plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
zhxing001/DIP_exercise-master
|
upConv.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/upConv.m
| 2,670 |
utf_8
|
bb548d24157a068adee954f36ad04fbb
|
% RES = upConv(IM, FILT, EDGES, STEP, START, STOP, RES)
%
% Upsample matrix IM, followed by convolution with matrix FILT. These
% arguments should be 1D or 2D matrices, and IM must be larger (in
% both dimensions) than FILT. The origin of filt
% is assumed to be floor(size(filt)/2)+1.
%
% EDGES is a string determining boundary handling:
% 'circular' - Circular convolution
% 'reflect1' - Reflect about the edge pixels
% 'reflect2' - Reflect, doubling the edge pixels
% 'repeat' - Repeat the edge pixels
% 'zero' - Assume values of zero outside image boundary
% 'extend' - Reflect and invert
% 'dont-compute' - Zero output when filter overhangs OUTPUT boundaries
%
% Upsampling factors are determined by STEP (optional, default=[1 1]),
% a 2-vector [y,x].
%
% The window over which the convolution occurs is specfied by START
% (optional, default=[1,1], and STOP (optional, default =
% step .* (size(IM) + floor((start-1)./step))).
%
% RES is an optional result matrix. The convolution result will be
% destructively added into this matrix. If this argument is passed, the
% result matrix will not be returned. DO NOT USE THIS ARGUMENT IF
% YOU DO NOT UNDERSTAND WHAT THIS MEANS!!
%
% NOTE: this operation corresponds to multiplication of a signal
% vector by a matrix whose columns contain copies of the time-reversed
% (or space-reversed) FILT shifted by multiples of STEP. See corrDn.m
% for the operation corresponding to the transpose of this matrix.
% Eero Simoncelli, 6/96. revised 2/97.
function result = upConv(im,filt,edges,step,start,stop,res)
%% THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD)
fprintf(1,'Warning: You should compile the MEX code for "upConv", found in the MEX subdirectory. It is much faster.\n');
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('edges') == 1)
if (strcmp(edges,'reflect1') ~= 1)
warning('Using REFLECT1 edge-handling (use MEX code for other options).');
end
end
if (exist('step') ~= 1)
step = [1,1];
end
if (exist('start') ~= 1)
start = [1,1];
end
% A multiple of step
if (exist('stop') ~= 1)
stop = step .* (floor((start-ones(size(start)))./step)+size(im))
end
if ( ceil((stop(1)+1-start(1)) / step(1)) ~= size(im,1) )
error('Bad Y result dimension');
end
if ( ceil((stop(2)+1-start(2)) / step(2)) ~= size(im,2) )
error('Bad X result dimension');
end
if (exist('res') ~= 1)
res = zeros(stop-start+1);
end
%------------------------------------------------------------
tmp = zeros(size(res));
tmp(start(1):step(1):stop(1),start(2):step(2):stop(2)) = im;
result = rconv2(tmp,filt) + res;
|
github
|
zhxing001/DIP_exercise-master
|
range2.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/range2.m
| 459 |
utf_8
|
b5e91506fc6b3e316a8e1671b5af7467
|
% [MIN, MAX] = range2(MTX)
%
% Compute minimum and maximum values of MTX, returning them as a 2-vector.
% Eero Simoncelli, 3/97.
function [mn, mx] = range2(mtx)
%% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD)
fprintf(1,'WARNING: You should compile the MEX code for "range2", found in the MEX subdirectory. It is MUCH faster.\n');
if (~isreal(mtx))
error('MTX must be real-valued');
end
mn = min(min(mtx));
mx = max(max(mtx));
|
github
|
zhxing001/DIP_exercise-master
|
reconFullSFpyr2.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/reconFullSFpyr2.m
| 3,257 |
utf_8
|
447f5204894b159fbb4ea4de2dccf877
|
% RES = reconFullSFpyr2(PYR, INDICES, LEVS, BANDS, TWIDTH)
%
% Reconstruct image from its steerable pyramid representation, in the Fourier
% domain, as created by buildSFpyr.
% Unlike the standard transform, subdivides the highpass band into
% orientations.
function res = reconFullSFpyr2(pyr, pind, levs, bands, twidth)
%%------------------------------------------------------------
%% DEFAULTS:
if (exist('levs') ~= 1)
levs = 'all';
end
if (exist('bands') ~= 1)
bands = 'all';
end
if (exist('twidth') ~= 1)
twidth = 1;
elseif (twidth <= 0)
fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n');
twidth = 1;
end
%%------------------------------------------------------------
nbands = spyrNumBands(pind)/2;
maxLev = 2+spyrHt(pind(nbands+1:size(pind,1),:));
if strcmp(levs,'all')
levs = [0:maxLev]';
else
if (any(levs > maxLev) | any(levs < 0))
error(sprintf('Level numbers must be in the range [0, %d].', maxLev));
end
levs = levs(:);
end
if strcmp(bands,'all')
bands = [1:nbands]';
else
if (any(bands < 1) | any(bands > nbands))
error(sprintf('Band numbers must be in the range [1,3].', nbands));
end
bands = bands(:);
end
%----------------------------------------------------------------------
dims = pind(2,:);
ctr = ceil((dims+0.5)/2);
[xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ...
([1:dims(1)]-ctr(1))./(dims(1)/2) );
angle = atan2(yramp,xramp);
log_rad = sqrt(xramp.^2 + yramp.^2);
log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1);
log_rad = log2(log_rad);
%% Radial transition function (a raised cosine in log-frequency):
[Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]);
Yrcos = sqrt(Yrcos);
YIrcos = sqrt(1.0 - Yrcos.^2);
if (size(pind,1) == 2)
if (any(levs==1))
resdft = fftshift(fft2(pyrBand(pyr,pind,2)));
else
resdft = zeros(pind(2,:));
end
else
resdft = reconSFpyrLevs(pyr(1+sum(prod(pind(1:nbands+1,:)')):size(pyr,1)), ...
pind(nbands+2:size(pind,1),:), ...
log_rad, Xrcos, Yrcos, angle, nbands, levs, bands);
end
lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
resdft = resdft .* lo0mask;
%% Oriented highpass bands:
if any(levs == 0)
lutsize = 1024;
Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi]
order = nbands-1;
%% divide by sqrt(sum_(n=0)^(N-1) cos(pi*n/N)^(2(N-1)) )
const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order));
Ycosn = sqrt(const) * (cos(Xcosn)).^order;
hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
ind = 1;
for b = 1:nbands
if any(bands == b)
anglemask = pointOp(angle,Ycosn,Xcosn(1)+pi*(b-1)/nbands,Xcosn(2)-Xcosn(1));
band = reshape(pyr(ind:ind+prod(dims)-1), dims(1), dims(2));
banddft = fftshift(fft2(band));
% make real the contents in the HF cross (to avoid information loss in these freqs.)
% It distributes evenly these contents among the nbands orientations
Mask = (sqrt(-1))^(nbands-1) * anglemask.*hi0mask;
Mask(1,:) = ones(1,size(Mask,2))/sqrt(nbands);
Mask(2:size(Mask,1),1) = ones(size(Mask,1)-1,1)/sqrt(nbands);
resdft = resdft + banddft.*Mask;
end
ind = ind + prod(dims);
end
end
res = real(ifft2(ifftshift(resdft)));
|
github
|
zhxing001/DIP_exercise-master
|
steer2HarmMtx.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/steer2HarmMtx.m
| 1,803 |
utf_8
|
35816be985c308717168260dc97419d8
|
% MTX = steer2HarmMtx(HARMONICS, ANGLES, REL_PHASES)
%
% Compute a steering matrix (maps a directional basis set onto the
% angular Fourier harmonics). HARMONICS is a vector specifying the
% angular harmonics contained in the steerable basis/filters. ANGLES
% (optional) is a vector specifying the angular position of each filter.
% REL_PHASES (optional, default = 'even') specifies whether the harmonics
% are cosine or sine phase aligned about those positions.
% The result matrix is suitable for passing to the function STEER.
% Eero Simoncelli, 7/96.
function mtx = steer2HarmMtx(harmonics, angles, evenorodd)
%%=================================================================
%%% Optional Parameters:
if (exist('evenorodd') ~= 1)
evenorodd = 'even';
end
% Make HARMONICS a row vector
harmonics = harmonics(:)';
numh = 2*size(harmonics,2) - any(harmonics == 0);
if (exist('angles') ~= 1)
angles = pi * [0:numh-1]'/numh;
else
angles = angles(:);
end
%%=================================================================
if isstr(evenorodd)
if strcmp(evenorodd,'even')
evenorodd = 0;
elseif strcmp(evenorodd,'odd')
evenorodd = 1;
else
error('EVEN_OR_ODD should be the string EVEN or ODD');
end
end
%% Compute inverse matrix, which maps Fourier components onto
%% steerable basis.
imtx = zeros(size(angles,1),numh);
col = 1;
for h=harmonics
args = h*angles;
if (h == 0)
imtx(:,col) = ones(size(angles));
col = col+1;
elseif evenorodd
imtx(:,col) = sin(args);
imtx(:,col+1) = -cos(args);
col = col+2;
else
imtx(:,col) = cos(args);
imtx(:,col+1) = sin(args);
col = col+2;
end
end
r = rank(imtx);
if (( r ~= numh ) & ( r ~= size(angles,1) ))
fprintf(2,'WARNING: matrix is not full rank');
end
mtx = pinv(imtx);
|
github
|
zhxing001/DIP_exercise-master
|
subMtx.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/subMtx.m
| 420 |
utf_8
|
c660029ce728dcb8c540c9cf419fa7bc
|
% MTX = subMtx(VEC, DIMENSIONS, START_INDEX)
%
% Reshape a portion of VEC starting from START_INDEX (optional,
% default=1) to the given dimensions.
% Eero Simoncelli, 6/96.
function mtx = subMtx(vec, sz, offset)
if (exist('offset') ~= 1)
offset = 1;
end
vec = vec(:);
sz = sz(:);
if (size(sz,1) ~= 2)
error('DIMENSIONS must be a 2-vector.');
end
mtx = reshape( vec(offset:offset+prod(sz)-1), sz(1), sz(2) );
|
github
|
zhxing001/DIP_exercise-master
|
spyrHt.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/spyrHt.m
| 305 |
utf_8
|
06e83c1f45c1a99e242fa7ea37093a11
|
% [HEIGHT] = spyrHt(INDICES)
%
% Compute height of steerable pyramid with given index matrix.
% Eero Simoncelli, 6/96.
function [ht] = spyrHt(pind)
nbands = spyrNumBands(pind);
% Don't count lowpass, or highpass residual bands
if (size(pind,1) > 2)
ht = (size(pind,1)-2)/nbands;
else
ht = 0;
end
|
github
|
zhxing001/DIP_exercise-master
|
spyrBand.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/spyrBand.m
| 819 |
utf_8
|
7d15b24244e521c9e85c68b3037f569b
|
% [LEV,IND] = spyrBand(PYR,INDICES,LEVEL,BAND)
%
% Access a band from a steerable pyramid.
%
% LEVEL indicates the scale (finest = 1, coarsest = spyrHt(INDICES)).
%
% BAND (optional, default=1) indicates which subband
% (1 = vertical, rest proceeding anti-clockwise).
% Eero Simoncelli, 6/96.
function res = spyrBand(pyr,pind,level,band)
if (exist('level') ~= 1)
level = 1;
end
if (exist('band') ~= 1)
band = 1;
end
nbands = spyrNumBands(pind);
if ((band > nbands) | (band < 1))
error(sprintf('Bad band number (%d) should be in range [1,%d].', band, nbands));
end
maxLev = spyrHt(pind);
if ((level > maxLev) | (level < 1))
error(sprintf('Bad level number (%d), should be in range [1,%d].', level, maxLev));
end
firstband = 1 + band + nbands*(level-1);
res = pyrBand(pyr, pind, firstband);
|
github
|
zhxing001/DIP_exercise-master
|
wpyrBand.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/wpyrBand.m
| 873 |
utf_8
|
12e08d90ccd6261b737e2d3c5ac5b1e7
|
% RES = wpyrBand(PYR, INDICES, LEVEL, BAND)
%
% Access a subband from a separable QMF/wavelet pyramid.
%
% LEVEL (optional, default=1) indicates the scale (finest = 1,
% coarsest = wpyrHt(INDICES)).
%
% BAND (optional, default=1) indicates which subband (1=horizontal,
% 2=vertical, 3=diagonal).
% Eero Simoncelli, 6/96.
function im = wpyrBand(pyr,pind,level,band)
if (exist('level') ~= 1)
level = 1;
end
if (exist('band') ~= 1)
band = 1;
end
if ((pind(1,1) == 1) | (pind(1,2) ==1))
nbands = 1;
else
nbands = 3;
end
if ((band > nbands) | (band < 1))
error(sprintf('Bad band number (%d) should be in range [1,%d].', band, nbands));
end
maxLev = wpyrHt(pind);
if ((level > maxLev) | (level < 1))
error(sprintf('Bad level number (%d), should be in range [1,%d].', level, maxLev));
end
band = band + nbands*(level-1);
im = pyrBand(pyr,pind,band);
|
github
|
zhxing001/DIP_exercise-master
|
innerProd.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/innerProd.m
| 404 |
utf_8
|
29d3b9025830e8641826ce536cdfa63d
|
% RES = innerProd(MTX)
%
% Compute (MTX' * MTX) efficiently (i.e., without copying the matrix)
function res = innerProd(mtx)
%% NOTE: THIS CODE SHOULD NOT BE USED! (MEX FILE IS CALLED INSTEAD)
fprintf(1,'WARNING: You should compile the MEX version of "innerProd.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster.\n');
res = mtx' * mtx;
|
github
|
zhxing001/DIP_exercise-master
|
reconSFpyr.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/reconSFpyr.m
| 3,035 |
utf_8
|
d2797e74c72af97fc0d72123dc91035c
|
% RES = reconSFpyr(PYR, INDICES, LEVS, BANDS, TWIDTH)
%
% Reconstruct image from its steerable pyramid representation, in the Fourier
% domain, as created by buildSFpyr.
%
% PYR is a vector containing the N pyramid subbands, ordered from fine
% to coarse. INDICES is an Nx2 matrix containing the sizes of
% each subband. This is compatible with the MatLab Wavelet toolbox.
%
% LEVS (optional) should be a list of levels to include, or the string
% 'all' (default). 0 corresonds to the residual highpass subband.
% 1 corresponds to the finest oriented scale. The lowpass band
% corresponds to number spyrHt(INDICES)+1.
%
% BANDS (optional) should be a list of bands to include, or the string
% 'all' (default). 1 = vertical, rest proceeding anti-clockwise.
%
% TWIDTH is the width of the transition region of the radial lowpass
% function, in octaves (default = 1, which gives a raised cosine for
% the bandpass filters).
% Eero Simoncelli, 5/97.
function res = reconSFpyr(pyr, pind, levs, bands, twidth)
%%------------------------------------------------------------
%% DEFAULTS:
if (exist('levs') ~= 1)
levs = 'all';
end
if (exist('bands') ~= 1)
bands = 'all';
end
if (exist('twidth') ~= 1)
twidth = 1;
elseif (twidth <= 0)
fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n');
twidth = 1;
end
%%------------------------------------------------------------
nbands = spyrNumBands(pind);
maxLev = 1+spyrHt(pind);
if strcmp(levs,'all')
levs = [0:maxLev]';
else
if (any(levs > maxLev) | any(levs < 0))
error(sprintf('Level numbers must be in the range [0, %d].', maxLev));
end
levs = levs(:);
end
if strcmp(bands,'all')
bands = [1:nbands]';
else
if (any(bands < 1) | any(bands > nbands))
error(sprintf('Band numbers must be in the range [1,3].', nbands));
end
bands = bands(:);
end
%----------------------------------------------------------------------
dims = pind(1,:);
ctr = ceil((dims+0.5)/2);
[xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ...
([1:dims(1)]-ctr(1))./(dims(1)/2) );
angle = atan2(yramp,xramp);
log_rad = sqrt(xramp.^2 + yramp.^2);
log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1);
log_rad = log2(log_rad);
%% Radial transition function (a raised cosine in log-frequency):
[Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]);
Yrcos = sqrt(Yrcos);
YIrcos = sqrt(abs(1.0 - Yrcos.^2));
if (size(pind,1) == 2)
if (any(levs==1))
resdft = fftshift(fft2(pyrBand(pyr,pind,2)));
else
resdft = zeros(pind(2,:));
end
else
resdft = reconSFpyrLevs(pyr(1+prod(pind(1,:)):size(pyr,1)), ...
pind(2:size(pind,1),:), ...
log_rad, Xrcos, Yrcos, angle, nbands, levs, bands);
end
lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
resdft = resdft .* lo0mask;
%% residual highpass subband
if any(levs == 0)
hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
hidft = fftshift(fft2(subMtx(pyr, pind(1,:))));
resdft = resdft + hidft .* hi0mask;
end
res = real(ifft2(ifftshift(resdft)));
|
github
|
zhxing001/DIP_exercise-master
|
corrDn.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/corrDn.m
| 2,132 |
utf_8
|
a2140ad2c6dfcb5280f6a594537bc487
|
% RES = corrDn(IM, FILT, EDGES, STEP, START, STOP)
%
% Compute correlation of matrices IM with FILT, followed by
% downsampling. These arguments should be 1D or 2D matrices, and IM
% must be larger (in both dimensions) than FILT. The origin of filt
% is assumed to be floor(size(filt)/2)+1.
%
% EDGES is a string determining boundary handling:
% 'circular' - Circular convolution
% 'reflect1' - Reflect about the edge pixels
% 'reflect2' - Reflect, doubling the edge pixels
% 'repeat' - Repeat the edge pixels
% 'zero' - Assume values of zero outside image boundary
% 'extend' - Reflect and invert
% 'dont-compute' - Zero output when filter overhangs input boundaries
%
% Downsampling factors are determined by STEP (optional, default=[1 1]),
% which should be a 2-vector [y,x].
%
% The window over which the convolution occurs is specfied by START
% (optional, default=[1,1], and STOP (optional, default=size(IM)).
%
% NOTE: this operation corresponds to multiplication of a signal
% vector by a matrix whose rows contain copies of the FILT shifted by
% multiples of STEP. See upConv.m for the operation corresponding to
% the transpose of this matrix.
% Eero Simoncelli, 6/96, revised 2/97.
function res = corrDn(im, filt, edges, step, start, stop)
%% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD)
fprintf(1,'Warning: You should compile the MEX code for "corrDn", found in the MEX subdirectory. It is MUCH faster.\n');
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('edges') == 1)
if (strcmp(edges,'reflect1') ~= 1)
warning('Using REFLECT1 edge-handling (use MEX code for other options).');
end
end
if (exist('step') ~= 1)
step = [1,1];
end
if (exist('start') ~= 1)
start = [1,1];
end
if (exist('stop') ~= 1)
stop = size(im);
end
%------------------------------------------------------------
% Reverse order of taps in filt, to do correlation instead of convolution
filt = filt(size(filt,1):-1:1,size(filt,2):-1:1);
tmp = rconv2(im,filt);
res = tmp(start(1):step(1):stop(1),start(2):step(2):stop(2));
|
github
|
zhxing001/DIP_exercise-master
|
maxPyrHt.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/maxPyrHt.m
| 603 |
utf_8
|
019e5ce9d036a893ec979c63f51ff54a
|
% HEIGHT = maxPyrHt(IMSIZE, FILTSIZE)
%
% Compute maximum pyramid height for given image and filter sizes.
% Specifically: the number of corrDn operations that can be sequentially
% performed when subsampling by a factor of 2.
% Eero Simoncelli, 6/96.
function height = maxPyrHt(imsz, filtsz)
imsz = imsz(:);
filtsz = filtsz(:);
if any(imsz == 1) % 1D image
imsz = prod(imsz);
filtsz = prod(filtsz);
elseif any(filtsz == 1) % 2D image, 1D filter
filtsz = [filtsz(1); filtsz(1)];
end
if any(imsz < filtsz)
height = 0;
else
height = 1 + maxPyrHt( floor(imsz/2), filtsz );
end
|
github
|
zhxing001/DIP_exercise-master
|
buildSFpyrLevs.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/buildSFpyrLevs.m
| 1,825 |
utf_8
|
f392f9c8ee1b85c2cf1c86edc383e4af
|
% [PYR, INDICES] = buildSFpyrLevs(LODFT, LOGRAD, XRCOS, YRCOS, ANGLE, HEIGHT, NBANDS)
%
% Recursive function for constructing levels of a steerable pyramid. This
% is called by buildSFpyr, and is not usually called directly.
% Eero Simoncelli, 5/97.
function [pyr,pind] = buildSFpyrLevs(lodft,log_rad,Xrcos,Yrcos,angle,ht,nbands);
if (ht <= 0)
lo0 = ifft2(ifftshift(lodft));
pyr = real(lo0(:));
pind = size(lo0);
else
bands = zeros(prod(size(lodft)), nbands);
bind = zeros(nbands,2);
log_rad = log_rad + 1;
lutsize = 1024;
Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi]
order = nbands-1;
%% divide by sqrt(sum_(n=0)^(N-1) cos(pi*n/N)^(2(N-1)) )
%% Thanks to Patrick Teo for writing this out :)
const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order));
Ycosn = sqrt(const) * (cos(Xcosn)).^order;
himask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
for b = 1:nbands
anglemask = pointOp(angle, Ycosn, Xcosn(1)+pi*(b-1)/nbands, Xcosn(2)-Xcosn(1));
banddft = ((-i)^(nbands-1)) .* lodft .* anglemask .* himask;
band = ifft2(ifftshift(banddft));
bands(:,b) = real(band(:));
bind(b,:) = size(band);
end
dims = size(lodft);
ctr = ceil((dims+0.5)/2);
lodims = ceil((dims-0.5)/2);
loctr = ceil((lodims+0.5)/2);
lostart = ctr-loctr+1;
loend = lostart+lodims-1;
log_rad = log_rad(lostart(1):loend(1),lostart(2):loend(2));
angle = angle(lostart(1):loend(1),lostart(2):loend(2));
lodft = lodft(lostart(1):loend(1),lostart(2):loend(2));
YIrcos = abs(sqrt(1.0 - Yrcos.^2));
lomask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
lodft = lomask .* lodft;
[npyr,nind] = buildSFpyrLevs(lodft, log_rad, Xrcos, Yrcos, angle, ht-1, nbands);
pyr = [bands(:); npyr];
pind = [bind; nind];
end
|
github
|
zhxing001/DIP_exercise-master
|
pixelAxes.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/pixelAxes.m
| 1,983 |
utf_8
|
1b2a2bfddd425fee2ccd276f3948cec7
|
% [ZOOM] = pixelAxes(DIMS, ZOOM)
%
% Set the axes of the current plot to cover a multiple of DIMS pixels,
% thereby eliminating screen aliasing artifacts when displaying an
% image of size DIMS.
%
% ZOOM (optional, default='same') expresses the desired number of
% samples displayed per screen pixel. It should be a scalar, which
% will be rounded to the nearest integer, or 1 over an integer. It
% may also be the string 'same' or 'auto', in which case the value is chosen so
% as to produce an image closest in size to the currently displayed
% image. It may also be the string 'full', in which case the image is
% made as large as possible while still fitting in the window.
% Eero Simoncelli, 2/97.
function [zoom] = pixelAxes(dims, zoom)
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('zoom') ~= 1)
zoom = 'same';
end
%% Reverse dimension order, since Figure Positions reported as (x,y).
dims = dims(2:-1:1);
%% Use MatLab's axis function to force square pixels, etc:
axis('image');
ax = gca;
oldunits = get(ax,'Units');
if strcmp(zoom,'full');
set(ax,'Units','normalized');
set(ax,'Position',[0 0 1 1]);
zoom = 'same';
end
set(ax,'Units','pixels');
pos = get(ax,'Position');
ctr = pos(1:2)+pos(3:4)/2;
if (strcmp(zoom,'same') | strcmp(zoom,'auto'))
%% HACK: enlarge slightly so that floor doesn't round down
zoom = min( pos(3:4) ./ (dims - 1) );
elseif isstr(zoom)
error(sprintf('Bad ZOOM argument: %s',zoom));
end
%% Force zoom value to be an integer, or inverse integer.
if (zoom < 0.75)
zoom = 1/ceil(1/zoom);
%% Round upward, subtracting 0.5 to avoid floating point errors.
newsz = ceil(zoom*(dims-0.5));
else
zoom = floor(zoom + 0.001); % Avoid floating pt errors
if (zoom < 1.5) % zoom=1
zoom = 1;
newsz = dims + 0.5;
else
newsz = zoom*(dims-1) + mod(zoom,2);
end
end
set(ax,'Position', [floor(ctr-newsz/2)+0.5, newsz] )
% Restore units
set(ax,'Units',oldunits);
|
github
|
zhxing001/DIP_exercise-master
|
pyrBandIndices.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/pyrBandIndices.m
| 589 |
utf_8
|
28f90484526c294bdb24bdbf8014012d
|
% RES = pyrBandIndices(INDICES, BAND_NUM)
%
% Return indices for accessing a subband from a pyramid
% (gaussian, laplacian, QMF/wavelet, steerable).
% Eero Simoncelli, 6/96.
function indices = pyrBandIndices(pind,band)
if ((band > size(pind,1)) | (band < 1))
error(sprintf('BAND_NUM must be between 1 and number of pyramid bands (%d).', ...
size(pind,1)));
end
if (size(pind,2) ~= 2)
error('INDICES must be an Nx2 matrix indicating the size of the pyramid subbands');
end
ind = 1;
for l=1:band-1
ind = ind + prod(pind(l,:));
end
indices = ind:ind+prod(pind(band,:))-1;
|
github
|
zhxing001/DIP_exercise-master
|
pointOp.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/pointOp.m
| 1,132 |
utf_8
|
6e1737ee18a474ee23f6cf6fb58b45c6
|
% RES = pointOp(IM, LUT, ORIGIN, INCREMENT, WARNINGS)
%
% Apply a point operation, specified by lookup table LUT, to image IM.
% LUT must be a row or column vector, and is assumed to contain
% (equi-spaced) samples of the function. ORIGIN specifies the
% abscissa associated with the first sample, and INCREMENT specifies the
% spacing between samples. Between-sample values are estimated via
% linear interpolation. If WARNINGS is non-zero, the function prints
% a warning whenever the lookup table is extrapolated.
%
% This function is much faster than MatLab's interp1, and allows
% extrapolation beyond the lookup table domain. The drawbacks are
% that the lookup table must be equi-spaced, and the interpolation is
% linear.
% Eero Simoncelli, 8/96.
function res = pointOp(im, lut, origin, increment, warnings)
%% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD)
fprintf(1,'WARNING: You should compile the MEX code for "pointOp", found in the MEX subdirectory. It is MUCH faster.\n');
X = origin + increment*[0:size(lut(:),1)-1];
Y = lut(:);
res = reshape(interp1(X, Y, im(:), 'linear'),size(im));
|
github
|
zhxing001/DIP_exercise-master
|
reconWpyr.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/reconWpyr.m
| 3,992 |
utf_8
|
859a606f214bce204ce3c9ea18c0fc87
|
% RES = reconWpyr(PYR, INDICES, FILT, EDGES, LEVS, BANDS)
%
% Reconstruct image from its separable orthonormal QMF/wavelet pyramid
% representation, as created by buildWpyr.
%
% PYR is a vector containing the N pyramid subbands, ordered from fine
% to coarse. INDICES is an Nx2 matrix containing the sizes of
% each subband. This is compatible with the MatLab Wavelet toolbox.
%
% FILT (optional) can be a string naming a standard filter (see
% namedFilter), or a vector which will be used for (separable)
% convolution. Default = 'qmf9'. EDGES specifies edge-handling,
% and defaults to 'reflect1' (see corrDn).
%
% LEVS (optional) should be a vector of levels to include, or the string
% 'all' (default). 1 corresponds to the finest scale. The lowpass band
% corresponds to wpyrHt(INDICES)+1.
%
% BANDS (optional) should be a vector of bands to include, or the string
% 'all' (default). 1=horizontal, 2=vertical, 3=diagonal. This is only used
% for pyramids of 2D images.
% Eero Simoncelli, 6/96.
function res = reconWpyr(pyr, ind, filt, edges, levs, bands)
if (nargin < 2)
error('First two arguments (PYR INDICES) are required');
end
%%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('filt') ~= 1)
filt = 'qmf9';
end
if (exist('edges') ~= 1)
edges= 'reflect1';
end
if (exist('levs') ~= 1)
levs = 'all';
end
if (exist('bands') ~= 1)
bands = 'all';
end
%%------------------------------------------------------------
maxLev = 1+wpyrHt(ind);
if strcmp(levs,'all')
levs = [1:maxLev]';
else
if (any(levs > maxLev))
error(sprintf('Level numbers must be in the range [1, %d].', maxLev));
end
levs = levs(:);
end
if strcmp(bands,'all')
bands = [1:3]';
else
if (any(bands < 1) | any(bands > 3))
error('Band numbers must be in the range [1,3].');
end
bands = bands(:);
end
if isstr(filt)
filt = namedFilter(filt);
end
filt = filt(:);
hfilt = modulateFlip(filt);
%% For odd-length filters, stagger the sampling lattices:
if (mod(size(filt,1),2) == 0)
stag = 2;
else
stag = 1;
end
%% Compute size of result image: assumes critical sampling (boundaries correct)
res_sz = ind(1,:);
if (res_sz(1) == 1)
loind = 2;
res_sz(2) = sum(ind(:,2));
elseif (res_sz(2) == 1)
loind = 2;
res_sz(1) = sum(ind(:,1));
else
loind = 4;
res_sz = ind(1,:) + ind(2,:); %%horizontal + vertical bands.
hres_sz = [ind(1,1), res_sz(2)];
lres_sz = [ind(2,1), res_sz(2)];
end
%% First, recursively collapse coarser scales:
if any(levs > 1)
if (size(ind,1) > loind)
nres = reconWpyr( pyr(1+sum(prod(ind(1:loind-1,:)')):size(pyr,1)), ...
ind(loind:size(ind,1),:), filt, edges, levs-1, bands);
else
nres = pyrBand(pyr, ind, loind); % lowpass subband
end
if (res_sz(1) == 1)
res = upConv(nres, filt', edges, [1 2], [1 stag], res_sz);
elseif (res_sz(2) == 1)
res = upConv(nres, filt, edges, [2 1], [stag 1], res_sz);
else
ires = upConv(nres, filt', edges, [1 2], [1 stag], lres_sz);
res = upConv(ires, filt, edges, [2 1], [stag 1], res_sz);
end
else
res = zeros(res_sz);
end
%% Add in reconstructed bands from this level:
if any(levs == 1)
if (res_sz(1) == 1)
upConv(pyrBand(pyr,ind,1), hfilt', edges, [1 2], [1 2], res_sz, res);
elseif (res_sz(2) == 1)
upConv(pyrBand(pyr,ind,1), hfilt, edges, [2 1], [2 1], res_sz, res);
else
if any(bands == 1) % horizontal
ires = upConv(pyrBand(pyr,ind,1),filt',edges,[1 2],[1 stag],hres_sz);
upConv(ires,hfilt,edges,[2 1],[2 1],res_sz,res); %destructively modify res
end
if any(bands == 2) % vertical
ires = upConv(pyrBand(pyr,ind,2),hfilt',edges,[1 2],[1 2],lres_sz);
upConv(ires,filt,edges,[2 1],[stag 1],res_sz,res); %destructively modify res
end
if any(bands == 3) % diagonal
ires = upConv(pyrBand(pyr,ind,3),hfilt',edges,[1 2],[1 2],hres_sz);
upConv(ires,hfilt,edges,[2 1],[2 1],res_sz,res); %destructively modify res
end
end
end
|
github
|
zhxing001/DIP_exercise-master
|
shift.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/shift.m
| 438 |
utf_8
|
2ac42b171e4ca683ef1d361eaf331870
|
% [RES] = shift(MTX, OFFSET)
%
% Circular shift 2D matrix samples by OFFSET (a [Y,X] 2-vector),
% such that RES(POS) = MTX(POS-OFFSET).
function res = shift(mtx, offset)
dims = size(mtx);
offset = mod(-offset,dims);
res = [ mtx(offset(1)+1:dims(1), offset(2)+1:dims(2)), ...
mtx(offset(1)+1:dims(1), 1:offset(2)); ...
mtx(1:offset(1), offset(2)+1:dims(2)), ...
mtx(1:offset(1), 1:offset(2)) ];
|
github
|
zhxing001/DIP_exercise-master
|
namedFilter.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/namedFilter.m
| 3,207 |
utf_8
|
8f45ef65fca60f53e0f734c4f1ae01bf
|
% KERNEL = NAMED_FILTER(NAME)
%
% Some standard 1D filter kernels. These are scaled such that
% their L2-norm is 1.0.
%
% binomN - binomial coefficient filter of order N-1
% haar: - Haar wavelet.
% qmf8, qmf12, qmf16 - Symmetric Quadrature Mirror Filters [Johnston80]
% daub2,daub3,daub4 - Daubechies wavelet [Daubechies88].
% qmf5, qmf9, qmf13: - Symmetric Quadrature Mirror Filters [Simoncelli88,Simoncelli90]
%
% See bottom of file for full citations.
% Eero Simoncelli, 6/96.
function [kernel] = named_filter(name)
if strcmp(name(1:min(5,size(name,2))), 'binom')
kernel = sqrt(2) * binomialFilter(str2num(name(6:size(name,2))));
elseif strcmp(name,'qmf5')
kernel = [-0.076103 0.3535534 0.8593118 0.3535534 -0.076103]';
elseif strcmp(name,'qmf9')
kernel = [0.02807382 -0.060944743 -0.073386624 0.41472545 0.7973934 ...
0.41472545 -0.073386624 -0.060944743 0.02807382]';
elseif strcmp(name,'qmf13')
kernel = [-0.014556438 0.021651438 0.039045125 -0.09800052 ...
-0.057827797 0.42995453 0.7737113 0.42995453 -0.057827797 ...
-0.09800052 0.039045125 0.021651438 -0.014556438]';
elseif strcmp(name,'qmf8')
kernel = sqrt(2) * [0.00938715 -0.07065183 0.06942827 0.4899808 ...
0.4899808 0.06942827 -0.07065183 0.00938715 ]';
elseif strcmp(name,'qmf12')
kernel = sqrt(2) * [-0.003809699 0.01885659 -0.002710326 -0.08469594 ...
0.08846992 0.4843894 0.4843894 0.08846992 -0.08469594 -0.002710326 ...
0.01885659 -0.003809699 ]';
elseif strcmp(name,'qmf16')
kernel = sqrt(2) * [0.001050167 -0.005054526 -0.002589756 0.0276414 -0.009666376 ...
-0.09039223 0.09779817 0.4810284 0.4810284 0.09779817 -0.09039223 -0.009666376 ...
0.0276414 -0.002589756 -0.005054526 0.001050167 ]';
elseif strcmp(name,'haar')
kernel = [1 1]' / sqrt(2);
elseif strcmp(name,'daub2')
kernel = [0.482962913145 0.836516303738 0.224143868042 -0.129409522551]';
elseif strcmp(name,'daub3')
kernel = [0.332670552950 0.806891509311 0.459877502118 -0.135011020010 ...
-0.085441273882 0.035226291882]';
elseif strcmp(name,'daub4')
kernel = [0.230377813309 0.714846570553 0.630880767930 -0.027983769417 ...
-0.187034811719 0.030841381836 0.032883011667 -0.010597401785]';
elseif strcmp(name,'gauss5') % for backward-compatibility
kernel = sqrt(2) * [0.0625 0.25 0.375 0.25 0.0625]';
elseif strcmp(name,'gauss3') % for backward-compatibility
kernel = sqrt(2) * [0.25 0.5 0.25]';
else
error(sprintf('Bad filter name: %s\n',name));
end
% [Johnston80] - J D Johnston, "A filter family designed for use in quadrature
% mirror filter banks", Proc. ICASSP, pp 291-294, 1980.
%
% [Daubechies88] - I Daubechies, "Orthonormal bases of compactly supported wavelets",
% Commun. Pure Appl. Math, vol. 42, pp 909-996, 1988.
%
% [Simoncelli88] - E P Simoncelli, "Orthogonal sub-band image transforms",
% PhD Thesis, MIT Dept. of Elec. Eng. and Comp. Sci. May 1988.
% Also available as: MIT Media Laboratory Vision and Modeling Technical
% Report #100.
%
% [Simoncelli90] - E P Simoncelli and E H Adelson, "Subband image coding",
% Subband Transforms, chapter 4, ed. John W Woods, Kluwer Academic
% Publishers, Norwell, MA, 1990, pp 143--192.
|
github
|
zhxing001/DIP_exercise-master
|
wpyrHt.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/wpyrHt.m
| 270 |
utf_8
|
18e1a724afee99389db70484333eb05a
|
% [HEIGHT] = wpyrHt(INDICES)
%
% Compute height of separable QMF/wavelet pyramid with given index matrix.
% Eero Simoncelli, 6/96.
function [ht] = wpyrHt(pind)
if ((pind(1,1) == 1) | (pind(1,2) ==1))
nbands = 1;
else
nbands = 3;
end
ht = (size(pind,1)-1)/nbands;
|
github
|
zhxing001/DIP_exercise-master
|
buildSFpyr.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/buildSFpyr.m
| 3,260 |
utf_8
|
66654d041ea2ff942f5480347bc4c281
|
% [PYR, INDICES, STEERMTX, HARMONICS] = buildSFpyr(IM, HEIGHT, ORDER, TWIDTH)
%
% Construct a steerable pyramid on matrix IM, in the Fourier domain.
% This is similar to buildSpyr, except that:
%
% + Reconstruction is exact (within floating point errors)
% + It can produce any number of orientation bands.
% - Typically slower, especially for non-power-of-two sizes.
% - Boundary-handling is circular.
%
% HEIGHT (optional) specifies the number of pyramid levels to build. Default
% is maxPyrHt(size(IM),size(FILT));
%
% The squared radial functions tile the Fourier plane, with a raised-cosine
% falloff. Angular functions are cos(theta-k\pi/(K+1))^K, where K is
% the ORDER (one less than the number of orientation bands, default= 3).
%
% TWIDTH is the width of the transition region of the radial lowpass
% function, in octaves (default = 1, which gives a raised cosine for
% the bandpass filters).
%
% PYR is a vector containing the N pyramid subbands, ordered from fine
% to coarse. INDICES is an Nx2 matrix containing the sizes of
% each subband. This is compatible with the MatLab Wavelet toolbox.
% See the function STEER for a description of STEERMTX and HARMONICS.
% Eero Simoncelli, 5/97.
% See http://www.cis.upenn.edu/~eero/steerpyr.html for more
% information about the Steerable Pyramid image decomposition.
function [pyr,pind,steermtx,harmonics] = buildSFpyr(im, ht, order, twidth)
%-----------------------------------------------------------------
%% DEFAULTS:
max_ht = floor(log2(min(size(im)))+2);
if (exist('ht') ~= 1)
ht = max_ht;
else
if (ht > max_ht)
error(sprintf('Cannot build pyramid higher than %d levels.',max_ht));
end
end
if (exist('order') ~= 1)
order = 3;
elseif ((order > 15) | (order < 0))
fprintf(1,'Warning: ORDER must be an integer in the range [0,15]. Truncating.\n');
order = min(max(order,0),15);
else
order = round(order);
end
nbands = order+1;
if (exist('twidth') ~= 1)
twidth = 1;
elseif (twidth <= 0)
fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n');
twidth = 1;
end
%-----------------------------------------------------------------
%% Steering stuff:
if (mod((nbands),2) == 0)
harmonics = [0:(nbands/2)-1]'*2 + 1;
else
harmonics = [0:(nbands-1)/2]'*2;
end
steermtx = steer2HarmMtx(harmonics, pi*[0:nbands-1]/nbands, 'even');
%-----------------------------------------------------------------
dims = size(im);
ctr = ceil((dims+0.5)/2);
[xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ...
([1:dims(1)]-ctr(1))./(dims(1)/2) );
angle = atan2(yramp,xramp);
log_rad = sqrt(xramp.^2 + yramp.^2);
log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1);
log_rad = log2(log_rad);
%% Radial transition function (a raised cosine in log-frequency):
[Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]);
Yrcos = sqrt(Yrcos);
YIrcos = sqrt(1.0 - Yrcos.^2);
lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
imdft = fftshift(fft2(im));
lo0dft = imdft .* lo0mask;
[pyr,pind] = buildSFpyrLevs(lo0dft, log_rad, Xrcos, Yrcos, angle, ht, nbands);
hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0);
hi0dft = imdft .* hi0mask;
hi0 = ifft2(ifftshift(hi0dft));
pyr = [real(hi0(:)) ; pyr];
pind = [size(hi0); pind];
|
github
|
zhxing001/DIP_exercise-master
|
modulateFlip.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/modulateFlip.m
| 461 |
utf_8
|
92f12f8068fcf49b9863851f106a5aa3
|
% [HFILT] = modulateFlipShift(LFILT)
%
% QMF/Wavelet highpass filter construction: modulate by (-1)^n,
% reverse order (and shift by one, which is handled by the convolution
% routines). This is an extension of the original definition of QMF's
% (e.g., see Simoncelli90).
% Eero Simoncelli, 7/96.
function [hfilt] = modulateFlipShift(lfilt)
lfilt = lfilt(:);
sz = size(lfilt,1);
sz2 = ceil(sz/2);
ind = [sz:-1:1]';
hfilt = lfilt(ind) .* (-1).^(ind-sz2);
|
github
|
zhxing001/DIP_exercise-master
|
spyrNumBands.m
|
.m
|
DIP_exercise-master/matlab/denoiseBLS_GSM/Simoncelli_PyrTools/spyrNumBands.m
| 480 |
utf_8
|
4a10cb68438c7dfc197ec00066f48fd4
|
% [NBANDS] = spyrNumBands(INDICES)
%
% Compute number of orientation bands in a steerable pyramid with
% given index matrix. If the pyramid contains only the highpass and
% lowpass bands (i.e., zero levels), returns 0.
% Eero Simoncelli, 2/97.
function [nbands] = spyrNumBands(pind)
if (size(pind,1) == 2)
nbands = 0;
else
% Count number of orientation bands:
b = 3;
while ((b <= size(pind,1)) & all( pind(b,:) == pind(2,:)) )
b = b+1;
end
nbands = b-2;
end
|
github
|
ngcthuong/Caffe-DCS-master
|
Cal_PSNRSSIM.m
|
.m
|
Caffe-DCS-master/utilities/Cal_PSNRSSIM.m
| 6,250 |
utf_8
|
891b4e57ebcd097592850eecf97f150e
|
function [psnr_cur, ssim_cur] = Cal_PSNRSSIM(A,B,row,col)
[n,m,ch]=size(B);
A = A(row+1:n-row,col+1:m-col,:);
B = B(row+1:n-row,col+1:m-col,:);
A=double(A); % Ground-truth
B=double(B); %
e=A(:)-B(:);
mse=mean(e.^2);
psnr_cur=10*log10(255^2/mse);
if ch==1
[ssim_cur, ~] = ssim_index(A, B);
else
ssim_cur = -1;
end
function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L)
%========================================================================
%SSIM Index, Version 1.0
%Copyright(c) 2003 Zhou Wang
%All Rights Reserved.
%
%The author is with Howard Hughes Medical Institute, and Laboratory
%for Computational Vision at Center for Neural Science and Courant
%Institute of Mathematical Sciences, New York University.
%
%----------------------------------------------------------------------
%Permission to use, copy, or modify this software and its documentation
%for educational and research purposes only and without fee is hereby
%granted, provided that this copyright notice and the original authors'
%names appear on all copies and supporting documentation. This program
%shall not be used, rewritten, or adapted as the basis of a commercial
%software or hardware product without first obtaining permission of the
%authors. The authors make no representations about the suitability of
%this software for any purpose. It is provided "as is" without express
%or implied warranty.
%----------------------------------------------------------------------
%
%This is an implementation of the algorithm for calculating the
%Structural SIMilarity (SSIM) index between two images. Please refer
%to the following paper:
%
%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
%quality assessment: From error measurement to structural similarity"
%IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004.
%
%Kindly report any suggestions or corrections to [email protected]
%
%----------------------------------------------------------------------
%
%Input : (1) img1: the first image being compared
% (2) img2: the second image being compared
% (3) K: constants in the SSIM index formula (see the above
% reference). defualt value: K = [0.01 0.03]
% (4) window: local window for statistics (see the above
% reference). default widnow is Gaussian given by
% window = fspecial('gaussian', 11, 1.5);
% (5) L: dynamic range of the images. default: L = 255
%
%Output: (1) mssim: the mean SSIM index value between 2 images.
% If one of the images being compared is regarded as
% perfect quality, then mssim can be considered as the
% quality measure of the other image.
% If img1 = img2, then mssim = 1.
% (2) ssim_map: the SSIM index map of the test image. The map
% has a smaller size than the input images. The actual size:
% size(img1) - size(window) + 1.
%
%Default Usage:
% Given 2 test images img1 and img2, whose dynamic range is 0-255
%
% [mssim ssim_map] = ssim_index(img1, img2);
%
%Advanced Usage:
% User defined parameters. For example
%
% K = [0.05 0.05];
% window = ones(8);
% L = 100;
% [mssim ssim_map] = ssim_index(img1, img2, K, window, L);
%
%See the results:
%
% mssim %Gives the mssim value
% imshow(max(0, ssim_map).^4) %Shows the SSIM index map
%
%========================================================================
if (nargin < 2 || nargin > 5)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
if (size(img1) ~= size(img2))
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
[M N] = size(img1);
if (nargin == 2)
if ((M < 11) || (N < 11))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5); %
K(1) = 0.01; % default settings
K(2) = 0.03; %
L = 255; %
end
if (nargin == 3)
if ((M < 11) || (N < 11))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5);
L = 255;
if (length(K) == 2)
if (K(1) < 0 || K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 4)
[H W] = size(window);
if ((H*W) < 4 || (H > M) || (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
L = 255;
if (length(K) == 2)
if (K(1) < 0 || K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 5)
[H W] = size(window);
if ((H*W) < 4 || (H > M) || (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
if (length(K) == 2)
if (K(1) < 0 || K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
img1 = double(img1);
img2 = double(img2);
mu1 = filter2(window, img1, 'valid');
mu2 = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;
if (C1 > 0 & C2 > 0)
ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
numerator1 = 2*mu1_mu2 + C1;
numerator2 = 2*sigma12 + C2;
denominator1 = mu1_sq + mu2_sq + C1;
denominator2 = sigma1_sq + sigma2_sq + C2;
ssim_map = ones(size(mu1));
index = (denominator1.*denominator2 > 0);
ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
index = (denominator1 ~= 0) & (denominator2 == 0);
ssim_map(index) = numerator1(index)./denominator1(index);
end
mssim = mean2(ssim_map);
return
|
github
|
scilab/scilab2c-master
|
tols.m
|
.m
|
scilab2c-master/toyApplication/tols.m
| 4,661 |
utf_8
|
b67703ed2f505e1b8dd21ac875ee5562
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [y, fullframes, loops] = tols(x, h, L)
% perform time-partitioned overlap save algorithm
% x -- signal (vector)
% h -- impulse response (vector)
% L -- fft size (frame length for impulse response segmentation is L/2)
% y -- convolution result
% fullframes -- number of full signal frames processed
% loops -- number of total loops
%
% @author gregor heinrich :: arbylon
% @date Nov./Dec. 2006
% fft size for signal and stepping
% (only for notation)
K = L / 2;
% (only for notation; is always = K)
S = L - K;
% segment impulse response
[HH, R] = segmentir(h, K);
% original length of x (without zero-padding the first frame)
lenx = length(x);
% zero-padding of first frame ("saved zeroth frame")
x = [zeros(K,1); x];
fprintf('padding %i zeros in front of x\n', K);
y = [];
% window of input signal frame spectra
% @real-time: can be implemented as circular buffer
XX = zeros(L, R);
% number of full frames from the input
% @real-time: unknown
fullframes = floor((length(x)-L)/S) + 1;
fprintf('expect %i full input frames and %i IR frames.\n', fullframes, R);
% signal frames available (including partial ones)
hassignal = 1;
% more tail frames needed to complete convolution
hastail = 1;
i = 0;
% @real-time: we don't know when the signal ends, thus we don't use the
% fullframes variable in a for loop
while hassignal || hastail
icirc = mod(i, R) + 1;
% index into x where xx starts and ends (includes zero-padding)
xxstart = i * S + 1;
xxend = i * S + L;
if xxend <= length(x)
% complete signal frame
xx = x(xxstart : xxend);
% fprintf(' - signal over full frame\n');
elseif xxstart <= length(x)
% incomplete signal frame -> must be zero-padded
% @real-time: signal ending is started
xx = x(xxstart : end);
zpad = xxend - length(x);
xx = [xx; zeros(zpad, 1)];
fprintf(' - loop %i: signal incomplete, padding %i zeroes\n', i+1, zpad);
else
% @real-time: there are no samples from the input left; signal
% ending is finished; convolution ending is started
if hassignal
hassignal = 0;
% xframes should be exactly = fullframes
xframes = i - 1;
fprintf(' - loop %i: signal finished, processing tail only.\n', i + 1);
end
end
% drop oldest frame and add new one
% @real-time: can be implemented using a circular buffer
if (i >= R)
rend = R;
else
% before all ir frames are filled
rend = i + 1;
end
if hassignal
% more signal samples available
X = fft(xx, L);
% for debugging with 1:n: X = round(ifft(X));
XX(:, icirc) = X;
rstart = 1;
else
% @real-time: during convolution ending
rstart = i - xframes + 1;
end
% total length of y
ylen = lenx + length(h) - 1;
% end of output larger than expected result?
yyend = S*(i+1);
if yyend > ylen
hassignal = 0;
hastail = 0;
loops = i;
end
% add most recent frame to convolution result
if hastail == 1
yylen = S;
y = [y; zeros(S,1)];
else
yylen = S - (yyend - ylen);
y = [y; zeros(yylen,1)];
loops = i;
end
% @real-time: loops over r can be done in parallel, also between
% subsequent loops over i
for r=rstart:rend
rcirc = mod(i - (r - 1), R) + 1;
% calculate partial convolution
Y = XX(:,rcirc) .* HH(:,r);
yy = ifft(Y, L);
% select last L-K points
yy = yy(S+1:L);
% add contribution of signal and ir with r frames offset
y(end-yylen+1:end) = y(end-yylen+1:end) + yy(1:yylen);
end
i = i+1;
end % while
fprintf(' - total loops: %i\n', i);
% TODO: make this independent of xlen
%y = y(1:ylen);
endfunction % convolve
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [HH, R] = segmentir(h, K)
% segment impulse response into columns, the last
% frame/column is zero-padded as needed.
% HH -- matrix of impulse response frames
% R -- number of IR frames (=columns of HH)
L = 2 * K;
fullframes = ceil(length(h)/K) - 1;
for i=1:fullframes
% column-wise IR frames
hh(:,i) = h(K*(i-1)+1 : K*i);
end
if mod(length(h), K) ~= 0
% zero-pad last ir frame
hlast = h((fullframes*K+1):length(h));
hlast = [hlast ; zeros(K - length(hlast),1)];
hh(:,fullframes+1) = hlast;
end
% column ffts
HH = fft(hh, L);
% for debugging 1:n: HH = round(ifft(HH));
R = size(HH,2);
endfunction % segmentir
|
github
|
jamessealesmith/nn_trainer_wc-master
|
prepare_workspace.m
|
.m
|
nn_trainer_wc-master/prepare_workspace.m
| 294 |
utf_8
|
3676b95eaf370e19d1784b9496fb2469
|
%% Prepare Workspace
function logS = prepare_workspace()
% get name of log file
formatOut = 'mm_dd_yy';
logS = strcat('Logs/',datestr(now,formatOut));
% add folders to path
addpath('TrainingAlgorithms','BackpropFunctions','SupportFunctions',...
'Data','CustomFunctions');
warning off
end
|
github
|
BrainardLab/VirtualWorldPsychophysics-master
|
save2pdf.m
|
.m
|
VirtualWorldPsychophysics-master/toolbox/utilities/save2pdf.m
| 2,141 |
utf_8
|
7332049e1c11bf187f8100ce13f1a901
|
%SAVE2PDF Saves a figure as a properly cropped pdf
%
% save2pdf(pdfFileName,handle,dpi)
%
% - pdfFileName: Destination to write the pdf to.
% - handle: (optional) Handle of the figure to write to a pdf. If
% omitted, the current figure is used. Note that handles
% are typically the figure number.
% - dpi: (optional) Integer value of dots per inch (DPI). Sets
% resolution of output pdf. Note that 150 dpi is the Matlab
% default and this function's default, but 600 dpi is typical for
% production-quality.
%
% Saves figure as a pdf with margins cropped to match the figure size.
% (c) Gabe Hoffmann, [email protected]
% Written 8/30/2007
% Revised 9/22/2007NARGOUTCHK
% Revised 1/14/2007
function save2pdf(pdfFileName,handle,dpi)
% Verify correct number of arguments
error(nargoutchk(0,3,nargin));
% If no handle is provided, use the current figure as default
if nargin<1
[fileName,pathName] = uiputfile('*.pdf','Save to PDF file:');
if fileName == 0; return; end
pdfFileName = [pathName,fileName];
end
if nargin<2
handle = gcf;
end
if nargin<3
dpi = 150;
end
% Backup previous settings
prePaperType = get(handle,'PaperType');
prePaperUnits = get(handle,'PaperUnits');
preUnits = get(handle,'Units');
prePaperPosition = get(handle,'PaperPosition');
prePaperSize = get(handle,'PaperSize');
% Make changing paper type possible
set(handle,'PaperType','<custom>');
% Set units to all be the same
set(handle,'PaperUnits','inches');
set(handle,'Units','inches');
% Set the page size and position to match the figure's dimensions
paperPosition = get(handle,'PaperPosition');
position = get(handle,'Position');
set(handle,'PaperPosition',[0,0,position(3:4)]);
set(handle,'PaperSize',position(3:4));
% Save the pdf (this is the same method used by "saveas")
print(handle,'-dpdf',pdfFileName,sprintf('-r%d',dpi))
% Restore the previous settings
set(handle,'PaperType',prePaperType);
set(handle,'PaperUnits',prePaperUnits);
set(handle,'Units',preUnits);
set(handle,'PaperPosition',prePaperPosition);
set(handle,'PaperSize',prePaperSize);
|
github
|
BrainardLab/VirtualWorldPsychophysics-master
|
drawPsychometricFunction.m
|
.m
|
VirtualWorldPsychophysics-master/toolbox/utilities/drawPsychometricFunction.m
| 7,947 |
utf_8
|
8e40e0e5245a3c14afaef29a0eafd0eb
|
function thresholds = drawPsychometricFunction(varargin)
%%drawPsychometricFunction : draw psychometric function for lightness experiment
%
% Usage:
% drawPsychometricFunction();
%
% Description:
% Draw psychometirc function for the response of subjects for lightness
% experiment. The function needs the directory name of case being studied,
% the subject name and the file number. It save the plot in the analysis
% directory specified in the pref
%
% Input:
% None
%
% Output:
% 'thresholds' : struct with these options thresholds.U thresholds.L
% thresholds.PSE thresholds.thresholds thresholds.fractionCorrect
% thresholds.stimPerLevel thresholds.cmpY
%
%
% Optional key/value pairs:
% 'directoryName' : (string) Directory name of the case which will be studied (default 'ExampleDirectory')
% 'subjectName' : (string) Name of subject (default 'testSubject')
% 'fileNumber' : (scalar) (default 1)
% 'thresholdU' : (scalar) Upper Threshold
% 'thresholdL' : (scalar) Lower Threshold
%% Get inputs and defaults.
parser = inputParser();
parser.addParameter('experimentType', 'Lightness', @ischar);
parser.addParameter('directoryName', 'ExampleCase', @ischar);
parser.addParameter('subjectName', 'testSubject', @ischar);
parser.addParameter('dateString', datestr(now,1), @ischar);
parser.addParameter('fileNumber', 1, @isscalar);
parser.addParameter('thresholdU', 0.75, @isscalar);
parser.addParameter('thresholdL', 0.25, @isscalar);
parser.parse(varargin{:});
experimentType = parser.Results.experimentType;
directoryName = parser.Results.directoryName;
subjectName = parser.Results.subjectName;
dateString = parser.Results.dateString;
fileNumber = parser.Results.fileNumber;
thresholdU = parser.Results.thresholdU;
thresholdL = parser.Results.thresholdL;
projectName = 'VirtualWorldPsychophysics';
%% Load the data struct
dataFolder = fullfile(getpref(projectName,'dataDir'), experimentType, directoryName, subjectName, dateString);
dataFile = sprintf('%s/%s-%d.mat', dataFolder,subjectName, fileNumber);
fprintf('\nData will be loaded from:\n%s\n', dataFile);
tempData = load(dataFile); data = tempData.data; clear tempData;
%%
for ii = 1:length(data.trialStruct.cmpY)
trialsWithThisCmpLvl = find( data.trialStruct.cmpY(ii) == data.trialStruct.cmpYInTrial);
numberOfCorrectResponses = (data.response.actualResponse(trialsWithThisCmpLvl) == data.response.correctResponse(trialsWithThisCmpLvl));
if (data.trialStruct.cmpY(ii) < data.trialStruct.stdY)
fractionCorrect(ii) = 1 - mean(numberOfCorrectResponses);
totalCorrectResponse(ii) = length(numberOfCorrectResponses) - sum(numberOfCorrectResponses);
else
fractionCorrect(ii) = mean(numberOfCorrectResponses);
totalCorrectResponse(ii) = sum(numberOfCorrectResponses);
end
end
thresholds.stimPerLevel = length(numberOfCorrectResponses);
hFig = figure();
yLimits = [-0.05 1.05];
xLimits = [(min(data.trialStruct.cmpY) - min(diff(data.trialStruct.cmpY))/2) ...
(max(data.trialStruct.cmpY)+ min(diff(data.trialStruct.cmpY))/2)];
set(hFig,'units','pixels', 'Position', [1 1 600 500]);
hold on; box on;
% plot a vertical line indicating the standard
lStdY = plot([data.trialStruct.stdY data.trialStruct.stdY], yLimits,':r','LineWidth', 1);
% Psychometric function form
PF = @PAL_CumulativeNormal; % Alternatives: PAL_Gumbel, PAL_Weibull, PAL_CumulativeNormal, PAL_HyperbolicSecant
% paramsFree is a boolean vector that determins what parameters get
% searched over. 1: free parameter, 0: fixed parameter
paramsFree = [1 1 1 1];
% Initial guess. Setting the first parameter to the middle of the stimulus
% range and the second to 1 puts things into a reasonable ballpark here.
paramsValues0 = [mean(data.trialStruct.cmpY) 1/((max(data.trialStruct.cmpY)-min(data.trialStruct.cmpY))) 0 0];
lapseLimits = [0 0.05];
% Set up standard options for Palamedes search
options = PAL_minimize('options');
% Fit with Palemedes Toolbox. The parameter constraints match the psignifit parameters above. Some thinking is
% required to initialize the parameters sensibly. We know that the mean of the cumulative normal should be
% roughly within the range of the comparison stimuli, so we initialize this to the mean. The standard deviation
% should be some moderate fraction of the range of the stimuli, so again this is used as the initializer.
xx = linspace(xLimits(1), xLimits(2),1000);
[paramsValues] = PAL_PFML_Fit(...
data.trialStruct.cmpY',totalCorrectResponse',length(numberOfCorrectResponses)*ones(size(data.trialStruct.cmpY')), ...
paramsValues0,paramsFree,PF, ...
'lapseLimits',lapseLimits,'guessLimits',[],'searchOptions',options,'gammaEQlambda',true);
yy = PF(paramsValues,xx');
psePal = PF(paramsValues,0.5,'inverse');
threshPal = PF(paramsValues,0.7602,'inverse')-psePal;
text(min(data.trialStruct.cmpY),0.475,...
['PSE = ', num2str(psePal,3)],...
'FontSize', 15); % Test to indicate the stimulusIntensities of 75% marker
text(min(data.trialStruct.cmpY),0.55,...
['Threshold = ', num2str(threshPal,3)],...
'FontSize', 15); % Test to indicate the stimulusIntensities of 75% marker
% Plot Fit Line
lTh = plot(xx, yy, 'LineWidth', 1);
% Plot Raw Data % comparison
lData = plot(data.trialStruct.cmpY,fractionCorrect,'*');
% Indicate 75% threshold
thresholdIndex = find(yy > thresholdU, 1); % find threshold
if ~isempty(thresholdIndex)
plot([xx(1)-1 xx(thresholdIndex)],[yy(thresholdIndex) yy(thresholdIndex)],'k'); % Horizontal line
plot([xx(thresholdIndex) xx(thresholdIndex)],[yLimits(1) yy(thresholdIndex)],'k'); % Vertical line
lThMk = plot(xx(thresholdIndex),yy(thresholdIndex),'.k','MarkerSize',20); % 75% co-ordiante marker
text(min(data.trialStruct.cmpY),0.9,...
['(' num2str(xx(thresholdIndex),3) ',' num2str(round(thresholdU*100)) '%)'],...
'FontSize', 15); % Test to indicate the stimulusIntensities of 75% marker
end
thresholds.U = xx(thresholdIndex);
% Indicate 25% threshold
thresholdIndex = find(yy > thresholdL, 1); % find threshold
if ~isempty(thresholdIndex)
plot([xx(1)-1 xx(thresholdIndex)],[yy(thresholdIndex) yy(thresholdIndex)],'k'); % Horizontal line
plot([xx(thresholdIndex) xx(thresholdIndex)],[yLimits(1) yy(thresholdIndex)],'k'); % Vertical line
lThMk = plot(xx(thresholdIndex),yy(thresholdIndex),'.k','MarkerSize',20); % 25% co-ordiante marker
text(min(data.trialStruct.cmpY),0.4,...
['(' num2str(xx(thresholdIndex),3) ',' num2str(round(thresholdL*100)) '%)'],...
'FontSize', 15); % Test to indicate the stimulusIntensities of 75% marker
end
thresholds.L = xx(thresholdIndex);
legend([lData lTh lStdY],...
{'Observation', 'Cum Gauss', 'Standard'},...
'Location','Southeast');
xlabel('Comparison Lightness');
ylabel(['Fraction Comparison Chosen (N per level =',num2str(length(trialsWithThisCmpLvl)),')']);
title(sprintf('%s-%d', subjectName, fileNumber),'interpreter','none');
xlim(xLimits);
ylim(yLimits);
xticks(data.trialStruct.cmpY);
hAxis = gca;
set(hAxis,'FontSize',15);
hAxis.XTickLabelRotation = 90;
%% Save the plot and the analysis data
analysisFolder = fullfile(getpref(projectName,'analysisDir'), experimentType, directoryName, subjectName, dateString);
if ~exist(fullfile(analysisFolder,'plots'), 'dir')
mkdir(fullfile(analysisFolder,'plots'));
end
figureFile = sprintf('%s/plots/%s-%d.pdf', analysisFolder,subjectName, fileNumber);
fprintf('\nPlot will be saved in folder:\n%s\n', figureFile);
save2pdf(figureFile, hFig, 600);
close;
thresholds.cmpY = data.trialStruct.cmpY;
thresholds.PSE = psePal;
thresholds.threshold = threshPal;
thresholds.fractionCorrect = fractionCorrect;
end
function SSE = fitcumgauss(guess, x, y)
a = guess(1);
mu = guess(2);
sigma = guess(3);
Est = a/(sigma*sqrt(2*pi)) * exp( -( (x-mu).^2 ./ (2.*sigma).^2 ) );
Est = cumsum(Est) ./ sum(Est);
SSE = sum( (y - Est).^2 );
end
|
github
|
BrainardLab/VirtualWorldPsychophysics-master
|
runEasyTrials.m
|
.m
|
VirtualWorldPsychophysics-master/toolbox/utilities/runEasyTrials.m
| 6,719 |
utf_8
|
43348671a90b08248dd9abea56e35a31
|
function runEasyTrials(nEasyTrials, trialStruct, cal, scaleFactor, LMSStruct, params, controlSignal, win, gamePad, parser)
% This function runs nEasyTrials number of easy trials at the beginning of
% the experiment. These trials are not saved.
keepLooping = 1;
trialToRun = find(trialStruct.cmpYInTrial == max(trialStruct.cmpYInTrial),nEasyTrials);
rightSound = sin(2*pi*[1:1000]/10)/10;
wrongSound = rand(1,1000).*sin(2*pi*[1:1000]/10)/10;
for iterTrials = trialToRun
stdIndex = trialStruct.trialStdIndex(iterTrials);
cmpIndex = trialStruct.trialCmpIndex(iterTrials);
stdRGBImage = CalFormatToImage(SensorToSettings(cal, scaleFactor*LMSStruct.LMSImageInCalFormat(:,:,stdIndex)),LMSStruct.cropImageSizeX,LMSStruct.cropImageSizeY);
cmpRGBImage = CalFormatToImage(SensorToSettings(cal, scaleFactor*LMSStruct.LMSImageInCalFormat(:,:,cmpIndex)),LMSStruct.cropImageSizeX,LMSStruct.cropImageSizeY);
stdRGBImage(stdRGBImage < 0 ) = 0;
cmpRGBImage(cmpRGBImage < 0 ) = 0;
standardYLarger = (trialStruct.stdYInTrial(iterTrials) >= trialStruct.cmpYInTrial(iterTrials));
if trialStruct.cmpInterval(iterTrials) % comparison on the second interval
firstImage = stdRGBImage(end:-1:1,:,:);
secondImage = cmpRGBImage(end:-1:1,:,:);
if standardYLarger
correctResponse(iterTrials) = 1;
else
correctResponse(iterTrials) = 2;
end
else % comparison on the first
firstImage = cmpRGBImage(end:-1:1,:,:);
secondImage = stdRGBImage(end:-1:1,:,:);
if standardYLarger
correctResponse(iterTrials) = 2;
else
correctResponse(iterTrials) = 1;
end
end
% Write the images into the window and disable
win.addImage(params.firstImageLoc, params.firstImageSize, firstImage, 'Name', 'firstImage');
win.addImage(params.secondImageLoc, params.secondImageSize, secondImage, 'Name', 'secondImage');
win.disableObject('firstImage');
win.disableObject('secondImage');
% Enable "left" image and draw
win.enableObject('firstImage');
win.draw;
% Wait for duration
mglWaitSecs(params.stimDuration);
win.disableObject('firstImage');
win.draw;
% Wait for ISI and show "second" image
mglWaitSecs(params.ISI);
win.enableObject('secondImage');
win.draw;
% Wait for duration
mglWaitSecs(params.stimDuration);
win.disableObject('secondImage');
win.draw;
%% Wait for key
FlushEvents;
key =[];
while (isempty(key))
% Get user response from keyboard
if (strcmp(controlSignal, 'keyboard'))
key = mglGetKeyEvent;
if (~isempty(key))
switch key.charCode
case {params.interval1Key,params.interval2Key}
keyPress(iterTrials) = getUserResponse(params,key);
case {'q'}
fprintf('Do you want to quit? Press Y for Yes, otherwise give your response \n');
key2 = [];
while (isempty(key2))
key2 = mglGetKeyEvent;
if (~isempty(key2))
switch key2.charCode
case {params.interval1Key,params.interval2Key}
keyPress(iterTrials) = getUserResponse(params,key2);
case {'y'}
keepLooping = false;
otherwise
key2 = [];
end
end
end
otherwise
key = [];
end
end
% Get user response from gamePad
else
key = gamePad.getKeyEvent();
if (~isempty(key))
switch key.charCode
case {params.interval1Key,params.interval2Key}
keyPress(iterTrials) = getUserResponse(params,key);
otherwise
key = [];
end
end
pressedKeyboard = mglGetKeyEvent;
if (~isempty(pressedKeyboard))
switch pressedKeyboard.charCode
case {'q'}
fprintf('Do you want to quit? Press Y for Yes, otherwise give your response using gamepad \n');
key2 = [];
keyG = [];
FlushEvents;
while (isempty(key2) && isempty(keyG))
key2 = mglGetKeyEvent;
keyG = gamePad.getKeyEvent();
if (~isempty(key2))
switch key2.charCode
case {'y'}
keepLooping = false;
key = 0; % set key = 0 in order to exit this loop
otherwise
key2 = [];
end
elseif (~isempty(keyG))
switch keyG.charCode
case {params.interval1Key,params.interval2Key}
key = keyG;
keyPress(iterTrials) = getUserResponse(params,key);
otherwise
keyG = [];
end
end
end
end
end
end
end
% Check if the experiment continues, otherwise quit without saving data
if keepLooping
actualResponse(iterTrials) = keyPress(iterTrials);
fprintf('The character typed was %d\n',keyPress(iterTrials));
% Give feedback if option is on
if parser.Results.feedback
if (actualResponse(iterTrials) == correctResponse(iterTrials));
sound(rightSound);
else
sound(wrongSound);
end
end
mglWaitSecs(params.ITI);
else
fprintf('Quitting without saving any data.\n');
end
end
end
function response = getUserResponse(params,key)
response = [];
switch key.charCode
% Left/Down
case params.interval1Key
response = 1;
% Right/Up
case params.interval2Key
response = 2;
end % switch
end
|
github
|
BrainardLab/VirtualWorldPsychophysics-master
|
runLightnessExperiment.m
|
.m
|
VirtualWorldPsychophysics-master/experiment/runLightnessExperiment.m
| 19,604 |
utf_8
|
6f4a343b577c46f34c88a3b2454da03d
|
function acquisitionStatus = runLightnessExperiment(varargin)
%%runExperiment : run lightness estimation experiment and record data
%
% Usage:
% runLightnessExperiment();
%
% Description:
% Run the lightness estimation psychophysics experiment given the
% calibration file, trial struct and LMS stimulus struct. Record the
% responses and save the responses in the specified directory.
%
% Input:
% None
%
% Output:
% None
%
% Optional key/value pairs:
% 'directoryName' : (string) Directory name of the case which will be studied (default 'ExampleDirectory')
% 'nameOfTrialStruct' : (string) Name of trail stuct to be used in experiment (defalult 'exampleTrial')
% 'nameOfCalibrationFile : (string) Name of calibration file (default 'VirtualWorldCalibration.mat')
% 'whichCalibration' : (scalar) Which calibration in file to use (default Inf -> most recent)
% 'controlSignal' : (string) How to collect user response (options: 'gamePad', 'keyboard', default 'keyboard')
% 'subjectName' : (string) Name of subject (default 'testSubject')
%% Get inputs and defaults.
parser = inputParser();
parser.addParameter('directoryName', 'ExampleCase', @ischar);
parser.addParameter('nameOfTrialStruct', 'exampleTrial', @ischar);
parser.addParameter('nameOfCalibrationFile', 'VirtualWorldCalibration', @ischar);
parser.addParameter('scaleFactor', 0, @isscalar);
parser.addParameter('whichCalibration', Inf, @isscalar);
parser.addParameter('controlSignal', 'keyboard', @ischar);
parser.addParameter('interval1Key', '1', @ischar);
parser.addParameter('interval2Key', '2', @ischar);
parser.addParameter('feedback', 0, @isscalar);
parser.addParameter('isDemo', 0, @isscalar);
parser.addParameter('subjectName', 'testSubject', @ischar);
parser.addParameter('theoreticalPsychophysicsMode', 0, @isscalar);
parser.parse(varargin{:});
directoryName = parser.Results.directoryName;
nameOfTrialStruct = parser.Results.nameOfTrialStruct;
nameOfCalibrationFile = parser.Results.nameOfCalibrationFile;
whichCalibration = parser.Results.whichCalibration;
scaleFactor = parser.Results.scaleFactor;
controlSignal = parser.Results.controlSignal;
interval1Key = parser.Results.interval1Key;
interval2Key = parser.Results.interval2Key;
subjectName = parser.Results.subjectName;
theoreticalPsychophysicsMode = parser.Results.theoreticalPsychophysicsMode;
projectName = 'VirtualWorldPsychophysics';
ExperimentType = 'Lightness';
% May want to change this to name the experiment cases differently
caseName = directoryName;
rightSound = sin(2*pi*[1:1000]/10)/10;
wrongSound = rand(1,1000).*ceil(sin(2*pi*[1:1000]/10))/10;
acquisitionStatus = 0;
%% Some experimental parameters.
%
% May want to read these from a file at
% some point.
params.screenDimsCm = [59.67 33.57];
params.fpSize = [0.1 0.1]; % fixation point size
params.fpColor = [34 70 34]/255; % fixation point color
params.fpColorRed = [0.6 0.2 0.2]; % fixation point color red
params.bgColor = [0 0 0];
params.textColor = [0.6 0.2 0.2];
params.firstImageLoc = [0 0];
params.secondImageLoc = [0 0];
params.firstImageSize = [2.62 2.62];
params.secondImageSize = [2.62 2.62];
params.ISI = 0.25;
params.ITI = 0.25;
params.stimDuration = 0.25;
params.interval1Key = interval1Key;
params.interval2Key = interval2Key;
% If the game pad has symbol 1 2 3 4, instead of X A B Y
if strcmp(interval1Key,'GP:1') params.interval1Key = 'GP:UpperLeftTrigger'; end
if strcmp(interval2Key,'GP:2') params.interval2Key = 'GP:UpperRightTrigger'; end
%% Load the trial struct
pathToTrialStruct = fullfile(getpref(projectName,'stimulusInputBaseDir'),...
directoryName,[nameOfTrialStruct '.mat']);
temp = load(pathToTrialStruct); trialStruct = temp.trialStruct; clear temp;
%% Load the LMS struct
LMSstructName = trialStruct.LMSstructName;
pathToLMSStruct = fullfile(getpref(projectName,'stimulusInputBaseDir'),...
directoryName,[LMSstructName '.mat']);
temp = load(pathToLMSStruct); LMSStruct = temp.LMSStruct; clear temp;
%% Load calibration file
cal = LoadCalFile(nameOfCalibrationFile,whichCalibration,fullfile(getpref('VirtualWorldPsychophysics','calibrationDir')));
if (isempty(cal))
error('Could not find specified calibration file');
end
%% Initialize calibration structure for the cones
cal = SetSensorColorSpace(cal, LMSStruct.T_cones, LMSStruct.S); % Fix the last option
%% Find the scale factor
if (scaleFactor == 0)
scaleFactor = findScaleFactor(cal, LMSStruct);
end
%% Set Gamma Method
cal = SetGammaMethod(cal,0);
%% Start Time of Experiment
startTime = datestr(now);
%% Now loop over the images for presentation on screen
% Before that figure out how long it takes to convert two LMS to RGB and
% present on screen. Shouldn't be very long
response = struct('subjectName',subjectName, ...
'correctResponse',[],...
'actualResponse',[]);
%% Initiale display
[win, params] = initDisplay(params);
%% Start key capture and clear keyboard queue before we draw the stimuli.
ListenChar(2);
mglGetKeyEvent;
% Instantiate a gamePad object
if (strcmp(controlSignal, 'gamePad'))
gamePad = GamePad();
else
gamePad = [];
end
% Clear out any previous keypresses.
FlushEvents;
%% Enable fixation and start text
win.enableObject('fp');
win.enableObject('startText');
win.enableObject('keyOptions');
win.draw;
%% Wait for key
% keyPress = GetChar;
key = [];
while (isempty(key))
if (strcmp(controlSignal, 'keyboard'))
key = mglGetKeyEvent;
else
key = gamePad.getKeyEvent();
end
end
%% Turn off start text, add images and wait for another key
win.disableObject('startText');
win.disableObject('keyOptions');
% Run easy trials
nEasyTrials = 5;
runEasyTrials(nEasyTrials, trialStruct, cal, scaleFactor, LMSStruct, params, controlSignal, win, gamePad, parser);
% Reset the keyboard queue.
mglGetKeyEvent;
saveData = 1;
keepLooping = 1;
iterTrials = 0;
while keepLooping
iterTrials = iterTrials + 1;
stdIndex = trialStruct.trialStdIndex(iterTrials);
cmpIndex = trialStruct.trialCmpIndex(iterTrials);
stdRGBImage = CalFormatToImage(SensorToSettings(cal, scaleFactor*LMSStruct.LMSImageInCalFormat(:,:,stdIndex)),LMSStruct.cropImageSizeX,LMSStruct.cropImageSizeY);
cmpRGBImage = CalFormatToImage(SensorToSettings(cal, scaleFactor*LMSStruct.LMSImageInCalFormat(:,:,cmpIndex)),LMSStruct.cropImageSizeX,LMSStruct.cropImageSizeY);
stdRGBImage(stdRGBImage < 0 ) = 0;
cmpRGBImage(cmpRGBImage < 0 ) = 0;
standardYLarger = (trialStruct.stdYInTrial(iterTrials) >= trialStruct.cmpYInTrial(iterTrials));
if trialStruct.cmpInterval(iterTrials) % comparison on the second interval
firstImage = stdRGBImage(end:-1:1,:,:);
secondImage = cmpRGBImage(end:-1:1,:,:);
if standardYLarger
correctResponse(iterTrials) = 1;
else
correctResponse(iterTrials) = 2;
end
else % comparison on the first
firstImage = cmpRGBImage(end:-1:1,:,:);
secondImage = stdRGBImage(end:-1:1,:,:);
if standardYLarger
correctResponse(iterTrials) = 2;
else
correctResponse(iterTrials) = 1;
end
end
if theoreticalPsychophysicsMode
meanRGBFirstImage = mean(mean(mean(firstImage(floor(LMSStruct.cropImageSizeX/2)-4:floor(LMSStruct.cropImageSizeX/2)+5, ...
floor(LMSStruct.cropImageSizeX/2)-4:floor(LMSStruct.cropImageSizeX/2)+5,:))));
meanRGBSecondImage = mean(mean(mean(secondImage(floor(LMSStruct.cropImageSizeX/2)-4:floor(LMSStruct.cropImageSizeX/2)+5, ...
floor(LMSStruct.cropImageSizeX/2)-4:floor(LMSStruct.cropImageSizeX/2)+5,:))));
keyPress(iterTrials) = (meanRGBSecondImage > meanRGBFirstImage) + 1;
actualResponse(iterTrials) = keyPress(iterTrials);
else
% For testing, extract average RGB values from center of first and
% second image, and figure out which is bigger
% Write the images into the window and disable
win.addImage(params.firstImageLoc, params.firstImageSize, firstImage, 'Name', 'firstImage');
win.addImage(params.secondImageLoc, params.secondImageSize, secondImage, 'Name', 'secondImage');
win.disableObject('firstImage');
win.disableObject('secondImage');
% Enable "left" image and draw
win.enableObject('firstImage');
win.draw;
% Wait for duration
mglWaitSecs(params.stimDuration);
win.disableObject('firstImage');
win.draw;
% Wait for ISI and show "second" image
mglWaitSecs(params.ISI);
win.enableObject('secondImage');
win.draw;
% Wait for duration
mglWaitSecs(params.stimDuration);
win.disableObject('secondImage');
win.draw;
%% Wait for key
FlushEvents;
key =[];
while (isempty(key))
% Get user response from keyboard
if (strcmp(controlSignal, 'keyboard'))
key = mglGetKeyEvent;
if (~isempty(key))
switch key.charCode
case {params.interval1Key,params.interval2Key}
keyPress(iterTrials) = getUserResponse(params,key);
case {'q'}
fprintf('Do you want to quit? Press Y for Yes, otherwise give your response \n');
key2 = [];
while (isempty(key2))
key2 = mglGetKeyEvent;
if (~isempty(key2))
switch key2.charCode
case {params.interval1Key,params.interval2Key}
keyPress(iterTrials) = getUserResponse(params,key2);
case {'y'}
keepLooping = false;
otherwise
key2 = [];
end
end
end
otherwise
key = [];
end
end
% Get user response from gamePad
else
key = gamePad.getKeyEvent();
if (~isempty(key))
switch key.charCode
case {params.interval1Key,params.interval2Key}
keyPress(iterTrials) = getUserResponse(params,key);
otherwise
key = [];
end
end
pressedKeyboard = mglGetKeyEvent;
if (~isempty(pressedKeyboard))
switch pressedKeyboard.charCode
case {'q'}
fprintf('Do you want to quit? Press Y for Yes, otherwise give your response using gamepad \n');
key2 = [];
keyG = [];
FlushEvents;
while (isempty(key2) && isempty(keyG))
key2 = mglGetKeyEvent;
keyG = gamePad.getKeyEvent();
if (~isempty(key2))
switch key2.charCode
case {'y'}
keepLooping = false;
key = 0; % set key = 0 in order to exit this loop
otherwise
key2 = [];
end
elseif (~isempty(keyG))
switch keyG.charCode
case {params.interval1Key,params.interval2Key}
key = keyG;
keyPress(iterTrials) = getUserResponse(params,key);
otherwise
keyG = [];
end
end
end
end
end
end
end
% Check if the experiment continues, otherwise quit without saving data
if keepLooping
actualResponse(iterTrials) = keyPress(iterTrials);
fprintf('The character typed was %d\n',keyPress(iterTrials));
% Give feedback if option is on
if parser.Results.feedback
if (actualResponse(iterTrials) == correctResponse(iterTrials));
sound(rightSound);
else
sound(wrongSound);
end
end
mglWaitSecs(params.ITI);
else
fprintf('Quitting without saving any data.\n');
saveData = 0;
end
%% Check if one third of experiment is reached
if (iterTrials == ceil(length(trialStruct.trialStdIndex)/3))
win.enableObject('oneThirdText');
win.disableObject('fp');
win.enableObject('fpRed');
win.draw;
pause(60);
win.disableObject('oneThirdText');
win.enableObject('restOver');
win.disableObject('fpRed');
win.enableObject('fp');
win.draw;
FlushEvents;
%% Wait for key
if (strcmp(controlSignal, 'keyboard'))
key = [];
while (isempty(key))
key = mglGetKeyEvent;
end
else
key = [];
while (isempty(key))
key = gamePad.getKeyEvent();
end
end
% Turn off text
win.disableObject('restOver');
% Reset the keyboard queue.
mglGetKeyEvent;
end
%% Check if two third of experiment is reached
if (iterTrials == ceil(2*length(trialStruct.trialStdIndex)/3))
win.enableObject('twoThirdText');
win.disableObject('fp');
win.enableObject('fpRed');
win.draw;
pause(60);
win.disableObject('twoThirdText');
win.enableObject('restOver');
win.disableObject('fpRed');
win.enableObject('fp');
win.draw;
FlushEvents;
%% Wait for key
if (strcmp(controlSignal, 'keyboard'))
key = [];
while (isempty(key))
key = mglGetKeyEvent;
end
else
key = [];
while (isempty(key))
key = gamePad.getKeyEvent();
end
end
%% Turn off start text, add images and wait for another key
win.disableObject('restOver');
% Reset the keyboard queue.
mglGetKeyEvent;
end
% Check if end of experiment is reached
end
if (iterTrials == length(trialStruct.trialStdIndex))
keepLooping = false;
end
end
%% Done with experiment, close up
%
% Show end of experimetn text
win.enableObject('finishText');
win.draw;
pause(10);
win.disableObject('finishText');
% Close our display.
win.close;
% Make sure key capture is off.
ListenChar(0);
if parser.Results.isDemo
saveData = 0;
end
if saveData
%% correct response can be found as
response.correctResponse = correctResponse;
response.actualResponse = actualResponse;
response.keyPress = keyPress;
%% End Time of Experiment
endTime = datestr(now);
%% Make data struct
data = struct;
data.response = response;
data.trialStruct = trialStruct;
data.startTime = startTime;
data.endTime = endTime;
data.cal = cal;
data.LMSStruct = LMSStruct;
data.subjectName = subjectName;
%% Save data here
% Figure out some data saving parameters.
dataFolder = fullfile(getpref(projectName,'dataDir'), ExperimentType, caseName, subjectName, datestr(now,1));
if ~exist(dataFolder, 'dir')
mkdir(dataFolder);
end
dataFile = sprintf('%s/%s-%d.mat', dataFolder,subjectName, GetNextDataFileNumber(dataFolder, '.mat'));
fprintf('\nData will be saved in:\n%s\n', dataFile);
save(dataFile,'data','-v7.3');
fprintf('Data was saved.\n');
drawPsychometricFunction('ExperimentType', ExperimentType,...
'directoryName', caseName, ...
'subjectName', subjectName, ...
'date', datestr(now,1), ...
'fileNumber', (GetNextDataFileNumber(dataFolder, '.mat')-1),...
'thresholdU', 0.75, ...
'thresholdL', 0.25);
acquisitionStatus = 1;
end
end
%
% %% Save the response struct
% path2RGBOutputDirectory = fullfile(getpref(projectName,'stimulusInputBaseDir'),...
% parser.Results.directoryName);
% outputfileName = fullfile(path2RGBOutputDirectory,[outputFileName,'.mat']);
% save(outputfileName,'S','-v7.3');
function [win, params] = initDisplay(params)
% Create the GLWindow object and linearize the clut.
win = GLWindow('SceneDimensions', params.screenDimsCm, ...
'BackgroundColor', params.bgColor);
try
% Open the display.
win.open;
% Add the fixation point.
win.addOval([0 0], params.fpSize, params.fpColor, 'Name', 'fp');
% Add the fixation point in red color.
win.addOval([0 0], params.fpSize, params.fpColorRed, 'Name', 'fpRed');
% Add text
win.addText('Hit any button to start', ... % Text to display
'Center', [0 8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'startText'); % Identifier for the object.
% Add text
win.addText(['Key :', 'Interval 1 -> ', params.interval1Key,' Interval 2 -> ',params.interval2Key ], ... % Text to display
'Center', [0 -8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'keyOptions'); % Identifier for the object.
% Add text
win.addText('One third of trials over. Take 1 minute rest.', ... % Text to display
'Center', [0 8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'oneThirdText'); % Identifier for the object.
% Add text
win.addText('Rest over. Hit any button to continue', ... % Text to display
'Center', [0 8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'restOver'); % Identifier for the object.
% Add text
win.addText('Two third of trials over. Take 1 minute rest.', ... % Text to display
'Center', [0 8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'twoThirdText'); % Identifier for the object.
% Add text
win.addText('Experiment finished.', ... % Text to display
'Center', [0 8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'finishText'); % Identifier for the object.
% Turn all objects off for now.
win.disableAllObjects;
catch e
win.close;
rethrow(e);
end
end
function response = getUserResponse(params,key)
response = [];
switch key.charCode
% Left/Down
case params.interval1Key
response = 1;
% Right/Up
case params.interval2Key
response = 2;
end % switch
end
|
github
|
BrainardLab/VirtualWorldPsychophysics-master
|
runExperimentArcade.m
|
.m
|
VirtualWorldPsychophysics-master/experiment/runExperimentArcade.m
| 17,687 |
utf_8
|
71670cdef8fd940daed6f91429124bb5
|
function results = runExperimentArcade(varargin)
%%runExperiment : run lightness estimation experiment for the arcade game
%
% Usage:
% runExperimentArcade();
%
% Description:
% Run the lightness estimation psychophysics experiment given the
% calibration file, trial struct and LMS stimulus struct. Give the
% resutls of how many correct responses in the end.
%
% Input:
% None
%
% Output:
% numberOfCorrectResponse
%
% Optional key/value pairs:
% 'directoryName' : (string) Directory name of the case which will be studied (default 'ExampleDirectory')
% 'nameOfTrialStruct' : (string) Name of trail stuct to be used in experiment (defalult 'exampleTrial')
% 'nameOfCalibrationFile : (string) Name of calibration file (default 'VirtualWorldCalibration.mat')
% 'whichCalibration' : (scalar) Which calibration in file to use (default Inf -> most recent)
% 'controlSignal' : (string) How to collect user response (options: 'gamePad', 'keyboard', default 'keyboard')
% 'subjectName' : (string) Name of subject (default 'testSubject')
%% Get inputs and defaults.
parser = inputParser();
parser.addParameter('directoryName', 'ExampleCase', @ischar);
parser.addParameter('nameOfTrialStruct', 'exampleTrial', @ischar);
parser.addParameter('nameOfCalibrationFile', 'VirtualWorldCalibration', @ischar);
parser.addParameter('scaleFactor', 0, @isscalar);
parser.addParameter('whichCalibration', Inf, @isscalar);
parser.addParameter('controlSignal', 'keyboard', @ischar);
parser.addParameter('interval1Key', '1', @ischar);
parser.addParameter('interval2Key', '2', @ischar);
parser.addParameter('feedback', 0, @isscalar);
parser.addParameter('isDemo', 0, @isscalar);
parser.addParameter('subjectName', 'testSubject', @ischar);
parser.addParameter('theoreticalPsychophysicsMode', 0, @isscalar);
parser.parse(varargin{:});
directoryName = parser.Results.directoryName;
nameOfTrialStruct = parser.Results.nameOfTrialStruct;
nameOfCalibrationFile = parser.Results.nameOfCalibrationFile;
whichCalibration = parser.Results.whichCalibration;
scaleFactor = parser.Results.scaleFactor;
controlSignal = parser.Results.controlSignal;
interval1Key = parser.Results.interval1Key;
interval2Key = parser.Results.interval2Key;
subjectName = parser.Results.subjectName;
theoreticalPsychophysicsMode = parser.Results.theoreticalPsychophysicsMode;
projectName = 'VirtualWorldPsychophysics';
rightSound = sin(2*pi*[1:1000]/10)/10;
wrongSound = rand(1,1000).*sin(2*pi*[1:1000]/10)/10;
%% Some experimental parameters.
%
% May want to read these from a file at
% some point.
params.screenDimsCm = [59.65 33.55];
params.fpSize = [0.1 0.1]; % fixation point size
params.fpColor = [34 70 34]/255; % fixation point color
params.bgColor = [0 0 0 0];
params.textColor = [0.6 0.2 0.2];
params.firstImageLoc = [0 0];
params.secondImageLoc = [0 0];
params.firstImageSize = [2.62 2.62];
params.secondImageSize = [2.62 2.62];
params.ISI = 0.25;
params.ITI = 0.25;
params.stimDuration = 0.25;
params.interval1Key = interval1Key;
params.interval2Key = interval2Key;
results = [0 0];
% If the game pad has symbol 1 2 3 4, instead of X A B Y
if strcmp(interval1Key,'GP:1') params.interval1Key = 'GP:UpperLeftTrigger'; end
if strcmp(interval2Key,'GP:2') params.interval2Key = 'GP:UpperRightTrigger'; end
%% Load the trial struct
pathToTrialStruct = fullfile(getpref(projectName,'stimulusInputBaseDir'),...
directoryName,[nameOfTrialStruct '.mat']);
temp = load(pathToTrialStruct); trialStruct = temp.trialStruct; clear temp;
%% Load the LMS struct
LMSstructName = trialStruct.LMSstructName;
pathToLMSStruct = fullfile(getpref(projectName,'stimulusInputBaseDir'),...
directoryName,[LMSstructName '.mat']);
temp = load(pathToLMSStruct); LMSStruct = temp.LMSStruct; clear temp;
%% Load calibration file
cal = LoadCalFile(nameOfCalibrationFile,whichCalibration,fullfile(getpref('VirtualWorldPsychophysics','calibrationDir')));
if (isempty(cal))
error('Could not find specified calibration file');
end
%% Initialize calibration structure for the cones
cal = SetSensorColorSpace(cal, LMSStruct.T_cones, LMSStruct.S); % Fix the last option
%% Find the scale factor
if (scaleFactor == 0)
scaleFactor = findScaleFactor(cal, LMSStruct);
end
%% Set Gamma Method
cal = SetGammaMethod(cal,0);
%% Start Time of Experiment
startTime = datestr(now);
%% Now loop over the images for presentation on screen
% Before that figure out how long it takes to convert two LMS to RGB and
% present on screen. Shouldn't be very long
response = struct('subjectName',subjectName, ...
'correctResponse',[],...
'actualResponse',[]);
%% Initiate display
[win, params] = initDisplay(params, results);
%% Start key capture and clear keyboard queue before we draw the stimuli.
ListenChar(2);
mglGetKeyEvent;
% Instantiate a gamePad object
if (strcmp(controlSignal, 'gamePad'))
gamePad = GamePad();
else
gamePad = [];
end
% Clear out any previous keypresses.
FlushEvents;
%% Enable fixation and start text
win.enableObject('fp');
win.enableObject('TrialStartText');
win.enableObject('keyOptions');
win.draw;
%% Wait for key
% keyPress = GetChar;
key = [];
while (isempty(key))
if (strcmp(controlSignal, 'keyboard'))
key = mglGetKeyEvent;
else
key = gamePad.getKeyEvent();
end
end
%% Turn off start text, add images and wait for another key
win.disableObject('TrialStartText');
win.disableObject('keyOptions');
% Run easy trials
nEasyTrials = 5;
runEasyTrials(nEasyTrials, trialStruct, cal, scaleFactor, LMSStruct, params, controlSignal, win, gamePad, parser);
runEasyTrials(nEasyTrials, trialStruct, cal, scaleFactor, LMSStruct, params, controlSignal, win, gamePad, parser);
win.enableObject('fp');
win.enableObject('PracticeOverText');
win.draw;
pause(10);
win.disableObject('PracticeOverText');
win.disableObject('keyOptions');
% Clear out any previous keypresses.
FlushEvents;
%% Enable fixation and start text
win.enableObject('fp');
win.enableObject('RealSessionText');
win.enableObject('keyOptions');
win.draw;
%% Wait for key
% keyPress = GetChar;
key = [];
while (isempty(key))
if (strcmp(controlSignal, 'keyboard'))
key = mglGetKeyEvent;
else
key = gamePad.getKeyEvent();
end
end
%% Turn off start text, add images and wait for another key
win.disableObject('RealSessionText');
win.disableObject('keyOptions');
% Reset the keyboard queue.
mglGetKeyEvent;
saveData = 1;
keepLooping = 1;
iterTrials = 0;
while keepLooping
iterTrials = iterTrials + 1;
stdIndex = trialStruct.trialStdIndex(iterTrials);
cmpIndex = trialStruct.trialCmpIndex(iterTrials);
stdRGBImage = CalFormatToImage(SensorToSettings(cal, scaleFactor*LMSStruct.LMSImageInCalFormat(:,:,stdIndex)),LMSStruct.cropImageSizeX,LMSStruct.cropImageSizeY);
cmpRGBImage = CalFormatToImage(SensorToSettings(cal, scaleFactor*LMSStruct.LMSImageInCalFormat(:,:,cmpIndex)),LMSStruct.cropImageSizeX,LMSStruct.cropImageSizeY);
stdRGBImage(stdRGBImage < 0 ) = 0;
cmpRGBImage(cmpRGBImage < 0 ) = 0;
standardYLarger = (trialStruct.stdYInTrial(iterTrials) >= trialStruct.cmpYInTrial(iterTrials));
if trialStruct.cmpInterval(iterTrials) % comparison on the second interval
firstImage = stdRGBImage(end:-1:1,:,:);
secondImage = cmpRGBImage(end:-1:1,:,:);
if standardYLarger
correctResponse(iterTrials) = 1;
else
correctResponse(iterTrials) = 2;
end
else % comparison on the first
firstImage = cmpRGBImage(end:-1:1,:,:);
secondImage = stdRGBImage(end:-1:1,:,:);
if standardYLarger
correctResponse(iterTrials) = 2;
else
correctResponse(iterTrials) = 1;
end
end
if theoreticalPsychophysicsMode
meanRGBFirstImage = mean(mean(mean(firstImage(floor(LMSStruct.cropImageSizeX/2)-4:floor(LMSStruct.cropImageSizeX/2)+5, ...
floor(LMSStruct.cropImageSizeX/2)-4:floor(LMSStruct.cropImageSizeX/2)+5,:))));
meanRGBSecondImage = mean(mean(mean(secondImage(floor(LMSStruct.cropImageSizeX/2)-4:floor(LMSStruct.cropImageSizeX/2)+5, ...
floor(LMSStruct.cropImageSizeX/2)-4:floor(LMSStruct.cropImageSizeX/2)+5,:))));
keyPress(iterTrials) = (meanRGBSecondImage > meanRGBFirstImage) + 1;
actualResponse(iterTrials) = keyPress(iterTrials);
else
% For testing, extract average RGB values from center of first and
% second image, and figure out which is bigger
% Write the images into the window and disable
win.addImage(params.firstImageLoc, params.firstImageSize, firstImage, 'Name', 'firstImage');
win.addImage(params.secondImageLoc, params.secondImageSize, secondImage, 'Name', 'secondImage');
win.disableObject('firstImage');
win.disableObject('secondImage');
% Enable "left" image and draw
win.enableObject('firstImage');
win.draw;
% Wait for duration
mglWaitSecs(params.stimDuration);
win.disableObject('firstImage');
win.draw;
% Wait for ISI and show "second" image
mglWaitSecs(params.ISI);
win.enableObject('secondImage');
win.draw;
% Wait for duration
mglWaitSecs(params.stimDuration);
win.disableObject('secondImage');
win.draw;
%% Wait for key
FlushEvents;
key =[];
while (isempty(key))
% Get user response from keyboard
if (strcmp(controlSignal, 'keyboard'))
key = mglGetKeyEvent;
if (~isempty(key))
switch key.charCode
case {params.interval1Key,params.interval2Key}
keyPress(iterTrials) = getUserResponse(params,key);
case {'q'}
fprintf('Do you want to quit? Press Y for Yes, otherwise give your response \n');
key2 = [];
while (isempty(key2))
key2 = mglGetKeyEvent;
if (~isempty(key2))
switch key2.charCode
case {params.interval1Key,params.interval2Key}
keyPress(iterTrials) = getUserResponse(params,key2);
case {'y'}
keepLooping = false;
otherwise
key2 = [];
end
end
end
otherwise
key = [];
end
end
% Get user response from gamePad
else
key = gamePad.getKeyEvent();
if (~isempty(key))
switch key.charCode
case {params.interval1Key,params.interval2Key}
keyPress(iterTrials) = getUserResponse(params,key);
otherwise
key = [];
end
end
pressedKeyboard = mglGetKeyEvent;
if (~isempty(pressedKeyboard))
switch pressedKeyboard.charCode
case {'q'}
fprintf('Do you want to quit? Press Y for Yes, otherwise give your response using gamepad \n');
key2 = [];
keyG = [];
FlushEvents;
while (isempty(key2) && isempty(keyG))
key2 = mglGetKeyEvent;
keyG = gamePad.getKeyEvent();
if (~isempty(key2))
switch key2.charCode
case {'y'}
keepLooping = false;
key = 0; % set key = 0 in order to exit this loop
otherwise
key2 = [];
end
elseif (~isempty(keyG))
switch keyG.charCode
case {params.interval1Key,params.interval2Key}
key = keyG;
keyPress(iterTrials) = getUserResponse(params,key);
otherwise
keyG = [];
end
end
end
end
end
end
end
% Check if the experiment continues, otherwise quit without saving data
if keepLooping
actualResponse(iterTrials) = keyPress(iterTrials);
fprintf('The character typed was %d\n',keyPress(iterTrials));
% Give feedback if option is on
if parser.Results.feedback
if (actualResponse(iterTrials) == correctResponse(iterTrials));
sound(rightSound);
else
sound(wrongSound);
end
end
mglWaitSecs(params.ITI);
else
fprintf('Quitting without saving any data.\n');
saveData = 0;
end
% Check if end of experiment is reached
end
if (iterTrials == length(trialStruct.trialStdIndex))
keepLooping = false;
end
end
%% Done with experiment, close up
%
% Show end of experimetn text
results(1) = sum(actualResponse == correctResponse);
results(2) = length(actualResponse);
win.close;
[win, params] = initDisplay(params, results);
win.enableObject('Result');
win.draw;
pause(10);
win.disableObject('Result');
% Close our display.
win.close;
% Make sure key capture is off.
ListenChar(0);
end
function [win, params] = initDisplay(params, results)
% Create the GLWindow object and linearize the clut.
win = GLWindow('SceneDimensions', params.screenDimsCm, ...
'BackgroundColor', params.bgColor, 'SpoofFullScreen', false);
try
% Open the display.
win.open;
% Add the fixation point.
win.addOval([0 0], params.fpSize, params.fpColor, 'Name', 'fp');
% Add text
win.addText('Practice Session: Hit any button to start', ... % Text to display
'Center', [0 8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'TrialStartText'); % Identifier for the object.
win.addText('Practice Session Over.', ... % Text to display
'Center', [0 8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'PracticeOverText'); % Identifier for the object.
% Add text
win.addText('Game begins: Hit any button to start', ... % Text to display
'Center', [0 8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'RealSessionText'); % Identifier for the object.
% Add text
win.addText('Hit any button to start', ... % Text to display
'Center', [0 8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'startText'); % Identifier for the object.
% Add text
win.addText(['Key :', 'Interval 1 -> ', params.interval1Key,' Interval 2 -> ',params.interval2Key ], ... % Text to display
'Center', [0 -8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'keyOptions'); % Identifier for the object.
% Add text
win.addText('One third of trials over. Take 1 minute rest.', ... % Text to display
'Center', [0 8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'oneThirdText'); % Identifier for the object.
% Add text
win.addText('Rest over. Hit any button to continue', ... % Text to display
'Center', [0 8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'restOver'); % Identifier for the object.
% Add text
win.addText('Two third of trials over. Take 1 minute rest.', ... % Text to display
'Center', [0 8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'twoThirdText'); % Identifier for the object.
% Add text
win.addText([num2str(results(1)), ' correct out of ', num2str(results(2)), '. :)'], ... % Text to display
'Center', [0 8], ...% Where to center the text. (x,y)
'FontSize', 75, ... % Font size
'Color', params.textColor, ... % RGB color
'Name', 'Result'); % Identifier for the object.
% Turn all objects off for now.
win.disableAllObjects;
catch e
win.close;
rethrow(e);
end
end
function response = getUserResponse(params,key)
response = [];
switch key.charCode
% Left/Down
case params.interval1Key
response = 1;
% Right/Up
case params.interval2Key
response = 2;
end % switch
end
|
github
|
BrainardLab/VirtualWorldPsychophysics-master
|
t_equivNoiseEtc.m
|
.m
|
VirtualWorldPsychophysics-master/tutorials/t_equivNoiseEtc.m
| 20,673 |
utf_8
|
f3af826c6c0444ad2c14d8e1869b6e96
|
%% Work through basic equivalent noise models
%
% Description:
% Simulates data using a TSD based model, or loads in our actual data,
% and fits with various models.
%
% The fits are for the TSD model used to generate the simulated data and
% a piecewise linear model.
%
% Can also generate curves by simulating a simple (two pixel) linear
% receptive field model, but this is not fit as it's slow and stochastic.
% Parameters adjusted to match up with experimental data. This is a
% simplified version of the model Vijay developed to run on the actual
% experimental images. Note that the variability in the experimental
% images is constrained by physical reflectance constraints (0-1), and
% thus the realized variability is not exactly that specified by the
% covariance matrix of the underlying Gaussian.
%
% In simulate mode, every once and a while the piecewise linear function
% fit function crashes for reasons I don't understand. Running it again
% is usually then fine, which is one reason it's hard to figure out.
%
% This requires the Palamedes toolbox.
% You'll get that with tbUseProject('VirtualWorldPsychophysics')
% or just tbUse('Palamedes_1.9.0')
%
% See also: t_tvnSimpleModel
%% History
% 12/10/20 dhb Finished writing first version.
%% Initialize
clear; close all;
%% Set parameters for TSD model if it is simulated.
%% Threshold d-prime
%
% These are also value assumed in TSD fit if the corresponding fit booleans
% are false, so they are set outside the SIMULATE conditional.
% simThresholdDPrime is the criterion d-prime value used to determine threshold
% simSignalExponent is the exponent in the TSD model.
% Positive values decrease the slope of the rising limb. See
% t_tvnSimpleModel for more expansion on the TSD model.
simThresholdDPrime = 1;
simSignalExponent = 1;
% In the TSD model fit, you can hold the thresholdDPrime and signalExponent
% fixed at the values above (set to false here), or search on them (set to
% true).
fitThresholdDPrime = false;
fitSignalExponent = false;
%% Simulate or set threshold data and smooth curve for plotting
SIMULATE = false;
%% Use the effective scalars rather than the nominal scalars when analyzing actual data
USE_EFFECTIVESCALARS = true;
%% Generate data to be used here
if (SIMULATE)
% Simulated parameters
% simSigma2_i is the variance of the internal noise
% simSigma2_e is the variance of the external noise at covScalar = 1.
% simDataNoiseSd is the standard deviation of iid Gaussian noise added to the simulated data.
simSigma2_i = 1.5;
simSigma2_e = 10;
simDataNoiseSd = 0.05;
% Data size
nCovScalarsData = 10;
nCovScalarsPlot = 100;
covScalarsData = logspace(-3,log10(15),nCovScalarsData);
covScalarsPlot = logspace(-3,log10(15),nCovScalarsPlot);
% Simulate and add noise
thresholdDeltaDataRaw = ComputeTSDModel(simThresholdDPrime,simSigma2_i,simSigma2_e,simSignalExponent,covScalarsData);
thresholdDeltaData = thresholdDeltaDataRaw + normrnd(0,simDataNoiseSd,size(thresholdDeltaDataRaw));
yPlotLimLow = 0;
yPlotLimHigh = 2;
% These parameters yield a reasonable fit (determined by hand) to the simulated data
% with default script parameters.
lrfThresholdDPrime = simThresholdDPrime;
lrfSigma2_i = simSigma2_i;
lrfSigma2_e = simSigma2_e;
else
% See estimateModelTresholds in paper repository for how these
% effective scale factors were derived. The model generated there is
% run for more covariance scale factors than the experiment, so we need
% to pull out just the ones that correspond to the experimental values,
% when we put these into the data matrix.
covarianceScalarsModelNominal = [0.0001 0.0003, 0.001, 0.003, 0.01, 0.03, 0.10, 0.30, 1];
effectiveCovarianceScalars = [0.0015, 0.0018, 0.0041, 0.0082, 0.0236, 0.0544, 0.2345, 0.4628, 1.0000];
effectiveUseIndex = [1 5 6 7 8 9];
thresholdDeltaInput = [
0.0001 0.0237
0.01 0.0226
0.03 0.0278
0.1 0.029
0.3 0.0338
1 0.0374]';
nCovScalarsPlot = 100;
if (USE_EFFECTIVESCALARS)
thresholdDeltaInput(1,:) = effectiveCovarianceScalars(effectiveUseIndex);
end
covScalarsData = thresholdDeltaInput(1,:);
covScalarsPlot = logspace(log10(covScalarsData(1)),log10(covScalarsData(end)),nCovScalarsPlot);
thresholdDeltaData = thresholdDeltaInput(2,:);
nCovScalarsData = length(covScalarsData);
yPlotLimLow = -3.5;
yPlotLimHigh = -1.5;
% Chosen by hand to approximate our data
if (USE_EFFECTIVESCALARS)
lrfThresholdDPrime = 1;
lrfSigma2_i = 0.0006031;
lrfSigma2_e = 0.000896;
else
lrfThresholdDPrime = 1;
lrfSigma2_i = (0.034)^2/2;
lrfSigma2_e = (0.05)^2/2;
end
end
%% Fit the underlying TSD model
%
% If we're fitting thresholdDPrime, pass [] in key/value pair. Otherwise pass fixed value
% to use.
if (fitThresholdDPrime)
passThresholdDPrime = [];
else
passThresholdDPrime = simThresholdDPrime;
end
% If we're fitting signalExponent, pass [] in key/value pair. Otherwise
% pass fixed value to use.
if (fitSignalExponent)
passSignalExponent = [];
else
passSignalExponent = simSignalExponent;
end
% Fit and report
[tsdThresholdDPrime,tsdSigma2_i,tsdSigma2_e,tsdSignalExponent] = FitTSDModel(covScalarsData,thresholdDeltaData,...
'thresholdDPrime',passThresholdDPrime,'signalExponent',passSignalExponent);
fprintf('\nTSD fit to data: thresholdDPrime = %0.1f, sigma2_i = %0.4g, sigma2_e = %0.4g, signalExponent = %0.3f\n', ...
tsdThresholdDPrime,tsdSigma2_i,tsdSigma2_e,tsdSignalExponent);
% Generate smooth curve for plotting
tsdThreshDeltaPlot = ComputeTSDModel(tsdThresholdDPrime,tsdSigma2_i,tsdSigma2_e,tsdSignalExponent,covScalarsPlot);
%% Fit piecewise linear function
[plThresh0,plLogEquivScalar,plSlope] = FitPiecewiseLinear(covScalarsData,thresholdDeltaData);
plThreshDeltaPlot = ComputePiecewiseLinear(plThresh0,plLogEquivScalar,plSlope,covScalarsPlot);
fprintf('Piecewise fit to data: thresh0 = %0.2f (log T^2 = %0.2f), logEquivScalar = %0.2f, slope = %0.2f\n\n',plThresh0,log10(plThresh0^2),plLogEquivScalar,plSlope);
%% Compute linear RF model
%
% Run out predictions with hand chosen parameters
lrfThreshDeltaData = ComputeLinearRFModel(lrfThresholdDPrime,lrfSigma2_i,lrfSigma2_e,covScalarsData);
% Fit this with the TSD model, which should describe it exactly with
% exponent of 1, up to simulation noise
[lrfTSDFitThresholdDPrime,lrfTSDFitSigma2_i,lrfTSDFitSigma2_e,lrfTSDFitSignalExponent] = FitTSDModel(covScalarsData,lrfThreshDeltaData,...
'thresholdDPrime',lrfThresholdDPrime,'signalExponent',1);
fprintf('\nLRF model parameters: thresholdDPrime = %0.1f, sigma2_i = %0.4g, sigma2_e = %0.4g\n', ...
lrfThresholdDPrime,lrfSigma2_i,lrfSigma2_e);
fprintf('TSD fit to linear RF model: thresholdDPrime = %0.1f, sigma2_i = %0.4g, sigma2_e = %0.4g, signalExponent = %0.3f\n', ...
lrfTSDFitThresholdDPrime,lrfTSDFitSigma2_i,lrfTSDFitSigma2_e,lrfTSDFitSignalExponent);
% Compute curve for plotting
lrfTSDFitThreshDeltaPlot = ComputeTSDModel(lrfTSDFitThresholdDPrime,lrfTSDFitSigma2_i,lrfTSDFitSigma2_e,lrfTSDFitSignalExponent,covScalarsPlot);
% Interpret piecewise linear parameters
%
% thresh0 = sqrt(sigma2_n)*simThresholdDPrime;
plSigma2_i = (plThresh0/simThresholdDPrime)^2;
plSigma2_e = plSigma2_i/10^(plLogEquivScalar);
% Print out
if (SIMULATE)
fprintf('Simulated: internal noise SD = %0.3f, external noise SD = %0.3f (at cov scalar 1)\n',sqrt(simSigma2_i),sqrt(simSigma2_e));
end
fprintf('\nTSD fit: internal noise SD = %0.4g, external noise SD = %0.4g (at cov scalar 1)\n',sqrt(tsdSigma2_i),sqrt(tsdSigma2_e));
fprintf('Piecewise fit: internal noise SD = %0.4g, external noise SD = %0.4g (at cov scalar 1)\n',sqrt(plSigma2_i),sqrt(plSigma2_e));
%% Plot log threshold^2 versus log covScalar
figure; clf; hold on;
plot(log10(covScalarsData),log10(thresholdDeltaData.^2),'ro','MarkerFaceColor','r','MarkerSize',10);
plot(log10(covScalarsPlot),log10(tsdThreshDeltaPlot.^2),'r','LineWidth',1);
plot(log10(covScalarsPlot),log10(plThreshDeltaPlot.^2),'b','LineWidth',1);
plot(log10(covScalarsData),log10(lrfThreshDeltaData.^2),'ko','MarkerFaceColor','k','MarkerSize',8);
plot(log10(covScalarsPlot),log10(lrfTSDFitThreshDeltaPlot.^2),'k','LineWidth',1);
xlabel('Log10 Covariance Scalar');
ylabel('Log10 Threshold^2');
%ylim([yPlotLimLow yPlotLimHigh]);
%% ComputePiecewiseLinear
%
% Compute thresholds from parameters of piecewise linear fit in log10
% threshold^2 versus log10 covariance scalar piecewise linear fit.
function thresholdDeltaLRFs = ComputePiecewiseLinear(thresh0,logEquivScalar,slope,covScalars)
delta = log10(thresh0^2);
temp = covScalars - logEquivScalar;
temp1 = log10(temp);
temp1(temp <= 0) = -100;
thresholdDeltaLRFs = sqrt(10.^max(delta,delta + slope*(log10(covScalars)-logEquivScalar)));
end
%% FitPiecewiseLinear
function [thresh0,logEquivScalar,slope] = FitPiecewiseLinear(covScalars,thresholdDeltaData)
% Reasonable bounds
minThresh0 = min(thresholdDeltaData);
maxThresh0 = max(thresholdDeltaData);
minLogScalar = log10(min(covScalars));
maxLogScalar = log10(max(covScalars));
minSlope = 0.1;
maxSlope = 10;
% Bounds
vlb = [minThresh0 minLogScalar minSlope];
vub = [maxThresh0 maxLogScalar maxSlope];
% Set up starting point grid
nThresh0s = 5;
nLogScalars = 5;
nSlopes = 5;
tryThresh0s = linspace(minThresh0,maxThresh0,nThresh0s);
tryLogScalars = linspace(minLogScalar,maxLogScalar,nLogScalars);
trySlopes = linspace(minSlope,maxSlope,nSlopes);
% Grid search around fmincon starting point
options = optimset(optimset('fmincon'),'Diagnostics','off','Display','off','LargeScale','off','Algorithm','active-set');
bestF = Inf;
bestX = [];
for tt = 1:nThresh0s
for ll = 1:nLogScalars
for ss = 1:nSlopes
% Set x0 and search
x0 = [tryThresh0s(tt) tryLogScalars(ll) trySlopes(ss)];
x = fmincon(@(x)FitPiecewiseLinearFun(x,covScalars,thresholdDeltaData),x0,[],[],[],[],vlb,vub,[],options);
f = FitPiecewiseLinearFun(x,covScalars,thresholdDeltaData);
if (f < bestF)
bestF = f;
bestX = x;
end
end
end
end
% Extract parameters from best fit
thresh0 = bestX(1);
logEquivScalar = bestX(2);
slope = bestX(3);
end
%% Error function for piecewise linear fitting
function f = FitPiecewiseLinearFun(x,covScalars,thresholdDelta)
thresh0 = x(1);
logEquivScalar = x(2);
slope = x(3);
predictedDelta = ComputePiecewiseLinear(thresh0,logEquivScalar,slope,covScalars);
diff2 = (thresholdDelta - predictedDelta).^2;
f = sqrt(mean(diff2));
end
%% Compute thresholds under simple underlying TSD model
%
% For the signalExponent == 1 case, just need to invert the forward relation
% thresholdDPrime = (thresholdLRF - standardLRF)/sqrt(sigman2_n + covScalar*sigma2_e);
%
% This corresponds to adding noise to both comparison and standard
% representationsm as per standard definition of d-prime under equal
% variance distributions.
%
% Since the threshold we want is the difference from the standard, we can
% just treat the standardLRF as 0 without loss of generality.
%
% The raising to the signalExponent is provides an ad-hoc parameter that allows us
% more flexibility in fiting the data, but its underlying interpretation
% isn't clear. Note that when the signalExponent isn't 1, it's hard to
% interpret the sigma's of the fit. Or at least, we have not thought that
% through yet.
function thresholdDelta = ComputeTSDModel(thresholdDPrime,sigma2_i,sigma2_e,signalExponent,covScalars)
for jj = 1:length(covScalars)
thresholdDelta(jj) = (sqrt(sigma2_i + covScalars(jj)*sigma2_e)*thresholdDPrime).^(1/signalExponent);
end
end
%% FitTSDModel
function [thresholdDPrime,sigma2_i,sigma2_e,signalExponent] = FitTSDModel(covScalars,thresholdDelta,varargin)
p = inputParser;
p.addParameter('thresholdDPrime',1,@(x) (isempty(x) | isnumeric(x)));
p.addParameter('signalExponent',1,@(x) (isempty(x) | isnumeric(x)));
p.parse(varargin{:});
% Set thresholdDPrime initial value and bounds depending on parameters
% Empty means search over it, otherwise lock at passed
% value.
if (~isempty(p.Results.thresholdDPrime))
thresholdDPrime0 = p.Results.thresholdDPrime;
thresholdDPrimeL = p.Results.thresholdDPrime;
thresholdDPrimeH = p.Results.thresholdDPrime;
else
thresholdDPrime0 = 1;
thresholdDPrimeL = 1e-10;
thresholdDPrimeH = 1e10;
end
% Set signalExponent initial value and bounds depending on parameters
% Empty means search over it, otherwise lock at passed
% value.
if (~isempty(p.Results.signalExponent))
signalExponent0 = p.Results.signalExponent;
signalExponentL = p.Results.signalExponent;
signalExponentH = p.Results.signalExponent;
nExps = 1;
else
signalExponent0 = 1;
signalExponentL = 1e-2;
signalExponentH = 1e2;
nExps = 20;
end
% Bounds
vlb = [thresholdDPrimeL 1e-20 1e-20 signalExponentL];
vub = [thresholdDPrimeH 100 100 signalExponentH];
% Grid over starting parameters
trySignalExponents = linspace(signalExponentL,signalExponentH,nExps);
% Search
bestF = Inf;
bestX = [];
for ee = 1:nExps
thresholdDPrime0 = thresholdDPrime0;
signalExponent0 = trySignalExponents(ee);
sigma2_i0 = ((min(thresholdDelta).^signalExponent0)/thresholdDPrime0).^2;
sigma2_e0 = sigma2_i0;
x0 = [thresholdDPrime0 sigma2_i0 sigma2_e0 signalExponent0];
options = optimset(optimset('fmincon'),'Diagnostics','off','Display','off','LargeScale','off','Algorithm','active-set');
x = fmincon(@(x)FitTSDModelFun(x,covScalars,thresholdDelta),x0,[],[],[],[],vlb,vub,[],options);
f = FitTSDModelFun(x,covScalars,thresholdDelta);
if (f < bestF)
bestF = f;
bestX = x;
end
end
% Extract parameters
thresholdDPrime = bestX(1);
sigma2_i = bestX(2);
sigma2_e = bestX(3);
signalExponent = bestX(4);
end
%% Error function for TSD model fitting
function f = FitTSDModelFun(x,covScalars,thresholdDelta)
thresholdDPrime = x(1);
sigma2_i = x(2);
sigma2_e = x(3);
signalExponent = x(4);
predictedDelta = ComputeTSDModel(thresholdDPrime,sigma2_i,sigma2_e,signalExponent,covScalars);
diff2 = (thresholdDelta - predictedDelta).^2;
f = sqrt(mean(diff2));
end
%% Compute thresholds under linear RF model
%
% This is a two-pixel version, with one pixel for center and one for
% surround. They have weights 1 and -1, which are hard coded here. We add
% external noise to the surround, and vary the center of the comparisons
% relative to the standard.
%
% Internal noise is added to the center and external noise to the surround,
% for both standard and comparison. This factors the parameters a bit
% differently from the way Vijay did in his code, but allows easy match up
% to the analytic TSD model.
%
% It's useful to plot the psychometric functions, because you want to make
% sure that the range of comparison variation is in a regime that affects
% performance reasonably. This varies with sigma2_i and sigma2_e, and
% based on experience the routine attemps to put the comparison variation
% in the right range.
function thresholdDelta = ComputeLinearRFModel(thresholdDPrime,sigma2_i,sigma2_e,covScalars,varargin)
p = inputParser;
p.addParameter('plotPsycho',true,@(x) (islogical(x)));
p.parse(varargin{:});
% Figure
if (p.Results.plotPsycho)
lrfPsychoFig = figure; clf;
end
% Threshold criterion
thresholdCrit = dPrimeToTAFCFractionCorrect(thresholdDPrime); % d-prime of 1 -> 0.7602
% This factor scales the stimuli so as put psychometric function in range.
% Determined by hand
factor = 10*sqrt(sigma2_i/0.03);
% Linear RF
linearRF = [1 -1];
% Standard/comparison LRF values
standardLRF = factor*0;
comparisonLRFs = factor*[-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05];
N = 5000;
for ss = 1:length(covScalars)
propComparisonChosen = zeros(1,length(comparisonLRFs));
% Add surrond noise to both standard and comparison as in experiment
for cc = 1:length(comparisonLRFs)
standardRFValues = standardLRF - normrnd(0,sqrt(covScalars(ss)*sigma2_e + sigma2_i),1,N);
comparisonRFValues = comparisonLRFs(cc) - normrnd(0,sqrt(covScalars(ss)*sigma2_e + sigma2_i),1,N);
propComparisonChosen(cc) = mean(comparisonRFValues > standardRFValues);
end
% Fit psychometric function using Palamedes. Fairly standard code.
PF = @PAL_CumulativeNormal; % Alternatives: PAL_Gumbel, PAL_Weibull, PAL_CumulativeNormal, PAL_HyperbolicSecant
% paramsFree is a boolean vector that determins what parameters get
% searched over. 1: free parameter, 0: fixed parameter
paramsFree = [1 1 1 1];
% Initial guess. Setting the first parameter to the middle of the stimulus
% range and the second to 1 puts things into a reasonable ballpark here.
paramsValues0 = [0 1 0 0];
lapseLimits = [0 0.05];
% Set up standard options for Palamedes search
options = PAL_minimize('options');
% Fit with Palemedes Toolbox. The parameter constraints match the psignifit parameters above. Some thinking is
% required to initialize the parameters sensibly. We know that the mean of the cumulative normal should be
% roughly within the range of the comparison stimuli, so we initialize this to the mean. The standard deviation
% should be some moderate fraction of the range of the stimuli, so again this is used as the initializer.
[paramsValues] = PAL_PFML_Fit(...
comparisonLRFs,propComparisonChosen,ones(size(propComparisonChosen)), ...
paramsValues0,paramsFree,PF, ...
'lapseLimits',lapseLimits,'guessLimits',[],'searchOptions',options,'gammaEQlambda',true);
xx = linspace(comparisonLRFs(1),comparisonLRFs(end),1000);
yy = PF(paramsValues,xx');
psePal = PF(paramsValues,0.5,'inverse');
thresholdDelta(ss) = PF(paramsValues,thresholdCrit,'inverse')-psePal;
if (p.Results.plotPsycho)
figure(lrfPsychoFig); hold on
%plot(comparisonLRFs,propComparisonChosen,'ro','MarkerFaceColor','r','MarkerSize',12);
plot(xx,yy,'r','LineWidth',1);
ylim([0 1]);
end
end
end
%% The three functions below are TSD utility routines pasted in from ISETBio
function fractionCorrect = dPrimeToTAFCFractionCorrect(dPrime)
% fractionCorrect = dPrimeToTAFCPercentFraction(dPrime)
%
% Get area under ROC curve for an equal-variance normal distribution
% d-prime and from there compute fraction correct.
%
% This was originally written as numerical integration of ROC curve. Now
% has analytic calculation inserted, and a check that the two are close.
% At some point, might want to change over to the analytic version.
%
% See also: computeROCArea, analyticPHitPpFA, computeDPrimCritNorm
% History:
% 05/26/2020 dhb Added analytic calculation
%% Examples:
%{
dPrimeToTAFCFractionCorrect(0.25)
dPrimeToTAFCFractionCorrect(0.5)
dPrimeToTAFCFractionCorrect(0.1)
dPrimeToTAFCFractionCorrect(2)
dPrimeToTAFCFractionCorrect(3)
%}
nCriteria = 1000;
lowCriterion = -8;
highCriterion = 8;
fractionCorrect = computeROCArea(dPrime,0,1,linspace(lowCriterion,highCriterion,nCriteria));
fractionCorrect1 = normcdf(dPrime/sqrt(2));
if (max(abs(fractionCorrect-fractionCorrect1)) > 1e-3)
error('Numerical and analytic calculations do not match');
end
end
%% Also from isetbio, and here for convenience
function rocArea = computeROCArea(signalMean,noiseMean,commonSd,criteria)
% rocArea = computeROCArea(signalMean,noiseMean,commonSd,criteria)
%
% Compute area under ROC curve given signal mean, noise mean, the common
% standard deviation, and a set of criteria. Uses the equal-variance
% normal assumption.
% Compute ROC curve
for i = 1:length(criteria)
[pHitAnalytic(i),pFaAnalytic(i)] = analyticpHitpFa(signalMean,noiseMean,commonSd,criteria(i));
end
% Integrate numerically to get area. The negative
% sign is because the way the computation goes, the hit rates
% decrease with increasing criteria.
rocArea = -trapz([1 pFaAnalytic 0],[1 pHitAnalytic 0]);
end
function [pHit,pFa] = analyticpHitpFa(signalMean,noiseMean,commonSd,rightCrit)
% [pHit,pFa] = analyticpHitpFa(signalMean,noiseMean,commonSd,rightCrit)
%
% This just finds the area under the signal and noise
% distributions to the right of the criterion to obtain
% hit and false alarm rates. Uses the equal-variance normal assumption.
pHit = 1-normcdf(rightCrit,signalMean,commonSd);
pFa = 1-normcdf(rightCrit,noiseMean,commonSd);
end
|
github
|
BrainardLab/VirtualWorldPsychophysics-master
|
t_tvnSimpleModel.m
|
.m
|
VirtualWorldPsychophysics-master/tutorials/t_tvnSimpleModel.m
| 4,385 |
utf_8
|
180aa1d005a577de29ce95491d141fdb
|
% t_tvnSimpleModel
%
% Simple model for thresholds versus noise
%
% See also: t_equivNoiseEtc
% History:
% 11/13/19 dhb Wrote it.
%% Clear
clear; close all;
%% Parameters
sigmasExternal = linspace(0.01,100,1000);
criterionDPrime = 1;
%% Initialize figure
figure; hold on
sigmaInternal = 1; externalIntrusionFactor = 0.5; signalExponent = 1;
thresholds = ComputeTvNThresholds(sigmasExternal,criterionDPrime,sigmaInternal,externalIntrusionFactor,signalExponent);
plot(log10(sigmasExternal.^2),log10(thresholds.^2),'r','LineWidth',4);
sigmaInternal = 2; externalIntrusionFactor = 0.5; signalExponent = 1;
thresholds = ComputeTvNThresholds(sigmasExternal,criterionDPrime,sigmaInternal,externalIntrusionFactor,signalExponent);
plot(log10(sigmasExternal.^2),log10(thresholds.^2),'r:','LineWidth',4);
sigmaInternal = 1; externalIntrusionFactor = 1; signalExponent = 1;
thresholds = ComputeTvNThresholds(sigmasExternal,criterionDPrime,sigmaInternal,externalIntrusionFactor,signalExponent);
plot(log10(sigmasExternal.^2),log10(thresholds.^2),'b','LineWidth',2);
sigmaInternal = 2; externalIntrusionFactor = 10; signalExponent = 1;
thresholds = ComputeTvNThresholds(sigmasExternal,criterionDPrime,sigmaInternal,externalIntrusionFactor,signalExponent);
plot(log10(sigmasExternal.^2),log10(thresholds.^2),'b:','LineWidth',2);
sigmaInternal = 1; externalIntrusionFactor = 0.5; signalExponent = 2;
thresholds = ComputeTvNThresholds(sigmasExternal,criterionDPrime,sigmaInternal,externalIntrusionFactor,signalExponent);
plot(log10(sigmasExternal.^2),log10(thresholds.^2),'g','LineWidth',4);
sigmaInternal = 2; externalIntrusionFactor = 0.5; signalExponent = 2;
thresholds = ComputeTvNThresholds(sigmasExternal,criterionDPrime,sigmaInternal,externalIntrusionFactor,signalExponent);
plot(log10(sigmasExternal.^2),log10(thresholds.^2),'g:','LineWidth',4);
xlim([-3 3]); ylim([-1 5]); axis('square');
xlabel('Log10 Noise Sigma^2');
ylabel('log10 Threshold^2');
function thresholds = ComputeTvNThresholds(sigmasExternal,criterionDPrime,sigmaInternal,externalIntrusionFactor,signalExponent)
for ii = 1:length(sigmasExternal)
thresholds(ii) = ComputeTvNThreshold(sigmasExternal(ii),criterionDPrime,sigmaInternal,externalIntrusionFactor,signalExponent);
end
end
% Compute thresholds for a generalized version of the standard TvN model.
%
% Syntax:
% threshold = ComputeTvNThreshold(sigmaExternal,criterionDPrime,sigmaInternal,externalIntrusionFactor,signalExponent)
%
% Description:
% Compute threshold under simple model where performance is limited by
% an early static non-linearity between stimulus and perceptual axis,
% with the non-linearity taken as a power function, as well as noise on
% the perceptual axis. The noise is the sum of internal noise and the
% effect of external noise.
%
% When the exponent is 1, this reduces to (I think) the standard model
% used for TvN functions. The standard model has an asymptotic slope
% of 1 when threshold squared is plotted against noise variance. Our
% data have slopes smaller than 1, and adding the exponent as a
% parameter allows a description of the data. The process
% interpretaiton of this model, however, is not immediately obvious.
%
% Inputs:
% sigmaExternal - Variance of experimentally added external noise.
% criterionDPrime - Value of d-prime that corresponds to threshold.
% sigmaInternal - Variance of internal noise on perceptual axis.
% externalIntrusionFactor - External noise times this is the addive
% variance of the external noise on the perceptual axis.
% signalExponent - Effect of stimulus strength on perceptual
% axis is x raised to this exponent. Set to 1 for the standard TvN
% model.
%
% Outputs:
% threshold - Threshold signal strength.
%
% Optional key/value pairs:
% None.
% History:
% 07/17/19 dhb Added header comment.
function threshold = ComputeTvNThreshold(sigmaExternal,criterionDPrime,sigmaInternal,externalIntrusionFactor,signalExponent)
sigma = sqrt(sigmaInternal^2 + sigmaExternal^2*externalIntrusionFactor);
exponentiatedThreshold = criterionDPrime*sigma;
threshold = exponentiatedThreshold^(1/signalExponent);
end
|
github
|
wenbihan/DeepDenoising-master
|
classification_demo.m
|
.m
|
DeepDenoising-master/matlab/demo/classification_demo.m
| 5,412 |
utf_8
|
8f46deabe6cde287c4759f3bc8b7f819
|
function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% Image classification demo using BVLC CaffeNet.
%
% IMPORTANT: before you run this demo, you should download BVLC CaffeNet
% from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html)
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
% im color image as uint8 HxWx3
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% scores 1000-dimensional ILSVRC score vector
% maxlabel the label of the highest score
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
%
% Usage:
% im = imread('../../examples/images/cat.jpg');
% scores = classification_demo(im, 1);
% [score, class] = max(scores);
% Five things to be aware of:
% caffe uses row-major order
% matlab uses column-major order
% caffe uses BGR color channel order
% matlab uses RGB color channel order
% images need to have the data mean subtracted
% Data coming in from matlab needs to be in the order
% [width, height, channels, images]
% where width is the fastest dimension.
% Here is the rough matlab for putting image data into the correct
% format in W x H x C with BGR channels:
% % permute channels from RGB to BGR
% im_data = im(:, :, [3, 2, 1]);
% % flip width and height to make width the fastest dimension
% im_data = permute(im_data, [2, 1, 3]);
% % convert from uint8 to single
% im_data = single(im_data);
% % reshape to a fixed size (e.g., 227x227).
% im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear');
% % subtract mean_data (already in W x H x C with BGR channels)
% im_data = im_data - mean_data;
% If you have multiple images, cat them with cat(4, ...)
% Add caffe/matlab to you Matlab search PATH to use matcaffe
if exist('../+caffe', 'dir')
addpath('..');
else
error('Please run this demo from caffe/matlab/demo');
end
% Set caffe mode
if exist('use_gpu', 'var') && use_gpu
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
% Initialize the network using BVLC CaffeNet for image classification
% Weights (parameter) file needs to be downloaded from Model Zoo.
model_dir = '../../models/bvlc_reference_caffenet/';
net_model = [model_dir 'deploy.prototxt'];
net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel'];
phase = 'test'; % run with phase test (so that dropout isn't applied)
if ~exist(net_weights, 'file')
error('Please download CaffeNet from Model Zoo before you run this demo');
end
% Initialize a network
net = caffe.Net(net_model, net_weights, phase);
if nargin < 1
% For demo purposes we will use the cat image
fprintf('using caffe/examples/images/cat.jpg as input image\n');
im = imread('../../examples/images/cat.jpg');
end
% prepare oversampled input
% input_data is Height x Width x Channel x Num
tic;
input_data = {prepare_image(im)};
toc;
% do forward pass to get scores
% scores are now Channels x Num, where Channels == 1000
tic;
% The net forward function. It takes in a cell array of N-D arrays
% (where N == 4 here) containing data of input blob(s) and outputs a cell
% array containing data from output blob(s)
scores = net.forward(input_data);
toc;
scores = scores{1};
scores = mean(scores, 2); % take average scores over 10 crops
[~, maxlabel] = max(scores);
% call caffe.reset_all() to reset caffe
caffe.reset_all();
% ------------------------------------------------------------------------
function crops_data = prepare_image(im)
% ------------------------------------------------------------------------
% caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that
% is already in W x H x C with BGR channels
d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;
IMAGE_DIM = 256;
CROPPED_DIM = 227;
% Convert an image returned by Matlab's imread to im_data in caffe's data
% format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); % flip width and height
im_data = single(im_data); % convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
% oversample (4 corners, center, and their x-axis flips)
crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single');
indices = [0 IMAGE_DIM-CROPPED_DIM] + 1;
n = 1;
for i = indices
for j = indices
crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :);
crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n);
n = n + 1;
end
end
center = floor(indices(2) / 2) + 1;
crops_data(:,:,:,5) = ...
im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:);
crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
|
github
|
wenbihan/DeepDenoising-master
|
MyVOCevalseg.m
|
.m
|
DeepDenoising-master/matlab/my_script/MyVOCevalseg.m
| 4,625 |
utf_8
|
128c24319d520c2576168d1cf17e068f
|
%VOCEVALSEG Evaluates a set of segmentation results.
% VOCEVALSEG(VOCopts,ID); prints out the per class and overall
% segmentation accuracies. Accuracies are given using the intersection/union
% metric:
% true positives / (true positives + false positives + false negatives)
%
% [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class
% percentage ACCURACIES, the average accuracy AVACC and the confusion
% matrix CONF.
%
% [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns
% the unnormalised confusion matrix, which contains raw pixel counts.
function [accuracies,avacc,conf,rawcounts] = MyVOCevalseg(VOCopts,id)
% image test set
[gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d');
% number of labels = number of classes plus one for the background
num = VOCopts.nclasses+1;
confcounts = zeros(num);
count=0;
num_missing_img = 0;
tic;
for i=1:length(gtids)
% display progress
if toc>1
fprintf('test confusion: %d/%d\n',i,length(gtids));
drawnow;
tic;
end
imname = gtids{i};
% ground truth label file
gtfile = sprintf(VOCopts.seg.clsimgpath,imname);
[gtim,map] = imread(gtfile);
gtim = double(gtim);
% results file
resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname);
try
[resim,map] = imread(resfile);
catch err
num_missing_img = num_missing_img + 1;
%fprintf(1, 'Fail to read %s\n', resfile);
continue;
end
resim = double(resim);
% Check validity of results image
maxlabel = max(resim(:));
if (maxlabel>VOCopts.nclasses),
error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses);
end
szgtim = size(gtim); szresim = size(resim);
if any(szgtim~=szresim)
error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2));
end
%pixel locations to include in computation
locs = gtim<255;
% joint histogram
sumim = 1+gtim+resim*num;
hs = histc(sumim(locs),1:num*num);
count = count + numel(find(locs));
confcounts(:) = confcounts(:) + hs(:);
end
if (num_missing_img > 0)
fprintf(1, 'WARNING: There are %d missing results!\n', num_missing_img);
end
% confusion matrix - first index is true label, second is inferred label
%conf = zeros(num);
conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]);
rawcounts = confcounts;
% Pixel Accuracy
overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:));
fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc);
% Class Accuracy
class_acc = zeros(1, num);
class_count = 0;
fprintf('Accuracy for each class (pixel accuracy)\n');
for i = 1 : num
denom = sum(confcounts(i, :));
if (denom == 0)
denom = 1;
end
class_acc(i) = 100 * confcounts(i, i) / denom;
if i == 1
clname = 'background';
else
clname = VOCopts.classes{i-1};
end
if ~strcmp(clname, 'void')
class_count = class_count + 1;
fprintf(' %14s: %6.3f%%\n', clname, class_acc(i));
end
end
fprintf('-------------------------\n');
avg_class_acc = sum(class_acc) / class_count;
fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc);
% Pixel IOU
accuracies = zeros(VOCopts.nclasses,1);
fprintf('Accuracy for each class (intersection/union measure)\n');
real_class_count = 0;
for j=1:num
gtj=sum(confcounts(j,:));
resj=sum(confcounts(:,j));
gtjresj=confcounts(j,j);
% The accuracy is: true positive / (true positive + false positive + false negative)
% which is equivalent to the following percentage:
denom = (gtj+resj-gtjresj);
if denom == 0
denom = 1;
end
accuracies(j)=100*gtjresj/denom;
clname = 'background';
if (j>1), clname = VOCopts.classes{j-1};end;
if ~strcmp(clname, 'void')
real_class_count = real_class_count + 1;
else
if denom ~= 1
fprintf(1, 'WARNING: this void class has denom = %d\n', denom);
end
end
if ~strcmp(clname, 'void')
fprintf(' %14s: %6.3f%%\n',clname,accuracies(j));
end
end
%accuracies = accuracies(1:end);
%avacc = mean(accuracies);
avacc = sum(accuracies) / real_class_count;
fprintf('-------------------------\n');
fprintf('Average accuracy: %6.3f%%\n',avacc);
|
github
|
wenbihan/DeepDenoising-master
|
MyVOCevalsegBoundary.m
|
.m
|
DeepDenoising-master/matlab/my_script/MyVOCevalsegBoundary.m
| 4,415 |
utf_8
|
1b648714e61bafba7c08a8ce5824b105
|
%VOCEVALSEG Evaluates a set of segmentation results.
% VOCEVALSEG(VOCopts,ID); prints out the per class and overall
% segmentation accuracies. Accuracies are given using the intersection/union
% metric:
% true positives / (true positives + false positives + false negatives)
%
% [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class
% percentage ACCURACIES, the average accuracy AVACC and the confusion
% matrix CONF.
%
% [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns
% the unnormalised confusion matrix, which contains raw pixel counts.
function [accuracies,avacc,conf,rawcounts, overall_acc, avg_class_acc] = MyVOCevalsegBoundary(VOCopts, id, w)
% get structural element
st_w = 2*w + 1;
se = strel('square', st_w);
% image test set
fn = sprintf(VOCopts.seg.imgsetpath,VOCopts.testset);
fid = fopen(fn, 'r');
gtids = textscan(fid, '%s');
gtids = gtids{1};
fclose(fid);
%[gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d');
% number of labels = number of classes plus one for the background
num = VOCopts.nclasses+1;
confcounts = zeros(num);
count=0;
tic;
for i=1:length(gtids)
% display progress
if toc>1
fprintf('test confusion: %d/%d\n',i,length(gtids));
drawnow;
tic;
end
imname = gtids{i};
% ground truth label file
gtfile = sprintf(VOCopts.seg.clsimgpath,imname);
[gtim,map] = imread(gtfile);
gtim = double(gtim);
% results file
resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname);
try
[resim,map] = imread(resfile);
catch err
fprintf(1, 'Fail to read %s\n', resfile);
continue;
end
resim = double(resim);
% Check validity of results image
maxlabel = max(resim(:));
if (maxlabel>VOCopts.nclasses),
error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses);
end
szgtim = size(gtim); szresim = size(resim);
if any(szgtim~=szresim)
error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2));
end
% dilate gt
binary_gt = gtim == 255;
dilate_gt = imdilate(binary_gt, se);
target_gt = dilate_gt & (gtim~=255);
%pixel locations to include in computation
locs = target_gt;
%locs = gtim<255;
% joint histogram
sumim = 1+gtim+resim*num;
hs = histc(sumim(locs),1:num*num);
count = count + numel(find(locs));
confcounts(:) = confcounts(:) + hs(:);
end
% confusion matrix - first index is true label, second is inferred label
%conf = zeros(num);
conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]);
rawcounts = confcounts;
% Pixel Accuracy
overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:));
fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc);
% Class Accuracy
class_acc = zeros(1, num);
class_count = 0;
fprintf('Accuracy for each class (pixel accuracy)\n');
for i = 1 : num
denom = sum(confcounts(i, :));
if (denom == 0)
denom = 1;
else
class_count = class_count + 1;
end
class_acc(i) = 100 * confcounts(i, i) / denom;
if i == 1
clname = 'background';
else
clname = VOCopts.classes{i-1};
end
fprintf(' %14s: %6.3f%%\n', clname, class_acc(i));
end
fprintf('-------------------------\n');
avg_class_acc = sum(class_acc) / class_count;
fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc);
% Pixel IOU
accuracies = zeros(VOCopts.nclasses,1);
fprintf('Accuracy for each class (intersection/union measure)\n');
for j=1:num
gtj=sum(confcounts(j,:));
resj=sum(confcounts(:,j));
gtjresj=confcounts(j,j);
% The accuracy is: true positive / (true positive + false positive + false negative)
% which is equivalent to the following percentage:
accuracies(j)=100*gtjresj/(gtj+resj-gtjresj);
clname = 'background';
if (j>1), clname = VOCopts.classes{j-1};end;
fprintf(' %14s: %6.3f%%\n',clname,accuracies(j));
end
accuracies = accuracies(1:end);
avacc = mean(accuracies);
fprintf('-------------------------\n');
fprintf('Average accuracy: %6.3f%%\n',avacc);
|
github
|
tahmidzbr/Human-Activities-Gestures-Recognition-using-Channel-State-Information-CSI-of-IEEE-802.11n-master
|
extract_time_information.m
|
.m
|
Human-Activities-Gestures-Recognition-using-Channel-State-Information-CSI-of-IEEE-802.11n-master/extract_time_information.m
| 2,094 |
utf_8
|
a6828b2a8313bc3c5092ea1ac0e5d2ce
|
% ####################################################################### %
% ####################################################################### %
% Extracting Time Information of packet arrival from CSI Data %
% Author: Tahmid Z. Chowdhury %
% The University of British Columbia, Canada
% Copyright: Using Wi-Fi Channel State Information (CSI) for Human
% Activity Recognition & Fall Detection
% ####################################################################### %
% ####################################################################### %
function [time_stamp] = extract_time_information(packet)
% where packet is your CSI file
csi_trace=read_bf_file(packet);
for a=1:j %where j is the total number packets in the CSI file structure
% extract the low 32 bits of the NIC's 1 MHz clock
% The code doesn't account for wrapping about every 4300 seconds, or 72 minutes.
time(a)=csi_trace{a,1}.timestamp_low;
end
time_diff=(diff(time))*10^-6; %--convert difference b/w time_stamps to seconds
actualtime=[0,time_diff]; %--row vector consisting of timestamp differences in seconds
sum(time_diff,2);
time_stamp=cumsum(actualtime);
end
% ####################################################################### %
% ####################################################################### %
% NOTE: If you use this code, please consider citing:
% @phdthesis{Chowdhury_2018, series={Electronic Theses and Dissertations (ETDs) 2008+},
% title={Using Wi-Fi channel state information (CSI) for human activity recognition and fall detection},
% url={https://open.library.ubc.ca/collections/ubctheses/24/items/1.0365967}, DOI={http://dx.doi.org/10.14288/1.0365967},
% school={University of British Columbia}, author={Chowdhury, Tahmid Z.}, year={2018},
% collection={Electronic Theses and Dissertations (ETDs) 2008+}}
% ####################################################################### %
% ####################################################################### %
|
github
|
mingloo/DeepSupervisedHashing-master
|
calcMAP.m
|
.m
|
DeepSupervisedHashing-master/scripts/calcMAP.m
| 685 |
utf_8
|
8fde5825c8e4d5afde81c356458b3354
|
% compute mean average precision (MAP)
function [MAP, succRate] = calcMAP (orderH, neighbor)
[Q, N] = size(neighbor);
pos = 1: N;
%pos = [1: 10000];
MAP = 0;
numSucc = 0;
for i = 1: Q
ngb = neighbor(i, orderH(i, :));
nRel = sum(ngb);
if nRel > 0
prec = cumsum(ngb) ./ pos;
ap = mean(prec(ngb==1));
MAP = MAP + ap;
numSucc = numSucc + 1;
end
% ngb = neighbor(i, orderH(i, :));
% nRel = sum(ngb);
% ngb= ngb(1:10000);
% if nRel > 0
% prec = cumsum(ngb) ./ pos;
% ap = mean(prec(ngb));
% MAP = MAP + ap;
% numSucc = numSucc + 1;
% end
end
MAP = MAP / numSucc;
succRate = numSucc / Q;
end
|
github
|
mingloo/DeepSupervisedHashing-master
|
calcHammingDist.m
|
.m
|
DeepSupervisedHashing-master/scripts/calcHammingDist.m
| 242 |
utf_8
|
32c41d9f80386fbbddf74076159f9082
|
% compute the hamming distance between every pair of data points represented in each row of B1 and B2
function D = calcHammingDist (B1, B2)
P1 = sign(B1 - 0.5);
P2 = sign(B2 - 0.5);
R = size(P1, 2);
D = round((R - P1 * P2') / 2);
end
|
github
|
CoraliePicoche/Seasonality-master
|
compute_temperature_season.m
|
.m
|
Seasonality-master/script/compute_temperature_season.m
| 439 |
utf_8
|
dcc6f7e84e56969b13f7cb605de42048
|
%%% Model first developped by of Scranton & Vasseur 2016 (Theor Ecol.)
%%% Script by Picoche & Barraquand 2017
%%% This function computes a random temperature time series with a seasonal
%%% signal, whose dominance depends on the value of theta
function [tau] = compute_temperature_season(t, theta)
global mu_tau sigma_tau
%Seasonality
tau=mu_tau+theta*sigma_tau*sin(2*pi*t/365)+normrnd(0,sigma_tau*sqrt(1-(theta^2)/2),1,length(t));
end
|
github
|
CoraliePicoche/Seasonality-master
|
growth_response.m
|
.m
|
Seasonality-master/script/growth_response.m
| 296 |
utf_8
|
361a2d909c4de4bca7251485efc9c129
|
%%% Model first developped by of Scranton & Vasseur 2016 (Theor Ecol.)
%%% Script by Picoche & Barraquand 2017
%%% This function computes the growth response to temperature
function growth = growth_response(tau)
global a_r_tau0 tau0 E_r k
growth=a_r_tau0*exp(E_r*(tau-tau0)./(k*tau*tau0));
end
|
github
|
CoraliePicoche/Seasonality-master
|
species_mean_value.m
|
.m
|
Seasonality-master/script/species_mean_value.m
| 1,132 |
utf_8
|
4f0cf05bff8b4c928f84a4f3e511aef0
|
%%% Model first developped by of Scranton & Vasseur 2016 (Theor Ecol.)
%%% Script by Picoche & Barraquand 2018
%%% This function computes species mean biomass during the last years of
%%% the simulation
function res=species_mean_value(youtbis, varargin)
S=size(youtbis,2); %number of species
tt=size(youtbis,1); %length of the simulation
optargs={200}; %corresponding to default value for yspan
thresh_min=10^(-6); %threshold below which species are considered extunct and set to 0
num_argin=length(varargin);
optargs(1:num_argin)=varargin;
yspan=optargs{1};
if yspan>tt/365
error('Size of the window is larger than the simulation')
end
%Only uses the given timespan to compute the mean biomass
ymax=tt;
ymin=ymax-yspan*365+1; %we want yspan years of simulations
new_youtbis=youtbis(ymin:ymax,:);
mask=youtbis(end,:)<thresh_min; %Remove species that are extant at the end of the simulation
sbis=1:S;
sbis=sbis(~mask); %extant species
ymean=zeros(1,S);
for s1=sbis
ymean(s1)=mean(new_youtbis(:,s1));
end
res=ymean;
end
|
github
|
CoraliePicoche/Seasonality-master
|
SV16_ode_integration.m
|
.m
|
Seasonality-master/script/SV16_ode_integration.m
| 778 |
utf_8
|
51d04f73dda0fa88d174539d19010383
|
%%% Model first developped by of Scranton & Vasseur 2016 (Theor Ecol.)
%%% Script by Picoche & Barraquand 2017
%%% Function for ODE integration
function dydt = SV16_ode_integration(t,y)
global A m S thresh_min tau b tau_opt r morta_vect
%A interaction matrix
%m mortality
%S number of species
%thresh_min biomass below which a species is considered extinct
%tau temperature
%b and tau_opt species-specific parameters defining the thermal niche
%r growth rates depending on the temperature
%morta_vect with the variable mortality that Barabas asked for
dydt=zeros(S,1);
comp=zeros(1,S);
mask=transpose(find(y>=thresh_min)); %Only integrates for extant species
%Competition
comp=1-A(:,mask)*y(mask);
dydt(mask)=(r(mask,floor(t)).*comp(mask)-morta_vect(mask)).*y(mask);
end
|
github
|
CoraliePicoche/Seasonality-master
|
frac_max.m
|
.m
|
Seasonality-master/script/frac_max.m
| 549 |
utf_8
|
ef5e371196abe12e6a78ae83b0852bb8
|
%%% Model first developped by of Scranton & Vasseur 2016 (Theor Ecol.)
%%% Script by Picoche & Barraquand 2017
%%% This function computes the fraction of the maximum growth rate achieved
%%% for one for the whole temperature time series
function f = frac_max(tau,tau_opt,b)
for t=1:length(tau)
if b<0
f(t)=10^9; %just a small trick to avoid the Infinite when searching for the right b
else
tmp=-abs(tau(t)-tau_opt)^3/b;
if tau(t)>tau_opt
tmp=tmp*5;
end;
f(t)=exp(tmp);
end;
end;
end
|
github
|
CoraliePicoche/Seasonality-master
|
SV16_ode_integration_no_GR_in_competition.m
|
.m
|
Seasonality-master/script/SV16_ode_integration_no_GR_in_competition.m
| 774 |
utf_8
|
0db131eb4471b9cb439fd0d5a8b94ddf
|
%%% Model first developped by of Scranton & Vasseur 2016 (Theor Ecol.)
%%% Script by Picoche & Barraquand 2017
%%% Function for ODE integration, removing the storage effect
function dydt = SV16_ode_integration_no_GR_in_competition(t,y)
global A m S r thresh_min morta_vect
%A interaction matrix
%m mortality
%S number of species
%thresh_min biomass below which a species is considered extinct
%tau temperature
%b and tau_opt species-specific parameters defining the thermal niche
%r growth rates depending on the temperature
%morta_vect with the variable mortality that Barabas asked for
dydt=zeros(S,1);
comp=zeros(1,S);
mask=transpose(find(y>=thresh_min));
%Competition
comp=A(:,mask)*y(mask);
dydt(mask)=(r(mask,floor(t))-morta_vect(mask)-comp(mask)).*y(mask);
end
|
github
|
CoraliePicoche/Seasonality-master
|
community_wide_indices.m
|
.m
|
Seasonality-master/script/exploratory/community_wide_indices.m
| 1,607 |
utf_8
|
8cbf83ff91ac0a54f9876a6517fb956f
|
%%% Developped by Picoche & Barraquand 2018
%%% Compare different community-wide synchrony index (Loreau and Gross, by
%%% year for the last 500 years saved at the end of a simulation)
function [tab_indices] = community_wide_indices(filename)
thresh_min=10^(-6);
%filename='output_simulation/SV_same_temp/iter1_codeversion_20180228_theta0.mat';
load(filename)
%youtbis=youtbis(2:end,:); small trick when looking at old files in
%SV_different_temp
youtbis(youtbis<thresh_min)=0;
if(mod(size(youtbis,1),365)~=0)
youtbis=youtbis(1+mod(size(youtbis,1),365):end,:);
end;
nb_year=size(youtbis,1)/365;
S=size(youtbis,2);
%%Loreau & Mazancourt (2008)
biomass_over_year=reshape(youtbis,365,nb_year,S); % x = julian day ; y = year ; z species
community_cycle=cumsum(biomass_over_year,3); %total biomass over a cycle
community_cycle=reshape(community_cycle(:,:,60),365,nb_year); %x julian day; y year
community_sd=std(community_cycle,1);
pop_sd=std(biomass_over_year,1);
pop_sd=reshape(pop_sd(1,:,:),nb_year,S);
loreau_index=zeros(1,nb_year);
for y=1:nb_year
loreau_index(y)=(community_sd(y))^2/(sum(pop_sd(y,:)))^2;
end;
%%Gross et al. (2014)
%Using Pearson correlation, as in codyn package
gross_index=zeros(1,nb_year);
for y=1:nb_year
for s=1:S
sbis=1:S;
sbis=sbis(sbis~=s);
sum_pop=sum(biomass_over_year(:,y,sbis),3);
if(std(sum_pop)~=0&std(biomass_over_year(:,y,s))~=0)
gross_index(y)=gross_index(y)+corr(biomass_over_year(:,y,s),sum_pop);
end
end;
gross_index(y)=gross_index(y)/S;
end
tab_indices=vertcat(loreau_index,gross_index);
|
github
|
CoraliePicoche/Seasonality-master
|
fun.m
|
.m
|
Seasonality-master/script/exploratory/fun.m
| 108 |
utf_8
|
1f0b15c48554c3bf553bc47cac7d204d
|
%%%essai
function f = fun(x,b,tau_opt)
%%%%
f= growth_response(x).*frac_max_vectoriel(x,tau_opt,b);
%%%%
end
|
github
|
CoraliePicoche/Seasonality-master
|
compute_temperature.m
|
.m
|
Seasonality-master/script/exploratory/compute_temperature.m
| 387 |
utf_8
|
3394d20baa7a1ba7f4f2a72615da1f80
|
%%% Model of Scranton & Vasseur 2016 (Theor Ecol.)
%%% Developped by Picoche & Barraquand 2017
%%% Function for temperature
function [tau] = compute_temperature(t)
global mu_tau sigma_tau
%for now, we're just using a random value, that's option 1
tau=normrnd(mu_tau,sigma_tau,1,length(t));
%Seasonality
%tau=mu_tau-sigma_tau/2*cos(2*pi*t/365)+normrnd(0,sigma_tau/2,1,length(t));
end
|
github
|
CoraliePicoche/Seasonality-master
|
convergence_function.m
|
.m
|
Seasonality-master/script/exploratory/convergence_function.m
| 1,250 |
utf_8
|
e3cea003ba549efc2f4eeade661f21c0
|
%%% Model of Scranton & Vasseur 2016 (Theor Ecol.)
%%% Developped by Picoche & Barraquand 2018
%%% Function to check stability, given youtbis
function convergence_function(youtbis)
thresh_min=10^(-6);
%First assessments
nb_species=sum(youtbis'>thresh_min);
nb_species_final=nb_species(end)
tot_biomass_final=mean(sum(youtbis((end-364):end,:),2))
biomass_over_year=reshape(youtbis,365,size(youtbis,1)/365,size(youtbis,2)); % x = julian day ; y = year ; z species
%We can also consider the coefficient of variation for total biomass
tt_biomass=cumsum(biomass_over_year,3);
%cv_cycle=std(total_biomass_cycle(:,:,60),[],1)./mean(total_biomass_cycle(:,:,60),1);
cv_cycle=std(tt_biomass(:,:,60),[],1)./mean(tt_biomass(:,:,60),1);
fig=figure;
set(fig,'defaultAxesColorOrder',[[65/255 105/255 225/255]; [0 0 0 ]]);
yyaxis left;
plot(1:length(cv_cycle),cv_cycle,'LineWidth',2)
ylabel('CV of total biomass')
set(gca,'Fontsize',16)
yyaxis right;
plot((1:length(nb_species))/365,nb_species,'-k','LineWidth',2)
ylabel('Nb extant species')
set(gca,'Ylim',[min(nb_species)-0.5 max(nb_species)+0.5],'Fontsize',16)
title('Convergence criteria','Fontsize',18)
end
|
github
|
CoraliePicoche/Seasonality-master
|
figure_1.m
|
.m
|
Seasonality-master/script/exploratory/figure_1.m
| 789 |
utf_8
|
992038085a34ad2e631e1b4f2f9054ca
|
%%% Model of Scranton & Vasseur 2016 (Theor Ecol.)
%%% Developped by Picoche & Barraquand 2017
%%% fraction of the maximum growth rate achieved for one species
function f = figure_1(b,tau_opt)
global S
temp_min=12;
temp_max=26;
tmp_tot=linspace(temp_min,temp_max,1000)+273;
r=growth_response(tmp_tot);
figure;hold on;
%a
for i=1:S
densr=365*r.*frac_max(tmp_tot,tau_opt(i),b(i));
plot(tmp_tot-273.15,densr);
plot(tmp_tot-273.15,365.25*r,'k');
end;
hold off;
%b
tau=normrnd(20+273,5,1,1000);
figure;hold on;
plot(tmp_tot-273,ones(1,length(tmp_tot))*15,'Color',[.17 .17 .17]);
ylim([0 120]);
for i=1:S
gg=mean(365*growth_response(tau).*frac_max(tau,tau_opt(i),b(i)));
plot(tau_opt(i)-273,gg,'+')
plot([tau_opt(i)-273 tau_opt(i)-273],[0 gg],'-')
end;
hold off;
end
|
github
|
CoraliePicoche/Seasonality-master
|
SV16_ode_integration_randomGR_in_competition.m
|
.m
|
Seasonality-master/script/exploratory/SV16_ode_integration_randomGR_in_competition.m
| 475 |
utf_8
|
f82af31a4655ccf8e2706469c224ce77
|
%%% Model of Scranton & Vasseur 2016 (Theor Ecol.)
%%% Developped by Picoche & Barraquand 2017
%%% Function for ODE integration
function dydt = SV16_ode_integration_randomGR_in_competition(t,y)
global A m S r thresh_min tbis
%A interaction matrix
%m mortality
%S number of species
dydt=zeros(S,1);
comp=zeros(1,S);
mask=transpose(find(y>=thresh_min));
%Competition
comp=A(:,mask)*y(mask);
dydt(mask)=(r(mask,floor(t))-m-r(mask,tbis(floor(t))).*comp(mask)).*y(mask);
end
|
github
|
CoraliePicoche/Seasonality-master
|
frac_max_vectoriel.m
|
.m
|
Seasonality-master/script/exploratory/frac_max_vectoriel.m
| 486 |
utf_8
|
b78b44f3a6190743120e40f11a3646ad
|
%%% Model of Scranton & Vasseur 2016 (Theor Ecol.)
%%% Developped by Picoche & Barraquand 2017
%%% fraction of the maximum growth rate achieved for one species
function f = frac_max_vectoriel(tau,tau_opt,b)
for t=1:length(tau)
if b<0
f(t,1:length(b))=10^9; %just a small trick to avoid the Infinite when searching for the right b
else
tmp=-abs(tau(t)-tau_opt).^3./b;
tmp(tau(t)>tau_opt)=tmp(tau(t)>tau_opt)*5;
f(t,:)=exp(tmp);
end;
end;
end
|
github
|
CoraliePicoche/Seasonality-master
|
myplot.m
|
.m
|
Seasonality-master/script/exploratory/myplot_RAC/myplot.m
| 4,459 |
utf_8
|
10e958278187c8b7a943a5df9ef58350
|
%% Make a nice plot quickly
% Syntax: myplot(X,Y,type,color, style)
% [X],[Y]: vectors of data x,y
% [type]: type of plots
% 'S': scaatter plot, the default
% 'L': line
% 'B': both
% [color]: can ba a number or a vector of 3
% IF it is a number, selecter of color from [mycolors]
% to see color plate, type mycolor(0), or check document
% IF it is not round, round part means the color code, 0.5 decimal part
% means the marker be hollow
% IF it is a vector, it is the color code
% [style] : line or marker style of corresponding [type]. for type = 'B', apply only to marker
% Update 2015/09/21 : use function form [mycolor] instead of script_mycolorplate
% Update 2015/09/22 : input [color] can be a 3-number code
% Update 2015/10/30 : set default scatter plot transparency; set output;
% input can be table
% Update 2015/11/11 : Add optional input 'style'
% Update 2015/11/23 : Add option color n.5 for hollow markers
% Update 2015/12/01 : Add numeric and n.5 input option of 'style'; use [] to pass default values
%%
function h = myplot(X,Y,type,color,style)
if (nargin < 4 || isempty(color)), color = 3; end;
if (nargin < 3 ||isempty(type)), type = ('S'); end;
% compatibility to data type table
Xlab = [];
Ylab = [];
if istable(X)
Xlab = tnames(X);
X=table2array(X);
end
if istable(Y)
Ylab = tnames(Y);
Y=table2array(Y);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
hollow = 0; % flag for whether the symbal is hollow
if length(color)==1
colorcode = mycolor(floor(color));
if color-floor(color) == 0.5
hollow = 1;
end
else if length(color)==3
colorcode = color;
else
error('input [color] should be an interger (select from [mycolor]) or a 3-number color code')
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if type=='S'
if (nargin < 5||isempty(style)), style = 'o'; end
stylesheet = {'o', 's','d','^','p','+','*','X','v','>','<','.'};
a=40;
if isnumeric(style)
if (style-floor(style) == 0.5); hollow = 1;end
style = stylesheet{floor(style)};
end
if hollow == 0 && ~any(strcmp(style,{'+','*','X'})) % +,*,X cannot be hollow
if any( strcmp(version('-release'), {'2015b'}) )
h = scatter(X,Y,a,style,'Markeredgecolor','none','Markerfacecolor',colorcode,'Markerfacealpha',0.7);% 'Markerfacealpha',0.7);
else
h = scatter(X,Y,a,style,'Markeredgecolor','none','Markerfacecolor',colorcode);
end
else % hollow ==1
h = plot(X,Y,style,'color',colorcode);
end
set(gca,'FontSize',14,'linewidth',2);
end
if type=='L'|| type=='B'
if (nargin < 5||isempty(style)||type=='B')
Lstyle = '-';
else
Lstyle=style;
end
stylesheet = {'-','--',':','-.' };
if (isnumeric(Lstyle)), Lstyle = stylesheet{floor(Lstyle)}; end
h = plot(X,Y,Lstyle,'linewidth',2,'color',colorcode);
set(gca,'FontSize',14,'linewidth',2);
end
if type=='B'
if (nargin < 5||isempty(style)), style = 'o'; end
stylesheet = {'o', 's','d','^','p','+','*','X','v','>','<','.'};
a=40;
if isnumeric(style)
if (style-floor(style) == 0.5); hollow = 1;end
style = stylesheet{floor(style)};
end
hold on
if hollow ==0 && ~any(strcmp(style,{'+','*','X'}))
if any( strcmp(version('-release'), {'2015b'}) )
h = scatter(X,Y,a,style,'Markeredgecolor','none','Markerfacecolor',colorcode,'Markerfacealpha',0.7);% 'Markerfacealpha',0.7);
else
h = scatter(X,Y,a,style,'Markeredgecolor','none','Markerfacecolor',colorcode);
end
else
plot(X,Y,style,'color',colorcode);
end
set(gca,'FontSize',14,'linewidth',2);
end
xlabel(Xlab);ylabel(Ylab);
|
github
|
CoraliePicoche/Seasonality-master
|
mysubplot.m
|
.m
|
Seasonality-master/script/exploratory/myplot_RAC/mysubplot.m
| 4,995 |
utf_8
|
b92e65a273c1e8dfb133be81e1be88e6
|
%% Create subplots with Major title
% Usage:
%
% to make subplot:
% mysubplot(L, W, ID, Title, tightL, tightW)
% [L], [W],: the dimension of subplots as in subplot(L,W,ID)
% [ID]: The location of subplot as in subplot(L,W,ID);
% to make larger subplot, make [ID] a vector with IDs of multiple cells
% [tightW], [tightL]: How tight the subplots packed, on the first and secand dimension.
% Or the ratio of space between subplots to the size of subplot.
% Default : 0.3, 0.3
%
% to make major title:
% mysubplot(L,W, 0,Title)
% _set ID=0_
% [L], [W]: the dimension of subplots as in mysubplot(L,W,ID)
% [Title]: string of the major title
%
% to display cell layout:
% mysubplot(L, W)
% For examples of usage, see [X_mysubplot.m]
%
% Wei-Ting Lin 2015/09/21
% edit line 44, 71, left margin add padW/2
function mysubplot(L, W, ID, bigtitle, tightL, tightW, margin) % ID=0 means title
if (nargin < 3|| isempty(ID)), ID = -1; end % when ID = -1 the function will print out the subplot layout
if (nargin < 4|| isempty(bigtitle)), bigtitle = ''; end
if (nargin < 5 || isempty(tightL)), tightL = 0.3; end
if (nargin < 6|| isempty(tightW)), tightW = 0.3; end
if (nargin < 7), margin = 0.05; end
if ID>L*W
error('ID > number of subplot');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%margin = 0.05;
if L ==1
titleH = 0.2;
else
titleH = 0.3/L;
end
plotW =( 1-margin*2) / W; % width of each subplot
plotH = (1-titleH-margin*2) /L; % height
%padW =0.3/W;% padding on the width
%padL =0.3/L;
padW = tightW * plotW;
padL =tightL * plotH;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Making title
if ID==0
subplot('position',[0 1-titleH 1 titleH ])% new Length of the whole figure is (11/10)*LCM
axis([-1 1 -1 1])
text(0,0,bigtitle, 'VerticalAlignment','Middle','HorizontalAlignment','Center','FontSize',16)
box off
axis off
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Making subplot
else
if length(ID)==1
if ID ==-1 % marker of "display cell layout"
figure
mysubplot(L,W, 0, 'subplot cells layout')
for i = 1: L*W
mysubplot(L,W, i)
myplot(1,1, 'S', 40);
set(gca,'xtick',[]); set(gca,'ytick',[])
text(1,1, ['ID = ' num2str(i)], 'fontsize', 16, 'Horizontalalignment', 'center')
end
else
%This is the part of the function parallele to subplot
r = ceil(ID/W);% which row in the plot
c = round(mod(ID-0.1,W)); % witch column in the plot
positionL = margin+(plotW)*(c-1)+padW/2 ;%left point
positionB = 1 - (r*(plotH)+margin+titleH)+padL;% bottom point
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subplot('position', [positionL positionB plotW-padW plotH-padL])
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
else % conbining multiple cells to one subplot
combL = length(ID) ;
for p = 1:combL
r(p) = ceil(ID(p)/W);% which row in the plot
c(p) = round(mod(ID(p)-0.1,W)); % witch column in the plot
end
BottomLeft = find(c==min(c)&r==max(r)); % the cell on the left bottom corner
TopRight = find(c==max(c)&r==min(r)); % the cell on the top right corner
if length(BottomLeft)~=1 || length(TopRight)~=1
error('input cell IDs will not make a square')
end
NCellH = c(TopRight)-c(BottomLeft)+1;% number of cell horizontally
NCellV = r(BottomLeft)-r(TopRight)+1;% number of cell vertically
if length(ID) ~= NCellH*NCellV
% expected numver of cell is not equal to input number of cell
error('input cell IDs will not make a square')
end
% calculate subplot location based on the bottom-left cell
positionL = margin+(plotW)*(c(BottomLeft)-1)+padW/2 ;%left point
positionB = 1 - (r(BottomLeft)*(plotH)+margin+titleH)+padL;% bottom point
% calculate subplot size based on number of cells horizontally and vertically
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subplot('position', [positionL positionB plotW*NCellH-padW plotH*NCellV-padL])
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
end
|
github
|
CoraliePicoche/Seasonality-master
|
num2month.m
|
.m
|
Seasonality-master/script/exploratory/myplot_RAC/num2month.m
| 554 |
utf_8
|
f6aa671af3fe68e71cebb7b4919ac571
|
function monthstr = num2month(monthnum)
[n, p] = size(monthnum);
for i = 1: n
for j = 1: p
monthstr(i, j) = n2mstr(monthnum(i,j));
end
end
if isscalar(monthnum)
monthstr = monthstr{1};
end
end
%% a subfunction
function mstr =n2mstr(mnum)
monthStr1 = {'January', 'February', 'March', 'April', 'May', 'June', ...
'July', 'August' ,'September','October', 'Novenber','December' };
mstr = monthStr1(mnum);
end
|
github
|
CoraliePicoche/Seasonality-master
|
myplot_RAC.m
|
.m
|
Seasonality-master/script/exploratory/myplot_RAC/myplot_RAC.m
| 4,588 |
utf_8
|
33c81ccad436bc310b0ca9b317467c48
|
%% myplot_RAC
% This function plots Rank-Abundance Curve. (each community well be presented in subplots, so cannot be embeded in subplot)
%
% depends on: [mycolor.m], [mysubplot.m]
%% *Syntax*
% myplot_RAC(X)
% X : matrix of size [n, p] ; n communities, p species
%
% myplot_RAC(X, strs, strn, bigtitle, colorsheet, stylesheet)
% strs : string or cell array of strings, the name of the "species"
% default is {'spp 1', 'spp 2', ...}; will show as legends
% if input is str, will replace the 'spp' in the defult.
% strn : string or cell array of strings, the name of the "communities"
% default is {'Community 1', 'Community 2', ...}; will show
% as title; usage is similar to strs
% bigtitle :the bigtitle, deafult is 'Rank-Abundance Curve'
% colorsheet : the color of each Species, ranked in the first row
% if input is only 1
% stylesheet : the style of each Species, ranked in the first row
function myplot_RAC(X, strs, strn, bigtitle, colorsheet, stylesheet)
[n, p] = size( X );
%% Defult names
if nargin <2 || isempty(strs)
strs = 'spp';
end
if nargin <3 || isempty(strn)
strn = 'Community';
end
if nargin <4 || isempty(bigtitle)
bigtitle = 'Rank-Abundance Curve';
end
%% input names as string
if iscell(strs)
legends =strs;
if length( legends) < p
warning('The number of species does not match with "strs" ');
end
else
for s = 1:p
legends{s} = [strs, ' ', num2str(s)];
end
end
if iscell(strn)
if length(strn) == n
titles =strn;
else
error('The number of communities does not match with "strn" ');
end
else
for c = 1:n
titles{c} = [strn, ' ', num2str(c)];
end
end
%% Default color
temp = mycolor(-1) ;
if nargin <5 || isempty(colorsheet)
colorsheet = temp([3:19, 21:26, 28, 30:39 ],:);
if p> 34
error('number of species is too large; the default color only has 34 colors');
end
end
[a, b] = size(colorsheet);
if isvector(colorsheet) && b~=3 && isnumeric(colorsheet)
colorsheet = temp(colorsheet, :);
end
if a == 1
colorsheet = repmat(colorsheet, p, 1);
end
if p > length(colorsheet)
error('number of species is too large; the default color only has 34 colors');
end
%% Default style
if nargin <6 || isempty(stylesheet)
stylesheet = {'o', 's','d','^','p','>','<', 'o', 's','d','^','p','>','<','o', 's','d','^','p','>','<',...
'o', 's','d','^','p','>','<', 'o', 's','d','^','p','>','<','o', 's','d','^','p','>','<'};
end
if ischar(stylesheet)
sty = stylesheet; stylesheet =[];
for i = 1:p
stylesheet{i} = sty;
end
end
if length(stylesheet) < p
st = stylesheet;
warning('Input style will be recycled because number of species > number of style')
while length(stylesheet) < p
stylesheet = [stylesheet, st];
end
end
%% The first row
figure
[B, I ] = sort( X( 1, : ), 'descend');
if n >1
% mysubplot(1, n+2, 0, bigtitle)
mysubplot(1, n, 1, '', 0.25, 0.1)
end
for s = 1:p
ranks = find(I==s);
h = scatter(ranks , X(1, s) ,60, stylesheet{ranks},'Markeredgecolor','none','Markerfacecolor',colorsheet(s, :)); hold on %colorsheet(ranks,:)
end
myplot( 1:p, B , 'L', 1); hold on
% legend(legends{:})
% replot so the symbles are on top
for s = 1:p
ranks = find(I==s);
h = scatter(ranks , X(1, s) ,60, stylesheet{ranks},'Markeredgecolor','none','Markerfacecolor',colorsheet(s, :)); hold on %colorsheet(ranks,:)
end
axis([1 p 0 max(max(X))]) ;
title(titles{1});
ylabel('Abundance');xlabel('Rank')
set(gca,'yscale','log','Fontsize',16); %CP added this
%% 2~n
%X1 = X( :, I ); % in the new matrix, row 1 is sorted
X1=X; %CP this is modified
for i = 2:n
mysubplot(1, n, i, '', 0.25, 0.1)
[y, id ] = sort(X1(i,:), 'descend');
myplot( 1:p, y , 'L', 1);hold on
for s = 1:p
h = scatter( s, y(s) ,60, stylesheet{id(s)},'Markeredgecolor','none','Markerfacecolor',colorsheet(id(s), :)); hold on %CP before, was s, y(s), [...] colorsheet(id(s),:)
end
box off
axis([1 p 0 max(max(X))]) ;
set(gca, 'ytick', '')
title(titles{i})
xlabel('Rank')
set(gca,'yscale','log','Fontsize',16); %CP added this
end
|
github
|
CoraliePicoche/Seasonality-master
|
mycolor.m
|
.m
|
Seasonality-master/script/exploratory/myplot_RAC/mycolor.m
| 6,462 |
utf_8
|
6b64fa12d5597f8423cb337bb409bd06
|
% Color selecter: generating a 3-number vector code for a color.
% Syntax:
% code = mycolor(colorcode,selectplate)
% Input:
% [colorcode]: integer, selecting from the color plate
% e.g. colorcode = 3, means a dark blue from the defaultplate 'color'
% colorcode = 0 (default): will display the color plate assigned in a new figure
% colorcode = -1 ; return the colormap (3 * ?) matrix, specified in [selectplate]
% colorcode is a string (passed to selectplate), return colormap (as colorcode = -1);
% [selectplate]: a string, assign the plate you want to chose from
% 'color': default
% 'redblue': a red to blue bipolor scale
% 'gray': a gray scale
% * For detail of color plates type mycolor(0)
% mycolor(0,'redblue')
% mycolor(0,'gray')
% Output:
% [code]: a vector of size 3, the code for the selected color
%-------------------------------------------------------------------------------
%
% Example: use in plot function
%
% plot([1:10], rand(1,10),'color',mycolor(3))
%
% Example: to display color plate
%
% mycolor(0,'redblue') % display the red-blue color map
% mycolor % equals to mycolor(0,'color') or mycolor(0), display the default color map
%
% Example: return colormap
% cmap = mycolor(-1)
% cmap = mycolor('color')
% cmap = mycolor('redblue')
%
% update 2015/09/21: mycolor(0) will display the color plate in a new figure
% add an optional input to select 'redblue' and 'gray' plate
% update 2015/10/14: can take zero argument
% update 2015/10/29: Add usage as colormap
% update 2016/07/28: Add some colors, and white
function code = mycolor(colorcode, selectplate)
if (nargin < 1), colorcode = 0; end;
if (nargin < 2)
if ischar(colorcode)
selectplate = colorcode; colorcode = -1; % set it -1 so it won't be passed through other output
% output is the whole colormap
else
selectplate = 'color' ;
end
end
%% Making color map
mycolors(1,:) = ([0 0 0]);
mycolors(2,:) = ([0.8 0.2 0.2]);
mycolors(3,:) = ([0.0 0.2 0.6]);
mycolors(4,:) = ([0.1 0.5 0.1]);
mycolors(5,:) = ([0.8 0.7 0.1]);
mycolors(6,:) = ([0.4 0.1 0.8]);
mycolors(7,:) = ([0.4 0.4 0.4]);
mycolors(8,:) = ([0.2 0.7 0.8]);
mycolors(9,:) = ([0.6 0.2 0.2]);
mycolors(10,:) = ([0.8 0.1 0.8]);
mycolors(11,:) = ([0.0 0.4 0.6]);
mycolors(12,:) = ([0.5 0.8 0.0]);
mycolors(13,:) = ([0.9 0.4 0.1]);
%
mycolors(14,:) =([0.0745 0.2078 0.3686]);
mycolors(15,:) =([0.1765 0.6275 0.6431]);
mycolors(16,:) =([0.3725 0.0588 0.0784]);
mycolors(17,:) =([0.3339 0.3335 0.5202]);
mycolors(18,:) =([0.1373 0.4902 0.3255]);
mycolors(19,:) =([0.7765 0.4510 0.0196]);
mycolors(20,:) =([0.9725 0.9529 0.8431]);
%
mycolors(21,:) =([0.0588 0.2941 0.6353]);
mycolors(22,:) =([0.0784 0.2588 0.0745]);
mycolors(23,:) =([0.6588 0.3529 0]);
mycolors(24,:) =([0.4196 0.5098 0.4314]);
mycolors(25,:) =([0.4980 0.5412 0.0902]);
mycolors(26,:) =([0.9216 0.7961 0.2745]);
mycolors(27,:) =([0.9408 0.9369 0.8114]);
%
mycolors(28,:) =([0.5333 0.7216 0.8471]);
mycolors(29,:) =([0.9373 0.8706 0.7216]);
mycolors(30,:) =([0.9725 0.1804 0.0863]);
mycolors(31,:) =([0.2706 0.3020 0.3569]);
mycolors(32,:) =([0.0980 0.4039 0.2667]);
mycolors(33,:) =([0.9922 0.4392 0.2353]);
mycolors(34,:) =([0 0.9 0]);
mycolors(35,:) =([0.9 1 0.4]);
mycolors(36,:) =([0.2 0.9 1]);
mycolors(37,:) =([0.8 0.5 0.8]);
mycolors(38,:) =([1 0.3 0.3]);
mycolors(39,:) =([0.3 0.3 1 ]);
mycolors(40, :) =([1 1 1] );
%% making a gray map
mygrays(1,:)= ([0 0 0]);
mygrays(2,:)= ([0.3 0.3 0.3]);
mygrays(3,:)= ([0.45 0.45 0.45]);
mygrays(4,:)= ([0.6 0.6 0.6]);
mygrays(5,:)= ([0.8 0.8 0.8]);
mygrays(6,:)= ([0.9 0.9 0.9]);
%% making my red-blue color map
for r = 1:32
myredblues(r,:) = [0.85 0.05 0.05]+[0 0.8 0.8]*(r/33);
end
for b = 1:32
myredblues(b+32,:) = [0.05 0.05 0.85]+[0.8 0.8 0]*((33-b)/33);
end
%%
if colorcode > 0
if strcmp(selectplate,'color')
code = mycolors(colorcode,:) ;
else if strcmp(selectplate,'redblue')
code = myredblues(colorcode,:) ;
else if strcmp(selectplate,'gray')
code = mygrays(colorcode,:) ;
else
error('input [selectcolor] not recognized');
end
end
end
end
%% If input colorcode == 0, display the color plate
if colorcode==0
disp('Display color plate for you to chose.')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure
%%% making color plate for red-blues
if strcmp(selectplate,'redblue')
for c = 0:63
plot([0 cos(0.098*c)],[0 sin(0.098*c)],'Linewidth',3,'color',myredblues(c+1,:));hold on
text(cos(0.098*c)*1.05,sin(0.098*c)*1.05,num2str(c+1));
end
end
%%% making color plate for [mycolor]
if strcmp(selectplate,'color')
[n,p] = size(mycolors);
for c = 0:n-1
plot([0 cos(0.15*c)],[0 sin(0.15*c)],'Linewidth',3,'color',mycolors(c+1,:));hold on
text(cos(0.15*c)*1.05,sin(0.15*c)*1.05,num2str(c+1))
end
end
%%% making color plate for grays
if strcmp(selectplate,'gray')
[n,p] = size(mygrays);
for c = 0:n-1
plot([0 cos(0.2*c)],[0 sin(0.2*c)],'Linewidth',3,'color',mygrays(c+1,:));hold on
text(cos(0.2*c)*1.05,sin(0.2*c)*1.05,num2str(c+1));
end
end
axis([-1.1 1.1 -1.1 1.1])
axis off
end
%% If input colorcode == -1, output is the whole colormap
if colorcode == -1
if strcmp(selectplate,'color')
code=mycolors;
end
if strcmp(selectplate,'redblue')
code=myredblues;
end
if strcmp(selectplate,'gray')
code=mygrays;
end
end
|
github
|
xueshengke/libADMM-master
|
lrr.m
|
.m
|
libADMM-master/algorithms/lrr.m
| 3,529 |
utf_8
|
f415a5263180f31dc35bdec719b7bdf4
|
function [X,E,obj,err,iter] = lrr(A,B,lambda,opts)
% Solve the Low-Rank Representation minimization problem by M-ADMM
%
% min_{X,E} ||X||_*+lambda*loss(E), s.t. A=BX+E
% loss(E) = ||E||_1 or 0.5*||E||_F^2 or ||E||_{2,1}
%
% ---------------------------------------------
% Input:
% A - d*na matrix
% B - d*nb matrix
% lambda - >0, parameter
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1': loss(E) = ||E||_1
% 'l2': loss(E) = 0.5*||E||_F^2
% 'l21' (default): loss(E) = ||E||_{2,1}
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% X - nb*na matrix
% E - d*na matrix
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 18/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l21';
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,na] = size(A);
[~,nb] = size(B);
X = zeros(nb,na);
E = zeros(d,na);
J = X;
Y1 = E;
Y2 = X;
BtB = B'*B;
BtA = B'*A;
I = eye(nb);
invBtBI = (BtB+I)\I;
iter = 0;
for iter = 1 : max_iter
Xk = X;
Ek = E;
Jk = J;
% first super block {J,E}
[J,nuclearnormJ] = prox_nuclear(X+Y2/mu,1/mu);
if strcmp(loss,'l1')
E = prox_l1(A-B*X+Y1/mu,lambda/mu);
elseif strcmp(loss,'l21')
E = prox_l21(A-B*X+Y1/mu,lambda/mu);
elseif strcmp(loss,'l2')
E = mu*(A-B*X+Y1/mu)/(lambda+mu);
else
error('not supported loss function');
end
% second super block {X}
X = invBtBI*(B'*(Y1/mu-E)+BtA-Y2/mu+J);
dY1 = A-B*X-E;
dY2 = X-J;
chgX = max(max(abs(Xk-X)));
chgE = max(max(abs(Ek-E)));
chgJ = max(max(abs(Jk-J)));
chg = max([chgX chgE chgJ max(abs(dY1(:))) max(abs(dY2(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = nuclearnormJ+lambda*comp_loss(E,loss);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = nuclearnormJ+lambda*comp_loss(E,loss);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
function out = comp_loss(E,loss)
switch loss
case 'l1'
out = norm(E(:),1);
case 'l21'
out = 0;
for i = 1 : size(E,2)
out = out + norm(E(:,i));
end
case 'l2'
out = 0.5*norm(E,'fro')^2;
end
|
github
|
xueshengke/libADMM-master
|
groupl1.m
|
.m
|
libADMM-master/algorithms/groupl1.m
| 2,730 |
utf_8
|
71035c51c2852449c2ddbc3091fe41ed
|
function [X,obj,err,iter] = groupl1(A,B,G,opts)
% Solve the group l1-minimization problem by ADMM
%
% min_X \sum_{i=1}^n\sum_{g in G} ||(x_i)_g||_2, s.t. AX=B
%
% x_i is the i-th column of X
% ---------------------------------------------
% Input:
% A - d*na matrix
% B - d*nb matrix
% G - a cell indicates a partition of 1:na
% opts - Structure value in Matlab. The fields are
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% X - na*nb matrix
% obj - objective function value
% err - residual ||AX-B||_F
% iter - number of iterations
%
% version 1.0 - 18/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,na] = size(A);
[~,nb] = size(B);
X = zeros(na,nb);
Z = X;
Y1 = zeros(d,nb);
Y2 = X;
AtB = A'*B;
I = eye(na);
invAtAI = (A'*A+I)\I;
iter = 0;
for iter = 1 : max_iter
Xk = X;
Zk = Z;
% update X
for i = 1 : nb
X(:,i) = prox_gl1(Z(:,i)-Y2(:,i)/mu,G,1/mu);
end
% update Z
Z = invAtAI*(-(A'*Y1-Y2)/mu+AtB+X);
dY1 = A*Z-B;
dY2 = X-Z;
chgX = max(max(abs(Xk-X)));
chgZ = max(max(abs(Zk-Z)));
chg = max([chgX chgZ max(abs(dY1(:))) max(abs(dY2(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = compute_obj(X,G);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = compute_obj(X,G);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
function obj = compute_obj(X,G)
obj = 0;
for i = 1 : size(X,2)
x = X(:,i);
for j = 1 : length(G)
obj = obj + norm(x(G{j}));
end
end
|
github
|
xueshengke/libADMM-master
|
rpca.m
|
.m
|
libADMM-master/algorithms/rpca.m
| 2,944 |
utf_8
|
1930326cf4bf01c764909897658853ca
|
function [L,S,obj,err,iter] = rpca(X,lambda,opts)
% Solve the Robust Principal Component Analysis minimization problem by M-ADMM
%
% min_{L,S} ||L||_*+lambda*loss(S), s.t. X=L+S
% loss(S) = ||S||_1 or ||S||_{2,1}
%
% ---------------------------------------------
% Input:
% X - d*n matrix
% lambda - >0, parameter
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1' (default): loss(S) = ||S||_1
% 'l21': loss(S) = ||S||_{2,1}
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% L - d*n matrix
% S - d*n matrix
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 19/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l1';
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,n] = size(X);
L = zeros(d,n);
S = L;
Y = L;
iter = 0;
for iter = 1 : max_iter
Lk = L;
Sk = S;
% update L
[L,nuclearnormL] = prox_nuclear(-S+X-Y/mu,1/mu);
% update S
if strcmp(loss,'l1')
S = prox_l1(-L+X-Y/mu,lambda/mu);
elseif strcmp(loss,'l21')
S = prox_l21(-L+X-Y/mu,lambda/mu);
else
error('not supported loss function');
end
dY = L+S-X;
chgL = max(max(abs(Lk-L)));
chgS = max(max(abs(Sk-S)));
chg = max([chgL chgS max(abs(dY(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = nuclearnormL+lambda*comp_loss(S,loss);
err = norm(dY,'fro');
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y = Y + mu*dY;
mu = min(rho*mu,max_mu);
end
obj = nuclearnormL+lambda*comp_loss(S,loss);
err = norm(dY,'fro');
function out = comp_loss(E,loss)
switch loss
case 'l1'
out = norm(E(:),1);
case 'l21'
out = 0;
for i = 1 : size(E,2)
out = out + norm(E(:,i));
end
end
|
github
|
xueshengke/libADMM-master
|
tracelasso.m
|
.m
|
libADMM-master/algorithms/tracelasso.m
| 2,583 |
utf_8
|
536f5ce74c82d5f183c3c967e14d6cf6
|
function [x,obj,err,iter] = tracelasso(A,b,opts)
% Solve the trace Lasso minimization problem by ADMM
%
% min_x ||A*Diag(x)||_*, s.t. Ax=b
%
% ---------------------------------------------
% Input:
% A - d*n matrix
% b - d*1 vector
% opts - Structure value in Matlab. The fields are
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% x - n*1 vector
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 18/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,n] = size(A);
x = zeros(n,1);
Z = zeros(d,n);
Y1 = zeros(d,1);
Y2 = Z;
Atb = A'*b;
AtA = A'*A;
invAtA = (AtA+diag(diag(AtA)))\eye(n);
iter = 0;
for iter = 1 : max_iter
xk = x;
Zk = Z;
% update x
x = invAtA*(-A'*Y1/mu+Atb+diagAtB(A,-Y2/mu+Z));
% update Z
[Z,nuclearnorm] = prox_nuclear(A*diag(x)+Y2/mu,1/mu);
dY1 = A*x-b;
dY2 = A*diag(x)-Z;
chgx = max(abs(xk-x));
chgZ = max(abs(Zk-Z));
chg = max([chgx chgZ max(abs(dY1(:))) max(abs(dY2(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = nuclearnorm;
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = nuclearnorm;
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
function v = diagAtB(A,B)
% A, B - d*n matrices
% v = diag(A'*B), n*1 vector
n = size(A,2);
v = zeros(n,1);
for i = 1 : n
v(i) = A(:,i)'*B(:,i);
end
|
github
|
xueshengke/libADMM-master
|
groupl1R.m
|
.m
|
libADMM-master/algorithms/groupl1R.m
| 3,417 |
utf_8
|
daad367680f297bfd5a82197bec8b72d
|
function [X,E,obj,err,iter] = groupl1R(A,B,G,lambda,opts)
% Solve the group l1 norm regularized minimization problem by M-ADMM
%
% min_{X,E} loss(E)+lambda*\sum_{i=1}^n\sum_{g in G} ||(x_i)_g||_2, s.t. AX+E=B
% x_i is the i-th column of X
% loss(E) = ||E||_1 or 0.5*||E||_F^2
% ---------------------------------------------
% Input:
% A - d*na matrix
% B - d*nb matrix
% G - a cell indicates a partition of 1:na
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1' (default): loss(E) = ||E||_1
% 'l2': loss(E) = 0.5*||E||_F^2
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% X - na*nb matrix
% E - d*nb matrix
% obj - objective function value
% err - residual ||AX+E-B||_F
% iter - number of iterations
%
% version 1.0 - 18/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l1';
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,na] = size(A);
[~,nb] = size(B);
X = zeros(na,nb);
E = zeros(d,nb);
Z = X;
Y1 = E;
Y2 = X;
AtB = A'*B;
I = eye(na);
invAtAI = (A'*A+I)\I;
iter = 0;
for iter = 1 : max_iter
Xk = X;
Ek = E;
Zk = Z;
% first super block {X,E}
for i = 1 : nb
X(:,i) = prox_gl1(Z(:,i)-Y2(:,i)/mu,G,1/mu);
end
if strcmp(loss,'l1')
E = prox_l1(B-A*Z-Y1/mu,1/mu);
elseif strcmp(loss,'l2')
E = mu*(B-A*Z-Y1/mu)/(1+mu);
else
error('not supported loss function');
end
% second super block {Z}
Z = invAtAI*(-A'*(Y1/mu+E)+AtB+Y2/mu+X);
dY1 = A*Z+E-B;
dY2 = X-Z;
chgX = max(max(abs(Xk-X)));
chgE = max(max(abs(Ek-E)));
chgZ = max(max(abs(Zk-Z)));
chg = max([chgX chgE chgZ max(abs(dY1(:))) max(abs(dY2(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = comp_loss(E,loss)+lambda*compute_groupl1(X,G);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = comp_loss(E,loss)+lambda*compute_groupl1(X,G);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
function obj = compute_groupl1(X,G)
obj = 0;
for i = 1 : size(X,2)
x = X(:,i);
for j = 1 : length(G)
obj = obj + norm(x(G{j}));
end
end
|
github
|
xueshengke/libADMM-master
|
mlap.m
|
.m
|
libADMM-master/algorithms/mlap.m
| 4,761 |
utf_8
|
ad408cb013b2ffa24973702254b4d4e0
|
function [Z,E,obj,err,iter] = mlap(X,lambda,alpha,opts)
% Solve the Multi-task Low-rank Affinity Pursuit (MLAP) minimization problem by M-ADMM
%
% Reference: Cheng, Bin, Guangcan Liu, Jingdong Wang, Zhongyang Huang, and Shuicheng Yan.
% Multi-task low-rank affinity pursuit for image segmentation. ICCV, 2011.
%
% min_{Z_i,E_i} \sum_{i=1}^K (||Z_i||_*+lambda*loss(E_i))+alpha*||Z||_{2,1},
% s.t. X_i=X_i*Z_i+E_i, i=1,...,K.
% loss(E) = ||E||_1 or 0.5*||E||_F^2 or ||E||_{2,1}
%
% ---------------------------------------------
% Input:
% X - d*n*K tensor
% lambda - >0, parameter
% alpha - >0, parameter
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1': loss(E) = ||E||_1
% 'l2': loss(E) = 0.5*||E||_F^2
% 'l21' (default): loss(E) = ||E||_{2,1}
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% Z - n*n*K tensor
% E - d*n*K tensor
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 18/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l21';
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,n,K] = size(X);
Z = zeros(n,n,K);
E = zeros(d,n,K);
J = Z;
S = Z;
Y = E;
W = Z;
V = Z;
dY = Y;
XmXS = E;
XtX = zeros(n,n,K);
invXtXI = zeros(n,n,K);
I = eye(n);
for i = 1 : K
XtX(:,:,i) = X(:,:,i)'*X(:,:,i);
invXtXI(:,:,i) = (XtX(:,:,i)+I)\I;
end
nuclearnormJ = zeros(K,1);
iter = 0;
for iter = 1 : max_iter
Zk = Z;
Ek = E;
Jk = J;
Sk = S;
% first super block {J,S}
for i = 1 : K
[J(:,:,i),nuclearnormJ(i)] = prox_nuclear(Z(:,:,i)+W(:,:,i)/mu,1/mu);
S(:,:,i) = invXtXI(:,:,i)*(XtX(:,:,i)-X(:,:,i)'*(E(:,:,i)-Y(:,:,i)/mu)+Z(:,:,i)+(V(:,:,i)-W(:,:,i))/mu);
end
% second super block {Z,E}
Z = prox_tensor_l21((J+S-(W+V)/mu)/2,alpha/(2*mu));
for i = 1 : K
XmXS(:,:,i) = X(:,:,i)-X(:,:,i)*S(:,:,i);
end
if strcmp(loss,'l1')
for i = 1 : K
E(:,:,i) = prox_l1(XmXS(:,:,i)+Y(:,:,i)/mu,lambda/mu);
end
elseif strcmp(loss,'l21')
for i = 1 : K
E(:,:,i) = prox_l21(XmXS(:,:,i)+Y(:,:,i)/mu,lambda/mu);
end
elseif strcmp(loss,'l2')
for i = 1 : K
E = (XmXS(:,:,i)+Y(:,:,i)/mu) / (lambda/mu+1);
end
else
error('not supported loss function');
end
dY = XmXS-E;
dW = Z-J;
dV = Z-S;
chgZ = max(abs(Zk(:)-Z(:)));
chgE = max(abs(Ek(:)-E(:)));
chgJ = max(abs(Jk(:)-J(:)));
chgS = max(abs(Sk(:)-S(:)));
chg = max([chgZ chgE chgJ chgS max(abs(dY(:))) max(abs(dW(:))) max(abs(dV(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = sum(nuclearnormJ)+lambda*comp_loss(E,loss)+alpha*comp_loss(Z,'l21');
err = sqrt(norm(dY(:))^2+norm(dW(:))^2+norm(dV(:))^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y = Y + mu*dY;
W = W + mu*dW;
V = V + mu*dV;
mu = min(rho*mu,max_mu);
end
obj = sum(nuclearnormJ)+lambda*comp_loss(E,loss)+alpha*comp_loss(Z,'l21');
err = sqrt(norm(dY(:))^2+norm(dW(:))^2+norm(dV(:))^2);
function X = prox_tensor_l21(B,lambda)
% proximal operator of tensor l21-norm, i.e., the sum of the l2 norm of all
% tubes of a tensor.
%
% X - n1*n2*n3 tensor
% B - n1*n2*n3 tensor
%
% min_X lambda*\sum_{i=1}^n1\sum_{j=1}^n2 ||X(i,j,:)||_2 + 0.5*||X-B||_F^2
[n1,n2,n3] = size(B);
X = zeros(n1,n2,n3);
for i = 1 : n1
for j = 1 : n2
v = B(i,j,:);
nxi = norm(v(:));
if nxi > lambda
X(i,j,:) = (1-lambda/nxi)*B(i,j,:);
end
end
end
|
github
|
xueshengke/libADMM-master
|
lrsr.m
|
.m
|
libADMM-master/algorithms/lrsr.m
| 3,838 |
utf_8
|
8bd2f6bd0800a5a346a5a4bfbb011702
|
function [X,E,obj,err,iter] = lrsr(A,B,lambda1,lambda2,opts)
% Solve the Low-Rank and Sparse Representation (LRSR) minimization problem by M-ADMM
%
% min_{X,E} ||X||_*+lambda1*||X||_1+lambda2*loss(E), s.t. A=BX+E
% loss(E) = ||E||_1 or 0.5*||E||_F^2 or ||E||_{2,1}
% ---------------------------------------------
% Input:
% A - d*na matrix
% B - d*nb matrix
% lambda1 - >0, parameter
% lambda2 - >0, parameter
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1': loss(E) = ||E||_1
% 'l2': loss(E) = 0.5*||E||_F^2
% 'l21' (default): loss(E) = ||E||_{2,1}
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% X - nb*na matrix
% E - d*na matrix
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 18/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l21';
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,na] = size(A);
[~,nb] = size(B);
X = zeros(nb,na);
E = zeros(d,na);
Z = X;
J = X;
Y1 = E;
Y2 = X;
Y3 = X;
BtB = B'*B;
BtA = B'*A;
I = eye(nb);
invBtBI = (BtB+2*I)\I;
iter = 0;
for iter = 1 : max_iter
Xk = X;
Zk = Z;
Ek = E;
Jk = J;
% first super block {Z,J,E}
[Z,nuclearnormZ] = prox_nuclear(X+Y2/mu,1/mu);
J = prox_l1(X+Y3/mu,lambda1/mu);
if strcmp(loss,'l1')
E = prox_l1(A-B*X+Y1/mu,lambda2/mu);
elseif strcmp(loss,'l21')
E = prox_l21(A-B*X+Y1/mu,lambda2/mu);
elseif strcmp(loss,'l2')
E = mu*(A-B*X+Y1/mu)/(lambda2+mu);
else
error('not supported loss function');
end
% second super block {X}
X = invBtBI*(B'*(Y1/mu-E)+BtA-(Y2+Y3)/mu+Z+J);
dY1 = A-B*X-E;
dY2 = X-Z;
dY3 = X-J;
chgX = max(max(abs(Xk-X)));
chgE = max(max(abs(Ek-E)));
chgZ = max(max(abs(Zk-Z)));
chgJ = max(max(abs(Jk-J)));
chg = max([chgX chgE chgZ chgJ max(abs(dY1(:))) max(abs(dY2(:))) max(abs(dY3(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = nuclearnormZ+lambda1*norm(J(:),1)+lambda2*comp_loss(E,loss);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2+norm(dY3,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = nuclearnormZ+lambda1*norm(J(:),1)+lambda2*comp_loss(E,loss);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2+norm(dY3,'fro')^2);
function out = comp_loss(E,normtype)
switch normtype
case 'l1'
out = norm(E(:),1);
case 'l21'
out = 0;
for i = 1 : size(E,2)
out = out + norm(E(:,i));
end
case 'l2'
out = 0.5*norm(E,'fro')^2;
end
|
github
|
xueshengke/libADMM-master
|
fusedl1R.m
|
.m
|
libADMM-master/algorithms/fusedl1R.m
| 3,714 |
utf_8
|
145be29163c05b2175bd848ba37d18d1
|
function [x,e,obj,err,iter] = fusedl1R(A,b,lambda1,lambda2,opts)
% Solve the fused Lasso regularized minimization problem by ADMM
%
% min_{x,e} loss(e) + lambda1*||x||_1 + lambda2*\sum_{i=2}^p |x_i-x_{i-1}|,
% loss(e) = ||e||_1 or 0.5*||e||_2^2
%
% ---------------------------------------------
% Input:
% A - d*n matrix
% b - d*1 vector
% lambda1 - >=0, parameter
% lambda2 - >=0, parameter
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1' (default): loss(e) = ||e||_1
% 'l2': loss(E) = 0.5*||e||_2^2
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% x - n*1 vector
% e - d*1 vector
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 20/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l1'; % default
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,n] = size(A);
x = zeros(n,1);
e = zeros(d,1);
z = x;
Y1 = e;
Y2 = x;
Atb = A'*b;
I = eye(n);
invAtAI = (A'*A+I)\I;
% parameters for "flsa" (from SLEP package)
tol2 = 1e-10; % the duality gap for termination
max_step = 50; % the maximal number of iterations
x0 = zeros(n-1,1); % the starting point
iter = 0;
for iter = 1 : max_iter
xk = x;
ek = e;
zk = z;
% first super block {x,e}
% flsa solves min_x 1/2||x-v||_2^2+lambda1*||x||_1+lambda2*\sum_{i=2}^p |x_i-x_{i-1}|,
x = flsa(z-Y2/mu,x0,lambda1/mu,lambda2/mu,n,max_step,tol2,1,6);
if strcmp(loss,'l1')
e = prox_l1(b-A*z-Y1/mu,1/mu);
elseif strcmp(loss,'l2')
e = mu*(b-A*z-Y1/mu)/(1+mu);
else
error('not supported loss function');
end
% second super block {Z}
z = invAtAI*(-A'*(Y1/mu+e)+Atb+Y2/mu+x);
dY1 = A*z+e-b;
dY2 = x-z;
chgx = max(abs(xk-x));
chge = max(abs(ek-e));
chgz = max(abs(zk-z));
chg = max([chgx chge chgz max(abs(dY1(:))) max(abs(dY2(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = comp_loss(e,loss)+comp_fusedl1(x,lambda1,lambda2);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = comp_loss(e,loss)+comp_fusedl1(x,lambda1,lambda2);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
function f = comp_fusedl1(x,lambda1,lambda2)
% compute f = lambda1*||x||_1 + lambda2*\sum_{i=2}^p |x_i-x_{i-1}|.
% x - p*1 vector
f = 0;
p = length(x);
for i = 2 : p
f = f+abs(x(i)-x(i-1));
end
f = lambda1*norm(x,1)+lambda2*f;
|
github
|
xueshengke/libADMM-master
|
fusedl1.m
|
.m
|
libADMM-master/algorithms/fusedl1.m
| 3,027 |
utf_8
|
e180c20b97ac834bfde5d505c23bdb1e
|
function [x,obj,err,iter] = fusedl1(A,b,lambda,opts)
% Solve the fused Lasso (Fused L1) minimization problem by ADMM
%
% min_x ||x||_1 + lambda*\sum_{i=2}^p |x_i-x_{i-1}|,
% s.t. Ax=b
%
% ---------------------------------------------
% Input:
% A - d*n matrix
% b - d*1 vector
% lambda - >=0, parameter
% opts - Structure value in Matlab. The fields are
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% x - n*1 vector
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 20/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,n] = size(A);
x = zeros(n,1);
z = x;
Y1 = zeros(d,1);
Y2 = x;
Atb = A'*b;
I = eye(n);
invAtAI = (A'*A+I)\I;
% parameters for "flsa" (from SLEP package)
tol2 = 1e-10; % the duality gap for termination
max_step = 50; % the maximal number of iterations
x0 = zeros(n-1,1); % the starting point
iter = 0;
for iter = 1 : max_iter
xk = x;
zk = z;
% update x.
% flsa solves min_x 1/2||x-v||_2^2+lambda1*||x||_1+lambda2*\sum_{i=2}^p |x_i-x_{i-1}|
x = flsa(z-Y2/mu,x0,1/mu,lambda/mu,n,max_step,tol2,1,6);
% update z
z = invAtAI*(-A'*Y1/mu+Atb+Y2/mu+x);
dY1 = A*z-b;
dY2 = x-z;
chgx = max(abs(xk-x));
chgz = max(abs(zk-z));
chg = max([chgx chgz max(abs(dY1(:))) max(abs(dY2(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = comp_fusedl1(x,1,lambda);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = comp_fusedl1(x,1,lambda);
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
function f = comp_fusedl1(x,lambda1,lambda2)
% compute f = lambda1*||x||_1 + lambda2*\sum_{i=2}^p |x_i-x_{i-1}|.
% x - p*1 vector
f = 0;
p = length(x);
for i = 2 : p
f = f+abs(x(i)-x(i-1));
end
f = lambda1*norm(x,1)+lambda2*f;
|
github
|
xueshengke/libADMM-master
|
tracelassoR.m
|
.m
|
libADMM-master/algorithms/tracelassoR.m
| 3,247 |
utf_8
|
8bc2e00ce23aaa6478590829303525b6
|
function [x,e,obj,err,iter] = tracelassoR(A,b,lambda,opts)
% Solve the trace Lasso regularized minimization problem by M-ADMM
%
% min_{x,e} loss(e)+lambda*||A*Diag(x)||_*, s.t. Ax+e=b
% loss(e) = ||e||_1 or 0.5*||e||_2^2
% ---------------------------------------------
% Input:
% A - d*n matrix
% b - d*1 vector
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1' (default): loss(e) = ||e||_1
% 'l2': loss(e) = 0.5*||e||_2^2
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% x - n*1 vector
% e - d*1 vector
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 18/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l1';
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
[d,n] = size(A);
x = zeros(n,1);
Z = zeros(d,n);
e = zeros(d,1);
Y1 = e;
Y2 = Z;
Atb = A'*b;
AtA = A'*A;
invAtA = (AtA+diag(diag(AtA)))\eye(n);
iter = 0;
for iter = 1 : max_iter
xk = x;
ek = e;
Zk = Z;
% first super block {Z,e}
[Z,nuclearnorm] = prox_nuclear(A*diag(x)-Y2/mu,lambda/mu);
if strcmp(loss,'l1')
e = prox_l1(b-A*x-Y1/mu,1/mu);
elseif strcmp(loss,'l2')
e = mu*(b-A*x-Y1/mu)/(1+mu);
else
error('not supported loss function');
end
% second super block {x}
x = invAtA*(-A'*(Y1/mu+e)+Atb+diagAtB(A,Y2/mu+Z));
dY1 = A*x+e-b;
dY2 = Z-A*diag(x);
chgx = max(abs(xk-x));
chge = max(abs(ek-e));
chgZ = max(max(abs(Zk-Z)));
chg = max([chgx chge chgZ max(abs(dY1(:))) max(abs(dY2(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = comp_loss(e,loss)+lambda*nuclearnorm;
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y1 = Y1 + mu*dY1;
Y2 = Y2 + mu*dY2;
mu = min(rho*mu,max_mu);
end
obj = comp_loss(e,loss)+lambda*nuclearnorm;
err = sqrt(norm(dY1,'fro')^2+norm(dY2,'fro')^2);
function v = diagAtB(A,B)
% A, B - d*n matrices
% v = diag(A'*B), n*1 vector
n = size(A,2);
v = zeros(n,1);
for i = 1 : n
v(i) = A(:,i)'*B(:,i);
end
|
github
|
xueshengke/libADMM-master
|
latlrr.m
|
.m
|
libADMM-master/algorithms/latlrr.m
| 3,636 |
utf_8
|
51a08d8f2880a125c6d1dda689ba9f7f
|
function [Z,L,obj,err,iter] = latlrr(X,lambda,opts)
% Solve the Latent Low-Rank Representation by M-ADMM
%
% min_{Z,L,E} ||Z||_*+||L||_*+lambda*loss(E),
% s.t., XZ+LX-X=E.
% loss(E) = ||E||_1 or 0.5*||E||_F^2 or ||E||_{2,1}
% ---------------------------------------------
% Input:
% X - d*n matrix
% lambda - >0, parameter
% opts - Structure value in Matlab. The fields are
% opts.loss - 'l1' (default): loss(E) = ||E||_1
% 'l2': loss(E) = 0.5*||E||_F^2
% 'l21': loss(E) = ||E||_{2,1}
% opts.tol - termination tolerance
% opts.max_iter - maximum number of iterations
% opts.mu - stepsize for dual variable updating in ADMM
% opts.max_mu - maximum stepsize
% opts.rho - rho>=1, ratio used to increase mu
% opts.DEBUG - 0 or 1
%
% Output:
% Z - n*n matrix
% L - d*d matrix
% E - d*n matrix
% obj - objective function value
% err - residual
% iter - number of iterations
%
% version 1.0 - 19/06/2016
%
% Written by Canyi Lu ([email protected])
%
tol = 1e-8;
max_iter = 500;
rho = 1.1;
mu = 1e-4;
max_mu = 1e10;
DEBUG = 0;
loss = 'l1';
if ~exist('opts', 'var')
opts = [];
end
if isfield(opts, 'loss'); loss = opts.loss; end
if isfield(opts, 'tol'); tol = opts.tol; end
if isfield(opts, 'max_iter'); max_iter = opts.max_iter; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'DEBUG'); DEBUG = opts.DEBUG; end
eta1 = 1.02*2*norm(X,2)^2; % for Z
eta2 = eta1; % for L
eta3 = 1.02*2; % for E
[d,n] = size(X);
E = zeros(d,n);
Z = zeros(n,n);
L = zeros(d,d);
Y = E;
XtX = X'*X;
XXt = X*X';
iter = 0;
for iter = 1 : max_iter
Lk = L;
Ek = E;
Zk = Z;
% first super block {Z}
[Z,nuclearnormZ] = prox_nuclear(Zk-(X'*(Y/mu+L*X-X-E)+XtX*Z)/eta1,1/(mu*eta1));
% second super block {L,E}
temp = Lk-((Y/mu+X*Z-Ek)*X'+Lk*XXt-XXt)/eta2;
[L,nuclearnormL] = prox_nuclear(temp,1/(mu*eta2));
if strcmp(loss,'l1')
E = prox_l1(Ek+(Y/mu+X*Z+Lk*X-X-Ek)/eta3,lambda/(mu*eta3));
elseif strcmp(loss,'l21')
E = prox_l21(Ek+(Y/mu+X*Z+Lk*X-X-Ek)/eta3,lambda/(mu*eta3));
elseif strcmp(loss,'l2')
E = (Y+mu*(X*Z+Lk*X-X+(eta3-1)*Ek))/(lambda+mu*eta3);
else
error('not supported loss function');
end
dY = X*Z+L*X-X-E;
chgL = max(max(abs(Lk-L)));
chgE = max(max(abs(Ek-E)));
chgZ = max(max(abs(Zk-Z)));
chg = max([chgL chgE chgZ max(abs(dY(:)))]);
if DEBUG
if iter == 1 || mod(iter, 10) == 0
obj = nuclearnormZ+nuclearnormL+lambda*comp_loss(E,loss);
err = norm(dY,'fro')^2;
disp(['iter ' num2str(iter) ', mu=' num2str(mu) ...
', obj=' num2str(obj) ', err=' num2str(err)]);
end
end
if chg < tol
break;
end
Y = Y + mu*dY;
mu = min(rho*mu,max_mu);
end
obj = nuclearnormZ+nuclearnormZ+lambda*comp_loss(E,loss);
err = norm(dY,'fro')^2;
function out = comp_loss(E,loss)
switch loss
case 'l1'
out = norm(E(:),1);
case 'l21'
out = 0;
for i = 1 : size(E,2)
out = out + norm(E(:,i));
end
case 'l2'
out = 0.5*norm(E,'fro')^2;
end
|
github
|
xueshengke/libADMM-master
|
prox_ksupport.m
|
.m
|
libADMM-master/proximal_operator/prox_ksupport.m
| 1,804 |
utf_8
|
028824f0d5fbd7a1023a530eb9fc2265
|
function B = prox_ksupport(v,k,lambda)
% The proximal operator of the k support norm of a vector
%
% min_x 0.5*lambda*||x||_{ksp}^2+0.5*||x-v||_2^2
%
% version 1.0 - 27/06/2016
%
% Written by Hanjiang Lai
%
% Reference:
% Lai H, Pan Y, Lu C, et al. Efficient k-support matrix pursuit, ECCV, 2014: 617-631.
%
L = 1/lambda;
d = length(v);
if k >= d
B = L*v/(1+L);
return;
elseif k <= 1
k = 1;
end
[z, ind] = sort(abs(v), 'descend');
z = z*L;
ar = cumsum(z);
z(d+1) = -inf;
diff = 0;
err = inf;
found = false;
for r=k-1:-1:0
[l,T] = bsearch(z,ar,k-r,d,diff,k,r,L);
if ( ((L+1)*T >= (l-k+(L+1)*r+L+1)*z(k-r)) && ...
(((k-r-1 == 0) || (L+1)*T < (l-k+(L+1)*r+L+1)*z(k-r-1)) ) )
found = true;
break;
end
diff = diff + z(k-r);
if k-r-1 == 0
err_tmp = max(0,(l-k+(L+1)*r+L+1)*z(k-r) - (L+1)*T);
else
err_tmp = max(0,(l-k+(L+1)*r+L+1)*z(k-r) -(L+1)*T) + max(0, - (l-k+(L+1)*r+L+1)*z(k-r-1) + (L+1)*T);
end
if err > err_tmp
err_r = r; err_l = l; err_T = T; err = err_tmp;
end
end
if found == false
r = err_r; l = err_l; T = err_T;
end
% fprintf('r = %d, l = %d \n',r,l);
p(1:k-r-1) = z(1:k-r-1)/(L+1);
p(k-r:l) = T / (l-k+(L+1)*r+L+1);
p(l+1:d) = z(l+1:d);
p = p';
% [dummy, rev]=sort(ind,'ascend');
rev(ind) = 1:d;
p = sign(v) .* p(rev);
B = v - 1/L*p;
end
function [l,T] = bsearch(z,array,low,high,diff,k,r,L)
if z(low) == 0
l = low;
T = 0;
return;
end
%z(mid) * tmp - (array(mid) - diff) > 0
%z(mid+1) * tmp - (array(mid+1) - diff) <= 0
while( low < high )
mid = floor( (low + high)/2 ) + 1;
tmp = (mid - k + r + 1 + L*(r+1));
if z(mid) * tmp - (array(mid) - diff) > 0
low = mid;
else
high = mid - 1;
end
end
l = low;
T = array(low) - diff;
end
|
github
|
xinario/SAGAN-master
|
get_ct_window_size.m
|
.m
|
SAGAN-master/poisson_noise_simulation/get_ct_window_size.m
| 469 |
utf_8
|
c9540ad023b1cc0ff035bb7f16d3367a
|
% get_ct_window_size -- get the display window size.
% Paras:
% @type : window type
% Author: Xin Yi ([email protected])
% Date : 03/22/2017
function [center, width] = get_ct_window_size(type)
if strcmp(type, 'lung')
center = -700;
width = 1500;
elseif strcmp(type, 'abdomen')
center = 40;
width = 400;
elseif strcmp(type, 'bone')
center = 300;
width = 2000;
elseif strcmp(type, 'narrow')
center = 40;
width = 80;
end
|
github
|
xinario/SAGAN-master
|
add_poisson_noise.m
|
.m
|
SAGAN-master/poisson_noise_simulation/add_poisson_noise.m
| 884 |
utf_8
|
c5d7164b81d8057fa588e5b4f4e8fb7a
|
% add_poisson_noise -- add poisson noise to a ct slice.
% Paras:
% @im : attenuation coefficients of a single ct slice
% @N0 : x-ray source influx
% Author: Xin Yi ([email protected])
% Date : 03/22/2017
function im_noise = add_poisson_noise(im_ac, N0)
dtheta = 0.3;
dsensor = 0.1;
D = 500;
sinogram_in = fanbeam(im_ac, D, 'FanSensorSpacing', dsensor, 'FanRotationIncrement', dtheta);
%small number >0 that reflects the smallest possible detected photon count
epsilon = 5;
% to detector count coefficients unit is cm-1
sinogramCT = N0 * exp(-sinogram_in*0.0625);
% add poison noise
sinogramCT_noise = poissrnd(sinogramCT);
sinogram_out = -log(sinogramCT_noise/N0)/0.0625;
idx = isinf(sinogram_out);
sinogram_out(idx) = -log(epsilon/N0)/0.0625;
im_noise = ifanbeam(sinogram_out, D, 'FanSensorSpacing', dsensor, 'OutputSize', max(size(im_ac)));
|
github
|
xinario/SAGAN-master
|
ac2window.m
|
.m
|
SAGAN-master/poisson_noise_simulation/ac2window.m
| 568 |
utf_8
|
a1a50589657dc539101e2188ebe364e3
|
% ac2window -- rescale the ct slice to a specific window range
% Paras:
% @im_ac : image of attenuation coefficients
% @window_type : dispaly window type
% Author: Xin Yi ([email protected])
% Date : 03/22/2017
function im_dicom = ac2window(im_ac, window_type)
im_dicom_raw = (im_ac - 0.17)/0.17*1000;
[center, width] = get_ct_window_size(window_type);
im_dicom = uint8(((double(im_dicom_raw) - (center-0.5))/(width-1)+0.5)*255);
im_dicom(im_dicom_raw<=center-0.5-(width-1)/2) = 0;
im_dicom(im_dicom_raw>center-0.5+(width-1)/2) = 255;
end
|
github
|
xinario/SAGAN-master
|
dicom_read_ac.m
|
.m
|
SAGAN-master/poisson_noise_simulation/dicom_read_ac.m
| 629 |
utf_8
|
41b0e9973a2e7226fea3759367d012a4
|
% dicom_read_ac -- transfer the hunsfield units to attenuation coefficents.
% Paras:
% @file_path : path to the dicom image
% Author: Xin Yi ([email protected])
% Date : 03/22/2017
function im_ac = dicom_read_ac(file_path)
im_dicom_raw = dicomread(file_path);
info = dicominfo(file_path);
mask = im_dicom_raw == info.PixelPaddingValue;
im_dicom_recaled = im_dicom_raw*info.RescaleSlope + info.RescaleIntercept;
%0.17 is the attenuation coef (1/cm) of water at 100 keV
im_ac = 0.17*double(im_dicom_recaled) /1000 + 0.17;
im_ac(mask) = 0;
im_ac(im_ac<0) = 0;
end
|
github
|
BookIndRandSamplingMethods/code-master
|
randsrc.m
|
.m
|
code-master/CHAPTER_4/ARS_PARS_for_Nakagami_Target/randsrc.m
| 3,317 |
utf_8
|
40674a451df280dbf8f5fb1d2ad7f2d9
|
% %% Copyright (C) 2003 David Bateman
% ##
% ## This program is free software; you can redistribute it and/or modify
% ## it under the terms of the GNU General Public License as published by
% ## the Free Software Foundation; either version 2 of the License, or
% ## (at your option) any later version.
% ##
% ## This program is distributed in the hope that it will be useful,
% ## but WITHOUT ANY WARRANTY; without even the implied warranty of
% ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% ## GNU General Public License for more details.
% ##
% ## You should have received a copy of the GNU General Public License
% ## along with this program; if not, write to the Free Software
% ## Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%
% ## -*- texinfo -*-
% ## @deftypefn {Function File} {@var{b} = } randsrc (@var{n})
% ## @deftypefnx {Function File} {@var{b} = } randsrc (@var{n},@var{m})
% ## @deftypefnx {Function File} {@var{b} = } randsrc (@var{n},@var{m},@var{alphabet})
% ## @deftypefnx {Function File} {@var{b} = } randsrc (@var{n},@var{m},@var{alphabet},@var{seed})
% ##
% ## Generate a matrix of random symbols. The size of the matrix is
% ## @var{n} rows by @var{m} columns. By default @var{m} is equal to @var{n}.
% ##
% ## The variable @var{alphabet} can be either a row vector or a matrix with
% ## two rows. When @var{alphabet} is a row vector the symbols returned in
% ## @var{b} are chosen with equal probability from @var{alphabet}. When
% ## @var{alphabet} has two rows, the second row determines the probabilty
% ## with which each of the symbols is chosen. The sum of the probabilities
% ## must equal 1. By default @var{alphabet} is [-1 1].
% ##
% ## The variable @var{seed} allows the random number generator to be seeded
% ## with a fixed value. The initial seed will be restored when returning.
% ## @end deftypefn
%
% ## 2003 FEB 13
% ## initial release
%
function b = randsrc (n, m, alphabet, seed)
switch (nargin)
case 0,
m = 1;
n = 1;
alphabet = [-1,1];
seed = Inf;
case 1,
m = n;
alphabet = [-1,1];
seed = Inf;
case 2,
alphabet = [-1,1];
seed = Inf;
case 3,
seed = Inf;
case 4,
otherwise
% usage ("b = randsrc (n, [m, [alphabet, [seed]]])");
end %switch
%%%% Check alphabet
[ar,ac] = size (alphabet);
if (ac == 1)
b = alphabet (1, 1) * ones (n, m);
return;
end %if
if (ar == 1)
prob = [1:ac] / ac;
elseif (ar == 2)
prob = alphabet(2,:);
alphabet = alphabet(1,:);
if (abs(1-sum(prob)) > eps)
% error ("randsrc: probabilities must added up to one");
end%if
prob = cumsum(prob);
else
% error ("randsrc: alphabet must have 1 or 2 rows");
end %if
% Check seed;
%if (!isinf (seed))
% old_seed = rand ('seed');
% rand ('seed', seed);
%end %if
%%%% Create indexes with the right probabilities
tmp = rand (n, m);
b = ones (n, m);
for i = 1:ac-1
b = b + (tmp > prob(i));
end
%%%% Map the indexes to the symbols
b = alphabet(b);
%%%%% BUG: the above gives a row vector for some reason. Force what we want
b = reshape(b, n, m);
%%%%% Get back to the old
%if (!isinf (seed))
% rand ("seed", old_seed);
%end %if
%end%function
|
github
|
BookIndRandSamplingMethods/code-master
|
scatterhist.m
|
.m
|
code-master/CHAPTER_2/scatterhist.m
| 11,895 |
utf_8
|
d75e1d150a4a9c7f080708aeaf22aa05
|
function h = scatterhist(x,y,varargin)
%SCATTERHIST 2D scatter plot with marginal histograms.
% SCATTERHIST(X,Y) creates a 2D scatterplot of the data in the vectors X
% and Y, and puts a univariate histogram on the horizontal and vertical
% axes of the plot. X and Y must be the same length.
%
% SCATTERHIST(...,'PARAM1',VAL1,'PARAM2',VAL2,...) specifies additional
% parameters and their values to control how the plot is made. Valid
% parameters are the following:
%
% Parameter Value
% 'NBins' A scalar or a two-element vector specifying the number of
% bins for the X and Y histograms. The default is to compute
% the number of bins using Scott's rule based on the sample
% standard deviation.
%
% 'Location' A string controlling the location of the marginal
% histograms within the figure. 'SouthWest' (the default)
% plots the histograms below and to the left of the
% scatterplot, 'SouthEast' plots them below and to the
% right, 'NorthEast' above and to the right, and 'NorthWest'
% above and to the left.
%
% 'Direction' A string controlling the direction of the marginal
% histograms in the figure. 'in' (the default) plots the
% histograms with bars directed in towards the scatterplot,
% 'out' plots the histograms with bars directed out away
% from the scatterplot.
%
% Any NaN values in either X or Y are treated as missing data, and are
% removed from both X and Y. Therefore the plots reflect points for
% which neither X nor Y has a missing value.
%
% Use the data cursor to read precise values and observation numbers
% from the plot.
%
% H = SCATTERHIST(...) returns a vector of three axes handles for the
% scatterplot, the histogram along the horizontal axis, and the histogram
% along the vertical axis, respectively.
%
% Example:
% Independent normal and lognormal random samples
% x = randn(1000,1);
% y = exp(.5*randn(1000,1));
% scatterhist(x,y)
% Marginal uniform samples that are not independent
% u = copularnd('Gaussian',.8,1000);
% scatterhist(u(:,1),u(:,2))
% Mixed discrete and continuous data
% load('carsmall');
% scatterhist(Weight,Cylinders,'NBins',[10 3])
% SCATTERHIST(X,Y,NBINS) is supported for backwards compatibility.
% Copyright 2006-2011 The MathWorks, Inc.
% $Revision: 1.1.6.8 $ $Date: 2011/10/15 02:06:59 $
narginchk(2, Inf);
if ~isvector(x) || ~isnumeric(x) || ~isvector(y) || ~isnumeric(y)
error(message('stats:scatterhist:BadXY'));
end
if numel(x)~=numel(y)
error(message('stats:scatterhist:BadXY'));
end
x = x(:);
y = y(:);
obsinds = 1:numel(x);
t = isnan(x) | isnan(y);
if any(t)
x(t) = [];
y(t) = [];
obsinds(t) = [];
end
location = 'sw'; % default value
direction = 'in'; % default value
if nargin < 3 || isempty(varargin{1}) % scatterhist(x,y)
% By default use the bins given by Scott's rule
[xctrs,yctrs] = defaultBins(x,y);
else
if nargin == 3 && ~ischar(varargin{1}) % scatterhist(x,y,nbins)
nbins = varargin{1};
else % scatterhist(x,y,'name','value',...)
pnames = {'nbins' 'location' 'direction'};
dflts = { [] location direction };
[nbins,location,direction] ...
= internal.stats.parseArgs(pnames, dflts, varargin{:});
end
if isempty(nbins)
% By default use the bins given by Scott's rule
[xctrs,yctrs] = defaultBins(x,y);
elseif ~isnumeric(nbins) || ~(isscalar(nbins) || numel(nbins)==2) || ...
any(nbins<=0) || any(nbins~=round(nbins))
error(message('stats:scatterhist:BadBins'));
elseif isscalar(nbins)
xctrs = nbins; % specified number of bins, same for x and y
yctrs = nbins;
else
xctrs = nbins(1); % specified number of bins, x and y different
yctrs = nbins(2);
end
end
% Create the histogram information
[nx,cx] = hist(x,xctrs);
if length(cx)>1
dx = diff(cx(1:2));
else
dx = 1;
end
xlim = [cx(1)-dx cx(end)+dx];
[ny,cy] = hist(y,yctrs);
if length(cy)>1
dy = diff(cy(1:2));
else
dy = 1;
end
ylim = [cy(1)-dy cy(end)+dy];
% Set up positions for the plots
switch lower(direction)
case 'in'
inoutSign = 1;
case 'out'
inoutSign = -1;
otherwise
error(message('stats:scatterhist:BadDirection'));
end
switch lower(location)
case {'ne' 'northeast'}
scatterLoc = 3;
scatterPosn = [.1 .1 .55 .55];
scatterXAxisLoc = 'top'; scatterYAxisLoc = 'right';
histXLoc = 1; histYLoc = 4;
histXSign = -inoutSign; histYSign = -inoutSign;
case {'se' 'southeast'}
scatterLoc = 1;
scatterPosn = [.1 .35 .55 .55];
scatterXAxisLoc = 'bottom'; scatterYAxisLoc = 'right';
histXLoc = 3; histYLoc = 2;
histXSign = inoutSign; histYSign = -inoutSign;
case {'sw' 'southwest'}
scatterLoc = 2;
scatterPosn = [.35 .35 .55 .55];
scatterXAxisLoc = 'bottom'; scatterYAxisLoc = 'left';
histXLoc = 4; histYLoc = 1;
histXSign = inoutSign; histYSign = inoutSign;
case {'nw' 'northwest'}
scatterLoc = 4;
scatterPosn = [.35 .1 .55 .55];
scatterXAxisLoc = 'top'; scatterYAxisLoc = 'left';
histXLoc = 2; histYLoc = 3;
histXSign = -inoutSign; histYSign = inoutSign;
otherwise
error(message('stats:scatterhist:BadLocation'));
end
% Put up the histograms in preliminary positions.
clf
hHistY = subplot(2,2,histYLoc);
barh(cy,histYSign*ny,1);
xmax = max(ny);
if xmax == 0, xmax = 1; end % prevent xlim from being [0 0]
axis([sort(histYSign*[xmax, 0]), ylim]);
axis('off');
hHistX = subplot(2,2,histXLoc);
bar(cx,histXSign*nx,1);
ymax = max(nx);
if ymax == 0, ymax = 1; end % prevent ylim from being [0 0]
axis([xlim, sort(histXSign*[ymax, 0])]);
axis('off');
% Put the scatterplot up last to put it first on the child list
hScatter = subplot(2,2,scatterLoc);
hScatterline = plot(x,y,'o');
axis([xlim ylim]);
xlabel(getString(message('stats:scatterhist:xaxisLabel')));
ylabel(getString(message('stats:scatterhist:yaxisLabel')));
% Create invisible text objects for later use
txt1 = text(0,0,'42','Visible','off','HandleVisibility','off');
txt2 = text(1,1,'42','Visible','off','HandleVisibility','off');
% Make scatter plot bigger, histograms smaller
set(hScatter,'Position',scatterPosn, 'XAxisLocation',scatterXAxisLoc, ...
'YAxisLocation',scatterYAxisLoc, 'tag','scatter');
set(hHistX,'tag','xhist');
set(hHistY,'tag','yhist');
scatterhistPositionCallback();
colormap([.8 .8 1]); % more pleasing histogram fill color
% Attach custom datatips
if ~isempty(hScatterline) % datatips only if there are data
hB = hggetbehavior(hScatterline,'datacursor');
set(hB,'UpdateFcn',@scatterhistDatatipCallback);
setappdata(hScatterline,'obsinds',obsinds);
end
% Add listeners to resize or relimit histograms when the scatterplot changes
addlistener(hScatter,{'Position' 'OuterPosition'}, 'PostSet',@scatterhistPositionCallback);
addlistener(hScatter,{'XLim' 'YLim'},'PostSet',@scatterhistXYLimCallback);
% Leave scatter plot as current axes
set(get(hScatter,'parent'),'CurrentAxes',hScatter);
if nargout>0
h = [hScatter hHistX hHistY];
end
% -----------------------------
function [xctrs,yctrs] = defaultBins(x,y)
% By default use the bins given by Scott's rule
xctrs = internal.stats.histbins(x); % returns bin ctrs
yctrs = internal.stats.histbins(y); % returns bin ctrs
if length(xctrs)<2
xctrs = 1; % for constant data, use one bin
end
if length(yctrs)<2
yctrs = 1; % for constant data, use one bin
end
end
% -----------------------------
function scatterhistPositionCallback(~,~)
posn = getrealposition(hScatter,txt1,txt2);
if feature('HGUsingMATLABClasses')
% drawnow ensures that OuterPosition is updated
drawnow('expose');
end
oposn = get(hScatter,'OuterPosition');
switch lower(location)
case {'sw' 'southwest'}
% vertically: margin, histogram, margin/4, scatterplot, margin
vmargin = min(max(1 - oposn(2) - oposn(4), 0), oposn(2));
posnHistX = [posn(1) vmargin posn(3) oposn(2)-1.25*vmargin];
% horizontally: margin, histogram, margin/4, scatterplot, margin
hmargin = min(max(1 - oposn(1) - oposn(3), 0), oposn(1));
posnHistY = [hmargin posn(2) oposn(1)-1.25*hmargin posn(4)];
case {'ne' 'northeast'}
% vertically: margin, scatterplot, margin/4, histogram, margin
vmargin = max(oposn(2), 0);
posnHistX = [posn(1) oposn(2)+oposn(4)+.25*vmargin posn(3) 1-oposn(2)-oposn(4)-1.25*vmargin];
% horizontally: margin, scatterplot, margin/4, histogram, margin
hmargin = max(oposn(1), 0);
posnHistY = [oposn(1)+oposn(3)+.25*hmargin posn(2) 1-oposn(1)-oposn(3)-1.25*hmargin posn(4)];
case {'se' 'southeast'}
% vertically: margin, histogram, margin/4, scatterplot, margin
vmargin = max(1 - oposn(2) - oposn(4), 0);
posnHistX = [posn(1) vmargin posn(3) oposn(2)-1.25*vmargin];
% horizontally: margin, scatterplot, margin/4, histogram, margin
hmargin = max(oposn(1), 0);
posnHistY = [oposn(1)+oposn(3)+.25*hmargin posn(2) 1-oposn(1)-oposn(3)-1.25*hmargin posn(4)];
case {'nw' 'northwest'}
% vertically: margin, scatterplot, margin/4, histogram, margin
vmargin = max(oposn(2), 0);
posnHistX = [posn(1) oposn(2)+oposn(4)+.25*vmargin posn(3) 1-oposn(2)-oposn(4)-1.25*vmargin];
% horizontally: margin, histogram, margin/4, scatterplot, margin
hmargin = max(1 - oposn(1) - oposn(3), 0);
posnHistY = [hmargin posn(2) oposn(1)-1.25*hmargin posn(4)];
end
posnHistX = max(posnHistX,[0 0 .05 .05]);
posnHistY = max(posnHistY,[0 0 .05 .05]);
set(hHistX,'Position',posnHistX);
set(hHistY,'Position',posnHistY);
scatterhistXYLimCallback();
end
% -----------------------------
function scatterhistXYLimCallback(~,~)
set(hHistX,'Xlim',get(hScatter,'XLim'));
set(hHistY,'Ylim',get(hScatter,'YLim'));
end
% -----------------------------
function datatipTxt = scatterhistDatatipCallback(~,evt)
target = get(evt,'Target');
ind = get(evt,'DataIndex');
pos = get(evt,'Position');
obsinds = getappdata(target,'obsinds');
obsind = obsinds(ind);
% datatipTxt = {...
% sprintf('x: %s',num2str(pos(1)))...
% sprintf('y: %s',num2str(pos(2)))...
% ''...
% sprintf('Observation: %s',num2str(obsind))...
% };
datatipTxt = {...
getString(message('stats:scatterhist:dataTip_x',num2str(pos(1)))), ...
getString(message('stats:scatterhist:dataTip_y',num2str(pos(2)))), ...
'', ...
getString(message('stats:scatterhist:dataTip_Obs',num2str(obsind))), ...
};
end
end % scatterhist main function
% -----------------------------
function p = getrealposition(a,txt1,txt2)
p = get(a,'position');
% For non-warped axes (as in "axis square"), recalculate another way
if isequal(get(a,'WarpToFill'),'off')
pctr = p([1 2]) + 0.5 * p([3 4]);
xl = get(a,'xlim');
yl = get(a,'ylim');
% Use text to get coordinate (in points) of southwest corner
set(txt1,'units','data');
set(txt1,'position',[xl(1) yl(1)]);
set(txt1,'units','pixels');
pSW = get(txt1,'position');
% Same for northeast corner
set(txt2,'units','data');
set(txt2,'position',[xl(2) yl(2)]);
set(txt2,'units','pixels');
pNE = get(txt2,'position');
% Re-create position
% Use min/max/abs in case one or more directions are reversed
p = [min(pSW(1),pNE(1)), ...
max(pSW(2),pNE(2)), ...
abs(pNE(1)-pSW(1)), ...
abs(pNE(2)-pSW(2))];
p = hgconvertunits(ancestor(a,'figure'),p, ...
'pixels','normalized',ancestor(a,'figure'));
% Position to center
p = [pctr(1)-p(3)/2, pctr(2)-p(4)/2, p(3), p(4)];
end
end % getrealposition function
|
github
|
mbrbic/Multi-view-LRSSC-master
|
pairwise_LRSSC_1view.m
|
.m
|
Multi-view-LRSSC-master/pairwise_LRSSC_1view.m
| 1,954 |
utf_8
|
b921b76a654d20be613a7eae2eba0d29
|
%
% One step of ADMM for one view of pairwise multi-view LRSSC.
%
% -------------------------------------------------------
% Input:
% X: mxn data matrix for one view; columns are samples
% K: nxn kernel matrix current view
% num_views: number of views
% C1: nxn low-rank coefficient matrix for current view
% C2: nxn sparse coefficient matrix for current view
% C3: nxn consensus coefficient matrix for current view
% C_sum: sum of nxn coefficient matrices for all views except current
% Lambda1, Lambda2, Lambda3, Lambda4: Lagrange multipliers
% lambda: coefficients for low-rank, sparsity and consensus constraint
% mu: penalty parameters in augmented Lagrangian
% noisy: if true then use noisy variant
%
% Output:
% C1: updated low-rank coefficient matrix for current view
% C2: updated sparse coefficient matrix for current view
% C3: updated consensus coefficient matrix for current view
% Lambda1, Lambda2, Lambda3, Lambda4: updated Lagrange multipliers
%
function [C1, C2, C3, Lambda1, Lambda2, Lambda3, Lambda4, A] = pairwise_LRSSC_1view(X, K, num_views, C1, C2, C3, C_sum, ...
Lambda1, Lambda2, Lambda3, Lambda4, lambda, mu, noisy)
n = size(X,2);
% updating A
if ~noisy
inv_A = inv(mu(1)*K+(mu(2)+mu(3)+mu(4))*eye(n));
A = inv_A*(mu(1)*K+mu(2)*(C2-Lambda2/mu(2))+mu(3)*(C1-Lambda3/mu(3))+mu(4)*(C3-Lambda4/mu(4))+X'*Lambda1);
else
inv_A = inv(K+(mu(2)+mu(3)+mu(4))*eye(n));
A = inv_A*(K+mu(2)*(C2-Lambda2/mu(2))+mu(3)*(C1-Lambda3/mu(3))+mu(4)*(C3-Lambda4/mu(4)));
end
% updating C1,C2 and C3
C2 = soft_thresh(A+Lambda2/mu(2),lambda(2)/mu(2));
C2 = C2-diag(diag(C2));
C1 = sigma_soft_thresh(A+Lambda3/mu(3),lambda(1)/mu(3));
C3 = 1/(2*lambda(3)*(num_views-1)+mu(4))*(2*lambda(3)*C_sum+mu(4)*A+Lambda4);
% updating Lagrange multipliers
if ~noisy
Lambda1 = Lambda1 + mu(1)*(X-X*A);
end
Lambda2 = Lambda2+mu(2)*(A-C2);
Lambda3 = Lambda3+mu(3)*(A-C1);
Lambda4 = Lambda4+mu(4)*(A-C3);
end
|
github
|
mbrbic/Multi-view-LRSSC-master
|
construct_kernel.m
|
.m
|
Multi-view-LRSSC-master/construct_kernel.m
| 1,724 |
utf_8
|
e3b4a782ce1e92137069d6861d57f8b6
|
% Kernel construction.
%
% -------------------------------------------------------
% Input:
% X1: nxm data matrix (rows are samples)
% X2: nxm data matrix (rows are samples)
% opts: Structure value with the following fields:
% opts.KernelType: kernel type, choices are:
% 'Linear': (x'*y),'Gaussian': (e^{-(|x-y|^2)/2sigma^2}),
% 'Polynomial': ((x'*y)^d)
% opts.sigma: variance for Gaussian kernel
% opts.d: degree for polynomial kernel
%
% Output:
% K: nxn kernel matrix
%
function K = construct_kernel(X1,X2,options)
if (~exist('options','var'))
options = [];
else
if ~isstruct(options)
error('parameter error!');
end
end
if ~isfield(options,'KernelType')
options.KernelType = 'linear';
end
switch lower(options.KernelType)
case 'gaussian' % e^{-(|x-y|^2)/2t^2}
if ~isfield(options,'sigma')
options.sigma = 1;
end
if isempty(X2)
D = eucl_dist2(X1,[],0);
else
D = eucl_dist2(X1,X2,0);
end
K = exp(-D/(2*options.sigma^2));
case 'polynomial' % (x'*y)^d
if ~isfield(options,'d')
options.d = 2;
end
if isempty(X2)
D = full(X1 * X1');
else
D = full(X1 * X2');
end
K = D.^options.d;
case 'linear' % x'*y
if isempty(X2)
K = full(X1 * X1');
else
K = full(X1 * X2');
end
otherwise
error('Parameter error: opts is not a structure.');
end
if isempty(X2)
K = max(K,K');
end
|
github
|
mbrbic/Multi-view-LRSSC-master
|
centroid_LRSSC_1view.m
|
.m
|
Multi-view-LRSSC-master/centroid_LRSSC_1view.m
| 2,128 |
utf_8
|
c4371c1c1e5c39edccd8f4c2ec66265c
|
%
% One step of ADMM for one view of centroid multi-view LRSSC.
%
% -------------------------------------------------------
% Input:
% X: mxn data matrix for one view; columns are samples
% K: nxn kernel matrix current view
% C1: nxn low-rank coefficient matrix for current view
% C2: nxn sparse coefficient matrix for current view
% C3: nxn consensus coefficient matrix for current view
% C_centroid: nxn centroid coefficient matrix
% Lambda1, Lambda2, Lambda3, Lambda4: Lagrange multipliers
% lambda: coefficients for low-rank, sparsity and consensus constraint
% mu: penalty parameters in augmented Lagrangian
% noisy: if true then use noisy variant
% opts.soft_thr: true for soft thresholding (minimization of L1
% norm), false for hard threhsold (minimization of L0 norm)
%
% Output:
% C1: updated low-rank coefficient matrix for current view
% C2: updated sparse coefficient matrix for current view
% C3: updated consensus coefficient matrix for current view
% Lambda1, Lambda2, Lambda3, Lambda4: updated Lagrange multipliers
%
function [C1, C2, C3, Lambda1, Lambda2, Lambda3, Lambda4, A] = centroid_LRSSC_1view(X, K, C1, C2, C3, C_centroid, ...
Lambda1, Lambda2, Lambda3, Lambda4, lambda, mu, noisy)
n = size(X,2);
% updating A
if ~noisy
inv_A = inv(mu(1)*K+(mu(2)+mu(3)+mu(4))*eye(n));
A = inv_A * (mu(1)*K+mu(2)*(C2-Lambda2/mu(2))+mu(3)*(C1-Lambda3/mu(3))+mu(4)*(C3-Lambda4/mu(4))+X'*Lambda1);
else
inv_A = inv(K+(mu(2)+mu(3)+mu(4))*eye(n));
A = inv_A * (K+mu(2)*(C2-Lambda2/mu(2))+mu(3)*(C1-Lambda3/mu(3))+mu(4)*(C3-Lambda4/mu(4)));
end
% updating C1,C2 and C3
C2_new = soft_thresh(A+Lambda2/mu(2),lambda(2)/mu(2));
C2_new = C2_new - diag(diag(C2_new));
C1_new = sigma_soft_thresh(A+Lambda3/mu(3),lambda(1)/mu(3));
C3_new = 1/(2*lambda(3)+mu(4))*(2*lambda(3)*C_centroid+mu(4)*A+Lambda4);
%update variables
C1 = C1_new;
C2 = C2_new;
C3 = C3_new;
% updating Lagrange multipliers
if ~noisy
Lambda1 = Lambda1 + mu(1) * (X - X*A);
end
Lambda2 = Lambda2 + mu(2) * (A - C2);
Lambda3 = Lambda3 + mu(3) * (A - C1);
Lambda4 = Lambda4 + mu(4) * (A - C3);
end
|
github
|
mbrbic/Multi-view-LRSSC-master
|
performance_kmeans.m
|
.m
|
Multi-view-LRSSC-master/performance_kmeans.m
| 1,303 |
utf_8
|
7dc3ce464eda1546d136de65d958a96b
|
% Run k-means n times and report means and standard deviations of the
% performance measures.
%
% -------------------------------------------------------
% Input:
% X: data matrix (rows are samples)
% k: number of clusters
% truth: truth cluster indicators
%
%
% Output:
% CA: clustering accuracy (mean +stdev)
% F: F1 measure (mean +stdev)
% P: precision (mean +stdev)
% R: recall (mean +stdev)
% nmi: normalized mutual information (mean +stdev)
% AR: adjusted rand index (mean +stdev)
%
function [CA F P R nmi AR] = performance_kmeans(X, k, truth)
max_iter = 1000; % Maximum number of iterations for KMeans
replic = 20; % Number of replications for KMeans
if (min(truth)==0)
truth = truth+1;
end
warning('off');
for i=1:replic
idx = kmeans(X, k,'EmptyAction','singleton','maxiter',max_iter);
CAi(i) = 1-compute_CE(idx, truth); % clustering accuracy
[Fi(i),Pi(i),Ri(i)] = compute_f(truth,idx); % F1, precision, recall
nmii(i) = compute_nmi(truth,idx);
ARi(i) = rand_index(truth,idx);
end
CA(1) = mean(CAi); CA(2) = std(CAi);
F(1) = mean(Fi); F(2) = std(Fi);
P(1) = mean(Pi); P(2) = std(Pi);
R(1) = mean(Ri); R(2) = std(Ri);
nmi(1) = mean(nmii); nmi(2) = std(nmii);
AR(1) = mean(ARi); AR(2) = std(ARi);
end
|
github
|
mbrbic/Multi-view-LRSSC-master
|
spectral_clustering.m
|
.m
|
Multi-view-LRSSC-master/spectral_clustering.m
| 1,100 |
utf_8
|
2c499a670f700c1d69379a7c50b3c34a
|
%--------------------------------------------------------------------------
% This function takes an adjacency matrix of a graph and computes the
% clustering of the nodes using the spectral clustering algorithm of
% Ng, Jordan and Weiss.
% CMat: NxN adjacency matrix
% n: number of groups for clustering
% groups: N-dimensional vector containing the memberships of the N points
% to the n groups obtained by spectral clustering
%--------------------------------------------------------------------------
% Copyright @ Ehsan Elhamifar, 2012
% Modified @ Chong You, 2015
%--------------------------------------------------------------------------
function [CA F P R nmi AR] = spectral_clustering(A,k,truth)
N = size(A,1);
% Normalized spectral clustering according to Ng & Jordan & Weiss
% using Normalized Symmetric Laplacian L = I - D^{-1/2} W D^{-1/2}
DN = diag( 1./sqrt(sum(A)+eps) );
LapN = speye(N) - DN * A * DN;
[~,~,vN] = svd(LapN);
kerN = vN(:,N-k+1:N);
normN = sum(kerN .^2, 2) .^.5;
kerNS = bsxfun(@rdivide, kerN, normN + eps);
[CA F P R nmi AR] = performance_kmeans(kerNS,k,truth);
|
github
|
mbrbic/Multi-view-LRSSC-master
|
eucl_dist2.m
|
.m
|
Multi-view-LRSSC-master/eucl_dist2.m
| 1,701 |
utf_8
|
29b40873678068324b4647fcdf25e283
|
% Euclidean Distance matrix.
%
% -------------------------------------------------------
% Input:
% X1: nxm data matrix (rows are samples)
% X2: nxm data matrix (rows are samples)
% opts: Structure value with the following fields:
% opts.KernelType: kernel type, choices are:
% 'Linear': (x'*y),'Gaussian': (e^{-(|x-y|^2)/2sigma^2}),
% 'Polynomial': ((x'*y)^d)
% opts.sigma: variance for Gaussian kernel
% opts.d: degree for polynomial kernel
%
% Output:
% K: nxn kernel matrix
%
% D = EuDist(fea_a,fea_b)
% fea_a: nSample_a * nFeature
% fea_b: nSample_b * nFeature
% D: nSample_a * nSample_a
% or nSample_a * nSample_b
function [D] = eucl_dist2(X1,X2,bSqrt)
if ~exist('bSqrt','var')
bSqrt = 1;
end
if (~exist('fea_b','var')) | isempty(X2)
[nSmp, nFea] = size(X1);
aa = sum(X1.*X1,2);
ab = X1*X1';
aa = full(aa);
ab = full(ab);
if bSqrt
D = sqrt(repmat(aa, 1, nSmp) + repmat(aa', nSmp, 1) - 2*ab);
D = real(D);
else
D = repmat(aa, 1, nSmp) + repmat(aa', nSmp, 1) - 2*ab;
end
D = max(D,D');
D = D - diag(diag(D));
D = abs(D);
else
[nSmp_a, nFea] = size(X1);
[nSmp_b, nFea] = size(X2);
aa = sum(X1.*X1,2);
bb = sum(X2.*X2,2);
ab = X1*X2';
aa = full(aa);
bb = full(bb);
ab = full(ab);
if bSqrt
D = sqrt(repmat(aa, 1, nSmp_b) + repmat(bb', nSmp_a, 1) - 2*ab);
D = real(D);
else
D = repmat(aa, 1, nSmp_b) + repmat(bb', nSmp_a, 1) - 2*ab;
end
D = abs(D);
end
|
github
|
mbrbic/Multi-view-LRSSC-master
|
centroid_MLRSSC.m
|
.m
|
Multi-view-LRSSC-master/centroid_MLRSSC.m
| 4,065 |
utf_8
|
24d6aff263cde7054cea083ea5715a03
|
%
% Solve the multiview centroid based LRSSC
%
% -------------------------------------------------------
% Input:
% X: cell of nxm matrices (rows are samples)
% k: number of clusters
% truth: truth cluster indicators
% opts: Structure value with following fields:
% opts.lambda: coefficients for low-rank, sparsity and
% consensus constraint, respectively
% opts.num_iter: number number of iterations
% opts.mu: penalty parameters for the ADMM
% opts.max_mu: maximal penalty parameters for the ADMM
% opts.rho: step size for adaptively changing mu, if 1 fixed mu
% is used
% opts.kernel: kernel type (Linear, Gaussian or Polynomial)
% opts.sigma: parameter for Gaussian kernel
% opts.degree: parameter for polynomial kernel
% opts.noisy: true for noisy version of LRSSC false otherwise
% opts.err_thr: convergence threshold
%
% Output:
% Af: joint affinity matrix
%
% version 1.0 - 20/12/2016
% version 2.0 - 30/08/2017
%
% Written by Maria Brbic ([email protected])
%
function Af = centroid_MLRSSC(X, opts)
% setting default parameters
num_iter = 100;
mu = 100;
max_mu = 1e6;
rho = 1.5;
kernel = 'Linear';
noisy = true;
lambda = [0.3 0.3 0.3];
err_thr = 10^-3;
if ~exist('opts', 'var')
opts = [];
else
if ~isstruct(opts)
error('Parameter error: opts is not a structure.');
end
end
if isfield(opts, 'lambda'); lambda = opts.lambda; end
if isfield(opts, 'num_iter'); num_iter = opts.num_iter; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'kernel'); kernel = opts.kernel; end
if isfield(opts, 'sigma'); sigma = opts.sigma; end
if isfield(opts, 'degree'); degree = opts.degree; end
if isfield(opts, 'noisy'); noisy = opts.noisy; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'err_thr'); err_thr = opts.err_thr; end
if strcmpi(kernel,'Gaussian')
noisy = true; % can't kernelize otherwise
end
num_views = size(X,2);
n = size(X{1},1);
C1 = repmat({zeros(n,n)}, 1, num_views);
C2 = repmat({zeros(n,n)}, 1, num_views);
C3 = repmat({zeros(n,n)}, 1, num_views);
K = repmat({zeros(n,n)}, 1, num_views);
A = repmat({zeros(n,n)}, 1, num_views);
A_prev = repmat({zeros(n,n)}, 1, num_views);
Lambda1 = cell(num_views,1);
for v = 1:num_views
Lambda1{v} = (zeros(size(X{v},2),n));
end
Lambda2 = repmat({zeros(n,n)}, 1, num_views);
Lambda3 = repmat({zeros(n,n)}, 1, num_views);
Lambda4 = repmat({zeros(n,n)}, 1, num_views);
C_centroid = zeros(n,n);
mu1 = mu;
mu2 = mu;
mu3 = mu;
mu4 = mu;
mu = [mu1 mu2 mu3 mu4];
for v = 1:num_views
options.KernelType = kernel;
if strcmpi(kernel,'Gaussian')
options.sigma = sigma(v);
end
if strcmpi(kernel,'Polynomial')
options.d = degree;
end
K{v} = construct_kernel(X{v},X{v},options);
end
iter = 0;
converged = false;
while iter < num_iter && ~converged
iter = iter + 1;
for v = 1:num_views
A_prev{v} = A{v}; % save previous value
[C1{v}, C2{v}, C3{v}, Lambda1{v}, Lambda2{v}, Lambda3{v}, Lambda4{v}, A{v}] = centroid_LRSSC_1view...
(X{v}', K{v}, C1{v}, C2{v}, C3{v}, C_centroid, Lambda1{v}, Lambda2{v}, Lambda3{v}, Lambda4{v}, ...
lambda, mu, noisy);
end
% update centroid
for v = 1:num_views
C_centroid = C_centroid+lambda(3)*C2{v};
end
C_centroid = C_centroid/(num_views*lambda(3));
% check convergence
converged = true;
for v=1 : num_views
err1 = max(max(abs(A{v}-C1{v})));
err2 = max(max(abs(A{v}-C2{v})));
err3 = max(max(abs(A{v}-C3{v})));
err4 = max(max(abs(A_prev{v}-A{v})));
if err1>err_thr || err2>err_thr || err3>err_thr || err4>err_thr
converged = false;
break
end
end
mu = min(rho*mu,max_mu);
end
C = C_centroid;
Af = abs(C)+abs(C');
end
|
github
|
mbrbic/Multi-view-LRSSC-master
|
pairwise_MLRSSC.m
|
.m
|
Multi-view-LRSSC-master/pairwise_MLRSSC.m
| 4,316 |
utf_8
|
d5dc7be4b5c1bd869617ec9043ee03a7
|
%
% Solve the multiview pairwise similarities based LRSSC
%
% -------------------------------------------------------
% Input:
% X: cell of nxm matrices (rows are samples)
% k: number of clusters
% truth: truth cluster indicators
% opts: Structure value with the following fields:
% opts.lambda: coefficients for low-rank, sparsity and
% consensus constraint, respectively
% opts.num_iter: number number of iterations
% opts.mu: penalty parameters for the ADMM
% opts.max_mu: maximal penalty parameters for the ADMM
% opts.rho: step size for adaptively changing mu, if 1 fixed mu
% is used
% opts.kernel: kernel type (Linear, Gaussian or Polynomial)
% opts.sigma: parameter for Gaussian kernel
% opts.degree: parameter for polynomial kernel
% opts.noisy: true for noisy version of LRSSC false otherwise
% opts.err_thr: convergence threshold
%
% Output:
% Af: joint affinity matrix
%
% version 1.0 - 20/12/2016
% version 2.0 - 30/08/2017
%
% Written by Maria Brbic ([email protected])
%
function Af = pairwise_MLRSSC(X, opts)
% setting default parameters
num_iter = 300;
mu = 100;
max_mu = 1e6;
rho = 1.5;
kernel = 'Linear';
noisy = true;
lambda = [0.3 0.3 0.3];
err_thr = 10^-3;
if ~exist('opts', 'var')
opts = [];
else
if ~isstruct(opts)
error('Parameter error: opts is not a structure.');
end
end
if isfield(opts, 'lambda'); lambda = opts.lambda; end
if isfield(opts, 'num_iter'); num_iter = opts.num_iter; end
if isfield(opts, 'mu'); mu = opts.mu; end
if isfield(opts, 'max_mu'); max_mu = opts.max_mu; end
if isfield(opts, 'kernel'); kernel = opts.kernel; end
if isfield(opts, 'sigma'); sigma = opts.sigma; end
if isfield(opts, 'degree'); degree = opts.degree; end
if isfield(opts, 'noisy'); noisy = opts.noisy; end
if isfield(opts, 'rho'); rho = opts.rho; end
if isfield(opts, 'err_thr'); err_thr = opts.err_thr; end
if strcmpi(kernel,'Gaussian')
noisy = true; % can't kernelize otherwise
end
mu1 = mu;
mu2 = mu;
mu3 = mu;
mu4 = mu;
mu = [mu1 mu2 mu3 mu4];
num_views = size(X,2);
n = size(X{1},1);
C1 = repmat({zeros(n,n)}, 1, num_views);
C2 = repmat({zeros(n,n)}, 1, num_views);
C3 = repmat({zeros(n,n)}, 1, num_views);
K = repmat({zeros(n,n)}, 1, num_views);
A = repmat({zeros(n,n)}, 1, num_views);
A_prev = repmat({zeros(n,n)}, 1, num_views);
Lambda1 = cell(num_views,1);
for v = 1:num_views
Lambda1{v} = (zeros(size(X{v},2),n));
end
Lambda2 = repmat({zeros(n,n)}, 1, num_views);
Lambda3 = repmat({zeros(n,n)}, 1, num_views);
Lambda4 = repmat({zeros(n,n)}, 1, num_views);
for v = 1:num_views
options.KernelType = kernel;
if strcmpi(kernel,'Gaussian')
options.sigma = sigma(v);
end
if strcmpi(kernel,'Polynomial')
options.d = degree;
end
K{v} = construct_kernel(X{v},X{v},options);
end
iter = 0;
converged = false;
while iter < num_iter && ~converged
iter = iter + 1;
C_sum = repmat({zeros(n,n)}, 1, num_views);
for v = 1:num_views
for v_tmp = 1:num_views
if v_tmp ~= v
C_sum{v} = C_sum{v}+C2{v_tmp};
end
end
end
for v = 1:num_views
A_prev{v} = A{v}; % save previous value
[C1{v}, C2{v}, C3{v}, Lambda1{v}, Lambda2{v}, Lambda3{v}, Lambda4{v}, A{v}] = pairwise_LRSSC_1view...
(X{v}', K{v}, num_views, C1{v}, C2{v}, C3{v}, C_sum{v}, Lambda1{v}, Lambda2{v}, Lambda3{v}, Lambda4{v}, ...
lambda, mu, noisy);
end
% check convergence
converged = true;
for v=1 : num_views
err1 = max(max(abs(A{v}-C1{v})));
err2 = max(max(abs(A{v}-C2{v})));
err3 = max(max(abs(A{v}-C3{v})));
err4 = max(max(abs(A_prev{v}-A{v})));
if err1>err_thr || err2>err_thr || err3>err_thr || err4>err_thr
converged = false;
break
end
end
mu = min(rho*mu,max_mu);
end
%if converged
% fprintf('Converged in iter %d\n', iter);
%end
C_avg = zeros(n,n);
for v = 1:num_views
C_avg = C_avg+C2{v};
end
C_avg = C_avg/(num_views);
C = C_avg;
Af = abs(C)+abs(C');
end
|
github
|
mbrbic/Multi-view-LRSSC-master
|
compute_CE.m
|
.m
|
Multi-view-LRSSC-master/performance/compute_CE.m
| 1,955 |
utf_8
|
f82c9a2da3e44077d754286307840c28
|
% Compute the clustering error.
%
%-------------------------------------------------------
% Input:
% A: predicted cluster assignments
% A0 : N true cluster assignments
% truth: truth cluster indicators
%
%
% Output:
% CE: clustering error
%
function CE = compute_CE(A,A0)
if size(A,2) == 1
A = A';
end
if size(A0,2) == 1
A0 = A0';
end
L = max(A);
L0 = max(A0);
N = numel(A);
Aerror = zeros(L,max(L,L0));
for i=1:L
for j=1:L0
Aerror(i,j) = nnz(A0(A == i) ~= j);
end
Aerror(i,L0+1:end) = nnz(A == i);
end
if max(L,L0) <= 10
% for <=10 labels, compute error for every permutation
perm = perms(1:max(L,L0));
perm = perm(:,1:L);
ind_set = repmat((0:L-1)*L,size(perm,1),1) + perm;
[CE,~] = min(sum(Aerror(ind_set),2)); % Find the best permutation of label indices that minimize the disagreement
CE = CE / N;
else
% for >10 labels, compute approximate error using hill climbing
% assumed L=L0
swap = [];
for i=2:L
swap = [swap; repmat(i,i-1,1) (1:i-1)'];
end
CE = N;
for i=1:10
perm = randperm(L);
for j=1:1e5
[m,ind] = min(Aerror(sub2ind(size(Aerror),swap(:,1),perm(swap(:,2))')) ...
+ Aerror(sub2ind(size(Aerror),swap(:,2),perm(swap(:,1))')) ...
- Aerror(sub2ind(size(Aerror),swap(:,1),perm(swap(:,1))')) ...
- Aerror(sub2ind(size(Aerror),swap(:,2),perm(swap(:,2))')));
if m >= 0 break; end
temp = perm(swap(ind,1));
perm(swap(ind,1)) = perm(swap(ind,2));
perm(swap(ind,2)) = temp;
end
%perm
%sum(Aerror(sub2ind(size(Aerror),1:L,perm)))
if sum(Aerror(sub2ind(size(Aerror),1:L,perm))) < CE
CE = sum(Aerror(sub2ind(size(Aerror),1:L,perm)));
end
end
CE = CE / N;
end
end
|
github
|
mbrbic/Multi-view-LRSSC-master
|
compute_nmi.m
|
.m
|
Multi-view-LRSSC-master/performance/compute_nmi.m
| 1,364 |
utf_8
|
60db924b3abc1efdd1fb1731c534eece
|
% Compute normalized mutual information.
%
function nmi = compute_nmi (T, H)
N = length(T);
classes = unique(T);
clusters = unique(H);
num_class = length(classes);
num_clust = length(clusters);
%%compute number of points in each class
for j=1:num_class
index_class = (T(:)==classes(j));
D(j) = sum(index_class);
end
% mutual information
mi = 0;
A = zeros(num_clust, num_class);
avgent = 0;
for i=1:num_clust
%number of points in cluster 'i'
index_clust = (H(:)==clusters(i));
B(i) = sum(index_clust);
for j=1:num_class
index_class = (T(:)==classes(j));
%%compute number of points in class 'j' that end up in cluster 'i'
A(i,j) = sum(index_class.*index_clust);
if (A(i,j) ~= 0)
miarr(i,j) = A(i,j)/N * log2 (N*A(i,j)/(B(i)*D(j)));
%%average entropy calculation
avgent = avgent - (B(i)/N) * (A(i,j)/B(i)) * log2 (A(i,j)/B(i));
else
miarr(i,j) = 0;
end
mi = mi + miarr(i,j);
end
end
% class entropy
class_ent = 0;
for i=1:num_class
class_ent = class_ent + D(i)/N * log2(N/D(i));
end
% clustering entropy
clust_ent = 0;
for i=1:num_clust
clust_ent = clust_ent + B(i)/N * log2(N/B(i));
end
% normalized mutual information
nmi = 2*mi / (clust_ent + class_ent);
|
github
|
andreafarina/SOLUS-master
|
linearity_fit.m
|
.m
|
SOLUS-master/example/example_200202_series/linearity_fit.m
| 6,499 |
utf_8
|
753b17477de52ef6051dbf5991910d79
|
%% analyisis
%clear
direc = { 'ex_bulk10_0.1_incl10_0.05',...
'ex_bulk10_0.1_incl10_0.4',...
'ex_bulk10_0.2_incl10_0.2',...
'ex_bulk10_0.1_incl10_0.1',...
'ex_bulk10_0.1_incl10_0.6',...
'ex_bulk10_0.2_incl10_0.4',...
'ex_bulk10_0.1_incl05_0.1',...
'ex_bulk10_0.1_incl10_0.2',...
'ex_bulk10_0.1_incl15_0.1' };
direc = { 'ex_bulk10_0.1_incl10_0.05',...
'ex_bulk10_0.1_incl10_0.4',...
'ex_bulk10_0.1_incl10_0.1',...
'ex_bulk10_0.1_incl10_0.6',...
'ex_bulk10_0.1_incl10_0.2' };
% direc = {'ex_bulk10_0.1_incl10_0.2_p0.0001',...
% 'ex_bulk10_0.1_incl10_0.2_p0.00025',...
% 'ex_bulk10_0.1_incl10_0.2_p0.0005',...
% 'ex_bulk10_0.1_incl10_0.2_p0.001',...
% 'ex_bulk10_0.1_incl10_0.2_p0.0025',...
% 'ex_bulk10_0.1_incl10_0.2_p0.005',...
% 'ex_bulk10_0.1_incl10_0.2_p0.01',...
% 'ex_bulk10_0.1_incl10_0.2_p0.025',...
% 'ex_bulk10_0.1_incl10_0.2_p0.05',...
% 'ex_bulk10_0.1_incl10_0.2_p0.1'...
% 'ex_bulk10_0.1_incl10_0.2_p0.2'};
%
% %load Test_Standard_REC.mat
iii = 1;
i_fig = 1001;
for i = 1:numel(direc)
%['dtprior/',direc{i},'/Test_Standard_REC.mat']
load( ['./dtprior/',direc{i},'/Test_Standard_REC.mat'])
for lambda = 1:8
[bx, by, bz] = ndgrid(REC.grid.x, REC.grid.y, REC.grid.z);
if lambda >0 %== 3
abs_real(iii) = REC.opt.hete1.val(lambda);
mua_recon = REC.opt.bmua(:,lambda);
if numel(size(REC.solver.prior.refimage)) > 3
REC.solver.prior.refimage = REC.solver.prior.refimage(:,:,:,1);
end
abs_recon(iii) = mean(REC.opt.bmua(abs(bx(:)) <= 1 & abs(by(:)) <= 1 & abs(bz(:)) >= 9 & abs(bz(:)) <= 11, lambda));%mean(mua_recon(REC.solver.prior.refimage(:) > mean(REC.solver.prior.refimage(:)))); %mean(REC.opt.bmua(abs(bx(:)) <= 1 & abs(by(:)) <= 1 & abs(bz(:)) > 6 & abs(bz(:)) < 10, lambda));
%mean(mua_recon > 0.5*mean(mua_recon)); %
abs_bulk(iii) = REC.opt.mua0(lambda);
sca_real(iii) = REC.opt.hete1.val(lambda+ 8);
mus_recon = REC.opt.bmusp(:,lambda);
sca_recon(iii) = mean(REC.opt.bmusp(abs(bx(:)) <= 1 & abs(by(:)) <= 1 & abs(bz(:)) >= 9 & abs(bz(:)) <= 11, lambda));%mean(mus_recon > 0.5*mean(mus_recon));%
sca_bulk(iii) = REC.opt.musp0(lambda);
tau(iii) = REC.solver.tau;
iii = iii +1;
if lambda == 0
PlotMua = reshape(REC.opt.bmua,[REC.grid.dim REC.radiometry.nL]);
PlotMus = reshape(REC.opt.bmusp,[REC.grid.dim REC.radiometry.nL]);
PlotMua = PlotMua(:,:,:,lambda);
PlotMus = PlotMus(:,:,:,lambda);
figure(i_fig);ShowRecResults(REC.grid,PlotMua,...
REC.grid.z1,REC.grid.z2,REC.grid.dz,1,'auto',0.00,0.05);
pause(1)
suptitle(sprintf('Recon Mua,target incl = %g mm-1, bulk = %g mm-1, lambda = %g nm, tau = %g',...
round(abs_real(iii-1),4),...
round(abs_bulk(iii-1),4),...
830,...
0*tau(iii-1)))
pause(1)
% figure(i_fig+1000);ShowRecResults(REC.grid,PlotMus,...
% REC.grid.z1,REC.grid.z2,REC.grid.dz,1,'auto',0.00,0.05);
% suptitle(sprintf('Recon Mus, ,nominal incl = %g , bulk = %g, lambda= %g',sca_real(iii-1), sca_bulk(iii-1), lambda))
%
i_fig = i_fig + 1;
end
end
end
end
delta_abs_real = (abs_real)./abs_bulk;
delta_abs_recon = (abs_recon)./abs_bulk;
delta_sca_real = (sca_real)./sca_bulk;
delta_sca_recon = (sca_recon)./sca_bulk;
err_abs = (abs_recon - abs_real)./abs_real;
err_sca = (sca_recon - sca_real)./abs_real;
figure(2);scatter((delta_abs_real), delta_abs_recon),
xlabel('nominal contrast \mu_{a,in}/ \mu_{a,bulk}'),
ylabel('Reconstructed contrast \mu_{a,in}^{recon} / \mu_{a,bulk}'),
title('ABS: Recontructed vs nominal contrast with DT prior, \tau = 0.05' )
figure(3);scatter(delta_sca_real, delta_sca_recon),
xlabel('nominal contrast \mu_{s,in}/ \mu_{s,bulk}'),
ylabel('Reconstructed contrast \mu_{s,in}^{recon} / \mu_{s,bulk}'),
title('SCA: Recontructed vs nominal contrast with DT prior, \tau = 0.05' )
figure(4);scatter(delta_abs_real, err_abs),
xlabel('nominal contrast \mu_{a,in}/ \mu_{a,bulk}'),
ylabel('Reconstruction Error (\mu_{a,in}^{recon} - \mu_{a,in}) / \mu_{a,in}'),
title('ABS: ERROR vs nominal contrast with DT prior, \tau = 0.05' )
figure(5);scatter(delta_sca_real, err_sca),
xlabel('nominal contrast \mu_{s,in}/ \mu_{s,bulk}'),
ylabel('Reconstruction Error (\mu_{s,in}^{recon} - \mu_{s,in}) / \mu_{s,in}'),
title('SCA: ERROR vs nominal contrast with DT prior, \tau = 0.05' )
figure(6);scatter(abs_real, abs_recon),
xlabel('nominal abs \mu_{a,in}'),
ylabel('Reconstruction \mu_{a,in}^{recon} '),
title('ABS: abs vs nominal abs with DT prior, \tau = 0.05' )
figure(7);semilogx(tau, err_abs, 'r--+',...
'MarkerEdgeColor','r','MarkerFaceColor','r', 'LineWidth',2, 'MarkerSize', 15),
xlabel('Regularisation Parameter'),
ylabel('Reconstruction Error (\mu_{a,in}^{recon} -\mu_{a,in})/\mu_{a,in} '),
title('Absorption Reconstruction Error vs Regularisation Parameter' )
xx = reshape(delta_abs_real,[8,5]);
yy = reshape(delta_abs_recon, [8,5]);
for i_s = 1:5
a(i_s,:) = rand(1,3);
figure(8);plot(xx(:,i_s), yy(:,i_s), '+', 'MarkerSize', 8, 'color', a(i_s,:)), hold on
%plot(xx(:,i_s), yy_old(:,i_s), 'o', 'MarkerSize', 12, 'color', a(i_s,:)), hold on
end
pause(2);
grid on
xlabel('nominal contrast \mu_{a,in}/ \mu_{a,bulk}'),
ylabel('Reconstructed contrast \mu_{a,in}^{recon} / \mu_{a,bulk}'),
legend('\mu_{a} = 0.005 mm^{-1}','\mu_{a} = 0.01 mm^{-1}', '\mu_{a} = 0.02 mm^{-1}', '\mu_{a} = 0.04 mm^{-1}', '\mu_{a} = 0.06 mm^{-1}')
title('ABS: Recontructed Contrast vs target contrast with DT prior, \tau = 0.01 (+), \mu_{s,bulk} \sim 1 mm^{-1} \mu_{a,bulk} \sim 0.01 mm^{-1}' )
for i_s = 1:5
% a(i_s,:) = rand(1,3);
figure(8);%plot(xx(:,i_s), yy(:,i_s), '+', 'MarkerSize', 12, 'color', a(i_s,:)), hold on
plot(xx(:,i_s), yy_old(:,i_s), 'o', 'MarkerSize', 8, 'color', a(i_s,:)), hold on, legend off
end
legend('\mu_{a} = 0.005 mm^{-1}','\mu_{a} = 0.01 mm^{-1}', '\mu_{a} = 0.02 mm^{-1}', '\mu_{a} = 0.04 mm^{-1}', '\mu_{a} = 0.06 mm^{-1}')
disp('END')
function [a,b,c] = fit_linearity(vec_real, vec_recon)
vec_real = vec_real/ 0.01
a = 1;
b = 1;
c = 1;
f = fit(vec_real, vec_recon, 'poly2');
return
end
|
github
|
andreafarina/SOLUS-master
|
mutiple_run_script.m
|
.m
|
SOLUS-master/example/example_200202_series/mutiple_run_script.m
| 1,527 |
utf_8
|
adeeec982ba14695f0f8cb8644281cf4
|
%% run series of experiments
direc = { 'ex_bulk10_0.1_incl10_0.05',...
'ex_bulk10_0.1_incl10_0.4',...
'ex_bulk10_0.2_incl10_0.2',...
'ex_bulk10_0.1_incl10_0.1',...
'ex_bulk10_0.1_incl10_0.6',...
'ex_bulk10_0.2_incl10_0.4',...
'ex_bulk10_0.1_incl05_0.1',...
'ex_bulk10_0.1_incl10_0.2',...
'ex_bulk10_0.1_incl15_0.1' };
%
% for i = 1:numel(direc)
% close all
% old_pwd = pwd;
% run_([old_pwd,'/free/',direc{i}], pwd);
% system('rm ./precomputed_jacobians/J*')
% cd ../../
% end
% %
for i = 1:numel(direc)
close all
old_pwd = pwd;
run_([old_pwd,'/cylprior/',direc{i},], pwd);
system('rm ./precomputed_jacobians/J*')
cd ../../
end
for i = 1:numel(direc)
close all
old_pwd = pwd;
run_([old_pwd,'/dtprior/',direc{i}], pwd);
system('rm ./precomputed_jacobians/J*')
cd ../../
end
% % pp = {'0.0001','0.00025','0.0005','0.001','0.0025', '0.005', '0.01', '0.025', '0.05', '0.1', '0.2'};
% % for i = 1:numel(pp)
% % close all
% % old_pwd = pwd;
% % run_([old_pwd,'/cylprior_priortest/','ex_bulk10_0.1_incl10_0.2_p',pp{i}], pwd);
% % system('rm ./precomputed_jacobians/J*')
% % cd ../../
% % end
% %
% % for i = 1:numel(pp)
% % close all
% % old_pwd = pwd;
% % run_([old_pwd,'/dtprior_priortest/','ex_bulk10_0.1_incl10_0.2_p',pp{i}], pwd);
% % system('rm ./precomputed_jacobians/J*')
% % cd ../../
% % end
function run_(cd_direc, varargin)
cd(cd_direc);
run_DOT;
end
|
github
|
andreafarina/SOLUS-master
|
createExp.m
|
.m
|
SOLUS-master/data/202002/createExp.m
| 24,556 |
utf_8
|
a4e4fc8456687115a5988c858451ae9d
|
function EXP = createExp(DAT_STR, type_phantom)
%
% EXP = CreateMatlabExp(DAT_STR, type_phantom)
% Takes as input the path to a *.dat file and return a MAT variable
% suitable for operations in the SOLUS software
% DATA_STR is the pathname of a *.dat file
% type_phantom is a str defining from which phantom the experimental data should be created:
% -'veallard'
% -'lardtend'
% -'silicon'
% EXP is a Matlab variable with experimental data from the phantom
old_pwd = pwd;
TOMOFOLDER = from_dat2mat(DAT_STR, type_phantom);
folder_data = DAT_STR;
cd([TOMOFOLDER])
%addpath((['./Tomo structs/' folder_data]));
lambda = [635, 670, 830, 915, 940, 980, 1030, 1065]; %lambda used
%lambda = [620 670 740 800 910 1020 1050 1090];
for iw = 1:numel(lambda)
EXP_file = strcat('Tomo_wave_',num2str(lambda(iw)));
load(['Tomo_structs/',EXP_file,'.mat'])
% =========================================================================
%% Path
% =========================================================================
%EXP.path.data_folder = '/media/psf/Home/Documents/Politecnico/Work/Data/Compressive Imaging/';
%EXP.path.data_folder = '/Users/andreafarina/Documents/Politecnico/Work/Data/Compressive Imaging/';
output_folder = './';
output_suffix = '';%'_sum100';
% =========================================================================
%% Measurement info
% =========================================================================
% Measurement folder and name
EXP.path.day = '202002';
EXP.path.data_folder = [old_pwd,filesep, 'Tomo_structs'];%['../../results/201710/dynamic phantom'];
EXP.path.file_name = T.path.file_name;
% Time resolved windows
EXP.spc.gain = T.gain;
EXP.spc.n_chan = T.Nchannel;
EXP.spc.factor = 50e3/T.Nchannel/T.gain;
%EXP.time.roi = [500,1500];
EXP.time.roi = T.roi; % just for info
EXP.bkg.ch_start = T.bkg.ch_start;
EXP.bkg.ch_end = T.bkg.ch_stop;
% % time windows
% a = 1:2001;
% b = a + 0;
% twin1 = [a', b'];
% twin = twin1;
% EXP.time.twin = twin;
% irf file
EXP.path.irf_file = 'IRF.mat';
% irf shift
EXP.irf.t0 = T.irf.t0; %40;%-15;%-30; % ps
% sum repetitions
% =========================================================================
%% Pre-process SPC and CCD
% =========================================================================
cd(old_pwd)
[homo,hete,t,EXP.irf] = PreProcessing_SPC(EXP);
% =========================================================================
%% Determine size of data
% =========================================================================
spc_size = size(hete);
ref_size = size(homo);
% =========================================================================
%% Save forward data
% =========================================================================
% EXP.data.spc = int32(reshape(hete,size(hete,1),[]));
% EXP.data.ref = int32(reshape(homo,size(homo,1),[]));
EXP.data.spc = (reshape(hete,size(hete,1),[]));
EXP.data.ref = (reshape(homo,size(homo,1),[]));
EXP.time.axis = t;
EXP.grid.dmask = T.dmask;
EXP.grid.xs = T.xs;
EXP.grid.ys = T.ys;
EXP.grid.zs = T.zs;
EXP.grid.SourcePos = T.sourcepos;
EXP.grid.DetPos = T.detpos;
EXP.optp.homo.abs = T.opt.homo.abs;
EXP.optp.homo.sca = T.opt.homo.sca;
EXP.optp.hete.abs = T.opt.hete.abs;
EXP.optp.hete.sca = T.opt.hete.sca;
EXP.lambda = T.lambda;
mkdir(fullfile(pwd,'EXP_structs',folder_data))
str_file = [fullfile(pwd,'EXP_structs',folder_data),filesep,...
'EXP_',EXP_file,output_suffix];
save(str_file,'EXP');
%%assemble full exp struct
EXP_full.irf.area(iw) = EXP.irf.area;
EXP_full.irf.baric(iw) = EXP.irf.baric;
EXP_full.irf.data(:,iw) = EXP.irf.data;
EXP_full.irf.peak(iw) = EXP.irf.peak;
EXP_full.irf.variance(iw) = EXP.irf.variance;
EXP_full.data.ref(:,(1:size(EXP.data.ref,2))+(iw-1)*size(EXP.data.ref,2)) = EXP.data.ref;
EXP_full.data.spc(:,(1:size(EXP.data.spc,2))+(iw-1)*size(EXP.data.spc,2)) = EXP.data.spc;
EXP_full.path = EXP.path; EXP_full.path.file_name = 'Tomo';
EXP_full.spc = EXP.spc;EXP_full.time = EXP.time;
EXP_full.bkg = EXP.bkg;EXP_full.grid = EXP.grid;
EXP_full.optp = EXP.optp; EXP_full.lambda = EXP.lambda;
end
clear EXP
EXP = EXP_full;
str_file = [fullfile(pwd,'EXP_structs',folder_data),filesep,...
'EXP_Tomo'];
save(str_file,'EXP');
return
end
% str_file = [fullfile(pwd,'EXP structs',folder_data),filesep,...
% 'EXP_','Tomo',output_suffix];
% save(str_file,'EXP');
function TomoFolder = from_dat2mat(STR, type_str)
%
% convert *.dat files into *.mat structures and returns the path to the
% folder where the structures are saved
%% Create a file.mat with the data used for the tomographic reconstruction
% version @ 11-June-2018
%% Content:
% heterogeneous => data(n_time,n_sd,n_lambda);
% homogeneous => ref(n_time,n_sd,n_lambda);
% irf => irf(n_time,n_lambda);
% stand. dev. => sd(n_time,n_sd,n_lambda);
% Source Position => SOURCE_POS;
% Det. Position => DETECTOR_POS;
% Logic Mask => dmask(n_detector, n_source);
%=========================================================================
%% TCSPC board parameters
gain = 6;
Nchannel = 4096;
factor = 50000/gain/Nchannel;
phot_goal = 400000; %Total photons per curve (goal)
repetitions = 5; %# of repetitions for each lambda
roi = [500 3500];
%% Background removal
background = 1; %background = 1 => remove the backgorund
%background = 0 => no removal
%=========================================================================
%% Repetitions sum
sum_rep = 1; %sum_rep = 1 => the repetitions are summed
%sum_rep = 0 => takes just the first repetition
%=========================================================================
%% Read .DAT files
% Measurement file
filepath = STR;
%addpath(genpath(['./' filepath]));
switch lower(type_str)
%% LARD+HAM
case 'lardham'
xs = [19.5 6.5 -6.5 -19.5];
ys = [10 -10];
zs = 0;
N_homo = [473:1:500]; % #homog. measurements
N_hete = [501:1:528]; % #heterog. measurements
irf_file_name = 'SOLs0100';
lambda = [635, 670, 830, 915, 940, 980, 1030, 1065]; %lambda used
T.opt.homo.abs = [0.0038079316 0.0013426612 0.0013876201 0.0100602733 0.0075543996 0.0039425139 0.007613757 0.004933052];
T.opt.homo.sca = [1.228420919 1.189904619 0.913511025 0.8030371548 0.7696766762 0.7560782619 0.7022870595 0.6751796929];
T.opt.hete.abs = [0.037321025 0.021343425 0.0104115095 0.01574798 0.023087425 0.05156646 0.02941183 0.019642555];
T.opt.hete.sca = [0.3711594 0.31473145 0.2147255 0.20802585 0.22279435 0.2970374 0.2203812 0.18975735];
%% VEAL+LARD
case 'veallard'
xs = [19.5 6.5 -6.5 -19.5];
ys = [10 -10];
zs = 0;
N_homo = [672:1:699]; % #homog. measurements
N_hete = [700:1:727]; % #heterog. measurements
irf_file_name = 'SOLs0111';
lambda = [635, 670, 830, 915, 940, 980, 1030, 1065]; %lambda used
T.opt.homo.abs = [0.02791161 0.0177973093 0.009091243 0.01586907 0.0260947261 0.053704805 0.0297806604 0.01985166];
T.opt.homo.sca = [0.9385278214 0.8507553357 0.5872533214 0.5547145536 0.5709639036 0.6376319821 0.5172092786 0.4790727179];
T.opt.hete.abs = [0.0036857775 0.001488738 0.001309731 0.010038185 0.0073729725 0.0050007045 0.0080228255 0.0052807725];
T.opt.hete.sca = [1.761344 1.639484 1.4247535 1.349348 1.2949265 1.200157 1.215836 1.2253315];
%% LARD+TEND
case 'lardtend'
xs = [19.5 6.5 -6.5 -19.5];
ys = [10 -10];
zs = 0;
N_homo = [614:1:641]; % #homog. measurements
N_hete = [642:1:669]; % #heterog. measurements
irf_file_name = 'SOLs0107';
lambda = [635, 670, 830, 915, 940, 980, 1030, 1065]; %lambda used
T.opt.homo.abs = [0.0038005485 0.0034049469 0.0015822979 0.0104953881 0.0075209223 0.0052855228 0.0090089653 0.0054133905];
T.opt.homo.sca = [1.7920386071 1.6857158 1.4810270357 1.4032054643 1.3324607857 1.2932485 1.2526574786 1.24276525];
T.opt.hete.abs = [0.005657467 0.00265227 0.003164864 0.008215303 0.01391677 0.02775662 0.01905252 0.01384971];
T.opt.hete.sca = [2.777692 2.854745 2.679655 2.560578 2.494992 2.154414 2.323298 2.578156];
%% SIL_10_01_1cm
case 'sil_10_01_1cm'
xs = [20.0000 6.6667 -6.6667 -20.0000];
ys = [14 -14];
zs = 0;
lambda = [620 670 740 800 910 1020 1050 1090];
N_homo = [786:1:813]; % #homog. measurements
N_hete = [842:1:869]; % #heterog. measurements
irf_file_name = 'SOLs0116';
T.opt.homo.abs = [0.00436839500000000 0.00399510520000000 0.00530931960000000 0.00449303100000000 0.0124849820000000 0.00865493720000000 0.00426235080000000 0.00704804460000000];
T.opt.homo.sca = [1.12950240000000 0.996046560000000 0.920408340000000 0.858343020000000 0.656752800000000 0.537798400000000 0.524484660000000 0.472743960000000];
T.opt.hete.abs = [0.0084826386 0.0079976316 0.0096794268 0.0086512542 0.016530138 0.012258804 0.0078621298 0.010433566];
T.opt.hete.sca = [1.1072414 0.98465536 0.9394932 0.86275388 0.66062366 0.53074266 0.51240594 0.46274634];
%% SIL_10_01_6cm
case 'sil_10_01_6cm'
xs = [20.0000 6.6667 -6.6667 -20.0000];
ys = [14 -14];
zs = 0;
lambda = [620 670 740 800 910 1020 1050 1090];
N_homo = [786:1:813]; % #homog. measurements
N_hete = [898:1:925]; % #heterog. measurements
irf_file_name = 'SOLs0116';
T.opt.homo.abs = [0.00436839500000000 0.00399510520000000 0.00530931960000000 0.00449303100000000 0.0124849820000000 0.00865493720000000 0.00426235080000000 0.00704804460000000];
T.opt.homo.sca = [1.12950240000000 0.996046560000000 0.920408340000000 0.858343020000000 0.656752800000000 0.537798400000000 0.524484660000000 0.472743960000000];
T.opt.hete.abs = [0.0084826386 0.0079976316 0.0096794268 0.0086512542 0.016530138 0.012258804 0.0078621298 0.010433566];
T.opt.hete.sca = [1.1072414 0.98465536 0.9394932 0.86275388 0.66062366 0.53074266 0.51240594 0.46274634];
%% SIL_10_02_1cm
case 'sil_10_02_1cm'
xs = [20.0000 6.6667 -6.6667 -20.0000];
ys = [14 -14];
zs = 0;
lambda = [620 670 740 800 910 1020 1050 1090];
N_homo = [786:1:813]; % #homog. measurements
N_hete = [814:1:841]; % #heterog. measurements
irf_file_name = 'SOLs0116';
T.opt.homo.abs = [0.00436839500000000 0.00399510520000000 0.00530931960000000 0.00449303100000000 0.0124849820000000 0.00865493720000000 0.00426235080000000 0.00704804460000000];
T.opt.homo.sca = [1.12950240000000 0.996046560000000 0.920408340000000 0.858343020000000 0.656752800000000 0.537798400000000 0.524484660000000 0.472743960000000];
T.opt.hete.abs = [0.01683116 0.01719449 0.019627084 0.017524408 0.024481872 0.019767674 0.015424918 0.017779734];
T.opt.hete.sca = [0.98843248 0.9300621 0.91997866 0.7990178 0.5994491 0.47483964 0.4577962 0.4145961];
%% SIL_10_02_6cm
case 'sil_10_02_6cm'
xs = [20.0000 6.6667 -6.6667 -20.0000];
ys = [14 -14];
zs = 0;
lambda = [620 670 740 800 910 1020 1050 1090];
N_homo = [786:1:813]; % #homog. measurements
N_hete = [870:1:897]; % #heterog. measurements
irf_file_name = 'SOLs0116';
T.opt.homo.abs = [0.00436839500000000 0.00399510520000000 0.00530931960000000 0.00449303100000000 0.0124849820000000 0.00865493720000000 0.00426235080000000 0.00704804460000000];
T.opt.homo.sca = [1.12950240000000 0.996046560000000 0.920408340000000 0.858343020000000 0.656752800000000 0.537798400000000 0.524484660000000 0.472743960000000];
T.opt.hete.abs = [0.01683116 0.01719449 0.019627084 0.017524408 0.024481872 0.019767674 0.015424918 0.017779734];
T.opt.hete.sca = [0.98843248 0.9300621 0.91997866 0.7990178 0.5994491 0.47483964 0.4577962 0.4145961];
%% case silicon 200202
case 'silicon_200202'
xs = [20.0000 6.6667 -6.6667 -20.0000];
ys = [14 -14];
zs = 0;
lambda = [635, 670, 830, 915, 940, 980, 1030, 1065];
%:1:244]; % #homog. measurements
%:1:244]; % #heterog. measurements
irf_file_name = 'SOLs0211';
str_phantom_homo = '10_0.2';
str_phantom_hete = '10_0.4';
switch lower(str_phantom_homo)
case '10_0.1'
T.opt.homo.abs = [0.09118862 0.08252885 0.07457543 0.114975675 0.07321214 0.07269354 0.09152519 0.076381];
T.opt.homo.sca = [14.267035 13.06632 9.491283 7.8722685 7.707295 7.060895 6.352237 5.989931];
N_homo = [246];% #homog. measurements
switch lower(str_phantom_hete)
case '10_0.05'
T.opt.hete.abs = [0.05246881 0.04837734 0.03696393 0.080474885 0.03518626 0.03308078 0.05274401 0.038200645];
T.opt.hete.sca = [11.46904 10.55009 7.656952 6.150009 6.002163 5.590301 4.857868 4.654679];
N_hete = [247];% #heterog. measurements
case '10_0.1'
T.opt.hete.abs = [0.094249395 0.09108484 0.07822272 0.12349727 0.07722901 0.07274856 0.09558736 0.081897605];
T.opt.hete.sca = [11.27842 10.56916 7.576539 6.138904 5.994108 5.46071 4.877412 4.694373];
N_hete = [248];% #heterog. measurements
case '10_0.2'
T.opt.hete.abs = [0.18834215 0.1808696 0.1594672 0.2140688 0.1618171 0.1609721 0.1816612 0.1681408];
T.opt.hete.sca = [11.196185 10.30879 7.183976 6.0505265 5.763012 5.358386 4.799074 4.5417635];
N_hete = [249];% #heterog. measurements
case '10_0.4'
T.opt.hete.abs = [0.3244506 0.3090453 0.2850104 0.3521497 0.2937037 0.2913416 0.3152952 0.30309455];
T.opt.hete.sca = [9.540982 8.508501 5.992858 5.245241 4.992857 4.637014 4.149682 3.973167];
N_hete = [250];% #heterog. measurements
case '10_0.6'
T.opt.hete.abs = [0.46561525 0.4456669 0.422469 0.5012814 0.4393349 0.4392696 0.4642975 0.4596188];
T.opt.hete.sca = [9.5278705 8.628135 6.08301 5.301621 5.010855 4.710412 4.163082 4.0690635];
N_hete = [251];% #heterog. measurements
case '15_0.1'
T.opt.hete.abs = [0.080407055 0.07623264 0.06779367 0.110158655 0.06512177 0.06030613 0.07829765 0.066305675];
T.opt.hete.sca = [16.99245 15.68388 11.63303 9.3891785 9.218989 8.425847 7.417703 7.211785];
N_hete = [252];% #heterog. measurements
case '05_0.1'
T.opt.hete.abs = [0.087325025 0.08533506 0.07396581 0.1459342 0.08532022 0.08495646 0.1181968 0.10573535];
T.opt.hete.sca = [4.766733 4.387157 3.001634 2.639426 2.415703 2.165157 1.945762 1.762059];
N_hete = [253];% #heterog. measurements
end
case '10_0.2'
T.opt.homo.abs = [0.176269 0.1642548 0.1523256 0.1921913 0.148854 0.1484415 0.1653411 0.1511315];
T.opt.homo.sca = [13.239025 12.28287 8.910008 7.3108825 7.121039 6.537811 5.882884 5.576854];
N_homo = [254];% #homog. measurements
switch lower(str_phantom_hete)
case '10_0.2'
T.opt.hete.abs = [0.18834215 0.1808696 0.1594672 0.2140688 0.1618171 0.1609721 0.1816612 0.1681408];
T.opt.hete.sca = [11.196185 10.30879 7.183976 6.0505265 5.763012 5.358386 4.799074 4.5417635];
N_hete = [255];% #heterog. measurements
case '10_0.4'
T.opt.hete.abs = [0.3244506 0.3090453 0.2850104 0.3521497 0.2937037 0.2913416 0.3152952 0.30309455];
T.opt.hete.sca = [9.540982 8.508501 5.992858 5.245241 4.992857 4.637014 4.149682 3.973167];
N_hete = [256];% #heterog. measurements
end
end
end
meas_homo = [];
meas_hete = [];
B = [];
C = [];
TomoFolder = [ filepath filesep 'Tomo_structs'];
old_pwd = pwd;
cd(filepath)
% Homog. measurements
for i = 1:length(N_homo)
B = DatRead3(strcat('SOLm1',num2str(N_homo(i))),4096,5,8);
if sum_rep == 0
meas_homo(:,i,:) = B(:,1,:); %takes just the first repetion.
elseif sum_rep == 1
meas_homo(:,i,:) = squeeze(B); %sums the 5 repetitions
else
meas_homo(:,i,:) = squeeze(sum(B,2)); %sums the 5 repetitions
end
end
% Heterog. measurements
for i = 1:length(N_hete)
C = DatRead3(strcat('SOLm1',num2str(N_hete(i))),4096,5,8);
if sum_rep == 0
meas_hete(:,i,:) = C(:,1,:); %takes just the first repetion.
elseif sum_rep == 1
meas_hete(:,i,:) = squeeze(C); %sums the 5 repetitions
else
meas_hete(:,i,:) = squeeze(sum(C,2)); %sums the 5 repetitions
end
end
meas_homo = permute(meas_homo,[3 2 1]); %rearrange of the dimensions
meas_hete = permute(meas_hete,[3 2 1]);
%Irf file
irf = DatRead3(irf_file_name,4096,5,8);
if sum_rep == 0
irf = squeeze(permute(irf(:,1,:),[3 2 1])); %rearrange of the dimensions
elseif sum_rep == 1
irf = squeeze(permute(irf(:,:,:),[3 2 1]));
else
irf = squeeze(permute(sum(irf,2),[3 2 1]));
end
% for i = 1: size(irf,2)
% semilogy(irf(:,i));
% hold on, grid on
% end
%=========================================================================
%% Subtraction of the background
if background == 0
else
back_start = 450; %first channel for the background
back_stop = 500; %last channel for the background
back_ref = mean(meas_homo(back_start:back_stop,:,:));
back_data = mean(meas_hete(back_start:back_stop,:,:));
back_irf = mean(irf(back_start:back_stop,:));
meas_homo = meas_homo - back_ref;
meas_homo(meas_homo < 0) = 0;
meas_hete = meas_hete - back_data;
meas_hete(meas_hete < 0) = 0;
irf = irf - back_irf;
irf(irf < 0) = 0;
end
% for i = 1: size(data,2)
% semilogy(ref(:,i,1));
% hold on, grid on
% end
%=========================================================================
%% Calculation of the standard deviation
sd = sqrt(meas_hete);
%=========================================================================
%% Create the S-D pos.
% SOURCE_POS = [xs1 ys1 zs1; xs2 ys2 zs2; ... ; xs8 ys8 zs8];
% SOURCE_POS = [xd1 yd1 zd1; xd2 yd2 zd2; ... ; xd8 yd8 zd8];
SOURCE_POS = [1.95 1 0; 0.65 1 0; -0.65 1 0; -1.95 1 0;...
1.95 -1 0; 0.65 -1 0; -0.65 -1 0; -1.95 -1 0].*10;
DET_POS = SOURCE_POS;
%=========================================================================
%% Create the logic mask
% dmask = [s1-d1 s2-d1 ... sn-dn; s1-d2 s2-d2 ... sn-d2 ...]
dmask = ones(size(SOURCE_POS,1),size(DET_POS,1));
dmask = dmask - diag(diag(ones(size(SOURCE_POS,1),size(DET_POS,1)))); % we didn't perform rho = 0 and 1->2 , 2->1
%% rearrange measurements
meas_homo0 = zeros(Nchannel,sum(dmask(:)) ,size(irf,2));
meas_hete0 = zeros(Nchannel,sum(dmask(:)),size(irf,2));
for lam= 1:size(irf,2)
meas_homo0(:,:,lam) = squeeze(meas_homo(:, 1, lam:size(irf,2):end ));
meas_hete0(:,:,lam) = squeeze(meas_hete(:, 1, lam:size(irf,2):end));
end
count = 1;
% srdet = cat(2,[0,1:7]',...
% [8,0,9:14]',...
% [15:16, 0, 17:21]',...
% [22:24,0,25:28]',...
% [29:32,0,33:35]',...
% [36:40,0,41:42]',...
% [43:48,0,49]',...
% [50:56,0]');
% srdetmeas = cat(2,[21,8:14]',...
% [27:28,15:20]',...
% [33:35,22:26]',...
% [39:42,29:32]',...
% [45:49,36:38]',...
% [51:56,43:44]',...
% [1:7,50]');
srdetmeas = cat(2,[0,1:7]',...
[14,0,8:13]',...
[20:21,0,15:19]',...
[26:28,0,22:25]',...
[32:35,0,29:31]',...
[38:42,0,36:37]',...
[44:49,0,43]',...
[50:56,0]');
%srdet = srdetmeas([2,3,4,5,1,8,7,6],[2,3,4,5,1,8,7,6]);
srdet = srdetmeas([5, 4, 3, 2, 6, 7, 8, 1],[5, 4, 3, 2, 6, 7, 8, 1])';
%srdet = srdetmeas([5,1,2,3,4,8,7,6],[5,1,2,3,4,8,7,6]);
% srdetmeas = cat(2,[8:14]',...
% [21,15:20]',...
% [27:28,22:26]',...
% [33:35,29:32]',...
% [39:42,36:38]',...
% [45:49,43:44]',...
% [51:56,50]',...
% [1:7]')';
meas_homo00 = zeros(size(meas_homo0));
meas_hete00 = meas_homo00;
for lam= 1:size(irf,2)
dc = 0;
for d = 1:64
if srdetmeas(d)>0 %& srdetmeas(d)>0
dc = dc +1;
disp(srdet(d))
meas_homo00(:,(dc),lam) = meas_homo0(:,srdet(d), lam);
meas_hete00(:,(dc),lam) = meas_hete0(:,srdet(d), lam);
end
end
end
meas_homo = meas_homo00;
meas_hete = meas_hete00;
clearvars meas_homo0 meas_hete0
CalcolaContrasto
%imagesc(dmask)
%=========================================================================
T.dmask = dmask;
T.sourcepos = SOURCE_POS;
T.detpos = DET_POS;
T.xs = xs;
T.ys = ys;
T.zs = zs;
T.gain = gain;
T.Nchannel = Nchannel;
T.factor = factor;
T.lambda = lambda;
T.roi = roi;
T.bkg.ch_start = back_start;
T.bkg.ch_stop = back_stop;
cd(old_pwd)
mkdir(TomoFolder);
cd(TomoFolder);
T.path.data_folder = TomoFolder;
for iw=1:numel(T.lambda)
T.irf.data = irf(:,iw);
T.irf.t0 = 0;
T.meas_hete = zeros(T.Nchannel,numel(T.dmask));
T.meas_homo = zeros(T.Nchannel,numel(T.dmask));
idm = 1;
for im = 1:numel(T.dmask(:))
if T.dmask(im)==1
T.meas_hete(:,im)=meas_hete(:,idm,iw);
T.meas_homo(:,im)=meas_homo(:,idm,iw);
idm = idm +1;
end
end
T.meas_hete = reshape(T.meas_hete,T.Nchannel,8,8);
T.meas_homo = reshape(T.meas_homo,T.Nchannel,8,8);
T.path.file_name = ['Tomo_wave_' num2str(T.lambda(iw))];
save(['Tomo_wave_' num2str(T.lambda(iw))],'T');
end
cd(old_pwd)
end
%cd(fileparts(mfilename('fullpath')))
|
github
|
andreafarina/SOLUS-master
|
DatRead3.m
|
.m
|
SOLUS-master/data/202002/DatRead3.m
| 22,460 |
utf_8
|
7a8e8f566dc60d850973521c257867aa
|
function [ Data, varargout ] = DatRead3(FileName,varargin)
%DatRead3('FileName')
%Can be as input a selection of the following parameters
%DatRead3(...,'loop4',numloop4,'loop5',numloop5,'datatype','uint32','compilesub',true/false,'forcereading',true/false)
%[Data,Header,EasyReadableHead,SubHeaders,EasyReadableSubHead,UnSqueezedHeader]=DatRead3(...)
NumArgOut = nargout-1;
NumArgin = nargin-1;
ForceReading = false;
isCompileSubHeader = false;
HeadLen=764;
datatype = 'ushort';
nBoard = 1; nDet=1;
loop5=1;loop4=1;
ismandatoryarg = zeros(8,1);
m_loop5 = 1;m_loop4 = 2;m_loop3 = 3;m_loop2 = 4;m_loop1 = 5;
m_nsource = 6;m_ndet = 7;m_nboard = 8;m_nbin = 9;
isdatatypeargin=0;
FilePath = [FileName '.DAT'];
if isempty(fileparts(FileName))
FilePath = fullfile(pwd,[FileName,'.DAT']);
end
fid=fopen(FilePath,'rb');
if fid<0, errordlg('File not found'); Data = []; return; end
for iN = 1:NumArgin
if strcmpi(varargin{iN},'loop5')
loop5 = varargin{iN+1};
ismandatoryarg(m_loop5)=1;
end
if strcmpi(varargin{iN},'loop4')
loop4 = varargin{iN+1};
ismandatoryarg(m_loop4)=1;
end
if strcmpi(varargin{iN},'loop3')
CompiledHeader.LoopNum(3) = varargin{iN+1};
ismandatoryarg(m_loop3)=1;
end
if strcmpi(varargin{iN},'loop2')
CompiledHeader.LoopNum(2) = varargin{iN+1};
ismandatoryarg(m_loop2)=1;
end
if strcmpi(varargin{iN},'loop1')
CompiledHeader.LoopNum(1) = varargin{iN+1};
ismandatoryarg(m_loop1)=1;
end
if strcmpi(varargin{iN},'datatype')
datatype = varargin{iN+1};
end
if strcmpi(varargin{iN},'compilesub')
isCompileSubHeader = varargin{iN+1};
end
if strcmpi(varargin{iN},'forcereading')
if(ischar(varargin{iN+1})||isstring(varargin{iN+1}))
varargin{iN+1}=string2boolean(varargin{iN+1});
end
ForceReading = logical(varargin{iN+1});
end
if strcmpi(varargin{iN},'nSource')
nDet = varargin{iN+1};
ismandatoryarg(m_nsource)=1;
end
if strcmpi(varargin{iN},'nDet')
nDet = varargin{iN+1};
ismandatoryarg(m_ndet)=1;
end
if strcmpi(varargin{iN},'nBoard')
nBoard = varargin{iN+1};
ismandatoryarg(m_nboard)=1;
end
if strcmpi(varargin{iN},'nBin')
nBin = varargin{iN+1};
ismandatoryarg(m_nbin)=1;
end
end
Head=fread(fid,HeadLen,'uint8');
if (numel(categories(categorical(Head)))==1||sum(Head)==0)&&sum(ismandatoryarg)~=numel(ismandatoryarg)
errordlg('Please insert all loop values and nDet, nSource, nBoard, nBin'); Data = [];
return;
end
CompiledHeader = FillHeader(Head);
SubLen=CompiledHeader.SizeSubHeader;
if SubLen == 0
SkipSub = true;
if(~all(ismandatory([m_nboard m_ndet m_nsource])))
errordlg('Please insert nSource, nDet, nBoard'); Data = [];
end
return;
else
SkipSub = false;
end
nBin = CompiledHeader.McaChannNum;
datasize = CompiledHeader.SizeData;
CompiledHeader.LoopNum(4) = loop4; CompiledHeader.LoopNum(5) = loop5;
CompiledHeader.LoopFirst(4) = 0; CompiledHeader.LoopFirst(5) = 0;
CompiledHeader.LoopLast(4) = 0; CompiledHeader.LoopLast(5) = 0;
CompiledHeader.LoopDelta(4) = 1; CompiledHeader.LoopDelta(5) = 1;
CompiledHeader.LoopHome(4) = 0; CompiledHeader.LoopHome(5) = 0;
CompiledHeader.LoopNum(1:3)=flip(CompiledHeader.LoopNum(1:3));
CompiledHeader.LoopFirst(1:3)=flip(CompiledHeader.LoopFirst(1:3));
CompiledHeader.LoopLast(1:3)=flip(CompiledHeader.LoopLast(1:3));
CompiledHeader.LoopDelta(1:3)=flip(CompiledHeader.LoopDelta(1:3));
CompiledHeader.LoopHome(1:3)=flip(CompiledHeader.LoopHome(1:3));
for iN = 1:NumArgin
if strcmpi(varargin{iN},'loop5')
loop5 = varargin{iN+1};
ismandatoryarg(m_loop5)=1;
end
if strcmpi(varargin{iN},'loop4')
loop4 = varargin{iN+1};
ismandatoryarg(m_loop4)=1;
end
if strcmpi(varargin{iN},'loop3')
CompiledHeader.LoopNum(3) = varargin{iN+1};
ismandatoryarg(m_loop3)=1;
end
if strcmpi(varargin{iN},'loop2')
CompiledHeader.LoopNum(2) = varargin{iN+1};
ismandatoryarg(m_loop2)=1;
end
if strcmpi(varargin{iN},'loop1')
CompiledHeader.LoopNum(1) = varargin{iN+1};
ismandatoryarg(m_loop1)=1;
end
if strcmpi(varargin{iN},'datatype')
datatype = varargin{iN+1};
switch datatype
case 'ushort'
datasize = 2;
case 'uint32'
datasize = 4;
case 'double'
datasize = 8;
end
isdatatypeargin=1;
end
if strcmpi(varargin{iN},'compilesub')
isCompileSubHeader = varargin{iN+1};
end
if strcmpi(varargin{iN},'forcereading')
if(ischar(varargin{iN+1})||isstring(varargin{iN+1}))
varargin{iN+1}=string2boolean(varargin{iN+1});
end
ForceReading = logical(varargin{iN+1});
end
if strcmpi(varargin{iN},'nSource')
nDet = varargin{iN+1};
ismandatoryarg(m_nsource)=1;
end
if strcmpi(varargin{iN},'nDet')
nDet = varargin{iN+1};
ismandatoryarg(m_ndet)=1;
end
if strcmpi(varargin{iN},'nBoard')
nBoard = varargin{iN+1};
ismandatoryarg(m_nboard)=1;
end
if strcmpi(varargin{iN},'nBin')
nBin = varargin{iN+1};
ismandatoryarg(m_nbin)=1;
end
end
if(~isdatatypeargin)
datatry = {'ushort','uint32','double'};
else
datatry={datatype};
end
if ~all(ismandatoryarg([m_nboard m_ndet m_nsource])) && SkipSub==0
for itry = 1:numel(datatry)
frewind(fid);
fread(fid,HeadLen,'uint8');
out = false;
BuffParms = []; Parms = [];
while(out==false)
SubRaw=fread(fid,SubLen,'uint8');
if isempty(SubRaw), break; end
CompSub = FillSub(SubRaw); fread(fid,nBin,datatry{itry});
ActParms = [CompSub.Source CompSub.Det CompSub.Board];
if(isequal(BuffParms,ActParms))
out = true;
else
if isempty(BuffParms)
BuffParms = ActParms;
end
if isempty(Parms)
Parms = ActParms;
else
Parms(end+1,:) = ActParms;
end
end
end
nSource = numel(categories(categorical(Parms(:,1))));
nDet = numel(categories(categorical(Parms(:,2))));
nBoard = numel(categories(categorical(Parms(:,3))));
NumLoop=CompiledHeader.LoopNum;
info=dir(FilePath);
datatype = datatry{itry};
if info.bytes == (HeadLen + prod(NumLoop)*(nBoard*nDet*nSource)*(SubLen+nBin*2))
datasize = 2;
break;
end
if info.bytes == (HeadLen + prod(NumLoop)*(nBoard*nDet*nSource)*(SubLen+nBin*4))
datasize = 4;
break;
end
if info.bytes == (HeadLen + prod(NumLoop)*(nBoard*nDet*nSource)*(SubLen+nBin*8))
datasize = 8;
break;
end
if(ForceReading==true&&isdatatypeargin)
break;
end
if (ForceReading==false)&&itry==numel(datatry)
errordlg({'Can''t handle sizemismatch. Insert more argin' 'Or use (...''forcereading'',''true'') argin'}); Data = [];
fclose(fid);
return;
end
if (ForceReading==true)&&itry==numel(datatry)
fh = figure('NumberTitle','off','Name','Choose type','Toolbar','none','menubar','none','HandleVisibility','off','Units','normalized','Position',[0.5 0.5 0.1 0.3]);
movegui(fh,'center');
uph = uipanel(fh,'Title','Choose type','units','normalized','position',[0 0 1 1]);
bg = uibuttongroup(uph,'Visible','on','Position',[0 0 1 1]);
uicontrol(bg,'style','radiobutton','String','ushort','units','normalized','position',[0 0 1 0.5]);
uicontrol(bg,'style','radiobutton','String','uint32','units','normalized','position',[0 1/3 1 0.5]);
uicontrol(bg,'style','radiobutton','String','double','units','normalized','position',[0 2/3 1 0.5]);
uicontrol(uph,'style','pushbutton','String','Ok','units','normalized','position',[0.5 0 0.5 0.1],'Callback',@AssignDataType);
waitfor(fh,'Tag');
close(fh);
fclose(fid);
fid=fopen(FilePath,'rb');
fread(fid,HeadLen,'uint8');
out = false;
BuffParms = []; Parms = [];
while(out==false)
SubRaw=fread(fid,SubLen,'uint8');
if isempty(SubRaw), break; end
CompSub = FillSub(SubRaw); fread(fid,nBin,datatype);
ActParms = [CompSub.Source CompSub.Det CompSub.Board];
if(isequal(BuffParms,ActParms))
out = true;
else
if isempty(BuffParms)
BuffParms = ActParms;
end
if isempty(Parms)
Parms = ActParms;
else
Parms(end+1,:) = ActParms;
end
end
end
nSource = numel(categories(categorical(Parms(:,1))));
nDet = numel(categories(categorical(Parms(:,2))));
nBoard = numel(categories(categorical(Parms(:,3))));
break;
end
end
end
fclose(fid);
NumLoop=CompiledHeader.LoopNum;
CompiledHeader.NumBoard = nBoard;
CompiledHeader.NumDet = nDet;
CompiledHeader.NumSource = nSource;
fid=fopen(FilePath,'rb');
Head=fread(fid,HeadLen,'uint8');
A=zeros(NumLoop(5),NumLoop(4),NumLoop(3),NumLoop(2),NumLoop(1),nBoard,nDet,nSource,nBin);
Sub=zeros(NumLoop(5),NumLoop(4),NumLoop(3),NumLoop(2),NumLoop(1),nBoard,nDet,nSource,SubLen);
%CompiledSub = zeros(NumLoop(5),NumLoop(4),NumLoop(3),NumLoop(2),NumLoop(1));
isbreakcond = false;
try
for il5= 1:NumLoop(5)
for il4= 1:NumLoop(4)
for il3= 1:NumLoop(3)
for il2=1:NumLoop(2)
for il1=1:NumLoop(1)
for iB = 1:nBoard
for iD = 1: nDet
for iS = 1:nSource
if SkipSub==0
BuffSub = fread(fid,SubLen,'uint8');
if ~isempty(BuffSub)&&numel(BuffSub)==SubLen
Sub(il5,il4,il3,il2,il1,iB,iD,iS,:)=BuffSub;
else
warning('backtrace','off')
warning('Reading interrupted at:');
warning(strcat('Loop5: ',num2str(il5),'/',num2str(NumLoop(5))));
warning(strcat('Loop4: ',num2str(il4),'/',num2str(NumLoop(4))));
warning(strcat('Loop3: ',num2str(il3),'/',num2str(NumLoop(3))));
warning(strcat('Loop2: ',num2str(il2),'/',num2str(NumLoop(2))));
warning(strcat('Loop1: ',num2str(il1),'/',num2str(NumLoop(1))));
warning(strcat('NumBoard: ',num2str(iB),'/',num2str(nBoard)));
warning(strcat('NumDet: ',num2str(iD),'/',num2str(nDet)));
warning(strcat('NumSource: ',num2str(iS),'/',num2str(nSource)));
warning('Output data will have the dimension specified in TRS settings (Header)');
warning('backtrace','on')
isbreakcond = true;
break;
end
if (isCompileSubHeader)
CompiledSub(il5,il4,il3,il2,il1,iB,iD,iS) = FillSub(squeeze(Sub(il5,il4,il3,il2,il1,iB,iD,iS,:)));
end
else
BuffSub = 0;
end
TrashData = fread(fid,nBin,datatype);
if ~isempty(TrashData)&&numel(TrashData)==nBin
Sub(il5,il4,il3,il2,il1,iB,iD,iS,:)=BuffSub;
else
warning('backtrace','off')
warning('Reading interrupted at:');
warning(strcat('Loop5: ',num2str(il5),'/',num2str(NumLoop(5))));
warning(strcat('Loop4: ',num2str(il4),'/',num2str(NumLoop(4))));
warning(strcat('Loop3: ',num2str(il3),'/',num2str(NumLoop(3))));
warning(strcat('Loop2: ',num2str(il2),'/',num2str(NumLoop(2))));
warning(strcat('Loop1: ',num2str(il1),'/',num2str(NumLoop(1))));
warning(strcat('NumBoard: ',num2str(iB),'/',num2str(nBoard)));
warning(strcat('NumDet: ',num2str(iD),'/',num2str(nDet)));
warning(strcat('NumSource: ',num2str(iS),'/',num2str(nSource)));
warning('Output data will have the dimension specified in TRS settings (Header)');
warning('backtrace','on')
isbreakcond = true;
break;
end
A(il5,il4,il3,il2,il1,iB,iD,iS,:)=TrashData;
end
if isbreakcond, break; end
end
if isbreakcond, break; end
end
if isbreakcond, break; end
end
if isbreakcond, break; end
end
if isbreakcond, break; end
end
if isbreakcond, break; end
end
if isbreakcond, break; end
end
fclose(fid);
catch ME
fclose(fid);
%ME = MException('FileReading:GeneralError',{'Error reading the file:',ME.message, ' Encountered error at Loop1: ', num2str(il1), ' Loop2: ', num2str(il2), ' Loop3: ', num2str(il3), 'Loop4: ', num2str(il4),' Loop5: ', num2str(il5)});
throw(ME);
return
end
Data = squeeze(A);
switch NumArgOut
case 1
varargout{1}= Head;
case 2
varargout{1} = Head;
varargout{2} = CompiledHeader;
case 3
varargout{1} = Head;
varargout{2} = CompiledHeader;
varargout{3} = squeeze(Sub);
case 4
varargout{1} = Head;
varargout{2} = CompiledHeader;
varargout{3} = squeeze(Sub);
if isCompileSubHeader == false
varargout{4} = [];
else
varargout{4} = squeeze(CompiledSub);
end
case 5
varargout{1} = Head;
varargout{2} = CompiledHeader;
varargout{3} = squeeze(Sub);
if isCompileSubHeader == false
varargout{4} = [];
else
varargout{4} = squeeze(CompiledSub);
end
varargout{5} = Sub;
case 6
varargout{1} = Head;
varargout{2} = CompiledHeader;
varargout{3} = squeeze(Sub);
if isCompileSubHeader == false
varargout{4} = [];
else
varargout{4} = squeeze(CompiledSub);
end
varargout{5} = Sub;
varargout{6} = datasize;
case 7
varargout{1} = Head;
varargout{2} = CompiledHeader;
varargout{3} = squeeze(Sub);
if isCompileSubHeader == false
varargout{4} = [];
else
varargout{4} = squeeze(CompiledSub);
end
varargout{5} = Sub;
varargout{6} = datasize;
varargout{7} = datatype;
end
end
function FS = FillSub(Sub)
FieldNames = {'Geom','Source','Fiber','Det','Board','Coord','Pad','Xf','Yf','Zf','Rf','Xs','Ys','Zs','Rs','Rho','TimeNom','TimeEff'...
'n','Loop','Acq','Page','RoiNum','RoiFirst','RoiLast','RoiLambda','RoiPower'};
C = 1; CT = 1;
L = 4; LT = 2;
D = 8; DT = 3;
S = 2; ST = 4;
Unit = 1; %byte
FieldSize = [C,C,C,C,C,C,C,D,D,D,D,D,D,D,D,D,D,D,D,3*L,L,L,C,4*S,4*S,4*D,4*D]./Unit;
FieldType = [CT,CT,CT,CT,CT,CT,CT,DT,DT,DT,DT,DT,DT,DT,DT,DT,DT,DT,DT,LT,LT,LT,CT,ST,ST,DT,DT];
iS = 1;
iF = 1;
while iS<=length(Sub)
iStart = iS;
iStop = iS + FieldSize(iF);
iStop = iStop-1;
iS = iStop+1;
RawData = Sub(iStart:iStop);
switch FieldType(iF)
case CT
Data = RawData;
if strcmp(FieldNames{iF},'Geom')
if Data == 0
Data = 'REFL';
else
Data = 'TRASM';
end
end
if strcmp(FieldNames{iF},'Coord')
if Data == 0
Data = 'CART';
else
Data = 'POLAR';
end
end
case LT
Data = cast(typecast(uint8(RawData),'int32'),'double');
case DT
Data = typecast(uint8(RawData),'double');
case ST
Data = cast(typecast(uint8(RawData),'int16'),'double');
end
FS.(FieldNames{iF}) = Data;
iF = iF +1;
end
end
function FH = FillHeader(Head)
FieldNames = {'Ver','SubHeader','SubHeaderVer','SizeHeader','SizeSubHeader','SizeData','Kind','Appl'...
,'Oma','Date','Time','LoopHome','LoopFirst','LoopLast','LoopDelta','LoopNum','McaChannNum','PageNum'...
'FrameNum','RamNum','McaTime','McaFactor','MeasNorm','LabelName','LabelContent','Constn','ConstRho'...
'ConstThick','MammHeader','MammIdxFirst','MammIdxLast','MammIdxTop','MammRateMid','MammRateHigh'};
C = 1; CT = 1;
L = 4; LT = 2;
D = 8; DT = 3;
S = 2; ST = 4;
Unit = 1; %byte
FieldSize = [2*S,L,L,L,L,L,L,L,L,11*C,9*C,3*L,3*L,3*L,3*L,3*L,L,L,L,L,D,D,L,192*C,352*C,D,D,D,L,2*L,2*L,2*L,2*L,2*L]./Unit;
FieldType = [ST,LT,LT,LT,LT,LT,LT,LT,LT,CT,CT,LT,LT,LT,LT,LT,LT,LT,LT,LT,DT,DT,LT,CT,CT,DT,DT,DT,LT,LT,LT,LT,LT,LT];
iS = 1;
iF = 1;
while iS<=length(Head)
iStart = iS;
iStop = iS + FieldSize(iF);
iStop = iStop-1;
iS = iStop+1;
RawData = Head(iStart:iStop);
%isCHAR = false;
switch FieldType(iF)
case CT
if strcmp(FieldNames{iF},'LabelName')
Data = reshape(RawData,[12,16])';
Data = char(Data);
Data = string(Data);
%isCHAR = true;
end
if strcmp(FieldNames{iF},'LabelContent')
Data = reshape(RawData,[22,16])';
Data = char(Data);
Data = string(Data);
%isCHAR = true;
end
if strcmp(FieldNames{iF},'Date')
Data = char(RawData');
%isCHAR = true;
end
if strcmp(FieldNames{iF},'Time')
Data = char(RawData');
%isCHAR = true;
end
%isCHAR = false;
case LT
Data = cast(typecast(uint8(RawData),'int32'),'double');
if strcmp(FieldNames{iF},'Kind')
switch Data
case 0
Data = 'Measure';
case 1
Data = 'System';
case 2
Data = 'Simul';
end
end
if strcmp(FieldNames{iF},'Appl')
switch Data
case 0
Data = 'Diff';
case 1
Data = 'Mamm';
case 2
Data = 'Oxym';
case 3
Data = 'Fluo';
case 4
Data = 'Spec';
end
end
if strcmp(FieldNames{iF},'SubHeader')
switch Data
case 0
Data = false;
case 1
Data = true;
end
end
if strcmp(FieldNames{iF},'Oma')
switch Data
case 0
Data = false;
case 1
Data = true;
end
end
if strcmp(FieldNames{iF},'MammHeader')
switch Data
case 0
Data = false;
case 1
Data = true;
end
end
case DT
Data = typecast(uint8(RawData),'double');
case ST
if strcmp(FieldNames{iF},'Ver')
Data = cast(typecast(uint8(RawData(1:2)),'int16'),'double');
Data = [Data cast(typecast(uint8(RawData(3:4)),'int16'),'double')];
else
Data = cast(typecast(uint8(RawData),'int16'),'double');
end
end
FH.(FieldNames{iF}) = Data;
iF = iF +1;
end
end
function [output]=string2boolean(string)
if strcmp(string,'false')
output = false;
else
output = true;
end
end
function AssignDataType(src,~)
ph = src.Parent;
rbh = findobj(ph,'style','radiobutton');
assignin('caller','datatype',rbh(logical([rbh.Value])).String);
fh = ancestor(src,'figure');
fh.Tag = '1';
end
|
github
|
andreafarina/SOLUS-master
|
pdftops.m
|
.m
|
SOLUS-master/src/util/export_fig/pdftops.m
| 3,687 |
utf_8
|
43c139e49fce63cb78060895bd13137a
|
function varargout = pdftops(cmd)
%PDFTOPS Calls a local pdftops executable with the input command
%
% Example:
% [status result] = pdftops(cmd)
%
% Attempts to locate a pdftops executable, finally asking the user to
% specify the directory pdftops was installed into. The resulting path is
% stored for future reference.
%
% Once found, the executable is called with the input command string.
%
% This function requires that you have pdftops (from the Xpdf package)
% installed on your system. You can download this from:
% http://www.foolabs.com/xpdf
%
% IN:
% cmd - Command string to be passed into pdftops.
%
% OUT:
% status - 0 iff command ran without problem.
% result - Output from pdftops.
% Copyright: Oliver Woodford, 2009-2010
% Thanks to Jonas Dorn for the fix for the title of the uigetdir window on
% Mac OS.
% Thanks to Christoph Hertel for pointing out a bug in check_xpdf_path
% under linux.
% 23/01/2014 - Add full path to pdftops.txt in warning.
% 27/05/2015 - Fixed alert in case of missing pdftops; fixed code indentation
% Call pdftops
[varargout{1:nargout}] = system(sprintf('"%s" %s', xpdf_path, cmd));
end
function path_ = xpdf_path
% Return a valid path
% Start with the currently set path
path_ = user_string('pdftops');
% Check the path works
if check_xpdf_path(path_)
return
end
% Check whether the binary is on the path
if ispc
bin = 'pdftops.exe';
else
bin = 'pdftops';
end
if check_store_xpdf_path(bin)
path_ = bin;
return
end
% Search the obvious places
if ispc
path_ = 'C:\Program Files\xpdf\pdftops.exe';
else
path_ = '/usr/local/bin/pdftops';
end
if check_store_xpdf_path(path_)
return
end
% Ask the user to enter the path
while 1
errMsg = 'Pdftops not found. Please locate the program, or install xpdf-tools from ';
url = 'http://foolabs.com/xpdf';
fprintf(2, '%s\n', [errMsg '<a href="matlab:web(''-browser'',''' url ''');">' url '</a>']);
errMsg = [errMsg url]; %#ok<AGROW>
if strncmp(computer,'MAC',3) % Is a Mac
% Give separate warning as the MacOS uigetdir dialogue box doesn't have a title
uiwait(warndlg(errMsg))
end
base = uigetdir('/', errMsg);
if isequal(base, 0)
% User hit cancel or closed window
break;
end
base = [base filesep]; %#ok<AGROW>
bin_dir = {'', ['bin' filesep], ['lib' filesep]};
for a = 1:numel(bin_dir)
path_ = [base bin_dir{a} bin];
if exist(path_, 'file') == 2
break;
end
end
if check_store_xpdf_path(path_)
return
end
end
error('pdftops executable not found.');
end
function good = check_store_xpdf_path(path_)
% Check the path is valid
good = check_xpdf_path(path_);
if ~good
return
end
% Update the current default path to the path found
if ~user_string('pdftops', path_)
warning('Path to pdftops executable could not be saved. Enter it manually in %s.', fullfile(fileparts(which('user_string.m')), '.ignore', 'pdftops.txt'));
return
end
end
function good = check_xpdf_path(path_)
% Check the path is valid
[good, message] = system(sprintf('"%s" -h', path_)); %#ok<ASGLU>
% system returns good = 1 even when the command runs
% Look for something distinct in the help text
good = ~isempty(strfind(message, 'PostScript'));
end
|
github
|
andreafarina/SOLUS-master
|
crop_borders.m
|
.m
|
SOLUS-master/src/util/export_fig/crop_borders.m
| 3,791 |
utf_8
|
2c8fc83f142f1d5b28b99080556c791e
|
function [A, vA, vB, bb_rel] = crop_borders(A, bcol, padding)
%CROP_BORDERS Crop the borders of an image or stack of images
%
% [B, vA, vB, bb_rel] = crop_borders(A, bcol, [padding])
%
%IN:
% A - HxWxCxN stack of images.
% bcol - Cx1 background colour vector.
% padding - scalar indicating how much padding to have in relation to
% the cropped-image-size (0<=padding<=1). Default: 0
%
%OUT:
% B - JxKxCxN cropped stack of images.
% vA - coordinates in A that contain the cropped image
% vB - coordinates in B where the cropped version of A is placed
% bb_rel - relative bounding box (used for eps-cropping)
% 06/03/15: Improved image cropping thanks to Oscar Hartogensis
% 08/06/15: Fixed issue #76: case of transparent figure bgcolor
if nargin < 3
padding = 0;
end
[h, w, c, n] = size(A);
if isempty(bcol) % case of transparent bgcolor
bcol = A(ceil(end/2),1,:,1);
end
if isscalar(bcol)
bcol = bcol(ones(c, 1));
end
% Crop margin from left
bail = false;
for l = 1:w
for a = 1:c
if ~all(col(A(:,l,a,:)) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
% Crop margin from right
bcol = A(ceil(end/2),w,:,1);
bail = false;
for r = w:-1:l
for a = 1:c
if ~all(col(A(:,r,a,:)) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
% Crop margin from top
bcol = A(1,ceil(end/2),:,1);
bail = false;
for t = 1:h
for a = 1:c
if ~all(col(A(t,:,a,:)) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
% Crop margin from bottom
bcol = A(h,ceil(end/2),:,1);
bail = false;
for b = h:-1:t
for a = 1:c
if ~all(col(A(b,:,a,:)) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
% Crop the background, leaving one boundary pixel to avoid bleeding on resize
%v = [max(t-padding, 1) min(b+padding, h) max(l-padding, 1) min(r+padding, w)];
%A = A(v(1):v(2),v(3):v(4),:,:);
if padding == 0 % no padding
padding = 1;
elseif abs(padding) < 1 % pad value is a relative fraction of image size
padding = sign(padding)*round(mean([b-t r-l])*abs(padding)); % ADJUST PADDING
else % pad value is in units of 1/72" points
padding = round(padding); % fix cases of non-integer pad value
end
if padding > 0 % extra padding
% Create an empty image, containing the background color, that has the
% cropped image size plus the padded border
B = repmat(bcol,(b-t)+1+padding*2,(r-l)+1+padding*2);
% vA - coordinates in A that contain the cropped image
vA = [t b l r];
% vB - coordinates in B where the cropped version of A will be placed
vB = [padding+1, (b-t)+1+padding, padding+1, (r-l)+1+padding];
% Place the original image in the empty image
B(vB(1):vB(2), vB(3):vB(4), :) = A(vA(1):vA(2), vA(3):vA(4), :);
A = B;
else % extra cropping
vA = [t-padding b+padding l-padding r+padding];
A = A(vA(1):vA(2), vA(3):vA(4), :);
vB = [NaN NaN NaN NaN];
end
% For EPS cropping, determine the relative BoundingBox - bb_rel
bb_rel = [l-1 h-b-1 r+1 h-t+1]./[w h w h];
end
function A = col(A)
A = A(:);
end
|
github
|
andreafarina/SOLUS-master
|
isolate_axes.m
|
.m
|
SOLUS-master/src/util/export_fig/isolate_axes.m
| 4,851 |
utf_8
|
611d9727e84ad6ba76dcb3543434d0ce
|
function fh = isolate_axes(ah, vis)
%ISOLATE_AXES Isolate the specified axes in a figure on their own
%
% Examples:
% fh = isolate_axes(ah)
% fh = isolate_axes(ah, vis)
%
% This function will create a new figure containing the axes/uipanels
% specified, and also their associated legends and colorbars. The objects
% specified must all be in the same figure, but they will generally only be
% a subset of the objects in the figure.
%
% IN:
% ah - An array of axes and uipanel handles, which must come from the
% same figure.
% vis - A boolean indicating whether the new figure should be visible.
% Default: false.
%
% OUT:
% fh - The handle of the created figure.
% Copyright (C) Oliver Woodford 2011-2013
% Thank you to Rosella Blatt for reporting a bug to do with axes in GUIs
% 16/03/12: Moved copyfig to its own function. Thanks to Bob Fratantonio
% for pointing out that the function is also used in export_fig.m
% 12/12/12: Add support for isolating uipanels. Thanks to michael for suggesting it
% 08/10/13: Bug fix to allchildren suggested by Will Grant (many thanks!)
% 05/12/13: Bug fix to axes having different units. Thanks to Remington Reid for reporting
% 21/04/15: Bug fix for exporting uipanels with legend/colorbar on HG1 (reported by Alvaro
% on FEX page as a comment on 24-Apr-2014); standardized indentation & help section
% 22/04/15: Bug fix: legends and colorbars were not exported when exporting axes handle in HG2
% Make sure we have an array of handles
if ~all(ishandle(ah))
error('ah must be an array of handles');
end
% Check that the handles are all for axes or uipanels, and are all in the same figure
fh = ancestor(ah(1), 'figure');
nAx = numel(ah);
for a = 1:nAx
if ~ismember(get(ah(a), 'Type'), {'axes', 'uipanel'})
error('All handles must be axes or uipanel handles.');
end
if ~isequal(ancestor(ah(a), 'figure'), fh)
error('Axes must all come from the same figure.');
end
end
% Tag the objects so we can find them in the copy
old_tag = get(ah, 'Tag');
if nAx == 1
old_tag = {old_tag};
end
set(ah, 'Tag', 'ObjectToCopy');
% Create a new figure exactly the same as the old one
fh = copyfig(fh); %copyobj(fh, 0);
if nargin < 2 || ~vis
set(fh, 'Visible', 'off');
end
% Reset the object tags
for a = 1:nAx
set(ah(a), 'Tag', old_tag{a});
end
% Find the objects to save
ah = findall(fh, 'Tag', 'ObjectToCopy');
if numel(ah) ~= nAx
close(fh);
error('Incorrect number of objects found.');
end
% Set the axes tags to what they should be
for a = 1:nAx
set(ah(a), 'Tag', old_tag{a});
end
% Keep any legends and colorbars which overlap the subplots
% Note: in HG1 these are axes objects; in HG2 they are separate objects, therefore we
% don't test for the type, only the tag (hopefully nobody but Matlab uses them!)
lh = findall(fh, 'Tag', 'legend', '-or', 'Tag', 'Colorbar');
nLeg = numel(lh);
if nLeg > 0
set([ah(:); lh(:)], 'Units', 'normalized');
try
ax_pos = get(ah, 'OuterPosition'); % axes and figures have the OuterPosition property
catch
ax_pos = get(ah, 'Position'); % uipanels only have Position, not OuterPosition
end
if nAx > 1
ax_pos = cell2mat(ax_pos(:));
end
ax_pos(:,3:4) = ax_pos(:,3:4) + ax_pos(:,1:2);
try
leg_pos = get(lh, 'OuterPosition');
catch
leg_pos = get(lh, 'Position'); % No OuterPosition in HG2, only in HG1
end
if nLeg > 1;
leg_pos = cell2mat(leg_pos);
end
leg_pos(:,3:4) = leg_pos(:,3:4) + leg_pos(:,1:2);
ax_pos = shiftdim(ax_pos, -1);
% Overlap test
M = bsxfun(@lt, leg_pos(:,1), ax_pos(:,:,3)) & ...
bsxfun(@lt, leg_pos(:,2), ax_pos(:,:,4)) & ...
bsxfun(@gt, leg_pos(:,3), ax_pos(:,:,1)) & ...
bsxfun(@gt, leg_pos(:,4), ax_pos(:,:,2));
ah = [ah; lh(any(M, 2))];
end
% Get all the objects in the figure
axs = findall(fh);
% Delete everything except for the input objects and associated items
delete(axs(~ismember(axs, [ah; allchildren(ah); allancestors(ah)])));
end
function ah = allchildren(ah)
ah = findall(ah);
if iscell(ah)
ah = cell2mat(ah);
end
ah = ah(:);
end
function ph = allancestors(ah)
ph = [];
for a = 1:numel(ah)
h = get(ah(a), 'parent');
while h ~= 0
ph = [ph; h];
h = get(h, 'parent');
end
end
end
|
github
|
andreafarina/SOLUS-master
|
im2gif.m
|
.m
|
SOLUS-master/src/util/export_fig/im2gif.m
| 6,234 |
utf_8
|
8ee74d7d94e524410788276aa41dd5f1
|
%IM2GIF Convert a multiframe image to an animated GIF file
%
% Examples:
% im2gif infile
% im2gif infile outfile
% im2gif(A, outfile)
% im2gif(..., '-nocrop')
% im2gif(..., '-nodither')
% im2gif(..., '-ncolors', n)
% im2gif(..., '-loops', n)
% im2gif(..., '-delay', n)
%
% This function converts a multiframe image to an animated GIF.
%
% To create an animation from a series of figures, export to a multiframe
% TIFF file using export_fig, then convert to a GIF, as follows:
%
% for a = 2 .^ (3:6)
% peaks(a);
% export_fig test.tif -nocrop -append
% end
% im2gif('test.tif', '-delay', 0.5);
%
%IN:
% infile - string containing the name of the input image.
% outfile - string containing the name of the output image (must have the
% .gif extension). Default: infile, with .gif extension.
% A - HxWxCxN array of input images, stacked along fourth dimension, to
% be converted to gif.
% -nocrop - option indicating that the borders of the output are not to
% be cropped.
% -nodither - option indicating that dithering is not to be used when
% converting the image.
% -ncolors - option pair, the value of which indicates the maximum number
% of colors the GIF can have. This can also be a quantization
% tolerance, between 0 and 1. Default/maximum: 256.
% -loops - option pair, the value of which gives the number of times the
% animation is to be looped. Default: 65535.
% -delay - option pair, the value of which gives the time, in seconds,
% between frames. Default: 1/15.
% Copyright (C) Oliver Woodford 2011
function im2gif(A, varargin)
% Parse the input arguments
[A, options] = parse_args(A, varargin{:});
if options.crop ~= 0
% Crop
A = crop_borders(A, A(ceil(end/2),1,:,1));
end
% Convert to indexed image
[h, w, c, n] = size(A);
A = reshape(permute(A, [1 2 4 3]), h, w*n, c);
map = unique(reshape(A, h*w*n, c), 'rows');
if size(map, 1) > 256
dither_str = {'dither', 'nodither'};
dither_str = dither_str{1+(options.dither==0)};
if options.ncolors <= 1
[B, map] = rgb2ind(A, options.ncolors, dither_str);
if size(map, 1) > 256
[B, map] = rgb2ind(A, 256, dither_str);
end
else
[B, map] = rgb2ind(A, min(round(options.ncolors), 256), dither_str);
end
else
if max(map(:)) > 1
map = double(map) / 255;
A = double(A) / 255;
end
B = rgb2ind(im2double(A), map);
end
B = reshape(B, h, w, 1, n);
% Bug fix to rgb2ind
map(B(1)+1,:) = im2double(A(1,1,:));
% Save as a gif
imwrite(B, map, options.outfile, 'LoopCount', round(options.loops(1)), 'DelayTime', options.delay);
end
%% Parse the input arguments
function [A, options] = parse_args(A, varargin)
% Set the defaults
options = struct('outfile', '', ...
'dither', true, ...
'crop', true, ...
'ncolors', 256, ...
'loops', 65535, ...
'delay', 1/15);
% Go through the arguments
a = 0;
n = numel(varargin);
while a < n
a = a + 1;
if ischar(varargin{a}) && ~isempty(varargin{a})
if varargin{a}(1) == '-'
opt = lower(varargin{a}(2:end));
switch opt
case 'nocrop'
options.crop = false;
case 'nodither'
options.dither = false;
otherwise
if ~isfield(options, opt)
error('Option %s not recognized', varargin{a});
end
a = a + 1;
if ischar(varargin{a}) && ~ischar(options.(opt))
options.(opt) = str2double(varargin{a});
else
options.(opt) = varargin{a};
end
end
else
options.outfile = varargin{a};
end
end
end
if isempty(options.outfile)
if ~ischar(A)
error('No output filename given.');
end
% Generate the output filename from the input filename
[path, outfile] = fileparts(A);
options.outfile = fullfile(path, [outfile '.gif']);
end
if ischar(A)
% Read in the image
A = imread_rgb(A);
end
end
%% Read image to uint8 rgb array
function [A, alpha] = imread_rgb(name)
% Get file info
info = imfinfo(name);
% Special case formats
switch lower(info(1).Format)
case 'gif'
[A, map] = imread(name, 'frames', 'all');
if ~isempty(map)
map = uint8(map * 256 - 0.5); % Convert to uint8 for storage
A = reshape(map(uint32(A)+1,:), [size(A) size(map, 2)]); % Assume indexed from 0
A = permute(A, [1 2 5 4 3]);
end
case {'tif', 'tiff'}
A = cell(numel(info), 1);
for a = 1:numel(A)
[A{a}, map] = imread(name, 'Index', a, 'Info', info);
if ~isempty(map)
map = uint8(map * 256 - 0.5); % Convert to uint8 for storage
A{a} = reshape(map(uint32(A{a})+1,:), [size(A) size(map, 2)]); % Assume indexed from 0
end
if size(A{a}, 3) == 4
% TIFF in CMYK colourspace - convert to RGB
if isfloat(A{a})
A{a} = A{a} * 255;
else
A{a} = single(A{a});
end
A{a} = 255 - A{a};
A{a}(:,:,4) = A{a}(:,:,4) / 255;
A{a} = uint8(A(:,:,1:3) .* A{a}(:,:,[4 4 4]));
end
end
A = cat(4, A{:});
otherwise
[A, map, alpha] = imread(name);
A = A(:,:,:,1); % Keep only first frame of multi-frame files
if ~isempty(map)
map = uint8(map * 256 - 0.5); % Convert to uint8 for storage
A = reshape(map(uint32(A)+1,:), [size(A) size(map, 2)]); % Assume indexed from 0
elseif size(A, 3) == 4
% Assume 4th channel is an alpha matte
alpha = A(:,:,4);
A = A(:,:,1:3);
end
end
end
|
github
|
andreafarina/SOLUS-master
|
read_write_entire_textfile.m
|
.m
|
SOLUS-master/src/util/export_fig/read_write_entire_textfile.m
| 961 |
utf_8
|
775aa1f538c76516c7fb406a4f129320
|
%READ_WRITE_ENTIRE_TEXTFILE Read or write a whole text file to/from memory
%
% Read or write an entire text file to/from memory, without leaving the
% file open if an error occurs.
%
% Reading:
% fstrm = read_write_entire_textfile(fname)
% Writing:
% read_write_entire_textfile(fname, fstrm)
%
%IN:
% fname - Pathname of text file to be read in.
% fstrm - String to be written to the file, including carriage returns.
%
%OUT:
% fstrm - String read from the file. If an fstrm input is given the
% output is the same as that input.
function fstrm = read_write_entire_textfile(fname, fstrm)
modes = {'rt', 'wt'};
writing = nargin > 1;
fh = fopen(fname, modes{1+writing});
if fh == -1
error('Unable to open file %s.', fname);
end
try
if writing
fwrite(fh, fstrm, 'char*1');
else
fstrm = fread(fh, '*char')';
end
catch ex
fclose(fh);
rethrow(ex);
end
fclose(fh);
end
|
github
|
andreafarina/SOLUS-master
|
pdf2eps.m
|
.m
|
SOLUS-master/src/util/export_fig/pdf2eps.m
| 1,522 |
utf_8
|
4c8f0603619234278ed413670d24bdb6
|
%PDF2EPS Convert a pdf file to eps format using pdftops
%
% Examples:
% pdf2eps source dest
%
% This function converts a pdf file to eps format.
%
% This function requires that you have pdftops, from the Xpdf suite of
% functions, installed on your system. This can be downloaded from:
% http://www.foolabs.com/xpdf
%
%IN:
% source - filename of the source pdf file to convert. The filename is
% assumed to already have the extension ".pdf".
% dest - filename of the destination eps file. The filename is assumed to
% already have the extension ".eps".
% Copyright (C) Oliver Woodford 2009-2010
% Thanks to Aldebaro Klautau for reporting a bug when saving to
% non-existant directories.
function pdf2eps(source, dest)
% Construct the options string for pdftops
options = ['-q -paper match -eps -level2 "' source '" "' dest '"'];
% Convert to eps using pdftops
[status, message] = pdftops(options);
% Check for error
if status
% Report error
if isempty(message)
error('Unable to generate eps. Check destination directory is writable.');
else
error(message);
end
end
% Fix the DSC error created by pdftops
fid = fopen(dest, 'r+');
if fid == -1
% Cannot open the file
return
end
fgetl(fid); % Get the first line
str = fgetl(fid); % Get the second line
if strcmp(str(1:min(13, end)), '% Produced by')
fseek(fid, -numel(str)-1, 'cof');
fwrite(fid, '%'); % Turn ' ' into '%'
end
fclose(fid);
end
|
github
|
andreafarina/SOLUS-master
|
print2array.m
|
.m
|
SOLUS-master/src/util/export_fig/print2array.m
| 9,613 |
utf_8
|
e398a6296734121e6e1983a45298549a
|
function [A, bcol] = print2array(fig, res, renderer, gs_options)
%PRINT2ARRAY Exports a figure to an image array
%
% Examples:
% A = print2array
% A = print2array(figure_handle)
% A = print2array(figure_handle, resolution)
% A = print2array(figure_handle, resolution, renderer)
% A = print2array(figure_handle, resolution, renderer, gs_options)
% [A bcol] = print2array(...)
%
% This function outputs a bitmap image of the given figure, at the desired
% resolution.
%
% If renderer is '-painters' then ghostcript needs to be installed. This
% can be downloaded from: http://www.ghostscript.com
%
% IN:
% figure_handle - The handle of the figure to be exported. Default: gcf.
% resolution - Resolution of the output, as a factor of screen
% resolution. Default: 1.
% renderer - string containing the renderer paramater to be passed to
% print. Default: '-opengl'.
% gs_options - optional ghostscript options (e.g.: '-dNoOutputFonts'). If
% multiple options are needed, enclose in call array: {'-a','-b'}
%
% OUT:
% A - MxNx3 uint8 image of the figure.
% bcol - 1x3 uint8 vector of the background color
% Copyright (C) Oliver Woodford 2008-2014, Yair Altman 2015-
%{
% 05/09/11: Set EraseModes to normal when using opengl or zbuffer
% renderers. Thanks to Pawel Kocieniewski for reporting the issue.
% 21/09/11: Bug fix: unit8 -> uint8! Thanks to Tobias Lamour for reporting it.
% 14/11/11: Bug fix: stop using hardcopy(), as it interfered with figure size
% and erasemode settings. Makes it a bit slower, but more reliable.
% Thanks to Phil Trinh and Meelis Lootus for reporting the issues.
% 09/12/11: Pass font path to ghostscript.
% 27/01/12: Bug fix affecting painters rendering tall figures. Thanks to
% Ken Campbell for reporting it.
% 03/04/12: Bug fix to median input. Thanks to Andy Matthews for reporting it.
% 26/10/12: Set PaperOrientation to portrait. Thanks to Michael Watts for
% reporting the issue.
% 26/02/15: If temp dir is not writable, use the current folder for temp
% EPS/TIF files (Javier Paredes)
% 27/02/15: Display suggested workarounds to internal print() error (issue #16)
% 28/02/15: Enable users to specify optional ghostscript options (issue #36)
% 10/03/15: Fixed minor warning reported by Paul Soderlind; fixed code indentation
% 28/05/15: Fixed issue #69: patches with LineWidth==0.75 appear wide (internal bug in Matlab's print() func)
% 07/07/15: Fixed issue #83: use numeric handles in HG1
%}
% Generate default input arguments, if needed
if nargin < 2
res = 1;
if nargin < 1
fig = gcf;
end
end
% Warn if output is large
old_mode = get(fig, 'Units');
set(fig, 'Units', 'pixels');
px = get(fig, 'Position');
set(fig, 'Units', old_mode);
npx = prod(px(3:4)*res)/1e6;
if npx > 30
% 30M pixels or larger!
warning('MATLAB:LargeImage', 'print2array generating a %.1fM pixel image. This could be slow and might also cause memory problems.', npx);
end
% Retrieve the background colour
bcol = get(fig, 'Color');
% Set the resolution parameter
res_str = ['-r' num2str(ceil(get(0, 'ScreenPixelsPerInch')*res))];
% Generate temporary file name
tmp_nam = [tempname '.tif'];
try
% Ensure that the temp dir is writable (Javier Paredes 26/2/15)
fid = fopen(tmp_nam,'w');
fwrite(fid,1);
fclose(fid);
delete(tmp_nam); % cleanup
isTempDirOk = true;
catch
% Temp dir is not writable, so use the current folder
[dummy,fname,fext] = fileparts(tmp_nam); %#ok<ASGLU>
fpath = pwd;
tmp_nam = fullfile(fpath,[fname fext]);
isTempDirOk = false;
end
% Enable users to specify optional ghostscript options (issue #36)
if nargin > 3 && ~isempty(gs_options)
if iscell(gs_options)
gs_options = sprintf(' %s',gs_options{:});
elseif ~ischar(gs_options)
error('gs_options input argument must be a string or cell-array of strings');
else
gs_options = [' ' gs_options];
end
else
gs_options = '';
end
if nargin > 2 && strcmp(renderer, '-painters')
% Print to eps file
if isTempDirOk
tmp_eps = [tempname '.eps'];
else
tmp_eps = fullfile(fpath,[fname '.eps']);
end
print2eps(tmp_eps, fig, 0, renderer, '-loose');
try
% Initialize the command to export to tiff using ghostscript
cmd_str = ['-dEPSCrop -q -dNOPAUSE -dBATCH ' res_str ' -sDEVICE=tiff24nc'];
% Set the font path
fp = font_path();
if ~isempty(fp)
cmd_str = [cmd_str ' -sFONTPATH="' fp '"'];
end
% Add the filenames
cmd_str = [cmd_str ' -sOutputFile="' tmp_nam '" "' tmp_eps '"' gs_options];
% Execute the ghostscript command
ghostscript(cmd_str);
catch me
% Delete the intermediate file
delete(tmp_eps);
rethrow(me);
end
% Delete the intermediate file
delete(tmp_eps);
% Read in the generated bitmap
A = imread(tmp_nam);
% Delete the temporary bitmap file
delete(tmp_nam);
% Set border pixels to the correct colour
if isequal(bcol, 'none')
bcol = [];
elseif isequal(bcol, [1 1 1])
bcol = uint8([255 255 255]);
else
for l = 1:size(A, 2)
if ~all(reshape(A(:,l,:) == 255, [], 1))
break;
end
end
for r = size(A, 2):-1:l
if ~all(reshape(A(:,r,:) == 255, [], 1))
break;
end
end
for t = 1:size(A, 1)
if ~all(reshape(A(t,:,:) == 255, [], 1))
break;
end
end
for b = size(A, 1):-1:t
if ~all(reshape(A(b,:,:) == 255, [], 1))
break;
end
end
bcol = uint8(median(single([reshape(A(:,[l r],:), [], size(A, 3)); reshape(A([t b],:,:), [], size(A, 3))]), 1));
for c = 1:size(A, 3)
A(:,[1:l-1, r+1:end],c) = bcol(c);
A([1:t-1, b+1:end],:,c) = bcol(c);
end
end
else
if nargin < 3
renderer = '-opengl';
end
err = false;
% Set paper size
old_pos_mode = get(fig, 'PaperPositionMode');
old_orientation = get(fig, 'PaperOrientation');
set(fig, 'PaperPositionMode', 'auto', 'PaperOrientation', 'portrait');
try
% Workaround for issue #69: patches with LineWidth==0.75 appear wide (internal bug in Matlab's print() function)
fp = []; % in case we get an error below
fp = findall(fig, 'Type','patch', 'LineWidth',0.75);
set(fp, 'LineWidth',0.5);
% Fix issue #83: use numeric handles in HG1
if ~using_hg2(fig), fig = double(fig); end
% Print to tiff file
print(fig, renderer, res_str, '-dtiff', tmp_nam);
% Read in the printed file
A = imread(tmp_nam);
% Delete the temporary file
delete(tmp_nam);
catch ex
err = true;
end
set(fp, 'LineWidth',0.75); % restore original figure appearance
% Reset paper size
set(fig, 'PaperPositionMode', old_pos_mode, 'PaperOrientation', old_orientation);
% Throw any error that occurred
if err
% Display suggested workarounds to internal print() error (issue #16)
fprintf(2, 'An error occured with Matlab''s builtin print function.\nTry setting the figure Renderer to ''painters'' or use opengl(''software'').\n\n');
rethrow(ex);
end
% Set the background color
if isequal(bcol, 'none')
bcol = [];
else
bcol = bcol * 255;
if isequal(bcol, round(bcol))
bcol = uint8(bcol);
else
bcol = squeeze(A(1,1,:));
end
end
end
% Check the output size is correct
if isequal(res, round(res))
px = round([px([4 3])*res 3]); % round() to avoid an indexing warning below
if ~isequal(size(A), px)
% Correct the output size
A = A(1:min(end,px(1)),1:min(end,px(2)),:);
end
end
end
% Function to return (and create, where necessary) the font path
function fp = font_path()
fp = user_string('gs_font_path');
if ~isempty(fp)
return
end
% Create the path
% Start with the default path
fp = getenv('GS_FONTPATH');
% Add on the typical directories for a given OS
if ispc
if ~isempty(fp)
fp = [fp ';'];
end
fp = [fp getenv('WINDIR') filesep 'Fonts'];
else
if ~isempty(fp)
fp = [fp ':'];
end
fp = [fp '/usr/share/fonts:/usr/local/share/fonts:/usr/share/fonts/X11:/usr/local/share/fonts/X11:/usr/share/fonts/truetype:/usr/local/share/fonts/truetype'];
end
user_string('gs_font_path', fp);
end
|
github
|
andreafarina/SOLUS-master
|
append_pdfs.m
|
.m
|
SOLUS-master/src/util/export_fig/append_pdfs.m
| 2,759 |
utf_8
|
9b52be41aff48bea6f27992396900640
|
%APPEND_PDFS Appends/concatenates multiple PDF files
%
% Example:
% append_pdfs(output, input1, input2, ...)
% append_pdfs(output, input_list{:})
% append_pdfs test.pdf temp1.pdf temp2.pdf
%
% This function appends multiple PDF files to an existing PDF file, or
% concatenates them into a PDF file if the output file doesn't yet exist.
%
% This function requires that you have ghostscript installed on your
% system. Ghostscript can be downloaded from: http://www.ghostscript.com
%
% IN:
% output - string of output file name (including the extension, .pdf).
% If it exists it is appended to; if not, it is created.
% input1 - string of an input file name (including the extension, .pdf).
% All input files are appended in order.
% input_list - cell array list of input file name strings. All input
% files are appended in order.
% Copyright: Oliver Woodford, 2011
% Thanks to Reinhard Knoll for pointing out that appending multiple pdfs in
% one go is much faster than appending them one at a time.
% Thanks to Michael Teo for reporting the issue of a too long command line.
% Issue resolved on 5/5/2011, by passing gs a command file.
% Thanks to Martin Wittmann for pointing out the quality issue when
% appending multiple bitmaps.
% Issue resolved (to best of my ability) 1/6/2011, using the prepress
% setting
% 26/02/15: If temp dir is not writable, use the output folder for temp
% files when appending (Javier Paredes); sanity check of inputs
function append_pdfs(varargin)
if nargin < 2, return; end % sanity check
% Are we appending or creating a new file
append = exist(varargin{1}, 'file') == 2;
output = [tempname '.pdf'];
try
% Ensure that the temp dir is writable (Javier Paredes 26/2/15)
fid = fopen(output,'w');
fwrite(fid,1);
fclose(fid);
delete(output);
isTempDirOk = true;
catch
% Temp dir is not writable, so use the output folder
[dummy,fname,fext] = fileparts(output); %#ok<ASGLU>
fpath = fileparts(varargin{1});
output = fullfile(fpath,[fname fext]);
isTempDirOk = false;
end
if ~append
output = varargin{1};
varargin = varargin(2:end);
end
% Create the command file
if isTempDirOk
cmdfile = [tempname '.txt'];
else
cmdfile = fullfile(fpath,[fname '.txt']);
end
fh = fopen(cmdfile, 'w');
fprintf(fh, '-q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress -sOutputFile="%s" -f', output);
fprintf(fh, ' "%s"', varargin{:});
fclose(fh);
% Call ghostscript
ghostscript(['@"' cmdfile '"']);
% Delete the command file
delete(cmdfile);
% Rename the file if needed
if append
movefile(output, varargin{1});
end
end
|
github
|
andreafarina/SOLUS-master
|
using_hg2.m
|
.m
|
SOLUS-master/src/util/export_fig/using_hg2.m
| 1,037 |
utf_8
|
3303caab5694b040103ccb6b689387bf
|
%USING_HG2 Determine if the HG2 graphics engine is used
%
% tf = using_hg2(fig)
%
%IN:
% fig - handle to the figure in question.
%
%OUT:
% tf - boolean indicating whether the HG2 graphics engine is being used
% (true) or not (false).
% 19/06/2015 - Suppress warning in R2015b; cache result for improved performance
function tf = using_hg2(fig)
persistent tf_cached
if isempty(tf_cached)
try
if nargin < 1, fig = figure('visible','off'); end
oldWarn = warning('off','MATLAB:graphicsversion:GraphicsVersionRemoval');
try
% This generates a [supressed] warning in R2015b:
tf = ~graphicsversion(fig, 'handlegraphics');
catch
tf = verLessThan('matlab','8.4'); % =R2014b
end
warning(oldWarn);
catch
tf = false;
end
if nargin < 1, delete(fig); end
tf_cached = tf;
else
tf = tf_cached;
end
end
|
github
|
andreafarina/SOLUS-master
|
eps2pdf.m
|
.m
|
SOLUS-master/src/util/export_fig/eps2pdf.m
| 8,543 |
utf_8
|
a63a364925b89dac21030d36b0dd29a3
|
function eps2pdf(source, dest, crop, append, gray, quality, gs_options)
%EPS2PDF Convert an eps file to pdf format using ghostscript
%
% Examples:
% eps2pdf source dest
% eps2pdf(source, dest, crop)
% eps2pdf(source, dest, crop, append)
% eps2pdf(source, dest, crop, append, gray)
% eps2pdf(source, dest, crop, append, gray, quality)
% eps2pdf(source, dest, crop, append, gray, quality, gs_options)
%
% This function converts an eps file to pdf format. The output can be
% optionally cropped and also converted to grayscale. If the output pdf
% file already exists then the eps file can optionally be appended as a new
% page on the end of the eps file. The level of bitmap compression can also
% optionally be set.
%
% This function requires that you have ghostscript installed on your
% system. Ghostscript can be downloaded from: http://www.ghostscript.com
%
% Inputs:
% source - filename of the source eps file to convert. The filename is
% assumed to already have the extension ".eps".
% dest - filename of the destination pdf file. The filename is assumed
% to already have the extension ".pdf".
% crop - boolean indicating whether to crop the borders off the pdf.
% Default: true.
% append - boolean indicating whether the eps should be appended to the
% end of the pdf as a new page (if the pdf exists already).
% Default: false.
% gray - boolean indicating whether the output pdf should be grayscale
% or not. Default: false.
% quality - scalar indicating the level of image bitmap quality to
% output. A larger value gives a higher quality. quality > 100
% gives lossless output. Default: ghostscript prepress default.
% gs_options - optional ghostscript options (e.g.: '-dNoOutputFonts'). If
% multiple options are needed, enclose in call array: {'-a','-b'}
% Copyright (C) Oliver Woodford 2009-2014, Yair Altman 2015-
% Suggestion of appending pdf files provided by Matt C at:
% http://www.mathworks.com/matlabcentral/fileexchange/23629
% Thank you to Fabio Viola for pointing out compression artifacts, leading
% to the quality setting.
% Thank you to Scott for pointing out the subsampling of very small images,
% which was fixed for lossless compression settings.
% 9/12/2011 Pass font path to ghostscript.
% 26/02/15: If temp dir is not writable, use the dest folder for temp
% destination files (Javier Paredes)
% 28/02/15: Enable users to specify optional ghostscript options (issue #36)
% 01/03/15: Upon GS error, retry without the -sFONTPATH= option (this might solve
% some /findfont errors according to James Rankin, FEX Comment 23/01/15)
% 23/06/15: Added extra debug info in case of ghostscript error; code indentation
% 04/10/15: Suggest a workaround for issue #41 (missing font path; thanks Mariia Fedotenkova)
% Intialise the options string for ghostscript
options = ['-q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress -sOutputFile="' dest '"'];
% Set crop option
if nargin < 3 || crop
options = [options ' -dEPSCrop'];
end
% Set the font path
fp = font_path();
if ~isempty(fp)
options = [options ' -sFONTPATH="' fp '"'];
end
% Set the grayscale option
if nargin > 4 && gray
options = [options ' -sColorConversionStrategy=Gray -dProcessColorModel=/DeviceGray'];
end
% Set the bitmap quality
if nargin > 5 && ~isempty(quality)
options = [options ' -dAutoFilterColorImages=false -dAutoFilterGrayImages=false'];
if quality > 100
options = [options ' -dColorImageFilter=/FlateEncode -dGrayImageFilter=/FlateEncode -c ".setpdfwrite << /ColorImageDownsampleThreshold 10 /GrayImageDownsampleThreshold 10 >> setdistillerparams"'];
else
options = [options ' -dColorImageFilter=/DCTEncode -dGrayImageFilter=/DCTEncode'];
v = 1 + (quality < 80);
quality = 1 - quality / 100;
s = sprintf('<< /QFactor %.2f /Blend 1 /HSample [%d 1 1 %d] /VSample [%d 1 1 %d] >>', quality, v, v, v, v);
options = sprintf('%s -c ".setpdfwrite << /ColorImageDict %s /GrayImageDict %s >> setdistillerparams"', options, s, s);
end
end
% Enable users to specify optional ghostscript options (issue #36)
if nargin > 6 && ~isempty(gs_options)
if iscell(gs_options)
gs_options = sprintf(' %s',gs_options{:});
elseif ~ischar(gs_options)
error('gs_options input argument must be a string or cell-array of strings');
else
gs_options = [' ' gs_options];
end
options = [options gs_options];
end
% Check if the output file exists
if nargin > 3 && append && exist(dest, 'file') == 2
% File exists - append current figure to the end
tmp_nam = tempname;
try
% Ensure that the temp dir is writable (Javier Paredes 26/2/15)
fid = fopen(tmp_nam,'w');
fwrite(fid,1);
fclose(fid);
delete(tmp_nam);
catch
% Temp dir is not writable, so use the dest folder
[dummy,fname,fext] = fileparts(tmp_nam); %#ok<ASGLU>
fpath = fileparts(dest);
tmp_nam = fullfile(fpath,[fname fext]);
end
% Copy the file
copyfile(dest, tmp_nam);
% Add the output file names
options = [options ' -f "' tmp_nam '" "' source '"'];
try
% Convert to pdf using ghostscript
[status, message] = ghostscript(options);
catch me
% Delete the intermediate file
delete(tmp_nam);
rethrow(me);
end
% Delete the intermediate file
delete(tmp_nam);
else
% File doesn't exist or should be over-written
% Add the output file names
options = [options ' -f "' source '"'];
% Convert to pdf using ghostscript
[status, message] = ghostscript(options);
end
% Check for error
if status
% Retry without the -sFONTPATH= option (this might solve some GS
% /findfont errors according to James Rankin, FEX Comment 23/01/15)
orig_options = options;
if ~isempty(fp)
options = regexprep(options, ' -sFONTPATH=[^ ]+ ',' ');
status = ghostscript(options);
if ~status, return; end % hurray! (no error)
end
% Report error
if isempty(message)
error('Unable to generate pdf. Check destination directory is writable.');
elseif ~isempty(strfind(message,'/typecheck in /findfont'))
% Suggest a workaround for issue #41 (missing font path)
font_name = strtrim(regexprep(message,'.*Operand stack:\s*(.*)\s*Execution.*','$1'));
fprintf(2, 'Ghostscript error: could not find the following font(s): %s\n', font_name);
fpath = fileparts(mfilename(-fullpath'));
gs_fonts_file = fullfile(fpath, '.ignore', 'gs_font_path.txt');
fprintf(2, ' try to add the font''s folder to your %s file\n\n', gs_fonts_file);
error('export_fig error');
else
fprintf(2, '\nGhostscript error: perhaps %s is open by another application\n', dest);
if ~isempty(gs_options)
fprintf(2, ' or maybe the%s option(s) are not accepted by your GS version\n', gs_options);
end
fprintf(2, 'Ghostscript options: %s\n\n', orig_options);
error(message);
end
end
end
% Function to return (and create, where necessary) the font path
function fp = font_path()
fp = user_string('gs_font_path');
if ~isempty(fp)
return
end
% Create the path
% Start with the default path
fp = getenv('GS_FONTPATH');
% Add on the typical directories for a given OS
if ispc
if ~isempty(fp)
fp = [fp ';'];
end
fp = [fp getenv('WINDIR') filesep 'Fonts'];
else
if ~isempty(fp)
fp = [fp ':'];
end
fp = [fp '/usr/share/fonts:/usr/local/share/fonts:/usr/share/fonts/X11:/usr/local/share/fonts/X11:/usr/share/fonts/truetype:/usr/local/share/fonts/truetype'];
end
user_string('gs_font_path', fp);
end
|
github
|
andreafarina/SOLUS-master
|
ghostscript.m
|
.m
|
SOLUS-master/src/util/export_fig/ghostscript.m
| 7,683 |
utf_8
|
4def5873a1621e793bd59aaa23f3fc25
|
function varargout = ghostscript(cmd)
%GHOSTSCRIPT Calls a local GhostScript executable with the input command
%
% Example:
% [status result] = ghostscript(cmd)
%
% Attempts to locate a ghostscript executable, finally asking the user to
% specify the directory ghostcript was installed into. The resulting path
% is stored for future reference.
%
% Once found, the executable is called with the input command string.
%
% This function requires that you have Ghostscript installed on your
% system. You can download this from: http://www.ghostscript.com
%
% IN:
% cmd - Command string to be passed into ghostscript.
%
% OUT:
% status - 0 iff command ran without problem.
% result - Output from ghostscript.
% Copyright: Oliver Woodford, 2009-2015, Yair Altman 2015-
%{
% Thanks to Jonas Dorn for the fix for the title of the uigetdir window on Mac OS.
% Thanks to Nathan Childress for the fix to default location on 64-bit Windows systems.
% 27/04/11 - Find 64-bit Ghostscript on Windows. Thanks to Paul Durack and
% Shaun Kline for pointing out the issue
% 04/05/11 - Thanks to David Chorlian for pointing out an alternative
% location for gs on linux.
% 12/12/12 - Add extra executable name on Windows. Thanks to Ratish
% Punnoose for highlighting the issue.
% 28/06/13 - Fix error using GS 9.07 in Linux. Many thanks to Jannick
% Steinbring for proposing the fix.
% 24/10/13 - Fix error using GS 9.07 in Linux. Many thanks to Johannes
% for the fix.
% 23/01/14 - Add full path to ghostscript.txt in warning. Thanks to Koen
% Vermeer for raising the issue.
% 27/02/15 - If Ghostscript croaks, display suggested workarounds
% 30/03/15 - Improved performance by caching status of GS path check, if ok
% 14/05/15 - Clarified warning message in case GS path could not be saved
% 29/05/15 - Avoid cryptic error in case the ghostscipt path cannot be saved (issue #74)
%}
try
% Call ghostscript
[varargout{1:nargout}] = system([gs_command(gs_path()) cmd]);
catch err
% Display possible workarounds for Ghostscript croaks
url1 = 'https://github.com/altmany/export_fig/issues/12#issuecomment-61467998'; % issue #12
url2 = 'https://github.com/altmany/export_fig/issues/20#issuecomment-63826270'; % issue #20
hg2_str = ''; if using_hg2, hg2_str = ' or Matlab R2014a'; end
fprintf(2, 'Ghostscript error. Rolling back to GS 9.10%s may possibly solve this:\n * <a href="%s">%s</a> ',hg2_str,url1,url1);
if using_hg2
fprintf(2, '(GS 9.10)\n * <a href="%s">%s</a> (R2014a)',url2,url2);
end
fprintf('\n\n');
if ismac || isunix
url3 = 'https://github.com/altmany/export_fig/issues/27'; % issue #27
fprintf(2, 'Alternatively, this may possibly be due to a font path issue:\n * <a href="%s">%s</a>\n\n',url3,url3);
% issue #20
fpath = which(mfilename);
if isempty(fpath), fpath = [mfilename('fullpath') '.m']; end
fprintf(2, 'Alternatively, if you are using csh, modify shell_cmd from "export..." to "setenv ..."\nat the bottom of <a href="matlab:opentoline(''%s'',174)">%s</a>\n\n',fpath,fpath);
end
rethrow(err);
end
end
function path_ = gs_path
% Return a valid path
% Start with the currently set path
path_ = user_string('ghostscript');
% Check the path works
if check_gs_path(path_)
return
end
% Check whether the binary is on the path
if ispc
bin = {'gswin32c.exe', 'gswin64c.exe', 'gs'};
else
bin = {'gs'};
end
for a = 1:numel(bin)
path_ = bin{a};
if check_store_gs_path(path_)
return
end
end
% Search the obvious places
if ispc
default_location = 'C:\Program Files\gs\';
dir_list = dir(default_location);
if isempty(dir_list)
default_location = 'C:\Program Files (x86)\gs\'; % Possible location on 64-bit systems
dir_list = dir(default_location);
end
executable = {'\bin\gswin32c.exe', '\bin\gswin64c.exe'};
ver_num = 0;
% If there are multiple versions, use the newest
for a = 1:numel(dir_list)
ver_num2 = sscanf(dir_list(a).name, 'gs%g');
if ~isempty(ver_num2) && ver_num2 > ver_num
for b = 1:numel(executable)
path2 = [default_location dir_list(a).name executable{b}];
if exist(path2, 'file') == 2
path_ = path2;
ver_num = ver_num2;
end
end
end
end
if check_store_gs_path(path_)
return
end
else
executable = {'/usr/bin/gs', '/usr/local/bin/gs'};
for a = 1:numel(executable)
path_ = executable{a};
if check_store_gs_path(path_)
return
end
end
end
% Ask the user to enter the path
while true
if strncmp(computer, 'MAC', 3) % Is a Mac
% Give separate warning as the uigetdir dialogue box doesn't have a
% title
uiwait(warndlg('Ghostscript not found. Please locate the program.'))
end
base = uigetdir('/', 'Ghostcript not found. Please locate the program.');
if isequal(base, 0)
% User hit cancel or closed window
break;
end
base = [base filesep]; %#ok<AGROW>
bin_dir = {'', ['bin' filesep], ['lib' filesep]};
for a = 1:numel(bin_dir)
for b = 1:numel(bin)
path_ = [base bin_dir{a} bin{b}];
if exist(path_, 'file') == 2
if check_store_gs_path(path_)
return
end
end
end
end
end
error('Ghostscript not found. Have you installed it from www.ghostscript.com?');
end
function good = check_store_gs_path(path_)
% Check the path is valid
good = check_gs_path(path_);
if ~good
return
end
% Update the current default path to the path found
if ~user_string('ghostscript', path_)
filename = fullfile(fileparts(which('user_string.m')), '.ignore', 'ghostscript.txt');
warning('Path to ghostscript installation could not be saved in %s (perhaps a permissions issue). You can manually create this file and set its contents to %s, to improve performance in future invocations (this warning is safe to ignore).', filename, path_);
return
end
end
function good = check_gs_path(path_)
persistent isOk
if isempty(path_)
isOk = false;
elseif ~isequal(isOk,true)
% Check whether the path is valid
[status, message] = system([gs_command(path_) '-h']); %#ok<ASGLU>
isOk = status == 0;
end
good = isOk;
end
function cmd = gs_command(path_)
% Initialize any required system calls before calling ghostscript
% TODO: in Unix/Mac, find a way to determine whether to use "export" (bash) or "setenv" (csh/tcsh)
shell_cmd = '';
if isunix
shell_cmd = 'export LD_LIBRARY_PATH=""; '; % Avoids an error on Linux with GS 9.07
end
if ismac
shell_cmd = 'export DYLD_LIBRARY_PATH=""; '; % Avoids an error on Mac with GS 9.07
end
% Construct the command string
cmd = sprintf('%s"%s" ', shell_cmd, path_);
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.