plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
mribri999/MRSignalsSeqs-master
|
exrecsignal.m
|
.m
|
MRSignalsSeqs-master/Matlab/exrecsignal.m
| 525 |
utf_8
|
739a3c2f8ff99ce98b383dbb8818b20f
|
%
%[sig] = exrecsignal(T1,T2,TE,TR,flip)
%
% Calculates the steady-state signal of a
% simple excitation recovery sequence (or SPGR).
%
% T1,T2,TE,TR are tissue/sequence parameters.
% flip is the flip angle in degrees.
% The signal as a fraction of Mo is returned.
%
function [sig,M] = exrecsignal(T1,T2,TE,TR,flip);
s = sin(pi*flip/180);
c = cos(pi*flip/180);
E = exp(-TE/T2);
R = exp(-(TR)/T1);
if (abs(1-R*c)<.0001)
sig = 1;
M=[1;0;0];
else
sig = (1-R)*E*s/(1-R*c);
M = [sig;0;(1-R)*E*c/(1-R*c)];
end;
|
github
|
mribri999/MRSignalsSeqs-master
|
displogim.m
|
.m
|
MRSignalsSeqs-master/Matlab/displogim.m
| 394 |
utf_8
|
15e0d58b6b15e9ee17ceac106aca806d
|
% displogim(im)
% displays log-magnitude version of image im (complex array)
%
% im = 2D image array (real or complex, magnitude displayed)
%
% ===========================================================
function displogim(im)
im = squeeze((im));
lowexp = 0; % Make negative if max(im) is small.
im = log(abs(im));
f = find(im(:)< (lowexp));
im(f)= lowexp;
im = im - lowexp;
dispim(im);
|
github
|
mribri999/MRSignalsSeqs-master
|
setprops.m
|
.m
|
MRSignalsSeqs-master/Matlab/setprops.m
| 486 |
utf_8
|
d102d65180a29160f152b96e8bf8184c
|
%
% function setprops(handle, propertylist,debug)
%
% Function sets the properties of the handle and children
% according to propertylist.
%
% propertylist is a list object of the form
% { type1, prop1, val1, type2, prop2, val2, ... }
%
% For each child of handle, if the type matches typeN, and
% there is a property matching propN, then it is set to valN.
%
% B.Hargreaves
%
function setprops(handle, propertylist,debug)
% Do nothing... not working on 2016/2017 so commenting out!
|
github
|
mribri999/MRSignalsSeqs-master
|
showspins.m
|
.m
|
MRSignalsSeqs-master/Matlab/showspins.m
| 3,202 |
utf_8
|
ca809fe420d5a8550bf28da3a7bdf70c
|
%function showspins(M,scale,spinorig,myc)
%
% Show vector plot on one axis, that can then be rotated for 2D or 3D
% viewing.
%
% M = 3xN spins to show
% scale = axis scaling [-scale scale] defaults to 1.
% spinorig = 3xN origin of spins
% myc = colors to show spins (will default to something reasonable.)
%
% Get arrow3D to make these look nicer!
%
function showspins(M,scale,spinorig,myc)
if (nargin < 1) M = [0.8,0,0.2].'; end;
if (nargin < 2) scale = 1.0; end;
if (nargin < 3) spinorig = 0*M; end;
sz = size(M);
Nspins = sz(2);
myc = mycolors(Nspins); % -- Get nice colors, if not passed
% -- Plot vectors.
hold off;
for k=1:Nspins
if (exist('arrow3D'))
%arrow3D(spinorig(:,k),M(:,k),myc(k,:),0.8,0.03*scale);
arrow3D(spinorig(:,k),M(:,k),myc(k,:),0.8);
else
h = plot3([spinorig(1,k) M(1,k)],[spinorig(2,k) M(2,k)],[spinorig(3,k) M(3,k)]);
set(h,'LineWidth',3);
set(h,'Color',myc(k,:));
hold on;
grid on;
end;
end;
axis(scale*[-1 1 -1 1 -1 1]);
% -- Label Axes, set nice effects
xlabel('M_x');
ylabel('M_y');
zlabel('M_z');
axis square;
lighting phong; camlight right;
function c = mycolors(n)
cc = [
0 0 0.5625
0 0 0.6250
0 0 0.6875
0 0 0.7500
0 0 0.8125
0 0 0.8750
0 0 0.9375
0 0 1.0000
0 0.0625 1.0000
0 0.1250 1.0000
0 0.1875 1.0000
0 0.2500 1.0000
0 0.3125 1.0000
0 0.3750 1.0000
0 0.4375 1.0000
0 0.5000 1.0000
0 0.5625 1.0000
0 0.6250 1.0000
0 0.6875 1.0000
0 0.7500 1.0000
0 0.8125 1.0000
0 0.8750 1.0000
0 0.9375 1.0000
0 1.0000 1.0000
0.0625 1.0000 0.9375
0.1250 1.0000 0.8750
0.1875 1.0000 0.8125
0.2500 1.0000 0.7500
0.3125 1.0000 0.6875
0.3750 1.0000 0.6250
0.4375 1.0000 0.5625
0.5000 1.0000 0.5000
0.5625 1.0000 0.4375
0.6250 1.0000 0.3750
0.6875 1.0000 0.3125
0.7500 1.0000 0.2500
0.8125 1.0000 0.1875
0.8750 1.0000 0.1250
0.9375 1.0000 0.0625
1.0000 1.0000 0
1.0000 0.9375 0
1.0000 0.8750 0
1.0000 0.8125 0
1.0000 0.7500 0
1.0000 0.6875 0
1.0000 0.6250 0
1.0000 0.5625 0
1.0000 0.5000 0
1.0000 0.4375 0
1.0000 0.3750 0
1.0000 0.3125 0
1.0000 0.2500 0
1.0000 0.1875 0
1.0000 0.1250 0
1.0000 0.0625 0
1.0000 0 0
0.9375 0 0
0.8750 0 0
0.8125 0 0
0.7500 0 0
0.6875 0 0
0.6250 0 0
0.5625 0 0
0.5000 0 0];
sz = size(cc);
cind = ceil(([1:n]/(n+1))*sz(1));
c = cc(cind,:);
|
github
|
mribri999/MRSignalsSeqs-master
|
diamond.m
|
.m
|
MRSignalsSeqs-master/Matlab/diamond.m
| 411 |
utf_8
|
96a7ec2f0bdf60d8d0a03262f0380a15
|
% function im = diamond(size,w)
%
% Make a diamond of given width in a given image size
%
% INPUT:
% size = matrix size (2D)
% w = width (widest point)
%
% OUTPUT:
% image that is 1 inside diamond, 0 elsewhere.
%
function im = diamond(size,w)
[x,y] = meshgrid([1:size]-size/2,[1:size]-size/2);
im = ones(size,size);
im(find(x+y>w/2))=0;
im(find(x-y>w/2))=0;
im(find(-x+y>w/2))=0;
im(find(-x-y>w/2))=0;
|
github
|
mribri999/MRSignalsSeqs-master
|
gresignal.m
|
.m
|
MRSignalsSeqs-master/Matlab/gresignal.m
| 660 |
utf_8
|
0998ede31b51b02565f67c4bed822512
|
% [sig] = gresignal(T1,T2,TE,TR,flip)
%
% Plot the theoretical signal for a gradient-spoiled sequence.
% Note that this is NOT RF-spoiled GRE, which is the same
% (roughly) as excitation-recovery.
%
% T1,T2,TE,TR are parameters for tissue and sequence.
% flip is the flip angle in degrees.
% The signal as a fraction of Mo is returned.
%
% See Buxton 1989.
function [sig] = gresignal(T1,T2,TE,TR,flip)
E1 = exp(-TR/T1);
E2 = exp(-TR/T2);
E = exp(-TE/T2);
s = sin(pi*flip/180);
c = cos(pi*flip/180);
B = 1 - E1*c - E2^2*(E1-c);
C = E2*(1-E1)*(1+c);
A = sqrt(B^2-C^2);
if (abs(A*C)==0)
sig = 1;
else
sig = s*(1-E1)*E* (C-E2*(B-A)) / (A*C);
end;
|
github
|
mribri999/MRSignalsSeqs-master
|
lec7kimhist.m
|
.m
|
MRSignalsSeqs-master/Matlab/lectures/lec7kimhist.m
| 558 |
utf_8
|
5f9a53916c654698521d1556d44e09d1
|
%
% Function plots k-space, image and histogram, and returns mean and sd.
function [mn,sd] = lec7kimhist(ksp,ftitle,histpts,refsnr)
[N,M] = size(ksp);
im = (1/N)*ft(ksp);
subplot(2,2,1); dispim(log(1+abs(ksp)));
tt = sprintf('kspace - %s',ftitle);
title(tt); axis off;
subplot(2,2,2); dispim(im);
tt = sprintf('image - %s',ftitle);
title(tt); axis off;
subplot(2,2,3);
[mn,sd] = ghist(histpts);
if (nargin < 4) refsnr = mn/sd; end;
title(ftitle);
tt=sprintf('%s: mean=%g, stdev=%g, ratio=%g, relative=%g',ftitle,mn,sd,mn/sd,mn/sd/refsnr); disp(tt);
|
github
|
yikouniao/MTMCT-master
|
distHSV1.m
|
.m
|
MTMCT-master/distHSV1.m
| 389 |
utf_8
|
1a407c98a3a355ba29c35a7be65d0854
|
%function [dist] = distHSV1(dAppr1, dAppr2, w_f)
function [dist] = distHSV1(flag1, appr1, flag2, appr2, w_f)
k1 = find(flag1'); k2 = find(flag2');
%n1 = size(k1,1); n2 = size(k2,1);
w = zeros(8,8);
dist = 0;
for i = k1
for j = k2
w(i,j) = w_f(abs(dirDiff(i, j))+1);
dist = dist + w(i,j) * distHSV(appr1(i,:), appr2(j,:));
end
end
dist = dist / sum(w(:));
end
|
github
|
yikouniao/MTMCT-master
|
knnsearch2.m
|
.m
|
MTMCT-master/utils/misc/knnsearch2.m
| 3,977 |
utf_8
|
6121bae49c29fe897da0d67a9d77ecfa
|
function [idx,D]=knnsearch2(varargin)
% KNNSEARCH Linear k-nearest neighbor (KNN) search
% IDX = knnsearch(Q,R,K) searches the reference data set R (n x d array
% representing n points in a d-dimensional space) to find the k-nearest
% neighbors of each query point represented by eahc row of Q (m x d array).
% The results are stored in the (m x K) index array, IDX.
%
% IDX = knnsearch(Q,R) takes the default value K=1.
%
% IDX = knnsearch(Q) or IDX = knnsearch(Q,[],K) does the search for R = Q.
%
% Rationality
% Linear KNN search is the simplest appraoch of KNN. The search is based on
% calculation of all distances. Therefore, it is normally believed only
% suitable for small data sets. However, other advanced approaches, such as
% kd-tree and delaunary become inefficient when d is large comparing to the
% number of data points. On the other hand, the linear search in MATLAB is
% relatively insensitive to d due to the vectorization. In this code, the
% efficiency of linear search is further improved by using the JIT
% aceeleration of MATLAB. Numerical example shows that its performance is
% comparable with kd-tree algorithm in mex.
%
% See also, kdtree, nnsearch, delaunary, dsearch
% By Yi Cao at Cranfield University on 25 March 2008
% Example 1: small data sets
%{
R=randn(100,2);
Q=randn(3,2);
idx=knnsearch(Q,R);
plot(R(:,1),R(:,2),'b.',Q(:,1),Q(:,2),'ro',R(idx,1),R(idx,2),'gx');
%}
% Example 2: ten nearest points to [0 0]
%{
R=rand(100,2);
Q=[0 0];
K=10;
idx=knnsearch(Q,R,10);
r=max(sqrt(sum(R(idx,:).^2,2)));
theta=0:0.01:pi/2;
x=r*cos(theta);
y=r*sin(theta);
plot(R(:,1),R(:,2),'b.',Q(:,1),Q(:,2),'co',R(idx,1),R(idx,2),'gx',x,y,'r-','linewidth',2);
%}
% Example 3: cputime comparion with delaunay+dsearch I, a few to look up
%{
R=randn(10000,4);
Q=randn(500,4);
t0=cputime;
idx=knnsearch(Q,R);
t1=cputime;
T=delaunayn(R);
idx1=dsearchn(R,T,Q);
t2=cputime;
fprintf('Are both indices the same? %d\n',isequal(idx,idx1));
fprintf('CPU time for knnsearch = %g\n',t1-t0);
fprintf('CPU time for delaunay = %g\n',t2-t1);
%}
% Example 4: cputime comparion with delaunay+dsearch II, lots to look up
%{
Q=randn(10000,4);
R=randn(500,4);
t0=cputime;
idx=knnsearch(Q,R);
t1=cputime;
T=delaunayn(R);
idx1=dsearchn(R,T,Q);
t2=cputime;
fprintf('Are both indices the same? %d\n',isequal(idx,idx1));
fprintf('CPU time for knnsearch = %g\n',t1-t0);
fprintf('CPU time for delaunay = %g\n',t2-t1);
%}
% Example 5: cputime comparion with kd-tree by Steven Michael (mex file)
% <a href="http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=7030&objectType=file">kd-tree by Steven Michael</a>
%{
Q=randn(10000,10);
R=randn(500,10);
t0=cputime;
idx=knnsearch(Q,R);
t1=cputime;
tree=kdtree(R);
idx1=kdtree_closestpoint(tree,Q);
t2=cputime;
fprintf('Are both indices the same? %d\n',isequal(idx,idx1));
fprintf('CPU time for knnsearch = %g\n',t1-t0);
fprintf('CPU time for delaunay = %g\n',t2-t1);
%}
% Check inputs
[Q,R,K,fident] = parseinputs(varargin{:});
% Check outputs
error(nargoutchk(0,2,nargout));
% C2 = sum(C.*C,2)';
[N,M] = size(Q);
L=size(R,1);
idx = zeros(N,K);
D = idx;
if K==1
% Loop for each query point
for k=1:N
d=zeros(L,1);
for t=1:M
d=d+(R(:,t)-Q(k,t)).^2;
end
if fident
d(k)=inf;
end
[D(k),idx(k)]=min(d);
end
else
for k=1:N
d=zeros(L,1);
for t=1:M
d=d+(R(:,t)-Q(k,t)).^2;
end
if fident
d(k)=inf;
end
[s,t]=sort(d);
idx(k,:)=t(1:K);
D(k,:)=s(1:K);
end
end
if nargout>1
D=sqrt(D);
end
function [Q,R,K,fident] = parseinputs(varargin)
% Check input and output
error(nargchk(1,3,nargin));
Q=varargin{1};
if nargin<2
R=Q;
fident = true;
else
fident = false;
R=varargin{2};
end
if isempty(R)
fident = true;
R=Q;
end
if ~fident
fident = isequal(Q,R);
end
if nargin<3
K=1;
else
K=varargin{3};
end
|
github
|
niravshah241/master_thesis-master
|
mygridnirav3.m
|
.m
|
master_thesis-master/misc/mygridnirav3.m
| 1,388 |
utf_8
|
9a6faaff1ebcca1720cc1ed2c6a0531b
|
% This script is written and read by pdetool and should NOT be edited.
% There are two recommended alternatives:
% 1) Export the required variables from pdetool and create a MATLAB script
% to perform operations on these.
% 2) Define the problem completely using a MATLAB script. See
% http://www.mathworks.com/help/pde/examples/index.html for examples
% of this approach.
function pdemodel
[pde_fig,ax]=pdeinit;
pdetool('appl_cb',1);
set(ax,'DataAspectRatio',[1 1 1]);
set(ax,'PlotBoxAspectRatio',[3 2 1]);
set(ax,'XLim',[-1.5 1.5]);
set(ax,'YLim',[-1 1]);
set(ax,'XTickMode','auto');
set(ax,'YTickMode','auto');
% Geometry description:
pderect([0 1 0 1],'SQ1');
pdecirc(0.5,0.5,0.10000000000000001,'C1');
set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','SQ1')
% PDE coefficients:
pdeseteq(1,...
'1.0',...
'0.0',...
'10.0',...
'1.0',...
'0:10',...
'0.0',...
'0.0',...
'[0 100]')
setappdata(pde_fig,'currparam',...
['1.0 ';...
'0.0 ';...
'10.0';...
'1.0 '])
% Solve parameters:
setappdata(pde_fig,'solveparam',...
char('0','1000','10','pdeadworst',...
'0.5','longest','0','1E-4','','fixed','Inf'))
% Plotflags and user data strings:
setappdata(pde_fig,'plotflags',[1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1]);
setappdata(pde_fig,'colstring','');
setappdata(pde_fig,'arrowstring','');
setappdata(pde_fig,'deformstring','');
setappdata(pde_fig,'heightstring','');
|
github
|
niravshah241/master_thesis-master
|
mygridnirav2.m
|
.m
|
master_thesis-master/misc/mygridnirav2.m
| 1,485 |
utf_8
|
0577163a9727f7bcfe0ae7bd844775ea
|
% This script is written and read by pdetool and should NOT be edited.
% There are two recommended alternatives:
% 1) Export the required variables from pdetool and create a MATLAB script
% to perform operations on these.
% 2) Define the problem completely using a MATLAB script. See
% http://www.mathworks.com/help/pde/examples/index.html for examples
% of this approach.
function pdemodel
[pde_fig,ax]=pdeinit;
pdetool('appl_cb',1);
set(ax,'DataAspectRatio',[1 1 1]);
set(ax,'PlotBoxAspectRatio',[3 2 1]);
set(ax,'XLim',[-1.5 1.5]);
set(ax,'YLim',[-1 1]);
set(ax,'XTickMode','auto');
set(ax,'YTickMode','auto');
% Geometry description:
pderect([0 2.2000000000000002 0.40999999999999998 0],'R1');
pdeellip(0.20000000000000001,0.20000000000000001,0.050000000000000003,0.050000000000000003,...
0,'E1');
set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','R1-E1')
% PDE coefficients:
pdeseteq(1,...
'1.0',...
'0.0',...
'10.0',...
'1.0',...
'0:10',...
'0.0',...
'0.0',...
'[0 100]')
setappdata(pde_fig,'currparam',...
['1.0 ';...
'0.0 ';...
'10.0';...
'1.0 '])
% Solve parameters:
setappdata(pde_fig,'solveparam',...
char('0','1000','10','pdeadworst',...
'0.5','longest','0','1E-4','','fixed','Inf'))
% Plotflags and user data strings:
setappdata(pde_fig,'plotflags',[1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1]);
setappdata(pde_fig,'colstring','');
setappdata(pde_fig,'arrowstring','');
setappdata(pde_fig,'deformstring','');
setappdata(pde_fig,'heightstring','');
|
github
|
niravshah241/master_thesis-master
|
ch3_fig_1.m
|
.m
|
master_thesis-master/thesis_latex/ch3_fig_1.m
| 1,418 |
utf_8
|
474509356b96297c891b0905e6c85308
|
% This script is written and read by pdetool and should NOT be edited.
% There are two recommended alternatives:
% 1) Export the required variables from pdetool and create a MATLAB script
% to perform operations on these.
% 2) Define the problem completely using a MATLAB script. See
% http://www.mathworks.com/help/pde/examples/index.html for examples
% of this approach.
function pdemodel
[pde_fig,ax]=pdeinit;
pdetool('appl_cb',1);
set(ax,'DataAspectRatio',[1 1 1]);
set(ax,'PlotBoxAspectRatio',[1.5 1 1]);
set(ax,'XLim',[-1.5 1.5]);
set(ax,'YLim',[-1 1]);
set(ax,'XTickMode','auto');
set(ax,'YTickMode','auto');
% Geometry description:
pderect([-0.5039525691699609 0.29446640316205563 0.41699604743082963 -0.15217391304347805],'R1');
set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','R1')
% PDE coefficients:
pdeseteq(1,...
'1.0',...
'0.0',...
'10.0',...
'1.0',...
'0:10',...
'0.0',...
'0.0',...
'[0 100]')
setappdata(pde_fig,'currparam',...
['1.0 ';...
'0.0 ';...
'10.0';...
'1.0 '])
% Solve parameters:
setappdata(pde_fig,'solveparam',...
char('0','1000','10','pdeadworst',...
'0.5','longest','0','1E-4','','fixed','Inf'))
% Plotflags and user data strings:
setappdata(pde_fig,'plotflags',[1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1]);
setappdata(pde_fig,'colstring','');
setappdata(pde_fig,'arrowstring','');
setappdata(pde_fig,'deformstring','');
setappdata(pde_fig,'heightstring','');
|
github
|
niravshah241/master_thesis-master
|
figsame.m
|
.m
|
master_thesis-master/figsame/figsame.m
| 895 |
utf_8
|
83086746f829eac6e6af849a8d84e69f
|
% FIGSAME Makes figures the same size
%
% FIGSAME Resizes all figures to be the size of gcf
% FIGSAME(f1) Resizes all figures to be the size as figure f1
% FIGSAME(f1,f2) Resizes figure(s) specified by vector f2 to be the same
% size as f1
function figsame(f1,f2)
if ~exist('f1','var')
f1 = gcf;
end
if ~exist('f2','var')
f2 = get(0,'children');
end
if ~isscalar(f1) || ~isvector(f2)
error('Usage: figsamesize(f1 (scalar),f2 (vector))')
end
figure(f1);
figsiz = get(gcf,'Position');
newfigpos = figsiz;
scrn = get(0,'screensize');
n = 20; %Shift by 20 pixels
for k = [f2(:)]'
figure(k);
newfigpos = newfigpos+[n -n 0 0];
% Make sure we don't push it off the screen...
if newfigpos*[1;0;1;0] > scrn(3)
newfigpos(1) = 1;
end
newfigpos(2) = max(newfigpos(2), 1);
set(gcf,'Position',newfigpos);
end
|
github
|
niravshah241/master_thesis-master
|
mygridnirav3.m
|
.m
|
master_thesis-master/my_grids/mygridnirav3.m
| 1,388 |
utf_8
|
299b51eaa73f8d5968f74152aeeabae8
|
% This script is written and read by pdetool and should NOT be edited.
% There are two recommended alternatives:
% 1) Export the required variables from pdetool and create a MATLAB script
% to perform operations on these.
% 2) Define the problem completely using a MATLAB script. See
% http://www.mathworks.com/help/pde/examples/index.html for examples
% of this approach.
function pdemodel
[pde_fig,ax]=pdeinit;
pdetool('appl_cb',1);
set(ax,'DataAspectRatio',[1 1 1]);
set(ax,'PlotBoxAspectRatio',[3 2 1]);
set(ax,'XLim',[-1.5 1.5]);
set(ax,'YLim',[-1 1]);
set(ax,'XTickMode','auto');
set(ax,'YTickMode','auto');
% Geometry description:
pderect([0 1 0 1],'SQ1');
pdecirc(0.2,0.2,0.05000000000000001,'C1');
set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','SQ1')
% PDE coefficients:
pdeseteq(1,...
'1.0',...
'0.0',...
'10.0',...
'1.0',...
'0:10',...
'0.0',...
'0.0',...
'[0 100]')
setappdata(pde_fig,'currparam',...
['1.0 ';...
'0.0 ';...
'10.0';...
'1.0 '])
% Solve parameters:
setappdata(pde_fig,'solveparam',...
char('0','1000','10','pdeadworst',...
'0.5','longest','0','1E-4','','fixed','Inf'))
% Plotflags and user data strings:
setappdata(pde_fig,'plotflags',[1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1]);
setappdata(pde_fig,'colstring','');
setappdata(pde_fig,'arrowstring','');
setappdata(pde_fig,'deformstring','');
setappdata(pde_fig,'heightstring','');
|
github
|
niravshah241/master_thesis-master
|
mygridnirav2.m
|
.m
|
master_thesis-master/my_grids/mygridnirav2.m
| 1,485 |
utf_8
|
0577163a9727f7bcfe0ae7bd844775ea
|
% This script is written and read by pdetool and should NOT be edited.
% There are two recommended alternatives:
% 1) Export the required variables from pdetool and create a MATLAB script
% to perform operations on these.
% 2) Define the problem completely using a MATLAB script. See
% http://www.mathworks.com/help/pde/examples/index.html for examples
% of this approach.
function pdemodel
[pde_fig,ax]=pdeinit;
pdetool('appl_cb',1);
set(ax,'DataAspectRatio',[1 1 1]);
set(ax,'PlotBoxAspectRatio',[3 2 1]);
set(ax,'XLim',[-1.5 1.5]);
set(ax,'YLim',[-1 1]);
set(ax,'XTickMode','auto');
set(ax,'YTickMode','auto');
% Geometry description:
pderect([0 2.2000000000000002 0.40999999999999998 0],'R1');
pdeellip(0.20000000000000001,0.20000000000000001,0.050000000000000003,0.050000000000000003,...
0,'E1');
set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','R1-E1')
% PDE coefficients:
pdeseteq(1,...
'1.0',...
'0.0',...
'10.0',...
'1.0',...
'0:10',...
'0.0',...
'0.0',...
'[0 100]')
setappdata(pde_fig,'currparam',...
['1.0 ';...
'0.0 ';...
'10.0';...
'1.0 '])
% Solve parameters:
setappdata(pde_fig,'solveparam',...
char('0','1000','10','pdeadworst',...
'0.5','longest','0','1E-4','','fixed','Inf'))
% Plotflags and user data strings:
setappdata(pde_fig,'plotflags',[1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1]);
setappdata(pde_fig,'colstring','');
setappdata(pde_fig,'arrowstring','');
setappdata(pde_fig,'deformstring','');
setappdata(pde_fig,'heightstring','');
|
github
|
niravshah241/master_thesis-master
|
pdegrid_2.m
|
.m
|
master_thesis-master/my_grids/pdegrid_2.m
| 1,343 |
utf_8
|
edaa38fe40d2dcff1967c1e8831b8419
|
% This script is written and read by pdetool and should NOT be edited.
% There are two recommended alternatives:
% 1) Export the required variables from pdetool and create a MATLAB script
% to perform operations on these.
% 2) Define the problem completely using a MATLAB script. See
% http://www.mathworks.com/help/pde/examples/index.html for examples
% of this approach.
function pdemodel
[pde_fig,ax]=pdeinit;
pdetool('appl_cb',1);
set(ax,'DataAspectRatio',[1 1 1]);
set(ax,'PlotBoxAspectRatio',[3 2 1]);
set(ax,'XLim',[-1.5 1.5]);
set(ax,'YLim',[-1 1]);
set(ax,'XTickMode','auto');
set(ax,'YTickMode','auto');
% Geometry description:
pderect([0 1 1 0],'R1');
set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','R1')
% PDE coefficients:
pdeseteq(1,...
'1.0',...
'0.0',...
'10.0',...
'1.0',...
'0:10',...
'0.0',...
'0.0',...
'[0 100]')
setappdata(pde_fig,'currparam',...
['1.0 ';...
'0.0 ';...
'10.0';...
'1.0 '])
% Solve parameters:
setappdata(pde_fig,'solveparam',...
char('0','1000','10','pdeadworst',...
'0.5','longest','0','1E-4','','fixed','Inf'))
% Plotflags and user data strings:
setappdata(pde_fig,'plotflags',[1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1]);
setappdata(pde_fig,'colstring','');
setappdata(pde_fig,'arrowstring','');
setappdata(pde_fig,'deformstring','');
setappdata(pde_fig,'heightstring','');
|
github
|
niravshah241/master_thesis-master
|
pdegrid_1.m
|
.m
|
master_thesis-master/my_grids/pdegrid_1.m
| 2,011 |
utf_8
|
410bda61cc054bf1b3dd7d184c98af49
|
% This script is written and read by pdetool and should NOT be edited.
% There are two recommended alternatives:
% 1) Export the required variables from pdetool and create a MATLAB script
% to perform operations on these.
% 2) Define the problem completely using a MATLAB script. See
% http://www.mathworks.com/help/pde/examples/index.html for examples
% of this approach.
function pdemodel
[pde_fig,ax]=pdeinit;
pdetool('appl_cb',1);
set(ax,'DataAspectRatio',[1 1 1]);
set(ax,'PlotBoxAspectRatio',[1.5 1 1]);
set(ax,'XLim',[-1.5 1.5]);
set(ax,'YLim',[-1 1]);
set(ax,'XTickMode','auto');
set(ax,'YTickMode','auto');
% Geometry description:
pderect([0 1 0 1],'SQ1');
pdecirc(0.2,0.5,0.05000000000000001,'C1');
set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','SQ1-C1')
% Boundary conditions:
pdetool('changemode',0)
pdesetbd(8,...
'dir',...
1,...
'1',...
'0')
pdesetbd(7,...
'dir',...
1,...
'1',...
'0')
pdesetbd(6,...
'dir',...
1,...
'1',...
'0')
pdesetbd(5,...
'dir',...
1,...
'1',...
'0')
pdesetbd(4,...
'dir',...
1,...
'1',...
'0')
pdesetbd(3,...
'neu',...
1,...
'0',...
'0')
pdesetbd(2,...
'dir',...
1,...
'1',...
'0')
pdesetbd(1,...
'neu',...
1,...
'0',...
'0')
% Mesh generation:
setappdata(pde_fig,'Hgrad',1.3);
setappdata(pde_fig,'refinemethod','regular');
setappdata(pde_fig,'jiggle',char('on','mean',''));
setappdata(pde_fig,'MesherVersion','preR2013a');
pdetool('initmesh')
% PDE coefficients:
pdeseteq(1,...
'1.0',...
'0.0',...
'10.0',...
'1.0',...
'0:10',...
'0.0',...
'0.0',...
'[0 100]')
setappdata(pde_fig,'currparam',...
['1.0 ';...
'0.0 ';...
'10.0';...
'1.0 '])
% Solve parameters:
setappdata(pde_fig,'solveparam',...
char('0','1000','10','pdeadworst',...
'0.5','longest','0','1E-4','','fixed','Inf'))
% Plotflags and user data strings:
setappdata(pde_fig,'plotflags',[1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1]);
setappdata(pde_fig,'colstring','');
setappdata(pde_fig,'arrowstring','');
setappdata(pde_fig,'deformstring','');
setappdata(pde_fig,'heightstring','');
|
github
|
niravshah241/master_thesis-master
|
pdegrid_convergenece_tests.m
|
.m
|
master_thesis-master/my_grids/testgrids/pdegrid_convergenece_tests.m
| 1,788 |
utf_8
|
de0a42a66cffa00f56ba36b4b84a3810
|
% This script is written and read by pdetool and should NOT be edited.
% There are two recommended alternatives:
% 1) Export the required variables from pdetool and create a MATLAB script
% to perform operations on these.
% 2) Define the problem completely using a MATLAB script. See
% http://www.mathworks.com/help/pde/examples/index.html for examples
% of this approach.
function pdemodel
[pde_fig,ax]=pdeinit;
pdetool('appl_cb',1);
set(ax,'DataAspectRatio',[1 1 1]);
set(ax,'PlotBoxAspectRatio',[1.5 1 1]);
set(ax,'XLim',[-1.5 1.5]);
set(ax,'YLim',[-1 1]);
set(ax,'XTickMode','auto');
set(ax,'YTickMode','auto');
% Geometry description:
pderect([0 1 1 0],'R1');
set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','R1')
% Boundary conditions:
pdetool('changemode',0)
pdesetbd(4,...
'dir',...
1,...
'1',...
'0')
pdesetbd(3,...
'dir',...
1,...
'1',...
'0')
pdesetbd(2,...
'dir',...
1,...
'1',...
'0')
pdesetbd(1,...
'dir',...
1,...
'1',...
'0')
% Mesh generation:
setappdata(pde_fig,'Hgrad',1.3);
setappdata(pde_fig,'refinemethod','regular');
setappdata(pde_fig,'jiggle',char('on','mean',''));
setappdata(pde_fig,'MesherVersion','preR2013a');
pdetool('initmesh')
% PDE coefficients:
pdeseteq(1,...
'1.0',...
'0.0',...
'10.0',...
'1.0',...
'0:10',...
'0.0',...
'0.0',...
'[0 100]')
setappdata(pde_fig,'currparam',...
['1.0 ';...
'0.0 ';...
'10.0';...
'1.0 '])
% Solve parameters:
setappdata(pde_fig,'solveparam',...
char('0','1000','10','pdeadworst',...
'0.5','longest','0','1E-4','','fixed','Inf'))
% Plotflags and user data strings:
setappdata(pde_fig,'plotflags',[1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1]);
setappdata(pde_fig,'colstring','');
setappdata(pde_fig,'arrowstring','');
setappdata(pde_fig,'deformstring','');
setappdata(pde_fig,'heightstring','');
|
github
|
IrvingShu/XQDA-master
|
LOMO.m
|
.m
|
XQDA-master/code/LOMO.m
| 10,916 |
utf_8
|
b6e9a0ae258aa1945212a176248cde9f
|
function descriptors = LOMO(images, options)
%% function Descriptors = LOMO(images, options)
% Function for the Local Maximal Occurrence (LOMO) feature extraction
%
% Input:
% <images>: a set of n RGB color images. Size: [h, w, 3, n]
% [optioins]: optional parameters. A structure containing any of the
% following fields:
% numScales: number of pyramid scales in feature extraction. Default: 3
% blockSize: size of the sub-window for histogram counting. Default: 10
% blockStep: sliding step for the sub-windows. Default: 5
% hsvBins: number of bins for HSV channels. Default: [8,8,8]
% tau: the tau parameter in SILTP. Default: 0.3
% R: the radius paramter in SILTP. Specify multiple values for multiscale SILTP. Default: [3, 5]
% numPoints: number of neiborhood points for SILTP encoding. Default: 4
% The above default parameters are good for 128x48 and 160x60 person
% images. You may need to adjust the numScales, blockSize, and R parameters
% for other smaller or higher resolutions.
%
% Output:
% descriptors: the extracted LOMO descriptors. Size: [d, n]
%
% Example:
% I = imread('../images/000_45_a.bmp');
% descriptor = LOMO(I);
%
% Reference:
% Shengcai Liao, Yang Hu, Xiangyu Zhu, and Stan Z. Li. Person
% re-identification by local maximal occurrence representation and metric
% learning. In IEEE Conference on Computer Vision and Pattern Recognition, 2015.
%
% Version: 1.0
% Date: 2015-04-29
%
% Author: Shengcai Liao
% Institute: National Laboratory of Pattern Recognition,
% Institute of Automation, Chinese Academy of Sciences
% Email: [email protected]
%% set parameters
numScales = 3;
blockSize = 10;
blockStep = 5;
hsvBins = [8,8,8];
tau = 0.3;
R = [3, 5];
numPoints = 4;
if nargin >= 2
if isfield(options,'numScales') && ~isempty(options.numScales) && isscalar(options.numScales) && isnumeric(options.numScales) && options.numScales > 0
numScales = options.numScales;
fprintf('numScales = %d.\n', numScales);
end
if isfield(options,'blockSize') && ~isempty(options.blockSize) && isscalar(options.blockSize) && isnumeric(options.blockSize) && options.blockSize > 0
blockSize = options.blockSize;
fprintf('blockSize = %d.\n', blockSize);
end
if isfield(options,'blockStep') && ~isempty(options.blockStep) && isscalar(options.blockStep) && isnumeric(options.blockStep) && options.blockStep > 0
blockStep = options.blockStep;
fprintf('blockStep = %d.\n', blockStep);
end
if isfield(options,'hsvBins') && ~isempty(options.hsvBins) && isvector(options.blockStep) && isnumeric(options.hsvBins) && length(options.hsvBins) == 3 && all(options.hsvBins > 0)
hsvBins = options.hsvBins;
fprintf('hsvBins = [%d, %d, %d].\n', hsvBins);
end
if isfield(options,'tau') && ~isempty(options.tau) && isscalar(options.tau) && isnumeric(options.tau) && options.tau > 0
tau = options.tau;
fprintf('tau = %g.\n', tau);
end
if isfield(options,'R') && ~isempty(options.R) && isnumeric(options.R) && all(options.R > 0)
R = options.R;
fprintf('R = %d.\n', R);
end
if isfield(options,'numPoints') && ~isempty(options.numPoints) && isscalar(options.numPoints) && isnumeric(options.numPoints) && options.numPoints > 0
numPoints = options.numPoints;
fprintf('numPoints = %d.\n', numPoints);
end
end
t0 = tic;
%% extract Joint HSV based LOMO descriptors
fea1 = PyramidMaxJointHist( images, numScales, blockSize, blockStep, hsvBins );
%% extract SILTP based LOMO descriptors
fea2 = [];
for i = 1 : length(R)
fea2 = [fea2; PyramidMaxSILTPHist( images, numScales, blockSize, blockStep, tau, R(i), numPoints )]; %#ok<AGROW>
end
%% finishing
descriptors = [fea1; fea2];
clear Fea1 Fea2
feaTime = toc(t0);
meanTime = feaTime / size(images, 4);
fprintf('LOMO feature extraction finished. Running time: %.3f seconds in total, %.3f seconds per image.\n', feaTime, meanTime);
end
function descriptors = PyramidMaxJointHist( oriImgs, numScales, blockSize, blockStep, colorBins )
%% PyramidMaxJointHist: HSV based LOMO representation
if nargin == 1
numScales = 3;
blockSize = 10;
blockStep = 5;
colorBins = [8,8,8];
end
totalBins = prod(colorBins);
numImgs = size(oriImgs, 4);
images = zeros(size(oriImgs));
% color transformation
for i = 1 : numImgs
I = oriImgs(:,:,:,i);
I = Retinex(I);
I = rgb2hsv(I);
I(:,:,1) = min( floor( I(:,:,1) * colorBins(1) ), colorBins(1)-1 );
I(:,:,2) = min( floor( I(:,:,2) * colorBins(2) ), colorBins(2)-1 );
I(:,:,3) = min( floor( I(:,:,3) * colorBins(3) ), colorBins(3)-1 );
images(:,:,:,i) = I; % HSV
end
minRow = 1;
minCol = 1;
descriptors = [];
% Scan multi-scale blocks and compute histograms
for i = 1 : numScales
patterns = images(:,:,3,:) * colorBins(2) * colorBins(1) + images(:,:,2,:)*colorBins(1) + images(:,:,1,:); % HSV
patterns = reshape(patterns, [], numImgs);
height = size(images, 1);
width = size(images, 2);
maxRow = height - blockSize + 1;
maxCol = width - blockSize + 1;
[cols,rows] = meshgrid(minCol:blockStep:maxCol, minRow:blockStep:maxRow); % top-left positions
cols = cols(:);
rows = rows(:);
numBlocks = length(cols);
numBlocksCol = length(minCol:blockStep:maxCol);
if numBlocks == 0
break;
end
offset = bsxfun(@plus, (0 : blockSize-1)', (0 : blockSize-1) * height); % offset to the top-left positions. blockSize-by-blockSize
index = sub2ind([height, width], rows, cols);
index = bsxfun(@plus, offset(:), index'); % (blockSize*blockSize)-by-numBlocks
patches = patterns(index(:), :); % (blockSize * blockSize * numBlocks)-by-numImgs
patches = reshape(patches, [], numBlocks * numImgs); % (blockSize * blockSize)-by-(numBlocks * numChannels * numImgs)
fea = hist(patches, 0 : totalBins-1); % totalBins-by-(numBlocks * numImgs)
fea = reshape(fea, [totalBins, numBlocks / numBlocksCol, numBlocksCol, numImgs]);
fea = max(fea, [], 3);
fea = reshape(fea, [], numImgs);
descriptors = [descriptors; fea]; %#ok<AGROW>
if i < numScales
images = ColorPooling(images, 'average');
end
end
descriptors = log(descriptors + 1);
descriptors = normc(descriptors);
end
function outImages = ColorPooling(images, method)
[height, width, numChannels, numImgs] = size(images);
outImages = images;
if mod(height, 2) == 1
outImages(end, :, :, :) = [];
height = height - 1;
end
if mod(width, 2) == 1
outImages(:, end, :, :) = [];
width = width - 1;
end
if height == 0 || width == 0
error('Over scaled image: height=%d, width=%d.', height, width);
end
height = height / 2;
width = width / 2;
outImages = reshape(outImages, 2, height, 2, width, numChannels, numImgs);
outImages = permute(outImages, [2, 4, 5, 6, 1, 3]);
outImages = reshape(outImages, height, width, numChannels, numImgs, 2*2);
if strcmp(method, 'average')
outImages = floor(mean(outImages, 5));
else if strcmp(method, 'max')
outImages = max(outImages, [], 5);
else
error('Error pooling method: %s.', method);
end
end
end
function descriptors = PyramidMaxSILTPHist( oriImgs, numScales, blockSize, blockStep, tau, R, numPoints )
%% PyramidMaxSILTPHist: SILTP based LOMO representation
if nargin == 1
numScales = 3;
blockSize = 10;
blockStep = 5;
tau = 0.3;
R = 5;
numPoints = 4;
end
totalBins = 3^numPoints;
[imgHeight, imgWidth, ~, numImgs] = size(oriImgs);
images = zeros(imgHeight,imgWidth, numImgs);
% Convert gray images
for i = 1 : numImgs
I = oriImgs(:,:,:,i);
I = rgb2gray(I);
images(:,:,i) = double(I) / 255;
end
minRow = 1;
minCol = 1;
descriptors = [];
% Scan multi-scale blocks and compute histograms
for i = 1 : numScales
height = size(images, 1);
width = size(images, 2);
if width < R * 2 + 1
fprintf('Skip scale R = %d, width = %d.\n', R, width);
continue;
end
patterns = SILTP(images, tau, R, numPoints);
patterns = reshape(patterns, [], numImgs);
maxRow = height - blockSize + 1;
maxCol = width - blockSize + 1;
[cols,rows] = meshgrid(minCol:blockStep:maxCol, minRow:blockStep:maxRow); % top-left positions
cols = cols(:);
rows = rows(:);
numBlocks = length(cols);
numBlocksCol = length(minCol:blockStep:maxCol);
if numBlocks == 0
break;
end
offset = bsxfun(@plus, (0 : blockSize-1)', (0 : blockSize-1) * height); % offset to the top-left positions. blockSize-by-blockSize
index = sub2ind([height, width], rows, cols);
index = bsxfun(@plus, offset(:), index'); % (blockSize*blockSize)-by-numBlocks
patches = patterns(index(:), :); % (blockSize * blockSize * numBlocks)-by-numImgs
patches = reshape(patches, [], numBlocks * numImgs); % (blockSize * blockSize)-by-(numBlocks * numChannels * numImgs)
fea = hist(patches, 0:totalBins-1); % totalBins-by-(numBlocks * numImgs)
fea = reshape(fea, [totalBins, numBlocks / numBlocksCol, numBlocksCol, numImgs]);
fea = max(fea, [], 3);
fea = reshape(fea, [], numImgs);
descriptors = [descriptors; fea]; %#ok<AGROW>
if i < numScales
images = Pooling(images, 'average');
end
end
descriptors = log(descriptors + 1);
descriptors = normc(descriptors);
end
function outImages = Pooling(images, method)
[height, width, numImgs] = size(images);
outImages = images;
if mod(height, 2) == 1
outImages(end, :, :) = [];
height = height - 1;
end
if mod(width, 2) == 1
outImages(:, end, :) = [];
width = width - 1;
end
if height == 0 || width == 0
error('Over scaled image: height=%d, width=%d.', height, width);
end
height = height / 2;
width = width / 2;
outImages = reshape(outImages, 2, height, 2, width, numImgs);
outImages = permute(outImages, [2, 4, 5, 1, 3]);
outImages = reshape(outImages, height, width, numImgs, 2*2);
if strcmp(method, 'average')
outImages = mean(outImages, 4);
else if strcmp(method, 'max')
outImages = max(outImages, [], 4);
else
error('Error pooling method: %s.', method);
end
end
end
|
github
|
JamesLinus/webrtc-master
|
readDetection.m
|
.m
|
webrtc-master/modules/audio_processing/transient/test/readDetection.m
| 927 |
utf_8
|
f6af5020971d028a50a4d19a31b33bcb
|
%
% Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function [d, t] = readDetection(file, fs, chunkSize)
%[d, t] = readDetection(file, fs, chunkSize)
%
%Reads a detection signal from a DAT file.
%
%d: The detection signal.
%t: The respective time vector.
%
%file: The DAT file where the detection signal is stored in float format.
%fs: The signal sample rate in Hertz.
%chunkSize: The chunk size used for the detection in seconds.
fid = fopen(file);
d = fread(fid, inf, 'float');
fclose(fid);
t = 0:(1 / fs):(length(d) * chunkSize - 1 / fs);
d = d(floor(t / chunkSize) + 1);
|
github
|
JamesLinus/webrtc-master
|
readPCM.m
|
.m
|
webrtc-master/modules/audio_processing/transient/test/readPCM.m
| 821 |
utf_8
|
76b2955e65258ada1c1e549a4fc9bf79
|
%
% Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function [x, t] = readPCM(file, fs)
%[x, t] = readPCM(file, fs)
%
%Reads a signal from a PCM file.
%
%x: The read signal after normalization.
%t: The respective time vector.
%
%file: The PCM file where the signal is stored in int16 format.
%fs: The signal sample rate in Hertz.
fid = fopen(file);
x = fread(fid, inf, 'int16');
fclose(fid);
x = x - mean(x);
x = x / max(abs(x));
t = 0:(1 / fs):((length(x) - 1) / fs);
|
github
|
JamesLinus/webrtc-master
|
plotDetection.m
|
.m
|
webrtc-master/modules/audio_processing/transient/test/plotDetection.m
| 923 |
utf_8
|
e8113bdaf5dcfe4f50200a3ca29c3846
|
%
% Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function [] = plotDetection(PCMfile, DATfile, fs, chunkSize)
%[] = plotDetection(PCMfile, DATfile, fs, chunkSize)
%
%Plots the signal alongside the detection values.
%
%PCMfile: The file of the input signal in PCM format.
%DATfile: The file containing the detection values in binary float format.
%fs: The sample rate of the signal in Hertz.
%chunkSize: The chunk size used to compute the detection values in seconds.
[x, tx] = readPCM(PCMfile, fs);
[d, td] = readDetection(DATfile, fs, chunkSize);
plot(tx, x, td, d);
|
github
|
JamesLinus/webrtc-master
|
apmtest.m
|
.m
|
webrtc-master/modules/audio_processing/test/apmtest.m
| 9,874 |
utf_8
|
17ad6af59f6daa758d983dd419e46ff0
|
%
% Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function apmtest(task, testname, filepath, casenumber, legacy)
%APMTEST is a tool to process APM file sets and easily display the output.
% APMTEST(TASK, TESTNAME, CASENUMBER) performs one of several TASKs:
% 'test' Processes the files to produce test output.
% 'list' Prints a list of cases in the test set, preceded by their
% CASENUMBERs.
% 'show' Uses spclab to show the test case specified by the
% CASENUMBER parameter.
%
% using a set of test files determined by TESTNAME:
% 'all' All tests.
% 'apm' The standard APM test set (default).
% 'apmm' The mobile APM test set.
% 'aec' The AEC test set.
% 'aecm' The AECM test set.
% 'agc' The AGC test set.
% 'ns' The NS test set.
% 'vad' The VAD test set.
%
% FILEPATH specifies the path to the test data files.
%
% CASENUMBER can be used to select a single test case. Omit CASENUMBER,
% or set to zero, to use all test cases.
%
if nargin < 5 || isempty(legacy)
% Set to true to run old VQE recordings.
legacy = false;
end
if nargin < 4 || isempty(casenumber)
casenumber = 0;
end
if nargin < 3 || isempty(filepath)
filepath = 'data/';
end
if nargin < 2 || isempty(testname)
testname = 'all';
end
if nargin < 1 || isempty(task)
task = 'test';
end
if ~strcmp(task, 'test') && ~strcmp(task, 'list') && ~strcmp(task, 'show')
error(['TASK ' task ' is not recognized']);
end
if casenumber == 0 && strcmp(task, 'show')
error(['CASENUMBER must be specified for TASK ' task]);
end
inpath = [filepath 'input/'];
outpath = [filepath 'output/'];
refpath = [filepath 'reference/'];
if strcmp(testname, 'all')
tests = {'apm','apmm','aec','aecm','agc','ns','vad'};
else
tests = {testname};
end
if legacy
progname = './test';
else
progname = './process_test';
end
global farFile;
global nearFile;
global eventFile;
global delayFile;
global driftFile;
if legacy
farFile = 'vqeFar.pcm';
nearFile = 'vqeNear.pcm';
eventFile = 'vqeEvent.dat';
delayFile = 'vqeBuf.dat';
driftFile = 'vqeDrift.dat';
else
farFile = 'apm_far.pcm';
nearFile = 'apm_near.pcm';
eventFile = 'apm_event.dat';
delayFile = 'apm_delay.dat';
driftFile = 'apm_drift.dat';
end
simulateMode = false;
nErr = 0;
nCases = 0;
for i=1:length(tests)
simulateMode = false;
if strcmp(tests{i}, 'apm')
testdir = ['apm/'];
outfile = ['out'];
if legacy
opt = ['-ec 1 -agc 2 -nc 2 -vad 3'];
else
opt = ['--no_progress -hpf' ...
' -aec --drift_compensation -agc --fixed_digital' ...
' -ns --ns_moderate -vad'];
end
elseif strcmp(tests{i}, 'apm-swb')
simulateMode = true;
testdir = ['apm-swb/'];
outfile = ['out'];
if legacy
opt = ['-fs 32000 -ec 1 -agc 2 -nc 2'];
else
opt = ['--no_progress -fs 32000 -hpf' ...
' -aec --drift_compensation -agc --adaptive_digital' ...
' -ns --ns_moderate -vad'];
end
elseif strcmp(tests{i}, 'apmm')
testdir = ['apmm/'];
outfile = ['out'];
opt = ['-aec --drift_compensation -agc --fixed_digital -hpf -ns ' ...
'--ns_moderate'];
else
error(['TESTNAME ' tests{i} ' is not recognized']);
end
inpathtest = [inpath testdir];
outpathtest = [outpath testdir];
refpathtest = [refpath testdir];
if ~exist(inpathtest,'dir')
error(['Input directory ' inpathtest ' does not exist']);
end
if ~exist(refpathtest,'dir')
warning(['Reference directory ' refpathtest ' does not exist']);
end
[status, errMsg] = mkdir(outpathtest);
if (status == 0)
error(errMsg);
end
[nErr, nCases] = recurseDir(inpathtest, outpathtest, refpathtest, outfile, ...
progname, opt, simulateMode, nErr, nCases, task, casenumber, legacy);
if strcmp(task, 'test') || strcmp(task, 'show')
system(['rm ' farFile]);
system(['rm ' nearFile]);
if simulateMode == false
system(['rm ' eventFile]);
system(['rm ' delayFile]);
system(['rm ' driftFile]);
end
end
end
if ~strcmp(task, 'list')
if nErr == 0
fprintf(1, '\nAll files are bit-exact to reference\n', nErr);
else
fprintf(1, '\n%d files are NOT bit-exact to reference\n', nErr);
end
end
function [nErrOut, nCases] = recurseDir(inpath, outpath, refpath, ...
outfile, progname, opt, simulateMode, nErr, nCases, task, casenumber, ...
legacy)
global farFile;
global nearFile;
global eventFile;
global delayFile;
global driftFile;
dirs = dir(inpath);
nDirs = 0;
nErrOut = nErr;
for i=3:length(dirs) % skip . and ..
nDirs = nDirs + dirs(i).isdir;
end
if nDirs == 0
nCases = nCases + 1;
if casenumber == nCases || casenumber == 0
if strcmp(task, 'list')
fprintf([num2str(nCases) '. ' outfile '\n'])
else
vadoutfile = ['vad_' outfile '.dat'];
outfile = [outfile '.pcm'];
% Check for VAD test
vadTest = 0;
if ~isempty(findstr(opt, '-vad'))
vadTest = 1;
if legacy
opt = [opt ' ' outpath vadoutfile];
else
opt = [opt ' --vad_out_file ' outpath vadoutfile];
end
end
if exist([inpath 'vqeFar.pcm'])
system(['ln -s -f ' inpath 'vqeFar.pcm ' farFile]);
elseif exist([inpath 'apm_far.pcm'])
system(['ln -s -f ' inpath 'apm_far.pcm ' farFile]);
end
if exist([inpath 'vqeNear.pcm'])
system(['ln -s -f ' inpath 'vqeNear.pcm ' nearFile]);
elseif exist([inpath 'apm_near.pcm'])
system(['ln -s -f ' inpath 'apm_near.pcm ' nearFile]);
end
if exist([inpath 'vqeEvent.dat'])
system(['ln -s -f ' inpath 'vqeEvent.dat ' eventFile]);
elseif exist([inpath 'apm_event.dat'])
system(['ln -s -f ' inpath 'apm_event.dat ' eventFile]);
end
if exist([inpath 'vqeBuf.dat'])
system(['ln -s -f ' inpath 'vqeBuf.dat ' delayFile]);
elseif exist([inpath 'apm_delay.dat'])
system(['ln -s -f ' inpath 'apm_delay.dat ' delayFile]);
end
if exist([inpath 'vqeSkew.dat'])
system(['ln -s -f ' inpath 'vqeSkew.dat ' driftFile]);
elseif exist([inpath 'vqeDrift.dat'])
system(['ln -s -f ' inpath 'vqeDrift.dat ' driftFile]);
elseif exist([inpath 'apm_drift.dat'])
system(['ln -s -f ' inpath 'apm_drift.dat ' driftFile]);
end
if simulateMode == false
command = [progname ' -o ' outpath outfile ' ' opt];
else
if legacy
inputCmd = [' -in ' nearFile];
else
inputCmd = [' -i ' nearFile];
end
if exist([farFile])
if legacy
inputCmd = [' -if ' farFile inputCmd];
else
inputCmd = [' -ir ' farFile inputCmd];
end
end
command = [progname inputCmd ' -o ' outpath outfile ' ' opt];
end
% This prevents MATLAB from using its own C libraries.
shellcmd = ['bash -c "unset LD_LIBRARY_PATH;'];
fprintf([command '\n']);
[status, result] = system([shellcmd command '"']);
fprintf(result);
fprintf(['Reference file: ' refpath outfile '\n']);
if vadTest == 1
equal_to_ref = are_files_equal([outpath vadoutfile], ...
[refpath vadoutfile], ...
'int8');
if ~equal_to_ref
nErr = nErr + 1;
end
end
[equal_to_ref, diffvector] = are_files_equal([outpath outfile], ...
[refpath outfile], ...
'int16');
if ~equal_to_ref
nErr = nErr + 1;
end
if strcmp(task, 'show')
% Assume the last init gives the sample rate of interest.
str_idx = strfind(result, 'Sample rate:');
fs = str2num(result(str_idx(end) + 13:str_idx(end) + 17));
fprintf('Using %d Hz\n', fs);
if exist([farFile])
spclab(fs, farFile, nearFile, [refpath outfile], ...
[outpath outfile], diffvector);
%spclab(fs, diffvector);
else
spclab(fs, nearFile, [refpath outfile], [outpath outfile], ...
diffvector);
%spclab(fs, diffvector);
end
end
end
end
else
for i=3:length(dirs)
if dirs(i).isdir
[nErr, nCases] = recurseDir([inpath dirs(i).name '/'], outpath, ...
refpath,[outfile '_' dirs(i).name], progname, opt, ...
simulateMode, nErr, nCases, task, casenumber, legacy);
end
end
end
nErrOut = nErr;
function [are_equal, diffvector] = ...
are_files_equal(newfile, reffile, precision, diffvector)
are_equal = false;
diffvector = 0;
if ~exist(newfile,'file')
warning(['Output file ' newfile ' does not exist']);
return
end
if ~exist(reffile,'file')
warning(['Reference file ' reffile ' does not exist']);
return
end
fid = fopen(newfile,'rb');
new = fread(fid,inf,precision);
fclose(fid);
fid = fopen(reffile,'rb');
ref = fread(fid,inf,precision);
fclose(fid);
if length(new) ~= length(ref)
warning('Reference is not the same length as output');
minlength = min(length(new), length(ref));
new = new(1:minlength);
ref = ref(1:minlength);
end
diffvector = new - ref;
if isequal(new, ref)
fprintf([newfile ' is bit-exact to reference\n']);
are_equal = true;
else
if isempty(new)
warning([newfile ' is empty']);
return
end
snr = snrseg(new,ref,80);
fprintf('\n');
are_equal = false;
end
|
github
|
JamesLinus/webrtc-master
|
parse_delay_file.m
|
.m
|
webrtc-master/modules/audio_coding/neteq/test/delay_tool/parse_delay_file.m
| 6,405 |
utf_8
|
4cc70d6f90e1ca5901104f77a7e7c0b3
|
%
% Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function outStruct = parse_delay_file(file)
fid = fopen(file, 'rb');
if fid == -1
error('Cannot open file %s', file);
end
textline = fgetl(fid);
if ~strncmp(textline, '#!NetEQ_Delay_Logging', 21)
error('Wrong file format');
end
ver = sscanf(textline, '#!NetEQ_Delay_Logging%d.%d');
if ~all(ver == [2; 0])
error('Wrong version of delay logging function')
end
start_pos = ftell(fid);
fseek(fid, -12, 'eof');
textline = fgetl(fid);
if ~strncmp(textline, 'End of file', 21)
error('File ending is not correct. Seems like the simulation ended abnormally.');
end
fseek(fid,-12-4, 'eof');
Npackets = fread(fid, 1, 'int32');
fseek(fid, start_pos, 'bof');
rtpts = zeros(Npackets, 1);
seqno = zeros(Npackets, 1);
pt = zeros(Npackets, 1);
plen = zeros(Npackets, 1);
recin_t = nan*ones(Npackets, 1);
decode_t = nan*ones(Npackets, 1);
playout_delay = zeros(Npackets, 1);
optbuf = zeros(Npackets, 1);
fs_ix = 1;
clock = 0;
ts_ix = 1;
ended = 0;
late_packets = 0;
fs_now = 8000;
last_decode_k = 0;
tot_expand = 0;
tot_accelerate = 0;
tot_preemptive = 0;
while not(ended)
signal = fread(fid, 1, '*int32');
switch signal
case 3 % NETEQ_DELAY_LOGGING_SIGNAL_CLOCK
clock = fread(fid, 1, '*float32');
% keep on reading batches of M until the signal is no longer "3"
% read int32 + float32 in one go
% this is to save execution time
temp = [3; 0];
M = 120;
while all(temp(1,:) == 3)
fp = ftell(fid);
temp = fread(fid, [2 M], '*int32');
end
% back up to last clock event
fseek(fid, fp - ftell(fid) + ...
(find(temp(1,:) ~= 3, 1 ) - 2) * 2 * 4 + 4, 'cof');
% read the last clock value
clock = fread(fid, 1, '*float32');
case 1 % NETEQ_DELAY_LOGGING_SIGNAL_RECIN
temp_ts = fread(fid, 1, 'uint32');
if late_packets > 0
temp_ix = ts_ix - 1;
while (temp_ix >= 1) && (rtpts(temp_ix) ~= temp_ts)
% TODO(hlundin): use matlab vector search instead?
temp_ix = temp_ix - 1;
end
if temp_ix >= 1
% the ts was found in the vector
late_packets = late_packets - 1;
else
temp_ix = ts_ix;
ts_ix = ts_ix + 1;
end
else
temp_ix = ts_ix;
ts_ix = ts_ix + 1;
end
rtpts(temp_ix) = temp_ts;
seqno(temp_ix) = fread(fid, 1, 'uint16');
pt(temp_ix) = fread(fid, 1, 'int32');
plen(temp_ix) = fread(fid, 1, 'int16');
recin_t(temp_ix) = clock;
case 2 % NETEQ_DELAY_LOGGING_SIGNAL_FLUSH
% do nothing
case 4 % NETEQ_DELAY_LOGGING_SIGNAL_EOF
ended = 1;
case 5 % NETEQ_DELAY_LOGGING_SIGNAL_DECODE
last_decode_ts = fread(fid, 1, 'uint32');
temp_delay = fread(fid, 1, 'uint16');
k = find(rtpts(1:(ts_ix - 1))==last_decode_ts,1,'last');
if ~isempty(k)
decode_t(k) = clock;
playout_delay(k) = temp_delay + ...
5 * fs_now / 8000; % add overlap length
last_decode_k = k;
end
case 6 % NETEQ_DELAY_LOGGING_SIGNAL_CHANGE_FS
fsvec(fs_ix) = fread(fid, 1, 'uint16');
fschange_ts(fs_ix) = last_decode_ts;
fs_now = fsvec(fs_ix);
fs_ix = fs_ix + 1;
case 7 % NETEQ_DELAY_LOGGING_SIGNAL_MERGE_INFO
playout_delay(last_decode_k) = playout_delay(last_decode_k) ...
+ fread(fid, 1, 'int32');
case 8 % NETEQ_DELAY_LOGGING_SIGNAL_EXPAND_INFO
temp = fread(fid, 1, 'int32');
if last_decode_k ~= 0
tot_expand = tot_expand + temp / (fs_now / 1000);
end
case 9 % NETEQ_DELAY_LOGGING_SIGNAL_ACCELERATE_INFO
temp = fread(fid, 1, 'int32');
if last_decode_k ~= 0
tot_accelerate = tot_accelerate + temp / (fs_now / 1000);
end
case 10 % NETEQ_DELAY_LOGGING_SIGNAL_PREEMPTIVE_INFO
temp = fread(fid, 1, 'int32');
if last_decode_k ~= 0
tot_preemptive = tot_preemptive + temp / (fs_now / 1000);
end
case 11 % NETEQ_DELAY_LOGGING_SIGNAL_OPTBUF
optbuf(last_decode_k) = fread(fid, 1, 'int32');
case 12 % NETEQ_DELAY_LOGGING_SIGNAL_DECODE_ONE_DESC
last_decode_ts = fread(fid, 1, 'uint32');
k = ts_ix - 1;
while (k >= 1) && (rtpts(k) ~= last_decode_ts)
% TODO(hlundin): use matlab vector search instead?
k = k - 1;
end
if k < 1
% packet not received yet
k = ts_ix;
rtpts(ts_ix) = last_decode_ts;
late_packets = late_packets + 1;
end
decode_t(k) = clock;
playout_delay(k) = fread(fid, 1, 'uint16') + ...
5 * fs_now / 8000; % add overlap length
last_decode_k = k;
end
end
fclose(fid);
outStruct = struct(...
'ts', rtpts, ...
'sn', seqno, ...
'pt', pt,...
'plen', plen,...
'arrival', recin_t,...
'decode', decode_t,...
'fs', fsvec(:),...
'fschange_ts', fschange_ts(:),...
'playout_delay', playout_delay,...
'tot_expand', tot_expand,...
'tot_accelerate', tot_accelerate,...
'tot_preemptive', tot_preemptive,...
'optbuf', optbuf);
|
github
|
JamesLinus/webrtc-master
|
plot_neteq_delay.m
|
.m
|
webrtc-master/modules/audio_coding/neteq/test/delay_tool/plot_neteq_delay.m
| 5,967 |
utf_8
|
cce342fed6406ef0f12d567fe3ab6eef
|
%
% Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
%
function [delay_struct, delayvalues] = plot_neteq_delay(delayfile, varargin)
% InfoStruct = plot_neteq_delay(delayfile)
% InfoStruct = plot_neteq_delay(delayfile, 'skipdelay', skip_seconds)
%
% Henrik Lundin, 2006-11-17
% Henrik Lundin, 2011-05-17
%
try
s = parse_delay_file(delayfile);
catch
error(lasterr);
end
delayskip=0;
noplot=0;
arg_ptr=1;
delaypoints=[];
s.sn=unwrap_seqno(s.sn);
while arg_ptr+1 <= nargin
switch lower(varargin{arg_ptr})
case {'skipdelay', 'delayskip'}
% skip a number of seconds in the beginning when calculating delays
delayskip = varargin{arg_ptr+1};
arg_ptr = arg_ptr + 2;
case 'noplot'
noplot=1;
arg_ptr = arg_ptr + 1;
case {'get_delay', 'getdelay'}
% return a vector of delay values for the points in the given vector
delaypoints = varargin{arg_ptr+1};
arg_ptr = arg_ptr + 2;
otherwise
warning('Unknown switch %s\n', varargin{arg_ptr});
arg_ptr = arg_ptr + 1;
end
end
% find lost frames that were covered by one-descriptor decoding
one_desc_ix=find(isnan(s.arrival));
for k=1:length(one_desc_ix)
ix=find(s.ts==max(s.ts(s.ts(one_desc_ix(k))>s.ts)));
s.sn(one_desc_ix(k))=s.sn(ix)+1;
s.pt(one_desc_ix(k))=s.pt(ix);
s.arrival(one_desc_ix(k))=s.arrival(ix)+s.decode(one_desc_ix(k))-s.decode(ix);
end
% remove duplicate received frames that were never decoded (RED codec)
if length(unique(s.ts(isfinite(s.ts)))) < length(s.ts(isfinite(s.ts)))
ix=find(isfinite(s.decode));
s.sn=s.sn(ix);
s.ts=s.ts(ix);
s.arrival=s.arrival(ix);
s.playout_delay=s.playout_delay(ix);
s.pt=s.pt(ix);
s.optbuf=s.optbuf(ix);
plen=plen(ix);
s.decode=s.decode(ix);
end
% find non-unique sequence numbers
[~,un_ix]=unique(s.sn);
nonun_ix=setdiff(1:length(s.sn),un_ix);
if ~isempty(nonun_ix)
warning('RTP sequence numbers are in error');
end
% sort vectors
[s.sn,sort_ix]=sort(s.sn);
s.ts=s.ts(sort_ix);
s.arrival=s.arrival(sort_ix);
s.decode=s.decode(sort_ix);
s.playout_delay=s.playout_delay(sort_ix);
s.pt=s.pt(sort_ix);
send_t=s.ts-s.ts(1);
if length(s.fs)<1
warning('No info about sample rate found in file. Using default 8000.');
s.fs(1)=8000;
s.fschange_ts(1)=min(s.ts);
elseif s.fschange_ts(1)>min(s.ts)
s.fschange_ts(1)=min(s.ts);
end
end_ix=length(send_t);
for k=length(s.fs):-1:1
start_ix=find(s.ts==s.fschange_ts(k));
send_t(start_ix:end_ix)=send_t(start_ix:end_ix)/s.fs(k)*1000;
s.playout_delay(start_ix:end_ix)=s.playout_delay(start_ix:end_ix)/s.fs(k)*1000;
s.optbuf(start_ix:end_ix)=s.optbuf(start_ix:end_ix)/s.fs(k)*1000;
end_ix=start_ix-1;
end
tot_time=max(send_t)-min(send_t);
seq_ix=s.sn-min(s.sn)+1;
send_t=send_t+max(min(s.arrival-send_t),0);
plot_send_t=nan*ones(max(seq_ix),1);
plot_send_t(seq_ix)=send_t;
plot_nw_delay=nan*ones(max(seq_ix),1);
plot_nw_delay(seq_ix)=s.arrival-send_t;
cng_ix=find(s.pt~=13); % find those packets that are not CNG/SID
if noplot==0
h=plot(plot_send_t/1000,plot_nw_delay);
set(h,'color',0.75*[1 1 1]);
hold on
if any(s.optbuf~=0)
peak_ix=find(s.optbuf(cng_ix)<0); % peak mode is labeled with negative values
no_peak_ix=find(s.optbuf(cng_ix)>0); %setdiff(1:length(cng_ix),peak_ix);
h1=plot(send_t(cng_ix(peak_ix))/1000,...
s.arrival(cng_ix(peak_ix))+abs(s.optbuf(cng_ix(peak_ix)))-send_t(cng_ix(peak_ix)),...
'r.');
h2=plot(send_t(cng_ix(no_peak_ix))/1000,...
s.arrival(cng_ix(no_peak_ix))+abs(s.optbuf(cng_ix(no_peak_ix)))-send_t(cng_ix(no_peak_ix)),...
'g.');
set([h1, h2],'markersize',1)
end
%h=plot(send_t(seq_ix)/1000,s.decode+s.playout_delay-send_t(seq_ix));
h=plot(send_t(cng_ix)/1000,s.decode(cng_ix)+s.playout_delay(cng_ix)-send_t(cng_ix));
set(h,'linew',1.5);
hold off
ax1=axis;
axis tight
ax2=axis;
axis([ax2(1:3) ax1(4)])
end
% calculate delays and other parameters
delayskip_ix = find(send_t-send_t(1)>=delayskip*1000, 1 );
use_ix = intersect(cng_ix,... % use those that are not CNG/SID frames...
intersect(find(isfinite(s.decode)),... % ... that did arrive ...
(delayskip_ix:length(s.decode))')); % ... and are sent after delayskip seconds
mean_delay = mean(s.decode(use_ix)+s.playout_delay(use_ix)-send_t(use_ix));
neteq_delay = mean(s.decode(use_ix)+s.playout_delay(use_ix)-s.arrival(use_ix));
Npack=max(s.sn(delayskip_ix:end))-min(s.sn(delayskip_ix:end))+1;
nw_lossrate=(Npack-length(s.sn(delayskip_ix:end)))/Npack;
neteq_lossrate=(length(s.sn(delayskip_ix:end))-length(use_ix))/Npack;
delay_struct=struct('mean_delay',mean_delay,'neteq_delay',neteq_delay,...
'nw_lossrate',nw_lossrate,'neteq_lossrate',neteq_lossrate,...
'tot_expand',round(s.tot_expand),'tot_accelerate',round(s.tot_accelerate),...
'tot_preemptive',round(s.tot_preemptive),'tot_time',tot_time,...
'filename',delayfile,'units','ms','fs',unique(s.fs));
if not(isempty(delaypoints))
delayvalues=interp1(send_t(cng_ix),...
s.decode(cng_ix)+s.playout_delay(cng_ix)-send_t(cng_ix),...
delaypoints,'nearest',NaN);
else
delayvalues=[];
end
% SUBFUNCTIONS %
function y=unwrap_seqno(x)
jumps=find(abs((diff(x)-1))>65000);
while ~isempty(jumps)
n=jumps(1);
if x(n+1)-x(n) < 0
% negative jump
x(n+1:end)=x(n+1:end)+65536;
else
% positive jump
x(n+1:end)=x(n+1:end)-65536;
end
jumps=find(abs((diff(x(n+1:end))-1))>65000);
end
y=x;
return;
|
github
|
JamesLinus/webrtc-master
|
rtpAnalyze.m
|
.m
|
webrtc-master/tools_webrtc/matlab/rtpAnalyze.m
| 7,892 |
utf_8
|
46e63db0fa96270c14a0c205bbab42e4
|
function rtpAnalyze( input_file )
%RTP_ANALYZE Analyze RTP stream(s) from a txt file
% The function takes the output from the command line tool rtp_analyze
% and analyzes the stream(s) therein. First, process your rtpdump file
% through rtp_analyze (from command line):
% $ out/Debug/rtp_analyze my_file.rtp my_file.txt
% Then load it with this function (in Matlab):
% >> rtpAnalyze('my_file.txt')
% Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
%
% Use of this source code is governed by a BSD-style license
% that can be found in the LICENSE file in the root of the source
% tree. An additional intellectual property rights grant can be found
% in the file PATENTS. All contributing project authors may
% be found in the AUTHORS file in the root of the source tree.
[SeqNo,TimeStamp,ArrTime,Size,PT,M,SSRC] = importfile(input_file);
%% Filter out RTCP packets.
% These appear as RTP packets having payload types 72 through 76.
ix = not(ismember(PT, 72:76));
fprintf('Removing %i RTCP packets\n', length(SeqNo) - sum(ix));
SeqNo = SeqNo(ix);
TimeStamp = TimeStamp(ix);
ArrTime = ArrTime(ix);
Size = Size(ix);
PT = PT(ix);
M = M(ix);
SSRC = SSRC(ix);
%% Find streams.
[uSSRC, ~, uix] = unique(SSRC);
% If there are multiple streams, select one and purge the other
% streams from the data vectors. If there is only one stream, the
% vectors are good to use as they are.
if length(uSSRC) > 1
for i=1:length(uSSRC)
uPT = unique(PT(uix == i));
fprintf('%i: %s (%d packets, pt: %i', i, uSSRC{i}, ...
length(find(uix==i)), uPT(1));
if length(uPT) > 1
fprintf(', %i', uPT(2:end));
end
fprintf(')\n');
end
sel = input('Select stream number: ');
if sel < 1 || sel > length(uSSRC)
error('Out of range');
end
ix = find(uix == sel);
% This is where the data vectors are trimmed.
SeqNo = SeqNo(ix);
TimeStamp = TimeStamp(ix);
ArrTime = ArrTime(ix);
Size = Size(ix);
PT = PT(ix);
M = M(ix);
SSRC = SSRC(ix);
end
%% Unwrap SeqNo and TimeStamp.
SeqNoUW = maxUnwrap(SeqNo, 65535);
TimeStampUW = maxUnwrap(TimeStamp, 4294967295);
%% Generate some stats for the stream.
fprintf('Statistics:\n');
fprintf('SSRC: %s\n', SSRC{1});
uPT = unique(PT);
if length(uPT) > 1
warning('This tool cannot yet handle changes in codec sample rate');
end
fprintf('Payload type(s): %i', uPT(1));
if length(uPT) > 1
fprintf(', %i', uPT(2:end));
end
fprintf('\n');
fprintf('Packets: %i\n', length(SeqNo));
SortSeqNo = sort(SeqNoUW);
fprintf('Missing sequence numbers: %i\n', ...
length(find(diff(SortSeqNo) > 1)));
fprintf('Duplicated packets: %i\n', length(find(diff(SortSeqNo) == 0)));
reorderIx = findReorderedPackets(SeqNoUW);
fprintf('Reordered packets: %i\n', length(reorderIx));
tsdiff = diff(TimeStampUW);
tsdiff = tsdiff(diff(SeqNoUW) == 1);
[utsdiff, ~, ixtsdiff] = unique(tsdiff);
fprintf('Common packet sizes:\n');
for i = 1:length(utsdiff)
fprintf(' %i samples (%i%%)\n', ...
utsdiff(i), ...
round(100 * length(find(ixtsdiff == i))/length(ixtsdiff)));
end
%% Trying to figure out sample rate.
fs_est = (TimeStampUW(end) - TimeStampUW(1)) / (ArrTime(end) - ArrTime(1));
fs_vec = [8, 16, 32, 48];
fs = 0;
for f = fs_vec
if abs((fs_est-f)/f) < 0.05 % 5% margin
fs = f;
break;
end
end
if fs == 0
fprintf('Cannot determine sample rate. I get it to %.2f kHz\n', ...
fs_est);
fs = input('Please, input a sample rate (in kHz): ');
else
fprintf('Sample rate estimated to %i kHz\n', fs);
end
SendTimeMs = (TimeStampUW - TimeStampUW(1)) / fs;
fprintf('Stream duration at sender: %.1f seconds\n', ...
(SendTimeMs(end) - SendTimeMs(1)) / 1000);
fprintf('Stream duration at receiver: %.1f seconds\n', ...
(ArrTime(end) - ArrTime(1)) / 1000);
fprintf('Clock drift: %.2f%%\n', ...
100 * ((ArrTime(end) - ArrTime(1)) / ...
(SendTimeMs(end) - SendTimeMs(1)) - 1));
fprintf('Sent average bitrate: %i kbps\n', ...
round(sum(Size) * 8 / (SendTimeMs(end)-SendTimeMs(1))));
fprintf('Received average bitrate: %i kbps\n', ...
round(sum(Size) * 8 / (ArrTime(end)-ArrTime(1))));
%% Plots.
delay = ArrTime - SendTimeMs;
delay = delay - min(delay);
delayOrdered = delay;
delayOrdered(reorderIx) = nan; % Set reordered packets to NaN.
delayReordered = delay(reorderIx); % Pick the reordered packets.
sendTimeMsReordered = SendTimeMs(reorderIx);
% Sort time arrays in packet send order.
[~, sortix] = sort(SeqNoUW);
SendTimeMs = SendTimeMs(sortix);
Size = Size(sortix);
delayOrdered = delayOrdered(sortix);
figure
plot(SendTimeMs / 1000, delayOrdered, ...
sendTimeMsReordered / 1000, delayReordered, 'r.');
xlabel('Send time [s]');
ylabel('Relative transport delay [ms]');
title(sprintf('SSRC: %s', SSRC{1}));
SendBitrateKbps = 8 * Size(1:end-1) ./ diff(SendTimeMs);
figure
plot(SendTimeMs(1:end-1)/1000, SendBitrateKbps);
xlabel('Send time [s]');
ylabel('Send bitrate [kbps]');
end
%% Subfunctions.
% findReorderedPackets returns the index to all packets that are considered
% old compared with the largest seen sequence number. The input seqNo must
% be unwrapped for this to work.
function reorderIx = findReorderedPackets(seqNo)
largestSeqNo = seqNo(1);
reorderIx = [];
for i = 2:length(seqNo)
if seqNo(i) < largestSeqNo
reorderIx = [reorderIx; i]; %#ok<AGROW>
else
largestSeqNo = seqNo(i);
end
end
end
%% Auto-generated subfunction.
function [SeqNo,TimeStamp,SendTime,Size,PT,M,SSRC] = ...
importfile(filename, startRow, endRow)
%IMPORTFILE Import numeric data from a text file as column vectors.
% [SEQNO,TIMESTAMP,SENDTIME,SIZE,PT,M,SSRC] = IMPORTFILE(FILENAME) Reads
% data from text file FILENAME for the default selection.
%
% [SEQNO,TIMESTAMP,SENDTIME,SIZE,PT,M,SSRC] = IMPORTFILE(FILENAME,
% STARTROW, ENDROW) Reads data from rows STARTROW through ENDROW of text
% file FILENAME.
%
% Example:
% [SeqNo,TimeStamp,SendTime,Size,PT,M,SSRC] =
% importfile('rtpdump_recv.txt',2, 123);
%
% See also TEXTSCAN.
% Auto-generated by MATLAB on 2015/05/28 09:55:50
%% Initialize variables.
if nargin<=2
startRow = 2;
endRow = inf;
end
%% Format string for each line of text:
% column1: double (%f)
% column2: double (%f)
% column3: double (%f)
% column4: double (%f)
% column5: double (%f)
% column6: double (%f)
% column7: text (%s)
% For more information, see the TEXTSCAN documentation.
formatSpec = '%5f%11f%11f%6f%6f%3f%s%[^\n\r]';
%% Open the text file.
fileID = fopen(filename,'r');
%% Read columns of data according to format string.
% This call is based on the structure of the file used to generate this
% code. If an error occurs for a different file, try regenerating the code
% from the Import Tool.
dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, ...
'Delimiter', '', 'WhiteSpace', '', 'HeaderLines', startRow(1)-1, ...
'ReturnOnError', false);
for block=2:length(startRow)
frewind(fileID);
dataArrayBlock = textscan(fileID, formatSpec, ...
endRow(block)-startRow(block)+1, 'Delimiter', '', 'WhiteSpace', ...
'', 'HeaderLines', startRow(block)-1, 'ReturnOnError', false);
for col=1:length(dataArray)
dataArray{col} = [dataArray{col};dataArrayBlock{col}];
end
end
%% Close the text file.
fclose(fileID);
%% Post processing for unimportable data.
% No unimportable data rules were applied during the import, so no post
% processing code is included. To generate code which works for
% unimportable data, select unimportable cells in a file and regenerate the
% script.
%% Allocate imported array to column variable names
SeqNo = dataArray{:, 1};
TimeStamp = dataArray{:, 2};
SendTime = dataArray{:, 3};
Size = dataArray{:, 4};
PT = dataArray{:, 5};
M = dataArray{:, 6};
SSRC = dataArray{:, 7};
end
|
github
|
Jiankai-Sun/Digital-Image-Processing-master
|
myMarrHildreth.m
|
.m
|
Digital-Image-Processing-master/Problem9/SourceCode/myMarrHildreth.m
| 2,895 |
utf_8
|
b16702e08457d60ca13cf2daf7537f0e
|
function edges = myMarrHildreth(Image, sigma)
% This is a simple implementation of the LoG edge detector.
% Image: Gray-level input image
% sigma: try values like 1, 2, 4, 8, etc.
% edges: Output edge map
% Form the LoG filter
nLoG = filter_LoG(sigma);
% convResult = conv2(double(Image), nLoG, 'same');
% imfilter works better for border pixels (use conv2 above or imfilter below)
convResult = imfilter(double(Image), nLoG, 'replicate');
slope = mean( abs(convResult(:)) );
%% Vertical edges
% Shift image one pixel to the left and right
convLeft = circshift(convResult, [0, -1]);
convRight = circshift(convResult, [0, 1]);
% The vertical edges (- +, + -, - 0 +, + 0 -)
v_edge1 = convResult < 0 & convLeft > 0 & abs(convLeft - convResult) > slope;
v_edge2 = convResult < 0 & convRight > 0 & abs(convRight - convResult) > slope;
v_edge3 = convResult == 0 & sign(convLeft) ~= sign(convRight) & abs(convLeft - convRight) > slope;
v_edge = v_edge1 | v_edge2 | v_edge3;
v_edge(:, [1 end]) = 0;
%% Horizontal edges
% Shift image one pixel to the top and bottom
convTop = circshift(convResult, [-1, 0]);
convBot = circshift(convResult, [1, 0]);
% The horizontal edges (- +, + -, - 0 +, + 0 -)
h_edge1 = convResult < 0 & convTop > 0 & abs(convTop - convResult) > slope;
h_edge2 = convResult < 0 & convBot > 0 & abs(convBot - convResult) > slope;
h_edge3 = convResult == 0 & sign(convTop) ~= sign(convBot) & abs(convTop - convBot) > slope;
h_edge = h_edge1 | h_edge2 | h_edge3;
h_edge([1 end], :) = 0;
% Combine vertical and horizontal edges
edges = v_edge | h_edge;
end
function nLoG = filter_LoG(sigma)
% This function generates Laplacian of Gaussian filter given the sigma
% parameter as its input. Filter size is estimated by multiplying the
% sigma with a constant.
%% The function
fsize = ceil(sigma) * 5; % filter size is estimated by: sigma * constant
fsize = (fsize - 1) / 2;
[x, y] = meshgrid(-fsize : fsize, -fsize : fsize);
% The two parts of the LoG equation
a = (x .^ 2 + y .^ 2 - 2 * sigma ^ 2) / sigma ^ 4;
b = exp( - (x .^ 2 + y .^ 2) / (2 * sigma ^ 2) );
b = b / sum(b(:));
% The LoG filter
LoG = a .* b;
% The normalized LoG filter
nLoG = LoG - mean2(LoG);
% ** end of the function **
%% Uncomment to display LoG plot
% surf(x, y , nLoG);
% xlabel('x');
% ylabel('y');
% zlabel('LoG');
% name = ['Laplacian of 2D Gaussian ( \sigma = ' , num2str(sigma), ' )'];
% title(name);
%% Uncomment to save at output
% print(num2str(sigma), '-dpng', '-r400');
return
end
%% Additionally you can use the following code to overlay edges on the input image
% overlay = repmat(Image, 1, [1 3]);
%
% for i = 1 : size(edges, 1)
% for j = 1 : size(edges, 2)
% if edges(i, j)
% overlay(i, j, :) = [0 255 255];
% end
% end
% end
|
github
|
Jiankai-Sun/Digital-Image-Processing-master
|
myMarrHildreth5.m
|
.m
|
Digital-Image-Processing-master/Problem9/SourceCode/myMarrHildreth5.m
| 959 |
utf_8
|
251c861c08cd746dcd5ca377334d7840
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% my_edgeMarrHildreth.m
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function edgeMagnitude = myMarrHildreth(image, sigma)
% Determine filter size N = [sigma x 3] x 2 + 1 and the
% size of the image.
N = ceil(sigma * 3)*2 + 1;
[height, width, ~] = size(image);
% Use the laplacian of the gaussian.
log = fspecial('log', N, sigma);
convolved = double(imfilter(image, log));
% Threshold the image
convolved = imbinarize(convolved, 0);
padded = padarray(convolved, [1,1], 1);
edgeMagnitude = zeros(height, width, 1);
% Zero Crossings
for i=1:height
for j=1:width
if (padded(i+1, j+1) == 1)
if(padded(i,j+1) == 0 || padded(i+1, j+2) == 0 ||...
padded(i+2, j+1) == 0 || padded(i+1, j) == 0)
edgeMagnitude(i,j) = 1;
end
end
end
end
end
|
github
|
Jiankai-Sun/Digital-Image-Processing-master
|
myCanny3.m
|
.m
|
Digital-Image-Processing-master/Problem9/SourceCode/myCanny3.m
| 2,757 |
utf_8
|
bced8264db9a7776e98d429eab5e6fa3
|
function I_temp = myCanny3( w )
% The algorithm parameters:
% 1. Parameters of edge detecting filters:
% X-axis direction filter:
Nx1=10;Sigmax1=1;Nx2=10;Sigmax2=1;Theta1=pi/2;
% Y-axis direction filter:
Ny1=10;Sigmay1=1;Ny2=10;Sigmay2=1;Theta2=0;
% 2. The thresholding parameter alfa:
alfa=0.1;
subplot(3,2,1);
imagesc(w);
title('Original Image');
% X-axis direction edge detection
subplot(3,2,2);
filterx=d2dgauss(Nx1,Sigmax1,Nx2,Sigmax2,Theta1);
Ix= conv2(w,filterx,'same');
imagesc(Ix);
title('Ix');
% Y-axis direction edge detection
subplot(3,2,3)
filtery=d2dgauss(Ny1,Sigmay1,Ny2,Sigmay2,Theta2);
Iy=conv2(w,filtery,'same');
imagesc(Iy);
title('Iy');
% Norm of the gradient (Combining the X and Y directional derivatives)
subplot(3,2,4);
NVI=sqrt(Ix.*Ix+Iy.*Iy);
imagesc(NVI);
title('Norm of Gradient');
% Thresholding
I_max=max(max(NVI));
I_min=min(min(NVI));
level=alfa*(I_max-I_min)+I_min;
subplot(3,2,5);
Ibw=max(NVI,level.*ones(size(NVI)));
imagesc(Ibw);
title('After Thresholding');
% Thinning (Using interpolation to find the pixels where the norms of
% gradient are local maximum.)
subplot(3,2,6);
[n,m]=size(Ibw);
for i=2:n-1
for j=2:m-1
if Ibw(i,j) > level
X=[-1,0,+1;-1,0,+1;-1,0,+1];
Y=[-1,-1,-1;0,0,0;+1,+1,+1];
Z=[Ibw(i-1,j-1),Ibw(i-1,j),Ibw(i-1,j+1);
Ibw(i,j-1),Ibw(i,j),Ibw(i,j+1);
Ibw(i+1,j-1),Ibw(i+1,j),Ibw(i+1,j+1)];
XI=[Ix(i,j)/NVI(i,j), -Ix(i,j)/NVI(i,j)];
YI=[Iy(i,j)/NVI(i,j), -Iy(i,j)/NVI(i,j)];
ZI=interp2(X,Y,Z,XI,YI);
if Ibw(i,j) >= ZI(1) && Ibw(i,j) >= ZI(2)
I_temp(i,j)=I_max;
else
I_temp(i,j)=I_min;
end
else
I_temp(i,j)=I_min;
end
end
end
imagesc(I_temp);
title('After Thinning');
colormap(gray);
end
%%%%%%%%%%%%%% End of the main.m file %%%%%%%%%%%%%%%
%%%%%%% The functions used in the main.m file %%%%%%%
% Function "d2dgauss.m":
% This function returns a 2D edge detector (first order derivative
% of 2D Gaussian function) with size n1*n2; theta is the angle that
% the detector rotated counter clockwise; and sigma1 and sigma2 are the
% standard deviation of the gaussian functions.
function h = d2dgauss(n1,sigma1,n2,sigma2,theta)
r=[cos(theta) -sin(theta);
sin(theta) cos(theta)];
for i = 1 : n2
for j = 1 : n1
u = r * [j-(n1+1)/2 i-(n2+1)/2]';
h(i,j) = gauss(u(1),sigma1)*dgauss(u(2),sigma2);
end
end
h = h / sqrt(sum(sum(abs(h).*abs(h))));
end
% Function "gauss.m":
function y = gauss(x,std)
y = exp(-x^2/(2*std^2)) / (std*sqrt(2*pi));
end
% Function "dgauss.m"(first order derivative of gauss function):
function y = dgauss(x,std)
y = -x * gauss(x,std) / std^2;
end
%%%%%%%%%%%%%% end of the functions %%%%%%%%%%%%%
|
github
|
Jiankai-Sun/Digital-Image-Processing-master
|
myCanny.m
|
.m
|
Digital-Image-Processing-master/Problem9/SourceCode/myCanny.m
| 2,196 |
utf_8
|
c8ead2e036dc8028e672d7cdd42b1532
|
function outputImg = myCanny(inputImg)
[h,w] = size(inputImg);
% gaussian blur
sigma = round(min(h,w) * 0.005);
ksize = ceil(sigma*6);
if mod(ksize, 2) == 0
ksize = ksize + 1;
end
inputImgGaussian = convolutionDouble(inputImg,GaussianFilter(ksize,ksize,sigma));
% sobel
SobelKernelX = [-1,0,1; -2,0,2; -1,0,1];
SobelKernelY = [-1,-2,-1; 0,0,0; 1,2,1];
Gx = convolutionDouble(inputImgGaussian, SobelKernelX);
Gy = convolutionDouble(inputImgGaussian, SobelKernelY);
inputImgSobel = sqrt(Gx.^2 + Gy.^2);
alpha = atan(Gy ./ Gx);
alpha = round(alpha ./ (pi / 4) + 3);
alpha(alpha == 5) = 1;
%nonmaxima suppression
d1Mask = alpha == 1;
d2Mask = alpha == 2;
d3Mask = alpha == 3;
d4Mask = alpha == 4;
paddedMinputImgSobel = padarray(inputImgSobel, [1, 1], 'replicate');
%vertical
d1Comp = and(inputImgSobel >= paddedMinputImgSobel(1:h, 2:w+1), inputImgSobel >= paddedMinputImgSobel(3:h+2,2:w+1));
%-pi/4
d2Comp = and(inputImgSobel >= paddedMinputImgSobel(3:h+2, 1:w), inputImgSobel >= paddedMinputImgSobel(1:h, 3:w+2));
%horizon
d3Comp = and(inputImgSobel >= paddedMinputImgSobel(2:h+1, 1:w), inputImgSobel >= paddedMinputImgSobel(2:h+1, 3:w+2));
%pi/4
d4Comp = and(inputImgSobel >= paddedMinputImgSobel(1:h, 1:w), inputImgSobel >= paddedMinputImgSobel(3:h+2, 3:w+2));
gN = inputImgSobel .* (and(d1Mask, d1Comp) + and(d2Mask, d2Comp) + and(d3Mask, d3Comp) + and(d4Mask, d4Comp));
sortedOut = sort(reshape( gN, 1, h * w), 'descend');
threshH = sortedOut(1, ceil(h * w * 0.02));
threshL = 1 * threshH;
N = 100;
set(0,'RecursionLimit',N);
for i=1:h
for j=1:w
if gN(i,j)>threshH &&gN(i,j)~=255
gN(i,j)=255;
gN=connect(gN,i,j,threshL);
end
end
end
outputImg = uint8(gN);
end
function [nedge] = connect(nedge,y,x,low)
neighbour=[-1 -1;-1 0;-1 1;0 -1;0 1;1 -1;1 0;1 1];
[m, n]=size(nedge);
for k=1:8
yy=y+neighbour(k,1);
xx=x+neighbour(k,2);
if yy>=1 &&yy<=m &&xx>=1 && xx<=n
if nedge(yy,xx)>=low && nedge(yy,xx)~=255
nedge(yy,xx)=255;
nedge=connect(nedge,yy,xx,low);
end
end
end
end
|
github
|
Jiankai-Sun/Digital-Image-Processing-master
|
otsu.m
|
.m
|
Digital-Image-Processing-master/Problem9/SourceCode/otsu.m
| 5,859 |
utf_8
|
51c9aaa2aaf3a9a9554b8abe4dc30089
|
function [IDX,sep] = otsu(I,n)
%OTSU Global image thresholding/segmentation using Otsu's method.
% IDX = OTSU(I,N) segments the image I into N classes by means of Otsu's
% N-thresholding method. OTSU returns an array IDX containing the cluster
% indices (from 1 to N) of each point. Zero values are assigned to
% non-finite (NaN or Inf) pixels.
%
% IDX = OTSU(I) uses two classes (N=2, default value).
%
% [IDX,sep] = OTSU(...) also returns the value (sep) of the separability
% criterion within the range [0 1]. Zero is obtained only with data
% having less than N values, whereas one (optimal value) is obtained only
% with N-valued arrays.
%
% Notes:
% -----
% It should be noticed that the thresholds generally become less credible
% as the number of classes (N) to be separated increases (see Otsu's
% paper for more details).
%
% If I is an RGB image, a Karhunen-Loeve transform is first performed on
% the three R,G,B channels. The segmentation is then carried out on the
% image component that contains most of the energy.
%
% Example:
% -------
% load clown
% subplot(221)
% X = ind2rgb(X,map);
% imshow(X)
% title('Original','FontWeight','bold')
% for n = 2:4
% IDX = otsu(X,n);
% subplot(2,2,n)
% imagesc(IDX), axis image off
% title(['n = ' int2str(n)],'FontWeight','bold')
% end
% colormap(gray)
%
% Reference:
% ---------
% Otsu N, <a href="matlab:web('http://dx.doi.org/doi:10.1109/TSMC.1979.4310076')">A Threshold Selection Method from Gray-Level Histograms</a>,
% IEEE Trans. Syst. Man Cybern. 9:62-66;1979
%
% See also GRAYTHRESH, IM2BW
%
narginchk(1,2)
% Check if is the input is an RGB image
isRGB = isrgb(I);
assert(isRGB | ismatrix(I),...
'The input must be a 2-D array or an RGB image.')
%% Checking n (number of classes)
if nargin==1
n = 2;
elseif n==1
IDX = NaN(size(I));
sep = 0;
return
elseif n~=abs(round(n)) || n==0
error('MATLAB:otsu:WrongNValue',...
'n must be a strictly positive integer!')
elseif n>255
n = 255;
warning('MATLAB:otsu:TooHighN',...
'n is too high. n value has been changed to 255.')
end
I = single(I);
%% Perform a KLT if isRGB, and keep the component of highest energy
if isRGB
sizI = size(I);
I = reshape(I,[],3);
[V,D] = eig(cov(I));
[~,c] = max(diag(D));
I = reshape(I*V(:,c),sizI(1:2)); % component with the highest energy
end
%% Convert to 256 levels
I = I-min(I(:));
I = round(I/max(I(:))*255);
%% Probability distribution
unI = sort(unique(I));
nbins = min(length(unI),256);
if nbins==n
IDX = ones(size(I));
for i = 1:n, IDX(I==unI(i)) = i; end
sep = 1;
return
elseif nbins<n
IDX = NaN(size(I));
sep = 0;
return
elseif nbins<256
[histo,pixval] = hist(I(:),unI);
else
[histo,pixval] = hist(I(:),256);
end
P = histo/sum(histo);
clear unI
%% Zeroth- and first-order cumulative moments
w = cumsum(P);
mu = cumsum((1:nbins).*P);
%% Maximal sigmaB^2 and Segmented image
if n==2
sigma2B =...
(mu(end)*w(2:end-1)-mu(2:end-1)).^2./w(2:end-1)./(1-w(2:end-1));
[maxsig,k] = max(sigma2B);
% segmented image
IDX = ones(size(I));
IDX(I>pixval(k+1)) = 2;
% separability criterion
sep = maxsig/sum(((1:nbins)-mu(end)).^2.*P);
elseif n==3
w0 = w;
w2 = fliplr(cumsum(fliplr(P)));
[w0,w2] = ndgrid(w0,w2);
mu0 = mu./w;
mu2 = fliplr(cumsum(fliplr((1:nbins).*P))./cumsum(fliplr(P)));
[mu0,mu2] = ndgrid(mu0,mu2);
w1 = 1-w0-w2;
w1(w1<=0) = NaN;
sigma2B =...
w0.*(mu0-mu(end)).^2 + w2.*(mu2-mu(end)).^2 +...
(w0.*(mu0-mu(end)) + w2.*(mu2-mu(end))).^2./w1;
sigma2B(isnan(sigma2B)) = 0; % zeroing if k1 >= k2
[maxsig,k] = max(sigma2B(:));
[k1,k2] = ind2sub([nbins nbins],k);
% segmented image
IDX = ones(size(I))*3;
IDX(I<=pixval(k1)) = 1;
IDX(I>pixval(k1) & I<=pixval(k2)) = 2;
% separability criterion
sep = maxsig/sum(((1:nbins)-mu(end)).^2.*P);
else
k0 = linspace(0,1,n+1); k0 = k0(2:n);
[k,y] = fminsearch(@sig_func,k0,optimset('TolX',1));
k = round(k*(nbins-1)+1);
% segmented image
IDX = ones(size(I))*n;
IDX(I<=pixval(k(1))) = 1;
for i = 1:n-2
IDX(I>pixval(k(i)) & I<=pixval(k(i+1))) = i+1;
end
% separability criterion
sep = 1-y;
end
IDX(~isfinite(I)) = 0;
%% Function to be minimized if n>=4
function y = sig_func(k)
muT = sum((1:nbins).*P);
sigma2T = sum(((1:nbins)-muT).^2.*P);
k = round(k*(nbins-1)+1);
k = sort(k);
if any(k<1 | k>nbins), y = 1; return, end
k = [0 k nbins];
sigma2B = 0;
for j = 1:n
wj = sum(P(k(j)+1:k(j+1)));
if wj==0, y = 1; return, end
muj = sum((k(j)+1:k(j+1)).*P(k(j)+1:k(j+1)))/wj;
sigma2B = sigma2B + wj*(muj-muT)^2;
end
y = 1-sigma2B/sigma2T; % within the range [0 1]
end
end
function isRGB = isrgb(A)
% --- Do we have an RGB image?
% RGB images can be only uint8, uint16, single, or double
isRGB = ndims(A)==3 && (isfloat(A) || isa(A,'uint8') || isa(A,'uint16'));
% ---- Adapted from the obsolete function ISRGB ----
if isRGB && isfloat(A)
% At first, just test a small chunk to get a possible quick negative
mm = size(A,1);
nn = size(A,2);
chunk = A(1:min(mm,10),1:min(nn,10),:);
isRGB = (min(chunk(:))>=0 && max(chunk(:))<=1);
% If the chunk is an RGB image, test the whole image
if isRGB, isRGB = (min(A(:))>=0 && max(A(:))<=1); end
end
end
|
github
|
Jiankai-Sun/Digital-Image-Processing-master
|
myReconstruction.m
|
.m
|
Digital-Image-Processing-master/Problem8/SourceCode/myReconstruction.m
| 1,330 |
utf_8
|
f5f1a39b90159153219ddbd6249dff36
|
%% Self defined function for opening by reconstruction
% function recon1 = myReconstruction( marker, mask )
% % se = strel('square', 3);
% se = ones(3, 3);
% recon1 = marker;
% recon1_old = zeros(size(recon1));
% while (sum(sum(recon1 - recon1_old)) ~= 0)
% % Retain output of previous iteration
% recon1_old = recon1;
% % Perform dilation
% % recon1 = imdilate(recon1, se);
% % The following command is slow. If you want to have better
% % performance, uncomment the above `recon1 = imdilate(recon1, se);`
% % and use `se = strel('square', 3);`
% recon1 = myDilate(recon1, se);
% % Restrict the dialated values using the mask
% bw = recon1 > mask;
% recon1(bw) = mask(bw);
% end
% end
function [ h ] = myReconstruction( f, g, B )
% Implementation of morphlogical operation called reconstruction
narginchk(1,3);
nargoutchk(1,1);
if ~islogical(f) || ~islogical(g)
error('f, g must be logical matrix');
end
if nargin == 2
B = logical([0, 1, 0; 1, 1, 1; 0, 1, 0]);
end
h = f;
htmp = f;
flag = false;
while (~flag)
h = logical(myDilate(htmp, B) .* g);
flag = 1-any(any(h - htmp));
htmp = h;
end
end
|
github
|
Jiankai-Sun/Digital-Image-Processing-master
|
myHoleFill3.m
|
.m
|
Digital-Image-Processing-master/Problem8/SourceCode/myHoleFill3.m
| 11,431 |
utf_8
|
df8610f8bc88bb1dad620088a4293cd6
|
%% Self defined function for hole filling
function [ g ] = myHoleFill( f)
narginchk(1,1);
if ~islogical(f)
f = imbinarize(f);
end
fc = logical(1 - f);
[r, s] = size(f);
fm = false(r, s);
for i = 1:r
for j= 1:s
if i==1 || i==r || j==1 || j==s
fm(i,j) = 1 - f(i,j);
end
end
end
g = myReconstruction(fm, fc);
g = logical(1-g);
g = logical((double(f)+double(g))>0);
end
% The following function has a better performance
% function [I2,locations] = myHoleFill(varargin)
% %IMFILL Fill image regions and holes.
% % BW2 = IMFILL(BW1,LOCATIONS) performs a flood-fill operation on
% % background pixels of the input binary image BW1, starting from the
% % points specified in LOCATIONS. LOCATIONS can be a P-by-1 vector, in
% % which case it contains the linear indices of the starting locations.
% % LOCATIONS can also be a P-by-NDIMS(IM1) matrix, in which case each row
% % contains the array indices of one of the starting locations.
% %
% % BW2 = IMFILL(BW1,'holes') fills holes in the input image. A hole is
% % a set of background pixels that cannot be reached by filling in the
% % background from the edge of the image.
% %
% % I2 = IMFILL(I1) fills holes in an intensity image, I1. In this
% % case a hole is an area of dark pixels surrounded by lighter pixels.
% %
% % Interactive Use
% % ---------------
% % BW2 = IMFILL(BW1) displays BW1 on the screen and lets you select the
% % starting locations using the mouse. Use normal button clicks to add
% % points. Press <BACKSPACE> or <DELETE> to remove the previously selected
% % point. A shift-click, right-click, or double-click selects a final
% % point and then starts the fill; pressing <RETURN> finishes the selection
% % without adding a point. Interactive use is supported only for 2-D images.
% %
% % The syntax [BW2,LOCATIONS] = IMFILL(BW1) can be used to get the starting
% % points selected using the mouse. The output LOCATIONS is always in the
% % form of a vector of linear indices into the input image.
% %
% % Specifying Connectivity
% % -----------------------
% % By default, IMFILL uses 4-connected background neighbors for 2-D
% % inputs and 6-connected background neighbors for 3-D inputs. For
% % higher dimensions the default background connectivity is
% % CONNDEF(NUM_DIMS,'minimal'). You can override the default
% % connectivity with these syntaxes:
% %
% % BW2 = IMFILL(BW1,LOCATIONS,CONN)
% % BW2 = IMFILL(BW1,CONN,'holes')
% % I2 = IMFILL(I1,CONN)
% %
% % To override the default connectivity and interactively specify the
% % starting locations, use this syntax:
% %
% % BW2 = IMFILL(BW1,0,CONN)
% %
% % CONN may have the following scalar values:
% %
% % 4 two-dimensional four-connected neighborhood
% % 8 two-dimensional eight-connected neighborhood
% % 6 three-dimensional six-connected neighborhood
% % 18 three-dimensional 18-connected neighborhood
% % 26 three-dimensional 26-connected neighborhood
% %
% % Connectivity may be defined in a more general way for any dimension by
% % using for CONN a 3-by-3-by- ... -by-3 matrix of 0s and 1s. The 1-valued
% % elements define neighborhood locations relative to the center element of
% % CONN. CONN must be symmetric about its center element.
% %
% % Class Support
% % -------------
% % The input image can be numeric or logical, and it must be real and
% % nonsparse. It can have any dimension. The output image has the
% % same class as the input image.
% %
% % Examples
% % --------
% % Fill in the background of a binary image from a specified starting
% % location:
% %
% % BW1 = logical([1 0 0 0 0 0 0 0
% % 1 1 1 1 1 0 0 0
% % 1 0 0 0 1 0 1 0
% % 1 0 0 0 1 1 1 0
% % 1 1 1 1 0 1 1 1
% % 1 0 0 1 1 0 1 0
% % 1 0 0 0 1 0 1 0
% % 1 0 0 0 1 1 1 0]);
% % BW2 = imfill(BW1,[3 3],8)
% %
% % Fill in the holes of a binary image:
% %
% % BW4 = imbinarize(imread('coins.png'));
% % BW5 = imfill(BW4,'holes');
% % figure, imshow(BW4), figure, imshow(BW5)
% %
% % Fill in the holes of an intensity image:
% %
% % I = imread('tire.tif');
% % I2 = imfill(I);
% % figure, imshow(I), figure, imshow(I2)
% %
% % See also BWSELECT, GRAYCONNECTED, IMRECONSTRUCT, REGIONFILL.
%
% % Grandfathered syntaxes:
% % IMFILL(I1,'holes') - no longer necessary to use 'holes'
% % IMFILL(I1,CONN,'holes') - no longer necessary to use 'holes'
%
% % Testing notes
% % =============
% % I - real, full, nonsparse, numeric array, any dimension
% % - Infs OK
% % - NaNs not allowed
% %
% % CONN - valid connectivity specifier
% %
% % LOCATIONS - the value 0 is used as a flag to indicate interactive
% % selection
% % - can be either a P-by-1 double vector containing
% % valid linear indices into the input image, or a
% % P-by-ndims(I) array. In the second case, each row
% % of LOCATIONS must contain a set of valid array indices
% % into the input image.
% % - can be empty.
% %
% % 'holes' - match is case-insensitive; partial match allowed.
% %
% % If 'holes' argument is not provided, then the input image must be
% % binary.
%
% [I,locations,conn,do_fillholes] = parse_inputs(varargin{:});
%
% if do_fillholes
% if islogical(I)
% mask = uint8(I);
% else
% mask = I;
% end
% mask = padarray(mask, ones(1,ndims(mask)), -Inf, 'both');
% mask = imcomplement(mask);
% marker = mask;
%
% idx = cell(1,ndims(I));
% for k = 1:ndims(I)
% idx{k} = 2:(size(marker,k) - 1);
% end
% marker(idx{:}) = -Inf;
%
% I2 = imreconstruct(marker, mask, conn);
% I2 = imcomplement(I2);
% I2 = I2(idx{:});
%
% if islogical(I)
% I2 = logical(I2);
% end
%
% else
% mask = imcomplement(I);
% marker = false(size(mask));
% marker(locations) = mask(locations);
% marker = imreconstruct(marker, mask, conn);
% I2 = I | marker;
% end
%
% %%%
% %%% Subfunction ParseInputs
% %%%
% function [IM,locations,conn,do_fillholes] = parse_inputs(varargin)
%
% narginchk(1,3);
%
% IM = varargin{1};
% validateattributes(IM, {'numeric' 'logical'}, {'nonsparse' 'real','nonnan'}, ...
% mfilename, 'I1 or BW1', 1);
%
% do_interactive = false;
% do_fillholes = false;
%
% conn = conndef(ndims(IM),'minimal');
% do_conn_check = false;
%
% locations = [];
% do_location_check = false;
%
% switch nargin
% case 1
% if islogical(IM)
% % IMFILL(BW1)
% do_interactive = true;
% else
% % IMFILL(I1)
% do_fillholes = true;
% end
%
% case 2
% if islogical(IM)
% if ischar(varargin{2})
% % IMFILL(BW1, 'holes')
% validatestring(varargin{2}, {'holes'}, mfilename, 'OPTION', 2);
% do_fillholes = true;
%
% else
% % IMFILL(BW1, LOCATIONS)
% locations = varargin{2};
% do_location_check = true;
% end
%
% else
% if ischar(varargin{2})
% % IMFILL(I1, 'holes')
% validatestring(varargin{2}, {'holes'}, mfilename, 'OPTION', 2);
% do_fillholes = true;
%
% else
% % IMFILL(I1, CONN)
% conn = varargin{2};
% do_conn_check = true;
% conn_position = 2;
% do_fillholes = true;
% end
%
% end
%
% case 3
% if islogical(IM)
% if ischar(varargin{3})
% % IMFILL(BW1,CONN,'holes')
% validatestring(varargin{3}, {'holes'}, mfilename, 'OPTION', 3);
% do_fillholes = true;
% conn = varargin{2};
% do_conn_check = true;
% conn_position = 2;
%
% else
% if isequal(varargin{2}, 0)
% % IMFILL(BW1,0,CONN)
% do_interactive = true;
% conn = varargin{3};
% do_conn_check = true;
% conn_position = 2;
%
% else
% % IMFILL(BW1,LOCATIONS,CONN)
% locations = varargin{2};
% do_location_check = true;
% conn = varargin{3};
% do_conn_check = true;
% conn_position = 3;
% end
%
% end
%
% else
% % IMFILL(I1,CONN,'holes')
% validatestring(varargin{3}, {'holes'}, mfilename, 'OPTION', 3);
% do_fillholes = true;
% conn = varargin{2};
% do_conn_check = true;
% conn_position = 2;
% end
% end
%
% if do_conn_check
% iptcheckconn(conn, mfilename, 'CONN', conn_position);
% end
%
% if do_location_check
% locations = check_locations(locations, size(IM));
% elseif do_interactive
% locations = get_locations_interactively(IM);
% end
%
% % Convert to linear indices if necessary.
% if ~do_fillholes && (size(locations,2) ~= 1)
% idx = cell(1,ndims(IM));
% for k = 1:ndims(IM)
% idx{k} = locations(:,k);
% end
% locations = sub2ind(size(IM), idx{:});
% end
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function locations = check_locations(locations, image_size)
% % Checks validity of LOCATIONS. Converts LOCATIONS to linear index
% % form. Warns if any locations are out of range.
%
% validateattributes(locations, {'double'}, {'real' 'positive' 'integer' '2d'}, ...
% mfilename, 'LOCATIONS', 2);
%
% num_dims = length(image_size);
% if (size(locations,2) ~= 1) && (size(locations,2) ~= num_dims)
% error(message('images:imfill:badLocationSize', iptnum2ordinal( 2 )));
% end
%
% if size(locations,2) == 1
% bad_pix = (locations < 1) | (locations > prod(image_size));
% else
% bad_pix = zeros(size(locations,1),1);
% for k = 1:num_dims
% bad_pix = bad_pix | ((locations(:,k) < 1) | ...
% (locations(:,k) > image_size(k)));
% end
% end
%
% if any(bad_pix)
% warning(message('images:imfill:outOfRange'));
% locations(bad_pix,:) = [];
% end
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function locations = get_locations_interactively(BW)
% % Display image and give user opportunity to select locations with the mouse.
%
% if ~ismatrix(BW)
% error(message('images:imfill:badInteractiveDimension'))
% end
%
% if isempty(BW)
% error(message('images:imfill:emptyImage'))
% end
%
% imshow(BW)
% [xi,yi] = getpts;
% c = round(axes2pix(size(BW,2), [1 size(BW,2)], xi));
% r = round(axes2pix(size(BW,1), [1 size(BW,1)], yi));
% locations = sub2ind(size(BW),r,c);
|
github
|
Jiankai-Sun/Digital-Image-Processing-master
|
chainCode.m
|
.m
|
Digital-Image-Processing-master/Problem10/SourceCode/chainCode.m
| 8,576 |
utf_8
|
3ed31c4b670992c84d111a6949064fee
|
function c = chainCode(b, conn, dir)
% CHAINCODE Computes the Freeman chain code of a boundary.
% C = FCHCODE(B) computes the 8-connected Freeman chain code of a
% set of 2-D coordinate pairs contained in B, an np-by-2 array. C
% is a structure with the following fields:
%
% c.fcc = Freeman chain code (1-by-np)
% c.diff = First difference of code c.fcc (1-by-np)
% c.mm = Integer of minimum magnitude from c.fcc (1-by-np)
% c.diffmm = First difference of code c.mm (1-by-np)
% c.x0y0 = Coordinates where the code starts (1-by-2)
%
% C = FCHCODE(B, CONN) produces the same outputs as above, but
% with the code connectivity specified in CONN. CONN can be 8 for
% an 8-connected chain code, or CONN can be 4 for a 4-connected
% chain code. Specifying CONN=4 is valid only if the input
% sequence, B, contains transitions with values 0, 2, 4, and 6,
% exclusively.
%
% C = FHCODE(B, CONN, DIR) produces the same outputs as above, but,
% in addition, the desired code direction is specified. Values for
% DIR can be:
%
% 'same' Same as the order of the sequence of points in b.
% This is the default.
%
% 'reverse' Outputs the code in the direction opposite to the
% direction of the points in B. The starting point
% for each DIR is the same.
%
% The elements of B are assumed to correspond to a 1-pixel-thick,
% fully-connected, closed boundary. B cannot contain duplicate
% coordinate pairs, except in the first and last positions, which
% is a common feature of boundary tracing programs.
%
% FREEMAN CHAIN CODE REPRESENTATION
% The table on the left shows the 8-connected Freeman chain codes
% corresponding to allowed deltax, deltay pairs. An 8-chain is
% converted to a 4-chain if (1) if conn = 4; and (2) only
% transitions 0, 2, 4, and 6 occur in the 8-code. Note that
% dividing 0, 2, 4, and 6 by 2 produce the 4-code.
%
% ----------------------- ----------------
% deltax | deltay | 8-code corresp 4-code
% ----------------------- ----------------
% 0 1 0 0
% -1 1 1
% -1 0 2 1
% -1 -1 3
% 0 -1 4 2
% 1 -1 5
% 1 0 6 3
% 1 1 7
% ----------------------- ----------------
%
% The formula z = 4*(deltax + 2) + (deltay + 2) gives the following
% sequence corresponding to rows 1-8 in the preceding table: z =
% 11,7,6,5,9,13,14,15. These values can be used as indices into the
% table, improving the speed of computing the chain code. The
% preceding formula is not unique, but it is based on the smallest
% integers (4 and 2) that are powers of 2.
% Preliminaries.
if nargin == 1
dir = 'same';
conn = 8;
elseif nargin == 2
dir = 'same';
elseif nargin == 3
% Nothing to do here.
else
error('Incorrect number of inputs.')
end
[np, nc] = size(b);
if np < nc
error('B must be of size np-by-2.');
end
% Some boundary tracing programs, such as boundaries.m, output a
% sequence in which the coordinates of the first and last points are
% the same. If this is the case, eliminate the last point.
if isequal(b(1, :), b(np, :))
np = np - 1;
b = b(1:np, :);
end
% Build the code table using the single indices from the formula
% for z given above:
C(11)=0; C(7)=1; C(6)=2; C(5)=3; C(9)=4;
C(13)=5; C(14)=6; C(15)=7;
% End of Preliminaries.
% Begin processing.
x0 = b(1, 1);
y0 = b(1, 2);
c.x0y0 = [x0, y0];
% Make sure the coordinates are organized sequentially:
% Get the deltax and deltay between successive points in b. The
% last row of a is the first row of b.
a = circshift(b, [-1, 0]);
% DEL = a - b is an nr-by-2 matrix in which the rows contain the
% deltax and deltay between successive points in b. The two
% components in the kth row of matrix DEL are deltax and deltay
% between point (xk, yk) and (xk+1, yk+1). The last row of DEL
% contains the deltax and deltay between (xnr, ynr) and (x1, y1),
% (i.e., between the last and first points in b).
DEL = a - b;
% If the abs value of either (or both) components of a pair
% (deltax, deltay) is greater than 1, then by definition the curve
% is broken (or the points are out of order), and the program
% terminates.
if any(abs(DEL(:, 1)) > 1) || any(abs(DEL(:, 2)) > 1)
error('The input curve is broken or points are out of order.')
end
% Create a single index vector using the formula described above.
z = 4*(DEL(:, 1) + 2) + (DEL(:, 2) + 2);
% Use the index to map into the table. The following are
% the Freeman 8-chain codes, organized in a 1-by-np array.
fcc = C(z);
% Check if direction of code sequence needs to be reversed.
if strcmp(dir, 'reverse')
fcc = coderev(fcc); % See below for function coderev.
end
% If 4-connectivity is specified, check that all components
% of fcc are 0, 2, 4, or 6.
if conn == 4
val = find(fcc == 1 | fcc == 3 | fcc == 5 | fcc ==7, 1 );
if isempty(val)
fcc = fcc./2;
else
warning('The specified 4-connected code cannot be satisfied.')
end
end
% Freeman chain code for structure output.
c.fcc = fcc;
% Obtain the first difference of fcc.
c.diff = codediff(fcc,conn); % See below for function codediff.
% Obtain code of the integer of minimum magnitude.
c.mm = minmag(fcc); % See below for function minmag.
% Obtain the first difference of fcc
c.diffmm = codediff(c.mm, conn);
%-------------------------------------------------------------------%
function cr = coderev(fcc)
% Traverses the sequence of 8-connected Freeman chain code fcc in
% the opposite direction, changing the values of each code
% segment. The starting point is not changed. fcc is a 1-by-np
% array.
% Flip the array left to right. This redefines the starting point
% as the last point and reverses the order of "travel" through the
% code.
cr = fliplr(fcc);
% Next, obtain the new code values by traversing the code in the
% opposite direction. (0 becomes 4, 1 becomes 5, ... , 5 becomes 1,
% 6 becomes 2, and 7 becomes 3).
ind1 = find(0 <= cr & cr <= 3);
ind2 = find(4 <= cr & cr <= 7);
cr(ind1) = cr(ind1) + 4;
cr(ind2) = cr(ind2) - 4;
%-------------------------------------------------------------------%
function z = minmag(c)
%MINMAG Finds the integer of minimum magnitude in a chain code.
% Z = MINMAG(C) finds the integer of minimum magnitude in a given
% 4- or 8-connected Freeman chain code, C. The code is assumed to
% be a 1-by-np array.
% The integer of minimum magnitude starts with min(c), but there
% may be more than one such value. Find them all,
I = find(c == min(c));
% and shift each one left so that it starts with min(c).
J = 0;
A = zeros(length(I), length(c));
for k = I
J = J + 1;
A(J, :) = circshift(c,[0 -(k-1)]);
end
% Matrix A contains all the possible candidates for the integer of
% minimum magnitude. Starting with the 2nd column, succesively find
% the minima in each column of A. The number of candidates decreases
% as the seach moves to the right on A. This is reflected in the
% elements of J. When length(J)=1, one candidate remains. This is
% the integer of minimum magnitude.
[M, N] = size(A);
J = (1:M)';
for k = 2:N
D(1:M, 1) = Inf;
D(J, 1) = A(J, k);
amin = min(A(J, k));
J = find(D(:, 1) == amin);
if length(J)==1
z = A(J, :);
return
end
end
%-------------------------------------------------------------------%
function d = codediff(fcc, conn)
%CODEDIFF Computes the first difference of a chain code.
% D = CODEDIFF(FCC) computes the first difference of code, FCC. The
% code FCC is treated as a circular sequence, so the last element
% of D is the difference between the last and first elements of
% FCC. The input code is a 1-by-np vector.
%
% The first difference is found by counting the number of direction
% changes (in a counter-clockwise direction) that separate two
% adjacent elements of the code.
sr = circshift(fcc, [0, -1]); % Shift input left by 1 location.
delta = sr - fcc;
d = delta;
I = find(delta < 0);
type = conn;
switch type
case 4 % Code is 4-connected
d(I) = d(I) + 4;
case 8 % Code is 8-connected
d(I) = d(I) + 8;
end
|
github
|
Jiankai-Sun/Digital-Image-Processing-master
|
wavefast.m
|
.m
|
Digital-Image-Processing-master/Problem7/SourceCode/wavefast.m
| 5,094 |
utf_8
|
d143429208f8cb9eec34c5878f14a892
|
function [ c, s ] = wavefast( x, n, varargin )
%WAVEFAST Computes the FWT of a '3-D extended' 2-D array
% [C, L] = WAVEFAST(X, N, LP, HP) computes 'PAGES' 2D N-level
% FWTs of a 'ROWS x COLUMNS x PAGES' matrix X with respect to
% decomposition filters LP and HP.
%
% [C, L] = WAVEFAST(X, N, WNAME) performs the same operation but
% fetches filters LP and HP for wavelet WNAME using WAVEFILTER
%
% Scale parameter N must be less than or equal to log2 of the
% maximum image dimension. Filters LP and HP must be even. To
% reduce border distortion, X is symmetrically extended. That is,
% if X = [c1 c2 c3 ... cn] (in 1D), then its symmetric extension
% would be [... c3 c2 c1 c1 c2 c3 ... cn cn cn-1 cn-2 ...].
%
% OUTPUTS:
% Vector C is a coefficient decomposition vector:
%
% C = [a1(n) ... ak(n) h1(n) ... hk(n) v1(n) ... vk(n)
% d1(n) ... dk(n) h1(n-1) ... d1(1) ... dk(1)]
%
% where ai, hi, vi, and di for i = 0, 1, ... k are columnwise
% vectors containing approximation, horizontal, vertical, and
% diagonal coefficient matrices, respectively, and k is the
% number of pages in the 3-D extended array X. C has 3n + 1
% sections where n is the number of wavelet decompositions.
%
% Matrix S is an [(n+2) x 2] bookkeeping matrix if k = 1;
% else it is [(n+2) x 3];
%
% S = [ sa(n, :); sd(n, :); sd(n-1, :); ... ; sd(1, :); sx ]
%
% where sa and sd are approximation and detail size entries.
%
% See also WAVEFAST and WAVEFILTER
% Check the input arguments for reasonableness.
narginchk(3, 4);
if nargin == 3
if ischar(varargin{1})
[lp, hp] = wavefilter(varargin{1}, 'd');
else
error('Missing wavelet name.');
end
else
lp = varargin{1}; hp = varargin{2};
end
% Get the filter length, 'lp', input array size, 'sx', and number of
% pages, 'pages', in extended 2-D array x.
fl = length(lp); sx = size(x); pages = size(x, 3);
if ((~ismatrix(x)) && (ndims(x) ~= 3)) || (min(sx) < 2) ...
|| ~isreal(x) || ~isnumeric(x)
error('X must be a real, numeric 2-D or 3-D matrix.');
end
if (~ismatrix(lp)) || ~isreal(lp) || ~isnumeric(lp) ...
|| (~ismatrix(hp)) || ~isreal(hp) || ~isnumeric(hp) ...
|| (fl ~= length(hp)) || rem(fl, 2) ~= 0
error(['LP and HP must be even and equal length real, ' ...
'numeric filter vectors.']);
end
if ~isreal(n) || ~isnumeric(n) || (n < 1) || (n > log2(max(sx)))
error(['N must be a real scalar between 1 and ' ...
'log2(max(size((X))).']);
end
% Init the starting output data structures and initial approximation.
c = []; s = sx(1:2);
app = cell(pages, 1);
for i = 1:pages
app{i} = double(x(:, :, i));
end
% For each decomposition ...
for i = 1:n
% Extend the approximation symmetrically.
[app, keep] = symextend(app, fl, pages);
% Convolve rows with HP and downsample. Then convolve columns
% with HP and LP to get the diagonal and vertical coefficients.
rows = symconv(app, hp, 'row', fl, keep, pages);
coefs = symconv(rows, hp, 'col', fl, keep, pages);
c = addcoefs(c, coefs, pages);
s = [size(coefs{1}); s];
coefs = symconv(rows, lp, 'col', fl, keep, pages);
c = addcoefs(c, coefs, pages);
% Convolve rows with LP and downsample. Then convolve columns
% with HP and LP to get the horizontal and next approximation
% coeffcients.
rows = symconv(app, lp, 'row', fl, keep, pages);
coefs = symconv(rows, hp, 'col', fl, keep, pages);
c = addcoefs(c, coefs, pages);
app = symconv(rows, lp, 'col', fl, keep, pages);
end
% Append the final approximation structures.
c = addcoefs(c, app, pages);
s = [size(app{1});s];
if ~ismatrix(x)
s(:, 3) = size(x, 3);
end
end
% -------------------------------------------------------------------------%
function nc = addcoefs(c, x, pages)
% Add 'pages' array coefficients to the wavelet decomposition vector.
nc = c;
for i = pages: -1 :1
nc = [x{i}(:)' nc];
end
end
% -------------------------------------------------------------------------%
function [y, keep] = symextend(x, fl, pages)
% Compute the number of coefficients to keep after convolution and
% downsampling. Then extend the 'pages' arrays of x in both
% dimensions.
y = cell(pages, 1);
for i = 1:pages
keep = floor((fl + size(x{i}) - 1) / 2);
y{i} = padarray(x{i}, [(fl - 1) (fl - 1)], 'symmetric', 'both');
end
end
% -------------------------------------------------------------------------%
function y =symconv(x, h, type, fl, keep, pages)
% For the 'pages' 2-D arrays in x, convolve the rows or columns with
% h , downsample, and extract the center section since symmetrically
% extended.
y = cell(pages, 1);
for i = 1:pages
if strcmp(type, 'row')
y{i} = conv2(x{i}, h);
y{i} = y{i}(:, 1:2:end);
y{i} = y{i}(:, fl / 2 + 1:fl / 2 + keep(2));
else
y{i} = conv2(x{i}, h');
y{i} = y{i}(1:2:end, :);
y{i} = y{i}(fl / 2 + 1 : fl / 2 + keep(1), :);
end
end
end
|
github
|
Jiankai-Sun/Digital-Image-Processing-master
|
waveback.m
|
.m
|
Digital-Image-Processing-master/Problem7/SourceCode/waveback.m
| 4,489 |
utf_8
|
92a54874b3ac290b1071b5c812768816
|
function [ varargout ] = waveback( c, s, varargin )
%WAVEBACK Computes inverse FWTs for multi-level decomposition [C, S].
% [VARARGOUT] = WAVEBACK(C, S, VARARGOUT) performs a 2D N-level
% partial or complete wavelet reconstruction of decomposition
% structure [C, S];
%
% SYNTAX:
% Y = WAVEBACK(C, S, 'WNAME'); Output inverse FWT matrix Y
% Y = WAVEBACK(C, S, LR, HR); using lowpass and highpass
% reconstruction filters (LR and
% HR) or filters obtained by
% calling WAVEFILTER with 'WNAME'.
%
% [NC, NS] = WAVEBACK(C, S, 'WNAME', N); Output new wavelet
% [NC, NS] = WAVEBACK(C, S, LR, HR, N); decomposition structure
% [NC, NS] after N step
% reconstruction.
%
% See also WAVEFAST and WAVEFILTER.
% Check the input and output arguments for reasonableness.
narginchk(3, 5);
nargoutchk(1, 2);
if(~ismatrix(c)) || (size(c, 1) ~= 1)
error('C must be a row vector.');
end
if(~ismatrix(s)) || ~isreal(s) || ~isnumeric(s) || ...
((size(s, 2) ~= 2) && (size(s, 2) ~= 3))
error('S must be a real, numeric two- or three-column array.');
end
elements = prod(s, 2);
if(length(c) < elements(end)) || ...
~(elements(1) + 3 * sum(elements(2:end - 1)) >= elements(end))
error('[C S] must be a standard wavelet decomposition structure.');
end
% Maximum levels in [C, S].
nmax = size(s, 1) - 2;
% Get third input parameter and init check flags.
wname = varargin{1}; filterchk = 0; nchk = 0;
switch nargin
case 3
if ischar(wname)
[lp, hp] = wavefilter(wname, 'r'); n = nmax;
else
error('Undefined filter.');
end
if nargout ~= 1
error('Wrong number of output arguments.');
end
case 4
if ischar(wname)
[lp, hp] = wavefilter(wname, 'r');
n = varargin{2}; nchk = 1;
else
lp = varargin{1}; hp = varargin{2};
filterchk = 1; n = nmax;
if nargout ~= 1
error('Wrong number of output arguments.');
end
end
case 5
lp = varargin{1}; hp = varargin{2}; filterchk = 1;
n = varargin{3}; nchk = 1;
otherwise
error('Improper number of input arguments.');
end
fl = length(lp);
if filterchk % Check filters.
if (~ismatrix(lp)) || ~isreal(lp) || ~isnumeric(lp) ...
|| (~ismatrix(hp)) || ~isreal(hp) || ~isnumeric(hp) ...
|| (fl ~= length(hp)) || rem(fl, 2) ~= 0
error('LP and HP must be even and equal length real, numeric filter vectors.');
end
end
if nchk && (~isnumeric(n) || ~isreal(n)) % Check scale N.
error('N must be a real numeric.');
end
if (n > nmax) || (n < 1)
error('Invalid number (N) of reconstructions requested.');
end
if (n ~= nmax) && (nargout ~= 2)
error('Not enough output arguments.');
end
nc = c; ns = s; nnmax = nmax; % Init decomposition.
for i = 1:n
% Compute a new approximation.
a = symconvup(wavecopy('a', nc, ns), lp, lp, fl, ns(3, :)) + ...
symconvup(wavecopy('h', nc, ns, nnmax), hp, lp, fl, ns(3, :)) + ...
symconvup(wavecopy('v', nc, ns, nnmax), lp, hp, fl, ns(3, :)) + ...
symconvup(wavecopy('d', nc, ns, nnmax), hp, hp, fl, ns(3, :));
% Update decomposition.
nc = nc(4 * prod(ns(1, :)) + 1:end); nc = [a(:)' nc];
ns = ns(3:end, :); ns = [ns(1, :); ns];
nnmax = size(ns, 1) - 2;
end
% For complete reconstructions, reformat output as 2-D.
if nargout == 1
a = nc; nc = zeros(ns(1, :)); nc(:) = a;
end
varargout{1} = nc;
if nargout == 2
varargout{2} = ns;
end
end
% ------------------------------------------------------------------------ %
function w = symconvup(x, f1, f2, fln, keep)
% Upsample rows and convolve columns with f1; upsample columns and
% convolve rows with f2; then extract center assuming symmetrical
% extension
% Process each "page" (i.e., 3rd index) of an extended 2-D array
% seperately; if 'x' is 2-D, size(x, 3) = 1.
% Preallocate w.
zi = fln - 1: fln + keep(1) - 2;
zj = fln - 1: fln + keep(2) - 2;
w = zeros(numel(zi), numel(zj), size(x, 3));
for i = 1:size(x, 3)
y = zeros([2 1] .* size(x(:, :, i)));
y(1:2:end, :) = x(:, :, i);
y = conv2(y, f1');
z = zeros([1 2] .* size(y)); z(:, 1:2:end) = y;
z = conv2(z,f2);
z = z(zi, zj);
w(:, :, i) = z;
end
end
|
github
|
nrodrig4/Matlab-Codes-Vapor-Droplet-Evaporation-master
|
optimizedPolyFit.m
|
.m
|
Matlab-Codes-Vapor-Droplet-Evaporation-master/optimizedPolyFit.m
| 12,255 |
utf_8
|
8ef8e3cf54c6f074bdf74b45d20da862
|
function [resultsOutput,new_results_Size] = optimizedPolyFit(app,z_length,z_loc,mu,compound,M,C_v,R,x_spacing,noise_IA,rootdir,SpacingOption,powers,Fitting,error_rel_rms,error_rel2_rms,RMSresults)
for i = 1:z_length
for j = 1:length(powers)
r_max = 50;
z_o = z_loc(i);
power = powers(j);
SavesFolder = [rootdir,'/z_',num2str(z_o)];
mkdir(SavesFolder)
RMSdetails = [SavesFolder,'/RMS_details.txt'];
RMS_mod_details = [SavesFolder,'/RMS_mod_details.txt'];
neg_analytical_C = [SavesFolder,'/Neg_analytical_vals.txt'];
data = IA_minus_Concentration_mod(noise_IA,z_o,mu,M,C_v,R,SavesFolder,x_spacing);
if SpacingOption ~= 'Analytical..'
C_f = 0.0166%2*C_v/pi*atan(R/(sqrt(0.5*(rw^2+z_oo^2-R^2+ ...
%5sqrt((rw^2+z_oo^2-R^2)^2+4*z_oo^2*R^2))))); %analytical C at (rw,z_oo)
r = 50;
x_loc = 0:0.5:50;
for n = 1:length(x_loc)
x_o = x_loc(n);
a = sqrt(r^2-x_o^2);
fun = @(t) compute_C(t,C_v,x_o,z_o,R,C_f);
% disp('int1')
solution = integral(fun,-a,a); %line integral along the y-direction
% disp('int2')
%unit?
if(solution==0)
RampToZeroLocation = x_o;
break;
end
%solution = solution*1000/(1*10^6*M)*mu-(2.0*rand(size(solution))-1*ones(size(solution)))*noise_IA; %unit?
end
data = addRamping(data,RampToZeroLocation);
end
results=Variable_Fitting_CT_NR_OP(data,z_o,compound,power,SavesFolder,mu,Fitting);
results_tmp = find(results(:,1)<35 + 1e-5 & results(:,1)>-eps);
new_results_Size = [results_tmp(1) results_tmp(end)]; %still have all the points from CT analysis
resultsOutput(:,i) = results(:,2)/(1/(1*10^3*M));
t1=results(new_results_Size(1):new_results_Size(2),1);
rw = r_max; %sqrt(50^2 - z_o^2); %%%assume that C(r,50) is also zero (= C(50,z))
z_oo = 0;
C_f = 2*C_v/pi*atan(R/(sqrt(0.5*(rw^2+z_oo^2-R^2+ ...
sqrt((rw^2+z_oo^2-R^2)^2+4*z_oo^2*R^2))))); %analytical C at (rw,z_oo)
temp = zeros(size(t1));
rel_rms = zeros(size(temp));
rel2_rms = [];
count = 0;
neg_ana_C = [];
for k = 1:length(t1)
x_o=t1(k);
temp(k) = (2*C_v./pi*atan(R./(sqrt(0.5*(x_o.^2+z_o.^2-R.^2 + sqrt((x_o.^2+z_o.^2 ...
-R.^2).^2 + 4*z_o.^2*R^2)))))-C_f)*1/(1*10^3*M);%units mole/cm^3
rel_rms(k) = (results(new_results_Size(1)+k-1,2)-temp(k))/temp(k);
if (temp(k) > 0.0) && (x_o < r_max + 1e-5)
rel2_rms = [rel2_rms;rel_rms(k)];
end
end
error_tmp = [t1 results(new_results_Size(1):new_results_Size(2),2) temp rel_rms];
%%%compute RMS error
error_rel_rms_power(j) = 100*sqrt(mean(rel_rms.^2));
error_rel2_rms_power(j) = 100*sqrt(mean(rel2_rms.^2))
%error_tmp = [z_o count error_rel_rms(i) error_rel2_rms(i)];
%save(RMSresults,'error_tmp','-ascii','-append')
TextAreaText{j} = ['z = ',num2str(z_o),', Power = ',num2str(power),', RMS = ',num2str(error_rel2_rms_power(j)),'%']
[LowestRMS2,powerIndex2] = min(error_rel2_rms_power);
%[LowestRMS1,powerIndex1] = min(error_rel_rms_power);
error_rel2_rms(i) = LowestRMS2
%error_rel_rms(i) = LowestRMS1;
%error_tmp = [z_o count error_rel_rms(i) error_rel2_rms(i)];
optimalPower(i) = powers(powerIndex2);
%error_rel_rms_power(i) = LowestRMS1;
OP = optimalPower(i);
optimalPowerForZ{i} = ['Power ',num2str(OP),' for z = ',num2str(z_o)]
app.FittingCTRMSTextArea.Value = [TextAreaText';optimalPowerForZ{i}];
clc;
close all;
clearvars -except j i select_PFitcase new_results_Size p_val sm_val z_loc ...
choice p_length z_length power M C_v R mu dirext rootdir z_o gs TextAreaText ...
SavesFolder resultsOutput results C_f compound s_choice sm_length noise_flag powers....
x_spacing resultPos data SpacingOption Spacing GridFit noise_IA Fitting app RMSresults...
optimalPower optimalPowerForZ error_rel_rms error_tmp error_rel2_rms error_rel2_rms_power;
end
clear error_rel2_rms_power;
TextAreaText = {};
optimalPowerForZ{i}
averageRMS = ['Average RMS = ',num2str(sum(error_rel2_rms)/length(error_rel2_rms))]
app.FittingCTRMSTextArea.Value = [optimalPowerForZ';averageRMS];
end
for i = 1:z_length
r_max = 50;
z_o = z_loc(i);
power = optimalPower(i);
SavesFolder = [rootdir,'/z_',num2str(z_o)];
mkdir(SavesFolder)
RMSdetails = [SavesFolder,'/RMS_details.txt'];
RMS_mod_details = [SavesFolder,'/RMS_mod_details.txt'];
neg_analytical_C = [SavesFolder,'/Neg_analytical_vals.txt'];
data = IA_minus_Concentration_mod(noise_IA,z_o,mu,M,C_v,R,SavesFolder,x_spacing);
ax = app.UIAxes;
app.UIAxes_2.NextPlot = 'replacechildren';
fig=figure;
title(app.UIAxes, ['IA output: z = ',num2str(z_o)])
xlabel(app.UIAxes, 'X')
ylabel(app.UIAxes, 'IA')
scatter(ax,data(:,1),data(:,2));
saveIAScatterFigure(data,SavesFolder,z_o)
if SpacingOption ~= 'Analytical..'
C_f = 0.0166%2*C_v/pi*atan(R/(sqrt(0.5*(rw^2+z_oo^2-R^2+ ...
%5sqrt((rw^2+z_oo^2-R^2)^2+4*z_oo^2*R^2))))); %analytical C at (rw,z_oo)
r = 50;
x_loc = 0:0.5:50;
for n = 1:length(x_loc)
x_o = x_loc(n);
a = sqrt(r^2-x_o^2);
fun = @(t) compute_C(t,C_v,x_o,z_o,R,C_f);
%disp('int1')
solution = integral(fun,-a,a); %line integral along the y-direction
%disp('int2')
%unit?
if(solution==0)
RampToZeroLocation = x_o;
break;
end
%solution = solution*1000/(1*10^6*M)*mu-(2.0*rand(size(solution))-1*ones(size(solution)))*noise_IA; %unit?
end
data = addRamping(data,RampToZeroLocation);
end
ax = app.UIAxes;
fig=figure;
title(app.UIAxes, ['IA output: z = ',num2str(z_o)])
xlabel(app.UIAxes, 'X')
ylabel(app.UIAxes, 'IA')
scatter(ax,data(:,1),data(:,2));
saveIAScatterFigure(data,SavesFolder,z_o);
% Starting PolyFit and CT
results=Variable_Fitting_CT_NR(app,data,z_o,compound,power,SavesFolder,mu,Fitting);
results_tmp = find(results(:,1)<35 + 1e-5 & results(:,1)>-eps);
new_results_Size = [results_tmp(1) results_tmp(end)]; %still have all the points from CT analysis
resultsOutput(:,i) = results(:,2)/(1/(1*10^3*M));
fresults = [SavesFolder,'/CT_results_z_',num2str(z_o),'.mat'];
save(fresults,'resultsOutput')
t1=results(new_results_Size(1):new_results_Size(2),1);
rw = r_max; %sqrt(50^2 - z_o^2); %%%assume that C(r,50) is also zero (= C(50,z))
z_oo = 0;
C_f = 2*C_v/pi*atan(R/(sqrt(0.5*(rw^2+z_oo^2-R^2+ ...
sqrt((rw^2+z_oo^2-R^2)^2+4*z_oo^2*R^2))))); %analytical C at (rw,z_oo)
temp = zeros(size(t1));
rel_rms = zeros(size(temp));
rel2_rms = [];
count = 0;
neg_ana_C = [];
for j = 1:length(t1)
x_o=t1(j);
temp(j) = (2*C_v./pi*atan(R./(sqrt(0.5*(x_o.^2+z_o.^2-R.^2 + sqrt((x_o.^2+z_o.^2 ...
-R.^2).^2 + 4*z_o.^2*R^2)))))-C_f)*1/(1*10^3*M);%units mole/cm^3
rel_rms(j) = (results(new_results_Size(1)+j-1,2)-temp(j))/temp(j);
if (temp(j) > 0.0) && (x_o < r_max + 1e-5)
rel2_rms = [rel2_rms;rel_rms(j)];
end
end
% results(:,2)
% pause
error_tmp = [t1 results(new_results_Size(1):new_results_Size(2),2) temp rel_rms];
save(RMSdetails,'error_tmp','-ascii')
save(RMS_mod_details,'rel2_rms','-ascii')
if (count>0)
save(neg_analytical_C,'neg_ana_C','-ascii')
end
%%%compute RMS error
error_rel_rms(i) = 100*sqrt(mean(rel_rms.^2));
error_rel2_rms(i) = 100*sqrt(mean(rel2_rms.^2));
error_tmp = [z_o count error_rel_rms(i) error_rel2_rms(i)];
save(RMSresults,'error_tmp','-ascii','-append')
errorCalc(i) = error_rel2_rms(i);
TextAreaText{i} = ['z = ',num2str(z_o),', RMS = ',num2str(error_rel2_rms(i)),'%'];
averageRMS = ['Average RMS = ',num2str(sum(errorCalc)/length(errorCalc)),'%'];
TextAreaText
Location = ['Location ',num2str(i),' of ',num2str(z_length)];
averageRMS = ['Average RMS = ',num2str(sum(errorCalc)/length(errorCalc))];
app.FittingCTRMSTextArea.Value = [optimalPowerForZ';Location;averageRMS];
ax = app.UIAxes_2;
fig=figure;
scatter(ax,results(:,1),results(:,2),'o');
ax.NextPlot = 'add';
scatter(ax,t1,temp,'x')
if (count>0)
scatter(ax,neg_ana_C(:,1),neg_ana_C(:,2),'+','MarkerEdgeColor',[0 0 0],'LineWidth',1)
end
xlabel(ax,'r axis [mm]');
ylabel(ax,'C(r,z) [mole/cm^3]');
if (count>0)
legend(ax,'Fitted Solution', 'Exact Solution','Org. Neg. Analyt. Sol')
else
legend(ax,'Fitted Solution', 'Exact Solution')
end
title(ax,{['z = ',num2str(z_o),', Rel RMS (org.) = ',num2str(error_rel_rms(i)),'%, Rel RMS (mod.) = ',num2str(error_rel2_rms(i)),'%'];...
[' # points with neg analytical conc. = ',num2str(count)]});
xlim(ax,[0 r_max]);
saveCTComparison(results,temp,z_o,t1,SavesFolder,neg_ana_C,error_rel_rms(i),count,error_rel2_rms(i),r_max);
clc;
close all;
clearvars -except j i select_PFitcase new_results_Size p_val sm_val z_loc optimalPower...
choice p_length z_length power M C_v R mu dirext rootdir z_o gs TextAreaText...
SavesFolder resultsOutput results C_f compound s_choice sm_length noise_flag powers optimalPowerForZ....
x_spacing resultPos data SpacingOption Spacing GridFit noise_IA Fitting app RMSresults errorCalc;
end
end
function fun = compute_C(t,C_v,x_o,z_o,R,C_f)
fun = 2.*C_v./pi.*atan(R./(sqrt(0.5.*(x_o.^2+t.^2+z_o.^2-R.^2+ ...
sqrt((x_o.^2+t.^2+z_o.^2-R.^2).^2+4.*z_o.^2.*R.^2)))))-C_f; %t represents y coordinates
if (fun < 0.0)
fun = 0.0*fun;
end
end
|
github
|
nrodrig4/Matlab-Codes-Vapor-Droplet-Evaporation-master
|
normalIA_and_CT.m
|
.m
|
Matlab-Codes-Vapor-Droplet-Evaporation-master/normalIA_and_CT.m
| 6,876 |
utf_8
|
a6784cf14d20c8ab8f728198ebc3c66d
|
function [resultsOutput,new_results_Size] = normalIA_and_CT(app,z_length,z_loc,mu,compound,M,C_v,R,x_spacing,noise_IA,rootdir,SpacingOption,power,Fitting,error_rel_rms,error_rel2_rms,RMSresults)
for i = 1:z_length
r_max = 50;
z_o = z_loc(i);
SavesFolder = [rootdir,'/z_',num2str(z_o)];
mkdir(SavesFolder)
RMSdetails = [SavesFolder,'/RMS_details.txt'];
RMS_mod_details = [SavesFolder,'/RMS_mod_details.txt'];
neg_analytical_C = [SavesFolder,'/Neg_analytical_vals.txt'];
data = IA_minus_Concentration_mod(noise_IA,z_o,mu,M,C_v,R,SavesFolder,x_spacing);
ax = app.UIAxes;
app.UIAxes_2.NextPlot = 'replacechildren';
fig=figure;
title(app.UIAxes, ['IA output: z = ',num2str(z_o)])
xlabel(app.UIAxes, 'X')
ylabel(app.UIAxes, 'IA')
scatter(ax,data(:,1),data(:,2));
saveIAScatterFigure(data,SavesFolder,z_o)
if SpacingOption ~= 'Analytical..'
C_f = 0.0166%2*C_v/pi*atan(R/(sqrt(0.5*(rw^2+z_oo^2-R^2+ ...
%5sqrt((rw^2+z_oo^2-R^2)^2+4*z_oo^2*R^2))))); %analytical C at (rw,z_oo)
r = 50;
x_loc = 0:0.5:50;
for j = 1:length(x_loc)
x_o = x_loc(j);
a = sqrt(r^2-x_o^2);
fun = @(t) compute_C(t,C_v,x_o,z_o,R,C_f);
%disp('int1')
solution = integral(fun,-a,a); %line integral along the y-direction
%disp('int2')
%unit?
if(solution==0)
RampToZeroLocation = x_o;
break;
end
%solution = solution*1000/(1*10^6*M)*mu-(2.0*rand(size(solution))-1*ones(size(solution)))*noise_IA; %unit?
end
data = addRamping(data,RampToZeroLocation);
end
ax = app.UIAxes;
fig=figure;
title(app.UIAxes, ['IA output: z = ',num2str(z_o)])
xlabel(app.UIAxes, 'X')
ylabel(app.UIAxes, 'IA')
scatter(ax,data(:,1),data(:,2));
saveIAScatterFigure(data,SavesFolder,z_o);
% Starting PolyFit and CT
results=Variable_Fitting_CT_NR(app,data,z_o,compound,power,SavesFolder,mu,Fitting);
results_tmp = find(results(:,1)<35 + 1e-5 & results(:,1)>-eps);
new_results_Size = [results_tmp(1) results_tmp(end)]; %still have all the points from CT analysis
resultsOutput(:,i) = results(:,2)/(1/(1*10^3*M));
fresults = [SavesFolder,'/CT_results_z_',num2str(z_o),'.mat'];
save(fresults,'resultsOutput')
t1=results(new_results_Size(1):new_results_Size(2),1);
rw = r_max; %sqrt(50^2 - z_o^2); %%%assume that C(r,50) is also zero (= C(50,z))
z_oo = 0;
C_f = 2*C_v/pi*atan(R/(sqrt(0.5*(rw^2+z_oo^2-R^2+ ...
sqrt((rw^2+z_oo^2-R^2)^2+4*z_oo^2*R^2))))); %analytical C at (rw,z_oo)
temp = zeros(size(t1));
rel_rms = zeros(size(temp));
rel2_rms = [];
count = 0;
neg_ana_C = [];
for j = 1:length(t1)
x_o=t1(j);
temp(j) = (2*C_v./pi*atan(R./(sqrt(0.5*(x_o.^2+z_o.^2-R.^2 + sqrt((x_o.^2+z_o.^2 ...
-R.^2).^2 + 4*z_o.^2*R^2)))))-C_f)*1/(1*10^3*M);%units mole/cm^3
rel_rms(j) = (results(new_results_Size(1)+j-1,2)-temp(j))/temp(j);
if (temp(j) > 0.0) && (x_o < r_max + 1e-5)
rel2_rms = [rel2_rms;rel_rms(j)];
end
end
% results(:,2)
% pause
error_tmp = [t1 results(new_results_Size(1):new_results_Size(2),2) temp rel_rms];
save(RMSdetails,'error_tmp','-ascii')
save(RMS_mod_details,'rel2_rms','-ascii')
if (count>0)
save(neg_analytical_C,'neg_ana_C','-ascii')
end
%%%compute RMS error
error_rel_rms(i) = 100*sqrt(mean(rel_rms.^2));
error_rel2_rms(i) = 100*sqrt(mean(rel2_rms.^2));
error_tmp = [z_o count error_rel_rms(i) error_rel2_rms(i)];
save(RMSresults,'error_tmp','-ascii','-append')
errorCalc(i) = error_rel2_rms(i);
TextAreaText{i} = ['z = ',num2str(z_o),', RMS = ',num2str(error_rel2_rms(i)),'%'];
averageRMS = ['Average RMS = ',num2str(sum(errorCalc)/length(errorCalc)),'%'];
TextAreaText
averageRMS = ['Average RMS = ',num2str(sum(errorCalc)/length(errorCalc))];
app.FittingCTRMSTextArea.Value = [TextAreaText';averageRMS];
ax = app.UIAxes_2;
fig=figure;
scatter(ax,results(:,1),results(:,2),'o');
ax.NextPlot = 'add';
scatter(ax,t1,temp,'x')
if (count>0)
scatter(ax,neg_ana_C(:,1),neg_ana_C(:,2),'+','MarkerEdgeColor',[0 0 0],'LineWidth',1)
end
xlabel(ax,'r axis [mm]');
ylabel(ax,'C(r,z) [mole/cm^3]');
if (count>0)
legend(ax,'Fitted Solution', 'Exact Solution','Org. Neg. Analyt. Sol')
else
legend(ax,'Fitted Solution', 'Exact Solution')
end
title(ax,{['z = ',num2str(z_o),', Rel RMS (org.) = ',num2str(error_rel_rms(i)),'%, Rel RMS (mod.) = ',num2str(error_rel2_rms(i)),'%'];...
[' # points with neg analytical conc. = ',num2str(count)]});
xlim(ax,[0 r_max]);
saveCTComparison(results,temp,z_o,t1,SavesFolder,neg_ana_C,error_rel_rms(i),count,error_rel2_rms(i),r_max);
clc;
close all;
clearvars -except j i select_PFitcase new_results_Size p_val sm_val z_loc...
choice p_length z_length power M C_v R mu dirext rootdir z_o gs TextAreaText...
SavesFolder resultsOutput results C_f compound s_choice sm_length noise_flag...
x_spacing powers resultPos data SpacingOption Spacing GridFit noise_IA Fitting app RMSresults errorCalc;
end
end
function fun = compute_C(t,C_v,x_o,z_o,R,C_f)
fun = 2.*C_v./pi.*atan(R./(sqrt(0.5.*(x_o.^2+t.^2+z_o.^2-R.^2+ ...
sqrt((x_o.^2+t.^2+z_o.^2-R.^2).^2+4.*z_o.^2.*R.^2)))))-C_f; %t represents y coordinates
if (fun < 0.0)
fun = 0.0*fun;
end
end
|
github
|
nrodrig4/Matlab-Codes-Vapor-Droplet-Evaporation-master
|
gridfit.m
|
.m
|
Matlab-Codes-Vapor-Droplet-Evaporation-master/gridfit.m
| 35,038 |
utf_8
|
be54090de8b2dea9c071c9308ca41c67
|
function [zgrid,xgrid,ygrid] = gridfit(x,y,z,xnodes,ynodes,varargin)
% gridfit: estimates a surface on a 2d grid, based on scattered data
% Replicates are allowed. All methods extrapolate to the grid
% boundaries. Gridfit uses a modified ridge estimator to
% generate the surface, where the bias is toward smoothness.
%
% Gridfit is not an interpolant. Its goal is a smooth surface
% that approximates your data, but allows you to control the
% amount of smoothing.
%
% usage #1: zgrid = gridfit(x,y,z,xnodes,ynodes);
% usage #2: [zgrid,xgrid,ygrid] = gridfit(x,y,z,xnodes,ynodes);
% usage #3: zgrid = gridfit(x,y,z,xnodes,ynodes,prop,val,prop,val,...);
%
% Arguments: (input)
% x,y,z - vectors of equal lengths, containing arbitrary scattered data
% The only constraint on x and y is they cannot ALL fall on a
% single line in the x-y plane. Replicate points will be treated
% in a least squares sense.
%
% ANY points containing a NaN are ignored in the estimation
%
% xnodes - vector defining the nodes in the grid in the independent
% variable (x). xnodes need not be equally spaced. xnodes
% must completely span the data. If they do not, then the
% 'extend' property is applied, adjusting the first and last
% nodes to be extended as necessary. See below for a complete
% description of the 'extend' property.
%
% If xnodes is a scalar integer, then it specifies the number
% of equally spaced nodes between the min and max of the data.
%
% ynodes - vector defining the nodes in the grid in the independent
% variable (y). ynodes need not be equally spaced.
%
% If ynodes is a scalar integer, then it specifies the number
% of equally spaced nodes between the min and max of the data.
%
% Also see the extend property.
%
% Additional arguments follow in the form of property/value pairs.
% Valid properties are:
% 'smoothness', 'interp', 'regularizer', 'solver', 'maxiter'
% 'extend', 'tilesize', 'overlap'
%
% Any UNAMBIGUOUS shortening (even down to a single letter) is
% valid for property names. All properties have default values,
% chosen (I hope) to give a reasonable result out of the box.
%
% 'smoothness' - scalar or vector of length 2 - determines the
% eventual smoothness of the estimated surface. A larger
% value here means the surface will be smoother. Smoothness
% must be a non-negative real number.
%
% If this parameter is a vector of length 2, then it defines
% the relative smoothing to be associated with the x and y
% variables. This allows the user to apply a different amount
% of smoothing in the x dimension compared to the y dimension.
%
% Note: the problem is normalized in advance so that a
% smoothness of 1 MAY generate reasonable results. If you
% find the result is too smooth, then use a smaller value
% for this parameter. Likewise, bumpy surfaces suggest use
% of a larger value. (Sometimes, use of an iterative solver
% with too small a limit on the maximum number of iterations
% will result in non-convergence.)
%
% DEFAULT: 1
%
%
% 'interp' - character, denotes the interpolation scheme used
% to interpolate the data.
%
% DEFAULT: 'triangle'
%
% 'bilinear' - use bilinear interpolation within the grid
% (also known as tensor product linear interpolation)
%
% 'triangle' - split each cell in the grid into a triangle,
% then linear interpolation inside each triangle
%
% 'nearest' - nearest neighbor interpolation. This will
% rarely be a good choice, but I included it
% as an option for completeness.
%
%
% 'regularizer' - character flag, denotes the regularization
% paradignm to be used. There are currently three options.
%
% DEFAULT: 'gradient'
%
% 'diffusion' or 'laplacian' - uses a finite difference
% approximation to the Laplacian operator (i.e, del^2).
%
% We can think of the surface as a plate, wherein the
% bending rigidity of the plate is specified by the user
% as a number relative to the importance of fidelity to
% the data. A stiffer plate will result in a smoother
% surface overall, but fit the data less well. I've
% modeled a simple plate using the Laplacian, del^2. (A
% projected enhancement is to do a better job with the
% plate equations.)
%
% We can also view the regularizer as a diffusion problem,
% where the relative thermal conductivity is supplied.
% Here interpolation is seen as a problem of finding the
% steady temperature profile in an object, given a set of
% points held at a fixed temperature. Extrapolation will
% be linear. Both paradigms are appropriate for a Laplacian
% regularizer.
%
% 'gradient' - attempts to ensure the gradient is as smooth
% as possible everywhere. Its subtly different from the
% 'diffusion' option, in that here the directional
% derivatives are biased to be smooth across cell
% boundaries in the grid.
%
% The gradient option uncouples the terms in the Laplacian.
% Think of it as two coupled PDEs instead of one PDE. Why
% are they different at all? The terms in the Laplacian
% can balance each other.
%
% 'springs' - uses a spring model connecting nodes to each
% other, as well as connecting data points to the nodes
% in the grid. This choice will cause any extrapolation
% to be as constant as possible.
%
% Here the smoothing parameter is the relative stiffness
% of the springs connecting the nodes to each other compared
% to the stiffness of a spting connecting the lattice to
% each data point. Since all springs have a rest length
% (length at which the spring has zero potential energy)
% of zero, any extrapolation will be minimized.
%
% Note: The 'springs' regularizer tends to drag the surface
% towards the mean of all the data, so too large a smoothing
% parameter may be a problem.
%
%
% 'solver' - character flag - denotes the solver used for the
% resulting linear system. Different solvers will have
% different solution times depending upon the specific
% problem to be solved. Up to a certain size grid, the
% direct \ solver will often be speedy, until memory
% swaps causes problems.
%
% What solver should you use? Problems with a significant
% amount of extrapolation should avoid lsqr. \ may be
% best numerically for small smoothnesss parameters and
% high extents of extrapolation.
%
% Large numbers of points will slow down the direct
% \, but when applied to the normal equations, \ can be
% quite fast. Since the equations generated by these
% methods will tend to be well conditioned, the normal
% equations are not a bad choice of method to use. Beware
% when a small smoothing parameter is used, since this will
% make the equations less well conditioned.
%
% DEFAULT: 'normal'
%
% '\' - uses matlab's backslash operator to solve the sparse
% system. 'backslash' is an alternate name.
%
% 'symmlq' - uses matlab's iterative symmlq solver
%
% 'lsqr' - uses matlab's iterative lsqr solver
%
% 'normal' - uses \ to solve the normal equations.
%
%
% 'maxiter' - only applies to iterative solvers - defines the
% maximum number of iterations for an iterative solver
%
% DEFAULT: min(10000,length(xnodes)*length(ynodes))
%
%
% 'extend' - character flag - controls whether the first and last
% nodes in each dimension are allowed to be adjusted to
% bound the data, and whether the user will be warned if
% this was deemed necessary to happen.
%
% DEFAULT: 'warning'
%
% 'warning' - Adjust the first and/or last node in
% x or y if the nodes do not FULLY contain
% the data. Issue a warning message to this
% effect, telling the amount of adjustment
% applied.
%
% 'never' - Issue an error message when the nodes do
% not absolutely contain the data.
%
% 'always' - automatically adjust the first and last
% nodes in each dimension if necessary.
% No warning is given when this option is set.
%
%
% 'tilesize' - grids which are simply too large to solve for
% in one single estimation step can be built as a set
% of tiles. For example, a 1000x1000 grid will require
% the estimation of 1e6 unknowns. This is likely to
% require more memory (and time) than you have available.
% But if your data is dense enough, then you can model
% it locally using smaller tiles of the grid.
%
% My recommendation for a reasonable tilesize is
% roughly 100 to 200. Tiles of this size take only
% a few seconds to solve normally, so the entire grid
% can be modeled in a finite amount of time. The minimum
% tilesize can never be less than 3, although even this
% size tile is so small as to be ridiculous.
%
% If your data is so sparse than some tiles contain
% insufficient data to model, then those tiles will
% be left as NaNs.
%
% DEFAULT: inf
%
%
% 'overlap' - Tiles in a grid have some overlap, so they
% can minimize any problems along the edge of a tile.
% In this overlapped region, the grid is built using a
% bi-linear combination of the overlapping tiles.
%
% The overlap is specified as a fraction of the tile
% size, so an overlap of 0.20 means there will be a 20%
% overlap of successive tiles. I do allow a zero overlap,
% but it must be no more than 1/2.
%
% 0 <= overlap <= 0.5
%
% Overlap is ignored if the tilesize is greater than the
% number of nodes in both directions.
%
% DEFAULT: 0.20
%
%
% 'autoscale' - Some data may have widely different scales on
% the respective x and y axes. If this happens, then
% the regularization may experience difficulties.
%
% autoscale = 'on' will cause gridfit to scale the x
% and y node intervals to a unit length. This should
% improve the regularization procedure. The scaling is
% purely internal.
%
% autoscale = 'off' will disable automatic scaling
%
% DEFAULT: 'on'
%
%
% Arguments: (output)
% zgrid - (nx,ny) array containing the fitted surface
%
% xgrid, ygrid - as returned by meshgrid(xnodes,ynodes)
%
%
% Speed considerations:
% Remember that gridfit must solve a LARGE system of linear
% equations. There will be as many unknowns as the total
% number of nodes in the final lattice. While these equations
% may be sparse, solving a system of 10000 equations may take
% a second or so. Very large problems may benefit from the
% iterative solvers or from tiling.
%
%
% Example usage:
%
% x = rand(100,1);
% y = rand(100,1);
% z = exp(x+2*y);
% xnodes = 0:.1:1;
% ynodes = 0:.1:1;
%
% g = gridfit(x,y,z,xnodes,ynodes);
%
% Note: this is equivalent to the following call:
%
% g = gridfit(x,y,z,xnodes,ynodes, ...
% 'smooth',1, ...
% 'interp','triangle', ...
% 'solver','normal', ...
% 'regularizer','gradient', ...
% 'extend','warning', ...
% 'tilesize',inf);
%
%
% Author: John D'Errico
% e-mail address: [email protected]
% Release: 2.0
% Release date: 5/23/06
% set defaults
params.smoothness = 1;
params.interp = 'triangle';
params.regularizer = 'gradient';
params.solver = 'backslash';
params.maxiter = [];
params.extend = 'warning';
params.tilesize = inf;
params.overlap = 0.20;
params.mask = [];
params.autoscale = 'on';
params.xscale = 1;
params.yscale = 1;
% was the params struct supplied?
if ~isempty(varargin)
if isstruct(varargin{1})
% params is only supplied if its a call from tiled_gridfit
params = varargin{1};
if length(varargin)>1
% check for any overrides
params = parse_pv_pairs(params,varargin{2:end});
end
else
% check for any overrides of the defaults
params = parse_pv_pairs(params,varargin);
end
end
% check the parameters for acceptability
params = check_params(params);
% ensure all of x,y,z,xnodes,ynodes are column vectors,
% also drop any NaN data
x=x(:);
y=y(:);
z=z(:);
k = isnan(x) | isnan(y) | isnan(z);
if any(k)
x(k)=[];
y(k)=[];
z(k)=[];
end
xmin = min(x);
xmax = max(x);
ymin = min(y);
ymax = max(y);
% did they supply a scalar for the nodes?
if length(xnodes)==1
xnodes = linspace(xmin,xmax,xnodes)';
xnodes(end) = xmax; % make sure it hits the max
end
if length(ynodes)==1
ynodes = linspace(ymin,ymax,ynodes)';
ynodes(end) = ymax; % make sure it hits the max
end
xnodes=xnodes(:);
ynodes=ynodes(:);
dx = diff(xnodes);
dy = diff(ynodes);
nx = length(xnodes);
ny = length(ynodes);
ngrid = nx*ny;
% set the scaling if autoscale was on
if strcmpi(params.autoscale,'on')
params.xscale = mean(dx);
params.yscale = mean(dy);
params.autoscale = 'off';
end
% check to see if any tiling is necessary
if (params.tilesize < max(nx,ny))
% split it into smaller tiles. compute zgrid and ygrid
% at the very end if requested
zgrid = tiled_gridfit(x,y,z,xnodes,ynodes,params);
else
% its a single tile.
% mask must be either an empty array, or a boolean
% aray of the same size as the final grid.
nmask = size(params.mask);
if ~isempty(params.mask) && ((nmask(2)~=nx) || (nmask(1)~=ny))
if ((nmask(2)==ny) || (nmask(1)==nx))
error 'Mask array is probably transposed from proper orientation.'
else
error 'Mask array must be the same size as the final grid.'
end
end
if ~isempty(params.mask)
params.maskflag = 1;
else
params.maskflag = 0;
end
% default for maxiter?
if isempty(params.maxiter)
params.maxiter = min(10000,nx*ny);
end
% check lengths of the data
n = length(x);
if (length(y)~=n) || (length(z)~=n)
error 'Data vectors are incompatible in size.'
end
if n<3
error 'Insufficient data for surface estimation.'
end
% verify the nodes are distinct
if any(diff(xnodes)<=0) || any(diff(ynodes)<=0)
error 'xnodes and ynodes must be monotone increasing'
end
% do we need to tweak the first or last node in x or y?
if xmin<xnodes(1)
switch params.extend
case 'always'
xnodes(1) = xmin;
case 'warning'
warning('GRIDFIT:extend',['xnodes(1) was decreased by: ',num2str(xnodes(1)-xmin),', new node = ',num2str(xmin)])
xnodes(1) = xmin;
case 'never'
error(['Some x (',num2str(xmin),') falls below xnodes(1) by: ',num2str(xnodes(1)-xmin)])
end
end
if xmax>xnodes(end)
switch params.extend
case 'always'
xnodes(end) = xmax;
case 'warning'
warning('GRIDFIT:extend',['xnodes(end) was increased by: ',num2str(xmax-xnodes(end)),', new node = ',num2str(xmax)])
xnodes(end) = xmax;
case 'never'
error(['Some x (',num2str(xmax),') falls above xnodes(end) by: ',num2str(xmax-xnodes(end))])
end
end
if ymin<ynodes(1)
switch params.extend
case 'always'
ynodes(1) = ymin;
case 'warning'
warning('GRIDFIT:extend',['ynodes(1) was decreased by: ',num2str(ynodes(1)-ymin),', new node = ',num2str(ymin)])
ynodes(1) = ymin;
case 'never'
error(['Some y (',num2str(ymin),') falls below ynodes(1) by: ',num2str(ynodes(1)-ymin)])
end
end
if ymax>ynodes(end)
switch params.extend
case 'always'
ynodes(end) = ymax;
case 'warning'
y
ymax
ynodes
warning('GRIDFIT:extend',['ynodes(end) was increased by: ',num2str(ymax-ynodes(end)),', new node = ',num2str(ymax)])
ynodes(end) = ymax;
case 'never'
error(['Some y (',num2str(ymax),') falls above ynodes(end) by: ',num2str(ymax-ynodes(end))])
end
end
% determine which cell in the array each point lies in
[junk,indx] = histc(x,xnodes); %#ok
[junk,indy] = histc(y,ynodes); %#ok
% any point falling at the last node is taken to be
% inside the last cell in x or y.
k=(indx==nx);
indx(k)=indx(k)-1;
k=(indy==ny);
indy(k)=indy(k)-1;
ind = indy + ny*(indx-1);
% Do we have a mask to apply?
if params.maskflag
% if we do, then we need to ensure that every
% cell with at least one data point also has at
% least all of its corners unmasked.
params.mask(ind) = 1;
params.mask(ind+1) = 1;
params.mask(ind+ny) = 1;
params.mask(ind+ny+1) = 1;
end
% interpolation equations for each point
tx = min(1,max(0,(x - xnodes(indx))./dx(indx)));
ty = min(1,max(0,(y - ynodes(indy))./dy(indy)));
% Future enhancement: add cubic interpolant
switch params.interp
case 'triangle'
% linear interpolation inside each triangle
k = (tx > ty);
L = ones(n,1);
L(k) = ny;
t1 = min(tx,ty);
t2 = max(tx,ty);
A = sparse(repmat((1:n)',1,3),[ind,ind+ny+1,ind+L], ...
[1-t2,t1,t2-t1],n,ngrid);
case 'nearest'
% nearest neighbor interpolation in a cell
k = round(1-ty) + round(1-tx)*ny;
A = sparse((1:n)',ind+k,ones(n,1),n,ngrid);
case 'bilinear'
% bilinear interpolation in a cell
A = sparse(repmat((1:n)',1,4),[ind,ind+1,ind+ny,ind+ny+1], ...
[(1-tx).*(1-ty), (1-tx).*ty, tx.*(1-ty), tx.*ty], ...
n,ngrid);
end
rhs = z;
% do we have relative smoothing parameters?
if numel(params.smoothness) == 1
% it was scalar, so treat both dimensions equally
smoothparam = params.smoothness;
xyRelativeStiffness = [1;1];
else
% It was a vector, so anisotropy reigns.
% I've already checked that the vector was of length 2
smoothparam = sqrt(prod(params.smoothness));
xyRelativeStiffness = params.smoothness(:)./smoothparam;
end
% Build regularizer. Add del^4 regularizer one day.
switch params.regularizer
case 'springs'
% zero "rest length" springs
[i,j] = meshgrid(1:nx,1:(ny-1));
ind = j(:) + ny*(i(:)-1);
m = nx*(ny-1);
stiffness = 1./(dy/params.yscale);
Areg = sparse(repmat((1:m)',1,2),[ind,ind+1], ...
xyRelativeStiffness(2)*stiffness(j(:))*[-1 1], ...
m,ngrid);
[i,j] = meshgrid(1:(nx-1),1:ny);
ind = j(:) + ny*(i(:)-1);
m = (nx-1)*ny;
stiffness = 1./(dx/params.xscale);
Areg = [Areg;sparse(repmat((1:m)',1,2),[ind,ind+ny], ...
xyRelativeStiffness(1)*stiffness(i(:))*[-1 1],m,ngrid)];
[i,j] = meshgrid(1:(nx-1),1:(ny-1));
ind = j(:) + ny*(i(:)-1);
m = (nx-1)*(ny-1);
stiffness = 1./sqrt((dx(i(:))/params.xscale/xyRelativeStiffness(1)).^2 + ...
(dy(j(:))/params.yscale/xyRelativeStiffness(2)).^2);
Areg = [Areg;sparse(repmat((1:m)',1,2),[ind,ind+ny+1], ...
stiffness*[-1 1],m,ngrid)];
Areg = [Areg;sparse(repmat((1:m)',1,2),[ind+1,ind+ny], ...
stiffness*[-1 1],m,ngrid)];
case {'diffusion' 'laplacian'}
% thermal diffusion using Laplacian (del^2)
[i,j] = meshgrid(1:nx,2:(ny-1));
ind = j(:) + ny*(i(:)-1);
dy1 = dy(j(:)-1)/params.yscale;
dy2 = dy(j(:))/params.yscale;
Areg = sparse(repmat(ind,1,3),[ind-1,ind,ind+1], ...
xyRelativeStiffness(2)*[-2./(dy1.*(dy1+dy2)), ...
2./(dy1.*dy2), -2./(dy2.*(dy1+dy2))],ngrid,ngrid);
[i,j] = meshgrid(2:(nx-1),1:ny);
ind = j(:) + ny*(i(:)-1);
dx1 = dx(i(:)-1)/params.xscale;
dx2 = dx(i(:))/params.xscale;
Areg = Areg + sparse(repmat(ind,1,3),[ind-ny,ind,ind+ny], ...
xyRelativeStiffness(1)*[-2./(dx1.*(dx1+dx2)), ...
2./(dx1.*dx2), -2./(dx2.*(dx1+dx2))],ngrid,ngrid);
case 'gradient'
% Subtly different from the Laplacian. A point for future
% enhancement is to do it better for the triangle interpolation
% case.
[i,j] = meshgrid(1:nx,2:(ny-1));
ind = j(:) + ny*(i(:)-1);
dy1 = dy(j(:)-1)/params.yscale;
dy2 = dy(j(:))/params.yscale;
Areg = sparse(repmat(ind,1,3),[ind-1,ind,ind+1], ...
xyRelativeStiffness(2)*[-2./(dy1.*(dy1+dy2)), ...
2./(dy1.*dy2), -2./(dy2.*(dy1+dy2))],ngrid,ngrid);
[i,j] = meshgrid(2:(nx-1),1:ny);
ind = j(:) + ny*(i(:)-1);
dx1 = dx(i(:)-1)/params.xscale;
dx2 = dx(i(:))/params.xscale;
Areg = [Areg;sparse(repmat(ind,1,3),[ind-ny,ind,ind+ny], ...
xyRelativeStiffness(1)*[-2./(dx1.*(dx1+dx2)), ...
2./(dx1.*dx2), -2./(dx2.*(dx1+dx2))],ngrid,ngrid)];
end
nreg = size(Areg,1);
% Append the regularizer to the interpolation equations,
% scaling the problem first. Use the 1-norm for speed.
NA = norm(A,1);
NR = norm(Areg,1);
A = [A;Areg*(smoothparam*NA/NR)];
rhs = [rhs;zeros(nreg,1)];
% do we have a mask to apply?
if params.maskflag
unmasked = find(params.mask);
end
% solve the full system, with regularizer attached
switch params.solver
case {'\' 'backslash'}
if params.maskflag
% there is a mask to use
zgrid=nan(ny,nx);
zgrid(unmasked) = A(:,unmasked)\rhs;
else
% no mask
zgrid = reshape(A\rhs,ny,nx);
end
case 'normal'
% The normal equations, solved with \. Can be faster
% for huge numbers of data points, but reasonably
% sized grids. The regularizer makes A well conditioned
% so the normal equations are not a terribly bad thing
% here.
if params.maskflag
% there is a mask to use
Aunmasked = A(:,unmasked);
zgrid=nan(ny,nx);
zgrid(unmasked) = (Aunmasked'*Aunmasked)\(Aunmasked'*rhs);
else
zgrid = reshape((A'*A)\(A'*rhs),ny,nx);
end
case 'symmlq'
% iterative solver - symmlq - requires a symmetric matrix,
% so use it to solve the normal equations. No preconditioner.
tol = abs(max(z)-min(z))*1.e-13;
if params.maskflag
% there is a mask to use
zgrid=nan(ny,nx);
[zgrid(unmasked),flag] = symmlq(A(:,unmasked)'*A(:,unmasked), ...
A(:,unmasked)'*rhs,tol,params.maxiter);
else
[zgrid,flag] = symmlq(A'*A,A'*rhs,tol,params.maxiter);
zgrid = reshape(zgrid,ny,nx);
end
% display a warning if convergence problems
switch flag
case 0
% no problems with convergence
case 1
% SYMMLQ iterated MAXIT times but did not converge.
warning('GRIDFIT:solver',['Symmlq performed ',num2str(params.maxiter), ...
' iterations but did not converge.'])
case 3
% SYMMLQ stagnated, successive iterates were the same
warning('GRIDFIT:solver','Symmlq stagnated without apparent convergence.')
otherwise
warning('GRIDFIT:solver',['One of the scalar quantities calculated in',...
' symmlq was too small or too large to continue computing.'])
end
case 'lsqr'
% iterative solver - lsqr. No preconditioner here.
tol = abs(max(z)-min(z))*1.e-13;
if params.maskflag
% there is a mask to use
zgrid=nan(ny,nx);
[zgrid(unmasked),flag] = lsqr(A(:,unmasked),rhs,tol,params.maxiter);
else
[zgrid,flag] = lsqr(A,rhs,tol,params.maxiter);
zgrid = reshape(zgrid,ny,nx);
end
% display a warning if convergence problems
switch flag
case 0
% no problems with convergence
case 1
% lsqr iterated MAXIT times but did not converge.
warning('GRIDFIT:solver',['Lsqr performed ', ...
num2str(params.maxiter),' iterations but did not converge.'])
case 3
% lsqr stagnated, successive iterates were the same
warning('GRIDFIT:solver','Lsqr stagnated without apparent convergence.')
case 4
warning('GRIDFIT:solver',['One of the scalar quantities calculated in',...
' LSQR was too small or too large to continue computing.'])
end
end % switch params.solver
end % if params.tilesize...
% only generate xgrid and ygrid if requested.
if nargout>1
[xgrid,ygrid]=meshgrid(xnodes,ynodes);
end
% ============================================
% End of main function - gridfit
% ============================================
% ============================================
% subfunction - parse_pv_pairs
% ============================================
function params=parse_pv_pairs(params,pv_pairs)
% parse_pv_pairs: parses sets of property value pairs, allows defaults
% usage: params=parse_pv_pairs(default_params,pv_pairs)
%
% arguments: (input)
% default_params - structure, with one field for every potential
% property/value pair. Each field will contain the default
% value for that property. If no default is supplied for a
% given property, then that field must be empty.
%
% pv_array - cell array of property/value pairs.
% Case is ignored when comparing properties to the list
% of field names. Also, any unambiguous shortening of a
% field/property name is allowed.
%
% arguments: (output)
% params - parameter struct that reflects any updated property/value
% pairs in the pv_array.
%
% Example usage:
% First, set default values for the parameters. Assume we
% have four parameters that we wish to use optionally in
% the function examplefun.
%
% - 'viscosity', which will have a default value of 1
% - 'volume', which will default to 1
% - 'pie' - which will have default value 3.141592653589793
% - 'description' - a text field, left empty by default
%
% The first argument to examplefun is one which will always be
% supplied.
%
% function examplefun(dummyarg1,varargin)
% params.Viscosity = 1;
% params.Volume = 1;
% params.Pie = 3.141592653589793
%
% params.Description = '';
% params=parse_pv_pairs(params,varargin);
% params
%
% Use examplefun, overriding the defaults for 'pie', 'viscosity'
% and 'description'. The 'volume' parameter is left at its default.
%
% examplefun(rand(10),'vis',10,'pie',3,'Description','Hello world')
%
% params =
% Viscosity: 10
% Volume: 1
% Pie: 3
% Description: 'Hello world'
%
% Note that capitalization was ignored, and the property 'viscosity'
% was truncated as supplied. Also note that the order the pairs were
% supplied was arbitrary.
npv = length(pv_pairs);
n = npv/2;
if n~=floor(n)
error 'Property/value pairs must come in PAIRS.'
end
if n<=0
% just return the defaults
return
end
if ~isstruct(params)
error 'No structure for defaults was supplied'
end
% there was at least one pv pair. process any supplied
propnames = fieldnames(params);
lpropnames = lower(propnames);
for i=1:n
p_i = lower(pv_pairs{2*i-1});
v_i = pv_pairs{2*i};
ind = strmatch(p_i,lpropnames,'exact');
if isempty(ind)
ind = find(strncmp(p_i,lpropnames,length(p_i)));
if isempty(ind)
error(['No matching property found for: ',pv_pairs{2*i-1}])
elseif length(ind)>1
error(['Ambiguous property name: ',pv_pairs{2*i-1}])
end
end
p_i = propnames{ind};
% override the corresponding default in params
params = setfield(params,p_i,v_i); %#ok
end
% ============================================
% subfunction - check_params
% ============================================
function params = check_params(params)
% check the parameters for acceptability
% smoothness == 1 by default
if isempty(params.smoothness)
params.smoothness = 1;
else
if (numel(params.smoothness)>2) || any(params.smoothness<=0)
error 'Smoothness must be scalar (or length 2 vector), real, finite, and positive.'
end
end
% regularizer - must be one of 4 options - the second and
% third are actually synonyms.
valid = {'springs', 'diffusion', 'laplacian', 'gradient'};
if isempty(params.regularizer)
params.regularizer = 'diffusion';
end
ind = find(strncmpi(params.regularizer,valid,length(params.regularizer)));
if (length(ind)==1)
params.regularizer = valid{ind};
else
error(['Invalid regularization method: ',params.regularizer])
end
% interp must be one of:
% 'bilinear', 'nearest', or 'triangle'
% but accept any shortening thereof.
valid = {'bilinear', 'nearest', 'triangle'};
if isempty(params.interp)
params.interp = 'triangle';
end
ind = find(strncmpi(params.interp,valid,length(params.interp)));
if (length(ind)==1)
params.interp = valid{ind};
else
error(['Invalid interpolation method: ',params.interp])
end
% solver must be one of:
% 'backslash', '\', 'symmlq', 'lsqr', or 'normal'
% but accept any shortening thereof.
valid = {'backslash', '\', 'symmlq', 'lsqr', 'normal'};
if isempty(params.solver)
params.solver = '\';
end
ind = find(strncmpi(params.solver,valid,length(params.solver)));
if (length(ind)==1)
params.solver = valid{ind};
else
error(['Invalid solver option: ',params.solver])
end
% extend must be one of:
% 'never', 'warning', 'always'
% but accept any shortening thereof.
valid = {'never', 'warning', 'always'};
if isempty(params.extend)
params.extend = 'warning';
end
ind = find(strncmpi(params.extend,valid,length(params.extend)));
if (length(ind)==1)
params.extend = valid{ind};
else
error(['Invalid extend option: ',params.extend])
end
% tilesize == inf by default
if isempty(params.tilesize)
params.tilesize = inf;
elseif (length(params.tilesize)>1) || (params.tilesize<3)
error 'Tilesize must be scalar and > 0.'
end
% overlap == 0.20 by default
if isempty(params.overlap)
params.overlap = 0.20;
elseif (length(params.overlap)>1) || (params.overlap<0) || (params.overlap>0.5)
error 'Overlap must be scalar and 0 < overlap < 1.'
end
% ============================================
% subfunction - tiled_gridfit
% ============================================
function zgrid=tiled_gridfit(x,y,z,xnodes,ynodes,params)
% tiled_gridfit: a tiled version of gridfit, continuous across tile boundaries
% usage: [zgrid,xgrid,ygrid]=tiled_gridfit(x,y,z,xnodes,ynodes,params)
%
% Tiled_gridfit is used when the total grid is far too large
% to model using a single call to gridfit. While gridfit may take
% only a second or so to build a 100x100 grid, a 2000x2000 grid
% will probably not run at all due to memory problems.
%
% Tiles in the grid with insufficient data (<4 points) will be
% filled with NaNs. Avoid use of too small tiles, especially
% if your data has holes in it that may encompass an entire tile.
%
% A mask may also be applied, in which case tiled_gridfit will
% subdivide the mask into tiles. Note that any boolean mask
% provided is assumed to be the size of the complete grid.
%
% Tiled_gridfit may not be fast on huge grids, but it should run
% as long as you use a reasonable tilesize. 8-)
% Note that we have already verified all parameters in check_params
% Matrix elements in a square tile
tilesize = params.tilesize;
% Size of overlap in terms of matrix elements. Overlaps
% of purely zero cause problems, so force at least two
% elements to overlap.
overlap = max(2,floor(tilesize*params.overlap));
% reset the tilesize for each particular tile to be inf, so
% we will never see a recursive call to tiled_gridfit
Tparams = params;
Tparams.tilesize = inf;
nx = length(xnodes);
ny = length(ynodes);
zgrid = zeros(ny,nx);
% linear ramp for the bilinear interpolation
rampfun = inline('(t-t(1))/(t(end)-t(1))','t');
% loop over each tile in the grid
h = waitbar(0,'Relax and have a cup of JAVA. Its my treat.');
warncount = 0;
xtind = 1:min(nx,tilesize);
while ~isempty(xtind) && (xtind(1)<=nx)
xinterp = ones(1,length(xtind));
if (xtind(1) ~= 1)
xinterp(1:overlap) = rampfun(xnodes(xtind(1:overlap)));
end
if (xtind(end) ~= nx)
xinterp((end-overlap+1):end) = 1-rampfun(xnodes(xtind((end-overlap+1):end)));
end
ytind = 1:min(ny,tilesize);
while ~isempty(ytind) && (ytind(1)<=ny)
% update the waitbar
waitbar((xtind(end)-tilesize)/nx + tilesize*ytind(end)/ny/nx)
yinterp = ones(length(ytind),1);
if (ytind(1) ~= 1)
yinterp(1:overlap) = rampfun(ynodes(ytind(1:overlap)));
end
if (ytind(end) ~= ny)
yinterp((end-overlap+1):end) = 1-rampfun(ynodes(ytind((end-overlap+1):end)));
end
% was a mask supplied?
if ~isempty(params.mask)
submask = params.mask(ytind,xtind);
Tparams.mask = submask;
end
% extract data that lies in this grid tile
k = (x>=xnodes(xtind(1))) & (x<=xnodes(xtind(end))) & ...
(y>=ynodes(ytind(1))) & (y<=ynodes(ytind(end)));
k = find(k);
if length(k)<4
if warncount == 0
warning('GRIDFIT:tiling','A tile was too underpopulated to model. Filled with NaNs.')
end
warncount = warncount + 1;
% fill this part of the grid with NaNs
zgrid(ytind,xtind) = NaN;
else
% build this tile
zgtile = gridfit(x(k),y(k),z(k),xnodes(xtind),ynodes(ytind),Tparams);
% bilinear interpolation (using an outer product)
interp_coef = yinterp*xinterp;
% accumulate the tile into the complete grid
zgrid(ytind,xtind) = zgrid(ytind,xtind) + zgtile.*interp_coef;
end
% step to the next tile in y
if ytind(end)<ny
ytind = ytind + tilesize - overlap;
% are we within overlap elements of the edge of the grid?
if (ytind(end)+max(3,overlap))>=ny
% extend this tile to the edge
ytind = ytind(1):ny;
end
else
ytind = ny+1;
end
end % while loop over y
% step to the next tile in x
if xtind(end)<nx
xtind = xtind + tilesize - overlap;
% are we within overlap elements of the edge of the grid?
if (xtind(end)+max(3,overlap))>=nx
% extend this tile to the edge
xtind = xtind(1):nx;
end
else
xtind = nx+1;
end
end % while loop over x
% close down the waitbar
close(h)
if warncount>0
warning('GRIDFIT:tiling',[num2str(warncount),' tiles were underpopulated & filled with NaNs'])
end
|
github
|
nrodrig4/Matlab-Codes-Vapor-Droplet-Evaporation-master
|
IA_minus_Concentration_mod.m
|
.m
|
Matlab-Codes-Vapor-Droplet-Evaporation-master/IA_minus_Concentration_mod.m
| 1,673 |
utf_8
|
34c06378b7fcb0eb5f68893321662da7
|
%IA function
function mat = Integrated_Absorbance_minus_Concentration_mod(noise_IA,z_o,mu,M,C_v,R,SavesFolder,x_spacing)
%Setting up General Parameters and pre-allocating memory for speed
r = 50;
x_loc = x_spacing';
mat = zeros(length(x_loc),2);
%creating file name for Integrated Absorbance Data
filename = strcat(SavesFolder,'/IA_',num2str(z_o),'.txt');
rw = 50;
z_oo = 0;
%Weber's Disc Analytical Solution
C_f = 2*C_v/pi*atan(R/(sqrt(0.5*(rw^2+z_oo^2-R^2+ ...
sqrt((rw^2+z_oo^2-R^2)^2+4*z_oo^2*R^2))))) %analytical C at (rw,z_oo)
%calculating Integrated Absorbance (minus Weber's disc at C(50,0)
for i = 1:length(x_loc)
x_o = x_loc(i);
a = sqrt(r^2-x_o^2);
fun = @(t) compute_C(t,C_v,x_o,z_o,R,C_f);
%disp('int1')
solution = integral(fun,-a,a); %line integral along the y-direction
%disp('int2')
solution = solution*1000/(1*10^6*M)*mu-(2.0*rand(size(solution))-1*ones(size(solution)))*noise_IA; %unit?
mat(i,1) = x_o;
mat(i,2) = solution;
end
dlmwrite(filename,mat,'delimiter','\t','precision',10)
end
function fun = compute_C(t,C_v,x_o,z_o,R,C_f)
fun = 2.*C_v./pi.*atan(R./(sqrt(0.5.*(x_o.^2+t.^2+z_o.^2-R.^2+ ...
sqrt((x_o.^2+t.^2+z_o.^2-R.^2).^2+4.*z_o.^2.*R.^2)))))-C_f; %t represents y coordinates
if (fun < 0.0)
fun = 0.0*fun;
end
end
|
github
|
carsonburr/code_world_godot_ext-master
|
echo_diagnostic.m
|
.m
|
code_world_godot_ext-master/thirdparty/speex/echo_diagnostic.m
| 2,076 |
utf_8
|
8d5e7563976fbd9bd2eda26711f7d8dc
|
% Attempts to diagnose AEC problems from recorded samples
%
% out = echo_diagnostic(rec_file, play_file, out_file, tail_length)
%
% Computes the full matrix inversion to cancel echo from the
% recording 'rec_file' using the far end signal 'play_file' using
% a filter length of 'tail_length'. The output is saved to 'out_file'.
function out = echo_diagnostic(rec_file, play_file, out_file, tail_length)
F=fopen(rec_file,'rb');
rec=fread(F,Inf,'short');
fclose (F);
F=fopen(play_file,'rb');
play=fread(F,Inf,'short');
fclose (F);
rec = [rec; zeros(1024,1)];
play = [play; zeros(1024,1)];
N = length(rec);
corr = real(ifft(fft(rec).*conj(fft(play))));
acorr = real(ifft(fft(play).*conj(fft(play))));
[a,b] = max(corr);
if b > N/2
b = b-N;
end
printf ("Far end to near end delay is %d samples\n", b);
if (b > .3*tail_length)
printf ('This is too much delay, try delaying the far-end signal a bit\n');
else if (b < 0)
printf ('You have a negative delay, the echo canceller has no chance to cancel anything!\n');
else
printf ('Delay looks OK.\n');
end
end
end
N2 = round(N/2);
corr1 = real(ifft(fft(rec(1:N2)).*conj(fft(play(1:N2)))));
corr2 = real(ifft(fft(rec(N2+1:end)).*conj(fft(play(N2+1:end)))));
[a,b1] = max(corr1);
if b1 > N2/2
b1 = b1-N2;
end
[a,b2] = max(corr2);
if b2 > N2/2
b2 = b2-N2;
end
drift = (b1-b2)/N2;
printf ('Drift estimate is %f%% (%d samples)\n', 100*drift, b1-b2);
if abs(b1-b2) < 10
printf ('A drift of a few (+-10) samples is normal.\n');
else
if abs(b1-b2) < 30
printf ('There may be (not sure) excessive clock drift. Is the capture and playback done on the same soundcard?\n');
else
printf ('Your clock is drifting! No way the AEC will be able to do anything with that. Most likely, you''re doing capture and playback from two different cards.\n');
end
end
end
acorr(1) = .001+1.00001*acorr(1);
AtA = toeplitz(acorr(1:tail_length));
bb = corr(1:tail_length);
h = AtA\bb;
out = (rec - filter(h, 1, play));
F=fopen(out_file,'w');
fwrite(F,out,'short');
fclose (F);
|
github
|
uygarsumbul/spines-master
|
readDataset_spines_mod_shuffleNodesWithinBranchTypes.m
|
.m
|
spines-master/repo/readDataset_spines_mod_shuffleNodesWithinBranchTypes.m
| 22,314 |
utf_8
|
26728e15e7edf60ada823c3c08a9a601
|
function [allTrees, allPAs] = readDataset_spines_mod_shuffleNodesWithinBranchTypes(code,directory,options)
if ~isfield(options,'normalize') || isempty(options.normalize); normalize = false; else; normalize = options.normalize; end;
if ~isfield(options,'absoluteLengths') || isempty(options.absoluteLengths); absoluteLengths = true; else; absoluteLengths = options.absoluteLengths; end;
if ~isfield(options,'neuronParts') || isempty(options.neuronParts); neuronParts = [-10:10]; else; neuronParts = options.neuronParts; end;
if ~isfield(options,'anisotropyDivisors') || isempty(options.anisotropyDivisors); anisotropyDivisors = [1 1 1]; else; anisotropyDivisors = options.anisotropyDivisors; end;
if ~isfield(options,'SCALECONSTANT') || isempty(options.SCALECONSTANT); SCALECONSTANT = 1; else; SCALECONSTANT = options.SCALECONSTANT; end;
if ~isfield(options,'removeShortLeaves') || isempty(options.removeShortLeaves); removeShortLeaves = false; else; removeShortLeaves = options.removeShortLeaves; end;
if ~isfield(options,'pruneRatio') || isempty(options.pruneRatio); pruneRatio = 1; else; pruneRatio = options.pruneRatio; end;
if ~isfield(options,'removeBranches') || isempty(options.removeBranches); removeBranches = false; else; removeBranches = options.removeBranches; end;
if ~isfield(options,'resolution') || isempty(options.resolution); resolution = [1 1 1]; else; resolution = options.resolution; end;
allTrees = cell(0); allNodesAndEdges = cell(0);
for kk = 1:numel(code)
thisFileName = strcat(directory,code{kk}{1}); %,code{kk}{2});
[nodes,edges,radii,nodeTypes,features,~] = readSWCfile(thisFileName,neuronParts,resolution);
apicalTuft = find(nodeTypes==5); tmp = features(apicalTuft, 12-7:18-7); tmp = tmp(randperm(numel(apicalTuft)), :); features(apicalTuft, 12-7:18-7) = tmp;
apicalOblique = find(nodeTypes==3); tmp = features(apicalOblique, 12-7:18-7); tmp = tmp(randperm(numel(apicalOblique)), :); features(apicalOblique, 12-7:18-7) = tmp;
basal = find(nodeTypes==7); tmp = features(basal, 12-7:18-7); tmp = tmp(randperm(numel(basal)), :); features(basal, 12-7:18-7) = tmp;
apical = find(nodeTypes==4); tmp = features(apical, 12-7:18-7); tmp = tmp(randperm(numel(apical)), :); features(apical, 12-7:18-7) = tmp;
soma = find(nodeTypes==1,1);
for dd=1:3; nodes(:,dd)=nodes(:,dd)-(nodes(soma,dd)); end;
principalAxes = calculatePrincipalAxes(nodes); allPAs(:,kk)=principalAxes(:,1);
features = [features nodeTypes];
nodes(:,1) = nodes(:,1)/anisotropyDivisors(1); nodes(:,2) = nodes(:,2)/anisotropyDivisors(2); nodes(:,3) = nodes(:,3)/anisotropyDivisors(3);
[tree,rawLength,nodes,edges]=generateIrreducibleDoubleLinkedTree(nodes,edges,radii,features,false); % 1:soma, 2:axon, 3:basal dendrite, 4:apical dendrite
if removeShortLeaves; tree = pruneShortLeaves(tree,treeLength(tree)*pruneRatio); end;
if normalize; tree = normalizeNeuron(tree); end;
allTrees{end+1} = tree;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nodes,edges,radii,nodeType,features,abort] = readSWCfile(fileName,validNodeTypes,resolution)
abort = false; nodes = []; edges = []; nodeTypes = [];
validNodeTypes = setdiff(validNodeTypes,1);
[nodeID, nodeType, xPos, yPos, zPos, radii, parentNodeID,d1,d2,f1,f2,f3,f4,f5,f6,f7,f8,f9] = textread(fileName, '%u%d%f%f%f%f%d%d%d%f%f%f%f%f%f%f%f%f','commentstyle', 'shell');
xPos = xPos * resolution(1); yPos = yPos * resolution(2); zPos = zPos * resolution(3);
features = [d1,d2,f1,f2,f3,f4,f5,f6,f7,f8,f9];
if ~any(parentNodeID==-1)
disp(strcat('root not found in ',fileName));
nodes = []; edges = []; radii = []; nodeTypes = []; features = []; abort = true;
return;
end
nodeType(find(parentNodeID==-1))=1; % Every tree should start from a node of type 1 (soma)
firstSomaNode = find(nodeType == 1 & parentNodeID == -1, 1);
somaNodes = find(nodeType == 1); somaX = mean(xPos(somaNodes)); somaY = mean(yPos(somaNodes)); somaZ = mean(zPos(somaNodes));
% set soma radius to 0, to avoid multiple counting of soma volume through different subsets. ignore soma volume
somaRadius = 0; %mean(radii(somaNodes));
xPos(firstSomaNode) = somaX; yPos(firstSomaNode) = somaY; zPos(firstSomaNode) = somaZ; radii(firstSomaNode) = somaRadius; features(firstSomaNode,:) = zeros(1,size(features,2));
parentNodeID(ismember(parentNodeID,somaNodes)) = firstSomaNode; % assign a single soma parent
nodesToDelete = setdiff(somaNodes,firstSomaNode); % delete all the soma nodes except for the firstSomaNode
nodeID(nodesToDelete)=[]; nodeType(nodesToDelete)=[]; xPos(nodesToDelete)=[]; yPos(nodesToDelete)=[]; zPos(nodesToDelete)=[]; radii(nodesToDelete)=[]; parentNodeID(nodesToDelete)=[]; features(nodesToDelete,:)=[];
for kk = 1:numel(nodeID)
while ~any(nodeID==kk)
nodeID(nodeID>kk) = nodeID(nodeID>kk)-1;
parentNodeID(parentNodeID>kk) = parentNodeID(parentNodeID>kk)-1;
end
end
validNodes = nodeID(ismember(nodeType,validNodeTypes));
additionalValidNodes = [];
for kk = 1:numel(validNodes)
thisParentNodeID = parentNodeID(validNodes(kk)); thisParentNodeType = nodeType(thisParentNodeID);
while ~ismember(thisParentNodeType,validNodeTypes)
if thisParentNodeType == 1
break;
end
additionalValidNodes = union(additionalValidNodes, thisParentNodeID); nodeType(thisParentNodeID) = validNodeTypes(1);
thisParentNodeID = parentNodeID(thisParentNodeID); thisParentNodeType = nodeType(thisParentNodeID);
end
end
validNodes = [firstSomaNode; validNodes; additionalValidNodes']; validNodes = unique(validNodes);
nodeID = nodeID(validNodes); nodeType = nodeType(validNodes); parentNodeID = parentNodeID(validNodes);
xPos = xPos(validNodes); yPos = yPos(validNodes); zPos = zPos(validNodes); radii = radii(validNodes); features = features(validNodes, :);
for kk = 1:numel(nodeID)
while ~any(nodeID==kk)
nodeID(nodeID>kk) = nodeID(nodeID>kk)-1;
parentNodeID(parentNodeID>kk) = parentNodeID(parentNodeID>kk)-1;
end
end
nodes = [xPos yPos zPos];
edges = [nodeID parentNodeID];
edges(any(edges==-1,2),:) = [];
%nodeTypes = unique(nodeType)';
%[nodes,edges,radii,features] = removeImproperRootNodes(nodes,edges,radii,features); % remove the root nodes until the first node
%[nodes,edges,radii,features] = removeZeroLengthEdges(nodes,edges,radii,features); % remove zero branches
nodes = nodes + 1; % added on Mar 7, 2012 - band tracing starts at 1 - relevant if the tree will be warped
somaNode = find(nodeType == 1, 1);
% swap on edges
edges(edges==1) = 0; edges(edges==somaNode) = 1; edges(edges==0) = somaNode;
% swap on nodes
tmp = nodes(1,:); nodes(1,:) = nodes(somaNode,:); nodes(somaNode,:) = tmp;
% swap on radii
tmpR = radii(1); radii(1) = radii(somaNode); radii(somaNode) = tmpR;
% swap on features
tmpF = features(1,:); features(1,:) = features(somaNode,:); features(somaNode,:) = tmpF;
% swap on node types
tmpT = nodeType(1); nodeType(1) = nodeType(somaNode,:); nodeType(somaNode,:) = tmpT;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nodes,edges,radii,features] = removeImproperRootNodes(nodes,edges,radii,features)
if size(nodes,1) < 2
return;
end
% node 1 is assigned as the root node
root = 1;
expandedEdges = [edges edges(:,1)];
child = expandedEdges([zeros(size(edges,1),1) edges==root]>0);
while numel(child) < 2
nodes = [nodes(1:root-1,:); nodes(root+1:end,:)];
radii = [radii(1:root-1); radii(root+1:end)];
features = [features(1:root-1,:); features(root+1:end,:)];
edges(any(edges==root,2),:) = [];
edges(edges>root) = edges(edges>root) - 1;
expandedEdges = [edges edges(:,1)];
if child > root
child = child-1;
end
root = child;
child = expandedEdges([zeros(size(edges,1),1) edges==root]>0);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nodes,edges,radii,features] = removeZeroLengthEdges(nodes,edges,radii,features)
kk = 1;
while kk < size(edges,1)
node1 = edges(kk,1); node2 = edges(kk,2);
if norm(nodes(node1,:)-nodes(node2,:)) < 1e-10 % BE CAREFUL / ARBITRARY
edges(edges==node1) = node2;
edges(edges>node1) = edges(edges>node1)-1;
edges(kk,:) = []; % remove edge
nodes(node1,:) = []; % remove node
radii(node1) = []; % remove area
features(node1,:) = []; % remove features
else
kk = kk + 1;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nodes,edges,radii] = removeOutOfBoundsBranches(nodes,edges,radii,bounds)
if size(nodes,1) < 2
return;
end
thisNode=find(nodes(:,1)<bounds.minX | nodes(:,1)>bounds.maxX | nodes(:,2)<bounds.minY | nodes(:,2)>bounds.maxY | nodes(:,3)<bounds.minZ | nodes(:,3)>bounds.maxZ,'first',1);
while ~isempty(thisNode)
selfOrDescendant = selfOrDescendantFromEdges(edges, thisNode, thisNode);
edges(ismember(edges(:,1),selfOrDescendant) | ismember(edges(:,2),selfOrDescendant),:) = [];
nodes(selfOrDescendant,:) = [];
radii(selfOrDescendant) = [];
selfOrDescendent = sort(selfOrDescendant,'descend');
for kk=1:numel(selfOrDescendant)
nn=selfOrDescendant(kk);
edges(edges>nn) = edges(edges>nn)-1;
end
thisNode=find(nodes(:,1)<bounds.minX | nodes(:,1)>bounds.maxX | nodes(:,2)<bounds.minY | nodes(:,2)>bounds.maxY | nodes(:,3)<bounds.minZ | nodes(:,3)>bounds.maxZ,'first',1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function sod = selfOrDescendantFromEdges(edges, sod, node)
children = edges(find(edges(:,1)==node),2);
sod = [sod children];
if ~isempty(children)
for kk=1:numel(children)
sod = selfOrDescendantFromEdges(edges, sod, children(kk));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tree,rawLength,nodes,edges] = generateIrreducibleDoubleLinkedTree(nodes,edges,radii,features,uniformCSAreas)
areas = pi*radii.^2;
% 1 is assumed to be the root node. edges is nx2: each row is [child parent]
h = hist(edges(:,2),[1:size(nodes,1)]); irreducibleNodes = union(find(h~=1),1); % 1 is the root node
% put all the irreducible nodes at the beginning
for kk = 1:numel(irreducibleNodes)
% swap on edges
edges(edges==kk) = 0; edges(edges==irreducibleNodes(kk)) = kk; edges(edges==0) = irreducibleNodes(kk);
% swap on nodes
tmp = nodes(kk,:); nodes(kk,:) = nodes(irreducibleNodes(kk),:); nodes(irreducibleNodes(kk),:) = tmp;
% swap on areas
tmpA = areas(kk); areas(kk) = areas(irreducibleNodes(kk)); areas(irreducibleNodes(kk)) = tmpA;
% swap on features
tmpF = features(kk,:); features(kk,:) = features(irreducibleNodes(kk),:); features(irreducibleNodes(kk),:) = tmpF;
end
numelNodes = numel(irreducibleNodes);
%initialize tree with root as 1
tree{1}{1} = []; tree{1}{3} = nodes(1,:); tree{1}{4}{1} = nodes(1,:); tree{1}{4}{2} = 0; tree{1}{4}{3} = [[0;0;0] [0;0;0]]; tree{1}{4}{4} = 0;
for kk = 1:numelNodes
tree{kk}{2} = [];
end
rawLength = 0;
for kk = 2:numelNodes
tmpParent = edges(find(edges(:,1)==kk),2); % assume that the edges are ordered pairs: (child, parent)
path = nodes(kk,:); thisFeature = features(kk, :);
if uniformCSAreas
pathAreas = 1;
else
pathAreas = (areas(kk)+areas(tmpParent)+sqrt(areas(kk)*areas(tmpParent)))/3;
end
while tmpParent > numelNodes
newTmpParent = edges(find(edges(:,1)==tmpParent),2);
path = [path; nodes(tmpParent,:)]; thisFeature = [thisFeature; features(tmpParent,:)];
if uniformCSAreas
pathAreas = [pathAreas; 1];
else
pathAreas = [pathAreas; (areas(tmpParent)+areas(newTmpParent)+sqrt(areas(tmpParent)*areas(newTmpParent)))/3]; % now modeled as a cylinder
end
tmpParent = newTmpParent;
end
path = [path; nodes(tmpParent,:)]; thisFeature = [thisFeature; features(tmpParent,:)]; rawPathLengths = sqrt(sum(diff(path,1,1).^2,2)); rawLength = rawLength + sum(rawPathLengths);
tree{kk}{1} = tmpParent; tree{tmpParent}{2} = [tree{tmpParent}{2} kk];
tree{kk}{3} = nodes(kk,:);
tree{kk}{4}{1} = path; tree{kk}{4}{2} = rawPathLengths; tree{kk}{4}{4} = pathAreas; tree{kk}{4}{5} = thisFeature;
end
tree = calculateDistanceFromSoma(tree, 1, []);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tree = pruneShortLeaves(tree,lengthThreshold)
if numel(tree)<2
return;
end
root = rootFinder(tree);
leaves = findLeaves(tree); leaves = setdiff(leaves, tree{root}{2})';
leaves = [leaves zeros(size(leaves))];
for kk = 1:size(leaves,1)
leaves(kk,2) = sum(tree{leaves(kk)}{4}{2});
end
leaves = sortrows(leaves,2); leaves = leaves(:,1);
counter = 1;
while counter <= numel(leaves)
if (sum(tree{leaves(counter)}{4}{2}) > lengthThreshold)
leaves(counter) = [];
else
counter = counter + 1;
end
end
for counter = 1:numel(leaves)
leaf = leaves(counter);
if (sum(tree{leaf}{4}{2}) <= lengthThreshold)
parent = tree{leaf}{1}; siblings = setdiff(tree{parent}{2},leaf);
% remove the leaf from the child relationship
tree{parent}{2} = setdiff(tree{parent}{2}, leaf);
% change node numbers of parents/children if larger than this leaf's number
for node = 1:numel(tree)
if tree{node}{1} > leaf
tree{node}{1} = tree{node}{1}-1;
end
children = tree{node}{2};
tree{node}{2}(children > leaf) = children(children > leaf)-1;
end
% update the parent, sibling, leaf numbers
parent(parent>leaf) = parent(parent>leaf)-1;
siblings(siblings>leaf) = siblings(siblings>leaf)-1;
leaves(leaves>leaf) = leaves(leaves>leaf)-1;
% remove leaf from tree
tree(leaf) = [];
% update the root
root = rootFinder(tree);
% if the removal made the parent node a reducible node...
if (numel(siblings) == 1) && (parent ~= root)
% the grandparent removes the reducible parent from the list of children, and inherits the single child
tree{tree{parent}{1}}{2} = [setdiff(tree{tree{parent}{1}}{2},parent) siblings];
% the single child's parent becomes the grandparent
tree{siblings}{1} = tree{parent}{1};
% the single child adds the reducible node's geometric information to itself
tree{siblings}{4}{1} = [tree{siblings}{4}{1}(1:end-1,:); tree{parent}{4}{1}]; % critical nodes
tree{siblings}{4}{2} = [tree{siblings}{4}{2}; tree{parent}{4}{2}]; % lengths
% tree{siblings}{4}{3} = [tree{siblings}{4}{3} tree{parent}{4}{3}(:,2:end)]; % orientations
tree{siblings}{4}{4} = [tree{siblings}{4}{4}; tree{parent}{4}{4}]; % areas
tree{siblings}{4}{5} = [tree{siblings}{4}{5}; tree{parent}{4}{5}]; % features
% if isempty(tree{siblings}{4}{5})
% tree{siblings}{4}{5} = tree{parent}{4}{5};
% else
% tree{siblings}{4}{5} = [tree{siblings}{4}{5}; uint32(tree{parent}{4}{5}(2:end)+numel(tree{siblings}{4}{5})-1)];
% end
% change node numbers of parents/children if larger than the parent's number
for node = 1:numel(tree)
if tree{node}{1} > parent
tree{node}{1} = tree{node}{1}-1;
end
children = tree{node}{2};
tree{node}{2}(children > parent) = children(children > parent)-1;
end
% update leaf numbers
leaves(leaves>parent) = leaves(leaves>parent)-1;
% remove the reducible parent from tree
tree(parent) = [];
end
end
tmpLeaves = leaves(counter+1:end); tmpLeaves = [tmpLeaves zeros(size(tmpLeaves))];
if ~isempty(tmpLeaves)
for kk = 1:size(tmpLeaves,1)
tmpLeaves(kk,2) = sum(tree{tmpLeaves(kk,1)}{4}{2});
end
tmpLeaves = sortrows(tmpLeaves,2);
leaves(counter+1:end) = tmpLeaves(:,1);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [localMass,newNodes] = switchToMassRepresentation(nodes,edges)
localMass = zeros(size(nodes,1),1); newNodes = zeros(size(nodes,1),3);
for kk=1:size(nodes,1);
parent = edges(find(edges(:,1)==kk),2);
if ~isempty(parent)
localMass(kk) = norm(nodes(parent,:)-nodes(kk,:)); newNodes(kk,:) = (nodes(parent,:)+nodes(kk,:))/2;
else
localMass(kk) = 0; newNodes(kk,:) = nodes(kk,:);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function principalAxes = calculatePrincipalAxes(xyz, weights)
if nargin < 2; weights = ones(size(xyz,1),1); end;
% find the inertia tensor
inertiaTensor = zeros(3);
inertiaTensor(1,1) = sum(weights .* (xyz(:,2).^2 + xyz(:,3).^2)); inertiaTensor(2,2) = sum(weights .* (xyz(:,1).^2 + xyz(:,3).^2));
inertiaTensor(3,3) = sum(weights .* (xyz(:,1).^2 + xyz(:,2).^2)); inertiaTensor(1,2) = -sum(weights .* xyz(:,1) .* xyz(:,2));
inertiaTensor(1,3) = -sum(weights .* xyz(:,1) .* xyz(:,3)); inertiaTensor(2,3) = -sum(weights .* xyz(:,2) .* xyz(:,3));
inertiaTensor(2,1) = inertiaTensor(1,2); inertiaTensor(3,1) = inertiaTensor(1,3); inertiaTensor(3,2) = inertiaTensor(2,3);
% find the principal axes of the inertia tensor
[principalAxes, evMatrix] = eig(inertiaTensor);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tr = normalizeNeuron(tr)
% normalize the total dendritic length
lengthOnly = true;
totalLength = treeLength(tr,rootFinder(tr),lengthOnly);
for node = 1:numel(tr)
if ~isempty(tr{node}{4}{2})
tr{node}{4}{1} = tr{node}{4}{1}/totalLength; tr{node}{4}{2} = tr{node}{4}{2}/totalLength; tr{node}{4}{3} = tr{node}{4}{3}/totalLength;
end
tr{node}{3} = tr{node}{3}/totalLength;
end
% normalize the total dendritic volume by changing the cross-sectional areas, and keeping the lengths the same
lengthOnly = false;
totalLength = treeLength(tr,rootFinder(tr),lengthOnly);
for node = 1:numel(tr)
if ~isempty(tr{node}{4}{4})
tr{node}{4}{4} = tr{node}{4}{4}/totalLength;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tree nodes areas rawLength] = integrateTree(tree,node,nodes,areas,rawLength,startingPos,interval)
tree{node}{3} = startingPos;
children = tree{node}{2};
for child = 1:numel(children)
thisBranch = tree{children(child)}{4}{1}; thisBranch = thisBranch(end:-1:1,:);
branchAreas = tree{children(child)}{4}{4}; branchAreas = branchAreas(end:-1:1);
[thisBranch pathLengths branchAreas] = integrateBranch(thisBranch,branchAreas,startingPos,interval);
tree{children(child)}{4}{1} = thisBranch(end:-1:1,:);
nodes = [nodes; tree{children(child)}{4}{1}];
tree{children(child)}{4}{2} = pathLengths(end:-1:1);
tree{children(child)}{4}{4} = branchAreas;
areas = [areas; tree{children(child)}{4}{4}];
rawLength = rawLength+sum(pathLengths);
[tree nodes areas rawLength] = integrateTree(tree,children(child),nodes,areas,rawLength,thisBranch(end,:),interval);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [path pathLengths newAreas] = integrateBranch(branchCoordinates,areas,startingPos,interval)
path=startingPos; curPos=0; curEdgePos=0; nextPillar=2; curCoord = branchCoordinates(1,:);
edgeVectors = diff(branchCoordinates,1,1); edgeLengths=sqrt(sum(edgeVectors.^2,2)); totalLength=sum(edgeLengths);
curVec=edgeVectors(1,:); curVec = curVec/norm(curVec); nextPillarDistance=edgeLengths(1); newAreas = [];
while curPos<totalLength
xyzSteps = abs((-curCoord+sqrt(curCoord.^2+2*curVec*interval))./(curVec+1e-6));
step = min(max(xyzSteps),nextPillarDistance);
path = [path; path(end,:)+curCoord*step+curVec*step^2/2];
curEdgePos = curEdgePos+step;
curCoord = curCoord+step*curVec;
curPos = curPos+step;
nextPillarDistance = nextPillarDistance-step;
newAreas = [areas(min(nextPillar,size(edgeVectors,1))); newAreas]; % inverted orientation for areas to avoid inversion of array in integrateTree!
if nextPillarDistance<totalLength/1e6 % 1e-6 precision
if nextPillar>size(edgeVectors,1)
break;
end
curCoord=branchCoordinates(nextPillar,:);
curVec=edgeVectors(nextPillar,:); curVec=curVec/norm(curVec);
nextPillarDistance = edgeLengths(nextPillar,:);
nextPillar=nextPillar+1;
curEdgePos=0;
end
end
pathLengths = sqrt(sum(diff(path,1,1).^2,2));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tree = rotateTree(tree,rotMatrix)
for kk = 1:numel(tree)
tree{kk}{3} = tree{kk}{3}*rotMatrix;
if ~isempty(tree{kk}{4}{1})
tree{kk}{4}{1} = tree{kk}{4}{1}*rotMatrix;
tree{kk}{4}{3} = rotMatrix' * tree{kk}{4}{3};
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function rotMatrix = findRotationMatrix(rotAxis,rotAngle)
ux=rotAxis(1); uy=rotAxis(2); uz=rotAxis(3);
rotMatrix = (cos(rotAngle)*eye(3) + sin(rotAngle)*[0 -uz uy;uz 0 -ux;-uy ux 0] + (1-cos(rotAngle))*kron(rotAxis,rotAxis'))';
if any(any(isnan(rotMatrix)))
rotMatrix = eye(3);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tree = calculateDistanceFromSoma(tree, thisNode, parent)
if ~isempty(parent)
reference = tree{parent}{4}{5}(1, 4);
tmp = cumsum([0; tree{thisNode}{4}{2}]);
somaBorder = find(tree{thisNode}{4}{5}(:,19-7)<2, 1);
if ~isempty(somaBorder) && somaBorder>1
tmp(somaBorder:end) = tmp(somaBorder-1);
end
tree{thisNode}{4}{5}(:, 4) = reference + tmp(end) - tmp;
else
tree{thisNode}{4}{5}(1, 4) = 0;
end
children = tree{thisNode}{2};
for kk = 1:numel(children)
tree = calculateDistanceFromSoma(tree, children(kk), thisNode);
end
|
github
|
uygarsumbul/spines-master
|
save1000WithinDomainShuffledTrees.m
|
.m
|
spines-master/repo/save1000WithinDomainShuffledTrees.m
| 1,553 |
utf_8
|
42eed829143646f2c9485add1896afdf
|
function save1000ShuffledTrees
code{1}{1} = 'aibs_8_spinerecon_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_9_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_13_mouse2_spinerecon_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_18_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_19_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_20_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_21_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_22_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_23_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_24_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_25_stitched_connected_labeled.eswc';
directory = '/home/uygar/spines/data/upsampledFinalReconstructions_updated3-22-17/';
options.resolution = [0.12 0.12 0.1];
options.resolution20x = [0.62 0.62 0.75];
parfor kk = 1:1000
trees = readDataset_spines_mod_shuffleNodesWithinBranchTypes(code,directory,options);
mySaveFunction(kk, trees);
end
function mySaveFunction(kk, trees)
filename = ['/home/uygar/spines/data/shuffledTrees_' num2str(kk) '.mat'];
save(filename, 'trees');
|
github
|
uygarsumbul/spines-master
|
readDataset_spines_mod_shuffleNodes.m
|
.m
|
spines-master/repo/readDataset_spines_mod_shuffleNodes.m
| 21,724 |
utf_8
|
37c69dc1c0170986da79f8214b1428bc
|
function [allTrees, allPAs] = readDataset_spines_mod_shuffleNodes(code,directory,options)
if ~isfield(options,'normalize') || isempty(options.normalize); normalize = false; else; normalize = options.normalize; end;
if ~isfield(options,'absoluteLengths') || isempty(options.absoluteLengths); absoluteLengths = true; else; absoluteLengths = options.absoluteLengths; end;
if ~isfield(options,'neuronParts') || isempty(options.neuronParts); neuronParts = [-10:10]; else; neuronParts = options.neuronParts; end;
if ~isfield(options,'anisotropyDivisors') || isempty(options.anisotropyDivisors); anisotropyDivisors = [1 1 1]; else; anisotropyDivisors = options.anisotropyDivisors; end;
if ~isfield(options,'SCALECONSTANT') || isempty(options.SCALECONSTANT); SCALECONSTANT = 1; else; SCALECONSTANT = options.SCALECONSTANT; end;
if ~isfield(options,'removeShortLeaves') || isempty(options.removeShortLeaves); removeShortLeaves = false; else; removeShortLeaves = options.removeShortLeaves; end;
if ~isfield(options,'pruneRatio') || isempty(options.pruneRatio); pruneRatio = 1; else; pruneRatio = options.pruneRatio; end;
if ~isfield(options,'removeBranches') || isempty(options.removeBranches); removeBranches = false; else; removeBranches = options.removeBranches; end;
if ~isfield(options,'resolution') || isempty(options.resolution); resolution = [1 1 1]; else; resolution = options.resolution; end;
allTrees = cell(0); allNodesAndEdges = cell(0);
for kk = 1:numel(code)
thisFileName = strcat(directory,code{kk}{1}); %,code{kk}{2});
[nodes,edges,radii,nodeTypes,features,~] = readSWCfile(thisFileName,neuronParts,resolution);
tmp = features(:, 12-7:18-7); tmp = tmp(randperm(size(tmp, 1)), :); features(:, 12-7:18-7) = tmp;
soma = find(nodeTypes==1,1);
for dd=1:3; nodes(:,dd)=nodes(:,dd)-(nodes(soma,dd)); end;
principalAxes = calculatePrincipalAxes(nodes); allPAs(:,kk)=principalAxes(:,1);
features = [features nodeTypes];
nodes(:,1) = nodes(:,1)/anisotropyDivisors(1); nodes(:,2) = nodes(:,2)/anisotropyDivisors(2); nodes(:,3) = nodes(:,3)/anisotropyDivisors(3);
[tree,rawLength,nodes,edges]=generateIrreducibleDoubleLinkedTree(nodes,edges,radii,features,false); % 1:soma, 2:axon, 3:basal dendrite, 4:apical dendrite
if removeShortLeaves; tree = pruneShortLeaves(tree,treeLength(tree)*pruneRatio); end;
if normalize; tree = normalizeNeuron(tree); end;
allTrees{end+1} = tree;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nodes,edges,radii,nodeType,features,abort] = readSWCfile(fileName,validNodeTypes,resolution)
abort = false; nodes = []; edges = []; nodeTypes = [];
validNodeTypes = setdiff(validNodeTypes,1);
[nodeID, nodeType, xPos, yPos, zPos, radii, parentNodeID,d1,d2,f1,f2,f3,f4,f5,f6,f7,f8,f9] = textread(fileName, '%u%d%f%f%f%f%d%d%d%f%f%f%f%f%f%f%f%f','commentstyle', 'shell');
xPos = xPos * resolution(1); yPos = yPos * resolution(2); zPos = zPos * resolution(3);
features = [d1,d2,f1,f2,f3,f4,f5,f6,f7,f8,f9];
if ~any(parentNodeID==-1)
disp(strcat('root not found in ',fileName));
nodes = []; edges = []; radii = []; nodeTypes = []; features = []; abort = true;
return;
end
nodeType(find(parentNodeID==-1))=1; % Every tree should start from a node of type 1 (soma)
firstSomaNode = find(nodeType == 1 & parentNodeID == -1, 1);
somaNodes = find(nodeType == 1); somaX = mean(xPos(somaNodes)); somaY = mean(yPos(somaNodes)); somaZ = mean(zPos(somaNodes));
% set soma radius to 0, to avoid multiple counting of soma volume through different subsets. ignore soma volume
somaRadius = 0; %mean(radii(somaNodes));
xPos(firstSomaNode) = somaX; yPos(firstSomaNode) = somaY; zPos(firstSomaNode) = somaZ; radii(firstSomaNode) = somaRadius; features(firstSomaNode,:) = zeros(1,size(features,2));
parentNodeID(ismember(parentNodeID,somaNodes)) = firstSomaNode; % assign a single soma parent
nodesToDelete = setdiff(somaNodes,firstSomaNode); % delete all the soma nodes except for the firstSomaNode
nodeID(nodesToDelete)=[]; nodeType(nodesToDelete)=[]; xPos(nodesToDelete)=[]; yPos(nodesToDelete)=[]; zPos(nodesToDelete)=[]; radii(nodesToDelete)=[]; parentNodeID(nodesToDelete)=[]; features(nodesToDelete,:)=[];
for kk = 1:numel(nodeID)
while ~any(nodeID==kk)
nodeID(nodeID>kk) = nodeID(nodeID>kk)-1;
parentNodeID(parentNodeID>kk) = parentNodeID(parentNodeID>kk)-1;
end
end
validNodes = nodeID(ismember(nodeType,validNodeTypes));
additionalValidNodes = [];
for kk = 1:numel(validNodes)
thisParentNodeID = parentNodeID(validNodes(kk)); thisParentNodeType = nodeType(thisParentNodeID);
while ~ismember(thisParentNodeType,validNodeTypes)
if thisParentNodeType == 1
break;
end
additionalValidNodes = union(additionalValidNodes, thisParentNodeID); nodeType(thisParentNodeID) = validNodeTypes(1);
thisParentNodeID = parentNodeID(thisParentNodeID); thisParentNodeType = nodeType(thisParentNodeID);
end
end
validNodes = [firstSomaNode; validNodes; additionalValidNodes']; validNodes = unique(validNodes);
nodeID = nodeID(validNodes); nodeType = nodeType(validNodes); parentNodeID = parentNodeID(validNodes);
xPos = xPos(validNodes); yPos = yPos(validNodes); zPos = zPos(validNodes); radii = radii(validNodes); features = features(validNodes, :);
for kk = 1:numel(nodeID)
while ~any(nodeID==kk)
nodeID(nodeID>kk) = nodeID(nodeID>kk)-1;
parentNodeID(parentNodeID>kk) = parentNodeID(parentNodeID>kk)-1;
end
end
nodes = [xPos yPos zPos];
edges = [nodeID parentNodeID];
edges(any(edges==-1,2),:) = [];
%nodeTypes = unique(nodeType)';
%[nodes,edges,radii,features] = removeImproperRootNodes(nodes,edges,radii,features); % remove the root nodes until the first node
%[nodes,edges,radii,features] = removeZeroLengthEdges(nodes,edges,radii,features); % remove zero branches
nodes = nodes + 1; % added on Mar 7, 2012 - band tracing starts at 1 - relevant if the tree will be warped
somaNode = find(nodeType == 1, 1);
% swap on edges
edges(edges==1) = 0; edges(edges==somaNode) = 1; edges(edges==0) = somaNode;
% swap on nodes
tmp = nodes(1,:); nodes(1,:) = nodes(somaNode,:); nodes(somaNode,:) = tmp;
% swap on radii
tmpR = radii(1); radii(1) = radii(somaNode); radii(somaNode) = tmpR;
% swap on features
tmpF = features(1,:); features(1,:) = features(somaNode,:); features(somaNode,:) = tmpF;
% swap on node types
tmpT = nodeType(1); nodeType(1) = nodeType(somaNode,:); nodeType(somaNode,:) = tmpT;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nodes,edges,radii,features] = removeImproperRootNodes(nodes,edges,radii,features)
if size(nodes,1) < 2
return;
end
% node 1 is assigned as the root node
root = 1;
expandedEdges = [edges edges(:,1)];
child = expandedEdges([zeros(size(edges,1),1) edges==root]>0);
while numel(child) < 2
nodes = [nodes(1:root-1,:); nodes(root+1:end,:)];
radii = [radii(1:root-1); radii(root+1:end)];
features = [features(1:root-1,:); features(root+1:end,:)];
edges(any(edges==root,2),:) = [];
edges(edges>root) = edges(edges>root) - 1;
expandedEdges = [edges edges(:,1)];
if child > root
child = child-1;
end
root = child;
child = expandedEdges([zeros(size(edges,1),1) edges==root]>0);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nodes,edges,radii,features] = removeZeroLengthEdges(nodes,edges,radii,features)
kk = 1;
while kk < size(edges,1)
node1 = edges(kk,1); node2 = edges(kk,2);
if norm(nodes(node1,:)-nodes(node2,:)) < 1e-10 % BE CAREFUL / ARBITRARY
edges(edges==node1) = node2;
edges(edges>node1) = edges(edges>node1)-1;
edges(kk,:) = []; % remove edge
nodes(node1,:) = []; % remove node
radii(node1) = []; % remove area
features(node1,:) = []; % remove features
else
kk = kk + 1;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nodes,edges,radii] = removeOutOfBoundsBranches(nodes,edges,radii,bounds)
if size(nodes,1) < 2
return;
end
thisNode=find(nodes(:,1)<bounds.minX | nodes(:,1)>bounds.maxX | nodes(:,2)<bounds.minY | nodes(:,2)>bounds.maxY | nodes(:,3)<bounds.minZ | nodes(:,3)>bounds.maxZ,'first',1);
while ~isempty(thisNode)
selfOrDescendant = selfOrDescendantFromEdges(edges, thisNode, thisNode);
edges(ismember(edges(:,1),selfOrDescendant) | ismember(edges(:,2),selfOrDescendant),:) = [];
nodes(selfOrDescendant,:) = [];
radii(selfOrDescendant) = [];
selfOrDescendent = sort(selfOrDescendant,'descend');
for kk=1:numel(selfOrDescendant)
nn=selfOrDescendant(kk);
edges(edges>nn) = edges(edges>nn)-1;
end
thisNode=find(nodes(:,1)<bounds.minX | nodes(:,1)>bounds.maxX | nodes(:,2)<bounds.minY | nodes(:,2)>bounds.maxY | nodes(:,3)<bounds.minZ | nodes(:,3)>bounds.maxZ,'first',1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function sod = selfOrDescendantFromEdges(edges, sod, node)
children = edges(find(edges(:,1)==node),2);
sod = [sod children];
if ~isempty(children)
for kk=1:numel(children)
sod = selfOrDescendantFromEdges(edges, sod, children(kk));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tree,rawLength,nodes,edges] = generateIrreducibleDoubleLinkedTree(nodes,edges,radii,features,uniformCSAreas)
areas = pi*radii.^2;
% 1 is assumed to be the root node. edges is nx2: each row is [child parent]
h = hist(edges(:,2),[1:size(nodes,1)]); irreducibleNodes = union(find(h~=1),1); % 1 is the root node
% put all the irreducible nodes at the beginning
for kk = 1:numel(irreducibleNodes)
% swap on edges
edges(edges==kk) = 0; edges(edges==irreducibleNodes(kk)) = kk; edges(edges==0) = irreducibleNodes(kk);
% swap on nodes
tmp = nodes(kk,:); nodes(kk,:) = nodes(irreducibleNodes(kk),:); nodes(irreducibleNodes(kk),:) = tmp;
% swap on areas
tmpA = areas(kk); areas(kk) = areas(irreducibleNodes(kk)); areas(irreducibleNodes(kk)) = tmpA;
% swap on features
tmpF = features(kk,:); features(kk,:) = features(irreducibleNodes(kk),:); features(irreducibleNodes(kk),:) = tmpF;
end
numelNodes = numel(irreducibleNodes);
%initialize tree with root as 1
tree{1}{1} = []; tree{1}{3} = nodes(1,:); tree{1}{4}{1} = nodes(1,:); tree{1}{4}{2} = 0; tree{1}{4}{3} = [[0;0;0] [0;0;0]]; tree{1}{4}{4} = 0;
for kk = 1:numelNodes
tree{kk}{2} = [];
end
rawLength = 0;
for kk = 2:numelNodes
tmpParent = edges(find(edges(:,1)==kk),2); % assume that the edges are ordered pairs: (child, parent)
path = nodes(kk,:); thisFeature = features(kk, :);
if uniformCSAreas
pathAreas = 1;
else
pathAreas = (areas(kk)+areas(tmpParent)+sqrt(areas(kk)*areas(tmpParent)))/3;
end
while tmpParent > numelNodes
newTmpParent = edges(find(edges(:,1)==tmpParent),2);
path = [path; nodes(tmpParent,:)]; thisFeature = [thisFeature; features(tmpParent,:)];
if uniformCSAreas
pathAreas = [pathAreas; 1];
else
pathAreas = [pathAreas; (areas(tmpParent)+areas(newTmpParent)+sqrt(areas(tmpParent)*areas(newTmpParent)))/3]; % now modeled as a cylinder
end
tmpParent = newTmpParent;
end
path = [path; nodes(tmpParent,:)]; thisFeature = [thisFeature; features(tmpParent,:)]; rawPathLengths = sqrt(sum(diff(path,1,1).^2,2)); rawLength = rawLength + sum(rawPathLengths);
tree{kk}{1} = tmpParent; tree{tmpParent}{2} = [tree{tmpParent}{2} kk];
tree{kk}{3} = nodes(kk,:);
tree{kk}{4}{1} = path; tree{kk}{4}{2} = rawPathLengths; tree{kk}{4}{4} = pathAreas; tree{kk}{4}{5} = thisFeature;
end
tree = calculateDistanceFromSoma(tree, 1, []);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tree = pruneShortLeaves(tree,lengthThreshold)
if numel(tree)<2
return;
end
root = rootFinder(tree);
leaves = findLeaves(tree); leaves = setdiff(leaves, tree{root}{2})';
leaves = [leaves zeros(size(leaves))];
for kk = 1:size(leaves,1)
leaves(kk,2) = sum(tree{leaves(kk)}{4}{2});
end
leaves = sortrows(leaves,2); leaves = leaves(:,1);
counter = 1;
while counter <= numel(leaves)
if (sum(tree{leaves(counter)}{4}{2}) > lengthThreshold)
leaves(counter) = [];
else
counter = counter + 1;
end
end
for counter = 1:numel(leaves)
leaf = leaves(counter);
if (sum(tree{leaf}{4}{2}) <= lengthThreshold)
parent = tree{leaf}{1}; siblings = setdiff(tree{parent}{2},leaf);
% remove the leaf from the child relationship
tree{parent}{2} = setdiff(tree{parent}{2}, leaf);
% change node numbers of parents/children if larger than this leaf's number
for node = 1:numel(tree)
if tree{node}{1} > leaf
tree{node}{1} = tree{node}{1}-1;
end
children = tree{node}{2};
tree{node}{2}(children > leaf) = children(children > leaf)-1;
end
% update the parent, sibling, leaf numbers
parent(parent>leaf) = parent(parent>leaf)-1;
siblings(siblings>leaf) = siblings(siblings>leaf)-1;
leaves(leaves>leaf) = leaves(leaves>leaf)-1;
% remove leaf from tree
tree(leaf) = [];
% update the root
root = rootFinder(tree);
% if the removal made the parent node a reducible node...
if (numel(siblings) == 1) && (parent ~= root)
% the grandparent removes the reducible parent from the list of children, and inherits the single child
tree{tree{parent}{1}}{2} = [setdiff(tree{tree{parent}{1}}{2},parent) siblings];
% the single child's parent becomes the grandparent
tree{siblings}{1} = tree{parent}{1};
% the single child adds the reducible node's geometric information to itself
tree{siblings}{4}{1} = [tree{siblings}{4}{1}(1:end-1,:); tree{parent}{4}{1}]; % critical nodes
tree{siblings}{4}{2} = [tree{siblings}{4}{2}; tree{parent}{4}{2}]; % lengths
% tree{siblings}{4}{3} = [tree{siblings}{4}{3} tree{parent}{4}{3}(:,2:end)]; % orientations
tree{siblings}{4}{4} = [tree{siblings}{4}{4}; tree{parent}{4}{4}]; % areas
tree{siblings}{4}{5} = [tree{siblings}{4}{5}; tree{parent}{4}{5}]; % features
% if isempty(tree{siblings}{4}{5})
% tree{siblings}{4}{5} = tree{parent}{4}{5};
% else
% tree{siblings}{4}{5} = [tree{siblings}{4}{5}; uint32(tree{parent}{4}{5}(2:end)+numel(tree{siblings}{4}{5})-1)];
% end
% change node numbers of parents/children if larger than the parent's number
for node = 1:numel(tree)
if tree{node}{1} > parent
tree{node}{1} = tree{node}{1}-1;
end
children = tree{node}{2};
tree{node}{2}(children > parent) = children(children > parent)-1;
end
% update leaf numbers
leaves(leaves>parent) = leaves(leaves>parent)-1;
% remove the reducible parent from tree
tree(parent) = [];
end
end
tmpLeaves = leaves(counter+1:end); tmpLeaves = [tmpLeaves zeros(size(tmpLeaves))];
if ~isempty(tmpLeaves)
for kk = 1:size(tmpLeaves,1)
tmpLeaves(kk,2) = sum(tree{tmpLeaves(kk,1)}{4}{2});
end
tmpLeaves = sortrows(tmpLeaves,2);
leaves(counter+1:end) = tmpLeaves(:,1);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [localMass,newNodes] = switchToMassRepresentation(nodes,edges)
localMass = zeros(size(nodes,1),1); newNodes = zeros(size(nodes,1),3);
for kk=1:size(nodes,1);
parent = edges(find(edges(:,1)==kk),2);
if ~isempty(parent)
localMass(kk) = norm(nodes(parent,:)-nodes(kk,:)); newNodes(kk,:) = (nodes(parent,:)+nodes(kk,:))/2;
else
localMass(kk) = 0; newNodes(kk,:) = nodes(kk,:);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function principalAxes = calculatePrincipalAxes(xyz, weights)
if nargin < 2; weights = ones(size(xyz,1),1); end;
% find the inertia tensor
inertiaTensor = zeros(3);
inertiaTensor(1,1) = sum(weights .* (xyz(:,2).^2 + xyz(:,3).^2)); inertiaTensor(2,2) = sum(weights .* (xyz(:,1).^2 + xyz(:,3).^2));
inertiaTensor(3,3) = sum(weights .* (xyz(:,1).^2 + xyz(:,2).^2)); inertiaTensor(1,2) = -sum(weights .* xyz(:,1) .* xyz(:,2));
inertiaTensor(1,3) = -sum(weights .* xyz(:,1) .* xyz(:,3)); inertiaTensor(2,3) = -sum(weights .* xyz(:,2) .* xyz(:,3));
inertiaTensor(2,1) = inertiaTensor(1,2); inertiaTensor(3,1) = inertiaTensor(1,3); inertiaTensor(3,2) = inertiaTensor(2,3);
% find the principal axes of the inertia tensor
[principalAxes, evMatrix] = eig(inertiaTensor);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tr = normalizeNeuron(tr)
% normalize the total dendritic length
lengthOnly = true;
totalLength = treeLength(tr,rootFinder(tr),lengthOnly);
for node = 1:numel(tr)
if ~isempty(tr{node}{4}{2})
tr{node}{4}{1} = tr{node}{4}{1}/totalLength; tr{node}{4}{2} = tr{node}{4}{2}/totalLength; tr{node}{4}{3} = tr{node}{4}{3}/totalLength;
end
tr{node}{3} = tr{node}{3}/totalLength;
end
% normalize the total dendritic volume by changing the cross-sectional areas, and keeping the lengths the same
lengthOnly = false;
totalLength = treeLength(tr,rootFinder(tr),lengthOnly);
for node = 1:numel(tr)
if ~isempty(tr{node}{4}{4})
tr{node}{4}{4} = tr{node}{4}{4}/totalLength;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tree nodes areas rawLength] = integrateTree(tree,node,nodes,areas,rawLength,startingPos,interval)
tree{node}{3} = startingPos;
children = tree{node}{2};
for child = 1:numel(children)
thisBranch = tree{children(child)}{4}{1}; thisBranch = thisBranch(end:-1:1,:);
branchAreas = tree{children(child)}{4}{4}; branchAreas = branchAreas(end:-1:1);
[thisBranch pathLengths branchAreas] = integrateBranch(thisBranch,branchAreas,startingPos,interval);
tree{children(child)}{4}{1} = thisBranch(end:-1:1,:);
nodes = [nodes; tree{children(child)}{4}{1}];
tree{children(child)}{4}{2} = pathLengths(end:-1:1);
tree{children(child)}{4}{4} = branchAreas;
areas = [areas; tree{children(child)}{4}{4}];
rawLength = rawLength+sum(pathLengths);
[tree nodes areas rawLength] = integrateTree(tree,children(child),nodes,areas,rawLength,thisBranch(end,:),interval);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [path pathLengths newAreas] = integrateBranch(branchCoordinates,areas,startingPos,interval)
path=startingPos; curPos=0; curEdgePos=0; nextPillar=2; curCoord = branchCoordinates(1,:);
edgeVectors = diff(branchCoordinates,1,1); edgeLengths=sqrt(sum(edgeVectors.^2,2)); totalLength=sum(edgeLengths);
curVec=edgeVectors(1,:); curVec = curVec/norm(curVec); nextPillarDistance=edgeLengths(1); newAreas = [];
while curPos<totalLength
xyzSteps = abs((-curCoord+sqrt(curCoord.^2+2*curVec*interval))./(curVec+1e-6));
step = min(max(xyzSteps),nextPillarDistance);
path = [path; path(end,:)+curCoord*step+curVec*step^2/2];
curEdgePos = curEdgePos+step;
curCoord = curCoord+step*curVec;
curPos = curPos+step;
nextPillarDistance = nextPillarDistance-step;
newAreas = [areas(min(nextPillar,size(edgeVectors,1))); newAreas]; % inverted orientation for areas to avoid inversion of array in integrateTree!
if nextPillarDistance<totalLength/1e6 % 1e-6 precision
if nextPillar>size(edgeVectors,1)
break;
end
curCoord=branchCoordinates(nextPillar,:);
curVec=edgeVectors(nextPillar,:); curVec=curVec/norm(curVec);
nextPillarDistance = edgeLengths(nextPillar,:);
nextPillar=nextPillar+1;
curEdgePos=0;
end
end
pathLengths = sqrt(sum(diff(path,1,1).^2,2));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tree = rotateTree(tree,rotMatrix)
for kk = 1:numel(tree)
tree{kk}{3} = tree{kk}{3}*rotMatrix;
if ~isempty(tree{kk}{4}{1})
tree{kk}{4}{1} = tree{kk}{4}{1}*rotMatrix;
tree{kk}{4}{3} = rotMatrix' * tree{kk}{4}{3};
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function rotMatrix = findRotationMatrix(rotAxis,rotAngle)
ux=rotAxis(1); uy=rotAxis(2); uz=rotAxis(3);
rotMatrix = (cos(rotAngle)*eye(3) + sin(rotAngle)*[0 -uz uy;uz 0 -ux;-uy ux 0] + (1-cos(rotAngle))*kron(rotAxis,rotAxis'))';
if any(any(isnan(rotMatrix)))
rotMatrix = eye(3);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tree = calculateDistanceFromSoma(tree, thisNode, parent)
if ~isempty(parent)
reference = tree{parent}{4}{5}(1, 4);
tmp = cumsum([0; tree{thisNode}{4}{2}]);
somaBorder = find(tree{thisNode}{4}{5}(:,19-7)<2, 1);
if ~isempty(somaBorder) && somaBorder>1
tmp(somaBorder:end) = tmp(somaBorder-1);
end
tree{thisNode}{4}{5}(:, 4) = reference + tmp(end) - tmp;
else
tree{thisNode}{4}{5}(1, 4) = 0;
end
children = tree{thisNode}{2};
for kk = 1:numel(children)
tree = calculateDistanceFromSoma(tree, children(kk), thisNode);
end
|
github
|
uygarsumbul/spines-master
|
readDataset_spines_mod.m
|
.m
|
spines-master/repo/readDataset_spines_mod.m
| 21,610 |
utf_8
|
a3561864846b71a1cbd86029910f5e8c
|
function [allTrees, allPAs] = readDataset_spines(code,directory,options)
if ~isfield(options,'normalize') || isempty(options.normalize); normalize = false; else; normalize = options.normalize; end;
if ~isfield(options,'absoluteLengths') || isempty(options.absoluteLengths); absoluteLengths = true; else; absoluteLengths = options.absoluteLengths; end;
if ~isfield(options,'neuronParts') || isempty(options.neuronParts); neuronParts = [-10:10]; else; neuronParts = options.neuronParts; end;
if ~isfield(options,'anisotropyDivisors') || isempty(options.anisotropyDivisors); anisotropyDivisors = [1 1 1]; else; anisotropyDivisors = options.anisotropyDivisors; end;
if ~isfield(options,'SCALECONSTANT') || isempty(options.SCALECONSTANT); SCALECONSTANT = 1; else; SCALECONSTANT = options.SCALECONSTANT; end;
if ~isfield(options,'removeShortLeaves') || isempty(options.removeShortLeaves); removeShortLeaves = false; else; removeShortLeaves = options.removeShortLeaves; end;
if ~isfield(options,'pruneRatio') || isempty(options.pruneRatio); pruneRatio = 1; else; pruneRatio = options.pruneRatio; end;
if ~isfield(options,'removeBranches') || isempty(options.removeBranches); removeBranches = false; else; removeBranches = options.removeBranches; end;
if ~isfield(options,'resolution') || isempty(options.resolution); resolution = [1 1 1]; else; resolution = options.resolution; end;
allTrees = cell(0); allNodesAndEdges = cell(0);
for kk = 1:numel(code)
thisFileName = strcat(directory,code{kk}{1}); %,code{kk}{2});
[nodes,edges,radii,nodeTypes,features,~] = readSWCfile(thisFileName,neuronParts,resolution);
soma = find(nodeTypes==1,1);
for dd=1:3; nodes(:,dd)=nodes(:,dd)-(nodes(soma,dd)); end;
principalAxes = calculatePrincipalAxes(nodes); allPAs(:,kk)=principalAxes(:,1);
features = [features nodeTypes];
nodes(:,1) = nodes(:,1)/anisotropyDivisors(1); nodes(:,2) = nodes(:,2)/anisotropyDivisors(2); nodes(:,3) = nodes(:,3)/anisotropyDivisors(3);
[tree,rawLength,nodes,edges]=generateIrreducibleDoubleLinkedTree(nodes,edges,radii,features,false); % 1:soma, 2:axon, 3:basal dendrite, 4:apical dendrite
if removeShortLeaves; tree = pruneShortLeaves(tree,treeLength(tree)*pruneRatio); end;
if normalize; tree = normalizeNeuron(tree); end;
allTrees{end+1} = tree;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nodes,edges,radii,nodeType,features,abort] = readSWCfile(fileName,validNodeTypes,resolution)
abort = false; nodes = []; edges = []; nodeTypes = [];
validNodeTypes = setdiff(validNodeTypes,1);
[nodeID, nodeType, xPos, yPos, zPos, radii, parentNodeID,d1,d2,f1,f2,f3,f4,f5,f6,f7,f8,f9] = textread(fileName, '%u%d%f%f%f%f%d%d%d%f%f%f%f%f%f%f%f%f','commentstyle', 'shell');
xPos = xPos * resolution(1); yPos = yPos * resolution(2); zPos = zPos * resolution(3);
features = [d1,d2,f1,f2,f3,f4,f5,f6,f7,f8,f9];
if ~any(parentNodeID==-1)
disp(strcat('root not found in ',fileName));
nodes = []; edges = []; radii = []; nodeTypes = []; features = []; abort = true;
return;
end
nodeType(find(parentNodeID==-1))=1; % Every tree should start from a node of type 1 (soma)
firstSomaNode = find(nodeType == 1 & parentNodeID == -1, 1);
somaNodes = find(nodeType == 1); somaX = mean(xPos(somaNodes)); somaY = mean(yPos(somaNodes)); somaZ = mean(zPos(somaNodes));
% set soma radius to 0, to avoid multiple counting of soma volume through different subsets. ignore soma volume
somaRadius = 0; %mean(radii(somaNodes));
xPos(firstSomaNode) = somaX; yPos(firstSomaNode) = somaY; zPos(firstSomaNode) = somaZ; radii(firstSomaNode) = somaRadius; features(firstSomaNode,:) = zeros(1,size(features,2));
parentNodeID(ismember(parentNodeID,somaNodes)) = firstSomaNode; % assign a single soma parent
nodesToDelete = setdiff(somaNodes,firstSomaNode); % delete all the soma nodes except for the firstSomaNode
nodeID(nodesToDelete)=[]; nodeType(nodesToDelete)=[]; xPos(nodesToDelete)=[]; yPos(nodesToDelete)=[]; zPos(nodesToDelete)=[]; radii(nodesToDelete)=[]; parentNodeID(nodesToDelete)=[]; features(nodesToDelete,:)=[];
for kk = 1:numel(nodeID)
while ~any(nodeID==kk)
nodeID(nodeID>kk) = nodeID(nodeID>kk)-1;
parentNodeID(parentNodeID>kk) = parentNodeID(parentNodeID>kk)-1;
end
end
validNodes = nodeID(ismember(nodeType,validNodeTypes));
additionalValidNodes = [];
for kk = 1:numel(validNodes)
thisParentNodeID = parentNodeID(validNodes(kk)); thisParentNodeType = nodeType(thisParentNodeID);
while ~ismember(thisParentNodeType,validNodeTypes)
if thisParentNodeType == 1
break;
end
additionalValidNodes = union(additionalValidNodes, thisParentNodeID); nodeType(thisParentNodeID) = validNodeTypes(1);
thisParentNodeID = parentNodeID(thisParentNodeID); thisParentNodeType = nodeType(thisParentNodeID);
end
end
validNodes = [firstSomaNode; validNodes; additionalValidNodes']; validNodes = unique(validNodes);
nodeID = nodeID(validNodes); nodeType = nodeType(validNodes); parentNodeID = parentNodeID(validNodes);
xPos = xPos(validNodes); yPos = yPos(validNodes); zPos = zPos(validNodes); radii = radii(validNodes); features = features(validNodes, :);
for kk = 1:numel(nodeID)
while ~any(nodeID==kk)
nodeID(nodeID>kk) = nodeID(nodeID>kk)-1;
parentNodeID(parentNodeID>kk) = parentNodeID(parentNodeID>kk)-1;
end
end
nodes = [xPos yPos zPos];
edges = [nodeID parentNodeID];
edges(any(edges==-1,2),:) = [];
%nodeTypes = unique(nodeType)';
%[nodes,edges,radii,features] = removeImproperRootNodes(nodes,edges,radii,features); % remove the root nodes until the first node
%[nodes,edges,radii,features] = removeZeroLengthEdges(nodes,edges,radii,features); % remove zero branches
nodes = nodes + 1; % added on Mar 7, 2012 - band tracing starts at 1 - relevant if the tree will be warped
somaNode = find(nodeType == 1, 1);
% swap on edges
edges(edges==1) = 0; edges(edges==somaNode) = 1; edges(edges==0) = somaNode;
% swap on nodes
tmp = nodes(1,:); nodes(1,:) = nodes(somaNode,:); nodes(somaNode,:) = tmp;
% swap on radii
tmpR = radii(1); radii(1) = radii(somaNode); radii(somaNode) = tmpR;
% swap on features
tmpF = features(1,:); features(1,:) = features(somaNode,:); features(somaNode,:) = tmpF;
% swap on node types
tmpT = nodeType(1); nodeType(1) = nodeType(somaNode,:); nodeType(somaNode,:) = tmpT;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nodes,edges,radii,features] = removeImproperRootNodes(nodes,edges,radii,features)
if size(nodes,1) < 2
return;
end
% node 1 is assigned as the root node
root = 1;
expandedEdges = [edges edges(:,1)];
child = expandedEdges([zeros(size(edges,1),1) edges==root]>0);
while numel(child) < 2
nodes = [nodes(1:root-1,:); nodes(root+1:end,:)];
radii = [radii(1:root-1); radii(root+1:end)];
features = [features(1:root-1,:); features(root+1:end,:)];
edges(any(edges==root,2),:) = [];
edges(edges>root) = edges(edges>root) - 1;
expandedEdges = [edges edges(:,1)];
if child > root
child = child-1;
end
root = child;
child = expandedEdges([zeros(size(edges,1),1) edges==root]>0);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nodes,edges,radii,features] = removeZeroLengthEdges(nodes,edges,radii,features)
kk = 1;
while kk < size(edges,1)
node1 = edges(kk,1); node2 = edges(kk,2);
if norm(nodes(node1,:)-nodes(node2,:)) < 1e-10 % BE CAREFUL / ARBITRARY
edges(edges==node1) = node2;
edges(edges>node1) = edges(edges>node1)-1;
edges(kk,:) = []; % remove edge
nodes(node1,:) = []; % remove node
radii(node1) = []; % remove area
features(node1,:) = []; % remove features
else
kk = kk + 1;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nodes,edges,radii] = removeOutOfBoundsBranches(nodes,edges,radii,bounds)
if size(nodes,1) < 2
return;
end
thisNode=find(nodes(:,1)<bounds.minX | nodes(:,1)>bounds.maxX | nodes(:,2)<bounds.minY | nodes(:,2)>bounds.maxY | nodes(:,3)<bounds.minZ | nodes(:,3)>bounds.maxZ,'first',1);
while ~isempty(thisNode)
selfOrDescendant = selfOrDescendantFromEdges(edges, thisNode, thisNode);
edges(ismember(edges(:,1),selfOrDescendant) | ismember(edges(:,2),selfOrDescendant),:) = [];
nodes(selfOrDescendant,:) = [];
radii(selfOrDescendant) = [];
selfOrDescendent = sort(selfOrDescendant,'descend');
for kk=1:numel(selfOrDescendant)
nn=selfOrDescendant(kk);
edges(edges>nn) = edges(edges>nn)-1;
end
thisNode=find(nodes(:,1)<bounds.minX | nodes(:,1)>bounds.maxX | nodes(:,2)<bounds.minY | nodes(:,2)>bounds.maxY | nodes(:,3)<bounds.minZ | nodes(:,3)>bounds.maxZ,'first',1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function sod = selfOrDescendantFromEdges(edges, sod, node)
children = edges(find(edges(:,1)==node),2);
sod = [sod children];
if ~isempty(children)
for kk=1:numel(children)
sod = selfOrDescendantFromEdges(edges, sod, children(kk));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tree,rawLength,nodes,edges] = generateIrreducibleDoubleLinkedTree(nodes,edges,radii,features,uniformCSAreas)
areas = pi*radii.^2;
% 1 is assumed to be the root node. edges is nx2: each row is [child parent]
h = hist(edges(:,2),[1:size(nodes,1)]); irreducibleNodes = union(find(h~=1),1); % 1 is the root node
% put all the irreducible nodes at the beginning
for kk = 1:numel(irreducibleNodes)
% swap on edges
edges(edges==kk) = 0; edges(edges==irreducibleNodes(kk)) = kk; edges(edges==0) = irreducibleNodes(kk);
% swap on nodes
tmp = nodes(kk,:); nodes(kk,:) = nodes(irreducibleNodes(kk),:); nodes(irreducibleNodes(kk),:) = tmp;
% swap on areas
tmpA = areas(kk); areas(kk) = areas(irreducibleNodes(kk)); areas(irreducibleNodes(kk)) = tmpA;
% swap on features
tmpF = features(kk,:); features(kk,:) = features(irreducibleNodes(kk),:); features(irreducibleNodes(kk),:) = tmpF;
end
numelNodes = numel(irreducibleNodes);
%initialize tree with root as 1
tree{1}{1} = []; tree{1}{3} = nodes(1,:); tree{1}{4}{1} = nodes(1,:); tree{1}{4}{2} = 0; tree{1}{4}{3} = [[0;0;0] [0;0;0]]; tree{1}{4}{4} = 0;
for kk = 1:numelNodes
tree{kk}{2} = [];
end
rawLength = 0;
for kk = 2:numelNodes
tmpParent = edges(find(edges(:,1)==kk),2); % assume that the edges are ordered pairs: (child, parent)
path = nodes(kk,:); thisFeature = features(kk, :);
if uniformCSAreas
pathAreas = 1;
else
pathAreas = (areas(kk)+areas(tmpParent)+sqrt(areas(kk)*areas(tmpParent)))/3;
end
while tmpParent > numelNodes
newTmpParent = edges(find(edges(:,1)==tmpParent),2);
path = [path; nodes(tmpParent,:)]; thisFeature = [thisFeature; features(tmpParent,:)];
if uniformCSAreas
pathAreas = [pathAreas; 1];
else
pathAreas = [pathAreas; (areas(tmpParent)+areas(newTmpParent)+sqrt(areas(tmpParent)*areas(newTmpParent)))/3]; % now modeled as a cylinder
end
tmpParent = newTmpParent;
end
path = [path; nodes(tmpParent,:)]; thisFeature = [thisFeature; features(tmpParent,:)]; rawPathLengths = sqrt(sum(diff(path,1,1).^2,2)); rawLength = rawLength + sum(rawPathLengths);
tree{kk}{1} = tmpParent; tree{tmpParent}{2} = [tree{tmpParent}{2} kk];
tree{kk}{3} = nodes(kk,:);
tree{kk}{4}{1} = path; tree{kk}{4}{2} = rawPathLengths; tree{kk}{4}{4} = pathAreas; tree{kk}{4}{5} = thisFeature;
end
tree = calculateDistanceFromSoma(tree, 1, []);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tree = pruneShortLeaves(tree,lengthThreshold)
if numel(tree)<2
return;
end
root = rootFinder(tree);
leaves = findLeaves(tree); leaves = setdiff(leaves, tree{root}{2})';
leaves = [leaves zeros(size(leaves))];
for kk = 1:size(leaves,1)
leaves(kk,2) = sum(tree{leaves(kk)}{4}{2});
end
leaves = sortrows(leaves,2); leaves = leaves(:,1);
counter = 1;
while counter <= numel(leaves)
if (sum(tree{leaves(counter)}{4}{2}) > lengthThreshold)
leaves(counter) = [];
else
counter = counter + 1;
end
end
for counter = 1:numel(leaves)
leaf = leaves(counter);
if (sum(tree{leaf}{4}{2}) <= lengthThreshold)
parent = tree{leaf}{1}; siblings = setdiff(tree{parent}{2},leaf);
% remove the leaf from the child relationship
tree{parent}{2} = setdiff(tree{parent}{2}, leaf);
% change node numbers of parents/children if larger than this leaf's number
for node = 1:numel(tree)
if tree{node}{1} > leaf
tree{node}{1} = tree{node}{1}-1;
end
children = tree{node}{2};
tree{node}{2}(children > leaf) = children(children > leaf)-1;
end
% update the parent, sibling, leaf numbers
parent(parent>leaf) = parent(parent>leaf)-1;
siblings(siblings>leaf) = siblings(siblings>leaf)-1;
leaves(leaves>leaf) = leaves(leaves>leaf)-1;
% remove leaf from tree
tree(leaf) = [];
% update the root
root = rootFinder(tree);
% if the removal made the parent node a reducible node...
if (numel(siblings) == 1) && (parent ~= root)
% the grandparent removes the reducible parent from the list of children, and inherits the single child
tree{tree{parent}{1}}{2} = [setdiff(tree{tree{parent}{1}}{2},parent) siblings];
% the single child's parent becomes the grandparent
tree{siblings}{1} = tree{parent}{1};
% the single child adds the reducible node's geometric information to itself
tree{siblings}{4}{1} = [tree{siblings}{4}{1}(1:end-1,:); tree{parent}{4}{1}]; % critical nodes
tree{siblings}{4}{2} = [tree{siblings}{4}{2}; tree{parent}{4}{2}]; % lengths
% tree{siblings}{4}{3} = [tree{siblings}{4}{3} tree{parent}{4}{3}(:,2:end)]; % orientations
tree{siblings}{4}{4} = [tree{siblings}{4}{4}; tree{parent}{4}{4}]; % areas
tree{siblings}{4}{5} = [tree{siblings}{4}{5}; tree{parent}{4}{5}]; % features
% if isempty(tree{siblings}{4}{5})
% tree{siblings}{4}{5} = tree{parent}{4}{5};
% else
% tree{siblings}{4}{5} = [tree{siblings}{4}{5}; uint32(tree{parent}{4}{5}(2:end)+numel(tree{siblings}{4}{5})-1)];
% end
% change node numbers of parents/children if larger than the parent's number
for node = 1:numel(tree)
if tree{node}{1} > parent
tree{node}{1} = tree{node}{1}-1;
end
children = tree{node}{2};
tree{node}{2}(children > parent) = children(children > parent)-1;
end
% update leaf numbers
leaves(leaves>parent) = leaves(leaves>parent)-1;
% remove the reducible parent from tree
tree(parent) = [];
end
end
tmpLeaves = leaves(counter+1:end); tmpLeaves = [tmpLeaves zeros(size(tmpLeaves))];
if ~isempty(tmpLeaves)
for kk = 1:size(tmpLeaves,1)
tmpLeaves(kk,2) = sum(tree{tmpLeaves(kk,1)}{4}{2});
end
tmpLeaves = sortrows(tmpLeaves,2);
leaves(counter+1:end) = tmpLeaves(:,1);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [localMass,newNodes] = switchToMassRepresentation(nodes,edges)
localMass = zeros(size(nodes,1),1); newNodes = zeros(size(nodes,1),3);
for kk=1:size(nodes,1);
parent = edges(find(edges(:,1)==kk),2);
if ~isempty(parent)
localMass(kk) = norm(nodes(parent,:)-nodes(kk,:)); newNodes(kk,:) = (nodes(parent,:)+nodes(kk,:))/2;
else
localMass(kk) = 0; newNodes(kk,:) = nodes(kk,:);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function principalAxes = calculatePrincipalAxes(xyz, weights)
if nargin < 2; weights = ones(size(xyz,1),1); end;
% find the inertia tensor
inertiaTensor = zeros(3);
inertiaTensor(1,1) = sum(weights .* (xyz(:,2).^2 + xyz(:,3).^2)); inertiaTensor(2,2) = sum(weights .* (xyz(:,1).^2 + xyz(:,3).^2));
inertiaTensor(3,3) = sum(weights .* (xyz(:,1).^2 + xyz(:,2).^2)); inertiaTensor(1,2) = -sum(weights .* xyz(:,1) .* xyz(:,2));
inertiaTensor(1,3) = -sum(weights .* xyz(:,1) .* xyz(:,3)); inertiaTensor(2,3) = -sum(weights .* xyz(:,2) .* xyz(:,3));
inertiaTensor(2,1) = inertiaTensor(1,2); inertiaTensor(3,1) = inertiaTensor(1,3); inertiaTensor(3,2) = inertiaTensor(2,3);
% find the principal axes of the inertia tensor
[principalAxes, evMatrix] = eig(inertiaTensor);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tr = normalizeNeuron(tr)
% normalize the total dendritic length
lengthOnly = true;
totalLength = treeLength(tr,rootFinder(tr),lengthOnly);
for node = 1:numel(tr)
if ~isempty(tr{node}{4}{2})
tr{node}{4}{1} = tr{node}{4}{1}/totalLength; tr{node}{4}{2} = tr{node}{4}{2}/totalLength; tr{node}{4}{3} = tr{node}{4}{3}/totalLength;
end
tr{node}{3} = tr{node}{3}/totalLength;
end
% normalize the total dendritic volume by changing the cross-sectional areas, and keeping the lengths the same
lengthOnly = false;
totalLength = treeLength(tr,rootFinder(tr),lengthOnly);
for node = 1:numel(tr)
if ~isempty(tr{node}{4}{4})
tr{node}{4}{4} = tr{node}{4}{4}/totalLength;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tree nodes areas rawLength] = integrateTree(tree,node,nodes,areas,rawLength,startingPos,interval)
tree{node}{3} = startingPos;
children = tree{node}{2};
for child = 1:numel(children)
thisBranch = tree{children(child)}{4}{1}; thisBranch = thisBranch(end:-1:1,:);
branchAreas = tree{children(child)}{4}{4}; branchAreas = branchAreas(end:-1:1);
[thisBranch pathLengths branchAreas] = integrateBranch(thisBranch,branchAreas,startingPos,interval);
tree{children(child)}{4}{1} = thisBranch(end:-1:1,:);
nodes = [nodes; tree{children(child)}{4}{1}];
tree{children(child)}{4}{2} = pathLengths(end:-1:1);
tree{children(child)}{4}{4} = branchAreas;
areas = [areas; tree{children(child)}{4}{4}];
rawLength = rawLength+sum(pathLengths);
[tree nodes areas rawLength] = integrateTree(tree,children(child),nodes,areas,rawLength,thisBranch(end,:),interval);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [path pathLengths newAreas] = integrateBranch(branchCoordinates,areas,startingPos,interval)
path=startingPos; curPos=0; curEdgePos=0; nextPillar=2; curCoord = branchCoordinates(1,:);
edgeVectors = diff(branchCoordinates,1,1); edgeLengths=sqrt(sum(edgeVectors.^2,2)); totalLength=sum(edgeLengths);
curVec=edgeVectors(1,:); curVec = curVec/norm(curVec); nextPillarDistance=edgeLengths(1); newAreas = [];
while curPos<totalLength
xyzSteps = abs((-curCoord+sqrt(curCoord.^2+2*curVec*interval))./(curVec+1e-6));
step = min(max(xyzSteps),nextPillarDistance);
path = [path; path(end,:)+curCoord*step+curVec*step^2/2];
curEdgePos = curEdgePos+step;
curCoord = curCoord+step*curVec;
curPos = curPos+step;
nextPillarDistance = nextPillarDistance-step;
newAreas = [areas(min(nextPillar,size(edgeVectors,1))); newAreas]; % inverted orientation for areas to avoid inversion of array in integrateTree!
if nextPillarDistance<totalLength/1e6 % 1e-6 precision
if nextPillar>size(edgeVectors,1)
break;
end
curCoord=branchCoordinates(nextPillar,:);
curVec=edgeVectors(nextPillar,:); curVec=curVec/norm(curVec);
nextPillarDistance = edgeLengths(nextPillar,:);
nextPillar=nextPillar+1;
curEdgePos=0;
end
end
pathLengths = sqrt(sum(diff(path,1,1).^2,2));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tree = rotateTree(tree,rotMatrix)
for kk = 1:numel(tree)
tree{kk}{3} = tree{kk}{3}*rotMatrix;
if ~isempty(tree{kk}{4}{1})
tree{kk}{4}{1} = tree{kk}{4}{1}*rotMatrix;
tree{kk}{4}{3} = rotMatrix' * tree{kk}{4}{3};
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function rotMatrix = findRotationMatrix(rotAxis,rotAngle)
ux=rotAxis(1); uy=rotAxis(2); uz=rotAxis(3);
rotMatrix = (cos(rotAngle)*eye(3) + sin(rotAngle)*[0 -uz uy;uz 0 -ux;-uy ux 0] + (1-cos(rotAngle))*kron(rotAxis,rotAxis'))';
if any(any(isnan(rotMatrix)))
rotMatrix = eye(3);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tree = calculateDistanceFromSoma(tree, thisNode, parent)
if ~isempty(parent)
reference = tree{parent}{4}{5}(1, 4);
tmp = cumsum([0; tree{thisNode}{4}{2}]);
somaBorder = find(tree{thisNode}{4}{5}(:,19-7)<2, 1);
if ~isempty(somaBorder) && somaBorder>1
tmp(somaBorder:end) = tmp(somaBorder-1);
end
tree{thisNode}{4}{5}(:, 4) = reference + tmp(end) - tmp;
else
tree{thisNode}{4}{5}(1, 4) = 0;
end
children = tree{thisNode}{2};
for kk = 1:numel(children)
tree = calculateDistanceFromSoma(tree, children(kk), thisNode);
end
|
github
|
uygarsumbul/spines-master
|
save1000ShuffledTrees.m
|
.m
|
spines-master/repo/save1000ShuffledTrees.m
| 1,830 |
utf_8
|
f5430488baa773ac073930204d1cfc86
|
function save1000ShuffledTrees
code{1}{1} = 'aibs_8_spinerecon_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_9_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_13_mouse2_spinerecon_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_14_stitched_connected_corrected_labeled.eswc'; % added on May 19, 2017
code{end+1}{1} = 'aibs_18_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_19_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_20_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_21_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_22_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_23_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_24_stitched_connected_labeled.eswc';
code{end+1}{1} = 'aibs_25_stitched_connected_labeled.eswc';
directory = '/home/uygar/spines/data/upsampledFinalReconstructions/'; % _updated3-22-17/';
options.resolution = [0.12 0.12 0.1];
options.resolution20x = [0.62 0.62 0.75];
parfor kk = 1:1000
trees = readDataset_spines_mod_shuffleNodes(code,directory,options);
mySaveFunction(kk, trees);
end
trees = readDataset_spines_mod(code,directory,options);
save /home/uygar/spines/data/shuffledTrees/trueTrees.mat trees
function mySaveFunction(kk, trees)
filename = ['/home/uygar/spines/data/shuffledTrees/shuffledTrees_' num2str(kk) '.mat'];
save(filename, 'trees');
|
github
|
JinleiMa/Image-fusion-with-VSM-and-WLS-master
|
RollingGuidanceFilter_Guided.m
|
.m
|
Image-fusion-with-VSM-and-WLS-master/RollingGuidanceFilter_Guided.m
| 2,141 |
utf_8
|
ebf8d74ce32feb253b6ff563aea8ded5
|
%
% Rolling Guidance Filter
%
% res = RollingGuidanceFilter(I,sigma_s,sigma_r,iteration) filters image
% "I" by removing its small structures. The borderline between "small"
% and "large" is determined by the parameter sigma_s. The sigma_r is
% fixed to 0.1. The filter is an iteration process. "iteration" is used
% to control the number of iterations.
%
% Paras:
% @I : input image, DOUBLE image, any # of channels
% @sigma_s : spatial sigma (default 3.0). Controlling the spatial
% weight of bilateral filter and also the filtering scale of
% rolling guidance filter.
% @sigma_r : range sigma (default 0.1). Controlling the range weight of
% bilateral filter.
% @iteration : the iteration number of rolling guidance (default 4).
%
%
% Example
% ==========
% I = im2double(imread('image.png'));
% res = RollingGuidanceFilter(I,3,0.05,4);
% figure, imshow(res);
%
%
% Note
% ==========
% This implementation filters multi-channel/color image by separating its
% channels, so the result of this implementation will be different with
% that in the corresponding paper. To generate the results in the paper,
% please refer to our executable file or C++ implementation on our
% website.
%
% ==========
% The Code is created based on the method described in the following paper:
% [1] "Rolling Guidance Filter", Qi Zhang, Li Xu, Jiaya Jia, European
% Conference on Computer Vision (ECCV), 2014
%
% The code and the algorithm are for non-comercial use only.
%
%
% Author: Qi Zhang ([email protected])
% Date : 08/14/2014
% Version : 1.0
% Copyright 2014, The Chinese University of Hong Kong.
%
function res = RollingGuidanceFilter_Guided(I,sigma_s,sigma_r,iteration)
if ~exist('iteration','var')
iteration = 4;
end
if ~exist('sigma_s','var')
sigma_s = 3;
end
if ~exist('sigma_r','var')
sigma_r = 0.1;
end
res = gaussFilter(I,sigma_s);
for i=1:iteration
for c=1:size(I,3)
G = res(:,:,c);
res(:,:,c) = guidedfilter(G,I(:,:,c),sigma_s,sigma_r^2);
end
end
end
|
github
|
linhan94/robotics-slam-playground-master
|
visual_odometry_skeleton.m
|
.m
|
robotics-slam-playground-master/src/visual_odometry_skeleton.m
| 15,174 |
utf_8
|
b726de421122268eef9e9911a1177c9c
|
clear
import gtsam.*
%% Data Options
NUM_FRAMES = 0; % 0 for all
NUM_INITIALISE = 10; %TODO find a nice values
WINDOW_SIZE = 6; %TODO find a nice value
MAX_ITERATIONS = 30;
LOOP_THRESHOLD = 1000;
ADD_NOISE = true; % Try false for debugging (only)
SAVE_FIGURES = true; % Save plots to hard-drive?
PLOT_LANDMARKS = true;
PLOT_FEATURES = true;
outdir = strcat(fileparts(mfilename('fullpath')), '/output/');
blenddir = strcat(fileparts(mfilename('fullpath')), '/../blender/');
mkdir(outdir);
%% Load data
global features_gt;
global camera_gt;
global camera_out;
global landmarks_gt;
global landmarks_out;
global landmarks_used;
global calib;
camera_gt = dlmread(strcat(blenddir, 'camera_poses.txt')); % each line is: frame_id,x,y,z,qx,qy,qz,qw
camera_out = zeros(size(camera_gt)); % each line is: frame_id,x,y,z,qx,qy,qz,qw
features_gt = dlmread(strcat(blenddir, 'tracks_dist.txt')); % each line is list of: landmark_id,feature_x,feature_y,feature_d,...
landmarks_gt = dlmread(strcat(blenddir, 'landmarks_3d.txt')); % each line is: x,y,z
landmarks_out = zeros(size(landmarks_gt)); % each line is: x,y,z,last_seen_frame_id
% This table stores the last usage of each landmark (frame_id, whenever the
% landmark was visible somewhere in the window).
% The structure is used for two purposes:
% 1st: Use landmarks only once, when building a window
% 2nd: Decide whether a loop occured, based on stored frame-IDs
landmarks_used = zeros(size(landmarks_gt,1),1);
if NUM_FRAMES < 1
NUM_FRAMES = size(camera_gt, 1);
end
calib = Cal3_S2( ...
634.8, ... % focal
634.8, ... % focal
0, ... % skew
480,... % center
270); % center
% Setup noise
measurementNoiseSigma = 2;
pointNoiseSigma = 3;
pointPriorNoise = noiseModel.Isotropic.Sigma(3,pointNoiseSigma);
measurementNoise = noiseModel.Isotropic.Sigma(2,measurementNoiseSigma);
GPSNoise = noiseModel.Diagonal.Sigmas([2; 2; 2]); %set up GPS noise with a standard deviation of 2m in position in (x,y,z)
%% Sanity checks
assert(WINDOW_SIZE <= NUM_INITIALISE);
assert(NUM_FRAMES <= size(camera_gt,1));
%% Setup figure
figure;
% Optionally choose size according to your needs
%set(gcf,'units','pixel');
%set(gcf,'papersize',[960,960]);
%set(gcf,'paperpositionmode','auto');
subplot(2,1,1); % Top for map, bottom for video
axis equal;
hold on;
% Plot ground-truth trajectory as green line
plot3(camera_gt(:,2), camera_gt(:,3), camera_gt(:,4), 'g');
%% Initialise with ground-truth data
% Of course, this can not be done in real-life(!)
for i=1:NUM_INITIALISE
fprintf('Loading ground-truth data for frame %d...\n', i);
camera_out(i,:) = camera_gt(i,:);
f = 1; % column of current feature ID
while f < size(features_gt, 2) && features_gt(i,f) > 0
feature_id = features_gt(i,f);
% Initialise the point near ground-truth
if ~in_map(feature_id)
landmarks_out(feature_id,1:3) = landmarks_gt(feature_id,1:3);
landmarks_used(feature_id,1) = NUM_INITIALISE;
end
f = f + 4;
end
end
%% Add noise to 2D observations
if ADD_NOISE
disp('Adding noise...')
for i=1:NUM_FRAMES
% 2D features
f = 1;
while f < size(features_gt, 2) && features_gt(i,f) > 0
features_gt(i,f+1:f+2) = features_gt(i,f+1:f+2) + measurementNoiseSigma * randn(1,2);
f = f + 4;
end
end
end
%% Visual-Odometry part: Optimise a window for each new frame
for i=NUM_INITIALISE+1:NUM_FRAMES
tic % measure time
%% Load image (for plotting only)
subplot(2,1,2);
hold off;
img = imread(strcat(blenddir, '/frames/',sprintf('%04d',i),'.jpg'));
imshow(img);
subplot(2,1,1);
%% Adding new frame
window_start = i - WINDOW_SIZE;
fprintf('Building graph for frame %d (Starting at %d)...\n', i, window_start);
graph = NonlinearFactorGraph;
initialEstimate = Values;
landmarks_in_window = 0;
redetected_landmarks = 0;
for j=window_start:i
if j==i
% Initialise assuming constant motion model
lPose = get_pose(camera_out,j-1);
llPose = get_pose(camera_out,j-2);
rPose = llPose.between(lPose);
cam_pose = lPose.compose(rPose);
% Initialise from last pose (method above is better)
% cam_pose = get_pose(camera_out,j-1);
else
cam_pose = get_pose(camera_out,j);
end
% GTSAM does not ensure that the rotation component of a pose is
% orthogonal, hence do this manually (important!)
rdet = det(cam_pose.rotation.matrix);
if abs(rdet-1) > 0.0001
fprintf('Correcting R-det: %f \n', rdet);
[U,S,V]=svd(cam_pose.rotation.matrix);
% TODO, correct pose (single line missing)
cam_pose = Pose3(Rot3(U*V'),cam_pose.translation());
end
% Add GPS prior
% if (j==1||j==250 || j==500)
% graph.add(PoseTranslationPrior3D(symbol('p', j), get_pose(camera_gt,j), GPSNoise)); %get location from gound-truth data
% end
% TODO Initialise camera poses -- do not use positional priors though!
initialEstimate.insert(symbol('p', j), cam_pose);
% The following loop iterates over the (2D) features within frame 'j'
f = 1; % column of current feature ID
while f < size(features_gt, 2) && features_gt(j,f) > 0
feature_id = features_gt(j,f);
% Initialise the point near ground-truth
if landmarks_used(feature_id) ~= i
if in_map(feature_id)
% This landmark is known to the system
% Was it seen in the current window or do we have a
% potential loop-closure?
if landmarks_used(feature_id) < window_start
redetected_landmarks = redetected_landmarks+1;
% Skip redetected landmarks and potentially close
% loop later
f = f + 4;
continue;
else
% The landmark was already seen, when building the window of frames
feature_pos = get_landmark(landmarks_out, feature_id);
end
else
% "Triangulate"
rep = [(features_gt(j,f+1) - calib.px) / calib.fx, (features_gt(j,f+2) - calib.py) / calib.fy, 1] * features_gt(j,f+3);
rep = cam_pose.matrix * [rep'; 1];
feature_pos = Point3(rep(1),rep(2),rep(3));
% Ground-Truth position: Don't do this, unless you are debugging!
% feature_pos = Point3(landmarks_gt(feature_id,1),landmarks_gt(feature_id,2),landmarks_gt(feature_id,3));
end
% Prior & initial estimate
% TODO
graph.add(PriorFactorPoint3(symbol('f',feature_id), feature_pos, pointPriorNoise));
initialEstimate.insert(symbol('f',feature_id), feature_pos);
landmarks_used(feature_id) = i;
landmarks_in_window = landmarks_in_window + 1;
end
% TODO Measurements
graph.add(GenericProjectionFactorCal3_S2(Point2(features_gt(j,f+1), features_gt(j,f+2)), measurementNoise, symbol('p', j), symbol('f', feature_id), calib));
f = f + 4;
end
subplot(2,1,1);
end
%% Loop-closing
if redetected_landmarks > LOOP_THRESHOLD
% Build a more complex graph if a loop was detected
disp('Loop detected! Building large graph...');
% Add ALL landmarks seen so far
disp('Adding all landmarks...');
for l = 1:size(landmarks_used,1)
%% TODO
if landmarks_used(l) ~= i
if in_map(l)
feature_pos = get_landmark(landmarks_out, l);
graph.add(PriorFactorPoint3(symbol('f',l), feature_pos, pointPriorNoise));
initialEstimate.insert(symbol('f',l), feature_pos);
landmarks_used(l) = i;
end
end
%%
end
% Add measurements
disp('Adding all poses & observations...');
graph.add(GenericProjectionFactorCal3_S2(Point2(features_gt(j,f+1), features_gt(j,f+2)),...
measurementNoise, symbol('p', j), symbol('f', feature_id), calib));
for j = 1:window_start-1
%% TODO
cam_pose = get_pose(camera_out,j);
rdet = det(cam_pose.rotation.matrix);
if abs(rdet-1) > 0.0001
fprintf('Correcting R-det: %f \n', rdet);
[U,S,V]=svd(cam_pose.rotation.matrix);
cam_pose = Pose3(Rot3(U*V'),cam_pose.translation());
end
% Add GPS prior
% if (j==1||j==250 || j==500)
% graph.add(PoseTranslationPrior3D(symbol('p', j), get_pose(camera_gt,j), GPSNoise));
% end
initialEstimate.insert(symbol('p', j), cam_pose);
f = 1; % column of current feature ID
while f < size(features_gt, 2) && features_gt(j,f) > 0
%% TODO
feature_id = features_gt(j,f);
graph.add(GenericProjectionFactorCal3_S2(Point2(features_gt(j,f+1), features_gt(j,f+2)),measurementNoise, symbol('p', j), symbol('f', feature_id), calib));
%%
f = f + 4;
end
end
% The following code has to be informed that the window is bigger now
window_start = 1;
end
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate);
initialError = graph.error(initialEstimate);
%% Plot ground-truth and initial estimate of markers (2D)
subplot(2,1,2);
hold on;
plot_features(i, 'g+'); % ground-truth
%plot_features(i, 'cx', cam_pose, landmarks_gt); % initial estimate
subplot(2,1,1);
%% Plot ground-truth and initial estimate in 3D
% plot3(camera_gt(i,2),camera_gt(i,3),camera_gt(i,4), 'g+');
% plot3(cam_pose.translation().x,cam_pose.translation().y,cam_pose.translation().z,'cx');
%optimizer.optimizeSafely;
last_error = initialError;
for m=1:MAX_ITERATIONS
optimizer.iterate();
%% Print iteration information
result = optimizer.values();
error = graph.error(result);
fprintf('Initial error: %f, %d.-iteration error: %f (%3.3f %%)\n', initialError, m, error, 100 * error/ initialError);
%% Optionally, plot the movement and orientation of the pose during optimisation
% (slow)
% pose = result.atPose3(symbol('p', i));
% pos = pose.translation();
% mat = pose.matrix;
% h = mat * [0;0;1;1]; % This point indicates the orientation of the orientation of the pose
% h = [h(1:3)'; pos.x,pos.y,pos.z];
% plot3(pos.x,pos.y,pos.z, 'bo');
% plot3(h(:,1),h(:,2),h(:,3), 'b.');
%% Optionally, plot the movement of features during optimisation
% (slow)
% subplot(2,1,2);
% hold on;
% plot_features(i, 'r.', pose, landmarks_gt);
% subplot(2,1,1);
% Break conditions
if error < 10 %TODO find a nice value
break
end
if last_error - error < 1 %TODO find a nice value
break
end
last_error = error;
end
% result = optimizer.values();
% Optionally, retrieve marginals for plotting
% marginals = Marginals(graph, result);
error = graph.error(result);
fprintf('Initial error: %f, Final error: %f (%3.3f %%)\n', initialError, error, 100 * error/ initialError);
fprintf('Landmarks in window: %d\n', landmarks_in_window);
% Read all poses that were optimised, 'pose' represents the most recent
% frame afterwards
for j=window_start:i
pose = result.at(symbol('p', j));
pos = pose.translation();
quat = pose.rotation().quaternion();
camera_out(j,:) = [camera_gt(j,1) pos.x pos.y pos.z quat(2) quat(3) quat(4) quat(1)];
end
% Read landmarks
for l=1:length(landmarks_used)
if landmarks_used(l) == i
mark = result.at(symbol('f', l));
landmarks_out(l,:) = [mark.x mark.y mark.z];
end
end
%% Plotting
% Plot markers on last frame
if PLOT_FEATURES
subplot(2,1,2);
hold on;
plot_features(i, 'rx', pose, landmarks_out);
subplot(2,1,1);
end
% Plot trajectory
try delete(tplt); end
tplt = plot3(camera_out(1:i,2),camera_out(1:i,3),camera_out(1:i,4), 'r*');
% Plot all landmarks
if PLOT_LANDMARKS
try delete(mplt); end
mplt = plot3(landmarks_out(:,1),landmarks_out(:,2),landmarks_out(:,3), ...
'Marker','.', 'Markersize',1, 'Color','black','LineStyle','none');
end
% Update figure and optionally save
drawnow
if SAVE_FIGURES
saveas(gcf, strcat(outdir, sprintf('plot-%04d',i),'.png'));
end
toc
end
% Export results to hard-drive
disp('Exporting final results...');
dlmwrite(strcat(outdir, 'vo_output_poses.txt'),camera_out,'delimiter','\t','precision',6);
%% Some helper functions:
function p = get_pose(matrix, index)
import gtsam.*;
p = Pose3(Rot3.Quaternion(matrix(index,8), matrix(index,5), matrix(index,6), matrix(index,7)), ...
Point3(matrix(index,2), matrix(index,3), matrix(index,4)));
end
function p = get_landmark(matrix, index)
import gtsam.*;
p = Point3(matrix(index,1),matrix(index,2),matrix(index,3));
end
% Returns true if a landmark was previously mapped, otherwise false
function t = in_map(landmark_index)
import gtsam.*;
global landmarks_used;
if landmarks_used(landmark_index) > 0
t = true;
else
t = false;
end
end
% Project 'landmarks' into the fhe frame with ID 'frame_id', using the 'camera_pose'
% If no pose or landmarks are provided, ground-truth feature-locations are plotted.
function plot_features(frame_id, style, camera_pose, landmarks)
import gtsam.*;
global calib;
global features_gt;
% Plot ground-truth if no pose or landmarks are provided
plot_gt = false;
if nargin < 3
plot_gt = true;
else
camera = SimpleCamera(camera_pose, calib);
end
% Iterate features
f = 1; % column of current feature ID
show_warning = false;
while f < size(features_gt, 2) && features_gt(frame_id,f) > 0
if plot_gt
plot(features_gt(frame_id,f+1),features_gt(frame_id,f+2),'g+');
else
feature_id = features_gt(frame_id,f);
try
point2d = camera.project(Point3(landmarks(feature_id,1),landmarks(feature_id,2),landmarks(feature_id,3)));
plot(point2d.x,point2d.y,style);
catch
show_warning = true;
end
end
f = f+4;
end
if show_warning
warning('Could not plot all features.');
end
end
|
github
|
hsuisme/TensorCompletion-master
|
lrr.m
|
.m
|
TensorCompletion-master/lib/algorithms/lrr.m
| 3,529 |
utf_8
|
f415a5263180f31dc35bdec719b7bdf4
|
function [X,E,obj,err,iter] = lrr(A,B,lambda,opts)
% Solve the Low-Rank Representation minimization problem by M-ADMM
%
% min_{X,E} ||X||_*+lambda*loss(E), s.t. A=BX+E
% loss(E) = ||E||_1 or 0.5*||E||_F^2 or ||E||_{2,1}
%
% ---------------------------------------------
% Input:
% A - d*na matrix
% B - d*nb matrix
% lambda - >0, parameter
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1': loss(E) = ||E||_1
% 'l2': loss(E) = 0.5*||E||_F^2
% 'l21' (default): loss(E) = ||E||_{2,1}
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% X - nb*na matrix
% E - d*na matrix
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 18/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l21';
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,na] = size(A);
[~,nb] = size(B);
X = zeros(nb,na);
E = zeros(d,na);
J = X;
Y1 = E;
Y2 = X;
BtB = B'*B;
BtA = B'*A;
I = eye(nb);
invBtBI = (BtB+I)\I;
iter = 0;
for iter = 1 : max_iter
Xk = X;
Ek = E;
Jk = J;
% first super block {J,E}
[J,nuclearnormJ] = prox_nuclear(X+Y2/mu,1/mu);
if strcmp(loss,'l1')
E = prox_l1(A-B*X+Y1/mu,lambda/mu);
elseif strcmp(loss,'l21')
E = prox_l21(A-B*X+Y1/mu,lambda/mu);
elseif strcmp(loss,'l2')
E = mu*(A-B*X+Y1/mu)/(lambda+mu);
else
error('not supported loss function');
end
% second super block {X}
X = invBtBI*(B'*(Y1/mu-E)+BtA-Y2/mu+J);
dY1 = A-B*X-E;
dY2 = X-J;
chgX = max(max(abs(Xk-X)));
chgE = max(max(abs(Ek-E)));
chgJ = max(max(abs(Jk-J)));
chg = max([chgX chgE chgJ max(abs(dY1(:))) max(abs(dY2(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = nuclearnormJ+lambda*comp_loss(E,loss);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = nuclearnormJ+lambda*comp_loss(E,loss);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
function out = comp_loss(E,loss)
switch loss
case 'l1'
out = norm(E(:),1);
case 'l21'
out = 0;
for i = 1 : size(E,2)
out = out + norm(E(:,i));
end
case 'l2'
out = 0.5*norm(E,'fro')^2;
end
|
github
|
hsuisme/TensorCompletion-master
|
groupl1.m
|
.m
|
TensorCompletion-master/lib/algorithms/groupl1.m
| 2,730 |
utf_8
|
71035c51c2852449c2ddbc3091fe41ed
|
function [X,obj,err,iter] = groupl1(A,B,G,opts)
% Solve the group l1-minimization problem by ADMM
%
% min_X \sum_{i=1}^n\sum_{g in G} ||(x_i)_g||_2, s.t. AX=B
%
% x_i is the i-th column of X
% ---------------------------------------------
% Input:
% A - d*na matrix
% B - d*nb matrix
% G - a cell indicates a partition of 1:na
% opts - Structure value in Matlab. The fields are
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% X - na*nb matrix
% obj - objective function value
% err - residual ||AX-B||_F
% iter - number of iterations
%
% version 1.0 - 18/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,na] = size(A);
[~,nb] = size(B);
X = zeros(na,nb);
Z = X;
Y1 = zeros(d,nb);
Y2 = X;
AtB = A'*B;
I = eye(na);
invAtAI = (A'*A+I)\I;
iter = 0;
for iter = 1 : max_iter
Xk = X;
Zk = Z;
% update X
for i = 1 : nb
X(:,i) = prox_gl1(Z(:,i)-Y2(:,i)/mu,G,1/mu);
end
% update Z
Z = invAtAI*(-(A'*Y1-Y2)/mu+AtB+X);
dY1 = A*Z-B;
dY2 = X-Z;
chgX = max(max(abs(Xk-X)));
chgZ = max(max(abs(Zk-Z)));
chg = max([chgX chgZ max(abs(dY1(:))) max(abs(dY2(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = compute_obj(X,G);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = compute_obj(X,G);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
function obj = compute_obj(X,G)
obj = 0;
for i = 1 : size(X,2)
x = X(:,i);
for j = 1 : length(G)
obj = obj + norm(x(G{j}));
end
end
|
github
|
hsuisme/TensorCompletion-master
|
rpca.m
|
.m
|
TensorCompletion-master/lib/algorithms/rpca.m
| 2,944 |
utf_8
|
1930326cf4bf01c764909897658853ca
|
function [L,S,obj,err,iter] = rpca(X,lambda,opts)
% Solve the Robust Principal Component Analysis minimization problem by M-ADMM
%
% min_{L,S} ||L||_*+lambda*loss(S), s.t. X=L+S
% loss(S) = ||S||_1 or ||S||_{2,1}
%
% ---------------------------------------------
% Input:
% X - d*n matrix
% lambda - >0, parameter
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1' (default): loss(S) = ||S||_1
% 'l21': loss(S) = ||S||_{2,1}
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% L - d*n matrix
% S - d*n matrix
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 19/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l1';
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,n] = size(X);
L = zeros(d,n);
S = L;
Y = L;
iter = 0;
for iter = 1 : max_iter
Lk = L;
Sk = S;
% update L
[L,nuclearnormL] = prox_nuclear(-S+X-Y/mu,1/mu);
% update S
if strcmp(loss,'l1')
S = prox_l1(-L+X-Y/mu,lambda/mu);
elseif strcmp(loss,'l21')
S = prox_l21(-L+X-Y/mu,lambda/mu);
else
error('not supported loss function');
end
dY = L+S-X;
chgL = max(max(abs(Lk-L)));
chgS = max(max(abs(Sk-S)));
chg = max([chgL chgS max(abs(dY(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = nuclearnormL+lambda*comp_loss(S,loss);
err = norm(dY,'fro');
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y = Y + mu*dY;
mu = min(rho*mu,max_mu);
end
obj = nuclearnormL+lambda*comp_loss(S,loss);
err = norm(dY,'fro');
function out = comp_loss(E,loss)
switch loss
case 'l1'
out = norm(E(:),1);
case 'l21'
out = 0;
for i = 1 : size(E,2)
out = out + norm(E(:,i));
end
end
|
github
|
hsuisme/TensorCompletion-master
|
tracelasso.m
|
.m
|
TensorCompletion-master/lib/algorithms/tracelasso.m
| 2,583 |
utf_8
|
536f5ce74c82d5f183c3c967e14d6cf6
|
function [x,obj,err,iter] = tracelasso(A,b,opts)
% Solve the trace Lasso minimization problem by ADMM
%
% min_x ||A*Diag(x)||_*, s.t. Ax=b
%
% ---------------------------------------------
% Input:
% A - d*n matrix
% b - d*1 vector
% opts - Structure value in Matlab. The fields are
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% x - n*1 vector
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 18/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,n] = size(A);
x = zeros(n,1);
Z = zeros(d,n);
Y1 = zeros(d,1);
Y2 = Z;
Atb = A'*b;
AtA = A'*A;
invAtA = (AtA+diag(diag(AtA)))\eye(n);
iter = 0;
for iter = 1 : max_iter
xk = x;
Zk = Z;
% update x
x = invAtA*(-A'*Y1/mu+Atb+diagAtB(A,-Y2/mu+Z));
% update Z
[Z,nuclearnorm] = prox_nuclear(A*diag(x)+Y2/mu,1/mu);
dY1 = A*x-b;
dY2 = A*diag(x)-Z;
chgx = max(abs(xk-x));
chgZ = max(abs(Zk-Z));
chg = max([chgx chgZ max(abs(dY1(:))) max(abs(dY2(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = nuclearnorm;
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = nuclearnorm;
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
function v = diagAtB(A,B)
% A, B - d*n matrices
% v = diag(A'*B), n*1 vector
n = size(A,2);
v = zeros(n,1);
for i = 1 : n
v(i) = A(:,i)'*B(:,i);
end
|
github
|
hsuisme/TensorCompletion-master
|
groupl1R.m
|
.m
|
TensorCompletion-master/lib/algorithms/groupl1R.m
| 3,417 |
utf_8
|
daad367680f297bfd5a82197bec8b72d
|
function [X,E,obj,err,iter] = groupl1R(A,B,G,lambda,opts)
% Solve the group l1 norm regularized minimization problem by M-ADMM
%
% min_{X,E} loss(E)+lambda*\sum_{i=1}^n\sum_{g in G} ||(x_i)_g||_2, s.t. AX+E=B
% x_i is the i-th column of X
% loss(E) = ||E||_1 or 0.5*||E||_F^2
% ---------------------------------------------
% Input:
% A - d*na matrix
% B - d*nb matrix
% G - a cell indicates a partition of 1:na
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1' (default): loss(E) = ||E||_1
% 'l2': loss(E) = 0.5*||E||_F^2
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% X - na*nb matrix
% E - d*nb matrix
% obj - objective function value
% err - residual ||AX+E-B||_F
% iter - number of iterations
%
% version 1.0 - 18/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l1';
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,na] = size(A);
[~,nb] = size(B);
X = zeros(na,nb);
E = zeros(d,nb);
Z = X;
Y1 = E;
Y2 = X;
AtB = A'*B;
I = eye(na);
invAtAI = (A'*A+I)\I;
iter = 0;
for iter = 1 : max_iter
Xk = X;
Ek = E;
Zk = Z;
% first super block {X,E}
for i = 1 : nb
X(:,i) = prox_gl1(Z(:,i)-Y2(:,i)/mu,G,1/mu);
end
if strcmp(loss,'l1')
E = prox_l1(B-A*Z-Y1/mu,1/mu);
elseif strcmp(loss,'l2')
E = mu*(B-A*Z-Y1/mu)/(1+mu);
else
error('not supported loss function');
end
% second super block {Z}
Z = invAtAI*(-A'*(Y1/mu+E)+AtB+Y2/mu+X);
dY1 = A*Z+E-B;
dY2 = X-Z;
chgX = max(max(abs(Xk-X)));
chgE = max(max(abs(Ek-E)));
chgZ = max(max(abs(Zk-Z)));
chg = max([chgX chgE chgZ max(abs(dY1(:))) max(abs(dY2(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = comp_loss(E,loss)+lambda*compute_groupl1(X,G);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = comp_loss(E,loss)+lambda*compute_groupl1(X,G);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
function obj = compute_groupl1(X,G)
obj = 0;
for i = 1 : size(X,2)
x = X(:,i);
for j = 1 : length(G)
obj = obj + norm(x(G{j}));
end
end
|
github
|
hsuisme/TensorCompletion-master
|
mlap.m
|
.m
|
TensorCompletion-master/lib/algorithms/mlap.m
| 4,761 |
utf_8
|
ad408cb013b2ffa24973702254b4d4e0
|
function [Z,E,obj,err,iter] = mlap(X,lambda,alpha,opts)
% Solve the Multi-task Low-rank Affinity Pursuit (MLAP) minimization problem by M-ADMM
%
% Reference: Cheng, Bin, Guangcan Liu, Jingdong Wang, Zhongyang Huang, and Shuicheng Yan.
% Multi-task low-rank affinity pursuit for image segmentation. ICCV, 2011.
%
% min_{Z_i,E_i} \sum_{i=1}^K (||Z_i||_*+lambda*loss(E_i))+alpha*||Z||_{2,1},
% s.t. X_i=X_i*Z_i+E_i, i=1,...,K.
% loss(E) = ||E||_1 or 0.5*||E||_F^2 or ||E||_{2,1}
%
% ---------------------------------------------
% Input:
% X - d*n*K tensor
% lambda - >0, parameter
% alpha - >0, parameter
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1': loss(E) = ||E||_1
% 'l2': loss(E) = 0.5*||E||_F^2
% 'l21' (default): loss(E) = ||E||_{2,1}
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% Z - n*n*K tensor
% E - d*n*K tensor
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 18/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l21';
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,n,K] = size(X);
Z = zeros(n,n,K);
E = zeros(d,n,K);
J = Z;
S = Z;
Y = E;
W = Z;
V = Z;
dY = Y;
XmXS = E;
XtX = zeros(n,n,K);
invXtXI = zeros(n,n,K);
I = eye(n);
for i = 1 : K
XtX(:,:,i) = X(:,:,i)'*X(:,:,i);
invXtXI(:,:,i) = (XtX(:,:,i)+I)\I;
end
nuclearnormJ = zeros(K,1);
iter = 0;
for iter = 1 : max_iter
Zk = Z;
Ek = E;
Jk = J;
Sk = S;
% first super block {J,S}
for i = 1 : K
[J(:,:,i),nuclearnormJ(i)] = prox_nuclear(Z(:,:,i)+W(:,:,i)/mu,1/mu);
S(:,:,i) = invXtXI(:,:,i)*(XtX(:,:,i)-X(:,:,i)'*(E(:,:,i)-Y(:,:,i)/mu)+Z(:,:,i)+(V(:,:,i)-W(:,:,i))/mu);
end
% second super block {Z,E}
Z = prox_tensor_l21((J+S-(W+V)/mu)/2,alpha/(2*mu));
for i = 1 : K
XmXS(:,:,i) = X(:,:,i)-X(:,:,i)*S(:,:,i);
end
if strcmp(loss,'l1')
for i = 1 : K
E(:,:,i) = prox_l1(XmXS(:,:,i)+Y(:,:,i)/mu,lambda/mu);
end
elseif strcmp(loss,'l21')
for i = 1 : K
E(:,:,i) = prox_l21(XmXS(:,:,i)+Y(:,:,i)/mu,lambda/mu);
end
elseif strcmp(loss,'l2')
for i = 1 : K
E = (XmXS(:,:,i)+Y(:,:,i)/mu) / (lambda/mu+1);
end
else
error('not supported loss function');
end
dY = XmXS-E;
dW = Z-J;
dV = Z-S;
chgZ = max(abs(Zk(:)-Z(:)));
chgE = max(abs(Ek(:)-E(:)));
chgJ = max(abs(Jk(:)-J(:)));
chgS = max(abs(Sk(:)-S(:)));
chg = max([chgZ chgE chgJ chgS max(abs(dY(:))) max(abs(dW(:))) max(abs(dV(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = sum(nuclearnormJ)+lambda*comp_loss(E,loss)+alpha*comp_loss(Z,'l21');
err = sqrt(norm(dY(:))^2+norm(dW(:))^2+norm(dV(:))^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y = Y + mu*dY;
W = W + mu*dW;
V = V + mu*dV;
mu = min(rho*mu,max_mu);
end
obj = sum(nuclearnormJ)+lambda*comp_loss(E,loss)+alpha*comp_loss(Z,'l21');
err = sqrt(norm(dY(:))^2+norm(dW(:))^2+norm(dV(:))^2);
function X = prox_tensor_l21(B,lambda)
% proximal operator of tensor l21-norm, i.e., the sum of the l2 norm of all
% tubes of a tensor.
%
% X - n1*n2*n3 tensor
% B - n1*n2*n3 tensor
%
% min_X lambda*\sum_{i=1}^n1\sum_{j=1}^n2 ||X(i,j,:)||_2 + 0.5*||X-B||_F^2
[n1,n2,n3] = size(B);
X = zeros(n1,n2,n3);
for i = 1 : n1
for j = 1 : n2
v = B(i,j,:);
nxi = norm(v(:));
if nxi > lambda
X(i,j,:) = (1-lambda/nxi)*B(i,j,:);
end
end
end
|
github
|
hsuisme/TensorCompletion-master
|
lrsr.m
|
.m
|
TensorCompletion-master/lib/algorithms/lrsr.m
| 3,838 |
utf_8
|
8bd2f6bd0800a5a346a5a4bfbb011702
|
function [X,E,obj,err,iter] = lrsr(A,B,lambda1,lambda2,opts)
% Solve the Low-Rank and Sparse Representation (LRSR) minimization problem by M-ADMM
%
% min_{X,E} ||X||_*+lambda1*||X||_1+lambda2*loss(E), s.t. A=BX+E
% loss(E) = ||E||_1 or 0.5*||E||_F^2 or ||E||_{2,1}
% ---------------------------------------------
% Input:
% A - d*na matrix
% B - d*nb matrix
% lambda1 - >0, parameter
% lambda2 - >0, parameter
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1': loss(E) = ||E||_1
% 'l2': loss(E) = 0.5*||E||_F^2
% 'l21' (default): loss(E) = ||E||_{2,1}
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% X - nb*na matrix
% E - d*na matrix
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 18/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l21';
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,na] = size(A);
[~,nb] = size(B);
X = zeros(nb,na);
E = zeros(d,na);
Z = X;
J = X;
Y1 = E;
Y2 = X;
Y3 = X;
BtB = B'*B;
BtA = B'*A;
I = eye(nb);
invBtBI = (BtB+2*I)\I;
iter = 0;
for iter = 1 : max_iter
Xk = X;
Zk = Z;
Ek = E;
Jk = J;
% first super block {Z,J,E}
[Z,nuclearnormZ] = prox_nuclear(X+Y2/mu,1/mu);
J = prox_l1(X+Y3/mu,lambda1/mu);
if strcmp(loss,'l1')
E = prox_l1(A-B*X+Y1/mu,lambda2/mu);
elseif strcmp(loss,'l21')
E = prox_l21(A-B*X+Y1/mu,lambda2/mu);
elseif strcmp(loss,'l2')
E = mu*(A-B*X+Y1/mu)/(lambda2+mu);
else
error('not supported loss function');
end
% second super block {X}
X = invBtBI*(B'*(Y1/mu-E)+BtA-(Y2+Y3)/mu+Z+J);
dY1 = A-B*X-E;
dY2 = X-Z;
dY3 = X-J;
chgX = max(max(abs(Xk-X)));
chgE = max(max(abs(Ek-E)));
chgZ = max(max(abs(Zk-Z)));
chgJ = max(max(abs(Jk-J)));
chg = max([chgX chgE chgZ chgJ max(abs(dY1(:))) max(abs(dY2(:))) max(abs(dY3(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = nuclearnormZ+lambda1*norm(J(:),1)+lambda2*comp_loss(E,loss);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2+norm(dY3,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = nuclearnormZ+lambda1*norm(J(:),1)+lambda2*comp_loss(E,loss);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2+norm(dY3,'fro')^2);
function out = comp_loss(E,normtype)
switch normtype
case 'l1'
out = norm(E(:),1);
case 'l21'
out = 0;
for i = 1 : size(E,2)
out = out + norm(E(:,i));
end
case 'l2'
out = 0.5*norm(E,'fro')^2;
end
|
github
|
hsuisme/TensorCompletion-master
|
fusedl1R.m
|
.m
|
TensorCompletion-master/lib/algorithms/fusedl1R.m
| 3,714 |
utf_8
|
145be29163c05b2175bd848ba37d18d1
|
function [x,e,obj,err,iter] = fusedl1R(A,b,lambda1,lambda2,opts)
% Solve the fused Lasso regularized minimization problem by ADMM
%
% min_{x,e} loss(e) + lambda1*||x||_1 + lambda2*\sum_{i=2}^p |x_i-x_{i-1}|,
% loss(e) = ||e||_1 or 0.5*||e||_2^2
%
% ---------------------------------------------
% Input:
% A - d*n matrix
% b - d*1 vector
% lambda1 - >=0, parameter
% lambda2 - >=0, parameter
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1' (default): loss(e) = ||e||_1
% 'l2': loss(E) = 0.5*||e||_2^2
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% x - n*1 vector
% e - d*1 vector
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 20/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l1'; % default
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,n] = size(A);
x = zeros(n,1);
e = zeros(d,1);
z = x;
Y1 = e;
Y2 = x;
Atb = A'*b;
I = eye(n);
invAtAI = (A'*A+I)\I;
% parameters for "flsa" (from SLEP package)
tol2 = 1e-10; % the duality gap for termination
max_step = 50; % the maximal number of iterations
x0 = zeros(n-1,1); % the starting point
iter = 0;
for iter = 1 : max_iter
xk = x;
ek = e;
zk = z;
% first super block {x,e}
% flsa solves min_x 1/2||x-v||_2^2+lambda1*||x||_1+lambda2*\sum_{i=2}^p |x_i-x_{i-1}|,
x = flsa(z-Y2/mu,x0,lambda1/mu,lambda2/mu,n,max_step,tol2,1,6);
if strcmp(loss,'l1')
e = prox_l1(b-A*z-Y1/mu,1/mu);
elseif strcmp(loss,'l2')
e = mu*(b-A*z-Y1/mu)/(1+mu);
else
error('not supported loss function');
end
% second super block {Z}
z = invAtAI*(-A'*(Y1/mu+e)+Atb+Y2/mu+x);
dY1 = A*z+e-b;
dY2 = x-z;
chgx = max(abs(xk-x));
chge = max(abs(ek-e));
chgz = max(abs(zk-z));
chg = max([chgx chge chgz max(abs(dY1(:))) max(abs(dY2(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = comp_loss(e,loss)+comp_fusedl1(x,lambda1,lambda2);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = comp_loss(e,loss)+comp_fusedl1(x,lambda1,lambda2);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
function f = comp_fusedl1(x,lambda1,lambda2)
% compute f = lambda1*||x||_1 + lambda2*\sum_{i=2}^p |x_i-x_{i-1}|.
% x - p*1 vector
f = 0;
p = length(x);
for i = 2 : p
f = f+abs(x(i)-x(i-1));
end
f = lambda1*norm(x,1)+lambda2*f;
|
github
|
hsuisme/TensorCompletion-master
|
fusedl1.m
|
.m
|
TensorCompletion-master/lib/algorithms/fusedl1.m
| 3,027 |
utf_8
|
e180c20b97ac834bfde5d505c23bdb1e
|
function [x,obj,err,iter] = fusedl1(A,b,lambda,opts)
% Solve the fused Lasso (Fused L1) minimization problem by ADMM
%
% min_x ||x||_1 + lambda*\sum_{i=2}^p |x_i-x_{i-1}|,
% s.t. Ax=b
%
% ---------------------------------------------
% Input:
% A - d*n matrix
% b - d*1 vector
% lambda - >=0, parameter
% opts - Structure value in Matlab. The fields are
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% x - n*1 vector
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 20/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,n] = size(A);
x = zeros(n,1);
z = x;
Y1 = zeros(d,1);
Y2 = x;
Atb = A'*b;
I = eye(n);
invAtAI = (A'*A+I)\I;
% parameters for "flsa" (from SLEP package)
tol2 = 1e-10; % the duality gap for termination
max_step = 50; % the maximal number of iterations
x0 = zeros(n-1,1); % the starting point
iter = 0;
for iter = 1 : max_iter
xk = x;
zk = z;
% update x.
% flsa solves min_x 1/2||x-v||_2^2+lambda1*||x||_1+lambda2*\sum_{i=2}^p |x_i-x_{i-1}|
x = flsa(z-Y2/mu,x0,1/mu,lambda/mu,n,max_step,tol2,1,6);
% update z
z = invAtAI*(-A'*Y1/mu+Atb+Y2/mu+x);
dY1 = A*z-b;
dY2 = x-z;
chgx = max(abs(xk-x));
chgz = max(abs(zk-z));
chg = max([chgx chgz max(abs(dY1(:))) max(abs(dY2(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = comp_fusedl1(x,1,lambda);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = comp_fusedl1(x,1,lambda);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
function f = comp_fusedl1(x,lambda1,lambda2)
% compute f = lambda1*||x||_1 + lambda2*\sum_{i=2}^p |x_i-x_{i-1}|.
% x - p*1 vector
f = 0;
p = length(x);
for i = 2 : p
f = f+abs(x(i)-x(i-1));
end
f = lambda1*norm(x,1)+lambda2*f;
|
github
|
hsuisme/TensorCompletion-master
|
tracelassoR.m
|
.m
|
TensorCompletion-master/lib/algorithms/tracelassoR.m
| 3,247 |
utf_8
|
8bc2e00ce23aaa6478590829303525b6
|
function [x,e,obj,err,iter] = tracelassoR(A,b,lambda,opts)
% Solve the trace Lasso regularized minimization problem by M-ADMM
%
% min_{x,e} loss(e)+lambda*||A*Diag(x)||_*, s.t. Ax+e=b
% loss(e) = ||e||_1 or 0.5*||e||_2^2
% ---------------------------------------------
% Input:
% A - d*n matrix
% b - d*1 vector
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1' (default): loss(e) = ||e||_1
% 'l2': loss(e) = 0.5*||e||_2^2
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% x - n*1 vector
% e - d*1 vector
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 18/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l1';
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,n] = size(A);
x = zeros(n,1);
Z = zeros(d,n);
e = zeros(d,1);
Y1 = e;
Y2 = Z;
Atb = A'*b;
AtA = A'*A;
invAtA = (AtA+diag(diag(AtA)))\eye(n);
iter = 0;
for iter = 1 : max_iter
xk = x;
ek = e;
Zk = Z;
% first super block {Z,e}
[Z,nuclearnorm] = prox_nuclear(A*diag(x)-Y2/mu,lambda/mu);
if strcmp(loss,'l1')
e = prox_l1(b-A*x-Y1/mu,1/mu);
elseif strcmp(loss,'l2')
e = mu*(b-A*x-Y1/mu)/(1+mu);
else
error('not supported loss function');
end
% second super block {x}
x = invAtA*(-A'*(Y1/mu+e)+Atb+diagAtB(A,Y2/mu+Z));
dY1 = A*x+e-b;
dY2 = Z-A*diag(x);
chgx = max(abs(xk-x));
chge = max(abs(ek-e));
chgZ = max(max(abs(Zk-Z)));
chg = max([chgx chge chgZ max(abs(dY1(:))) max(abs(dY2(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = comp_loss(e,loss)+lambda*nuclearnorm;
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = comp_loss(e,loss)+lambda*nuclearnorm;
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
function v = diagAtB(A,B)
% A, B - d*n matrices
% v = diag(A'*B), n*1 vector
n = size(A,2);
v = zeros(n,1);
for i = 1 : n
v(i) = A(:,i)'*B(:,i);
end
|
github
|
hsuisme/TensorCompletion-master
|
latlrr.m
|
.m
|
TensorCompletion-master/lib/algorithms/latlrr.m
| 3,636 |
utf_8
|
51a08d8f2880a125c6d1dda689ba9f7f
|
function [Z,L,obj,err,iter] = latlrr(X,lambda,opts)
% Solve the Latent Low-Rank Representation by M-ADMM
%
% min_{Z,L,E} ||Z||_*+||L||_*+lambda*loss(E),
% s.t., XZ+LX-X=E.
% loss(E) = ||E||_1 or 0.5*||E||_F^2 or ||E||_{2,1}
% ---------------------------------------------
% Input:
% X - d*n matrix
% lambda - >0, parameter
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1' (default): loss(E) = ||E||_1
% 'l2': loss(E) = 0.5*||E||_F^2
% 'l21': loss(E) = ||E||_{2,1}
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% Z - n*n matrix
% L - d*d matrix
% E - d*n matrix
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 19/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l1';
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
eta1 = 1.02*2*norm(X,2)^2; % for Z
eta2 = eta1; % for L
eta3 = 1.02*2; % for E
[d,n] = size(X);
E = zeros(d,n);
Z = zeros(n,n);
L = zeros(d,d);
Y = E;
XtX = X'*X;
XXt = X*X';
iter = 0;
for iter = 1 : max_iter
Lk = L;
Ek = E;
Zk = Z;
% first super block {Z}
[Z,nuclearnormZ] = prox_nuclear(Zk-(X'*(Y/mu+L*X-X-E)+XtX*Z)/eta1,1/(mu*eta1));
% second super block {L,E}
temp = Lk-((Y/mu+X*Z-Ek)*X'+Lk*XXt-XXt)/eta2;
[L,nuclearnormL] = prox_nuclear(temp,1/(mu*eta2));
if strcmp(loss,'l1')
E = prox_l1(Ek+(Y/mu+X*Z+Lk*X-X-Ek)/eta3,lambda/(mu*eta3));
elseif strcmp(loss,'l21')
E = prox_l21(Ek+(Y/mu+X*Z+Lk*X-X-Ek)/eta3,lambda/(mu*eta3));
elseif strcmp(loss,'l2')
E = (Y+mu*(X*Z+Lk*X-X+(eta3-1)*Ek))/(lambda+mu*eta3);
else
error('not supported loss function');
end
dY = X*Z+L*X-X-E;
chgL = max(max(abs(Lk-L)));
chgE = max(max(abs(Ek-E)));
chgZ = max(max(abs(Zk-Z)));
chg = max([chgL chgE chgZ max(abs(dY(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = nuclearnormZ+nuclearnormL+lambda*comp_loss(E,loss);
err = norm(dY,'fro')^2;
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y = Y + mu*dY;
mu = min(rho*mu,max_mu);
end
obj = nuclearnormZ+nuclearnormZ+lambda*comp_loss(E,loss);
err = norm(dY,'fro')^2;
function out = comp_loss(E,loss)
switch loss
case 'l1'
out = norm(E(:),1);
case 'l21'
out = 0;
for i = 1 : size(E,2)
out = out + norm(E(:,i));
end
case 'l2'
out = 0.5*norm(E,'fro')^2;
end
|
github
|
gingsmith/fmtl-master
|
split_data.m
|
.m
|
fmtl-master/util/split_data.m
| 1,207 |
utf_8
|
667b79186ed24019b82fc2ae7e0e5e84
|
%% FUNCTION split_data
% Splitting multi-task data into training / testing by percentage.
%
%% INPUT
% X: {n * d} * t - input matrix
% Y: {n * 1} * t - output matrix
% percent: percentage of the splitting range (0, 1)
%
%% OUTPUT
% X_train: the split of X that has the specified percent of samples
% Y_train: the split of Y that has the specified percent of samples
% X_test: the split of X that has the remaining samples
% Y_test: the split of Y that has the remaining samples
% selIdx: the selection index of for X_train and Y_train for each task
%%
function [X_train, Y_train, X_test, Y_test, selIdx] = split_data(X, Y, percent)
if percent > 1 || percent < 0
error('splitting percentage error')
end
task_num = length(X);
selIdx = cell(task_num, 0);
X_train = cell(task_num, 0);
Y_train = cell(task_num, 0);
X_test = cell(task_num, 0);
Y_test = cell(task_num, 0);
for t = 1:task_num
task_sample_size = length(Y{t});
tSelIdx = randperm(task_sample_size) < task_sample_size * percent;
selIdx{t} = tSelIdx;
X_train{t} = X{t}(tSelIdx,:);
Y_train{t} = Y{t}(tSelIdx,:);
X_test{t} = X{t}(~tSelIdx,:);
Y_test{t} = Y{t}(~tSelIdx,:);
end
|
github
|
tyger2020/HAWC-master
|
submit.m
|
.m
|
HAWC-master/machine-learning-ex2/ex2/submit.m
| 1,605 |
utf_8
|
9b63d386e9bd7bcca66b1a3d2fa37579
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'logistic-regression';
conf.itemName = 'Logistic Regression';
conf.partArrays = { ...
{ ...
'1', ...
{ 'sigmoid.m' }, ...
'Sigmoid Function', ...
}, ...
{ ...
'2', ...
{ 'costFunction.m' }, ...
'Logistic Regression Cost', ...
}, ...
{ ...
'3', ...
{ 'costFunction.m' }, ...
'Logistic Regression Gradient', ...
}, ...
{ ...
'4', ...
{ 'predict.m' }, ...
'Predict', ...
}, ...
{ ...
'5', ...
{ 'costFunctionReg.m' }, ...
'Regularized Logistic Regression Cost', ...
}, ...
{ ...
'6', ...
{ 'costFunctionReg.m' }, ...
'Regularized Logistic Regression Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
y = sin(X(:,1) + X(:,2)) > 0;
if partId == '1'
out = sprintf('%0.5f ', sigmoid(X));
elseif partId == '2'
out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
elseif partId == '3'
[cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
out = sprintf('%0.5f ', grad);
elseif partId == '4'
out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
elseif partId == '5'
out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
elseif partId == '6'
[cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
out = sprintf('%0.5f ', grad);
end
end
|
github
|
tyger2020/HAWC-master
|
submitWithConfiguration.m
|
.m
|
HAWC-master/machine-learning-ex2/ex2/lib/submitWithConfiguration.m
| 3,734 |
utf_8
|
84d9a81848f6d00a7aff4f79bdbb6049
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf( ...
'!! Submission failed: unexpected error: %s\n', ...
e.message);
fprintf('!! Please try again later.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
params = {'jsonBody', body};
responseBody = urlread(submissionUrl, 'post', params);
response = loadjson(responseBody);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
tyger2020/HAWC-master
|
savejson.m
|
.m
|
HAWC-master/machine-learning-ex2/ex2/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
tyger2020/HAWC-master
|
loadjson.m
|
.m
|
HAWC-master/machine-learning-ex2/ex2/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
tyger2020/HAWC-master
|
loadubjson.m
|
.m
|
HAWC-master/machine-learning-ex2/ex2/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
tyger2020/HAWC-master
|
saveubjson.m
|
.m
|
HAWC-master/machine-learning-ex2/ex2/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
tyger2020/HAWC-master
|
submit.m
|
.m
|
HAWC-master/machine-learning-ex1 - Copy/ex1/submit.m
| 1,876 |
utf_8
|
8d1c467b830a89c187c05b121cb8fbfd
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'linear-regression';
conf.itemName = 'Linear Regression with Multiple Variables';
conf.partArrays = { ...
{ ...
'1', ...
{ 'warmUpExercise.m' }, ...
'Warm-up Exercise', ...
}, ...
{ ...
'2', ...
{ 'computeCost.m' }, ...
'Computing Cost (for One Variable)', ...
}, ...
{ ...
'3', ...
{ 'gradientDescent.m' }, ...
'Gradient Descent (for One Variable)', ...
}, ...
{ ...
'4', ...
{ 'featureNormalize.m' }, ...
'Feature Normalization', ...
}, ...
{ ...
'5', ...
{ 'computeCostMulti.m' }, ...
'Computing Cost (for Multiple Variables)', ...
}, ...
{ ...
'6', ...
{ 'gradientDescentMulti.m' }, ...
'Gradient Descent (for Multiple Variables)', ...
}, ...
{ ...
'7', ...
{ 'normalEqn.m' }, ...
'Normal Equations', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId)
% Random Test Cases
X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))'];
Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2));
X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25];
Y2 = Y1.^0.5 + Y1;
if partId == '1'
out = sprintf('%0.5f ', warmUpExercise());
elseif partId == '2'
out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]'));
elseif partId == '3'
out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10));
elseif partId == '4'
out = sprintf('%0.5f ', featureNormalize(X2(:,2:4)));
elseif partId == '5'
out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]'));
elseif partId == '6'
out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10));
elseif partId == '7'
out = sprintf('%0.5f ', normalEqn(X2, Y2));
end
end
|
github
|
tyger2020/HAWC-master
|
submitWithConfiguration.m
|
.m
|
HAWC-master/machine-learning-ex1 - Copy/ex1/lib/submitWithConfiguration.m
| 3,734 |
utf_8
|
84d9a81848f6d00a7aff4f79bdbb6049
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf( ...
'!! Submission failed: unexpected error: %s\n', ...
e.message);
fprintf('!! Please try again later.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
params = {'jsonBody', body};
responseBody = urlread(submissionUrl, 'post', params);
response = loadjson(responseBody);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
tyger2020/HAWC-master
|
savejson.m
|
.m
|
HAWC-master/machine-learning-ex1 - Copy/ex1/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
tyger2020/HAWC-master
|
loadjson.m
|
.m
|
HAWC-master/machine-learning-ex1 - Copy/ex1/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
tyger2020/HAWC-master
|
loadubjson.m
|
.m
|
HAWC-master/machine-learning-ex1 - Copy/ex1/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
tyger2020/HAWC-master
|
saveubjson.m
|
.m
|
HAWC-master/machine-learning-ex1 - Copy/ex1/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
tyger2020/HAWC-master
|
savejson.m
|
.m
|
HAWC-master/machine-learning-ex4/ex4/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
tyger2020/HAWC-master
|
loadjson.m
|
.m
|
HAWC-master/machine-learning-ex4/ex4/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
tyger2020/HAWC-master
|
loadubjson.m
|
.m
|
HAWC-master/machine-learning-ex4/ex4/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
tyger2020/HAWC-master
|
saveubjson.m
|
.m
|
HAWC-master/machine-learning-ex4/ex4/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
tyger2020/HAWC-master
|
submitWithConfiguration.m
|
.m
|
HAWC-master/ex3/lib/submitWithConfiguration.m
| 3,734 |
utf_8
|
84d9a81848f6d00a7aff4f79bdbb6049
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf( ...
'!! Submission failed: unexpected error: %s\n', ...
e.message);
fprintf('!! Please try again later.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
params = {'jsonBody', body};
responseBody = urlread(submissionUrl, 'post', params);
response = loadjson(responseBody);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
tyger2020/HAWC-master
|
savejson.m
|
.m
|
HAWC-master/ex3/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
tyger2020/HAWC-master
|
loadjson.m
|
.m
|
HAWC-master/ex3/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
tyger2020/HAWC-master
|
loadubjson.m
|
.m
|
HAWC-master/ex3/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
tyger2020/HAWC-master
|
saveubjson.m
|
.m
|
HAWC-master/ex3/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
shawnngtq/machine-learning-master
|
submit.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week04/Programming Assignment/machine-learning-ex3/ex3/submit.m
| 1,567 |
utf_8
|
1dba733a05282b2db9f2284548483b81
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'multi-class-classification-and-neural-networks';
conf.itemName = 'Multi-class Classification and Neural Networks';
conf.partArrays = { ...
{ ...
'1', ...
{ 'lrCostFunction.m' }, ...
'Regularized Logistic Regression', ...
}, ...
{ ...
'2', ...
{ 'oneVsAll.m' }, ...
'One-vs-All Classifier Training', ...
}, ...
{ ...
'3', ...
{ 'predictOneVsAll.m' }, ...
'One-vs-All Classifier Prediction', ...
}, ...
{ ...
'4', ...
{ 'predict.m' }, ...
'Neural Network Prediction Function' ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxdata)
% Random Test Cases
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
y = sin(X(:,1) + X(:,2)) > 0;
Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ...
1 1 ; 1 2 ; 2 1 ; 2 2 ; ...
-1 1 ; -1 2 ; -2 1 ; -2 2 ; ...
1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ];
ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]';
t1 = sin(reshape(1:2:24, 4, 3));
t2 = cos(reshape(1:2:40, 4, 5));
if partId == '1'
[J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
elseif partId == '2'
out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1));
elseif partId == '3'
out = sprintf('%0.5f ', predictOneVsAll(t1, Xm));
elseif partId == '4'
out = sprintf('%0.5f ', predict(t1, t2, Xm));
end
end
|
github
|
shawnngtq/machine-learning-master
|
submitWithConfiguration.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week04/Programming Assignment/machine-learning-ex3/ex3/lib/submitWithConfiguration.m
| 3,734 |
utf_8
|
84d9a81848f6d00a7aff4f79bdbb6049
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf( ...
'!! Submission failed: unexpected error: %s\n', ...
e.message);
fprintf('!! Please try again later.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
params = {'jsonBody', body};
responseBody = urlread(submissionUrl, 'post', params);
response = loadjson(responseBody);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
shawnngtq/machine-learning-master
|
savejson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week04/Programming Assignment/machine-learning-ex3/ex3/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
shawnngtq/machine-learning-master
|
loadjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week04/Programming Assignment/machine-learning-ex3/ex3/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
loadubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week04/Programming Assignment/machine-learning-ex3/ex3/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
saveubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week04/Programming Assignment/machine-learning-ex3/ex3/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
shawnngtq/machine-learning-master
|
submit.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week05/Programming Assignment/machine-learning-ex4/ex4/submit.m
| 1,635 |
utf_8
|
ae9c236c78f9b5b09db8fbc2052990fc
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'neural-network-learning';
conf.itemName = 'Neural Networks Learning';
conf.partArrays = { ...
{ ...
'1', ...
{ 'nnCostFunction.m' }, ...
'Feedforward and Cost Function', ...
}, ...
{ ...
'2', ...
{ 'nnCostFunction.m' }, ...
'Regularized Cost Function', ...
}, ...
{ ...
'3', ...
{ 'sigmoidGradient.m' }, ...
'Sigmoid Gradient', ...
}, ...
{ ...
'4', ...
{ 'nnCostFunction.m' }, ...
'Neural Network Gradient (Backpropagation)', ...
}, ...
{ ...
'5', ...
{ 'nnCostFunction.m' }, ...
'Regularized Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = reshape(3 * sin(1:1:30), 3, 10);
Xm = reshape(sin(1:32), 16, 2) / 5;
ym = 1 + mod(1:16,4)';
t1 = sin(reshape(1:2:24, 4, 3));
t2 = cos(reshape(1:2:40, 4, 5));
t = [t1(:) ; t2(:)];
if partId == '1'
[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);
out = sprintf('%0.5f ', J);
elseif partId == '2'
[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);
out = sprintf('%0.5f ', J);
elseif partId == '3'
out = sprintf('%0.5f ', sigmoidGradient(X));
elseif partId == '4'
[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
elseif partId == '5'
[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
end
end
|
github
|
shawnngtq/machine-learning-master
|
submitWithConfiguration.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week05/Programming Assignment/machine-learning-ex4/ex4/lib/submitWithConfiguration.m
| 3,734 |
utf_8
|
84d9a81848f6d00a7aff4f79bdbb6049
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf( ...
'!! Submission failed: unexpected error: %s\n', ...
e.message);
fprintf('!! Please try again later.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
params = {'jsonBody', body};
responseBody = urlread(submissionUrl, 'post', params);
response = loadjson(responseBody);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
shawnngtq/machine-learning-master
|
savejson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week05/Programming Assignment/machine-learning-ex4/ex4/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
shawnngtq/machine-learning-master
|
loadjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week05/Programming Assignment/machine-learning-ex4/ex4/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
loadubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week05/Programming Assignment/machine-learning-ex4/ex4/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
saveubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week05/Programming Assignment/machine-learning-ex4/ex4/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
shawnngtq/machine-learning-master
|
submit.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week06/Programming Assignment/machine-learning-ex5/ex5/submit.m
| 1,765 |
utf_8
|
b1804fe5854d9744dca981d250eda251
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'regularized-linear-regression-and-bias-variance';
conf.itemName = 'Regularized Linear Regression and Bias/Variance';
conf.partArrays = { ...
{ ...
'1', ...
{ 'linearRegCostFunction.m' }, ...
'Regularized Linear Regression Cost Function', ...
}, ...
{ ...
'2', ...
{ 'linearRegCostFunction.m' }, ...
'Regularized Linear Regression Gradient', ...
}, ...
{ ...
'3', ...
{ 'learningCurve.m' }, ...
'Learning Curve', ...
}, ...
{ ...
'4', ...
{ 'polyFeatures.m' }, ...
'Polynomial Feature Mapping', ...
}, ...
{ ...
'5', ...
{ 'validationCurve.m' }, ...
'Validation Curve', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)'];
y = sin(1:3:30)';
Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)'];
yval = sin(1:10)';
if partId == '1'
[J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
out = sprintf('%0.5f ', J);
elseif partId == '2'
[J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
out = sprintf('%0.5f ', grad);
elseif partId == '3'
[error_train, error_val] = ...
learningCurve(X, y, Xval, yval, 1);
out = sprintf('%0.5f ', [error_train(:); error_val(:)]);
elseif partId == '4'
[X_poly] = polyFeatures(X(2,:)', 8);
out = sprintf('%0.5f ', X_poly);
elseif partId == '5'
[lambda_vec, error_train, error_val] = ...
validationCurve(X, y, Xval, yval);
out = sprintf('%0.5f ', ...
[lambda_vec(:); error_train(:); error_val(:)]);
end
end
|
github
|
shawnngtq/machine-learning-master
|
submitWithConfiguration.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week06/Programming Assignment/machine-learning-ex5/ex5/lib/submitWithConfiguration.m
| 3,734 |
utf_8
|
84d9a81848f6d00a7aff4f79bdbb6049
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf( ...
'!! Submission failed: unexpected error: %s\n', ...
e.message);
fprintf('!! Please try again later.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
params = {'jsonBody', body};
responseBody = urlread(submissionUrl, 'post', params);
response = loadjson(responseBody);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
shawnngtq/machine-learning-master
|
savejson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week06/Programming Assignment/machine-learning-ex5/ex5/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
shawnngtq/machine-learning-master
|
loadjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week06/Programming Assignment/machine-learning-ex5/ex5/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
loadubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week06/Programming Assignment/machine-learning-ex5/ex5/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
saveubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week06/Programming Assignment/machine-learning-ex5/ex5/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
shawnngtq/machine-learning-master
|
submit.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week02/Programming Assignment/machine-learning-ex1/ex1/submit.m
| 1,882 |
utf_8
|
a6e3fa010429b5a6b4ee97447dcf50b9
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'linear-regression';
conf.itemName = 'Linear Regression with Multiple Variables';
conf.partArrays = { ...
{ ...
'1', ...
{ 'warmUpExercise.m' }, ...
'Warm-up Exercise', ...
}, ...
{ ...
'2', ...
{ 'computeCost.m' }, ...
'Computing Cost (for One Variable)', ...
}, ...
{ ...
'3', ...
{ 'gradientDescent.m' }, ...
'Gradient Descent (for Multiple Variables)', ...
}, ...
{ ...
'4', ...
{ 'featureNormalize.m' }, ...
'Feature Normalization', ...
}, ...
{ ...
'5', ...
{ 'computeCostMulti.m' }, ...
'Computing Cost (for Multiple Variables)', ...
}, ...
{ ...
'6', ...
{ 'gradientDescentMulti.m' }, ...
'Gradient Descent (for Multiple Variables)', ...
}, ...
{ ...
'7', ...
{ 'normalEqn.m' }, ...
'Normal Equations', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId)
% Random Test Cases
X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))'];
Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2));
X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25];
Y2 = Y1.^0.5 + Y1;
if partId == '1'
out = sprintf('%0.5f ', warmUpExercise());
elseif partId == '2'
out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]'));
elseif partId == '3'
out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10));
elseif partId == '4'
out = sprintf('%0.5f ', featureNormalize(X2(:,2:4)));
elseif partId == '5'
out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]'));
elseif partId == '6'
out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10));
elseif partId == '7'
out = sprintf('%0.5f ', normalEqn(X2, Y2));
end
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.