plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
shawnngtq/machine-learning-master
|
submitWithConfiguration.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week02/Programming Assignment/machine-learning-ex1/ex1/lib/submitWithConfiguration.m
| 3,734 |
utf_8
|
84d9a81848f6d00a7aff4f79bdbb6049
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf( ...
'!! Submission failed: unexpected error: %s\n', ...
e.message);
fprintf('!! Please try again later.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
params = {'jsonBody', body};
responseBody = urlread(submissionUrl, 'post', params);
response = loadjson(responseBody);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
shawnngtq/machine-learning-master
|
savejson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week02/Programming Assignment/machine-learning-ex1/ex1/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
shawnngtq/machine-learning-master
|
loadjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week02/Programming Assignment/machine-learning-ex1/ex1/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
loadubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week02/Programming Assignment/machine-learning-ex1/ex1/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
saveubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week02/Programming Assignment/machine-learning-ex1/ex1/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
shawnngtq/machine-learning-master
|
submit.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week07/Programming Assignment/machine-learning-ex6/ex6/submit.m
| 1,318 |
utf_8
|
bfa0b4ffb8a7854d8e84276e91818107
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'support-vector-machines';
conf.itemName = 'Support Vector Machines';
conf.partArrays = { ...
{ ...
'1', ...
{ 'gaussianKernel.m' }, ...
'Gaussian Kernel', ...
}, ...
{ ...
'2', ...
{ 'dataset3Params.m' }, ...
'Parameters (C, sigma) for Dataset 3', ...
}, ...
{ ...
'3', ...
{ 'processEmail.m' }, ...
'Email Preprocessing', ...
}, ...
{ ...
'4', ...
{ 'emailFeatures.m' }, ...
'Email Feature Extraction', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
x1 = sin(1:10)';
x2 = cos(1:10)';
ec = 'the quick brown fox jumped over the lazy dog';
wi = 1 + abs(round(x1 * 1863));
wi = [wi ; wi];
if partId == '1'
sim = gaussianKernel(x1, x2, 2);
out = sprintf('%0.5f ', sim);
elseif partId == '2'
load('ex6data3.mat');
[C, sigma] = dataset3Params(X, y, Xval, yval);
out = sprintf('%0.5f ', C);
out = [out sprintf('%0.5f ', sigma)];
elseif partId == '3'
word_indices = processEmail(ec);
out = sprintf('%d ', word_indices);
elseif partId == '4'
x = emailFeatures(wi);
out = sprintf('%d ', x);
end
end
|
github
|
shawnngtq/machine-learning-master
|
porterStemmer.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week07/Programming Assignment/machine-learning-ex6/ex6/porterStemmer.m
| 9,902 |
utf_8
|
7ed5acd925808fde342fc72bd62ebc4d
|
function stem = porterStemmer(inString)
% Applies the Porter Stemming algorithm as presented in the following
% paper:
% Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14,
% no. 3, pp 130-137
% Original code modeled after the C version provided at:
% http://www.tartarus.org/~martin/PorterStemmer/c.txt
% The main part of the stemming algorithm starts here. b is an array of
% characters, holding the word to be stemmed. The letters are in b[k0],
% b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since
% matlab begins indexing by 1 instead of 0). k is readjusted downwards as
% the stemming progresses. Zero termination is not in fact used in the
% algorithm.
% To call this function, use the string to be stemmed as the input
% argument. This function returns the stemmed word as a string.
% Lower-case string
inString = lower(inString);
global j;
b = inString;
k = length(b);
k0 = 1;
j = k;
% With this if statement, strings of length 1 or 2 don't go through the
% stemming process. Remove this conditional to match the published
% algorithm.
stem = b;
if k > 2
% Output displays per step are commented out.
%disp(sprintf('Word to stem: %s', b));
x = step1ab(b, k, k0);
%disp(sprintf('Steps 1A and B yield: %s', x{1}));
x = step1c(x{1}, x{2}, k0);
%disp(sprintf('Step 1C yields: %s', x{1}));
x = step2(x{1}, x{2}, k0);
%disp(sprintf('Step 2 yields: %s', x{1}));
x = step3(x{1}, x{2}, k0);
%disp(sprintf('Step 3 yields: %s', x{1}));
x = step4(x{1}, x{2}, k0);
%disp(sprintf('Step 4 yields: %s', x{1}));
x = step5(x{1}, x{2}, k0);
%disp(sprintf('Step 5 yields: %s', x{1}));
stem = x{1};
end
% cons(j) is TRUE <=> b[j] is a consonant.
function c = cons(i, b, k0)
c = true;
switch(b(i))
case {'a', 'e', 'i', 'o', 'u'}
c = false;
case 'y'
if i == k0
c = true;
else
c = ~cons(i - 1, b, k0);
end
end
% mseq() measures the number of consonant sequences between k0 and j. If
% c is a consonant sequence and v a vowel sequence, and <..> indicates
% arbitrary presence,
% <c><v> gives 0
% <c>vc<v> gives 1
% <c>vcvc<v> gives 2
% <c>vcvcvc<v> gives 3
% ....
function n = measure(b, k0)
global j;
n = 0;
i = k0;
while true
if i > j
return
end
if ~cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
while true
while true
if i > j
return
end
if cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
n = n + 1;
while true
if i > j
return
end
if ~cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
end
% vowelinstem() is TRUE <=> k0,...j contains a vowel
function vis = vowelinstem(b, k0)
global j;
for i = k0:j,
if ~cons(i, b, k0)
vis = true;
return
end
end
vis = false;
%doublec(i) is TRUE <=> i,(i-1) contain a double consonant.
function dc = doublec(i, b, k0)
if i < k0+1
dc = false;
return
end
if b(i) ~= b(i-1)
dc = false;
return
end
dc = cons(i, b, k0);
% cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant
% and also if the second c is not w,x or y. this is used when trying to
% restore an e at the end of a short word. e.g.
%
% cav(e), lov(e), hop(e), crim(e), but
% snow, box, tray.
function c1 = cvc(i, b, k0)
if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0))
c1 = false;
else
if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y')
c1 = false;
return
end
c1 = true;
end
% ends(s) is TRUE <=> k0,...k ends with the string s.
function s = ends(str, b, k)
global j;
if (str(length(str)) ~= b(k))
s = false;
return
end % tiny speed-up
if (length(str) > k)
s = false;
return
end
if strcmp(b(k-length(str)+1:k), str)
s = true;
j = k - length(str);
return
else
s = false;
end
% setto(s) sets (j+1),...k to the characters in the string s, readjusting
% k accordingly.
function so = setto(s, b, k)
global j;
for i = j+1:(j+length(s))
b(i) = s(i-j);
end
if k > j+length(s)
b((j+length(s)+1):k) = '';
end
k = length(b);
so = {b, k};
% rs(s) is used further down.
% [Note: possible null/value for r if rs is called]
function r = rs(str, b, k, k0)
r = {b, k};
if measure(b, k0) > 0
r = setto(str, b, k);
end
% step1ab() gets rid of plurals and -ed or -ing. e.g.
% caresses -> caress
% ponies -> poni
% ties -> ti
% caress -> caress
% cats -> cat
% feed -> feed
% agreed -> agree
% disabled -> disable
% matting -> mat
% mating -> mate
% meeting -> meet
% milling -> mill
% messing -> mess
% meetings -> meet
function s1ab = step1ab(b, k, k0)
global j;
if b(k) == 's'
if ends('sses', b, k)
k = k-2;
elseif ends('ies', b, k)
retVal = setto('i', b, k);
b = retVal{1};
k = retVal{2};
elseif (b(k-1) ~= 's')
k = k-1;
end
end
if ends('eed', b, k)
if measure(b, k0) > 0;
k = k-1;
end
elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0)
k = j;
retVal = {b, k};
if ends('at', b, k)
retVal = setto('ate', b(k0:k), k);
elseif ends('bl', b, k)
retVal = setto('ble', b(k0:k), k);
elseif ends('iz', b, k)
retVal = setto('ize', b(k0:k), k);
elseif doublec(k, b, k0)
retVal = {b, k-1};
if b(retVal{2}) == 'l' || b(retVal{2}) == 's' || ...
b(retVal{2}) == 'z'
retVal = {retVal{1}, retVal{2}+1};
end
elseif measure(b, k0) == 1 && cvc(k, b, k0)
retVal = setto('e', b(k0:k), k);
end
k = retVal{2};
b = retVal{1}(k0:k);
end
j = k;
s1ab = {b(k0:k), k};
% step1c() turns terminal y to i when there is another vowel in the stem.
function s1c = step1c(b, k, k0)
global j;
if ends('y', b, k) && vowelinstem(b, k0)
b(k) = 'i';
end
j = k;
s1c = {b, k};
% step2() maps double suffices to single ones. so -ization ( = -ize plus
% -ation) maps to -ize etc. note that the string before the suffix must give
% m() > 0.
function s2 = step2(b, k, k0)
global j;
s2 = {b, k};
switch b(k-1)
case {'a'}
if ends('ational', b, k) s2 = rs('ate', b, k, k0);
elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end;
case {'c'}
if ends('enci', b, k) s2 = rs('ence', b, k, k0);
elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end;
case {'e'}
if ends('izer', b, k) s2 = rs('ize', b, k, k0); end;
case {'l'}
if ends('bli', b, k) s2 = rs('ble', b, k, k0);
elseif ends('alli', b, k) s2 = rs('al', b, k, k0);
elseif ends('entli', b, k) s2 = rs('ent', b, k, k0);
elseif ends('eli', b, k) s2 = rs('e', b, k, k0);
elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end;
case {'o'}
if ends('ization', b, k) s2 = rs('ize', b, k, k0);
elseif ends('ation', b, k) s2 = rs('ate', b, k, k0);
elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end;
case {'s'}
if ends('alism', b, k) s2 = rs('al', b, k, k0);
elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0);
elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0);
elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end;
case {'t'}
if ends('aliti', b, k) s2 = rs('al', b, k, k0);
elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0);
elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end;
case {'g'}
if ends('logi', b, k) s2 = rs('log', b, k, k0); end;
end
j = s2{2};
% step3() deals with -ic-, -full, -ness etc. similar strategy to step2.
function s3 = step3(b, k, k0)
global j;
s3 = {b, k};
switch b(k)
case {'e'}
if ends('icate', b, k) s3 = rs('ic', b, k, k0);
elseif ends('ative', b, k) s3 = rs('', b, k, k0);
elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end;
case {'i'}
if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end;
case {'l'}
if ends('ical', b, k) s3 = rs('ic', b, k, k0);
elseif ends('ful', b, k) s3 = rs('', b, k, k0); end;
case {'s'}
if ends('ness', b, k) s3 = rs('', b, k, k0); end;
end
j = s3{2};
% step4() takes off -ant, -ence etc., in context <c>vcvc<v>.
function s4 = step4(b, k, k0)
global j;
switch b(k-1)
case {'a'}
if ends('al', b, k) end;
case {'c'}
if ends('ance', b, k)
elseif ends('ence', b, k) end;
case {'e'}
if ends('er', b, k) end;
case {'i'}
if ends('ic', b, k) end;
case {'l'}
if ends('able', b, k)
elseif ends('ible', b, k) end;
case {'n'}
if ends('ant', b, k)
elseif ends('ement', b, k)
elseif ends('ment', b, k)
elseif ends('ent', b, k) end;
case {'o'}
if ends('ion', b, k)
if j == 0
elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t'))
j = k;
end
elseif ends('ou', b, k) end;
case {'s'}
if ends('ism', b, k) end;
case {'t'}
if ends('ate', b, k)
elseif ends('iti', b, k) end;
case {'u'}
if ends('ous', b, k) end;
case {'v'}
if ends('ive', b, k) end;
case {'z'}
if ends('ize', b, k) end;
end
if measure(b, k0) > 1
s4 = {b(k0:j), j};
else
s4 = {b(k0:k), k};
end
% step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1.
function s5 = step5(b, k, k0)
global j;
j = k;
if b(k) == 'e'
a = measure(b, k0);
if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0))
k = k-1;
end
end
if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1)
k = k-1;
end
s5 = {b(k0:k), k};
|
github
|
shawnngtq/machine-learning-master
|
submitWithConfiguration.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week07/Programming Assignment/machine-learning-ex6/ex6/lib/submitWithConfiguration.m
| 3,734 |
utf_8
|
84d9a81848f6d00a7aff4f79bdbb6049
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf( ...
'!! Submission failed: unexpected error: %s\n', ...
e.message);
fprintf('!! Please try again later.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
params = {'jsonBody', body};
responseBody = urlread(submissionUrl, 'post', params);
response = loadjson(responseBody);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
shawnngtq/machine-learning-master
|
savejson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week07/Programming Assignment/machine-learning-ex6/ex6/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
shawnngtq/machine-learning-master
|
loadjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week07/Programming Assignment/machine-learning-ex6/ex6/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
loadubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week07/Programming Assignment/machine-learning-ex6/ex6/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
saveubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week07/Programming Assignment/machine-learning-ex6/ex6/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
shawnngtq/machine-learning-master
|
submit.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week08/Programming Assignment/machine-learning-ex7/ex7/submit.m
| 1,438 |
utf_8
|
665ea5906aad3ccfd94e33a40c58e2ce
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'k-means-clustering-and-pca';
conf.itemName = 'K-Means Clustering and PCA';
conf.partArrays = { ...
{ ...
'1', ...
{ 'findClosestCentroids.m' }, ...
'Find Closest Centroids (k-Means)', ...
}, ...
{ ...
'2', ...
{ 'computeCentroids.m' }, ...
'Compute Centroid Means (k-Means)', ...
}, ...
{ ...
'3', ...
{ 'pca.m' }, ...
'PCA', ...
}, ...
{ ...
'4', ...
{ 'projectData.m' }, ...
'Project Data (PCA)', ...
}, ...
{ ...
'5', ...
{ 'recoverData.m' }, ...
'Recover Data (PCA)', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = reshape(sin(1:165), 15, 11);
Z = reshape(cos(1:121), 11, 11);
C = Z(1:5, :);
idx = (1 + mod(1:15, 3))';
if partId == '1'
idx = findClosestCentroids(X, C);
out = sprintf('%0.5f ', idx(:));
elseif partId == '2'
centroids = computeCentroids(X, idx, 3);
out = sprintf('%0.5f ', centroids(:));
elseif partId == '3'
[U, S] = pca(X);
out = sprintf('%0.5f ', abs([U(:); S(:)]));
elseif partId == '4'
X_proj = projectData(X, Z, 5);
out = sprintf('%0.5f ', X_proj(:));
elseif partId == '5'
X_rec = recoverData(X(:,1:5), Z, 5);
out = sprintf('%0.5f ', X_rec(:));
end
end
|
github
|
shawnngtq/machine-learning-master
|
submitWithConfiguration.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week08/Programming Assignment/machine-learning-ex7/ex7/lib/submitWithConfiguration.m
| 3,734 |
utf_8
|
84d9a81848f6d00a7aff4f79bdbb6049
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf( ...
'!! Submission failed: unexpected error: %s\n', ...
e.message);
fprintf('!! Please try again later.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
params = {'jsonBody', body};
responseBody = urlread(submissionUrl, 'post', params);
response = loadjson(responseBody);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
shawnngtq/machine-learning-master
|
savejson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week08/Programming Assignment/machine-learning-ex7/ex7/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
shawnngtq/machine-learning-master
|
loadjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week08/Programming Assignment/machine-learning-ex7/ex7/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
loadubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week08/Programming Assignment/machine-learning-ex7/ex7/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
saveubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week08/Programming Assignment/machine-learning-ex7/ex7/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
shawnngtq/machine-learning-master
|
submit.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week09/Programming Assignment/machine-learning-ex8/ex8/submit.m
| 2,064 |
utf_8
|
7c4fcf60df3a7e09d05a74f7772fed3b
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'anomaly-detection-and-recommender-systems';
conf.itemName = 'Anomaly Detection and Recommender Systems';
conf.partArrays = { ...
{ ...
'1', ...
{ 'estimateGaussian.m' }, ...
'Estimate Gaussian Parameters', ...
}, ...
{ ...
'2', ...
{ 'selectThreshold.m' }, ...
'Select Threshold', ...
}, ...
{ ...
'3', ...
{ 'cofiCostFunc.m' }, ...
'Collaborative Filtering Cost', ...
}, ...
{ ...
'4', ...
{ 'cofiCostFunc.m' }, ...
'Collaborative Filtering Gradient', ...
}, ...
{ ...
'5', ...
{ 'cofiCostFunc.m' }, ...
'Regularized Cost', ...
}, ...
{ ...
'6', ...
{ 'cofiCostFunc.m' }, ...
'Regularized Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
n_u = 3; n_m = 4; n = 5;
X = reshape(sin(1:n_m*n), n_m, n);
Theta = reshape(cos(1:n_u*n), n_u, n);
Y = reshape(sin(1:2:2*n_m*n_u), n_m, n_u);
R = Y > 0.5;
pval = [abs(Y(:)) ; 0.001; 1];
yval = [R(:) ; 1; 0];
params = [X(:); Theta(:)];
if partId == '1'
[mu sigma2] = estimateGaussian(X);
out = sprintf('%0.5f ', [mu(:); sigma2(:)]);
elseif partId == '2'
[bestEpsilon bestF1] = selectThreshold(yval, pval);
out = sprintf('%0.5f ', [bestEpsilon(:); bestF1(:)]);
elseif partId == '3'
[J] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 0);
out = sprintf('%0.5f ', J(:));
elseif partId == '4'
[J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 0);
out = sprintf('%0.5f ', grad(:));
elseif partId == '5'
[J] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 1.5);
out = sprintf('%0.5f ', J(:));
elseif partId == '6'
[J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 1.5);
out = sprintf('%0.5f ', grad(:));
end
end
|
github
|
shawnngtq/machine-learning-master
|
submitWithConfiguration.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week09/Programming Assignment/machine-learning-ex8/ex8/lib/submitWithConfiguration.m
| 3,734 |
utf_8
|
84d9a81848f6d00a7aff4f79bdbb6049
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf( ...
'!! Submission failed: unexpected error: %s\n', ...
e.message);
fprintf('!! Please try again later.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
params = {'jsonBody', body};
responseBody = urlread(submissionUrl, 'post', params);
response = loadjson(responseBody);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
shawnngtq/machine-learning-master
|
savejson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week09/Programming Assignment/machine-learning-ex8/ex8/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
shawnngtq/machine-learning-master
|
loadjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week09/Programming Assignment/machine-learning-ex8/ex8/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
loadubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week09/Programming Assignment/machine-learning-ex8/ex8/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
saveubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week09/Programming Assignment/machine-learning-ex8/ex8/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
shawnngtq/machine-learning-master
|
submit.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week03/Programming Assignment/machine-learning-ex2/ex2/submit.m
| 1,605 |
utf_8
|
9b63d386e9bd7bcca66b1a3d2fa37579
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'logistic-regression';
conf.itemName = 'Logistic Regression';
conf.partArrays = { ...
{ ...
'1', ...
{ 'sigmoid.m' }, ...
'Sigmoid Function', ...
}, ...
{ ...
'2', ...
{ 'costFunction.m' }, ...
'Logistic Regression Cost', ...
}, ...
{ ...
'3', ...
{ 'costFunction.m' }, ...
'Logistic Regression Gradient', ...
}, ...
{ ...
'4', ...
{ 'predict.m' }, ...
'Predict', ...
}, ...
{ ...
'5', ...
{ 'costFunctionReg.m' }, ...
'Regularized Logistic Regression Cost', ...
}, ...
{ ...
'6', ...
{ 'costFunctionReg.m' }, ...
'Regularized Logistic Regression Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
y = sin(X(:,1) + X(:,2)) > 0;
if partId == '1'
out = sprintf('%0.5f ', sigmoid(X));
elseif partId == '2'
out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
elseif partId == '3'
[cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
out = sprintf('%0.5f ', grad);
elseif partId == '4'
out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
elseif partId == '5'
out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
elseif partId == '6'
[cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
out = sprintf('%0.5f ', grad);
end
end
|
github
|
shawnngtq/machine-learning-master
|
submitWithConfiguration.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week03/Programming Assignment/machine-learning-ex2/ex2/lib/submitWithConfiguration.m
| 3,734 |
utf_8
|
84d9a81848f6d00a7aff4f79bdbb6049
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf( ...
'!! Submission failed: unexpected error: %s\n', ...
e.message);
fprintf('!! Please try again later.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
params = {'jsonBody', body};
responseBody = urlread(submissionUrl, 'post', params);
response = loadjson(responseBody);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
shawnngtq/machine-learning-master
|
savejson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week03/Programming Assignment/machine-learning-ex2/ex2/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
shawnngtq/machine-learning-master
|
loadjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week03/Programming Assignment/machine-learning-ex2/ex2/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
loadubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week03/Programming Assignment/machine-learning-ex2/ex2/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
shawnngtq/machine-learning-master
|
saveubjson.m
|
.m
|
machine-learning-master/andrew-ng-machine-learning/week03/Programming Assignment/machine-learning-ex2/ex2/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
congzlwag/UnsupGenModbyMPS-master
|
tensor_product.m
|
.m
|
UnsupGenModbyMPS-master/matlab_code/tensor_product.m
| 1,985 |
utf_8
|
0aab341bb32bc59072d6bf91566b6350
|
function [C cindex] = tensor_product(varargin)
% Author: Jing Chen [email protected]
% varargin is cindex
%C(cindex)=A(aindex)*B(bindex)
% the same string in index will be summed up
% A,B,C is muti dimention array
%get all the permute order
if nargin == 4
A = varargin{1};
aindex = varargin{2};
B = varargin{3};
bindex = varargin{4};
elseif nargin == 5
cindex = varargin{1};
A = varargin{2};
aindex = varargin{3};
B = varargin{4};
bindex = varargin{5};
end
a_length = length ( aindex );
b_length = length ( bindex );
size_a = size(A);
size_a(end+1:a_length) = 1;
size_b = size(B);
size_b(end+1:b_length) = 1;
[com_in_a, com_in_b ] = find_common ( aindex, bindex );
if ~all(size_a(com_in_a)==size_b(com_in_b))
error('The dimention doesnot match!');
end
diff_in_a = 1:a_length;
diff_in_a ( com_in_a ) = [];
diff_in_b = 1:b_length;
diff_in_b ( com_in_b ) = [];
temp_idx = [ aindex(diff_in_a) , bindex(diff_in_b) ];
if nargin ==5
[ ix1 ix2 ] = find_common ( temp_idx , cindex );
ix_temp (ix2) = ix1 ;
else
cindex = temp_idx;
end
c_length = length(cindex);
% mutiply
if any([ com_in_a diff_in_a ] ~= 1:a_length)
A = permute( A, [ com_in_a diff_in_a ] );
end
if any([ com_in_b diff_in_b ] ~= 1:b_length)
B = permute( B, [ com_in_b diff_in_b ] );
end
sda = prod(size_a(diff_in_a));
sc = prod(size_a(com_in_a));
sdb = prod(size_b(diff_in_b));
A = reshape(A,[sc,sda,1]);
B = reshape(B,[sc,sdb,1]);
C = A.' * B ;
C = reshape(C,[size_a(diff_in_a),size_b(diff_in_b),1,1]);
if c_length > 1 && nargin == 5 && any(ix_temp ~= 1:c_length)
C = permute(C,ix_temp);
end
function [com_a, com_b] = find_common ( a, b)
% find the common elements
a = a.';
a_len = length( a );
b_len = length( b );
a = a(:,ones (1,b_len) );
b = b( ones(a_len ,1),:);
%[b a] = meshgrid(b,a);
[ com_a ,com_b ] = find ( a == b );
com_a = com_a.';
com_b = com_b.';
|
github
|
Moein-Khajehnejad/Automated-Classification-of-Right-Hand-and-Foot-Movement-EEG-Signals-master
|
mutation.m
|
.m
|
Automated-Classification-of-Right-Hand-and-Foot-Movement-EEG-Signals-master/Feature Selection by Genetic Algorithm/mutation.m
| 383 |
utf_8
|
693a8986fc3cce36ba68e225b78affbc
|
% function y = mutation(x,VarRange) %Gaussian mutation
% nVar=numel(x);
% j=randi([1 nVar]);
% Varmin=min(VarRange);
% Varmax=max(VarRange);
% sigma= (Varmax-Varmin)/10;
% y=x;
% y(j)=x(j)+sigma * randn;
% y=min(max(y, Varmin), Varmax));
% end
function y = mutation(x)
nVar=length(x);
j1=randi([1 nVar-1]);
j2=randi([j1+1 nVar]);
nj1=x(j1);
nj2=x(j2);
x(j1)=nj2;
x(j2)=nj1;
y=x;
end
|
github
|
kul-optec/nmpc-codegen-master
|
compare_libs_table.m
|
.m
|
nmpc-codegen-master/old_code/demos/Matlab/compare_libs_table.m
| 4,686 |
utf_8
|
51be9c2e097d0c560e6afb8ad713299f
|
% Compare the nmpc-codegen library with alternatives for different
% obstacles. Print out a table with the timing results.
clear all;
addpath(genpath('../../src_matlab'));
% noise_amplitude=[0;0;0];
noise_amplitude=[0.1;0.1;0.05];
shift_horizon=true;
%%
names={"controller_compare_libs","demo2","demo3"};
result_mean = zeros(length(names),7);
result_min = zeros(length(names),7);
result_max = zeros(length(names),7);
for i=1:length(names)
name=names{i}; % change this to demo1,demo2,demo3 or demo4
disp([ 'Simulating with ' name ':']);
[ trailer_controller,initial_state,reference_state,reference_input,obstacle_weights ] = demo_set_obstacles( name,shift_horizon );
% simulate with different methods
[min_convergence_time,mean_convergence_time,max_convergence_time]= ...
simulate_example(trailer_controller,initial_state,reference_state,...
reference_input,obstacle_weights,shift_horizon,noise_amplitude);
result_mean(i,:) = mean_convergence_time;
result_min(i,:) = min_convergence_time;
result_max(i,:) = max_convergence_time;
end
%%
% Convert table to latex
for i=1:length(names)
columnLabels{i} = char(names{i});
end
rowLabels = {'nmpc-codegen','panoc Matab','panoc draft','fmincon:interior-point','fmincon:sqp','fmincon:active-set','OPTI:ipopt'};
%%
generate_latex_table = @(table_matrix,file_name) matrix2latex(table_matrix, file_name, 'rowLabels', rowLabels, 'columnLabels', columnLabels, 'alignment', 'c', 'format', '%-6.2e', 'size', 'tiny');
generate_latex_table(result_mean','tables/mean.tex');
generate_latex_table(result_max','tables/max.tex');
generate_latex_table(result_min','tables/min.tex');
result_mean_rel=result_mean;
for i=length(rowLabels):-1:1
result_mean_rel(:,i) = result_mean(:,i)./result_mean(:,1);
end
generate_latex_rel_table = @(table_matrix,file_name) matrix2latex(table_matrix*100, file_name, 'rowLabels', rowLabels, 'columnLabels', columnLabels, 'alignment', 'c', 'format', '%-8.0f', 'size', 'tiny');
generate_latex_rel_table(result_mean_rel','tables/mean_rel.tex');
%%
function [min_convergence_time,mean_convergence_time,max_convergence_time]= ...
simulate_example(trailer_controller,initial_state,reference_state,...
reference_input,obstacle_weights,shift_horizon,noise_amplitude)
disp('Simulating using nmpc-codegen');
[~,time_history,~,simulator] = simulate_demo_trailer(trailer_controller,initial_state,reference_state,reference_input,obstacle_weights,noise_amplitude);
disp('Simulating using ForBeS');
[~,time_history_forbes,~] = simulate_demo_trailer_panoc_matlab(trailer_controller,simulator,initial_state,reference_state,reference_input,shift_horizon,noise_amplitude);
disp('Simulating using panoc draft');
[~,time_history_panoc_draft,~] = simulate_demo_trailer_panoc_draft(trailer_controller,simulator,initial_state,reference_state,reference_input,shift_horizon,noise_amplitude);
disp('Simulating using fmincon ip');
[~,time_history_fmincon_interior_point] = simulate_demo_trailer_fmincon('interior-point',trailer_controller,simulator,initial_state,reference_state,reference_input,shift_horizon,noise_amplitude);
disp('Simulating using fmincon sqp');
[~,time_history_fmincon_sqp] = simulate_demo_trailer_fmincon('sqp',trailer_controller,simulator,initial_state,reference_state,reference_input,shift_horizon,noise_amplitude);
disp('Simulating using fmincon active set');
[~,time_history_fmincon_active_set] = simulate_demo_trailer_fmincon('active-set',trailer_controller,simulator,initial_state,reference_state,reference_input,shift_horizon,noise_amplitude);
disp('Simulating using ipopt');
[ ~,time_history_ipopt ] = simulate_demo_trailer_OPTI_ipopt( trailer_controller,simulator, ...
initial_state,reference_state,reference_input,obstacle_weights,shift_horizon,noise_amplitude );
clear simulator;
min_convergence_time = [min(time_history) min(time_history_forbes) min(time_history_panoc_draft) min(time_history_fmincon_interior_point)...
min(time_history_fmincon_sqp) min(time_history_fmincon_active_set) min(time_history_ipopt)];
max_convergence_time = [max(time_history) max(time_history_forbes) max(time_history_panoc_draft) max(time_history_fmincon_interior_point)...
max(time_history_fmincon_sqp) max(time_history_fmincon_active_set) max(time_history_ipopt)];
mean_convergence_time = [mean(time_history) mean(time_history_forbes) mean(time_history_panoc_draft) mean(time_history_fmincon_interior_point)...
mean(time_history_fmincon_sqp) mean(time_history_fmincon_active_set) mean(time_history_ipopt)];
end
|
github
|
kul-optec/nmpc-codegen-master
|
demo_set_obstacles.m
|
.m
|
nmpc-codegen-master/old_code/demos/Matlab/demo_set_obstacles.m
| 11,179 |
utf_8
|
bcfbf687601a2b72b0cc66b60fefac99
|
function [ trailer_controller,initial_state,reference_state,reference_input,obstacle_weights ] = demo_set_obstacles( name,shift_horizon )
%DEMO_SET_OBSTACLES
if(strcmp(name,"controller_compare_libs"))
[trailer_controller,initial_state,reference_state,reference_input,obstacle_weights ] = generate_controller_compare_libs(shift_horizon);
elseif(strcmp(name,"demo1"))
[trailer_controller,initial_state,reference_state,reference_input,obstacle_weights ] = generate_demo1(shift_horizon);
elseif(strcmp(name,"demo2"))
[trailer_controller,initial_state,reference_state,reference_input,obstacle_weights ] = generate_demo2(shift_horizon);
elseif(strcmp(name,"demo3"))
[trailer_controller,initial_state,reference_state,reference_input,obstacle_weights ] = generate_demo3(shift_horizon);
elseif(strcmp(name,"demo4"))
[trailer_controller,initial_state,reference_state,reference_input,obstacle_weights ] = generate_demo4(shift_horizon);
else
error("error name not found");
end
end
function [trailer_controller,initial_state,reference_state,reference_input,obstacle_weights ] = generate_controller_compare_libs(shift_horizon)
step_size=0.05;
% Q and R matrixes determined by the control engineer.
Q = diag([1. 1. 1.])*0.2;
R = diag([1. 1.]) * 0.01;
Q_terminal = diag([1. 1. 1])*10;
R_terminal = diag([1. 1.]) * 0.01;
controller_folder_name = 'demo_controller_matlab';
trailer_controller = prepare_demo_trailer(controller_folder_name,step_size,Q,R,Q_terminal,R_terminal);
trailer_controller.horizon = 40; % NMPC parameter
trailer_controller.integrator_casadi = true; % optional feature that can generate the integrating used in the cost function
trailer_controller.panoc_max_steps = 2000; % the maximum amount of iterations the PANOC algorithm is allowed to do.
trailer_controller.min_residual=-3;
trailer_controller.lbgfs_buffer_size=50;
% trailer_controller.pure_prox_gradient=true;
trailer_controller.shift_input=shift_horizon; % is true by default
% construct left circle
circle1 = nmpccodegen.controller.obstacles.Circular([1.5; 0.], 1.,trailer_controller.model);
circle2 = nmpccodegen.controller.obstacles.Circular([3.5; 2.], 0.6,trailer_controller.model);
circle3 = nmpccodegen.controller.obstacles.Circular([2.; 2.5], 0.8,trailer_controller.model);
circle4 = nmpccodegen.controller.obstacles.Circular([5.; 4.], 1.05,trailer_controller.model);
% add obstacles to controller
trailer_controller = trailer_controller.add_constraint(circle1);
trailer_controller = trailer_controller.add_constraint(circle2);
trailer_controller = trailer_controller.add_constraint(circle3);
trailer_controller = trailer_controller.add_constraint(circle4);
% generate the dynamic code
trailer_controller = trailer_controller.generate_code();
% simulate everything
initial_state = [0.; -0.5 ; pi/2];
reference_state = [7.; 5.; 0.8];
reference_input = [0; 0];
obstacle_weights = [700.;700.;700.;700.];
figure;
hold on;
circle1.plot();
circle2.plot();
circle3.plot();
circle4.plot();
end
function [trailer_controller,initial_state,reference_state,reference_input,obstacle_weights ] = generate_demo1(shift_horizon)
step_size=0.03;
% Q and R matrixes determined by the control engineer.
Q = diag([1. 1. 0.01])*0.2;
R = diag([1. 1.]) * 0.01;
Q_terminal = Q;
R_terminal = R;
controller_folder_name = 'demo_controller_matlab';
trailer_controller = prepare_demo_trailer(controller_folder_name,step_size,Q,R,Q_terminal,R_terminal);
%%
trailer_controller.horizon = 30; % NMPC parameter
trailer_controller.integrator_casadi = true; % optional feature that can generate the integrating used in the cost function
trailer_controller.panoc_max_steps = 500; % the maximum amount of iterations the PANOC algorithm is allowed to do.
trailer_controller.min_residual=-3;
trailer_controller.shift_input=shift_horizon; % is true by default
rectangular_center_coordinates = [0.45;-0.1];
rectangular_width = 0.4;
rectangular_height = 0.1;
rectangular = nmpccodegen.controller.obstacles.Rectangular(rectangular_center_coordinates,...
rectangular_width,rectangular_height,trailer_controller.model);
% construct left circle
left_circle = nmpccodegen.controller.obstacles.Circular([0.2; 0.2],0.2,trailer_controller.model);
% construct right circle
right_circle = nmpccodegen.controller.obstacles.Circular([0.7; 0.2], 0.2,trailer_controller.model);
% add obstacles to controller
trailer_controller = trailer_controller.add_constraint(rectangular);
trailer_controller = trailer_controller.add_constraint(left_circle);
trailer_controller = trailer_controller.add_constraint(right_circle);
% generate the dynamic code
trailer_controller.generate_code();
%%
% simulate everything
initial_state = [0.45; 0.1; -pi/2];
reference_state = [0.8; -0.1; 0];
reference_input = [0; 0];
obstacle_weights = [10000.;8000.;50.];
figure;
hold all;
rectangular.plot();
left_circle.plot();
right_circle.plot();
end
function [trailer_controller,initial_state,reference_state,reference_input,obstacle_weights ] = generate_demo2(shift_horizon)
step_size=0.03;
% Q and R matrixes determined by the control engineer.
Q = diag([1. 1. 0.01])*0.2;
R = diag([1. 1.]) * 0.01;
Q_terminal = Q;
R_terminal = R;
controller_folder_name = 'demo_controller_matlab';
trailer_controller = prepare_demo_trailer(controller_folder_name,step_size,Q,R,Q_terminal,R_terminal);
%%
trailer_controller.horizon = 50; % NMPC parameter
trailer_controller.integrator_casadi = true; % optional feature that can generate the integrating used in the cost function
trailer_controller.panoc_max_steps = 500; % the maximum amount of iterations the PANOC algorithm is allowed to do.
trailer_controller.min_residual=-3;
trailer_controller.lbgfs_buffer_size = 50;
trailer_controller.shift_input=shift_horizon; % is true by default
% construct upper rectangular
rectangular_up = nmpccodegen.controller.obstacles.Rectangular([1;0.5],0.4,0.5,trailer_controller.model);
% construct lower rectangular
rectangular_down = nmpccodegen.controller.obstacles.Rectangular([1; -0.2], 0.4, 0.5,trailer_controller.model);
% construct circle
circle = nmpccodegen.controller.obstacles.Circular([0.2;0.2],0.2,trailer_controller.model);
% add obstacles to controller
trailer_controller = trailer_controller.add_constraint(rectangular_up);
trailer_controller = trailer_controller.add_constraint(rectangular_down);
trailer_controller = trailer_controller.add_constraint(circle);
% generate the dynamic code
trailer_controller.generate_code();
%%
% simulate everything
initial_state = [-0.1; -0.1; pi];
reference_state = [1.5; 0.4; 0];
reference_input = [0; 0];
obstacle_weights = [10.;10.;2000.];
figure;
hold all;
rectangular_up.plot();
rectangular_down.plot();
circle.plot();
end
function [trailer_controller,initial_state,reference_state,reference_input,obstacle_weights ] = generate_demo3(shift_horizon)
step_size=0.03;
% Q and R matrixes determined by the control engineer.
Q = diag([1. 1. 0.01])*0.2;
R = diag([1. 1.]) * 0.01;
Q_terminal = Q;
R_terminal = R;
controller_folder_name = 'demo_controller_matlab';
trailer_controller = prepare_demo_trailer(controller_folder_name,step_size,Q,R,Q_terminal,R_terminal);
%%
trailer_controller.horizon = 50; % NMPC parameter
trailer_controller.integrator_casadi = true; % optional feature that can generate the integrating used in the cost function
trailer_controller.panoc_max_steps = 500; % the maximum amount of iterations the PANOC algorithm is allowed to do.
trailer_controller.min_residual=-3;
trailer_controller.lbgfs_buffer_size = 50;
trailer_controller.shift_input=shift_horizon; % is true by default
% construct upper rectangular
costum_obstacle = nmpccodegen.controller.obstacles.Nonconvex_constraints(trailer_controller.model);
h_0 = @(x) x(2)-x(1)^2;
h_1 = @(x) 1 + (x(1)^2)/2 - x(2);
costum_obstacle = costum_obstacle.add_constraint(h_0);
costum_obstacle = costum_obstacle.add_constraint(h_1);
% add obstacles to controller
trailer_controller = trailer_controller.add_constraint(costum_obstacle);
% trailer_controller = trailer_controller.add_general_constraint(costum_obstacle);
% generate the dynamic code
trailer_controller.generate_code();
%%
% simulate everything
initial_state = [-1.0; 0.0; pi/2];
reference_state = [-1.0; 2.; pi/3];
reference_input = [0; 0];
obstacle_weights = 1e3;
figure;
hold all;
h_0_border = @(x) x.^2;
h_1_border = @(x) 1 + (x.^2)/2;
draw_obstacle_border(h_0_border,[-1.5;1.5],100);
draw_obstacle_border(h_1_border, [-1.5;1.5], 100);
end
function [trailer_controller,initial_state,reference_state,reference_input,obstacle_weights ] = generate_demo4(shift_horizon)
step_size=0.015;
% Q and R matrixes determined by the control engineer.
Q = diag([1. 1. 0.01])*0.2;
R = diag([1. 1.]) * 0.1;
Q_terminal = diag([1., 1., 0.1])*1;
R_terminal = diag([1., 1.]) * 0.01;
controller_folder_name = 'demo_controller_matlab';
trailer_controller = prepare_demo_trailer(controller_folder_name,step_size,Q,R,Q_terminal,R_terminal);
%%
trailer_controller.horizon = 50; % NMPC parameter
trailer_controller.integrator_casadi = true; % optional feature that can generate the integrating used in the cost function
trailer_controller.panoc_max_steps = 10000; % the maximum amount of iterations the PANOC algorithm is allowed to do.
trailer_controller.min_residual=-3;
trailer_controller.lbgfs_buffer_size = 50;
trailer_controller.shift_input=shift_horizon; % is true by default
% construct upper rectangular
costum_obstacle = nmpccodegen.controller.obstacles.Nonconvex_constraints(trailer_controller.model);
h_0 = @(x) x(2) - 2.*math.sin(-x(1)/2.);
h_1 = @(x) 3.*sin(x(1)/2 -1) - x(2);
h_2 = @(x) x(1) - 1;
h_3 = @(x) 8 - x(1);
costum_obstacle.add_constraint(h_0);
costum_obstacle.add_constraint(h_1);
costum_obstacle.add_constraint(h_2);
costum_obstacle.add_constraint(h_3);
% add obstacles to controller
trailer_controller = trailer_controller.add_constraint(costum_obstacle);
% generate the dynamic code
trailer_controller.generate_code();
%%
% simulate everything
initial_state = [7; -1; -pi];
reference_state = [1.5; -2.; -pi];
reference_input = [0; 0];
obstacle_weights = 1e1;
figure;
hold all;
h_0_border = @(x) 2.*sin(-x/2.);
h_1_border = @(x) 3.*sin(x/2. -1.);
draw_obstacle_border(h_0_border,[1;8],100)
draw_obstacle_border(h_1_border, [1;8], 100)
end
|
github
|
kul-optec/nmpc-codegen-master
|
simulate_demo_trailer_OPTI_ipopt.m
|
.m
|
nmpc-codegen-master/old_code/demos/Matlab/simulate_demo_trailer_OPTI_ipopt.m
| 2,641 |
utf_8
|
de13fac5910022b2d4c227a294a7112f
|
function [ state_history,time_history,iteration_history ] = simulate_demo_trailer_OPTI_ipopt( controller, simulator, ...
initial_state,reference_state,reference_input,obstacle_weights,shift_horizon,noise_amplitude)
%SIMULATE_DEMO_TRAILER_PANOC_MATLAB Summary of this function goes here
% Detailed explanation goes here
% -- simulate controller --
simulation_time = 3;
number_of_steps = ceil(simulation_time / controller.model.step_size);
% setup a simulator to test
inputs = repmat(zeros(controller.model.number_of_inputs, 1), ...
controller.horizon, 1);
%%
state = initial_state;
state_history = zeros(controller.model.number_of_states, number_of_steps);
time_history = zeros(number_of_steps,1);
iteration_history = zeros(number_of_steps,1);
for i=1:number_of_steps
cost_f = @(x) simulator.evaluate_cost(...
state,reference_state,reference_input,x);
gradient_f = @(x) gradient_f_multiarg(...
simulator,state,reference_state,reference_input,x);
% Bounds
lb = ones(controller.horizon*controller.model.number_of_inputs,1).*-4;
ub = ones(controller.horizon*controller.model.number_of_inputs,1).*4;
opts = optiset('solver','ipopt','tolrfun',1e-3,'tolafun',1e-3);
% Opt = opti('fun',cost_f,'grad',gradient_f,'bounds', lb, ub,'options' ,opts);
Opt = opti('fun',cost_f,'grad',gradient_f ,'bounds', lb, ub,'options' ,opts);
to=tic;
[x,fval,exitflag,info] = solve(Opt,inputs);
time_history(i)=toc(to)*1000;% get time in ms
inputs = x;
iteration_history(i)=0;
optimal_input=inputs(1:controller.model.number_of_inputs);
if(shift_horizon)
inputs(1:end-controller.model.number_of_inputs) = ...
inputs(controller.model.number_of_inputs+1:end);
end
disp(['The optimal input is[' num2str(optimal_input(1)) ' ; ' num2str(optimal_input(2)) ']']);
state = controller.model.get_next_state_double(state, optimal_input)+((rand - 0.5)*2)*noise_amplitude;
state_history(:, i) = state;
end
disp("Final state:")
disp(state)
clear('sim'); % remove the simulator so it unloads the shared lib
end
%initial_state,state_reference,input_reference,location
function [gradient] = gradient_f_multiarg(simulator,state,reference_state,reference_input,inputs_horizon)
[cost,gradient] = simulator.evaluate_cost_gradient(...
state,reference_state,reference_input,inputs_horizon);
end
|
github
|
kul-optec/nmpc-codegen-master
|
simulate_OPTI_ipopt.m
|
.m
|
nmpc-codegen-master/old_code/demos/Matlab/quadcopter/simulate_OPTI_ipopt.m
| 2,684 |
utf_8
|
71726baf867043dd6698a0133bf8aee5
|
function [ state_history,time_history,iteration_history ] = simulate_OPTI_ipopt( controller, simulator, ...
initial_state,reference_state,reference_input,obstacle_weights,shift_horizon,noise_amplitude)
%SIMULATE_DEMO_TRAILER_PANOC_MATLAB Summary of this function goes here
% Detailed explanation goes here
% -- simulate controller --
simulation_time = 3;
number_of_steps = ceil(simulation_time / controller.model.step_size);
% setup a simulator to test
inputs = repmat(zeros(controller.model.number_of_inputs, 1), ...
controller.horizon, 1);
%%
state = initial_state;
state_history = zeros(controller.model.number_of_states, number_of_steps);
time_history = zeros(number_of_steps,1);
iteration_history = zeros(number_of_steps,1);
for i=1:number_of_steps
cost_f = @(x) simulator.evaluate_cost(...
state,reference_state,reference_input,x);
gradient_f = @(x) gradient_f_multiarg(...
simulator,state,reference_state,reference_input,x);
% Bounds
lb = ones(controller.horizon*controller.model.number_of_inputs,1).*0;
ub = ones(controller.horizon*controller.model.number_of_inputs,1).*100;
opts = optiset('solver','ipopt','tolrfun',1e-3,'tolafun',1e-3);
% Opt = opti('fun',cost_f,'grad',gradient_f,'bounds', lb, ub,'options' ,opts);
Opt = opti('fun',cost_f,'grad',gradient_f ,'bounds', lb, ub,'options' ,opts);
to=tic;
[x,fval,exitflag,info] = solve(Opt,inputs);
time_history(i)=toc(to)*1000;% get time in ms
inputs = x;
iteration_history(i)=0;
optimal_input=inputs(1:controller.model.number_of_inputs);
if(shift_horizon)
inputs(1:end-controller.model.number_of_inputs) = ...
inputs(controller.model.number_of_inputs+1:end);
end
disp([ 'ipopt [' num2str(i) '/' num2str(number_of_steps) ']' 'The optimal input is[' num2str(optimal_input(1)) ' ; ' num2str(optimal_input(2)) ']']);
state = controller.model.get_next_state_double(state, optimal_input)+((rand - 0.5)*2)*noise_amplitude;
state_history(:, i) = state;
end
disp("Final state:")
disp(state)
clear('sim'); % remove the simulator so it unloads the shared lib
end
%initial_state,state_reference,input_reference,location
function [gradient] = gradient_f_multiarg(simulator,state,reference_state,reference_input,inputs_horizon)
[cost,gradient] = simulator.evaluate_cost_gradient(...
state,reference_state,reference_input,inputs_horizon);
end
|
github
|
kul-optec/nmpc-codegen-master
|
integrate.m
|
.m
|
nmpc-codegen-master/old_code/src_matlab/+nmpccodegen/+models/integrate.m
| 3,294 |
utf_8
|
cff2851dfdb4d749cddbd4c8206cd4fb
|
function [ next_state ] = integrate( state,step_size,function_system,key_name)
%INTEGRATE Summary of this function goes here
% Detailed explanation goes here
next_state = integrate_lib(state,step_size,function_system,key_name);
% if(key_name=='RK44') % for now only 1 integrator available
% k1 = function_system(state);
% k2 = function_system(state + step_size*k1/2);
% k3 = function_system(state + step_size*k2/2);
% k4 = function_system(state + step_size*k3);
% next_state = state + (step_size/6)*(k1 + 2*k2 + 2*k3 + k4);
% else
% disp('ERROR invalid integrator');
% end
end
function [ x_new ] =integrate_lib(x,step_size,function_system,key_name)
%INTEGRATE Integrate using an explicit integration tableau from ./integrator_tableaus
% x : current state
% step_size : discretizator step size
% function_system : continious differential equation of the system
% behavior
% key_name : name of the integrator
% BS5 Bogacki-Shampine RK5(4)8
% BuRK65 Butcher's RK65
% CMR6 Calvo 6(5)
% DP5 Dormand-Prince RK5(4)7
% FE Forward Euler
% Fehlberg45 Fehlberg RK5(4)6
% Heun33 Heun RK 33
% Lambert65 Lambert
% MTE22 Minimal Truncation Error 22
% Merson43 Merson RK4(3)
% Mid22 Midpoint Runge-Kutta
% NSSP32 non-SSPRK 32
% NSSP33 non-SSPRK 33
% PD8 Prince-Dormand 8(7)
% RK44 Classical RK4
% SSP104 SSPRK(10,4)
% SSP22 SSPRK 22
% SSP22star SSPRK22star
% SSP33 SSPRK 33
% SSP53 SSP 53
% SSP54 SSP 54
% SSP63 SSP 63
% SSP75 SSP 75
% SSP85 SSP 85
% SSP95 SSP 95
models_folder = fileparts(which('nmpccodegen.models.integrate'));
integrator_folder = strcat(models_folder,'/integrator_tableaus/');
load(strcat(integrator_folder,key_name,'.mat'));
number_of_states = length(x);
[number_of_samples,~]=size(A);
% phase 1: calculate the k's
% k1 = f(x_n)
% k2 = f(x_n + h(a_21 k_1))
% k3 = f(x_n + h(a_31 k_1 + a32 k2))
% ...
k=casadi.SX.sym('k',number_of_states,number_of_samples);
k(:,1) = function_system(x);
for i=2:number_of_samples
x_step=zeros(number_of_states,1);
for j=1:i-1
x_step = x_step + A(i,j)*k(:,j);
end
x_step_scaled = x_step*step_size;
x_local = x + x_step_scaled ;
k(:,i) = function_system(x_local);
end
% phase 2: use k's to calculate next state
% x_{n+1} = x_n + h \sum_{i=1}^s b_i \cdot k_i
x_new=zeros(number_of_states,1);
for i=1:number_of_samples
x_new = x_new + k(:,i)*b(i);
end
x_new = x_new*step_size;
x_new = x_new + x;
end
|
github
|
kul-optec/nmpc-codegen-master
|
lbfgs.m
|
.m
|
nmpc-codegen-master/Matlab/lbfgs/lbfgs.m
| 1,665 |
utf_8
|
9b9248e31868782d232d95c5edd5f02f
|
% f=function
% df=gradient of function
% g_i=df(x(i))
% The buffer of length m contains 2 variables
% s_i = x_{i+1} - x_{i}
% y_i = g_{i+1} - g_{i}
function [ s,y,new_x] = lbfgs(iteration_index,buffer_size,x,df,s,y)
% if this is the first time, use the gradient descent
if(iteration_index==1)
direction=df(x);
new_x = x-direction;
% start to fill in the
s(:,1) = new_x-x;
y(:,1) = df(new_x) - df(x);
else
% if we dont have enough past values lower the max buffer size
if(iteration_index<=buffer_size+1)
buffer_size_max=iteration_index-1;
else
buffer_size_max=buffer_size; % maximum buffer size
end
q=df(x);
rho=zeros(1,buffer_size_max);
alpha=zeros(1,buffer_size_max);
beta=zeros(1,buffer_size_max);
% loop over most recent to oldest
for i=1:buffer_size_max
rho(i)=1/(y(:,i)'*s(:,i));
alpha(i) = rho(i)*s(:,i)'*q;
q = q - alpha(i)*y(:,i);
end
z=(y(:,buffer_size_max)*s(:,buffer_size_max)'*q)...
/(y(:,buffer_size_max)'*y(:,buffer_size_max));
for i=buffer_size_max:-1:1 % oldest first
beta(i)=rho(i)*y(:,i)'*z;
z=z+s(:,i)*(alpha(i) - beta(i));
end
new_x = x - z; % z is upward direction
% After the new values have been found,
% fix the buffers for the next iteration.
s(:,2:end)=s(:,1:end-1);
y(:,2:end)=y(:,1:end-1);
s(:,1) = new_x-x;
y(:,1) = df(new_x) - df(x);
end
end
|
github
|
kul-optec/nmpc-codegen-master
|
myfun_poly.m
|
.m
|
nmpc-codegen-master/Matlab/lbfgs/lib/fminlbfgs_version2c/myfun_poly.m
| 227 |
utf_8
|
594dc9467dd6877b46a36211ac1475aa
|
% where myfun is a MATLAB function such as:
% function [f,g] = myfun(x)
% f = sum(sin(x) + 3);
% if ( nargout > 1 ), g = cos(x); end
function [f,g] = myfun_poly(x)
f =x(1)^10 + x(2)^10;
g = [10*x(1)^9; 10*x(2)^9 ];
end
|
github
|
kul-optec/nmpc-codegen-master
|
myfun.m
|
.m
|
nmpc-codegen-master/Matlab/lbfgs/lib/fminlbfgs_version2c/myfun.m
| 274 |
utf_8
|
01f35caf22b243254ec4046505457734
|
% where myfun is a MATLAB function such as:
% function [f,g] = myfun(x)
% f = sum(sin(x) + 3);
% if ( nargout > 1 ), g = cos(x); end
function [f,g] = myfun(x)
a=1;
b=100;
f =(a-x(1))^2 + b*(x(2)-x(1))^2;
g = [-2*(a-(b+1)*x(1)+b*x(2)); 2*b*(x(2)-x(1)) ];
end
|
github
|
andersonreisoares/DivideAndSegment-master
|
divSeg.m
|
.m
|
DivideAndSegment-master/divSeg.m
| 4,538 |
ibm852
|
c9126c6d7b43c01b35d43d612463aacf
|
% % The divide and segment method appears in
% % Divide And Segment - An Alternative For Parallel Segmentation. TS Korting,
% % EF Castejon, LMG Fonseca - GeoInfo, 97-104
% % Improvements of the divide and segment method for parallel image segmentation
% % AR Soares, TS Körting, LMG Fonseca - Revista Brasileira de Cartografia 68 (6)
% %
% % Anderson Soares, Thales Korting and Emiliano Castejon - 23/10/17
% %
% % ---INPUT---
% % img - input image
% % filterOption - 1 for standard magnitude approach, 2 for Canny and 3 for directional
% % approach (recommended)
% % line_number - Nummber of lines to split the image (4 - divide in 16 tiles)
% % vchunk - Vertical chunk size
% % hchunk - horizontal chuck size
% % max_displacement - maximum displacement to the crop line
% % epsg - EPSG of image
% % weight - You can add a weight to a specific band to highlight some important feature.
function divSeg(img,line_number,filterOption,vchunk,hchunk,max_displacement,epsg,weight)
if nargin < 6
disp('error: You must provide at least 6 parameters')
return;
end
if nargin == 6
epsg = 32723;
disp('warning: epsg defined as 32723')
end
if nargin == 8
disp('Adding weights to bands')
end
tic
disp('Loading input image');
%Check if is a valid geotiff
info = imfinfo(img);
tag = isfield(info,'GeoKeyDirectoryTag');
[~, name ,~] = fileparts(info.Filename);
if tag == 1
geoinfo = info.GeoKeyDirectoryTag;
[img, R] = geotiffread(img);
depth = info.BitsPerSample(1);
else
[img,~] = imread(img);
end
img = double(img);
[~,~,d]= size(img);
if ~exist('weight','var'), weight = ones(1,d); end
[image_h, image_v] = filter_op(img, filterOption, weight);
[line_cut_xcolumns_h, line_cut_yrows_h,line_cut_xcolumns_v,line_cut_yrows_v] = line_cut(image_h, image_v,line_number,vchunk,hchunk,max_displacement);
%Show results
figure(1);
clf;
if d>3
redChannel = imadjust(mat2gray(img(:, :, 3)));
greenChannel = imadjust(mat2gray(img(:, :, 2)));
blueChannel = imadjust(mat2gray(img(:, :, 1)));
rgbImage = cat(3, redChannel, greenChannel, blueChannel);
imshow(rgbImage);
else
imshow(img);
end
hold on;
for i=1:line_number
plot(line_cut_xcolumns_h{i}, line_cut_yrows_h{i},'linewidth', 2, 'Color', 'y');
plot(line_cut_yrows_v{i+1}, line_cut_xcolumns_v{i+1},'linewidth', 2, 'Color', 'y');
end
hold off;
% figure(2)
% imshow(mat2gray(uint8(image_h)))
% hold on;
% for i=1:line_number
% plot(line_cut_xcolumns_h{i}, line_cut_yrows_h{i},'linewidth', 2, 'Color', 'y');
% plot(line_cut_yrows_v{i+1}, line_cut_xcolumns_v{i+1},'linewidth', 2, 'Color', 'y');
% end
% hold off;
t1=toc;
%Cropping
i = 1;
for h=1:line_number
linha_hx = cell2mat(line_cut_xcolumns_h(h+1));
linha_hy = cell2mat(line_cut_yrows_h(h+1));
lim_hy = cell2mat(line_cut_yrows_h(h));
if h==1
[temp, temp2] = divide(img, linha_hy, linha_hx);
else
[temp, temp2] = divide(temph, linha_hy, linha_hx);
end
for v=1:line_number
disp(['Creating tile: ',int2str(i)]);
%Get line cut
linha_vx = cell2mat(line_cut_xcolumns_v(v+1));
linha_vy = cell2mat(line_cut_yrows_v(v+1));
lim_vy = cell2mat(line_cut_yrows_v(v));
temp = permute(temp, [2 1 3]);
[cut1, temp3] = divide(temp, linha_vy, linha_vx);
cut1 = permute(cut1,[2 1 3]);
temp3 = permute(temp3,[2 1 3]);
%Subset image
firstrow = min(lim_hy);
lastrow = max(linha_hy);
firstcol = min(lim_vy);
lastcol = max(linha_vy);
subImage = cut1(firstrow:lastrow, firstcol:lastcol, :);
xi = [firstcol - .5, lastcol + .5];
yi = [firstrow - .5, lastrow + .5];
[xlimits, ylimits] = intrinsicToWorld(R, xi, yi);
subR = R;
subR.RasterSize = size(subImage);
subR.XLimWorld = sort(xlimits);
subR.YLimWorld = sort(ylimits);
%Write image
if tag==1
geotiffwrite([name, '_cut',int2str(i),'.tif'],subImage,subR,'CoordRefSysCode',epsg); i=i+1;
else
imwrite(cut1, [name, '_cut',int2str(i),'.tif'],'WriteMode', 'append'); i=i+1;
end
temp = temp3;
clear cut1;
end
temph=temp2;
end
fprintf('Algorithm find the line cut after %.2f s \n',t1);
%end
|
github
|
andersonreisoares/DivideAndSegment-master
|
dijkstra.m
|
.m
|
DivideAndSegment-master/dijkstra.m
| 1,422 |
utf_8
|
bcd87e1fec09ed7eecb50ee9e017bc41
|
%---------------------------------------------------
% Dijkstra Algorithm
% author : Dimas Aryo
% email : [email protected]
%
%---------------------------------------------------
% example
% G = [0 3 9 10 10 10 10;
% 0 1 10 7 1 10 10;
% 0 2 10 7 10 10 10;
% 0 0 0 0 0 2 8;
% 0 0 4 5 0 9 0;
% 0 0 0 0 0 0 4;
% 0 0 0 0 0 0 0;
% ];
%[e L] = dijkstra(G,1,7)
%A = G;
%s = 2;
%d =3;
function [e linecut] = dijkstra(A,s,d)
if s==d
e=0;
L=[s];
else
A = setupgraph(A,inf,1);
end
if d==1
d=s;
end
A=exchangenode(A,1,s);
lengthA=size(A,1);
W=zeros(lengthA);
for i=2 : lengthA
W(1,i)=i;
W(2,i)=A(1,i);
end
for i=1 : lengthA
D(i,1)=A(1,i);
D(i,2)=i;
end
D2=D(2:length(D),:);
L=2;
while L<=(size(W,1)-1)
L=L+1;
D2=sortrows(D2,1);
k=D2(1,2);
W(L,1)=k;
D2(1,:)=[];
for i=1 : size(D2,1)
if D(D2(i,2),1)>(D(k,1)+A(k,D2(i,2)));
D(D2(i,2),1) = D(k,1)+A(k,D2(i,2));
D2(i,1) = D(D2(i,2),1);
end
end
for i=2 : length(A)
W(L,i)=D(i,1);
end
end
if d==s
L=[1];
else
L=[d];
end
e = W(size(W,1),d);
L = listdijkstra(L,W,s,d);
linecut = [];
for i = 1:length(L)
linecut = [L(i), linecut];
end
end
% usage
% [cost rute] = dijkstra(Graph, source, destination)
%
|
github
|
xjsxujingsong/UberNet-master
|
classification_demo.m
|
.m
|
UberNet-master/caffe-fast-rcnn/matlab/demo/classification_demo.m
| 5,412 |
utf_8
|
8f46deabe6cde287c4759f3bc8b7f819
|
function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% Image classification demo using BVLC CaffeNet.
%
% IMPORTANT: before you run this demo, you should download BVLC CaffeNet
% from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html)
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
% im color image as uint8 HxWx3
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% scores 1000-dimensional ILSVRC score vector
% maxlabel the label of the highest score
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
%
% Usage:
% im = imread('../../examples/images/cat.jpg');
% scores = classification_demo(im, 1);
% [score, class] = max(scores);
% Five things to be aware of:
% caffe uses row-major order
% matlab uses column-major order
% caffe uses BGR color channel order
% matlab uses RGB color channel order
% images need to have the data mean subtracted
% Data coming in from matlab needs to be in the order
% [width, height, channels, images]
% where width is the fastest dimension.
% Here is the rough matlab for putting image data into the correct
% format in W x H x C with BGR channels:
% % permute channels from RGB to BGR
% im_data = im(:, :, [3, 2, 1]);
% % flip width and height to make width the fastest dimension
% im_data = permute(im_data, [2, 1, 3]);
% % convert from uint8 to single
% im_data = single(im_data);
% % reshape to a fixed size (e.g., 227x227).
% im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear');
% % subtract mean_data (already in W x H x C with BGR channels)
% im_data = im_data - mean_data;
% If you have multiple images, cat them with cat(4, ...)
% Add caffe/matlab to you Matlab search PATH to use matcaffe
if exist('../+caffe', 'dir')
addpath('..');
else
error('Please run this demo from caffe/matlab/demo');
end
% Set caffe mode
if exist('use_gpu', 'var') && use_gpu
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
% Initialize the network using BVLC CaffeNet for image classification
% Weights (parameter) file needs to be downloaded from Model Zoo.
model_dir = '../../models/bvlc_reference_caffenet/';
net_model = [model_dir 'deploy.prototxt'];
net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel'];
phase = 'test'; % run with phase test (so that dropout isn't applied)
if ~exist(net_weights, 'file')
error('Please download CaffeNet from Model Zoo before you run this demo');
end
% Initialize a network
net = caffe.Net(net_model, net_weights, phase);
if nargin < 1
% For demo purposes we will use the cat image
fprintf('using caffe/examples/images/cat.jpg as input image\n');
im = imread('../../examples/images/cat.jpg');
end
% prepare oversampled input
% input_data is Height x Width x Channel x Num
tic;
input_data = {prepare_image(im)};
toc;
% do forward pass to get scores
% scores are now Channels x Num, where Channels == 1000
tic;
% The net forward function. It takes in a cell array of N-D arrays
% (where N == 4 here) containing data of input blob(s) and outputs a cell
% array containing data from output blob(s)
scores = net.forward(input_data);
toc;
scores = scores{1};
scores = mean(scores, 2); % take average scores over 10 crops
[~, maxlabel] = max(scores);
% call caffe.reset_all() to reset caffe
caffe.reset_all();
% ------------------------------------------------------------------------
function crops_data = prepare_image(im)
% ------------------------------------------------------------------------
% caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that
% is already in W x H x C with BGR channels
d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;
IMAGE_DIM = 256;
CROPPED_DIM = 227;
% Convert an image returned by Matlab's imread to im_data in caffe's data
% format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); % flip width and height
im_data = single(im_data); % convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
% oversample (4 corners, center, and their x-axis flips)
crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single');
indices = [0 IMAGE_DIM-CROPPED_DIM] + 1;
n = 1;
for i = indices
for j = indices
crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :);
crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n);
n = n + 1;
end
end
center = floor(indices(2) / 2) + 1;
crops_data(:,:,:,5) = ...
im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:);
crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
|
github
|
xjsxujingsong/UberNet-master
|
voc_eval.m
|
.m
|
UberNet-master/lib/datasets/VOCdevkit-matlab-wrapper/voc_eval.m
| 1,332 |
utf_8
|
3ee1d5373b091ae4ab79d26ab657c962
|
function res = voc_eval(path, comp_id, test_set, output_dir)
VOCopts = get_voc_opts(path);
VOCopts.testset = test_set;
for i = 1:length(VOCopts.classes)
cls = VOCopts.classes{i};
res(i) = voc_eval_cls(cls, VOCopts, comp_id, output_dir);
end
fprintf('\n~~~~~~~~~~~~~~~~~~~~\n');
fprintf('Results:\n');
aps = [res(:).ap]';
fprintf('%.1f\n', aps * 100);
fprintf('%.1f\n', mean(aps) * 100);
fprintf('~~~~~~~~~~~~~~~~~~~~\n');
function res = voc_eval_cls(cls, VOCopts, comp_id, output_dir)
test_set = VOCopts.testset;
year = VOCopts.dataset(4:end);
addpath(fullfile(VOCopts.datadir, 'VOCcode'));
res_fn = sprintf(VOCopts.detrespath, comp_id, cls);
recall = [];
prec = [];
ap = 0;
ap_auc = 0;
do_eval = (str2num(year) <= 2007) | ~strcmp(test_set, 'test');
if do_eval
% Bug in VOCevaldet requires that tic has been called first
tic;
[recall, prec, ap] = VOCevaldet(VOCopts, comp_id, cls, true);
ap_auc = xVOCap(recall, prec);
% force plot limits
ylim([0 1]);
xlim([0 1]);
print(gcf, '-djpeg', '-r0', ...
[output_dir '/' cls '_pr.jpg']);
end
fprintf('!!! %s : %.4f %.4f\n', cls, ap, ap_auc);
res.recall = recall;
res.prec = prec;
res.ap = ap;
res.ap_auc = ap_auc;
save([output_dir '/' cls '_pr.mat'], ...
'res', 'recall', 'prec', 'ap', 'ap_auc');
rmpath(fullfile(VOCopts.datadir, 'VOCcode'));
|
github
|
anmolnijhawan/Piecewise-linear-model-fitting-of-DCE-MRI-data-master
|
PLMmain.m
|
.m
|
Piecewise-linear-model-fitting-of-DCE-MRI-data-master/PLMmain.m
| 477 |
utf_8
|
fe7202a2b43457fa562c7ae46e20e671
|
%% function to be used in Perfusio Tool Main for PL model calculation
function [ Ct ] = PLMmain( par_PL,time )
for t = 1: length(time)
if (time(t)<=par_PL(1))
Ct(t) = par_PL(3);
elseif (time(t)<=par_PL(2))
Ct(t) = par_PL(3) + par_PL(4)*(time(t)-par_PL(1));
else
Ct(t) = par_PL(3) + par_PL(4)*(par_PL(2)-par_PL(1))+par_PL(5)*(time(t)-par_PL(2));
end
end
end
|
github
|
s0920832252/Number-Optimization-Class--master
|
hessian_f.m
|
.m
|
Number-Optimization-Class--master/Hw2/hessian_f.m
| 425 |
utf_8
|
6ab24e44ad54c197c6f3a1cb813af792
|
%function h = hessian_f(X)
function hes = hessian_f( X )
% g is a function which can return gradient vector.
%idea : (g(x+h ; y)-g(x;y))/h -> g() for( delat_x )
%and (g(x ; y+h)-g(x;y))/h -> g() for( delat_y )
h=0.0001;
g=gradient_f(X)';
hes=[];
for i=1:length(X)
newX=X;
newX(i)=X(i)+h;
new_g=gradient_f(newX)';
hes=[hes (new_g-g)/h];
end
end
|
github
|
s0920832252/Number-Optimization-Class--master
|
別人的InteriorPointMethod.m
|
.m
|
Number-Optimization-Class--master/Hw4/別人的InteriorPointMethod.m
| 3,691 |
utf_8
|
7b22636821f0d713a1ce16cd20241b43
|
%{
GNU Octave
version = 3.8.2
http://octave-online.net/
GNU Octave
version = 4.0.0
Windows XP
%}
function [outputX, outputCase] = InteriorPointMethod(c, A, b, x0, lambda0, s0);
%{
min c^T * x
s.t.
A*x >= b
%}
%{
min c^T * x
s.t.
A*x - s = b
s >= 0
%}
error = 1e-5;
maxIteration = 1000;
% Define: (0) solved, (1) unbounded, (2) infeasible.
caseSolved = int8(0);
caseUnbounded = int8(1);
caseInfeasible = int8(2);
caseMaxIteration = int8(3);
% Check the number of dimensions.
if( 2 ~= ndims(c) || 2 ~= ndims(A) || 2 ~= ndims(b) || 2 ~= ndims(x0) )
fprintf(2, 'Error: The number of dimensions in the input arguments must be TWO.\n');
outputX = x0;
outputCase = caseInfeasible;
return;
end
% Check the sizes of the input arguments.
[m, n] = size(A);
if( any( [n, 1] ~= size(c) ) || any( [m, 1] ~= size(b) ) || any( [n, 1] ~= size(x0) ) )
fprintf(2, 'Error: The sizes of the input arguments are wrong.\n');
outputX = x0;
outputCase = caseInfeasible;
return;
end
% Check x0 is satisfied all constraints.
%{
if( ~ all(A*x0 >= b) )
fprintf(2, 'Error: x0 must be satisfied A*x0 >= b.\n');
outputX = x0;
outputCase = caseInfeasible;
return;
end
%}
% Step (1)
x_k = x0;
lambda_k = lambda0;
s_k = s0;
for k = 1 : maxIteration
% Step (3)
sigma_k = 0.5;
mu_k = dot(lambda_k, s_k)/m;
temp_A = zeros( n + 2*m, n + 2*m);
temp_A( 1:n, n+ 1 : n+ m) = -A';
temp_A( n+ 1 : n+ m, 1:n) = A;
temp_A( n+ 1 : n+ m, n+m+ 1 : n+m+ m) = eye(m);
temp_A( n+m + 1 : n+m + m, n + 1 : n + m ) = diag(s_k);
temp_A( n+m+ 1 : n+m + m, n+m + 1 : n+m + m) = diag(lambda_k);
temp_b = zeros( n+2*m, 1);
temp_b(1:n,1) = A'*lambda_k - c;
temp_b(n+1:n+m,1) = A*x_k - s_k - b;
temp_b(n+m+1:n+m+m,1) = sigma_k * mu_k * ones(m,1) - lambda_k .* s_k;
temp_x = mldivide(temp_A,temp_b);
delta_x_k = temp_x(1:n,1);
delta_lambda_k = temp_x(n+1:n+m,1);
delta_s_k = temp_x(n+m+1:n+m+m,1);
% Step (4)
alpha = 1;
gamma = 1e-3;
for l = 1 : maxIteration
x_kp1 = x_k + alpha * delta_x_k;
lambda_kp1 = lambda_k + alpha * delta_lambda_k;
s_kp1 = s_k + alpha * delta_s_k;
mu_kp1 = dot(lambda_kp1, s_kp1)/m;
if( all( lambda_kp1 .* s_kp1 >= gamma*mu_kp1) && A'*lambda_kp1 == c && A*x_kp1 == s_kp1 + b )
break;
else
alpha = alpha/2;
end
end
if(norm(x_k-x_kp1) <= error)
outputX = x_kp1;
outputCase = caseSolved;
return;
end
x_k = x_kp1;
lambda_k = lambda_kp1;
s_k = s_kp1;
end
outputX = x_kp1;
outputCase = caseMaxIteration;
return;
end
function text_IPM
%{
min c^T * x
s.t.
A*x >= b
%}
c = [-8; -5];
A = [-2 -1; -3 -4; -1 -1; -1 1; 1 0; 0 1];
b = [-1000; -2400; -700; -350; 0; 0];
[m, n] = size(A);
x0 = zeros(n, 1);
s0 = [1000; 2400; 700; 350; 0; 0];
lambda0 = ones(6,1);
[x, myCase] = InteriorPointMethod(c, A, b, x0, lambda0, s0);
printf('x = [%.1f; %.1f];\ncase = %d\n', x(1), x(2), myCase);
end
|
github
|
s0920832252/Number-Optimization-Class--master
|
main.m
|
.m
|
Number-Optimization-Class--master/Hw4/世承的作業/main.m
| 412 |
utf_8
|
4d7cd5aabe4a933a8f88d8a8252cd567
|
% EXAMPLE
% max z=8*x1+5*x2
% s.t. 2*x1+x2<=1000
% 3*x1+4*x2<=2400
% x1+x2<=700
% x1-x2<=350
function main
A=[-2,-1;-3,-4;-1,-2;-1,1;1,0;0,1];
b=[-1000;-2400;-700;-350;0;0];
c=[-8;-5];
lambda0=[1;1;1;1;1;1];
x0=[0;0];
s0=[1000;2400;700;350;0;0];
[Z X]=interior_point_method(A, b, c, x0, lambda0, s0);
hold on;
scatter(X(1,:),X(2,:));
plot(X(1,:),X(2,:),'-');
end
|
github
|
s0920832252/Number-Optimization-Class--master
|
draw_trace.m
|
.m
|
Number-Optimization-Class--master/Hw1/draw_trace.m
| 1,312 |
utf_8
|
3e4bf037967e1f3757b10abe04cc2f1f
|
function draw_trace()
step = 0.1;
X = 0:step:9;
Y = -1:step:1;
n = size(X,2);
m = size(Y,2);
Z = zeros(m,n);
for j = 1:m
for i = 1:n
Z(j,i) = f(X(i),Y(j));
end
end
contour(X,Y,Z,50);
hold on; % this is important!! This will overlap your plots.
% plot the trace
% You can record the trace of your results and use the following
% code to plot the trace.
%xk = [9 8 8 7 7 6 6 5 5 4 4 3 3 2 2];
%yk = [.5 .5 -.5 -.5 .5 .5 -.5 -.5 .5 .5 -.5 -.5 .5 .5 -.5];
Xs=[9;1];
g=[1;9];
H=[1,0;0,9];
pathS=step_descent(Xs);
pathN=Newton(Xs);
plot(pathN(1,:),pathN(2,:));
plot(pathS(1,:),pathS(2,:));
axis equal ;
title('my homework');xlabel('x-label');ylabel('y-label');
h_leg =legend('contour','Newton','step_descent');
set(h_leg,'position',[0.2 0.2 0.2 0.1]);
%plot(xk,yk,'-','LineWidth',3);
hold off;
% function definition
function z = f(x,y)
z = (x*x+9*y*y)/2;
end
function N = Newton(Xs)
N = Xs;
G=[1;1];
while( ~isequal(round(G,5),[0;0]) )
G=[g(1)*Xs(1);g(2)*Xs(2)];
Xs = Xs-(H\G);
N = [N Xs];
end
end
function S = step_descent(Xs)
S = Xs;
G=[1;1];
while( ~isequal(round(G,5),[0;0]) )
G=[g(1)*Xs(1);g(2)*Xs(2)];
Xs = Xs-(((G)'*H*(G))^(-1)*((G)'*(G)))*(G);
S = [S Xs];
end
end
end
|
github
|
shaform/facenet-master
|
detect_face_v1.m
|
.m
|
facenet-master/tmp/detect_face_v1.m
| 7,954 |
utf_8
|
678c2105b8d536f8bbe08d3363b69642
|
% MIT License
%
% Copyright (c) 2016 Kaipeng Zhang
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
% copies of the Software, and to permit persons to whom the Software is
% furnished to do so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
% SOFTWARE.
function [total_boxes, points] = detect_face_v1(img,minsize,PNet,RNet,ONet,threshold,fastresize,factor)
%im: input image
%minsize: minimum of faces' size
%pnet, rnet, onet: caffemodel
%threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold
%fastresize: resize img from last scale (using in high-resolution images) if fastresize==true
factor_count=0;
total_boxes=[];
points=[];
h=size(img,1);
w=size(img,2);
minl=min([w h]);
img=single(img);
if fastresize
im_data=(single(img)-127.5)*0.0078125;
end
m=12/minsize;
minl=minl*m;
%creat scale pyramid
scales=[];
while (minl>=12)
scales=[scales m*factor^(factor_count)];
minl=minl*factor;
factor_count=factor_count+1;
end
%first stage
for j = 1:size(scales,2)
scale=scales(j);
hs=ceil(h*scale);
ws=ceil(w*scale);
if fastresize
im_data=imResample(im_data,[hs ws],'bilinear');
else
im_data=(imResample(img,[hs ws],'bilinear')-127.5)*0.0078125;
end
PNet.blobs('data').reshape([hs ws 3 1]);
out=PNet.forward({im_data});
boxes=generateBoundingBox(out{2}(:,:,2),out{1},scale,threshold(1));
%inter-scale nms
pick=nms(boxes,0.5,'Union');
boxes=boxes(pick,:);
if ~isempty(boxes)
total_boxes=[total_boxes;boxes];
end
end
numbox=size(total_boxes,1);
if ~isempty(total_boxes)
pick=nms(total_boxes,0.7,'Union');
total_boxes=total_boxes(pick,:);
regw=total_boxes(:,3)-total_boxes(:,1);
regh=total_boxes(:,4)-total_boxes(:,2);
total_boxes=[total_boxes(:,1)+total_boxes(:,6).*regw total_boxes(:,2)+total_boxes(:,7).*regh total_boxes(:,3)+total_boxes(:,8).*regw total_boxes(:,4)+total_boxes(:,9).*regh total_boxes(:,5)];
total_boxes=rerec(total_boxes);
total_boxes(:,1:4)=fix(total_boxes(:,1:4));
[dy edy dx edx y ey x ex tmpw tmph]=pad(total_boxes,w,h);
end
numbox=size(total_boxes,1);
if numbox>0
%second stage
tempimg=zeros(24,24,3,numbox);
for k=1:numbox
tmp=zeros(tmph(k),tmpw(k),3);
tmp(dy(k):edy(k),dx(k):edx(k),:)=img(y(k):ey(k),x(k):ex(k),:);
if size(tmp,1)>0 && size(tmp,2)>0 || size(tmp,1)==0 && size(tmp,2)==0
tempimg(:,:,:,k)=imResample(tmp,[24 24],'bilinear');
else
total_boxes = [];
return;
end;
end
tempimg=(tempimg-127.5)*0.0078125;
RNet.blobs('data').reshape([24 24 3 numbox]);
out=RNet.forward({tempimg});
score=squeeze(out{2}(2,:));
pass=find(score>threshold(2));
total_boxes=[total_boxes(pass,1:4) score(pass)'];
mv=out{1}(:,pass);
if size(total_boxes,1)>0
pick=nms(total_boxes,0.7,'Union');
total_boxes=total_boxes(pick,:);
total_boxes=bbreg(total_boxes,mv(:,pick)');
total_boxes=rerec(total_boxes);
end
numbox=size(total_boxes,1);
if numbox>0
%third stage
total_boxes=fix(total_boxes);
[dy edy dx edx y ey x ex tmpw tmph]=pad(total_boxes,w,h);
tempimg=zeros(48,48,3,numbox);
for k=1:numbox
tmp=zeros(tmph(k),tmpw(k),3);
tmp(dy(k):edy(k),dx(k):edx(k),:)=img(y(k):ey(k),x(k):ex(k),:);
if size(tmp,1)>0 && size(tmp,2)>0 || size(tmp,1)==0 && size(tmp,2)==0
tempimg(:,:,:,k)=imResample(tmp,[48 48],'bilinear');
else
total_boxes = [];
return;
end;
end
tempimg=(tempimg-127.5)*0.0078125;
ONet.blobs('data').reshape([48 48 3 numbox]);
out=ONet.forward({tempimg});
score=squeeze(out{3}(2,:));
points=out{2};
pass=find(score>threshold(3));
points=points(:,pass);
total_boxes=[total_boxes(pass,1:4) score(pass)'];
mv=out{1}(:,pass);
w=total_boxes(:,3)-total_boxes(:,1)+1;
h=total_boxes(:,4)-total_boxes(:,2)+1;
points(1:5,:)=repmat(w',[5 1]).*points(1:5,:)+repmat(total_boxes(:,1)',[5 1])-1;
points(6:10,:)=repmat(h',[5 1]).*points(6:10,:)+repmat(total_boxes(:,2)',[5 1])-1;
if size(total_boxes,1)>0
total_boxes=bbreg(total_boxes,mv(:,:)');
pick=nms(total_boxes,0.7,'Min');
total_boxes=total_boxes(pick,:);
points=points(:,pick);
end
end
end
end
function [boundingbox] = bbreg(boundingbox,reg)
%calibrate bouding boxes
if size(reg,2)==1
reg=reshape(reg,[size(reg,3) size(reg,4)])';
end
w=[boundingbox(:,3)-boundingbox(:,1)]+1;
h=[boundingbox(:,4)-boundingbox(:,2)]+1;
boundingbox(:,1:4)=[boundingbox(:,1)+reg(:,1).*w boundingbox(:,2)+reg(:,2).*h boundingbox(:,3)+reg(:,3).*w boundingbox(:,4)+reg(:,4).*h];
end
function [boundingbox reg] = generateBoundingBox(map,reg,scale,t)
%use heatmap to generate bounding boxes
stride=2;
cellsize=12;
boundingbox=[];
map=map';
dx1=reg(:,:,1)';
dy1=reg(:,:,2)';
dx2=reg(:,:,3)';
dy2=reg(:,:,4)';
[y x]=find(map>=t);
a=find(map>=t);
if size(y,1)==1
y=y';x=x';score=map(a)';dx1=dx1';dy1=dy1';dx2=dx2';dy2=dy2';
else
score=map(a);
end
reg=[dx1(a) dy1(a) dx2(a) dy2(a)];
if isempty(reg)
reg=reshape([],[0 3]);
end
boundingbox=[y x];
boundingbox=[fix((stride*(boundingbox-1)+1)/scale) fix((stride*(boundingbox-1)+cellsize-1+1)/scale) score reg];
end
function pick = nms(boxes,threshold,type)
%NMS
if isempty(boxes)
pick = [];
return;
end
x1 = boxes(:,1);
y1 = boxes(:,2);
x2 = boxes(:,3);
y2 = boxes(:,4);
s = boxes(:,5);
area = (x2-x1+1) .* (y2-y1+1);
[vals, I] = sort(s);
pick = s*0;
counter = 1;
while ~isempty(I)
last = length(I);
i = I(last);
pick(counter) = i;
counter = counter + 1;
xx1 = max(x1(i), x1(I(1:last-1)));
yy1 = max(y1(i), y1(I(1:last-1)));
xx2 = min(x2(i), x2(I(1:last-1)));
yy2 = min(y2(i), y2(I(1:last-1)));
w = max(0.0, xx2-xx1+1);
h = max(0.0, yy2-yy1+1);
inter = w.*h;
if strcmp(type,'Min')
o = inter ./ min(area(i),area(I(1:last-1)));
else
o = inter ./ (area(i) + area(I(1:last-1)) - inter);
end
I = I(find(o<=threshold));
end
pick = pick(1:(counter-1));
end
function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h)
%compute the padding coordinates (pad the bounding boxes to square)
tmpw=total_boxes(:,3)-total_boxes(:,1)+1;
tmph=total_boxes(:,4)-total_boxes(:,2)+1;
numbox=size(total_boxes,1);
dx=ones(numbox,1);dy=ones(numbox,1);
edx=tmpw;edy=tmph;
x=total_boxes(:,1);y=total_boxes(:,2);
ex=total_boxes(:,3);ey=total_boxes(:,4);
tmp=find(ex>w);
edx(tmp)=-ex(tmp)+w+tmpw(tmp);ex(tmp)=w;
tmp=find(ey>h);
edy(tmp)=-ey(tmp)+h+tmph(tmp);ey(tmp)=h;
tmp=find(x<1);
dx(tmp)=2-x(tmp);x(tmp)=1;
tmp=find(y<1);
dy(tmp)=2-y(tmp);y(tmp)=1;
end
function [bboxA] = rerec(bboxA)
%convert bboxA to square
bboxB=bboxA(:,1:4);
h=bboxA(:,4)-bboxA(:,2);
w=bboxA(:,3)-bboxA(:,1);
l=max([w h]')';
bboxA(:,1)=bboxA(:,1)+w.*0.5-l.*0.5;
bboxA(:,2)=bboxA(:,2)+h.*0.5-l.*0.5;
bboxA(:,3:4)=bboxA(:,1:2)+repmat(l,[1 2]);
end
|
github
|
shaform/facenet-master
|
detect_face_v2.m
|
.m
|
facenet-master/tmp/detect_face_v2.m
| 9,016 |
utf_8
|
0c963a91d4e52c98604dd6ca7a99d837
|
% MIT License
%
% Copyright (c) 2016 Kaipeng Zhang
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
% copies of the Software, and to permit persons to whom the Software is
% furnished to do so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
% SOFTWARE.
function [total_boxes, points] = detect_face_v2(img,minsize,PNet,RNet,ONet,LNet,threshold,fastresize,factor)
%im: input image
%minsize: minimum of faces' size
%pnet, rnet, onet: caffemodel
%threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold
%fastresize: resize img from last scale (using in high-resolution images) if fastresize==true
factor_count=0;
total_boxes=[];
points=[];
h=size(img,1);
w=size(img,2);
minl=min([w h]);
img=single(img);
if fastresize
im_data=(single(img)-127.5)*0.0078125;
end
m=12/minsize;
minl=minl*m;
%creat scale pyramid
scales=[];
while (minl>=12)
scales=[scales m*factor^(factor_count)];
minl=minl*factor;
factor_count=factor_count+1;
end
%first stage
for j = 1:size(scales,2)
scale=scales(j);
hs=ceil(h*scale);
ws=ceil(w*scale);
if fastresize
im_data=imResample(im_data,[hs ws],'bilinear');
else
im_data=(imResample(img,[hs ws],'bilinear')-127.5)*0.0078125;
end
PNet.blobs('data').reshape([hs ws 3 1]);
out=PNet.forward({im_data});
boxes=generateBoundingBox(out{2}(:,:,2),out{1},scale,threshold(1));
%inter-scale nms
pick=nms(boxes,0.5,'Union');
boxes=boxes(pick,:);
if ~isempty(boxes)
total_boxes=[total_boxes;boxes];
end
end
numbox=size(total_boxes,1);
if ~isempty(total_boxes)
pick=nms(total_boxes,0.7,'Union');
total_boxes=total_boxes(pick,:);
bbw=total_boxes(:,3)-total_boxes(:,1);
bbh=total_boxes(:,4)-total_boxes(:,2);
total_boxes=[total_boxes(:,1)+total_boxes(:,6).*bbw total_boxes(:,2)+total_boxes(:,7).*bbh total_boxes(:,3)+total_boxes(:,8).*bbw total_boxes(:,4)+total_boxes(:,9).*bbh total_boxes(:,5)];
total_boxes=rerec(total_boxes);
total_boxes(:,1:4)=fix(total_boxes(:,1:4));
[dy edy dx edx y ey x ex tmpw tmph]=pad(total_boxes,w,h);
end
numbox=size(total_boxes,1);
if numbox>0
%second stage
tempimg=zeros(24,24,3,numbox);
for k=1:numbox
tmp=zeros(tmph(k),tmpw(k),3);
tmp(dy(k):edy(k),dx(k):edx(k),:)=img(y(k):ey(k),x(k):ex(k),:);
tempimg(:,:,:,k)=imResample(tmp,[24 24],'bilinear');
end
tempimg=(tempimg-127.5)*0.0078125;
RNet.blobs('data').reshape([24 24 3 numbox]);
out=RNet.forward({tempimg});
score=squeeze(out{2}(2,:));
pass=find(score>threshold(2));
total_boxes=[total_boxes(pass,1:4) score(pass)'];
mv=out{1}(:,pass);
if size(total_boxes,1)>0
pick=nms(total_boxes,0.7,'Union');
total_boxes=total_boxes(pick,:);
total_boxes=bbreg(total_boxes,mv(:,pick)');
total_boxes=rerec(total_boxes);
end
numbox=size(total_boxes,1);
if numbox>0
%third stage
total_boxes=fix(total_boxes);
[dy edy dx edx y ey x ex tmpw tmph]=pad(total_boxes,w,h);
tempimg=zeros(48,48,3,numbox);
for k=1:numbox
tmp=zeros(tmph(k),tmpw(k),3);
tmp(dy(k):edy(k),dx(k):edx(k),:)=img(y(k):ey(k),x(k):ex(k),:);
tempimg(:,:,:,k)=imResample(tmp,[48 48],'bilinear');
end
tempimg=(tempimg-127.5)*0.0078125;
ONet.blobs('data').reshape([48 48 3 numbox]);
out=ONet.forward({tempimg});
score=squeeze(out{3}(2,:));
points=out{2};
pass=find(score>threshold(3));
points=points(:,pass);
total_boxes=[total_boxes(pass,1:4) score(pass)'];
mv=out{1}(:,pass);
bbw=total_boxes(:,3)-total_boxes(:,1)+1;
bbh=total_boxes(:,4)-total_boxes(:,2)+1;
points(1:5,:)=repmat(bbw',[5 1]).*points(1:5,:)+repmat(total_boxes(:,1)',[5 1])-1;
points(6:10,:)=repmat(bbh',[5 1]).*points(6:10,:)+repmat(total_boxes(:,2)',[5 1])-1;
if size(total_boxes,1)>0
total_boxes=bbreg(total_boxes,mv(:,:)');
pick=nms(total_boxes,0.7,'Min');
total_boxes=total_boxes(pick,:);
points=points(:,pick);
end
end
numbox=size(total_boxes,1);
%extended stage
if numbox>0
tempimg=zeros(24,24,15,numbox);
patchw=max([total_boxes(:,3)-total_boxes(:,1)+1 total_boxes(:,4)-total_boxes(:,2)+1]');
patchw=fix(0.25*patchw);
tmp=find(mod(patchw,2)==1);
patchw(tmp)=patchw(tmp)+1;
pointx=ones(numbox,5);
pointy=ones(numbox,5);
for k=1:5
tmp=[points(k,:);points(k+5,:)];
x=fix(tmp(1,:)-0.5*patchw);
y=fix(tmp(2,:)-0.5*patchw);
[dy edy dx edx y ey x ex tmpw tmph]=pad([x' y' x'+patchw' y'+patchw'],w,h);
for j=1:numbox
tmpim=zeros(tmpw(j),tmpw(j),3);
tmpim(dy(j):edy(j),dx(j):edx(j),:)=img(y(j):ey(j),x(j):ex(j),:);
tempimg(:,:,(k-1)*3+1:(k-1)*3+3,j)=imResample(tmpim,[24 24],'bilinear');
end
end
LNet.blobs('data').reshape([24 24 15 numbox]);
tempimg=(tempimg-127.5)*0.0078125;
out=LNet.forward({tempimg});
score=squeeze(out{3}(2,:));
for k=1:5
tmp=[points(k,:);points(k+5,:)];
%do not make a large movement
temp=find(abs(out{k}(1,:)-0.5)>0.35);
if ~isempty(temp)
l=length(temp);
out{k}(:,temp)=ones(2,l)*0.5;
end
temp=find(abs(out{k}(2,:)-0.5)>0.35);
if ~isempty(temp)
l=length(temp);
out{k}(:,temp)=ones(2,l)*0.5;
end
pointx(:,k)=(tmp(1,:)-0.5*patchw+out{k}(1,:).*patchw)';
pointy(:,k)=(tmp(2,:)-0.5*patchw+out{k}(2,:).*patchw)';
end
for j=1:numbox
points(:,j)=[pointx(j,:)';pointy(j,:)'];
end
end
end
end
function [boundingbox] = bbreg(boundingbox,reg)
%calibrate bouding boxes
if size(reg,2)==1
reg=reshape(reg,[size(reg,3) size(reg,4)])';
end
w=[boundingbox(:,3)-boundingbox(:,1)]+1;
h=[boundingbox(:,4)-boundingbox(:,2)]+1;
boundingbox(:,1:4)=[boundingbox(:,1)+reg(:,1).*w boundingbox(:,2)+reg(:,2).*h boundingbox(:,3)+reg(:,3).*w boundingbox(:,4)+reg(:,4).*h];
end
function [boundingbox reg] = generateBoundingBox(map,reg,scale,t)
%use heatmap to generate bounding boxes
stride=2;
cellsize=12;
boundingbox=[];
map=map';
dx1=reg(:,:,1)';
dy1=reg(:,:,2)';
dx2=reg(:,:,3)';
dy2=reg(:,:,4)';
[y x]=find(map>=t);
a=find(map>=t);
if size(y,1)==1
y=y';x=x';score=map(a)';dx1=dx1';dy1=dy1';dx2=dx2';dy2=dy2';
else
score=map(a);
end
reg=[dx1(a) dy1(a) dx2(a) dy2(a)];
if isempty(reg)
reg=reshape([],[0 3]);
end
boundingbox=[y x];
boundingbox=[fix((stride*(boundingbox-1)+1)/scale) fix((stride*(boundingbox-1)+cellsize-1+1)/scale) score reg];
end
function pick = nms(boxes,threshold,type)
%NMS
if isempty(boxes)
pick = [];
return;
end
x1 = boxes(:,1);
y1 = boxes(:,2);
x2 = boxes(:,3);
y2 = boxes(:,4);
s = boxes(:,5);
area = (x2-x1+1) .* (y2-y1+1);
[vals, I] = sort(s);
pick = s*0;
counter = 1;
while ~isempty(I)
last = length(I);
i = I(last);
pick(counter) = i;
counter = counter + 1;
xx1 = max(x1(i), x1(I(1:last-1)));
yy1 = max(y1(i), y1(I(1:last-1)));
xx2 = min(x2(i), x2(I(1:last-1)));
yy2 = min(y2(i), y2(I(1:last-1)));
w = max(0.0, xx2-xx1+1);
h = max(0.0, yy2-yy1+1);
inter = w.*h;
if strcmp(type,'Min')
o = inter ./ min(area(i),area(I(1:last-1)));
else
o = inter ./ (area(i) + area(I(1:last-1)) - inter);
end
I = I(find(o<=threshold));
end
pick = pick(1:(counter-1));
end
function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h)
%compute the padding coordinates (pad the bounding boxes to square)
tmpw=total_boxes(:,3)-total_boxes(:,1)+1;
tmph=total_boxes(:,4)-total_boxes(:,2)+1;
numbox=size(total_boxes,1);
dx=ones(numbox,1);dy=ones(numbox,1);
edx=tmpw;edy=tmph;
x=total_boxes(:,1);y=total_boxes(:,2);
ex=total_boxes(:,3);ey=total_boxes(:,4);
tmp=find(ex>w);
edx(tmp)=-ex(tmp)+w+tmpw(tmp);ex(tmp)=w;
tmp=find(ey>h);
edy(tmp)=-ey(tmp)+h+tmph(tmp);ey(tmp)=h;
tmp=find(x<1);
dx(tmp)=2-x(tmp);x(tmp)=1;
tmp=find(y<1);
dy(tmp)=2-y(tmp);y(tmp)=1;
end
function [bboxA] = rerec(bboxA)
%convert bboxA to square
bboxB=bboxA(:,1:4);
h=bboxA(:,4)-bboxA(:,2);
w=bboxA(:,3)-bboxA(:,1);
l=max([w h]')';
bboxA(:,1)=bboxA(:,1)+w.*0.5-l.*0.5;
bboxA(:,2)=bboxA(:,2)+h.*0.5-l.*0.5;
bboxA(:,3:4)=bboxA(:,1:2)+repmat(l,[1 2]);
end
|
github
|
kevinliu001/Android-SpeexDenoise-master
|
echo_diagnostic.m
|
.m
|
Android-SpeexDenoise-master/app/src/main/jni/libspeexdsp/echo_diagnostic.m
| 2,076 |
utf_8
|
8d5e7563976fbd9bd2eda26711f7d8dc
|
% Attempts to diagnose AEC problems from recorded samples
%
% out = echo_diagnostic(rec_file, play_file, out_file, tail_length)
%
% Computes the full matrix inversion to cancel echo from the
% recording 'rec_file' using the far end signal 'play_file' using
% a filter length of 'tail_length'. The output is saved to 'out_file'.
function out = echo_diagnostic(rec_file, play_file, out_file, tail_length)
F=fopen(rec_file,'rb');
rec=fread(F,Inf,'short');
fclose (F);
F=fopen(play_file,'rb');
play=fread(F,Inf,'short');
fclose (F);
rec = [rec; zeros(1024,1)];
play = [play; zeros(1024,1)];
N = length(rec);
corr = real(ifft(fft(rec).*conj(fft(play))));
acorr = real(ifft(fft(play).*conj(fft(play))));
[a,b] = max(corr);
if b > N/2
b = b-N;
end
printf ("Far end to near end delay is %d samples\n", b);
if (b > .3*tail_length)
printf ('This is too much delay, try delaying the far-end signal a bit\n');
else if (b < 0)
printf ('You have a negative delay, the echo canceller has no chance to cancel anything!\n');
else
printf ('Delay looks OK.\n');
end
end
end
N2 = round(N/2);
corr1 = real(ifft(fft(rec(1:N2)).*conj(fft(play(1:N2)))));
corr2 = real(ifft(fft(rec(N2+1:end)).*conj(fft(play(N2+1:end)))));
[a,b1] = max(corr1);
if b1 > N2/2
b1 = b1-N2;
end
[a,b2] = max(corr2);
if b2 > N2/2
b2 = b2-N2;
end
drift = (b1-b2)/N2;
printf ('Drift estimate is %f%% (%d samples)\n', 100*drift, b1-b2);
if abs(b1-b2) < 10
printf ('A drift of a few (+-10) samples is normal.\n');
else
if abs(b1-b2) < 30
printf ('There may be (not sure) excessive clock drift. Is the capture and playback done on the same soundcard?\n');
else
printf ('Your clock is drifting! No way the AEC will be able to do anything with that. Most likely, you''re doing capture and playback from two different cards.\n');
end
end
end
acorr(1) = .001+1.00001*acorr(1);
AtA = toeplitz(acorr(1:tail_length));
bb = corr(1:tail_length);
h = AtA\bb;
out = (rec - filter(h, 1, play));
F=fopen(out_file,'w');
fwrite(F,out,'short');
fclose (F);
|
github
|
Minyu-Shen/Simulation-for-bus-stops-near-signalized-intersection-master
|
Simulation_far_side.m
|
.m
|
Simulation-for-bus-stops-near-signalized-intersection-master/Simulation_far_side.m
| 23,064 |
utf_8
|
4b73d726815eec5a3e86be60926b91a6
|
clear;clc;
% rng(2);
global serving_rate;
global cs_number;
global berth_number;
global buffer_number;
global jam_spacing;
global free_speed;
global back_speed;
global moveup_speed;
global cycle_length_number;
global green_ratio;
global sim_size;
global il;
% cs_number = [0.15,0.3,0.45,0.6,0.75];
global cs;
cs = 0.6;
pl = 1; % plot handler
if cs==1
sim_size = 300;
else
if pl
sim_size = 20;
else
sim_size = 50000;
end
end
berth_number = 2;
buffer_number = 3:1:3;
if pl
cycle_length_number = 140:1:140;
else
cycle_length_number = 80:1:240;
end
green_ratio = 0.7;
jam_spacing = 12;
free_speed = 20 / 3.6;
back_speed = 25 / 3.6;
moveup_speed = 20 / 3.6;
serving_rate = 1/25;
il = 3;
mh = jam_spacing / moveup_speed;
bh = jam_spacing / back_speed;
ih = il*jam_spacing/moveup_speed;
% mh=0;
% bh=0;
% fh=0;
%% simulation procedures
cs_size = sum(cs_number~=-1);
c_size = sum(berth_number~=-1);
d_size = sum(buffer_number~=-1);
cl_size = sum(cycle_length_number~=-1);
for l=1:cl_size
cycle_length = cycle_length_number(l);
green_time = cycle_length * green_ratio;
if cs==0
serv_time(1 : sim_size) = unifrnd(1/serving_rate, 1/serving_rate);
else
serv_time(1 : sim_size) = gamrnd(1/cs^2, cs^2/serving_rate, 1, sim_size);
end
for k=1:c_size
c = berth_number(k);
for j=1:d_size
u = zeros(sim_size, 1);
d = buffer_number(j);
d0 = mod(d,c);
n = floor(d/c);
dq_m = zeros(sim_size, 1);
bff_pos = zeros(sim_size, 1);
bth_pos = zeros(sim_size, 1);
bff_times = zeros(sim_size, 1);
arr_bff_m = zeros(sim_size, n+1);
lv_bff_m = zeros(sim_size, n+1);
end_serv_m = zeros(sim_size, 1);
wait_bth = zeros(sim_size, 1);
lv_bth_m = zeros(sim_size, 1);
for i=1:sim_size
if i == 1
% starting from green period
dq_m(i) = 0;
bff_pos(i) = 0;
bth_pos(i) = 1;
bff_times(i) = 0;
end_serv_m(i) = dq_m(i) + (c+d)*mh + ih + serv_time(i);
wait_bth(i) = 0;
lv_bth_m(i) = end_serv_m(i);
else % i > 1 starts
%% buffer_pos(i-1) == 0 starts
if bff_pos(i-1) == 0
temp_dq_m = dq_m(i-1) + mh +bh;
if bth_pos(i-1) == c
if d==0
bth_pos(i) = 1;
bff_pos(i) = 0;
bff_times(i) = 0;
if mod(lv_bth_m(i-1) + bh, cycle_length) <= green_time
dq_m(i) = lv_bth_m(i-1) + bh;
else
dq_m(i) = cycle_length - mod(lv_bth_m(i-1), cycle_length) + lv_bth_m(i-1) + bh;
end
end_serv_m(i) = dq_m(i) + (c+d)*mh + ih + serv_time(i);
wait_bth(i) = 0;
lv_bth_m(i) = end_serv_m(i);
else % last berth is c and d~=0
if mod(temp_dq_m, cycle_length) <= green_time
dq_m(i) = temp_dq_m;
bff_pos(i) = 1;
bth_pos(i) = det_bth(1, c);
bff_times(i) = 1;
lv_bff_m(i, 1) = lv_bth_m(i-1)+bh;
end_serv_m(i) = lv_bff_m(i, 1) + c*mh + serv_time(i);
wait_bth(i) = 0;
lv_bth_m(i) = end_serv_m(i);
else % meet the red period, wait until the greee period
nxt_g = cycle_length - mod(dq_m(i-1), cycle_length) + dq_m(i-1) + bh;
if nxt_g < lv_bth_m(i-1) + bh
dq_m(i) = lv_bth_m(i-1) + bh;
bff_pos(i) = 1;
bth_pos(i) = det_bth(1, c);
bff_times(i) = 1;
lv_bff_m(i, 1) = lv_bth_m(i-1)+bh;
end_serv_m(i) = lv_bff_m(i, 1) + c*mh + serv_time(i);
wait_bth(i) = 0;
lv_bth_m(i) = end_serv_m(i);
else
dq_m(i) = nxt_g;
bff_pos(i) = 0;
bth_pos(i) = 1;
bff_times(i) = 0;
end_serv_m(i) = dq_m(i) + (c+d)*mh + ih + serv_time(i);
wait_bth(i) = 0;
lv_bth_m(i) = end_serv_m(i);
end
end
end
else % last bus's berth < c
bff_pos(i) = 0;
bff_times(i) = 0;
if mod(temp_dq_m, cycle_length) <= green_time
dq_m(i) = temp_dq_m;
bth_pos(i) = bth_pos(i-1) + 1;
end_serv_m(i) = dq_m(i) + (c+d-bth_pos(i)+1)*mh + ih + serv_time(i);
wait_bth(i) = max(0, lv_bth_m(i-1) + bh - end_serv_m(i));
lv_bth_m(i) = end_serv_m(i) + wait_bth(i);
else
nxt_g = cycle_length - mod(temp_dq_m, cycle_length) + temp_dq_m + bh;
dq_m(i) = nxt_g;
if nxt_g < lv_bth_m(i-1) + bh
dq_m(i) = lv_bth_m(i-1) + bh;
bth_pos(i) = bth_pos(i-1)+1;
end_serv_m(i) = dq_m(i) + (d+c-bth_pos(i)+1+il)*mh + serv_time(i);
wait_bth(i) = 0;
lv_bth_m(i) = end_serv_m(i);
else
dq_m(i) = nxt_g;
bth_pos(i) = 1;
bff_times(i) = 0;
end_serv_m(i) = dq_m(i) + (c+d)*mh + ih + serv_time(i);
wait_bth(i) = 0;
lv_bth_m(i) = end_serv_m(i);
end
end
end
%% buffer_pos(i-1) == 0 ends
elseif bff_pos(i-1) < d
%% 0< buffer_pos(i-1) < d
temp_dq_m = dq_m(i-1) + mh + bh;
% determine berth and buffer
if mod(temp_dq_m, cycle_length) <= green_time
dq_m(i) = temp_dq_m;
bff_pos(i) = bff_pos(i-1) + 1;
bth_pos(i) = det_bth(bff_pos(i), c);
else
dq_m(i) = dq_m(i-1) + cycle_length - mod(dq_m(i-1), cycle_length) + bh;
flag = 0;
for p=1:1:bff_times(i-1)
evr_bff_pos = bff_pos(i-1) - (p-1)*c;
tp = dq_m(i) + (d-evr_bff_pos+1)*mh + ih;
if tp < lv_bff_m(i-1, p) + bh
bff_pos(i) = evr_bff_pos + 1;
bth_pos(i) = det_bth(bff_pos(i), c);
flag = 1;
break;
end
end
if flag == 0 % judge berth point
tp = dq_m(i) + ih + (d+c-bth_pos(i-1))*mh;
if tp < lv_bth_m(i-1) + bh
if bth_pos(i-1) == c
bff_pos(i) = 1;
bth_pos(i) = 1;
else
bff_pos(i) = 0;
bth_pos(i) = bth_pos(i-1) + 1;
end
else
bff_pos(i) = 0;
bth_pos(i) = 1;
end
end
end
% determine lv_bff_m
bff_times(i) = ceil(bff_pos(i)/c);
if bff_times(i) == 0 % lv_bff is not important !!!
end_serv_m(i) = dq_m(i) + (c+d-bth_pos(i)+1+il)*mh + serv_time(i);
wait_bth(i) = max(0, lv_bth_m(i-1) + bh - end_serv_m(i));
lv_bth_m(i) = end_serv_m(i) + wait_bth(i);
else % wait at buffer before service
if bff_times(i) == bff_times(i-1) % same convoy
if (mod(bff_pos(i), c) == 1 && c~=1) || (mod(bff_pos(i), c) == 0 && c==1) % the first bus
for p=1:1:bff_times(i)-1
lv_bff_m(i, p) = lv_bff_m(i-1, p+1) + bh;
end
lv_bff_m(i, bff_times(i)) = lv_bth_m(i-1) + bh;
else
for p=1:1:bff_times(i)
lv_bff_m(i, p) = lv_bff_m(i-1, p) + bh;
end
end
end_serv_m(i) = lv_bff_m(i, bff_times(i)) + c*mh + serv_time(i);
elseif bff_times(i) > bff_times(i-1)
for p=1:1:bff_times(i-1)
lv_bff_m(i, p) = lv_bff_m(i-1, p)+bh;
end
lv_bff_m(i, bff_times(i)) = lv_bth_m(i-1) + bh;
end_serv_m(i) = lv_bff_m(i, bff_times(i)) + c*mh + serv_time(i);
else % bff_times(i) < bff_times(i-1)
if (mod(bff_pos(i), c) == 1 && c~=1) || (mod(bff_pos(i), c) == 0 && c==1)
lv_bff_m(i, bff_times(i)) = lv_bth_m(i-1) + bh;
for p=bff_times(i)-1:-1:1
lv_bff_m(i, p) = lv_bff_m(i-1, bff_times(i-1)-bff_times(i)+p) + bh;
end
end_serv_m(i) = lv_bff_m(i, bff_times(i)) + c*mh + serv_time(i);
else
for p=bff_times(i):-1:1
lv_bff_m(i, p) = lv_bff_m(i-1, bff_times(i-1)-bff_times(i)+p) + bh;
end
end_serv_m(i) = lv_bff_m(i, bff_times(i)) + c*mh + serv_time(i);
end
end
wait_bth(i) = max(0, lv_bth_m(i-1) + bh - end_serv_m(i));
lv_bth_m(i) = end_serv_m(i) + wait_bth(i);
end
%% 0 < buffer_pos(i-1) < d ends
else
%% buffer_pos(i-1) == d starts
temp_dq_m = lv_bff_m(i-1, 1) + bh;
% determine berth and buffer
if mod(temp_dq_m, cycle_length) <= green_time
dq_m(i) = temp_dq_m;
flag=0;
for p=1:1:bff_times(i-1)
evr_bff_pos = d - (p-1)*c;
tp = dq_m(i) + (d-evr_bff_pos+1)*mh + ih;
if tp < lv_bff_m(i-1, p) + bh
if p==1
bff_pos(i) = d-c+1;
else
bff_pos(i) = evr_bff_pos + 1;
end
bth_pos(i) = det_bth(bff_pos(i), c);
flag = 1;
break;
end
end
if flag == 0 % judge berth point
tp = dq_m(i) + ih + (d+c-bth_pos(i-1))*mh;
if tp < lv_bth_m(i-1) + bh
if bth_pos(i-1) == c
bff_pos(i) = 1;
bth_pos(i) = 1;
else
bff_pos(i) = 0;
bth_pos(i) = bth_pos(i-1) + 1;
end
else
bff_pos(i) = 0;
bth_pos(i) = 1;
end
end
% bff_pos(i) = d-c+1;
% bth_pos(i) = det_bth(bff_pos(i), c);
else
dq_m(i) = temp_dq_m + cycle_length - mod(temp_dq_m, cycle_length) + bh;
flag = 0;
for p=1:1:bff_times(i-1)
evr_bff_pos = d - (p-1)*c;
tp = dq_m(i) + (d-evr_bff_pos+1)*mh + ih;
if tp < lv_bff_m(i-1, p) + bh
if p==1
bff_pos(i) = d-c+1;
else
bff_pos(i) = evr_bff_pos + 1;
end
bth_pos(i) = det_bth(bff_pos(i), c);
flag = 1;
break;
end
end
if flag == 0 % judge berth point
tp = dq_m(i) + ih + (d+c-bth_pos(i-1))*mh;
if tp < lv_bth_m(i-1) + bh
if bth_pos(i-1) == c
bff_pos(i) = 1;
bth_pos(i) = 1;
else
bff_pos(i) = 0;
bth_pos(i) = bth_pos(i-1) + 1;
end
else
bff_pos(i) = 0;
bth_pos(i) = 1;
end
end
end
% determine lv_bff_m
bff_times(i) = ceil(bff_pos(i)/c);
if bff_times(i) == 0 % lv_bff is not important !!!
end_serv_m(i) = dq_m(i) + (c+d-bth_pos(i)+1+il)*mh + serv_time(i);
wait_bth(i) = max(0, lv_bth_m(i-1) + bh - end_serv_m(i));
lv_bth_m(i) = end_serv_m(i) + wait_bth(i);
else % wait at buffer before service
if bff_times(i) == bff_times(i-1) % same convoy
if (mod(bff_pos(i), c) == 1 && c~=1) || (c==1) % the first bus
for p=1:1:bff_times(i)-1
lv_bff_m(i, p) = lv_bff_m(i-1, p+1);
end
lv_bff_m(i, bff_times(i)) = lv_bth_m(i-1) + bh;
else
for p=1:1:bff_times(i)
lv_bff_m(i, p) = lv_bff_m(i-1, p) + bh;
end
end
end_serv_m(i) = lv_bff_m(i, bff_times(i)) + c*mh + serv_time(i);
elseif bff_times(i) > bff_times(i-1)
for p=1:1:bff_times(i-1)
lv_bff_m(i, p) = lv_bff_m(i-1, p)+bh;
end
lv_bff_m(i, bff_times(i)) = lv_bth_m(i-1) + bh;
end_serv_m(i) = lv_bff_m(i, bff_times(i)) + c*mh + serv_time(i);
else % bff_times(i) < bff_times(i-1)
if (mod(bff_pos(i), c) == 1 && c~=1) || (c==1)
lv_bff_m(i, bff_times(i)) = lv_bth_m(i-1) + bh;
for p=bff_times(i)-1:-1:1
lv_bff_m(i, p) = lv_bff_m(i-1, bff_times(i-1)-bff_times(i)+p+1) + bh;
end
end_serv_m(i) = lv_bff_m(i, bff_times(i)) + c*mh + serv_time(i);
else
for p=bff_times(i):-1:1
lv_bff_m(i, p) = lv_bff_m(i-1, bff_times(i-1)-bff_times(i)+p) + bh;
end
end_serv_m(i) = lv_bff_m(i, bff_times(i)) + c*mh + serv_time(i);
end
end
wait_bth(i) = max(0, lv_bth_m(i-1) + bh - end_serv_m(i));
lv_bth_m(i) = end_serv_m(i) + wait_bth(i);
end
end
%% buffer_pos(i-1) == d ends
end
end
end_time = lv_bth_m(sim_size);
capacity(l,j) = 3600 * sim_size / end_time;
end
end
end
if ~pl
plot(cycle_length_number,capacity,'linewidth',2,'linestyle','-','color',[111/255, 122/255, 117/255]);
hold on;
end
if pl
plot_number = sim_size;
% plot stop line
t = [0, lv_bth_m(plot_number)];
y = [0, 0];
plot(t, y, '-', 'Color', 'k', 'LineWidth', 3);
hold on;
%plot signal
for i=1:ceil(lv_bth_m(plot_number)/cycle_length)
signal_y = [il*jam_spacing, il*jam_spacing];
signal_red_x = [(i-1)*cycle_length,(i-1)*cycle_length+green_time];
signal_green_x = [(i-1)*cycle_length+green_time,i*cycle_length];
line(signal_red_x,signal_y,'Color','g','LineWidth',4,'LineStyle','-');
line(signal_green_x,signal_y,'Color','r','LineWidth',4,'LineStyle','-');
end
for i=1:c+d
%plot berth and buffer
x = [0,lv_bth_m(plot_number)];
y = [(il+i)*jam_spacing, (il+i)*jam_spacing];
plot(x,y,'--');
hold on;
end
for i=1:plot_number
%1
dq_x = []; dq_y=[];
if bff_pos(i)==0
dq_x = [dq_m(i), dq_m(i)+(d+c-bth_pos(i)+1+il)*mh];
dq_y = [0,(d+c-bth_pos(i)+1+il)*jam_spacing];
else
dq_x = [dq_m(i), dq_m(i)+(d-bff_pos(i)+1+il)*mh];
dq_y = [0, (d-bff_pos(i)+1+il)*jam_spacing];
end
line(dq_x, dq_y, 'linewidth',2);
% 2 plot waiting at buffer
for p=1:1:bff_times(i)
temp_bff_pos = bff_pos(i) - (p-1)*c;
if p==1
bff_x = [dq_x(2), lv_bff_m(i, p)];
bff_y = [dq_y(2), (d-temp_bff_pos+1+il)*jam_spacing];
line(bff_x,bff_y,'linewidth',3);
else
bff_x = [lv_bff_m(i, p-1)+c*mh, lv_bff_m(i, p)];
bff_y = [(d-temp_bff_pos+1+il)*jam_spacing, (d-temp_bff_pos+1+il)*jam_spacing];
line(bff_x, bff_y,'linewidth',3);
end
end
% 3 plot moving behavior in the buffers
for p=2:1:bff_times(i)
mv_bff_x = [lv_bff_m(i, p-1), lv_bff_m(i, p-1)+c*mh];
mv_bff_y = [(d-(bff_pos(i) - (p-2)*c)+1+il)*jam_spacing, (d-(bff_pos(i) - (p-1)*c)+1+il)*jam_spacing];
line(mv_bff_x, mv_bff_y, 'linewidth', 1.5);
end
% 4 plot moving behavior to berths
if bff_times(i) ~= 0
mv_bth_x = [lv_bff_m(i, bff_times(i)), lv_bff_m(i, bff_times(i))+c*mh];
mv_bth_y = [(d-(bff_pos(i) - (bff_times(i)-1)*c)+1+il)*jam_spacing, (d+c-bth_pos(i)+1+il)*jam_spacing];
line(mv_bth_x, mv_bth_y, 'linewidth', 1.5);
end
% 5 plot service time
if bff_times(i)==0
arr_bth_t = dq_m(i)+(d+c-bth_pos(i)+1+il)*mh;
else
arr_bth_t = lv_bff_m(i, bff_times(i))+c*mh;
end
serv_x = [arr_bth_t, arr_bth_t+serv_time(i)];
serv_y = [(d+c-bth_pos(i)+1+il)*jam_spacing, (d+c-bth_pos(i)+1+il)*jam_spacing];
line(serv_x, serv_y, 'linewidth', 3, 'color', 'k');
% 6 plot waiting in berth and departing
fake=5;
if wait_bth(i) == 0
dpt_x = [arr_bth_t+serv_time(i), arr_bth_t+serv_time(i)+fake];
dpt_y = [(d+c-bth_pos(i)+1+il)*jam_spacing, (d+c-bth_pos(i)+1+il)*jam_spacing+fake*5];
line(dpt_x, dpt_y, 'linewidth', 2.5);
else
wb_x = [arr_bth_t+serv_time(i), arr_bth_t+serv_time(i)+wait_bth(i)];
wb_y = [(d+c-bth_pos(i)+1+il)*jam_spacing, (d+c-bth_pos(i)+1+il)*jam_spacing];
line(wb_x, wb_y, 'linewidth', 1.5);
dpt_x = [arr_bth_t+serv_time(i)+wait_bth(i), arr_bth_t+serv_time(i)+wait_bth(i)+fake];
dpt_y = [(d+c-bth_pos(i)+1+il)*jam_spacing, (d+c-bth_pos(i)+1+il)*jam_spacing+fake*5];
line(dpt_x, dpt_y, 'linewidth', 2.5);
end
end
end
function result = det_bth(bff_pos, c)
if mod(bff_pos, c) == 0
result = c;
else
result = mod(bff_pos, c);
end
end
|
github
|
erwinwu211/TS-LSTM-based-HAR-master
|
create_flow_images_LRCN.m
|
.m
|
TS-LSTM-based-HAR-master/Action_Recognition/create_flow_images_LRCN.m
| 1,867 |
utf_8
|
2c6c52d02e2a85fc153ac4e7d2711107
|
function create_flow_images_LRCN(base, save_base)
%create_flow_images will compute flow images from RGB images using [1].
%input:
% base: folder in which RGB frames from videos are stored
% save_base: folder in which flow images should be saved
%
%[1] Brox, Thomas, et al. "High accuracy optical flow estimation based on a theory for warping." Computer Vision-ECCV 2004. Springer Berlin Heidelberg, 2004. 25-36.
base='frames';
save_base='flow'
list = clean_dir(base);
if ~isdir(save_base)
mkdir(save_base)
end
for i = 1:length(list)
if mod(i,100) == 0
fprintf('On item %d of %d\n', i, length(list))
end
video = list{i};
frames = clean_dir(sprintf('%s/%s',base,video));
if length(frames) >= 1
if ~isdir(sprintf('%s/%s',save_base, video))
mkdir(sprintf('%s/%s',save_base, video))
end
im1 = imread(sprintf('%s/%s/%s',base,video,frames{1}));
for k = 2:length(frames)
im2 = imread(sprintf('%s/%s/%s',base,video,frames{k}));
flow = mex_OF(double(im1),double(im2));
scale = 16;
mag = sqrt(flow(:,:,1).^2+flow(:,:,2).^2)*scale+128;
mag = min(mag, 255);
flow = flow*scale+128;
flow = min(flow,255);
flow = max(flow,0);
[x,y,z] = size(flow);
flow_image = zeros(x,y,3);
flow_image(:,:,1:2) = flow;
flow_image(:,:,3) = mag;
imwrite(flow_image./255,sprintf('%s/%s/flow_image_%s',save_base,video,frames{k}))
im1 = im2;
end
end
end
function files = clean_dir(base)
%clean_dir just runs dir and eliminates files in a foldr
files = dir(base);
files_tmp = {};
for i = 1:length(files)
if strncmpi(files(i).name, '.',1) == 0
files_tmp{length(files_tmp)+1} = files(i).name;
end
end
files = files_tmp;
|
github
|
jlperla/continuous_time_methods-master
|
ValueMatch.m
|
.m
|
continuous_time_methods-master/matlab/tests/ValueMatch.m
| 1,127 |
utf_8
|
8638ee3b217786493d64e98e26b97168
|
% this is a function take input of Delta_p and Delta_m,v and create
% v1-omega*v
function residual = ValueMatch(v,z,Delta_p,Delta_m,h_p,h_m)
I = length(Delta_p);
N = length(v)/I; % v is N*I
alpha = 2.1;
F_p = @(z) alpha*exp(-alpha*z);
eta = 1;
%Trapezoidal weights, adjusted for non-uniform trapezoidal weighting
omega_bar = (Delta_p + Delta_m)/2; %(52) though the corners are wrong
omega_bar(1) = Delta_p(1)/2; %(51)
omega_bar(end) = Delta_m(end)/2; %(51)
omega = omega_bar .* F_p(z); %(19) Adjusted for the PDF to make (20) easy.
%Stacking for the Omega
%This is the eta = 0 case
%omega_tilde = ([1;zeros(I-1,1)] - omega)';
%Omega = kron(speye(N),omega_tilde); %omega_tsilde as block diagonal
%Alternative Omega with the alpha weighting
Omega = sparse(N, N*I); %prealloate
for n=1:N-1
Omega(n, (n-1)*I+1:(n+1)*I) = [([1;zeros(I-1,1)] - (1-eta) * omega)' -eta * omega'];
end
Omega(N, end - I + 1:end) = ([1;zeros(I-1,1)] - omega)'; %Adds in corner without the eta weighting.
residual = Omega * v;
return
|
github
|
jlperla/continuous_time_methods-master
|
Julia_comparison_stationary_test.m
|
.m
|
continuous_time_methods-master/matlab/tests/Julia_comparison_stationary_test.m
| 6,411 |
utf_8
|
3428cc8accd57af623a963ac72d17209
|
% This is test function that try to replicate Julia problem with same set
% up
%Using the unit testing framework in matlab. See https://www.mathworks.com/help/matlab/matlab_prog/write-simple-test-case-with-functions.html
%To run tests:
% runtests %would run all of them in the current directory
% runtests('my_test') %runs just the my_test.m file
% runtests('my_test/my_function_test') %runs only `my_function_test function in `my_test'.
function tests = Julia_comparison_stationary_test
tests = functiontests(localfunctions);
end
%This is run at the beginning of the test. Not required.
function setupOnce(testCase)
addpath('../lib/');
testCase.TestData.tolerances.test_tol = 1e-9;
testCase.TestData.tolerances.lower_test_tol = 1e-8; %For huge matrices, the inf norm can get a little different.
testCase.TestData.tolerances.default_csv_precision = '%.10f'; %Should be higher precision than tolerances.test_tol
end
function uniform_more_grid_test(testCase)
tolerances = testCase.TestData.tolerances;
r = 0.05;
zeta = 14.5;
gamma = 0.005;
g = 0.020758;
mu_x = @(x) gamma-g;
sigma_bar = 0.02;
sigma_2_x = @(x) (sigma_bar).^2+0.0*x;
u_x = @(x) exp(0.5*x);
rho = r-g;
x_min = 0.0;
x_max = 5.0;
I = 500;
x = linspace(x_min,x_max,I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
u = u_x(x);
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
[v, success] = simple_HJBE_discretized_univariate(A, x, u, rho);
%dlmwrite(strcat(mfilename, '_1_v_output.csv'), v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
%v_check = dlmread(strcat(mfilename, '_1_v_output.csv'));
%verifyTrue(testCase,norm(v - v_check, Inf) < tolerances.test_tol, 'v value no longer matches');
%verifyTrue(testCase, success==true, 'unsuccesful');
%Solve with a uniform grid and check if similar after interpolation
x_2 = linspace(x_min, x_max, 701)'; %Twice as many points to be sure.
A_2 = discretize_univariate_diffusion(x_2, mu_x(x_2), sigma_2_x(x_2));
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
[v_2, success] = simple_HJBE_discretized_univariate(A_2, x_2, u_x(x_2), rho);
figure()
v_2int=interp1(x_2, v_2, x);
dif=v-v_2int;
plot(x,dif,'LineWidth',2);hold on
title('difference of v and v_2 along z_grid, z_bar=5')
%Make sure within range. This seems too large.
verifyTrue(testCase, norm(interp1(x_2, v_2, x) - v,Inf) < 0.02, 'Not within range of interpolation');
end
function uniform_more_grid_test2(testCase)
tolerances = testCase.TestData.tolerances;
r = 0.05;
zeta = 14.5;
gamma = 0.005;
g = 0.020758;
mu_x = @(x) gamma-g;
sigma_bar = 0.02;
sigma_2_x = @(x) (sigma_bar).^2+0.0*x;
u_x = @(x) exp(x);
rho = r-g;
x_min = 0.0;
x_max = 2.0; % lower xbar
I = 301;
x = linspace(x_min,x_max,I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
u = u_x(x);
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
[v, success] = simple_HJBE_discretized_univariate(A, x, u, rho);
%dlmwrite(strcat(mfilename, '_1_v_output.csv'), v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
%v_check = dlmread(strcat(mfilename, '_1_v_output.csv'));
%verifyTrue(testCase,norm(v - v_check, Inf) < tolerances.test_tol, 'v value no longer matches');
%verifyTrue(testCase, success==true, 'unsuccesful');
%Solve with a uniform grid and check if similar after interpolation
x_2 = linspace(x_min, x_max, 701)'; %Twice as many points to be sure.
A_2 = discretize_univariate_diffusion(x_2, mu_x(x_2), sigma_2_x(x_2));
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
[v_2, success] = simple_HJBE_discretized_univariate(A_2, x_2, u_x(x_2), rho);
figure()
v_2int=interp1(x_2, v_2, x);
dif=v-v_2int;
plot(x,dif,'LineWidth',2);hold on
title('difference of v and v_2 along z_grid,z_bar=2')
%Make sure within range. This seems too large.
verifyTrue(testCase, norm(interp1(x_2, v_2, x) - v,Inf) < 0.02, 'Not within range of interpolation');
end
function uniform_plot_test(testCase)
tolerances = testCase.TestData.tolerances;
r = 0.05;
zeta = 14.5;
gamma = 0.005;
g = 0.020758;
mu_x = @(x) gamma-g;
sigma_bar = 0.02;
sigma_2_x = @(x) (sigma_bar).^2+0.0*x;
u_x = @(x) exp(x);
rho = r-g;
x_min = 0.0;
x_max = 5.0; % lower xbar
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
I_c=[101 201 301 401 501];
for i=1:5
I = I_c(i);
x = linspace(x_min,x_max,I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
u = u_x(x);
[v_{i}, success] = simple_HJBE_discretized_univariate(A, x, u, rho);
x_{i}=x;
end
figure()
for i=1:5
plot(x_{i}(end-5:end),v_{i}(end-5:end)); hold on
end
legend('101','201','301','401','500')
title('value function at last 5 grid point')
end
function uniform_to_nonuniform_test(testCase)
tolerances = testCase.TestData.tolerances;
r = 0.05;
zeta = 14.5;
gamma = 0.005;
g = 0.020758;
mu_x = @(x) gamma-g;
sigma_bar = 0.02;
sigma_2_x = @(x) (sigma_bar).^2+0.0*x;
u_x = @(x) exp(x);
rho = r-g;
x_min = 0.0;
x_max = 2.0; % lower xbar
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
I = 301;
x = linspace(x_min,x_max,I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
u = u_x(x);
[v, success] = simple_HJBE_discretized_univariate(A, x, u, rho);
I2=floor(I*1/3); % propotional adding grid points
x_2 = unique([linspace(x_min, x_max, I)'; linspace(1.7,x_max,I2)']); %Twice as many points to be sure.
A_2 = discretize_univariate_diffusion(x_2, mu_x(x_2), sigma_2_x(x_2));
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
[v_2, success] = simple_HJBE_discretized_univariate(A_2, x_2, u_x(x_2), rho);
v_2int=interp1(x_2, v_2, x);
%Make sure within range. This seems too large.
verifyTrue(testCase, norm(interp1(x_2, v_2, x) - v,Inf) < 0.02, 'Not within range of interpolation');
end
|
github
|
jlperla/continuous_time_methods-master
|
discretize_univariate_diffusion_test.m
|
.m
|
continuous_time_methods-master/matlab/tests/discretize_univariate_diffusion_test.m
| 14,330 |
utf_8
|
6053e25e9b61e0b069dea7d221595fe8
|
%Using the unit testing framework in matlab. See https://www.mathworks.com/help/matlab/matlab_prog/write-simple-test-case-with-functions.html
%To run tests:
% runtests %would run all of them in the current directory
% runtests('my_test') %runs just the my_test.m file
% runtests('my_test/my_function_test') %runs only `my_function_test function in `my_test'.
function tests = discretize_univariate_diffusion_test
tests = functiontests(localfunctions);
end
%This is run at the beginning of the test. Not required.
function setupOnce(testCase)
addpath('../lib/');
testCase.TestData.tolerances.test_tol = 1e-9;
testCase.TestData.tolerances.default_csv_precision = '%.10f'; %Should be higher precision than tolerances.test_tol
end
function zero_drift_uniform_grid_test(testCase)%Simple and small with zero drift with uniform grid
tolerances = testCase.TestData.tolerances;
mu_x = @(x) zeros(numel(x),1);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 5;
x = linspace(x_min, x_max, I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
%%dlmwrite(strcat(mfilename, '_1_A_output.csv'), full(A), 'precision', tolerances.default_csv_precision); %Uncomment to save again
A_check = dlmread(strcat(mfilename, '_1_A_output.csv'));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
verifyTrue(testCase,is_negative_definite(testCase, A), 'Intensity Matrix is not positive definite');
end
function large_zero_drift_uniform_grid_test(testCase)
tolerances = testCase.TestData.tolerances;
mu_x = @(x) zeros(numel(x),1);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 1000000; %million X million matrix, but sparse.
x = linspace(x_min, x_max, I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
%The following are worth testing for almost every matrix in the test suite.
verifyTrue(testCase, (nnz(A) == 2999998), 'Number of non-zero values is wrong'); %Should have about 3million non-zeros. Tridiagonal.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
end
function negative_drift_uniform_grid_test(testCase)
tolerances = testCase.TestData.tolerances;
mu_x = @(x) ones(numel(x),1) * (-1);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 1001;
x = linspace(x_min, x_max, I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
%To save the file again, can uncomment this.
%[indices_i, indices_j, values_ij] = find(A); %Uncomment to save again
%%dlmwrite(strcat(mfilename, '_3_A_output.csv'), [indices_i indices_j values_ij], 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Load and check against the sparse matrix file.
A_check = spconvert(dlmread(strcat(mfilename, '_3_A_output.csv')));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
end
function x_min_is_less_than_zero_test(testCase) % x_min < 0
tolerances = testCase.TestData.tolerances;
mu_x = @(x) zeros(numel(x),1);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = -0.49;
x_max = 0.5;
I = 5;
x = linspace(x_min, x_max, I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
%%dlmwrite(strcat(mfilename, '_4_A_output.csv'), full(A), 'precision', tolerances.default_csv_precision); %Uncomment to save again
A_check = dlmread(strcat(mfilename, '_4_A_output.csv'));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
end
%Don't remember what this was for, but doesn't apply now that we have Delta back in denominator.
% function rescale_x_min_and_x_max_test(testCase) % Change in the scale of x_min and x_max for given I
% tolerances = testCase.TestData.tolerances;
%
% mu_x = @(x) zeros(numel(x),1);
% sigma_bar = 0.1;
% sigma_2_x = @(x) (sigma_bar*x).^2;
% x_min = 0.01;
% x_max = 1;
% I = 1001;
% scaler = 6; % Just pick 6 as a random scaler to rescale x.
% x = linspace(x_min, x_max, I)';
% x_rescale = scaler * x;
% A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
% A_rescale = discretize_univariate_diffusion(x_rescale, mu_x(x_rescale), sigma_2_x(x_rescale)) / scaler;
%
% verifyTrue(testCase, norm(A - A_rescale, Inf) < tolerances.test_tol, 'A value no longer matches');
%
% %The following are worth testing for almost every matrix in the test suit.
% verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
% verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
% verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
% end
function construction_test(testCase) %Use variations of construction with mu<0
tolerances = testCase.TestData.tolerances;
mu_x = @(x) ones(numel(x),1) * (-2); % A random mu, which is less than 0
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 1001;
x = linspace(x_min, x_max, I)';
Delta = x(2) - x(1);
Delta_2 = Delta^2;
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
mu = mu_x(x);
sigma_2 = sigma_2_x(x);
% Variation 1: construct the A assuming that mu < 0 (i.e., the direction of the finite differences is known a-priori)
X_var1 = - mu/Delta + sigma_2/(2*Delta_2);
Y_var1 = mu/Delta - sigma_2/Delta_2;
Z_var1 = sigma_2/(2*Delta_2);
A_var1 = spdiags(Y_var1, 0, I, I) + spdiags(X_var1(2:I), -1, I, I) + spdiags([0;Z_var1(1:I-1)], 1, I, I);
A_var1(1, 1) = Y_var1(1) + X_var1(1);
A_var1(I,I)= Y_var1(I) + sigma_2(I)/(2*Delta_2);
% Variation 2: construct the A with a for loop, essentially adding in each row as an equation. Map to exact formulas in a latex document.
S = zeros(I, I+2);
for i = 1: I
x_i = -mu(i)/Delta + sigma_2(i)/(2*Delta_2);
y_i = mu(i)/Delta - sigma_2(i)/Delta_2;
z_i = sigma_2(i)/(2*Delta_2);
S(i, i) = x_i;
S(i, i+1) = y_i;
S(i, i+2) = z_i;
end
S(1, 2) = S(1, 2) + S(1, 1);
S(I, I+1) = mu(I)/Delta - sigma_2(I)/(2*Delta_2);
A_var2 = sparse(S(:, 2: I+1));
verifyTrue(testCase, norm(A - A_var1, Inf) < tolerances.test_tol, 'A is different from A_var1');
verifyTrue(testCase, norm(A - A_var2, Inf) < tolerances.test_tol, 'A is different from A_var2');
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
end
function monotonically_increasing_mu_test(testCase) % mu is monotonically increasing in x with mu(x_min)<0 and mu(x_max)>0
tolerances = testCase.TestData.tolerances;
mu_x = @(x) (x - 0.5);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 5;
x = linspace(x_min, x_max, I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
%dlmwrite(strcat(mfilename, '_7_A_output.csv'), full(A), 'precision', tolerances.default_csv_precision); %Uncomment to save again
A_check = dlmread(strcat(mfilename, '_7_A_output.csv'));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
verifyTrue(testCase,is_negative_definite(testCase, A), 'Intensity Matrix is not positive definite');
end
function monotonically_decreasing_mu_test(testCase) % mu is monotonically decreasing in x with mu(x_min)>0 and mu(x_max)<0
tolerances = testCase.TestData.tolerances;
mu_x = @(x) (x - 0.5) * (-1);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 5;
x = linspace(x_min, x_max, I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
%dlmwrite(strcat(mfilename, '_8_A_output.csv'), full(A), 'precision', tolerances.default_csv_precision); %Uncomment to save again
A_check = dlmread(strcat(mfilename, '_8_A_output.csv'));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
verifyTrue(testCase,is_negative_definite(testCase, A), 'Intensity Matrix is not positive definite');
end
function concave_mu_test(testCase) % mu is concave in x with mu(x_min)<0, mu(x_max)<0 and mu(x)>0 for some x
tolerances = testCase.TestData.tolerances;
mu_x = @(x) (-(x - 0.5).^2 + 0.1);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 5;
x = linspace(x_min, x_max, I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
%dlmwrite(strcat(mfilename, '_9_A_output.csv'), full(A), 'precision', tolerances.default_csv_precision); %Uncomment to save again
A_check = dlmread(strcat(mfilename, '_9_A_output.csv'));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
verifyTrue(testCase,is_negative_definite(testCase, A), 'Intensity Matrix is not positive definite');
end
%Removed. Should be checking that this throws errors, but not sure how to do it with matlab tests.
% function zero_sigma_everywhere_test(testCase)
% I = 5;
% %mu_x = @(x) zeros(numel(x),1);
% mu_x = @(x) -.01 * ones(numel(x),1);
% sigma_2_x = @(x) zeros(numel(x),1);
% x_min = 0.01;
% x_max = 1;
% x = linspace(x_min, x_max, I)';
% %A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
% %testCase.assertFail(@() discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x))); ???? Not working,
% end
function zero_sigma_somewhere_test(testCase)
tolerances = testCase.TestData.tolerances;
mu_x = @(x) (x - 0.5) * (-1);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 5;
x = linspace(x_min, x_max, I)';
sigma_2 = sigma_2_x(x);
sigma_2(1, 1) = 0;
sigma_2(3, 1) = 0;
sigma_2(5, 1) = 0;
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2);
%dlmwrite(strcat(mfilename, '_11_A_output.csv'), full(A), 'precision', tolerances.default_csv_precision); %Uncomment to save again
A_check = dlmread(strcat(mfilename, '_11_A_output.csv'));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
verifyTrue(testCase,is_negative_definite(testCase, A), 'Intensity Matrix is not positive definite');
end
%These are utility functions for testing returned matrices.
function result = is_stochastic_matrix(testCase, A)
result = (max(abs(full(sum(A,2)))) < testCase.TestData.tolerances.test_tol);
end
function result = is_negative_diagonal(testCase, A)
result = (max(full(diag(A))) < 0);
end
function result = is_negative_definite(testCase, A)
result =all(eig(full(A)) < testCase.TestData.tolerances.test_tol);
end
|
github
|
jlperla/continuous_time_methods-master
|
time_varying_optimal_stopping_diffusion_test.m
|
.m
|
continuous_time_methods-master/matlab/tests/time_varying_optimal_stopping_diffusion_test.m
| 5,932 |
utf_8
|
07eb198d7ad8da763c93e6ae5bf93526
|
%Using the unit testing framework in matlab. See https://www.mathworks.com/help/matlab/matlab_prog/write-simple-test-case-with-functions.html
%To run tests:
% runtests %would run all of them in the current directory
% runtests('my_test') %runs just the my_test.m file
% runtests('my_test/my_function_test') %runs only `my_function_test function in `my_test'.
function tests = time_varying_optimal_stopping_diffusion_test
tests = functiontests(localfunctions);
end
%This is run at the beginning of the test. Not required.
function setupOnce(testCase)
addpath('../lib/');
testCase.TestData.tolerances.test_tol = 1e-9;
testCase.TestData.tolerances.test_tol_less = 1e-5;
testCase.TestData.tolerances.test_tol_much_less = 1e-3;
testCase.TestData.tolerances.default_csv_precision = '%.10f'; %Should be higher precision than test_tol
end
function baseline_one_period_test(testCase)
tolerances = testCase.TestData.tolerances;
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.01; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
%Rewriting parameters entirely.
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
S_bar = 10.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
parameters.rho = 0.05; %Discount ra te
parameters.u = @(t,x) x.^gamma + 0*t; %u(x) = x^gamma in this example
parameters.S = @(t,x) S_bar + 0*x + 0*t; %S(x) = S_bar in this example
parameters.mu = @(t,x) mu_bar + 0*x + 0*t; %i.e. mu(x) = mu_bar
parameters.sigma_2 = @(t,x) (sigma_bar*x).^2 + 0*t; %i.e. sigma(x) = sigma_bar x
%Grids
x_min = 0.01; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
I = 100;
parameters.t = 0; %One time period!
parameters.x = linspace(x_min, x_max, I)';
%Create uniform grid and determine step sizes.
settings.method = 'yuval';
tic;
disp('yuval method');
results = optimal_stopping_diffusion(parameters, settings);
plot(parameters.x, results.v, parameters.x, results.S)
end
function baseline_repeated_period_test(testCase)
tolerances = testCase.TestData.tolerances;
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.01; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
%Rewriting parameters entirely.
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
S_bar = 10.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
parameters.rho = 0.05; %Discount ra te
parameters.u = @(t,x) x.^gamma + 0*t; %u(x) = x^gamma in this example
parameters.S = @(t,x) S_bar + 0*x + 0*t; %S(x) = S_bar in this example
parameters.mu = @(t,x) mu_bar + 0*x + 0*t; %i.e. mu(x) = mu_bar
parameters.sigma_2 = @(t,x) (sigma_bar*x).^2 + 0*t; %i.e. sigma(x) = sigma_bar x
%Grids
x_min = 0.01; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
I = 100;
N = 3;
parameters.t = linspace(0, 1, N)'; %One time period!
parameters.x = linspace(x_min, x_max, I)';
%Create uniform grid and determine step sizes.
settings.method = 'yuval';
tic;
disp('yuval method');
results = optimal_stopping_diffusion(parameters, settings);
v = reshape(results.v, [I N]); %in three dimensions now
S = reshape(results.S, [I N]); %in three dimensions now
%Useful to display the value funciton and the stopping value
% surf(parameters.t, parameters.x, v); hold on;
% surf(parameters.t, parameters.x, S,'FaceAlpha',0.5, 'EdgeColor', 'none'); %SHows the S a litle different.
%%TODO: Make sure that the v is nearly identical for of the time periods, and that it is the same as the optimal_stopping_diffusion we previously calculated.
end
function changing_S_test(testCase)
tolerances = testCase.TestData.tolerances;
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.01; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
%Rewriting parameters entirely.
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
S_bar = 10.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
parameters.rho = 0.05; %Discount rate
parameters.u = @(t,x) x.^gamma + 0*t;
parameters.S = @(t,x) S_bar + 0*x + .1 * t; %NOTE: value increasing over time! Should have less stopping
parameters.mu = @(t,x) mu_bar + 0*x + 0*t;
parameters.sigma_2 = @(t,x) (sigma_bar*x).^2 + 0*t;
%Grids
x_min = 0.01; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
I = 100;
N = 10;
parameters.t = linspace(0, 1, N)'; %One time period!
parameters.x = linspace(x_min, x_max, I)';
%Create uniform grid and determine step sizes.
settings.method = 'yuval';
tic;
results = optimal_stopping_diffusion(parameters, settings);
v = reshape(results.v, [I N]); %in three dimensions now
S = reshape(results.S, [I N]); %in three dimensions now
% surf(parameters.t, parameters.x, v); hold on;
% surf(parameters.t, parameters.x, S,'FaceAlpha',0.5, 'EdgeColor', 'none'); %SHows the S a litle different.
%%TODO: Make sure that this makes sense, that the v has less stopping than the one with an identical stopping value, etc.
end
|
github
|
jlperla/continuous_time_methods-master
|
discretize_nonuniform_univariate_diffusion_test.m
|
.m
|
continuous_time_methods-master/matlab/tests/discretize_nonuniform_univariate_diffusion_test.m
| 9,936 |
utf_8
|
730b1686969f65e6c50d1eef6d7be0f1
|
%Using the unit testing framework in matlab. See https://www.mathworks.com/help/matlab/matlab_prog/write-simple-test-case-with-functions.html
%To run tests:
% runtests %would run all of them in the current directory
% runtests('my_test') %runs just the my_test.m file
% runtests('my_test/my_function_test') %runs only `my_function_test function in `my_test'.
function tests = discretize_nonuniform_univariate_diffusion_test
tests = functiontests(localfunctions);
end
%This is run at the beginning of the test. Not required.
function setupOnce(testCase)
addpath('../lib/');
testCase.TestData.tolerances.test_tol = 1e-9;
testCase.TestData.tolerances.default_csv_precision = '%.10f'; %Should be higher precision than tolerances.test_tol
end
function zero_drift_test(testCase)%Simple and small with zero drift with uniform grid
tolerances = testCase.TestData.tolerances;
mu_x = @(x) zeros(numel(x),1);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 5;
x = logspace(log10(x_min),log10(x_max),I)';
[A, Delta_p, Delta_m] = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
%dlmwrite(strcat(mfilename, '_1_A_output.csv'), full(A), 'precision', tolerances.default_csv_precision); %Uncomment to save again
A_check = dlmread(strcat(mfilename, '_1_A_output.csv'));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
verifyTrue(testCase,is_negative_definite(testCase, A), 'Intensity Matrix is not positive definite');
end
function zero_drift_for_large_sample_test(testCase)
tolerances = testCase.TestData.tolerances;
mu_x = @(x) zeros(numel(x),1);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 1000; % It gets very slow when sample size is getting bigger.
x = logspace(log10(x_min),log10(x_max),I)';
[A, Delta_p, Delta_m] = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
verifyTrue(testCase, (nnz(A) == 2998), 'Number of non-zero values is wrong')
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
verifyTrue(testCase,is_negative_definite(testCase, A), 'Intensity Matrix is not positive definite');
end
function negative_drift_uniform_grid_test(testCase)
tolerances = testCase.TestData.tolerances;
mu_x = @(x) ones(numel(x),1) * (-1);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 1001;
x = logspace(log10(x_min),log10(x_max),I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
%To save the file again, can uncomment this.
%[indices_i, indices_j, values_ij] = find(A); %Uncomment to save again
%dlmwrite(strcat(mfilename, '_4_A_output.csv'), [indices_i indices_j values_ij], 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Load and check against the sparse matrix file.
A_check = spconvert(dlmread(strcat(mfilename, '_4_A_output.csv')));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
end
function positive_drift_uniform_grid_test(testCase)
tolerances = testCase.TestData.tolerances;
mu_x = @(x) ones(numel(x),1);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 1001;
x = logspace(log10(x_min),log10(x_max),I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
%To save the file again, can uncomment this.
%[indices_i, indices_j, values_ij] = find(A); %Uncomment to save again
%dlmwrite(strcat(mfilename, '_5_A_output.csv'), [indices_i indices_j values_ij], 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Load and check against the sparse matrix file.
A_check = spconvert(dlmread(strcat(mfilename, '_5_A_output.csv')));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
end
function monotonically_increasing_mu_test(testCase) % mu is monotonically increasing in x with mu(x_min)<0 and mu(x_max)>0
tolerances = testCase.TestData.tolerances;
mu_x = @(x) (x - 0.5);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 5;
x = logspace(log10(x_min),log10(x_max),I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
%To save the file again, can uncomment this.
%[indices_i, indices_j, values_ij] = find(A); %Uncomment to save again
%dlmwrite(strcat(mfilename, '_6_A_output.csv'), [indices_i indices_j values_ij], 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Load and check against the sparse matrix file.
A_check = spconvert(dlmread(strcat(mfilename, '_6_A_output.csv')));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
end
function monotonically_decreasing_mu_test(testCase) % mu is monotonically increasing in x with mu(x_min)<0 and mu(x_max)>0
tolerances = testCase.TestData.tolerances;
mu_x = @(x) (x - 0.5) * (-1);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 5;
x = logspace(log10(x_min),log10(x_max),I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
%To save the file again, can uncomment this.
%[indices_i, indices_j, values_ij] = find(A); %Uncomment to save again
%dlmwrite(strcat(mfilename, '_7_A_output.csv'), [indices_i indices_j values_ij], 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Load and check against the sparse matrix file.
A_check = spconvert(dlmread(strcat(mfilename, '_7_A_output.csv')));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
end
function concave_mu_test(testCase) % mu is concave in x with mu(x_min)<0, mu(x_max)<0 and mu(x)>0 for some x
tolerances = testCase.TestData.tolerances;
mu_x = @(x) (-(x - 0.5).^2 + 0.1);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 0.01;
x_max = 1;
I = 5;
x = logspace(log10(x_min),log10(x_max),I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
%To save the file again, can uncomment this.
%[indices_i, indices_j, values_ij] = find(A); %Uncomment to save again
%dlmwrite(strcat(mfilename, '_8_A_output.csv'), [indices_i indices_j values_ij], 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Load and check against the sparse matrix file.
A_check = spconvert(dlmread(strcat(mfilename, '_8_A_output.csv')));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
%The following are worth testing for almost every matrix in the test suit.
verifyTrue(testCase,is_stochastic_matrix(testCase, A), 'Intensity matrix rows do not sum to 0');
verifyTrue(testCase,is_negative_diagonal(testCase, A), 'Intensity Matrix diagonal has positive elements');
verifyTrue(testCase,isbanded(A,1,1), 'Intensity Matrix is not tridiagonal');
end
%These are utility functions for testing returned matrices.
function result = is_stochastic_matrix(testCase, A)
result = (max(abs(full(sum(A,2)))) < testCase.TestData.tolerances.test_tol);
end
function result = is_negative_diagonal(testCase, A)
result = (max(full(diag(A))) < 0);
end
function result = is_negative_definite(testCase, A)
result =all(eig(full(A)) < testCase.TestData.tolerances.test_tol);
end
|
github
|
jlperla/continuous_time_methods-master
|
KFE_discretized_univariate_test.m
|
.m
|
continuous_time_methods-master/matlab/tests/KFE_discretized_univariate_test.m
| 6,773 |
utf_8
|
de2022549d28f4046aae8918d000139e
|
%Using the unit testing framework in matlab. See https://www.mathworks.com/help/matlab/matlab_prog/write-simple-test-case-with-functions.html
%To run tests:
% runtests %would run all of them in the current directory
% runtests('my_test') %runs just the my_test.m file
% runtests('my_test/my_function_test') %runs only `my_function_test function in `my_test'.
function tests = KFE_discretized_univariate_test
tests = functiontests(localfunctions);
end
%This is run at the beginning of the test. Not required.
function setupOnce(testCase)
addpath('../lib/');
testCase.TestData.tolerances.test_tol = 1e-9;
testCase.TestData.tolerances.lower_test_tol = 1e-6; %Too high precision for some tests with big matrices
testCase.TestData.tolerances.default_csv_precision = '%.10f'; %Should be higher precision than tolerances.test_tol
end
function [A, x] = baseline_negative_drift_discretization(I, testCase) %Used by other test cases as a baseline.
mu_x = @(x) -0.01 * x;
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
x_min = 1;
x_max = 2;
x = linspace(x_min, x_max, I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
end
function small_LLS_vs_eigenvalue_test(testCase) %Simple baseline check.
tolerances = testCase.TestData.tolerances;
I = 20; %Small matrix.
[A, x] = baseline_negative_drift_discretization(I, testCase);
f = stationary_distribution_discretized_univariate(A, x);
% dlmwrite(strcat(mfilename, '_1_f_output.csv'), f, 'precision', tolerances.default_csv_precision); %Uncomment to save again
f_check = dlmread(strcat(mfilename, '_1_f_output.csv'));
verifyTrue(testCase,norm(f - f_check, Inf) < tolerances.test_tol, 'f value no longer matches');
settings.method = 'LLS'; %Now using the LLS method
f_lls = stationary_distribution_discretized_univariate(A,x, settings);
verifyTrue(testCase,norm(f_lls - f_check, Inf) < tolerances.lower_test_tol, 'f value no longer matches');
%With a perfect initial guess!
settings.initial_guess = f_check;
f_lls = stationary_distribution_discretized_univariate(A,x, settings);
verifyTrue(testCase,norm(f_lls - f_check, Inf) < tolerances.lower_test_tol, 'f value no longer matches');
end
function medium_LLS_vs_eigenvalue_test(testCase) %Larger system using default options, etc.
tolerances = testCase.TestData.tolerances;
I = 1000; %Larger grid
settings.print_level = 1;
settings.method = 'eigenproblem'; %Will try to only find the appropriate eigenvector, which can be faster.
settings.num_basis_vectors = 100; %In general, need to tweak this to use the default eigenvector approach for large I
[A, x] = baseline_negative_drift_discretization(I, testCase);
tic;
f = stationary_distribution_discretized_univariate(A, x, settings);
toc;
%dlmwrite(strcat(mfilename, '_2_f_output.csv'), f, 'precision', tolerances.default_csv_precision); %Uncomment to save again
f_check = dlmread(strcat(mfilename, '_2_f_output.csv'));
verifyTrue(testCase,norm(f - f_check, Inf) < tolerances.test_tol, 'f value no longer matches');
settings.method = 'LLS'; %Now using the LLS method with the default pre-conditioner
tic;
f_lls = stationary_distribution_discretized_univariate(A, x, settings);
toc;
verifyTrue(testCase,norm(f_lls - f_check, Inf) < tolerances.lower_test_tol, 'f value no longer matches');
settings.method = 'eigenproblem_all'; %Now using the eigenvalues, but calculating all
tic;
f_eigen_all = stationary_distribution_discretized_univariate(A, x, settings);
toc;
verifyTrue(testCase,norm(f_eigen_all - f_check, Inf) < tolerances.lower_test_tol, 'f value no longer matches');
end
function medium_preconditioner_test(testCase) %tests of the various preconditioners. Some not worth much.
tolerances = testCase.TestData.tolerances;
I = 1000; %Larger grid
settings.print_level = 1;
[A, x] = baseline_negative_drift_discretization(I, testCase);
%Use the eigenproblem approach as a comparison
disp('Eigenvalue based solution');
tic;
f = stationary_distribution_discretized_univariate(A, x, settings);
toc;
%dlmwrite(strcat(mfilename, '_3_f_output.csv'), f, 'precision', tolerances.default_csv_precision); %Uncomment to save again
f_check = dlmread(strcat(mfilename, '_3_f_output.csv'));
verifyTrue(testCase,norm(f - f_check, Inf) < tolerances.test_tol, 'f value no longer matches');
%Setup basic LLS
settings.method = 'LLS'; %Now using the LLS method with the default pre-conditioner
settings.max_iterations = 50000; %Only really need this many to test the no preconditioner version.
settings.tolerance = 1E-8;
settings.print_level = 1;
%Use LLS with no preconditioners
tic;
disp('LLS no preconditioner');
settings.preconditioner = 'none';
f = stationary_distribution_discretized_univariate(A, x, settings);
toc;
verifyTrue(testCase,norm(f - f_check, Inf) < tolerances.test_tol, 'f value no longer matches');
tic;
disp('LLS with incomplete LU preconditioner and perfect initial guess');
settings.preconditioner = 'incomplete_LU';
settings.initial_guess = f_check;
f = stationary_distribution_discretized_univariate(A, x, settings);
toc;
verifyTrue(testCase,norm(f - f_check, Inf) < tolerances.test_tol, 'f value no longer matches');
tic;
disp('LLS incomplete LU preconditioner');
settings.preconditioner = 'incomplete_LU';
f = stationary_distribution_discretized_univariate(A, x, settings);
toc;
verifyTrue(testCase,norm(f - f_check, Inf) < tolerances.test_tol, 'f value no longer matches');
tic;
disp('LLS jacobi preconditioner');
settings.preconditioner = 'jacobi';
f = stationary_distribution_discretized_univariate(A, x, settings);
toc;
verifyTrue(testCase,norm(f - f_check, Inf) < tolerances.test_tol, 'f value no longer matches');
tic;
disp('LLS incomplete_cholesky preconditioner');
settings.preconditioner = 'incomplete_cholesky';
f = stationary_distribution_discretized_univariate(A, x, settings);
toc;
verifyTrue(testCase,norm(f - f_check, Inf) < tolerances.test_tol, 'f value no longer matches');
tic;
disp('LLS with incomplete LU preconditioner and mediocre initial guess');
settings.preconditioner = 'incomplete_LU';
settings.initial_guess = linspace(.005,0,I)';
f = stationary_distribution_discretized_univariate(A, x, settings);
toc;
verifyTrue(testCase,norm(f - f_check, Inf) < tolerances.test_tol, 'f value no longer matches');
end
|
github
|
jlperla/continuous_time_methods-master
|
discretize_time_varying_univariate_diffusion_test.m
|
.m
|
continuous_time_methods-master/matlab/tests/discretize_time_varying_univariate_diffusion_test.m
| 18,948 |
utf_8
|
da7ccac5bc2c633d5a41ad01ffd7f0ee
|
%Using the unit testing framework in matlab. See https://www.mathworks.com/help/matlab/matlab_prog/write-simple-test-case-with-functions.html
%To run tests:
% runtests %would run all of them in the current directory
% runtests('my_test') %runs just the my_test.m file
% runtests('my_test/my_function_test') %runs only `my_function_test function in `my_test'.
function tests = discretize_time_varying_univariate_diffusion_test
tests = functiontests(localfunctions);
end
%This is run at the beginning of the test. Not required.
function setupOnce(testCase)
addpath('../lib/');
testCase.TestData.tolerances.test_tol = 1e-9;
testCase.TestData.tolerances.default_csv_precision = '%.10f'; %Should be higher precision than tolerances.test_tol
end
function nothing_uniform_test(testCase)
tolerances = testCase.TestData.tolerances;
mu_tx = @(t, x) -0.1 + t + .1*x;%cludge if constant since bsxfun gets confused otherwise
sigma_bar = 0.1;
sigma_2_tx = @(t, x) (sigma_bar*x).^2;
%Want to make sure there are no identical spacing. To aid in verifying the code.
x = [0.01 .1 .22 .4 .91 1]';
t = [0.0 1.1 2.4 5.1 6.9]';
[t_grid, x_grid] = meshgrid(t,x); %Generates permutations (stacked by t first, as we want) could look at: [t_grid(:) x_grid(:)]
state_permutations = [t_grid(:) x_grid(:)];
%should check that this does the correct permuations in order and calls the underlying function.
mu = bsxfun(mu_tx, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
sigma_2 = bsxfun(sigma_2_tx, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
%Discretize the operator
[A, Delta_p, Delta_m, h_p, h_m] = discretize_time_varying_univariate_diffusion(t, x, mu, sigma_2);
%dlmwrite(strcat(mfilename, '_11_A_output.csv'), full(A), 'precision', tolerances.default_csv_precision); %Uncomment to save again
A_check = dlmread(strcat(mfilename, '_11_A_output.csv'));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
end
function basic_test(testCase)
%This will create a time-varying setup, and should show that
tolerances = testCase.TestData.tolerances;
mu_tx = @(t, x) -0.1 + t + .1*x;%cludge if constant since bsxfun gets confused otherwise
sigma_bar = 0.1;
sigma_2_tx = @(t, x) (sigma_bar*x).^2;
%Grid
x_min = 0.01;
x_max = 1;
I = 5;
t_min = 0.0;
t_max = 10.0;
N = 4;
x = linspace(x_min, x_max, I)';
t = linspace(t_min, t_max, N)';
[t_grid, x_grid] = meshgrid(t,x); %Generates permutations (stacked by t first, as we want) could look at: [t_grid(:) x_grid(:)]
state_permutations = [t_grid(:) x_grid(:)];
%should check that this does the correct permuations in order and calls the underlying function.
mu = bsxfun(mu_tx, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
sigma_2 = bsxfun(sigma_2_tx, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
%Discretize the operator
[A, Delta_p, Delta_m, h_p, h_m] = discretize_time_varying_univariate_diffusion(t, x, mu, sigma_2);
%dlmwrite(strcat(mfilename, '_1_A_output.csv'), full(A), 'precision', tolerances.default_csv_precision); %Uncomment to save again
A_check = dlmread(strcat(mfilename, '_1_A_output.csv'));
verifyTrue(testCase,norm(A - A_check, Inf) < tolerances.test_tol, 'A value no longer matches');
end
function non_time_varying_test(testCase)
%This will create a non-time-varying setup, and should show that
tolerances = testCase.TestData.tolerances;
% This test use mu(x)=mu*x;sigma(x)^2=sigma^2*x^2 and u(x)=exp(x)
mu_tx = @(t,x) -0.01 * x+0*t;
mu_x = @(x) -0.01 * x;
sigma_bar = 0.1;
sigma_2_tx = @(t,x) (sigma_bar*x).^2+0*t;
sigma_2_x = @(x) (sigma_bar*x).^2;
u_tx = @(t,x) exp(x)+t*0;
u_x = @(x) exp(x);
rho = 0.05;
x_min = 0.1;
x_max = 3;
t_min = 0.0;
t_max = 10.0;
I = 1500;
N = 10;
x = linspace(x_min, x_max, I)';
t = linspace(t_min,t_max, N)';
% generate permutations of x and t, tacking t first then x
[t_grid, x_grid] = meshgrid(t,x); %Generates permutations (stacked by t first, as we want) could look at: [t_grid(:) x_grid(:)]
state_permutations = [t_grid(:) x_grid(:)];
mu = bsxfun(mu_tx, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
sigma_2 = bsxfun(sigma_2_tx, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
% Solve for A_n and v_n for non time-varying method, use as check
%A_n = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
%dlmwrite(strcat(mfilename, '_2_An_output.csv'), full(A_n), 'precision', tolerances.default_csv_precision); %Uncomment to save again
A_check = dlmread(strcat(mfilename, '_2_An_output.csv'));
u_n=u_x(x);
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the non-time
%varying sprocess
%v_n = simple_HJBE_discretized_univariate(A_n, x, u_n, rho);
%dlmwrite(strcat(mfilename, '_2_vn_output.csv'), v_n, 'precision', tolerances.default_csv_precision); %Uncomment to save again
v_check = dlmread(strcat(mfilename, '_2_vn_output.csv'));
% Solve for A and v for time-varying method
[A, Delta_p, Delta_m, h_p, h_m] = discretize_time_varying_univariate_diffusion(t, x, mu, sigma_2);
u = bsxfun(u_tx, state_permutations(:,1), state_permutations(:,2)); % sp(:,1) is time sp(:,2) is x
[v,success] = simple_HJBE_discretized_univariate(A, state_permutations(:,1), u, rho); % state_perm need to be in size N*I
%dlmwrite(strcat(mfilename, '_2_v_output.csv'), v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
v_check_1 = dlmread(strcat(mfilename, '_2_v_output.csv'));
% tests for 1. A is same as A_n; 2. A is same across time; 3. v is same
% as v_n ; 4. v is same across time
% initial test: make sure the v of time varying result didn't change.
verifyTrue(testCase,norm(v - v_check_1, Inf) < 1e-9, 'v time-varying result no longer matches');
% this checks the matrix A1 in time varying case same as A in
% non-time-varying case
verifyTrue(testCase,norm(A(1:I,1:I) + A(1:I,I+1:2*I) - A_check, Inf) < 1e-5, 'A_1 not match with non-time-varying result');
% This checks the matrix A1 in time varying case same as A_n, n
% randomly drawn
luck=max(floor(rand*N),2);
indx=(luck-1)*I+1;
verifyTrue(testCase,norm(A(1:I,1:I) + A(1:I,I+1:2*I) - A(indx:indx+I-1,indx:indx+I-1) - A(indx:indx+I-1,indx+I:indx+2*I-1) , Inf) < 1e-9, 'A_1 not match with A_n');
%verifyTrue(testCase, success==true, 'unsuccesful');
% This checks the value function of t=0 is same as v in
% non-time-varying result
verifyTrue(testCase,norm(v(1:I) - v_check, Inf) < 1e-5, 'v_1 not match with non-time-varying result');
% This checks the v_1 in time varying case same as v_n
luck=max(floor(rand*N),2);
indx=(luck-1)*I+1;
verifyTrue(testCase,norm(v(1:I) - v(indx:indx+I-1), Inf) < 1e-9, 'v_1 not match with v_n');
end
function time_varying_u_test(testCase)
%This will create a time-varying setup, and should show that
tolerances = testCase.TestData.tolerances;
% mu and sig^2 not time varying
mu_tx = @(t,x) -0.01 * x+0*t;
sigma_bar = 0.1;
sigma_2_tx = @(t,x) (sigma_bar*x).^2+0*t;
%Grid
rho = 0.05;
x_min = 0.1;
x_max = 3;
I = 1000;
t_min = 0.0;
t_max = 1.0;
N = 100;
x_base = linspace(x_min, x_max, I)';
t_base = linspace(t_min, t_max, N)';
I_extra = 15;
N_extra = 15;
%Linspace then merge in extra points
x_extra = linspace(x_min, x_max, I_extra)';
t_extra = linspace(t_min, t_max, N_extra)';
%t_extra = t_base;% only change x grid
%x_extra = x_base; % only change t grid
x = unique([x_base; x_extra], 'sorted');
t = unique([t_base; t_extra], 'sorted');
% u is time varying
a = 0.0; % this is defining F(0)=a
u_tx = @(t,x) exp(x).*((t_max-a)/t_max*t+a); % F(t)=(T-a)/T*t+a
% Uncomment if want to compute v_b, saved in '_3_v_output'
[t_grid_b, x_grid_b] = meshgrid(t_base,x_base); %Generates permutations (stacked by t first, as we want) could look at: [t_grid(:) x_grid(:)]
state_permutations_b = [t_grid_b(:) x_grid_b(:)];
mu_b = bsxfun(mu_tx, state_permutations_b(:,1), state_permutations_b(:,2)); %applies binary function to these, and remains in the correct stacked order.
sigma_2_b = bsxfun(sigma_2_tx, state_permutations_b(:,1), state_permutations_b(:,2)); %applies binary function to these, and remains in the correct stacked order.
%Discretize the operator
[A_b, Delta_p, Delta_m, h_p, h_m] = discretize_time_varying_univariate_diffusion(t_base, x_base, mu_b, sigma_2_b);
u_b = bsxfun(u_tx, state_permutations_b(:,1), state_permutations_b(:,2));
v_b = simple_HJBE_discretized_univariate(A_b, state_permutations_b(:,1), u_b, rho); % state_perm need to be in size N*I
%dlmwrite(strcat(mfilename, '_3_v_output.csv'), v_b, 'precision', tolerances.default_csv_precision); %Uncomment to save again
[t_grid, x_grid] = meshgrid(t,x); %Generates permutations (stacked by t first, as we want) could look at: [t_grid(:) x_grid(:)]
state_permutations = [t_grid(:) x_grid(:)];
mu = bsxfun(mu_tx, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
sigma_2 = bsxfun(sigma_2_tx, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
%Discretize the operator
[A, Delta_p, Delta_m, h_p, h_m] = discretize_time_varying_univariate_diffusion(t, x, mu, sigma_2);
u = bsxfun(u_tx, state_permutations(:,1), state_permutations(:,2));
[v,success] = simple_HJBE_discretized_univariate(A, state_permutations(:,1), u, rho); % state_perm need to be in size N*I
%dlmwrite(strcat(mfilename, '_33_v_output.csv'), v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
v_check = dlmread(strcat(mfilename, '_3_v_output.csv'));
% test whether baseline result changes
verifyTrue(testCase,norm(v_b - v_check, Inf) < tolerances.test_tol, 'v_baseline value no longer matches');
% test whether the add point results after interploration is close to
% baseline
v_intp = interp2(t_grid, x_grid, reshape(v,size(x_grid,1),size(x_grid,2)), t_grid_b, x_grid_b); % interpolate v to v_b
verifyTrue(testCase,norm(reshape(v_intp,size(v_intp,1)*size(v_intp,2),1) - v_check, Inf) < 5e-3, 'v_addpoint value not matches');
% Notice here: the max diff is 0.0038, not sure whether it's acceptable
% or not
end
function time_varying_mu_test(testCase)
%This will create a time-varying setup, and should show that
tolerances = testCase.TestData.tolerances;
%Grid
rho = 0.05;
x_min = 0.1;
x_max = 3;
I = 1000;
t_min = 0.0;
t_max = 1.0;
N = 100;
x_base = linspace(x_min, x_max, I)';
t_base = linspace(t_min, t_max, N)';
a = 0.0; % this is defining F(0)=a
% mu is time varying
mu_tx = @(t,x) -0.01 * x .*((t_max-a)/t_max*t+a);
sigma_bar = 0.1;
sigma_2_tx = @(t,x) (sigma_bar*x).^2+0*t;
I_extra = 15;
N_extra = 15;
%Linspace then merge in extra points
x_extra = linspace(x_min, x_max, I_extra)';
t_extra = linspace(t_min, t_max, N_extra)';
%t_extra = t_base;% only change x grid
%x_extra = x_base; % only change t grid
x = unique([x_base; x_extra], 'sorted');
t = unique([t_base; t_extra], 'sorted');
% u is not time varying
u_tx = @(t,x) exp(x); % F(t)=(T-a)/T*t+a
% Uncomment if want to compute v_b, saved in '_3_v_output'
[t_grid_b, x_grid_b] = meshgrid(t_base,x_base); %Generates permutations (stacked by t first, as we want) could look at: [t_grid(:) x_grid(:)]
state_permutations_b = [t_grid_b(:) x_grid_b(:)];
mu_b = bsxfun(mu_tx, state_permutations_b(:,1), state_permutations_b(:,2)); %applies binary function to these, and remains in the correct stacked order.
sigma_2_b = bsxfun(sigma_2_tx, state_permutations_b(:,1), state_permutations_b(:,2)); %applies binary function to these, and remains in the correct stacked order.
%Discretize the operator
[A_b, Delta_p, Delta_m, h_p, h_m] = discretize_time_varying_univariate_diffusion(t_base, x_base, mu_b, sigma_2_b);
u_b = bsxfun(u_tx, state_permutations_b(:,1), state_permutations_b(:,2));
v_b = simple_HJBE_discretized_univariate(A_b, state_permutations_b(:,1), u_b, rho); % state_perm need to be in size N*I
%dlmwrite(strcat(mfilename, '_4_v_output.csv'), v_b, 'precision', tolerances.default_csv_precision); %Uncomment to save again
[t_grid, x_grid] = meshgrid(t,x); %Generates permutations (stacked by t first, as we want) could look at: [t_grid(:) x_grid(:)]
state_permutations = [t_grid(:) x_grid(:)];
mu = bsxfun(mu_tx, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
sigma_2 = bsxfun(sigma_2_tx, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
%Discretize the operator
[A, Delta_p, Delta_m, h_p, h_m] = discretize_time_varying_univariate_diffusion(t, x, mu, sigma_2);
u = bsxfun(u_tx, state_permutations(:,1), state_permutations(:,2));
[v,success] = simple_HJBE_discretized_univariate(A, state_permutations(:,1), u, rho); % state_perm need to be in size N*I
%dlmwrite(strcat(mfilename, '_44_v_output.csv'), v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
v_check = dlmread(strcat(mfilename, '_4_v_output.csv'));
% test whether baseline result changes
verifyTrue(testCase,norm(v_b - v_check, Inf) < tolerances.test_tol, 'v_baseline value no longer matches');
% test whether the add point results after interploration is close to
% baseline
v_intp = interp2(t_grid, x_grid, reshape(v,size(x_grid,1),size(x_grid,2)), t_grid_b, x_grid_b); % interpolate v to v_b
verifyTrue(testCase,norm(reshape(v_intp,size(v_intp,1)*size(v_intp,2),1) - v_check, Inf) < 1e-3, 'v_addpoint value not matches');
% Notice here: the max diff is 0.0038, not sure whether it's acceptable
% or not
end
function time_varying_both_shift_test(testCase)
%This will create a time-varying setup, and should show that
tolerances = testCase.TestData.tolerances;
%Grid
rho = 0.05;
x_min = 0.1;
x_max = 3;
I = 1000;
t_min = 0.0;
t_max = 1.0;
N = 200;
x_base = linspace(x_min, x_max, I)';
t_base = linspace(t_min, t_max, N)';
a = 0.0; % this is defining F(0)=a
% mu is time varying
mu_tx = @(t,x) -0.01 * x .*((t_max-a)/t_max*t+a);
sigma_bar = 0.1;
sigma_2_tx = @(t,x) (sigma_bar*x).^2+0*t;
%Some shifts in x and t spaces
x_shift_1 = floor(0.3 * I);
x_shift_2 = floor(0.7 * I);
t_shift_1 = floor(0.3 * N);
t_shift_2 = floor(0.7 * N);
%Linspace then merge in extra points
nn = length(x_base);
shifts = (rand(nn, 1) - 0.5) / (nn * 10e4);
shifts(1, 1) = 0;
shifts(end, 1) = 0;
shifts(x_shift_1 + 1: x_shift_1 + 10, 1) = zeros(10, 1);
shifts(x_shift_2 + 1: x_shift_2 + 10, 1) = zeros(10, 1);
x = x_base+shifts;
tt = length(t_base);
shifts = (rand(tt, 1) - 0.5) / (tt * 10e2);
shifts(1, 1) = 0;
shifts(end, 1) = 0;
shifts(t_shift_1 + 1: t_shift_1 + 10, 1) = zeros(10, 1);
shifts(t_shift_2 + 1: t_shift_2 + 10, 1) = zeros(10, 1);
t = t_base+shifts;
% u is also time varying
u_tx = @(t,x) exp(x).*((t_max-a)/t_max*t+a); % F(t)=(T-a)/T*t+a
% Uncomment if want to compute v_b, saved in '_3_v_output'
[t_grid_b, x_grid_b] = meshgrid(t_base,x_base); %Generates permutations (stacked by t first, as we want) could look at: [t_grid(:) x_grid(:)]
state_permutations_b = [t_grid_b(:) x_grid_b(:)];
mu_b = bsxfun(mu_tx, state_permutations_b(:,1), state_permutations_b(:,2)); %applies binary function to these, and remains in the correct stacked order.
sigma_2_b = bsxfun(sigma_2_tx, state_permutations_b(:,1), state_permutations_b(:,2)); %applies binary function to these, and remains in the correct stacked order.
%Discretize the operator
[A_b, Delta_p, Delta_m, h_p, h_m] = discretize_time_varying_univariate_diffusion(t_base, x_base, mu_b, sigma_2_b);
u_b = bsxfun(u_tx, state_permutations_b(:,1), state_permutations_b(:,2));
v_b = simple_HJBE_discretized_univariate(A_b, state_permutations_b(:,1), u_b, rho); % state_perm need to be in size N*I
%dlmwrite(strcat(mfilename, '_5_v_output.csv'), v_b, 'precision', tolerances.default_csv_precision); %Uncomment to save again
[t_grid, x_grid] = meshgrid(t,x); %Generates permutations (stacked by t first, as we want) could look at: [t_grid(:) x_grid(:)]
state_permutations = [t_grid(:) x_grid(:)];
mu = bsxfun(mu_tx, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
sigma_2 = bsxfun(sigma_2_tx, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
%Discretize the operator
[A, Delta_p, Delta_m, h_p, h_m] = discretize_time_varying_univariate_diffusion(t, x, mu, sigma_2);
u = bsxfun(u_tx, state_permutations(:,1), state_permutations(:,2));
[v,success] = simple_HJBE_discretized_univariate(A, state_permutations(:,1), u, rho); % state_perm need to be in size N*I
v_check = dlmread(strcat(mfilename, '_5_v_output.csv'));
% test whether baseline result changes
verifyTrue(testCase,norm(v_b - v_check, Inf) < tolerances.test_tol, 'v_baseline value no longer matches');
% test whether the add point results after interploration is close to
% baseline
v_intp = interp2(t_grid, x_grid, reshape(v,size(x_grid,1),size(x_grid,2)), t_grid_b, x_grid_b); % interpolate v to v_b
verifyTrue(testCase,norm(reshape(v_intp,size(v_intp,1)*size(v_intp,2),1) - v_check, Inf) < 1e-6, 'v_addpoint value not matches');
% Notice here: the max diff is 1e-7, not sure whether it's acceptable
% or not
end
|
github
|
jlperla/continuous_time_methods-master
|
HJBE_discretized_univariate_test.m
|
.m
|
continuous_time_methods-master/matlab/tests/HJBE_discretized_univariate_test.m
| 5,791 |
utf_8
|
deb22a4d65b518586586c31aa32b43a9
|
%Using the unit testing framework in matlab. See https://www.mathworks.com/help/matlab/matlab_prog/write-simple-test-case-with-functions.html
%To run tests:
% runtests %would run all of them in the current directory
% runtests('my_test') %runs just the my_test.m file
% runtests('my_test/my_function_test') %runs only `my_function_test function in `my_test'.
function tests = HJBE_discretized_univariate_test
tests = functiontests(localfunctions);
end
%This is run at the beginning of the test. Not required.
function setupOnce(testCase)
addpath('../lib/');
testCase.TestData.tolerances.test_tol = 1e-9;
testCase.TestData.tolerances.lower_test_tol = 1e-8; %For huge matrices, the inf norm can get a little different.
testCase.TestData.tolerances.default_csv_precision = '%.10f'; %Should be higher precision than tolerances.test_tol
end
function simple_value_function_test(testCase)
tolerances = testCase.TestData.tolerances;
mu_x = @(x) -0.01 * x;
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
u_x = @(x) exp(x);
rho = 0.05;
x_min = 1;
x_max = 2;
I = 20;
x = linspace(x_min, x_max, I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
u = u_x(x);
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
[v, success] = simple_HJBE_discretized_univariate(A, x, u, rho);
%dlmwrite(strcat(mfilename, '_1_v_output.csv'), v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
v_check = dlmread(strcat(mfilename, '_1_v_output.csv'));
verifyTrue(testCase,norm(v - v_check, Inf) < tolerances.test_tol, 'v value no longer matches');
verifyTrue(testCase, success==true, 'unsuccesful');
end
function bigger_value_function_test(testCase)
tolerances = testCase.TestData.tolerances;
mu_x = @(x) -0.01 * x;
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
u_x = @(x) log(x);
rho = 0.05;
x_min = .01;
x_max = 10;
I = 10000;
x = linspace(x_min, x_max, I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
u = u_x(x);
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
[v, success] = simple_HJBE_discretized_univariate(A, x, u, rho);
%dlmwrite(strcat(mfilename, '_2_v_output.csv'), v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
v_check = dlmread(strcat(mfilename, '_2_v_output.csv'));
verifyTrue(testCase,norm(v - v_check, Inf) < tolerances.lower_test_tol, 'v value no longer matches');
verifyTrue(testCase, success==true, 'unsuccesful');
end
%
%This will try to jointly solve for the KFE and the value function with linear least squares.
function joint_value_function_KFE_test(testCase)
tolerances = testCase.TestData.tolerances;
mu_x = @(x) -0.01 * ones(numel(x),1);
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar * ones(numel(x),1)).^2;
u_x = @(x) log(x);
rho = 0.05;
x_min = 0.1;
x_max = 2;
I = 1000;
x = linspace(x_min, x_max, I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
u = u_x(x);
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
disp('Solving HJBE on its own');
tic;
[v, success] = simple_HJBE_discretized_univariate(A, x, u, rho);
toc;
%dlmwrite(strcat(mfilename, '_3_v_output.csv'), v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
v_check = dlmread(strcat(mfilename, '_3_v_output.csv'));
verifyTrue(testCase,norm(v - v_check, Inf) < tolerances.test_tol, 'v value no longer matches');
verifyTrue(testCase, success==true, 'unsuccesful');
%Now find the KFE with linear least squares and the default preconditioner
settings.print_level = 1;
%settings.method = 'LLS';
%settings.method = 'eigenproblem_all';
disp('Solving stationary distribution on its own');
tic;
f = stationary_distribution_discretized_univariate(A, x, settings);
toc;
%dlmwrite(strcat(mfilename, '_3_f_output.csv'), f, 'precision', tolerances.default_csv_precision); %Uncomment to save again
f_check = dlmread(strcat(mfilename, '_3_f_output.csv'));
verifyTrue(testCase,norm(f - f_check, Inf) < tolerances.test_tol, 'f value no longer matches');
%Now, solve as a joint problem with LLS
%settings.preconditioner = 'none';
settings.sparse = 'false';
disp('Solving dense');
tic;
[v, f, success] = simple_joint_HJBE_stationary_distribution_univariate(A, x, u, rho, settings);
verifyTrue(testCase,norm(v - v_check, Inf) < tolerances.test_tol, 'v value no longer matches');
verifyTrue(testCase,norm(f - f_check, Inf) < tolerances.test_tol, 'f value no longer matches');
toc;
%Now try as a sparse system.
disp('Solving sparse with no preconditioner');
settings.sparse = 'true';
tic;
[v, f, success] = simple_joint_HJBE_stationary_distribution_univariate(A, x, u, rho, settings);
toc;
verifyTrue(testCase,norm(v - v_check, Inf) < tolerances.test_tol, 'v value no longer matches');
verifyTrue(testCase,norm(f - f_check, Inf) < tolerances.test_tol, 'f value no longer matches');
%Now try as a sparse system with jacobi preconditioner
disp('Solving sparse with jacobi preconditioner');
settings.sparse = 'jacobi';
tic;
[v, f, success] = simple_joint_HJBE_stationary_distribution_univariate(A, x, u, rho, settings);
toc;
verifyTrue(testCase,norm(v - v_check, Inf) < tolerances.test_tol, 'v value no longer matches');
verifyTrue(testCase,norm(f - f_check, Inf) < tolerances.test_tol, 'f value no longer matches');
end
|
github
|
jlperla/continuous_time_methods-master
|
simple_optimal_stopping_diffusion_test.m
|
.m
|
continuous_time_methods-master/matlab/tests/simple_optimal_stopping_diffusion_test.m
| 35,987 |
utf_8
|
608f184a92134e7f8d0d49679e367164
|
%Using the unit testing framework in matlab. See https://www.mathworks.com/help/matlab/matlab_prog/write-simple-test-case-with-functions.html
%To run tests:
% runtests %would run all of them in the current directory
% runtests('my_test') %runs just the my_test.m file
% runtests('my_test/my_function_test') %runs only `my_function_test function in `my_test'.
function tests = simple_optimal_stopping_diffusion_test
tests = functiontests(localfunctions);
end
%This is run at the beginning of the test. Not required.
function setupOnce(testCase)
addpath('../lib/');
testCase.TestData.tolerances.test_tol = 1e-9;
testCase.TestData.tolerances.test_tol_less = 1e-5;
testCase.TestData.tolerances.test_tol_much_less = 1e-3;
testCase.TestData.tolerances.default_csv_precision = '%.10f'; %Should be higher precision than test_tol
end
%To add in cleanup code, add here
%function teardownOnce(testCase)
%end
%This runs code prior to every test. Not required
function setup(testCase)
%Setup defaults.
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
S_bar = 10.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.01; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma; %u(x) = x^gamma in this example
parameters.S_x = @(x) S_bar.*ones(numel(x),1); %S(x) = S_bar in this example
%Baseline test is GBM
parameters.mu_x = @(x) mu_bar * x; %i.e. mu(x) = mu_bar * x
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = sigma_bar x
settings.I = 300; %number of grid variables for x
settings.print_level = 0; %Optional
settings.error_tolerance = 1E-12; %Optional
settings.max_iter = 10000;
%These will be overwritten as required.
testCase.TestData.baseline_parameters = parameters;
testCase.TestData.baseline_settings = settings;
end
%This unpacks everything stored in the testCase
function [settings, parameters, tolerances] = unpack_setup(testCase)
settings = testCase.TestData.baseline_settings;
parameters = testCase.TestData.baseline_parameters;
tolerances = testCase.TestData.tolerances;
end
% Define an absolute tolerance for floating point comparisons
%A minimally modified version of the HACT code for comparison. The main difference is generality and the boundary value at 0. See /graveyard
function baseline_HACT_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
%These are the defaults used in the yuval solver. They are not necessarily the best choices, but test consistency.
settings.I = 1000;
settings.error_tolerance = 1.0e-12;
settings.lm_mu = 1e-3;
settings.lm_mu_min = 1e-5;
settings.lm_mu_step = 5;
settings.max_iter = 20;
%Rewriting parameters entirely.
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
S_bar = 10.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
%Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
parameters.rho = 0.05; %Discount ra te
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma; %u(x) = x^gamma in this example
parameters.S_x = @(x) S_bar.*ones(numel(x),1); %S(x) = S_bar in this example
parameters.mu_x = @(x) mu_bar * ones(numel(x),1); %i.e. mu(x) = mu_bar
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = sigma_bar x
%Create uniform grid and determine step sizes.
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
%Check all values
v_old = dlmread(strcat(mfilename,'_1_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol_less, 'Value of solution no longer matches HACT example');
end
function LCP_methods_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
settings.I = 500;
%Rewriting parameters entirely.
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
S_bar = 10.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
%Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
parameters.rho = 0.05; %Discount ra te
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma; %u(x) = x^gamma in this example
parameters.S_x = @(x) S_bar.*ones(numel(x),1); %S(x) = S_bar in this example
parameters.mu_x = @(x) mu_bar * ones(numel(x),1); %i.e. mu(x) = mu_bar
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = sigma_bar x
%Create uniform grid and determine step sizes.
settings.method = 'yuval';
tic;
disp('yuval method');
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
v_old = v; %Other methods seeing if the same
toc;
fprintf('L2 Error = %d\n',results.LCP_L2_error);
%Check all values
% v_old = dlmread(strcat(mfilename,'_1_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol_less, 'Value of solution no longer matches HACT example');
%Try the next method.
settings.method = 'lemke'; %This is a pretty poor method when I gets large, but seems robust.
tic;
disp('Lemke method');
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
toc;
fprintf('L2 Error = %d\n',results.LCP_L2_error);
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol_less, 'Value of solution no longer matches HACT example');
%Try the next method.
settings.method = 'knitro';
tic;
disp('Knitro LCP method');
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
toc;
fprintf('L2 Error = %d\n',results.LCP_L2_error);
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol_less, 'Value of solution no longer matches HACT example');
end
function convex_u_x_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
%Rewriting parameters entirely.
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
S_bar = 10.0; %the value of stopping
gamma = 2; %u(x) = x^gamma
%Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma; %u(x) = x^2 in this example
parameters.S_x = @(x) S_bar.*ones(numel(x),1); %S(x) = S_bar in this example
parameters.mu_x = @(x) mu_bar * ones(numel(x),1); %i.e. mu(x) = mu_bar
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = sigma_bar x
%Create uniform grid and determine step sizes.
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
%dlmwrite(strcat(mfilename, '_2_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Check all values
v_old = dlmread(strcat(mfilename,'_2_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol, 'Value of solution no longer matches negative u(x) for small x example');
end
function u_x_is_negative_for_small_x_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
%Rewriting parameters entirely.
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
S_bar = 10.0; %the value of stopping
%Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x - 0.2; %u(x) = x - 0.2 in this example
parameters.S_x = @(x) S_bar.*ones(numel(x),1); %S(x) = S_bar in this example
parameters.mu_x = @(x) mu_bar * ones(numel(x),1); %i.e. mu(x) = mu_bar
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = sigma_bar x
%settings.method = 'knitro';
%Create uniform grid and determine step sizes.
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
%dlmwrite(strcat(mfilename, '_3_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Check all values
%a comparable value is saved as 'mfilename_33_v_output.csv'
v_old = dlmread(strcat(mfilename,'_3_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol, 'Value of solution no longer matches negative u(x) for small x example');
end
function negative_S_x_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
%Rewriting parameters entirely.
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
S_bar = -2.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
%Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma - .5; %u(x) = x^gamma minus a constant in this example
parameters.S_x = @(x) S_bar.*ones(numel(x),1); %S(x) = S_bar in this example
parameters.mu_x = @(x) mu_bar * ones(numel(x),1); %i.e. mu(x) = mu_bar
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = sigma_bar x
%settings.method = 'knitro';
%Create uniform grid and determine step sizes.
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
%dlmwrite(strcat(mfilename, '_4_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Check all values
%a comparable value is saved as 'mfilename_44_v_output.csv'
v_old = dlmread(strcat(mfilename,'_4_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
verifyTrue(testCase, results.converged);
%plot(results.x, results.v, results.x, parameters.S_x(results.x))
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol, 'Value of solution no longer matches negative u(x) for small x example');
end
function S_x_increases_in_x_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
%settings.error_tolerance = 1e-6;%Can't hit the very high tolerance for some reason. Going much higher and it doesn't converge.
%Rewriting parameters entirely.
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
gamma = 0.5; %u(x) = x^gamma
%Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma; %u(x) = x^gamma in this example
parameters.S_x = @(x) 5*x + 5.5; %S(x) = x in this example
parameters.mu_x = @(x) mu_bar * ones(numel(x),1); %i.e. mu(x) = mu_bar
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = sigma_bar x
%Create uniform grid and determine step sizes.
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
%dlmwrite(strcat(mfilename, '_5_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Check all values
v_old = dlmread(strcat(mfilename,'_5_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
verifyTrue(testCase, results.converged);
plot(results.x, results.v, results.x, parameters.S_x(results.x))
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol, 'Value of solution no longer matches negative u(x) for small x example');
end
function S_x_decreases_in_x_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
% settings.error_tolerance = 1e-6;%Can't hit the very high tolerance for some reason. Going much higher and it doesn't converge.
%Rewriting parameters entirely.
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
S_bar = 10.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
%Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma; %u(x) = x^gamma in this example
parameters.S_x = @(x) S_bar - x; %S(x) = S_bar - x in this example
parameters.mu_x = @(x) mu_bar * ones(numel(x),1); %i.e. mu(x) = mu_bar
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = sigma_bar x
%Create uniform grid and determine step sizes.
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
%dlmwrite(strcat(mfilename, '_6_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Check all values
verifyTrue(testCase, results.converged);
plot(results.x, results.v, results.x, parameters.S_x(results.x))
v_old = dlmread(strcat(mfilename,'_6_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol, 'Value of solution no longer matches negative u(x) for small x example');
end
function negative_mu_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
%settings.error_tolerance = 1e-6;%Can't hit the very high tolerance for some reason. Going much higher and it doesn't converge.
%Rewriting parameters
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
S_bar = 10.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
%Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma; %u(x) = x^0.5 in this example
parameters.S_x = @(x) S_bar.*ones(numel(x),1); %S(x) = S_bar in this example
parameters.mu_x = @(x) mu_bar * ones(numel(x),1); %i.e. mu(x) = mu_bar
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = sigma_bar x
%Create uniform grid and determine step sizes.
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
%dlmwrite(strcat(mfilename, '_8_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Check all values
v_old = dlmread(strcat(mfilename,'_8_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
plot(results.x, results.v, results.x, parameters.S_x(results.x));
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol, 'Value of solution no longer matches negative u(x) for small x example');
end
function positive_mu_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
settings.I = 300; %Tough to get to large I, but also not really necessary.
%Rewriting parameters
mu_bar = 0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.02; %Variance
S_bar = 13.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
%Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma; %u(x) = x^0.5 in this example
parameters.S_x = @(x) S_bar.*ones(numel(x),1); %S(x) = S_bar in this example
parameters.mu_x = @(x) mu_bar * ones(numel(x),1); %i.e. mu(x) = mu_bar
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = sigma_bar x
%Create uniform grid and determine step sizes.
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
%dlmwrite(strcat(mfilename, '_9_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Check all values
v_old = dlmread(strcat(mfilename,'_9_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
plot(results.x, results.v, results.x, parameters.S_x(results.x));
verifyTrue(testCase, results.converged);
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol, 'Value of solution no longer matches negative u(x) for small x example');
end
function zero_mu_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
%Rewriting parameters entirely.
mu_bar = 0; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
S_bar = 13.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
%Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma; %u(x) = x^0.5 in this example
parameters.S_x = @(x) S_bar.*ones(numel(x),1); %S(x) = S_bar in this example
parameters.mu_x = @(x) mu_bar * ones(numel(x),1); %i.e. mu(x) = mu_bar
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = sigma_bar x
%Create uniform grid and determine step sizes.
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
%dlmwrite(strcat(mfilename, '_10_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Check all values
v_old = dlmread(strcat(mfilename,'_10_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
verifyTrue(testCase, results.converged);
plot(results.x, results.v, results.x, parameters.S_x(results.x));
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol, 'Value of solution no longer matches negative u(x) for small x example');
end
function negative_mu_min_and_positive_mu_max_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
%Rewriting parameters entirely.
sigma_bar = 0.01; %Variance
S_bar = 10.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
%Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma; %u(x) = x^0.5 in this example
parameters.S_x = @(x) S_bar.*ones(numel(x),1); %S(x) = S_bar in this example
parameters.mu_x = @(x) .2 * (x - 0.5); %i.e. mu(x) = x - 0.5;
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = sigma_bar x
%Create uniform grid and determine step sizes.
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
%dlmwrite(strcat(mfilename, '_11_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Check all values
v_old = dlmread(strcat(mfilename,'_11_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
plot(results.x, results.v, results.x, parameters.S_x(results.x));
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol, 'Value of solution no longer matches negative u(x) for small x example');
end
function positive_mu_min_and_negative_mu_max_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
%settings.error_tolerance = 1e-85; %unable to get a high level of accuracy.
settings.max_iter = 30000; %Needs more iterations for some reason.
%Rewriting parameters entirely.
sigma_bar = 0.01; %Variance
S_bar = 14.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
%Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma; %u(x) = x^0.5 in this example
parameters.S_x = @(x) S_bar.*ones(numel(x),1); %S(x) = S_bar in this example
parameters.mu_x = @(x) -x + 0.5; %i.e. mu(x) = -x + 0.5;
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = sigma_bar x
%Create uniform grid and determine step sizes.
settings.method='lemke'; %Works much better here, for some reason.
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
%dlmwrite(strcat(mfilename, '_12_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Check all values
v_old = dlmread(strcat(mfilename,'_12_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
plot(results.x, results.v, results.x, parameters.S_x(results.x));
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol, 'Value of solution no longer matches negative u(x) for small x example');
end
function negative_mu_and_zero_sigma_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
%Rewriting parameters entirely.
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0; %Variance
S_bar = 10.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
%Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
parameters.rho = 0.05; %Discount rate
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma; %u(x) = x^0.5 in this example
parameters.S_x = @(x) S_bar.*ones(numel(x),1); %S(x) = S_bar in this example
parameters.mu_x = @(x) mu_bar * ones(numel(x),1); %i.e. mu(x) = mu_bar
parameters.sigma_2_x = @(x) sigma_bar * ones(numel(x),1); %i.e. sigma(x) = sigma_bar
%Create uniform grid and determine step sizes.
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
%dlmwrite(strcat(mfilename, '_13_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
%Check all values
v_old = dlmread(strcat(mfilename,'_13_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
plot(results.x, results.v, results.x, parameters.S_x(results.x));
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol, 'Value of solution no longer matches negative u(x) for small x example');
end
function knitro_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
settings.I = 500;
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
S_bar = 10.0; %the value of stopping
gamma = 0.5; %us(x) = x^gamma
parameters.rho = 0.05; %Discount ra te
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma; %u(x) = x^gamma in this example
parameters.S_x = @(x) S_bar.*ones(numel(x),1); %S(x) = S_bar in this example
parameters.mu_x = @(x) mu_bar * ones(numel(x),1); %i.e. mu(x) = mu_bar
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = sigma_bar x
settings.method = 'knitro';
tic;
results = simple_optimal_stopping_diffusion(parameters, settings);
toc;
v = results.v;
plot(results.x, results.v, results.x, parameters.S_x(results.x));
verifyTrue(testCase,results.converged);
end
function no_stopping_point_test(testCase)
[settings, ~, tolerances] = unpack_setup(testCase);
%These are the defaults used in the yuval solver. They are not necessarily the best choices, but test consistency.
settings.I = 1000;
settings.error_tolerance = 1.0e-12;
settings.lm_mu = 1e-3;
settings.lm_mu_min = 1e-5;
settings.lm_mu_step = 5;
settings.max_iter = 20;
%Rewriting parameters entirely.
mu_bar = -0.01; %Drift. Sign changes the upwind direction.
sigma_bar = 0.01; %Variance
S_bar = -100.0; %the value of stopping
gamma = 0.5; %u(x) = x^gamma
%Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
parameters.rho = 0.05; %Discount ra te
parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
parameters.u_x = @(x) x.^gamma; %u(x) = x^gamma in this example
parameters.S_x = @(x) S_bar.*ones(numel(x),1); %S(x) = S_bar in this example
parameters.mu_x = @(x) mu_bar * ones(numel(x),1); %i.e. mu(x) = mu_bar
parameters.sigma_2_x = @(x) (sigma_bar*x).^2; %i.e. sigma(x) = (sigma_bar * x).^2
%Create uniform grid and determine step sizes.
results = simple_optimal_stopping_diffusion(parameters, settings);
v = results.v;
%Check all values
%dlmwrite(strcat(mfilename,'_14_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %To save results again
v_old = dlmread(strcat(mfilename,'_14_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol_less, 'Value of solution no longer matches HACT example');
end
%
% %I don't understand these tests, so commenting out. No reason to have only 3 or 6 points.
% function one_stopping_point_test(testCase)
% [settings, ~, tolerances] = unpack_setup(testCase);
% %These are the defaults used in the yuval solver. They are not necessarily the best choices, but test consistency.
% settings.I = 3;
% settings.error_tolerance = 1.0e-12;
% settings.lm_mu = 1e-3;
% settings.lm_mu_min = 1e-5;
% settings.lm_mu_step = 5;
% settings.max_iter = 20;
%
% %Rewriting parameters entirely.
% mu_bar = 0; %Drift. Sign changes the upwind direction.
% sigma_bar = 0.1; %Variance
% %S_bar =10.0; %the value of stopping
% gamma = 0.5; %u(x) = x^gamma
%
% %Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
% parameters.rho = 0.05; %Discount ra te
% parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
% parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
%
% parameters.u_x = @(x) x.^gamma; %u(x) = x^gamma in this example
% parameters.mu_x = @(x) mu_bar * x; %i.e. mu(x) = mu_bar * x
% parameters.sigma_2_x = @(x) (sigma_bar * x).^2; %i.e. sigma(x) = (sigma_bar*x).^2
%
% % Use the same parameters as above to calculate the S that has exactly obe element different from v
% x = linspace(0.01, 1, 3)';
% u = x.^0.5;
% mu = zeros(3, 1);
% sigma_2 = (0.1*x).^2;
% A = discretize_univariate_diffusion(x, mu, sigma_2, false);
% Delta = x(2)-x(1);
% rho = 0.05;
% B = (rho * eye(3) - A);
% v = B \ u;
% S = v + [0.1 0 0.1]';
%
% parameters.S_x = @(x) S;
%
% %Create uniform grid and determine step sizes.
% results = simple_optimal_stopping_diffusion(parameters, settings);
% v = results.v;
% S = results.S;
%
% %Check all values
% %dlmwrite(strcat(mfilename,'_15_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %To save results again
% plot(results.x, results.v, results.x, parameters.S_x(results.x))
% v_old = dlmread(strcat(mfilename,'_15_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
% verifyTrue(testCase,results.converged, 'There is no stopping point.');
% verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol_less, 'Value of solution no longer matches example');
% verifyTrue(testCase, sum(1 * (abs(v - S) < tolerances.test_tol_less)) == 1, 'There are more than one stopping point');
% end
%
% function two_stopping_point_test(testCase)
% [settings, ~, tolerances] = unpack_setup(testCase);
% %These are the defaults used in the yuval solver. They are not necessarily the best choices, but test consistency.
% settings.I = 6;
% settings.error_tolerance = 1.0e-12;
% settings.lm_mu = 1e-3;
% settings.lm_mu_min = 1e-5;
% settings.lm_mu_step = 5;
% settings.max_iter = 20;
%
% %Rewriting parameters entirely.
% mu_bar = -0.01; %Drift. Sign changes the upwind direction.
% sigma_bar = 0.1; %Variance
% %S_bar =10.0; %the value of stopping
% gamma = 0.5; %u(x) = x^gamma
%
% %Relevant functions for u(x), S(x), mu(x) and sigma(x) for a general diffusion dx_t = mu(x) dt + sigma(x) dW_t, for W_t brownian motion
% parameters.rho = 0.05; %Discount ra te
% parameters.x_min = 0.1; %Reflecting barrier at x_min. i.e. v'(x_min) = 0 as a boundary value
% parameters.x_max = 1.0; %Reflecting barrier at x_max. i.e. v'(x_max) = 0 as a boundary value
%
% parameters.u_x = @(x) x.^gamma; %u(x) = x^gamma in this example
% parameters.mu_x = @(x) mu_bar * (x - 0.5).^2; %i.e. mu(x) = mu_bar * (x - 0.5).^2
% parameters.sigma_2_x = @(x) (sigma_bar * x).^2; %i.e. sigma(x) = (sigma_bar * x).^2
%
% % Use the same parameters as above to calculate the S that has exactly two elements different from v
% x = linspace(0.01, 1, 6)';
% u = x.^0.5;
% mu = -0.01*(x-0.5).^2;
% sigma_2 = (0.1*x).^2;
% A = discretize_univariate_diffusion(x, mu, sigma_2, false);
% Delta = x(2)-x(1);
% rho = 0.05;
% B = ( rho * eye(6) - A);
% v = B \ ( u);
% S = v + [0 0 0.5 0.5 0.5 0.5]';
%
% parameters.S_x = @(x) S;
%
% %Create uniform grid and determine step sizes.
% results = simple_optimal_stopping_diffusion(parameters, settings);
% v = results.v;
% S = results.S;
%
% %Check all values
% %dlmwrite(strcat(mfilename,'_16_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %To save results again
% plot(results.x, results.v, results.x, parameters.S_x(results.x))
% v_old = dlmread(strcat(mfilename,'_16_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
% verifyTrue(testCase,results.converged, 'There is no stopping point.');
% verifyTrue(testCase, max(abs(v - v_old)) < tolerances.test_tol_less, 'Value of solution no longer matches HACT example');
% verifyTrue(testCase, ~(sum(1 * (abs(v - S) < tolerances.test_tol_less)) == 1), 'There is one stopping point');
% verifyTrue(testCase, sum(1 * (abs(v - S) < tolerances.test_tol_less)) == 2, 'There are more than two stopping point');
% end
%This test runs the test case with only the default parameters in settings.
function default_parameters_test(testCase)
[~, parameters, tolerances] = unpack_setup(testCase);
%default parameters, but note that settings is not used.
settings.I = 1000; %Only the number of points is provided.
%Create uniform grid and determine step sizes.
results = simple_optimal_stopping_diffusion(parameters, settings);
%dlmwrite(strcat(mfilename,'_22_v_output.csv'), results.v, 'precision', tolerances.default_csv_precision); %To save results again
v_old = dlmread(strcat(mfilename,'_22_v_output.csv')); %Loads old value, asserts identical. Note that the precision of floating points in the .csv matters, and can't be lower than test_tol.
verifyTrue(testCase, max(abs(results.v - v_old)) < tolerances.test_tol, 'Value of solution no longer matches default value');
end
|
github
|
jlperla/continuous_time_methods-master
|
simple_model_test.m
|
.m
|
continuous_time_methods-master/matlab/tests/simple_model_test.m
| 6,062 |
utf_8
|
2bdecc69be86d7a099960399ddc228b9
|
function tests = simple_model_test
tests = functiontests(localfunctions);
end
%This is run at the beginning of the test. Not required.
function setupOnce(testCase)
addpath('../lib/');
end
function simple_v_test(testCase)
%% 1. test on v behavior for time changing u and big t grid
% this test checks when T is large and u is moving sufficiently with t, the
% value functions are smooth
% mu and sig^2 not time varying
mu_tx = @(t,x) -0.01 * x+0*t;
sigma_bar = 0.1;
sigma_2_tx = @(t,x) (sigma_bar*x).^2+0*t;
%Grid
x_min = 0.1;
x_max = 8;
I = 1000;
t_min = 0.0;
t_max = 10.0;
N = 100;
x_base = linspace(x_min, x_max, I)';
t_base = linspace(t_min, t_max, N)';
I_extra = 15;
N_extra = 15;
%Linspace then merge in extra points
x_extra = linspace(x_min, x_max, I_extra)';
t_extra = linspace(t_min, t_max, N_extra)';
%t_extra = t_base;% only change x grid
%x_extra = x_base; % only change t grid
x = unique([x_base; x_extra], 'sorted');
t = unique([t_base; t_extra], 'sorted');
% u is time varying
a = 0.0; % this is defining F(0)=a
u_tx = @(t,x) exp(x).*((t_max-a)/t_max*t+a); % F(t)=(T-a)/T*t+a
% Uncomment if want to compute v_b, saved in '_3_v_output'
[t_grid_b, x_grid_b] = meshgrid(t_base,x_base); %Generates permutations (stacked by t first, as we want) could look at: [t_grid(:) x_grid(:)]
state_permutations_b = [t_grid_b(:) x_grid_b(:)];
mu_b = bsxfun(mu_tx, state_permutations_b(:,1), state_permutations_b(:,2)); %applies binary function to these, and remains in the correct stacked order.
sigma_2_b = bsxfun(sigma_2_tx, state_permutations_b(:,1), state_permutations_b(:,2)); %applies binary function to these, and remains in the correct stacked order.
%Discretize the operator
[A_b, Delta_p, Delta_m, h_p, h_m] = discretize_time_varying_univariate_diffusion(t_base, x_base, mu_b, sigma_2_b);
u_b = bsxfun(u_tx, state_permutations_b(:,1), state_permutations_b(:,2));
rho = 0.09;
v_b = simple_HJBE_discretized_univariate(A_b, state_permutations_b(:,1), u_b, rho); % state_perm need to be in size N*I
vr = ValueMatch(v_b,x_base,Delta_p,Delta_m,h_p,h_m);
v = reshape(v_b,I,N);
diff_s = v(:,N-2) - v(:,N-1);
diff_N = v(:,N-1) - v(:,N);
diff_1 = v(:,1) - v(:,2);
figure()
plot(x_base,v(:,1),'-o');hold on
plot(x_base,v(:,50),'-x'); hold on
plot(x_base,v(:,N-1),'--','Linewidth',2); hold on
plot(x_base,v(:,N));
legend('1st t','50th t','99th t','100th t')
title('value function plot')
figure()
plot(x_grid,diff_1,'-o');hold on
plot(x_grid,diff_s,'--');hold on
plot(x_grid,diff_N);
legend('1st to 2nd','N-2 to N-1','N-1 to N')
title('difference of v plot')
end
function change_r_test(testCase)
%% 2. test for r change and pi change
mu_tx = @(t,x) -0.01 * x+0*t;
sigma_bar = 0.1;
sigma_2_tx = @(t,x) (sigma_bar*x).^2+0*t;
%Grid
x_min = 0.1;
x_max = 8;
I = 1000;
t_min = 0.0;
t_max = 10.0;
N = 100;
x_base = linspace(x_min, x_max, I)';
t_base = linspace(t_min, t_max, N)';
% u is time varying
a = 0.1; % this is defining F(0)=a
a_h = 5.0; % highest time multiplier value
%u_tx = @(t,x) exp(x).*((t_max-a)/t_max*t+a); % F(t)=(T-a)/T*t+a
u_tx = @(t,x) exp(x).*(a_h-abs(t-t_max/2)*(a_h-a)/(t_max/2)); % F(t)=a_h - abs(t-T/2)*(a_h-a_l)/(T/2)
% Uncomment if want to compute v_b, saved in '_3_v_output'
[t_grid_b, x_grid_b] = meshgrid(t_base,x_base); %Generates permutations (stacked by t first, as we want) could look at: [t_grid(:) x_grid(:)]
state_permutations_b = [t_grid_b(:) x_grid_b(:)];
mu_b = bsxfun(mu_tx, state_permutations_b(:,1), state_permutations_b(:,2)); %applies binary function to these, and remains in the correct stacked order.
sigma_2_b = bsxfun(sigma_2_tx, state_permutations_b(:,1), state_permutations_b(:,2)); %applies binary function to these, and remains in the correct stacked order.
%Discretize the operator
[A_b, Delta_p, Delta_m, h_p, h_m] = discretize_time_varying_univariate_diffusion(t_base, x_base, mu_b, sigma_2_b);
u_b = bsxfun(u_tx, state_permutations_b(:,1), state_permutations_b(:,2));
r_center=0.08;
r_low=0.05;
for i=1:21
rho(i) = r_center - abs(i-11)*(r_center-r_low)/10;
%rho(i) = 0.03+0.001*i;
v_b = simple_HJBE_discretized_univariate(A_b, state_permutations_b(:,1), u_b, rho(i)); % state_perm need to be in size N*I
vrr = ValueMatch(v_b,x_base,Delta_p,Delta_m,h_p,h_m); % this is residual v1-omega*v, its a function of t and r
vv_{i} = reshape(v_b,I,N);
v_T(:,i)=vv_{i}(:,N); % v at last time node
v_T1(:,i)=vv_{i}(:,N-1); % v at second to last time node
v_1(:,i)=vv_{i}(:,1); % v at first time node
v_2(:,i)=vv_{i}(:,2); % second time node
v_z1(i,:)=vv_{i}(1,:);% v at z=1th
v_z500(i,:)=vv_{i}(500,:); % v at z=500th
v_zI(i,:)=vv_{i}(I,:); % at z last point
vr(:,i)=vrr; % vr function as t and r
end
% How interest rate change affect v(z=1,t)
figure()
plot(rho,v_T(1,:)); hold on
plot(rho,v_T1(1,:)); hold on
plot(rho,v_1(1,:),'--');hold on
plot(rho,v_2(1,:),'--');
legend('Nth v','N-1th v','1st v','2nd v')
title('How v(z=1,t) change accross r change')
ylabel('interest rate')
[rho_t_grid,t_rho_grid] = meshgrid(t_base,rho);
figure()
surf(rho_t_grid,t_rho_grid,v_z1)
title('3D plot for v at z=1st point across r and t')
ylabel('interest rate')
xlabel('time')
[point_t_grid,t_rho_grid] = meshgrid(t_base,1:21);
figure()
surf(point_t_grid,t_rho_grid,v_z1)
title('3D plot for v at z=1st point across r points(not value) and t')
ylabel('rgrid point')
xlabel('time')
[vr_rho_grid,vr_t_grid] = meshgrid(rho,t_base);
figure()
surf(vr_rho_grid,vr_t_grid,vr)
title('3D plot for vr')
ylabel('time')
xlabel('r')
end
|
github
|
jlperla/continuous_time_methods-master
|
HJBE_discretized_nonuniform_univariate_test.m
|
.m
|
continuous_time_methods-master/matlab/tests/HJBE_discretized_nonuniform_univariate_test.m
| 7,946 |
utf_8
|
24b20fb4f3cd538ecfd99916137a9388
|
%Using the unit testing framework in matlab. See https://www.mathworks.com/help/matlab/matlab_prog/write-simple-test-case-with-functions.html
%To run tests:
% runtests %would run all of them in the current directory
% runtests('my_test') %runs just the my_test.m file
% runtests('my_test/my_function_test') %runs only `my_function_test function in `my_test'.
function tests = HJBE_discretized_nonuniform_univariate_test
tests = functiontests(localfunctions);
end
%This is run at the beginning of the test. Not required.
function setupOnce(testCase)
addpath('../lib/');
testCase.TestData.tolerances.test_tol = 1e-9;
testCase.TestData.tolerances.lower_test_tol = 1e-8; %For huge matrices, the inf norm can get a little different.
testCase.TestData.tolerances.default_csv_precision = '%.10f'; %Should be higher precision than tolerances.test_tol
end
function simple_value_function_test(testCase)
tolerances = testCase.TestData.tolerances;
mu_x = @(x) -0.01 * x;
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
u_x = @(x) exp(x);
rho = 0.05;
x_min = 1;
x_max = 2;
I = 1500;
x = logspace(log10(x_min),log10(x_max),I)';
A = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
u = u_x(x);
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
[v, success] = simple_HJBE_discretized_univariate(A, x, u, rho);
%dlmwrite(strcat(mfilename, '_1_v_output.csv'), v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
v_check = dlmread(strcat(mfilename, '_1_v_output.csv'));
verifyTrue(testCase,norm(v - v_check, Inf) < tolerances.test_tol, 'v value no longer matches');
verifyTrue(testCase, success==true, 'unsuccesful');
%Solve with a uniform grid and check if similar after interpolation
x_2 = linspace(x_min, x_max, 3 * I)'; %Twice as many points to be sure.
A_2 = discretize_univariate_diffusion(x_2, mu_x(x_2), sigma_2_x(x_2));
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
[v_2, success] = simple_HJBE_discretized_univariate(A_2, x_2, u_x(x_2), rho);
%Make sure within range. This seems too large.
verifyTrue(testCase, norm(interp1(x_2, v_2, x) - v,Inf) < 0.02, 'Not within range of interpolation');
end
function GBM_adding_points_test(testCase)
% Notice on csv files:
%1._addpoint is for adding 20 points to the original grid;
%2._22_v_output is result from randomly shifting existing points on the
%grid
%3._base_v_output is result for 1500 points uniform grid;
tolerances = testCase.TestData.tolerances;
mu_x = @(x) -0.01 * x;
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
u_x = @(x) exp(x);
rho = 0.05;
x_min = 0.1;
x_max = 3;
I = 1500;
I_extra = 20;
%Linspace then merge in extra points
x_base = linspace(x_min, x_max, I)';
x_extra = linspace(x_min, x_max, I_extra)';
x = unique([x_base; x_extra], 'sorted');
%Results from x_base, the uniform grid
A = discretize_univariate_diffusion(x_base, mu_x(x_base), sigma_2_x(x_base));
u = u_x(x_base);
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
[v_base, success] = simple_HJBE_discretized_univariate(A, x_base, u, rho);
% This writes the baseline uniform results for v
%dlmwrite(strcat(mfilename, '_base_v_output.csv'), v_base, 'precision', tolerances.default_csv_precision); %Uncomment to save again
% Results from x_add
A_a = discretize_univariate_diffusion(x, mu_x(x), sigma_2_x(x));
u = u_x(x);
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
[v_a, success] = simple_HJBE_discretized_univariate(A_a, x, u, rho);
% This writes the nonuniform results for v after adding points
%dlmwrite(strcat(mfilename, '_addpoint_v_output.csv'), v_a, 'precision', tolerances.default_csv_precision); %Uncomment to save again
% Check whether addpoint v is close to uniform v
v_check = dlmread(strcat(mfilename, '_base_v_output.csv'));
verifyTrue(testCase,norm(interp1(x, v_a, x_base) - v_check, Inf) < 1e-3, 'v value no longer matches');
verifyTrue(testCase, success==true, 'unsuccesful');
% Check by uniform grids
% x = linspace(x_min, x_max, nn)'; % Data saved in HJBE_discretized_nonuniform_univarite_test_22_v_output.csv
% % Add only one point to a uniform grid
% x_base = linspace(x_min, x_max, nn - 1)';
% index = 3;
% while length(x_base) ~= nn && index < 19
% x_base = unique([x_base; x_extra(index)], 'sorted');
% index = index + 1;
% end
%
% if length(x_base) == nn
% x = x_base;
% else
% print('Fail to construct a new x.');
% end
end
function NUF_shift_point_test(testCase)
% Experiment1: Shift most points in from a uniform grid by a tiny number
% This should be compared to the results generated from uniform grid
tolerances = testCase.TestData.tolerances;
mu_x = @(x) -0.01 * x;
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
u_x = @(x) exp(x);
rho = 0.05;
x_min = 0.1;
x_max = 3;
I = 1500;
x_base = linspace(x_min, x_max, I)';
shifts = (rand(I, 1) - 0.5) / (I * 10e4);
shifts(1, 1) = 0;
shifts(end, 1) = 0;
shifts(601: 610, 1) = zeros(10, 1);
shifts(1001: 1010, 1) = zeros(10, 1);
x_s = x_base + shifts;
A = discretize_univariate_diffusion(x_s, mu_x(x_s), sigma_2_x(x_s));
u = u_x(x_s);
%Solve with nonuniform grid with random shifts epsilon
[v, success] = simple_HJBE_discretized_univariate(A, x_s, u, rho);
%dlmwrite(strcat(mfilename, '_22_v_output.csv'), v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
v_check = dlmread(strcat(mfilename, '_22_v_output.csv'));
%Solve with a uniform grid before using the base.
%x_2 = linspace(x_min, x_max, 3 * I)'; %Twice as many points to be sure.
A_2 = discretize_univariate_diffusion(x_base, mu_x(x_base), sigma_2_x(x_base));
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
[v_2, success] = simple_HJBE_discretized_univariate(A_2, x_base, u_x(x_base), rho);
verifyTrue(testCase,norm(interp1(x_base, v_2, x_s) - v_check, Inf) < 1e-6, 'v value no longer matches');
verifyTrue(testCase, success==true, 'unsuccesful');
end
function NUF_shift_point_2_test(testCase)
% Experiment2: Shift the nonuniform grid generated by adding point by a
% tiny number. This should be compared to the results of adding point
% test
tolerances = testCase.TestData.tolerances;
mu_x = @(x) -0.01 * x;
sigma_bar = 0.1;
sigma_2_x = @(x) (sigma_bar*x).^2;
u_x = @(x) exp(x);
rho = 0.05;
x_min = 0.1;
x_max = 3;
I = 1500;
I_extra = 20;
%Linspace then merge in extra points
x_base = linspace(x_min, x_max, I)';
x_extra = linspace(x_min, x_max, I_extra)';
x = unique([x_base; x_extra], 'sorted');
nn = length(x);
shifts = (rand(nn, 1) - 0.5) / (nn * 10e4);
shifts(1, 1) = 0;
shifts(end, 1) = 0;
shifts(601: 610, 1) = zeros(10, 1);
shifts(1001: 1010, 1) = zeros(10, 1);
x_s = x+shifts;
A = discretize_univariate_diffusion(x_s, mu_x(x_s), sigma_2_x(x_s));
u = u_x(x_s);
%Solve the simple problem: rho v(x) = u(x) + A v(x) for the above process.
[v_s, success] = simple_HJBE_discretized_univariate(A, x_s, u, rho);
%dlmwrite(strcat(mfilename, '_2222_v_output.csv'), v, 'precision', tolerances.default_csv_precision); %Uncomment to save again
v_check = dlmread(strcat(mfilename, '_addpoint_v_output.csv'));
verifyTrue(testCase,norm(interp1(x_s, v_s, x)- v_check, Inf) < 1e-6, 'v value no longer matches');
verifyTrue(testCase, success==true, 'unsuccesful');
end
|
github
|
jlperla/continuous_time_methods-master
|
optimal_stopping_diffusion.m
|
.m
|
continuous_time_methods-master/matlab/lib/optimal_stopping_diffusion.m
| 6,836 |
utf_8
|
2c932e105565b2a65bd30f7578635e60
|
% Modification of Ben Moll's: http://www.princeton.edu/~moll/HACTproject/option_simple_LCP.m
% See notes and equation numbers in 'optimal_stopping.pdf'
% Solves the HJB variational inequality that comes from a general diffusion process with optimal stopping.
% min{rho v(t,x) - u(t,x) - mu(t,x)D_x v(t,x) - sigma(t,x)^2/2 D_xx v(x) - D_t v(t,x), v(t,x) - S(t,x)} = 0
% with a reflecting boundary at a x_min and x_max
% unless S is very small, and u(x) is very large (i.e. no stopping), the reflecting boundary at x_min is unlikely to enter the solution
% for a large x_min, it is unlikely to affect the stopping point.
% Does so by using finite differences to discretize into the following complementarity problem:
% min{rho v - u - A v, v - S} = 0,
% where A is the discretized intensity matrix that comes from the finite difference scheme and the reflecting barrier at x_min and x_max
function [results] = optimal_stopping_diffusion(p, settings)
t = p.t;
x = p.x;
N = length(t);
I = length(x);
%% Default settings
if ~isfield(settings, 'print_level')
settings.print_level = 0;
end
if ~isfield(settings, 'error_tolerance')
settings.error_tolerance = 1e-12;
end
if ~isfield(settings, 'pivot_tolerance')
settings.pivot_tolerance = 1e-8;
end
if ~isfield(settings, 'method')
settings.method = 'yuval'; %Default is the Yuval LCP downloaded from matlabcentral
end
if ~isfield(settings, 'basis_guess')
settings.basis_guess = zeros(I*N,1); %Guess that it never binds?
end
%% Unpack parameters and settings
[t_grid, x_grid] = meshgrid(t, x); %Generates permutations (stacked by t first, as we want) could look at: [t_grid(:) x_grid(:)]
state_permutations = [t_grid(:) x_grid(:)];
mu = bsxfun(p.mu, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
sigma_2 = bsxfun(p.sigma_2, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
S = bsxfun(p.S, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
u = bsxfun(p.u, state_permutations(:,1), state_permutations(:,2)); %applies binary function to these, and remains in the correct stacked order.
%% Discretize the operator
%TODO: Should be able to nest the time-varying and stationary ones in this, but can't right now.
if(N > 1)
A = discretize_time_varying_univariate_diffusion(t, x, mu, sigma_2);
else
A = discretize_univariate_diffusion(x, mu, sigma_2, false);
end
%% Setup and solve the problem as a linear-complementarity problem (LCP)
%Given the above construction for u, A, and S, we now have the discretized version
% min{rho v - u - A v, v - S} = 0,
%Convert this to the LCP form (see http://www.princeton.edu/~moll/HACTproject/option_simple.pdf)
% z >= 0
% Bz + q >= 0
% z'(Bz + q) = 0
% with the change of variables z = v - S
B = p.rho * speye(I*N) - A; %(6)
q = -u + B*S; %(8)
%% Solve the LCP version of the model
%Choose based on the method type.
if strcmp(settings.method, 'yuval')%Uses Yuval Tassa's Newton-based LCP solver, download from http://www.mathworks.com/matlabcentral/fileexchange/20952
%Box bounds, z_L <= z <= z_U. In this formulation this means 0 <= z_i < infinity
z_L = zeros(I*N,1); %(12)
z_U = inf(I*N,1);
settings.error_tolerance = settings.error_tolerance/1000; %Fundamentally different order of magnitude than the others.
[z, iter, converged] = LCP(B, q, z_L, z_U, settings);
error = z.*(B*z + q); %(11)
elseif strcmp(settings.method, 'lemke')
[z,err,iter] = lemke(B, q, settings.basis_guess,settings.error_tolerance, settings.pivot_tolerance);
error = z.*(B*z + q); %(11)
converged = (err == 0);
elseif strcmp(settings.method, 'knitro')
% Uses Knitro Tomlab as a MPEC solver
c = zeros(I*N, 1); %i.e. no objective function to minimize. Only looking for feasibility.
z_iv = zeros(I*N,1); %initial guess.
%Box bounds, z_L <= z <= z_U. In this formulation this means 0 <= z_i < infinity
z_L = zeros(I*N,1); %(12)
z_U = inf(I*N,1);
%B*z + q >= 0, b_L <= B*z <= b_U (i.e. -q_i <= (B*z)_i <= infinity)
b_L = -q;
b_U = inf(I*N,1);
%Each row in mpec is a complementarity pair. Require only 2 non-zeros in each row.
%In mpec, Columns 1:2 refer to variables, columns 3:4 to linear constraints, and 5:6 to nonlinear constraints:
% mpec = [ var1,var2 , lin1,lin2 , non1,non2 ; ... ];
%So a [2 0 3 0 0 0] row would say "x_2 _|_ c_3" for the 3rd linear constrant, and c_3 := A(3,:) x
num_complementarity_constraints = I*N;
mpec = sparse(num_complementarity_constraints, 6);
%The first row is the variable index, and the third is the row of the linear constraint matrix.
mpec(:, 1) = (1:I*N)'; %So says x_i _|_ c_i for all i.
mpec(:, 3) = (1:I*N)';
%Creates a LCP
Prob = lcpAssign(c, z_L, z_U, z_iv, B, b_L, b_U, mpec, 'LCP Problem');
%Add a few settings. Knitro is the only MPEC solver in TOMLAB
Prob.PriLevOpt = settings.print_level;
Prob.KNITRO.options.MAXIT = settings.max_iter;
if ~isfield(settings, 'knitro_ALG')
Prob.KNITRO.options.ALG = 3; %Knitro Algorithm. 0 is auto, 3 is SLQP
else
Prob.KNITRO.options.ALG = settings.knitro_ALG;
end
Prob.KNITRO.options.BLASOPTION = 0; %Can use blas/mkl... might be more useful for large problems.
Prob.KNITRO.options.FEASTOL = settings.error_tolerance; %Feasibility tolerance on linear constraints.
% Solve the LP (with MPEC pairs) using KNITRO:
Result = tomRun('knitro',Prob);
z = Result.x_k(1:I*N); %Strips out the slack variables automatically added by the MPEC
error = z.*(B*z + q); %(11)
converged = (Result.ExitFlag == 0);
iter = Result.Iter;
else
results = NaN;
assert(false, 'Unsupported method to solve the LCP');
end
%% Package Results
%% Convert from z back to v
v = z + S; %(7) calculate value function, unravelling the "z = v - S" change of variables
%Discretization results
results.x = x;
results.A = A;
results.S = S;
%Solution
results.v = v;
results.converged = converged;
results.iterations = iter;
results.LCP_error = max(abs(error));
results.LCP_L2_error = norm(error,2);
end
|
github
|
jlperla/continuous_time_methods-master
|
simple_joint_HJBE_stationary_distribution_univariate.m
|
.m
|
continuous_time_methods-master/matlab/lib/simple_joint_HJBE_stationary_distribution_univariate.m
| 2,898 |
utf_8
|
16afd41183f79902c52da542e96c6872
|
%Takes the discretized operator A, the grid x, and finds the stationary distribution f.
function [v, f, success] = simple_joint_HJBE_stationary_distribution_univariate(A, x, u, rho, settings)
I = length(x);
if nargin < 5
settings.default = true; %Just creates as required.
end
if(~isfield(settings, 'normalization'))
settings.normalization = 'sum'; %The only method supported right now is a direct sum
%Otherwise, could consider better quadrature methods using x such as trapezoidal or simpsons rule.
end
if ~isfield(settings, 'print_level')
settings.print_level = false;
end
if(isfield(settings, 'max_iterations')) %OTherwise use the default
max_iterations = settings.max_iterations; %Number of iterations
else
max_iterations = 10*I; %The default is too small for our needs
end
if(isfield(settings, 'tolerance')) %OTherwise use the default
tolerance = settings.tolerance; %Number of iterations
else
tolerance = []; %Empty tells it to use default
end
if(~isfield(settings, 'preconditioner'))
settings.preconditioner = 'none'; %Default is no preconditioner.
end
if(~isfield(settings, 'sparse'))
settings.sparse = true;
end
if(isfield(settings, 'initial_guess'))
initial_guess = settings.initial_guess;
else
initial_guess = [];
end
%Create the joint system
y = sparse([u; sparse(I,1); 1]); %(66)
X = [(rho * eye(I) - A) sparse(I,I); sparse(I,I) A'; sparse(1,I) ones(1,I)]; %(67). Only supporting simple sum.
if(settings.sparse == true)
if(strcmp(settings.preconditioner,'jacobi'))
preconditioner = diag(diag(X)); %Jacobi preconditioner is easy to calculate. Helps a little
elseif(strcmp(settings.preconditioner,'incomplete_LU'))
%Matter if it is negative or positive?
[L,U] = ilu(X(1:end-1,:))
preconditioner = L;
elseif(strcmp(settings.preconditioner,'none'))
preconditioner = [];
else
assert(false, 'unsupported preconditioner');
end
[val,flag,relres,iter] = lsqr(X, y, tolerance, max_iterations, preconditioner, [], initial_guess); %Linear least squares. Note tolerance changes with I
if(flag==0)
success = true;
%Extracts the solution.
v = val(1:I);
f = val(I+1:end);
else
if(settings.print_level>0)
disp('Failure to converge: flag and residual');
[flag, relres]
end
success = false;
f = NaN;
v = NaN;
end
else %Otherwise solve as a dense system
val = full(X) \ full(y);
v = val(1:I);
f = val(I+1:end);
success = true;
end
end
|
github
|
jlperla/continuous_time_methods-master
|
simple_optimal_stopping_diffusion.m
|
.m
|
continuous_time_methods-master/matlab/lib/simple_optimal_stopping_diffusion.m
| 6,496 |
utf_8
|
e46fcf40131efca018a2a0f4ee6ef1ae
|
% Modification of Ben Moll's: http://www.princeton.edu/~moll/HACTproject/option_simple_LCP.m
% See notes and equation numbers in 'optimal_stopping.pdf'
% Solves the HJB variational inequality that comes from a general diffusion process with optimal stopping.
% min{rho v(x) - u(x) - mu(x)v'(x) - sigma(x)^2/2 v''(x), v(x) - S(x)} = 0
% with a reflecting boundary at a x_min and x_max
% unless S is very small, and u(x) is very large (i.e. no stopping), the reflecting boundary at x_min is unlikely to enter the solution
% for a large x_min, it is unlikely to affect the stopping point.
% Does so by using finite differences to discretize into the following complementarity problem:
% min{rho v - u - A v, v - S} = 0,
% where A is the discretized intensity matrix that comes from the finite difference scheme and the reflecting barrier at x_min and x_max
function [results] = simple_optimal_stopping_diffusion(p, settings)
%% Default settings
if ~isfield(settings, 'print_level')
settings.print_level = 0;
end
if ~isfield(settings, 'error_tolerance')
settings.error_tolerance = 1e-12;
end
if ~isfield(settings, 'pivot_tolerance')
settings.pivot_tolerance = 1e-8;
end
if ~isfield(settings, 'method')
settings.method = 'yuval'; %Default is the Yuval LCP downloaded from matlabcentral
end
if ~isfield(settings, 'basis_guess')
settings.basis_guess = zeros(settings.I,1); %Guess that it never binds?
end
%% Unpack parameters and settings
rho = p.rho; %Discount rate
u_x = p.u_x; %utility function
mu_x = p.mu_x; %Drift function
sigma_2_x = p.sigma_2_x; %diffusion term sigma(x)^2
S_x = p.S_x; %payoff function on exit.
x_min = p.x_min; %Not just a setting as a boundary value occurs here
x_max = p.x_max; %Not just a setting as a boundary value occurs here.
%Settings for the solution method
I = settings.I; %number of grid variables for x
%Create uniform grid and determine step sizes.
x = linspace(x_min, x_max, I)';
%% Discretize the operator
%This is for generic diffusion functions with mu_x = mu(x) and sigma_x = sigma(x)
mu = mu_x(x); %vector of constant drifts
sigma_2 = sigma_2_x(x); %
%Discretize the operator
Delta = x(2) - x(1);
A = discretize_univariate_diffusion(x, mu, sigma_2, false); %Note that this is not checking for absorbing states!
%% Setup and solve the problem as a linear-complementarity problem (LCP)
%Given the above construction for u, A, and S, we now have the discretized version
% min{rho v - u - A v, v - S} = 0,
%Convert this to the LCP form (see http://www.princeton.edu/~moll/HACTproject/option_simple.pdf)
% z >= 0
% Bz + q >= 0
% z'(Bz + q) = 0
% with the change of variables z = v - S
u = u_x(x);
S = S_x(x);
B = rho * speye(I) - A; %(6)
q = -u + B*S; %(8)
%% Solve the LCP version of the model
%Choose based on the method type.
if strcmp(settings.method, 'yuval')%Uses Yuval Tassa's Newton-based LCP solver, download from http://www.mathworks.com/matlabcentral/fileexchange/20952
%Box bounds, z_L <= z <= z_U. In this formulation this means 0 <= z_i < infinity
z_L = zeros(I,1); %(12)
z_U = inf(I,1);
settings.error_tolerance = settings.error_tolerance/1000; %Fundamentally different order of magnitude than the others.
[z, iter, converged] = LCP(B, q, z_L, z_U, settings);
error = z.*(B*z + q); %(11)
elseif strcmp(settings.method, 'lemke')
[z,err,iter] = lemke(B, q, settings.basis_guess,settings.error_tolerance, settings.pivot_tolerance);
error = z.*(B*z + q); %(11)
converged = (err == 0);
elseif strcmp(settings.method, 'knitro')
% Uses Knitro Tomlab as a MPEC solver
c = zeros(I, 1); %i.e. no objective function to minimize. Only looking for feasibility.
z_iv = zeros(I,1); %initial guess.
%Box bounds, z_L <= z <= z_U. In this formulation this means 0 <= z_i < infinity
z_L = zeros(I,1); %(12)
z_U = inf(I,1);
%B*z + q >= 0, b_L <= B*z <= b_U (i.e. -q_i <= (B*z)_i <= infinity)
b_L = -q;
b_U = inf(I,1);
%Each row in mpec is a complementarity pair. Require only 2 non-zeros in each row.
%In mpec, Columns 1:2 refer to variables, columns 3:4 to linear constraints, and 5:6 to nonlinear constraints:
% mpec = [ var1,var2 , lin1,lin2 , non1,non2 ; ... ];
%So a [2 0 3 0 0 0] row would say "x_2 _|_ c_3" for the 3rd linear constrant, and c_3 := A(3,:) x
num_complementarity_constraints = I;
mpec = sparse(num_complementarity_constraints, 6);
%The first row is the variable index, and the third is the row of the linear constraint matrix.
mpec(:, 1) = (1:I)'; %So says x_i _|_ c_i for all i.
mpec(:, 3) = (1:I)';
%Creates a LCP
Prob = lcpAssign(c, z_L, z_U, z_iv, B, b_L, b_U, mpec, 'LCP Problem');
%Add a few settings. Knitro is the only MPEC solver in TOMLAB
Prob.PriLevOpt = settings.print_level;
Prob.KNITRO.options.MAXIT = settings.max_iter;
if ~isfield(settings, 'knitro_ALG')
Prob.KNITRO.options.ALG = 3; %Knitro Algorithm. 0 is auto, 3 is SLQP
else
Prob.KNITRO.options.ALG = settings.knitro_ALG;
end
Prob.KNITRO.options.BLASOPTION = 0; %Can use blas/mkl... might be more useful for large problems.
Prob.KNITRO.options.FEASTOL = settings.error_tolerance; %Feasibility tolerance on linear constraints.
% Solve the LP (with MPEC pairs) using KNITRO:
Result = tomRun('knitro',Prob);
z = Result.x_k(1:I); %Strips out the slack variables automatically added by the MPEC
error = z.*(B*z + q); %(11)
converged = (Result.ExitFlag == 0);
iter = Result.Iter;
else
results = NaN;
assert(false, 'Unsupported method to solve the LCP');
end
%% Package Results
%% Convert from z back to v
v = z + S; %(7) calculate value function, unravelling the "z = v - S" change of variables
%Discretization results
results.x = x;
results.A = A;
results.S = S;
%Solution
results.v = v;
results.converged = converged;
results.iterations = iter;
results.LCP_error = max(abs(error));
results.LCP_L2_error = norm(error,2);
end
|
github
|
jlperla/continuous_time_methods-master
|
discretize_univariate_diffusion.m
|
.m
|
continuous_time_methods-master/matlab/lib/discretize_univariate_diffusion.m
| 4,082 |
utf_8
|
03ba4ed2a62e7d0f59f353bce684430e
|
% Modification of Ben Moll's: http://www.princeton.edu/~moll/HACTproject/option_simple_LCP.m
%For algebra and equation numbers, see the 'operator_discretization_finite_differences.pdf'
%This function takes a grid on [x_min, x_max] and discretizing a general diffusion defined by the following SDE
%d x_t = mu(x_t)dt + sigma(x_t)^2 dW_t
%Subject to reflecting barrier at x_min and x_max
%Pass in the vector of the grid x, and the vectors of mu and sigma_2 at the nodes, and returns a sparse discretized operator.
function [A, Delta_p, Delta_m] = discretize_univariate_diffusion(x, mu, sigma_2, check_absorbing_states)
if nargin < 4
check_absorbing_states = true;
end
I = length(x); %number of grid variables for x
%Check if the grid is uniform
tol = 1E-10; %Tolerance for seeing if the grid is uniform
Delta_p = [diff(x)' (x(I)-x(I-1))]'; %(35) Find distances between grid points.
Delta_m = [x(2)-x(1) diff(x)']'; % %(34) \Delta_{i, -}
if(check_absorbing_states) %In some circumstances, such as in optimal stopping problems, we can ignore these issues.
assert(sigma_2(1) > 0 || mu(1) >= 0, 'Cannot jointly have both sigma = 0 or mu < 0 at x_min, or an absorbing state');
assert(sigma_2(end) > 0 || mu(end) <= 0, 'Cannot jointly have both sigma = 0 or mu > 0 at x_max, or an absorbing state');
end
if(abs(min(Delta_p) - max(Delta_p)) < tol) %i.e. a uniform grid within tolerance
Delta = x(2)-x(1); % (1)
Delta_2 = Delta^2; %Just squaring the Delta for the second order terms in the finite differences.
%% Construct sparse A matrix with uniform grid
mu_m = min(mu,0); %General notation of plus/minus.
mu_p = max(mu,0);
X = - mu_m/Delta + sigma_2/(2*Delta_2); % (7)
Y = - mu_p/Delta + mu_m/Delta - sigma_2/Delta_2; % (8)
Z = mu_p/Delta + sigma_2/(2*Delta_2); %(9)
%Creates a tri-diagonal matrix. See the sparse matrix tricks documented below
A = spdiags([[X(2:I); NaN] Y [NaN; Z(1:I - 1)]], [-1 0 1], I,I);% (10) interior is correct. Corners will require adjustment
%Manually adjust the boundary values at the corners.
A(1,1) = Y(1) + X(1); %Reflecting barrier, (10) and (5)
A(I,I) = Y(I) + Z(I); %Reflecting barrier, (10) and (6)
else
%% Construct sparse A matrix with non-uniform gird
%For non-uniform grid, \Delta_{i, +}=x_{i+1} - x_{i} and \Delta_{i, -}=x_{i} - x_{i-1}
mu_m = min(mu,0); %General notation of plus/minus.
mu_p = max(mu,0);
X = - mu_m./Delta_m + sigma_2 ./(Delta_m.*(Delta_p + Delta_m)); %(31)
Y = - mu_p./Delta_p + mu_m./Delta_m - sigma_2./(Delta_p .* Delta_m); % (32)
Z = mu_p./Delta_p + sigma_2 ./ (Delta_p.*(Delta_p + Delta_m)); % (33)
%Creates a tri-diagonal matrix. See the sparse matrix tricks documented below
A = spdiags([[X(2:I); NaN] Y [NaN; Z(1:I - 1)]], [-1 0 1], I,I);% (36) interior is the same as one for uniform grid case. Corners will require adjustment
%Manually adjust the boundary values at the corners.
A(1,1) = Y(1) + X(1); %Reflecting barrier, top corner of (36)
A(I,I) = Y(I) + Z(I); %Reflecting barrier, bottom corner of (36)
end
end
%Sparse matrix trick: spdiags takes vector(s) and offset(s). It returns the vector(s) in sparse a diagonal matrix where the diagonal is offset by the other argument.
%For example:
% norm(spdiags([1;2;3], 0, 3, 3) - diag([1 2 3]), Inf) % on the true diagonal, offset 0.
% norm(spdiags([2;3;9999], -1, 3, 3)- [0 0 0; 2 0 0; 0 3 0], Inf) %on the diagonal below. Note that the last element is skipped since only 2 points on off diagonal.
% norm(spdiags([9999;2;3], 1, 3, 3)- [0 2 0; 0 0 3; 0 0 0], Inf) %on the diagonal above. Note that the first element is skipped since only 2 points on off diagonal.
%Alternatively this can be done in a single operation to form a tridiagonal matrix by stacking up the arrays, where the 2nd argument is a list of the offsets to apply the columns to)
%Can add them as sparse matrices. For example, the above code is equivalent to %A = spdiags(Y, 0, I, I) + spdiags(X(2:I),-1, I, I) + spdiags([0;Z(1:I-1)], 1, I, I);
|
github
|
jlperla/continuous_time_methods-master
|
discretize_time_varying_univariate_diffusion.m
|
.m
|
continuous_time_methods-master/matlab/lib/discretize_time_varying_univariate_diffusion.m
| 4,398 |
utf_8
|
fe952d4c7af49c5f6b9f9a12eb03f75c
|
%For algebra and equation numbers, see the 'operator_discretization_finite_differences.pdf'
%This function takes a grid on [x_min, x_max], [t_min, t_max] and discretizing a general diffusion defined by the following SDE
%d x_t = mu(t, x_t)dt + sigma(t, x_t)^2 dW_t
%Subject to reflecting barrier at x_min and x_max and a stationary requirement at t_max
%Pass in the vector of the grid x, and the vectors of mu and sigma_2 at the nodes, and returns a sparse discretized operator.
%The mu and sigma_2 are assumed to be already stacked correctly (i.e., keeping all time together).
%This so far is the explicit time procedure (Nov.26)
function [A, Delta_p, Delta_m, h_p, h_m] = discretize_time_varying_univariate_diffusion(t, x, mu, sigma_2)
I = length(x); %number of grid variables for x
N = length(t);
%Could check if the grid is uniform
Delta_p = [diff(x)' (x(I)-x(I-1))]'; %(35) Find distances between grid points.
Delta_m = [x(2)-x(1) diff(x)']'; % %(34) \Delta_{i, -}
h_p = [diff(t)' (t(N)-t(N-1))]'; % (67) h_{+}
h_m = [t(2)-t(1) diff(t)']'; % %(68) h{i, -}
% stack delta's into R^NI
Delta_stack_p = repmat(Delta_p,N,1);
Delta_stack_m = repmat(Delta_m,N,1);
D_h_stack_p = kron(1./h_p(1:N), ones(I,1)); %Stacks up 1/h_+ for each spatial dimension.
%% Construct sparse A matrix with non-uniform grid (uniform case is just a generalization of non-uniform)
mu_m = min(mu,0); %General notation of plus/minus.
mu_p = max(mu,0);
X = - mu_m./Delta_stack_m + sigma_2 ./(Delta_stack_m.*(Delta_stack_p + Delta_stack_m)); %(74)
Y = - mu_p./Delta_stack_p + mu_m./Delta_stack_m - sigma_2./(Delta_stack_p .* Delta_stack_m); % (75)
Z = mu_p./Delta_stack_p + sigma_2 ./ (Delta_stack_p.*(Delta_stack_p + Delta_stack_m)); % (76)
%Creating A using the spdiags banded matrix style
bands = [X (Y - [D_h_stack_p(1:I*(N-1)); zeros(I,1)]) Z D_h_stack_p];
%Need to manually tweak the corners at every time period. If the boundary values for the stochastic process were to change could modify here.
for n = 1:N
%Implement the LHS boundary value for each n
bands((n-1)*I + 1, 2) = bands((n-1)*I + 1, 2) + X((n-1)*I + 1); %i.e. Y+X in left corner for every t
if n > 1 %Don't need to do this for the first corner because at corner of the banded matrix construction
bands((n-1)*I + 1, 1) = 0;
end
%Implement the RHS boundary value for each n
bands(n*I, 2) = bands(n*I, 2) + Z(n*I); %i.e. Z + Y in right corner for every t
if n < N %Don't need to do this for the last corner
bands(n*I, 3) = 0;
end
end
%Make banded matrix. Tridiagonal with an additional term spaced I to the right of the main diagonal
A = spdiags([[bands(2:end,1);nan(1,1)] bands(:,2) [nan(1,1); bands(1:end - 1,3)] [nan(I,1); bands(1:end - I,4)]],...%padding the bands as appropriate where spdiags ignores the data. nan helps catch errors
[-1 0 1 I],... %location of the bands. Match to the number of nan in the preceding matrix, For negative bands off diagonal, spdiags ignores data at end, for positive it ignores data at beginning
N*I, N*I); %size of resulting matrix
end
%Useful code for playing around with spdiags
%To generate the matrix
% [10 100 0 0; 2 20 200 0; 0 3 30 300; 0 0 4 40]
%from the following:
%testbands = [1 10 100; 2 20 200; 3 30 300; 4 40 400]
%testA = full(spdiags([[testbands(2:end,1);NaN] testbands(:,2) [NaN; testbands(1:end-1,3)]], [-1 0 1], size(testbands, 1),size(testbands, 1)))
% % Construct the A matrix in pieces
% A = spdiags([nan(I,1); D_h_stack_p], [I], N*I, N*I); %Start with the off-diagonal of 1/h_p
% for n=1:N
% i_corner = I*(n-1)+1;
% Xn = X(i_corner:i_corner+I-1);
% Yn = Y(i_corner:i_corner+I-1);
% Zn = Z(i_corner:i_corner+I-1);
% A_n = spdiags([[Xn(2:I); NaN] Yn [NaN; Zn(1:I - 1)]], [-1 0 1], I,I);% (77) for each time node indexed by n, A_n is different as mu_n changes. The procedure similar to that in time-invariant case
% A_n(1,1) = Yn(1) + Xn(1);%Reflecting barrier, top corner of (77)
% A_n(I,I) = Yn(I) + Zn(I);%Reflecting barrier, bottom corner of (77)
% A(i_corner:i_corner+I-1,i_corner:i_corner+I-1) = A_n;
% end
% A = A + spdiags(-[D_h_stack_p(1:I*(N-1)); zeros(I,1)], [0], N*I, N*I); %Putting 0's at the end
|
github
|
jlperla/continuous_time_methods-master
|
LCP.m
|
.m
|
continuous_time_methods-master/matlab/lib/LCP.m
| 5,203 |
utf_8
|
8fbbd2626f905e54a8c206b3570719e0
|
function [x, iter, converged] = LCP(M,q,l,u,settings)
%LCP Solve the Linear Complementarity Problem.
%
% USAGE
% x = LCP(M,q) solves the LCP
%
% x >= 0
% Mx + q >= 0
% x'(Mx + q) = 0
%
% x = LCP(M,q,l,u) solves the generalized LCP (a.k.a MCP)
%
% l < x < u => Mx + q = 0
% x = u => Mx + q < 0
% l = x => Mx + q > 0
%
% x = LCP(M,q,l,u,x0,display) allows the optional initial value 'x0' and
% a binary flag 'display' which controls the display of iteration data.
%
% Parameters:
% tol - Termination criterion. return when 0.5*phi(x)'*phi(x) < tol.
% mu - Initial value of Levenberg-Marquardt mu coefficient.
% mu_step - Coefficient by which mu is multiplied / divided.
% mu_min - Value below which mu is set to zero (pure Gauss-Newton).
% max_iter - Maximum number of (succesful) Levenberg-Marquardt steps.
% b_tol - Tolerance of degenerate complementarity: Dimensions where
% max( min(abs(x-l),abs(u-x)) , abs(phi(x)) ) < b_tol
% are clamped to the nearest constraint and removed from
% the linear system.
%
% ALGORITHM
% This function implements the semismooth algorithm as described in [1],
% with a least-squares minimization of the Fischer-Burmeister function using
% a Levenberg-Marquardt trust-region scheme with mu-control as in [2].
%
% [1] A. Fischer, A Newton-Type Method for Positive-Semidefinite Linear
% Complementarity Problems, Journal of Optimization Theory and
% Applications: Vol. 86, No. 3, pp. 585-608, 1995.
%
% [2] M. S. Bazarraa, H. D. Sherali, and C. M. Shetty, Nonlinear
% Programming: Theory and Algorithms. John Wiley and Sons, 1993.
%
% Copyright (c) 2008, Yuval Tassa
% tassa at alice dot huji dot ac dot il
%tol = 1.0e-12;
% mu = 1e-3;
% mu_step = 5;
% mu_min = 1e-5;
% max_iter = 20;
% b_tol = 1e-6;
n = size(M,1);
if nargin < 3 || isempty(l)
l = zeros(n,1);
if nargin < 4 || isempty(u)
u = inf(n,1);
end
end
if nargin < 5
settings.print_level = 0;
end
if ~isfield(settings, 'x_iv')
settings.x_iv = min(max(zeros(n,1),l),u); %Changed to 0 as default, rather than 1.
end
if ~isfield(settings, 'error_tolerance')
settings.error_tolerance = 1.0e-12;
end
if ~isfield(settings, 'lm_mu')
settings.lm_mu = 1e-3;
end
if ~isfield(settings, 'lm_mu_min')
settings.lm_mu_min = 1e-5;
end
if ~isfield(settings, 'lm_mu_step')
settings.lm_mu_step = 5;
end
if ~isfield(settings, 'max_iter')
settings.max_iter = 20;
end
if ~isfield(settings, 'b_tol')
settings.b_tol = 1e-6;
end
%Unpack all settings and parameters
display = (settings.print_level > 0);
tol = settings.error_tolerance;
mu = settings.lm_mu;
mu_min = settings.lm_mu_min;
mu_step = settings.lm_mu_step;
max_iter = settings.max_iter;
b_tol = settings.b_tol;
%Main algorithm
lu = [l u];
x = settings.x_iv;
[psi,phi,J] = FB(x,q,M,l,u);
new_x = true;
warning off MATLAB:nearlySingularMatrix
for iter = 1:max_iter
if new_x
[mlu,ilu] = min([abs(x-l),abs(u-x)],[],2);
bad = max(abs(phi),mlu) < b_tol;
psi = psi - 0.5*phi(bad)'*phi(bad);
J = J(~bad,~bad);
phi = phi(~bad);
new_x = false;
nx = x;
nx(bad) = lu(find(bad)+(ilu(bad)-1)*n);
end
H = J'*J + mu*speye(sum(~bad));
Jphi = J'*phi;
d = -H\Jphi;
nx(~bad) = x(~bad) + d;
[npsi,nphi,nJ] = FB(nx,q,M,l,u);
r = (psi - npsi) / -(Jphi'*d + 0.5*d'*H*d); % actual reduction / expected reduction
if r < 0.3 % small reduction, increase mu
mu = max(mu*mu_step,mu_min);
end
if r > 0 % some reduction, accept nx
x = nx;
psi = npsi;
phi = nphi;
J = nJ;
new_x = true;
if r > 0.8 % large reduction, decrease mu
mu = mu/mu_step * (mu > mu_min);
end
end
if display
disp(sprintf('iter = %2d, psi = %3.0e, r = %3.1f, mu = %3.0e',iter,psi,r,mu));
end
if psi < tol
break;
end
end
warning on MATLAB:nearlySingularMatrix
x = min(max(x,l),u);
converged = (iter < max_iter);
function [psi,phi,J] = FB(x,q,M,l,u)
n = length(x);
Zl = l >-inf & u==inf;
Zu = l==-inf & u <inf;
Zlu = l >-inf & u <inf;
Zf = l==-inf & u==inf;
a = x;
b = M*x+q;
a(Zl) = x(Zl)-l(Zl);
a(Zu) = u(Zu)-x(Zu);
b(Zu) = -b(Zu);
if any(Zlu)
nt = sum(Zlu);
at = u(Zlu)-x(Zlu);
bt = -b(Zlu);
st = sqrt(at.^2 + bt.^2);
a(Zlu) = x(Zlu)-l(Zlu);
b(Zlu) = st -at -bt;
end
s = sqrt(a.^2 + b.^2);
phi = s - a - b;
phi(Zu) = -phi(Zu);
phi(Zf) = -b(Zf);
psi = 0.5*phi'*phi;
if nargout == 3
if any(Zlu)
M(Zlu,:) = -sparse(1:nt,find(Zlu),at./st-ones(nt,1),nt,n) - sparse(1:nt,1:nt,bt./st-ones(nt,1))*M(Zlu,:);
end
da = a./s-ones(n,1);
db = b./s-ones(n,1);
da(Zf) = 0;
db(Zf) = -1;
J = sparse(1:n,1:n,da) + sparse(1:n,1:n,db)*M;
end
|
github
|
jlperla/continuous_time_methods-master
|
stationary_distribution_discretized_univariate.m
|
.m
|
continuous_time_methods-master/matlab/lib/stationary_distribution_discretized_univariate.m
| 5,544 |
utf_8
|
18fe7580476e59859ec139c501e32912
|
%Takes the discretized operator A, the grid x, and finds the stationary distribution f.
function [f, success] = stationary_distribution_discretized_univariate(A, x, settings)
I = length(x);
if nargin < 3
settings.default = true; %Just creates as required.
end
%TODO: Consider adding in a 'dense' option for small matrices.
if(~isfield(settings, 'method'))
settings.method = 'eigenproblem_all';
end
if(~isfield(settings, 'normalization'))
settings.normalization = 'sum'; %The only method supported right now is a direct sum
%Otherwise, could consider better quadrature methods using x such as trapezoidal or simpsons rule.
end
if ~isfield(settings, 'display')
settings.display = false; %Tolerance
end
assert(I == size(A,1) && I == size(A,2)); %Make sure sizes match
if(strcmp(settings.method, 'eigenproblem')) %Will use sparsity
opts.isreal = true;
if(isfield(settings, 'num_basis_vectors')) %Otherwise use the default
opts.p = settings.num_basis_vectors; %Number of Lanczos basis vectors. Need to increase often
end
if(isfield(settings, 'max_iterations')) %OTherwise use the default
opts.maxit = settings.max_iterations; %Number of iterations
end
[V, D, flag] = eigs(A',1,'sm', opts);%The eigenvalue with the smallest magnitude should be the zero eigenvalue
if((flag ~= 0) || (abs(D - 0.0) > 1E-9)) %The 'sm' one is hopefully the zero, but maybe not if there are convergence issues. Also, the algorithm may simply not converge.
if(settings.display)
disp('The eigenvalue is not zero or did not converge. Try increasing the num_basis_vectors or max_iterations. Otherwise, consider eigenproblem_all');
end
success = false;
f = NaN;
return;
end
f = V / sum(V); %normalize to sum to 1. Could add other normalizations using the grid 'x' depending on settings.normalization
success = true;
elseif(strcmp(settings.method, 'eigenproblem_all')) %Will use sparsity but computes all of the eigenvaluse/eigenvectors. Use if `eigenproblem' didn't work.
opts.isreal = true;
if(isfield(settings, 'num_basis_vectors')) %OTherwise use the default
opts.p = settings.num_basis_vectors; %Number of Lanczos basis vectors.
end
if(isfield(settings, 'max_iterations')) %OTherwise use the default
opts.maxit = settings.max_iterations; %Number of iterations
end
[V,D] = eigs(A', I, 'sm',opts); %Gets all of the eigenvalues and eigenvectors. Might be slow, so try `eigenproblem` first.
zero_index = find(abs(diag(D) - 0) < 1E-9);
if(isempty(zero_index))
if(settings.display)
disp('Cannot find eigenvalue of 0.');
end
success = false;
f = NaN;
return;
end
f = V(:,zero_index) / sum(V(:,zero_index)); %normalize to sum to 1. Could add other normalizations using the grid 'x' depending on settings.normalization
success = true;
elseif(strcmp(settings.method, 'LLS')) %Solves a linear least squares problem adding in the sum constraint
if(isfield(settings, 'max_iterations')) %OTherwise use the default
max_iterations = settings.max_iterations; %Number of iterations
else
max_iterations = 10*I; %The default is too small for our needs
end
if(isfield(settings, 'tolerance')) %OTherwise use the default
tolerance = settings.tolerance; %Number of iterations
else
tolerance = []; %Empty tells it to use default
end
if(~isfield(settings, 'preconditioner'))
settings.preconditioner = 'incomplete_LU'; %Default is incomplete_LU
end
if(strcmp(settings.preconditioner,'jacobi'))
preconditioner = diag(diag(A)); %Jacobi preconditioner is easy to calculate. Helps a little
elseif(strcmp(settings.preconditioner,'incomplete_cholesky'))
%Matter if it is negative or positive? Possible this is doing it incorrectly.
preconditioner =-ichol(-A, struct('type','ict','droptol',1e-3,'diagcomp',1));% ichol(A, struct('diagcomp', 10, 'type','nofill','droptol',1e-1)); %matlab formula exists
elseif(strcmp(settings.preconditioner,'incomplete_LU'))
%Matter if it is negative or positive?
[L,U] = ilu(A);
preconditioner = L;
elseif(strcmp(settings.preconditioner,'none'))
preconditioner = [];
else
assert(false, 'unsupported preconditioner');
end
if(isfield(settings, 'initial_guess'))
initial_guess = settings.initial_guess / sum(settings.initial_guess); %It normalized to 1 for simplicity.
else
initial_guess = [];
end
Delta = x(2) - x(1);
[f,flag,relres,iter] = lsqr([A';ones(1,I)], sparse([zeros(I,1);1]), tolerance, max_iterations, preconditioner, [], initial_guess); %Linear least squares. Note tolerance changes with I
if(flag==0)
success = true;
else
if(settings.display)
disp('Failure to converge: flag and residual');
[flag, relres]
end
success = false;
f = NaN;
end
end
end
|
github
|
jlperla/continuous_time_methods-master
|
simple_HJBE_discretized_univariate.m
|
.m
|
continuous_time_methods-master/matlab/lib/simple_HJBE_discretized_univariate.m
| 761 |
utf_8
|
78aad7cc10394b8df25366a34a51a53b
|
%Takes the discretized operator A, the grid x, and finds the stationary distribution f.
function [v, success] = simple_HJBE_discretized_univariate(A, x, u, rho, settings)
I = length(x);
assert(I == size(A,1) && I == size(A,2)); %Make sure sizes match
if nargin < 5
settings.default = true; %Just creates as required.
end
if(~isfield(settings, 'method'))
settings.method = 'sparse_system';
end
if ~isfield(settings, 'print_level')
settings.print_level = 0;
end
if(strcmp(settings.method, 'sparse_system'))
%Solve as a simple sparse system of equations.
%More advanced solvers could use preconditioners, etc.
v = (rho * speye(I) - A) \ u;
success = true;
end
end
|
github
|
BoianAlexandrov/HNMF-master
|
outputGreenNMF.m
|
.m
|
HNMF-master/outputGreenNMF.m
| 783 |
utf_8
|
b631997750825de4e8242d51f6dce3c4
|
%% Output of the simulations
function [Sf, Comp, Dr, Det, Wf] = outputGreenNMF(max_number_of_sources, RECON, SILL_AVG, numT, nd, xD, t0, S)
close all
x = 1:1:max_number_of_sources;
y1 = RECON;
y2 = SILL_AVG;
createfigureNS(x, y1, y2)
[aic_values, aic_min, nopt] = AIC( RECON, SILL_AVG, numT, nd);
name1 = sprintf('Results/Solution_4det_%dsources.mat',nopt);
name2 = sprintf('Results/Solution_4det_%dsources.mat',nopt);
load(name1)
load(name2)
[Sf, Comp, Dr, Det, Wf] = CompRes(Cent,Solution,t0,numT,S,xD);
disp(' ')
disp(['The number of estimated by GreenNMF sources = ' num2str(nopt)]);
disp(' ')
disp([ ' A ' 'x ' 'y ' 'u ' 'Dx ' 'Dy ']);
disp(Solution)
|
github
|
hafezbazrafshan/LQR-OPF-master
|
checkPowerFlowsPerNode.m
|
.m
|
LQR-OPF-master/checkPowerFlowsPerNode.m
| 3,025 |
utf_8
|
66ea172afd1b9026da17bef296e26c0a
|
function [checkpf, checkEqs,realGen_check, reactiveGen_check, ...
realLoad_check,reactiveLoad_check]...
= checkPowerFlowsPerNode(VS,thetaS,pgS,qgS, pdS,qdS)
% CHECKPOWERFLOWS Validates given power flow solution.
% [checkpf,checkEqs,realGen_check,...
% reactiveGen_check, realLoad_check,...
% reactiveLoad_check] = checkPowerFlows(VS, thetaS, pgS, qgS, pdS, qdS )
% validates given power flow solution. This is a node by node
% implementation. See checkPowerFlows for a vectorized implementation.
%
% Description of outputs:
% 1. checkpf: is a scalar binary which equals 1 when all power flow
% equations are satisfied with absolute accuracy 1e-3.
% 2. checkEqs: is a vector of size(2*N,1), expressing the difference with zero
% for any of the equations in CDC 2016 paper equations (2c)-(3b)
% 3. realGen_check: is a vector of size(G,1), expressing the difference with
% zero for equations (2c)
% 4. reactiveGen_check: is a vector of size(G,1), expressing the difference
% with zero for equations (2d)
% 5. realLoad_check: is a vector of size(L,1), expressing the difference with
% zero for equations (3a)
% 6. reactiveLoad_check: is a vector of size(L,1), expressing the difference
% with zero for equations (3d)
%
% Description of inputs:
% 1. VS: the steady-state voltage magnitude power flow solution
% 2. thetaS: the steady-state voltage phase power flow solution (in Radians)
% 3. pgS: the generator real power set points set points and the calculated pg for slack bus
% 4. qgS: the generator reactive power inputs
% 5. pdS: the steady-state real power loads used to run the power flow
% 6. qdS: the steady-state reactive power loads used to run the power flow
%
% See also checkPowerFlows
%
% Required modifications:
% 1. Fix equation number references.
global N G L node_set gen_set...
load_set Ymat Gmat Bmat
realGen_check=ones(G,1);
reactiveGen_check=ones(G,1);
% checking the first 2G equations
% [manual equations (16a), (16b)]
for ii=1:length(gen_set)
idx=gen_set(ii); % network index
realGen_check(ii)=+pdS(idx)- pgS(ii) +...
VS(idx).*(Gmat(idx,:)*(VS.*cos(thetaS(idx)-thetaS))+Bmat(idx,:)*(VS.*sin(thetaS(idx)-thetaS)));
reactiveGen_check(ii) =+qdS(idx)-qgS(ii) +...
VS(idx).*(-Bmat(idx,:)*(VS.*cos(thetaS(idx)-thetaS))+Gmat(idx,:)*(VS.*sin(thetaS(idx)-thetaS)));
end
% checking the 2L equations for power flows
% [manual (16c), (16d)]
realLoad_check=ones(L,1);
reactiveLoad_check=ones(L,1);
for ii=1:length(load_set)
idx=load_set(ii); % network index
realLoad_check(ii)=pdS(idx)+...
VS(idx).*(Gmat(idx,:)*(VS.*cos(thetaS(idx)-thetaS))+Bmat(idx,:)*(VS.*sin(thetaS(idx)-thetaS)));
reactiveLoad_check(ii) =+qdS(idx) +...
VS(idx).*(-Bmat(idx,:)*(VS.*cos(thetaS(idx)-thetaS))+Gmat(idx,:)*(VS.*sin(thetaS(idx)-thetaS)));
end
checkEqs=[realGen_check; reactiveGen_check; realLoad_check;reactiveLoad_check];
if sum(abs(checkEqs))<1e-3
disp('Power flow equations satisfied');
checkpf=1;
else
disp('Power flow equations NOT satisfied');
checkpf=0;
end
end
|
github
|
gctronic/e-puck-library-master
|
OpenEpuck.m
|
.m
|
e-puck-library-master/library/matlab/matlab files/OpenEpuck.m
| 553 |
utf_8
|
1374131feb92d077a351f85a5740e359
|
%! \brief Open the communication with the e-puck
% \params port The port in wich the e-puck is paired to.
% it must be a string like that "COM11" if e-puck is paired
% on COM 11.
%/
function OpenEpuck(port)
global EpuckPort;
EpuckPort = serial(port,'BaudRate', 115200,'inputBuffersize',4096,'OutputBufferSize',4096,'ByteOrder','littleendian');
try
fopen(EpuckPort);
catch
% could not open the port, delete the global variable
clear EpuckPort
clear global EpuckPort;
disp 'Error, Could not open serial port'
return;
end
return
|
github
|
gctronic/e-puck-library-master
|
CloseEpuck.m
|
.m
|
e-puck-library-master/library/matlab/matlab files/CloseEpuck.m
| 153 |
utf_8
|
45c5daa80365a8c5266f36e3ba47573f
|
%! \brief Close the communication with the e-puck
function CloseEpuck()
global EpuckPort;
fclose(EpuckPort);
clear EpuckPort;
clear global EpuckPort;
end
|
github
|
gctronic/e-puck-library-master
|
two_complement.m
|
.m
|
e-puck-library-master/tool/ePic/two_complement.m
| 597 |
utf_8
|
824666e5ce11c268e2dcc8608edb553c
|
function value=two_complement(rawdata)
if (mod(max(size(rawdata)),2) == 1)
error('The data to be converted must be 16 bits and the vector does not contain pairs of numbers')
end
value=zeros(1,max(size(rawdata))/2);
j=1;
for i=1:2:max(size(rawdata))
if (bitget(rawdata(i+1),8)==1) % Negatif number -> two'complement
value(j)=-(invert_bin(rawdata(i))+bitshift(invert_bin(rawdata(i+1)),8)+1);
else
value(j)=rawdata(i)+bitshift(rawdata(i+1),8);
end
j=j+1;
end
function value=invert_bin(value)
for i=1:8
value=bitset(value,i,mod(bitget(value,i)+1,2));
end
|
github
|
gctronic/e-puck-library-master
|
controller_pos.m
|
.m
|
e-puck-library-master/tool/ePic/controller_pos.m
| 3,562 |
utf_8
|
f625e31e5b3d2b88fb870f79abb0c704
|
% controller_pos is an exemple controller.
% ---------------------------------------------
% It drives the epuck from the current position which is define as [0 0 0]
% to a goal position which can be set by the user.
% The control uses a smooth controller which drives the e-puck along
% smooth curves from the current position to the goal position.
function controller_pos()
% This function is executed after the update data timer
% global ePic object. Use get and set methods to access the different
% fields and check if the required sensors are activated using the
% updateDet methode. For more information about this different commands,
% please read the help file.
global ePic;
global handles_save;
persistent goal_position;
% a global variable for the controller state
global ControllerState; % 0 = controller halted, all other states are active transition or static states;
% Controller states (content of ControllerState variable)
% 0 = "controller off" state
% 1 = transition to "controller on" state is in progress (initiated by user in main.m)
% -1 = transition to "controller off" state is in progress (initiated by user in main.m)
% -2 = means that the controller is in "suspend" state (automatically activated when control goal has been reached)
%
% all other states can be used freely in this function (e.g. to signify "controller on" state)
% put your controller variable declarations here (if possible not declared
% as "global" but as "persistent")
persistent done;
%-----------------------------------------------%
% main code for the different controller states %
%-----------------------------------------------%
%-------------------------------------------------------------------------%
% if controller is to be switched on, execute initialization code and go to
% "on"-state
if (ControllerState == 1)
disp 'Controller has been switched on!';
ControllerState = 2;
%----------------------------%
% setup controller variables %
%----------------------------%
% activate required "sensors"
ePic = activate(ePic,'speed');
ePic = activate(ePic,'pos');
ePic = activate(ePic,'odom');
% reset odometry
ePic = set(ePic, 'odom' , [0 0 0]);
% ----------- set goal position in m -----------
% [m m rad]
goal_position = [-0.2 -0.3 .64];
done = 0;
%-------------------------------------------------------------------------%
% if controller is to be switched off, execute termination code and go to "off"-state
elseif (ControllerState == -1)
ePic = set(ePic,'speed',[0 0]);
disp 'Controller has been switched off!';
ControllerState = 0;
%-------------------------------------------------------------------------%
% if controller is in suspend state
elseif (ControllerState==-2)
% don't do anything, and wait for user to switch controller off
%-------------------------------------------------------------------------%
% controller running, write your own code here
elseif (ControllerState~=0)
if (done == 0)
% call GoTo function
[dist, dangle] = controllersub_GoToFct(goal_position);
[val,up] = get(ePic,'odom');
% comment this lines if you don't want to display the position graph
figure(432);
scatter([goal_position(1), val(1)], [goal_position(2), val(2)], 'b');
hold on;
% check for limits
if (dist < 0.005)
done = 1;
ePic = set(ePic,'speed',[0 0]);
end
else
ControllerState = -2; % go to suspend state
end
end
|
github
|
gctronic/e-puck-library-master
|
main.m
|
.m
|
e-puck-library-master/tool/ePic/main.m
| 87,934 |
utf_8
|
6eeefa1ec55877edf2bdb3579b034718
|
function varargout = main(varargin)
% MAIN M-file for main.fig
% MAIN, by itself, creates a new MAIN or raises the existing
% singleton*.
%
% H = MAIN returns the handle to a new MAIN or the handle to
% the existing singleton*.
%
% MAIN('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in MAIN.M with the given input arguments.
%
% MAIN('Property','Value',...) creates a new MAIN or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before main_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to main_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Copyright 2002-2003 The MathWorks, Inc.
% Edit the above text to modify the response to help main
% Last Modified by GUIDE v2.5 13-Nov-2008 11:29:53
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @main_OpeningFcn, ...
'gui_OutputFcn', @main_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before main is made visible.
function main_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to main (see VARARGIN)
% Choose default command line output for main
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes main wait for user response (see UIRESUME)
% uiwait(handles.figure1);
global ePic; % Creating ePic global object
ePic = ePicKernel();
global ControllerState; % controller is off be default
ControllerState = 0;
global pathDatas; % path graph
pathDatas = zeros(10000,2);
global pathDatai;
pathDatai = 1;
global timer1_period; % update timer
timer1_period=0.1;
global timer1;
global p_buffer; % pointer for value save circular buffer
p_buffer = 0;
global buff_size;
buff_size = 1;
global valuesSensors;
valuesSensors = zeros(1,3);
axes(handles.axes_path);
scatter(0,0); % clear plot
set(handles.axes_path,'XTick',[]);
set(handles.axes_path,'XTickLabel',[]);
set(handles.axes_path,'YTick',[]);
set(handles.axes_path,'YTickLabel',[]);
img = imread('epuck.tif');
axes(handles.axes_epuck);
image(img);
set(handles.axes_epuck,'XTick',[]);
set(handles.axes_epuck,'XTickLabel',[]);
set(handles.axes_epuck,'YTick',[]);
set(handles.axes_epuck,'YTickLabel',[]);
% timer 1 settings
timer1 = timer('TimerFcn',@btm_timer1_Callback,'period',timer1_period);
set(timer1,'ExecutionMode','fixedDelay');
set(timer1,'BusyMode','drop');
% Autodetect serial ports
serialTmp = instrhwinfo('serial');
if (size(serialTmp.SerialPorts,1) > 0)
set(handles.str_port,'String',serialTmp.SerialPorts);
else
set(handles.str_port,'String','no port detected');
end
drawnow;
% if epic is connected, disconnect ePic
if (get(ePic,'connectionState') == 1)
ePic = disconnect(ePic);
end
% --- Outputs from this function are returned to the command line.
function varargout = main_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% Initialse controls
function ResetControls(handles)
set(handles.ck_LED_1,'Value',0);
set(handles.ck_LED_2,'Value',0);
set(handles.ck_LED_3,'Value',0);
set(handles.ck_LED_4,'Value',0);
set(handles.ck_LED_5,'Value',0);
set(handles.ck_LED_6,'Value',0);
set(handles.ck_LED_7,'Value',0);
set(handles.ck_LED_8,'Value',0);
set(handles.ck_LED_B,'Value',0);
set(handles.ck_LED_F,'Value',0);
% --- Executes on button press in btmConnect.
function btmConnect_Callback(hObject, eventdata, handles)
% hObject handle to btmConnect (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
global timer1; % global variable for the timer
global timer1_period; % global variable for the period of timer1
global handles_save;
Sel_Sensor_Callback(hObject, eventdata, handles); % Initialise Sensor Selection
set(handles.txt_err_timer,'Visible','off');
set(handles.txt_timer_stop,'Visible','off');
port = get(handles.str_port,'String');
if length(port) > 1
port = port{get(handles.str_port,'Value')};
end
if (get(ePic,'connectionState') == 0)
set(handles.btmConnect,'String','Connecting...');
set(handles.btmConnect,'Enable','off');
guidata(hObject, handles);
drawnow();
% Open serial connection and init timer
[ePic result] = connect(ePic, port);
if (result == 1)
set(handles.str_port,'Enable','off');
set(handles.btmConnect,'String','Disconnect');
ResetControls(handles);
% create and start timer. Save handles for timer callback function
handles_save = handles;
timer1_period = str2num(get(handles.str_time,'String'));
set(timer1,'period',timer1_period);
start(timer1);
else
% Connection error
msgbox('Connection error. Try an other port or switch the e-puck on');
set(handles.btmConnect,'String','Connect');
end
set(handles.btmConnect,'Enable','on');
else
set(handles.btmConnect,'String','Disconnecting...');
set(handles.btmConnect,'Enable','off');
guidata(hObject, handles);
drawnow();
% Close serial connection and kill timer
stop(timer1);
[ePic result] = disconnect(ePic);
if (result == 1)
set(handles.str_port,'Enable','on');
set(handles.btmConnect,'String','Connect');
set(handles.btmConnect,'Enable','on');
end
end
set(handles.txt_err_timer,'Visible','off');
% --- Executes on button press in ck_LED_0.
function ck_LED_0_Callback(hObject, eventdata, handles)
% hObject handle to ck_LED_0 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_LED_0
global ePic;
if ( get(handles.ck_LED_0,'Value'))
ePic = set(ePic,'ledON', 0);
else
ePic = set(ePic,'ledOFF',0);
end
% --- Executes on button press in ck_LED_1.
function ck_LED_1_Callback(hObject, eventdata, handles)
% hObject handle to ck_LED_1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_LED_1
global ePic;
if ( get(handles.ck_LED_1,'Value'))
ePic = set(ePic,'ledON', 1);
else
ePic = set(ePic,'ledOFF',1);
end
% --- Executes on button press in ck_LED_2.
function ck_LED_2_Callback(hObject, eventdata, handles)
% hObject handle to ck_LED_2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_LED_2
global ePic;
if ( get(handles.ck_LED_2,'Value'))
ePic = set(ePic,'ledON', 2);
else
ePic = set(ePic,'ledOFF',2);
end
% --- Executes on button press in ck_LED_3.
function ck_LED_3_Callback(hObject, eventdata, handles)
% hObject handle to ck_LED_3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_LED_3
global ePic;
if ( get(handles.ck_LED_3,'Value'))
ePic = set(ePic,'ledON', 3);
else
ePic = set(ePic,'ledOFF',3);
end
% --- Executes on button press in ck_LED_4.
function ck_LED_4_Callback(hObject, eventdata, handles)
% hObject handle to ck_LED_4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_LED_4
global ePic;
if ( get(handles.ck_LED_4,'Value'))
ePic = set(ePic,'ledON', 4);
else
ePic = set(ePic,'ledOFF',4);
end
% --- Executes on button press in checkbox5.
function ck_LED_5_Callback(hObject, eventdata, handles)
% hObject handle to checkbox5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of checkbox5
global ePic;
if ( get(handles.ck_LED_5,'Value'))
ePic = set(ePic,'ledON', 5);
else
ePic = set(ePic,'ledOFF',5);
end
% --- Executes on button press in checkbox6.
function ck_LED_6_Callback(hObject, eventdata, handles)
% hObject handle to checkbox6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of checkbox6
global ePic;
if ( get(handles.ck_LED_6,'Value'))
ePic = set(ePic,'ledON', 6);
else
ePic = set(ePic,'ledOFF',6);
end
% --- Executes on button press in checkbox7.
function ck_LED_7_Callback(hObject, eventdata, handles)
% hObject handle to checkbox7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of checkbox7
global ePic;
if ( get(handles.ck_LED_7,'Value'))
ePic = set(ePic,'ledON', 7);
else
ePic = set(ePic,'ledOFF',7);
end
% --- Executes on button press in checkbox8.
function ck_LED_8_Callback(hObject, eventdata, handles)
% hObject handle to checkbox8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of checkbox8
global ePic;
if ( get(handles.ck_LED_8,'Value'))
ePic = set(ePic,'ledON', 10);
set(handles.ck_LED_1,'Value',1);
set(handles.ck_LED_2,'Value',1);
set(handles.ck_LED_3,'Value',1);
set(handles.ck_LED_4,'Value',1);
set(handles.ck_LED_5,'Value',1);
set(handles.ck_LED_6,'Value',1);
set(handles.ck_LED_7,'Value',1);
set(handles.ck_LED_B,'Value',1);
set(handles.ck_LED_F,'Value',1);
else
ePic = set(ePic,'ledOFF',10);
set(handles.ck_LED_1,'Value',0);
set(handles.ck_LED_2,'Value',0);
set(handles.ck_LED_3,'Value',0);
set(handles.ck_LED_4,'Value',0);
set(handles.ck_LED_5,'Value',0);
set(handles.ck_LED_6,'Value',0);
set(handles.ck_LED_7,'Value',0);
set(handles.ck_LED_B,'Value',0);
set(handles.ck_LED_F,'Value',0);
end
% --- Executes on button press in ck_LED_B.
function ck_LED_B_Callback(hObject, eventdata, handles)
% hObject handle to ck_LED_B (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_LED_B
global ePic;
if ( get(handles.ck_LED_B,'Value'))
ePic = set(ePic,'ledON', 8);
else
ePic = set(ePic,'ledOFF',8);
end
% --- Executes on button press in checkbox10.
function ck_LED_F_Callback(hObject, eventdata, handles)
% hObject handle to checkbox10 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of checkbox10
global ePic;
if ( get(handles.ck_LED_F,'Value'))
ePic = set(ePic,'ledON', 9);
else
ePic = set(ePic,'ledOFF',9);
end
% --- Executes on selection change in Sel_Sensor.
function Sel_Sensor_Callback(hObject, eventdata, handles)
% hObject handle to Sel_Sensor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns Sel_Sensor contents as cell array
% contents{get(hObject,'Value')} returns selected item from Sel_Sensor
global ePic;
% disable update
ePic = updateDef(ePic, 'external',0);
set (handles.ck_autoAcc,'Value',0);
% for sensor data saving
buff_size_Callback(hObject, eventdata, handles);
sel_value = get(handles.Sel_Sensor,'Value');
% show/hide led selection
if (sel_value == 10)
set(handles.uipanel_LEDSelect,'Visible','on');
else
set(handles.uipanel_LEDSelect,'Visible','off');
end
if (sel_value <=5)
set (handles.ck_autoAcc,'Visible','off');
else
set (handles.ck_autoAcc,'Visible','on');
end
ePic = set(ePic, 'external', sel_value);
% --- Executes during object creation, after setting all properties.
function Sel_Sensor_CreateFcn(hObject, eventdata, handles)
% hObject handle to Sel_Sensor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_value1_Callback(hObject, eventdata, handles)
% hObject handle to str_value1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_value1 as text
% str2double(get(hObject,'String')) returns contents of str_value1 as a double
% --- Executes during object creation, after setting all properties.
function str_value1_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_value1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_value2_Callback(hObject, eventdata, handles)
% hObject handle to str_value2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_value2 as text
% str2double(get(hObject,'String')) returns contents of str_value2 as a double
% --- Executes during object creation, after setting all properties.
function str_value2_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_value2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_value3_Callback(hObject, eventdata, handles)
% hObject handle to str_value3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_value3 as text
% str2double(get(hObject,'String')) returns contents of str_value3 as a double
% --- Executes during object creation, after setting all properties.
function str_value3_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_value3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ck_sensorLED_4.
function ck_sensorLED_4_Callback(hObject, eventdata, handles)
% hObject handle to ck_sensorLED_4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_sensorLED_4
% --- Executes on button press in ck_sensorLED_3.
function ck_sensorLED_3_Callback(hObject, eventdata, handles)
% hObject handle to ck_sensorLED_3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_sensorLED_3
% --- Executes on button press in ck_sensorLED_1.
function ck_sensorLED_1_Callback(hObject, eventdata, handles)
% hObject handle to ck_sensorLED_1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_sensorLED_1
% --- Executes on button press in ck_sensorLED_2.
function ck_sensorLED_2_Callback(hObject, eventdata, handles)
% hObject handle to ck_sensorLED_2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_sensorLED_2
% --- Executes on button press in ck_sensorLED_5.
function ck_sensorLED_5_Callback(hObject, eventdata, handles)
% hObject handle to ck_sensorLED_5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_sensorLED_5
% --- Executes on button press in btm_timer1.
function btm_timer1_Callback(hObject, eventdata, handles)
% hObject handle to btm_timer1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
tstart = tic;
global ePic;
global handles_save;
global valuesSensors; % used for saving value to MATLAB workspace
global p_buffer;
global buff_size;
global pathDatas; % used to plot path
global pathDatai;
global ControllerState;
global timer1_period;
ePic = update(ePic); % time step : read the requested values
% Selected sensor
selectedSensor = get(handles_save.Sel_Sensor,'Value');
selectedSensorValue = 0;
[val, up] = get(ePic, 'accel'); % Accelerometers
if (up >= 1)
if (selectedSensor == 1)
selectedSensorValue = val;
end
end
[val, up] = get(ePic, 'proxi'); % Proximity sensors
if (up >= 1)
set(handles_save.str_prox1,'String',val(1));
set(handles_save.str_prox2,'String',val(2));
set(handles_save.str_prox3,'String',val(3));
set(handles_save.str_prox4,'String',val(4));
set(handles_save.str_prox5,'String',val(5));
set(handles_save.str_prox6,'String',val(6));
set(handles_save.str_prox7,'String',val(7));
set(handles_save.str_prox8,'String',val(8));
if (selectedSensor == 2)
selectedSensorValue = val;
end
end
[val, up] = get(ePic, 'micro'); % Microphones
if (up >= 1)
if (selectedSensor == 3)
selectedSensorValue = val;
end
end
[val, up] = get(ePic, 'light'); % Light sensors
if (up >= 1)
if (selectedSensor == 4)
selectedSensorValue = val;
end
end
[val, up] = get(ePic, 'speed'); % Motors speed
if (up >= 1)
set(handles_save.str_getLSpeed,'String',val(1));
set(handles_save.str_getRSpeed,'String',val(2));
end
[val, up] = get(ePic, 'pos'); % Motors position
if (up >= 1)
set(handles_save.str_getLPos,'String',val(1));
set(handles_save.str_getRPos,'String',val(2));
end
[val, up] = get(ePic, 'floor'); % Floor sensors
if (up >= 1)
if (selectedSensor == 5)
selectedSensorValue = val;
end
end
% External sensors --------------------------------
% Depend of the current selected sensor
if (selectedSensor == 10) % five led IR sensor
ledIR(1) = get(handles_save.ck_sensorLED_1,'Value');
ledIR(2) = get(handles_save.ck_sensorLED_2,'Value');
ledIR(3) = get(handles_save.ck_sensorLED_3,'Value');
ledIR(4) = get(handles_save.ck_sensorLED_4,'Value');
ledIR(5) = get(handles_save.ck_sensorLED_5,'Value');
ePic = set(ePic,'ledIR',ledIR);
end
if (selectedSensor > 6) % External sensor
[val, up] = get(ePic, 'external');
if (up >= 1)
if (selectedSensor == 13)
selectedSensorValue = val(1);
else
selectedSensorValue = val;
end
end
end
% Display selected sensor value in the global field
tmp_text = '';
for i=1:size(selectedSensorValue,2)
tmp_text{i} = num2str(selectedSensorValue(i));
end
set(handles_save.txt_sensor,'String',tmp_text);
% Save values in global variable
p_buffer = p_buffer + 1;
if (buff_size>-1 && p_buffer>buff_size)
set(handles_save.btm_SaveSensors,'BackgroundColor','g');
p_buffer = 1;
end
if (size(selectedSensorValue,2) ~= size(valuesSensors,2))
valuesSensors = zeros(buff_size,size(selectedSensorValue,2));
end
valuesSensors(p_buffer,:) = selectedSensorValue;
% Update odometry -----------------------------------------
ePic = updateOdometry(ePic);
[val, up] = get(ePic,'odom');
if (up > 0)
set(handles_save.txt_odoX,'String',num2str(100 * val(1)));
set(handles_save.txt_odoY,'String',num2str(100 * val(2)));
set(handles_save.txt_odoT,'String',num2str(val(3)));
end
% Graph e-puck path ---------------------------------------
if (get(handles_save.ck_drawPath,'Value')==1)
[val, up] = get(ePic,'odom');
if (up > 0)
% Refresh path graph
pathDatas(pathDatai,:) = val(1:2);
pathDatai = pathDatai+1;
if (pathDatai==10001)
pathDatai = 1;
end
end
end
% Controller execution ------------------------------------
% (ControllerState==-1 means that switching off is in progress)
if (((get(handles_save.ck_controller,'Value')==1) || (ControllerState==-1)) && (get(ePic,'connectionState') == 1))
tmp = get(handles_save.str_controller,'String');
tmp = tmp{get(handles_save.str_controller,'Value')};
try
eval(strtok(tmp,'.'));
catch
set(handles_save.txt_timer_stop,'Visible','on');
set(handles_save.ck_controller,'Value',0);
err =lasterror;
assignin('base', 'ERROR_msg_controller',err);
error_file = '';
for i=1:size(err.stack,1)
error_file = sprintf('%sFile : %s \n Name : %s, Line : %d \n\n',error_file ,err.stack(i,1).file, err.stack(i,1).name, err.stack(i,1).line);
end
error_msg = sprintf('Error identifier : \n %s \n \n Error message : \n %s \n \n %s', err.identifier,err.message,error_file);
msgbox(error_msg, 'Controller error','error');
end
end
% Check if timer is not too slow
if (timer1_period<toc(tstart))
set(handles_save.txt_err_timer,'Visible','on');
end
% --- Executes on button press in ck_autoAcc.
function ck_autoAcc_Callback(hObject, eventdata, handles)
% hObject handle to ck_autoAcc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_autoAcc
% Refresh the sensor selection
global ePic;
if (status(ePic,'external') ~= 0)
if get(handles.ck_autoAcc,'Value') == 0
ePic=updateDef(ePic,'external',-1);
else
ePic=updateDef(ePic,'external',1);
end
end
% --- Executes during object creation, after setting all properties.
function figure1_CreateFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% --- Executes on button press in btm_stop.
function btm_stop_Callback(hObject, eventdata, handles)
% hObject handle to btm_stop (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
ePic=set(ePic,'speed', [0 0]);
function edit6_Callback(hObject, eventdata, handles)
% hObject handle to edit6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit6 as text
% str2double(get(hObject,'String')) returns contents of edit6 as a double
% --- Executes during object creation, after setting all properties.
function edit6_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit7_Callback(hObject, eventdata, handles)
% hObject handle to edit7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit7 as text
% str2double(get(hObject,'String')) returns contents of edit7 as a double
% --- Executes during object creation, after setting all properties.
function edit7_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit8_Callback(hObject, eventdata, handles)
% hObject handle to edit8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit8 as text
% str2double(get(hObject,'String')) returns contents of edit8 as a double
% --- Executes during object creation, after setting all properties.
function edit8_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit9_Callback(hObject, eventdata, handles)
% hObject handle to edit9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit9 as text
% str2double(get(hObject,'String')) returns contents of edit9 as a double
% --- Executes during object creation, after setting all properties.
function edit9_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_getLSpeed_Callback(hObject, eventdata, handles)
% hObject handle to str_getLSpeed (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_getLSpeed as text
% str2double(get(hObject,'String')) returns contents of str_getLSpeed as a double
% --- Executes during object creation, after setting all properties.
function str_getLSpeed_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_getLSpeed (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_getRSpeed_Callback(hObject, eventdata, handles)
% hObject handle to str_getRSpeed (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_getRSpeed as text
% str2double(get(hObject,'String')) returns contents of str_getRSpeed as a double
% --- Executes during object creation, after setting all properties.
function str_getRSpeed_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_getRSpeed (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_getLPos_Callback(hObject, eventdata, handles)
% hObject handle to str_getLPos (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_getLPos as text
% str2double(get(hObject,'String')) returns contents of str_getLPos as a double
% --- Executes during object creation, after setting all properties.
function str_getLPos_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_getLPos (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_getRPos_Callback(hObject, eventdata, handles)
% hObject handle to str_getRPos (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_getRPos as text
% str2double(get(hObject,'String')) returns contents of str_getRPos as a double
% --- Executes during object creation, after setting all properties.
function str_getRPos_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_getRPos (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ck_updateMotorS.
function ck_updateMotorS_Callback(hObject, eventdata, handles)
% hObject handle to ck_updateMotorS (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_updateMotorS
% --- Executes on button press in ck_updateMotorP.
function ck_updateMotorP_Callback(hObject, eventdata, handles)
% hObject handle to ck_updateMotorP (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_updateMotorP
function str_setLSpeed_Callback(hObject, eventdata, handles)
% hObject handle to str_setLSpeed (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_setLSpeed as text
% str2double(get(hObject,'String')) returns contents of str_setLSpeed as a double
% --- Executes during object creation, after setting all properties.
function str_setLSpeed_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_setLSpeed (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_setRSpeed_Callback(hObject, eventdata, handles)
% hObject handle to str_setRSpeed (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_setRSpeed as text
% str2double(get(hObject,'String')) returns contents of str_setRSpeed as a double
% --- Executes during object creation, after setting all properties.
function str_setRSpeed_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_setRSpeed (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_setLPos_Callback(hObject, eventdata, handles)
% hObject handle to str_setLPos (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_setLPos as text
% str2double(get(hObject,'String')) returns contents of str_setLPos as a double
% --- Executes during object creation, after setting all properties.
function str_setLPos_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_setLPos (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_setRPos_Callback(hObject, eventdata, handles)
% hObject handle to str_setRPos (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_setRPos as text
% str2double(get(hObject,'String')) returns contents of str_setRPos as a double
% --- Executes during object creation, after setting all properties.
function str_setRPos_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_setRPos (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in btm_setMotorS.
function btm_setMotorS_Callback(hObject, eventdata, handles)
% hObject handle to btm_setMotorS (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
ePic=set(ePic,'speed', [str2num(get(handles.str_setLSpeed,'String')) str2num(get(handles.str_setRSpeed,'String'))]);
% --- Executes on button press in btm_setMotorP.
function btm_setMotorP_Callback(hObject, eventdata, handles)
% hObject handle to btm_setMotorP (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes during object creation, after setting all properties.
function axes_joystick_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes_joystick (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: place code in OpeningFcn to populate axes_joystick
%axes(handles.axes_joystick);axis off;
% drawnow;
% --- Executes on button press in btm_changeTime.
function btm_changeTime_Callback(hObject, eventdata, handles)
% hObject handle to btm_changeTime (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global timer1;
global timer1_period;
global ePic;
% If connected to the e-puck : change the time between two data refresh
if (get(ePic,'connectionState') == 1)
stop (timer1);
set(handles.txt_err_timer,'Visible','off');
timer1_period = str2num(get(handles.str_time,'String'));
set(timer1,'TimerFcn',@btm_timer1_Callback,'Period',timer1_period);
set(handles.txt_timer_stop,'Visible','off');
set(handles.txt_err_timer,'Visible','off');
start(timer1);
end
function str_time_Callback(hObject, eventdata, handles)
% hObject handle to str_time (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_time as text
% str2double(get(hObject,'String')) returns contents of str_time as a double
% --- Executes during object creation, after setting all properties.
function str_time_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_time (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ck_controller.
function ck_controller_Callback(hObject, eventdata, handles)
% hObject handle to ck_controller (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ControllerState;
global ePic;
if (get(ePic,'connectionState') == 1)
% Hint: get(hObject,'Value') returns toggle state of ck_controller
if (get(hObject,'Value')==1)
ControllerState = 1; % go to controller initialization state
else
ControllerState = -1; % go to controller deinitialization state
end
else
set(hObject,'Value',1-get(hObject,'Value'));
end
set(handles.txt_timer_stop,'Visible','off');
function str_controller_Callback(hObject, eventdata, handles)
% hObject handle to str_controller (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_controller as text
% str2double(get(hObject,'String')) returns contents of str_controller as a double
% --- Executes during object creation, after setting all properties.
function str_controller_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_controller (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on mouse press over axes background.
function axes_joystick_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to axes_joystick (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
vect=get(handles.axes_joystick,'CurrentPoint');
side = vect(1,1);
speed = 1000 * vect(1,2);
if (side > 0)
vl = speed;
vr = speed- side*speed;
else
vl = speed + side*speed;
vr = speed;
end
set(handles.str_setLSpeed,'String',round(vl));
set(handles.str_setRSpeed,'String',round(vr));
ePic=set(ePic,'speed', [str2num(get(handles.str_setLSpeed,'String')) str2num(get(handles.str_setRSpeed,'String'))]);
function str_prox8_Callback(hObject, eventdata, handles)
% hObject handle to str_prox8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_prox8 as text
% str2double(get(hObject,'String')) returns contents of str_prox8 as a double
% --- Executes during object creation, after setting all properties.
function str_prox8_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_prox8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_prox7_Callback(hObject, eventdata, handles)
% hObject handle to str_prox7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_prox7 as text
% str2double(get(hObject,'String')) returns contents of str_prox7 as a double
% --- Executes during object creation, after setting all properties.
function str_prox7_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_prox7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_prox6_Callback(hObject, eventdata, handles)
% hObject handle to str_prox6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_prox6 as text
% str2double(get(hObject,'String')) returns contents of str_prox6 as a double
% --- Executes during object creation, after setting all properties.
function str_prox6_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_prox6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_prox5_Callback(hObject, eventdata, handles)
% hObject handle to str_prox5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_prox5 as text
% str2double(get(hObject,'String')) returns contents of str_prox5 as a double
% --- Executes during object creation, after setting all properties.
function str_prox5_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_prox5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_prox1_Callback(hObject, eventdata, handles)
% hObject handle to str_prox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_prox1 as text
% str2double(get(hObject,'String')) returns contents of str_prox1 as a double
% --- Executes during object creation, after setting all properties.
function str_prox1_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_prox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_prox2_Callback(hObject, eventdata, handles)
% hObject handle to str_prox2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_prox2 as text
% str2double(get(hObject,'String')) returns contents of str_prox2 as a double
% --- Executes during object creation, after setting all properties.
function str_prox2_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_prox2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_prox3_Callback(hObject, eventdata, handles)
% hObject handle to str_prox3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_prox3 as text
% str2double(get(hObject,'String')) returns contents of str_prox3 as a double
% --- Executes during object creation, after setting all properties.
function str_prox3_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_prox3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_prox4_Callback(hObject, eventdata, handles)
% hObject handle to str_prox4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_prox4 as text
% str2double(get(hObject,'String')) returns contents of str_prox4 as a double
% --- Executes during object creation, after setting all properties.
function str_prox4_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_prox4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_value4_Callback(hObject, eventdata, handles)
% hObject handle to str_value4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_value4 as text
% str2double(get(hObject,'String')) returns contents of str_value4 as a double
% --- Executes during object creation, after setting all properties.
function str_value4_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_value4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_value5_Callback(hObject, eventdata, handles)
% hObject handle to str_value5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_value5 as text
% str2double(get(hObject,'String')) returns contents of str_value5 as a double
% --- Executes during object creation, after setting all properties.
function str_value5_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_value5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_value6_Callback(hObject, eventdata, handles)
% hObject handle to str_value6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_value6 as text
% str2double(get(hObject,'String')) returns contents of str_value6 as a double
% --- Executes during object creation, after setting all properties.
function str_value6_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_value6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_value7_Callback(hObject, eventdata, handles)
% hObject handle to str_value7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_value7 as text
% str2double(get(hObject,'String')) returns contents of str_value7 as a double
% --- Executes during object creation, after setting all properties.
function str_value7_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_value7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_value8_Callback(hObject, eventdata, handles)
% hObject handle to str_value8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_value8 as text
% str2double(get(hObject,'String')) returns contents of str_value8 as a double
% --- Executes during object creation, after setting all properties.
function str_value8_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_value8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ck_updateProximity.
function ck_updateProximity_Callback(hObject, eventdata, handles)
% hObject handle to ck_updateProximity (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_updateProximity
% --- Executes on button press in ck_autoSaveVal.
function ck_autoSaveVal_Callback(hObject, eventdata, handles)
% hObject handle to ck_autoSaveVal (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_autoSaveVal
Sel_Sensor_Callback(hObject, eventdata, handles);
% --- Executes on button press in btm_SaveSensors.
function btm_SaveSensors_Callback(hObject, eventdata, handles)
% hObject handle to btm_SaveSensors (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global valuesSensors;
global p_buffer;
global buff_size;
persistent cpt;
if isempty(cpt)
cpt = 0;
end
if (buff_size>-1)
if (size(valuesSensors,1)~=1 && p_buffer > 0)
valuesSensors = [valuesSensors(p_buffer+1:buff_size,:); valuesSensors(1:p_buffer,:)];
end
else
valuesSensors = valuesSensors(1:p_buffer,:);
end
cpt = cpt + 1;
tmp = sprintf('sensors_%03d',cpt);
assignin('base', tmp,valuesSensors);
% --- Executes during object creation, after setting all properties.
function btmConnect_CreateFcn(hObject, eventdata, handles)
% hObject handle to btmConnect (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% --- Executes on button press in ck_drawPath.
function ck_drawPath_Callback(hObject, eventdata, handles)
% hObject handle to ck_drawPath (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of ck_drawPath
% --- Executes on button press in btm_erase.
function btm_erase_Callback(hObject, eventdata, handles)
% hObject handle to btm_erase (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global pathDatas;
global pathDatai;
global ePic;
pathDatas = zeros(10000,2);
pathDatai = 1;
ePic = reset(ePic,'odom');
setappdata(gcbf,'running',true);
axes(handles.axes_path);
scatter(0,0); % clear plot
set(handles.axes_path,'XTick',[]);
set(handles.axes_path,'XTickLabel',[]);
set(handles.axes_path,'YTick',[]);
set(handles.axes_path,'YTickLabel',[]);
drawnow;
% --- Executes during object creation, after setting all properties.
function ck_drawPath_CreateFcn(hObject, eventdata, handles)
% hObject handle to ck_drawPath (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
%btm_erase_Callback();
function str_width_Callback(hObject, eventdata, handles)
% hObject handle to str_width (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_width as text
% str2double(get(hObject,'String')) returns contents of str_width as a double
% --- Executes during object creation, after setting all properties.
function str_width_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_width (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function sel_zoom_Callback(hObject, eventdata, handles)
% hObject handle to sel_zoom (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of sel_zoom as text
% str2double(get(hObject,'String')) returns contents of sel_zoom as a double
% --- Executes during object creation, after setting all properties.
function sel_zoom_CreateFcn(hObject, eventdata, handles)
% hObject handle to sel_zoom (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_heigth_Callback(hObject, eventdata, handles)
% hObject handle to str_heigth (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_heigth as text
% str2double(get(hObject,'String')) returns contents of str_heigth as a double
% --- Executes during object creation, after setting all properties.
function str_heigth_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_heigth (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in radiobutton2.
function radiobutton2_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of radiobutton2
% --- Executes on button press in radiobutton3.
function radiobutton3_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of radiobutton3
% --- Executes on button press in btm_Capture.
function btm_Capture_Callback(hObject, eventdata, handles)
% hObject handle to btm_Capture (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global timer1;
global ePic;
% transfert the picture
stop (timer1);
ePic = updateDef(ePic,'image',2);
ePic = updateImage(ePic);
imagedata = get(ePic,'image');
start(timer1);
% display image 1
setappdata(gcbf,'running',true);
axes(handles.axes_picture1);
image(imagedata);
set(handles.axes_picture1,'XTick',[]);
set(handles.axes_picture1,'XTickLabel',[]);
set(handles.axes_picture1,'YTick',[]);
set(handles.axes_picture1,'YTickLabel',[]);
% display image 2
imagedata2 = filter_image2(imagedata);
axes(handles.axes_picture2);
image(imagedata2);
set(handles.axes_picture2,'XTick',[]);
set(handles.axes_picture2,'XTickLabel',[]);
set(handles.axes_picture2,'YTick',[]);
set(handles.axes_picture2,'YTickLabel',[]);
% Update
drawnow;
% --- Executes on button press in btm_setCamParam.
function btm_setCamParam_Callback(hObject, eventdata, handles)
% hObject handle to btm_setCamParam (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
heigth = str2num(get(handles.str_heigth,'String'));
width = str2num(get(handles.str_width,'String'));
if (heigth > 40) || (width > 40)
button = questdlg('The maximum camera resolution is 40x40 pixels. If you choose to continue with higher resolution you should expect some bugs ;-).','Camera parameters update','Continue', 'Abort','Abort');
if (strcmp(button,'Abort'))
return;
end
end
switch get(handles.sel_zoom,'Value')
case 1
val_zoom = 1;
case 2
val_zoom = 4;
otherwise
val_zoom = 8;
end
mode = get(handles.sel_imgmode,'Value')-1;
ePic=set(ePic,'camMode', mode);
ePic=set(ePic,'camSize', [width heigth]);
ePic=set(ePic,'camZoom', val_zoom);
function str_saveName_Callback(hObject, eventdata, handles)
% hObject handle to str_saveName (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str_saveName as text
% str2double(get(hObject,'String')) returns contents of str_saveName as a double
% --- Executes during object creation, after setting all properties.
function str_saveName_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_saveName (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in sel_imgmode.
function sel_imgmode_Callback(hObject, eventdata, handles)
% hObject handle to sel_imgmode (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns sel_imgmode contents as cell array
% contents{get(hObject,'Value')} returns selected item from sel_imgmode
% --- Executes during object creation, after setting all properties.
function sel_imgmode_CreateFcn(hObject, eventdata, handles)
% hObject handle to sel_imgmode (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% --- Executes during object creation, after setting all properties.
function axes_epuck_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes_epuck (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: place code in OpeningFcn to populate axes_epuck
% --- Executes on mouse press over axes background.
function axes_epuck_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to axes_epuck (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes when user attempts to close figure1.
function figure1_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: delete(hObject) closes the figure
global ePic;
global timer1;
if (get(ePic,'connectionState') == 1)
stop(timer1);
delete(timer1);
clear('timer1');
[ePic result] = disconnect(ePic);
if (result == 1)
set(handles.str_port,'Enable','on');
set(handles.btmConnect,'String','Connect');
set(handles.btmConnect,'Enable','on');
end
end
delete(hObject);
% --- Executes on button press in btm_Refreshgraph.
function btm_Refreshgraph_Callback(hObject, eventdata, handles)
% hObject handle to btm_Refreshgraph (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global pathDatas;
global timer1;
% transfert the picture
stop (timer1);
setappdata(gcbf,'running',true);
axes(handles.axes_path);
scatter(pathDatas(:,1),pathDatas(:,2));
set(handles.axes_path,'XTick',[]);
set(handles.axes_path,'XTickLabel',[]);
set(handles.axes_path,'YTick',[]);
set(handles.axes_path,'YTickLabel',[]);
drawnow;
start(timer1);
% --- Executes on button press in btm_browsw.
function btm_browsw_Callback(hObject, eventdata, handles)
% hObject handle to btm_browsw (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
filename = uigetfile;
if (filename == 0)
else
tmp_str = get(handles.str_controller,'String');
for i=1:9
tmp_str{11-i} = tmp_str{10-i};
end
tmp_str{1} = filename;
set(handles.str_controller,'String',tmp_str);
end
% --- Executes on button press in btm_add_com.
function btm_add_com_Callback(hObject, eventdata, handles)
% hObject handle to btm_add_com (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
answer = inputdlg('Please enter the com port to add. Format : COMx','Add a port');
if (size(answer,1) == 1)
tmp = get(handles.str_port,'String');
if (length(tmp) > 1 )
for i=1:length(tmp)
answer{i+1} = tmp{i};
end
end
set(handles.str_port,'String',answer);
end
% --- Executes on selection change in str_port.
function str_port_Callback(hObject, eventdata, handles)
% hObject handle to str_port (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns str_port contents as cell array
% contents{get(hObject,'Value')} returns selected item from str_port
% --- Executes during object creation, after setting all properties.
function str_port_CreateFcn(hObject, eventdata, handles)
% hObject handle to str_port (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function txt_sensor_Callback(hObject, eventdata, handles)
% hObject handle to txt_sensor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of txt_sensor as text
% str2double(get(hObject,'String')) returns contents of txt_sensor as a double
% --- Executes during object creation, after setting all properties.
function txt_sensor_CreateFcn(hObject, eventdata, handles)
% hObject handle to txt_sensor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- If Enable == 'on', executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over txt_timer_stop.
function txt_timer_stop_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to txt_timer_stop (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(hObject,'Visible','Off');
% --- Executes on selection change in buff_size.
function buff_size_Callback(hObject, eventdata, handles)
% hObject handle to buff_size (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns buff_size contents as cell array
% contents{get(hObject,'Value')} returns selected item from buff_size
global p_buffer;
global buff_size;
global valuesSensors;
p_buffer = 0;
tmp = get(handles.buff_size,'String');
val = get(handles.buff_size,'Value');
if (val~=10)
if (val > 0)
buff_size = str2num(tmp{val});
end
valuesSensors = zeros(buff_size,3);
set(handles.btm_SaveSensors,'BackgroundColor','r');
else
buff_size=-1;
valuesSensors=zeros(1000,3);
set(handles.btm_SaveSensors,'BackgroundColor','g');
end
% --- Executes during object creation, after setting all properties.
function buff_size_CreateFcn(hObject, eventdata, handles)
% hObject handle to buff_size (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in btm_buffer_state.
function btm_buffer_state_Callback(hObject, eventdata, handles)
% hObject handle to btm_buffer_state (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in btm_save_images.
function btm_save_images_Callback(hObject, eventdata, handles)
% hObject handle to btm_save_images (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
persistent cpt;
if isempty(cpt)
cpt = 0;
end
imagedata = get(ePic,'image');
imagedata2 = filter_image2(imagedata);
cpt = cpt + 1;
tmp1 = sprintf('image_%03d_org',cpt);
tmp2 = sprintf('image_%03d_fil',cpt);
assignin('base', tmp1,imagedata);
assignin('base', tmp2,imagedata2);
% --- Executes during object deletion, before destroying properties.
function figure1_DeleteFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
function txt_odoX_Callback(hObject, eventdata, handles)
% hObject handle to txt_odoX (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of txt_odoX as text
% str2double(get(hObject,'String')) returns contents of txt_odoX as a double
% --- Executes during object creation, after setting all properties.
function txt_odoX_CreateFcn(hObject, eventdata, handles)
% hObject handle to txt_odoX (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function txt_odoY_Callback(hObject, eventdata, handles)
% hObject handle to txt_odoY (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of txt_odoY as text
% str2double(get(hObject,'String')) returns contents of txt_odoY as a double
% --- Executes during object creation, after setting all properties.
function txt_odoY_CreateFcn(hObject, eventdata, handles)
% hObject handle to txt_odoY (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function txt_odoT_Callback(hObject, eventdata, handles)
% hObject handle to txt_odoT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of txt_odoT as text
% str2double(get(hObject,'String')) returns contents of txt_odoT as a double
% --- Executes during object creation, after setting all properties.
function txt_odoT_CreateFcn(hObject, eventdata, handles)
% hObject handle to txt_odoT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in btm_ode_reset.
function btm_ode_reset_Callback(hObject, eventdata, handles)
% hObject handle to btm_ode_reset (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
ePic = set(ePic,'odom',[0 0 0]);
% --- If Enable == 'on', executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over txt_err_timer.
function txt_err_timer_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to txt_err_timer (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(hObject,'Visible','Off');
% --- Executes on button press in btm_resetSensors.
%function btm_resetSensors_Callback(hObject, eventdata, handles)
% hObject handle to btm_resetSensors (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in btm_ResetSensors.
function btm_ResetSensors_Callback(hObject, eventdata, handles)
% hObject handle to btm_ResetSensors (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global valuesSensors;
global p_buffer;
global buff_size;
p_buffer=0;
if (buff_size>-1)
valuesSensors=zeros(buff_size,size(valuesSensors,2));
set(handles.btm_SaveSensors,'BackgroundColor','r');
else
valuesSensors=zeros(1000,size(valuesSensors,2));
set(handles.btm_SaveSensors,'BackgroundColor','g');
end
% --------------------------------------------------------------------
function menu_Sensors_Callback(hObject, eventdata, handles)
% hObject handle to menu_Sensors (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
% epuck accelerometers
if (status(ePic,'accel') == 0)
set(handles.menu_Accel,'Checked','off');
else
set(handles.menu_Accel,'Checked','on');
end
% epuck proximity sensors
if (status(ePic,'proxi') == 0)
set(handles.menu_Proximity,'Checked','off');
else
set(handles.menu_Proximity,'Checked','on');
end
% epuck light sensors
if (status(ePic,'light') == 0)
set(handles.menu_Light,'Checked','off');
else
set(handles.menu_Light,'Checked','on');
end
% epuck microphone
if (status(ePic,'micro') == 0)
set(handles.menu_Micro,'Checked','off');
else
set(handles.menu_Micro,'Checked','on');
end
% epuck motor speed
if (status(ePic,'speed') == 0)
set(handles.menu_MotorSpeed,'Checked','off');
else
set(handles.menu_MotorSpeed,'Checked','on');
end
% epuck encoder position
if (status(ePic,'pos') == 0)
set(handles.menu_Wheel,'Checked','off');
else
set(handles.menu_Wheel,'Checked','on');
end
% epuck odometry
if (status(ePic,'odom') == 0)
set(handles.menu_Odometry,'Checked','off');
else
set(handles.menu_Odometry,'Checked','on');
end
% epuck floor sensors
if (status(ePic,'floor') == 0)
set(handles.menu_floor,'Checked','off');
else
set(handles.menu_floor,'Checked','on');
end
% epuck external (turret) sensors
if (status(ePic,'external') == 0)
set(handles.menu_External,'Checked','off');
else
set(handles.menu_External,'Checked','on');
end
% --------------------------------------------------------------------
function menu_Accel_Callback(hObject, eventdata, handles)
% hObject handle to menu_Accel (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
if (status(ePic,'accel') == 1)
ePic=deactivate(ePic,'accel');
else
ePic=activate(ePic,'accel');
end
% --------------------------------------------------------------------
function menu_Proximity_Callback(hObject, eventdata, handles)
% hObject handle to menu_Proximity (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
if (status(ePic,'proxi') == 1)
ePic=deactivate(ePic,'proxi');
else
ePic=activate(ePic,'proxi');
end
% --------------------------------------------------------------------
function menu_Light_Callback(hObject, eventdata, handles)
% hObject handle to menu_Light (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
if (status(ePic,'light') == 1)
ePic=deactivate(ePic,'light');
else
ePic=activate(ePic,'light');
end
% --------------------------------------------------------------------
function menu_Micro_Callback(hObject, eventdata, handles)
% hObject handle to menu_Micro (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
if (status(ePic,'micro') == 1)
ePic=deactivate(ePic,'micro');
else
ePic=activate(ePic,'micro');
end
% --------------------------------------------------------------------
function menu_MotorSpeed_Callback(hObject, eventdata, handles)
% hObject handle to menu_MotorSpeed (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
if (status(ePic,'speed') == 1)
ePic=deactivate(ePic,'speed');
else
ePic=activate(ePic,'speed');
end
% --------------------------------------------------------------------
function menu_Wheel_Callback(hObject, eventdata, handles)
% hObject handle to menu_Wheel (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
if (status(ePic,'pos') == 1)
ePic=deactivate(ePic,'pos');
%We also deactivate odometry if there is no encoders
ePic=deactivate(ePic,'odom');
else
ePic=activate(ePic,'pos');
end
% --------------------------------------------------------------------
function menu_Odometry_Callback(hObject, eventdata, handles)
% hObject handle to menu_Odometry (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
if (status(ePic,'odom') == 1)
ePic=deactivate(ePic,'odom');
else
ePic=activate(ePic,'odom');
% We want to activate encoders to use odometry
ePic=activate(ePic,'pos');
end
% --------------------------------------------------------------------
function menu_floor_Callback(hObject, eventdata, handles)
% hObject handle to menu_floor (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
if (status(ePic,'floor') == 1)
ePic=deactivate(ePic,'floor');
else
ePic=activate(ePic,'floor');
end
% --------------------------------------------------------------------
function menu_External_Callback(hObject, eventdata, handles)
% hObject handle to menu_External (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
if (status(ePic,'external') ~= 0)
ePic=deactivate(ePic,'external');
else
ePic=updateDef(ePic,'external',-1);
end
% --- Executes on button press in btm_edit_controller.
function btm_edit_controller_Callback(hObject, eventdata, handles)
% hObject handle to btm_edit_controller (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
tmp = get(handles.str_controller,'String');
tmp = tmp{get(handles.str_controller,'Value')};
tmp_str = sprintf('edit %s', tmp);
eval(tmp_str);
% --------------------------------------------------------------------
function workspace_Callback(hObject, eventdata, handles)
% hObject handle to workspace (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --------------------------------------------------------------------
function load_wsp_Callback(hObject, eventdata, handles)
% hObject handle to load_wsp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global ePic;
filename = uigetfile('*.wsp','Select an ePic workspace file');
if (filename == 0)
else
% do sometings
newData1 = importdata(filename);
% Create new variables in the base workspace from those fields.
vars = fieldnames(newData1);
data = newData1.(vars{1});
names = newData1.(vars{2});
for i=1:length(data)
switch str2mat(names(i))
% sensors
case 's_accel'
ePic = updateDef(ePic,'accel',data(i));
case 's_proxi'
ePic = updateDef(ePic,'proxi',data(i));
case 's_light'
ePic = updateDef(ePic,'light',data(i));
case 's_micro'
ePic = updateDef(ePic,'micro',data(i));
case 's_speed'
ePic = updateDef(ePic,'speed',data(i));
case 's_pos'
ePic = updateDef(ePic,'pos',data(i));
case 's_odom'
ePic = updateDef(ePic,'odom',data(i));
case 's_floor'
ePic = updateDef(ePic,'floor',data(i));
case 's_external'
ePic = updateDef(ePic,'external',data(i));
% other parameters
case 'refreshtime'
set (handles.str_time,'String', num2str(data(i)));
btm_changeTime_Callback(hObject, eventdata, handles);
otherwise
end
end
msgbox('Workspace successfully loaded');
end
% --- Executes on button press in btm_plot.
function btm_plot_Callback(hObject, eventdata, handles)
% hObject handle to btm_plot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global valuesSensors;
global p_buffer;
global buff_size;
if (buff_size>-1)
if (size(valuesSensors,1)~=1 && p_buffer > 0)
valuesSensors = [valuesSensors(p_buffer+1:buff_size,:); valuesSensors(1:p_buffer,:)];
end
else
valuesSensors = valuesSensors(1:p_buffer,:);
end
figure;
plot(valuesSensors);
% --------------------------------------------------------------------
function menu_opendoc_Callback(hObject, eventdata, handles)
% hObject handle to menu_opendoc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
open 'Documentation\ePic2_doc.pdf';
|
github
|
gctronic/e-puck-library-master
|
two_complement.m
|
.m
|
e-puck-library-master/tool/ePic/@ePicKernel/private/two_complement.m
| 597 |
utf_8
|
824666e5ce11c268e2dcc8608edb553c
|
function value=two_complement(rawdata)
if (mod(max(size(rawdata)),2) == 1)
error('The data to be converted must be 16 bits and the vector does not contain pairs of numbers')
end
value=zeros(1,max(size(rawdata))/2);
j=1;
for i=1:2:max(size(rawdata))
if (bitget(rawdata(i+1),8)==1) % Negatif number -> two'complement
value(j)=-(invert_bin(rawdata(i))+bitshift(invert_bin(rawdata(i+1)),8)+1);
else
value(j)=rawdata(i)+bitshift(rawdata(i+1),8);
end
j=j+1;
end
function value=invert_bin(value)
for i=1:8
value=bitset(value,i,mod(bitget(value,i)+1,2));
end
|
github
|
jtomelin/caixeiro-viajante-algoritmo-genetico-master
|
cvfun.m
|
.m
|
caixeiro-viajante-algoritmo-genetico-master/cvfun.m
| 683 |
utf_8
|
4aed36af92ca49b1e057789977bf50fa
|
%Funcao de custo para o problema do caixeiro viajante
function dist=cvfun(pop)
% Utiliza variaveis globais "x" e "y"
global x y
[Npop,Ncidade]=size(pop);
tour=[pop pop(:,1)]; % gera a matriz 20x21 da populacao onde a ultima
% coluna eh a copia da primeira coluna (o agente deve voltar a cidade inicial)
%distancia entre as cidades
for i=1:Ncidade
for j=1:Ncidade
dcidade(i,j)=sqrt((x(i)-x(j))^2+(y(i)-y(j))^2);
end % i
end % j
% custo de cada cromossomo
for i=1:Npop
dist(i,1)=0;
for j=1:Ncidade
% Soma das distancias para cada cromossomo
dist(i,1)=dist(i)+dcidade(tour(i,j),tour(i,j+1));
end % j
end % i
end
|
github
|
aayush-k/Local-Feature-Matching-master
|
get_features.m
|
.m
|
Local-Feature-Matching-master/code/get_features.m
| 4,250 |
utf_8
|
072ff4a20bda044515a18de8bd55e28e
|
% Local Feature Stencil Code
% CS 4476 / 6476: Computer Vision, Georgia Tech
% Written by James Hays
% Returns a set of feature descriptors for a given set of interest points.
% 'image' can be grayscale or color, your choice.
% 'x' and 'y' are nx1 vectors of x and y coordinates of interest points.
% The local features should be centered at x and y.
% 'feature_width', in pixels, is the local feature width. You can assume
% that feature_width will be a multiple of 4 (i.e. every cell of your
% local SIFT-like feature will have an integer width and height).
% If you want to detect and describe features at multiple scales or
% particular orientations you can add input arguments.
% 'features' is the array of computed features. It should have the
% following size: [length(x) x feature dimensionality] (e.g. 128 for
% standard SIFT)
function [features] = get_features(image, x, y, feature_width)
features = [];
binIntervals = -180:45:180;
for ind = 1:length(x)
xF = x(ind);
yF = y(ind);
siftDescriptor = [];
[r, c] = size(image);
left = max(1, round(xF - feature_width/2));
right = min(c, round(xF + feature_width/2 - 1));
top = max(1, round(yF - feature_width/2));
bottom = min(r, round(yF + feature_width/2 - 1));
subMat = image(top:bottom, left:right);
[gradMag, gradDir] = imgradient(subMat);
[rGradDir, cGradDir] = size(gradDir);
for i = 1:4:feature_width
for j = 1:4:feature_width
% iterate through each 4x4 cell
bins = zeros(1,8);
for m = i:i+3
for n = j:j+3
if m < rGradDir && n < cGradDir
direction = gradDir(m, n);
binInd = find(histcounts(direction, binIntervals));
bins(binInd) = bins(binInd) + gradMag(m, n);
end
end
end
siftDescriptor = [siftDescriptor bins];
end
end
siftDescriptor = (siftDescriptor / norm(siftDescriptor)) .^ 0.5;
features = [features reshape(siftDescriptor, [], 1)];
end
% To start with, you might want to simply use normalized patches as your
% local feature. This is very simple to code and works OK. However, to get
% full credit you will need to implement the more effective SIFT descriptor
% (See Szeliski 4.1.2 or the original publications at
% http://www.cs.ubc.ca/~lowe/keypoints/)
% Your implementation does not need to exactly match the SIFT reference.
% Here are the key properties your (baseline) descriptor should have:
% (1) a 4x4 grid of cells, each feature_width/4. 'cell' in this context
% nothing to do with the Matlab data structue of cell(). It is simply
% the terminology used in the feature literature to describe the spatial
% bins where gradient distributions will be described.
% (2) each cell should have a histogram of the local distribution of
% gradients in 8 orientations. Appending these histograms together will
% give you 4x4 x 8 = 128 dimensions.
% (3) Each feature vector should be normalized to unit length
%
% You do not need to perform the interpolation in which each gradient
% measurement contributes to multiple orientation bins in multiple cells
% As described in Szeliski, a single gradient measurement creates a
% weighted contribution to the 4 nearest cells and the 2 nearest
% orientation bins within each cell, for 8 total contributions. This type
% of interpolation probably will help, though.
% You do not have to explicitly compute the gradient orientation at each
% pixel (although you are free to do so). You can instead filter with
% oriented filters (e.g. a filter that responds to edges with a specific
% orientation). All of your SIFT-like feature can be constructed entirely
% from filtering fairly quickly in this way.
% You do not need to do the normalize -> threshold -> normalize again
% operation as detailed in Szeliski and the SIFT paper. It can help, though.
% Another simple trick which can help is to raise each element of the final
% feature vector to some power that is less than one.
end
|
github
|
aayush-k/Local-Feature-Matching-master
|
show_correspondence2.m
|
.m
|
Local-Feature-Matching-master/code/show_correspondence2.m
| 1,618 |
utf_8
|
d754a0a7f9f2ca2960dfea8e0518a162
|
% Automated Panorama Stitching stencil code
% CS 4476 / 6476: Computer Vision, Georgia Tech
% Written by Henry Hu <[email protected]> and James Hays
% Visualizes corresponding points between two images. Corresponding points
% will be matched by a line of random color.
% This function provides another method of visualization. You can use
% either this function or show_correspondence.m
% You do not need to modify anything in this function, although you can if
% you want to.
function [ h ] = show_correspondence2(imgA, imgB, X1, Y1, X2, Y2)
h = figure(3);
Height = max(size(imgA,1),size(imgB,1));
Width = size(imgA,2)+size(imgB,2);
numColors = size(imgA, 3);
newImg = zeros(Height, Width,numColors);
newImg(1:size(imgA,1),1:size(imgA,2),:) = imgA;
newImg(1:size(imgB,1),1+size(imgA,2):end,:) = imgB;
imshow(newImg, 'Border', 'tight')
shiftX = size(imgA,2);
hold on
% set(h, 'Position', [100 100 900 700])
for i = 1:size(X1,1)
cur_color = rand(3,1);
plot([X1(i) shiftX+X2(i)],[Y1(i) Y2(i)],'*-','Color', cur_color, 'LineWidth',2)
end
hold off
fprintf('Saving visualization to vis.jpg\n')
visualization_image = frame2im(getframe(h));
% getframe() is unreliable. Depending on the rendering settings, it will
% grab foreground windows instead of the figure in question. It could also
% return an image that is not 800x600 if the figure is resized or partially
% off screen.
% try
% %trying to crop some of the unnecessary boundary off the image
% visualization_image = visualization_image(81:end-80, 51:end-50,:);
% catch
% ;
% end
imwrite(visualization_image, 'vis_arrows.jpg', 'quality', 100)
|
github
|
aayush-k/Local-Feature-Matching-master
|
show_correspondence.m
|
.m
|
Local-Feature-Matching-master/code/show_correspondence.m
| 2,215 |
utf_8
|
2d4943c5a3ff072fa99f194331ba8180
|
% CS 4476 / 6476: Computer Vision, Georgia Tech
% Written by Henry Hu <[email protected]> and James Hays
% Visualizes corresponding points between two images. Corresponding points
% will have the same random color.
% You do not need to modify anything in this function, although you can if
% you want to.
function [ h ] = show_correspondence(imgA, imgB, X1, Y1, X2, Y2)
h = figure(2);
% set(h, 'Position', [100 100 900 700])
% subplot(1,2,1);
% imshow(image1, 'Border', 'tight')
%
% subplot(1,2,2);
% imshow(image2, 'Border', 'tight')
Height = max(size(imgA,1),size(imgB,1));
Width = size(imgA,2)+size(imgB,2);
numColors = size(imgA, 3);
newImg = zeros(Height, Width,numColors);
newImg(1:size(imgA,1),1:size(imgA,2),:) = imgA;
newImg(1:size(imgB,1),1+size(imgA,2):end,:) = imgB;
imshow(newImg, 'Border', 'tight')
shiftX = size(imgA,2);
hold on
for i = 1:size(X1,1)
cur_color = rand(3,1);
plot(X1(i),Y1(i), 'o', 'LineWidth',2, 'MarkerEdgeColor','k',...
'MarkerFaceColor', cur_color, 'MarkerSize',10)
plot(X2(i)+shiftX,Y2(i), 'o', 'LineWidth',2, 'MarkerEdgeColor','k',...
'MarkerFaceColor', cur_color, 'MarkerSize',10)
end
hold off;
% for i = 1:size(X1,1)
% cur_color = rand(3,1);
% subplot(1,2,1);
% hold on;
% plot(X1(i),Y1(i), 'o', 'LineWidth',2, 'MarkerEdgeColor','k',...
% 'MarkerFaceColor', cur_color, 'MarkerSize',10)
%
% hold off;
%
% subplot(1,2,2);
% hold on;
% plot(X2(i),Y2(i), 'o', 'LineWidth',2, 'MarkerEdgeColor','k',...
% 'MarkerFaceColor', cur_color, 'MarkerSize',10)
% hold off;
% end
fprintf('Saving visualization to vis.jpg\n')
visualization_image = frame2im(getframe(h));
% getframe() is unreliable. Depending on the rendering settings, it will
% grab foreground windows instead of the figure in question. It could also
% return an image that is not 800x600 if the figure is resized or partially
% off screen.
% try
% %trying to crop some of the unnecessary boundary off the image
% visualization_image = visualization_image(81:end-80, 51:end-50,:);
% catch
% ;
% end
imwrite(visualization_image, 'vis_dots.jpg', 'quality', 100)
|
github
|
aayush-k/Local-Feature-Matching-master
|
get_interest_points.m
|
.m
|
Local-Feature-Matching-master/code/get_interest_points.m
| 4,341 |
utf_8
|
627f44b3ca3d41aa59bcc5ecfdd57455
|
% Local Feature Stencil Code
% CS 4476 / 6476: Computer Vision, Georgia Tech
% Written by James Hays
% 1. Compute the horizontal and vertical derivatives of the image Ix and Iy by convolving the original image with derivatives of Gaussians (Section 3.2.3).
% 2. Compute the three images corresponding to the outer products of these gradients. (The matrix A is symmetric, so only three entries are needed.)
% 3. Convolve each of these images with a larger Gaussian.
% 4. Compute a scalar interest measure using one of the formulas discussed above.
% 5. Find local maxima above a certain threshold and report them as detected feature point locations.
% Returns a set of interest points for the input image
% 'image' can be grayscale or color, your choice.
% 'feature_width', in pixels, is the local feature width. It might be
% useful in this function in order to (a) suppress boundary interest
% points (where a feature wouldn't fit entirely in the image, anyway)
% or (b) scale the image filters being used. Or you can ignore it.
% 'x' and 'y' are nx1 vectors of x and y coordinates of interest points.
% 'confidence' is an nx1 vector indicating the strength of the interest
% point. You might use this later or not.
% 'scale' and 'orientation' are nx1 vectors indicating the scale and
% orientation of each interest point. These are OPTIONAL. By default you
% do not need to make scale and orientation invariant local features.
function [x, y, confidence, scale, orientation] = get_interest_points(image, feature_width)
% Implement the Harris corner detector (See Szeliski 4.1.1) to start with.
% You can create additional interest point detector functions (e.g. MSER)
% for extra credit.
% BLUR image??
% alpha = 0.06 as proposed by harris
alpha = 0.04;
threshold = 0.02
% gaussian kernels for the original image and the derivatives
smallGaussian = fspecial('gaussian', [feature_width, feature_width], 1);
largeGaussian = fspecial('gaussian', [feature_width, feature_width], 2);
% filter original image
GausImg = imfilter(image, smallGaussian);
% calculate derivative products
[I_x, I_y] = imgradientxy(GausImg);
I_x2 = I_x .^ 2;
I_y2 = I_y .^ 2;
I_xy = I_x .* I_y;
% apply gaussian to derivative products
GausI_x2 = imfilter(I_x2, largeGaussian);
GausI_y2 = imfilter(I_y2, largeGaussian);
GausI_xy = imfilter(I_xy, largeGaussian);
% calculate har
har = (GausI_x2 .* GausI_y2) - (GausI_xy .^ 2) - (alpha .* (GausI_x2 + GausI_y2) .^ 2);
% remove edges to account for wrong detections
har(1:feature_width, :) = 0;
har(:, 1:feature_width) = 0;
har(end - feature_width:end, :) = 0;
har(:, end - feature_width:end) = 0;
% threshold the har and extract connected componented
threshedHar = har > threshold;
CC = bwconncomp(threshedHar);
% get dimensions
[rows, cols] = size(har);
% initialize arrays to
x = zeros(CC.NumObjects, 1);
y = zeros(CC.NumObjects, 1);
confidence = zeros(CC.NumObjects, 1);
for ind = 1:CC.NumObjects
% get indices of blob regions
blobPixelInds = CC.PixelIdxList{ind}
% mask to get original har values
blobPixelVals = har(blobPixelInds)
% get maximum
[maxV, maxI] = max(blobPixelVals)
% column indices
x(ind) = floor(blobPixelInds(maxI) / rows);
y(ind) = mod(blobPixelInds(maxI), rows);
confidence(ind) = maxV;
end
% BWLABEL (old), BWCONNCOMP (new)
% take max value in each component
%
% If you're finding spurious interest point detections near the boundaries,
% it is safe to simply suppress the gradients / corners near the edges of
% the image.
% The lecture slides and textbook are a bit vague on how to do the
% non-maximum suppression once you've thresholded the cornerness score.
% You are free to experiment. Here are some helpful functions:
% BWLABEL and the newer BWCONNCOMP will find connected components in
% thresholded binary image. You could, for instance, take the maximum value
% within each component.
% COLFILT can be used to run a max() operator on each sliding window. You
% could use this to ensure that every interest point is at a local maximum
% of cornerness.
% Placeholder that you can delete -- random points
% x = ceil(rand(500,1) * size(image,2));
% y = ceil(rand(500,1) * size(image,1));
end
|
github
|
aayush-k/Local-Feature-Matching-master
|
cheat_interest_points.m
|
.m
|
Local-Feature-Matching-master/code/cheat_interest_points.m
| 1,111 |
utf_8
|
9d93fe7e1b0c34e407f2e5d3528315bf
|
% Local Feature Stencil Code
% CS 4476 / 6476: Computer Vision, Georgia Tech
% Written by James Hays
% This function is provided for development and debugging but cannot be
% used in the final handin. It 'cheats' by generating interest points from
% known correspondences. It will only work for the three image pairs with
% known correspondences.
% 'eval_file' is the file path to the list of known correspondences.
% 'scale_factor' is needed to map from the original image coordinates to
% the resolution being used for the current experiment.
% 'x1' and 'y1' are nx1 vectors of x and y coordinates of interest points
% in the first image.
% 'x1' and 'y1' are mx1 vectors of x and y coordinates of interest points
% in the second image. For convenience, n will equal m but don't expect
% that to be the case when interest points are created independently per
% image.
function [x1, y1, x2, y2] = cheat_interest_points(eval_file, scale_factor)
load(eval_file)
x1 = x1 .* scale_factor;
y1 = y1 .* scale_factor;
x2 = x2 .* scale_factor;
y2 = y2 .* scale_factor;
end
|
github
|
aayush-k/Local-Feature-Matching-master
|
show_ground_truth_corr.m
|
.m
|
Local-Feature-Matching-master/code/show_ground_truth_corr.m
| 441 |
utf_8
|
98f706af0be75ce44da3822986ef85b2
|
% Local Feature Stencil Code
% CS 4476 / 6476: Computer Vision, Georgia Tech
% Written by James Hays
function show_ground_truth_corr()
image1 = imread('../data/Notre Dame/921919841_a30df938f2_o.jpg');
image2 = imread('../data/Notre Dame/4191453057_c86028ce1f_o.jpg');
corr_file = '../data/Notre Dame/921919841_a30df938f2_o_to_4191453057_c86028ce1f_o.mat';
load(corr_file)
show_correspondence(image1, image2, x1, y1, x2, y2)
|
github
|
aayush-k/Local-Feature-Matching-master
|
match_features.m
|
.m
|
Local-Feature-Matching-master/code/match_features.m
| 2,023 |
utf_8
|
ddb965c0b19bfc79a8e1157c7ceb1e5a
|
% Local Feature Stencil Code
% CS 4476 / 6476: Computer Vision, Georgia Tech
% Written by James Hays
% 'features1' and 'features2' are the n x feature dimensionality features
% from the two images.
% If you want to include geometric verification in this stage, you can add
% the x and y locations of the interest points as additional features.
%
% 'matches' is a k x 2 matrix, where k is the number of matches. The first
% column is an index in features1, the second column is an index
% in features2.
% 'Confidences' is a k x 1 matrix with a real valued confidence for every
% match.
% 'matches' and 'confidences' can empty, e.g. 0x2 and 0x1.
function [matches, confidences] = match_features(features1, features2)
% This function does not need to be symmetric (e.g. it can produce
% different numbers of matches depending on the order of the arguments).
% To start with, simply implement the "ratio test", equation 4.18 in
% section 4.1.3 of Szeliski. For extra credit you can implement various
% forms of spatial verification of matches.
% 1 - (NN1/NN2)
dists = pdist2(features1, features2, 'euclidean');
[sortDistVal, sortDistInd] = sort(dists, 2);
% Ratio Test
ratioT = sortDistVal(:,1) ./ sortDistVal(:,2);
threshold = 0.95;
mask = ratioT < threshold;
confidences = 1 ./ ratioT(mask);
matches = zeros(size(confidences, 1), 2);
matches(:, 1) = find(mask);
matches(:, 2) = sortDistInd(mask, 1);
% % Placeholder that you can delete. Random matches and confidences
% num_features = min(size(features1, 1), size(features2,1));
% matches = zeros(num_features, 2);
% matches(:,1) = randperm(num_features);
% matches(:,2) = randperm(num_features);
% confidences = rand(num_features,1);
% Sort the matches so that the most confident onces are at the top of the
% list. You should probably not delete this, so that the evaluation
% functions can be run on the top matches easily.
[confidences, ind] = sort(confidences, 'descend');
matches = matches(ind,:);
|
github
|
aayush-k/Local-Feature-Matching-master
|
collect_ground_truth_corr.m
|
.m
|
Local-Feature-Matching-master/code/collect_ground_truth_corr.m
| 2,009 |
utf_8
|
f59689693ec3d8d895fededdbc1efe39
|
% Local Feature Stencil Code
% CS 4476 / 6476: Computer Vision, Georgia Tech
% Written by James Hays
function collect_ground_truth_corr()
%An interactive method to specify and then save many point correspondences
%between two photographs, which will be used to generate a projective
%transformation. Run this before generate_transform.m
%Pick a dozen corresponding points throughout the images, although more is
%better.
image1 = imread('../data/Notre Dame/921919841_a30df938f2_o.jpg');
image2 = imread('../data/Notre Dame/4191453057_c86028ce1f_o.jpg');
image1 = double(image1)/255;
image2 = double(image2)/255;
output_file = '../data/Notre Dame/921919841_a30df938f2_o_to_4191453057_c86028ce1f_o.mat';
%this function checks if some corresponding points are already saved, and
%if so resumes work from there.
if(exist(output_file,'file'))
load(output_file)
h = show_correspondence(image1, image2, x1, y1, x2, y2)
else
x1 = zeros(0,1); %x locations in image 1
y1 = zeros(0,1); %y locations in image 1
x2 = zeros(0,1); %corresponding x locations in image 2
y2 = zeros(0,1); %corresponding y locations in image 2
h = figure;
subplot(1,2,1);
imshow(image1)
subplot(1,2,2);
imshow(image2)
end
fprintf('Click on a negative coordinate (Above or to the left of the left image) to stop\n')
while(1)
[x,y] = ginput(1);
if(x <= 0 || y <= 0)
break
end
subplot(1,2,1);
hold on;
plot(x,y,'ro');
hold off;
x1 = [x1;x];
y1 = [y1;y];
[x,y] = ginput(1);
if(x <= 0 || y <= 0)
break
end
subplot(1,2,2);
hold on;
plot(x,y,'ro');
hold off;
x2 = [x2;x];
y2 = [y2;y];
fprintf('( %5.2f, %5.2f) matches to ( %5.2f, %5.2f)\n', x1(end), y1(end), x2(end), y2(end));
fprintf('%d total points corresponded\n', length(x1));
end
fprintf('saving matched points\n')
save(output_file, 'x1', 'y1', 'x2', 'y2')
|
github
|
aayush-k/Local-Feature-Matching-master
|
evaluate_correspondence.m
|
.m
|
Local-Feature-Matching-master/code/evaluate_correspondence.m
| 3,952 |
utf_8
|
35e20889ed67de05a8a5706b3d1fcada
|
% Local Feature Stencil Code
% Computater Vision
% Written by Henry Hu <[email protected]> and James Hays
% You do not need to modify anything in this function, although you can if
% you want to.
function evaluate_correspondence(imgA, imgB, ground_truth_correspondence_file, scale_factor, x1_est, y1_est, x2_est, y2_est)
% ground_truth_correspondence_file = '../data/Notre Dame/921919841_a30df938f2_o_to_4191453057_c86028ce1f_o.mat';
% = imread('../data/Notre Dame/921919841_a30df938f2_o.jpg');
% = imread('../data/Notre Dame/4191453057_c86028ce1f_o.jpg');
x1_est = x1_est ./ scale_factor;
y1_est = y1_est ./ scale_factor;
x2_est = x2_est ./ scale_factor;
y2_est = y2_est ./ scale_factor;
good_matches = zeros(length(x1_est),1); %indicator vector
load(ground_truth_correspondence_file)
%loads variables x1, y1, x2, y2
% x1 91x1 728 double
% x2 91x1 728 double
% y1 91x1 728 double
% y2 91x1 728 double
h = figure(4);
Height = max(size(imgA,1),size(imgB,1));
Width = size(imgA,2)+size(imgB,2);
numColors = size(imgA, 3);
newImg = zeros(Height, Width,numColors);
newImg(1:size(imgA,1),1:size(imgA,2),:) = imgA;
newImg(1:size(imgB,1),1+size(imgA,2):end,:) = imgB;
imshow(newImg, 'Border', 'tight')
shiftX = size(imgA,2);
hold on;
for i = 1:length(x1_est)
fprintf('( %4.0f, %4.0f) to ( %4.0f, %4.0f)', x1_est(i), y1_est(i), x2_est(i), y2_est(i));
%for each x1_est, find nearest ground truth point in x1
x_dists = x1_est(i) - x1;
y_dists = y1_est(i) - y1;
dists = sqrt( x_dists.^2 + y_dists.^2 );
[dists, best_matches] = sort(dists);
current_offset = [x1_est(i) - x2_est(i), y1_est(i) - y2_est(i)];
most_similar_offset = [x1(best_matches(1)) - x2(best_matches(1)), y1(best_matches(1)) - y2(best_matches(1))];
%match_dist = sqrt( (x2_est(i) - x2(best_matches(1)))^2 + (y2_est(i) - y2(best_matches(1)))^2);
match_dist = sqrt( sum((current_offset - most_similar_offset).^2));
%A match is bad if there's no ground truth point within 150 pixels or
%if nearest ground truth correspondence offset isn't within 25 pixels
%of the estimated correspondence offset.
fprintf(' g.t. point %4.0f px. Match error %4.0f px.', dists(1), match_dist);
if(dists(1) > 150 || match_dist > 40)
good_matches(i) = 0;
edgeColor = [1 0 0];
fprintf(' incorrect\n');
else
good_matches(i) = 1;
edgeColor = [0 1 0];
fprintf(' correct\n');
end
cur_color = rand(1,3);
plot(x1_est(i)*scale_factor,y1_est(i)*scale_factor, 'o', 'LineWidth',2, 'MarkerEdgeColor',edgeColor,...
'MarkerFaceColor', cur_color, 'MarkerSize',10)
plot(x2_est(i)*scale_factor+shiftX,y2_est(i)*scale_factor, 'o', 'LineWidth',2, 'MarkerEdgeColor',edgeColor,...
'MarkerFaceColor', cur_color, 'MarkerSize',10)
end
hold off;
fprintf('%d total good matches, %d total bad matches.', sum(good_matches), length(x1_est) - sum(good_matches))
fprintf(' %.2f%% accuracy\n', sum(good_matches) / length(x1_est));
fprintf('Saving visualization to eval.jpg\n')
visualization_image = frame2im(getframe(h));
% getframe() is unreliable. Depending on the rendering settings, it will
% grab foreground windows instead of the figure in question. It could also
% return an image that is not 800x600 if the figure is resized or partially
% off screen.
% try
% %trying to crop some of the unnecessary boundary off the image
% visualization_image = visualization_image(81:end-80, 51:end-50,:);
% catch
% ;
% end
imwrite(visualization_image, 'eval.jpg', 'quality', 100)
|
github
|
akileshbadrinaaraayanan/IITH-master
|
imdb_cnn_train.m
|
.m
|
IITH-master/Sem6/CS5190_Soft_Computing/cs13b1042_final_code/imdb_cnn_train.m
| 11,107 |
utf_8
|
a957bb75bebf326aa0d9d848e0c4293d
|
function imdb_cnn_train(imdb, opts, varargin)
% Train a CNN model on a dataset supplied by imdb
opts.lite = false ;
opts.numFetchThreads = 0 ;
opts.train.batchSize = opts.batchSize ;
opts.train.numEpochs = 25 ;
opts.train.continue = true ;
opts.train.useGpu = false ;
opts.train.prefetch = false ;
opts.train.learningRate = [0.001*ones(1, 10) 0.0001*ones(1, 10) 0.00001*ones(1,10)] ;
opts.train.expDir = opts.expDir ;
opts = vl_argparse(opts, varargin) ;
% -------------------------------------------------------------------------
% Network initialization
% -------------------------------------------------------------------------
net = initializeNetwork(imdb, opts) ;
% Initialize average image
if isempty(net.normalization.averageImage),
% compute the average image
averageImagePath = fullfile(opts.expDir, 'average.mat') ;
if exist(averageImagePath, 'file')
load(averageImagePath, 'averageImage') ;
else
train = find(imdb.images.set == 1) ;
bs = 256 ;
fn = getBatchWrapper(net.normalization, opts.numFetchThreads) ;
for t=1:bs:numel(train)
batch_time = tic ;
batch = train(t:min(t+bs-1, numel(train))) ;
fprintf('computing average image: processing batch starting with image %d ...', batch(1)) ;
temp = fn(imdb, batch) ;
im{t} = mean(temp, 4) ;
batch_time = toc(batch_time) ;
fprintf(' %.2f s (%.1f images/s)\n', batch_time, numel(batch)/ batch_time) ;
end
averageImage = mean(cat(4, im{:}),4) ;
save(averageImagePath, 'averageImage') ;
end
net.normalization.averageImage = averageImage ;
clear averageImage im temp ;
end
% -------------------------------------------------------------------------
% Stochastic gradient descent
% -------------------------------------------------------------------------
fn = getBatchWrapper(net.normalization, opts.numFetchThreads) ;
[net,info] = cnn_train(net, imdb, fn, opts.train, 'conserveMemory', true) ;
% Save model
net = vl_simplenn_move(net, 'cpu');
saveNetwork(fullfile(opts.expDir, 'final-model.mat'), net);
% -------------------------------------------------------------------------
function saveNetwork(fileName, net)
% -------------------------------------------------------------------------
layers = net.layers;
% Replace the last layer with softmax
layers{end}.type = 'softmax';
layers{end}.name = 'prob';
% Remove fields corresponding to training parameters
ignoreFields = {'filtersMomentum', ...
'biasesMomentum',...
'filtersLearningRate',...
'biasesLearningRate',...
'filtersWeightDecay',...
'biasesWeightDecay',...
'class'};
for i = 1:length(layers),
layers{i} = rmfield(layers{i}, ignoreFields(isfield(layers{i}, ignoreFields)));
end
classes = net.classes;
normalization = net.normalization;
save(fileName, 'layers', 'classes', 'normalization');
% -------------------------------------------------------------------------
function fn = getBatchWrapper(opts, numThreads)
% -------------------------------------------------------------------------
fn = @(imdb,batch) getBatch(imdb,batch,opts,numThreads) ;
% -------------------------------------------------------------------------
function [im,labels] = getBatch(imdb, batch, opts, numThreads)
% -------------------------------------------------------------------------
images = strcat([imdb.imageDir '/'], imdb.images.name(batch)) ;
im = imdb_get_batch(images, opts, ...
'numThreads', numThreads, ...
'prefetch', nargout == 0);
labels = imdb.images.label(batch) ;
% -------------------------------------------------------------------------
function net = initializeNetwork(imdb, opts)
% -------------------------------------------------------------------------
scal = 1 ;
init_bias = 0.1;
numClass = length(imdb.classes.name);
if ~isempty(opts.model)
net = load(fullfile('data/models', opts.model)); % Load model if specified
net.normalization.keepAspect = opts.keepAspect;
fprintf('Initializing from model: %s\n', opts.model);
% Replace the last but one layer with random weights
net.layers{end-1} = struct('type', 'conv', ...
'filters', 0.01/scal * randn(1,1,4096,numClass,'single'), ...
'biases', zeros(1, numClass, 'single'), ...
'stride', 1, ...
'pad', 0, ...
'filtersLearningRate', 10, ...
'biasesLearningRate', 20, ...
'filtersWeightDecay', 1, ...
'biasesWeightDecay', 0);
% Last layer is softmaxloss (switch to softmax for prediction)
net.layers{end} = struct('type', 'softmaxloss') ;
% Rename classes
net.classes.name = imdb.classes.name;
net.classes.description = imdb.classes.name;
% TODO: add dropout layers if initializing from previous models
return;
end
% Else initial model randomly
net.layers = {} ;
% Block 1
net.layers{end+1} = struct('type', 'conv', ...
'filters', 0.01/scal * randn(11, 11, 3, 96, 'single'), ...
'biases', zeros(1, 96, 'single'), ...
'stride', 4, ...
'pad', 0, ...
'filtersLearningRate', 1, ...
'biasesLearningRate', 2, ...
'filtersWeightDecay', 1, ...
'biasesWeightDecay', 0) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'pool', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'normalize', ...
'param', [5 1 0.0001/5 0.75]) ;
% Block 2
net.layers{end+1} = struct('type', 'conv', ...
'filters', 0.01/scal * randn(5, 5, 48, 256, 'single'), ...
'biases', init_bias*ones(1, 256, 'single'), ...
'stride', 1, ...
'pad', 2, ...
'filtersLearningRate', 1, ...
'biasesLearningRate', 2, ...
'filtersWeightDecay', 1, ...
'biasesWeightDecay', 0) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'pool', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'normalize', ...
'param', [5 1 0.0001/5 0.75]) ;
% Block 3
net.layers{end+1} = struct('type', 'conv', ...
'filters', 0.01/scal * randn(3,3,256,384,'single'), ...
'biases', init_bias*ones(1,384,'single'), ...
'stride', 1, ...
'pad', 1, ...
'filtersLearningRate', 1, ...
'biasesLearningRate', 2, ...
'filtersWeightDecay', 1, ...
'biasesWeightDecay', 0) ;
net.layers{end+1} = struct('type', 'relu') ;
% Block 4
net.layers{end+1} = struct('type', 'conv', ...
'filters', 0.01/scal * randn(3,3,192,384,'single'), ...
'biases', init_bias*ones(1,384,'single'), ...
'stride', 1, ...
'pad', 1, ...
'filtersLearningRate', 1, ...
'biasesLearningRate', 2, ...
'filtersWeightDecay', 1, ...
'biasesWeightDecay', 0) ;
net.layers{end+1} = struct('type', 'relu') ;
% Block 5
net.layers{end+1} = struct('type', 'conv', ...
'filters', 0.01/scal * randn(3,3,192,256,'single'), ...
'biases', init_bias*ones(1,256,'single'), ...
'stride', 1, ...
'pad', 1, ...
'filtersLearningRate', 1, ...
'biasesLearningRate', 2, ...
'filtersWeightDecay', 1, ...
'biasesWeightDecay', 0) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'pool', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
% Block 6
net.layers{end+1} = struct('type', 'conv', ...
'filters', 0.01/scal * randn(6,6,256,4096,'single'),...
'biases', init_bias*ones(1,4096,'single'), ...
'stride', 1, ...
'pad', 0, ...
'filtersLearningRate', 1, ...
'biasesLearningRate', 2, ...
'filtersWeightDecay', 1, ...
'biasesWeightDecay', 0) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'dropout', ...
'rate', 0.5) ;
% Block 7
net.layers{end+1} = struct('type', 'conv', ...
'filters', 0.01/scal * randn(1,1,4096,4096,'single'),...
'biases', init_bias*ones(1,4096,'single'), ...
'stride', 1, ...
'pad', 0, ...
'filtersLearningRate', 1, ...
'biasesLearningRate', 2, ...
'filtersWeightDecay', 1, ...
'biasesWeightDecay', 0) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'dropout', ...
'rate', 0.5) ;
% Block 8
net.layers{end+1} = struct('type', 'conv', ...
'filters', 0.01/scal * randn(1,1,4096,numClass,'single'), ...
'biases', zeros(1, numClass, 'single'), ...
'stride', 1, ...
'pad', 0, ...
'filtersLearningRate', 1, ...
'biasesLearningRate', 2, ...
'filtersWeightDecay', 1, ...
'biasesWeightDecay', 0) ;
% Block 9
net.layers{end+1} = struct('type', 'softmaxloss') ;
% Other details
net.normalization.imageSize = [227, 227, 3] ;
net.normalization.interpolation = 'bicubic' ;
net.normalization.border = 256 - net.normalization.imageSize(1:2) ;
net.normalization.averageImage = [] ;
net.normalization.keepAspect = true ;
|
github
|
akileshbadrinaaraayanan/IITH-master
|
get_rcnn_features.m
|
.m
|
IITH-master/Sem6/CS5190_Soft_Computing/cs13b1042_final_code/get_rcnn_features.m
| 2,567 |
utf_8
|
8ec7919f6877980bbd15cde85e9a3ffd
|
function code = get_rcnn_features(net, im, varargin)
% GET_RCNN_FEATURES
% This function gets the fc7 features for an image region,
% extracted from the provided mask.
opts.batchSize = 96 ;
opts.regionBorder = 0.05;
opts = vl_argparse(opts, varargin) ;
if ~iscell(im)
im = {im} ;
end
res = [] ;
cache = struct() ;
resetCache() ;
% for each image
function resetCache()
cache.images = cell(1,opts.batchSize) ;
cache.indexes = zeros(1, opts.batchSize) ;
cache.numCached = 0 ;
end
function flushCache()
if cache.numCached == 0, return ; end
images = cat(4, cache.images{:}) ;
images = bsxfun(@minus, images, net.normalization.averageImage) ;
if net.useGpu
images = gpuArray(images) ;
end
res = vl_simplenn(net, images, ...
[], res, ...
'conserveMemory', true, ...
'sync', true) ;
code_ = squeeze(gather(res(end).x)) ;
code_ = bsxfun(@times, 1./sqrt(sum(code_.^2)), code_) ;
for q=1:cache.numCached
code{cache.indexes(q)} = code_(:,q) ;
end
resetCache() ;
end
function appendCache(i,im)
cache.numCached = cache.numCached + 1 ;
cache.images{cache.numCached} = im ;
cache.indexes(cache.numCached) = i;
if cache.numCached >= opts.batchSize
flushCache() ;
end
end
code = {} ;
for k=1:numel(im)
appendCache(k, getImage(opts, single(im{k}), net.normalization.imageSize(1), net.normalization.keepAspect));
end
flushCache() ;
end
% -------------------------------------------------------------------------
function reg = getImage(opts, im, regionSize, keepAspect)
% -------------------------------------------------------------------------
if keepAspect
w = size(im,2) ;
h = size(im,1) ;
factor = [regionSize/h,regionSize/w];
factor = max(factor);
%if any(abs(factor - 1) > 0.0001)
im_resized = imresize(im, ...
'scale', factor, ...
'method', 'bicubic') ;
%end
w = size(im_resized,2) ;
h = size(im_resized,1) ;
reg = imcrop(im_resized, [fix((w-regionSize)/2)+1, fix((h-regionSize)/2)+1,...
round(regionSize)-1, round(regionSize)-1]);
else
reg = imresize(im, [regionSize, regionSize], 'bicubic') ;
end
% reg = imresize(im, [regionSize, regionSize], 'bicubic') ;
end
|
github
|
akileshbadrinaaraayanan/IITH-master
|
get_bcnn_features.m
|
.m
|
IITH-master/Sem6/CS5190_Soft_Computing/cs13b1042_final_code/get_bcnn_features.m
| 5,006 |
utf_8
|
dc6b3d661ab0ce34e4c10321d9784263
|
function [code, varargout]= get_bcnn_features(neta, netb, im, varargin)
% GET_BCNN_FEATURES Get bilinear cnn features for an image
% This function extracts the binlinear combination of CNN features
% extracted from two different networks.
% Copyright (C) 2015 Tsung-Yu Lin, Aruni RoyChowdhury, Subhransu Maji.
% All rights reserved.
%
% This file is part of the BCNN and is made available under
% the terms of the BSD license (see the COPYING file).
nVargOut = max(nargout,1)-1;
if nVargOut==1
assert(true, 'Number of output should not be two.')
end
opts.crop = true ;
%opts.scales = 2.^(1.5:-.5:-3); % try a bunch of scales
opts.scales = 2;
opts.encoder = [] ;
opts.regionBorder = 0.05;
opts.normalization = 'sqrt_L2';
opts = vl_argparse(opts, varargin) ;
% get parameters of the network
info = vl_simplenn_display(neta) ;
borderA = round(info.receptiveField(end)/2+1) ;
averageColourA = mean(mean(neta.normalization.averageImage,1),2) ;
imageSizeA = neta.normalization.imageSize;
info = vl_simplenn_display(netb) ;
borderB = round(info.receptiveField(end)/2+1) ;
averageColourB = mean(mean(netb.normalization.averageImage,1),2) ;
imageSizeB = netb.normalization.imageSize;
keepAspect = neta.normalization.keepAspect;
assert(all(imageSizeA == imageSizeB));
assert(neta.normalization.keepAspect==netb.normalization.keepAspect);
if ~iscell(im)
im = {im} ;
end
code = cell(1, numel(im));
if nVargOut==2
im_resA = cell(numel(im), 1);
im_resB = cell(numel(im), 1);
end
% for each image
for k=1:numel(im)
im_cropped = imresize(single(im{k}), imageSizeA([2 1]), 'bilinear');
crop_h = size(im_cropped,1) ;
crop_w = size(im_cropped,2) ;
resA = [] ;
resB = [] ;
psi = cell(1, numel(opts.scales));
% for each scale
for s=1:numel(opts.scales)
if min(crop_h,crop_w) * opts.scales(s) < min(borderA, borderB), continue ; end
if sqrt(crop_h*crop_w) * opts.scales(s) > 1024, continue ; end
if keepAspect
w = size(im{k},2) ;
h = size(im{k},1) ;
factor = [imageSizeA(1)/h,imageSizeA(2)/w];
factor = max(factor)*opts.scales(s) ;
im_resized = imresize(single(im{k}), ...
'scale', factor, ...
'method', 'bilinear') ;
w = size(im_resized,2) ;
h = size(im_resized,1) ;
im_resized = imcrop(im_resized, [fix((w-imageSizeA(1)*opts.scales(s))/2)+1, fix((h-imageSizeA(2)*opts.scales(s))/2)+1,...
round(imageSizeA(1)*opts.scales(s))-1, round(imageSizeA(2)*opts.scales(s))-1]);
else
im_resized = imresize(single(im{k}), round(imageSizeA([2 1])*opts.scales(s)), 'bilinear');
end
im_resizedA = bsxfun(@minus, im_resized, averageColourA) ;
im_resizedB = bsxfun(@minus, im_resized, averageColourB) ;
if nVargOut==2
im_resA{k} = im_resizedA;
im_resB{k} = im_resizedB;
end
if neta.useGpu
im_resizedA = gpuArray(im_resizedA) ;
im_resizedB = gpuArray(im_resizedB) ;
end
resA = vl_simplenn(neta, im_resizedA, [], resA, ...
'conserveMemory', true, 'sync', true);
resB = vl_simplenn(netb, im_resizedB, [], resB, ...
'conserveMemory', true, 'sync', true);
A = gather(resA(end).x);
B = gather(resB(end).x);
psi{s} = bilinear_pool(A,B);
feat_dim = max(cellfun(@length,psi));
code{k} = zeros(feat_dim, 1);
end
% pool across scales
for s=1:numel(opts.scales),
if ~isempty(psi{s}),
code{k} = code{k} + psi{s};
end
end
assert(~isempty(code{k}));
end
% square-root and l2 normalize (like: Improved Fisher?)
switch opts.normalization
case 'sqrt_L2'
for k=1:numel(im),
code{k} = sign(code{k}).*sqrt(abs(code{k}));
code{k} = code{k}./(norm(code{k}+eps));
end
case 'L2'
for k=1:numel(im),
code{k} = code{k}./(norm(code{k}+eps));
end
case 'sqrt'
for k=1:numel(im),
code{k} = sign(code{k}).*sqrt(abs(code{k}));
end
case 'none'
end
if nVargOut==2
varargout{1} = cat(4, im_resA{:});
varargout{2} = cat(4, im_resB{:});
end
function psi = bilinear_pool(A, B)
w1 = size(A,2) ;
h1 = size(A,1) ;
w2 = size(B,2) ;
h2 = size(B,1) ;
if w1*h1 <= w2*h2,
%downsample B
B = array_resize(B, w1, h1);
A = reshape(A, [w1*h1 size(A,3)]);
else
%downsample A
A = array_resize(A, w2, h2);
B = reshape(B, [w2*h2 size(B,3)]);
end
% bilinear pool
psi = A'*B;
psi = psi(:);
function Ar = array_resize(A, w, h)
numChannels = size(A, 3);
indw = round(linspace(1,size(A,2),w));
indh = round(linspace(1,size(A,1),h));
Ar = zeros(w*h, numChannels, 'single');
for i = 1:numChannels,
Ai = A(indh,indw,i);
Ar(:,i) = Ai(:);
end
|
github
|
akileshbadrinaaraayanan/IITH-master
|
model_setup.m
|
.m
|
IITH-master/Sem6/CS5190_Soft_Computing/cs13b1042_final_code/model_setup.m
| 4,981 |
utf_8
|
dd2ecf29110db93049ea41940d366eaf
|
function [opts, imdb] = model_setup(varargin)
% Copyright (C) 2015 Tsung-Yu Lin, Aruni RoyChowdhury, Subhransu Maji.
% All rights reserved.
%
% This file is part of the BCNN and is made available under
% the terms of the BSD license (see the COPYING file).
setup ;
opts.seed = 1 ;
opts.batchSize = 128 ;
opts.numEpochs = 100;
opts.momentum = 0.9;
opts.keepAspect = true;
opts.useVal = false;
opts.useGpu = 0 ;
opts.regionBorder = 0.05 ;
opts.numDCNNWords = 64 ;
opts.numDSIFTWords = 256 ;
opts.numSamplesPerWord = 1000 ;
opts.printDatasetInfo = true ;
opts.excludeDifficult = true ;
opts.datasetSize = inf;
opts.encoders = {struct('type', 'rcnn', 'opts', {})} ;
opts.dataset = 'cub' ;
opts.carsDir = '../data/car_ims';
opts.cubDir = '../data/CUB_200_2011';
opts.aircraftDir = '../data/oid-aircraft-beta-1';
opts.suffix = 'baseline' ;
opts.prefix = 'v1' ;
opts.model = '../data/models/imagenet-vgg-m.mat';
opts.modela = '../data/models/imagenet-vgg-m.mat';
opts.modelb = '../data/models/imagenet-vgg-s.mat';
opts.layer = 14;
opts.layera = 14;
opts.layerb = 14;
%opts.bcnn = false;
opts.bcnnScale = 1;
opts.bcnnLRinit = false;
opts.bcnnLayer = 14;
opts.dataAugmentation = {'none', 'none', 'none'};
[opts, varargin] = vl_argparse(opts,varargin) ;
opts.expDir = sprintf('data/%s/%s-seed-%02d', opts.prefix, opts.dataset, opts.seed) ;
opts.imdbDir = fullfile(opts.expDir, 'imdb') ;
opts.resultPath = fullfile(opts.expDir, sprintf('result-%s.mat', opts.suffix)) ;
opts = vl_argparse(opts,varargin) ;
if nargout <= 1, return ; end
% Setup GPU if needed
if opts.useGpu
gpuDevice(opts.useGpu) ;
end
% -------------------------------------------------------------------------
% Setup encoders
% -------------------------------------------------------------------------
models = {} ;
modelPath = {};
for i = 1:numel(opts.encoders)
if isstruct(opts.encoders{i})
name = opts.encoders{i}.name ;
opts.encoders{i}.path = fullfile(opts.expDir, [name '-encoder.mat']) ;
opts.encoders{i}.codePath = fullfile(opts.expDir, [name '-codes.mat']) ;
[md, mdpath] = get_cnn_model_from_encoder_opts(opts.encoders{i});
models = horzcat(models, md) ;
modelPath = horzcat(modelPath, mdpath);
% models = horzcat(models, get_cnn_model_from_encoder_opts(opts.encoders{i})) ;
else
for j = 1:numel(opts.encoders{i})
name = opts.encoders{i}{j}.name ;
opts.encoders{i}{j}.path = fullfile(opts.expDir, [name '-encoder.mat']) ;
opts.encoders{i}{j}.codePath = fullfile(opts.expDir, [name '-codes.mat']) ;
[md, mdpath] = get_cnn_model_from_encoder_opts(opts.encoders{i}{j});
models = horzcat(models, md) ;
modelPath = horzcat(modelPath, mdpath);
% models = horzcat(models, get_cnn_model_from_encoder_opts(opts.encoders{i}{j})) ;
end
end
end
% -------------------------------------------------------------------------
% Download CNN models
% -------------------------------------------------------------------------
for i = 1:numel(models)
if ~exist(modelPath{i})
error(['cannot find model ', models{i}]) ;
end
end
% -------------------------------------------------------------------------
% Load dataset
% -------------------------------------------------------------------------
vl_xmkdir(opts.expDir) ;
vl_xmkdir(opts.imdbDir) ;
imdbPath = fullfile(opts.imdbDir, sprintf('imdb-seed-%d.mat', opts.seed)) ;
if exist(imdbPath)
imdb = load(imdbPath) ;
return ;
end
switch opts.dataset
case 'cubcrop'
imdb = cub_get_database(opts.cubDir, true, false);
case 'cub'
imdb = cub_get_database(opts.cubDir, false, opts.useVal);
case 'aircraft-variant'
imdb = aircraft_get_database(opts.aircraftDir, 'variant');
case 'cars'
imdb = cars_get_database(opts.carsDir, false, opts.useVal);
otherwise
error('Unknown dataset %s', opts.dataset) ;
end
save(imdbPath, '-struct', 'imdb') ;
if opts.printDatasetInfo
print_dataset_info(imdb) ;
end
% -------------------------------------------------------------------------
function [model, modelPath] = get_cnn_model_from_encoder_opts(encoder)
% -------------------------------------------------------------------------
p = find(strcmp('model', encoder.opts)) ;
if ~isempty(p)
[~,m,e] = fileparts(encoder.opts{p+1}) ;
model = {[m e]} ;
modelPath = encoder.opts{p+1};
else
model = {} ;
modelPath = {};
end
% bilinear cnn models
p = find(strcmp('modela', encoder.opts)) ;
if ~isempty(p)
[~,m,e] = fileparts(encoder.opts{p+1}) ;
model = horzcat(model,{[m e]}) ;
modelPath = horzcat(modelPath, encoder.opts{p+1});
end
p = find(strcmp('modelb', encoder.opts)) ;
if ~isempty(p)
[~,m,e] = fileparts(encoder.opts{p+1}) ;
model = horzcat(model,{[m e]}) ;
modelPath = horzcat(modelPath, encoder.opts{p+1});
end
|
github
|
akileshbadrinaaraayanan/IITH-master
|
bcnn_asym_forward.m
|
.m
|
IITH-master/Sem6/CS5190_Soft_Computing/cs13b1042_final_code/bcnn_asym_forward.m
| 3,110 |
utf_8
|
ae749c28e094092f12b95926a2f4f0f1
|
function [code, varargout]= bcnn_asym_forward(neta, netb, im, varargin)
% BCNN_ASYM_FORWARD run the forward passing of the two networks and output the
% bilinear cnn features for batch of images. The images are pre-cropped,
% resized and mean subtracted. The function doesn't preprocess the images
% instead just get the bcnn outputs.
% INPUT
% neta: network A beased on MatConvNet structure
% netb: network B beased on MatConvNet structure
% im{1} : cell array of images input for network A
% im{2} : cell array of images input for network B
% OUTPUT
% code: cell array of output bcnn codes
% varargout:
% varargout{1}: output of network A
% varargout{2}: output of network B
% Copyright (C) 2015 Tsung-Yu Lin, Aruni RoyChowdhury, Subhransu Maji.
% All rights reserved.
%
% This file is part of the BCNN and is made available under
% the terms of the BSD license (see the COPYING file).
nVargOut = max(nargout,1)-1;
if nVargOut==1 || nVargOut==2 || nVargOut==3
assert(true, 'Number of output problem')
end
% basic setting
opts.crop = true ;
opts.encoder = [] ;
opts.regionBorder = 0.05;
opts.normalization = 'sqrt';
opts.networkconservmemory = true;
opts = vl_argparse(opts, varargin) ;
% re-structure the images to 4-D arrays
im_resA = im{1};
im_resB = im{2};
N = numel(im_resA);
im_resA = cat(4, im_resA{:});
im_resB = cat(4, im_resB{:});
resA = [] ;
resB = [] ;
code = cell(1, N);
% move images to GPU
if neta.useGpu
im_resA = gpuArray(im_resA) ;
im_resB = gpuArray(im_resB) ;
end
% forward passsing
resA = vl_bilinearnn(neta, im_resA, [], resA, ...
'conserveMemory', opts.networkconservmemory, 'sync', true);
resB = vl_bilinearnn(netb, im_resB, [], resB, ...
'conserveMemory', opts.networkconservmemory, 'sync', true);
% get the output of the last layers
A = gather(resA(end).x);
B = gather(resB(end).x);
% compute outer product and pool across pixels for each image
for k=1:N
code{k} = bilinear_pool(squeeze(A(:,:,:,k)), squeeze(B(:,:,:,k)));
assert(~isempty(code{k}));
end
% square-root and l2 normalize (like: Improved Fisher?)
switch opts.normalization
case 'sqrt'
for k=1:N,
code{k} = sign(code{k}).*sqrt(abs(code{k}));
code{k} = code{k}./(norm(code{k}+eps));
end
case 'L2'
for k=1:N,
code{k} = code{k}./(norm(code{k}+eps));
end
case 'none'
end
if nVargOut==2
varargout{1} = resA;
varargout{2} = resB;
end
function psi = bilinear_pool(A, B)
w1 = size(A,2) ;
h1 = size(A,1) ;
w2 = size(B,2) ;
h2 = size(B,1) ;
if w1*h1 <= w2*h2,
%downsample B
B = array_resize(B, w1, h1);
A = reshape(A, [w1*h1 size(A,3)]);
else
%downsample A
A = array_resize(A, w2, h2);
B = reshape(B, [w2*h2 size(B,3)]);
end
% bilinear pool
psi = A'*B;
psi = psi(:);
function Ar = array_resize(A, w, h)
numChannels = size(A, 3);
indw = round(linspace(1,size(A,2),w));
indh = round(linspace(1,size(A,1),h));
Ar = zeros(w*h, numChannels, 'single');
for i = 1:numChannels,
Ai = A(indh,indw,i);
Ar(:,i) = Ai(:);
end
|
github
|
akileshbadrinaaraayanan/IITH-master
|
vl_bilinearnn.m
|
.m
|
IITH-master/Sem6/CS5190_Soft_Computing/cs13b1042_final_code/vl_bilinearnn.m
| 11,132 |
utf_8
|
fd1ef3540067f57e543ae75b8fb91153
|
function res = vl_bilinearnn(net, x, dzdy, res, varargin)
% VL_BILINEARNN is the extension of VL_SIMPLENN to suppport
% 1.vl_nnbilinearpool()
% 2.vl_nnbilinearclpool()
% 3.vl_nnsqrt()
% 4.vl_nnl2norm()
% RES = VL_BILINEARENN(NET, X) evaluates the convnet NET on data X.
% RES = VL_BILINEARNN(NET, X, DZDY) evaluates the convnent NET and its
% derivative on data X and output derivative DZDY.
%
% The network has a simple (linear) topology, i.e. the computational
% blocks are arranged in a sequence of layers. Please note that
% there is no need to use this wrapper, which is provided for
% convenience. Instead, the individual CNN computational blocks can
% be evaluated directly, making it possible to create significantly
% more complex topologies, and in general allowing greater
% flexibility.
%
% The NET structure contains two fields:
%
% - net.layers: the CNN layers.
% - net.normalization: information on how to normalize input data.
%
% The network expects the data X to be already normalized. This
% usually involves rescaling the input image(s) and subtracting a
% mean.
%
% RES is a structure array with one element per network layer plus
% one representing the input. So RES(1) refers to the zeroth-layer
% (input), RES(2) refers to the first layer, etc. Each entry has
% fields:
%
% - res(i+1).x: the output of layer i. Hence res(1).x is the network
% input.
%
% - res(i+1).aux: auxiliary output data of layer i. For example,
% dropout uses this field to store the dropout mask.
%
% - res(i+1).dzdx: the derivative of the network output relative to
% variable res(i+1).x, i.e. the output of layer i. In particular
% res(1).dzdx is the derivative of the network output with respect
% to the network input.
%
% - res(i+1).dzdw: the derivative of the network output relative to
% the parameters of layer i. It can be a cell array for multiple
% parameters.
%
% net.layers is a cell array of network layers. The following
% layers, encapsulating corresponding functions in the toolbox, are
% supported:
%
% Convolutional layer::
% The convolutional layer wraps VL_NNCONV(). It has fields:
%
% - layer.type = 'conv'
% - layer.filters: the filters.
% - layer.biases: the biases.
% - layer.stride: the sampling stride (usually 1).
% - layer.padding: the padding (usually 0).
%
% Max pooling layer::
% The max pooling layer wraps VL_NNPOOL(). It has fields:
%
% - layer.type = 'pool'
% - layer.method: pooling method ('max' or 'avg').
% - layer.pool: the pooling size.
% - layer.stride: the sampling stride (usually 1).
% - layer.padding: the padding (usually 0).
%
% Normalization layer::
% The normalization layer wraps VL_NNNORMALIZE(). It has fields
%
% - layer.type = 'normalize'
% - layer.param: the normalization parameters.
%
% ReLU layer::
% The ReLU layer wraps VL_NNRELU(). It has fields:
%
% - layer.type = 'relu'
%
% Dropout layer::
% The dropout layer wraps VL_NNDROPOUT(). It has fields:
%
% - layer.type = 'dropout'
% - layer.rate: the dropout rate.
%
% Softmax layer::
% The softmax layer wraps VL_NNSOFTMAX(). It has fields
%
% - layer.type = 'softmax'
%
% Log-loss layer::
% The log-loss layer wraps VL_NNLOSS(). It has fields:
%
% - layer.type = 'loss'
% - layer.class: the ground-truth class.
%
% Softmax-log-loss layer::
% The softmax-log-loss layer wraps VL_NNSOFTMAXLOSS(). It has
% fields:
%
% - layer.type = 'softmaxloss'
% - layer.class: the ground-truth class.
%
% Bilinear-pool layer::
% The bilinear-pool layer wraps VL_NNBILINEARPOOL(). It has fields:
%
% - layer.type = 'bilinearpool'
%
% Bilinear-cross-layer-pool layer::
% The bilinear-cross-layer-pool layer wraps VL_NNBILINEARCLPOOL(). It has fields:
%
% - layer.type = 'bilinearclpool'
% - layer.layer1: one input from the output of layer1
% - layer.layer2: one input from the output of layer2
%
% Square-root layer::
% The square-root layer wraps VL_NNSQRT(). It has fields:
%
% - layer.type = 'sqrt'
%
% L2 normalization layer::
% The l2 normalization layer wraps VL_NNL2NORM(). It has fields:
%
% - layer.type = 'l2norm'
%
% Custom layer::
% This can be used to specify custom layers.
%
% - layer.type = 'custom'
% - layer.forward: a function handle computing the block.
% - layer.backward: a function handle computing the block derivative.
%
% The first function is called as res(i+1) = forward(layer, res(i), res(i+1))
% where res() is the struct array specified before. The second function is
% called as res(i) = backward(layer, res(i), res(i+1)). Note that the
% `layer` structure can contain additional fields if needed.
%
% Copyright (C) 2015 Tsung-Yu Lin, Aruni RoyChowdhury, Subhransu Maji.
% All rights reserved.
%
% This file is modified from VL_SIMPLENN.m of MATCONVNET package
% and is made available under the terms of the BSD license (see the COPYING file).
opts.res = [] ;
opts.conserveMemory = false ;
opts.sync = false ;
opts.disableDropout = false ;
opts.freezeDropout = false ;
opts.doforward = true;
opts = vl_argparse(opts, varargin);
n = numel(net.layers) ;
doforward = opts.doforward;
if (nargin <= 2) || isempty(dzdy)
doder = false ;
else
doder = true ;
end
docrosslayer = false;
for i=1:n
l = net.layers{i} ;
if(strcmp(l.type, 'bilinearclpool'))
docrosslayer = true;
crlayer1 = l.layer1;
crlayer2 = l.layer2;
end
end
if(opts.doforward)
gpuMode = isa(x, 'gpuArray') ;
else
gpuMode = isa(dzdy, 'gpuArray') ;
end
if nargin <= 3 || isempty(res)
res = struct(...
'x', cell(1,n+1), ...
'dzdx', cell(1,n+1), ...
'dzdw', cell(1,n+1), ...
'aux', cell(1,n+1), ...
'time', num2cell(zeros(1,n+1)), ...
'backwardTime', num2cell(zeros(1,n+1))) ;
end
if(~isempty(x))
res(1).x = x ;
end
if doforward
for i=1:n
l = net.layers{i} ;
res(i).time = tic ;
switch l.type
case 'conv'
res(i+1).x = vl_nnconv(res(i).x, l.filters, l.biases, 'pad', l.pad, 'stride', l.stride) ;
case 'pool'
res(i+1).x = vl_nnpool(res(i).x, l.pool, 'pad', l.pad, 'stride', l.stride, 'method', l.method) ;
case 'normalize'
res(i+1).x = vl_nnnormalize(res(i).x, l.param) ;
case 'softmax'
res(i+1).x = vl_nnsoftmax(res(i).x) ;
case 'loss'
res(i+1).x = vl_nnloss(res(i).x, l.class) ;
case 'softmaxloss'
res(i+1).x = vl_nnsoftmaxloss(res(i).x, l.class) ;
case 'relu'
res(i+1).x = vl_nnrelu(res(i).x) ;
case 'noffset'
res(i+1).x = vl_nnnoffset(res(i).x, l.param) ;
case 'bilinearpool'
res(i+1).x = vl_nnbilinearpool(res(i).x);
case 'bilinearclpool'
x1 = res(l.layer1+1).x;
x2 = res(l.layer2+1).x;
res(i+1).x = vl_nnbilinearclpool(x1, x2);
case 'sqrt'
res(i+1).x = vl_nnsqrt(res(i).x);
case 'l2norm'
res(i+1).x = vl_nnl2norm(res(i).x);
case 'dropout'
if opts.disableDropout
res(i+1).x = res(i).x ;
elseif opts.freezeDropout
[res(i+1).x, res(i+1).aux] = vl_nndropout(res(i).x, 'rate', l.rate, 'mask', res(i+1).aux) ;
else
[res(i+1).x, res(i+1).aux] = vl_nndropout(res(i).x, 'rate', l.rate) ;
end
case 'custom'
res(i+1) = l.forward(l, res(i), res(i+1)) ;
otherwise
error('Unknown layer type %s', l.type) ;
end
if opts.conserveMemory & ~doder & i < numel(net.layers) - 1
% TODO: forget unnecesary intermediate computations even when
% derivatives are required
if ~docrosslayer
res(i).x = [] ;
else
if i~=crlayer1+1 && i~=crlayer2+1
res(i).x = [] ;
end
end
end
if gpuMode & opts.sync
% This should make things slower, but on MATLAB 2014a it is necessary
% for any decent performance.
wait(gpuDevice) ;
end
res(i).time = toc(res(i).time) ;
end
end
if doder
res(n+1).dzdx = dzdy ;
for i=n:-1:1
l = net.layers{i} ;
res(i).backwardTime = tic ;
switch l.type
case 'conv'
[backprop, res(i).dzdw{1}, res(i).dzdw{2}] = ...
vl_nnconv(res(i).x, l.filters, l.biases, ...
res(i+1).dzdx, ...
'pad', l.pad, 'stride', l.stride) ;
res(i).dzdx = updateGradient(res(i).dzdx, backprop);
case 'pool'
backprop = vl_nnpool(res(i).x, l.pool, res(i+1).dzdx, ...
'pad', l.pad, 'stride', l.stride, 'method', l.method) ;
res(i).dzdx = updateGradient(res(i).dzdx, backprop);
case 'normalize'
backprop = vl_nnnormalize(res(i).x, l.param, res(i+1).dzdx) ;
res(i).dzdx = updateGradient(res(i).dzdx, backprop);
case 'softmax'
res(i).dzdx = vl_nnsoftmax(res(i).x, res(i+1).dzdx) ;
case 'loss'
res(i).dzdx = vl_nnloss(res(i).x, l.class, res(i+1).dzdx) ;
case 'softmaxloss'
res(i).dzdx = vl_nnsoftmaxloss(res(i).x, l.class, res(i+1).dzdx) ;
case 'relu'
backprop = vl_nnrelu(res(i).x, res(i+1).dzdx) ;
res(i).dzdx = updateGradient(res(i).dzdx, backprop);
case 'noffset'
backprop = vl_nnnoffset(res(i).x, l.param, res(i+1).dzdx) ;
res(i).dzdx = updateGradient(res(i).dzdx, backprop);
case 'bilinearpool'
backprop = vl_nnbilinearpool(res(i).x, res(i+1).dzdx);
res(i).dzdx = updateGradient(res(i).dzdx, backprop);
case 'bilinearclpool'
x1 = res(l.layer1+1).x;
x2 = res(l.layer2+1).x;
[y1, y2] = vl_nnbilinearclpool(x1, x2, res(i+1).dzdx);
res(l.layer1+1).dzdx = updateGradient(res(l.layer1+1).dzdx, y1);
res(l.layer2+1).dzdx = updateGradient(res(l.layer2+1).dzdx, y2);
case 'sqrt'
res(i).dzdx = vl_nnsqrt(res(i).x, res(i+1).dzdx);
case 'l2norm'
res(i).dzdx = vl_nnl2norm(res(i).x, res(i+1).dzdx);
case 'dropout'
if opts.disableDropout
backprop = res(i+1).dzdx ;
else
backprop = vl_nndropout(res(i).x, res(i+1).dzdx, 'mask', res(i+1).aux) ;
end
res(i).dzdx = updateGradient(res(i).dzdx, backprop);
case 'custom'
res(i) = l.backward(l, res(i), res(i+1)) ;
end
if opts.conserveMemory
res(i+1).dzdx = [] ;
end
if gpuMode & opts.sync
wait(gpuDevice) ;
end
res(i).backwardTime = toc(res(i).backwardTime) ;
end
end
% add up the gradient
function g = updateGradient(y, backprop)
if isempty(y)
g = backprop;
else
g = y + backprop;
end
|
github
|
akileshbadrinaaraayanan/IITH-master
|
bcnn_train_sw.m
|
.m
|
IITH-master/Sem6/CS5190_Soft_Computing/cs13b1042_final_code/bcnn_train_sw.m
| 11,154 |
utf_8
|
4537c6cb7fb3028503d506f65310b2d9
|
function [net, info] = bcnn_train_sw(net, imdb, getBatch, varargin)
% BNN_TRAIN_SW training a symmetric BCNN
% BCNN_TRAIN() is an example learner implementing stochastic gradient
% descent with momentum to train a symmetric BCNN for image classification.
% It can be used with different datasets by providing a suitable
% getBatch function.
% INPUT
% net: a bcnn networks structure
% getBatch: function to read a batch of images
% imdb: imdb structure of a dataset
% OUTPUT
% net: an output of symmetric bcnn network after fine-tuning
% info: log of training and validation
% A symmetric BCNN consists of multiple layers of convolutions, pooling, and
% nonlinear activation with bilinearpool, square-root and L2 normalization
% and sofmaxloss on the top.
% Copyright (C) 2015 Tsung-Yu Lin, Aruni RoyChowdhury, Subhransu Maji.
% All rights reserved.
%
% This file is part of the BCNN and is made available under
% the terms of the BSD license (see the COPYING file).
% This function is modified from CNN_TRAIN of MatConvNet
% basic setting
opts.train = [] ;
opts.val = [] ;
opts.numEpochs = 300 ;
opts.batchSize = 256 ;
opts.useGpu = false ;
opts.learningRate = 0.001 ;
opts.continue = false ;
opts.expDir = fullfile('data','exp') ;
opts.conserveMemory = false ;
opts.sync = true ;
opts.prefetch = false ;
opts.weightDecay = 0.0005 ;
opts.momentum = 0.9;
opts.errorType = 'multiclass' ;
opts.plotDiagnostics = false ;
opts.dataAugmentation = {'none','none','none'};
opts.scale = 1;
opts = vl_argparse(opts, varargin) ;
if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end
if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end
if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end
if isnan(opts.train), opts.train = [] ; end
% -------------------------------------------------------------------------
% Network initialization
% -------------------------------------------------------------------------
% set hyperparameters
for i=1:numel(net.layers)
if ~strcmp(net.layers{i}.type,'conv'), continue; end
net.layers{i}.filtersMomentum = zeros(size(net.layers{i}.filters), ...
class(net.layers{i}.filters)) ;
net.layers{i}.biasesMomentum = zeros(size(net.layers{i}.biases), ...
class(net.layers{i}.biases)) ; %#ok<*ZEROLIKE>
if ~isfield(net.layers{i}, 'filtersLearningRate')
net.layers{i}.filtersLearningRate = 1 ;
end
if ~isfield(net.layers{i}, 'biasesLearningRate')
net.layers{i}.biasesLearningRate = 1 ;
end
if ~isfield(net.layers{i}, 'filtersWeightDecay')
net.layers{i}.filtersWeightDecay = 1 ;
end
if ~isfield(net.layers{i}, 'biasesWeightDecay')
net.layers{i}.biasesWeightDecay = 1 ;
end
end
% -------------------------------------------------------------------------
% Move network to GPU or CPU
% -------------------------------------------------------------------------
if opts.useGpu
net = vl_simplenn_move(net, 'gpu') ;
for i=1:numel(net.layers)
if ~strcmp(net.layers{i}.type,'conv'), continue; end
net.layers{i}.filtersMomentum = gpuArray(net.layers{i}.filtersMomentum) ;
net.layers{i}.biasesMomentum = gpuArray(net.layers{i}.biasesMomentum) ;
end
end
% -------------------------------------------------------------------------
% Train and validate
% -------------------------------------------------------------------------
if opts.useGpu
one = gpuArray(single(1)) ;
else
one = single(1) ;
end
info.train.objective = [] ;
info.train.error = [] ;
info.train.topFiveError = [] ;
info.train.speed = [] ;
info.val.objective = [] ;
info.val.error = [] ;
info.val.topFiveError = [] ;
info.val.speed = [] ;
lr = 0 ;
res = [] ;
for epoch=1:opts.numEpochs
prevLr = lr ;
lr = opts.learningRate(min(epoch, numel(opts.learningRate))) ;
% fast-forward to where we stopped, true, opts.scale
modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep));
modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ;
if opts.continue
if exist(modelPath(epoch),'file'), continue ; end
if epoch > 1
fprintf('resuming by loading epoch %d\n', epoch-1) ;
load(modelPath(epoch-1), 'net', 'info') ;
end
end
train = opts.train(randperm(numel(opts.train))) ;
val = opts.val ;
info.train.objective(end+1) = 0 ;
info.train.error(end+1) = 0 ;
info.train.topFiveError(end+1) = 0 ;
info.train.speed(end+1) = 0 ;
info.val.objective(end+1) = 0 ;
info.val.error(end+1) = 0 ;
info.val.topFiveError(end+1) = 0 ;
info.val.speed(end+1) = 0 ;
% reset momentum if needed
if prevLr ~= lr
fprintf('learning rate changed (%f --> %f): resetting momentum\n', prevLr, lr) ;
for l=1:numel(net.layers)
if ~strcmp(net.layers{l}.type, 'conv'), continue ; end
net.layers{l}.filtersMomentum = 0 * net.layers{l}.filtersMomentum ;
net.layers{l}.biasesMomentum = 0 * net.layers{l}.biasesMomentum ;
end
end
for t=1:opts.batchSize:numel(train)
% get next image batch and labels
batch = train(t:min(t+opts.batchSize-1, numel(train))) ;
batch_time = tic ;
fprintf('training: epoch %02d: processing batch %3d of %3d ...', epoch, ...
fix((t-1)/opts.batchSize)+1, ceil(numel(train)/opts.batchSize)) ;
[im, labels] = getBatch(imdb, batch, opts.dataAugmentation{1}, opts.scale) ;
if opts.prefetch
nextBatch = train(t+opts.batchSize:min(t+2*opts.batchSize-1, numel(train))) ;
getBatch(imdb, nextBatch, opts.dataAugmentation{1}, opts.scale) ;
end
im = im{1};
im = cat(4, im{:});
if opts.useGpu
im = gpuArray(im) ;
end
% backprop
net.layers{end}.class = labels ;
res = [] ;
res = vl_bilinearnn(net, im, one, res, ...
'conserveMemory', opts.conserveMemory, ...
'sync', opts.sync) ;
% gradient step
for l=1:numel(net.layers)
if ~strcmp(net.layers{l}.type, 'conv'), continue ; end
net.layers{l}.filtersMomentum = ...
opts.momentum * net.layers{l}.filtersMomentum ...
- (lr * net.layers{l}.filtersLearningRate) * ...
(opts.weightDecay * net.layers{l}.filtersWeightDecay) * net.layers{l}.filters ...
- (lr * net.layers{l}.filtersLearningRate) / numel(batch) * res(l).dzdw{1} ;
net.layers{l}.biasesMomentum = ...
opts.momentum * net.layers{l}.biasesMomentum ...
- (lr * net.layers{l}.biasesLearningRate) * ....
(opts.weightDecay * net.layers{l}.biasesWeightDecay) * net.layers{l}.biases ...
- (lr * net.layers{l}.biasesLearningRate) / numel(batch) * res(l).dzdw{2} ;
net.layers{l}.filters = net.layers{l}.filters + net.layers{l}.filtersMomentum ;
net.layers{l}.biases = net.layers{l}.biases + net.layers{l}.biasesMomentum ;
end
% print information
batch_time = toc(batch_time) ;
speed = numel(batch)/batch_time ;
info.train = updateError(opts, info.train, net, res, batch_time) ;
fprintf(' %.2f s (%.1f images/s)', batch_time, speed) ;
n = t + numel(batch) - 1 ;
fprintf(' err %.1f err5 %.1f', ...
info.train.error(end)/n*100, info.train.topFiveError(end)/n*100) ;
fprintf('\n') ;
% debug info
if opts.plotDiagnostics
figure(2) ; vl_simplenn_diagnose(net,res) ; drawnow ;
end
end % next batch
% evaluation on validation set
for t=1:opts.batchSize:numel(val)
batch_time = tic ;
batch = val(t:min(t+opts.batchSize-1, numel(val))) ;
fprintf('validation: epoch %02d: processing batch %3d of %3d ...', epoch, ...
fix((t-1)/opts.batchSize)+1, ceil(numel(val)/opts.batchSize)) ;
[im, labels] = getBatch(imdb, batch, opts.dataAugmentation{2}, opts.scale) ;
if opts.prefetch
nextBatch = val(t+opts.batchSize:min(t+2*opts.batchSize-1, numel(val))) ;
getBatch(imdb, nextBatch, opts.dataAugmentation{2}, opts.scale) ;
end
im = im{1};
im = cat(4, im{:});
if opts.useGpu
im = gpuArray(im) ;
end
net.layers{end}.class = labels ;
res = [] ;
res = vl_bilinearnn(net, im, [], res, ...
'disableDropout', true, ...
'conserveMemory', opts.conserveMemory, ...
'sync', opts.sync) ;
% print information
batch_time = toc(batch_time) ;
speed = numel(batch)/batch_time ;
info.val = updateError(opts, info.val, net, res, batch_time) ;
fprintf(' %.2f s (%.1f images/s)', batch_time, speed) ;
n = t + numel(batch) - 1 ;
fprintf(' err %.1f err5 %.1f', ...
info.val.error(end)/n*100, info.val.topFiveError(end)/n*100) ;
fprintf('\n') ;
end
% save
info.train.objective(end) = info.train.objective(end) / numel(train) ;
info.train.error(end) = info.train.error(end) / numel(train) ;
info.train.topFiveError(end) = info.train.topFiveError(end) / numel(train) ;
info.train.speed(end) = numel(train) / info.train.speed(end) ;
info.val.objective(end) = info.val.objective(end) / numel(val) ;
info.val.error(end) = info.val.error(end) / numel(val) ;
info.val.topFiveError(end) = info.val.topFiveError(end) / numel(val) ;
info.val.speed(end) = numel(val) / info.val.speed(end) ;
save(modelPath(epoch), 'net', 'info', '-v7.3') ;
figure(1) ; clf ;
subplot(1,2,1) ;
semilogy(1:epoch, info.train.objective, 'k') ; hold on ;
semilogy(1:epoch, info.val.objective, 'b') ;
xlabel('training epoch') ; ylabel('energy') ;
grid on ;
h=legend('train', 'val') ;
set(h,'color','none');
title('objective') ;
subplot(1,2,2) ;
switch opts.errorType
case 'multiclass'
plot(1:epoch, info.train.error, 'k') ; hold on ;
plot(1:epoch, info.train.topFiveError, 'k--') ;
plot(1:epoch, info.val.error, 'b') ;
plot(1:epoch, info.val.topFiveError, 'b--') ;
h=legend('train','train-5','val','val-5') ;
case 'binary'
plot(1:epoch, info.train.error, 'k') ; hold on ;
plot(1:epoch, info.val.error, 'b') ;
h=legend('train','val') ;
end
grid on ;
xlabel('training epoch') ; ylabel('error') ;
set(h,'color','none') ;
title('error') ;
drawnow ;
print(1, modelFigPath, '-dpdf') ;
end
% -------------------------------------------------------------------------
function info = updateError(opts, info, net, res, speed)
% -------------------------------------------------------------------------
predictions = gather(res(end-1).x) ;
sz = size(predictions) ;
n = prod(sz(1:2)) ;
labels = net.layers{end}.class ;
info.objective(end) = info.objective(end) + sum(double(gather(res(end).x))) ;
info.speed(end) = info.speed(end) + speed ;
switch opts.errorType
case 'multiclass'
[~,predictions] = sort(predictions, 3, 'descend') ;
error = ~bsxfun(@eq, predictions, reshape(labels, 1, 1, 1, [])) ;
info.error(end) = info.error(end) +....
sum(sum(sum(error(:,:,1,:))))/n ;
info.topFiveError(end) = info.topFiveError(end) + ...
sum(sum(sum(min(error(:,:,1:5,:),[],3))))/n ;
case 'binary'
error = bsxfun(@times, predictions, labels) < 0 ;
info.error(end) = info.error(end) + sum(error(:))/n ;
end
|
github
|
akileshbadrinaaraayanan/IITH-master
|
get_dcnn_features.m
|
.m
|
IITH-master/Sem6/CS5190_Soft_Computing/cs13b1042_final_code/get_dcnn_features.m
| 5,754 |
utf_8
|
75a8a8a1052928aa38fc0e3a6965005c
|
function code = get_dcnn_features(net, im, varargin)
% GET_DCNN_FEATURES Get convolutional features for an image region
% This function extracts the DCNN (CNN+FV) for an image.
% These can be used as SIFT replacement in e.g. a Fisher Vector.
%
opts.useSIFT = false ;
opts.crop = true ;
%opts.scales = 2.^(1.5:-.5:-3); % as in CVPR14 submission
opts.scales = 2;
opts.encoder = [] ;
opts.numSpatialSubdivisions = 1 ;
opts.maxNumLocalDescriptorsReturned = +inf ;
opts = vl_argparse(opts, varargin) ;
% Find geometric parameters of the representation. x is set to the
% leftmost pixel of the receptive field of the lefmost feature at
% the last level of the network. This is computed by backtracking
% from the last layer. Then we obtain a map
%
% x(u) = offset + stride * u
%
% from a feature index u to pixel coordinate v of the center of the
% receptive field.
if isempty(net)
keepAspect = true;
else
keepAspect = net.normalization.keepAspect;
end
if opts.useSIFT
binSize = 8;
offset = 1 + 3/2 * binSize ;
stride = 4;
border = binSize*2 ;
imageSize = [224 224];
else
info = vl_simplenn_display(net) ;
x=1 ;
for l=numel(net.layers):-1:1
x=(x-1)*info.stride(2,l)-info.pad(2,l)+1 ;
end
offset = round(x + info.receptiveField(end)/2 - 0.5);
stride = prod(info.stride(1,:)) ;
border = round(info.receptiveField(end)/2+1) ;
averageColour = mean(mean(net.normalization.averageImage,1),2) ;
imageSize = net.normalization.imageSize;
end
if ~iscell(im)
im = {im} ;
end
numNull = 0 ;
numReg = 0 ;
% for each image
for k=1:numel(im)
im_cropped = imresize(single(im{k}), imageSize([2 1]), 'bilinear');
crop_h = size(im_cropped,1) ;
crop_w = size(im_cropped,2) ;
psi = cell(1, numel(opts.scales)) ;
loc = cell(1, numel(opts.scales)) ;
res = [] ;
% for each scale
for s=1:numel(opts.scales)
if min(crop_h,crop_w) * opts.scales(s) < border, continue ; end
if sqrt(crop_h*crop_w) * opts.scales(s) > 1024, continue ; end
% resize the cropped image and extract features everywhere
if keepAspect
w = size(im{k},2) ;
h = size(im{k},1) ;
factor = [imageSize(1)/h,imageSize(2)/w];
factor = max(factor)*opts.scales(s) ;
%if any(abs(factor - 1) > 0.0001)
im_resized = imresize(single(im{k}), ...
'scale', factor, ...
'method', 'bilinear') ;
%end
w = size(im_resized,2) ;
h = size(im_resized,1) ;
im_resized = imcrop(im_resized, [fix((w-imageSize(1)*opts.scales(s))/2)+1, fix((h-imageSize(2)*opts.scales(s))/2)+1,...
round(imageSize(1)*opts.scales(s))-1, round(imageSize(2)*opts.scales(s))-1]);
else
im_resized = imresize(single(im{k}), round(imageSize([2 1])*opts.scales(s)), 'bilinear');
end
% im_resized = imresize(im_cropped, opts.scales(s)) ;
if opts.useSIFT
[frames,descrs] = vl_dsift(mean(im_resized,3), ...
'size', binSize, ...
'step', stride, ...
'fast', 'floatdescriptors') ;
ur = unique(frames(1,:)) ;
vr = unique(frames(2,:)) ;
[u,v] = meshgrid(ur,vr) ;
%assert(isequal([u(:)';v(:)'], frames)) ;
else
im_resized = bsxfun(@minus, im_resized, averageColour) ;
if net.useGpu
im_resized = gpuArray(im_resized) ;
end
res = vl_simplenn(net, im_resized, [], res, ...
'conserveMemory', true, 'sync', true) ;
w = size(res(end).x,2) ;
h = size(res(end).x,1) ;
descrs = permute(gather(res(end).x), [3 1 2]) ;
descrs = reshape(descrs, size(descrs,1), []) ;
[u,v] = meshgrid(...
offset + (0:w-1) * stride, ...
offset + (0:h-1) * stride) ;
end
u_ = (u - 1) / opts.scales(s) + 1 ;
v_ = (v - 1) / opts.scales(s) + 1 ;
loc_ = [u_(:)';v_(:)'] ;
psi{s} = descrs;
loc{s} = loc_;
end
% Concatenate features from all scales
for r = 1:numel(psi)
code{k} = cat(2, psi{:}) ;
codeLoc{k} = cat(2, zeros(2,0), loc{:}) ;
numReg = numReg + 1 ;
numNull = numNull + isempty(code{k}) ;
end
end
if numNull > 0
fprintf('%s: %d out of %d regions with null DCNN descriptor\n', ...
mfilename, numNull, numReg) ;
end
% at this point code{i} contains all local featrues for image i
if isempty(opts.encoder)
% no gmm: return the local descriptors, but not too many!
rng(0) ;
for k=1:numel(code)
code{k} = vl_colsubset(code{k}, opts.maxNumLocalDescriptorsReturned) ;
end
else
% FV encoding
for k=1:numel(code)
descrs = opts.encoder.projection * bsxfun(@minus, code{k}, ...
opts.encoder.projectionCenter) ;
if opts.encoder.renormalize
descrs = bsxfun(@times, descrs, 1./max(1e-12, sqrt(sum(descrs.^2)))) ;
end
tmp = {} ;
break_u = get_intervals(codeLoc{k}(1,:), opts.numSpatialSubdivisions) ;
break_v = get_intervals(codeLoc{k}(2,:), opts.numSpatialSubdivisions) ;
for spu = 1:opts.numSpatialSubdivisions
for spv = 1:opts.numSpatialSubdivisions
sel = ...
break_u(spu) <= codeLoc{k}(1,:) & codeLoc{k}(1,:) < break_u(spu+1) & ...
break_v(spv) <= codeLoc{k}(2,:) & codeLoc{k}(2,:) < break_v(spv+1);
tmp{end+1}= vl_fisher(descrs(:, sel), ...
opts.encoder.means, ...
opts.encoder.covariances, ...
opts.encoder.priors, ...
'Improved') ;
end
end
% normalization keeps norm = 1
code{k} = cat(1, tmp{:}) / opts.numSpatialSubdivisions ;
end
end
function breaks = get_intervals(x,n)
if isempty(x)
breaks = ones(1,n+1) ;
else
x = sort(x(:)') ;
breaks = x(round(linspace(1, numel(x), n+1))) ;
end
breaks(end) = +inf ;
|
github
|
akileshbadrinaaraayanan/IITH-master
|
imdb_bcnn_train.m
|
.m
|
IITH-master/Sem6/CS5190_Soft_Computing/cs13b1042_final_code/imdb_bcnn_train.m
| 17,253 |
utf_8
|
0df08e6209d5478cefffaf69a7fc339d
|
function imdb_bcnn_train(imdb, opts, varargin)
% Train a bilinear CNN model on a dataset supplied by imdb
% Copyright (C) 2015 Tsung-Yu Lin, Aruni RoyChowdhury, Subhransu Maji.
% All rights reserved.
%
% This file is part of BCNN and is made available
% under the terms of the BSD license (see the COPYING file).
%
% This file modified from IMDB_CNN_TRAIN of MatConvNet
opts.lite = false ;
opts.numFetchThreads = 0 ;
opts.train.batchSize = opts.batchSize ;
opts.train.numEpochs = opts.numEpochs ;
opts.train.continue = true ;
opts.train.useGpu = false ;
opts.train.prefetch = false ;
opts.train.learningRate = [0.001*ones(1, 10) 0.001*ones(1, 10) 0.001*ones(1,10)] ;
opts.train.expDir = opts.expDir ;
opts.train.dataAugmentation = opts.dataAugmentation;
opts = vl_argparse(opts, varargin) ;
opts.inittrain.weightDecay = 0 ;
opts.inittrain.batchSize = 256 ;
opts.inittrain.numEpochs = 300 ;
opts.inittrain.continue = true ;
opts.inittrain.useGpu = false ;
opts.inittrain.prefetch = false ;
opts.inittrain.learningRate = 0.001 ;
opts.inittrain.expDir = fullfile(opts.expDir, 'init') ;
opts.inittrain.nonftbcnnDir = fullfile(opts.expDir, 'nonftbcnn');
if(opts.useGpu)
opts.train.useGpu = opts.useGpu;
opts.inittrain.useGpu = opts.useGpu;
end
% initialize the network
net = initializeNetwork(imdb, opts) ;
shareWeights = ~isfield(net, 'netc');
if(~exist(fullfile(opts.expDir, 'fine-tuned-model'), 'dir'))
mkdir(fullfile(opts.expDir, 'fine-tuned-model'))
end
if(shareWeights)
% fine-tuning the symmetric B-CNN
fn = getBatchWrapper(net.normalization, opts.numFetchThreads) ;
[net,info] = bcnn_train_sw(net, imdb, fn, opts.train, 'conserveMemory', true, 'scale', opts.bcnnScale, 'momentum', opts.momentum) ;
net = vl_simplenn_move(net, 'cpu');
saveNetwork(fullfile(opts.expDir, 'fine-tuned-model', 'final-model.mat'), net);
else
% fine-tuning the asymmetric B-CNN
norm_struct(1) = net.neta.normalization;
norm_struct(2) = net.netb.normalization;
fn = getBatchWrapper(norm_struct, opts.numFetchThreads) ;
% fn = getBatchWrapper(net.neta.normalization, opts.numFetchThreads) ;
[net,info] = bcnn_train(net, fn, imdb, opts.train, 'conserveMemory', true, 'scale', opts.bcnnScale, 'momentum', opts.momentum) ;
net.neta = vl_simplenn_move(net.neta, 'cpu');
net.netb = vl_simplenn_move(net.netb, 'cpu');
saveNetwork(fullfile(opts.expDir, 'fine-tuned-model', 'final-model-neta.mat'), net.neta);
saveNetwork(fullfile(opts.expDir, 'fine-tuned-model', 'final-model-netb.mat'), net.netb);
end
% -------------------------------------------------------------------------
function saveNetwork(fileName, net)
% -------------------------------------------------------------------------
layers = net.layers;
%
% % Replace the last layer with softmax
% layers{end}.type = 'softmax';
% layers{end}.name = 'prob';
% Remove fields corresponding to training parameters
ignoreFields = {'filtersMomentum', ...
'biasesMomentum',...
'filtersLearningRate',...
'biasesLearningRate',...
'filtersWeightDecay',...
'biasesWeightDecay',...
'class'};
for i = 1:length(layers),
layers{i} = rmfield(layers{i}, ignoreFields(isfield(layers{i}, ignoreFields)));
end
classes = net.classes;
normalization = net.normalization;
save(fileName, 'layers', 'classes', 'normalization', '-v7.3');
% -------------------------------------------------------------------------
function fn = getBatchWrapper(opts, numThreads)
% -------------------------------------------------------------------------
fn = @(imdb,batch,augmentation, scale) getBatch(imdb, batch, augmentation, scale, opts, numThreads) ;
% -------------------------------------------------------------------------
function [im,labels] = getBatch(imdb, batch, augmentation, scale, opts, numThreads)
% -------------------------------------------------------------------------
images = strcat([imdb.imageDir '/'], imdb.images.name(batch)) ;
im = imdb_get_batch_bcnn(images, opts, ...
'numThreads', numThreads, ...
'prefetch', nargout == 0, 'augmentation', augmentation, 'scale', scale);
labels = imdb.images.label(batch) ;
numAugments = numel(im{1})/numel(batch);
labels = reshape(repmat(labels, numAugments, 1), 1, numel(im{1}));
function [im,labels] = getBatch_bcnn_fromdisk(imdb, batch, opts, numThreads)
% -------------------------------------------------------------------------
im = cell(1, numel(batch));
for i=1:numel(batch)
load(fullfile(imdb.imageDir, imdb.images.name{batch(i)}));
im{i} = code;
end
im = cat(2, im{:});
im = reshape(im, 1, 1, size(im,1), size(im, 2));
labels = imdb.images.label(batch) ;
function net = initializeNetwork(imdb, opts)
% -------------------------------------------------------------------------
% get encoder setting
encoderOpts.type = 'bcnn';
encoderOpts.modela = [];
encoderOpts.layera = 14;
encoderOpts.modelb = [];
encoderOpts.layerb = 14;
encoderOpts.shareWeight = false;
encoderOpts = vl_argparse(encoderOpts, opts.encoders{1}.opts);
scal = 1 ;
init_bias = 0.1;
numClass = length(imdb.classes.name);
%% the case using two networks
if ~encoderOpts.shareWeight
assert(~isempty(encoderOpts.modela) && ~isempty(encoderOpts.modelb), 'at least one of the network is not specified')
% load the pre-trained models
encoder.neta = load(encoderOpts.modela);
encoder.neta.layers = encoder.neta.layers(1:encoderOpts.layera);
encoder.netb = load(encoderOpts.modelb);
encoder.netb.layers = encoder.netb.layers(1:encoderOpts.layerb);
encoder.regionBorder = 0.05;
encoder.type = 'bcnn';
encoder.normalization = 'sqrt_L2';
% move models to GPU
if opts.useGpu
encoder.neta = vl_simplenn_move(encoder.neta, 'gpu') ;
encoder.netb = vl_simplenn_move(encoder.netb, 'gpu') ;
encoder.neta.useGpu = true ;
encoder.netb.useGpu = true ;
else
encoder.neta = vl_simplenn_move(encoder.neta, 'cpu') ;
encoder.netb = vl_simplenn_move(encoder.netb, 'cpu') ;
encoder.neta.useGpu = false ;
encoder.netb.useGpu = false ;
end
% set the bcnn_net structure
net.neta = encoder.neta;
net.netb = encoder.netb;
net.neta.normalization.keepAspect = opts.keepAspect;
net.netb.normalization.keepAspect = opts.keepAspect;
netc.layers = {};
% get the bcnn feature dimension
for i=numel(net.neta.layers):-1:1
if strcmp(net.neta.layers{i}.type, 'conv')
idx = i;
break;
end
end
ch1 = numel(net.neta.layers{idx}.biases);
for i=numel(net.netb.layers):-1:1
if strcmp(net.netb.layers{i}.type, 'conv')
idx = i;
break;
end
end
ch2 = numel(net.netb.layers{idx}.biases);
dim = ch1*ch2;
% randomly initialize the softmax layer
initialW = 0.001/scal *randn(1,1,dim, numClass,'single');
initialBias = init_bias.*ones(1, numClass, 'single');
netc.layers = {};
net.netc.layers = {};
net.netc.layers{end+1} = struct('type', 'sqrt');
net.netc.layers{end+1} = struct('type', 'l2norm');
netc.layers{end+1} = struct('type', 'conv', ...
'filters', initialW, ...
'biases', initialBias, ...
'stride', 1, ...
'pad', 0, ...
'filtersLearningRate', 1000, ...
'biasesLearningRate', 1000, ...
'filtersWeightDecay', 0, ...
'biasesWeightDecay', 0) ;
netc.layers{end+1} = struct('type', 'softmaxloss') ;
% logistic regression for the softmax layers
if(opts.bcnnLRinit)
if exist(fullfile(opts.expDir, 'initial_fc.mat'))
load(fullfile(opts.expDir, 'initial_fc.mat'), 'netc') ;
else
trainIdx = find(ismember(imdb.images.set, [1 2]));
testIdx = find(ismember(imdb.images.set, 3));
% compute and cache the bilinear cnn features
if ~exist(opts.inittrain.nonftbcnnDir)
mkdir(opts.inittrain.nonftbcnnDir)
batchSize = 10000;
for b=1:ceil(numel(trainIdx)/batchSize)
idxEnd = min(numel(trainIdx), b*batchSize);
idx = trainIdx((b-1)*batchSize+1:idxEnd);
codeCell = encoder_extract_for_images(encoder, imdb, imdb.images.id(idx), 'concatenateCode', false, 'scale', opts.bcnnScale);
for i=1:numel(codeCell)
code = codeCell{i};
savefast(fullfile(opts.inittrain.nonftbcnnDir, ['bcnn_nonft_', num2str(idx(i), '%05d')]), 'code');
end
end
end
bcnndb = imdb;
tempStr = sprintf('%05d\t', trainIdx);
tempStr = textscan(tempStr, '%s', 'delimiter', '\t');
bcnndb.images.name = strcat('bcnn_nonft_', tempStr{1}');
bcnndb.images.id = bcnndb.images.id(trainIdx);
bcnndb.images.label = bcnndb.images.label(trainIdx);
bcnndb.images.set = bcnndb.images.set(trainIdx);
bcnndb.imageDir = opts.inittrain.nonftbcnnDir;
%train logistic regression
[netc, info] = cnn_train(netc, bcnndb, @getBatch_bcnn_fromdisk, opts.inittrain, ...
'batchSize', opts.inittrain.batchSize, 'weightDecay', opts.inittrain.weightDecay, ...
'conserveMemory', true, 'expDir', opts.inittrain.expDir);
save(fullfile(opts.expDir, 'initial_fc.mat'), 'netc', '-v7.3') ;
end
end
for i=1:numel(netc.layers)
net.netc.layers{end+1} = netc.layers{i};
end
else
%% the case with shared weights
assert(strcmp(encoderOpts.modela, encoderOpts.modelb), 'neta and netb are required to be the same');
assert(~isempty(encoderOpts.modela), 'network is not specified');
net = load(encoderOpts.modela); % Load model if specified
net.normalization.keepAspect = opts.keepAspect;
% truncate the network at the last layer whose output is combined with another
% layer's output to form the bcnn feature
maxLayer = max(encoderOpts.layera, encoderOpts.layerb);
net.layers = net.layers(1:maxLayer);
% get the bcnn feature dimension
for i=encoderOpts.layera:-1:1
if strcmp(net.layers{i}.type, 'conv')
idx = i;
break;
end
end
mapSize1 = numel(net.layers{idx}.biases);
for i=encoderOpts.layerb:-1:1
if strcmp(net.layers{i}.type, 'conv')
idx = i;
break;
end
end
mapSize2 = numel(net.layers{idx}.biases);
% stack bilinearpool, normalization, and softmax layers
if(encoderOpts.layera==encoderOpts.layerb)
net.layers{end+1} = struct('type', 'bilinearpool');
else
net.layers{end+1} = struct('type', 'bilinearclpool', 'layer1', encoderOpts.layera, 'layer2', encoderOpts.layerb);
end
net.layers{end+1} = struct('type', 'sqrt');
net.layers{end+1} = struct('type', 'l2norm');
initialW = 0.001/scal * randn(1,1,mapSize1*mapSize2,numClass,'single');
initialBias = init_bias.*ones(1, numClass, 'single');
netc.layers = {};
netc.layers{end+1} = struct('type', 'conv', ...
'filters', initialW, ...
'biases', initialBias, ...
'stride', 1, ...
'pad', 0, ...
'filtersLearningRate', 1000, ...
'biasesLearningRate', 1000, ...
'filtersWeightDecay', 0, ...
'biasesWeightDecay', 0) ;
netc.layers{end+1} = struct('type', 'softmaxloss') ;
% logistic regression for the softmax layers
if(opts.bcnnLRinit)
netInit = net;
if opts.train.useGpu
netInit = vl_simplenn_move(netInit, 'gpu') ;
end
train = find(imdb.images.set==1|imdb.images.set==2);
batchSize = 64;
getBatchFn = getBatchWrapper(netInit.normalization, opts.numFetchThreads);
if ~exist(opts.inittrain.nonftbcnnDir, 'dir')
mkdir(opts.inittrain.nonftbcnnDir)
% compute and cache the bilinear cnn features
for t=1:batchSize:numel(train)
fprintf('Initialization: extracting bcnn feature of batch %d/%d\n', ceil(t/batchSize), ceil(numel(train)/batchSize));
batch = train(t:min(numel(train), t+batchSize-1));
[im, labels] = getBatchFn(imdb, batch, opts.dataAugmentation{1}, opts.bcnnScale) ;
if opts.train.prefetch
nextBatch = train(t+batchSize:min(t+2*batchSize-1, numel(train))) ;
getBatcFn(imdb, nextBatch, opts.dataAugmentation{1}, opts.bcnnScale) ;
end
im = im{1};
im = cat(4, im{:});
if opts.train.useGpu
im = gpuArray(im) ;
end
net.layers{end}.class = labels ;
res = [] ;
res = vl_bilinearnn(netInit, im, [], res, ...
'disableDropout', true, ...
'conserveMemory', true, ...
'sync', true) ;
codeb = squeeze(gather(res(end).x));
for i=1:numel(batch)
code = codeb(:,i);
savefast(fullfile(opts.inittrain.nonftbcnnDir, ['bcnn_nonft_', num2str(batch(i), '%05d')]), 'code');
end
end
end
clear code res netInit
if exist(fullfile(opts.expDir, 'initial_fc.mat'), 'file')
load(fullfile(opts.expDir, 'initial_fc.mat'), 'netc') ;
else
bcnndb = imdb;
tempStr = sprintf('%05d\t', train);
tempStr = textscan(tempStr, '%s', 'delimiter', '\t');
bcnndb.images.name = strcat('bcnn_nonft_', tempStr{1}');
bcnndb.images.id = bcnndb.images.id(train);
bcnndb.images.label = bcnndb.images.label(train);
bcnndb.images.set = bcnndb.images.set(train);
bcnndb.imageDir = opts.inittrain.nonftbcnnDir;
%train logistic regression
[netc, info] = cnn_train(netc, bcnndb, @getBatch_bcnn_fromdisk, opts.inittrain, ...
'batchSize', opts.inittrain.batchSize, 'weightDecay', opts.inittrain.weightDecay, ...
'conserveMemory', true, 'expDir', opts.inittrain.expDir);
save(fullfile(opts.expDir, 'initial_fc.mat'), 'netc', '-v7.3') ;
end
end
for i=1:numel(netc.layers)
net.layers{end+1} = netc.layers{i};
end
% Rename classes
net.classes.name = imdb.classes.name;
net.classes.description = imdb.classes.name;
end
function code = encoder_extract_for_images(encoder, imdb, imageIds, varargin)
% -------------------------------------------------------------------------
opts.batchSize = 128 ;
opts.maxNumLocalDescriptorsReturned = 500 ;
opts.concatenateCode = true;
opts.scale = 2;
opts = vl_argparse(opts, varargin) ;
[~,imageSel] = ismember(imageIds, imdb.images.id) ;
imageIds = unique(imdb.images.id(imageSel)) ;
n = numel(imageIds) ;
% prepare batches
n = ceil(numel(imageIds)/opts.batchSize) ;
batches = mat2cell(1:numel(imageIds), 1, [opts.batchSize * ones(1, n-1), numel(imageIds) - opts.batchSize*(n-1)]) ;
batchResults = cell(1, numel(batches)) ;
% just use as many workers as are already available
numWorkers = matlabpool('size') ;
for b = numel(batches):-1:1
batchResults{b} = get_batch_results(imdb, imageIds, batches{b}, ...
encoder, opts.maxNumLocalDescriptorsReturned, opts.scale) ;
end
code = cell(size(imageIds)) ;
for b = 1:numel(batches)
m = numel(batches{b});
for j = 1:m
k = batches{b}(j) ;
code{k} = batchResults{b}.code{j};
end
end
if opts.concatenateCode
clear batchResults
code = cat(2, code{:}) ;
end
function result = get_batch_results(imdb, imageIds, batch, encoder, maxn, scale)
% -------------------------------------------------------------------------
m = numel(batch) ;
im = cell(1, m) ;
task = getCurrentTask() ;
if ~isempty(task), tid = task.ID ; else tid = 1 ; end
for i = 1:m
fprintf('Task: %03d: encoder: extract features: image %d of %d\n', tid, batch(i), numel(imageIds)) ;
im{i} = imread(fullfile(imdb.imageDir, imdb.images.name{imdb.images.id == imageIds(batch(i))}));
if size(im{i}, 3) == 1, im{i} = repmat(im{i}, [1 1 3]);, end; %grayscale image
end
if ~isfield(encoder, 'numSpatialSubdivisions')
encoder.numSpatialSubdivisions = 1 ;
end
code_ = get_bcnn_features(encoder.neta, encoder.netb,...
im, ...
'regionBorder', encoder.regionBorder, ...
'normalization', encoder.normalization, ...
'scales', scale);
result.code = code_ ;
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.