible', 'on'); end % Histogram & Color % x = info_pos(1); w = info_pos(3)*0.45; h = inputline_space * 1.5; pos = [x, y+inputline_space*0.9, w, h]; handles.hist_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel % set(handles.hist_frame, 'visible', 'on'); end handles.coord_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel set(handles.coord_frame, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.475; w = info_pos(3)*0.525; h = inputline_space * 1.5; pos = [x, y+inputline_space*0.9, w, h]; handles.color_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel set(handles.color_frame, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space*1.2; w = info_pos(3)*0.2; h = inputline_space*0.7; pos = [x y w h]; Font.FontSize = 8; handles.hist_eq = uicontrol('Parent',fig,'Style','toggle', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Histogram Equalization',... 'String','Hist EQ',... 'visible','off', ... 'Callback','view_nii(''hist_eq'');'); if usepanel % set(handles.hist_eq, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.2; pos = [x y w h]; handles.hist_plot = uicontrol('Parent',fig,'Style','push', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Histogram Plot',... 'String','Hist Plot',... 'visible','off', ... 'Callback','view_nii(''hist_plot'');'); if usepanel % set(handles.hist_plot, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.025; w = info_pos(3)*0.4; pos = [x y w h]; handles.coord = uicontrol('Parent',fig,'Style','popupmenu', ... 'Units','Normalized', Font, ... 'Position',pos, ... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'TooltipString','Choose Voxel or Millimeter',... 'String',{'Voxel','Millimeter'},... 'visible','off', ... 'Callback','view_nii(''coordinates'');'); % 'TooltipString','Choose Voxel, MNI or Talairach Coordinates',... % 'String',{'Voxel','MNI (mm)','Talairach (mm)'},... if usepanel set(handles.coord, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.2; pos = [x y w h]; handles.neg_color = uicontrol('Parent',fig,'Style','toggle', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Negative Colormap',... 'String','Negative',... 'visible','off', ... 'Callback','view_nii(''neg_color'');'); if usepanel set(handles.neg_color, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.neg_color, 'enable', 'off'); end x = info_pos(1) + info_pos(3)*0.7; w = info_pos(3)*0.275; pos = [x y w h]; handles.colorindex = uicontrol('Parent',fig,'Style','popupmenu', ... 'Units','Normalized', Font, ... 'Position',pos, ... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'TooltipString','Change Colormap',... 'String',{'Custom','Bipolar','Gray','Jet','Cool','Bone','Hot','Copper','Pink'},... 'value', colorindex, ... 'visible','off', ... 'Callback','view_nii(''color'');'); if usepanel set(handles.colorindex, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.colorindex, 'enable', 'off'); end x = info_pos(1) + info_pos(3)*0.1; y = y + inputline_space; w = info_pos(3)*0.28; h = inputline_space*0.6; pos = [x y w h]; Font.FontSize = 8; handles.Thist = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Histogram'); handles.Tcoord = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Axes Unit'); if usepanel % set(handles.Thist, 'visible', 'on'); set(handles.Tcoord, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.60; w = info_pos(3)*0.28; pos = [x y w h]; handles.Tcolor = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Colormap'); if usepanel set(handles.Tcolor, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.Tcolor, 'enable', 'off'); end % Contrast Frame % x = info_pos(1); w = info_pos(3)*0.45; h = inputline_space * 2; pos = [x, y+inputline_space*0.8, w, h]; handles.contrast_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel set(handles.contrast_frame, 'visible', 'on'); end if colorindex < 2 | colorindex > 3 set(handles.contrast_frame, 'visible', 'off'); end % Brightness Frame % x = info_pos(1) + info_pos(3)*0.475; w = info_pos(3)*0.525; pos = [x, y+inputline_space*0.8, w, h]; handles.brightness_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel set(handles.brightness_frame, 'visible', 'on'); end % Contrast % x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space; w = info_pos(3)*0.4; h = inputline_space*0.6; pos = [x y w h]; Font.FontSize = 12; slider_step(1) = 5/255; slider_step(2) = 5.00001/255; handles.contrast = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Change contrast',... 'Min',1,'Max',256,'SliderStep',slider_step, ... 'Value',1, ... 'visible','off', ... 'Callback','view_nii(''contrast'');'); if usepanel set(handles.contrast, 'visible', 'on'); end if (nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511) & nii_view.numscan <= 1 set(handles.contrast, 'enable', 'off'); end if nii_view.numscan > 1 set(handles.contrast, 'min', 1, 'max', nii_view.numscan, ... 'sliderstep',[1/(nii_view.numscan-1) 1.00001/(nii_view.numscan-1)], ... 'Callback', 'view_nii(''slider_change_scan'');'); elseif colorindex < 2 | colorindex > 3 set(handles.contrast, 'visible', 'off'); elseif colorindex == 2 set(handles.contrast,'value',128); end set(handles.contrast,'position',pos); % linux66 % Brightness % x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.475; pos = [x y w h]; Font.FontSize = 12; slider_step(1) = 1/50; slider_step(2) = 1.00001/50; handles.brightness = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Change brightness',... 'Min',-1,'Max',1,'SliderStep',slider_step, ... 'Value',0, ... 'visible','off', ... 'Callback','view_nii(''brightness'');'); if usepanel set(handles.brightness, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.brightness, 'enable', 'off'); end set(handles.brightness,'position',pos); % linux66 % Contrast text/def % x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space; w = info_pos(3)*0.22; pos = [x y w h]; handles.Tcontrast = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Contrast:'); if usepanel set(handles.Tcontrast, 'visible', 'on'); end if (nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511) & nii_view.numscan <= 1 set(handles.Tcontrast, 'enable', 'off'); end if nii_view.numscan > 1 set(handles.Tcontrast, 'string', 'Scan ID:'); set(handles.contrast, 'TooltipString', 'Change Scan ID'); elseif colorindex < 2 | colorindex > 3 set(handles.Tcontrast, 'visible', 'off'); end x = x + w; w = info_pos(3)*0.18; pos = [x y w h]; Font.FontSize = 8; handles.contrast_def = uicontrol('Parent',fig,'Style','push', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Restore initial contrast',... 'String','Reset',... 'visible','off', ... 'Callback','view_nii(''contrast_def'');'); if usepanel set(handles.contrast_def, 'visible', 'on'); end if (nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511) & nii_view.numscan <= 1 set(handles.contrast_def, 'enable', 'off'); end if nii_view.numscan > 1 set(handles.contrast_def, 'style', 'edit', 'background', 'w', ... 'TooltipString','Scan (or volume) index in the time series',... 'string', '1', 'Callback', 'view_nii(''edit_change_scan'');'); elseif colorindex < 2 | colorindex > 3 set(handles.contrast_def, 'visible', 'off'); end % Brightness text/def % x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.295; pos = [x y w h]; Font.FontSize = 12; handles.Tbrightness = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Brightness:'); if usepanel set(handles.Tbrightness, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.Tbrightness, 'enable', 'off'); end x = x + w; w = info_pos(3)*0.18; pos = [x y w h]; Font.FontSize = 8; handles.brightness_def = uicontrol('Parent',fig,'Style','push', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Restore initial brightness',... 'String','Reset',... 'visible','off', ... 'Callback','view_nii(''brightness_def'');'); if usepanel set(handles.brightness_def, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.brightness_def, 'enable', 'off'); end % init image handles % handles.axial_image = []; handles.coronal_image = []; handles.sagittal_image = []; % plot axial view % if ~isempty(nii_view.bgimg) bg_slice = squeeze(bgimg(:,:,nii_view.slices.axi)); h1 = plot_view(fig, xdim, ydim, top_ax, bg_slice', clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); handles.axial_bg = h1; else handles.axial_bg = []; end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 img_slice = squeeze(nii.img(:,:,nii_view.slices.axi,:,setscanid)); img_slice = permute(img_slice, [2 1 3]); else img_slice = squeeze(nii.img(:,:,nii_view.slices.axi,setscanid)); img_slice = img_slice'; end h1 = plot_view(fig, xdim, ydim, top_ax, img_slice, clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); set(h1,'buttondown','view_nii(''axial_image'');'); handles.axial_image = h1; handles.axial_axes = top_ax; if size(img_slice,1) == 1 | size(img_slice,2) == 1 set(top_ax,'visible','off'); if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider, 'visible', 'off'); end if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider, 'visible', 'off'); end if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider, 'visible', 'off'); end end % plot coronal view % if ~isempty(nii_view.bgimg) bg_slice = squeeze(bgimg(:,nii_view.slices.cor,:)); h1 = plot_view(fig, xdim, zdim, front_ax, bg_slice', clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); handles.coronal_bg = h1; else handles.coronal_bg = []; end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 img_slice = squeeze(nii.img(:,nii_view.slices.cor,:,:,setscanid)); img_slice = permute(img_slice, [2 1 3]); else img_slice = squeeze(nii.img(:,nii_view.slices.cor,:,setscanid)); img_slice = img_slice'; end h1 = plot_view(fig, xdim, zdim, front_ax, img_slice, clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); set(h1,'buttondown','view_nii(''coronal_image'');'); handles.coronal_image = h1; handles.coronal_axes = front_ax; if size(img_slice,1) == 1 | size(img_slice,2) == 1 set(front_ax,'visible','off'); if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider, 'visible', 'off'); end if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider, 'visible', 'off'); end if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider, 'visible', 'off'); end end % plot sagittal view % if ~isempty(nii_view.bgimg) bg_slice = squeeze(bgimg(nii_view.slices.sag,:,:)); h1 = plot_view(fig, ydim, zdim, side_ax, bg_slice', clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); handles.sagittal_bg = h1; else handles.sagittal_bg = []; end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 img_slice = squeeze(nii.img(nii_view.slices.sag,:,:,:,setscanid)); img_slice = permute(img_slice, [2 1 3]); else img_slice = squeeze(nii.img(nii_view.slices.sag,:,:,setscanid)); img_slice = img_slice'; end h1 = plot_view(fig, ydim, zdim, side_ax, img_slice, clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); set(h1,'buttondown','view_nii(''sagittal_image'');'); set(side_ax,'Xdir', 'reverse'); handles.sagittal_image = h1; handles.sagittal_axes = side_ax; if size(img_slice,1) == 1 | size(img_slice,2) == 1 set(side_ax,'visible','off'); if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider, 'visible', 'off'); end if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider, 'visible', 'off'); end if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider, 'visible', 'off'); end end [top1_label, top2_label, side1_label, side2_label] = ... dir_label(fig, top_ax, front_ax, side_ax); % store label handles % handles.top1_label = top1_label; handles.top2_label = top2_label; handles.side1_label = side1_label; handles.side2_label = side2_label; % plot colorbar % if ~isempty(cbar_axes) & ~isempty(cbarminmax_axes) if 0 if isempty(color_map) level = colorlevel + num_highcolor; else level = size([color_map; highcolor], 1); end end if isempty(color_map) level = colorlevel; else level = size([color_map], 1); end niiclass = class(nii.img); h1 = plot_cbar(fig, cbar_axes, cbarminmax_axes, cbarminmax, ... level, handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, niiclass, nii_view.numscan); handles.cbar_image = h1; handles.cbar_axes = cbar_axes; handles.cbarminmax_axes = cbarminmax_axes; end nii_view.handles = handles; % store handles nii_view.usepanel = usepanel; % whole panel at low right cornor nii_view.usestretch = usestretch; % stretch display of voxel_size nii_view.useinterp = useinterp; % use interpolation nii_view.colorindex = colorindex; % store colorindex variable nii_view.buttondown = buttondown; % command after button down click nii_view.cbarminmax = cbarminmax; % store min max value for colorbar set_coordinates(nii_view,useinterp); % coord unit if ~isfield(nii_view, 'axi_xhair') | ... ~isfield(nii_view, 'cor_xhair') | ... ~isfield(nii_view, 'sag_xhair') nii_view.axi_xhair = []; % top cross hair nii_view.cor_xhair = []; % front cross hair nii_view.sag_xhair = []; % side cross hair end if ~isempty(color_map) nii_view.color_map = color_map; end if ~isempty(colorlevel) nii_view.colorlevel = colorlevel; end if ~isempty(highcolor) nii_view.highcolor = highcolor; end update_nii_view(nii_view); if ~isempty(setunit) update_unit(fig, setunit); end if ~isempty(setviewpoint) update_viewpoint(fig, setviewpoint); end if ~isempty(setcrosshaircolor) update_crosshaircolor(fig, setcrosshaircolor); end if ~isempty(usecrosshair) update_usecrosshair(fig, usecrosshair); end nii_menu = getappdata(fig, 'nii_menu'); if ~isempty(nii_menu) if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(nii_menu.Minterp,'Userdata',1,'Label','Interp on','enable','off'); elseif useinterp set(nii_menu.Minterp,'Userdata',0,'Label','Interp off'); else set(nii_menu.Minterp,'Userdata',1,'Label','Interp on'); end end windowbuttonmotion = get(fig, 'windowbuttonmotion'); windowbuttonmotion = [windowbuttonmotion '; view_nii(''move_cursor'');']; set(fig, 'windowbuttonmotion', windowbuttonmotion); return; % init %---------------------------------------------------------------- function fig = update_img(img, fig, opt) nii_menu = getappdata(fig,'nii_menu'); if ~isempty(nii_menu) set(nii_menu.Mzoom,'Userdata',1,'Label','Zoom on'); set(fig,'pointer','arrow'); zoom off; end nii_view = getappdata(fig,'nii_view'); change_interp = 0; if isfield(opt, 'useinterp') & opt.useinterp ~= nii_view.useinterp nii_view.useinterp = opt.useinterp; change_interp = 1; end setscanid = 1; if isfield(opt, 'setscanid') setscanid = round(opt.setscanid); if setscanid < 1 setscanid = 1; end if setscanid > nii_view.numscan setscanid = nii_view.numscan; end end if isfield(opt, 'glblocminmax') & ~isempty(opt.glblocminmax) minvalue = opt.glblocminmax(1); maxvalue = opt.glblocminmax(2); else minvalue = img(:,:,:,setscanid); minvalue = double(minvalue(:)); minvalue = min(minvalue(~isnan(minvalue))); maxvalue = img(:,:,:,setscanid); maxvalue = double(maxvalue(:)); maxvalue = max(maxvalue(~isnan(maxvalue))); end if isfield(opt, 'setvalue') setvalue = opt.setvalue; if isfield(opt, 'glblocminmax') & ~isempty(opt.glblocminmax) minvalue = opt.glblocminmax(1); maxvalue = opt.glblocminmax(2); else minvalue = double(min(setvalue.val)); maxvalue = double(max(setvalue.val)); end bgimg = double(img); minbg = double(min(bgimg(:))); maxbg = double(max(bgimg(:))); bgimg = scale_in(bgimg, minbg, maxbg, 55) + 200; % scale to 201~256 cbarminmax = [minvalue maxvalue]; if nii_view.useinterp % scale signal data to 1~200 % img = repmat(nan, size(img)); img(setvalue.idx) = setvalue.val; % 200 level for source image % bgimg = single(scale_out(bgimg, cbarminmax(1), cbarminmax(2), 199)); else bgimg(setvalue.idx) = NaN; minbg = double(min(bgimg(:))); maxbg = double(max(bgimg(:))); bgimg(setvalue.idx) = minbg; % bgimg must be normalized to [201 256] % bgimg = 55 * (bgimg-min(bgimg(:))) / (max(bgimg(:))-min(bgimg(:))) + 201; bgimg(setvalue.idx) = 0; % scale signal data to 1~200 % img = zeros(size(img)); img(setvalue.idx) = scale_in(setvalue.val, minvalue, maxvalue, 199); img = img + bgimg; bgimg = []; img = scale_out(img, cbarminmax(1), cbarminmax(2), 199); minvalue = double(min(img(:))); maxvalue = double(max(img(:))); if isfield(opt,'glblocminmax') & ~isempty(opt.glblocminmax) minvalue = opt.glblocminmax(1); end end nii_view.bgimg = bgimg; nii_view.setvalue = setvalue; else cbarminmax = [minvalue maxvalue]; end update_cbarminmax(fig, cbarminmax); nii_view.cbarminmax = cbarminmax; nii_view.nii.img = img; nii_view.minvalue = minvalue; nii_view.maxvalue = maxvalue; nii_view.scanid = setscanid; change_colormap(fig); % init color (gray) scaling to make sure the slice clim take the % global clim [min(nii.img(:)) max(nii.img(:))] % if isempty(nii_view.bgimg) clim = [minvalue maxvalue]; else clim = [minvalue double(max(nii_view.bgimg(:)))]; end if clim(1) == clim(2) clim(2) = clim(1) + 0.000001; end if strcmpi(get(nii_view.handles.axial_image,'cdatamapping'), 'direct') useimagesc = 0; else useimagesc = 1; end if ~isempty(nii_view.bgimg) % with interpolation Saxi = squeeze(nii_view.bgimg(:,:,nii_view.slices.axi)); if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) set(nii_view.handles.axial_bg,'CData',double(Saxi)'); else axes(nii_view.handles.axial_axes); if useimagesc nii_view.handles.axial_bg = surface(zeros(size(Saxi')),double(Saxi'),'edgecolor','none','facecolor','interp'); else nii_view.handles.axial_bg = surface(zeros(size(Saxi')),double(Saxi'),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end order = get(gca,'child'); order(find(order == nii_view.handles.axial_bg)) = []; order = [order; nii_view.handles.axial_bg]; set(gca, 'child', order); end end if isfield(nii_view.handles,'axial_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Saxi = squeeze(nii_view.nii.img(:,:,nii_view.slices.axi,:,setscanid)); Saxi = permute(Saxi, [2 1 3]); else Saxi = squeeze(nii_view.nii.img(:,:,nii_view.slices.axi,setscanid)); Saxi = Saxi'; end set(nii_view.handles.axial_image,'CData',double(Saxi)); end set(nii_view.handles.axial_axes,'CLim',clim); if ~isempty(nii_view.bgimg) Scor = squeeze(nii_view.bgimg(:,nii_view.slices.cor,:)); if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) set(nii_view.handles.coronal_bg,'CData',double(Scor)'); else axes(nii_view.handles.coronal_axes); if useimagesc nii_view.handles.coronal_bg = surface(zeros(size(Scor')),double(Scor'),'edgecolor','none','facecolor','interp'); else nii_view.handles.coronal_bg = surface(zeros(size(Scor')),double(Scor'),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end order = get(gca,'child'); order(find(order == nii_view.handles.coronal_bg)) = []; order = [order; nii_view.handles.coronal_bg]; set(gca, 'child', order); end end if isfield(nii_view.handles,'coronal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Scor = squeeze(nii_view.nii.img(:,nii_view.slices.cor,:,:,setscanid)); Scor = permute(Scor, [2 1 3]); else Scor = squeeze(nii_view.nii.img(:,nii_view.slices.cor,:,setscanid)); Scor = Scor'; end set(nii_view.handles.coronal_image,'CData',double(Scor)); end set(nii_view.handles.coronal_axes,'CLim',clim); if ~isempty(nii_view.bgimg) Ssag = squeeze(nii_view.bgimg(nii_view.slices.sag,:,:)); if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) set(nii_view.handles.sagittal_bg,'CData',double(Ssag)'); else axes(nii_view.handles.sagittal_axes); if useimagesc nii_view.handles.sagittal_bg = surface(zeros(size(Ssag')),double(Ssag'),'edgecolor','none','facecolor','interp'); else nii_view.handles.sagittal_bg = surface(zeros(size(Ssag')),double(Ssag'),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end order = get(gca,'child'); order(find(order == nii_view.handles.sagittal_bg)) = []; order = [order; nii_view.handles.sagittal_bg]; set(gca, 'child', order); end end if isfield(nii_view.handles,'sagittal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Ssag = squeeze(nii_view.nii.img(nii_view.slices.sag,:,:,:,setscanid)); Ssag = permute(Ssag, [2 1 3]); else Ssag = squeeze(nii_view.nii.img(nii_view.slices.sag,:,:,setscanid)); Ssag = Ssag'; end set(nii_view.handles.sagittal_image,'CData',double(Ssag)); end set(nii_view.handles.sagittal_axes,'CLim',clim); update_nii_view(nii_view); if isfield(opt, 'setvalue') if ~isfield(nii_view,'highcolor') | ~isequal(size(nii_view.highcolor),[56 3]) % 55 level for brain structure (paded 0 for highcolor level 1, i.e. normal level 201, to make 56 highcolor) % update_highcolor(fig, [zeros(1,3);gray(55)], []); end if nii_view.colorindex ~= 2 update_colorindex(fig, 2); end old_color = get(nii_view.handles.xhair_color,'user'); if isequal(old_color, [1 0 0]) update_crosshaircolor(fig, [1 1 0]); end % if change_interp % update_useinterp(fig, nii_view.useinterp); % end end if change_interp update_useinterp(fig, nii_view.useinterp); end return; % update_img %---------------------------------------------------------------- function [top_pos, front_pos, side_pos] = ... axes_pos(fig,area,vol_size,usestretch) set(fig,'unit','pixel'); fig_pos = get(fig,'position'); gap_x = 15/fig_pos(3); % width of vertical scrollbar gap_y = 15/fig_pos(4); % width of horizontal scrollbar a = (area(3) - gap_x * 1.3) * fig_pos(3) / (vol_size(1) + vol_size(2)); % no crosshair lost in zoom b = (area(4) - gap_y * 3) * fig_pos(4) / (vol_size(2) + vol_size(3)); c = min([a b]); % make sure 'ax' is inside 'area' top_w = vol_size(1) * c / fig_pos(3); side_w = vol_size(2) * c / fig_pos(3); top_h = vol_size(2) * c / fig_pos(4); side_h = vol_size(3) * c / fig_pos(4); side_x = area(1) + top_w + gap_x * 1.3; % no crosshair lost in zoom side_y = area(2) + top_h + gap_y * 3; if usestretch if a > b % top touched ceiling, use b d = (area(3) - gap_x * 1.3) / (top_w + side_w); % no crosshair lost in zoom top_w = top_w * d; side_w = side_w * d; side_x = area(1) + top_w + gap_x * 1.3; % no crosshair lost in zoom else d = (area(4) - gap_y * 3) / (top_h + side_h); top_h = top_h * d; side_h = side_h * d; side_y = area(2) + top_h + gap_y * 3; end end top_pos = [area(1) area(2)+gap_y top_w top_h]; front_pos = [area(1) side_y top_w side_h]; side_pos = [side_x side_y side_w side_h]; set(fig,'unit','normal'); return; % axes_pos %---------------------------------------------------------------- function [top_ax, front_ax, side_ax] ... = create_ax(fig, area, vol_size, usestretch) cur_fig = gcf; % save h_wait fig figure(fig); [top_pos, front_pos, side_pos] = ... axes_pos(fig,area,vol_size,usestretch); nii_view = getappdata(fig, 'nii_view'); if isempty(nii_view) top_ax = axes('position', top_pos); front_ax = axes('position', front_pos); side_ax = axes('position', side_pos); else top_ax = nii_view.handles.axial_axes; front_ax = nii_view.handles.coronal_axes; side_ax = nii_view.handles.sagittal_axes; set(top_ax, 'position', top_pos); set(front_ax, 'position', front_pos); set(side_ax, 'position', side_pos); end figure(cur_fig); return; % create_ax %---------------------------------------------------------------- function [cbar_axes, cbarminmax_axes] = create_cbar_axes(fig, cbar_area, nii_view) if isempty(cbar_area) % without_cbar cbar_axes = []; cbarminmax_axes = []; return; end cur_fig = gcf; % save h_wait fig figure(fig); if ~exist('nii_view', 'var') nii_view = getappdata(fig, 'nii_view'); end if isempty(nii_view) | ~isfield(nii_view.handles,'cbar_axes') | isempty(nii_view.handles.cbar_axes) cbarminmax_axes = axes('position', cbar_area); cbar_axes = axes('position', cbar_area); else cbarminmax_axes = nii_view.handles.cbarminmax_axes; cbar_axes = nii_view.handles.cbar_axes; set(cbarminmax_axes, 'position', cbar_area); set(cbar_axes, 'position', cbar_area); end figure(cur_fig); return; % create_cbar_axes %---------------------------------------------------------------- function h1 = plot_view(fig, x, y, img_ax, img_slice, clim, ... cbarminmax, handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, numscan) h1 = []; if x > 1 & y > 1, axes(img_ax); nii_view = getappdata(fig, 'nii_view'); if isempty(nii_view) % set colormap first % nii.handles = handles; nii.handles.axial_axes = img_ax; nii.colorindex = colorindex; nii.color_map = color_map; nii.colorlevel = colorlevel; nii.highcolor = highcolor; nii.numscan = numscan; change_colormap(fig, nii, colorindex, cbarminmax); if useinterp if useimagesc h1 = surface(zeros(size(img_slice)),double(img_slice),'edgecolor','none','facecolor','interp'); else h1 = surface(zeros(size(img_slice)),double(img_slice),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end set(gca,'clim',clim); else if useimagesc h1 = imagesc(img_slice,clim); else h1 = image(img_slice); end set(gca,'clim',clim); end else h1 = nii_view.handles.axial_image; if ~isequal(get(h1,'parent'), img_ax) h1 = nii_view.handles.coronal_image; end if ~isequal(get(h1,'parent'), img_ax) h1 = nii_view.handles.sagittal_image; end set(h1, 'cdata', double(img_slice)); set(h1, 'xdata', 1:size(img_slice,2)); set(h1, 'ydata', 1:size(img_slice,1)); end set(img_ax,'YDir','normal','XLimMode','manual','YLimMode','manual',... 'ClimMode','manual','visible','off', ... 'xtick',[],'ytick',[], 'clim', clim); end return; % plot_view %---------------------------------------------------------------- function h1 = plot_cbar(fig, cbar_axes, cbarminmax_axes, cbarminmax, ... level, handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, niiclass, numscan, nii_view) cbar_image = [1:level]'; % In a uint8 or uint16 indexed image, 0 points to the first row % in the colormap % if 0 % strcmpi(niiclass,'uint8') | strcmpi(niiclass,'uint16') % we use single for display anyway ylim = [0, level-1]; else ylim = [1, level]; end axes(cbarminmax_axes); plot([0 0], cbarminmax, 'w'); axis tight; set(cbarminmax_axes,'YDir','normal', ... 'XLimMode','manual','YLimMode','manual','YColor',[0 0 0], ... 'XColor',[0 0 0],'xtick',[],'YAxisLocation','right'); ylimb = get(cbarminmax_axes,'ylim'); ytickb = get(cbarminmax_axes,'ytick'); ytick=(ylim(2)-ylim(1))*(ytickb-ylimb(1))/(ylimb(2)-ylimb(1))+ylim(1); axes(cbar_axes); if ~exist('nii_view', 'var') nii_view = getappdata(fig, 'nii_view'); end if isempty(nii_view) | ~isfield(nii_view.handles,'cbar_image') | isempty(nii_view.handles.cbar_image) % set colormap first % nii.handles = handles; nii.colorindex = colorindex; nii.color_map = color_map; nii.colorlevel = colorlevel; nii.highcolor = highcolor; nii.numscan = numscan; change_colormap(fig, nii, colorindex, cbarminmax); h1 = image([0,1], [ylim(1),ylim(2)], cbar_image); else h1 = nii_view.handles.cbar_image; set(h1, 'cdata', double(cbar_image)); end set(cbar_axes,'YDir','normal','XLimMode','manual', ... 'YLimMode','manual','YColor',[0 0 0],'XColor',[0 0 0],'xtick',[], ... 'YAxisLocation','right','ylim',ylim,'ytick',ytick,'yticklabel',''); return; % plot_cbar %---------------------------------------------------------------- function set_coordinates(nii_view,useinterp) imgPlim.vox = nii_view.dims; imgNlim.vox = [1 1 1]; if useinterp xdata_ax = [imgNlim.vox(1) imgPlim.vox(1)]; ydata_ax = [imgNlim.vox(2) imgPlim.vox(2)]; zdata_ax = [imgNlim.vox(3) imgPlim.vox(3)]; else xdata_ax = [imgNlim.vox(1)-0.5 imgPlim.vox(1)+0.5]; ydata_ax = [imgNlim.vox(2)-0.5 imgPlim.vox(2)+0.5]; zdata_ax = [imgNlim.vox(3)-0.5 imgPlim.vox(3)+0.5]; end if isfield(nii_view.handles,'axial_image') & ~isempty(nii_view.handles.axial_image) set(nii_view.handles.axial_axes,'Xlim',xdata_ax); set(nii_view.handles.axial_axes,'Ylim',ydata_ax); end; if isfield(nii_view.handles,'coronal_image') & ~isempty(nii_view.handles.coronal_image) set(nii_view.handles.coronal_axes,'Xlim',xdata_ax); set(nii_view.handles.coronal_axes,'Ylim',zdata_ax); end; if isfield(nii_view.handles,'sagittal_image') & ~isempty(nii_view.handles.sagittal_image) set(nii_view.handles.sagittal_axes,'Xlim',ydata_ax); set(nii_view.handles.sagittal_axes,'Ylim',zdata_ax); end; return % set_coordinates %---------------------------------------------------------------- function set_image_value(nii_view), % get coordinates of selected voxel and the image intensity there % sag = round(nii_view.slices.sag); cor = round(nii_view.slices.cor); axi = round(nii_view.slices.axi); if 0 % isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end if nii_view.nii.hdr.dime.datatype == 128 imgvalue = [double(img(sag,cor,axi,1,nii_view.scanid)) double(img(sag,cor,axi,2,nii_view.scanid)) double(img(sag,cor,axi,3,nii_view.scanid))]; set(nii_view.handles.imval,'Value',imgvalue); set(nii_view.handles.imval,'String',sprintf('%7.4g %7.4g %7.4g',imgvalue)); elseif nii_view.nii.hdr.dime.datatype == 511 R = double(img(sag,cor,axi,1,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; G = double(img(sag,cor,axi,2,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; B = double(img(sag,cor,axi,3,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; imgvalue = [double(img(sag,cor,axi,1,nii_view.scanid)) double(img(sag,cor,axi,2,nii_view.scanid)) double(img(sag,cor,axi,3,nii_view.scanid))]; set(nii_view.handles.imval,'Value',imgvalue); imgvalue = [R G B]; set(nii_view.handles.imval,'String',sprintf('%7.4g %7.4g %7.4g',imgvalue)); else imgvalue = double(img(sag,cor,axi,nii_view.scanid)); set(nii_view.handles.imval,'Value',imgvalue); if isnan(imgvalue) | imgvalue > nii_view.cbarminmax(2) imgvalue = 0; end set(nii_view.handles.imval,'String',sprintf('%.6g',imgvalue)); end % Now update the coordinates of the selected voxel nii_view = update_imgXYZ(nii_view); if get(nii_view.handles.coord,'value') == 1, sag = nii_view.imgXYZ.vox(1); cor = nii_view.imgXYZ.vox(2); axi = nii_view.imgXYZ.vox(3); org = nii_view.origin; elseif get(nii_view.handles.coord,'value') == 2, sag = nii_view.imgXYZ.mm(1); cor = nii_view.imgXYZ.mm(2); axi = nii_view.imgXYZ.mm(3); org = [0 0 0]; elseif get(nii_view.handles.coord,'value') == 3, sag = nii_view.imgXYZ.tal(1); cor = nii_view.imgXYZ.tal(2); axi = nii_view.imgXYZ.tal(3); org = [0 0 0]; end set(nii_view.handles.impos,'Value',[sag,cor,axi]); if get(nii_view.handles.coord,'value') == 1, string = sprintf('%7.0f %7.0f %7.0f',sag,cor,axi); org_str = sprintf('%7.0f %7.0f %7.0f', org(1), org(2), org(3)); else string = sprintf('%7.1f %7.1f %7.1f',sag,cor,axi); org_str = sprintf('%7.1f %7.1f %7.1f', org(1), org(2), org(3)); end; set(nii_view.handles.impos,'String',string); set(nii_view.handles.origin, 'string', org_str); return % set_image_value %---------------------------------------------------------------- function nii_view = get_slice_position(nii_view,view), % obtain slices that is in correct unit, then update slices % slices = nii_view.slices; switch view, case 'sag', currentpoint = get(nii_view.handles.sagittal_axes,'CurrentPoint'); slices.cor = currentpoint(1,1); slices.axi = currentpoint(1,2); case 'cor', currentpoint = get(nii_view.handles.coronal_axes,'CurrentPoint'); slices.sag = currentpoint(1,1); slices.axi = currentpoint(1,2); case 'axi', currentpoint = get(nii_view.handles.axial_axes,'CurrentPoint'); slices.sag = currentpoint(1,1); slices.cor = currentpoint(1,2); end % update nii_view.slices with the updated slices % nii_view.slices.axi = round(slices.axi); nii_view.slices.cor = round(slices.cor); nii_view.slices.sag = round(slices.sag); return % get_slice_position %---------------------------------------------------------------- function nii_view = get_slider_position(nii_view), [nii_view.slices.sag,nii_view.slices.cor,nii_view.slices.axi] = deal(0); if isfield(nii_view.handles,'sagittal_slider'), if ishandle(nii_view.handles.sagittal_slider), nii_view.slices.sag = ... round(get(nii_view.handles.sagittal_slider,'Value')); end end if isfield(nii_view.handles,'coronal_slider'), if ishandle(nii_view.handles.coronal_slider), nii_view.slices.cor = ... round(nii_view.dims(2) - ... get(nii_view.handles.coronal_slider,'Value') + 1); end end if isfield(nii_view.handles,'axial_slider'), if ishandle(nii_view.handles.axial_slider), nii_view.slices.axi = ... round(get(nii_view.handles.axial_slider,'Value')); end end nii_view = check_slices(nii_view); return % get_slider_position %---------------------------------------------------------------- function nii_view = update_imgXYZ(nii_view), nii_view.imgXYZ.vox = ... [nii_view.slices.sag,nii_view.slices.cor,nii_view.slices.axi]; nii_view.imgXYZ.mm = ... (nii_view.imgXYZ.vox - nii_view.origin) .* nii_view.voxel_size; % nii_view.imgXYZ.tal = mni2tal(nii_view.imgXYZ.mni); return % update_imgXYZ %---------------------------------------------------------------- function nii_view = convert2voxel(nii_view,slices), if get(nii_view.handles.coord,'value') == 1, % [slices.axi, slices.cor, slices.sag] are in vox % nii_view.slices.axi = round(slices.axi); nii_view.slices.cor = round(slices.cor); nii_view.slices.sag = round(slices.sag); elseif get(nii_view.handles.coord,'value') == 2, % [slices.axi, slices.cor, slices.sag] are in mm % xpix = nii_view.voxel_size(1); ypix = nii_view.voxel_size(2); zpix = nii_view.voxel_size(3); nii_view.slices.axi = round(slices.axi / zpix + nii_view.origin(3)); nii_view.slices.cor = round(slices.cor / ypix + nii_view.origin(2)); nii_view.slices.sag = round(slices.sag / xpix + nii_view.origin(1)); elseif get(nii_view.handles.coord,'value') == 3, % [slices.axi, slices.cor, slices.sag] are in talairach % xpix = nii_view.voxel_size(1); ypix = nii_view.voxel_size(2); zpix = nii_view.voxel_size(3); xyz_tal = [slices.sag, slices.cor, slices.axi]; xyz_mni = tal2mni(xyz_tal); nii_view.slices.axi = round(xyz_mni(3) / zpix + nii_view.origin(3)); nii_view.slices.cor = round(xyz_mni(2) / ypix + nii_view.origin(2)); nii_view.slices.sag = round(xyz_mni(1) / xpix + nii_view.origin(1)); end return % convert2voxel %---------------------------------------------------------------- function nii_view = check_slices(nii_view), img = nii_view.nii.img; [ SagSize, CorSize, AxiSize, TimeSize ] = size(img); if nii_view.slices.sag > SagSize, nii_view.slices.sag = SagSize; end; if nii_view.slices.sag < 1, nii_view.slices.sag = 1; end; if nii_view.slices.cor > CorSize, nii_view.slices.cor = CorSize; end; if nii_view.slices.cor < 1, nii_view.slices.cor = 1; end; if nii_view.slices.axi > AxiSize, nii_view.slices.axi = AxiSize; end; if nii_view.slices.axi < 1, nii_view.slices.axi = 1; end; if nii_view.scanid > TimeSize, nii_view.scanid = TimeSize; end; if nii_view.scanid < 1, nii_view.scanid = 1; end; return % check_slices %---------------------------------------------------------------- % % keep this function small, since it will be called for every click % function nii_view = update_nii_view(nii_view) % add imgXYZ into nii_view struct % nii_view = check_slices(nii_view); nii_view = update_imgXYZ(nii_view); % update xhair % p_axi = nii_view.imgXYZ.vox([1 2]); p_cor = nii_view.imgXYZ.vox([1 3]); p_sag = nii_view.imgXYZ.vox([2 3]); nii_view.axi_xhair = ... rri_xhair(p_axi, nii_view.axi_xhair, nii_view.handles.axial_axes); nii_view.cor_xhair = ... rri_xhair(p_cor, nii_view.cor_xhair, nii_view.handles.coronal_axes); nii_view.sag_xhair = ... rri_xhair(p_sag, nii_view.sag_xhair, nii_view.handles.sagittal_axes); setappdata(nii_view.fig, 'nii_view', nii_view); set_image_value(nii_view); return; % update_nii_view %---------------------------------------------------------------- function hist_plot(fig) nii_view = getappdata(fig,'nii_view'); if isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end img = double(img(:)); if length(unique(round(img))) == length(unique(img)) is_integer = 1; range = max(img) - min(img) + 1; figure; hist(img, range); set(gca, 'xlim', [-range/5, max(img)]); else is_integer = 0; figure; hist(img); end xlabel('Voxel Intensity'); ylabel('Voxel Numbers for Each Intensity'); set(gcf, 'NumberTitle','off','Name','Histogram Plot'); return; % hist_plot %---------------------------------------------------------------- function hist_eq(fig) nii_view = getappdata(fig,'nii_view'); old_pointer = get(fig,'Pointer'); set(fig,'Pointer','watch'); if get(nii_view.handles.hist_eq,'value') max_img = double(max(nii_view.nii.img(:))); tmp = double(nii_view.nii.img) / max_img; % normalize for histeq tmp = histeq(tmp(:)); nii_view.disp = reshape(tmp, size(nii_view.nii.img)); min_disp = min(nii_view.disp(:)); nii_view.disp = (nii_view.disp - min_disp); % range having eq hist nii_view.disp = nii_view.disp * max_img / max(nii_view.disp(:)); nii_view.disp = single(nii_view.disp); else if isfield(nii_view, 'disp') nii_view.disp = nii_view.nii.img; else set(fig,'Pointer',old_pointer); return; end end % update axial view % img_slice = squeeze(double(nii_view.disp(:,:,nii_view.slices.axi))); h1 = nii_view.handles.axial_image; set(h1, 'cdata', double(img_slice)'); % update coronal view % img_slice = squeeze(double(nii_view.disp(:,nii_view.slices.cor,:))); h1 = nii_view.handles.coronal_image; set(h1, 'cdata', double(img_slice)'); % update sagittal view % img_slice = squeeze(double(nii_view.disp(nii_view.slices.sag,:,:))); h1 = nii_view.handles.sagittal_image; set(h1, 'cdata', double(img_slice)'); % remove disp field if un-check 'histeq' button % if ~get(nii_view.handles.hist_eq,'value') & isfield(nii_view, 'disp') nii_view = rmfield(nii_view, 'disp'); end update_nii_view(nii_view); set(fig,'Pointer',old_pointer); return; % hist_eq %---------------------------------------------------------------- function [top1_label, top2_label, side1_label, side2_label] = ... dir_label(fig, top_ax, front_ax, side_ax) nii_view = getappdata(fig,'nii_view'); top_pos = get(top_ax,'position'); front_pos = get(front_ax,'position'); side_pos = get(side_ax,'position'); top_gap_x = (side_pos(1)-top_pos(1)-top_pos(3)) / (2*top_pos(3)); top_gap_y = (front_pos(2)-top_pos(2)-top_pos(4)) / (2*top_pos(4)); side_gap_x = (side_pos(1)-top_pos(1)-top_pos(3)) / (2*side_pos(3)); side_gap_y = (front_pos(2)-top_pos(2)-top_pos(4)) / (2*side_pos(4)); top1_label_pos = [0, 1]; % rot0 top2_label_pos = [1, 0]; % rot90 side1_label_pos = [1, - side_gap_y]; % rot0 side2_label_pos = [0, 0]; % rot90 if isempty(nii_view) axes(top_ax); top1_label = text(double(top1_label_pos(1)),double(top1_label_pos(2)), ... '== X =>', ... 'vertical', 'bottom', ... 'unit', 'normal', 'fontsize', 8); axes(top_ax); top2_label = text(double(top2_label_pos(1)),double(top2_label_pos(2)), ... '== Y =>', ... 'rotation', 90, 'vertical', 'top', ... 'unit', 'normal', 'fontsize', 8); axes(side_ax); side1_label = text(double(side1_label_pos(1)),double(side1_label_pos(2)), ... '<= Y ==', ... 'horizontal', 'right', 'vertical', 'top', ... 'unit', 'normal', 'fontsize', 8); axes(side_ax); side2_label = text(double(side2_label_pos(1)),double(side2_label_pos(2)), ... '== Z =>', ... 'rotation', 90, 'vertical', 'bottom', ... 'unit', 'normal', 'fontsize', 8); else top1_label = nii_view.handles.top1_label; top2_label = nii_view.handles.top2_label; side1_label = nii_view.handles.side1_label; side2_label = nii_view.handles.side2_label; set(top1_label, 'position', [top1_label_pos 0]); set(top2_label, 'position', [top2_label_pos 0]); set(side1_label, 'position', [side1_label_pos 0]); set(side2_label, 'position', [side2_label_pos 0]); end return; % dir_label %---------------------------------------------------------------- function update_enable(h, opt); nii_view = getappdata(h,'nii_view'); handles = nii_view.handles; if isfield(opt,'enablecursormove') if opt.enablecursormove v = 'on'; else v = 'off'; end set(handles.Timposcur, 'visible', v); set(handles.imposcur, 'visible', v); set(handles.Timvalcur, 'visible', v); set(handles.imvalcur, 'visible', v); end if isfield(opt,'enableviewpoint') if opt.enableviewpoint v = 'on'; else v = 'off'; end set(handles.Timpos, 'visible', v); set(handles.impos, 'visible', v); set(handles.Timval, 'visible', v); set(handles.imval, 'visible', v); end if isfield(opt,'enableorigin') if opt.enableorigin v = 'on'; else v = 'off'; end set(handles.Torigin, 'visible', v); set(handles.origin, 'visible', v); end if isfield(opt,'enableunit') if opt.enableunit v = 'on'; else v = 'off'; end set(handles.Tcoord, 'visible', v); set(handles.coord_frame, 'visible', v); set(handles.coord, 'visible', v); end if isfield(opt,'enablecrosshair') if opt.enablecrosshair v = 'on'; else v = 'off'; end set(handles.Txhair, 'visible', v); set(handles.xhair_color, 'visible', v); set(handles.xhair, 'visible', v); end if isfield(opt,'enablehistogram') if opt.enablehistogram v = 'on'; vv = 'off'; else v = 'off'; vv = 'on'; end set(handles.Tcoord, 'visible', vv); set(handles.coord_frame, 'visible', vv); set(handles.coord, 'visible', vv); set(handles.Thist, 'visible', v); set(handles.hist_frame, 'visible', v); set(handles.hist_eq, 'visible', v); set(handles.hist_plot, 'visible', v); end if isfield(opt,'enablecolormap') if opt.enablecolormap v = 'on'; else v = 'off'; end set(handles.Tcolor, 'visible', v); set(handles.color_frame, 'visible', v); set(handles.neg_color, 'visible', v); set(handles.colorindex, 'visible', v); end if isfield(opt,'enablecontrast') if opt.enablecontrast v = 'on'; else v = 'off'; end set(handles.Tcontrast, 'visible', v); set(handles.contrast_frame, 'visible', v); set(handles.contrast_def, 'visible', v); set(handles.contrast, 'visible', v); end if isfield(opt,'enablebrightness') if opt.enablebrightness v = 'on'; else v = 'off'; end set(handles.Tbrightness, 'visible', v); set(handles.brightness_frame, 'visible', v); set(handles.brightness_def, 'visible', v); set(handles.brightness, 'visible', v); end if isfield(opt,'enabledirlabel') if opt.enabledirlabel v = 'on'; else v = 'off'; end set(handles.top1_label, 'visible', v); set(handles.top2_label, 'visible', v); set(handles.side1_label, 'visible', v); set(handles.side2_label, 'visible', v); end if isfield(opt,'enableslider') if opt.enableslider v = 'on'; else v = 'off'; end if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider, 'visible', v); end if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider, 'visible', v); end if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider, 'visible', v); end end return; % update_enable %---------------------------------------------------------------- function update_usepanel(fig, usepanel) if isempty(usepanel) return; end if usepanel opt.enablecursormove = 1; opt.enableviewpoint = 1; opt.enableorigin = 1; opt.enableunit = 1; opt.enablecrosshair = 1; % opt.enablehistogram = 1; opt.enablecolormap = 1; opt.enablecontrast = 1; opt.enablebrightness = 1; else opt.enablecursormove = 0; opt.enableviewpoint = 0; opt.enableorigin = 0; opt.enableunit = 0; opt.enablecrosshair = 0; % opt.enablehistogram = 0; opt.enablecolormap = 0; opt.enablecontrast = 0; opt.enablebrightness = 0; end update_enable(fig, opt); nii_view = getappdata(fig,'nii_view'); nii_view.usepanel = usepanel; setappdata(fig,'nii_view',nii_view); return; % update_usepanel %---------------------------------------------------------------- function update_usecrosshair(fig, usecrosshair) if isempty(usecrosshair) return; end if usecrosshair v=1; else v=2; end nii_view = getappdata(fig,'nii_view'); set(nii_view.handles.xhair,'value',v); opt.command = 'crosshair'; view_nii(fig, opt); return; % update_usecrosshair %---------------------------------------------------------------- function update_usestretch(fig, usestretch) nii_view = getappdata(fig,'nii_view'); handles = nii_view.handles; fig = nii_view.fig; area = nii_view.area; vol_size = nii_view.voxel_size .* nii_view.dims; % Three Axes & label % [top_ax, front_ax, side_ax] = ... create_ax(fig, area, vol_size, usestretch); dir_label(fig, top_ax, front_ax, side_ax); top_pos = get(top_ax,'position'); front_pos = get(front_ax,'position'); side_pos = get(side_ax,'position'); % Sagittal Slider % x = side_pos(1); y = top_pos(2) + top_pos(4); w = side_pos(3); h = (front_pos(2) - y) / 2; y = y + h; pos = [x y w h]; if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider,'position',pos); end % Coronal Slider % x = top_pos(1); y = top_pos(2) + top_pos(4); w = top_pos(3); h = (front_pos(2) - y) / 2; y = y + h; pos = [x y w h]; if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider,'position',pos); end % Axial Slider % x = top_pos(1); y = area(2); w = top_pos(3); h = top_pos(2) - y; pos = [x y w h]; if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider,'position',pos); end % plot info view % % info_pos = [side_pos([1,3]); top_pos([2,4])]; % info_pos = info_pos(:); gap = side_pos(1)-(top_pos(1)+top_pos(3)); info_pos(1) = side_pos(1) + gap; info_pos(2) = area(2); info_pos(3) = side_pos(3) - gap; info_pos(4) = top_pos(2) + top_pos(4) - area(2) - gap; num_inputline = 10; inputline_space =info_pos(4) / num_inputline; % Image Intensity Value at Cursor % x = info_pos(1); y = info_pos(2); w = info_pos(3)*0.5; h = inputline_space*0.6; pos = [x y w h]; set(handles.Timvalcur,'position',pos); x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.imvalcur,'position',pos); % Position at Cursor % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.Timposcur,'position',pos); x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.imposcur,'position',pos); % Image Intensity Value at Mouse Click % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.Timval,'position',pos); x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.imval,'position',pos); % Viewpoint Position at Mouse Click % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.Timpos,'position',pos); x = x + w + 0.005; y = y - 0.008; w = info_pos(3)*0.5; h = inputline_space*0.9; pos = [x y w h]; set(handles.impos,'position',pos); % Origin Position % x = info_pos(1); y = y + inputline_space*1.2; w = info_pos(3)*0.5; h = inputline_space*0.6; pos = [x y w h]; set(handles.Torigin,'position',pos); x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.origin,'position',pos); if 0 % Axes Unit % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.Tcoord,'position',pos); x = x + w + 0.005; w = info_pos(3)*0.5 - 0.005; pos = [x y w h]; set(handles.coord,'position',pos); end % Crosshair % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.4; pos = [x y w h]; set(handles.Txhair,'position',pos); x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.2; h = inputline_space*0.7; pos = [x y w h]; set(handles.xhair_color,'position',pos); x = info_pos(1) + info_pos(3)*0.7; w = info_pos(3)*0.3; pos = [x y w h]; set(handles.xhair,'position',pos); % Histogram & Color % x = info_pos(1); w = info_pos(3)*0.45; h = inputline_space * 1.5; pos = [x, y+inputline_space*0.9, w, h]; set(handles.hist_frame,'position',pos); set(handles.coord_frame,'position',pos); x = info_pos(1) + info_pos(3)*0.475; w = info_pos(3)*0.525; h = inputline_space * 1.5; pos = [x, y+inputline_space*0.9, w, h]; set(handles.color_frame,'position',pos); x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space*1.2; w = info_pos(3)*0.2; h = inputline_space*0.7; pos = [x y w h]; set(handles.hist_eq,'position',pos); x = x + w; w = info_pos(3)*0.2; pos = [x y w h]; set(handles.hist_plot,'position',pos); x = info_pos(1) + info_pos(3)*0.025; w = info_pos(3)*0.4; pos = [x y w h]; set(handles.coord,'position',pos); x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.2; pos = [x y w h]; set(handles.neg_color,'position',pos); x = info_pos(1) + info_pos(3)*0.7; w = info_pos(3)*0.275; pos = [x y w h]; set(handles.colorindex,'position',pos); x = info_pos(1) + info_pos(3)*0.1; y = y + inputline_space; w = info_pos(3)*0.28; h = inputline_space*0.6; pos = [x y w h]; set(handles.Thist,'position',pos); set(handles.Tcoord,'position',pos); x = info_pos(1) + info_pos(3)*0.60; w = info_pos(3)*0.28; pos = [x y w h]; set(handles.Tcolor,'position',pos); % Contrast Frame % x = info_pos(1); w = info_pos(3)*0.45; h = inputline_space * 2; pos = [x, y+inputline_space*0.8, w, h]; set(handles.contrast_frame,'position',pos); % Brightness Frame % x = info_pos(1) + info_pos(3)*0.475; w = info_pos(3)*0.525; pos = [x, y+inputline_space*0.8, w, h]; set(handles.brightness_frame,'position',pos); % Contrast % x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space; w = info_pos(3)*0.4; h = inputline_space*0.6; pos = [x y w h]; set(handles.contrast,'position',pos); % Brightness % x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.475; pos = [x y w h]; set(handles.brightness,'position',pos); % Contrast text/def % x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space; w = info_pos(3)*0.22; pos = [x y w h]; set(handles.Tcontrast,'position',pos); x = x + w; w = info_pos(3)*0.18; pos = [x y w h]; set(handles.contrast_def,'position',pos); % Brightness text/def % x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.295; pos = [x y w h]; set(handles.Tbrightness,'position',pos); x = x + w; w = info_pos(3)*0.18; pos = [x y w h]; set(handles.brightness_def,'position',pos); return; % update_usestretch %---------------------------------------------------------------- function update_useinterp(fig, useinterp) if isempty(useinterp) return; end nii_menu = getappdata(fig, 'nii_menu'); if ~isempty(nii_menu) if get(nii_menu.Minterp,'user') set(nii_menu.Minterp,'Userdata',0,'Label','Interp off'); else set(nii_menu.Minterp,'Userdata',1,'Label','Interp on'); end end nii_view = getappdata(fig, 'nii_view'); nii_view.useinterp = useinterp; if ~isempty(nii_view.handles.axial_image) if strcmpi(get(nii_view.handles.axial_image,'cdatamapping'), 'direct') useimagesc = 0; else useimagesc = 1; end elseif ~isempty(nii_view.handles.coronal_image) if strcmpi(get(nii_view.handles.coronal_image,'cdatamapping'), 'direct') useimagesc = 0; else useimagesc = 1; end else if strcmpi(get(nii_view.handles.sagittal_image,'cdatamapping'), 'direct') useimagesc = 0; else useimagesc = 1; end end if ~isempty(nii_view.handles.axial_image) img_slice = get(nii_view.handles.axial_image, 'cdata'); delete(nii_view.handles.axial_image); axes(nii_view.handles.axial_axes); clim = get(gca,'clim'); if useinterp if useimagesc nii_view.handles.axial_image = surface(zeros(size(img_slice)),double(img_slice),'edgecolor','none','facecolor','interp'); else nii_view.handles.axial_image = surface(zeros(size(img_slice)),double(img_slice),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end else if useimagesc nii_view.handles.axial_image = imagesc('cdata',img_slice); else nii_view.handles.axial_image = image('cdata',img_slice); end end set(gca,'clim',clim); order = get(gca,'child'); order(find(order == nii_view.handles.axial_image)) = []; order = [order; nii_view.handles.axial_image]; if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) order(find(order == nii_view.handles.axial_bg)) = []; order = [order; nii_view.handles.axial_bg]; end set(gca, 'child', order); if ~useinterp if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) delete(nii_view.handles.axial_bg); nii_view.handles.axial_bg = []; end end set(nii_view.handles.axial_image,'buttondown','view_nii(''axial_image'');'); end if ~isempty(nii_view.handles.coronal_image) img_slice = get(nii_view.handles.coronal_image, 'cdata'); delete(nii_view.handles.coronal_image); axes(nii_view.handles.coronal_axes); clim = get(gca,'clim'); if useinterp if useimagesc nii_view.handles.coronal_image = surface(zeros(size(img_slice)),double(img_slice),'edgecolor','none','facecolor','interp'); else nii_view.handles.coronal_image = surface(zeros(size(img_slice)),double(img_slice),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end else if useimagesc nii_view.handles.coronal_image = imagesc('cdata',img_slice); else nii_view.handles.coronal_image = image('cdata',img_slice); end end set(gca,'clim',clim); order = get(gca,'child'); order(find(order == nii_view.handles.coronal_image)) = []; order = [order; nii_view.handles.coronal_image]; if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) order(find(order == nii_view.handles.coronal_bg)) = []; order = [order; nii_view.handles.coronal_bg]; end set(gca, 'child', order); if ~useinterp if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) delete(nii_view.handles.coronal_bg); nii_view.handles.coronal_bg = []; end end set(nii_view.handles.coronal_image,'buttondown','view_nii(''coronal_image'');'); end if ~isempty(nii_view.handles.sagittal_image) img_slice = get(nii_view.handles.sagittal_image, 'cdata'); delete(nii_view.handles.sagittal_image); axes(nii_view.handles.sagittal_axes); clim = get(gca,'clim'); if useinterp if useimagesc nii_view.handles.sagittal_image = surface(zeros(size(img_slice)),double(img_slice),'edgecolor','none','facecolor','interp'); else nii_view.handles.sagittal_image = surface(zeros(size(img_slice)),double(img_slice),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end else if useimagesc nii_view.handles.sagittal_image = imagesc('cdata',img_slice); else nii_view.handles.sagittal_image = image('cdata',img_slice); end end set(gca,'clim',clim); order = get(gca,'child'); order(find(order == nii_view.handles.sagittal_image)) = []; order = [order; nii_view.handles.sagittal_image]; if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) order(find(order == nii_view.handles.sagittal_bg)) = []; order = [order; nii_view.handles.sagittal_bg]; end set(gca, 'child', order); if ~useinterp if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) delete(nii_view.handles.sagittal_bg); nii_view.handles.sagittal_bg = []; end end set(nii_view.handles.sagittal_image,'buttondown','view_nii(''sagittal_image'');'); end if ~useinterp nii_view.bgimg = []; end set_coordinates(nii_view,useinterp); setappdata(fig, 'nii_view', nii_view); return; % update_useinterp %---------------------------------------------------------------- function update_useimagesc(fig, useimagesc) if isempty(useimagesc) return; end if useimagesc v='scaled'; else v='direct'; end nii_view = getappdata(fig,'nii_view'); handles = nii_view.handles; if isfield(handles,'cbar_image') & ishandle(handles.cbar_image) % set(handles.cbar_image,'cdatamapping',v); end set(handles.axial_image,'cdatamapping',v); set(handles.coronal_image,'cdatamapping',v); set(handles.sagittal_image,'cdatamapping',v); return; % update_useimagesc %---------------------------------------------------------------- function update_shape(fig, area, usecolorbar, usestretch, useimagesc) nii_view = getappdata(fig,'nii_view'); if isempty(usestretch) % no change, get usestretch stretchchange = 0; usestretch = nii_view.usestretch; else % change, set usestretch stretchchange = 1; nii_view.usestretch = usestretch; end if isempty(area) % no change, get area areachange = 0; area = nii_view.area; elseif ~isempty(nii_view.cbar_area) % change, set area & cbar_area areachange = 1; cbar_area = area; cbar_area(1) = area(1) + area(3)*0.93; cbar_area(3) = area(3)*0.04; area(3) = area(3)*0.9; % 90% used for main axes [cbar_axes cbarminmax_axes] = create_cbar_axes(fig, cbar_area); nii_view.area = area; nii_view.cbar_area = cbar_area; else % change, set area only areachange = 1; nii_view.area = area; end % Add colorbar % if ~isempty(usecolorbar) & usecolorbar & isempty(nii_view.cbar_area) colorbarchange = 1; cbar_area = area; cbar_area(1) = area(1) + area(3)*0.93; cbar_area(3) = area(3)*0.04; area(3) = area(3)*0.9; % 90% used for main axes % create axes for colorbar % [cbar_axes cbarminmax_axes] = create_cbar_axes(fig, cbar_area); nii_view.area = area; nii_view.cbar_area = cbar_area; % useimagesc follows axial image % if isempty(useimagesc) if strcmpi(get(nii_view.handles.axial_image,'cdatamap'),'scaled') useimagesc = 1; else useimagesc = 0; end end if isfield(nii_view, 'highcolor') & ~isempty(highcolor) num_highcolor = size(nii_view.highcolor,1); else num_highcolor = 0; end if isfield(nii_view, 'colorlevel') & ~isempty(nii_view.colorlevel) colorlevel = nii_view.colorlevel; else colorlevel = 256 - num_highcolor; end if isfield(nii_view, 'color_map') color_map = nii_view.color_map; else color_map = []; end if isfield(nii_view, 'highcolor') highcolor = nii_view.highcolor; else highcolor = []; end % plot colorbar % if 0 if isempty(color_map) level = colorlevel + num_highcolor; else level = size([color_map; highcolor], 1); end end if isempty(color_map) level = colorlevel; else level = size([color_map], 1); end cbar_image = [1:level]'; niiclass = class(nii_view.nii.img); h1 = plot_cbar(fig, cbar_axes, cbarminmax_axes, nii_view.cbarminmax, ... level, nii_view.handles, useimagesc, nii_view.colorindex, ... color_map, colorlevel, highcolor, niiclass, nii_view.numscan); nii_view.handles.cbar_image = h1; nii_view.handles.cbar_axes = cbar_axes; nii_view.handles.cbarminmax_axes = cbar_axes; % remove colorbar % elseif ~isempty(usecolorbar) & ~usecolorbar & ~isempty(nii_view.cbar_area) colorbarchange = 1; area(3) = area(3) / 0.9; nii_view.area = area; nii_view.cbar_area = []; nii_view.handles = rmfield(nii_view.handles,'cbar_image'); delete(nii_view.handles.cbarminmax_axes); nii_view.handles = rmfield(nii_view.handles,'cbarminmax_axes'); delete(nii_view.handles.cbar_axes); nii_view.handles = rmfield(nii_view.handles,'cbar_axes'); else colorbarchange = 0; end if colorbarchange | stretchchange | areachange setappdata(fig,'nii_view',nii_view); update_usestretch(fig, usestretch); end return; % update_shape %---------------------------------------------------------------- function update_unit(fig, setunit) if isempty(setunit) return; end if strcmpi(setunit,'mm') | strcmpi(setunit,'millimeter') | strcmpi(setunit,'mni') v = 2; % elseif strcmpi(setunit,'tal') | strcmpi(setunit,'talairach') % v = 3; elseif strcmpi(setunit,'vox') | strcmpi(setunit,'voxel') v = 1; else v = 1; end nii_view = getappdata(fig,'nii_view'); set(nii_view.handles.coord, 'value', v); set_image_value(nii_view); return; % update_unit %---------------------------------------------------------------- function update_viewpoint(fig, setviewpoint) if isempty(setviewpoint) return; end nii_view = getappdata(fig,'nii_view'); if length(setviewpoint) ~= 3 error('Viewpoint position should contain [x y z]'); end set(nii_view.handles.impos,'string',num2str(setviewpoint)); opt.command = 'impos_edit'; view_nii(fig, opt); set(nii_view.handles.axial_axes,'selected','on'); set(nii_view.handles.axial_axes,'selected','off'); set(nii_view.handles.coronal_axes,'selected','on'); set(nii_view.handles.coronal_axes,'selected','off'); set(nii_view.handles.sagittal_axes,'selected','on'); set(nii_view.handles.sagittal_axes,'selected','off'); return; % update_viewpoint %---------------------------------------------------------------- function update_scanid(fig, setscanid) if isempty(setscanid) return; end nii_view = getappdata(fig,'nii_view'); if setscanid < 1 setscanid = 1; end if setscanid > nii_view.numscan setscanid = nii_view.numscan; end set(nii_view.handles.contrast_def,'string',num2str(setscanid)); set(nii_view.handles.contrast,'value',setscanid); opt.command = 'updateimg'; opt.setscanid = setscanid; view_nii(fig, nii_view.nii.img, opt); return; % update_scanid %---------------------------------------------------------------- function update_crosshaircolor(fig, new_color) if isempty(new_color) return; end nii_view = getappdata(fig,'nii_view'); xhair_color = nii_view.handles.xhair_color; set(xhair_color,'user',new_color); set(nii_view.axi_xhair.lx,'color',new_color); set(nii_view.axi_xhair.ly,'color',new_color); set(nii_view.cor_xhair.lx,'color',new_color); set(nii_view.cor_xhair.ly,'color',new_color); set(nii_view.sag_xhair.lx,'color',new_color); set(nii_view.sag_xhair.ly,'color',new_color); return; % update_crosshaircolor %---------------------------------------------------------------- function update_colorindex(fig, colorindex) if isempty(colorindex) return; end nii_view = getappdata(fig,'nii_view'); nii_view.colorindex = colorindex; setappdata(fig, 'nii_view', nii_view); set(nii_view.handles.colorindex,'value',colorindex); opt.command = 'color'; view_nii(fig, opt); return; % update_colorindex %---------------------------------------------------------------- function redraw_cbar(fig, colorlevel, color_map, highcolor) nii_view = getappdata(fig,'nii_view'); if isempty(nii_view.cbar_area) return; end colorindex = nii_view.colorindex; if isempty(highcolor) num_highcolor = 0; else num_highcolor = size(highcolor,1); end if isempty(colorlevel) colorlevel=256; end if colorindex == 1 colorlevel = size(color_map, 1); end % level = colorlevel + num_highcolor; level = colorlevel; cbar_image = [1:level]'; cbar_area = nii_view.cbar_area; % useimagesc follows axial image % if strcmpi(get(nii_view.handles.axial_image,'cdatamap'),'scaled') useimagesc = 1; else useimagesc = 0; end niiclass = class(nii_view.nii.img); delete(nii_view.handles.cbar_image); delete(nii_view.handles.cbar_axes); delete(nii_view.handles.cbarminmax_axes); [nii_view.handles.cbar_axes nii_view.handles.cbarminmax_axes] = ... create_cbar_axes(fig, cbar_area, []); nii_view.handles.cbar_image = plot_cbar(fig, ... nii_view.handles.cbar_axes, nii_view.handles.cbarminmax_axes, ... nii_view.cbarminmax, level, nii_view.handles, useimagesc, ... colorindex, color_map, colorlevel, highcolor, niiclass, ... nii_view.numscan, []); setappdata(fig, 'nii_view', nii_view); return; % redraw_cbar %---------------------------------------------------------------- function update_buttondown(fig, setbuttondown) if isempty(setbuttondown) return; end nii_view = getappdata(fig,'nii_view'); nii_view.buttondown = setbuttondown; setappdata(fig, 'nii_view', nii_view); return; % update_buttondown %---------------------------------------------------------------- function update_cbarminmax(fig, cbarminmax) if isempty(cbarminmax) return; end nii_view = getappdata(fig, 'nii_view'); if ~isfield(nii_view.handles, 'cbarminmax_axes') return; end nii_view.cbarminmax = cbarminmax; setappdata(fig, 'nii_view', nii_view); axes(nii_view.handles.cbarminmax_axes); plot([0 0], cbarminmax, 'w'); axis tight; set(nii_view.handles.cbarminmax_axes,'YDir','normal', ... 'XLimMode','manual','YLimMode','manual','YColor',[0 0 0], ... 'XColor',[0 0 0],'xtick',[],'YAxisLocation','right'); ylim = get(nii_view.handles.cbar_axes,'ylim'); ylimb = get(nii_view.handles.cbarminmax_axes,'ylim'); ytickb = get(nii_view.handles.cbarminmax_axes,'ytick'); ytick=(ylim(2)-ylim(1))*(ytickb-ylimb(1))/(ylimb(2)-ylimb(1))+ylim(1); axes(nii_view.handles.cbar_axes); set(nii_view.handles.cbar_axes,'YDir','normal','XLimMode','manual', ... 'YLimMode','manual','YColor',[0 0 0],'XColor',[0 0 0],'xtick',[], ... 'YAxisLocation','right','ylim',ylim,'ytick',ytick,'yticklabel',''); return; % update_cbarminmax %---------------------------------------------------------------- function update_highcolor(fig, highcolor, colorlevel) nii_view = getappdata(fig,'nii_view'); if ischar(highcolor) & (isempty(colorlevel) | nii_view.colorindex == 1) return; end if ~ischar(highcolor) nii_view.highcolor = highcolor; if isempty(highcolor) nii_view = rmfield(nii_view, 'highcolor'); end else highcolor = []; end if isempty(colorlevel) | nii_view.colorindex == 1 nii_view.colorlevel = nii_view.colorlevel - size(highcolor,1); else nii_view.colorlevel = colorlevel; end setappdata(fig, 'nii_view', nii_view); if isfield(nii_view,'color_map') color_map = nii_view.color_map; else color_map = []; end redraw_cbar(fig, nii_view.colorlevel, color_map, highcolor); change_colormap(fig); return; % update_highcolor %---------------------------------------------------------------- function update_colormap(fig, color_map) if ischar(color_map) return; end nii_view = getappdata(fig,'nii_view'); nii = nii_view.nii; minvalue = nii_view.minvalue; if isempty(color_map) if minvalue < 0 colorindex = 2; else colorindex = 3; end nii_view = rmfield(nii_view, 'color_map'); setappdata(fig,'nii_view',nii_view); update_colorindex(fig, colorindex); return; else colorindex = 1; nii_view.color_map = color_map; nii_view.colorindex = colorindex; setappdata(fig,'nii_view',nii_view); set(nii_view.handles.colorindex,'value',colorindex); end colorlevel = nii_view.colorlevel; if isfield(nii_view, 'highcolor') highcolor = nii_view.highcolor; else highcolor = []; end redraw_cbar(fig, colorlevel, color_map, highcolor); change_colormap(fig); opt.enablecontrast = 0; update_enable(fig, opt); return; % update_colormap %---------------------------------------------------------------- function status = get_status(h); nii_view = getappdata(h,'nii_view'); status.fig = h; status.area = nii_view.area; if isempty(nii_view.cbar_area) status.usecolorbar = 0; else status.usecolorbar = 1; width = status.area(3) / 0.9; status.area(3) = width; end if strcmpi(get(nii_view.handles.imval,'visible'), 'on') status.usepanel = 1; else status.usepanel = 0; end if get(nii_view.handles.xhair,'value') == 1 status.usecrosshair = 1; else status.usecrosshair = 0; end status.usestretch = nii_view.usestretch; if strcmpi(get(nii_view.handles.axial_image,'cdatamapping'), 'direct') status.useimagesc = 0; else status.useimagesc = 1; end status.useinterp = nii_view.useinterp; if get(nii_view.handles.coord,'value') == 1 status.unit = 'vox'; elseif get(nii_view.handles.coord,'value') == 2 status.unit = 'mm'; elseif get(nii_view.handles.coord,'value') == 3 status.unit = 'tal'; end status.viewpoint = get(nii_view.handles.impos,'value'); status.scanid = nii_view.scanid; status.intensity = get(nii_view.handles.imval,'value'); status.colorindex = get(nii_view.handles.colorindex,'value'); if isfield(nii_view,'color_map') status.colormap = nii_view.color_map; else status.colormap = []; end status.colorlevel = nii_view.colorlevel; if isfield(nii_view,'highcolor') status.highcolor = nii_view.highcolor; else status.highcolor = []; end status.cbarminmax = nii_view.cbarminmax; status.buttondown = nii_view.buttondown; return; % get_status %---------------------------------------------------------------- function [custom_color_map, colorindex] ... = change_colormap(fig, nii, colorindex, cbarminmax) custom_color_map = []; if ~exist('nii', 'var') nii_view = getappdata(fig,'nii_view'); else nii_view = nii; end if ~exist('colorindex', 'var') colorindex = get(nii_view.handles.colorindex,'value'); end if ~exist('cbarminmax', 'var') cbarminmax = nii_view.cbarminmax; end if isfield(nii_view, 'highcolor') & ~isempty(nii_view.highcolor) highcolor = nii_view.highcolor; num_highcolor = size(highcolor,1); else highcolor = []; num_highcolor = 0; end % if isfield(nii_view, 'colorlevel') & ~isempty(nii_view.colorlevel) if nii_view.colorlevel < 256 num_color = nii_view.colorlevel; else num_color = 256 - num_highcolor; end contrast = []; if colorindex == 3 % for gray if nii_view.numscan > 1 contrast = 1; else contrast = (num_color-1)*(get(nii_view.handles.contrast,'value')-1)/255+1; contrast = floor(contrast); end elseif colorindex == 2 % for bipolar if nii_view.numscan > 1 contrast = 128; else contrast = get(nii_view.handles.contrast,'value'); end end if isfield(nii_view,'color_map') & ~isempty(nii_view.color_map) color_map = nii_view.color_map; custom_color_map = color_map; elseif colorindex == 1 [f p] = uigetfile('*.txt', 'Input colormap text file'); if p==0 colorindex = nii_view.colorindex; set(nii_view.handles.colorindex,'value',colorindex); return; end; try custom_color_map = load(fullfile(p,f)); loadfail = 0; catch loadfail = 1; end if loadfail | isempty(custom_color_map) | size(custom_color_map,2)~=3 ... | min(custom_color_map(:)) < 0 | max(custom_color_map(:)) > 1 msg = 'Colormap should be a Mx3 matrix with value between 0 and 1'; msgbox(msg,'Error in colormap file'); colorindex = nii_view.colorindex; set(nii_view.handles.colorindex,'value',colorindex); return; end color_map = custom_color_map; nii_view.color_map = color_map; end switch colorindex case {2} color_map = bipolar(num_color, cbarminmax(1), cbarminmax(2), contrast); case {3} color_map = gray(num_color - contrast + 1); case {4} color_map = jet(num_color); case {5} color_map = cool(num_color); case {6} color_map = bone(num_color); case {7} color_map = hot(num_color); case {8} color_map = copper(num_color); case {9} color_map = pink(num_color); end nii_view.colorindex = colorindex; if ~exist('nii', 'var') setappdata(fig,'nii_view',nii_view); end if colorindex == 3 color_map = [zeros(contrast,3); color_map(2:end,:)]; end if get(nii_view.handles.neg_color,'value') & isempty(highcolor) color_map = flipud(color_map); elseif get(nii_view.handles.neg_color,'value') & ~isempty(highcolor) highcolor = flipud(highcolor); end brightness = get(nii_view.handles.brightness,'value'); color_map = brighten(color_map, brightness); color_map = [color_map; highcolor]; set(fig, 'colormap', color_map); return; % change_colormap %---------------------------------------------------------------- function move_cursor(fig) nii_view = getappdata(fig, 'nii_view'); if isempty(nii_view) return; end axi = get(nii_view.handles.axial_axes, 'pos'); cor = get(nii_view.handles.coronal_axes, 'pos'); sag = get(nii_view.handles.sagittal_axes, 'pos'); curr = get(fig, 'currentpoint'); if curr(1) >= axi(1) & curr(1) <= axi(1)+axi(3) & ... curr(2) >= axi(2) & curr(2) <= axi(2)+axi(4) curr = get(nii_view.handles.axial_axes, 'current'); sag = curr(1,1); cor = curr(1,2); axi = nii_view.slices.axi; elseif curr(1) >= cor(1) & curr(1) <= cor(1)+cor(3) & ... curr(2) >= cor(2) & curr(2) <= cor(2)+cor(4) curr = get(nii_view.handles.coronal_axes, 'current'); sag = curr(1,1); cor = nii_view.slices.cor; axi = curr(1,2); elseif curr(1) >= sag(1) & curr(1) <= sag(1)+sag(3) & ... curr(2) >= sag(2) & curr(2) <= sag(2)+sag(4) curr = get(nii_view.handles.sagittal_axes, 'current'); sag = nii_view.slices.sag; cor = curr(1,1); axi = curr(1,2); else set(nii_view.handles.imvalcur,'String',' '); set(nii_view.handles.imposcur,'String',' '); return; end sag = round(sag); cor = round(cor); axi = round(axi); if sag < 1 sag = 1; elseif sag > nii_view.dims(1) sag = nii_view.dims(1); end if cor < 1 cor = 1; elseif cor > nii_view.dims(2) cor = nii_view.dims(2); end if axi < 1 axi = 1; elseif axi > nii_view.dims(3) axi = nii_view.dims(3); end if 0 % isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end if nii_view.nii.hdr.dime.datatype == 128 imgvalue = [double(img(sag,cor,axi,1,nii_view.scanid)) double(img(sag,cor,axi,2,nii_view.scanid)) double(img(sag,cor,axi,3,nii_view.scanid))]; set(nii_view.handles.imvalcur,'String',sprintf('%7.4g %7.4g %7.4g',imgvalue)); elseif nii_view.nii.hdr.dime.datatype == 511 R = double(img(sag,cor,axi,1,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; G = double(img(sag,cor,axi,2,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; B = double(img(sag,cor,axi,3,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; imgvalue = [R G B]; set(nii_view.handles.imvalcur,'String',sprintf('%7.4g %7.4g %7.4g',imgvalue)); else imgvalue = double(img(sag,cor,axi,nii_view.scanid)); if isnan(imgvalue) | imgvalue > nii_view.cbarminmax(2) imgvalue = 0; end set(nii_view.handles.imvalcur,'String',sprintf('%.6g',imgvalue)); end nii_view.slices.sag = sag; nii_view.slices.cor = cor; nii_view.slices.axi = axi; nii_view = update_imgXYZ(nii_view); if get(nii_view.handles.coord,'value') == 1, sag = nii_view.imgXYZ.vox(1); cor = nii_view.imgXYZ.vox(2); axi = nii_view.imgXYZ.vox(3); elseif get(nii_view.handles.coord,'value') == 2, sag = nii_view.imgXYZ.mm(1); cor = nii_view.imgXYZ.mm(2); axi = nii_view.imgXYZ.mm(3); elseif get(nii_view.handles.coord,'value') == 3, sag = nii_view.imgXYZ.tal(1); cor = nii_view.imgXYZ.tal(2); axi = nii_view.imgXYZ.tal(3); end if get(nii_view.handles.coord,'value') == 1, string = sprintf('%7.0f %7.0f %7.0f',sag,cor,axi); else string = sprintf('%7.1f %7.1f %7.1f',sag,cor,axi); end; set(nii_view.handles.imposcur,'String',string); return; % move_cursor %---------------------------------------------------------------- function change_scan(hdl_str) fig = gcbf; nii_view = getappdata(fig,'nii_view'); if strcmpi(hdl_str, 'edit_change_scan') % edit hdl = nii_view.handles.contrast_def; setscanid = round(str2num(get(hdl, 'string'))); else % slider hdl = nii_view.handles.contrast; setscanid = round(get(hdl, 'value')); end update_scanid(fig, setscanid); return; % change_scan %---------------------------------------------------------------- function val = scale_in(val, minval, maxval, range) % scale value into range % val = range*(double(val)-double(minval))/(double(maxval)-double(minval))+1; return; % scale_in %---------------------------------------------------------------- function val = scale_out(val, minval, maxval, range) % according to [minval maxval] and range of color levels (e.g. 199) % scale val back from any thing between 1~256 to a small number that % is corresonding to [minval maxval]. % val = (double(val)-1)*(double(maxval)-double(minval))/range+double(minval); return; % scale_out
github
uoguelph-mlrg/vlr-master
mat_into_hdr.m
.m
vlr-master/utils/nii/nifti_DL/mat_into_hdr.m
2,608
utf_8
d53006b93ff90a4a5561d16ff2f4e9a6
%MAT_INTO_HDR The old versions of SPM (any version before SPM5) store % an affine matrix of the SPM Reoriented image into a matlab file % (.mat extension). The file name of this SPM matlab file is the % same as the SPM Reoriented image file (.img/.hdr extension). % % This program will convert the ANALYZE 7.5 SPM Reoriented image % file into NIfTI format, and integrate the affine matrix in the % SPM matlab file into its header file (.hdr extension). % % WARNING: Before you run this program, please save the header % file (.hdr extension) into another file name or into another % folder location, because all header files (.hdr extension) % will be overwritten after they are converted into NIfTI % format. % % Usage: mat_into_hdr(filename); % % filename: file name(s) with .hdr or .mat file extension, like: % '*.hdr', or '*.mat', or a single .hdr or .mat file. % e.g. mat_into_hdr('T1.hdr') % mat_into_hdr('*.mat') % % - Jimmy Shen ([email protected]) % %------------------------------------------------------------------------- function mat_into_hdr(files) pn = fileparts(files); file_lst = dir(files); file_lst = {file_lst.name}; file1 = file_lst{1}; [p n e]= fileparts(file1); for i=1:length(file_lst) [p n e]= fileparts(file_lst{i}); disp(['working on file ', num2str(i) ,' of ', num2str(length(file_lst)), ': ', n,e]); process=1; if isequal(e,'.hdr') mat=fullfile(pn, [n,'.mat']); hdr=fullfile(pn, file_lst{i}); if ~exist(mat,'file') warning(['Cannot find file "',mat , '". File "', n, e, '" will not be processed.']); process=0; end elseif isequal(e,'.mat') hdr=fullfile(pn, [n,'.hdr']); mat=fullfile(pn, file_lst{i}); if ~exist(hdr,'file') warning(['Can not find file "',hdr , '". File "', n, e, '" will not be processed.']); process=0; end else warning(['Input file must have .mat or .hdr extension. File "', n, e, '" will not be processed.']); process=0; end if process load(mat); R=M(1:3,1:3); T=M(1:3,4); T=R*ones(3,1)+T; M(1:3,4)=T; [h filetype fileprefix machine]=load_nii_hdr(hdr); h.hist.qform_code=0; h.hist.sform_code=1; h.hist.srow_x=M(1,:); h.hist.srow_y=M(2,:); h.hist.srow_z=M(3,:); h.hist.magic='ni1'; fid = fopen(hdr,'w',machine); save_nii_hdr(h,fid); fclose(fid); end end return; % mat_into_hdr
github
uoguelph-mlrg/vlr-master
xform_nii.m
.m
vlr-master/utils/nii/nifti_DL/xform_nii.m
18,107
utf_8
29a1cff91c944d6a93e5101946a5da4d
% internal function % 'xform_nii.m' is an internal function called by "load_nii.m", so % you do not need run this program by yourself. It does simplified % NIfTI sform/qform affine transform, and supports some of the % affine transforms, including translation, reflection, and % orthogonal rotation (N*90 degree). % % For other affine transforms, e.g. any degree rotation, shearing % etc. you will have to use the included 'reslice_nii.m' program % to reslice the image volume. 'reslice_nii.m' is not called by % any other program, and you have to run 'reslice_nii.m' explicitly % for those NIfTI files that you want to reslice them. % % Since 'xform_nii.m' does not involve any interpolation or any % slice change, the original image volume is supposed to be % untouched, although it is translated, reflected, or even % orthogonally rotated, based on the affine matrix in the % NIfTI header. % % However, the affine matrix in the header of a lot NIfTI files % contain slightly non-orthogonal rotation. Therefore, optional % input parameter 'tolerance' is used to allow some distortion % in the loaded image for any non-orthogonal rotation or shearing % of NIfTI affine matrix. If you set 'tolerance' to 0, it means % that you do not allow any distortion. If you set 'tolerance' to % 1, it means that you do not care any distortion. The image will % fail to be loaded if it can not be tolerated. The tolerance will % be set to 0.1 (10%), if it is default or empty. % % Because 'reslice_nii.m' has to perform 3D interpolation, it can % be slow depending on image size and affine matrix in the header. % % After you perform the affine transform, the 'nii' structure % generated from 'xform_nii.m' or new NIfTI file created from % 'reslice_nii.m' will be in RAS orientation, i.e. X axis from % Left to Right, Y axis from Posterior to Anterior, and Z axis % from Inferior to Superior. % % NOTE: This function should be called immediately after load_nii. % % Usage: [ nii ] = xform_nii(nii, [tolerance], [preferredForm]) % % nii - NIFTI structure (returned from load_nii) % % tolerance (optional) - distortion allowed for non-orthogonal rotation % or shearing in NIfTI affine matrix. It will be set to 0.1 (10%), % if it is default or empty. % % preferredForm (optional) - selects which transformation from voxels % to RAS coordinates; values are s,q,S,Q. Lower case s,q indicate % "prefer sform or qform, but use others if preferred not present". % Upper case indicate the program is forced to use the specificied % tranform or fail loading. 'preferredForm' will be 's', if it is % default or empty. - Jeff Gunter % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function nii = xform_nii(nii, tolerance, preferredForm) % save a copy of the header as it was loaded. This is the % header before any sform, qform manipulation is done. % nii.original.hdr = nii.hdr; if ~exist('tolerance','var') | isempty(tolerance) tolerance = 0.1; elseif(tolerance<=0) tolerance = eps; end if ~exist('preferredForm','var') | isempty(preferredForm) preferredForm= 's'; % Jeff end % if scl_slope field is nonzero, then each voxel value in the % dataset should be scaled as: y = scl_slope * x + scl_inter % I bring it here because hdr will be modified by change_hdr. % if nii.hdr.dime.scl_slope ~= 0 & ... ismember(nii.hdr.dime.datatype, [2,4,8,16,64,256,512,768]) & ... (nii.hdr.dime.scl_slope ~= 1 | nii.hdr.dime.scl_inter ~= 0) nii.img = ... nii.hdr.dime.scl_slope * double(nii.img) + nii.hdr.dime.scl_inter; if nii.hdr.dime.datatype == 64 nii.hdr.dime.datatype = 64; nii.hdr.dime.bitpix = 64; else nii.img = single(nii.img); nii.hdr.dime.datatype = 16; nii.hdr.dime.bitpix = 32; end nii.hdr.dime.glmax = max(double(nii.img(:))); nii.hdr.dime.glmin = min(double(nii.img(:))); % set scale to non-use, because it is applied in xform_nii % nii.hdr.dime.scl_slope = 0; end % However, the scaling is to be ignored if datatype is DT_RGB24. % If datatype is a complex type, then the scaling is to be applied % to both the real and imaginary parts. % if nii.hdr.dime.scl_slope ~= 0 & ... ismember(nii.hdr.dime.datatype, [32,1792]) nii.img = ... nii.hdr.dime.scl_slope * double(nii.img) + nii.hdr.dime.scl_inter; if nii.hdr.dime.datatype == 32 nii.img = single(nii.img); end nii.hdr.dime.glmax = max(double(nii.img(:))); nii.hdr.dime.glmin = min(double(nii.img(:))); % set scale to non-use, because it is applied in xform_nii % nii.hdr.dime.scl_slope = 0; end % There is no need for this program to transform Analyze data % if nii.filetype == 0 & exist([nii.fileprefix '.mat'],'file') load([nii.fileprefix '.mat']); % old SPM affine matrix R=M(1:3,1:3); T=M(1:3,4); T=R*ones(3,1)+T; M(1:3,4)=T; nii.hdr.hist.qform_code=0; nii.hdr.hist.sform_code=1; nii.hdr.hist.srow_x=M(1,:); nii.hdr.hist.srow_y=M(2,:); nii.hdr.hist.srow_z=M(3,:); elseif nii.filetype == 0 nii.hdr.hist.rot_orient = []; nii.hdr.hist.flip_orient = []; return; % no sform/qform for Analyze format end hdr = nii.hdr; [hdr,orient]=change_hdr(hdr,tolerance,preferredForm); % flip and/or rotate image data % if ~isequal(orient, [1 2 3]) old_dim = hdr.dime.dim([2:4]); % More than 1 time frame % if ndims(nii.img) > 3 pattern = 1:prod(old_dim); else pattern = []; end if ~isempty(pattern) pattern = reshape(pattern, old_dim); end % calculate for rotation after flip % rot_orient = mod(orient + 2, 3) + 1; % do flip: % flip_orient = orient - rot_orient; for i = 1:3 if flip_orient(i) if ~isempty(pattern) pattern = flipdim(pattern, i); else nii.img = flipdim(nii.img, i); end end end % get index of orient (rotate inversely) % [tmp rot_orient] = sort(rot_orient); new_dim = old_dim; new_dim = new_dim(rot_orient); hdr.dime.dim([2:4]) = new_dim; new_pixdim = hdr.dime.pixdim([2:4]); new_pixdim = new_pixdim(rot_orient); hdr.dime.pixdim([2:4]) = new_pixdim; % re-calculate originator % tmp = hdr.hist.originator([1:3]); tmp = tmp(rot_orient); flip_orient = flip_orient(rot_orient); for i = 1:3 if flip_orient(i) & ~isequal(tmp(i), 0) tmp(i) = new_dim(i) - tmp(i) + 1; end end hdr.hist.originator([1:3]) = tmp; hdr.hist.rot_orient = rot_orient; hdr.hist.flip_orient = flip_orient; % do rotation: % if ~isempty(pattern) pattern = permute(pattern, rot_orient); pattern = pattern(:); if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 | ... hdr.dime.datatype == 128 | hdr.dime.datatype == 511 tmp = reshape(nii.img(:,:,:,1), [prod(new_dim) hdr.dime.dim(5:8)]); tmp = tmp(pattern, :); nii.img(:,:,:,1) = reshape(tmp, [new_dim hdr.dime.dim(5:8)]); tmp = reshape(nii.img(:,:,:,2), [prod(new_dim) hdr.dime.dim(5:8)]); tmp = tmp(pattern, :); nii.img(:,:,:,2) = reshape(tmp, [new_dim hdr.dime.dim(5:8)]); if hdr.dime.datatype == 128 | hdr.dime.datatype == 511 tmp = reshape(nii.img(:,:,:,3), [prod(new_dim) hdr.dime.dim(5:8)]); tmp = tmp(pattern, :); nii.img(:,:,:,3) = reshape(tmp, [new_dim hdr.dime.dim(5:8)]); end else nii.img = reshape(nii.img, [prod(new_dim) hdr.dime.dim(5:8)]); nii.img = nii.img(pattern, :); nii.img = reshape(nii.img, [new_dim hdr.dime.dim(5:8)]); end else if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 | ... hdr.dime.datatype == 128 | hdr.dime.datatype == 511 nii.img(:,:,:,1) = permute(nii.img(:,:,:,1), rot_orient); nii.img(:,:,:,2) = permute(nii.img(:,:,:,2), rot_orient); if hdr.dime.datatype == 128 | hdr.dime.datatype == 511 nii.img(:,:,:,3) = permute(nii.img(:,:,:,3), rot_orient); end else nii.img = permute(nii.img, rot_orient); end end else hdr.hist.rot_orient = []; hdr.hist.flip_orient = []; end nii.hdr = hdr; return; % xform_nii %----------------------------------------------------------------------- function [hdr, orient] = change_hdr(hdr, tolerance, preferredForm) orient = [1 2 3]; affine_transform = 1; % NIFTI can have both sform and qform transform. This program % will check sform_code prior to qform_code by default. % % If user specifys "preferredForm", user can then choose the % priority. - Jeff % useForm=[]; % Jeff if isequal(preferredForm,'S') if isequal(hdr.hist.sform_code,0) error('User requires sform, sform not set in header'); else useForm='s'; end end % Jeff if isequal(preferredForm,'Q') if isequal(hdr.hist.qform_code,0) error('User requires qform, qform not set in header'); else useForm='q'; end end % Jeff if isequal(preferredForm,'s') if hdr.hist.sform_code > 0 useForm='s'; elseif hdr.hist.qform_code > 0 useForm='q'; end end % Jeff if isequal(preferredForm,'q') if hdr.hist.qform_code > 0 useForm='q'; elseif hdr.hist.sform_code > 0 useForm='s'; end end % Jeff if isequal(useForm,'s') R = [hdr.hist.srow_x(1:3) hdr.hist.srow_y(1:3) hdr.hist.srow_z(1:3)]; T = [hdr.hist.srow_x(4) hdr.hist.srow_y(4) hdr.hist.srow_z(4)]; if det(R) == 0 | ~isequal(R(find(R)), sum(R)') hdr.hist.old_affine = [ [R;[0 0 0]] [T;1] ]; R_sort = sort(abs(R(:))); R( find( abs(R) < tolerance*min(R_sort(end-2:end)) ) ) = 0; hdr.hist.new_affine = [ [R;[0 0 0]] [T;1] ]; if det(R) == 0 | ~isequal(R(find(R)), sum(R)') msg = [char(10) char(10) ' Non-orthogonal rotation or shearing ']; msg = [msg 'found inside the affine matrix' char(10)]; msg = [msg ' in this NIfTI file. You have 3 options:' char(10) char(10)]; msg = [msg ' 1. Using included ''reslice_nii.m'' program to reslice the NIfTI' char(10)]; msg = [msg ' file. I strongly recommand this, because it will not cause' char(10)]; msg = [msg ' negative effect, as long as you remember not to do slice' char(10)]; msg = [msg ' time correction after using ''reslice_nii.m''.' char(10) char(10)]; msg = [msg ' 2. Using included ''load_untouch_nii.m'' program to load image' char(10)]; msg = [msg ' without applying any affine geometric transformation or' char(10)]; msg = [msg ' voxel intensity scaling. This is only for people who want' char(10)]; msg = [msg ' to do some image processing regardless of image orientation' char(10)]; msg = [msg ' and to save data back with the same NIfTI header.' char(10) char(10)]; msg = [msg ' 3. Increasing the tolerance to allow more distortion in loaded' char(10)]; msg = [msg ' image, but I don''t suggest this.' char(10) char(10)]; msg = [msg ' To get help, please type:' char(10) char(10) ' help reslice_nii.m' char(10)]; msg = [msg ' help load_untouch_nii.m' char(10) ' help load_nii.m']; error(msg); end end elseif isequal(useForm,'q') b = hdr.hist.quatern_b; c = hdr.hist.quatern_c; d = hdr.hist.quatern_d; if 1.0-(b*b+c*c+d*d) < 0 if abs(1.0-(b*b+c*c+d*d)) < 1e-5 a = 0; else error('Incorrect quaternion values in this NIFTI data.'); end else a = sqrt(1.0-(b*b+c*c+d*d)); end qfac = hdr.dime.pixdim(1); if qfac==0, qfac = 1; end i = hdr.dime.pixdim(2); j = hdr.dime.pixdim(3); k = qfac * hdr.dime.pixdim(4); R = [a*a+b*b-c*c-d*d 2*b*c-2*a*d 2*b*d+2*a*c 2*b*c+2*a*d a*a+c*c-b*b-d*d 2*c*d-2*a*b 2*b*d-2*a*c 2*c*d+2*a*b a*a+d*d-c*c-b*b]; T = [hdr.hist.qoffset_x hdr.hist.qoffset_y hdr.hist.qoffset_z]; % qforms are expected to generate rotation matrices R which are % det(R) = 1; we'll make sure that happens. % % now we make the same checks as were done above for sform data % BUT we do it on a transform that is in terms of voxels not mm; % after we figure out the angles and squash them to closest % rectilinear direction. After that, the voxel sizes are then % added. % % This part is modified by Jeff Gunter. % if det(R) == 0 | ~isequal(R(find(R)), sum(R)') % det(R) == 0 is not a common trigger for this --- % R(find(R)) is a list of non-zero elements in R; if that % is straight (not oblique) then it should be the same as % columnwise summation. Could just as well have checked the % lengths of R(find(R)) and sum(R)' (which should be 3) % hdr.hist.old_affine = [ [R * diag([i j k]);[0 0 0]] [T;1] ]; R_sort = sort(abs(R(:))); R( find( abs(R) < tolerance*min(R_sort(end-2:end)) ) ) = 0; R = R * diag([i j k]); hdr.hist.new_affine = [ [R;[0 0 0]] [T;1] ]; if det(R) == 0 | ~isequal(R(find(R)), sum(R)') msg = [char(10) char(10) ' Non-orthogonal rotation or shearing ']; msg = [msg 'found inside the affine matrix' char(10)]; msg = [msg ' in this NIfTI file. You have 3 options:' char(10) char(10)]; msg = [msg ' 1. Using included ''reslice_nii.m'' program to reslice the NIfTI' char(10)]; msg = [msg ' file. I strongly recommand this, because it will not cause' char(10)]; msg = [msg ' negative effect, as long as you remember not to do slice' char(10)]; msg = [msg ' time correction after using ''reslice_nii.m''.' char(10) char(10)]; msg = [msg ' 2. Using included ''load_untouch_nii.m'' program to load image' char(10)]; msg = [msg ' without applying any affine geometric transformation or' char(10)]; msg = [msg ' voxel intensity scaling. This is only for people who want' char(10)]; msg = [msg ' to do some image processing regardless of image orientation' char(10)]; msg = [msg ' and to save data back with the same NIfTI header.' char(10) char(10)]; msg = [msg ' 3. Increasing the tolerance to allow more distortion in loaded' char(10)]; msg = [msg ' image, but I don''t suggest this.' char(10) char(10)]; msg = [msg ' To get help, please type:' char(10) char(10) ' help reslice_nii.m' char(10)]; msg = [msg ' help load_untouch_nii.m' char(10) ' help load_nii.m']; error(msg); end else R = R * diag([i j k]); end % 1st det(R) else affine_transform = 0; % no sform or qform transform end if affine_transform == 1 voxel_size = abs(sum(R,1)); inv_R = inv(R); originator = inv_R*(-T)+1; orient = get_orient(inv_R); % modify pixdim and originator % hdr.dime.pixdim(2:4) = voxel_size; hdr.hist.originator(1:3) = originator; % set sform or qform to non-use, because they have been % applied in xform_nii % hdr.hist.qform_code = 0; hdr.hist.sform_code = 0; end % apply space_unit to pixdim if not 1 (mm) % space_unit = get_units(hdr); if space_unit ~= 1 hdr.dime.pixdim(2:4) = hdr.dime.pixdim(2:4) * space_unit; % set space_unit of xyzt_units to millimeter, because % voxel_size has been re-scaled % hdr.dime.xyzt_units = char(bitset(hdr.dime.xyzt_units,1,0)); hdr.dime.xyzt_units = char(bitset(hdr.dime.xyzt_units,2,1)); hdr.dime.xyzt_units = char(bitset(hdr.dime.xyzt_units,3,0)); end hdr.dime.pixdim = abs(hdr.dime.pixdim); return; % change_hdr %----------------------------------------------------------------------- function orient = get_orient(R) orient = []; for i = 1:3 switch find(R(i,:)) * sign(sum(R(i,:))) case 1 orient = [orient 1]; % Left to Right case 2 orient = [orient 2]; % Posterior to Anterior case 3 orient = [orient 3]; % Inferior to Superior case -1 orient = [orient 4]; % Right to Left case -2 orient = [orient 5]; % Anterior to Posterior case -3 orient = [orient 6]; % Superior to Inferior end end return; % get_orient %----------------------------------------------------------------------- function [space_unit, time_unit] = get_units(hdr) switch bitand(hdr.dime.xyzt_units, 7) % mask with 0x07 case 1 space_unit = 1e+3; % meter, m case 3 space_unit = 1e-3; % micrometer, um otherwise space_unit = 1; % millimeter, mm end switch bitand(hdr.dime.xyzt_units, 56) % mask with 0x38 case 16 time_unit = 1e-3; % millisecond, ms case 24 time_unit = 1e-6; % microsecond, us otherwise time_unit = 1; % second, s end return; % get_units
github
uoguelph-mlrg/vlr-master
make_ana.m
.m
vlr-master/utils/nii/nifti_DL/make_ana.m
5,455
utf_8
2f62999cbcad72129c892135ff492a1e
% Make ANALYZE 7.5 data structure specified by a 3D or 4D matrix. % Optional parameters can also be included, such as: voxel_size, % origin, datatype, and description. % % Once the ANALYZE structure is made, it can be saved into ANALYZE 7.5 % format data file using "save_untouch_nii" command (for more detail, % type: help save_untouch_nii). % % Usage: ana = make_ana(img, [voxel_size], [origin], [datatype], [description]) % % Where: % % img: a 3D matrix [x y z], or a 4D matrix with time % series [x y z t]. When image is in RGB format, % make sure that the size of 4th dimension is % always 3 (i.e. [R G B]). In that case, make % sure that you must specify RGB datatype to 128. % % voxel_size (optional): Voxel size in millimeter for each % dimension. Default is [1 1 1]. % % origin (optional): The AC origin. Default is [0 0 0]. % % datatype (optional): Storage data type: % 2 - uint8, 4 - int16, 8 - int32, 16 - float32, % 64 - float64, 128 - RGB24 % Default will use the data type of 'img' matrix % For RGB image, you must specify it to 128. % % description (optional): Description of data. Default is ''. % % e.g.: % origin = [33 44 13]; datatype = 64; % ana = make_ana(img, [], origin, datatype); % default voxel_size % % ANALYZE 7.5 format: http://www.rotman-baycrest.on.ca/~jimmy/ANALYZE75.pdf % % - Jimmy Shen ([email protected]) % function ana = make_ana(varargin) ana.img = varargin{1}; dims = size(ana.img); dims = [4 dims ones(1,8)]; dims = dims(1:8); voxel_size = [0 ones(1,3) zeros(1,4)]; origin = zeros(1,5); descrip = ''; switch class(ana.img) case 'uint8' datatype = 2; case 'int16' datatype = 4; case 'int32' datatype = 8; case 'single' datatype = 16; case 'double' datatype = 64; otherwise error('Datatype is not supported by make_ana.'); end if nargin > 1 & ~isempty(varargin{2}) voxel_size(2:4) = double(varargin{2}); end if nargin > 2 & ~isempty(varargin{3}) origin(1:3) = double(varargin{3}); end if nargin > 3 & ~isempty(varargin{4}) datatype = double(varargin{4}); if datatype == 128 | datatype == 511 dims(5) = []; dims = [dims 1]; end end if nargin > 4 & ~isempty(varargin{5}) descrip = varargin{5}; end if ndims(ana.img) > 4 error('NIfTI only allows a maximum of 4 Dimension matrix.'); end maxval = round(double(max(ana.img(:)))); minval = round(double(min(ana.img(:)))); ana.hdr = make_header(dims, voxel_size, origin, datatype, ... descrip, maxval, minval); ana.filetype = 0; ana.ext = []; ana.untouch = 1; switch ana.hdr.dime.datatype case 2 ana.img = uint8(ana.img); case 4 ana.img = int16(ana.img); case 8 ana.img = int32(ana.img); case 16 ana.img = single(ana.img); case 64 ana.img = double(ana.img); case 128 ana.img = uint8(ana.img); otherwise error('Datatype is not supported by make_ana.'); end return; % make_ana %--------------------------------------------------------------------- function hdr = make_header(dims, voxel_size, origin, datatype, ... descrip, maxval, minval) hdr.hk = header_key; hdr.dime = image_dimension(dims, voxel_size, datatype, maxval, minval); hdr.hist = data_history(origin, descrip); return; % make_header %--------------------------------------------------------------------- function hk = header_key hk.sizeof_hdr = 348; % must be 348! hk.data_type = ''; hk.db_name = ''; hk.extents = 0; hk.session_error = 0; hk.regular = 'r'; hk.hkey_un0 = '0'; return; % header_key %--------------------------------------------------------------------- function dime = image_dimension(dims, voxel_size, datatype, maxval, minval) dime.dim = dims; dime.vox_units = 'mm'; dime.cal_units = ''; dime.unused1 = 0; dime.datatype = datatype; switch dime.datatype case 2, dime.bitpix = 8; precision = 'uint8'; case 4, dime.bitpix = 16; precision = 'int16'; case 8, dime.bitpix = 32; precision = 'int32'; case 16, dime.bitpix = 32; precision = 'float32'; case 64, dime.bitpix = 64; precision = 'float64'; case 128 dime.bitpix = 24; precision = 'uint8'; otherwise error('Datatype is not supported by make_ana.'); end dime.dim_un0 = 0; dime.pixdim = voxel_size; dime.vox_offset = 0; dime.roi_scale = 1; dime.funused1 = 0; dime.funused2 = 0; dime.cal_max = 0; dime.cal_min = 0; dime.compressed = 0; dime.verified = 0; dime.glmax = maxval; dime.glmin = minval; return; % image_dimension %--------------------------------------------------------------------- function hist = data_history(origin, descrip) hist.descrip = descrip; hist.aux_file = 'none'; hist.orient = 0; hist.originator = origin; hist.generated = ''; hist.scannum = ''; hist.patient_id = ''; hist.exp_date = ''; hist.exp_time = ''; hist.hist_un0 = ''; hist.views = 0; hist.vols_added = 0; hist.start_field = 0; hist.field_skip = 0; hist.omax = 0; hist.omin = 0; hist.smax = 0; hist.smin = 0; return; % data_history
github
uoguelph-mlrg/vlr-master
extra_nii_hdr.m
.m
vlr-master/utils/nii/nifti_DL/extra_nii_hdr.m
7,830
utf_8
853f39f00cbf133e90d0f2cf08d79488
% Decode extra NIFTI header information into hdr.extra % % Usage: hdr = extra_nii_hdr(hdr) % % hdr can be obtained from load_nii_hdr % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function hdr = extra_nii_hdr(hdr) switch hdr.dime.datatype case 1 extra.NIFTI_DATATYPES = 'DT_BINARY'; case 2 extra.NIFTI_DATATYPES = 'DT_UINT8'; case 4 extra.NIFTI_DATATYPES = 'DT_INT16'; case 8 extra.NIFTI_DATATYPES = 'DT_INT32'; case 16 extra.NIFTI_DATATYPES = 'DT_FLOAT32'; case 32 extra.NIFTI_DATATYPES = 'DT_COMPLEX64'; case 64 extra.NIFTI_DATATYPES = 'DT_FLOAT64'; case 128 extra.NIFTI_DATATYPES = 'DT_RGB24'; case 256 extra.NIFTI_DATATYPES = 'DT_INT8'; case 512 extra.NIFTI_DATATYPES = 'DT_UINT16'; case 768 extra.NIFTI_DATATYPES = 'DT_UINT32'; case 1024 extra.NIFTI_DATATYPES = 'DT_INT64'; case 1280 extra.NIFTI_DATATYPES = 'DT_UINT64'; case 1536 extra.NIFTI_DATATYPES = 'DT_FLOAT128'; case 1792 extra.NIFTI_DATATYPES = 'DT_COMPLEX128'; case 2048 extra.NIFTI_DATATYPES = 'DT_COMPLEX256'; otherwise extra.NIFTI_DATATYPES = 'DT_UNKNOWN'; end switch hdr.dime.intent_code case 2 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_CORREL'; case 3 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_TTEST'; case 4 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_FTEST'; case 5 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_ZSCORE'; case 6 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_CHISQ'; case 7 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_BETA'; case 8 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_BINOM'; case 9 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_GAMMA'; case 10 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_POISSON'; case 11 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_NORMAL'; case 12 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_FTEST_NONC'; case 13 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_CHISQ_NONC'; case 14 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LOGISTIC'; case 15 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LAPLACE'; case 16 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_UNIFORM'; case 17 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_TTEST_NONC'; case 18 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_WEIBULL'; case 19 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_CHI'; case 20 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_INVGAUSS'; case 21 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_EXTVAL'; case 22 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_PVAL'; case 23 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LOGPVAL'; case 24 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LOG10PVAL'; case 1001 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_ESTIMATE'; case 1002 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LABEL'; case 1003 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_NEURONAME'; case 1004 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_GENMATRIX'; case 1005 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_SYMMATRIX'; case 1006 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_DISPVECT'; case 1007 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_VECTOR'; case 1008 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_POINTSET'; case 1009 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_TRIANGLE'; case 1010 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_QUATERNION'; case 1011 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_DIMLESS'; otherwise extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_NONE'; end extra.NIFTI_INTENT_NAMES = hdr.hist.intent_name; if hdr.hist.sform_code > 0 switch hdr.hist.sform_code case 1 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_SCANNER_ANAT'; case 2 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_ALIGNED_ANAT'; case 3 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_TALAIRACH'; case 4 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_MNI_152'; otherwise extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; end extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; elseif hdr.hist.qform_code > 0 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; switch hdr.hist.qform_code case 1 extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_SCANNER_ANAT'; case 2 extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_ALIGNED_ANAT'; case 3 extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_TALAIRACH'; case 4 extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_MNI_152'; otherwise extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; end else extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; end switch bitand(hdr.dime.xyzt_units, 7) % mask with 0x07 case 1 extra.NIFTI_SPACE_UNIT = 'NIFTI_UNITS_METER'; case 2 extra.NIFTI_SPACE_UNIT = 'NIFTI_UNITS_MM'; % millimeter case 3 extra.NIFTI_SPACE_UNIT = 'NIFTI_UNITS_MICRO'; otherwise extra.NIFTI_SPACE_UNIT = 'NIFTI_UNITS_UNKNOWN'; end switch bitand(hdr.dime.xyzt_units, 56) % mask with 0x38 case 8 extra.NIFTI_TIME_UNIT = 'NIFTI_UNITS_SEC'; case 16 extra.NIFTI_TIME_UNIT = 'NIFTI_UNITS_MSEC'; case 24 extra.NIFTI_TIME_UNIT = 'NIFTI_UNITS_USEC'; % microsecond otherwise extra.NIFTI_TIME_UNIT = 'NIFTI_UNITS_UNKNOWN'; end switch hdr.dime.xyzt_units case 32 extra.NIFTI_SPECTRAL_UNIT = 'NIFTI_UNITS_HZ'; case 40 extra.NIFTI_SPECTRAL_UNIT = 'NIFTI_UNITS_PPM'; % part per million case 48 extra.NIFTI_SPECTRAL_UNIT = 'NIFTI_UNITS_RADS'; % radians per second otherwise extra.NIFTI_SPECTRAL_UNIT = 'NIFTI_UNITS_UNKNOWN'; end % MRI-specific spatial and temporal information % dim_info = hdr.hk.dim_info; extra.NIFTI_FREQ_DIM = bitand(dim_info, 3); extra.NIFTI_PHASE_DIM = bitand(bitshift(dim_info, -2), 3); extra.NIFTI_SLICE_DIM = bitand(bitshift(dim_info, -4), 3); % Check slice code % switch hdr.dime.slice_code case 1 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_SEQ_INC'; % sequential increasing case 2 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_SEQ_DEC'; % sequential decreasing case 3 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_ALT_INC'; % alternating increasing case 4 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_ALT_DEC'; % alternating decreasing case 5 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_ALT_INC2'; % ALT_INC # 2 case 6 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_ALT_DEC2'; % ALT_DEC # 2 otherwise extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_UNKNOWN'; end % Check NIFTI version % if ~isempty(hdr.hist.magic) & strcmp(hdr.hist.magic(1),'n') & ... ( strcmp(hdr.hist.magic(2),'i') | strcmp(hdr.hist.magic(2),'+') ) & ... str2num(hdr.hist.magic(3)) >= 1 & str2num(hdr.hist.magic(3)) <= 9 extra.NIFTI_VERSION = str2num(hdr.hist.magic(3)); else extra.NIFTI_VERSION = 0; end % Check if data stored in the same file (*.nii) or separate % files (*.hdr/*.img) % if isempty(hdr.hist.magic) extra.NIFTI_ONEFILE = 0; else extra.NIFTI_ONEFILE = strcmp(hdr.hist.magic(2), '+'); end % Swap has been taken care of by checking whether sizeof_hdr is % 348 (machine is 'ieee-le' or 'ieee-be' etc) % % extra.NIFTI_NEEDS_SWAP = (hdr.dime.dim(1) < 0 | hdr.dime.dim(1) > 7); % Check NIFTI header struct contains a 5th (vector) dimension % if hdr.dime.dim(1) > 4 & hdr.dime.dim(6) > 1 extra.NIFTI_5TH_DIM = hdr.dime.dim(6); else extra.NIFTI_5TH_DIM = 0; end hdr.extra = extra; return; % extra_nii_hdr
github
uoguelph-mlrg/vlr-master
rri_xhair.m
.m
vlr-master/utils/nii/nifti_DL/rri_xhair.m
2,208
utf_8
b3ae9df90d43e5d9538b6b135fa8af20
% rri_xhair: create a pair of full_cross_hair at point [x y] in % axes h_ax, and return xhair struct % % Usage: xhair = rri_xhair([x y], xhair, h_ax); % % If omit xhair, rri_xhair will create a pair of xhair; otherwise, % rri_xhair will update the xhair. If omit h_ax, current axes will % be used. % % 24-nov-2003 jimmy ([email protected]) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xhair = rri_xhair(varargin) if nargin == 0 error('Please enter a point position as first argument'); return; end if nargin > 0 p = varargin{1}; if ~isnumeric(p) | length(p) ~= 2 error('Invalid point position'); return; else xhair = []; end end if nargin > 1 xhair = varargin{2}; if ~isempty(xhair) if ~isstruct(xhair) error('Invalid xhair struct'); return; elseif ~isfield(xhair,'lx') | ~isfield(xhair,'ly') error('Invalid xhair struct'); return; elseif ~ishandle(xhair.lx) | ~ishandle(xhair.ly) error('Invalid xhair struct'); return; end lx = xhair.lx; ly = xhair.ly; else lx = []; ly = []; end end if nargin > 2 h_ax = varargin{3}; if ~ishandle(h_ax) error('Invalid axes handle'); return; elseif ~strcmp(lower(get(h_ax,'type')), 'axes') error('Invalid axes handle'); return; end else h_ax = gca; end x_range = get(h_ax,'xlim'); y_range = get(h_ax,'ylim'); if ~isempty(xhair) set(lx, 'ydata', [p(2) p(2)]); set(ly, 'xdata', [p(1) p(1)]); set(h_ax, 'selected', 'on'); set(h_ax, 'selected', 'off'); else figure(get(h_ax,'parent')); axes(h_ax); xhair.lx = line('xdata', x_range, 'ydata', [p(2) p(2)], ... 'zdata', [11 11], 'color', [1 0 0], 'hittest', 'off'); xhair.ly = line('xdata', [p(1) p(1)], 'ydata', y_range, ... 'zdata', [11 11], 'color', [1 0 0], 'hittest', 'off'); end set(h_ax,'xlim',x_range); set(h_ax,'ylim',y_range); return;
github
uoguelph-mlrg/vlr-master
save_untouch_nii_hdr.m
.m
vlr-master/utils/nii/nifti_DL/save_untouch_nii_hdr.m
8,514
utf_8
582f82c471a9a8826eda59354f61dd1a
% internal function % - Jimmy Shen ([email protected]) function save_nii_hdr(hdr, fid) if ~isequal(hdr.hk.sizeof_hdr,348), error('hdr.hk.sizeof_hdr must be 348.'); end write_header(hdr, fid); return; % save_nii_hdr %--------------------------------------------------------------------- function write_header(hdr, fid) % Original header structures % struct dsr /* dsr = hdr */ % { % struct header_key hk; /* 0 + 40 */ % struct image_dimension dime; /* 40 + 108 */ % struct data_history hist; /* 148 + 200 */ % }; /* total= 348 bytes*/ header_key(fid, hdr.hk); image_dimension(fid, hdr.dime); data_history(fid, hdr.hist); % check the file size is 348 bytes % fbytes = ftell(fid); if ~isequal(fbytes,348), msg = sprintf('Header size is not 348 bytes.'); warning(msg); end return; % write_header %--------------------------------------------------------------------- function header_key(fid, hk) fseek(fid,0,'bof'); % Original header structures % struct header_key /* header key */ % { /* off + size */ % int sizeof_hdr /* 0 + 4 */ % char data_type[10]; /* 4 + 10 */ % char db_name[18]; /* 14 + 18 */ % int extents; /* 32 + 4 */ % short int session_error; /* 36 + 2 */ % char regular; /* 38 + 1 */ % char dim_info; % char hkey_un0; /* 39 + 1 */ % }; /* total=40 bytes */ fwrite(fid, hk.sizeof_hdr(1), 'int32'); % must be 348. % data_type = sprintf('%-10s',hk.data_type); % ensure it is 10 chars from left % fwrite(fid, data_type(1:10), 'uchar'); pad = zeros(1, 10-length(hk.data_type)); hk.data_type = [hk.data_type char(pad)]; fwrite(fid, hk.data_type(1:10), 'uchar'); % db_name = sprintf('%-18s', hk.db_name); % ensure it is 18 chars from left % fwrite(fid, db_name(1:18), 'uchar'); pad = zeros(1, 18-length(hk.db_name)); hk.db_name = [hk.db_name char(pad)]; fwrite(fid, hk.db_name(1:18), 'uchar'); fwrite(fid, hk.extents(1), 'int32'); fwrite(fid, hk.session_error(1), 'int16'); fwrite(fid, hk.regular(1), 'uchar'); % might be uint8 % fwrite(fid, hk.hkey_un0(1), 'uchar'); % fwrite(fid, hk.hkey_un0(1), 'uint8'); fwrite(fid, hk.dim_info(1), 'uchar'); return; % header_key %--------------------------------------------------------------------- function image_dimension(fid, dime) % Original header structures % struct image_dimension % { /* off + size */ % short int dim[8]; /* 0 + 16 */ % float intent_p1; % char vox_units[4]; /* 16 + 4 */ % float intent_p2; % char cal_units[8]; /* 20 + 4 */ % float intent_p3; % char cal_units[8]; /* 24 + 4 */ % short int intent_code; % short int unused1; /* 28 + 2 */ % short int datatype; /* 30 + 2 */ % short int bitpix; /* 32 + 2 */ % short int slice_start; % short int dim_un0; /* 34 + 2 */ % float pixdim[8]; /* 36 + 32 */ % /* % pixdim[] specifies the voxel dimensions: % pixdim[1] - voxel width % pixdim[2] - voxel height % pixdim[3] - interslice distance % pixdim[4] - volume timing, in msec % ..etc % */ % float vox_offset; /* 68 + 4 */ % float scl_slope; % float roi_scale; /* 72 + 4 */ % float scl_inter; % float funused1; /* 76 + 4 */ % short slice_end; % float funused2; /* 80 + 2 */ % char slice_code; % float funused2; /* 82 + 1 */ % char xyzt_units; % float funused2; /* 83 + 1 */ % float cal_max; /* 84 + 4 */ % float cal_min; /* 88 + 4 */ % float slice_duration; % int compressed; /* 92 + 4 */ % float toffset; % int verified; /* 96 + 4 */ % int glmax; /* 100 + 4 */ % int glmin; /* 104 + 4 */ % }; /* total=108 bytes */ fwrite(fid, dime.dim(1:8), 'int16'); fwrite(fid, dime.intent_p1(1), 'float32'); fwrite(fid, dime.intent_p2(1), 'float32'); fwrite(fid, dime.intent_p3(1), 'float32'); fwrite(fid, dime.intent_code(1), 'int16'); fwrite(fid, dime.datatype(1), 'int16'); fwrite(fid, dime.bitpix(1), 'int16'); fwrite(fid, dime.slice_start(1), 'int16'); fwrite(fid, dime.pixdim(1:8), 'float32'); fwrite(fid, dime.vox_offset(1), 'float32'); fwrite(fid, dime.scl_slope(1), 'float32'); fwrite(fid, dime.scl_inter(1), 'float32'); fwrite(fid, dime.slice_end(1), 'int16'); fwrite(fid, dime.slice_code(1), 'uchar'); fwrite(fid, dime.xyzt_units(1), 'uchar'); fwrite(fid, dime.cal_max(1), 'float32'); fwrite(fid, dime.cal_min(1), 'float32'); fwrite(fid, dime.slice_duration(1), 'float32'); fwrite(fid, dime.toffset(1), 'float32'); fwrite(fid, dime.glmax(1), 'int32'); fwrite(fid, dime.glmin(1), 'int32'); return; % image_dimension %--------------------------------------------------------------------- function data_history(fid, hist) % Original header structures %struct data_history % { /* off + size */ % char descrip[80]; /* 0 + 80 */ % char aux_file[24]; /* 80 + 24 */ % short int qform_code; /* 104 + 2 */ % short int sform_code; /* 106 + 2 */ % float quatern_b; /* 108 + 4 */ % float quatern_c; /* 112 + 4 */ % float quatern_d; /* 116 + 4 */ % float qoffset_x; /* 120 + 4 */ % float qoffset_y; /* 124 + 4 */ % float qoffset_z; /* 128 + 4 */ % float srow_x[4]; /* 132 + 16 */ % float srow_y[4]; /* 148 + 16 */ % float srow_z[4]; /* 164 + 16 */ % char intent_name[16]; /* 180 + 16 */ % char magic[4]; % int smin; /* 196 + 4 */ % }; /* total=200 bytes */ % descrip = sprintf('%-80s', hist.descrip); % 80 chars from left % fwrite(fid, descrip(1:80), 'uchar'); pad = zeros(1, 80-length(hist.descrip)); hist.descrip = [hist.descrip char(pad)]; fwrite(fid, hist.descrip(1:80), 'uchar'); % aux_file = sprintf('%-24s', hist.aux_file); % 24 chars from left % fwrite(fid, aux_file(1:24), 'uchar'); pad = zeros(1, 24-length(hist.aux_file)); hist.aux_file = [hist.aux_file char(pad)]; fwrite(fid, hist.aux_file(1:24), 'uchar'); fwrite(fid, hist.qform_code, 'int16'); fwrite(fid, hist.sform_code, 'int16'); fwrite(fid, hist.quatern_b, 'float32'); fwrite(fid, hist.quatern_c, 'float32'); fwrite(fid, hist.quatern_d, 'float32'); fwrite(fid, hist.qoffset_x, 'float32'); fwrite(fid, hist.qoffset_y, 'float32'); fwrite(fid, hist.qoffset_z, 'float32'); fwrite(fid, hist.srow_x(1:4), 'float32'); fwrite(fid, hist.srow_y(1:4), 'float32'); fwrite(fid, hist.srow_z(1:4), 'float32'); % intent_name = sprintf('%-16s', hist.intent_name); % 16 chars from left % fwrite(fid, intent_name(1:16), 'uchar'); pad = zeros(1, 16-length(hist.intent_name)); hist.intent_name = [hist.intent_name char(pad)]; fwrite(fid, hist.intent_name(1:16), 'uchar'); % magic = sprintf('%-4s', hist.magic); % 4 chars from left % fwrite(fid, magic(1:4), 'uchar'); pad = zeros(1, 4-length(hist.magic)); hist.magic = [hist.magic char(pad)]; fwrite(fid, hist.magic(1:4), 'uchar'); return; % data_history
github
uoguelph-mlrg/vlr-master
expand_nii_scan.m
.m
vlr-master/utils/nii/nifti_DL/expand_nii_scan.m
1,333
utf_8
748da05d09c1a005401c67270c4b94ab
% Expand a multiple-scan NIFTI file into multiple single-scan NIFTI files % % Usage: expand_nii_scan(multi_scan_filename, [img_idx], [path_to_save]) % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function expand_nii_scan(filename, img_idx, newpath) v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); else gzFile = 1; end end if ~exist('newpath','var') | isempty(newpath), newpath = pwd; end if ~exist('img_idx','var') | isempty(img_idx), img_idx = 1:get_nii_frame(filename); end for i=img_idx nii_i = load_untouch_nii(filename, i); fn = [nii_i.fileprefix '_' sprintf('%04d',i)]; pnfn = fullfile(newpath, fn); if exist('gzFile', 'var') pnfn = [pnfn '.nii.gz']; end save_untouch_nii(nii_i, pnfn); end return; % expand_nii_scan
github
uoguelph-mlrg/vlr-master
load_untouch_header_only.m
.m
vlr-master/utils/nii/nifti_DL/load_untouch_header_only.m
7,068
utf_8
8996c72db42b01029c92a4ecd88f4b21
% Load NIfTI / Analyze header without applying any appropriate affine % geometric transform or voxel intensity scaling. It is equivalent to % hdr field when using load_untouch_nii to load dataset. Support both % *.nii and *.hdr file extension. If file extension is not provided, % *.hdr will be used as default. % % Usage: [header, ext, filetype, machine] = load_untouch_header_only(filename) % % filename - NIfTI / Analyze file name. % % Returned values: % % header - struct with NIfTI / Analyze header fields. % % ext - NIfTI extension if it is not empty. % % filetype - 0 for Analyze format (*.hdr/*.img); % 1 for NIFTI format in 2 files (*.hdr/*.img); % 2 for NIFTI format in 1 file (*.nii). % % machine - a string, see below for details. The default here is 'ieee-le'. % % 'native' or 'n' - local machine format - the default % 'ieee-le' or 'l' - IEEE floating point with little-endian % byte ordering % 'ieee-be' or 'b' - IEEE floating point with big-endian % byte ordering % 'vaxd' or 'd' - VAX D floating point and VAX ordering % 'vaxg' or 'g' - VAX G floating point and VAX ordering % 'cray' or 'c' - Cray floating point with big-endian % byte ordering % 'ieee-le.l64' or 'a' - IEEE floating point with little-endian % byte ordering and 64 bit long data type % 'ieee-be.l64' or 's' - IEEE floating point with big-endian byte % ordering and 64 bit long data type. % % Part of this file is copied and modified from: % http://www.mathworks.com/matlabcentral/fileexchange/1878-mri-analyze-tools % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function [hdr, ext, filetype, machine] = load_untouch_header_only(filename) if ~exist('filename','var') error('Usage: [header, ext, filetype, machine] = load_untouch_header_only(filename)'); end v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); elseif strcmp(filename(end-6:end), '.img.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.hdr.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.hdr.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.img.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.nii.gz') tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename = gunzip(filename, tmpDir); filename = char(filename); % convert from cell to string end end % Read the dataset header % [hdr, filetype, fileprefix, machine] = load_nii_hdr(filename); if filetype == 0 hdr = load_untouch0_nii_hdr(fileprefix, machine); ext = []; else hdr = load_untouch_nii_hdr(fileprefix, machine, filetype); % Read the header extension % ext = load_nii_ext(filename); end % Set bitpix according to datatype % % /*Acceptable values for datatype are*/ % % 0 None (Unknown bit per voxel) % DT_NONE, DT_UNKNOWN % 1 Binary (ubit1, bitpix=1) % DT_BINARY % 2 Unsigned char (uchar or uint8, bitpix=8) % DT_UINT8, NIFTI_TYPE_UINT8 % 4 Signed short (int16, bitpix=16) % DT_INT16, NIFTI_TYPE_INT16 % 8 Signed integer (int32, bitpix=32) % DT_INT32, NIFTI_TYPE_INT32 % 16 Floating point (single or float32, bitpix=32) % DT_FLOAT32, NIFTI_TYPE_FLOAT32 % 32 Complex, 2 float32 (Use float32, bitpix=64) % DT_COMPLEX64, NIFTI_TYPE_COMPLEX64 % 64 Double precision (double or float64, bitpix=64) % DT_FLOAT64, NIFTI_TYPE_FLOAT64 % 128 uint8 RGB (Use uint8, bitpix=24) % DT_RGB24, NIFTI_TYPE_RGB24 % 256 Signed char (schar or int8, bitpix=8) % DT_INT8, NIFTI_TYPE_INT8 % 511 Single RGB (Use float32, bitpix=96) % DT_RGB96, NIFTI_TYPE_RGB96 % 512 Unsigned short (uint16, bitpix=16) % DT_UNINT16, NIFTI_TYPE_UNINT16 % 768 Unsigned integer (uint32, bitpix=32) % DT_UNINT32, NIFTI_TYPE_UNINT32 % 1024 Signed long long (int64, bitpix=64) % DT_INT64, NIFTI_TYPE_INT64 % 1280 Unsigned long long (uint64, bitpix=64) % DT_UINT64, NIFTI_TYPE_UINT64 % 1536 Long double, float128 (Unsupported, bitpix=128) % DT_FLOAT128, NIFTI_TYPE_FLOAT128 % 1792 Complex128, 2 float64 (Use float64, bitpix=128) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % 2048 Complex256, 2 float128 (Unsupported, bitpix=256) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % switch hdr.dime.datatype case 1, hdr.dime.bitpix = 1; precision = 'ubit1'; case 2, hdr.dime.bitpix = 8; precision = 'uint8'; case 4, hdr.dime.bitpix = 16; precision = 'int16'; case 8, hdr.dime.bitpix = 32; precision = 'int32'; case 16, hdr.dime.bitpix = 32; precision = 'float32'; case 32, hdr.dime.bitpix = 64; precision = 'float32'; case 64, hdr.dime.bitpix = 64; precision = 'float64'; case 128, hdr.dime.bitpix = 24; precision = 'uint8'; case 256 hdr.dime.bitpix = 8; precision = 'int8'; case 511 hdr.dime.bitpix = 96; precision = 'float32'; case 512 hdr.dime.bitpix = 16; precision = 'uint16'; case 768 hdr.dime.bitpix = 32; precision = 'uint32'; case 1024 hdr.dime.bitpix = 64; precision = 'int64'; case 1280 hdr.dime.bitpix = 64; precision = 'uint64'; case 1792, hdr.dime.bitpix = 128; precision = 'float64'; otherwise error('This datatype is not supported'); end tmp = hdr.dime.dim(2:end); tmp(find(tmp < 1)) = 1; hdr.dime.dim(2:end) = tmp; % Clean up after gunzip % if exist('gzFileName', 'var') rmdir(tmpDir,'s'); end return % load_untouch_header_only
github
uoguelph-mlrg/vlr-master
bipolar.m
.m
vlr-master/utils/nii/nifti_DL/bipolar.m
2,145
utf_8
295f87ece96ca4c5dff8dce4cd912a34
%BIPOLAR returns an M-by-3 matrix containing a blue-red colormap, in % in which red stands for positive, blue stands for negative, % and white stands for 0. % % Usage: cmap = bipolar(M, lo, hi, contrast); or cmap = bipolar; % % cmap: output M-by-3 matrix for BIPOLAR colormap. % M: number of shades in the colormap. By default, it is the % same length as the current colormap. % lo: the lowest value to represent. % hi: the highest value to represent. % % Inspired from the LORETA PASCAL program: % http://www.unizh.ch/keyinst/NewLORETA % % [email protected] % %---------------------------------------------------------------- function cmap = bipolar(M, lo, hi, contrast) if ~exist('contrast','var') contrast = 128; end if ~exist('lo','var') lo = -1; end if ~exist('hi','var') hi = 1; end if ~exist('M','var') cmap = colormap; M = size(cmap,1); end steepness = 10 ^ (1 - (contrast-1)/127); pos_infs = 1e-99; neg_infs = -1e-99; doubleredc = []; doublebluec = []; if lo >= 0 % all positive if lo == 0 lo = pos_infs; end for i=linspace(hi/M, hi, M) t = exp(log(i/hi)*steepness); doubleredc = [doubleredc; [(1-t)+t,(1-t)+0,(1-t)+0]]; end cmap = doubleredc; elseif hi <= 0 % all negative if hi == 0 hi = neg_infs; end for i=linspace(abs(lo)/M, abs(lo), M) t = exp(log(i/abs(lo))*steepness); doublebluec = [doublebluec; [(1-t)+0,(1-t)+0,(1-t)+t]]; end cmap = flipud(doublebluec); else if hi > abs(lo) maxc = hi; else maxc = abs(lo); end for i=linspace(maxc/M, hi, round(M*hi/(hi-lo))) t = exp(log(i/maxc)*steepness); doubleredc = [doubleredc; [(1-t)+t,(1-t)+0,(1-t)+0]]; end for i=linspace(maxc/M, abs(lo), round(M*abs(lo)/(hi-lo))) t = exp(log(i/maxc)*steepness); doublebluec = [doublebluec; [(1-t)+0,(1-t)+0,(1-t)+t]]; end cmap = [flipud(doublebluec); doubleredc]; end return; % bipolar
github
uoguelph-mlrg/vlr-master
save_nii_hdr.m
.m
vlr-master/utils/nii/nifti_DL/save_nii_hdr.m
9,270
utf_8
f97c194f5bfc667eb4f96edf12be02a7
% internal function % - Jimmy Shen ([email protected]) function save_nii_hdr(hdr, fid) if ~exist('hdr','var') | ~exist('fid','var') error('Usage: save_nii_hdr(hdr, fid)'); end if ~isequal(hdr.hk.sizeof_hdr,348), error('hdr.hk.sizeof_hdr must be 348.'); end if hdr.hist.qform_code == 0 & hdr.hist.sform_code == 0 hdr.hist.sform_code = 1; hdr.hist.srow_x(1) = hdr.dime.pixdim(2); hdr.hist.srow_x(2) = 0; hdr.hist.srow_x(3) = 0; hdr.hist.srow_y(1) = 0; hdr.hist.srow_y(2) = hdr.dime.pixdim(3); hdr.hist.srow_y(3) = 0; hdr.hist.srow_z(1) = 0; hdr.hist.srow_z(2) = 0; hdr.hist.srow_z(3) = hdr.dime.pixdim(4); hdr.hist.srow_x(4) = (1-hdr.hist.originator(1))*hdr.dime.pixdim(2); hdr.hist.srow_y(4) = (1-hdr.hist.originator(2))*hdr.dime.pixdim(3); hdr.hist.srow_z(4) = (1-hdr.hist.originator(3))*hdr.dime.pixdim(4); end write_header(hdr, fid); return; % save_nii_hdr %--------------------------------------------------------------------- function write_header(hdr, fid) % Original header structures % struct dsr /* dsr = hdr */ % { % struct header_key hk; /* 0 + 40 */ % struct image_dimension dime; /* 40 + 108 */ % struct data_history hist; /* 148 + 200 */ % }; /* total= 348 bytes*/ header_key(fid, hdr.hk); image_dimension(fid, hdr.dime); data_history(fid, hdr.hist); % check the file size is 348 bytes % fbytes = ftell(fid); if ~isequal(fbytes,348), msg = sprintf('Header size is not 348 bytes.'); warning(msg); end return; % write_header %--------------------------------------------------------------------- function header_key(fid, hk) fseek(fid,0,'bof'); % Original header structures % struct header_key /* header key */ % { /* off + size */ % int sizeof_hdr /* 0 + 4 */ % char data_type[10]; /* 4 + 10 */ % char db_name[18]; /* 14 + 18 */ % int extents; /* 32 + 4 */ % short int session_error; /* 36 + 2 */ % char regular; /* 38 + 1 */ % char dim_info; % char hkey_un0; /* 39 + 1 */ % }; /* total=40 bytes */ fwrite(fid, hk.sizeof_hdr(1), 'int32'); % must be 348. % data_type = sprintf('%-10s',hk.data_type); % ensure it is 10 chars from left % fwrite(fid, data_type(1:10), 'uchar'); pad = zeros(1, 10-length(hk.data_type)); hk.data_type = [hk.data_type char(pad)]; fwrite(fid, hk.data_type(1:10), 'uchar'); % db_name = sprintf('%-18s', hk.db_name); % ensure it is 18 chars from left % fwrite(fid, db_name(1:18), 'uchar'); pad = zeros(1, 18-length(hk.db_name)); hk.db_name = [hk.db_name char(pad)]; fwrite(fid, hk.db_name(1:18), 'uchar'); fwrite(fid, hk.extents(1), 'int32'); fwrite(fid, hk.session_error(1), 'int16'); fwrite(fid, hk.regular(1), 'uchar'); % might be uint8 % fwrite(fid, hk.hkey_un0(1), 'uchar'); % fwrite(fid, hk.hkey_un0(1), 'uint8'); fwrite(fid, hk.dim_info(1), 'uchar'); return; % header_key %--------------------------------------------------------------------- function image_dimension(fid, dime) % Original header structures % struct image_dimension % { /* off + size */ % short int dim[8]; /* 0 + 16 */ % float intent_p1; % char vox_units[4]; /* 16 + 4 */ % float intent_p2; % char cal_units[8]; /* 20 + 4 */ % float intent_p3; % char cal_units[8]; /* 24 + 4 */ % short int intent_code; % short int unused1; /* 28 + 2 */ % short int datatype; /* 30 + 2 */ % short int bitpix; /* 32 + 2 */ % short int slice_start; % short int dim_un0; /* 34 + 2 */ % float pixdim[8]; /* 36 + 32 */ % /* % pixdim[] specifies the voxel dimensions: % pixdim[1] - voxel width % pixdim[2] - voxel height % pixdim[3] - interslice distance % pixdim[4] - volume timing, in msec % ..etc % */ % float vox_offset; /* 68 + 4 */ % float scl_slope; % float roi_scale; /* 72 + 4 */ % float scl_inter; % float funused1; /* 76 + 4 */ % short slice_end; % float funused2; /* 80 + 2 */ % char slice_code; % float funused2; /* 82 + 1 */ % char xyzt_units; % float funused2; /* 83 + 1 */ % float cal_max; /* 84 + 4 */ % float cal_min; /* 88 + 4 */ % float slice_duration; % int compressed; /* 92 + 4 */ % float toffset; % int verified; /* 96 + 4 */ % int glmax; /* 100 + 4 */ % int glmin; /* 104 + 4 */ % }; /* total=108 bytes */ fwrite(fid, dime.dim(1:8), 'int16'); fwrite(fid, dime.intent_p1(1), 'float32'); fwrite(fid, dime.intent_p2(1), 'float32'); fwrite(fid, dime.intent_p3(1), 'float32'); fwrite(fid, dime.intent_code(1), 'int16'); fwrite(fid, dime.datatype(1), 'int16'); fwrite(fid, dime.bitpix(1), 'int16'); fwrite(fid, dime.slice_start(1), 'int16'); fwrite(fid, dime.pixdim(1:8), 'float32'); fwrite(fid, dime.vox_offset(1), 'float32'); fwrite(fid, dime.scl_slope(1), 'float32'); fwrite(fid, dime.scl_inter(1), 'float32'); fwrite(fid, dime.slice_end(1), 'int16'); fwrite(fid, dime.slice_code(1), 'uchar'); fwrite(fid, dime.xyzt_units(1), 'uchar'); fwrite(fid, dime.cal_max(1), 'float32'); fwrite(fid, dime.cal_min(1), 'float32'); fwrite(fid, dime.slice_duration(1), 'float32'); fwrite(fid, dime.toffset(1), 'float32'); fwrite(fid, dime.glmax(1), 'int32'); fwrite(fid, dime.glmin(1), 'int32'); return; % image_dimension %--------------------------------------------------------------------- function data_history(fid, hist) % Original header structures %struct data_history % { /* off + size */ % char descrip[80]; /* 0 + 80 */ % char aux_file[24]; /* 80 + 24 */ % short int qform_code; /* 104 + 2 */ % short int sform_code; /* 106 + 2 */ % float quatern_b; /* 108 + 4 */ % float quatern_c; /* 112 + 4 */ % float quatern_d; /* 116 + 4 */ % float qoffset_x; /* 120 + 4 */ % float qoffset_y; /* 124 + 4 */ % float qoffset_z; /* 128 + 4 */ % float srow_x[4]; /* 132 + 16 */ % float srow_y[4]; /* 148 + 16 */ % float srow_z[4]; /* 164 + 16 */ % char intent_name[16]; /* 180 + 16 */ % char magic[4]; % int smin; /* 196 + 4 */ % }; /* total=200 bytes */ % descrip = sprintf('%-80s', hist.descrip); % 80 chars from left % fwrite(fid, descrip(1:80), 'uchar'); pad = zeros(1, 80-length(hist.descrip)); hist.descrip = [hist.descrip char(pad)]; fwrite(fid, hist.descrip(1:80), 'uchar'); % aux_file = sprintf('%-24s', hist.aux_file); % 24 chars from left % fwrite(fid, aux_file(1:24), 'uchar'); pad = zeros(1, 24-length(hist.aux_file)); hist.aux_file = [hist.aux_file char(pad)]; fwrite(fid, hist.aux_file(1:24), 'uchar'); fwrite(fid, hist.qform_code, 'int16'); fwrite(fid, hist.sform_code, 'int16'); fwrite(fid, hist.quatern_b, 'float32'); fwrite(fid, hist.quatern_c, 'float32'); fwrite(fid, hist.quatern_d, 'float32'); fwrite(fid, hist.qoffset_x, 'float32'); fwrite(fid, hist.qoffset_y, 'float32'); fwrite(fid, hist.qoffset_z, 'float32'); fwrite(fid, hist.srow_x(1:4), 'float32'); fwrite(fid, hist.srow_y(1:4), 'float32'); fwrite(fid, hist.srow_z(1:4), 'float32'); % intent_name = sprintf('%-16s', hist.intent_name); % 16 chars from left % fwrite(fid, intent_name(1:16), 'uchar'); pad = zeros(1, 16-length(hist.intent_name)); hist.intent_name = [hist.intent_name char(pad)]; fwrite(fid, hist.intent_name(1:16), 'uchar'); % magic = sprintf('%-4s', hist.magic); % 4 chars from left % fwrite(fid, magic(1:4), 'uchar'); pad = zeros(1, 4-length(hist.magic)); hist.magic = [hist.magic char(pad)]; fwrite(fid, hist.magic(1:4), 'uchar'); return; % data_history
github
uoguelph-mlrg/vlr-master
makediffeos.m
.m
vlr-master/spm/deform/makediffeos.m
1,338
utf_8
8bde1c01636201ff1d3eba506055a424
% MAKEDIFFEOS % Calling the functions mni2ptx_old and ptx2mni_old re-computes a transformation % matrix which is expensive to compute and can easily be saved as a mat file. % The purpose of this function is to pre-compute those transforms (T) for use by % the new mni2ptx and ptx2mni to transform between mni and ptx quickly. You must % run makealldiffeos first. function [] = makediffeos(N,nvec) for n = nvec for t = 1:2 switch t case 1 xform = imglutname('xform', N,n,1); templatei = imgname('mni:FLAIR', n,1); templateo = imglutname('FLAIR', N,n,1); savename = imglutname('mni2ptx',N,n,0); case 2 xform = imglutname('ixform', N,n,1); templatei = imglutname('FLAIR', N,n,1); templateo = imgname('mni:FLAIR', n,1); savename = imglutname('ptx2mni',N,n,0); end ni = nifti(templatei); no = nifti(templateo); nx = nifti(xform); si = size(ni.dat); so = size(no.dat); M = nx.mat\ni.mat; X = spm_affine(squeeze(single(nx.dat(:,:,:,1,:))),inv(no.mat)); T = zeros([si,3],'single'); for d = 1:3 for z = 1:si(3) Mz = M*spm_matrix([0,0,z]); Tzd = spm_slice_vol(X(:,:,:,d),Mz,si(1:2),[1,nan]); T(:,:,z,d) = single(Tzd); end end save(savename,'T','so'); end end
github
uoguelph-mlrg/vlr-master
spmdeform_old.m
.m
vlr-master/spm/deform/spmdeform_old.m
2,052
utf_8
d3c51e0733a8e7cddb779f509aba4d00
% SPMDEFORM % This function calls SPM's deform tool to warp 3D image arrays (varargin) % according to the transformation file xform % (this is given as a filename: the xform estimated by SPM previously). % This requires saving the images as nii temporarily. % The xform filename is used as a temporary directory. % All input images for warping are saved using the format spmdef_#. % All output images after warping are saved using the format ospmdef_#. % On completion, the temporary images are read in as MATLAB 3D arrays, % and the nii files deleted (but not the temporary directory). function [varargout] = spmdeform_old(xform,templatei,templateo,varargin) [~,tmp,~] = fileparts(xform); tdir = tmpname(tmp); if ~exist(tdir,'dir'), mkdir(tdir); end fname = fullfile(tdir,'@spmdef_#.nii'); for i = 1:numel(varargin) % generate file name namei{i,1} = strrep(strrep(fname,'@', ''),'#',num2str(i)); nameo{i,1} = strrep(strrep(fname,'@','o'),'#',num2str(i)); % write the input image to file using templatei writenii(imrotate(varargin{i},180), namei{i}, templatei); end while ~all(cellfun(@(f)exist(f,'file'),namei)), pause(0.05); end % run the SPM deformation module matlabbatch = makebatch(xform,namei,templateo); spm_jobman('run',matlabbatch); % read the outputs from file and delete the temporary nii files while ~all(cellfun(@(f)exist(f,'file'),nameo)), pause(0.05); end for i = 1:numel(varargin) varargout{i} = imrotate(readnii(nameo{i}),180); end pause(0.5); for i = 1:numel(varargin) delete(namei{i},nameo{i}); end function [matlabbatch] = makebatch(xform,namei,templateo) matlabbatch{1}.spm.util.defs.comp{1}.def = {xform}; matlabbatch{1}.spm.util.defs.out{1}.push.fnames = namei; matlabbatch{1}.spm.util.defs.out{1}.push.weight = {''}; matlabbatch{1}.spm.util.defs.out{1}.push.savedir.savesrc = 1; matlabbatch{1}.spm.util.defs.out{1}.push.fov.file = {templateo}; matlabbatch{1}.spm.util.defs.out{1}.push.preserve = 0; matlabbatch{1}.spm.util.defs.out{1}.push.fwhm = [0 0 0]; matlabbatch{1}.spm.util.defs.out{1}.push.prefix = 'o';
github
uoguelph-mlrg/vlr-master
spmdeform.m
.m
vlr-master/spm/deform/spmdeform.m
423
utf_8
3eebf56e73afeae5fd1c65139b9ec6d5
% SPMDEFORM % This function is a wrapper for spm_diffeo('push',...) % as implemented in 'push_def(Def,mat,job)' line 514 of spm_deformations.m % % Outputs will match the ordering of varargin. function [varargout] = spmdeform(T,so,varargin) for v = 1:numel(varargin) Vi = single(varargin{v}); [Vo,c] = spm_diffeo('push',Vi,T,so); spm_smooth(Vo,Vo,0.25); spm_smooth(c,c,0.25); varargout{v} = Vo./(c+0.001); end
github
uoguelph-mlrg/vlr-master
ptx2mni_old.m
.m
vlr-master/spm/deform/ptx2mni_old.m
619
utf_8
e6c7c39fde2c210383721dde6decea7e
% MNI2PTX % This function uses spmdeform to warp MNI space inputs (varargin) to pt space, % using the deformation specified by imglutname('ixform',N,n) -- i.e. for pt 'n' function [varargout] = ptx2mni_old(N,n,varargin) xform = imglutname('ixform', N,n,1); % xform templatei = imglutname('FLAIR', N,n,1); % pt space template templateo = imgname ('mni:FLAIR',n,1); % mni space template varargout = cell(size(varargin)); [varargout{:}] = imprep(+90,varargin{:}); [varargout{:}] = spmdeform_old(xform,templatei,templateo,varargin{:}); [varargout{:}] = imprep(-90,varargout{:});
github
uoguelph-mlrg/vlr-master
ptx2mni.m
.m
vlr-master/spm/deform/ptx2mni.m
452
utf_8
23f5f8dabeb2d1e65ca92e57f5f024a1
% MNI2PTX % This function uses spmdeform to warp MNI space inputs (varargin) to pt space, % using the deformation specified by imglutname('ixform',N,n) -- i.e. for pt 'n' function [varargout] = ptx2mni(N,n,varargin) xform = load(imglutname('ptx2mni',N,n,1)); % xform varargout = cell(size(varargin)); [varargout{:}] = imprep(-90,varargin{:}); [varargout{:}] = spmdeform(xform.T,xform.so,varargout{:}); [varargout{:}] = imprep(+90,varargout{:});
github
uoguelph-mlrg/vlr-master
mni2ptx_old.m
.m
vlr-master/spm/deform/mni2ptx_old.m
621
utf_8
742c3e27fbd491cf0bd197258a15bbf4
% MNI2PTX % This function uses spmdeform to warp pt space inputs (varargin) to MNI space, % using the deformation specified by imglutname('xform',N,n) -- i.e. for pt 'n' function [varargout] = mni2ptx_old(N,n,varargin) xform = imglutname('xform', N,n,1); % xform templatei = imgname ('mni:FLAIR',n,1); % mni space template templateo = imglutname('FLAIR', N,n,1); % pt space template varargout = cell([1,numel(varargin)]); [varargout{:}] = imprep(+90,varargin{:}); [varargout{:}] = spmdeform_old(xform,templatei,templateo,varargin{:}); [varargout{:}] = imprep(-90,varargout{:});
github
uoguelph-mlrg/vlr-master
makealldiffeos.m
.m
vlr-master/spm/deform/makealldiffeos.m
1,308
utf_8
5e4adae5fe7bf236717ea96909cff8c2
% MAKEALLDIFFEOS % This function pre-computes transformation matrices used by SPM to transform % between native (ptx) and MNI space. The matrices are expensive to compute, so % a hack-ish parallelization is used which spawns background matlab instances to % complete more quickly. function [] = makealldiffeos() Ni = 129; cpu = 5; % the bat file file.bat = 'tmp.bat'; % the code for execution code = 'makediffeos(%d,[#]);'; % group the indices bat = {[10]}; % create the file contents for n = 1:cpu % cpu i = num2cell(n:cpu:Ni); nib = numel(i); numstr = sprintf(repmat('%02.f,',[1,nib]),i{:}); codi = sprintf(strrep(code,'#',numstr),Ni); bat{end+1} = ['@echo COMPUTING DIFFEOS ',numstr,'...',10]; bat{end+1} = ['@',matx(codi),10]; bat{end+1} = ['@timeout 0.5 > nul',10]; end bat{end+1} = 'exit'; % write the file fid = fopen(file.bat,'w'); fwrite(fid,cat(2,bat{:})); fclose(fid); while ~fileready(file.bat,1000), pause(0.1); end eval(['!call ',file.bat,' &']); % execute the bat file % xform is a filename specifying the SPM transform to be applied % templatei is a filename specifying an input image template (affine xform) % templateo is a filename specifying the output image template (size, fov, etc) % varargin are image arrays to be transformed, whose size matches xform
github
uoguelph-mlrg/vlr-master
mni2ptx.m
.m
vlr-master/spm/deform/mni2ptx.m
454
utf_8
1045489efa2143f0fd053b4114acd6bc
% MNI2PTX % This function uses spmdeform to warp pt space inputs (varargin) to MNI space, % using the deformation specified by imglutname('xform',N,n) -- i.e. for pt 'n' function [varargout] = mni2ptx(N,n,varargin) xform = load(imglutname('mni2ptx',N,n,1)); % xform varargout = cell([1,numel(varargin)]); [varargout{:}] = imprep(-90,varargin{:}); [varargout{:}] = spmdeform(xform.T,xform.so,varargout{:}); [varargout{:}] = imprep(+90,varargout{:});
github
uoguelph-mlrg/vlr-master
plot_synthetic_histmatch.m
.m
vlr-master/figs/plot_synthetic_histmatch.m
2,817
utf_8
05c6dd57705544c06fafe4df3068a4c4
function [] = plot_synthetic_histmatch() V = 100^3; src = {'uniform','unimodal','bimodal','trimodal'}; clr = rainbow6; clr = clr([1,2,3,4],:); tar = {'uniform','unimodal','bimodal','trimodal'}; for s = 1:numel(src), X{s} = data(V,src{s}); end for t = 1:numel(tar), [T{t},pt{t}] = data(V,tar{t}); end % plot original figure; hold on; for i = 1:numel(src) Q(i,:) = plot_quantiles(X{i},clr(i,:),0); end saveplot('histmatch-q-original','y','f_{\textsc{y}}(y)',[0,1],[0,5]); D0 = meanquantilediff(Q); % plot after different matching for t = 1:numel(T) figure; hold on; for i = 1:numel(src) Y = histeq(X{i},pt{t}); Y = Y+0.01*randn(size(Y)); Q(i,:) = plot_quantiles(Y,clr(i,:),i/15); end fprintf(['%5.03f\n'],100*meanquantilediff(Q)/D0); saveplot(['histmatch-q-',tar{t}],'\tilde{y}','f_{\tilde{\textsc{y}}}(\tilde{y})',[0,1],[0,5]); end % legend figure; for s = 1:numel(src), plot(nan(2,1),'color',clr(s,:)); hold on; end plot(nan(2,1),'s','markersize',2,'color',lighten([0,0,0],0.5),'linewidth',2); figresize(gcf,[300,200]); leg = {'Uniform source','Unimodal source','Bimodal source','Trimodal source','Quantiles'}; legend(leg); legend(gca,'boxoff'); set(gca,'xcolor','w','ycolor','w'); print(gcf,thesisname('fig','histmatch-q-legend'),'-depsc'); close(gcf); function [p,u] = histogram(x) du = 0.002; u = 0:du:1; x(x<0|x>1) = nan; p = ksdensity(x,u,'support',[0-2*du,1+2*du],'width',5*du); function [T,pt] = data(V,type) [~,u] = histogram([0,1]); % dummy call switch type case 'uniform' T = rand ([V,1]); pt = ones(size(u)); case 'unimodal' T = randn([V,1])*0.08 + 0.5; pt = normpdf(u,0.5,0.08); case 'bimodal' T = [randn([0.5*V,1])*0.05+0.3; ... randn([0.5*V,1])*0.05+0.7]; pt = 0.5*normpdf(u,0.3,0.05) ... + 0.5*normpdf(u,0.7,0.05); case 'trimodal' T = [randn([0.3*V,1])*0.05+0.25; ... randn([0.4*V,1])*0.05+0.5; ... randn([0.3*V,1])*0.05+0.75;]; pt = 0.3*normpdf(u,0.25,0.05) ... + 0.4*normpdf(u,0.50,0.05) ... + 0.3*normpdf(u,0.75,0.05); end function [Q] = plot_quantiles(X,clr,dy) Q = quantile(X,linspace(0,1,15)); C = monomap(clr,numel(Q),[-1,+1]); d = 1/4; [p,u] = histogram(X); hold on; for q = 1:numel(Q) [~,i] = min(abs(u-Q(q))); y = clip([0:d:p(i)]+dy,[0,p(i)]); x = Q(q)*ones(size(y)); plot(x,y,'s','markersize',2,'color',lighten(clr,0.5),'linewidth',2); end plot(u,p,'color',darken(clr,0)); function [D] = meanquantilediff(Q) p = nchoosek(1:size(Q,1),2); for i = 1:size(p,1) D(i) = mean(abs(Q(p(i,1),:)-Q(p(i,2),:))); end D = mean(D); function [] = saveplot(name,x,y,xmm,ymm) xlim(xmm); xlabel(['$',x,'$'],'interpreter','latex'); ylim(ymm); ylabel(['$',y,'$'],'interpreter','latex'); drawnow; figresize(gcf,[600,400]); print(gcf,thesisname('fig',name),'-depsc'); close(gcf);
github
uoguelph-mlrg/vlr-master
plot_y_sep_objectives.m
.m
vlr-master/figs/plot_y_sep_objectives.m
1,807
utf_8
f14d5c607b2797686db85c29af628b50
function [] = plot_y_sep_objectives() for t = 1:3 switch t case 1 Y = {[0.1,0.15,0.18,0.25,0.29,0.36,0.48,0.72],... [0.43,0.52,0.62,0.67,0.75,0.78,0.85]}; case 2 Y = {[0.1,0.15,0.18,0.25,0.29,0.36,0.41,0.49],... [0.51,0.54,0.61,0.75,0.78,0.85]}; case 3 Y = {[0.1,0.15,0.18,0.25,0.29,0.36,0.40,0.43],... [0.61,0.64,0.69,0.75,0.78,0.85]}; end C = [zeros(size(Y{1})),ones(size(Y{2}))]; Y = cat(2,Y{:}); plotsave(['jsep-diff-',num2str(t)],@Jdiff,Y,C); plotsave(['jsep-conv-',num2str(t)],@Jconv,Y,C); end function [] = Jdiff(Y,C) [J,YS,CS] = jsepdiff(Y,C); plot(YS,CS,'-','color',lighten(red(1),0.5)); j = 0; for i = 1:numel(YS)-1 if CS(i) ~= CS(i+1) j = j + 1; text(mean([YS(i),YS(i+1)]),0.5,num2str(j),'backgroundcolor','w',... 'horizontalalignment','center','verticalalignment','middle'); end end text(0.05,1,['$\mathcal{Z} = ',num2str(J),'$'],'interpreter','latex'); function [] = Jconv(Y,C) [J,P,Po] = jsepconv(Y,C); N = numel(Po); scale = 0.04; clr = {lighten(blu(1),0.2),lighten(blu(1),0.5)}; area(linspace(0,1,N),scale*P{2},'facecolor',lighten(clr{2},0.5),'edgecolor',clr{2}); area(linspace(0,1,N),scale*P{1},'facecolor',lighten(clr{1},0.5),'edgecolor',clr{1}); area(linspace(0,1,N),scale*Po, 'facecolor',lighten(red(1),0.3),'edgecolor',red(1)); text(0.05,1,['$\mathcal{Z} = ',num2str(J,'%.02f'),'$'],'interpreter','latex'); function [] = plotsave(name,fun,Y,C) figure; hold on; plot(Y,C,'ko','markersize',10); fun(Y,C); plot(Y,C,'ko','markersize',10); xlim([0,1]); xlabel('Transformed Graylevels $(\tilde{y})$','interpreter','latex') ylim([-0.1,+1.1]); ylabel('Lesion Class $(c)$','interpreter','latex'); tightsubs(1,1,gca,[0.2,0.2,0.05,0.05]); print(gcf,thesisname('fig',name),'-depsc'); close(gcf);
github
uoguelph-mlrg/vlr-master
plot_converge.m
.m
vlr-master/figs/plot_converge.m
1,017
utf_8
0406c0d850fce9df00497c72c958846d
function [] = plot_converge() % define the hyperparameters h = hypdef_final; h.name.cv = 'nocv'; h.sam.fresh = 0; h = hypfill(h); % load the training data [h,Y,C] = gettrainingdata(h); ivec = true([1,size(Y,2)]); idx.i.train = ivec; idx.s.train = ivec; idx.i.valid = ivec; idx.s.valid = ivec; [Y,C,idx] = dataregfun(h.lr.reg.py,h.lr.reg.pc,Y,C,idx); [b,db] = vlrmap(h, Y(:,idx.s.train), C(:,idx.s.train)); % plot the quantiles of dB vs iterations for b = 1:2 plotone(squeeze(db(:,b,:)),b); end function [] = plotone(db,b) qvec = 0.00:0.05:1.00; clr = flipud(monomap(red(1),numel(qvec),[-0.8,+0.8])); qdb = quantile(abs(db),qvec)'; figure; hold on; for q = 1:numel(qvec) plot(qdb(:,q),'color',clr(q,:)); end ylabel(['Upate magnitude $\left|\Delta\beta^',num2str(b-1),'\right|$'],'interpreter','latex'); xlabel('Iteration $(t)$','interpreter','latex'); set(gca,'xtick',[0:5:size(db,2)]); tightsubs(1,1,gca,0.05*[3,3,1,1]); print(thesisname('fig','seg',['converge-b',num2str(b-1),'.eps']),'-depsc'); close(gcf);
github
uoguelph-mlrg/vlr-master
plot_mri_spin_echo.m
.m
vlr-master/figs/plot_mri_spin_echo.m
2,679
utf_8
82104048b23837d3f74016d6488f1c8e
function [] = plot_mri_spin_echo() figure; N = 100; clr.RF = darken(red(1),0.5); clr.psi = blu(1); clr.T2 = lighten(blu(1),0.5); clr.T1 = lighten([1.0,0.5,0.0],0.5); t2 = linspace(0,2,3*N); t1 = linspace(-1,+1,N); curv = 0.02*linspace(1,0,1.5*N); tz = zeros(1,N); p090 = 1*sinc(3*t1); p180 = 2*sinc(3*t1); RF = [tz,p090,tz,tz,p180,tz,tz,tz,tz,tz,tz,tz]; t = linspace(0,1,numel(RF)); T2 = [zeros(1,N*1.5), exp(-2*t(1:end-N*1.5))]; T1 = [zeros(1,N*1.5),1-exp(-0.5*t(1:end-N*1.5))]; T2x = [zeros(1,N*1.5), exp(-3*t2),exp(3*t2-6),exp(-3*t2)]; T2x = [T2x,zeros(1,size(T2,2)-size(T2x,2))]; psi = cos(400*t).*T2.*T2x; T2(1:N*1.5) = nan; T1(1:N*1.5) = nan; psi = 10*[psi,nan*t1,psi(1:4*N)]; RF = 1*[RF, nan*t1, RF(1:4*N)]; T2 = 10*[T2, nan*t1, curv, T2(N*1.5+1:4*N)*1]; T1 = 10*[T1, nan*t1, 1-curv, T1(N*1.5+1:4*N)*1]; ax(1) = subplot(2,1,1); hold on; plot(14+3*RF,'color',clr.RF); plot(psi,'color',clr.psi); plot(T2,'color',clr.T2); plot(T1,'color',clr.T1); plot(psi,'color',clr.psi); doublearrow([N*1.5,N*04.5],-10,20,0.5,'$TE/2$','k'); doublearrow([N*1.5,N*07.5],-14,20,0.5,'$TE$','k'); doublearrow([N*1.5,N*14.5],-18,20,0.5,'$TR$','k'); set(gca,'xtick',[],'ytick',[],'xlim',[1,numel(RF)],'xcolor','w','ycolor','w'); ylim(10*[-2.5,+2.5]); xlim([1,numel(psi)]) text(12.5*N,14,'$\cdots$','interpreter','latex','color','k',... 'horizontalalignment','center','verticalalignment','middle'); text(12.5*N, 0,'$\cdots$','interpreter','latex','color','k',... 'horizontalalignment','center','verticalalignment','middle'); text( 1.5*N,22,'$90^{\circ}$','interpreter','latex','color',clr.RF,... 'horizontalalignment','center','verticalalignment','middle'); text( 4.5*N,22,'$180^{\circ}$','interpreter','latex','color',clr.RF,... 'horizontalalignment','center','verticalalignment','middle'); text(14.5*N,22,'$90^{\circ}$','interpreter','latex','color',clr.RF,... 'horizontalalignment','center','verticalalignment','middle'); text( 7.5*N, 6,'$SE$','interpreter','latex','color',clr.psi,... 'horizontalalignment','center','verticalalignment','middle'); legend({'$RF$','$\Psi$','$\Psi_{T2}$','$\Psi_{T1}$'},'interpreter','latex','location','eastoutside'); tightsubs(1,1,ax,0.05*[1,1,3,1]); figresize(gcf,[1000,700]); print(gcf,thesisname('fig','mrispinecho.eps'),'-depsc'); close(gcf); function [] = doublearrow(t,x,dt,dx,label,color) plot(t+[+dt,-dt],[x,x],'color',color); fill([t(1),t(1)+dt,t(1)+dt,t(1)],[x,x+dx,x-dx,x],color,'edgecolor','none'); fill([t(2),t(2)-dt,t(2)-dt,t(2)],[x,x+dx,x-dx,x],color,'edgecolor','none'); text(mean(t),x-dx,label,'interpreter','latex','color',color,... 'horizontalalignment','center','verticalalignment','top');
github
uoguelph-mlrg/vlr-master
show_registration.m
.m
vlr-master/figs/show_registration.m
692
utf_8
18bac7c912cfcd4f18ac18431b2bcebd
function [] = show_registration() x = {[200,135,23],[130,69,52]}; [I] = getimg([5,9,19]); for i = 1:2 compareslice(I(i,:),x{i},i); end function [I] = getimg(idx) for i = 1:numel(idx) I{1,i} = flip(imrotate(readnicenii(imgname('h17:FLAIR',idx(i),1)),180)); I{2,i} = readnicenii(imgname('mni:FLAIR',idx(i),1)); end function [] = compareslice(I,x,k) figure; for i = 1:numel(I) I{i} = padarray(I{i}(:,:,x(3)),[15,0],0,'post'); IX{i} = im2rgb(I{i},gray,[0,1600]); IX{i}(:,x(2),1) = 1; IX{i}(x(1),:,1) = 1; end timshow(IX{:}); set(gcf,'color','w'); print(thesisname('fig',['pre-registration-',num2str(k),'.png']),'-dpng'); close(gcf); function [If] = flip(I) If = I(:,end:-1:1,:);
github
uoguelph-mlrg/vlr-master
show_m08_revise_manuals.m
.m
vlr-master/figs/show_m08_revise_manuals.m
1,090
utf_8
0beaf6df06394b4c0d6a2bd94643bbe5
function [] = show_m08_revise_manuals() % n.b. THIS IS VERY EXPENSIVE FUNCTION % Thanks Harvard for interpolating to 0.5mm in all dimensions % 1GB for each image, you tryna prove something? [I,GO,GR] = getimg(1); %compareslice(I,GO,GR,[500,900],128,0,'m08rev-01-d0-z128'); compareslice(I,GO,GR,[500,900],146,2,'m08rev-01-d2-z146'); [I,GO,GR] = getimg(5); compareslice(I,GO,GR,[120,230],107,2,'m08rev-05-d2-z107'); [I,GO,GR] = getimg(6); compareslice(I,GO,GR,[250,500],101,2,'m08rev-06-d2-z101'); function [I,GO,GR] = getimg(i) I = ndresize(readnii(imgname('m08:FLAIR',i,1)),0.5); GO = ndresize(readnii(imgname('m08:mano',i,1)),0.5); GR = ndresize(readnii(imgname('m08:mans',i,1)),0.5); function [] = compareslice(I,GO,GR,mm,z,ds,key) I = getslice(I, z,ds); GR = getslice(GR,z,ds); GO = getslice(GO,z,ds); timshow(redoverlay(I,GR,mm),0); print(thesisname('fig',[key,'-r.png']),'-dpng'); timshow(redoverlay(I,GO,mm),0); print(thesisname('fig',[key,'-o.png']),'-dpng'); function [I] = getslice(I,z,ds) xc = 25; I = shiftdim(I,ds); I = I(xc+1:end-xc,xc+1:end-xc,z); I = imrotate(I,ds*90);
github
uoguelph-mlrg/vlr-master
plot_mle_challenges.m
.m
vlr-master/figs/plot_mle_challenges.m
699
utf_8
c205d0f67ec567e31d8e430bf1aa2f1a
function [] = plot_mle_challenges() % challenge 1: separable classes Y = [clip(0.25+0.05*randn(32,1),[0.0,0.5]); clip(0.75+0.05*randn(32,1),[0.5,1.0])]; C = [0*ones(32,1),1*ones(32,1)]; B{1} = 1e6*[-0.5,1]; B{2} = 50*[-0.5,1]; plotone(Y,C,B,'chmle-sep.eps'); % challenge 2: no lesions Y = [0.5+0.1*randn(64,1)]; C = [0*ones(64,1)]; B{1} = 1e6*[-100,1]; B{2} = 50*[-0.9,1]; plotone(Y,C,B,'chmle-noles.eps'); function [] = plotone(Y,C,B,name) figure; orange = [1.0,0.5,0.0]; plot(0,nan,'color',orange); lrplot([],[],B{2},'color',blu(1)); lrplot( Y, C,B{1},'color',orange); legend({'MLE','Desired'},'location','nw','interpreter','latex'); print(gcf,thesisname('fig',name),'-depsc'); close(gcf);
github
uoguelph-mlrg/vlr-master
plot_B_reparam.m
.m
vlr-master/figs/plot_B_reparam.m
961
utf_8
84c36c6c335bb603bfeed44643e110ea
function [] = plot_B_reparam() % vary threshold (t) B{1} = 16*[-0.4,1.0]; B{2} = 16*[-0.5,1.0]; B{3} = 16*[-0.6,1.0]; leg = {'$\tau=0.4$','$\tau=0.5$','$\tau=0.6$'}; plotone(B,leg,'reparam-t.eps'); % vary sensitivity (s) B{1} = 8*[-0.5,1]; B{2} = 16*[-0.5,1]; B{3} = 32*[-0.5,1]; leg = {'$s=8$','$s=16$','$s=32$'}; plotone(B,leg,'reparam-s.eps'); % vary b0 B{1} = 16*[-0.4,1.0]; B{2} = 16*[-0.5,1.0]; B{3} = 16*[-0.6,1.0]; leg = {'$\beta^0=12$','$\beta^0=16$','$\beta^0=20$'}; plotone(B,leg,'reparam-b0.eps'); % vary b1 B{1} = [-6,9]; B{2} = [-6,12]; B{3} = [-6,16]; leg = {'$\beta^1=9$','$\beta^1=12$','$\beta^1=16$'}; plotone(B,leg,'reparam-b1.eps'); function [] = plotone(B,leg,name) figure; cmap = monomap(blu(1),3,[-0.5,0.5]); lrplot([],[],B{1},'color',cmap(1,:)); lrplot([],[],B{2},'color',cmap(2,:)); lrplot([],[],B{3},'color',cmap(3,:)); legend(leg,'location','nw','interpreter','latex'); print(gcf,thesisname('fig',name),'-depsc'); close(gcf);
github
uoguelph-mlrg/vlr-master
show_plot_simflair.m
.m
vlr-master/figs/show_plot_simflair.m
2,193
utf_8
09bd8ad8592c94531857a09a1c290cef
function [] = show_plot_simflair() % get the TE/TR/TI data si = [1,2,3,4,5,6, 8,9,10,11,12]; % no TERI data from Harvard [names,~,~,~,TERI,~] = arrayfun(@scanparams,si,'un',0); TERI = cat(1,TERI{:}); mri = cat(1,repmat({'ir'},[9,1]),'se','se'); S = size(TERI,1); z = 90; %yrng = [0,3.5]; yrng = [0.5,2]; noise = 0.03; cmap = inferno; % printing the table to file str = ''; str = [str,textable('top',... {'Scanner','\\gm{}','\\wm{}','\\csf{}','\\wmh{}',... '$\\frac{\\wmh}{\\gm}$','$\\frac{\\wmh}{\\wm}$','$\\frac{\\wmh}{\\csf}$'},... 'rccccccc')]; for s = 1:S [F,y(:,s),TPM] = simflair(TERI(s,:),'wm',mri{s}); F = F + noise.*randn(size(F)); % the business: showflair(F(:,:,z),si(s),yrng,cmap); plotpmf(F,TPM,si(s),yrng); line = cat(1,names{s},num2cell(y(:,s)),num2cell(abs(y(4,s)./y(1:3,s))))'; str = [str,textable('line',line,'%.02f')]; end str = [str,textable('bottom')]; fid = fopen(thesisname('dir','simflair.tex'),'w'); fprintf(fid,str); fclose(fid); showcolorbar(yrng,cmap); function [] = showcolorbar(yrng,cmap) hcolorbar(yrng(1):yrng(2),cmap); print(gcf,thesisname('fig','hcbar-simflair.eps'),'-depsc'); close(gcf); function [] = showflair(F,i,yrng,cmap) cy = 20; cx = 20; timshow(F(1+cy:end-cy,1+cx:end-cx),yrng,cmap,'w500'); print(thesisname('fig',['simflair-s=',num2str(i,'%02.f'),'.png']),'-dpng'); %print(['simflair-s=',num2str(i,'%02.f'),'.png'],'-dpng'); close(gcf); function [] = plotpmf(F,TPM,i,yrng) clr = rainbow6; M = ~isnan(F); W = sum(TPM(M)); TPM = nd2cell(TPM,4); N = 512; u = linspace(yrng(1),yrng(2),N); for t = 1:4 PMF(:,t) = (sum(TPM{t}(M))/W)*pofwy(F(M),TPM{t}(M),yrng,yrng,N); PMF(1,t) = 0; PMF(end,t) = 0; end figure; hold on; plot(u,sum(PMF,2),'k','linewidth',1); PMF(:,t) = 25*PMF(:,t); for t = 1:4 h = fill(u,PMF(:,t),lighten(clr(t,:),0.7),'edgecolor',clr(t,:)); end leg = {'Full Image','GM','WM','CSF','WMH$\times25$'}; legend(leg,'location','ne','interpreter','latex'); xlim(yrng); xlabel('$y$','interpreter','latex'); ylim([0,0.1]); ylabel('$p_{_{\textsc{y}}}(y)$','interpreter','latex'); figresize(gcf,[1200,450]); print(thesisname('fig',['simflairplot-s=',num2str(i,'%02.f'),'.eps']),'-depsc'); close(gcf);
github
uoguelph-mlrg/vlr-master
show_bias.m
.m
vlr-master/figs/show_bias.m
574
utf_8
45beaa0401ea9d4417ef4f30eeaa535d
function [] = show_bias() cmap = inferno; idx = 11; z = 20; mm = [300,800]; I{1} = niceimg(readnii(imgname('h17:FLAIR' ,idx,1)),z,mm,cmap); I{2} = niceimg(readnii(imgname('h17:FLAIRm',idx,1)),z,mm,cmap); I{3} = niceimg(readnii(imgname('h17:bias', idx,1)),z,[0,3],cmap); for i = 1:numel(I) timshow(I{i},0); print(thesisname('fig',['pre-bias-',num2str(i),'.png']),'-dpng'); close(gcf); end vcolorbar(0:1:3,cmap); print(thesisname('fig',['cmap-pre-bias.eps']),'-depsc'); close(gcf); function [I] = niceimg(I,z,mm,cmap) I = momi(clip(I(:,:,z),mm)); I = im2rgb(I,cmap);
github
uoguelph-mlrg/vlr-master
show_tpfpfn_raw_thropt.m
.m
vlr-master/figs/show_tpfpfn_raw_thropt.m
1,803
utf_8
00ebc2e216b774c3f7dcb3870793f78d
function [varargout] = show_tpfpfn_raw_thropt(I,G,thr) cmap = inferno; key = 'mni96-mni'; N = 96; savename = ['data/misc/',key,'-thr.mat']; if nargin < 2 % load images load(['data/misc/',key,'-I.mat']); load(['data/misc/',key,'-G.mat']); M = brainfun; for i = 1:numel(I) I{i} = I{i}.*double(M); end end if nargin < 3 if exist(savename,'file') % load thresholds load(savename) else % calculate thresholds (expensive) for i = 1:numel(I) thr(i) = runthropt(I{i},G{i}); statusbar(numel(I),i,numel(I)/3,1); end save(savename,'thr'); % save thresholds end end % create TP FP FN images [TP,FP,FN] = tpfpfn(I,G,thr); sliceshow(TP,zfun,cmap,[0,0.25]); print(gcf,thesisname('fig','rawthropt-tp.png'),'-dpng'); close(gcf); sliceshow(FP,zfun,cmap,[0,0.25]); print(gcf,thesisname('fig','rawthropt-fp.png'),'-dpng'); close(gcf); sliceshow(FN,zfun,cmap,[0,0.25]); print(gcf,thesisname('fig','rawthropt-fn.png'),'-dpng'); close(gcf); vcolorbar(0:0.05:0.25,cmap); print(gcf,thesisname('fig','cmap-rawthropt.eps'),'-depsc'); close(gcf); if nargout == 3 varargout = {TP,FP,FN}; else varargout = {}; end function [thr] = runthropt(I,G) to = double(quantile(I(:),0.95)); optfun = @(t)objective(double(I(:)),double(G(:)),t); fminopt = optimset('maxiter',100,'display','off'); thr = fminsearch(optfun,to,fminopt); function [J] = objective(I,G,t) C = I>t; dsc = double(2*sum(C.*G)) ./ double(sum(C+G)); J = -gather(dsc); function [TP,FP,FN] = tpfpfn(I,G,thr) N = numel(I); TP = zeros(size(I{1})); FP = zeros(size(I{1})); FN = zeros(size(I{1})); for i = 1:N Ci = I{i} > thr(i); Gi = G{i} > 0.5; TP = TP + (1/N)*double( Ci & Gi); FP = FP + (1/N)*double( Ci & ~Gi); FN = FN + (1/N)*double(~Ci & Gi); end
github
uoguelph-mlrg/vlr-master
show_tikzfigs.m
.m
vlr-master/figs/show_tikzfigs.m
5,105
utf_8
a5bef0d8a20858662445e8250999d862
function [] = show_tikzfigs(x,todo) if nargin < 1, h = hypdef_final; x = load(h.save.name,'h','o'); end if nargin < 2, todo = {'slice','lr','hist'}; end for t = 1:numel(todo) switch todo{t} case 'slice', tikzslice(x); case 'lr', tikzsigmoids; case 'hist', tikzhists; end end close all; function [] = tikzslice(x) n = 2; n2 = 80; nt = 3; c = 3; z = 61; cmap = inferno; % load some raw images M = logical(getslice('mni:brain',1,z)); I1 = getslice('mni:FLAIRm',n, z,M); G1 = getslice('mni:mans', n, z,M); I2 = getslice('mni:FLAIRm',n2,z,M); G2 = getslice('mni:mans', n2,z,M); It = getslice('mni:FLAIRm',nt,z,M); % load some sample model data T = clip(-x.o.B{c}{1}(:,:,z)./x.o.B{c}{2}(:,:,z),[0.5, 1]).*M; S = clip( x.o.B{c}{2}(:,:,z), [0 ,50]).*M; %T = T(:,:,z); T(T<=0) = 1; T = gaussfilter(medfilt2(T,[5,5]),[.5,.5]); T = T.*M; %S = T(:,:,z); T(S<=1) = 100; S = gaussfilter(medfilt2(S,[5,5]),[.5,.5]); S = S.*M; % crop for better resolution I1(I1<1/100) = 0; [I1,G1,M,I2,G2,T,S,It] = specialcrop(I1,G1,M,I2,G2,T,S,It); % generate the images of interest G1 = G1 > 0.5; G2 = G2 > 0.5; I1 = momi(max(0,I1)); % raw I2 = momi(max(0,I2)); % raw IR = momi(max(0,I1.*M)); % after registration It = momi(max(0,It.*M)); JR = biny((IR-mean(IR(M)))./std(IR(M)),[-1,+2],[0,1],256); % IR post-standardize Jt = biny((It-mean(It(M)))./std(It(M)),[-1,+2],[0,1],256); % It post-standardize Qt = 1./(1+exp(-(S.*(Jt-T)))).*M; % compute the predicted lesions Lt = postpro(x.h,x.o.thr(x.h.cv.i(nt)),dumthree(Qt)); Lt = Lt(:,:,2); % do the post-process % convert stuff to RGB Qt = im2rgb(Qt/1.1,cmap,[0,1]); T = im2rgb(T,cmap,[0.5,1.0]); S = im2rgb(S,cmap,[0,50]); imgs = { I1 , I2 , IR , G1 , G2 , JR , T , It , Jt , Qt , Lt }; names = {'i1','i2','ir','c1','c2','jr','bb','it','jt','qt','lt'}; % debug: show all %timshow(imgs{:},[0,1],'5x2'); for i = 1:numel(imgs) timshow(imgs{i},[0,1],0,'w200'); print(gcf,thesisname('fig','tikz',[names{i},'.png']),'-dpng'); close(gcf); end function [I] = getslice(key,n,z,M) I = imrotate(readnii(imgname(key,n,1)),180); I = max(0,I(:,:,z)); if nargin == 3, M = ones(size(I)); end [~,mm] = alphatrim(I,[0,0.995],M); I = momi(clip(I,mm)); function [I3] = dumthree(I) I3 = cat(3,I,I,I); function [C] = postpro(h,thr,C0) C = C0 > thr; C = bwareaopen(C,ceil(h.pp.minmm3*1.5^3)); function [varargout] = specialcrop(varargin) for i = 1:numel(varargin) varargout{i} = varargin{i}(5:end-6,4+1:end-4); end function [] = tikzsigmoids() mu = [0.3,0.8]; sd = [0.2,0.1]; N = [35,9]; yo = 0.6; s = 12; y = cat(1,mu(1)+sd(1)*randn([N(1),1]),mu(2)+sd(2)*randn([N(2),1])); c = cat(1,0*ones([N(1),1]),1*ones([N(2),1])); yt = 0.72; ct = 1./(1+exp(-s*(yt-yo))); % plot the training sigmoid plotlogit(yo,s); plot(y,c,'k.','markersize',15); cs = 0.5+[-1,+1]; ys = yo + 4*(cs-0.5)/s; yy = [yo,yo]; cy = ylim; plot(yy,cy,':', 'color',lighten(red(1),0.5)); plot(ys,cs,'--','color',lighten(red(1),0.5)); print(gcf,thesisname('paper','tikz','lr-fit'),'-depsc'); % plot the testing sigmoid plotlogit(yo,s); plot([yt,yt],[0,ct],':','color',lighten(red(1),0.5)); plot([0,yt],[ct,ct],':','color',lighten(red(1),0.5)); plot(yt,ct,'k.','markersize',15); plot(yt,ct,'o','markersize',15,'color',red(1)); print(gcf,thesisname('paper','tikz','lr-test'),'-depsc'); function [] = plotlogit(yo,s) y = 0:0.01:1; c = 1./(1+exp(-(s.*(y-yo)))); figure; hold on; plot(y,c,'-','color',lighten(red(1),0.1)); ylim([-0.1,1.1]); xlim([0,1]); ylabel('$$\hat{c} = p(c=1\mid y;\beta)$$','interpreter','latex','fontsize',24); xlabel('$$y$$','interpreter','latex','fontsize',24); set(gca,'xtick',[0:0.25:1],'ytick',[0,1]); figresize(gcf,[400,400]); tightsubs(1,1,gca,[0.15,0.2,0.15,0.2]); function [] = tikzhists() savename = fullfile('data','misc','eg-hist.mat'); if exist(savename,'file') load(savename,'y','HI','HJ'); else [y,HI,HJ] = makehistdata(savename); end yname = {'y','\tilde{y}'}; plothist(y,HI,yname{1}); print(gcf,thesisname('paper','tikz','hist-pre' ),'-depsc'); plothist(y,HJ,yname{2}); print(gcf,thesisname('paper','tikz','hist-post'),'-depsc'); function [] = plothist(y,H,yname) nscan = [5,5,5,13,5,5]; clr = get(0,'defaultaxescolororder'); figure; hold on; for s = numel(nscan):-1:1 for i = 1:nscan(s) clri = lighten(clr(s,:),i/(nscan(s)+5)); plot(y,H(:,sum(nscan(1:s-1))+i),'color',clri); end end ylim([0,5]); xlim([min(y),max(y)]); xlabel(['$$',yname,'$$'], 'interpreter','latex','fontsize',40); ylabel(['$$p(',yname,')$$'],'interpreter','latex','fontsize',40); figresize(gcf,[400,400]); tightsubs(1,1,gca,[0.2,0.2,0.1,0.1]); function [y,HI,HJ] = makehistdata(savename) h = hypdef_final; h.M = readnicenii(imgname('mni:brain','')) > 0.5; N = 256; y = linspace(0,1,N); for i = 1:h.Ni I = readnicenii(imglutname('mni:FLAIRm',109,i)).*h.M; I = momi(alphaclip(I,[0.001,0.999],h.M)) + 0.01*randn(size(I)); J = standardize(I, h.M > 0.5, h.std.type, h.std.args{:}); HI(:,i) = ksdensity(I(h.M),y,'width',0.02); HJ(:,i) = ksdensity(J(h.M),y,'width',0.02); statusbar(h.Ni,i,h.Ni/3,1); end save(savename,'y','HI','HJ');
github
uoguelph-mlrg/vlr-master
plotypmf.m
.m
vlr-master/figs/utils/plotypmf.m
584
utf_8
8353f266614455f0139ef8eca2420a88
% PLOTYPMF % This function plots he histogram of the data in Y % stratified by image (dim 2), and coloured by scanner. function [] = plotypmf(Y,h,leg) if nargin < 3, leg = 0; end % dont pring legend by default if max(Y(:)) > 1 Y = bsxfun(@rdivide,Y,max(Y)); end n = 1:size(Y,2)/h.Ni:size(Y,2); N = 128; u = linspace(0,1,N); P = arrayfun(@(i)ksdensity(Y(:,i),u,'width',0.02),n,'un',0); scannerplot(h,cat(1,P{:}),u,leg); xlim([0,1]); xlabel('Graylevel $y$','interpreter','latex'); ylim([0,6]); ylabel('PMF $f_y(y)$','interpreter','latex'); tightsubs(1,1,gca,0.5*[0.2,0.3,0.12,0.12]);
github
uoguelph-mlrg/vlr-master
textableres.m
.m
vlr-master/figs/utils/textableres.m
1,327
utf_8
9814f3665631e44d9b5e61ddc390fd28
function [] = textableres(h,o,fname,names) if nargin < 3 fname = fullfile(h.save.figdir,resultsname('tab')); end if ~iscell(o) N = 1; o = {o}; fmt = 'rcccc'; toprows = {'Scanner','LL','SI','Pr','Re'}; else N = numel(o); fmt = sprintf('rc%s',repmat('ccc',[1,N])); R1 = cellfun(@(s)sprintf('\\\\multicolumn{3}{c}{%s}',s),names,'un',0); R2 = arrayfun(@(i)(' SI & Pr & Re '),1:N,'un',0); RL = arrayfun(@(i)(sprintf('\\\\cmidrule(lr){%d-%d}',3*i+1,3*i+3)),1:N,'un',0); toprows = {'','',R1{:};[cell2mat(RL),'Scanner'],'LL',R2{:}}; end str = ''; str = [str,textable('top',toprows,fmt)]; for i = 1:numel(h.scan.N) str = [str,makeline(o,h.scan.i==i,h.scan.names{i},h.scan.clr(i,:))]; end str = [str,'\\midrule\n']; str = [str,makeline(o,true(size(h.scan.i)),'ALL',[1,1,1])]; str = [str,textable('bottom')]; f = fopen(fname,'w'); fprintf(f,str); fclose(f); function [str] = makeline(o,idx,name,clr) mop = @median; N = numel(o); data = num2cell(cell2mat(arrayfun(@(i)([... mop(o{i}.si(idx)),... mop(o{i}.pr(idx)),... mop(o{i}.re(idx))]... ),1:N,'un',0))); sclr = sprintf(' %0.02f',clr); sname = sprintf('%s {\\\\color[rgb]{%s}$\\\\blacksquare$}',name,sclr); fmt = arrayfun(@(i)('%.02f'),1:3*N,'un',0); line = {sname,mop(o{1}.ll(idx)),data{:}}; str = textable('line',line,{'','%.0f',fmt{:}});
github
uoguelph-mlrg/vlr-master
copythesisresults.m
.m
vlr-master/figs/utils/copythesisresults.m
3,355
utf_8
6290dbad00e0cf51f1fcc6372fd08fe7
% COPYTHESISRESULTS % Since by default, cross validation batches print results to a unique folder, % this function collects a few used directly in the thesis and copies them into % the thesis figure directory. Since MATLAB copying is slow, the (windows) % command line copy is used function [] = copythesisresults() todo = deftodo(); for k = 1:numel(todo) for i = 1:numel(todo{k}.figs) todo{k}.copy(todo{k}.figs{i}); end end function [todo] = deftodo() tabnames = {}; h = hypdef_final; i = 0; i = i + 1; todo{i} = onekey(key2hyp(h,'e[P--L--A--F--]'),'base','seg',... resultsname('tab'),... resultsname('box','si'),... resultsname('box','pr'),... resultsname('box','re'),... resultsname('ba',1),... resultsname('ba',2),... resultsname('img','T'),... resultsname('img','S'),... resultsname('cmap','T'),... resultsname('cmap','S')); i = i + 1; todo{i} = onekey(hypdef_final,'final','seg',... resultsname('tab'),... resultsname('box','si'),... resultsname('box','pr'),... resultsname('box','re'),... resultsname('scat','si'),... resultsname('scat','pr'),... resultsname('scat','re'),... resultsname('ba',1),... resultsname('ba',2),... resultsname('img','T'),... resultsname('img','S'),... resultsname('img','TP'),... resultsname('img','FP'),... resultsname('img','FN'),... resultsname('cmap','T'),... resultsname('cmap','S'),... resultsname('cmap','tri')); i = i + 1; tabnames{end+1} = ['Baseline/base-',resultsname('tab')]; todo{i} = onekey(key2hyp(h,'e[P--L--A--F--]'),'base','tab',resultsname('tab')); i = i + 1; tabnames{end+1} = ['Final/final-',resultsname('tab')]; todo{i} = onekey(hypdef_final,'final','tab',resultsname('tab')); %todo{i} = onekey(key2hyp(h,'e[P1-L3-Ab-Fg2]'),'final','tab',resultsname('tab')); sets = { 'ovb', 'cv', 'ystd', 'lam', 'beta'}; keyfun = {@key2hyp, @cv2hyp, @ystd2hyp, @key2hyp, @key2hyp}; for s = 1:numel(sets) [h,names,params] = defhypset(sets{s}); for k = 1:numel(h) i = i + 1; hk = keyfun{s}(h{k},params{k,1:end-1}); todo{i} = onekey(hk,params{k,1},'tab',resultsname('tab')); tabnames{end+1} = [names{k},'/',params{k,1},'-',resultsname('tab')]; end end fid = fopen(thesisname('fig','tab','table-index.tex'),'w+'); fprintf(fid,maketabnames(tabnames)); fclose(fid); function [key] = onekey(h,okey,dir,varargin) for v = 1:numel(varargin) key.figs{v} = varargin{v}; end key.copy = @(name)fcopy(h,okey,dir,name); function [] = fcopy(h,outkey,dir,name) load(h.save.name,'h'); iname = fullfile(h.save.figdir,name); oname = thesisname('fig',dir,[outkey,'-',name]); evalstr = ['!copy "',iname,'" "',oname,'"']; fprintf(['> copying to: ',outkey,'-',name,'\n']); eval(evalstr); function [tabnamestr] = maketabnames(tabnames) tabnamestr = ''; for i = 1:numel(tabnames) tabnamei = strrep(strrep(tabnames{i},'\','\\'),'.tex',''); tabnamestr = [tabnamestr,tabnamei,',']; end tabnamestr = tabnamestr(1:end-1);
github
uoguelph-mlrg/vlr-master
boxplotcompare.m
.m
vlr-master/figs/utils/boxplotcompare.m
2,272
utf_8
ba6b99358ef30a59f867d14fd663a401
function [] = boxplotcompare(h,metrics,mlabs,llthr,savename,leg,pfun,tn) % clean up inputs if nargin < 3, mlabs = metrics; end if nargin < 4, llthr = []; end if nargin < 5, savename = ''; end if nargin < 6, leg = {}; end if nargin < 7, pfun = []; end if nargin < 8, tn = {'fig','seg'}; end if isa(metrics,'char'), metrics = {metrics}; end if isa(mlabs,'char'), mlabs = {mlabs}; end % initializations N.m = length(metrics); N.h = numel(h); N.t = length(llthr)+1; X = cell(N.t,N.h,N.m); % collect the data in a sincle cell for boxplotn for n = 1:N.h o = load(h{n}.save.name,'o'); [idx,labs] = ll2idx(o.o.ll,llthr); for i = 1:size(idx,2) for m = 1:N.m X{i,n,m} = o.o.(metrics{m})(idx(:,i)); end end end % make the box plots cmap = rainbow7; for m = 1:N.m preplot(); boxplotn(X(:,:,m),cmap,labs); postplot(N,mlabs{m}); if ~isempty(savename) print(thesisname(tn{:},[savename,'-',metrics{m},'.eps']),'-depsc'); close(gcf); end if ~isempty(pfun) statscompare(pfun,X(:,:,m),mlabs{m},labs); end end if ~isempty(leg) extralegend(leg,cmap,[1,numel(leg)]); if ~isempty(savename) print(thesisname(tn{:},[savename,'-leg.eps']),'-depsc'); close(gcf); end end function [idx,labs] = ll2idx(ll,llthr) % make binary group selector by lesion load, % using thresholds llthr if isempty(llthr) idx = true(size(ll(:))); labs = {''}; else idx = false(length(ll),length(llthr)+1); llthr = [0;llthr(:);inf]; Nt = numel(llthr)-1; for t = 1:Nt idx(:,t) = (ll>llthr(t)) & (ll<llthr(t+1)); switch t case 1 labs{t} = sprintf('<%0.0f',llthr(t+1)); case Nt labs{t} = sprintf('>%0.0f',llthr(t)); otherwise labs{t} = sprintf('%0.0f-%0.0f',llthr(t),llthr(t+1)); end end end function [] = preplot() figure; hold on; for l = 0.2:0.2:0.8 plot([0,1/eps],[l,l],'-','linewidth',1,'color',lighten([0,0,0],0.8)); end function [wid] = postplot(N,mlab) wid = [150 + 50*N.t*N.h + 100*N.t]; figresize(gcf,[wid,550]); set(gca,'ylim',[0,1]); ylabel(mlab,'interpreter','latex'); if N.t > 1 xlabel(['$LL$ (mL)'],'interpreter','latex'); end tightsubs(1,1,gca,0.03*[5, 4, 1, 1]);
github
uoguelph-mlrg/vlr-master
textable.m
.m
vlr-master/figs/utils/textable.m
856
utf_8
9b0bd7f2063ffe6f5f47623cfa55776a
function [str] = textable(part, varargin) switch part case 'top' titles = varargin{1}; cols = varargin{2}; str = ['\\begin{tabular}{',cols,'}\n\\toprule\n',... linestr(titles),'\\midrule\n']; case 'line' data = varargin{1}; fmt = varargin{2}; str = linestr(data,fmt); case 'bottom' str = '\\bottomrule\n\\end{tabular}'; end str = strrep(str,'NaN','---'); str = strrep(str,'Inf','$\\infty$'); function [str] = linestr(X,fmt) if nargin < 2 fmt = '%.02f'; end if isa(fmt,'char') fmt = repmat({fmt},size(X)); end if isa(X,'cell') fun = @(j,i)([num2str(X{j,i},fmt{j,i}),' & ']); end if isa(X,'numeric') fun = @(j,i)([num2str(X(j,i),fmt{j,i}),' & ']); end % inject ' & ' str = ''; for j = 1:size(X,1) str = [str,cell2mat(arrayfun(@(i)fun(j,i),1:size(X,2),'un',0))]; str(end-1:end+4) = '\\\\\n'; end
github
uoguelph-mlrg/vlr-master
roianalysis.m
.m
vlr-master/paper/roianalysis.m
1,270
utf_8
8b6bbe8da991e2698ea15920d628ae14
function [] = roianalysis(M) if nargin < 1 h = hypdef_final; load(h.save.name,'h'); M = makecvmasks(h); end printvolumes(M,'t1'); printvolumes(M,'t0'); printvolumes(M,'t0v1'); roi = 't0'; [hs.lam,name.lam] = defhypset('lam'); [hs.psu,name.psu] = defhypset('psu'); performanceroi(hs.lam,M,roi); performanceroi(hs.psu,M,roi); function [] = performanceroi(hs,M,roi) for s = 1:numel(hs) statusupdate(s,numel(hs)); load(hs{s}.save.name,'h','t','o'); h = hroi(h,roi); for i = 1:h.Ni [o.si(i),o.pr(i),o.re(i)] = ... performanceiroi(M.(roi){h.cv.i(i)},t.TP{i},t.FP{i},t.FN{i}); o.lle(i) = nan; statusbar(h.Ni,i,h.Ni/3,1); end save(h.save.name,'h','o'); end function [si,pr,re] = performanceiroi(ROI,TP,FP,FN) ROI = single(ROI); TP = sum(TP(:).*ROI(:)); FP = sum(FP(:).*ROI(:)); FN = sum(FN(:).*ROI(:)); si = 2*TP/(2*FP+FP+FN); pr = TP/(TP+FP); re = TP/(TP+FN); si(isnan(si)) = 0; pr(isnan(pr)) = 0; re(isnan(re)) = 0; function [] = printvolumes(M,field) x = (1.5^3)/1000; Mf = M.(field); v = x*cell2mat(arrayfun(@(i)sum(Mf{i}(:)),1:numel(Mf),'un',0)); fprintf([field,': \t']); printiqr(v,'%.0f'); function [] = printiqr(x,fmt) fprintf(['$',fmt,'\\thinspace[',fmt,'-',fmt,']$\n'],... quantile(x,0.5),quantile(x,0.25),quantile(x,0.75));
github
uoguelph-mlrg/vlr-master
paperresults.m
.m
vlr-master/paper/paperresults.m
2,738
utf_8
44f0ce18dbaec28a4ae91453e8d1d348
function [] = paperresults() % ------------------------------------------------------------------------------ % statusupdate(50); statusupdate('stats results'); statusupdate(); % paperstats; % ------------------------------------------------------------------------------ % statusupdate(50); statusupdate('param results'); statusupdate(); % [h,names] = defhypset('lam'); % roicompare (h,names,'lam'); % [h,names] = defhypset('psu'); % roicompare (h,names,'psu'); % ------------------------------------------------------------------------------ statusupdate(50); statusupdate('copying results'); statusupdate(); h.final = hypdef_final; d.final = fullfile(h.final.save.figdir); d.thesis = thesisname('fig'); tocopy = deftocopy(d); for k = 1:numel(tocopy) for i = 1:numel(tocopy{k}.item) tocopy{k}.copy(tocopy{k}.item{i}); end end statusupdate('done'); statusupdate(); statusupdate(50); statusupdate(); function [tocopy] = deftocopy(d) tocopy{1} = copyitem(d.final,'','final',{... resultsname('tab'),... resultsname('scat','si'),... resultsname('scat','pr'),... resultsname('scat','re'),... resultsname('ba',1),... resultsname('ba',2),... resultsname('img','T'),... resultsname('img','S'),... resultsname('img','Y'),... resultsname('cmap','T'),... resultsname('cmap','S'),... resultsname('cmap','Y'),... resultsname('tab'),... }); tocopy{2} = copyitem(fullfile(d.thesis,'seg'),'exseg','exseg',{... 'I.png',... 'J.png',... 'T.png',... 'S.png',... 'Q.png',... 'C.png',... 'G.png',... 'P.png',... }); tocopy{3} = copyitem(fullfile(d.thesis,'seg'),'lpa','lpa',{... resultsname('box','si'),... resultsname('box','pr'),... resultsname('box','re'),... resultsname('box','leg'),... }); tocopy{4} = copyitem(fullfile(d.thesis,'seg'),'cv','cv',{ resultsname('box','si'),... resultsname('box','pr'),... resultsname('box','re'),... resultsname('box','leg'),... }); function [C] = copyitem(idir,ipref,opref,inames) for v = 1:numel(inames) C.item{v} = inames{v}; end C.copy = @(name)fcopy(idir,ipref,opref,name); function [] = fcopy(idir,ipref,opref,name) statusupdate(sprintf('%s [%s -> %s]',name,ipref,opref)); statusupdate(); if ~isempty(ipref) ipref = [ipref,'-']; end if ~isempty(opref) opref = [opref,'-']; end iname = fullfile(idir,[ipref,name]); oname = thesisname('paper',[opref,name]); evalstr = ['!copy "',iname,'" "',oname,'" > nul']; %evalstr = ['!copy "',iname,'" "',oname,'"']; eval(evalstr); function [] = roicompare(h,names,lab) test = @(x1,x2)signrank([x1(:)-x2(:)]); metrics = {{'si','pr','re'},{'$SI$','$Pr$','$Re$'}}; for i = 1:numel(h) h{i} = hroi(h{i},'t0'); end boxplotcompare(h,metrics{:},[],['roi-',lab,'-box'],names,test,{'paper'});
github
uoguelph-mlrg/vlr-master
hypdef_final.m
.m
vlr-master/exp/hyp/hypdef_final.m
1,284
utf_8
59ca4e247bc6c5abf898ff0a666a8d6d
% HYPDEF_FINAL(h) % This function defines all model hyperparameters for the segmentation pipeline. % Default values shown. % Some shorthands used here are expanded by hypfill. % DO NOT EDIT! function [h] = hypdef_final(h) % flag-like names h.name.key = 'e-default'; % h.name.key = 'LPA'; h.name.data = 'mni96'; % h.name.data = 'mni109'; h.name.cv = 'loso'; % h.name.cv = 'nocv'; % scanner parameters h.cmap = inferno; h.Ni = []; h.scan.idx = [1,2,3,4,5,6,9]; % h.scan.idx = [1,2,3,4,5,6,9,7,8,10]; h.scan.clr = rainbow7; % h.scan.clr = rainbow10; % sampling parameters h.sam.fresh = 0; h.sam.resize = 0.5; h.sam.dx = kernelshifts(binsphere(1)); h.sam.flip = 1; % grey standardization parameters h.std.type = 'm3'; h.std.args = {pmfdef('lskew')}; % logistic regression parameters h.lr.Nit = 30; h.lr.B = [0,0]; h.lr.alpha = 1; h.lr.reg.la = 1e-3; h.lr.reg.py = [1]; h.lr.reg.pc = [1]; h.lr.pad = [-20,20];%[-1.5;1]; h.lr.pp.filter= @(B)(gaussfilter(B,[2,2,2])); %h.lr.pp.filter= @(B)(op23(B,@(B)medfilt2(B,[3,3]))); % post processing parameters h.pp.saveles = 'les'; h.pp.thr.def = 0.5; h.pp.thr.Nit = 30; h.pp.minmm3 = 5; % cross validation and scanner h = hypfill(h);
github
uoguelph-mlrg/vlr-master
fig_exseg.m
.m
vlr-master/exp/hyp/fig_exseg.m
1,822
utf_8
2e7e70111e6a83addaaceadfcb70b35b
function [] = fig_exseg(h,o,tn) if nargin < 2, load(h.save.name,'h','o'); end if nargin < 3, tn = {'fig','seg'}; end i = 45; z = 50; [Z,names] = getdata(h,o,i,z); for n = 1:numel(Z) figure; timshow(Z{n},0,'w500'); if strcmp(names{n},'P') hold on; area([0,0,0],[0,0,0],'facecolor',grn(1)); area([0,0,0],[0,0,0],'facecolor',red(1)); area([0,0,0],[0,0,0],'facecolor',blu(1)); l = legend({'TP','FP','FN'},'location','ne',... 'fontsize',32,'TextColor','w','Color','k','fontname','CMU Serif'); set(l,'position',[0.7,0.75,0.3,0.25]); end set(gcf,'InvertHardcopy','off'); print(thesisname(tn{:},['exseg-',names{n},'.png']),'-dpng'); %close(gcf); end function [varargout] = zslice(z,varargin) dx = 0; dy = 40; for i = 1:numel(varargin) varargout{i} = varargin{i}(end-dy:-1:dy+1,dx+1:end-dx,z); end function [Z,names] = getdata(h,o,i,z) I = imrotate(readnicenii(imglutname('FLAIRm',96,i)),0); G = imrotate(readnicenii(imglutname('mans', 96,i)),0) > 0.5; x = readniivsize(imglutname('FLAIRm',96,i)); [B{1},B{2},M] = mni2ptx(h.Ni,i,o.B{h.cv.i(i)}{:},single(h.M)); M = M > 0.5; B{1}(~M) = -1.5; B{2}(~M) = 1; cmap = inferno; J = standardize(I,M>0.5,h.std.type,h.std.args{:}); I = momi(alphaclip(I,[0.001,0.999],M)); Q = M./(1+exp(-(B{1}+B{2}.*J))); T = -B{1}./B{2}.*M; S = B{2}.*M; C = logical(postpro(h,Q,x,o.thr(h.cv.i(i)))); P = zeros(size(G)); P( C& G) = 2; P( C&~G) = 1; P(~C& G) = 3; G = single(G); C = single(C); [I,J,T,S,Q,C,G,P] = zslice(z,I,J,T,S,Q,C,G,P); Z= {... im2rgb(I,gray,[0,1]); im2rgb(J,cmap,[0.2,1]); im2rgb(T,cmap,[0.2,1]); im2rgb(S,cmap,[0,60]); im2rgb(Q,cmap,[0,1]); im2rgb(C,gray,[0,1]); im2rgb(G,gray,[0,1]); im2rgb(P,krgb,[0,3])}; names = {'I','J','T','S','Q','C','G','P'}; function [cmap] = krgb() cmap = [0,0,0; red(1); grn(1); blu(1)];
github
uoguelph-mlrg/vlr-master
hypdef_baseline.m
.m
vlr-master/exp/hyp/hypdef_baseline.m
1,191
utf_8
64fe8979e01ebaaad5a0daa969d168ca
% HYPDEF_BASELINE(h) % This function defines all model hyperparameters for the segmentation pipeline. % Default values shown. % Some shorthands used here are expanded by hypfill. % EXP: baseline % DO NOT EDIT! function [h] = hypdef_baseline(h) % flag-like names h.name.key = 'e-base'; % h.name.key = 'LPA'; h.name.data = 'mni96'; % h.name.data = 'mni109'; h.name.cv = 'loso'; % h.name.cv = 'nocv'; % scanner parameters h.cmap = inferno; h.Ni = []; h.scan.idx = [1,2,3,4,5,6,9]; % h.scan.idx = [1,2,3,4,5,6,9,7,8,10]; h.scan.clr = rainbow7; % h.scan.clr = rainbow10; % sampling parameters h.sam.fresh = 1; h.sam.resize = 0.5; h.sam.dx = [0,0,0]; h.sam.flip = 0; % grey standardization parameters h.std.type = 'm3'; h.std.args = {pmfdef('lskew')}; % logistic regression parameters h.lr.Nit = 30; h.lr.B = [0,0]; h.lr.alpha = 1; h.lr.reg.la = 0; h.lr.reg.py = []; h.lr.reg.pc = []; h.lr.pad = [-1.5;1]; h.lr.pp.filter= @(B)(B); % post processing parameters h.pp.saveles = 'les'; h.pp.thr.def = 0.5; h.pp.thr.Nit = 30; h.pp.minmm3 = 5; % cross validation and scanner h = hypfill(h);
github
uoguelph-mlrg/vlr-master
fig_final.m
.m
vlr-master/exp/hyp/fig_final.m
974
utf_8
881ce3321cdb99e411f80b8aa914fcdf
function [] = fig_final(todo) if nargin < 1, todo = {'sum','lpa','man','exseg','thr'}; end h = hypdef_final; load(h.save.name,'h','o'); for i = 1:numel(todo) switch todo{i} case 'sum' load(h.save.name,'t'); summarizeresults(h,o,t); copythesisresults; case 'lpa' fig_lpa({'beta','compare'},h); case 'man' stats_man(o); case 'exseg' fig_exseg(h,o); case 'thr' fig_thropt(h); end end function [] = stats_man(o) names = {'i15','m16'}; fprintf('MANUAL COMPARISONS =====================\n'); for n = 1:numel(names) man = load(['data/misc/',names{n},'-mantoman.mat']); docomparison({man.si(:),o.si(:)},{names{n},'LPA'}); end fprintf('LL COMPARISON ==========================\n'); icc = ICC([o.ll(:),o.lle(:)],'A-1'); fprintf('ICC = %.03f\n', icc); function [] = docomparison(x,names) p = ranksum(x{:}); pre = sprintf('[%s : %s] [%.03f : %.03f] -',... names{:},median(x{1}),median(x{2})); printpval(pre,p);
github
uoguelph-mlrg/vlr-master
fig_lpa.m
.m
vlr-master/exp/hyp/fig_lpa.m
1,725
utf_8
dbe07fc926bb248a8d1d8284f590fa46
function [] = fig_lpa(todo,hvlr) if nargin < 1, todo = {'beta','compare'}; end if nargin < 2 h{1} = hypdef_final; else h{1} = hvlr; end h{2} = getfield(load(fullfile('data','misc','mni96-LPA-loso.mat'),'h'),'h'); names = {'VLR','LPA'}; metrics = {{'si','pr','re'},{'$SI$','$Pr$','$Re$'}}; test = @(x1,x2)signrank([x1(:)-x2(:)]); for i = 1:numel(todo) switch todo{i} case 'beta' showbeta; case 'compare' boxplotcompare(h,metrics{:},[4,22],'lpa-box',names,test); end end function [varargout] = lpaimg(varargin) lpamatfile = 'C:\program files\matlab\spm12\toolbox\LST\LST_lpa_stuff.mat'; data = load(lpamatfile,'bp_mni',varargin{:}); Z = zeros([121,145,121]); for v = 1:numel(varargin) varargout{v} = Z; varargout{v}(data.bp_mni) = data.(varargin{v}); varargout{v} = imrotate(varargout{v},90); end function [B] = vlrbeta(BX) M = brainfun; s = std(BX(M)); %[h,names] = defhypset('ystd'); %i = find(strcmp(arrayfun(@(i)names{i}(9:end-1),1:numel(names),'un',0),'SS')); %load(h{i}.save.name,'o'); h = hypdef_final; load(h.save.name,'o'); BC = arrayfun(@(i)(o.B{i}{1}),1:numel(o.B),'un',0); B = mean(cat(4,BC{:}),4); B = s*(B - median(B(M)))./std(B(M)); function [] = showbeta() cmap = inferno; bmm = [-2,+3]; btick = [-2:+3]; M = brainfun; % LPA beta_0 B.LPA = lpaimg('sp_mni2_Bf2'); % VLR beta_0 B.VLR = vlrbeta(B.LPA); % black oob B.LPA(~M) = -inf; B.VLR(~M) = -inf; % show the results sliceshow(B.LPA,zfun,cmap,bmm); print(gcf,thesisname('fig','seg','b0-LPA.png'),'-dpng'); close(gcf); sliceshow(B.VLR,zfun,cmap,bmm); print(gcf,thesisname('fig','seg','b0-VLR.png'),'-dpng'); close(gcf); vcolorbar(btick,cmap); print(gcf,thesisname('fig','seg','cmap-LPA.eps'),'-depsc'); close(gcf);
github
uoguelph-mlrg/vlr-master
defhypset.m
.m
vlr-master/exp/hyp/defhypset.m
3,814
utf_8
f498d6cca92ced1a2f4fcd9254a4f18d
% DEFHYPSET(HYPSET) % This function defines various sets of hyperparameter combinations for % comparison. function [h,names,params] = defhypset(hypset) switch hypset case 'ovb' % add regularizations 'one at a time' vs baseline params = {'e[P--L--A--F--]','\texttt{base}'; 'e[P1-L--A--F--]','$V = 1$'; 'e[P--L3-A--F--]','$\lambda = {10}^{-3}$'; 'e[P--L--Af-F--]','$\mathrm{a}_{R} = 1$'; 'e[P--L--As-F--]','$\mathrm{a}_{S} = \mathbf{N}_6$';}; ho = hypdef_baseline; for i = 1:size(params,1) h{i} = key2hyp(ho,params{i,1}); names{i} = params{i,2}; end case 'cv' % compare different cross validation methods (expensive) cvs = {'loso', '\texttt{loso}' ; 'kfcv', '\texttt{kfcv}' ; 'loo', '\texttt{loo}' ; 'osaat','\texttt{osaat}'; 'nocv', '\texttt{nocv}' ;}; ho = hypdef_final; for i = 1:size(cvs,1) h{i} = cv2hyp(ho,cvs{i,1}); names{i} = cvs{i,2}; end params = cvs; case 'ystd-full' % compare all different ystd methods (toy only) ystds = {'na', {},'\textbf{Raw}'; 'rm', {[0.0001,0.9999]},'\textbf{RM1}'; 'rm', {[0.001, 0.999 ]},'\textbf{RM2}'; 'rm', {[0.01, 0.99 ]},'\textbf{RM3}'; 'ss', {},'\textbf{SS}'; 'he',{pmfdef('uniform')},'\textbf{HE}'; 'm1',{pmfdef('normal')} ,'\textbf{HM1}'; 'm2',{pmfdef('rskew')} ,'\textbf{HM2}'; 'm3',{pmfdef('lskew')} ,'\textbf{HM3}'; 'ny',{linspace(0,1,16)} ,'\textbf{NY}';}; ho = hypdef_final; for i = 1:size(ystds,1) h{i} = ystd2hyp(ho,ystds{i,1:2}); names{i} = ystds{i,3}; end params = ystds; case 'ystd' % compare different ystd methods ystds = {'ss',{}, '\textbf{SS}'; 'he',{pmfdef('uniform')},'\textbf{HE}'; 'm1',{pmfdef('normal')}, '\textbf{HM1}'; 'm2',{pmfdef('rskew')}, '\textbf{HM2}'; 'm3',{pmfdef('lskew')}, '\textbf{HM3}';}; ho = hypdef_final; for i = 1:size(ystds,1) h{i} = ystd2hyp(ho,ystds{i,1:2}); names{i} = ystds{i,3}; end params = ystds; case 'lam' % compare different lambdas params = {'e[P1-L--Ab-Fg2]','$\lambda = 0$'; 'e[P1-L5-Ab-Fg2]','$\lambda = {10}^{-5}$'; 'e[P1-L4-Ab-Fg2]','$\lambda = {10}^{-4}$'; 'e[P1-L3-Ab-Fg2]','$\lambda = {10}^{-3}$'; 'e[P1-L2-Ab-Fg2]','$\lambda = {10}^{-2}$'; 'e[P1-L1-Ab-Fg2]','$\lambda = {10}^{-1}$';}; ho = hypdef_final; for i = 1:size(params,1) h{i} = key2hyp(ho,params{i,1}); names{i} = params{i,2}; end case 'psu' % compare different V params = {'e[P--L3-Ab-Fg2]','$V = 0$'; 'e[P1-L3-Ab-Fg2]','$V = 1$'; 'e[P3-L3-Ab-Fg2]','$V = 3$'; 'e[P9-L3-Ab-Fg2]','$V = 9$'; 'e[P27L3-Ab-Fg2]','$V = 27$';}; ho = hypdef_final; for i = 1:size(params,1) h{i} = key2hyp(ho,params{i,1}); names{i} = params{i,2}; end case 'beta' % compare different beta smoothing params = {'e[P1-L3-Ab-F--]','$(\cdot)$'; 'e[P1-L3-Ab-Fm3]','$\mathrm{Med}_{3\times3}$'; 'e[P1-L3-Ab-Fm5]','$\mathrm{Med}_{5\times5}$'; 'e[P1-L3-Ab-Fg1]','$\mathrm{G}_{\sigma=1}$'; 'e[P1-L3-Ab-Fg2]','$\mathrm{G}_{\sigma=2}$'; 'e[P1-L3-Ab-Fg3]','$\mathrm{G}_{\sigma=3}$';}; ho = hypdef_final; for i = 1:size(params,1) h{i} = key2hyp(ho,params{i,1}); h{i}.sam.resize = 1; h{i} = hypfill(h{i}); names{i} = params{i,2}; end otherwise error('Unrecognized hypset name: %s', hypset); end
github
uoguelph-mlrg/vlr-master
fig_thropt.m
.m
vlr-master/exp/hyp/fig_thropt.m
1,643
utf_8
6c6c50f80f95a26187fcb04219169eb8
function [] = fig_thropt(h,fresh) if nargin < 1, h = hypdef_final; end if nargin < 2, fresh = 0; end thr = 0:0.01:1; Qx = getsampledles(h,fresh); load(h.save.train,'Cx'); for t = 1:numel(thr) for i = 1:h.Ni [si(i,t),pr(i,t),re(i,t)] = performance(Qx{i} > thr(t), Cx{i} > 0.5); end statusbar(numel(thr),t,h.Ni/3,1); end pr = fixpr(pr); plot_prcurve(h,pr,re); plot_sicurve(h,thr,si); function [Qx] = getsampledles(h,fresh) savename = fullfile('data','misc',[h.name.data,'-ptx-Q.mat']); h.M = brainfun; if fresh || ~exist(savename,'file') for i = 1:h.Ni M = mni2ptx(h.Ni,i,h.M); Q = readnicenii(imglutname('les',h.Ni,i)); Qx{i} = Q(M > 0.5); statusbar(h.Ni,i,h.Ni/3,1); end save(savename,'Qx'); else load(savename,'Qx'); end function [pr] = fixpr(pr) for i = 1:size(pr,1) idx = find(pr(i,:)==0,1,'first'); pr(i,idx:end) = 1; end function [] = plot_prcurve(h,pr,re) fprintf('AUC = %.03f\n',abs(trapz(median(re),median(pr)))); plot(0,nan,'k','linewidth',2); scannerplot(h,pr,re,'sw'); plot(median(pr),median(re),'k','linewidth',2); leg = findobj(gcf,'type','legend'); legend(['Median',leg.String(1:end-1)]); xlabel('Recall (Re)','interpreter','latex'); ylabel('Precision (Pr)','interpreter','latex'); tightsubs(1,1,gca,0.04*[4,4,1,1]); print(gcf,thesisname('fig','curve-pr-re'),'-depsc'); close(gcf); function [] = plot_sicurve(h,thr,si) scannerplot(h,si,thr); plot(thr,median(si),'k','linewidth',2); xlabel('Threshold ($\pi$)','interpreter','latex'); ylabel('Similarity Index (SI)','interpreter','latex'); tightsubs(1,1,gca,0.04*[4,4,1,1]); print(gcf,thesisname('fig','curve-si'),'-depsc'); close(gcf);
github
uoguelph-mlrg/vlr-master
fig_hypcompare.m
.m
vlr-master/exp/hyp/fig_hypcompare.m
1,072
utf_8
015b990716a749bcb33130c900e56eac
function [] = fig_hypcompare(todo) if nargin < 1, todo = {'ovb','cv','ystd','lam'}; end metrics = {{'si','pr','re'},{'$SI$','$Pr$','$Re$'}}; tests = deftests(); for i = 1:numel(todo) switch todo{i} case {'cv','ovb','lam'} [h,names] = defhypset(todo{i}); boxplotcompare(h,metrics{:},[],[todo{i},'-box'],names,tests.rank.pair); case {'beta'} [h,names] = defhypset(todo{i}); boxplotcompare(h,metrics{:},[],[todo{i},'-box'],names,tests.rank.pair); show_betas(defhypset(todo{i}),56); case {'ystd'} [h,names] = defhypset(todo{i}); boxplotcompare(h,metrics{:},[4,22],[todo{i},'-box'],names,tests.rank.pair); show_ystd(defhypset(todo{i})); otherwise warning('Unrecognized todo: %s',todo{i}); end end function [tests] = deftests() tests.rank.pair = @(x1,x2)signrank([x1(:)-x2(:)]); tests.rank.unpr = @(x1,x2)ranksum(x1(:),x2(:)); tests.norm.pair = @(x1,x2)outwo(@ttest,[x1(:)-x2(:)]); tests.norm.unpr = @(x1,x2)outwo(@ttest2,x1(:),x2(:)); function [out] = outwo(fun,varargin) [~,out] = fun(varargin{:});
github
uoguelph-mlrg/vlr-master
fig_ystd.m
.m
vlr-master/exp/ystd/fig_ystd.m
2,726
utf_8
1436bffa348c8b423d76324c930b2272
function [] = fig_ystd(todo) if nargin < 1, todo = {'ypmf','tpmf','Z1','Z2'}; end % matfile = 'D:/DATA/WML/thesis/mni96-ystd.mat'; [h,names] = defhypset('ystd-full'); for i = 1:numel(todo) switch todo{i} case 'ypmf' load(matfile,'Y','h'); doplotypmf(Y,h,names); case 'tpmf' load(matfile,'h'); doplottpmf(h,names); case 'Z1' load(matfile,'J','h'); doshowzx(J,h,1,names); case 'Z2' load(matfile,'J','h'); doshowzx(J,h,2,names); otherwise warning('Unrecognized todo: %s',todo{i}); end end function [idx] = hlabelfind(names,lab) idx = find(strcmp(arrayfun(@(i)names{i}(9:end-1),1:numel(names),'un',0),lab)); function [] = doplotypmf(Y,h,names) i = hlabelfind(names,'Raw'); plotypmf(Y{i},h{i},'nw'); print(thesisname('fig','ystd','ystd-pmf-na.eps'),'-depsc'); close(gcf); i = hlabelfind(names,'HE'); plotypmf(Y{i},h{i},'nw'); print(thesisname('fig','ystd','ystd-pmf-he.eps'),'-depsc'); close(gcf); i = hlabelfind(names,'HM3'); plotypmf(Y{i},h{i},'nw'); print(thesisname('fig','ystd','ystd-pmf-m3.eps'),'-depsc'); close(gcf); function [] = doplottpmf(h,names) clr = rainbow6; figure; hold on; leg = {'HE','HM1','HM2','HM3'}; for i = 1:numel(leg) plotpmf(h{hlabelfind(names,leg{i})}.std.args{1},clr(i,:)); end legend(leg,'location','nw','interpreter','latex'); print(thesisname('fig','ystd','ystd-pmf-hm123.eps'),'-depsc'); close(gcf); function [] = doshowzx(J,h,j,names) cmap = inferno; ii = hlabelfind(names,'RM1'); io = hlabelfind(names,'HM3'); for s = [ii,io];%[1,i]%1:size(J,2) h{s}.M = brainfun; h{s}.sam.Mr = ndresize(h{s}.M,h{s}.sam.resize); Z{j,s} = reconparams(h{s},J{j,s}(:)); Z{j,s} = Z{j,s}{1}; end mm{1} = {[0,300],[-80,+80]}; dd{1} = {100,40}; mm{2} = {[0,0.15],[-0.05,+0.05]}; dd{2} = {0.05,0.05}; fname = strrep(thesisname('fig','ystd',['ystd-zx-*-#.png']),'#',num2str(j)); cname = strrep(thesisname('fig','ystd',['cbar-zx-*-#.eps']),'#',num2str(j)); % slice plots sliceshow(Z{j,ii},zfun,mm{j}{1},cmap); print(strrep(fname,'*','na'),'-dpng'); close(gcf); sliceshow(Z{j,io},zfun,mm{j}{1},cmap); print(strrep(fname,'*','op'),'-dpng'); close(gcf); sliceshow(Z{j,ii}-Z{j,io},zfun,mm{j}{2},spiderman); print(strrep(fname,'*','naop'),'-dpng'); close(gcf); % vcolorbars vcolorbar(mm{j}{1}(1):dd{j}{1}:mm{j}{1}(2),cmap); print(strrep(cname,'*','i'),'-depsc'); close(gcf); vcolorbar(mm{j}{2}(1):dd{j}{2}:mm{j}{2}(2),spiderman); print(strrep(cname,'*','d'),'-depsc'); close(gcf); function [] = plotpmf(pmf,clr) u = linspace(0,1,numel(pmf)); plot(u,pmf,'color',clr); xlim([0,1]); xlabel('Graylevel $y$','interpreter','latex'); ylim([0,0.05]); ylabel('PMF $f_y(y)$','interpreter','latex'); tightsubs(1,1,gca,0.5*[0.3,0.3,0.12,0.12]);
github
uoguelph-mlrg/vlr-master
exp_ystd.m
.m
vlr-master/exp/ystd/exp_ystd.m
629
utf_8
f76231fb93b9d6c841465223687c7125
function [] = exp_ystd() [Y0,C,h,names] = init; for s = 1:numel(h) Y{s} = standardize(Y0,[],h{s}.std.type,h{s}.std.args{:}); J{1,s} = jsepdiff(Y{s},C); J{2,s} = jsepconv(Y{s},C); % long compute time statusbar(numel(h),s,h{s}.Ni/3,1); end save('D:/DATA/WML/mat/mni96-ystd.mat','h','names','Y','C','J','-v7.3'); function [Y0,C,h,names] = init() % load the raw data (should be pre-computed) hraw = hypdef_final; hraw.std.type = 'na'; hraw.std.agrs = {}; hraw.sam.fresh = 0; hraw.lr.pad = 0; hraw = hypfill(hraw); [~,Y0,C] = gettrainingdata(hraw); % define the conditions for testing [h,names] = defhypset('ystd-full');
github
uoguelph-mlrg/vlr-master
mapupdate.m
.m
vlr-master/exp/toy/mapupdate.m
786
utf_8
741300df956139c5b4a4283457c5f8a8
% MAPUPDATE(Y,C) % This function computes the map update for a given B, Y, C, lam combination % for one voxel data (not in parallel). function [B] = mapupdate(B,Y,C,lam,alpha) Y = Y(:)'; C = C(:)'; % transform the features by the class Y1 = [ones(size(Y));Y]; Y1(:,~C) = -Y1(:,~C); % compute the update s1 = 1./(1+exp(B'*Y1)); a = s1.*(1-s1); g = Y1*s1' - (lam.*[0,1])*B; % lam H = (Y1.*[a;a])*Y1' + lam*[0,0;0,1]; % lam togglewarnings('off'); dB = H\g; togglewarnings('on'); % apply the update B = B + alpha*dB; function [] = togglewarnings(onoff) % supress annoying msg in known bad scenarios warning(onoff,'MATLAB:illConditionedMatrix'); warning(onoff,'MATLAB:singularMatrix'); warning(onoff,'MATLAB:nearlySingularMatrix'); warning(onoff,'MATLAB:legend:IgnoringExtraEntries');
github
uoguelph-mlrg/vlr-master
exp_toyreg.m
.m
vlr-master/exp/toy/exp_toyreg.m
5,490
utf_8
f87f98b4f46be0feef67cc955bade8b8
function [] = exp_toyreg(todo) if nargin < 1 todo = {'tab-pmf','plt-pmf','plt-lam','plt-psu','srf-lam'};%,'srf-psu'}; end [D,R] = data; if any(strcmp('tab-pmf',todo)), tab_distribs(R); end if any(strcmp('plt-pmf',todo)), plt_distribs(D,R); end if any(strcmp('plt-lam',todo)), plt_lambdas(D); end if any(strcmp('plt-psu',todo)), plt_psuedos(D); end if any(strcmp('srf-lam',todo)), srf_lambdas(D); end %if any(strcmp('srf-psu',todo)), srf_psuedos; end % sub-main functions function [] = tab_distribs(R) DM = cell2mat(R); DM = num2cell(DM(:,[1,3,5,2,4,6])); str = ''; title = {'','\\multicolumn{3}{c}{$c=0$}','\\multicolumn{3}{c}{$c=1$}'; '\\cmidrule(lr){2-4}\\cmidrule(lr){5-7}\n\\#',... '$\\mu$ & $\\sigma$ & $N$','$\\mu$ & $\\sigma$ & $N$'}; str = [str,textable('top',title,'ccccccc')]; for r = 1:size(R,1) for i = [3,6] if DM{r,i} == 0 DM(r,i-2:i-1) = {'---','---'}; end end fmt = {'%c','%.01f','%.02f','%d','%.01f','%.02f','%d'}; str = [str,textable('line',{r+96,DM{r,:}},fmt)]; end str = [str,textable('bottom')]; fid = fopen(thesisname('fig','toy','toy-pmf-tab.tex'),'w'); fprintf(fid,str); fclose(fid); function [] = plt_distribs(D,R) for d = 1:size(R,1) plotdistribs(D{d},R(d,:)); legend({'$c=0$','$c=1$'},'location','nw','interpreter','latex'); print(gcf,thesisname('fig','toy',num2str(d,'toy-pmf-%d.eps')),'-depsc'); close(gcf); end function [] = plt_lambdas(D) T = time; clr = rainbow6; lam = lambdas(); for d = 1:6 % #notalldistributions for l = 1:4 L(l) = LINE(lam(l),zeros(2,0),clr(l,:),D{d}); end figure(d); X = VOX(L,0.5,T); X = initplot(X); plotloop(X); initplot(X); leg = {'$\lambda = 0$',... '$\lambda = 10^{-3}$',... '$\lambda = 10^{-2}$',... '$\lambda = 10^{-1}$'}; legend(leg,'location','nw','interpreter','latex'); print(gcf,thesisname('fig','toy',num2str(d,'toy-lam-%d.eps')),'-depsc'); close(gcf); end function [] = plt_psuedos(D) T = time; P = psuedos; clr = rainbow6; for d = 1:numel(D) for l = numel(P):-1:1 L(l) = LINE(10.^(-3),P{l},clr(l,:),D{d}); end figure(d); X = VOX(L,0.5,T); X = initplot(X); plotloop(X); initplot(X); plotpsu(X); leg = arrayfun(@(i)sprintf('$V = %d$',i),[0,1,3,9],'un',0); legend(leg,'location','nw','interpreter','latex'); print(gcf,thesisname('fig','toy',num2str(d,'toy-psu-%d.eps')),'-depsc'); close(gcf); end function [] = srf_lambdas(D) d = 5; lam = lambdas(); NL = numel(lam); for l = 1:NL % lambda only surfmapj([],[],lam(l),[0,1]); print(gcf,thesisname('fig',num2str(5-l,'toy-srf-lamo-%d.eps')),'-depsc'); close(gcf); % lambda and data surfmapj(D{d}.Y,D{d}.C,lam(l)); print(gcf,thesisname('fig','toy',num2str(5-l,'toy-srf-lamy-%d.eps')),'-depsc'); close(gcf); end % dataset definitions function [ts] = time() ts = round(10.^[0:0.2:3]); function [D,R] = data() N = 100; R = {... [ 0.3, 0.7],[0.12,0.12],N*[1,1.0]; [ 0.3, 0.7],[0.12,0.12],N*[1,0.1]; [ 0.3, 0.7],[0.24,0.24],N*[1,0.1]; [ 0.3, 0.7],[0.06,0.06],N*[1,0.1]; [ 0.3, 0.7],[0.03,0.03],N*[1,0.1]; [ 0.6, 0.3],[0.08,0.08],N*[1,0.1]; [ 0.4, 0.0],[0.10,0.00],N*[1,0.0]; [ 0.6, 0.0],[0.08,0.00],N*[1,0.0]; [ 0.8, 0.0],[0.06,0.00],N*[1,0.0]; }; for x = 1:size(R,1) [D{x}.Y,D{x}.C] = cytoy(R{x,:}); end function [lam] = lambdas() lam = [10*eps,1e-3,1e-2,1e-1]; function [psu] = psuedos() N = 100; psu = {... [ones(1, 0);ones(1, 0)]; [ones(1, 1);ones(1, 1)]; [ones(1,0.03*N);ones(1,0.03*N)]; [ones(1,0.09*N);ones(1,0.09*N)]; }; % 'class' definition: one fitted line function [L] = LINE(lam,psu,clr,data) L.B = [0;0]; L.lam = lam; L.Y = data.Y(:); L.C = data.C(:); L.clr = clr; L.ls = '-'; L.psu = psu; % 'class' definition: one voxel location function [X] = VOX(L,alpha,ts) X.alpha = alpha; X.ts = ts; X.L = L; X.NL = numel(L); % 'methods' function [X] = initplot(X) ax = gca; hold(ax,'on'); ylim([-0.1,+1.1]); ylabel('Class (c)' ,'interpreter','latex'); xlim([ 0 , 1 ]); xlabel('Graylevel (y)','interpreter','latex'); for l = 1:X.NL plot(0,nan,'color',X.L(l).clr); end for l = 1:X.NL plot(X.L(l).Y(:),X.L(l).C(:),'ko','linewidth',2); end tightsubs(1,1,ax,[0.2,0.2,0.12,0.12]); function [X] = plotloop(X) for l = 1:X.NL L = X.L(l); Y = [L.Y',L.psu(1,:)]; C = [L.C',L.psu(2,:)]; Yco = mean(Y(C<0.5)); C(Y<Yco) = 0; [~,c{l},y] = plotlrfit(L.B,Y,C,L.lam,X.alpha,X.ts,L.clr); end for l = X.NL:-1:1 plot(y,c{l},L.ls,'color',X.L(l).clr); end function [] = plotpsu(X) dy = 0.01; for l = X.NL:-1:1 np = size(X.L(l).psu,2); for i = 1:np plot(X.L(l).psu(1,i),X.L(l).psu(2,i)-dy*(np-i),... 'd','linewidth',2,'markersize',6,'color',X.L(l).clr); end end function [B] = update(L,alpha) % kill dark lesions (vs mean of healthy) Yco = mean(L.Y(L.C<0.5)); L.C(L.Y<Yco) = 0; % add the psuedo-lesions if ~isempty(L.psu) L.Y = [L.Y;L.psu(1,:)']; L.C = [L.C;L.psu(2,:)']; end B = mapupdate(L.B,L.Y,L.C,L.lam,alpha); function [] = plotdistribs(D,DS) ax = gca; hold(ax,'on'); ylim([-0.1,+1.1]); ylabel('PMF ($f_y(y)$)','interpreter','latex'); xlim([ 0 , 1 ]); xlabel('Graylevel (y)' ,'interpreter','latex'); clr = [lighten(blu(1),0.5);red(1)]; y = linspace(0,1,512); for c = 1:2 P{c} = 0.01*DS{3}(c)*normpdf(y,DS{1}(c),DS{2}(c)); P{c}(1) = 0; P{c}(end) = 0; fill(y,0.15*P{c},lighten(clr(c,:),0.5),'edgecolor',clr(c,:)); end plot(D.Y(:),D.C(:),'ko','linewidth',2); tightsubs(1,1,ax,[0.2,0.2,0.12,0.12]);
github
uoguelph-mlrg/vlr-master
standardize.m
.m
vlr-master/vlr/standardize.m
1,523
utf_8
8a6def5228954a8f30f929a71f83d8e7
% STANDARDIZE % This function standardizes the data in Yn, selected by the mask M % The standardization type is a string, and additional required % parameters should be passed to to varargin % If M is empty, then stdfun operates along the 1st dimension of Y only. function [Ynt] = standardize(Yn,M,type,varargin) % define the transformation switch type case 'na' % none! stdfun = @(y)(y); case 'rm' % range matching (quantiles specified) qmm = varargin{1}; ymm = quantile(Yn,qmm,1); stdfun = @(y)(bsxfun(@rdivide,bsxfun(@minus,y,ymm(1,:)),diff(ymm))); case 'ss' % statistical standardization stdfun = @(y)(bsxfun(@rdivide,bsxfun(@minus,y,mean(y,1)),4*std(y,[],1))+0.5); case 'he' % histogram equalization stdfun = @(y)(bsxfun(@(y,i)histeq(y./max(y)),y,1:size(y,2))); %stdfun = @(y)(bsxfun(@(y,i)histeq(im2double(y)),y,1:size(y,2))); case {'m1','m2','m3'} % histogram matching (target specified) pdf = varargin{1}; stdfun = @(y)(bsxfun(@(y,i)histeq(y./max(y),pdf),y,1:size(y,2))); %stdfun = @(y)(bsxfun(@(y,i)histeq(im2double(y),pdf),y,1:size(y,2))); case 'ny' % nyul standardization qout = varargin{1}; stdfun = @(y)(bsxfun(@(y,i)nyulstd(y,qout),y,1:size(y,2))); otherwise error('Unknown standardization type: %s.',type); end % apply the transformation if ~isempty(M) Ynt = zeros(size(Yn),class(Yn)); Ynt(logical(M)) = stdfun(Yn(logical(M))); else Ynt = stdfun(Yn); end % clip outliers if ~strcmp(type,'na') Ynt = clip(Ynt,[0,1]); end
github
uoguelph-mlrg/vlr-master
maketrainingdata.m
.m
vlr-master/vlr/maketrainingdata.m
2,621
utf_8
fde7f464133f1e5f8761d90c9928ec78
% MAKETRAININGDATA(h) % This function loads and preprocesses all training data specified by h. % On completion, these data are saved to file to save time. % If a save file already exists with the specified name, it is loaded. function [h,Y,C] = maketrainingdata(h) [h,N] = init(h); Y = nan(N.v,h.Ni*N.a,'single'); % graylevel data C = nan(N.v,h.Ni*N.a,'single'); % labels % for all subjects... for n = 1:h.Ni [h,Yn,Cn] = loadone(h,n); [Ynt] = prepone(h,Yn); [h,Y,C] = sampleone(h,Y,C,Ynt,Cn,n,N); statusbar(h.Ni,n,h.Ni/3,1); end % nan -> 0 Y(isnan(Y) | isnan(C)) = 0; C(isnan(Y) | isnan(C)) = 0; function [h,N] = init(h) % load the MNI-space brain mask h.M = brainfun; % resize the mask by the VLR fitting factor h.sam.Mr = ndresize(h.M,h.sam.resize); N.s = size(h.sam.dx,1); % shift augmentation count N.f = h.sam.flip+1; % flip augmentation count N.a = N.s*N.f; % total augmentation count N.v = sum(h.sam.Mr(:)); % number of fitted voxels function [h,Yn,Cn] = loadone(h,n) % load the MNI-space FLAIR and label image h.name.img{n} = imglutname('mni:FLAIRm',h.Ni,n); Yn = readnicenii(imglutname('mni:FLAIRm',h.Ni,n),h.M,[0,1]); Cn = readnicenii(imglutname('mni:mans', h.Ni,n),h.M); Cn = Cn./max(Cn(:)); % in case not \in [0,1] function [Ynt] = prepone(h,Yn) % graylevel standardization Ynt = standardize(Yn,h.M,h.std.type,h.std.args{:}); function [h,Y,C] = sampleone(h,Y,C,Yn,Cn,n,N) % Resize the image, perform data augmentation transformations % then vectorize only the brain voxels for efficiency r = h.sam.resize; for f = 1:N.f for s = 1:N.s xs = h.sam.dx(s,:); Yr = flipshiftresize(Yn,f,xs,r); % graylevels Cr = flipshiftresize(Cn,f,xs,r); % label ia = (n-1)*N.a + (f-1)*N.s + s; Y(:,ia) = Yr(h.sam.Mr); C(:,ia) = Cr(h.sam.Mr); h.sam.i(ia) = n; end end function [Irsf] = flipshiftresize(I,f,s,r) if f==1, If = I(:,1:+1:end,:); % original elseif f==2, If = I(:,end:-1:1,:); % flipped end Irsf = ndresize(imshift(If,s),r); % shift & resize function [IS] = imshift(I,T) % easier to use than matlab imshift if all(T==[0,0,0]), IS = I; elseif all(T==[0,0,+1]), IS = cat(3, I(:,:,1+1:end), I(:,:, end)); elseif all(T==[0,0,-1]), IS = cat(3, I(:,:, 1), I(:,:,1:end-1)); elseif all(T==[0,+1,0]), IS = cat(2, I(:,1+1:end,:), I(:, end,:)); elseif all(T==[0,-1,0]), IS = cat(2, I(:, 1,:), I(:,1:end-1,:)); elseif all(T==[+1,0,0]), IS = cat(1, I(1+1:end,:,:), I( end,:,:)); elseif all(T==[-1,0,0]), IS = cat(1, I( 1,:,:), I(1:end-1,:,:)); else error('Not implemented: please use standard imshift instead.'); end
github
uoguelph-mlrg/vlr-master
arbiter.m
.m
vlr-master/vlr/arbiter.m
2,380
utf_8
d162d6e034a1db167ab37fffd16b831f
% ARBITER % This function runs one entire cross validation % of the segmentation model: % 1. Load the experiment hyperparameters % 2. Load training data % 3. For all cross valiation folds: % 3.1. Define the training-testing indices % 3.2. Fit the VLR model % 3.3. Inference & post processing on test images % 3.4. Performance evaluation on test images % 3.5. Save results to file % 4. Summarize the results with automated plotting % and PDF report generation. % `h` can be defined as in hypdef_final, hypdef_base, etc. function [] = arbiter(h) % ================================================== statusupdate(80); statusupdate([h.name.full]); statusupdate(); statusupdate(80); % -------------------------------------------------- statusupdate('loading training data...'); statusupdate(); [h,Y,C,Yx,Cx] = gettrainingdata(h); t = []; % ================================================== for c = 1:numel(h.cv.N) statusupdate(80); % ------------------------------------------------ statusupdate(c,numel(h.cv.N)); statusupdate(); [idx] = makeidx(h,c); % ------------------------------------------------ statusupdate('computing regression...'); statusupdate(); [o.B{c}] = trainlogreg(h,idx,Y,C); % ------------------------------------------------ statusupdate('optimizing threshold...'); statusupdate(); [o.thr(c)] = thropt(h,Yx,Cx,o.B{c},find(idx.i.train)); % ------------------------------------------------ statusupdate('measuring test performance...'); %[o,t] = performancebat(h,o,t,idx); % fast matlab spawns [o,t] = performancebati(h,o,t,idx); % slow singleton %[o,h] = performancetest(h,'loso'); % for LPA, etc. % ------------------------------------------------ statusupdate('saving...'); statusupdate(); save(h.save.name,'h','o','t','-v7.3'); end statusupdate(80); % ================================================== statusupdate('summarizing results...'); statusupdate(); summarizeresults(h, o, t); % -------------------------------------------------- statusupdate('done');statusupdate(); statusupdate(80); % ================================================== function [B] = trainlogreg(h,idx,Y,C) % append the pseudolesions [Y,C,idx] = dataregfun(h.lr.reg.py,h.lr.reg.pc,Y,C,idx); % compute the regression [b] = vlrmap(h, Y(:,idx.s.train), C(:,idx.s.train)); % reconstruct the parameter images B = reconparams(h, b);
github
uoguelph-mlrg/vlr-master
hypdef.m
.m
vlr-master/vlr/hypdef.m
1,254
utf_8
3dcbe6c806a1204b2a79a8ffa6030897
% HYPDEF(h) % This function defines all model hyperparameters for the segmentation pipeline. % This version (vs _final and _baseline) is for experimenting with parameters. % Some shorthands used here are expanded by hypfill. function [h] = hypdef(h) % flag-like names h.name.key = 'test'; % h.name.key = 'LPA'; h.name.data = 'mni96'; % h.name.data = 'mni109'; h.name.cv = 'loso'; % h.name.cv = 'nocv'; % scanner parameters h.cmap = inferno; h.Ni = []; h.scan.idx = [1,2,3,4,5,6,9]; % h.scan.idx = [1,2,3,4,5,6,9,7,8,10]; h.scan.clr = rainbow7; % h.scan.clr = rainbow10; % sampling parameters h.sam.fresh = 0; h.sam.resize = 0.5; h.sam.dx = kernelshifts(binsphere(1)); h.sam.flip = 1; % grey standardization parameters h.std.type = 'm3'; h.std.args = {pmfdef('lskew')}; % logistic regression parameters h.lr.Nit = 30; h.lr.B = [0,0]; h.lr.alpha = 1; h.lr.reg.la = 1e-3; h.lr.reg.py = [1]; h.lr.reg.pc = [1]; h.lr.pad = [-20,20];%[-1.5;1]; h.lr.pp.filter= @(B)(gaussfilter(B,[2,2,2])); % post processing parameters h.pp.saveles = 'test'; h.pp.thr.def = 0.5; h.pp.thr.Nit = 30; h.pp.minmm3 = 5; % cross validation and scanner h = hypfill(h);
github
uoguelph-mlrg/vlr-master
performancebat.m
.m
vlr-master/vlr/performancebat.m
3,466
utf_8
d1db4ab8ae539f5c6d787eb4031b03be
% PERFORMANCEBAT % This function analyzes the performance of the VLR model using the fitted % parameter images in o.B{idx.c} -- i.e. one cross validation fold. % To do this efficiently, several MATLAB instances are spawned to compute % the anaysis in parallel. The function called by the spawns is performancei. % Data for each each analysis (h,B,thr) are saved to a .mat file. % Temporary images for each subject (for spmdeform) are saved in % a subject-specific folder. % The temporary folders are generated by tmpname. function [o,t] = performancebat(h,o,t,idx) [file] = filenames(idx); % create the filenames cleanup(file); % cleanup tmp files & folders (pre) writemat(file,h,o,idx); % write the common mat file for loading writebat(file,h,idx); % write the bat file (and wait for it to be done) while(~fileready(file.bat,1000) || ~fileready(file.mat.c,1000)), pause(0.1); end eval(['!call ',file.bat,' &']); % execute the bat file %eval(['!start cmd /c ',file.bat,' &']); % execute the bat file [o,t] = getresults(file,h,o,t,idx); % collect the results as the become available cleanup(file); % cleanup tmp files & folders (post) function [file,cidx] = filenames(idx) cidx = find(idx.i.valid); file.tmp = tmpname('*'); file.bat = fullfile(pwd,'tmp.bat'); file.mat.c = tmpname('c',idx.c,'.mat'); for n = 1:numel(cidx) file.mat.i{n} = tmpname('i',cidx(n),'.mat'); end function [] = writemat(file,h,o,idx) B = o.B{idx.c}; thr = o.thr(idx.c); save(file.mat.c,'h','B','thr'); function [] = writebat(file,h,idx) % the code for execution code = 'performancei(%d,[#]);'; % group the indices cidx = find(idx.i.valid); Ni = numel(cidx); Nib = ceil(Ni./h.cv.cpu); bat = {[10]}; % create the file contents for n = 1:min(h.cv.cpu,Ni) i = num2cell(cidx(n:h.cv.cpu:Ni)); nib = numel(i); numstr = sprintf(repmat('%02.f,',[1,nib]),i{:}); codi = sprintf(strrep(code,'#',numstr),idx.c); bat{end+1} = ['@echo ANALYZING IMAGES ',numstr,'...',10]; bat{end+1} = ['@',matx(codi),10]; %bat{end+1} = ['@timeout 1 > nul',10]; end bat{end+1} = 'exit'; % write the file fid = fopen(file.bat,'w'); fwrite(fid,cat(2,bat{:})); fclose(fid); function [o,t] = getresults(file,h,o,t,idx) cidx = find(idx.i.valid); Ni = numel(cidx); done = false(size(cidx)); % while waiting for some mat files to finish while(~all(done)) % check all for n = 1:Ni i = cidx(n); % if file exists and hasn't been modified in 2500 ms if fileready(file.mat.i{n},2500) load(file.mat.i{n},'p'); % load and distribute results o.si(i) = p.si; o.pr(i) = p.pr; o.re(i) = p.re; o.ll(i) = p.ll; o.lle(i) = p.lle; t.TP{i} = p.TP; t.FP{i} = p.FP; t.FN{i} = p.FN; delete(file.mat.i{n}); % then delete the mat file done(n) = true; % check this one off statusbar(Ni,sum(done),h.Ni/3,1); end end pause(0.1); end % saving every B consumes too much memory in LOO-CV if strcmp(h.name.cv,'loo'); o.B{idx.c} = {}; end function [] = cleanup(file) if exist(file.bat,'file') delete(file.bat); end if exist(file.mat.c,'file') delete(file.mat.c); end droot = fileparts(file.tmp); F = dir(file.tmp); F = F(arrayfun(@(x)(~any(strcmp(x.name,{'.','..'}))),F)); for f = 1:numel(F) pathname = fullfile(droot,F(f).name); if exist(pathname,'dir') rmdir(pathname,'s'); elseif exist(pathname,'file') delete(pathname); end end
github
uoguelph-mlrg/vlr-master
hypfill.m
.m
vlr-master/vlr/hypfill.m
2,415
utf_8
fb649bd4b03098223811ef61e8d2d42d
% hypdef(h) % This function fills in the repetitive parameters and info related to one VLR % cross validation run. % hypdef must be called first. function [h] = hypfill(h) % load scanner parameters [names,short,N,vsize,tERI,Y4] = arrayfun(@scanparams,h.scan.idx,'un',0); h.scan.names = names; h.scan.short = short; h.scan.N = cell2mat(N); n = 1; for i = 1:numel(h.scan.N) for ni = 1:h.scan.N(i) h.scan.i (n) = i; h.scan.vsize(n,:) = vsize{i}; h.scan.tERI (n,:) = tERI{i}; h.scan.Y4 (n,:) = Y4{i}; n = n + 1; end end h.Ni = sum(h.scan.N); % cross validation parameters switch h.name.cv case 'loso' h.cv.N = h.scan.N; h.cv.i = []; for i = 1:numel(h.cv.N) h.cv.i(end+1:end+h.cv.N(i)) = i; end h.cv.names = h.scan.names; case 'kfcv' h.cv.N = h.scan.N; idx = kfcvidx(h); for i = 1:numel(idx) h.cv.i(idx{i}) = i; end h.cv.names = arrayfun(@(i)sprintf('Group %02.0f',i),1:max(h.cv.i),'un',0); case 'loo' h.cv.N = ones([1,h.Ni]); h.cv.i = 1:h.Ni; h.cv.names = arrayfun(@(i)num2str(i,'%02.0f'),1:96,'un',0); case 'nocv' h.cv.N = h.Ni; h.cv.i = ones(1,h.cv.N); h.cv.names = {'All'}; case 'osaat' h.cv.N = ones([1,h.Ni]); h.cv.i = 1:h.Ni; h.cv.names = arrayfun(@(i)num2str(i,'%02.0f'),1:96,'un',0); otherwise error('Unrecognized CV option: %s',h.name.cv); end h.cv.cpu = 5; % savenames outroot = 'C:\Users\Jesse\Documents\Research\working-docs\results\'; h.name.resize = ['r=',num2str(h.sam.resize,'%1.1f')]; h.name.aug = ['a=',num2str([h.sam.flip,size(h.sam.dx,1)>1],'%0.0f')]; h.name.train = [h.name.data,'-train-',... h.std.type, '-',... h.name.resize, '-',... h.name.aug]; if h.name.key(1) == 'e' h.name.full = [h.name.data, '-',... h.std.type, '-',... h.name.resize,'-',... h.name.key, '-',... h.name.cv]; else h.name.full = [h.name.data,'-',h.name.key]; end h.save.train = fullfile('data','train',[h.name.train,'.mat']); h.save.name = fullfile('data', [h.name.full,'.mat']); h.save.ples = fullfile('data', [h.name.full,'-ples.mat']); h.save.outdir = fullfile(outroot, h.name.full); h.save.pdf = fullfile(h.save.outdir,h.name.full); h.save.figdir = fullfile(h.save.outdir,'figs');
github
uoguelph-mlrg/vlr-master
performancetest.m
.m
vlr-master/vlr/performancetest.m
2,061
utf_8
de5a6bc62a657262ddfaf21306189f8b
% PERFORMANCETEST % This function analyzes the performance of *any* segmentation model, % provided the initial segmentations (can be probabilistic) are saved as nii. % These segmentations are loaded using imglutname with the key specified. % Segmentations are thresholded using either the default threshold specified % in h.pp.thr.def, or loaded from the file: % ['data/',h.name.data,'-thropt-',key,'.mat'] % (if the threshold has been optimized in cross validation, for instance). function [o,h] = performancetest(h, key, o, flag) if nargin < 3, flag = ''; end % try to load optimal thresholds [h] = loadthropt(h,key,flag); for i = 1:h.Ni % load nii images from file (no mrf) [C,G,x] = loadkeyimg(h,key,i); % analyze performance [o.si(i),o.pr(i),o.re(i),o.ll(i),o.lle(i),TP,FP,FN] = performance(C,G,x/10); % store the TP FP FN [t.FP{i},t.TP{i},t.FN{i}] = ptx2mni(h.Ni, i, single(FP), single(TP), single(FN)); % update status bar statusbar(h.Ni,i,h.Ni/3,1); fclose('all'); end function [C,G,x] = loadkeyimg(h,key,i) % read and threshold the images for comparison [C,x] = readnicenii(imglutname(lower(key), h.Ni,i)); [G] = readnicenii(imglutname('mans', h.Ni,i)); G = G > 0.5; C = C > h.pp.thr.opt(h.cv.i(i)); function [h] = loadthropt(h,key,flag) % try to load the optimal threshold file, if it exists % make sure it has the same data key as the current data if isfield(h.pp.thr,'opt') assert(strcmp(h.name.key,key) || strcmp(flag,'-h'),[... 'Keys do not match - h: ''%s'', given: ''%s''\n'... 'Are you sure you want to use these optimal thresholds?\n',... 'If so: use the flag ''-h''.'],... h.name.key, key); else throptmat = ['data/',h.name.data,'-thropt-',key,'.mat']; assert(exist(throptmat,'file') || strcmp(flag,'-d'),[... 'Can''t find optimal thresholds file: ''%s''\n',... 'To use h.pp.thr.def instead, use the flag ''-d''.'],... throptmat); if exist(throptmat,'file') load(throptmat); h.pp.thr.opt = thr; else h.pp.thr.opt = h.pp.thr.def * ones(size(h.cv.N)); end end
github
uoguelph-mlrg/vlr-master
thropt.m
.m
vlr-master/vlr/thropt.m
1,430
utf_8
2cb09e1e33ebe69e6a070f0a6d030c18
% THROPT % This function uses fminsearch to optimize the threshold (thr) applied to % probabilistic predictions of the lesion class (all data vectorized). % The objective is to maximize the mean similarity index on the training data. function [thr] = thropt(h,Y,C,B,nidx) % compute the probabilistic output statusupdate(1,2); for i = 1:numel(nidx) [B0,B1,M] = mni2ptx(h.Ni,nidx(i),B{:},h.M); Q{i} = 1./(1+exp(-bsxfun(@plus,B0(M>0.5),bsxfun(@times,Y{nidx(i)}(:),B1(M>0.5))))); G{i} = C{nidx(i)}(:); statusbar(numel(nidx),i,h.Ni/3,1); end % define the inputs of the optimization by fminsearch optfun = @(t)objective(Q,G,t); udfun = @(x,ovals,state)updatefun(h.pp.thr.Nit,h.Ni/3,x,ovals,state); fminopt = optimset('maxiter',h.pp.thr.Nit,'OutputFcn',udfun,'Display','off'); % run the optimization statusupdate(2,2); [thr,~,flag] = fminsearch(optfun, h.pp.thr.def, fminopt); % print complete statusbar if early convergence statusbar(h.pp.thr.Nit,h.pp.thr.Nit,h.Ni/3,1); function [J] = objective(Q,C,thr) for i = 1:numel(Q) Qi = Q{i} > thr; Ci = C{i} > 0.5; SI(i) = 2*sum(Qi.*Ci) ./ sum(Qi+Ci); end SI(isnan(SI)) = []; J = -gather(mean(SI)); % gather mean from GPU %fprintf('%.03f\n',J); function [stop] = updatefun(Nit,wid,~,ovals,~,~) % statusbar to show progress (might stop early if convergence) stop = false; if (ovals.iteration > 0) && (ovals.iteration < Nit) statusbar(Nit,ovals.iteration,wid,1); end
github
uoguelph-mlrg/vlr-master
performancebati.m
.m
vlr-master/vlr/performancebati.m
1,490
utf_8
dc10dc2d865b4ef8736f05a83956e80c
% PERFORMANCEBATI % This function analyzes the performance of the VLR model using the fitted % parameter images in o.B{idx.c} -- i.e. one cross validation fold. % This function does not require additional matlab spawns, unlike % performancebat, and rolls the functionality of performancebat and performancei % together in one (slower) function. function [o,t] = performancebati(h,o,t,idx) cidx = find(idx.i.valid); for k = 1:numel(cidx) i = cidx(k); % load all images into pt space [I,x] = readnicenii(imglutname('FLAIRm',h.Ni,i)); [G] = readnicenii(imglutname('mans', h.Ni,i)); % warp the B images to pt space [Bi{1},Bi{2},Mi] = mni2ptx(h.Ni,i,o.B{idx.c}{:},h.M); % compute the prediction G = G > 0.5; Y = standardize(I,Mi,h.std.type,h.std.args{:}); eta = Bi{1} + Bi{2}.*Y; C0 = Mi./(1+exp(-eta)); % save the prediction before post-processing if h.pp.saveles writenii(imrotate(C0,180),imglutname(h.pp.saveles,h.Ni,i,0),... imglutname('mans', h.Ni,i,1),'double'); end % post-processing C = postpro(h,C0,x,o.thr(idx.c)); % analyze performance [p.si,p.pr,p.re,p.ll,p.lle,TPi,FPi,FNi] = performance(C,G,x/10); % warp the TP FP FN [p.FP,p.TP,p.FN] = ptx2mni(h.Ni,i,FPi,TPi,FNi); % gather the results into output data structure o.si(i) = p.si; o.pr(i) = p.pr; o.re(i) = p.re; o.ll(i) = p.ll; o.lle(i)= p.lle; t.TP{i} = p.TP; t.FP{i} = p.FP; t.FN{i} = p.FN; statusbar(numel(cidx),k,h.Ni/3,1); end
github
uoguelph-mlrg/vlr-master
maketestingdata.m
.m
vlr-master/vlr/maketestingdata.m
996
utf_8
c34b3073ca9d12ed634fe2fccc77522e
% MAKETESTINGDATA(h) % This function loads and preprocesses all testing data specified by h. % On completion, these data are saved to file to save time. % If a save file already exists with the specified name, it is loaded. function [Y,C] = maketestingdata(h) Y = {}; % graylevel data C = {}; % labels % for all subjects... for n = 1:h.Ni [Yn,Cn] = loadone(h,n); [Ynt,M] = prepone(h,Yn,n); [Y,C] = sampleone(Y,C,Ynt,Cn,M,n); statusbar(h.Ni,n,h.Ni/3,1); end function [Yn,Cn] = loadone(h,n) % load the MNI-space FLAIR and label image Yn = readnicenii(imglutname('FLAIRm',h.Ni,n),h.M,[0,1]); Cn = readnicenii(imglutname('mans', h.Ni,n)); Cn = Cn./max(Cn(:)); % in case not \in [0,1] function [Ynt,M] = prepone(h,Yn,n) % warp the brain mask to ptx M = mni2ptx(h.Ni,n,h.M); % graylevel standardization Ynt = standardize(Yn,M,h.std.type,h.std.args{:}); function [Y,C] = sampleone(Y,C,Yn,Cn,M,n) % Vectorize only the brain voxels for efficiency Y{n} = Yn(M > 0.5); C{n} = Cn(M > 0.5);
github
uoguelph-mlrg/vlr-master
performance.m
.m
vlr-master/vlr/performance.m
671
utf_8
24c84d58883a8b0981a234e047311af5
% PERFORMANCE % This function computes the performance metrics, and TP/FP/FN images for one % comparison of Ce (estimated) and Ct (true) function [si,pr,re,ll,lle,TP,FP,FN] = performance(Ce,Ct,x) % TP/FP/FN images TP = Ce & Ct; FP = Ce & ~Ct; FN = ~Ce & Ct; % TP/FP/FN voxel counts nTP = sum(TP(:)); nFP = sum(FP(:)); nFN = sum(FN(:)); % metrics si = (2*nTP) ./ ((2*nTP) + nFP + nFN + eps); % similarity index pr = nTP ./ (nTP + nFP + eps); % precision re = nTP ./ (nTP + nFN + eps); % recall % lesion loads if nargin == 2, x = 1; end % assume 1mm3 voxel volume ll = sum(Ct(:))*prod(x); % true lle = sum(Ce(:))*prod(x); % estimated
github
uoguelph-mlrg/vlr-master
gettrainingdata.m
.m
vlr-master/vlr/gettrainingdata.m
739
utf_8
06e258e3bcb061bf489b93f145eb055a
% GETTRAININGDATA % This function either: % - preps the training data from scratch (h.sam.fresj = 1) % - loads the training data from file (h.sam.fresj = 0) % and returns the results in % h (some metadata changed) and % Y and C both size: [V,N], for V voxels, and N subjects function [h,Y,C,Yx,Cx] = gettrainingdata(h) if ~exist(h.save.figdir), mkdir(h.save.figdir); end if h.sam.fresh statusupdate(1,2); [h,Y,C] = maketrainingdata(h); statusupdate(2,2); [Yx,Cx] = maketestingdata(h); ho.M = h.M; ho.sam.Mr = h.sam.Mr; ho.sam.i = h.sam.i; save(h.save.train,'-v7.3','Y','C','Yx','Cx','ho'); else load(h.save.train,'Y','C','Yx','Cx','ho'); h.M = ho.M; h.sam.Mr = ho.sam.Mr; h.sam.i = ho.sam.i; end
github
uoguelph-mlrg/vlr-master
postpro.m
.m
vlr-master/vlr/postpro.m
418
utf_8
d6b9925cda1df5ec30733c99cbf56010
% POSTPRO % This function computes the post-processing for a single image C: % 1. thresholding % 2. minimum lesion size (converted here from voxels to pixel count); 26 connect function [C] = postpro(h,C,x,thr) % defaults: if nargin < 3, x = [1,1,1]; end % assumed voxel size = [1,1,1] if nargin < 4, thr = h.pp.thr.def; end % non-optimized threshold C = C > thr; C = bwareaopen(C,ceil(h.pp.minmm3*prod(x)),26);
github
uoguelph-mlrg/vlr-master
vlrmap.m
.m
vlr-master/vlr/vlrmap.m
2,674
utf_8
91ca7fb933695293f8b4ed78452712b6
% VLRMAP % This function estimates a [V,2] matrix of beta parameters (B) for V parallel % logistic regression models. % The training data are specified in Y (size: [V,N,K]) and C (size: [V,N,1]) % V is the number of voxels % N is the number of training examples % K is the number of features (must be K=1 here for efficient implementation) % Uses gpuArray -- if you don't have GPU set up, just remove all calls of % gpuArray, gather, and gpuDevice. You can set Nb = 1 and Nd = V. function [B,dB] = vlrmap(h,Y,C) [V,N,K] = size(Y); dBout = (nargout == 2); % expand the parameters to match size if not done already B = h.lr.B; % size(B) needs to be [V, 1, 2] for multiply compatibility if size(B,1) == 1 B = padarray(shiftdim(B,-1),[V-1,0,0],'post','replicate'); end if dBout dB = zeros([size(squeeze(B)),h.lr.Nit]); end % prepend a row of ones for multipl compatibility Y = padarray(Y,[0,0,1],1,'pre'); % transform the features by the labels for efficient implementation C(C>=0.5) = +1; C(C< 0.5) = -1; for k = 1:K+1 YS(:,:,k) = Y(:,:,k).*C; end clearvars('C','Y'); % computing max batch size for GPU GPU = gpuDevice(1); Nf = 9; % empirical memory scale factor Nb = ceil(4*(V*N*Nf)/GPU.FreeMemory); % 4-bytes x [size] x Nf vars Nd = ceil(V/Nb); % for each batch (if cannot fit all data on GPU) for b = 1:Nb % select the batch indices for GPU bi = ((b-1)*Nd)+1 : min(b*Nd,V); % transfer to GPU Yb = gpuArray(single(YS(bi,:,:))); % features Bb = gpuArray(single( B(bi,:,:))); % beta % run the optimization statusupdate(b,Nb); for t = 1:h.lr.Nit if dBout [Bb,dBbt] = update(Yb,Bb,h.lr.alpha,h.lr.reg.la); dB(bi,:,t) = squeeze(gather(dBbt)); else Bb = update(Yb,Bb,h.lr.alpha,h.lr.reg.la); end % statusbar statusbar(h.lr.Nit,t,h.Ni/3,1); end % gather from GPU B(bi,:,:) = gather(Bb); reset(GPU); end B = squeeze(B); % [V,1,2] -> [V,2] function [Bout,dB] = update(Y,B0,alpha,la) % compute the activation B = padarray(B0,[0,size(Y,2)-1,0],'replicate','post'); S = B.*Y; S = S(:,:,1) + S(:,:,2); % could be sum(B.*Y,3) but CUDA error win10 S = 1./(1+exp(S)); clear('B'); % compute the Hessian elements A = S.*(1-S); H11 = sum(A.*Y(:,:,1).*Y(:,:,1), 2);% + la; H22 = sum(A.*Y(:,:,2).*Y(:,:,2), 2) + la; H12 = sum(A.*Y(:,:,1).*Y(:,:,2), 2); Hd = H11.*H22 - H12.*H12; % determinate for inversion clear('A'); % compute the gradient elements G1 = sum(Y(:,:,1).*S,2);% - la.*B0(:,:,1); G2 = sum(Y(:,:,2).*S,2) - la.*B0(:,:,2); clear('S'); % compute the update dB = reshape([(H22.*G1 - H12.*G2)./Hd, (H11.*G2 - H12.*G1)./Hd],size(B0)); % apply the update Bout = B0 + alpha*dB;
github
uoguelph-mlrg/vlr-master
performancei.m
.m
vlr-master/vlr/performancei.m
1,664
utf_8
25e09ad92ee8d56309df6d3f984a9ad0
% PERFORMANCEI % This function computes the performance analysis for a number of images, % selected by ivec (indices in 1:h.Ni). % This function expects the file tpmname('c',c,'.mat') to exist, and contain the % variables h, B, thr, where B is in MNI space. % B is warped to patient space using mni2ptx, inference is computed, post- % processing is applied, then performance is analyzed. % TP, FP, and FN images are warped from pt space to MNI space for later use. % Outputs are saved in the variable p to tmpname('i',i,'.mat'). function [] = performancei(c,ivec) load(tmpname('c',c,'.mat'),'h','B','thr'); for i = ivec % load all images into pt space [I,x] = readnicenii(imglutname('FLAIRm',h.Ni,i)); [G] = readnicenii(imglutname('mans', h.Ni,i)); % warp the B images to pt space [Bi{1},Bi{2},Mi] = mni2ptx(h.Ni,i,B{:},h.M); % compute the prediction G = G > 0.5; Y = standardize(I,Mi,h.std.type,h.std.args{:}); eta = Bi{1} + Bi{2}.*Y; C0 = Mi./(1+exp(-eta)); % save the prediction before post-processing if h.pp.saveles writenii(imrotate(C0,180),imglutname(h.pp.saveles,h.Ni,i,0),... imglutname('mans', h.Ni,i,1),'double'); end % post-processing C = postpro(h,C0,x,thr); % analyze performance [p.si,p.pr,p.re,p.ll,p.lle,TPi,FPi,FNi] = performance(C,G,x/10); % warp the TP FP FN [p.FP,p.TP,p.FN] = ptx2mni(h.Ni,i,FPi,TPi,FNi); % write to file if not captured output save(tmpname('i',i,'.mat'),'p'); end function [p] = pdef() p.si = nan; p.pr = nan; p.re = nan; p.ll = nan; p.lle = nan; p.FP = nan([145,121,121]); p.TP = nan([145,121,121]); p.FN = nan([145,121,121]);
github
uoguelph-mlrg/vlr-master
summarizeresults.m
.m
vlr-master/vlr/summarizeresults.m
4,432
utf_8
501834c662830166d93fe722b75d5345
% SUMMARIZERESULTS % This function creates various figures, and a table which summarize % the performance of a segmentation model. % These can be compiled in a PDF report using the 'pdf' option, % so long as the necessary template is available (specific to the CV type) function [] = summarizeresults(h, o, t, todo) doall = {'scatter','box','table','tpfpfn','betas','egy','baplot','pdf'}; if nargin == 3 || isempty(todo) % default: run all todo = doall; end if any(strcmp('scatter',todo)), scannerscatter(h,o); end if any(strcmp('box',todo)), llboxplot(h,o); end if any(strcmp('table',todo)), textableres(h,o); end if any(strcmp('baplot',todo)), blandaltmanplot(h,o); end if any(strcmp('tpfpfn',todo)), tpfpfn(h,t); end if any(strcmp('betas',todo)), betas(h,o,3); end if any(strcmp('egy',todo)), egy(h,62); end % 0 | 62 if any(strcmp('pdf',todo)), makepdf(h); end for i = 1:numel(todo) if ~any(strcmp(todo{i},doall)) warning('Unrecognized todo: %s',todo{i}); end end function [] = makepdf(h) tname = strrep(fullfile(['C:\Users\Jesse\Documents\Research\working-docs\',... 'results\templates\template-$.tex']),'$',h.name.cv); fid = fopen([h.save.pdf,'.tex'],'w'); fprintf(fid,strrep(strrep(strrep(fileread(tname),'TITLE',h.name.key),'%','%%'),'\','\\')); fclose(fid); compiletex(h.save.pdf); eval(['!foxitreader "',h.save.pdf,'.pdf" &']); function [] = scannerscatter(h,o) text(nan,nan,'','interpreter','latex'); titles = {'Similarity Index (SI)','Precision (Pr)','Recall (Re)'}; names = {'si','pr','re'}; y = {o.si, o.pr, o.re}; N = max(h.scan.i); ymm = [0,1]; for i = 1:3 plot(zeros(1,N),nan(N),'-'); hold on; polyfitplot(o.ll,y{i},3,linspace(0,max(o.ll),256),0.1); for s = 1:N plot(o.ll(:,h.scan.i==s),y{i}(:,h.scan.i==s),'o','color',h.scan.clr(s,:)); end xlabel('Lesion Load (ml)','interpreter','latex'); ylabel(titles{i},'interpreter','latex'); ylim(ymm); figresize(gcf,[800,550]); printfig(h,resultsname('scat',names{i})); end function [] = llboxplot(h,o) text(nan,nan,'','interpreter','latex'); titles = {'Similarity Index (SI)','Precision (P)','Recall (R)'}; names = {'si','pr','re'}; y = {o.si, o.pr, o.re}; ll3 = 4-sum(bsxfun(@lt,o.ll,[0,4,22,inf]')); labels = {'<4','4-22','>22'}; ymm = [0,1]; for i = 1:3 boxplot(y{i},ll3,'labels',labels,'colors','k','symbol','k+'); xlabel('LL (ml)','interpreter','latex'); ylabel(titles{i},'interpreter','latex'); ylim(ymm); figresize(gcf,[800,550]); tightsubs(1,1,gca,[0.20,0.15,0.05,0.05]); printfig(h,resultsname('box',names{i})); end function [] = betas(h,o,c) c = min(c,numel(o.B)); if isempty(o.B{c}) warning('B is empty. Skipping...'); return; end M = brainfun; I{1} = -o.B{c}{1}./o.B{c}{2}.*M; I{2} = o.B{c}{2}.*M; names = { 'T', 'S'}; cmaps = { h.cmap, h.cmap}; mm = { [0.2,1], [0,60]}; mmx = {[0.2:0.2:1], [0:20:60]}; for i = 1:2 sliceshow(I{i},zfun,mm{i},cmaps{i}); drawnow; printfig(h,resultsname('img',names{i})); vcolorbar(mmx{i},cmaps{i}); printfig(h,resultsname('cmap',names{i})); end function [] = egy(h,n) M = brainfun; J = readnicenii(imgname('mni:FLAIRm',n,1)); I = standardize(J,M,h.std.type,h.std.args{:}); cmap = gray; mm = [0.2,1]; mmx = [0.2:0.2:1]; sliceshow(I,zfun,mm,cmap); drawnow; printfig(h,resultsname('img','Y')); vcolorbar(mmx,cmap); printfig(h,resultsname('cmap','Y')); function [] = tpfpfn(h,t) N = numel(t.TP); Z = zeros(size(t.TP{1})); T{1} = Z; T{2} = Z; T{3} = Z; for i = 1:N T{1} = T{1} + single(t.FP{i})/N; % false positive (red) T{2} = T{2} + single(t.TP{i})/N; % true positive (green) T{3} = T{3} + single(t.FN{i})/N; % false negative (blue) end names = {'FP','TP','FN'}; mm = [0,0.2]; mmx = 0.00 : 0.05 : 0.2; for t = 1:3 figure; sliceshow(T{t},zfun,mm,h.cmap); drawnow; printfig(h,resultsname('img',names{t})); end vcolorbar(mmx,h.cmap); printfig(h,resultsname('cmap','tri')); function [] = blandaltmanplot(h,o) blandaltman(o.ll,o.lle,1,{'LL (mL)','Manual','Auto.'}); printfig(h,resultsname('ba',2)); printfig(h,resultsname('ba',1)); function [] = printfig(h,name) [~,~,ext] = fileparts(name); switch ext case '.png' flag = '-dpng'; case '.eps' flag = '-depsc'; otherwise error('Unrecognized figure format: %s',ext); end print(gcf,fullfile(h.save.figdir,name),flag); close(gcf);
github
uoguelph-mlrg/vlr-master
uber.m
.m
vlr-master/vlr/uber.m
1,822
utf_8
812d50f4223eb9ed3338967b1b050ce6
% UBER % This function literally runs all scripts necessary to generate the thesis. % It would probably take days to run and will almost certainly crash somewhere. % Please explore for the desired set of results to re-create. % [ ] not re-run % [x] checked and re-run function [] = uber() def; % adjust some figure defaults % --------------------------------------------------------- % cross validation batches for parameter comparison exp_hyp(defhypset('ovb')) % [x] exp_hyp(defhypset('cv')) % [ ] exp_hyp(defhypset('ystd')) % [x] exp_hyp(defhypset('lam')) % [x] exp_hyp(defhypset('psu')) % [x] exp_hyp(defhypset('beta')) % [x] % other computation exp_ystd(); % [ ] exp_toyreg(); % [x] % --------------------------------------------------------- % summarizing the results fig_hypcompare({'ovb'}) % [x] fig_hypcompare({'cv'}) % [x] fig_hypcompare({'ystd'}) % [x] fig_hypcompare({'lam'}) % [x] fig_hypcompare({'beta'}) % [x] fig_final(); % [x] fig_ystd(); % [x] % --------------------------------------------------------- % stand-alone figures (mostly don't need the above to run) plot_B_reparam(); % [x] plot_basic_lr(); % [x] plot_converge(); % [x] plot_mle_challenges(); % [x] plot_mri_decay_3d(); % [x] plot_mri_spin_echo(); % [x] plot_synthetic_histmatch(); % [x] plot_y_sep_objectives(); % [x] show_beta_r(); % [x] show_bias(); % [x] show_brain_mask(); % [x] show_m08_revise_manuals(); % [x] show_plot_simflair(); % [x] show_registration(); % [x] show_tikzfigs(); % [x] show_tpfpfn_raw_thropt(); % [x] show_tpms(); % [x] show_wmhdist(); % [x] kfcvidx(hypdef_final,true); % [x]
github
uoguelph-mlrg/vlr-master
gausssep.m
.m
vlr-master/vlr/ops/gausssep.m
855
utf_8
1717f9ffcef50feed23b76944f34d396
% [G] = gausssep(sig) % % GAUSSSEP generates N 1D Gaussian probability density functions having the % standard deviations specified in the vector sig. Each element in sig % corresponds to a dimension. Can be used for separate 1D convolutions. % % Inputs: % sig - N-vector corresponding to the standard deviations requested for each % of N dimensions. % % wid - (optional) width of the kernel (in both directions) in units of % standard deviations. Default: 3 % % Outputs: % G - N 1-D Gaussian kernels (cell). % % Jesse Knight 2016 function [G] = gausssep(sig,wid) if nargin == 1 wid = 3; % how many std to include? end N = numel(sig); % num dims for n = 1:N R = floor(-wid*sig(n)):ceil(+wid*sig(n)); % sampling points in each dim G{n} = shiftdim(normpdf(R,0,sig(n)),2-n); G{n} = G{n}./sum(G{n}(:)); end
github
uoguelph-mlrg/vlr-master
gauss.m
.m
vlr-master/vlr/ops/gauss.m
1,197
utf_8
8aff4cbc002952e74befd8a0c6c12d5f
% [G] = gauss(sig) % % GAUSS generates an N-D Gaussian probability density function having the % standard deviations specified in the vector sig. Each element in sig % corresponds to a dimension. Guaranteed to have unit norm. % % Inputs: % sig - N-vector corresponding to the standard deviations requested for each % of N dimensions. % % wid - (optional) width of the kernel (in both directions) in units of % standard deviations. Default: 3 % % Outputs: % G - N-D Gaussian kernel. % % Jesse Knight 2016 function [G] = gauss(sig,wid) if nargin == 1 wid = 3; % how many std to include? end N = numel(sig); % num dims X = cell(1,N); % N-D grid coordinates W = cell(1,N); % store size of the kernel later for n = 1:N R{n} = floor(-wid*sig(n)):ceil(+wid*sig(n)); % sampling points in each dim end [X{:}] = ndgrid(R{:},1); % transform to grid N-D arrays W(:) = cellfun(@numel,R,'uni',false); % track exact size for n = 1:N X{n} = X{n}(:); % vectorize the grids for mvnpdf below end G = mvnpdf(cat(2,X{:}),zeros(1,N),sig); % compute vectorized kernel values G = reshape(G,cat(2,W{:},1)); % reshape to N-D array G = G./sum(G(:)); % assert unit norm
github
uoguelph-mlrg/vlr-master
ICC.m
.m
vlr-master/vlr/ops/ICC.m
6,497
utf_8
8eeda47d684e52b93442490c92158ed0
function [r, LB, UB, F, df1, df2, p] = ICC(M, type, alpha, r0) % Intraclass correlation % [r, LB, UB, F, df1, df2, p] = ICC(M, type, alpha, r0) % % M is matrix of observations. Each row is an object of measurement and % each column is a judge or measurement. % % 'type' is a string that can be one of the six possible codes for the desired % type of ICC: % '1-1': The degree of absolute agreement among measurements made on % randomly seleted objects. It estimates the correlation of any two % measurements. % '1-k': The degree of absolute agreement of measurements that are % averages of k independent measurements on randomly selected % objects. % 'C-1': case 2: The degree of consistency among measurements. Also known % as norm-referenced reliability and as Winer's adjustment for % anchor points. case 3: The degree of consistency among measurements maded under % the fixed levels of the column factor. This ICC estimates the % corrlation of any two measurements, but when interaction is % present, it underestimates reliability. % 'C-k': case 2: The degree of consistency for measurements that are % averages of k independent measurements on randomly selected % onbjectgs. Known as Cronbach's alpha in psychometrics. case 3: % The degree of consistency for averages of k independent % measures made under the fixed levels of column factor. % 'A-1': case 2: The degree of absolute agreement among measurements. Also % known as criterion-referenced reliability. case 3: The absolute % agreement of measurements made under the fixed levels of the column factor. % 'A-k': case 2: The degree of absolute agreement for measurements that are % averages of k independent measurements on randomly selected objects. % case 3: he degree of absolute agreement for measurements that are % based on k independent measurements maded under the fixed levels % of the column factor. % % ICC is the estimated intraclass correlation. LB and UB are upper % and lower bounds of the ICC with alpha level of significance. % % In addition to estimation of ICC, a hypothesis test is performed % with the null hypothesis that ICC = r0. The F value, degrees of % freedom and the corresponding p-value of the this test are % reported. % % (c) Arash Salarian, 2008 % % Reference: McGraw, K. O., Wong, S. P., "Forming Inferences About % Some Intraclass Correlation Coefficients", Psychological Methods, % Vol. 1, No. 1, pp. 30-46, 1996 % if nargin < 3 alpha = .05; end if nargin < 4 r0 = 0; end [n, k] = size(M); SStotal = var(M(:)) *(n*k - 1); MSR = var(mean(M, 2)) * k; MSW = sum(var(M,0, 2)) / n; MSC = var(mean(M, 1)) * n; MSE = (SStotal - MSR *(n - 1) - MSC * (k -1))/ ((n - 1) * (k - 1)); switch type case '1-1' [r, LB, UB, F, df1, df2, p] = ICC_case_1_1(MSR, MSE, MSC, MSW, alpha, r0, n, k); case '1-k' [r, LB, UB, F, df1, df2, p] = ICC_case_1_k(MSR, MSE, MSC, MSW, alpha, r0, n, k); case 'C-1' [r, LB, UB, F, df1, df2, p] = ICC_case_C_1(MSR, MSE, MSC, MSW, alpha, r0, n, k); case 'C-k' [r, LB, UB, F, df1, df2, p] = ICC_case_C_k(MSR, MSE, MSC, MSW, alpha, r0, n, k); case 'A-1' [r, LB, UB, F, df1, df2, p] = ICC_case_A_1(MSR, MSE, MSC, MSW, alpha, r0, n, k); case 'A-k' [r, LB, UB, F, df1, df2, p] = ICC_case_A_k(MSR, MSE, MSC, MSW, alpha, r0, n, k); end %---------------------------------------- function [r, LB, UB, F, df1, df2, p] = ICC_case_1_1(MSR, MSE, MSC, MSW, alpha, r0, n, k) r = (MSR - MSW) / (MSR + (k-1)*MSW); F = (MSR/MSW) * (1-r0)/(1+(k-1)*r0); df1 = n-1; df2 = n*(k-1); p = 1-fcdf(F, df1, df2); FL = (MSR/MSW) / finv(1-alpha/2, n-1, n*(k-1)); FU = (MSR/MSW) * finv(1-alpha/2, n*(k-1), n-1); LB = (FL - 1) / (FL + (k-1)); UB = (FU - 1) / (FU + (k-1)); %---------------------------------------- function [r, LB, UB, F, df1, df2, p] = ICC_case_1_k(MSR, MSE, MSC, MSW, alpha, r0, n, k) r = (MSR - MSW) / MSR; F = (MSR/MSW) * (1-r0); df1 = n-1; df2 = n*(k-1); p = 1-fcdf(F, df1, df2); FL = (MSR/MSW) / finv(1-alpha/2, n-1, n*(k-1)); FU = (MSR/MSW) * finv(1-alpha/2, n*(k-1), n-1); LB = 1 - 1 / FL; UB = 1 - 1 / FU; %---------------------------------------- function [r, LB, UB, F, df1, df2, p] = ICC_case_C_1(MSR, MSE, MSC, MSW, alpha, r0, n, k) r = (MSR - MSE) / (MSR + (k-1)*MSE); F = (MSR/MSE) * (1-r0)/(1+(k-1)*r0); df1 = n - 1; df2 = (n-1)*(k-1); p = 1-fcdf(F, df1, df2); FL = (MSR/MSE) / finv(1-alpha/2, n-1, (n-1)*(k-1)); FU = (MSR/MSE) * finv(1-alpha/2, (n-1)*(k-1), n-1); LB = (FL - 1) / (FL + (k-1)); UB = (FU - 1) / (FU + (k-1)); %---------------------------------------- function [r, LB, UB, F, df1, df2, p] = ICC_case_C_k(MSR, MSE, MSC, MSW, alpha, r0, n, k) r = (MSR - MSE) / MSR; F = (MSR/MSE) * (1-r0); df1 = n - 1; df2 = (n-1)*(k-1); p = 1-fcdf(F, df1, df2); FL = (MSR/MSE) / finv(1-alpha/2, n-1, (n-1)*(k-1)); FU = (MSR/MSE) * finv(1-alpha/2, (n-1)*(k-1), n-1); LB = 1 - 1 / FL; UB = 1 - 1 / FU; %---------------------------------------- function [r, LB, UB, F, df1, df2, p] = ICC_case_A_1(MSR, MSE, MSC, MSW, alpha, r0, n, k) r = (MSR - MSE) / (MSR + (k-1)*MSE + k*(MSC-MSE)/n); a = (k*r0) / (n*(1-r0)); b = 1 + (k*r0*(n-1))/(n*(1-r0)); F = MSR / (a*MSC + b*MSE); %df2 = (a*MSC + b*MSE)^2/((a*MSC)^2/(k-1) + (b*MSE)^2/((n-1)*(k-1))); a = k*r/(n*(1-r)); b = 1+k*r*(n-1)/(n*(1-r)); v = (a*MSC + b*MSE)^2/((a*MSC)^2/(k-1) + (b*MSE)^2/((n-1)*(k-1))); df1 = n - 1; df2 = v; p = 1-fcdf(F, df1, df2); Fs = finv(1-alpha/2, n-1, v); LB = n*(MSR - Fs*MSE)/(Fs*(k*MSC + (k*n - k - n)*MSE) + n*MSR); Fs = finv(1-alpha/2, v, n-1); UB = n*(Fs*MSR-MSE)/(k*MSC + (k*n - k - n)*MSE + n*Fs*MSR); %---------------------------------------- function [r, LB, UB, F, df1, df2, p] = ICC_case_A_k(MSR, MSE, MSC, MSW, alpha, r0, n, k) r = (MSR - MSE) / (MSR + (MSC-MSE)/n); c = r0/(n*(1-r0)); d = 1 + (r0*(n-1))/(n*(1-r0)); F = MSR / (c*MSC + d*MSE); %df2 = (c*MSC + d*MSE)^2/((c*MSC)^2/(k-1) + (d*MSE)^2/((n-1)*(k-1))); a = k*r/(n*(1-r)); b = 1+k*r*(n-1)/(n*(1-r)); v = (a*MSC + b*MSE)^2/((a*MSC)^2/(k-1) + (b*MSE)^2/((n-1)*(k-1))); df1 = n - 1; df2 = v; p = 1-fcdf(F, df1, df2); Fs = finv(1-alpha/2, n-1, v); LB = n*(MSR - Fs*MSE)/(Fs*(MSC-MSE) + n*MSR); Fs = finv(1-alpha/2, v, n-1); UB = n*(Fs*MSR - MSE)/(MSC - MSE + n*Fs*MSR);
github
uoguelph-mlrg/vlr-master
ksd.m
.m
vlr-master/vlr/ops/ksd.m
5,483
utf_8
22cbdf897669a121d77594881d415175
% This function is equivalent to ksdensity, except that repetitive overhead is % removed (which otherwise accounts for ~0.5 the runtime). % Some hard-coded parameters: [0,1] input data range and support function [px] = ksd(X,xi,kfcn,wid) % minimal function calls... N = numel(X(:)); kcut = 3; px = compute_pdf_cdf(xi, 1, 100, -Inf, +Inf, ones(1,N)./N, ... kfcn, kcut, 0, wid, X(:), Inf); % p = compute_pdf_cdf([0,1], 1, 100, -Inf, Inf, ones(1,N)./N, ... % kfcn, kcut, 0, wid, X(:), Inf); % everything else is stolen from "statkscompute" % ----------------------------- function [fout,xout,u]=compute_pdf_cdf(xi,xispecified,m,L,U,weight,... kernel,cutoff,iscdf,u,ty,foldpoint) foldwidth = min(cutoff,3); issubdist = isfinite(foldpoint); if ~xispecified xi = compute_default_xi(ty,foldwidth,issubdist,m,u,U,L); elseif ~isvector(xi) error('stats:ksdensity:VectorRequired','XI must be a vector'); end % Compute transformed values of evaluation points that are in bounds xisize = size(xi); fout = zeros(xisize); if iscdf && isfinite(U) fout(xi>=U) = sum(weight); end xout = xi; xi = xi(:); if L==-Inf && U==Inf % unbounded support inbounds = true(size(xi)); txi = xi; elseif L==0 && U==Inf % positive support inbounds = (xi>0); xi = xi(inbounds); txi = log(xi); foldpoint = log(foldpoint); else % finite support [L, U] inbounds = (xi>L) & (xi<U); xi = xi(inbounds); txi = log(xi-L) - log(U-xi); foldpoint = log(foldpoint-L) - log(U-foldpoint); end % If the density is censored at the end, add new points so that we can fold % them back across the censoring point as a crude adjustment for bias. if issubdist needfold = (txi >= foldpoint - foldwidth*u); txifold = (2*foldpoint) - txi(needfold); nfold = sum(needfold); else nfold = 0; end % Compute kernel estimate at the requested points f = dokernel(iscdf,txi,ty,u,weight,kernel,cutoff); % If we need extra points for folding, do that now if nfold>0 % Compute the kernel estimate at these extra points ffold = dokernel(iscdf,txifold,ty,u,weight,kernel,cutoff); if iscdf % Need to use upper tail for cdf at folded points ffold = sum(weight) - ffold; end % Fold back over the censoring point f(needfold) = f(needfold) + ffold; if iscdf % For cdf, extend last value horizontally maxf = max(f(txi<=foldpoint)); f(txi>foldpoint) = maxf; else % For density, define a crisp upper limit with vertical line f(txi>foldpoint) = 0; if ~xispecified xi(end+1) = xi(end); f(end+1) = 0; inbounds(end+1) = true; end end end if iscdf % Guard against roundoff. Lower boundary of 0 should be no problem. f = min(1,f); else % Apply reverse transformation and create return value of proper size f = f(:) ./ u; if L==0 && U==Inf % positive support f = f ./ xi; elseif U<Inf % bounded support f = f * (U-L) ./ ((xi-L) .* (U-xi)); end end fout(inbounds) = f; xout(inbounds) = xi; % ----------------------------- function xi = compute_default_xi(ty,foldwidth,issubdist,m,u,U,L) % Get XI values at which to evaluate the density % Compute untransformed values of lower and upper evaluation points ximin = min(ty) - foldwidth*u; if issubdist ximax = max(ty); else ximax = max(ty) + foldwidth*u; end if L==0 && U==Inf % positive support ximin = exp(ximin); ximax = exp(ximax); elseif U<Inf % bounded support ximin = (U*exp(ximin)+L) / (exp(ximin)+1); ximax = (U*exp(ximax)+L) / (exp(ximax)+1); end xi = linspace(ximin, ximax, m); % ----------------------------- function f = dokernel(iscdf,txi,ty,u,weight,kernel,cutoff) % Now compute density estimate at selected points blocksize = 3e4; m = length(txi); n = length(ty); if n*m<=blocksize && ~iscdf % For small problems, compute kernel density estimate in one operation z = (repmat(txi',n,1)-repmat(ty,1,m))/u; f = weight * feval(kernel, z); else % For large problems, try more selective looping % First sort y and carry along weights [ty,idx] = sort(ty); weight = weight(idx); % Loop over evaluation points f = zeros(1,m); if isinf(cutoff) for k=1:m % Sum contributions from all z = (txi(k)-ty)/u; f(k) = weight * feval(kernel,z); end else % Sort evaluation points and remember their indices [stxi,idx] = sort(txi); jstart = 1; % lowest nearby point jend = 1; % highest nearby point halfwidth = cutoff*u; for k=1:m % Find nearby data points for current evaluation point lo = stxi(k) - halfwidth; while(ty(jstart)<lo && jstart<n) jstart = jstart+1; end hi = stxi(k) + halfwidth; jend = max(jend,jstart); while(ty(jend)<=hi && jend<n) jend = jend+1; end nearby = jstart:jend; % Sum contributions from these points z = (stxi(k)-ty(nearby))/u; fk = weight(nearby) * feval(kernel,z); if iscdf fk = fk + sum(weight(1:jstart-1)); end f(k) = fk; end % Restore original x order f(idx) = f; end end
github
uoguelph-mlrg/vlr-master
biny.m
.m
vlr-master/vlr/ops/biny.m
2,682
utf_8
e82b021467cd0a70f67cb2b0a2106653
% [YB,U] = biny(Y,varargin) % % BINY re-bins data to evenly spaced bins using user specified min-max % specifications for both input and output data ranges, and the number of % bins. Input data outside the input range is saturated (set to min or % max value, before continuing). % % Args: % Y - ND array of real-valued data % N - number of bins - integer value; can appear before or after mi/mo % mi - minmax (input) - [low,high] appears first; [] to use default % mo - minmax (output) - [low,high] appears second; [] to use default % % This function was designed for look-up table transforms of ND-arrays: % Y - ND-array of real valued data % T - vector lookup table transform with N values % % e.g. to use default [min(Y(:)),max(Y(:))] as input range: % Ybin = biny(Y,[],[1,N],N); % e.g. saturating anything below 0.1 and above 1.5 in input range: % Ybin = biny(Y,[0.1,1.5],[1,N],N); % then, to perform the look-up (because Ybin has values 1,...,N): % YT = T(Ybin); % % Jesse Knight 2016 function [YB,U] = biny(Y,varargin) dtype = class(Y); % store original data type Y = double(Y); % faster than single, and need non-int precision minmax = [min(Y(:)),max(Y(:))]; % default if no user specification % parse args - check if user has specified the {mi, mo, N} arguments [mi,mo,N] = parseargs(minmax,varargin); % bin data, re-cast [YB] = cast(binit(Y,mi,mo,N),dtype); % bin dummy data to give vector of levels [U] = binit(linspace(mi(1),mi(2),N),mi,mo,N); function [YB] = binit(Y,mi,mo,N) % saturate with input minmax YS = min(mi(2),max(mi(1),Y)); % bin to 0:1 YL = round(((YS - mi(1)) ./ diff(mi)) .* (N-1)) ./ (N-1); % scale to output minmax YB = (YL .* diff(mo)) + mo(1); function [minmaxi,minmaxo,N] = parseargs(minmax,vargs) % defaults N = 256; minmaxi = minmax; minmaxo = [0,1]; % parsing user specs nminmax = 0; for v = 1:numel(vargs) if (numel(size(vargs{v})) == 2) % arg must be "2D" (including [1,1]) if (all(size(vargs{v}) == [1,1])) % number of levels N = vargs{v}; elseif (all(size(vargs{v}) == [1,2])) % minmax if nminmax == 0 % input specified (appears first) minmaxi = vargs{v}; nminmax = 1; elseif nminmax == 1 % output too (appears second) minmaxo = vargs{v}; nminmax = -1; end elseif isempty(vargs{v}) && isnumeric(vargs{v}) if nminmax == 0 % input specified (default) minmaxi = minmax; nminmax = 1; elseif nminmax == 1 % output too (default) minmaxo = minmax; nminmax = -1; end end else warning('Binning specifications must be 1 or 2 element vectors.'); end end
github
uoguelph-mlrg/vlr-master
nyulstd.m
.m
vlr-master/vlr/ops/nyulstd.m
485
utf_8
de3af2d9825e38d6f8071262867569d6
% NYULSTD % Graylevel standardization proposed by Nyul et al (1999). % Graylevels in y are piecewise linearly matched so that % evenly spaced input quantiles match the output quantiles specified in 'qo'. % The number of quantiles is taken from numel(qo). function [yt] = nyulstd(y,qo) N = numel(qo); qi = quantile(y(:),linspace(0,1,N)); yt = zeros(size(y),class(y)); for i = 1:N-1 x = (y>=qi(i)) & (y<=qi(i+1)); yt(x) = qo(i) + (y(x)-qi(i)).*(qo(i+1)-qo(i))./(qi(i+1)-qi(i)); end
github
uoguelph-mlrg/vlr-master
binsphere.m
.m
vlr-master/vlr/ops/binsphere.m
193
utf_8
ecf9f2a1a63288adda757af89f91062c
% BINSPHERE % make a binary sphere-ish 3D image of radius R (in pixels) function [V] = binsphere(R) [x,y,z] = ndgrid(-R:R); SE = strel(sqrt(x.^2 + y.^2 + z.^2) <=R); V = double(SE.getnhood());
github
uoguelph-mlrg/vlr-master
kernelshifts.m
.m
vlr-master/vlr/ops/kernelshifts.m
412
utf_8
684453bc04e03db9a74336ad51cf2910
% KERNELSHIFTS % Returns the shift amounts (relative to center element) % of all other nonzero kernel elements (i.e. binary to [x1,x2,x3] coordinates) function [dx] = kernelshifts(K) cx = round([size(K,1),size(K,2),size(K,3)]/2); ksize = size(K); x = cell([numel(ksize),1]); dx = zeros([0,numel(ksize)]); for i = 1:numel(K) if K(i) [x{:}] = ind2sub(ksize,i); dx(end+1,:) = cx - cat(2,x{:}); end end
github
uoguelph-mlrg/vlr-master
op23.m
.m
vlr-master/vlr/ops/op23.m
1,308
utf_8
cb939bcc0c2644e0edd425bfd07effea
% [IF] = op23(I,filtfun,W) % % OP23 filters a 3D image I using the 2D image filtering function filtfun in a % single operation (using reshaping). This speeds up the application of % nonlinear filters on 3D volumes by not processing slices in serial. % % Inputs: % I - 3D image volume for filtering. % % filtfun - filter function which only accepts 2D inputs. % % wid - (optional) padding width to avoid mixing data from adjacent % slices; only important if I contains information near the edges. % Padding style: replicate. Default wid: 0 (no padding). % % Outputs: % IF - filtered image. % % Examples: % % >> op23(randn(10,10,10),@(I)medfilt2(I,[5,5]),2); % Show a random 10x10x10 volume of data with the default figure colourmap, % automatic contrast scaling, with 0.5% of total figure size padded around. % % Jesse Knight 2016 function [IF] = op23(I,filtfun,wid) if nargin == 2 wid = 0; % default: no padding end i3size = size(I); ipsize = i3size + [0,2*wid,0]; i2size = [ipsize(1),ipsize(2)*ipsize(3)]; % pad along x, then reshape (append along x) I2 = reshape(padarray(I,[0,wid,0],'replicate','both'),i2size); % median filter (MEX), then reshape (unwrap x -> z) IF = reshape(filtfun(I2),ipsize); % unpad IF = IF(:,wid+1:end-wid,:);
github
uoguelph-mlrg/vlr-master
pofwxy.m
.m
vlr-master/vlr/ops/wprobs/pofwxy.m
1,942
utf_8
0910a4197ff0a8ad2d9916de41df59dd
% [pXYW,U] = pofwxy(Y,X,W,op,varargin) % % POFWXY computes the weighted conditional probability of X given Y using % the user specified weighted conditional probability operator. % This implementation uses a relatively fast sort-lookup technique. % % Inputs: % Y - N-D data which is binned, then for each bin, the matching indices % are used to select data in X for computing the probability. % X - N-D data (same size) on which the probability operation acts. % W - N-D (same size) weights for each value in X % op - weighted probability operator - e.g. @wmean or % @(x,w)ksdensity(x,0.5,'weights',w); % % varargin: passed straight to biny to bin the values in Y (see help biny). % N - number of bins % mi - minmax (input) % mo - minmax (output) % % Outputs: % pXYW - weighted conditional probability of x given y, by w % U - unique bin values (of Y) % % Jesse Knight 2016 function [pXYW,U] = pofwxy(Y,X,W,op,varargin) % bin the data for easy lookup [YU,U] = biny(Y,varargin{:}); % sort the data for faster lookup of paired data [YS,s] = sort(YU(:)); % sorting source data XS = X(s); % sorting paired data same order WS = W(s); % sorting weights same order % initialize the source data histogram (internal) pY = nan(numel(U),1); % calculating source histogram for u = 1:numel(U) idx = (YS(:)==U(u)); % lookup indices pY(u) = sum(idx); % count these end % initialize paired data output pXYW = zeros(numel(U),1); % index ranges in sorted XS and WS: faster than lookup idx = [0,cumsum(pY')]; % calculating paired data weighted histogram for u = 1:numel(U) if (idx(u+1) > idx(u)+1) % not empty indices idxu = idx(u)+1:idx(u+1); if any(WS(idxu)) % not empty weights pXYW(u) = op( XS(idxu), WS(idxu) ); else % empty weights pXYW(u) = nan; end else % empty indices pXYW(u) = nan; end end
github
uoguelph-mlrg/vlr-master
wstd.m
.m
vlr-master/vlr/ops/wprobs/wstd.m
220
utf_8
03578ce41c95f7e4c9027ef77fcb7de7
% [mu] = wstd(Y,X) % % WSTD gives the standard deviation of Y, weighted by X % % Jesse Knight 2016 function [sig] = wstd(Y,X,wm) if nargin == 2 wm = wmean(Y,X); end sig = sqrt(sum(((Y(:)-wm).^2).*X(:)) / sum(X(:)));
github
uoguelph-mlrg/vlr-master
wmean.m
.m
vlr-master/vlr/ops/wprobs/wmean.m
151
utf_8
f907f4b7682d3d2eb7c13bebfa12b557
% [mu] = wmean(Y,X) % % WMEAN gives the mean of Y, weighted by X % % Jesse Knight 2016 function [mu] = wmean(Y,X) mu = sum(Y(:).*X(:)) / sum(X(:));
github
uoguelph-mlrg/vlr-master
pofwy.m
.m
vlr-master/vlr/ops/wprobs/pofwy.m
981
utf_8
cf9fab4b86f13881388aabe995319507
% [pYW,U] = pofwy(Y,W,varargin) % % POFWY is a weighted histogram (normalized for unit norm). % This implementation uses a relatively fast data-removal technique. % % Inputs: % Y - N-D data for which to compute the probability distribution. % W - N-D (same size) weights for each value in Y. % % varargin: passed straight to biny to bin the values in Y (see help biny). % N - number of bins % mi - minmax (input) % mo - minmax (output) % % Output arguments: % pYW - normalized histogram of Y, weighted by W % U - unique bin values % % Jesse Knight 2016 function [pYW,YU,U] = pofwy(Y,W,varargin) % bin the data for easy lookup [YU,U] = biny(Y,varargin{:}); YU = YU(:); % initialize the output pYW = nan(numel(U),1); sw = sum(W(:)); % calculating weighted histogram for u = 1:numel(U) idx = (YU==U(u)); % lookup indices pYW(u) = sum(W(idx)); % sum these weights end pYW = pYW./sw; % normalization by sum of weights
github
uoguelph-mlrg/vlr-master
pofxy.m
.m
vlr-master/vlr/ops/wprobs/pofxy.m
1,790
utf_8
f5b8573203f927209f8bdd4ac0c34b4a
% [pXY,pY,U] = pofxy(Y,X,op,varargin) % % POFXY computes the conditional probability of X given Y - p(X|Y), % "p of given y", using the user specified conditional probability operator. % This implementation uses a relatively fast sort-lookup technique. % % Inputs: % Y - N-D data which is binned, then for each bin, the matching indices % are used to select data in X for computing the probability. % X - N-D data (same size) on which the probability operation acts. % op - probability operator - e.g. @mean or @(x)ksdensity(x,0.5); % % varargin: passed straight to biny to bin the values in Y (see help biny). % N - number of bins % mi - minmax (input) % mo - minmax (output) % % Outputs: % pXY - conditional probability of x given y % pY - normalized histogram of Y % U - unique bin values (of Y) % % Jesse Knight 2016 function [pXY,pY,U] = pofxy(Y,X,op,varargin) assert(strcmp(class(Y),class(X)),'Class of Y and X must match.'); % bin the data for easy lookup [YU,U] = biny(Y,varargin{:}); % sort the data for faster lookup of paired data [YS,s] = sort(YU(:)); % sorting source data XS = X(s); % sorting paired data same order % initialize the source data output pY = nan(numel(U),1); % calculating source histogram for u = 1:numel(U) idx = (YS(:)==U(u)); % lookup indices pY(u) = sum(idx); % count these end % initialize paired data output pXY = zeros(numel(U),1); % index ranges in sorted XS: faster than lookup idx = [0,cumsum(pY')]; % calculating paired data histogram for u = 1:numel(U) if idx(u+1) > idx(u)+1 % not empty idxu = idx(u)+1 : idx(u+1); pXY(u) = op(XS(idxu)); else % empty pXY(u) = nan; end end pY = pY'./numel(XS); % normalize the source histogram
github
uoguelph-mlrg/vlr-master
pofy.m
.m
vlr-master/vlr/ops/wprobs/pofy.m
974
utf_8
a40253c6b020f79cbfa044cbb2671e5a
% [pY,YU,U] = pofy(Y,varargin) % % POFY is an anaolgue to the hist function - p(Y), "p of y" - with different % control over the parameters; also serves as a template for other % conditional probability functions: pofxy, pofwy, pofxwy. % % Inputs: % Y - N-D data for which to compute the probability distribution. % % varargin: passed straight to biny to bin the values in Y (see help biny). % N - number of bins % mi - minmax (input) % mo - minmax (output) % % Outputs: % pY - normalized histogram of Y % YU - values of Y in the specified bins (vectorized) % U - unique bin values % % Jesse Knight 2016 function [pY,YU,U] = pofy(Y,varargin) % bin the data for easy lookup [YU,U] = biny(Y,varargin{:}); YU = YU(:); % initialize the output pY = nan(numel(U),1); % calculating histogram for u = 1:numel(U) idx = (YU==U(u)); % lookup indices pY(u) = sum(idx); % count these end pY = pY./numel(Y); % normalize
github
uoguelph-mlrg/vlr-master
alphatrim.m
.m
vlr-master/vlr/ops/alpha/alphatrim.m
1,401
utf_8
8300b8cb6e2a64f533ba806289c76cbd
% [idx, ytrims] = alphatrim(Y, trims, mask) % % ALPHATRIM computes a mask for an N-D array indicating values which are % within the specified alpha-"trims" (on the interval [0,1]). % An additional mask can be specified by the user to further refine the % alpha-trim data; however the output indices may contain values outside % this mask. The cutoff values are also returned. This implementation % uses a fast sorting-based method. % % Inputs: % Y - ND array of real-valued data % trims - 2-element vector on the interval [0,1] dictating what fractions % of the data in Y to exclude % mask - (optional) additional mask within which to seach to find the % alpha-trims only. % % Outputs: % idx - indicies of valid elements: within alpha trims % ytrims - values corresponding to the alpha trim cutoffs % % Jesse Knight 2016 function [idx, ytrims] = alphatrim(Y, trims, mask) % vectorize the data with/out the mask if nargin == 3 YB = Y(logical(mask)); if isempty(YB) idx = []; ytrims = []; return; end else YB = Y(:); end NY = numel(YB); % count the elements [YS] = sort(YB); % sort the values ntrims = NY.*trims; % find alpha trims in sorted-index space ytrims = [YS(round(max(1, ntrims(1)))),... % store the cutoff values YS(round(min(NY,ntrims(2))))]; % ... idx = (Y > ytrims(1)) & (Y < ytrims(2)); %
github
uoguelph-mlrg/vlr-master
alphaclip.m
.m
vlr-master/vlr/ops/alpha/alphaclip.m
372
utf_8
fc6099fab820eda592b7e0c9fd7cb389
% ALPHACLIP % This function calls alphatrim, then clips the data in Y % according to the computed limits. % A mask can be used for the alpha computation, but then ignored for the clip. function [Yclip] = alphaclip(Y, trims, mask) if nargin == 3 [~, ytrims] = alphatrim(Y, trims, mask); elseif nargin == 2 [~, ytrims] = alphatrim(Y, trims); end Yclip = clip(Y,ytrims);
github
uoguelph-mlrg/vlr-master
clip.m
.m
vlr-master/vlr/ops/alpha/clip.m
194
utf_8
114ba2c3f9af8c549c9f80d6eca381f1
% [X] = clip(X,mm); % % CLIP truncates the data in X to the range mm so that no values are outside % this range. % % Jesse Knight 2016 function [X] = clip(X,mm) X = max(mm(1),min(mm(2),X));
github
uoguelph-mlrg/vlr-master
momi.m
.m
vlr-master/vlr/ops/alpha/momi.m
211
utf_8
0293bb4e29d850d0ed39f0cd653512b7
% [X,mm] = momi(X); % % MOMI normalizes the data in X to the range [0,1] using the max-min % of the data. % % Jesse Knight 2016 function [X,mm] = momi(X) mm = [min(X(:)),max(X(:))]; X = (X-mm(1))./diff(mm);
github
Brain-Modulation-Lab/bml-master
bml_timealign.m
.m
bml-master/sync/bml_timealign.m
8,001
utf_8
1b05fa067b77138fcbfa7e7c64991951
function [slave_delta_t, max_corr, master, slave] = bml_timealign(cfg, master, slave) % BML_TIMEALIGN aligns slave to master and returns the slave's delta t % % Use as % slave_delta_t = bml_timealign(master, slave) % slave_delta_t = bml_timealign(cfg, master, slave) % [slave_delta_t, max_corr] = bml_timealign(cfg, master, slave) % [slave_delta_t, max_corr, master, slave] = bml_timealign(cfg, master, slave) % % % cfg is a configuration structure with fields: % cfg.resample_freq - double: frequency to resample and aligned master and % slave (Hz). Defaults to 10000. % cfg.method - string: method use for preprocessing master and slave % 'env' or 'envelope' (default) - see BML_ENVELOPE_BINABS % 'lpf' or 'low-pass-filter' - see ft_preproc_lowpassfilter % cfg.env_freq - double: frequency of the envelope. Defaults to 100Hz % cfg.lpf_freq - double: cut-frequency of the low-pass filter. Defaults to % 4000Hz. % cfg.scan - double: time window in which to scan for a maximal correlation % if a scalar is given the time window is [-scan, scan] % if a length 2 vector is given it should be [-a, b], where 'a' % and 'b' are positive numbers in seconds. % cfg.freqreltol - double: frequency relative tolerance. defaults to 1e-5 % cfg.penalty_tau - double: penalty time use to weight the correlation. % This allows to bound slave_delta_t (as with cfg.scan) but in % a continuous way. If empty (default) no penalty is applied. % cfg.penalty_n - double: penalty 'hill-coefficient' use to weight the % correlation. Defines how abrupt is the penalty increase when % slave_delta_t > cfg.penalty_tau. Defaults to 2. % cfg.ft_feedback - string: default to 'no'. Defines verbosity of fieldtrip % functions % cfg.simulate_aliasing - bool, indicates if alising should be simulated % on the slave when downsampling. Useful if one if the signals was not % low-pass filtered at aquisition time (e.g. natus DC % channels). Defaults to true. % % master - FT_DATATYPE_RAW continuous with single channel and trial % slave - FT_DATATYPE_RAW continuous with single channel and trial % % returns % slave_delta_t - double: time in seconds by which to shift the slave to % align it to master % max_corr - double: maximum correlation coefficient achieved for the shift % slave_delta_t % master - FT_DATATYPE_RAW: master raw after applying the preprocessing % slave - FT_DATATYPE_RAW: slave raw after applying the preprocessing if nargin == 2 slave = master; master = cfg; cfg = []; elseif nargin ~= 3 error('incorrect number of arguments in call'); end resample_freq = bml_getopt(cfg,'resample_freq', 10000); scan = bml_getopt(cfg, 'scan'); freqreltol = bml_getopt(cfg, 'freqreltol', 1e-5); method = string(bml_getopt(cfg, 'method', 'envelope')); env_freq = bml_getopt(cfg,'env_freq', 100); lpf_freq = bml_getopt(cfg,'lpf_freq', 4000); penalty_tau = bml_getopt(cfg,'penalty_tau'); penalty_n = bml_getopt(cfg,'penalty_n', 2); simulate_aliasing = bml_getopt(cfg,'simulate_aliasing', 1); ft_feedback = bml_getopt(cfg,'ft_feedback','no'); ft_feedback = ft_feedback{1}; %assert single trial and channel if numel(master.trial) > 1; error('master should be single trial raw'); end if numel(slave.trial) > 1; error('slave should be single trial raw'); end if numel(master.label) > 1; error('master should be single channel raw'); end if numel(slave.label) > 1; error('slave should be single channel raw'); end %calculating scan range mc=[]; sc=[]; %master and slave time coordinates mc.s1=1; mc.s2=length(master.time{1}); mc.t1=master.time{1}(1); mc.t2=master.time{1}(end); sc.s1=1; sc.s2=length(slave.time{1}); sc.t1=slave.time{1}(1); sc.t2=slave.time{1}(end); max_scan_range = [mc.t1 - sc.t2, mc.t2 - sc.t1]; if prod(max_scan_range) > 0 % if files do not overlap slave_delta_t=nan; max_corr=nan; warning('files do not overlap'); return end if isempty(scan) scan = max_scan_range; elseif length(scan)==1 scan=[max(-scan,max_scan_range(1)), min(scan,max_scan_range(2))]; elseif length(scan)==2 scan=[max(scan(1),max_scan_range(1)), min(scan(2),max_scan_range(2))]; else error('invalid use of cfg.scan argument'); end %robust estimation of mean and std master_median = median(master.trial{1}); slave_median = median(slave.trial{1}); master_std = robust_std(master.trial{1}); slave_std = robust_std(slave.trial{1}); if master_std==0; error('master can''t be correlated'); end if slave_std==0; error('slave can''t be correlated'); end %cropping and padding to correlation time window ctw = [sc.t1+scan(1), sc.t2+scan(2)]; master = bml_pad(master, ctw(1), ctw(2), 0); slave = bml_pad(slave, master.time{1}(1), master.time{1}(end), 0); %common resample frequency cfg=[]; cfg.feedback=ft_feedback; cfg.resamplefs=resample_freq; cfg.trackcallinfo=false; cfg.showcallinfo='no'; master = ft_resampledata(cfg, master); cfg=[]; cfg.feedback=ft_feedback; cfg.trackcallinfo=false; cfg.showcallinfo='no'; if simulate_aliasing cfg.time=master.time; cfg.method='linear'; slave = ft_resampledata(cfg, slave); else error('Low pass filter to avoid aliasing not implemented'); end %checking slave resampling if abs(slave.fsample/master.fsample-1) < freqreltol slave.fsample = master.fsample; else error('failed to resample slave to master''s time'); end is_nan=isnan(slave.trial{1}); if sum(is_nan)>0 master.trial{1} = master.trial{1}(:,~is_nan); master.time{1} = master.time{1}(:,~is_nan); slave.trial{1} = slave.trial{1}(:,~is_nan); slave.time{1} = slave.time{1}(:,~is_nan); end %methods if ismember(lower(method),{'env','envelope'}) %envelope correlation cfg=[]; cfg.freq = env_freq; %calculating envelops master = bml_envelope_binabs(cfg,master); slave = bml_envelope_binabs(cfg,slave); try_polarity=false; elseif ismember(lower(method),{'lpf','low-pass-filter'}) %low-pass-filter master.trial{1} = ft_preproc_lowpassfilter(master.trial{1},... master.fsample, lpf_freq, 4, 'but', 'twopass'); slave.trial{1} = ft_preproc_lowpassfilter(slave.trial{1},... slave.fsample, lpf_freq, 4, 'but', 'twopass'); try_polarity=true; else error('unknown method'); end %normalizing data master.trial{1} = (master.trial{1} - master_median) / master_std; slave.trial{1} = (slave.trial{1} - slave_median) / slave_std; %correlation [corr,lag]=xcorr(master.trial{1}(1,:), slave.trial{1}(1,:),... floor(max(abs(scan))*master.fsample),'coeff'); [max_corr_idx,max_corr] = find_delta_corr(corr,lag,penalty_tau,penalty_n); if try_polarity [corr_m,lag_m]=xcorr(master.trial{1}(1,:), (-1).* slave.trial{1}(1,:),... floor(max(abs(scan))*master.fsample),'coeff'); [max_corr_idx_m,max_corr_m] = find_delta_corr(corr_m,lag_m,penalty_tau,penalty_n); if max_corr_m > max_corr slave.trial{1}=(-1).* slave.trial{1}; max_corr_idx = max_corr_idx_m; max_corr = max_corr_m; lag=lag_m; end end slave_delta_t = lag(max_corr_idx)/master.fsample; slave.time{1} = slave.time{1} + slave_delta_t; end % private function function [max_corr_idx,max_corr] = find_delta_corr(corr,lag,penalty_tau,penalty_n) if ~isempty(penalty_tau) [~,max_corr_idx]=max(corr./((penalty_tau*master.fsample)^penalty_n + abs(lag).^penalty_n)); max_corr=corr(max_corr_idx); else [max_corr,max_corr_idx]=max(corr); end end
github
Brain-Modulation-Lab/bml-master
bml_annot2coord.m
.m
bml-master/sync/bml_annot2coord.m
1,787
utf_8
afdf2310f69c8d9b32bb7079222ebb29
function coord = bml_annot2coord(annot, Fs) % BML_ANNOT2COORD gets s1,t1,s2,t2 coordinates from annot and Fs % % Use as % coord = bml_annot2coord(annot, Fs) % % annot - ANNOT table with 'starts', 'ends' and optionally 'Fs' variables % (all other vars ignored) % Fs - numeric, exact sampling frequency of returned s1,t1,s2,t2 coords. % if absent a Fs var in annot is required % % returns a table/struct if annot is a table/struct if istable(annot) if exist('Fs','var') annot.Fs(:) = Fs; end assert(ismember('Fs',annot.Properties.VariableNames),"Fs required"); assert(ismember('starts',annot.Properties.VariableNames),"starts required"); assert(ismember('ends',annot.Properties.VariableNames),"ends required"); coord = annot; coord.s1(:)=0; coord.t1(:)=0; coord.s2(:)=0; coord.t2(:)=0; for i=1:height(annot) i_coord = annot2coord(annot.starts(i),annot.ends(i),annot.Fs(i)); coord.s1(i)=i_coord.s1; coord.t1(i)=i_coord.t1; coord.s2(i)=i_coord.s2; coord.t2(i)=i_coord.t2; end elseif isstruct(annot) if exist('Fs','var') annot.Fs = Fs; end assert(ismember('Fs',fields(annot)),"Fs required"); assert(ismember('starts',fields(annot)),"starts required"); assert(ismember('ends',fields(annot)),"ends required"); coord = annot2coord(annot.starts,annot.ends,annot.Fs); else error('Unknown type for annot. Table or struct accepted.'); end end function simple_coord = annot2coord(starts,ends,Fs) pTT = 9; %pTT = pTimeTol = -log10(timetol) simple_coord=[]; simple_coord.s1=1; simple_coord.t1=round(starts+0.5/Fs,pTT); simple_coord.s2=round((ends-starts)*Fs)-1; simple_coord.t2=simple_coord.t1 + (simple_coord.s2 - simple_coord.s1)/Fs; end
github
Brain-Modulation-Lab/bml-master
inpolyhedron.m
.m
bml-master/anat/inpolyhedron.m
22,474
utf_8
3bab4b4d7bfb720f1c2d2e1ce95779ba
function IN = inpolyhedron(varargin) %INPOLYHEDRON Tests if points are inside a 3D triangulated (faces/vertices) surface % % IN = INPOLYHEDRON(FV,QPTS) tests if the query points (QPTS) are inside % the patch/surface/polyhedron defined by FV (a structure with fields % 'vertices' and 'faces'). QPTS is an N-by-3 set of XYZ coordinates. IN % is an N-by-1 logical vector which will be TRUE for each query point % inside the surface. By convention, surface normals point OUT from the % object (see FLIPNORMALS option below if to reverse this convention). % % INPOLYHEDRON(FACES,VERTICES,...) takes faces/vertices separately, rather than in % an FV structure. % % IN = INPOLYHEDRON(..., X, Y, Z) voxelises a mask of 3D gridded query points % rather than an N-by-3 array of points. X, Y, and Z coordinates of the grid % supplied in XVEC, YVEC, and ZVEC respectively. IN will return as a 3D logical % volume with SIZE(IN) = [LENGTH(YVEC) LENGTH(XVEC) LENGTH(ZVEC)], equivalent to % syntax used by MESHGRID. INPOLYHEDRON handles this input faster and with a lower % memory footprint than using MESHGRID to make full X, Y, Z query points matrices. % % INPOLYHEDRON(...,'PropertyName',VALUE,'PropertyName',VALUE,...) tests query % points using the following optional property values: % % TOL - Tolerance on the tests for "inside" the surface. You can think of % tol as the distance a point may possibly lie above/below the surface, and still % be perceived as on the surface. Due to numerical rounding nothing can ever be % done exactly here. Defaults to ZERO. Note that in the current implementation TOL % only affects points lying above/below a surface triangle (in the Z-direction). % Points coincident with a vertex in the XY plane are considered INside the surface. % More formal rules can be implemented with input/feedback from users. % % GRIDSIZE - Internally, INPOLYHEDRON uses a divide-and-conquer algorithm to % split all faces into a chessboard-like grid of GRIDSIZE-by-GRIDSIZE regions. % Performance will be a tradeoff between a small GRIDSIZE (few iterations, more % data per iteration) and a large GRIDSIZE (many iterations of small data % calculations). The sweet-spot has been experimentally determined (on a win64 % system) to be correlated with the number of faces/vertices. You can overwrite % this automatically computed choice by specifying a GRIDSIZE parameter. % % FACENORMALS - By default, the normals to the FACE triangles are computed as the % cross-product of the first two triangle edges. You may optionally specify face % normals here if they have been pre-computed. % % FLIPNORMALS - (Defaults FALSE). To match a wider convention, triangle % face normals are presumed to point OUT from the object's surface. If % your surface normals are defined pointing IN, then you should set the % FLIPNORMALS option to TRUE to use the reverse of this convention. % % Example: % tmpvol = zeros(20,20,20); % Empty voxel volume % tmpvol(5:15,8:12,8:12) = 1; % Turn some voxels on % tmpvol(8:12,5:15,8:12) = 1; % tmpvol(8:12,8:12,5:15) = 1; % fv = isosurface(tmpvol, 0.99); % Create the patch object % fv.faces = fliplr(fv.faces); % Ensure normals point OUT % % Test SCATTERED query points % pts = rand(200,3)*12 + 4; % Make some query points % in = inpolyhedron(fv, pts); % Test which are inside the patch % figure, hold on, view(3) % Display the result % patch(fv,'FaceColor','g','FaceAlpha',0.2) % plot3(pts(in,1),pts(in,2),pts(in,3),'bo','MarkerFaceColor','b') % plot3(pts(~in,1),pts(~in,2),pts(~in,3),'ro'), axis image % % Test STRUCTURED GRID of query points % gridLocs = 3:2.1:19; % [x,y,z] = meshgrid(gridLocs,gridLocs,gridLocs); % in = inpolyhedron(fv, gridLocs,gridLocs,gridLocs); % figure, hold on, view(3) % Display the result % patch(fv,'FaceColor','g','FaceAlpha',0.2) % plot3(x(in), y(in), z(in),'bo','MarkerFaceColor','b') % plot3(x(~in),y(~in),z(~in),'ro'), axis image % % See also: UNIFYMESHNORMALS (on the <a href="http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=43013">file exchange</a>) % TODO-list % - Optmise overall memory footprint. (need examples with MEM errors) % - Implement an "ignore these" step to speed up calculations for: % * Query points outside the convex hull of the faces/vertices input % - Get a better/best gridSize calculation. User feedback? % - Detect cases where X-rays or Y-rays would be better than Z-rays? % % Author: Sven Holcombe % - 10 Jun 2012: Version 1.0 % - 28 Aug 2012: Version 1.1 - Speedup using accumarray % - 07 Nov 2012: Version 2.0 - BEHAVIOUR CHANGE % Query points coincident with a VERTEX are now IN an XY triangle % - 18 Aug 2013: Version 2.1 - Gridded query point handling with low memory footprint. % - 10 Sep 2013: Version 3.0 - BEHAVIOUR CHANGE % NEW CONVENTION ADOPTED to expect face normals pointing IN % Vertically oriented faces are now ignored. Speeds up % computation and fixes bug where presence of vertical faces % produced NaN distance from a query pt to facet, making all % query points under facet erroneously NOT IN polyhedron. % - 25 Sep 2013: Version 3.1 - Dropped nested unique call which was made % mostly redundant via v2.1 gridded point handling. Also % refreshed grid size selection via optimisation. % - 25 Feb 2014: Version 3.2 - Fixed indeterminate behaviour for query % points *exactly* in line with an "overhanging" vertex. % - 11 Nov 2016: Version 3.3 - Used quoted semicolons ':' inside function % handle calls to conform with new 2015b interpreter %% % FACETS is an unpacked arrangement of faces/vertices. It is [3-by-3-by-N], % with 3 1-by-3 XYZ coordinates of N faces. [facets, qPts, options] = parseInputs(varargin{:}); numFaces = size(facets,3); if ~options.griddedInput % SCATTERED QUERY POINTS numQPoints = size(qPts,1); else % STRUCTURED QUERY POINTS numQPoints = prod(cellfun(@numel,qPts(1:2))); end % Precompute 3d normals to all facets (triangles). Do this via the cross % product of the first edge vector with the second. Normalise the result. allEdgeVecs = facets([2 3 1],:,:) - facets(:,:,:); if isempty(options.facenormals) allFacetNormals = bsxfun(@times, allEdgeVecs(1,[2 3 1],:), allEdgeVecs(2,[3 1 2],:)) - ... bsxfun(@times, allEdgeVecs(2,[2 3 1],:), allEdgeVecs(1,[3 1 2],:)); allFacetNormals = bsxfun(@rdivide, allFacetNormals, sqrt(sum(allFacetNormals.^2,2))); else allFacetNormals = permute(options.facenormals,[3 2 1]); end if options.flipnormals allFacetNormals = -allFacetNormals; end % We use a Z-ray intersection so we don't even need to consider facets that % are purely vertically oriented (have zero Z-component). isFacetUseful = allFacetNormals(:,3,:) ~= 0; %% Setup grid referencing system % Function speed can be thought of as a function of grid size. A small number of grid % squares means iterating over fewer regions (good) but with more faces/qPts to % consider each time (bad). For any given mesh/queryPt configuration, there will be a % sweet spot that minimises computation time. There will also be a constraint from % memory available - low grid sizes means considering many queryPt/faces at once, % which will require a larger memory footprint. Here we will let the user specify % gridsize directly, or we will estimate the optimum size based on prior testing. if ~isempty(options.gridsize) gridSize = options.gridsize; else % Coefficients (with 95% confidence bounds): p00 = -47; p10 = 12.83; p01 = 20.89; p20 = 0.7578; p11 = -6.511; p02 = -2.586; p30 = -0.1802; p21 = 0.2085; p12 = 0.7521; p03 = 0.09984; p40 = 0.005815; p31 = 0.007775; p22 = -0.02129; p13 = -0.02309; GSfit = @(x,y)p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p30*x^3 + p21*x^2*y + p12*x*y^2 + p03*y^3 + p40*x^4 + p31*x^3*y + p22*x^2*y^2 + p13*x*y^3; gridSize = min(150 ,max(1, ceil(GSfit(log(numQPoints),log(numFaces))))); if isnan(gridSize), gridSize = 1; end end %% Find candidate qPts -> triangles pairs % We have a large set of query points. For each query point, find potential % triangles that would be pierced by vertical rays through the qPt. First, % a simple filter by XY bounding box % Calculate the bounding box of each facet minFacetCoords = permute(min(facets(:,1:2,:),[],1),[3 2 1]); maxFacetCoords = permute(max(facets(:,1:2,:),[],1),[3 2 1]); % Set rescale values to rescale all vertices between 0(-eps) and 1(+eps) scalingOffsetsXY = min(minFacetCoords,[],1) - eps; scalingRangeXY = max(maxFacetCoords,[],1) - scalingOffsetsXY + 2*eps; % Based on scaled min/max facet coords, get the [lowX lowY highX highY] "grid" index % of all faces lowToHighGridIdxs = floor(bsxfun(@rdivide, ... bsxfun(@minus, ... % Use min/max coordinates of each facet (+/- the tolerance) [minFacetCoords-options.tol maxFacetCoords+options.tol],... [scalingOffsetsXY scalingOffsetsXY]),... [scalingRangeXY scalingRangeXY]) * gridSize) + 1; % Build a grid of cells. In each cell, place the facet indices that encroach into % that grid region. Similarly, each query point will be assigned to a grid region. % Note that query points will be assigned only one grid region, facets can cover many % regions. Furthermore, we will add a tolerance to facet region assignment to ensure % a query point will be compared to facets even if it falls only on the edge of a % facet's bounding box, rather than inside it. cells = cell(gridSize); [unqLHgrids,~,facetInds] = unique(lowToHighGridIdxs,'rows'); tmpInds = accumarray(facetInds(isFacetUseful),find(isFacetUseful),[size(unqLHgrids,1),1],@(x){x}); for xi = 1:gridSize xyMinMask = xi >= unqLHgrids(:,1) & xi <= unqLHgrids(:,3); for yi = 1:gridSize cells{yi,xi} = cat(1,tmpInds{xyMinMask & yi >= unqLHgrids(:,2) & yi <= unqLHgrids(:,4)}); % The above line (with accumarray) is faster with equiv results than: % % cells{yi,xi} = find(ismember(facetInds, xyInds)); end end % With large number of facets, memory may be important: clear lowToHightGridIdxs LHgrids facetInds tmpInds xyMinMask minFacetCoords maxFacetCoords %% Compute edge unit vectors and dot products % Precompute the 2d unit vectors making up each facet's edges in the XY plane. allEdgeUVecs = bsxfun(@rdivide, allEdgeVecs(:,1:2,:), sqrt(sum(allEdgeVecs(:,1:2,:).^2,2))); % Precompute the inner product between edgeA.edgeC, edgeB.edgeA, edgeC.edgeB allEdgeEdgeDotPs = sum(allEdgeUVecs .* -allEdgeUVecs([3 1 2],:,:),2) - 1e-9; %% Gather XY query locations % Since query points are most likely given as a (3D) grid of query locations, we only % need to consider the unique XY locations when asking which facets a vertical ray % through an XY location would pierce. if ~options.griddedInput % SCATTERED QUERY POINTS qPtsXY = @(varargin)qPts(:,1:2); qPtsXYZViaUnqIndice = @(ind)qPts(ind,:); outPxIndsViaUnqIndiceMask = @(ind,mask)ind(mask); outputSize = [size(qPts,1),1]; reshapeINfcn = @(INMASK)INMASK; minFacetDistanceFcn = @minFacetToQptDistance; else % STRUCTURED QUERY POINTS [xmat,ymat] = meshgrid(qPts{1:2}); qPtsXY = [xmat(:) ymat(:)]; % A standard set of Z locations will be shifted around by different % unqQpts XY coordinates. zCoords = qPts{3}(:) * [0 0 1]; qPtsXYZViaUnqIndice = @(ind)bsxfun(@plus, zCoords, [qPtsXY(ind,:) 0]); % From a given indice and mask, we will turn on/off the IN points under % that indice based on the mask. The easiest calculation is to setup % the IN matrix as a numZpts-by-numUnqPts mask. At the end, we must % unpack/reshape this 2D mask to a full 3D logical mask numZpts = size(zCoords,1); baseZinds = 1:numZpts; outPxIndsViaUnqIndiceMask = @(ind,mask)(ind-1)*numZpts + baseZinds(mask); outputSize = [numZpts, size(qPtsXY,1)]; reshapeINfcn = @(INMASK)reshape(INMASK', cellfun(@numel, qPts([2 1 3]))); minFacetDistanceFcn = @minFacetToQptsDistance; end % Start with every query point NOT inside the polyhedron. We will % iteratively find those query points that ARE inside. IN = false(outputSize); % Determine with grids each query point falls into. qPtGridXY = floor(bsxfun(@rdivide, bsxfun(@minus, qPtsXY(':',':'), scalingOffsetsXY),... scalingRangeXY) * gridSize) + 1; [unqQgridXY,~,qPtGridInds] = unique(qPtGridXY,'rows'); % We need only consider grid indices within those already set up ptsToConsidMask = ~any(qPtGridXY<1 | qPtGridXY>gridSize, 2); if ~any(ptsToConsidMask) IN = reshapeINfcn(IN); return; end % Build the reference list cellQptContents = accumarray(qPtGridInds(ptsToConsidMask),find(ptsToConsidMask), [],@(x){x}); gridsToCheck = unqQgridXY(~any(unqQgridXY<1 | unqQgridXY>gridSize, 2),:); cellQptContents(cellfun('isempty',cellQptContents)) = []; gridIndsToCheck = sub2ind(size(cells), gridsToCheck(:,2), gridsToCheck(:,1)); % For ease of multiplication, reshape qPt XY coords to [1-by-2-by-1-by-N] qPtsXY = permute(qPtsXY(':',':'),[4 2 3 1]); % There will be some grid indices with query points but without facets. emptyMask = cellfun('isempty',cells(gridIndsToCheck))'; for i = find(~emptyMask) % We get all the facet coordinates (ie, triangle vertices) of triangles % that intrude into this grid location. The size is [3-by-2-by-N], for % the [3vertices-by-XY-by-Ntriangles] allFacetInds = cells{gridIndsToCheck(i)}; candVerts = facets(:,1:2,allFacetInds); % We need the XY coordinates of query points falling into this grid. allqPtInds = cellQptContents{i}; queryPtsXY = qPtsXY(:,:,:,allqPtInds); % Get unit vectors pointing from each triangle vertex to my query point(s) vert2ptVecs = bsxfun(@minus, queryPtsXY, candVerts); vert2ptUVecs = bsxfun(@rdivide, vert2ptVecs, sqrt(sum(vert2ptVecs.^2,2))); % Get unit vectors pointing around each triangle (along edge A, edge B, edge C) edgeUVecs = allEdgeUVecs(:,:,allFacetInds); % Get the inner product between edgeA.edgeC, edgeB.edgeA, edgeC.edgeB edgeEdgeDotPs = allEdgeEdgeDotPs(:,:,allFacetInds); % Get inner products between each edge unit vec and the UVs from qPt to vertex edgeQPntDotPs = sum(bsxfun(@times, edgeUVecs, vert2ptUVecs),2); qPntEdgeDotPs = sum(bsxfun(@times,vert2ptUVecs, -edgeUVecs([3 1 2],:,:)),2); % If both inner products 2 edges to the query point are greater than the inner % product between the two edges themselves, the query point is between the V % shape made by the two edges. If this is true for all 3 edge pair, the query % point is inside the triangle. resultIN = all(bsxfun(@gt, edgeQPntDotPs, edgeEdgeDotPs) & bsxfun(@gt, qPntEdgeDotPs, edgeEdgeDotPs),1); resultONVERTEX = any(any(isnan(vert2ptUVecs),2),1); result = resultIN | resultONVERTEX; qPtHitsTriangles = any(result,3); % If NONE of the query points pierce ANY triangles, we can skip forward if ~any(qPtHitsTriangles), continue, end % In the next step, we'll need to know the indices of ALL the query points at % each of the distinct XY coordinates. Let's get their indices into "qPts" as a % cell of length M, where M is the number of unique XY points we had found. for ptNo = find(qPtHitsTriangles(:))' % Which facets does it pierce? piercedFacetInds = allFacetInds(result(1,1,:,ptNo)); % Get the 1-by-3-by-N set of triangle normals that this qPt pierces piercedTriNorms = allFacetNormals(:,:,piercedFacetInds); % Pick the first vertex as the "origin" of a plane through the facet. Get the % vectors from each query point to each facet origin facetToQptVectors = bsxfun(@minus, ... qPtsXYZViaUnqIndice(allqPtInds(ptNo)),... facets(1,:,piercedFacetInds)); % Calculate how far you need to go up/down to pierce the facet's plane. % Positive direction means "inside" the facet, negative direction means % outside. facetToQptDists = bsxfun(@rdivide, ... sum(bsxfun(@times,piercedTriNorms,facetToQptVectors),2), ... abs(piercedTriNorms(:,3,:))); % Since it's possible for two triangles sharing the same vertex to % be the same distance away, I want to sum up all the distances of % triangles that are closest to the query point. Simple case: The % closest triangle is unique Edge case: The closest triangle is one % of many the same distance and direction away. Tricky case: The % closes triangle has another triangle the equivalent distance % but facing the opposite direction IN( outPxIndsViaUnqIndiceMask(allqPtInds(ptNo), ... minFacetDistanceFcn(facetToQptDists)<options.tol... )) = true; end end % If they provided X,Y,Z vectors of query points, our output is currently a % 2D mask and must be reshaped to [LEN(Y) LEN(X) LEN(Z)]. IN = reshapeINfcn(IN); %% Called subfunctions % vertices = [ % 0.9046 0.1355 -0.0900 % 0.8999 0.3836 -0.0914 % 1.0572 0.2964 -0.0907 % 0.8735 0.1423 -0.1166 % 0.8685 0.4027 -0.1180 % 1.0337 0.3112 -0.1173 % 0.9358 0.1287 -0.0634 % 0.9313 0.3644 -0.0647 % 1.0808 0.2816 -0.0641 % ]; % faces = [ % 1 2 5 % 1 5 4 % 2 3 6 % 2 6 5 % 3 1 4 % 3 4 6 % 6 4 5 % 2 1 8 % 8 1 7 % 3 2 9 % 9 2 8 % 1 3 7 % 7 3 9 % 7 9 8 % ]; % point = [vertices(3,1),vertices(3,2),1.5]; function closestTriDistance = minFacetToQptDistance(facetToQptDists) % FacetToQptDists is a 1pt-by-1-by-Nfacets array of how far you need to go % up/down to pierce each facet's plane. If the Qpt was directly over an % "overhang" vertex, then two facets with opposite orientation will be % equally distant from the Qpt, with one distance positive and one % negative. In such cases, it is impossible for the Qpt to actually be % "inside" this pair of facets, so their distance is updated to Inf. [~,minInd] = min(abs(facetToQptDists),[],3); while any( abs(facetToQptDists + facetToQptDists(minInd)) < 1e-15 ) % Since the above comparison is made every time, but the below variable % setting is done only in the rare case that a query point coincides % with an overhang vertex, it is more efficient to re-compute the % equality when it's true, rather than store the result every time. facetToQptDists( abs(facetToQptDists) - abs(facetToQptDists(minInd)) < 1e-15) = inf; if ~any(isfinite(facetToQptDists)) break; end [~,minInd] = min(abs(facetToQptDists),[],3); end closestTriDistance = facetToQptDists(minInd); function closestTriDistance = minFacetToQptsDistance(facetToQptDists) % As above, but facetToQptDists is an Mpts-by-1-by-Nfacets array. % The multi-point version is a little more tricky. While below is quite a % bit slower when the while loop is entered, it is very rarely entered and % very fast to make just the initial comparison. [minVals,minInds] = min(abs(facetToQptDists),[],3); while any(... any(abs(bsxfun(@plus,minVals,facetToQptDists))<1e-15,3) & ... any(abs(bsxfun(@minus,minVals,facetToQptDists))<1e-15,3)) maskP = abs(bsxfun(@plus,minVals,facetToQptDists))<1e-15; maskN = abs(bsxfun(@minus,minVals,facetToQptDists))<1e-15; mustAlterMask = any(maskP,3) & any(maskN,3); for i = find(mustAlterMask)' facetToQptDists(i,:,maskP(i,:,:) | maskN(i,:,:)) = inf; end [newMv,newMinInds] = min(abs(facetToQptDists(mustAlterMask,:,:)),[],3); minInds(mustAlterMask) = newMinInds(:); minVals(mustAlterMask) = newMv(:); end % Below is a tiny speedup on basically a sub2ind call. closestTriDistance = facetToQptDists((minInds-1)*size(facetToQptDists,1) + (1:size(facetToQptDists,1))'); %% Input handling subfunctions function [facets, qPts, options] = parseInputs(varargin) % Gather FACES and VERTICES if isstruct(varargin{1}) % inpolyhedron(FVstruct, ...) if ~all(isfield(varargin{1},{'vertices','faces'})) error( 'Structure FV must have "faces" and "vertices" fields' ); end faces = varargin{1}.faces; vertices = varargin{1}.vertices; varargin(1) = []; % Chomp off the faces/vertices else % inpolyhedron(FACES, VERTICES, ...) faces = varargin{1}; vertices = varargin{2}; varargin(1:2) = []; % Chomp off the faces/vertices end % Unpack the faces/vertices into [3-by-3-by-N] facets. It's better to % perform this now and have FACETS only in memory in the main program, % rather than FACETS, FACES and VERTICES facets = vertices'; facets = permute(reshape(facets(:,faces'), 3, 3, []),[2 1 3]); % Extract query points if length(varargin)<2 || ischar(varargin{2}) % inpolyhedron(F, V, [x(:) y(:) z(:)], ...) qPts = varargin{1}; varargin(1) = []; % Chomp off the query points else % inpolyhedron(F, V, xVec, yVec, zVec, ...) qPts = varargin(1:3); % Chomp off the query points and tell the world that it's gridded input. varargin(1:3) = []; varargin = [varargin {'griddedInput',true}]; end % Extract configurable options options = parseOptions(varargin{:}); % Check if face normals are unified if options.testNormals options.normalsAreUnified = checkNormalUnification(faces); end function options = parseOptions(varargin) IP = inputParser; if verLessThan('matlab', 'R2013b') fcn = 'addParamValue'; else fcn = 'addParameter'; end IP.(fcn)('gridsize',[], @(x)isscalar(x) && isnumeric(x)) IP.(fcn)('tol', 0, @(x)isscalar(x) && isnumeric(x)) IP.(fcn)('tol_ang', 1e-5, @(x)isscalar(x) && isnumeric(x)) IP.(fcn)('facenormals',[]); IP.(fcn)('flipnormals',false); IP.(fcn)('griddedInput',false); IP.(fcn)('testNormals',false); IP.parse(varargin{:}); options = IP.Results;
github
Brain-Modulation-Lab/bml-master
fast_wavtransform.m
.m
bml-master/timefreq/private/fast_wavtransform.m
3,461
utf_8
b467542a7bf46f12e7e87fdecb046f7a
function Y=fast_wavtransform(fq,TS,sr,width) % Y=fast_wavtransform(fq,TS,sr,width) % %uses multiplication in the fourier domain (rather than convolution) to % speed compution on LARGE datasets; %error will occur if length of a given wavelet is longer than the input % signal; %warning: since all computation is executed simultaneously for speed, this % function may be RAM intesive % %inputs: % fq=vector of frequency (Hz) values on which to center wavelets % TS=vector or 2D matrix of timeseries (assumes longer dimension is time) % sr=sampling rate (Hz) % width=vector of wavelet c-parameter for corresponding frequencies in fq % (if length(width)~=length(fq) then width(1) is used for all fq); % note: std in frequency of a given wavelet=fq/width % %outputs: % Y=matrix of transformed data (dimension containing fq layers is in the % order as in fq) % %TAW_060215 if ~nargin help fast_wavtransform end nfq=length(fq); dt=1/sr; if length(width)~=length(fq) width=repmat(width(1),nfq); end [ntp,nts]=size(TS); if nts>ntp TS=TS'; tmp=ntp; ntp=nts; nts=tmp; end m=complex(zeros(ntp,nfq),zeros(ntp,nfq)); for nf=1:nfq w=width(nf); sf=fq(nf)/w; st=1/(2*pi*sf); t=-3*st:dt:3*st; %t=-(w/2)*st:dt:(w/2)*st; nt=length(t); m(1:nt,nf)=morwav(fq(nf),t,st)'; m(:,nf)=circshift(m(:,nf),floor((ntp-nt)*0.5)); end Y=reshape(ifft(reshape(repmat(reshape(fft(TS),ntp,1,nts),1,nfq,1),... ntp,nts*nfq) .* repmat(fft(m),1,nts)),ntp,nfq,[]); Y=circshift(Y,floor(ntp*0.5),1); end function y = morwav(f,t,st) A = 1/sqrt(st*sqrt(pi)); y = A*exp(-t.^2/(2*st^2)).*exp(1i*2*pi*f.*t); %y=y./sum(abs(y)); end
github
Brain-Modulation-Lab/bml-master
padarray.m
.m
bml-master/utils/padarray.m
7,389
utf_8
00ff76c42a05000c70ecfad1e2087fdb
function b = padarray(varargin) %PADARRAY Pad an array. % B = PADARRAY(A,PADSIZE) pads array A with PADSIZE(k) number of zeros % along the k-th dimension of A. PADSIZE should be a vector of % positive integers. % % B = PADARRAY(A,PADSIZE,PADVAL) pads array A with PADVAL (a scalar) % instead of with zeros. % % B = PADARRAY(A,PADSIZE,PADVAL,DIRECTION) pads A in the direction % specified by the string DIRECTION. DIRECTION can be one of the % following strings. % % String values for DIRECTION % 'pre' Pads before the first array element along each % dimension . % 'post' Pads after the last array element along each % dimension. % 'both' Pads before the first array element and after the % last array element along each dimension. % % By default, DIRECTION is 'both'. % % B = PADARRAY(A,PADSIZE,METHOD,DIRECTION) pads array A using the % specified METHOD. METHOD can be one of these strings: % % String values for METHOD % 'circular' Pads with circular repetion of elements. % 'replicate' Repeats border elements of A. % 'symmetric' Pads array with mirror reflections of itself. % % Class Support % ------------- % When padding with a constant value, A can be numeric or logical. % When padding using the 'circular', 'replicate', or 'symmetric' % methods, A can be of any class. B is of the same class as A. % % Example % ------- % Add three elements of padding to the beginning of a vector. The % padding elements contain mirror copies of the array. % % b = padarray([1 2 3 4],3,'symmetric','pre') % % Add three elements of padding to the end of the first dimension of % the array and two elements of padding to the end of the second % dimension. Use the value of the last array element as the padding % value. % % B = padarray([1 2; 3 4],[3 2],'replicate','post') % % Add three elements of padding to each dimension of a % three-dimensional array. Each pad element contains the value 0. % % A = [1 2; 3 4]; % B = [5 6; 7 8]; % C = cat(3,A,B) % D = padarray(C,[3 3],0,'both') % % See also CIRCSHIFT, IMFILTER. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 1.11.4.3 $ $Date: 2003/08/23 05:53:08 $ [a, method, padSize, padVal, direction] = ParseInputs(varargin{:}); if isempty(a),% treat empty matrix similar for any method if strcmp(direction,'both') sizeB = size(a) + 2*padSize; else sizeB = size(a) + padSize; end b = mkconstarray(class(a), padVal, sizeB); else switch method case 'constant' b = ConstantPad(a, padSize, padVal, direction); case 'circular' b = CircularPad(a, padSize, direction); case 'symmetric' b = SymmetricPad(a, padSize, direction); case 'replicate' b = ReplicatePad(a, padSize, direction); end end if (islogical(a)) b = logical(b); end %%% %%% ConstantPad %%% function b = ConstantPad(a, padSize, padVal, direction) numDims = numel(padSize); % Form index vectors to subsasgn input array into output array. % Also compute the size of the output array. idx = cell(1,numDims); sizeB = zeros(1,numDims); for k = 1:numDims M = size(a,k); switch direction case 'pre' idx{k} = (1:M) + padSize(k); sizeB(k) = M + padSize(k); case 'post' idx{k} = 1:M; sizeB(k) = M + padSize(k); case 'both' idx{k} = (1:M) + padSize(k); sizeB(k) = M + 2*padSize(k); end end % Initialize output array with the padding value. Make sure the % output array is the same type as the input. b = mkconstarray(class(a), padVal, sizeB); b(idx{:}) = a; %%% %%% CircularPad %%% function b = CircularPad(a, padSize, direction) numDims = numel(padSize); % Form index vectors to subsasgn input array into output array. % Also compute the size of the output array. idx = cell(1,numDims); for k = 1:numDims M = size(a,k); dimNums = 1:M; p = padSize(k); switch direction case 'pre' idx{k} = dimNums(mod(-p:M-1, M) + 1); case 'post' idx{k} = dimNums(mod(0:M+p-1, M) + 1); case 'both' idx{k} = dimNums(mod(-p:M+p-1, M) + 1); end end b = a(idx{:}); %%% %%% SymmetricPad %%% function b = SymmetricPad(a, padSize, direction) numDims = numel(padSize); % Form index vectors to subsasgn input array into output array. % Also compute the size of the output array. idx = cell(1,numDims); for k = 1:numDims M = size(a,k); dimNums = [1:M M:-1:1]; p = padSize(k); switch direction case 'pre' idx{k} = dimNums(mod(-p:M-1, 2*M) + 1); case 'post' idx{k} = dimNums(mod(0:M+p-1, 2*M) + 1); case 'both' idx{k} = dimNums(mod(-p:M+p-1, 2*M) + 1); end end b = a(idx{:}); %%% %%% ReplicatePad %%% function b = ReplicatePad(a, padSize, direction) numDims = numel(padSize); % Form index vectors to subsasgn input array into output array. % Also compute the size of the output array. idx = cell(1,numDims); for k = 1:numDims M = size(a,k); p = padSize(k); onesVector = ones(1,p); switch direction case 'pre' idx{k} = [onesVector 1:M]; case 'post' idx{k} = [1:M M*onesVector]; case 'both' idx{k} = [onesVector 1:M M*onesVector]; end end b = a(idx{:}); %%% %%% ParseInputs %%% function [a, method, padSize, padVal, direction] = ParseInputs(varargin) % default values a = []; method = 'constant'; padSize = []; padVal = 0; direction = 'both'; % checknargin(2,4,nargin,mfilename); a = varargin{1}; padSize = varargin{2}; % checkinput(padSize, {'double'}, {'real' 'vector' 'nonnan' 'nonnegative' ... % 'integer'}, mfilename, 'PADSIZE', 2); % Preprocess the padding size if (numel(padSize) < ndims(a)) padSize = padSize(:); padSize(ndims(a)) = 0; end if nargin > 2 firstStringToProcess = 3; if ~ischar(varargin{3}) % Third input must be pad value. padVal = varargin{3}; % checkinput(padVal, {'numeric' 'logical'}, {'scalar'}, ... % mfilename, 'PADVAL', 3); firstStringToProcess = 4; end for k = firstStringToProcess:nargin validStrings = {'circular' 'replicate' 'symmetric' 'pre' ... 'post' 'both'}; string = checkstrs(varargin{k}, validStrings, mfilename, ... 'METHOD or DIRECTION', k); switch string case {'circular' 'replicate' 'symmetric'} method = string; case {'pre' 'post' 'both'} direction = string; otherwise error('Images:padarray:unexpectedError', '%s', ... 'Unexpected logic error.') end end end % Check the input array type if strcmp(method,'constant') && ~(isnumeric(a) || islogical(a)) id = sprintf('Images:%s:badTypeForConstantPadding', mfilename); msg1 = sprintf('Function %s expected A (argument 1)',mfilename); msg2 = 'to be numeric or logical for constant padding.'; error(id,'%s\n%s',msg1,msg2); end
github
Brain-Modulation-Lab/bml-master
toString.m
.m
bml-master/utils/toString.m
12,967
utf_8
e68dc0969f6d1e1b05650c9b17e14f36
function s = toString(v, varargin) %TOSTRING creates a string representation of any MATLAB variable % STRINGREP=RPTGEN.TOSTRING(VARIABLE, CHARLIMIT) % Copyright 1997-2017 The MathWorks, Inc. %--------1---------2---------3---------4---------5---------6---------7---------8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Convert string arguments to character array arguments n = numel(varargin); for i = 1:n if isstring(varargin{i}) varargin{i} = char(varargin{i}); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [charLimit, cr] = locParseInputArgs(varargin{:}); if ischar(v) s = locRenderChar(v, charLimit, cr); elseif isstring(v) if isscalar(v) s = locRenderChar(char(v), charLimit, cr); else s = locRenderStringArray(v, charLimit, cr); end elseif isnumeric(v) s = locRenderNumeric(v, charLimit, cr); elseif iscellstr(v) s = locRenderCellStr(v, charLimit, cr); elseif iscell(v) s = locRenderCell(v, charLimit, cr); elseif isstruct(v) s = locRenderStruct(v, charLimit, cr); elseif isobject(v) s = locRenderMCOSObject(v); elseif isa(v, 'DAStudio.Object') s = locRenderDAObject(v, charLimit, cr); else s = locRenderViaDISP(v, charLimit, cr); end %------------------------------------------------------------------------------- function sizeString = locRenderSizeString(sizeVector, isMinimize) % locRenderSizeString accepts a size vector (i.e. the output from SIZE) and % renders it as AxBxC. if ((nargin > 1) && isMinimize ... && (length(sizeVector) < 3) ... % check length "[1 1]" && (max(sizeVector) == 1)) % check elements are all 1s % Renders empty if sizeVector is "[1 1]" sizeString = ''; else % Render output as "AxBxCx" sizeString = sprintf('%ix', sizeVector); % Remove trailing x sizeString(end) = ' '; end %------------------------------------------------------------------------------- function string = locRenderStruct(value, charLimit, cr) siz = size(value); nDims = length(siz); if ((nDims > 2) || (max(siz) > 1)) % 3d or N-d array - always collapse compactStruct = 1; else % Render via DISP method for structures % >> aStruct = struct('a',123,'b','xyz'); % >> rptgen.toString(aStruct); string = locRenderViaDISP(value, inf, cr); compactStruct = (length(string) > charLimit); end if compactStruct % Test code for following code paths % >> aStruct = struct('a',123,'b','xyz','c',123,'d','xyz','e',1,'f',2); % >> aStructMultiDims = repmat(aStruct,[2 2]) sizStr = locRenderSizeString(siz, true); % Note the %%s used for a possibily another call to SPRINTF string = sprintf('[%s%s w/ fields: %%s]', sizStr, 'struct'); if (length(string) > charLimit+8) % >> rptgen.toString(aStructMultiDims, 10); % [2x2 struct] string = sprintf('[%s%s]', sizStr, 'struct'); else % Construct list of fieldnames f = rptgen.makeSingleLineText(fieldnames(value), ', '); if (length(f) > charLimit - length(string)) f = f(1:charLimit-length(string)); if (length(f) < 3) % >> rptgen.toString(aStructMultiDims, 20) % [2x2 struct w/ fields: ...] f = '...'; else % >> rptgen.toString(aStructMultiDims, 40) % [2x2 struct w/ fields: a, b, c, d,...] f(end-2:end) = '...'; end end % Second SPRINTF. Note, string contains %%s. string = sprintf(string, f); end end % Replace carriage returns string = strrep(string, newline, cr); %------------------------------------------------------------------------------- function string = locRenderCell(value, charLimit, cr) siz = size(value); nDims = length(siz); isCollapse = false; if isempty(value) % >> rptgen.toString({''}) string = '{}'; elseif (nDims < 3) % 3d or N-d array - always collapse % >> a = cell(2,2); % >> a{1,1} = 11; % >> a{1,2} = '1,2'; % >> a{2,1} = 21; % >> a{2,2} = '2,2'; % >> rptgen.toString(a) % >> rptgen.toString(a, 5) string = '{'; for i = 1:siz(1) j = 1; sLength = length(string); while (j <= siz(2)) && ~isCollapse % Pass in a character limit roughly corresponding to the percentage % of cells we have left to go pctCharLimit = (charLimit-sLength)/((i-1)*siz(2)+j); string = [ string ... ' ' ... rptgen.toString(value{i,j}, pctCharLimit, ' ') ... ' ,' ]; %#ok j = j+1; sLength = length(string); isCollapse = ~(sLength <= charLimit); end string(end) = ';'; % NOTE* Below was 'string(end+1)=cr;', but this fails when value is not a string string = [string cr]; %#ok end string(end-1) = '}'; string(end) = []; else % 3d or N-d array - always collapse % >> a = cell(2,2); % >> a{1,1} = 11; % >> a{1,2} = '1,2'; % >> a{2,1} = 21; % >> a{2,2} = '2,2'; % rptgen.toString(repmat(a,[2 2 2])) isCollapse = true; end if isCollapse string = sprintf('[%s cell]', locRenderSizeString(siz)); end %------------------------------------------------------------------------------- function string = locRenderStringArray(value, charLimit, cr) value = num2cell(value); siz = size(value); nDims = length(siz); isCollapse = false; if isempty(value) % >> rptgen.toString({''}) string = '[]'; elseif (nDims < 3) % 3d or N-d array - always collapse % >> a = ["a","b";"c";"d"]; % >> rptgen.toString(a) % >> rptgen.toString(a, 5) string = '['; for i = 1:siz(1) j = 1; sLength = length(string); while (j <= siz(2)) && ~isCollapse % Pass in a character limit roughly corresponding to the percentage % of cells we have left to go pctCharLimit = (charLimit-sLength)/((i-1)*siz(2)+j); if i > 1 leftQuote = ' "'; else leftQuote = '"'; end string = [ string ... leftQuote ... rptgen.toString(value{i,j}, pctCharLimit) ... '",' ]; %#ok j = j+1; sLength = length(string); isCollapse = ~(sLength <= charLimit); end string(end) = ';'; % NOTE* Below was 'string(end+1)=cr;', but this fails when value is not a string string = [string cr]; %#ok end string(end-1) = ']'; string(end) = []; else % 3d or N-d array - always collapse % >> a = ["a","b";"c";"d"]; % rptgen.toString(repmat(a,[2 2 2])) isCollapse = true; end if isCollapse string = sprintf('[%s string array]', locRenderSizeString(siz)); end %------------------------------------------------------------------------------- function string = locRenderViaDISP(value, charLimit, cr) % value called by EVALC try string = evalc('disp(value)'); % Eliminate leading and trailing \n's string = regexprep(string, '^\n+|\n+$', ''); % Replace carriage returns string = strrep(string, newline, cr); forceCollapse = false; catch ex %#ok<NASGU> forceCollapse = true; end if (forceCollapse || (length(string) > charLimit)) siz = size(value); string = sprintf('[%s%s]', locRenderSizeString(siz), class(value)); end %------------------------------------------------------------------------------- function string = locRenderNumeric(value, charLimit, cr) siz = size(value); nElem = prod(siz); nDims = length(siz); % Get typical string length for a given display format dispFormat = get(0, 'Format'); switch dispFormat(1) case 'b' % >> format bank typNumStrLen = 4; precision = 2; case 'l' % >> format long typNumStrLen = 17; precision = 7; otherwise % >> format short typNumStrLen = 6; precision = []; end if ((nDims > 2) || (nElem*typNumStrLen > charLimit)) % Show in collapse form % >> rptgen.toString(rand(100), 100) % [100x100 double] string = sprintf('<%s%s>', locRenderSizeString(siz), class(value)); elseif (nElem == 1) % Obey current FORMAT setting by using DISP % >> aNumber = int16(255); % >> format hex % >> rptgen.toString(aNumber); string = strtrim(locRenderViaDISP(value, charLimit, cr)); elseif (nElem == 0) % >> rptgen.toString(zeros(0)); string = '[]'; else % Can not use DISP to get the correct display format because DISP depends % on the size of the command window. Use NUM2STR instead. % NUM2STR works best a FULL matrix (not sparse) % >> aNumber = zeros(5); % >> aSparse = sparse(aNumber); % >> rptgen.toString(aSparse) % [0 0 ; % 0 0 ] % NOTE: This does not work with FORMAT not defined above. % g947514: Cast value to double to ensure that num2str works with all % numeric types, including fixed-point (fi) types. if isinteger(value) || isempty(precision) % >> format short % >> rptgen.toString([1 2 3]) % test empty precision string = num2str(double(full(value))); else string = num2str(double(full(value)), precision); end brackets = '[]'; % Blank columns are the leading and trailing two columns beform the CR blankColumn = blanks(size(string,1))'; % Second to last column semicolonColumn = ';'; semicolonColumn = semicolonColumn(ones(size(string,1),1)); % Last column, carriage return (CR) column crColumn = cr(ones(size(string,1),1)); % Construct output string = [blankColumn, string, blankColumn, semicolonColumn, crColumn]; string(1,1) = brackets(1); string(end,end-1) = brackets(2); string(end,end) = ' '; % Make sure that out is single-line for concatenating w/ others string = string'; string = string(:)'; % Make sure there are no zeros in the string string(string == 0) = ' '; end %------------------------------------------------------------------------------- function string = locRenderChar(value, charLimit, cr) siz = size(value); nElem = prod(siz); nDims = length(siz); if (nDims > 2) || (nElem > charLimit) % Multi-dimension text & extremely long text % >> rptgen.toString(repmat('adsfasdf',[3 3 3])) % >> rptgen.toString('adsfasdf', 2) string = sprintf('[%schar]',locRenderSizeString(siz)); elseif (nDims > 1) % Multiline text % >> rptgen.toString(repmat('ab',[2 2])) string = rptgen.makeSingleLineText(value, cr); else % Single line text % >> rptgen.toString('abc') string = v; end %------------------------------------------------------------------------------- function string = locRenderCellStr(value, charLimit, cr, objType) siz = size(value); nDims = length(siz); if (nargin < 4) objType = 'cellstr'; end if (nDims < 3) && (min(siz) == 1) % Handles [nx1] and [1xn] cell array dimensions % >> a = cell(1,2) % >> a{1,1} = '1,1' % >> a{1,2} = '1,2' % >> rptgen.toString(a) string = rptgen.makeSingleLineText(value, cr); if (length(string) > charLimit) string = sprintf('[%s %s]', locRenderSizeString(siz), objType); end else % Handles [nxm] cell array dimensions, ie [2x2] % >> a = cell(2,2) % >> a{1,1} = '1,1' % >> a{1,2} = '1,2' % >> a{2,1} = '2,1' % >> a{2,2} = '2,2' % >> rptgen.toString(a) string = locRenderCell(value, charLimit, cr); end %------------------------------------------------------------------------------- function string = locRenderDAObject(value, charLimit, cr) % >> a = handle(1); % >> for i = 1:100 % >> a(i) = rptgen.cfr_text % >> end % >> rptgen.toString(a,inf) % >> rptgen.toString(a) value = value(:); vLen = length(value); cellStr = cell(1, vLen); for i = 1:vLen cellStr{i} = getDisplayLabel(value(i)); end string = locRenderCellStr(cellStr, charLimit, cr, 'DAStudio.Object'); %------------------------------------------------------------------------------- function string = locRenderMCOSObject(value) sz = size(value); szStr = locRenderSizeString(sz, true); string = sprintf('<%s %s>', szStr, class(value)); %------------------------------------------------------------------------------- function [charLimit, cr] = locParseInputArgs(varargin) if (nargin == 2) charLimit = floor(varargin{1}); cr = varargin{2}; elseif (nargin == 1) charLimit = floor(varargin{1}); cr = newline; else % nargin == 0 charLimit = inf; cr = newline; end if (charLimit <= 0) charLimit = inf; end
github
Brain-Modulation-Lab/bml-master
bml_getidx.m
.m
bml-master/utils/bml_getidx.m
1,222
utf_8
76d9bb4c7bf96f74e77d1ddcf0a1115f
function idx = bml_getidx(element,collection) % BML_GETIDX gets the first indices of the elements in the collection (or domain) % % Use as % idx = bml_getidx(element,collection) % % index 0 for elements not found % % Use as % index = bml_get_index(element,collection) % % elements - array or cell % domain - collection of elements from where to extract the index % % returns an array of natural indices if ischar(element) element = {element}; end if iscellstr(element) assert(iscellstr(collection),'incompatible elements and collection'); idx = cellfun(@(x) zero_if_empty(find(strcmp(collection,x),1)),element,'UniformOutput',true); elseif iscell(element) assert(iscell(collection),'incompatible elements and collection'); idx = cellfun(@(x) zero_if_empty(find(collection==x,1)),element,'UniformOutput',true); elseif isnumeric(element) assert(isnumeric(collection),'incompatible elements and collection'); idx = arrayfun(@(x) zero_if_empty(find(collection==x,1)),element); else error('unknown type for element'); end if size(idx,1) > size(idx,2) idx = idx'; end end function y = zero_if_empty(x) if isempty(x) y = 0; else y = x; end end
github
Brain-Modulation-Lab/bml-master
linspecer.m
.m
bml-master/utils/linspecer.m
8,162
utf_8
13346085b958ab6ff2bd20616dfa4473
% function lineStyles = linspecer(N) % This function creates an Nx3 array of N [R B G] colors % These can be used to plot lots of lines with distinguishable and nice % looking colors. % % lineStyles = linspecer(N); makes N colors for you to use: lineStyles(ii,:) % % colormap(linspecer); set your colormap to have easily distinguishable % colors and a pleasing aesthetic % % lineStyles = linspecer(N,'qualitative'); forces the colors to all be distinguishable (up to 12) % lineStyles = linspecer(N,'sequential'); forces the colors to vary along a spectrum % % % Examples demonstrating the colors. % % LINE COLORS % N=6; % X = linspace(0,pi*3,1000); % Y = bsxfun(@(x,n)sin(x+2*n*pi/N), X.', 1:N); % C = linspecer(N); % axes('NextPlot','replacechildren', 'ColorOrder',C); % plot(X,Y,'linewidth',5) % ylim([-1.1 1.1]); % % SIMPLER LINE COLOR EXAMPLE % N = 6; X = linspace(0,pi*3,1000); % C = linspecer(N) % hold off; % for ii=1:N % Y = sin(X+2*ii*pi/N); % plot(X,Y,'color',C(ii,:),'linewidth',3); % hold on; % end % % COLORMAP EXAMPLE % A = rand(15); % figure; imagesc(A); % default colormap % figure; imagesc(A); colormap(linspecer); % linspecer colormap % % See also NDHIST, NHIST, PLOT, COLORMAP, 43700-cubehelix-colormaps %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % by Jonathan Lansey, March 2009-2013 ? Lansey at gmail.com % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %% credits and where the function came from % The colors are largely taken from: % http://colorbrewer2.org and Cynthia Brewer, Mark Harrower and The Pennsylvania State University % % % She studied this from a phsychometric perspective and crafted the colors % beautifully. % % I made choices from the many there to decide the nicest once for plotting % lines in Matlab. I also made a small change to one of the colors I % thought was a bit too bright. In addition some interpolation is going on % for the sequential line styles. % % %% function lineStyles=linspecer(N,varargin) if nargin==0 % return a colormap lineStyles = linspecer(128); return; end if ischar(N) lineStyles = linspecer(128,N); return; end if N<=0 % its empty, nothing else to do here lineStyles=[]; return; end % interperet varagin qualFlag = 0; colorblindFlag = 0; if ~isempty(varargin)>0 % you set a parameter? switch lower(varargin{1}) case {'qualitative','qua'} if N>12 % go home, you just can't get this. warning('qualitiative is not possible for greater than 12 items, please reconsider'); else if N>9 warning(['Default may be nicer for ' num2str(N) ' for clearer colors use: whitebg(''black''); ']); end end qualFlag = 1; case {'sequential','seq'} lineStyles = colorm(N); return; case {'white','whitefade'} lineStyles = whiteFade(N);return; case 'red' lineStyles = whiteFade(N,'red');return; case 'blue' lineStyles = whiteFade(N,'blue');return; case 'green' lineStyles = whiteFade(N,'green');return; case {'gray','grey'} lineStyles = whiteFade(N,'gray');return; case {'colorblind'} colorblindFlag = 1; otherwise warning(['parameter ''' varargin{1} ''' not recognized']); end end % *.95 % predefine some colormaps set3 = colorBrew2mat({[141, 211, 199];[ 255, 237, 111];[ 190, 186, 218];[ 251, 128, 114];[ 128, 177, 211];[ 253, 180, 98];[ 179, 222, 105];[ 188, 128, 189];[ 217, 217, 217];[ 204, 235, 197];[ 252, 205, 229];[ 255, 255, 179]}'); set1JL = brighten(colorBrew2mat({[228, 26, 28];[ 55, 126, 184]; [ 77, 175, 74];[ 255, 127, 0];[ 255, 237, 111]*.85;[ 166, 86, 40];[ 247, 129, 191];[ 153, 153, 153];[ 152, 78, 163]}')); set1 = brighten(colorBrew2mat({[ 55, 126, 184]*.85;[228, 26, 28];[ 77, 175, 74];[ 255, 127, 0];[ 152, 78, 163]}),.8); % colorblindSet = {[215,25,28];[253,174,97];[171,217,233];[44,123,182]}; colorblindSet = {[215,25,28];[253,174,97];[171,217,233]*.8;[44,123,182]*.8}; set3 = dim(set3,.93); if colorblindFlag switch N % sorry about this line folks. kind of legacy here because I used to % use individual 1x3 cells instead of nx3 arrays case 4 lineStyles = colorBrew2mat(colorblindSet); otherwise colorblindFlag = false; warning('sorry unsupported colorblind set for this number, using regular types'); end end if ~colorblindFlag switch N case 1 lineStyles = { [ 55, 126, 184]/255}; case {2, 3, 4, 5 } lineStyles = set1(1:N); case {6 , 7, 8, 9} lineStyles = set1JL(1:N)'; case {10, 11, 12} if qualFlag % force qualitative graphs lineStyles = set3(1:N)'; else % 10 is a good number to start with the sequential ones. lineStyles = cmap2linspecer(colorm(N)); end otherwise % any old case where I need a quick job done. lineStyles = cmap2linspecer(colorm(N)); end end lineStyles = cell2mat(lineStyles); end % extra functions function varIn = colorBrew2mat(varIn) for ii=1:length(varIn) % just divide by 255 varIn{ii}=varIn{ii}/255; end end function varIn = brighten(varIn,varargin) % increase the brightness if isempty(varargin), frac = .9; else frac = varargin{1}; end for ii=1:length(varIn) varIn{ii}=varIn{ii}*frac+(1-frac); end end function varIn = dim(varIn,f) for ii=1:length(varIn) varIn{ii} = f*varIn{ii}; end end function vOut = cmap2linspecer(vIn) % changes the format from a double array to a cell array with the right format vOut = cell(size(vIn,1),1); for ii=1:size(vIn,1) vOut{ii} = vIn(ii,:); end end %% % colorm returns a colormap which is really good for creating informative % heatmap style figures. % No particular color stands out and it doesn't do too badly for colorblind people either. % It works by interpolating the data from the % 'spectral' setting on http://colorbrewer2.org/ set to 11 colors % It is modified a little to make the brightest yellow a little less bright. function cmap = colorm(varargin) n = 100; if ~isempty(varargin) n = varargin{1}; end if n==1 cmap = [0.2005 0.5593 0.7380]; return; end if n==2 cmap = [0.2005 0.5593 0.7380; 0.9684 0.4799 0.2723]; return; end frac=.95; % Slight modification from colorbrewer here to make the yellows in the center just a bit darker cmapp = [158, 1, 66; 213, 62, 79; 244, 109, 67; 253, 174, 97; 254, 224, 139; 255*frac, 255*frac, 191*frac; 230, 245, 152; 171, 221, 164; 102, 194, 165; 50, 136, 189; 94, 79, 162]; x = linspace(1,n,size(cmapp,1)); xi = 1:n; cmap = zeros(n,3); for ii=1:3 cmap(:,ii) = pchip(x,cmapp(:,ii),xi); end cmap = flipud(cmap/255); end function cmap = whiteFade(varargin) n = 100; if nargin>0 n = varargin{1}; end thisColor = 'blue'; if nargin>1 thisColor = varargin{2}; end switch thisColor case {'gray','grey'} cmapp = [255,255,255;240,240,240;217,217,217;189,189,189;150,150,150;115,115,115;82,82,82;37,37,37;0,0,0]; case 'green' cmapp = [247,252,245;229,245,224;199,233,192;161,217,155;116,196,118;65,171,93;35,139,69;0,109,44;0,68,27]; case 'blue' cmapp = [247,251,255;222,235,247;198,219,239;158,202,225;107,174,214;66,146,198;33,113,181;8,81,156;8,48,107]; case 'red' cmapp = [255,245,240;254,224,210;252,187,161;252,146,114;251,106,74;239,59,44;203,24,29;165,15,21;103,0,13]; otherwise warning(['sorry your color argument ' thisColor ' was not recognized']); end cmap = interpomap(n,cmapp); end % Eat a approximate colormap, then interpolate the rest of it up. function cmap = interpomap(n,cmapp) x = linspace(1,n,size(cmapp,1)); xi = 1:n; cmap = zeros(n,3); for ii=1:3 cmap(:,ii) = pchip(x,cmapp(:,ii),xi); end cmap = (cmap/255); % flipud?? end
github
Brain-Modulation-Lab/bml-master
checkstrs.m
.m
bml-master/utils/checkstrs.m
3,194
utf_8
ef0e640d970917243b1b5d2587c626ca
function out = checkstrs(in, valid_strings, function_name, ... variable_name, argument_position) %CHECKSTRS Check validity of option string. % OUT = CHECKSTRS(IN,VALID_STRINGS,FUNCTION_NAME,VARIABLE_NAME, ... % ARGUMENT_POSITION) checks the validity of the option string IN. It % returns the matching string in VALID_STRINGS in OUT. CHECKSTRS looks % for a case-insensitive nonambiguous match between IN and the strings % in VALID_STRINGS. % % VALID_STRINGS is a cell array containing strings. % % FUNCTION_NAME is a string containing the function name to be used in the % formatted error message. % % VARIABLE_NAME is a string containing the documented variable name to be % used in the formatted error message. % % ARGUMENT_POSITION is a positive integer indicating which input argument % is being checked; it is also used in the formatted error message. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 1.3.4.4 $ $Date: 2003/05/03 17:51:45 $ % Except for IN, input arguments are not checked for validity. % checkinput(in, 'char', 'row', function_name, variable_name, argument_position); start = regexpi(valid_strings, ['^' in]); if ~iscell(start) start = {start}; end matches = ~cellfun('isempty',start); idx = find(matches); num_matches = length(idx); if num_matches == 1 out = valid_strings{idx}; else out = substringMatch(valid_strings(idx)); if isempty(out) % Convert valid_strings to a single string containing a space-separated list % of valid strings. list = ''; for k = 1:length(valid_strings) list = [list ', ' valid_strings{k}]; end list(1:2) = []; msg1 = sprintf('Function %s expected its %s input argument, %s,', ... upper(function_name), num2ordinal(argument_position), ... variable_name); msg2 = 'to match one of these strings:'; if num_matches == 0 msg3 = sprintf('The input, ''%s'', did not match any of the valid strings.', in); id = sprintf('Images:%s:unrecognizedStringChoice', function_name); else msg3 = sprintf('The input, ''%s'', matched more than one valid string.', in); id = sprintf('Images:%s:ambiguousStringChoice', function_name); end error(id,'%s\n%s\n\n %s\n\n%s', msg1, msg2, list, msg3); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function str = substringMatch(strings) % STR = substringMatch(STRINGS) looks at STRINGS (a cell array of % strings) to see whether the shortest string is a proper substring of % all the other strings. If it is, then substringMatch returns the % shortest string; otherwise, it returns the empty string. if isempty(strings) str = ''; else len = cellfun('prodofsize',strings); [tmp,sortIdx] = sort(len); strings = strings(sortIdx); start = regexpi(strings(2:end), ['^' strings{1}]); if isempty(start) || (iscell(start) && any(cellfun('isempty',start))) str = ''; else str = strings{1}; end end
github
Brain-Modulation-Lab/bml-master
bml_compute_ISI.m
.m
bml-master/spksunit/bml_compute_ISI.m
623
utf_8
b9abb334f0f85327c343fde18039b1ba
function [isits] = bml_compute_ISI(D, fs,ISIFILTER) %BML_COMPUTE_INSTANTISI Summary of this function goes here % Author: Witek Lipski I = isi(D); isits = zeros(size(D)); k = find(D); for i=1:length(I) isits(k(i):(k(i)+I(i))) = I(i); end isits = isits/fs; isits = movmean(isits,[ISIFILTER, ISIFILTER]); end % helper function isi function I = isi(D) spike_samples = find(D~=0); if length(spike_samples) < 2 disp('ISI aborting: Not enough spikes in D.'); else I = zeros(length(spike_samples)-1,1); for i = 1:length(spike_samples)-1 I(i) = spike_samples(i+1)-spike_samples(i); end end end
github
Brain-Modulation-Lab/bml-master
bml_compute_Spikelocked_clusterperm.m
.m
bml-master/spksunit/bml_compute_Spikelocked_clusterperm.m
6,726
utf_8
bac42a07dc26d8ab9ea3c067c41876bb
function Stim = bml_compute_Spikelocked_clusterperm( spkSampRate, IFR,ISITS,D, n_trials, basetimes, trialtimes, respInterval,alpha,minTsig,n_btsp) %UNTITLED4 Summary of this function goes here % Detailed explanation goes here Stim.respInterval = respInterval; Stim.DispInterval = -1: 1/spkSampRate : Stim.respInterval(2) + 1; Stim.n_trials = n_trials; Stim.spkSampRate = spkSampRate; Stim.trial_nsamples = round(spkSampRate*diff(respInterval)) + 1; % Baseline data (hard-coded to take one second back from basetimes) Stim.base_samples = round(spkSampRate*basetimes); Stim.base_nsamples = round(spkSampRate) + 1; % hard/coded baseline 1 s % build baseline segments Stim.IFRbase = cell2mat(arrayfun(@(x) IFR((Stim.base_samples(x)-spkSampRate):Stim.base_samples(x)), ... 1:n_trials, 'uniformoutput', false)'); Stim.ISITSbase = cell2mat(arrayfun(@(x) ISITS((Stim.base_samples(x)-spkSampRate):Stim.base_samples(x)), ... 1:n_trials, 'uniformoutput', false)'); Stim.FRbaseline = mean(Stim.IFRbase(:)); Stim.ISITSbaseline = mean(Stim.ISITSbase(:)); % Trial data Stim.trial_samples = round(spkSampRate*trialtimes); Stim.DD = cell2mat(arrayfun(@(x) ... D((Stim.trial_samples(x)+round(spkSampRate*Stim.respInterval(1))): ... (Stim.trial_samples(x)+round(spkSampRate*Stim.respInterval(2)))), ... 1:n_trials, 'uniformoutput', false)'); Stim.IFRdata = cell2mat(arrayfun(@(x) ... IFR((Stim.trial_samples(x)+round(spkSampRate*Stim.respInterval(1))): ... (Stim.trial_samples(x)+round(spkSampRate*Stim.respInterval(2)))), ... 1:n_trials, 'uniformoutput', false)'); Stim.ISITSdata = cell2mat(arrayfun(@(x) ... ISITS((Stim.trial_samples(x)+round(spkSampRate*Stim.respInterval(1))): ... (Stim.trial_samples(x)+round(spkSampRate*Stim.respInterval(2)))), ... 1:n_trials, 'uniformoutput', false)'); % Wilcoxon + ClusterBased perm test Stim = do_clustermod(Stim,alpha,minTsig,n_btsp,"IFR"); Stim = do_clustermod(Stim,alpha,minTsig,n_btsp,"ISITS"); % try % Stim = do_clustermod(Stim,alpha,minTsig,n_btsp,"IFR"); % Stim = do_clustermod(Stim,alpha,minTsig,n_btsp,"ISITS"); % catch % warning("no enough samples") % end % function Stim = do_clustermod(Stim,alpha,minTsig,n_btsp,flag_neural) if contains(flag_neural,"IFR") Y = Stim.IFRdata; Y_baseline = Stim.IFRbase; elseif contains(flag_neural,"ISITS") Y = Stim.ISITSdata; Y_baseline = Stim.ISITSbase; end [pstats,~,stats] = arrayfun(@(x) signrank(Y(:,x),mean(Y_baseline,2,'omitnan'),"method","approximate"),1:Stim.trial_nsamples); zstats = [stats.zval]; Stim.Zscore = zstats; Psig = bwconncomp(pstats < alpha); n_clusters = Psig.NumObjects; zcluster = cellfun(@(x) sum(zstats(x)),Psig.PixelIdxList); zclust_btsp = []; data_all = [Y_baseline Y]; nsamples_all = size(data_all,2); for btsp_i = 1 : n_btsp if mod(btsp_i,100) == 0 fprintf("launching btsp %d/%d \n",btsp_i,n_btsp) end base_id = zeros(Stim.n_trials,Stim.base_nsamples); trial_id = zeros(Stim.n_trials,Stim.trial_nsamples); % trial-wise permutation for trial_i = 1 : Stim.n_trials base_id(trial_i,:) = randperm(nsamples_all,Stim.base_nsamples); trial_id(trial_i,:) = setdiff(1:nsamples_all,base_id(trial_i,:)); end data_btsp = data_all(trial_id); base_btsp = mean(data_all(base_id),2,'omitnan'); [pstats_btsp,~,stats_btsp] = arrayfun(@(x) ranksum(data_btsp(~ismissing(data_btsp(:,x)),x),base_btsp),1:Stim.trial_nsamples); zstats_btsp = [stats_btsp.zval]; Psig_btsp = bwconncomp(pstats_btsp < 0.05); zclust_btsp = [zclust_btsp cellfun(@(x) sum(zstats_btsp(x)),Psig_btsp.PixelIdxList)]; end %% check properties of significant periods sign_mod_length = cellfun(@(x) numel(x)/Stim.spkSampRate,Psig.PixelIdxList); if n_clusters > 0 % figure("renderer","painters") % h = histogram(zclust_btsp,'facecolor','k'); % hold on for cluster_i = 1 : n_clusters if contains(flag_neural,"IFR") Stim.IFRmod(cluster_i).Zclust = zcluster(cluster_i); Stim.IFRmod(cluster_i).Zlength = sign_mod_length(cluster_i); Stim.IFRmod(cluster_i).Zlength_enough = sign_mod_length(cluster_i) >= minTsig/1000; Stim.IFRmod(cluster_i).Pbtsp = mean(zclust_btsp>= zcluster(cluster_i)); Stim.IFRmod(cluster_i).Zflag = Stim.IFRmod(cluster_i).Pbtsp < 0.05; Stim.IFRmod(cluster_i).tbins = Psig.PixelIdxList{cluster_i}; elseif contains(flag_neural,"ISITS") Stim.ISITSmod(cluster_i).Zclust = zcluster(cluster_i); Stim.ISITSmod(cluster_i).Zlength = sign_mod_length(cluster_i); Stim.ISITSmod(cluster_i).Zlength_enough = sign_mod_length(cluster_i) >= minTsig/1000; Stim.ISITSmod(cluster_i).Pbtsp = mean(zclust_btsp >= zcluster(cluster_i)); Stim.ISITSmod(cluster_i).Zflag = Stim.ISITSmod(cluster_i).Pbtsp < 0.05; Stim.ISITSmod(cluster_i).tbins = Psig.PixelIdxList{cluster_i}; end %text(zcluster(plot_i),max(h.Values) + .05*max(h.Values),sprintf("P_{Z_{%d}} = %1.3f",plot_i,Stim.IFRmod(plot_i).Pbtsp)) % if zcluster(plot_i) < 0 % plot([zcluster(plot_i) zcluster(plot_i)],[0 max(h.Values)],'b--','linewidth',1.4) % % else % plot([zcluster(plot_i) zcluster(plot_i)],[0 max(h.Values)],'r--','linewidth',1.4) % end end % xlabel("Cluster-wise Z") % ylabel("count") % plot([prctile(zclust_btsp,2.5) prctile(zclust_btsp,2.5)], [0 max(h.Values)],'k--','linewidth',1.4) % plot([prctile(zclust_btsp,97.5) prctile(zclust_btsp,97.5)], [0 max(h.Values)],'k--','linewidth',1.4) % box off % disp("displaying and saving figure...") % saveas(gcf,figname,"png") % saveas(gcf,figname,"pdf") % saveas(gcf,figname,"eps") % close gcf end end end
github
Brain-Modulation-Lab/bml-master
bml_fdr_bh.m
.m
bml-master/stat/bml_fdr_bh.m
8,817
utf_8
4231e2545caae52ffd58f9a2a2564bcd
% fdr_bh() - Executes the Benjamini & Hochberg (1995) and the Benjamini & % Yekutieli (2001) procedure for controlling the false discovery % rate (FDR) of a family of hypothesis tests. FDR is the expected % proportion of rejected hypotheses that are mistakenly rejected % (i.e., the null hypothesis is actually true for those tests). % FDR is a somewhat less conservative/more powerful method for % correcting for multiple comparisons than procedures like Bonferroni % correction that provide strong control of the family-wise % error rate (i.e., the probability that one or more null % hypotheses are mistakenly rejected). % % This function also returns the false coverage-statement rate % (FCR)-adjusted selected confidence interval coverage (i.e., % the coverage needed to construct multiple comparison corrected % confidence intervals that correspond to the FDR-adjusted p-values). % % % Usage: % >> [h, crit_p, adj_ci_cvrg, adj_p]=fdr_bh(pvals,q,method,report); % % Required Input: % pvals - A vector or matrix (two dimensions or more) containing the % p-value of each individual test in a family of tests. % % Optional Inputs: % q - The desired false discovery rate. {default: 0.05} % method - ['pdep' or 'dep'] If 'pdep,' the original Bejnamini & Hochberg % FDR procedure is used, which is guaranteed to be accurate if % the individual tests are independent or positively dependent % (e.g., Gaussian variables that are positively correlated or % independent). If 'dep,' the FDR procedure % described in Benjamini & Yekutieli (2001) that is guaranteed % to be accurate for any test dependency structure (e.g., % Gaussian variables with any covariance matrix) is used. 'dep' % is always appropriate to use but is less powerful than 'pdep.' % {default: 'pdep'} % report - ['yes' or 'no'] If 'yes', a brief summary of FDR results are % output to the MATLAB command line {default: 'no'} % % % Outputs: % h - A binary vector or matrix of the same size as the input "pvals." % If the ith element of h is 1, then the test that produced the % ith p-value in pvals is significant (i.e., the null hypothesis % of the test is rejected). % crit_p - All uncorrected p-values less than or equal to crit_p are % significant (i.e., their null hypotheses are rejected). If % no p-values are significant, crit_p=0. % adj_ci_cvrg - The FCR-adjusted BH- or BY-selected % confidence interval coverage. For any p-values that % are significant after FDR adjustment, this gives you the % proportion of coverage (e.g., 0.99) you should use when generating % confidence intervals for those parameters. In other words, % this allows you to correct your confidence intervals for % multiple comparisons. You can NOT obtain confidence intervals % for non-significant p-values. The adjusted confidence intervals % guarantee that the expected FCR is less than or equal to q % if using the appropriate FDR control algorithm for the % dependency structure of your data (Benjamini & Yekutieli, 2005). % FCR (i.e., false coverage-statement rate) is the proportion % of confidence intervals you construct % that miss the true value of the parameter. adj_ci=NaN if no % p-values are significant after adjustment. % adj_p - All adjusted p-values less than or equal to q are significant % (i.e., their null hypotheses are rejected). Note, adjusted % p-values can be greater than 1. % % % References: % Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery % rate: A practical and powerful approach to multiple testing. Journal % of the Royal Statistical Society, Series B (Methodological). 57(1), % 289-300. % % Benjamini, Y. & Yekutieli, D. (2001) The control of the false discovery % rate in multiple testing under dependency. The Annals of Statistics. % 29(4), 1165-1188. % % Benjamini, Y., & Yekutieli, D. (2005). False discovery rate?adjusted % multiple confidence intervals for selected parameters. Journal of the % American Statistical Association, 100(469), 71?81. doi:10.1198/016214504000001907 % % % Example: % nullVars=randn(12,15); % [~, p_null]=ttest(nullVars); %15 tests where the null hypothesis % %is true % effectVars=randn(12,5)+1; % [~, p_effect]=ttest(effectVars); %5 tests where the null % %hypothesis is false % [h, crit_p, adj_ci_cvrg, adj_p]=fdr_bh([p_null p_effect],.05,'pdep','yes'); % data=[nullVars effectVars]; % fcr_adj_cis=NaN*zeros(2,20); %initialize confidence interval bounds to NaN % if ~isnan(adj_ci_cvrg), % sigIds=find(h); % fcr_adj_cis(:,sigIds)=tCIs(data(:,sigIds),adj_ci_cvrg); % tCIs.m is available on the % %Mathworks File Exchagne % end % % % For a review of false discovery rate control and other contemporary % techniques for correcting for multiple comparisons see: % % Groppe, D.M., Urbach, T.P., & Kutas, M. (2011) Mass univariate analysis % of event-related brain potentials/fields I: A critical tutorial review. % Psychophysiology, 48(12) pp. 1711-1725, DOI: 10.1111/j.1469-8986.2011.01273.x % http://www.cogsci.ucsd.edu/~dgroppe/PUBLICATIONS/mass_uni_preprint1.pdf % % % For a review of FCR-adjusted confidence intervals (CIs) and other techniques % for adjusting CIs for multiple comparisons see: % % Groppe, D.M. (in press) Combating the scientific decline effect with % confidence (intervals). Psychophysiology. % http://biorxiv.org/content/biorxiv/early/2015/12/10/034074.full.pdf % % % Author: % David M. Groppe % Kutaslab % Dept. of Cognitive Science % University of California, San Diego % March 24, 2010 %%%%%%%%%%%%%%%% REVISION LOG %%%%%%%%%%%%%%%%% % % 5/7/2010-Added FDR adjusted p-values % 5/14/2013- D.H.J. Poot, Erasmus MC, improved run-time complexity % 10/2015- Now returns FCR adjusted confidence intervals function [h, crit_p, adj_ci_cvrg, adj_p]=bml_fdr_bh(pvals,q,method,report) if nargin<1, error('You need to provide a vector or matrix of p-values.'); else if ~isempty(find(pvals<0,1)), error('Some p-values are less than 0.'); elseif ~isempty(find(pvals>1,1)), error('Some p-values are greater than 1.'); end end if nargin<2, q=.05; end if nargin<3, method='pdep'; end if nargin<4, report='no'; end s=size(pvals); if (length(s)>2) || s(1)>1, [p_sorted, sort_ids]=sort(reshape(pvals,1,prod(s))); else %p-values are already a row vector [p_sorted, sort_ids]=sort(pvals); end [dummy, unsort_ids]=sort(sort_ids); %indexes to return p_sorted to pvals order m=length(p_sorted); %number of tests if strcmpi(method,'pdep'), %BH procedure for independence or positive dependence thresh=(1:m)*q/m; wtd_p=m*p_sorted./(1:m); elseif strcmpi(method,'dep') %BH procedure for any dependency structure denom=m*sum(1./(1:m)); thresh=(1:m)*q/denom; wtd_p=denom*p_sorted./[1:m]; %Note, it can produce adjusted p-values greater than 1! %compute adjusted p-values else error('Argument ''method'' needs to be ''pdep'' or ''dep''.'); end if nargout>3, %compute adjusted p-values; This can be a bit computationally intensive adj_p=zeros(1,m)*NaN; [wtd_p_sorted, wtd_p_sindex] = sort( wtd_p ); nextfill = 1; for k = 1 : m if wtd_p_sindex(k)>=nextfill adj_p(nextfill:wtd_p_sindex(k)) = wtd_p_sorted(k); nextfill = wtd_p_sindex(k)+1; if nextfill>m break; end; end; end; adj_p=reshape(adj_p(unsort_ids),s); end rej=p_sorted<=thresh; max_id=find(rej,1,'last'); %find greatest significant pvalue if isempty(max_id), crit_p=0; h=pvals*0; adj_ci_cvrg=NaN; else crit_p=p_sorted(max_id); h=pvals<=crit_p; adj_ci_cvrg=1-thresh(max_id); end if strcmpi(report,'yes'), n_sig=sum(p_sorted<=crit_p); if n_sig==1, fprintf('Out of %d tests, %d is significant using a false discovery rate of %f.\n',m,n_sig,q); else fprintf('Out of %d tests, %d are significant using a false discovery rate of %f.\n',m,n_sig,q); end if strcmpi(method,'pdep'), fprintf('FDR/FCR procedure used is guaranteed valid for independent or positively dependent tests.\n'); else fprintf('FDR/FCR procedure used is guaranteed valid for independent or dependent tests.\n'); end end