plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
akileshbadrinaaraayanan/IITH-master
model_train.m
.m
IITH-master/Sem6/CS5190_Soft_Computing/cs13b1042_final_code/model_train.m
15,023
utf_8
d917316085f0feb53840b2af50c42680
function model_train(varargin) % Copyright (C) 2015 Tsung-Yu Lin, Aruni RoyChowdhury, Subhransu Maji. % All rights reserved. % % This file is part of the BCNN and is made available under % the terms of the BSD license (see the COPYING file). [opts, imdb] = model_setup(varargin{:}) ; % ------------------------------------------------------------------------- % Train encoders and compute codes % ------------------------------------------------------------------------- if ~exist(opts.resultPath) psi = {} ; for i = 1:numel(opts.encoders) if exist(opts.encoders{i}.codePath) load(opts.encoders{i}.codePath, 'code', 'area') ; else if exist(opts.encoders{i}.path) encoder = load(opts.encoders{i}.path) ; if isfield(encoder, 'net') if opts.useGpu encoder.net = vl_simplenn_move(encoder.net, 'gpu') ; encoder.net.useGpu = true ; else encoder.net = vl_simplenn_move(encoder.net, 'cpu') ; encoder.net.useGpu = false ; end end if isfield(encoder, 'neta') if opts.useGpu encoder.neta = vl_simplenn_move(encoder.neta, 'gpu') ; encoder.netb = vl_simplenn_move(encoder.netb, 'gpu') ; encoder.neta.useGpu = true ; encoder.netb.useGpu = true ; else encoder.neta = vl_simplenn_move(encoder.neta, 'cpu') ; encoder.netb = vl_simplenn_move(encoder.netb, 'cpu') ; encoder.neta.useGpu = false ; encoder.netb.useGpu = false ; end end else opts.encoders{i}.opts = horzcat(opts.encoders{i}.opts); train = find(ismember(imdb.images.set, [1 2])) ; train = vl_colsubset(train, 1000, 'uniform') ; encoder = encoder_train_from_images(... imdb, imdb.images.id(train), ... opts.encoders{i}.opts{:}, ... 'useGpu', opts.useGpu) ; encoder_save(encoder, opts.encoders{i}.path) ; end code = encoder_extract_for_images(encoder, imdb, imdb.images.id, 'dataAugmentation', opts.dataAugmentation) ; savefast(opts.encoders{i}.codePath, 'code') ; end psi{i} = code ; clear code ; end psi = cat(1, psi{:}) ; end % ------------------------------------------------------------------------- % Train and test % ------------------------------------------------------------------------- if exist(opts.resultPath) info = load(opts.resultPath) ; else info = traintest(opts, imdb, psi) ; save(opts.resultPath, '-struct', 'info') ; vl_printsize(1) ; [a,b,c] = fileparts(opts.resultPath) ; print('-dpdf', fullfile(a, [b '.pdf'])) ; end str = {} ; str{end+1} = sprintf('data: %s', opts.expDir) ; str{end+1} = sprintf(' setup: %10s', opts.suffix) ; str{end+1} = sprintf(' mAP: %.1f', info.test.map*100) ; if isfield(info.test, 'acc') str{end+1} = sprintf(' acc: %6.1f ', info.test.acc*100); end if isfield(info.test, 'im_acc') str{end+1} = sprintf(' acc wo normlization: %6.1f ', info.test.im_acc*100); end str{end+1} = sprintf('\n') ; str = cat(2, str{:}) ; fprintf('%s', str) ; [a,b,c] = fileparts(opts.resultPath) ; txtPath = fullfile(a, [b '.txt']) ; f=fopen(txtPath, 'w') ; fprintf(f, '%s', str) ; fclose(f) ; % ------------------------------------------------------------------------- function info = traintest(opts, imdb, psi) % ------------------------------------------------------------------------- % Train using verification or not verificationTask = isfield(imdb, 'pairs'); switch opts.dataAugmentation case 'none' ts =1 ; case 'f2' ts = 2; otherwise error('not supported data augmentation') end if verificationTask, train = ismember(imdb.pairs.set, [1 2]) ; test = ismember(imdb.pairs.set, 3) ; else % classification task multiLabel = (size(imdb.images.label,1) > 1) ; % e.g. PASCAL VOC cls train = ismember(imdb.images.set, [1 2]) ; train = repmat(train, ts, []); train = train(:)'; test = ismember(imdb.images.set, 3) ; test = repmat(test, ts, []); test = test(:)'; info.classes = find(imdb.meta.inUse) ; % Train classifiers C = 1 ; w = {} ; b = {} ; for c=1:numel(info.classes) fprintf('\n-------------------------------------- '); fprintf('OVA-classifier: class: %d\n', c) ; if ~multiLabel y = 2*(imdb.images.label == info.classes(c)) - 1 ; else y = imdb.images.label(c,:) ; end y_test = y(test(1:ts:end)); y = repmat(y, ts, []); y = y(:)'; np = sum(y(train) > 0) ; nn = sum(y(train) < 0) ; n = np + nn ; [w{c},b{c}] = vl_svmtrain(psi(:,train & y ~= 0), y(train & y ~= 0), 1/(n* C), ... 'epsilon', 0.001, 'verbose', 'biasMultiplier', 1, ... 'maxNumIterations', n * 200) ; pred = w{c}'*psi + b{c} ; % try cheap calibration mp = median(pred(train & y > 0)) ; mn = median(pred(train & y < 0)) ; b{c} = (b{c} - mn) / (mp - mn) ; w{c} = w{c} / (mp - mn) ; pred = w{c}'*psi + b{c} ; scores{c} = pred ; pred_test = reshape(pred(test), ts, []); pred_test = mean(pred_test, 1); [~,~,i]= vl_pr(y(train), pred(train)) ; ap(c) = i.ap ; ap11(c) = i.ap_interp_11 ; [~,~,i]= vl_pr(y_test, pred_test) ; tap(c) = i.ap ; tap11(c) = i.ap_interp_11 ; [~,~,i]= vl_pr(y(train), pred(train), 'normalizeprior', 0.01) ; nap(c) = i.ap ; [~,~,i]= vl_pr(y_test, pred_test, 'normalizeprior', 0.01) ; tnap(c) = i.ap ; end % Book keeping info.w = cat(2,w{:}) ; info.b = cat(2,b{:}) ; info.scores = cat(1, scores{:}) ; info.train.ap = ap ; info.train.ap11 = ap11 ; info.train.nap = nap ; info.train.map = mean(ap) ; info.train.map11 = mean(ap11) ; info.train.mnap = mean(nap) ; info.test.ap = tap ; info.test.ap11 = tap11 ; info.test.nap = tnap ; info.test.map = mean(tap) ; info.test.map11 = mean(tap11) ; info.test.mnap = mean(tnap) ; clear ap nap tap tnap scores ; fprintf('mAP train: %.1f, test: %.1f\n', ... mean(info.train.ap)*100, ... mean(info.test.ap)*100); % Compute predictions, confusion and accuracy [~,preds] = max(info.scores,[],1) ; info.testScores = reshape(info.scores(:,test), size(info.scores,1), ts, []); info.testScores = reshape(mean(info.testScores, 2), size(info.testScores,1), []); [~,pred_test] = max(info.testScores, [], 1); [~,gts] = ismember(imdb.images.label, info.classes) ; gts_test = gts(test(1:ts:end)); gts = repmat(gts, ts, []); gts = gts(:)'; [info.train.confusion, info.train.acc] = compute_confusion(numel(info.classes), gts(train), preds(train)) ; [info.test.confusion, info.test.acc] = compute_confusion(numel(info.classes), gts_test, pred_test) ; [~, info.train.im_acc] = compute_confusion(numel(info.classes), gts(train), preds(train), ones(size(gts(train))), true) ; [~, info.test.im_acc] = compute_confusion(numel(info.classes), gts_test, pred_test, ones(size(gts_test)), true) ; % [info.test.confusion, info.test.acc] = compute_confusion(numel(info.classes), gts(test), preds(test)) ; end % ------------------------------------------------------------------------- function code = encoder_extract_for_images(encoder, imdb, imageIds, varargin) % ------------------------------------------------------------------------- opts.batchSize = 64 ; opts.maxNumLocalDescriptorsReturned = 500 ; opts.concatenateCode = true; opts.dataAugmentation = 'none'; opts = vl_argparse(opts, varargin) ; [~,imageSel] = ismember(imageIds, imdb.images.id) ; imageIds = unique(imdb.images.id(imageSel)) ; n = numel(imageIds) ; % prepare batches n = ceil(numel(imageIds)/opts.batchSize) ; batches = mat2cell(1:numel(imageIds), 1, [opts.batchSize * ones(1, n-1), numel(imageIds) - opts.batchSize*(n-1)]) ; batchResults = cell(1, numel(batches)) ; % just use as many workers as are already available numWorkers = matlabpool('size') ; %parfor (b = 1:numel(batches), numWorkers) for b = numel(batches):-1:1 batchResults{b} = get_batch_results(imdb, imageIds, batches{b}, ... encoder, opts.maxNumLocalDescriptorsReturned, opts.dataAugmentation) ; end switch opts.dataAugmentation case 'none' ts = 1; case 'f2' ts = 2; otherwise error('not supported data augmentation') end code = cell(1, numel(imageIds)*ts) ; for b = 1:numel(batches) m = numel(batches{b}); for j = 1:m k = batches{b}(j) ; for aa=1:ts code{(k-1)*ts+aa} = batchResults{b}.code{(j-1)*ts+aa}; end end end if opts.concatenateCode code = cat(2, code{:}) ; end % code is either: % - a cell array, each cell containing an array of local features for a % segment % - an array of FV descriptors, one per segment % ------------------------------------------------------------------------- function result = get_batch_results(imdb, imageIds, batch, encoder, maxn, dataAugmentation) % ------------------------------------------------------------------------- m = numel(batch) ; im = cell(1, m) ; task = getCurrentTask() ; if ~isempty(task), tid = task.ID ; else tid = 1 ; end switch dataAugmentation case 'none' tfs = [0 ; 0 ; 0 ]; case 'f2' tfs = [... 0 0 ; 0 0 ; 0 1]; otherwise error('not supported data augmentation') end ts = size(tfs,2); im = cell(1, m*ts); for i = 1:m fprintf('Task: %03d: encoder: extract features: image %d of %d\n', tid, batch(i), numel(imageIds)) ; for j=1:ts idx = (i-1)*ts+j; im{idx} = imread(fullfile(imdb.imageDir, imdb.images.name{imdb.images.id == imageIds(batch(i))})); if size(im{idx}, 3) == 1, im{idx} = repmat(im{idx}, [1 1 3]); end; %grayscale image tf = tfs(:,j) ; if tf(3), sx = fliplr(1:size(im{idx}, 2)) ; im{idx} = im{idx}(:,sx,:); end end end if ~isfield(encoder, 'numSpatialSubdivisions') encoder.numSpatialSubdivisions = 1 ; end switch encoder.type case 'rcnn' code_ = get_rcnn_features(encoder.net, ... im, ... 'regionBorder', encoder.regionBorder) ; case 'dcnn' gmm = [] ; if isfield(encoder, 'covariances'), gmm = encoder ; end code_ = get_dcnn_features(encoder.net, ... im, ... 'encoder', gmm, ... 'numSpatialSubdivisions', encoder.numSpatialSubdivisions, ... 'maxNumLocalDescriptorsReturned', maxn) ; case 'dsift' gmm = [] ; if isfield(encoder, 'covariances'), gmm = encoder ; end code_ = get_dcnn_features([], im, ... 'useSIFT', true, ... 'encoder', gmm, ... 'numSpatialSubdivisions', encoder.numSpatialSubdivisions, ... 'maxNumLocalDescriptorsReturned', maxn) ; case 'bcnn' code_ = get_bcnn_features(encoder.neta, encoder.netb,... im, ... 'regionBorder', encoder.regionBorder, ... 'normalization', encoder.normalization); end result.code = code_ ; % ------------------------------------------------------------------------- function encoder = encoder_train_from_images(imdb, imageIds, varargin) % ------------------------------------------------------------------------- opts.type = 'rcnn' ; opts.model = '' ; opts.modela = ''; opts.modelb = ''; opts.layer = 0 ; opts.layera = 0 ; opts.layerb = 0 ; opts.useGpu = false ; opts.regionBorder = 0.05 ; opts.numPcaDimensions = +inf ; opts.numSamplesPerWord = 1000 ; opts.whitening = false ; opts.whiteningRegul = 0 ; opts.renormalize = false ; opts.numWords = 64 ; opts.numSpatialSubdivisions = 1 ; opts.normalization = 'sqrt_L2'; opts = vl_argparse(opts, varargin) ; encoder.type = opts.type ; encoder.regionBorder = opts.regionBorder ; switch opts.type case {'dcnn', 'dsift'} encoder.numWords = opts.numWords ; encoder.renormalize = opts.renormalize ; encoder.numSpatialSubdivisions = opts.numSpatialSubdivisions ; end switch opts.type case {'rcnn', 'dcnn'} encoder.net = load(opts.model) ; encoder.net.layers = encoder.net.layers(1:opts.layer) ; if opts.useGpu encoder.net = vl_simplenn_move(encoder.net, 'gpu') ; encoder.net.useGpu = true ; else encoder.net = vl_simplenn_move(encoder.net, 'cpu') ; encoder.net.useGpu = false ; end case 'bcnn' encoder.normalization = opts.normalization; encoder.neta = load(opts.modela); encoder.neta.layers = encoder.neta.layers(1:opts.layera); encoder.netb = load(opts.modelb); encoder.netb.layers = encoder.netb.layers(1:opts.layerb); if opts.useGpu, encoder.neta = vl_simplenn_move(encoder.neta, 'gpu'); encoder.netb = vl_simplenn_move(encoder.netb, 'gpu'); encoder.neta.useGpu = true; encoder.netb.useGpu = true; else encoder.neta = vl_simplenn_move(encoder.neta, 'cpu'); encoder.netb = vl_simplenn_move(encoder.netb, 'cpu'); encoder.neta.useGpu = false; encoder.netb.useGpu = false; end end switch opts.type case {'rcnn', 'bcnn'} return ; end % Step 0: sample descriptors fprintf('%s: getting local descriptors to train GMM\n', mfilename) ; code = encoder_extract_for_images(encoder, imdb, imageIds, 'concatenateCode', false) ; descrs = cell(1, numel(code)) ; numImages = numel(code); numDescrsPerImage = floor(encoder.numWords * opts.numSamplesPerWord / numImages); for i=1:numel(code) descrs{i} = vl_colsubset(code{i}, numDescrsPerImage) ; end descrs = cat(2, descrs{:}) ; fprintf('%s: obtained %d local descriptors to train GMM\n', ... mfilename, size(descrs,2)) ; % Step 1 (optional): learn PCA projection if opts.numPcaDimensions < inf || opts.whitening fprintf('%s: learning PCA rotation/projection\n', mfilename) ; encoder.projectionCenter = mean(descrs,2) ; x = bsxfun(@minus, descrs, encoder.projectionCenter) ; X = x*x' / size(x,2) ; [V,D] = eig(X) ; d = diag(D) ; [d,perm] = sort(d,'descend') ; d = d + opts.whiteningRegul * max(d) ; m = min(opts.numPcaDimensions, size(descrs,1)) ; V = V(:,perm) ; if opts.whitening encoder.projection = diag(1./sqrt(d(1:m))) * V(:,1:m)' ; else encoder.projection = V(:,1:m)' ; end clear X V D d ; else encoder.projection = 1 ; encoder.projectionCenter = 0 ; end descrs = encoder.projection * bsxfun(@minus, descrs, encoder.projectionCenter) ; if encoder.renormalize descrs = bsxfun(@times, descrs, 1./max(1e-12, sqrt(sum(descrs.^2)))) ; end % Step 2: train GMM v = var(descrs')' ; [encoder.means, encoder.covariances, encoder.priors] = ... vl_gmm(descrs, opts.numWords, 'verbose', ... 'Initialization', 'kmeans', ... 'CovarianceBound', double(max(v)*0.0001), ... 'NumRepetitions', 1) ;
github
akileshbadrinaaraayanan/IITH-master
bcnn_train.m
.m
IITH-master/Sem6/CS5190_Soft_Computing/cs13b1042_final_code/bcnn_train.m
20,624
utf_8
08aba3ab9bfbaab945389480c52b8ac7
function [bcnn_net, info] = bcnn_train(bcnn_net, getBatch, imdb, varargin) % BNN_TRAIN training an asymmetric BCNN % BCNN_TRAIN() is an example learner implementing stochastic gradient % descent with momentum to train an asymmetric BCNN for image classification. % It can be used with different datasets by providing a suitable % getBatch function. % INPUT % bcnn_net: a bcnn networks structure % getBatch: function to read a batch of images % imdb: imdb structure of a dataset % OUTPUT % bcnn_net: an output of asymmetric bcnn network after fine-tuning % info: log of training and validation % An asymmetric BCNN network BCNN_NET consist of three parts: % neta: Network A to extract features % netb: Network B to extract features % netc: consists of normalization layers and softmax layer to obtain the % classification error and loss based on bcnn features combined from neta % and netb % Copyright (C) 2015 Tsung-Yu Lin, Aruni RoyChowdhury, Subhransu Maji. % All rights reserved. % % This file is part of the BCNN and is made available under % the terms of the BSD license (see the COPYING file). % This function is modified from CNN_TRAIN of MatConvNet % basic setting opts.train = [] ; opts.val = [] ; opts.numEpochs = 300 ; opts.batchSize = 256 ; opts.useGpu = false ; opts.learningRate = 0.0001 ; opts.continue = false ; opts.expDir = fullfile('data','exp') ; opts.conserveMemory = false ; opts.sync = true ; opts.prefetch = false ; opts.weightDecay = 0.0005 ; opts.momentum = 0.3 ; opts.errorType = 'multiclass' ; opts.plotDiagnostics = false ; opts.layera = 14; opts.layerb = 14; opts.regionBorder = 0.05; opts.dataAugmentation = {'none', 'none', 'none'}; opts.scale = 2; opts = vl_argparse(opts, varargin) ; if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end if isnan(opts.train), opts.train = [] ; end % ------------------------------------------------------------------------- % Network initialization % ------------------------------------------------------------------------- % set hyperparameters of network A neta = bcnn_net.neta; for i=1:numel(neta.layers) if ~strcmp(neta.layers{i}.type,'conv'), continue; end neta.layers{i}.filtersMomentum = zeros(size(neta.layers{i}.filters), ... class(neta.layers{i}.filters)) ; neta.layers{i}.biasesMomentum = zeros(size(neta.layers{i}.biases), ... class(neta.layers{i}.biases)) ; if ~isfield(neta.layers{i}, 'filtersLearningRate') neta.layers{i}.filtersLearningRate = 1 ; end if ~isfield(neta.layers{i}, 'biasesLearningRate') neta.layers{i}.biasesLearningRate = 1 ; end if ~isfield(neta.layers{i}, 'filtersWeightDecay') neta.layers{i}.filtersWeightDecay = 1 ; end if ~isfield(neta.layers{i}, 'biasesWeightDecay') neta.layers{i}.biasesWeightDecay = 1 ; end end % set hyperparameters of network A netb = bcnn_net.netb; for i=1:numel(netb.layers) if ~strcmp(netb.layers{i}.type,'conv'), continue; end netb.layers{i}.filtersMomentum = zeros(size(netb.layers{i}.filters), ... class(netb.layers{i}.filters)) ; netb.layers{i}.biasesMomentum = zeros(size(netb.layers{i}.biases), ... class(netb.layers{i}.biases)) ; if ~isfield(netb.layers{i}, 'filtersLearningRate') netb.layers{i}.filtersLearningRate = 1 ; end if ~isfield(netb.layers{i}, 'biasesLearningRate') netb.layers{i}.biasesLearningRate = 1 ; end if ~isfield(netb.layers{i}, 'filtersWeightDecay') netb.layers{i}.filtersWeightDecay = 1 ; end if ~isfield(netb.layers{i}, 'biasesWeightDecay') netb.layers{i}.biasesWeightDecay = 1 ; end end % set hyperparameters of network A netc = bcnn_net.netc; for i=1:numel(netc.layers) if ~strcmp(netc.layers{i}.type,'conv'), continue; end netc.layers{i}.filtersMomentum = zeros(size(netc.layers{i}.filters), ... class(netc.layers{i}.filters)) ; netc.layers{i}.biasesMomentum = zeros(size(netc.layers{i}.biases), ... class(netc.layers{i}.biases)) ; if ~isfield(netc.layers{i}, 'filtersLearningRate') netc.layers{i}.filtersLearningRate = 1 ; end if ~isfield(netc.layers{i}, 'biasesLearningRate') netc.layers{i}.biasesLearningRate = 1 ; end if ~isfield(netc.layers{i}, 'filtersWeightDecay') netc.layers{i}.filtersWeightDecay = 1 ; end if ~isfield(netc.layers{i}, 'biasesWeightDecay') netc.layers{i}.biasesWeightDecay = 1 ; end end % ------------------------------------------------------------------------- % Move network to GPU or CPU % ------------------------------------------------------------------------- if opts.useGpu neta.useGpu = true; neta = vl_simplenn_move(neta, 'gpu') ; for i=1:numel(neta.layers) if ~strcmp(neta.layers{i}.type,'conv'), continue; end neta.layers{i}.filtersMomentum = gpuArray(neta.layers{i}.filtersMomentum) ; neta.layers{i}.biasesMomentum = gpuArray(neta.layers{i}.biasesMomentum) ; end netb.useGpu = true; netb = vl_simplenn_move(netb, 'gpu') ; for i=1:numel(netb.layers) if ~strcmp(netb.layers{i}.type,'conv'), continue; end netb.layers{i}.filtersMomentum = gpuArray(netb.layers{i}.filtersMomentum) ; netb.layers{i}.biasesMomentum = gpuArray(netb.layers{i}.biasesMomentum) ; end netc.useGpu = true; netc = vl_simplenn_move(netc, 'gpu') ; for i=1:numel(netc.layers) if ~strcmp(netc.layers{i}.type,'conv'), continue; end netc.layers{i}.filtersMomentum = gpuArray(netc.layers{i}.filtersMomentum) ; netc.layers{i}.biasesMomentum = gpuArray(netc.layers{i}.biasesMomentum) ; end else neta.useGpu = false; neta = vl_simplenn_move(neta, 'cpu') ; for i=1:numel(neta.layers) if ~strcmp(neta.layers{i}.type,'conv'), continue; end neta.layers{i}.filtersMomentum = gather(neta.layers{i}.filtersMomentum) ; neta.layers{i}.biasesMomentum = gather(neta.layers{i}.biasesMomentum) ; end netb.useGpu = false; netb = vl_simplenn_move(netb, 'cpu') ; for i=1:numel(netb.layers) if ~strcmp(netb.layers{i}.type,'conv'), continue; end netb.layers{i}.filtersMomentum = gather(netb.layers{i}.filtersMomentum) ; netb.layers{i}.biasesMomentum = gather(netb.layers{i}.biasesMomentum) ; end netc.useGpu = false; netc = vl_simplenn_move(netc, 'cpu') ; for i=1:numel(netc.layers) if ~strcmp(netc.layers{i}.type,'conv'), continue; end netc.layers{i}.filtersMomentum = gather(netc.layers{i}.filtersMomentum) ; netc.layers{i}.biasesMomentum = gather(netc.layers{i}.biasesMomentum) ; end end % ------------------------------------------------------------------------- % Train and validate % ------------------------------------------------------------------------- if opts.useGpu one = gpuArray(single(1)) ; else one = single(1) ; end info.train.objective = [] ; info.train.error = [] ; info.train.topFiveError = [] ; info.train.speed = [] ; info.val.objective = [] ; info.val.error = [] ; info.val.topFiveError = [] ; info.val.speed = [] ; lr = 0 ; resa = [] ; resb = [] ; resc = [] ; for epoch=1:opts.numEpochs prevLr = lr ; lr = opts.learningRate(min(epoch, numel(opts.learningRate))) ; % fast-forward to where we stopped modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep)); modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ; if opts.continue if exist(modelPath(epoch),'file'), continue ; end if epoch > 1 fprintf('resuming by loading epoch %d\n', epoch-1) ; load(modelPath(epoch-1), 'neta', 'netb', 'netc', 'info') ; end end train = opts.train(randperm(numel(opts.train))) ; val = opts.val ; info.train.objective(end+1) = 0 ; info.train.error(end+1) = 0 ; info.train.topFiveError(end+1) = 0 ; info.train.speed(end+1) = 0 ; info.val.objective(end+1) = 0 ; info.val.error(end+1) = 0 ; info.val.topFiveError(end+1) = 0 ; info.val.speed(end+1) = 0 ; % reset momentum if needed if prevLr ~= lr fprintf('learning rate changed (%f --> %f): resetting momentum\n', prevLr, lr) ; for l=1:numel(neta.layers) if ~strcmp(neta.layers{l}.type, 'conv'), continue ; end neta.layers{l}.filtersMomentum = 0 * neta.layers{l}.filtersMomentum ; neta.layers{l}.biasesMomentum = 0 * neta.layers{l}.biasesMomentum ; end for l=1:numel(netb.layers) if ~strcmp(netb.layers{l}.type, 'conv'), continue ; end netb.layers{l}.filtersMomentum = 0 * netb.layers{l}.filtersMomentum ; netb.layers{l}.biasesMomentum = 0 * netb.layers{l}.biasesMomentum ; end for l=1:numel(netc.layers) if ~strcmp(netc.layers{l}.type, 'conv'), continue ; end netc.layers{l}.filtersMomentum = 0 * netc.layers{l}.filtersMomentum ; netc.layers{l}.biasesMomentum = 0 * netc.layers{l}.biasesMomentum ; end end for t=1:opts.batchSize:numel(train) % get next image batch and labels batch = train(t:min(t+opts.batchSize-1, numel(train))) ; batch_time = tic ; fprintf('training: epoch %02d: processing batch %3d of %3d ...', epoch, ... fix((t-1)/opts.batchSize)+1, ceil(numel(train)/opts.batchSize)) ; [im, labels] = getBatch(imdb, batch, opts.dataAugmentation{1}, opts.scale) ; if opts.prefetch nextBatch = train(t+opts.batchSize:min(t+2*opts.batchSize-1, numel(train)), opts.scale) ; getBatch(imdb, nextBatch) ; end if(exist('dA', 'var')) clear dA dB dEdpsi psi_n ima imb resa resb wait(gpuDevice); resc = []; end % do forward passes on neta and netb to get bilinear CNN features [psi, resa, resb] = bcnn_asym_forward(neta, netb, im, ... 'regionBorder', opts.regionBorder, ... 'normalization', 'none', 'networkconservmemory', false); if opts.useGpu A = gather(resa(end).x); B = gather(resb(end).x); else A = resa(end).x; B = resb(end).x; end psi = cat(2, psi{:}); psi = reshape(psi, [1,1,size(psi,1),size(psi,2)]); if opts.useGpu psi = gpuArray(psi) ; end netc.layers{end}.class = labels ; % do forward and backward passes on netc after bilinear pool resc = vl_bilinearnn(netc, psi, 1, resc, ... 'conserveMemory', false, ... 'sync', opts.sync) ; % compute the derivative with respected to the outputs of network A and network B dEdpsi = reshape(squeeze(resc(1).dzdx), size(A,3), size(B,3), size(A,4)); [dA, dB] = arrayfun(@(x) compute_deriv_resp_AB(dEdpsi(:,:,x), A(:,:,:,x), B(:,:,:,x), opts.useGpu), 1:size(dEdpsi, 3), 'UniformOutput', false); dA = cat(4, dA{:}); dB = cat(4, dB{:}); % backprop through network A resa = vl_bilinearnn(neta, [], dA, resa, ... 'conserveMemory', opts.conserveMemory, ... 'sync', opts.sync, 'doforward', false) ; % backprop through network B resb = vl_bilinearnn(netb, [], dB, resb, ... 'conserveMemory', opts.conserveMemory, ... 'sync', opts.sync, 'doforward', false) ; % gradient step on network A for l=1:numel(neta.layers) if ~strcmp(neta.layers{l}.type, 'conv'), continue ; end neta.layers{l}.filtersMomentum = ... opts.momentum * neta.layers{l}.filtersMomentum ... - (lr * neta.layers{l}.filtersLearningRate) * ... (opts.weightDecay * neta.layers{l}.filtersWeightDecay) * neta.layers{l}.filters ... - (lr * neta.layers{l}.filtersLearningRate) / numel(batch) * resa(l).dzdw{1} ; neta.layers{l}.biasesMomentum = ... opts.momentum * neta.layers{l}.biasesMomentum ... - (lr * neta.layers{l}.biasesLearningRate) * .... (opts.weightDecay * neta.layers{l}.biasesWeightDecay) * neta.layers{l}.biases ... - (lr * neta.layers{l}.biasesLearningRate) / numel(batch) * resa(l).dzdw{2} ; neta.layers{l}.filters = neta.layers{l}.filters + neta.layers{l}.filtersMomentum ; neta.layers{l}.biases = neta.layers{l}.biases + neta.layers{l}.biasesMomentum ; end % gradient step on network B for l=1:numel(netb.layers) if ~strcmp(netb.layers{l}.type, 'conv'), continue ; end netb.layers{l}.filtersMomentum = ... opts.momentum * netb.layers{l}.filtersMomentum ... - (lr * netb.layers{l}.filtersLearningRate) * ... (opts.weightDecay * netb.layers{l}.filtersWeightDecay) * netb.layers{l}.filters ... - (lr * netb.layers{l}.filtersLearningRate) / numel(batch) * resb(l).dzdw{1} ; netb.layers{l}.biasesMomentum = ... opts.momentum * netb.layers{l}.biasesMomentum ... - (lr * netb.layers{l}.biasesLearningRate) * .... (opts.weightDecay * netb.layers{l}.biasesWeightDecay) * netb.layers{l}.biases ... - (lr * netb.layers{l}.biasesLearningRate) / numel(batch) * resb(l).dzdw{2} ; netb.layers{l}.filters = netb.layers{l}.filters + netb.layers{l}.filtersMomentum ; netb.layers{l}.biases = netb.layers{l}.biases + netb.layers{l}.biasesMomentum ; end % gradient step on network C for l=1:numel(netc.layers) if ~strcmp(netc.layers{l}.type, 'conv'), continue ; end netc.layers{l}.filtersMomentum = ... opts.momentum * netc.layers{l}.filtersMomentum ... - (lr * netc.layers{l}.filtersLearningRate) * ... (opts.weightDecay * netc.layers{l}.filtersWeightDecay) * netc.layers{l}.filters ... - (lr * netc.layers{l}.filtersLearningRate) / numel(batch) * resc(l).dzdw{1} ; netc.layers{l}.biasesMomentum = ... opts.momentum * netc.layers{l}.biasesMomentum ... - (lr * netc.layers{l}.biasesLearningRate) * .... (opts.weightDecay * netc.layers{l}.biasesWeightDecay) * netc.layers{l}.biases ... - (lr * netc.layers{l}.biasesLearningRate) / numel(batch) * resc(l).dzdw{2} ; netc.layers{l}.filters = netc.layers{l}.filters + netc.layers{l}.filtersMomentum ; netc.layers{l}.biases = netc.layers{l}.biases + netc.layers{l}.biasesMomentum ; end % print information batch_time = toc(batch_time) ; speed = numel(batch)/batch_time ; info.train = updateError(opts, info.train, netc, resc, batch_time) ; fprintf(' %.2f s (%.1f images/s)', batch_time, speed) ; n = t + numel(batch) - 1 ; fprintf(' err %.1f err5 %.1f', ... info.train.error(end)/n*100, info.train.topFiveError(end)/n*100) ; fprintf('\n') ; % debug info if opts.plotDiagnostics figure(2) ; vl_simplenn_diagnose(net,res) ; drawnow ; end end % next batch % evaluation on validation set for t=1:opts.batchSize:numel(val) batch_time = tic ; batch = val(t:min(t+opts.batchSize-1, numel(val))) ; fprintf('validation: epoch %02d: processing batch %3d of %3d ...', epoch, ... fix((t-1)/opts.batchSize)+1, ceil(numel(val)/opts.batchSize)) ; [im, labels] = getBatch(imdb, batch, opts.dataAugmentation{2}, opts.scale) ; if opts.prefetch nextBatch = train(t+opts.batchSize:min(t+2*opts.batchSize-1, numel(train)), opts.scale) ; getBatch(imdb, nextBatch, opts.dataAugmentation{2}, opts.scale) ; end if(exist('psi_n', 'var')) clear psi_n ima imb resa resb resc wait(gpuDevice); resc = []; end % do forward pass on neta and netb to get bilinear CNN features [psi, ~, ~] = bcnn_asym_forward(neta, netb, im, ... 'regionBorder', opts.regionBorder, 'normalization', 'none'); psi = cat(2, psi{:}); psi = reshape(psi, [1,1,size(psi,1),size(psi,2)]); if opts.useGpu psi = gpuArray(psi) ; end netc.layers{end}.class = labels ; % do forward pass on netc after bilinear pool resc = vl_bilinearnn(netc, psi, [], resc, ... 'conserveMemory', opts.conserveMemory, ... 'sync', opts.sync) ; % print information batch_time = toc(batch_time) ; speed = numel(batch)/batch_time ; info.val = updateError(opts, info.val, netc, resc, batch_time) ; fprintf(' %.2f s (%.1f images/s)', batch_time, speed) ; n = t + numel(batch) - 1 ; fprintf(' err %.1f err5 %.1f', ... info.val.error(end)/n*100, info.val.topFiveError(end)/n*100) ; fprintf('\n') ; end % save info.train.objective(end) = info.train.objective(end) / numel(train) ; info.train.error(end) = info.train.error(end) / numel(train) ; info.train.topFiveError(end) = info.train.topFiveError(end) / numel(train) ; info.train.speed(end) = numel(train) / info.train.speed(end) ; info.val.objective(end) = info.val.objective(end) / numel(val) ; info.val.error(end) = info.val.error(end) / numel(val) ; info.val.topFiveError(end) = info.val.topFiveError(end) / numel(val) ; info.val.speed(end) = numel(val) / info.val.speed(end) ; save(modelPath(epoch), 'neta', 'netb', 'netc', 'info', '-v7.3') ; figure(1) ; clf ; subplot(1,2,1) ; semilogy(1:epoch, info.train.objective, 'k') ; hold on ; semilogy(1:epoch, info.val.objective, 'b') ; xlabel('training epoch') ; ylabel('energy') ; grid on ; h=legend('train', 'val') ; set(h,'color','none'); title('objective') ; subplot(1,2,2) ; switch opts.errorType case 'multiclass' plot(1:epoch, info.train.error, 'k') ; hold on ; plot(1:epoch, info.train.topFiveError, 'k--') ; plot(1:epoch, info.val.error, 'b') ; plot(1:epoch, info.val.topFiveError, 'b--') ; h=legend('train','train-5','val','val-5') ; case 'binary' plot(1:epoch, info.train.error, 'k') ; hold on ; plot(1:epoch, info.val.error, 'b') ; h=legend('train','val') ; end grid on ; xlabel('training epoch') ; ylabel('error') ; set(h,'color','none') ; title('error') ; drawnow ; print(1, modelFigPath, '-dpdf') ; end bcnn_net.neta = neta; bcnn_net.netb = netb; bcnn_net.netc = netc; % ------------------------------------------------------------------------- function info = updateError(opts, info, net, res, speed) % ------------------------------------------------------------------------- predictions = gather(res(end-1).x) ; sz = size(predictions) ; n = prod(sz(1:2)) ; labels = net.layers{end}.class ; info.objective(end) = info.objective(end) + sum(double(gather(res(end).x))) ; info.speed(end) = info.speed(end) + speed ; switch opts.errorType case 'multiclass' [~,predictions] = sort(predictions, 3, 'descend') ; error = ~bsxfun(@eq, predictions, reshape(labels, 1, 1, 1, [])) ; info.error(end) = info.error(end) +.... sum(sum(sum(error(:,:,1,:))))/n ; info.topFiveError(end) = info.topFiveError(end) + ... sum(sum(sum(min(error(:,:,1:5,:),[],3))))/n ; case 'binary' error = bsxfun(@times, predictions, labels) < 0 ; info.error(end) = info.error(end) + sum(error(:))/n ; end function Ar = array_resize(A, w, h) numChannels = size(A, 3); indw = round(linspace(1,size(A,2),w)); indh = round(linspace(1,size(A,1),h)); Ar = zeros(w*h, numChannels, 'single'); for i = 1:numChannels, Ai = A(indh,indw,i); Ar(:,i) = Ai(:); end function [dA, dB] = compute_deriv_resp_AB(dEdpsi, A, B, useGpu) w1 = size(A,2) ; h1 = size(A,1) ; w2 = size(B,2) ; h2 = size(B,1) ; %% make sure A and B have same aspect ratio assert(w1/h1==w2/h2, 'Only support two feature maps have same aspect ration') if w1*h1 <= w2*h2, %downsample B B = array_resize(B, w1, h1); A = reshape(A, [w1*h1 size(A,3)]); else %downsample A A = array_resize(A, w2, h2); B = reshape(B, [w2*h2 size(B,3)]); end dA = B*dEdpsi'; dB = A*dEdpsi; if w1*h1 <= w2*h2, %B is downsampled, upsample dB back to original size dB = reshape(dB, h1, w1, size(dB,2)); tempdB = dB; if(useGpu) dB = gpuArray(zeros(h2, w2, size(B,2), 'single')); else dB = zeros(h2, w2, size(B,2), 'single'); end indw = round(linspace(1,w2,w1)); indh = round(linspace(1,h2,h1)); dB(indh, indw, :) = tempdB; dA = reshape(dA, h1, w1, size(dA,2)); else %A is downsampled, upsample dA back to original size dA = reshape(dA, h2, h2, size(dA,2)); tempdA = dA; if(useGpu) dA = gpuArray(zeros(h1, w1, size(A,2), 'single')); else dA = zeros(h1, w1, size(A,2), 'single'); end indw = round(linspace(1,w1,w2)); indh = round(linspace(1,h1,h2)); dA(indh, indw, :) = tempdA; dB = reshape(dB, h2, w2, size(dB, 2)); end
github
akileshbadrinaaraayanan/IITH-master
imdb_get_batch_bcnn.m
.m
IITH-master/Sem6/CS5190_Soft_Computing/cs13b1042_final_code/imdb_get_batch_bcnn.m
3,947
utf_8
66ff062002437a8ac04ba2fd4e8f8468
function imo = imdb_get_batch_bcnn(images, varargin) % imdb_get_batch_bcnn Load, preprocess, and pack images for BCNN evaluation % For asymmetric model, the function preprocesses the images twice for two networks % separately. % OUTPUT % imo: a cell array where each element is a cell array of images. % For symmetric bcnn model, numel(imo) will be 1 and imo{1} will be a % cell array of images % For asymmetric bcnn, numel(imo) will be 2. imo{1} is a cell array containing the preprocessed images for network A % Similarly, imo{2} is a cell array containing the preprocessed images for network B % % Copyright (C) 2015 Tsung-Yu Lin, Aruni RoyChowdhury, Subhransu Maji. % All rights reserved. % % This file is part of the BCNN and is made available under % the terms of the BSD license (see the COPYING file). % % This file modified from CNN_IMAGENET_GET_BATCH of MatConvNet for i=1:numel(varargin{1}) opts(i).imageSize = [227, 227] ; opts(i).border = [0, 0] ; opts(i).averageImage = [] ; opts(i).augmentation = 'none' ; opts(i).interpolation = 'bilinear' ; opts(i).numAugments = 1 ; opts(i).numThreads = 0 ; opts(i).prefetch = false ; opts(i).keepAspect = false; opts(i).scale = 1; opts(i) = vl_argparse(opts(i), {varargin{1}(i),varargin{2:end}}); %opts(i) = vl_argparse(opts(i), varargin(2:end)); if(i==1) switch opts(i).augmentation case 'none' tfs = [.5 ; .5 ; 0 ]; case 'f2' tfs = [... 0.5 0.5 ; 0.5 0.5 ; 0 1]; end [~,augmentations] = sort(rand(size(tfs,2), numel(images)), 1) ; end imo{i} = get_batch_fun(images, opts(i), augmentations, tfs); end function imo = get_batch_fun(images, opts, augmentations, tfs) opts.imageSize(1:2) = round(opts.imageSize(1:2).*opts.scale); if(opts.scale ~= 1) opts.averageImage = mean(mean(opts.averageImage, 1),2); end % fetch is true if images is a list of filenames (instead of % a cell array of images) % fetch = numel(images) > 1 && ischar(images{1}) ; fetch = ischar(images{1}) ; % prefetch is used to load images in a separate thread prefetch = fetch & opts.prefetch ; im = cell(1, numel(images)) ; if opts.numThreads > 0 if prefetch vl_imreadjpeg(images, 'numThreads', opts.numThreads, 'prefetch') ; imo = [] ; return ; end if fetch im = vl_imreadjpeg(images,'numThreads', opts.numThreads) ; end end if ~fetch im = images ; end imo = cell(1, numel(images)*opts.numAugments) ; si=1; for i=1:numel(images) % acquire image if isempty(im{i}) imt = imread(images{i}) ; imt = single(imt) ; % faster than im2single (and multiplies by 255) else imt = im{i} ; end if size(imt,3) == 1 imt = cat(3, imt, imt, imt) ; end % resize if opts.keepAspect w = size(imt,2) ; h = size(imt,1) ; factor = [(opts.imageSize(1)+opts.border(1))/h ... (opts.imageSize(2)+opts.border(2))/w]; factor = max(factor) ; if any(abs(factor - 1) > 0.0001) imt = imresize(imt, ... 'scale', factor, ... 'method', opts.interpolation) ; end w = size(imt,2) ; h = size(imt,1) ; imt = imcrop(imt, [fix((w-opts.imageSize(1))/2)+1, fix((h-opts.imageSize(2))/2)+1, opts.imageSize(1)-1, opts.imageSize(2)-1]); else imt = imresize(imt, ... opts.imageSize(1:2), ... 'method', opts.interpolation) ; end % crop & flip w = size(imt,2) ; h = size(imt,1) ; for ai = 1:opts.numAugments t = augmentations(ai,i) ; tf = tfs(:,t) ; sx = 1:w; if tf(3), sx = fliplr(sx) ; end imo{si} = imt(:,sx,:); si = si + 1 ; end end if ~isempty(opts.averageImage) for i=1:numel(imo) imo{i} = bsxfun(@minus, imo{i}, opts.averageImage) ; end end
github
econdaryl/GSSA-master
GSSA.m
.m
GSSA-master/MATLAB/GSSA MATLAB Code in Progress/GSSA.m
12,736
utf_8
ccdceb3ab22c08fcd51d3d23fc692ecf
% GSSA function % version 1.3 written by Kerk L. Phillips 2/11/2012 % Implements a version of Judd, Mailar & Mailar's (Quatitative Economics, % 2011) Generalized Stochastic Simulation Algorithm with jump variables. % This function takes two inputs: % 1) a guess for the steady state value of the endogneous state variables & % jump variables, XYbarguess It outputs the parameters for an % approximation of the state transition function, X(t+1) = f(X(t),Z(t)) and % the jump variable function Y(t) = g(X(t),Z(t)). % where X is a vector of nx endogenous state variables % Y is a vector of ny endogenous state variables % and Z is a vector of nz exogenous state variables % 2) an initial guess for the parameter matrix, beta % 3) a string specifying the model's name, modelname % It requires the following subroutines written by by Kenneth L. Judd, % Lilia Maliar and Serguei Maliar which are available as a zip file from % Lilia & Setguei Mailar's webapage at: % http://www.stanford.edu/~maliars/Files/Codes.html % 1. "Num_Stab_Approx.m" implements the numerically stable LS and LAD % approximation methods % 2. "Ord_Polynomial_N.m" constructs the sets of basis functions for ordinary % polynomials of the degrees from one to five, for % the N-country model % 3. "Monomials_1.m" constructs integration nodes and weights for an N- % dimensional monomial (non-product) integration rule % with 2N nodes % 4. "Monomials_2.m" constructs integration nodes and weights for an N- % dimensional monomial (non-product) integration rule % with 2N^2+1 nodes % 5. "GH_Quadrature.m" constructs integration nodes and weights for the % Gauss-Hermite rules with the number of nodes in % each dimension ranging from one to ten % It also requires one model-specificvexternal function: % It should be named "modelname"_dyn.m and should take as inputs: % X(t+2), X(t+1), X(t), Y(t+1), Y(t), Z(t+1) & Z(t) % It should output a with nx+ny elements column vector with the values of % the model's behavioral equations (many of which will be Euler equations) % written in such a way that the equation evaluates to zero. This % function is used to find the steady state and in the GSSA algorithm % itself. % The output is: % 1) a vector of approximation coeffcients, out. % 2) a vector of steady state values for X & Y, XYbarout. function [out,XYbarout] = GSSA(XYbarguess,beta,modelname) % data values global X1 Z % options flags global fittype numerSS quadtype dotrunc PF % parameters global nx ny nz nobs XYbar NN SigZ dyneqns trunceqns D global J epsi_nodes weight_nodes % create the name of the dynamic behavioral equations function dyneqns = str2func([modelname '_dyn']); trunceqns = str2func([modelname '_trunc']); % set numerical parameters (I include this in the model script) % nx = 1; %number of endogenous state variables % ny = 0; %number of jump variables % nz = 1; %number of exogenous state variables %numerSS = 1; %set to 1 if XYbargues is a guess, 0 if it is exact SS. nobs = 1000; % number of observations in the simulation sample T = nobs; kdamp = 0.05; % Damping parameter for (fixed-point) iteration on % the coefficients of the capital policy functions maxwhile = 1000; % maximimum iterations for approximations usePQ = 0; % 1 to use a linear approximation to get initial guess % for beta dotrunc = 0; % 1 to truncate data outside constraints, 0 otherwise fittype = 1; % functional form for polynomial approximations % 1) linear % 2) log-linear RM = 6; % regression (approximation) method, RM=1,...,8: % 1=OLS, 2=LS-SVD, 3=LAD-PP, 4=LAD-DP, % 5=RLS-Tikhonov, 6=RLS-TSVD, 7=RLAD-PP, 8=RLAD-DP; penalty = 7; % a parameter determining the value of the regularization % parameter for a regularization methods, RM=5,6,7,8; D = 5; % order of polynomical approximation (1,2,3,4 or 5) PF = 1; % polynomial family % 1) ordinary % 2) Hermite quadtype = 4; % type of quadrature used % 1) "Monomials_1.m" % constructs integration nodes and weights for an N- % dimensional monomial (non-product) integration rule % with 2N nodes % 2) "Monomials_2.m" % constructs integration nodes and weights for an N- % dimensional monomial (non-product) integration rule % with 2N^2+1 nodes % 3)"GH_Quadrature.m" % constructs integration nodes and weights for the % Gauss-Hermite rules with the number of nodes in % each dimension ranging from one to ten % 4)"GSSA_nodes.m" % does rectangular arbitrage for a large number of nodes % used only for univariate shock case. Qn = 10; % the number of nodes in each dimension; 1<=Qn<=10 % for "GH_Quadrature.m" only % calculate nodes and weights for quadrature % Inputs: "nz" is the number of random variables; N>=1; % "SigZ" is the variance-covariance matrix; N-by-N % Outputs: "n_nodes" is the total number of integration nodes; 2*N; % "epsi_nodes" are the integration nodes; n_nodes-by-N; % "weight_nodes" are the integration weights; n_nodes-by-1 if quadtype == 1 [J,epsi_nodes,weight_nodes] = Monomials_1(nz,SigZ); elseif quadtype == 2 [J,epsi_nodes,weight_nodes] = Monomials_2(nz,SigZ); elseif quadtype == 3 % Inputs: "Qn" is the number of nodes in each dimension; 1<=Qn<=10; [J,epsi_nodes,weight_nodes] = GH_Quadrature(Qn,nz,SigZ); elseif quadtype == 4 J = 20; [epsi_nodes, weight_nodes] = GSSA_nodes(J,quadtype); end JJJ = J % find steady state numerically; skip if you already have exact values if numerSS == 1 options = optimset('Display','iter'); XYbar = fsolve(@GSSA_ss,XYbarguess,options) else XYbar = XYbarguess; end Xbar = XYbar(1:nx) Ybar = XYbar(nx+1:nx+ny); Zbar = zeros(nz,1); % generate a random history of Z's to be used throughout Z = zeros(nobs,nz); eps = randn(nobs,nz)*SigZ; for t=2:nobs Z(t,:) = Z(t-1,:)*NN + eps(t,:); end if usePQ == 1 % get an initial estimate of beta by simulating about the steady state % using Uhlig's solution method. in = [Xbar; Xbar; Xbar; Ybar; Ybar; Zbar; Zbar]; [PP,QQ,UU] = GSSA_PQU(in); % generate X & Y data given Z's above Xtilde = zeros(T,nx); X = ones(T,nx); Ytilde = zeros(T,ny); X(1,nx) = Xbar; PP' QQ' Z(t-1,:) Xtilde(t,:) for t=2:T Xtilde(t,:) = Xtilde(t-1,:)*PP' + Z(t-1,:)*QQ'; X(t,:) = Xbar.*exp(Xtilde(t,:)); end Xtildefinal = Xtilde(T,:)*PP' + Z(T,:)*QQ'; Xfinal = Xbar.*exp(Xtildefinal); % estimate beta using this data Xrhs = X; Ylhs = [X(2:T,:); Xfinal]; if fittype == 2 Xrhs = log(Xrhs); Ylhs = log(Ylhs); end % add the Z series Xrhs = [Xrhs Z]; % construct basis functions XZbasis = Ord_Polynomial_N(Xrhs,D); % run regressions to fit data beta = Num_Stab_Approx(XZbasis,Ylhs,RM,penalty,1); beta = real(beta) end % construct valid beta matrix from betaguess % find size of beta guess [rbeta, cbeta] = size(beta); % find number of terms in basis functions [rbasis, ~] = size(Ord_Polynomial_N(ones(1,nx+nz),D)') if rbeta > rbasis disp('rbeta > rbasis truncating betaguess') beta = beta(1:rbasis,:); [rbeta, cbeta] = size(beta); end if cbeta > nx+ny disp('cbeta > cbasis truncating betaguess') beta = beta(:,1:nx+ny); [rbeta, cbeta] = size(beta); end if rbeta < rbasis disp('rbeta < rbasis adding extra zero rows to betaguess') beta = [beta; zeros(rbasis-rbeta,cbeta)]; [rbeta, cbeta] = size(beta); end if cbeta < nx+ny disp('cbeta < cbasis adding extra zero columns to betaguess') beta = [beta zeros(rbeta,nx+ny-cbeta)]; end % find constants that yield theoretical SS beta(1,:) eye(nx) beta(2:nx+1,1:nx) beta(1,:) = XYbar(1,1:nx)*(eye(nx)-beta(2:nx+1,1:nx)) % start simulations at SS X1 = XYbar(1:nx); % set intial value of old coefficients betaold = beta; % begin iterations dif_1d = 1; icount = 0; [icount dif_1d 1] while dif_1d > 1e-4*kdamp; % update interation count icount = icount + 1; % stop if too many iterations have passed if icount > maxwhile break end % find convex combination of old and new coefficients beta = kdamp*beta + (1-kdamp)*betaold; betaold = beta; % find time series for XYap using approximate function % initialize series XYap = zeros(T,nx+ny); % find SS implied by current beta if fittype == 2 Xbar = exp(beta(1,1:nx)*(eye(nx)-beta(2:1+nx,1:nx))^(-1)); else Xbar = beta(1,1:nx)*(eye(nx)-beta(2:1+nx,1:nx))^(-1); end % % use theoretical SS vslues % Xbar = XYbar(:,1:nx); if ny > 0 if fittype == 2 Ybar = exp(ones(1,ny)*beta(1,1+nx:nx+ny) + log(Xbar)*beta(2:1+nx,1+nx:nx+ny)); else Ybar = ones(1,ny)*beta(1,1+nx:nx+ny) + Xbar*beta(2:1+nx,1+nx:nx+ny); end else Ybar = []; end X1 = [Xbar Ybar]; % find Xp & Y using approximate Xp & Y functions XYap(1,:) = GSSA_XYfunc(X1(1:nx),Z(1,:),beta); for t=2:T XYap(t,:) = GSSA_XYfunc(XYap(t-1,1:nx),Z(t,:),beta); end % generate XYex using the behavioral equations % Judd, Mailar & Mailar call this y(t) [XYex,~] = GSSA_genex(XYap,beta); % % watch the data converge using plots % for i=1:nx+ny % figure; % subplot(nx+ny,1,i) % plot([XYap(:,i) XYex(:,i)]) % end [XYap(1:10,:) XYex(1:10,:)] [XYap(T-10:T,:) XYex(T-10:T,:)] % find new coefficient values % generate basis functions for Xap & Z % get the X portion of XYap Xap = [X1(1:nx); XYap(1:T-1,1:nx)]; if fittype == 2 Xap = log(Xap); XYex = log(XYex); end % add the Z series XZap = [Xap Z]; % construct basis functions XZbasis = Ord_Polynomial_N(XZap,D); % run regressions to fit data % Inputs: "X" is a matrix of dependent variables in a regression, T-by-n, % where n corresponds to the total number of coefficients in the % original regression (i.e. with unnormalized data); % "Y" is a matrix of independent variables, T-by-N; % "RM" is the regression (approximation) method, RM=1,...,8: % 1=OLS, 2=LS-SVD, 3=LAD-PP, 4=LAD-DP, % 5=RLS-Tikhonov, 6=RLS-TSVD, 7=RLAD-PP, 8=RLAD-DP; % "penalty" is a parameter determining the value of the regulari- % zation parameter for a regularization methods, RM=5,6,7,8; % "normalize" is the option of normalizing the data, % 0=unnormalized data, 1=normalized data beta = Num_Stab_Approx(XZbasis,XYex,RM,penalty,1); beta = real(beta) % evauate convergence criteria if icount == 1 dif_1d = 1; dif_beta = abs(1 - mean(mean(betaold./beta))); else dif_1d =abs(1 - mean(mean(XYapold./XYap))); dif_beta =abs(1 - mean(mean(betaold./beta))); if isnan(dif_1d) dif_1d = 0; disp('There were problems with NaN for the convergence metric') end if isinf(dif_1d) dif_1d = 0; disp('There were problems with inf for the convergence metric') end end % replace old k values XYapold = XYap; % report results of iteration [icount dif_1d dif_beta] end out = beta; XYbarout = XYbar; end %% function out = GSSA_ss(XYbar) % This function finds the steady state using numerical methods % parameters global nx ny nz dyneqns Xbar = XYbar(1:nx); Ybar = XYbar(nx+1:nx+ny); out = dyneqns([Xbar'; Xbar'; Xbar'; Ybar'; Ybar'; zeros(nz,1); zeros(nz,1)]); end
github
econdaryl/GSSA-master
GSSA.m
.m
GSSA-master/MATLAB/GSSA MATLAB ver 1.2 (4 Feb 2012)/GSSA.m
13,295
utf_8
659817883a76880af2cfcebd95a488ed
% GSSA function % version 1.1 written by Kerk L. Phillips 2/5/2012 % Implements a version of Judd, Mailar & Mailar's (Quatitative Economics, % 2011) Generalized Stochastic Simulation Algorithm with jump variables. % This function takes two inputs: % 1) a guess for the steady state value of the endogneous state variables & % jump variables, XYbarguess It outputs the parameters for an % approximation of the state transition function, X(t+1) = f(X(t),Z(t)) and % the jump variable function Y(t) = g(X(t),Z(t)). % where X is a vector of nx endogenous state variables % Y is a vector of ny endogenous state variables % and Z is a vector of nz exogenous state variables % 2) 3 initial guesses for the parameter matrices, AA, BB & CC % 3) a string specifying the model's name, "modelname" % This script requires two external functions: % 1) One should be named "modelname"_dyn.m and should take as inputs: % X(t+2), X(t+1), X(t), Y(t+1), Y(t), Z(t+1) & Z(t) % It should output a with nx+ny elements column vector with the values of % the model's behavioral equations (many of which will be Euler equations) % written in such a way that the equation evaluates to zero. This % function is used to find the steady state and in the GSSA algorithm % itself. % 2) A second function is named GSSA_fittype.m and is used to rehape the % vector of approximate function coefficients into matrices suitable for % simulating data. (In this version these matrices are AA, BB, and CC.) % The output is: % 1) a vector of approximation coeffcients. % 2) a vector of steady state values for X & Y % 3) average Euler equation errors over a series of Monte Carlos. % The GSSA_fittype.m function can be used to recover their matrix % versions. function [out,XYbarout,errors] = GSSA(XYbarguess,AAguess,BBguess,CCguess,modelname) % data values global X1 Z % options flags global fittype regconstant regtype numerSS quadtype % parameters global nx ny nz nc npar betar nobs XYpars XYbar NN SigZ dyneqns global nodes weights global AA BB CC beta % create the name of the dynamic behavioral equations function dyneqns = str2func([modelname '_dyn']); % set numerical parameters (I include this in the model script) % nx = 1; %number of endogenous state variables % ny = 0; %number of jump variables % nz = 1; %number of exogenous state variables %numerSS = 1; %set to 1 if XYbargues is a guess, 0 if it is exact SS. nobs = 20; %number of observations in the simulation sample ccrit = .001; %convergence criterion for approximations conv = .25; %convexifier parameter for approximations maxwhile = 500; %maximimum iterations for approximations nmc = 1; %number of Monte Carlos for Euler error check % fittype = 1; %functional form for approximations % %0 is linear (AVOID) % %1 is log-linear % %2 is quadratic (AVOID) % %3 is log-quadratic regconstant = 0; %choose 1 to include a constant in the regression fitting regtype = 1; %type of regression, 1 is LAD, 0 is OLS. quadtype = 0; %type of quadrature used %0 is rectangular J = 20; %number of nodes for quadrature nc = (nx+nz)*(nx+nz+1)/2; npar = (nx*nx+nx*nz+nx+ny*nx+ny*nz+ny); if fittype==2 || fittype==3 npar = npar + nc; end if regconstant == 0; npar = npar - nx - ny; end npar % calculate nodes and weights for quadrature [nodes, weights] = GSSA_nodes(J,quadtype); % set initial guess for coefficients if regconstant == 1 AA = []; else if size(AAguess) ~= [1,nx+ny] AA = AAguess; else AA = zeros(1,nx+ny); end end if size(BBguess) ~= [nx+nz,nx+ny] BB = .1*ones(nx+nz,nx+ny); else BB = BBguess; end if fittype==2 || fittype==3 if size(CCguess) ~= [nc,nx+ny] CC = zeros(nc,nx+ny); else CC = CCguess; end else CC = []; end beta = [AA; BB; CC]; [betar, betac] = size(beta); nbeta = betar*betac XYpars = reshape(beta,1,nbeta); % find steady state numerically; skip if you already have exact values if numerSS == 1 options = optimset('Display','iter'); XYbar = fsolve(@GSSA_ss,XYbarguess,options); else XYbar = XYbarguess; end % start at SS X1 = XYbar(1:nx); % generate a random history of Z's to be used throughout Z = zeros(nobs,nz); eps = randn(nobs,nz)*SigZ; for t=2:nobs Z(t,:) = Z(t-1,:)*NN + eps(t,:); end % set intial value of old coefficients XYparsold = XYpars; % begin iterations converge = 1; icount = 0; [icount converge XYpars] while converge > ccrit % update interation count icount = icount + 1; % stop if too many iterations have passed if icount > maxwhile break end % find convex combination of old and new coefficients XYpars = conv*XYpars + (1-conv)*XYparsold; XYparsold = XYpars; % find time series for XYap using approximate function XYap = GSSA_genap(); % generate XYex using the behavioral equations % Judd, Mailar & Mailar call this y(t) [XYex,~] = GSSA_genex(); % find new coefficient values; XYpars = GSSA_fit(XYex,XYap,XYparsold); beta = reshape(XYpars,betar,nx+ny); [AA,BB,CC] = GSSA_fittype(beta); % evauate convergence criteria if icount == 1 converge = 1; else converge = sum(sum(abs((XYap-XYapold)./XYap)),2)/(nobs*(nx+ny)); if isnan(converge) converge = 0; disp('There are problems with NaN for the convergence metric') end if isinf(converge) converge = 0; disp('There are problems with inf for the convergence metric') end end % replace old k values XYapold = XYap; % report results of iteration %[icount,converge] [icount converge XYpars] end out = XYpars; XYbarout = XYbar; % run Monte Carlos to get average Euler errors errors = 0; for m=1:nmc % create a new Z series Z = zeros(nobs,nz); eps = randn(nobs,nz)*SigZ; for t=2:nobs Z(t,:) = Z(t-1,:)*NN + eps(t,:); end % generate data & calcuate the errors, add this to running average [~,temp] = GSSA_genex(); errors = errors*(m-1)/m + temp/m; m end end %% function XY = GSSA_genap() % This function generates approximate values of Xp using the approximation % equations in GSSA_XYfunc.m % data values global Z X1 % parameters global nx ny T = size(Z,1); % initialize series XY = zeros(T,nx+ny); % find Xp & Y using approximate Xp & Y functions XY(1,:) = GSSA_XYfunc(X1,Z(1,:)); for t=2:T XY(t,:) = GSSA_XYfunc(XY(t-1,1:nx),Z(t,:)); end end %% function [XYex,eulerr] = GSSA_genex() % This function generates values of Xp using the behavioral equations % in "name"_dyn.n. This is y(t) from Judd, Mailar & Mailar. % data values global Z X1 % options flags global quadtype % parameters global nx ny nz NN nobs dyneqns nodes weights T = nobs; [~,J] =size(nodes); % initialize series XYex = zeros(T,nx+ny); % find Xp & Y using approximate Xp & Y functions XY = GSSA_genap(); Xp = XY(:,1:nx); Y = XY(:,nx+1:nx+ny); eulert = zeros(T,1); % find X X = [X1; Xp(1:T-1,:)]; % find EZp & EXpp using law of motion and approximate X & Y functions if quadtype == 0 && nz < 2 for t=1:T EZpj = zeros(J,nz); EXYj = zeros(J,nx+ny); EXppj = zeros(J,nx); if ny > 0 EYpj = zeros(J,ny); end EGFj = zeros(J,nx+ny); XYexj = zeros(J,nx+ny); % integrate over discrete intervals for j=1:J % find Ezp using law of motion EZpj(j,:) = Z(t,:)*NN + nodes(j); % find EXpp & EYp using approximate functions EXYj(j,:) = GSSA_XYfunc(Xp(t,:),EZpj(j,:)); EXppj(j,:) = EXYj(j,1:nx); if ny > 0 EYpj(j,:) = EXYj(j,nx+1:nx+ny); end % find expected G & F values using nonlinear behavioral % equations since GSSA-dyn evaluates to zero at the fixed point % and it needs to evaluate to one, add ones to each element. if ny > 0 EGFj(j,:) = dyneqns([EXppj(j,:)';Xp(t,:)';X(t,:)';... EYpj(j,:)';Y(t,:)';EZpj(j,:)';Z(t,:)]')' + 1; else EGFj(j,:) = dyneqns([EXppj(j,:)';Xp(t,:)';X(t,:)';... EZpj(j,:)';Z(t,:)]')' + 1; end % find Judd, Mailar & Mailar's y XYexj(j,:) = EGFj(j,:).*[Y(t,:) Xp(t,:)]; end % sum over J XYex(t,:) = weights*XYexj; eulert(t,:) = weights*(EGFj-1)*ones(nx+ny,1)/(nx+ny); end end eulerr = ones(1,T)*eulert/T; end %% function [Xp,Y] = GSSA_XYfunc(X,Z) % This is the approximation function that genrates Xp and Y from the % current state. inputs and outputs are row vectors % Currently it allows for log-linear OLS or log-linear LAD forms. % parameters global nx ny XYbar global beta % options flags global fittype regconstant Xbar = XYbar(1:nx); % notation assumes data in column vectors, so individualn observations are % row vectors. % put appropriate linear & quadratic terms in indep list, we are removing % the mean from the X's. if fittype == 0 %linear indep = [(X-Xbar) Z]; elseif fittype == 1 %log-linear indep = [log(X./Xbar) Z]; elseif fittype == 2 %quaddratic sqterms = GSSA_sym2vec([(X-Xbar) Z]'*[(X-Xbar) Z]); indep = [(X-Xbar) Z sqterms]; elseif fittype == 3 %log quadratic sqterms = GSSA_sym2vec([log(X./Xbar) Z]'*[log(X./Xbar) Z]); indep = [log(X./Xbar) Z sqterms]; end % add constants if needed if regconstant == 1; indep = [ones(1,nx+ny) indep]; end % create dependent variable dep = indep*beta; % convert to Xp's & Y's if fittype==0 || fittype==2 XYp = XYbar + dep; elseif fittype==1 || fittype==3 XYp = XYbar.*exp(dep); end % separate Xp's and Y's Xp = XYp(1:nx); if ny > 0 Y = XYplus(nx+1:nx+ny); else Y = []; end end %% function out = GSSA_ss(XYbar) % This function finds the steady state using numerical methods % parameters global nx ny nz dyneqns Xbar = XYbar(1:nx); Ybar = XYbar(nx+1:nx+ny); out = dyneqns([Xbar'; Xbar'; Xbar'; Ybar'; Ybar'; zeros(nz,1); zeros(nz,1)]); end %% function XYparout = GSSA_fit(XYex,XYap,XYparguess) % This function fits Xpex (Judd, Mailar & Mailar's y(t+1)) to Xpap (the X % series from the approximation equations. % data values global X1 Z % paramters global nx nc XYbar % options flags global fittype regtype regconstant % data to pass to GSSA_ADcalc function global LADY LADX [T,~] = size(XYex); % independent variables % get current period values, take deviations from SS, and add Z Xbar = XYbar(1:nx); Xap = [X1; XYap(1:T-1,1:nx)]; if fittype==0 || fittype==2 %levels Xap = Xap - repmat(Xbar,T,1); elseif fittype==1 || fittype==3 %logarithms Xap = log(Xap) - repmat(log(Xbar),T,1); end if regconstant == 1 LADX = [ones(T,1) Xap Z]; else LADX = [Xap Z]; end % calculate and concatenate squared terms if needed if fittype==2 || fittype==3 %quadratic sqterms = zeros(T,nc); for t=1:T sqterms(t,:) = GSSA_sym2vec([Xap(t,:) Z(t,:)]'*[Xap(t,:) Z(t,:)]); end LADX = [LADX sqterms]; end % dependent variables % take deviations if fittype==0 || fittype==2 %levels LADY = XYex - repmat(XYbar,T,1); elseif fittype==1 || fittype==3 %logarithms LADY = log(XYex) - repmat(log(XYbar),T,1); end % choose estimation method if regtype == 1 %linear regression with LAD options = optimset('Display','on','MaxFunEvals',1000000,... 'MaxIter',10000); XYparout = fminsearch(@GSSA_ADcalc,XYparguess,options); elseif regtype == 0 %linear with OLSregression XYparout = LADY\LADX; end end %% function AD = GSSA_ADcalc(XYpars) % Does LAD estimation % data for AD estimation global LADY LADX % get number of regressors and regressands [~,nX] = size(LADX); [~,nY] = size(LADY); beta = reshape(XYpars,nX,nY); AD = sum(sum(abs(LADY - LADX*beta)),2); end %% function [nodes, weights] = GSSA_nodes(J,quadtype) % does quadrature on expectations % parameters global nz SigZ % calculate nodes and weights for rectangular quadrature used for taking % expectations of behavioral eqns. This setup uses equally spaced % probabilities (weights) if quadtype == 0 && nz < 2 weights = ones(1,J)/J; cumprob = .5/J:1/J:1-.5/J; nodes = norminv(cumprob,0,SigZ); end % if isGpuAvailable == 1 % nodes = gpuArry(nodes); % end % check if the nodes look like a cummulative normal % expnodes = weights*nodes' % figure; % plot(nodes) end %% function A = GSSA_sym2vec(B) % B is a symmetric matrix % A is a row vectorization of it's upper triangular portion A = []; for k = 1:size(B,1) A = [A B(k,1:k)]; end end
github
econdaryl/GSSA-master
GSSA_genex.m
.m
GSSA-master/MATLAB/GSSA MATLAB ver 1.4 (5 Nov 2012)/GSSA_genex.m
3,651
utf_8
e0d07d7cbae613aac65b2279399c5620
% GSSA package % version 1.4 written by Kerk L. Phillips 11/5/2012 % Implements a version of Judd, Mailar & Mailar's (Quatitative Economics, % 2011) Generalized Stochastic Simulation Algorithm with jump variables. function [XYex,eulerr] = GSSA_genex(XY,Z,beta,J,epsi_nodes,weight_nodes,... GSSAparams,modelparams) global dyneqns % This function generates values of Xp using the behavioral equations % in "name"_dyn.n. This is y(t) from Judd, Mailar & Mailar. % % This function takes 8 inputs: % 1) XY, a t-by-(nx+ny) matrix of values generated using the fitted % functions % 2) Z, a t-by-nz matrix of exogenous variables % 3) beta, a maxtrix of polynomial coefficients for the fitted functions % 4) J, the number of nodes used in the quadrature % 5) epsi_nodes, a vector of epsilon values % 6) weight_nodes, a vector of probability weights % 7) GSSAparams, the vector of paramter values from the GSSA function % 8) modelparams, a vector of model specific parameter values passed to the % model dynamic function named dyneqns % % The output is: % 1) XYex, the matrix of expected values for X and Y % 2) eulerr, the aveage value of the Euler error over the sample % read in GSSA parameters nx = GSSAparams(1); ny = GSSAparams(2); nz = GSSAparams(3); NN = GSSAparams(17); X1 = GSSAparams(19); [T,~] = size(XY); % initialize series XYex = zeros(T,nx+ny); % find X, Xp & Y using approximate parts of XY Xp = XY(:,1:nx); X = [X1(1:nx); Xp(1:T-1,:)]; Y = XY(:,nx+1:nx+ny); eulert = zeros(T,1); % find EZp & EXpp using law of motion and approximate X & Y functions for t=1:T EZpj = zeros(J,nz); EXYj = zeros(J,nx+ny); EXppj = zeros(J,nx); if ny > 0 EYpj = zeros(J,ny); end EGFj = zeros(J,nx+ny); XYexj = zeros(J,nx+ny); % integrate over discrete intervals for j=1:J % find Ezp using law of motion EZpj(j,:) = Z(t,:)*NN + epsi_nodes(j); % find EXpp & EYp using approximate functions EXYj(j,:) = GSSA_XYfunc(Xp(t,:),EZpj(j,:),beta,GSSAparams); EXppj(j,:) = EXYj(j,1:nx); if ny > 0 EYpj(j,:) = EXYj(j,nx+1:nx+ny); end % find expected G & F values using nonlinear behavioral % equations since GSSA-dyn evaluates to zero at the fixed point % and it needs to evaluate to one, add ones to each element. if ny > 0 EGFj(j,:) = dyneqns([EXppj(j,:)';Xp(t,:)';X(t,:)';... EYpj(j,:)';Y(t,:)';EZpj(j,:)';Z(t,:)]', ... modelparams)' + 1; % % additive % EGFj(j,:) = dyneqns([EXppj(j,:)';Xp(t,:)';X(t,:)';... % EYpj(j,:)';Y(t,:)';EZpj(j,:)';Z(t,:)]')'; else EGFj(j,:) = dyneqns([EXppj(j,:)';Xp(t,:)';X(t,:)';... EZpj(j,:)';Z(t,:)]', modelparams)' + 1; % % additive % EGFj(j,:) = dyneqns([EXppj(j,:)';Xp(t,:)';X(t,:)';... % EZpj(j,:)';Z(t,:)]')'; end % find Judd, Mailar & Mailar's y XYexj(j,:) = EGFj(j,:).*[Y(t,:) Xp(t,:)]; % % additive % XYexj(j,:) = EGFj(j,:)+[Y(t,:) Xp(t,:)]; end % sum over J XYex(t,:) = weight_nodes'*XYexj; eulert(t,:) = weight_nodes'*(EGFj-1)*ones(nx+ny,1)/(nx+ny); end eulerr = ones(1,T)*eulert/T; end
github
econdaryl/GSSA-master
GSSA_nodes.m
.m
GSSA-master/MATLAB/GSSA MATLAB ver 1.4 (5 Nov 2012)/GSSA_nodes.m
1,095
utf_8
c559001097911876e4daa2eefbab70f6
% GSSA package % version 1.4 written by Kerk L. Phillips 11/5/2012 % Implements a version of Judd, Mailar & Mailar's (Quatitative Economics, % 2011) Generalized Stochastic Simulation Algorithm with jump variables. function [nodes, weights] = GSSA_nodes(J,nz,SigZ) % This function calculates nodes and weights for rectangular quadrature % used for taking expectations of behavioral eqns. This setup uses equally % spaced probabilities (weights). This function is only suitable for the % case of a single exogenous shock. % % This function takes 3 inputs: % 1) J, the number of nodes used in the quadrature % 2) nz, the integer number of elements in Z % 3) SigZ, the variance of the shocks to Z % % The output is: % 1) nodes, a vector of epsilon values % 2) weights, a vector of probability weights if nz < 2 weights = ones(J,1)/J; cumprob = .5/J:1/J:1-.5/J; nodes = norminv(cumprob,0,SigZ); else disp('too many elements in Z') end % check if the nodes look like a cummulative normal % expnodes = weights*nodes' % figure; % plot(nodes) end
github
econdaryl/GSSA-master
GSSA.m
.m
GSSA-master/MATLAB/GSSA MATLAB ver 1.4 (5 Nov 2012)/GSSA.m
13,889
utf_8
d75f59a5fb83f59f079bb42862bdf5fb
% GSSA package % version 1.4 written by Kerk L. Phillips 11/5/2012 % Implements a version of Judd, Mailar & Mailar's (Quatitative Economics, % 2011) Generalized Stochastic Simulation Algorithm with jump variables. function [beta,XYbar,eulerr] = GSSA(XYbarguess, beta, modelname,... GSSAparams, modelparams) global nx ny nz dyneqns trunceqns % This function takes three inputs: % 1) XYbarguess % a guess for the steady state value of the endogneous state variables & % jump variables, XYbarguess It outputs the parameters for an % approximation of the state transition function, X(t+1) = f(X(t),Z(t)) % and the jump variable function Y(t) = g(X(t),Z(t)). % where X is a vector of nx endogenous state variables % Y is a vector of ny endogenous state variables % and Z is a vector of nz exogenous state variables % 2) beta % an initial guess for the parameter matrix % 3) modelname % a string specifying the model's name % 4) GSSAparams % a vector of GSSA parameters % 5) modelparams % a vectpr of model specific parameters that is passed to the % appropriate "modelname"_dyn and "modelname"_trunc files. % % The output is: % 1) beta, a vector of approximation coeffcients. % 2) XYbar, a vector of steady state values for X & Y. % 3) eulerr % % The GSSA parameters to be set are: % nx number of endogenous state variables % ny number of jump variables % nz number of exogenous state variables % numerSS set to 1 if XYbarguess is a guess, 0 if it is exact SS. % T number of observations in the simulation sample % kdamp Damping parameter for (fixed-point) iteration onthe coefficients % of the capital policy functions % maxwhile maximimum iterations for approximations % usePQ 1 to use a linear approximation to get initial guess for beta % dotrunc 1 to truncate data outside constraints, 0 otherwise % fittype functional form for polynomial approximations % 1) linear % 2) log-linear % RM regression (approximation) method, RM=1,...,8: % 1=OLS, 2=LS-SVD, 3=LAD-PP, 4=LAD-DP, % 5=RLS-Tikhonov, 6=RLS-TSVD, 7=RLAD-PP, 8=RLAD-DP; % penalty a parameter determining the value of the regularization % parameter for a regularization methods, RM=5,6,7,8; % D order of polynomical approximation (1,2,3,4 or 5) % PF polynomial family % 1) ordinary % 2) Hermite % quadtype type of quadrature used % 1) "Monomials_1.m" - constructs integration nodes and weights % for an N-dimensional monomial (non-product) integration rule % with 2N nodes % 2) "Monomials_2.m" - constructs integration nodes and weights % for an N-dimensional monomial (non-product) integration rule % with 2N^2+1 nodes % 3) "GH_Quadrature.m" - constructs integration nodes and weights % for the Gauss-Hermite rules with the number of nodes in each % dimension ranging from one to ten % 4) "GSSA_nodes.m" - does rectangular arbitrage for a large % number of nodesused only for univariate shock case. % Qn the number of nodes in each dimension; 1<=Qn<=10 for % "GH_Quadrature.m" only % SigZ z-by-nz matrix of variances/covariances for the % exogenous state variables. % X1 nx-by-1 vector of starting values % setting this to -999 uses the steady state as starting values % % It requires the following subroutines written by by Kenneth L. Judd, % Lilia Maliar and Serguei Maliar which are available as a zip file from % Lilia & Setguei Mailar's webapage at: % http://www.stanford.edu/~maliars/Files/Codes.html % 1. "Num_Stab_Approx.m" implements the numerically stable LS and LAD % approximation methods % 2. "Ord_Polynomial_N.m" constructs the sets of basis functions for ordinary % polynomials of the degrees from one to five, for % the N-country model % 3. "Monomials_1.m" constructs integration nodes and weights for an N- % dimensional monomial (non-product) integration rule % with 2N nodes % 4. "Monomials_2.m" constructs integration nodes and weights for an N- % dimensional monomial (non-product) integration rule % with 2N^2+1 nodes % 5. "GH_Quadrature.m" constructs integration nodes and weights for the % Gauss-Hermite rules with the number of nodes in % each dimension ranging from one to ten % % It also requires one model-specific external function: % It should be named "modelname"_dyn.m and should take as inputs: % X(t+2), X(t+1), X(t), Y(t+1), Y(t), Z(t+1) & Z(t) % It should output a with nx+ny elements column vector with the values of % the model's behavioral equations (many of which will be Euler equations) % written in such a way that the equation evaluates to zero. This % function is used to find the steady state and in the GSSA algorithm % itself. % An optional file named "modelname"_trunc.m takes the XY vector in a given % period and truncates the variables to any upper and lower bounds set in % that function. % read in GSSA parameters nx = GSSAparams(1); ny = GSSAparams(2); nz = GSSAparams(3); numerSS = GSSAparams(4); T = GSSAparams(5); kdamp = GSSAparams(6); maxwhile = GSSAparams(7); usePQ = GSSAparams(8); dotrunc = GSSAparams(9); fittype = GSSAparams(10); RM = GSSAparams(11); penalty = GSSAparams(12); D = GSSAparams(13); PF = GSSAparams(14); quadtype = GSSAparams(15); Qn = GSSAparams(16); NN = GSSAparams(17); SigZ = GSSAparams(18); X1 = GSSAparams(19); % create the name of the dynamic behavioral equations function % fundamental dynamic equations that define the model dyneqns = str2func([modelname '_dyn']); % restrictions on values of variables during simulation trunceqns = str2func([modelname '_trunc']); % calculate nodes and weights for quadrature % Inputs: "nz" is the number of random variables; N>=1; % "SigZ" is the variance-covariance matrix; N-by-N % Outputs: "n_nodes" is the total number of integration nodes; 2*N; % "epsi_nodes" are the integration nodes; n_nodes-by-N; % "weight_nodes" are the integration weights; n_nodes-by-1 if quadtype == 1 [J,epsi_nodes,weight_nodes] = Monomials_1(nz,SigZ); elseif quadtype == 2 [J,epsi_nodes,weight_nodes] = Monomials_2(nz,SigZ); elseif quadtype == 3 % Inputs: "Qn" is the number of nodes in each dimension; 1<=Qn<=10; [J,epsi_nodes,weight_nodes] = GH_Quadrature(Qn,nz,SigZ); elseif quadtype == 4 J = 20; [epsi_nodes, weight_nodes] = GSSA_nodes(J,nz,SigZ); end % find steady state numerically; skip if you already have exact values if numerSS == 1 options = optimset('Display','iter'); XYbar = fsolve(@GSSA_ss,XYbarguess,options); else XYbar = XYbarguess; end Xbar = XYbar(1:nx); Ybar = XYbar(nx+1:nx+ny); Zbar = zeros(nz,1); % generate a random history of Z's to be used throughout Z = zeros(T,nz); eps = randn(T,nz)*SigZ; for t=2:T Z(t,:) = Z(t-1,:)*NN + eps(t,:); end if usePQ == 1 % get an initial estimate of beta by simulating about the steady state % using Uhlig's solution method. in = [Xbar; Xbar; Xbar; Ybar; Ybar; Zbar; Zbar]; [PP,QQ,UU,RR,SS,VV] = GSSA_PQU(in,Zbar,GSSAparams,modelparams); % generate X & Y data given Z's above Xtilde = zeros(T,nx); X = ones(T,nx); if ny> 0 Ytilde = zeros(T,ny); Y = ones(T,ny); end X(1,:) = Xbar; if ny > 0 Y(1,:) = Ybar; end for t=2:T Xtilde(t,:) = UU + Xtilde(t-1,:)*PP' + Z(t-1,:)*QQ'; X(t,:) = Xbar.*exp(Xtilde(t,:)); if ny > 0 Ytilde(t,:) = VV + Xtilde(t-1,:)*RR' + Z(t-1,:)*SS'; Y(t,:) = Ybar.*exp(Ytilde(t,:)); end end Xtildefinal = UU + Xtilde(T,:)*PP' + Z(T,:)*QQ'; Xfinal = Xbar.*exp(Xtildefinal); if ny > 0 Ytildefinal = VV + Ytilde(T,:)*RR' + Z(T,:)*SS'; Yfinal = Ybar.*exp(Ytildefinal); end % estimate beta using this data if ny > 0 Xrhs = [X Y]; XYlhs = [X(2:T,:) Y(2:T,:); Xfinal Yfinal]; else Xrhs = X; XYlhs = [X(2:T,:); Xfinal]; end if fittype == 2 Xrhs = log(Xrhs); XYlhs = log(XYlhs); end % add the Z series Xrhs = [Xrhs Z]; % construct basis functions XZbasis = Ord_Polynomial_N(Xrhs,D); % run regressions to fit data beta = Num_Stab_Approx(XZbasis,XYlhs,RM,penalty,1); beta = real(beta); end % construct valid beta matrix from betaguess % find size of beta guess [rbeta, cbeta] = size(beta); % find number of terms in basis functions [rbasis, ~] = size(Ord_Polynomial_N(ones(1,nx+nz),D)'); if rbeta > rbasis disp('rbeta > rbasis truncating betaguess') beta = beta(1:rbasis,:); [rbeta, cbeta] = size(beta); end if cbeta > nx+ny disp('cbeta > cbasis truncating betaguess') beta = beta(:,1:nx+ny); [rbeta, cbeta] = size(beta); end if rbeta < rbasis disp('rbeta < rbasis adding extra zero rows to betaguess') beta = [beta; zeros(rbasis-rbeta,cbeta)]; [rbeta, cbeta] = size(beta); end if cbeta < nx+ny disp('cbeta < cbasis adding extra zero columns to betaguess') beta = [beta zeros(rbeta,nx+ny-cbeta)]; end % find constants that yield theoretical SS beta(1,:) = XYbar(1,1:nx)*(eye(nx)-beta(2:nx+1,1:nx)); % set starting values to SS if flag is on. if X1 == -999 X1 = XYbar(1:nx); end % set intial value of old coefficients betaold = beta; % begin iterations dif_1d = 1; icount = 0; [icount dif_1d 1] while dif_1d > 1e-4*kdamp % update interation count icount = icount + 1; % stop if too many iterations have passed if icount > maxwhile break end % find convex combination of old and new coefficients beta = kdamp*beta + (1-kdamp)*betaold; betaold = beta; % find time series for XYap using approximate function % initialize series XYap = zeros(T,nx+ny); % find SS implied by current beta if fittype == 2 Xbar = exp(beta(1,1:nx)*(eye(nx)-beta(2:1+nx,1:nx))^(-1)); else Xbar = beta(1,1:nx)*(eye(nx)-beta(2:1+nx,1:nx))^(-1); end % % use theoretical SS vslues % Xbar = XYbar(:,1:nx); if ny > 0 if fittype == 2 Ybar = exp(ones(1,ny)*beta(1,1+nx:nx+ny) + log(Xbar)*beta(2:1+nx,1+nx:nx+ny)); else Ybar = ones(1,ny)*beta(1,1+nx:nx+ny) + Xbar*beta(2:1+nx,1+nx:nx+ny); end else Ybar = []; end X1 = [Xbar Ybar]; % find Xp & Y using approximate Xp & Y functions XYap(1,:) = GSSA_XYfunc(X1(1:nx),Z(1,:),beta,GSSAparams); for t=2:T XYap(t,:) = GSSA_XYfunc(XYap(t-1,1:nx),Z(t,:),beta,GSSAparams); end % generate XYex using the behavioral equations % Judd, Mailar & Mailar call this y(t) [XYex,~] = GSSA_genex(XYap,Z,beta,J,epsi_nodes,weight_nodes,... GSSAparams,modelparams); % % watch the data converge using plots % for i=1:nx+ny % figure; % subplot(nx+ny,1,i) % plot([XYap(:,i) XYex(:,i)]) % end % [XYap(1:10,:) XYex(1:10,:)] % [XYap(T-10:T,:) XYex(T-10:T,:)] % find new coefficient values % generate basis functions for Xap & Z % get the X portion of XYap Xap = [X1(1:nx); XYap(1:T-1,1:nx)]; if fittype == 2 Xap = log(Xap); XYex = log(XYex); end % add the Z series XZap = [Xap Z]; % construct basis functions XZbasis = Ord_Polynomial_N(XZap,D); % run regressions to fit data % Inputs: "X" is a matrix of dependent variables in a regression, T-by-n, % where n corresponds to the total number of coefficients in the % original regression (i.e. with unnormalized data); % "Y" is a matrix of independent variables, T-by-N; % "RM" is the regression (approximation) method, RM=1,...,8: % 1=OLS, 2=LS-SVD, 3=LAD-PP, 4=LAD-DP, % 5=RLS-Tikhonov, 6=RLS-TSVD, 7=RLAD-PP, 8=RLAD-DP; % "penalty" is a parameter determining the value of the regulari- % zation parameter for a regularization methods, RM=5,6,7,8; % "normalize" is the option of normalizing the data, % 0=unnormalized data, 1=normalized data beta = Num_Stab_Approx(XZbasis,XYex,RM,penalty,1); beta = real(beta); % evauate convergence criteria if icount == 1 dif_1d = 1; dif_beta = abs(1 - mean(mean(betaold./beta))); else dif_1d =abs(1 - mean(mean(XYapold./XYap))); dif_beta =abs(1 - mean(mean(betaold./beta))); if isnan(dif_1d) dif_1d = 0; disp('There were problems with NaN for the convergence metric') end if isinf(dif_1d) dif_1d = 0; disp('There were problems with inf for the convergence metric') end end % replace old k values XYapold = XYap; % report results of iteration [icount dif_1d dif_beta] end [~,eulerr] = GSSA_genex(XYap,Z,beta,J,epsi_nodes,weight_nodes,... GSSAparams,modelparams); end
github
econdaryl/GSSA-master
GSSA_ss.m
.m
GSSA-master/MATLAB/GSSA MATLAB ver 1.4 (5 Nov 2012)/GSSA_ss.m
759
utf_8
14e62369785d64c04a7385ac10dac2d8
% GSSA package % version 1.4 written by Kerk L. Phillips 11/5/2012 % Implements a version of Judd, Mailar & Mailar's (Quatitative Economics, % 2011) Generalized Stochastic Simulation Algorithm with jump variables. function out = GSSA_ss(XYbar) global nx ny nz dyneqns % GSSA.m uses this function along with the fsolve command to find the % steady state using numerical methods. % % This function takes as an input: % XYbar, a vector of steady state values for X and Y % % The output is: % out, deviations of the model characterizing equations, which should be % zero at the steady state Xbar = XYbar(1:nx); Ybar = XYbar(nx+1:nx+ny); out = dyneqns([Xbar'; Xbar'; Xbar'; Ybar'; Ybar'; ... zeros(nz,1); zeros(nz,1)]); end
github
econdaryl/GSSA-master
GSSA_PQU.m
.m
GSSA-master/MATLAB/GSSA MATLAB ver 1.4 (5 Nov 2012)/GSSA_PQU.m
1,810
utf_8
7a44121e3a77dec00f67532aacb8a189
% GSSA package % version 1.4 written by Kerk L. Phillips 11/5/2012 % Implements a version of Judd, Mailar & Mailar's (Quatitative Economics, % 2011) Generalized Stochastic Simulation Algorithm with jump variables. function [PP,QQ,UU,RR,SS,VV] = GSSA_PQU(theta0, Zbar, GSSAparams,... modelparam) global dyneqns % This function solves for the linear coefficient matrices of poolicy and % jump variable functions % % This function takes 4 inputs: % 1) theta0, the vector [X(t+2),X(t+1),X(t),Y(t+1),Y(t),Z(t+1),Z(t)] % 2) Zbar, steady state value for Z % 3) GSSAparams, the vector of paramter values from the GSSA function % 4) modelparams, a vector of model specific parameter values passed to the % model dynamic function named dyneqns % % The output is the coeffient matrices for the following approximate policy % and jump variable functions. % X(t+1) = UU + X(t)*PP + Z(t)*QQ % X(t+1) = VV + X(t)*RR + Z(t)*SS % % It requires the following subroutines written by by Kerk L. Phillips % incorporating code written by Harald Uhlig. % 1) LinApp_Deriv.m - takes numerical derivatives % 2) LinApp_Solve.m - solves for the linear coefficients % read in GSSA parameters nx = GSSAparams(1); ny = GSSAparams(2); nz = GSSAparams(3); fittype = GSSAparams(10); NN = GSSAparams(17); if fittype == 2 logX = 1; else logX = 0; end modelparam theta0 [nx,ny,nz] logX % rename the state about which the approximation will be made [AA, BB, CC, DD, FF, GG, HH, JJ, KK, LL, MM, WW, TT] = ... LinApp_Deriv(dyneqns,modelparam,theta0,nx,ny,nz,logX); Z0 = theta0(3*nx+2*ny+1,:)-Zbar; % find coefficients [PP, QQ, UU, RR, SS, VV] = ... LinApp_Solve(AA, BB, CC, DD, FF, GG, HH, JJ, KK, LL, MM, WW, TT, NN, Z0);
github
econdaryl/GSSA-master
GSSA_XYfunc.m
.m
GSSA-master/MATLAB/GSSA MATLAB ver 1.4 (5 Nov 2012)/GSSA_XYfunc.m
1,819
utf_8
524db1e17195d9b5ca0c86b72fb4b511
% GSSA package % version 1.4 written by Kerk L. Phillips 11/5/2012 % Implements a version of Judd, Mailar & Mailar's (Quatitative Economics, % 2011) Generalized Stochastic Simulation Algorithm with jump variables. function XYp = GSSA_XYfunc(X,Z,beta,GSSAparams) global trunceqns % This is the approximation function that genrates Xp and Y from the % current state. inputs and outputs are row vectors % Currently it allows for log-linear OLS or log-linear LAD forms. % % This function takes 4 inputs: % 1) X, the vector of current period endogenous state variables % 2) Z, the vector of current period exogenous state variables % 3) beta, the vector polynomial coefficients % 4) GSSAparams, the vector of paramter values from the GSSA function % % The output is: % XYp, a vector of the next period exogenous state variables and the % current period jump variables % % It requires the following subroutine written by by Kenneth L. Judd, % Lilia Maliar and Serguei Maliar which are available as a zip file from % Lilia & Setguei Mailar's webapage at: % http://www.stanford.edu/~maliars/Files/Codes.html % "Ord_Polynomial_N.m" constructs the sets of basis functions for ordinary % polynomials of the degrees from one to five, for % the N-country model % read in GSSA parameters dotrunc = GSSAparams(9); fittype = GSSAparams(10); D = GSSAparams(13); if fittype == 2 %log-linear XZ = [log(X) Z]; else XZ = [X Z]; end % create dependent variable % using basis functions of XZ (includes constants) * beta XYp = Ord_Polynomial_N(XZ,D)*beta; % convert if needed if fittype == 2 XYp = exp(XYp); end % truncate if needed depending on model if dotrunc == 1 XYp = trunceqns(XYp); end end
github
econdaryl/GSSA-master
GSSAold.m
.m
GSSA-master/MATLAB/Old Uused MATLAB code/GSSAold.m
14,505
utf_8
cf655438b9ec319d635806843013b005
% GSSA function % version 1.3 written by Kerk L. Phillips 2/11/2012 % Implements a version of Judd, Mailar & Mailar's (Quatitative Economics, % 2011) Generalized Stochastic Simulation Algorithm with jump variables. % It requires the following subroutines written by by Kenneth L. Judd, % Lilia Maliar and Serguei Maliar which are available as a zip file from % Lilia & Setguei Mailar's webapage at: % http://www.stanford.edu/~maliars/Files/Codes.html % This function takes two inputs: % 1) a guess for the steady state value of the endogneous state variables & % jump variables, XYbarguess It outputs the parameters for an % approximation of the state transition function, X(t+1) = f(X(t),Z(t)) and % the jump variable function Y(t) = g(X(t),Z(t)). % where X is a vector of nx endogenous state variables % Y is a vector of ny endogenous state variables % and Z is a vector of nz exogenous state variables % 2) an initial guess for the parameter matrix, beta % 3) a string specifying the model's name, modelname % This script requires one external function: % It should be named "modelname"_dyn.m and should take as inputs: % X(t+2), X(t+1), X(t), Y(t+1), Y(t), Z(t+1) & Z(t) % It should output a with nx+ny elements column vector with the values of % the model's behavioral equations (many of which will be Euler equations) % written in such a way that the equation evaluates to zero. This % function is used to find the steady state and in the GSSA algorithm % itself. % The output is: % 1) a vector of approximation coeffcients, out. % 2) a vector of steady state values for X & Y, XYbarout. % 3) average Euler equation errors over a series of Monte Carlos, errors function [out,XYbarout,errors] = GSSA(XYbarguess,beta,modelname) % data values global X1 Z % options flags global fittype regtype numerSS quadtype % parameters global nx ny nz nc npar betar nbeta nobs XYpars XYbar NN SigZ dyneqns global nodes weights global AA BB CC beta % model global model % create the name of the dynamic behavioral equations function dyneqns = str2func([modelname '_dyn']); % set numerical parameters (I include this in the model script) % nx = 1; %number of endogenous state variables % ny = 0; %number of jump variables % nz = 1; %number of exogenous state variables %numerSS = 1; %set to 1 if XYbargues is a guess, 0 if it is exact SS. model = modelname; nobs = 1000; %number of observations in the simulation sample ccrit = 10^-10; %convergence criterion for approximations conv = .025; %convexifier parameter for approximations (weight on new) maxwhile = 1000; %maximimum iterations for approximations nmc = 10; %number of Monte Carlos for Euler error check fittype = 2; %functional form for approximations %0 is linear %1 is log-linear %2 is quadratic %3 is log-quadratic regtype = 3; %type of regression %0 is OLS %1 is LAD %2 is SVD %3 is truncated SVD quadtype = 0; %type of quadrature used %0 is rectangular J = 20; %number of nodes for quadrature na = 1; nb = (nx+nz); nc = (nx+nz)*(nx+nz+1)/2; npar = na+nb; if fittype==2 || fittype==3 npar = npar + nc; end npar = (nx+ny)*npar % calculate nodes and weights for quadrature [nodes, weights] = GSSA_nodes(J,quadtype); % find steady state numerically; skip if you already have exact values if numerSS == 1 options = optimset('Display','iter'); XYbar = fsolve(@GSSA_ss,XYbarguess,options) else XYbar = XYbarguess; end % set initial guess for coefficients AA = .1*ones(1,nx+ny); if sum(abs(size(BBguess)-[nx+nz,nx+ny]),2) ~= 0 BB = zeros(nx+nz,nx+ny); else BB = BBguess; end if fittype==2 || fittype==3 if sum(abs(size(CCguess)-[nc,nx+ny]),2) ~= 0 CC = zeros(nc,nx+ny); else CC = CCguess; end else CC = []; end beta = [AA; BB; CC] [betar, betac] = size(beta); nbeta = betar*betac XYpars = reshape(beta,1,nbeta); % start at SS X1 = XYbar(1:nx); % generate a random history of Z's to be used throughout Z = zeros(nobs,nz); eps = randn(nobs,nz)*SigZ; for t=2:nobs Z(t,:) = Z(t-1,:)*NN + eps(t,:); end % set intial value of old coefficients XYparsold = XYpars; betaold = beta; % begin iterations converge = 1; icount = 0; [icount converge XYpars] while converge > ccrit % update interation count icount = icount + 1; % stop if too many iterations have passed if icount > maxwhile break end % find convex combination of old and new coefficients XYpars = conv*XYpars + (1-conv)*XYparsold; beta = conv*beta + (1-conv)*betaold; XYparsold = XYpars; betaold = beta; % find time series for XYap using approximate function XYap = GSSA_genap(); % generate XYex using the behavioral equations % Judd, Mailar & Mailar call this y(t) [XYex,~] = GSSA_genex(); % for i=1:nx+ny % figure; % subplot(nx+ny,1,i) % plot([XYap(:,i) XYex(:,i)]) % end % [XYap(1:10,:) XYex(1:10,:)] % find new coefficient values; beta = GSSA_fit(XYex,XYap); XYpars = reshape(beta,1,nbeta); [AA,BB,CC] = GSSA_fittype(beta); % evauate convergence criteria if icount == 1 converge = 1; else converge = sum(sum(abs((XYap-XYapold)./XYap)),2)/(nobs*(nx+ny)); if isnan(converge) converge = .5; disp('There are problems with NaN for the convergence metric') end if isinf(converge) converge = .5; disp('There are problems with inf for the convergence metric') end end % replace old k values XYapold = XYap; % report results of iteration %[icount,converge] [icount converge XYpars] beta end out = XYpars; XYbarout = XYbar; % run Monte Carlos to get average Euler errors errors = 0; for m=1:nmc % create a new Z series Z = zeros(nobs,nz); eps = randn(nobs,nz)*SigZ; for t=2:nobs Z(t,:) = Z(t-1,:)*NN + eps(t,:); end % generate data & calcuate the errors, add this to running average [~,temp] = GSSA_genex(); errors = errors*(m-1)/m + temp/m; m end end %% function XY = GSSA_genap() % This function generates approximate values of Xp using the approximation % equations in GSSA_XYfunc.m % data values global Z X1 % parameters global nx ny beta % model global model T = size(Z,1); % initialize series XY = zeros(T,nx+ny); % find SS implied by current beta Xbar = beta(1,1:nx)*(eye(nx)-beta(2:1+nx,1:nx))^(-1); if ny > 0 Ybar = ones(1,ny)*beta(1,1+nx:nx+ny) + Xbar*beta(2:1+nx,1+nx:nx+ny); else Ybar = []; end X1 = [Xbar Ybar]; % find Xp & Y using approximate Xp & Y functions XY(1,:) = GSSA_XYfunc(X1,Z(1,:)); for t=2:T XY(t,:) = GSSA_XYfunc(XY(t-1,1:nx),Z(t,:)); % model specific truncations % if model == 'test2' % % h is between zero and one % if XY(t,2) > 1-10^-10 % XY(t,2) = 1-10^-10; % elseif XY(t,2) < 10^-10 % XY(t,2) = 10^-10; % end % % k is positive % if XY(t,1) < 10^-10 % XY(t,1) = 10^-10; % end % end end end %% function [XYex,eulerr] = GSSA_genex() % This function generates values of Xp using the behavioral equations % in "name"_dyn.n. This is y(t) from Judd, Mailar & Mailar. % data values global Z X1 % options flags global quadtype % parameters global nx ny nz NN nobs dyneqns nodes weights T = nobs; [~,J] =size(nodes); % initialize series XYex = zeros(T,nx+ny); % find Xp & Y using approximate Xp & Y functions XY = GSSA_genap(); Xp = XY(:,1:nx); Y = XY(:,nx+1:nx+ny); eulert = zeros(T,1); % find X X = [X1; Xp(1:T-1,:)]; % find EZp & EXpp using law of motion and approximate X & Y functions if quadtype == 0 && nz < 2 for t=1:T EZpj = zeros(J,nz); EXYj = zeros(J,nx+ny); EXppj = zeros(J,nx); if ny > 0 EYpj = zeros(J,ny); end EGFj = zeros(J,nx+ny); XYexj = zeros(J,nx+ny); % integrate over discrete intervals for j=1:J % find Ezp using law of motion EZpj(j,:) = Z(t,:)*NN + nodes(j); % find EXpp & EYp using approximate functions EXYj(j,:) = GSSA_XYfunc(Xp(t,:),EZpj(j,:)); EXppj(j,:) = EXYj(j,1:nx); if ny > 0 EYpj(j,:) = EXYj(j,nx+1:nx+ny); end % find expected G & F values using nonlinear behavioral % equations since GSSA-dyn evaluates to zero at the fixed point % and it needs to evaluate to one, add ones to each element. if ny > 0 EGFj(j,:) = dyneqns([EXppj(j,:)';Xp(t,:)';X(t,:)';... EYpj(j,:)';Y(t,:)';EZpj(j,:)';Z(t,:)]')' + 1; else EGFj(j,:) = dyneqns([EXppj(j,:)';Xp(t,:)';X(t,:)';... EZpj(j,:)';Z(t,:)]')' + 1; end % find Judd, Mailar & Mailar's y XYexj(j,:) = EGFj(j,:).*[Y(t,:) Xp(t,:)]; end % sum over J XYex(t,:) = weights*XYexj; eulert(t,:) = weights*(EGFj-1)*ones(nx+ny,1)/(nx+ny); end end eulerr = ones(1,T)*eulert/T; end %% function XYp = GSSA_XYfunc(X,Z) % This is the approximation function that genrates Xp and Y from the % current state. inputs and outputs are row vectors % Currently it allows for log-linear OLS or log-linear LAD forms. % parameters global nx nz global beta % options flags global fittype % notation assumes data in column vectors, so individualn observations are % row vectors. % put appropriate linear & quadratic terms in indep list, we are removing % the mean from the X's. if fittype == 0 %linear indep = [X Z]; elseif fittype == 1 %log-linear indep = [log(X) Z]; elseif fittype == 2 %quaddratic sqterms = GSSA_sym2vec([X Z]'*[X Z]); indep = [X Z sqterms]; elseif fittype == 3 %log quadratic sqterms = GSSA_sym2vec([log(X) Z]'*[log(X) Z]); indep = [log(X) Z sqterms]; end indep = [1 indep]; % create dependent variable dep = indep*beta; % convert to Xp's & Y's if fittype==0 || fittype==2 XYp = dep; elseif fittype==1 || fittype==3 XYp = exp(dep); end end %% function out = GSSA_ss(XYbar) % This function finds the steady state using numerical methods % parameters global nx ny nz dyneqns Xbar = XYbar(1:nx); Ybar = XYbar(nx+1:nx+ny); out = dyneqns([Xbar'; Xbar'; Xbar'; Ybar'; Ybar'; zeros(nz,1); zeros(nz,1)]); end %% function betaout = GSSA_fit(XYex,XYap) % This function fits Xpex (Judd, Mailar & Mailar's y(t+1)) to Xpap (the X % series from the approximation equations. % data values global X1 Z % paramters global nx nz nc nbeta npar XYbar beta % options flags global fittype regtype % data to pass to GSSA_ADcalc function global Yfit Xfit [T,~] = size(XYex); % parameter vector XYparguess = reshape(beta,1,nbeta); % normalize variables % independent Xfit Xfit = [X1; XYap(1:T-1,1:nx)]; if fittype==1 || fittype==3 Xfit = log(Xfit); end Xfit = [Xfit Z]; % calculate and concatenate squared terms if needed if fittype==2 || fittype==3 %quadratic sqterms = zeros(T,nc); for t=1:T sqterms(t,:) = GSSA_sym2vec(Xfit(t,:)'*Xfit(t,:)); end Xfit = [Xfit sqterms]; end Xmu = mean(Xfit); Xsig = std(Xfit); Xfit = (Xfit - repmat(Xmu,T,1))./repmat(Xsig,T,1); % dependent Yfit Yfit = XYex; if fittype==1 || fittype==3 Yfit = log(Yfit); end Ymu = mean(Yfit); Ysig = std(Yfit); Yfit = (Yfit - repmat(Ymu,T,1))./repmat(Ysig,T,1); % % plot data % figure; % scatter(Yfit(:,1),Xfit(:,1),5,'filled') % choose estimation method and find new parameters if regtype == 0 %linear with OLSregression betaout = Yfit\Xfit elseif regtype == 1 %linear regression with LAD options = optimset('Display','on','MaxFunEvals',1000000,... 'MaxIter',10000); XYparout = fminsearch(@GSSA_ADcalc,XYparguess,options); betaout = reshape(XYparout,nX,nY); elseif regtype == 2 %SVD estimate [U,S,V] = svd(Xfit,0); betaout = V*S^(-1)*U'*Yfit; elseif regtype == 3 %truncated SVD estimate % set truncation criterion kappa = 10^14; % do SVD decomposition [U,S,V] = svd(Xfit,0); % find ill-conditioned components and remove sumS = sum(S); sumS = sumS(1)./sumS; [~,cols] = size(S); r = 1; i = 1; while i<cols+1 if sumS(i)<kappa r = i; else break end i = i+1; end S = S(1:r,1:r); U = U(:,1:r); V = V(:,1:r); % get estimate betaout = V*S^(-1)*U'*Yfit; end % adjust for normalization of means and variances [~,ncol] = size(Xsig); betaout = (ones(1,ncol)./Xsig)'*Ysig.*betaout; beta0 = Ymu - Xmu*betaout; betaout = [beta0; betaout]; end %% function AD = GSSA_ADcalc(XYpars) % Does LAD estimation % data for AD estimation global Yfit Xfit % get number of regressors and regressands [~,nX] = size(Xfit); [~,nY] = size(Yfit); beta = reshape(XYpars,nX,nY); AD = sum(sum(abs(Yfit - Xfit*beta)),2); end %% function [nodes, weights] = GSSA_nodes(J,quadtype) % does quadrature on expectations % parameters global nz SigZ % calculate nodes and weights for rectangular quadrature used for taking % expectations of behavioral eqns. This setup uses equally spaced % probabilities (weights) if quadtype == 0 && nz < 2 weights = ones(1,J)/J; cumprob = .5/J:1/J:1-.5/J; nodes = norminv(cumprob,0,SigZ); end % if isGpuAvailable == 1 % nodes = gpuArry(nodes); % end % check if the nodes look like a cummulative normal % expnodes = weights*nodes' % figure; % plot(nodes) end %% function A = GSSA_sym2vec(B) % B is a symmetric matrix % A is a row vectorization of it's upper triangular portion A = []; for k = 1:size(B,1) A = [A B(k,1:k)]; end end
github
econdaryl/GSSA-master
GSSA.m
.m
GSSA-master/MATLAB/GSSA MATLAB ver 1.3 (11 Feb 2012)/GSSA.m
12,744
utf_8
99e91f3ba158ad62e5c16e92dbccbb39
% GSSA function % version 1.3 written by Kerk L. Phillips 2/11/2012 % Implements a version of Judd, Mailar & Mailar's (Quatitative Economics, % 2011) Generalized Stochastic Simulation Algorithm with jump variables. % This function takes three inputs: % 1) a guess for the steady state value of the endogneous state variables & % jump variables, XYbarguess It outputs the parameters for an % approximation of the state transition function, X(t+1) = f(X(t),Z(t)) and % the jump variable function Y(t) = g(X(t),Z(t)). % where X is a vector of nx endogenous state variables % Y is a vector of ny endogenous state variables % and Z is a vector of nz exogenous state variables % 2) an initial guess for the parameter matrix, beta % 3) a string specifying the model's name, modelname % It requires the following subroutines written by by Kenneth L. Judd, % Lilia Maliar and Serguei Maliar which are available as a zip file from % Lilia & Setguei Mailar's webapage at: % http://www.stanford.edu/~maliars/Files/Codes.html % 1. "Num_Stab_Approx.m" implements the numerically stable LS and LAD % approximation methods % 2. "Ord_Polynomial_N.m" constructs the sets of basis functions for ordinary % polynomials of the degrees from one to five, for % the N-country model % 3. "Monomials_1.m" constructs integration nodes and weights for an N- % dimensional monomial (non-product) integration rule % with 2N nodes % 4. "Monomials_2.m" constructs integration nodes and weights for an N- % dimensional monomial (non-product) integration rule % with 2N^2+1 nodes % 5. "GH_Quadrature.m" constructs integration nodes and weights for the % Gauss-Hermite rules with the number of nodes in % each dimension ranging from one to ten % It also requires one model-specific external function: % It should be named "modelname"_dyn.m and should take as inputs: % X(t+2), X(t+1), X(t), Y(t+1), Y(t), Z(t+1) & Z(t) % It should output a with nx+ny elements column vector with the values of % the model's behavioral equations (many of which will be Euler equations) % written in such a way that the equation evaluates to zero. This % function is used to find the steady state and in the GSSA algorithm % itself. % The output is: % 1) a vector of approximation coeffcients, out. % 2) a vector of steady state values for X & Y, XYbarout. function [out,XYbarout] = GSSA(XYbarguess,beta,modelname) % data values global X1 Z % options flags global fittype numerSS quadtype dotrunc PF % parameters global nx ny nz nobs XYbar NN SigZ dyneqns trunceqns D global J epsi_nodes weight_nodes % create the name of the dynamic behavioral equations function dyneqns = str2func([modelname '_dyn']); trunceqns = str2func([modelname '_trunc']); % set numerical parameters (I include this in the model script) % nx = 1; %number of endogenous state variables % ny = 0; %number of jump variables % nz = 1; %number of exogenous state variables %numerSS = 1; %set to 1 if XYbargues is a guess, 0 if it is exact SS. nobs = 10000; % number of observations in the simulation sample T = nobs; kdamp = 0.05; % Damping parameter for (fixed-point) iteration on % the coefficients of the capital policy functions maxwhile = 1000; % maximimum iterations for approximations usePQ = 0; % 1 to use a linear approximation to get initial guess % for beta dotrunc = 0; % 1 to truncate data outside constraints, 0 otherwise fittype = 1; % functional form for polynomial approximations % 1) linear % 2) log-linear RM = 6; % regression (approximation) method, RM=1,...,8: % 1=OLS, 2=LS-SVD, 3=LAD-PP, 4=LAD-DP, % 5=RLS-Tikhonov, 6=RLS-TSVD, 7=RLAD-PP, 8=RLAD-DP; penalty = 7; % a parameter determining the value of the regularization % parameter for a regularization methods, RM=5,6,7,8; D = 5; % order of polynomical approximation (1,2,3,4 or 5) PF = 2; % polynomial family % 1) ordinary % 2) Hermite quadtype = 4; % type of quadrature used % 1) "Monomials_1.m" % constructs integration nodes and weights for an N- % dimensional monomial (non-product) integration rule % with 2N nodes % 2) "Monomials_2.m" % constructs integration nodes and weights for an N- % dimensional monomial (non-product) integration rule % with 2N^2+1 nodes % 3)"GH_Quadrature.m" % constructs integration nodes and weights for the % Gauss-Hermite rules with the number of nodes in % each dimension ranging from one to ten % 4)"GSSA_nodes.m" % does rectangular arbitrage for a large number of nodes % used only for univariate shock case. Qn = 10; % the number of nodes in each dimension; 1<=Qn<=10 % for "GH_Quadrature.m" only % calculate nodes and weights for quadrature % Inputs: "nz" is the number of random variables; N>=1; % "SigZ" is the variance-covariance matrix; N-by-N % Outputs: "n_nodes" is the total number of integration nodes; 2*N; % "epsi_nodes" are the integration nodes; n_nodes-by-N; % "weight_nodes" are the integration weights; n_nodes-by-1 if quadtype == 1 [J,epsi_nodes,weight_nodes] = Monomials_1(nz,SigZ); elseif quadtype == 2 [J,epsi_nodes,weight_nodes] = Monomials_2(nz,SigZ); elseif quadtype == 3 % Inputs: "Qn" is the number of nodes in each dimension; 1<=Qn<=10; [J,epsi_nodes,weight_nodes] = GH_Quadrature(Qn,nz,SigZ); elseif quadtype == 4 J = 20; [epsi_nodes, weight_nodes] = GSSA_nodes(J,quadtype); end JJJ = J % find steady state numerically; skip if you already have exact values if numerSS == 1 options = optimset('Display','iter'); XYbar = fsolve(@GSSA_ss,XYbarguess,options) else XYbar = XYbarguess; end Xbar = XYbar(1:nx) Ybar = XYbar(nx+1:nx+ny); Zbar = zeros(nz,1); % generate a random history of Z's to be used throughout Z = zeros(nobs,nz); eps = randn(nobs,nz)*SigZ; for t=2:nobs Z(t,:) = Z(t-1,:)*NN + eps(t,:); end if usePQ == 1 % get an initial estimate of beta by simulating about the steady state % using Uhlig's solution method. in = [Xbar; Xbar; Xbar; Ybar; Ybar; Zbar; Zbar]; [PP,QQ,UU] = GSSA_PQU(in); % generate X & Y data given Z's above Xtilde = zeros(T,nx); X = ones(T,nx); Ytilde = zeros(T,ny); X(1,nx) = Xbar; PP' QQ' Z(t-1,:) Xtilde(t,:) for t=2:T Xtilde(t,:) = Xtilde(t-1,:)*PP' + Z(t-1,:)*QQ'; X(t,:) = Xbar.*exp(Xtilde(t,:)); end Xtildefinal = Xtilde(T,:)*PP' + Z(T,:)*QQ'; Xfinal = Xbar.*exp(Xtildefinal); % estimate beta using this data Xrhs = X; Ylhs = [X(2:T,:); Xfinal]; if fittype == 2 Xrhs = log(Xrhs); Ylhs = log(Ylhs); end % add the Z series Xrhs = [Xrhs Z]; % construct basis functions XZbasis = Ord_Polynomial_N(Xrhs,D); % run regressions to fit data beta = Num_Stab_Approx(XZbasis,Ylhs,RM,penalty,1); beta = real(beta); end % construct valid beta matrix from betaguess % find size of beta guess [rbeta, cbeta] = size(beta); % find number of terms in basis functions [rbasis, ~] = size(Ord_Polynomial_N(ones(1,nx+nz),D)') if rbeta > rbasis disp('rbeta > rbasis truncating betaguess') beta = beta(1:rbasis,:); [rbeta, cbeta] = size(beta); end if cbeta > nx+ny disp('cbeta > cbasis truncating betaguess') beta = beta(:,1:nx+ny); [rbeta, cbeta] = size(beta); end if rbeta < rbasis disp('rbeta < rbasis adding extra zero rows to betaguess') beta = [beta; zeros(rbasis-rbeta,cbeta)]; [rbeta, cbeta] = size(beta); end if cbeta < nx+ny disp('cbeta < cbasis adding extra zero columns to betaguess') beta = [beta zeros(rbeta,nx+ny-cbeta)]; end % find constants that yield theoretical SS beta(1,:) eye(nx) beta(2:nx+1,1:nx) beta(1,:) = XYbar(1,1:nx)*(eye(nx)-beta(2:nx+1,1:nx)) % start simulations at SS X1 = XYbar(1:nx); % set intial value of old coefficients betaold = beta; % begin iterations dif_1d = 1; icount = 0; [icount dif_1d 1] while dif_1d > 1e-4*kdamp; % update interation count icount = icount + 1; % stop if too many iterations have passed if icount > maxwhile break end % find convex combination of old and new coefficients beta = kdamp*beta + (1-kdamp)*betaold; betaold = beta; % find time series for XYap using approximate function % initialize series XYap = zeros(T,nx+ny); % find SS implied by current beta if fittype == 2 Xbar = exp(beta(1,1:nx)*(eye(nx)-beta(2:1+nx,1:nx))^(-1)); else Xbar = beta(1,1:nx)*(eye(nx)-beta(2:1+nx,1:nx))^(-1); end % % use theoretical SS vslues % Xbar = XYbar(:,1:nx); if ny > 0 if fittype == 2 Ybar = exp(ones(1,ny)*beta(1,1+nx:nx+ny) + log(Xbar)*beta(2:1+nx,1+nx:nx+ny)); else Ybar = ones(1,ny)*beta(1,1+nx:nx+ny) + Xbar*beta(2:1+nx,1+nx:nx+ny); end else Ybar = []; end X1 = [Xbar Ybar]; % find Xp & Y using approximate Xp & Y functions XYap(1,:) = GSSA_XYfunc(X1(1:nx),Z(1,:),beta); for t=2:T XYap(t,:) = GSSA_XYfunc(XYap(t-1,1:nx),Z(t,:),beta); end % generate XYex using the behavioral equations % Judd, Mailar & Mailar call this y(t) [XYex,~] = GSSA_genex(XYap,beta); % % watch the data converge using plots % for i=1:nx+ny % figure; % subplot(nx+ny,1,i) % plot([XYap(:,i) XYex(:,i)]) % end % [XYap(1:10,:) XYex(1:10,:)] % [XYap(T-10:T,:) XYex(T-10:T,:)] % find new coefficient values % generate basis functions for Xap & Z % get the X portion of XYap Xap = [X1(1:nx); XYap(1:T-1,1:nx)]; if fittype == 2 Xap = log(Xap); XYex = log(XYex); end % add the Z series XZap = [Xap Z]; % construct basis functions XZbasis = Ord_Polynomial_N(XZap,D); % run regressions to fit data % Inputs: "X" is a matrix of dependent variables in a regression, T-by-n, % where n corresponds to the total number of coefficients in the % original regression (i.e. with unnormalized data); % "Y" is a matrix of independent variables, T-by-N; % "RM" is the regression (approximation) method, RM=1,...,8: % 1=OLS, 2=LS-SVD, 3=LAD-PP, 4=LAD-DP, % 5=RLS-Tikhonov, 6=RLS-TSVD, 7=RLAD-PP, 8=RLAD-DP; % "penalty" is a parameter determining the value of the regulari- % zation parameter for a regularization methods, RM=5,6,7,8; % "normalize" is the option of normalizing the data, % 0=unnormalized data, 1=normalized data beta = Num_Stab_Approx(XZbasis,XYex,RM,penalty,1); beta = real(beta); % evauate convergence criteria if icount == 1 dif_1d = 1; dif_beta = abs(1 - mean(mean(betaold./beta))); else dif_1d =abs(1 - mean(mean(XYapold./XYap))); dif_beta =abs(1 - mean(mean(betaold./beta))); if isnan(dif_1d) dif_1d = 0; disp('There were problems with NaN for the convergence metric') end if isinf(dif_1d) dif_1d = 0; disp('There were problems with inf for the convergence metric') end end % replace old k values XYapold = XYap; % report results of iteration [icount dif_1d dif_beta] end out = beta; XYbarout = XYbar; end %% function out = GSSA_ss(XYbar) % This function finds the steady state using numerical methods % parameters global nx ny nz dyneqns Xbar = XYbar(1:nx); Ybar = XYbar(nx+1:nx+ny); out = dyneqns([Xbar'; Xbar'; Xbar'; Ybar'; Ybar'; zeros(nz,1); zeros(nz,1)]); end
github
txzhao/QbH-Demo-master
PostProcess.m
.m
QbH-Demo-master/scripts/PostProcess.m
2,757
utf_8
5bbe9042e6910e393dbd430f645da70e
% semitone = PostProcess(frIseq, verbose) % % method to post-process features obtained from "GetMusicFeatures.m" % % Input: frIseq - feature matrix (3*T) from "GetMusicFeatures.m" % verbose - plot flag (boolean) % % Output: semitone - post-processed feature vector (1*T) % % Usage: % This function works for post-processing features extracted from % "GetMusicFeatures.m". Specifically, pitch information is first filtered % based on correlation coefficient (r) and intensity (I), and then % converted into semitones using the relation - semitone = % 12*log2(p/base_p) + 1. The newly-derived feature semitone is continuous, % and ranges between (0, 13). Silent and noisy regions are filled with % random values around 0 to 0.5. function semitone = PostProcess(frIseq, verbose) % post-process features p = log(frIseq(1, :)); r = frIseq(2, :); I = log(frIseq(3, :)); % p = p - min(p); % p = p/max(p); % I = I - min(I); % I = I/max(I); % detect noisy and silent region p_thresh_pos = mean(p) + std(p); p_thresh_neg = mean(p) - std(p); r_thresh = mean(r); I_thresh = mean(I); noise = (p < p_thresh_neg) | (p > p_thresh_pos) | ((I < I_thresh) & (r < r_thresh)); % convert pitch information into semitone (continuous) base_p = min(p(find(noise == 0))); semitone = 12*log2(p/base_p) + 1; % return random values around 0 for noise and pause semitone(find(noise == 1)) = 0.5*rand(size(find(noise == 1))); % % partial results output % % print out threshold selection % disp('---------- thresholds information ----------'); % disp(['upper pitch threshold: ' num2str(p_thresh_pos)]); % disp(['lower pitch threshold: ' num2str(p_thresh_neg)]); % disp(['correlation threshold: ' num2str(r_thresh)]); % disp(['intensity threshold: ' num2str(I_thresh)]); % fprintf('\r'); % output plots and thresholds if verbose == true figure; subplot(3,1,1) plot(p); hold on; pline_pos = refline(0, p_thresh_pos); pline_neg = refline(0, p_thresh_neg); pline_pos.Color = 'r'; pline_pos.LineStyle = '--'; pline_neg.Color = 'k'; pline_neg.LineStyle = '--'; hold off; grid on; title('Information on pitch track'); xlabel('Number of windows'); ylabel('Logarithmic pitch'); subplot(3,1,2) plot(r) hold on; rline = refline(0, r_thresh); rline.Color = 'r'; rline.LineStyle = '--'; hold off; grid on; title('Information on correlation-coefficient track'); xlabel('number of windows'); ylabel('Correlation coefficient'); subplot(3,1,3) plot(I) hold on; Iline = refline(0, I_thresh); Iline.Color = 'r'; Iline.LineStyle = '--'; hold off; grid on; title('Information on intensity track'); xlabel('number of windows'); ylabel('Logarithmic intensity'); end
github
txzhao/QbH-Demo-master
demo.m
.m
QbH-Demo-master/scripts/demo.m
5,990
utf_8
a780e19736f3a0d1938b99f769bbcd44
function varargout = demo(varargin) % DEMO MATLAB code for demo.fig % DEMO, by itself, creates a new DEMO or raises the existing % singleton*. % % H = DEMO returns the handle to a new DEMO or the handle to % the existing singleton*. % % DEMO('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in DEMO.M with the given input arguments. % % DEMO('Property','Value',...) creates a new DEMO or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before demo_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to demo_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help demo % Last Modified by GUIDE v2.5 31-Oct-2017 11:25:50 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @demo_OpeningFcn, ... 'gui_OutputFcn', @demo_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before demo is made visible. function demo_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to demo (see VARARGIN) addpath(genpath('../db')); addpath(genpath('GetMusicFeatures')); addpath(genpath('trained_hmm')); % Choose default command line output for demo handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes demo wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = demo_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in load_button. function load_button_Callback(hObject, eventdata, handles) % hObject handle to load_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [Filename, PathName, ~] = uigetfile('*.wav'); [handles.st, handles.Y, handles.FS] = load_sound([PathName Filename]); msgbox('Load recording finished!'); guidata(hObject, handles); % --- Executes on button press in start_button. function start_button_Callback(hObject, eventdata, handles) % hObject handle to start_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) dict = {'across', 'enjoysilen', 'inthemood', 'letitbe', 'lovemetend', 'morethwor', 'obladi', 'strangers', 'sweethome', 'wishyouw'}; load('trained_hmm/hmms.mat'); lP = logprob(hmms, handles.st); bar(lP); xlabel('melody id'); ylabel('log-probability'); [~, idx] = max(lP); handles.text_classification.String = dict{idx}; guidata(hObject, handles); % --- Executes on button press in play_button. function play_button_Callback(hObject, eventdata, handles) % hObject handle to play_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) sound(handles.Y, handles.FS); msgbox('Play recording finished!'); % --- Executes on button press in record_new. function record_new_Callback(hObject, eventdata, handles) % hObject handle to record_new (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) FS = 22050; winlen = 0.03; new_record = audiorecorder(FS, 16, 1); recordblocking(new_record, handles.record_len); newRecord = getaudiodata(new_record); frIseq = GetMusicFeatures(newRecord, FS, winlen); handles.st = PostProcess(frIseq, false); handles.Y = newRecord; handles.FS = FS; msgbox('Record new finished!'); guidata(hObject, handles); function edit1edit_length_Callback(hObject, eventdata, handles) % hObject handle to edit1edit_length (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit1edit_length as text % str2double(get(hObject,'String')) returns contents of edit1edit_length as a double get(hObject,'String'); handles.record_len = str2double(get(hObject,'String')); guidata(hObject, handles); % --- Executes during object creation, after setting all properties. function edit1edit_length_CreateFcn(hObject, eventdata, handles) % hObject handle to edit1edit_length (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end
github
txzhao/QbH-Demo-master
MusicFromFeatures.m
.m
QbH-Demo-master/scripts/GetMusicFeatures/MusicFromFeatures.m
4,007
utf_8
2c1020edef2861ddca3f5764fdf734a4
%[signal] = MusicFromFeatures(feats,fs) %or %[signal] = MusicFromFeatures(feats,fs,winlength) %or %[signal] = MusicFromFeatures(feats,fs,winlength,noiseopt) % %Method to synthesize a signal from melody recognition features % %Usage: %This function can generate signals from melody recognition features data like %those given by GetMusicFeatures. Because GetMusicFeatures discards a lot of %information, the signal cannot be recovered exactly. Instead it is assumed %that the signal is a sinewave of varying frequency and intensity, possibly with %some added white noise. % %Input: %feats= Matrix containing melody features. Each column corresponds to a % frame. If there are three rows, the first row is pitch (in Hz), the % second row is the correlation coefficient between pitch periods, % while the third gives per-sample intensity. If there are two rows, % these should be frequency and intensity; rho is assumed to be one. %fs= Sampling frequency of synthesized signal in Hz. %winlength= Length of the analysis window in seconds (default 0.03). % This should be the same as used for GetMusicFeatures previously. %noiseopt= How to handle noise. Can be either positive, negative, or zero. If % negative, we assume no noise, and that all energy is due to the % sinusoidal component (equivalent to rho = 1). Otherwise, any % occurrences of rho < 1 is assumed to be due to white noise of % varying amplitude decreasing the correlation between samples, and % energy is allocated to the white noise component as well. However, % noise is only included in the output signal if noisopt is greater % than zero. The default is positive, meaning that noise is included. % %Output: %signal= Resynthesized melody waveform based on a sine + noise model. % %Gustav Eje Henter 2011-10-25 tested %Gustav Eje Henter 2012-10-09 tested function [signal] = MusicFromFeatures(feats,fs,winlength,noiseopt) [nF T] = size(feats); if (nF == 2), rhos = ones(1,T); % Assume no noise elseif (nF == 3), rhos = feats(2,:); else error('Illegal number of features per time frame!'); end f = feats(1,:); Is = feats(end,:); if (nargin < 2) || isempty(fs), fs = 44100; % Default sampling freqeuncy end if (nargin < 3) || isempty(winlength), winlength = 0.030; % Default 30 ms else winlength = abs(winlength(1)); % Make winlength a real scalar end if (nargin < 4) || isempty(noiseopt), noiseopt = true; elseif (noiseopt < 0), noiseopt = false; rhos = ones(1,T); % Assume no noise else noiseopt = (noiseopt > 0); end % Sanitize features f = max(f,0); Is = max(Is,0); rhos = min(max(rhos,0),1); % Negative rhos do not make sense under our model % Compute signal component amplitudes from features, according options sineamp = Is.*sqrt(2*rhos); if noiseopt, noiseamp = Is.*sqrt(1 - rhos); % Give noise appropriate, nonzero amplitude else noiseamp = zeros(size(sineamp)); end % Compute frame and sample times in seconds tframe = (1:T)*(winlength/2); ts = (0:1:ceil((T+1)*(winlength/2)*fs))/fs; uselog = true; % Upsample amplitudes on logarithmic scale % Upsample signal parameters from frame-by-frame to sample-by-sample f = upsampler(tframe,f,ts,true); % Upsample frequency in logarithmic domain sineamp = upsampler(tframe,sineamp,ts,uselog); noiseamp = upsampler(tframe,noiseamp,ts,uselog); phis = 2*pi*cumsum(f)/fs; % Convert frequency to instantaneous phase signal = sineamp.*sin(phis) + noiseamp.*randn(size(ts)); % Synthesize output function yup = upsampler(tdwn,ydwn,tup,uselog) % Interpolation method %method = 'linear'; method = 'spline'; if (numel(unique(ydwn)) == 1), yup = ydwn(1)*ones(size(tup)); elseif uselog, okpts = isfinite(log(ydwn)); % Remove infinite points yup = exp(interp1(tdwn(okpts),log(ydwn(okpts)),tup,method,'extrap')); else yup = max(interp1(tdwn,ydwn,tup,method,'extrap'),0); % Min value is 0 end
github
txzhao/QbH-Demo-master
GetMusicFeatures.m
.m
QbH-Demo-master/scripts/GetMusicFeatures/GetMusicFeatures.m
4,634
utf_8
1f5bc70d10aa7285068637abcdda7521
%[frIsequence] = GetMusicFeatures(signal,fs) %or %[frIsequence] = GetMusicFeatures(signal,fs,winlength) % %Method to calculate features for melody recognition % %Usage: %First load a sound file using wavread or similar, then use this function %to extract pitch and energy contours of the melody in the sound. This %information can be used to compute a sequence of feature values or %vectors for melody recognition. Note that the pitch estimation is %unreliable (typically giving very high values) in silent segments, and %may not work at all for polyphonic sounds. % %Input: %signal= Vector containing sampled signal values (must be mono). %fs= Sampling frequency of signal in Hz. %winlength= Length of the analysis window in seconds (default 0.03). % Square ("boxcar") analysis windows with 50% overlap are used. % %Output: %frIsequence= Matrix containing pitch, correlation, and intensity estimates % for use in creating features for melody recognition. Each column % represents one frame in the analysis. Elements in the first % row are pitch estimates in Hz (80--1100 Hz), the second row % estimates the correlation coefficient (rho) between adjacent % pitch periods, while the third row contains corresponding % estimates of per-sample intensity. % %References: %This method is based on a pitch estimator provided by Obada Alhaj Moussa. % %Gustav Eje Henter 2010-09-15 tested %Gustav Eje Henter 2011-10-25 tested function [frIsequence] = GetMusicFeatures(signal,fs,winlength) % Wikipedia: "human voices are roughly in the range of 80 Hz to 1100 Hz" minpitch = 80; maxpitch = 1100; signal = real(double(signal)); % Make sure the signal is a real double sigsize = size(signal); if (min(sigsize) > 2) || (length(sigsize) > 2), error('Multichannel signals are not supported. Use only mono sounds!'); end if (sigsize(1) == 2), signal = (signal(1,:)' + signal(2,:)')/2; elseif (sigsize(2) == 2), signal = (signal(:,1) + signal(:,2))/2; end signal = signal - mean(signal); % Remove DC, which can disturb intesities if fs <= 0 fs = 44100; % Replace illegal fs-values with a standard sampling freq. end % Compute the pitch periods in samples for the human voice range minlag = round(fs/maxpitch); maxlag = round(fs/minpitch); if (nargin > 2) && ~isempty(winlength), winlength = abs(winlength(1)); % Make winlength a real scalar else winlength = 0.030; % Default 30 ms end winlength = round(winlength*fs); % Convert to number of samples winlength = max(winlength+mod(winlength,2),... 2*minlag); % Make windows sufficiently long and an even sample number winstep = winlength/2; nsteps = floor(length(signal)/winstep) - 1; if (nsteps < 1) error(['Signal too short. Use at least ' int2str(winlength)... ' samples!']); end frIsequence = zeros(3,nsteps); % Initialize output variable to correct size for n = 0:(nsteps-1), % Cut out a segment of the signal starting at offset n*winlength sec window = signal(n*winstep+(1:winlength)); % Estimate the pitch (sampling frequency/pitch period), between-period % correlation coefficient, and intensity [pprd,maxcorr] = yin_pitch(window,minlag,maxlag); frIsequence(:,n+1) = [fs/pprd;maxcorr;norm(window/sqrt(numel(window)))]; end % Below is the pitch period estimation sub-routine. % The estimate is based on the autocorrelation function. function [pprd,maxcorr] = yin_pitch(signal,minlag,maxlag) N = length(signal); %minlag = 40; %maxlag = 200; dif = zeros(maxlag - minlag + 1, 1); for idx = minlag : maxlag seg1 = signal(idx + 1 : N); seg2 = signal(1 : N - idx); % Estimate correlation ("dif") at lag idx dif(idx - minlag + 1) = sum((seg1 - seg2).^2) / (N - idx); end thresh = (max(dif) - min(dif)) * 0.1 + min(dif); % Locate the first minimum of dif, which is the first maximum of the % correlation; the corresponding lag is the pitch period. idx = minlag; while idx <= maxlag if dif(idx - minlag + 1) <= thresh pprd = idx; break; end idx = idx + 1; end % Allow the procedure to find the first minimum to roll over small "bumps" % in the autocorrelation functions, that are below than a 10% threshold. while idx <= maxlag if dif(idx - minlag + 1) >= thresh break; end if dif(idx - minlag + 1) < dif(pprd - minlag + 1) pprd = idx; end idx = idx + 1; end %difmin = dif(pprd - minlag + 1); seg1 = signal(pprd + 1 : N); seg2 = signal(1 : N - pprd); maxcorr = corr(reshape(seg1,numel(seg1),1),reshape(seg2,numel(seg1),1));
github
txzhao/QbH-Demo-master
adaptStart.m
.m
QbH-Demo-master/scripts/@GaussMixD/adaptStart.m
674
utf_8
f2cba1509325e96dad87f697502ad32c
%aState=adaptStart(pD) %starts GaussMixD object adaptation to observed data, %by initializing accumulator data structure for sufficient statistics, %to be used in subsequent calls to method adaptAccum and adaptSet. % %Input: %pD= GaussMixD object or array of GaussD objects % %Result: %aState= data structure to be used by methods adaptAccum and adaptSet. % %Theory is discussed in method adaptSet % %Arne Leijon 2004-11-18 tested function aState=adaptStart(pD) for i=1:prod(size(pD))%one storage set for each object in the array aState(i).Gaussians=adaptStart(pD(i).Gaussians);%to adapt sub-object aState(i).MixWeight=zeros(size(pD(i).MixWeight));% end;
github
txzhao/QbH-Demo-master
adaptAccum.m
.m
QbH-Demo-master/scripts/@GaussMixD/adaptAccum.m
3,676
utf_8
9f083fcf31a490e01dbd7f56edad7c54
%aState=adaptAccum(pD,aState,obsData,obsWeight) %method to adapt array of GaussMixD objects to observed data, %by accumulating sufficient statistics from the data, %for later updating of the object by method adaptSet. % %Usage: %First obtain the storage data structure aState from method adaptStart. %Then, adaptAccum can be called several times with different observation data subsets. %The aState data structure must be saved externally between calls to adaptAccum. %Finally, the GaussMixD object(s) are updated by method adaptSet. % %Input: %pD= a GaussMixD object or multidim array of GaussMixD objects %aState= accumulated adaptation state preserved from previous calls, % first obtained from method adaptStart %obsData= matrix with observed column vectors, % each assumed to be drawn from one of the GaussMixD objects %obsWeight= (optional) matrix with weight factors, one column for each vector in obsData, % and one row for each object in the GaussMixD array % size(obsWeight)== [length(pD(:)), size(obsData,2)] % obsWeight(i,t)= prop to P( GaussMixD(t)=i | obsData) % obsWeight must have consistent values for all calls. % %Result: %aState= accumulated adaptation data, incl. this observation data set. % %Arne Leijon 2005-02-14 tested % 2006-04-12 fixed bug for case with only one mix component % 2009-10-11 fixed bug with component sub-probabilities function aState=adaptAccum(pD,aState,obsData,obsWeight) nData=size(obsData,2);%number of given vector samples nObj=numel(pD);%n of GaussMixD objects in array if nargin<4%no external obsWeight given if nObj==1 obsWeight=ones(nObj,nData);%use all data with equal weight else obsWeight=prob(pD,obsData);%assign weight to each GaussMixD object obsWeight=obsWeight./repmat(sum(obsWeight),nObj,1); %obsWeight(i,t)= P(mixS(t)= i | obsData)= P(GaussMixD(i)-> X(t)) end; end; for i=1:nObj%for all GaussMixD objects %***find sub-Object probabilities for each mixed GaussD %can be done instead by the sub-Object itself ?????? %NO, because sub-Object also needs our obsWeight nSubObj=length(pD(i).Gaussians); if nSubObj==1%no need for extra computation aState(i).Gaussians=adaptAccum(pD(i).Gaussians,aState(i).Gaussians,obsData,obsWeight(i,:)); aState(i).MixWeight=aState(i).MixWeight+sum(obsWeight(i,:),2); else subProb=prob(pD(i).Gaussians,obsData);%saved from previous call instead??? %subProb(j,t)=P(X(t)=obsData(:,t) | subS(t)=j & mixS(t)=i ) %***** should include previous MixWeight here??? 2009-10-08 subProb=diag(pD(i).MixWeight)*subProb;%fix Arne Leijon, 2009-10-11 %subProb(j,t)=P(X(t)=obsData(:,t) & subS(t)=j | mixS(t)=i ) %**** testGMM3 actually works much better without previous MixWeight! %**** with corrected version it usually gets stuck in local maximum, %**** but this is probably because the true MixWeights were equal, %**** so it was better to ignore the estimated MixWeight in this case. denom=max(realmin,sum(subProb,1));%2005-02-14: avoid division by zero in next statement subProb=subProb./repmat(denom,nSubObj,1);%normalize to conditional prob.s %subProb(j,t)=P(subS(t)=j| X(t)=obsData(j,t) & mixS(t)=i ) subProb=subProb.*repmat(obsWeight(i,:),nSubObj,1);%scale by externally given weights %subProb(j,t)=P(mixS(t)=i & subS(t)=j| X(1:T)=obsData(:,1:T) ) aState(i).Gaussians=adaptAccum(pD(i).Gaussians,aState(i).Gaussians,obsData,subProb); aState(i).MixWeight=aState(i).MixWeight+sum(subProb,2); end; end;
github
txzhao/QbH-Demo-master
init.m
.m
QbH-Demo-master/scripts/@GaussMixD/init.m
1,921
utf_8
5b033aa7d8bc6f8214b3a795ed735a11
%pD=init(pD,x); %initializes a GaussMixD object or array of such objects %to conform with a set of given observed vectors. %The agreement is very crude, and should be refined by training, %using methods adaptStart, adaptAccum, and adaptSet. % %Input: %pD= a single GaussMixD object or array of such objects %x= matrix with observed vectors stored columnwise % %Result: %pD= initialized GaussMixD object or multidim GaussMixD array % size(pD)== same as input % %Method: %For a single GaussMixD object: let its Gaussians sub-object do it. %For a GaussMixD array: First init a GaussD array, then split each cluster. %This initialization is crude, and should be refined by training. % %Arne Leijon 2006-04-21 tested % 2011-05-26 minor cleanup function pD=init(pD,x) nObj=numel(pD); if nObj>0.5*size(x,2) error('Too few data vectors');end;%***reduce nObj instead??? if nObj==1 pD.Gaussians=init(pD.Gaussians,x);%let Gaussians do it nGaussians=length(pD.Gaussians); pD.MixWeight=ones(nGaussians,1)./nGaussians;%equal mixweights else %make a single Gaussians array, and then split each GaussD g=init(repmat(GaussD,nObj,1),x);%single GaussD at each cluster [~,bestG]=max(prob(g,x));%assign each data point to nearest GaussD for i=1:nObj [pD(i).Gaussians,iOK]=init(pD(i).Gaussians,x(:,bestG==i));%use only nearest data if any(~iOK) %delete Gaussians(i) where iOK(i)==0, because of too few data pD(i).Gaussians=pD(i).Gaussians(iOK==1); warning('GaussMixD:Init:ReducedSize',... ['GaussMixD no.',num2str(i),' reduced to ',num2str(length(pD(i).Gaussians)),' components']); end; nGaussians=length(pD(i).Gaussians);%number of sub-objects in this mix pD(i).MixWeight=ones(nGaussians,1)./nGaussians;%equal mixweights end; end;
github
txzhao/QbH-Demo-master
adaptSet.m
.m
QbH-Demo-master/scripts/@GaussMixD/adaptSet.m
993
utf_8
4ca6665d6b9e85c675f31abffd865fd3
%pD=adaptSet(pD,aState) %method to finally adapt a GaussMixD object %using accumulated statistics from observed data. % %Input: %pD= GaussMixD object or array of GaussD objects %aState= accumulated statistics from previous calls of adaptAccum % %Result: %pD= adapted version of the GaussMixD object % %Theory and Method: %The sub-object GaussD array pD(i).Gaussians has its own adaptSet method. %In addition, this method adjusts the pD(i).MixWeight vector, % simply by normalizing the accumulated sum of MixWeight vectors, % for the observed data. % %References: % Leijon (200x). Pattern Recognition % Bilmes (1998). A gentle tutorial of the EM algorithm. % %Arne Leijon 2004-11-15 tested function pD=adaptSet(pD,aState) for i=1:numel(pD)%for all GaussMixD objects pD(i).Gaussians=adaptSet(pD(i).Gaussians,aState(i).Gaussians);%sub-GaussD sets itself pD(i).MixWeight=aState(i).MixWeight./sum(aState(i).MixWeight);%set normalized MixWeight end;%easy!!!
github
txzhao/QbH-Demo-master
logprob.m
.m
QbH-Demo-master/scripts/@GaussMixD/logprob.m
1,334
utf_8
f8724eb6c7a8d8d4bcddbd8f85a932e3
%logP=logprob(pD,x) gives log(probability densities) for given vectors %assumed to be drawn from a given GaussMixD object % %Input: %pD= GaussMixD object or array of such objects %x= matrix with given vectors stored columnwise % %Result: %logP= log(probability densities for x) % size(logP)== [numel(pD),size(x,2)] %exp(logP)= true probability densities for x % %The log representation is useful because the probability densities may be %extremely small for random vectors with many elements % %Arne Leijon 2004-11-15 tested % 2011-05-24, more robust version, tested function logP=logprob(pD,x) %pDsize=size(pD);%size of GaussMixD array nObj=numel(pD);%number of GaussMixD objects nx=size(x,2);%number of observed vectors logP=zeros(nObj,nx); for n=1:nObj logPn=logprob(pD(n).Gaussians,x);%prob from all sub-Gaussians logS=max(logPn); %if length(pD(n).Gaussians)==1, logS is scalar, otherwise %size(logS)==[1,nx]; might be -Inf or +Inf at some places logPn=bsxfun(@minus,logPn,logS);%=logPn-logS expanded to matching size %logPn(k,t) may be NaN for some k, if logS(t)==-Inf, or logS(t)==+Inf logPn(isnan(logPn(:)))=0;%corrected logP(n,:)=logS+log(pD(n).MixWeight'*exp(logPn)); %may be +Inf or -Inf at some places, but this is OK end; end
github
txzhao/QbH-Demo-master
rand.m
.m
QbH-Demo-master/scripts/@GaussMixD/rand.m
766
utf_8
b780c5bb11fdaef5b6a99aec30b89b82
%[X,S]=rand(pD,nSamples) returns random vectors drawn from a single GaussMixD object. % %Input: %pD= the GaussMixD object %nSamples= scalar defining number of wanted random data vectors % %Result: %X= matrix with data vectors drawn from object pD % size(X)== [DataSize, nSamples] %S= row vector with indices of the GaussD sub-objects randomly chosen % size(S)== [1, nSamples] % %Arne Leijon 2009-07-21 tested function [X,S]=rand(pD,nSamples) if length(pD)>1 error('This method works only for a single GaussMixD object'); end; S=rand(DiscreteD(pD.MixWeight),nSamples);%random integer sequence, MixWeight distribution X=zeros(pD.DataSize,nSamples); for s=1:max(S) X(:,S==s)=rand(pD.Gaussians(s),sum(S==s));%get from randomly chosen sub-object end;
github
txzhao/QbH-Demo-master
adaptStart.m
.m
QbH-Demo-master/scripts/@HMM/adaptStart.m
795
utf_8
bc9660ec5d20fd009c1bcda6006c231e
%aState=adaptStart(hmm) % initialises adaptation data structure for a single HMM object, % to be saved between subsequent calls to method adaptAccum. % %Input: %hmm= single HMM object % %Result: %aState= struct representing zero weight of previous observed data, % with fields %aState.MC for the StateGen sub-object %aState.Out for the OutputDistr sub-object %aState.LogProb for accumulated log(prob(observations)) % %Arne Leijon 2009-07-23 tested function aState=adaptStart(hmm) if length(hmm)>1 error('Method works only for a single object');end; aState.MC=adaptStart(hmm.StateGen);%data to adapt the MarkovChain aState.Out=adaptStart(hmm.OutputDistr);%data to adapt the OutputDistr aState.LogProb=0;%to store accumulated observation logprob, to use as stop crit
github
txzhao/QbH-Demo-master
adaptAccum.m
.m
QbH-Demo-master/scripts/@HMM/adaptAccum.m
2,197
utf_8
6a9249a64c2447d744dce7c50a9dcf77
%[aState,logP]=adaptAccum(hmm,aState,obsData) %method to adapt a single HMM object to observed data, %by accumulating sufficient statistics from the data, %for later updating of the object by method adaptSet. % %Usage: %First obtain the storage data structure aState from method adaptStart. %Then, adaptAccum can be called several times with different observation data subsets. %The aState data structure must be saved externally between calls to adaptAccum. %Finally, the HMM object is updated by method adaptSet. % %Input: %hmm= a single HMM object %obsData= matrix with a sequence of data vectors, stored columnwise, % supposed to be drawn from this HMM. %aState= accumulated adaptation state from previous calls % %Result: %aState= accumulated adaptation state, incl. this subset of observed data, % must be saved externally until next call %logP= accumulated log( P(obsData | hmm) ) % may be used externally as training stop criterion. % %Method: Obtain from sub-object OutputDistr separate observation probabilities % These are used by sub-object StateGen, which also provides % conditional state probabilities, given whole obs.sequence. % These are then used as weights to adapt OutputDistr. % %Arne Leijon 2009-07-23 tested % 2011-05-26, generalized prob method function [aState,logP]=adaptAccum(hmm,aState,obsData) % if length(hmm)>1%enough to test this in adaptStart! % error('Method works only for a single object');end; [pX,lScale]=prob(hmm.OutputDistr,obsData);%scaled obs.probabilities %pX(i,t)*exp(lScale(t)) == P[obsData(:,t) | hmm.OutputDistr(i)] [aState.MC,gamma,logP]=adaptAccum(hmm.StateGen,aState.MC,pX); %gamma(i,t)=P[HMMstate(t)=j | obsData, hmm]; obtained as side-result to save computation aState.Out=adaptAccum(hmm.OutputDistr,aState.Out,obsData,gamma); if length(lScale)==1%can happen only if length(hmm.OutputDistr)==1 aState.LogProb=aState.LogProb+logP+size(obsData,2)*lScale;%=accum. logprob(hmm,obsData) else aState.LogProb=aState.LogProb+logP+sum(lScale);%=accum. logprob(hmm,obsData) end; logP=aState.LogProb;%return separately, for external code clarity
github
txzhao/QbH-Demo-master
adaptSet.m
.m
QbH-Demo-master/scripts/@HMM/adaptSet.m
524
utf_8
614d518ee94beac4b3b5ca9eecec1b81
%hmm=adaptSet(hmm,aState) %method to finally adapt a single HMM object %using accumulated statistics from observed training data sets. % %Input: %hmm= single HMM object %aState= accumulated statistics from previous calls of adaptAccum % %Result: %hmm= adapted version of the HMM object % %Theory and Method: % %Arne Leijon 2009-07-23 tested function hmm=adaptSet(hmm,aState)%just dispatch to sub-objects hmm.StateGen=adaptSet(hmm.StateGen,aState.MC); hmm.OutputDistr=adaptSet(hmm.OutputDistr,aState.Out);
github
txzhao/QbH-Demo-master
logprob.m
.m
QbH-Demo-master/scripts/@HMM/logprob.m
1,762
utf_8
eda55425f67dfb12d14f892a2d14fbf3
%logP=logprob(hmm,x) gives conditional log(probability densities) %for an observed sequence of (possibly vector-valued) samples, %for each HMM object in an array of HMM objects. %This can be used to compare how well HMMs can explain data from an unknown source. % %Input: %hmm= array of HMM objects %x= matrix with a sequence of observed vectors, stored columnwise %NOTE: hmm DataSize must be same as observed vector length, i.e. % hmm(i).DataSize == size(x,1), for each hmm(i). % Otherwise, the probability is, of course, ZERO. % %Result: %logP= array with log probabilities of the complete observed sequence. %logP(i)= log P[x | hmm(i)] % size(logP)== size(hmm) % %The log representation is useful because the probability densities %exp(logP) may be extremely small for random vectors with many elements % %Method: run the forward algorithm with each hmm on the data. % %Ref: Arne Leijon (20xx): Pattern Recognition. % %---------------------------------------------------- %Code Authors: Tianxiao Zhao %---------------------------------------------------- function logP = logprob(hmm, x) hmmSize = size(hmm);%size of hmm array logP = zeros(hmmSize);%space for result for i = 1 : numel(hmm)%for all HMM objects %Note: array elements can always be accessed as hmm(i), %regardless of hmmSize, even with multi-dimensional array. % %logP(i)= result for hmm(i) %continue coding from here, and delete the error message. if hmm(i).DataSize == size(x, 1) [p, logS] = prob(hmm(i).OutputDistr, x); [~, c] = forward(hmm(i).StateGen, p.*repmat(exp(logS), size(p, 1), 1)); logP(i) = sum(log(c)); else logP(i) = log(0); end end;
github
txzhao/QbH-Demo-master
viterbi.m
.m
QbH-Demo-master/scripts/@HMM/viterbi.m
1,569
utf_8
bd3bf13e506663061de4c7d697f181a3
%[S,logP]=viterbi(hmm,x) %calculates optimal HMM state sequence %for an observed sequence of (possibly vector-valued) samples, %for each HMM object in an array of HMM objects. % %Input: %hmm= array of HMM objects %x= matrix with a sequence of observed vectors, stored columnwise %NOTE: hmm DataSize must be same as vector length, i.e. % get(hmm(i),'DataSize') == size(x,1), for every hmm(i), % otherwise probability is ZERO. % %Result: %S= matrix with best state sequences % S(i,t)= best state of hmm(i) for x(:,t) % size(S)== [numel(hmm),size(x,2)] %logP= column vector with log prob of found best state sequence %logP(i)= lob P(x, S(i,:) | HMM(i) ) % logP can be used to compare HMM:s, BUT NOTE % logP(i) is NOT log P(x | HMM(i) % %Method: for each hmm, calculate logprob for each state, and %call MarkovChain/viterbi for the actual search algorithm. % %Ref: Arne Leijon (200x): Pattern Recognition. % %Arne Leijon 2009-07-23 function [S,logP]=viterbi(hmm,x) hmmLength=numel(hmm);%total number of HMM objects in the array T=size(x,2);%number of vector samples in observed sequence S=zeros(hmmLength,T);%space for result logP=zeros(hmmLength,1); for i=1:hmmLength%for all HMM objects if hmm(i).DataSize==size(x,1) lPx=logprob(hmm(i).OutputDistr,x); [S(i,:),logP(i)]=viterbi(hmm(i).StateGen,lPx); else warning('HMM:viterbi:WrongDataSize',... ['Incompatible DataSize in HMM #',num2str(i)]);%but we can still continue end; end;
github
txzhao/QbH-Demo-master
double.m
.m
QbH-Demo-master/scripts/@DiscreteD/double.m
584
utf_8
c202f8b43b6862ff03458f6960a07b30
%pMass=double(pD) %converts a DiscreteD object or column vector of such objects %to an array with ProbMass values. %i.e. inverse of pD=DiscreteD(pMass). % %Result: %pMass(i,z)= P(Z(i)=z), with Z(i)= the i-th discrete random variable. % %Arne Leijon 2006-09-03 tested function pMass=double(pD) M=0;%max discrete random integer for i=1:numel(pD)%just in case M is not equal for all distr. M=max(M,length(pD(i).ProbMass)); end; pMass=zeros(numel(pD),M);%space for ProbMass matrix for i=1:numel(pD) pMass(i,1:length(pD(i).ProbMass))=pD(i).ProbMass';%row ProbMass values end;
github
txzhao/QbH-Demo-master
adaptStart.m
.m
QbH-Demo-master/scripts/@DiscreteD/adaptStart.m
683
utf_8
ac7fd76163fba59a09d6d64f8502f5df
%aState=adaptStart(pD) %starts DiscreteD object adaptation to observed data, %by initializing accumulator data structure for sufficient statistics, %to be used in subsequent calls to method adaptAccum and adaptSet. % %Input: %pD= DiscreteD object or array of such objects % %Result: %aState= data structure to be used by methods adaptAccum and adaptSet. % %Theory is discussed in method adaptSet % %Arne Leijon 2005-10-25 tested function aState=adaptStart(pD) nObj=numel(pD); aState=repmat(struct('sumWeight',0),nObj,1);%init storage % for i=1:nObj%one storage set for each object in the array % aState(i).sumWeight=0;%sum of all weight factors, already zeroed % end;
github
txzhao/QbH-Demo-master
adaptAccum.m
.m
QbH-Demo-master/scripts/@DiscreteD/adaptAccum.m
2,271
utf_8
c66cbdd91fa34e74c190349a907c2346
%aState=adaptAccum(pD,aState,obsData,obsWeight) %method to adapt DiscreteD object, or object array, to observed data, %by accumulating sufficient statistics from the data, %for later updating of the object by method adaptSet. % %Usage: %First obtain the storage data structure aState from method adaptStart. %Then, adaptAccum can be called several times with different observation data subsets. %The aState data structure must be saved externally between calls to adaptAccum. %Finally, the DiscreteD object is updated by method adaptSet. % %Input: %pD= a DiscreteD object or multidim array of DiscreteD objects %obsData= row vector with observed scalar samples, % each assumed to be drawn from one of the DiscreteD objects %obsWeight= (optional) matrix with weight factors, one column for each sample in obsData, % and one row for each object in the DiscreteD array. % size(obsWeight)== [length(pD(:)), size(obsData,2)] % obsWeight must have consistent values for all calls. % No obsWeight given <=> all weights=1. %aState= accumulated adaptation state preserved from previous calls, % first obtained from method adaptStart % %Result: %aState= accumulated adaptation data, incl. this observation data set. % %Arne Leijon 2011-08-29 tested function aState=adaptAccum(pD,aState,obsData,obsWeight) if size(obsData,1) > 1 error('DiscreteD object: only scalar data'); end; obsData=round(obsData);%quantize to integer values if min(obsData)<1 error('Data samples out of range'); end; maxObs=max(obsData); nData=size(obsData,2);%number of given samples nObj=numel(pD);%n of objects in array if nargin<4%no external obsWeight given obsWeight=ones(nObj,nData);%use all data with equal weight if nObj>1 warning('Several DiscreteD objects with same training data?'); end; end; for i=1:nObj%for all objects maxM=max(maxObs,length(pD(i).ProbMass)); M=size(aState(i).sumWeight,1);%previous max observed data value if M<maxM aState(i).sumWeight=[aState(i).sumWeight;zeros(maxM-M,1)];%extend size as needed end; for m=1:maxM%each possible observed value aState(i).sumWeight(m)=aState(i).sumWeight(m)+sum(obsWeight(i,obsData==m),2); end; end;
github
txzhao/QbH-Demo-master
init.m
.m
QbH-Demo-master/scripts/@DiscreteD/init.m
1,531
utf_8
e68d9547cf0f68b4958d54442b76079d
%pD=init(pD,x); %initializes DiscreteD object or array of such objects %to conform with a set of given observed data values. %The agreement is crude, and should be further refined by training, %using methods adaptStart, adaptAccum, and adaptSet. % %Input: %pD= a single DiscreteD object or multidim array of GaussD objects %x= row vector with observed data samples % %Result: %pD= initialized DiscreteD object or multidim DiscreteD array % size(pD)== same as input % %Method: %For a single DiscreteD object: Set ProbMass using all observations. %For a DiscreteD array: Use all observations for each object, % and increase probability P[X=i] in pD(i), %This is crude, but there is no general way to determine % how "close" observations X=m and X=n are, % so we cannot define "clusters" in the observed data. % %Arne Leijon 2009-07-21 function pD=init(pD,x) %sizObj=size(pD); nObj=numel(pD); if size(x,1)>1 error('DiscreteD object can have only scalar data');end; x=round(x); maxObs=max(x); %collect observation frequencies fObs=zeros(maxObs,1);%observation frequencies for m=1:maxObs fObs(m)=1+sum(x==m);%no zero frequencies end; if nObj==1 pD.ProbMass=fObs; else if nObj>maxObs warning('Some DiscreteD objects initialized equal'); end; for i=1:nObj m=1+mod(i-1,maxObs);%obs value to be emphasized p=fObs; p(m)=2*p(m);%what emphasis factor to use??? pD(i).ProbMass=p; end; end;
github
txzhao/QbH-Demo-master
adaptSet.m
.m
QbH-Demo-master/scripts/@DiscreteD/adaptSet.m
1,310
utf_8
34015b2276663c72b6439b33c8f1065c
%pD=adaptSet(pD,aState) %method to finally adapt a DiscreteD object %using accumulated statistics from observed data. % %Input: %pD= DiscreteD object or array of such objects %aState= accumulated statistics from previous calls of adaptAccum % %Result: %pD= adapted version of the DiscreteD object % %Theory and Method: %From observed sample data X(n), n=1....N, we are using the %accumulated sum of relative weights (relative frequencies) % %We have an accumulated weight (column) vector %sumWeight, with one element for each observed integer value of Z=round(X): %sumWeight(z)= sum[w(z==Z(n))] % %Arne Leijon 2011-08-29, tested % 2012-06-12, modified use of PseudoCount function pD=adaptSet(pD,aState) for i=1:numel(pD)%for all objects in the array aState(i).sumWeight=aState(i).sumWeight+pD(i).PseudoCount;%/length(aState(i).sumWeight); %Arne Leijon, 2012-06-12: scalar PseudoCount added to each sumWeight element %Reasonable, because a Jeffreys prior for the DiscreteD.Weight is %equivalent to 0.5 "unobserved" count for each possible outcome of the DiscreteD. pD(i).ProbMass=aState(i).sumWeight;%direct ML estimate % pD(i).ProbMass=pD(i).ProbMass./sum(pD(i).ProbMass);%normalize probability mass sum % normalized by DiscreteD.set.ProbMass end;
github
txzhao/QbH-Demo-master
prob.m
.m
QbH-Demo-master/scripts/@DiscreteD/prob.m
1,350
utf_8
3c9694ec22c8663ba9577c76bace7113
%[p,logS]=prob(pD,Z) %method to give the probability of a data sequence, %assumed to be drawn from given Discrete Distribution(s). % %Input: %pD= DiscreteD object or array of DiscreteD objects %Z= row vector with data assumed to be drawn from a Discrete Distribution % (Z may be real-valued, but is always rounded to integer values) % %Result: %p= array with probability values for each element in Z, % for each given DiscreteD object % size(p)== [length(pD),size(x,2)], if pD is one-dimensional vector % size(p)== [size(pD),size(x,2)], if pD is multidim array %logS= scalar log scalefactor, for HMM compatibility, always==0 % %Arne Leijon 2005-10-06 tested function [p,logS]=prob(pD,Z) if size(Z,1)>1 error('Data must be row vector with scalar values');end; pDsize=size(pD);%size of DiscreteD array pDlength=prod(pDsize);%number of DiscreteD objects nZ=size(Z,2);%number of observed data p=zeros(pDlength,nZ);%zero prob if Z is out of range Z=round(Z);%make sure it is integer for i=1:pDlength%for all objects in pD iDataOK=(Z>=1) & (Z <=length(pD(i).ProbMass));%within range of the DiscreteD p(i,iDataOK )=pD(i).ProbMass(Z(iDataOK))'; end; if pDlength>1 p=squeeze(reshape(p,[pDsize,nZ]));%restore array format end; logS=0;%always no scaling, only for compatibility with other ProbDistr classes
github
txzhao/QbH-Demo-master
finiteDuration.m
.m
QbH-Demo-master/scripts/@MarkovChain/finiteDuration.m
450
utf_8
f56a08b101840c331ce18109640c62cf
%fd=finiteDuration(mc) % tests if a given MarkovChain object has finite duration. % %Input: %mc= single MarkovChain object % %Result: %fd= true, if duration is finite. % %Arne Leijon 2009-07-19 tested function fd=finiteDuration(mc) fd=size(mc.TransitionProb,2)==size(mc.TransitionProb,1)+1;%first condition if fd %we use full() just because left-right TransitionProb may be stored as sparse) fd=full(sum(mc.TransitionProb(:,end)))>0; end;
github
txzhao/QbH-Demo-master
adaptStart.m
.m
QbH-Demo-master/scripts/@MarkovChain/adaptStart.m
468
utf_8
366c886f8600a036eead166ba927a598
%aS=adaptStart(mc) % initialises adaptation data structure, % to be saved externally between subsequent calls to method adaptAccum. % %Input: %mc= single MarkovChain object % %Result: %aS= initialised adaptation data structure. % %Arne Leijon 2004-11-10 tested function aS=adaptStart(mc) aS.pI=zeros(size(mc.InitialProb));%for sum of P[S(1)=j | each training sub-sequence] aS.pS=zeros(size(mc.TransitionProb));%for sum of P[S(t)=i & S(t+1)=j | all training data]
github
txzhao/QbH-Demo-master
adaptAccum.m
.m
QbH-Demo-master/scripts/@MarkovChain/adaptAccum.m
3,245
utf_8
c928e31dfb69d14aaaf35a1820cd4e5c
%[aState,gamma,lP]=adaptAccum(mc,aState,pX) %method to adapt a single MarkovChain object to observed data, %by accumulating sufficient statistics from the data, %for later updating of the object by method adaptSet. % %Usage: %First obtain the storage data structure aState from method adaptStart. %Then, adaptAccum can be called several times with different observation data subsets. %The aState data structure must be saved externally between calls to adaptAccum. %Finally, the MarkovChain object is updated by method adaptSet. % %Input: %mc= single MarkovChain object %pX= matrix prop. to state-conditional observation probabilites, calculated externally, %pX(j,t)= ScaleFactor* P( X(t)= observed x(t) | S(t)= j ); j=1..N; t=1..T % Must be pre-calculated externally. % ScaleFactor is known only externally %aState= accumulated adaptation state from previous calls % %Result: %aState= accumulated adaptation state, incl. this step, % must be saved externally until next call %aState.pI= accumulated sum of P[S(1)=j | each training sub-sequence] %aState.pS= accumulated sum of P[S(t)=i & S(t+1)=j | all training data] %gamma= conditional state probability matrix, with elements %gamma(i,t)=P[ S(t)= i | pX for complete observation sequence] % returned for external use. %lP= scalar log(Prob(observed sequence)), % for external use, to save computation. % (NOT including external ScaleFactor of given pX) % %Method: Results of forward-backward algorithm % are combined with Baum-Welch update rules. % %Ref: Arne Leijon (200x): Pattern Recognition % Rabiner (1989): Tutorial on HMM. Proc IEEE, 77, 257-286. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Elegant solution provided by Niklas Bergstrom, 2008 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [aState,gamma,lP]=adaptAccum(mc,aState,pX) T=size(pX,2); nStates=mc.nStates;%Arne Leijon, 2011-08-03 % Fetch variables from the markov chain A=mc.TransitionProb; % Get the scaled forward and backward variables [alfaHat c] = forward(mc,pX); betaHat = backward(mc,pX,c); % Calculate gamma gamma = alfaHat.*betaHat.*repmat(c(1:T),nStates,1); % Initial probabilities, aState.pI += gamma(t=1) aState.pI = aState.pI + gamma(:,1); % Calculate xi for the current sequence r % xi(i,j,t) = alfaHat(i,t)*A(i,j)*pX(j,t+1)*betaHat(j,t+1) % First it's possible to multiply pX and betaHat element wise since they % correspond to each other pXbH = pX(:,2:end).*betaHat(:,2:end); % Then multiply alfaHat with the transpose of the result in order to get % a matrix of size nStates x nStates with each element summed over t aHpXbH = alfaHat(:,1:T-1)*pXbH'; % Finally multiply element wise with the previous transition probabilities xi = aHpXbH.*A(:,1:nStates); % Add the result to the accumulating variable, aState.pS += xi aState.pS(:,1:nStates) = aState.pS(:,1:nStates) + xi; % For finite duration HMM if(finiteDuration(mc)) aState.pS(:,nStates+1) = aState.pS(:,nStates+1) + alfaHat(:,T).*betaHat(:,T)*c(T); end % Calculate log probability for observing the current sequence given the % current hmm lP = sum(log(c));%scalar sum
github
txzhao/QbH-Demo-master
adaptSet.m
.m
QbH-Demo-master/scripts/@MarkovChain/adaptSet.m
1,325
utf_8
cfde9d8065852cfca77a09199016915d
%mc=adaptSet(mc,aState) %method to finally adapt a single MarkovChain object %using accumulated statistics from observed training data sets. % %Input: %mc= single MarkovChain object %aState= struct with accumulated statistics from previous calls of adaptAccum % %Result: %mc= adapted version of the MarkovChain object % %Method: %We have accumulated, in aState: %pI= vector of initial state probabilities, with elements % pI(i)= scalefactor* P[S(1)=i | all training sub-sequences] %pS= state-pair probability matrix, with elements % pS(i,j)=scalefactor* P[S(t)=i & S(t+1)=j | all training data] %These data directly define the new MarkovChain, after necessary normalization. % %Ref: Arne Leijon (20xx) Pattern Recognition, KTH-SIP % %Arne Leijon 2004-11-10 tested % 2011-08-02 keep sparsity function mc=adaptSet(mc,aState) if issparse(mc.InitialProb)%keep the sparsity structure mc.InitialProb=sparse(aState.pI./sum(aState.pI));%normalised else mc.InitialProb=aState.pI./sum(aState.pI);%normalised end; if issparse(mc.TransitionProb)%keep the sparsity structure mc.TransitionProb=sparse(aState.pS./repmat(sum(aState.pS,2),1,size(aState.pS,2)));%normalized else mc.TransitionProb=aState.pS./repmat(sum(aState.pS,2),1,size(aState.pS,2));%normalized end; end
github
txzhao/QbH-Demo-master
logprob.m
.m
QbH-Demo-master/scripts/@MarkovChain/logprob.m
1,280
utf_8
fdbdaa81b486e2b4dd249ed545208d99
%lP=logprob(mc, S) %calculates log probability of complete observed state sequence % %Input: %mc= the MarkovChain object(s) %S= row vector with integer state-index sequence. % For a finite-duration Markov chain, % S(end) may or may not be the END state flag = nStates+1. % %Result: %lP= vector with log probabilities % length(lP)== numel(mc) % %Arne Leijon, 2009-07-23 function lP=logprob(mc, S) if isempty(S) lP=[]; return; end; if any(S<0) || any(S ~= round(S)) %not a proper index vector lP=repmat(-Inf,size(mc)); return; end lP=zeros(size(mc));%space fromS=S(1:end-1);%from S(t) toS=S(2:end);%to S(t+1) for i=1:numel(mc) if S(1)>length(mc(i).InitialProb) lP(i)=-Inf;%non-existing initial state index else lP(i)=log(mc(i).InitialProb(S(1)));%Initial state end; if ~isempty(fromS) if max(fromS)> mc(i).nStates || S(end)>size(mc(i).TransitionProb,2) lP(i)=-Inf;%encountered a non-existing state index else iTrans=sub2ind(size(mc(i).TransitionProb),fromS,toS); lP(i)=lP(i)+sum(log(mc(i).TransitionProb(iTrans))); end; end; end end
github
txzhao/QbH-Demo-master
adaptStart.m
.m
QbH-Demo-master/scripts/@GaussD/adaptStart.m
888
utf_8
ba37a1185528355dc6b4272ea2c74620
%aState=adaptStart(pD) %starts GaussD object adaptation to observed data, %by initializing accumulator data structure for sufficient statistics, %to be used in subsequent calls to method adaptAccum and adaptSet. % %Input: %pD= GaussD object or array of GaussD objects % %Result: %aState= data structure to be used by methods adaptAccum and adaptSet. % %Theory is discussed in method adaptSet % %Arne Leijon 2005-11-16 tested function aState=adaptStart(pD) nObj=numel(pD); aState=repmat(struct('sumDev',0,'sumSqDev',0,'sumWeight',0),nObj,1);%init storage for i=1:nObj%one storage set for each object in the array dSize=length(pD(i).Mean); aState(i).sumDev=zeros(dSize,1);%weighted sum of observed deviations from OLD mean aState(i).sumSqDev=zeros(dSize,dSize);%matrix with sum of square deviations from OLD mean aState(i).sumWeight=0;%sum of weight factors end;
github
txzhao/QbH-Demo-master
adaptAccum.m
.m
QbH-Demo-master/scripts/@GaussD/adaptAccum.m
2,202
utf_8
4c1025eee7755cca5152ee32a6d44753
%aState=adaptAccum(pD,aState,obsData,obsWeight) %method to adapt GaussD object to observed data, %by accumulating sufficient statistics from the data, %for later updating of the object by method adaptSet. % %Usage: %First obtain the storage data structure aState from method adaptStart. %Then, adaptAccum can be called several times with different observation data subsets. %The aState data structure must be saved externally between calls to adaptAccum. %Finally, the GaussD object is updated by method adaptSet. % %Input: %pD= a GaussD object or multidim array of GaussD objects %obsData= matrix with observed column vectors, % each assumed to be drawn from one of the GaussD objects %obsWeight= (optional) matrix with weight factors, one column for each vector in obsData, % and one row for each object in the GaussD array. % size(obsWeight)== [length(pD(:)), size(obsData,2)] % obsWeight must have consistent values for all calls. % No obsWeight given <=> all weights=1. %aState= accumulated adaptation state preserved from previous calls, % first obtained from method adaptStart % %Result: %aState= accumulated adaptation data, incl. this observation data set. % %Arne Leijon 2005-11-16 NOT tested for full covariance matrix function aState=adaptAccum(pD,aState,obsData,obsWeight) [dSize,nData]=size(obsData);%dataSize, number of given vector samples nObj=numel(pD);%n of GaussD objects in array if nargin<4%no external obsWeight given if nObj==1 obsWeight=ones(nObj,nData);%use all data with equal weight else obsWeight=prob(pD,obsData);%assign weight to each GaussD object obsWeight=obsWeight./repmat(sum(obsWeight),nObj,1);%normalize %obsWeight(i,t)= P(objS(t)= i | X(t)) end; end; for i=1:nObj%for all GaussD objects Dev=obsData-repmat(pD(i).Mean,1,nData);%deviations from old mean wDev=Dev.*repmat(obsWeight(i,:),dSize,1);%weighted -"- aState(i).sumDev=aState(i).sumDev+sum(wDev,2);%for later mean estimationz aState(i).sumSqDev=aState(i).sumSqDev+Dev*wDev';%for later covar. estim. aState(i).sumWeight=aState(i).sumWeight+sum(obsWeight(i,:)); end;
github
txzhao/QbH-Demo-master
init.m
.m
QbH-Demo-master/scripts/@GaussD/init.m
4,062
utf_8
6ac396786af0110b43e3a2b56b07cd24
%[pD,iOK]=init(pD,x); %initializes GaussD object or array of GaussD objects %to conform with a set of given observed vectors. %The agreement is very crude, and should be refined by training, %using methods adaptStart, adaptAccum, and adaptSet. % %*****REQUIRES: VQ class ******** % %Input: %pD= a single GaussD object or multidim array of GaussD objects %x= matrix with observed vectors stored columnwise % %Result: %pD= initialized GaussD object or multidim GaussD array % size(pD)== same as input %iOK= logical array with element== 1, where corresponding % pD element was properly initialized, % and ==0, if there was not enough data for good initialization. % %Method: %For a single GaussD object: set Mean and Variance, based on all observations, % Previous AllowCorr property is preserved, % but only diagonal covariance values are initialized, % because there may not be enough data to set complete cov matrix. %For a GaussD array: each element initialized to observation sub-set. % Use crude VQ initialization: % set Mean vectors at VQ cluster centers, % and set Variance to variance within each VQ cell. % %Arne Leijon 2006-04-21 tested % 2008-10-09, var() change for compatibility with Matlab v.6.5 % 2009-07-20, changed for Matlab R2008a class definitions % 2011-05-26, minor cleanup function [pD,iOK]=init(pD,x) nObj=numel(pD); iOK=zeros(size(pD));%space for success indicators %dSize=size(x,1); if nObj>size(x,2) error('Too few data vectors');end; if size(x,2)==1%var cannot be estimated warning('GaussD:Init:TooFewData','Only one data point: default variance =1'); varX=ones(size(x));%default variance =1 iOK(1)=0;%variance incorrect else % varX=var(x,1,2);%ML (biased) estim var of all observed data varX=var(x,1,2);%ML (biased) estim var of all observed data iOK(1)=1;%OK end; if nObj==1 pD.Mean=mean(x,2); if allowsCorr(pD)%set Covariance, to still allow correlations pD.Covariance=diag(varX); else pD.Variance=varX;%set variance end; else % SD=SD./nObj;%assuming evenly spread, maybe this is too small??? % m=selectRandom(x,nObj); %This method often worked OK, but sometimes very odd start % %Use VQ methods instead, %although first test with VQ method locked on a local maximum. xVQ=create(VQ,x,nObj);%make VQ xCenters=xVQ.CodeBook;%VQ centroids xCode=encode(xVQ,x);%nearest codebook index for each vector for i=1:nObj nData=sum(xCode==i);%usable observations for this cluster if nData<=1%actually ==1: VQ cannot give zero data points warning('GaussD:Init:TooFewData',['Too few data for GaussD no.',num2str(i)]); iOK(i)=0;%variance incorrect %simply use previous (first=total) varX value again else % varX=var(x(:,xCode==i),1,2);%variance of VQ sub-cluster varX=var(x(:,xCode==i),1,2);%variance of VQ sub-cluster iOK(i)=1;%OK end; %use only diag variances, because there may not be enough data to %estimate all correlations, and cov matrix might become singular pD(i).Mean=xCenters(:,i); if allowsCorr(pD(i)) pD(i).Covariance=diag(varX);%full cov else pD(i).Variance=varX;%diag cov end; end; %Another attempt to use random initialization and rely on later EM training. %This is much slower than VQ init, %but sometimes found correct global maximum, when the VQ did not! %Arne Leijon, 2004-11-18 % %For this method, we just throw out some random points near global mean point: % SD=SD./2;%??????? % xCenter=mean(x,2); % xCenters=rand(GaussD(xCenter,SD),nObj);%random points near center % for i=1:nObj % pD(i)=set(pD(i),'Mean',xCenters(:,i),'StDev',SD); % end; end; % function r=selectRandom(x,n); % nx=size(x,2); % nr=round([1:n]*nx./n); % r=x(:,nr);
github
txzhao/QbH-Demo-master
adaptSet.m
.m
QbH-Demo-master/scripts/@GaussD/adaptSet.m
3,179
utf_8
c0326b7bc4a99562959e208f63675714
%pD=adaptSet(pD,aState) %method to finally adapt a GaussD object %using accumulated statistics from observed data. % %Input: %pD= GaussD object or array of GaussD objects %aState= accumulated statistics from previous calls of adaptAccum % %Result: %pD= adapted version of the GaussD object % %Theory and Method: %From observed sample data X(n), n=1....N, we are using the deviations % Z(n)=X(n)-myOld, where myOld is the old mean. %Obviously, E[Z(n)]= E[X(n)]-myOld, and cov[Z(n)]=cov[X(n)] % %We have accumulated weighted deviations: %sumDev= sum[w(n).*Z(n)] %sumSqDev= sum[w(n).* (Z(n)*Z(n)')] %sumWeight= sum[w(n)] % %Here, weight factor w(n) is the probability that the observation X(n) % was actually drawn from this GaussD. % %To obtain a new unbiased estimate of the GaussD true MEAN, we see that % E[sumDev]=sum[w(n)] .*E[Z(n)]. %Thus, an unbiased estimate of the MEAN is %newMean= myOld + sumDev/sumWeight; % %To obtain a new estimate of the GaussD covariance, % we first calculate sq deviations from the new sample MEAN, as: % Y(n)= Z(n) - sumDev/sumWeight % S2= sum[w(n).* (Y(n)*Y(n)')]= % = sumSqDev - sumDev*sumDev'./sumWeight %The ML estimate of the variance is then % covEstim= S2./sumWeight; % (If all w(n)=1, this is the usual newVarML=S2/N) % %However, this UNDERESTIMATES the GaussD true VARIANCE, as % E[S2]= var[Z(n)] .* (sumWeight - sumSqWeight/sumWeight) %Therefore, an unbiased variance estimate would be, instead, %newVar= S2/(sumWeight - sumSqWeight/sumWeight) % (If all w(n)=1, this is the usual estimate newVar= S2/(N-1) ) %However, the purpose of the GaussD training is usually not to estimate %the covariance parameter in isolation, %but rather to make the total density function fit the training data. %For this purpose, the ML mean and covariance are indeed optimal. % %Arne Leijon 2005-11-16 tested %Arne Leijon 2010-07-30, corrected for degenerate case with only one data point % In this case, we just set StDev=Inf, % to effectively kill the affected GaussD object. function pD=adaptSet(pD,aState) for i=1:numel(pD)%for all GaussD objects if aState(i).sumWeight>max(eps(pD(i).Mean))%We had at least some data pD(i).Mean=pD(i).Mean+ aState(i).sumDev/aState(i).sumWeight;%new mean value S2=aState(i).sumSqDev-(aState(i).sumDev*aState(i).sumDev')./aState(i).sumWeight;%sqsum around new mean covEstim=S2./aState(i).sumWeight;%ML covariance estimate if any(diag(covEstim)<eps(pD(i).Mean))%near zero, or negative warning('GaussD:ZeroVar',['Not enough data for GaussD #',num2str(i),'. StDev forced to Inf']); covEstim=diag(repmat(Inf,size(pD(i).Mean))); %Force ZERO probability for this GaussD, for any data end; if allowsCorr(pD(i)) pD(i)=setCov(pD(i),covEstim);%adapt full covariance matrix else pD(i).StDev=sqrt(diag(covEstim));%keep it diagonal end; end;%else no observations here, do nothing end;
github
txzhao/QbH-Demo-master
logprob.m
.m
QbH-Demo-master/scripts/@GaussD/logprob.m
1,536
utf_8
b605f3e2165466af2693cc2cbfb225b3
%logP=logprob(pD,x) gives log(probability densities) for given vectors %assumed to be drawn from a given GaussD object % %Input: %pD= GaussD object or array of GaussD objects %x= matrix with given vectors stored columnwise % %Result: %logP= log(probability densities for x) % size(logP)== [numel(pD),size(x,2)] %exp(logP)= true probability densities for x % %The log representation is useful because the probability densities may be %extremely small for random vectors with many elements % %Arne Leijon 2005-11-16 tested function logP=logprob(pD,x) %pDsize=size(pD);%size of GaussD array nObj=numel(pD);%number of GaussD objects nx=size(x,2);%number of observed vectors logP=zeros(nObj,nx);%space or result for i=1:nObj%for all GaussD objects in pD dSize=length(pD(i).Mean);%GaussD random vector size if dSize==size(x,1)%observed vector size OK z=pD(i).CovEigen'*(x-repmat(pD(i).Mean,1,nx));%transform to uncorrelated zero-mean elements z=z./repmat(pD(i).StDev,1,nx);%and normalized StDev logP(i,:)=-sum(z.*z,1)/2;%normalized Gaussian exponent logP(i,:)=logP(i,:)-sum(log(pD(i).StDev))-dSize*log(2*pi)/2;%include log(determinant) scale factor else warning('GaussD:WrongDataSize','Incompatible data size'); logP(i,:)=repmat(-Inf,1,nx);%zero probability end; end; %*** reshape removed 2011-05-26, for compatibility. Arne Leijon % if nObj>1 % logP=squeeze(reshape(logP,[pDsize,nx]));%restore array format % end;
github
txzhao/QbH-Demo-master
rand.m
.m
QbH-Demo-master/scripts/@GaussD/rand.m
887
utf_8
0040c8e3bac1a02ac5ab547250da5bf4
%R=rand(pD,nData) returns random vectors drawn from a single GaussD object. % %Input: %pD= the GaussD object %nData= scalar defining number of wanted random data vectors % %Result: %R= matrix with data vectors drawn from object pD % size(R)== [length(pD.Mean), nData] % %Arne Leijon 2005-11-16 tested % 2006-04-18 sub-state output added for compatibility % 2009-07-20 sub-state output removed again %function [R,U]=rand(pD,nData)%OLD version function R=rand(pD,nData) if length(pD)>1 error('This method works only for a single GaussD object'); end; R=randn(length(pD.Mean),nData);%normalized independent Gaussian random variables % if nargout>1 % U=zeros(1,nData);end;%GaussD has no sub-states R=diag(pD.StDev)*R;%scaled to correct standard deviations R=pD.CovEigen*R;%rotate to proper correlations R=R+repmat(pD.Mean,1,nData);%translate to desired mean
github
MarcoSaerens/networkDLA_matlab-master
Alg_10_07_ForcedirectedLayoutGraph.m
.m
networkDLA_matlab-master/ToReview/Chapter10_GraphEmbedding/Alg_10_07_ForcedirectedLayoutGraph.m
4,271
utf_8
ba5ca9c2bc40a1f85943daedf9870531
function X = Alg_10_07_ForcedirectedLayoutGraph(W, w, X_0, a, r) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Authors: Gilissen & Edouard Lardinois, revised by Guillaume Guex (2017). % % Source: Francois Fouss, Marco Saerens and Masashi Shimbo (2016). % "Algorithms and models for network data and link analysis". % Cambridge University Press. % % Description: Computes (a, r) force-directed layout for a graph % % INPUT: % ------- % - W: a n x n matrix containing edges weights a weighted, % undirected graph G. % - w: a n x 1 vector containing non-negative node weights % - X_0: n x p initial position for the n nodes % - a: the attraction power parameter % - r: the repulsion power parameter % % OUTPUT: % ------- % - X : the (n x p) data matrix containing the coordinates of the nodes % on its rows. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Checks of arguments [n, ~] = size(W); % Check if W is a symmetric matrix if ~isequal(W, W') error('The edge weights matrix is not symmetric.') end % Check if W are positive if min(min(W)) < 0 error('The edge weights matrix must be a non-negative.') end % Check if w are positive if min(min(w)) < 0 error('The node weights vector must be a non-negative.') end % Check if w correspond to W n_w = length(w); if n ~= n_w error('The node weight vector length must correspond to the edge weights matrix') end % Check the dimension of Initial matrix [n_0, p] = size(X_0); if n ~= n_0 error('Input X_0 must have a number of rows equal to the size of W') end %% Algorithm % Initialize the embedding X = X_0; energy_prev = realmax; energy = 1e15; B = eye(n*p); gradient_unfold_prev = false; while abs(energy_prev - energy) > 1e-6 % Store previous energy value energy_prev = energy; % Compute the gradient Gradient_X = zeros(n, p); random_index = randperm(n); for k = random_index for j = 1:n if j ~= k xk_xj = X(k, :) - X(j, :); norm_xk_xj = (norm(xk_xj) + 1e-20); Gradient_X(k, :) = Gradient_X(k, :) + W(j, k)*(norm_xk_xj^(a-1) - w(j)*w(k)*norm_xk_xj^(r-1))*xk_xj; end end end %%% Perform a min search of a BFGS quasi-Newton step on potential energy % Unfold gradient gradient_unfold = Gradient_X(:); % Compute B (if this is not the first step) if gradient_unfold_prev ~= false y = gradient_unfold - gradient_unfold_prev; B = B + y*y' / (y'*dir_unfold) - (B*dir_unfold)*(dir_unfold'*B) / (dir_unfold'*B*dir_unfold); end % Obtain direction dir_unfold = linsolve(B, -gradient_unfold); % Fold Dir_X = reshape(dir_unfold, [n, p]); % Find stepsize [beta_opt, ~] = fminsearch(@(beta) potential_energy(W, w, X, Dir_X, a, r, beta), 1e-2); % Make step X = X + beta_opt*Dir_X; % Store new energy energy = potential_energy(W, w, X, Dir_X, a, r, 0); end end function e = potential_energy(W, w, X, Dir_X, a, r, beta) [n, ~] = size(X); X_beta = X + beta*Dir_X; e = 0; for i = 1:(n-1) for j = (i+1):n norm_xi_xj = norm(X_beta(i, :) - X_beta(j, :)) + 1e-20; if a == -1 e = e + W(i, j) * log(norm_xi_xj); else e = e + W(i, j) * norm_xi_xj^(a + 1) / (a + 1); end if r == -1 e = e - w(i)*w(j) * log(norm_xi_xj); else e = e - w(i)*w(j) * norm_xi_xj^(r + 1) / (r + 1); end end end end
github
MarcoSaerens/networkDLA_matlab-master
Alg_10_06_SpringNetworkLayout.m
.m
networkDLA_matlab-master/ToReview/Chapter10_GraphEmbedding/Alg_10_06_SpringNetworkLayout.m
3,796
utf_8
a24847cc20a410bd55af38f55fa8091d
function X = Alg_10_06_SpringNetworkLayout(D, X_0, l_0, k) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Authors: Gilissen & Edouard Lardinois, revised by Guillaume Guex (2017). % % Source: Francois Fouss, Marco Saerens and Masashi Shimbo (2016). % "Algorithms and models for network data and link analysis". % Cambridge University Press. % % Description: Computes the spring network layout of a graph. % % INPUT: % ------- % - D: n x n symmetric all-pairs shortest-path distances matrix % associated with graph G, providing distances Delta_ij % for each pair of nodes i, j % - X_0: n x p initial position for the n nodes % - l_0: drawing length constant % - k: global strength constant % % OUTPUT: % ------- % - X : the (n x p) data matrix containing the coordinates of the nodes % on its rows. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Checks of arguments [n, ~] = size(D); % Check if D is a symmetric matrix if ~isequal(D, D') error('The adjacency matrix is not symmetric.') end % Check the dimension of Initial matrix [n_0, p] = size(X_0); if n ~= n_0 error('Input X_0 must have a number of rows equal to the size of D') end % Check if display length is positive if l_0 <= 0 error('Display length l_0 must be more than zero') end % Check if global strength constant is positive if k <= 0 error('Global strength constant k must be more than zero') end %% Algorithm % Set equilibrium length of each spring L_0 = l_0 * D / max(max(D)); % Set stiffness of each spring K_stiff = k ./ D.^2 ; % Initialize the embedding X = X_0; energy_prev = realmax; energy = 1e15; B = eye(n*p); gradient_unfold_prev = false; while abs(energy_prev - energy) > 1e-6 % Store previous energy value energy_prev = energy; % Compute the gradient Gradient_X = zeros(n, p); for k = 1:n for j = 1:n if j ~= k xk_xj = X(k, :) - X(j, :); Gradient_X(k, :) = Gradient_X(k, :) + K_stiff(k,j) * (1 - L_0(k,j)/(norm(xk_xj) + 1e-20)) * xk_xj; end end end %%% Perform a min search of a BFGS quasi-Newton step on springs energy % Unfold gradient gradient_unfold = Gradient_X(:); % Compute B (if this is not the first step) if gradient_unfold_prev ~= false y = gradient_unfold - gradient_unfold_prev; B = B + y*y' / (y'*dir_unfold) - (B*dir_unfold)*(dir_unfold'*B) / (dir_unfold'*B*dir_unfold); end % Obtain direction dir_unfold = linsolve(B, -gradient_unfold); % Fold Dir_X = reshape(dir_unfold, [n, p]); % Find stepsize [beta_opt, ~] = fminsearch(@(beta) energy_spring(K_stiff, L_0, X, Dir_X, beta), 1e-3); % Make step X = X + beta_opt*Dir_X; % Store new energy energy = energy_spring(K_stiff, L_0, X, Gradient_X, 0); end end %% Energy spring function function e = energy_spring(K_stiff, L_0, X, Dir_X, beta) [n, ~] = size(X); X_beta = X + beta*Dir_X; e = 0; for i = 1:(n-1) for j = (i+1):n e = e + K_stiff(i, j)/2 * ( norm(X_beta(i, :)-X_beta(j, :)) - L_0(i, j) )^2; end end end
github
MarcoSaerens/networkDLA_matlab-master
Alg_10_05_LatentSocialMap.m
.m
networkDLA_matlab-master/ToReview/Chapter10_GraphEmbedding/Alg_10_05_LatentSocialMap.m
4,891
utf_8
076cc66bd262c1997e3ac511abf9853e
function X = Alg_10_05_LatentSocialMap(A, p, X_0) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Authors: Gilissen & Edouard Lardinois, revised by Guillaume Guex (2017). % % Source: Francois Fouss, Marco Saerens and Masashi Shimbo (2016). % "Algorithms and models for network data and link analysis". % Cambridge University Press. % % Description: Computes the latent social embedding of a graph. % % INPUT: % ------- % - A : a (n x n) unweighted adjacency matrix associated with an undirected % graph G. % - p : a integer containing the number of dimensions kept for % the embedding. % - X_0 : a (n x p_0) initial position for the n nodes. % % OUTPUT: % ------- % - X : the (n x p) data matrix containing the coordinates of the nodes % for the embedding. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Checks of arguments % Check if squared matrix [n, m] = size(A); if n ~= m error('The adjacency matrix must be a square matrix') end % Check if symmetric matrix / graph is undirected if ~isequal(A, A') error('The adjacency matrix is not symmetric.') end % Check if binary matrix if ~isequal(A, (A > 0)) error('The adjacency matrix is not binary.') end % Check the dimension of Initial matrix [n_0, p_0] = size(X_0); if n_0 ~= n error('The initial position matrix must have a number of rows equal to the size of the adjacency matrix') end % Check if number of dimensions is pertinent if p > p_0 error('The number of kept dimensions must be less or equal than to the number of dimensions'); end %% Algorithm % Setting initial parameters alpha = 1; X = X_0(:,1:p); D = zeros(n); Y_hat = zeros(n); B = eye(n*p + 1); gradient_unfold_prev = false; minus_l_prev = realmax; minus_l = 1e15; % Main loop while abs(minus_l_prev - minus_l) > 1e-4 % Store previous minus likelihood minus_l_prev = minus_l; for i = 1:n for j = 1:n % Compute the distances in the latent space D(i, j) = sqrt( (X(i, :) - X(j, :)) * (X(i, :) - X(j, :))' ); % Compute the predicted pobability of each link Y_hat(i, j) = 1 / ( 1 + exp( -alpha * (1 - D(i, j)) ) ); end end % Compute the gradient with respect to alpha G_alpha_mat = (D - 1) .* (Y_hat - A); G_alpha_mat(1:n+1:end) = 0; gradient_alpha = 1/2 * sum(sum(G_alpha_mat)); % Compute the gradient with respect to position vector x_k Gradient_X = zeros(n, p); for k = 1:n for j = 1:n if j ~= k xk_xj = (X(k, :) - X(j, :)); Gradient_X(k, :) = Gradient_X(k, :) + alpha * (Y_hat(k, j) - A(k, j)) * xk_xj / (norm(xk_xj) + 1e-20) ; end end end %%% Perform a min search of a BFGS quasi-Newton step on minus likelihood % Unfold gradient gradient_unfold = [gradient_alpha; Gradient_X(:)]; % Compute B (if this is not the first step) if gradient_unfold_prev ~= false y = gradient_unfold - gradient_unfold_prev; B = B + y*y' / (y'*dir_unfold) - (B*dir_unfold)*(dir_unfold'*B) / (dir_unfold'*B*dir_unfold); end % Obtain direction dir_unfold = linsolve(B, -gradient_unfold); % Fold dir_alpha = dir_unfold(1); Dir_X = reshape(dir_unfold(2:end), [n, p]); % Find stepsize [beta_opt, ~] = fminsearch(@(beta) minus_likelihood(A, alpha, X, dir_alpha, Dir_X, beta), 0.5); % Make step X = X + beta_opt*Dir_X; alpha = alpha + beta_opt*dir_alpha; % Store new minus likelihood minus_l = minus_likelihood(A, alpha, X, dir_alpha, Dir_X, 0); end end %% Minus likelihood function function minus_l = minus_likelihood(A, alpha, X, dir_alpha, Dir_X, beta) n = size(X, 1); X_beta = X + beta*Dir_X; alpha_beta = alpha + beta*dir_alpha; D = zeros(n); for i=1:n for j=1:n D(i,j) = sqrt( (X_beta(i,:)-X_beta(j,:))*(X_beta(i,:)-X_beta(j,:))' ); end end components_of_likelihood = (alpha_beta * A .* (1 - D) - log(1 + exp(alpha_beta * (1 - D))) ); components_of_likelihood(1:n+1:end) = 0; minus_l = - 1/2 * sum(sum(components_of_likelihood)); end
github
MarcoSaerens/networkDLA_matlab-master
Alg_08_07_LouvainMethod.m
.m
networkDLA_matlab-master/ToReview/Chapter08_DenseRegions/Alg_08_07_LouvainMethod.m
7,334
utf_8
b8688a9c52465d0f82da551516d8f79e
function U = Alg_08_07_LouvainMethod(A,mix) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Authors: Ilkka Kivimaki (2015),revised by Sylvain Courtain (2017). % Direct source: Francois Fouss, Marco Saerens and Masashi Shimbo (2016). % "Algorithms and models for network data and link analysis". % Cambridge University Press. % % Performs the Louvain Method % % INPUT: % ------ % - A weighted undirected graph containing n nodes % - A, the n x n adjancencty matrix of the graph % % OUTPUT: % ------- % - U, the n x m membership matrix. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% CHECK ERRORS: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargin == 0 error('The algorithm needs an adjacency matrix as input!'); end [N,n] = size(A); if (N ~= n) error('Non-square matrix A!'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Step 1 : Local optimization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copy the matrix A before mix Adj = A; % Mix the nodes in random order: if mix N = size(A, 1); randidx = randperm(N); A = A(randidx, :); A = A(:, randidx); else randidx = 1:N; end level=1; % Initialize the binary membership matrix N = size(A, 1); % N = # of nodes assigns = 1:N; % Assign each node initially to its own cluster. U = eye(N); % Cluster membership matrix % Compute the modularity matrix Q = ComputeModularityMatrix(A); i=0; % Initialize node index conv=1; % Initialize convergence counter while conv<N % Repeat iterations until no move of a node occurs i = i+1; % Choose node i clust_i = assigns(i); % Which cluster does i belong to? U_clust_i = U(:, clust_i); % Membership vector of i's cluster % Contribution to modularity of having i in clust_i: Qloss = U_clust_i'*Q(:, i) + Q(i, :)*U_clust_i - 2*Q(i, i); % Compute the set of all ajacent clusters of node i neigh_i = (Adj(i, :) > 0); % Neighbors of i (according to A) clust_neigh_i = unique(assigns(neigh_i)); % Cluster nhood of i clust_neigh_i = setdiff(clust_neigh_i, clust_i); % Don't consider the cluster of i % Combine i with all neighboring clusters and find the best: best_Qgain = -Inf; % Initialize best modularity change for J=clust_neigh_i % Contribution to modularity of having i in cluster J: Qgain = U(:,J)'*Q(:, i) + Q(i, :)*U(:, J); % Find the best move for node i if Qgain > best_Qgain % Check if better than earlier best_Qgain = Qgain; best_J = J; % Save index end end % Move i to cluster best_J, if it increases modularity: if best_Qgain > max(0, Qloss) assigns(i) = best_J; U(i,clust_i) = 0; U(i,best_J) = 1; conv = 1; % Start the countdown from the beginning % Otherwise increase the counter: else conv = conv+1; end % After node N, go back to node 1: if i==N i=0; end end % Reorganize clusters, rebuild U and calculate cluster sizes: [U, assigns] = LMBOP_reorganize(assigns); % If the indexes were mixed, then reorganize them: if mix origassigns = 0*assigns; % allocation for i = 1:N origassigns(i) = assigns(randidx==i); end end fullassigns = assigns'; while true %% Step 2 and Convergence %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Construct the new graph by merging clusters: A_merge = U'*A*U; %% Step 1 : Local optimization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Initialize the binary membership matrix M = size(A_merge, 1); % N = # of nodes newassigns = 1:M; % Assign each node initially to its own cluster. U = eye(M); % Cluster membership matrix level = level + 1; % Compute the modularity matrix Q = ComputeModularityMatrix(A_merge); i=0; % Initialize node index conv=1; % Initialize convergence counter while conv<M % Repeat iterations until no move of a node occurs i = i+1; % Choose node i clust_i = newassigns(i); % Which cluster does i belong to? U_clust_i = U(:, clust_i); % Membership vector of i's cluster % Contribution to modularity of having i in clust_i: Qloss = U_clust_i'*Q(:, i) + Q(i, :)*U_clust_i - 2*Q(i, i); % Compute the set of all ajacent clusters of node i neigh_i = (A_merge(i, :) > 0); % Neighbors of i (according to A) clust_neigh_i = unique(newassigns(neigh_i)); % Cluster nhood of i clust_neigh_i = setdiff(clust_neigh_i, clust_i); % Don't consider the cluster of i % Combine i with all neighboring clusters and find the best: best_Qgain = -Inf; % Initialize best modularity change for J=clust_neigh_i % Contribution to modularity of having i in cluster J: Qgain = U(:, J)'*Q(:, i) + Q(i, :)*U(:, J); % Find the best move for node i if Qgain > best_Qgain % Check if better than earlier best_Qgain = Qgain; best_J = J; % Save index end end % Move i to cluster best_J, if it increases modularity: if best_Qgain > max(0, Qloss) newassigns(i) = best_J; U(i, clust_i) = 0; U(i, best_J) = 1; conv = 1; % Start the countdown from the beginning % Otherwise increase the counter: else conv = conv+1; end % After node N, go back to node 1: if i==M i=0; end end [U, newassigns] = LMBOP_reorganize(newassigns); %% Convergence Step % Announce the clustering in terms of the original graph: oldassigns = fullassigns; for i = 1:max(oldassigns) J = (oldassigns == i); fullassigns(J) = newassigns(i); end % Check convergence: if fullassigns == oldassigns U = LMBOP_reorganize(origassigns); break; end % If not converged, continue: % Reorganize clusters, rebuild U and compute cluster sizes: [U, fullassigns] = LMBOP_reorganize(fullassigns); % Reorganize according to original indices: origassigns = fullassigns; for i = 1:N origassigns(i) = fullassigns(randidx==i); end end function Q = ComputeModularityMatrix(A) % Compute the modularity matrix vol = sum(sum(A)); din = sum(A,1); % the indegree vector dout = sum(A,2); % the outdegree vector D = (dout * din)/vol; Q = (A - D); % Compute the modularity matrix function [U, newassigns] = LMBOP_reorganize(oldassigns) N = numel(oldassigns); U = zeros(N); for i = 1:N, U(:,i) = (oldassigns == i); end; n_of_clusters = numel(unique(oldassigns)); [clsizes, idx] = sort(sum(U), 'descend'); idx = idx(1:n_of_clusters); U = U(:,idx); newassigns = 0*oldassigns; for i = 1:n_of_clusters old_id = idx(i); newassigns(oldassigns == old_id) = i; end;
github
MarcoSaerens/networkDLA_matlab-master
Alg_04_02_Brandes.m
.m
networkDLA_matlab-master/ToReview/Chapter04_CentralityMeasures/Alg_04_02_Brandes/Alg_04_02_Brandes.m
4,966
ibm852
acadc590c403c640520a474836f74692
function bet = Alg_04_02_Brandes(C) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Author: Masashi Shimbo (2018). % % Source: François Fouss, Marco Saerens and Masashi Shimbo (2016). % "Algorithms and models for network data and link analysis". % Cambridge University Press. % % Description: Computes the vector containing the Freeman's centrality scores % using Brandes's algorithm. % % INPUT: % ------- % - C: the (n x n) cost matrix of a directed graph. % To allow a sparse matrix to represent C, components 0 in C are taken % as Inf; that is, corresponding edges are nonexistent. % % OUTPUT: % ------- % - bet: The (n x 1) vector of betweenness scores. % % NOTE: Requires PriorityQueue.m. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [n, nc] = size(C); if (n ~= nc) error('Cost matrix not square'); end % Both 0 and +Inf in cost matrix C represent "no edge". % C(C == Inf) = 0; % use 0 uniformly to represent "no edge" from now on. bet = zeros(n, 1); for i = 1:n % pass 1: run Dijkstra's method with node i as the origin [~, sigma, pred, S] = Dijkstra(C, i); % pass 2: collect dependency scores bet = collectDeps(bet, S, sigma, pred, i, n); end % N.B. According to the original definition of Freeman's betweenness, % 'bet' must be halved for undirected graphs, but this process is omitted. end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [dist, sigma, pred, S] = Dijkstra(C, origin) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Description: A veriation of Dijkstra's shortest-path algorithm that % computes all shortest paths from a given origin node. % % INPUT: % ------- % - C : the (n x n) cost matrix of a directed graph % : A 0 entry represents no edge exists between the corresponding nodes % : (equivalent of +Inf) % - origin : the initial node % % OUTPUT: % ------- % - dist : (1 x n) vector of shortest distance to each node from origin % - sigma: (1 x n) vector holding the number of shortest-distance paths % to each node % - pred : (n x n) binary matrix representing the shortest-path DAG % pred(i, j) == 1 implies that node j is a predecessor of % node i on a shortest path from the origin % - S : list of nodes reachable from the origin, in decscending order % of the distance from the origin (i.e., furthest first, origin % last) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n = size(C, 1); % number of nodes % pred(k, :) = vector indicating the optimal predecessors of node k pred = zeros(n, n); % pred = sparse(n, n); % for huge graphs, use sparse sigma = zeros(1, n); sigma(origin) = 1; % '\delta' on the book dist = Inf(1, n); dist(origin) = 0; S = []; % stack of "closed" nodes Q = PriorityQueue(n); Q.insert(origin, 0); while Q.size ~= 0 [j, ~] = Q.extractMin; S = [j, S]; % C(:, j) = 0; % optional; not sure how effective this is for speed up % "relax" edges emanating from j succs = (C(j, :) > 0 & C(j, :) ~= Inf); altDist = C(j, :) + dist(j) * succs; updatedOrTied = succs & (altDist <= dist); updated = updatedOrTied & (altDist < dist); for k = find(updated) sigma(k) = 0; pred(k, :) = 0; if dist(k) == Inf Q.insert(k, altDist(k)); else Q.decreaseKey(k, altDist(k)); end dist(k) = altDist(k); end pred(updatedOrTied, j) = 1; sigma = sigma + sigma(j) * updatedOrTied; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function bet = collectDeps(bet, S, sigma, pred, origin, n) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Description: Collect the dependency scores of nodes, traversing the % shortest-path DAG backward towards the origin. % % INPUT: % ------- % - bet : (n x 1) vector holding the betweenness scores of nodes. % - sigma : (1 x n) vector holding the number of shortest-distance paths % to each node. % - pred : (n x n) matrix holding the set of predecessors along shortest % paths representing a shortest-path DAG from the origin. % - origin: the initial node. % - S : list of nodes reachable from the origin, in decscending order % of the distance from the origin (i.e., furthest node first). % % OUTPUT: % ------- % - bet: updated vector of betweeness scores (n x 1). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dep = zeros(1, n); pred(:, origin) = 0; for k = S preds = find(pred(k, :)); dep(preds) = dep(preds) + (sigma(preds) / sigma(k)) * (1 + dep(k)); bet(k) = bet(k) + dep(k); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
fangq/brain2mesh-master
polylinesimplify.m
.m
brain2mesh-master/polylinesimplify.m
1,639
utf_8
775bed53f6eef19868915b208d8f9c92
function [newnodes, len]=polylinesimplify(nodes, minangle) % % [newnodes, len]=polylinesimplify(nodes, minangle) % % Calculate a simplified polyline by removing nodes where two adjacent % segment have an angle less than a specified limit % % author: Qianqian Fang (q.fang at neu.edu) % % input: % node: an N x 3 array defining each vertex of the polyline in % sequential order % minangle:(optional) minimum segment angle in radian, if not given, use % 0.75*pi % % output: % newnodes: the updated node list; start/end will not be removed % len: the length of each segment between the start and the end points % % % -- this function is part of brain2mesh toolbox (http://mcx.space/brain2mesh) % License: GPL v3 or later, see LICENSE.txt for details % if(nargin<2) minangle=0.75*pi; end v=segvec(nodes(1:end-1,:), nodes(2:end,:)); ang=acos(max(min(sum(-v(1:end-1,:).*(v(2:end,:)),2),1),-1)); newnodes=nodes; newv=v; newang=ang; idx=find(newang<minangle); while(~isempty(idx)) newnodes(idx+1,:)=[]; newv(idx+1,:)=[]; newang(idx)=[]; idx=unique(idx-(0:(length(idx)-1))'); idx1=idx(idx<size(newnodes,1)); newv(idx1,:) =segvec(newnodes(idx1,:),newnodes(idx1+1,:)); idx1=idx(idx<size(newv,1)); newang(idx1) =acos(sum(-newv(idx1,:).*(newv(idx1+1,:)),2)); idx0=idx(idx>1); newang(idx0-1)=acos(sum(-newv(idx0-1,:).*(newv(idx0,:)),2)); idx=find(newang<minangle); end if(nargout>1) len=newnodes(1:end-1,:) - newnodes(2:end,:); len=sqrt(sum(len.*len,2)); end function v=segvec(n1, n2) v=n2-n1; normals=sqrt(sum(v.*v,2)); v=v./repmat(normals,1,size(v,2));
github
fangq/brain2mesh-master
brain1020.m
.m
brain2mesh-master/brain1020.m
16,256
utf_8
699e84568f37319e6530f1b69a9217cd
function [landmarks, curves, initpoints]=brain1020(node, face, initpoints, perc1, perc2, varargin) % % landmarks=brain1020(node, face) % or % landmarks=brain1020(node, face, [], perc1, perc2) % landmarks=brain1020(node, face, initpoints) % landmarks=brain1020(node, face, initpoints, perc1, perc2) % [landmarks, curves, initpoints]=brain1020(node, face, initpoints, perc1, perc2, options) % % compute 10-20-like scalp landmarks with user-specified density on a head mesh % % author: Qianqian Fang (q.fang at neu.edu) % % == Input == % node: full head mesh node list % face: full head mesh element list- a 3-column array defines face list % for the exterior (scalp) surface; a 4-column array defines the % tetrahedral mesh of the full head. % initpoints:(optional) one can provide the 3-D coordinates of the below % 5 landmarks: nz, iz, lpa, rpa, cz0 (cz0 is the initial guess of cz) % initpoints can be a struct with the above landmark names % as subfield, or a 5x3 array definining these points in the above % mentioned order (one can use the output landmarks as initpoints) % perc1:(optional) the percentage of geodesic distance towards the rim of % the landmarks; this is the first number of the 10-20 or 10-10 or % 10-5 systems, in this case, it is 10 (for 10%). default is 10. % perc2:(optional) the percentage of geodesic distance twoards the center % of the landmarks; this is the 2nd number of the 10-20 or 10-10 or % 10-5 systems, which are 20, 10, 5, respectively, default is 20 % options: one can add additional 'name',value pairs to the function % call to provide additional control. Supported optional names % include % 'display' : [1] or 0, if set to 1, plot landmarks and curves % 'cztol' : [1e-6], the tolerance for searching cz that bisects % saggital and coronal reference curves % 'maxcziter' : [10] the maximum number of iterations to update % cz to bisect both cm and sm curves % 'baseplane' : [1] or 0, if set to 1, create the reference % curves along the primary control points (nz,iz,lpa,rpa) % 'minangle' : [0] if set to a positive number, this specifies % the minimum angle (radian) between adjacent segments in % the reference curves to avoid sharp turns (such as the % dips near ear canals), this parameter will be % passed to polylinesimplify to simplify the curve first. % Please be noted that the landmarks generated with % simplified curves may not land exactly on the surface. % % == Output == % landmarks: a structure storing all computed landmarks. The subfields % include two sections: % 1) 'nz','iz','lpa','rpa','cz': individual 3D positions defining % the 5 principle reference points: nasion (nz), inion (in), % left-pre-auricular-point (lpa), right-pre-auricular-point % (rpa) and vertex (cz) - cz is updated from initpoints to bisect % the saggital and coronal ref. curves. % 2) landmarks along specific cross-sections, each cross section % may contain more than 1 position. The cross-sections are % named in the below format: % 2.1: a fieldname starting from 'c', 's' and 'a' indicates % the cut is along coronal, saggital and axial directions, % respectively; % 2.2: a name starting from 'pa' indicates the cut is along the % axial plane acrossing principle reference points % 2.3: the following letter 'm', 'a','p' suggests the 'medial', % 'anterior' and 'posterior', respectively % 2.4: the last letter 'l' or 'r' suggests the 'left' and % 'right' side, respectively % 2.5: non-medial coronal cuts are divided into two groups, the % anterior group (ca{l,r}) and the posterior group % (cp{lr}), with a number indicates the node spacing % stepping away from the medial plane. % % for example, landmarks.cm refers to the landmarks along the % medial-coronal plane, anterior-to-posteior order % similarly, landmarks.cpl_3 refers to the landmarks along the % coronal (c) cut plane located in the posterior-left side % of the head, with 3 saggital landmark spacing from the % medial-coronal reference curve. % curves: a structure storing all computed cross-section curves. The % subfields are named similarly to landmarks, except that % landmarks stores the 10-? points, and curves stores the % detailed cross-sectional curves % initpoints: a 5x3 array storing the principle reference points in the % orders of 'nz','iz','lpa','rpa','cz' % % % == Example == % See brain2mesh/examples/SPM_example_brain.m for an example % https://github.com/fangq/brain2mesh/blob/master/examples/SPM_example_brain.m % % == Dependency == % This function requires a pre-installed Iso2Mesh Toolbox % Download URL: http://github.com/fangq/iso2mesh % Website: http://iso2mesh.sf.net % % == Reference == % If you use this function in your publication, the authors of this toolbox % apprecitate if you can cite the below paper % % Anh Phong Tran, Shijie Yan and Qianqian Fang, "Improving model-based % fNIRS analysis using mesh-based anatomical and light-transport models," % Neurophotonics, 7(1), 015008, 2020 % URL: http://dx.doi.org/10.1117/1.NPh.7.1.015008 % % % -- this function is part of brain2mesh toolbox (http://mcx.space/brain2mesh) % License: GPL v3 or later, see LICENSE.txt for details % if(nargin<2) error('one must provide a head-mesh to call this function'); end if(isempty(node) || isempty(face) || size(face,2)<=2 || size(node,2)<3) error('input node must have 3 columns, face must have at least 3 columns'); end if(nargin<5) perc2=20; if(nargin<4) perc1=10; if(nargin<3) initpoints=[]; end end end % parse user options opt=varargin2struct(varargin{:}); showplot=jsonopt('display',1,opt); baseplane=jsonopt('baseplane',1,opt); tol=jsonopt('cztol',1e-6,opt); dosimplify=jsonopt('minangle',0,opt); maxcziter=jsonopt('maxcziter',10,opt); if(nargin >=2 && ... ((isstruct(initpoints) && ~isfield(initpoints, 'iz')) ... || (~isstruct(initpoints) && size(initpoints,1)==3))) if(isstruct(initpoints)) nz=initpoints.nz(:).'; lpa=initpoints.lpa(:).'; rpa=initpoints.rpa(:).'; else nz=initpoints(1,:); lpa=initpoints(2,:); rpa=initpoints(3,:); end % This assume nz, lpa, rpa, iz are on the same plane to find iz on the head % surface pa_mid = mean([lpa;rpa]); v0 = pa_mid-nz; [iz, e0] = ray2surf(node, face, nz, v0, '>'); % To find cz, we assume that the vector from iz nz midpoint to cz is perpendicular % to the plane defined by nz, lpa, and rpa. iznz_mid = (nz+iz)*0.5; v0 = cross(nz-rpa, lpa-rpa); [cz, e0] = ray2surf(node, face, iznz_mid, v0, '>'); if(isstruct(initpoints)) initpoints.iz=iz; initpoints.cz=cz; else initpoints=[initpoints(1,:); iz; initpoints(2:3,:); cz]; end end % convert initpoints input to a 5x3 array if(isstruct(initpoints)) initpoints=struct('nz', initpoints.nz(:).','iz', initpoints.iz(:).',... 'lpa',initpoints.lpa(:).','rpa',initpoints.rpa(:).',... 'cz', initpoints.cz(:).'); landmarks=initpoints; if(exist('struct2array','file')) initpoints=struct2array(initpoints); initpoints=reshape(initpoints(:),3,length(initpoints(:))/3)'; else initpoints=[initpoints.nz(:).'; initpoints.iz(:).';initpoints.lpa(:).';initpoints.rpa(:).';initpoints.cz(:).']; end end % convert tetrahedral mesh into a surface mesh if(size(face,2)>=4) face=volface(face(:,1:4)); end % remove nodes not located in the surface [node,face]=removeisolatednode(node,face); % if initpoints is not sufficient, ask user to interactively select nz, iz, lpa, rpa and cz first if(isempty(initpoints) || size(initpoints,1)<5) hf=figure; plotmesh(node,face); set(hf,'userdata',initpoints); if(~isempty(initpoints)) hold on; plotmesh(initpoints,'gs', 'LineWidth',4); end idx=size(initpoints,1)+1; landmarkname={'Nasion','Inion','Left-pre-auricular-point','Right-pre-auricular-point','Vertex/Cz','Done'}; title(sprintf('Rotate the mesh, select data cursor, click on P%d: %s',idx, landmarkname{idx})); rotate3d('on'); set(datacursormode(hf),'UpdateFcn',@myupdatefcn); end % wait until all 5 points are defined if(exist('hf','var')) try while(size(get(hf,'userdata'),1)<5) pause(0.1); end catch error('user aborted'); end datacursormode(hf,'off'); initpoints=get(hf,'userdata'); close(hf); end if(showplot) disp(initpoints); end % save input initpoints to landmarks output, cz is not finalized if(size(initpoints,1)>=5) landmarks=struct('nz', initpoints(1,:),'iz', initpoints(2,:),... 'lpa',initpoints(3,:),'rpa',initpoints(4,:),... 'cz', initpoints(5,:)); end % at this point, initpoints contains {nz, iz, lpa, rpa, cz0} % plot the head mesh if(showplot) figure; hp=plotmesh(node,face,'facealpha',0.6,'facecolor',[1 0.8 0.7]); if(~isoctavemesh) set(hp,'linestyle','none'); end camlight; lighting gouraud hold on; end lastcz=[1 1 1]*inf; cziter=0; %% Find cz that bisects cm and sm curves within a tolerance, using UI 10-10 approach while(norm(initpoints(5,:)-lastcz)>tol && cziter<maxcziter) %% Step 1: nz, iz and cz0 to determine saggital reference curve nsagg=slicesurf(node, face, initpoints([1,2,5],:)); %% Step 1.1: get cz1 as the mid-point between iz and nz [slen, nsagg]=polylinelen(nsagg, initpoints(1,:), initpoints(2,:), initpoints(5,:)); if(dosimplify) [nsagg, slen]=polylinesimplify(nsagg,dosimplify); end [idx, weight, cz]=polylineinterp(slen, sum(slen)*0.5, nsagg); initpoints(5,:)=cz(1,:); %% Step 1.2: lpa, rpa and cz1 to determine coronal reference curve, update cz1 curves.cm=slicesurf(node, face, initpoints([3,4,5],:)); [len, curves.cm]=polylinelen(curves.cm, initpoints(3,:), initpoints(4,:), initpoints(5,:)); if(dosimplify) [curves.cm, len]=polylinesimplify(curves.cm,dosimplify); end [idx, weight, coro]=polylineinterp(len, sum(len)*0.5, curves.cm); lastcz=initpoints(5,:); initpoints(5,:)=coro(1,:); cziter=cziter+1; if(showplot) fprintf('cz iteration %d error %e\n',cziter, norm(initpoints(5,:)-lastcz)); end end % set the finalized cz to output landmarks.cz=initpoints(5,:); if(showplot) disp(initpoints); end %% Step 2: subdivide saggital (sm) and coronal (cm) ref curves [idx, weight, coro]=polylineinterp(len, sum(len)*(perc1:perc2:(100-perc1))*0.01, curves.cm); landmarks.cm=coro; % t7, c3, cz, c4, t8 curves.sm=slicesurf(node, face, initpoints([1,2,5],:)); [slen, curves.sm]=polylinelen(curves.sm, initpoints(1,:), initpoints(2,:), initpoints(5,:)); if(dosimplify) [curves.sm, slen]=polylinesimplify(curves.sm,dosimplify); end [idx, weight, sagg]=polylineinterp(slen, sum(slen)*(perc1:perc2:(100-perc1))*0.01, curves.sm); landmarks.sm=sagg; % fpz, fz, cz, pz, oz %% Step 3: fpz, t7 and oz to determine left 10% axial reference curve [landmarks.aal, curves.aal, landmarks.apl, curves.apl]=slicesurf3(node,face,landmarks.sm(1,:), landmarks.cm(1,:), landmarks.sm(end,:),perc2*2); %% Step 4: fpz, t8 and oz to determine right 10% axial reference curve [landmarks.aar, curves.aar, landmarks.apr, curves.apr]=slicesurf3(node,face,landmarks.sm(1,:), landmarks.cm(end,:),landmarks.sm(end,:), perc2*2); %% show plots of the landmarks if(showplot) plotmesh(curves.sm,'r-','LineWidth',1); plotmesh(curves.cm,'g-','LineWidth',1); plotmesh(curves.aal,'k-','LineWidth',1); plotmesh(curves.aar,'k-','LineWidth',1); plotmesh(curves.apl,'b-','LineWidth',1); plotmesh(curves.apr,'b-','LineWidth',1); plotmesh(landmarks.sm,'ro','LineWidth',2); plotmesh(landmarks.cm,'go','LineWidth',2); plotmesh(landmarks.aal,'ko','LineWidth',2); plotmesh(landmarks.aar,'mo','LineWidth',2); plotmesh(landmarks.apl,'ko','LineWidth',2); plotmesh(landmarks.apr,'mo','LineWidth',2); end %% Step 5: computing all anterior coronal cuts, moving away from the medial cut (cm) toward frontal idxcz=closestnode(landmarks.sm,landmarks.cz); skipcount=max(floor(10/perc2),1); for i=1:size(landmarks.aal,1)-skipcount step=(perc2*25)*0.1*(1+((perc2<20 + perc2<10) && i==size(landmarks.aal,1)-skipcount)); [landmarks.(sprintf('cal_%d',i)), leftpart, landmarks.(sprintf('car_%d',i)), rightpart]=slicesurf3(node,face,landmarks.aal(i,:), landmarks.sm(idxcz-i,:), landmarks.aar(i,:),step); if(showplot) plotmesh(leftpart,'k-','LineWidth',1); plotmesh(rightpart,'k-','LineWidth',1); plotmesh(landmarks.(sprintf('cal_%d',i)),'yo','LineWidth',2); plotmesh(landmarks.(sprintf('car_%d',i)),'co','LineWidth',2); end end %% Step 6: computing all posterior coronal cuts, moving away from the medial cut (cm) toward occipital for i=1:size(landmarks.apl,1)-skipcount step=(perc2*25)*0.1*(1+((perc2<20 + perc2<10) && i==size(landmarks.apl,1)-skipcount)); [landmarks.(sprintf('cpl_%d',i)), leftpart, landmarks.(sprintf('cpr_%d',i)), rightpart]=slicesurf3(node,face,landmarks.apl(i,:), landmarks.sm(idxcz+i,:), landmarks.apr(i,:),step); if(showplot) plotmesh(leftpart,'k-','LineWidth',1); plotmesh(rightpart,'k-','LineWidth',1); plotmesh(landmarks.(sprintf('cpl_%d',i)),'yo','LineWidth',2); plotmesh(landmarks.(sprintf('cpr_%d',i)),'co','LineWidth',2); end end %% Step 7: create the axial cuts across priciple ref. points: left: nz, lpa, iz, right: nz, rpa, iz if(baseplane && perc2<=10) [landmarks.paal, curves.paal, landmarks.papl, curves.papl]=slicesurf3(node,face,landmarks.nz, landmarks.lpa, landmarks.iz, perc2*2); [landmarks.paar, curves.paar, landmarks.papr, curves.papr]=slicesurf3(node,face,landmarks.nz, landmarks.rpa, landmarks.iz, perc2*2); if(showplot) plotmesh(curves.paal,'k-','LineWidth',1); plotmesh(curves.paar,'k-','LineWidth',1); plotmesh(curves.papl,'k-','LineWidth',1); plotmesh(curves.papr,'k-','LineWidth',1); plotmesh(landmarks.paal,'yo','LineWidth',2); plotmesh(landmarks.papl,'co','LineWidth',2); plotmesh(landmarks.paar,'yo','LineWidth',2); plotmesh(landmarks.papr,'co','LineWidth',2); end end %%------------------------------------------------------------------------------------- % helper functions %-------------------------------------------------------------------------------------- % the respond function when a data-cursor tip to popup function txt=myupdatefcn(empt,event_obj) pt=get(gcf,'userdata'); pos = get(event_obj,'Position'); %idx= get(event_obj,'DataIndex'); txt = {['x: ',num2str(pos(1))],... ['y: ',num2str(pos(2))],['z: ',num2str(pos(3))]}; if(~isempty(pt) && ismember(pos,pt,'rows')) return; end targetup=get(get(event_obj,'Target'),'parent'); idx=size(pt,1)+2; landmarkname={'Nasion','Inion','Left-pre-auricular-point','Right-pre-auricular-point','Vertex/Cz','Done'}; title(sprintf('Rotate the mesh, select data cursor, click on P%d: %s',idx, landmarkname{idx})); set(targetup,'userdata',struct('pos',pos)); pt=[pt;pos]; if(size(pt,1)<6) set(gcf,'userdata',pt); end hpt=findobj(gcf,'type','line'); if(~isempty(hpt)) set(hpt,'xdata',pt(:,1),'ydata',pt(:,2),'zdata',pt(:,3)); else hold on; plotmesh([pt;pos],'gs', 'LineWidth',4); end disp(['Adding landmark ' landmarkname{idx-1} ':' txt]); datacursormode(gcf,'off'); rotate3d('on');
github
fangq/brain2mesh-master
intriangulation.m
.m
brain2mesh-master/intriangulation.m
19,161
utf_8
91270a58325ab59566ceae6f98ae81f1
function in = intriangulation(vertices,faces,testp,heavytest) % intriangulation: Test points in 3d wether inside or outside a (closed) triangulation % usage: in = intriangulation(vertices,faces,testp,heavytest) % % arguments: (input) % vertices - points in 3d as matrix with three columns % % faces - description of triangles as matrix with three columns. % Each row contains three indices into the matrix of vertices % which gives the three cornerpoints of the triangle. % % testp - points in 3d as matrix with three columns % % heavytest - int n >= 0. Perform n additional randomized rotation tests. % % IMPORTANT: the set of vertices and faces has to form a watertight surface! % % arguments: (output) % in - a vector of length size(testp,1), containing 0 and 1. % in(nr) = 0: testp(nr,:) is outside the triangulation % in(nr) = 1: testp(nr,:) is inside the triangulation % in(nr) = -1: unable to decide for testp(nr,:) % % Thanks to Adam A for providing the FEX submission voxelise. The % algorithms of voxelise form the algorithmic kernel of intriangulation. % % Thanks to Sven to discussions about speed and avoiding problems in % special cases. % % Example usage: % % n = 10; % vertices = rand(n, 3)-0.5; % Generate random points % tetra = delaunayn(vertices); % Generate delaunay triangulization % faces = freeBoundary(TriRep(tetra,vertices)); % use free boundary as triangulation % n = 1000; % testp = 2*rand(n,3)-1; % Generate random testpoints % in = intriangulation(vertices,faces,testp); % % Plot results % h = trisurf(faces,vertices(:,1),vertices(:,2),vertices(:,3)); % set(h,'FaceColor','black','FaceAlpha',1/3,'EdgeColor','none'); % hold on; % plot3(testp(:,1),testp(:,2),testp(:,3),'b.'); % plot3(testp(in==1,1),testp(in==1,2),testp(in==1,3),'ro'); % % See also: intetrahedron, tsearchn, inpolygon % % Author: Johannes Korsawe, heavily based on voxelise from Adam A. % E-mail: [email protected] % Release: 1.3 % Release date: 25/09/2013 % check number of inputs if nargin<3, fprintf('??? Error using ==> intriangulation\nThree input matrices are needed.\n');in=[];return; end if nargin==3, heavytest = 0; end % check size of inputs if size(vertices,2)~=3 || size(faces,2)~=3 || size(testp,2)~=3, fprintf('??? Error using ==> intriagulation\nAll input matrices must have three columns.\n');in=[];return; end ipmax = max(faces(:));zerofound = ~isempty(find(faces(:)==0, 1)); if ipmax>size(vertices,1) || zerofound, fprintf('??? Error using ==> intriangulation\nThe triangulation data is defect. use trisurf(faces,vertices(:,1),vertices(:,2),vertices(:,3)) for test of deficiency.\n');return; end % loop for heavytest inreturn = zeros(size(testp,1),1);VER = vertices;TESTP = testp; for n = 1:heavytest+1, % Randomize if n>1, v=rand(1,3);D=rotmatrix(v/norm(v),rand*180/pi);vertices=VER*D;testp = TESTP*D; else, vertices=VER; end % Preprocessing data meshXYZ = zeros(size(faces,1),3,3); for loop = 1:3, meshXYZ(:,:,loop) = vertices(faces(:,loop),:); end % Basic idea (ingenious from FeX-submission voxelise): % If point is inside, it will cross the triangulation an uneven number of times in each direction (x, -x, y, -y, z, -z). % The function VOXELISEinternal is about 98% identical to its version inside voxelise.m. % This includes the elaborate comments. Thanks to Adam A! % z-direction: % intialization of results and correction list [in,cl] = VOXELISEinternal(testp(:,1),testp(:,2),testp(:,3),meshXYZ); % x-direction: % has only to be done for those points, that were not determinable in the first step --> cl [in2,cl2] = VOXELISEinternal(testp(cl,2),testp(cl,3),testp(cl,1),meshXYZ(:,[2,3,1],:)); % Use results of x-direction that determined "inside" in(cl(in2==1)) = 1; % remaining indices with unclear result cl = cl(cl2); % y-direction: % has only to be done for those points, that were not determinable in the first and second step --> cl [in3,cl3] = VOXELISEinternal(testp(cl,3),testp(cl,1),testp(cl,2),meshXYZ(:,[3,1,2],:)); % Use results of y-direction that determined "inside" in(cl(in3==1)) = 1; % remaining indices with unclear result cl = cl(cl3); % mark those indices, where all three tests have failed in(cl) = -1; if n==1, inreturn = in; % Starting guess else, % if ALWAYS inside, use as inside! % I = find(inreturn ~= in); % inreturn(I(in(I)==0)) = 0; % if AT LEAST ONCE inside, use as inside! I = find(inreturn ~= in); inreturn(I(in(I)==1)) = 1; end end in = inreturn; end %========================================================================== function [OUTPUT,correctionLIST] = VOXELISEinternal(testx,testy,testz,meshXYZ) % Prepare logical array to hold the logical data: OUTPUT = false(size(testx,1),1); %Identify the min and max x,y coordinates of the mesh: meshZmin = min(min(meshXYZ(:,3,:)));meshZmax = max(max(meshXYZ(:,3,:))); %Identify the min and max x,y,z coordinates of each facet: meshXYZmin = min(meshXYZ,[],3);meshXYZmax = max(meshXYZ,[],3); %====================================================== % TURN OFF DIVIDE-BY-ZERO WARNINGS %====================================================== %This prevents the Y1predicted, Y2predicted, Y3predicted and YRpredicted %calculations creating divide-by-zero warnings. Suppressing these warnings %doesn't affect the code, because only the sign of the result is important. %That is, 'Inf' and '-Inf' results are ok. %The warning will be returned to its original state at the end of the code. warningrestorestate = warning('query', 'MATLAB:divideByZero'); %warning off MATLAB:divideByZero %====================================================== % START COMPUTATION %====================================================== correctionLIST = []; %Prepare to record all rays that fail the voxelisation. This array is built on-the-fly, but since %it ought to be relatively small should not incur too much of a speed penalty. % Loop through each testpoint. % The testpoint-array will be tested by passing rays in the z-direction through % each x,y coordinate of the testpoints, and finding the locations where the rays cross the mesh. facetCROSSLIST = zeros(1,1e3); % uses countindex: nf nm = size(meshXYZmin,1); for loop = 1:length(OUTPUT), nf = 0; % % - 1a - Find which mesh facets could possibly be crossed by the ray: % possibleCROSSLISTy = find( meshXYZmin(:,2)<=testy(loop) & meshXYZmax(:,2)>=testy(loop) ); % % - 1b - Find which mesh facets could possibly be crossed by the ray: % possibleCROSSLIST = possibleCROSSLISTy( meshXYZmin(possibleCROSSLISTy,1)<=testx(loop) & meshXYZmax(possibleCROSSLISTy,1)>=testx(loop) ); % Do - 1a - and - 1b - faster possibleCROSSLISTy = find((testy(loop)-meshXYZmin(:,2)).*(meshXYZmax(:,2)-testy(loop))>0); possibleCROSSLISTx = (testx(loop)-meshXYZmin(possibleCROSSLISTy,1)).*(meshXYZmax(possibleCROSSLISTy,1)-testx(loop))>0; possibleCROSSLIST = possibleCROSSLISTy(possibleCROSSLISTx); if isempty(possibleCROSSLIST)==0 %Only continue the analysis if some nearby facets were actually identified % - 2 - For each facet, check if the ray really does cross the facet rather than just passing it close-by: % GENERAL METHOD: % 1. Take each edge of the facet in turn. % 2. Find the position of the opposing vertex to that edge. % 3. Find the position of the ray relative to that edge. % 4. Check if ray is on the same side of the edge as the opposing vertex. % 5. If this is true for all three edges, then the ray definitely passes through the facet. % % NOTES: % 1. If the ray crosses exactly on an edge, this is counted as crossing the facet. % 2. If a ray crosses exactly on a vertex, this is also taken into account. for loopCHECKFACET = possibleCROSSLIST' %Check if ray crosses the facet. This method is much (>>10 times) faster than using the built-in function 'inpolygon'. %Taking each edge of the facet in turn, check if the ray is on the same side as the opposing vertex. If so, let testVn=1 Y1predicted = meshXYZ(loopCHECKFACET,2,2) - ((meshXYZ(loopCHECKFACET,2,2)-meshXYZ(loopCHECKFACET,2,3)) * (meshXYZ(loopCHECKFACET,1,2)-meshXYZ(loopCHECKFACET,1,1))/(meshXYZ(loopCHECKFACET,1,2)-meshXYZ(loopCHECKFACET,1,3))); YRpredicted = meshXYZ(loopCHECKFACET,2,2) - ((meshXYZ(loopCHECKFACET,2,2)-meshXYZ(loopCHECKFACET,2,3)) * (meshXYZ(loopCHECKFACET,1,2)-testx(loop))/(meshXYZ(loopCHECKFACET,1,2)-meshXYZ(loopCHECKFACET,1,3))); if (Y1predicted > meshXYZ(loopCHECKFACET,2,1) && YRpredicted > testy(loop)) || (Y1predicted < meshXYZ(loopCHECKFACET,2,1) && YRpredicted < testy(loop)) || (meshXYZ(loopCHECKFACET,2,2)-meshXYZ(loopCHECKFACET,2,3)) * (meshXYZ(loopCHECKFACET,1,2)-testx(loop)) == 0 % testV1 = 1; %The ray is on the same side of the 2-3 edge as the 1st vertex. else % testV1 = 0; %The ray is on the opposite side of the 2-3 edge to the 1st vertex. % As the check is for ALL three checks to be true, we can continue here, if only one check fails continue; end %if Y2predicted = meshXYZ(loopCHECKFACET,2,3) - ((meshXYZ(loopCHECKFACET,2,3)-meshXYZ(loopCHECKFACET,2,1)) * (meshXYZ(loopCHECKFACET,1,3)-meshXYZ(loopCHECKFACET,1,2))/(meshXYZ(loopCHECKFACET,1,3)-meshXYZ(loopCHECKFACET,1,1))); YRpredicted = meshXYZ(loopCHECKFACET,2,3) - ((meshXYZ(loopCHECKFACET,2,3)-meshXYZ(loopCHECKFACET,2,1)) * (meshXYZ(loopCHECKFACET,1,3)-testx(loop))/(meshXYZ(loopCHECKFACET,1,3)-meshXYZ(loopCHECKFACET,1,1))); if (Y2predicted > meshXYZ(loopCHECKFACET,2,2) && YRpredicted > testy(loop)) || (Y2predicted < meshXYZ(loopCHECKFACET,2,2) && YRpredicted < testy(loop)) || (meshXYZ(loopCHECKFACET,2,3)-meshXYZ(loopCHECKFACET,2,1)) * (meshXYZ(loopCHECKFACET,1,3)-testx(loop)) == 0 % testV2 = 1; %The ray is on the same side of the 3-1 edge as the 2nd vertex. else % testV2 = 0; %The ray is on the opposite side of the 3-1 edge to the 2nd vertex. % As the check is for ALL three checks to be true, we can continue here, if only one check fails continue; end %if Y3predicted = meshXYZ(loopCHECKFACET,2,1) - ((meshXYZ(loopCHECKFACET,2,1)-meshXYZ(loopCHECKFACET,2,2)) * (meshXYZ(loopCHECKFACET,1,1)-meshXYZ(loopCHECKFACET,1,3))/(meshXYZ(loopCHECKFACET,1,1)-meshXYZ(loopCHECKFACET,1,2))); YRpredicted = meshXYZ(loopCHECKFACET,2,1) - ((meshXYZ(loopCHECKFACET,2,1)-meshXYZ(loopCHECKFACET,2,2)) * (meshXYZ(loopCHECKFACET,1,1)-testx(loop))/(meshXYZ(loopCHECKFACET,1,1)-meshXYZ(loopCHECKFACET,1,2))); if (Y3predicted > meshXYZ(loopCHECKFACET,2,3) && YRpredicted > testy(loop)) || (Y3predicted < meshXYZ(loopCHECKFACET,2,3) && YRpredicted < testy(loop)) || (meshXYZ(loopCHECKFACET,2,1)-meshXYZ(loopCHECKFACET,2,2)) * (meshXYZ(loopCHECKFACET,1,1)-testx(loop)) == 0 % testV3 = 1; %The ray is on the same side of the 1-2 edge as the 3rd vertex. else % testV3 = 0; %The ray is on the opposite side of the 1-2 edge to the 3rd vertex. % As the check is for ALL three checks to be true, we can continue here, if only one check fails continue; end %if nf=nf+1;facetCROSSLIST(nf)=loopCHECKFACET; end %for % Use only values ~=0 facetCROSSLIST = facetCROSSLIST(1:nf); % - 3 - Find the z coordinate of the locations where the ray crosses each facet: gridCOzCROSS = zeros(1,nf); for loopFINDZ = facetCROSSLIST % METHOD: % 1. Define the equation describing the plane of the facet. For a % more detailed outline of the maths, see: % http://local.wasp.uwa.edu.au/~pbourke/geometry/planeeq/ % Ax + By + Cz + D = 0 % where A = y1 (z2 - z3) + y2 (z3 - z1) + y3 (z1 - z2) % B = z1 (x2 - x3) + z2 (x3 - x1) + z3 (x1 - x2) % C = x1 (y2 - y3) + x2 (y3 - y1) + x3 (y1 - y2) % D = - x1 (y2 z3 - y3 z2) - x2 (y3 z1 - y1 z3) - x3 (y1 z2 - y2 z1) % 2. For the x and y coordinates of the ray, solve these equations to find the z coordinate in this plane. planecoA = meshXYZ(loopFINDZ,2,1)*(meshXYZ(loopFINDZ,3,2)-meshXYZ(loopFINDZ,3,3)) + meshXYZ(loopFINDZ,2,2)*(meshXYZ(loopFINDZ,3,3)-meshXYZ(loopFINDZ,3,1)) + meshXYZ(loopFINDZ,2,3)*(meshXYZ(loopFINDZ,3,1)-meshXYZ(loopFINDZ,3,2)); planecoB = meshXYZ(loopFINDZ,3,1)*(meshXYZ(loopFINDZ,1,2)-meshXYZ(loopFINDZ,1,3)) + meshXYZ(loopFINDZ,3,2)*(meshXYZ(loopFINDZ,1,3)-meshXYZ(loopFINDZ,1,1)) + meshXYZ(loopFINDZ,3,3)*(meshXYZ(loopFINDZ,1,1)-meshXYZ(loopFINDZ,1,2)); planecoC = meshXYZ(loopFINDZ,1,1)*(meshXYZ(loopFINDZ,2,2)-meshXYZ(loopFINDZ,2,3)) + meshXYZ(loopFINDZ,1,2)*(meshXYZ(loopFINDZ,2,3)-meshXYZ(loopFINDZ,2,1)) + meshXYZ(loopFINDZ,1,3)*(meshXYZ(loopFINDZ,2,1)-meshXYZ(loopFINDZ,2,2)); planecoD = - meshXYZ(loopFINDZ,1,1)*(meshXYZ(loopFINDZ,2,2)*meshXYZ(loopFINDZ,3,3)-meshXYZ(loopFINDZ,2,3)*meshXYZ(loopFINDZ,3,2)) - meshXYZ(loopFINDZ,1,2)*(meshXYZ(loopFINDZ,2,3)*meshXYZ(loopFINDZ,3,1)-meshXYZ(loopFINDZ,2,1)*meshXYZ(loopFINDZ,3,3)) - meshXYZ(loopFINDZ,1,3)*(meshXYZ(loopFINDZ,2,1)*meshXYZ(loopFINDZ,3,2)-meshXYZ(loopFINDZ,2,2)*meshXYZ(loopFINDZ,3,1)); if abs(planecoC) < 1e-14 planecoC=0; end gridCOzCROSS(facetCROSSLIST==loopFINDZ) = (- planecoD - planecoA*testx(loop) - planecoB*testy(loop)) / planecoC; end %for if isempty(gridCOzCROSS),continue;end %Remove values of gridCOzCROSS which are outside of the mesh limits (including a 1e-12 margin for error). gridCOzCROSS = gridCOzCROSS( gridCOzCROSS>=meshZmin-1e-12 & gridCOzCROSS<=meshZmax+1e-12 ); %Round gridCOzCROSS to remove any rounding errors, and take only the unique values: gridCOzCROSS = round(gridCOzCROSS*1e10)/1e10; % Replacement of the call to unique (gridCOzCROSS = unique(gridCOzCROSS);) by the following line: tmp = sort(gridCOzCROSS);I=[0,tmp(2:end)-tmp(1:end-1)]~=0;gridCOzCROSS = [tmp(1),tmp(I)]; % - 4 - Label as being inside the mesh all the voxels that the ray passes through after crossing one facet before crossing another facet: if rem(numel(gridCOzCROSS),2)==0 % Only rays which cross an even number of facets are voxelised for loopASSIGN = 1:(numel(gridCOzCROSS)/2) voxelsINSIDE = (testz(loop)>gridCOzCROSS(2*loopASSIGN-1) & testz(loop)<gridCOzCROSS(2*loopASSIGN)); OUTPUT(loop) = voxelsINSIDE; if voxelsINSIDE,break;end end %for elseif numel(gridCOzCROSS)~=0 % Remaining rays which meet the mesh in some way are not voxelised, but are labelled for correction later. correctionLIST = [ correctionLIST; loop ]; end %if end %if end %for %====================================================== % RESTORE DIVIDE-BY-ZERO WARNINGS TO THE ORIGINAL STATE %====================================================== warning(warningrestorestate) % J.Korsawe: A correction is not possible as the testpoints need not to be % ordered in any way. % voxelise contains a correction algorithm which is appended here % without changes in syntax. return %====================================================== % USE INTERPOLATION TO FILL IN THE RAYS WHICH COULD NOT BE VOXELISED %====================================================== %For rays where the voxelisation did not give a clear result, the ray is %computed by interpolating from the surrounding rays. countCORRECTIONLIST = size(correctionLIST,1); if countCORRECTIONLIST>0 %If necessary, add a one-pixel border around the x and y edges of the %array. This prevents an error if the code tries to interpolate a ray at %the edge of the x,y grid. if min(correctionLIST(:,1))==1 || max(correctionLIST(:,1))==numel(gridCOx) || min(correctionLIST(:,2))==1 || max(correctionLIST(:,2))==numel(gridCOy) gridOUTPUT = [zeros(1,voxcountY+2,voxcountZ);zeros(voxcountX,1,voxcountZ),gridOUTPUT,zeros(voxcountX,1,voxcountZ);zeros(1,voxcountY+2,voxcountZ)]; correctionLIST = correctionLIST + 1; end for loopC = 1:countCORRECTIONLIST voxelsforcorrection = squeeze( sum( [ gridOUTPUT(correctionLIST(loopC,1)-1,correctionLIST(loopC,2)-1,:) ,... gridOUTPUT(correctionLIST(loopC,1)-1,correctionLIST(loopC,2),:) ,... gridOUTPUT(correctionLIST(loopC,1)-1,correctionLIST(loopC,2)+1,:) ,... gridOUTPUT(correctionLIST(loopC,1),correctionLIST(loopC,2)-1,:) ,... gridOUTPUT(correctionLIST(loopC,1),correctionLIST(loopC,2)+1,:) ,... gridOUTPUT(correctionLIST(loopC,1)+1,correctionLIST(loopC,2)-1,:) ,... gridOUTPUT(correctionLIST(loopC,1)+1,correctionLIST(loopC,2),:) ,... gridOUTPUT(correctionLIST(loopC,1)+1,correctionLIST(loopC,2)+1,:) ,... ] ) ); voxelsforcorrection = (voxelsforcorrection>=4); gridOUTPUT(correctionLIST(loopC,1),correctionLIST(loopC,2),voxelsforcorrection) = 1; end %for %Remove the one-pixel border surrounding the array, if this was added %previously. if size(gridOUTPUT,1)>numel(gridCOx) || size(gridOUTPUT,2)>numel(gridCOy) gridOUTPUT = gridOUTPUT(2:end-1,2:end-1,:); end end %if %disp([' Ray tracing result: ',num2str(countCORRECTIONLIST),' rays (',num2str(countCORRECTIONLIST/(voxcountX*voxcountY)*100,'%5.1f'),'% of all rays) exactly crossed a facet edge and had to be computed by interpolation.']) end %function %========================================================================== function D = rotmatrix(v,deg) % calculate the rotation matrix about v by deg degrees deg=deg/180*pi; if deg~=0, v=v/norm(v); v1=v(1);v2=v(2);v3=v(3);ca=cos(deg);sa=sin(deg); D=[ca+v1*v1*(1-ca),v1*v2*(1-ca)-v3*sa,v1*v3*(1-ca)+v2*sa; v2*v1*(1-ca)+v3*sa,ca+v2*v2*(1-ca),v2*v3*(1-ca)-v1*sa; v3*v1*(1-ca)-v2*sa,v3*v2*(1-ca)+v1*sa,ca+v3*v3*(1-ca)]; else, D=eye(3,3); end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
MakeObj.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Dubins_SBONL/plotting/MakeObj.m
683
utf_8
a81a3fae729eca365c5bffe0df3d8124
% returns convex hull from point cloud function obj = MakeObj(points, color) %figure() % create face representation and create convex hull F = convhull(points(1,:), points(2,:)); fill(points(1,F),points(2,F),color); %{ S.Vertices = transpose(points(1:2,:)); S.Faces = F; S.FaceVertexCData = jet(size(points,1)); S.FaceColor = 'interp'; if(strcmp(color,'red')) obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','red'); elseif(strcmp(color,'green')) obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','green'); else obj = patch(S); end %} end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
PlotSetBasedSim.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Dubins_SBONL/plotting/PlotSetBasedSim.m
1,537
utf_8
41159ed792610c3e67a56c471efe2ea5
% PlotSetBasedSim(agentPos, obst, threshold) % % plots associated sets with the simulation function PlotSetBasedSim(agentPos, obst, threshold, target) figure() hold on % mA - coordinate (usually size 3) % nA - time step, equal to iterations in simulation [mA,nA] = size(agentPos); % create objects/convex hulls for each set at each time step for i = 1:nA % format points for MakeObj function curSet = zeros(3,4); curSet(:,1) = [agentPos(1,i);agentPos(3,i);0]; curSet(:,2) = [agentPos(1,i);agentPos(4,i);0]; curSet(:,3) = [agentPos(2,i);agentPos(3,i);0]; curSet(:,4) = [agentPos(2,i);agentPos(4,i);0]; % make the object MakeObj(curSet, 'g'); end [mO,nO,pO] = size(obst); % NOTE: pA == nO % plot obstacle with threshold for i = 1:nO for j = 1:pO % create sphere for obstacle (threshold and obstacle location) [x,y,z] = sphere; x = threshold*x+obst(1,i,j); y = threshold*y+obst(2,i,j); z = threshold*z+obst(3,i,j); [mS,nS] = size(z); % plot obst C = zeros(mS,nS,3); C(:,:,1) = C(:,:,1) + 1; s = surf(x,y,z,C); scatter3(obst(1,i,j), obst(2,i,j), obst(3,i,j), '*') end end scatter3(target(1), target(2), target(3), '*') xlabel('x axis') ylabel('y axis') zlabel('z axis') grid on end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
PlotSimDistance.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Dubins_SBONL/plotting/PlotSimDistance.m
2,137
utf_8
247c9aed4e54b4c7c47b5b92b7ddae44
% PlotSetBasedSim(agentPos, obst, threshold) % % plots max distance to target and min distance to projectile throughout % the simulation function PlotSimDistance(agentPos, obst, threshold, target) figure() hold on % mA - coordinate (usually size 3) % nA - time step, equal to iterations in simulation [mA,nA] = size(agentPos); % mO - coordinate (usually size 3) % nO - time step, equal to iterations in simulation % pO - obstacle number [mO,nO,pO] = size(obst); ObstDist = zeros(nA,pO); for i = 1:pO % create objects/convex hulls for each set at each time step for j = 1:nA % format points for MakeObj function curSet = zeros(3,4); curSet(:,1) = [agentPos(1,j);agentPos(3,j);0]; curSet(:,2) = [agentPos(1,j);agentPos(4,j);0]; curSet(:,3) = [agentPos(2,j);agentPos(3,j);0]; curSet(:,4) = [agentPos(2,j);agentPos(4,j);0]; % min distance to projectile temp_xObst = [obst(:,j,i),obst(:,j,i)]; % polytope dist function has trouble with only one point polyOptions = optimoptions('fmincon','Display','notify-detailed','algorithm','active-set'); ObstDist(j,i) = PolytopeMinDist(curSet,temp_xObst,polyOptions); end plot(0:1:(nA-1),transpose(ObstDist(:,i))); plot(0:1:(nA-1),threshold*ones(1,(nA))); end title('Minimum distance between vehicle polytope and obstacle polytope'); xlabel('time'); ylabel('distance'); figure() hold on; dist = zeros(nA,1); for i = 1:nA dist(i) = dist(i) + norm([agentPos(1,i);agentPos(3,i);0]-target)^2 ... + norm([agentPos(1,i);agentPos(4,i);0]-target)^2 ... + norm([agentPos(2,i);agentPos(3,i);0]-target)^2 ... + norm([agentPos(2,i);agentPos(4,i);0]-target)^2; end plot(0:1:(nA-1),dist); title('Minimum distance between vehicle polytope and target polytope'); xlabel('time'); ylabel('distance'); end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
PlotOptimalPredicted.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Dubins_SBONL/plotting/PlotOptimalPredicted.m
1,446
utf_8
c9b3ae67ab8a11a7f45b94800201e13c
function PlotOptimalPredicted(agentPos, obst, threshold, target) figure() hold on % mA - coordinate (usually size 3) % nA - time step, equal to iterations in simulation [mA,nA] = size(agentPos); % create objects/convex hulls for each set at each time step for i = 1:nA % format points for MakeObj function curSet = zeros(3,4); curSet(:,1) = [agentPos(1,i);agentPos(3,i);0]; curSet(:,2) = [agentPos(1,i);agentPos(4,i);0]; curSet(:,3) = [agentPos(2,i);agentPos(3,i);0]; curSet(:,4) = [agentPos(2,i);agentPos(4,i);0]; % make the object MakeObj(curSet, 'g'); end [mO,nO,pO] = size(obst); % NOTE: pA == nO % plot obstacle with threshold for i = 1:nO for j = 1:pO % create sphere for obstacle (threshold and obstacle location) [x,y,z] = sphere; x = threshold*x+obst(1,i,j); y = threshold*y+obst(2,i,j); z = threshold*z+obst(3,i,j); [mS,nS] = size(z); % plot obst C = zeros(mS,nS,3); C(:,:,1) = C(:,:,1) + 1; s = surf(x,y,z,C); scatter3(obst(1,i,j), obst(2,i,j), obst(3,i,j), '*') end end scatter3(target(1), target(2), target(3), '*') xlabel('x axis') ylabel('y axis') zlabel('z axis') grid on end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
Cost.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Dubins_SBONL/system/Cost.m
1,054
utf_8
143e65321cbb4cc55eae7ee3646a6247
% c = Cost(x0_set, u, ts, target) % % custom cost function - sum of distance from each vertex to target squared function c = Cost(x0_set, u, ts, target, L, terminalWeight) % predict system state with set based dynamics x_set = Dubin(x0_set,u,ts,L); % calculate cost of prediction for set based dynamics % - iterate through each vertex at each time step and calculate the % distance between that point and the target [m,n] = size(x_set); c = 0; % stage cost for i = 1:n-1 c = c + norm([x_set(1,i);x_set(3,i);0]-target)^2 ... + norm([x_set(1,i);x_set(4,i);0]-target)^2 ... + norm([x_set(2,i);x_set(3,i);0]-target)^2 ... + norm([x_set(2,i);x_set(4,i);0]-target)^2; end % terminal cost c = c + terminalWeight*norm([x_set(1,n);x_set(3,n);0]-target)^2 ... + terminalWeight*norm([x_set(1,n);x_set(4,n);0]-target)^2 ... + terminalWeight*norm([x_set(2,n);x_set(3,n);0]-target)^2 ... + terminalWeight*norm([x_set(2,n);x_set(4,n);0]-target)^2; end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
FindOptimalInput.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Dubins_SBONL/system/FindOptimalInput.m
1,220
utf_8
4d99d1329218ef002c43fdbd6e4312f2
% function u0 = FindOptimalInput(x0, N, ts, target) % % uses fmincon to minimize cost function given system dynamics and % nonlinear constraints, returns optimal input sequence function uopt = FindOptimalInput(x0_set, N, ts, target, xObst, threshold, L, speedBound, steeringBound, terminalWeight) A = []; b = []; Aeq = []; beq = []; % set lower and upper bounds on inputs to dubins model lb(1,:) = zeros(1,N); % lower bound is zero (speed) lb(2,:) = -steeringBound*ones(1,N); ub(1,:) = speedBound*ones(1,N); ub(2,:) = steeringBound*ones(1,N); % initial input guess uInit = zeros(2,N); uInit(1,:) = speedBound*ones(1,N); % solve optimization options = optimoptions('fmincon','Display','notify-detailed','algorithm','active-set','MaxFunEvals',1000,'ConstraintTolerance',1e-04); polyOptions = optimoptions('fmincon','Display','notify-detailed','algorithm','active-set'); [uopt ,fval,exitflag,output] = fmincon(@(u) Cost(x0_set,u,ts,target,L,terminalWeight),uInit,A,b,Aeq,beq,lb,ub, @(u) ObstConstraint(x0_set,u,ts,xObst,threshold,L,polyOptions),options); output % return optimal input sequence end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
ObstConstraint.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Dubins_SBONL/system/ObstConstraint.m
1,482
utf_8
04e6c3e7aa641c9244adfd3c6e4d36c9
% [c,ceq] = ObstConstraint(x0_set, u, ts, xObst, threshold) % % defines the non linear constraint - agent polytope to maintain % a distance from the obstacle position above threshold function [c,ceq] = ObstConstraint(x0_set, u, ts, xObst, threshold,L,options) % predict agent with set based dynamics % coords X time X set points x_set = Dubin(x0_set, u, ts,L); % find distance between agent polytope and obstacle [mA,nA] = size(x_set); [mO,nO,pO] = size(xObst); ObstDist = zeros(1,pO*nA); obstDistCount = 1; for i = 1:nA % time for j = 1:pO % number of obstacles % format the agents set for polytope minimization for time step i xPolytope = zeros(3,4); xPolytope(:,:) = [x_set(1,i), x_set(1,i), x_set(2,i), x_set(2,i); x_set(3,i), x_set(4,i), x_set(3,i), x_set(4,i); 0, 0, 0, 0]; % calculate distance between agent and obstacle % xPolytope is a 3xp matrix % xObst(:,i,j) is a 3x1 matrix temp_xObst = [xObst(:,i,j),xObst(:,i,j)]; % polytope dist function has trouble with only one point ObstDist(obstDistCount) = PolytopeMinDist(xPolytope,temp_xObst,options); obstDistCount = obstDistCount+1; end end % calculate constraints c = -ObstDist+threshold; ceq = []; end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
SingleIntegrator.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Dubins_SBONL/system/SingleIntegrator.m
412
utf_8
103d816561c56f118cee17686dc4c4c4
% x = SingleIntegrator(x0_set, u, ts) % % set based dynamics of single integrator function x = SingleIntegrator(x0_set, u, ts) [mP,nP] = size(x0_set); [mH,nH] = size(u); % coords X time X set points x = zeros(3,nH+1,nP); x(:,1,:) = x0_set; % apply integrator dynamics for j = 1:nP for i = 1:nH x(:,i+1,j) = x(:,i,j) + ts*u(:,i); end end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
SimulationProjectilePredict.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Dubins_SBONL/projectile/SimulationProjectilePredict.m
764
utf_8
8ea559140e8b2248afec5e16b1990cb5
% [trajectory, velocity] = SimulationProjectilePredict(p_0, simTime) % % calls on simulink to predict projectile state given initial conditions function [trajectory, velocity] = SimulationProjectilePredict(p_0, simTime) % set up simulink set_param('projectile/rx','Value',num2str(p_0(1))); set_param('projectile/ry','Value',num2str(p_0(2))); set_param('projectile/rz','Value',num2str(p_0(3))); set_param('projectile/vx','Value',num2str(p_0(4))); set_param('projectile/vy','Value',num2str(p_0(5))); set_param('projectile/vz','Value',num2str(p_0(6))); set_param('projectile', 'StopTime', num2str(simTime)); % run simulation sim('projectile'); trajectory = projectilePos; velocity = projectileVel; end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
CreateSphere.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Dubins_SBONL/polytope/CreateSphere.m
913
utf_8
e7fc2c7730cbb8e66f70c29e702d9c20
% creates a point cloud in a sphere around the center function points = CreateSphere(center, r, thetadis, phidis) % angle discretization thetas = linspace(0,2*pi,thetadis); phis = linspace(0,pi,phidis); % point calculation points = []; x = []; y = []; z = []; for i = 1:length(phis) for j = 1:length(thetas) % removes duplicate point at theta = 2*pi if(thetas(j) == 2*pi) break end x = (r * sin(phis(i)) * cos(thetas(j))) + center(1); y = (r * sin(phis(i)) * sin(thetas(j))) + center(2); z = (r * cos(phis(i))) + center(3); nextPoint = [x;y;z]; points = [points, nextPoint]; % removes duplicate points at the top and bottom of sphere if(phis(i) == 0 || phis(i) == pi) break end end end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
PolytopeMinDist.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Dubins_SBONL/polytope/PolytopeMinDist.m
1,150
utf_8
5a4decdbc742e1a03013ff2627495551
% minDist = PolytopeMinDist(X1,X2) % % finds the minimum distance between two polytopes X1 and X2 function minDist = PolytopeMinDist(X1,X2,options) % declare constraints for fmincon lb = []; ub = []; % get sizes of vertices for polytopes [m1,n1] = size(X1); [m2,n2] = size(X2); if(m1 ~= m2) error('Incorrect Dimensions'); end n = n1+n2; A = [eye(n); -eye(n)]; b = [ones(n,1); zeros(n,1)]; Aeq = [ones(1,n1) zeros(1,n2); zeros(1,n1) ones(1,n2)]; beq = [1;1]; nonlcon = []; % create lambda vectors x0 = zeros(n,1); x0(1) = 1; x0(n1+1) = 1; % declare function to be minimized %fun = @(lambda)(norm((X1 * lambda(1:n1))-(X2 * lambda(n1+1:n)))^2); % evaluate fmincon %x = fmincon(@(lambda) PolytopeDist(X1,X2,lambda,n1,n2,n),x0,A,b,Aeq,beq,lb,ub,nonlcon,options); [x,fval,exitflag,output] = fmincon(@(lambda) PolytopeDist(X1,X2,lambda,n1,n2,n),x0,A,b,Aeq,beq,lb,ub,nonlcon,options); %output % return min distance minDist = sqrt(PolytopeDist(X1,X2,x,n1,n2,n)); end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
PolytopeDist.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Dubins_SBONL/polytope/PolytopeDist.m
668
utf_8
34f5332d650d2fb60f349903cb7edf17
function [f,g] = PolytopeDist(X1,X2,lambda,n1,n2,n) f = norm((X1 * lambda(1:n1))-(X2 * lambda(n1+1:n)))^2; %{ g = zeros(n,1); for i = 1:n1 g(i) = 2*((X1(1,:)*lambda(1:n1))-(X2(1,:)*lambda(n1+1:n)))*X1(1,i) ... + 2*((X1(2,:)*lambda(1:n1))-(X2(2,:)*lambda(n1+1:n)))*X1(2,i) ... + 2*((X1(3,:)*lambda(1:n1))-(X2(3,:)*lambda(n1+1:n)))*X1(3,i); end for i = 1:n2 g(i) = 2*((X1(1,:)*lambda(1:n1))-(X2(1,:)*lambda(n1+1:n)))*(-X2(1,i)) ... + 2*((X1(2,:)*lambda(1:n1))-(X2(2,:)*lambda(n1+1:n)))*(-X2(2,i)) ... + 2*((X1(3,:)*lambda(1:n1))-(X2(3,:)*lambda(n1+1:n)))*(-X2(3,i)); end %} end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
GJK.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK/GJK.m
5,909
utf_8
acc17476d868c4bb652640495a721180
function flag = GJK(shape1,shape2,iterations) % GJK Gilbert-Johnson-Keerthi Collision detection implementation. % Returns whether two convex shapes are are penetrating or not % (true/false). Only works for CONVEX shapes. % % Inputs: % shape1: % must have fields for XData,YData,ZData, which are the x,y,z % coordinates of the vertices. Can be the same as what comes out of a % PATCH object. It isn't required that the points form faces like patch % data. This algorithm will assume the convex hull of the x,y,z points % given. % % shape2: % Other shape to test collision against. Same info as shape1. % % iterations: % The algorithm tries to construct a tetrahedron encompassing % the origin. This proves the objects have collided. If we fail within a % certain number of iterations, we give up and say the objects are not % penetrating. Low iterations means a higher chance of false-NEGATIVES % but faster computation. As the objects penetrate more, it takes fewer % iterations anyway, so low iterations is not a huge disadvantage. % % Outputs: % flag: % true - objects collided % false - objects not collided % % % This video helped me a lot when making this: https://mollyrocket.com/849 % Not my video, but very useful. % % Matthew Sheen, 2016 % %Point 1 and 2 selection (line segment) v = [0.8 0.5 1]; [a,b] = pickLine(v,shape2,shape1); %Point 3 selection (triangle) [a,b,c,flag] = pickTriangle(a,b,shape2,shape1,iterations); %Point 4 selection (tetrahedron) if flag == 1 %Only bother if we could find a viable triangle. [a,b,c,d,flag] = pickTetrahedron(a,b,c,shape2,shape1,iterations); end end function [a,b] = pickLine(v,shape1,shape2) %Construct the first line of the simplex b = support(shape2,shape1,v); a = support(shape2,shape1,-v); end function [a,b,c,flag] = pickTriangle(a,b,shape1,shape2,IterationAllowed) flag = 0; %So far, we don't have a successful triangle. %First try: ab = b-a; ao = -a; v = cross(cross(ab,ao),ab); % v is perpendicular to ab pointing in the general direction of the origin. c = b; b = a; a = support(shape2,shape1,v); for i = 1:IterationAllowed %iterations to see if we can draw a good triangle. %Time to check if we got it: ab = b-a; ao = -a; ac = c-a; %Normal to face of triangle abc = cross(ab,ac); %Perpendicular to AB going away from triangle abp = cross(ab,abc); %Perpendicular to AC going away from triangle acp = cross(abc,ac); %First, make sure our triangle "contains" the origin in a 2d projection %sense. %Is origin above (outside) AB? if dot(abp,ao) > 0 c = b; %Throw away the furthest point and grab a new one in the right direction b = a; v = abp; %cross(cross(ab,ao),ab); %Is origin above (outside) AC? elseif dot(acp, ao) > 0 b = a; v = acp; %cross(cross(ac,ao),ac); else flag = 1; break; %We got a good one. end a = support(shape2,shape1,v); end end function [a,b,c,d,flag] = pickTetrahedron(a,b,c,shape1,shape2,IterationAllowed) %Now, if we're here, we have a successful 2D simplex, and we need to check %if the origin is inside a successful 3D simplex. %So, is the origin above or below the triangle? flag = 0; ab = b-a; ac = c-a; %Normal to face of triangle abc = cross(ab,ac); ao = -a; if dot(abc, ao) > 0 %Above d = c; c = b; b = a; v = abc; a = support(shape2,shape1,v); %Tetrahedron new point else %below d = b; b = a; v = -abc; a = support(shape2,shape1,v); %Tetrahedron new point end for i = 1:IterationAllowed %Allowing 10 tries to make a good tetrahedron. %Check the tetrahedron: ab = b-a; ao = -a; ac = c-a; ad = d-a; %We KNOW that the origin is not under the base of the tetrahedron based on %the way we picked a. So we need to check faces ABC, ABD, and ACD. %Normal to face of triangle abc = cross(ab,ac); if dot(abc, ao) > 0 %Above triangle ABC %No need to change anything, we'll just iterate again with this face as %default. else acd = cross(ac,ad);%Normal to face of triangle if dot(acd, ao) > 0 %Above triangle ACD %Make this the new base triangle. b = c; c = d; ab = ac; ac = ad; abc = acd; else adb = cross(ad,ab);%Normal to face of triangle if dot(adb, ao) > 0 %Above triangle ADB %Make this the new base triangle. c = b; b = d; ac = ab; ab = ad; abc = adb; else flag = 1; break; %It's inside the tetrahedron. end end end %try again: if dot(abc, ao) > 0 %Above d = c; c = b; b = a; v = abc; a = support(shape2,shape1,v); %Tetrahedron new point else %below d = b; b = a; v = -abc; a = support(shape2,shape1,v); %Tetrahedron new point end end end function point = getFarthestInDir(shape, v) %Find the furthest point in a given direction for a shape XData = get(shape,'XData'); % Making it more compatible with previous MATLAB releases. YData = get(shape,'YData'); ZData = get(shape,'ZData'); dotted = XData*v(1) + YData*v(2) + ZData*v(3); [maxInCol,rowIdxSet] = max(dotted); [maxInRow,colIdx] = max(maxInCol); rowIdx = rowIdxSet(colIdx); point = [XData(rowIdx,colIdx), YData(rowIdx,colIdx), ZData(rowIdx,colIdx)]; end function point = support(shape1,shape2,v) %Support function to get the Minkowski difference. point1 = getFarthestInDir(shape1, v); point2 = getFarthestInDir(shape2, -v); point = point1 - point2; end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
convexhull.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK/convexhull.m
1,701
utf_8
cb09453005f6a6fce441276524c4e5c7
%How many iterations to allow for collision detection. iterationsAllowed = 6; % Make a figure figure(1) hold on % constants for set making cntr_1 = [0.0, 0.0, 0.0]; cntr_2 = [1.0, 0.0, 0.0]; r_1 = 0.5; r_2 = 0.2; tdis = 11; pdis = 6; % create point cloud sphere_1 = CreateSphere(cntr_1, r_1, tdis, pdis); sphere_2 = CreateSphere(cntr_2, r_2, tdis, pdis); % make individual convex hulls S1Obj = makeObj(sphere_1); S2Obj = makeObj(sphere_2); % Make tube figure(2) % create points cloud sphere_3 = [sphere_1; sphere_2]; % make combined convex hull S3Obj = makeObj(sphere_3); % check for collision flag = GJK(S1Obj, S2Obj, iterationsAllowed) % returns convex hull from point cloud function obj = makeObj(points) % create face representation and create convex hull F = convhull(points(:,1), points(:,2), points(:,3)); S.Vertices = points; S.Faces = F; S.FaceVertexCData = jet(size(points,1)); S.FaceColor = 'interp'; obj = patch(S); end % creates a point cloud in a sphere around the center function points = CreateSphere(center, r, thetadis, phidis) % angle discretization thetas = linspace(0,2*pi,thetadis); phis = linspace(0,pi,phidis); % point calculation points = []; x = []; y = []; z = []; for i = 1:length(phis) for j = 1:length(thetas) x = (r * sin(phis(i)) * cos(thetas(j))) + center(1); y = (r * sin(phis(i)) * sin(thetas(j))) + center(2); z = (r * cos(phis(i))) + center(3); points = [points; x, y, z]; % removes duplicate points at the top and bottom of sphere if(phis(i) == 0 || phis(i) == pi) break end end end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
CreateSphere.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK/functions/CreateSphere.m
866
utf_8
3ea485e3c5956a7fef00a0fe4c32bddb
% creates a point cloud in a sphere around the center function points = CreateSphere(center, r, thetadis, phidis) % angle discretization thetas = linspace(0,2*pi,thetadis); phis = linspace(0,pi,phidis); % point calculation points = []; x = []; y = []; z = []; for i = 1:length(phis) for j = 1:length(thetas) % removes duplicate point at theta = 2*pi if(thetas(j) == 2*pi) break end x = (r * sin(phis(i)) * cos(thetas(j))) + center(1); y = (r * sin(phis(i)) * sin(thetas(j))) + center(2); z = (r * cos(phis(i))) + center(3); points = [points; x, y, z]; % removes duplicate points at the top and bottom of sphere if(phis(i) == 0 || phis(i) == pi) break end end end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
SBPC.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK/functions/SBPC.m
5,030
utf_8
949b15cab9a8feb3e5d93327897e1e38
% prediction algorithm % state - [x, y, z, px, py, pz, pxdot, pydot, pzdot] function input = SBPC(state,target,QR,PR,TDIS,PDIS,N,K,TIMESTEP,VELOCITY) % number of iterations to allow for collision detection. iterationsAllowed = 6; % get possible velocities S = length(VELOCITY); %% projectile set based prediction % get initial coordinates of projectile projcntr = state(4:6); velcntr = state(7:9); % create point cloud from initial condition s_0 = CreateSphere(projcntr, PR, TDIS, PDIS); % position v_0 = CreateSphere(velcntr, PR, TDIS, PDIS); % velocity % middle point with simulink simLength = double(N*TIMESTEP); projtraj = ProjectilePredict(state(4:9), simLength); % set points [m,n] = size(s_0); for i = 1:m % create initial condition for point in set setState = [s_0(i,:), v_0(i,:)]; % predict trajectory projtraj(:,:,i+1) = ProjectilePredict(setState, simLength); end %% quadrotor set based prediction % get initial coordinates of quad quadcntr = state(1:3); % create point cloud from initial condition s_1 = CreateSphere(quadcntr, QR, TDIS, PDIS); [m,n] = size(s_1); % N+1 because of initial condition % K-1 because 0 and 2pi given equivalent trajectories quadtraj = ones(N+1,3,S,K-1); theta = linspace(0, 2*pi, K); j = linspace(0,N,N+1); for i = 1:m+1 for k = 1:K-1 % first is middle point then the set if(i == 1) % integrator dynamics x = quadcntr(1)+transpose(j)*TIMESTEP*VELOCITY*cos(theta(k)); y = quadcntr(2)+transpose(j)*TIMESTEP*VELOCITY*sin(theta(k)); z = quadcntr(3)*ones(N+1,S); quadtraj(:,1,:,k) = x; quadtraj(:,2,:,k) = y; quadtraj(:,3,:,k) = z; else % integrator dynamics x = s_1(i-1,1)+transpose(j)*TIMESTEP*VELOCITY*cos(theta(k)); y = s_1(i-1,2)+transpose(j)*TIMESTEP*VELOCITY*sin(theta(k)); z = s_1(i-1,3)*ones(N+1,S); quadtraj(:,1,:,k) = x; quadtraj(:,2,:,k) = y; quadtraj(:,3,:,k) = z; end end setquadtraj(:,:,:,:,i) = quadtraj; end %% collision detection safeTraj = ones(S,K-1); for i = 1:N-1 % put data in right form for making convex hull for j = 1:m+1 projset1(j,:) = projtraj(i,:,j); projset2(j,:) = projtraj(i+1,:,j); end % create intersample convex hull for projectile projintersampleSet = [projset1; projset2]; projectileConvexHull = MakeObj(projintersampleSet, 'red'); % check which trajectories are safe for k = 1:K-1 for s = 1:S % only continue to calculate for the trajectory if no previous % collision - saves computation time if(safeTraj(s,k)) % put data in right form for making convex hull for j = 1:m quadset1(j,:) = setquadtraj(i,:,s,k,j); quadset2(j,:) = setquadtraj(i+1,:,s,k,j); end % create intersample convex hull for trajectory k for quadrotor quadIntersampleSet = [quadset1; quadset2]; quadrotorConvexHull = MakeObj(quadIntersampleSet, 'green'); % run collision detection algorithm collisionFlag = GJK(projectileConvexHull, quadrotorConvexHull, iterationsAllowed); if(collisionFlag) fprintf('Collision in trajectory %d at speed %d\n\r', k,VELOCITY(s)); safeTraj(s,k) = 0; end end end end end %% soft constraint - optimization trajCost = zeros(S,K-1); % check each trajectory for k = 1:K-1 for s = 1:S % calculate cost of trajectory % cost is inf if the trajectory results in collsion if(safeTraj(s,k)) trajCost(s,k) = CostSum(setquadtraj(:,:,s,k,1), target, N); else trajCost(s,k) = inf; end end end % find minimum cost and return first coordinate in that trajectory [minCostList, minCostIndexList] = min(trajCost); [minCost, minCostKIndex] = min(minCostList); minCostSIndex = minCostIndexList(minCostKIndex); u_opt = setquadtraj(2,:,minCostSIndex,minCostKIndex,1); input = u_opt; xlabel('x axis'); ylabel('y axis'); zlabel('z axis'); grid on end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
MakeObj.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK/functions/MakeObj.m
613
utf_8
9842e71e7c6229282ca128ecd7b965bf
% returns convex hull from point cloud function obj = MakeObj(points, color) %figure() % create face representation and create convex hull F = convhull(points(:,1), points(:,2), points(:,3)); S.Vertices = points; S.Faces = F; S.FaceVertexCData = jet(size(points,1)); S.FaceColor = 'interp'; if(strcmp(color,'red')) obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','red'); elseif(strcmp(color,'green')) obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','green'); else obj = patch(S); end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
SimulationMakeObj.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK/functions/SimulationMakeObj.m
367
utf_8
d4f1152a27a0887bcaaf5135543da40a
% returns convex hull from point cloud function obj = SimulationMakeObj(points) %figure() % create face representation and create convex hull F = convhull(points(:,1), points(:,2), points(:,3)); S.Vertices = points; S.Faces = F; S.FaceVertexCData = jet(size(points,1)); S.FaceColor = 'interp'; obj = patch(S,'visible','off'); end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
SimulationSBPC.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK/functions/SimulationSBPC.m
5,434
utf_8
dd7ff212697c5fe6aad585ea6b6e6848
% prediction algorithm % state - [x, y, z, px, py, pz, pxdot, pydot, pzdot] function input = SimulationSBPC(state,target,QR,PR,TDIS,PDIS,N,K,TIMESTEP,VELOCITY) % number of iterations to allow for collision detection. iterationsAllowed = 6; % get possible velocities S = length(VELOCITY); %% projectile set based prediction % get initial coordinates of projectile projcntr = state(4:6); velcntr = state(7:9); % create point cloud from initial condition s_0 = CreateSphere(projcntr, PR, TDIS, PDIS); % position v_0 = CreateSphere(velcntr, PR, TDIS, PDIS); % velocity % middle point with simulink simLength = double(N*TIMESTEP); [projtraj, projvel] = SimulationProjectilePredict(state(4:9), simLength); % set points [m,n] = size(s_0); for i = 1:m % create initial condition for point in set setState = [s_0(i,:), v_0(i,:)]; % predict trajectory [projtraj(:,:,i+1), projvel(:,:,i+1)] = SimulationProjectilePredict(setState, simLength); end %% quadrotor set based prediction % get initial coordinates of quad quadcntr = state(1:3); % create point cloud from initial condition s_1 = CreateSphere(quadcntr, QR, TDIS, PDIS); [m,n] = size(s_1); % N+1 because of initial condition % K-1 because 0 and 2pi given equivalent trajectories quadtraj = ones(N+1,3,S,K-1); theta = linspace(0, 2*pi, K); j = linspace(0,N,N+1); for i = 1:m+1 for k = 1:K-1 % first is middle point then the set if(i == 1) % integrator dynamics x = quadcntr(1)+transpose(j)*TIMESTEP*VELOCITY*cos(theta(k)); y = quadcntr(2)+transpose(j)*TIMESTEP*VELOCITY*sin(theta(k)); z = quadcntr(3)*ones(N+1,S); quadtraj(:,1,:,k) = x; quadtraj(:,2,:,k) = y; quadtraj(:,3,:,k) = z; else % integrator dynamics x = s_1(i-1,1)+transpose(j)*TIMESTEP*VELOCITY*cos(theta(k)); y = s_1(i-1,2)+transpose(j)*TIMESTEP*VELOCITY*sin(theta(k)); z = s_1(i-1,3)*ones(N+1,S); quadtraj(:,1,:,k) = x; quadtraj(:,2,:,k) = y; quadtraj(:,3,:,k) = z; end end setquadtraj(:,:,:,:,i) = quadtraj; end %% collision detection safeTraj = ones(S,K-1); for i = 1:N-1 % put data in right form for making convex hull for j = 1:m+1 projset1(j,:) = projtraj(i,:,j); projset2(j,:) = projtraj(i+1,:,j); end % create intersample convex hull for projectile projintersampleSet = [projset1; projset2]; projectileConvexHull = SimulationMakeObj(projintersampleSet); % check which trajectories are safe for k = 1:K-1 for s = 1:S % only continue to calculate for the trajectory if no previous % collision - saves computation time if(safeTraj(s,k)) % put data in right form for making convex hull for j = 1:m quadset1(j,:) = setquadtraj(i,:,s,k,j); quadset2(j,:) = setquadtraj(i+1,:,s,k,j); end % create intersample convex hull for trajectory k for quadrotor quadIntersampleSet = [quadset1; quadset2]; quadrotorConvexHull = SimulationMakeObj(quadIntersampleSet); % run collision detection algorithm collisionFlag = GJK(projectileConvexHull, quadrotorConvexHull, iterationsAllowed); if(collisionFlag) fprintf('Collision in trajectory %d at speed %d\n\r', k,VELOCITY(s)); safeTraj(s,k) = 0; end end end end end %% soft constraint - optimization trajCost = zeros(S,K-1); % check each trajectory for k = 1:K-1 for s = 1:S % calculate cost of trajectory % cost is inf if the trajectory results in collsion if(safeTraj(s,k)) trajCost(s,k) = CostSum(setquadtraj(:,:,s,k,1), target, N); else trajCost(s,k) = inf; end end end % throw error if all trajectories have infinity cost if(range(range(trajCost)) == 0) % make sure all costs are the same if(trajCost(1,1) == inf) % make sure the costs are inf (collision) msg = 'No collision free trajectories available'; error(msg) end end % find minimum cost and return first coordinate in that trajectory [minCostList, minCostIndexList] = min(trajCost); [minCost, minCostKIndex] = min(minCostList); minCostSIndex = minCostIndexList(minCostKIndex); u_opt = setquadtraj(2,:,minCostSIndex,minCostKIndex,1); input = [u_opt,projtraj(2,:,1), projvel(2,:,1)]; xlabel('x axis'); ylabel('y axis'); zlabel('z axis'); grid on end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
CostSum.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK/functions/CostSum.m
313
utf_8
49502b1d0e6bda46cdf68a30ef0c6178
% calculates total cost of a trajectory function totalCost = CostSum(trajectory, target, N) totalCost = 0; % sum distances between each point in trajectory and target for i = 1:N cost = pdist([trajectory(i,:); target], 'euclidean'); totalCost = totalCost + cost; end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
Cost.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/OptimizationNonlinear/system/Cost.m
310
utf_8
51f685855353dc4fd9e48dfe8b08777d
% function c = Cost(x0, u, ts, target) % % custom cost function - distance to target squared function c = Cost(x0, u, ts, target) % predict system state x = SingleIntegrator(x0,u,ts); % calculate cost of prediction [m,n] = size(x); c = norm(x-target*ones(1,n))^2; end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
FindOptimalInput.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/OptimizationNonlinear/system/FindOptimalInput.m
592
utf_8
618a4324d35b4942fef032b67ed76eb4
% function u0 = FindOptimalInput(x0, N, ts, target) % % uses fmincon to minimize cost function given system dynamics and % nonlinear constraints function u0 = FindOptimalInput(x0, N, ts, target, xObst, threshold) A = []; b = []; Aeq = []; beq = []; % set lower and upper bounds on inputs to integrator lb = -1*ones(3,N); ub = ones(3,N); uInit = ones(3,N); % solve optimization uopt = fmincon(@(u) Cost(x0,u,ts,target),uInit,A,b,Aeq,beq,lb,ub, @(u) ObstConstraint(x0,u,ts,xObst,threshold)); % return first input u0 = uopt(:,1); end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
ObstConstraint.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/OptimizationNonlinear/system/ObstConstraint.m
537
utf_8
5da3f5721088cc5ffbd7bbdd7ef040a2
% [c,ceq] = ObstConstraint(x0, u, ts, xObst, threshold) % % defines the non linear constraint - maintain a distance above threshold % from the obstacle position function [c,ceq] = ObstConstraint(x0, u, ts, xObst, threshold) % predict agent x = SingleIntegrator(x0, u, ts); % calculate distance between agent and obstacle [m,n] = size(x); ObstDist = zeros(1,n); for i = 1:n ObstDist(i) = norm(x(:,i)-xObst(:,i)); end % define constraints c = -ObstDist+threshold; ceq = []; end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
SingleIntegrator.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/OptimizationNonlinear/system/SingleIntegrator.m
293
utf_8
7d9d571566f2467b1d62668899c1f5d6
% function x = SingleIntegrator(x0, u, ts) % % dynamics of single integrator function x = SingleIntegrator(x0, u, ts) [m,n] = size(u); x = zeros(3,n+1); x(:,1) = x0; % apply integrator dynamics for i = 1:n x(:,i+1) = x(:,i) + ts*u(:,i); end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
SimulationProjectilePredict.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/OptimizationNonlinear/projectile/SimulationProjectilePredict.m
764
utf_8
8ea559140e8b2248afec5e16b1990cb5
% [trajectory, velocity] = SimulationProjectilePredict(p_0, simTime) % % calls on simulink to predict projectile state given initial conditions function [trajectory, velocity] = SimulationProjectilePredict(p_0, simTime) % set up simulink set_param('projectile/rx','Value',num2str(p_0(1))); set_param('projectile/ry','Value',num2str(p_0(2))); set_param('projectile/rz','Value',num2str(p_0(3))); set_param('projectile/vx','Value',num2str(p_0(4))); set_param('projectile/vy','Value',num2str(p_0(5))); set_param('projectile/vz','Value',num2str(p_0(6))); set_param('projectile', 'StopTime', num2str(simTime)); % run simulation sim('projectile'); trajectory = projectilePos; velocity = projectileVel; end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
PolytopeMinDist.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/OptimizationNonlinear/polytope/PolytopeMinDist.m
863
utf_8
072ed9efcd311aebe3e16b4c074dbc1d
% minDist = PolytopeMinDist(X1,X2) % % finds the minimum distance between two polytopes X1 and X2 function minDist = PolytopeMinDist(X1,X2) % declare constraints for fmincon lb = []; ub = []; % get sizes of vertices for polytopes [m1,n1] = size(X1); [m2,n2] = size(X2); if(m1 ~= m2) error('Incorrect Dimensions'); end n = n1+n2; A = [eye(n); -eye(n)]; b = [ones(n,1); zeros(n,1)]; Aeq = [ones(1,n1) zeros(1,n2); zeros(1,n1) ones(1,n2)]; beq = [1;1]; % create lambda vectors x0 = zeros(n,1); x0(1) = 1; x0(n1+1) = 1; fun = @(lambda)(norm((X1 * lambda(1:n1))-(X2 * lambda(n1+1:n)))^2); % evaluate fmincon x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub); % return min distance minDist = sqrt(fun(x)); end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
MakeObj.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SetBasedOptimizationNonlinear/plotting/MakeObj.m
624
utf_8
21b5894435118a86bc40d17143893710
% returns convex hull from point cloud function obj = MakeObj(points, color) %figure() % create face representation and create convex hull F = convhull(points(1,:), points(2,:), points(3,:)); S.Vertices = transpose(points); S.Faces = F; S.FaceVertexCData = jet(size(points,1)); S.FaceColor = 'interp'; if(strcmp(color,'red')) obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','red'); elseif(strcmp(color,'green')) obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','green'); else obj = patch(S); end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
PlotSetBasedSim.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SetBasedOptimizationNonlinear/plotting/PlotSetBasedSim.m
1,233
utf_8
b30a722967dfb8f695b2211db0d86669
% PlotSetBasedSim(agentPos, obst, threshold) % % plots associated sets with the simulation function PlotSetBasedSim(agentPos, obst, threshold, target) figure() hold on % mA - coordinate (usually size 3) % nA - number of points in each set % pA - time step, equal to iterations in simulation [mA,nA,pA] = size(agentPos); % create objects/convex hulls for each set at each time step for i = 1:pA % format points for MakeObj function curSet = zeros(mA,nA); for j = 1:nA curSet(:,j) = agentPos(:,j,i); end % make the object MakeObj(curSet, 'green'); end % plot obstacle with threshold for i = 1:pA % create sphere for obstacle (threshold and obstacle location) [x,y,z] = sphere; x = threshold*x+obst(1,i); y = threshold*y+obst(2,i); z = threshold*z+obst(3,i); [mS,nS] = size(z); % plot obst C = zeros(mS,nS,3); C(:,:,1) = C(:,:,1) + 1; s = surf(x,y,z,C); end scatter3(obst(1,1), obst(2,1), obst(2,1), '*') scatter3(target(1), target(2), target(3), '*') grid on end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
Cost.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SetBasedOptimizationNonlinear/system/Cost.m
804
utf_8
12eaf7fb318a8f3e60546adda1dbf9e0
% c = Cost(x0_set, u, ts, target) % % custom cost function - sum of distance from each vertex to target squared function c = Cost(x0_set, u, ts, target) % predict system state with set based dynamics x_set = SingleIntegrator(x0_set,u,ts); % calculate cost of prediction for set based dynamics % - iterate through each vertex at each time step and calculate the % distance between that point and the target [m,n,p] = size(x_set); c = 0; for i = 1:p for j = 1:n c = c + norm(x_set(:,j,i)-target)^2; end end %{ c = 0; for i = 1:n polySet = zeros(3,p); for j = 1:p polySet(:,j) = x_set(:,i,j); end c = c + PolytopeMinDist(polySet, target); end %} end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
FindOptimalInput.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SetBasedOptimizationNonlinear/system/FindOptimalInput.m
790
utf_8
c5a509e96bfdd548f829af064cad15c3
% function u0 = FindOptimalInput(x0, N, ts, target) % % uses fmincon to minimize cost function given system dynamics and % nonlinear constraints, returns optimal input sequence function u0 = FindOptimalInput(x0_set, N, ts, target, xObst, threshold) A = []; b = []; Aeq = []; beq = []; % set lower and upper bounds on inputs to integrator bound = 0.1; lb = -bound*ones(3,N); ub = bound*ones(3,N); uInit = zeros(3,N); % solve optimization options = optimoptions('fmincon','Display','notify-detailed','algorithm','sqp','MaxFunEvals',1000); uopt = fmincon(@(u) Cost(x0_set,u,ts,target),uInit,A,b,Aeq,beq,lb,ub, @(u) ObstConstraint(x0_set,u,ts,xObst,threshold),options); % return optimal input sequence u0 = uopt; end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
ObstConstraint.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SetBasedOptimizationNonlinear/system/ObstConstraint.m
945
utf_8
6c6d8b6f1fcfb85521cf4e989817ad15
% [c,ceq] = ObstConstraint(x0_set, u, ts, xObst, threshold) % % defines the non linear constraint - agent polytope to maintain % a distance from the obstacle position above threshold function [c,ceq] = ObstConstraint(x0_set, u, ts, xObst, threshold) % predict agent with set based dynamics x_set = SingleIntegrator(x0_set, u, ts); % find distance between agent polytope and obstacle [m,n,p] = size(x_set); ObstDist = zeros(1,n); for i = 1:n % format the set for polytope minimization for time step i xPolytope = zeros(3,p); for j = 1:p xPolytope(:,j) = x_set(:,i,j); end % calculate distance between agent and obstacle % xPolytope is a 3xp matrix % xObst(:,i) is a 3x1 matrix ObstDist(i) = PolytopeMinDist(xPolytope,xObst(:,1:2)); end % define constraints c = -ObstDist+threshold; ceq = []; end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
SingleIntegrator.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SetBasedOptimizationNonlinear/system/SingleIntegrator.m
379
utf_8
9f0d16760b6c1ffa95bb300f5b505a9f
% x = SingleIntegrator(x0_set, u, ts) % % set based dynamics of single integrator function x = SingleIntegrator(x0_set, u, ts) [mP,nP] = size(x0_set); [mH,nH] = size(u); x = zeros(3,nH+1,nP); x(:,1,:) = x0_set; % apply integrator dynamics for j = 1:nP for i = 1:nH x(:,i+1,j) = x(:,i,j) + ts*u(:,i); end end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
SimulationProjectilePredict.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SetBasedOptimizationNonlinear/projectile/SimulationProjectilePredict.m
764
utf_8
8ea559140e8b2248afec5e16b1990cb5
% [trajectory, velocity] = SimulationProjectilePredict(p_0, simTime) % % calls on simulink to predict projectile state given initial conditions function [trajectory, velocity] = SimulationProjectilePredict(p_0, simTime) % set up simulink set_param('projectile/rx','Value',num2str(p_0(1))); set_param('projectile/ry','Value',num2str(p_0(2))); set_param('projectile/rz','Value',num2str(p_0(3))); set_param('projectile/vx','Value',num2str(p_0(4))); set_param('projectile/vy','Value',num2str(p_0(5))); set_param('projectile/vz','Value',num2str(p_0(6))); set_param('projectile', 'StopTime', num2str(simTime)); % run simulation sim('projectile'); trajectory = projectilePos; velocity = projectileVel; end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
CreateSphere.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SetBasedOptimizationNonlinear/polytope/CreateSphere.m
913
utf_8
e7fc2c7730cbb8e66f70c29e702d9c20
% creates a point cloud in a sphere around the center function points = CreateSphere(center, r, thetadis, phidis) % angle discretization thetas = linspace(0,2*pi,thetadis); phis = linspace(0,pi,phidis); % point calculation points = []; x = []; y = []; z = []; for i = 1:length(phis) for j = 1:length(thetas) % removes duplicate point at theta = 2*pi if(thetas(j) == 2*pi) break end x = (r * sin(phis(i)) * cos(thetas(j))) + center(1); y = (r * sin(phis(i)) * sin(thetas(j))) + center(2); z = (r * cos(phis(i))) + center(3); nextPoint = [x;y;z]; points = [points, nextPoint]; % removes duplicate points at the top and bottom of sphere if(phis(i) == 0 || phis(i) == pi) break end end end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
PolytopeMinDist.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/SetBasedOptimizationNonlinear/polytope/PolytopeMinDist.m
960
utf_8
20c5308cdee25a3c8505d60826371706
% minDist = PolytopeMinDist(X1,X2) % % finds the minimum distance between two polytopes X1 and X2 function minDist = PolytopeMinDist(X1,X2) % declare constraints for fmincon lb = []; ub = []; % get sizes of vertices for polytopes [m1,n1] = size(X1); [m2,n2] = size(X2); if(m1 ~= m2) error('Incorrect Dimensions'); end n = n1+n2; A = [eye(n); -eye(n)]; b = [ones(n,1); zeros(n,1)]; Aeq = [ones(1,n1) zeros(1,n2); zeros(1,n1) ones(1,n2)]; beq = [1;1]; nonlcon = []; % create lambda vectors x0 = zeros(n,1); x0(1) = 1; x0(n1+1) = 1; fun = @(lambda)(norm((X1 * lambda(1:n1))-(X2 * lambda(n1+1:n)))^2); % evaluate fmincon options = optimoptions('fmincon','Display','notify-detailed'); x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options); % return min distance minDist = sqrt(fun(x)); end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
Cost.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Optimization/system/Cost.m
311
utf_8
fc4f6c88e62c79980b6e20d8f3cd646a
% function c = Cost(x0, u, ts, target) % % custom cost function - distance to target squared function c = Cost(x0, u, ts, target) % predict system state x = SingleIntegrator(x0,u,ts); % calculate cost of prediction [m,n] = size(x); c = norm(x-target*ones(1,n))^2 end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
FindOptimalInput.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Optimization/system/FindOptimalInput.m
502
utf_8
411fc54f433b2b1cf39f577e1e47e3cc
% function u0 = FindOptimalInput(x0, N, ts, target) % % uses fmincon to minimize cost function given system dynamics function u0 = FindOptimalInput(x0, N, ts, target) A = []; b = []; Aeq = []; beq = []; % set lower and upper bounds on inputs to integrator lb = -1*ones(2,N); ub = ones(2,N); u_init = ones(2,N); % solve optimization uopt = fmincon(@(u) Cost(x0,u,ts,target),u_init,A,b,Aeq,beq,lb,ub); % return first input u0 = uopt(:,1); end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
SingleIntegrator.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Optimization/system/SingleIntegrator.m
293
utf_8
68f06aba97ead41f96c992494e24fba4
% function x = SingleIntegrator(x0, u, ts) % % dynamics of single integrator function x = SingleIntegrator(x0, u, ts) [m,n] = size(u); x = zeros(2,n+1); x(:,1) = x0; % apply integrator dynamics for i = 1:n x(:,i+1) = x(:,i) + ts*u(:,i); end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
PolytopeMinDist.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/Optimization/polytope/PolytopeMinDist.m
863
utf_8
072ed9efcd311aebe3e16b4c074dbc1d
% minDist = PolytopeMinDist(X1,X2) % % finds the minimum distance between two polytopes X1 and X2 function minDist = PolytopeMinDist(X1,X2) % declare constraints for fmincon lb = []; ub = []; % get sizes of vertices for polytopes [m1,n1] = size(X1); [m2,n2] = size(X2); if(m1 ~= m2) error('Incorrect Dimensions'); end n = n1+n2; A = [eye(n); -eye(n)]; b = [ones(n,1); zeros(n,1)]; Aeq = [ones(1,n1) zeros(1,n2); zeros(1,n1) ones(1,n2)]; beq = [1;1]; % create lambda vectors x0 = zeros(n,1); x0(1) = 1; x0(n1+1) = 1; fun = @(lambda)(norm((X1 * lambda(1:n1))-(X2 * lambda(n1+1:n)))^2); % evaluate fmincon x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub); % return min distance minDist = sqrt(fun(x)); end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
GJK.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK_Distance/GJK.m
5,909
utf_8
acc17476d868c4bb652640495a721180
function flag = GJK(shape1,shape2,iterations) % GJK Gilbert-Johnson-Keerthi Collision detection implementation. % Returns whether two convex shapes are are penetrating or not % (true/false). Only works for CONVEX shapes. % % Inputs: % shape1: % must have fields for XData,YData,ZData, which are the x,y,z % coordinates of the vertices. Can be the same as what comes out of a % PATCH object. It isn't required that the points form faces like patch % data. This algorithm will assume the convex hull of the x,y,z points % given. % % shape2: % Other shape to test collision against. Same info as shape1. % % iterations: % The algorithm tries to construct a tetrahedron encompassing % the origin. This proves the objects have collided. If we fail within a % certain number of iterations, we give up and say the objects are not % penetrating. Low iterations means a higher chance of false-NEGATIVES % but faster computation. As the objects penetrate more, it takes fewer % iterations anyway, so low iterations is not a huge disadvantage. % % Outputs: % flag: % true - objects collided % false - objects not collided % % % This video helped me a lot when making this: https://mollyrocket.com/849 % Not my video, but very useful. % % Matthew Sheen, 2016 % %Point 1 and 2 selection (line segment) v = [0.8 0.5 1]; [a,b] = pickLine(v,shape2,shape1); %Point 3 selection (triangle) [a,b,c,flag] = pickTriangle(a,b,shape2,shape1,iterations); %Point 4 selection (tetrahedron) if flag == 1 %Only bother if we could find a viable triangle. [a,b,c,d,flag] = pickTetrahedron(a,b,c,shape2,shape1,iterations); end end function [a,b] = pickLine(v,shape1,shape2) %Construct the first line of the simplex b = support(shape2,shape1,v); a = support(shape2,shape1,-v); end function [a,b,c,flag] = pickTriangle(a,b,shape1,shape2,IterationAllowed) flag = 0; %So far, we don't have a successful triangle. %First try: ab = b-a; ao = -a; v = cross(cross(ab,ao),ab); % v is perpendicular to ab pointing in the general direction of the origin. c = b; b = a; a = support(shape2,shape1,v); for i = 1:IterationAllowed %iterations to see if we can draw a good triangle. %Time to check if we got it: ab = b-a; ao = -a; ac = c-a; %Normal to face of triangle abc = cross(ab,ac); %Perpendicular to AB going away from triangle abp = cross(ab,abc); %Perpendicular to AC going away from triangle acp = cross(abc,ac); %First, make sure our triangle "contains" the origin in a 2d projection %sense. %Is origin above (outside) AB? if dot(abp,ao) > 0 c = b; %Throw away the furthest point and grab a new one in the right direction b = a; v = abp; %cross(cross(ab,ao),ab); %Is origin above (outside) AC? elseif dot(acp, ao) > 0 b = a; v = acp; %cross(cross(ac,ao),ac); else flag = 1; break; %We got a good one. end a = support(shape2,shape1,v); end end function [a,b,c,d,flag] = pickTetrahedron(a,b,c,shape1,shape2,IterationAllowed) %Now, if we're here, we have a successful 2D simplex, and we need to check %if the origin is inside a successful 3D simplex. %So, is the origin above or below the triangle? flag = 0; ab = b-a; ac = c-a; %Normal to face of triangle abc = cross(ab,ac); ao = -a; if dot(abc, ao) > 0 %Above d = c; c = b; b = a; v = abc; a = support(shape2,shape1,v); %Tetrahedron new point else %below d = b; b = a; v = -abc; a = support(shape2,shape1,v); %Tetrahedron new point end for i = 1:IterationAllowed %Allowing 10 tries to make a good tetrahedron. %Check the tetrahedron: ab = b-a; ao = -a; ac = c-a; ad = d-a; %We KNOW that the origin is not under the base of the tetrahedron based on %the way we picked a. So we need to check faces ABC, ABD, and ACD. %Normal to face of triangle abc = cross(ab,ac); if dot(abc, ao) > 0 %Above triangle ABC %No need to change anything, we'll just iterate again with this face as %default. else acd = cross(ac,ad);%Normal to face of triangle if dot(acd, ao) > 0 %Above triangle ACD %Make this the new base triangle. b = c; c = d; ab = ac; ac = ad; abc = acd; else adb = cross(ad,ab);%Normal to face of triangle if dot(adb, ao) > 0 %Above triangle ADB %Make this the new base triangle. c = b; b = d; ac = ab; ab = ad; abc = adb; else flag = 1; break; %It's inside the tetrahedron. end end end %try again: if dot(abc, ao) > 0 %Above d = c; c = b; b = a; v = abc; a = support(shape2,shape1,v); %Tetrahedron new point else %below d = b; b = a; v = -abc; a = support(shape2,shape1,v); %Tetrahedron new point end end end function point = getFarthestInDir(shape, v) %Find the furthest point in a given direction for a shape XData = get(shape,'XData'); % Making it more compatible with previous MATLAB releases. YData = get(shape,'YData'); ZData = get(shape,'ZData'); dotted = XData*v(1) + YData*v(2) + ZData*v(3); [maxInCol,rowIdxSet] = max(dotted); [maxInRow,colIdx] = max(maxInCol); rowIdx = rowIdxSet(colIdx); point = [XData(rowIdx,colIdx), YData(rowIdx,colIdx), ZData(rowIdx,colIdx)]; end function point = support(shape1,shape2,v) %Support function to get the Minkowski difference. point1 = getFarthestInDir(shape1, v); point2 = getFarthestInDir(shape2, -v); point = point1 - point2; end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
convexhull.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK_Distance/convexhull.m
1,701
utf_8
cb09453005f6a6fce441276524c4e5c7
%How many iterations to allow for collision detection. iterationsAllowed = 6; % Make a figure figure(1) hold on % constants for set making cntr_1 = [0.0, 0.0, 0.0]; cntr_2 = [1.0, 0.0, 0.0]; r_1 = 0.5; r_2 = 0.2; tdis = 11; pdis = 6; % create point cloud sphere_1 = CreateSphere(cntr_1, r_1, tdis, pdis); sphere_2 = CreateSphere(cntr_2, r_2, tdis, pdis); % make individual convex hulls S1Obj = makeObj(sphere_1); S2Obj = makeObj(sphere_2); % Make tube figure(2) % create points cloud sphere_3 = [sphere_1; sphere_2]; % make combined convex hull S3Obj = makeObj(sphere_3); % check for collision flag = GJK(S1Obj, S2Obj, iterationsAllowed) % returns convex hull from point cloud function obj = makeObj(points) % create face representation and create convex hull F = convhull(points(:,1), points(:,2), points(:,3)); S.Vertices = points; S.Faces = F; S.FaceVertexCData = jet(size(points,1)); S.FaceColor = 'interp'; obj = patch(S); end % creates a point cloud in a sphere around the center function points = CreateSphere(center, r, thetadis, phidis) % angle discretization thetas = linspace(0,2*pi,thetadis); phis = linspace(0,pi,phidis); % point calculation points = []; x = []; y = []; z = []; for i = 1:length(phis) for j = 1:length(thetas) x = (r * sin(phis(i)) * cos(thetas(j))) + center(1); y = (r * sin(phis(i)) * sin(thetas(j))) + center(2); z = (r * cos(phis(i))) + center(3); points = [points; x, y, z]; % removes duplicate points at the top and bottom of sphere if(phis(i) == 0 || phis(i) == pi) break end end end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
CreateSphere.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK_Distance/functions/CreateSphere.m
866
utf_8
3ea485e3c5956a7fef00a0fe4c32bddb
% creates a point cloud in a sphere around the center function points = CreateSphere(center, r, thetadis, phidis) % angle discretization thetas = linspace(0,2*pi,thetadis); phis = linspace(0,pi,phidis); % point calculation points = []; x = []; y = []; z = []; for i = 1:length(phis) for j = 1:length(thetas) % removes duplicate point at theta = 2*pi if(thetas(j) == 2*pi) break end x = (r * sin(phis(i)) * cos(thetas(j))) + center(1); y = (r * sin(phis(i)) * sin(thetas(j))) + center(2); z = (r * cos(phis(i))) + center(3); points = [points; x, y, z]; % removes duplicate points at the top and bottom of sphere if(phis(i) == 0 || phis(i) == pi) break end end end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
SBPC.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK_Distance/functions/SBPC.m
5,186
utf_8
9465ecd091b943cce8a5775605bcae44
% prediction algorithm % state - [x, y, z, px, py, pz, pxdot, pydot, pzdot] function input = SBPC(state,target,sigma,QR,PR,TDIS,PDIS,N,K,TIMESTEP,VELOCITY) % number of iterations to allow for collision detection. iterationsAllowed = 6; % target object targetSet = CreateSphere(target, 0.001, 5, 5); targetObj = MakeObj(targetSet, 'none'); % get possible velocities S = length(VELOCITY); %% projectile set based prediction % get initial coordinates of projectile projcntr = state(4:6); velcntr = state(7:9); % create point cloud from initial condition s_0 = CreateSphere(projcntr, PR, TDIS, PDIS); % position v_0 = CreateSphere(velcntr, PR, TDIS, PDIS); % velocity % middle point with simulink simLength = double(N*TIMESTEP); projtraj = ProjectilePredict(state(4:9), simLength); % set points [m,n] = size(s_0); for i = 1:m % create initial condition for point in set setState = [s_0(i,:), v_0(i,:)]; % predict trajectory projtraj(:,:,i+1) = ProjectilePredict(setState, simLength); end %% quadrotor set based prediction % get initial coordinates of quad quadcntr = state(1:3); % create point cloud from initial condition s_1 = CreateSphere(quadcntr, QR, TDIS, PDIS); [m,n] = size(s_1); % N+1 because of initial condition % K-1 because 0 and 2pi given equivalent trajectories quadtraj = ones(N+1,3,S,K-1); theta = linspace(0, 2*pi, K); j = linspace(0,N,N+1); for i = 1:m+1 for k = 1:K-1 % first is middle point then the set if(i == 1) % integrator dynamics x = quadcntr(1)+transpose(j)*TIMESTEP*VELOCITY*cos(theta(k)); y = quadcntr(2)+transpose(j)*TIMESTEP*VELOCITY*sin(theta(k)); z = quadcntr(3)*ones(N+1,S); quadtraj(:,1,:,k) = x; quadtraj(:,2,:,k) = y; quadtraj(:,3,:,k) = z; else % integrator dynamics x = s_1(i-1,1)+transpose(j)*TIMESTEP*VELOCITY*cos(theta(k)); y = s_1(i-1,2)+transpose(j)*TIMESTEP*VELOCITY*sin(theta(k)); z = s_1(i-1,3)*ones(N+1,S); quadtraj(:,1,:,k) = x; quadtraj(:,2,:,k) = y; quadtraj(:,3,:,k) = z; end end setquadtraj(:,:,:,:,i) = quadtraj; end %% collision detection and trajectory optimization safeTraj = ones(S,K-1); for i = 1:N-1 % put data in right form for making convex hull for j = 1:m+1 projset1(j,:) = projtraj(i,:,j); projset2(j,:) = projtraj(i+1,:,j); end % create intersample convex hull for projectile projintersampleSet = [projset1; projset2]; projectileConvexHull(i) = MakeObj(projintersampleSet, 'red'); end % evaluate each trajectory trajCost = zeros(S,K-1); for k = 1:K-1 for s = 1:S % run collision detection algorithm for i = 1:N-1 % put data in right form for making convex hull % all points from successive sets for j = 1:m quadset1(j,:) = setquadtraj(i,:,s,k,j); quadset2(j,:) = setquadtraj(i+1,:,s,k,j); end % create intersample convex hull for trajectory k for quadrotor quadIntersampleSet = [quadset1; quadset2]; quadrotorConvexHull = MakeObj(quadIntersampleSet, 'green'); %collisionFlag = GJK(projectileConvexHull(i), quadrotorConvexHull, iterationsAllowed); [dist,~,~,~]=GJK_dist(projectileConvexHull(i),quadrotorConvexHull); if(dist < sigma) fprintf('Collision in trajectory %d at speed %d at time step %d\n\r', k,VELOCITY(s),i); safeTraj(s,k) = 0; trajCost(s,k) = inf; break; else [cost,~,~,~] = GJK_dist(targetObj,quadrotorConvexHull); collisionFlag = GJK(targetObj,quadrotorConvexHull,iterationsAllowed); if(collisionFlag) cost cost = 0; error('must increase minimum cost'); end trajCost(s,k) = trajCost(s,k) + cost; end end end end %% find optimal input % find minimum cost and return first coordinate in that trajectory [minCostList, minCostIndexList] = min(trajCost); [minCost, minCostKIndex] = min(minCostList); minCostSIndex = minCostIndexList(minCostKIndex); u_opt = setquadtraj(2,:,minCostSIndex,minCostKIndex,1); input = u_opt; xlabel('x axis'); ylabel('y axis'); zlabel('z axis'); grid on end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
MakeObj.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK_Distance/functions/MakeObj.m
613
utf_8
9842e71e7c6229282ca128ecd7b965bf
% returns convex hull from point cloud function obj = MakeObj(points, color) %figure() % create face representation and create convex hull F = convhull(points(:,1), points(:,2), points(:,3)); S.Vertices = points; S.Faces = F; S.FaceVertexCData = jet(size(points,1)); S.FaceColor = 'interp'; if(strcmp(color,'red')) obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','red'); elseif(strcmp(color,'green')) obj = patch('Faces',S.Faces,'Vertices',S.Vertices,'FaceColor','green'); else obj = patch(S); end end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
SimulationMakeObj.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK_Distance/functions/SimulationMakeObj.m
367
utf_8
d4f1152a27a0887bcaaf5135543da40a
% returns convex hull from point cloud function obj = SimulationMakeObj(points) %figure() % create face representation and create convex hull F = convhull(points(:,1), points(:,2), points(:,3)); S.Vertices = points; S.Faces = F; S.FaceVertexCData = jet(size(points,1)); S.FaceColor = 'interp'; obj = patch(S,'visible','off'); end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
SimulationSBPC.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK_Distance/functions/SimulationSBPC.m
5,284
utf_8
60c22e645f032eb5bd2dfa58890c8fa7
% prediction algorithm % state - [x, y, z, px, py, pz, pxdot, pydot, pzdot] function input = SimulationSBPC(state,target,sigma,QR,PR,TDIS,PDIS,N,K,TIMESTEP,VELOCITY) % number of iterations to allow for collision detection. iterationsAllowed = 3; % target object targetSet = CreateSphere(target, 0.001, 5, 5); targetObj = MakeObj(targetSet, 'none'); % get possible velocities S = length(VELOCITY); %% projectile set based prediction % get initial coordinates of projectile projcntr = state(4:6); velcntr = state(7:9); % create point cloud from initial condition s_0 = CreateSphere(projcntr, PR, TDIS, PDIS); % position v_0 = CreateSphere(velcntr, PR, TDIS, PDIS); % velocity % middle point with simulink simLength = double(N*TIMESTEP); [projtraj, projvel] = SimulationProjectilePredict(state(4:9), simLength); % set points [m,n] = size(s_0); for i = 1:m % create initial condition for point in set setState = [s_0(i,:), v_0(i,:)]; % predict trajectory [projtraj(:,:,i+1), projvel(:,:,i+1)] = SimulationProjectilePredict(setState, simLength); end %% quadrotor set based prediction % get initial coordinates of quad quadcntr = state(1:3); % create point cloud from initial condition s_1 = CreateSphere(quadcntr, QR, TDIS, PDIS); [m,n] = size(s_1); % N+1 because of initial condition % K-1 because 0 and 2pi given equivalent trajectories quadtraj = ones(N+1,3,S,K-1); theta = linspace(0, 2*pi, K); j = linspace(0,N,N+1); for i = 1:m+1 for k = 1:K-1 % first is middle point then the set if(i == 1) % integrator dynamics x = quadcntr(1)+transpose(j)*TIMESTEP*VELOCITY*cos(theta(k)); y = quadcntr(2)+transpose(j)*TIMESTEP*VELOCITY*sin(theta(k)); z = quadcntr(3)*ones(N+1,S); quadtraj(:,1,:,k) = x; quadtraj(:,2,:,k) = y; quadtraj(:,3,:,k) = z; else % integrator dynamics x = s_1(i-1,1)+transpose(j)*TIMESTEP*VELOCITY*cos(theta(k)); y = s_1(i-1,2)+transpose(j)*TIMESTEP*VELOCITY*sin(theta(k)); z = s_1(i-1,3)*ones(N+1,S); quadtraj(:,1,:,k) = x; quadtraj(:,2,:,k) = y; quadtraj(:,3,:,k) = z; end end setquadtraj(:,:,:,:,i) = quadtraj; end %% collision detection and trajectory optimization safeTraj = ones(S,K-1); for i = 1:N-1 % put data in right form for making convex hull for j = 1:m+1 projset1(j,:) = projtraj(i,:,j); projset2(j,:) = projtraj(i+1,:,j); end % create intersample convex hull for projectile projintersampleSet = [projset1; projset2]; projectileConvexHull(i) = SimulationMakeObj(projintersampleSet); end % evaluate each trajectory trajCost = zeros(S,K-1); for k = 1:K-1 for s = 1:S % run collision detection algorithm for i = 1:N-1 % put data in right form for making convex hull % all points from successive sets for j = 1:m quadset1(j,:) = setquadtraj(i,:,s,k,j); quadset2(j,:) = setquadtraj(i+1,:,s,k,j); end % create intersample convex hull for trajectory k for quadrotor quadIntersampleSet = [quadset1; quadset2]; quadrotorConvexHull = SimulationMakeObj(quadIntersampleSet); %collisionFlag = GJK(projectileConvexHull(i), quadrotorConvexHull, iterationsAllowed); [dist,~,~,~]=GJK_dist(projectileConvexHull(i),quadrotorConvexHull); if(dist < sigma) %fprintf('Collision in trajectory %d at speed %d at time step %d\n\r', k,VELOCITY(s),i); safeTraj(s,k) = 0; trajCost(s,k) = inf; break; else [cost,~,~,~] = GJK_dist(targetObj,quadrotorConvexHull); collisionFlag = GJK(targetObj,quadrotorConvexHull,iterationsAllowed); if(collisionFlag) cost cost = 0; error('must increase minimum cost'); end trajCost(s,k) = trajCost(s,k) + cost; end end end end %% find optimal input % find minimum cost and return first coordinate in that trajectory [minCostList, minCostIndexList] = min(trajCost); [minCost, minCostKIndex] = min(minCostList); minCostSIndex = minCostIndexList(minCostKIndex); u_opt = setquadtraj(2,:,minCostSIndex,minCostKIndex,1); input = [u_opt,projtraj(2,:,1), projvel(2,:,1)]; xlabel('x axis'); ylabel('y axis'); zlabel('z axis'); grid on end
github
HybridSystemsLab/SetBasedPredictionCollisionAndEvasion-master
CostSum.m
.m
SetBasedPredictionCollisionAndEvasion-master/OldSimFiles/MatlabSim/GJK_Distance/functions/CostSum.m
313
utf_8
49502b1d0e6bda46cdf68a30ef0c6178
% calculates total cost of a trajectory function totalCost = CostSum(trajectory, target, N) totalCost = 0; % sum distances between each point in trajectory and target for i = 1:N cost = pdist([trajectory(i,:); target], 'euclidean'); totalCost = totalCost + cost; end end