plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
GJK_mod.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK_Distance/GJK DISTANCE/GJK_mod.m
| 6,720 |
utf_8
|
5b06ac643912454d6a7709cccdb88a00
|
function [a,b,c,d,flag] = GJK_mod(shape1,shape2,iterations)
% GJK Gilbert-Johnson-Keerthi Collision detection implementation.
% Returns whether two convex shapes are are penetrating or not
% (true/false). Only works for CONVEX shapes.
%
% Inputs:
% shape1:
% must have fields for XData,YData,ZData, which are the x,y,z
% coordinates of the vertices. Can be the same as what comes out of a
% PATCH object. It isn't required that the points form faces like patch
% data. This algorithm will assume the convex hull of the x,y,z points
% given.
%
% shape2:
% Other shape to test collision against. Same info as shape1.
%
% iterations:
% The algorithm tries to construct a tetrahedron encompassing
% the origin. This proves the objects have collided. If we fail within a
% certain number of iterations, we give up and say the objects are not
% penetrating. Low iterations means a higher chance of false-NEGATIVES
% but faster computation. As the objects penetrate more, it takes fewer
% iterations anyway, so low iterations is not a huge disadvantage.
%
% Outputs:
% flag:
% true - objects collided
% false - objects not collided
% [a,b,c,d] - members of the simplex
%
%
% This video helped me a lot when making this: https://mollyrocket.com/849
% Not my video, but very useful.
%
% Matthew Sheen, 2016
%
% Modified:
% Philippe Lebel, 2016:
% Fixed a bug where aligned vertices would trigger the collision flag
% while there was no collision ( line 191 )
%Point 1 and 2 selection (line segment)
v = [0.8 0.5 1];
[a,b] = pickLine(v,shape2,shape1);
%Point 3 selection (triangle)
[a,b,c,flag] = pickTriangle(a,b,shape2,shape1,iterations);
%Point 4 selection (tetrahedron)
% if flag == 1 %Only bother if we could find a viable triangle.
[a,b,c,d,flag] = pickTetrahedron(a,b,c,shape2,shape1,iterations);
% end
end
function [a,b] = pickLine(v,shape1,shape2)
%Construct the first line of the simplex
b = support(shape2,shape1,v);
dir_ori=-b;
a = support(shape2,shape1,dir_ori);
end
function [a,b,c,flag] = pickTriangle(a,b,shape1,shape2,IterationAllowed)
flag = 0; %So far, we don't have a successful triangle.
%First try:
ab = b-a;
ao = -a;
v = cross(cross(ab,ao),ab); % v is perpendicular to ab pointing in the general direction of the origin.
c = b;
b = a;
a = support(shape2,shape1,v);
for i = 1:IterationAllowed %iterations to see if we can draw a good triangle.
%Time to check if we got it:
ab = b-a;
ao = -a;
ac = c-a;
%Normal to face of triangle
abc = cross(ab,ac);
%Perpendicular to AB going away from triangle
abp = cross(ab,abc);
%Perpendicular to AC going away from triangle
acp = cross(abc,ac);
%First, make sure our triangle "contains" the origin in a 2d projection
%sense.
%Is origin above (outside) AB?
if dot(abp,ao) > 0
c = b; %Throw away the furthest point and grab a new one in the right direction
b = a;
v = abp; %cross(cross(ab,ao),ab);
%Is origin above (outside) AC?
elseif dot(acp, ao) > 0
b = a;
v = acp; %cross(cross(ac,ao),ac);
else
% flag = 1;
% break; %We got a good one.
end
a = support(shape2,shape1,v);
end
end
function [a,b,c,d,flag] = pickTetrahedron(a,b,c,shape1,shape2,IterationAllowed)
%Now, if we're here, we have a successful 2D simplex, and we need to check
%if the origin is inside a successful 3D simplex.
%So, is the origin above or below the triangle?
flag = 0;
ab = b-a;
ac = c-a;
%Normal to face of triangle
abc = cross(ab,ac);
ao = -a;
if dot(abc, ao) > 0 %Above
d = c;
c = b;
b = a;
v = abc;
a_new = support(shape2,shape1,v); %Tetrahedron new point
if ismember(a_new',[a;b;c;d]')
else
d = c;
c = b;
b = a;
a=a_new;
end
else %below
d = b;
b = a;
v = -abc;
a_new = support(shape2,shape1,v); %Tetrahedron new point
if ismember(a_new',[a;b;c;d]')
else
d = b;
b = a;
a=a_new;
end
end
for i = 1:IterationAllowed %Allowing 10 tries to make a good tetrahedron.
%Check the tetrahedron:
ab = b-a;
ao = -a;
ac = c-a;
ad = d-a;
%We KNOW that the origin is not under the base of the tetrahedron based on
%the way we picked a. So we need to check faces ABC, ABD, and ACD.
%Normal to face of triangle
abc = cross(ab,ac);
if dot(abc, ao) > 0 %Above triangle ABC
%No need to change anything, we'll just iterate again with this face as
%default.
else
acd = cross(ac,ad);%Normal to face of triangle
if dot(acd, ao) > 0 %Above triangle ACD
%Make this the new base triangle.
b = c;
c = d;
ab = ac;
ac = ad;
abc = acd;
elseif dot(acd, ao) < 0
adb = cross(ad,ab);%Normal to face of triangle
if dot(adb, ao) > 0 %Above triangle ADB
%Make this the new base triangle.
c = b;
b = d;
ac = ab;
ab = ad;
abc = adb;
else
flag = 1;
break; %It's inside the tetrahedron.
end
else %The nearest point is one of the three points contained in the simplex
;
end
end
%try again:
if dot(abc, ao) > 0 %Above
v = abc;
a_new = support(shape2,shape1,v); %Tetrahedron new point
if ismember(a_new',[a;b;c;d]')
else
d = c;
c = b;
b = a;
a=a_new;
end
else %below
v = -abc;
a_new = support(shape2,shape1,v); %Tetrahedron new point
if ismember(a_new',[a;b;c;d]')
else
d = b;
b = a;
a=a_new;
end
end
end
end
function point = getFarthestInDir(shape, v)
%Find the furthest point in a given direction for a shape
XData = shape.Vertices(:,1); % Making it more compatible with previous MATLAB releases.
YData = shape.Vertices(:,2);
ZData = shape.Vertices(:,3);
dotted = XData*v(1) + YData*v(2) + ZData*v(3);
[maxInCol,rowIdxSet] = max(dotted);
[maxInRow,colIdx] = max(maxInCol);
rowIdx = rowIdxSet(colIdx);
point = [XData(rowIdx,colIdx), YData(rowIdx,colIdx), ZData(rowIdx,colIdx)]';
end
function point = support(shape1,shape2,v)
%Support function to get the Minkowski difference.
point1 = getFarthestInDir(shape1, v);
point2 = getFarthestInDir(shape2, -v);
point = point1 - point2;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
GJK_dist.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK_Distance/GJK DISTANCE/GJK_dist.m
| 10,028 |
utf_8
|
536b90ca4f66c97f6dad1e522b854947
|
%This function is based on the book Real-Time Collision Detection
% (http://realtimecollisiondetection.net/)
%
%It computes the distance, the points of closest proximity points and also
%returns the points last contained in the simplex.
%[dist,pts,G,H] = GJK_dist_7_point_poly( shape1, shape2 )
%
% INPUTS:
%
% shape1: a patch object representing the first convex solid
% shape2: a patch object representing the second convex solid
%
% OUTPUTS:
%
% dist: an absolute float number representing the minimum distance between
% the shapes.
% pts: The points of the minkowsky diference where the alogrithm
% stoped.
% G: The point on shape1 closest to shape2
% H: The point on shape2 closest to shape1
% updated 05/01/17. Thanks to Amin Ramezanifar for pointing out an error.
function [dist,pts,G,H] = GJK_dist( shape1, shape2 )
%pick a random direction
d=[1 1 1];
%pick a point
[a, point1_a, point2_a]=support_2(shape1,shape2,d);
%pick a second point to creat a line
[b, point1_b, point2_b]=support_2(shape1,shape2,-d);
%pick a third point to make a tirangle
ab=b-a;
ao=-a;
%perpendicular direction
d=cross(cross(ab,ao),ab);
%pick a third point
[c, point1_c, point2_c]=support_2(shape1,shape2,d);
%the simplex is now complete
pts=[a b c];
pts_1_2=[point1_a point1_b point1_c;point2_a point2_b point2_c];
itt=0;
pts_old=pts;
norm_old=norm(pts_old);
d_old=d;
dist_old=1000;
dist=1000;
flag=0;
PP0 = 'V';
%This loop is there for the very rare case where the simplex would contain
%duplicate points.
while true
if isequal(c,b) || isequal(c,a)
[c, point1_c, point2_c]=support_2(shape1,shape2,-d);
else
pts=[a b c];
pts_1_2=[point1_a point1_b point1_c;point2_a point2_b point2_c];
break
end
end
while true
%we compute the norm of vector going from the origin to each member
%of the simplex
Norm_pts = (sqrt(sum(abs(pts').^2,2)));
%Computing and removing the farthest point of the simplex from the origin
[max_norm,index]=max(Norm_pts);
%new search direction
d=cross(pts(:,2)-pts(:,1),pts(:,3)-pts(:,1));
origin_projected=(pts(:,1)'*d)*d;
if d'*origin_projected>0
d=-d;
end
d=d/norm(d);
%Pciking a new point to add to the simplex.
[c, point1_c, point2_c]=support_2(shape1,shape2,d);
%we project the origin on the simplex's plane.
origin_projected=(pts(:,1)'*d)*d;
% We verify if the point is allready contained in the simplex.
% The (itt>5 && flag == 5) condition to enter this loop is one of the main
% problems of the algorithm. Sometime, when using only the normal to
% the triangle, the solution does not converge to the absolute minimum
% distance. This other way of computing the new direction allows a
% higher rate of succesful convergeance. If one would want to upgrade the
% algorithm he would certainly need to work arround here.
if any(abs(Norm_pts-norm(c))<0.000001) || (itt>5 && flag == 5)
% computing the distance of each traingle lines from the origin
d1 = distLinSeg(pts(:,1)',pts(:,2)',origin_projected',origin_projected');
d2 = distLinSeg(pts(:,1)',pts(:,3)',origin_projected',origin_projected');
d3 = distLinSeg(pts(:,2)',pts(:,3)',origin_projected',origin_projected');
% d1=(pts(:,2)-pts(:,1))'/norm(pts(:,2)-pts(:,1))*(pts(:,1)-origin_projected)/norm((pts(:,1)-origin_projected));
% d2=(pts(:,3)-pts(:,1))'/norm(pts(:,3)-pts(:,1))*(pts(:,1)-origin_projected)/norm((pts(:,1)-origin_projected));
% d3=(pts(:,3)-pts(:,2))'/norm(pts(:,3)-pts(:,2))*(pts(:,2)-origin_projected)/norm((pts(:,2)-origin_projected));
dist_seg_min=min(abs([d1 d2 d3]));
%we want to pick the two points creating the line closest to the
%origin.
%We also need to deal with the case where the origin is closest to
%a point, resulting in two distances being equal.
if dist_seg_min<dist
while true
if d1==dist_seg_min
%pick a third point to make a tirangle
ab=pts(:,2)-pts(:,1);
ao=-pts(:,1);
%perpendicular direction
d=cross(cross(ab,ao),ab);
if d1~=d2 && d1~=d3
[c, point1_c, point2_c]=support_2(shape1,shape2,d);
index=3;
break
else
[c_1, point1_c_1, point2_c_1]=support_2(shape1,shape2,d);
index_1=3;
end
end
if d2==dist_seg_min
%pick a third point to make a tirangle
ab=pts(:,3)-pts(:,1);
ao=-pts(:,1);
%perpendicular direction
d=cross(cross(ab,ao),ab);
if d2~=d1 && d2~=d3
[c, point1_c, point2_c]=support_2(shape1,shape2,d);
index=2;
break
else
[c_2, point1_c_2, point2_c_2]=support_2(shape1,shape2,d);
index_2=2;
end
end
if d3==dist_seg_min
%pick a third point to make a tirangle
ab=pts(:,3)-pts(:,2);
ao=-pts(:,2);
%perpendicular direction
d=cross(cross(ab,ao),ab);
if d3~=d1 && d3~=d2
[c, point1_c, point2_c]=support_2(shape1,shape2,d);
index=1;
break
else
[c_3, point1_c_3, point2_c_3]=support_2(shape1,shape2,d);
index_3=1;
end
end
if d1==d2
L1=(pts(:,2)-pts(:,1))'/norm(pts(:,2)-pts(:,1))*(pts(:,1)-origin_projected)/norm((pts(:,1)-origin_projected));
L2=(pts(:,3)-pts(:,1))'/norm(pts(:,3)-pts(:,1))*(pts(:,1)-origin_projected)/norm((pts(:,1)-origin_projected));
if L1>L2
c=c_1;
point1_c=point1_c_1;
point2_c=point2_c_1;
else
c=c_2;
point1_c=point1_c_2;
point2_c=point2_c_2;
end
elseif d1==d3
L1=(pts(:,2)-pts(:,1))'/norm(pts(:,2)-pts(:,1))*(pts(:,1)-origin_projected)/norm((pts(:,1)-origin_projected));
L3=(pts(:,3)-pts(:,2))'/norm(pts(:,3)-pts(:,2))*(pts(:,2)-origin_projected)/norm((pts(:,2)-origin_projected));
if L1>L3
c=c_1;
point1_c=point1_c_1;
point2_c=point2_c_1;
else
c=c_3;
point1_c=point1_c_3;
point2_c=point2_c_3;
end
elseif d2==d3
L2=(pts(:,3)-pts(:,1))'/norm(pts(:,3)-pts(:,1))*(pts(:,1)-origin_projected)/norm((pts(:,1)-origin_projected));
L3=(pts(:,3)-pts(:,2))'/norm(pts(:,3)-pts(:,2))*(pts(:,2)-origin_projected)/norm((pts(:,2)-origin_projected));
if L2>L3
c=c_2;
point1_c=point1_c_2;
point2_c=point2_c_2;
else
c=c_3;
point1_c=point1_c_3;
point2_c=point2_c_3;
end
end
break
end
end
% if even after picking a new point with the other method, if the
% simplex already has it, we assume we converged.
if any(abs(Norm_pts-norm(c))<0.000001)
if PP0 == 'V'
% converged on first itteration, dist and PP0 must be
% computed.
[dist, PP0] = pointTriangleDistance(pts',[0 0 0]);
end
Norm_pts=0;
break
end
end
pts(:,index)=[];
pts_1_2(:,index)=[];
pts=[pts c];
pts_1_2=[pts_1_2 [point1_c;point2_c]];
[dist, PP0] = pointTriangleDistance(pts',[0 0 0]);
%we need to do the following manipulation because sometimes, the
%simplex will oscillate arround the closest solution, creating an
%infinite loop. We need to backup the solution that resulted in the
%minimal distance and use it if the loop times out (10 itteration max)
if dist<dist_old
pts_prox=pts;
dist_prox=dist;
PP0_prox=PP0;
pts_1_2_prox=pts_1_2;
end
%The time out is set here.
if itt>6
flag=5;
if itt>10 && flag==5
pts=pts_prox;
dist=dist_prox;
PP0=PP0_prox;
pts_1_2=pts_1_2_prox;
break
end
end
dist_old=dist;
d_old=d;
pts_old=pts;
if abs(norm_old-norm(pts))<0.01
norm_old=norm(pts);
end
itt=itt+1;
% pause(0.1)
end
% Calculation of the barycentric coordinates of the origin in respect to
% the simplex.
T = [1 4 3;
1 4 2;
3 4 2;
1 2 3];
pts_t=[pts';PP0];
% commented out by Jeremy
%TR=triangulation(T,pts_t);
%B=cartesianToBarycentric(TR,4,PP0);
G=0;
H=0;
%calculation of the points G and H of proximity on,respectively, shape1
%and shape2.
% commented out by Jeremy
%for i=1:3
% G=G+B(i)*pts_1_2(1:3,i);
% H=H+B(i)*pts_1_2(4:6,i);
%end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
GJK.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK_Distance/GJK DISTANCE/GJK.m
| 6,009 |
utf_8
|
30df12311f7526c9599cde4b2aaf7a3a
|
function [flag] = GJK(shape1,shape2,iterations)
% GJK Gilbert-Johnson-Keerthi Collision detection implementation.
% Returns whether two convex shapes are are penetrating or not
% (true/false). Only works for CONVEX shapes.
%
% Inputs:
% shape1:
% must have fields for XData,YData,ZData, which are the x,y,z
% coordinates of the vertices. Can be the same as what comes out of a
% PATCH object. It isn't required that the points form faces like patch
% data. This algorithm will assume the convex hull of the x,y,z points
% given.
%
% shape2:
% Other shape to test collision against. Same info as shape1.
%
% iterations:
% The algorithm tries to construct a tetrahedron encompassing
% the origin. This proves the objects have collided. If we fail within a
% certain number of iterations, we give up and say the objects are not
% penetrating. Low iterations means a higher chance of false-NEGATIVES
% but faster computation. As the objects penetrate more, it takes fewer
% iterations anyway, so low iterations is not a huge disadvantage.
%
% Outputs:
% flag:
% true - objects collided
% false - objects not collided
%
%
% This video helped me a lot when making this: https://mollyrocket.com/849
% Not my video, but very useful.
%
% Matthew Sheen, 2016
%
%Point 1 and 2 selection (line segment)
v = [0.8 0.5 1];
[a,b] = pickLine(v,shape2,shape1);
%Point 3 selection (triangle)
[a,b,c,flag] = pickTriangle(a,b,shape2,shape1,iterations);
%Point 4 selection (tetrahedron)
if flag == 1 %Only bother if we could find a viable triangle.
[a,b,c,d,flag] = pickTetrahedron(a,b,c,shape2,shape1,iterations);
end
end
function [a,b] = pickLine(v,shape1,shape2)
%Construct the first line of the simplex
b = support(shape2,shape1,v);
a = support(shape2,shape1,-v);
end
function [a,b,c,flag] = pickTriangle(a,b,shape1,shape2,IterationAllowed)
flag = 0; %So far, we don't have a successful triangle.
%First try:
ab = b-a;
ao = -a;
v = cross(cross(ab,ao),ab); % v is perpendicular to ab pointing in the general direction of the origin.
c = b;
b = a;
a = support(shape2,shape1,v);
for i = 1:IterationAllowed %iterations to see if we can draw a good triangle.
%Time to check if we got it:
ab = b-a;
ao = -a;
ac = c-a;
%Normal to face of triangle
abc = cross(ab,ac);
%Perpendicular to AB going away from triangle
abp = cross(ab,abc);
%Perpendicular to AC going away from triangle
acp = cross(abc,ac);
%First, make sure our triangle "contains" the origin in a 2d projection
%sense.
%Is origin above (outside) AB?
if dot(abp,ao) > 0
c = b; %Throw away the furthest point and grab a new one in the right direction
b = a;
v = abp; %cross(cross(ab,ao),ab);
%Is origin above (outside) AC?
elseif dot(acp, ao) > 0
b = a;
v = acp; %cross(cross(ac,ao),ac);
else
flag = 1;
break; %We got a good one.
end
a = support(shape2,shape1,v);
end
end
function [a,b,c,d,flag] = pickTetrahedron(a,b,c,shape1,shape2,IterationAllowed)
%Now, if we're here, we have a successful 2D simplex, and we need to check
%if the origin is inside a successful 3D simplex.
%So, is the origin above or below the triangle?
flag = 0;
ab = b-a;
ac = c-a;
%Normal to face of triangle
abc = cross(ab,ac);
ao = -a;
if dot(abc, ao) > 0 %Above
d = c;
c = b;
b = a;
v = abc;
a = support(shape2,shape1,v); %Tetrahedron new point
else %below
d = b;
b = a;
v = -abc;
a = support(shape2,shape1,v); %Tetrahedron new point
end
for i = 1:IterationAllowed %Allowing 10 tries to make a good tetrahedron.
%Check the tetrahedron:
ab = b-a;
ao = -a;
ac = c-a;
ad = d-a;
%We KNOW that the origin is not under the base of the tetrahedron based on
%the way we picked a. So we need to check faces ABC, ABD, and ACD.
%Normal to face of triangle
abc = cross(ab,ac);
if dot(abc, ao) > 0 %Above triangle ABC
%No need to change anything, we'll just iterate again with this face as
%default.
else
acd = cross(ac,ad);%Normal to face of triangle
if dot(acd, ao) > 0 %Above triangle ACD
%Make this the new base triangle.
b = c;
c = d;
ab = ac;
ac = ad;
abc = acd;
elseif dot(acd, ao) < 0
adb = cross(ad,ab);%Normal to face of triangle
if dot(adb, ao) > 0 %Above triangle ADB
%Make this the new base triangle.
c = b;
b = d;
ac = ab;
ab = ad;
abc = adb;
else
flag = 1;
break; %It's inside the tetrahedron.
end
else %the origin is on the same plane as the triangle
;
end
end
%try again:
if dot(abc, ao) > 0 %Above
d = c;
c = b;
b = a;
v = abc;
a = support(shape2,shape1,v); %Tetrahedron new point
else %below
d = b;
b = a;
v = -abc;
a = support(shape2,shape1,v); %Tetrahedron new point
end
end
end
function point = getFarthestInDir(shape, v)
%Find the furthest point in a given direction for a shape
XData = shape.Vertices(:,1); % Making it more compatible with previous MATLAB releases.
YData = shape.Vertices(:,2);
ZData = shape.Vertices(:,3);
dotted = XData*v(1) + YData*v(2) + ZData*v(3);
[maxInCol,rowIdxSet] = max(dotted);
[maxInRow,colIdx] = max(maxInCol);
rowIdx = rowIdxSet(colIdx);
point = [XData(rowIdx,colIdx), YData(rowIdx,colIdx), ZData(rowIdx,colIdx)]';
end
function point = support(shape1,shape2,v)
%Support function to get the Minkowski difference.
point1 = getFarthestInDir(shape1, v);
point2 = getFarthestInDir(shape2, -v);
point = point1 - point2;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
distLinSeg.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK_Distance/GJK DISTANCE/distLinSeg.m
| 2,407 |
utf_8
|
f4674ddd3116bd073e046a82cc0b8e1e
|
% Function for fast computation of the shortest distance between two line segments
%
% Algorithm implemented:
% Vladimir J. LUMELSKY,
% ``ON FAST COMPUTATION OF DISTANCE BETWEEN LINE SEGMENTS'',
% Information Processing Letters 21 (1985) 55-61
%
%
% Input: ([start point of line1], [end point of line1], [start point of
% line2], [end point of line2])
%
% Output: dist - shortest distance between the line segments (in N dimensions)
% points (optional) - shortest points on the line segments
%
% Example:
% >> [dist,points] = distLinSeg([0 0], [1 1], [1 0], [2 0])
% >> dist = 0.7071
% >> points = [0.5 0.5; 1 0]
%
%
% 1.2.2015 - created: Ondrej Sluciak ([email protected])
%
function [dist,varargout] = distLinSeg(point1s,point1e,point2s,point2e)
d1 = point1e - point1s;
d2 = point2e - point2s;
d12 = point2s - point1s;
D1 = d1*d1'; %D1 = sum(d1.^2);
D2 = d2*d2'; %D2 = sum(d2.^2);
S1 = d1*d12'; % S1 = sum(d1.*d12);
S2 = d2*d12'; % S2 = sum(d2.*d12);
R = d1*d2'; % R = sum(d1.*d2);
den = D1*D2-R^2; %denominator
if (D1 == 0 || D2 == 0) % if one of the segments is a point
if (D1 ~= 0) % if line1 is a segment and line2 is a point
u = 0;
t = S1/D1;
t = fixbound(t);
elseif (D2 ~= 0) % if line2 is a segment and line 1 is a point
t = 0;
u = -S2/D2;
u = fixbound(u);
else % both segments are points
t = 0;
u = 0;
end
elseif (den == 0) % if lines are parallel
t = 0;
u = -S2/D2;
uf = fixbound(u);
if (uf~= u)
t = (uf*R+S1)/D1;
t = fixbound(t);
u = uf;
end
else % general case
t = (S1*D2-S2*R)/den;
t = fixbound(t);
u = (t*R-S2)/D2;
uf = fixbound(u);
if (uf ~= u)
t = (uf*R+S1)/D1;
t = fixbound(t);
u = uf;
end
end
% Compute distance given parameters 't' and 'u'
dist = norm(d1*t-d2*u-d12); %dist = sqrt(sum((d1*t-d2*u-d12).^2));
if (nargout > 1)
varargout = {[point1s + d1*t;point2s+d2*u]};
end
end
function num = fixbound(num) % if num is out of (0,1) round to {0,1}
if (num < 0)
num = 0;
elseif (num > 1)
num = 1;
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
MakeObj.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Exp_Dubins_SBONL/plotting/MakeObj.m
| 683 |
utf_8
|
a81a3fae729eca365c5bffe0df3d8124
|
% returns convex hull from point cloud
function obj = MakeObj(points, color)
%figure()
% create face representation and create convex hull
F = convhull(points(1,:), points(2,:));
fill(points(1,F),points(2,F),color);
%{
S.Vertices = transpose(points(1:2,:));
S.Faces = F;
S.FaceVertexCData = jet(size(points,1));
S.FaceColor = 'interp';
if(strcmp(color,'red'))
obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','red');
elseif(strcmp(color,'green'))
obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','green');
else
obj = patch(S);
end
%}
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotSetBasedSim.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Exp_Dubins_SBONL/plotting/PlotSetBasedSim.m
| 1,265 |
utf_8
|
b7d3080567e0a89bd04feaa865dafaf8
|
% PlotSetBasedSim(agentPos, obst, threshold)
%
% plots associated sets with the simulation
function PlotSetBasedSim(agentPos, obst, threshold, target)
figure()
hold on
% mA - coordinate (usually size 3)
% nA - time step, equal to iterations in simulation
[mA,nA] = size(agentPos);
% create objects/convex hulls for each set at each time step
for i = 1:nA
% format points for MakeObj function
curSet = zeros(2,4);
curSet(:,1) = [agentPos(1,i);agentPos(3,i)];
curSet(:,2) = [agentPos(1,i);agentPos(4,i)];
curSet(:,3) = [agentPos(2,i);agentPos(3,i)];
curSet(:,4) = [agentPos(2,i);agentPos(4,i)];
% make the object
MakeObj(curSet, 'g');
% format points for MakeObj function
curObstSet = zeros(2,4);
curObstSet(:,1) = [obst(1,i);obst(3,i)];
curObstSet(:,2) = [obst(1,i);obst(4,i)];
curObstSet(:,3) = [obst(2,i);obst(3,i)];
curObstSet(:,4) = [obst(2,i);obst(4,i)];
% make the object
MakeObj(curObstSet, 'r');
end
scatter(target(1), target(2), '*')
xlabel('x axis')
ylabel('y axis')
axis([-1 1 -1 1])
grid on
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotSimDistance.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Exp_Dubins_SBONL/plotting/PlotSimDistance.m
| 2,186 |
utf_8
|
03c83a059200376eaa6a2ef93b87179e
|
% PlotSetBasedSim(agentPos, obst, threshold)
%
% plots max distance to target and min distance to projectile throughout
% the simulation
function PlotSimDistance(agentPos, obst, threshold, target)
figure()
hold on
% mA - coordinate (usually size 3)
% nA - time step, equal to iterations in simulation
[mA,nA] = size(agentPos);
% mO - coordinate (usually size 3)
% nO - time step, equal to iterations in simulation
[mO,nO] = size(obst);
ObstDist = zeros(nA,1);
% create objects/convex hulls for each set at each time step
for i = 1:nA
% format points for MakeObj function
curSet = zeros(2,4);
curSet(:,1) = [agentPos(1,i);agentPos(3,i)];
curSet(:,2) = [agentPos(1,i);agentPos(4,i)];
curSet(:,3) = [agentPos(2,i);agentPos(3,i)];
curSet(:,4) = [agentPos(2,i);agentPos(4,i)];
% format points for MakeObj function
curObstSet = zeros(2,4);
curObstSet(:,1) = [obst(1,i);obst(3,i)];
curObstSet(:,2) = [obst(1,i);obst(4,i)];
curObstSet(:,3) = [obst(2,i);obst(3,i)];
curObstSet(:,4) = [obst(2,i);obst(4,i)];
% min distance to projectile
polyOptions = optimoptions('fmincon','Display','notify-detailed','algorithm','active-set');
ObstDist(i) = PolytopeMinDist(curSet,curObstSet,polyOptions);
end
plot(0:1:(nA-1),transpose(ObstDist));
plot(0:1:(nA-1),threshold*ones(1,(nA)));
title('Minimum distance between vehicle polytope and obstacle polytope');
xlabel('time');
ylabel('distance');
axis([0 nA-1 0 2]);
figure()
hold on;
dist = zeros(nA,1);
for i = 1:nA
dist(i) = dist(i) + norm([agentPos(1,i);agentPos(3,i)]-target)^2 ...
+ norm([agentPos(1,i);agentPos(4,i)]-target)^2 ...
+ norm([agentPos(2,i);agentPos(3,i)]-target)^2 ...
+ norm([agentPos(2,i);agentPos(4,i)]-target)^2;
end
plot(0:1:(nA-1),dist);
title('Minimum distance between vehicle polytope and target polytope');
xlabel('time');
ylabel('distance');
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotSimDistanceSuccessive.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Exp_Dubins_SBONL/plotting/PlotSimDistanceSuccessive.m
| 2,189 |
utf_8
|
1966c59ec2bb87432a05d3b9d69754f9
|
% PlotSetBasedSim(agentPos, obst, threshold)
%
% plots max distance to target and min distance to projectile throughout
% the simulation
function PlotSimDistance(agentPos, obst, threshold, target)
figure(1)
hold on
% mA - coordinate (usually size 3)
% nA - time step, equal to iterations in simulation
[mA,nA] = size(agentPos);
% mO - coordinate (usually size 3)
% nO - time step, equal to iterations in simulation
% pO - obstacle number
[mO,nO,pO] = size(obst);
ObstDist = zeros(nA,pO);
for i = 1:pO
% create objects/convex hulls for each set at each time step
for j = 1:nA
% format points for MakeObj function
curSet = zeros(3,4);
curSet(:,1) = [agentPos(1,j);agentPos(3,j);0];
curSet(:,2) = [agentPos(1,j);agentPos(4,j);0];
curSet(:,3) = [agentPos(2,j);agentPos(3,j);0];
curSet(:,4) = [agentPos(2,j);agentPos(4,j);0];
% min distance to projectile
temp_xObst = [obst(:,j,i),obst(:,j,i)]; % polytope dist function has trouble with only one point
polyOptions = optimoptions('fmincon','Display','notify-detailed','algorithm','active-set');
ObstDist(j,i) = PolytopeMinDist(curSet,temp_xObst,polyOptions);
end
plot(0:1:(nA-1),transpose(ObstDist(:,i)));
plot(0:1:(nA-1),threshold*ones(1,(nA)));
end
title('Minimum distance between vehicle polytope and obstacle polytope');
xlabel('time');
ylabel('distance');
axis([0 nA-1 0 2]);
drawnow;
figure(2)
hold on;
dist = zeros(nA,1);
for i = 1:nA
dist(i) = dist(i) + norm([agentPos(1,i);agentPos(3,i);0]-target)^2 ...
+ norm([agentPos(1,i);agentPos(4,i);0]-target)^2 ...
+ norm([agentPos(2,i);agentPos(3,i);0]-target)^2 ...
+ norm([agentPos(2,i);agentPos(4,i);0]-target)^2;
end
plot(0:1:(nA-1),dist);
title('Minimum distance between vehicle polytope and target polytope');
xlabel('time');
ylabel('distance');
drawnow;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotOptimalPredicted.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Exp_Dubins_SBONL/plotting/PlotOptimalPredicted.m
| 1,217 |
utf_8
|
bd1dc3defa90d676db8e6faddd73e8b5
|
function PlotOptimalPredicted(agentPos, obst, threshold, target)
figure()
hold on
% mA - coordinate (usually size 3)
% nA - time step, equal to iterations in simulation
[mA,nA] = size(agentPos);
% create objects/convex hulls for each set at each time step
for i = 1:nA
% format points for MakeObj function
curVehicleSet = zeros(2,4);
curVehicleSet(:,1) = [agentPos(1,i);agentPos(3,i)];
curVehicleSet(:,2) = [agentPos(1,i);agentPos(4,i)];
curVehicleSet(:,3) = [agentPos(2,i);agentPos(3,i)];
curVehicleSet(:,4) = [agentPos(2,i);agentPos(4,i)];
% make the object
MakeObj(curVehicleSet, 'g');
% format points for MakeObj function
curObstSet = zeros(2,4);
curObstSet(:,1) = [obst(1,i);obst(3,i)];
curObstSet(:,2) = [obst(1,i);obst(4,i)];
curObstSet(:,3) = [obst(2,i);obst(3,i)];
curObstSet(:,4) = [obst(2,i);obst(4,i)];
% make the object
MakeObj(curObstSet, 'r');
end
scatter(target(1), target(2), '*')
xlabel('x axis')
ylabel('y axis')
zlabel('z axis')
grid on
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
Cost.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Exp_Dubins_SBONL/system/Cost.m
| 1,037 |
utf_8
|
7d52b29ad7c2ba935094018617a299dc
|
% c = Cost(x0_set, u, ts, target)
%
% custom cost function - sum of distance from each vertex to target squared
function c = Cost(x0_set, u, ts, target, L, terminalWeight)
% predict system state with set based dynamics
x_set = Dubin(x0_set,u,ts,L);
% calculate cost of prediction for set based dynamics
% - iterate through each vertex at each time step and calculate the
% distance between that point and the target
[m,n] = size(x_set);
c = 0;
% stage cost
for i = 1:n-1
c = c + norm([x_set(1,i);x_set(3,i)]-target)^2 ...
+ norm([x_set(1,i);x_set(4,i)]-target)^2 ...
+ norm([x_set(2,i);x_set(3,i)]-target)^2 ...
+ norm([x_set(2,i);x_set(4,i)]-target)^2;
end
% terminal cost
c = c + terminalWeight*norm([x_set(1,n);x_set(3,n)]-target)^2 ...
+ terminalWeight*norm([x_set(1,n);x_set(4,n)]-target)^2 ...
+ terminalWeight*norm([x_set(2,n);x_set(3,n)]-target)^2 ...
+ terminalWeight*norm([x_set(2,n);x_set(4,n)]-target)^2;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
FindOptimalInput.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Exp_Dubins_SBONL/system/FindOptimalInput.m
| 1,227 |
utf_8
|
3b444b8c7a413d695610a1b942349128
|
% function u0 = FindOptimalInput(x0, N, ts, target)
%
% uses fmincon to minimize cost function given system dynamics and
% nonlinear constraints, returns optimal input sequence
function uopt = FindOptimalInput(x0_set, N, ts, target, xObst, threshold, L, speedBound, steeringBound, terminalWeight, EXP)
A = [];
b = [];
Aeq = [];
beq = [];
% set lower and upper bounds on inputs to dubins model
lb(1,:) = zeros(1,N); % lower bound is zero (speed)
lb(2,:) = -steeringBound*ones(1,N);
ub(1,:) = speedBound*ones(1,N);
ub(2,:) = steeringBound*ones(1,N);
% initial input guess
uInit = zeros(2,N);
uInit(1,:) = (0)*ones(1,N);
% solve optimization
options = optimoptions('fmincon','Display','notify-detailed','algorithm','active-set','MaxFunEvals',1000,'ConstraintTolerance',1e-04);
polyOptions = optimoptions('fmincon','Display','notify-detailed','algorithm','active-set');
[uopt ,fval,exitflag,output] = fmincon(@(u) Cost(x0_set,u,ts,target,L,terminalWeight),uInit,A,b,Aeq,beq,lb,ub, @(u) ObstConstraint(x0_set,u,ts,xObst,threshold,L,polyOptions,EXP),options);
output
% return optimal input sequence
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
ObstConstraint.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Exp_Dubins_SBONL/system/ObstConstraint.m
| 1,535 |
utf_8
|
2006293a6230997ad0315ff18f16d2a3
|
% [c,ceq] = ObstConstraint(x0_set, u, ts, xObst, threshold)
%
% defines the non linear constraint - agent polytope to maintain
% a distance from the obstacle position above threshold
function [c,ceq] = ObstConstraint(x0_set, u, ts, xObst, threshold,L,options,EXP)
% predict agent with set based dynamics
% coords X time X set points
x_set = Dubin(x0_set, u, ts,L);
% find distance between agent polytope and obstacle
[mA,nA] = size(x_set);
[mO,nO,pO] = size(xObst);
ObstDist = zeros(1,pO*nA);
obstDistCount = 1;
for i = 1:nA % time
for j = 1:pO % number of obstacles
% format the agents set for polytope minimization for time step i
xPolytope = zeros(2,4);
xPolytope(:,:) = [x_set(1,i), x_set(1,i), x_set(2,i), x_set(2,i);
x_set(3,i), x_set(4,i), x_set(3,i), x_set(4,i)];
oPolytope = zeros(2,4);
oPolytope(:,:) = [xObst(1,i), xObst(1,i), xObst(2,i), xObst(2,i);
xObst(3,i), xObst(4,i), xObst(3,i), xObst(4,i)];
if(EXP)
ObstDist(obstDistCount) = PolytopeApproxDist(xPolytope,oPolytope);
else
ObstDist(obstDistCount) = PolytopeMinDist(xPolytope,oPolytope,options);
end
obstDistCount = obstDistCount+1;
end
end
% calculate constraints
c = -ObstDist+threshold;
ceq = [];
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
SingleIntegrator.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Exp_Dubins_SBONL/system/SingleIntegrator.m
| 412 |
utf_8
|
103d816561c56f118cee17686dc4c4c4
|
% x = SingleIntegrator(x0_set, u, ts)
%
% set based dynamics of single integrator
function x = SingleIntegrator(x0_set, u, ts)
[mP,nP] = size(x0_set);
[mH,nH] = size(u);
% coords X time X set points
x = zeros(3,nH+1,nP);
x(:,1,:) = x0_set;
% apply integrator dynamics
for j = 1:nP
for i = 1:nH
x(:,i+1,j) = x(:,i,j) + ts*u(:,i);
end
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
SimulationProjectilePredict.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Exp_Dubins_SBONL/projectile/SimulationProjectilePredict.m
| 764 |
utf_8
|
8ea559140e8b2248afec5e16b1990cb5
|
% [trajectory, velocity] = SimulationProjectilePredict(p_0, simTime)
%
% calls on simulink to predict projectile state given initial conditions
function [trajectory, velocity] = SimulationProjectilePredict(p_0, simTime)
% set up simulink
set_param('projectile/rx','Value',num2str(p_0(1)));
set_param('projectile/ry','Value',num2str(p_0(2)));
set_param('projectile/rz','Value',num2str(p_0(3)));
set_param('projectile/vx','Value',num2str(p_0(4)));
set_param('projectile/vy','Value',num2str(p_0(5)));
set_param('projectile/vz','Value',num2str(p_0(6)));
set_param('projectile', 'StopTime', num2str(simTime));
% run simulation
sim('projectile');
trajectory = projectilePos;
velocity = projectileVel;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
CreateSphere.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Exp_Dubins_SBONL/polytope/CreateSphere.m
| 913 |
utf_8
|
e7fc2c7730cbb8e66f70c29e702d9c20
|
% creates a point cloud in a sphere around the center
function points = CreateSphere(center, r, thetadis, phidis)
% angle discretization
thetas = linspace(0,2*pi,thetadis);
phis = linspace(0,pi,phidis);
% point calculation
points = [];
x = [];
y = [];
z = [];
for i = 1:length(phis)
for j = 1:length(thetas)
% removes duplicate point at theta = 2*pi
if(thetas(j) == 2*pi)
break
end
x = (r * sin(phis(i)) * cos(thetas(j))) + center(1);
y = (r * sin(phis(i)) * sin(thetas(j))) + center(2);
z = (r * cos(phis(i))) + center(3);
nextPoint = [x;y;z];
points = [points, nextPoint];
% removes duplicate points at the top and bottom of sphere
if(phis(i) == 0 || phis(i) == pi)
break
end
end
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PolytopeMinDist.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Exp_Dubins_SBONL/polytope/PolytopeMinDist.m
| 1,162 |
utf_8
|
e97b9cd17ce23a47a127987797ca0206
|
% minDist = PolytopeMinDist(X1,X2)
%
% finds the minimum distance between two polytopes X1 and X2
function minDist = PolytopeMinDist(X1,X2,options)
% declare constraints for fmincon
lb = [];
ub = [];
% get sizes of vertices for polytopes
[m1,n1] = size(X1);
[m2,n2] = size(X2);
if(m1 ~= m2)
error('USER ERROR: Dimensions mistmatch');
end
n = n1+n2;
A = [eye(n); -eye(n)];
b = [ones(n,1); zeros(n,1)];
Aeq = [ones(1,n1) zeros(1,n2);
zeros(1,n1) ones(1,n2)];
beq = [1;1];
nonlcon = [];
% create lambda vectors
x0 = zeros(n,1);
x0(1) = 1;
x0(n1+1) = 1;
% declare function to be minimized
%fun = @(lambda)(norm((X1 * lambda(1:n1))-(X2 * lambda(n1+1:n)))^2);
% evaluate fmincon
%x = fmincon(@(lambda) PolytopeDist(X1,X2,lambda,n1,n2,n),x0,A,b,Aeq,beq,lb,ub,nonlcon,options);
[x,fval,exitflag,output] = fmincon(@(lambda) PolytopeDist(X1,X2,lambda,n1,n2,n),x0,A,b,Aeq,beq,lb,ub,nonlcon,options);
%output
% return min distance
minDist = sqrt(PolytopeDist(X1,X2,x,n1,n2,n));
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PolytopeApproxDist.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Exp_Dubins_SBONL/polytope/PolytopeApproxDist.m
| 474 |
utf_8
|
7306751fed5e8ef4b13d8c2a2c0d62e5
|
function dist = PolytopeApproxDist(X1,X2)
[m1,n1] = size(X1);
[m2,n2] = size(X2);
c1 = transpose(mean(transpose(X1)));
c2 = transpose(mean(transpose(X2)));
dist1 = zeros(n1,1);
for i = 1:n1
dist1(i) = norm(X1(:,i)-c1);
end
dist2 = zeros(n2,1);
for i = 1:n2
dist2(i) = norm(X2(:,i)-c2);
end
cDist = norm(c1-c2);
d1 = max(dist1);
d2 = max(dist2);
dist = cDist-d1-d2;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PolytopeDist.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Exp_Dubins_SBONL/polytope/PolytopeDist.m
| 668 |
utf_8
|
34f5332d650d2fb60f349903cb7edf17
|
function [f,g] = PolytopeDist(X1,X2,lambda,n1,n2,n)
f = norm((X1 * lambda(1:n1))-(X2 * lambda(n1+1:n)))^2;
%{
g = zeros(n,1);
for i = 1:n1
g(i) = 2*((X1(1,:)*lambda(1:n1))-(X2(1,:)*lambda(n1+1:n)))*X1(1,i) ...
+ 2*((X1(2,:)*lambda(1:n1))-(X2(2,:)*lambda(n1+1:n)))*X1(2,i) ...
+ 2*((X1(3,:)*lambda(1:n1))-(X2(3,:)*lambda(n1+1:n)))*X1(3,i);
end
for i = 1:n2
g(i) = 2*((X1(1,:)*lambda(1:n1))-(X2(1,:)*lambda(n1+1:n)))*(-X2(1,i)) ...
+ 2*((X1(2,:)*lambda(1:n1))-(X2(2,:)*lambda(n1+1:n)))*(-X2(2,i)) ...
+ 2*((X1(3,:)*lambda(1:n1))-(X2(3,:)*lambda(n1+1:n)))*(-X2(3,i));
end
%}
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
GJK.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/TruerMPC/GJK.m
| 5,909 |
utf_8
|
acc17476d868c4bb652640495a721180
|
function flag = GJK(shape1,shape2,iterations)
% GJK Gilbert-Johnson-Keerthi Collision detection implementation.
% Returns whether two convex shapes are are penetrating or not
% (true/false). Only works for CONVEX shapes.
%
% Inputs:
% shape1:
% must have fields for XData,YData,ZData, which are the x,y,z
% coordinates of the vertices. Can be the same as what comes out of a
% PATCH object. It isn't required that the points form faces like patch
% data. This algorithm will assume the convex hull of the x,y,z points
% given.
%
% shape2:
% Other shape to test collision against. Same info as shape1.
%
% iterations:
% The algorithm tries to construct a tetrahedron encompassing
% the origin. This proves the objects have collided. If we fail within a
% certain number of iterations, we give up and say the objects are not
% penetrating. Low iterations means a higher chance of false-NEGATIVES
% but faster computation. As the objects penetrate more, it takes fewer
% iterations anyway, so low iterations is not a huge disadvantage.
%
% Outputs:
% flag:
% true - objects collided
% false - objects not collided
%
%
% This video helped me a lot when making this: https://mollyrocket.com/849
% Not my video, but very useful.
%
% Matthew Sheen, 2016
%
%Point 1 and 2 selection (line segment)
v = [0.8 0.5 1];
[a,b] = pickLine(v,shape2,shape1);
%Point 3 selection (triangle)
[a,b,c,flag] = pickTriangle(a,b,shape2,shape1,iterations);
%Point 4 selection (tetrahedron)
if flag == 1 %Only bother if we could find a viable triangle.
[a,b,c,d,flag] = pickTetrahedron(a,b,c,shape2,shape1,iterations);
end
end
function [a,b] = pickLine(v,shape1,shape2)
%Construct the first line of the simplex
b = support(shape2,shape1,v);
a = support(shape2,shape1,-v);
end
function [a,b,c,flag] = pickTriangle(a,b,shape1,shape2,IterationAllowed)
flag = 0; %So far, we don't have a successful triangle.
%First try:
ab = b-a;
ao = -a;
v = cross(cross(ab,ao),ab); % v is perpendicular to ab pointing in the general direction of the origin.
c = b;
b = a;
a = support(shape2,shape1,v);
for i = 1:IterationAllowed %iterations to see if we can draw a good triangle.
%Time to check if we got it:
ab = b-a;
ao = -a;
ac = c-a;
%Normal to face of triangle
abc = cross(ab,ac);
%Perpendicular to AB going away from triangle
abp = cross(ab,abc);
%Perpendicular to AC going away from triangle
acp = cross(abc,ac);
%First, make sure our triangle "contains" the origin in a 2d projection
%sense.
%Is origin above (outside) AB?
if dot(abp,ao) > 0
c = b; %Throw away the furthest point and grab a new one in the right direction
b = a;
v = abp; %cross(cross(ab,ao),ab);
%Is origin above (outside) AC?
elseif dot(acp, ao) > 0
b = a;
v = acp; %cross(cross(ac,ao),ac);
else
flag = 1;
break; %We got a good one.
end
a = support(shape2,shape1,v);
end
end
function [a,b,c,d,flag] = pickTetrahedron(a,b,c,shape1,shape2,IterationAllowed)
%Now, if we're here, we have a successful 2D simplex, and we need to check
%if the origin is inside a successful 3D simplex.
%So, is the origin above or below the triangle?
flag = 0;
ab = b-a;
ac = c-a;
%Normal to face of triangle
abc = cross(ab,ac);
ao = -a;
if dot(abc, ao) > 0 %Above
d = c;
c = b;
b = a;
v = abc;
a = support(shape2,shape1,v); %Tetrahedron new point
else %below
d = b;
b = a;
v = -abc;
a = support(shape2,shape1,v); %Tetrahedron new point
end
for i = 1:IterationAllowed %Allowing 10 tries to make a good tetrahedron.
%Check the tetrahedron:
ab = b-a;
ao = -a;
ac = c-a;
ad = d-a;
%We KNOW that the origin is not under the base of the tetrahedron based on
%the way we picked a. So we need to check faces ABC, ABD, and ACD.
%Normal to face of triangle
abc = cross(ab,ac);
if dot(abc, ao) > 0 %Above triangle ABC
%No need to change anything, we'll just iterate again with this face as
%default.
else
acd = cross(ac,ad);%Normal to face of triangle
if dot(acd, ao) > 0 %Above triangle ACD
%Make this the new base triangle.
b = c;
c = d;
ab = ac;
ac = ad;
abc = acd;
else
adb = cross(ad,ab);%Normal to face of triangle
if dot(adb, ao) > 0 %Above triangle ADB
%Make this the new base triangle.
c = b;
b = d;
ac = ab;
ab = ad;
abc = adb;
else
flag = 1;
break; %It's inside the tetrahedron.
end
end
end
%try again:
if dot(abc, ao) > 0 %Above
d = c;
c = b;
b = a;
v = abc;
a = support(shape2,shape1,v); %Tetrahedron new point
else %below
d = b;
b = a;
v = -abc;
a = support(shape2,shape1,v); %Tetrahedron new point
end
end
end
function point = getFarthestInDir(shape, v)
%Find the furthest point in a given direction for a shape
XData = get(shape,'XData'); % Making it more compatible with previous MATLAB releases.
YData = get(shape,'YData');
ZData = get(shape,'ZData');
dotted = XData*v(1) + YData*v(2) + ZData*v(3);
[maxInCol,rowIdxSet] = max(dotted);
[maxInRow,colIdx] = max(maxInCol);
rowIdx = rowIdxSet(colIdx);
point = [XData(rowIdx,colIdx), YData(rowIdx,colIdx), ZData(rowIdx,colIdx)];
end
function point = support(shape1,shape2,v)
%Support function to get the Minkowski difference.
point1 = getFarthestInDir(shape1, v);
point2 = getFarthestInDir(shape2, -v);
point = point1 - point2;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
convexhull.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/TruerMPC/convexhull.m
| 1,701 |
utf_8
|
cb09453005f6a6fce441276524c4e5c7
|
%How many iterations to allow for collision detection.
iterationsAllowed = 6;
% Make a figure
figure(1)
hold on
% constants for set making
cntr_1 = [0.0, 0.0, 0.0];
cntr_2 = [1.0, 0.0, 0.0];
r_1 = 0.5;
r_2 = 0.2;
tdis = 11;
pdis = 6;
% create point cloud
sphere_1 = CreateSphere(cntr_1, r_1, tdis, pdis);
sphere_2 = CreateSphere(cntr_2, r_2, tdis, pdis);
% make individual convex hulls
S1Obj = makeObj(sphere_1);
S2Obj = makeObj(sphere_2);
% Make tube
figure(2)
% create points cloud
sphere_3 = [sphere_1; sphere_2];
% make combined convex hull
S3Obj = makeObj(sphere_3);
% check for collision
flag = GJK(S1Obj, S2Obj, iterationsAllowed)
% returns convex hull from point cloud
function obj = makeObj(points)
% create face representation and create convex hull
F = convhull(points(:,1), points(:,2), points(:,3));
S.Vertices = points;
S.Faces = F;
S.FaceVertexCData = jet(size(points,1));
S.FaceColor = 'interp';
obj = patch(S);
end
% creates a point cloud in a sphere around the center
function points = CreateSphere(center, r, thetadis, phidis)
% angle discretization
thetas = linspace(0,2*pi,thetadis);
phis = linspace(0,pi,phidis);
% point calculation
points = [];
x = [];
y = [];
z = [];
for i = 1:length(phis)
for j = 1:length(thetas)
x = (r * sin(phis(i)) * cos(thetas(j))) + center(1);
y = (r * sin(phis(i)) * sin(thetas(j))) + center(2);
z = (r * cos(phis(i))) + center(3);
points = [points; x, y, z];
% removes duplicate points at the top and bottom of sphere
if(phis(i) == 0 || phis(i) == pi)
break
end
end
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
CreateSphere.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/TruerMPC/functions/CreateSphere.m
| 866 |
utf_8
|
3ea485e3c5956a7fef00a0fe4c32bddb
|
% creates a point cloud in a sphere around the center
function points = CreateSphere(center, r, thetadis, phidis)
% angle discretization
thetas = linspace(0,2*pi,thetadis);
phis = linspace(0,pi,phidis);
% point calculation
points = [];
x = [];
y = [];
z = [];
for i = 1:length(phis)
for j = 1:length(thetas)
% removes duplicate point at theta = 2*pi
if(thetas(j) == 2*pi)
break
end
x = (r * sin(phis(i)) * cos(thetas(j))) + center(1);
y = (r * sin(phis(i)) * sin(thetas(j))) + center(2);
z = (r * cos(phis(i))) + center(3);
points = [points; x, y, z];
% removes duplicate points at the top and bottom of sphere
if(phis(i) == 0 || phis(i) == pi)
break
end
end
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
SBPC.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/TruerMPC/functions/SBPC.m
| 5,590 |
utf_8
|
bf2e9d6733935b85f70c82b3de97fe38
|
% prediction algorithm
% state - [x, y, z, px, py, pz, pxdot, pydot, pzdot]
function input = SBPC(state,target,sigma,QR,PR,TDIS,PDIS,N,K,TIMESTEP,VELOCITY)
% number of iterations to allow for collision detection.
iterationsAllowed = 6;
% target object
targetSet = CreateSphere(target, 0.001, 5, 5);
targetObj = MakeObj(targetSet, 'none');
% get possible velocities
S = length(VELOCITY);
%% projectile set based prediction
% get initial coordinates of projectile
projcntr = state(4:6);
velcntr = state(7:9);
% create point cloud from initial condition
s_0 = CreateSphere(projcntr, PR, TDIS, PDIS); % position
v_0 = CreateSphere(velcntr, PR, TDIS, PDIS); % velocity
% middle point with simulink
simLength = double(N*TIMESTEP);
projtraj = ProjectilePredict(state(4:9), simLength);
% set points
[m,n] = size(s_0);
for i = 1:m
% create initial condition for point in set
setState = [s_0(i,:), v_0(i,:)];
% predict trajectory
projtraj(:,:,i+1) = ProjectilePredict(setState, simLength);
end
%% quadrotor set based prediction
% get initial coordinates of quad
quadcntr = state(1:3);
% create point cloud from initial condition
s_1 = CreateSphere(quadcntr, QR, TDIS, PDIS);
[m,n] = size(s_1);
% N+1 because of initial condition
% K-1 because 0 and 2pi given equivalent trajectories
%quadtraj = ones(N+1,3,S,K-1);
theta = linspace(0, 2*pi, K);
velPerm = permn(VELOCITY,N);
angPerm = permn(theta(1:end-1),N);
[vm, vn] = size(velPerm);
[am, an] = size(angPerm);
quadtraj = zeros(N,3,m+1,N*S);
trajCount = 1;
% iterate though each set of speeds and each set of angles
for i = 1:vm
for j = 1:am
for p = 0:m
% initialize coordinate
% location of quad or one of the points in set X_0
if(p == 0)
lastX = state(1);
lastY = state(2);
lastZ = state(3);
else
lastX = s_1(p,1);
lastY = s_1(p,2);
lastZ = s_1(p,3);
end
curTraj = zeros(N,3);
for k = 1:N
curTraj(k,:) = [lastX,lastY,lastZ];
% propagate the quad one time step with velocity and angle
x = lastX + TIMESTEP * velPerm(i,k) * cos(angPerm(j,k));
y = lastY + TIMESTEP * velPerm(i,k) * sin(angPerm(j,k));
z = lastZ;
lastX = x;
lastY = y;
lastZ = z;
end
% store trajectory
quadtraj(:,:,trajCount,p+1) = curTraj;
end
% adjust trajectory count after each set X_n
trajCount = trajCount+1;
end
end
%% collision detection and trajectory optimization
safeTraj = ones(S,K-1);
for i = 1:N-1
% put data in right form for making convex hull
for j = 1:m+1
projset1(j,:) = projtraj(i,:,j);
projset2(j,:) = projtraj(i+1,:,j);
end
% create intersample convex hull for projectile
projintersampleSet = [projset1; projset2];
projectileConvexHull(i) = MakeObj(projintersampleSet, 'red');
end
% evaluate each trajectory
trajCost = zeros(trajCount);
% iterate through each trajectory
for t = 1:trajCount-1
% run collision detection algorithm
for i = 1:N-1
% put data in right form for making convex hull
% all points from successive sets
for j = 1:m
quadset1(j,:) = quadtraj(i,:,t,j);
quadset2(j,:) = quadtraj(i+1,:,t,j);
end
% create intersample convex hull for trajectory k for quadrotor
quadIntersampleSet = [quadset1; quadset2];
quadrotorConvexHull = MakeObj(quadIntersampleSet, 'green');
%collisionFlag = GJK(projectileConvexHull(i), quadrotorConvexHull, iterationsAllowed);
[dist,~,~,~]=GJK_dist(projectileConvexHull(i),quadrotorConvexHull);
if(dist < sigma)
fprintf('Collision in trajectory %d at speed %d at time step %d\n\r', k,VELOCITY(s),i);
safeTraj(t) = 0;
trajCost(t) = inf;
break;
else
[cost,~,~,~] = GJK_dist(targetObj,quadrotorConvexHull);
collisionFlag = GJK(targetObj,quadrotorConvexHull,iterationsAllowed);
if(collisionFlag)
cost
cost = 0;
error('must increase minimum cost');
end
trajCost(t) = trajCost(t) + cost;
end
end
t
end
%% find optimal input
% find minimum cost and return first coordinate in that trajectory
%[minCostList, minCostIndexList] = min(trajCost);
%[minCost, minCostKIndex] = min(minCostList);
%minCostSIndex = minCostIndexList(minCostKIndex);
%u_opt = quadtraj(2,:,minCostSIndex,minCostKIndex,1);
%input = u_opt;
xlabel('x axis');
ylabel('y axis');
zlabel('z axis');
grid on
%}
input = 0;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
MakeObj.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/TruerMPC/functions/MakeObj.m
| 600 |
utf_8
|
53c884edac0b0ac6c6a36eef2b4b63cc
|
% returns convex hull from point cloud
function obj = MakeObj(points, color)
%figure()
% create face representation and create convex hull
F = convhull(points(:,1), points(:,2), points(:,3));
S.Vertices = points;
S.Faces = F;
S.FaceVertexCData = jet(size(points,1));
S.FaceColor = 'interp';
if(strcmp(color,'red'))
obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','red');
elseif(strcmp(color,'green'))
obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','green');
else
obj = patch(S);
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
SimulationMakeObj.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/TruerMPC/functions/SimulationMakeObj.m
| 367 |
utf_8
|
d4f1152a27a0887bcaaf5135543da40a
|
% returns convex hull from point cloud
function obj = SimulationMakeObj(points)
%figure()
% create face representation and create convex hull
F = convhull(points(:,1), points(:,2), points(:,3));
S.Vertices = points;
S.Faces = F;
S.FaceVertexCData = jet(size(points,1));
S.FaceColor = 'interp';
obj = patch(S,'visible','off');
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
SimulationSBPC.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/TruerMPC/functions/SimulationSBPC.m
| 5,284 |
utf_8
|
60c22e645f032eb5bd2dfa58890c8fa7
|
% prediction algorithm
% state - [x, y, z, px, py, pz, pxdot, pydot, pzdot]
function input = SimulationSBPC(state,target,sigma,QR,PR,TDIS,PDIS,N,K,TIMESTEP,VELOCITY)
% number of iterations to allow for collision detection.
iterationsAllowed = 3;
% target object
targetSet = CreateSphere(target, 0.001, 5, 5);
targetObj = MakeObj(targetSet, 'none');
% get possible velocities
S = length(VELOCITY);
%% projectile set based prediction
% get initial coordinates of projectile
projcntr = state(4:6);
velcntr = state(7:9);
% create point cloud from initial condition
s_0 = CreateSphere(projcntr, PR, TDIS, PDIS); % position
v_0 = CreateSphere(velcntr, PR, TDIS, PDIS); % velocity
% middle point with simulink
simLength = double(N*TIMESTEP);
[projtraj, projvel] = SimulationProjectilePredict(state(4:9), simLength);
% set points
[m,n] = size(s_0);
for i = 1:m
% create initial condition for point in set
setState = [s_0(i,:), v_0(i,:)];
% predict trajectory
[projtraj(:,:,i+1), projvel(:,:,i+1)] = SimulationProjectilePredict(setState, simLength);
end
%% quadrotor set based prediction
% get initial coordinates of quad
quadcntr = state(1:3);
% create point cloud from initial condition
s_1 = CreateSphere(quadcntr, QR, TDIS, PDIS);
[m,n] = size(s_1);
% N+1 because of initial condition
% K-1 because 0 and 2pi given equivalent trajectories
quadtraj = ones(N+1,3,S,K-1);
theta = linspace(0, 2*pi, K);
j = linspace(0,N,N+1);
for i = 1:m+1
for k = 1:K-1
% first is middle point then the set
if(i == 1)
% integrator dynamics
x = quadcntr(1)+transpose(j)*TIMESTEP*VELOCITY*cos(theta(k));
y = quadcntr(2)+transpose(j)*TIMESTEP*VELOCITY*sin(theta(k));
z = quadcntr(3)*ones(N+1,S);
quadtraj(:,1,:,k) = x;
quadtraj(:,2,:,k) = y;
quadtraj(:,3,:,k) = z;
else
% integrator dynamics
x = s_1(i-1,1)+transpose(j)*TIMESTEP*VELOCITY*cos(theta(k));
y = s_1(i-1,2)+transpose(j)*TIMESTEP*VELOCITY*sin(theta(k));
z = s_1(i-1,3)*ones(N+1,S);
quadtraj(:,1,:,k) = x;
quadtraj(:,2,:,k) = y;
quadtraj(:,3,:,k) = z;
end
end
setquadtraj(:,:,:,:,i) = quadtraj;
end
%% collision detection and trajectory optimization
safeTraj = ones(S,K-1);
for i = 1:N-1
% put data in right form for making convex hull
for j = 1:m+1
projset1(j,:) = projtraj(i,:,j);
projset2(j,:) = projtraj(i+1,:,j);
end
% create intersample convex hull for projectile
projintersampleSet = [projset1; projset2];
projectileConvexHull(i) = SimulationMakeObj(projintersampleSet);
end
% evaluate each trajectory
trajCost = zeros(S,K-1);
for k = 1:K-1
for s = 1:S
% run collision detection algorithm
for i = 1:N-1
% put data in right form for making convex hull
% all points from successive sets
for j = 1:m
quadset1(j,:) = setquadtraj(i,:,s,k,j);
quadset2(j,:) = setquadtraj(i+1,:,s,k,j);
end
% create intersample convex hull for trajectory k for quadrotor
quadIntersampleSet = [quadset1; quadset2];
quadrotorConvexHull = SimulationMakeObj(quadIntersampleSet);
%collisionFlag = GJK(projectileConvexHull(i), quadrotorConvexHull, iterationsAllowed);
[dist,~,~,~]=GJK_dist(projectileConvexHull(i),quadrotorConvexHull);
if(dist < sigma)
%fprintf('Collision in trajectory %d at speed %d at time step %d\n\r', k,VELOCITY(s),i);
safeTraj(s,k) = 0;
trajCost(s,k) = inf;
break;
else
[cost,~,~,~] = GJK_dist(targetObj,quadrotorConvexHull);
collisionFlag = GJK(targetObj,quadrotorConvexHull,iterationsAllowed);
if(collisionFlag)
cost
cost = 0;
error('must increase minimum cost');
end
trajCost(s,k) = trajCost(s,k) + cost;
end
end
end
end
%% find optimal input
% find minimum cost and return first coordinate in that trajectory
[minCostList, minCostIndexList] = min(trajCost);
[minCost, minCostKIndex] = min(minCostList);
minCostSIndex = minCostIndexList(minCostKIndex);
u_opt = setquadtraj(2,:,minCostSIndex,minCostKIndex,1);
input = [u_opt,projtraj(2,:,1), projvel(2,:,1)];
xlabel('x axis');
ylabel('y axis');
zlabel('z axis');
grid on
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
CostSum.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/TruerMPC/functions/CostSum.m
| 313 |
utf_8
|
49502b1d0e6bda46cdf68a30ef0c6178
|
% calculates total cost of a trajectory
function totalCost = CostSum(trajectory, target, N)
totalCost = 0;
% sum distances between each point in trajectory and target
for i = 1:N
cost = pdist([trajectory(i,:); target], 'euclidean');
totalCost = totalCost + cost;
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
GJK_mod.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/TruerMPC/GJK DISTANCE/GJK_mod.m
| 6,720 |
utf_8
|
5b06ac643912454d6a7709cccdb88a00
|
function [a,b,c,d,flag] = GJK_mod(shape1,shape2,iterations)
% GJK Gilbert-Johnson-Keerthi Collision detection implementation.
% Returns whether two convex shapes are are penetrating or not
% (true/false). Only works for CONVEX shapes.
%
% Inputs:
% shape1:
% must have fields for XData,YData,ZData, which are the x,y,z
% coordinates of the vertices. Can be the same as what comes out of a
% PATCH object. It isn't required that the points form faces like patch
% data. This algorithm will assume the convex hull of the x,y,z points
% given.
%
% shape2:
% Other shape to test collision against. Same info as shape1.
%
% iterations:
% The algorithm tries to construct a tetrahedron encompassing
% the origin. This proves the objects have collided. If we fail within a
% certain number of iterations, we give up and say the objects are not
% penetrating. Low iterations means a higher chance of false-NEGATIVES
% but faster computation. As the objects penetrate more, it takes fewer
% iterations anyway, so low iterations is not a huge disadvantage.
%
% Outputs:
% flag:
% true - objects collided
% false - objects not collided
% [a,b,c,d] - members of the simplex
%
%
% This video helped me a lot when making this: https://mollyrocket.com/849
% Not my video, but very useful.
%
% Matthew Sheen, 2016
%
% Modified:
% Philippe Lebel, 2016:
% Fixed a bug where aligned vertices would trigger the collision flag
% while there was no collision ( line 191 )
%Point 1 and 2 selection (line segment)
v = [0.8 0.5 1];
[a,b] = pickLine(v,shape2,shape1);
%Point 3 selection (triangle)
[a,b,c,flag] = pickTriangle(a,b,shape2,shape1,iterations);
%Point 4 selection (tetrahedron)
% if flag == 1 %Only bother if we could find a viable triangle.
[a,b,c,d,flag] = pickTetrahedron(a,b,c,shape2,shape1,iterations);
% end
end
function [a,b] = pickLine(v,shape1,shape2)
%Construct the first line of the simplex
b = support(shape2,shape1,v);
dir_ori=-b;
a = support(shape2,shape1,dir_ori);
end
function [a,b,c,flag] = pickTriangle(a,b,shape1,shape2,IterationAllowed)
flag = 0; %So far, we don't have a successful triangle.
%First try:
ab = b-a;
ao = -a;
v = cross(cross(ab,ao),ab); % v is perpendicular to ab pointing in the general direction of the origin.
c = b;
b = a;
a = support(shape2,shape1,v);
for i = 1:IterationAllowed %iterations to see if we can draw a good triangle.
%Time to check if we got it:
ab = b-a;
ao = -a;
ac = c-a;
%Normal to face of triangle
abc = cross(ab,ac);
%Perpendicular to AB going away from triangle
abp = cross(ab,abc);
%Perpendicular to AC going away from triangle
acp = cross(abc,ac);
%First, make sure our triangle "contains" the origin in a 2d projection
%sense.
%Is origin above (outside) AB?
if dot(abp,ao) > 0
c = b; %Throw away the furthest point and grab a new one in the right direction
b = a;
v = abp; %cross(cross(ab,ao),ab);
%Is origin above (outside) AC?
elseif dot(acp, ao) > 0
b = a;
v = acp; %cross(cross(ac,ao),ac);
else
% flag = 1;
% break; %We got a good one.
end
a = support(shape2,shape1,v);
end
end
function [a,b,c,d,flag] = pickTetrahedron(a,b,c,shape1,shape2,IterationAllowed)
%Now, if we're here, we have a successful 2D simplex, and we need to check
%if the origin is inside a successful 3D simplex.
%So, is the origin above or below the triangle?
flag = 0;
ab = b-a;
ac = c-a;
%Normal to face of triangle
abc = cross(ab,ac);
ao = -a;
if dot(abc, ao) > 0 %Above
d = c;
c = b;
b = a;
v = abc;
a_new = support(shape2,shape1,v); %Tetrahedron new point
if ismember(a_new',[a;b;c;d]')
else
d = c;
c = b;
b = a;
a=a_new;
end
else %below
d = b;
b = a;
v = -abc;
a_new = support(shape2,shape1,v); %Tetrahedron new point
if ismember(a_new',[a;b;c;d]')
else
d = b;
b = a;
a=a_new;
end
end
for i = 1:IterationAllowed %Allowing 10 tries to make a good tetrahedron.
%Check the tetrahedron:
ab = b-a;
ao = -a;
ac = c-a;
ad = d-a;
%We KNOW that the origin is not under the base of the tetrahedron based on
%the way we picked a. So we need to check faces ABC, ABD, and ACD.
%Normal to face of triangle
abc = cross(ab,ac);
if dot(abc, ao) > 0 %Above triangle ABC
%No need to change anything, we'll just iterate again with this face as
%default.
else
acd = cross(ac,ad);%Normal to face of triangle
if dot(acd, ao) > 0 %Above triangle ACD
%Make this the new base triangle.
b = c;
c = d;
ab = ac;
ac = ad;
abc = acd;
elseif dot(acd, ao) < 0
adb = cross(ad,ab);%Normal to face of triangle
if dot(adb, ao) > 0 %Above triangle ADB
%Make this the new base triangle.
c = b;
b = d;
ac = ab;
ab = ad;
abc = adb;
else
flag = 1;
break; %It's inside the tetrahedron.
end
else %The nearest point is one of the three points contained in the simplex
;
end
end
%try again:
if dot(abc, ao) > 0 %Above
v = abc;
a_new = support(shape2,shape1,v); %Tetrahedron new point
if ismember(a_new',[a;b;c;d]')
else
d = c;
c = b;
b = a;
a=a_new;
end
else %below
v = -abc;
a_new = support(shape2,shape1,v); %Tetrahedron new point
if ismember(a_new',[a;b;c;d]')
else
d = b;
b = a;
a=a_new;
end
end
end
end
function point = getFarthestInDir(shape, v)
%Find the furthest point in a given direction for a shape
XData = shape.Vertices(:,1); % Making it more compatible with previous MATLAB releases.
YData = shape.Vertices(:,2);
ZData = shape.Vertices(:,3);
dotted = XData*v(1) + YData*v(2) + ZData*v(3);
[maxInCol,rowIdxSet] = max(dotted);
[maxInRow,colIdx] = max(maxInCol);
rowIdx = rowIdxSet(colIdx);
point = [XData(rowIdx,colIdx), YData(rowIdx,colIdx), ZData(rowIdx,colIdx)]';
end
function point = support(shape1,shape2,v)
%Support function to get the Minkowski difference.
point1 = getFarthestInDir(shape1, v);
point2 = getFarthestInDir(shape2, -v);
point = point1 - point2;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
GJK_dist.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/TruerMPC/GJK DISTANCE/GJK_dist.m
| 10,028 |
utf_8
|
536b90ca4f66c97f6dad1e522b854947
|
%This function is based on the book Real-Time Collision Detection
% (http://realtimecollisiondetection.net/)
%
%It computes the distance, the points of closest proximity points and also
%returns the points last contained in the simplex.
%[dist,pts,G,H] = GJK_dist_7_point_poly( shape1, shape2 )
%
% INPUTS:
%
% shape1: a patch object representing the first convex solid
% shape2: a patch object representing the second convex solid
%
% OUTPUTS:
%
% dist: an absolute float number representing the minimum distance between
% the shapes.
% pts: The points of the minkowsky diference where the alogrithm
% stoped.
% G: The point on shape1 closest to shape2
% H: The point on shape2 closest to shape1
% updated 05/01/17. Thanks to Amin Ramezanifar for pointing out an error.
function [dist,pts,G,H] = GJK_dist( shape1, shape2 )
%pick a random direction
d=[1 1 1];
%pick a point
[a, point1_a, point2_a]=support_2(shape1,shape2,d);
%pick a second point to creat a line
[b, point1_b, point2_b]=support_2(shape1,shape2,-d);
%pick a third point to make a tirangle
ab=b-a;
ao=-a;
%perpendicular direction
d=cross(cross(ab,ao),ab);
%pick a third point
[c, point1_c, point2_c]=support_2(shape1,shape2,d);
%the simplex is now complete
pts=[a b c];
pts_1_2=[point1_a point1_b point1_c;point2_a point2_b point2_c];
itt=0;
pts_old=pts;
norm_old=norm(pts_old);
d_old=d;
dist_old=1000;
dist=1000;
flag=0;
PP0 = 'V';
%This loop is there for the very rare case where the simplex would contain
%duplicate points.
while true
if isequal(c,b) || isequal(c,a)
[c, point1_c, point2_c]=support_2(shape1,shape2,-d);
else
pts=[a b c];
pts_1_2=[point1_a point1_b point1_c;point2_a point2_b point2_c];
break
end
end
while true
%we compute the norm of vector going from the origin to each member
%of the simplex
Norm_pts = (sqrt(sum(abs(pts').^2,2)));
%Computing and removing the farthest point of the simplex from the origin
[max_norm,index]=max(Norm_pts);
%new search direction
d=cross(pts(:,2)-pts(:,1),pts(:,3)-pts(:,1));
origin_projected=(pts(:,1)'*d)*d;
if d'*origin_projected>0
d=-d;
end
d=d/norm(d);
%Pciking a new point to add to the simplex.
[c, point1_c, point2_c]=support_2(shape1,shape2,d);
%we project the origin on the simplex's plane.
origin_projected=(pts(:,1)'*d)*d;
% We verify if the point is allready contained in the simplex.
% The (itt>5 && flag == 5) condition to enter this loop is one of the main
% problems of the algorithm. Sometime, when using only the normal to
% the triangle, the solution does not converge to the absolute minimum
% distance. This other way of computing the new direction allows a
% higher rate of succesful convergeance. If one would want to upgrade the
% algorithm he would certainly need to work arround here.
if any(abs(Norm_pts-norm(c))<0.000001) || (itt>5 && flag == 5)
% computing the distance of each traingle lines from the origin
d1 = distLinSeg(pts(:,1)',pts(:,2)',origin_projected',origin_projected');
d2 = distLinSeg(pts(:,1)',pts(:,3)',origin_projected',origin_projected');
d3 = distLinSeg(pts(:,2)',pts(:,3)',origin_projected',origin_projected');
% d1=(pts(:,2)-pts(:,1))'/norm(pts(:,2)-pts(:,1))*(pts(:,1)-origin_projected)/norm((pts(:,1)-origin_projected));
% d2=(pts(:,3)-pts(:,1))'/norm(pts(:,3)-pts(:,1))*(pts(:,1)-origin_projected)/norm((pts(:,1)-origin_projected));
% d3=(pts(:,3)-pts(:,2))'/norm(pts(:,3)-pts(:,2))*(pts(:,2)-origin_projected)/norm((pts(:,2)-origin_projected));
dist_seg_min=min(abs([d1 d2 d3]));
%we want to pick the two points creating the line closest to the
%origin.
%We also need to deal with the case where the origin is closest to
%a point, resulting in two distances being equal.
if dist_seg_min<dist
while true
if d1==dist_seg_min
%pick a third point to make a tirangle
ab=pts(:,2)-pts(:,1);
ao=-pts(:,1);
%perpendicular direction
d=cross(cross(ab,ao),ab);
if d1~=d2 && d1~=d3
[c, point1_c, point2_c]=support_2(shape1,shape2,d);
index=3;
break
else
[c_1, point1_c_1, point2_c_1]=support_2(shape1,shape2,d);
index_1=3;
end
end
if d2==dist_seg_min
%pick a third point to make a tirangle
ab=pts(:,3)-pts(:,1);
ao=-pts(:,1);
%perpendicular direction
d=cross(cross(ab,ao),ab);
if d2~=d1 && d2~=d3
[c, point1_c, point2_c]=support_2(shape1,shape2,d);
index=2;
break
else
[c_2, point1_c_2, point2_c_2]=support_2(shape1,shape2,d);
index_2=2;
end
end
if d3==dist_seg_min
%pick a third point to make a tirangle
ab=pts(:,3)-pts(:,2);
ao=-pts(:,2);
%perpendicular direction
d=cross(cross(ab,ao),ab);
if d3~=d1 && d3~=d2
[c, point1_c, point2_c]=support_2(shape1,shape2,d);
index=1;
break
else
[c_3, point1_c_3, point2_c_3]=support_2(shape1,shape2,d);
index_3=1;
end
end
if d1==d2
L1=(pts(:,2)-pts(:,1))'/norm(pts(:,2)-pts(:,1))*(pts(:,1)-origin_projected)/norm((pts(:,1)-origin_projected));
L2=(pts(:,3)-pts(:,1))'/norm(pts(:,3)-pts(:,1))*(pts(:,1)-origin_projected)/norm((pts(:,1)-origin_projected));
if L1>L2
c=c_1;
point1_c=point1_c_1;
point2_c=point2_c_1;
else
c=c_2;
point1_c=point1_c_2;
point2_c=point2_c_2;
end
elseif d1==d3
L1=(pts(:,2)-pts(:,1))'/norm(pts(:,2)-pts(:,1))*(pts(:,1)-origin_projected)/norm((pts(:,1)-origin_projected));
L3=(pts(:,3)-pts(:,2))'/norm(pts(:,3)-pts(:,2))*(pts(:,2)-origin_projected)/norm((pts(:,2)-origin_projected));
if L1>L3
c=c_1;
point1_c=point1_c_1;
point2_c=point2_c_1;
else
c=c_3;
point1_c=point1_c_3;
point2_c=point2_c_3;
end
elseif d2==d3
L2=(pts(:,3)-pts(:,1))'/norm(pts(:,3)-pts(:,1))*(pts(:,1)-origin_projected)/norm((pts(:,1)-origin_projected));
L3=(pts(:,3)-pts(:,2))'/norm(pts(:,3)-pts(:,2))*(pts(:,2)-origin_projected)/norm((pts(:,2)-origin_projected));
if L2>L3
c=c_2;
point1_c=point1_c_2;
point2_c=point2_c_2;
else
c=c_3;
point1_c=point1_c_3;
point2_c=point2_c_3;
end
end
break
end
end
% if even after picking a new point with the other method, if the
% simplex already has it, we assume we converged.
if any(abs(Norm_pts-norm(c))<0.000001)
if PP0 == 'V'
% converged on first itteration, dist and PP0 must be
% computed.
[dist, PP0] = pointTriangleDistance(pts',[0 0 0]);
end
Norm_pts=0;
break
end
end
pts(:,index)=[];
pts_1_2(:,index)=[];
pts=[pts c];
pts_1_2=[pts_1_2 [point1_c;point2_c]];
[dist, PP0] = pointTriangleDistance(pts',[0 0 0]);
%we need to do the following manipulation because sometimes, the
%simplex will oscillate arround the closest solution, creating an
%infinite loop. We need to backup the solution that resulted in the
%minimal distance and use it if the loop times out (10 itteration max)
if dist<dist_old
pts_prox=pts;
dist_prox=dist;
PP0_prox=PP0;
pts_1_2_prox=pts_1_2;
end
%The time out is set here.
if itt>6
flag=5;
if itt>10 && flag==5
pts=pts_prox;
dist=dist_prox;
PP0=PP0_prox;
pts_1_2=pts_1_2_prox;
break
end
end
dist_old=dist;
d_old=d;
pts_old=pts;
if abs(norm_old-norm(pts))<0.01
norm_old=norm(pts);
end
itt=itt+1;
% pause(0.1)
end
% Calculation of the barycentric coordinates of the origin in respect to
% the simplex.
T = [1 4 3;
1 4 2;
3 4 2;
1 2 3];
pts_t=[pts';PP0];
% commented out by Jeremy
%TR=triangulation(T,pts_t);
%B=cartesianToBarycentric(TR,4,PP0);
G=0;
H=0;
%calculation of the points G and H of proximity on,respectively, shape1
%and shape2.
% commented out by Jeremy
%for i=1:3
% G=G+B(i)*pts_1_2(1:3,i);
% H=H+B(i)*pts_1_2(4:6,i);
%end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
GJK.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/TruerMPC/GJK DISTANCE/GJK.m
| 6,009 |
utf_8
|
30df12311f7526c9599cde4b2aaf7a3a
|
function [flag] = GJK(shape1,shape2,iterations)
% GJK Gilbert-Johnson-Keerthi Collision detection implementation.
% Returns whether two convex shapes are are penetrating or not
% (true/false). Only works for CONVEX shapes.
%
% Inputs:
% shape1:
% must have fields for XData,YData,ZData, which are the x,y,z
% coordinates of the vertices. Can be the same as what comes out of a
% PATCH object. It isn't required that the points form faces like patch
% data. This algorithm will assume the convex hull of the x,y,z points
% given.
%
% shape2:
% Other shape to test collision against. Same info as shape1.
%
% iterations:
% The algorithm tries to construct a tetrahedron encompassing
% the origin. This proves the objects have collided. If we fail within a
% certain number of iterations, we give up and say the objects are not
% penetrating. Low iterations means a higher chance of false-NEGATIVES
% but faster computation. As the objects penetrate more, it takes fewer
% iterations anyway, so low iterations is not a huge disadvantage.
%
% Outputs:
% flag:
% true - objects collided
% false - objects not collided
%
%
% This video helped me a lot when making this: https://mollyrocket.com/849
% Not my video, but very useful.
%
% Matthew Sheen, 2016
%
%Point 1 and 2 selection (line segment)
v = [0.8 0.5 1];
[a,b] = pickLine(v,shape2,shape1);
%Point 3 selection (triangle)
[a,b,c,flag] = pickTriangle(a,b,shape2,shape1,iterations);
%Point 4 selection (tetrahedron)
if flag == 1 %Only bother if we could find a viable triangle.
[a,b,c,d,flag] = pickTetrahedron(a,b,c,shape2,shape1,iterations);
end
end
function [a,b] = pickLine(v,shape1,shape2)
%Construct the first line of the simplex
b = support(shape2,shape1,v);
a = support(shape2,shape1,-v);
end
function [a,b,c,flag] = pickTriangle(a,b,shape1,shape2,IterationAllowed)
flag = 0; %So far, we don't have a successful triangle.
%First try:
ab = b-a;
ao = -a;
v = cross(cross(ab,ao),ab); % v is perpendicular to ab pointing in the general direction of the origin.
c = b;
b = a;
a = support(shape2,shape1,v);
for i = 1:IterationAllowed %iterations to see if we can draw a good triangle.
%Time to check if we got it:
ab = b-a;
ao = -a;
ac = c-a;
%Normal to face of triangle
abc = cross(ab,ac);
%Perpendicular to AB going away from triangle
abp = cross(ab,abc);
%Perpendicular to AC going away from triangle
acp = cross(abc,ac);
%First, make sure our triangle "contains" the origin in a 2d projection
%sense.
%Is origin above (outside) AB?
if dot(abp,ao) > 0
c = b; %Throw away the furthest point and grab a new one in the right direction
b = a;
v = abp; %cross(cross(ab,ao),ab);
%Is origin above (outside) AC?
elseif dot(acp, ao) > 0
b = a;
v = acp; %cross(cross(ac,ao),ac);
else
flag = 1;
break; %We got a good one.
end
a = support(shape2,shape1,v);
end
end
function [a,b,c,d,flag] = pickTetrahedron(a,b,c,shape1,shape2,IterationAllowed)
%Now, if we're here, we have a successful 2D simplex, and we need to check
%if the origin is inside a successful 3D simplex.
%So, is the origin above or below the triangle?
flag = 0;
ab = b-a;
ac = c-a;
%Normal to face of triangle
abc = cross(ab,ac);
ao = -a;
if dot(abc, ao) > 0 %Above
d = c;
c = b;
b = a;
v = abc;
a = support(shape2,shape1,v); %Tetrahedron new point
else %below
d = b;
b = a;
v = -abc;
a = support(shape2,shape1,v); %Tetrahedron new point
end
for i = 1:IterationAllowed %Allowing 10 tries to make a good tetrahedron.
%Check the tetrahedron:
ab = b-a;
ao = -a;
ac = c-a;
ad = d-a;
%We KNOW that the origin is not under the base of the tetrahedron based on
%the way we picked a. So we need to check faces ABC, ABD, and ACD.
%Normal to face of triangle
abc = cross(ab,ac);
if dot(abc, ao) > 0 %Above triangle ABC
%No need to change anything, we'll just iterate again with this face as
%default.
else
acd = cross(ac,ad);%Normal to face of triangle
if dot(acd, ao) > 0 %Above triangle ACD
%Make this the new base triangle.
b = c;
c = d;
ab = ac;
ac = ad;
abc = acd;
elseif dot(acd, ao) < 0
adb = cross(ad,ab);%Normal to face of triangle
if dot(adb, ao) > 0 %Above triangle ADB
%Make this the new base triangle.
c = b;
b = d;
ac = ab;
ab = ad;
abc = adb;
else
flag = 1;
break; %It's inside the tetrahedron.
end
else %the origin is on the same plane as the triangle
;
end
end
%try again:
if dot(abc, ao) > 0 %Above
d = c;
c = b;
b = a;
v = abc;
a = support(shape2,shape1,v); %Tetrahedron new point
else %below
d = b;
b = a;
v = -abc;
a = support(shape2,shape1,v); %Tetrahedron new point
end
end
end
function point = getFarthestInDir(shape, v)
%Find the furthest point in a given direction for a shape
XData = shape.Vertices(:,1); % Making it more compatible with previous MATLAB releases.
YData = shape.Vertices(:,2);
ZData = shape.Vertices(:,3);
dotted = XData*v(1) + YData*v(2) + ZData*v(3);
[maxInCol,rowIdxSet] = max(dotted);
[maxInRow,colIdx] = max(maxInCol);
rowIdx = rowIdxSet(colIdx);
point = [XData(rowIdx,colIdx), YData(rowIdx,colIdx), ZData(rowIdx,colIdx)]';
end
function point = support(shape1,shape2,v)
%Support function to get the Minkowski difference.
point1 = getFarthestInDir(shape1, v);
point2 = getFarthestInDir(shape2, -v);
point = point1 - point2;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
distLinSeg.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/TruerMPC/GJK DISTANCE/distLinSeg.m
| 2,407 |
utf_8
|
f4674ddd3116bd073e046a82cc0b8e1e
|
% Function for fast computation of the shortest distance between two line segments
%
% Algorithm implemented:
% Vladimir J. LUMELSKY,
% ``ON FAST COMPUTATION OF DISTANCE BETWEEN LINE SEGMENTS'',
% Information Processing Letters 21 (1985) 55-61
%
%
% Input: ([start point of line1], [end point of line1], [start point of
% line2], [end point of line2])
%
% Output: dist - shortest distance between the line segments (in N dimensions)
% points (optional) - shortest points on the line segments
%
% Example:
% >> [dist,points] = distLinSeg([0 0], [1 1], [1 0], [2 0])
% >> dist = 0.7071
% >> points = [0.5 0.5; 1 0]
%
%
% 1.2.2015 - created: Ondrej Sluciak ([email protected])
%
function [dist,varargout] = distLinSeg(point1s,point1e,point2s,point2e)
d1 = point1e - point1s;
d2 = point2e - point2s;
d12 = point2s - point1s;
D1 = d1*d1'; %D1 = sum(d1.^2);
D2 = d2*d2'; %D2 = sum(d2.^2);
S1 = d1*d12'; % S1 = sum(d1.*d12);
S2 = d2*d12'; % S2 = sum(d2.*d12);
R = d1*d2'; % R = sum(d1.*d2);
den = D1*D2-R^2; %denominator
if (D1 == 0 || D2 == 0) % if one of the segments is a point
if (D1 ~= 0) % if line1 is a segment and line2 is a point
u = 0;
t = S1/D1;
t = fixbound(t);
elseif (D2 ~= 0) % if line2 is a segment and line 1 is a point
t = 0;
u = -S2/D2;
u = fixbound(u);
else % both segments are points
t = 0;
u = 0;
end
elseif (den == 0) % if lines are parallel
t = 0;
u = -S2/D2;
uf = fixbound(u);
if (uf~= u)
t = (uf*R+S1)/D1;
t = fixbound(t);
u = uf;
end
else % general case
t = (S1*D2-S2*R)/den;
t = fixbound(t);
u = (t*R-S2)/D2;
uf = fixbound(u);
if (uf ~= u)
t = (uf*R+S1)/D1;
t = fixbound(t);
u = uf;
end
end
% Compute distance given parameters 't' and 'u'
dist = norm(d1*t-d2*u-d12); %dist = sqrt(sum((d1*t-d2*u-d12).^2));
if (nargout > 1)
varargout = {[point1s + d1*t;point2s+d2*u]};
end
end
function num = fixbound(num) % if num is out of (0,1) round to {0,1}
if (num < 0)
num = 0;
elseif (num > 1)
num = 1;
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
MakeObj.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SBONL_MultipleObst/plotting/MakeObj.m
| 624 |
utf_8
|
21b5894435118a86bc40d17143893710
|
% returns convex hull from point cloud
function obj = MakeObj(points, color)
%figure()
% create face representation and create convex hull
F = convhull(points(1,:), points(2,:), points(3,:));
S.Vertices = transpose(points);
S.Faces = F;
S.FaceVertexCData = jet(size(points,1));
S.FaceColor = 'interp';
if(strcmp(color,'red'))
obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','red');
elseif(strcmp(color,'green'))
obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','green');
else
obj = patch(S);
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotSetBasedSim.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SBONL_MultipleObst/plotting/PlotSetBasedSim.m
| 1,440 |
utf_8
|
8376aa33d176a72521448eb464a1ad66
|
% PlotSetBasedSim(agentPos, obst, threshold)
%
% plots associated sets with the simulation
function PlotSetBasedSim(agentPos, obst, threshold, target)
figure()
hold on
% mA - coordinate (usually size 3)
% nA - number of points in each set
% pA - time step, equal to iterations in simulation
[mA,nA,pA] = size(agentPos);
% create objects/convex hulls for each set at each time step
for i = 1:pA
% format points for MakeObj function
curSet = zeros(mA,nA);
for j = 1:nA
curSet(:,j) = agentPos(:,j,i);
end
% make the object
MakeObj(curSet, 'green');
end
[mO,nO,pO] = size(obst);
% NOTE: pA == nO
% plot obstacle with threshold
for i = 1:nO
for j = 1:pO
% create sphere for obstacle (threshold and obstacle location)
[x,y,z] = sphere;
x = threshold*x+obst(1,i,j);
y = threshold*y+obst(2,i,j);
z = threshold*z+obst(3,i,j);
[mS,nS] = size(z);
% plot obst
C = zeros(mS,nS,3);
C(:,:,1) = C(:,:,1) + 1;
s = surf(x,y,z,C);
scatter3(obst(1,i,j), obst(2,i,j), obst(3,i,j), '*')
end
end
scatter3(target(1), target(2), target(3), '*')
xlabel('x axis')
ylabel('y axis')
zlabel('z axis')
grid on
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotSimDistance.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SBONL_MultipleObst/plotting/PlotSimDistance.m
| 1,669 |
utf_8
|
e13929ce3bc4fc592bc379669153b036
|
% PlotSetBasedSim(agentPos, obst, threshold)
%
% plots max distance to target and min distance to projectile throughout
% the simulation
function PlotSimDistance(agentPos, obst, threshold, target)
figure()
hold on
% mA - coordinate (usually size 3)
% nA - number of points in each set
% pA - time step, equal to iterations in simulation
[mA,nA,pA] = size(agentPos);
% mO - coordinate (usually size 3)
% nO - time step, equal to iterations in simulation
% pO - obstacle number
[mO,nO,pO] = size(obst);
ObstDist = zeros(pA,pO);
for i = 1:pO
for j = 1:pA
% format points for MakeObj function
curSet = zeros(mA,nA);
for k = 1:nA
curSet(:,k) = agentPos(:,k,j);
end
% min distance to projectile
temp_xObst = [obst(:,j,i),obst(:,j,i)]; % polytope dist function has trouble with only one point
ObstDist(j,i) = PolytopeMinDist(curSet,temp_xObst);
end
plot(0:1:(pA-1),transpose(ObstDist(:,i)));
plot(0:1:(pA-1),threshold*ones(1,(pA)));
end
title('Minimum distance between vehicle polytope and obstacle polytope');
xlabel('time');
ylabel('distance');
figure()
hold on;
dist = zeros(pA,1);
for i = 1:pA
for j = 1:nA
dist(i) = dist(i) + norm(agentPos(:,j,i)-target)^2;
end
end
plot(0:1:(pA-1),dist);
title('Minimum distance between vehicle polytope and target polytope');
xlabel('time');
ylabel('distance');
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotOptimalPredicted.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SBONL_MultipleObst/plotting/PlotOptimalPredicted.m
| 1,354 |
utf_8
|
dfabe81778fe58855a75e53defd5b6c1
|
function PlotOptimalPredicted(agentPos, obst, threshold, target)
figure()
hold on
% mA - coordinate (usually size 3)
% nA - time step, equal to iterations in simulation
% pA - number of points in each set
[mA,nA,pA] = size(agentPos);
% create objects/convex hulls for each set at each time step
for i = 1:nA
% format points for MakeObj function
curSet = zeros(mA,pA);
for j = 1:pA
curSet(:,j) = agentPos(:,i,j);
end
% make the object
MakeObj(curSet, 'green');
end
[mO,nO,pO] = size(obst);
% NOTE: pA == nO
% plot obstacle with threshold
for i = 1:nO
for j = 1:pO
% create sphere for obstacle (threshold and obstacle location)
[x,y,z] = sphere;
x = threshold*x+obst(1,i,j);
y = threshold*y+obst(2,i,j);
z = threshold*z+obst(3,i,j);
[mS,nS] = size(z);
% plot obst
C = zeros(mS,nS,3);
C(:,:,1) = C(:,:,1) + 1;
s = surf(x,y,z,C);
scatter3(obst(1,i,j), obst(2,i,j), obst(3,i,j), '*')
end
end
scatter3(target(1), target(2), target(3), '*')
xlabel('x axis')
ylabel('y axis')
zlabel('z axis')
grid on
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
Cost.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SBONL_MultipleObst/system/Cost.m
| 804 |
utf_8
|
12eaf7fb318a8f3e60546adda1dbf9e0
|
% c = Cost(x0_set, u, ts, target)
%
% custom cost function - sum of distance from each vertex to target squared
function c = Cost(x0_set, u, ts, target)
% predict system state with set based dynamics
x_set = SingleIntegrator(x0_set,u,ts);
% calculate cost of prediction for set based dynamics
% - iterate through each vertex at each time step and calculate the
% distance between that point and the target
[m,n,p] = size(x_set);
c = 0;
for i = 1:p
for j = 1:n
c = c + norm(x_set(:,j,i)-target)^2;
end
end
%{
c = 0;
for i = 1:n
polySet = zeros(3,p);
for j = 1:p
polySet(:,j) = x_set(:,i,j);
end
c = c + PolytopeMinDist(polySet, target);
end
%}
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
FindOptimalInput.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SBONL_MultipleObst/system/FindOptimalInput.m
| 825 |
utf_8
|
7879ed6c2d02f9d83f588dd8e57d0257
|
% function u0 = FindOptimalInput(x0, N, ts, target)
%
% uses fmincon to minimize cost function given system dynamics and
% nonlinear constraints, returns optimal input sequence
function u0 = FindOptimalInput(x0_set, N, ts, target, xObst, threshold)
A = [];
b = [];
Aeq = [];
beq = [];
% set lower and upper bounds on inputs to integrator
bound = 0.1;
lb = -bound*ones(3,N);
ub = bound*ones(3,N);
uInit = zeros(3,N);
% solve optimization
options = optimoptions('fmincon','Display','notify-detailed','algorithm','active-set','MaxFunEvals',1000,'ConstraintTolerance',1e-04);
uopt = fmincon(@(u) Cost(x0_set,u,ts,target),uInit,A,b,Aeq,beq,lb,ub, @(u) ObstConstraint(x0_set,u,ts,xObst,threshold),options);
% return optimal input sequence
u0 = uopt;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
ObstConstraint.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SBONL_MultipleObst/system/ObstConstraint.m
| 1,338 |
utf_8
|
a8f0d3ca6d3c3ba471cafb6dd54a7ced
|
% [c,ceq] = ObstConstraint(x0_set, u, ts, xObst, threshold)
%
% defines the non linear constraint - agent polytope to maintain
% a distance from the obstacle position above threshold
function [c,ceq] = ObstConstraint(x0_set, u, ts, xObst, threshold)
% predict agent with set based dynamics
% coords X time X set points
x_set = SingleIntegrator(x0_set, u, ts);
% find distance between agent polytope and obstacle
[mA,nA,pA] = size(x_set);
[mO,nO,pO] = size(xObst);
ObstDist = zeros(1,pO*nA);
obstDistCount = 1;
for i = 1:nA % time
for j = 1:pO % number of obstacles
% format the agents set for polytope minimization for time step i
xPolytope = zeros(3,pA);
for k = 1:pA
xPolytope(:,k) = x_set(:,i,k);
end
% calculate distance between agent and obstacle
% xPolytope is a 3xp matrix
% xObst(:,i,j) is a 3x1 matrix
temp_xObst = [xObst(:,i,j),xObst(:,i,j)]; % polytope dist function has trouble with only one point
ObstDist(obstDistCount) = PolytopeMinDist(xPolytope,temp_xObst);
obstDistCount = obstDistCount+1;
end
end
% define constraints
c = -ObstDist+threshold;
ceq = [];
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
SingleIntegrator.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SBONL_MultipleObst/system/SingleIntegrator.m
| 412 |
utf_8
|
103d816561c56f118cee17686dc4c4c4
|
% x = SingleIntegrator(x0_set, u, ts)
%
% set based dynamics of single integrator
function x = SingleIntegrator(x0_set, u, ts)
[mP,nP] = size(x0_set);
[mH,nH] = size(u);
% coords X time X set points
x = zeros(3,nH+1,nP);
x(:,1,:) = x0_set;
% apply integrator dynamics
for j = 1:nP
for i = 1:nH
x(:,i+1,j) = x(:,i,j) + ts*u(:,i);
end
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
SimulationProjectilePredict.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SBONL_MultipleObst/projectile/SimulationProjectilePredict.m
| 764 |
utf_8
|
8ea559140e8b2248afec5e16b1990cb5
|
% [trajectory, velocity] = SimulationProjectilePredict(p_0, simTime)
%
% calls on simulink to predict projectile state given initial conditions
function [trajectory, velocity] = SimulationProjectilePredict(p_0, simTime)
% set up simulink
set_param('projectile/rx','Value',num2str(p_0(1)));
set_param('projectile/ry','Value',num2str(p_0(2)));
set_param('projectile/rz','Value',num2str(p_0(3)));
set_param('projectile/vx','Value',num2str(p_0(4)));
set_param('projectile/vy','Value',num2str(p_0(5)));
set_param('projectile/vz','Value',num2str(p_0(6)));
set_param('projectile', 'StopTime', num2str(simTime));
% run simulation
sim('projectile');
trajectory = projectilePos;
velocity = projectileVel;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
CreateSphere.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SBONL_MultipleObst/polytope/CreateSphere.m
| 913 |
utf_8
|
e7fc2c7730cbb8e66f70c29e702d9c20
|
% creates a point cloud in a sphere around the center
function points = CreateSphere(center, r, thetadis, phidis)
% angle discretization
thetas = linspace(0,2*pi,thetadis);
phis = linspace(0,pi,phidis);
% point calculation
points = [];
x = [];
y = [];
z = [];
for i = 1:length(phis)
for j = 1:length(thetas)
% removes duplicate point at theta = 2*pi
if(thetas(j) == 2*pi)
break
end
x = (r * sin(phis(i)) * cos(thetas(j))) + center(1);
y = (r * sin(phis(i)) * sin(thetas(j))) + center(2);
z = (r * cos(phis(i))) + center(3);
nextPoint = [x;y;z];
points = [points, nextPoint];
% removes duplicate points at the top and bottom of sphere
if(phis(i) == 0 || phis(i) == pi)
break
end
end
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PolytopeMinDist.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SBONL_MultipleObst/polytope/PolytopeMinDist.m
| 960 |
utf_8
|
20c5308cdee25a3c8505d60826371706
|
% minDist = PolytopeMinDist(X1,X2)
%
% finds the minimum distance between two polytopes X1 and X2
function minDist = PolytopeMinDist(X1,X2)
% declare constraints for fmincon
lb = [];
ub = [];
% get sizes of vertices for polytopes
[m1,n1] = size(X1);
[m2,n2] = size(X2);
if(m1 ~= m2)
error('Incorrect Dimensions');
end
n = n1+n2;
A = [eye(n); -eye(n)];
b = [ones(n,1); zeros(n,1)];
Aeq = [ones(1,n1) zeros(1,n2);
zeros(1,n1) ones(1,n2)];
beq = [1;1];
nonlcon = [];
% create lambda vectors
x0 = zeros(n,1);
x0(1) = 1;
x0(n1+1) = 1;
fun = @(lambda)(norm((X1 * lambda(1:n1))-(X2 * lambda(n1+1:n)))^2);
% evaluate fmincon
options = optimoptions('fmincon','Display','notify-detailed');
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);
% return min distance
minDist = sqrt(fun(x));
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotSetBasedSimSingle.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/plotting/PlotSetBasedSimSingle.m
| 1,656 |
utf_8
|
8cb1287b7a1a2b8f0f8452c845b28882
|
% PlotSetBasedSim(agentPos, obst, threshold)
%
% plots associated sets with the simulation
function PlotSetBasedSim(agentPos, obst, threshold, target)
% mA - coordinate (usually size 3)
% nA - time step, equal to iterations in simulation
[mA,nA,pA] = size(agentPos);
% create objects/convex hulls for each set at each time step
for j = 1:pA
figure()
hold on
for i = 1:nA
% format points for MakeObj function
curSet = zeros(2,4);
curSet(:,1) = [agentPos(1,i,j);agentPos(3,i,j)];
curSet(:,2) = [agentPos(1,i,j);agentPos(4,i,j)];
curSet(:,3) = [agentPos(2,i,j);agentPos(3,i,j)];
curSet(:,4) = [agentPos(2,i,j);agentPos(4,i,j)];
% make the object
MakeObj(curSet, 'g');
% format points for MakeObj function
curObstSet = zeros(2,4);
curObstSet(:,1) = [obst(1,i,j);obst(3,i,j)];
curObstSet(:,2) = [obst(1,i,j);obst(4,i,j)];
curObstSet(:,3) = [obst(2,i,j);obst(3,i,j)];
curObstSet(:,4) = [obst(2,i,j);obst(4,i,j)];
% make the object
MakeObj(curObstSet, 'r');
end
FS = 16;
h = gcf;
%set(h,'Units','inches','Position',[2 2 3.4 2])
xlabel('q^1 [m]','FontName','Times','FontSize',FS)
ylabel('q^2 [m]','FontName','Times','FontSize',FS)
set(gca,'FontName','Times','FontSize',FS)
h.PaperPositionMode = 'auto';
axis([-2 2 -2 2])
grid on
end
%scatter(target(1), target(2), '*')
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotSetBasedSim_DO.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/plotting/PlotSetBasedSim_DO.m
| 1,625 |
utf_8
|
8864545c8077080445e4361d5bdecdc7
|
% PlotSetBasedSim(agentPos, obst, threshold)
%
% plots associated sets with the simulation
function PlotSetBasedSim_DO(agentPos, obst, threshold, target, predictions)
% mA - coordinate
% nA - time step, equal to iterations in simulation
% pA - numSim
[mA,nA,pA] = size(agentPos);
L = abs(agentPos(1,1,1)-agentPos(2,1,1));
W = abs(agentPos(3,1,1)-agentPos(4,1,1));
% 5 X N+1 X iterations X numSim
[mP,nP,pP,qP] = size(predictions);
cc = jet(pP);
% sim num
for i = 1:qP
figure()
FS = 50;
h = gcf;
set(gca,'FontSize',FS)
axis([-2.0 2.0 -2.0 2.0]);
grid on
hold on
box on
% sim iteration
for j = 1:pP
% prediction horizon
for k = 1:nP
rectangle('Position',[predictions(1,k,j,i) predictions(3,k,j,i) L W],...
'EdgeColor',cc(mod(j,pP)+1,:));
end
% format points for MakeObj function
curObstSet = zeros(2,4);
curObstSet(:,1) = [obst(1,j,i);obst(3,j,i)];
curObstSet(:,2) = [obst(1,j,i);obst(4,j,i)];
curObstSet(:,3) = [obst(2,j,i);obst(3,j,i)];
curObstSet(:,4) = [obst(2,j,i);obst(4,j,i)];
% make the object
MakeObj(curObstSet, 'r');
end
plot(agentPos(1,:,i)+L/2,agentPos(3,:,i)+W/2,'LineWidth',2,'color','red');
plot(agentPos(1,1,i)+L/2,agentPos(3,1,i)+W/2,'hk','MarkerSize',19);
plot(target(1),target(2),'k*','MarkerSize',19);
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
MakeObj.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/plotting/MakeObj.m
| 683 |
utf_8
|
a81a3fae729eca365c5bffe0df3d8124
|
% returns convex hull from point cloud
function obj = MakeObj(points, color)
%figure()
% create face representation and create convex hull
F = convhull(points(1,:), points(2,:));
fill(points(1,F),points(2,F),color);
%{
S.Vertices = transpose(points(1:2,:));
S.Faces = F;
S.FaceVertexCData = jet(size(points,1));
S.FaceColor = 'interp';
if(strcmp(color,'red'))
obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','red');
elseif(strcmp(color,'green'))
obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','green');
else
obj = patch(S);
end
%}
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotSimDistance_DO.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/plotting/PlotSimDistance_DO.m
| 1,805 |
utf_8
|
3210dc4076617da791e502e3997a68e1
|
% PlotSetBasedSim(agentPos, obst, threshold)
%
% plots max distance to target and min distance to projectile throughout
% the simulation
function PlotSimDistance_DO(agentPos, obst, threshold, target)
figure()
hold on
% mA - coordinate (usually size 3)
% nA - time step, equal to iterations in simulation
[mA,nA,pA] = size(agentPos);
% mO - coordinate (usually size 3)
% nO - time step, equal to iterations in simulation
[mO,nO,pO] = size(obst);
ObstDist = zeros(nA,pA);
% create objects/convex hulls for each set at each time step
for j = 1:pA
for i = 1:nA
% format points for MakeObj function
curSet = zeros(2,4);
curSet(:,1) = [agentPos(1,i,j);agentPos(3,i,j)];
curSet(:,2) = [agentPos(1,i,j);agentPos(4,i,j)];
curSet(:,3) = [agentPos(2,i,j);agentPos(3,i,j)];
curSet(:,4) = [agentPos(2,i,j);agentPos(4,i,j)];
% format points for MakeObj function
curObstSet = zeros(2,4);
curObstSet(:,1) = [obst(1,i,j);obst(3,i,j)];
curObstSet(:,2) = [obst(1,i,j);obst(4,i,j)];
curObstSet(:,3) = [obst(2,i,j);obst(3,i,j)];
curObstSet(:,4) = [obst(2,i,j);obst(4,i,j)];
% min distance to projectile
polyOptions = optimoptions('fmincon','Display','notify-detailed','algorithm','active-set');
%ObstDist(i,j) = PolytopeApproxDist(curSet,curObstSet);
ObstDist(i,j) = PolytopeMinDist(curSet,curObstSet,polyOptions);
end
plot(0:1:(nA-1),transpose(ObstDist(:,j)));
end
plot([0 (nA-1)],[threshold threshold],'--r');
FS = 50;
h = gcf;
set(gca,'FontSize',FS)
axis([0 nA-1 0 1.5]);
box on
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotSetBasedSim16.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/plotting/PlotSetBasedSim16.m
| 2,996 |
utf_8
|
18fd234337bdbe6d2e11e27d3c4c7469
|
% PlotSetBasedSim(agentPos, obst, threshold)
%
% plots associated sets with the simulation
function PlotSetBasedSim(agentPos, obst, threshold, target)
% mA - coordinate (usually size 3)
% nA - time step, equal to iterations in simulation
[mA,nA,pA] = size(agentPos);
% create objects/convex hulls for each set at each time step
for j = 1:pA
if(j<=16)
if(j==6 || j==7 || j==9 || j==12 || j==13 || j==14 || j==15 || j==16)
%subplot(2,2,1)
figure(2)
else
%subplot(2,2,2)
figure(1)
end
else
if(j==22 || j==23 || j==25 || j==28 || j==29 || j==30 || j==31 || j==32)
%subplot(2,2,3)
figure(3)
else
%subplot(2,2,4)
figure(4)
end
end
hold on
for i = 1:nA
% format points for MakeObj function
curSet = zeros(2,4);
curSet(:,1) = [agentPos(1,i,j);agentPos(3,i,j)];
curSet(:,2) = [agentPos(1,i,j);agentPos(4,i,j)];
curSet(:,3) = [agentPos(2,i,j);agentPos(3,i,j)];
curSet(:,4) = [agentPos(2,i,j);agentPos(4,i,j)];
% make the object
MakeObj(curSet, 'g');
% format points for MakeObj function
curObstSet = zeros(2,4);
curObstSet(:,1) = [obst(1,i);obst(3,i)];
curObstSet(:,2) = [obst(1,i);obst(4,i)];
curObstSet(:,3) = [obst(2,i);obst(3,i)];
curObstSet(:,4) = [obst(2,i);obst(4,i)];
% make the object
MakeObj(curObstSet, 'r');
end
figure(1)
FS = 24;
h = gcf;
xlabel('q^1 [m]','FontName','Times','FontSize',FS)
ylabel('q^2 [m]','FontName','Times','FontSize',FS)
set(gca,'FontName','Times','FontSize',FS)
h.PaperPositionMode = 'auto';
axis([-4 4 -4 4])
grid on
figure(2)
h = gcf;
xlabel('q^1 [m]','FontName','Times','FontSize',FS)
ylabel('q^2 [m]','FontName','Times','FontSize',FS)
set(gca,'FontName','Times','FontSize',FS)
h.PaperPositionMode = 'auto';
axis([-4 4 -4 4])
grid on
figure(3)
h = gcf;
xlabel('q^1 [m]','FontName','Times','FontSize',FS)
ylabel('q^2 [m]','FontName','Times','FontSize',FS)
set(gca,'FontName','Times','FontSize',FS)
h.PaperPositionMode = 'auto';
axis([-4 4 -4 4])
grid on
figure(4)
h = gcf;
xlabel('q^1 [m]','FontName','Times','FontSize',FS)
ylabel('q^2 [m]','FontName','Times','FontSize',FS)
set(gca,'FontName','Times','FontSize',FS)
h.PaperPositionMode = 'auto';
axis([-4 4 -4 4])
grid on
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotSetBasedSim_SO.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/plotting/PlotSetBasedSim_SO.m
| 1,679 |
utf_8
|
f30244ad8222015c7e4b7e7f637ffdd5
|
% PlotSetBasedSim(agentPos, obst, threshold)
%
% plots associated sets with the simulation
function PlotSetBasedSim_SO(agentPos, obst, threshold, target, predictions)
figure()
FS = 50;
h = gcf;
set(gca,'FontSize',FS)
axis([-1.5 1.0 -1.5 1.5]);
grid on
box on
% mA - coordinate
% nA - time step, equal to iterations in simulation
% pA - numSim
[mA,nA,pA] = size(agentPos);
L = abs(agentPos(1,1,1)-agentPos(2,1,1));
W = abs(agentPos(3,1,1)-agentPos(4,1,1));
% 5 X N+1 X iterations X numSim
[mP,nP,pP,qP] = size(predictions);
cc = jet(pP);
% sim num
for i = 1:qP
hold on
% sim iteration
for j = 1:pP
% prediction horizon
for k = 1:nP
rectangle('Position',[predictions(1,k,j,i) predictions(3,k,j,i) L W],...
'EdgeColor',cc(mod(j,pP)+1,:),'LineWidth',0.6);
end
% format points for MakeObj function
curObstSet = zeros(2,4);
curObstSet(:,1) = [obst(1,i);obst(3,i)];
curObstSet(:,2) = [obst(1,i);obst(4,i)];
curObstSet(:,3) = [obst(2,i);obst(3,i)];
curObstSet(:,4) = [obst(2,i);obst(4,i)];
% make the object
MakeObj(curObstSet, 'r');
end
plot(agentPos(1,1,i)+L/2,agentPos(3,1,i)+W/2,'hk','MarkerSize',19);
end
for i = 1:pA
plot(agentPos(1,:,i)+L/2,agentPos(3,:,i)+W/2,'LineWidth',2,'color','red');
end
plot(target(1),target(2),'k*','MarkerSize',19);
print(h,'sim_SO','-depsc','-r0')
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotSimDistance16.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/plotting/PlotSimDistance16.m
| 4,064 |
utf_8
|
d1c282b26571b195d86ca84a3bf3dde9
|
% PlotSetBasedSim(agentPos, obst, threshold)
%
% plots max distance to target and min distance to projectile throughout
% the simulation
function PlotSimDistance(agentPos, obst, threshold, target)
% mA - coordinate (usually size 3)
% nA - time step, equal to iterations in simulation
[mA,nA,pA] = size(agentPos);
% mO - coordinate (usually size 3)
% nO - time step, equal to iterations in simulation
[mO,nO] = size(obst);
ObstDist = zeros(nA,pA);
figure(5)
hold on
% create objects/convex hulls for each set at each time step
for j = 1:pA
for i = 1:nA
% format points for MakeObj function
curSet = zeros(2,4);
curSet(:,1) = [agentPos(1,i,j);agentPos(3,i,j)];
curSet(:,2) = [agentPos(1,i,j);agentPos(4,i,j)];
curSet(:,3) = [agentPos(2,i,j);agentPos(3,i,j)];
curSet(:,4) = [agentPos(2,i,j);agentPos(4,i,j)];
% format points for MakeObj function
curObstSet = zeros(2,4);
curObstSet(:,1) = [obst(1,i);obst(3,i)];
curObstSet(:,2) = [obst(1,i);obst(4,i)];
curObstSet(:,3) = [obst(2,i);obst(3,i)];
curObstSet(:,4) = [obst(2,i);obst(4,i)];
% min distance to projectile
polyOptions = optimoptions('fmincon','Display','notify-detailed','algorithm','active-set');
%ObstDist(i,j) = PolytopeMinDist(curSet,curObstSet,polyOptions);
ObstDist(i,j) = PolytopeApproxDist(curSet,curObstSet);
end
%plot(0:1:(nA-1),transpose(ObstDist(:,j)));
%if(j==16)
% plot(0:1:(nA-1),threshold*ones(1,(nA)),'r');
% subplot(2,1,2)
% hold on
%end
end
plot([0 (nA-1)],[threshold threshold],'--r');
[y,ind] = min(ObstDist);
for i = 1:pA
if(y(i) < 0.2)
plot(0:1:(nA-1),transpose(ObstDist(:,i)));
end
end
FS = 12;
h = gcf;
set(h,'Units','inches','Position',[2 2 3.4 2])
xlabel('Time [s]','FontName','Times','FontSize',FS)
ylabel('Distance [m]','FontName','Times','FontSize',FS)
set(gca,'FontName','Times','FontSize',FS)
pos = h.PaperPosition;
h.PaperPositionMode = 'auto';
set(h,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3), pos(4)])
print(h,'filename','-dpdf','-r0')
%title('Minimum Distance Between Vehicle and Obstacle');
axis([0 nA-1 0 2.5]);
figure(6)
subplot(2,1,1)
hold on
dist = zeros(nA,pA);
for j = 1:pA
for i = 1:nA
dist(i,j) = dist(i,j) + sqrt(norm([agentPos(1,i,j);agentPos(3,i,j)]-target)^2) ...
+ sqrt(norm([agentPos(1,i,j);agentPos(4,i,j)]-target)^2) ...
+ sqrt(norm([agentPos(2,i,j);agentPos(3,i,j)]-target)^2) ...
+ sqrt(norm([agentPos(2,i,j);agentPos(4,i,j)]-target)^2);
end
plot(0:1:(nA-1),dist(:,j));
if(j==16)
%plot(0:1:(nA-1),threshold*ones(1,(nA)),'r');
h = gcf;
set(h,'Units','inches','Position',[2 2 3.4 2])
xlabel('Time [s]','FontName','Times','FontSize',FS)
ylabel('Distance [m]','FontName','Times','FontSize',FS)
set(gca,'FontName','Times','FontSize',FS)
pos = h.PaperPosition;
h.PaperPositionMode = 'auto';
set(h,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3), pos(4)])
%print(h,'filename','-dpdf','-r0')
subplot(2,1,2)
hold on
end
end
h = gcf;
set(h,'Units','inches','Position',[2 2 3.4 2])
xlabel('Time [s]','FontName','Times','FontSize',FS)
ylabel('Distance [m]','FontName','Times','FontSize',FS)
set(gca,'FontName','Times','FontSize',FS)
pos = h.PaperPosition;
h.PaperPositionMode = 'auto';
set(h,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3), pos(4)])
%print(h,'filename','-dpdf','-r0')
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotSimDistance_SO.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/plotting/PlotSimDistance_SO.m
| 2,921 |
utf_8
|
fb80862abdaa4892147f82d5a38ab012
|
% PlotSetBasedSim(agentPos, obst, threshold)
%
% plots max distance to target and min distance to projectile throughout
% the simulation
function PlotSimDistance_SO(agentPos, obst, threshold, target)
% mA - coordinate (usually size 3)
% nA - time step, equal to iterations in simulation
[mA,nA,pA] = size(agentPos);
% mO - coordinate (usually size 3)
% nO - time step, equal to iterations in simulation
[mO,nO] = size(obst);
L = abs(agentPos(1,1,1)-agentPos(2,1,1));
W = abs(agentPos(3,1,1)-agentPos(4,1,1));
minDist = 2*sqrt(L^2 + W^2);
ObstDist = zeros(nA,pA);
figure()
hold on
% create objects/convex hulls for each set at each time step
for j = 1:pA
for i = 1:nA
% format points for MakeObj function
curSet = zeros(2,4);
curSet(:,1) = [agentPos(1,i,j);agentPos(3,i,j)];
curSet(:,2) = [agentPos(1,i,j);agentPos(4,i,j)];
curSet(:,3) = [agentPos(2,i,j);agentPos(3,i,j)];
curSet(:,4) = [agentPos(2,i,j);agentPos(4,i,j)];
% format points for MakeObj function
curObstSet = zeros(2,4);
curObstSet(:,1) = [obst(1,i);obst(3,i)];
curObstSet(:,2) = [obst(1,i);obst(4,i)];
curObstSet(:,3) = [obst(2,i);obst(3,i)];
curObstSet(:,4) = [obst(2,i);obst(4,i)];
% min distance to projectile
polyOptions = optimoptions('fmincon','Display','notify-detailed','algorithm','active-set');
%ObstDist(i,j) = PolytopeMinDist(curSet,curObstSet,polyOptions);
ObstDist(i,j) = PolytopeApproxDist(curSet,curObstSet);
end
%plot(0:1:(nA-1),transpose(ObstDist(:,j)));
%if(j==16)
% plot(0:1:(nA-1),threshold*ones(1,(nA)),'r');
% subplot(2,1,2)
% hold on
%end
end
plot([0 (nA-1)],[threshold threshold],'--r');
[y,ind] = min(ObstDist);
for i = 1:pA
if(y(i) < 0.2)
plot(0:1:(nA-1),transpose(ObstDist(:,i)));
end
end
FS = 50;
h = gcf;
set(gca,'FontSize',FS)
print(h,'DistToObst','-depsc','-r0')
box on
grid on
axis([0 nA-1 0 1.5]);
figure()
hold on
dist = zeros(nA,pA);
for j = 1:pA
for i = 1:nA
dist(i,j) = dist(i,j) + sqrt(norm([agentPos(1,i,j);agentPos(3,i,j)]-target)^2) ...
+ sqrt(norm([agentPos(1,i,j);agentPos(4,i,j)]-target)^2) ...
+ sqrt(norm([agentPos(2,i,j);agentPos(3,i,j)]-target)^2) ...
+ sqrt(norm([agentPos(2,i,j);agentPos(4,i,j)]-target)^2);
end
plot(0:1:(nA-1),dist(:,j));
end
plot([0 (nA-1)],[minDist minDist],'--r');
h = gcf;
set(gca,'FontSize',FS)
print(h,'DistToTarg','-depsc','-r0')
box on
grid on
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotSimDistanceSuccessive.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/plotting/PlotSimDistanceSuccessive.m
| 2,189 |
utf_8
|
1966c59ec2bb87432a05d3b9d69754f9
|
% PlotSetBasedSim(agentPos, obst, threshold)
%
% plots max distance to target and min distance to projectile throughout
% the simulation
function PlotSimDistance(agentPos, obst, threshold, target)
figure(1)
hold on
% mA - coordinate (usually size 3)
% nA - time step, equal to iterations in simulation
[mA,nA] = size(agentPos);
% mO - coordinate (usually size 3)
% nO - time step, equal to iterations in simulation
% pO - obstacle number
[mO,nO,pO] = size(obst);
ObstDist = zeros(nA,pO);
for i = 1:pO
% create objects/convex hulls for each set at each time step
for j = 1:nA
% format points for MakeObj function
curSet = zeros(3,4);
curSet(:,1) = [agentPos(1,j);agentPos(3,j);0];
curSet(:,2) = [agentPos(1,j);agentPos(4,j);0];
curSet(:,3) = [agentPos(2,j);agentPos(3,j);0];
curSet(:,4) = [agentPos(2,j);agentPos(4,j);0];
% min distance to projectile
temp_xObst = [obst(:,j,i),obst(:,j,i)]; % polytope dist function has trouble with only one point
polyOptions = optimoptions('fmincon','Display','notify-detailed','algorithm','active-set');
ObstDist(j,i) = PolytopeMinDist(curSet,temp_xObst,polyOptions);
end
plot(0:1:(nA-1),transpose(ObstDist(:,i)));
plot(0:1:(nA-1),threshold*ones(1,(nA)));
end
title('Minimum distance between vehicle polytope and obstacle polytope');
xlabel('time');
ylabel('distance');
axis([0 nA-1 0 2]);
drawnow;
figure(2)
hold on;
dist = zeros(nA,1);
for i = 1:nA
dist(i) = dist(i) + norm([agentPos(1,i);agentPos(3,i);0]-target)^2 ...
+ norm([agentPos(1,i);agentPos(4,i);0]-target)^2 ...
+ norm([agentPos(2,i);agentPos(3,i);0]-target)^2 ...
+ norm([agentPos(2,i);agentPos(4,i);0]-target)^2;
end
plot(0:1:(nA-1),dist);
title('Minimum distance between vehicle polytope and target polytope');
xlabel('time');
ylabel('distance');
drawnow;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PlotOptimalPredicted.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/plotting/PlotOptimalPredicted.m
| 1,231 |
utf_8
|
a1fa72c034992b3f76f995656abe6af9
|
function PlotOptimalPredicted(agentPos, obst, threshold, target)
figure()
hold on
% mA - coordinate (usually size 3)
% nA - time step, equal to iterations in simulation
[mA,nA] = size(agentPos);
% create objects/convex hulls for each set at each time step
for i = 1:nA
% format points for MakeObj function
curVehicleSet = zeros(2,4);
curVehicleSet(:,1) = [agentPos(1,i);agentPos(3,i)];
curVehicleSet(:,2) = [agentPos(1,i);agentPos(4,i)];
curVehicleSet(:,3) = [agentPos(2,i);agentPos(3,i)];
curVehicleSet(:,4) = [agentPos(2,i);agentPos(4,i)];
% make the object
MakeObj(curVehicleSet, 'g');
% format points for MakeObj function
curObstSet = zeros(2,4);
curObstSet(:,1) = [obst(1,i);obst(3,i)];
curObstSet(:,2) = [obst(1,i);obst(4,i)];
curObstSet(:,3) = [obst(2,i);obst(3,i)];
curObstSet(:,4) = [obst(2,i);obst(4,i)];
% make the object
MakeObj(curObstSet, 'r');
end
scatter(target(1), target(2), '*')
xlabel('x axis')
ylabel('y axis')
zlabel('z axis')
grid on
drawnow;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
Cost.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/system/Cost.m
| 1,037 |
utf_8
|
7d52b29ad7c2ba935094018617a299dc
|
% c = Cost(x0_set, u, ts, target)
%
% custom cost function - sum of distance from each vertex to target squared
function c = Cost(x0_set, u, ts, target, L, terminalWeight)
% predict system state with set based dynamics
x_set = Dubin(x0_set,u,ts,L);
% calculate cost of prediction for set based dynamics
% - iterate through each vertex at each time step and calculate the
% distance between that point and the target
[m,n] = size(x_set);
c = 0;
% stage cost
for i = 1:n-1
c = c + norm([x_set(1,i);x_set(3,i)]-target)^2 ...
+ norm([x_set(1,i);x_set(4,i)]-target)^2 ...
+ norm([x_set(2,i);x_set(3,i)]-target)^2 ...
+ norm([x_set(2,i);x_set(4,i)]-target)^2;
end
% terminal cost
c = c + terminalWeight*norm([x_set(1,n);x_set(3,n)]-target)^2 ...
+ terminalWeight*norm([x_set(1,n);x_set(4,n)]-target)^2 ...
+ terminalWeight*norm([x_set(2,n);x_set(3,n)]-target)^2 ...
+ terminalWeight*norm([x_set(2,n);x_set(4,n)]-target)^2;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
FindOptimalInput.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/system/FindOptimalInput.m
| 1,241 |
utf_8
|
5caed38f53976af545767fbafde53c10
|
% function u0 = FindOptimalInput(x0, N, ts, target)
%
% uses fmincon to minimize cost function given system dynamics and
% nonlinear constraints, returns optimal input sequence
function uopt = FindOptimalInput(x0_set, N, ts, target, xObst, threshold, L, speedBound, steeringBound, terminalWeight, uGuess, EXP)
A = [];
b = [];
Aeq = [];
beq = [];
% set lower and upper bounds on inputs to dubins model
lb(1,:) = zeros(1,N); % lower bound is zero (speed)
lb(2,:) = -steeringBound*ones(1,N);
ub(1,:) = speedBound*ones(1,N);
ub(2,:) = steeringBound*ones(1,N);
% initial input guess
% uInit = zeros(2,N);
%uInit(1,:) = (0)*ones(1,N);
% solve optimization
options = optimoptions('fmincon','Display','notify-detailed','algorithm','active-set','MaxFunEvals',3000,'ConstraintTolerance',1e-04);
polyOptions = optimoptions('fmincon','Display','notify-detailed','algorithm','active-set');
[uopt ,fval,exitflag,output] = fmincon(@(u) Cost(x0_set,u,ts,target,L,terminalWeight),uGuess,A,b,Aeq,beq,lb,ub, @(u) ObstConstraint(x0_set,u,ts,xObst,threshold,L,polyOptions,EXP),options);
%output;
% return optimal input sequence
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
ObstConstraint.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/system/ObstConstraint.m
| 1,535 |
utf_8
|
2006293a6230997ad0315ff18f16d2a3
|
% [c,ceq] = ObstConstraint(x0_set, u, ts, xObst, threshold)
%
% defines the non linear constraint - agent polytope to maintain
% a distance from the obstacle position above threshold
function [c,ceq] = ObstConstraint(x0_set, u, ts, xObst, threshold,L,options,EXP)
% predict agent with set based dynamics
% coords X time X set points
x_set = Dubin(x0_set, u, ts,L);
% find distance between agent polytope and obstacle
[mA,nA] = size(x_set);
[mO,nO,pO] = size(xObst);
ObstDist = zeros(1,pO*nA);
obstDistCount = 1;
for i = 1:nA % time
for j = 1:pO % number of obstacles
% format the agents set for polytope minimization for time step i
xPolytope = zeros(2,4);
xPolytope(:,:) = [x_set(1,i), x_set(1,i), x_set(2,i), x_set(2,i);
x_set(3,i), x_set(4,i), x_set(3,i), x_set(4,i)];
oPolytope = zeros(2,4);
oPolytope(:,:) = [xObst(1,i), xObst(1,i), xObst(2,i), xObst(2,i);
xObst(3,i), xObst(4,i), xObst(3,i), xObst(4,i)];
if(EXP)
ObstDist(obstDistCount) = PolytopeApproxDist(xPolytope,oPolytope);
else
ObstDist(obstDistCount) = PolytopeMinDist(xPolytope,oPolytope,options);
end
obstDistCount = obstDistCount+1;
end
end
% calculate constraints
c = -ObstDist+threshold;
ceq = [];
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
SingleIntegrator.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/system/SingleIntegrator.m
| 412 |
utf_8
|
103d816561c56f118cee17686dc4c4c4
|
% x = SingleIntegrator(x0_set, u, ts)
%
% set based dynamics of single integrator
function x = SingleIntegrator(x0_set, u, ts)
[mP,nP] = size(x0_set);
[mH,nH] = size(u);
% coords X time X set points
x = zeros(3,nH+1,nP);
x(:,1,:) = x0_set;
% apply integrator dynamics
for j = 1:nP
for i = 1:nH
x(:,i+1,j) = x(:,i,j) + ts*u(:,i);
end
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
SimulationProjectilePredict.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/projectile/SimulationProjectilePredict.m
| 764 |
utf_8
|
8ea559140e8b2248afec5e16b1990cb5
|
% [trajectory, velocity] = SimulationProjectilePredict(p_0, simTime)
%
% calls on simulink to predict projectile state given initial conditions
function [trajectory, velocity] = SimulationProjectilePredict(p_0, simTime)
% set up simulink
set_param('projectile/rx','Value',num2str(p_0(1)));
set_param('projectile/ry','Value',num2str(p_0(2)));
set_param('projectile/rz','Value',num2str(p_0(3)));
set_param('projectile/vx','Value',num2str(p_0(4)));
set_param('projectile/vy','Value',num2str(p_0(5)));
set_param('projectile/vz','Value',num2str(p_0(6)));
set_param('projectile', 'StopTime', num2str(simTime));
% run simulation
sim('projectile');
trajectory = projectilePos;
velocity = projectileVel;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
CreateSphere.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/polytope/CreateSphere.m
| 913 |
utf_8
|
e7fc2c7730cbb8e66f70c29e702d9c20
|
% creates a point cloud in a sphere around the center
function points = CreateSphere(center, r, thetadis, phidis)
% angle discretization
thetas = linspace(0,2*pi,thetadis);
phis = linspace(0,pi,phidis);
% point calculation
points = [];
x = [];
y = [];
z = [];
for i = 1:length(phis)
for j = 1:length(thetas)
% removes duplicate point at theta = 2*pi
if(thetas(j) == 2*pi)
break
end
x = (r * sin(phis(i)) * cos(thetas(j))) + center(1);
y = (r * sin(phis(i)) * sin(thetas(j))) + center(2);
z = (r * cos(phis(i))) + center(3);
nextPoint = [x;y;z];
points = [points, nextPoint];
% removes duplicate points at the top and bottom of sphere
if(phis(i) == 0 || phis(i) == pi)
break
end
end
end
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PolytopeMinDist.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/polytope/PolytopeMinDist.m
| 1,162 |
utf_8
|
e97b9cd17ce23a47a127987797ca0206
|
% minDist = PolytopeMinDist(X1,X2)
%
% finds the minimum distance between two polytopes X1 and X2
function minDist = PolytopeMinDist(X1,X2,options)
% declare constraints for fmincon
lb = [];
ub = [];
% get sizes of vertices for polytopes
[m1,n1] = size(X1);
[m2,n2] = size(X2);
if(m1 ~= m2)
error('USER ERROR: Dimensions mistmatch');
end
n = n1+n2;
A = [eye(n); -eye(n)];
b = [ones(n,1); zeros(n,1)];
Aeq = [ones(1,n1) zeros(1,n2);
zeros(1,n1) ones(1,n2)];
beq = [1;1];
nonlcon = [];
% create lambda vectors
x0 = zeros(n,1);
x0(1) = 1;
x0(n1+1) = 1;
% declare function to be minimized
%fun = @(lambda)(norm((X1 * lambda(1:n1))-(X2 * lambda(n1+1:n)))^2);
% evaluate fmincon
%x = fmincon(@(lambda) PolytopeDist(X1,X2,lambda,n1,n2,n),x0,A,b,Aeq,beq,lb,ub,nonlcon,options);
[x,fval,exitflag,output] = fmincon(@(lambda) PolytopeDist(X1,X2,lambda,n1,n2,n),x0,A,b,Aeq,beq,lb,ub,nonlcon,options);
%output
% return min distance
minDist = sqrt(PolytopeDist(X1,X2,x,n1,n2,n));
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PolytopeApproxDist.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/polytope/PolytopeApproxDist.m
| 474 |
utf_8
|
7306751fed5e8ef4b13d8c2a2c0d62e5
|
function dist = PolytopeApproxDist(X1,X2)
[m1,n1] = size(X1);
[m2,n2] = size(X2);
c1 = transpose(mean(transpose(X1)));
c2 = transpose(mean(transpose(X2)));
dist1 = zeros(n1,1);
for i = 1:n1
dist1(i) = norm(X1(:,i)-c1);
end
dist2 = zeros(n2,1);
for i = 1:n2
dist2(i) = norm(X2(:,i)-c2);
end
cDist = norm(c1-c2);
d1 = max(dist1);
d2 = max(dist2);
dist = cDist-d1-d2;
end
|
github
|
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
|
PolytopeDist.m
|
.m
|
SetBasedPredictionCollisionAndEvasion-master/CASE_Simulation/polytope/PolytopeDist.m
| 668 |
utf_8
|
34f5332d650d2fb60f349903cb7edf17
|
function [f,g] = PolytopeDist(X1,X2,lambda,n1,n2,n)
f = norm((X1 * lambda(1:n1))-(X2 * lambda(n1+1:n)))^2;
%{
g = zeros(n,1);
for i = 1:n1
g(i) = 2*((X1(1,:)*lambda(1:n1))-(X2(1,:)*lambda(n1+1:n)))*X1(1,i) ...
+ 2*((X1(2,:)*lambda(1:n1))-(X2(2,:)*lambda(n1+1:n)))*X1(2,i) ...
+ 2*((X1(3,:)*lambda(1:n1))-(X2(3,:)*lambda(n1+1:n)))*X1(3,i);
end
for i = 1:n2
g(i) = 2*((X1(1,:)*lambda(1:n1))-(X2(1,:)*lambda(n1+1:n)))*(-X2(1,i)) ...
+ 2*((X1(2,:)*lambda(1:n1))-(X2(2,:)*lambda(n1+1:n)))*(-X2(2,i)) ...
+ 2*((X1(3,:)*lambda(1:n1))-(X2(3,:)*lambda(n1+1:n)))*(-X2(3,i));
end
%}
end
|
github
|
nasa/VirtualADAPT-master
|
FaultInjectionGUI.m
|
.m
|
VirtualADAPT-master/MATLAB/FaultInjectionGUI.m
| 17,252 |
utf_8
|
fee51603cf5f6ca78bf33120e3ef2a19
|
function varargout = FaultInjectionGUI(varargin)
% FAULTINJECTIONGUI M-file for FaultInjectionGUI.fig
% FAULTINJECTIONGUI, by itself, creates a new FAULTINJECTIONGUI or raises the existing
% singleton*.
%
% H = FAULTINJECTIONGUI returns the handle to a new FAULTINJECTIONGUI or the handle to
% the existing singleton*.
%
% FAULTINJECTIONGUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in FAULTINJECTIONGUI.M with the given input arguments.
%
% FAULTINJECTIONGUI('Property','Value',...) creates a new FAULTINJECTIONGUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before FaultInjectionGUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to FaultInjectionGUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help FaultInjectionGUI
% Last Modified by GUIDE v2.5 24-Jul-2012 07:36:36
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @FaultInjectionGUI_OpeningFcn, ...
'gui_OutputFcn', @FaultInjectionGUI_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before FaultInjectionGUI is made visible.
function FaultInjectionGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to FaultInjectionGUI (see VARARGIN)
% Choose default command line output for FaultInjectionGUI
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes FaultInjectionGUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% clear out fault table
%set(handles.faultTable,'Data',{})
ADAPTComponents; % loads 'components' variable
% determine active fault modes in the sim and initialize faults table
data = {};
count = 0;
names = fieldnames(components);
for i=1:length(names)
component = names{i};
path = components.(component).path;
% for each fault mode, check if it is present
for j=1:length(components.(component).faultModes)
faultPath = [path components.(component).paths{j}];
if ~strcmp(get_param(faultPath,'FP'),'Nominal')
% add to table
count = count+1;
data{count,1} = component;
data{count,2} = components.(component).faultModes{j};
data{count,3} = get_param(faultPath,'FT');
data{count,4} = get_param(faultPath,'FM');
end
end
end
set(handles.faultTable,'Data',data);
% put it here
% contents = get(handles.component,'String');
% data{i,1} = contents{get(handles.component,'Value')};
% contents = get(handles.fault,'String');
% data{i,2} = contents{get(handles.fault,'Value')};
% data(i,3) = cellstr(get(handles.injection,'String'));
% data(i,4) = cellstr(get(handles.magnitude,'String'));
% set_param([components.(component).path components.(component).paths{faultIndex}],'FT',num2str(injectionTime));
% set_param([components.(component).path components.(component).paths{faultIndex}],'FM',num2str(magnitude));
% set_param([components.(component).path components.(component).paths{faultIndex}],'FP',components.(component).profiles(faultIndex));
% get user data
userData = get(handles.figure1,'UserData');
userData.components = components;
set(handles.figure1,'UserData',userData);
% populate the component drop-down
componentNames = sort(fieldnames(components));
set(handles.component,'String',componentNames);
% populate the fault drop-down for the first fault
updateFaultMode(handles);
% function loadFaults(handles,parameters)
% faultData = {};
% components = fieldnames(parameters.components);
% for i=1:length(components)
% component = components{i};
% tf = parameters.components.(component).tf;
% if tf<Inf
% magnitude = parameters.components.(component).magnitude;
% faultMode = parameters.components.(component).faultMode;
% faultModes = parameters.components.(component).faultModes;
% % add to table
% faultData{end+1,1} = component;
% faultData{end,2} = faultModes{faultMode};
% faultData{end,3} = tf;
% faultData{end,4} = magnitude;
% end
% end
% set(handles.faultTable,'data',faultData);
function updateFaultMode(handles)
userData = get(handles.figure1,'UserData');
% get current component
components = get(handles.component,'String');
component = components{get(handles.component,'Value')};
% set corresponding fault modes
set(handles.fault,'Value',1);
%set(handles.fault,'String',sort(userData.components.(component).faultModes));
set(handles.fault,'String',userData.components.(component).faultModes);
% --- Outputs from this function are returned to the command line.
function varargout = FaultInjectionGUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
function expandColWidths(handles)
colWidth = get(handles.faultTable,'ColumnWidth');
colWidth{1} = colWidth{1}+4;
colWidth{2} = colWidth{2}+4;
colWidth{3} = colWidth{3}+4;
colWidth{4} = colWidth{4}+4;
set(handles.faultTable,'ColumnWidth',colWidth)
function contractColWidths(handles)
colWidth = get(handles.faultTable,'ColumnWidth');
colWidth{1} = colWidth{1}-4;
colWidth{2} = colWidth{2}-4;
colWidth{3} = colWidth{3}-4;
colWidth{4} = colWidth{4}-4;
set(handles.faultTable,'ColumnWidth',colWidth)
% --- Executes on button press in addFault.
function addFault_Callback(hObject, eventdata, handles)
% hObject handle to addFault (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% add current fault to faultTable
userData = get(handles.figure1,'UserData');
data = get(handles.faultTable,'Data');
% if component is already in there, overwrite with new fault
for i=1:size(data,1)
contents = get(handles.component,'String');
if strcmp(data{i,1},contents{get(handles.component,'Value')})
% replace and return
contents = get(handles.fault,'String');
data{i,2} = contents{get(handles.fault,'Value')};
data(i,3) = cellstr(get(handles.injection,'String'));
data(i,4) = cellstr(get(handles.magnitude,'String'));
set(handles.faultTable,'Data',data);
% inject the fault
addFault(userData,str2double(data{i,3}),data{i,1},data{i,2},str2double(data{i,4}));
return
end
end
% if data empty or need to make room, add a blank row
if isempty(data)
data{1,1} = '';
data{1,2} = '';
data{1,3} = '';
data{1,4} = '';
elseif ~isempty(data{size(data,1),1})
nextRow = size(data,1)+1;
data{nextRow,1} = '';
data{nextRow,2} = '';
data{nextRow,3} = '';
data{nextRow,4} = '';
end
% find first empty row and put fault info in there
for i=1:size(data,1)
if isempty(data{i,1})
% put it here
contents = get(handles.component,'String');
data{i,1} = contents{get(handles.component,'Value')};
contents = get(handles.fault,'String');
data{i,2} = contents{get(handles.fault,'Value')};
data(i,3) = cellstr(get(handles.injection,'String'));
data(i,4) = cellstr(get(handles.magnitude,'String'));
% if have 5 rows, contract col widths to fit scrollbar
if size(data,1)==5
contractColWidths(handles);
end
break;
end
end
set(handles.faultTable,'Data',data);
% inject the fault
addFault(userData,str2double(data{i,3}),data{i,1},data{i,2},str2double(data{i,4}));
% add fault function
function addFault(userData,injectionTime,component,faultMode,magnitude)
components = userData.components;
% set this fault mode on
[~,faultIndex] = ismember(faultMode,components.(component).faultModes);
set_param([components.(component).path components.(component).paths{faultIndex}],'FT',num2str(injectionTime));
set_param([components.(component).path components.(component).paths{faultIndex}],'FM',num2str(magnitude));
set_param([components.(component).path components.(component).paths{faultIndex}],'FP',components.(component).profiles(faultIndex));
% set all other fault modes off
for i=1:length(components.(component).faultModes)
path = components.(component).paths{faultIndex};
if ~strcmp(components.(component).paths{i},path)
faultMode = components.(component).faultModes{i};
removeFault(userData,component,faultMode);
end
end
% remove fault function
function removeFault(userData,component,faultMode)
components = userData.components;
[~,faultIndex] = ismember(faultMode,components.(component).faultModes);
set_param([components.(component).path components.(component).paths{faultIndex}],'FT',num2str(0));
set_param([components.(component).path components.(component).paths{faultIndex}],'FP',0);
% reset to nominal function
function resetToNominal(userData)
components = userData.components;
names = fieldnames(components);
for i=1:length(names)
component = names{i};
for j=1:length(components.(component).faultModes)
faultMode = components.(component).faultModes{j};
removeFault(userData,component,faultMode);
end
end
% --- Executes on button press in removeFault.
function removeFault_Callback(hObject, eventdata, handles)
% hObject handle to removeFault (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
userData = get(handles.figure1,'UserData');
data = get(handles.faultTable,'Data');
% get row number of selected cell
row = get(handles.faultTable,'UserData');
if isempty(row) || row>size(data,1)
% nothing or phantom row selected
if size(data,1)==1
%if only 1 entry, select him
row = 1;
else
% else nothing selected and multiple entries, do nothing
return;
end
end
if isempty(data)
return;
elseif ~isempty(data{row,1})
% remove fault
removeFault(userData,data{row,1},data{row,2});
% then remove this row
data(row,:) = [];
set(handles.faultTable,'Data',data);
end
% if now has 4 rows then expand col widths
if size(data,1)==4
expandColWidths(handles);
end
% --- Executes on button press in resetToNominal.
function resetToNominal_Callback(hObject, eventdata, handles)
% hObject handle to resetToNominal (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
userData = get(handles.figure1,'UserData');
data = get(handles.faultTable,'Data');
% if have >3 faults want to expand the col widths b/c scrollbar will
% disappear
if size(data,1)>5
expandColWidths(handles);
end
data = {};
set(handles.faultTable,'Data',data);
% reset to nominal
resetToNominal(userData);
function injection_Callback(hObject, eventdata, handles)
% hObject handle to injection (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of injection as text
% str2double(get(hObject,'String')) returns contents of injection as a double
% --- Executes during object creation, after setting all properties.
function injection_CreateFcn(hObject, eventdata, handles)
% hObject handle to injection (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function magnitude_Callback(hObject, eventdata, handles)
% hObject handle to magnitude (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of magnitude as text
% str2double(get(hObject,'String')) returns contents of magnitude as a double
% --- Executes during object creation, after setting all properties.
function magnitude_CreateFcn(hObject, eventdata, handles)
% hObject handle to magnitude (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in component.
function component_Callback(hObject, eventdata, handles)
% hObject handle to component (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns component contents as cell array
% contents{get(hObject,'Value')} returns selected item from component
updateFaultMode(handles);
% --- Executes during object creation, after setting all properties.
function component_CreateFcn(hObject, eventdata, handles)
% hObject handle to component (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in fault.
function fault_Callback(hObject, eventdata, handles)
% hObject handle to fault (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns fault contents as cell array
% contents{get(hObject,'Value')} returns selected item from fault
% --- Executes during object creation, after setting all properties.
function fault_CreateFcn(hObject, eventdata, handles)
% hObject handle to fault (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes when selected cell(s) is changed in faultTable.
function faultTable_CellSelectionCallback(hObject, eventdata, handles)
% hObject handle to faultTable (see GCBO)
% eventdata structure with the following fields (see UITABLE)
% Indices: row and column indices of the cell(s) currently selecteds
% handles structure with handles and user data (see GUIDATA)
if size(eventdata.Indices,1)>0
set(hObject,'UserData',eventdata.Indices(1))
end
% --- Executes when user attempts to close figure1.
function figure1_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: delete(hObject) closes the figure
delete(hObject);
% --- Executes on button press in saveConfig.
function saveConfig_Callback(hObject, eventdata, handles)
% hObject handle to saveConfig (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% save what is in fault table
data = get(handles.faultTable,'Data');
uisave('data','config.mat');
% --- Executes on button press in loadConfig.
function loadConfig_Callback(hObject, eventdata, handles)
% hObject handle to loadConfig (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filename pathname] = uigetfile('*.mat');
if filename~=0
load([pathname filename]);
% inject each fault in config file
for i=1:size(data,1)
component = data{i,1};
faultMode = data{i,2};
injectionTime = data{i,3};
magnitude = data{i,4};
userData = get(handles.figure1,'UserData');
addFault(userData,injectionTime,component,faultMode,magnitude)
end
set(handles.faultTable,'Data',data);
end
|
github
|
xhuang31/LANE-master
|
Performance.m
|
.m
|
LANE-master/Performance.m
| 3,202 |
utf_8
|
ad6f8f3b492868c911c6b76ecf5768ec
|
function [F1macro,F1micro] = Performance(Xtrain,Xtest,Ytrain,Ytest)
%Evaluate the performance of classification for both multi-class and multi-label Classification
% [F1macro,F1micro] = Performance(Xtrain,Xtest,Ytrain,Ytest)
%
% Xtrain is the training data with row denotes instances, column denotes features
% Xtest is the test data with row denotes instances, column denotes features
% Ytrain is the training labels with row denotes instances
% Ytest is the test labels
% Copyright 2017, Xiao Huang and Jundong Li.
% $Revision: 1.0.0 $ $Date: 2017/10/18 00:00:00 $
%% Multi class Classification
if size(Ytrain,2) == 1 && length(unique(Ytrain)) > 2
t = templateSVM('Standardize',true);
model = fitcecoc(Xtrain,Ytrain,'Learners',t);
pred_label = predict(model,Xtest);
[micro, macro] = micro_macro_PR(pred_label,Ytest);
F1macro = macro.fscore;
F1micro = micro.fscore;
else
%% For multi-label classification, computer micro and macro
rng default % For repeatability
NumLabel = size(Ytest,2);
macroTP = zeros(NumLabel,1);
macroFP = zeros(NumLabel,1);
macroFN = zeros(NumLabel,1);
macroF = zeros(NumLabel,1);
for i = 1:NumLabel
model = fitcsvm(Xtrain,Ytrain(:,i),'Standardize',true,'KernelFunction','RBF','KernelScale','auto');
pred_label = predict(model,Xtest);
mat = confusionmat(Ytest(:,i), pred_label);
if size(mat,1) == 1
macroTP(i) = sum(pred_label);
macroFP(i) = 0;
macroFN(i) = 0;
if macroTP(i) ~= 0
macroF(i) = 1;
end
else
macroTP(i) = mat(2,2);
macroFP(i) = mat(1,2);
macroFN(i) = mat(2,1);
macroF(i) = 2*macroTP(i)/(2*macroTP(i)+macroFP(i)+macroFN(i));
end
end
F1macro = mean(macroF);
F1micro = 2*sum(macroTP)/(2*sum(macroTP)+sum(macroFP)+sum(macroFN));
end
end
function [micro, macro] = micro_macro_PR(pred_label,orig_label)
% computer micro and macro: precision, recall and fscore
mat = confusionmat(orig_label, pred_label);
len = size(mat,1);
macroTP = zeros(len,1);
macroFP = zeros(len,1);
macroFN = zeros(len,1);
macroP = zeros(len,1);
macroR = zeros(len,1);
macroF = zeros(len,1);
for i = 1:len
macroTP(i) = mat(i,i);
macroFP(i) = sum(mat(:, i))-mat(i,i);
macroFN(i) = sum(mat(i,:))-mat(i,i);
macroP(i) = macroTP(i)/(macroTP(i)+macroFP(i));
macroR(i) = macroTP(i)/(macroTP(i)+macroFN(i));
macroF(i) = 2*macroP(i)*macroR(i)/(macroP(i)+macroR(i));
end
% macroP(isnan(macroP)) = 0;
% macroR(isnan(macroR)) = 0;
macroF(isnan(macroF)) = 0;
% macro.precision = mean(macroP);
% macro.recall = mean(macroR);
macro.fscore = mean(macroF);
micro.precision = sum(macroTP)/(sum(macroTP)+sum(macroFP));
micro.recall = sum(macroTP)/(sum(macroTP)+sum(macroFN));
micro.fscore = 2*micro.precision*micro.recall/(micro.precision+micro.recall);
end
|
github
|
SakaSerbia/MATLAB-Filter-ECG-signal-and-FIR-direct-transposed-Homework-number-3-master
|
FIR_direct_transpose.m
|
.m
|
MATLAB-Filter-ECG-signal-and-FIR-direct-transposed-Homework-number-3-master/FIR_direct_transpose.m
| 1,257 |
utf_8
|
739f3ed8f5d294dc952ee4d7951be1ca
|
%Teorija
%Transpozicija se vrsi tako sto ulazni i izlazni signali promene mesta,
%svim granama se promeni smer, cvorovi granjanja postanu sabiraci, a
%sabiraci postanu tacke granjanja.
%Dodatna objasnjenja MIT OpenCourseWare http://ocw.mit.edu
%Signal Processing: Continuous and Discrete, Fall 2008
function [ y ] = FIR_direct_transpose( h, x)
% function [ y ] = FIR_direct( b, x )
% %FIR_DIREXT Function that implements direct realizaton of FIR filter
% delay_line = zeros(length(b),1);
% if isfi(b)
% delay_line = fi( delay_line, b.Signed, b.WordLength, b.FractionLength);
% end;
%
% for k = 1:length(x)
% delay_line = [x(k); delay_line(1:end-1)];
% accumulator_contents = b*delay_line;
% y(k) = accumulator_contents;
% end
% end
delay_line = zeros(1,length(h)-1);
if isfi(h)
delay_line = fi( delay_line, h.Signed, h.WordLength, h.FractionLength);
end
y = zeros(1,length(x));
for k=1:length(x)
accumulator_contents = fliplr(h)*x(k);
y(k) = accumulator_contents(length(accumulator_contents)) + delay_line(length(delay_line));
delay_line=[accumulator_contents(1),accumulator_contents(2:length(accumulator_contents)-1)+delay_line(1:length(delay_line)-1)];
end
end
|
github
|
JenifferWuUCLA/DSB2017-1-master
|
label_stage1.m
|
.m
|
DSB2017-1-master/training/detector/labels/label_stage1.m
| 4,931 |
utf_8
|
a9fdc8773cd38b8f717beaf07df746ff
|
clear
clc
close all
lungwindow = [-1900,1100];
lumTrans = @(x) uint8((x-lungwindow(1))/(diff(lungwindow))*256);
path = 'E:\Kaggle.Data\stage1';
cases = dir(path);
cases = {cases.name};
cases = cases(3:end);
header = {'id', 'coordx1','coordx1','coordx1','diameter'};
labelfile = 'label_job2.csv';
if ~ exist(labelfile)
initial_label = header;
for i = 1:length(cases)
initial_label = [initial_label;{cases{i},'x','x','x','x'}];
end
cell2csv(labelfile,initial_label)
label_tabel = initial_label;
else
label_tabel = csv2cell(labelfile,'fromfile');
end
label_tabel = label_tabel(2:end,:);
fullnamelist = label_tabel(:,1);
uniqueNameList = unique(fullnamelist, 'stable');
% uniqueNameList = fullnamelist(ismember(fullnamelist, uniqueNameList));
annos = label_tabel(:,2:end);
for i = 1:size(fullnamelist)
if annos{i,1}=='x'
lineid = i;
name = fullnamelist{i};
id = find(strcmp(uniqueNameList,name));
break
end
end
for id = id:length(uniqueNameList)
name = uniqueNameList{id};
disp(name)
found = 0;
folder = [path,'/',name];
% info = dicom_folder_info(folder);
im = dicomfolder(folder);
imint8 = lumTrans(im);
rgbim = repmat(imint8,[1,1,1,3]);
h1 = figure(1);
imshow3D(rgbim)
while 1
in = input('add_square(a), add_diameter(b), delete_last(d), or next(n):','s');
if in =='n'
if found==0
label_tabel(lineid,:) = {name,0,0,0,0};
lineid = lineid+1;
end
break
elseif in =='d'
found = found-1;
lineid = lineid-1;
if found ==0
label_tabel(lineid,:) = {name,'x','x','x','x'};
elseif found>0
label_tabel(lineid,:) = [];
else
disp('invalid delete')
end
if found>=0
rgbim=rgbim_back;
imshow3D(rgbim)
end
figure(1);
elseif strcmp(in,'a')||strcmp(in,'b')
if found==0
label_tabel(lineid,:) = [];
end
if strcmp(in,'a')
anno = label_rect(im);
elseif strcmp(in,'b')
anno = label_line();
end
found=found+1;
label_tabel= [label_tabel(1:lineid-1,:);{name,anno(1),anno(2),anno(3),anno(4)};label_tabel(lineid:end,:)];
lineid = lineid+1;
rgbim_back = rgbim;
rgbim = drawRect(rgbim,anno,1);
imshow3D(rgbim)
else
figure(1);
continue
end
% disp(label_tabel(max([1, (lineid - 4)]):lineid,:))
end
fulltable = [header;label_tabel];
cell2csv(labelfile,fulltable)
end
function [anno] = label_line()
h_obj=imline;
pos = getPosition(h_obj);
center = mean(pos,1);
diameter = sqrt(sum(diff(pos).^2));
h = gcf;
strtmp = strsplit(h.Children(8).String,' ');
id_layer = str2num(strtmp{2});
anno = [center,id_layer,diameter];
h_obj.delete()
end
function [anno] = label_rect(im)
h = gcf;
h_rect=imrect;
label_pos = round(getPosition (h_rect));
mask = createMask(h_rect);
strtmp = strsplit(h.Children(8).String,' ');
id_layer = str2num(strtmp{2});
im_layer = squeeze( im(:,:,id_layer));
patch = im_layer(label_pos(2):label_pos(2)+label_pos(4),label_pos(1):label_pos(1)+label_pos(3));
bw = patch>-600;
se = strel('disk',round(label_pos(3)/12));
bw2 = imopen(bw,se);
re = regionprops(bw2,'PixelIdxList','area','centroid');
if isempty(re)
disp('wrong place')
h_rect.delete()
anno = label_rect(im);
return
end
areas = [re.Area];
[bigarea,id_re] = max(areas);
bw3 = bw2-bw2;
bw3(re(id_re).PixelIdxList)=1;
h2 = figure(2);
imshow(bw3)
pause(1)
h2.delete();
diameter = (bigarea/pi).^0.5*2;
centroid = re(id_re).Centroid+label_pos(1:2);
anno = [centroid,id_layer,diameter];
h_rect.delete()
end
function rgbim = drawRect(rgbim,tmpannos,channel)
n_annos = size(tmpannos,1);
newim = squeeze(rgbim(:,:,:,channel));
for i_annos = 1:n_annos
coord = tmpannos(i_annos,1:3);
diameter = tmpannos(i_annos,4);
layer = round(coord(3));
zspan = 2;
newimtmp = newim(:,:,layer-zspan:layer+zspan);
if diameter > 40
coeff = 1.5;
else
coeff= 2;
end
newimtmp = drawRectangleOnImg(round([coord(1:2)-diameter*coeff/2,diameter*coeff,diameter*coeff]),newimtmp);
newim(:,:,layer-zspan:layer+zspan) = newimtmp;
end
rgbim(:,:,:,channel)=newim;
end
function rgbI = drawRectangleOnImg (box,rgbI)
x = box(2); y = box(1); w = box(4); h = box(3);
rgbI(x:x+w,y,:) = 255;
rgbI(x:x+w,y+h,:) = 255;
rgbI(x,y:y+h,:) = 255;
rgbI(x+w,y:y+h,:) = 255;
end
% dicom_folder_info
|
github
|
pascal220/PMSM_Control-master
|
MPCController.m
|
.m
|
PMSM_Control-master/Model Predictive Control/MPCtools-1.0/MPCtools-1.0/MPCController.m
| 4,302 |
utf_8
|
66841584b3d48bab415e1eaafb795dad
|
function [sys,x0,str,ts] = MPCController(t,x,u,flag,md)
%
% [sys,x0,str,ts] = MPCController(t,x,u,flag,md)
%
% is an S-function implementing the MPC controller intended for use
% with Simulink. The argument md, which is the only user supplied
% argument, contains the data structures needed by the controller. The
% input to the S-function block is a vector signal consisting of the
% measured outputs and the reference values for the controlled
% outputs. The output of the S-function block is a vector signal
% consisting of the control variables and the estimated state vector,
% potentially including estimated disturbance states.
switch flag,
case 0
[sys,x0,str,ts] = mdlInitializeSizes(md); % Initialization
case 2
sys = mdlUpdates(t,x,u,md); % Update discrete states
case 3
sys = mdlOutputs(t,x,u,md); % Calculate outputs
case {1, 4, 9} % Unused flags
sys = [];
otherwise
error(['unhandled flag = ',num2str(flag)]); % Error handling
end
% End of dsfunc.
%==============================================================
% Initialization
%==============================================================
function [sys,x0,str,ts] = mdlInitializeSizes(md)
% Call simsizes for a sizes structure, fill it in, and convert it
% to a sizes array.
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = md.ne + md.pye + md.me + md.Hu*md.me;
sizes.NumOutputs = md.me+md.ne;
sizes.NumInputs = md.pye+md.pz;
sizes.DirFeedthrough = 1; % Matrix D is non-empty.
sizes.NumSampleTimes = 1;
sys = simsizes(sizes);
x0 = zeros(md.ne + md.pye + md.me + md.Hu*md.me,1);
global x;
x = zeros(md.ne + md.pye + md.me + md.Hu*md.me,1);
% Initialize the discrete states.
str = []; % Set str to an empty matrix.
ts = [md.h 0]; % sample time: [period, offset]
% End of mdlInitializeSizes
%==============================================================
% Update the discrete states
%==============================================================
function sys = mdlUpdates(t,x,u,md)
sys = x;
% End of mdlUpdate.
%==============================================================
% Calculate outputs
%==============================================================
function sys = mdlOutputs(t,x_i,u,md)
global x;
fprintf('Update start, t=%4.2f\n',t)
x_hat = x(1:md.ne,:);
y_old = x(md.ne+1:md.ne+md.pye,:);
u_old = x(md.ne+md.pye+1:md.ne+md.pye+md.me,:);
duOpt = x(md.ne+md.pye+md.me+1:md.ne+md.pye+md.me+md.me*md.Hu,:);
y_plant = u(1:md.pye,:);
r = u(md.pye+1:md.pye+md.pz);
% Get observer values
if md.cmode == 0,
x_hat(1:md.n) = y_plant;
refval = r;
elseif md.cmode == 1;
% State feedback
x_hat(1:md.n) = y_plant;
% Take care of integrator states
x_hat(md.n+1:md.n+md.nbr_int) = x_hat(md.n+1:md.n+md.nbr_int) + ...
r(1:md.nbr_int) - md.Czde(1:md.nbr_int,1:md.n)*x_hat(1:md.n);
refval = [r' zeros(1,md.nbr_int)]';
elseif md.cmode == 2;
% Update Observer
x_hat = md.Ade*x_hat + md.Bde*u_old + md.K*(y_old - md.Cyde* ...
x_hat);
y_old = y_plant;
refval = r;
elseif md.cmode == 3;
% Notice that it is assumed that the first pz entriew of y is
% actually the controlled outputs!
% Take care of integrator states
x_hat(md.n+1:md.n+md.nbr_int) = x_hat(md.n+1:md.n+md.nbr_int) + ...
r(1:md.nbr_int) - y_plant(1:md.nbr_int);
% Update observer
x_hat(1:md.n) = md.Ade(1:md.n,1:md.n)*x_hat(1:md.n) + ...
md.Bde(1:md.n,:)*u_old +...
md.K*(y_old - md.Cyde(:,1:md.n)*x_hat(1:md.n));
y_old = y_plant;
% Set reference value
refval = [r' zeros(1,md.nbr_int)]';
elseif md.cmode == 4;
% Update observer
x_hat = md.Ade*x_hat + md.Bde*u_old + md.K*(y_old - md.Cyde* ...
x_hat);
y_old = y_plant;
%set reference value
refval = r;
end
% Optimize
%[duOpt,zOpt] = MPCOptimizeSolSC(x_hat,u_old,duOpt,refval,md);
[duOpt,zOpt] = MPCOptimizeSol(x_hat,u_old,duOpt,refval,md);
% Calculate control signal to store
u_old = u_old + duOpt(1:md.me);
x(1:md.ne,1) = x_hat;
x(md.ne+1:md.ne+md.pye,:) = y_old;
x(md.ne+md.pye+1:md.ne+md.pye+md.me,:) = u_old;
x(md.ne+md.pye+md.me+1:md.ne+md.pye+md.me+md.me*md.Hu,:) = duOpt;
sys = [x(md.ne+md.pye+1:md.ne+md.pye+md.me,:);
x(1:md.ne,1);];
% End of mdlOutputs.
|
github
|
pascal220/PMSM_Control-master
|
ssmpc_simulate.m
|
.m
|
PMSM_Control-master/Model Predictive Control/rossiter/ssmpc_simulate.m
| 5,037 |
utf_8
|
fe5c0e959b026751851ad7d07bfcc69a
|
%%% Simulation of dual mode optimal predictive control
%%%
%% [x,y,u,c,r] = ssmpc_simulate(A,B,C,D,Q,R,umax,umin,Kxmax,xmax,nc,x0,ref,dist,noise)
%%
%%% x(k+1) = A x(k) + B u(k) x0 is the initial condition
%%% y(k) = C x(k) + D u(k) + dist Note: Assumes D=0, dist unknown
%%%
%% input constraint umax, umin
%% state constraints | Kxmax x | < xmax
%% reference trajectory ref, r
%% perturbation to control c
%% Number of d.o.f. nc
%% Weighting matrices in J Q, R
%% measurement noise noise
%%
%% Author: J.A. Rossiter (email: [email protected])
function [x,y,u,c,r] = ssmpc_simulate(A,B,C,D,Q,R,umax,umin,Kxmax,xmax,nc,x0,ref,dist,noise)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Find L2 optimal control law and observor with integrator
%%%%% Control law is written as
%%%%%
%%%% Control law is u = -Knew z + Pr r + c
%%%%
%%%%% Observor is z = Ao*z +Bo*u + L*(y + noise - Co*z ); z=[xhat;dhat]
%%%%%
%%%%% K the underlying control law: u-uss = -K(x-xss)
[K,L,Ao,Bo,Co,Do,Knew,Pr] = ssmpc_observor(A,B,C,D,Q,R);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% To set up prediction matrices for dual mode state space MPC
%%%%% Assume closed-loop predictions
%%%%% x = Pc1*c + Pz1*z + Pr1*r z=[x;d]
%%%%% u = Pc2*c + Pz2*z + Pr2*r
%%%%% y = Pc3*c + Pz3*z + Pr3*r
[Pc1,Pc2,Pc3,Pz1,Pz2,Pz3,Pr1,Pr2,Pr3] = ssmpc_predclp(A,B,C,D,Knew,Pr,nc);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% The optimal cost is
%%%%% J = c'Sc + c'X + unconstrained optimal
[S] = ssmpc_costfunction(A,B,K,nc,Q,R); S=(S+S')/2;
X = zeros(nc*size(B,2),1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Constraints are summarised as
%%%%% CC c - dfixed - dx0*[z;r;d] <= 0 d is a known disturbance
[CC,dfixed,dx0] = ssmpc_constraints(Pc1,Pc2,Pz1,Pz2,Pr1,Pr2,umin,umax,Kxmax,xmax);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% SIMULATION
%%%%%%%%%% Initial Conditions
nu=size(B,2);
c = zeros(nu*nc,2); u =zeros(nu,2); y=zeros(nu,2); x=[x0,x0];
z = [x;y];
r=ref;
nK = size(Kxmax,1);
runtime = size(ref,2)-1;
opt = optimset;
opt.Display='off'; %'notify';
opt.Diagnostics='off';
opt.LargeScale='off';
for i=2:runtime;
%%%%%%%%%%%%%%% CONSTRAINT HANDLING PART
c(:,i+1) = c(:,i);
c(:,i) = quadprog(S,X,CC,dfixed+dx0*[z(:,i);r(:,i)],[],[],[],[],[],opt);
%%%%% Control law
u(:,i) = -Knew*z(:,i) + c(1:nu,i) + Pr*r(:,i);
%%%%% Physical constraint check
for j=1:nu;
if u(j,i) > umax(j); u(j,i) = umax(j); end
if u(j,i) < umin(j); u(j,i) = umin(j); end
end
%%%% Simulate model
x(:,i+1) = A*x(:,i) + B*u(:,i) ;
y(:,i+1) = C*x(:,i+1) + dist(:,i+1);
%%%% Observer part
z(:,i+1) = Ao*z(:,i) +Bo*u(:,i) + L*(y(:,i) + noise(:,i) - Co*z(:,i));
end
%%%% Ensure all variables have conformal lengths
u(:,i+1) = u(:,i);
c(:,i+1)=c(:,i);
r = r(:,1:i+1);
noise = noise(:,1:i+1);
d = dist(:,1:i+1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Produce a neat plot
time=0:size(u,2)-1;
for i=1:nu;
figure(i);clf reset
plotall(y(i,:),r(i,:),u(i,:),c(i,:),d(i,:),noise(i,:),umax(i),umin(i),time,i);
end
disp('**************************************************');
disp(['*** There are ',num2str(nu),' figures ***']);
disp('**************************************************');
%%%%% Function to do plotting in the MIMO case and
%%%%% allow a small boundary around each plot
function plotall(y,r,u,c,d,noise,umax,umin,time,loop)
uupper = [umax,umax]';
ulower = [umin,umin]';
time2 = [0,time(end)];
rangeu = (max(umax)-min(umin))/20;
rangey = (max(max(y))-min(min(y)))/20;
ranged = (max(max([d,noise]))-min(min([d,noise])))/20;if ranged==0;ranged=1;end
rangec = (max(c)-min(c))/20; if rangec==0;rangec=1;end
subplot(221);plot(time,y','-',time,r','--');
axis([time2,min(min(y))-rangey,max(max(y))+rangey]);
xlabel(['LQMPC - Outputs and set-point in loop ',num2str(loop)]);
subplot(222);plot(time,c','-');
axis([time2,min(c)-rangec,max(c)+rangec]);
xlabel(['LQMPC - Input perturbations in loop ',num2str(loop)]);
subplot(223);plot(time,u','-',time2,uupper,'--',time2,ulower,'--');
axis([time2,min(umin)-rangeu,max(umax)+rangeu]);
xlabel(['LQMPC - Inputs in loop ',num2str(loop)]);
subplot(224);plot(time,d','b',time,noise,'g');
axis([time2,min(min([d,noise]))-ranged,max(max([d,noise]))+ranged]);
xlabel(['LQMPC - Disturbance/noise in loop ',num2str(loop)]);
|
github
|
pascal220/PMSM_Control-master
|
mpc_predtfilt.m
|
.m
|
PMSM_Control-master/Model Predictive Control/rossiter/mpc_predtfilt.m
| 1,025 |
utf_8
|
930a72b67ebbc32559919cf286a96a67
|
%%% To find the prediction matrices with a T-filter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% yfut = H*Dufut + Pt*Dut + Qt*yt
%%%
%%% Dut = Du/Tfilt yt = y/Tfilt
%%%
%%% GIVEN yfut = H *Dufut + P*Dupast + Q*ypast
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% [Pt,Qt] = mpc_predtfilt(H,P,Q,Tfilt,sizey,ny);
%%%
%%% sizey is the dimension of y
%%% ny is the output horizon
%%% Tfilt - parameters of the T-filter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% Author: J.A. Rossiter (email: [email protected])
function [Pt,Qt] = mpc_predtfilt(H,P,Q,Tfilt,sizey,ny);
[Ct,Ht] = caha(Tfilt,sizey,ny);
Pt = Ct*P;
Qt =Ct*Q;
nT = size(Tfilt,2)/sizey; %% Therefore Ht has nT-1 block columns
np2 = size(Pt,2)/sizey;
np3 = size(Qt,2)/sizey;
if np2<nT-1; Pt(1,sizey*(nT-1))=0;end
if np3<nT-1; Qt(1,sizey*(nT-1))=0;end
Pt(:,1:sizey*(nT-1)) = Pt(:,1:sizey*(nT-1)) - H*Ht;
Qt(:,1:sizey*(nT-1)) = Qt(:,1:sizey*(nT-1)) + Ht;
|
github
|
pascal220/PMSM_Control-master
|
imgpc_costfunction.m
|
.m
|
PMSM_Control-master/Model Predictive Control/rossiter/imgpc_costfunction.m
| 1,783 |
utf_8
|
43ab78f5ad32ef078482ebd990bd1682
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Find a predictive control law and optimal cost given predictions
%%%% yfut = P*xfut+H*ufut+L*offset
%%%% uss = M(r-offset)
%%%%
%%%% Uses the cost function J = sum (r-y)^2 + R(u-uss)^2
%%%% J = ufut'*S*ufut + 2 ufut'*X*[x;r-offset] + k
%%%%
%%%% Cost weights absolute inputs (not increments) so need assumption
%%%% u(k+nu+i) = u(k+nu-1) in predictions
%%%%
%%%% Control weighting R
%%%% Control/ouput horizon nu, ny
%%%% Output dimension sizey
%%%%
%%%% Control law is
%%%% ufut = -K*x + Pr*(r-offset) (No advance knowledge is used)
%%%%
%%%% [S,X,K,Pr] = imgpc_costfunction(H,P,L,M,R,nu,sizey,ny);
%%
%% Author: J.A. Rossiter (email: [email protected])
function [S,X,K,Pr,H] = imgpc_costfunction(H,P,L,M,R,nu,sizey,ny);
%% J = | Lr - P x- H ufut - L*offset | + R |ufut-uss|
%% J = | Lr - P x- H ufut - L*offset | + R |ufut - M*(r-offset)|
%%% Sum last columns of H
v=(nu-1)*sizey;
for k=1:sizey;
HH(:,k) = sum(H(:,v+k:sizey:end),2);
end
H = [H(:,1:(nu-1)*sizey),HH];
%%% Form weighting matrix and uss matrix
MM=[];
for k=1:nu;
v = (k-1)*sizey+1:k*sizey;
RR(v,v)=R;
MM=[MM;M];
end
%%%% Cost function
%% J = | L*r - P x- H ufut - L*offset | + R |ufut - MM*(r-offset)|
%% J = ufut'*S*ufut + 2 ufut'*X*[x;r-offset] + k
%% = ufut'(H'H+R)ufut + 2ufut'* H'*P*x + 2ufut'*H'*L*(offset-r)
%% - 2*ufut'R*MM*(r-offset) + k
S = H'*H+RR;
X1 = H'*P;
X2 = -H'*L-RR*MM;
X=[X1,X2];
%%%% Unconstrained control law
%%%% ufut = -K*x + Pr*(r-offset) (No advance knowledge is used)
Mi=inv(S);
K = Mi*X1;
Pr = -Mi*X2;
|
github
|
pascal220/PMSM_Control-master
|
mpc_law.m
|
.m
|
PMSM_Control-master/Model Predictive Control/rossiter/mpc_law.m
| 1,464 |
utf_8
|
ad7c22af39298911ea7d46ec1708387c
|
%%%% Compute MPC control law given the prediction matrices
%%%% Assumes: (i) u constant after nu steps
%%%% (ii) predictions given as
%%%% y = H*Du(future) + P*Du(past) + Q*y(past)
%%%% (iii) weights on cost are Wy (outputs), Wu (inputs)
%%%% (iv) sizey is the number of outputs
%%%%
%%%% Performance index is given as
%%%% J = Du(future)' S Du(future) + Du(future)'*2X*[Du(past);y(past);r]
%%%%
%%%% Control law is given as
%%%% Du(future) = Pr*r - Dk*Du(past) - Nk*y(past)
%%%%
%%%% Pr is given as a simple gain (edit this code to reinstitute advance knowledge)
%%%%
%%%% [Nk,Dk,Pr,S,X] =mpc_law(H,P,Q,nu,Wu,Wy,sizey)
%%
%% Author: J.A. Rossiter (email: [email protected])
function [Nk,Dk,Pr,S,X] =mpc_law(H,P,Q,nu,Wu,Wy,sizey)
%%%% Control horizon
P1 = H(:,1:sizey*nu);
%% Set up weighting matrices
WY=Wy;
WU=Wu;
L = eye(sizey);
npred = size(P1,1)/sizey;
for i = 2:npred;
v=(i-1)*sizey+1:i*sizey;
WY(v,v) = Wy;
WU(v,v) = Wu;
L = [L;eye(sizey)];
end
WU = WU(1:nu*sizey,1:nu*sizey);
%%% Define performance index parameters
S = P1'*WY*P1 + WU;
X = [P1'*WY*P,P1'*WY*Q,-P1'*WY];
%%%% Define the control law parameters
M = inv(S);
Nk = M*P1'*WY*Q;
Dk = M*P1'*WY*P;
Pr = M*P1'*WY;
%%%%% Remove advance knowledge on the set point
Pr = Pr*L;
X = [P1'*WY*P,P1'*WY*Q,-P1'*WY*L];
|
github
|
pascal220/PMSM_Control-master
|
summary.m
|
.m
|
PMSM_Control-master/Model Predictive Control/rossiter/summary.m
| 1,130 |
utf_8
|
0706ed07547ce1a03d5147827795e39f
|
FILES IN SUPPORT OF: Model-based predictive control: a practical approach,
by J.A. Rossiter
These files are intended as a support to this book to enable
students to investigate predictive control algorithms from the formulation of the
prediction equations right through to the closed-loop simulation.
The code is mostly elementary MATLAB and is also transparent in structure.
Hence the files form useful templates for algorithm modifications or to
formulate the precise scenario or plots desired. Example files are provided
to facilitate this. Some files allow for transfer
function models and some for state space models and they cater for both SISO and MIMO
processes and include systematic constraint handling.
Most files do not use any MATLAB toolboxes but the few exceptions can easily be
editted out with a small loss in functionality.
The files are provided free of charge and as such no guarantee is given as
to their behaviour nor are they intended to be comprehensive. However, USERS are
invited to contact the author if they discover either bugs or wish to suggest
useful improvements.
|
github
|
pascal220/PMSM_Control-master
|
mpc_simulate.m
|
.m
|
PMSM_Control-master/Model Predictive Control/rossiter/mpc_simulate.m
| 6,141 |
utf_8
|
8a8b31fbc04bc0109e3963b34a0c1ffc
|
%%%%%%%%%%%%%% Either: (NO T-filter!!)
%%%%%%%%%%%%%% (1) Gives control law parameters (nargin = 6 only)
%%%%%%%%%%%%%% (2) Simulates MIMO GPC with constraint handling
%%%
%%%%% [Nk,Dk,Pr] = mpc_simulate(B,A,nu,ny,Wu,Wy)
%%%%% Du(k) = Pr*r(k+1) - Dk*Du(k-1) - Nk*y(k)
%%
%%%%% [y,u,Du,r] = mpc_simulate(B,A,nu,ny,Wu,Wy,Dumax,umax,umin,ref,dist,noise)
% y, u, Du, r are dimensionally compatible
% closed-loop outputs/inputs/input increments and supplied set-point and disturbance
%
% MFD model Ay(k) = Bu(k-1) + dist
%
% ny is output horizon
% nu is the input horizon
% Wu is the diagonal control weighting
% Wy is the diagonal output weighting
% sizey no. outputs and inputs (assumed square)
% dist,noise are the disturbance and noise signals
% ref is the reference signal
% Dumax is a vector of limits on input increments (assumed symetric)
% umax, umin are vectors of limits on the inputs
%
% [y,u,Du,r,d] = mpc_simulate(B,A,nu,ny,Wu,Wy,Dumax,umax,umin,ref,dist,noise)
%%
%% Author: J.A. Rossiter (email: [email protected])
function [y,u,Du,r] = mpc_simulate(B,A,nu,ny,Wu,Wy,Dumax,umax,umin,ref,dist,noise)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Error checks
sizey = size(A,1);
if size(B,2)==sizey;B=[B,zeros(sizey,sizey)];end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Find prediction matrices
%%%% yfut = H *Dufut + P*Dupast + Q*ypast
[H,P,Q] = mpc_predmat(A,B,ny);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Find control law and parameters of the cost function
%%%% Dufut = Pr*rfut - Dk*Dupast - Nk*ypast
%%%% J = Dufut'*S*Dufut + Dufut'*2X*[Dupast;ypast;rfut]
[Nk,Dk,Pr,S,X] = mpc_law(H,P,Q,nu,Wu,Wy,sizey);
if nargin==6; %%%% collect control law and stop
y=Nk(1:sizey,:);
u=Dk(1:sizey,:);
Du=Pr(1:sizey,:);
else %%%% continue to simulation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin~=12;disp('Incomplete input information - stopping');break;end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% Define constraint matrices
%%%%%% CC*Dufut - dd - dd1*ut <= 0
[CC,dd,dd1] = mpc_constraints(Dumax,umax,umin,sizey,nu);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% Set up simulation parameters
nNk = size(Nk,2)/sizey;
nDk = size(Dk,2)/sizey;
init = max([nNk,nDk])+2;
y = zeros(sizey,init);
u = y;
Du = u;
r = u;
d=u;
opt = optimset('quadprog');
opt.Diagnostics='off'; %%%%% Switches of unwanted MATLAB displays
opt.LargeScale='off'; %%%%% However no warning of infeasibility
opt.Display='off';
runtime = size(ref,2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% Closed-loop simulation
for i=init:runtime-1;
%%% Update unconstrained control law
d(1:sizey,i+1)=dist(:,i+1);
ypast = y(:, i:-1:i+1-nNk)+noise(:, i:-1:i+1-nNk);
Dupast = Du(:, i-1:-1:i-nDk) ;
upast = u(:, i-1);
rfut = ref(:,i+1);
%%%%%%% Unconstrained law - if needed
Dufast = Pr*rfut - Nk*ypast(:) - Dk*Dupast(:);
% Form constraint matrices and solve constrained optimisation
% CC*Dufast-dd-dd1*upast <=0;
dt = dd+dd1*upast;
Dufast2 = quadprog(S,X*[Dupast(:);ypast(:);rfut(:)],CC,dt,[],[],[],[],[],opt);
Du(:,i) = Dufast2(1:sizey);
u(:,i) = u(:,i-1)+Du(:,i);
% Ensure the constraints satisfied by proposed control law
for j=1:sizey;
if u(j,i)>u(j,i-1)+Dumax(j);u(j,i)=u(j,i-1)+Dumax(j);end
if u(j,i)<u(j,i-1)-Dumax(j);u(j,i)=u(j,i-1)-Dumax(j);end
if u(j,i)>umax(j); u(i)=umax(j);end
if u(j,i)<umin(j); u(i)=umin(j);end
end
Du(:,i) = u(:,i)-u(:,i-1);
%%% End of update to the control law
%%% Simulate the process
upast2 = u(:,i:-1:i-nDk);
ypast2 = y(:, i:-1:i+2-nNk);
y(:,i+1) = -A(:,sizey+1:nNk*sizey)*ypast2(:) + B*[upast2(:)] + d(:,i+1);
r(:,i+1) = ref(:,i+1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Ensure all outputs are dimensionally compatible
u(:,i+1) = u(:,i);
Du(:,i+1) = Du(:,i)*0;
noise = noise(:,1:i+1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Produce a neat plot
time=0:size(u,2)-1;
for i=1:sizey;
figure(i);clf reset
plotall(y(i,:),r(i,:),u(i,:),Du(i,:),d(i,:),noise(i,:),umax(i),umin(i),Dumax(i),time,i);
end
disp('*******************************************************************************');
disp(['*** For GPC there are ',num2str(sizey),' figures beginning at figure 1 ***']);
disp('*******************************************************************************');
end %%%% Check for nargin = 6
%%%%% Function to do plotting in the MIMO case and
%%%%% allow a small boundary around each plot
function plotall(y,r,u,Du,d,noise,umax,umin,Dumax,time,loop)
uupper = [umax,umax]';
ulower = [umin,umin]';
Dulim = [Dumax,Dumax]';
time2 = [0,time(end)];
rangeu = (max(umax)-min(umin))/20;
rangey = (max(max(y))-min(min(y)))/20;
ranged = (max(max([d,noise]))-min(min([d,noise])))/20;if ranged==0;ranged=1;end
subplot(221);plot(time,y','-',time,r','--');
axis([time2,min(min(y))-rangey,max(max(y))+rangey]);
xlabel(['GPC - Outputs and set-point in loop ',num2str(loop)]);
subplot(222);plot(time,Du','-',time2,Dulim,'--',time2,-Dulim,'--');
axis([time2,min(-Dumax)-rangeu,max(Dumax)+rangeu]);
xlabel(['GPC - Input increments in loop ',num2str(loop)]);
subplot(223);plot(time,u','-',time2,uupper,'--',time2,ulower,'--');
axis([time2,min(umin)-rangeu,max(umax)+rangeu]);
xlabel(['GPC - Inputs in loop ',num2str(loop)]);
subplot(224);plot(time,d','b',time,noise,'g');
axis([time2,min(min([d,noise]))-ranged,max(max([d,noise]))+ranged]);
xlabel(['GPC - Disturbance/noise in loop ',num2str(loop)]);
|
github
|
pascal220/PMSM_Control-master
|
imgpc_predmat.m
|
.m
|
PMSM_Control-master/Model Predictive Control/rossiter/imgpc_predmat.m
| 1,002 |
utf_8
|
fb63d0fcda8514a1ecbbded69d442163
|
%%%% To form prediction matrices over horizon ny given
%%%%
%%%% x(k+1) = Ax(k)+Bu(k); y(k) = Cx(k) + D u(k); Assumes D=0
%%%%
%%%% Use absolute inputs (not increments)
%%%%
%%%% yfut = P*x + H*ufut + L*offset [offset = y(process) - y(model)]
%%%%
%%% Also estimate steady-state input as uss = M(r-offset)
%%%
%%%% [H,P,L,M] = imgpc_predmat(A,B,C,D,ny);
%%
%% Author: J.A. Rossiter (email: [email protected])
function [H,P,L,M] = imgpc_predmat(A,B,C,D,ny)
%%% Estimate uss as uss = M(r-offset)
Gss = C*inv(eye(size(A,2))-A)*B;
M=inv(Gss);
%%%% Initialise
Px=C*A; Pu=C*B; P=C;
nx=size(A,1);
nB=size(B,2);
nC = size(C,1);
L=[];
%%%% Use recursion to find predictions
for i=1:ny;
Puterm = P*B;
for j=i:ny;
vrow=(j-1)*nC+1:j*nC;
vcol=(j-i)*nB+1:(j-i+1)*nB;
Pu(vrow,vcol)=Puterm;
end
P=P*A;
vrow=(i-1)*nC+1:i*nC;
Px(vrow,1:nx) = P;
L=[L;eye(nC)];
end
H=Pu;
P=Px;
|
github
|
pascal220/PMSM_Control-master
|
mpc_simulate_tfilt.m
|
.m
|
PMSM_Control-master/Model Predictive Control/rossiter/mpc_simulate_tfilt.m
| 6,612 |
utf_8
|
e58a9597a07c38d673092adcc08d4907
|
%%%%%%%%%%%%%% Either: (WITH T-filter!!)
%%%%%%%%%%%%%% (1) Gives control law parameters (nargin = 6 only)
%%%%%%%%%%%%%% (2) Simulates MIMO GPC with constraint handling
%%%
%%%%% [Nk,Dk,Pr] = mpc_simulate_tfilt(B,A,Tfilt,nu,ny,Wu,Wy)
%%%%% Du(k) = Pr*r(k+1) - Dk*Du(k-1) - Nk*y(k)
%%
%%%%% [y,u,Du,r] = mpc_simulate_tfilt(B,A,Tfilt,nu,ny,Wu,Wy,Dumax,umax,umin,ref,dist,noise)
% y, u, Du, r are dimensionally compatible
% closed-loop outputs/inputs/input increments and supplied set-point and disturbance
%
% MFD model Ay(k) = Bu(k-1) + Tfilt*dist
%
% ny is output horizon
% nu is the input horizon
% Wu is the diagonal control weighting
% Wy is the diagonal output weighting
% sizey no. outputs and inputs (assumed square)
% dist, noise are the disturbance and noise signals
% ref is the reference signal
% Dumax is a vector of limits on input increments (assumed symetric)
% umax, umin are vectors of limits on the inputs
%
%%%%%
%%%%% [y,u,Du,r] = mpc_simulate_tfilt(B,A,Tfilt,nu,ny,Wu,Wy,Dumax,umax,umin,ref,dist,noise)
%%
%% Author: J.A. Rossiter (email: [email protected])
function [y,u,Du,r] = mpc_simulate_tfilt(B,A,Tfilt,nu,ny,Wu,Wy,Dumax,umax,umin,ref,dist,noise)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Error checks
sizey = size(A,1);
if size(B,2)==sizey;B=[B,zeros(sizey,sizey)];end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Find prediction matrices
%%%% yfut = H *Dufut + P*Dupast + Q*ypast
%%%% yfut = H *Dufut + Pt*Dutpast + Qt*ytpast %% filtered data
[H,P,Q] = mpc_predmat(A,B,ny);
[Pt,Qt] = mpc_predtfilt(H,P,Q,Tfilt,sizey,ny);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Find control law and parameters of the cost function
%%%% Dufut = Pr*rfut - Dk*Dutpast - Nk*ytpast
%%%% J = Dufut'*S*Dufut + Dufut'*2X*[Dutpast;ytpast;rfut]
[Nk,Dk,Pr,S,X] = mpc_law(H,Pt,Qt,nu,Wu,Wy,sizey);
if nargin==7; %%%% collect control law and stop
y=Nk(1:sizey,:);
u=Dk(1:sizey,:);
Du=Pr(1:sizey,:);
else %%%% continue to simulation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin~=13;disp('Incomplete input information - stopping');break;end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% Define constraint matrices
%%%%%% CC*Dufut - dd - dd1*ut <= 0
[CC,dd,dd1] = mpc_constraints(Dumax,umax,umin,sizey,nu);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% Set up simulation parameters
nNk = size(Nk,2)/sizey;
nDk = size(Dk,2)/sizey;
nT = size(Tfilt,2)/sizey;
T2 = Tfilt(:,sizey+1:nT*sizey);
nA = size(A,2)/sizey;
nB = size(B,2)/sizey;
init = max([nNk,nDk,nA,nB])+2;
y = zeros(sizey,init); yt=y;
u = y;
Du = u; Dut = u;
r = u;
d=u;
opt = optimset('quadprog');
opt.Diagnostics='off'; %%%%% Switches of unwanted MATLAB displays
opt.LargeScale='off'; %%%%% However no warning of infeasibility
opt.Display='off';
runtime = size(ref,2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=init:runtime-1;
%%% Update unconstrained control law
%%%%% Update filtered data
ytpast = yt(:,i-1:-1:i-nT+1);
yt(:,i) = y(:,i) + noise(:,i) - T2*ytpast(:);
Dutpast = Dut(:,i-2:-1:i-nT);
Dut(:,i-1) = Du(:,i-1) - T2*Dutpast(:);
%%% Define vectors of past filtered data for use by control law
d(1:sizey,i+1)=dist(:,i+1);
ypast = yt(:, i:-1:i+1-nNk);
Dupast = Dut(:, i-1:-1:i-nDk) ;
upast = u(:, i-1);
rfut = ref(:,i+1);
%%%%%%% Unconstrained law - if needed
Dufast = Pr*rfut - Nk*ypast(:) - Dk*Dupast(:);
% Form constraint matrices and solve constrained optimisation
% CC*Dufast-dd-dd1*upast<=0
dt = dd+dd1*upast;
Dufast2 = quadprog(S,X*[Dupast(:);ypast(:);rfut(:)],CC,dt,[],[],[],[],[],opt);
Du(:,i) = Dufast2(1:sizey);
u(:,i) = u(:,i-1)+Du(:,i);
% Ensure the constraints satisfied by proposed control law
for j=1:sizey;
if u(j,i)>u(j,i-1)+Dumax(j),u(j,i)=u(j,i-1)+Dumax(j);end
if u(j,i)<u(j,i-1)-Dumax(j),u(j,i)=u(j,i-1)-Dumax(j);end
if u(j,i)>umax(j); u(i)=umax(j);end
if u(j,i)<umin(j); u(i)=umin(j);end
end
Du(:,i) = u(:,i)-u(:,i-1);
% End to update control law
%%% Simulate the process
upast2 = u(:,i:-1:i-nB+1);
ypast2 = y(:, i:-1:i+2-nA);
y(:,i+1) = -A(:,sizey+1:nA*sizey)*ypast2(:) + B*[upast2(:)]+ d(:,i+1);
r(:,i+1) = ref(:,i+1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Ensure all outputs are dimensionally compatible
u(:,i+1) = u(:,i);
Du(:,i+1) = Du(:,i)*0;
noise = noise(:,1:i+1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Produce a neat plot
time=0:size(u,2)-1;
for i=1:sizey;
figure(i+3);clf reset
plotall(y(i,:),r(i,:),u(i,:),Du(i,:),d(i,:),noise(i,:),umax(i),umin(i),Dumax(i),time,i);
end
disp('*******************************************************************************');
disp(['*** For GPCT there are ',num2str(sizey),' figures beginning at figure 4 ***']);
disp('*******************************************************************************');
end %%%% Check for nargin = 6
%%%%% Function to do plotting in the MIMO case and
%%%%% allow a small boundary around each plot
function plotall(y,r,u,Du,d,noise,umax,umin,Dumax,time,loop)
uupper = [umax,umax]';
ulower = [umin,umin]';
Dulim = [Dumax,Dumax]';
time2 = [0,time(end)];
rangeu = (max(umax)-min(umin))/20;
rangey = (max(max(y))-min(min(y)))/20;
ranged = (max(max([d,noise]))-min(min([d,noise])))/20;
subplot(221);plot(time,y','-',time,r','--');
axis([time2,min(min(y))-rangey,max(max(y))+rangey]);
xlabel(['GPCT - Outputs and set-point in loop ',num2str(loop)]);
subplot(222);plot(time,Du','-',time2,Dulim,'--',time2,-Dulim,'--');
axis([time2,min(-Dumax)-rangeu,max(Dumax)+rangeu]);
xlabel(['GPCT - Input increments in loop ',num2str(loop)]);
subplot(223);plot(time,u','-',time2,uupper,'--',time2,ulower,'--');
axis([time2,min(umin)-rangeu,max(umax)+rangeu]);
xlabel(['GPCT - Inputs in loop ',num2str(loop)]);
subplot(224);plot(time,d','b',time,noise,'g');
axis([time2,min(min([d,noise]))-ranged,max(max([d,noise]))+ranged]);
xlabel(['GPCT - Disturbance/noise in loop ',num2str(loop)]);
|
github
|
pascal220/PMSM_Control-master
|
caha.m
|
.m
|
PMSM_Control-master/Model Predictive Control/rossiter/caha.m
| 664 |
utf_8
|
8a6e93e762728865acd3f8797920c379
|
% function [CA,HA] = caha(A,sizey,n)
%%
%% To find Toeplitz matrix Ca and hankel matrix Ha
%% with Ca having n block rows
%% Assume n > order(A)
%% sizey is the dimension of implied A(z)
%%
%% Author: J.A. Rossiter (email: [email protected])
function [Ca,Ha] = caha(A,sizey,n)
na = size(A,2)/sizey;
nA = size(A,2);
for i=1:na;
Av((i-1)*sizey+1:i*sizey,1:sizey) = A(:,(i-1)*sizey+1:i*sizey);
end
for i=1:n;
v=(i-1)*sizey;
Ca(v+1:v+nA,v+1:v+sizey)=Av;
end
Ca = Ca(1:n*sizey,:);
Ha = zeros(n*sizey,sizey);
for i=1:na-1;
v = (i-1)*sizey+1:i*sizey;
Ha(v,1:(na-i)*sizey) = A(:,i*sizey+1:nA);
end
|
github
|
pascal220/PMSM_Control-master
|
imgpc_simulate.m
|
.m
|
PMSM_Control-master/Model Predictive Control/rossiter/imgpc_simulate.m
| 5,712 |
utf_8
|
239e7422c6460da4318cb9c812544e5d
|
%%% Simulation of independent model GPC with a state space model (Figure 1 on)
%%%
%%% Uses the cost function J = sum (r-y)^2 + R(u-uss)^2
%%% (weights absolute inputs not increments)
%%%
%% [x,y,u,r] = imgpc_simulate(A,B,C,D,R,ny,nu,umax,umin,Dumax,x0,ref,dist,noise);
%%
%%% x(k+1) = A x(k) + B u(k) x0 is the initial condition
%%% y(k) = C x(k) + D u(k) + dist Note: Assumes D=0, dist unknown
%%%
%% input constraint umax, umin
%% input rate constraint Dumax
%% reference trajectory ref, r
%% steady-state input uss
%% Output/input horizons ny,nu
%% Weighting matrix in J R
%% measurement noise noise
%%
%% Author: J.A. Rossiter (email: [email protected])
function [x,y,u,r] = imgpc_simulate(A,B,C,D,R,ny,nu,umax,umin,Dumax,x0,ref,dist,noise);
sizey = size(C,1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Find GPC law and observor (using independent model approach)
%%%%% Control law is written as a combination of feedback and
%%%%% simulation of the independent model
%%%%%
%%%%% u = -Kz + Pr (r - offset); offset = yprocess-ymodel
%%%%%
%%%%% Indpendent model is
%%%%% z = Az + Bu; y = Cz;
%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Predictions are yfut = P*x + H*ufut + L*offset
%%% Steady state input is estimated as M*(r-offset)
%%% Note: As using inputs (not increments) require all columns of H
[H,P,L,M] = imgpc_predmat(A,B,C,D,ny);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Find control law minimising J = sum yfut'yfut + ufut*R*ufut
%%% Assume that u(k+nu+i) = u(k+nu-1) in predictions
%%% The optimal cost is
%%% J = ufut'Sufut + ufut'X*[x;r-offset] + unconstrained optimal
%%% The control law is
%%% ufut = -K*x +Pr*(r-offset)
%%%
%%% Predictions are yfut = P*x + H*ufut + L*offset
[S,X,K,Pr] = imgpc_costfunction(H,P,L,M,R,nu,sizey,ny);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Constraints are summarised as
%%%%% umin < ufut < umax
%%%%% CC*ufut - dfixed -dxu u(k-1)<=0
[CC,dfixed,dxu] = imgpc_constraints(nu,umin,umax,Dumax);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% SIMULATION
%%% initialise data
nx = size(A,1);nuu=size(B,2);
x=[x0,x0];xm=x;xp=x;
yp=C*xm;ym=yp;
u=zeros(sizey,2);r=yp*0;
runtime = size(ref,2)-1;
opt = optimset;
opt.Display='off'; %'notify';
opt.Diagnostics='off';
opt.LargeScale='off';
for i=2:runtime;
r(:,i+1) = ref(:,i+1);
%%%%% Update offset
offset(:,i) = yp(:,i) + noise(:,i)-ym(:,i); %%% Noise effects measurement only
%%%% Update control decisions using a quadratic program
%ufut = -K*xm(:,i) +Pr*(r(:,i+1)-offset(:,i)); %% (unconstrained)
ufut = quadprog(S,X*[xm(:,i);r(:,i+1)-offset(:,i)],CC,dfixed+dxu*u(:,i-1),[],[],[],[],[],opt);
u(:,i) = ufut(1:sizey);
Du(:,i)=u(:,i)-u(:,i-1);
% Ensure the constraints satisfied by proposed control law
for j=1:sizey;
if u(j,i)>u(j,i-1)+Dumax(j);u(j,i)=u(j,i-1)+Dumax(j);end
if u(j,i)<u(j,i-1)-Dumax(j);u(j,i)=u(j,i-1)-Dumax(j);end
if u(j,i)>umax(j); u(i)=umax(j);end
if u(j,i)<umin(j); u(i)=umin(j);end
end
Du(:,i) = u(:,i)-u(:,i-1);
%%% End of update to the control law
%%%% Simulate model
xm(:,i+1) = A*xm(:,i)+B*u(:,i);
ym(:,i+1) = C*xm(:,i+1);
%%%% Simulate process
xp(:,i+1) = A*xp(:,i)+B*u(:,i);
yp(:,i+1) = C*xp(:,i+1)+dist(:,i);
end
%%%%% Ensure data lengths are all compatible
u(:,i+1)=u(:,i);
Du(:,i+1)=Du(:,i)*0;
r(:,i+1) = ref(:,i+1);
noise = noise(:,1:i+1);
d = dist(:,1:i+1);
x=xp;y=yp;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Produce a neat plot
time=0:size(u,2)-1;
for i=1:size(B,2);
figure(i);clf reset
plotall(yp(i,:),r(i,:),u(i,:),Du(i,:),d(i,:),noise(i,:),umax(i),umin(i),Dumax(i),time,i);
end
disp('**************************************************');
disp(['*** There are ',num2str(size(B,2)),' figures ***']);
disp('**************************************************');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Function to do plotting in the MIMO case and
%%%%% allow a small boundary around each plot
function plotall(y,r,u,Du,d,noise,umax,umin,Dumax,time,loop)
uupper = [umax,umax]';
ulower = [umin,umin]';
Duupper = [Dumax,Dumax]';
Dulower = -[Dumax,Dumax]';
time2 = [0,time(end)];
rangeu = (max(umax)-min(umin))/20;
rangedu = max(Dumax)/20;
rangey = (max(max(y))-min(min(y)))/20;
ranged = (max(max([d,noise]))-min(min([d,noise])))/20; if ranged==0;ranged=1;end
subplot(221);plot(time,y','-',time,r','--');
axis([time2,min(min(y))-rangey,max(max(y))+rangey]);
xlabel(['IMGPC - Outputs and set-point in loop ',num2str(loop)]);
subplot(222);plot(time,Du','-',time2,Duupper,'--',time2,Dulower,'--');
axis([time2,min(-Dumax)-rangedu,max(Dumax)+rangedu]);
xlabel(['IMGPC - Input increments in loop ',num2str(loop)]);
subplot(223);plot(time,u','-',time2,uupper,'--',time2,ulower,'--');
axis([time2,min(umin)-rangeu,max(umax)+rangeu]);
xlabel(['IMGPC - Inputs in loop ',num2str(loop)]);
subplot(224);plot(time,d','b',time,noise,'g');
axis([time2,min(min([d,noise]))-ranged,max(max([d,noise]))+ranged]);
xlabel(['IMGPC- Disturbance/noise in loop ',num2str(loop)]);
|
github
|
pascal220/PMSM_Control-master
|
imgpc_constraints.m
|
.m
|
PMSM_Control-master/Model Predictive Control/rossiter/imgpc_constraints.m
| 884 |
utf_8
|
9e4933e9823712e2b43e6aec76d6e353
|
%%%%% Constraints are summarised as
%%%%% umin < u < umax and | Du | < Dumax
%%%%%
%%%%% or CC*ufut -dfixed - dxu*u(k-1)<=0
%%%%% [Note: absolute inputs not increments]
%%%%%
%%%%% nu is the control horizon
%%%%%
%%%%% [CC,dfixed,dxu] = imgpc_constraints(nu,umin,umax,Dumax)
%%
%% Author: J.A. Rossiter (email: [email protected])
function [CC,dfixed,dxu] = imgpc_constraints(nu,umin,umax,Dumax)
sizeu = length(umax);
%%%%% Absolute limits
CC=[eye(nu*sizeu);-eye(nu*sizeu)];
dfixed=[umax;-umin];
for k=2:nu;
dfixed = [umax;dfixed;-umin];
end
%%%% rate limits
[Cd,Hd] = caha([eye(sizeu),-eye(sizeu)],sizeu,nu);
CCR=[Cd;-Cd];
dfixedr=[Dumax];
for k=2:2*nu;
dfixedr = [dfixedr;Dumax];
end
dxu=[zeros(2*nu*sizeu,sizeu);-Hd;Hd];
%%% All limits
CC=[CC;CCR];
dfixed = [dfixed;dfixedr];
|
github
|
pascal220/PMSM_Control-master
|
ssmpc_costfunction.m
|
.m
|
PMSM_Control-master/Model Predictive Control/rossiter/ssmpc_costfunction.m
| 718 |
utf_8
|
4138d9ebd39bd4a954fe8832dc00d2c8
|
%%% Given a model x = Ax + Bu
%%% control u = -Kx + c
%%% cost function J = sum xQx + uRu (sum to infinity)
%%%
%%% Then the cost function reduces to
%%% J = cSc + unconstrained optimal
%%% SS is for just one block, S is for nc blocks
%%%
%%% [S,SS] = ssmpc_costfunction(A,B,K,nc,Q,R);
%%%
%%
%% Author: J.A. Rossiter (email: [email protected])
function [S,SS] = ssmpc_costfunction(A,B,K,nc,Q,R);
Phi = A-B*K;
Sx = dlyap(Phi',Q); %%% S = [I +Phi'Phi + Phi^2'Phi^2+...]
Su = dlyap(Phi',K'*K); %%% S = [K'K +Phi'K'KPhi + Phi^2'K'K Phi^2+...]
SS = B'*[Sx+Su]*B + eye(size(B,2));
nu=size(B,2);
for k=1:nc;
vec=(k-1)*nu+1:k*nu;
S(vec,vec)=SS;
end
|
github
|
pascal220/PMSM_Control-master
|
ssmpc_constraints.m
|
.m
|
PMSM_Control-master/Model Predictive Control/rossiter/ssmpc_constraints.m
| 2,262 |
utf_8
|
5c5ee9bf6f1761a7c7b647eba28610f6
|
%%%%% Constraints are summarised as
%%%%% CC c - dfixed - dx0*[z;r;d] <= 0
%%%%% d is a known disturbance
%%%%%
%%%%% Predictions are
%%%%% x = Pc1*c + Pz1*z + Pr1*r + Pd1*d
%%%%% u = Pc2*c + Pz2*z + Pr2*r + Pd2*d
%%%%% Constraints are
%%%%% umin < u < umax Kxmax * x <xmax
%%%%%
%%%%% [CC,dfixed,dx0] = ssmpc_constraints(Pc1,Pc2,Pz1,Pz2,Pr1,Pr2,umin,umax,Kxmax,xmax);
%%%%%
%%
%% Author: J.A. Rossiter (email: [email protected])
function [CC,dfixed,dx0] = ssmpc_constraints(Pc1,Pc2,Pz1,Pz2,Pr1,Pr2,umin,umax,Kxmax,xmax);
nx=size(Kxmax,2);
[CC,dfixed,dx0] = inputcons(Pc2,Pz2,Pr2,umax,umin); %%%% Input constraints
[CCx,dfixedx,dx0x] = statecons(Pc1,Pz1,Pr1,Kxmax,xmax,nx); %%%% State constraints
CC=[CC;CCx];
dfixed = [dfixed;dfixedx];
dx0 = [dx0;dx0x];
%%%%% Set up input constraints CC * c - dfixed - dx0 * [z;r] <=0
%%%%% given
%%%%% u = Pc2*c + Pz2*z + Pr2*r + Pd2*d
%%%%% umin < u < umax
%%%%%
function [CC,dfixed,dx0] = inputcons(Pc2,Pz2,Pr2,umax,umin);
nrows = size(Pc2,1);
steps = nrows/length(umax);
Up = umax; Ul = umin;
for i=2:steps
Up = [Up;umax];
Ul = [Ul;umin];
end
%%%%% Pc2 c + Pz2 z + Pr2 r < Up
%%%%% Pc2 c + Pz2 z + Pr2 r > Ul or -Pc2 c - Pz2 z - Pr2 r < - Ul
CC = [Pc2;-Pc2];
dfixed = [Up;-Ul];
dx0 = [-Pz2,-Pr2;Pz2,Pr2];
%%%% Set up state constraints for a state-space system
%%%% CC * c - dfixed - dx0 * [z;r] <=0 z is state estimate
%%%%
%%%% x = Pc1*c + Pz1*z + Pr1*r and | Kxmax * x| < xmax
function [CC,dfixed,dx0] = statecons(Pc1,Pz1,Pr1,Kxmax,xmax,nx);
nrows = size(Pc1,1);
steps = nrows/nx;
nK = size(Kxmax,1);
nc = size(Pc1,2);
nz = size(Pz1,2);
nr = size(Pr1,2);
Xp = xmax; Xl = -xmax;
for i=1:steps-1
Xp = [Xp;xmax];
end
for i=1:steps;
Pc((i-1)*nK+1:i*nK,1:nc) = Kxmax*Pc1((i-1)*nx+1:i*nx,:);
Pz((i-1)*nK+1:i*nK,1:nz) = Kxmax*Pz1((i-1)*nx+1:i*nx,:);
Pr((i-1)*nK+1:i*nK,1:nr) = Kxmax*Pr1((i-1)*nx+1:i*nx,:);
end
%%%%% Constraints are
%%%%% Pc2 c + Pz2 z + Pr2 r < Up
%%%%% Pc2 c + Pz2 z + Pr2 r > Ul or -Pc2 c - Pz2 z - Pr2 r < - Ul
CC = [Pc;-Pc];
dfixed = [Xp;Xp];
dx0 = [-Pz,-Pr;Pz,Pr];
|
github
|
Chaogan-Yan/PaperScripts-master
|
SexinSeparateSites.m
|
.m
|
PaperScripts-master/WangYW_2023_NeuroImage/6Misuse/SexinSeparateSites.m
| 14,920 |
utf_8
|
9292a40c5035c39ae19742388b062dee
|
%% SMA
clear;
clc;
info = importdata('/mnt/Data3/RfMRILab/Wangyw/harmonization_project/old/CoRR/SubInfo/SubInfo_420.mat');
site = info.Site;
age = info.Age;
sex = info.Sex;
sex(sex==-1)=0;
motion1 = info.Motion(:,1);
motion2 = info.Motion(:,2);
subid = info.SubID;
SiteSWU_ind = find(site==8);
ResultsSet = {'Results','S2_Results'};
SexTarget = sex(SiteSWU_ind);
AgeTarget = age(SiteSWU_ind);
AgeTarget = double(AgeTarget<22)+1;
IndexTarget = AgeTarget;% + 2*double(SexTarget) ;
files = {'Results','S2_Results'};
IndexName = {'ReHo_FunImgARCWF','ALFF_FunImgARCW','fALFF_FunImgARCW','DegreeCentrality_FunImgARCWF','FC_D142'};
info = importdata('/mnt/Data3/RfMRILab/Wangyw/harmonization_project/old/FCP_Organized/SubInfo/600_subinfo.mat'); % 1-female 2-male
site = info.SiteID;
age = double(info.Age);
sex = info.Sex-1; % 0-female 1-male
motion = info.MeanFDJ;
eye = info.eyeclosed;
sitename = info.SiteName;
subid = info.Subid;
BEIJING_female_inds = find(strcmp(sitename,"Beijing")& sex==0);
Cambridge_male_inds = find(strcmp(sitename,"Cambridge")& sex==1);
refer_site = {BEIJING_female_inds,Cambridge_male_inds};
inds = cell2mat(refer_site');
refer_sitename = sitename(inds);
IndexName = {'ReHo_FunImgARCWF','ALFF_FunImgARCW','fALFF_FunImgARCW','DegreeCentrality_FunImgARCWF','FC_D142'};
% overlap mask
Cov = [sex(inds),double(age(inds)),motion(inds),ones(180,1)];
Datadir = '/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/Revision/Data/SexinSeparateSites';
subid = info.Subid(inds);
%parpool(15);
for ses =1:2
savepath = ['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/Revision/Data/SexinSeparateSites/',files{ses}];
mkdir(savepath);
for i_Index = 2:2% length(IndexName)
file = [savepath,'/',IndexName{i_Index},'_SMA_SWU_beijing_cambridge.mat'];
if ~exist(file,'file')
if strcmp(IndexName{i_Index},'FC')
datapath = ['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/HarmonizationResults/CORR/',files{ses},'/',IndexName{i_Index},'_raw.mat'];
else
datapath = ['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/HarmonizationResults/CORR/',files{ses},'/',IndexName{i_Index},'_raw.mat'];
end
data = importdata(datapath);
Xtarget = data(SiteSWU_ind,:);
datapath =['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/HarmonizationResults/FCP/Results/',IndexName{i_Index},'_raw.mat'];
FCP_data = importdata(datapath);
%% define target and source
for i =1:length(refer_site)
AgeSource = age(refer_site{i});
SexSource = sex(refer_site{i});
Xsource = FCP_data(refer_site{i},:);
temp = zeros(size(Xsource));
AgeSource = double(AgeSource<22)+1;
IndexSource = AgeSource + 2*double(SexSource) ;
%MatrixTran{i-1}= zeros(4,3);
for k = 1:size(temp,2)
MatrixTran=[];
Source = Xsource(:,k);
Target = Xtarget(:,k);
[slope,intercept,pvalue] = subsamplingMMD(Source,Target,IndexSource,IndexTarget,100);
%[slope,intercept,pvalue] = fitMMD(Source,Target,0);
%MatrixTran(k,:) = [slope,intercept,pvalue];
temp(:,k) = slope*Source+ones(size(Source))*intercept;
%Here, pvalue is for subsamples from first iteration
end
new_site_data{i} = temp;
fprintf('site %d fitting completed \n', i);
end
SMA = cell2mat(new_site_data');
save([savepath,'/',IndexName{i_Index},'_SMA_SWU_beijing_cambridge.mat'],'SMA');
else
load(file);
end
RawNiiPath = '/mnt/Data3/RfMRILab/Wangyw/harmonization_project/old/FCP_Organized/AllMaps/';
MaskFile = '/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/Mask/Overlap38810.nii';
NII_outputpath = fullfile(Datadir,'/Niis/',ResultsSet{ses},'/',IndexName{i_Index});
mkdir(NII_outputpath);
StatOutDir = fullfile(Datadir,'/Stat/SWU_beijing_cambridge/',ResultsSet{ses},'/',IndexName{i_Index});
mkdir(StatOutDir);
outputname = [StatOutDir,'/MaleVSFemaleT.nii'];
GRFOutDir=[StatOutDir,'/GRF/ClusterCorrected001_05/'];
mkdir(GRFOutDir);
GRFOutName=[GRFOutDir,'/MaleVsFemaleT'];
if ~exist(outputname,'file')
% write nii
StatList = writeSiteNii(SMA,IndexName{i_Index},refer_sitename,subid,NII_outputpath,MaskFile,RawNiiPath);
% TWO-SAMPLE-TEST
y_GroupAnalysis_Image(StatList,Cov,outputname,MaskFile,[],[1,0,0,0],'T',0);
end
% GRF correction
if length(dir(GRFOutDir))==2 % dir is empty
[Data_corrected,~,Header]= y_GRF_Threshold(outputname,0.001,1,0.05,GRFOutName,MaskFile);
else
Data_corrected = y_Read([GRFOutDir,'/ClusterThresholded_MaleVsFemaleT.nii']);
end
Data_corrected =Data_corrected(Data_corrected~=0);
NMax = min(Data_corrected(Data_corrected<0));
NMin = max(Data_corrected(Data_corrected<0));
PMin = min(Data_corrected(Data_corrected>0));
PMax = max(Data_corrected(Data_corrected>0));
ConnectivityCriterion = 18;
ClusterSize = 0;
UnderlayFileName='/mnt/Data3/RfMRILab/Wangyw/software/DPABI_V6.0_ForCamp/Templates/ch2.nii';
GRFfile = [GRFOutDir,'/ClusterThresholded_MaleVsFemaleT.nii']
ColorMap = y_AFNI_ColorMap(12);
[BrainNetViewerPath, fileN, extn] = fileparts(which('BrainNet.m'));
SurfFileName=[BrainNetViewerPath,filesep,'Data',filesep,'SurfTemplate',filesep,'BrainMesh_ICBM152_smoothed.nv'];
viewtype='MediumView';
pics_path = ['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/Revision/Data/SexinSeparateSites/Pics/',ResultsSet{ses}];
mkdir(pics_path);
H_BrainNet = y_CallBrainNetViewer(GRFfile,NMin,PMin,ClusterSize,ConnectivityCriterion,SurfFileName,viewtype,ColorMap,NMax,PMax );
JPGFile=[pics_path,'/',IndexName{i_Index},'_BeijingF_CambM.jpeg'];
eval(['print -r300 -djpeg -noui ''',JPGFile,''';']);
end
end
%% ComBat/CovBat
clear;
clc;
info = importdata('/mnt/Data3/RfMRILab/Wangyw/harmonization_project/old/CoRR/SubInfo/SubInfo_420.mat');
site = info.Site;
age_corr = info.Age;
sex = info.Sex;
sex(sex==-1)=0;
sex_corr=sex;
motion1 = info.Motion(:,1);
motion2 = info.Motion(:,2);
subid = info.SubID;
SiteSWU_ind = find(site==8);
file = {'Results','S2_Results'};
IndexName = {'ReHo_FunImgARCWF','ALFF_FunImgARCW','fALFF_FunImgARCW','DegreeCentrality_FunImgARCWF','FC_D142'};
info = importdata('/mnt/Data3/RfMRILab/Wangyw/harmonization_project/old/FCP_Organized/SubInfo/600_subinfo.mat'); % 1-female 2-male
site = info.SiteID;
age = double(info.Age);
sex = info.Sex-1; % 0-female 1-male
motion = info.MeanFDJ;
eye = info.eyeclosed;
sitename = info.SiteName;
subid = info.Subid;
BEIJING_female_inds = find(strcmp(sitename,"Beijing")& sex==0);
Cambridge_male_inds = find(strcmp(sitename,"Cambridge")& sex==1);
refer_site = {BEIJING_female_inds,Cambridge_male_inds};
inds = cell2mat(refer_site');
refer_sitename = sitename(inds);
batch = repelem([1,2,3]',[221,106,74]);
IndexName = {'ReHo_FunImgARCWF','ALFF_FunImgARCW','fALFF_FunImgARCW','DegreeCentrality_FunImgARCWF','FC_D142'};
mod = [[sex_corr(SiteSWU_ind);sex(inds)],[age_corr(SiteSWU_ind);double(age(inds))]];
% overlap mask
Cov = [sex(inds),double(age(inds)),motion(inds),ones(180,1)];
Datadir = '/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/Revision/Data/SexinSeparateSites';
subid = info.Subid(inds);
parpool(4);
parfor ses =1:2
savepath = ['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/Revision/Data/SexinSeparateSites/',file{ses}];
mkdir(savepath);
for i_Index = 2:2% length(IndexName)
if strcmp(IndexName{i_Index},'FC')
datapath = ['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/HarmonizationResults/CORR/',file{ses},'/',IndexName{i_Index},'_raw.mat'];
else
datapath = ['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/HarmonizationResults/CORR/',file{ses},'/',IndexName{i_Index},'_raw.mat'];
end
data = importdata(datapath);
Xtarget = data(SiteSWU_ind,:);
datapath =['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/HarmonizationResults/FCP/Results/',IndexName{i_Index},'_raw.mat'];
FCP_data = importdata(datapath);
Xsource = FCP_data(inds,:);
d = [Xtarget;Xsource];
sp = [savepath,'/',IndexName{i_Index},'_SWU_beijing_cambridge'];
cb(d,batch,mod,sp);
end
end
clear;
clc;
info = importdata('/mnt/Data3/RfMRILab/Wangyw/harmonization_project/old/CoRR/SubInfo/SubInfo_420.mat');
site = info.Site;
age_corr = info.Age;
sex = info.Sex;
sex(sex==-1)=0;
sex_corr=sex;
motion1 = info.Motion(:,1);
motion2 = info.Motion(:,2);
subid = info.SubID;
SiteSWU_ind = find(site==8);
ResultsSet = {'Results','S2_Results'};
file = {'Results','S2_Results'};
IndexName = {'ReHo_FunImgARCWF','ALFF_FunImgARCW','fALFF_FunImgARCW','DegreeCentrality_FunImgARCWF','FC_D142'};
info = importdata('/mnt/Data3/RfMRILab/Wangyw/harmonization_project/old/FCP_Organized/SubInfo/600_subinfo.mat'); % 1-female 2-male
site = info.SiteID;
age = double(info.Age);
sex = info.Sex-1; % 0-female 1-male
motion = info.MeanFDJ;
eye = info.eyeclosed;
sitename = info.SiteName;
subid = info.Subid;
BEIJING_female_inds = find(strcmp(sitename,"Beijing")& sex==0);
Cambridge_male_inds = find(strcmp(sitename,"Cambridge")& sex==1);
refer_site = {BEIJING_female_inds,Cambridge_male_inds};
inds = cell2mat(refer_site');
refer_sitename = sitename(inds);
batch = repelem([1,2,3]',[221,106,74]);
IndexName = {'ReHo_FunImgARCWF','ALFF_FunImgARCW','fALFF_FunImgARCW','DegreeCentrality_FunImgARCWF','FC_D142'};
mod = [[sex_corr(SiteSWU_ind);sex(inds)],[age_corr(SiteSWU_ind);double(age(inds))]];
% overlap mask
Cov = [sex(inds),double(age(inds)),motion(inds),ones(180,1)];
Datadir = '/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/Revision/Data/SexinSeparateSites';
subid = info.Subid(inds);
methods = {'SWU_beijing_cambridge_para_adj_combat',...
'SWU_beijing_cambridge_nonpara_adj_combat',...
'SWU_beijing_cambridge_adjust_covbat',...
'SWU_beijing_cambridge_para_unadj_combat',...
'SWU_beijing_cambridge_nonpara_unadj_combat',...
'SWU_beijing_cambridge_unadj_covbat'
};
for ses =1:2
savepath = ['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/Revision/Data/SexinSeparateSites/',file{ses}];
mkdir(savepath);
for i_method = 1:numel(methods)
for i_Index = 2:2% length(IndexName)
if strcmp(methods{i_method},'raw')
datapath = ['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/HarmonizationResults/CORR/',ResultsSet{ses},'/',IndexName{i_Index},'_',methods{i_method},'.mat'];
else
datapath = ['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/Revision/Data/SexinSeparateSites/',ResultsSet{ses},'/',IndexName{i_Index},'_',methods{i_method},'.mat'];
end
data = importdata(datapath);
if ~strcmp(methods{i_method},'raw')
d = data(222:end,:);
end
%load([savepath,'/',IndexName{i_Index},'_para_adj_combat_SWU_beijing_cambridge.mat']);
%load([savepath,'/',IndexName{i_Index},'_adjust_covbat_SWU_beijing_cambridge.mat']);
%covbat = covbat(222:end,:);
NII_outputpath = fullfile(Datadir,'/Niis/FCP/',ResultsSet{ses},IndexName{i_Index},methods{i_method});
mkdir(NII_outputpath);
StatOutDir = fullfile(Datadir,'/Stat/SWU_beijing_cambridge/FCP/',ResultsSet{ses},IndexName{i_Index},methods{i_method});
mkdir(StatOutDir);
outputname = [StatOutDir,'/MaleVSFemaleT.nii'];
GRFOutDir=[StatOutDir,'/GRF/ClusterCorrected001_05/'];
mkdir(GRFOutDir);
GRFOutName=[GRFOutDir,'/MaleVsFemaleT'];
RawNiiPath = '/mnt/Data3/RfMRILab/Wangyw/harmonization_project/old/FCP_Organized/AllMaps/';
MaskFile = '/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/Mask/Overlap38810.nii';
%if ~exist(outputname,'file')
% write nii
StatList = writeSiteNii(d,IndexName{i_Index},refer_sitename,subid,NII_outputpath,MaskFile,RawNiiPath);
% TWO-SAMPLE-TEST
y_GroupAnalysis_Image(StatList,Cov,outputname,MaskFile,[],[1,0,0,0],'T',0);
%end
% GRF correction
[Data_corrected,~,Header]= y_GRF_Threshold(outputname,0.001,1,0.05,GRFOutName,MaskFile);
Data_corrected =Data_corrected(Data_corrected~=0);
NMax = min(Data_corrected(Data_corrected<0));
NMin = max(Data_corrected(Data_corrected<0));
PMin = min(Data_corrected(Data_corrected>0));
PMax = max(Data_corrected(Data_corrected>0));
ConnectivityCriterion = 18;
ClusterSize = 0;
UnderlayFileName='/mnt/Data3/RfMRILab/Wangyw/software/DPABI_V6.0_ForCamp/Templates/ch2.nii';
GRFfile = [GRFOutDir,'/ClusterThresholded_MaleVsFemaleT.nii'];
ColorMap = y_AFNI_ColorMap(12);
[BrainNetViewerPath, fileN, extn] = fileparts(which('BrainNet.m'));
SurfFileName=[BrainNetViewerPath,filesep,'Data',filesep,'SurfTemplate',filesep,'BrainMesh_ICBM152_smoothed.nv'];
viewtype='MediumView';
pics_path = ['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/Revision/Data/SexinSeparateSites/Pics/',ResultsSet{ses},'/',IndexName{i_Index}];
mkdir(pics_path);
H_BrainNet = y_CallBrainNetViewer(GRFfile,NMin,PMin,ClusterSize,ConnectivityCriterion,SurfFileName,viewtype,ColorMap,NMax,PMax );
JPGFile=[pics_path,'/',methods{i_method},'.jpeg'];
eval(['print -r300 -djpeg -noui ''',JPGFile,''';']);
end
end
end
function cb(data,batch,mod,savepath)
para_adj_combat = combat(data',batch,mod,1)';
save([savepath,'_para_adj_combat.mat'],'para_adj_combat');
para_unadj_combat = combat(data',batch,[],1)';
save([savepath,'_para_unadj_combat.mat'],'para_unadj_combat');
nonpara_adj_combat = combat(data',batch,mod,0)';
save([savepath,'_nonpara_adj_combat.mat'],'nonpara_adj_combat');
nonpara_unadj_combat = combat(data',batch,[],0)';
save([savepath,'_nonpara_unadj_combat.mat'],'nonpara_unadj_combat');
end
|
github
|
Chaogan-Yan/PaperScripts-master
|
SMA_TSP3.m
|
.m
|
PaperScripts-master/WangYW_2023_NeuroImage/1Harmo/1TSP3/SMA_TSP3.m
| 2,490 |
utf_8
|
6d2d91e5739a96f4ab4ab13282dfc43a
|
%% fitMMD for TST dataset
% different reference site
% calculate rmse and ICC
% IndexName ={'ReHo_FunImgARCWF','ALFF_FunImgARCW','fALFF_FunImgARCW','DegreeCentrality_FunImgARCWF','FC_D142'};
% % MeasurePrefixSet={'szReHoMap_','szALFFMap_','szfALFFMap_','szDegreeCentrality_PositiveWeightedSumBrainMap_'};
% datapath = '/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/HarmonizationResults/TSP3/ResultsS';
% refer_site = 'pku_ge';
%
% outputpath = '/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/HarmonizationResults/TSP3/ResultsS';
% parpool(5);
% parfor i = 1:numel(IndexName)
% dataname = [datapath,'/',IndexName{i},'_raw.mat'];
% outputname = [outputpath,'/',IndexName{i},'_SMA.mat'];
% fitMMD4TST(dataname,refer_site,IndexName{i},outputname);
% end
function fitMMD4TST(datapath,refer_site,feature_name,outputpath)
%datapath = ['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/TST/TSTafterHarmonization/3SIte41Sub/ResultsS/',IndexName{i},'_raw.mat'];
data = importdata(datapath);
ipcas_ge_index = [1:41];
pku_ge_index = [42:82];
pku_siemens_index = [83:123];
if size(data,1) ~= 123
data= data';
end
ipcas_ge = data(ipcas_ge_index,:);
pku_ge = data(pku_ge_index,:);
pku_siemens = data(pku_siemens_index,:);
site_names = {'ipcas_ge','pku_ge','pku_siemens'};
transform_mat =zeros(size(data,2),length(site_names)-1);
%for target_index = 1:length(site_names)
target_site = refer_site; %pku_ge
eval(['target_data = ',target_site,';']);
source_names = site_names(find(~ismember(site_names,target_site)));
trans_data = zeros(size(data));
transformation.b = transform_mat;
transformation.w = transform_mat;
for source_index = 1:length(source_names)
source_site = source_names{source_index};
eval(['source_data = ' source_site ';']);
fprintf('we are map %s to %s', source_site, target_site)
for ele = 1:size(data,2)
[slope,intercept,~] = fitMMD(source_data(:,ele),target_data(:,ele),0);
transformation.b(ele,source_index) = intercept;
transformation.w(ele,source_index) = slope;
temp(:,ele) = source_data(:,ele).*slope+intercept;
end
eval(['trans_data(' source_site '_index,:) = temp;']);
end
eval(['trans_data(' target_site '_index,:) = target_data']);
save([outputpath,'/',feature_name,'_MMD_',target_site,'.mat'],'trans_data');
%end
end
|
github
|
Chaogan-Yan/PaperScripts-master
|
FCP_ComBatcorr2022.m
|
.m
|
PaperScripts-master/WangYW_2023_NeuroImage/1Harmo/3FCP/FCP_ComBatcorr2022.m
| 3,283 |
utf_8
|
f9b67608a18ee406532492ed29d689c9
|
clear;clc;
%%load info
%corr
load /mnt/Data3/RfMRILab/Wangyw/harmonization_project/CoRR/SubInfo/SubInfo_420.mat ;
%load /mnt/Data3/RfMRILab/Wangyw/harmonization_project/CoRR/SubInfo/map_402in420.mat ;
Sex(Sex==-1)=0; %female
%fcp
FCP.info = importdata('/mnt/Data3/RfMRILab/Wangyw/harmonization_project/FCP_Organized/SubInfo/600_subinfo.mat');
FCP.info.Sex(FCP.info.Sex==1)=0 %female
FCP.info.Sex(FCP.info.Sex==2)=1 %male
Age = [Age;FCP.info.Age];
Sex = [Sex;FCP.info.Sex];
Motion = [Motion;[FCP.info.MeanFDJ,FCP.info.MeanFDJ]];
SubID = [SubID;FCP.info.Subid];
Site = [Site;FCP.info.SiteID+max(Site)];
if length(unique(Site))~=max(Site)
s = unique(Site);
for i = 1:length(s)
Site(Site==s(i)) = i ;
end
end
clear FCP;
MaskFile ='/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/Mask/Overlap38810.nii';
Mask = y_Read(MaskFile);
mask_size = size(Mask);
% mapping index
x = find(reshape(Mask,[],1)==1);
newmap = zeros(size(reshape(Mask,[],1)));
newmap(x,1) = 1;
IndexName = {'ReHo_FunImgARCWF','ALFF_FunImgARCW','fALFF_FunImgARCW','DegreeCentrality_FunImgARCWF','FC_D142'};
outputpath = '/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/HarmonizationResults/FCP';
% load data
%parpool(4);
Rdir ={'Results','S2_Results'}
for ses = 1:2
mod = [double(Age),Sex,Motion(:,ses)];
for i =1:length(IndexName)
com = importdata(['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/HarmonizationResults/CORR/',Rdir{ses},'/',IndexName{i},'_raw.mat']);
fcp = importdata(['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/HarmonizationResults/FCP/',Rdir{ses},'/',IndexName{i},'_raw.mat']);
raw = [com;fcp];
% clear fcp;
% clear combat;
fprintf('now is harmonizing %s \n',IndexName{i} );
outputpath = ['/mnt/Data3/RfMRILab/Wangyw/harmonization_project/Restart/HarmonizationResults/FCP/',Rdir{ses}];
para_adj(raw,Site, mod, outputpath, IndexName{i});
nonpara_adj(raw,Site, mod, outputpath, IndexName{i});
para_unadj(raw,Site, outputpath, IndexName{i});
nonpara_unadj(raw,Site, outputpath, IndexName{i});
% para_unadj_combat = combat(raw',Site, [],1,0)';
% save([outputpath,'/',IndexName{i} ,'_para_unadj_combat.mat'],'para_unadj_combat');
%
% nonpara_unadj_combat = combat(raw',Site, [],0,0)';
% save([outputpath,'/',IndexName{i} ,'_nonpara_unadj_combat.mat'],'nonpara_unadj_combat');
end
end
function para_adj(data,Site,mod,outputpath,featurename)
para_adj_combat = combat(data',Site, mod,1,0)';
save([outputpath,'/',featurename ,'_para_adj_combat.mat'],'para_adj_combat');
end
function nonpara_adj(data,Site,mod,outputpath,featurename)
nonpara_adj_combat =combat(data',Site, mod,0,0)';;
save([outputpath,'/',featurename ,'_nonpara_adj_combat.mat'],'nonpara_adj_combat');
end
function para_unadj(data,Site,outputpath,featurename)
para_unadj_combat = combat(data',Site,[],1,0)';
save([outputpath,'/',featurename ,'_para_unadj_combat.mat'],'para_unadj_combat');
end
function nonpara_unadj(data,Site,outputpath,featurename)
nonpara_unadj_combat =combat(data',Site, [],0,0)';;
save([outputpath,'/',featurename ,'_nonpara_unadj_combat.mat'],'nonpara_unadj_combat');
end
|
github
|
Chaogan-Yan/PaperScripts-master
|
bootstrappingExps2.m
|
.m
|
PaperScripts-master/WangYW_2023_NeuroImage/7SMATargetsiteChoice/FCP-Bootstrapping-Stability/bootstrappingExps2.m
| 3,547 |
utf_8
|
921a7c03bbb6bb708af0ecc21df261ab
|
%% bootstrapping for hypothsis test
% H0.a sample size does not affect result when distribution unchanged
% H0.b distribution does not affect result when sample size unchanged
%% H0.b distribution does not affect result when sample size unchanged
% target site: beijing
% source sites: leidein2200 satitlouis
% bootstrapp settings:
% sample distribution conditions:
% 1. left bias 30, 5, 30 , 5
% 2. right bias 5, 30, 5, 30
% bootstrapping times: 50
clear;clc;
addpath(genpath('/mnt/Data3/RfMRILab/Wangyw/software/PNAS2018-master'));
conditions = [30, 5, 30, 5 ;5, 30, 5, 30];
bootTime = 50;
IndexName = {'ReHo_FunImgARCWF','ALFF_FunImgARCW','fALFF_FunImgARCW','DegreeCentrality_FunImgARCWF','FC_D142'};
%parpool(20);
for i_Metric = 1: numel(IndexName)
load(['/mnt/Data6/RfMRILab/Wangyuwei/bootstrapping/Beijing/',IndexName{i_Metric},'.mat']);
BeijingSubgroup = subgroup;
leiden_2200 = load(['/mnt/Data6/RfMRILab/Wangyuwei/bootstrapping/Leiden_2200/',IndexName{i_Metric},'.mat']);
sl = load(['/mnt/Data6/RfMRILab/Wangyuwei/bootstrapping/SaintLouis/',IndexName{i_Metric},'.mat']);
for i_Distribution = 1:size(conditions,1)
for i_boot = 1:bootTime
tic;
outputdir = ['/mnt/Data6/RfMRILab/Wangyuwei/bootstrapping/ExperimentResults/TargetSiteDistribution/Distribution',int2str(i_Distribution),'/',int2str(i_boot)];
mkdir(outputdir);
[SampleInds,targetlabel] = subgroup_subsamping(BeijingSubgroup,conditions(i_Distribution,:),0);
TargetData = sdata(SampleInds,:);
sourcedata = {leiden_2200.sdata;sl.sdata};
sourcelabel = {leiden_2200.subgroup;sl.subgroup};
sma = [];
for i_source = 1:numel(sourcedata)
SD = sourcedata{i_source};
SL = sourcelabel{i_source};
temp = zeros(size(SD));
parfor k = 1:size(temp,2)
source = SD(:,k);
target = TargetData(:,k);
[slope,intercept,pvalue] = subsamplingMMD(source,target,SL,targetlabel,50);
temp(:,k) = slope*source+ones(size(source))*intercept;
if sum(isnan(temp(:,k)))
warning('there are nans');
end
end
sma{i_source} = temp;
end
%sma = cell2mat(sma);
save([outputdir,'/',IndexName{i_Metric},'_SMA.mat'],'sma','SampleInds');
fprintf('%d / 50 ...',i_boot);
toc;
end
end
end
%%
function [Subsample_ind,Labels] = subgroup_subsamping(groups,subsize,isrepeat)
% 1 get indexs for each sub group
unique_group_labels = unique(groups);
for i = 1:numel(unique_group_labels)
subgroup_index{i} = find(groups==unique_group_labels(i));
end
% 2 get assigned size of samples for each group
if numel(subsize)~=numel(unique_group_labels)
error('The number of sizes of subgroups does not match the number of unique groups.');
elseif ~isrepeat
for i = 1:numel(unique_group_labels)
Subgroup_ind_choice{i} = subgroup_index{i}(randperm(numel(subgroup_index{i}),subsize(i)));
end
else
for i = 1:numel(unique_group_labels)
Subgroup_ind_choice{i} = subgroup_index{i}(randi(numel(subgroup_index{i}),subsize(i)));
end
end
Subsample_ind=cell2mat(Subgroup_ind_choice');
Labels = repelem(unique_group_labels,subsize);
end
|
github
|
Chaogan-Yan/PaperScripts-master
|
bootstrappingExps.m
|
.m
|
PaperScripts-master/WangYW_2023_NeuroImage/7SMATargetsiteChoice/FCP-Bootstrapping-Stability/bootstrappingExps.m
| 3,913 |
utf_8
|
95c431f6f43e369b49289a9b95fc18de
|
%% bootstrapping for hypothsis test
% H0.a sample size does not affect result when distribution unchanged
% H0.b distribution does not affect result when sample size unchanged
%% H0.a sample size does not affect result when distribution unchanged
% target site: beijing
% source sites: leidein2200 satitlouis
% bootstrap settings:
% sample size conditions:
% 1. 7, 4, 4, 3
% 2. 27, 16, 15, 12
% 3. 49, 30, 29, 22
% bootstrapping times: 50
clear;clc;
addpath(genpath('/mnt/Data3/RfMRILab/Wangyw/software/PNAS2018-master'));
sizes = [7, 4, 4, 3 ;27, 16, 15, 12; 49, 30, 29, 22];
bootTime = 50;
IndexName = {'ReHo_FunImgARCWF','ALFF_FunImgARCW','fALFF_FunImgARCW','DegreeCentrality_FunImgARCWF','FC_D142'};
%parpool(20);
for i_Metric = 1: numel(IndexName)
load(['/mnt/Data6/RfMRILab/Wangyuwei/bootstrapping/Beijing/',IndexName{i_Metric},'.mat']);
BeijingSubgroup = subgroup;
leiden_2200 = load(['/mnt/Data6/RfMRILab/Wangyuwei/bootstrapping/Leiden_2200/',IndexName{i_Metric},'.mat']);
sl = load(['/mnt/Data6/RfMRILab/Wangyuwei/bootstrapping/SaintLouis/',IndexName{i_Metric},'.mat']);
for i_size = 1:size(sizes,1)
for i_boot = 1:bootTime
fprintf('%d / 50 ...',i_boot);
tic;
outputdir = ['/mnt/Data6/RfMRILab/Wangyuwei/bootstrapping/ExperimentResults/TargetSiteSampleSize/Size',int2str(i_size),'/',int2str(i_boot)];
mkdir(outputdir);
[SampleInds,targetlabel] = subgroup_subsamping(BeijingSubgroup,sizes(i_size,:),0);
TargetData = sdata(SampleInds,:);
sourcedata = {leiden_2200.sdata;sl.sdata};
sourcelabel = {leiden_2200.subgroup;sl.subgroup};
sma = [];
for i_source = 1:numel(sourcedata)
SD = sourcedata{i_source};
SL = sourcelabel{i_source};
temp = zeros(size(SD));
parfor k = 1:size(temp,2)
source = SD(:,k);
target = TargetData(:,k);
[slope,intercept,pvalue] = subsamplingMMD(source,target,SL,targetlabel,50);
temp(:,k) = slope*source+ones(size(source))*intercept;
if sum(isnan(temp(:,k)))
warning('there are nans');
end
end
sma{i_source} = temp;
end
%sma = cell2mat(sma);
save([outputdir,'/',IndexName{i_Metric},'_SMA.mat'],'sma','SampleInds');
toc;
end
end
end
%% H0.b distribution does not affect result when sample size unchanged
% target site: beijing
% source sites: leidein2200 satitlouis
% bootstrapp settings:
% sample distribution conditions:
% 1. left bias 30, 5, 30 , 5
% 2. right bias 5, 30, 5, 30
% bootstrapping times: 50
%%
function [Subsample_ind,Labels] = subgroup_subsamping(groups,subsize,isrepeat)
% 1 get indexs for each sub group
unique_group_labels = unique(groups);
for i = 1:numel(unique_group_labels)
subgroup_index{i} = find(groups==unique_group_labels(i));
end
% 2 get assigned size of samples for each group
if numel(subsize)~=numel(unique_group_labels)
error('The number of sizes of subgroups does not match the number of unique groups.');
elseif ~isrepeat
for i = 1:numel(unique_group_labels)
Subgroup_ind_choice{i} = subgroup_index{i}(randperm(numel(subgroup_index{i}),subsize(i)));
end
else
for i = 1:numel(unique_group_labels)
Subgroup_ind_choice{i} = subgroup_index{i}(randi(numel(subgroup_index{i}),subsize(i)));
end
end
Subsample_ind=cell2mat(Subgroup_ind_choice');
Labels = repelem(unique_group_labels,subsize);
end
|
github
|
skyhejing/IJCAI2017-master
|
list_update_u_l_three.m
|
.m
|
IJCAI2017-master/list_update_u_l_three.m
| 1,575 |
utf_8
|
77637ea8b8c19135e77e48efc352c342
|
% function [f,g] = list_update_u_l_three(u_l_sample,user_unique_three, l_u,trainset_three,lamda,h,matrix_feature)
function [f,g] = list_update_u_l_three(u_l_sample, l_u,trainset_three,lamda,h,matrix_feature)
%deal f
u_l_sample=reshape(u_l_sample, h, matrix_feature);
u_l_trainset=u_l_sample(trainset_three(:,1),:);
l_u_trainset_one=l_u(trainset_three(:,3),:);
l_u_trainset_two=l_u(trainset_three(:,6),:);
l_u_trainset_three=l_u(trainset_three(:,9),:);
l_u_trainset_four=l_u(trainset_three(:,10),:);
u_l_sum_one=sum(u_l_trainset .* l_u_trainset_one,2);
u_l_sum_two=sum(u_l_trainset .* l_u_trainset_two,2);
u_l_sum_three=sum(u_l_trainset .* l_u_trainset_three,2);
u_l_sum_four=sum(u_l_trainset .* l_u_trainset_four,2);
result_first=log(exp(u_l_sum_one) + exp(u_l_sum_two) +exp(u_l_sum_three)+exp(u_l_sum_four))-u_l_sum_one;
result_second=log(exp(u_l_sum_two) +exp(u_l_sum_three)+exp(u_l_sum_four))-u_l_sum_two;
result_third=log(exp(u_l_sum_three)+exp(u_l_sum_four))-u_l_sum_three;
f=sum(result_first+result_second+result_third);
%deal g
g = zeros(size(u_l_sample));
%comment at 20151027. Replaced by arrayfun.
u_l_new_cell=arrayfun(@(i) list_update_u_l_three_gradient( l_u,u_l_sample,trainset_three,matrix_feature,lamda,i ),1:size(u_l_sample,1),'UniformOutput', false);
g=reshape(cell2mat(u_l_new_cell),size(u_l_sample'))';
g = g(:);
% g(g<0.00001)=0.00001;
% g(isnan(g))=100;
legal = sum(any(imag(g(:))))==0 & sum(isnan(g(:)))==0 & sum(isinf(g(:)))==0;
if ~legal
disp 'u_l_update: g is not legal!'
end
end %endfunction
|
github
|
abhijitbendale/OWR-master
|
OW_plotResults.m
|
.m
|
OWR-master/src/OW_plotResults.m
| 2,077 |
utf_8
|
a67559535bad8f1fb0de24dcf1c12fe2
|
function OW_plotResults(OSNCM, OSNNO, xx, yy)
% This script illustrates the a way to generate surface plots as shown
% in the paper [1]. You can replace performance numbers for OSNCM and
% OSNNO with whatever algorithm you prefer. A script that contains
% hard-coded performance numbers used in the paper are available in
% plots/plot_results_50.m and plots/lot_results_200.m. These two scripts
% should give a fair idea about how to use this function. I have
% ignored plotting of SVM/1vSet baselines in this script. However, it can
% be easily added by modifying this function
%
% [1] Abhijit Bendale, Terrance Boult "Towards Open World Recognition"
% Computer Vision and Pattern Recognition Conference (CVPR) 2015
%
% If you use this code, please cite the above paper [1].
%
% Author: Abhijit Bendale ([email protected])
% Vision and Security Technology Lab
% University of Colorado at Colorado Springs
% Code Available at: http://vast.uccs.edu/OpenWorld
%
% OSNCM = Performance Number for Open Set NCM Classifier (or any other algorithm)
% OSNNO = Performance Number for Open Set NNO Classifier (or any other algorithm)
% xx = # Unknown Testing Categories e.g. [0, 100, 200, 500]
% yy = # Vary Known Classes e.g. [200, 300, 400, 500]
%
figure;hold on
colormap([1 0 1;0 0 1]) %red and blue
surf(xx,yy, OSNCM', 'FaceColor','red','EdgeColor','black', 'MeshStyle', 'both', 'AlphaData', 0.5); %first color (red)
surf(xx,yy, OSNNO', 'FaceColor','green','EdgeColor','white', 'MeshStyle', 'both'); %second color(blue)
%line(xx,yymet, OSSVM','linewidth', 2, 'marker', 'o', 'color', 'c');
%line(xx,yymet, CSSVM','linewidth', 2, 'marker', '*', 'color','b');
alpha(0.55)
LEG = legend('NCM','NNO');
set(LEG,'FontSize',15);
xl = xlabel('# Unknown Testing Categories', 'Rotation', 13);
yl = ylabel('# Known Training Categories', 'Rotation', -16);
zl = zlabel('Top-1 Accuracy');
set(xl, 'FontSize',14)
set(yl, 'FontSize',14)
set(zl, 'FontSize',14)
grid on
camlight left;
lighting phong
view(139, 19)
set(gcf, 'PaperPosition', [0 0 7 5]);
set(gcf, 'PaperSize', [7 5]);
|
github
|
wme7/MultiGPU_AdvectionDiffusion-master
|
diffusion2dTest.m
|
.m
|
MultiGPU_AdvectionDiffusion-master/Matlab_Prototipes/DiffusionNd/diffusion2dTest.m
| 1,860 |
utf_8
|
5c2e8fdbee601257cce69d07c903db7c
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Solving 2-D heat equation with jacobi method
%
% u_t = D*(u_xx + u_yy) + s(u),
% for (x,y) \in [0,L]x[0,W] and S = s(u): source term
%
% coded by Manuel Diaz, manuel.ade'at'gmail.com
% National Health Research Institutes, NHRI, 2016.02.11
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [L1,Linf] = diffusion2dTest(nx,ny,tFinal,param)
%% Parameters
D = 1.0; % alpha
t0 = 0.1; % Initial time
L = 10; dx = L/(nx-1);
W = 10; dy = W/(ny-1);
Dx = D/dx^2; Dy = D/dy^2;
% Build Numerical Mesh
[x,y] = meshgrid(-L/2:dx:L/2,-W/2:dy:W/2);
% Add source term
sourcefun='dont'; % add source term
switch sourcefun
case 'add'; S = @(w) 0.1*w.^2;
case 'dont'; S = @(w) zeros(size(w));
end
% Build IC
d=1; u0 = exp( -(x.^2+y.^2)/(4*d*t0) );
% Build Exact solution
uE = t0/tFinal*exp( -(x.^2+y.^2)/(4*d*tFinal) );
% Set Initial time step
dt0 = 1/(2*D*(1/dx^2+1/dy^2))*param; % stability condition
%% Solver Loop
% load initial conditions
t=t0; it=0; u=u0; dt=dt0;
while t < tFinal
% RK stages
uo=u;
% 1st stage
dF=Laplace2d(u,nx,ny,Dx,Dy);
u=uo+dt*dF;
% 2nd Stage
dF=Laplace2d(u,nx,ny,Dx,Dy);
u=0.75*uo+0.25*(u+dt*dF);
% 3rd stage
dF=Laplace2d(u,nx,ny,Dx,Dy);
u=(uo+2*(u+dt*dF))/3;
% set BCs
u(1,:) = 0; u(nx,:) = 0;
u(:,1) = 0; u(:,ny) = 0;
% compute time step
if t+dt>tFinal, dt=tFinal-t; end;
% Update iteration counter and time
it=it+1; t=t+dt;
end
% Error norms
err = abs(uE(:)-u(:));
L1 = dx*dy*sum(abs(err)); fprintf('L_1 norm: %1.2e \n',L1);
L2 = (dx*dy*sum(err.^2))^0.5; fprintf('L_2 norm: %1.2e \n',L2);
Linf = norm(err,inf); fprintf('L_inf norm: %1.2e \n',Linf);
|
github
|
wme7/MultiGPU_AdvectionDiffusion-master
|
diffusion1dTest.m
|
.m
|
MultiGPU_AdvectionDiffusion-master/Matlab_Prototipes/DiffusionNd/diffusion1dTest.m
| 1,724 |
utf_8
|
5dceb46128b35b857dee840a8bf932f4
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Solving 2-D heat equation with jacobi method
%
% u_t = D*(u_xx + u_yy) + s(u),
% for (x,y) \in [0,L]x[0,W] and S = s(u): source term
%
% coded by Manuel Diaz, manuel.ade'at'gmail.com
% National Health Research Institutes, NHRI, 2016.02.11
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [L1,Linf] = diffusion1dTest(nx,tFinal,param)
%% Parameters
D = 1.0; % alpha
t0 = 0.1; % Initial time
L = 10; dx = L/(nx-1);
Dx = D/dx^2;
% Build Numerical Mesh
x = -L/2:dx:L/2;
% Add source term
sourcefun='dont'; % add source term
switch sourcefun
case 'add'; S = @(w) 0.1*w.^2;
case 'dont'; S = @(w) zeros(size(w));
end
% Build IC
d=1; u0 = exp( -x.^2/(4*d*t0) );
% Build Exact solution
uE = sqrt(t0/tFinal)*exp( -x.^2/(4*d*tFinal) );
% Set Initial time step
dt0 = 1/(2*D*(1/dx^2))*param; % stability condition
%% Solver Loop
% load initial conditions
t=t0; it=0; u=u0; dt=dt0;
while t < tFinal
% RK stages
uo=u;
% 1st stage
dF=Laplace1d(u,nx,Dx);
u=uo+dt*dF;
% 2nd Stage
dF=Laplace1d(u,nx,Dx);
u=0.75*uo+0.25*(u+dt*dF);
% 3rd stage
dF=Laplace1d(u,nx,Dx);
u=(uo+2*(u+dt*dF))/3;
% set BCs
u(1) = 0; u(nx) = 0;
% compute time step
if t+dt>tFinal, dt=tFinal-t; end;
% Update iteration counter and time
it=it+1; t=t+dt;
end
% Error norms
err = abs(uE(:)-u(:));
L1 = dx*sum(abs(err)); fprintf('L_1 norm: %1.2e \n',L1);
L2 = (dx*sum(err.^2))^0.5; fprintf('L_2 norm: %1.2e \n',L2);
Linf = norm(err,inf); fprintf('L_inf norm: %1.2e \n',Linf);
|
github
|
wme7/MultiGPU_AdvectionDiffusion-master
|
diffusion3dTest.m
|
.m
|
MultiGPU_AdvectionDiffusion-master/Matlab_Prototipes/DiffusionNd/diffusion3dTest.m
| 2,010 |
utf_8
|
370e428c010b3f77f0bbb480b6fa1455
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Solving 3-D heat equation with jacobi method
%
% u_t = D*(u_xx + u_yy + u_zz) + s(u),
% for (x,y,z) \in [0,L]x[0,W]x[0,H] and S = s(u): source term
%
% coded by Manuel Diaz, manuel.ade'at'gmail.com
% National Health Research Institutes, NHRI, 2016.02.11
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [L1,Linf] = diffusion3dTest(nx,ny,nz,tFinal,param)
%% Parameters
D = 1.0; % alpha
t0 = 0.1; % Initial time
L = 10; dx = L/(nx-1);
W = 10; dy = W/(ny-1);
H = 10; dz = H/(nz-1);
Dx = D/dx^2; Dy = D/dy^2; Dz = D/dz^2;
% Build Numerical Mesh
[x,y,z] = meshgrid(-L/2:dx:L/2,-W/2:dy:W/2,-H/2:dz:H/2);
% Add source term
sourcefun='dont'; % add source term
switch sourcefun
case 'add'; S = @(w) 0.1*w.^2;
case 'dont'; S = @(w) zeros(size(w));
end
% Build IC
d=1; u0 = exp( -(x.^2+y.^2+z.^2)/(4*d*t0) );
% Build Exact solution
uE = (t0/tFinal)^1.5*exp( -(x.^2+y.^2+z.^2)/(4*d*tFinal) );
% Set Initial time step
dt0 = 1/(2*D*(1/dx^2+1/dy^2+1/dz^2))*param; % stability condition
%% Solver Loop
% load initial conditions
t=t0; it=0; u=u0; dt=dt0;
while t < tFinal
% RK stages
uo=u;
% 1st stage
dF=Laplace3d(u,nx,ny,nz,Dx,Dy,Dz);
u=uo+dt*dF;
% 2nd Stage
dF=Laplace3d(u,nx,ny,nz,Dx,Dy,Dz);
u=0.75*uo+0.25*(u+dt*dF);
% 3rd stage
dF=Laplace3d(u,nx,ny,nz,Dx,Dy,Dz);
u=(uo+2*(u+dt*dF))/3;
% set BCs
u(1,:,:) = 0; u(nx,:,:) = 0;
u(:,1,:) = 0; u(:,ny,:) = 0;
u(:,:,1) = 0; u(:,:,nz) = 0;
% compute time step
if t+dt>tFinal, dt=tFinal-t; end;
% Update iteration counter and time
it=it+1; t=t+dt;
end
% Error norms
err = abs(uE(:)-u(:));
L1 = dx*dy*dz*sum(abs(err)); fprintf('L_1 norm: %1.2e \n',L1);
L2 = (dx*dy*dz*sum(err.^2))^0.5; fprintf('L_2 norm: %1.2e \n',L2);
Linf = norm(err,inf); fprintf('L_inf norm: %1.2e \n',Linf);
|
github
|
yhw-yhw/caffe_rtpose-master
|
classification_demo.m
|
.m
|
caffe_rtpose-master/matlab/demo/classification_demo.m
| 5,412 |
utf_8
|
8f46deabe6cde287c4759f3bc8b7f819
|
function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% Image classification demo using BVLC CaffeNet.
%
% IMPORTANT: before you run this demo, you should download BVLC CaffeNet
% from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html)
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
% im color image as uint8 HxWx3
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% scores 1000-dimensional ILSVRC score vector
% maxlabel the label of the highest score
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
%
% Usage:
% im = imread('../../examples/images/cat.jpg');
% scores = classification_demo(im, 1);
% [score, class] = max(scores);
% Five things to be aware of:
% caffe uses row-major order
% matlab uses column-major order
% caffe uses BGR color channel order
% matlab uses RGB color channel order
% images need to have the data mean subtracted
% Data coming in from matlab needs to be in the order
% [width, height, channels, images]
% where width is the fastest dimension.
% Here is the rough matlab for putting image data into the correct
% format in W x H x C with BGR channels:
% % permute channels from RGB to BGR
% im_data = im(:, :, [3, 2, 1]);
% % flip width and height to make width the fastest dimension
% im_data = permute(im_data, [2, 1, 3]);
% % convert from uint8 to single
% im_data = single(im_data);
% % reshape to a fixed size (e.g., 227x227).
% im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear');
% % subtract mean_data (already in W x H x C with BGR channels)
% im_data = im_data - mean_data;
% If you have multiple images, cat them with cat(4, ...)
% Add caffe/matlab to you Matlab search PATH to use matcaffe
if exist('../+caffe', 'dir')
addpath('..');
else
error('Please run this demo from caffe/matlab/demo');
end
% Set caffe mode
if exist('use_gpu', 'var') && use_gpu
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
% Initialize the network using BVLC CaffeNet for image classification
% Weights (parameter) file needs to be downloaded from Model Zoo.
model_dir = '../../models/bvlc_reference_caffenet/';
net_model = [model_dir 'deploy.prototxt'];
net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel'];
phase = 'test'; % run with phase test (so that dropout isn't applied)
if ~exist(net_weights, 'file')
error('Please download CaffeNet from Model Zoo before you run this demo');
end
% Initialize a network
net = caffe.Net(net_model, net_weights, phase);
if nargin < 1
% For demo purposes we will use the cat image
fprintf('using caffe/examples/images/cat.jpg as input image\n');
im = imread('../../examples/images/cat.jpg');
end
% prepare oversampled input
% input_data is Height x Width x Channel x Num
tic;
input_data = {prepare_image(im)};
toc;
% do forward pass to get scores
% scores are now Channels x Num, where Channels == 1000
tic;
% The net forward function. It takes in a cell array of N-D arrays
% (where N == 4 here) containing data of input blob(s) and outputs a cell
% array containing data from output blob(s)
scores = net.forward(input_data);
toc;
scores = scores{1};
scores = mean(scores, 2); % take average scores over 10 crops
[~, maxlabel] = max(scores);
% call caffe.reset_all() to reset caffe
caffe.reset_all();
% ------------------------------------------------------------------------
function crops_data = prepare_image(im)
% ------------------------------------------------------------------------
% caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that
% is already in W x H x C with BGR channels
d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;
IMAGE_DIM = 256;
CROPPED_DIM = 227;
% Convert an image returned by Matlab's imread to im_data in caffe's data
% format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); % flip width and height
im_data = single(im_data); % convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
% oversample (4 corners, center, and their x-axis flips)
crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single');
indices = [0 IMAGE_DIM-CROPPED_DIM] + 1;
n = 1;
for i = indices
for j = indices
crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :);
crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n);
n = n + 1;
end
end
center = floor(indices(2) / 2) + 1;
crops_data(:,:,:,5) = ...
im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:);
crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
|
github
|
zhxing001/DIP_exercise-master
|
vanherk.m
|
.m
|
DIP_exercise-master/matlab/defog_hekaiming/vanherk.m
| 4,665 |
utf_8
|
29b98c380fda32f85f9b5f3d68ad8529
|
function Y = vanherk(X,N,TYPE,varargin)
% VANHERK Fast max/min 1D filter
%
% Y = VANHERK(X,N,TYPE) performs the 1D max/min filtering of the row
% vector X using a N-length filter.
% The filtering type is defined by TYPE = 'max' or 'min'. This function
% uses the van Herk algorithm for min/max filters that demands only 3
% min/max calculations per element, independently of the filter size.
%
% If X is a 2D matrix, each row will be filtered separately.
%
% Y = VANHERK(...,'col') performs the filtering on the columns of X.
%
% Y = VANHERK(...,'shape') returns the subset of the filtering specified
% by 'shape' :
% 'full' - Returns the full filtering result,
% 'same' - (default) Returns the central filter area that is the
% same size as X,
% 'valid' - Returns only the area where no filter elements are outside
% the image.
%
% X can be uint8 or double. If X is uint8 the processing is quite faster, so
% dont't use X as double, unless it is really necessary.
%
% Initialization
[direc, shape] = parse_inputs(varargin{:});
if strcmp(direc,'col')
X = X';
end
if strcmp(TYPE,'max')
maxfilt = 1;
elseif strcmp(TYPE,'min')
maxfilt = 0;
else
error([ 'TYPE must be ' char(39) 'max' char(39) ' or ' char(39) 'min' char(39) '.'])
end
% Correcting X size
fixsize = 0;
addel = 0;
if mod(size(X,2),N) ~= 0
fixsize = 1;
addel = N-mod(size(X,2),N);
if maxfilt
f = [ X zeros(size(X,1), addel) ];
else
f = [X repmat(X(:,end),1,addel)];
end
else
f = X;
end
lf = size(f,2);
lx = size(X,2);
clear X
% Declaring aux. mat.
g = f;
h = g;
% Filling g & h (aux. mat.)
ig = 1:N:size(f,2);
ih = ig + N - 1;
g(:,ig) = f(:,ig);
h(:,ih) = f(:,ih);
if maxfilt
for i = 2 : N
igold = ig;
ihold = ih;
ig = ig + 1;
ih = ih - 1;
g(:,ig) = max(f(:,ig),g(:,igold));
h(:,ih) = max(f(:,ih),h(:,ihold));
end
else
for i = 2 : N
igold = ig;
ihold = ih;
ig = ig + 1;
ih = ih - 1;
g(:,ig) = min(f(:,ig),g(:,igold));
h(:,ih) = min(f(:,ih),h(:,ihold));
end
end
clear f
% Comparing g & h
if strcmp(shape,'full')
ig = [ N : 1 : lf ];
ih = [ 1 : 1 : lf-N+1 ];
if fixsize
if maxfilt
Y = [ g(:,1:N-1) max(g(:,ig), h(:,ih)) h(:,end-N+2:end-addel) ];
else
Y = [ g(:,1:N-1) min(g(:,ig), h(:,ih)) h(:,end-N+2:end-addel) ];
end
else
if maxfilt
Y = [ g(:,1:N-1) max(g(:,ig), h(:,ih)) h(:,end-N+2:end) ];
else
Y = [ g(:,1:N-1) min(g(:,ig), h(:,ih)) h(:,end-N+2:end) ];
end
end
elseif strcmp(shape,'same')
if fixsize
if addel > (N-1)/2
disp('hoi')
ig = [ N : 1 : lf - addel + floor((N-1)/2) ];
ih = [ 1 : 1 : lf-N+1 - addel + floor((N-1)/2)];
if maxfilt
Y = [ g(:,1+ceil((N-1)/2):N-1) max(g(:,ig), h(:,ih)) ];
else
Y = [ g(:,1+ceil((N-1)/2):N-1) min(g(:,ig), h(:,ih)) ];
end
else
ig = [ N : 1 : lf ];
ih = [ 1 : 1 : lf-N+1 ];
if maxfilt
Y = [ g(:,1+ceil((N-1)/2):N-1) max(g(:,ig), h(:,ih)) h(:,lf-N+2:lf-N+1+floor((N-1)/2)-addel) ];
else
Y = [ g(:,1+ceil((N-1)/2):N-1) min(g(:,ig), h(:,ih)) h(:,lf-N+2:lf-N+1+floor((N-1)/2)-addel) ];
end
end
else % not fixsize (addel=0, lf=lx)
ig = [ N : 1 : lx ];
ih = [ 1 : 1 : lx-N+1 ];
if maxfilt
Y = [ g(:,N-ceil((N-1)/2):N-1) max( g(:,ig), h(:,ih) ) h(:,lx-N+2:lx-N+1+floor((N-1)/2)) ];
else
Y = [ g(:,N-ceil((N-1)/2):N-1) min( g(:,ig), h(:,ih) ) h(:,lx-N+2:lx-N+1+floor((N-1)/2)) ];
end
end
elseif strcmp(shape,'valid')
ig = [ N : 1 : lx];
ih = [ 1 : 1: lx-N+1];
if maxfilt
Y = [ max( g(:,ig), h(:,ih) ) ];
else
Y = [ min( g(:,ig), h(:,ih) ) ];
end
end
if strcmp(direc,'col')
Y = Y';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [direc, shape] = parse_inputs(varargin)
direc = 'lin';
shape = 'same';
flag = [0 0]; % [dir shape]
for i = 1 : nargin
t = varargin{i};
if strcmp(t,'col') & flag(1) == 0
direc = 'col';
flag(1) = 1;
elseif strcmp(t,'full') & flag(2) == 0
shape = 'full';
flag(2) = 1;
elseif strcmp(t,'same') & flag(2) == 0
shape = 'same';
flag(2) = 1;
elseif strcmp(t,'valid') & flag(2) == 0
shape = 'valid';
flag(2) = 1;
else
error(['Too many / Unkown parameter : ' t ])
end
end
|
github
|
zhxing001/DIP_exercise-master
|
maxfilt2.m
|
.m
|
DIP_exercise-master/matlab/defog_hekaiming/maxfilt2.m
| 1,784 |
utf_8
|
30164e098eb4173079a7fe2779af8e60
|
function Y = maxfilt2(X,varargin)
% MAXFILT2 Two-dimensional max filter
%
% Y = MAXFILT2(X,[M N]) performs two-dimensional maximum
% filtering on the image X using an M-by-N window. The result
% Y contains the maximun value in the M-by-N neighborhood around
% each pixel in the original image.
% This function uses the van Herk algorithm for max filters.
%
% Y = MAXFILT2(X,M) is the same as Y = MAXFILT2(X,[M M])
%
% Y = MAXFILT2(X) uses a 3-by-3 neighborhood.
%
% Y = MAXFILT2(..., 'shape') returns a subsection of the 2D
% filtering specified by 'shape' :
% 'full' - Returns the full filtering result,
% 'same' - (default) Returns the central filter area that is the
% same size as X,
% 'valid' - Returns only the area where no filter elements are outside
% the image.
%
% See also : MINFILT2, VANHERK
%
% Initialization
[S, shape] = parse_inputs(varargin{:});
% filtering
Y = vanherk(X,S(1),'max',shape);
Y = vanherk(Y,S(2),'max','col',shape);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [S, shape] = parse_inputs(varargin)
shape = 'same';
flag = [0 0]; % size shape
for i = 1 : nargin
t = varargin{i};
if strcmp(t,'full') & flag(2) == 0
shape = 'full';
flag(2) = 1;
elseif strcmp(t,'same') & flag(2) == 0
shape = 'same';
flag(2) = 1;
elseif strcmp(t,'valid') & flag(2) == 0
shape = 'valid';
flag(2) = 1;
elseif flag(1) == 0
S = t;
flag(1) = 1;
else
error(['Too many / Unkown parameter : ' t ])
end
end
if flag(1) == 0
S = [3 3];
end
if length(S) == 1;
S(2) = S(1);
end
if length(S) ~= 2
error('Wrong window size parameter.')
end
|
github
|
zhxing001/DIP_exercise-master
|
minfilt2.m
|
.m
|
DIP_exercise-master/matlab/defog_hekaiming/minfilt2.m
| 1,784 |
utf_8
|
0100bdead43e5b8aad8f8e1e40699621
|
function Y = minfilt2(X,varargin)
% MINFILT2 Two-dimensional min filter
%
% Y = MINFILT2(X,[M N]) performs two-dimensional minimum
% filtering on the image X using an M-by-N window. The result
% Y contains the minimun value in the M-by-N neighborhood around
% each pixel in the original image.
% This function uses the van Herk algorithm for min filters.
%
% Y = MINFILT2(X,M) is the same as Y = MINFILT2(X,[M M])
%
% Y = MINFILT2(X) uses a 3-by-3 neighborhood.
%
% Y = MINFILT2(..., 'shape') returns a subsection of the 2D
% filtering specified by 'shape' :
% 'full' - Returns the full filtering result,
% 'same' - (default) Returns the central filter area that is the
% same size as X,
% 'valid' - Returns only the area where no filter elements are outside
% the image.
%
% See also : MAXFILT2, VANHERK
%
% Initialization
[S, shape] = parse_inputs(varargin{:});
% filtering
Y = vanherk(X,S(1),'min',shape);
Y = vanherk(Y,S(2),'min','col',shape);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [S, shape] = parse_inputs(varargin)
shape = 'same';
flag = [0 0]; % size shape
for i = 1 : nargin
t = varargin{i};
if strcmp(t,'full') & flag(2) == 0
shape = 'full';
flag(2) = 1;
elseif strcmp(t,'same') & flag(2) == 0
shape = 'same';
flag(2) = 1;
elseif strcmp(t,'valid') & flag(2) == 0
shape = 'valid';
flag(2) = 1;
elseif flag(1) == 0
S = t;
flag(1) = 1;
else
error(['Too many / Unkown parameter : ' t ])
end
end
if flag(1) == 0
S = [3 3];
end
if length(S) == 1;
S(2) = S(1);
end
if length(S) ~= 2
error('Wrong window size parameter.')
end
|
github
|
zhxing001/DIP_exercise-master
|
buildWpyr.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/buildWpyr.m
| 2,605 |
utf_8
|
16663cdfba931a8f5e2ae6a4477253d0
|
% [PYR, INDICES] = buildWpyr(IM, HEIGHT, FILT, EDGES)
%
% Construct a separable orthonormal QMF/wavelet pyramid on matrix (or vector) IM.
%
% HEIGHT (optional) specifies the number of pyramid levels to build. Default
% is maxPyrHt(IM,FILT). You can also specify 'auto' to use this value.
%
% FILT (optional) can be a string naming a standard filter (see
% namedFilter), or a vector which will be used for (separable)
% convolution. Filter can be of even or odd length, but should be symmetric.
% Default = 'qmf9'. EDGES specifies edge-handling, and
% defaults to 'reflect1' (see corrDn).
%
% PYR is a vector containing the N pyramid subbands, ordered from fine
% to coarse. INDICES is an Nx2 matrix containing the sizes of
% each subband. This is compatible with the MatLab Wavelet toolbox.
% Eero Simoncelli, 6/96.
function [pyr,pind] = buildWpyr(im, ht, filt, edges)
if (nargin < 1)
error('First argument (IM) is required');
end
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('filt') ~= 1)
filt = 'qmf9';
end
if (exist('edges') ~= 1)
edges= 'reflect1';
end
if isstr(filt)
filt = namedFilter(filt);
end
if ( (size(filt,1) > 1) & (size(filt,2) > 1) )
error('FILT should be a 1D filter (i.e., a vector)');
else
filt = filt(:);
end
hfilt = modulateFlip(filt);
% Stagger sampling if filter is odd-length:
if (mod(size(filt,1),2) == 0)
stag = 2;
else
stag = 1;
end
im_sz = size(im);
max_ht = maxPyrHt(im_sz, size(filt,1));
if ( (exist('ht') ~= 1) | (ht == 'auto') )
ht = max_ht;
else
if (ht > max_ht)
error(sprintf('Cannot build pyramid higher than %d levels.',max_ht));
end
end
if (ht <= 0)
pyr = im(:);
pind = im_sz;
else
if (im_sz(2) == 1)
lolo = corrDn(im, filt, edges, [2 1], [stag 1]);
hihi = corrDn(im, hfilt, edges, [2 1], [2 1]);
elseif (im_sz(1) == 1)
lolo = corrDn(im, filt', edges, [1 2], [1 stag]);
hihi = corrDn(im, hfilt', edges, [1 2], [1 2]);
else
lo = corrDn(im, filt, edges, [2 1], [stag 1]);
hi = corrDn(im, hfilt, edges, [2 1], [2 1]);
lolo = corrDn(lo, filt', edges, [1 2], [1 stag]);
lohi = corrDn(hi, filt', edges, [1 2], [1 stag]); % horizontal
hilo = corrDn(lo, hfilt', edges, [1 2], [1 2]); % vertical
hihi = corrDn(hi, hfilt', edges, [1 2], [1 2]); % diagonal
end
[npyr,nind] = buildWpyr(lolo, ht-1, filt, edges);
if ((im_sz(1) == 1) | (im_sz(2) == 1))
pyr = [hihi(:); npyr];
pind = [size(hihi); nind];
else
pyr = [lohi(:); hilo(:); hihi(:); npyr];
pind = [size(lohi); size(hilo); size(hihi); nind];
end
end
|
github
|
zhxing001/DIP_exercise-master
|
pyrBand.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/pyrBand.m
| 395 |
utf_8
|
39c1e3772426a1362119d302d9767a24
|
% RES = pyrBand(PYR, INDICES, BAND_NUM)
%
% Access a subband from a pyramid (gaussian, laplacian, QMF/wavelet,
% or steerable). Subbands are numbered consecutively, from finest
% (highest spatial frequency) to coarsest (lowest spatial frequency).
% Eero Simoncelli, 6/96.
function res = pyrBand(pyr, pind, band)
res = reshape( pyr(pyrBandIndices(pind,band)), pind(band,1), pind(band,2) );
|
github
|
zhxing001/DIP_exercise-master
|
buildFullSFpyr2.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/buildFullSFpyr2.m
| 3,031 |
utf_8
|
4a1191e10f08e0d219040bdc7864a575
|
% [PYR, INDICES, STEERMTX, HARMONICS] = buildFullSFpyr2(IM, HEIGHT, ORDER, TWIDTH)
%
% Construct a steerable pyramid on matrix IM, in the Fourier domain.
% Unlike the standard transform, subdivides the highpass band into
% orientations.
function [pyr,pind,steermtx,harmonics] = buildFullSFpyr2(im, ht, order, twidth)
%-----------------------------------------------------------------
%% DEFAULTS:
max_ht = floor(log2(min(size(im)))+1);
if (exist('ht') ~= 1)
ht = max_ht;
else
if (ht > max_ht)
error(sprintf('Cannot build pyramid higher than %d levels.',max_ht));
end
end
if (exist('order') ~= 1)
order = 3;
elseif ((order > 15) | (order < 0))
fprintf(1,'Warning: ORDER must be an integer in the range [0,15]. Truncating.\n');
order = min(max(order,0),15);
else
order = round(order);
end
nbands = order+1;
if (exist('twidth') ~= 1)
twidth = 1;
elseif (twidth <= 0)
fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n');
twidth = 1;
end
%-----------------------------------------------------------------
%% Steering stuff:
if (mod((nbands),2) == 0)
harmonics = [0:(nbands/2)-1]'*2 + 1;
else
harmonics = [0:(nbands-1)/2]'*2;
end
steermtx = steer2HarmMtx(harmonics, pi*[0:nbands-1]/nbands, 'even');
%-----------------------------------------------------------------
dims = size(im);
ctr = ceil((dims+0.5)/2);
[xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ...
([1:dims(1)]-ctr(1))./(dims(1)/2) );
angle = atan2(yramp,xramp);
log_rad = sqrt(xramp.^2 + yramp.^2);
log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1);
log_rad = log2(log_rad);
%% Radial transition function (a raised cosine in log-frequency):
[Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]);
Yrcos = sqrt(Yrcos);
YIrcos = sqrt(1.0 - Yrcos.^2);
lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
imdft = fftshift(fft2(im));
lo0dft = imdft .* lo0mask;
[pyr,pind] = buildSFpyrLevs(lo0dft, log_rad, Xrcos, Yrcos, angle, ht, nbands);
%% Split the highpass band into orientations
hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
lutsize = 1024;
Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi]
order = nbands-1;
const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order));
Ycosn = sqrt(const) * (cos(Xcosn)).^order;
bands = zeros(prod(size(imdft)), nbands);
bind = zeros(nbands,2);
for b = 1:nbands
anglemask = pointOp(angle, Ycosn, Xcosn(1)+pi*(b-1)/nbands, Xcosn(2)-Xcosn(1));
Mask = ((-sqrt(-1))^(nbands-1))*anglemask.*hi0mask;
% make real the contents in the HF cross (to avoid information loss in these freqs.)
% It distributes evenly these contents among the nbands orientations
Mask(1,:) = ones(1,size(im,2))/sqrt(nbands);
Mask(2:size(im,1),1) = ones(size(im,1)-1,1)/sqrt(nbands);
banddft = imdft .* Mask;
band = real(ifft2(fftshift(banddft)));
bands(:,b) = real(band(:));
bind(b,:) = size(band);
end
pyr = [bands(:); pyr];
pind = [bind; pind];
pind = [ [0 0]; pind]; %% Dummy highpass
|
github
|
zhxing001/DIP_exercise-master
|
var2.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/var2.m
| 376 |
utf_8
|
ecdc1380cd3f7549b769d86bc0a25e12
|
% V = VAR2(MTX,MEAN)
%
% Sample variance of a matrix.
% Passing MEAN (optional) makes the calculation faster.
function res = var2(mtx, mn)
if (exist('mn') ~= 1)
mn = mean2(mtx);
end
if (isreal(mtx))
res = sum(sum(abs(mtx-mn).^2)) / (prod(size(mtx)) - 1);
else
res = sum(sum(real(mtx-mn).^2)) + i*sum(sum(imag(mtx-mn).^2));
res = res / (prod(size(mtx)) - 1);
end
|
github
|
zhxing001/DIP_exercise-master
|
reconSFpyrLevs.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/reconSFpyrLevs.m
| 1,945 |
utf_8
|
11703edfa70ae1e00ba5819c7497efd3
|
% RESDFT = reconSFpyrLevs(PYR,INDICES,LOGRAD,XRCOS,YRCOS,ANGLE,NBANDS,LEVS,BANDS)
%
% Recursive function for reconstructing levels of a steerable pyramid
% representation. This is called by reconSFpyr, and is not usually
% called directly.
% Eero Simoncelli, 5/97.
function resdft = reconSFpyrLevs(pyr,pind,log_rad,Xrcos,Yrcos,angle,nbands,levs,bands);
lo_ind = nbands+1;
dims = pind(1,:);
ctr = ceil((dims+0.5)/2);
log_rad = log_rad + 1;
if any(levs > 1)
lodims = ceil((dims-0.5)/2);
loctr = ceil((lodims+0.5)/2);
lostart = ctr-loctr+1;
loend = lostart+lodims-1;
nlog_rad = log_rad(lostart(1):loend(1),lostart(2):loend(2));
nangle = angle(lostart(1):loend(1),lostart(2):loend(2));
if (size(pind,1) > lo_ind)
nresdft = reconSFpyrLevs( pyr(1+sum(prod(pind(1:lo_ind-1,:)')):size(pyr,1)),...
pind(lo_ind:size(pind,1),:), ...
nlog_rad, Xrcos, Yrcos, nangle, nbands,levs-1, bands);
else
nresdft = fftshift(fft2(pyrBand(pyr,pind,lo_ind)));
end
YIrcos = sqrt(abs(1.0 - Yrcos.^2));
lomask = pointOp(nlog_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
resdft = zeros(dims);
resdft(lostart(1):loend(1),lostart(2):loend(2)) = nresdft .* lomask;
else
resdft = zeros(dims);
end
if any(levs == 1)
lutsize = 1024;
Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi]
order = nbands-1;
%% divide by sqrt(sum_(n=0)^(N-1) cos(pi*n/N)^(2(N-1)) )
const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order));
Ycosn = sqrt(const) * (cos(Xcosn)).^order;
himask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1),0);
ind = 1;
for b = 1:nbands
if any(bands == b)
anglemask = pointOp(angle,Ycosn,Xcosn(1)+pi*(b-1)/nbands,Xcosn(2)-Xcosn(1));
band = reshape(pyr(ind:ind+prod(dims)-1), dims(1), dims(2));
banddft = fftshift(fft2(band));
resdft = resdft + (i)^(nbands-1) * banddft.*anglemask.*himask;
end
ind = ind + prod(dims);
end
end
|
github
|
zhxing001/DIP_exercise-master
|
rcosFn.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/rcosFn.m
| 1,122 |
utf_8
|
36283e0a34f1baf7ea2c5e6cb23aab89
|
% [X, Y] = rcosFn(WIDTH, POSITION, VALUES)
%
% Return a lookup table (suitable for use by INTERP1)
% containing a "raised cosine" soft threshold function:
%
% Y = VALUES(1) + (VALUES(2)-VALUES(1)) *
% cos^2( PI/2 * (X - POSITION + WIDTH)/WIDTH )
%
% WIDTH is the width of the region over which the transition occurs
% (default = 1). POSITION is the location of the center of the
% threshold (default = 0). VALUES (default = [0,1]) specifies the
% values to the left and right of the transition.
% Eero Simoncelli, 7/96.
function [X, Y] = rcosFn(width,position,values)
%------------------------------------------------------------
% OPTIONAL ARGS:
if (exist('width') ~= 1)
width = 1;
end
if (exist('position') ~= 1)
position = 0;
end
if (exist('values') ~= 1)
values = [0,1];
end
%------------------------------------------------------------
sz = 256; %% arbitrary!
X = pi * [-sz-1:1] / (2*sz);
Y = values(1) + (values(2)-values(1)) * cos(X).^2;
% Make sure end values are repeated, for extrapolation...
Y(1) = Y(2);
Y(sz+3) = Y(sz+2);
X = position + (2*width/pi) * (X + pi/4);
|
github
|
zhxing001/DIP_exercise-master
|
vector.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/vector.m
| 231 |
utf_8
|
a3c1b483d801607eaef848381d85f189
|
% [VEC] = vector(MTX)
%
% Pack elements of MTX into a column vector. Same as VEC = MTX(:)
% Previously named "vectorize" (changed to avoid overlap with Matlab's
% "vectorize" function).
function vec = vector(mtx)
vec = mtx(:);
|
github
|
zhxing001/DIP_exercise-master
|
showIm.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/showIm.m
| 6,111 |
utf_8
|
15fbbf55e2fd54e3f48ca936e23c3f32
|
% RANGE = showIm (MATRIX, RANGE, ZOOM, LABEL, NSHADES )
%
% Display a MatLab MATRIX as a grayscale image in the current figure,
% inside the current axes. If MATRIX is complex, the real and imaginary
% parts are shown side-by-side, with the same grayscale mapping.
%
% If MATRIX is a string, it should be the name of a variable bound to a
% MATRIX in the base (global) environment. This matrix is displayed as an
% image, with the title set to the string.
%
% RANGE (optional) is a 2-vector specifying the values that map to
% black and white, respectively. Passing a value of 'auto' (default)
% sets RANGE=[min,max] (as in MatLab's imagesc). 'auto2' sets
% RANGE=[mean-2*stdev, mean+2*stdev]. 'auto3' sets
% RANGE=[p1-(p2-p1)/8, p2+(p2-p1)/8], where p1 is the 10th percentile
% value of the sorted MATRIX samples, and p2 is the 90th percentile
% value.
%
% ZOOM specifies the number of matrix samples per screen pixel. It
% will be rounded to an integer, or 1 divided by an integer. A value
% of 'same' or 'auto' (default) causes the zoom value to be chosen
% automatically to fit the image into the current axes. A value of
% 'full' fills the axis region (leaving no room for labels). See
% pixelAxes.m.
%
% If LABEL (optional, default = 1, unless zoom='full') is non-zero, the range
% of values that are mapped into the gray colormap and the dimensions
% (size) of the matrix and zoom factor are printed below the image. If label
% is a string, it is used as a title.
%
% NSHADES (optional) specifies the number of gray shades, and defaults
% to the size of the current colormap.
% Eero Simoncelli, 6/96.
%%TODO: should use "newplot"
function range = showIm( im, range, zoom, label, nshades );
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (nargin < 1)
error('Requires at least one input argument.');
end
MLv = version;
if isstr(im)
if (strcmp(MLv(1),'4'))
error('Cannot pass string arg for MATRIX in MatLab version 4.x');
end
label = im;
im = evalin('base',im);
end
if (exist('range') ~= 1)
range = 'auto1';
end
if (exist('nshades') ~= 1)
nshades = size(colormap,1);
end
nshades = max( nshades, 2 );
if (exist('zoom') ~= 1)
zoom = 'auto';
end
if (exist('label') ~= 1)
if strcmp(zoom,'full')
label = 0; % no labeling
else
label = 1; % just print grayrange & dims
end
end
%------------------------------------------------------------
%% Automatic range calculation:
if (strcmp(range,'auto1') | strcmp(range,'auto'))
if isreal(im)
[mn,mx] = range2(im);
else
[mn1,mx1] = range2(real(im));
[mn2,mx2] = range2(imag(im));
mn = min(mn1,mn2);
mx = max(mx1,mx2);
end
if any(size(im)==1)
pad = (mx-mn)/12; % MAGIC NUMBER: graph padding
range = [mn-pad, mx+pad];
else
range = [mn,mx];
end
elseif strcmp(range,'auto2')
if isreal(im)
stdev = sqrt(var2(im));
av = mean2(im);
else
stdev = sqrt((var2(real(im)) + var2(imag(im)))/2);
av = (mean2(real(im)) + mean2(imag(im)))/2;
end
range = [av-2*stdev,av+2*stdev]; % MAGIC NUMBER: 2 stdevs
elseif strcmp(range, 'auto3')
percentile = 0.1; % MAGIC NUMBER: 0<p<0.5
[N,X] = histo(im);
binsz = X(2)-X(1);
N = N+1e-10; % Ensure cumsum will be monotonic for call to interp1
cumN = [0, cumsum(N)]/sum(N);
cumX = [X(1)-binsz, X] + (binsz/2);
ctrRange = interp1(cumN,cumX, [percentile, 1-percentile]);
range = mean(ctrRange) + (ctrRange-mean(ctrRange))/(1-2*percentile);
elseif isstr(range)
error(sprintf('Bad RANGE argument: %s',range))
end
if ((range(2) - range(1)) <= eps)
range(1) = range(1) - 0.5;
range(2) = range(2) + 0.5;
end
if isreal(im)
factor=1;
else
factor = 1+sqrt(-1);
end
xlbl_offset = 0; % default value
if (~any(size(im)==1))
%% MatLab's "image" rounds when mapping to the colormap, so we compute
%% (im-r1)*(nshades-1)/(r2-r1) + 1.5
mult = ((nshades-1) / (range(2)-range(1)));
d_im = (mult * im) + factor*(1.5 - range(1)*mult);
end
if isreal(im)
if (any(size(im)==1))
hh = plot( im);
axis([1, prod(size(im)), range]);
else
hh = image( d_im );
axis('off');
zoom = pixelAxes(size(d_im),zoom);
end
else
if (any(size(im)==1))
subplot(2,1,1);
hh = plot(real(im));
axis([1, prod(size(im)), range]);
subplot(2,1,2);
hh = plot(imag(im));
axis([1, prod(size(im)), range]);
else
subplot(1,2,1);
hh = image(real(d_im));
axis('off'); zoom = pixelAxes(size(d_im),zoom);
ax = gca; orig_units = get(ax,'Units');
set(ax,'Units','points');
pos1 = get(ax,'Position');
set(ax,'Units',orig_units);
subplot(1,2,2);
hh = image(imag(d_im));
axis('off'); zoom = pixelAxes(size(d_im),zoom);
ax = gca; orig_units = get(ax,'Units');
set(ax,'Units','points');
pos2 = get(ax,'Position');
set(ax,'Units',orig_units);
xlbl_offset = (pos1(1)-pos2(1))/2;
end
end
if ~any(size(im)==1)
colormap(gray(nshades));
end
if ((label ~= 0))
if isstr(label)
title(label);
h = get(gca,'Title');
orig_units = get(h,'Units');
set(h,'Units','points');
pos = get(h,'Position');
pos(1:2) = pos(1:2) + [xlbl_offset, -3]; % MAGIC NUMBER: y pixel offset
set(h,'Position',pos);
set(h,'Units',orig_units);
end
if (~any(size(im)==1))
if (zoom > 1)
zformat = sprintf('* %d',round(zoom));
else
zformat = sprintf('/ %d',round(1/zoom));
end
if isreal(im)
format=[' Range: [%.3g, %.3g] \n Dims: [%d, %d] ', zformat];
else
format=['Range: [%.3g, %.3g] ---- Dims: [%d, %d]', zformat];
end
xlabel(sprintf(format, range(1), range(2), size(im,1), size(im,2)));
h = get(gca,'Xlabel');
set(h,'FontSize', 9); % MAGIC NUMBER: font size!!!
orig_units = get(h,'Units');
set(h,'Units','points');
pos = get(h,'Position');
pos(1:2) = pos(1:2) + [xlbl_offset, 10]; % MAGIC NUMBER: y offset in points
set(h,'Position',pos);
set(h,'Units',orig_units);
set(h,'Visible','on'); % axis('image') turned the xlabel off...
end
end
return;
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.